From 3efd2a727f059d4e6c50d5d054737d3d056f539f Mon Sep 17 00:00:00 2001 From: ljwolf Date: Wed, 29 Apr 2020 15:44:44 +0100 Subject: [PATCH 001/162] try to solve coincident point issues --- libpysal/weights/distance.py | 212 ++++++++++++++++++++--------------- 1 file changed, 120 insertions(+), 92 deletions(-) diff --git a/libpysal/weights/distance.py b/libpysal/weights/distance.py index 2e9552cd0..6c4c93bc5 100644 --- a/libpysal/weights/distance.py +++ b/libpysal/weights/distance.py @@ -4,8 +4,13 @@ from ..cg.kdtree import KDTree from .weights import W, WSP -from .util import isKDTree, get_ids, get_points_array_from_shapefile,\ - get_points_array, WSP2W +from .util import ( + isKDTree, + get_ids, + get_points_array_from_shapefile, + get_points_array, + WSP2W, +) import copy from warnings import warn as Warn from scipy.spatial import distance_matrix @@ -13,13 +18,13 @@ import numpy as np -def knnW(data, k=2, p=2, ids=None, radius=None, distance_metric='euclidean'): +def knnW(data, k=2, p=2, ids=None, radius=None, distance_metric="euclidean"): """ This is deprecated. Use the pysal.weights.KNN class instead. """ - #Warn('This function is deprecated. Please use pysal.weights.KNN', UserWarning) - return KNN(data, k=k, p=p, ids=ids, radius=radius, - distance_metric=distance_metric) + # Warn('This function is deprecated. Please use pysal.weights.KNN', UserWarning) + return KNN(data, k=k, p=p, ids=ids, radius=radius, distance_metric=distance_metric) + class KNN(W): """ @@ -84,31 +89,38 @@ class KNN(W): -------- :class:`libpysal.weights.weights.W` """ - def __init__(self, data, k=2, p=2, ids=None, radius=None, - distance_metric='euclidean', **kwargs): - if radius is not None: - distance_metric='arc' + + def __init__( + self, + data, + k=2, + p=2, + ids=None, + radius=None, + distance_metric="euclidean", + **kwargs + ): + if radius is not None: + distance_metric = "arc" if isKDTree(data): self.kdtree = data self.data = self.kdtree.data else: self.kdtree = KDTree(data, radius=radius, distance_metric=distance_metric) self.data = self.kdtree.data - self.k = k + self.k = k self.p = p - this_nnq = self.kdtree.query(self.data, k=k+1, p=p) + distances, indices = self.kdtree.query(self.data, k=k + 1, p=p) + full_indices = np.arange(self.kdtree.n) + not_self_mask = indices != full_indices.reshape(-1, 1) + not_self_indices = indices[not_self_mask].reshape(self.kdtree.n, k) - to_weight = this_nnq[1] + to_weight = not_self_indices if ids is None: - ids = list(range(to_weight.shape[0])) - - neighbors = {} - for i,row in enumerate(to_weight): - row = row.tolist() - row.remove(i) - row = [ids[j] for j in row] - focal = ids[i] - neighbors[focal] = row + ids = list(full_indices) + + neighbors = dict(zip(ids, not_self_indices)) + W.__init__(self, neighbors, id_order=ids, **kwargs) @classmethod @@ -233,7 +245,7 @@ def from_array(cls, array, *args, **kwargs): return cls(array, *args, **kwargs) @classmethod - def from_dataframe(cls, df, geom_col='geometry', ids=None, *args, **kwargs): + def from_dataframe(cls, df, geom_col="geometry", ids=None, *args, **kwargs): """ Make KNN weights from a dataframe. @@ -289,9 +301,9 @@ def reweight(self, k=None, p=None, new_data=None, new_ids=None, inplace=True): A copy of the object using the new parameterization, or None if the object is reweighted in place. """ - if (new_data is not None): - new_data = np.asarray(new_data).reshape(-1,2) - data = np.vstack((self.data, new_data)).reshape(-1,2) + if new_data is not None: + new_data = np.asarray(new_data).reshape(-1, 2) + data = np.vstack((self.data, new_data)).reshape(-1, 2) if new_ids is not None: ids = copy.deepcopy(self.id_order) ids.extend(list(new_ids)) @@ -302,7 +314,7 @@ def reweight(self, k=None, p=None, new_data=None, new_ids=None, inplace=True): data = self.kdtree ids = self.id_order elif (new_data is None) and (new_ids is not None): - Warn('Remapping ids must be done using w.remap_ids') + Warn("Remapping ids must be done using w.remap_ids") if k is None: k = self.k if p is None: @@ -313,6 +325,7 @@ def reweight(self, k=None, p=None, new_data=None, new_ids=None, inplace=True): else: return KNN(data, ids=ids, k=k, p=p) + class Kernel(W): """ Spatial weights based on kernel functions. @@ -475,20 +488,29 @@ class Kernel(W): {0: [1.0, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 1.0, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 1.0, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 1.0, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 1.0, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 1.0]} """ - def __init__(self, data, bandwidth=None, fixed=True, k=2, - function='triangular', eps=1.0000001, ids=None, - diagonal=False, - distance_metric='euclidean', radius=None, - **kwargs): + + def __init__( + self, + data, + bandwidth=None, + fixed=True, + k=2, + function="triangular", + eps=1.0000001, + ids=None, + diagonal=False, + distance_metric="euclidean", + radius=None, + **kwargs + ): if radius is not None: - distance_metric='arc' + distance_metric = "arc" if isKDTree(data): self.kdtree = data self.data = self.kdtree.data data = self.data else: - self.kdtree = KDTree(data, distance_metric=distance_metric, - radius=radius) + self.kdtree = KDTree(data, distance_metric=distance_metric, radius=radius) self.data = self.kdtree.data self.k = k + 1 self.function = function.lower() @@ -499,7 +521,7 @@ def __init__(self, data, bandwidth=None, fixed=True, k=2, bandwidth = np.array(bandwidth) bandwidth.shape = (len(bandwidth), 1) except: - bandwidth = np.ones((len(data), 1), 'float') * bandwidth + bandwidth = np.ones((len(data), 1), "float") * bandwidth self.bandwidth = bandwidth else: self._set_bw() @@ -512,7 +534,7 @@ def __init__(self, data, bandwidth=None, fixed=True, k=2, W.__init__(self, neighbors, weights, ids, **kwargs) @classmethod - def from_shapefile(cls, filepath, idVariable=None, **kwargs): + def from_shapefile(cls, filepath, idVariable=None, **kwargs): """ Kernel based weights from shapefile @@ -551,7 +573,7 @@ def from_array(cls, array, **kwargs): return cls(array, **kwargs) @classmethod - def from_dataframe(cls, df, geom_col='geometry', ids=None, **kwargs): + def from_dataframe(cls, df, geom_col="geometry", ids=None, **kwargs): """ Make Kernel weights from a dataframe. @@ -600,7 +622,7 @@ def _set_bw(self): # use max knn distance as bandwidth bandwidth = dmat.max() * self.eps n = len(dmat) - self.bandwidth = np.ones((n, 1), 'float') * bandwidth + self.bandwidth = np.ones((n, 1), "float") * bandwidth else: # use local max knn distance self.bandwidth = dmat.max(axis=1) * self.eps @@ -611,10 +633,11 @@ def _set_bw(self): def _eval_kernel(self): # get points within bandwidth distance of each point - if not hasattr(self, 'neigh'): + if not hasattr(self, "neigh"): kdtq = self.kdtree.query_ball_point - neighbors = [kdtq(self.data[i], r=bwi[0]) for i, - bwi in enumerate(self.bandwidth)] + neighbors = [ + kdtq(self.data[i], r=bwi[0]) for i, bwi in enumerate(self.bandwidth) + ] self.neigh = neighbors # get distances for neighbors bw = self.bandwidth @@ -630,20 +653,20 @@ def _eval_kernel(self): z.append(zi) zs = z # functions follow Anselin and Rey (2010) table 5.4 - if self.function == 'triangular': + if self.function == "triangular": self.kernel = [1 - zi for zi in zs] - elif self.function == 'uniform': + elif self.function == "uniform": self.kernel = [np.ones(zi.shape) * 0.5 for zi in zs] - elif self.function == 'quadratic': - self.kernel = [(3. / 4) * (1 - zi ** 2) for zi in zs] - elif self.function == 'quartic': - self.kernel = [(15. / 16) * (1 - zi ** 2) ** 2 for zi in zs] - elif self.function == 'gaussian': + elif self.function == "quadratic": + self.kernel = [(3.0 / 4) * (1 - zi ** 2) for zi in zs] + elif self.function == "quartic": + self.kernel = [(15.0 / 16) * (1 - zi ** 2) ** 2 for zi in zs] + elif self.function == "gaussian": c = np.pi * 2 c = c ** (-0.5) - self.kernel = [c * np.exp(-(zi ** 2) / 2.) for zi in zs] + self.kernel = [c * np.exp(-(zi ** 2) / 2.0) for zi in zs] else: - print(('Unsupported kernel function', self.function)) + print(("Unsupported kernel function", self.function)) class DistanceBand(W): @@ -660,6 +683,7 @@ class DistanceBand(W): threshold : float distance band p : float + DEPRECATED: use `distance_metric` Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance @@ -676,6 +700,7 @@ class DistanceBand(W): values to use for keys of the neighbors and weights dicts build_sp : boolean + DEPRECATED True to build sparse distance matrix and false to build dense distance matrix; significant speed gains may be obtained dending on the sparsity of the of distance_matrix and @@ -733,18 +758,22 @@ class DistanceBand(W): >>> w.weights[0] [0.01, 0.007999999999999998] - Notes - ----- - - This was initially implemented running scipy 0.8.0dev (in epd 6.1). - earlier versions of scipy (0.7.0) have a logic bug in scipy/sparse/dok.py - so serge changed line 221 of that file on sal-dev to fix the logic bug. """ - def __init__(self, data, threshold, p=2, alpha=-1.0, binary=True, ids=None, - build_sp=True, silence_warnings=False, - distance_metric='euclidean', radius=None): + def __init__( + self, + data, + threshold, + p=2, + alpha=-1.0, + binary=True, + ids=None, + build_sp=True, + silence_warnings=False, + distance_metric="euclidean", + radius=None, + ): """Casting to floats is a work around for a bug in scipy.spatial. See detail in pysal issue #126. @@ -752,7 +781,7 @@ def __init__(self, data, threshold, p=2, alpha=-1.0, binary=True, ids=None, if ids is not None: ids = list(ids) if radius is not None: - distance_metric='arc' + distance_metric = "arc" self.p = p self.threshold = threshold self.binary = binary @@ -764,23 +793,13 @@ def __init__(self, data, threshold, p=2, alpha=-1.0, binary=True, ids=None, self.kdtree = data self.data = self.kdtree.data else: - if self.build_sp: - try: - data = np.asarray(data) - if data.dtype.kind != 'f': - data = data.astype(float) - self.kdtree = KDTree(data, - distance_metric=distance_metric, - radius=radius) - self.data = self.kdtree.data - except: - raise ValueError("Could not make array from data") - else: - self.data = data - self.kdtree = None + self.kdtree = KDTree(data, distance_metric=distance_metric, radius=radius) + self.data = self.kdtree.data self._band() neighbors, weights = self._distance_to_W(ids) - W.__init__(self, neighbors, weights, ids, silence_warnings=self.silence_warnings) + W.__init__( + self, neighbors, weights, ids, silence_warnings=self.silence_warnings + ) @classmethod def from_shapefile(cls, filepath, threshold, idVariable=None, **kwargs): @@ -816,7 +835,7 @@ def from_array(cls, array, threshold, **kwargs): return cls(array, threshold, **kwargs) @classmethod - def from_dataframe(cls, df, threshold, geom_col='geometry', ids=None, **kwargs): + def from_dataframe(cls, df, threshold, geom_col="geometry", ids=None, **kwargs): """ Make DistanceBand weights from a dataframe. @@ -846,20 +865,24 @@ def _band(self): """ if self.build_sp: self.dmat = self.kdtree.sparse_distance_matrix( - self.kdtree, max_distance=self.threshold, p=self.p).tocsr() + self.kdtree, max_distance=self.threshold, p=self.p + ).tocsr() else: - if str(self.kdtree).split('.')[-1][0:10] == 'Arc_KDTree': - raise TypeError('Unable to calculate dense arc distance matrix;' - ' parameter "build_sp" must be set to True for arc' - ' distance type weight') + if str(self.kdtree).split(".")[-1][0:10] == "Arc_KDTree": + raise TypeError( + "Unable to calculate dense arc distance matrix;" + ' parameter "build_sp" must be set to True for arc' + " distance type weight" + ) self.dmat = self._spdistance_matrix(self.data, self.data, self.threshold) - def _distance_to_W(self, ids=None): if self.binary: - self.dmat[self.dmat>0] = 1 + self.dmat[self.dmat > 0] = 1 self.dmat.eliminate_zeros() - tempW = WSP2W(WSP(self.dmat, id_order=ids), silence_warnings=self.silence_warnings) + tempW = WSP2W( + WSP(self.dmat, id_order=ids), silence_warnings=self.silence_warnings + ) neighbors = tempW.neighbors weight_keys = list(tempW.weights.keys()) weight_vals = list(tempW.weights.values()) @@ -867,30 +890,35 @@ def _distance_to_W(self, ids=None): return neighbors, weights else: weighted = self.dmat.power(self.alpha) - weighted[weighted==np.inf] = 0 + weighted[weighted == np.inf] = 0 weighted.eliminate_zeros() - tempW = WSP2W(WSP(weighted, id_order=ids), silence_warnings=self.silence_warnings) + tempW = WSP2W( + WSP(weighted, id_order=ids), silence_warnings=self.silence_warnings + ) neighbors = tempW.neighbors weight_keys = list(tempW.weights.keys()) weight_vals = list(tempW.weights.values()) weights = dict(list(zip(weight_keys, list(map(list, weight_vals))))) return neighbors, weights - def _spdistance_matrix(self, x,y, threshold=None): - dist = distance_matrix(x,y) + def _spdistance_matrix(self, x, y, threshold=None): + dist = distance_matrix(x, y) if threshold is not None: zeros = dist > threshold dist[zeros] = 0 return sp.csr_matrix(dist) + def _test(): import doctest + # the following line could be used to define an alternative to the '' flag - #doctest.BLANKLINE_MARKER = 'something better than ' - start_suppress = np.get_printoptions()['suppress'] + # doctest.BLANKLINE_MARKER = 'something better than ' + start_suppress = np.get_printoptions()["suppress"] np.set_printoptions(suppress=True) doctest.testmod() np.set_printoptions(suppress=start_suppress) -if __name__ == '__main__': + +if __name__ == "__main__": _test() From 250a3d6d0c8fe031ae19468ed630b8850a7a7e7f Mon Sep 17 00:00:00 2001 From: ljwolf Date: Wed, 29 Apr 2020 16:57:49 +0100 Subject: [PATCH 002/162] fix tests and finalize --- libpysal/weights/distance.py | 2 +- libpysal/weights/tests/test_distance.py | 253 ++++++++++++++---------- 2 files changed, 145 insertions(+), 110 deletions(-) diff --git a/libpysal/weights/distance.py b/libpysal/weights/distance.py index 6c4c93bc5..969ff6c9b 100644 --- a/libpysal/weights/distance.py +++ b/libpysal/weights/distance.py @@ -119,7 +119,7 @@ def __init__( if ids is None: ids = list(full_indices) - neighbors = dict(zip(ids, not_self_indices)) + neighbors = dict(zip(ids, map(list, not_self_indices))) W.__init__(self, neighbors, id_order=ids, **kwargs) diff --git a/libpysal/weights/tests/test_distance.py b/libpysal/weights/tests/test_distance.py index 455b5e294..57a32f2bf 100644 --- a/libpysal/weights/tests/test_distance.py +++ b/libpysal/weights/tests/test_distance.py @@ -1,4 +1,3 @@ - from ...common import RTOL, ATOL, pandas from ...cg.kdtree import KDTree, RADIUS_EARTH_KM from ..util import get_points_array @@ -13,77 +12,88 @@ PANDAS_EXTINCT = pandas is None # All instances should test these four methods, and define their own functional -# tests based on common codepaths/estimated weights use cases. +# tests based on common codepaths/estimated weights use cases. + class Distance_Mixin(object): - polygon_path = pysal_examples.get_path('columbus.shp') - arc_path = pysal_examples.get_path('stl_hom.shp') - points = [(10, 10), (20, 10), (40, 10), - (15, 20), (30, 20), (30, 30)] - euclidean_kdt = KDTree(points, distance_metric='euclidean') - - polygon_f = psopen(polygon_path) # our file handler - poly_centroids = get_points_array(polygon_f) # our iterable - polygon_f.seek(0) #go back to head of file - + polygon_path = pysal_examples.get_path("columbus.shp") + arc_path = pysal_examples.get_path("stl_hom.shp") + points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] + euclidean_kdt = KDTree(points, distance_metric="euclidean") + + polygon_f = psopen(polygon_path) # our file handler + poly_centroids = get_points_array(polygon_f) # our iterable + polygon_f.seek(0) # go back to head of file + arc_f = psopen(arc_path) arc_points = get_points_array(arc_f) arc_f.seek(0) - arc_kdt = KDTree(arc_points, distance_metric='Arc', - radius=cg.sphere.RADIUS_EARTH_KM) - - cls = object # class constructor - known_wi = None #index of known w entry to compare - known_w = dict() #actual w entry + arc_kdt = KDTree( + arc_points, distance_metric="Arc", radius=cg.sphere.RADIUS_EARTH_KM + ) + + cls = object # class constructor + known_wi = None # index of known w entry to compare + known_w = dict() # actual w entry known_name = known_wi - + def setUp(self): - self.__dict__.update({k:v for k,v in list(Distance_Mixin.__dict__.items()) - if not k.startswith('_')}) - + self.__dict__.update( + { + k: v + for k, v in list(Distance_Mixin.__dict__.items()) + if not k.startswith("_") + } + ) + def test_init(self): # test vanilla, named - raise NotImplementedError('You need to implement this test ' - 'before this module will pass') + raise NotImplementedError( + "You need to implement this test " "before this module will pass" + ) def test_from_shapefile(self): # test vanilla, named, sparse - raise NotImplementedError('You need to implement this test ' - 'before this module will pass') + raise NotImplementedError( + "You need to implement this test " "before this module will pass" + ) def test_from_array(self): # test named, sparse - raise NotImplementedError('You need to implement this test ' - 'before this module will pass') + raise NotImplementedError( + "You need to implement this test " "before this module will pass" + ) def test_from_dataframe(self): # test named, columnar, defau - raise NotImplementedError('You need to implement this test ' - 'before this module will pass') + raise NotImplementedError( + "You need to implement this test " "before this module will pass" + ) + class Test_KNN(ut.TestCase, Distance_Mixin): def setUp(self): Distance_Mixin.setUp(self) - + self.known_wi0 = 7 self.known_w0 = [3, 6, 12, 11] self.known_wi1 = 0 - self.known_w1 = [2, 1, 3 ,7] + self.known_w1 = [2, 1, 3, 7] self.known_wi2 = 4 self.known_w2 = [1, 3, 9, 12] self.known_wi3 = 40 self.known_w3 = [31, 38, 45, 49] - + ########################## # Classmethod tests # ########################## def test_init(self): w = d.KNN(self.euclidean_kdt, k=2) - self.assertEqual(w.neighbors[0], [1,3]) + self.assertEqual(w.neighbors[0], [1, 3]) - @ut.skipIf(PANDAS_EXTINCT, 'Missing pandas') + @ut.skipIf(PANDAS_EXTINCT, "Missing pandas") def test_from_dataframe(self): df = pdio.read_files(self.polygon_path) w = d.KNN.from_dataframe(df, k=4) @@ -96,7 +106,7 @@ def test_from_array(self): self.assertEqual(w.neighbors[self.known_wi1], self.known_w1) def test_from_shapefile(self): - w = d.KNN.from_shapefile(self.polygon_path, k=4) + w = d.KNN.from_shapefile(self.polygon_path, k=4) self.assertEqual(w.neighbors[self.known_wi0], self.known_w0) self.assertEqual(w.neighbors[self.known_wi1], self.known_w1) @@ -106,55 +116,59 @@ def test_from_shapefile(self): def test_reweight(self): w = d.KNN(self.points, k=2) - new_point = [(21,21)] + new_point = [(21, 21)] wnew = w.reweight(k=4, p=1, new_data=new_point, inplace=False) self.assertEqual(wnew[0], {1: 1.0, 3: 1.0, 4: 1.0, 6: 1.0}) def test_arcdata(self): - w = d.KNN.from_shapefile(self.polygon_path, k=4, - distance_metric='Arc', - radius=cg.sphere.RADIUS_EARTH_KM) + w = d.KNN.from_shapefile( + self.polygon_path, + k=4, + distance_metric="Arc", + radius=cg.sphere.RADIUS_EARTH_KM, + ) self.assertEqual(w.data.shape[1], 3) class Test_DistanceBand(ut.TestCase, Distance_Mixin): def setUp(self): Distance_Mixin.setUp(self) - self.grid_path = pysal_examples.get_path('lattice10x10.shp') + self.grid_path = pysal_examples.get_path("lattice10x10.shp") self.grid_rook_w = c.Rook.from_shapefile(self.grid_path) self.grid_f = psopen(self.grid_path) self.grid_points = get_points_array(self.grid_f) self.grid_f.seek(0) self.grid_kdt = KDTree(self.grid_points) - + ########################## # Classmethod tests # ########################## def test_init(self): w = d.DistanceBand(self.grid_kdt, 1) - for k,v in w: + for k, v in w: self.assertEqual(v, self.grid_rook_w[k]) def test_from_shapefile(self): w = d.DistanceBand.from_shapefile(self.grid_path, 1) - for k,v in w: + for k, v in w: self.assertEqual(v, self.grid_rook_w[k]) def test_from_array(self): w = d.DistanceBand.from_array(self.grid_points, 1) - for k,v in w: + for k, v in w: self.assertEqual(v, self.grid_rook_w[k]) - @ut.skipIf(PANDAS_EXTINCT, 'Missing pandas') + @ut.skipIf(PANDAS_EXTINCT, "Missing pandas") def test_from_dataframe(self): import pandas as pd + geom_series = pdio.shp.shp2series(self.grid_path) random_data = np.random.random(size=len(geom_series)) - df = pd.DataFrame({'obs':random_data, 'geometry':geom_series}) + df = pd.DataFrame({"obs": random_data, "geometry": geom_series}) w = d.DistanceBand.from_dataframe(df, 1) - for k,v in w: + for k, v in w: self.assertEqual(v, self.grid_rook_w[k]) ########################## @@ -164,45 +178,49 @@ def test_integers(self): """ see issue #126 """ - grid_integers = [tuple(map(int, poly.vertices[0])) - for poly in self.grid_f] + grid_integers = [tuple(map(int, poly.vertices[0])) for poly in self.grid_f] self.grid_f.seek(0) grid_dbw = d.DistanceBand(grid_integers, 1) - for k,v in grid_dbw: + for k, v in grid_dbw: self.assertEqual(v, self.grid_rook_w[k]) def test_arcdist(self): arc = cg.sphere.arcdist - kdt = KDTree(self.arc_points, distance_metric='Arc', - radius=cg.sphere.RADIUS_EARTH_KM) + kdt = KDTree( + self.arc_points, distance_metric="Arc", radius=cg.sphere.RADIUS_EARTH_KM + ) npoints = self.arc_points.shape[0] - full = np.matrix([[arc(self.arc_points[i], self.arc_points[j]) - for j in range(npoints)] - for i in range(npoints)]) + full = np.array( + [ + [arc(self.arc_points[i], self.arc_points[j]) for j in range(npoints)] + for i in range(npoints) + ] + ) maxdist = full.max() w = d.DistanceBand(kdt, maxdist, binary=False, alpha=1.0) np.testing.assert_allclose(w.sparse.todense(), full) self.assertEqual(w.data.shape[1], 3) def test_dense(self): - w_rook = c.Rook.from_shapefile( - pysal_examples.get_path('lattice10x10.shp')) - polys = psopen(pysal_examples.get_path('lattice10x10.shp')) + w_rook = c.Rook.from_shapefile(pysal_examples.get_path("lattice10x10.shp")) + polys = psopen(pysal_examples.get_path("lattice10x10.shp")) centroids = [p.centroid for p in polys] w_db = d.DistanceBand(centroids, 1, build_sp=False) for k in w_db.id_order: np.testing.assert_equal(w_db[k], w_rook[k]) - - @ut.skipIf(PANDAS_EXTINCT, 'Missing pandas') + + @ut.skipIf(PANDAS_EXTINCT, "Missing pandas") def test_named(self): import pandas as pd + geom_series = pdio.shp.shp2series(self.grid_path) random_data = np.random.random(size=len(geom_series)) - names = [chr(x) for x in range(60,160)] - df = pd.DataFrame({'obs':random_data, 'geometry':geom_series, 'names':names}) + names = [chr(x) for x in range(60, 160)] + df = pd.DataFrame({"obs": random_data, "geometry": geom_series, "names": names}) w = d.DistanceBand.from_dataframe(df, 1, ids=df.names) + class Test_Kernel(ut.TestCase, Distance_Mixin): def setUp(self): @@ -211,37 +229,48 @@ def setUp(self): self.known_w0 = {0: 1, 1: 0.500000049999995, 3: 0.4409830615267465} self.known_wi1 = 0 - self.known_w1 = {0: 1.0, 1: 0.33333333333333337, - 3: 0.2546440075000701} - self.known_w1_bw = 15. + self.known_w1 = {0: 1.0, 1: 0.33333333333333337, 3: 0.2546440075000701} + self.known_w1_bw = 15.0 self.known_wi2 = 0 - self.known_w2 = {0: 1.0, 1: 0.59999999999999998, - 3: 0.55278640450004202, 4: 0.10557280900008403} + self.known_w2 = { + 0: 1.0, + 1: 0.59999999999999998, + 3: 0.55278640450004202, + 4: 0.10557280900008403, + } self.known_w2_bws = [25.0, 15.0, 25.0, 16.0, 14.5, 25.0] self.known_wi3 = 0 self.known_w3 = [1.0, 0.10557289844279438, 9.9999990066379496e-08] - self.known_w3_abws =[[11.180341005532938], [11.180341005532938], - [20.000002000000002], [11.180341005532938], - [14.142137037944515], [18.027758180095585]] + self.known_w3_abws = [ + [11.180341005532938], + [11.180341005532938], + [20.000002000000002], + [11.180341005532938], + [14.142137037944515], + [18.027758180095585], + ] self.known_wi4 = 0 - self.known_w4 = {0: 0.3989422804014327, - 1: 0.26741902915776961, - 3: 0.24197074871621341} + self.known_w4 = { + 0: 0.3989422804014327, + 1: 0.26741902915776961, + 3: 0.24197074871621341, + } self.known_w4_abws = self.known_w3_abws self.known_wi5 = 1 - self.known_w5 = {4: 0.0070787731484506233, - 2: 0.2052478782400463, - 3: 0.23051223027663237, - 1: 1.0} + self.known_w5 = { + 4: 0.0070787731484506233, + 2: 0.2052478782400463, + 3: 0.23051223027663237, + 1: 1.0, + } self.known_wi6 = 0 - self.known_w6 = {0: 1.0, 2: 0.03178906767736345, - 1: 9.9999990066379496e-08} - #stick answers & params here + self.known_w6 = {0: 1.0, 2: 0.03178906767736345, 1: 9.9999990066379496e-08} + # stick answers & params here ########################## # Classmethod tests # @@ -249,68 +278,74 @@ def setUp(self): def test_init(self): w = d.Kernel(self.euclidean_kdt) - for k,v in list(w[self.known_wi0].items()): + for k, v in list(w[self.known_wi0].items()): np.testing.assert_allclose(v, self.known_w0[k], rtol=RTOL) def test_from_shapefile(self): - w = d.Kernel.from_shapefile(self.polygon_path, idVariable='POLYID') - for k,v in list(w[self.known_wi5].items()): - np.testing.assert_allclose((k,v), (k,self.known_w5[k]), rtol=RTOL) - + w = d.Kernel.from_shapefile(self.polygon_path, idVariable="POLYID") + for k, v in list(w[self.known_wi5].items()): + np.testing.assert_allclose((k, v), (k, self.known_w5[k]), rtol=RTOL) + w = d.Kernel.from_shapefile(self.polygon_path, fixed=False) - for k,v in list(w[self.known_wi6].items()): - np.testing.assert_allclose((k,v), (k,self.known_w6[k]), rtol=RTOL) + for k, v in list(w[self.known_wi6].items()): + np.testing.assert_allclose((k, v), (k, self.known_w6[k]), rtol=RTOL) def test_from_array(self): w = d.Kernel.from_array(self.points) - for k,v in list(w[self.known_wi0].items()): + for k, v in list(w[self.known_wi0].items()): np.testing.assert_allclose(v, self.known_w0[k], rtol=RTOL) - - @ut.skipIf(PANDAS_EXTINCT, 'Missing pandas') + + @ut.skipIf(PANDAS_EXTINCT, "Missing pandas") def test_from_dataframe(self): df = pdio.read_files(self.polygon_path) w = d.Kernel.from_dataframe(df) - for k,v in list(w[self.known_wi5-1].items()): - np.testing.assert_allclose(v, self.known_w5[k+1], rtol=RTOL) - + for k, v in list(w[self.known_wi5 - 1].items()): + np.testing.assert_allclose(v, self.known_w5[k + 1], rtol=RTOL) + ########################## - # Function/User tests # + # Function/User tests # ########################## def test_fixed_bandwidth(self): w = d.Kernel(self.points, bandwidth=15.0) - for k,v in list(w[self.known_wi1].items()): - np.testing.assert_allclose((k,v), (k, self.known_w1[k])) - np.testing.assert_allclose(np.ones((w.n,1))*15, w.bandwidth) + for k, v in list(w[self.known_wi1].items()): + np.testing.assert_allclose((k, v), (k, self.known_w1[k])) + np.testing.assert_allclose(np.ones((w.n, 1)) * 15, w.bandwidth) w = d.Kernel(self.points, bandwidth=self.known_w2_bws) - for k,v in list(w[self.known_wi2].items()): - np.testing.assert_allclose((k,v), (k, self.known_w2[k]), rtol=RTOL) + for k, v in list(w[self.known_wi2].items()): + np.testing.assert_allclose((k, v), (k, self.known_w2[k]), rtol=RTOL) for i in range(w.n): np.testing.assert_allclose(w.bandwidth[i], self.known_w2_bws[i], rtol=RTOL) - + def test_adaptive_bandwidth(self): w = d.Kernel(self.points, fixed=False) - np.testing.assert_allclose(sorted(w[self.known_wi3].values()), - sorted(self.known_w3), rtol=RTOL) + np.testing.assert_allclose( + sorted(w[self.known_wi3].values()), sorted(self.known_w3), rtol=RTOL + ) bws = w.bandwidth.tolist() np.testing.assert_allclose(bws, self.known_w3_abws, rtol=RTOL) - w = d.Kernel(self.points, fixed=False, function='gaussian') - for k,v in list(w[self.known_wi4].items()): - np.testing.assert_allclose((k,v), (k, self.known_w4[k]), rtol=RTOL) + w = d.Kernel(self.points, fixed=False, function="gaussian") + for k, v in list(w[self.known_wi4].items()): + np.testing.assert_allclose((k, v), (k, self.known_w4[k]), rtol=RTOL) bws = w.bandwidth.tolist() np.testing.assert_allclose(bws, self.known_w4_abws, rtol=RTOL) def test_arcdistance(self): - w = d.Kernel(self.points, fixed=True, distance_metric='Arc', - radius=cg.sphere.RADIUS_EARTH_KM) + w = d.Kernel( + self.points, + fixed=True, + distance_metric="Arc", + radius=cg.sphere.RADIUS_EARTH_KM, + ) self.assertEqual(w.data.shape[1], 3) + knn = ut.TestLoader().loadTestsFromTestCase(Test_KNN) kern = ut.TestLoader().loadTestsFromTestCase(Test_Kernel) db = ut.TestLoader().loadTestsFromTestCase(Test_DistanceBand) suite = ut.TestSuite([knn, kern, db]) -if __name__ == '__main__': +if __name__ == "__main__": runner = ut.TextTestRunner() runner.run(suite) From 8ff9ed1377aba6e8343f8defdd35f7c6d336b68e Mon Sep 17 00:00:00 2001 From: ljwolf Date: Wed, 29 Apr 2020 17:19:35 +0100 Subject: [PATCH 003/162] minor optimization of dict zip construction --- libpysal/weights/distance.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/libpysal/weights/distance.py b/libpysal/weights/distance.py index 969ff6c9b..efd38a296 100644 --- a/libpysal/weights/distance.py +++ b/libpysal/weights/distance.py @@ -119,7 +119,7 @@ def __init__( if ids is None: ids = list(full_indices) - neighbors = dict(zip(ids, map(list, not_self_indices))) + neighbors = {idx: list(indices) for idx, indices in zip(ids, not_self_indices)} W.__init__(self, neighbors, id_order=ids, **kwargs) From bf5ad0a310180c99ca16bc667e6d487cdef05171 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Mon, 4 May 2020 13:49:57 +0100 Subject: [PATCH 004/162] handle the k+1 overdraw --- libpysal/weights/distance.py | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/libpysal/weights/distance.py b/libpysal/weights/distance.py index efd38a296..246c9831a 100644 --- a/libpysal/weights/distance.py +++ b/libpysal/weights/distance.py @@ -110,16 +110,28 @@ def __init__( self.data = self.kdtree.data self.k = k self.p = p + # these are both n x k+1 distances, indices = self.kdtree.query(self.data, k=k + 1, p=p) full_indices = np.arange(self.kdtree.n) + + # if an element in the indices matrix is equal to the corresponding + # index for that row, we want to mask that site from its neighbors not_self_mask = indices != full_indices.reshape(-1, 1) - not_self_indices = indices[not_self_mask].reshape(self.kdtree.n, k) + # if there are *too many duplicates per site*, then we may get some + # rows where the site index is not in the set of k+1 neighbors + # So, we need to know where these sites are + has_one_too_many = not_self_mask.sum(axis=1) == (k + 1) + # if a site has k+1 neighbors, drop its k+1th neighbor + not_self_mask[has_one_too_many, -1] &= False + not_self_indices = indices[not_self_mask].reshape(self.kdtree.n, -1) to_weight = not_self_indices if ids is None: ids = list(full_indices) - - neighbors = {idx: list(indices) for idx, indices in zip(ids, not_self_indices)} + named_indices = not_self_indices + else: + named_indices = np.asarray(ids)[not_self_indices] + neighbors = {idx: list(indices) for idx, indices in zip(ids, named_indices)} W.__init__(self, neighbors, id_order=ids, **kwargs) From 56c7b4f4d85ab104e3ef5d72b17488df99f5c793 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 18:40:39 +0100 Subject: [PATCH 005/162] blacken codebase on first pass --- libpysal/weights/weights.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index 44917cc5e..225c94719 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -154,7 +154,7 @@ def __init__( self._id_order_set = True self._reset() self._n = len(self.weights) - if not self.silence_warnings and self.n_components > 1: + if (not self.silence_warnings) and (self.n_components > 1): message = ( "The weights matrix is not fully connected: " "\n There are %d disconnected components." % self.n_components @@ -877,9 +877,9 @@ def neighbor_offsets(self): for j, neigh_list in list(self.neighbors.items()): self.__neighbors_0[j] = [id2i[neigh] for neigh in neigh_list] self._cache["neighbors_0"] = self.__neighbors_0 - + neighbor_list = self.__neighbors_0 - + return neighbor_list def get_transform(self): From b090f95120cdb1c9d0294d735cad09e49c35b3df Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 18:41:19 +0100 Subject: [PATCH 006/162] fix error handling for import error on pandas --- libpysal/weights/weights.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index 225c94719..348d0fcb8 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -301,8 +301,10 @@ def to_adjlist( """ try: import pandas as pd - except ImportError: - raise ImportError("pandas must be installed to use this method") + except (ImportError, ModuleNotFoundError): + raise ImportError( + "pandas must be installed & importable to use this method" + ) n_islands = len(self.islands) if n_islands > 0 and (not self.silence_warnings): warnings.warn( From d47b3763eb65d188bfcfb37b0547e2a2a4560382 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 18:41:33 +0100 Subject: [PATCH 007/162] add format for island warnings --- libpysal/weights/weights.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index 348d0fcb8..f54279bda 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -309,7 +309,7 @@ def to_adjlist( if n_islands > 0 and (not self.silence_warnings): warnings.warn( "{} islands in this weights matrix. Conversion to an " - "adjacency list will drop these observations!" + "adjacency list will drop these observations!".format(len(self.islands)) ) adjlist = pd.DataFrame( ((idx, n, w) for idx, neighb in self for n, w in list(neighb.items())), From 8ca54f4e70be307fff93a758f1b075a4b7588f02 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 18:41:48 +0100 Subject: [PATCH 008/162] actually handle islands in adjlist builder --- libpysal/weights/weights.py | 13 +++++++++---- 1 file changed, 9 insertions(+), 4 deletions(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index f54279bda..c476d6e4f 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -311,10 +311,15 @@ def to_adjlist( "{} islands in this weights matrix. Conversion to an " "adjacency list will drop these observations!".format(len(self.islands)) ) - adjlist = pd.DataFrame( - ((idx, n, w) for idx, neighb in self for n, w in list(neighb.items())), - columns=("focal", "neighbor", "weight"), - ) + links = [] + for idx, neighb in self: + if len(neighb) == 0: + links.append((idx, None, numpy.nan)) + continue + for n, w in neighb.items(): + links.append((idx, n, w)) + adjlist = pd.DataFrame(links, columns=[focal_col, neighbor_col, weight_col]) + return adjtools.filter_adjlist(adjlist) if remove_symmetric else adjlist def to_networkx(self): From f64530614d8edeae19531679ac9e2ad004515125 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 18:42:11 +0100 Subject: [PATCH 009/162] remove now-unnecessary warning about dropping islands --- libpysal/weights/weights.py | 5 ----- 1 file changed, 5 deletions(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index c476d6e4f..d94e423c3 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -306,11 +306,6 @@ def to_adjlist( "pandas must be installed & importable to use this method" ) n_islands = len(self.islands) - if n_islands > 0 and (not self.silence_warnings): - warnings.warn( - "{} islands in this weights matrix. Conversion to an " - "adjacency list will drop these observations!".format(len(self.islands)) - ) links = [] for idx, neighb in self: if len(neighb) == 0: From 3ff503c91185470d9c8ca2fba911f19134dd0d17 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 18:54:05 +0100 Subject: [PATCH 010/162] np, not numpy --- libpysal/weights/weights.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index d94e423c3..fc21d2539 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -309,7 +309,7 @@ def to_adjlist( links = [] for idx, neighb in self: if len(neighb) == 0: - links.append((idx, None, numpy.nan)) + links.append((idx, None, np.nan)) continue for n, w in neighb.items(): links.append((idx, n, w)) From 4550580426016bb121358e5b5bfd442480b4481f Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 19:09:50 +0100 Subject: [PATCH 011/162] further blackening --- libpysal/weights/weights.py | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index fc21d2539..24e74f59f 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -175,7 +175,7 @@ def _reset(self): """Reset properties.""" self._cache = {} - def to_file(self, path='', format=None): + def to_file(self, path="", format=None): """ Write a weights to a file. The format is guessed automatically from the path, but can be overridden with the format argument. @@ -194,13 +194,12 @@ def to_file(self, path='', format=None): ------- None """ - f = popen(dataPath=path, mode='w', dataFormat=format) + f = popen(dataPath=path, mode="w", dataFormat=format) f.write(self) f.close() - @classmethod - def from_file(cls, path='', format=None): + def from_file(cls, path="", format=None): """ Read a weights file into a W object. @@ -215,7 +214,7 @@ def from_file(cls, path='', format=None): ------- W object """ - f = popen(dataPath=path, mode='r', dataFormat=format) + f = popen(dataPath=path, mode="r", dataFormat=format) w = f.read() f.close() return w From 708eae8ba2028a8247014d7dca0c4f0f109a3fdc Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 19:10:09 +0100 Subject: [PATCH 012/162] solidify on zero-weight self-neighbor as the encoding for islands --- libpysal/weights/weights.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index 24e74f59f..165cab750 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -308,7 +308,7 @@ def to_adjlist( links = [] for idx, neighb in self: if len(neighb) == 0: - links.append((idx, None, np.nan)) + links.append((idx, idx, 0)) continue for n, w in neighb.items(): links.append((idx, n, w)) From e8fd4c067f6ca020498bfebf496d902bd931cc85 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Tue, 14 Jul 2020 19:36:24 +0100 Subject: [PATCH 013/162] finaliz roundtrippable from_adjlist() --- libpysal/weights/weights.py | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index 165cab750..bb67699f3 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -262,13 +262,15 @@ def from_adjlist( if try_weightcol is None: adjlist = adjlist.copy(deep=True) adjlist["weight"] = 1 - all_ids = set(adjlist[focal_col].tolist()) - all_ids |= set(adjlist[neighbor_col].tolist()) grouper = adjlist.groupby(focal_col) - neighbors = grouper[neighbor_col].apply(list).to_dict() - weights = grouper[weight_col].apply(list).to_dict() - neighbors.update({k: [] for k in all_ids.difference(list(neighbors.keys()))}) - weights.update({k: [] for k in all_ids.difference(list(weights.keys()))}) + neighbors = dict() + weights = dict() + for ix, chunk in grouper: + neighbors_to_ix = chunk[neighbor_col].values + weights_to_ix = chunk[weight_col].values + mask = neighbors_to_ix != ix + neighbors[ix] = neighbors_to_ix[mask].tolist() + weights[ix] = weights_to_ix[mask].tolist() return cls(neighbors=neighbors, weights=weights) def to_adjlist( From f6da1e506ae906b32fd6beb1bf67da281edb77b3 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Wed, 15 Jul 2020 15:50:30 +0100 Subject: [PATCH 014/162] resolve testing to workaround libpysal#322 --- libpysal/weights/tests/test_adjlist.py | 15 ++++++++++++--- 1 file changed, 12 insertions(+), 3 deletions(-) diff --git a/libpysal/weights/tests/test_adjlist.py b/libpysal/weights/tests/test_adjlist.py index 5ae9c886d..f5b9523d3 100644 --- a/libpysal/weights/tests/test_adjlist.py +++ b/libpysal/weights/tests/test_adjlist.py @@ -31,7 +31,12 @@ def test_filter(self): alist = grid.to_adjlist(remove_symmetric=True) assert len(alist) == 4 with self.assertRaises(AssertionError): - badgrid = weights.W.from_adjlist(alist) + # build this manually because of bug libpysal#322 + alist_neighbors = alist.groupby('focal').neighbor.apply(list).to_dict() + all_ids = set(alist_neighbors.keys()).union(*map(set, alist_neighbors.values())) + for idx in set(all_ids).difference(set(alist_neighbors.keys())): + alist_neighbors[idx] = [] + badgrid = weights.W(alist_neighbors) np.testing.assert_allclose(badgrid.sparse.toarray(), grid.sparse.toarray()) assert set(alist.focal.unique()) == {0, 1, 2} @@ -41,10 +46,14 @@ def test_filter(self): alist = grid.to_adjlist(remove_symmetric=True) assert len(alist) == 4 with self.assertRaises(AssertionError): - badgrid = weights.W.from_adjlist(alist) + # build this manually because of bug libpysal#322 + alist_neighbors = alist.groupby('focal').neighbor.apply(list).to_dict() + all_ids = set(alist_neighbors.keys()).union(*map(set, alist_neighbors.values())) + for idx in set(all_ids).difference(set(alist_neighbors.keys())): + alist_neighbors[idx] = [] + badgrid = weights.W(alist_neighbors) np.testing.assert_allclose(badgrid.sparse.toarray(), grid.sparse.toarray()) - print(alist) tuples = set([tuple(t) for t in alist[['focal','neighbor']].values]) full_alist = grid.to_adjlist() all_possible = set([tuple(t) for t in full_alist[['focal','neighbor']].values]) From 4b39c17659fcfa3f7a6fef19e3ffe78184c5f96c Mon Sep 17 00:00:00 2001 From: James Gaboardi Date: Thu, 16 Jul 2020 11:34:40 -0400 Subject: [PATCH 015/162] partial blacken for test commit --trying to force push @ljwolf 's code to GHA --- libpysal/weights/tests/test_adjlist.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/libpysal/weights/tests/test_adjlist.py b/libpysal/weights/tests/test_adjlist.py index f5b9523d3..e4775a5ea 100644 --- a/libpysal/weights/tests/test_adjlist.py +++ b/libpysal/weights/tests/test_adjlist.py @@ -15,10 +15,10 @@ except ImportError: PANDAS_MISSING = True -@ut.skipIf(PANDAS_MISSING, 'Pandas is gone') +@ut.skipIf(PANDAS_MISSING, "Pandas is gone") class Test_Adjlist(ut.TestCase): def setUp(self): - self.knownW = io.open(examples.get_path('columbus.gal')).read() + self.knownW = io.open(examples.get_path("columbus.gal")).read() def test_round_trip(self): adjlist = self.knownW.to_adjlist(remove_symmetric=False).astype(int) From 7e05c2a593432fc309040917b9aa673373972969 Mon Sep 17 00:00:00 2001 From: ljwolf Date: Fri, 7 Aug 2020 16:29:32 +0100 Subject: [PATCH 016/162] add response to review --- libpysal/weights/weights.py | 128 ++++++++++++++++-------------------- 1 file changed, 55 insertions(+), 73 deletions(-) diff --git a/libpysal/weights/weights.py b/libpysal/weights/weights.py index bb67699f3..43f638109 100644 --- a/libpysal/weights/weights.py +++ b/libpysal/weights/weights.py @@ -26,7 +26,7 @@ class W(object): Parameters ---------- - + neighbors : dict Key is region ID, value is a list of neighbor IDS. For example, ``{'a':['b'],'b':['a','c'],'c':['b']}``. @@ -48,7 +48,7 @@ class W(object): Attributes ---------- - + asymmetries cardinalities component_labels @@ -81,7 +81,7 @@ class W(object): Examples -------- - + >>> from libpysal.weights import W >>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]} >>> weights = {0: [1, 1], 1: [1, 1, 1], 2: [1, 1], 3: [1, 1, 1], 4: [1, 1, 1, 1], 5: [1, 1, 1], 6: [1, 1], 7: [1, 1, 1], 8: [1, 1]} @@ -117,7 +117,7 @@ class W(object): 2533.667 Cardinality Histogram: - + >>> w.histogram [(2, 4), (3, 392), (4, 9604)] @@ -157,11 +157,12 @@ def __init__( if (not self.silence_warnings) and (self.n_components > 1): message = ( "The weights matrix is not fully connected: " - "\n There are %d disconnected components." % self.n_components + "\n There are %d disconnected components." + % self.n_components ) ni = len(self.islands) if ni == 1: - message = message + "\n There is 1 island with id: " "%s." % ( + message = message + "\n There is 1 island with id: %s." % ( str(self.islands[0]) ) elif ni > 1: @@ -177,17 +178,17 @@ def _reset(self): def to_file(self, path="", format=None): """ - Write a weights to a file. The format is guessed automatically - from the path, but can be overridden with the format argument. + Write a weights to a file. The format is guessed automatically + from the path, but can be overridden with the format argument. - See libpysal.io.FileIO for more information. + See libpysal.io.FileIO for more information. Arguments --------- path : string location to save the file format : string - string denoting the format to write the weights to. + string denoting the format to write the weights to. Returns @@ -201,14 +202,14 @@ def to_file(self, path="", format=None): @classmethod def from_file(cls, path="", format=None): """ - Read a weights file into a W object. + Read a weights file into a W object. Arguments --------- path : string location to save the file format : string - string denoting the format to write the weights to. + string denoting the format to write the weights to. Returns ------- @@ -227,8 +228,7 @@ def from_shapefile(cls, *args, **kwargs): # a type dispatch table. Generic W should be for stuff we don't know # anything about. raise NotImplementedError( - "Use type-specific constructors, like Rook," - " Queen, DistanceBand, or Kernel" + "Use type-specific constructors, like Rook, Queen, DistanceBand, or Kernel" ) @classmethod @@ -244,7 +244,7 @@ def from_adjlist( Parameters ---------- - + adjlist : pandas.DataFrame Adjacency list with a minimum of two columns. focal_col : str @@ -306,7 +306,6 @@ def to_adjlist( raise ImportError( "pandas must be installed & importable to use this method" ) - n_islands = len(self.islands) links = [] for idx, neighb in self: if len(neighb) == 0: @@ -343,7 +342,7 @@ def from_networkx(cls, graph, weight_col="weight"): weight_col : string If the graph is labeled, this should be the name of the field to use as the weight for the ``W``. - + Returns ------- w : libpysal.weights.W @@ -369,8 +368,7 @@ def sparse(self): @property def n_components(self): - """Store whether the adjacency matrix is fully connected. - """ + """Store whether the adjacency matrix is fully connected.""" if "n_components" not in self._cache: self._n_components, self._component_labels = connected_components( self.sparse @@ -381,8 +379,7 @@ def n_components(self): @property def component_labels(self): - """Store the graph component in which each observation falls. - """ + """Store the graph component in which each observation falls.""" if "component_labels" not in self._cache: self._n_components, self._component_labels = connected_components( self.sparse @@ -392,8 +389,7 @@ def component_labels(self): return self._component_labels def _build_sparse(self): - """Construct the sparse attribute. - """ + """Construct the sparse attribute.""" row = [] col = [] @@ -425,8 +421,7 @@ def id2i(self): @property def n(self): - """Number of units. - """ + """Number of units.""" if "n" not in self._cache: self._n = len(self.neighbors) self._cache["n"] = self._n @@ -550,8 +545,7 @@ def trcWtW(self): @property def diagWtW_WW(self): - """Diagonal of :math:`W^{'}W + WW`. - """ + """Diagonal of :math:`W^{'}W + WW`.""" if "diagWtW_WW" not in self._cache: wt = self.sparse.transpose() w = self.sparse @@ -561,8 +555,7 @@ def diagWtW_WW(self): @property def trcWtW_WW(self): - """Trace of :math:`W^{'}W + WW`. - """ + """Trace of :math:`W^{'}W + WW`.""" if "trcWtW_WW" not in self._cache: self._trcWtW_WW = self.diagWtW_WW.sum() self._cache["trcWtW_WW"] = self._trcWtW_WW @@ -570,8 +563,7 @@ def trcWtW_WW(self): @property def pct_nonzero(self): - """Percentage of nonzero weights. - """ + """Percentage of nonzero weights.""" if "pct_nonzero" not in self._cache: self._pct_nonzero = 100.0 * self.sparse.nnz / (1.0 * self._n ** 2) self._cache["pct_nonzero"] = self._pct_nonzero @@ -579,8 +571,7 @@ def pct_nonzero(self): @property def cardinalities(self): - """Number of neighbors for each observation. - """ + """Number of neighbors for each observation.""" if "cardinalities" not in self._cache: c = {} for i in self._id_order: @@ -591,8 +582,7 @@ def cardinalities(self): @property def max_neighbors(self): - """Largest number of neighbors. - """ + """Largest number of neighbors.""" if "max_neighbors" not in self._cache: self._max_neighbors = max(self.cardinalities.values()) self._cache["max_neighbors"] = self._max_neighbors @@ -600,8 +590,7 @@ def max_neighbors(self): @property def mean_neighbors(self): - """Average number of neighbors. - """ + """Average number of neighbors.""" if "mean_neighbors" not in self._cache: self._mean_neighbors = np.mean(list(self.cardinalities.values())) self._cache["mean_neighbors"] = self._mean_neighbors @@ -609,8 +598,7 @@ def mean_neighbors(self): @property def min_neighbors(self): - """Minimum number of neighbors. - """ + """Minimum number of neighbors.""" if "min_neighbors" not in self._cache: self._min_neighbors = min(self.cardinalities.values()) self._cache["min_neighbors"] = self._min_neighbors @@ -618,8 +606,7 @@ def min_neighbors(self): @property def nonzero(self): - """Number of nonzero weights. - """ + """Number of nonzero weights.""" if "nonzero" not in self._cache: self._nonzero = self.sparse.nnz self._cache["nonzero"] = self._nonzero @@ -627,8 +614,7 @@ def nonzero(self): @property def sd(self): - """Standard deviation of number of neighbors. - """ + """Standard deviation of number of neighbors.""" if "sd" not in self._cache: self._sd = np.std(list(self.cardinalities.values())) self._cache["sd"] = self._sd @@ -636,8 +622,7 @@ def sd(self): @property def asymmetries(self): - """List of id pairs with asymmetric weights. - """ + """List of id pairs with asymmetric weights.""" if "asymmetries" not in self._cache: self._asymmetries = self.asymmetry() self._cache["asymmetries"] = self._asymmetries @@ -645,8 +630,7 @@ def asymmetries(self): @property def islands(self): - """List of ids without any neighbors. - """ + """List of ids without any neighbors.""" if "islands" not in self._cache: self._islands = [i for i, c in list(self.cardinalities.items()) if c == 0] self._cache["islands"] = self._islands @@ -738,8 +722,8 @@ def remap_ids(self, new_ids): old_ids = self._id_order if len(old_ids) != len(new_ids): raise Exception( - "W.remap_ids: length of `old_ids` does not match \ - that of new_ids" + "W.remap_ids: length of `old_ids` does not match that of" + " new_ids" ) if len(set(new_ids)) != len(new_ids): raise Exception("W.remap_ids: list `new_ids` contains duplicates") @@ -766,8 +750,8 @@ def remap_ids(self, new_ids): self._reset() def __set_id_order(self, ordered_ids): - """Set the iteration order in w. ``W`` can be iterated over. On - construction the iteration order is set to the lexicographic order of + """Set the iteration order in w. ``W`` can be iterated over. On + construction the iteration order is set to the lexicographic order of the keys in the ``w.weights`` dictionary. If a specific order is required it can be set with this method. @@ -838,7 +822,7 @@ def __get_id_order(self): @property def id_order_set(self): - """ Returns ``True`` if user has set ``id_order``, ``False`` if not. + """Returns ``True`` if user has set ``id_order``, ``False`` if not. Examples -------- @@ -891,9 +875,9 @@ def get_transform(self): Returns ------- transformation : str, None - Valid transformation value. See the ``transform`` + Valid transformation value. See the ``transform`` parameters in ``set_transform()`` for a detailed description. - + Examples -------- >>> from libpysal.weights import lat2W @@ -925,13 +909,13 @@ def set_transform(self, value="B"): transform : str This parameter is not case sensitive. The following are valid transformations. - + * **B** -- Binary * **R** -- Row-standardization (global sum :math:`=n`) * **D** -- Double-standardization (global sum :math:`=1`) * **V** -- Variance stabilizing * **O** -- Restore original transformation (from instantiation) - + Notes ----- @@ -939,7 +923,7 @@ def set_transform(self, value="B"): instantiation. Chaining of transformations cannot be done on a ``W`` instance. - + Examples -------- >>> from libpysal.weights import lat2W @@ -1041,17 +1025,17 @@ def asymmetry(self, intrinsic=True): ---------- intrinsic : bool Default is ``True``. Intrinsic symmetry is defined as - + .. math:: - + w_{i,j} == w_{j,i} - + If ``intrinsic`` is ``False`` symmetry is defined as - - .. math:: - + + .. math:: + i \in N_j \ \& \ j \in N_i - + where :math:`N_j` is the set of neighbors for :math:`j`. Returns @@ -1222,9 +1206,9 @@ def plot( ---------- gdf : geopandas.GeoDataFrame The original shapes whose topological relations are modelled in ``W``. - indexed_on : str + indexed_on : str Column of ``geopandas.GeoDataFrame`` that the weights object uses - as an index. Default is ``None``, so the index of the + as an index. Default is ``None``, so the index of the ``geopandas.GeoDataFrame`` is used. ax : matplotlib.axes.Axes Axis on which to plot the weights. Default is ``None``, so @@ -1247,12 +1231,12 @@ def plot( Figure on which the plot is made. ax : matplotlib.axes.Axes Axis on which the plot is made. - + Notes ----- - If you'd like to overlay the actual shapes from the + If you'd like to overlay the actual shapes from the ``geopandas.GeoDataFrame``, call ``gdf.plot(ax=ax)`` after this. - To plot underneath, adjust the z-order of the plot as follows: + To plot underneath, adjust the z-order of the plot as follows: ``gdf.plot(ax=ax,zorder=0)``. Examples @@ -1388,8 +1372,7 @@ def s0(self): @property def trcWtW_WW(self): - """Trace of :math:`W^{'}W + WW`. - """ + """Trace of :math:`W^{'}W + WW`.""" if "trcWtW_WW" not in self._cache: self._trcWtW_WW = self.diagWtW_WW.sum() self._cache["trcWtW_WW"] = self._trcWtW_WW @@ -1397,8 +1380,7 @@ def trcWtW_WW(self): @property def diagWtW_WW(self): - """Diagonal of :math:`W^{'}W + WW`. - """ + """Diagonal of :math:`W^{'}W + WW`.""" if "diagWtW_WW" not in self._cache: wt = self.sparse.transpose() w = self.sparse From 4ab932cd0bc103cc56ee320b553eb3de0386117f Mon Sep 17 00:00:00 2001 From: James Gaboardi Date: Tue, 2 Feb 2021 09:40:22 -0500 Subject: [PATCH 017/162] add docs action --- .github/workflows/build_docs.yml | 61 ++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 .github/workflows/build_docs.yml diff --git a/.github/workflows/build_docs.yml b/.github/workflows/build_docs.yml new file mode 100644 index 000000000..bbd912026 --- /dev/null +++ b/.github/workflows/build_docs.yml @@ -0,0 +1,61 @@ + + name: Build Docs + on: + push: + branches: + - main + jobs: + docs: + name: Build & Push Docs + runs-on: ${{ matrix.os }} + timeout-minutes: 90 + strategy: + matrix: + os: ['ubuntu-latest'] + environment-file: [ci/38.yaml] + experimental: [false] + defaults: + run: + shell: bash -l {0} + steps: + - uses: actions/checkout@v2 + - uses: actions/cache@v2 + env: + CACHE_NUMBER: 0 + with: + path: ~/conda_pkgs_dir + key: ${{ matrix.os }}-conda-${{ env.CACHE_NUMBER }}-${{ hashFiles(matrix.environment-file) }} + - uses: conda-incubator/setup-miniconda@v2 + with: + miniconda-version: 'latest' + mamba-version: '*' + channels: conda-forge + channel-priority: true + auto-update-conda: false + auto-activate-base: false + environment-file: ${{ matrix.environment-file }} + activate-environment: test + use-only-tar-bz2: true + - run: mamba info --all + - run: mamba list + - run: conda config --show-sources + - run: conda config --show + - name: Make Docs + run: cd docs; make html + - name: Commit Docs + run: | + git clone https://github.com/ammaraskar/sphinx-action-test.git --branch gh-pages --single-branch gh-pages + cp -r docs/_build/html/* gh-pages/ + cd gh-pages + git config --local user.email "action@github.com" + git config --local user.name "GitHub Action" + git add . + git commit -m "Update documentation" -a || true + # The above command will fail if no changes were present, + # so we ignore the return code. + - uses: ad-m/github-push-action@master + with: + branch: gh-pages + directory: gh-pages + github_token: ${{ secrets.GITHUB_TOKEN }} + force: true From 76531b095fc886761798c4812a0bdcd579e14e68 Mon Sep 17 00:00:00 2001 From: James Gaboardi Date: Tue, 2 Feb 2021 09:40:49 -0500 Subject: [PATCH 018/162] add docs deps to ci/38 to build action --- ci/38.yaml | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/ci/38.yaml b/ci/38.yaml index 3fcbc99d3..21e0728ba 100644 --- a/ci/38.yaml +++ b/ci/38.yaml @@ -18,3 +18,10 @@ dependencies: - xarray - joblib - zstd + # for docs build action (this env only) + - nbsphinx + - numpydoc + - sphinx>=1.4.3 + - sphinxcontrib-bibtex<2.0.0 + - sphinx_bootstrap_theme + From 707aeb394d73a65094f71474172e2f4b0a1ae93b Mon Sep 17 00:00:00 2001 From: James Gaboardi Date: Tue, 2 Feb 2021 09:41:50 -0500 Subject: [PATCH 019/162] git remove docsrc/ dir --- docsrc/Makefile | 31 - docsrc/_static/images/neighboorsetLIMA_US.png | Bin 654235 -> 0 bytes docsrc/_static/images/npweights.png | Bin 517599 -> 0 bytes docsrc/_static/images/pysal_favicon.ico | Bin 32038 -> 0 bytes docsrc/_static/images/rose_conditional.png | Bin 35347 -> 0 bytes docsrc/_static/images/spatial_markov_us.png | Bin 134429 -> 0 bytes docsrc/_static/pysal-styles.css | 73 - docsrc/_static/references.bib | 39 - docsrc/api.rst | 248 ---- docsrc/conf.py | 288 ---- docsrc/generated/libpysal.cg.Chain.rst | 33 - docsrc/generated/libpysal.cg.Grid.rst | 28 - docsrc/generated/libpysal.cg.KDTree.rst | 6 - docsrc/generated/libpysal.cg.Line.rst | 24 - docsrc/generated/libpysal.cg.LineSegment.rst | 37 - docsrc/generated/libpysal.cg.Point.rst | 22 - docsrc/generated/libpysal.cg.PointLocator.rst | 27 - docsrc/generated/libpysal.cg.Polygon.rst | 38 - .../generated/libpysal.cg.PolygonLocator.rst | 28 - .../generated/libpysal.cg.RADIUS_EARTH_KM.rst | 6 - .../libpysal.cg.RADIUS_EARTH_MILES.rst | 6 - docsrc/generated/libpysal.cg.Ray.rst | 22 - docsrc/generated/libpysal.cg.Rectangle.rst | 32 - docsrc/generated/libpysal.cg.alpha_shape.rst | 6 - .../libpysal.cg.alpha_shape_auto.rst | 6 - docsrc/generated/libpysal.cg.arcdist.rst | 6 - .../generated/libpysal.cg.arcdist2linear.rst | 6 - docsrc/generated/libpysal.cg.asShape.rst | 6 - docsrc/generated/libpysal.cg.bbcommon.rst | 6 - docsrc/generated/libpysal.cg.brute_knn.rst | 6 - docsrc/generated/libpysal.cg.convex_hull.rst | 6 - .../generated/libpysal.cg.distance_matrix.rst | 6 - docsrc/generated/libpysal.cg.fast_knn.rst | 6 - .../generated/libpysal.cg.fast_threshold.rst | 6 - docsrc/generated/libpysal.cg.geogrid.rst | 6 - .../generated/libpysal.cg.geointerpolate.rst | 6 - .../libpysal.cg.get_angle_between.rst | 6 - .../libpysal.cg.get_bounding_box.rst | 6 - ...ibpysal.cg.get_point_at_angle_and_dist.rst | 6 - .../generated/libpysal.cg.get_points_dist.rst | 6 - .../libpysal.cg.get_polygon_point_dist.rst | 6 - ...ibpysal.cg.get_polygon_point_intersect.rst | 6 - .../libpysal.cg.get_ray_segment_intersect.rst | 6 - ...pysal.cg.get_rectangle_point_intersect.rst | 6 - ...g.get_rectangle_rectangle_intersection.rst | 6 - .../libpysal.cg.get_segment_point_dist.rst | 6 - ...ibpysal.cg.get_segment_point_intersect.rst | 6 - .../libpysal.cg.get_segments_intersect.rst | 6 - .../libpysal.cg.get_shared_segments.rst | 6 - docsrc/generated/libpysal.cg.harcdist.rst | 6 - docsrc/generated/libpysal.cg.is_clockwise.rst | 6 - docsrc/generated/libpysal.cg.is_collinear.rst | 6 - .../generated/libpysal.cg.linear2arcdist.rst | 6 - docsrc/generated/libpysal.cg.lonlat.rst | 6 - .../libpysal.cg.point_touches_rectangle.rst | 6 - docsrc/generated/libpysal.cg.toLngLat.rst | 6 - docsrc/generated/libpysal.cg.toXYZ.rst | 6 - .../generated/libpysal.cg.voronoi_frames.rst | 6 - .../generated/libpysal.examples.available.rst | 6 - .../generated/libpysal.examples.explain.rst | 6 - .../generated/libpysal.examples.get_path.rst | 6 - .../generated/libpysal.io.fileio.FileIO.rst | 42 - docsrc/generated/libpysal.io.open.rst | 42 - .../libpysal.weights.DistanceBand.rst | 75 - docsrc/generated/libpysal.weights.KNN.rst | 76 - docsrc/generated/libpysal.weights.Kernel.rst | 75 - docsrc/generated/libpysal.weights.ODW.rst | 6 - docsrc/generated/libpysal.weights.Queen.rst | 76 - docsrc/generated/libpysal.weights.Rook.rst | 76 - docsrc/generated/libpysal.weights.Voronoi.rst | 6 - docsrc/generated/libpysal.weights.W.rst | 73 - docsrc/generated/libpysal.weights.WSP.rst | 33 - docsrc/generated/libpysal.weights.WSP2W.rst | 6 - .../libpysal.weights.attach_islands.rst | 6 - .../libpysal.weights.block_weights.rst | 6 - ...bpysal.weights.build_lattice_shapefile.rst | 6 - docsrc/generated/libpysal.weights.comb.rst | 6 - docsrc/generated/libpysal.weights.da2W.rst | 6 - docsrc/generated/libpysal.weights.da2WSP.rst | 6 - .../libpysal.weights.fill_diagonal.rst | 6 - docsrc/generated/libpysal.weights.full.rst | 6 - docsrc/generated/libpysal.weights.full2W.rst | 6 - .../libpysal.weights.fuzzy_contiguity.rst | 6 - docsrc/generated/libpysal.weights.get_ids.rst | 6 - ...eights.get_points_array_from_shapefile.rst | 6 - .../generated/libpysal.weights.hexLat2W.rst | 6 - .../libpysal.weights.higher_order.rst | 6 - .../libpysal.weights.higher_order_sp.rst | 6 - .../libpysal.weights.lag_categorical.rst | 6 - .../libpysal.weights.lag_spatial.rst | 6 - docsrc/generated/libpysal.weights.lat2SW.rst | 6 - docsrc/generated/libpysal.weights.lat2W.rst | 6 - docsrc/generated/libpysal.weights.mat2L.rst | 6 - ...ghts.min_threshold_dist_from_shapefile.rst | 6 - ...ibpysal.weights.min_threshold_distance.rst | 6 - .../libpysal.weights.neighbor_equality.rst | 6 - docsrc/generated/libpysal.weights.netW.rst | 6 - .../libpysal.weights.nonplanar_neighbors.rst | 6 - docsrc/generated/libpysal.weights.order.rst | 6 - .../generated/libpysal.weights.remap_ids.rst | 6 - docsrc/generated/libpysal.weights.shimbel.rst | 6 - .../libpysal.weights.spw_from_gal.rst | 6 - .../libpysal.weights.testDataArray.rst | 6 - docsrc/generated/libpysal.weights.vecW.rst | 6 - docsrc/generated/libpysal.weights.w2da.rst | 6 - docsrc/generated/libpysal.weights.w_clip.rst | 6 - .../libpysal.weights.w_difference.rst | 6 - .../libpysal.weights.w_intersection.rst | 6 - .../libpysal.weights.w_local_cluster.rst | 6 - .../generated/libpysal.weights.w_subset.rst | 6 - ...ibpysal.weights.w_symmetric_difference.rst | 6 - docsrc/generated/libpysal.weights.w_union.rst | 6 - docsrc/generated/libpysal.weights.wsp2da.rst | 6 - docsrc/index.rst | 133 -- docsrc/installation.rst | 57 - docsrc/notebooks/Raster_awareness_API.ipynb | 754 ---------- docsrc/notebooks/examples.ipynb | 1092 -------------- docsrc/notebooks/rioGrandeDoSul.png | Bin 517598 -> 0 bytes docsrc/notebooks/voronoi.ipynb | 478 ------ docsrc/notebooks/weights.ipynb | 1313 ----------------- docsrc/references.rst | 7 - docsrc/tutorial.rst | 22 - 122 files changed, 5898 deletions(-) delete mode 100644 docsrc/Makefile delete mode 100644 docsrc/_static/images/neighboorsetLIMA_US.png delete mode 100644 docsrc/_static/images/npweights.png delete mode 100644 docsrc/_static/images/pysal_favicon.ico delete mode 100644 docsrc/_static/images/rose_conditional.png delete mode 100644 docsrc/_static/images/spatial_markov_us.png delete mode 100644 docsrc/_static/pysal-styles.css delete mode 100644 docsrc/_static/references.bib delete mode 100644 docsrc/api.rst delete mode 100644 docsrc/conf.py delete mode 100644 docsrc/generated/libpysal.cg.Chain.rst delete mode 100644 docsrc/generated/libpysal.cg.Grid.rst delete mode 100644 docsrc/generated/libpysal.cg.KDTree.rst delete mode 100644 docsrc/generated/libpysal.cg.Line.rst delete mode 100644 docsrc/generated/libpysal.cg.LineSegment.rst delete mode 100644 docsrc/generated/libpysal.cg.Point.rst delete mode 100644 docsrc/generated/libpysal.cg.PointLocator.rst delete mode 100644 docsrc/generated/libpysal.cg.Polygon.rst delete mode 100644 docsrc/generated/libpysal.cg.PolygonLocator.rst delete mode 100644 docsrc/generated/libpysal.cg.RADIUS_EARTH_KM.rst delete mode 100644 docsrc/generated/libpysal.cg.RADIUS_EARTH_MILES.rst delete mode 100644 docsrc/generated/libpysal.cg.Ray.rst delete mode 100644 docsrc/generated/libpysal.cg.Rectangle.rst delete mode 100644 docsrc/generated/libpysal.cg.alpha_shape.rst delete mode 100644 docsrc/generated/libpysal.cg.alpha_shape_auto.rst delete mode 100644 docsrc/generated/libpysal.cg.arcdist.rst delete mode 100644 docsrc/generated/libpysal.cg.arcdist2linear.rst delete mode 100644 docsrc/generated/libpysal.cg.asShape.rst delete mode 100644 docsrc/generated/libpysal.cg.bbcommon.rst delete mode 100644 docsrc/generated/libpysal.cg.brute_knn.rst delete mode 100644 docsrc/generated/libpysal.cg.convex_hull.rst delete mode 100644 docsrc/generated/libpysal.cg.distance_matrix.rst delete mode 100644 docsrc/generated/libpysal.cg.fast_knn.rst delete mode 100644 docsrc/generated/libpysal.cg.fast_threshold.rst delete mode 100644 docsrc/generated/libpysal.cg.geogrid.rst delete mode 100644 docsrc/generated/libpysal.cg.geointerpolate.rst delete mode 100644 docsrc/generated/libpysal.cg.get_angle_between.rst delete mode 100644 docsrc/generated/libpysal.cg.get_bounding_box.rst delete mode 100644 docsrc/generated/libpysal.cg.get_point_at_angle_and_dist.rst delete mode 100644 docsrc/generated/libpysal.cg.get_points_dist.rst delete mode 100644 docsrc/generated/libpysal.cg.get_polygon_point_dist.rst delete mode 100644 docsrc/generated/libpysal.cg.get_polygon_point_intersect.rst delete mode 100644 docsrc/generated/libpysal.cg.get_ray_segment_intersect.rst delete mode 100644 docsrc/generated/libpysal.cg.get_rectangle_point_intersect.rst delete mode 100644 docsrc/generated/libpysal.cg.get_rectangle_rectangle_intersection.rst delete mode 100644 docsrc/generated/libpysal.cg.get_segment_point_dist.rst delete mode 100644 docsrc/generated/libpysal.cg.get_segment_point_intersect.rst delete mode 100644 docsrc/generated/libpysal.cg.get_segments_intersect.rst delete mode 100644 docsrc/generated/libpysal.cg.get_shared_segments.rst delete mode 100644 docsrc/generated/libpysal.cg.harcdist.rst delete mode 100644 docsrc/generated/libpysal.cg.is_clockwise.rst delete mode 100644 docsrc/generated/libpysal.cg.is_collinear.rst delete mode 100644 docsrc/generated/libpysal.cg.linear2arcdist.rst delete mode 100644 docsrc/generated/libpysal.cg.lonlat.rst delete mode 100644 docsrc/generated/libpysal.cg.point_touches_rectangle.rst delete mode 100644 docsrc/generated/libpysal.cg.toLngLat.rst delete mode 100644 docsrc/generated/libpysal.cg.toXYZ.rst delete mode 100644 docsrc/generated/libpysal.cg.voronoi_frames.rst delete mode 100644 docsrc/generated/libpysal.examples.available.rst delete mode 100644 docsrc/generated/libpysal.examples.explain.rst delete mode 100644 docsrc/generated/libpysal.examples.get_path.rst delete mode 100644 docsrc/generated/libpysal.io.fileio.FileIO.rst delete mode 100644 docsrc/generated/libpysal.io.open.rst delete mode 100644 docsrc/generated/libpysal.weights.DistanceBand.rst delete mode 100644 docsrc/generated/libpysal.weights.KNN.rst delete mode 100644 docsrc/generated/libpysal.weights.Kernel.rst delete mode 100644 docsrc/generated/libpysal.weights.ODW.rst delete mode 100644 docsrc/generated/libpysal.weights.Queen.rst delete mode 100644 docsrc/generated/libpysal.weights.Rook.rst delete mode 100644 docsrc/generated/libpysal.weights.Voronoi.rst delete mode 100644 docsrc/generated/libpysal.weights.W.rst delete mode 100644 docsrc/generated/libpysal.weights.WSP.rst delete mode 100644 docsrc/generated/libpysal.weights.WSP2W.rst delete mode 100644 docsrc/generated/libpysal.weights.attach_islands.rst delete mode 100644 docsrc/generated/libpysal.weights.block_weights.rst delete mode 100644 docsrc/generated/libpysal.weights.build_lattice_shapefile.rst delete mode 100644 docsrc/generated/libpysal.weights.comb.rst delete mode 100644 docsrc/generated/libpysal.weights.da2W.rst delete mode 100644 docsrc/generated/libpysal.weights.da2WSP.rst delete mode 100644 docsrc/generated/libpysal.weights.fill_diagonal.rst delete mode 100644 docsrc/generated/libpysal.weights.full.rst delete mode 100644 docsrc/generated/libpysal.weights.full2W.rst delete mode 100644 docsrc/generated/libpysal.weights.fuzzy_contiguity.rst delete mode 100644 docsrc/generated/libpysal.weights.get_ids.rst delete mode 100644 docsrc/generated/libpysal.weights.get_points_array_from_shapefile.rst delete mode 100644 docsrc/generated/libpysal.weights.hexLat2W.rst delete mode 100644 docsrc/generated/libpysal.weights.higher_order.rst delete mode 100644 docsrc/generated/libpysal.weights.higher_order_sp.rst delete mode 100644 docsrc/generated/libpysal.weights.lag_categorical.rst delete mode 100644 docsrc/generated/libpysal.weights.lag_spatial.rst delete mode 100644 docsrc/generated/libpysal.weights.lat2SW.rst delete mode 100644 docsrc/generated/libpysal.weights.lat2W.rst delete mode 100644 docsrc/generated/libpysal.weights.mat2L.rst delete mode 100644 docsrc/generated/libpysal.weights.min_threshold_dist_from_shapefile.rst delete mode 100644 docsrc/generated/libpysal.weights.min_threshold_distance.rst delete mode 100644 docsrc/generated/libpysal.weights.neighbor_equality.rst delete mode 100644 docsrc/generated/libpysal.weights.netW.rst delete mode 100644 docsrc/generated/libpysal.weights.nonplanar_neighbors.rst delete mode 100644 docsrc/generated/libpysal.weights.order.rst delete mode 100644 docsrc/generated/libpysal.weights.remap_ids.rst delete mode 100644 docsrc/generated/libpysal.weights.shimbel.rst delete mode 100644 docsrc/generated/libpysal.weights.spw_from_gal.rst delete mode 100644 docsrc/generated/libpysal.weights.testDataArray.rst delete mode 100644 docsrc/generated/libpysal.weights.vecW.rst delete mode 100644 docsrc/generated/libpysal.weights.w2da.rst delete mode 100644 docsrc/generated/libpysal.weights.w_clip.rst delete mode 100644 docsrc/generated/libpysal.weights.w_difference.rst delete mode 100644 docsrc/generated/libpysal.weights.w_intersection.rst delete mode 100644 docsrc/generated/libpysal.weights.w_local_cluster.rst delete mode 100644 docsrc/generated/libpysal.weights.w_subset.rst delete mode 100644 docsrc/generated/libpysal.weights.w_symmetric_difference.rst delete mode 100644 docsrc/generated/libpysal.weights.w_union.rst delete mode 100644 docsrc/generated/libpysal.weights.wsp2da.rst delete mode 100644 docsrc/index.rst delete mode 100644 docsrc/installation.rst delete mode 100644 docsrc/notebooks/Raster_awareness_API.ipynb delete mode 100644 docsrc/notebooks/examples.ipynb delete mode 100644 docsrc/notebooks/rioGrandeDoSul.png delete mode 100644 docsrc/notebooks/voronoi.ipynb delete mode 100644 docsrc/notebooks/weights.ipynb delete mode 100644 docsrc/references.rst delete mode 100644 docsrc/tutorial.rst diff --git a/docsrc/Makefile b/docsrc/Makefile deleted file mode 100644 index dfe6c3b5e..000000000 --- a/docsrc/Makefile +++ /dev/null @@ -1,31 +0,0 @@ -# Minimal makefile for Sphinx documentation -# - -# You can set these variables from the command line. -SPHINXOPTS = -SPHINXBUILD = sphinx-build -SPHINXPROJ = PACKAGE_NAME -SOURCEDIR = . -BUILDDIR = _build - -# Put it first so that "make" without argument is like "make help". -help: - @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) - -.PHONY: help Makefile - -# Catch-all target: route all unknown targets to Sphinx using the new -# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). -%: Makefile - @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) - -github: - @make html - -sync: - @rsync -avh --exclude '.nojekyll' _build/html/ ../docs/ --delete - @make clean - -clean: - rm -rf $(BUILDDIR)/* - rm -rf auto_examples/ diff --git a/docsrc/_static/images/neighboorsetLIMA_US.png b/docsrc/_static/images/neighboorsetLIMA_US.png deleted file mode 100644 index efb343cba2f80444dc1946e2f69b7b4f8e41e33f..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 654235 zcmeFZcRZH;|39p&T}Hc5w2`ckO{J2^-n&HEd#@HMp;Flt**j#960*xWB{Q3ly}6&q zb#;Bl_xt-j?tkvT?#Jcx_*`A#I?v;HAFuc8^<3}sk&KiW#WtF4WMpI%;#V%pk&*3u zK}NPcd&?$#=QhjZ+xTOH)dg{dE%oMa0>+GXMZ1GJ#>q{!u z@@D$hcGoTS$V{$Vn;V;18ynm>Y^!H!WngA{_zWxlclz*cYio0UHnxBN0;`$jEjEwv z#_eQehsne*o>#CB`PsIPg6znS;?#i^Ct=B_J6afPfz@(C;qhp|G(J_!39e`KJVIAi`K-~|8e}y#iv1Ewq827gMG^b zsf!mMZ#lZoX6XF%;cZ(k^4(Z>@#pI;lY3?2AD?5a_mZRBVK{i=xb+{;j&Hayyt3SV ztjNkI(CK8ut{+R8&53=Jt?6@x(H)$<9qY;5H>}tDd)@xmpRb?lye9u&-~Ia=dv=k( zSoil|{^y@}F5J8Oztye3e@o^Hy9^=R{hz$r9M_NwvOZ6P1+oi=XXtlrkp z_2K?ho)8(?FP?q$^eL+8`a|?<^PXy1rb)w1300k)+Ls>hNwZ)6(cS%qMg4uR-N@h9 z_UE4myFxoD{_{Jox>Z2rPCd%oJ%6$$kv{RDpR#jEycU#S8)hKv9GVPrR6)*&O#P5Gc)4%6yoIKHS^w&6|Jo< zo9vEa_BPTifiuegB^Q z`(r+Ry4ap;Bf-bVH#s%sS5#CKub2>R*c4yU;MaNhcbi;I{_n=NEr0!H%G=-G=_&Pi zP|+vLMP1E#6M2t8SXgW4&Yg=hB<-oZy?fX#EG&XJZ}}Kh&rkHU*Gp)PP|^vieE9Ie zbf~l`Su-y>(}-j^)nC(^e#=)Xg!j#pC*;A&BUt-wdr!rxWg5oIMtaaW|2i);{YBKU z{_P`Y7Z=SoJ~FabQ86(_D~mIaA3v_29sO?evxS4&N+A`H*eiC8fi{adv6^0-sF39K)?Y#J-t9J2CQe2dX|#CeYWH5&p2Ff zcHH-S%twx#=iuP5qo-$(3X!>S<41dWIUcM+q6)`LM%fE^6yx7I&J4%NMqW1j z{yr&QDJiH^o!w?>)`Ug7P$NMpslLpc)~2s=Z-c#vh=|bS=VQaoNx_bDW15FOckF#H zRQl=D?TY6oTHon;MMOs0j5M<}%-<+|JoI5Ry#gs&bLP`-=~&!>>F}Pv>h#?CuInmG z%Cx_$_D7kVmYTCEz!dSQ%ruj~tJ}s%9Wm;pCWb*wz z@g`2Rr@FTFjOxugQ*+&Z+O*qlU6E{oQlhOG&9;~k3&1K}nnlxF=38ZMV5cvZ^|BOh%x&7^oZ$T ztPY>`;8T8^;kVc?o>nFu`Kow|K0NM!=vKXAF(f628c4dXY<=eG={dAmuxigmF3PNw z_+@&iA@h34rUVAlftOiXS=hiactr6=q~vYex64obC=FFxPuAr;P#Y?5ZJjau^IPQL z;O$FdV$4iT71R71N9$ZtG;$*9MAkGo^{c;l)AIbRmCv`gpg6#OE>g@_$(x2dq~(nX zswdN;=dwv_hIsH<6U#yS)~YHA^oB;xI>E@*l_loGhl?MDwleVXsW!w&lN#gXZHDSk zE>AU zctlGEMo@F=528}Cn8ltQz0{axrd_bm9~`fqmFy=_o%b;#1{<11E#nHk+j83Mc;~oG zvKXDi#bcMBd_l=~za9Jip!eJiTWJ5gRTZD5cb$JD>J~snMt0}kt*;T6u1ZVWIkn@0 zk~DJaM{P!Dmd1;W7AE`7mez&|eJ^d_BS=coRz`KpdsL8_hjAM<$Ko=FzeajCC#v>L zUqAEw#mkpbqMnon!;Nu7g;u^`ie%Nyy*)GBB$cv}EVb?>vvP)I-&JpV5iK+qdA#=C zJ$v4E6gZ9CrxO0+K|z~H>Bn^C3@7IdN;g(1No}#~KGnh1+C^;W#r|M3g(6p%f|+J@ z(*@@Yvrb`eYR=2J3I#ls=^tKfhPVexdg)u(olCQ$jzdxY3YmtAmo8uK|L$URz@u=X zpSCGpQ9`%e$L4mxlj-u6Li>pu+$OCGYz5QxLNft12~z`gBYx7tvZyedPM5i%3Wo4T zlD6CEFLr8iev2Ou%6#clg1C(gi|?$Hsu+qLFI``ZMvGXj#p6f@^hkPgb6vt<2s1f+|9q?uSX*Dl;dCc zb8KftMMaRHgQaU0(5xi~_7i58O8%$P(mp#c#@ElEKhH4!b|#CYnW}U5%$YN7S|qLQ z`%b4Wd`fE1vm5#R>=^4uUk*=abYj<(!@K<*g*#+IY+g7l_#r z6@4w(aI&|8->Uyf!^kqzi4&KwFmia0Ogstyriz-G5z6XyN>i?FEa&3Gp&-F1Tj>fyc%WC}5Wy<~Yoh)f|GErar=Fh@Rr$ zvo;v%tI>Gv!>--CBQJUFQ}s?zOn8Nh#(SA8EG;Fdq}|x3JJJ}}Q@!tQ(aYToQjCIv z8tAt*<4R;?3tiuCg*Q$1RZZnl__yTQrR3U<#*dIv^75t9^=mQ=8cyOSzZf`3V>&+C z&A`tRo|LRr5bwIOXwZ0TpsG!M%9}ruQ#4_ z^(jTG@hJ4{#MJ{fferv|MmD*q)X?o{h zck>IjuZ3T#4&jscxUQl>MM>Gr)9D=Pb4VaJjk#-_>Ey}Fhxo0(pl&Af_L7l>oZ{zK z19T$Q1oO1ZjpL$*zr4Bs-n2db>C+uqjn%p{0@{eTCyO8+e7XPCR?|Y;t1aE4F95((b<&=8n^z)uIrhmhg4w zf<9U)4abcK>aJgR;v32Sp`l6RMQd7S`4b-M!!_u`EH)v1-_43@rfi6Z-jtv`0-R}g zUTk9(pbbm%#tj>813hh{q_ou*E$(c@%`_#c^8|ZV*xTDPa&ajT8?(fNLJ_U>C6oN+ z)zwu1Jb7E&_dt(H3CbzMAKka}J5I;mxN#%HYC!6ckYl6uQviqBJpjk$bWYXL*Uxlx zbQrehW;#v}zWMS+<|Ui97T$&g>|+g(Qd(Aqy{<^$uqX+CNh{4f+iS!+qRsE!v7;+- zv{xK!I9c=A@P~YrWdqQI3>EOvE%{(QS#c5dug%|nx z`5~=Fa&pfySKxVU)Y zK0r9WVpdu&OzN3@dv{4zR<^akDXXcDiYNn2)&$}?Y|Z<#X2{57Wd1E&jBx}820AW{ zW^tQ!=p@&EBBFHWh^Pm< zC^wA?1L!zt*;O+{{Q2_<`v$6<>tE>G1d#z=)0CGKTWQ_!n?AzR=$ zGmTzv(3)YeI9bIuGyC0)Kw&p(fgW#T97T)n360apu_Oi#(E)8oTM7E3l;Rf@6d&%o zDDKA~-8|7#o>Z2iRiK8gg?agoQ>}0W!y_Zk6`O$DW>^91u*_yuSXj7i%NChXejD5^ zgUj+nd60-(VTXMWMZ>ytj~+c5Ziw-HZ`L{X?(UI|chL-Tt%o9h{W1rMki`zmatuX1 z5)hPtOlOT-bhts?v~UAN8yuc~Bl>*L-n~&kjctZ)ch;@v(yQE~7%S7wW<*ps+H6yl z#QuW04yQ$oh3T=p@gPbi;(?Yup^o$wS#5cJ(^ zUT7E4CLqZSY|4({jb+Uj#%fm#;w2R&Z3}#rFOV>yYIIiZe$|*ymi16ZoR5k zO}P6E^X>~Ljvv3>{n4EmIf8ZYW8m3;d&*X0SZ1PheM;#|>M=mp-I&5S6v!(m_2j(o(_WCbxM6c=MF1b)`7&UC956o*-B$9GZnK!^haPRoI8O;(V zy20A&io@`?Ai#BSd+&pM^@bYYAvVkN7G5PcEgSM3tVUZiC2*zD7UJUKN@mi(ALHD< z{}`Q&07QUO`hNn$JA%XCvr}T>!czr_yx8wBf1PeU5#s^z>|D-vmj0;OrNxOjI!sG1( z*kXf{6C7ZBm|sw^7aeS6Y0d~8mj)bld3pI@CH202(GVyw1RD*1qRpDknJY@1lni+7 zwVy4h%z3hc!Lje9@?=OJ7_=I;1CY}Vj+0pLwdDbksgUoI*IOF`ICNjUdZka(P~c>D z>C&ZdHu>WiMWD?pE}Cn7{@NL6jDiE3|9WyV?Eiu2WeIu;tTLHLs71Z!FJ62gC}g!3 zvxstq7}TzpxqJ6+490j3(jR~P(U^Wq+P~?2Ic5qr2aVSVT0n!cwu@d+N$a^Fr*?ED zmSiAF6dK99oy<)dGvcwA7pFJ1kYmPWpMyh_T87Puand3y3aGIL@Y0@1M=~-iEUP>i z9Q1^k*jPpYF4g^PT8(%}+@@{3?w+2^?Ck7C-!ldY7IgLMV}ojp!b7fgOp5U@Tvr!v zK`N@eQC;e_AGC?fb9nhy0ihV67ZPX=Q@HCzz8fKwfVxHPI&n3ijChnlOV-&PsLQ?d z^ky_uy?)Y$U<;H@Olldi`%bI8#yzV($pLQca9eZn9PZ_ThE?$E<92?B$+!Krp$WKH z0q!-Ix%L>e(^zO@(H4X%HW2PMmXV9*tu!?=)F4*kNtKm%8C!U|+mk-1%($~q6EizA zugvX~q!Z>;z&G_Ps z7zQ_T>8PoPqNVWUy2vq^l{_gAS!yn=%ynkoDBb4Y6ozR68fK|E0;qA9R(KLygh@c) z`;W!qyX*Jv+7$t?qW*->c|H{ajpkRayHA6H3@vKv>gv2h$=tNDK{z#2K>a~5$HVkj z-2j}FKtkKqc9Z?`M0-+`cy(G9bn0)&hnH8J8*8^&TbUcMb2^)6HQ<95sz)QAq9s%S z#Y-wqIZp0G!u=z{E7S5&8^38r-u@av082<0d#S0J+}zyqtW+BkRXMMP@;4cVaBk93 zqs@>{*5FIH&uc<#c^80)$zQ)x4-jGwfy|j^+LAy~_;C~ZwIK%lyydbO<6lubeLX$8 zG&~pzeZ9TBQT<>j*3hoJMqFK8rKnrEj9b`IE{$Aet#|gR?~N96S?KeR9-*V7BV@p< zuTBrigo<1X7uG~=rf0iCw*%^EWcn9zVEb41JGX8&#cic(`cns>CjThuAgEav-Tlo} z@3YV1BK@1V1ysK##w_0$eSd)0{Pl6Bqenk-)lxGU>{EEPX@mIl7zVdpe`Kox>z+01 zFs7LT>PWz{m=13td)f(&Aps*j4%N8O{#X<^JQ7k!LjY!xz>E;<(W4iR967R&w0qYs zE&@JH@fg%!q<5KqcGaKN#Lg%G0J=;Nm%$C1bQDCxk)Y;-yyoX1Epm8M^I5(H+8j-u zDEj#EqvYo9n3x##Lq4)HEE?G|kPj>*l3Fv3j0V5FiRKun3nvx2EFDaK2_*$uSa8{s zgM4ym0(RN2&>Wk(Pl3JGcb9k`iU(qN0djys4lH}%>6w7ZXWLhI4N|g}+loy?fVA+! zCxe;aBczvp)p5)3f8Un+crWwtOJyw%??+FbytsaVxPLM-pW$!mG3Y#&n(BGBNy!>H zKc<6F<@I;hZ?@D-fR+sU8miT>6LY%}Yr>N3>ERKNqI>=p#53;7v!nZT_p@rmg8s+M zsqFa0NA_78;Xy$hrhEHgU_qd9pXqM0_Ux^JPKyNvG36t1m02`9AZ^nQM(r2F3Z+Yj?l zbn78ZqkSY77nd14QUQ$tY0$nbe#wew-7<3BtqovgiIl(I&4#3xPt}Q-@$WH)KJ=Fe z@tb&=vyCsC{$3w49nGdHaHmVQfJgBHalZ^T!U)#+-KOSf~U z#at1(LxLE+ivs?v;+{o|RLixF14J2Uq+8boDKUD4X!Y*f_O>-rg!F+C@w+T$KsI{u z{CNb_Ac*A{9dl!8mT_`XdmyD07Z)#^?q^K3w6wJDucihI>R4%WfRqflK3ybirxYi5 z3GMeq3`3Ex%2VU^+$L)m;8UP73&-|{54RM|wi>}csI|d;jPg6pCIUJ3Pq!xTprd1D zV`KALdiEANIapbB@^bT7%vgI~0>Hd&-`NJRQ*>0Rty{O|B!|QCAoMa7m4F7L{U?b| z8+qB=`d8O^FKFl-l%%w?gKx3+Qf?vnm=MvTGQ`?`4}oqNMcfdiZdn-_8P_Z`KZ2eCs1jsaDoijAShhXiK|U@njzH){H61*d2)^Y25v9rvw{1g+N~?PLxKEI664QS@u=NtENXoF-?BOq8^V%M(}H|ywwEQFrzJL zq8O#5G~IIR*`KNePyyDKQ&S59DvKa45K<(TI2Ss4A|ZBTBAi_*)jTXhPAAAqx_jn1 zf#hQ-3D#SGZ{v1L&8g|><&^Hz8$X~o%#=`xsA#YOf1v9xX|J(iQ2aOtq<@!xZunfF zVuI2T##&A?V1MP08OQ*r+eE=8Lep;W(Ee0jJ_1#^37ZP-n<-StNr}g_?F+78jILw} zz8WLr6>h`EFQQaJZy}8)z}At98#e?}Q7dvS0CRW)3_DmI$a(eZRXH>f@{*^7)uf!9 z2$W#-Cz@u}=tZ-L9wGP3;W^I0FoGUbk43WXDqeR;z_xn&)7qK>X7t958{^P@?R@

7qAGo{c+_Znd^6uTc3}93U z!fH!%3oI51Fd zy?#Og9YL30rmUm9JRD7Ix{9qRpe*}G`Xr!i9NaIcz09N;tAW}fypgTTDzmW@L86Bi zQ42rcy)l9=cIFUcy7PkNzwpK!|KG8Vr)KbH$;J1v0RVB6m$1V`HF&|ST+3w(oM1X$ z_0or4#1x~t9u8%^0h_)*1|v1LJtsu9(RadNAx3Gg_@}0l9XzPZ*gm6$CU8k~t3w5N zNNt2*J!Es}`uL~~T3ydjO!!%p`STbT>=SB&-q?<{4as!sSBJ4d%dVW^H!v_LBiH~M z0CU}(=9McCIRMCy5j4W-UH|gJR2iVHcUPBA9{qhPq3Nd+&_oVki?WV3C3<3t2#`kJ zMn}_VyUe_lg%B7#r#n92WD?5xF`G}K)7DQJ(638bKI=4V+)xPb?_lyX{~pHlxkO#{sa&VJ3a8!ysez%4MUzfUY3v3GQ&L3gy0 zSgX|^UFff_!sa+M%+1Z+G!L)mi6@=o=P|l__wRe7MbH2@+0|0qzAIE7_3hiYGHhON zP%RoT(X*rF)G5rhI-?6LeVySuauzLyu44OfjTWG|Fs&tjwq{lhl2XFEM@B{(NpjlS z+L0JAWe~ZH7xQ&T=RfV;?^HzkR^(R10a>T#s~9~u!6t`4l$VzSv)xaF+!5nim^mBj z!OU7qsPo6rO@7VIWhLwfk@@pKc*Uk|+6!!)$s@t4k*z~cFWfe4=kHJeN%nxR;N-(U zACEt)re&4ZWCJFC`=SbGy2^3 zKdVYXxW+!(Je2t zQb*%Zq0xK{*MfTQg)UzQQd8>mg7x|1-Qw?ws8Pq=6aTmOAw@6(!gGw~AXEd8@%F}N zBL_uXH3)qcTXY)hG6Z$UcHps(Pctqq0+WMK2H?#+3hnpBg~mb%b{vk2v7YP|&zlMX zh(ayP;hhiVdTWlN?i^Pa2AX1Jj}iO~O0Gk$E0DTUqRJa$0M!XE5i?M;F>Vw+H3r7; zZLB{2PzXzL17{#av3TvGLi}*x9wm!}q+}!9W`)Sh6xV{d#F06$9U!(l^p9w43m07P zKDTd8?fY2N-Xc_BK)jY^?-kdqo~MM|PPlqb;{`Do*D(W~c=m);hp9S(Z6#F~4&06L zEJrkX@H>K_=g~6|j-8Oxdys$#Iw41ul_;BH%}o?EH!VzRL-?c;II$;%3xT1$VRe>^BcABP;4zPNov|HqFXTn6>Wu|A@( zE1yGT4sD5BL8EShZZtFaRh0Iuv5b_Ilxx<5KMsR=S|bWEVmiFR!2+5#1@)PWgguR- zhI-N8xQzZmxbKA0V>9^WLtM^O34B3913&~r9V_+~j!*`qHjMU$H~G+%TeB@931b>Y z+;HA_A@iQj?=40(LEKQ7asUNV2rm>P#R}hN`Og3xJ z<*w`8*&hRDTW8(gF?U40uptQ#TQkSx`lu^G?rXzE#@{WvyC=}myAhW<UI)N8c*W+t?=z(_bJo*u7xPn|g<2kXe9az{9_0twJ89DBTZ+AJ?jLA-gJ zYcpbq+LID87{K$y`@SHYP$21;zM2G3u~@gY)#1*fA_R*<%v^X&074qE@|P}NL==bh?r`g?FVl5;K$g_Lp;bGdn}AVz7ywlhf5J;iF)0gD*&g(P02@ zD~C{*5-{#4N#@b%x9WoEMmB8PbP75rDYI=;%`(F+%ApTyR)b%T5Dq%wOUQfPx_R^F z;7Cf566O&g_m7PH*?FivD7)<#+&tP#=RW9;UTngqii(cTjiYV3Q5Pl@ubdM0-J^Ej ziw}Xbgw;GuN=ZS~p)>hz?0W)vU<Pi8Vof2O-W9JqIF|==yJ#(99xX3>e@M zNYP(#fg+h{+O7swKDVUA-T0ZGUkN)858Q*GAxA({4YeZR+UOCKS~FmZM(ce}Ray@s zijy~~mKRR2xq*RO%BJcndEv(m;P|j6XscuoPfWyM2nQ!;88%hES=I*;zD62#=|o^E z*I_DptSv{Erl*pm0Zqlh!6C40d8u>FR@LQqA5AX*mz0z(wuedXVo$j*k9Q#MR9)(a z`FjY>aUd3sP;xXEN8SM=$OAVdt$wgLPe7Ph0G36_Orc>*SO9okCU^OF>Vo0?S#X-U zy^Z*&9Ha2we}TkbAnnzQiKxHu3sHMxO|6r&5QN836l^jH|)M& z%Y2dj;9)ibwt`6X=DrFDhy`Ec*U(*EUf9=pjBv&MR}8ZXQ0uym_fV%R;J|((YJh?Y zF;a)TNJ3zwt}8Rjo=%_E(r;Gma`*7ao#vf{7(&=F9nMqNvdG=$wF&i=`^Kj&Qa8ks zu?Dwt!vX{2u(?n`Dkx04Ota2aGoI8>JJEhjlfV-A;rVDFY-MiLzWh$NoKk4M>pm-e z$XVSo@=TNO&BMR8s;{8C5XK>at6n%W+9y(Er|La@c+9w>2)Ppf*)B=!26oM?x!DX` zk-oVu`k{{8@JTPCyS%fd7sLxv_VEzvS;I`H+gf|_hmpUi=W`=%DZ}?OWC@$fsEKT}wX(?gLN8C?FozTVzV^3piU8;B#kNwWgWqUdd*!@ij$i8E<55d)whYfYQ z%o(1dBZSSp2M!FD)&8_voHlTGcPD7%*-|I4U5sJF){HoUJ-s(pB|K2vg#3jI_iV>I zlAxKW9*TbkX$I;x6JiU9LrS$g8aWOx`Vm7|>X82_7iZ^2cn(6a5Q*0T@FgIb9vUv@ z0xCSuK*G?_P)@RwlT!k~ui=;1cd?&h zz{8o4$AJFA@4B3Q*0k+*gUJkL*bvZt1KgL80{0@79Lp#|o%b4n_OA>LvJp597Uy}; zNO@3L1jG^woaPL%=9Lu{X=(!?ta3MRzLobZdV-J^B!djTLX`D33JOIKEroamCI}}Z z=<@`_&#)O$3Jx1V)|BvSpg|J8FkgM)HNx<8U2*gpA&4Lbx>j>UmqM+fD!MpA`a3B`SL7U5R)Z4d=$mS8& z2fjXKj?rD`;LrTVD|}?+Ye*F2hDf9$Sw!q5%gB`@UdNS3-DI33CX~gM~;> zAV7i;GrTOJmmwjEkQR}k9fAP)_|c=USlkRWF)Ty&b%u?;P&o()1WZHZ2Z)tAckT{i z7h@e-V0uI#6D6Y8aJUhmDjukX@W>zUV;T0)%q9`rAGyb1siXdH3Hb-NZ`UbCsG!I` z;td9|(^_+F60VK&5sH~Folu5e)xNzJx;9ufHu~0PHF-*KbfP5>>A|Q>E*Mbzfq@PGjNhx8Ynee|s zs!YjoWroy*Py+(pfn_J*!G5^6k-$+yDXa`9PsZcPVxaoBGknc1A;j+)QalFKG}0J^ zjjITOc=g>FLLE>N<3ZVm>!Z9*N`=G{nm5$Y<*F11Kuf_+Dd(EcpJj?%SD+tH`e%Y_ z5;;sq&?v-0n7sG^f+C5m0l=(svIa*I!VcpGs99p`loY6=)FLoRdUN+d9L(x)lmNEP z7)rULm1B8{NXVAcyCq^u1U3gF!$HsqJR!cutm8xoZ4v)ZDkGY0&OlfLVMxQ|^0I)k zh^J3vK8P?*5GM#mo#50HEEWNF1?Nl?P^gBWPdUkW_Saw!Dnps>gTcTdrlj-=x{cq+ z)01{fq@q>5+%c%01g!Dq>0n#$DRScfhTRfe>GFOaPBvain2#w^6h|CI< zkF}9CV%q_}ytfY}RF*MPFdox)8=*E@!hr`s)!2Lisd58=DaX-F($7kh*?@!Sj+%U$ z6^YtIzSlXL5#>^Z(A)|Fm^?xx5s)Q`y%p}#oJ==W0=4jTGI3D=kTo_ekR-u@rN#%4 zwxEGGcCARJBTZM#n@&g#nYE|zmP)e;Rg&oWiK^*|g;~z?-JXtvZ#*SEjrmV8F^RL~ z|GJQDL_vGDk=88#4dIl*%7}I#43dr8_hm<1+Oxxr(xC;hDTB7buaSg-1xguAr~Z*! zDqNTdv2}1oUwwIs2q(dvKSEDW?`3iK?p?dh^GMezz^wP5E>9Z()F-ku*xo}x31{a> zC`=9C^#uR^^y!mE%5EB(;V({s$3!0jIVWLU4k7-g49JYe#@#@gUn4SHgtN9b=e8Du z!5Uab$8UXw@TZ6FG`9(^&iCZFcBD<`vWgR-v>soPuo(VXe)MO=LUe2bo}j0OIZuig zEKgPu+;*r(Zn39eIw7U79-TD_rxCm?h~9`goIzlxFJ~?!fqk8)C_pmDJ@r&`G zuPRTN72_M*$L;9syVlu^cdU%H#>vMJcLw@J46L&hNA6kS0KiA<_E+bR`oMMYXbQOZ zOXvy9K30v}xnppZP(m#)zqhWuK;8*W4m;r6%T5~gu^8}IMo!L#VWXDLrspRlB(>8| z5F7%XW>&}zO-*BVeqJ8jJQH)(Ys6tC>*2@u3`TXj6`3hHs9mMCn)8c2-2Q)`g)0{N z*U7ft;McDYi#{){f(T_*(1A`ZnW7AO)B{P;bex$DIbZ`d(dV*=vFc(5*!D?_i*vw8 zFw86iVi^4*j1v+@9CrB8p~^#h_v&S?;reKpm6J1=-4NcJz+6{Nnkd>Y7SOJhqxpD0 zo2g{DaQo-V%1ZfAjE+b=FQqBz0QL`WRt|V9OqG_D93!o*!PKLLV&M>PwYu!kgNSBY zZVW1k8V%d}wls9JGr$aq&BVc&H1G_;fi*+`j4M0e=}8=8U?_i6&^t4s2|rvHNn^^U zYASF8_I7_n{?Y(0Vwwf*#zHtC{zSsRyDTaBq}>4-UR`AM17;EKxc-DrsP&4J)cb@o z0A_EzZ(#Ela&j&ds{Wj?eqESJP$%_x=*CBxBrCB_ZOziw75Hhr<`hmok%*L;a;y>% zGr<>?a}41MQV2xJGQhJ{%h10h(7`nCKsX*HNOIgTkq{avYh7u}wK4J^Eole$?X54L zT7$8677o(&nU%)Q&Q2BRd0|uZg7#lx5y5L(CX`rM#D`iXw0tGNt_+=Lzulsw5ANM> zRAJ-XyX*A89}juy+|kVAU{D7sDpq=-_W-V)7C<-^zAgcqa>!p}}Q( zgj6@S3?nPeQ2=5}#Up`5GfdX3q4@y>{#Zx4wMYQ02`LFaf+TFKn?WL{Pgg(6t7tD; zondRBL#TA>MGE^^9M&Xy0hVG{MCgGsKwT3@I=87B9@dfH3eg>-3BSM7b>>tM@cq!W zZ&|Fs3Q}_8;1waHOY|jfZ)$d(J4B8ZL6~ofC3SVu+O7*x!fVS`4cd3Y!OtP*{fzIv z3bC37@c;u!xB|qv6-=s{WEwnB!p#LU(j(1ivcSY7Tz|-!lgkMaz*}l*H{6@b>wv5^ z79~hIeXHPh1fK#00 zSggRxXh2M2s_ocY1lXWqXhw5jE0FM?;<$r!AK%(~D#6zfo|zE(;$j8n2M(ySa&^L0 z837wOqKEfESAURbkuXxP=@Pm# zaq0m{#SDmQ z0Kv7FLRWifvBuCBh#pAYzBU+f1_I$d>xb5-l16;O2_wL=X z?x4zBqkT(}}cWC)3zmT7)`{5GP|KR7fog=%BpteKscrwgihk2oGg zIpsTrn99WbgzkBx_+jK1^~(zK^M3&iZkMYnE+$)paJ)fPg0X0Ik$He#Zt5#)3sI!| zfmYDBUXJ|g9vu99(DajkaxyD?ld^nHI|GBb`Z^}kofEizBJmh?{R|r)FK-v3F1Py8 zG<4A8PLY000-QB{zkY_y9L9VO2RzQL0^Q>aQv>q|qxY6&W@Mxqkyxi85TynIH7_HXMfReM%+odjUwAQl@s&@itf?tQpE2}?Yjgm}S1w*GO{2&) zl&`Di%aI9ev$Z|TIRHOzN3TnsxZg?81%ZJw3#Lt? z9uFSqe0hC7f^=l&I|#^^JUg=}x}_hb+dq|+LDJi6Ka!NCV`4(Fef#z&2RQyf9`Xa; z{b_hOn|V0}aiBI}d@gZZ@gdh~7M3*haIRE@0wp~F zy&^G_EUjGUyEnTx-_*3LHxf_h!mS`*akHOrHea*?bAGO_?tQ7Qy!oJllG0IL-UEt? ziq-jexvGLqy;WboKBL}0;!s&vCnhJiE2S-WQ82C{gwKk1GtK6W8$YzRszvc@3_QKy zTvX+r;1My96J#%m(9g{>HtoXGtuyDWt+`SJ9S`mPS845#bNhOZ`rm)OuqCdXIJVeN zA3ENavl|ZMF56E^N=hCO+AF&}d1$&)2uO1-96l44_v(Qh{<#XUwH zZO7?w%N~Ay{^}Z~N^>i#5)Azfn)0fm9^@Y&(ri>`Lgd=Zawe9c-|bJ-GC>m>Ug^&Q;HdBh zzYuTP>V`(DXL{Klp=_iDSnM@%il%=_^Wwz~l~q+6QzW+d0}mFLltebSzz(s10M}sz z&+7A`bDRiy_sg8IX~{6y%?TDnrK_v!-aI`$eUoyV)BLX^eXmF)(a~rJ<5-eguqV zo0XMS{zMrqq^D)nQXcx4f zBRr-?MqW@lwrOP{P^I$j=A*WGJPmuQ2V}zoHVm>IFoXjqz-Fx|X%#$emEMCX*~wRjJ`XIi!@6fOITyu2?JQzZ%rr)rh-i{-a;*kn;tsq`*4+ z)2775eaLs1I{x#a2^6I2?sYgZ%mKZH?dm8@oWnT4Zt4tB6Va$x21pxdfldLX?$WPZ zjrCXGP9j9IB{!^~K*-p{q>ngtbLw_M>xK;*bPxo*m&^y>q5tv%=rD*nV@5yNQlRK< z_y!&T(##nr_p`9D)UFf98RCJJ^3lrq;e?cn>guPE=&;mUZQE?!K} zF!{a@y7?fEt1ymq<~!^zTA3wu7~qNRI2%u}--yQg0`fkI% zefv(4dKSOY($K_f+}|EP!gR@1jB6qQ>XH|B{htH$*!-kVh&Q=XKy(7TcD!t%3K9~>MKLqfN$KC=_M{%U*lmO zskyA9gU;60HX^ac|Ni~;ZEbBEv>{m)TI%NHFp(UlSD-t)-Yn1V!$44TwEQ z&+e0wJNj5tSXo(9v$AgWo6kg_784W8N30|wk%c%MTgj0jPThFM^2oGYF5E9voA$% zZZ948v?3}E6ZjZU2ZB;a6rIYPg$)%rfy-$MoGQxo8L`TSY+gO5s23O%WEr;f*v98| zLP8bai-%81NJgxK4OooK$E75B6_tlL5ymSZP*PE`75~lNOf8o(e(6oa{W+GR-0;+L z((v60eyVsc^td!osvHXe0fGLsgsWm=o(@uPKW9q2z8-R2>4P z^*YW*=97AN;c(*@GPeJh88iSORetcrAImFZ!^27%8c%R?s=_-jFON9e95LJV^C$Ts za6;XtrY2rYlGvGr*x1-}IIhr^9T-TBW_wD_CC#Jh7pjU;wz;oWW#U)2sO<0`cii1K zZlXNMSlOx(9I`jZ%Sl#tC(fV+@M)|!R+y+27-#Q+RI?+>6vVUEz91N7+Zqs3Yb6~ zQdB}BN5lle1nt3t2XWx6vT_GCbzEaB1qG>C)F$khMz;C7x^R*G`D0M{uA7>&&gWj7 zLTwy9b7mK&hdr_x7gPKL0vec9Tg4pQShx_#|)&UG^B1-8VKyM0Ep> zy@`(YnA07!k^CF$0^P1$TCex-ziv5las6qPR5A|_56d24i;&>C(tWhFUhm$W$(guw zhwQ5pI~UhQ#5(%Q{QUebjo+1UbmYgK9pULf)@X2e__0!FP0h88%!NUuRv1TYhw9y_ z2XZ+RPr(^Q=;)Yi^H@iLK(5_5D~~JE=Qs8BC)JRoznime5aPU!X{9ouTLidqxnc74 z8;Po}-$cH{`I?QnrR8&4=F_J?VYlMI@bT+n#@LQ8Y11<@9;BzI4+^D*Ex|26fA-VP z2=eCF%+09>y2jsdPHuX8+rZ!v|FkGIS{JYLJUgdYQ&NR&XrI?k8HXW6?2{`FnJ(Z^Z|!W^8O zqL`+AWp-n2k6;Ffx9oftgEa7Mm^y9qke{QBE}u&@qCXcjUJ?=-+ULq9D=&W^=GUZ} zr%k)Vc!!W=m>@NV!PS{7!_j~nA3lA05a{>xDH#kt1i4OW4&ZLDQYgpA$IInLKaEdF z;JE&ALoMlfTpSak4NP`jIqx8MZD3|zSG11i?<@ebK4!aJ*U-?Ty%R*72k zc^Mu~B`q!OzFD?@B;emu=INr>f3u~Bn^IF#i!o%Xs{?Up>Vn*3osDSDN>AVYlQQx_nm#zl47 zE(mybx(AfQTFS2*7*wi{#`tYQ@v=qkrI_xclkz4D? z0QoR4E}6Cg$4~j>U(j)(BfbS8YnpCLoOgOUCqK?K8U2JwUQMd|aDVdz5VM*tsQCo~ zP!7p5g1}bSJfx(gto~r&j57m14s*YN>Uz*GPc?n927joo>4v|8M&}+YWKLn%?Nk`K zrTOsH3-kEIgbO-4hw&slVJlaMi_n9_Ml=x>4Cej|zQkjtNZ}v+%9LBTe!zG3bf`$I zGV}242MOSHUFOB(eS~8d#;qA!!K=Dvd^1(~@Oc&=kL{!!Sz-rhu3eXX0ekT#pn7g$X%zjg7I+Ir=3Oc@XDo z=AlRMP9bILj*8!^7Hq>pe(w1Z9cM$vGdIO|`wm6Hrr(6G>JXeWC8%Eu;+Y>uvf znwpwkk(5-JPor4*uU6!8`G2$`QLq$ReSLk)9%O$W;xJQcq?>L#x9my3N4arh;eR4N zI$>u2)7Fq4Xd%?g=XTb-K+ z@;II_*M0bK*G{_fNBog#4>wHn598aCSP?(#KImhG?lix+7y-E#k$U&mP0>hHpV@rH zdbCyXxv)z3=5y`yl7}fsz#DyKf6gJG_Lpk%nkp-Q6bp>!M_PI#Z&eJFI7*l%*TdfD zuwTVRk@1rh(y;PUt%u}5rVqgZE`?gUbI+a!&|$aoOQu9eZwhyrrG`#&tR-ls9TmxE zg(C%b(SUBu|LP_PH4Y=Pp1(Dtj$uRm1YYg*==c2yb)JV|3Ju{QN?8|k(taS+?iU1r z8_==yR{=gMlFA=9DFTpJf1p4$J|}P3@L)mM_|wCkw^1yd1F+c5ZEV~lBadO!T_Y*d zbiq*;8}BIKn}VK=58hC&4(9Q-N|gjf0iAe&PkhjY-Ok9ymcs38Wd5MAQ23Vi4Rv7g zRh-4P=wHEM;sZF7c-w`*C5TK9R7+gDb_vsi1D_H_hzWt}ii++yVFKuO6y#*=+}PqT z!8l|oxsb=_^%PiITIvC(-<@9wO@x!R^w-{IyE|+aGjUf;T?C{3`K<@pw(e|GGcWBQ#~UiBilxt{tEy_Qq!$-znLZ0$vE;ne;&9D+16kY;Q0C{tYlOi?dBL=kMxfrP{1OOFIK{#7j4u|1j24Jt z_gf_ynH@kPy=4fqr$U$Zrap5rBiGWW_~J%GA_a~CcsTsJZCMod`;*%-1_y6R_u zAn1O86k8FMm`82!@zAFevKrvN7_tKo4D&jWa=wR;z-X(h@W;3!m_I(_Wec=ER8}dt zGlzNCxoLbe`K-T78fy*@bNOux24i z82dPY+h`wL`I5lkkdP<%jDaoaUFPQI#jnrbXUEHCXJ@|#$jM(iIUJLegikH7eJvd> z{3m37_3G6PAYzq5XFei#2s?=iOpB;`oY8se=XalwQh-If4z?lS^$;B!NgYvBpWMv{ z6V)=e!Jg6_6J$8EnZA=z^*S-Yrqp}uxdi=9Cj!PfMfvl|%HtZc7K2%n2L*)Ab_63&wDM%!?5qw3j9G{#V zK6rjr2Ys4kwEvSJ-u{DzQS?8d9u1E4Z-D-{9iQc4*e? zQc539d*|MmYS41NZLw~^r#5^wYK(@@7m-wBQ*Nes*6aFNYV#PU;;t`*rKH@YtzknmrDce`>vfpc! z$!Nmxem;N*z~k0iw+564D*OBUZ@kwSfUx-kaSKuS;%dX`o1nR9kc81qF#2A^(k|@D znO%UdX8~<0M8M8R+4b7BnuPPJ_?W!)85tQwvjrE8bX!}67)}Pj5o0`Z@#xvJXCFR( ze9zy1KTZhR3!OZ1Vk0Kw)u!~Uta6;N;H%?oS`a=+N9Th{9>8gaRK+|#R_*xU;P{(| zh)sC}2h&dF&AS0K?Hfql>Hs(23){q;lC5t^u)sNGM^JEZ@Nv=BHR8bSfwRU3z)S)i zaO$81A3*|*?&8pWqtE;#9fl+3E@hu@o^dZs`SMBEaU~5FoBd?(R(z%qE{ctf3iwGr zJ`A;qgkPZO8?u?g&Rze}a1})V$DqG|fQIG=`q(FY&dy<;0oagbn5)+Tpj5RHd}3r_ zd6^jYZunz+vc%P^0TxUi1+hl2pQyO;rbx*dUp~vttygAcX=$HSl9~37m7LRYc|Ps! z%rFtb7qtIH2IJtWkTAL{H8nLxk_Z_YQhMl8RQTwdjX1n|{_L^s1w-1W|Ew`%K*&tW z7whnOqN!`-FSb%q-AY#U2O0-Md>*)a&z|EdLij>zfCeWY{eshRB8Z0Zn3yK7SXcb{ zfh`wz2L=c0B0q_!;T}S9MLXYw-xS3bM@Mu>vH-AHMm{}hC{TiB@_<)f&=1IfDhQKRFxw&VWa#Rr?XNQ6TDX+MxX|I}^+O`ylPb5h2 zA^bMmAQg8D<*QIb@8Pxhf7tpCc&yv@eWe`@5g`&~mCR69QBhdzF>Q9w907e_Zv{>v?|vKJWXX`|1AP-}`%A*Ex>kIM4I*5-%?=pzf9B zY0sapOIUj!+-e7eWM3{ThwvK~#4XBGJKLTo2|eg-L>Zlcq$28J45%RisD`MaVqj@r zWi6DB&(ZLW?c;PHRzP8SDZJzc&^q>0-?)V;D=OB&=wHD}FnwuBZ5ep#$0|*4WHDUA zcXSaq+DuJNiCyYl*XA;Pey}-1xz8pucSdn?Z0s|${FB5pos!)Zc74O^k!_h_p2+fMhH^a6lrq6G(mwCfrAtAD_L;*T(=_Ik!SJ#i zl&+b(Z?Bg8B)h@2(c8<*61AU-s4coP0ZtdnhV3ZpV#dZP0I+C<+%2FXvU17(AET3# zfzx>mbadBHUZ6QYjUXx$uzErk4wlF5+qbzSdCU<)*?%7lZn1~&B}$Zi<`=1BNHRIX zb`HQqPZDid^v91M%dZ4o@{th^Ros3xE{+#!Y;=)W1szqJFJLp{m&|Y2mWhgr!e|p; z!;^Fz;XI;KLlC>Y$f*f(0FKSPMf|ja!b+erw~&%Pvk6jkj(XN81$UQeKe`o7Teiy2 z0#`D^7P7RnLqaA3K@!)G=VDv2r5(43i*G{bhKTr)o}TNFuSH}*DKd^_D8 z*Xf`Z2(-SSwsr$@@$y_myli{+Jg^qK6-#J4s|K4al}t0si5OEC1a}{M2L_A~DiWWa znszPU)e?uu3ZblK;jOH^k@NCNMhmurFg5kPfB3uK$tg7gzd{GjO2BZBA3v6f@bPH> z^x=*|^2#g2OLj6p+s*!>A7^^(RWf@inNB=QiVG zW6z;jxHQTmn$DFAweCnfDNeUCWc39fmu6WKmk&litHM3y%8T+kI$Ugzj`b^9asuUS4S#Z~JQ zy+6ANH_A-hOi0+dhE>W7(e3!uhn5_>wV(`WE@?<#0@M$r={1;egLCJ0G-V?cvxoYv z3e@nqmP}RlifwU#2~5fvNT|`8P^bOi@{p04*)4p!A(Rf!)6+M`2f`PeLPuHrr3giR z1MgKHdA#g~NC^zz<6B-7Y6|slk)1c0hW&LQZfe) zEET!{XrU?nJQI{39I9vLjZd9&M#n(pyu&zZ^(J`&Kw{=zG^Z#Pb53h&n@Dg%fzVuT!7h0}3jwas4Ty=jspbMGR|=bp;{T zKrU?na)l6Bs0#Lhp$%wEh>w2*r}`Z5B^F^ll(p);qu+vMR=C2OKu+bHkPKw^GNe~X zmJsZnP7ucz0$g}1J?1&^3ewS`oEdI~g!f-R!p&zoPp7xoo0@V-O%Dpa9x&UpM>&S| zM@xMk;KMQRN*$&m=xSuum^lUHc6LF51!o;wOz2bnX+#5xphv)*G^H4?CPxUu)RigU z(R=CZP)0j}SMl-Ju&`SOXbf|6D;W0L?f?%BN@({d?7>y8Jt!8`zWnv|@*uq1)pPm9 zm%Bg;9Ph|GZUtE&Qt^vxZe0Y!N!rPl|15)JBt8voSSUaj?t`wcU_=R_mp$Ysqo`JW zT~P2@Um&sP8KkD})QvG^crU_~D~R-O2cH2Zh$1^JkeM~~nxWvds+~T?hW9?E0glcG zpZ6AJ3zk42NpuRZah2bbIJsi;BbNlvHfBy}LA67FlF&Q%6uR=eI z=P0qR$OTl!j(h|=$o+DD%g&wDz;X^8JxaiQAjm6m`Uv_2vEn{3%%6sasBv1e3Re!)j7Rbzr2RTJ z27Fdk#?$k#>^Km;9`?a(fz&Tj~@JDY7cDQJQ z8{xsJsH=OxDdWaS;%kb)Y;bUpJP^cYPvE1|5}nY`ru#9suC6XTnCd;FtqTal8@~U6 zZav2)CJrDEvxJ=IWGA+sR`w-sQo&d4)WPT{h`@yeWZ$IvDHEx+bSOnVwjA*G+pl&GuM^X-^Yge(`zR7u+5YwMImtUk*DM$K=~!qc#>JqgZ8 zUY9!>5CTqhzr|H30Pig;&Gj4@*Ss|zip`d5Kf2!{q+)%hmGj(U*9)E^LPGwJAI_uv zr8ro&a#u5&@mz)X5U?h96C2BeQW*J&#C}%vmqzB*i5%o0_$utm$^Lc-0)iTK#v~lS ztstQ~p}wedZR(+M6Llg6KD#VVAe6iq`ZtC9@Nd6me8| zN(v1&m5WX5CRSEoXq&Dz?m*-Kh~Ek=P@0;XZ&!(|cL!&NOzt{XZ)FNg<71jq?;LHuAi8pQUktdO0V!d*1p0u=9XeFl z(4c|ftVpDZgO_(TmXsfcIN>_P$|gG19lQ{%+^VUszlNL|mA^|)_zu{#pb9NZHfkYG zV52|uWOn7k@XFK!R#l)Atam_{k2lyZ<01%H*d5nSTm$|gR54Lpy8lkZL0Pu9%Lbs+ z5gPdn%(uck6i-5+Q;m6bV|NHrhudwkvf)utOHr^!P$U4nZ;Jt|ZE9}*1i%vk$e-Jd=m7@WA}P5!e|~N+8cWbJ=7PTR08{xSJNx7t9|c{oj#mIM z@mqstmm5KkkIi~|dhaSL&vX-62S~x|2v~Y0>qX8~gcuglIXnWa?D60MXTDaP8H2h4eZhzSXZM04C>&pZZv{#6$p;Z&jHN_*FpP2zv*JNGj#pJ}tx-32ujT`jxhn%FRlrt-@3W&0$gRBTN&tZ+p{Cmrxrjlf z1HtBv+qY#QR&$x3wZp})Hg+O9jJe+!n1U6)8m$~w>Wy95iTd63xsW3(2N$XhuxEe& znMBlvz`W76dl!qei`PG%=T6D#5ML$mgotQ3di`RwPo3HdWU;I0{rmTZXU=e%tpz{f ziBpCkB-jDvV+CM>#jf+4MIa>ZcF4Yeei>%;pE^IL70%3*jSphgR*|1p*yFFNFM~j zP86YhN%KLXC&bsy`guIzb=oH16^DQ+W5<%yi|z!UdU}d~2BGbgcjL$SN=gdhx?6Wn za#HS*ckf06Eoy-KmX8~)s8@e>;%lz5dU^CpzNpj& zLt*mQ8dlhDFfwh^m6c%1>T({L2s5~pepU=#+=Z%c6;=qrwbjP2~ zd=w3$@-+b92#d&L8XC*M!~!I_6^w>N*AeZFJ6_n}4}wI<1-+ZA&8!nz!)2F4R;bls zLypxK1b3$&`65&-01IB=v(Sp}fAXIr))%~bLKAD=v#FKbs*Qum-0EBu2mqyw`H_ipE>O3M9n7ATO;R}uT*NXEEgtWD^ zFb@w8N7PB8*oJE$)*smd`f_lHqEE9DFgTe4pZ-Lo3!O-G7$Ch98bKR!vW4Yz*V}Y3 z%83Ius5U!eVsZ*hVMrq-c2W_dHKuQ0_u4=tr3M>`FVhLDQ7(b3Y_RPm6Y6YeY__vD z+EMCUwNhWt#8l?RJN@z+ISYW)Zf}}IyRzPCt_3-ueCvO3$H+xLrUsIN9~L9Yy^5|? zs!qMN(QAcR=;*eY%}(vt)TBp;1%D>A@hpbW=s+AR>e@bjq^4_JW}4jCle4n1t?dyW zzqLMeBtYo4iMB!EK#Xi1%Zg@nkSS=PT1f%3-Jw%lP~e``(GS_yXOSS!JDzVK2Sxzb z9V(5mW_^z8QDk~TQr6vyD2>bmos1KuxV6*a*lYR_z$Fy<{~0H>m)q0L*Ch z%{^-G5kPkpp#kdFkCt1Nn7JscCJk>vaJmmM)`Q*Wc|@ZTv*6GMKIh$<1~>?CuB=5a zViSfvmtwfmKt+(03UHFpI3Ya{3|APQdVtk&LQEUkk_p~rf8+CseV|Fu`qUTZiGLiM z$O8}o71M6OMopQXAK~aJ5#`ZDeTPvDvH~C*)lmP&NbNeD9D0xmSPNV6(=M=K)c?VH z?kxKR>By%REr|sc5?19AFcmaQ*sP-Rpu{q1-Im{86i50;35XCv%w z=|^CXCTmVHf=(I9DQ4QV$;zV0=f(|{80iC+3A$l(4Ep|7=lfkiV{ss?94t4ljmXK_i;!kp?~Q!8F_V^thWieWxR&7?Fd*jio<~H3 z_`?7BlWcGEPvLti*F(O!8bNz?zc~$JNg$g-)^D2Zxhs)+1X-c4DV&rHRx|_r8-FL_ zP;{-mCf6#gvpBIngxc-sIIUo*3YX+-oY6_q~h4VMu}qJOz8{9!Aczk4L?drd)6TUQ5Rw9s z&-nG||NPvIWrzkBB$?}KWPq|5;=1J_sEWMxk+PBX81(VXXd@8uU4@m9hY(!cWx}yP zguW?{MJhwY+4~QE^0WYX7ZG1J5kk!>r4v4p>3NyNEC_Q@cu}B#Sx!N(M+Yu_4^{@AW4BmOJgHFVnmu$6DunL0A!xHE0aezZ>~h{xAo_i z@@&$3|9AX{gb;}v$Dq6pD*CyT_WeLbVgadw*mvkwXLk2d=xmW1EQ!<9(J6OGOzNMc zAWQc#*=RY0m|aB^6BDCQ{U2^xzreoA?f8$7nDGukiq~jhYB2*?2x_4)(+R*%RKPg0 zMiDn&MhRs^eG+=;c5N^rT4ShGa<-(Qg~ur7JgrFC_^cItB-fAD27vN_@VT?B5QyiZ z!N977pGcgAMnWEihI$iuW9s%m0ICEiEe}DsQ26@wzN&0FaUDDN3t(xJY(PTtqbHn6 z1!xwOsFvi2+89y4TjT~*??}Ya8`~cW7%c-k96X;nT(dI`Za_f44EzMTRc7`NBPz&J zO<_yU$haOFx><-5XcIsO_Xgcm)AiQ&SJKmWBlG4oRZ=Pz3F-%8??-hEWqOjJMc$M@ zGp9^3JEp1{KD=?=`t`5HbzURDi?Cqa9bOTj|J&e}#5!R-%IoV#(J7M=Ih%Xp2_~Ca ziA9!r<17;P>xi&9?fR5lZzIh!R#c=~p|#1c2eCstU9su`ngK9~U*rHXRz?DUIdyef zSPfp&*{NP=w6$KCPz#+woeYf)dmifXKcTv)yL=jJ*Z*yD04UQHfP6xS-p%tt*3Bs4 zJf&{Y0w>!slAs@bvzQ|QA8!5VAx7(LKn`{#ep6c!)VDp(+`74CISz*JOqX|aC|sR2P(yN5Hi6LJxg6<=mfHlFiTC2 zIBP$^bO(#0f8#Kr@(o$aiw>esQ~DW=IB(=kXy&(AWsTvog4+r-yT& zsE1AB4*!xW)VyA6FbdUgLzeN&WEE?IgzYKe&U!rAW!^(78$|f$b+sXBqSJ!Almrapnai(kOmU)9s~vk zf$3hKn1qeyhJZ%kx;)q;W?YfRcH1LZ`1_4AemGyJAXcHd6v>##GC939)TbIC%DA`_0C@88-)i&n0ZG&{poOVsLE`@`{0g>H|0zJJc~$;EWHo|`U(u8O z*H2eWC+K%*x&2c7H`dh|U~GgK@&Z%I++lnh5(Au`_+bjQXCB&pn;eCeLwgx3NPwcu zXg6+z5{v>Z7}WbmhEy(|(0XmW^*`t?8{#7F=`iC{wL0+QG& zaPpBRmX`bwgN=vrfEHcK$;tU+diuy7t*5|uuzb5Azbq<$k(PDNWCaxgh_#(Ir_YCR0}J1=SHDOwy-RPm+9IL{Cs-+paC9x9^%M{j#)T{$-M(;B$f zJMXg7f)yPSkuD0#%EcgJfJ1YL645(Jray_T(m!eF&w0kfKs4~IMufzeP{Mcr zeCFfhQ`4@Ue-y!^A_^6W$WiS2;0!*PfA{YDF}w>cTho6n8$U!x8Uw9M-ObHT1p7})dLZnBP=r*C^*4E7^hB=%79L<-UN^5j;g3>>(MkN^M zAK@6kDAl4@@Tmy8qc4Sef~lrJ?Zp8UxDe7AeI{R#At;6jJ_9%fg@gLfv(-L8Sd0|s6LLf( znh_}}YN;nd{bQEGItZ-9tOv@rpGhV+g4_K%I{F$Z{(()NXhiO2*XD3NxX|Xj{zF8V z{GAXrZiaiI)eF20AY8}=&6Wrz8O4YO3t&=C>FKZV9_Y!!$VAnFoUAMewr&Jl19=cb ztt`A}#DpqfBY3`7kcVTDyChY*kb@dikQnTQMlP!$*KGTx0SGAq3$x@z_?XX|6(X zkxHM04w=q~lr79U6FF8~HC)5%fg?KsXToHJIKW>QpuBrquRH^orI2~uZe-7-O<7H0 z8(C{{m7hQ%uRu4THb8cLA8tIiVic2lMvag|Qz7|2(+yZ><%O3M_diW6gz5YL58OfK zZB{*1VoIw=lL{KJh{57GLq8DmlL8dn=WBw&e1^}J!GnP!&Ic*`iu7~_WO7STnrm_t zj|lykRztT$6j0y|K~9je7p#uT$&= zQc*!pG!`BvOTL&t0(GGYAq&(^pXZK!t*sXn%-=0}bGpLL6CIJy)m`Ep2VP zTfDjk2faw|+*}t~^xcspAq_BLQtY~(o}Tla=LbJOn%w!hX;S(e!+D6?nPQ@THR=V4b zdcQE*D+8ec;|y94;GkI}io(IE-Ni0trY?c|M4421d6w(E6sgt2DdNd>IeC&1e<>5U zd;>u7%Xp}#A}C$3t3Bm=9lvogZ{BQ03ct{+4TB1cPYVXCHHv^tJf#;%zCTU@?PVDYSP`-I0W?2w2Vu)AB1W30lOP05!Dhm= zQ1(r$=Szmw3M6R~j0}(*JE{;;Ss)PihPa2{8q!e&UpIljuiW#h6Z`uIT8|kT8xse> zHQRX*o;@(pkjYnAK>;h`XqlQ-Z92~7;Fi^p{>siJ`3wCTeKqFxGa247ZvVN7O0fOPj! zdN$LRg-P&MNrY*a@g2-sJ&3t!fz}piNO>;y$!ClrR33c9O&m1@Uv9yH zetwHVf8?Ue8?g=5Xg_B%2VyN5N^xeX%Rw)e6LwKfPG-A5cirBf)6TnK%^qcjWP z4M}wX^d1FB{=$`_0ePbJ&>_?W_^?QpW?3nz0+0y8XrY#HWys%yV8}o#E`@LyF(4hV zfU9@!u1`(-G9TRx^0u(P{&Fry*P zq*@1FMm^JYY#tG<0Px(3*Aj&Kf!LIo1^7kM?)q~SVIHG|76FxKcsQH&5S*J}(g6V3H__X-z-Nc@v< z@)}?kVlffKlBxi*^RYKZ^?HzAHf7uJl79k{+{6OTY2f{gNq43VH$Vd8K9K|!$^d}8>p)0BMk0KnjTw7@#7-nlH8CkN_eSL+xfWup0tnQ_ z$I-&^IT{@w*VfFzcytJ>u8do^Lh&!@`0dWONh9pQ=g3x0C*XvIlltZ!80Qy61d85P zZt#w;-n@xy$OT+QQbRnbVr2BeHpYURNTE_<)GBm7fwM>HI|2M){5k z0YYxLfs$5rq|EQl{gWirW^?uIpe-OZj}{UzSdiu&PI&LQ8FQA`qsZ(BQbKcYM7j(> zHLl^nl1dS+lPCAXXJZs#ChQnlb_7Huv1!!3hH5iH+^^WJXowhH3p!N{nQF}r*Uxt$ zst+`h_X3uMj^l*WM|Vd1Z@uf2Y*N$G(8SIK35EKH27N>7$P;K-LBIHzwX_~XE=LqS=oPgT))tsC)ZVLbBjgFq&5SEU-hI*H!H;ObJYJjkYJ8BTpdbej zx*GLf0k}nkO9!D`(syP73i>!Vml@Qu4DwLW7m(8K#M8C5P+8&zoU0R?r<7$Gp5b$J zbB$uve+VLG>y90YRU*gVI!bFsgAXr21Y;oqwJ&;8`7vccIEwn#Mbcz@L|%8O~e4L`P~@yIe@V1Sy=SU6>qekaR5+3 zg^)+Dhm)cTRs7f?1q}@wfhG`uVAbl?L@$p{(JaVja?L9rimru@&O0R`KO%9wCOZ=9 zVgwVIU%F+a7?r-^K%Y>JbUh$|4n3yUP*PGtm{wY$iXmWtCtr_jUWvq$Rkc0=U=HJHR8u2u@xP*;!Ls`-#30yDD5$-LdjhTm)h-p}SV%Y`klRDu zfO6+$P_h;{@f+g&-$9ezDmQOe%y%Nfu_dftWj&YQ03jeWVwxUuP`CmrIOl(A8_}e5 zDfH=9h_gr;iMY($($fC=S85FtX|X+TAT9L(Dt6es?qGFK50)8O);_>3cviSCI5yaf z={R#%Y%ulX$H8{cLP7YhqM`^ZcIVL}ALQwJ1Bj^juWRR}q8cR-x#j*$KE%lQpq){AY{ ze|DZj&!e{xkbNmSf9~9;-rf~RNrHldUze9tfhpzU;n@$|4r6UBM?W7xOM&sk4+z-N z_lKE409md!ol|)-p(tA*1!=Dv_Sz1Tfmx*kI;}_)z+|JYOa^|Al&s?flZsyq%K0L4 zX$1u_vEXq});D~qxo31(US0;0xvrvzBIe8BKrRip{H)J%gTKZ0fGE=!$CwS8jqnj0 zZNQ!&(q2JVenXaohwtW-?Rr$z0_^6Br6(IcPPZvho~PV>BSqHot-P08*(VOO&le*$ z1->yd5fm2^=vKV1U!icyq+HObyGzU}MQppZSMZIS5nP#%x!hBhntosA7*5X^)0Pt( z*WWfh{Ulr4mN7dvE@x_X&-G&&aTb!5lZ&$Z8;(u>)FFNA8B8i>mA3ruU{A4STUM*Z z?5E|@43{Wg8K7%cFCxjtof$0=2o|V*IH2>Qc+!Sb$6k|{5IOY=h5al)L2syg1KAdt z(TV`Zk7Mc8*FwX4nKwH73Ik5cY;&H}#dzy4_liF@H&3+B&$e4--MWC5R(c4UGOv}$ zC-YWhq^9-;=Ffa_``(^xbe-fdF;Yskbt5j5Ihh_MpVXC(=9I3 zLxtU$r^dQUFc*66gzup+hwfm*O4{Ps3;=j4d{iUbpGD+xUuMSW0>i;~f zQ*e4+E&ZO0jkv5es z1bw@zlhd^LB=wTTWKt~|=n-Nk4TD447zX(JTeBHI3IvLacEbnA5D}WT#t%d{0`#l_ z3nTdHz(BRBIxA*aOX0~Z(G<0}*`D%b_Kz08#s>9Ax6L2s|9HFWpkh$DX{VSEm~f}I zD;;O7f$k4z=1&Fa@M*Sul-pss_t6!9(Kh=hh~1uobjeJ+8IF#kNXQ%W8!%$dzJmXW z0e=jn{iYx#=v&&cUy?>#=cnmsX0FJ;6$q_BfQa6Sv6=6$A4L%j6p`xiT{<8CX@t!` z$|DWAQ5j}y41bWaH95tiHzdDJ;9DQ}KL^cS}=-9Q|kiOrEXm6RBmIVSBBVF_m zVhrVvoVy}YXxuR=?}vdF&@`AsNU(AM^H1cHUVeXop0l6ZzGH4e)CK1OZL15DmtZE- zfDpA}(yVL^>#~uY_Sr<2Z%rGsrknKvLT_ zIOl!6wu?$tgwi_EQO~h2%G&2_Dmqp>eT$Z!RX~y=ThpGAKYM=mGkrdTU*5qDVU^MJ zdiMMDF|)y#q3F)!1qRQ&xrw9!W!EYH%Tn!kCd14Sl}00CrOs(=s*cIb)B<@|gI+|- zTN}twGfY_$Tys1$4AR~{v}RK59Wk-6NYr!qLZ=iaC28m!GU$pX$k*RS^dWa20Gz2< znm;7}**0gQOn*)df_}@CBd^zeb$mJ1r|cR_Hs$4~EJaj>Rib&L)H^XyhCg`yAlUpy zWMexs_9izzb%y$WVnBc1QC`YC@^cVP-_wT{HKYvSt=0P9YvuNaO=a0X%XUzpkpDB| z63cK{*>4ZqXGpbW?E!jS;jURg&GipZFLr0riH$G2cPp7$>o}a%BkVBNwb~*YH4OPb z-(UEKJSR->`-`QeKst3S!=9k9w(}bfB6WZJAenRZ7CUr0#-+(budOVeAM9_I{a55(WrDC~F+!;!@nZ+bd& zD7`rqVV%e3>+;E;a!KRr>(VnFH}s#2>SXEg&0_iML28Jct%+nCumfOy60;OsrfS1{ znhtcrUDq1`YcM+6o96Qw)B}y}NZ1F^6O>KS$Wm|5s+hk9nty&#sNOXE! zx7{+D_bqBy9~c7_1gb5~-|Z!)a3mAS<`sM&uAO-2meH*YnA}+ys%Sl|uE&hzKRt69 z^bQW6+y2Lq@L6Q{ZP#@gN-N=$RXew@AH>DCHye~WPAAulLc=~0I&%3CqS9J8)I)X0 z889LW)rAR=QJP{rM>cRfPz1IWJ>IO+dgz<}7?af!@gIB9V_9q{q6K;)p>!aILHp{Z z9w?#CiWPGabtsQnl|)f@nL?ydds%mAW5-Knv_{2fV+Oc}NSE+_oMX5`RFgP|s_ zCfW}bi+y0;8;IxeSRV9a*2Q_cxxE3&h7F$j_V_U5h?3KTFG$DFx$X;d+rw`Qw^(G5 z^&&^w+uM7pAtR42&=#aiJgoZwr}R&S{RNS39kJoz`*4c)3`mhe{O8)2F-kO^$s)5O zep+I@Tu4^^{X0R-sX32IEp(Ol?PQedop7807eVeg8(Zyj17F2C*mpdiK=dgu@mS`3 zKOmqF9ZxYGB?m<#5grplw1|?(Q#A!hOPbNMxXxJV!l}xBXY84rw!tT#MFs9ueUeKQ zKnu1$JC2{-qWRA-hwL!%cQY=o`==kEvpyE`IBA4VIpyUdg`sZ~kSv=4N6PN>*-ImJ zzf;%xy$ESP-{PX*YLSsQ>V1Js`&3wM#Is{Z9mMb7z`6_+FbeftGCXM`nuL($HpNQ^&n|n9I;}J@H3tgmMfw) z(FXYWWIE8pUd$1zM`DP1H-jGE1WwY@)0cIQa>NhK|L~m$!J2aklMy&0*K!m?N;utf zxpTs4?wPXlVFX<0EZr$x6!mgk#IG1FU!qVI;gLEt{_`822-xW3Q~jFxhYfgt?^*uC z>(;LQXZu#=&kf|8VZy@i-P=OWt}C2#L)iSx84?$e!ws3(vU&?7weU$NTP+KzvpYPQ zgyFr{yB5S7GMvn{PsS|r9SUX^77f_`buBIN2>D*+Rb?5}j4d!dIpfX?U=+K3arD<%|rkb(BOp?36n^%K*yw*}hei1s}bts^d) z%90cJV4}q9>*{n=w2|UBk^$=I3+nnV>CGcE2^L?nTM;ZA_9HV>up<|CN7dweWA=!3)ez=QMa|EC!ip<5 z1;Le0^gi+JN1atY*_O~8oNvoLK`N!3onHc{i$(4CfvxL5q=(*NbPI35BN(~dv-eDE z4+*m(%ql7;^Cl&A9livdx!l4}Wn*JQ9XFW(dAtxySit@JYffx-?x4{BS*rOB-Hdzf z@~1<0pKG$*cRnC6Z~))BS~G8q4kkjXBH*)5u3l2!_q3$GIQ`jJvY}@?*1A@qdc&om zs^kj5<63kkzJx}V1NXHp?v{PIb?j|naa5pQ?2%nB)!T87>lzxKqAN~6iFon+k`VE7 z(XM(M6^0@SGHAecI>R*%$%ZbfcC5~d9>@KW_Po{Xz7i3`!xk^m+Qbo;$6T^KK)KIW z&GUhj%EqfUK)21H)L9vJCKJ;OCrF%t%=o zQ%EH}r%${%C_Po}n~L#0;}-1F()z#-^XEEP=k`HIC^jU85K_WOs|2E^%A88;6KGV4 z!i5M3$;q5nGPs;Xp1>bOL`CBg5|mI|n6iU+*f}gdHC3H#9uoQVp-sz6J^PNO34m#; zoC6W}V|^Q`MOz*NJJGdlQpGNp!nmk`@v!;abIlDXB!p_`!dch|C}U(S0+=;3HO>6=9i5R{9p`Lor;?8Q4qa-;GnV-zGG(5FRaxJ@!BJslrNGA~O3}C85 zJ@SbtSgN)C_6BGuGKG*WW|zz8Z7b?4OaCznf($;LVkLb4%nzq`cJL%ev=@hR{OzzyZs}T-3264xsu$eB->oEl{teFoHb4Es0B2WN+ zdl-TxvkMnA`57?S9bLOSq*fi=!BLzPlC~Zat)C1I4J$^g@Z%hT| zB(i&V?2{+5p`oGugM;@P2cT?82iAtn;t9eCGe{90AWlGGPBhrr(`%pTqppjD9{6Z8 z=ni5N5{@4`<`45nOSSBaZO(N2T3|_t#v&2kM9$9|K=!~WWTKdIeGvsW8W}y69yGw) zNYnAfSKRQn)6MB{G69&b3B`pj2?vSxTzIxCyE8AYU6B06iMn zu!DISsCXEt4&U0jM)}AQsIcw=uusB0e`h@cozfwT$=;X4$2n-KL7gi9c!95qW}z`J zU+Mzb?(gkY5oQdi?D4PcIfkbN*NIm1u~5|OUM$%*^@dX_9B|>&(_54UJqitHCz4$2 z5$;d<`me>XZJ8}quJJ86n&^r!XY>WKONbnlVCt*U)d95$JAPiyJH6KUU43JtImlg- zxF912cT@#r3<(q2Va}>5b zCNEEqtk3Z9{Z6sc@^W>uL@6n#nvTYe&s9pnc?6>(GUV%?&BfKgsW1biVXi%j*lVcr zXY-G=wziJ_yo@Pbee*5oH`|5(2;C(Qn5B-ituFoj{g}z;h#>2GzRUObBHxxqKSk$o zaC$~XUe#nE6x4NO$^jT$hJd8dk}8;P(p3QQ#BBaUXkz-q*7o=HsiHR$oB)Y#zzLe8 zEPr;~E*OG5mc@QsXm0kBkQ6pE0T490xaZ6}x243-jToSDBXBEW@&S;mYoO3L<%sl? zyXeE6$VVpc002|NekF6xA^uKFPsbUHo0r@zB=llli}WEPjpGqbE$iO*JNk4}_4zw~ zk)mn@5N;#lN#~+sed0>LzX;o0aO+sezyI=|U);v`J*N8e;vEh$coA1lIX|81tBe7S z2wgUPj{WoB|NiVLRJ8pkdZwT-u>bL)(#5ujf0IHsTBTlpjz)g}{`2Y@KXb8_pYD=B zFUuz)YwSbdRreup_YdqIVb{4Cw)j@KW2~uhHo0z|Azk~v}GGUj}HI)0-QFxl84@sX%%k-ao z@b3lQu>S8UQdwg|PT>naB`F8=iVY;E$V~fLqUjjmm5 zz@XZnfA#k#{i_B0?b9HjkxTDI8sG7Ic}#R5{dmXj3#P&O|949!|5*YHv50_tZ zSUsMG20Z`1kmG;WdrQZ;y&E}d19^`Hg~o0AvO&3tlXhhsu6~9q#>ZgC>8HCax6=;a zjkq6Q!FM85H<^>+>BXdS4d^o=t4A-qh;U|_1vmccx!nIOJ9*vBV_@~Yz9aVplsfM@ z&#)xnf2&?tA9dJacH-qeq1Jw?rD-{NM_)g>6R~q>Y~zm7oJ@_cR8+6?(~a^m+OM%NoF8=pZq~HiS-;Cv8GP-j`@W2Q0 zF^62WIv9gh# zt5YnUqr^-0ad}Y7 zgBF2Dq8xtuMZQbcP*6h$wogn8y&1#n{~Yc+maNN5-_RHqJ&NPi7PQ(IFpRF2wICdvZ=+bENe?SdWPs(G3e9^+A^ZE>jEl z6+x5BM|H=Xa(T*2?{XaQNjvO^@Tjw9_kvG-CI5eR?Tho;YOasGyu{Ka^PbE5(XM&3 z*chCO)SBlDKaj!r|9n;FD}rh}dfy6vw(GCSoY8u$h+SbT91GYVOP?+f-b;-xY5=RlPECh3neAa8bC@9}?Dn3d~EQ^MId zlXX#6ORxR2Jn#-W%?mv^1NZ;A=k)VOro^<0_&+z#{czu^pq3ehgAkXNb{wMZ(V@Qq z6h75p$$xCVOu@v`Qm*@)?1eW*o*h|w;=`Dev!5|{O#_<(&a_qflWL zvcZCyJ#UD~Gko;-J#SQ4Qu^l&_~};tkJomS3RjVb&@8WiU|?FAqv%~xK0AM|*8M0D z)JU?FAoR@!Q)K+c>1`1|k;QLDD#sUi1Y$;2lpCZRAqV=Pm%sF0(x2>Ui46}0#b_g7 z4Ac>SNKe361ub9|C44JaZoDaXis@xLYtX?NUxA`8^v`0G^*Ur83UX|gx~%ouKm|V5 zYGk2NGRWNe>$nsaft#?wsOQsxNao_w(=||a=@*GG9fO8Ik8qV7e;a0e0#J6&x#s&E zWY{I-X-6&|$DO@;r>d!GS8(P!R4oVxIJ0;tWO!oZ^$tq@;Kj zEo3QoR4nFOs&LfLmnqpFPe(cV>uR)IbKGC5WL=iNLuB~baTT?=P{&TP@HA0b9e3P^ z5>`dibN81t3_EY$)6lPMdxFA^7DQOAc{7JNBfVK*N0XUPcGqO|wj5!qMVvGN98nI= zRu`I$A20^$$9#Npold-A|G$hGL%^?HD5Hivm83~zSTh)C4h7F<_MGUwB>{_MR$XKk z_hGNSqvOdYp3dBS*!H*;Vq5&Jkbj!~sn+YqRP5^;_Y%va=DXqMyPI-fw0w31hFiW- zRc<=^>kdyp(7RU1c3^V}T{7*tkvp2@9bOy#i|=#4r=KSlRI`eSYlCUPcCSYC3xGlS zVrw0{FhXM3EcR>DC~R1BeF6{V8a94AhR328lMserl+~oZI zXFq#YOK#5U?6!@!$aFCjJaYJk%#qu3(NDWQq7F4y2JvPz2c$m0?YiCVidx&)Z|d}L zN=l-uJD~SgoQ1rFDuvsUFqo!C48%8x3msudbWo>|6bfp zU&>E)LU-SZ*LUu9llvCN^c0VYfBCwQUuMNE65z|KYx`l}k8*Hu(%kKm_t{x|bEg*L zF`Y=i&k4n3~g>=vyh){<<60+$uX&t&S$H$w=p7Ha-3^ zQve2F`@h_X7vpbd{;D?s)9TTKXA>5)Gq7Xy(K^t(wYx$eyjitqOIoI4<4S4m^w7w| zG-Y4uq3>6G*Y@XR#S1@-)B?`iuznR;?4H6wk` zGZ8i$uU%aCe;a!RFXsUZ?1?- z@eBWR7#v>ekt`pxfa4$pIvw;>=WMW`Vg?xT^pTc;L7GKdj5DX`uN5`fn(?g?d4DW= zubNFfE+Dh@o2zZFl1Xa3DNWoWipZ32-xPISzHC*fQMG%pqgLI?E<+=6eoILJ8{O%t z+I#+Yxy5}7uIwhxTgmTVxhwMflhmF&}E z-oi`VjNWF`6|E(F)D&v&Wpodh_1@O7QWG|cx)4(QV)NdW0ptqo{!aHiR2NftF0U0% z>n(CRovqU^EU_x5)h}}Px|zSuCbfMo8VG~d6!Gc3I`9{Tz&l@={?0o*13=j+J(4(q zuU*UGk{H(gM+=~^cXIH{5`Bsrl(oH~%X*dkk_YQ_Xw4oJE88*naqK-_YmLjeEwK#d zbhaga@{Yl_ZN@yC_wMtf6*0OZIHaqq5WnKtR)#f4{E%As-2?Pfev#btpFf^dzhXrO zTi~ng=+x$zE2tQVEZBCi&3`b3!r+Z{mX2R!o+({(iod4f;!VX^28)wN&3x!^1^Feu zd(-c<_s)JZ(5^mxpOS)MTYTH(!&v9L)!+8&hWMK)c6M4#od2-<*S)@y zad0f;GA>?h98XLAWC;b;E+uLaKMq&njXRDxSh@<9?Yq@Gxc1)YVLu>peka!a`KtK& z>W&rXuiX99CG^}!%@xlk3ty_*ZDlFyy4unGANMGzX_!1M^4|O;*{H}=r;p*MW73Y5 z6kI<4@C{i0l*m$d2JJt)b`mN z5TPorA?HJP{LqVck3ulHoCoU`m=_b z4V#Z4i)dn-<)&tnMLWnfRel@Vab9L+N(#?{cFAwL3TnO`HEgcw=Z@`ZXiMC@Jl0QV z)4>#ZVaDcO>UYhcROfyaOB1|(4O`uU+uU+3s=HJGFGMcMZ%+cd)=$_d@Q=q)8H{je z(^Kx+PTcDqUUnqP+hskQc?@1y)Bpe3G zQ^jRMNBhbDR*QvvS~2C~I@r8*FUo!CUg)pTp){`;!XE z%KJus&G#wgV}jLx5l%+2>}o!$<*=jL)~uA(Tch(bISdqCq* zgUGRH^Zv}+sb5}6iDaa4U5Zhayza|06p=jU&8-eX1S!|9%(XZN6OJM%H66Bmhi*M)BE&Ea`o zz4u_wg>7W7x>;YGTw3~V+2mohx?3F27-7n->qSJ5__+(#4=ek3na)-WnXO?yVqwTo zy(%TerZCER=R8*aupxq5%xJ)%qt36`Kg5xO z;z?O%%I)J)R`?if{G<~sA}&~$qo-H8tVwEf<=QKIskHMj=(ay`GvPkL8a2KcZ(Sx|KuQQ5>aT4 zpo7X+-|t)FP{2jz0!oTc_CD4%0aowv(D{`aAD-7%h$VRegM-9y)8{j?K2uLMBQ%6> z(k-Gm_;7%}m0RH=Gk4eb!+s4TP1~ote(wCV7*Q6tQCaGxx%vmHQVL5?h?goqd|l1uj_AT0-8gF&Om(JhjyP~KL7XV)%G7neNHg;+VHc56i~ zG)xY9-nzZYUzde~YPIc!*u(8{>4uTRpC9@j+Q^hpSdSo)!fnxb_R-l@0*v0S;_hj0*QD_$ArtaRPi`ap$?i;c578=wj&i8XiQ*zO(f z7bvy_Pstv4)L-+y?!Eur50j7T_G;wV?IZii&DxqZL#zD``ytOA&4*7N0PN89wPTOu zrv~ievtx8J&KKf@RU~6PY8AQ4-Gw}J3FFYoZiYg{K>ZDlGCY0LM(xbzK1-^ z>Y4U*-tDuUkm~kn?XfN6S32-S)yCE~_Qi{Fk8Z+qLTI*ahkX>*k%R z?ey4D%NO@`@>NWDqB$vEi8p<}8P4N*H#_Mj>n_0?ttWdj&G_(~@W=DIsGciddWRUJ z(b9m8)Czv3M-KaI(OFsm{5dHxu;Jsy=ZA*?a^Li%>w774HRAqY%(iP4Pxfi+@ancM_W*{|?Fls=MK0oWz$@Q^13h*M(+?1S3!4)q= z4T^^L3^&~C5ZqRHk6HU7hj_B>Hcs0CdC#-&G}X5#?@MH4WUQ;IdQ4*XFezQ2K6e`j zyqmQao+0XAY1S(@U}AkJBSXkux2-tc*ghAzUs^`S0P5;Bp@&S&?&mQ+b7rlBGw@k7 z{3fblByEOSHG;;6_Fr^#kG)`8=cDT+Z1gcoR*#;7ir&ZiRLrg50!`Z?V$dUo{@{B2 zEjG64eeXJC{r(?U-vN*H{=Scfk&&6Q_sq;*6=h~;gk+ZN?a5BI2-&L$$$ZGp$lfxt z9xF2;D=XxGKXv;4&iOyDUg*4DN1xAo-uHE1_jSG5iY7!HHHk7CN!#8o?ZP_G&Bmm4 zA-Dhg>3D^0V3x+N9Md=0Kcu+rc3H%MOwpv3p8L4+Ovo4H-7#kRrNhoQ>2&y*)$A%D zpPkonhpIi0!-l7(t|~g&7(`bP0-MO4 zGn5l!^pLCbck#&bu1&-u@6~8~mDgyBIf%_X0?CJ(g&5^)(5v;v3;SPS!e3)x><8VQg2d3yTSR$5U0 zepqmPQ}pJG&sZ4E(Y6whzfc02pmd)fcS+!mBBU_PNc6=IAN-E6#r_}msG#wNlT+G* z(w=#r^SAMat}X6Afj`*CP|r1GxK{T?0Qo7Yq~<1rZL!#^M+U(*-I@;{=ECu}y|aUD z^zhD|=fEzpI46rYGR#H&D3&|_)UmR=5P5ixlZ#!`%IEb5Ht*AisEQ^XZH;bC<|}vK z>MP9*utMDx~o3OF06^ z-zJCXYsUlrs3L59wE}89Z-!O4cBEwF1MF6HwhJ1K^kT@Yth5dkuE#9w|J2q|e*-8o zXJ_vQ(Uvp~OoB+=U>-|Gg4Lxv+P%@N>(bh}BSnO}*Jw4==83C!oX{bw+WiUu$)N_4 zg(iK#HUwsmfNJvU-qDFbzb5bR2mJFT>kkx6`2w>4-5)nDNbh8xcP58Iltd% zykR@`{?d@qBS0+4aY=3PS?Siq zk5StRq-Rv>BfUttdsA}YccOW*XqpEk(h^_AVPD^c&}nJO5+=Y3z=V?<{C1TFaGOMu z$1#(WQ+%tjF4DGB?R#}}&QE(*lr8ApkKm#=uj=#r_pW+4P_z97WM--HF0?DfP&cdR zjuua0XWV#V|o?b4N;c7`wGJ+^OVShs(t%S@@c|LdOX=rHUm=F>68B{Enf`p&n}Qf_p_1^7JN1aMMGd_jwef?U4> z6cMh-_my$2O{gOa-Z1?tRJ>yT=ALx1j-#?6?t*y4gU zL)Z6}?|L^mrpV(*!@luu)XBcW|CG-xqLyRT^&OXM;`3Ga+cls;=he3im^J|9G=$xe zau&f%PE8u)(IIQ<3eoXyosqq-f7VGq=Ve#=p?;owC?lsjmesoL7O87VwT9=n)nVc_ z9X0RRC*M+3k5bpf5)_jzL$W>iV`V6~%Jg4@6oie1rf2Xy0IN>CvseNjd^#(J$3JK5 z>elD!59L}-uO*3lErc+4^5I|Ri88M-PejV9X7saF9vu_P0R02nf^_o0bKq3E-Ejc| ziLkCs4|FV%aQ}&-uCaGH9C=4)EXWAo)gv|HEjkySS~qwh{O8LR(azrJD&-M$HKrqI zmi+Rt`=68&zum2`juZnUz-8#FZ|><)b8IQ|Ekip*;ado{-1HkuzPMFi6E40U97&_m zzE`&$bv2$%M&6B?la2aNl$(`grH+?df;x`$xl-SF)N<+I;NAP$nH=+7KTgMM%jm@V zB&K#|^aPwhW6s+I`A&~Hyfy75yMD@5eVuN*@ozdPacpnGD*^RM;YqbO%$6Dw!!P6W zHBR>2InzG$9CNA4wvt=9f?Hquo-q&(zL!P8xC!QXYR1sCkufHj+Fel)jqz@^ zv5^r?ztp}VOXIAYH>kUrm+7mJnLZuVd7*+^CN%q*le}b3$gdsRAC%qQ-4V6(ruxD+ zF7gQpD!VUF*A93SN7L}uSYf@jm>FN)RxLe=FQehk68-y3(bzN7MFEQ!;%|L)dy6Ta za_`-}*p7gu=#yZ*{$;&>+n5INTfe>y+s=p(?}T{LD)Oo_E=6xj#-z)8dNUEMOnB<; zPMPUbc%~$eqlSByNp%m*Z76N1*ofQ1JVkMd*zQWJRwI!bi;vOo`>)SCd4B=0>0xw2 zL7CnInzRr{>y=6A>1~R`7sdEh9Agco)p#`vh)JWrOKV9?dcmE;=l@aPAW9Uqn=yYjXIwEh)BLTE3i~WGa=xL>q2&>0%iT z1!=9D*b;G6Yl-bq3f%*2eM93j^y6g-3)6eNQ|SuKdIknrAZ;}InNRFr(+oc%s=g{z zhrnkt+C{t(7bc}%cz6@mM2l^BhRLzRRvu{=%H7~DuV9j3&QIf_$+s_P)%x<8d zMv6(@{?W;h8-@7*xbMdv6}_=h8DENh4!F~oO`81JD{m(nuuU2^lL>Q`hlMC4@h=6f zR@8YKGwuH5MgN2FDHXI38NqN+0l@6j@Yxfytk2wva7AL}g-LamOwAfz`K^ zxK^K4OKM!im_3pPUL@MHQdG19P0^ozvRWu1?Zffs*Zuuks#W!w=Q?_|xD~+#3Iu24 z5@_6p34xA6PB<24tMno-+$Sj$!VygA_2KB4P4P&VS5qSbVMjfrXinn%T3~o;?I!Nw zOh$keG#D ztcb`+Q(J<1aBE}^kZV-|aANo5L22S;ALvkG3uFC%x|CJGq4$ zpGOB2A8H9IQ>`v|XM8Yb*5!V|MZs|(E!J?I1BV_zbeln=UcK6$qgHW!;QnoSc}JrJ zkZ!DhLi6{x{`0*Wn~WX2I2k3-ZpmAcQ7WvmaAdBy)R1s9ekP7;Us+$zuB=R84+BMl zrV3k#-0DC7g6_@k;bAhZp&?2$`Xv+0NDI;{&Bx!)Pag{$O&IX8&h7ldj0ru<7De~@ z^l3=PolN$#4~{+$jJNs=h}3c@%l{o!+UumGvKXS*o%QG!modYCy41XL4ebcvB3FA6 z##X<*M~~l09=>pbg_wEBl(D?sLjH772v(++XF&pJw9q0Jh=IwlVYc{p;r;V{KOPHx zR+-C701uX6)E31W+o_FZSvZnvo(o7$9TrB3q*YNkAq5QDsW3ISMCl0c zv+AK5DV^nIm=cs&ghfOk2C%WSn|2UO=qA2JyyB7!69L?j#W7db*y^J+(*I7|;T61> z@L!^7uHq?QybMPGiZzT8C}sLaMs=^#Ec9JmT?a--+o9plfjU=-ygN-C)QG_oKyqvB zGTv&p-bgt^TD%4EIDe5!FQ0(85+fq@=LA_!;zLWf$kPpx)4sBP$=3R!KF+=Catj|# zs`%BHevS@Lb!le)Uj7}Grur0Zh8JS_MfNs zPtYIdZm96MvpW_k%NqN-zWx^%3KV*FpcMyMQgS^{`)At;C|-J58OX|>k%7)b#oVEp zdWZkMX|%+v-yy*G_*1`*e%+#b@dOnF6gL_qxou$odEmV_v=YhlOpKHiau(_D!TA8^!Jw8pGMBB z3HVrG_*LP)Gkgx)*O`k8!=v{(#{0@jUkd{>d~l*>g$IhW)wuW|jOFGG+qQC|>7nGd zG9~F3W)jg*QMaaMMdlI`THwKdfR@o?py=0C{{M45o_V<(7Itab)HVIdM4Tp^Cco9( z9)pSi@|_aHC{ttyP{pgg4h29{_s8xo+WGeJgQ{vo=Wqydi3bQqemg2)kLCZ!PhFOk=J-BK(?o^e<$mq?{%|g-C`bg z#!}RjB<8SB$W7gAhj-CCccD*@!Z1S-p(ULS%U;TH^HXQnV!@(@JVL`i?@(;7qT+5o zH}SXy$^D3O>Vxilk6r?NA|hu9*1+boVR#Reb3;{hRw8kxT(<`G%#9)eni&f}xNDtZ# zCQeQyX81XJw0u54TO1|(&8!fCt=Sf;G%{TuPoyvsZ^on!mDuhg4a9d1~J@k|_CmUpE zWZX|*W)VH?*zZojDBbB}Oc_y;aV(vVUaii=vHm-&o$7W|Exte3q4V^wrKTiy`e}sZHih|G6ds z43Ge<@}(jF&t8fSp7@^jJJ=u!F6^9ZHI0^Iyuld#s&KcBd`c;sBulsb@|DXLZg#Y! z=M(wZ)vmcqagR2;nW?C%3W$k?E+f!tq~LJ@sd4@Q7bc|1*nZ=9r;04GF5lN@MT#3f zP9ERPHk#b&T907Z-f4*`|FO5{1U)IR;ia$|-w4RH-m$DVgt{g@hN9dJ?WR{Po)7y4 z#iY6~^n25}U&7{q;Zk}}&R(`|5@s06H#7O?KIi;Ba-UKhR&hX<4?&AN`Og9SxJ+raqWKH2bX7__ssEiA>jZDL95*G@>g z^uQClXnu0U%qYF8s};$BM=IE2a0MNffMw=25s{hL`q1C=_P;MSW%)*a@V5?kle<_J z$Hg|J;jN;Ro-Y~>SLt>#?w?5XrAjN>ibHs!#YwU#f>V|c>y8y~%RA%OFCQQ1d*0za z-R6ZhZ+{zM&xRW2MmVn^1fnE0ImW^e%F||1X)7(T_Vqmd+2D;xfk75?dIl+C9MICa zQEiGNrtMmOtp^LtbjCl|r1zEN-u%quo2b$Dse8W`Jo^x{*Z=nrFM1 zc~hgRv-mFi$$IXQL?Pr3v3||rVSswt*3|m%L;rsx64G(?(R+}h3t6)<5H!GRowF4x zzLP8F{FBW0G+fu?u-N!b@jg9L58sTDQAVw*8XbpnlJjY_{QM~no({{<{mg<6*Dq63 zztQHL>ZX=qE;^Cb3!97wikl$}g2zxZ7J*EgS|3M1^+8^6=d<&!dz{zGM4+!h^jy=0X&3a(9_Qnl_F}C*!Up(TK)cJCKy&? zKm&veRe0PV_UHZI zFrj~%q^+DdhyKBfO-GEbpE6+M$RmB9zPixA=q5i71o5X&aGyh0@3rbBp4E+whX}-F(p!`b4$Zc1lA+|v z+UY<%M3#JX3cKALvFEw_Ma*0c8`#kx4F z*0{QuRbb|m>hIIFNcZq0a9hsDJBI@9Ig650EDYfwm9J(d7~w7g`cqAE=A(JapEtky z%cjzOXLGlR(enC75v=&iszd3aFH>|>()iabDu}Ey+~uv&#jN131kW{X9G`{Av;~+bMIWW}mO-k>C41Ka|fz)|MOk`5`+dDJdyf zkYQX5Z+&EM53)*9FtBUy{4USzgPU$nLqi5=fOqZj88<#-K+J-&-%_0J{Q*;+{|>5q z^q)b!#9kb0$WGQdJmQlpl|3YsDvd}TVv7=NDCzjr!Oo;xGrM18xiu5yP2nN3Th(tS*9Q8PRBAt90>6>NTXMC}!BoezGXh+lUW|9)Kern$Dz z)S$0i_rhRX8Rco$czrA_=`Ejei60q#)HQrJkCS-3H(k=@qy+^D#qta{DCflcXr$V{)EVKcJfC0QF7VmpSG_}0$s=1(L{Z6eQjRGI z%|@V!J-BkMsMa~?2t=Dd&CK+JJrYY|yBskbi>=kSpp;QiB|nuk4;I3XVA!b&Q2pY& zTYmzTf4;g!r8z&-hrcXPM1+prXBpoyb$6X9yxRM|;@ZyeKJEOs7G~KjxL@y>WnyUI zze;R(GFx=G%+|KH#tl~lS_Ts&aL^kc`b*2hCTPH|9E*P28Dnviw!Kx3c*oR5?RQ1&jd4g{xoqz09N-|RR+W@1DuuoI98(abnMVd$ z2lT84flHSC)Uqc_7$cmNJ%C5G0T;-^vm_}?v^GSh;Ti7JE;p?oozGQYd`I;|<0x2J zWrA?ymF)ilCTrsVBtE@oG218yg@lGjr&4aTM9w?BdPoP`5E|_-U#@NX^p(AvD<6X2 zv(oVv_JIj4xPD*0m_W=2Vs2kRY8K7_4P#?pwQs09B%x;yy=W!U85xazd@hWhC%ad1 zrsBDU*lb(L6eVb*P{do9WM0(b#44#YBhnfY#272mt@b^eXc~#!a*U*t@-jYRW!$Fc z6S;#?zBWb0ZpOv^J8WH$7$>%<9_Mh%nvYwLw-`w5E6IHw9oc4?+#p+W*TDOXjOUsnUVZ=Z1fFv~S5IMK zNjmEIn_rU36^YC3sx3&P1Vf&7h$%p9kK^})^Q+t znDd2aR4H+8c^*##)@g>bA0KpI%9!iFIw$gZUPx#Y6mfQ-caa)Zk^h-s921Oy*(t)W z2?<$ko&9$V8D0GPPc}B7GJB?^IDe;J@;+zW!opTos-(|Lh?#?K--hwO`C6~#C7wFx zgK-|6o@OU0$ZxB`1RPXL-jtWefx76xr%%@fl9-cJNTS+>8dt>8iUS@{Bkr&)6YadF zLHQs|Ohu0{j$Z>uBjoinax(rr@uz&|Ak^E|cALAqEfJ@E`iiKP9iFO#nfkNp!*kn* zSe@o`KJFTFZ{GFnt%r$S2rP(RGjKDBJHcMz9O zn6vW5xB!l;-8uPrfdQW4kBaRJj@^7+%+h#Si%Z2^$VFnocO@DW%o5vaJqsS6L}SNp z96{zJ$j8?RCfOK3-udujQ2B0=%D+#Ug^$_)B*;x97)Lc5YOi{BlT)r(**#w9Z13lj z7Hj>~K}o8mC8y!XabCU0qPEo{(Q^Yde!|N2TvHIDUuST9LSoRo8k3HFd(w`Nq?J& zJ-a2ZCdhZK>9%kcheUxL+Wn&X_ zdb=+n4fvBpx7*t;x0mAq@10hp%07=P#2WuTOTTyYV!p()B7=}*acQOmBhqDqiFW6m z){79yYc{AQ?f#EPzp9Kc@s*`c(HnGVaUUkq(@)}r;7O}8-jL2{*eJhWtjE0#av^Br z1+$2ca>RjoV%wyG7lSa&HHD~cHXcAKMN;WOBlFq$#mXYfh?Blk^Zc7A+65q2g6nJ) z%;?b+3!;(IEHOPD?Ys^Kb4`V(`Ro07^YioIqdEj`7QF)hIrwSy{vJ}4vXeWH>}?D0 z5dhvaG<8eO{Zimf|7c`B6e&upK1AUDj!-D#SN&H_^xY7l%Y}DGw-1kPiT1)eKC^F+$UrX>4@p(=}0JvvB z%tB&YsE++O*Xyzxj=eC7`(opdsMrIf=_%2hSitSa?l3bq#a)7sUptL~DX<-(N65RnK7Pps=ui zuuaZ*)DZ5vA`S{Cj0Fe9R>>Ha47J-qhpjujI@JO&gY!#%m;E#^Zszv$lvdR%X>-zD z=v{QWo5vf*`19yU3?Qn&o0u5Bj)9Y7%mX94ITPZv<1@+z-p!-myOFl((q0iW#*)De zRVt3J{XLYKd_n9AUHqVneBgB$V-{O(^%P#}`+ksd)+Rrq%g7!q7b?do_VYE$8 z1QG0w2zNJ?+CaLTtr-fCi+w?BX+beTDhx8E8K((9>Lb6g$mS=?GptQ=#BvOB#G-`p zq*;30pjFn?(Sd^js<1BZ?vS)fr$o(YNDYI6fx3gihd0bD2 zBtmC&ySoV{2UctE8 z-4yyGB{Br(dXKAO>pX^>LAW1;HUnT6tp8#G#Utv(27(O;ke1QAfB!uFSWh%n8ol0C zx&~DbN7|_wWi{&~+tES2lrM7oKGJpKN_GdF$eL>aY=MMoI(QOqE3ap1C}(jA@4JMMvuy=QdaTXv|IT2q#qt4`Z8qHIOEVJ;2_N-E-sF) zQ-SC5d3sKAet#m95PstLRTH+MmU+jyEm1Yet+Tqt_gfO~G_V zjW5Hh^6*V4W4ad=JQS72g$zeOQkIdco9)067Psm`&5dFRyXmu2E8?*w-wz2S0daJ2 z=N{$vDaqOKiZ1WkcC+Q*N0D1$*Ft|`8M|gFQP^evuxDS!sjq?F$X$0z3%1p^?hhZBmh-0 zH1gzreIsifzr}YRRUtM}9c7kw6jJRj&AjEIOBAadUSK}jNod62{2>aQxt;+#1zs7V z6K)CKu)}+vuIhS{Eu6$t)d}DG>HwD|18z#^CA>H-2IGUl-J3`So(#4y#t8lg73Yg> zpGO`2#7H)H);oqW5p+YmCx0nxmWfm58j0H-wJUVeIh>Q%JshpXnrNW+0AWE+dT#M! zxDTz_I7E)Al=1U0hv?P&;K8d>IzSf_nK;SqCw(Px8$sm($sG>iFDMYJ`1;D|NQQRW zf0DV@Gjp=WBH7=(@2#SqSymQ{)^g1z3A~vu$K6&RDV%JJEukUnaAL-69lEU_R^Pud z?G^qo0}&>Rz2`fW0b5=E!qZu06t|oGL|5+(0pp#K--Sg+&8#9)!bPNVtHb~PVCX`n z4>zDIKR5Y(+`n*t+`bYxevV}Q>hWG>L!HIZTW!XUB^(i9+)}Z*!aINwf7oiHnyCrm zmAYM3exO8Ym&TZ?{S+fHHPzh7sZ`U`+L{Y)IuO!L)#G*>eLPl(7l;J`2tGbONRn%h z)7}o!e6V?@xi={%{+y5_6{-T1hUd|WiQYx`{v9uwFaN3Gtvzz%zM+RMcPk3lDvBFv zt;g7f+oIlRDr)ATsI-@le8e7Ea=GNFkKv_sE^?5C$Jriw`I}mNE_!60t|swJT)y#>_zUIqv978{du4@C=_eWV5&7@ejcW z<5#a=W41d2>ck}@lkMlv72Cs8_^HgDsQh{F7;>9l8NeSctIV5`?3;*X-VI2cJ|+$2 ze&5t5As!zuSa(1gJ*u@wZRkalSo|J~?;+kp`+@9X@3aB!l#HPDK1Q&%VUL$cW|{|8 z9G?$}C4KqSFERf$597AOgw{+4OE;rle~eK-2(wz4RP$6U&sjdsTbXJHy{6Ic5Mh-f zkvD`>>J|}5kNGD0UtL!Y2XLDVY5i)FuSL)+4^&X1O}ai^ZjO^ROE!#Uisd&gG51?1`7tlG_>$*z1fvAaz@gd7w>!a zneh|(X?C__X*ynLuTaPx0?bP0qhso07uo+T4*3CgDoA+72e{F-brs6Z*4c|Q5<3dz z$~A1THFqSx2_)IuP~9R9ycuoytEMEWkUn{RXwTIQzr5V)+v>Ns`Gr@pJIo&gh%!BZ zQIMQWCVxce_3O}1@U#Mku7~^@A@ib=M?bWV59{_r zGjXiBHnXd%FYni2egS0y@S}+V%ATpGV$-XZxGh|t|nNG;q&+fsPBJ2=~$##+QBjYVA+M?r_~UH@J9ty1^xS zxli)`@8cp9DcnpHm0{`P7L;oIX7-5eOorw~KmJ6`&=T#YuvR}O^>!dJvd~*fa9bWd zfqGw%{Ij=Y7nd%Ou|8zKT8MQq3X%FvOu^o>J%NJpuqe{aO|bfXM?wg6-xLPznCr(&l5zR$` zZ!HK40|Ek|wyIMR{Q4tNSMKWR<8{wHr;^GjKK#SkI+-&sesG&c z-r=U02X#Kiqz`q0p8sAFaV>?f&<1@eM!Ii8{D1 zQp&|`4fBDmcbZK74iDfDehgi<4^-qBX_wh}CDp8z1wp+%82GaXfF(P8-H@yGuBwiHZwAIRE4&HMwd*~dym4wg{5l%9= zXX)tryr_<5ZGElDamuMgh4Ea)9qk@|N%6MZ!rf6BzL9c_ju{zZ#L=GCp4siIV&7#i zzA6`rml~YZMJM#p5~jAkiPOmwmpI;NK=rAtJ>!5&TKZIYe2w$mDAVF4#L*n$UP`iP zsT%3-t%Wbc17j-kW;+C^CiYCdZD9D!m2L5Jx1WDtYx^86CT(2X(6NtuK{`iIIx6g3 zQ)U#$!LwU*O(laPr8Yms#l;5dG7dnCZ^}}iLXA$kEhWQC?zO{J1=ci$fyAP0q_C`( z?Nx#m{OOS@zkar&&GFCtO<(U77R{458<|E1tctdzZZ9UT#@nN6yyn*dMYTqCFOLQ< zkts=Eu+HzXPty?*3BfyeJdUM0$uvIo5%d(*bah8%rR?C!fyliQMvW|4#|hy#0ws6dHf* zC^D($=kCt=dK6(;-SuTU;4_b6kyb+I=A@w74hW0VSXy5+mi4BQL3}|x9#F#q)F7{TQNd4l=7LDfkihv&n*>X7IqrF%%dmP}zlz?ulDMqr%WVd5qP7I3e)a zZrT~P5curT1+yEvdd8xHEoj0WvG@sFDcgS0IqNT~y0Ely;Woo_Mn=tZ?P^l3!5ejb z1qQMbK`%FU+IQ$U)uCV@9%&mJ#)Y0wsDuO@g?biggKt>HDHHq_ys~z!e-!i$L ztnzyQ*ds#qgm=}s-k5Lix4Kea87yZuoz|_8nf}}yT{m@*O#&>c2-m1c zUuIKUquxRnp-QY-Y|N~(AwxXd@t7KsBm?(P;- zen4fRc}FC5Sd%DW)j$gk`_kWz0p4fMJftoab z^7!e>ilSu>8*cN9M6>9SxYKwwnUiZEi+T53(*F_&_@SfkyAuXs$IsG;xhHL|*4i zf9r-|WF&eyrt?+7$|4}nIf1X0WU_7fz+Cc%cshNY!V6Vq#a7Zcq_~<}XN9)TLgjRI zuz~ptBJNW>>dTmLr^hj^j*E5rs?(dYl)S}rOFFt8&+n*vzE6M)3j{>T(Gf1#m~@(x z_}zTn2(UI7KJ@hTK*aW}`uY5&P`Rf-omXn?+2e>-_%tyQW{cXd$v5W6=m#fSv{gOi zk8!}r+B_r6!6!HB3UN)+v~2Lox9=vdu7N9gxP2L(8RehjsP|WpWWOZ>);mFQOJTP%n(OL* z&`5SvNAU_sir+SHW?Hu`By-Hm&(F%s3k4z^T0;H4?};nGp-8REnO^ak8#_lb^}W7c zi}nh+8z)MhKoFSN&DXtxPeEZqse{b)?4I^ft`Z4_YoSSK+5xLI z$5Z*IOsC7Izhp@73BR_Tmm?OuutUAJR`h3D>+bXpvuZ){Qk~Pjj5{US<7u*-7Z*FL z;+;%tvN9S1T`526sTLoP@RJC z95_0vWN{6=SF{LUY{|+xOfj(chnJl`;8l<}g~r%FT!8g;ngwUEoLsi*&4J*vH`J}n zGzg;|X~GlDOi+s(*&t1cma*P1{8P*QTfeFe{ZqM;UxjKxMMeDc=LArh;vlb<KP ziRK&Nk!2aIzA-HE^gsdPdgLMq=`3WS2KtI{p2egyR zs;WZLlt>qaai02hCS8uC{#Ljx$i%okWkknbb`{5c>)EF+jDv0FvGtEVzn|a9(?&T~ z39_<}vk2PV-QI#C9!)31)Q*QrXmYP{3>+grzLIi3>~2>a3O%dH>(iV`?PNbZ`bKQz zbMx}N*~0DiPNTFYYb)mI5f$!OOCYhZV;9L)V`Y~UKn|y5O-0%8V^_kxQr2>AY|E)5 z0_KgxF;y-V>ILXj9xXiUIo%Jum_L~{V?y`c3T$+UWFoLsvu6ucf)UFS+wi0nj`Q^g z$3Z9KI%3z`TpP=;+8ni=LTl1}pUnU|_8v_P(Qx)LcdRj@yXGuxrj(;m{_WLvT_2?z{Ers7%i1>hhH-G ziXOf1`Fwm_f6e?V%+Ky~f?u0^8TMlt{6SGX_cPs3eV|9f%Ff2z5h~#adiS3~5gve- zkWBDPApn`b=D9h>2mTyHuF9js+Fz0`5?3GD35|_N$}w}p z8q@w%%}%C^r-3&qNYCRxkKF#67rQnyYJ~gpqcR^KACURx&>oES#(5v*Fx%vS&MWU} z5SNY%g|F40A6we|EN)N+-Yxh#?Uc5yMvL?)_|Rfue$a6LROobQ=7W-M_q4smsMWmKT;!}{CL%YW;y8OnMTV&6ZHm>*Zq36J2At*`V6Ek;qCh2ATiqLhPw!` zVvyIpcotLr{wEe30w0VUkN6C1jYhLQXE5)fCJxsI+s(_U7Iws5d4;sOa!(e5B1Zid z$`Tj>EOI&7+2^_kD>eRa+|fn8TfcevrSq-xj!!&2q1@g6PtIThIm32(Q47nyD&zrb zGFzgj>j7oJ6dL2f+yp_@P4HZCfHE@N_+ad6VrNI#?pUIAxuk&Ve4;*5log+nnszZd zmQ5k2LWd89r;avyg1!fchg8T+nn+mLZ|L18hiY~4uV6WIUEqLdI$C;{-PJX;eB-N$Ty)1n=Pa#=Bn{fHSs9 z-h#pb8R4$z6YO{T@i6*V%Rh^J(wS*A!zL1}=WBl=Ee}Pr!Xp1Rmvvp*fcvN(0ZED8 zu}OR%b!p4z7GKJRbSEUi%m8|uUMOXA=GMZsz5{L;0umAi;}o~g%kaI#YTgZwPfjsd zk#b4=o_@y0&JwZOI}_c%Tw=Rv7@lbRMO5T`3o}WmlAj6`Izr{84%EwXbMx?vN~+IKp0`yMomi#-e9z3{kt`C`(VFS<`IL ziREK!#9Fl0eqjS#*3G*n0vPdip1KH0$79OVFB`w&XFlwSOS2@48zkN97l3ruAc1GI zDNpb-4+LU=K6YB|(`Q7BlsWuTFR?9NIxOC(Z}m0SmA5w2D(?oOZ#7H5>&jHwzBTHs zNk_|^WV4_acR{gEg@I#~oacr627;=SXJ#QmS!ne4yp%(6OM^v)RUn9-9lP`F=wdi4 ziQ*pJ*Tvb_&BLQ27$tl%?FPOcX#jm7U$feo+0z7+a)(1zPboyj*?ET`yyf3iz-}klsl4ZExd+cX!Jj-dWSOwQ$ha=6uTEA{7WcW5my4!V0!PV^Na@zJj5{qmkzSdpBWsZS%J=VWXIqsLRREGtqk;T& ztU0}6q}cGXs+@T)iZ-_vWxSm3am=rpCfWy-xDz^aXR#}L6-Y_`Zu`ClHSwf{P+9qW zqs+gLJsBj&*vb_3>qS)GNwhxOtz4>`9J3AeJMzDRjgP(mjHj7(ihht~Zk2#YINi%G zs;l98W>Q;w6s818UC1qSfldHqH>?uz8{vh!O$4GD3?f1@*Gswg+}xZ2C8$fA5}`H* z;`{7W<>~c{XRCzYR5Y2x_#mL4Xk~4UnKo)>sOI>CBM*bYZwQXQ5%jGX{fLOXj zp=Wq6r#cUbK7SW#czkz{%Z|TQHe`K0qHORZSBtlg0Ja=aD|I|6(+WZ_vKd%zCnqP+ zHj;=o??fqI#Dta?JftbEu(KFIpFmMbJU)-1mWp_(#TI$D5J)on_sDL|Og_4##7uHL zHB;Z?dpLTUFp-1r^ZL4*N!;o3l#GdiaMV6+kz44W-2)9oR6d){x_XAGbKmr2c92)Z z1B5K&6Y`DF+uim;(~GTEvD=n8kjE9;RL;?c?orIG_l~9Oj@N@9EVwNwsj2l#88d^m zTm;5+oOxk-=X=R3Q4x8RMB00 z-S(fzq9gr$z3tHUYbHj(eK*X9)%7r!G9~3TnGMZO1-I$*-4>KVh>&?n#q?xMCo?#O zE_FmRffMqPrtxd_S&*IPFy^`S@@9Z7O7gTx?a^bq>P7FM^YydMM8B}E_aGH)13RHe zxC1&3b2V3zIseWU`n#sB_+#{mT^nSJqLy%rfGFJr;ixhzDBu>jw#2F?_3O0EJr|Ho z_w?n4B>g1UR}L3Nu4Bz&#?UJ$ePD?mu^M+mO_ieTqNbz-rD&+625LzKsgOu2B=M1@ z@kaev$n!)IDt;;{lzSy={(F33vv@&lj6!HIP7DSn*4dDw+vM-mfAxO-%3icOhs}VfOyqp>b(6G` zAQq^g7mOYP6P6SslQiTkWq`*9v&7&3H%genv9ZV<4FLv(wY21xhl$%a>;JdV>26e=34>QV} zj+$EBR~9=yp8VJ)deOa%>rKRD>U_9uv9~eP4=o^LmG*S?8-hYYt!P*b7#KhBp7}@3 zi-KjKqj8_E+?$tnm)OhFDRVj-ehzHRpTo>>P0MxDl45v~rawy;)zJKTg`?hc6DKaz zJWu&Ar98UdB$)z3S+A$9>uujvC&#aNy6s?uX~XG=rfl+M=)ZBddBzoMMkZN2_9$^o zC{B)QwIrWY2TO8(OB9SN-(+P4fU`i%XX^0QFbgb(R=x#!K8R3f7I z#iVb44QeLiFq* z%gz4meJ7bS0kUhT+LXGq+7j;k;l(2BW!^o9xnV1>8D2upGMk(Ii#PjOU|qfF<=Oh! z&UX336LO5^_k5|a+vkT+G6Q1B+K!l6|p}iEas3m{x1rld6U;bXbu z`T-Z-!A|e+j-0s^|LFLu`_0!5v*=Dk=yAT*I7HXPpI^!%ypW~k<+Xyvc2pzw-WJ=} z;m76F5S~BK(Y>swRrP2h+qxwufnb}Df=iFExU4MrvRM5r_+E_BIG%3nAEF-eFlvh5xHvgznY_xSem?BA!08g3 z%o3f?R)4CvbNsuX1ahPrOYN2pg3761*Da-Ezcl!M*&k`4|NUaoF$TWIRL~Sg5Z+31 zjFLH=Ik1;G>W?t2>nR{-yOGW{Zx+$7GNh+v@Qnm=a)wK1F$KdpV4#yyGt9*6u7BJq za_3V?P3BB(ySMf(EY5Qhz$;K+85|h60p6vd?;50_Rk5(p;>nX_kKx9ve#^lsbt@xd*MWqZuVOn}$L1x5N8Wh+*8DYknbx z*sIP~-@>@^ZPmlveYtDiT>o--68`IDlQBZD?S_a1EXLuM#c1*(^fQvEfR={u>z!dC z1;mvXUhibQYTP8t*synFY#JJ!i4qzZ5@Jtk;vowf?C1MPYgr=M6^K=>J zW?D=Ywh1+pt`=UVB<$zAK%M~LwAPsb4DJiC_t(C@^SAO(Vd{8@IW{@bRHjDTTv{+! zj~`%bAnaVRD*1Z(>AC|Pupro6u)b=DBZ&hO&WaYI*I(tfzTGyr}CQbrg-b`Zs}5 zf>GC`^t5x0C1G^(QPg5haM46rNj#9Kv>^>*F!2d}_2SGc=Vd}TE562u-Wfe(f%oi2 zBLFmj5Q53V;MA1SWJ2xP#=bpUW|Aultc4-@ z*U@N;uzKNa1Yzl;JZtv97rX4+7fQs$`Vw6+ceO{a2}lU`slShT!mB*kyR|J(_etGA z-r3eDPZ@ZG*m8ZYNh(mJ?dccHP@EZT4-p@WQ)DD3hpz>w$%jP+1#bYZ9U0L9sVusV z#-ETNL^H{wot|}z3>l!OTSw=%v$J5Qc`5ox{@15N_s#F*NnZp6F%Td&i0(%R9)4R$ z8*Tyx1UbEXwg!3A>UY19j0SFXa$w*OHSyiy?ly(_dS=oAZa^4s-@P-1{$n_r&sM{B z#d7dCm8PAlJ*qf@|4k7gpa=)SCwKlHO4!BV9|m!e{|50-+8nFx4!c5iPR3Q`i<9Dq zLmn8|f-_v$ds1Co4L$+d;&FhO}9`mC-3_0cM_!8_RV|CzD7UX?JD1 zd~Ve@nbftV=-oNws3T=hc^>-4uL%nmo$Zjz8aQ&r`_HH_Hjw|>bTwM~`kfHDiGsno zsXfuv@K!FEy3fW{V#o5k0^UJ8+8^x9crvl<`! z@NNc58<#wJ22e77%ZS#KE9Y;wd@KpiZ%NAO1V*2uZ#~g<+dI2bqJpp?qVmj>?z*|I zEqJ*Tk(b|P=8Rns5F6Agt4gA7kamvo-Fe@%{5P{5NxoEn)Q#VvCy6$}V1?HEd!-)_dED5a*%CW={Ja>Fqsh+?&uyE-Nd0 zonQU@1NZj6yCwn<QF(rw1*08jO_&UY{IQ35d4jl`V&iy(my3ab#36yfU}eXwjAF80qFRsGj{m z0R5!;YIY|)46s+?fqZexg1}jjl&l9QenUW7us3p~H=74w%kNnO<5qq5S038&m;b~a zV%EHW`wjYNhA|)+D%EiXGAcMa0hI9Q@#D<@N7Z|PW7+=y`5v!PR7ALx zBlUkb01?f98vv955qxKH<349FeH%wL_q?;0^FFr%qqzRB4Tk$ z7#qsZnTXWz4~;#Q%F)>Dz=37ajWmdcU)A5#+ge=jwibN zSJWH8Se{|RmuTg0ccS~X^bi9Yrd%e1Ib>ZW^!Vk~f~h9dwqs>M;G+r$>3vyKPfyQG z024|U63+RaxrS>u;A}iIp~>boQG3>5N+(g05tFMf#4p<3nP$hGUG@eLZ`qU{kgK2K zLjZ`GZnAjb4|pokO8fD)=K0Nj9f6r>%xd0~wa)y*pW)K2kq;h3gm$+*5Kfy}j_ZpU z7$B!rjd`FcxgLL0b=>f)2n<2tlaMl(o3!D0qyO*u2uZ&=fGl>c8yGWy>dl%T{|xaH zUPdpkmsGy!aT*!7gn@w}mv_aCC^NC!3!PIinrntQ35-iV;l~Up+7udXt$u@0h`N&)s)u z?#q?1Ucu$Wwg(TR|9sMTr*bMwP_ydK&+U2^c5;Tz5R1akpHdxbxA|t>F3<*$lexHf zt&Lqy7jt}bTEG~*e=*>=qAV>3oVO%u94M_#c?NXu;QE;hDnUOIx{}}ybe4&Z`^Xnd{ zexCE>J9a-DFgj#>qq*6yKz5hUqWa1eBqxXtk!MSooiLWhiZO%ACqdo&>iY0=optKl z_%FpCEfNDGk}Di~ZvXF7p#2wiT+4UK$KF)1M+AdcEx~>}9Ty~gr30+CtkFm5z_x& zNb~_`wBp9|T;FCcz9Vfx`L{ToXv=OY{nwQ%XJO~Rjounpwr4n~h(r46mR zN~UY53QbZMP^^IgT}k}v`Tx@k2`z9>K4qmZrCaDiOA8;>7HOJD=`mtqZd>0TC%G#n z=@RcQy<0-fM&`snJD=ZrzLlSK?L2l3w~r-;bh*rnA<}(@U=zo+j|!oD#cb|snr3qA zP^IF_!R#6sMHzZ>o}S{tCdN1E@ISx4&Efd2_#{2GIJEmdW#BZAU5-iYtCzS@4Rrig zx@_@gvuD6~G|qS7C>*V<|37HR#DmRvgTx%AmXbBK7$!Wi@7|?fETABFxM;-TX!$D2 zSIi^z$H)9Y6PY)8{u>JJcYchizu|s5D~iy$rGc1b4(*F`G5=>q z2!ZYv4gD^D9z3rcE6WEqV|RajV$fksJB%#~|Bgyjr)vu{p~f*GCf;YrL>C3N>ce{_ z*mAYCx6Z7vV1bCmb5L0LuG5JQW)=8e_*|{fpn{E6RhU&@p9+N~(1`p@6wYqy4!ZA@ zc#f#!pScVT1yY=jd*UDUCbf~7zzq+vcaM@6((L*p)T5#KW2ElYJUi}A61KQ;3P6zX zdIVAh@(l8&I{v@DvE{HUbSv1B+NW#Z@=}yj5#|{Sv<6?{BlXMq}KDGD5OW8EKwcb@6{CPoM7`7anjq_5^FP|!W7|8Wu<#6xQ9tO zN@m`Ya&2u>RL#%Uz&qAyq5lFT12=(o!85)LL0{~4XNzNkA|EdT*68b8sB`}WH5T4% zu>6J3S5$O*0$3=+*H=&GqW1Ee4sh9Wa^BilPyK3TEAifGrV;M>OV zdqqLEh4|+f7FC6rD>zb-==IK?sNJ2(lRHS1jOGJ`leZbmBLadKeAOr&3#S=7TBnD? zsEz{~z&0#THf21PFzj{yKlh&eu*7NH3+0CB!zWe3jmpWjQq~y=u<r*S^)!tXyzR4_F;lic4A|lLxMM8Dalgkcal7cJnskn&6ncu*m11a&O zw6rsQI77f*KuDftMc5{eDk+&VN#a^C?%EuZY%@AJ8bXzj-Pw4@ZRR5M_l84uudW=S z!}D9eQ?r$Ok87o0+u!BMD zN-|fUrP**`6#GvN%Uq~&nI(%koaH;d;MXr3?8SLr#>US3a^L?#TMBDT-14GmbM}g+ zXy3&?i*@<1d{UC=lpqsO4#mzO*p4yeG;|SpO}IX6`FiUrSLQBMHnY$>gAz8rO#gph z3i(4cZsdPo?B3nG#LsU6lY~0w2KBD$KtIRr1wxPXE?S4CJ`LUwllzIKGgHgW10-|d zSSWF~_b$t&EJj?aIL31KE>X4oWwvTol0dm8~VLgh3+XBGioz8Ns}3-GX| zJ`0uGTHElr>JkOINBOq@S>}c)+ZjV0T*Ikq>E5M|)cZwref;?FzC*@8cOw~lAJ8+JckE{QkM$u{{Nu|{xsK;ds?|i(?U@#C?OGHazC*7&$8`1l_yN8 zlJ4opTmdNRQr2MW!gDcW<2B)3g!I+EfU*H3V-INP zkJY+zp_1m~6xx`W^a(LIRFFyaa02v%y3;PuGvYQ6)XC2f`ece;{E4*KeRtDV6Uwff zZXM5?>oL$2Wa1)!c5yST$?suZ;NF%QfL;7qA@VHksqGSb_F>nfq>_P@V;`g?T9i<|w(mYjH% zmj~Vp(6!^X6a=6N>+2}BDj^Z+q48B%){?A5^$31EyziG#gc7w0SW!~Ww`@j7zjVh} zYT@97;GOrtoNVLFZ{L)_Z$rHT_r=k%D*~$FOlxA}u20)=x4(b>2FK%NO2GU6`5nbQ z=O}t9C`qoa*6&~>?DNjb+i|n|uRb|!Td&$13t27m?Grv;>~Z)d6o7m*iTD1ur|aR} zO_i|RK~eIAu!6cN}gwht?wLQ)4~#LZ3_7SwP4eW*OfW7 z?Qw;YdtT`yzMH(jqHKExZx)5ULTW;-p{>~lZ}-RMHT<@zBnLVRW5>6mSwmN?T1f|u3P{( z-0~F?5>Ysce{N1m*)zyDGry7gYc)H&=&98XN5MaO@|!Okd!}pNy0=lUd;(TB;mr{N z_jJrynyQGfXdXA=%EzEjSI0=0_ZDcCX^QIooC z$`TrZ2CondfMO#fBRwD8ghe=gmOjIv9H?u+;Dl=pd^$e4D!_h;rv10^p)U=q4Bdo8 z%H4EK3#qQIjC8g*bu(%s^d!Ksp(V2L|CiU3HrI{2A%F_~wItpTt}I_q}NCd5|_e zT(DF3d6N8Rh8d+U@r*30EVDE?Df%*H?n0uG&tJV22s_H`DF)`wGn|1J!{$9H>FxBC z_2ZyCmr1b7rsmCFdk}Ph$C}_#^U7o2nsgRum_{BV{h^%%+7R#BkW3B z;e(283h1-qU6jGQUh0(n``b|HnW^=ax>Z4d(P{!!TQBPQKa5!P5+IWhz0k95j@biO z)R0vxDgxJZ%lW1USMIk0A`w2Bg1aU1yS>J}dlj6wVZGvN-&}=4ftN@hqd7FegqvLy z*WRi5o}S8iH3EW+x+CZ}o&3%=DtuV?!6l6GWNN3;ndT97@FRn2oq`S|afMFvm#<$7 ze`)LLDgl@Wkk^SHv3-O)nx}}#Vl=OSj)VOO?q+R9hrxLg!knWmbKzfL;7Tiy7z z4f#G+y?@sySpmhI%(6W4OQ-4R1X*w>7P-Qecxwo=>{*L+s>2cnxtrA78G||eg&pY@^MJTGhy^MjjB<)caH+$fAaIl8YB6a2rV5$%Z@j+gWubt zFrk%4!LJs>g1htGtuCJ>tA2aI!T#Y@zZbBZTsF^tx$Cg|utJ~S(&u832{m=}460p$ z(fd!OHxYw`BH)LFn(F3oQIUcWH)it zYQs?j775ATlOpw78zw_%BqrNJuf@7ok}1WTB(uSE%LL4T+f7R~5-u;@rViF`coGK~ z1pz_9vQH~}7x!dC(IM`1=QeL}_qA5i+jh0o{IqIuy+A{wBWB3_@a2Fd_}XYc27~KS zXjK`!Jyj8fjcD$Dfsqjn?gAhm;7s<}oR6SD!m9nXd@rd^m}s;)T|W2I3*j$&%)8A6 zfkEfAy{u~pM(m&tsq&Z-i4!{^f73DhvX@ut>(6caV_MjM^tB*1zSInJ##S#%WDKUM zd#Ci%$fm@T1Ki!IEVBG_4Cbi zuNeU;abKsJc#dFe4FiLt8ZHlTs~}{M=mzMIK$_@NwBS|Af%&J`zg5{E|2D*j%rL^# zyfGQr+Nh_Dw{@HyXxU;yJ9je-53xw^5QI{lUUnoTm#>Zt6iP(yF`&FfRGFy&TgZYh zR~w8YDl$rh)R^X7TB_r03{jhf4&LEFlqS`_ymSY^CD14UH2~08M3J8~P#zLj5zl;g z%x5PJn;^w88z+pMH6C|cN9R>8N!#V_j$RqyE6A-vGc)@Bk@7)>t6&IpHHT4q0kCO# zqK2%?X=T0-TAruR#%-t>=D%tib?kUgB#D(ZXrn^E5$^e`B=%``&tLBEH<;`$E9sq) z@0}5?_&R!z0;FsH#^B*If6JJOH>VeO8A?Yn_iP(++Xr$lKfoe)FH$?oy^27SLe(@| zauO|xGA~y_nz>0X23+Gb!5Hxbfq{l5UwxW(S~umHt4A@bF)H&bX8ZN~ylk|F4=|90?A zfiQr)BeiR33x|7~0PmTtJ#|$NKZ6E_NI|3N|4Qo;HvKk)+e7yNx?ed3~dg4}Mfo5PA6bBjR9N>jyLI^l8=U zU0!ShUTkd>rpYz^%;(2$U`}@3;+e^%JSzt<4Csm&`N+W6i4O7m?_fCd+{VeG=7o_G zlxgM~SU*rW!9}Fl7{S&iIzUDsUPwT3@Nt=eHbV4A0k{Tq$2$2{@x_&?ai(hWac)Q+ z%n1lrRXXnVGO?J=zIPY{#stb-P**+mT0; zhvsF4`7E>{TvjF!S%xw}$`+z$7X^!`ob4XTUZFAT8Z=lQ9aEBsuIB18)Je4RvJFg{ zUrYSbddTCA-+ZM-kRUbmdON4jq|b6`SLn?w_iVy{n<>OVIAwl5!H5k|PCS;1MvDPV z#%5~tQFfCM-Q{6kkoS-#FHgJjyuaTcjrjDB`G1~2_d{b9V3QW#OGgU`31Rsm)Rcf( z(b396fhqXn8*z(+$Sk)Tkv58)ovP&xwkE-m+I$y_X%W9=bOF1$gx=4zx^E-!byAJk zkE5x!xW-_LmXa)D?7*OjJf>pKq?&q}m%Uza{X0QSgrozea_EuFDeO5rK}ST>63}A zeee!nde)Q&b)=dzxES0ZZR39o(4et8cZYW>v97Fmm_K|D?DqHfwZ5J6k!eJw`yL(p zehq$j&F!~I->@5ZUoE^wRYcK{tO)X z?S1pv+Gi`@C|Wt&{=kcs6vT1U5m}_s(Z?A`#U73O{J&$Fm6!JnU~x!S@X3>d2llo) zJ29;Z@y-#?Z=sCkpFM?fMqB7;U?Xm$!s3B(GPOFnR|bDZgWU`KW}v+kpDfS|jx9SY zmtE&fTR@*|KadqIW$Nq)@9M9rE>0Yz`c~fINyiy@y-#^q(t@o4{&}`ZaUFSP6TEZR_ z+?|L2h@6*@$Qin+{P?B4F|qFUZI9?+HZ&xCB0(!+5A*7>!Bb7NEs7JhT0_Mj=g-=A z%YOgz>1J1v!!AuON;vDM#@M4uU0ueV9r5)q)b>I_ z+XZ#%=hg^zi~wWnX#O>Rd@Ppa=1@_t@j#@syM4!SaCw=oXvtIukUykmdzd;_R_MHB z&3EMN>Zu^@i#N2X^{oxg<+J?go6IDyKQ4avse$@7cB+%)eRH9l?tK1}U$kAL-)q8S zGE!dyTCOcC>+TmV5+~anoSQ!xF3dPgo)DaDCjo@#E)ue$i~9wO2x?DBJ`#^PIc>BV ztWv3aydrz{#z?gQSv$4il@aC1CnzdL==b@yimoT^X;e%`gE=cH zDGBpOVMdL$@JWN;p##Ie#TOSx<@O8?-7jEcBs}4DTv@i>=$mC@j=w%3TvG7W{X5KT za&m$}Hv>!$-WC_j_9CZ;-UH(6y1vZHm(=yTQ6Odmf^M5lYI zk61&hKUX=tYWo2B@_Ziv?FBh@&To`bt5@)J^c|nAB@vJ5n%uCCVKira90di4K|sPs z@FT%U#)U4Vi-_@!ci%!>`z#ZlsQWQ9`>l+>=(sUurU(=9Ko6p}NRw|Pa)y|bEF5zf zqRx)e4)sU8D9bCQWjxIpCwm#2%jH95cH_c`_zq;o-RSV~pr^MMDV|Yb94$Q+fjHf` zzy$(YOZU`VuTJi5Z+hX19#41G|M^v{bT{_nhaau-tHhunlv$qrJYd`{_TOu4uXd}k z*xT=U-qHfm%f>)JQA#Uyt>KWJ`=NL?k21)F#`erV-f6Y!=gDd2SG2XeI6Q%B1`C+S z3rSWbc6IIddY^!b(ZD;+T$GM;xCzjnN>`grDl1moomN&R4>MaZ)P0}$Ke~3t&qB6e zxP+yHZ!mK9!|?D;;NU=0AFv{3-=}*=|HV&dPv{K{im&otxgtMx@P_Ztj8%N7*qwAw zbLrCJ#{}J#&otl36;~&!Uxr&OK0Yxyxs@Lu=9Y@Ar1=YM&m$w9LCPB?=&g;n$s25< z&sa=?6KE*2=wa?zJT;K5_`XU2U?T`u4*>*3($f@k!~Z$|FA8N&7(w$-2T>vWXU(tq z3Y@ifKf!P4+maVLWhh!TKCZU^VDO5X4|>n)0t3C7_2m$XQjmh~yAmePtP_8uowHIb zQVnczdn+M%TKQr4&}&c{{5)u>PST)>`slpgAIUM!idV9r6W;ff9Y z7el6(IH7gO&#xLYdAJ~gs6BvarzvBTOkyAJP7NJS8unYg8l)4*C z#yez^-Ws8r%dW@+vpYXgKM~zrqAeT|kTuP0jwa5s?s>?$+1@pDA6kAAKVLNkiVxO)6Q zb8!#Rv5y?wtuKEYAE?Z2)My|q#pdcO*ZOl4_(*~=v~>N=t;Dssfln>5GvV^S;``o_ zX>>6cz8p|J5$c#0+t=zKKmAP6z;wsshYMn6?Ex-(l@8*H4E~jkCjK|mCZR+4B0#t#KtfoHcn(K zTKW+qlLXE!K;s4?3&h)^Cxd$2yzgyq(nly_Pws#eFJwWe!+z4SR7l<@4x*6QnVL}-9DHIi0UkzSKqyWg&2!P!J)D&gs^ z;N}RvOFGGN5XU@TUjBkiY39KU2R2|7!s}FWKV9{rvc69nQtK)JyFtQMCiY z|MT4s2eVN=hb+f^Cp%OTYN{GvZ>!yF+hP)$+;K|S=#NyL=9vdov527oK`9ZHktr0r zXWiasbd%>TEy;gvSY0CU8L+Rco-v!?BkZ@!E99|If_wOfhSZQJ)sR41GA>i22ibZ& z8wx;A9xF9yM>=%4+ePP*xlIqmp%unVPfcG$ECtP-pROnXtk^_HBUVV$cB$7ST4U(U zV4CFfr3H*o9UQ0e=CWt*!!S$mfZ}ts)^%w_D*bemA^Xe_^v714PNYyOa#?d-&vu@q zLmlg~HBvVOlb(3%XGJbr152rrWc_ ztHUo)sv9wt7REu^Wi^;;0%@0n55462tAAL4%@i1}9&4cie#%TFHK2+NYiqE2%wHk| z@ut0$rp()@wg_Szh5+s2G8=THMuN7+bz(=0MNVK92ntJ;ezH%b45sgZP~3;X3$p+~ z7a~w*=z4?WO8xdX8&u%Rr!DUV!NhgeL^d!Iaqya@1*i?buyAL4JGNB8G8w+=c#DxT zRtfMxevel=?=OqxSX$zp7vq?#sl>LHpq%Y~dbD%s3fIaOk8b*$^bwJ7XBPyW{u-D5 z!2tl~;k6R?m4&jC*-ngU>3cM9txaI=^^=|_D}NM)zrOL4tp4%tgLk)1g{aIs5(w_X zm(*36@S-f9lBG5c?l{0AD;K&{q%3d#J6S0g$;r6qU5HEJm;`GYq#7eyouIQ(u!`+$ z1OXMoSU1r76*F(Y0^G-81yj;IYtpY@_qXXqRX01;j1C?LXzz=;{9^t2=p3pqFwx9d zuVWqWJWk8NumHZAm`ozqdOl6zp+dg7m(_rr7ahxryl%fm z&vRAM$@=K9u(PKwPcXCsOuVeF?pVT#*~5p=;1UOAPo-=PuHPoaw-ay84))(kOk(HO zCyIs)Kv-+!qlTWs=U^J<_#4F7+%>!^_UQ#FR+lrZdIrprD1Sd6Xm6CQcDJ#UteB_p z8g+RZwx~~zEB%p<_w<-eNW&gKK<_;aA7Xc zFzB9*$5UH10P!|%s))~T>HnkCV z-M_gj^4sW%wCBzRR)yrry`vP}%6zqo9fluQ>n}v;;k&s9>vz$=oVoMtRe$*B%hXQp zPQ`x=9mr!j1jr?nFNTrivUKRZEKfCv4oFHHYe}S!z``3Rh^lZlA)(bM>PCb=OmYO+^!G z-=C2S5zj)qX~?;Fvx*wy)=RHjwhBD_boOR01^7p8+<4NZu=}U;p4VhoAPR3|a{Pc_@Ikc&)>7kw7rOt)L6E zxU|F)t;oH)DM{q+hGF%D(#n!h-@(I(l{}}0laX1|$S|y-{*`mO-8i{I7W~8YsZxiv z_k7*9v+Ls*o8DF3YD0oeiLcCE*zd-!A0Mm=fjOGXkfg$+AVW>~q{BD^%1GGSqlA^% zd@9&NY;I!f<$sq`ja%#P;wP=|xQxENTPan3hv&X(aXh0qXEye99!Q3E%cG?MFqh+# zP_VYPK8~bsJ{Qct@}1mr)^qnK_R|?rAWr}kS(J{A81KV}56y@}-jL6B`C;jp*QRA!T%>-T&u5gnOe^w#u!R_x;A9C!1c=i5UdULgJ?rUcZPr6QIg1wqX zWjUWZc-i(HCtJY~^a5N!`jcu!1Vos`d7QbAU2xs_6_u3E@-^-<-@AA3Op(TL-CfQO zFkL`QiyAYUp2Tf>adQDoy?hpWubu^ z*9BiNQaJ-JsCVUpC*lNj`a~gu`Nd7g*MN`N-yc&yjN6>kN$FNmXgj(!yrA_g>(1cT z57ua<=-M9&Zsz_vR_EJQ#9S8efzL6$Hr)my3V+2K*yEIWGTL?|oP{>$a^hvp59?UU zvZnEP?p=L9{6#}ktC87TcQV*Q*Ve{9i`TFvWaNpC;w9bX#+z^6rR#W-Az7}fsw2EM zzO-2=$(fg;{xwMo=q10;MEt60v!S*>;7BjQh;k*3Of<3s} zwaB^s`)v5p(2AqFb@ya0jBF;|Vtvc;blv_`U8_H&ewvDoam6np(qfW+e|5Guzaj>fj(!1*JcB>A_yz(q~Fi3b4~G%MNgKy@Ud;?HsIl zexq}dgqUCwJ|e-5I_+X^t`ng}bBIlrXNqhI2>&=8>-$V6zb?5U z8tePKtV|G*@lsIel4}b7_sYD4fI)}|^q32VC8)+M)?hT=^1eZF%kIaqVt_7YR}G zurLVizbVUEP-N&g$qFZ#9#2@9((}mE+937;;0}rCOT{K6P}L%6JCDGBFU!@Oz=aX5qWcbbxn9BrwiV;Ny%{JIz)}fhCUDs^{b^3^6U7oJhFtVRVUty!J?aoKjWonsHlU}NCA{3r=IR~v!+iwG>Jzz)Kar{QrUJ=4@) zKW{%(H77}QD-FEiESrRNFCuZ8Z1V#g{|*7rvmdj{u;`2D3F5soe7Vc18oo55uba?^ zkwNql$RjU534&5#$?~D>SzW8kw>u^DU-kF@A!qbi<3&Z^mI5a!Zg^Gwz(%Hc{jc{@ z_KdD;x;=~xDzsS(LGDLJZPmQ@vYpb$e^fm5zWUKIQ7)yjw5Bx3x6w6iz2<^ol|oO1 znjgAN(pzI)=Pb`xB=+4gtat0&5Z3;ByP`NEs>sOF)-Cx1&8+&}neh6JUarv=;+(hmT*OS2;Z9)0gR-=;+WT7U(*Y(3ojdF0mm`)?j*hD< z?7SZo`=~Y5{ixkSA!b!REk!grO z+!2i@N2{88dU{iw7Lp+M2|C}9YKP9w6|Z`#To?+%c z2`)>*hbf(al)8n*Rf@QKfwGwn_vEg{&3un>n5pG$@w;&)*68~_tQ^o@ZO-WZkIo7p zTnQw%f%|_gjV?UF-Z+&GUdQBEO^7j5$*-$%R0)ptHjGud>|zktIv$<#d-hWBexA*P zcSV;NxD2;ywUqC$ww9)ORtrnC*EFU;giJJA%!J$cZs*=q01+r@&wwMsNIe~tEv|~? zQAm7g%r@p%w6?zN;^JaFk4tmu^ z9O4=Eo}%I{)}cvFN*DqnR#S65F(6zRu{xbgMm^b9X$O)U-H;M%ms!KE_?E_W;Y_bY zdZd(Vq9SWQZIe__>kRW(9@ki{1R)nsO!lOO=j9oW+rzHMyH&oj5|wURqW>$H?S4MO z^kbei;oA!OJzDba#ig)Na(U*Mg_tF6>WmZ&rcZZo6*QdfLrB>3;MOEns#DMmO=_5p zgKqR+|F!d8Qi^a!u3Zx;&9~vpwy;38$FnU=oQ+k=)jZt%8CCNnJ4JIf<4r+*YEBO2 z!zG%x1$nPCOOqbgA95`{UQMe~%zim4+};YFFr}_bT0uSk!eN2n@(-vwo{>CT^^yKH;8~|t}fOL8m zY|l}<_JlD?#u1quH1oTgLmEc8ad6c%o*f?yc~u(Ak|mSWHFE6jIaXmN?$ER&l`FN6 z{p^*A=J~K1?D94;)&8N4)mw)zeRpOj*=Y#>hGi06^q-#VkoV>dZx?#)ri>`wzm9K= zkrhMs{)-5C?G=*fd(#I}BR7MqM<>J4p2p+k4z?^B+62wRg?b2b_AI$^hmr0im~|m; z10dCmdfa$%c7os~#)H*S#gTOH*tm{WPkSZn%c!Tup)wrGc(_BGitJQMyu5;f&M7w9 zPu@B_cvF*20OItIcCCdSz8?owcpXkVz|5ez?3Jjg**GNxdqht#>h1rC_!}08R2>wn z0*$w3Hq`3nUn+9+Lyk`pF2OL(6K`=x_rBJmAVbo|45=Zw|G9XJ)CdU5yP4Cu`#hcD zNqgf53RERPr2;tTn?^I_P|5zqOB20%WKA4nfy*z$oWyB+{fsmF?as$yuRrt z;i2|J?vo>ZU>$Lh$F6@G$J@>>z8ep_WbO$2DM9EpSyz^`6D0j%=sF zqs`p+?)I#QNyNvHJ1(x)g`H_VXA5*F9r03 zR~9+Ka6d5Z$Yv#Vd4qZJnKPkxR$CCSlKfn>vt$%pa77ag&D2=nwH8SU`~(y^71d_z zdA<)HUODo3T#?#eWPwTLyp4o+JemwxSg0um2w z8K7z91Qx1SMSq^D*T)%BG9GtwwvYUwH!@ahhu#pw!QB`2UBO3vEV;p9Om;5lG03ln z-eipWTJ*1XoK6l7q*DNNLa{m!zDP;$sI*HTZ%pa^REDX&GxsnrZ=q_3aXQOJGGb6Y z<`;c?Qd+LL3ofXQA+ou^nUbHLgV$n{YB`M{Jth3+WiD``WH!zc#9rpPoGD@02{Ok% z52d6zoWd-uN?Y#~7$-vQ^bv@F3JSPD4My%Dfkb^A=@bn7r!qjC7Iw)m&bWK+d4^&0 zxtsh&0RmtQ=Ja6F(CzoARy7X5Gs(Lb)M)ntCOwl*c15JKL=9z~>H~W+oisjg9)5r4 zz9%BRFWGud59y3WD>Tbm#{w1D?M%Q$6eb6Un*4ARPxBS6g5VB9}wNSXR!Hvh>S1<4oXImOlNMW#LsewH-I2vNfC(Zuy?Lpk}_#zsW%(V&uNZ9g`bIjJ{#P&x(!4kgf~z%qfu> z)-v45RhnZiBeZZ48{GLmH$2LZ(h`+l4;F6yx;N=DKR=I5$i6Jy&zF#GTt#eFFkZM4 zG!osoArMLL8$Bh5Jrg2(ktQYC+V-L4!-u3@PN5y)96Y?t;9W*|-<%F)Mlsu}Z~=He z{r}{2jJZxgqk+!7_M5{0-UssrGQZk{{t(s+1{xM|37qCkwQR+vZ;_pijfnyBTHm#coPTcIqw8uh zC#7Z&r3f>fpkqro!$cG2xI5(|?CQpyQT&#pSEVb;=}3zY#wuUFekpO?yovc#CNmlO z@EfC}pDV(*E47Yufd>%q8n1#@FYy zJ2`G!5T4Mhw9U-Vx9RxxFNcgS76BWkafhbo0>S;GtUr;tqno{{oVVH2{1`qBL;Y42 zPa>zrRREdc_C%@^bA*u;7Mu9^G=4yoKDx2~YTI^Wg@P}NN!d>Zl{%rQ*_L#Z}aNmR29G^n!gs;LnHbMje!r{xuDVUif|+pWgZAhY8Ov?@Uo@p zNLhXkRwrDY^qkyW0pVL7T9Fcq+2DKcj9~jt9r$Fbyr9qknD0iEZ@2WJ?}_{!C6ecQ z<4H7hm&#wvSTWYiskrhGP}~dRJ>B)g*EAO~Ve2y(a@OGaRlS#yVN1DeF2>Bv#Rfyi zg@vp3w{Bq?cfE$3i=CYB477*h0p}8lT!itLmr@0SQ$!p#pl$I|l?|hN0UzgWK|zj7 zTMmVH!;s;Ua_(ms3fK49!*cqOGE&Xpfqw+!N9;C~! z^Cqx}RLRUdWTb8j-e=o>WXt`?V}oGKeSe#r6}ow43;zLHFydlk=ddhnX%7#X%()VY zVi3?-d+IZx^(xLr1h;rt8g_`tohQ!(P`>$^>B@xE8l$GA;th z;(2mf&n>^Ih!#VdIo7@-e=86Zw~5+<<9=0C%*CqIbbDD`(e8UMAAh;~a8C$11i-U=5);U@TbbVF0)mJ`*2uO_zmu_1!Kd%5J5o)5&~((6;aqco`8{E9_6b9F z+*V*`XOEaQsY{G}vJL8AYVqbDW|?HK9=xBz$k+jU_4wTtxUHr^Et2xvDBrkoX1vNi=U{`PcPT%y+9SoBZNO6! z?NN-DfM)Sw)#S;=(on5wWG5nukV z@^a!!r!iz(4o9D}C`5kvwmxAox!=bpG8+oIE@Olcl!Y;(qjaCgZ|z`_-&g z!&DcUM}d8Y*8AP_L#__p5$gsKF&(?SP=`g%5)+0ny1KxjP22Q#oh!ELO7{%z(=OJ$ zOPXb(hx@aG)m~V^*)siUn85K-n9*8S(~DQT=(|6)eCD~wc%T~Z29OQ#K01Dv4+hscBsydv> zt<~@DwsMjD3;9CDqPnk9V**GcBU?1-mUgki=QU(jie~fSl)J;)3r)|k;44&?g=H%d6uLCmUL(}*=!&KFhCBrG zxsk|qdQR-Pxh6llE)Db8f3Lj(ghamjHOxvoDCcWjmngw8YA2|Nda~f^iqoVs@4>i~G%A{avq*1bNtlk7GcPQOraho4fI+DoXcasyny8{;&UY<2P z+Qs_uyRq4K=hLmX&uxNEjhEnq>z<@bZwt1`RZ%n2n*TT#!+Va@T}U3v6Qd^NvwCm? zd8e?HR5(hJb+H988GxCk4)8oYI2meM!=De{(Z!pVy5 zXmwEAElE%#4&q$585kTuIkLB1qIvG~v$T`i{zrWe6p^x=ai_=3CHVD=8_ku7y(RP% zMI$$5w#X?cz$fH7EFr*pqqaN|bz*9C0csIO=75B{V$JN@ zvX=z(zaLdr-O;Dh%hp29!4nOQ`>mzu46Lc`HGbbc#uFo^8=IAGq~+oLQEEadI&&H7 zzTLi?-zRx(OaFd0fd0;P@tvp~XPg}PHanHg;oW{X?*}7QD(Fvow1Nuoz{lwWfAfL| zfv@9nm@DqVoScc+7$M-gx=LzcP=KDUfWY8ma_wt?xHKA*-8S6R78bKYi0D;h{C;=Ibv4$4x9BK1`*x+EUi23Rk|SHscq zg{^R1{SbA)60JUwb5YAl|DiwhB9ry*TR*hUdi~nj;~QbcJ%P(r#znk^+QQWA4Ft ze?qI>=~d}!@9z<(PhnF{qE6vZ!7>#L3!T6*36dO$_5jWM`@q0^r~f#IdK={x6%t-s zJg97a9B8O?<2pAa-Lwq1JpNd=H|Q~1JN#XR7WVzC|5@Nt7Jx=OYy!{tuSw^4T~Uq@ z+-dWSD3e^})xINd?Ik0hl~w+r2pV%Jl@zaEm+qGJdAWVdN703ai34YKDlPEziO)Er z`}USKq??>GC1*CsyH(mucQrIAGT&sE)!q$jjcJCn9Qo|K@PNYn7<1wrF6-vcj%z|d z_J(}o4;ys3ID)GnNqPe42HCP@0-rUXzy(?t#?rJheg`%hLe24S@@O=-TIVMU@VwqT zZ)xeAl%!94ei3u4@21FkA9>z;HIN~k=?e!J*ZaY86p`VK@8D%HZ!O;r`9MM0G*D=N zCRx;xjVz2J7i;|av^e3PacpM#uj(N0X4$dsJHCxTP2kAaIj@Hw%@|ytOIuAT-@BRh zj>E~2y5(@aO&~)f0ortCn#OIPh!sprzzBL_U#2W2aA6iFmWMFF{{|N-BhxAIqfVX+ zC`tx({A(>*liWAv)Q|!KrFqz3p}>g+Gd806m9sD6ik3bv#3BA^0NeXlp-{`MRo!*o32HROG7uzeMU#W7{M#~nROhPCjMr68YTYwVCG3~ z@vWf;3pMjF1Uvay=o%PcMl~7v%K12p1l!w?m4xOHjc@;EV9MNw_uv$YgssiX@G3xA z4|x^k<>ilmK8Qf1T_ohKKuMm6Sx1ehs<_RD?G*f4mNMfGGpPnJg##Tm2&p= zjmoI=op87cr=vkx#JW?k`FY3eGC|O8ma)5>d37j;uCUBIzddzD59;2fVfUT_Q}TeT zCa&j8v0*?APj)!iq!z$iqK;#Pwea4Ue0NxYWOY^M7uWPosfvVRW~L>*_#X;*^MG4) zAl{1Uv3LGAOn1gVwm7*cZvS1B zyE;0cevBwv2aq&(OunPaXKfnD5YQHQ;%x9b8c*$9QY93FLCz~rGuAB<(}6nCS%w1T zz8B8)uP2>Y{;CH>7s(|e?IPPO?pEa44=5|13djss*p8F9CNd!*M4Kn~z zVz4OQe%PHi1cQVSn~q}2?Ccz#E?8?1l-Ux86A%y*{_(XhRRz{6Y^)7xd=UlL0_W*w z%IyDU|1-D2r*^u(=IC!{?Zt2+C*qL)P|ORwlTs~iTmMGW^BUZu-(Fm;&)$;s=_hyCa` z;Xi#3hF1AN*#pSCPE|7i(m?+N5Y2?d#M5KsUuO4l`^9D|y`O)riovxThGD%R6Kn6t zO=qRHhM&=@-}}9A{1v%ml}us#1v~waD=X9OG}n=KL_M7&zQbqMxp{`uZfEyg$9AOY zMV{cy2^#eH7Ju?I@J{NsQVoIRoon|-ThHe@n+~5bE9U&cbCyKa^%B4R5|tG_8F`NB zgxT$kDs#5|EhbiNgUU;rv2n4Z)O^C?11%pxJ}LND}uj+JY;e?f84l|96@aar1K#cmYE;-2iwa~c@0!7usQ$iO2Lsl#B& z?Bw{0aIj)Ha=|~I$s@kY0{>1bTr8@dM;h|Oru_M3 z+%^z|1*Va2Qj)g&>{wzVEn-9l3ERwUs@f;b(W%NiGy;>jFQ-&Li3dSKq~y!@Zv(30 z^hO0qxdzowR`yTfkPzy^RNHNNq|6NCmjc#;t1w{aui4JEZY|$EMe~^gzd*nc?MPG6v7$n_4n`0cv!o%U&gT`^GN`P9QX6q=BLfh2+_OzbrT--s-h>(w&WZ2zI z0O|$+nhw6vjj{SBgiA%|78geD{92#6?KKbuyFAj1;wR($9Ditf{udu;H}tLT*MN8! zm?rkk&0*_6(07S<6}w{8SN2*r;&@&5nEIgUcr%_P@Ix_f)|s1F2?^=5vBcxk^Q+7) z?n`enKLnd-jNU*J#k%JnAqY6w>In%FU-jg}(Y1r7?HkeQ#iy<96(ZkSG6VEcx^*Tp z5Ru#@z+0*~4#Lv6O6C42pK)u@5QkLZ?CcCZ;O<0ZN<8t4HJQ(~b`b67=CqUahu-IA zLwiP<$DiEkvaxp;#aee@9mT6(ta0bgm#MtFiZHteAr1s3v$DTa%@QLlzO2*ToNu43 z!KKQ6{sKKdd6fJ*i(s_Cq|;1VOZ03@bmnmF_wJELKZ~rHR?@u5Ij!-|tgl#ib=0Is zE54NWBF=Z-=xdq(YzNE#VfTjxJ_^)r@{b8H$BD3-RI)sGArADp*T7?H{SDKhV*dk+ zyENvYBLvGp`j(9M??XY~=2zjrHzWueLtqtoD*Fz;STxK8&#n5L=l&>B=s9fubDNdB zqj-6RSoCJw-^M;R7vc1V=J;P_zN(@^08?AtI+A8*0L+dbt`YyDqsM;rrYN)aF6=5> zV?JbLq>b;VGHr;#j!OBG@hpAVY;L+V$7`Qr)aT;(atuPhapXb7E4`c_15K zRq1$BW0j(u36h=}H8ttOC63eLUF$OD>yv^K#0K3H?dP zoP)K#k?%JF$RrGgR95ThCcGVH8+}U;m&VlD$u2qt8GkB$`-Dv){X(LufQ+b|(1I3O zQDREUOx5<-^v>Ee0%`*ziH09PD59o${6^1)m7(_sm)w{Aw1G_qBe#oJx&OTz=V@^w z1kX!AK;ZG4Fnm<3cJuv3ZcL(m1)~zGNXmElRNG(H*Z)*j_%PXdT~b0FhkLrKtCJKq zEtMG?1kbu*o7(vmG&FuK$&UUs@&{>?5s*9EN*-&t#A-o;S9(;1n&WT1ET22*_ z0}pjk>gb~BxnBa-UU@hZI`QTYxbtzafMg=!G=ci`>C>|rSGZ7MKe@KHHk$|h&Te|N zU+CAWhNJ6sB(>y*1mAC3s#s@}ZPX7M<<*$Sb1+_+(x(XrPIK#j5$ z?|3nz{nO#$1aAvvnriapFz`RMet7 zP5OMz36^mE2}m4>jd=tD@xr^sv|t|>hLV+~FEQ@RETtmWH~aV(grEII6&L<1uPlP@ z+_{4?8QkqE*bTY?-+HmV_qer#Z$Mb~MUZSsOi40xb2zHL6)TM4&qohax!I536sPA? z1fLF2{P9{&d?(?uis}{q?Cmm_zB}`W)@;oT{zIiiH2j&M$-Wc3{ithWYOJBs^+*H& zMXhCgmn~;24}PG3GK(V@a-?uW$}7>V)_9YgX%7>+fGbL%(xM=bHn2F zAN7c}-;vzlO`*%zuxN3fLjkcb+d0~jxNLv1rWJ_a*75CP#qp+xGa5@^0>rv@#8f1~qb{NL`YidfqWIWr%Je{6@ z+Z8AaYQ~WJsI6#e>6^*jL1dyw1z-L-{rK_s?_?lRD=YS#xVF#^?^NA31lg2|fzDW4 zF>!cdbdtk5Wv7w!!;YuGDkAb@LsE7R%TUsNHCc-ZEXvyt>ai#9C%j(QOt}+0`P=5` zPrP4;-PH1f;@)tAgWWKl-F{h*#Q8!GEd9UgLmxW}@rBz!veDu~quB-BxXij-SRTVB zbG@gC(V*L0yr|Vo>6H1aH=hGFxEi_hD(iu(HdyJoQ6f_!7+h8cs|^d-Aj`O?tk6lB zuSz-jtV(T^nY7N&4|#{Gs?bqV#u5(<#hOP*c*OYyO`pduR%f?B z19j4OJtkcPXb->0GX1HjsD3RiWx`G$l*VV5nxV>A&4;W?=B1GVK+u$Qc7Th>utv8w z{5OBLeJL2cJ?8ZchQ{9AY|gv5MnY;L^pgX*(iFdir^%;32YfDXhV97z-nSjX-PK+N~fm2*6nt8s(`=|y^(-Im&F5o__6AP#ynS)7;s}_(!-n{< z7HtPhL*$xyR?-*;1|YX~E#7MIo{Atr@uz$krHPw=7Cx9;zfc&};AEC&;VIaBRn13u z_Ge^i8dl3BbZV9`8323ixcee|nV1fU*Q%-`)Xb2@Fi{)cftW;ZkBD?)ik%z{0eO2L z99~{~k;^5T6ycvNdYOixErfukOZ6mhH|#8O-<<9egI6Q)lRH87+uu81{rg({bw)SW zCCmP0pS@#+Y7H$d0lViEbfR@cEed5HW%0x^8Eegm(DIKzXHVQG;f@kU6F` zPgG1c?{7J;cX=|CQcAkNs^Sy-O+y7XH)dIqVqbIeH~k?AMg|l7M#mS9=R#^!c-Cjh znNRXAEbGoBs?Mh=>|*5wTzw_b1ZwjFWdbc;($tF9-$&BYFK98e(7b=2{jQ+w+<1sZ zGbepvXfO{@sG#992i^*tJ}6@|H1Ni^dk^QuikSt z_jWVBsm>_KztL{)xF5wgXJ!4n$~E;)vxcSx>>?{S`}BdIC;M%j?_;a0A>4SxgcAIi zptFGQMUkJEYf~>nBh*P;m7PqFD6tHE+~KfN<@k4>3&FIfzrSTWc4{3~XmYI|n+z{X}0#DF}1ZU2*X?8`;G z&ta<(A;|9d2MCYk`8ZNF=ESp2_q%gB61wq*?kqtE-=H!8_avR4*C}#CZd~D@+tHM|&0UE)7)(74zQohP zNpZhfT~ObN8q+o`UjNw;OY&ci`Y*xmX3)5luWT04LT zMK$i-yLs1@_s~bIZH_S4IyA^0BsRgd>#)5axwo`ZIJwrVhmsAOEBL3d@7(Rz)Y4K> zvuF5u*;W3H?YnN*hlpLpMIM;a`Hc;HwpKR{e}oDT4<{r%I9?pJeok)zn zc`+cEh3D*J)UUHiESbGDo%glb$hpy+pB!A@4GavF`V>%SgbxpgS7|I7HZBEelYZ~~ z_4cQ7MG~d8ctZxA%de|v{Fx0JinqsNRlN8=-2TOJRq`Cg`NMtrhs@mEANSHvzxuG> zcD&)W2Zp`S^?*~r+M$00!-U6fO;OgIHj(UVYx&-O^wbp(@XtjY!RR?-H*N2|aArWBgy7qW{5m+00#N@zu^OmSg3BUIu~CSzH;QCOCLpGv5;yo zAg}GEyIP=!KXNDdJoc>l@~9tixAZagnnj9-kkP>S&%riFZ_F_L{wh22Y3;_>Z$Csd ztX)JtyiT6!L;Zp_o)`(|~_fnsbrl5%Cce~b2` z3{EcY_tIPyl9`70^kPh0#q0ZxX3lT{ZEWn{RcEYW_6VIu4|ao9@e*-?hXF=ifF+fk zjy`#wE}V39bPcYCBX^QUTE$TzC8IZbv*uZKIGPHj>~7& z{Q@W4?hjT`)zvbf!E)A{Nw(@L$qoucTAhE59ol{Pz@t3~|3YDaw8st!ubNtlj8{}Z z-L>z(2`k)3o3s=d8wAv>tgNvVJKyQjcZ;?6>u5WF$P391lCaVW2VO+6Sn;>p{k1=) zuw@S>?7N8m7`n5xxfwQFZ3Ku|@9pov8bWsI(QAoRV zs_RR!tA>_-x7SK#+cy(g3Cw4@Wwl-qrc9a#!9G|DDZgk-_W4kP(5l|BU8lL)*xs!O zQl$LN>x)mA@e&deUcGx4GB#!e*A1|vFe3RjIH+`^>678PL03Z%Wq`AisG8+u3_iiW z{tE%qr+0Rr(I|Jcd;XeayJJ%r>8%7B0}6~@FXD|ni27aIu8=&VsoY<#Ky1*!nQ4*C zQ9t|6Q*hIDK05G(iV=TbTDH~==P~o~n0b)NqetgkkBzqu4+M>BUHrdB;#4y;?Zx;( ziR5!OS1sorgBY6av~We!-nTgwkE#KBz4uxR;A|wU_B+%ao1-z?%UdDERp+iTvUm}CgBbGk#@(GMZ#;w~dr5bDlVfL@bn+N`#cH*(_!fD)6Vw zemt{WQ^xsstt=aVIjIENIZcY5`-CW2S^M~uRBkH?7`@-&P-(M5Pwa~K;N2=bh4!4P zv7zzsy;}J;g?HHP+gNqt8Ajg-4X!Wq5>sp9&lo+Q!fqoN_e?%og1*1bl|E%w@CW!> zf3RK061toGp&&=HBy(jkQ46KZ68PMPJK$ZDJ89WKR;1wLt*Ox8@c zqlbT|?6^+BbJ{xZIT~9oSe@Mt$ZvV8n|XeRaUtBJUEbsG;O~N9A|NiVTgoxNkCh8E zIOjv#mSG2f8@X12)yEU%%<-|xDjo0N=e#Z~eEM`Y@B4Ql!iHL~bQx}Tvs*OCU43Uh zJm5w&Tuflx1(4oFI^6H)v6CR zCqb>x{>tqHC|yHGwunaE`I%D0>i{smsh>n!B^4Tv&Nm~iFTk5rJk?SR>fzCPX)h_c zRWt|hTxTyY_mrVOOCI%P&EVPZOhW2l+!ISj){@JXcR+vO5mn>`)M`BEtP#y3|KAs% zV-V24UAIxk#`MR81~*Lp?B=;hyW#4XeIn`AZ1Uq|{UKOvRh+&%UQIYNl1Bd1b2Yg~ewPUYq1u31cOXtxX>NGUlpk8;ygpGx_S?d# zdmdlko%Ys?3$oN}RPxT=Gwe5{6e5po;^ME_joHkZ-Om0vEp?4#qI{Ww!RjAHCcSIh z2eKEI6ZLw4&`-WzO>OX5yE)FOH~LTT^eKKbz1j0+}eaVvDMve)G-# z$i>IZOeEy^vn_Gd)YJh#S%j8bl;H=+l)Xz zrTw+SlDeVPtO_2re+8;R1W!Qi^T35M&0>4RY8lKmH4=W|?rxI|pUbcEk3}c91CO=R zk~=lku#tRsg1W`iKYH?7;UHmV<}Ac|%H@h!$n5M~Wtrn*cD!fWa|STt|13k~zMlB0sOW%cG>S zUC-BH-k+;&f=jJe9IDrMNa4?;oESnB#Uqx)dAfK|-|pPidbxqrnbGQ23A^Lxb9t|1 z{>*|#;;`KM_)W^uFRnq=rK+<-baLbv#0_7>oDAy+l_YN7Do)sR>D#8 z4ZGt)GQ9FxIhBu#i-|tiKA@##w0KqXOqHYRl0h>*t$dDm=~t*okzFzJ3kBH{-X17N z;v2(n%gQ8>9T7c!WARe`Ho@bcMLXP21qlO_h8`v9ud@hQ-b>YUDA;H6ev;XA8lb|8 z7;j}W4k&Mt6g%Q~oO+B_B{>C(oi31FLG*z@S^_SO$L{ti$0jeu0sP*+g2YZJ7qs-< zM>m2ROoxUf9Vcl=jOwEmO^1oGRU2xZ>8G4Gc~9b`-5rqNK$Q}xpk7{34h?Sjd%>~_ zuC$8dQSiX=E;KsXGFwEJ=R%*W;QgoK&;OqI97v|Gz#YCeWbANKhTs_QkcL}DKC zsC~s={V}>dR=9_J{mjOou5C(qXlp9pZO!Jo2KBYQkH@udX*ok_Us?*&S2*2*_H#Yk z`*K@e7#v7AWFjo9IB_W^cTuOVdfvETZ_n_h*j@AXZM}iT0W9Qb&$L9wjvd%!bj7p%(1Od2F?-K7DeXvn2c4X4y5%lTl3ib!Mwla*@A z%gBG}^ngQcd&#e%p+}9`LK2r3J|i%p5;LiI?=xy052}&Ly^>w;X0aH z6Lly4l7^nPu927G-)?*1ABqVHbkB7iBnYt6YtaH|iy?tmF&+JapAOao<)ssF&MVFy7_ntDh#>}DeKZ}y&XXm6WseKZA z^VjJ_@A?BGa17dX7?*zLvUZ?!Q{hn}>rGl(m#7X+j_X2<{BEACE)~MLM>gK`rY`0% zC_#;feDPUw4}aQzX=v!meVYYcO4beMU{ei!9d&y{XfwpW{+N+xG2n>3cj-yTRe!7m zj)dTAt*5%tr4N4#1!Lu6&_`y(mtD{8$RJy;em2Hu&}lcoy58o20|@nGXnby6dc~eN z)5E5|whk7AYf^3HU2(A;F=lnP!gDE3lTIs-&%X zJnrf=v|Ap!sh7x6;bRm>+3dV1_dM=oasgqg7)n9ZNYe$>hfT?1r$dd>N62*Hf4WS; ze%B2;?lY=!B@8W-wE;K=WiF?w@pAA2Y&Vt*rVr|4o{jIBA&1tX;NwTdM-DPi@}!J3 zzq-I@9v!>g>~sHCBC+eslGX;|_XmI|noobr(I zn7M96&&j+nbIjPmt$bF`)CxnTEsgp9qT{>fQ^%wBJgpCBg^>w#O zV6ilCk_96&gNRnx%ec7Qwr#z8_oe_(2b%YQwjU_Arvp+Mah8qmR$zZEaOIH-;P=Dx z^`_3EHyTUHj?X{c{=->%xybrg~rSEZGX?3CRwpV{BlEfl$`zaN56zy%l> z7^-4vyjc^(%8d#;6BJbZQy57B{}Ww2)7%5A`mrrxEwI0}G!3BKgdXuUTSQo@_M5<` zPPLL^T_kqv+u2<7>*+Bjnp9~vYvNHrp0iAVUIJIe2>p|jk|2j1G}7*ifV)VOm|TJf zPnKpApNhPLxy;Ap8A^lIS*T(&_L-)>9TI=qMeFqc&@|NQIKl~8^+|7PIt|(s3F+zP z&MY<3-vt^6ehGvVpkK!6OnLF8Er8m=wTauB_X2E!cVdpG{odFv5c&T8IR1)V@3Cc2 zf2C1$x&men8R>~b8%`@(D}nl)Iv2&B9F}geeQ$4XL#9eR=qwnz zjsp(?!MMUS^<7Sm-6wUMSm@6FiF0jWYf7Yl+${#>1wg6CMs@L-l^6fXOkI(=4nH93 z>#QGZwBp){Y51O83}9<-ZkcxO6kI5o1~ZV zI$-8~t>ft-v6S}{zx}*pN;LZO*X~=!+u|)Ap#S0O`kkUKWF;gi*)e|5Ii7Q+OMnoDwOKY)a#p#%pGM9I$jBJ! zN?pXmHju4#X2D}-6ogzggD5EwOaCE3*aR0buCUS=^E>uI(f4zvcI5dPY8%zTHznt) zwxqUOP1m-#NXV(~jk?NXW|D;4X7OU^URCkQD1z?i&#ScVf_|SYv~05HKI7%PD0+L6 zvi_Y%<>;Rnqv)CIB-?3s{vclG7B@ckl9rB+oA5nNG>y2#+#Gd6a{9Z%*HhYYz}Kde z_wc0b{Fp9l#DY?rnUi#0XEXBHefO20XU6>$*5IA<{vW<4S0rU3DdC{<2M-j)?s4); zv}m-J$4xw^grsy{HzigV$&Ea|nxy0FF&F#Z0YgZ3x52N=*k`*NgaY0|GgTgZQ)X|K z29=$8LsKOj#x7G~?9DEU$Bm8RejELMZA=G~vfvR&xj`Y157tTnA&k>a=?Bku%k;iW zq|5(k6wt0wIDIYO?AqJzIZv!&>WR{8lb?udJ8&D{a7?Vuf6N1?v9CD9QvQ~srH3AN zb`ek%#B|IeVl-egBPO+c2}C78kr|y6t2b55XE{;#~av@3OOhqow)c zJHV9%fZfoAfbUA1g;3BE5PT6os-Q<7kk|l$_Xje72T@9mtV`Lxx7sSMbUiFuG5CLT zs%{30b(6nR{!}%zy=i_&y9d7AFtPUchbzm{=@reQ?}mX!?;jOXQz%WRvkp>kyVV0=L|bFM;92j!P|BZelcrx-@S}<>u?!O zKT;I0hV(KJmE1d4Xz^d_)c{;{C;oV&#;C~A#wM)hAY69Vdz%&o#rB{bE~;1LV%|XG z$Ow*Mqy-#l2 zZuJ@25JM$J0Y3B5AjN=4=4_SJs6oh-diPINCLN&l?5Jfk-+)@Rd(0Yfl)?3RR=M1N zA*!SQAgbppM6dZZ`M0f4giVWsxfCO6yx^=$c71JobO_Ur56S>V>Xm2x7=k)ruHBHj zJkq8nR_$HagEj~*_afllYi1?&ou1_6Qe%Ir_n*k9oxm*RPZUoAsq$BPmT^p;u}9SL zq>k^o-fvGVN%cCdU1KV-Eth#9TKMfL9Ao=aryXPERjot5^u25~4w*G2^GoH^&(^ol z2LoPR0LWrfm+BmLtZoJdcK&OX3%XTRLy?@vVA2YhE{0V7`wtv0P~ZcG zo2k!7a<3Vv68 zd=5XDJ5aDs^UCt!ae41{9LJH927;DxSGsIBoC(Lej~D(%Qx}XrEGgqVNOxq6E-@8W zX5X3Ie_{QqzzLGPWY9@@)~B1HWc70l1esxvjiQOWF%eu>goPN%7nLcgg~E%}deT5@ z;wo2(DaU^qot*pm)45*4Yc#BDG;Wu!>s%*4-f0zPk53N%+f|5WWn6+B)v!3aO=7KH zqry?u=#&!?w@CjvTqOcH!FTj^7T1A3tC)5al(+VW-y76dptYMhK9W7=Ely=izD26S z?m4-Of!X}KtefeSF8hEUo3*Vuc;-Y8`Yo%{{KwW4)DHVc>&59c-TGq~FUGX=@u;RL z7_JzV;Ax7}&mEm%%E%}P+aC8MXmQp3y2sACTlaW-+^@zd2XlG=8ii9qzO=*VLPO5g z$F;!(8v%XqZ?Aw)zzZEC&maT75X_mkXqhx(82;2=f7bJT$T!@mE;2K>IslGR!$My5 zlj$ow76){U7!Q*HtT;=Of?A<-fLRB0RoUcP8q5hCo2VxpAzSmb0 zD$feSVF=j;{?WYCZ5~*9oV9B*o|zjtIAQPWK#a8&C{M1DC*xL&bFkt@P4H#1tcC@# zy?p;pD~@vRGVgZk{!wHLDa72Ft$${em*+fF`1t#EQD# zzCjcG{8?1FyQdCuku{bebWi4XN9`syjA#r6pTqtzc%dB7GMZ(mj?J);bD&HBtUO+N z%pTdJqOw~ zLxD$%E{_qO_!aaXdlcP72o9_;K`RQRxE8W%wEx~TR`+tydPP+>QK0T-T0+h2AbkET zcyyJaPh`iD*52!|Yj*5Ri!-qI^So!d5sMOt#^>42pXqJv&Z4C`KUGF;G}YF^m?4r_ zSrmlymAqutzIe4|J=SrpYEH+Kfhp2{0WS*4tUi$t{HDO*?hpLz(_8%hHwD9x1?NM~ z2TLtioL;Rrr8h$b7-c;+Tt&r-G_+qY2(!AVtrmb|u|W8pu#pGEGJj|=-Kmprh@VB@ zOL|vXm~>Rl2oh`nZny-!XNiH09oEf?I* zpHGHL0c|ZaH8Q9LJha!;@G#9xq1Vr6NRLSM^S*ocGBQ1vS5gvGcW!w9VW?53=7<}% zhcmbYR~M`Hjj}j6f0emJSC28;Nh)-mg?0(|Beeh)V4Lhd?$|V94=^Z`AshsibJ`v`J7y3aCv*N$tj(#dBy*@V_bIM>2;#I{BlhmUH=XH(69c=PL3H<0I8W z!5dC*1QI{Olg-Y}wmc4KAS6Eb4LwW7)({Ab{{eh0LwyB9L+K*dbMP8iDDL@;?gpG; znpKcJkcl#nL1UYdP7|DIGbplNk%mV;U5aHS&YXG+arl5OX8&B!iG;@BRd{v?G843H zP~vC;@y`S>YKf)(EK+8;EA#3vpKnw3Z+XaS`_*;ypt&6@X4byN8QGIN?1(quT@%47 zqfp7FKup4lM8+3Eg32P01`KhzL^f{Jo4&}rXRqf_4I{~;4L=_$e}gOG$!(zSvG`z# z%f<5K#j_Shk5(Pu-h0#??Pkh;@1~YpT0q;`FH}-{fin6v`6*#pVwD$4M2x=A zOU686Q^+UwWR|H3UzB|)&P@Xx=1qlQxB`#{5P1lgapm(A)xqc;KD>>fY@7m@ie^AX zcC+=0sXDNa>l-BUyveNu{q**wnd#}ve;XscnukG1^00{f+v#HktdM)~Rhv%_>mAtP z^M4MFPioOmYEtQ(w2lX-Y^ZnnwQ!PPR-CG3T@e5U043!;rK=8+!kBVrX<|-{K#wqC z?O0SN`|AQ&1tZTi{TYWVnAxXhXBLGU?{+bfMmFb1l5F&xLdi-W$(Z+Q0g3>oG}Iw0 zel-3DqJb-3JiNT?I^+9jgZ_)~TAD0jqxj-QHv_JgzD{><&CX>;&qXD-<)IF8^+VQu zVtUPluU9}I@S+ljtb6G_uNJG~hxVK(1O8e8!YfxQb{wm>cp1HS3c4vd&_C0vwowzM zSZPdv#rnOxd?fVlF9?vea1v&XMvs19K$?5I;buKuv&oql6oS6O_%X`g zLj?OOT1!h%<;6LRhYtz;?Jfnb%mr>&yY57r#r;LVre7!7`RHKl8xMP}u=D4KB-VfA zt;b-hTOw%LXxjs(SDDfdy#UeeF<;%VxHzJ@D0D;qZRqk)Q3&AW0phQllAf7U`Lv+m z_L$eUJ)_5Jk6AotVJ=PZH5FS)-cL(Sd^a4T14EeJ!qItn<%WvwJ~cip=U{U6e;*`( zX%7~dpNY%V_CO}`Fp~d1Jlug;Q;8;DSoIM)WU~lqVa5x+@tS_9Jh1u0yjlFkk_x+NMOCG;?WuUuEc;)-JS6Z0jiwB%)jjjpmnLGS>Rj|Pv9P80Lc}zzYvO8=?+kS_6 ztyV%7!WXA5WLExxc1p@GEjWthTg$`U zzgkHkkq6;`&MnaU%>le@yMAyIHQdSmuWou-^XZQ!qslwD{#!%1TaIJOBJ_M#i7s@) zrRDP)GKxsi1KX+phQ`*{anAAWbmGr{>f9BL9ffY4U2qz{R0lR3pXSI zy8xPSBw#S@|~zwJNtfW5R%u@TqEbxBC%aYq?Iz^f*1iF&wt}q|Nls`--`1TEyRm zqE9gL6%x2|1i@2m)JWH0YUcN6kg~?o&@$|NL(G^}nUg~UGD)qt50C5iJr=6A+h*=acZ|EQroRuG9f`6#?+qjzC^ zXG?ar>J9%luUQ@}+!*Z$QOS;-MMB>RZUZ%oH^MUeBxRqW{Y}s@IuMMS77)ICZJ;o} z-c(MTrUTzRn1_m*TF+o{?t7C1O11aZ>%ynO!8c(@aNow}O+hwo$M^PbR#xL?2s8ph zQlZnh9+UncXadFiAUFgTs2~~+kh1NekM0SI>c*rhVc^2NH z(IK~t3;ahX^!>N!Ik#I~WA=*u7}GuWsKTknlt%TI+8VL!-q|xNRUr)e6*3zV;O}VW z^0aP}w6KgPc9v4)a-Y_1BVXZL*Pw>Dnk+fAV|+AQGqD@**S_B(%bwg(kpD8P^2?Kw zanEN}6>dF!Ll9PGi9|~2-(x_;VJe#IZYKWElW!T^=G3oWmxPoiYx=B$MpyPnp$6_gYo2o3jDD6(+`7u4=qM$ASU_U<**0J(JlBg+mqYq-$z; z@(xi@$%9SoVxmM!wjN=_%(p&YtWZa45juCu*?&j^c)sEWo{EPGv0QNC~Y{+-QkhlpC7 zrcIpYMa}FxrjmY=Y8){5Dtr+_#Ps$<;nZ9e9^5hg4|yMF-F>Ge>C4?^{nl5GU*_18 z7qK<6ni_e}-t}E^KXNWmc_|r@+Obv_M!YesN9RBEwEbVyH?DQwI-sF=8;s;L;5J!;B^TGbRBRaq6ne7j541VcboKp$~i|-=6-V_ zUQqo`?alzrw7I$W!}U|BI7;AKL1h2PBK+ycgU8Q8ThA>GdJ)6di#zyJ6M;o*inLdp z&;AxAQbEE;^y>w{Cjy(jc3TN-JWceq!s{(&2!ypU|JX1LS_qyClHR%$ajB@T*%O|K z`}D#O?J4Pnjg%*5R?)P$A;G&x#D0x|A;g-7cbg_w1rDz_L_|bQ?)y#(2Af{xiZBhv zlM1Qb&{fVXg=H8uzwz$KrWzdL5d!|Tf$PNIhDN^Jv<61(LYv`m$@+{r@y3+8-_1*@ zEL3OFnI-XHj(kOODBLh@gauIm8#6xUaouTP0<#S^Wz5ENLCSp7G%Z7+#Z;oA3Dg+hg*VYzbNu zSjf34H~=St9|S8KgML#Bi_qw3mMA7KCV!xD!{RJ5QVlpYJtN=cVw(qU$Pe5xybi@4 zJX?!Y{}=D;z_o6m49z*|wDURr#A14eXttaWj_qk?NvWvxPO@P-rhr`25ZWjpN98MeLo|LmHoeMubo!j|6Vk%k zr!#>z_@p(?k83%Bc#!H{3s|i}K|<a#iwS=R|#7W(s_*yH#P&Z6-0A;!zFYa@&>R zwf!00Qmnt}f?zaeY`eXK#KwK&ABw7QU`U|S@dvNMtb-xF2cPv z7hYmWCfJ7`#78>*_fpl@tA0$-H+)r9pY)O`F1cdCL4j`?)S#<<#BHGmYeryq)6)L} zh~)-(z*N|&&CPQnmoJ0rkut2@+AMza${LeKn+=1!C_L}d|KC~O{q^RVu7N>g$6PC6 z1jn%Y!FD|9xTJ0gf5(`I1!5UF_km<~mdiEv>sptfRTW50HFnLS~HB@|TBr661v z+A@v$QdG3Iw~!Ze>zyFE<*72l>X_55XIgYkBQ#F2QQX@cfiDBZC4ew*!jdLmHGiFZ z;Z$|HU!_eUY&}(sJu9Al+ zLI)Ugde0da-#=3wKvs-dNiox7Di@%i1dPo=(XC`AYZ9rtciXm-;}8G zU{;;K(6#jVB!nOFrZC65)sN)VsRWuG3vJasD8zQ9V9YqYGSswH;YPW|%gfv2HA@C3 zUr0n8X!9uGTzjO2U_579siKN_Y$Z&ZSt+7O@Pk_4_Ws#2$SA=mPnLoeCh%Gz)4$Hl zjGc?qo^m!^fKgz~Lb*Zp!!)$@Ev#J$dkIcv(#v3Wa&n5{NazCK8Y%)Zf7KNL`(C!B z{LlNPtm}P%oCiJ?tDTO%F=FH1F@P0~ z(8Xq>$7*QQC0(2nzf~>4Lt)mNr3SEzLomU{5)cz>0Zk$396{*`hUT!vgWtfq6by3U z1(B{{zs|hS7^4IOH<%#7TQyB$IWS0C4v*K>y*ITM!o&_H=Ii~+^72nH)M--n&y2ij z`?moW-XM?wI3$48ucMXuj_HI511(%nZ?MInQsyh_tMrR0KmU!NyF&Pea&VUD6vXN4 ziqRff0lyn!>#&CA>B0@;psqo~1bWnK#cF%3f?(gu+UjJA!A(fCC45Cn{z@u{nHuyP zZtge@)EBZoi3_y)`WzJLr3eT%49W)##dAM=cpzbsl^7SN4W$O?7?dnZ-H>+(-WatO z2e+lan+X5=1I%W#ExBanT_*}tbOYe56$l!Mp9u!EglU570&<}XQ0Ws4{8`2NulM`! z6@Vmk2oXcM!*QapwfLhyTqro$Bktoq@T8o<0x4zI9JE7VdkYvD000UQ0?5h5}asamO9JSM7`@dLu#$Qs`*=bG6tm&CHCe(%Yi@9 z`}5}wPa&n}DuPl%?ZkfTtm+J&FAKka@0OAsF5c+0;jVXtGkpksHoKYN_d%XCCX*mS zD(d*BhH)cUFEW*g7zVm4nCRcVE`D*JwY_ncuoi``I)8~iYI;h% zU(V`(s~4#MdI`Z3y8(aq4 z;`%(Ifc}Yrv2k}Gv5f9lGGy8fC(H`cESzZUan7H;#8-99g()wzL9^`sn0Yn+_=iau z1m;JX+>hZnv6i$V9;mC*&tUC>xYB_JjOU*o1t155HwMP@V5dbE;wR}Ttgd>puCG!V zFT{J2E+N)+h^q!Wnd!;mk6QaecrcGk!!(G9;Mu)f^}%UjaV>}+nITluAA&H4yt1L8 zdqem1^GE2>8w3ZdyVRajJt5h7AFFb=fGuO>wZY|BwJj5))e8-!)cH(yz51+nWug(Z z7%_ciye^NMtr37!^vE+amEcWPuUv1P*(@2eLMuo{zt_%wncgi{y{Gb$L&bBqD4jGC z<0n)4=r*EYDBpMS`eZ%CVCOIHi*IYTrS#-bs$JbNXuH>wiqYJ#=#G2^4eL<(Bcjn` z0Td`BT@h04jt&2_y(u6iUOO;=2MPq@qEY75jJ655ag;0o&P!Yi$Zk6eqe5|?d3KaG zmpqh|k!qbHqN2S+eK#S02m5Z5M-PAd)hd9x-N8&%M#YYUc<&k-GJuB^{~wLZA|l^l zS^4tb$@_9Bf{Q@yzu0=p_lk-Ly{Y=}9CQ>5qwV8W*G_u5#FMRv18GP5@vqqG5d|(r z&Y?RkpzjD9wJ*iRF5^Di;CX$@KfWv9X&yV^Gb>H=cG%Cm;4ap4w|jvvvo%W9MEz^+ zy8MzZyRy!8;p7FnU$jiK5B>O;7o|2@x;2KzzNSfgA<9^w8fdq?`1S+)O(+JCN*>Cs zLRYl)Nt z(GNnHSkURceoNtx!Xp&G_Sg*E_Lw^gd8(fPfnPDp=KGHk&^{m_mR=V}fdYxhfO>bV z3gMq^A(3z0z%!{{nI4d!mn@lI1JDnCNC8i{23G_D_<{?GinfPM13M&4{{6>~@2U&J z=H{q?k1+5hJB#KW4{M>aj}Oi?SiTrt6%o*tc=xHKBz|mc>~2dsw4PuyiR?w~mo^D( zPcRoF7ok;0oVStolMqZS$au6e>ee>|W!&_ok)g{%yw%#@ABh!KXRx|6y%6)(3%3=- zc^z%o?-?WRq9EG=LJ~M6%8g-tIx!6Nyizhi36e^8^1PU4KW%Nl75(^ zAhs%`bSrBFb&!UJKvi|MsePH^)CMC`At;h_gT6kge^O6XY!6zHwG$I4rpj$11X@{M zjtj6eu-jsurKBu5Ft{NPMv~XnyDfp{)HZ&m1>O;i4iazjMC+~2}^5OdA_t;F!{Y`*^IIB+%^*f)=7}5w-gmX6E7YN z>n&qxpRi6S_oii!re*ouNRcQ?7qGIA;KSJLqUjP*-7Sf!Eon(jgdu|Dg3#DadVH*; z;E%2AwjkI~8T52{Lq0&>3zkAV5_Am$HXlDtoAeWHeF50wi%N$HeyXT%di_^<$Slo# ziTIP7l2hK~=EfPcnpnBTHQh-HYPtY>Uz+o@nI(SyYhg-w*f~w~lfN&h4(l)1;t3p} z8a4&de0`c!!WeAa081fB*={<=n!tt9hxW@qPPssneMfDR%Qe0au%R_Hf{8(;WJ*-mxHH5slkge_?W?6+CiGg!f}$fEFNd;15o^xRN8 zW>`+xXkCVSbZQr?m<}ehQ3O%($1XbF5)SzXGPrPgVXZ>cy#dxa%^T@4+%4S+ik z6G2d}@@!AYoELxV&1r^a4UXd8XPKyq3#;1@$-xR2z32u{)S6# zSbvYh4RaVbn36ng5qM4dIOUvwdRyVcBm4}Dvte6S^|6*kltk(+4NTO#-B8+XJ} z0T{W71{bc#L}!7|L?-!V1z|YD?wVxJV%jYd^zY3W_z~kwPbWx-G4YuvipQQ!p*dI$ zir<-Nh&kBGJHDh}V)uWD`tEqD-}iq~2xW%K&MbS6W3RGDg&f%{dy`o<*?Wf^h3xE+ zy&arN9N8Q?w(Rx0PrX0i-ybE9P_J>{_jNt5=eSJ%4QAfyz}Nt5aU37ZP<%StAht}` zdejq#SA?%?@p!o8j48E;hyEMEEas}viIkk+yu9@aRUX`OiD+j_8!|JbB%Le@v=8|W z0EaYICdGXEcb5Jt%w!nzSfl16&=7EPI{X<7XZo>5$+7?BHx!K;pn-_f!wI&lBYh3C%>R@v0<|*b2A_xTd`6*=~Km2`&p?-xCPNju4H(ZmU4u z_4N8)QPTe1XkIOJ4n@UF^iBo~K_t)c^#taY?If-pY=8)S4=rzsr+~)7DY=P(}Gbn%EkG zTNezoh19vTz+6y)Z7ZR28_?F+A8mB8g2oJYG_`Q4o1PdOOXqrR@?#sJYO?695rf|+ zhmqB*q+xx1qOC<8!uD9)n>*xYWplQoUch!r)RG zd_6a3ab(yj6gU)3WwFt823bob-B637i%JMQ=d@2j-iM|Aa+r`panDUV6>}MXucg}| zOHW(X+E*ZT3vbZ<&*9#hYvU+mcbDbw6OAHUu@d=+=HklA_=7k{vx~y4Y6Q?T*|fR8 zdBinRTW^$KS`+;A;gjjQCrIH)g=<~B_@PYc`6T}Stu25Oz7gO>Wk+uSPeSGuysu;r zH)QFa`R2EN?Xw>DlIUftY$hx}dGOq3%2u(b=c(Q#FxU*!A$CeDKZzmCm}}Sxa{!@Y zeu%qLVlEWOx=0pDwJsL2ZvbEI*l&@zBuW}!{>NPclIrksG%&E#H8$1+zPp*{tqgxJ zEhOEt9Bq~NNFAr>4Qg@Zo0vjG7N5%o#FoD4e&09D4M_JVV}F48TE1w&V8f8hIk~%k zuUnhgC&Qg)Iun13Yt+{}SCx|cdM8&cXb%H3iR3vxU+rg`MmLi(>;n|(5OYh!}11vW2Qq_(=p{fdk6_r-yzL$5CWBn6%itb1*zNBb~l1s z8kogSS8kEcPPK+7mhdOTB5uVjz#PH~%p1AY|9he#B#U)Vp9xJ&&8q1L^y4+*p1Bz% zf@^fqOimpsthJ}hqC;lp{P;B`tEwu18qHn&!`26K-)!88?$EPQ5Relo0t~{>Z%00s z?lN5{uFU#uw3ve{C#{Q%)ND&M;17wlMqbOwp$vnG4loh7d?u9gOo)Oi?XhyXt-F!+ zO39aZvG2zG)*%GEx2^BlPNA(rY>Fq-O^)UJm{V zCJ{Va$3%8iJWDaehXR69N+!HvrZzusFlI+Q!7Q>rt@Jw!`CaD&^p}rrrjW`-(D+!x zrP|Jd>2XK|)rpL{h^~8^4Xx7Xv96ZnXgV$}vlXvzZWq_SrejGdayPPJ%Y3}Ub2hhB zpBKn6$wKgVuaS74oZSUBp52{KA4~8UBIiimZTuiz&IXU&E~o71YZC-Nqj`#lkTN-t9WN-V$e6oI`4J!rE(b$r1s^#cj+jgae6~? z#0D%OT-W4BMRIO1P;0H-Q~RBl;{V(7a;d>Yf^NN5(HD7V8d-ikge(8_`F9{6R<{I> zWQsjC4J=3XsY6uQ_;`21%Ets_fE({#-Q*E4b_aIZSjThuXu0VFXBrt<860^%;4RbW zhSE~0azNHKS8@EelemD@Xe1CeFkJD`46(S<$gMeSIyI9%fO-UR>aD|kQA7Ka_wO(p zPdDd79v(JoqQq-|&LP>m?2HOV=HnI#0@Dp=oS?-$2KN8C+)Y zCmCZ+2`p9+cWAyEs-Qb{|Vh7~9{^=Q<2saMQ$+L@Pc) zl8i}0Cs&d*r51o`a?8s2Hz4B|R%3N&W=33k@fqC1iVG@_xPAxtBv^L5y#ct|vniYZ zJM7j0eZSdrv$M{jtmBg@e;kjI&rqL~oLcIyK-SRy$A2FWpUD3`CLI-RL&Kq!p|qP6 zREzJF*XihnaR=4d2YBYIiXOQ>UHN6YCJwg`$aX*rJFg9M#0utEa?`12-R(f2%mg|6qYFA?x7|HU8YF#dJp;|C zi{;-pYEk1;78;3p91yMY+Uy$)bGyyq+-0fzR&o%c#OG0g-e?cA0cIPM6_jZfHda)W ziYqjSq_N2M9@yUoVSRNIv$KN|POYPCY_W+Nh98u;+3CkgE*Y_NB{N?Dq%S*}HFE5oA!Uxhbcr$>9H!%F#fk+=)?3ptq zyaz;FkgY~UOZ01dOi1^u8WSl>Wr(G`7J7|Ax;<#Ho1oey(-(`(ziqlRb+H+=YS7xmWvQdf7{ zXFBjySPj=?Xd=ZXGuw;QOUY%^rRKlgGwFZ3XEoS8rL|xm;w^lsB)jCjbC15V%7hOy zASazHkWIHXBwZse^0H;(V3qs97&Y(A#9+aVeK#W*cqr}xn`!MGftSek;y{yleTb~g zcEDrKl=sZ-L3@ij8p6g5scMTi+*rp_6owO>*X6Me zyVN{v!U$n-A6G1ysX^8+#^`bWeY3VD-%ReanQPyn7$X2YGGv8g+B`_*6=bkz-;bZ^v znEKiG8sFB+CRi%1rsPnYq;wwHL$|FNjG~;7lJh+b7IuDq&M~Ck9{vbeK!fB`;0I7# zix3Je=dkZH?|7@o`LZc{U)@^td^en#i&*{$Am20)?|9%-4IdOH{QCeH>A3e-M{s0_ zZ*V~C-&QT5zPd#gCsOqLkh|2Y4aO(P+y!4|=9u{Rqg;dm@Xo^v(vHUqi?uAi8x^bj zTq}KPaEnXb7Sb5-KzTIpL9R+Z8$y&c2?P=;pRdzjw0$rkbjed;O=3>sm>IrlGTB-u zztCN~zCZJXEvD6O)yUs}#I;;xX@A{8(&^MSY0~Fn1?Cl%?dNL9p=dC0piFg9dpkwI zUusfd_ezpW;Iv>uuy#1cHq6ulX`_;FI~W*{lZUJ_3Bb9U%)8(S+||3HFNO<|#<1aM zVrOzgKePf%lhY>Tiwf_CgFlD6tA9{Db)nGC(PHVL*kb7{$v~cvh7vIJ zH$M43w^+mz5YxKdI?{(XXYFVIPJu~-iL_5JIHc3`T~MTh!I~0Qk*$8}4H;kG`i|MC+2#3l z;QH{pxER;fKTpbQ1^181CALJDd-frt+2S{4Wc1XaP0x=nM#^fz!~|=*ZJ*WSVBg?s z%_=G?%IQ@rkcG)GI4k40fBzv=>5mfFm^&+{e`qe-9rEMHa}YX)&CbsLzNsk_P>#5b zniLET?*prfGUN7KU?DgA8qEcwOKQ;WM#S)}*U}113s+oK?o%q$FDk~62t}rqM5+lJ z;HLQDL&%*+&->^8cRV$}nr-m`l{}yX#-JMJ8>yRQnW+aoY!|WLk2piP-|%CKhZ$yT zSSaQhS{VT6IYD*cNu>4k@oVSw*@Oi=DJ@(E6Y4U<>SSWgyiRJ>#jtD8wu!-`mlqs! z$9rj@kR&ln%wHgFyU5WKMYvz4%IPRLG0j`aEs6 zH#*&nUU!-@8U+HiH}4%I#(Phbv@-)age*0svs#B;eW8&K8=)}iZZ8po z_6g}q7-k?4r`);FYjYcElAP>unZUBiyiHwO|7Fkk@|0&>u;;utl+&PzNW#HwMTHP% zyVsp0VPj*H{T(h7u@0g+;LXh-Mqnglz~;I;;OYKNs{?hzVG|(%fqtF+T`&#Mi2^U%z(`RvPnTag{8fFa@DRj&^LfMNOc50t~}5T zfRtrmm#)R0>`!-F89($w86jw0R#hG#g{+evdE?*w1WCs?*)@i#R)wU~t$|bq6BNF< zXa)l9fdQT+2pa*Oy?}OCjwY>#(Da$Z%H1sYA7Wi)UMv~b@AukCch@;^A|Fs|`GGkK zMn3_noSN4MulDx#9MSuf|DI(8y6Q9>>myfII5*BkRP(C|teSrf8hAK7u{eg`>u`7DF*zNo2)Xo8;vD%~2|+w3{p9b-3JD=aYX6c|#2PH~O7J11vJ zxqFU^D)pEfHuRy(MY%|{YwtY(6;^l^E#73+$<7$*<@VKa+Ih$JW!<|(R>y%wMMCVc zTRA>4-~WhsVeRNi`=%5L9oWBU$zD7^ho*vF6I`uhl8!4P1K=Uys_ctid$lQZI3l(N zjhxE(F5%o?>UVp?&+bMljSGgB3r@u15SZ<&IF}=C`fonC&#a~tVff+ymt9liqq)DD zL8HiJgT(C9pK^Ybd!V%zTg%? zxHkHzWD%m^)d5|sQfKGUA#(iu^$l+2XtHRfDq3W_FuJKBDc~IaMYlLd!YwL4ADbec zYJ%52)HV}xb-oWKyuZGm0&hYNZf>iU!4&V@zMY+&d$j={9Ccsn&@F>nXCZ*2XieTp#jk)A?l&F$J-g65YSAm>=i|?g~{?~ zG%NsD43>n5q{rQ+YrS9AngZ1O)!5yI-dUYQeb1KgB|zRl9x!a?V;SkaBf^-yg@c$m z3cdGe5b1U3mE`f;dz(?7zKQd?74}nMydDfGD6->JwS9g4Xh)tz)OJ$gN6<)jog92 zi@xn0r>nHUk(TNSXc~LBJUU6h+6UF@pDi_cJ;+MzdYIYA+N7mHI?oL9U2?Y7ih*?P zq*Y&Ua#KOw=@Pq4%>bhXjtH>^$9p_0iaAn!+7V;0oI2d z97|j!Wmkh(lEvHZe-3tl-!G#B604y+JUVdmf%c1c=9vmiKAg~&^nhr+);Gd5dGx;|WXBluV)mB;de@NtQo>ftmnx zSDHrh4**3d(*uk$CuTiE-&{(8yg8R_!*3^ygbwyvMU+dqAZ1PNilEO~&CVW@cxk;wzU2#P?JI~kC#M@ zivO$2hCdV)-N5pNgr!w$sT5Z0pPEH9TTFar%0=ZTcY4t0zNrPLe*|9S|C*R<$U49< zNTX*pN50Ez3?h#qB}(_R+QgNcyt}(4`=z1njf35fs;eaO>tW{JFb&S!`HD;Q+%8+- z@!8~zH-II)04V&^ZC?JipL_fpM(G?ncvr*=>cU+xG`)};!YzU#^Rryw>71?=N*V1&`0m z3%u_U9sa!#O}{X|P)LzXsiXBGB1J9fT~Fk#7}FlI7MJA*m*1({64CsB3!85B$3=*D z%F52Q*VDLZ*y#4d-~NEnLOHCqY(Bs|WOM{*hDK`JhQDRKD*fg$YxoP=Y$yIiy<&Wy zzwljilANbwEb713TIT|OpGO|$e41TH zu+2Vdmdv~=#%9>E%L?l$e}cy_2Z3wJ8o|K0lB zUVk5VUCrveR6eY0W_5*q~S)ed0}>wdu|tM^px=@W0JQ)q_o?j*C$dLj-CoX zbiID7mC^0eJBuBZ1flx17I&jlIn7asyqv0$xV9_W!?vT_sVRdRx+=RfsF!Bz)nIDT zL=$vGys_||{#>;#XGyf%Tze5A$9(P6b)S>a4>}y6ORh%v`o8vFI?(e0zrZPoehobR zc2CmU9vc~T{hD>>Qw5mJL@2Ac1TwPEjG4?OaiCkB3pqYJm>(w%*uj}6`&3$UV~<72 z7Jx6TsORz$hr_c~X++;ax=#!7)u2cJ)3r=6l-oIh2j+s{UF6&t@}JLWYuk~^*gU>X`8MQ2)uve z8d(fUTrd5c#%&BH6T|?lCyxWbqxn=26S7WQ1(fjw!uB(7%h8a_ZXo5Nas~icuaa^l zEwNgl1OWkax5_^p+65&pe!frpygiV1ZXfzm`kXPkp!Twy4 z5hxj24)%ZfErg;l6_s0*r2(|bFEn~2t#M|0@aM5;f^+)Yb3Xz?0(MUJ_YDmZi=A>R zQPBW|!VL>MKJM3+67#2&5Qxfjm8?~`_aIZj;IdXx=nJHM3^k(rWRgM5@}W6o)Ow@Bd;)m?;|Z>VpF3Qmk_vz zz=KL3UDyeF6tY;+<%F_wOm=f&+e*iw*?z?)1mBnVY-HoKavaKf4V!$(^GOlsOJ6iC zFsk60`{qfAy%S26%SJ=s_Itws7dM<&9(!1eG@%nB4u`I)1oG55sIp05y7-8*85>Te z$sLCE%J5RPQ4to~W>?lp%bSed+3~kJ2OtlNPG}ixIz(RA#pv84SjltL4bYE~dn0W7 zlC@vSa`mL*!kJz@55H?%J998>&$~QYdG$OVZJBF5DyyC?(%IuyfqUP`VcW|1Y#-WR z)^(uCoG`-DITS{#e$KlNO_RQQ6`zo{{yoFNmppG}xo*x%I#TfDy-x{mg94P*I+I<_~Ay~?QWxNn4 zU2vcxkO{M_NGsxsPRPdwH`Qno2!1C$_=08S@*&CKuaH2Wyi*TI>4JisCJO~UWzg2J zy*-ug8Irgj(Ml&T;Thmea3xZ3b<{8jN%VJzR?R zyf8^eCgkP8F;yAJkj=6GO{=R?<+=F+FtPx-pBV5&mP090Hxnx%pfmPH$LRT3Tqr#+ zgSvI0mr^bH#21NQ2<$cj%X%ncR8Sqn77Y)kJQ8zXBf(g;z1O_(Z2{A^f&wN`#n#06 z`1pYBhb%ILem?QBnvc}3jRB|{88JVCphsWQ|01{ ztAlg!h=SqvKf6Q*u*s&zNJhZ}e~GWRw4KV<7{+Ucr2Q1+;w-DAQ__6rwNpZGk=J7T zEB*J4idufDrt4BQM|yY*NR5=+6(BO4e&5ns&oYY<+)Qkgk<_Cm6x0WKL4b+u0EqOL+e}#71;iIbboJ+(=*j zWq`yR>JNL)&t+WoUDcBFsZjeaUd{^m(29(gC3If-Fi+1`@ELr-K=c;N~G- zc9p|fW@SbsDk%`mHZ-g%bJjs396&QrAdM0u%SRMzF8RN1q2c%>swp@*K7gWe~1x?@c?z*F^(!MTq#o6 z2p7Jx(pOJTke*jf$!N9O#65TA%u|lmX)wK`^fCkx&@cui5=~CBn3J$Z^Yzx>6LH4; zjZ6^m1!qc-A;xp*Elggfg8VV%$2v)X)JgBLOG_MM4<0&Ar&BAcMTGZ&MKb4mAat8n zQbXLWYcXW8K~@o1;|;7nPip&pWf!Q95sxVbZv)d-8D2MYgD1A6`ETV22nlb7I+9?f=EUSqIy57H z=5q#2g~<0=NB&ehuu5i-ISY8)g=aw=R5Ib;E3*gC={5o!>g;E8wu}Y{oNyTKE%jSG znH*46%O7G@1q0};nO6l<%agjPc^jG8d1&SnwNt1gukBz+#$JgPk<1W8ANWz;3PzFr zzWcSK2-ae@`Z|O}Oh8n4Q1fUD_PL!$poci2>H#AV7kTLv9|8lnfU~2^_=3g78Hz_C z4aH0er5!xqzj&N$UhU^$Mna)())77CfK^@~7<1t}Thv?{Tx)5GRPIw6KVXO5Wj4vA z#!iZ+8r>g1!}C6!Lb+CnEwa`^+q%QIw*h$Sev3)=mQiz^e3DKSu!t6=0XcCNfxzSl zM3n-T^c#n>A>6McAwwUELx=2tHKl+dHwh80wacSzT6Kgsz?uM4*aT<>F|>4goevY- zPlmwYB1^>hj5N-1x^uB;sKOw?`RmoMQtR84t0P%QU`&Sv!dxikdggk7XPcImOozu? zCsx%Woym|9;Qjrh%%JP-4MH#|?A(U{UORA=e$POD%}wB1Qvt&=sb=HP3}0!A0BZH0 zetJumD2r{Q!g8~#3#_n*23}dkn~65%}poK?WcBNE{Iia%Io;`s{qA=LUW)JvP72F z2B&&z)kV8PcA(PKtOA>!wwY$y9<*7{%gt=%mvS6a)0bX7dT5|y2=5v7{8Pp3Xh65U zc@=az{lXKn>s>xX?)Gl!^vyFBj<-IfiRRh`pA=$C$^KrmNMTuJe8NxB4lNP^6P@S6 zaT6008-9~nKW@zBG`_WiAmJP`#I8-cVavh%4{XR?7|AQX zaGZrrl-IE|zvOBj{&Qi!D3N^}U^F@6xY2zia^icq1KW6Xi7wqYf@kfSHs(qkd_k+9 zY)FF7#7?7|lT!1Vq+xq#Q8Bsh?mmPK zQHhHB$eERft_~qd68uuPQ`p*k@ipMar-Ex`E&a(P8792lQP1pt?yQ+ZsxP%0aXGr> zVQm3Y2M7DbYRJQ7T|r}rCKwNehW2EiE>kPt_77PS1?>-6r09Zki1SNqHVv8-nT)fi z{23r3`1ZUH9jK#jK1|l3prEJ>xOffVR@n7EC=Z3j!SCjDe>Dkptfz^l4PkiI41*U-=q#_34R@0b^)ax+nn@w&$;46-;Biye<+bHB7H2ncv^ z3$$AL`qyOwS%*jZ&!<0sY`E&83hrR&02}8UVHJ+tfKyvf5QJ%LY<2%ua7#K)duv`h%O<9AS7D`{c))UR7@(LZW_W;e z6)ACNFdNTh@#e<3%kYF5a1UkHQUW_?y7_X2+}|q6pb~&JATvar2LE|V!tX8Aa*CBy zv!i*r>QLh%Brt@*Qi6Swg;I0p(AU>zA*0w0nn7~(BUE+dys!O|r+e{c@+Jwj#(Nfo z-hG?-Ox%}WWu|UtS_Zo<#c~(j2z{E8s-yivg+GNg6Cjf;k*s9QI#0+xQP}nod*NrX zo+RKux_57?!Br^K=j6!Mt%qj+TklA~do@VteS-PrjPnbxcICn9;|*O24ADlO4tdNT z9!pnP5g6oiaK}A6a$Y2E30CgPk}C z7OCH)-80rCV9%-@LAhc>E)Q&~toZLQbar zo(Tp1b>Py5$&UcplD-CY{~CcsMv53EOdo^sJoylQ@kVW5egS|kbXcGLC82BfcnmG? z>1w_aTN^bvn{p3fcGYf&_|lcX%cBMef`sjVem&c6*KEiSd%DelWB%YzERnVW^mP4^ zchL9e&vl;b_s{>N?$wWScS#rVZ0)L%s2>{1F&nMnj7}KmQ|jxD>@9c~qkNY>4p7(! zFNtrP6(MX=gT+Wf)ru1;Z4&|R)~BdC9ba36MhGhUXy1HRR1^|yD%XLPFB3me!1ViJ zX~cEui`BxX({hvU@17L85%3v}w73d$8jV&Fs$UN)kdXptw^!hfxy}HyvA3*a<{gpZ z!qO}jLMjkH8AQk1&%?tyE#2u`9Q!{S%*AN4%g0ZE^1z+~Ag7 zL5^wV=;1u+JP`J<)Wi*}!fi4EBmRVT5<&$KshyMxztCVjVlX&RV1Li+0c!FD&#x{J z0MGyx%yle+bkXG3@z*R_L%Kxfun~glx&DU+Aoe-3#|&)9AXAZ<@n6j+7vT#7LDv^& zN5G5T*&)l@?a}i&60BP*cf`syhCNW?NG$yC&&bP5ubF^Ekf%@k+gLz1I4tD40>zY! zW~rRUZP_3uI}z&|OXvqYW$Ktdx>K3EfHKg0;_}kx$l=fKbx&CgZ3Ng-s8VwEd-%xB zP)vHPZ)~l0vlWYZY(ZLE{kzF;PSp8#t<+lFbK@o8PQF9A7Y&DK`aI#NTN;xPm9Y+_ z$0_Vu4rluI?76nFf#Upar=Z)obTitB?q3Isb(;<4U6HC(H;H<*a-(zT7nLinh$at? zL*deSXtEyvew8Bcm2hcTO>?*clk7u*S4$yU0UrV!bnSgH z0xMa1dD1PUAuqdStUF;}9g8_CT83j)gnO|*aGSUv4u`vV$VD_h%ut({{Xr0fdi_D? z$+b5ODu{?aGjQ9~fGJ_;R~dQ&{I!6f;gV;iTcT=K;_3*x{`h1~^GsHdtXK?8(Lp*U zNpuhXt0)sJ=w#Pu$k5N&@bWj9YLlrwSODbxxf#9vZ?$4uBZV;z*6Qk)ViSM#lh;m$ zyay;$IG&4eTKG7~$CgsK8L=Y(z2p3n1k{ee>S!qOZwH_C?|>pPqcq6S_^!cuQ^r)3 zCv9a$Bo&^AAFDkzUO|iMm8Fqe9_;UD=W=kU{o*w-{!3lYi^u=sVv;z{MKT$c4<+W8 z9y}Pc$Mc8Wr2CeVwyz5J&wV^bpD{S*0SdHFpS_PAHOP;M)ouM;`mA|zuy5x`MDt~1 zQEhaRRJ5H?{%URgX30$i0-c0E8>^a{n#Pt=HXZ^A;BW?PUyse3Zg*FdU6Fy>3p>F}<(u6(478k@*UJuUSI5*+-Mxg6CqnDI1v{C|f;BaU9%Fb^4 zJF8?ZShmN#B5jxnB9PbuUK?3lAD>X@-5vOy#teiavH4Eyzb7ZR+zH4=AWqE6!s0r7 z|8bpHk`4MA`~ex!Zg~mZ|t|_mN(>Ki`j1* z6#qAa2D)M;4B%Dgk_1lmCjqjtrA^XmHy6jwM^zS_*_FTJyL|p}=sA0O0!+iaa@P)& z^4uf^hm%mpMA>c{`voPl4%nP)1{S8)$k2)!PbvWkEyp`!`UOVPeFL!w*OyM%lQF@YS*!~t5zf5*d%ZWxUNlgvJIYWTHChWxYfPxPEc=naSrDzG!tKA5 zMhdtWR8e1D@?2$Jtx~lQCK=W*S3?tUfCPE_YK;x6yKkvGytjIvNF8tw8FN(<>0@_> zka>(`$@8L^+YoV<1B1~mHEk6$!!Yz^;)vB~)X6|xJ6=$N22K<>jOho498Bf#d(E_8 zyl%pJOnE1$TpN(2(%KJ404+Ks9X*fGx7v?hP?HtUc(c_>KL`fjmssEhG*kX4{ zR~4d}lLj;mbTB8u(fymrf4k>&769~O{mhWb(7CBLpaRpmBv+S()#!L;lGNDPc!vm} zG8?=bL-(n8#*y1s%{}{LiNZ>Pp{Xjy*3O=a%+wYEmO{~JGzSMelQcjO2uN>+vj{2; z`@p5@QdDzj-zgMc$2Hfrer1xfl5`uii~H@sT~RT2sxe2Aa1{m9=PL!;2;|it+Sg}i zF0^U+u`j<8!+m{*lFBmLwUk=_UTbz+kRWbpjmxX`~7Q&rG|(O+FUVc|0;D&PWM zOGVkBrGZ?;J989#v57ABE+C9ao$uydisi>&*C%A$QUhUXY_YVg8EWqZ6-5(?*=M~k zzS~WEdU%XYPIherlaC)nX&!>plw_{yu0`AnE@g6!U87N59H8T08ZQG(SMQvlErct zqqO?DfGi-ChW0UzPiT}NiBH(M*e%f2-zk)s#L9IbHn>13Gwnx*Ra27PqIip4y%4~D zfDcEbhoN;x7_zkb{9V;nPXgNm7e^ycb9Ph-E!=Z&vVEQ$=5vGbL1YPsM}GX#n#2)|{ntK^@CP^nynDLp3>0r!~1w{nBgQJ>hkib^c# zzOSrMJkd(_4!VKE+P>FG_0#JQ$%Cb(25)b=Zrz(@aOJ=Bn@p9?hKy%Ln7w#L9a+Q$s&;axC<))nO3!>&_*hY+Uzi5AFu^<^fQa zSUv&Y(Cx<4qTr+{qD)NBOd4lyNNL6Xt{lx?1on$7bBW~@D&Pgt-+opjy^!E>|6^H6 z0Sp#f^7~%rLU<{T-oq5Lt68u0&2>3!MqN^(W1P>NMor1p)%?IQ0B}_-_@D4+Sb)d) z)G8?7VwyN<+#~0^9Ub<0tZQN60}$&l{_B?_I>ic0@Kz^GN#+Qy2izK}K(Tuw=^O`W zI>*PNz!X%vEp z@2-V)WZsAto$`zP`Z)WkB6gofZo!wDH>kE@ z6nd88b#XB(?Hv(#ymj;#kkLB!$Ly(6s>eC+OPb2A=Dp%I+38;_Dl=?)8nxy77swxew?b!;Ka1b8K8-fIB4iL~G5t$@8%!?Kr+Z;dZ{ zC)v5V2el6tUy8b(U$@R24MvU6O$XmmCmFjHfUe3H| zP@mtTNblZLYNT7~0i-`wV^)*?O(D5uovR%ZY01j)jw(K_c!F?jFhPsOY|-9YHkrK@ zm#5p6emxHZb_S)*4LByocQfuQ_x1B|;?6Hen(JDD^r`($lyLzNnfMyHj>g2r?9Of( z0cL4I(BsFXV;8p-fm9bj{$D0J0bw1Eu4un4^Kdg!>Od`tks}^S+=j8zzFDxt!AVI(v86<#M+iy3}m7^CL<{JWjYL01v zjeLJpVjCFLj{->a)924QEB~k8!vpgG8H6D8tJ}rW+AYGg>XvfG`p`(c%(T1Sj|I*z z$p9}EvOg>!R`wXPg?q_udH=VCTUuHI6qcl_)JG(H}Nab?@L zg;diB4t3nR2b@#2uUXQOfs>QI?GP7_nEt`N=#igRh%gU7bXuDRv#Xbq$Ju&Tv-iPB zJ=R#F?K>L+u9Q(+Kn)ulGDqw^vxhcD#oujtw9VBW+&$*ew)dxISmJs2C3zo1Mz0!7 zR#((VHajBHp)*pq_+)=n<8ou}JmDS1G1mIVZ(N3y%E#}HACNsyOVu_M=1Bu1Ud&tF zETfyDUDPu31M}I89gr+^ype1ur+!8nG}*KG&iRIq#(IJQhBHmp#DpsZUIeOSKztI1 z1espvCBpf|J9dDjf&fCf)x67v?c-^lfF#Qyz17!lTN%KN^>Fh+b=j9%@{@PM zOm{$3AmZmw?-BlSn`E$w-$w$WAOO6j7b+bul^E-o=D%FKq?wlQsvCn^S>1U%Swg^{0B&p>tcRyU4Nbj-P{tXK>!4e=bnM&+|G&ypWrt);9n~T&T>qeBrV|Tjp+B()6q&u@* zjcPyKqVvwYroNCV9v+u7Z?{-5;B%ug*kQb%OZRxZf=;zkv`beWRhp)3DN1f1wwTD9u8TX*rZ?m5ee*TKe?EbM=Z~M4>sBS{mjqr7{B9jd{mFeAEQ^rpWD-H z_@4x@C!_bkeE|1_Rtv%AoyZBm{lyNq^EK0#SL?*<+h}Z=dd{~G%&{N`Ypf;Af_f3z zPhM~YRG!ghHj86Bce3s#GC{lAVaK67{?A4QKmidsQSH-m{@pm!W!86lYq41Rk}h^> zUi9{-Z{K~u5w}c*y))=_mC$=5TEEHtZWf&{O;@^ajw6U0NKr{pV|@&OOu(eMlJ-5K zrJ2mg^S$(yLn(>4vdS=#GIuZ}nmyGhieYt17XQ`i^ zmqUer&a2+TpXPCF1__BuVp?PZvhi5tGS?Vfw`TkoFUJ{}W7%UANNvcD{Yzfl@)Q~M zxy?@51oxRkjaWS{O3ao3S=6Fy53l<_EGYp~9G{&IJPw|#`7^dIUhjoas>j8MpLMF@ zsKsj|Ty_TE8^UziB&Y^0=xmy9G)1L zDu+tiN+YVHS1Wu$B_%*VsRPwfVZLWMzj(vSx_BUyTkMfB=Mv%$XzjfB2G|T*UkhRI zf!bR4fjI5I?<+oIYVhEo3LsJMQlJPeK?o`V?UOQ!{bJK)Kg{vq;?~?~mGxJ6IMWT{ zMr|A&VIWFRMxJ&6(V9)$rr>LY6HrkBzG)%p^>=abZpZcC(wy z!zcS#WsdrazIKo7?&)z6y&kcufv(XnFU~Whg@xUvqcykpyN0MPZyMPh;F$G8Vac}V z9e(+2zx7kb-+@b4K!E7>OEY^{g1B;0fHx9^uIbNd7-9$30b7W!zUH;xTdNx7W#(Y(v=b1uko+KuV9nBOHTo%syG@?B8s{;L+H-d<|j zEd8Hb;jTuIUCtK}LiRE{{gK?5tWTdlDoob)hlv-;DSmt;E>b5 zP+l}F#!LK3c|n95pa#qjSRYUENIhR`SQNK;QIp9db;vI5w`Y580jos0kB{pzuehzx zDPUE*Br46*#D*znb@}TJokmWH>FG$^F4d;MzdP}Yg{jP#U&6a3@f&KGc^K5#9|hm* zj%(|a2{gXMMl!}fUQ}o92wj~PKeV6G`57-)W)h3u$)U=%v~eY)=ucMQ>tw`=0e{O{g}!sXBkERutUXwlXgv!IZTZM3ClodO#O<#h4Pe(#@T;h(>>m|bDirqUB{w;&{T!CLx&hiYIVMsz zy9R1l^jzWm_?^?UGvEMG48}V^kEHwbX{|dRhUANRpG7$OT&O{^C6Lx7B#>hLvAIqW z>MgGLLvY8};&zliO*yA1h9buKNM!cT!@u|45=iA7pbgI0PChqZXj4lhd~os$xmEg{ zO8iB~iGSNURcun;#}Dk(VQ=QPdF(6E3_u4q-|rGjv;E3fn|0d0xe(8Df<0RXbs_yd>bDNJPi>gO6#$S`=BDM%yiPSX~ zO9bhysYt7`Ly5n))5JxjaL191ODzXGSX*esqT7ife+^wgI#&s^Wbn^^AZ9fd2~LPCL3i*-mx^NZ7i z$?c#XJmAHTZ6a~9FWpqGt2g)fiESGMR{P=I*S_PNQg(vUNkPO|Ll|KzYE9hb9q>h- zcGmuUVs=-30ffW>sHn>Em$+l&3gwCa{~A+0khvn}wn_x%fMBo0g7$S}=RS}C@gLCz zAKBS&Xgqw*)Wu6pM+f`(F#-%Z<@zv1XLlcS=s$d2^&_CL2-*GMOdhl#d$PFxG~fIe zi3*eU(`OwndzSR&FkV6a-qZd?O*vyVaIK3Hb7zcGP{#$np4xGKR;*aPu7lqV4^Ij* zPO9(rv_Wai3-$MpU^nPRPwWbdZhg(+N!?vM_MlN$tfGC2P!e*OIU#)+3tK!E#JF>= zN?#CyoWgCLXWFB`!*GQiZLB8`9VS1|=a)8z1DJ2zf0fg%>i7=)6D%f^PrC;9)mH0L zNyW$c4kO=B6=g5IH^0qrYPRe??9xs0w$ib&#VPF%FD-4@FZ@m!@G>=rC!WuN0!y>9&(VfIg-ElOH1jU8!z{7qZ=F=B-$(ME@LcVw z|EPGiyf5KY%>Sb0quAf=B(>r^93A%}1v89j81GqK^*$Zgc3U26KAE#Ej}}Slkft(b zr{m#@az3itw6}MB!7*7*9M1gUCx}-}4pm(J*xqXm zyb#8l^Cv`B_v=&6li^c>bfa$M+1zp+a{HnCQy`=etNOXf&Kl18+YdK z#iNJbK|l&Hnk%UaM(Kcb)$8Sh{c!Kmdz7mfP%34pg{iTEng+O+=s-CqPygF{hbBR4 z4;cA@H{BEtXLBY>n)%5*RrO>h8+%#0*va8l&k(0_c5W7FM0b5@IPcrOPfO@Kx2`dvn8&=`Q2t1>>4wa~ z{-2^~q|@vhWJT+N@YNqD>8~EYLdouOIV?wOl+V9~Efxe_i$cHk|H4WU`W~+A zr|4;FDj#k1xCo@*f-@}hi&o7KU*vh^s*8FL!C9sJOBxe*zqjMNH)kdNLeh)_qoq$T zoc!jyb1e=2WJ~tV7n%05vH~eWR5d>)mXshgJv+A-bx>`&gj+pDGj}@bB{t=D+ImZr zyTml#Qtew=Bd^TWp35_Z!VUfQ1j9)$KL$r1mz(W-jXXQ6yAL+De|HaNde^M__I)au zhqj9KqQ*I*DRd2V(?K^UZv3Jh`8}HLNKCx!!7P^Pc5mys3;12@S_>bAF5;pRtkr6SBeXNT}yc`v3=1K@N0 zpke&G*uNi$7KOdqs2uX-H@I?j(H01hl%Uyny(}_pfOS37UcVrzz+tE`7EN1Unc;;z z`i>sOYatxMpOf3w=b4D_9ld^Xu zBkeLiR&zI5ubzGmM2%MiqYF+jcXA(K>o+?6%UTG65B(Zzyf;(j`Q_UemjA05$q1+> zq2>Z_Zf;KLqFD!G)yz~zg0gPKcTPR+N=gbp6~%oRHT_U)-jk7cKp5ZmyDdNp;?5HN z_weWRbl>(iC%*VTBq7U}&<=H?8bQXRms#ts{!HL>}N+@sDdn9N6-K*1L9^j)tMhQ!keR^^1v*r4Mwr zyE~i|P)QIKb{{5av8M8D^hiKlpvO?cc&^odq5%G{TBFasU}y}+qi12+_yJX@>?Zi4 zx$Qz=BzNncv;Z!;t4ro z7#zO=SBi-9QhVp~m9VY%LdG=Y+B%&lwEiP)XtT5v97w=~h8k7{gCU`BGr$c+WE%c28GOzSh#=v4 zHs>#8tUT!-A%98ol_d6@yc%-}%F2jaF9nGb1*qGXZxiF0@kGltuBPtHxeU2;&a%9r2)XkP zzh$J_K`mRVD?itf1#a!ki8;*w5HHHkA~j583idW%!+J5A=diH&6woz9?R-cVF0~6T zSh8i`WUnatkp7^e)ZENGoh8a{HAg9*;-s^+3r%YH+i|T>d6AV)mk{1qC0FHA*{Kw6 z;HoIo3%0~9LFVz#SB69@_v-UYLRY`T#}W;;-^bJ33%HEG?GCu^T5Q{R`gx^yzY~1w z$-7{RqWf#CbR3ycZ^UAHtf3|!JK6*yMHc<9<#9PoO_G#8LfMBa-x9E~Gv+ET9sAr* zkyldfJ3GB|X$P(RSandSH$?K!uy~~{erm=!)ib3<`OpSUS_$8WrYx%>A=dCQElTO9 zI;3@V73&pW>WLnNVbf}1A&EzfsqVI8VW0v1`A08}jQSNpLp+ix={)qMufJ5&H0Iin z=x)>HjZClkTk~un9)mFrL;l4^bGk{o1w^6%E2>|6JvBAOFC-MIfH@R~tOBg)H1UgB zJT>zTE``YhoQyzMXX{fM$jl(^?neA!!9r5mkBGRer*~)B*w~DduP?9t>*kxHPhhm! z+oEcwdj=}AJ+;Q-ndsQ(=ov%u{M_^+IG>gZ-eA+wie~~~|A(@&XrLJR`t|Dupeu-F z1ZuGVC4e$>p8-$jsKhA^U~LvDQd*hx+P1`o$ZHxH8^{~(un$HtqQdHeLEHP()L9}z zGx0ep36gn?^J4FB#~$b-nW|PLLZ-h--_7;eed4}7(~-($h@Jfpj-vPIe_?mO3(e0h zw;O~}s|E`bGX>6+aQR3Y-bdWp+IOp`W|%D^{yB~M*-n1&=9Y^oe_@9iX$MuIW1(M@ z+Ipnr5g>y+n0hBmBkCO!eJ2f~L4!*5^bglLo)Bv^eEJmIw+mF#BgdTy$Ir>&h^N!F zWvK&3{*H#1_v*emJ$$o9K|{UXUc${C6ZgSNRRtBV>|I}K#l*zAtZ3syUj6}|;bQ4? zPTtZP%&0OhwLb_)GCq9g&2*KcD)I5O7kXRi=jm%3))0Mh5KGt^{%UVj4)!ccqR=7a zeqgk+nCBIj=e1oE8pm2Oo^`pn@vZ)V!yxlX(o8pQ$rc5~zcTF?X|&ctq7d#)o8Rq- z5xeOmIeYXABb|HgMRn7g)|48~VE zP{$V$r1QK5gDOJ>sRIyDg8=L*p?Z4b+G#P%=D)d3;)9CV&#wJ5>}&f0S9>p@X{|sc z3K`=Hm{OM`L}{}eUtNc(D)aBMkUXe)GrCj0H`5)tssJWpx@x7ae3PaTUG!LHRQEDe zyjw#y{MPxYHk&$u{H40YF-g4m0hYWxzrWmn*41Sd;H^>kP(XZ5)Ai8hfW}=kSnqVq zWKmifM(e-FYTBR^fsofE5f&C6e+hueNKJ2ra3#y1XW}L=-~4S56jI{MVH$^}nz`P& z$;1W(wcSAU6pWjLuYct)C7I{6Y@(SgLyzL+t1?&0|F6A6^ql1|DVKJ(S4b5i<8QzK zuRak{75{2Mj;RJCR4>*PV0qnp7o%Je!m+)&(*7y*fULiAO-J`-=ie}$+WNX`7eBES z()H+67f0@15N(S5`Q4M@3a{EeXU;Mr7qVH-P%4}mAw74m_1It9{T`jV_453?C z34N`hJYP7yvpsoFt&0TJXxr868~KW8)?E2$8#L&H@Dfh89+=U_i~GP*Qg-Rj6lH#U z_y+B3Q)wp89ITS06^nt)_h!WB3_*Z}@poCA`1+|yWY4?@=O6juV*Iu)BlgIRV~vSAYzP0hN-lzf!T58S?Ru?8UZU!` zcjcd+ws>IMTUtjYWUxKRMdUXY#hEtm5jLKo;$JMJ=7wIn%zuYc&RY!z1~<^-f*+^0 z2_G)S0olEV#`b{_0x4A{3Un6DFIUG!GjsN@?trN|)}vphXQBcVTG>(_VV?GJinSDh z+EIF@-gI64`DFx0Y|tnfz<46&zO8?B4FH#KPv<=jcboTs#O?h{ zQkB`KS$T4`pu5@fHphA#2z*Wa{(WCs6wXc3Q2ttf_{7kI7&|;o97wRC(z$$#2{OPn z?rconCKV_}@NfyA)7P(YtruntxT`5>8u~wV_=9OunZ}scjUm45pmbWC>m3CYAJYMP zomq+n<(9!IJ!=3XaX^~;QG%kGjVqH{Zr6Y{(#LPE*^Xn}?DH65sQ%Kar-9yLf78V? z{ze+fcuXA~)Q|4~`9fyq!};0x6cxhPjvv50IS7~W?G-eWL5ML_|Eo-I;?Ey;c>(Yt z-9+zYP%s{u2xhlNjo#sP91%CwzOo_1>eJa87aSj9$5)=_*}2hv+0BCOAW5Se`ta%P z3xDf}S7D)^cx9&W%Rkbp)KJ}4MHZUxmwFwM-_b3Wy6u+Hl8` z;svdKc&XMp$(qF@^{2{F0)Mv^@0e8=`j`tRzCs`?!u3i8Kgrd#_RH&~)RW^-5gLYW zJkHI-!Gi)Z$}{?wUiipB(1HB(!`ZP z5co^a1O(d!r36PM;GD|J-tm}o=}TO+@jj^MT~DsBLD-h1aY zD0NMP@b~J>IckTX-FKKV>Km3x)p)}B->Gas0y&LppeqWB5AH0=S8E1y*-!iFmvUq4 zHAt|?L<cD&g`@c*g>2KZ&KG~ae;pC4ULtSZ-Bn=8KL z== zic%z^?Mmo%B|q;`YxAz<{!ap=9Qu4=FlLKCPlsYe!GU@2i0R7D$-8|#C)HmXcbYc- z<;4xZxmvP@c#L9$wLU{pmzuQ>(5>WNo$kHz`rbf?*He2w5`T*P7EZ^^S>}W7BFmA% z6QjFxCDZ`8DQ?aJ&hO=GP|Q}j%wJJYX8!Tsz5VeB=;xAgmJ!HYF%4Cp4N2YZ9py+h z@23~7R~BQYo=HSF%(fu^M*kQd`M^$a0;n%#07eU#%*8}alQ5BgvL4zpVVo0M-E2)!{^A`w#o2FH@q8 z4Y6tcz?7im>f)O$q*Kj5qR{xs0bF`P*N??n%L6V&t1cUfE^muM&7VM1gERTw;eK9= zw(`yO9f(n2P8snv%bKWh-S*icHSxYyt+W5z4tgn(OhDO1Ma{U8KYc~yvjL8fO@Wol z*ZEMmw$3Y67*|%Np~2#0wMNC;8oSamxSr&tSFYbB9t(T}3llw=gjAD`3mh;}cFEpS z4d4b{TKv}tiX4K`D=HvkE#9zKvXO7BXNCRS@&HHo+l}us)wc(g0qS-lZHfDtrLXC} z!*~|noY7_o;VwLJjdFb?n@ve~x1Ij}3nSxqJn5!8W_uO1dR$3ppG!(M;%}BtDe|%z z6BOS+FMcu(i^{FBL0)|SOa}y+HA&ZrZHQ40Nq?7Q{UD^`%8Ot+;h)!d9G}_b{b#BI zKKGmMg%xuMi*^EDQn&^5gv>89Gp^YJcak*i@i$ul=zUL-{v{onNh1<1IC}cq}Zv8i8ZJ z87hKQ>p=Hfj%TSM44^XW9AuoB=NvpHCMwruXUsYX~eahvq0~|= z5+N$W99kTHGOL67(+UeI?me{q)D$z7Ve{c$&r|!y0t0vJ%k2_U(jVW3)UTpDVPR)Y1MqHP&C0`VFMlJ)+ypI>x#qmHxZRp>bgAdKbjqLmq>!{#Qmc z4U*?kg~_QT{qJM`9Y`UwzX*4|!Q0sw7U429S91C{ln)zlM$bKs&Fd67P z^EA)g^2`pHIc2& zm^BXhrR^HW|I*|3t64@U!3saDHCsoMv|#*&_Re>PCQvyyt_EF|M?kJ3A9S^YirBz} z2c7@fE4HPVPr1o4jU|h<^y;xyC$Q5uFAlxG&$-^pwp>rWF{0XLwP^BmqoATokpN*^0 z;7$@ytuE?lw()Uxz2`0*y>TiaDXHe?=ZE$J_@;MucUMzh>U#v zY1cyfX(@$7Y0E*G)($0}z4>aQ|cY6>UPGid5o z-}hVFekn;h1=wV;RC}%;PdT+BDHc}DkEGvU=-}1Xa__wUi#kfhgxu`rvVGQ~V)5^5 zIDdS=cM??=&RYG^EHkiG!Sp3c?RvD zoMZyX4>q1ksGBcCH@2RZ;b;kQUu2&J#j^*d47hEqB*F9}+5nvj`mkuLO zp$Bn%(Eli2!-z9lyqpPu%8*Ex_MTdXtl_cNio&s~3Nam>64PJ(pb0ut7hJ*i85>a9 zfw>PHT6NU>fDAF{`1JG;b&_UWtT!d-Esn_6+{R= zh>%!=R4FDw7AJhH>nVUneg5)=%MFEdH#bP~$oaQI%8C<$Qx(QTAoq=Fw|+dx`DUGEF!Mk>qg>nfl}kb zhrDVX9f~K!L%eM4(MDA-%{4`SR02v`AlQE0?WOL13Y2}TxU!B^?3akRc4Rn!tjSRqzVPf!8m<8t7XT9H1t8EscJQVe8SkN&eLjh2b5CO#RaH*@4T;0C*p z(iy|+xC|Q|hIF}sLXD^dMqp9NXQ)cA^%LJF%(pBHZd8v*%oiu5%pEQ-&{@f4%H2SW zZU}%=XN$K8dh_&qMG0MqW8z58dC%a4Wd@Xsg5>4iI=2CwDnRF?at1f>2|j-8y3&1L zJToXrnUT=O`*mWqm415>LKLqoYZD<6{i<;@Q$}4Kzs{i$A=*^2iu5FF^}n@{%!@bU zJ)7`g{4eGv$ZJ13669&S;*VPe{f_tIK7>Z$P1V?rhV_K1I^b<0n1K#qmD}rl#epc+ z{L<|4@o{ukl+R9;`d^I0Sfw9>>YPMI-Uq$yr&$Y&{zSz-10QQz7W{$~>UKKe zND>j`@ZQ^wAHQlJSG;=b9@bT?&PT0IaCC`<859!qv{ZS>?sLV{fW z8gKIcw1M<-2qb_c9`e4-`PlH?!>Z+11Ew2?qz}!#5Ny{-wkar?L3QOI_5SPNDm@Or3EK zh9zZR^1n6SzouGb1@gIfmPEO&%HC*@kUD43QLL|YQ}`8j2~JP?HPJ`?^E3SU?B_~0 zyH|O}eb@WsC?os$>)*_mt;kDoHqL6KUOBplSz1xb7bfAVsf|4rRCM)|&3}Z=AlZ3I zp5!T2+1G{Wi(igs<_&tvZL+yOIiMyg?8qkl9AFUDYa7xHJ$BZ2>P@=(t&rZ=pvGW5 zaI*Nziv&`s0Lr@HUg`s0?!+C_Ig!Dkp-4H#?o}6nWT-X1;5p$MlA#RTNEHTRTIZ~(5R^O^O}Ec5)h_-@9206`VcY9in-q*70RIO?=$5nox)F9 z6{OO=A@aoe-Ig59P#qavy?Nx-Au+K?+@srnBuw)EFE#;0qkvgjfjcp@bV zMjJ0>{g>k|Dbh2Sas-O|sqR5KRtiELVCAL?@&=Trb6#R5dGYFHehwU!-_OZB8MghL zq)Kelf7l1T8*ur*Nz%P|{IZzJ864vA=a*F!RN*elR4Pv>dP_fb4qpS4Zuu54Y%s^?Py|JVYjHfD4?B zJ?gz;_W%WV>E8kf_WAAFUdollVK`v42Nx{Y_dp4Z4$ZXsiP0I{{YTyi0(dqZU0w7K zI1w7&2y0 zS=k&f6sc3)-d8IBO(F7NW0JE1QQ+xDG!O5n#k#n%x3`x`NeOr1-n2E34C!L9wt-VnQg_imASi({7*TcfQ&MEmPrM!H6PXRRm z06W`ilcE1hf&dz@87u&>$5r~cTr}P3>DJsS9|UO_h;Ye7a|x8q`6U%@yD2uQ5{402 z!a_@x?0s59PjNQL+2*UQaLRNC8jQjEnDhO=CE=~@Z8=RH{ySYuO_M1)@B2Sitth=M zOfvf&a{YAo?~KaW9*-NUQ@5h!vl5$@p~U2TWwQM>{=?$v?S;>+(!DPgygLqG&io_+ z8$MZl;cKc6#dLeoXoqyqVE^ZcGH6*@JL0r}9Xrow?djCFO5T7FbepbJ2G2uzDy`NA3 z&37hzCrywy8sCSIpN47c00hIWJA+T6`HE5 zcs3*1XvSSt_SQ`HIqM(x1*(=${&>fN($(acN-jdJm%`s8ueqG{4Vn{(z6SSKGF5L zYkWJs$+LYq-w$NB0MZdO)J1)dC?H#MR2*4dd&kw^8Xd+@QIE!QsnKXWXC*{MMN$KM zr>>XArw6O>Tox@FhU{U!EX9LLsfE62sY@^MCfq{873-C87~R~rH2Uv1{NC)cnk=$S zDnDn)Z1^*hzlF>d~R>0z8!F>(dN z|IY(PN833%noM3tWy$*Zh=JB1H(F(sx(6R8d6zqo2E2*>4ge_31X$JHssgH94uHUi zO!T1mMO$gYg-$Fz;#=J6*u;F#0CC?}`z*`e9=PVd7YVmf0}3Pv7*7Esyq^Kde?&~6 zJ248nFF=$YAhJP46Hw=%h!z1n>ktT@5ZIRY04QJ5@J}zKxY$c8KJu!ot<2t$I#|oE z33*3PTy>?pPD&&bf(C8=5}8G$z{UW-$Jnn(Asl3C{68!JSVK@GCwdT`k&|N#O;%d3 z7S#Fm!c_O2o#9=-8`KF0hAmovoM+!!j}>CAgwXQFY5YV+{fK~<$r&AcyYLL z2335W+urqAB8;PxY@b}aTQbNmv#J%NqK+Ic4v>?z5=!}GHJO~IrSp;-LqKNkuCU-Y zfL1!6PRr|aG4hRMvTh&U-~S||KrB=KFwWx6dE&L12)gt`f~AE^y0xjCW^%t`7?X>$-q`_65y?^ zv6wa)~mzpmr>8TmsYy^O92lYHdr|&4BPgH@K0a=k95!PLx z`}7Kk7I=#1%Fu_Q;17$&g32_4J#stK`uwpf)L~LrorX<0&2*1v)~~U*9RB0P4G5*4AIdWhk}(r?HW8!RwNX+hn`2rG;j(*vNNt zCDh~rttWM0pk7B|8Mu4Svkvw7(81zAb^3H9^7$1NalpX6Ffoa9m<60vBp4utQP&&O zfnZFBs;~@8-^%})hLxwkV9Xm;cU7ha);5WFH9a--RbxY7(MBc5#@i<<6WuN}ZyRX} z3ky+Ne|e({fX(#E=RYrM9vaoR3i_}36M}r!8~qRBm($6jiVD2lPz`}MLT&hcf>lX& zEEas3WpDI;z`3icbx6~A1tow|de3v4ecfdKCr^~*BLZ%qg?L4qApgI93cNq z&&=#pE2=WTABFz(?-2Vxlu$^605=u7oQ5T;NAH{4*Oz9|B2s zK>+F)7QclnX(fID4CU&f*}Xe}L$V59Cx%0-iZZj}E-}P83h#XRLQ7u@3RmP;`2XsB z!#T8etY@+jE_L=8q$E}#DD8`!s1YexC%OL2F`&?gcKj+Q|{WY=2!UDEKo)dEjJ@gBmrNdgp&oB+B_nKHU(ey*jH zGHA=^xB6%%gEOjPIWhzc5f^;>MjGFzwTT+I@2)N)7Y+Qk_|FL+grjNro_COK8J!fG zpfa5~w_ML_D^Q{zBZ;Zz{mf4NXZGxXTvBh-R>n7QanEM2BBup;B9{D1=YtPyBaGFn zx1$}fcUNnVfR!+RV)xo{UFzz<=^%dbf`haDCUT&<)S=L(#&g1; z);S=B!IHd1x$JP$D_B8eV zu*4-F8p*>fHT|UsZQ-v>IluNlS@0)+llfA_ci#b!c#T|*uJdD(bF8i$L(kkox3=t1 zj4@Qy)F@H!4zu@ij8)EH+o4gNO)x}+93zG(z)SyIqho7|d&I=V5GM80pj8c`xDO@l z0s|s(Ry%PIc_t)dUjmn9Sl<~9$+GT)x&sgyXC^juEEf{S)7p2W; zFaS4ma*_l{6oBbfqi@o^E=ESD-zUVm&!rjycLHBE;fy*oT8SZq?OzVcHZc5}`gQob z&p#{@$p^P(#PwV7#}w< zvHq3inq7mhTYh`tLdrxURwt0>ExxOd{X;>SORLo|qVr4oPhu{ul0V5V|giI0+JY z#^~g$jY2yrp>HsH&laF!0BVPEbWf!19aCeLfq6xz!-&sqTkve`?sEs&QUI|N&a$$# zjX=$o9OwUEsv?ujcn-Boo zOOs1GI-(Zyy@qEhF81r=7D7bC?}+)Y79Qr?NYC#zZ%$_<<|QmjKIzuKBx2Si;!z@z zPawFT3&BF~ergmdDscFl+yF{*SLyv-4aoT=6gr8t+-PHumebuhyvjvPSGt}bSaF-S z{s3V)1XR4t_ZGg_`~gCOu@-%Cgm#~qT^%BF^U-2{hdInnCZ}j=>5f=Wp}kirrp%-O zGE*-!jXE<2|5^nYGlmN0DmqI@qDj|QJqQHD<1(p0%KJcC110<%(a#USiD>OnA!yD< z;W4WO5B|Pak(1M{ua|lfWYf;|U^Q6|a+cF}cxOszex^~)k{Np=$Z~rQjA%OkG6F)= zYwyg|SqCB5$v`g{Q<;;@qOYrY2D#4-8G+?4SKj^&KRP)fsQgl7>3KKN?&c!cBT_!v zHpAw9Nd)Kjcs1W=q6jk?G=BM;?e@0I%iD->ckvfXgK}$64^|$x_N*(DE5cbwspzRY z4jpqB#wTmz;3l4tZCCiWbb-k#L;@ARg>L9F>X} z0@%d40JR*^9^`7D(kE+m^A!B|$aWVv{`*L|t0f^Zf`GmtAvg5*g)7l64PtRAnZ9p@EW#XO~!dyJvhh_MIY!G`0)eh zP%doI^S^!4GrT0b2@kj$1;yIyG$Rp@R8LjXo~}oCiP;v;&hFeS`2=K{J=ECbm#3q+ z?viaeM?P)B#DplOqy$=xw|ZrDTFP1ec37y64Y(M+O^=uIj;~+1`d!YOad3dm!n!IF zCks>M8g1L>SC_mNzwM*H<$;9AJS~vtgShYcZKuv6#pCg%JktPO4JS@ip?|sx5bWmp zenj-nN1RLv49%RJ0Ocbn2M16z=NA`O0hAi^O|WuLZppSii*oA~t$;|z_z z!p7N=@FCztmiOzT`iq#>&}$2`6>R#Uvv_MiTjX%4J5_JLc9g~{a`=nQXnI)6RGS1m z74ja&Kq9E0+M^zDq2<1}Fbq(U2gD{|(ZP*a;qB$+=a=CmGaNhp;3hh3di~4P41GofvoUMTT^r;laAnNltlcXO?bCRLZXbPPTzd4giNJxAB?b9#B z^8k7Xi>(E^aEEl@;)UTNo3jq1M^Qmb%y<a?{C>@X{msN!?tC7|D97owE)LK2(qF5 zL5@m-*1o_iKp$!na1BcwSZf*01M&-dzHl+X-8VPkzP5XGdg{8=jt26{UWyl#vVR)+ z&gy}9b=W;A@uJpzO*H-?C=I}=o=VdFX+)`G$t?3SGk*fDKOnj6i6EDHgrH)15mxXO zLxe`cJJ}UJg8U&cs-ahmR*aJUW{iFXtp4eOPdu2O1(IG}VR-h7tvMjO@tSR}7|Of; zoreT^p^&jz*HBvOm-j#MgN^Qp8Jn3*k(BvG3PA;1PQI(uM$PW1rjK|ZgTS`>kC~Un z(z*$a;-jlII5`lxsY#*;QcZ2`?h50kIu=I8Y8sL^+~BjTV?g4K_Vp11geb#}VF+wi zqm9I!YltUd8}W8#*oAMne!{Pn^~yGBC2zkyRv}jPF<*00t;Uq7G)dL+5fJ_2CmKE=N(?S#$&Jwb{$o{6ArN+3p zIG;apb2)Kw4^W#7HnPGdqPWF3UB$o)V<)Q~uzK+9Q@0&^oS%5KjV|=%T3(0gh7OQ` z;HIFcE)G}`^mh;laOC2r-_oG$QOjPu8T?E?>2hrv{I5kTTQAr_Ns7mL9krW`Wm$Y- z#H?!jf6FTQ`T2v8;xT+iO>U8o7d(UMZ_oO&MPX4YEJ>!lhvExfa9VDYmI#b=%-{Kh`{L#a&>dBTZFwo0Mf!G21iZ=3!^3ss2c@XkbzqE2g`Zb>Na@dN^zS%~ z9Mk7FWihNQRWb}wQ|9^rkboz# zL52p0m0w*weV*&F`ePcrDSiRi?Id-HzBjk)eIoe;gl4{PtH-P&#d&*IZx$c3QuX58 zi|mQ=TAvMwF3$7IZ%>Jgm|GY%y?g^H7-#HUhSoV8UN2r$LfM^zxCB(f4<-z8AVwcoyHY+@vWvH)boP{5*WF^pY{#)}!B*{QU8A*M`>i%+tZ!)0-QoL)L(kJ*-gKkf_d&H4iYw z)Y$($icaw)8_m4;-*YXW>!{*ESWYkb5h9_S3Ty9()Hhi6zg|PYAiBr?_8|{hH4|Y1 z#(*WiQR7cMY0V#d90!}Zeu9-wja&Tl#%Ut%M;4HR#-;lJFL*KC25>FcV1qzt2sn~s z`NHIS=LlHtEP4C)+l%IGfKgcN7X4>>6-LNQipHB8w9ihqYbC{b#ZdP{0!D+3&ShR7 zdY{C>!Pjv#Hv|?B5i-1HUmc>g*>yIFv~#=w_9 z5mT_PJ{IO?$!Q;CVxZ`KAnzO~U^C(ju1Q-YUvkJDPqZxQF?wr5s#xTHSZqxlHD0J! zxdR7%w&c^M`aEYCMsgbZdrHbK%6JO{GA`J~2q%ADqAlSxS-X{#avxrGGA+v16D_!BaN5rXeix_}#N4*x>u@|Xaq4%mRSXK(V6}m&&-qd?K15N>-}ZiB%B4V$ z^i3mB4w^f3w_2_+`Hrp9b{ngTIJ;1;gsNDlaBw3rbN-NZGm_OgfYWMF?`ZsvgBV&ycIW;3H_H{IkKJG29xNNPNzl5l;VSt-DP z!%;>ytxQ|QPJmMMD71~-c>LLfkq%}U(^bby)7Qn}sX%7DwP8TY_~L<+0pUy!S{u}j>TSh6}^@J0zTd^aDM)xG$^?s)YI z)a)8UHJ@2FsuW$J(Xx<3wMl zgJiI{->vsr@h7K#0c~$2t|e{2qOgzax{~n>>4Lo|JZF z6*KX)#1-?_^MmQ%mz$65XR9;z0#0XJ4u0a)mIDQLhZw}tCl(}&!XcWVR^Q4yqYpnU z*>3L{M0E>3W0|I(JhN4m`Mx-R@HCo;>xRnz zt+wsm8q^oz&%jQ0Splm(2-s=vq(B!8PjF|SV%=oc^fqCZiNtmk3_)^haC z2JN%`XGWtJa_mXVrZ?MtzRnkNAPhqtA;~%+80Gj}bq*@B`|-0fctmA@`^WAqra`rI80^Np-*sQ|h@7stjQGc)>*A3k;rhh9xp+8Kqtwkp90ep+Wg|3F%l912499xxp7 z-^GmRkJ1C?7YNc;+kd^2uJRKliFn6iy zBz;Z7UWyn5%HY@4-Z6utTM=z#VGf1>oT1a=J?SQ=_m*jk;U@`Gsv*H0J^llXrzx>` zH(s%Bw+|uYJSN(nRj3`%{J(@3wG+hmA?(V}aSYLf1Z{SfW5)v ze6zc!N@#%HwQA8w8HDH9PX9sESj%vx02rI4<7t0vX%V81>g&}o))Oh1Y%|C$-gyKl zG4e$^$a0zkvk0<&cuBFNeH#HNKB6qc$cP%Kih!P~@69Kg{^$8pQ{ZeU-)%W~v?s4MCMriK`2Ef_WWV!OKi>Z5vS~9sLW6Ua-5Ca=NPg0# zOhuI!qK_VS!;B?G_Bl|RZd}mFnVC9yKR*c+=DE%feyGs9>SE$|{L5Fd2QglFL0uSqwlav%Mf|WaHpy9@4ut69bHn@R6J@3Ry-6tQi9A zm%sr_UTi)BrR0*&pBr8^QlHe1yTGr38unM$X-CP+HLQ{t1`1vfmZ7HQ0KQ*u^8n?{ z<#fw8Hmq9@bN2RY@~&~qxAs)CUK*0MJeaMsGnq|p%Nw?Swd7($kcu@hf6#Ka5}llSLF}%srgji* zdKH8^w|gG$?mtn}TcCLaKxE~H^>KhD&h95BI7Ao?ha4&>xBj*dMZzVHKkCA3*H)+| z?_&4QN;ZnECb=|WUZ6QgUs2N1&0gCwC=(gD0o9eO<-Kce!#}g_)zB~8h1RlldgAo|-h!vGmeTJ)73su_v2FVtTh+4^5-aMSoDalN|;a^V#UK zy181sx{tXSK%OL4u_->=(Jn1Trjd=41lDzFJ#Gx$EIKi(C7cL1Y=Rl>l(5K zEu9son++!rqQ7!;OGbea!G^3B3B>p;60LRL6pg0wwa}(;6ZIS$52z4kl^%m@VkO45lFFG zE)*40*Po)U00GwfVM_{X+Kj@$g#TdydO^fvl;*MM6&-L{d8;m}miG~nNYAKAQipYy z6I53!TMn?tZI3GIwwfIMH#SNLk~{|=B^@hTisO#W)W%K4?$CI`$&cJjt>6Bb51b2)A#6>@_fGw|M*l5wMA=WfGYQjy0Lw$NC@v-W2Bi7J3KPvI+FBGBa(J? zU>0*QqCcmMo6F*MW9RNRWTcq(TJE1?dK$~Vfq z7}wfW5{P3JeMOanvRIXV`FpEK&JrizYYclaXS*nfPzd50`zomh^*wRLoBMjc-aZ#TK2OLSg&@>2zdjam! z#E5u{7zI;P`o1_Cb6ZY3yKm>$BySS-;>Nt-^x3DEu|*r6G52Bpn?bm?>~a zn&Zyz$$ID3pY=R{N}868sxSr8LsuKZfMWn!8K$7Df%>HjorWDQ6ZQ^(c^$_ciOTxV zpRod^XKuNL6F^bB|Am3+bo)^A$%~gHT^|Khvc;AEmIjz`0(!TcbW1Q-ry?qArx`O( z{kW#CDOH0PD^A(nGo(Az@#l3g1h`0&gLU9y%CQekBY{&VOpq5Mg|4bx1jlkj@3l_E zgVZA5?bvj^7<0jzKczDSy@4-4H|#oohXYjgl*^!GtC8QE&(Ajb1`+H^tS^`pSUvZK zM!mp);LgH5wpYY_PRX0J|2X-KatFPu= zZAv+B_xFK9w6j(Sqr6eem{NH|vMrMgJNB<%zW~3>!o*4I#a|8xe_RIyQ1qAE*%$1+ z=E-+Xm$=OR0BE&<7z(GZ3WzfhPesIOlTXKF@d;y}?Ulq~#=^Z?009SRbS`^`$^Geq zfVnZ1nD|#{9Y!Bi3=L;hrv;8L9jqPm;a(TtJ?LN0&-A9`IyN$=w^%=EpS*=|F8~8 z+WtX>AI;A82OHbK?ojUR$orkYbh<}P?v56g*2ci;yhCiEKQ@YB6c!Y@6mXea9qyyk z#9eBpKl(sNi5$#uB&Vg3|94IFo2nmz53j~8LbsYzx?M95MYjSMC51AB0uEFS8w2ux z1lhy*dh2Fps^9gw0|qKDM&(_xMQ`SS=8vT@W||?=B8m@bIw`u|CG{z(;#q_3LH$a& z%!Cg=Fv@x|rYDy=(zC$Pa`>ASk{-CYqk0D+Zz&Y{tnlh&@z%-fDzX?zsrMe^s<9}s z`{#@=ONQOMM7hhEDhtn30<*`$!o45_=Ied$aG|Um@YUnzgtdN*)k<@c)qY zm0?k?UE2dnD5cVkD2Re|cM1}M($X@3Y#6$w6ai@grBehqA4RIuv->IA^%@4XR6zMDEPR?xfeg``xRUZ&?TO!H zlll8Gh)e;$bwln-A~Q3S&U#<)Aq0raX*q~%>gwo%<$JDpX|zH411$^#)|ITFO}O9Hd! zwBY9%zluI8!(47<;I@hn$^ z(pa?RV9xp4EpF}td$iw#lS6*s*vthwJ3~(Q-%;G2Ps$MRmiq{<%2lk5(*mfcJHgwy z*zgW~I^pV)XT`~V$@X3gW^&Us6&%8-lhZ`$YIjeyFA9YtPU*Vjf%azu znccE|lr6DhQRZSAV#jtTVzjY&EzGNnZXUbF7|i<74)w8@pbyw9&mA4J>VXHAA?4&S=ZF0DsIDen7?LZb8q$v^W(Xce-hD`O#Wc zZb)voo)9SnrqGLvmU!GaQ17-eJph`0c4{U;{y~Qii@9KIZvoy^mBYpt$GrPA*Vu0T zX{pw_PZ?EdejCyB-C+{lJ~a2KTfH2X4)5}muD!HUM6|@YhrUyonK-@lN|XtJ01i-W zL_~y5u`%vyNWH2p0>{?}p0vLJ3Y0-Q&XP^-Y4yK=E!-!Y!0*Sh= zuqQ#uMW){Z;)&XtWf}^LidI|CS>2XKIUpIDG~BmZ>v)3#PT68N4lb19sOnyTPY|#2 z)%6f;wptr|*$43)A~e~HW%HTji4l`}Z((Eg6)_7JZO*jy(zoNK;1w{Tl@)7K@r9@M z#uA$zk#DhqfGNNg8)}cLj;O4xYyB4KcVeCt78i5t72?hT`RRA>KBoE!Xs3AM`3E=D1M~ZchO8Y3OUVp4oF#w|?U= z+;&NLyWMf|E3;P3t}4X^Qp*KYq?g`T!N*#RB&L}?hp3-3eFYN+vY6lEasfwnRG)ts zo#=3f%w67B<@DM4rD{sgunK5b6~pz*L7`A!a*3R4tR@---gqr% z<7NBOanURBeP_<=&E45wz$89ouZ86F?cF4s=Z1!=AcN`gq&-TEkfuJX;k2{AQu1=` z#xsBH!^NOPVnUwwyTmgF&3wkdB@LLL%Dg$g1(bnC-*IbNZ7Bd4{DO*HS}f{mmq6Do z?nle{WiqN-N6Q4cG~E}y@4kV+Cf!~YliCkF&9AvMO;%nGnQpR=2Yhz1kpOfJ8!)8( zw2BYfab;*4?uG#8%G9iUYTv8OoLjf!$CuDT%#FT(ZW(vuq1bixN#Ve`bm#XBB5!yt zg6ik|T->YZr80{*fcgHfQ<1eW-F;c{c01akLmf1sSIxYi*Hhf~7;j^}ZX@lU?gbVV z1^Ei*t)Q-}V4A8t)Lvv_0^ibxS#gte`U@8&B zb9%l5q}z3WQ2}HIfDxE+2;SD#B=B?>DBi)i+aWv-m}qWAOlK4`(x0j~VVd=sCIX`g}tyea2~d9cF*y75VUvb@KRDP$ zT|6qU-3BA}MDw3VQ9aA3nV*^)<185m;?pCpiqtmX$V>o`9hcgR?4#IcmzKL1%jj2ybpZ3p#u4-}XzpvaG=`@29J@|HY zd}ZtZ>fKhs%h?hoH;;EhO)@t>#h=Hnh?{0dTStf6k!IPs$<57bQ-mz!cHBE@+*qbB zNERTpCe1py@XBhlJ`;eTDsLExda(t=6k5q|Rm1S%F*4im7?|;tyQGKUC#bKnsuxZ6_d4^gF<>|llg063Qxv_u$G1tSIq|(8wJNintQBl zEf%R5Bd4o&y^fHkG^RU7Y~}dRitQ7rxaoe)$Aa$0SIwy> zqNmy07?zX9bRMDNQi=Z6T|4IRlI`W8e?9-XIujz+M&2hK%YK@k8izS|UVktMhw+qL z$b0lxUTnB;|EaYee7P~uT_B6n-7e?3I{srlF`$o$vl={WoSE=I6*8D2JL%k4Ed0R= zPPP3L^#UqU^4(!EUJI5X9u)g!JFkwchLntazso^x?M(~D`=(hI09;&UCR^gq=bOQZ zRf;@OJn%w1JMgTqMHch{K6P1Fmw_7{aYO$|3A$x!$1&qy=tSx8uHHWhNlHp;@aLc? z0E}WmVd3{1^qgZ@i9?YX2Vaj9Ylw$M^M~#F>yDu1183AqR}9I^S{TYFOYHN5kd1nc zV@as*d&Q*-z=Rh)ipFoj8ef7(bETlGfTIJ&Llj~pY0(pQlEVTe)gP+ zy~DViH>$()!qpk=IZ>grCj*U6l1F1{<5#U|wSzDCq&f%0#R4AG4w6ld)9xLl?kx?@ zqojP97J(`VoH+lefB88+ad=3A_drhwJK$e1SXT@wz~ zX3dQh#8u-gzN@!iRdil?g9!vwME8H-;~fTi`nxP~D+t~pAEw|l2_ZRLm#3`yEa*nC z2@Qt{0|DwwK~X}`pYs+CV`F0g`Wj1sG-FJ6&>sp+_EjhAwOhpJnT^O3vxiXQ%A5Iu z^w^biXLtJ?3Z#!1>DEcm84T8+MSioqAR9?!Wi)mdA1-3iFl|NXE>*OOTFb7b*Lda@ z@QR&vn2ntq8I#$wPIzxHa3bpgc~51DF>{M_fnU<(Le5<)jV&daL_emJ z1>}O*8VoQy0d=nz>1Om5ne3g2!&B@xd!w-w=k!5a%zlWsD^s{-EBl?pS`27Q08>~I zfM_83F$%rR0(tN(V-ffY)2)P``VgvX^!se3maQp;@|lYh$#eZ`nFOAy%Ixt3--90M z*gkr0>*P{Z!rRm&WU2}8qf~uL0iRu35L#4;- z<|J9DZ0PO^NmJ9*b{gZVTSK;chhy#>@x$LHz=n#Hb<$q1o$gMnW9O(bVu7q%9DG@M>=3T3vz(^MYWmbB$l1=jZC2C+rTUu)*V>(4n!tcXD#dAlJS5|VS{$L{id!glu*J32( z0Z@M)06jg(fMorcHbBQj3qWpU)4rQ5Kc}n!4*Y{G1qTHd0Ktm_3gNZG5W8}^@xwhl zt4-&1yhRMpH|uaYd^SrZaa#V>dMAKLg1Zdgohcj?)?itqg8-CCVm1*e;CcCG-E%kf zQbiM6kb0StIyd2JS{m1NBP{CapCh*bpHBw~>hIn{bcs-1=`VZGd|x;0UcWkyNu4ya zBiJ4&@y~(_?U{_d{W3Oar!DMRwKMR>3S*ntHh{*iWu+WhpN(KxTjtK}cr7(|gAj6E zr&67Ce3M6Z$1B(X=O+!DHk5@_%x1|hGRa0Z^luaVcz9l^Xt>Lkmq5L8NLzgb74!=^ zEvSrpBlDiW+@5sFZAr$RQHL*pkkV&0UiIgK891K^{{sPYfh97ea32c%olmUw9 zKb`#OP_ovHMaW@*YP1Nt7ZLGz0O7p$a?r`nwz}$VFy6M8HK%i?oxrz66amxhu#%k> z%9PhT0a=~{_r@slY=`B1zBpTdGXJLxWGmhRbJdCZo~>B-flH?K?0<%)$F%oX*@AoT6~FTIyo<_ps0yc#|~ zy00LyKNZt5R3sj%pkg`lnJvghXJ@fN$I zo$iq9*Ko7r2xSmNVLmLXoh?gts-Qr~_4sjmjgxUef#SowyHPsBtY7OvJlkJ3Cm5Wg zrAsYZhJdr5l9Ce84*&+6AoAggG7oz@O^>;sg zaCBi0Dg23lrb%3r9c}bTn?iN{wz8rBV%>7a13+)?9nxOGZp<@ z^#uKa_V#0%Vv}e@?~aL#H%d9hcbdl1cq(bFh42dRDiEu^do+CBs<7nhsY14t>xJU3cu6$bpIhE=uEr1(J_(jsW$lC*Cy9@Hgn=10`dCKi3#4< zj37Vm&#&i@QR6F9`=?JIO0lNO<+QtIUhL?!F05A}Wi{At)vZjPu(>dW1LIJj>67>N z_Le2R-s(zbJo(YH0Qp?*@Rxbo#1MHD!l#Ym(~XV!W#BPwg%mII5CY+3QM7#cABRH6 z9sgN)mycIgJQJ1_<3E1DVNaxpm_LWX>W=}3%}oxRf#?k+uF?t3^Ny-(MT z?tpr1xdy^v8`#y-X~K)_Bp7A+wW>X$i}NHK_XEWT{0%`$pd({%(<#-CVy&|u{Iw$3 zNtbBB%bJkbBIj+9y1Cy=-;X?#K>DG#hiX%+nj~P~G>_&|&Sk8&N<~g)%54Vyu<-3( zK2h(>iINRFStnx}xX3s~&(K`0)1kYq)Wzk;H?m+tE#*xZyj63AfnmG6TLL=H%Z-3N z?n^yTDzM!;yk^6h5W#`U`oNPl`h^ad+j@}wN!&uHzcyh6?((*vMFcs|e|dJ5?Eg`N zBEVi<_GNJr3{6(IG8QFc(BlETGv(*vnu3XUKMpJcj`VBu1~`CNN~AaV%va^G8>|2p zhqzRc(}e(f_Uo`a2qM&kv!xws-M>CKJb902ndtjztyXDAyehW$0)|Wik+eXik6TJpaEtM`WsM0C1)GL*q0)Bggln|lQrB91n{~Px3fNmm zWdl|HEHo3%Bj=uq3gBIzYY~#XF;sg2+fGMZ`bshlZFz_y?MBiMF8s6gtp`fTt>7># z;G3QUOdg)a47Py<&OSqMr`J_? zGy}rE9e;jnnlcfSooAfgR2U$YmzjJOz(0pKqIoH{;TW$X=HRYI}cvT3*TPG&$N^BdEI?4^s%P${cf~0m=Ue|Z_qCvL|m*W zFt#gfhe7CrE&0_z5eaHH8&D3AkdsMxZc(kQtoUTz%{*$E-J5CJE5H-5v00mf@0?g4 zkb-7Ev3GWjyGagYnSwZR@gS^pGM`14Yk`sv82~mA)~;>TV!o4)nQwg<=I-hw9@wu#-HZGrq6DHAkQw>%K%1FBODJApcz!S zmiV?Y6wKmqG3L|L65A=LZ0YXB`o;Bj>-BAOKysi4O3cZhFJ2mi*%*tNnuv-uI0Zy) zPrG+$In|b?JB3W=J`y6Zecxmxq-cSEoNvg&>JF2c3z?+bWc=cE$p9(+V{Q|GuIE769_Zz04zoH* z{XNo`Mr&mK!owjhUCTbPN;Ejy<|hUU+>{_WrcpNcsP zRg-SPB=dWr*V8fJP{7lcGPT!-MGlibsh0nu&Y0-IwxF!=O?fSQ%sbmuDn$IkbU|fx z^y6)S+xBk>iIKKXtk$1U?^yT_YX+>792oOGj0JH>0*L8zP$NU(4a|*f>?fR{ZZAM4!wDL^T&1LW1DOE%CCWI6%MJ#U*%q7im;VYw0ZKE!q#H9IEtinA^gx=3!|ti)ymqtz;3m3a zFMM&VILXW*xedRtl9lkDIw3{qyEZn5NtmUQ1~;I8tv9g*8EFU{gqs0|9&kh3QJ3SSybczEQKbH5Gr~vUZ@8sU7I{RzmaVCk%cK|MZFf^ z#-MIt_KN9h>nQspQ!3kY<0mC0DJu`2@xXF4U8CEUtnlxG3a^BazI!PVZTE}e7ZID0 zxw`8c5-)x=VTODF#kNx8&`KtT5pcAzS1N-+ir_tvk!-E6^*@^OJrfhr!>GLQ3PIka z6{~lm7J;5&O$|Qs7JkmpL~e}|&DyXcHA-T=4xXx8 z|C*m4@IOjv?GK%XfbrYTuEoD4T)>?KSH@MAwz-l)1sg%UqT^Kg+XvbH3CqjNipgBy zLwR$t#Ni0TLm3i@a;3suS7zB>`#~E>otFmBJUt(ei-_nMPQEbK*W#jjq`XN%I_as# zp$nNptep1h6@BFB#V;u?Tst_1F-f{duAbhnsC?yD`iFN@G|K&Mj@K}SMMIbsZA(c^ro| zDnplsjyy18JcpU;X5EjCWZ1c%8~f7NjE|F&Q|ON9^t*VoLR!w-#e}0`W(B0=8kz|2 z;-F=)E4w300*XU3f6VQmNRN#jzN|V$Hx<`b_5*n-K2h&tKVE%8@EY~-s6kHVPi9AmgXEa zEtmht1?UH1<&zdcnIq5TEW6PccrEna$H5l;m9LG)et>s~Bgn1<&_yUe<)p;?Zu^N( z_}$CH1M<=JathPew}sj@F_wA6UHsa7LEU>&g;SR${-er$s4F1O0>)+^Fu?2rT*Jew zEL=<82aV3HtxX1Ob#OxPBd*CJ(brgoV%ySP>&pR~8Mb5cZ?Q#Q+Ya!sd7uiAfX+Jd zUWZGF^k`*8tA4MdqmyZWuFyBN&P2!`GsYjiwl{d66YKKOa#0dvI$#f8^m0tcewb~b zOh!^_bCk1Nsly%b>#Y-=PK=Kq3_1tuTEV~)a{sT?xB(JlAdAtRZRigwUp~<;_$A#1 zN5p6L%)x!^fi@8QMDpXM_eHuL|Msf`{O%Iz1rT0((GrBoeptw3^-5gbRJ_;>Lr&$5oR5CRZG!hC-YY9 zsXwm6G7^X(EeDy-w@J5z-}RW9)H>R_qd14Mq_p*QWiB(#`~x?owVixF0F({DswJEZ zA-FRI9F_kVZ3RDiaf?Gmpo{WG$*k}K#m;PgYLg1I6A+Uy3Xihv*ero-Hvm*{qNzWB zKK4R^b@AHaT0buN!cjCzAgtP&i}(90@cKr!Lw>0D-5_XiVX~Wd@U?3OqB!k1{9EM4 z*Bzr?3-^_pHSF#Xl)V5#n6U{MAGB`tV~z<@?E5Yn)L=}xfk9!TT=x3u&ve9*++d_fU-2IzDOu1$?} z09~DxX*d+fq4?w~YjL}dN!&L>*DM+GFU%gl|4T)#70C91sHMcjDhv z!R81-=(XB|1kJ1_wPm-IF9n3{WFla?>k1S`vY1uM|MCxhUI7?{#pg^5_v|Zs0PFJd z@)EmqTkdV(f4%A&W1Z|k3$Q^No#vVP_&xe9Y@{-fSzD&L3`~bgj212@xG#$3Fq5}J zmebrg!@EwSP6B)Pq_4h4lv8+0M5jvo^GPe-D9G~Q2an6f>uEFWu1~Q1@h6Q zdS2s6ppxS0U+zq9Q85eX_~Oj%NAy+@#}JeBycw*yJ880AAWG&_9|wCqt=5so85`vH z>2K{qX56hqb#Rr%BI|GTx3ec$6(-ArPvEA7aQBgg;9R7aSls$@gm@Dc^)^|M2v&F1r`zlkCG+glM-D#YQ67dv}F z&QEJiUYe4AqzFmVT#%&FQ@;7Fpd`b2$M>CkfT1`Fr6ieo*R>)YdZN$nu=PQ7LO?*E z4JbxV0hJl&5BBEx_d}0q@Gc4RxXEz4DXIie#*t{3#D|S~H~TB?{~ad42PG?JUfkoO zhiFs;5Kn!!d?&i3^P%M=WZ{vAJv;YHPkm}_*#o-0pi_a*WFlX?D1RhA#jXxswb!Rf zvN$aCHN(HZAKx@|YJ-=|K8{hO0ta>X>rai~O5uTvh=|XwV#{=N;@5Qa*OBs$Qdq}D zYim#zsVZNGAkn7)`bJCyQIl}RPJu1By!>hgH=nxz&I7oFUSNA0e8oI_)CzBfKL&?t zAA?|Q(Clq;)pDMw(1@nT|&0Zg9YUAph@z5O+vOiW=1*D8@_-Y4C!_~R1kxJi!S*q zud&3J5w7!Wza+o}lki%-w|sEp&O;^R0e(@@C!m3*iK4F8#GQYAzyuSB?EybGp%)6d zqLbM^?Oq*<9t#GMnANq;`8L*!xjO&KQ}+-4@$eRql?`(>OPIV^94gzH(qAlE^;#~Z zx>~xd1zONAeJ|9DFVSyXu-^?||667<3QJB(!oNj)wvbJ^`6t0iTX|ROKGkyWIt^S{ z#NB@J%5HBcZ>4eXe7+^y=9u2Hd~cC(w^%vyYuyKS6^Tj??)WvIVw7WZujfp)Ow)s% zO_0V8umtBs_tAOYT7;I#12NZ~I8;Brj zw)>F@YR|8SvB{RXtGyyb9%e3qmv)i0u!m+`^gvRNB1jQgvTjY+uBUAg!$lH_$XR7e zbN<OsiY_Y=nd)=`VfP;|HsM{?tFq?+IwvFURS+abG=JU7Vv3x>zwk?lR+dDqq`8 zCv6rO%Ur*2+$6k3&M=jvz)!cj`7N7MoSy5@s&7pY=Y$C^fKUCrp_O7f9H6;)NH1cI+v3~>(fj&>FJmC zw8elo#NnmV>UsG7#lL98n%Il&rjx@N5M)%qIIUZNE-&?`QB1fNbg}^G@uZ-fb zFTNI!t5c~?HVU|Hww!ifF&+RLiDJrBX2DYL@(Bn#1DV3(OqlAGP~^%lZArKWjeeaOt)Ev-WI!VnWCni(l$t!8tmiaCWEy zuIZrDWs2$HnoniBK9!>!ednZ{lo<#wYW~-zQ?XX5)uLkP*(&5f54QM~0ED!om7mPC zo8xmTjzh|0MMs!<6yq@=CYZvs_G4UwlvDK~=>wffaP*~agX$XGC~k2GF~8GK{gC$$ z?3i%O8`dLp*3~y<&B}$p7vKAT`Z7OQR(7%MelzhlCI#^AFy|Imo`HWxwIw`Oxe%tY zTVdkkWUibq?8Ep@Trp>@KMzO3#4FAiT+9+e?m<<%CHyy~yX*NXTzlPQFNdGJT5=(< zh}U};CB|K}T~}*nfGg|)MVq3OcS*TmE_dufYR{U><3zO5K*}7 z{(^X^D} zhYC(RwH7PXiZ+N?{c(^NPOlOB!fo{QPy#=m?w*ppzwO&13>si7(39Oc<-CzMSDXWi zU~&u8w>KQz*q*|p;?ldD>2?7%y=M6-ni03;ya9) zF04J@E*(TcyX2n>zV#t%)_3S7Bm2lqx4IZwC5`Zs(K?t>Pv+WlZEm3rmKT06w|H;y z1U=3dw3M{Hw7E=ieSccC^Tmy^y}S(WkA0fMFLcH3ozup@`NnGyYVQ*xXUnBl=MZQ^ z0^V;S|C}q15sc^tRCK_J5~6xvA-rh{ALYQ28^7A+WUnL-xtDG{>h+j;Gb+e6;nPNK zA|}(G6ceXct{6Yve~j@t7Rp{1(%xO)AF*!4cFBf4dGbL|_35c&#;XVy81=!rq<`ST zPrn%S%O0@_!5KN_K%S0fp$FnVOQa0|@h%MigBGWyOCwMM?_Gm|8IbJV9tbBXL;WO5 zJFvPyVyCCl#{Vm$HaNfEKo3k6Qj4E4NwpUyc0-8I$u8g#_G$iGy4hb42n>814foU2RWUP)PWT(dqrAQ3364mL{i*nfFUD9(|YiRxoihWZE$a@PHO7 zO{ZOZsT*x3WG;wnY8Xny4adcV@#gLDEuql&FABc~BfaH9^Urd>>HP~%f8}TUEA+=gq z?;kH59R~;VL-={Z- z30|8|Jrm93m=;sMo469%K}3uR_-%wJZ7)-kReO|ZyRexUy-^9iv(7STy7~$V4|3&^*7{qgFeouY^45b|5f{axo{n1`@%Mc~q% znXN6kiDOOS%%=a9ZH`NIiT5-)%hpH-`l#;-5;b~mi9=RkQ|>~Q;T z5G`;lXO{As9Y1DK#`tFe=SEPt;6@~^dLOkl9L}rBXn;%M*oZ`SR`DE_25)EKp3k`` zS?fN&9WYxnf$z5Rdz4x7qA~tIfBuYDBh_^?y(nl~T+I0ki0sDu%OV}hnx5cbkRb-1YP#F}Zej0RRo-P1Jp~X~0{6QtyN%c# z|C95e-kN6FqOIbmWTZk#sf$;b1B=6>>^Dg{_}P!POr0qnyeZZ3>T7hJVeDC@AQFHj z&KiZGFPk#<_H6cgtuGRh0jXz2TMhHcc~5t7{Q@}AO-fe?`et8Sjn!GiZ;D9DVt21i zwz)1+V8`~VEUjo;_Aio+>R!99MN-B~Uo!%9 zEa1FRKFxF_Uz+~@;jg3y)&X(Jw49Tf@xpr24$Hwbk(BjWvc`U>Am9lMFDz&W1<6Gy zFBj}3_wjaCP7+@Ycf@HrJeKm3eQL2Ma_62BP=^S}CcSdxQIX9??_R4j=Ng{ak^07Y z_aowaZefJ-tCT}%*c#xt|Gg%C<-tFTGZ_XpVjyLZyM8rlUc$=E>>7#%r2;aZ+x7dJ zybgan2bCJ(B*&aPLGbr}gHa>qG8Y@Sj$D!rE(sfaeXBH@YEXiK7jn^O*y5&fRiAn* z>Iq&sj3hXsk&}i7v0%o`u=*Ws$Mq@FGVMLB=N(5UNKSKemRW<>?YQle<_{kRVE>y` zA-bKe_oVGnS~;HoK1(Uk4Zt@?(?Wf1P76=EdZ*WqA@{&jEL7_OYTqf%f3 zAkXnW>RPi>L}7f(38Tfz!UZZwTk!LjisF!MTE9BCfZ)Bopv*Gqg48>YmVT{~T&$Tm z3#PHOti3rxzud>b5<+hD#cDYDzk4N$e2f0(>vy>>H6Ly@FgJ7w4xlRm9VuW^(8KK7 zr0}3%7cWAycn!VozWq{Kb12-l|GfZOtYU-j^?66k-B!pfnNR8*kv4Y!>~H0nu%0U`uz%C`TiTHAZxtj1 zR}j#9H*D_=8UVxSA*nqVFw}Zc`1A1spA_#}rN+qHLukstyU?h@@5R~2GoS~vhdH!t zBEW7wg_dhdn`=PbhQFvODN)*KXMYvONHEjU>9h!eds`d0;Kwpav;*`7VD^!lJ(pp#_@vvV9B!~D~MZ!RfcISNH!naX8rD>e`sFeLJX<>t(l1iSrk|x+83cN zd?08XXY)qMX-onPt2Ap(E96^`1AcGMzbgFE7G;N!o}vh*j=E)5e~WuH^f~a7k0oOi z{e_bnzWW~*yNf95eeWle$4B3`}i!qdil@R?msPJwhcfDQ+WL^ zt;%0`qe~=R3iF=OJ5saQ4leU7z?00GB`EyBG0Bo$#nLguv@uOl{D-#1#qEuutaZcY z-}_wK*y9bK#T9%$H3 z;~cfG=d(yDBC%ZS`#g0#yUpMaMq%VE(!@R?Va!D8u^NTHLwm({2m8BU=}R{TS`$1v z0uN@r;L8t9%b~6;eP*1(85Inb8;7Hqn3%}jozLulo(L-Zu3JlXKZO&J! zYdrPfYN-ZoIke<%)(PLXT;As_So9{W2C$fyzi*K)k84+seUbZqr&hvyi9MZVS|{F* zeS{cNuoGa*>4u2>c~_7YoZY?~hXhZ$bWdTd8YoHQiHWy+pk)JAW#zXx~KY{8R24%SY?q+*#M?)*Yd|5=hmnaQ^X-9 z%pK0a!a~Sq;X&6g9=*}n*4|lp5(orY*19CclhQv*=d#zUTJ`~>a_OewW4B^?{ts4k z^JQth3u2wGDiUx_%78i;Ft5E?IA;OzNaCga%JX-H0QvgoY@ZNPwv0bj!g8~64RTss zg!fB>G?9+A82a>3w!$TaATc+RvQQYJ8kb#SDl@_bnSkb~aF)r_ACSi7*JY_2)JGF3 zJ`!qkco27ZSfLah{S5-nWu_Ll_!hryt!Kv`x;&p{UCg>&#RJ#w$jSJ908vV}_bE-9 zKJ8z4k&Zz}zNq+P(bjHr!??jsPGym5K z!_J@mmP&EO0OwF(?(BXuICwI8a5P`z24RSI)8I7EEn>)Gy*Xhx3?(dD11!ljt*wPT zkI0OY^rzWXcI6*QL~hs95vC+kJ_D%EO+yZLcELBF`fcX@wjal`%E@A;Y`!cmid)hV zI!u1ITif!ayZIrD5@#A12D1)T{8VLJN=k+UmRxKO%_$!LULLh%-BgYQNChpQ#riCU zgvWSRWTj>n)Xy+y+wvO(eZ(&N%f>@T$B^Oi(XOt}es0r|-=79IBm$4_&=Q?BMlh0w z$h*tr4jDxDx>g#Vb3xsin*84iO_si}&=2UpPCw}&bL5Y*QP#4-Tah#cT)E$FX1>QmZa(C|E;wHZK(t6uh`{{p-@nA=Bo1lNjI!qyghY*3w*UTzvdPVwfcpl@ zN#GwS+hijZCAEHF_{PFYI-NsMTv^s!g_mY6v%`5T0K?vLL~(T^Mr-gh7}i+fkje9+`@{@*oHUaA{1N{Zn5QDp&me$nCS!O!0j|4Q6&}Ho02Q3%X8b zU{!2PDBJ&opLC+c*nJX}vBMru3`xW=3JZ$@Cp=whoGsP;Ct-NyoN@y|6nyI6td6t! z6m$T^+rd~i_S2Hpo=+OL4j>hkE1KgW;9*vei|AF}$3V7e zA1@I(@8qQnCO#{O=*sg)Be4%GE-p5V5dPEA6L&Hj;f=S|(zvN?J+9oY5R$^bLVM{r z>&U_THmq)w&@3&J4Lm6YjZOYm@ z1V#Ge!S@?OzG*{r$caEJ9Cjut+w{gTwD?YZob}Q>j6W8Uy%FTU(eU2-EA=yDR%6m-Jc_<&Q$YUt$T5ZQdRfB}g6 z6x{#F<1=U-1z}983U=V$VI7cql9o1X^p(9{QW6uh(cEg$1P@0y$y`rZnL;q7&M+k8 z-Do}tzlsRDKn4Nck1#SQU#{tlD zo{GU7gvU!bvu%GV&F8T==$(ns&X&YFX$9^nLqX~8?zcD)157&(4Ffrap11v@ylc+x zdQYe8jj2V@$r8>b%e@yMsbe4Vducf0n|m`2*{Wi;lw%cj>#KViG|ughn_v91^9 z+1W27$>gm)$zsM2z*1plVmh)x^wtPd0m{&0E&NX`UP-mSSC|*O~%04qiD3|_< zDXV<-yq#p`K>rQQC|Bo0jl-lMKR<40-d5m;PgX;vnjoHNT``ZOEo;9?$WIz_v^`nn zG$%QC4czkxvP=YS(`kl41#iepBwovT#8ip{WCV%wM^{X@wh3~Wj+|^|j(-*4mb#y8sD+DrvX_65x+dS+rr6y84C6-vK?#;~5`C(vtzD=dh@gBh zRqMQP-!n>|43{w?X8UteDzNdBU_x>89p0DhV}_NTkRD$y2*ETP5* zQv~&-7Z&9g#`6VW-B}U4u{$Q4i1kpv&h&pG#KuR1n#0?blSl$4|MxS2;c*VXQwumR zqGPxXt8!{$F>#48hE+ie+f1j^<}_Z9tyT)YJ5HT)1(HDk^AyasQ+wa? z@#=6%o(6E@yxRbMK~G;_08j+6mtfqJ#1v@*W@LCJd*h=sLrE~;ZZ}~zxl+$7hdPl2 z=oU(F{~VZb0KCN#d5~J+e7$d$4sFOo!$lJX&gh#49ES&BxBU7A_VixI-vMGgh1ma( zgWfJHimd`L`Ok?*^3c+)ouhWBY4=^!0)@Oo%+U8;!vgz5M!6HxmJ`|qEB0g?|NAQZ zcUFIoW# z#Ui(F*V(3fX>hC?Au4!1cnN)b%kl2;Y_L@tU055aL#9E$xpbm6V`gE2)YX>h1e$4F zDH-eDe@xbqQ&bcQtUo0dXh3a#==$s5hkr}-{1*=)8H%?-WH$c?0wo-JrM#Z-0x>WW zHDAKL_Q5;EVJ=NyIj_EuLy$4xsw_~gStsWsH@|EOWHG*!gSvF9&3k{;7owRR!}p6! zaHe_fx$I@(TYp&C*85X?Mo?+ts!??yjd#U*3`lMCU*e0YXGQJftBSV0mMd-QjdGl z%r;){(NlzJSL=DxHQ-dMun&HD)>R-N17fCZFjfT<(nIq6Ue5aeP*SsPr0cl;d<}Rp z^Sz(1p&8O1nSS>FwB_>2V(y6Q>OeI}fm0$3HPSP6D$dt#LzZ9(Jp?Ux>le+W~t`pmg##P3vEFk0nBA&_w8L=cr%S8MD zA7pIjyKeVWJ9kTlPa*U9SBY_Q21`ZCt4`7P?_|gX;h84KXW>EK1gGYN zTU$lKmaduBQ(N-i!IBt^HW_Lby`b(6C z=Xa4~yqm?pu^?pCL5)-Opu6Z{G^fwyAAzK5PrZ6!46#Cs*jx5k4L5!TEq7*+5GW)n zQ;CJ&r8O3~&>06$SzMO=7;N5GtFd_57698es1vNFE zGY(*29#2t#<4XX|D9>kgJe|K+flgflFyHB65)w|cL_+OGU+@qYJT-9_(x|8TTiP?~ zE^&k@l;nmfJAE|GZ4J6em)oe#3Jf&3p77OO!rX6ztt?woa(skkaR+UOAwv4c#>PpU zYjb9=bca*8{95)E#LPZku$Ud~D%%N6%UQU3yS*nB@Xk=1#pX4S%J9a$JEYI4Z|XAN zNL2f_N#7ic&PrVqiV#qLd^9DS9)#t);-h(N)M^-b;QOWG7tCR9e^}Cd2K@+f0Dm$X zL6z^A)%=4WS6c2%S)5UaYX6V!HK4d>UiRjy@kA0BI_?#!)>eLXX9*w5ST#lJM|KLn zT@`=3O1GvH{DNO?8t&qlUTL!g0V6o@A2^qq>`gS1N*6(pGc`f~hXIA&Rp1<8Pugln zuZvtDW-BW#T?Yzf2=oC_`NYIT6|B3|-u^_U{E93xpB;W95LLWX(aqAafu6G+MBHPD zNl?4rIKArH3*~%dmeA7;j6v~(ZT#d`(&7RAZPgZJ&-|XQ3ipr%K98%ByqGVO6!~y? z){aybn}NRm(xbJ&Q3+>R@H^yoaoz-6u{yU@=e@ZO+FIFCtmH{<^1MV(964)>-|tV% zrjwnneP3T#3(;_ap01bnrfzn;|MRzk?(tT1jusVR0AE`_w3JJYGJI&~rd+>nrE>2p z(iF-g)J77%@M>c#{I$P4K8(3LS4?04gEc4QEPL+EPnsBvRBb)>y?ST@CR+gXfoYW zPd*w-;(Gzt(id0f%x-w7*2Pa&63mL)yC){w20k4Ypi%wK{##W)yBcE^Lwc_h@nx<2 zTKj)QeFapM-S_p7A}JyzDN0CpcPPRTf=G9lbf?lS&5!~DA_xM4(jeUe(w##O-SOS= z{r%VXEX0K)!{T}Fz2}^L_Srj1PbEhATL#-|56K~J9R0!>Htyowenv&^v+8dKMRQT9 z97k<5cfp{UeKFHS0Q8>NGWZXB=LNpJ3s;|eP^8D~vip}F@F4Es9=E}Uvxj6Q>ue2u z9y;Lc02gy>Wy2o-p4r{R*=kW_x1Wizt_aS|bPw?%rAR<*KI!1Fh-h#!o00i~2v&PX zH7jLKjH#}m_(HugPt8DWRnhs)!VQ)GRn9HV-*IczpWS*7BV@Uhh`OBQ;gqQ2XwCLe zyueyQ26ZN6mmj32=2yqK3Jso1lzxq3WRgrqCS;h3sq6)yJDH8J<;MwY1FgLIl~Qop zrM!xUV)jD)Ly3_@i)BFkc=|FH$w$_kDA++p!nK}g_!`UGqd%81*jVwpb~8;u>Wr~c z&lFs5QAg%d1s(Su9XJN7lrOy5JX{qUsih2Xv66t~rjzlpot$4A1a39Nx(f?i>|IVs zkk8ua0AygBb#!&OfF%O64GCLaFLK70d7XdFdsD6}b-6>Y(8Gm{iiz9&Z|Y`MSd(Fk z)kH5}!MW9k$WbKTRiMWPZ40krdpU<(hrMfy)g(-xz-|HQ!RFRh`e_{qi>s&qm->Qa zXi@AvcdjEnP+N-^%6r3pH2U-OXna#0B3OeFDn+{pkD!`i*2@a_eW>DRBY?B+b{ON} zkJDF!HPPN(#6#KOn6lfa$x~iYJ3>Ei=E>S|cQdi@G;2Uv%rXr1jldXT%uAH;H*yS#9I+6INiIkQmuF(hE_eY*S zr{m+=nx?4zJLlJh=o;Fc4;ezNfbq@aQv#zY61UxfXWsW-nU7qbr3Um*xJ&qT%>Yyf zb{~IGDNaefN)D9v4XNh3iH2TX@?CD?zQ%;bUp`5+bS9Tf{c`4$$-f_)Ez##_lQewb zl(6Y^*zxeiR4X&-zJKL{{iw4a36UG$=h2nxMULh^j=Sjz7NA4*85M}fi{yAl-dq`2 zn$RiLEGBT&qT2)d3z)I`^^wi9$Jv%VW|j=6+Q5qcgI$FzC(i?1^e^k#Jz{k z_-5qt=f%P)2FS=Udb?Sd>)7+3wn4NKX-xjX`I3P6)In|x~|u0t>Nm`!W9o{wVRRTW?R9z z^PP3O?QJ9cI#G(h)9e$pMk}+zukWTfzv=yoCc8-k+{NnBFPQWPkNfJQm8t%hrG5d< z`X0=@7okCA+PwjZ@Gmja}*BvM)H;nWC{%A z%CX!D3h~e)GAbHNN7qOBS`0~)Pv^9TM8XyKXx3zLD+aJB=C;L zY=Ov^!?~G)h9+N&*#si+ZsH#jijE}hTwY!}>ZRJX7HAy~wr8a4PSyA^=6=7l>U*hM zzh?}D2|U-%969gPSvf;51C18Uku8po8XnI){fRG2syd7NjvGBc=4y zx3cV|ibp{`uQ{P#sde5H|Eitq`N8^~6>GLh>?>%+vgy{$Y9MD@xW)c&krj+u_pVh6 z(7HQAZ2!$qn59z*I{n2-prsArKtaig!%$)adH%{zzsZ!4A?^bh z7%c*@zw2KCfNEcM`^}~~Jte~-Dmh8vQ;PDUvfr6)iUA`_x5qOJ#%8Wbs>kClYg?U< zGb?%A)NdQ@?&=3%$P@VQ9wV5=rz681S&(R<@jKG}+}UZRJ==Q1;wQVT5o}`2I+~fz zhe->P2%I zV_yKuW`}^YAyAcB*+)a^I=ZzYvvZ{oFB}9F0$~{%NFr%I`AL%QA3L@+eQOPO zq#oS6U6p_3bS&bA+p!=i_d|_=Bv+v{QXh8xD~RC3b8{eFgsxKd#(HGxRh=5Y{pMvg zJ=nU|dUQU>DCB=k6$&OC{*EQmP_F*zsKQRFRr$FXeBw#!#&_T;w{>vU(1P1` zeCe8p5reZ(tbT3xSnhUG7PnMD z;8)c&EheajAXI~i`{X1H*;7_#1LxJli|fA=h&xcFeJL(Rx~6KSTuOkfeOATwCo)A^rB+blw-DCmfOcBW1f#zH zhp7|%5||h2S0QM`kSu2AC1$8{8-40~P-|KI^>SnJ9wAI@d2HU9`pxClpAnR0WlV;5babR8-^%Kuk1uA{X&79`2up?>B{r zun$rs9&9Ejy~L$@O*=ILY;ZUCeOQrrNA!hhQ0&IGo&6}_%Zrz~H243&KlG&wX3$<#1~ju2@bwFm3OYA=^B7AWKp{?!3i4CWQ91In|9#G)AtecxTIp=PCqpNHH3H-B7Pgw1Fhd#sOv^Sod<3r=akq{wNkKl?D?v*2>r?0zQ=s3rk1oPHOgwHL zgGBOkrR&%~?lA#<;wwn+6f30SqeUc$Q=2@(;`{*Pjy-=a*VuW-0elHBj`#GFS(Ri9 zdtxAMzBPe7GFNcg)4E!q0A1;8RR+|pb+>oGV80E zbu}|HZRKEFfAfK+EuljnFtbMmI3@LM#rTw})5IE+t}vgQA4acL0ne(rQNRDn>TcKl z59YXgP5Ix$XPaxj=?=k4<|bj3OYKasbipDO>XozGljcQO&K>18wfAZYAl`5b0A&aA zDHZ<2C-M8z3_CsA--(%yS^;k{ULK1Y(`xKIQ6ylh@;77djH%-9~t z2s};gd(B=CxJ(yw0Iw%zcriI^8!Jj}5PN1&Y~2S0>*B=Q|Z8oK|@!~-F6V`j6cPJ$Q#c=0&%z=uEWqrhBW3>p_z%c;_P>k z^yTGW^r@cmHdC=se$E_NF$2fN6y;ivL{Eg%e4S$`70bl@k7mW78wk42<9&g@2|!TC z3@~LUXWZ@i+@D1QGuMm5HJYmvP&#+tDE=qea`q<%rD@HM8XU2o|KT!d>_X!Bfwmcs zY#U7nd(9OeF+4qlZ0~G9fUJh;C6dJK&~W{<>9pNa+_f_kBnJV9TPgq_RaJ`a9JJt! z&LHK+z0QT)sxG4abdo7nH4%-^d&9a!aL#2P_4fpwsFt;yQi8i$?}vEo5CX~5o*ZYR z+2$Mn`&aeoz6IXNJ=E*0<`eTyHB(?xcja7T)y8{qIpH5Nv2aa(wIJT@DXi4Mu1rg5 z9sXNm zE(a*OG9@egDiawieXW}>i4PNd0fZ~phTWuJYuGfFJN zczTZksFw^492H2*ZGD9Cr9mAl;n-;TPt}K}s>gz-b@w&8-sy}#Pkoish+Zb6tBucoBneqi1iaWwPGfSk#<$CqG|Gt1k-jxDD=jxpb>*M-e zeq@4e#n5!WA{A%k$b!1spJ@%inmRU(W~I z2{7nCf22rUB4^P#10Qm1TCfdjnsIMd#{|ou&!l(jZ^Qp|xPZYmV_lN`O_1}5rZKp?J!<2< z@Al)tmR0L>lIH~@=U+=WZ>7BO{*McwlnAsL` zf&Iq&HBz>MEm3W%m8t$01FjxTUjDalBLxxQg|e@7eEct%NLmjs$S9zWVtl;;=NZjL zH+da)8#=uSB<1QCDzVg`1-PP(wRr~}S~+n^26MV5{4Wqj+T(xuw{2{vPB$!S#Of|& z&N4unvAy_2IZH?}SM^h2Vd%kuQ`xcJ)3>@9)dKf^fj+e8?PQI$4-NGrfPTFjuo*P` z)!iV=ne#OHLl0>fWLS+tVaqN{UfEmDplibOzJk~)O2)+6CGQ0KRT9B zKIS!c7}MoV5}JQ+&A|C2nPsQ4G0irG^S?PYsgZL@nlY4pf4nJvg zg{r#i z9bzD6-`zaTASPitYfrBxIOy%;Fb<<56Q>C=iN9^G#phCN)KY;KLTusKqEbPO5v{UN$RZKlu1pc$9YZ;;sCsz*r)Z zRMrJQa$5S0ak?`l^SvtM`VSV&HteFRmUl3xuen~p5ds=#P5G(>Cp zs!@Wqod)P0hb{lJ3=&ggPL?kkg$R-Z1`>&yDM&z|If<$4s>~wuv?`<9@;X#ee#Z)Q z+}q!DYBL1_+yfmog2BhvI-3`lq21A+!2l2IJ&sKJjkBt+E+~M61hLVf_|D)U>VKkW z_zM__C<7iN^-N82SIwO0_Gm<6k>K^^(P4sQe) z;yG=cw2K2ruXFq1K!XMHN$asrd1>h(S4_7i58q~^KRk-r*2aeOjSgt-mi$>qRlnh#7;di9SACL&9rqb~CZj1pFbQd_n~ea2b<%h z_6~o;+_BUa275I~__e(Can|n!ereXnxrH?;j`N>9{etNNtB$DGcZ=Im$R?nxYLWxakoCO101otoPfLw((6Tw6<|GG%c2!v z8&`h*@*h(!zQ4a8vbcJL6V%TPw8!H`Hd{6mA&-FJJ4)j87IU5O_(i6I?A{NA=oK!N z?f4&`3vA1wEJiL7MSWc~*cNtz`hD=hT}uh(8MS_?uqR^Bn$5JERLBifx%FApyqjwH zvH-MZWUtqL36N&M(p$g}cP8@iHxz2_``e^urh%nH;#0F{G&D|?+3X(DH*rNyNn>he z6A3!>w26!#drTA2(VP#MrYgx`ybVX=L!NhYKPSEJsI$HH>i-H@t=SS@_)grrgnUQE z3^i8O)h!{;ljxGpg%-aq{94yJBuHo2W43uB(o8L@6l2f~e)Bp&p(s`_Lb^plYCkBp zqV!cx9xWQ=jP@wJW+eewSPtq(m4Wx$4=ZGNH8!gzvN(l#2Acg(iuyk{ba)SZlKVlY z{EPL4Aa#>9*N>R(`t#eU=2gwVy1#NO(E#K}3zy?R zzn4;smciloi7hOga4>rFxoXNU4m(&#!!XnOK6ADi=VjSXjv2(O2~t{s5lOr0ANRpD z6lECDz0lFsMM}zQ@qS?~c}5bWMi@nek9i-%-Xh_Zg__GVpR(6AZfIbN2dNP@JKGPW z8!n=n&vACrnLqGptTGmQ9<9E_(f%-IkPEf7Ejjz8lvr5Eke(u+n+Ov4S#soa2jT|L zj?m;feh6p_JjOQlv-^$|2&#xtRzg*c_AD_gwRY%Y&1!!bpWMee5b`k9LE?(Hy!nEk zhEf6@-Nr@b8xDlU1*<0oG9|h_SezOCWf-gt9kt0cpOZ zkYJ$1zq*o?HS2jydE9v(RG=PUZ*MPNs67qjH(XripLOJ|%oR$LYbzHPDui$soYi9^ znL>Qzl$2)3kfox621ZEDoaf2EUb%}&Hk9@cc~*Y7zCO_;r>6exMrl!QfMRqtt(>F& z4GLx+x)9gVu)mb=zbl!mvmG2xDs}8g_2o5wi=mpS*>5S!!dYWed~ZJk!I@ZISH!{V z>*Y0MB4Q%${W~@`_l5z@sK41=G2q3{AI-YAB8JBXGOg1JJ6j6SQ8VC93UsJlmQFAo zug{%;W{$kAEsI+#=jINiOk**7oNsob!r!=l$~96m&R^bGSjych+R;S}(R9VW01Oz4 zfl+u@EEUr4&FUouk2=p{9a%~U`F+ChU@oP^_4W1gTQkrm>8>mw2aHajWMOt|_M(DU z`zLE&axTcW2W^VKt!#C3jzdHB^fOHvRfhd;=`sZD_eIjfXX)Q^b_0`uQ2n#L#qMEK zy^URSUy}rR?WEom;XM$4hMm#C=aY>FgX3fGm2YWmPwae)` zmX=O2+&b;YUx7br3*Q}QI+{v$B-}Ea;t5O5LOr=HuT{|0^oyH zRo#c67P!b&S6BPLK+aRMfUGVIpDGUscL0ToS8#oho=|E4x;q8`yHlRLQrcR*6wq!) zH!8bhe#ft9&N_%gAiC;Ox#qy1Y~sw`>gpUTD=bHswXAo?hsn^%2@NVN8xO(wvt?tm zv9)8ga>+jK;ckQxBwlpq8n224X*(9rfn(RrzoS?D{Ej^d>9%H`p+eHTijBdJN5CyA z7O`FD%FjRg=47hlQ}QsF$@?rY^rfL8^B#@we#$O#{9j(b?uC1I{azKb!C=a%n}EG0 zNrW?^jy=|(P7-*iwQf0EyeE*j{s<=8ofrJhhG%B_SXEDAuHHSjvvF`}F78Hho!^QR z_kwL4&YA$?4J6Z*B=FFx9~^r?F<}|`&u?QuK;#p5+}IZAV??eC5c9^7CLRtelL*Qs1CDY z+Ohm>4!>*{WGp*P=z~8O#-}k5ec7aS-oIO-OL1R|#2s+BZ>Qt57RJ0tNB#X;)rLc@ z=a~rNlWqC+nUf;Cn+cd%9N4~OEzk@gk_*=#`g&IQEFrEsUwkS5VltDC|Crf9EW0E! z6-71k$bbC!m>1A$78wa@}mc#@jJCIrpEDr zQ}pQYuoRG4Q4zm*Rt~7Lo37qV;y}*~oZ2!3#ZX0XU{$})MM`pX(}5%i^HbU&M3s8j zOdl-ps>ilAURHhX^CE5^7F{1Qns9ORDqGR_$V2LkdceYQvH0P-OnTfe6g-dkP_4|#SZ{F8Vz*`*j>PIZ&@)ICn< z5xU(V2*|nHYrf0T@TaB20pr;qw$8r+)DC{7!Wjrq@m#m+j`&|W_)E<&~`4R|Zm zd&Bm4iqg{4A+)OLr8*iKazKrU2Pmd>Qz7k{0sRs9OWp&6L9gJHkp+9}=|B|6bKls; z=EO^xB-K9bOIfk8v&jb|ZSvZlR}Ap=>)2{L5U34l#9Msk7@g*HyV?gng_!H2vqnk& zxf+TMjY#owdG5cf+0<;;YXS_`BQ<sooe_Z?0Dpmxe`=L(uuEE7-#eo+8cStj;WPh%$g#kGW z|C@<`EHmy1bM48RZwHoODQiG;%#fTnlAiv4T*#nrF7!M~X_iY#X#lDW zHR@PiWnkQ-pg0v7spL#dUs-58Ua)uDOQqt^ZJXCA<1XbcIu3+z1;na zF%y2j3f}j(JeXR#A6nFKmtJB!)l?X?Rq0$R8F(m<4Co=XkKC&V+S}Wex&n~q>x_nh z(u9Fpf~cPG&o3+sHz+6y9DI}P#D6+UwBegfyd`2fa<)`7=Uvo?13e1TwOSBs;@6b^ z_bjD^vlvqQz#KV9oUqhM{%ze^uOc5G2vesWC!S7vx|Q9RGoj>gRt%s&v-IM|F5rbvl2IidCg z-02qIh%Bd-s<7GBei#qXI9m~9-)uN*wcD=odCt-7#^*#RVa`nszM(DTXl~Vc-pxD| z{`a*R{2^oym%}p)cSEN9_S8NlIbYaA>D)DNm}0JY0YMDt*GO)DnK<6D~_9 zUYIoYsh~Qh%2Jsq+PeTJD3M58_A@VZb+`4E{jPo&NR#8Dm7|W(C-yxg2)l`<_mHH^!fc85zFQ|ICeG2Z z8=s!uO73l^LpPbf?X9ub(a|BJpfJS`cl$;^J0f2f5I(zs9+bF(s~kIOFw;`QxBVr$ z3-)T@b*7?}8$A(`z#V>i)``N)EVU=lNql1r)Mq^8{!XXpJUz7`_Ay2e>T4d>mpv|N zuzTVHnt4E~IqK>eGBt|)1a2sJigKJ{Vt9dxJs-A>(iti~V&VbOrNImqzEx6t#Dlxb zKM#O084$ZuEWeE&g%7^g*BIc5ljsdCQRD=KpjTv~H&rSbRmh`sdpw%llPMQ5N0gKrk_JMX=yijf;y*PC%H3mAiXN zocJYHAk^d%CQ=uRGS;>9Q-ALi$8er%BUBOfY8dxR|1 zpZD^T9Kq%#JZy5Ig@4ooU+5xDcc_t^`nIiRedIxebjzyY?K}c7o;Gskd9CGS-xg_! z;(u3V;*ltpe>VwaDMF;*`wlG$y`{YQJfnJ4DjtH zfB`W#MNch z%K>Rd5Zi>|$vt+Ho&;e2QJj$oIY#j^j9^(1|7{EHqhO=O&ftsFQ+FWmD5aiA;tzg- zWH1%|&kGwlOH{V_v8NVCF2a7-wl?5QfCT%I++N{)b`*}GuDMerjQ3{6lsV}Fx2R12 zN%DYEh)j}(4?PLccywWDf?5~=b23#{lO*vjOK0sIq8^hvajrq1xgsDrD#N-Q9*08wTqketN7 zAO{4IxAATRY}eC?LkEc-3v|f?4`Wk%A2RlE{ z<0O2NUD;o{I;WfI|@w0n^5 zRej2Pbn#4Qd%i7jGdcl1nvJJf%Epf$;E0SzIxD*J8SrL4s_Nr1n5h5#7H-A^v zt~jK`W!U1T7ab_Yo^vKNHb;bu`O1F4ooA^mo zxdW&kV}^ob@cqhza5*kC6hK=5!H7&}O%fz;O?3J<;P%l~VuAV&64%fMhaEpL&-4Y0iiGca2+CEGt!`7%2ox#{dRZQo@tC z9F7AMYB{}TAPmVpCyAmI^G=euJCY~@?k1pATcund!4JucvQD>~@uykvU%FyWBwT2? z=(N2aPz(rJ5nQz>gw;CYW6SB-Zh4v=xi_z{X=lugn}A%nqI>q36+-Ic?WgQ^HtGHV z!n3IVCwXA)I{Impl?lHTLn;P~q}_@zILyb#-x_!>fu`7E-VNnUP3_(7)y0_MjmBQ% znZfdbAds&?s&Bh(ztg|20yrzFp>I5>WN=5Hjm$$k%D$o7mVEDRTwdzze39G(YNYN7 zlM5>3gE6E32jUmB{tjn<0}h1x(yyhN3zr25ms4ksiI-jS=4yZ6zO5*55eqn7A0mUL zA1hcu#Q9r0()$vk&}&`Sn2QG8t4^|&(rox15FTU&y+w*V-2KX#B!Ja1y#i3oXl;RC zVX{-fMH#Ib>jbcZERxNKQjP<$)Kd z#I}2V-UF{-RVuk=Ewp}!6PBh}bU&$A<14e~(A5+>8@pXn=PeI1$UKr!CxT2S69WMT zuuq1-IYz}|1GL6P_gm1Ae++-wdwB_gf2Tz13M{q;^`n}fxh^Fsgl43t@5v+G8?-N6 zSCNF3O00Dp^I2b%!0$*5ul-)3apgA`v>9Q6S=Xz8lSYKgUaxtqzTitBe+BOx(4(PP zl64>`qtcq(L(({&ki_gS-qfEjMR8csOArzoT0Q(9f}sYlV@4s4?>JiByC>wai#?@B zEt1SY8g=M!cXHRUq9W17Gvue4m?8W2$xO|CO#8zN%2*r}G*H@Wy5&Lv-g9%daF15g z@wwoGA0Kx77oX%LM$DG}go{Ez7%_SboL(#~i-wB9>LF3#hOL6%5e#aR|AV9S4&@vg zSRY1I+MWfK>KEPQocFm=#Zro+OWHUF9`8SZ`0(4UhY=t~^Lz}A82GyMto>yLA7dK% zO>B7?-V2)d)T3S0H_Tum_U=9u5Zom0)zX+JQ}pqdP{&q9#VH{11nr7hp|98b}JfV)Musi}Fgje*wD{2?^M>KF}NAdMm&L+M~wq0)bjW|U_woT~*h_NvY0&d(aEG!%;Q=x+yrM`%= zIayOK08Y#<3gV}FbD$cfmi<9&ZK(-m0;mEDuvmadek`?^f;h5sQ;CskH`svzlucH| zbSIlkQ%SfI>5c7NgYEcn$`rjl$pT;gob5ZKp4|qJ-qP0zx_uD?Kq7-!*vJ4(MtF@wl2sKM9c9QFE;_)0ox6uqc1;YZL* z@k1d1j)LpFV{x7M7v;psbMRK+&9?Rjd_2@NwIg1;hQ~w`Wn}(lA|a=tSUbBLyX&F3 zzHK(L@SaAb(K&~Kd0nI!pKbYdlCOA}@vPtr56UjM>n&&qAjM39H63LaJTKji<_uG&xMPH*>JW8cHhcB1Z_qD44m% z@I=pc5l(k|4qu=zQjmTa_X17Waek477IVYOX^k);OzYUc3S2rszvql+MBjWy3IZLy z(#siu-+*J-%*^KDgxh^ky-D+@m=8}*Zg`Xqna}V8O-FFfgZnd+*NYs&kDp0Gn%iJw zFzL4t;co?l`@m{{ARoNoy_8xjE-ZbPtmx~xhZ~Y7Lkr7QrMB>9Xf0rw*wFjgi2%iF z$p_;k<;%x8%~{~~%{^fKmJZIFI&2*$q`C9xCYiD<$*Vt==QBgiEw=aOS9X9Ogo|~r z8aa3J+N#NGQ6} zXlERrfa+WPdS3>RcOZet8BF%t4}ktW^Td76J8@bNI#qk=;UF2g1rj?mI7OJFe%1%NjO-Kkj1|F+jdE zvp@j7nBf7|IXQ?Tva4mP{{e>f3ZUuy3oOsKEx$)v62NUHVmrYDIJ_zo$;JMxwj)Xx z#;B3Accd~hEnL3m;l|Dn`qqlU=3b_{p&nwKA=0f~ykMy-rfqvb2(@1=$74x&E|a_C zA0KSB-awx{lx48|p7?x3gV^l7#05csGn8&+<&Qbpo!n>*-{HnN>TDb-<_Fy=RM!LXXwQm>lE#u;zLnEVIB`Np5uP5I z_C6upM{#_qnz{YX;HStW8stXnuMzkDsII>F-+dj{HvhMNL1$-Wwc-75$KrS}3}sg9 zi8z000K@%Q9=oK&aG(`!e`a?mg!B{rcXf~C6Q|0pDsS1@!x4?=GWeOIgI7f=lKd*Z zW|?;8LNL#00)o9F#I%P0weDSDXCa92k=^!bnPiqA@P15#VbYRuhEHM^S_4!9;Bp)y z9((P27>Ot1n?VHPivYR-)eQ5t8bIp4(W;1^P>zl9`F9c3$}z*tyloyr`i^5sd4&Kp zkdhA?0`p#QD$w;sVIt8V5ek#Gex2F-)#g<6S8ClQCXITeZ&R_FwQS8Xd~omtG&=>C zOKiRsW6+9Z{06;p7;f9sd|p1j%gmiYoREeK+QQe&NyDhDeejD^k@?SG~&6quFU83ohTPATn#J;1Fv*SyQb^7(`!iCZ|T4bRA zcO9AwmMz?uH46b{F7=d`gb2Ug>e@~7r?X2pY4!W1&=fN_dYK@!YntXOi367A(~KQ2 z$MOXyxm8>FBDIE-PFu4oawr;Ijntn*hOa=`_YlZXs;O5AGl~M)`Lw;gy%27g?=bxX zto@A@6?I)rgokLn3do)yf#x5qkwIHuKkHx6Zc3NVZ7C^l>fPC41=_}Jzg7>~*+HbY zYjz-|5U|%y4hgID1x5u7iW4$*WfQ@F$NnyZZo~FuK@?>20PBc&d&+LSS<>S*=Y~=( zAL{&5u(;qZ`W`)`2L#Gq80v4$$wRHx3=EW!2^=y@kln-ouX!_Dcp**Bh#>9_)md$e+b+WYOLvfe z!Os5F_*gqwt#ZtJC2rOVndB3hvGnz{n^KA&qs&<WM(ZhjWytWB(8B%1XZAV2qse-c&tFD4j=7f zgE-_DP!t_iQ{Q&@Zq6L9fch~@33dKT#DF!-Z%T4NEo#Ur&;*9kgcjru|5!R3o{|E%}8uG|~1~OC1Qbt=`ZCu~{-+}quMbBf& z_RJK1csCz+S3_X^Z`mS0r4S_Zg@@B1E7M)XO<>OTG8_Bp8DYADkvaG0ugqx~8EYJO zI}(TMpeh-d#%E?`xsT2Y5Y#ioEhgaD`gf7W$B~m$)4?*^ARkgZ^7i6iQfrTybB~UW zQi^&$2!swk$v7J{7eD{=v{ZX$$&xpIC`q|s^6pk78kYdoK{G$;^CGXWc5n0<=(G8)I(=yUq_QcuxC0v%jFou; zdnUklzl9@Ug%HFlm6sg)X2L@EBzNmbP~Qed9y)`k?WgSSFs7Ef$;qAm2B;yF9PgaMZnW95bX-6QY3al=xW|m9Z#D9XiOP&d~CJBc+lqN<`UQ*W>r%mGf_z8 zXOI^-iTigac#uY#mqN4(L0e`W1WLUI&v>99ba=i3gjUimXz3~+C#R+!%_00#kwOR& z5%*1=B)%EX-SEDOHiDp{1W6W~J<)WOx70@x6RIW*mMgk)o{+>{T{D?gD-3Y;(Wq(G8UnCQ~r zw?zh+gp$0{Q#E)-WS`6RE!h+4G?|P7mbI4Wsu*j_&@he&Kg7l;7| z0SgoLO;=y>bC#mwuc3>nqHl#}0+JIoy-~hX*hIK}Lou4Ev1gVL0%9m7zW*U9)qhtMg+(3J; zL`MNTRcoMv!jr3tHOh;H(FkALO78od@CsQX_d8J{tC<;xrWXu}3`WwTCMNfkKq&`! zPC!8b9t%&)&Rz%Ow96`Y$0}Z%1*w7_dz4dlBtVgBmC9mN&VmPjssY5KnJ0DQ4tb4! zR8lPAE7E0)3B7gwg;eX@a@=0`CfsVhPnbCxj~~8jyaO2LH_*EAXgZ>LOhLf~R9h!M zi<&&d@wsXUMCMh6)+W01yM-v=xNJD>Re>ozyY|PbR2X~XBbViFPW)Dz91^gsISOe22xfH86uQGeYEOG!lKp}_ zSK?ErEzw`>#v(uVGY3RGmv*FKxS;^GGIw-d#t9e?*}loF^Ns-D^K?`_lj2wBtxJ*D zMK{VrL&un^?K)rA&EL{6=&$Ms&_W?A?CFf5m;xM-2_MvdhvsvQFrc>yo^^;ctU*AP ztmYqH818HBrZKitkMN&A-;gPVJ?e1$I8`eoF6y1x)pYS40OPgV5k3G zr~}n**XJ_}`Bw@Y4%9;Zt9Ga?Ss|{cg}aeUw6I8L?A!-5)U!jwPs2PHTf@9=XE@Ye zYj3K1$B&gDrilU9yzu_p7BB?}sEF6GYxTg=36Rgcw!i(v!ob4@JCnVy6%BFFu0C`@ zrSi4{WLJMz(M?UCM#sef7AI7ASIGcZ8`F5kho;MfE8BDVK6qFNtrS<`fda+Ujm=Hq z-C?)n-sRMI1|`In^H_2p<+ZlgZ>t+*2LrQQN>x7^+cvs60sHTle`8L2KX1s09}Y&U zRkxY1Z)WplN%Jz&3aqSbFIJ2JfJ=1%(71r-z#Grz^M6icd^A*7mr+#2VPj(hNiML) z>KqEVb?LT<2vbVX4udibY^ry8St0VpB~Z0v+~=D!5*g!$7d&DPV^5%NIZxshoDaNd zbSFx)xszs`wzkYqb42hYz4ZBj7sU4X!DN2idFIX@b}F`c^vH?cg~{-cprSN);?lR# zu5MCn^xowpd+j*#A8A5P_yURals_)k*X_05xBT{t)!$p{?S24xYc3RGUG7*aY;amD z!ICuq=FjLMbhbL2JG33O&uWX&VbByA(t0nOE_U3N@$DV3Nf$fbmBrxuoFS~9jx19Z z&G{f2k;vQ6J2PZy!pif%qaP0>VbaCbvjfT4=Kq3s{MyrujOOpNMon!%SmrVXq)no+ z+x`bHz$)>`Jbn3Zu_(^1yXo8M%(RZRN@2bTBhN~w)7&34HKZc{0L|92_+Zk`plL_Thl${hAE2R z;^8|kU2F5dn_l)1)uso%&(5xw@FwEU0ovWGCZzloCN2`#2*V=p##k zw=Xk9to)5IU3J!8=f|9EL}{^5**M7DVFoDP!ypzIz@PTV9+6oIAAeI!4X&-4a&}ag;w8 z@-zvR@P}JMg8TAi`x;Hhx~QkNEm;lG6>)GgkeDuDG+|GUZ)HW!i1^;Tfc1}`q!qw_ z&Vd8Ur`m!SSS?G80VuiG3(mwo7-{)SLPArLkWFl*QO(V!UqvO{v%^ISLardjgKsD z&CO5zBa!k(+UUheKbND`S*16Z--r8cM|gr)3#{yH5`run$DSP~zn%?zC8N()?{0VW zzhd{ir~O#u19D}B`(hLtj|`6}yj0v)`l<5F!t-pycu=nqcayT>hbC)c851Mg^-}Xq zs_4OAmxldif}8v7mA(A~gWTMrSjgxx!f!XZX!)7m5;5Nh?AGEH3b1A{H#7TykBGIM zO>SP^2*R^c8Ysaj=ZJO|%tx73!E|ruc>(5%4h79l38l6cUM0ZV2deH-KK^rV`hc~B z%o0EkZ}sRRq?zT>KZ}UgwG~^UB+WM?!^0imwzl^*O$TpQ9y;?UI~3Fw#CXhKl2=8L zgB3CS5#^ER(SU&0>6E3lgM;Dcm*B|k8-Nqjrlh7;xxkg@{jcn!M@%egefQYuiE76H zNm1uDw5Szm@J7{43xkx70O667xA^G3X1lf440@;(yw0r@v2`pmtxt;Yb0iggVQ42Q zoZ4Em>@RniW$iif0G;j>M2SGc0mrbK{!1@wnq(k(-vJ|n4l=axMmX&K zF8hkSLAx_AH8m%e#mJExx-a^FH9Igz!_*>M#7;vgm24T32QL{;bHq|TF=Sm14tiud zABi1sr5O-j9jW;mG&1_GU!7s>6*(~eI~3?{ug>LG0cNDFr^+n0?nf?mm_B237kn&WdvOCg!&6xmTRV}=DpdkjtDh(aW$LJqn zS2!$)BUKCR`e+To1ZGR?4dU?FWucW<;{!`ni5BbOo`?gd=&F)C?_%LHS>N$|c@B`+ z>j2qXe^^od0%X#=W@&Jw)maT~J=7yGvo6@fR-Sy!i zcDCOw#{5-B1}FzWE+MOTPsGX@cpCva!wEI$ajKZl%)41)VlE~O6|26uCW`P}dl*`< zebM~YtXOXt7d_1(TxWFt(#u1;;&<){YFp?MA5@rq%C~hvRlKD93xrle%x84hf)mR# zgdO17`z8VtFTz?m!^;e#h@(E%x#9)FJ;csyUF^ZxEsyYm>~so$Fy{hc3ixaRq&zg$ zz&paxl&bdNIkq}a!-8MrRwXwW_D*!E0(xiBMjy}D**~l~0b@S!{|l?#+?ryM46}9X z&@`|o0j9)}Sk#AF?8Amax%Xp5BdG6Jj!TxL^F8raNq zihB0u#7Nk$vyj1St>sFOikgmFC@8rv{_EGp-xpQa&3Cs8`?>)LkLy_G$~^t1RZwmh z)T-<2>!SlbCAM`&Z}L#7zoAn<`p(apG}+HarV3pCA6;)9ROR5~RDXbazRYbiMoP=llEPH}Ct5Gdj#=#(SP~_St*w zwbzO*1Z(Vt+H+TOnjhh4k`0*A&&O47J}1Kj(MKL09u-4FWgy9ebA4!>DGVya82Z3q z-W9-5=R*x56lRR?Z~?+RS{m*AS)YfugvFx{)J125(-Y@_A`T2SWuYab%j5oq@u2d~ zwt^&r?)@{L3*H)>F4H1F`v-D!)ep@ve_GKw`J?waIjJ|#`7}Qv0qym}?+54^ZRBRg z1nrjX6;^}&z)%cl-Cg){)WYrFipu-Fn(?W`|d zi#%+09(Ep>PbWmEOU|h`i(PmRbHDf;J5Lp0N}xZ6UJKnKWqQI}gu(gFtD0ce!uhO@4(DdQ3RNcoF-CF`rXgKj}Ei*yqMB5hggYxAj z&|sj~1E$%H^Yirf#%Bp$w}9OiYT(7NW76Tf}b%%S)yTB=&5mgDD??Xq6?lKMIJCkAKYsB6lK?~{}OSGlVnIL_@x zJ>*=)72EY0MlG(U>oOsp>L!W56^!g~_+NJQ`T@`jMylL*>-q3Swh#aZ(92$*$`7x% zCTze4ox3#R+RPy1QNC@rgry{3pPtbBs52LR?>`_fK)pTQZ4=<)+%0OcXV7UY)TSDm z8Qt1Cy+CkqbI%#mfrq!v`RwbXJC%AvM+rIb+Z${xk9z<>Zf%JTU}y+x-7%$LP!`+5 zeX>e%*l{o!pb*~L$+Fz;XmFe*o|57OUiHqX7uZzcm4UU@ZUU=aSg4w1;v0T^>;bQj zbk6#&h~zT*AWgzP{q%xzQ~skg6uB zp~0KIx@I)-gN?4|w|>{9{M~cW)3uVAR#Lr?2Qk3U0AO&W$Q-GUge@wMq_nH5tF1*K zK$g{BZ)Y;Kf7s>998u^>&^T+rGgSkfw)w_Obrv7>_&VCMVur^{n>Q`wN24Nc{W!@( zQ|VE`4R~M$ENJoVPteFVhW!pIOj0`_idA#_C^xyV{ocpeSl|F6;5JNSL>jJ=*xKkZ zMWWebOCi?SKbbq7%Dp@AYB7Ejw}Jri;!VW`69D@G_T2%eu%|EPV z;@(3YCJ0pP=zg7p1JxBwn?#=tVYu0*_E>1Ow5INRo(LTu=K>F@u^!XBJK-7lb2QF5 z7#2aK5fv@aYwMsK9uM!B>qXrlt z4QcJCM>M^EYvs;Z<@0A22Q}%TGjOfw1zqKzz&S&RiT@s*I~!y6_(K7hf<0prCPpDf z#?(;Rp9YGbdY_;Bo=qK7E1NVyhlSCw)tEv>h_wamrOt3m8V80v7dX-SDEVApN*V=( zgtQ}nCbh;yb(#42S0opgmGz;pK_}pf9qlfmG3A&`%b3S(nsV)KOq9gGd}%cwig)zY zb$aUUSdb62xV` zXHt~CXB?SoiD!IQSY#}!r~zFZUDflXGQ*V03kpQf3by5wm0FJPd0D9i&zxgCMpL<{ zxuJ<4xyv1%hi4$r5fzb4DaGnf2aM*r9RcaB=0EeTaU{Tqf#EJ-ah3y?X`2k$^@N_% z$9A*doSXE)Cj#zoSjVNOrBz9GQsh?CbBBR8#At6PJUvgz>IF!hWda!IAH8 z*K2WJMFsV83X6$Dq$Y*W3B<*{ey5G;#>Ewneh+FTU#3pJ5653m}CL zMCg+Q1sE{wotRLhi>O8UoY+n6)g}hIZ)4RoZ;0Y&L3{g6cQ>xcUgs|2%__x}#;@hM z9a|U3$B~uWnv_Pv@*c3V$?Gf2iNl$jH>I?vN=HEv;N%Ph9>qIWjza zR7fB^wLj-GGCc7q=e#rCR`9LS-M~awj z_d1Y3zws#Ihn&$4jJpzEy?IpxA&YRYLh8o9QT9ry7*~(&%*=Jp9{u%leK_0FW6=|XdlUlC&tFT>d4gHwTMga-qlxuI_s%B`Wvr%>}m2(LoqWw9`4novhpeKC0 zEYxUaOdQJUyD?`U$mWiRcnw}hgi8%@n*;<77dm_XDlmy9GFF84%)tRYfqmTZGZ1cph>wiR2$*e2dv9SxQasGI5`Nr8AMA z3X7bC8v0nF+sx6@;jFosA`?}0i!!@!#FNKzXPcZ@O+T10j&vs*c z?3+HXcr!G)h~^M);vyw`S#Pi%psSEmGgkZHYBJ5|X_HGh(?;=7G`2L?(<#nk+qHR%nKaNb%%|W6(aye-{saR914r|; z;xT0vVb4=MHk9B!ZK|Amrb4r#Bva1ww75T0l?FmvUhkm=rzv7(i3jeZ|DFi{fx!>6 z@>uw2*U6DYi3yFnBIo;d=O0#z$%CclXBw@FEGcVuPe-a&iOAYcp~-~yT@e$Rlbnp` zYjsp(CV4sL&$aF5RmY8D_)+rPJ`GD=JI=$^E!))IqBDZAsMexU9J#}+)TPdZpx%<^hIH)+)A&#QJ z=rLWER!^}VsiLRr_2=@&BYZHBIp>sgLY4P(f3!Gw1htpvA78orj|7-OK}LqCWmPa@ zCZ-y@6=iWvAPR!xY4~U1Ro^-7a$Ew1)~V&4Wi11vi@p|98qN&h&t<8_Kow_Xk3-Z;jaCvibJx{CDcq-;?ET=Pi7<{aYL@C7G?z*XPRcSk4X zo-;`}n}n^nh1<&$xzNAS%~0tg=4gK3v4FB(2N7XO&D7v*IbiD{?V?=n-)?mBPbBE-hAqgEWK=BJ{ttgeko<(EU+qPCSQ^|I_VP(pN+z_u#>(V8mZ)jKjO$d9jYd_z;}1`J#a<1m7SQlosf#Bf8nAzdL!3FH@z8|ad5^inXCX6 zqg~AzUo%-d@jIiDi!Ptpw)Ex6f|G)&b4F7gl9NOqJU_>#Y4-pC?!e-)wheYnGQNlKqevagPf6yjtaZL zAtgjS4QB{jk#%g!)gYJU=TK#vYB0W-*lW%JSs6-JXCfsLX%><>0KgW#di#-D6U>@C53SFhtUbT;!N7(#SU933OY`cTNVS*>L0`|7*4EaC<5H+A zvI75KXT<#qgd;?`|09LeSH{A{e0-Oo4wRhV;441imKBilZ5i~J*LoEO3?0|xmnX2` zOuyG<;VUW?4UJe2ybfvQDl+dFBu|$}zMibY^o576L*i%l*K^K?{#>pH@ZTdrAi2wP zZ&8%y`)wCI?*1%FY%QR(!w?$jXUL#N%R~NFns(I&4;Od4nbL0h2irnsi%E`x*-|cz zN21$G!Q_5Qv5P)q7wg??(}M=TARl;z3&9R2Ehh)JqY&IK$9Bph-kNYfXd#SM^K7B0 zK0MY!3o6N_`=~JMPP25JdpUtc8+?}z@x?C)NHLEQvN^Vwr;nBr?~sIECb#JcmIfw) zdS(>t?vJp_5*ez^k9gh>{~!=1WQbL8+?sw+eYS45`=?J?S#%RDt^Gj4Zl?4`PYE@B z((t2|3Py|JV%z4uxaX-S1KU&uCF_!!dG)qI1csZm=?Sv*Bpd&BxBh=+_^o~%)6A4} zylssx*5OjIClCu~OH=!j9@MiP376(h{l?)62k9JRWL%d4ssthYc6>ihXwH3?1?D9R zxdzOq5-bgiP+Z224mX=p+dRHqdt=qetROGd?Ep-~N)~X?Vy94}G$4}FOonZGVVGgm z?|JW?LWcGwTi>vEAd_f~fATGiQ}3ro6nKcKLP-pme}-n3y576C4;Lp@&SQ9qKKn;9 z9+fz^bWZeCd__^WQENK^USK*lR>CMJUPFV#18KsFEc1h!`%E`5Yw=DNZdRz?ZIyiq zszrwf;zyq6c}Zs&vmEK#r4?;A9!ZW>P{V#0J>3~B63_ZWRQ}YdYO^pR)y2OU{=a2{JcgwBrsFD;7@8$ z{xje6i8r- z(YqGf<-N+>4qdySQg(Kmox7qE$-iS@Dr>muoYcVUTUn(F;oG-}emr3mqqP;g$Z~)g zv^~OciAlK{8Xm|H#t!|qh_)O^^2+1l#H(FdjJ|pMvJu>ZhE?0f(z}BBtQ37+Jf(a@ zAZmVCZ!RvX@rt?3zrlw*LL>e~dEuMzGU|>c0ha}I1a7>r1EB*21qIBx{Hls%;^*hz zEy?qKixQ4sXeWj)G>EYq^`$AIz-bl|_lvUw&Spq6?RO&^g@&%L>fs)~i!>dB2IJNd z(l^n9=f~3nl*E|ihSEPI1OK}=%ZDyA&Sn+rUHorWhA$~&q$Ew2Gm!6}TF&V{EQytp zlB9PV?C#9P z_y4aEdvg5v+SQWJyy2)KmV_1Qc3=Q;8ug$*X4lQ4CCo8Skus@p(69MYeU45VE{U#i zyHKRx+%wPa81%~2nWHkuky=8?T{qw|Fx|i|&wW-n?>jmAbLlE9F}g}@m+attE zjcS?g#Oy)Mg(w_Uh6q^^Q0+@>VfQ_f2TU%6Gr+5D`bU6vV}0S56$)tb9FZD4>8(NT zJ&Zl}h(P_{G@~`LG|{HDNuGZCM3%13tVqlr#6nUrehKnLJVdHBrk{<~AQ5&>Lh{E2 z%c#w>oh0zelqBRFtsI;YfSUq1{C~s@hA*gCySg5<=oPQzS?wV=qK>!ALdS!%V#qp{ z^6Q^bl-Z#_1;5`HE-pT^tLL5OVh!v*+c=Q*6{sl!URC!RYox%qg|XTeb>`i@G`pX? zN97^6RoOpggdYhvXz`Y@EPn=H`9eqatUZj{GxmGWmjM1TG9NNburgf1nt{CKQeE{~ zz$L%*gF6sZ$VHH}S8X4&NB8*95$G70A?d6|a)?l&*)2x}b4%p4jqVNX%W=GJ_y5c&cK zlXH5Mbe0ifvLW$J6Ja%So_-`(0y+2z7pKnj_**LkeW^`jxFigWfdkV;gq|;CB%y|< zbTAwp79QR^Fd)@OXjp?OA(|-JG8{ zv42Stk)@UA2)&dr&KvER$k%YNu?#)-!e8BskV$qrlcs7(UZG%M5Z#e_7h(m65pKPm z*R-d=yqss$0~T;K1A?RZuirDM;9VS)YcddF`w!D1EM&dPsZTRihc(=^Y|TSGzvD5VAU9vn_Q?>rWZ?FfJ!u&Rytj zswEw(=UiFq$+wADjOW{)k5tZ7K!Hvs!79Y%f0q(y!Z02X#;M-ohJ*v3*CTP2s9e-&%wy@u81AH?w6BpB=-4v0lR~@wEu4YO`w==Ee{i5?i zxbRDLC|iW=B}&VPL!b_#F=^Pv*i(7zaf7TG$OSkKlxBWLde7WL32IbR{#4hKXyO&% zlawHtdEW#*5eP`YC+g|zlYjy$`PX>hM9s-YWrDD)ZKgunEGh~_DSL+xSPiP?Xx>#) z>iwj^wk7Hf5Zv{)G&6?g7W=n#&2*7%`IZBjUs6y7BC1gaB5#rpNft6^R-!@y$2`y2 zxg7E3>`#k$#&4_x^M2Yh{np0W=vDM3oNy~d^V1i0y>4f5g{$`i;al)S zUq7CIN&{h}Rb=&Y=mU{ib3Rkwokzykx|pwnss(}0HpwQVHvA((%Hk)SiidE`f z1+lOT^E+>Mqy##I++i6?RcUnsG~&hPF!2kXh&#`%tv_<7i=*EpDFDI*ka!~X7#0YV z)S*9E+s~M(&7#B{g~#?j`^xelpMm$f6L6Xx&)4p<8UDCm@+4J-ZrCiNq@98};fL4C+D?`I=X@?>E&O5S>PlKce^0o-~Dz8AP*OA(cmIJJW%s{-C< z%ryd>on1Wy%{cBtW18FSiN3MXqsOg|+;JV8B4XJ0SqQMcc#aL;yv-_D@X4^7%X_w2 zwW8`fjw!`gAI_`{&22r>F$aiBJiO1V{)Pd$QaABBRME%s5H5w4;Y$d>H+XR3;Rm8C zOxFo?UaVlz_TxX`@F*aG_wry9#l>>ku8Q4^DC!u7Xz)WLgJ;=KHo0AQ@A`io*=uM0Pp{zbM`c**k7CPjPEB$xtZ{cKFw=OV{RS9xvG~e10 z;N>sd8sB9vJZLj7Kit;oP7-dIH+gB)q>@S6@rD&-&s*NnE&<2lYgQKOb@fe6As0Gg zIGZ_i5;Yli+tYQ*Y`uTEt{2Fqs{S#+C>tz^Z8L$w8mf~_=zYO&aKoM6Sis~FP*)ev z{4qjmW_*Mjaf7>zBlUytE;hw{*`KWZ$X zj+Yfs7+O?(ApOMg>rDQ|Tho^|FU>z?e|*$?-8#P#@{%_ax0nZ*)6@e31S<6YOT+FZ zNQU0l$wCnj71^0wN8W&)kUT!V_nu9spgH)*!Txq+wuUMc-GZfOwo zj3SlN3s^$!TYbaW3U_TpH7x39G@_DA0by@iKCidJ$2i~B4DDNQPVIW3;=l9^kP2W(p{c;7_X_0R zZr%=7$k4op_$22(T0t@sO)_gW*gIU}zqs*PyN9V^E~U!V_Q+-vV*R_^qa=+v#j6O= zF$3wD_XW`j+AMr~-rnf504S*^oD5#ycB;H{VRtj8<1$Jn01gM*e_ic#FEM4l_$D$5 z=gz78!JZG;C>RtT7OefXxk9Uo8bd03rw7QKF_%l!@|XMqFl+8NVaud-hvsd3$*`itwHhR_c|;_~ z)0^*si>Rq_V|$8)&Kx>n)=e$)!OGgD*Nas@r@6G+If8he_;Y#G6 z`$K&v8OT`o)xHuStVUfjNAi5Z4wf;T*37Zc&*sFR3xS14b(0DYE5Ukuq|}D8)P~5B zg^CjRG;kF>X!$^FyBAkdbv(LsxI^ppdVN9|TCC+XH`;wF6bg*K|G)&Vv-8?pe6BXQ zLOZV>@$eDi$#5K|av?^n`F;U3UC5C+!2GwnqP{&u%5O6%SCxDVpdmF1LZ9R?YV3jT zf}oryxV6W7lxfj8O|yt`sZ!tYf+`wabbgYsnlvSZzCZm!ev8cxv$}S zUX5JLE)1SN-c>dxM}{pGmDd96g_JBETjq zNg2Xg_{iK7bxp|I+_Z}ZS;Guc;Bej_%#Om!5rzfsRQI*Zt})J3mWC;}&hIsb<2e4c zg+Y>EdCH0}CCHg9x0(eU9VUqX;-e|ZX9>lnskQ>*4&FNpT?F$U~wZ5kY{7iTQhT(;SBEjS7NRkD4qI!mbCG5>)3)ORR*^ zg3@}mOW$g-83#6ijLP{RY`ecsV~+R zhYLnV;bFPGS19)u6h2Uo&S@Bbk#$!o58BHh7V+3^PDE9{Z_qQioVmhVKRBHZKMUi0 zLmirLJSTt$+w_Xi;Mc*4i7vPrf(1zKTpL;A7_km`@q-sqZ9hY=;`F6Q`+r2pUwo9h z6_pEGnVRpoViodVLV^|n4S_DRbZisb$*M;M+EvD}s!dP*c&&s>s+mIDH$+7f#61H* zYvcNJCB@Gdr!QmRWkWL2R+6O^RQm1erV^LK5qgDJqTy$uI;|vOvZp)B8^a4Y2zudO zf#mC5KtVXWXZW?!)3dfMIv0%Z9RH+57Q2)h3-S@Y*6}&mj;+NpWstw)V>ZQ(eS+D=fY|Lv#g(Ek%vaip~!FMkOjZ=_V!LxPS%ofH(_tz%?u zhG)&$+*$Mu3ZgW=oSz0?Vdu)0iWbdwlCgh*3z04~QVVu(UZqYZ7IDNvOJ)wKcF9mx zaIk|2GM-tQB;v?Dv1Pi;2Vq2TVfP#e$&gH5Cb#NYU0eHBP!OTVCevE*y*xmkv^!$5 zrWngPghh*$)yLgWS68&%tOzX)-f*C4*saJmsG>Rc^3<8Tw41pxhq%@C?e$-;PE4|t zdLoH%XrIipQ8701pZ^wK+Z1i}tU1Gl;alsm!7lkg1GMSs(7fxRO-I}K7x!EQ6ukDH zFtF)QyV52t?4|D$VY7B6M+1&X)~4uZ6Culo*m^5|$~;zTdsSehcYh~2M&P*T5h85K zcZ*dk>wz@-bpKwKPi)xSb)6`N(H`mY42P8+ZI))J=|@VeVoIg{Zo7XGbfX34br4ME z(rCXe9ueq#r9|1psyqVO=dawJzmt1HOJIXydI%GOc#lG>Q}R3+c{4PkM}x#PSbrq`<(EV z(e8SM^8h8ENq8fUxe1>;8WU9NL;G4c%kz`8K z?B#21|7M z^LNcGd6(tgA5oPty z=iMENK4#*}FYZm9WL?O9%OJl;n5@F=c-ZTn2t4lm2ec8lW4bYZeX?yXw26z48y+nY zoK}}NOjbeEI*B@#ojTC7zrd>T5f@mA5#-zWP4~eT?bLY%qV+F`AT zgwp4lrx8J>fV!)noY^J6?!i*Xd{8^5mCLwmG}yNcO$+r|7{hn--ekYP0BXRegPq`Q zPPtS%g9?T3Pt3C4w{(dm7G5QYxJhoeZpQmRE&vX*1}T4%dG?cqw@K%y8ODQW^zmr5 z1!rjbFwv*YLSmnpnp{~KpCa>)u#nZdLxnBo_fHr9E`43NH|UCrzx5*An%ScYY)~@W z1DP6VKm&@Xyc;El>XxJO5BHJ}dU={R=ei7U_6>jf_R|=bI&0`xPeDMliQ`N|sK~?k z%F;r!bs@~-lc17PPQhQu65ZGGr7CGEJE6%5`Qqw4Bg1Yj1+qKS6hv1M)?+)A#-a^z zFY@PP<)X0X{6!GS-;y>n(i4q9RR{pfOXQ%90J+=U|8lnmP(N=nBFIxs7Mij1(v2Am zw}U|SYAyElldyJd_#p0FmzQFqsC*eL=EF=Rvw{tAeeVg}2H6~Cwz%j|11V}l#vR;Q zp3gjal>H`f!Cm0(TYwpj7GDg{`n*|D)3Vtmy3s-XE+yl_ z+>Fg3$=AiTro^2s*1_C-a`nW+c1ho2acX8gzT%ygckM=&{Vth7MvxjsOU^tXZNB;U zuInUA%bdp6ua8z&ybz)`Nw{+-R-w>#0$6s(L2p<>h#OKvX|q(MO$eX`OdlT?3o`k< zn3SQ`d?-D}2&wj65uo%oz)=A^7le8yO=|o2Wv(_8qIGI3i%spWl>sZrw%EKZB3iOD zGJ;>8S7-FeyC?kyAqYW-J-UicGFIy6wto(|#rTxeoYa2xL>I5}+agrhwCcDeAKn`M zP$!l)l2GH_9p04R@C;A`c*FIYFHyi;P^ZK{nEAkdeUulBoj5rHq9s4PF$;&dc&9b- zU>X$6;E5P(kHSWzx%@KWaa_9Z0Y6xhvg zb;k|u4WH6x)_#)8s47$Y+>`3-?^+rrn;kuK7c;xB&bq|3JBx?4M75B8AHEzEU?1uu z*j(+66iL%1(lL;>^ygBtVbQX(vhsT#od|7ESjj6x*rv94f1ne4CrXv`U8_-~Eu2E$8F^?$H#%|_2abAqA2A8}t- zcPkckB1|0q;}YltDCfAprh{M}d5jR!9eWi9_wr6F+2*Y@1Jo?c-$!TBK)^m|PDb3s zL$M)U>@14BBru@k=TX9Lb9(Wb^DgVgSCw>J(2k)KA)$16HJWh}c}>fC6e zZIl;2d3*1ze!s9jbN}>X@p$=(v~g$H*fxhN3q}!*)>w1me&u6d1GsNWO_fDA;3Dcf zE_6AI$V)0+8G1IgEuzf7w0n}z&4}C<>2lUDn(Gu4c((6dGiPa@$bYtpVJ0@%d9GiV zBz3l5=sJ12b~4-LFcoIb(Y)(RntoP2ZXQ*4f2zo(tVaC8vE$+_cF)y9 zcfa9+t)IKgBNrxbPLE^6Tb|0kc@oq-Ydu=HM>G-8DyP!AL{3q4)lcoDK`ve6&CX4f z5dsfIsyZ`)3k!4Z%zUshmB&H}Kw7OV886}{C-0S);7dalGJGG9ISH6}2fBQEULHR5 zNN?N=kQ;cqHMH%zHr^2a+0#On{uS;$LO<1lOMcs@4`bcjmVu4Vz<}@_i%`2KZl{>~ zDy*2LUp`Q;4Ew$a1uhpJBKB$x6^r`4a}dhLN5QL*H=zA%8N|w@s?Ow;O@39)0E$-n zhix2FzU-AN0{;{|Son(q*>pl}bFKdFf`}+%5VYLVVRx|z;@{~!Cw&cjrEr=#3cCfb zMkYhAQDB{{tQP5WiZ4>Jsng}b;z&wcb%7Tp7yBMpX_5e{CJ%e`H z!KkUUOw!j>DGWL(lE~m9&HRjFn>sVg^XK6MuejgF-uVIseXe7i% z=uuN#HDnqbt(h?=<2zHq%Oi+m^)+njT*?&!2zch@E@wdLf9aAaPi!@OIZ;YN6#P zNY@$xqY2;l!XUp+lB56%slF*!YMdY$8!(jwo)ypY_Zt{vMdtW`uC^3h5k7YbiDV2% zHQCMNQ%})K6PN5Hz~3E4wopumY-=FjdtIDNErDJ>nK6@=C?MA%C0wzCgBo7@yM~Lu z?&W1DNNZNfRcJD)<)B~34SXH88+;951iEb|#Ci$cjUy91Bs-;JJsv`%j6yp)b9HAG z481klpN_pD^l^XxFX@~&;Q0UqQt-<}F{xl~oD6x}b%QWXHTh1&d~D7Hicv@aPDpiM z5;6Tlf>^{nY*1KSZS#+Vhp<8&!`=F#0^t}2#N$^HlSc!Tr*rSlapsIu(9($rbOcV4 z#3h~NDXb}l=kZkqJ&#RlGbBmUz1UhJ@Wl}~DGKbZLt*Lyk4A*dzA*JJVeqfMK8*V; zYj)}7E_;M2DYqXq6GrGzL_Vrd=D@5`$GjQYb}8-=sMA$C%wgJ9ZDTGt#%5ZzDuU%D zCi1?7#48N;>iQ+a3+8p|tk*E1!}PJ^4kBzdCV)rs>x1Sa$z1#?bX(H)Y)dN~uI@sI zqjn9%PKqEx=t=L(`S0pkrz`yqw&5nVrH?j715C$&DgU9(T6PJ+25U)k1$lk|vSYO5yv1)XS*tL+3~;ZTb;l2CfpEEwL@cklmulio5OD~LF*sNM z)gx&Vr~V@nk0gS^mT&8+$486uNaGoFrtdKGJ{77$Vb8y<*X zlJDJH9dZX60QiW@4Wy{-yt{_u{}2QvFA2MD-nr3xohxEl?hdrUvxwUpV=R(8r!AuI zNnjuvDb5~FJ6jE1B7d&K6eFj%{u8gZG2hVkc)XMvCox4mV=GIorA;C1LF=swE6SNg z`WgFA5`lQEZZxPkqvKJ``&V=@&ZwXj`s4mf?jP+;@9yEFZ=LSz)6e0e_7Z`+BoB!? zz((7aeSCw4U(I9uP-pVn@yYwiaM-?gJeL=S${~HU^V!3xY8QwW4kotzs{SUW#xsW9 z>xlA!%ni_y{!GbN=jpeAzd}VtHN668_h{9fUwU+*ZT`FF3CT)J{mHqjkQJn!+Y`RV>%+* zOyF|AhL0cFX7cINrz<>aFa#B=(A(e7vsZHN%@x~Nx_*C`RT{cuRY!~Q=LJZOcWqB% zJCAYW-E1!&%;E~2>zI^UmN=ehf3_s{8zyA^=)TnXD2%gF_rsgp=lk)Dp8J;)ESIzT zeb_lL^HyT;cv-jHJ{VPWvMbXV^N7DB#*SDUQTopLfSzy$)rNzPHcs4MKr@=*UsBvp zX6$ydUIwH$Ap1Cy=A!3YoiPlSJvRp6{oj+VkmkaX3K_B7?w*}bAWUeD*_~0%Y1Fbl z9qCd~2)j(JC}~octy@EmgJUfGRPd?Z`Ps#OP5$Qc(qZRPb>oljJy`Fn>TuWmo|!_s z{#IL{REjQQy7nao;GHxc9v%YDD>q;x=Fi2nqxLK*{!a?%I%GUbeS&6h6@MKtvO)oX z0)VBY?yhiVn4unL?*4j}yz|eaEVGy%-9Gk0Gj_h!9YO6fWLa8QIk2hIce+vw3bw=R zV?iVmq!;@VTfFP{Iv&nO z$liZ078{|5=O^2+K2#gE<8df(hw!Q@D{EL-IHBDm)z&Z+N6WY)PKkoHZ%$aVl{*^A z`2oophlK8jH1LJ61JAf(B{86lKV<0p8H9pbKA=QLB%^8nTX!l!$2Zm0Vj@GPvujfJ z`a(}s*CtRcA;?W->I*HguJni3aU{n20#bFg{}09@{4U98{|}6Fq1T*GTtPEAs;$)K ze0tSa($|;PT-le$*$0dvIHH1D>qDgJtS5WB7UY-m8=fmT-#}*B&o`hPWU#D92D_}1 z&e27c*KmX~Wp85I?W<*I=Gz1XoUZ=>&k(voNh~@xzW?7w2YB_5NWr_s#c1GZUU@Hf zf}!(sbQ{aq*tk45bWQ-`vQCd&YAiAt4TE!iVQ|~x5 z*okRX0lL(N2$+YQ-p;HA_g^&C(KjzF9qMk^@xHJt1QJkUB=E=Zd1} zgupf#l)0$a6-|`^Q>`1blt64Qs@v)jQ3ILLd%qJIzR0z5SA!?)p9(Df zxx<|+{hABE)YK%=o=#(dYfq$kl6SNP&#}t8Rih8cB|#vTfjphLk&)4g*U(;vF?8E1 zW;u2Cm0fK{x^b|;(L)+cp;JFxyxlg8Vd?PrcKH@gMn*EhR%rS)p9e9ftGv^X-PQ+U z1fBP(jOXTFSnDHeTZYObDw#j z%<5x1)-W!2zE)<0vgcjAK^#z%2tNJXn0`J1hgI`CI1`>Pn~NJA4!-vdSjT@jT5!^a zfP9RlDs7SEJl=QD&V6@De7e3O(#_@4J;J(eJ^NiZ+n4bEk0uSzFTZVL_~E*SEmYY0 z>MqF{FkLcVNJvOPNth0bEQz9?DC4byd_yLu^_4pwiNi8ZMP{a?SDy$_F~nNKN>UAx zS+j7(qK4CHIES3c$;o3M)4)x_6w~3vzDZtlzd27K*G1=5! zp0aQDR7(ZpF&SKOIt$#*y8vm;I}*)15ka)(=A7|O>QGc+Cg#M<#QctgpB$%!Z&I^wGbB8Hq9=l!7s|JM{hj+x^O!}c5CTkNBJrA||2 zdpYrj+Oko-nZqF1)#t1f+tfrVHbH}lD6|P(p~!0wY8mJte|b2(EpG~hiGA&{BtOVv>hMke=*Ssr&Z7MP1 z92{r^MguiRU3LPV`z*lu{r2J5%*$O0i^;o5cvB;Mcvdy&~q4=O|3s%4r{F^r;A$RSRKvScQ_UZ z&6ShB>9G+(B!`^;rks>-t-;yc0}&d0j;-#{=3;ch zBAo$>@goIJ??7do=6ZtTt=(74%VV{i7jCbKc7l;9nxp1}wK<4tq zng@>o_rp(nlCx8kbQae3=)%b#7@dc{YCaBO7eD!td?&K>a+#XNy&vQvZEaF2DlU(e zE}g$LZFQj9Uz=!I%(X!^-#t9@R5Hn!H6&Q93Gj4)m=xX-!@j##gzTN1RAPv{_4m*! z@WrF>fA@(*^Nn#(R&?T=Vk34clVAElgF#H1xv@Tm8(43>GTI)UGxl6}K&%9QKg0h1 z{IdZ=C()tHH>)LaOtDkxNHKFU-dpc>@Fo2oAu{=9YBe^C*liV5AK{{M?@F*@W?sYh0;n!5v96v*kXJN^}_eCzjC=V(Rq1ZVR0h)$evkH?( z`Q&NfK7FL(H`SbPz0XybH6cs_%NZxml~bOF&++$wGC(A+8)&PMhr>+%g||@iDtu5D zfW3fgcM@;2LexR|-a}gc;fCzdF|EE5XJJZyXW*Y>C_onW(Q@HSngJ7$PMkj%ZGyN& z#gjWXLJ6(5%Jga7&MW-XSPiifJ)`Fs#pnjFr#NYmrbygYxMo()@vG(HJY{qDPqdBK z?sS&q!vmT^-Ar}(Io5rz1_}gf_$Os@2-PH>C-|2OX1j&YDd2`|XKEmfMz`UxbiD8C ze31MP5D{|fw1LSt!Y`v$v44|vVvCDicG#n*7|mHm?o#$fr(2sBaXDkIk=B;a^p~Vv z);!R4{lCB*8ZJIQXi|v(QFgnGpr9c9Mr+S!7Ll5*P5DN93ZGQ%XxzBu|8*$7-l3qp z8d$HMNi2d-g;h9`4H?6R8t8~1N=;`dd^@V<1d5CM<&0s~Gc=#5KBto}-g=sxqd(LZ zGwAgh%#9p(8Xp7sfk^6|MJpY}zIa(h^E6OSr`>&GJM}yzSUTu#U@Lpu4U}G<*gZL7 zGd@o$V8H>}qK%DlN2x6oz%)n9_?wXB`7V9rM z=+sn4`tE%eUz8C)6O4@@=(T$C+|q_Y*gmu^;wqk@h;p*}{FK*z$3a!@yOTUM=Pbza z=$1)<0My2qr03`Pm$iTI?O&wIq-k|^6-ZsIVB0V9W!=vvG% zM>A6wxKWN*tFR4BsrRwq4vwy5` zJVF=sJUF{pn|S`7YU$bHkuQz&o;QX!;w|M(#OyrUhnrHWgi;X<&f3vyJ;PS-%&8~0 zy2BYogoWouKH=uItZrrhEHxJ8G*BMCJrcbhl{z3LUo07M!_Mzg9R~j|#E+NNzs#Lo zCt~e30<&#-*a$BLciZ;whW`GYnVp@@DD0P+-RYI|tu&Wy#f^@*qmYGyA|CL}W`4AA zW0ag5ctwAO;7Q+T#0gRmpxM=2P`5jiE9$9JX)Dp+6U{SLI#TE?42;>iE{qdF&&3;; z*}weOKjC8EcANb`m;{1hE31@{R8kulwIG%)10&&dAawz96Pa7CI2+n9BO<(`E;H|Ta z($a7+m4F$F=a#m~$;rVhadAO?A*~PFmKq#YylDN@MaZAUQ97A{KC7D|;aCBP1&>!B zl?JJ4V7558J>B#kudrhD-94C^Z_J>{Z=lA|2tHtE6cThx{IK*)>rQY94|+ZfPsYcg z<`E^CW2EJvXqA=1dF5AKoj*~*1Fnfh8NBTd8-M-Cs8Gz*IfC`p~JSmiGL7lS7bG>8afP;4i0pU4^^a+YBDagfO0zAlVy} z!w0~Ctj0yVG)eyy45Vjb&QA$J1{ADwBT+e>F$MPp&Xdxr z&q*FT>EID~U70?p$>^~RVZ@a#l6JB@JtimWJ2yiWH(NOn!7KU0#ojt&O>H(2$XcGCm>HZH--vLf_`~QE8QY2-|D%p-*MplI) zD$|ie8_Ua@nt5Sr_vUSMbk|%qwV;>{g&i{St`}?2kQqR@ZQ~G@F`#oP{W~@q7 z8aJEMAa!!>IS*xA^FF5TKu%LfhsIt4b&A$i@ceDDTY>ia;K|!RG(>L(CV*g^eV$eJ zoM&Zh2!@2odzXK`3j6$1R)qHFmaTeyiv|lLNT_>gPzBP2xr>N32}-K`6tSv$^j*e9 z+J{D3RBpr|VMpp3BEo^lOEP`ewO^u%n9(sSd7^7$^V*qrp#Hwzs#e>Jk6*_5J11OE zGTsqvePnwma_jx|B^Ryt|Az%QI+_I2o^EoyBM%#mT3I~&^q}wHpuye7(VUb}9=wgp zc+%$}*(F>#qm8@@*iqv7cv~B(I^=aA&nUeRz|sHo0QhLGWx4$q;8sKBBJ981p1Cj> zFe{#0C_o`i+VK7KHyd@uB<@Z|zu$jG<)_{(`$Vqvzs*Hxz?49b=K0=%0m1fI+eYEg7jnH|E2yMO4 z{$Ilvtv*D)#?Nchh%d{fpEB(({bSqX7(Ly#Z;W`5-U%#-!a@PiMRWAWBg8M}>iw(3 zA_qnp*I)9*hDmMRNPYAkPmL@U`ZuK(_IAauNt((#!Y=G=LWS(2!>3zt)-l=1bg&BD ze-V&MupKe+%TTo@jgI5_NHFAzB^s;QwYbPd6``(T>pAZ%#}wSQvElUM32!H$Se%XM z21}fnqb{G3@LgQ{1mF2*uryauVMHj(jg@$UzajV42qX`XVus3N>&J6B2u3y+BV!Ja;_PA$1zO zR*Uv)`x}EnljyT&bkmm8SO-9A9Q;lH{_7wA?_YmiRJ0LJ@N?nUEsgQxH~vDyDuiIi zjsV`Xxx?i;X#Utt3Gt^B9);C-H93NK{&ot00k{E$j7&Z`*$Co)E=NTC%&lNf1vgh0 zCH7jWX(TZuM8tSM{|l)VEdb%ow->q*>=x5)hy5~K$tfAJB8f_h1{MBS5sHGy*C2n% zk=lKSLD{l>Lz<$KRIaz94iE`{U%A^p`fdsR`sj7zJ!6AZ)jJGJMEUBR5jAEg)hn!p zoh7qeS<%|UoIra%iSzF=z_OT|KBgZnhl!%6+n(bhV-dQ(v-P}lEsiNm>xnPbx{y$d z)0|7S$2t}pt%Y|PH3lBeID6NmD_ZJrW>^wpcQk@rTv&`P;)Mcf)Se0O9-N8YAYcIoN zvX!NUpTd|jSG%CV>|HdLg!tCYzlNKNX?ZSoqvhnS&Q8o^gC+1?Eqpz#8L99Q{xrkE zX8Mf|Y!rCmgu~wGl@qvg`A)Wq6QBve-Q(%NDN02JhtU1WVM4*NR?T!(MH)=#P}Q+6a=D7Hi;%`GCzoiaqUTF%lpp{C~2;T{QF%H(m!#{bXZ^nFWhH?%{d)aM#Jp(WJfbfEE}pt&-H2G9xJ4sbgmq zz?s7GmSty%$gQgT*|{Z>9TIF&x8*IU3Rfr*U&6*g8~bXvwsKxx9ze8+5Ds3hcILj) z4GL@t{IpSh-*}NzNbnnOwzxEebTP8-OtQvdC1N{ku(is)xl{nrUOHmAh>8P%(A4Csq^2p3gHyK8C@OJqc1`2 zdGsMIkH)gSKkG$b7J{cGDJMpFvowo*)cLW!{m1-#zJ@aV^+DZx*BJ~)MoDo?Iu88p z5%=Iu6mlAM|J@ZRuw`%Jv-GDItg1Re*YgmHtIw-d!YE z-NL-|w#1(uP}SW?cl1jK;XhRGd_%;;bAjbnm*{!eDr5r+RZkaFnUbd6aE|`AD@XlA z0M-09J3G;=UVQqvudh#OTl)>D$$^I$Az^mTPvTo|k5}0)KCw5r<0pT0sr~Fd|C|EA;y*|Gg{P(6ZqdhSqsDL!hsTzmF-B$(DGd_;mR#?48Ktw-uCKs zI{#~7$V3e>iVT?0Z?5GefqMAUoGT1Z%*>aq_GJl;$`pJ4^9|S9n*3mz0ySz{n8f&;J=hFeA351$yAKjQ6Cm}K5Rl#PawXec$~Lb3-Q&X zFk0*_(62t_@|etz5RRTD;kB~1W>aM^l~C1Cb6)tZj4)T1;7_=xnEYwW5c!&bY{M_p zj+4rs8%0{-aC`?5X4Vsjv~_&s=zr|Y%lXVt zwZwGJk`0EMm(+ieJ0PfXxdO7fzJQ(H^SiRqcsm7uxY8I)adVoXTwKL=QEysqAO?zz zsGRc*Cg13oomIWhYg)^e{j$-LQ+WRzv228A^uox~0r#&Zwk!5yfVY6n_vM6pB`)*# zmY0_oS6Aoy?y~->GQ&T!QqyZsfyJf3tA2qP%BSYdVvg#pT#mo>GwOd0N8n|lFXHdX z;dcjha6@bp5SPBD#7ULNIkd@HJTv{+YO0)HYPj-=?F#?^(Dr2b$n}78Rr2u4P&ZmU zQoB^#IDp3DT%pB9S9{QU#q^|Ww&rnz_9qC~!5lY{{Q2`|-mjof_*?J+GtPCR-rv_^ z;~23a2}@F_rz4=$e*X&uzJRO+zJz^!nlR{H@Ym4Lm>r^xwVxg#5IrT&DcTs9xla%$ zeL%d)q4(l48|BB_vJ~)Ul$)tETdJ;v9eNXdGMETj8-kHxu@5FTTx3#VNI)L2F&BZA!4$h4G&4YOVy2Kga(dB@kL@2`{UdSk_AD-P zgHZjfm*g zqXN}!Z&ER%!DeSBrom=@oVy|2pn!&}5mRe=&06(3$3A!%4;0&ZN$KePnoh7K3Mjw( zJWOtr-DB*V_=poUgr5rEU8yw-8C?Pr);)1i88zHKu$X8l>PQ?XYE$5;J`UD-`%g#G z2}vej|NGgc#mF0pO3n8;B!PjL4O<=xz_g9QoP!Co~!YEmHT z;o01vV|df8fiqqlD)jB1QIg8p9v?PUBwOk4xl&1lYSn$tX@PIk2^@9AfwQ59kKru) zbkF8(^;P3CYBqf{pMSsd=uPTStus-6jcyM!tAoivi#U3l8j;ADh%Nv*qCDtr;q$Kw z>*yb46m#*R(z-yuoR^oIpBMR8q>1p2c*~ae>HC0Z>b40|A*ufxHs8BDm`4+a)-nU| zqgU>*@zYg)pMLFYoIpPj&Vtw>tF8n~008_Yi`cWZWC5VZ0CQ?no_iISJa{SnTbfv^I&0flV zbI~HR>fLtqC@Va$f2)RKL3F#7_GLNo6-KmJ;~H=>-Rt&KJ&Wv zXS3A2+APfa0VDuIYj5t;JcY)goPag^XFT+txt=S)+9k8PN6@ZU5338hZg6B{ z)n-Gz&B_V}X)1Wvfffc$hEcb9F3aThN?$}#@TT?>Uf5$nwO0yVoqt09x6YHDkYo4n25;-NW_S4$VE*g{J6ASKo@x13v zZbIXMkeHX-|L;HT7f%$3-+s%AhyG0@h2fs@O=)ZA)gfVMzQ^8z1LyXDfg{07zDuMZ zo$9tn+!)`3XjLgY&6XE}u$SaAgTbT2>vwW~)_NVVBmBLXU8;Ovqds)eH@0W=BlH~f zw7>cvA5@W9;j8X&g@4+a4>Uzm&Shm~L52K88k&N?21nZARq+qq*7NY2dRtSNpCj2e z6~H6a*)Y{ArfeutO+KOU^GQZf@w04S*NLy4);@6#DW>jc2Q@#tF8LJt(2j<0#WOvIFotuB#)-LYYEg2o> zVvl7`8XayKSD*D}R{6r~n$++Mr}3@gy-jkL*U{{5UFU$klzz$kLu-ZjQ*&M{-)y`Q z#be&Zrrp(}pK^0!0FBw!@boD!1){>ffj>C#`HAc2N8iLc^w>}%hxLup$H!P9nFLM) zA#E;uP+RK6>(QorOfb0BMrxXvPz2hCVb!#j+8+}|oJq7QfoweCzXEOIWtL#PVK11F zPE}uOxV&}i_s)({nX2_5vxlvLp~BqhuEZi@G|5dJHU_J-73=6}tg(0EF;`r-TE6}H zIx>Ef30fUw3dRtJ7&bf)nmc0~dk5KSscd-0Im`sqeJmh5e0cx+&mY1mweAbA?==}F z4OAb5<8_;m#a=|2(Oz}aFJM$2GWG3FD)dcbAY2PGkZ`&^c1mT#RC*IeVAZI#yVrJrb&{6x!jTn`o^F-*=pl`v;hH4Y zjl6PrpU7e(=KJdaUn$*oaBBGudIcrX+@L!3&o!iGwb!NHRZ0YL# zV`EG(c>HMf`0<%Q^Ck0?E+gphV7-@xKmC^T+xmYKLxPe51E%`88RP=*V;K;y+^+vu zCU!xiMY(BqETA_dy#H+dX8f1t-)F>e_wUGS=Ux8?N-RAB7*7=F+#&<6Z9%krvYl z;WyqqDlQUv3n_c<;j^+^cqF2PUZRZ8)e+DGV6!TmeW|Jg2j(ugwI=zWbZXvxbPbxt z-P(-`$Bk%{4BC^>;%lw+t|bz!^r}@tJ;c+$_fOq0-rrsI{bF_FrkCWxD?%1g@qoa0 z(g7D<*_kDFuCgu-+37VW7s^NrWRrhChWOo~>H!>uK8&R{ZPx4}gCG<_5rlfJx;y9X> z!O0eTgYr_hQ30^Gbnx7#jM>I`W5&sF%uh^G!?p85v#sHL6dS&6+L*feA4-8uS68=} zh{8X}1}ZR)$*DsEQ+j4*tL8`=&DQ)gP*=L|k@F(5b8;Tr*+pJUQsUqPzi7|n>xda) zvQaz{*cE4@ICpUUdPt^Ctmq*R$r`f}euSYv64?x+8#P*AQPige z5yhn+`TtHO`VNGMKETCo5p>zDy%hgPa4Lfnym>da4+_kO^$dFiRp;Z?+xz@(N|_H z+1UEPuQLlb#sJr8;~mb|1fCad$ov}fH8C+@TLqmZWJ1D|$%@qxhGioZQ_v&I;72gogCj?t?XJCQXRuKh5Q%PDMct8C2FrkouQOZOBC%%`zsQ-H=g4pEf z$fkrpDz8#r*CMEVM8ZuuEZJiEQ1;NoCuQOP?+AAFiCO3CW!6Mfo=;)Z;WOn^iB6@8;NV?#A(RcF&8>c;2_Z>NOln6NtJ z>(3vrX+5#GjZ(0Bi<8b#XCZpa>tLZz3kC#sW0k`2yj9{?s)3tJ5a?MIzx1qE*+}6Y zMD~5O3Hl;BE*p#m`VBKTQy36qp2=k&t0DvgmTa^+zl5hPE)mp6h8=bdeAbt*^)-N) zp#amiH9XEf5 zE}}z>7MzxlrQ zT)zKKl^v9Me=uj3E@ll>=xT67!jS?U`E$*N(cG5Tqc?B%n}T<@OAgnk8``*+a-RTh$EATX1^x!bG<-X$!2WfwZWDi+e3d|o z43xDHFJ)X=0uu^4ALr)Bi6p{gG$?f?K1KJz+k6^0vm(nUfA?Kg9Aj>+4(rtx;+Vrj zN%tdmE+6kjDY=^sA?4M?UcEvoJeo+lPH^oa`)}Y^iC3o>sMdfmOoe$;r;02oI2)a~ zeoK>^Y@NC(m(q34pki%mUB(BquqjQ^yA3!w*M1lxEJ}K%C6d-fDE%>>CI%dqY+j3}gz224k6K5{@06 z78f;1LuNSQb}7zp{i-{@p&_@81o>rTqS8a%FD`221!`(YP*Qq7_xJoJ{jM22sOD5cQ-U-K7e!^RH$zKeKAA5Fo1ku3MV9&vI+WW_#;i;XEinflWB!KD z<6}&r=W2nt2_}IqGsjj@+@|-p(}|%V1d7!Kl!n~*PC@Bb_;b?uw3XRkJu6rR-xCJ9 zP!a}u2@Tn#R0Cr$GHBP1Y>(L7wumD?%t53BorHgy6 zm+`%wro@#4X(5y=VQe2Xjp~cqR_%Ss#{h^JpEAY2b9V)EXYi1O&;Co8E#mQT&xI{} zUvQ~7E*mPViO@KUz+c|{J^AwT8Cb#4czZxR1I5douV24zxSAY2kv*9rI$9jYNIaY4 zZckPdv8Eyx-r~r#Yk$eN2gbS+(#3J&6suQRG=4zq6RK9R*_Ng8QkApl@H#k$qebwp zd>1^BGqL3L+7lRvw(7fSwR4h=-}Z07*TIG<9ixb`%v5EQejaTS);Yt*X&+rZvCl9T#5hx})xC8)=bs#V7+CVcKhg zJc+1-r2oec#Ea2yh-UNWzOuOI<(Z0ejbuT5aV|>@q-?A)c%R7S{33|)&dg-J6cTP* z^rIdV7u~J_qq1@LTa_y((Javg4-3sZ-Wr%Yp$zG7no9YX-!xKohsn9i!Dv2hbwC@^ z{~B&PZjqIVxPFV=z3@dmzd7AKA?*8Db)GoU_||;2=T>G6!IKZ0o0^D$m2k1(FQ}<4 z;n{0QCJGKu4tGHmOz2ur`+{=QjGb`_@5p_)lNbAxAHju7y6zJyckL*?+4x9!n#$E}<>Oxc z=_y?CE*LINwsLc(Ec9!)Xit{UzK|i58LrQ6L_$RzZF7(MIIz;9@BaL&XvqsV`^2gJ zf-xkO^X6}oEiCkJB2Gbd7h1V8bpv}mo;^o0C&Nm%aTJ(a+iP1?TR-BqG7K+{bZbkzI z2Ccxv4X>Hn|KYk!4C9Xw`%!Ei;^IXBW*OIN2_#1F&rtqQkS4fkijW%1UVd!CV)ou3 z7~_>DJF3zuW1sLt4KL4eTw9V6E#qpFL6h*Ec(gjr1f-Yb75U`6_ zcQCl)dlCB^56Y##p|7G~St9y8;s(rl;WK8rw$`~n7O#PDLf2(_OvrShELs^D7_Ux` zup6d^=FxLZ-rqR4l-9b~cIqT<@?`gD9gDMpgfii}AAs`+xb87pCb&)kBRbGyEmkk$sbDIE`2^nV{-PbIutT|U!4-+*1C=fz38##n!URnq z;ptPJ|8^*bc#eI3wzoU?9&&=Rqx|6X(+51(E|R2Ggzb6kVdq&t=6?}geysA-wup7g zM*|oBecCL#>i5{^;h+bqH|=T-If=f)^w(8vM(xpL=xe4LY?`6a}E?b1iH&qc_uf5|dV=HLvSK=j6+ck)a!?rA6A zp)6DDDp77`I?Y8!KQ(#0Vlw-jMDF|5IN4i%@{Jswuq$))n|1V>-nT(K&U1I}2ob?e zPoDH@>w>tJL|bRky2W0@88o)P51m$K`_T3Gkn@D3uVtZx^>#~)^wwrrIM+;?tZU)~ z+ErCeqyN7lC7Zia<9rW)jQs5Sv2jZM&+nJ*)=PTmv>3*Lcva(L_M?;~h6%}M$=|2R zAi4zQEFmjv%QV4zwT%~?! zLbiLnaQ7}^5gY>-E*+NAMd{dgO8(~)dZZd_sq+eB>>F`CU$?~UxcXBTKaYGP-Ch8C zOV@QYKhd%Ho@^qkDWyQRbcdK&dTUQoxa4`<9I91s+<9k%v+a-6 zGfIdN+U1uKMyFJP##hW!$CVVYWNCm;$fyo*uJ7Pt^$*vOJ-QITbnR{&GiFr7kF~Y@ zab5(f$LsY`AYDd4sIIYh#<<72S?2(A(~R)xp3K>Vq<{v!eapR;r%7)VJfF7F$?Y_Nu!Y5O^{!tJQ-WS+26clvo4NQ1xky(5D z^ls$fc3HvOidnt5;W_b&nBDXjlf969TCu2b?b6WDg^kd8glV*yuifj!f$}q25el|e zyHDN6oy8r|C2_vO^(`0ThNZW=M5RymW|1cTexs@`7RxIuP%Lviz6W#RsGy#Hs{KV+ zC-yR{WbnUUlAFBy?*3(zl0up~kovc4Dd_~x5xwNY%1@SfZzh%6EgQDKn-J}aR=;m# zB9FW{+l$*O+V{X6nDpI0InR#8){kN@5EHn6zbcmTeXENjjzpM|%EMVi5y1i?uGc#) z1u8zHQ3^=)ciK%Vy%%ghXXWIC0eIbaZsji;bL-Z><&VP?KHWk~0B7JyZOc3PO03dd zd%vl}4tk31e~o;ag;Sx>L%)3@3d=_|o8jrV3S{K!e|42mQJ0oisxa#{Aj_7MadJh+ zISg9o!o~O=FKU@Mzan%KRJhf1Ugf9MbOdzfMN+s}d|r>&xEl}Jx__<*{8^&G@o4lfXuK4qY=a`D%wFnj& zn-Lfiz4=i^Jmjoaa4@Ftzp<{pA$m}`bO|P6y5W(iv0iy~`7!oM@4=|&^oEq7l7^7e z5ps>OI)ZB!pW&{^?JQm$3z+<-dDoD#GzE!Bv{~q|T+Yu|ZlQ`+jkUOUI)^&3eavr^ z*4?3UtvU%nWJcWuzt8Px(KB-m=(R5O=loA;EGp=KceBE#mj!fhmE*I$$9Y9sy(N6t zk!xz*Uk9!$fFcecvh=nK4`>2!kU{J&+ESc{3k@GcB@XSQ-#6SI7qCUhrM~krQtHFZ z`BS|@>AM?82)Q%il48n(*&&k z9cJ137??~3K}xf=dj8`B9>l7Xr%Z^i?8r?v8t$o%V8cYx8;TBkC3ar zxG|ZRgQ9O`dGLw^ASJq-omMxv79@Ztxgx=Cn3Ozw!PTNE&FPKpXcO!!ot>FelV>Si z(>E&M$D#nGoR#XMs8-oltnYRac+QgY|9d!@@ZmxqW)X@a+sO%t57)Y)k2awS!5`G*R6{j};N`&;yX zh}K?0x%U4*5e<1d<40S0nKq_QFInYqgm+_E@DS8+SYZ>4x*Fl4qlO7mX-xMh@q;yzJ&ocoDVhGPb*^}RRRYvU>0|O7iTc&%Zs80RYNW$x%{atfk zm=-0!1DiGrsO)T|m+cNaK&foF6XsD$AD*!l{4LH6i(>z{`=0=(8;%ejB5337)4s4p zO?C=!R(gHI-?L*FD_sZGKXdFEWfc@8nBdAxtR@*r7NsV8o0`~{a(S||K@yZ~kYLbx zVL|-#76(P(Hs%mP&&oJI)F~i54GBN3#(k|EzOcyf z+Dv;X?94~HfENUI6_;kMB>Y!}>JCS78DX-U+;Osh7-lx}lQJX5mJd2dIUT(EVd}m+ zNsFSe@%3dw)cKzI`mTfr(8dW%hLidT^Ldeio*s4NN{1_r!rU_4cSvq{_V3ct6NIna zWfM~F{b|HrGNZ-zfc;px6=R{mCvLW_=S{O`%g4~^=zu*IHKY8?sf~hj%BGrYO+v&k zd?Ffm$4n<&F_}-iHZ}Qt)e&Z=yl-CU@-eQWKYkii52u|2M>OYQ@j+B{4-kB*R=n|7 zG!v#i4*uExgR&T`ds~{k5-L|hzp0Q`$=DcE)if(SQ-WtDdm`@ug-zv&`R0Z@o4N?< zGAdk4%SeqkrNNEaZWMOEt1b+&_M>zG$b9KIzxLklJ)~&MhKYU z!H!QCf+-6L_kcGqEGFBtI3yvr*C&dgCww5BT4_t=iewsPGZBFnT~Tfd-b&9-`aEkL z&Zrz)8*FkkkDJcp`s6rPn}GGhFcN16($L>)CM>GmJGVQ5J8MVoPkpf}J1_6)IvR7! z*l&r!$+l#T{keDuCSk9yUt_buwbyAhakT0%Vk0=M zWs&O;Sd&?G8NO4szz-iaa<$Fh;+ULD?pyCH|I)less8|&)SkeJg&oeR`s8Az?8T5) zc+l3zp=x&HOd^NvmLuc`@G_s_OR=tLLt?xW-G zf#$ml#^Y~H9$PqBYj)8|=%HUF2Hk_-gnkgYBQzawjBXXL&LFQ0kPn0qeKeS<{O>wgzIaG41o)@R)C1 zm{PZP7HQ@)E~@!9d(|Wi2F(q(Q%cSf_ICqt0npmgMjC{NC_O0-O-vVCu+G#(5p~%mV?Qc#% zbz#5pT2ox0Jr~CJV{QZuJO@DAaBlX_WDKuq$w303wolzj#+(PXzN@TtlN+$^(r>+ z*5eH0QPbj{^IGX1#DC=$a_V&!Vd3m<7j&Kan zSc}mq34kc|kB@%~Y*$Py1ozin^sWrB+FFRIYhiagqdA)}ZaY-6avtDhSG#%GT=*oM zSLuOgpgJ$I=jQfR{Mu$)xshi^*x7R#nA!c)RIdY4z3O7V@A?6(%a>x3A}6GRJOew+ z$Z8R^vCENzdx1Hvznybxo3+Yr#%IjfSf^1B9nM3~ZJAqG9-h+Wc5*7H*si6#!%B31 zh5@XNm3d+&h4?R!zG0JWp_ur(wmx!PKMRnJ6?+>2_3k>3_5*F`u;Ij<=*Zol=r=v$4PSUbMXvKXXd1Y{D<4^ z8pqU~qf(U^G|65V_9S5MBTrgAQBLCXlP|vWy(cdVq}DAl>pqX4Jc;uDrKmvrQEI(5 zPOZXzw#p`BW^p=r>O=7wHL)V0+}$ZmO2!*=oUNeAmUL(7C&$Mh%F1E}%B_$F6SwZ( zrDHbY%LN(l$My=cwI|ycs1-I&ASzr{)nfR$^h^TLN9-Cb#&`)z=dD}mD^i``#Z7E@ zWxRg18V!C#qfz`7jy6`i%PK4@GCrpRlc_RNfAsa;x=rUr`)D?am4eK!q4d(E_+ATFeCI254Kpb*C{z4R zxxHjt_Ff-Fb#iy}Rh`v0>y2XV`h|X-GhsQ;mda=R<4p~-;bx_qm4xkyudaX~w_vZp zz8(kbX!+jn@m*)kLILZqNW*w5{m*vxvkExL$g8tWsh98yEqo6@zb!0`wG{E{7yVZb z{L>bH;4Ef0bQ55vpc$2IJ^S=0Nu1C%;g*Q!u6B!h7u}@c7@ab^$U=4P)`tHVfS?hU z(oX$8_b+Z3JfDTWqn&FHCVqySLqtB!!T zd%^_6>u!yVL)qYCKhx%tRf$9clI#n#UG(ySBrR9Z5OQ+0q@>YfV0e;*bQ~^q|1;(z z2ifHUfHE%@B(#wv^3Dz!TU z2ItP5GYtw<6-LJA<~y1WuGcI+>SKmyhBD}YB23>bc zE+mSAbdB*A-Wu1&hAUA3Ak**>kN8_Gd|+D}uStReq4egjWr0!|zychwcP=yL78OR^ z$bhw`+B+h37}pQdVEcHF{>}aN@57ROv|_wxuZbAHecQ>U&#ff--rV0Gb2gc0Z|+_w zR&Iy?&)BZ8|8(XtFU+sI2XTM$fgUtV*IK;Bo|xJ|GbL*Wt10DKs3eP1LUay-Sd1aI@5D$qBm4^UdwxZ%L^Gc$)nAqt+6PD(oA4AkuOel`4 zN!_K`vLuOsLb@|@S+l}XFKo?5lUV9VgAi0VIUT_n?hL0WQ4q4 z^#UVRPw(n)#H2X!_uAIrz~q%;tL__5^YR==4vf`Q>}7N!*r7)>oV;Apa%0t!P>KbJ zv{2_}&&J82-%9=k_qqVX6yGs?uoP(zrjTs|dmq17%$?k^Ih&k6YkgOR z;?`@a@Ys89eA7T^@ptndSnyNu-}O$N`F^+yqyICG=xqUKOvkKTZe^os_09HONw1?b zHQ2Gno^g*-|5^K^@xc>DM^J6ApF11rwdzU5L4n@cDcVx0+hSy&**r6#1Q=of%q%<) zlWiuV@QXY-ab=R*qK%KA?NZeczAkx7Oq{5kNaE&R#tmIDi*v-1(Mccmc(*!KJ$P1$LbMkr`b7Y7>Vo*qAcV#Sx;k}L#jk>0<*CZkc1+u! z&+{r4t*Tu;4o&MVT}dg)G3nz&!_IbgtEcAbe zh;LHv>UdZ!)Uf8=mpD_}?(pjD+YA$8eI0#$eGP(;8zPgwlzQCik$18rVyO(@iU>G=&tn!Y07uLW!-(wY>--q-& z$@4chHma(s{($X{ohSai>L>lH8Le#b6F+HBytM$;WLZMWZcVa!kF(hvuar1A9K#T4 zPCyiS<0J>f3PjMtx9$Qd3je>;Ax9T<{g>$WhO#I`C9lU|4?PPzO>pBC1Z_U2dqtbQ z=mwISXPx~qe7GRAtIW~-;7Kx=1Rjl1yMI6pr|?YptXyaDI~u;p5+C072!?d(1_p<( zo&dI@q%S`@&d9>tJUTZ*I6J!~B{ij`f*`Lrop(S94XzV(Q%pWQ#K+W_ir=i zMTm);>eB)WihvWp=|t_Q8sNF9A3n?MO$CGVh4A(3ik}NYe%D{PDyoH_;-K8x%M0ZQ zzu=$u^1;7&Tg4|3hh!=@+-DKwBqa-%5HnYi+D73@k^Fd`@Nq_9~*I z4VyjBB7KNjCw+p$So}zHqT{~uvTbSVXlwr{v65o$bf19D3wq*9n#2ib5=l?6(OGuj zK7etQt@NM0{_n)JRf=enqi33SkA7f6Y6L<5PKh0{5h-_4?ae%FG#C8h_LYX|GyA@= zc0Cs&8Q_HOW8hgt@uyUv(f5B+yW2IeZj?UM*H^Z&!Hh@pmkI#FM_5QGP&ib3pcTPi zkSgJ{h{o$$d^WJ@O(VRlh5T=H60LUXt&1+Gd#{5v30-G`-y~OhC#vm3m9*IH$zNBB zk-Q$y5XFv@vTP_YXu?M|OXmIzz@o7|7+`8O19|R{?GkQ8yJA5v{Mt(UJ?2yBP2FT( zHn!b2R)R)4w$W#~VSe4V6J3M_-bd-le}neiX%7|e1>2m=;{IUiSuWK&On{0zUBHqG zf?kjutsx@Wxuk`i$OmY?70?s@tV%T%os3}nepWLe$)vPT)vpwt2u(d>W9@Pq=Sb4w zcHLD|S0|i0JWT}jyHN77@1d0XM4vBBl!MaXOp*Xg&QcjUHorD(4j*OQrM7JQAgkoX?YXdqdtHW8$MT)Y~VB!J=D*)v_?iSRp z#COw8)Uf!iD)aL41xItUl@_K;Z^|O}tMoVg#I#$6e+{sJdyV5(VW*{e;%1dTr?m}z zW-3Q~r?Ge@P0an0kK}P6Ykk2(z_4a=Sn@%aaqry-+pk~ zcaj3X>Av~Ibp7c3={r&zQQ=B~b_RciK~L6}$J(*}`*qX3btk&)4|pDlD=?&XqPng3 zvTzvO94wr7t%`5yRIXw7dUeZ7+ zDaCYp^zK`GmN1LC+yze5UPaVZtvl((h4J&6TUmDhg6ZNAb|SNyT5sL&BKE5YQq= zyn9(Y*gj-)OSE>kCsq2ez4ylinqx7XZEzD@#-nw{uF;V``LsS>UVA?q)HLd^vE`e{ zW@11NpFU8jjg6_a#6C4A)4%%J1>%eQ8`8bAppgqf3Ut!SLYB~1Fqd4sv@VqczPrPZ zLYiI`76u}Hqy1_(5*j=Os&aV{EE8qm{a$LU%CWGwIUN7-fj8f!D~8OixrJ=nMj=#1 zO~&sYmseG#*kpK}?)>@P7=NJV)_*?agI4vNBxP1P4uqPx<+?6#m$X{dhSXnE?5DO%ocnlx=#(Z!L94!GeM*74J)5!4;4= zmq>tAVqXYv%?~~+$o7Df1o=7z^SO97c}ySfuzv}4MPZ?An*>|_#OCgVxq}1k zXpmmzhCdiz3NLH7uy3KD7WxU~H;@NOQ9aE~U5=5F?>RMSpocLwG6Jn!A5bI;j7)=D zSQ^hYL2_AKl$`$2)0M}zkI#v{{!Au0IA2!SzlYZN{LwzD*@p$@h-k6WG3+-3V%ny{aS7XFy!%{VETzT18D zHDpC)d)gv$wAOdh7vXbOXl8hy1hBqx_d}kvON^kTN;xm3#{?VImIz|ucaf1%4nR~+NsA(?~eTx zzqC><8uBGk2kCC?>qGXrxq{!&rm%+0c4;SylhMMcqHTV=D0wj1{7Ps*qnD-qS;-&w zE1pBWNy2Ppl$wTQy4kTy77#V<^diqwdgwk|{%hgTib-GQz{f*ut3&WcGQ5|0Xbi%A z0r0YYuu=qDP9o})7Q@Mxoxv;oOt(M0fBz~yy=Hj0>Mm9jiW0lACbo zksYC2{Pz;(kxOraVj;7+^zNbEFTie$Jdt(H{p3tF{N7uY=~p`dnfaN^WN+2AtEXG| z**s}k!ZgRAWVxcN8*z>W)%Y>d9y)5Ct2pi6);?11=w!0b?Z964xXJ{xaU6I0_ZbC+ zfuiSR<6zAi8sYrD3W?b1JNNGBkzt%QZKM@aD8xNAgz}B~u$oy<2-}+nx!vza6BkN8 zuS5a;Fg2tdZN<-DR`R*w*T+$VkE&$-bO{SxlLO_n_nvWE*Tk?9YIRf~dtaIN)0CT~ zC{noUpUo?qxlIDjRN2K79`5dmAmBssMWIR&;*_y-jg66!AIQ`{ zEUT*0r;Lz9l7c%KST|gTcH#SJD*a$EC7Vw&S=gHIq_=3R4o$Pw8zUe3Ssh_ivkOiR zIxFLf3WPu1{vZ)mOAXI$q~1LGq*ImTt1$aTv^L-!MPP@0>e<02DB^sNW?6Lsi~yg{ zHx6FlkF`|+-ne>9&&;WPp@s8yEY<&xGmpIWux6OO3K1y?B++oM6Wc^b0!8_Q^nZ4r zrZWTPJv?{H1||D{$@}>+$4LV(y5$b~@R)VuBqIKr-KUvp`I?mUlj=rpNs}LvTf0CDBbPuH_LovoLkO!9(Nv0^P4|Pv^@1 zo7T|<83CGSuiXl?xwVc&^9u6Ggksv3AL`I>QIk$r3!o{=iDFwiBF4&9IUAz{(QUAO zY@vUkFOS~4Lw)}45c*3zJk}C3dHZ^0NcIK-N%J!y+X%}X(n-eij>9aL?D{0u50s6u zvN6K4s1|Q?dwzuU@$dd7orm~M7hC>6_4^NYpzsVObf|FXn5P-XW@2_CUVA@$%&5HC z{`}LwU{jP!7Bek8(=`3^?tTr~@9Cljw;bS2>LxJtqjr441 z`BS4$#e}5SUUeK8RuBEPOOdi$i5&+r@XN`sG_BnaQj{;M~e zDoO~RZrV#v66J5G{U?y|XnRtXpRDFL$FE0~6Q#xXF#0a39|!gI9=@||+a;50++T%F zg||u+8hcIaA_#1wNLW0l3MVwG_-Hz)1JcXNcEEK@e;k4-ASKTkvs}h9+>UJq*B!7c zCI{mB8)0$rRx-ibdcawt9hI#74C^*_ck27XhS9Ec?_Rq1!*qb$ySnE8@$?lyQLtUx zt0*dI(5a--(v1ot(n<@6k}BODinM@;ur#8CNJ)1~$4Ym1$I|(q^?ARaQD+=whPn5S zbFOoR)tIPbPrzDNM$06PM`~KyZEX}U)90l!enz8J%o>6 zB3JoWD)|Yknwi1l_VCL}WzPHt{CWoU}JZk1<$Lh+S9vlQ(lL4tI3}+Gj%2JRa~=3x-4#kFX8C=E2#tpbPqDsT!zQ zD|Wi&AbLP_;&VGm>k(bpT?nmu8l(Nf8-ut7*~N?DKd>m;jDKw_d5e-|=ArZ#zQr^# z6EZ4V-KbYXAK(4@IXWIfjgxCVBaP|abRPVB^a#IU654Lu(*`s23%3Pc3O;}K!~i#h zdi6#dEZ%zAVLcb%^vlTuZ(x1YcB5f3U(t9iS>Ts~FT| zdXQFqEWsu25M1nWgf)IP)W+~b?RV{WW8=VVIjkLgLTkMRjs(H&2j3dF^E`(7TMcAM zNUtd{-y9_Q_$vbpLtt{om`FX_850-x2gYI(UvaEq;$mYkW}*bW515mG#0locWa5Bb;lh4V;ri{JoaXp zJnY~OMbcJ7w%EaW^}517!9KOYhUblefj9~7ds=2|-k4i}E(7D>0cD?A^mIr}s^Irz zSu7{`D_%4u)zg2Som49ly8?3|P|O_136ET^iC7YCe4rvnNv$n{rN~5==fTHcxIK!l zez=nAP=zk`l;(aBpkbmC9_3TfHZrD5B{9%86(29UTO;|0mE}VSn~|};1&Nn(h4Q;z zP=p%B*>9{4P_66P!S z$A7?EaQBl?N4c+E=c~J4qr}jwX+JZcM<@9=zw2?#Mw;;lZRv~-)$JD?7jHmTX(pep zHxl7rz^hzZn8jO}m-l6F&mn|bMB2#6NEyS^1uF0Vz(me5H4qiZV7__d9wDLV0Z|e4 zH0{~EQuB3s71AGc$U6yf-fjtwuC9v|CC&LyXlLJx9eanc8YRQkuREAq0k(S0f-5h8 z{0jLuUOH8qT4pOn)DK}0-v|D2isKzKgV(PSa!oD&RhXWf+I? z)A8Qg45SeNl8F6ZV%TiafBL>w^>k$>^}%n*_J4oxml(<0>|+9)1HJ@aqXc4?GQhp3 zSwX8vL06akhrx`LB>zx_-^#o<)I`tu*F}!VvM5Imr{p{(^-%Y^!^oCoJ_Wk@E|-!& zA7Yz0Tr!Ol^$gMTm=FKMngRP^C2qyJJ^3a=5D>+GfwozuVEGPbVml#pMe;6@KB~(5 zVbe`5d$$P_fPvjB#}I$$eC$0TuKYVh2{gZ<%TR=11x$Jnq{A8Dur{N!m6$9y10QpT z$$WLcLXc~De#dNtfD7n6qyG2B7r+LjSyAbt)i-zT&tZo6%M@jo9+V^zq~(18gK|ki zF)2YRg8$Nhn%ABsVXBa?S&M?EFj0p&z~Z|h<-2^x^~E{!;Vun+=X!qm4pYV zmlC=KW9A-nLtPEnL7wZz1;7Wr-hyd}_fDe36XEzqCz``0a)8TAS)pT(WZ)skmVScp zH@CR_>iq1KCH&t_%J=lY4x?xu^6C#CMVm1}^9m2m#|F2D?;WoGfdghgO)mtB&`KWYYNOfV>l3Ht5+;+62=j^glIe+g z<%4;+`C7D16t{Bg_b*ec_2&kZ)`bKnE!R1H1p&dMJNP}7l!}Ss!H~e2P`g_LCczsL zRCa7(YOnR(J|(Q@>rgCm5*rMXKx%rJ^6N?fg^uM67NlCWV8-_+;1<9aQ_eI9XB2ZR z50R?@Wah38xq4L|6W)M^SRROD#mlSFJ&4(P;|r1o3hb0C6d&*zO=VG=MxVB>_4QxR z4!DKmBWN}G;BW4~>qDH#JRP9tuspu%XQM16t+TqwxRsk-uRscNkG?8L9|jU?k2%}^ zogq3?NY+7oq<-_$Au0+@R`R!Ap!&=cZK`*sfr)v!rv#YqVb;X?0F~#y{n?hb9wQ;c zbe}4!v)g?Mc&xM8F;TIX0cX1Wz}D9Gvvq$KWZ8iHdde-g*YY?-S5;l@GPxXsG8oyv zoxHfA7Re!-HCgA1?mjN8Nzr3YX2=T}o&`|}*G`^FFnsN56FoDB!dWGN$wH(8B zFb^7E=h=y0xfA{r>(zy%&yRTxZ`hC&2^1C-{08G1us#mS+I4%LYEw#;rWilHv(y8U z8iWq&a|;#6QYmkv?UZ2SC~49gf!z5n+I+Oj}A> zC7r7LRMeg(dtgNxf$BEt+kfI}xBqzu=FJHb5EBzanFE6-l>Jj<9Qtq#Fi7#xeS)Sd$HAC+<-BV3u zCl8yjFV~(Kk+6pN+@5SL7W#SS61iOe{RyJtav`7Zz7Tf!DrWayBFc8YogBdp_sA~0 zwxcq5Xd1GGJxEr$S9Kh384+k`hD&!RNT#{22zTZJ)V4s312MQ4+(Nf!0xz+^w*$`- z+{zzwAhBv#Nm^z}iCb0&OJlLFgensckUhT*ODYoBuX+;N>B~)&Vw+^GW!_CfF}> z_V_;3jiMQw=8Xbe;qrf#^C9CpFNDwh=Un$9U!KO3s{?<8KspIwFm=xYx~O~l`W{2x zIhqs)u}3RP1#j-FI3e2)@=U?z7}s`_{u(SK@%A+5r!2t*NVxaHCPEl1??;ahMhsSCA4(6cw>pb}%&;vin%*>2n z*Hw#{P}rD~@z z1$zjl3+mEBCY~K!ra2mH$~6}OY?#g{Ej5*->DrVtN7c+LR~i)_9EKBf(qc!sias{`6u;vlI-bsY&;~**Je^fA^yD4aj@* z*`SQ&H`j-k#B3<<@x;SqGjanm3X1QLu6m1E@$0zAr}y$S?^a@E(H3Jx;gV0*)1(s# zA4~Q7u+~cg7sB9^l7r1nuj67zY&h#*GFM1C55$MMu6^&o$Am~)dLEAy6c$=TejdgE z1a_)=MWvAzh^V{z`x}8+qP7n01C+e~i2;%`|CM@gh`f?9C2+D?6k!6~TkAqU22B2c z2Vf)Ou_93QN8o&&R?zy0*Itd_mMupaLu|+3Xr*xRLFQr?LD*O8{SfA(! zh>VB;I<%tdZjaAiX#YuGDXf%Rwr|e?4ok|TXpvc{RG8xxXAXTUv^7nvVHN}p_oW{j zI>5-D9=z^g_TPvwEj@k7+mbC$kum(Ki>vF>($bwU83dP@n8IN0R`8v$t?0P8??qJs zA?zbUcC#LsX}TiBSeVUkfb#xF4MlCtvm>3~Pqt8RCUsNX$OSKuQ z1(poMqcvcWh(QPs4n?D5Cgv0XqXXE*N z{eNR{fGuvZ61B>Ac3dWhY^_tUVAHR7AXm1KS^>EZE+49BMVa z12zFHYWdFSCw#0V6MONH=&3fvwGCz zKfW8#tEi~p5fF5bXWNv9PWPs(V9fu$G zO4o?{c_g^p!gu|bNq#?dQ(^Q#ys_g3pYuD`x^^SonzZk~0#R;zLA?V4mne1M(+?a^ z;6UW{s32BHDj1su^ROH0Ziw4Yc<<;^e|O!y87*I=%w~ItL%bI2U&ITlrgbygah>h5 z5$&$4Q}})G6gDF`s}AT;66d11nycdyWdABAI*bO!Uq&l-;xkQl#)T1MrifQ&4l$_| zd=Ft1<{U*U4_AHdi!&FqbOgr05HRRi%c?^r#8RBnIBTYogx$f}ZG(VI#*_MxU=W@#~y7{Q(z z(knm9bF8+nl{?Fe2U(-NYB|&^J1w2FLI!@yOG_EXQ&5+-9vqO7Njki{=tV#B?*V+) zY&}@+j2llWV0*UAr7MYSHq1}%B>YTM@qs#EvV$?em%gC4KMdkEX1Ci@Riey7Mi(y~ zrfa<;*mzCiw3LFx(2uYB6i`CV0A+$?q7daj~Uzq-m6mg-_dKeMA(`5n{N z!T`+>rQ_U_Jt!+6t`y>f4pcwJHm44QYS#cg9Xm zV1jK8#(>@-#q&G+`{?k*lS^Lmoy@VEnHf%tQ%&F!evLau=2cl|!o}M+fw~+7-WU-C zznJpiheH86G&VK{TQibi@Uf9S_>k!a~TS1=!?EV?|Q>0lMF zi8H~3<$l}fkT_;h4GlkP=($IjB)XHx%{anhN--e*6T##eYms0=6fvIV!^2V*hH-KR z^rO`Vq&Es5!0sgftC$3rrsUFYiJBz`GH0<9kC%Lz3P0oR6cp#5E~Z#02x`Sw61-efh*x=O@g~rJquPip`~`4 zv?Bgac*}fqu+j~4i%B@y7%kw#C)z3;dR6VA9y|1iJm*CDT>1I4AB0_{u9ly>q%QJ^ ziZ-|J5RqKB##z}UpcW=FyBk){7A6DXnUb)<(^Y@*jya-zZjuXV#E=m94T0L&RaoS$ z+0O;q>iwGwN1e!Q0SbDs@3z?8Nw|DlK;`buk^EBXks^q9U6F#VJJ#RX8ElRh68fdx zcyPQTEbz@v+2MMb+#h(0PPeUD4Zu?ha8H$$6X%QERyxUPNezg?S3 zInh+2B`@x`RoT6h>Wl5LG29Z8rF|7LG^N1x8=;^W!eg^Wfrt)xiU=_qBL_6vk7~r& z)OO`cr^b!o?cVqFCzG?~vnIC~jyY~lRC>evuM7tp^1;?0zW8@%UjEsuiDcI< zaoVB-QpR&q4!BT$V_s}S-8?qd#jBV#r^{>A>fe2`f(~AWe~=Py-ZR&pdU73CTayG< z>pp7D8-!NVqKv0RS{seiykw+vMww;%1eB;goo#@}Jrhn?B_ZhD9)BAsE# zEg>;MsNv5lZ}mYtDqU4t{A;Izxg9>iB;%LaG?Qxs{hQ;i8(XvCO4!uqeUy}xGYzDA zf6$`a>yM(_*DH^O+$OrbdIBz)*yzWZYWU@Pz4`fj>>Msu3ar~JtpI!h=NxR}zR0E^ zxEf!Hl7fNssLtDQ$eHXk*B%-x4R7>4B1W35Y)DEav&9Ly;~)g$|IFG-)xX{=w#4WE z`n7QQmtg3cSaXJn;up$z2IAmnrG>!*FI|J7qJHt>#Rm*j3dPBPoC7)x4WSfPFl-+C zIhLe6^FmZqY)VoY)8ZTWPmU2ArfD#>?~^g0#9R#UWGApwuR*~HKi*(J(Oj!)2nZZ%NX9W*-0re8!zC|ywfWPrfIfaf@-Bi zd^|lnI#ul&)yMlM+xZet6x2jve>VQ9yHQkZmb|fi9SV|<{Hi@8BXaKUVvy#ACp`X( z4-ikl%pZs+GH)Cv=V4=+P2>jsXrj3$oFMZJ?o{mCvzmiNj~_q293LMKkJaHK1}jgI z10zzfZ&r=5fJ@c*{vlQ4zHCn{1tqMgH??;0bpk)jGPAaqWnFzg1$AKuEiZ}VKCp11 z@aj~Ez2;NUmVC+7Ko_gYVSOHR)q87Lu^33jQVPx^D$)PP1@Jf#Og!pM!=#`7Ti^-E zUX_yaDk|cKIvidX83XpxuBV-P)an@QC{rZmNBG-MAgukRA9z_$n)5Gg))+PyZSE>s z9RfJ@e0A1TRXcLkHF_Rs%R3SJat2>>OGU%4h3-$BT~i64aXVx^SNVG%#xG#xzje@q z!u+=0>lLZk?b+b5N|2ifQj3O##%3DGO{Qcr#Cm*73N%$h5%S+Mc3fN2p6D=H&Cn77GFb4fD0WcfI-h z4~X#2yabQZg8!SZAACdvq@J>HbG5TnM)YL}{d$6E5)Lj(v9+AJKnLPfM1#!yg#1-0K{H>bz@P%uX|N498cHmJY?i+5P%HI+WADhK8ZWx# z)$8-nCcLL4yA7ibA05@HSyCq)uotqPzJwU6s6_+^cZeSDFvC6?w4%$XfqjH%NZIjc{&VOx+HY>tV(6n>A4Yec2qZ)Cn1@Y`~qqv~L2 z;o!u?BVdN3rdlXg4=@NsV(`fpIuIX-6~(pS;NLX_q{ zMS%Jnt7Urm)jurG=;_2~%#s9xlyh-$aS|>N)%C^OT|FoOmnK}#*@3zgy4N`W4Wk5e zGhAl=N9GM9)JIkcvhlVaNUs5pg06UFi8=ArWTr zOO5;Y56z|~zJEZ@r!wuW4!7*FQ#-EiPUP{)z;P6lW4eX+vg*Jpdx~ zbr1>3d`xXQ<^Rj4Zx*Nj9mIjUsipwkSHuQhh zEeH~)1^H)kN_r!=z~G&wrMLGIS^ehhB?)2M55H%w=b1lJ{ApF?v^>ZkrtGhLS8DLu z4FVxS2Y;ELn@Y15gQ^q$1|m+;couX|@4jqk2qGN!a2!ijLlv7^4Re@tqi9z%AHvSe2-rGhM4HPzj)bB;E@Is8(?9!mC}rYBoVMmP zeqPmnRXe)MD{>`N}VdV=-k}d=*F9^ykWK@bsR6Y-+TaV4+KwL6G&Xx zo@AWoetY7U03tkWz6dp1muMgX=9yD9HRe)3!dMRYphJQUh6KS$ow)I}aAdH7wq|6o zxfZBd8tMuf(iHd#MXNTh)Axi|j7-RN?pm$Z+23LQXfOl}A}UP2+cVvYND|YoDRyPdh%-Wt_k_Hp}|JUjB2Ej zg=FKW;X>zCzefdq0yfTWA6Ew%lAMT1;llsn!%fQh(h$`56KE@w`Ar_76CDBxWD{y$ z_MA>(SJlGYz}VP#!+paQz%ZXDG|nGkIYlD>6=3S5?!QPeAA2g$4LCivf-3fgO`*$F zDXfgQGUsa<50YmzcHTM|5$!EShNMFB^S}G44HpmEx;MjGFpq*SL$S9bC1ILu(vWn| zG|v^g=d>l_889O#x|6GP38Pf7_-?Oq1$pI2MpYH~7?=svWMM`@u?3!ROy)D#%xQbH zQw=kg;R>nNX~qG({r5#hb&7nr;e`D|`da=wVZM#qC(iz(&2IO6?^#H*Th;hgcqN0Nf{VI(TVi+WqSAS z*On+!(;i=5!F%C`P2BV*r3#ggiXfk_QBRJ^C#7+8i>o6uI(DHfN+G4$)imw)-=ZKR zo+5>2YpYEC(vUSG4$>S#A%YNs47Geyo%k%^-ML%6Y>1l?&$+G&m?Cg+h?w(7`#2({$m}eoHZ_ZiSS=RDljX2U^ zh*q@Ph;(=`s{u)>kZ5Ud@4DnF+xz!8_^ zeN|cPXMDzuGUf_f^?2VjSJxuGr=WGJpO)@al(*PeEP0Tyo21mrpXDv=21lY_kF{eypR%;jwNQeX~Y3fg1I#Q?97?Suxm=j3s*UR2dV zQDcaTFV`MDwY(8_!?s+vJ#t4ck_;YVV_^b)Ir z_L7PIPy@=c|9j8$f=JpyX@@mV;$_JO6=qe@LTWZ#v!=#6mX{o(oh%-nfE;ygUE>~N zD|MqWXjd4=SPraLMToDDEurG!v7M{SGY=W_q|G^9#pmz$xhBLFy?L-c;Tc?cCG?q! zt);_vDBwo+2g6a;C-DQ#7lt%1cgg$alXAjzU;N82%}*hX#z)x%VTsZ7-I`4itQw%E zkontn(Hh1>U@D(rX*E{o5L*9)<{uM45rGG$ay)>#3>BqR7AWxDy)|RtHnXA!(h#!|jyMuWk7}(V?bF!u zA(x$z!*bm!U6->8`|$hk1t^tDN1sq<i?ZKRcs=T~Qbq=h>!u$Mt=XEsThpcr_8Tsh1QRy~l6khw9imw~%6Cq_TQfAE zjk`37?w$}>@{2p36|pK+S1uscC@jl%+@_9vCbZsGtbRuaCHe*B_|+Zw%kT!y2sY$G z-j6QDkKCP7(Q`Mgip*~J!Tv8>xpI;DX6;R1%mz9PW@78m^|rb?DEI^9@wtIGK;*q1 z+GKgSa5v+L+=_G!-MpkvZonadwdGmiocc@3AkWw!y(d|9ss<6+94{>qrca-CbRS1o z8+YLcx!qnVm2dC3=u?gSZNwhk#&$H3#?_zC<@-}myoG3ExlF}dD>CUTiY@+yumQX4 zT9jTtj@tzD{+%LXW*+kArFfpFN1=ih=FA~RQ~6v~DAp<(62+jL;D%GOdA)qxoD^(S z6lE3mqp97+frJCWCywh?YjOLnsYlXOBeiXYEhr`!gJDnt7;BaDv`rKQ_|bYq2~4=% zO8fQU7d5r2nK?aNdV9-c<2w4UjZyUO)}L3K$s$HX{CmwO`!w`0> z$ibn!7(}@rh+La)@W;Bw=hnzw2f|!tY3~qO(`G>-(6pwmJv#Y6_J{1aWo!=Anxx@2}Qx6pS%Q--R*-nC(Uuo$k$O1YVezCk1aLf3Ig8$W^C_ez|6Yw&$v5HouK z<<=I0?*Yq{?Fo(raPLzrX9sPN^wMZ2Svu8o|dF-dp&Eg_K;;fW&@{af*v96V^eoe!WUeSh4If{^e%)<%UP!jXF36 zLVNkz6gA4$rIEOEyhD$XtZcELi@Wnk)`v6+60kxDBa7=YSx4t1n;1B&O;?Usv|a_QYjU#+>GY!vCW@VcrE2LFn0lFT*Z-VB$|r3kV#WZR$-Q)fr``Y^WnbJl$4be z)@DFI+n5HsdTC>$+5p(fFyO`D37E0v`nm<^fBg%2Z<@aSqmbJClA2M3|C+_rwYfBI zhR!(pDof@tUtv(KtBIcwi=A?)@92qDI`gZyr`M7gdWOd zL`S8dv+fkDKh1T+s_9Vw!`WMW9K^{{8CbXBx}{{g6@e?E z@!J-(taw3Y>_Y3T)RK*4MNCZVFT|~<54SFxou!~&IAwXST=CH{>6#dBt>mZOY|T5^ z6G%j36_H}={<^huicBMPdwPC8RKBq(vwc#vvGHqpH2Bj)Dnz)WL*06EM}X_BPbGb5 zvR#3^?AN>Ed4^9T*~B7=X@(+c#qx|Kw&^8Y%$~J8>B33=bIYAMwQ^>xF?M8Z$cjfq z=oNO&rP;wZyk!}z2cgRryj(R>uPCtGUZOg`mzR|-j|4AE`%G-0c_PQ%N6)w?ik=j7 z%kSq_j07vmPnXp;bhM=3d-u-tDkn8xd&&NOj;Nlq-tsz%hh$9C<1B@cecV#pnYz(j zz(TL7JJ(3v!B1#i%zJG;^7K&_mBa!89~thCNcK-Tp);I5j)To~7 z%)Tz@6+ldOcFYjt2-ZM8WL8#IAN%SJ5nvb`y3q`v?-7YS7vJ3pW6@yD^8jw_h^0Hy z%z>coqZ9+#)px+OSe>Y@9-eDqniM2}!V(Jqo{0$*q340*{KCS8#r0uX$0s5lcdFk^ zX73fL@2!tF6s>b)rVOlS+@`|Wo1%++sw-NurlHf!K6eeAKYy?H6TS8^JqXpG%)au{ zyZSH3q@vOI@%F}F^-0Bi^#VU#qMTQ3=pqf?dCheVeYUr&xvM$mK64x*?W5myd_~MJ z5eGk|?e31uYRhWUbN2O7|INymrD?3qj&D=^Cdu&)(q?0%ZEZJur+4ICMujFoj!EGa@dN?IkqK~u<^_) z?)IBT>$@c!*)z&kRHCRKlVyV0Dklq5E*v2<(`6PyQP?&0^|oT75@g@H&^2gXH%_v@ zUG`$qsZ8W?WLNGI?7Y=~eceW^=38M>*sxR{na3?QSB^vjy7x|L{4k`@v^iESaN*;S+t=lxg=3i-|_LM-C^g>HEgQNak6|ys8jQ^A9nqfn_nn zugFuMorUlP>iw;Kkp7iIIYQzG8C%Q%Z`-Zb`GtA%N*k;Z>-8UX%Zo$ZFYvxbGvvCn z{)cJa4EXaaiynhoO^Ab`dK0kt7f^`{!-b}w<*yGH1|RHktmZz=)5t+S35s8#zOAZJ z5B~*VpSj6e?+o=&%$=i}co8$zkXnBzNHveSZa@GF4cKeO=|6POJ~lUD2N+)uD|btz2kJa!j;*U4|@v z%T-@;1DBJWF;1qtcif?Ac)jD7j+mZuw5W0wLf86QnO&|?OJ;;dh9$0wrW@n&p4VlA zmTlJl(naUCYS`O)l*UOBR{EuT*QJhM zGasd(NX@@9UPhJnb|b4)lK``~hE`TqDwkW~e1ehWh327J`_Aljb6$QvjeNE+dvKi| zcU?FJBZk)$pFd%Ha|88c3zSG2cqR0CWk4Up!omWd6D#z*LY#inDwF_j9HDQ0tZm7C zE%AOAmeP1>^0p@Eia6`)#2nEZ+bpLZls<#~ksb}HJ6t9P|O zW?omK6_>u7yb-d?5sM$v)1l8LO-E9>Vk=+IKta&iWwSp-D_ivnU435e8N6`Vdl2#3 z6nkWN_%H$*gFKY24sv`2tGyF6(sZjMRpEbGdl_q;@G2}+#+5L8tfQBEuy!|&qo1XS(c05S1xFa+6 zv|-vb@1(D{YfxU0==ADZ%g{3Qd30_JM1!oE$D@*ns5Jo3Hc1g`|ob zrXwHptfDunFL+s!Ht&rw6uMF-x@}*B>4NF=|8~A#$iE2c^?Hm1oChUZzmVvuXl#g6 zZ}Z_ZsrRw$D#sZAt2v?*;HXk)W-bm`y3Hcmnyh{m7xBatP3amYIZEj{L}NdL8)U!y6m>+o!VWp zN>x3NXaySyu%wL@(avR^3{KCD7Y%ODw5?%rQdqugnPC+(j>67; zgK<~{{gSwcEB-ilj$@Z8+uA_Zrc0!&1WQ`POVspXh0m_*OKU0iYSHhXH`r;$(oRt5 z&A^;`&Ql#;oa>XW#eEd`J`mpld>_mgf271Ivu7A>#VJSSz)@68LMn$v*rzCY6YA7? z9gDHWnbDw(D`(0kz$`WT;WGy)%)mDJfCPgA?5kasro*S zl`sqkugHAHMf|dW;FGi7q#tV8vWD(ZOA~tTh||}5ld*kl=^YqA&vAN^n-YuM3_?JL zI8xHk*UyhsY@WC}Eua67Y0TEx#i3Qa1e5Nr@y7A7^2Md$GK=E2$Vm1R4bMH4)i%1P z9ksA2OFgg4xhSf4q*W2(DzQ$oY9~>v6oKX_OIVGtKn~w^+5anT|K2lnZDGB)2>o(E z#kr$m$D?fgi$l`*nz^E-X;?|SsMUf4VMLENKZ$W^u%B9)u36i&BS+3PLA-i4fhHUa zPK)Z?f;H?*Ym%R!%!_Ed-?3eGPh7o)mB#TadpE6;jOA6F+hbIZoSC z$BmzJTNvq;gW{dDuqfK7Uxwq4Fz@=&nIYE&rEK zIXTKi67G*3{*@vgRkR1 z@t3MQsog*G4;4Seo2cC9N_v+sAKux>z7t9iMoZ4D6Z^foIuTNU6P%{6g-{7SVktaY z>w!@sXkR8_!T>|^?Y$ApTPtR@G_f`Dpn)O`eJvpHK$3c+a-T-xv_~TAwj2g;!+-Q1 zGmN3zzXwUD@Y;5V1n}^*wJFggySCNceU|daqB!a=wT_ov8>u7}iq(<9UM$D$ej{2` zl%%^-p$A7XDuyZb?G2Wfz1&%od*5%RrTQ2}@7pEG^h-41bKqc)glde3d>gDSb?VBf zaF5^|WVch^bE6&5ExEh!l@{GPLY)x$#A;&yo`Vws$6_RhG_pvpx}M zPZ{4>nosR&ynM+Us<(CSH-GGiul}MH?ar1#CSFtL^R|b#ZNH7Qt}RKW0e2u(i{|b4 zU0(&Ymzyt3yevqN8aGmv-8_~Y<|=%jz1Y}BM-Du0*bWX1+Lr5oMo`Jp_m<7$W%~V^ zZu_hQe$F1m>lED9w$AcLSiWV;j|vSt1#}TKnJK zl>2wn7}lrfWXw=X(0&p;9tu_3F1Pdu)!}$zt3cM|y(ENe34j+JD)TUrw0)Q zeEjP9R6`G5tWcD=tzi2^Ya!r@u-4trE%n&vG8>r(UN>TPb+Sy!ao>T0V(0MY1;O1J zrNxbv2E@(#SZ&-e;Kdk-ND-ScWz_7uOG`_)-r)w}S`dw+dR@=%|8W7vZcC+39uXaz zAnPe)r|`ElKjnCAG1D3i5oV^92PLd$zeC=kQ&T2LPk&=tFnU%5M#nSfD~a6V_gf-W zzsirl&L(3+$DZ#E40&!|2fkofAN#(E1qYVurBOu z1~P^>qyl0ckv?paFUxqcT|yM7-w3J?_xUd9|z=(XNbiP=PXAMbBToOyd* zW&4;_u9y_424lhJlEv9r*Es|ccD#kE|31TI3dClfkm!i7%tr|R9Ud9U&>0#Qv7N^& zGDl+JA_!=NpU?f0>i26SMcJ;eE+GEUW4~@=Ai~*-$Z_+5nF@;rb0|-fb%`_DSV)Qq z*%m>Ii`{~@rn*}q9$|2s+_yF|k{^`I{aLj(erqE5mq63@^6T)G@hl%O1Uy+zJX3K) z3!JgvQc>w;u7h8A9kajJL=!!>?{HSz%|J6ZJg)60l2pH=o=m^IO}y z^ohr{*6Qxm3B_DqtZWj^i!Qw{CYq(~N(4&v3_h2aGPDV>h4?dk|WBAy-R zYgpe6e7|(1el9Tqxz|jRc5?L4b5e>c&%=)pC+<$+rE_QS!t(miLrF;kzP6iMq!#03 zli{Hfh}$Im{vQ?a>L-KrPUs+rTP<6W=E;y*2W3$Wme zZ#Ob+)bhd#`UPO&gLuL@uC!8#xfBc=Wr3&e!NE)@6hmfK6TA0H9=64%5m2WazolEL zI~cs%G~r1(u^;dePyfa(FO8SZKH1sXm^~g2b9#t?THM$$0da7bK{lz|zA#6L+#|#3 ztxMYFE`!5;3fivB>bbX^0v3qt-vlb<$=l-V`S{D&gUH~e`ypf96xYPzsRRRgZdA16 zVx>(O_{g(F{Bj7$lX7ujDw%SbtA3X5^xft1Q?0v1c3Qiqw-?j62Q3PnEPk7@U~e52 z?B7h>dwEfFKZ!fn>LWemdl;GsY$P1VrOQ)PABa0QcqJF^{JEuMHP=cEP8d(um+#o_ z*&ODUwqfTd>T{eZ{{{fbgbWGvAY49^sqj4 zim)e5R5SkYhR1Yf-?=|kj!0=wiDL%Xy13&3Dx(Pw<>?`E=jLl?9kI! z8QhpUFGApy`!`+a;B5SjX9nb~QwuwJO`O(m+^A#JCm+miIzQS!CkT@v>M7vD_ulKw za$5>cOv=be8=kXxm(TO?+oz=~cc`Y6{jFql83(*&to4$5X$~ngxp5b36N0U_vn<_%WF)D>BAHgZ0$!b# zQuzeD{m!lc0l4>orUh5Y{j?t#hmf%2+2bHrr}3pnzc8zxNxkONBAqOXkxs)ucFZhc z9UqPpjvMobC*3o;FTS#UDsf`&u;Csf!|;4<8=8W`RUKb#fg^vGUjuD~S2#>TqswTcyTRX|`2ozoEby z4zIAVJK_?D_u!MCE+u_A)qvE?cwQJgV#ah(8P(8RP|}&6O_}m4(dPlVW8Xm6=;);f z=C)#m9lMB8QBU@$NSVx|qy8^%qiTcoL)w4fd`-{Fnp^AwBa5vj1_!%mQL-~2B^tb? zGWP&rFxU04-hXmh)Bjy3`){YF-)yRoK6%VvHR7Gz&Z36d*pv~~46@R$l>cpVN<9XO zIozD8I?uCufw%HLQ3>d%II<~`>eHM9&a+;*2;`zf>kTLa}kWB@HQ&Y1OQYa21A-E)@F`@OC@NtBeb_V zrh!>~NJ0f;QP=j))cg1{(hBnRuU7iADvp*j`Z$#OlfW?^Q(eHsFe)~dRcXJX;SP6% z26cTB*IK-;o&EmbuA#@g6z<>bUDu}-JABjm!|C#J#q3{6AYF651Zqju&wt-gpYW3( zXEZI>DR=QP)yUxz7jGT#TqpgdzF{134%SNQ>AIC;D74mdmIL(a>{y z|9(YaiLxYQ;qrUFDJQ&v&g;1}IUM=MZ@mm8oT_QmpmtJG5^I1^zUZi^+W^PeBE7xl z>Spm0RzNBX+L`3s+^w)a;1~f-W@T$w1mkp(o(ED&{@BYkj^4LIQ#nF_Q~__RB)UOnMQf}o^R>t0f|THiFLg8@iG^I zkddL0V{^D|1o4Y)Jz}UdC`zel2MnJ5eMlE(XsRKgU0&2R+#jO0`uCKpLVv+H(Ay?@ zzMfMBI3gkr2iFtb_6)EsMj39FRmMB9nN646;db`3>zq5DICTfB;KRnm1Ec3)w9GOd z#|^dgC;ccHQHl&>q33s0@$9w&UrQ+FPBgp=WWITFsCUYPI6rt!Z;-(!ME&P` zLWz^loG{br<5;VjLpz7iN_4{hxnQM}n7Q_B`HJJ@nmDr|Ih34E511CVhnQ)t z-M=MPZxx@@1VBB_`C0|YYlx_ZYL$SWA6^XvS>5}aO(we_+!>Q)DjsVjP8wI;($RV0 zcUFphM}IMiY*UK|@kJwu&`Y~u)omM;I&!NA?jy)r6YY+{tfb-Y-T$5fnxUeOL-fLh zsA?g+nvi~n?^9M#_=T}3AM-=8)1pD-XLj4y`S_~Fe^*o9eS7Fgc5^CgH%=BNe%vS4 zAK#1W5IWhbK2AGHsXil=Vc`3f>)-r?%g)qmX5;h%X{Vd-4AE~<?;oIzZ{(N z9`X(JclC5P)+}-jjbC_|I4%eGI>=I9!s?-n`z)ktG)|x2yr3 zJh%RRep4QpCHvT>2_3bgLo3ER?uJKSuCWSw&z-Bu*A|8|rTn+L4*ek>Sx150I$FYa z)l0={6Q|b2p}-+?=&1k0TQ-8PODiisz`_<}lLlm_6TW7KhL;e`)NZL1&kN;^x`~)f zHpN0gTV!lvlAfNfh5nbZYWRPzG>vYF)%!Keb!Bw-w$5IuWZ?1{`dY3Ecc2fJ;2b2qc7jngwr z>!p*H?E-(5Z%iV%WRQ=ijC}4#t|jusarL#8P23~nkdwb;xt;2m6M>;HKT6siYahS> z;2UBf!pHYokQ~2%7e95pAjOCNNn*pkn6&Se4d+rhk#=%9Y4`icQ9a@F?xqWPk+edM zY}geV**^*@x@|t`FNo*U;f?clJVr;%Yq3{VbJ3m3{^-eRa4|C9-PfI)HKE129z-Vf z2!NUG6i)X5UteFSbo)M|7M9l5=D=qPoY*4LToaU%$mnL&-7f#pw=UWkYzWZ>@ANmB zj~XthcpLaPGm$DW99W)rdxAHlt0ygD0KL^aJ`>i~X@uaCd(Zt0S_{&!>D)}cld+QQ za^n>iY5@&`ar<8zIH+|Gn~wg{Vc88Nk64gMBK?&L2f>jXoGkl*H5uP8RRd;BtV(#`C0Wj;!dIHFr3 za1F0m+_12?9j|D++~gZ zDE(43vcGf(x8Yl~{^Tde5xz{H<8hWf(QF+@=NCqUA-TL!X=JJSyftal9!76M-p2Iy z_HMPB=Hy#e3*Q{i37fhjE_lX)==%MTjp{`FrRS-=u(0qi&1lhg;7y>CZM_9W9LA3(0EpH5L;tV*;l}{V1j^?IJF2{ze^-J8Uxo z=N$q|qr(c?MG5Kd1`#-vbPFgQA_CIV zDIwj`-7Q_x@aDPq{%;S5!yzED*IIMU_@ZQef*c{aV`V~1nvc4d%vI~2x`-IzqZ?S_ z^Ta+kl#Dod@$^)V&-VabjwP!rMr`3ZbHAh@3_j!$3kf{xQ7h*Q!~Y9(4A?d?ASlgj$w&l~a*Xah<4m(JsRaQw z;WX<3CjV9~LQ6x3Q$JAYgFr;bA_6BZ0uD9<2`;&)dt7>)0D;A{gxOEY0HV?FQ3QX} zh-v`-=$96vCc%rv^9zJ!;2F&k5!&GhU7K?jA&&jxc}{#9`nrM`+M%Qbfytt}^n zu8$B;EO*LNG@PfTf6X`M7Bj+rl%(ax8MM4xxJHQa~G-CB$!Q$?eJL-Lg|s zlEMo(?nLVBVusmw*Rzfwts_GU&Bl(?MHTzt}1G&k1 zX48jl3ro)>^8l&L9?QRP&)i#?=5;E}1POTi-k_DvDS`9b6hM|JGGl8~ z$r(!vY>j(qjj{^P!FPXtPX==Y*q88_ix_odreG1@#-8>Y`fEu*A|w^!D}r0y+V_9=-sJ#72Qqc6Zm0XWLi2 zBIm2^{?cg)o>a5OplTc;+_A-okVdVu{s9i)NWs&Z9+}vK_L1odwx6Km7G(NRjz-P% zoy~MjV}0R$Buy9H!i}FaRS=(yT;hKfp#PcaQ&*Nqtge;OBcqdin}dzR*e&xV&(CkkkC+D_+dcH0H#!k_oZEDT|_x4FYgF@+2B>D=`e)-ypP5z?WJv*T*OFe zKS`)qv~^16VKT)}Hhn0pKAfh&FjLty^Z6-SkHbSg0=X2AwF*AWjH7a|Wz0S76qb6| zo}KOO?FntCyydx5k)$;cv`K;wIl1j*_^mk~)!Y(Vsw}r;4-3<(*{IO`L7rb6Jfp?l zg+1M{=PJ}wHNRG!f7oqTVPg>}PTP&D9f2~bY%y9WVo;=7b2_;d<)sfxj4G_GCv0Dn zL>Uy6nB5h8w~_wy=U!fNzUlVa;3+d4N;=_5jkB)Wzsg5amkXDM&W64UJ50!Tyc(0g zcsaGLsnZWdxokT zhW!7-r-(^OVT)ewiK1l2soc*vK*nt$&!SOaJci#P$^KpF&gkvZfgxoW2dj$VhM@G4 z2A3vNI4b|ya?s&hjpbJC??*KL!WtFA+t7kVuK1+pUG<3AFT_2=n(t#% zT@IBiIEna1ioE)NM%&o&E*;@bMLDC=Q4|+@qhy#ggtJEJ1q~+{K-`N|CCi-X8eg!) zgL$K$ZfkRRqRYs1Nyy)mW}fT}&R^OU)?w`*F|2$PH!f^@vQ=zNh=QUQ*+A##7FBk_ zlGDvS5{zf&}4sJ!HIswR?il0Vr@ieFssY8%WSud$#(rGIDaeOYv5mPzfy` zFHk@!b8AtN=TX@Yy=6=1(k;3>AxilwL_|&uDb_LXncMd}f7N6s_9&O6cTo!yCrCFP zwp$@-lfG*{DfBmBC9gWE3DY4XQ8yZlvLeHhN)l-`%8;ACWuBwYqC)dW#%nC@?NXr~ zb?1L`18VQe^ujS{yr8v~JH;n5!b-pc)J)T2^OEf+f8r>64bw`c2 zc7Rj%ucL*Yl(gW3Q|DDGim&V<5;{m4a;%2BV5x#Ro1FK-3bGLjVl3$fpD_#(Lc>jz z$+V(EzVVuT&GOB2u;=vQYj^ISevK?L=^N!|m!*|`QX2zVOzvFOKc#0_#D6<4Qip7P zq`(UtDNuK{$ngU4?qiVCaj}n3Bc6wj!l?EO{BM?KtH2!v*y<;yf7R>?SNVL}aW?8VFAjx>6x!Xs(f0agHnefxTWV}!QosFC@0ULI)~BttlBkfml$X2TaUM&P zUV6&W23&ld4;YJzimH$1f-XF>g~@V~24V{(4HSz$cG zzg4%Q8vpSSLCy9(TwFD~B9MdYoV!Rfc}$yr==#(8r_XjwpJu~3h3JHak&DZ9hI#&@ zJg?iKGx7AAmf({GVPv*B>~iGeeS3B?-RWNQ=}uKb z`OADGiuKE1kuvj6_1rC(b?h>gaiu?setMOjG~Ya2J!z3dz~EEQ_bHSizlVnYvRnOA z4ZjZmueiWxYM2CzLjBj?G-@~#+$hscD`q6)B*H=)kB46SnF;#sDv z$@d{qQ&rQOCkD@S7!WjY5ftq`ncsXy7if}c5(avccPT5;9yeYUm;~TNCft){9PKGL zMJxpx&g!VABIUuHuidd`FL4(MZUaa#bq8Xn&~N9>hvJ5&zP7mNzh4d4)hBJhY(nI> zz~YYnE!+{g-!$BjNoW{fb%^_m88D09|6rhQW|LD7xgK@EOoFSUO7k>jCi#txC^^Bc z48H=INOch@F+E~3nx$P4ED@RxYVr>s4L-K%^TCJ|rGggz><2g_qw)$Dm(w`Mcb^CC zF3z0X_EV{#{f;?&FaDYcCJzwh_9mo@9qmP;HbT!N>Sf@ZycTn%fOzc9jDh=mENjN6 zBuXv=jeTN9-IV!86L)b>vF5_M?(YDT$2QXsN&}xr@9ptV316Tgd`+J0I9jRDbiT)j zEy4bKXsUkE>|CFn>|rNyo8Z|+2G#DxalcU6@^j5`cmLPSrKS#O`nG!so3)acD+=uO z?Ea-Z#9Nzn%#^h*c|q}Q=o9^qoAER6+bcq*nyTy3{RcSNbl>lfWMxpSPU@*#19 zV%>a$TFHi>-bRD7!pU&CsIwbel&gYyzNtr9U)p-T7K#xUcMQ~Rr9b%+&NkdVegj}f zkM}7Pqe0t{RgC_TJR@oTI}_T%7g4;{&UoVvs5D6LYw@&>sh=2ZhLzGUTnZT|lM9~L zYHD64WbZvT68!N;|Az&5Pl7$TXjHqC-KbQ-0d-8>NGmmhCIj&}9^F7cap%R)zd>#D zn(vbKGlK@!r+tVBW*03w-v_s~JqL8b%AY@#%Lby){ADa?pF7%Jn^b$7DW9&i$kRUG z^au~~$f63Tgb(;wBc&k*s)WTt4eURduk{xP(lC=ondtaDjY*fFBWJ}bQi)O8jxmWN zOAjzmtrzY8#eOSFG0u{7nS*I7nv#vRzYspt(*Sdgmp!PS{o2~qn_BUp&ldyzl^Y@A zSN-mJ-vh-zvXtNFJPn7g$pyVcd0JcZ&5uRx>~7=25Z8c4y&3nHLE$Jf3dDMLya#og zZMh6M*I?9c6_$bo186IvX2yuB84fFK<%_p($KD?tu>Cm#r*;gp(Z0@-3p84#AB3VJ zyh@9KyfrfPIMwVyE%F7ee|$c-HZWnfzuv6M8>;zeF^)XMwnFto*=1lK`I@`}DH3K< zJ$ri+uB2a%=B5z`_QZ4W-M+=$8I5>0CzJNvX!+ zInYe(9n`{*h7jv#|1M4UTwD*plNG$2uL(k)_w;Zj*NR=2ZKa)1!LHk!tlFxQgdIhs zDoVnDx>M*Vn`lN+X{fR=yd*+~-f1^LIHBr&z~2*`;pW{LF$-6{5^1=QtZhe``xWOA-naya z4Otl7A2hLPZL9EEtuNYkBHxjEG=^I0X3`;012q`pdpGFNhPM`qLW?RtU!I0@S0T>S z6n>I#V*+*DN9}h-Wi2#>VYH~g5NzOs<0IzXKm-GNNE@Cp;P^iD`2j3h`1*8wR$e@> zs3BgMr}6#mye1PI27TzTwc*oP*&b%x=z_pmPMr>FPy}4(^e~{60 zm`>p>DDLf@ zHH|8IsLxr1AhWb4Ck|s&FcgmMSVm(HJbfH){eCdYb$4HtK0TcsFO{6We`KU}xc0&U zWYfT`Z3b#_vRQ_jt$y%yOA+%sT1gFKpCc-Lx2|nz7&_YfeBC^BE8)lkI$|%Q%ggk% zhWAz|Dw`mLa^6X$r!*20Zt#g8wh_MNp&&*9Rg-sM%jVAe1Za}83kh|?IKZZ_zTh}& ztP4|JJh-I1To_ffQMXj&Xq^DBAV94xyI}Gb^{v}@j zH!wMY7AAJyKf2vn@F8Ur2RAwR&y zv}?c7i+r~a8_nsp+h#^>b45_JKfnNJywvL-aK-1nQ-yT7yRi`mk-nuv(!eE93jO?{ zTeakL#N;uLzL^^5TIuUM-|#paxuV1=S6&kZ6mC$-+jJUDT6+}}qvRhvacg>y9nVXg z`vvMk!D9P)Cg5;z0P~Q7p@C|j^d%N@krQS`#mET;-wv=enkyFxy~dBs(fuJa!U>wz zQ&XBy-hng>02w}=pB`F`eM~x-0jxW6zgJ41^EQyx;twB|*B>6$XAtb|&+5I&vvzoY z)13{*&+mG5W1g3jmGf{3`&f*F5VUDjNlI6`5rREvn1{F*)m=w5RS`vGg~f56oT>9q z6n+rNLUvtJQi43l)?#s=(sWw9S!yxfOz5_a0YeUsK(FtR20*`1QiJwImWV`_NK>vf z2H&33iIlIC^J!jH-uQvgl(0)g_-dvBRhel7U8%)=b*d{r;oLx%!GwTP=oujHJ7c*J zB!QlsEDnc`GCa{89I?+M+q!OH=uwJrH&-`o(Z|Z{wln2VD2JeO(!z^>hba0tK{pKr zbfA@W=scX()^`s4Fn@iBft~hlgwA)GP*AE^ICV^x(oftiJ_q4(fmbJ0uT9mlweQ@q zQG#2F#lY@~m({di0`VEk=0qio(V?^RY?0vbX2v{of0i5vEtASh5taG(UWJ%sTFfXex!IaZ z`|N3k|B$$t*gbsw5Fv*ZhShz%VeFG~j^E&1P8NDCbd4)azSUd7m_~i6flzb-CMc-s zFF402pBk7mg0V0Xbg#ga4Q<9r1SFv6F;DOI{M^PBblk|a{cQGlm|H^Ja^8hf^!=#@ zA~06>s3!k$EDx`s;5Cm~tkbNva&&{C$dc+(bq10TcbiHlq(aFdTVaj^XHoB`DUUg0 z8xMtKrqlB1C4}yzl$H`8!{Be}D4SwIGM>wI_~4|b$1l1YQ-?E3qS)e^rbyT$s)X?{ zN5|_XmRCNU*TW9912IV50`2im!y@2wBd1#)VzrxR{ycmf+kdXi@AA`X@%B?vr5v&w zc2p@G2vF}CLy`9WfRzx_w574J!uvE-7J&7IvKzIw*{Jzo~%9$%E;oYc4S@su+Gm?hKqs0rN=@JO2hI(Rsb!+A44!n}ov>h92^EV1v9 zIL0R@W7K7@jOYtuK8<>6pntyYYPI7%w^W&%7E*d5*{!~n3YSs$0ABY%rz@KlL~rX) z3`IjA^vGuo{;LF(x~!42CkNE(hW7SkEf_6-+h&QcLiZI55G}~l@#!U$JO`NgZEFYw zwKuda+9G$`9)Ju3(exqcSRiSRmN7sEdRX(4)?$NVkkvufgq;;kYf(tzi0d&hvqH zI;)DiB|+`S2Orc#BA^&34;4#MpeDciH?hU2-%(?$twu91EW|_S)!qUt0N={G^vJM4 z5MybiK(EXd8^lMjdAbbh9j^L4Jw(cgunVXYL>9bidxIYWkcvSL?|+sfBMLm&VL7O8 z1VEDC3}Sk-%>uh#{Fbu8ObU|vUYxQ#AOGntl>C13_{lpE#&J!$#r=zmG1Pt7mV_Sy zsAoXibA-9kZ22}}&7RfqSkJj_$%`9AqwIMHNy}%k@+)gU>qb_n5$XAR)`f1z(%r<$ zl#wm8L`kCuS6l?E$jI*Mh$LsA_(@{*4nGq6ETTWm&ya@g+@!siExSQa8KTeF6nRRp zyHMlRX;d^(KGjqAmOTxJbm-Lq6y$F_yHHn|`Yyh>xg=A}J7*#rV(!GN5A;(zlG zX_+U0I%a(Do`t-izwstVGAfW1ln9QIemI2$De~MFCOAAlb-_F9svD`=F5Q z!s71o8=ldxUf^LZJiYjB?dC~!$7Orc-hk0LXhGNr}>zFN9ElEy| zy`KhEwEzl=6fxb+7PombtR%G;$LG}-89E%*SY}K4j@x7uOD)5!7}uwVB#KLJ_j4cj zMb|VA4vD_^hWVyxR~`=Vv`ev2BK=noQTT^6yVgqCGY< zV*-XNZV0?}m{ffIcVh9TufM+me$Z#%Suvv|^0c{PW79IzOCbXOv%CVzcLwA+;Jg)5 z!j^auz?qI72^r4NMDIO6r{(kcU|E^pF}NIDTe^ZG#KhnS+mL%#`Kk}C{ku#rFdO+< zIpk79P9OPWIbhLFeD~Pah|42cXxF@?omjQ^m&b#kupTOJlQ@RIVw6#3>R*FjzmYb( zt92SH+FZev!RN9>61o-FH`rj{3kIb(!V;=kO0E0sPRx3X+)#Ytd}CI#C?P2)r8|Ui4VzKv5Oc6lIahQ zXZnt3oS->UHHJX7GdG!J(iIp09Ys08iq)QQyS)9NfT(Xz^-Pf5F1CQokoJY?AunG4 zLcoKhnUZ16s$~b19+SWMI#)C*P=+a3Sg^oq0?3irorcWr$hnXA|gbqdtoz|+Rf3fn`x!Yb6xy{O-Ke}5} zgj%)sMO*a>>xk^1%dK5THX4A!emLTElCObI9ozFtkW0f&4oG2DX`fSFlJ&R#QVcR` z=u1pREZ9i5EEZbkkUyghOEQTgN1osak2~7VHOvR&5k@c_k*FuXZ@e&MP{yVsiTkqiUuLm(pA<>rSe6o|Cg#U{x1 ztMqQ^IkPsLE<>Y;GJHw$hF~S)J>a@Wf4UsH4kmUiZo5)hJwN9f)%_S^q6@V_fXa>$ zITukwumnd?iV(=7g`kXY4ofUiXO5_Z74^HS1SoEz*3Fa|t6fHJd!RINkX2e-DOTV; zEOBex&UsZ2l$?dlooN&wxN%G1@9y=Mln{IP8{8ncO+ucWqK1L+mceK_tgzl}slFWA z+Vx?(EHI5?q_@Roa#6`>L*^<Aa zg|iHwI9fXYI*n_b+BeFCKVX2l(LGhPGHC_mX#p zFPf*DxCb}wOQ0mddL%>`=$@(=&xdCv9M^FR!ys^3>uY#x7IT@xcRuXb6T_gIhJYA; za&m&$zV_s?%RfynuEm)lV{Y8XU}!?q@ykXdN9D>RBQ8E3xq1h%Uebl+eP@)rW(&&s zaHOu_zk^87owc8KcyQw?B#be!u_>D?XuD;Sb)2Zqwm1pb9Sxi5!9r&EAj$v`(i_}( zl%!MmX}a*U@XO?%f`no7HCsZLd8yg*>WxnjbT-?h5*pta0zT=h7MhPn+^4dc8)in$EU)sq}PJ&2Vdxpv9XU>8|b^$YgEa zpjoE@@zk@a40oT8#5v-lw8~9JONZ7SufGH{-{^lQ;oz@{RLa%tC|tBycQGSuaS4TZ zu#jgQJ3K5!8y>^qZf+i2Q&W?9IbIqv&vykK z4c)WuzSVfCtg`YgXonz3gpl03F`QuDy28 zb8e;K&XJ^>K{v*KU^Q^V&7=)uwc*!g2C68lHdL(z6yocaWb)EjRi)KFaec~I(;p};mc7nHqcA?8Jip>k zzw-_5>erq5t}vjSB1~F-ZABISX>W3f2y}{` zO(t`3zsEu*$8}z*S0^<)SsAc1&dHqJlNU~9zg=N+g!}HZgdwB3N=7j0PX&g?QYlKk z#Vl|TA8P`}sgQ_dflBqdEB*_2cT@wQ3q)nVXJx%T`pO1o#i-ur#zq< zDHB1Qrof+yRKI@p&*_D3BnuUjN~9-e{V{*2?c}vEGw7PBF!v1(VtQz`evWoO zwjN#EDMQ&45*i{)F+D|lE_tDyMhDEQ*KgkJ ztQYlw{yfUO75rcEuvBZ1{BRX}KgE?md6kFz{09bc(vPFJu&@CA+IcvQ&*@gFZom2x z+$!6BI8YDP4XDTRo@52uS}}on&9csSooop8AIvnz8n-UHt!)0TBTlD<>(&I{p?~aj zrsGU&-WBsQIx2F%v?|w|H%z)%xb;0RFIT^fmiAh=gGMNoa4TWW>7fi=bAeFU{Q#nM zq{(a3evhU5_}s&fv~Odjo9IG^P3ILwh|P4RAkK&>-DFsj|9aHQ`UaMRriN7sXo zC3;#|qMqtc=sw&xh)~;aL&Fjw(qf-bR=_e+ft+SLzf!m z*L2D0iuK)sfdv$RFwkP7m_eHdeVjKf@drVWGjhqTvVUQfXmVhsp`8AIjAqur-;RrcJZGI#}QcO%GiKTA?pX`CRfZ+EkyN2LX;Enwm%tl3`ft}w6 zfb2Q~CGF_cj12H1bOLIsO4U0SSy|Z}jVh&O1Zws4r&bv=QALnYJl?0P1H%#ggFSUe z43-7{7OJ0FWl^7kdKL;hZCk=uF}}LggmqiOS)JfxVd*L^=2p~D?7AlE7XCx;x4K^B z!z2A&N~huF-!5=}n^S3>c!?%OH?M<3*I0$8$cal>WP(5H*NgkDhJ9REF4mLiMkjI+ zJ<&i*4PrgmA(AP3#(sUK?UZUEwEIotuh|#Ec;T2_$0ZZhp+vtWmb|vit|v8ZJ{vx* z-uoL*GVu#@53jDUy`DpIwbUemFf6uU@XTJ2JgGlG8ZOU!Kh=5rHX3@ifJy8hH;o569m9D1ix-6mYThPqHm_74P_tUaybAJR%3{rQ(tSbn~lA!7qk8Oyko8B)8DFCct52=3B zG|^psmDPy`OiDU&^yfbxtnk14IHlOK0+?Na&((7daY<6&Kc+hCk~i#ShKe7ZNhPJL zrdD*YJe#Gk<>GU{c*e*Q-?jTUzG_E^u%F>4Z`AYSmb%LJ;r2ZtkU%z+5p>>X7%#Ij z8q9i=qgEE0CLOJ5_p?biJUpBTfO1lR0Rb74CWpz);ttAdGA{iqkj}TQ{mYh7b54Ul3 z-trE;?0;OEYbM@gKhc;=COSxi!%EGefB|jv%4CkVsX&!OEa5Mg-ZFg_>W>=$Fi2w9&om)6n z7RgFLRe0(YR)2rj!WC~THsXoUI!TnuIo^tA?hQo6v%jG#Iks2-ME@2RnEUxjec%1SW zw!Vgj2AB&LzT0>^l&2w0ccY^5M5wu?0zAz7t0^SY7(! zt|C50etyrI7I9(fRz%J~jH@+mMj}u5{&0o{5v+Zsfm^lG{vot`=Rt=j%}0oe>y?jA z)CaWTTs1!(vf$ug;IP+ge|&bV9$^v(Y_{$Fe)%F0a>X>erO7~oGB5!iX3L>agjA>^ z8Kq#Y$5uEM#RI2uzcK7Bn#eYGZftAao2n;!y1 z;SojW8KC)f@j<+rd(N(oMf+G{H%g2sTDP}pTlj-zk~WPzb@Bs+)*hVD3U06aZw7O$ ztd2-V6l(~Bn_1kwwUgWoove6d@ku>R<3(yXXBzrT9(M2AQi?$^t$~Q*upO{ z+gR>cIZ(}ph+*?R(!`aGg_{>UKcB5BRM=|HiPD#%4v!D8u&H4pfjVTcS<$ssh6Z+f zgb&Gq&dfCgvf6ck6M;!?&fAhe1!EmAe|Xs_5gVu`-Z#;7V?hwB^o>*%pSJFKktB=x+w|{f2s^90K?T=TkApUay%*-Z?EWU71Q4g&(Eip=SlZ^eRVWgKKxLBz1KL{ zm|2qU&V8aVyT3A2mIWjix(lx8rJj0sM@T`Zqi=jXNQcZ0>ow}eKYU0Uo28fc>du`w zV-pQYSlByv;@P{d^}KAK(}^(^yiaS(l7u|t;2gz!AeYo!%CdWmE_UzUNYsXFG-B0K)k4`!iFUuO9tUq2QmxuWB z=K$rb^P7FLMc#U89igp_CB0U$mRF@xsDBl~q?9v*L3M-xS3lj=zBKcRa-#8?A06g) zc6*pKT-WY{ciTMGWeki&tDkxX9EQD2c&4Mq8#d|msN$*ThTn99EFBs^v1nCZ z$6?K(@Mi6$8?VJ!@fQaILc$`KLrWljd16zR>-7AiT{NNcFOx0SC{_jwQ9C17vVe~T z{cl^Yet*c*f+EoY^bc#=JYX|aoZnEh-1QU17no33ef?0ukaN9@9q;LEwpB12EobuI z4cCwb@r1_(kIzTgeH||ZobnXv?1N%R(7gUU^Ii;*EoQMuNp-m0b#TW*Rll_2gQf)I z>RAPCNuo+8dCNoWLgx6mrBji%fU7_u1X(QuD3k-l6Flax2fYEu%K%9|@pd%MUSsp_ z?y}X_f%C#rtE(dIjp84w*CHKVWr)eMNm%vb(l%s$o693-Id1Xiswk>Gx=GtVQ5dYi zP^=&y(urX;bS<+7_z7lu*yzYV6-Guf(sFeCWBm;UN%MGk3Gxbk zck~4XlTz{Y(brokGU@iA0}SpWP4;f~FIOm6u&G}Yr@A>2zx!gZe%qd0$>E)PuK=zO zx~oyQZDoG)RE=BVqNf{Lr#4PQF&s|wscNU@^PzmLo|A*MyM@PKs2kJ8 zv2*dV+CECVZgwZ+u<%>f9Wb&fv%}v?;KTCRa#_HZVo2w@lJ%7jUwWj>iVFJ1_eq0T zRB};<4?FM4JwR|O2`IaADgTJelu`c|sf*ek-_BP+P?K46>;6L%^;f@%fk_Vn7PRcS zVIMOH#Nbj6dP*OUnT|Dm|I3;JZ6QvAz!c_VzUZcHQRq)6qVm-%$iDw>x;Zk>b^ON2Z?4@Wn9)DQ>9`D^*v|WUWU6{HDMu+(=9Uk zwkHcVxR#zd%aJUfeiy9=j~ z3lAd)0TK2G1p1p1O6L8c=;ssk!