-
Notifications
You must be signed in to change notification settings - Fork 137
/
test_functions.py
72 lines (54 loc) · 2.55 KB
/
test_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pytest
import numpy as np
import torch
from functions import vq, vq_st
def test_vq_shape():
inputs = torch.rand((2, 3, 5, 7), dtype=torch.float32, requires_grad=True)
codebook = torch.rand((11, 7), dtype=torch.float32, requires_grad=True)
indices = vq(inputs, codebook)
assert indices.size() == (2, 3, 5)
assert not indices.requires_grad
assert indices.dtype == torch.int64
def test_vq():
inputs = torch.rand((2, 3, 5, 7), dtype=torch.float32, requires_grad=True)
codebook = torch.rand((11, 7), dtype=torch.float32, requires_grad=True)
indices = vq(inputs, codebook)
differences = inputs.unsqueeze(3) - codebook
distances = torch.norm(differences, p=2, dim=4)
_, indices_torch = torch.min(distances, dim=3)
assert np.allclose(indices.numpy(), indices_torch.numpy())
def test_vq_st_shape():
inputs = torch.rand((2, 3, 5, 7), dtype=torch.float32, requires_grad=True)
codebook = torch.rand((11, 7), dtype=torch.float32, requires_grad=True)
codes, indices = vq_st(inputs, codebook)
assert codes.size() == (2, 3, 5, 7)
assert codes.requires_grad
assert codes.dtype == torch.float32
assert indices.size() == (2 * 3 * 5,)
assert not indices.requires_grad
assert indices.dtype == torch.int64
def test_vq_st_gradient1():
inputs = torch.rand((2, 3, 5, 7), dtype=torch.float32, requires_grad=True)
codebook = torch.rand((11, 7), dtype=torch.float32, requires_grad=True)
codes, _ = vq_st(inputs, codebook)
grad_output = torch.rand((2, 3, 5, 7))
grad_inputs, = torch.autograd.grad(codes, inputs,
grad_outputs=[grad_output])
# Straight-through estimator
assert grad_inputs.size() == (2, 3, 5, 7)
assert np.allclose(grad_output.numpy(), grad_inputs.numpy())
def test_vq_st_gradient2():
inputs = torch.rand((2, 3, 5, 7), dtype=torch.float32, requires_grad=True)
codebook = torch.rand((11, 7), dtype=torch.float32, requires_grad=True)
codes, _ = vq_st(inputs, codebook)
indices = vq(inputs, codebook)
codes_torch = torch.embedding(codebook, indices, padding_idx=-1,
scale_grad_by_freq=False, sparse=False)
grad_output = torch.rand((2, 3, 5, 7), dtype=torch.float32)
grad_codebook, = torch.autograd.grad(codes, codebook,
grad_outputs=[grad_output])
grad_codebook_torch, = torch.autograd.grad(codes_torch, codebook,
grad_outputs=[grad_output])
# Gradient is the same as torch.embedding function
assert grad_codebook.size() == (11, 7)
assert np.allclose(grad_codebook.numpy(), grad_codebook_torch.numpy())