-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmountain_car_q.py
83 lines (60 loc) · 2.74 KB
/
mountain_car_q.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gym
import numpy as np
import matplotlib.pyplot as plt
import pickle
def run(episodes, is_training=True, render=False):
env = gym.make('MountainCar-v0', render_mode='human' if render else None)
# Divide position and velocity into segments
pos_space = np.linspace(env.observation_space.low[0], env.observation_space.high[0], 20) # Between -1.2 and 0.6
vel_space = np.linspace(env.observation_space.low[1], env.observation_space.high[1], 20) # Between -0.07 and 0.07
if(is_training):
q = np.zeros((len(pos_space), len(vel_space), env.action_space.n)) # init a 20x20x3 array
else:
f = open('mountain_car.pkl', 'rb')
q = pickle.load(f)
f.close()
learning_rate_a = 0.9 # alpha or learning rate
discount_factor_g = 0.9 # gamma or discount factor.
epsilon = 1 # 1 = 100% random actions
epsilon_decay_rate = 2/episodes # epsilon decay rate
rng = np.random.default_rng() # random number generator
rewards_per_episode = np.zeros(episodes)
for i in range(episodes):
state = env.reset()[0] # Starting position, starting velocity always 0
state_p = np.digitize(state[0], pos_space)
state_v = np.digitize(state[1], vel_space)
terminated = False # True when reached goal
rewards=0
while(not terminated and rewards>-1000):
if is_training and rng.random() < epsilon:
# Choose random action (0=drive left, 1=stay neutral, 2=drive right)
action = env.action_space.sample()
else:
action = np.argmax(q[state_p, state_v, :])
new_state,reward,terminated,_,_ = env.step(action)
new_state_p = np.digitize(new_state[0], pos_space)
new_state_v = np.digitize(new_state[1], vel_space)
if is_training:
q[state_p, state_v, action] = q[state_p, state_v, action] + learning_rate_a * (
reward + discount_factor_g*np.max(q[new_state_p, new_state_v,:]) - q[state_p, state_v, action]
)
state = new_state
state_p = new_state_p
state_v = new_state_v
rewards+=reward
epsilon = max(epsilon - epsilon_decay_rate, 0)
rewards_per_episode[i] = rewards
env.close()
# Save Q table to file
if is_training:
f = open('mountain_car.pkl','wb')
pickle.dump(q, f)
f.close()
mean_rewards = np.zeros(episodes)
for t in range(episodes):
mean_rewards[t] = np.mean(rewards_per_episode[max(0, t-100):(t+1)])
plt.plot(mean_rewards)
plt.savefig(f'mountain_car.png')
if __name__ == '__main__':
# run(5000, is_training=True, render=False)
run(10, is_training=False, render=True)