Skip to content

rishannp/Graphical-Stability-Analysis-in-Nonstationary-EEG

Repository files navigation

Enhancing Cross-Session Motor Imagery Classification Using Graphical Models in ALS Patients

This repository contains the official implementation for our study:

"Enhancing Cross-Session Motor Imagery Classification Using Graphical Models in ALS Patients"
Rishan Patel, Barney Bryson, Tom Carlson, Dai Jiang, and Andreas Demosthenous
Under Review in tNSRE


🧠 Overview

This work addresses the challenge of non-stationarity in EEG-based Brain-Computer Interfaces (BCIs), particularly in longitudinal use cases for ALS patients. We explore the effectiveness of various graph-theoretic EEG representations; Phase Locking Value (PLV), Magnitude Squared Coherence (MSC), Cross Frequency Coupling (CFC), and Conditional Mutual Information (CMI) within a Graph Attention Network (GAT) framework to improve cross-session motor imagery classification.


📊 Key Results

  • PLV-GAT outperforms conventional methods (CSP, EEGNet, DeepConvNet) in both ALS and healthy cohorts.
  • Graph-based models exhibit enhanced robustness to session-to-session signal variability.
  • Ablation studies identify subject-specific electrode configurations that further boost performance.
  • PLV emerges as a computationally efficient, stable, and explainable candidate for real-time BCI.

🧬 Dataset

We evaluate our models on two datasets:

  1. SHU Dataset — 25 healthy subjects, 5 sessions each, 32-channel EEG.
  2. ALS Dataset — 8 ALS patients, 4 sessions each, 19-channel EEG, recorded using g.USBamp and BCI2000.

Details and access:


🧰 Requirements

  • Python 3.8+
  • PyTorch 2.x
  • PyTorch Geometric 2.5.0
  • NumPy, SciPy, Scikit-learn
  • Matplotlib, Seaborn (for plots)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages