This repository contains the official implementation for our study:
"Enhancing Cross-Session Motor Imagery Classification Using Graphical Models in ALS Patients"
Rishan Patel, Barney Bryson, Tom Carlson, Dai Jiang, and Andreas Demosthenous
Under Review in tNSRE
This work addresses the challenge of non-stationarity in EEG-based Brain-Computer Interfaces (BCIs), particularly in longitudinal use cases for ALS patients. We explore the effectiveness of various graph-theoretic EEG representations; Phase Locking Value (PLV), Magnitude Squared Coherence (MSC), Cross Frequency Coupling (CFC), and Conditional Mutual Information (CMI) within a Graph Attention Network (GAT) framework to improve cross-session motor imagery classification.
- PLV-GAT outperforms conventional methods (CSP, EEGNet, DeepConvNet) in both ALS and healthy cohorts.
- Graph-based models exhibit enhanced robustness to session-to-session signal variability.
- Ablation studies identify subject-specific electrode configurations that further boost performance.
- PLV emerges as a computationally efficient, stable, and explainable candidate for real-time BCI.
We evaluate our models on two datasets:
- SHU Dataset — 25 healthy subjects, 5 sessions each, 32-channel EEG.
- ALS Dataset — 8 ALS patients, 4 sessions each, 19-channel EEG, recorded using g.USBamp and BCI2000.
Details and access:
- ALS Dataset DOI: https://doi.org/10.5522/04/28156016.v1
- SHU Dataset: Referenced from [36] in the paper.
- Python 3.8+
- PyTorch 2.x
- PyTorch Geometric 2.5.0
- NumPy, SciPy, Scikit-learn
- Matplotlib, Seaborn (for plots)