You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi all,
I hope you can help me here.
I've been following your tutorials to set up my data in the following order:
mat <- as.data.frame(as.matrix(mat.so@assays$RNA@data))
mat.adt <- as.data.frame(as.matrix(mat.so@assays$ADT@data))
mat.hto <- as.data.frame(as.matrix(mat.so@assays$HTO@data))
htos <- hto.anno(hto.data = mat.hto, cov.thr = 10, assignment.thr = 80)
htos <- subset(htos,htos$percent.match > 80)
# cell ids to hashtags
sample1 <- row.names(subset(htos,htos$assignment.annotation == "HTO1"))
sample1.rna <- mat[ , which(names(mat) %in% sample1)]
my.data <- data.aggregation(samples = c("sample1.rna","sample2.rna"),
condition.names = c("c","t"))
mat.icellr <- make.obj(my.data)
# Then add the adt data frame
mat.icellr <- add.adt(mat.icellr, adt.data = mat.adt)
# following with qc.stat and cell.filter
# normalize RNA
mat.icellr <- norm.data(mat.icellr, norm.method = "ranked.glsf", top.rank = 500)
# normalize ADT
mat.icellr <- norm.adt(mat.icellr)
# 2nd QC
mat.icellr <- qc.stats(mat.icellr,which.data = "main.data")
# gene stats
mat.icellr <- gene.stats(mat.icellr, which.data = "main.data")
# genes for PCA
# merge RNA + ADT
mat.icellr <- adt.rna.merge(mat.icellr, adt.data = "main")
# run PCA and so on.
Using this workflow I cannot plot anything using the "ADT_ab". However, when I use the ADT data alone, I'm able to do it.
I checked the dataframe from both objects and they seem the same, just that when I use HTO I got less cells as I removed duplicates and negatives
Object with ADT + HTO
###################################
,--. ,-----. ,--.,--.,------.
`--'' .--./ ,---. | || || .--. '
,--.| | | .-. :| || || '--'.'
| |' '--'\ --. | || || |
`--' `-----' `----'`--'`--'`--' '--'
###################################
An object of class iCellR version: 1.6.5
Raw/original data dimentions (rows,columns): 32285,11236
Data conditions in raw data: o,y (5822,5414)
Row names: 0610005C13Rik,0610006L08Rik,0610009B22Rik ...
Columns names: y_AAACCCAAGCAGGCAT,y_AAACCCACAGCTCTGG,y_AAACCCATCGCTGTCT ...
###################################
QC stats performed:TRUE, PCA performed:TRUE
Clustering performed:FALSE, Number of clusters:0
tSNE performed:FALSE, UMAP performed:TRUE, DiffMap performed:FALSE
Main data dimensions (rows,columns): 32310,9840
Data conditions in main data:o,y(4958,4882)
Normalization factors:0.689367228711468,...
Imputed data dimensions (rows,columns):0,0
############## scVDJ-seq ###########
VDJ data dimentions (rows,columns):0,0
############## CITE-seq ############
ADT raw data dimensions (rows,columns):25,13190
ADT main data dimensions (rows,columns):25,13190
ADT columns names:AAACCCAAGCAGGCAT...
ADT row names:ADT_B220...
############## scATAC-seq ############
ATAC raw data dimensions (rows,columns):0,0
ATAC main data dimensions (rows,columns):0,0
ATAC columns names:...
ATAC row names:...
############## Spatial ###########
Spatial data dimentions (rows,columns):0,0
########### iCellR object ##########
head([email protected])[1:3]
AAACCCAAGCAGGCAT AAACCCAAGTATGATG AAACCCAAGTCGAATA
ADT_B220 0.000000 0.00000 0.000000
ADT_CD115 9.870273 0.00000 3.290091
ADT_CD11b 0.000000 16.85752 101.145095
ADT_CD11c 0.000000 90.52983 0.000000
ADT_CD127 0.000000 0.00000 77.677947
ADT_Flt3 27.195452 45.32575 27.195452
Object with ADT only
###################################
,--. ,-----. ,--.,--.,------.
`--'' .--./ ,---. | || || .--. '
,--.| | | .-. :| || || '--'.'
| |' '--'\ --. | || || |
`--' `-----' `----'`--'`--'`--' '--'
###################################
An object of class iCellR version: 1.6.5
Raw/original data dimentions (rows,columns): 32285,13190
Data conditions: no conditions/single sample
Row names: Xkr4,Gm1992,Gm19938 ...
Columns names: AAACCCAAGCAGGCAT,AAACCCAAGTATGATG,AAACCCAAGTCGAATA ...
###################################
QC stats performed:TRUE, PCA performed:TRUE
Clustering performed:FALSE, Number of clusters:0
tSNE performed:FALSE, UMAP performed:TRUE, DiffMap performed:FALSE
Main data dimensions (rows,columns): 32310,11278
Normalization factors:0.640626466090974,...
Imputed data dimensions (rows,columns):0,0
############## scVDJ-seq ###########
VDJ data dimentions (rows,columns):0,0
############## CITE-seq ############
ADT raw data dimensions (rows,columns):25,13190
ADT main data dimensions (rows,columns):25,13190
ADT columns names:AAACCCAAGCAGGCAT...
ADT row names:ADT_B220...
############## scATAC-seq ############
ATAC raw data dimensions (rows,columns):0,0
ATAC main data dimensions (rows,columns):0,0
ATAC columns names:...
ATAC row names:...
############## Spatial ###########
Spatial data dimentions (rows,columns):0,0
########### iCellR object ##########
head([email protected])[1:3]
AAACCCAAGCAGGCAT AAACCCAAGTATGATG AAACCCAAGTCGAATA
ADT_B220 0.000000 0.00000 0.000000
ADT_CD115 9.870273 0.00000 3.290091
ADT_CD11b 0.000000 16.85752 101.145095
ADT_CD11c 0.000000 90.52983 0.000000
ADT_CD127 0.000000 0.00000 77.677947
ADT_Flt3 27.195452 45.32575 27.195452
Works as expected in the ADT only object, otherwise I get just a grey plot with no signal of expression.
I would appreciate if you can help me to point out the reason.
Thanks!
The text was updated successfully, but these errors were encountered:
Hi all,
I hope you can help me here.
I've been following your tutorials to set up my data in the following order:
Using this workflow I cannot plot anything using the "ADT_ab". However, when I use the ADT data alone, I'm able to do it.
I checked the dataframe from both objects and they seem the same, just that when I use HTO I got less cells as I removed duplicates and negatives
Object with ADT + HTO
Object with ADT only
If I do
Works as expected in the ADT only object, otherwise I get just a grey plot with no signal of expression.
I would appreciate if you can help me to point out the reason.
Thanks!
The text was updated successfully, but these errors were encountered: