|
| 1 | +from pathlib import Path |
| 2 | + |
| 3 | +import pytest |
| 4 | +from mmcv.utils.testing import assert_dict_has_keys |
| 5 | + |
| 6 | +from mmedit.datasets import (BaseGenerationDataset, GenerationPairedDataset, |
| 7 | + GenerationUnpairedDataset) |
| 8 | + |
| 9 | + |
| 10 | +class TestGenerationDatasets: |
| 11 | + |
| 12 | + @classmethod |
| 13 | + def setup_class(cls): |
| 14 | + cls.data_prefix = Path(__file__).parent.parent.parent / 'data' |
| 15 | + |
| 16 | + def test_base_generation_dataset(self): |
| 17 | + |
| 18 | + class ToyDataset(BaseGenerationDataset): |
| 19 | + """Toy dataset for testing Generation Dataset.""" |
| 20 | + |
| 21 | + def load_annotations(self): |
| 22 | + pass |
| 23 | + |
| 24 | + toy_dataset = ToyDataset(pipeline=[]) |
| 25 | + file_paths = [ |
| 26 | + 'paired/test/3.jpg', 'paired/train/1.jpg', 'paired/train/2.jpg' |
| 27 | + ] |
| 28 | + file_paths = [str(self.data_prefix / v) for v in file_paths] |
| 29 | + |
| 30 | + # test scan_folder |
| 31 | + result = toy_dataset.scan_folder(self.data_prefix) |
| 32 | + assert set(file_paths).issubset(set(result)) |
| 33 | + result = toy_dataset.scan_folder(str(self.data_prefix)) |
| 34 | + assert set(file_paths).issubset(set(result)) |
| 35 | + |
| 36 | + with pytest.raises(TypeError): |
| 37 | + toy_dataset.scan_folder(123) |
| 38 | + |
| 39 | + # test evaluate |
| 40 | + toy_dataset.data_infos = file_paths |
| 41 | + with pytest.raises(TypeError): |
| 42 | + _ = toy_dataset.evaluate(1) |
| 43 | + test_results = [dict(saved_flag=True), dict(saved_flag=True)] |
| 44 | + with pytest.raises(AssertionError): |
| 45 | + _ = toy_dataset.evaluate(test_results) |
| 46 | + test_results = [ |
| 47 | + dict(saved_flag=True), |
| 48 | + dict(saved_flag=True), |
| 49 | + dict(saved_flag=False) |
| 50 | + ] |
| 51 | + eval_results = toy_dataset.evaluate(test_results) |
| 52 | + assert eval_results['val_saved_number'] == 2 |
| 53 | + |
| 54 | + def test_generation_paired_dataset(self): |
| 55 | + # setup |
| 56 | + img_norm_cfg = dict(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
| 57 | + pipeline = [ |
| 58 | + dict( |
| 59 | + type='LoadPairedImageFromFile', |
| 60 | + io_backend='disk', |
| 61 | + key='pair', |
| 62 | + flag='color'), |
| 63 | + dict( |
| 64 | + type='Resize', |
| 65 | + keys=['img_a', 'img_b'], |
| 66 | + scale=(286, 286), |
| 67 | + interpolation='bicubic'), |
| 68 | + dict( |
| 69 | + type='FixedCrop', |
| 70 | + keys=['img_a', 'img_b'], |
| 71 | + crop_size=(256, 256)), |
| 72 | + dict(type='Flip', keys=['img_a', 'img_b'], direction='horizontal'), |
| 73 | + dict(type='RescaleToZeroOne', keys=['img_a', 'img_b']), |
| 74 | + dict( |
| 75 | + type='Normalize', |
| 76 | + keys=['img_a', 'img_b'], |
| 77 | + to_rgb=True, |
| 78 | + **img_norm_cfg), |
| 79 | + dict(type='ImageToTensor', keys=['img_a', 'img_b']), |
| 80 | + dict( |
| 81 | + type='Collect', |
| 82 | + keys=['img_a', 'img_b'], |
| 83 | + meta_keys=['img_a_path', 'img_b_path']) |
| 84 | + ] |
| 85 | + target_keys = ['img_a', 'img_b', 'meta'] |
| 86 | + target_meta_keys = ['img_a_path', 'img_b_path'] |
| 87 | + pair_folder = self.data_prefix / 'paired' |
| 88 | + |
| 89 | + # input path is Path object |
| 90 | + generation_paried_dataset = GenerationPairedDataset( |
| 91 | + dataroot=pair_folder, pipeline=pipeline, test_mode=True) |
| 92 | + data_infos = generation_paried_dataset.data_infos |
| 93 | + assert data_infos == [ |
| 94 | + dict(pair_path=str(pair_folder / 'test' / '3.jpg')) |
| 95 | + ] |
| 96 | + result = generation_paried_dataset[0] |
| 97 | + assert (len(generation_paried_dataset) == 1) |
| 98 | + assert assert_dict_has_keys(result, target_keys) |
| 99 | + assert assert_dict_has_keys(result['meta'].data, target_meta_keys) |
| 100 | + assert (result['meta'].data['img_a_path'] == str(pair_folder / 'test' / |
| 101 | + '3.jpg')) |
| 102 | + assert (result['meta'].data['img_b_path'] == str(pair_folder / 'test' / |
| 103 | + '3.jpg')) |
| 104 | + |
| 105 | + # input path is str |
| 106 | + generation_paried_dataset = GenerationPairedDataset( |
| 107 | + dataroot=str(pair_folder), pipeline=pipeline, test_mode=True) |
| 108 | + data_infos = generation_paried_dataset.data_infos |
| 109 | + assert data_infos == [ |
| 110 | + dict(pair_path=str(pair_folder / 'test' / '3.jpg')) |
| 111 | + ] |
| 112 | + result = generation_paried_dataset[0] |
| 113 | + assert (len(generation_paried_dataset) == 1) |
| 114 | + assert assert_dict_has_keys(result, target_keys) |
| 115 | + assert assert_dict_has_keys(result['meta'].data, target_meta_keys) |
| 116 | + assert (result['meta'].data['img_a_path'] == str(pair_folder / 'test' / |
| 117 | + '3.jpg')) |
| 118 | + assert (result['meta'].data['img_b_path'] == str(pair_folder / 'test' / |
| 119 | + '3.jpg')) |
| 120 | + |
| 121 | + # test_mode = False |
| 122 | + generation_paried_dataset = GenerationPairedDataset( |
| 123 | + dataroot=str(pair_folder), pipeline=pipeline, test_mode=False) |
| 124 | + data_infos = generation_paried_dataset.data_infos |
| 125 | + assert data_infos == [ |
| 126 | + dict(pair_path=str(pair_folder / 'train' / '1.jpg')), |
| 127 | + dict(pair_path=str(pair_folder / 'train' / '2.jpg')) |
| 128 | + ] |
| 129 | + assert (len(generation_paried_dataset) == 2) |
| 130 | + result = generation_paried_dataset[0] |
| 131 | + assert assert_dict_has_keys(result, target_keys) |
| 132 | + assert assert_dict_has_keys(result['meta'].data, target_meta_keys) |
| 133 | + assert (result['meta'].data['img_a_path'] == str(pair_folder / |
| 134 | + 'train' / '1.jpg')) |
| 135 | + assert (result['meta'].data['img_b_path'] == str(pair_folder / |
| 136 | + 'train' / '1.jpg')) |
| 137 | + result = generation_paried_dataset[1] |
| 138 | + assert assert_dict_has_keys(result, target_keys) |
| 139 | + assert assert_dict_has_keys(result['meta'].data, target_meta_keys) |
| 140 | + assert (result['meta'].data['img_a_path'] == str(pair_folder / |
| 141 | + 'train' / '2.jpg')) |
| 142 | + assert (result['meta'].data['img_b_path'] == str(pair_folder / |
| 143 | + 'train' / '2.jpg')) |
| 144 | + |
| 145 | + def test_generation_unpaired_dataset(self): |
| 146 | + # setup |
| 147 | + img_norm_cfg = dict(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
| 148 | + pipeline = [ |
| 149 | + dict( |
| 150 | + type='LoadImageFromFile', |
| 151 | + io_backend='disk', |
| 152 | + key='img_a', |
| 153 | + flag='color'), |
| 154 | + dict( |
| 155 | + type='LoadImageFromFile', |
| 156 | + io_backend='disk', |
| 157 | + key='img_b', |
| 158 | + flag='color'), |
| 159 | + dict( |
| 160 | + type='Resize', |
| 161 | + keys=['img_a', 'img_b'], |
| 162 | + scale=(286, 286), |
| 163 | + interpolation='bicubic'), |
| 164 | + dict( |
| 165 | + type='Crop', |
| 166 | + keys=['img_a', 'img_b'], |
| 167 | + crop_size=(256, 256), |
| 168 | + random_crop=True), |
| 169 | + dict(type='Flip', keys=['img_a'], direction='horizontal'), |
| 170 | + dict(type='Flip', keys=['img_b'], direction='horizontal'), |
| 171 | + dict(type='RescaleToZeroOne', keys=['img_a', 'img_b']), |
| 172 | + dict( |
| 173 | + type='Normalize', |
| 174 | + keys=['img_a', 'img_b'], |
| 175 | + to_rgb=True, |
| 176 | + **img_norm_cfg), |
| 177 | + dict(type='ImageToTensor', keys=['img_a', 'img_b']), |
| 178 | + dict( |
| 179 | + type='Collect', |
| 180 | + keys=['img_a', 'img_b'], |
| 181 | + meta_keys=['img_a_path', 'img_b_path']) |
| 182 | + ] |
| 183 | + target_keys = ['img_a', 'img_b', 'meta'] |
| 184 | + target_meta_keys = ['img_a_path', 'img_b_path'] |
