-
Notifications
You must be signed in to change notification settings - Fork 285
/
Copy pathplot_calibration_curve.py
34 lines (29 loc) · 1.31 KB
/
plot_calibration_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
"""
An example showing the plot_calibration_curve method
used by a scikit-learn classifier
"""
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.datasets import make_classification
import matplotlib.pyplot as plt
import scikitplot as skplt
X, y = make_classification(n_samples=100000, n_features=20,
n_informative=2, n_redundant=2,
random_state=20)
X_train, y_train, X_test, y_test = X[:1000], y[:1000], X[1000:], y[1000:]
rf_probas = RandomForestClassifier().fit(X_train, y_train).predict_proba(X_test)
lr_probas = LogisticRegression().fit(X_train, y_train).predict_proba(X_test)
nb_probas = GaussianNB().fit(X_train, y_train).predict_proba(X_test)
sv_scores = LinearSVC().fit(X_train, y_train).decision_function(X_test)
probas_list = [rf_probas, lr_probas, nb_probas, sv_scores]
clf_names=['Random Forest',
'Logistic Regression',
'Gaussian Naive Bayes',
'Support Vector Machine']
skplt.metrics.plot_calibration_curve(y_test,
probas_list=probas_list,
clf_names=clf_names,
n_bins=10)
plt.show()