-
Notifications
You must be signed in to change notification settings - Fork 138
/
pixelcnn_baseline.py
129 lines (103 loc) · 3.45 KB
/
pixelcnn_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
from torchvision import datasets, transforms
from modules import GatedPixelCNN
import numpy as np
from torchvision.utils import save_image
import time
BATCH_SIZE = 32
N_EPOCHS = 100
PRINT_INTERVAL = 100
ALWAYS_SAVE = True
DATASET = 'FashionMNIST' # CIFAR10 | MNIST | FashionMNIST
NUM_WORKERS = 4
IMAGE_SHAPE = (28, 28) # (32, 32) | (28, 28)
INPUT_DIM = 3 # 3 (RGB) | 1 (Grayscale)
K = 256
DIM = 64
N_LAYERS = 15
LR = 3e-4
train_loader = torch.utils.data.DataLoader(
eval('datasets.'+DATASET)(
'../data/{}/'.format(DATASET), train=True, download=True,
transform=transforms.ToTensor(),
), batch_size=BATCH_SIZE, shuffle=False,
num_workers=NUM_WORKERS, pin_memory=True
)
test_loader = torch.utils.data.DataLoader(
eval('datasets.'+DATASET)(
'../data/{}/'.format(DATASET), train=False,
transform=transforms.ToTensor(),
), batch_size=BATCH_SIZE, shuffle=False,
num_workers=NUM_WORKERS, pin_memory=True
)
model = GatedPixelCNN(K, DIM, N_LAYERS).cuda()
criterion = nn.CrossEntropyLoss().cuda()
opt = torch.optim.Adam(model.parameters(), lr=LR)
def train():
train_loss = []
for batch_idx, (x, label) in enumerate(train_loader):
start_time = time.time()
x = (x[:, 0] * (K-1)).long().cuda()
label = label.cuda()
# Train PixelCNN with images
logits = model(x, label)
logits = logits.permute(0, 2, 3, 1).contiguous()
loss = criterion(
logits.view(-1, K),
x.view(-1)
)
opt.zero_grad()
loss.backward()
opt.step()
train_loss.append(loss.item())
if (batch_idx + 1) % PRINT_INTERVAL == 0:
print('\tIter: [{}/{} ({:.0f}%)]\tLoss: {} Time: {}'.format(
batch_idx * len(x), len(train_loader.dataset),
PRINT_INTERVAL * batch_idx / len(train_loader),
np.asarray(train_loss)[-PRINT_INTERVAL:].mean(0),
time.time() - start_time
))
def test():
start_time = time.time()
val_loss = []
with torch.no_grad():
for batch_idx, (x, label) in enumerate(test_loader):
x = (x[:, 0] * (K-1)).long().cuda()
label = label.cuda()
logits = model(x, label)
logits = logits.permute(0, 2, 3, 1).contiguous()
loss = criterion(
logits.view(-1, K),
x.view(-1)
)
val_loss.append(loss.item())
print('Validation Completed!\tLoss: {} Time: {}'.format(
np.asarray(val_loss).mean(0),
time.time() - start_time
))
return np.asarray(val_loss).mean(0)
def generate_samples():
label = torch.arange(10).expand(10, 10).contiguous().view(-1)
label = label.long().cuda()
x_tilde = model.generate(label, shape=IMAGE_SHAPE, batch_size=100)
images = x_tilde.cpu().data.float() / (K - 1)
save_image(
images[:, None],
'samples/pixelcnn_baseline_samples_{}.png'.format(DATASET),
nrow=10
)
BEST_LOSS = 999
LAST_SAVED = -1
for epoch in range(1, N_EPOCHS):
print("\nEpoch {}:".format(epoch))
train()
cur_loss = test()
if ALWAYS_SAVE or cur_loss <= BEST_LOSS:
BEST_LOSS = cur_loss
LAST_SAVED = epoch
print("Saving model!")
torch.save(model.state_dict(), 'models/{}_pixelcnn.pt'.format(DATASET))
else:
print("Not saving model! Last saved: {}".format(LAST_SAVED))
generate_samples()