Skip to content
This repository was archived by the owner on Sep 24, 2022. It is now read-only.

Commit 1a044a8

Browse files
committed
update readme #2
1 parent b47f617 commit 1a044a8

File tree

1 file changed

+1
-145
lines changed

1 file changed

+1
-145
lines changed

README.md

Lines changed: 1 addition & 145 deletions
Original file line numberDiff line numberDiff line change
@@ -1,145 +1 @@
1-
DCVGAN: Depth Conditional Video Generation
2-
--
3-
4-
This repository contains official pytorch implementation of DCVGAN.
5-
6-
[Yuki Nakahira and Kazuhiko Kawamoto, DCVGAN: Depth Conditional Video Generation, 2019 IEEE International Conference on Image Processing, ICIP 2019.](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8803764)
7-
8-
9-
10-
## About
11-
12-
This paper proposes a new GAN architecture for video generation with depth videos and color videos.
13-
14-
The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understand scene dynamics more accurately.
15-
16-
The model uses pairs of color video and depth video for training, and generates a video using the two steps.
17-
18-
1. Generate the depth video to model the scene dynamics based on the geometrical information.
19-
2. To add appropriate color to the geometrical information of the scene, the domain translation from depth to color is performed for each image.
20-
21-
The architecture is below. This model has three networks in the generator: frame seed generator ($R_M$), depth image generator ($G_D$), color image generator ($G_C$).
22-
23-
<p align="center">
24-
<img src="https://user-images.githubusercontent.com/13511520/57762583-baf5f300-773a-11e9-942d-858c2d834536.png" width="50%">
25-
</p>
26-
27-
In addition, the model has two discriminators: image discriminator ($D_I$) and video discriminator ($D_V$). The detailed network architecture is shown below.
28-
29-
## Result
30-
31-
#### facial expression dataset
32-
33-
<p align="center">
34-
<img src="https://user-images.githubusercontent.com/13511520/54088503-f58d8900-43a1-11e9-8b27-1eca5a7d8e98.gif" width="640px">
35-
</p>
36-
37-
38-
#### hand gesture dataset
39-
40-
<p align="center">
41-
<img src="https://user-images.githubusercontent.com/13511520/54088434-75672380-43a1-11e9-9f7e-c6ff1bc0b77b.gif" width="640px">
42-
</p>
43-
44-
45-
## Network Architecture
46-
47-
### Generators
48-
49-
<p align="center">
50-
<img src="https://user-images.githubusercontent.com/13511520/57746277-743cd480-770b-11e9-8066-c3b6b64426aa.png" width="60%">
51-
</p>
52-
53-
### Discriminators
54-
55-
<p align="center">
56-
<img src="https://user-images.githubusercontent.com/13511520/57746276-73a43e00-770b-11e9-90ec-9dcc58ffc3b6.png" width="60%">
57-
</p>
58-
59-
## Usage
60-
61-
### 1. Clone the repository
62-
63-
```shell
64-
git clone https://github.com/raahii/dcvgan.git
65-
cd dcvgan
66-
```
67-
68-
69-
70-
### 2. Install dependencies
71-
72-
#### Requirements
73-
74-
- Python3.7
75-
- PyTorch
76-
- FFmpeg
77-
- OpenCV
78-
- GraphViz
79-
80-
#### Using docker
81-
82-
Easy. Thanks :whale:
83-
84-
```shell
85-
docker build -t dcvgan -f docker/Dockerfile.gpu .
86-
docker run --runtime=nvidia -v $(pwd):/home/user/dcvgan -it dcvgan
87-
```
88-
89-
#### Manual installation
90-
91-
I recommend to use pyenv and conda to install dependencies. For instance, my environment is like following.
92-
93-
```shell
94-
pyenv install miniconda3-4.3.30
95-
pyenv local miniconda3-4.3.30
96-
conda install -y ffmpeg
97-
pip install -r requirements.txt
98-
```
99-
100-
For detail, please refer my [Dockerfile](https://github.com/raahii/dcvgan/blob/master/docker/Dockerfile.gpu).
101-
102-
103-
### 2. Prepare the dataset
104-
105-
- facial expression: [MUG Facial Exprssion Database](https://mug.ee.auth.gr/fed/)
106-
- hand gesture: [Chalearn LAP IsoGD Database](http://www.cbsr.ia.ac.cn/users/jwan/database/isogd.html)
107-
108-
Please follow the instructions of each official page to obtain the dataset. Preprocessing codes for facial expression dataset is not available now. I recommend to place the dataset under `data/raw/`
109-
110-
111-
112-
### 3. Training
113-
114-
```
115-
python src/train.py --config <config.yml>
116-
tensorboard --logdir <result dir>
117-
```
118-
119-
For the first time, preprocessing for the dataset starts automatically. Preprocessing is to format all datasets into a common format for [VideoDataset](https://github.com/raahii/dcvgan/blob/master/src/dataset.py#L18).
120-
121-
Please refer and edit `configs/XXX.yml` to chage training configurations such as training epochs, batchsize, result directory.
122-
123-
### 4. Sampling
124-
125-
```
126-
python src/generate_samples.py <result dir> <iteration> <save dir>
127-
```
128-
129-
130-
131-
### 5. Evaluation
132-
133-
I have published a framework for efficient evaluation of video generation, [video-gans-evaluation](https://github.com/raahii/video-gans-evaluation). The framework supports `Inception Score`, `FID` and `PRD` now. **Please star the repository if you like it!** :relaxed:
134-
135-
136-
137-
----
138-
139-
140-
141-
## TODOS
142-
143-
- [ ] upload pretrained models
144-
- [x] dockernize
145-
1+
[Note]: This repository contains my own experiment codes for my reseach porject, but once also was the official implementation of 'DCVGAN' presented in ICIP2019. If you come here by referring the conference, please go to [past version](https://github.com/raahii/dcvgan/tree/08564d00a251fd1f8fe5d1ce22893ee607d5f79a) and [release](https://github.com/raahii/dcvgan/releases/tag/icip2019).

0 commit comments

Comments
 (0)