=z0w{YB8<@w0w0;)Ds>2F}Z z2s3L4eE0TG)Q{9P>HvFOMx}7R6Tw-q-oTgR#t+7!|tqlkU$qv!OK0OV(kiQ|LB(J0{cLXSnIE z&6FXZ_$A|%!E3pjb9Czw8D8)25ph>nj05}-=1eO(asuU2;|j}2imC@*26$pXLi1<- zWKH+$mdIr`a?$D{%1%ryxS2RO4Hqv-u%m;mrp{0F#5_$p=Q|XiYf)n>^68e!pTz_$ z9b0-5b+!r`5c_!hd)p@=#gBNVe{4K@GmNg#x|ETAPI!54rTHUa>lBXw-wt&&F5Dzr znvFUi$y{r|^?;YZe!GPN^f*8=P)~=lj)%|ngxjim2W!>-(`G=*zGd!hW4vzS6@dw<5sHAf_5XX5Ohoj{>#OkkZfL8Z;dR7up-S!*R#qv;WvxN@ek?EIz)Rp@P!T z!m(-pl?D%c#K?z%DQ_Em9cu}Q866Sbi|J4G`i_}nCl)ryN09{6hqvYL^E;;#G9;G$b){-x z=Np?8tE>3I=A%QVjmf_L7{J#;?yh6pvZxZ>%q$i9++guyhLp5S_|?kSwi!7?TF)L} zq2iOw=3x?rZYzV)z%AXPkgn=ny?A-o_o|Xpl1@|*LPYY5s3 zJOoo*9LcMPw6;MU%PYt%I|FNBty-hL z_+BaYH|~)%7P9!zQ2PAqWw5OdBHc%4lq>WBzzU(c2@;tF$Ya}t_-~g@ zfG6tgV5<%8FZYhi!fDGRCV3F?Ei|zaM_^#03a$UD`Y{>ufjkAY_=#|RzUStG zscfhM!<9NvQsuW_xsHhKH~OLb(p0%L9PW|WsUmOX;%(62R0OQ3tLwSLAR8(uea`rI zc{LoPmER_hM08oU^8*-~?n^2xpdw=00Ef9scf`%h2`@g&`V z;FAwbXf)NGQ)?|_elx%T2raMS+?DHw{?aI?J@6rZ@izrEQ}?Im5D1d zIypMcclTKoHJM*E67AABoKSA_E1IE?;KDF?S|5M!y?zRG8Ns(Au_ru{6rtxMCazQx zF7htIQQqF}TW$0oYj1NJd4cE#mP+MPwEjjsfi$WI9;R7u9y90q7h5fJDdD+>hBLaa6^s+45>nh<-B0B-{+jBu|5olRkno>&xw+oHB zUpgF~WU}AxC6YB02NVv9mQsrR#uxVp58iIE^QamB|g-^ zo%)mhYppeEMW>DWhn;jcmsozKmGBT#ne13AG!q#CikWu%>>=x{Gy% zlK6-(9M<1aj(=v*|v#Zlu2qur?-L+;W$t)XDd)ai@n{udH-eGh zA|Zh6ibp91@liR4dfCnn-}J@u7P_`yHcoTYV}AC9Xwg$A-YJKz;6?lf{SFMZ(PF1- zr&G?6k2Ej&1H{ihXvg+v$ZZd69dm9_WFH;bB^#dmhCDh+Vfj9|wpquHH=*tSlv##4 zcJ_E9|D~3qw4D!@Crdf&)?w0u^|T4{@{DJ2E~K*Bl#EP{AJKeOTjG~uk?xw(T&`tC zjLiJvZj2m)Yvof^SswEjq3bxXGHl1hxIUI^^B65Q@8<#@sK6))8mKL4`_;n73z0Xk z>OpVp3boxy=kX7+{>DJ>0@^1z)-k%Q@)r}^1JAJ=*p1E9+cWC{dZ)O?DVw;4LP}MP z{`b0*K$8>Dw}9=Ns31Zpl@u$LGZLxdl%h1JytfUy4qV)Pb`UG}hitfFK`l z=e(hP@&tY0eGSZg$ zt|rbuS^g*?zSJ;Wdl2@m@3u@wEN&!_qZh=eE*S1^R8F@_ikVxdVD>8ro z?lhZE$+6q&0;}7@{)WBw{tD}gwo|c(B(OwRC~~wB_pZkjX+Q>!0l;o_?V;CQs_qOV zmF6nJ^L*EKCnf_??MgMZyO6yAyv@_NxDbQbZ#?>?zhrAz=xkaMN#w)8wt<9>lNv4D zNHq2?I1G=ety9~98Upyq{|#kr0sN1c*tuG59_3-tKlG#c*PDP=WXvSPQ&TY8tSakW1e7l*mO@5e17VU?&R`L%FdMd*iCq@yYJX$4v_~^(t#!7+wnKGsM0ooSIrU(<_eh0~96`dOk&EL_I5w5$ zj}1t)4&^A8S7N97mQzh`X!bs}9(@HGyWFyym20d5f`Xvd-Lq$S*2%MByO$xq=X&`; zA;y^d1#DyL1dlS3=|Hn4WlHk9-6}GFZE5sCNhn;QnA+qDtnAAV}ci!R&{Ko_lJcZiS zQ~w?({pyByOnR+ML7P_f&J*tCsBSGPH+QP7&GEL%gTotv;*6?E{uA_B*=8o@rUu5_ zcmaO|Oq*LqT#l}9bmgLM$g~dPip;LfoW<0&!NOWCt^!uIzEk-Jgd~PL~LKh}P$o*J(Xl9D#2LB%q226|~X$$pH+cAj0zhi#($jwczjP&Oi^OcL&N8B#kIo ze2yDxSH_C|?-jxf1hIf6Rd@J3=uOeLtV&c6s8&?NfgLE3ss$CB{{(x|f6XF^6or_| z#O`E5*V9eM3z$8|Xk8qz6}&s2{LCOLZpqby{BsStw&pH5c6DCd&RfwWY5GDyY(CX| zMMa`N;^aj%gRSDL2d=8-G8&P@6&p@P=q>n)?zfl6I`}94<%l} z2otUsQ=>9m4t+H8(@qeMrEw0N%op^Dw9!o19pwDt%k6{6{Z;uNI`dsNA_Z%|pJ<-7 z?d_8bzKWYUy;7)}5HK*n8RalLb9-3Np0+-IQi?1VsyfN1;!35n1A~a`K}{p27I!Hq zDE2Bf!jEs@Tv4g8z0aha2PVld`0?zkxyy)6i^7ez=7IL4D3Oz2-yB>0!@k_&QqRP;q0ef&|5%uJ+t~`n#z4zy8p@ z=#K3_($jCCAfC9+q--_gCGYkjxprT;`5w=eT}&9xSX_!|j@O2{DCI7VN>R0x=Ddhz zv{j5B^waugo4$zOLlAvETrFX@8Lqdc%qh*9Q!gs?nZ_vXG1SDzWpk8!Yuq-0nhJT= zVD55+VSd@Pwm$hYm4sRGjTqmJ`|;1iy9{CQ6kmJM9*vqi`X!(69a>CrZk2TUIUd$_ zNkhA5Rq??KVkFgr$opi;bOKDU zY6&lp^r8%GV2)r7-~!$8prWAkwaW6m?BCa8A=JY5`^*X~MF5F>X*#w*UG)p}w)-nD z!A0ZavsW@kKV*VJ)0bXE|6A=mA`00Az2u-a^(R?>*g!j~upGHNYIM{rdS-Nkn7HvN zR`18>BMSz02K4KABNIi=EMXHx0e_6wEC7-w-SPcL&z;`e zG=XycH)s=?*eS3*pu{P)oP6Qna8M#zj`^B_WTf^VsisB;X-`4ewi6%;%MEG>kibf&w^8Yq!`(Tk2KaX7e{Cns+CDEatoYcDtd61#gpneKLAI9?OZ&BB4^ z7CtV{PSM&kVz>EG`K)=UQCP&61H~=b`UM9tzI=H|6rK%};p5uc6P|8-d_6MK`YcJr zW`!g1;Y8J{?*I%3-|se1&4)`-8KI7NmC=J(`?zO0an}Dw)ms2nwe|nQhmcN1=@2RD z?ovRcL}>)1K{^iIf|Rs$i_}FL1Uz(iNOwsbI;HDfM}7XkdH38I@14=Pvi92F`~=+# zpu-p|$HQqK3+c|v09LyX$%HooCD-n-V4W~E_-h2n(r>T+N1(vA7JK=3LetE z048WeE)@KwbpbYKbFy?KwRtwVQ0>bXK^v4*CIFbcA~=Z?Y`?W_PqtlV{08!^5CM%L z2R;Af84YpB{uP3W0&uWEdoe!`KxcYl84(Iz(9A1}n3p-N@qb3>-4S0i{_t!j4Z(ug zO*9f-yBhogNo%~m2*gc9utYrlv5u*7zAnK?;H4A@_EoqY9d=DsnRC3RBjN0R=rtoU zsb0%V2pf?8%H;$1y?(Ob>xv(|xF|b$b=8fWU4=Uqh3nw)K3em14{(}n3!Mr;XQ@X- z`-GN0uK)}RVpyF2+h$t4P23;$J!K6tBq*`~0)1p;WEY@8s9grYt;ZSXKV?B4>Y8e> zLicpprAbbsL3D+YV8+suHwq{)33lEqc5b&#H$3=a*GN>J*H3`w$i3nL06B5nHLt(y zRVJlosp`w$Ae7Iy|MfKd=%n{OQ+t4`^=eDq9s`MeiHAt2Q_4cjv&*1h5LJhg%zZR%6mT&?L0^z{&$Ri*Dk6#s-V9DR`o2mX-j0>+zOO895HTfDx`-~n*Z6im*)Dak~2mOp_m zVR8W$seHG!f3(|l$6a86%9!>fuBQzC^BJP+oul>A>n4CT^b4EsxC`rpmAR1bal~Ew z!3K$eLGV|>n72563_uCJF!K&sAytP(j~0?(TIoESEqbt|aoTXhAX3vb2>gbYUp~xw z8Scd|#UI-VE~yVxz^(}f#MjhCFIyO=j+(1UQPg##5b*-wV7bC%{2$1rnPBw>r#Y*0 zRom1jUQNt@u+i51E)E8>^6i_HR5^AgA!__kpFBgONsZ;PN$`(>@ZcCLK;o1e-2*2J zMuE$UsWnr;EL>#2z71h7uSX2X!FA%({!xaKtR_aic_ z?{@Xw47Q(m9falsz-D8~u6f@Fjx0BS$qJ{s#@ZBokl5-biaP5315}2N1&OIy0=seW zW7t-QhIo~b6)Zsr#$YXI`99=Y;6xD|8Hoor4~RKKb;Eg`j*F`+@M@+~DIkIbewF11 zs4V#aZJB^vPErt3$_!Cl7rg~y+_x6(FMnIO?9BnQ@1&H3mvkGOn@9%pwa%iaQ^v;? zY>1mq2=fWMBaZ~<*-bkMUIMWCb#Z=Z>*WtU&75nly2B@`gxz> z>Ysc4258($-1##@0`K3g~2m3f~qccH5MZkumd^etIl)Qy1&3bPv;~$JtODNY?2Yu5;s$9B{ zhsHt9u<|G@jg&kKlnp%DZA7|f*NU^P+A3kH`oVgd5f<92m4Fwo7NTfnwXO6ZgI`dv z8(_l_!<#P~7beHzfxj+>)(x7QD{%Z<4=fKq=9eMVxim%+CW12+Ut%Jkw6jTlF5xeL|t3Y7~HI^y$igtCsWPMuzr^_EiDv)q?*pRK+nnp2z_O>gndr~EuEZ-OgcVQV`;iMYm{maZSidbO?I=P zlJxqk!CAnYXpLcRjUl8FIS^x^@5dFKnWG&{~T$SZHQ50}CK zLQOL2Zv@H*0EYikSs9y`$AHuJQ($RS*qzBAi%7_C9F_C3UTW8N`jo?)lNa!GriW zZsp!$h_~~7#J!H=pDT|{)c1~f`IGKGuN++T-Q6_)`IxzH-3VaDz3zrXID11iPrt`B z%dGw)+G7q&9a8%WHU;8l4ZF^bTGFe}^<<+C)AxNcK`R46wMr>Reg@gAy?U2%waPL7 z-6lPO)ndtbNVE&I5+qlPK4Bm+atpfQF_Ls*20g94$DK@cp&QxQIO+wbzRMtPyyFo4 zaYBfwJI2_w9j9%Q@_LAUuk?=@@8EYYxP_jX$x$vZbGcA^L`AMYn$bxd7U7oOKcERX zbhx%yHZxPfB7aZX2#sHM`-h*9SRu+;Uu!48lUjRlH z$X{On?q2maD`oygBKTpXn%aGpkfJMj68`MZ3n@we7tvJ#gAEL|6&V8b9=0ga2?>bj z{n_e(NMuw=j;mxcLa`<0JiO-ZyZ0jH*7OBRz1Hkt-{O9&$RMB1x-dLL!n6H(<@Hpl z$!dOB@v+f%V_ILeb3@SZLk>P>s|B{`?wkTFSwhl85=?0x!tWsK3$9U3)ai$J23PwPJnjg%Z>;!@WQM4W*_g z{dd$$p1CJWs=q&}UiGYs|5{N_T~}p|!qc3=m)}nI+Pygv4tqzq$kAZOxY!rFznpc* z<<%?!ebmQ&F(GlI`R$t#JTsujyMvRn_bSXVEa0-P*fPm0=<{Bl?HTGOW=en)rno%cQF*v0V7MYC*Esj zrEWvtk)-bikWVF253gDnoMG zQhcIsD}W)#MYzuQ1&bf?vS=2=RxhnAtuFQ(&+D#FG#eGg?{|LdT~^GwNSyS2A?qnJ z@%_tN7P8KQ(kHL=!zjZBwT4D=75;@pz$m-t&Tjj0r7H@7Is@e?#C8}I{q`Iqar7G` zT6xca1Xortl@T!W0Y;*kM&%fBr4KxF7iF59Y-Tx|t8rK#0QU`$u2zd{7HG*L?uSYP zg-hiB<*t5X$f#em@zPZ8c3YIhtssz=fA@p&Px&fclJaj!_YClZfluEQ-}sMEIuJPi zFX_`dRz7t-7x&r2(f8a`3=E68h+`olA))R7u2pScOyy9JB6`_q!?d^)JJ69sF%?Ib z4q~#WkeqMp)otpH#qLI%E*j*4Z4&L|f0YdpPr7RJZ!<}#iw*c_Y2j;*q>ymXrSWM3 zsO08_9~Y0buC%SUCO7BDknY`fXT95Bg}!ZI0B){WBgK{Wo-N42Sm#mZ&0Ogsw;^|> zbBV4J7;Ck6bxl`#qVMnchN&^jFoD%|=;xueZc`N^-9(iAy_F@;{R5c(of6f|=?8@p zSFjZF0ssbhzJyPPq79!5KmNT$6Xu@JrhR|4El8c3c3Emv4P^M}PgxF&5XnK4y>b;9?)X}aB;O(vmk!xEYbq>*5MDH;jBU%=@{`t=p5zTaE<=jyncDAi0}~ z-?pyB`OoHr`+#}C&LMA*1wk3@6q0MF%55%H4cEmNvx&X7j?B`q;yn-ax`u8K4(&Vj zB6#n<{<{xwV>e>=*HG(~Ph0f~Grij<$PDQCu3YxE(d)TNlV!AsePd6Id*98yZnM$) z8ed}9`I;(!Fqx2KPrWzj+lS2z?tCxt@8?74CebW4>BG1C#m|QU70~kY_ z0md7?=m7+PrYBEx{?2mzM;^WfcQVGE(;a#2Tcp3?=Rs3B(@JTntiHKF@<-CB3H%Ad zc3qZ*A>$hAKghH(E__fV-Wx{bW70vTKcSWXivNAvG{r5@_A;7S!SBcC&B;_MhlY~h z7wHXi&l}jG#b+;eP$ny)-nstj#GRX9)vUxGOy=Wb`MoAz4ei;~jE#1_A$(mKR^Zy2 z!(;IhUcL)yQAFZSv>js-$k$cCZNv->#r)Gn=S-Anw<*8770QB)X=;Zn5?yRY-O7Ph zUd7?U>*?#x-}2?zA0)qgUJIGy^=cY{cS^Gl9oP49(9zc5w7o6^V~w1W>@GLxq6p-p zWlCAv!C1Y$U_T1JSpSnK@t~EtB)`~>R^TnNct?}E?;8!a&SjpHE(;RpR0)(cU~V)7 zf0_F^QBV17nB8Un@?LSDhW(|9zzdr=T7tsD4hITQIBo3gfU^AI6gG)&YTp{*7BEsp z@ra8L0&QQg#q<(yqM1ErL>GDLOX(CQKHYl3nJ9;5po5m>_dy-+GnW#y^AHAX6ZA5z z8^6D5nUnO%71YJJUX=douu}-_BvT$d*tIpF)ciErcM%P;BZ?9nJog;?pJ( z9!e9sKL%DcoKwf0cSkm>W~*lUubtX{!AD6dH()#y?5qXir7rp>v*R{zv8#NP78o@x z;S)!Llcgf~K8EN_Ufu=~XUFOPZO#5Sgc4O~mt8$?LXM}eU+N-}F(X~WIp3xyXtP;c zb@gs8%c{jCu}CY`EW&UZ+e+!gnacf*-EWY$h|QZ zPUrqA7XI}%X|Ww@59`uTRr5?|Z=CN)?9sR}O-yf!3alYs{Gfk%d5$fzs+Z1kMN!^E zt#Tx6_-(Rf;*Q<=2HKMpc=y>9C+||2VLyK6D#zuKpp}icUY&uSR7JS9{bE(q^rg4K zx3kP59ubkSFiIdUI@JvRDDkb5FvZxSz&O0BR(H3mxS{Ja+`H$h=yXnVQs;L~m;c$> zy-Ziu%UQ!^t0vxbIPLyoU?D5zf3AmTjw;^V-aX;i3$Db9?|xG$2U~D&s@(t>_fV?L zY%3Sn@nyOT07aW_Z0|06ZpVdbt)=H@NhdNoHX1-uq#VXl*!YRnwWmm zmsU0W+3g5cAh<`wm{FKTwO_)D=oO;Eo`S+|qM~5y@F985wjpaU&3Nspj=x+#s0bV=C)W$2F z5mO4kGu>Gz1?~Ozea`Bni8q^6MHsfc99fAnDRK(~TgJ|!t2R%Jp*;~YvSl})FG`+2YgvHC%72kEinIm0qo_KzJY>ZA8k8*X& zN|xyn_Q__J(jEtnRab88K8jAYwV}Ozv{EX+UgG4x??bd|9pKkO>g5K7-nl)NOX0{6 zM_(A89hTdp#auwNtN&2>(RTzJHn1* zlvXD*2f~>6-TAZmKJb2uEiowDslNUhFB%JX z(_Z{L+81EX4k8zbn=*h}!siXB9^g5e_&b2?PIWpzSYEXrSmVwGf@8Kb^;P9Ee^(pb z6<;HbX<5Sf9+C6bVj)r|3o$BoQ$0yD3#+0u+4?n1)$8=^?n&%}Y*h9)vQ3#-2gy5KKxNUFx4C$9>!ibdCf z_t75nV_>vJ)8JrOJ2vp!3}4gGV6@5{qmUDPH1uxd3QFFzxZP2{!+81pouwgnG-@kQ zQ26gs)RQ?T|MlUR%aDi*p5yke>t{Vj$GPRKV+x^bW=7?D4PSO#0<<8fB;AQt^Hxq1 zAVsw^T^YQvun;DW|L4Rjxc`|MDcKK}1F$p%D?hkdXrjjX=j`zGQtzL7SlUELduDi| zAhS3mgf}Ux+HT~P91s95>s+eOcWKoIwZY3LqF1}X2uSlbgz1|>LpIcsVufORcGmrB zujNG|*h||_zGK^Evdg z^~!N!g@On;p})22s(rQR1;iJA529Z_I&zPs5^D!aPD#lb-;`?}jbuHhOp>|L2E2YC zW>yR=+X+?m0Y0IMfh#SYR3G5gB`UkZBgY78by1R??~F1Guz5kM>?YnhR*u zxmS2Gzy@`V=aE-E&1(irYcbl2JfdTF@w28op5S-W=#tecUyVJGABb=l5J?;zT=nFP z;FhSEm>#@q8Zv>UP`~$JL;v}y`^Y%_c@7xjRZJWy+?@>_DBq6TLD%PmKE=X&O1912 z+(OJVKwT|y@H$(;`iCao4*C}rxmFY5y4vYlo35{>jd%0rf?iCRu@t^-jo6@Jbr=^kt!360+dR;@fH19)~^LR^tZDp^?+7ao4$$5e2` z<)Kba9M~FVO(on$z_7SOs4IDtQOIMJ!2DHa(OqYe4F@GztHJG+m#XRmpqOU{;(ugh z4=THXX~p)j`L&!AcNiJ`&M zx*y{GHEPU!->C?-MZPlq^1a<_TIw$_hJ1(TTV$jo;cUOvIdAu*%BnNgGY%utZW+sA zideVIRwu3}E>{2XvHPvcU25rGoKd>qGwF}k{C$h(xtZ|&yGq}l{vFmg4nb;Ak;UuF z$*FqxzI)40t>lQ*1hK%_PAh^w*MdW$ z$BN$5Q|`TQj)ou~_)s7DLy(OjvIT0iE*UV(B*kxJmO2G-hm!R)24>|KW$`m}85!bx zo@Y|La7Vjg9!F;YW!{c|*qew)p_I>qV?EOAoLnmc1ZMs7Io}m}Q zB2dW`Q-!qgWT5MOv+49Wg1yu*!{b^9NJK5CXX`Q}ADp_@Lx;HmKM6vEgVWgsl;DE~ z2VVhab!0k5p9mx6r~XVC5=m=F#GcGtujTTzQc?Tb2UkSDS63e%T#3Id$qkgxeJ(B` z>th?~bw+2Xj12Sx~djWx9`JvE1+U&K$S*YWM(2hOqz(NMp2)(GIKM}x$^xxiy-2P})4q&Vt925@~Kd*a_ z<`om;5D@)|0E9^C#Q>v|P;Qx;2Nf%GDUpX8*S7EI(MCDnv4~W7U7Mo0ws^48^7p}jo4!nYR@OQggFU2 z_=jLXGA|Z0jV;a4j9Cp;SqiLKqCch-sYiM5_Qmy?{`&8Efg0*ku*9KpnuKdY*0DJ# zyjX#%r0}9d>#q^USN9$DQd>RF6z!lZ}{RTxTrC9&(F%$2Ms%Sji&1P0CpPk)Z z)1eG81nOOlc|4@z-=Y0;&?Y~)J|04OEiB?6MLUxMwSKoay9CGrh{pu>7E}p^*`P`Q zPko@7nK=?uSC3spdVqjcbZLk#6dhkwnMnPm>_f*&9>3)q*9D-9L>QyqIj$1<=sR>f zM~Bv`Z=~(5MkW%tYyE=*NYS>twEe3PzzO>mbLRae#+0wWC$`J|V$B=ev^=DZt#?Df zVLK>{@)-#M+T&*=_k$AD43bzAG5r1VbXjucE80NwV0e~6K2_l?@{BSxDWCO3ci%>n!)8q zkkY}R=I<8>lLwvwhJdC|+(k5$hQ1V}q%-#BA7+`|V$<$Lx~Z15G+D8a|MT5gX=#l> z7)%uMCT-5vZr>WrXe%^`j^vWmmyDXr8nXjL?CN2N`nFqVP(7Be-(Q+EkoZ%PP3O1L zoDhs=C%#o7cH*rM+)YQ@zCd+`ql4ADb zQvXcr2Lp1D(mU|0_@cd;U8RZPSiS zbB$mJ8>xkl$umpwf}}gMBQp!2!!(ItdKd;tvXnPeWu6EBt-)6KfI=>NdacbYHGkM?*?-9n!Cpgf3ln1Kh8}_ zE3o?ne&ehQLRk4jNcL@c#qvjg%?D%pbhy{stbR8Bz5Ft-GKJb!$A}iBvOeP&ZSL&Z z0ES@2qqsh~FX6@2P*4KCNO)4Qb^d~wMrF-wcm6;7Coxsu9wmM8jtwa?<=B&G_Pw50 z)+eZlx3pw@$@rLi|HsMci@0i5(VMXckho9xzA_nEJAK6U7Ryn2JUu5Ijti(j09iXc zHYQyH!?a>UV~TrRvS$UFwg^uGyAOhq$th_DMn-9&pO=)iWHzDb}W*4E0zZRm`q_< zeQ%$V0RyuY2Lf!F+4+ClS=;AEIGpxdL{j_W9uOT>;^3!egPoQWGu`N1%Vh@D%&f?x zT?tWwy1*Km*dFdOi@p=~J6skbEFjT89$?JC*p-}-(k|4s(~kqR9Ks_aU$ZA7l?BlW zGGK6`g}V}&cTJZy-uT;?bCUv4BN#E}6c&a7o-eSkl_fx(yfXZIG+6%#bS%8w+^v9| zbujow&>PQ>9Icw*{p&A(?nQ`hf#n_3KA#%^;*co?h=afoAQ-eTc^M1Nw2d|yu?*Z$o7%{2UUdqnGmCiD_wQ1vvVNGvSM3ekIYlO2zj z`o_Y%kia7JyL08i)oYSGxAPcT*wuooKuI&2=lZNNGWd~5sK~ymu$SBFNq`F@EK)c1 z!{I@c&(af<)D)&fkaXyoLAR|EDxa&EtBYp5u}}R)DADR58wTbD1qE`z-?$KoyT`O# zOY6ICE<#N^=@>ppAoH*Y3EM<9h(?hxhkJ@9FpNcdO?2TIsJ(Z0cTavMy$w-RP*5sm!-FYKB8{2jW1});LxKH8?f=P_&D?@Wcy=T=G3Apf~ z>E^XbK#+GsU&#FMVNCosN5&0W;5EgEupXi#zvYDVI&!^)?r&cf%`4_uy=9qSJ~!D- zUKF5D?A(G%N>3yh6`)E++kSQFzx#kr&5+nvZax$NTwHj|YPT6b(ROydu-Mmlc8$ zXX{4}8rb$E+1RwQHl!_-F5WGh_((D~`$&dt#lNNU#lBojRo){e)mZ`3dkUf5WU8$3 zNcL|Wr{^0of)}nDUnDrqM?^#(wAWB&zwVA5;6H4{_e!d+b^)M;Se7cQP@48QG(|ON>!s`Q%lGD`%jRKxqZFN43(MZ&vA8U@NonEq zx8DaqM~-kq12GC<$|tY65Hrt^kg~=4mG5 z!vN=#Kw7tI{mW-_8X&h#WH={|DkV-dFB&ASpS%aR%VqAy4R1{c+ho6>8D%Z=TKHs6-ZvaYi(~zTNn%tLy<_l^#M(`MUrJnc%)}& z_glx+Dr3c0O2*;z{S1JZq+8OWt|xH;6KcGe(u82Jkr@Bio&k<)A~7`ke*P4BF~u1avY22 zocea1oJ-+*o(p=5L1!7ji}+QVTg33PVNsQni!-ocm(o1*0K2utpN;g9#-MrtDwbv@ zZlGsdRtW0SQpF7~XT^#tm@hrc@Dc}(7^uMXsOv3=`q(htNKi>0SJyN|aN;=N^_F)D zy}TEVHSl!?9SsdJ4Le>R0Hsi&53tcfJa&ADJtKfLcK-g&3zQwuzSwV3KMMn z;l8~?H%Af-V_fWn?v!1TjjfIF%;ldfS0F~$Zg406*I(P?5Dxv$CjgxssL_Qp%V^a6 z;5Vr95Ya*jPy;vLJvBMm$ZbOu%A#Wv0R)*=RixKw-?-xu%kC@+ymECFaGm$Y-%a;MHT*QY|07IS z0UKIbNg;SZ3vM=JW~R>f-I$oiOAttbTFQVy-nSqucxIWNhMsuNA!2^sz8%qk@S0jzNlX2qZbE&8*ZRdr7V0-z*uLedJ0wLv{ z$0cq>fr^4nVlSUd?$_;$1K?`Gspg+AUfbn23*vNFxq)Cn@L9&uInm(`#RpuHxgQ0? zrvJw7SUl7;vASp<2IrV)X(QIQr5?n3kF-XXf{g7bcJwpA$;Ih_QUClt498k8bA9Z6 z;PP?)#R5;1!#;|{*v5UCoL-@t4Si?YLCw2yWcsu=5n29O#cJ3^%9!I;``!;J8M=Z(dfmgTNQ^_XL#Et|w@5B~ z3vHl8)V~A z7L7V;@;rcx*cJ*#_H$mx1HdJxo_+|1_&Pw=E35TwKqSC=OwiaM^p7D#ujtWHTu$(# zm2x?1QvUq5knVeFrFb)???^Pxl6ygaeo?ra0)9Dx-BjyX?7xTmdadL8h3r-P9mf(5 z`Q8DVXLpJ!dtxZFDRY(Y+WmO>WTtNf@qKDvl^B zJ5zL>?7nytXI-bl5ShK@tr3#_p9ghVsXm)Aj!rf1QH=66@BH@F!r1X=QHHKjWv^s- z;~m`tmBa*ZSuVBk&g< zNJ>dtt+_j~11IU#A_}K4OzO-VRXb9RW6`|x){r*ItzD_sao;&)4DGvDAI8aVa<(TH z!M>exv~axRnz8zObF_a@kuV<2{8yN{%EQX}zt~Ah+<0%hUvxC|_YZ!y*+erKnzcn; znwuU4b#T##yzh^3*r|GdHRRuSKQbLEEZt#@G(rrh(tdE(vtqi*y;^#Zw6!MFYTU}1 z1E9x19ssaSH@CLFg0&V6#(Av7#RD`nG$vU*_!lh~64k4dcx#^cTDSkqf#Q1*xvc?c zOMyJhb)vIeTCW&CtF$kqf#MfBg1_;HBYsDliv zGW=+8fJ2K^D@{9EkCzqO1asO0noqP}9h19d1mX5?J|44UK6Ai>Q!aScL#5w*Jj2sZ z-M{&|_+O&Ot3Jvq8#KiBM?=X$l!Z;s=_gT@H@k>IZ&E`=VX?BHg|hyG=uNd)`S` zi^ql_d)mE^eM5BE2nElhgT&iR)^AH9Ex`e zDKpF}Cb7R}?l%h0a`kr2R(M1Rv#qw7{=PIZ^FGz%WXT7w(a{e~fmIAsj5HM1ZI!kVy^(5MV&2)vmFfr{CuQ(*MzT`gc`3`}^jg4n~LxE-c*E z_WdpHSY`ipS0O;yjit2yv#vxu@B96Y*_WyequmvV86EhV0*@M97>-wesiY$uEJ_kD z8w+X`D$H!0{DI+~0$!6#c+4=@k*RFK#(T?Nhpl$PgV&+GTI6bNrWy%v%anF6NBSO5s|c-CZ89>OK#I3V;^z&59$s`we;-Rb%ol8mGceCBv`SmIw!3Itj= zW`7Rt?BHxqI8V%GX#`{)!`&_mx=6{%vsKb^bt7Nqa?c$_&Q4c*6SJ|g?fAOu^R-Wn zPEK|KPM=($+?W38KV~drUu_=AXEeL{8#HD;`6Ra1ts3gpa6^aj`DfBkhG*Qw*xbOA z>*OG5rpZazyCZ5p!*g%BhcOdK!*2My1HP3ZSSV^XDE+P6*A!(v5Q&`qR|l~^U8FJd zXr*-QD2Xx5&_E%(@6Y^_Fy&IdBEL^o3>eQVlx*S@ zf-VpC zdmScQjgPoL=D=FdFF0>AaxK`$t-hHcnN^8fasg&`pqnG4f@5=yK;cRMXHx>_{P){F6 z14L41)+?#MZm%|YO6b!Ca$6gmRM;1fIG*X%!_U;7w6s<)t*o#wj0lO<%M61gZdUHv zGH(y>kifXee%r>?e(?tX=gh>ylKf)Y=H}DJlZa9^`X}zR-Hk5J@72`;#Fi7o!!5EBm&2A~a?MbZAmOLce?orI+rJ;U_E#-dM8BH|AaQ^|4Op`@ctWKD&joBNL zurA%`x{C8##hdb>;2d2#(OmukD^~b6?7;c^RP+6hPm#$D0{mz&Fszew(U!j+1O=je zN_Z#GNf7iD#6g0O9}Qm;1bsA2Q6ssJ`m|NeQ3OW{L`=?fS{$h&+_FxF*>bQ8nV?I| zo3S_ecC3(#yy$+pohEq8T&}Pc7{b_i=>Dlg)YG;;qImYqpp?ex*J`;Gq$oALD7eRK z=R@!hi>_Bi$o4V`_u$07TfxBg)AU7vjf_TOPXT5clmzEl5)Ow2*d+X!09hd|O`B)@ zveLh~U!~9R?9bel?PPJ5*bDzCPM*H;YG?F%>1xRF&Xekw7{0h8*r~99tqav%=cJ&+ zFVr`%mro^R=z|(@$=#P)5V#}Js{sihxA;J#&7_DA$fm{sV^8RMKk3^F;yvp6Gif|p zxC0e3Hf*a_p$dR*fTu2gG$xw-j6;ADXs?Ob? zkSb?B0-C%!dx!8dD!AAJ{ba+LApBrKy|l{>e?cS-dgAUDq8ARuv+P4+cM+ssnZLed zpO$oNsJ@laJ+It6@s-u%o>=oIUH^Q{{^+-3gYNE4@}+NSP1-$GY(_bDjvxC9^>};} zXaMp=6Z?|;XyY@MDyrfAx%+4ZmfZ?kxIUOAN6EJJx+Q`5-m9wDd;8Z6xhjv7 zwQ!j)_eP@*=kuwv^X>eaj(G0yfrd-sJlJZX(u8DR?3!0%#S&`2NGtSV&~(N5a4VkM zl2%B6!&i+*2;=wg6o|I5{Hn#o$;02vmxCF=K@WytgOgunvV4%*e|}dJM^n6dj$Yo zRdi-*wxEE_(<8tTGoC%A1f4t?=-41(ttKFkUo@kO`<-RvXLx*yi6I1V^*2Od?Sw*? zHJo)18pB!f)?RT}pFOdzBdt z!Vq&&WHsWmS2$Awm*UcT;YZAVu;-@b39n3omyjy1#UU6ZzyBn~wBBt76+OtH20o{t z_;LjmmaGF`8bhZ@rfzA_{8+277@j`)&y5!Kw%1z#YEzbL1e7s%b=zDd7 zo$i|W1BVOrS%TR9_C^8{V$*qr=dy+q9sDQ+g;^U5Jv{}o1?|cA)W>`0)cM26EU^6o_^%YUJfx@lh zcpR@fXeL*9=2OVa?58`50E6Xu*M?tlxAgd(kW+}RM?#)`kY;pe*MdjPosP` zy3PZX@5pcQ+p6yzW*0^(#b; zxnn7V9K+v0{3QeLiG31czI4!rug_1g9zcCf1MC9~TwD^s@Duc7r9&wHY91MTAJsJOVt zfOX%xVPIL}dScPk(d+l;*{Q~3G@s>3pC>RwoV6{|QDwZ$y1c5e?s({+dMUl{)CaU( zg#dSbZ)J@D6QH6|A#5{W9RQGE$OJN`kPM$K2XJ%OqoC^J$oGI-;C(B$eeWf4@xx*K z!{!E85Un1$SkJaD-j3^k<50z3Vvd)OU_Sl^K%U41s7ostR%`-uZV!stv@0y6tYUMY z+LTZHTv!AHV9W4QYyweHe#4^>lq}bxV<&nV zr3kSfUAOta*=K-9@D=k(jBiQp`+i)!9q?@pI9tS)Tt%i$ z#5s36_ojv?)GQ8n9|7F)%iQPHHq@)J5|@)@{O!i};@Bj4`JETVzPDBsB9~Zeju&6I zU0qIqxXvR3@pnI&-oG}P{!|#C0{%)RRjIZfB9Mz|pOxO7=2-MaeAOOVdDR-VhURV&280=>%m2NF#e2YMj$k# z$ad2yWdMa7smzV$;yQ{s9!-Ou)=ooJH8Pm$_Wgb46;}4%3Ap!V(>3(=#O|7#W7qri z>-MYg2nc~RAw+E3soFkfjW)FhGKOyPs5cj^he1`^?YVHp1fd$5>nDN$E_^%t+wW;_ z1gk<`&hG%wSlUO)6w5D)+gMm}V0{(Lg|=^a6-f!8E)Ia0?oaat;1>X-iQjsv8JK}x z{334ZPHg;55B3K08-Gz9(yLen^vd9eMHO^ApaInJA6hx0qIk`Kf&YKYeYSenah8Z; zpqi62Xq68J+Y@u%UAy0Fs*Q@Xh4fIDruV(ljk10Mtmx_h$s81$`l@{hvc$EdDhVOM zx)2h-LchE4cg|w~BCE$skHbG36yVNpml}_QEcJQpctmM;MAz~Sq4shs=W1u_!n=kH zW_ zHlWN^`H@PwNC`4tKHqEU%mzAWn;M#MR z2atF+CUTlKU4!$GIOdFG|7H6vNrFD7-0z=|jOj{Of~EfzcxC}Z%of)|3g#$ZBv z@^|Mm0S0H4m2&8{y<<2KvE6Ml?a%+J2kzsnk3G5S+u%C$CYf(;c7U-r+mHPck?95~ zdZ(mM4nUb9txjZqVghp*3a$THJyWHnMF!|S z>z!>B8ulTi16kj5(%a>`D}f8yyCu70JKt@Ai&nUVY*w_LNphky0$f*8x6hbp)#A>S zAO@9DZrphqCzksupTeElfxB2s?i58?;)WL(P#6Ui{#$DGy-9Qi?^OG^s0wT*Ax<8tVMlv>@uU6Z+_HN9}IJ8m}*g?0+BlG+vuGY2r7r(A@#(Inm-Z$0@73nQv0``5gcE<1$G0FRa zs;rFOGzjP2BLLJAr~uN5hzAy4HVkw)K)gb)S@2+CRL-Cqot0T0)BcouUv? zTj3x0Ro%eCtbprp7eW}*xv{^!wtQBfTI#c+v#L@V_tiN(3ZKjAmKFT(5p3Ez859`u|RJ`_lLK_`e^IdUzD)?(=@X zU-S8TK21q=n!l{8Cefg*TS&d^!wcO2{EX-^pn*0rH^=)CMkXz7fM_F`K*S@&dI2o9 zqZmSnfPDi4KYsrFv*g6x{i=6h(tEVV8*w)o=ytDp&j^Q8#J~p= zDo>{IB|(uAh!G8}YG1(7LiGq_+OcIa2;epbRE^NWT&oWx{v*MN35Bq-$zprT^%{V2puxp$&zQ)=KJ*hO^i%mfYVlt3 z^S*Rp<&i!i5HXpeJt20Zm7iKPKp^V$i0NLuD!Q_3g+hiDGSIPSb!_0l7}N9%D6d{} zaruspIU7Ju4~*M`4mSupxu~|dnD6(`e&ibv-f!5_`=sDAWaoQqJF!3Dj-&d;K_MBNZeFmZ`=|z$oUsc5mQ;#DLj1 zi5uV>R`f<%xKH|2wn@$wi?^pwF*_}?QxOFM^)k7_5D-$kFRDB%e>>?g_h90%$omb; zOIAZCk4-EOg^KuIf|S``GbWuxx~Gl3n*}SIoB74XBy^We1^00rrhgHn>mFXefFU#g z)Kj|#%zO8px0(sDNaQIs-O7!5xbF!S!CR1z$J53U3NiCVreH-AS zVj4({B0(K^=WYxpQ_IjN5zgeNce;6Ds*?yR=Kp2^4&$~}IPbh?LC!@dKo z>EDg(dJP>G;|2|b;AgDip@lN>@#^WqevJN#+RWsdkb@SI%vS4PwE*%vLDHzi8gG7D zt6AF?TKQYRcji;pJT7Je0Rnle0aH5tkH8o>zp&*gkync@BpZ^^tkAWu!+lQ@e?Ku? zh%)5T=nCo$XvI!tR82m27Kp&`=8o|;J0JYuI4MTJQpd(po+V@Q)<u&H)DoPq&2NFL!K08spGdoXikIB(AqtXKet zcztojf@;KwhcvcgDP{Bg3Z#_qJy)e#xEer$D()Ny2O$niv@aX08ZSCuAKV|pnTTU}_s+d50ssV(7#!Qz=f zF^GqP3dczCXXp()WAH0ttvQP_Sz5G6UV|wMFLjfsvH}_Dq6u8gR6m>FK^p|y60?9i zzMw(TtN0zuXL`-*UN73}ryKnqv@ROA^=C!v8Gt^}Y5(O70$`BO?AYMXG;C~42LdY~ zddwAXg_VrNuCi+fcg1b38L%glwnLxis&q)SjP&m~T{{@v@4vII(b02aXxO>W*DrTy z-$33sbH*9nxcfr0lFaNbhmh|6=)-{|3mBUo60jDntxaW=TMSKzGJ0zgLu1Mpc*-7d zysC66`z#lh(5@IxbBpiCWB8X^KbOaMVvW>XO8^$DGMRb#V{=?`wJ!P5tq9%;wqm{D9-1VLJx6` zwS0H`-z~NJkgl3{fY5#pa7N56G)TzhW=EG*Kw+c!v(bj#@6hjrR|`~gk`0|mll5J0 z--h3|v9RJ~O%(Pp5|ljLW~i^75kA>Y>5|T2-F2a&bFK;Uo<{4MTA&RNb$g$#0STWQK8+#JW!p!`r$2B6%DuRH8Qz0fRB0U;gdIv+{#6&-Sj0T#Cw$D2LPWNU! ztG+y(B%*wS6yT&Ynv$B1$|YyQ6}a(kJsb_%^rV-V=yq>By?%7;jT^mn;NnJqxw-Nh zDilZsTU%QHF8PmtI8PqYTJ)6wYGPQ=-%v!v4VZhZ zM2&d3^{(bPk9}ynn1hI=olEqxOCR+GfYo_hRMhf|>Me)j!GH!3yc8OY4M?6K{n}DB zIC$|)vTyd6`nD=lGR0swcFMrD^_Cjp(NP^vNf(qzy3Lq&F3kTES?t`5_tc;TnQ)L^ zl>^bMB=$2c?B!e(Bsrn=*XE1{tj5ni!DiL7pkq6U&Fzq{J)D@kVESOOmnPbQRC6; zqUzaeKw=}i6OVSlP|5U+o+ns5MATzCcW+I2g4E?b_R)Y1c?z>%3#hF8w&DqPS=kKt z-OqPszrg67^tHvl%nrlzL#o4}amlB>k*u7(pKkL7LQ&iGV)l)Vx0i0nn9?2{d*PJS zOW}Uc6S*4?e)HU%mz{C*&6NrUH~}yp!ea)oGYmNMOt{ieS4g4v$R4NO_Z%_A!Mu6r zl0qoZ9@LvBXc#vYCibgxp+7p3ky_-ogCNlC%$)QEosDaCu)Sc zJ12lx>msyz?H}W}n*zR`V$GD?uFsjmW`Ok(1BSil2YzRF2p1`6{iWA9A*ZL4PlE3< z5B)+Sas3x4$$I$NRsx7*rK1CW`aZAds>u!H3;Lu+U?#21)F3{2vV+{be2X>)${Eqw z$;#C@U&f0*oLeD(pkM)bS>uiSR}ukO;h-wLp^U-brYw24*%*fSRJY25JX#zXZM0Qr ze!-|C%ex$9OEEwKNUf5RlE4A_>t|!h#3=v_iJ315kj3>2BKvAxS3{+l16Nipwd+zx zKYAK*67RZfH}|fNIW9f^k&QKE7fUfs>-AO5C*VCwoAQAdRp9c#ha_n%#Wt>PJ>gq% zd6KhoH{=M1$M-hPO9h{&?`D8qyYAc|CH|J3HKCMK6l-o-j?Ua0Tecj?#vMaD$su~4 zdyhuKq@^#AI?9p!{8EW0di6<=n{;>f?YQpSL`GDiJgQPO7sqhr zoZ|H_hBrxtX^7oic92ac!%loOP@*J;PGY!&$(}T=g>eXTV4Lx8 zeP{jVLCS+hgfl`yMg;J<_x>Ci!S%PL8XyNpm3)Ba;%$?0-UT>Q@M)C^DLJPr$L*kd zE5p>#(8~Ug+YAZy-Hi9Tgc_a@LW2 z$Ygj%b%c*sx^`nb>9AdwiqzWf&L5#PxsO-a=<%n2V|?G~l%w$IU4aV3JX#pC!W?Yb zHLX2;6Mg;n@bDGtjDI%r*`p)uLtq1xkj@0zJQGbr3FFYVTiGXXD}?P`lp}Dx*GN-!~dfCZ+<2M5LoTf}_$rPWvC&jMqe*;*%t94r#l+w;ZyG)adFW zi|F{Q@Jrp$Q03{OCXxue7Q^mN0ya&uK)dDPj-O)%$PAm^6&a3Q(ea*&yGoVD~dJL}Dl+`?TEqLr5!u$d0nUJik` z5B7ot&Tb1}?*(Z}dOkK+a7q_ws7bNm3PI609ZE@R9>S8QGP#^;V9kSJa=D91IuH-H zoBp^B;!lEs6L{3e!Ir@Oiy@GH&*HvXFAz%tf*_D*nH@h?$44hULz9m1{)|&zW&q_7 z@FClnMxN#~nvjDdJb-nl*CJUHXc~ewu?9aSI&;bw0^|Ic&6xtb$|L4*9s~Hc^_-R~ z(!Hl-z}yO$SlH$;)yi4q*Q1{+)12>D&>q2cK)MX z`kG?1{^WjZ$7RD|8zJG#{${sK>FDvL_LmxRLCm*m5dZfI%TcKPby2bLoZt$BhO-l9 z(*3DAZfOTvetinwD_S-5QVUVoxiWAIo64zujm!mmsV2&~n*jTdpv4Ipd2Idcg9N``YJdOfS^ zJf-}sC}5ScJ(O3f*nx{sPaLn5;U{|#qf*gytqq#5RDonwPJ>CdwEJiaBTSD=oib$8 zC6*7CP8v5~)D+}mu3kI-LrvIwf6W4_=qX9nqjcz(-S?6c8jjZeG{pIpr$MMm-=@Se zMa^@j$##6fRR!ao?H3u98Tp8}QjIeg+Fo|Qw|~i^6WtS42tzWVGqoBGGf@oAdP6Tf z5HK+$a5b|iKYrrg$WFacP3t~~h3`Loxz^*Q#^#T6UuwQ8a+-?UE>`ENx-SXduEv1q znX`=stnoo_Yo!f6oQr6jI2x+-^-0^oh#2XdDVc!q%w%0cg@E6SlQ;l^<=7CK8gsvW$)L$ zZ)?AmiSdne$T^~G4NV_-^~!=Y;x3>)JBYn(8a!I&7em$)`s>!@*}D%55hJ;|*08_M zzM`;v?iM7P9PfkcA}3kc(H$=Jv+IWSO^+Hg!9AFE&=Pcq9oGSC@j-7pP0%Fhs$@3E<+<(?lzTg?~ z<)GpKMzT$?T-PUCZS9MQ7A4~N^_7JbK|!a}KZFG_9Rb8Iz_;ZrM%i1s^U=Znrr7BN zVhE_8A9n#Pn%*jscjEZR=38O~5V}fpB}0uI-o0tbc2Z+O;*appq~aNPuX~CRucL;t zj>%kILFPyyT;88j=Ra8|Fc-X1^6;t6M0v#Ohyk^WHaNe~9(hvu-IJTKfA}Q^txRdV zA4hF;M1<16us4)EKNuEW+E{O+4j})=cGJFDJILHyN$DZr9k$P}sd+Rl7h`zbGpwD| zafHh3gplSt*j9tt2_UK%aQ%NaP9MYh5wWODlP{7YJXR`wLt*9otEAjSeK`R`sZCBcUp(^eW!)G` zDE7(ua6%Ap7I?ZGGobnW8SlbQ?(*F4nPccwjJiF)Rp)#$DrU?epa6EKvtM^@cwCWF z^iih|Wxfd4N!aFOHBBBTI_AhgvC*z+M_cIQGOQ6EbMR?1c~ixn!T#$fn7i_$@jxGO zx4JxuXDXT4Dv1K2QdHFL9wwfivBg!N{-{(bGhH%Zpbh_Eq3N7%^SGG}XckH2ZijaL zTIAO5+0akx4k8QWSzDFpJNjntupC|yXiMoFpyvmz8F zUU-w>H|S@?{cW*~9BFA05fbz|(^Pk6!*N$#(55C-xZS*uoh>e`!=!%hZA8t^igjoP zUPkN&vWW`tuaK89{Z~_#{dnQQ)t6ccxv`_VfP`7S$y^w>*!Fe`<4ma% zUG+vi;nh_fLg2+>=N4nEIlaV4YQsY7^*jB*hJ{}4CXl^0f^ZAXOF{GCF<-A3=KzYx z^fBZoQEGbij>^WSMjx`GpW<)(#Jo#mPA;~v{2XIAwZ~xRgJj~h{yjl{U0XW3Ej$sm zHH(gkS0;&9=wnS^o1UV|g7$yRW%)Sxp^ZG2-Q$Zw!u@z|)-0aROU;f_Sog?g*_&33 zYeXSAlw`}~N&{tJcl;jOm4aH(65Ls5I(hHHs?Jru#xvNd6O_ZZEu>{o5gozR80jEH zW|YIGVra;Hj9JIIMRq^^#(*%2p0oEFALn0JO)7k?!U#L3E*uoei_N(v0EIo6DEU#6 zm(em(`9o5yUERLE6PSaTZ{aR~pNg8-huVpj+M=)0Il)V!;Fi8M#Zh`_{>~8%V(7>> zAR&Ypg=>v2JY$X&pr*@ebKJdc{Pm-aiN2(*_e54J@Gwkm6}12 z0<99(*83k8Kxrpcn|yz6)U43y@csE*&$pdjlNyctOm#}R3x%@+9v%yrc1#Oe9EN~n z#Kn+IlbFm9LwZaPnyS+W!M*8+;7B@T3>p&?L$qO9xWCacAzTSpxuet6f0T8@nI;8J zcD83J-m(*We`?D#^oWUM-xTcJH2k`AP^BzCkvmeVc$;#(jIh|caOYTCq|m3S+Na}G zd)AX;eBpRbf+K!2`DZJqM0@>;eH)tIjm?pYk;k{k^oV=IZrEC0f$}6>2kgeQhZ9td za_Z{NKe97lrXfc!KkgD3O}b4MR^qhK^S|oLrxzE|g*rC609l|T&|2cV`m0!HV7l`g zJ>$~cSbtizNn%+!whfm~^xO2oBN^#0QH&)3BXpnCiN1APNJ&Wvm|P3V^NtTs0SAAs zo}k|^&*(-Z9i&AmvcCTECcuTAz9W7lYp7T7R=%gfQJa)d;h>b;w$z)fKn-}Q@f-Hre#fnW!_CY%xCIsQk(z0_VlqQ~B~9*%HL zE-OO{mr(4tKeG6aGi15B0qXHR>dYVrEnp@mXIv7y%bYJcE^*2j%iGyn)Y@6^cUX0v zQtY?KBf9p6A6?n{a$FIjG3uJM+Zl&dOkXY5w3WcOA zf1`6bCE-`aGuWrX%qQIY`3a!fNEZP=2wS#4%e417%^GX8CA`gMn3>ca++{Xo^QSsf ziEgBPaYCVbui2l@B1&;mL2XdJD8s zc+~%9)D@G}WUzOoJ_=A$S8sRHmD;8`SU=o0i+}*STwR;7CP7ds0PA&#)&>FTb6ex# z_@dBXmmVPjQ^FUuzCrERkHKScDwF>7;%t`tJenJ}t?+$-lV6o6$VvK+4)ctjaChG- zT^4G@{TwKo2W=isoc3;(+pby@UEhoA&e=MZVtBW@xV$0KWzTdXEIt{6JI)pRN`Nn& zlbA+vTZ)JB#T<9+DShll5V$1sRtC z{y?TE+ux_q18Pmaj)+s6@fUJG6A{sn5xy05mY@|$8}#A5O1E~?{6X%?j>-mIPY*3xC92^yP+rjj^R!_)W{GI z&Hyt{YIPwk&&J#F1aq|lz;I;ex@z7UzoYgQl=~{{YjFJK@(6MHhwob2S`rEHfYa)g zm?4&MzcT86wan}1Ly_hpBE+DCMIig}y@~9DWW6Kh0R!hL$8Y7k$4a0xRAPaY*f{NP zvl*?n>Z^#|tbyb_d-nF)dIDN3=0O?~a%=Wx5l%9f{&S!s`Of%X|B&~h#25?VG^l@% z9p%Cz#z)`Qc#P4f1Y{HMjY=&$P7SQZJ!1IFxF zMhMrdM!xCKz@tzqCh>hth?J6k-BvMzYzIY&_FNsW>l}j9k+b4^zGMYR8ccK^=?Ap4B^H$ z_~Qh)C6?VfY(8mUWc>V?QWR;Sw?K*7dCC)>9I1#s^&tAlz6il_u&Np0WvL82-W=!< zZlOKPLcBf9(X3Oh8;5;1me)k2u?FSu5`KEnSj-663+5B#S;*>FYu%IKhREIfk_Q`t z^7(2kD{2Q49*r$!u;=-o%16@SdxBG~Dt;&8BBCUT$v%4v7CNP~dLRL7m`uB^R=%=w zO+4gS+r#a0Z~xYA8lABF3>jr#I)j4?$Upjb?0ltCY{zk=L51^EaaFRY-+}#tBlH?U z_Tqr8Xx`rEKdRDSlw?uHnXr9f1DF}^WP=ZRp6ne`bN)v^#Xf~4Et;EG@;@xENKEWa z1|&Y(nf9yu46xN>$&dNP=b^zZxa6-aWy|p1a8gIL)mx5zA|0 zfo7hN1CNuFeB|`3Lh(XtMA20nI_cN)`ucBwr`WoIMbs79Gc(qD$FSNqOKPL`z-zOEWyV55s*=AwlpdIoN0Z587vUK zaMffb3S2dT0C*0j;s$=&18b~+?Y*Y`jASAL1YO%=B;&si zvE;oH&Wn}Xf_@morS;{!ud6)W*-u_s^qUWUybE2d+nROXnI%Nb2zfI5r&V>=ZJjui zl$*+nKKNGtb_^0r>)h)tF(BS_Bmuf^kt~#?bW^e-qOF2{-b`6F`>dMW+BdNwf?5y^ zLC3(G>-RLBJYhmlo4uKa?{c)p)9YaugasDW3O5x zn*2G6YZoJri2HMfAn#{`i~v=*S$Ok=(9^a}A@Hf^ z)dd=wuvsrkeBw0_cg9*hXIVM?VVi}@tn+*9j=8PoN*J1g`%ZobZNZ3=oZOccie_ZH zNg7)^(F6K%!R?wgEtR1!A0p5m;N>9m&cdNjgy_xtg{@UuYgIfbz=bshBOI_pYow6} zOORPen7}~msQO9pBRptG$@-5#`NO`e-cztdJ%Kh=K7wqK#lCcc<~3nw?Ggvx8XHQ% z&A48RZWJ24^RkW9RXLUwl?7JKTpI!0$J>>0pjz{HfszdlHUTTR1k_1ENqs9m>*R8N z0V6pyjt(HoFaKWo;I8nGr>tqYeh#5DDg0W+ zbcn9h@NC^li^cN~`h}{3lLjsfV+qWd>}n}B+fRH37QHYFI}TZqr90ZOLrfo7nC)|V>ouBc-H zf6};JQ9OI>&)ZHGHIH{x5;>ExSs#~X=earlU8W)zAb*4yfwB`J0F7f;bj0gjY@6VV zoVT|qBv$7EgnnuLc1ABA==1!y(s9I8#HX;|;TlA2yqi3x%_ma%EvtwZC zxeDXB(aO^Eqhh;VbGy5H&`71if_I8}-)tqa&L)^tQWeeliqcR>KR33<&7mKvG0>;1 z;!xf4+Wp=e%3CUq8s#Bs7U` zAV43+bLwilFYJ(y2xkfwZ4BM_jY({5d){3dX;u=xP4`g5hK5jG52!l=>7N4o&-q-8 z@G?c?qrmn39^S)Dt>_l?wS~m-bAAuxM+5v*FI6xDoDof%Wafb0$N|OitVqcX*74*-_dk*zg%$x)M;9(=o z#cNrp5cZ(>^BoWRg%tbgZ=w*}CNr;X)CH^cX!N$ad@k*SNpkG;=57IKY`+_Pz zyW)CeN1;ynVIS)Jy@SV5n393#vP^AV-IjRFn={5OA5aI-F5R(_I2@C_O;4=it#6TP zV{RjrV#!Zy#E;#1;O@i{fQk!<55qw{h?3i&4@mYAAYQX3(wnP|t@@3A)>_tbh*({ypR)}`8N2F@h*={Jl9 z3x%;@6J`z8O-i~5t(SKbXs04TNuzYdW_DWyj6!wiJPU0H*Tq4SWa`}7u5s@aUNN9H zn-KRjBjj)pu_;0`quBsjaAyG_pw~hTeJ|)9O?E%D{(5k593VEr;Sow;;dLg32u`{5 z^4^W_UMQRJLry|Wf8IIBjIkYuZ6nT8DLAyUPMTF7rmO)&7TdLpxuAp&eTje39WLPO zP3E=$N(a*BmGAyEWMyXK;5`eriX6GZkQ(}V$PQ#@ygD%#xj&zH?vy(RLxG?nC_CP& zKWNN%(7WL~RVTitai3FzdF9}vy%i)4B~AR$E2 z-N8227|z_J{mxw$Is-n%XXR`?brXwww+~&jXq!YJ?83=T4n@!))hNi zC>?lpszQ-8vtBL6yLm4_e4BMTkH6qJ;)+wfo1w*?(#Ovd5-dl2{gM#{^3KIJ0mmzT z;a=3t77>RevDP>x0mEe?chAgb391asl@F_pZeY3X8ka0%aczKJ`6c{Sn%-=E%KG=>Y z85%_PKA_U01yS0^`!WTWrdY18u_?UdU>-JGKcsTPaQj|+eE*SDVG$z&EtfyULI%%N zH6PSbn3gYj`eIFW*EB?Tcr8-pUJ?#RFu@~ZnLG2JqMn3k3{TW6h-8?XvIL;0;#6|f zAKwqLtqE+s4cy?MrL=sH>2uA#R$iKu35ds?gGPANW~1w$UJ|zWiPNuHrQRdTFytNK zQ5CLaT%+L?XJw7i{KP$kIFP6m642J15&pBdxcI;N3^eB=>C)&d;{>x+oq0-Wp?$CK zB1N00HroF4)=sqSd-M00naMtf2U_@+!X2@P`#Lf4&eysP)3#pjX-~#Rk{Z3+VSQx_ zC?4+tF)8KuG75j>SyphPHFNeGP^VebZ@f2iK&7hSK#bXq3S^&*zI%6x_jk9#Tt~>S zhXCZ{d?d7>jl6()j=bmdOp~1LL6zSr5<=apYKXl2SYLnA@jUuf?e`2_#IXwd4sJKWBHRIZyedE^F$f)eA`R!1|z3Z@N8V_ zTa;WdF3lo6c`-&30PFa>grEJpb3sX5`aR(ETzy1gH%%N(6b}T_L~CLHrf$H2A^+4F z26CCGXV0D;L98QDa-<@Q#L$|K# zUD!Z-)t$g#;+@XMN!a03-NDIT70=gF_9aySK)Ged-rdU5%_N;8V(Vp#d%WLxpxHKyNTiV6l~FZh!)>hOhzy8WYPPkKzMX`73dU!^7=$pLiW!PAoE|v9dE6NacnB*)ll^jb~ z5Tais&pNwgjdUDjkFMX3A|gTWC?Ife5YXB5zLR6Ao{v+w6#cI%5*_l21#6~WW`p!! zD(_77DmlTNMcMA%koS}Pcd!{VcFhaD+$RHtOSMP$l~oL6xa)!Yeo~FbN9I-K(;)+1 zvWBlFc^SG_?|ey1P<%FjlOTxR&JzI#3O^y9dx;iZ!L$x^ZPLN}&K@6P{2DP_5~Uk> zf78#;;MPOz^`vMbDfD=l`5qM8d64>B@&}uZNi&m5xF1uci040;?s}~*TuRx|{z~I$ z+{NKT7V>maYwb@>uHOEJu4GTy0!J8pRk_Eyx~MlVihFy95b!QmLo|w@5Z7Z+}2>GUbB~*&R3R=^=;> zAGwv{a`d@(4OtbEp9M<*4ZwK$sCSGTY#Do@ohB1InIu>@A>MQbv{^W#uaM@KoEO*c zJa3(Gz}EM%t84pT1@6A-xWGg6z7Igxob83IGB&HgE@hG)4uEITc-#;MqV@_;-_wUS zuyu+pS!^-5ZHEHowB4aK^kWp8q~|yE7FTDcJVfmre8RlLSBr`WVW@wbQV+Yv{wVK036np=v{J>*zTO=)pc6Y z!H|t2;@UcqXT9}ezP|h^eYNhB&E8XfbN~qZ6o0?mbv3Pi=O-GA`{Wk%-$ql{WeN&3 zO8Xg-Fdb~Mb(=o~f&uX?@d5mT2-CwJ=h36ZuPn5*!YEMo=rDoTw#Lq?-cHeH zb)FC86RotJIow117#Zn(>_;*di^C_JCG8`gY~V(rWpG-gPVcym_Q?`Nj&{8{_2zxd zX<{6i-O!K$`cxN~Bd`thZ2#gcwTBi1oU939@vF<9*o3KF)?e*!eClfEvd)dA=(!91K8l^R-@&LGBHMp1e68LO#+Zx`V|=^1 zNx1;T3U*YM(wBhV7(b?5&GJr#Nyx%mPEFMVfb915sE67Oi(*9$XRHhyvb;h<%|}Sd z{+WTN5NRpAaXx^@<*HjN^Z#^Vo@2?gMeDGSTH{Ma1qDQu6#oOa@J&;pzyE|-!qFrx zFlpS3qN(~)f{_9pW@qg@m-RvxfDBV(I65YbV$`p4h!)vA=>@ih<<_@{7U)6A19C># zv<1D$0p;>2eXCo-4^{l)hKc}F)($Fr50dCOP&7#=?QtFN5V8GKYa9C|7J>3SsKTJz zKQ%#3O{?|n#syqm_p~bm%ya;DUa0z(3T~!oCGl`k8H!AA#O!pFi933s*?C*;Ol`YC=fFQGStSXzJ$bV+?Gll;z;vwKFSOrjKk}jVe!BdK zwGJiI;b{JQ@%*Sdzio9r!GNsQ7ANzYzh`g{rgI6yUUSlkRjHZ_gXRg~=|&7rh{Y3f z*O>eqdG|+4`JQ_HepjT5%}e9)-~EvJa`v)2FV5q~rax~n`5we2QT(Stc3nC+X?hTVi?BS9wjG6-P7PY~xv z7%>mzB;X;1jthV)gE>DU$MG4Vvd~*InxdM0JODfT(Du!$2o+6JTp4X=;Jd5?OieRp z%P9at%@Iyv*Ai$B`7t^Q>sviN9g5jmT;)!NM^V6g^E+AMYZm{|)l7d>DEO+NDhG*Y zqrZj@Q}HwIG384vYFzYcJV5y=i5d7mfBfe^EC9X%BlmbzmddPI?Upkx#AA%hA!K`! z#jcW$dmMk`D&%;7Lu7G1t_s=Z5XYb^SZXn%xdY!K+O;H$Zv`xj{mR1jPoYrb6ibE~ zhnvvm{;25%G#Cw?4W@Kp9MD|MHXA)bP$E>i87ZgINOF-?aY4{3S`1gB=k&7>8NhdjP}wUyP@OrnHJ`> z3?ekluD_O1#-F3B`*TFfhO=`zyRBU>QT{-**;4wl(Q1<5;Z#*qCm2nD(#&pOjRvm#178fT<~ibm??GRs};Rx&OTTYt(DML@u1=YY*^ikpIV{ScK;aj9+DG!X3O(&2In5|S zLA0`Lq1k}zRb?E9R>o6jpQm6PC0$@bt!>XF@uL~Xn~=+Fl3cNGS1M)R?wuT294yB) zMy%G3Rx0_-5fz$z%)e{#VBuo~x7kc<$1g#CJo@G3HdpxXwAB0Z_a5@`^%eW>pSFf> zz9CSTtDgzjoHeV%381jU<7hv{oFsrrtiYg%BtGZg^uX`{R%>4Hm3g0KO37JmtykPr zT%(Q_)2#+Q&p#IS=j8w}e~)EMr^c(_(Z08E%=uuo>6rUuzr`EdMLaw8US3~jM5jWi z=^|USXLeSfyFO>d_naA%rC!>^xkVdXNO4^Arud&$y2fXM$q2_(+q$RTMsa792u&uKogs@PBhinB;UwA*lT4y^{3X za)%i;;2Q(PPR0%2xs$yQ_6!UbmCI8TYqY{usXwE&PEPM&GVq*yADqkV1gkf>6r-l` z@l)qdHJQl4?R#ViO2xL*aOAlFWX2(|HuxD)Fc^NC!nBZ-yI6TQlV)aivL%#$ovvT2 z<#Iot4FMh`KR1blZKq5qxn4bIO*1zY z3PaTfx#DUQYg*zN6p_G^uMko>pIxEK*tHFR_Njg|fayU@)4|E6aETxHm`yN~z#e4|eDZ%G~xn zdx3XiTOaeLWuQFg(TD7Q&Yd7EXjpshi}~Rr{fU>Bj_w-5a9n`#M)6nCv9wnY!3`}v ztI6-31HhLTi~^JZ+FZto6-Hd_OCgsAjVkPNy0*N5rDKqzSY2i}MY+rVgtWKD-fAO_ z{rD3X_V-)hg`?hI8EY>{I37;+>6Bv;Ezt{c=xZ@N`d(wM-v>a?)s&epWntYSzCXuv zcH6rLsrWXi8=Qhn5a1(4!?0pK9r&K4<21f)OEbg=(*A8 z@=dE$R;3XZ{l<07$nMCQ@=yCJeq^3}nt*P6wNAag2d)j2sI$|CQuI=`zSQdEW=0B< zNsCO>oK%m%AjTQyvdM!^!RR4H-8cFy46>*<=||!3ddos@QsSzLmj=i9o(u)H#ln(2betz!J|s=ZNDS@H7gOJg zmD?IE_LCZ#@p8~lw-F35=F`w1udzD(Hc{e20~)=XCqsf(R(9>(ySOhDIf#Ps70;WQ z1*i>D(})4f-_|dV@9{z@nc4Y6d5HQh-S^Iuvvk#V+t+vZcT1N01?5=DY8=v=2c7X4 z*86`kjrPv74{^&YIk^!JZw>@?dweMS)jZej<5r*aM27u4raI@Rl|Z5Qn?!fmJBOU< zg!KcTH*aKRV}hWA_hdRc^7Y-_-HQ+vPzxZn)47QWfRha5dT&Nc`!v)bO5m4^;kQ=( zZBfDPG%(jYv7!HwN^z-QuvO4x15lN?xOjE+)4VDY|M1zLVt;u7`1tNkC`dn}8=+aU z5!r%MQ_Cy;z0>p0HAKC+l$1iYkB5Y!@yB^RX1B8(Fvk+lHHLFwKxQ(Z$6`wAq~#Xf zND~lxW7FY~5+G|yTZbb@+H3X4YxcebU4}Jccj$|70E(ztV}#*U!oJw04vqsEaG*UV;|)q4Cu#aV1}Y;538 z)5+}yasBDq>J&zYvOpHl;%2~n})3HLjW4D*;S0P12YD9n!$Vax79^ve`-iH;(5YMdMjRe zr!QU-b;@+WGRLOa=N<;^1JD>Y|MPu}Ux3l{__v^N$+wjsH*SLN`z#W2*@L-ui0C5qzAI5y085|*E$LBRk-THfzpiV#Fc z#joSBMZo7~00cc_uGJJzC#hqHqN;p%k)nS4h{I;=gwoq>B!ef}N9{*nnD?2mbMdTm z(7U%0X@kW+Lzf?5)nB!JQaEGt^Lp_ZgkOHnNzfS(n$^!FB zl{jz<+kcHz1@KFVsrM1&^F6NNtNU2Xi%Sphb|+wFMzsrNI~T0Jmb@5v*Q$JctC{J% z`+N~}jzxjlzls;n66aes#{V_*lp^c&Tk%4jG^udFmoM@!HI!ySHA~T1U3_^<`;t#o z;n(qjpE}O$*Q{KeW6=vjHRILz_KTG_uid{Bdc+l`N82DSezL|Uc`Na`i4NtJj$CT$ z_j%n>f)D1BD5}^M7s(uLj;m2^G{3PojoWXZsolf}u4Hd-Jv%~j?*C^@%XyUnQwlvE zuRq!;7b?P4#$)?GqP_ws%J%(w2?^;?KvEh+VnI3u1f&#Ex}-!pmrm&xq(c!BxHGyAX7_j(w99dB@SF3~7u}5@{0Le)wLoi%039)7u)`%0@dpi2Nu0Qw@3f zTOU4rklyyGGwUM-gEX9T=TEE~n(vcVWi?-^N)||r@b2nLLMH_%S?dJ*x;8M(fh?#Z zE1B6au=6G_!TY4h{fw0^8W5)F5FaQ;*BiL)QJEtaH>j~p&#wL!+z}-dTvQar@gje@ z{OLcWwLZn=E^6Vz4AaRVxu@p|1UlOciF&{>V5x+9w@h>0l(;~*tj;~EeK4=y=L44O zzm?7aMdl8A?=7CwK`EbvP6BLPEDbr+`%8PizI*fYD^v3QDUv>eO7}Avp-%d>?jq{q zy6R(O?R%$6xi2m+4%81WPQ;}bZquO|EhJ`!#Uj%}X&eNv9(kPzVH`$fmC-`2f(&SYxo=cnyi+o~D?6UhD6a1+YW z(NSKX^F#0C|5PNB!%Cp2a2f@M7Y57;N;K1~)7jLIKIPOgBmN5gMA5_`n@)f&3R7>m zkdy`Og@7}-xXYo1rZyxbeF@-BCi~rNQicSW_#@J9eQa#Zq{zN`)Ow!n$98WE;rxNo zN%ZB*gp_9@RQQT_HIXTFX}}$2>~pJe=QhlhTWi@nBkqYU=d&kIFj>Bb>Dz3MH+LA_ ztc<(6ZYk&TTXFU0lzpX)UFlvs*eh4}eq{pnSRnM_SvwBuq&ggPa4^~qNa#|kMw)&0 zk4)I;9H2pC^Kx0WabZ`n==m|}eFdOUuJxMf=Fsmt zWVZ1)_wNSFvBA}y)+?XwrnMH+e7fdUQLEvq$Oc~#iRqfjN`4AoP4e#qIFEcU-C0$H zJ+fE!mLI2LN$FG&;P|aoWBSl6qoh37h?Dle!ovqbU z_e=F`zQk3hk;$KfW3V}NhIRhk6s%9r!p!@VR_g!L@~KaB`GArJHN*Uy&ZbAOOJtde za~LSUJO4E#V@m%-_=^!5NY&FO`L+zvjLdQ~1OtmmRfR!7Lmmb|_uYr}B%owaWu}3z z4M2t_Cp!{iuM#ymQxT-{%lNP6&d~zfabm3EIWxjcbq~98E)flnyf=S_PU^Pu%(Fy9 zams!n#J)}o2^44cQxpGSyMD#)qziOXWkY{&hz@%U_7{5|<6f_=Nik-sEdr+D>Ml-us867UtP6; zEEUXDIg+tv)fkkH3+=L>)GM>9(__7OX@DW!`L9LMQi1w95mf8FuNE|4n0iSGvB#fH^1%_ywk85U51` z&$|zvKHb-e>AhpWzB-RqQkd>1FSoDyc`Bm!jq}o*V8W@`e}xOprfK%2xVdS+2RP)1 zCr67Xmb>Q_U8ZOajnf{#_p%-5F|tKhEf`6tIBrKq)UVCO9(0*Xu_gq#|J3wOr7O~A z+iIS@d~?Lf8bb@eC~XX|LOwV!DCrGbt%GL?{V+%tR8{wlAQ1@(2s8uKm-K;s09Tq_ zSzDumpGvA|rn=uYjGgv{TaP)>*v^_%>kTc4{E%I2^mk11vNw{}$NH~|nxgj|kvwx) zy;LG>hh&XI0d`q_$Iok8Doxhwtrgn)SggIb5Unz*17=gxx@Rjqz8zV!uELX)#GQ~5 zLkC*=vr|j%H&+yI+5h}<<*gtLC^5YBxnjn{Qw)^_GnXLyt1YA50)%(`)TA@dQvwB9 zAAE-dV?AT--1oRyo_{F3wMDDe#wU5z+wrU46vYqQy2L^<#MpUL`L{yD@c`R(s; z$x?VtI+PCRL|t%z`jMr6g`s;UI>{z_acL-X_S1F*OfF}H8A zxcOUAf?3Rp>OZwkrYPHKpr8zi+t|4EF=u(d`OSUQQTQ|(@KWvxMkmdL7QyB7C!bJt zC>Y?Vj4Tf}?jXmecNUMv$I5=EvV}dlz{N`FB9ob#B0QLvx~3>;-4kRTQ(>ZsS#C5V z5$UOmz-_v@Rxe-8W83)smTBw3edNQA~OLklQzN&~ibk^@;lCV4!?!CMaOX6mbi) zd271z;7v*tEjC-EH5|=-SC;-uz6BJrg5*4HmO6hSXsZvLaBtGGwz=Q3s;+d>U;OYW z^{O+2rp^SJw$Mct$(9vT7zwB~6{TFaNM3K>`Qa&vY}bzcIUtu!bV|llw7DF*i(6hUAk2 znuGx@XeO0F)2a_|M+PYJo`~qwIV^HaO9EY4NV(>=;<&4Uq2G$m<3*fBhx@*M5I=_A zx`?+;lJh^GEe0Tr80n-;x3qZbV#bmz8X82yzZd|(D9Jotg%uYQUGB2}S*jVdJrW_& zU2&)O1>g1l3_>>vw!XKpH$78N!M2Qw;NW>8_)nQFinqA9c%mjc^C_|`fik4MF6X^> zGK-V^3qN*}_@6Sg-{j4h`LT|lbJwd-O*;+>gLBrKx5~K%#;Q+n`YW_S8dpg-?61Aq zyJ1RIB)-iW#ums-`utVvA!Ue((}e*MpY7Bi@8k!J@ULILE`82Eg^F#~R9GQ(&o3Gk z&){*#cNUfD+9O~uV5h{5X@r&To)1s-y)fdX8RpF+qu6UqvjtSq=%9@2w(L&t8)&Bi z=69W`%@q+KQ}>ZLTgo3fad_n7m|GdNWfMW!afKb{K5~$0nywg! zk8oNskefkq_?AKY$-kfjHc>QnUJfL;?7zI;61$P+{J>1E68H4N z(Ew=WOzaCfT<~lS$-v6i9%$_dbcC`!)v{1R?jHJ=2cb=%YoX0&7Vk@53=6?Z!BuKI3gW)Rr}Y*3LQ#32`^;m_V6&f9|Z#Tq6V! z*LBs`ZH9(^NAds}A{4|@LuaF=PFo|(K0}X8=8`ZKV`5RkTBz32TBEB|D0SsFDhn&j zAKy>^#WOrQDN|NSZ7(cSRF{&p`s8|1Z+;=BaUPKgn-{WiefRkOcEcLRpKsHA#O$WV z+V$fc#5e@go+SbbqE796GE#|m?wQ&2PQ{fQROmP%D(mA&JN+FXw;yBq?kuczn(Zxh z%Wice9c%1npUTQ&{Cwl`=KNHHY}&0)wEnnKC;3Mk(&cW&B)%A|DHOtB@CbH=(XAv3I3QNTq-WEU=TKNwVgk297mrUcY#X7RFRtBLlqXu7@5)le(>A6#By*Zxan$46qrUyvtoohu)Jaj5Sn|+neh78 zYIKvcF_BT-mQUiHyDN=0@l93|!+ii97nzxJbIHM@WY?75|GoZ51gNaypa1HVTCCP` z`gG6N&;OaseJreaMYIQY&6&wY`tn?NKY#q1(lTc!I;H2a+NTgO!>5t^5hvF565^b+ z0+`I#GzqNg&CAnFmKM{;j);edNgp1mlhIPJH}_(@&p1wn6>E7456q&kBU|BzRMnk2 z+wvb&SSQa1^&psD7oqu<6*^CE-#)v%*jdXHnm6ujoGyQ@bUR^-`TNse2txdf-Bqk+ zuK?j24_dX(S1%YS#aC0Y{nM02LW-{*sH(%*Ad)=p;#hQug;p9r8slkh$^|~>5eYgX z;G41ft+3=Zn8)OfSk>50_kh2>7L~I7A|;Vq{u0ERrqlHdsqJez7war|rHD{#{67z{ zORC{9xOpN8R{U?R?Cf$DhtQU+Lc`{ld*hi@Qg{Qx$=HU6hNOFm3h;BG+ytS7LqF%f zzo)j(uc$b`G;9*z6dmr1+0wHTb}@dFw!*jT)h<>x&&kf-tL1^JFadU}@LLB}U_b+f zV`MEYw*yu3#bE8W`p=almH%5|G(m+5-sew*b^r_HI_0)0SUh-chB^`}L^p|kr>jB` zV7CF|f2pP3XA0E)YMKn`l}n7;o6aKLO|Sa@OjZXMu_+2dsY+*Kg{GeBsSDklc9otk z?@y;17$oexm*=kEx;WXLD722j8-b}B8)uLyw=SA7QwmqxaxN&AIM~}y@shKW#gH!$ zy@PyB6-WhEDP(etx1tIu5$b-27!XDvV{+lS=lRgP1#)eS!@GNNrC<97_mcx8nbQCT?h??ZRcuHOf6r=oXq={!Az(V%Ja{%LLClVllFkMrbJevWn*ePCEC*+-8PMrw3={G&RLpjaI^XJpdnM#&g<7-+ADusb%{Xq0k=|(>rkw zZ<9s|#w)U&fz!O9t1@RHrX})|EA1Zn2=(|@*k36`={_voa zZ@l7*TKb?5y?a>B(vq@aYlhf#d92s=UdGwojG8f4L%qhg#*2~}HZ;AoL_B(q)U`!T z&ZAfvph)@N{{R3dthD$Gkv+Q;R-QC~;1_+7~PPNp-=5Pb<5=b8~f`AEio?e=CioO2Fd|BnlB;R)IGa2|PUZOy^MBW2g3!YXTIM4x2-TvJm(VAhf5Rk5zT zsVNg=BT5-I$`UW?D-mKviXVa--0`mC7N#u8<3+`7d-f9;?++Hz7<_Kb484z0^E;Mj z-^JV=e~p+yt(G{F%jgMdMY~1|UZ6G*fj3`}W<;RB5)}FVd)=SO=7gjq3p@RW3=sHs znsdah?B1Hej~`amRzvFTsrpTcckjstNP+*5o?ib;EdzOBnnBa*e+S^b`hUX^6Hu{q z0r$sUttgfjo}TM53yYUlSY5Vz|4-LYJz@I~l_Evoj%mY-H5+UF>`l zK*~`qto%wHVXMvsBh@tPX291>+H;{!-c;e53?lA&j@Ua9VZG&mb6xyU6@nR9PkoU5 zP!H9&30uu=@V~9UX(u}P@gf#gsfRq)eEHJ(=n-D3*v@Zd-CBK0xLb^u?^2r?gm$ag zX1*aDpw{;YxB6A95PHU`SdND+UkaoAxoMfsof@nfu?j$nZJP;Y!`$VJi7Be&PjvK#W;VfuEC#k8zR-$BV2xb~?24eio zePoG2rcdxw-?j8ogVYg}3$?-G8ToNU@{ccK1 zmR?F69)~-x85p6A(TRjKe-GYgoebUPZ+ z_d^z+UNwk3F{?@ycH{(((i9%Y8%D!ZPGNFo=-F)kwXGj&Pj*+gGSEeBXL)yTrh^&2|OwMAruo-7~x(II~N;)0#RaYK)+0sE3p zk<~_;@$SB3jI!mBbPv!Dw`#5!3K%Geo-O)aKB%!psxt4M9AjX?xElh>S=d5j@V{k> z2Y-v$6K}R7XuNlC_vpzUvql%3oGeoQY!3|n9_}=CD@g5$JpME!GH$MOx4;a2x~BY( zfVmH@%6J}odRKPXYp;jzuOYZbaZxL`+G;8fk7*XejczEerQ;@@DYAC@opd&~wlUj; z9FldElyH+=-D)#zXB$2kG`cO;ac4GjhilrMzx$^2BMU}*D|l`EMuc2c@)_%gr|$h{EeO#OM@yEQVli#BnLj2} zjSj8fTh(L#?o4kt?y7V0`yL_f4AJtjqGV~nJd_tZ&|Jx|L%U#_0m#Q1QoG*vuF8|^x!YYmebI9c7!RU`iv^D`a<^MOe4 z<`8hmdH`V=Op;H1s5Gp2cD5(FTAIb`+QKotG2z`O>TfrEy_<h&3rwJ<04FiM9Cnt*#c_{M5!; zm`L!}-(n`L_k&C;IUqa9J^2V~F+sbTFh6~&jWNP|qSM+bsR8qw128K_EoO@7p@)pn zdzAU26`*PUD69N;7!`k@p`rWzipV!H)bCi_4h9{WEN@*7K(1=DY}i4BF?cf9+qted_ZDn`zp zuo-K756iY#_41tJMqZrc7QB7ncu}+unS^R~_W4^?8Hnq;?hv&aT`#c-2nzad5pVoK z$Ntt6vyzq9KUk1yZSmvvcR(TXGJk}vr?(3`F<~L?QdS0oxW$Y4D>l@G@j~kKXC-0x zL~|jbKPk5NE%`*1u-&thS#@S|)-=UuFk^aGY@(r|xd>#Pe-Ik^(Xnx|ZmxedkHla@ zHG+5NH_MFcJR48sjiqYzk&W&RbenH}8u`GQomwobV@U%&fcRRPxb6;)77r^u>^SLOoe*C8){(qy#cruQ^i-2aBX?&(w>4LT$dX(*CgsIsAmfsj*ox1e&X5_i7pY~mT6p5aKED#KFL02rVrle(Y|fP1>(YGy z@6u6*UV_rE1${yYUeTJaTr3OO4Wk{<}KL#FgiSVZ@8jdr_ z3)ZS?p@W`=WF;1|1v7_X1OG@9O0GILz87BxK6)-OfBR-VC`xXgJAK+?4SCn-#S0aL z(AOWS6&>J|u}6^arh09gb{-cuT^^^${dhJsrIwSM;v(EtXl?X*C(FS5+__cO{8#D) zu#3`3yGIS#%^iktW%?1sKcn_xGt5y5Sm#AcOY0n?IyuYBEM)-5sWxehUe}tJBXNl-t z*zpl$fu8cDqNwOk)F$BM7wJ|<*a#|%uMFQAP|fDQ5#=moCF*x`Z#Govq&cObBS;i6 z`tXuW$MfK}q1TG}untA1|3`!|@D%=$Ek!>fpi^dy2AnU@VOq)9e+0h1FAStcZtLg`C85`{klgt z_}d|+LKxD3($go$i1-!W8?0UBPW33kDSOMz9lZoERBU=9{K0)^kWxkS?6^E8VB}4YgcNV85 zV7ssyy5#HCzGgUS$DCESZ!)#%_9;w1EEMUu9wc`CS6?Ui9XFf=U z@&y(lX6zxc$rl) z1|?@dd~fKxSc)beojy(vGSStQH@}uF)^x-*H#++gK2H)Gy*&@+dwGxv!bG``IinwQ zA%VWTy1Zpxovt*bdz1imhq#L`>`_vN$XHozSWP1=D#d|3VHeVIm?}Ajjza%ys(27p zWeMGw?cNziJ+?)O`m?Imo4~1bZT?jGNPA3%gn{PT7X_n^2ZwzO%Z91{csiv;DxgB3d7QJ;DsS4{5?ERgjTsXDOCJ)e#^|WcROep_Ghz z>z&k}$9d7pTQT+79a zNa{}*uQ(n0K7IC+U!6{9cIRlVfRQBr!3b09xrnt^E5zR_4Rji#X;bB=XT=wE##?&!6?X7fMcVHJ&C=X;_;k?4uh)4BykKJ4=YJ?TIJqV5CIPCi z-D>v`@@d=9!9-sP*Hl@JJ`mcwbF_zw8S{%+f-Q}iR|BDYdBafyE)Kcw_~mctsmGez zBE;w@leT_@rdCo6&Hj?{vL-XQdPeHV5s^Yp>)g=gsBc3-gI(day|W;!#=^q#g+Lxq zK7jP=$mC?WZDZ9@T^)B~bn(J(Yx{f0wtLv<%n6S8;&l^UOB8g+{1!H6jtF)981yo( zNNT&ffV8xGfY7cC)?sOQmCW@usFFiuvDe?&n*$ck3mqMaDt%}w^VGZokQR(VJ`=3T zSXz3IS2F2pFz0@ChcsN6jtsqJ=B8+BY6{QppJA;WxBdUfeVh*-aImv~Y;C2VpU@b# z&HQ6+rSUPU7svQs1D-bO+zgJi;rIs8#-l0?0McIq{GcbcG`C=bH_05VQMptJ?Tyg; zq*L*)RqjruvvYC!?u5vh$>CxKMU@tPsxQbYYNa${ZQpEk0}glGdOzKxlIN#{4`&>m zg(~lc-icvl3i5dT^nAffbJ=OX!&#jmxDOLu#`{|TnTp4ma8DFf)&f3NrrPaPhl&LY z2WT?{#U9zYZqFvZ9lZZ+HgB)zTnlZtn@l^L90Gf&BWkmi9?}Pv<#?+-8DpC((z4zp zI!u!c2a}M>-}*CY02jJheK=cU2+6IAWlf3LXE{rzjBQ5{R9|E;)g@BMS8U{AoY{%QfbpAyHDMZ535|wd#M>!%AEQ1=lr|^Yl37! zbYS3PkoLZQD>1P-t2^+_bQ`n%Qoq5AMZBL1;*6{7qe@F4xlr@>oyjeK&-rKZMDm>% zAK)*ORaRuzjv!%*ij4m32`u2>&15|@lH(>Ecb)eFA}@Vn!TbP8UtLcD%zE&cO$?;* z$L8mEp88mE#j1*K0cExqC);{|iU2pi;&w%p@Z4iAU6J8=IM~tt*6$))t8bVlCU&}_T(}%J8xS?7jN;)KaCT*68{)95 zS7~krByNzpAfFuGN%K;yo2Rh~J=BXw44YvJ3qI?qzHr>?8agN#vD_DHy?|q)2Y4sC z^&K9qbcl&>e7;X*&cf2!l9d*L>%9>`wD+SyYr@S~s-=bU6;!^c=$$s#cfackn6~$o zhUDQ-^~$qi0wBF@YEg;V=mpUhJ>mTJ{lTF1tbvaNMyx(*3j^fC%Y;zV%6*HSZQDN+ z@9`cU;$!yUW96S-`2s=(YE}-o!*Yx=;&g0uKu7co$Abr^Q&m=9Y#Uoz==`tiltnQN zOJg_f8!%dLmb~ua`_gpJP_(sQIp5HKCa&bR8FGITl@qy;K>$KSCF)@%iu z@P6@x%70R9Q6?v;XB5Bgy#eS>fV2Z(Ck@Vc%v9{V^~BI7ul;782Rx^o*XYH?10Y9$ zfr`Ac-9kX9WQ^-Ae0*&ko$f(cZ9G@lLNp7nP3R+g+oi!xdzxd{vt~)Ux)s6vm*cxL z)SHUABji;saasIz#O9Yy}J9}Eu2 z#Xz$eVWzyzZ$0PQ*_-py;Qf+ih-vXKD2KWc3nn3y68wpLeX z>XW*pdxnbY@i^GU8;uhWNGNY7_GPw)!%Zn>@;xHZ3T>t(Z9o3_2zY_do`h{PnGN<6ZF@!+*EEL?HQw3MDBU|D22b_VX7nI@^P=_W)k$xWId% zmwpFjcEt!?Pr2|>iEdzG{Oo@W{EeU*fTmXX@d*hD)e68Pj82E?9m;&A5RzBIjlXM5 zJ#30TM%z-?mEdAgf^ek-U13U%0zw61f98$|r)yjKe2Bbnqwc*bz(FbV0|4In;VJ&C zKuYx%V2eY&-G0$8XjvPf5+hlT+Fc4>`~>+C>w3SvVSq$HyJ&9DQwxVKG>mRd^h`bC zA-x@}?Qt=ysWrY_EE$h?CwA@e<|Re|SUEL>`pLp!vM3oYnt#Y3n5fH(-o;7Fe;DoLOblz z)*38-V|5-7&mkk<*bEO{DdcaT0y=5AUB89lYy%Z3$8B9v#V8J7`|7_*cJI;_@KjYZiGR-1}~AnMaJf4#lY|rf`N0UqB8O^CnpfR^Nf?4|EP8! z6#gS!>4TgPmKoj%M3fe#xF}Fu=%#CLQe@UNS1EW(o$KV_fv+j+|oLC!{Sxz?2w0YX3hB2{~N~|HPY0 zy*h|owJvF9c1;QC8yMH`AN~H8&S%9u=J1H*_d25iamTSI9}RXXyt6A}Z|zshxagVN zHv~`9bL1^Ez5w2MMFkX9T_`K#0e4k^uC?{n zb-jL0C`6NMF`Sr?w7I>#RIF+bSvUbjB0xA1pl}$K`VTuE4EL4)yFlO&V#4dZssg#Z zV~Qp`G4})@td=^ATI8{7r`c-vq7~(sZ)i?to?!j!@<76Ppzz$04>j>Yv9rM%h4Z)s z{Q^(Ro@&eChf=};Q?YvI8+rM>GtL)sgT}wBCLy_3EOl)GH5SLU0xPxb@g^FE85i5- zF?}De{rrwz=r+VI7cj=ZD73d;^fS~`RaU1c&dlt}@$pv{)&NX8MHv$?;>H9ECqf6s ztyju~f9Acu*EGbqRQ#S~JDqMle*w%fg=|15xj5O*&#R9|4U_y@uVBmxeadyNj3Sb) z^pNSnqi(=3KI2kg-WeoPt(}zYf~6Z%=W;9}9MgY&bpd#|Vz!NA(m1gqaY7?5by<&i#Cu{M zf}3N>p-U8RdhYo&D27{I1^S057aJ z9{E-{Iq5(=5*!Ct9v)Z{=Jq>T@4TFwJ=yf(_5dqSh?eH~;#bimci|;GJlQUFb2YE=oG+m8u6}==Bht#=er0wGFl!tf-cZHDgXZbm z1XNWK(RBQpKJ>PH$M*;{1pW7HXwPX-}iOW6b)_X z&k19%R!t!2SI@nDp5u#ARFDv2YPal8HT_zx=9=>xak9`ZbQGjO@` zsMUF{+tWUF_x8Ehp84=0HdB}BbKgCr-|7paQ?j0ynzTZ#NMW`kCYnC{&W|65KlzaWA-|JM5_t?51%Q%} ze>BOa{&sq^diN~o6hmfV-2+fp@B1`M*i4;@o=EJPFvj;P^+({NSd)v3*;l)DR&=qJ z3qH62`0G>9Vf26*-x#8J^&v>%(F(Kq9`iFXkK5Iqhav`^ zzkUh8s(udrjFF0OOMW{1TvrV!sLWr%Z-U1+JAs%0yxq|TyknOi!WM%qX?e9xv5L74 z+P`~~0k_t5z$J}v99i9FdJmwq5fKq;jVdo+-U$v42J19@H8|pQySm1N`bL24ahx?n zm0ZBTO4#ojs+h}gV*C-2j}(^s{1Z>okXQAf&YES?<~VRlj5<0xx~isTse!vdW!p7P zz~i^$0Zq|7xI&E(oO1$@`axFcj-)U;JpWhbFYo6zGN3}ilW;Kpfm|ZLxAB55TUnhe zZS9*}2|hPl)P(JCtOx%JLlUay7`#NP^>@Vww1Cf&CwwlEaeWdQtrI_EM1oF9&hDa=TCfDT;!&U(1*j5 z_)-S7X-V59;#wS?zYeI!Ry)j85{BOC0>;5}P5r?Bm7JW42mqC?7D%08ft}i=hWdlk z&tF>9JmgsbiG-6YKesB-_$wq94hGqEv)qB7(4Rhiz|PLuxrqnCVk)#w(a<9D@6SvZ zN*{1q(w6m|ht#hY>l}$f=t`5N859A#@3|6HQh)UL=1PbM-oE~)-UTt=qJW*NO{w=! zzc{dvolc9P1@(P~?*dOdW+T1w_dl7QtTz7erMQjhv40(Ux?kbNfsYAV)QS>8?+xa- z3l*T}UcSWzi9rs{js3_cu-^w}&_*5?#YS;Y^Y-iUw2CU3C>YkZ2BwO?ey!ue>~W+4 zokgk&Rwr+Y7>pZ&mK`u|dl=jYIqagX(Aho1Q27Q}p^vceJTdGf>oR@oUe&1J)lmvJ z0h=68PtOwf=4`X+8e0f6KVeM*UVo}^eaX(6#3HYrU^AXS!girXWyVgZcHUPk$(-Pg z?SC<5%W37`RN%}80CBPm#0*dHVLBumHEJ<}*^B2>9B16B%W262hN5q4=?25Y@Kr6O zqHKU5E@&ueCg}MFMz07#N6E^K`$`tnsj|Q7oxdouASu=EKFGpL)Dd-7%PJ(@kmBxN z3edCroKu$wJNd(qI!IhW>#33umASI8@q{zdVy#hyDkSDn_N|X^o=R~0LHt>2=LQX6 z^O5ETbAOsD-ZJ}L9!Z%V>DiZgoe(aSQyLn56cS$5poD)kmYh)G-#aTdrzd zTwILn^(P9*=Pzpgx>lUx`^?zcxt0S$>CCSKyD{qE(3vhzY=?uh%etAlmJKA^XvJmL z1;>NJUM(v|k8;?Fn(t+hAIk?dlROPfU9t86rAMF7E@}IDqpffF58kCc7k5NpT%J}Z zZ-m1+Hf-3Yy;^5@+Z;0Ve}|!Q#3qMH$&qTeu8#jX-NLe~zd~Dm*d$SUv3v3R&zoCq z$ieE`f})}(FveC10dwA=(NQ@DV&jeBJe4#7+*r7*we^GU?r!iA%B;t^D|A9j=J=pr z2J6t03;h}jJtXM#lOk0FF+y&sC2enWKN*W^$T><%{4nBlP4hEXwby$1*RO6A+%OB9 zSJlzcX&t?m0qqP})L0NE>~rDnu{i%B;&YN`Gi`wksRrw1`mF9=H`yp<`<$E{-%^Et zQ744xA1_y*MPEFP;Tg9iiQ(4&XWSNnSOtNMKXa1mW%D0 z57ciKJL?_j{xmn6;Rg*mGHQLcVa4zdh?d#5cXg3}=^IJ9VVQ4I;ePD;BU>`z<}868 zf|X-_kH8QMD47%?ZeY5Zil@&l1eH0IQod|(~AsYw?u`OUGv$- zxPG9i%_`znZ+M*ikUagz)1mQ3974eG05)%?uXBiz667^#3zO>@>N#`Oo&sYxn)oA!$ zk16vNT0>Cq;k!onEiI|VKdEFz?x%%8`bQreX+j5&^*=_{o*e2wceMICHdd@>_4aMY z->YBvs(9&BDBbHn6Xj8~Vo7GuKA_bHS&tGGCL~Wzi4W zm=(Wj_FEy!y1e({C6kn+N59i^Eve{+bE|BRbYMG}x7ceUZb%Pew~Zhe6;o0&FFglL zt)1ozLc7{@gv5ULgIW3d5Hl#%_1Vr%2*0J80raXFHous!XNSDTrUx691~oGV{oAG| zgSJ3L#}++Ih4&?ymXD5bTcK3>#Kw1Atd7Wtl(z;&#acLrW7A64^SXJpbd8vI4(1Q%LKX~9(B$g;m*>dVJ4oi1rAXmq+nHX3!0fKodNZ=?zg zjQz?`lzRxZP!UVKBEBMl(@~!p^m6@Te(^`@3xG_{@4$D67LHcY&E^bRlWxw})c1_8 z|8Rf>zR+9^3fTq_IG6U=u5n`FK)^M>v5>$&=GcufKC9_ZY_G8xY*oOv_+eE|)=qlT zu?OH0vNJEAtQA(>zrTFK?|4Z0Rw3HN+m+z6LR4;kMMOh6@@%QX%YAA4;w$$9Y;1I} zEtT0_Qz?)od>FntU29O1Zsx+pXCId<&l9J)U|lX?b9j6;l%g;r*p z4mf2XNXOU7il^dz=$j%0h(puO^@R%zc5-XbMUKYdqvxpb_Xkf7y^1A`?4QNPH-?TF z!8fIOdo%mDKZ68GNUSWJ%P$Bv;H}3?d?!J5Y%^U$;IG-!?#MvSx$q}-1kip;g`FF4 zF?Q?lAN!Kk_IH7u{MIYC89P|(D8s+E*g3r$Nr2MFuYc<5=0-{wS`Ms4GG`&9iAihq zobe|4wMM^UX1zR)yN!0wLSHTW@|!u$uTugE448jL6&k8;Zu=;VKBeJ!_47ENyi zpOZ-MbHDA_-8kX*8?(mN6etCIj@8)agk$PV=L?hHYkMp2>ld$mSYh>WHuG|eCwr|B zHY02P+>!3v`$f*>gS}`kx+O9Dmd9Ro>DwWliE8P6sUu&6VaNEOusiojcRd>UTA2OB zdefspRLrq)R^U>^|o7^uie%Jh<=cSA5>f@r}4RWy>I|iCjl%HPQ{;)Ym3ZO1Or3LX*v z@JZswC&OOfz&)96081UU^NvE`vaD#nVCuuKGjKTmGwG{y1GX~O*Vo%>XhCZ5N(F3h zaYu3thkAT(JB}8Xu$CNu}&%$%|D5P`0Gzuv8Yp`75+CEY;2=V_v{=!pAx$r z8-`!BzeEZtQbeCNk0b=I|_ zmLUaK2Bhh!S$Wa)jdZ&Gi&UY4EWP}JT=tI+R8*o(bUgW1#?yq7*k$_6l~lS7VrR+Y ze%*e)3no{C-#>CbWM8H}5$`n;zcJ0wj8Nf-kwXvOQ_$S8Rjh;wn8taU1+N#VXF5SoVmQ~ zai@Tz^ka1)o;oW9JK6R&!