forked from raghakot/keras-resnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet.py
252 lines (203 loc) · 9.09 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from __future__ import division
import six
from keras.models import Model
from keras.layers import (
Input,
Activation,
Dense,
Flatten
)
from keras.layers.convolutional import (
Conv2D,
MaxPooling2D,
AveragePooling2D
)
from keras.layers.merge import add
from keras.layers.normalization import BatchNormalization
from keras.regularizers import l2
from keras import backend as K
def _bn_relu(input):
"""Helper to build a BN -> relu block
"""
norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
return Activation("relu")(norm)
def _conv_bn_relu(**conv_params):
"""Helper to build a conv -> BN -> relu block
"""
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1))
kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4))
def f(input):
conv = Conv2D(filters=filters, kernel_size=kernel_size,
strides=strides, padding=padding,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer)(input)
return _bn_relu(conv)
return f
def _bn_relu_conv(**conv_params):
"""Helper to build a BN -> relu -> conv block.
This is an improved scheme proposed in http://arxiv.org/pdf/1603.05027v2.pdf
"""
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1))
kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4))
def f(input):
activation = _bn_relu(input)
return Conv2D(filters=filters, kernel_size=kernel_size,
strides=strides, padding=padding,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer)(activation)
return f
def _shortcut(input, residual):
"""Adds a shortcut between input and residual block and merges them with "sum"
"""
# Expand channels of shortcut to match residual.
# Stride appropriately to match residual (width, height)
# Should be int if network architecture is correctly configured.
input_shape = K.int_shape(input)
residual_shape = K.int_shape(residual)
stride_width = int(round(input_shape[ROW_AXIS] / residual_shape[ROW_AXIS]))
stride_height = int(round(input_shape[COL_AXIS] / residual_shape[COL_AXIS]))
equal_channels = input_shape[CHANNEL_AXIS] == residual_shape[CHANNEL_AXIS]
shortcut = input
# 1 X 1 conv if shape is different. Else identity.
if stride_width > 1 or stride_height > 1 or not equal_channels:
shortcut = Conv2D(filters=residual_shape[CHANNEL_AXIS],
kernel_size=(1, 1),
strides=(stride_width, stride_height),
padding="valid",
kernel_initializer="he_normal",
kernel_regularizer=l2(0.0001))(input)
return add([shortcut, residual])
def _residual_block(block_function, filters, repetitions, is_first_layer=False):
"""Builds a residual block with repeating bottleneck blocks.
"""
def f(input):
for i in range(repetitions):
init_strides = (1, 1)
if i == 0 and not is_first_layer:
init_strides = (2, 2)
input = block_function(filters=filters, init_strides=init_strides,
is_first_block_of_first_layer=(is_first_layer and i == 0))(input)
return input
return f
def basic_block(filters, init_strides=(1, 1), is_first_block_of_first_layer=False):
"""Basic 3 X 3 convolution blocks for use on resnets with layers <= 34.
Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf
"""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv1 = Conv2D(filters=filters, kernel_size=(3, 3),
strides=init_strides,
padding="same",
kernel_initializer="he_normal",
kernel_regularizer=l2(1e-4))(input)
else:
conv1 = _bn_relu_conv(filters=filters, kernel_size=(3, 3),
strides=init_strides)(input)
residual = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv1)
return _shortcut(input, residual)
return f
def bottleneck(filters, init_strides=(1, 1), is_first_block_of_first_layer=False):
"""Bottleneck architecture for > 34 layer resnet.
Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf
Returns:
A final conv layer of filters * 4
"""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv_1_1 = Conv2D(filters=filters, kernel_size=(1, 1),
strides=init_strides,
padding="same",
kernel_initializer="he_normal",
kernel_regularizer=l2(1e-4))(input)
else:
conv_1_1 = _bn_relu_conv(filters=filters, kernel_size=(1, 1),
strides=init_strides)(input)
conv_3_3 = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv_1_1)
residual = _bn_relu_conv(filters=filters * 4, kernel_size=(1, 1))(conv_3_3)
return _shortcut(input, residual)
return f
def _handle_dim_ordering():
global ROW_AXIS
global COL_AXIS
global CHANNEL_AXIS
if K.image_dim_ordering() == 'tf':
ROW_AXIS = 1
COL_AXIS = 2
CHANNEL_AXIS = 3
else:
CHANNEL_AXIS = 1
ROW_AXIS = 2
COL_AXIS = 3
def _get_block(identifier):
if isinstance(identifier, six.string_types):
res = globals().get(identifier)
if not res:
raise ValueError('Invalid {}'.format(identifier))
return res
return identifier
class ResnetBuilder(object):
@staticmethod
def build(input_shape, num_outputs, block_fn, repetitions):
"""Builds a custom ResNet like architecture.
Args:
input_shape: The input shape in the form (nb_channels, nb_rows, nb_cols)
num_outputs: The number of outputs at final softmax layer
block_fn: The block function to use. This is either `basic_block` or `bottleneck`.
The original paper used basic_block for layers < 50
repetitions: Number of repetitions of various block units.
At each block unit, the number of filters are doubled and the input size is halved
Returns:
The keras `Model`.
"""
_handle_dim_ordering()
if len(input_shape) != 3:
raise Exception("Input shape should be a tuple (nb_channels, nb_rows, nb_cols)")
# Permute dimension order if necessary
if K.image_dim_ordering() == 'tf':
input_shape = (input_shape[1], input_shape[2], input_shape[0])
# Load function from str if needed.
block_fn = _get_block(block_fn)
input = Input(shape=input_shape)
conv1 = _conv_bn_relu(filters=64, kernel_size=(7, 7), strides=(2, 2))(input)
pool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same")(conv1)
block = pool1
filters = 64
for i, r in enumerate(repetitions):
block = _residual_block(block_fn, filters=filters, repetitions=r, is_first_layer=(i == 0))(block)
filters *= 2
# Last activation
block = _bn_relu(block)
# Classifier block
block_shape = K.int_shape(block)
pool2 = AveragePooling2D(pool_size=(block_shape[ROW_AXIS], block_shape[COL_AXIS]),
strides=(1, 1))(block)
flatten1 = Flatten()(pool2)
dense = Dense(units=num_outputs, kernel_initializer="he_normal",
activation="softmax")(flatten1)
model = Model(inputs=input, outputs=dense)
return model
@staticmethod
def build_resnet_18(input_shape, num_outputs):
return ResnetBuilder.build(input_shape, num_outputs, basic_block, [2, 2, 2, 2])
@staticmethod
def build_resnet_34(input_shape, num_outputs):
return ResnetBuilder.build(input_shape, num_outputs, basic_block, [3, 4, 6, 3])
@staticmethod
def build_resnet_50(input_shape, num_outputs):
return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 4, 6, 3])
@staticmethod
def build_resnet_101(input_shape, num_outputs):
return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 4, 23, 3])
@staticmethod
def build_resnet_152(input_shape, num_outputs):
return ResnetBuilder.build(input_shape, num_outputs, bottleneck, [3, 8, 36, 3])