This is plant diease detection project and We have implemented deep learning model for that. This model could achive near about 99% accuracy trained over the 38 plant disease classes.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 128, 128, 32) 896
_________________________________________________________________
activation_1 (Activation) (None, 128, 128, 32) 0
_________________________________________________________________
batch_normalization_1 (Batch (None, 128, 128, 32) 128
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 42, 42, 32) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 42, 42, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 42, 42, 64) 18496
_________________________________________________________________
activation_2 (Activation) (None, 42, 42, 64) 0
_________________________________________________________________
batch_normalization_2 (Batch (None, 42, 42, 64) 256
_________________________________________________________________
conv2d_3 (Conv2D) (None, 42, 42, 64) 36928
_________________________________________________________________
activation_3 (Activation) (None, 42, 42, 64) 0
_________________________________________________________________
batch_normalization_3 (Batch (None, 42, 42, 64) 256
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 21, 21, 64) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 21, 21, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 21, 21, 128) 73856
_________________________________________________________________
activation_4 (Activation) (None, 21, 21, 128) 0
_________________________________________________________________
batch_normalization_4 (Batch (None, 21, 21, 128) 512
_________________________________________________________________
conv2d_5 (Conv2D) (None, 21, 21, 128) 147584
_________________________________________________________________
activation_5 (Activation) (None, 21, 21, 128) 0
_________________________________________________________________
batch_normalization_5 (Batch (None, 21, 21, 128) 512
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 10, 10, 128) 0
_________________________________________________________________
dropout_3 (Dropout) (None, 10, 10, 128) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 12800) 0
_________________________________________________________________
dense_1 (Dense) (None, 1024) 13108224
_________________________________________________________________
activation_6 (Activation) (None, 1024) 0
_________________________________________________________________
batch_normalization_6 (Batch (None, 1024) 4096
_________________________________________________________________
dropout_4 (Dropout) (None, 1024) 0
_________________________________________________________________
dense_2 (Dense) (None, 38) 38950
_________________________________________________________________
activation_7 (Activation) (None, 38) 0
=================================================================
Total params: 13,430,694
Trainable params: 13,427,814
Non-trainable params: 2,880
_________________________________________________________________
├── LICENSE
├── Makefile
├── README.md
├── docs
│ ├── Makefile
│ ├── commands.rst
│ ├── conf.py
│ ├── getting-started.rst
│ ├── image_overview.png
│ ├── index.rst
│ └── make.bat
├── index.md
├── models
├── notebooks
│ ├── Plant disease detection model - Final Model.ipynb
│ └── Plant disease identification - Sample Model.ipynb
├── references
├── reports
│ └── figures
├── requirements.txt
├── setup.py
├── src
│ ├── __init__.py
│ ├── data
│ │ ├── __init__.py
│ │ └── make_dataset.py
│ ├── features
│ │ ├── __init__.py
│ │ └── build_features.py
│ ├── models
│ │ ├── __init__.py
│ │ ├── predict_model.py
│ │ └── train_model.py
│ └── visualization
│ ├── __init__.py
│ └── visualize.py
├── test_environment.py
└── tox.ini`