| 185 | + unpair_folder = self.data_prefix / 'unpaired' |
| 186 | + |
| 187 | + # input path is Path object |
| 188 | + generation_unpaired_dataset = GenerationUnpairedDataset( |
| 189 | + dataroot=unpair_folder, pipeline=pipeline, test_mode=True) |
| 190 | + data_infos_a = generation_unpaired_dataset.data_infos_a |
| 191 | + data_infos_b = generation_unpaired_dataset.data_infos_b |
| 192 | + assert data_infos_a == [ |
| 193 | + dict(path=str(unpair_folder / 'testA' / '5.jpg')) |
| 194 | + ] |
| 195 | + assert data_infos_b == [ |
| 196 | + dict(path=str(unpair_folder / 'testB' / '6.jpg')) |
| 197 | + ] |
| 198 | + result = generation_unpaired_dataset[0] |
| 199 | + assert (len(generation_unpaired_dataset) == 1) |
| 200 | + assert assert_dict_has_keys(result, target_keys) |
| 201 | + assert assert_dict_has_keys(result['meta'].data, target_meta_keys) |
| 202 | + assert (result['meta'].data['img_a_path'] == str(unpair_folder / |
| 203 | + 'testA' / '5.jpg')) |
| 204 | + assert (result['meta'].data['img_b_path'] == str(unpair_folder / |
| 205 | + 'testB' / '6.jpg')) |
| 206 | + |
| 207 | + # input path is str |
| 208 | + generation_unpaired_dataset = GenerationUnpairedDataset( |
| 209 | + dataroot=str(unpair_folder), pipeline=pipeline, test_mode=True) |
| 210 | + data_infos_a = generation_unpaired_dataset.data_infos_a |
| 211 | + data_infos_b = generation_unpaired_dataset.data_infos_b |
| 212 | + assert data_infos_a == [ |
| 213 | + dict(path=str(unpair_folder / 'testA' / '5.jpg')) |
| 214 | + ] |
| 215 | + assert data_infos_b == [ |
| 216 | + dict(path=str(unpair_folder / 'testB' / '6.jpg')) |
| 217 | + ] |
| 218 | + result = generation_unpaired_dataset[0] |
| 219 | + assert (len(generation_unpaired_dataset) == 1) |
| 220 | + assert assert_dict_has_keys(result, target_keys) |
| 221 | + assert assert_dict_has_keys(result['meta'].data, target_meta_keys) |
| 222 | + assert (result['meta'].data['img_a_path'] == str(unpair_folder / |
| 223 | + 'testA' / '5.jpg')) |
| 224 | + assert (result['meta'].data['img_b_path'] == str(unpair_folder / |
| 225 | + 'testB' / '6.jpg')) |
| 226 | + |
| 227 | + # test_mode = False |
| 228 | + generation_unpaired_dataset = GenerationUnpairedDataset( |
| 229 | + dataroot=str(unpair_folder), pipeline=pipeline, test_mode=False) |
| 230 | + data_infos_a = generation_unpaired_dataset.data_infos_a |
| 231 | + data_infos_b = generation_unpaired_dataset.data_infos_b |
| 232 | + assert data_infos_a == [ |
| 233 | + dict(path=str(unpair_folder / 'trainA' / '1.jpg')), |
| 234 | + dict(path=str(unpair_folder / 'trainA' / '2.jpg')) |
| 235 | + ] |
| 236 | + assert data_infos_b == [ |
| 237 | + dict(path=str(unpair_folder / 'trainB' / '3.jpg')), |
| 238 | + dict(path=str(unpair_folder / 'trainB' / '4.jpg')) |
| 239 | + ] |
| 240 | + assert (len(generation_unpaired_dataset) == 2) |
| 241 | + img_b_paths = [ |
| 242 | + str(unpair_folder / 'trainB' / '3.jpg'), |
| 243 | + str(unpair_folder / 'trainB' / '4.jpg') |
| 244 | + ] |
| 245 | + result = generation_unpaired_dataset[0] |
| 246 | + assert assert_dict_has_keys(result, target_keys) |
| 247 | + assert assert_dict_has_keys(result['meta'].data, target_meta_keys) |
| 248 | + assert (result['meta'].data['img_a_path'] == str(unpair_folder / |
| 249 | + 'trainA' / '1.jpg')) |
| 250 | + assert result['meta'].data['img_b_path'] in img_b_paths |
| 251 | + result = generation_unpaired_dataset[1] |
| 252 | + assert assert_dict_has_keys(result, target_keys) |
| 253 | + assert assert_dict_has_keys(result['meta'].data, target_meta_keys) |
| 254 | + assert (result['meta'].data['img_a_path'] == str(unpair_folder / |
| 255 | + 'trainA' / '2.jpg')) |
| 256 | + assert result['meta'].data['img_b_path'] in img_b_paths |
0 commit comments