_2H>pZH5A`0m1IBlDBv6U8o&mNdz!nKcM!NrXM!d44LU zY*Ne!u47EQR;{6%i*L{P#N!1(fr0_J@(+d7V>_|wX}c1J?zrxzIlAr44Me5#Z$vHo zW^-~XkmBEk#64vxx24WT%=1*AUp2$e=gKY>)zw>zPSE=+QbfGCzogykv!DeZjx-zq z4>$%Uyc=1-P)yN0qlLKA42tGIZo6=>eB8Hl!tZr#^LumiQSZN1->}06)!Hb0vuBP_G;&sW>wP<3{bAW|9iZ# zDA1*NT$cE}#Nr})hh99&Nec|r;B7lz!P1*_JKSaC9vPnPhG{i_pNy$d?l7ZaAdRhb zLl9oW5!s6h_N{$=Nvi=|M$7!pjrv7(8?R=#DMARYxyY%wRXQ1HA}cl)uE9vEbLjZ9 zf)kGlSz#?1%;RiV1MhS$GkVhO;DNh1I@AoDU~}# zOnSL?l$NL8j?Yi_U`qsY=Qf#*6}*i0Nm9~&u-HzI`3C>K<)cp)0+4I%#P5T5zjx4* zD>UM=FrJR!s!Xq5*0W~a>`9Tt$~!h1n*rvh=`&I&2M@H(-`P@ae|t(R9G(;O%1bak zud$F8V!tggO~LMbUxhWvA&eD*;hh!P-$Mr0%EIADATQqBJgl3BDBH^%pQ!d>YCZeK z-*mRQChYVEn*#Gj$8@p;1>i4 zJkTMP7vtausQ09s;K@>l|DXK5J^o0=x#-f&jx2+nggx?w2$<8tC_p=YD7aNbvXFVh zeibrna8%eyg+C)OUOIFWbunkEL(;~@lsE3NH&Vw!b8-{Wv*|l|3plwg#_GaVXmt2{ zy*SYM|BtA%j*9Z@zxL2dh|)+32q@iM(j^Eg-7V5B4blzLB}#}iNO#9j(%m853`4#L z{XV~U)?)b|>blR|=M#Hho9?ygaZ=ew5m%q_*(!Zrz_nPJ#@vgsZGy%bn69=qHq`BT zLayIYvns^-`61FO<&%u@=PG9Q3fPo%t)J`bM+bMqrMenFon_8=3m|}MGbDW1>7dHpCYr|fc?fP=_oPb5Z=Y30RY$Z7VB)l+! zjuheRudmT8%=OqMvnMYs6R=Zs1!9Dxu^mqPi3=T38PaRlHi@HBC%)O&)z9!b8B(0Z z{VWS-XYL63e2vPCp;<>-2b9Lu8z$BbTg;*Is9vSL`^C|0btU+x7%>UC7x|HA>N&>jsmiHBOS5fk+t5q>1rDa^6K7z zX4Y=IQjuZnuf@f$#Q@s&{==?6rg9I$T6<}`J@x{iDBh&K1upD-dd5M34rvdwNSbrL z5o~gtY{WzHCn6?Mk|$E*MTl&-sXka^xy`h(D~BDtlaN3S^5wt&`wBWmlcx3v3+`cE z=1rva)I`_BB_7EgTjvip>xWcrQ6(rG_D#T;Q-`XoGQ6&^X4>bca>FFd@gkSo*gge$ z^H8p$KVcyfZ!i}m_GWuDJU1=YUduts=N{^Uy}Pcbdx!6RbR9MA;d-~U|Kq{ZiK_;u z<)hK=NyJkjgpiI^ID=eZdWL#fBS=~IQJw0x+q+Ks2av0MEqIUAe*vfKIOJ)NY z;&VAi0v0ih>-YeA08BmwFP8l0+z%STG}VLLKgI;rnviCNjl0k@z9NqVt>Jv|oB+~L z+fE6zbgqKrz-kDxiFhtdP*p6<4|?aN%M^$-KIo_DYYd;H+@+%17=Mk3Tmql%*? zU4qG>7AKTm7}aq-iJnfoDzRdI{=c}>~H>o{BB6Wq6#T6aC0A~4G8#d6-o zoX}wH(OqmO=W)>yD)uqH!65#vofZ(Q;+AcF0uFK7*}U5JKs*~DH?e2Gdmowo>sM%G z@IUKD`k_xi)>|ML`RpaJ=q_6av1ag<_PGz zrcaefX)WD)FQxS_UY3^IVUo7A#zz`-)Ne&fx*DtseB}4=2_j@RaCDPgIM)lzE0!Vh z!O*d}(N($)jWNi}sRvWJPFwc}Z=?28o1D+IcBiW1-7pB)y<5MD6>LVY>|F4t%Q zLROd}%(bCLur}M@@0*HBK5|0*j>^%p*)Ww_Du|-05P=K3J0CzO$7ZBnKBmOS)CWVj zSpl{Yjcamjy#`CZ?=Pj-YF8}9C1qdWKhH^25EvQj!LVr#;34mxO{3Bx%Km9hwb~V7 z1lyly)T#S|&+z`Ri^S&fqaflp=tc97LW~2M4vI`Kci{>t><%p-_W#syDgzrbjt_97 zL)dHE>BxCpKe?ylU$*XW|Df;lq`*Y|%Y!Q_GP$`t1JY|&p#G)X&`*A>v|-(lbYr{t zTwQti>ScAYy3J#C?}BvRfOa(4=qN62g8hR}%fnfKHTGUbO%3K=;sQL?;lv!d2UkEz z2CDfZ*EFyJ4h`dK`SGvt!6dB=zVD`L(Zfl29*uGyeZhP3vjk;y?V~h_C2XH2`L*{Y zxIUOMg%P$JH4>SAcrE>0ww#{y!}oiQJ`!WJ|!7_ryXgAPIC(3qE@%SmGcp-q@m|3 z2pbapk~F~TldZeQ+*ONFI1yWD+c!h0h^O7h?jl2pw@X9GT<%YFODMWadum=~>!4)o z1a#a`2Lq=%+0VAFulZ+!i??U;f_M9xhO$DixK_KLaMC<2Erg&i>0w{;DY(w#2ywQg z5i+qMbg9qgal5v#rh1GkepOZ;Us{$NURttXYYKtRt_F4+1UbA!bQRPk?Osj*Iv=Hi`$fccJkV0^X{s)U#go#6B`LsS32CFb;1@*WL#5C~TRbI<^$dY=&PF4STH(We^Ed%*xY0%~yNe$--7r{}aBY=*4E7!*u>6v;Uv z@pCS_vu(OO=M#Y~*!BAk?! z&vEPq)A=6y48>VGs=kTA_`Un*4}@~ueTos22oKf%+$jNLhagE zz~w}*5P={1jR-(uK+XlrTZ2m`RI^L3#m#rOTv5Ys$xGsDuP81x)Ym*h}CYu z2>2biIt6Zs*XjIH*?D2vdC1?hAvO*8YTr_sq#u>S*6b37(uYGY@!32NgLLF{?@RH28de)IVi z3PpW?ZG{=6bdNE)zq54)>{Y<#2wHw|a(C@Lys*%fC5}eVz+|?4N{sBEg)oO3<9l}M zawh^zHf-e@etYTnO6K>1uyIcP<3DV3o~w#@o^6X!rL5xV zz&8R34&={nKbg&F@|;ebMBlTup?RJ%1%GAwd-L?s)r~@iV69C$I8tB|Q0{%_1=gV^ zzKa+~G>*U0>E`BT-`H&(=s1*qrH8E`S^0xp?*{>wcQraHDt&$dJQa5Bnz0sW&|gP2 z`oNTOFKPzLMX$yGZ1_E*Dq#=6L5wNrm?|^6|3@FX3f6?7)2C?!EuRgOg_VAo4UjG$-Ov}AbC?&-m#zqB2>Y7u5=Y&BS2b)>dnQvwOvUt2$|NaazL_y+AVH1lV`N(S4g*Q z%!6-K_X%2*l9E@mhzUZj+{;36h(2Uzfpc7?ZZ9<5cg5<53F zd7xnIm^;Ox$%C49VMJujH`tDg-`D>2GY8_A#VH&0o+%71`kj++Oe!z;Q0KQ5H zn3h7ul+w>bpbGf~-4qY>QwSt;){*_5ffroXHyns*e~P%6!IRal$@1O(s~Usb2=us^ zXBMMfXJEfRN;*}&iMu&l?@pJe#N%tFIy@H|FSG1io5Wh4@{qcq)<90k`*`@f$8F>~ zdK|GaGxVF+n7UM=8sf0SA^o(3A21$j*)#@N&E9*^0I>)1?O{-ctMxR)Lwz{!*4t2A zY3z*&iheRxVAz@>>>nYdkE_RPq=~u>B(c`-48`xy5K0ANS8eXYQQ&=cxFQPLcogKy z5*1zdKP><|&-~u`;|JQ)Y!f?2OXZ)sRe2a8Am^^wJU!ER?m}}rZ=+3ORW_(_?{S0_ zP~r_dH|YF(bAf3S(to#ND7b+9(8yhZnJk!r=&P+MnQ4nOW3v8PvDL2tu$TJQQ@ZBl zuI@HVHs`QvIF}HREVC-K=$|YTCzl8BJz+UM5V?Ms|Mum5CHC**AyX__bCY!l40JJ; zzonfn*)X{>acY5&vQ-EAegzg}i%Dpqh9GN$ax`ond;5~Ko$4|DQdJH%(CtMu!<@JC z20?q*)Eb_Q0mQC_>vZpVGv1mbbEDE}rNEa{CdWgRQ9oM{C3SU9LW<@;pi%j=ES(+o ze0zR9u&TFSAfE_RbO}Ib)v5IXaZX%6xZobb8`>^HkoN~w_4WK{m8iW@2`2+Bos=>q zlYoDF(_s=CChvBPo%yZq6CNt6us1+d1^c#6*{y1L9Uvj;R`xVCn%y0?4+;c+YVIPPN0CVQ@5U8U*-937cqdAu9QgxgQG6G~ zw?G?s<+U*HzGp$C{LWDMO`5>@>ondNNB)68ED~O?>kE?|D+`Ndfa;iv6n8mYsR(>B zZd7x$VN!GTjPmym#_2>t{pfg}+JROGh%b9~%33xZ!~|BWG^ zY}tHx@|QLj|Ki1qWnVP%uQfG9(9IlhAl{1wzoi|Rb$7PS^|Y0S;KYPkC-J9?G#rS@ zVW2;=1UFhM{%fDrQn%Shw+DA{#npw<<@NtpbG0~?n9`5UjB4#JKSWCP$ zt9G`eRSnHC%~v~jVPJNo$9|B7bj9mch(L;_#Eae%F>1>8tx%962ipDM(u1)u71bxM z_puVqRHY>$NLOsHBGarVs{^A;OFBiPls?KTW`OZR_5gOz-uW`lF8NBwuK@TLF z?SCt5_^G!ILqlu?OH6+m-Z_??8{S+C`%$K9T+F~ytKd9R(r$yrCQnj6d*tpnGXJp& zwaHL<$p6aYFC~HQ`WB#(26z^;b8-Uwh~q*?1*LK;QnApSIlS$KaDVfEVX2Rbk^y@#ZO8z&_trIakF*nFR_J-aUX#>@H<@~c|H#z_F-S86W4`wk3g*1F|i z-q|$C@uxmdM$PQj2fw>eubI4gF=}X&`tgG$*wqV0#_ZzaeU6~ae^icOOw@Uyf7592 zX5DXu>Ao+~9mrSBqfg?GF&77cr_S6I!lLZyxn5&apu}Kjbekt9Z@OXb+Fyij7p2P5 zjkpd4$;P9~B8Yqf@E>wv0F?Dci0Y0zu)h~&(O@e$spI{9Ul2PEq9K}mIx%KdK*0~| zp(7D8^;ooQ?{z|CdKh^8E>e3H5#Xk5l7<)#in~*tWKvL%-p1-#Pq*M!Gece6>?34N z*hvM)W!#mLG9=P6T*KAb#gqhJGse@T1j7b)j5&yMgPvD2fu;3&&H@!HdG}&Tj*y2GLGP1wc#;dzMe6a*K^X^&pzba$A-zWEfB+xS> z@*&yITXiZBno)jBiurqbT+-5#Z;!1D5P`Hh17{N=K4awO(QyT3k+gH)MkDYoX=0zj=~f`SU}7?Aw>IAX&~ z$>?E^Y3t4jN0al1<^%u9ot+|R$1@jU3QQpIm}B*RlFDO68RJ~4K#~~mZUd&wV6Yw; z8QBCUdHU3KEk>GEu@ddyQZgn>%%$!ANfjG1Cx+GU*M$K)&nO^~*&e%MR;R8dn>v%* zP-e)nnSrkvngA7h&4yxX>yMvLt_}A-@PBG^)pYN{L+QbDoo=u~qf<)XP`djg`{Aeb z2IzpmhgiRAb*&!x?*VuM_rZu7!bI^3?V+10+Y_p?(#gE)vMa?Af;^p*L>)`(J!`nV zbqC?ze(I;u2AfCUJ+=t6$W+%ur>h2hRU@vemLCTVa>n!-3(wkbapum7gT*gI?czu( zoKzM_(`ZJ-?JQ98!NCxe1DxK2Vm)a6&g9CGE3t?H73h)anOM48vMY0vHyq4(y_=GO zsq5SC2Z08x7WP6szz$x>=WtS`WMA8b+pS)|p$K`E^-54!1X77h2b|ACxajz66@oDc zCw(Pe85nV8Rvto68s=+D!%1?-98Py%@ViqX4*?4nGtHaFh5)DJ2}R}SXZslRGgifV zg3YSu!`ANC%1SK8xEiY`io9brH$bgYp?{Qqfz*mHd)|v11OUbA1jr6S?|>bqE-DS? zzZWr-DWU{WP*tnL_`O00ksU2|qwuYcfHH8mTit8cfGBYk=b#9nUS$? zlzhz(LUDH-cfFk`vgzT#q3iuPN<@@DnKE52MvhK4Cze$BS7v+Ax%WyP7@PDgBa!lX z_>7d>(<&v)-Tc}b8y^CI3d|95EaBNIAk@9M59By5ThO@!8iLg$*Q++;eeJ3=$*@Gw z*Tf(=pZ8lp{K#}_3~N_UuP-g;8V_l4@@Yy6y@UJ}BV6l0**=f!kdrTE!cgK2#aCJ` zS0Ha#=hjY$ADWL=vTZ8D^7%3=&iPPS&nLu*Bgx@r012nX-q&iDlXM12^bJIz{cBxa zN?%`}l8!SpLEH8X=c6rb<6+6wS_ccaH~Z*W1>Mi$P@*QgKhNYNm5~r4xqR~XT`gj|1j^zvS6%wKgq>n#qC$f^Dr6Xa*7R2!+%X%^f72`8vF(jUyf&>|*CU?J#WcHWp!;*GUTWHAzv= z4KPWe8L{A}7IKuN{=E9e!y4OVur4FuY*fVA6I`8y3+_Qy(%3LX4sB+S^>tS{IXk$2 zWlAOc$|!#;(p^N_?C*@6)Y3>ikLu;EA|6d z>b(Q3EfqlG8U#OecUGBosD4h-lEouj*}+6AwY~f(^(B7O3~i00_OboWsW3e=Q^`so zN;TGn^H8RMB;$;~#jBpo*>g}$!1AG7TwK5B=EAK693>qHbG%s8X|vfM%fGTr^fwT- zLB$z08|Yql#_sXb78F?<94a$67Ogt51OE|F>8O{2(|f;RNOPrnO+{|DxS#{HdSzs2 ztif3JQxX5#!ydZdanJ7`uw_qwG6xu#+}9g=@Az_|RQ89widLJ;kJ00w^j5fynkuWl z>1CNH%B`UD%X_YnOD~$+0=?3z{yjC;k$L+&ZtQJTze_$9mH0xCbliJp|6oj~N83f9 zs1%Pt;PvzedXlHWw7;ea624?}^9AIo>}#=h7AfPyjrc9*Vor!q!;45;`$%l=XZH8| z$EC~sQ47sx0%((~-kZ#sVyh~vlgo3akG!R+Z)s1G6J)bh8fq-aB8mnC%WZp2e8s_` zx<1^SwAkN;v}o!2R{z3uVRe+%99Q2%CIqs_gr($}0WZIdx{9CZ&gcY>b4r`p=p~5dhFZfnV}v zdfTAsbdwVYwbc8Hk8mXaUpzM~F*3u`3sUaVBxtY$lhH0GW8p)0{4hyAM_Y=;o55=M z;@wa)smfk20kdvfppzwl4o^7~jQ*Oca^eWH(ToKa7u5clahqtlJk|=0!nf!?v&ES% z(;g?e1N!~JF%7?*@%NTlZ_k+_Kjq{!*kPAqMH*f%y^h#i`C^8rz<>_Q~zoi1KFM>e2$MH zBN%(CN;t$K1=&vwu{CV+soCqyZ(u$~s9*T68vvDnT;O23=Y1itMHok`2=;7cpUyte zGdz1MB9;X-(K3oA_)0~tNoo_#?X9^|+Vgh(#$fO5Y1&AN`Jh!Fo|$mp_Usrg4^Oy1kY)$Qj4};Ccmok0 z5d{vaPu5k#cJ&7`_8{u5kcAZ$%E>H}ZiH^s_KxFEY(nG;Q9*Cb=*l?q;8yL=2AzMM ztnIm|YAVaTj5F9K0HKt)49( zT|R*HN`#wd2UV*zw5x*Z_sHC zaer$!3#!kn`FuK_>O?j-E+iVPQEsJI4<2J4z!U^|`kjzsdr- z7(@!_E&vURSv2)rl4_MxKnX92?@o z9U33HQl%|ecTokr+U>Fq?j*C1D3B?w`J)3;M(nkjx!{cndwg!BJ}p0fUx?63EVTn^ zgB^-HR3P4?M;aZMP&ZmkMj6e!{ z2*0TjY6=@wj1#4o;2de6U^>9g2Z&iM8@&XKFR~p+Xs>{N((YndYe&owYR;vzi6saI852x-DwJS}dS*b$od8apP?nI$T6D1tF(jC^HvI$DdIGy;(x zSL|`yH;)9G_KxI)lU?CYNk|dhWmZAqCeeMSpkTVPQBOKJHik@BDLU9Z2+pgivAI0m zs_2=~xEH`xf-dpfH!3+fIoaIUhI(rzJUkT@k%+^i?=*&NI3QRxa8kas4%No)1re&G zWT)V9KsPbh2L;`8J9>7^xS5&Wv5D8HOVef76u9@3Z7|B{PvY97 zo^&`~d-%Q?{*;a+N)KnlzBQR6Z>rLW!E)gei-E#34cGu+J6?`1PDg{YHpdHHPBbgv zrq3?@fjnAw%0J18mHRrqHw0HYMC!XIlC$gFzE@G62>8utKmrUf^7q`et> zS~5OI2*id4{ZV-S598w`J2;cvWoQ0|gJAQ9qG2yhmC1;%cBHR(9Za~RXS-DZ9BcNt zIJ(HkO0OoI!2|`II8_xD`{@SYya1szBN{=rq#nBTm}_mWHnr=(Kn3v?^#LZY3WIi3 zxmUE-(AFw4QpyycxBQ(k;`N|1R=lag_VQ+heS`7UTg?K)0-~oF2iyVVGyQV|{(Xo1 zHv+}Fno>@l&_?17=nG!c`|p-XoNOM*%BB6kTV`Y8{q6BV)4+G^BK@t{Tlbom;2@Ne zUBw%oTB!Ao}w_vukl|m+rDG2IbMQJIsC)=$z0tt!K?V_}) z>pUcr6(@gUnk*hYu5{Qea*Nwe*5=?>8t>JYF=5YkFHu!UMDt-0I-mFMj==iTr8uh)VWzkmPkFZ$y# z&_FTH+*1+Gv`RdUzxD$@xa&sHVk1q>Fv!ti=3%ZT8RhIX9-+apyANR5ce(YQkyQmL z5Z`_khJ!Ar5Bicw$XSp)YSZQCWR;b!$1QPH!yR+7LaxnhfMkxR0UHqZf>l^>%=ldS zn)6RfsiPGP5tF;7Mq~HH7tAkiJQvFm*3Z@vO$rxw&XnoDY=%l)s!_!(@igCJKaC_s zY}plxR3I%{Dk+GunoT>{ry&h{LyD9Qm7h!x17t4b8k95w6*?mnu z^D}&c_$6m|nLJhF3Lqhf>K0*F&OJ!mSleJ=;RIhaumfgu-koZKZ*Olu2x*w_wpPv7*mgD_Cy*fDirz#5i!%ko$xN zV?OUQ`8z^^-y{)DWeTU>zm3*k%VtBiKeuR#mvVebjJhK>6SQpds+^BS6TAmN`L=H9eT`N1 z(JP8HOk&9QucvOv`D?+)o(U;s8Gazzc`tw6t+xfo?qd)21R z40H?^9%3tH4?x)uG%9=(wimH(z)oDf=*HtR=fuK1X=b@_SCJ_^0F+gTOZK%ulY&hRB6!F%_Z&`@Nf#an2@5x@)RtXrpFZw= zo!mOQ1SdnA2o1OzJk~sbwEH=*2ZVM0U`Bzm(=#!dwECeW4hVo<$j^cT3k!>9alQ9k zS`TuPsM%-ngZ2#u6sl%(!z^c4H(r>Sq@?ym0i;whd53IOT_XH;Y z+kdUa?Q`ExN->c@C&j2$wQKl8VIG+(=>D{fF($Ev{eDM%5#?kv`Wv@vbVj^tSgEe1 zJ8~Y_NMU5O-JXkXz($&0pGUU|!NiFPmVhA3L?g?-`6k0Ao6VG5#VB88oVhpee!kz} zve^v;(0i93;S-xq+U}m`Gb0)a5@9$mHXb0-$QV-vwPMoh`w;glC~dxd2b1Orgd|0i zw0P(aaSS>BI4nZV{aLpSySjEh5xDVgDe=0o>`$N9*;0{|csa;7kN$mkE-)FC&4tJN zP}VVn`}94~OMMV<_+mB8_52Ck{KUF0xtga*f;+YCk;IWP-89E=9(d7H-5$Zsi21qD zYqE>%qZKq%otT;(4{ks(X&*klnxdK!u6yK}iVW@HXX?|l^YZ=3vrK+H8kJ5K?~}=` zgM-zz5ChUYJc`+AKL4uoNCxe*2s$FnvRkm8-8&b64=vs*0rQcEun62EGEvVp;r=Hj zMe}{JZkR!eF$XatlnSS4<5Zc59Qv)S7OY*lfvM-d!y3zf^D2h^RzKMAS(MQ%2+!G> z!Xr!7W`;TpT?fOsZB{nDmPz{4)zEQY5`=|ErGLvR+bXQmK|9||Mvn`TC^&*6svZoa z2qkuVZ!mlwdPu}?byiee<}zgMaZ9=IG38ZO4+F?+NzA;SiH9q*s5rLo$ZbM&<#jxY>HLkp@9qj=`YfLrqFzsh z&;(sZAt;|-+D44rUU^^Z-31SK@1~ZZdQ-~0B<^OW8}J5hx5=G*`BVdl(-e&XFWpAi z!d2NaJsBC9qvMxBJ}@8vD79? z*v~;nmG@;Y#sK_KB2+K}k;%5dTlhD3p~~C(5O-fSaoWBAq2T|@M56fJp5lPVPFc6x zMiI~S=&V2fkl|Vw-iP*Z#f}UAyGzelN$i6@Y$8v2&iKUn)jd-CQq zgr5&V`g%xLHI*C zK7*UtsMcrdHw|!1xJSk-VI@ZHR`8H`xQZ4jAeerwlp?Sbz3+|Rad*N+gNNqtC{wwu z_1j5GVxe{u?s@AK7Ajjbc~a6B1tK@i@I^0}NVyYK0EBU#7(=tTIZT~7EC&S~?T)O1&ZaXAh_N)@JA@u)g0aS*2t|b{>KBYy%0k$74SiD+i?SLWCOU2WCzY5}TU$ChY2#!) zFBR0pC?5lc#J#1zl^r1e82%ap=}iO0Vs1<$yZw`zi+bEi2{4;1SY@` zg=yEzo6g86Po`tFgN{y?h8A?X7l_Xqnjj$;$naMg-gg3bPz`9$rUR+4qfdL#BZWrO z6x3Gb{O^}!F7r?!nAdqjwbe$U2H4SC{!E`*Gv4(R$%O8W{do{q_E2+H;9?8wz)e@04!Xhg zRanz={6mbqgP~#Ckp!tioW2=Dph5KOJid(A%DW$FtXyTylXkpq&&C5SMtF z^`m=@h3zguj|X5EgCOIcl$MqjaE*a#G3#qG0386(Tq{6v|3GhboijO99~!%wU2u<^ zI8P>=e?2X5R;~Gg;VnHLGvJ`UVkM%AmwT<_AeT29&m{Bj8=I{FeCXga+D{kIM-1n(F{dlIb6Kv~G95SN>4y07VNAcn%lRS8MTMG^I2mjdKaz?2!bXGZI`bKSmL zTrc9$>tuqpmE`9?CrE{~tTLeVNKm~4iX!NK{(*NQmQ90S_o~U!094&&Qm8+j=PtB} z1wb^np+iWIgXvm)H)b@O&Zcma0%tzz+MFjeb6jXWW%JYpsNMD$5^Q4_E@4dDl0%?@1UNLz^dpC;c4Z5fO@w8%M67)CH|S$eD|gF@E{= z1&&WI-W0d1kn*oqW&+u~I0-63p5P3V^nFCNx{SD?_4^0kwk1m3&4hCPe?@OG{(oQd zKw;*$8&f?GA)qDF7Jq8Fa}h61z8T=MV7SwYq#nX(S}fYc+-6MGN^#ez=Wy5PasmkP zTL=)=eqmu4C6SLESzLi0ZYMh@Qtal(1p{G7uG_0Bz$`4DF=yhUa;Al-%tsQaQ%M z#1`RK&8ATIgD=}`Sft(Q==Z+0Ye;_*-^tI3=R8e&vkU7Hle&nMnL}lsv-e2`%n^!A zg}M$T;9f{IKV5mnB0P99bQ=s*J{pWm@(FFU`#Np~ZN|moc`I>g;fg*6IOaAWAquFz zq_dP;HnDLEtxZjJI4U-n*AlcQ)#|h%9_#+WI!&~(y~fPux4ymzU0q$aq=ell(9ect zJ!@+;adB}JDGQufnmhW8`#4y{X=(ID7pGn~hOP~p$bERngpGwzCUs%2jHZn*ayc*6 z|2LaQ`?t_xSA6kSYV8ulu{M=j3(Z@R3D#R6C3}$H^~$1G8tj%vZR)v2_)CAfplCYc zdb+*yQl~grM)LmD6g%Zfj|&cPRxSc5p{3*&(Rvzr!dp-|qM8!!Rb=ewCIzQ$ovCFS zEG`s5E{@qedPf>hIyvezgj~d)%g2!@WT~%BE0REZv`{VT@mvWG;eX7{3ym#Q3@WrV zrv--Pg`dz(&GjvbQWWp#)0;1)uvNHobJUx~^=5}CDk!UJ$+Nm{Au!%g%YLt09 zwAzl3?Kn9(71p0vLoPo>vGYzv>HM;=u*z|tAO-S=aGC7wRf4Os?d_-LmOD!qM`8dE z8=@5c+q*Dv@wR9&yTXz-OF7Aw=9QKf8pHeItg8LKUy{J`^>Mx&XrkZY0kzl;@02sb zY}L`_wd%8I48nO2$q&(6FEWQtzEfP|LVP7~lxXFJNvS9>S^4e#GH=)PT$l4iOaVAU z@S-R2&u*Gs?+z)2KxY?L3Bu#>=Pd!rOhx@WDQ>;cgaVrbQ3^;?F26!^R7M7Q0+UwY z>Ql_9`YCQs&dPF+@$`5=RTb9bQ_l5ZpiCXm9lloeH9}RO(N@tYRUj-uNkAdTWrVh{ zzi2e|>t;7E<|^I8-j8>0YzkXIEy)wKsf|z;POSf9qGO#Wk~z9+lry@8{{Fwq`556} z$E#qpx3}l9?~u9LNvLIgesv$J zDQ+`l0AdV(F@ozwnO_=~|mp5 ziv&4#PHuG3((eJ^rK1vHRxaoc3GUwU7CkXE#%(MO)8ax+F3fq;U&*g6q?Kx|^IlWIWEe>>0%Fb{(ev+RCI;T{dYdnZIn=n4@Neff;@w7?7OO2E{pU|p-;tUma@jhF- z^bwb`MYokrCvTUO9b({GC(%V{K}XKz*V0NDRLcbs4jSGt&%)-brh@XO%S)-I>v+AT z`nwAk$k-T{a{s2CHrk{UKuCfnpiJEu6yM&r`-`fKc|GpM#?28n ze0$RS?As&{t8Mt6)*=ceD>0gWYq<4HY6^>+*4p;0z%ZImNme8%4W*={)GI&We~)8^ zBVJr1Of0yG2xm5z2V}IXJ!1X^twv<#R7SlQVyP!|0)w!5@Kg1`cH^I?y6$E?k*m?N zc`|u%YYrOPgy?3*SA!|_e`2dz9X|Q=AG@hAyDZPz<{7|YzXcO_x2<01- z=0<(l1NqIv9+2{12J{_p>l&ad-HLT-X@)rNN0bvQ)5Pr;Xc4&hzex z&0+Xauizht_2?97>C6>+*8i=*l2%8Dg9UmlDLg3Zt+(Z?T1Q*=!<_(DqSKw#BwR%{ zr!;g(xrTvk6i1W#bh_$HXW#qqO-hOu^9N6*yF+(C6z7TS?AtifB*@fgJZHCx&{hml zNV)wz;u5Gp12P)0fg!wugEpCzD7Uw$dQqANr^q&kVgrVTPzs(M7~O+xC-i_pcVch{ zr}5euZr4s4`7HZkVA$wNX8-)O4btCxja7_QWXq>Hmu0@xUCLWRi5P>bl!d)t)8Zul zYJk2_za>=)g8lzq3%?EnINGSFL|?q!ILW*d^c96D(I||Uqg>3&QR|a}uLFGV!0x56 z#_~(aH3bL$`ipVtOnp;%hMJ{xnN>1*1KvkS;@xnUyGe?pb9b$mI=SFUE%TbWICCkW z0ABf7Ys3%^L?DzTw&!Q8VGYs~=iZwsU6RF$va=zM5htOM`+9@n?>7n$YYlFwFZxDk{ zh60k}K+*MawU@u%Wmk30oo`UhPO-a&(~c%Uo&!`r=Wr`!_oRr8d|>kM@x!pA#`uHfswX(0(W=Zfto1cSJ)4DYt|Ie>RmtF1H0v zk=65zmyO=g?RslU- zJ@>;W`x<5CW6{sjyIt6QldF3-?61!jy@T#x0(TN+g4;j;{qEogJ_c!IeSfx7GJ}H^ zkk0ug`xI3b^CWWX6=*w`M6n?m+L%7$4jYztl!@~ISL^QXa*`)5NIiR4z;Xgs|wVLsuHQ8vF*Cd_=S8%o#qN1VeuKTr{Q-JSZWfeDAOG@D)Yu3uDNU+cl8(+QP z`L602UdR`Ucq9{*N!_pEJ6?~?(|V0xYTU0B!RG-aLyqt->}4_mOyX`}i$efy>IP_0 zU%BPZLM5}^FMFfH%kr8NvyRw6RTI3ed@)K$Po>tG4pn3SUK!!-w)&1%^@RtuT_~4W zXbgm8VL?IZfX(Yh%`2oTVM8tvY?n0B$Qw^Mkyedz|H@-yqU^2j*WW#kw);P30}-hu zavN{lT|f{}Zd^B`F`HuCJBJOmI>uUGQsO_G@BtFyuh*Ny^%F28 zOsPW!WK+0yWcqCNu)`YV-AVI}(DpV7v+J~HqqL7o&v%0qfOk%P^<@oRo)#C9R29La zf&Qt+VGDi3W$1GF7kFl!`wP_33`+y1FOU%h&u$Km!xk^Ns8q8EGI!~e?tB23)0Px5 zF2|`vr{Qz7h;4F}OmS`_5||MM{aTLZYH`BySa!C}GV1zBz}S>C^4#lZ4udrvw_WH* z+5z+aoO}X6@B8udr{URl)Fb|xQUfG^e}BN7l^A&*!`w(7GEw?rV18^&_kwN7FyM8y z2DjX#0|+mK7l>R9fdvKQXxr);a114w0GH#DtDri$(pGJ^R?1*`DI>OS2_e*I`RqdO z;7YEUDGDv>9Y{hx($~l_aUHyX|A35$Qi5m}0Gi+NGZ5uZrzL$aVEK36@g$$|Us2s7 ztqH=1Kw;f*d%2S)=oZ_fSkW^%9?fqb9%7ufS=|gh-mmSq+)>`djj`+qPvE|v4P5^@ zQ{xll^f9CIPi9j2fx*Tp*x!8TFS0`Db^dUo=r=tNmHq0l2H-@n43dp2e%A(edr;{; z*~Ues1ncWsgQ>x3U-nCDS}LFnL2c2ZcREa;oDq9R|F$=F4ONAn0RB60QpTjhC(P<8 z9u|E~8a}PVVtG90Oa1Hh+SGcZ~b+cin zfA6WJ#>oe>^jpj86A{lKV|KCZpQr-rl*vgnPoho$ShAZ3NQwy?=3Ka&92w$Nr(zzO^kXt%_fzvz+f_>eC_Qwih`-)CUQ~1kW~~rGhp)tdobu zXnnhqg5<}qqoPSScz_wggV$X^IlFC}G@HQKjFU>Mrp}+Z-gEdEavMoNw40Y-ivrz2 z(w`1>if6QuTl|f5NXx5X<#B zF!p<;lSF#Bc)MJ`E8-fgcilI%bOOKc$$KOPc#>LK@tMFSUgZGO0yRXusX`~mHW8>N zMuV&p`E4_ALvsgbs77a}@}Im;e~L<2*pCb;*cdFaeP>Ti9H9ub3U%-0j_HY?yJsW8zL>u-E}( z$RS+b8)<;4NX^X1ShJwO=AH}FQpt!pYrq~u`83jF?bL-?ueX>w=$RTNQ7R4Lqh;5| zQ*xnK2fwKWPgW_w-PF4B99mo~sFayc?-y^07p4ypL5zF1{f~&Gk2AkQ zfVWvqZBhd|uqpq7J;0uJp^wXDl+S4J`J_ABw{flNK|M(*6E>Zsy80kMZ<5Jo!xExd;p9*pU11#RzoBWRwYBjgAW zKY@z3F(V!>F};3yA+VcmXKIN7!KZd! z3ujVfiacoPdsnR+zZbnVz^Ulh`WQs+fHve~P>8YLYvH<^x16K~XMU0&XHJBhT+#Ie z19mFuk&*EH5JH71z@a1-7Vd$v2+DhkQwwKi-dCa*BgEIZaXzh=>kR6g1??F3-)jPea#HRFc|1Xv#Qg5r zy-nHmPgW2h4-adqlocuK>cZ7EjD&oYHldc`w+kzW9PSZCYG8vll0l&9372v8nbgVY0`GGWzMo zN{|7wtq5{CrN3PGA$h}H%9US=`&WC@k193bv>j!=%7~MP9S2;tPZXCCOU4q#LbvMx zSr?aMY|{0M*FXfhxgr=>MU{gF(f1e7y*Tk2}feL7XRv!B6N%Bf6n&wOr!H{FtfnuR>jwLEURH*+m>P zH$R)IPy+?j>lbi7I8Qt}WW!<%ZNR#hxHZ(LWa^Rg_xp(JRr2(2GzxTt2PMZX+LY;w1%C;Nz7*Vn`+*OtcdPw-aU!RF+ zIW0XUb3c{O&CLaO<3J7uz)oYjfiz2-OYT3vTYoI5#xELl#7x=DbiVCf(0Q0AZTpPP z)&8VnWpR>2q&D#H-h5>eCq#r~!)L=`Sm5SLt&!AhrlZ_kLtt5}d$iH}DDnlnETw-? zn8_8A9}qo40?aIMvsROy;`f+~K(~4|G$;310J$xJ%y7Bs#G|@y@9RcXOi=f}lM@qq@=uFxPT-$9xO+jA1L(U9Ij#GY`3m@J)C1KtPMqyHC(UJjlTUT zTqw7F3IfYJg4h`Z(c@QP;mE?Eorr|K%S`!+=KS0(1LXb|E_s*QU)O4)g$B1!+Jc?f z!7TFw;}fPSo5s&aqAd`MahnCbxFE9Y?*8))1_TRl+l$^E6JrAyQY zYDqJV4=bTeFIuDk5eg?JUeIyu$_F$QFnw4 zX`ZD1SP1sRc9rFx%Wgoe*X{m&%%HY7M~a^3f;>9ePNw4}SM_^LOI9CFX!9Gi-Bj|K zjaGcQ&y$%4DJV6D$A?Ld+DCg)FFWT4IKN#csVbdfLMk-U_@G2uQdj%{8CrS>B*}zdgj> z`OO$&?%OUIy_w-;Wf2HAsNpgxo^^;$vO1MzM)Iv+r$QDJ= zZN-2VOXBZLr5mj5!BJNaZMcWIAFK3$`d`=lovGxd73aK!SFb-aJd+X@W-$ArG!j8z z24YCRhHF8-L1eYV`nb)SqyFp(q`?i<@|YTuqTUcc(6KHVL(BQiOrX=BRDG(>krP7L zn`(@I6o=>dT1#tbd-coIuq()wPZ&`=&G{ia`*l*ftTsZ-GT49`$rMZT3>7HGEs5jC zbcPswip%oTjaM9TWeiy#=K!CVNO9aGO}4lx{t!`8*EI&9Z5*5I3GcP2PohnQ)+A(l zkXmwnJ0tnj%_C+|z3JE)g?^etOuAgR@;@%Xbwo)~Q9$yF(9cpezMMZ8Z`pB{8^%nl zoX_ie8{gTCz1mCeU!0_`R`TCH!pxnH2MW35KriL@7&I}sR{wahylLZUiZXJAUK?0bbEQ&l*&`=)9OS5$E^e2zP>3G)skx_RwxeWqX=IF z^nljn(ItAhJ)|1&>%eJ<*<`V|Ra3KGbjug4DD1kco`~wR^BZGhv+B*kach$E-B}Iv zK@**;+**M*d>fLiXs{zYuQDO-p$!=bU0G3ZKJPy5poU{y8(Ugtn~uxG`M*={(gAMa z(LAZfb7mE#^MInZ*F@rJ#2e&XdClfQVsmdBuxG)q4}Umq1#>+o%04eY?a zm4!g~JZ6%9PjD)g@>K`VAMk>OKn^%!&&ew?8eY!CEtFh6-rVArW+yUO)kkh+M-0e- z6EX^*ab^tJpR!dgwqgP6C~0Pb+z;ifbLL_07MUZOt9cFGDVYc}knC6}F+i~D}^pnhp{#6ez7~OR*2KuSlKK#}s zGHqf-dm`W?K12ic)&$b5_YGod<>y*Jz0tAQybE8lnagONEsoQYY}oimtd*Pl-+ z$kE*!rDkp`*^JuG2y8X4nfSJb?vqYQ=24o0R$%Kc&R^!MKTxa_HtSD(2W!)P(gc`a zXg&+3K%M&Wf65^dZpqvNtO@yMhR1VP@FkG?5;(qr1SIb!Kpuks+7LJi!||%WNQ_^c z+(fcS9+rtFf&^-mJrNMpZa9G9*qd(7n*j#8WGDKO@7;ZI2=9A6@6^eF>6Y78hE7kMtR zI$>1#9R)CoY6@DSyTg{FFXnYu_BA0@wEC#Ab>^^E6X}`x)e^9$(sVv684#!Encu=P zdp|0bl0^10K*fR9+ncd5f-2$M^!)le^!I7ZV`FcWR8&UB=YjiNkzEdJfBo^Y+|^M; zgW%b0Laz_X*b;N)T-|PIK_|O(&CK+cg=wQ%?+;VCF75ejZglAUJ1P{zm5Upod~O65 zDbmu?-^8g8UFre*0C-Xr6cqS=eJ5`4Lb~IHG%cck#$|3E@chwR?}NhKGHo#?l8~hq zHUzEs)a(C|kjDPf0`I@X3iZ8ktP@hSMbJt)sM}7m9qAX&&7C?PFx5YKDjQnMKIS!{ z_koy2+(?sFPY)!ZfI)IdQz?b&e4j0>{HIT!oOVk(osQb^3CYQ`Gx22GH34CK@1S0S zN}xHNChzs8fD;wjN>c+VWK>j#^{HM49RZiaYC7zf!rwt9n8EE&$WYRk{!~-|iT{h6 zZX6QEywgvnrlvH#|JSkEWR&T;U)cJNswuK_m<)<7m1;r z9ZrNG@+F{c5%tOa^LZ~My!L;TDx|`H^$fAtSl$G#K*xv}A|{6(#jxOn8)-W84=^|Q zgGi!kkyLIeN!(|}W>Xxa@#bb>eJCA+!08hdC0D+hPaJw&kKrYJ#e*m!&RZb^Ynts6u{L9fQ#1IAbDVmyS2ARv-$cJ2Vulf zkL?10V3AP+;n7lY7!=80@e8=$^p3)2I{Gc8{Omo9By2h) z>#CUtpYigt5fd1>ZU|g(1BvXfx&))5(nPsv%!_SD9`kNzbUzilbGF1}(T_S_%AMSw zS2~}JrC2RH2|_wuFs#4m6SR8O9G|aAWe+Qfm@*j?7tuy!M|-nw7ZUIGpb- z4DKhXcNvy3s+Ioyiu*5LJ5k0_=rO&oeg}W;%kO&rmi=ostt1QHMthPv5U?C!jvJor zE8XXgW>ORu5Tzzq&BNepGgY5o+vBgLfVTGGcTe~Q$#h(`3SQZgxo*Oc-R>GOJPHMZ zJ09+xYF(vY&oCoTto8*^B%jxUSzGD5cen_6{&xh|Oth>8G|K=S_xl5RQ5OH{rCPW~ zCoPus{r*&TQ1%G9%ODGy6@!%rF1PWvLl)VLi_Wauym)@Qmv>ncb8>m$RtEXDKJpUfZ#aNc-$FObq2 z)r&2TM;g}oOYTjOT(TCDX84Va3Sz49*-UVjZc6=h zLBjwU6>c&m6>`a6r8IoCujEue#u?GSH%6L5mv9*OC$gGsgTO&m%EP zJn=8v)#LD#?ez5gs9*cm8JIdfF3Vw>><7q1rkO`6)P)N*ABk|0JKnYf+!bIJ4%hwkTo3zG846i2r^dHxd+x>~gpd5#%Hb{7OeLA9gY%DGt3$b8nUfIg(m`dS1O-}Vt8EDh2y{#|Nne%IPSr^KbR8bLwh=tSu#z5 zb-P$Qya!B_=5LO#PBs)ZHT$Jr*TbzE7x)Y##cFW0c5r$;POMNn+$)9dHd(v)M}RH-Di5=#C})4f z_{p7$mX4Df$pWzSV;4_jXgb%dy{cb$;AlMRFB+LDly`Y78%%9#q^FwrAB@12dk&vL zLJ-){ou;A7_b6gRKgvcB9mL~7pf&`)U4BmM1rvZX8*ch`wj3!Ak7IEX{b}z{@fZ2| zd1*PNemw@9tb{9a$#=0iO$3Z6W(iI_?XCeB(lQ%4xm2U$;hY*zo7_{}y=rRwC4Vs5 zh&*l0d<%V_#(t>E{;7bOu-XuOEMd9=TH(sDy_$hKs{8MnQonBd*Q*%MjuAHNx`b*? z;z38>-*H#ljhgh+Vy$24bs;SQssbY((xus_ZAtutI}bt5IXi5i6Sdlf2}EJuV8$N7 z?YerRn3K-IJ!wWM)V)u~1^IUJdY@R|hNE?bNv3?UTyn>L4y9K0&-8SUUIc#!%Imtf zk1TX_Q94al?u3$IYzVs&v1-gaP2A9q*&O>(v9KI()nmUurvAEMg5>04;d?6(n^|v) zSGLXw?l9KAR-Q@H|3H{!#0y3}yU-(m2Y*kU60~&Wu88JfRqR`MW^wn#Wfzk$EwT9S&Uc^r({2^ zE%J{@l;6%5O!I=%uvI_%6vQT_OT_1yo`(M1!ytPNWy$**-4lH{-k^y?N-U?0J9dJv z&}heP-)lk1b3uC>7Uq;OCTtlmcQ$+F)T$hp)m+27|9Pyy^rdD^mw^f+9sq?AAsKEO zVZym!;fx5`vWsuL>J@~#XrW$alexai!=edt6Ian=vsaccHvdx(3$&n*ulOA2>>m}G z+cr)xk^QP3wIW^W0i_5igh75G6JFMRpkJM;KUtnREO#7O4zF!|OF@wS!FS0z)~vxU zViAZ-t~7bWrj+`YJ+7w!YRJRG!z|;IMdY*1ycSQn_;QXI0|AwX2yMDoFk2g;3%9qi zjPUvfJ!;SZhG1K;XNEYLPQ^n@qMrZ8dFRXshJbrG0;S5SnDI4OdIIH#fVUJM{_nH6 zlw$|;*l5}4se)Anm>Iwnv3Tat^(1ov(CX9 zOhK2NB-u_Ha8$R1CcX)0apt*c_paHcN;iC8>$1>r&Pj~7sX2slzea_onbGQ$Mbe39Z@*6MM zfL(*i&ySHWw=Rb$9u^$$!-c6}yi8)=^L)?Ir|HGg{p^<5c=>u^y)9^EvF4Ih?Mak% zQ))qjw=tIjz(2EQSzXDBcBcWp6>4UW>m4Hs6#M#O8%}8+{bd$+O$p4+%^%;%=VIX> z$o-aBVw?5&^+y2l9io*&u6@<%x^G#OqC+2QlFU!$tm%&JICq1Xz}e8IZx)J;&4eZ& z2uI3cHVHnPE92^x{0F8lz?JpQL1RjP0_UTu&zC$@H?3G5?ujyB<_vBt_>A;2IaUY@CZjL=?KYJUk6rK7rOAn67}H&HE3EtiRbdR}9SMmz=`m zC&eCj*TJLzdL|!BjGp}Mv6&KLV(`Gg2H~<^h6B@d>x2?G7mnN+1+bQ}rSWo#wtHlW z6A74|KHCR=W^d}~Kd?5_`L=Mo&T0I`>=&4wSd*e>3gWVOV1v5sn_h*j&??rC1+PQUFzo!?3o&MO~j77YJp zpUQk)Py);1)!#hpMB5Jlt`~si#C#|sxx}LFw8`>mW@f6)6(0d(_j!^ei|c^Ke#1o> z^7lw$ASK%%O%>T>PlD`60;&}75U)X2p#{F5LlmAz*`C6T9NxM!zH(uDYse5^SQvrE z^>btudYg(4V>Hgexb_=&e!vkqQu334eVlAC_zs)I{HyXcYhyqSqmWbXqKWiZ%%B@E zbqCcf0guV(d{)G$o(x&6>LfV;WZxZB4APa+pHj^ZIY`8h7DoU}d(>vD(>iblW4nw+ z?H&iX3wh+XEZN*kfoTdu;F1FD4}oF&PEA#zl#C2GP&k5jcXuBZmGtHW#hhyIdr$M$ z48ho&v(fQ4$tq~EGe^w=4rcBlZcHffU~n!j!svxqQb>wTNax!mWRC1*|65rLX=;4_ z64q4OK!*Ts%g)~Xl!*e>3&_IE5oWL||LM{Xy|{59kZRj9GyeRT_ZaQtF}YO~HTf6Z zPOXzYR^FUnTr5HRbk;*~w%?$5q#3?3;{6v-Eo>U`JTpBfadg>l^P2lZrvrv6$sm{sP)t zeM3%v15ES)a8ZIAvzC^T5ppB=Fr=I#vij)*<2p>&&nW#eLP&19e8chTYvoc#Xom|r z`D)R_u^hNVjcb1rIcy#JHEdx=ckEUqU%le1*P!+mtB8QU{D!nBtzKdr!E@)-fXz}r zR5Y}s^#n^+U|$=bknrGnzR$~3c++rle-pEXTaO8mcm{E`qXvfHwE>u??sxpemWoR$+?BTk$0Qh}Eulp4*?RMG9z5&^yjHoJM7f@?=n)4uyflkL)>F)*S8rkUi|znpOuvbFvxaNt@qBwhiW6h+fU$> z$nV*EL`vUh?*lJ{o)~~X5h>fg0zi=poc>01TF3aa&}LWj3AjkX^=J?grtd9ZRj0Ui ziaq+mz5Lkg8~*H|WzFgsh1~szkC9x-#w4crhE;fHcl5PH3EvQ${XBnvNG#9A_pief3qAo;*>WX^3Y0zb^#50L={hD;}N!(&yP%)?9T2 z)i@6}i^?8r_W?&Wv+YcBv&)h`l>W4ILpWi4wDGwttZX7O5^5z|}p@S|-gHsq3s$T}MDzK+~^7l~cwQ*rxTPHwJ$FaMm1 zAIWXN!zBWoPx}E9wqr_EXTJ zDZ2?vlvmn4S$d>N#hz23&ac(nPalhBL@88Ty7er-_o#-ho99aDT3LOw;|c3rsm?jc z%g_H=T6*l?S*^iTXNiIwnq?NMv2^TCeg$W+rp)d9<_^2PB0%tn^#jNchZtdTPk7#WKlsQ5}L%ni!q@|BscE2`%Qvt&U)hS&V{b z>f{oB#N{9$G?%cbv+d{QDYOY}Rw_#A zJS6$5)$zI8@tgA8!tg}MzRbY`JEqdLw{U#wqGv?W{5Ei0;Tq419ENGiU zm9;*VbVoW#)sSpY*B>S2=LvLy7wjDT-9xKzxljDfBYOjoPnyb%8>Q2j2`tB0@e;(by0&(6Ek$lP70w%lPCu0wH8*$FqVzfS%pOM>3a}fP5 zIU@um)aW&KvHYqiHAm=Ce5?2b-U~pfQhERY9bD+0g%#0BNJf@bRu%=C4OR{gQBZ<_ zq@XUiQ5_v0S5Q-vFfnMD(M>sMMC$`!i?VpKE-Lc z$CQ->;TrCn(+h{lN{Y=_zQ4fEVb(6S?`90>#Q+{AOdvI5y5H^Faf_;en(Isy*7Y!r zT|Obl3GNT6xx$o-%JMjVAQ>gf(gFU?5k1`OqIJ&b=x8w@WTlTX{2N;DX9L?-Q2yqW zr)6eStg?w*-Wk-s%U0i5N<&4n@bv=Cxc2p|p@I zCHR5{cuU*oIfcE6JB`v!E4n7idvz0zY%ZN*+@sFuGZiq*eIzgO-r$wfQWpLyDqND1 z1*1RTyuECaq5B=3CCx+;d zg(q-4NJk#K?rYh8GHVJZe2Q#3t?9wY0ykYNPMZ6~f?m%m1A9Ki$;cFt9PGEnC3eIm z!oNMMvi61LdjIa!%8O)ZVL{H*QxF0q_Q6#vKp#ykENF3%>vvWz&d!cNBL)Lsp2>_^ z-c3N;iQd?8I!a(VzF@0dZ0Kx&CL2rqJb}{EJL?^7l-f62PMN6I01Vh?GOEIct@`n? zMVUDUXJ12|pGU1cPvo70e{1r#c}2mBi)44U8mzinz-3)`Xjn8tN^Nnqp_G)A{1@DR z$_ygqJjRr)(BHS6F%Do~&d%Jyxyy{NcQ1!|1$Yit+D2Y@xTJ^OZ44g!RNRs5?^bP} zw`y(#(W0=)j2uHBabP{lQj0M^a}M?%jQq za-&h>kHGDe2823>>-qOquD+wvKL-R7G zlJB$mH}01UPX`9SF(UoITrR{$^_y}&$e{lfR}-ORg#=xsVid`+bo)V0!vA3xtNm4O zMcr3zmrH914)Lw?&{&I+JH8lvh}tyip5%kS5eET9tYqY%q1EM+ANikr%6_BHR5;zu znl#j0v^$gX>gmH+!J*tSC2&|8T)<-V?-0D7mF0Pzh|tt!7&svPUAzruve?;_r5DQ) ztp9o;znrlR7pC3s_2eYuLaSbtk1{Qngw3d`HO7^`MHG=Q{zF*$9GjZS4x8I8cr(bB zy7q=8>$z%{1Z`AWc6Pws&Be(heId-!&By)b95_*kutF1EcL4)f;Hq0r;p0dDtQShr z^uC5=O)g9hhaGu>RMB-V`_o%?FgpGBbDw^_B~(^sLCrYyX^F<8aAC3^ni~_Se6bQh z6D2$BVEh`$eV)7>Ql|%0Ewc3LYG`3069mhII2$$*{i)^zU@vS1e9Hc>Ik0Bae~I?D zh?S&*-3l}@u?-XXJ1JDh5C%^MT~02tpD>kPXXZ2%ZN=7ARe7OnaTG3tO))hWZv6LW zP})eL5LXAx8iUB~{m#a^F-*pe|F{51{X3K?k|S(9ea9kb6Qm=|GNMLV1o6pkrnhSK zE6;zAzbUphIgxo~A;>w@yVV;Du^Lla&ZnpGSbt*jT#7YnX}ODn6t>>BGi7UM{YYj8 z$*Jz(A(p0%PaZcKq0-DqUir;}=gJ#}DaOJhdeI#6-jzjO!CRJCrip3ebnnwNSq#8&um?uULS7nc_N{*R7mZukP2oVgk z9t+jRKzfx1+%_>1qgJr|C(+wKB21{~*fKPT&UYsYLLLrJ&!QUuPqW6^S%cC-MMZ$O zXG7-r>UQ=lg6}-&b2Rn-=P2xzp9+3WsQq0q#iiCP=$bK|fio(T8%B5E4c?{++Vk7CGlzc=hq3k|7zK7-6}TQKk=r+*qff6jR4Vef%htXYc=1A zbmL|lTjbl4xVN)zrhPGcwqNsws%dq{G0*WJlLEca~F=s?ljhhJ*V~3`; zkK+;5aSl7ATRNVcjGuWTF0Cr@TV=6y)NofQTu)&77ZcUK*pzFW!2{=@r5uUGD5T?e zoYh_libgY6a-Nr+x95#_Pr}a5+L@FQtpjSI&p1I~!JFuStZcpWor3W1PiTFSlViS^ zBj=GkpBz$m8D;tTiCI}( zPg!RBq4b05?4D$A4~$i9{i+OhYuA%QPR}c&+v%c*a5D~S0VTofdq>DnncAs7<>u#& zX|#4mi9qMIQG2{-Wl(gVc!laR<3SA>d0IF7P=lm{-T2-KBvY_4KgkUyJ6%D1I@J2k z4rtA@O9D^b+pCjDqa)w}V7=geA+N054mzHrnv+p39jecI`fMa_ciH)>^+Ds +dL zsG^Y2!vZYE1-KVEpY(Hrbf^^lmJf~1I$^7u<-Fna$;*%CKb^05l$14#d8Xyab-#SZ zQTFaB{+i1$Ix$gZy&?+X;pK%9*GINxXqd{bA0HoonkVsZ!{Hl;@u!*TZup-)GHG3GP&T#ZO+5GnWZp<>N4wi2-$D37c8>bSbL-5TbIfNpmnin*k&7v< z)1JjB5`MZ&!uPF;{3h5`Byhwo$a_lL$@4n3ot0iKN&^}Z)cxXqvGGC9V{2rv*mZ;d zG0^@775J@ep0LMB*{KxdaO;2?)>yU+Mq{bs_-Br_?NSL-bq1VbGg{Ag7{uPN5r}@b zY$%D{AI40s-w?1vLTCNDU zf5&a;lXnD66SoL)XlSQHbIOR!j3_U-?4C9*48mgYd8OkF zJoK!`ce7v4rRMnQ0SIfop6tIT@L8Z+`kxZ2$_!o>L|=@qxq=?U{{0q`AnJqK3AF^bu;@0tSiWL|dI`Su-h*S`sC-HkBI`|A$1SAQ(s{O~=Gg~H28fj4WqDSG;_$v}C^ z`r`e>REeo$NiU8gOe-_94Lrm-0QQyn2Q`IHtGT|HR#&qYV5Ml1TlkbBUXqoAn3)X^ z+RSVlH!|F!!s=J#%wjZ<*t}*_0;C*)bou2fonUu^`_1OwUMAnKMTbf0cC!w#fc1{* z??tiQ`gpgAU~a2**!#ToC$sLTgBU!XTuB@(lZ34*8GXa=wno#FRcj5-q?}|SR&{&! zkgo!V)woK^YfAy-9eYfth>i{pPrmg}t(wy#;b>75s+FzBAA0;3Vap$%=Ux6yXKi2O zpio^WCxV&Mu25OXkV36-bBFCFPlV<4fLu6vM`&9YYQ&P}?YPsDRoq;yW5x~-F^Acs zj}tfo{(64ykeI1ULPH6eEyvXl=8OQ@WaS|D`c_rh=bNg@$~ZqAJa7-nQAOPlCShA`N3G(r zTBX195pr9T(*9YRUN@Qf7e~Q~&R4_vFWh{q-q7c^bP67+Y28nuoN6_^9ak3Bx>yXw z0R5EH(hzZ-%Qy-IWnLB?^;`5=P?65w+dpeev3l`I%rq zne9UzwnJ!M|ELrIJGUpItn4sfn~+rN0F?2sW*V2+ zS#Xw#iZP{Rm)QuCbNiktm2la7(IA9(=;HoUL89TJrBb!T28|~3PbW3rIOoIF10;3z zgzLKrWV`2Op(8%!z7u6p#J34CDRW>S!4?(B#?CL|>WR@YNgbTEWcp=sb2#J2j~~TO zN1s6)Ju-{3d9jKm70Sb9UYzj zsr-x94(5OFG2Yj{f9CkWr`Euh31TyXxts6ZyY#c6&gNYw>ea21pAs=twx7R#c7neqx zSWWNp=A&^GfGRp19B0>1OT86hEY9D(I!4-4jw)l7H#Y@K)wee{u4!)6(SYeZ|T*0 zxk(YE3Mbk^2{^UgLwt&?i3-gp}Y~xlXU#xrt6G*qSgjiC!T|_Q}hb`W-#hD?U|@ z+>ArlUj+p;z{zo9BEVb?%-E2_+IqNpE&psf81W1ACbJ9$)|;ihTZ*=REAB+M>ol=P zyC&Cg@@8p(sJC}VUjanD=zgCZc!XV?pvVcnz|Q;cb0N$!)z0)5^jnvQb+*_rGcj-9 zP_~V6SjA7%41xh>|L4AJ`0wOo|8NTQ2=2KCX}fM(Lsx2AWkd}xo4qGs zij|mgx;{DYx-H3!=K70D8nsHdA#gIYbUaMmD4MyR%j9OI-MCftz8s#lu#>5!m4?^p zpSIWF@iCXvi`WlyK`23HRIZc8rq}6Uwa`O zSUa56Kf|>!JkVY!>*oDz82X}yhu7(@TxIgEN$fF%gp#;EAv##;ml~VEYAQOPH;Y+u zQ}4QP;|=%DsIWn>xAdKQ>~ku^wGM0#(${z6P^R*04Mic zU`w!_SM*()mc@ocv7}|Ebv$|}=T~mhM9FdqA!Jr|h}{p|paZHCjCiJk+ePg{CIIh6 zT>&B`6n+6$i0J`({T|e0ef95)uL?zCgV_Ejrcy*V*COY+9E_Sb-G9;})BKU~GJ+VEXHbuS2_suPnkTX~h_r>`D=*t(GE8hC*d zsmA8^LfhY@9?|0ZSgmUBwQN^{&WBlsI>{RjWs)cBlI*4C-EA?gZ+6IbJ4?-u8QM;& zt1mvF%NW_Od`_<3xL?L|3gDi6gm0~VTQBk7r1BJLZQiyi4r*Z2!WO&qyM&YSx2z>w zeC;pzDHb3e5zfNQJpkquK|Y6X)8B3CEbs+l5mIJknpO-nSN=Gn!Ldq5mAUh~-7E?~ z_{Ko(mE_WRFH>-8gm@$?Cvf)S(YrnrY)>XO=%S?$TMyh5K;n|uk_Sb$jg&U3+iLaD z19CcL6%rjL_3Kp;y`kFs+2dvC`^Fs5crx?z%P>T@?3`)YCr<3Ft&l%(iA9jD0rx;( zHwG;g-T9_cfx1CC*gv7QV|g1pcK<5~ zPw5_;R?uX9o(Ct^=w5wYlgbmO0V6EOmc7FJT$;Tm2< z&p?(PWyT~n-=jy&eJmR8cFVt?YHI1%UzPZaiF4a*6E*m~OR5zUal)r{hhAitdcOKQ zEzzuO=2sy-I)UGIy=W|8&&J-kU2Pd%4a~=G5fXN=BnkJgclp(8>^Afr+)W5B^=e<@ zeq^$I;gIuR>T1&z|Edo@UbFmmdy;=Vbty*!swpH9t#3>$)Y?l8UUJ)Jh22@!iEEwc zzIEN9}Dg* zlLk}mj{Z#|!Y56dS}gdq;MC$*e(rk197d^=#E9$s1-`%ucf(m&(eQ*Tp`|(he(;x4 zHpQQvpz(y~*PA%^yDi?Mh%lRM$sn#^CXFb0c+ZOue*++nj%2jN5m*>LTxG~^&4mY! z$lcow`nDwcXQ)S$D{{wk2e&8|5rB~AqpJ^u5+1NUb{y~PeR~3(&yqGCpiYebU*fr< zUO+xFc^qsYP{M)blyDRhgk78RgQ1yOsHNKqF*q(Anx2*v5`xYB*h0Ww{ZSpbZC?W zodgZ`Pemlu=dN?sn&@4b*}w7``7HOQ%Ceu)>aCY7tC_`O_vf+k^Y;VVOyD2RqPk1UJ>2h63L$T&K%~`ZPVqZAX9E_nS_(_iURBdQehBDn$#3Z*Ogtm zs%TOrds5uHM7?>0b$X5HQV+*3@PzEON2RNU!mB7Ypz%&!3Y|JIQGlX$o5d(`2yqyB zLFp{BD4`v05hb}TG!t;URiv^pN@KI92V#MrPikgwdpZT0^E#&|J=fu=(UhJ?$gk58 zMVu@=9D5#}u0$NS=|$kwD*ZRf{EbXU`raC>pILqPDtP`Vl!bEgxZ?#2{?V0OPK!na z;S{1>5xsGbl~jJv481YNdq`N z@J$4!3tsQN`pO0cdO?T_ET8E-|cbCiPXT`zzg*3oYnR?RApvl{cw8rYeNg*RPm zUEV5AM+n-T6_zB)MQYCMz3qG>_Yled{d@_cMg%)#!-L8&O>HMh+wVzmbPBXeRM zm6@2DO+ci^lYrM$<4iR;9qZ5u(WMS<9*+$B(8-$DVwPmxfeQd=Kj7!xm%I8lBn;W8 z*|w^`L50^PH>KfQ*DFV&=}!9M(BhL!zFxqZ?%0}!3dvYB1#ps~C8tvkXG_ns1+ z)X7iPEoFS_F5Tr|ICg~2SbXq2woy=O!4cXghPW$&7DpZQ%2Hhen z!sy9ywORn?RQ|Y_%Rqyc$ZhM-W;E~tti?@DUji2lVBR@ir2UXKR%5v!@Mnu%bik0| z{3BOiNo!HR=C~cHremMGjBMzT^*TLRMGY7XozUhQq)l^tYIsJJv3l~W!tZmv>tg7h z-M14z2=I-4S=4yXQ&U)0R})?mM8HNPFiXaHG4J{sjKqg6_gMe+ih)ll*hv1V-CCMR z-c~WOi(t$7QAZsQ>^mK5owswc0iy?K(6X?ywty~TWn~4-6Cdou>>iknZfd&MWH{#a zqejEm@_vz^+16AhXt0Xho;ve|;4kGAEwu$z(zb>MnJC-|spgk&U`Fkd}0$fl!DwY3Z;sBZob*`zEyDj zrS?5l80Qo<{eQ3iZ^qY%cvE>;|13YNYgvf0O-8lCj7COE#cExexHF>R9ZwR)N{*-_ zytOC-K^%#Zj*Z*?rK?Ke64ccJzvT1LyR(QeNa~;k@SF@`?Beolyf8Wqi+C~wdd6my zJ-08N7P&2eVK9$S@^GuB#dS(sVZOxhx>Hl$Z{6-YC+hdR`k&t=8m>CD?o;Rl?;6NQ zmJ2qFW-37C5ayFL+3F8q-Kz1CNvJF_IpOH&6y4l!5axkWMTSO6W{OiUqn=(Y<@|a- zW{(x?Y89=rXsPNpw(=uZrPy%JWxxIa1}O@2*&QetxZSHXwoNpiUkFpN!3kwjFJp!# zHeYBtC3{|w-`kc*;Z&yWha}yO2;RRMQH+9cVN38u(nEMZ7G##5-UY-WSyz53FkPI? zM6pd^s!3w9$&wI=rkvw_TVwf5%mh)zfIIxpGw@_V^JTj^L<#6=Q>6wd7L~5eJJPgK zsOab*Ne=%E6N2r9pGiNIwB|sewTxetiDL9iP24YZV4P{u(?=A`S|ojUeejdP&qG%o zMnrkY4q*US%KGVTzFL|8TZ$$yJr|?G+Ecwh@wr$=yngZO)mlz=@~5E%@Bg~{k`MYZ z|LolR^45A|u|wK7_xEYRJ$%1^H{d`ETn|6q( zvr}8$VvOgpdZs7G7o_{?xePL6_NUfUnh@&8Sv?ffbvXUmOjBjf=;BSqC>Kow{oK z>xv{kQs?2yA$hhGTQioUe@24C=rF0i$jaJSXTN54cP86!GA_&1IQ1EA2E9|Rsdz-F zm9>7L;Prf?)j@DMUxPERtR~=p%4#%p4UOXD=BAnw#phz4yQs}g`g+3PT@z(>cb!t} z4HMFSmIqtXK|k7R28N>vPAh}q!u??+MsvgUSweW)PHu;ssQ%th3lm(FMJeAV-n3BAZV^q(V~egzvgZS-?CDg$7pUCU2m1)BrN4p1 z-;H+%-m-;~ynK7(-Pyvr-2IH_J9%Y3GV*E-Uo%?G-9K&Sn}^MuPWK7gt?V+RZe$0i zsGn+{1(sCR_}_3?ys+_mKTG!M3%)!q6Q!O$lJgxPTY>moXd~d)dk*^O)huM~;8yRl zQdCD}?n}NzLC<7Rb|1O0ctFV`)xJi9>2zwM4tL2^NEa;lDku|rBc*?eXDLXBMr6Ev zamz&fu!^dp66gk7I1e_t@(r_E8Y4)?6ffw}-9A4YGd|4&eToOU)1eMOOozGeOH+X=wz=&Ja+| zZK_GgA`sS+LX-^6CyQaSN4mXX5v(SZy$d62CZz@^nXBu%L9$$MT$Gw=Kk?ISwhLR# z#Z$_T`twKOle#*$-R860Rv52|wROD&=@fy+a0!a5!IvKngqQ%Kx=7>M6={>KF{ z8*h6<)JlI6Y1=x{a8_iexxEyUauX`u_4vw`!}Xqr5P%VFmdH%vJAebM@oSEE9q-)p z{GKh>bCbwA?79VtoJl!tWiNDeeO+RF`nIgpDHIM}CW^aoX2^RayAV05JMY^-0)+3k z#mVfMzsY0uoy!oSW>e$fC@-!zXqSn&*q(}dOPSiPt{708pV+1&SS{{5F_^SGx+azX zMYS)dHx?A|gKL7q|Hsrf5>GFoco-8_FjAKwVqvHc27r%R)1)#M@YCAH6h8cFK)yCM25|Up3cP(h75OR@ z*Z70A)1H&t*?eJs>a=mfv-c_zh}$a9RSOC9=Gei7l++icwl0ch6VsZUW58XBHksn=Q4xn$K2)bmL@wu`UOWgIUCKaWF{8HnPpZt) zOWb?$%k>}D&`wtqNX?@G7WUel{KFh`#(I~fs6X1}ZPmOfcqS}v70A>ipEUXj^$#VB9Nxgd!XeEpP3-KK(5qta{{#&#xz zr>jKLc^Wg57fly$x)T$Qnb?ebr94R^i>tz-30*9hqTYik@vfuNS#p8 z(UG^?9iuS??kc)aSwKe6nZF`lbRgwPU`SGkRW<|Vol|O%x?V>mQ9&^|!##)ma{_P_ zI~JSg>(Ttp`Vt*44v@9CI#jl-j@m$eu@X#!Y;A9ota$$)R)iZ-nE5ZxT@|^uW)7M( zUS~TkTKX>y)p!o0BNWf;3K!JR%MJi4?h{Kt6pd*?R4>jN5Mb!j=~rn40u#KypcRntrqm16c2hMIRA zlFyzYZmDmW4K8LZCd-U`O6C8DxBo4w9n)&d$}8|*_A>&llMxtE&~q}lj6BI&C5eXm zy`Y0wiJO*VKox-?8^i_VNe6$%^#BqtU7(}8z4{De4a)jl28I05{rlu;8cLMQo4a)v zQ$5*1oMeh^Dtg%bKSDwTN5)zdXa_lVZ!w{>Jt>Xvr>~*TRxYH^k|ak}%W5bfwfT!K zf+cq39gEM$GBn1PfYGd0P4LMDQ;igbvNX}4A?6&hgNk8%Mhb(FV6&=d=ls4;EG$)6 zyum~OP%+Yk0c&??FsP?GKmSl2Fp%{oC`f>Xv(KHR?UdWlj4NQ`W$zxm0JE|OV-xWk zn`=2Lvc)y_^A}7_cg1(A7nIw=jaM>{)jE2~f*dVuimvg9_n_K;n!j6+zxV!%x8#$S znTlHEJ9{%dmn7)5M%RR3ZIV%Owkds0SQQ{(Fs}ogQtUwDIq325jb_7-uv|9@kG8Lv zG<&MxDxa(j+H%bnrkDh|XNH-_hd7O)Ow;o%*J{c^a*1KrfAV|3mpuf086Z$-S?3Y3 zxG6W{BT1@)@68_30|8sa2=s%&UVT&r7n5N0piG5*vw9N#9n6%KvPVqj_`ZUrY*U?G zIf&>L{$pRiXM(M$IKroj>3mYb_QF*dFlBTby;Ho!W9+nk)Ly@xg{J2Oom-I$yw`0m zC;VTzE>1D+JS29mTN?3iM!FOZn4hk$d`TPz=(+dADCh);UN{On1b)=q#2O7l<|ow| zIIj@_HP>6Iox>+|R?i~9k9h3^N;$CULDB$qj@_2*^tsGQElOn-4QO^h-^ls*g;dxih82eR2ey%_SrS>b!lM^*X->N zi+nEx``4n#!vSynWqodAzzd}eJ6SIFUta>cR!y(-D>|U^$hibtz@nq$A=5QmwNxVM z)7IAd^@@1p0f5ZQPxbfK5H;nRiQ!gT9u2WFt&q*% zA6CNRs@PxZbC4(UA0q-LUXg1dT{GU$%ON1U37 zNR5{tYP7ueQ}lR;jI}RY2MrY-oR=|@)~xL7|sBxwx5-un)l4IeayILU8))fXoul2 zLd_})WxZ2f1Ar!&TYiX>HX}Md%WVC&%~n*{xqrq<6=i77Z7TaH!01CW&?q-DH1r1s zs@|4j-nB)5TOdhC@Z$IbXD0)SrmA|&R%edwd+P@CPrX%rr09TsWUTF}3v%17{9#_~ zD!3w;3rH-qSdXnty?9{!NV4M8A`5(!d)BFwE?d-W=MkK}$v0Q(# z6oD7G5S;Lj5=MA_TtxdTxARy49_HEVKoSGS_9qlU)t!~{@~ z5gF!QW-9XN%gqnv6nxN0GY<s6QmDqv& zc5~roTD-ha^W9qPjVmt>OyZX_wR?UG+12S#oE^UmFe%tY(!6^Z8#-jTg4KAaY_RHn zcjL$Ama;_bv~+=gdsuMy2wvGz=}3xRq`Bzn(gi-h+S4YM_3`%$ZR_nCUT!Itcz_}V z7U!YJ4l6s%Iw5&2@8tBwT_Z6jY=NxBAiP>W-})b%B&U;+`=A~A>KxlhVGvJqwDshK z7vK%5YH9;;4*@3-bU8UWA>SZ_`A(6gas(+@V1z}$o7(lCV~UjYfVJZVy)sPypE^}e z0G)t54vAhGc1R3yObmofmb~DvAowqUJ6a59dI8n%aJ~OF%KpmnCD7IU(bPmeTDIoK zjRac9h?r7?$>cxx{;1&<4m3&yceqEo5;O|S$P8Q8RSlGIiBP?8fE|M&*|IWjRW-6HaLH#PqR}5)w}R=V#cgQXiC$!7xeok{R8rz3jL9~0V)A^{m%}3@rU*Zb|HUtW zj}wG!TYi5v=&t|c_?|^ZggRcbbFT2vT^9 z%A9y}BVcCieenh9;yryirvkrt1y(_qOk zHuS~{u`|hkI1Wb@tg0wnA=Gh)931szYgR_B-&yQ8X0O!mU(YpVS(s<$iIg`Oiu9sR zO4EnEl%u10`$Ov8jw(kb+sJsS**aaL+Ih@YHQ|F@Fq&|=wm$?`-At-&n^{$&J#^isK%mw8_*DTIwULO;Sx^O=EDA@$sJ%+ zdyuFB29iW19I#KZqjYZqY^v9$aYsvycw%2|rddOa|1pK1Wn3V9(b2DZ;5c(f4|Vma zQ&LF7RO2MY^e6(AF+ z3D{a`$yuyB#`U0q?xN!`*`?ISllDo(^>fL4u)cxWECk!cUTvo9w#Yv^Z)2=#=f=dP zO&zUltV89+hw(0W3hW`a{ zb+lm!FcLuy8GGJzIn=o*;W?%-0JYS;-$q9~<<;_S)!zCFF&G8kBX?B4D6mKmO=4E$ zm|Zl?MO50yz!jZc+39Z~fN8rjVl@-X32lnm+Oh_cq0s5Zxo9)3YF#KOKOI9Pe}r_& z<)~b+aS+jyh!;~(Z)7`{;3~w&VcS*L6Augw{Hm%t2Gcl;f;g8_4-4`s>|N<0fL&6k z-*EMgGW9<-(2sxB&O$@kw0)bh080)zqYSXy~&XBP3m_x6`wZv-p(7Y@lQDgpy#gd!Oc^;P(;b9p)r@z1f}~CrpBWVhvv_<@Q%07(X7e9W**}>fxPp?u^N!$2mO&iPvsc_Aqax4ie3!Cv$gpP{A z@92J>o>GXrel!*Sv`Q)njjuPk$C>u}2+%h<72{3r`6vtw8m^al$oKV_aswq!%4Ar? zX3qmoy=15W%xZXexIF=0S?<#{_Uosfva&l#jc&B9ZK|&5;P4-`Qd3k&!7nUU3K{}t zGx%A-yyI-J(eUJCe}aY`BXI;bH+LkQy4gT2YSAq=gI!^K6!iZJ#B!&cSMZigt)|s^ z2XX)SIn0;0$2~x}vN~MfE7X}E>{Q%uobA{?Ej3xk(5x!TSW8T>g_jaGNj&%SVa_5h377);KifGK z6{^S!%F=CJf^Au(&nGbx7BOkE?!NEMb7Fnyl<8S@u6~Ikx`+o@nSf;#QJYnz0x0q= zpDQlAkRAXsvo$BYe93?OUhXZF>u`aAPWxjkV zJxpOL4L{y7pSe<{81Rb-MXBk(HZY*xo+t*jBT&wJRPM9t1QEP^xz3UF#7~O&XN+z| z29cT?!gh%82ai_$GcN7~nvv!z0R7Z@U0w9gy8nZ(0YpfM`QUDIzBI^>2Rb&tu(BtK zLc6(_ooX&770*koj@@eOl;f1>fzTq+>A`5Z29CL&&eSY_LUasK zKjjgUtNle`Z$;J>L%HZ|aKU|efhB7o64`ZB0<)t8qTPi)J6^sVJ*E<8x>-RyGmD%7 z)2+`ZqodO1Rc?I!{OcqxwLsF*%R&9&GiakD_*^eo3cCCIKP$KQ4EBFc%UEshSq4Y_ zki)(qM3c4!ux23Ya%ldp+XD5uPXPih-Z1?hEDJgzd$a!^!MWCyN>CDBBOHU3Dr52Kd3b)0F7_3Qd3yi#Z z>-zQ#E+*XHIGDY%D;m7oLJ8HKf0A^O622@52BS^jLE=q=GpE0XOfuXr>+OzbO51?- zaGmJK;zo3Tzz_w_1CZ+FXc0lsp@mriri{Fv-YmTY^xroc8wAU>L#m>bt?=^kl^SYGn_Axlg9=;wQBLRZ#Q=!K7~D=!9#6i1F%OjN(W4p}`t7i~b?OfKh zW*+SO2w}I%l6o%p7@~&>C3an7Br_pH`xsB(O!(*0easkGU}tYjhnp+fu~Q?4EB3bq z$AA4?#=Tu_TFfCiKR!`W2F#|Qs$W>I`ykx|one_fKfq9;K?B0(>j7eflBMOu!=X+L z1g+afYme*!og%~ia%CQI@!+a@RLCf=X2l1}syVlHX?P4+CdGjPD=LSm%y!ZQ*MjDjDgdTNurHPZ)kx5{&{^ zk%+Ui2=|5ybzs~KwE6*QI9Zbo{c(|A`DoBYg_+s9-u~(+W9VQfmnhXs8*P-yYR6|l z+U~dy4Hc!Rb}RqBIO>1fW@&^_0Qp<3xS96?8hWloKqp2N%*6wq!=k-*K+`4y+c0|B ze|Z=TJ$iaxdT#_~1I-os?6O~xUiM9CSz;AwCJhbMxdfys6jLLRE~WGp3E!Kc%bWSj zhXYYj0H{R@ASv3)ej@%?@gsb9#*1e_n4Pwx()v_by-2q&0wdFC{!vW4YY5j%9Chzd zMx2KB-Yso@-eOQMBt^v;;*Ii_*kQCek|t+9jqh88Z0aVi$24^oD^vKiJwcy)MT2E@ znp)}pD`wlxC-7T~Z=8Qsq4%wG65eoxrovWvU> z?|HbSfdR*!Vdxv@M~6i!qHYJx2;sS!mg=9Z8YT@iyz4hkbz(E;WAp1{8v5qOPU%38 z4#2Za9L4pP*LblVHmmt#qPL{gGsG~fxE^zlqeEGbtGrp;IVYkl#7+{g=dhWn2WT_g z9ryy_^Vf8T$_fGZh!#2BeJ`?sh=b{GowxdOHj0$Fvcbt>j;RNUZv8cl#lcnt+Ew9G z@nWVjot}#q_*Y$BlOwgk4o?q?&Rt8c|9B@y7MJ4qIg14wz0ubn#1@zVLS{Apbh(K$ zDrc^wSY*U71!TT=Miib%ul9+>xsi- z02wsE6A|^Vq`#@$qmZ^4mr+HqLdc#%=4nR8Kx{^IY({uoM&uGRJI$~6L>x^BZjhe^ z1sw%Nx8*4W|K8vo!yoW|R+j83Mx0f%XrAf22~nmLg_M)^+h!_AhaQ6AsFk6nmL&0O zX7OJtQBB|z%c>{OraloXVrxIfkEInkSNL(j1Fj~DlwhqL0x2nAvRhDT5CLCatg)bC zFp=g&B@+#MKs9;IyBo!x4D&69-p^WH?d98^^g}T9T(A|TD-Lfn*4IY4I1#%;W8z<< zE<8lTEY^*(@&u0I*yI9D**?F16)hRuZ2Jv`4Vt*PX3(bfyqO>FUSro-I=+Nnan;ID7SyI?P1YVEKCf8fR|AX(WfxG&dLJVB%-9h8A`+Y(NM4ff6(@>_mzhH{e9E z9mSv@G%~^s%gtqCF9yn_@vjHt`c^$QJA6*gGS}vB4emT&_}()+^xPf$1Y$aCT8D)A z1JYlA#t&1-#iRFWgHyuTEHnyjO~6p3Dy{UADn~#3bEx}Kh6CTzzNle|#hR7%aw?M%37W|oo3eZ~^>4b_JKxybU3EU6$r-Fb?gUFg zi#^3P`?r5TH=><9GYg1cvbhh|tc%U2hIP}HnQf2J#mngf?}lGh1RB<G5X3L4Vdb099Vt4xzcUUp-s4BPn?~7xe%O!(EpS#p5u1)gGufq0U^?(WbzTpOn zxNR1h3o-NDoGeL+#@=TOTr<|LYW&1nG}9^1v6uV9j0j-jZL6)jxTwRWM$Z7U-LT>s z)_r6~%8+%pWPfyw;r9~6jl_wN)zjEM^ROYLLqzZS-Qxbmkx!G(&O5V!hLa_6D#Ru( ziUZas9syH>+Dr8ypYZxe`Y|DtHsi-9u^Qcxk?|?Xtp)}W?$UfPc$5(-nl|}?x&|kF zR`xyj>-FcL$DNsB1D`+iEffg+11U6U%Csp04CUxeZ{P~qy?(r6PS~#h!S41Ltok%j z)GyVEC2{5F{f{zaL0h!?qc7qoHUz0fP*zqZuU_|G4Q2eD(H{9`%WMG{0V(@UdZ|f4 z5%TJ3du_0JYQ8ljd3UR&)F8`lN=HqpC(*4i^);vB_i{&^bkWYCGqJu~!meaFhHxh~ z+M~1SRPE~Xv${MM_WSUbCuuE|$|xn*c@`H}cNYwY9`)U7NYT{CllIlPD4cwj|K`9e zaU$n)3R0$}Q#HqJ7dJGVShfXt2c_qeM%>PJi%wQpGP#GBH>!Weeh*hBj*MUeduoX0 z;yYTqZ7z0>Z*LwL+%)*T{bHDWzHA~e+Z#@VO$rNReB8N0FNYmHx+tLtVzJMy1S@>_r7aLiWANPS3ZKbpe6ds2R^Ko}~pZpP-leOYR zd+y8spngu`{2duNIqQzQIkEp|j^@*}qJ>0O_p;ie+j=AJj88XMO3|OJ2z2WRMpwV* z<%LB@N6Tyf-z!;yy8YF&qkUv1sluA3t&Z}!XO%P~lQ!X1>=V+Kc};<)^jx~o+#f`B z6|pB9f}7vCoO&KJ248JHAzND3uw^8`B;MwfT47fWd^Y0+*Au7L)K@xp+U}#X| z@UnVI`+r=3H6;&=L9bc?!q|>ZPVB8Moeg16QaB~Vxc-mpM^J9=OqZnSkyjemjO{wp zh=EG54z~gGdCB|xus&%U=SNL9WAnL9O-YPy60Ms>Dqp??)~t_aW&iqB-%Zry1>)%Z z<*dZls&(Gk+1wt}5nB*5SXlDIfh;zgv!Wt9uTN2sf%wT&WDVH2+S1(ILPH$!PD@R1 zhrlcVkjEakG9B@^#Bwz^Zy!2LRDc4VHqU=G6G;ka5X)syAsyycl+t|G9@vmr^^mX}#m-eq`9JVHV>U%Q-(cmlXDJ!sy* zzLkZiR#l%x4|aOy6%hJAm%q1X2mxcKt`mAy2OY?b4jwjRYpus%Wn;~@qcZ&2!K^sz z!~x=P;?)_Bv0B37(dA^N9XT{90!Z)yqlANriKXIVdJ&>$zekmQ%@ebI#CCMy`t8q< z)#0h8_f>Gr@kt+s$JQ#S?OXcSdQ{O;l2g}|@2(9FJCx_!_^2nfcHSX#sQ>VyGe3zb;l0Ov#rW`^hF$%eC&|r&;nRsTU*mbFx4Hcvbsq);=v&$IALW zyBis;6Ip(K5lVCAv7obKmzfz67)mFeyx6c@4C-s=QpAEUs!-PibWYb+>A#hli!&nS z)tDf75bUwCdb0vEp{v8d{Kfxyz#QoW0@BxuwC$cqMf{AYQK8A9+Tg0pboPt^0!2DV z_Ye${oSE6_m@a?DwyN+|0jmE`b{U;_i`jAIKzSDqFf-XJ!)&~2^)v@|3>P=IK^$QB zA|F%yQC<<`ia1Rj=*+b~f-^{{Sem}hd584ZQuezVo$)>%0Mb8(r0AJtoB;_zGUa=v zM(?H+N_&Z8-8ZIxY8 zP#OycMgM+M4*ZFbpSPLeDdWACs1U$STSofRX8xth@e|Ic+fW*OeYx5nRB*G{SGgWb z!}8wSzYPxd_wRIWk7FA9OfYaC*R9a+PcTLw&HEk3zf6v_BCxfFx!8#W8;wl<>7RDB zP<~!c(P|0`E-RmF^cg4#vIe4;4 z7<>Mcm(^3i~NyyC6tAwWHUTLTJNa*uC#7XIPStV+0<89z^-3$GKG^= zzXivQnP6R^duqljDwhO5wl5%i*b!d~RToN9HFtX-ph+Zoc~)#_eI9Ec&00@ayzy<5 z?l-q9MEdz2-uLxcvWzXzuZ1l;`qsPSMw^%Tv%CZCaaow(=z8D}(hdkCI>s8t zRA~2-I)1dnzMcE;xfxW_>fCq_28$Lz?B3$_J2{nD|FfBC{8yVkiR`-nrhUc$me+L* zQixYfaxzj$UqX;XZg_gVvDS&d0L`xgX!70xZ(dj#(Sgb893`V)WBkhA@A zm$;e!MypZha&r=t+q2?SElKlQTixh`C>W|e=u!5Io(Bok1qY`Cs2S(7GBo@!A${9z zoY>~ZT#dI~cLDqJckcCwrCVAJMiNPA(sD}{0s=7*RWh_iwYAL4TYW@*hX(sr$sHSE zXR~dc|IF<35TV3}hay>wNqs0m7Ec4z1|Wdr#laafy`DpoUN?{v^?5OdBG)I(x$4#vpR%X<#t_af0>lNvAD)yuqCQ zcdL_IJZbD6y5Chj*f>)$Lj_5%Sp~{G9MwP1&RW?7)zyTm_1aY)1j87hZauVR&+Dlo zlzmQ?y-#{~lVJfi{GZ%y(Vrz*SPS<~+#MB99?u+i07+r6w9lf=$B;J)@`*kFnrB6H z?wyavRt~cx%*g>rR+mHUX&_2+Y7|L%JAHw@cO+;tK+wn^eX`N`sozG8=<{m}j?xL& zN=1Uue`a0-P{eTIn5eZb82x(cdWY(E&%Uw8@2>o=|6-CUSBb)}K{=U?IYq(T_oJY@ z=!3_oV)iqaFT4}0LKDK+3}9AAEw1DTTKdTSJh)fhc>V5Fo-L)lJ?kPEKyt(Ube&5IET4tNuj;Dzyn#Tm0ARLu*!+%gxL#xgVo{Ymk?w zJ_oz|H~xEb;*A%ZUYv@nKfxW|-C9PuUU<&%2)?KU0?e-9di_LXGYIKILe8>lg6o<1 z(f}lc!PI#9exfd<J@ zjXsLw6d5mUS`Y@Esa%|9#s&+x$+Cwn5Md&9qfqxjo{u<|K>xm~3vLcKUt_elYHTJ=7t5|~-;buee(c&&>b={y~cEC}T@UM!}> zPyDR8KTlHbAfc-N7BoqIb$5WjBVIIJiDbYVr=r6)TaT_D1hxjs_YH=xQj=~hYvA4# zTDtan#Y+&^DeFZI$27lvFV405PQY@5O9e-da~sTq|O0l^5e2# zdyIRmG98dUD6*N4gs%$k3#%NGQTcjGjF$6&tCF64!dNX4pzYPb!Z$B3Ppjm^{{lC` z{{puo!<)_?65)ZGL916~GnuXDH7`wE!D)%_(RJ_wRd{C^o35|Hw-zixu1UY&+r+U! z8tMdVbMQS_b`BAzgEHfxLcj4OPOg&sv8=(Jvr@($kZwb+ZsgQD);nH4OQ1_mOpg5z z3G#(%anr`OHY>qPAb-P0I(^^%DL{?NA?>i-l(D9q&~ADYQU-UwqjE%=-?^;!Rk^{+ z7Ows$;03dK_J)9&9uJe?A<31k*lBw<7A`h%jj^Y|7WtDrpwux+r?10zX8|ipwe7}j zK9<#|cW3aBk%Hz|f+}_VPrx#sgj@LLz2dkXO1dl-g?7siGn%XTsO+bK0>9o?IPa;L zS>bQ8NZZW3O(ui8z9!=#=OL0hh5wF<{L+ji5BxU|2lDIKoK_Kml93b}LS-`!(b#ZZ zO?bErR@+mOh*;&^?$u+_^L}u@(t}JDC}sX~w_RBVrLBd;9eMRE6&Po1e2&?7w3xYl ze9CyYIe(aRw;LlzM<89KIhP0g4(kfF%g+jjY^%t-*sx3vb@VCj>qW371CU|#_aD&A z?3BxqJHx`8^$VR`R2ngf7qs7aWJ8J$suu%0qHmSzuZw3w`_=*N@%PM(_ir0{Is(zN zNfYFVKj?0KFilsz!-I&xr}LN|WVtthrf{bC(L+y>m^xmCo;BBMZ*f4#bf0m=sHmtQ zX;A;~r_Vv=zQ}!NoBrU7<57@|dD8Yy-|SHhIt-zZKKadLg;0(l46V+6e+>w$n46og zDZ+O)HXzL^`r(TeuPk_gbREZvQD`^n^}^au@7v%sOpgZADbcy#q~##vMI%8Cb&3B<1{tN_^HBZDh$zyv$ay8n>|tNehiVEfMls@rvp z2(`@mN0oM?o+o?^oig(mG`E{f>cI9WMz;ogNZ0UlsIE86s;tJ0$bGLmxM0HVjfyt< z^Y<*hJEbZL`(8l+%w1V3Cz!t+^Q0Y0-;!%uwtpG4F*9O~9<)-U6mF3?9uf75C()9weGvlGVB zOEzgBQ@?cb_b>;wf48@ZKyEhzhSpPW3F5s%?`@=R3l>O*ork%r@HZ8Z44oID-sbU{=(45%R2RMU~TtBLOe zWj+1b5&n0M1{rHZG?6qhn_0;aoB@m`T{bZ>F))Z^Vo~0oxx*mB6}8B6a-NYKmQjT} zY|GL?2!z?)in260&5NM zvO5FfyU5Zh7^g&DeXxyN*fM9rE(eTwp!?cVF`+N->Pqt**3ggvdb0Hu33OiQDd}Nc zT!h)*rOL@d+04x7jrJOLp|_ixj6&X5kM}GIfHb|Je@Uekei+DxZ)%i`TSe3X_+uPhY3k^r-7@J-pKA)0h~U zo9vHmr23vK%&app*nPl>dwU}5y~Sg|=H>~`O9il3Q3u&#UOc12j_9U~^)2v4xGr8d zxQokrt5f%}Ed2G=b**E~3?LHd?I4=@I+%3)6&Ttgt_>i~5|ka`L#?`*u5_fP6N#)- zwM7k~MB%!i-Lba#=~}LFvFar1sQdweUIU%dxry2r<1zImW^5io!ETU&fcnMocx`|r zClMebkk3>pPsMoM#@+K2QrjA4ZEbxUhBB80MV(LZ;(1CZlD5fddAOt<6j=i$MUVS= zfO4}KNsjn`Z)a7ifex&Ol&Mztz<@C1c_Sxg=dSSG>ih0>i-}-%Z_67Q??e)j6yvqA z<#rKe@ctE)l#UiY;U4Xj55@JEf?hoB|C0knu*7q z-41?9s}8<&vf7l33uSXv8)JoZYX!-@!8vsy0?}ySd1CIl6=z_)63?jf69`d+6`bCokzR!RH@sPDS&;+t-^ zn^?4Glj@db4S<=V$=b1I=|r0;#CMy}ok>CF2PVv7`PhiNC=OX_M;@P)y4rFt$G79U zb2r@KrIgA+lrn@}e_Lch?pe8ey+~rv%55N|{;-5qi6>P4o>fdjd3|jK_lZe>u*F z@gg{I<{)ZqF{CBVv2dyGR%6$r$%-k~^&j&LK(S==I zdqEt`$_@Q@9hdtRaVB^~Rr^PzpgOUJm`xKH&&9R!G$I@HP(yJE2`wW_Qv zYB9_7D}k-LmD>#nYujv1x-T*Po)Qcj95t0;#4NI=McJ8aNXyS>`8xdE&HNfeiNeB8 z@>v3XZ21`nt^8>36}s>BS>0ueNt3aq6M>CwurA$m=+5$H1IMt0U^_M9OoNF%3P=gy z3&rrfzy@8#gzUvDaA9prTrZQH9*BU1=(mH8f|FLL%Wp6Lw(=Zzu6+JQm zZv*Oc^ouX=qAqsW2;<`gNvkO_m4`k%kWh(NSpXwFtfgV!o89^MyX2T$J-#d$uy z{%rcqBho;Ohl}p?0fzVmgf-qZ3i0Ip20fA(nO&83+}VVn7%0tWJrMY_#Qcba*rmB= zt;AVNG`7_OOjPdx&-(9w9Knnz5xx>2kHW&mC7i2|Zr}7B`Si>M z=Y&gGY#>Cywq^fR-{Gd$Auz4-{rco{>f$q(*tBSTpH0l$PHpcfR{(?$aBTl9pmj7( zoIAt^ih>7TKD=t`qpE5@9YDh#O2D$nS~WW`l;!(TQZLs*HXdYDHDwUJSuw=#tXl!! z{YH+_N^Qz0sqg__*G3{_V69;q4CG-!CK^!5hs@y8>E*=M)+k!;w!!H3d{(XUR)0^p zr3hQ+pXe{db@lXCP7E^5NAJLG*nRT2=Qn=gE3)##6l5%;eXgSN2tfIem17~_vv_L9 zgH;kTsx1o!;toy)-7vbA9;RSB6=PDVCw;)dI9pa<4G6M->08|p@(It(992+OEQ8sJ zkqg-Sj5+}VV-zsLamf&Vd(rH8@Pk{k`~eocW&3bgGaDirYy1FAG_Ofg8#ys_e#?Y{ z_yzQ>ZqxfHnOhoY03{dbpAuAEFJVcLQ$Yje&2o*8v+T5hmj1!iIoGCbV(iA_CUM8d zObWs&R4L8*Y;7miLT)>xe0+SsU*+ukA7s7>o-*D4g}bO2pBF=Nu5w^5fz0!AXrujy6>%zz&>4R3u@Hg zh6@mvPUo;w#T>Wq8I+!<XEhpO%;60y!9!Iteo1~ z)RB>M_pDe2hOiD}fLud~G1?$qiw;9p;)vke2C?k69TCS!-P=PuNV}D!SNSJ3BQvjC;tT!#k0zgH-l$S~TUkxHTSZ+S&4FE<;`U~T<`jBN86+51-NZTiIIRlnP#7q?@( z=XehS!}W}RpGM*wznhSg`5qtHWvtL?GD%W@&IQ1rYE+aNUkUYUPR+AV)U{_LL~OLQ z``wZfcMoF35O_cYf(IKlo3OpB6T;ai?^wkjpJk)mxLR3fX{D#u@09do+U``(EA6exkyr5H{28MQiG4Wf}!mO6PjuiT$V{*`}Hll;&=r0RlUlyVRIoWM|g_8O@^3|?<{$d>X_?{w9 zPC@tqOa>({FA)%3k(KQah_YwkPCGB4-2h_E6{US{UViX&*+YFHpEyFv8$i41QIa{V z;x|-FTwFO4oMH>^3(Bp>(%^h$?(z{~`!RNtnWC$OGqP$v7I2Y&vTj}O!uQug>Zpwz zj4A%T5{ugVoUhMD!Iju_vE}n6$tqDc)>w$JZ$a>(B_IwBh_Ac%{`vV4^v9>XUoFoF zy-q@!P|?!L4|UmJ@=9Fy%;QHW4Tkgrx-ZpaU5J;&2l>)I)>K_+m-4w--<(OvJR-+x z>FnC^@?JH<7qHBsStLO4YW>%Kv35f+Y;9a#wIVdMJ_Ed_`P=zBYEVvLGy?*XqLRsE z5Qa`pPEPV7W;qV$dHh_dqkL?>9tAM$yVQ*?J34azs*;SAK~gn^}q z4oAkgW9*a6uQ5~MPQEv-&R8d>+?>N0(Vrxqw1syF9ZNLZYatfbeU}SMF!8l0fMG;R zco(NARl0X3STEnpC2{_WLet%F85!$sAwJRP2oI82)@dMKZ@NF%pzF2kg{ymV=?xef zaXoawt2AP|nD=b*iZTosGGE8_nm6-4F!=4LPOY2N7c{hPvO8VztD*wJ=e0`G)0ep(M3?O-68mc(J%B6TrY2W2kH&tm)$<9}SBoqQ>13^Zv zoJ*!}-|1E#>tlvzWeQR+=@H{U-H#$HGFK8*7#(HflL52s2qNZlgP6YqfpWGO!LYkM z4Ms4!%{tx?dBB8*+7dCamnSm$RWuF9bH zF2*lEqD?GUNQk$2tMvD1nzxpxo|yENSZvNFeMed{3XwUk}a`#0>e{5hh0ipFQp_SRdnZvA`0*e{t5|HlPzgy^PV-CAO4a390W^ip;Z+n`mc z=-~9^-1Z^oKjBiAHnwZ2KQ&ksWK2zc)H~-Ub;+9 z7W@KuI)jd+sSJaIlhDgX2sV-0aUYhVB4pvnYyEoR{cLRluw?)v2o9S9{~@d^dT;-0 zN$S{46s-<_ll16)1~6GrXnxC++hS#zKdl7W8@!Zw zK*SMjkG|gve{YmncUiKizX!bUC6j6^rTY!T-39JEUD7AruUN`X;TYgh-#K>W0y5J_ z(v-}VF0XS3W6OoYAupMbO)^Soy<-iNm0l20biI{N){v~HCp}R@f~vaOTRlB_(9>C6 zB_iz<$@&TsHR4P=xadVZ^}!#)m?c3RbEv$7?L(fldxl+CIPWJ9Q9#=`!E6yTsZKc^ELT)FV8C}r_W5qYD zONWAoDWsbUsaZD{*XhEJ6p&|GUDQ#FVT_P_qyB2FPcEBb>>lh9_BW%-oJXEBo4kOT zuatX8rvma#n3co!*hGn|o)>steQXY`LmVp4CYDyi!+M6NfBCV#d>9V8aA`*GJ zUy3itZ!^M0ctxXs$F=K!o2GR#_HKEpbT7 z(?d5GOPUgnS2^Ey5BK(C(Vo8Vx9o}Pm4z9j2|B- z*qPzL+vls#+Pmq&^$3l>9rMt74tjcgz&1-IIp3#QE@;n4H#T%iR|Q5%DHS?Xl>=2& zKA~YLq=29ybi4J$A!Q|A&M6GdjX|=c5oPoUK;q>5?_rfi(OX-<>SmisNVyyQzii^b zpaQXP?-M_lISSD%FTcqBZU~qktCcoxrA0NazLyE7*fZ|evxw#FCR5uFsSDj`htn)h z&(AmGlN7)94?mZ!o8}{+^qQ=Ed@oi_Ch6{!Fp;qArR`4za z-7ZRTro@g>&H3BoN|RAl70LZ>%$C@&a`kf^Vt4&>e83qazQB}Ti8K|)_E*!379r?V zGV4~71tk8XmBmjxmO5R%sRDOrW=>PBkM1pHu2{5 z64m;fIGC9iGnIXimFvGLcSw@{OxOAT9el=H9d-qWn8X}U>8a@C)FH%L$B*eY%lsw2VosDYgINaXF)xL)p~j=~7o+sP6AUV44IZwarhr#`denU4#b? zm%C72VMjtrYAdPWjviYFFM?qYY1HOwSx{NiI0sWKUlZ2kr6* z(R&ALQr}@SZe!n^#W`f5*A!Dp!N~MD8Qt4*nb=LQ0vPacR7Zh%B0CZPPrFVihMpW* zU*l6Wu^{dY81D!+dj?nWz8K<`>@?Iy{@Mz7Z|f;-)Z3-jwA%uiZ) z{o!wWEsHij|BeP;^O?qQV|*D6~%E!sV`u^+mwg;zA3 z&F%K+do@@TPl!*IX;dopl%dkgD-bZp86(XkV?!fbAn_*aMGk&0$(jDo4gJy4=g+tA zySSgKDBrM%ou0TzG%cCnin_#3yp;NXJY5A;lwH>yLNEvsq)Sq1kWLj8X%Xq}Zs`F; zS_A~7VGt1zX^`%2Mj7eO5s(;$8uGvB`~7zzi?wt)!#ww%d(J-l>^-LxP^qK_p=$OKHa@DhG6u>e=udxjT)ibh3GZ8ASc_s9Db+$H09pQNb^Ep;fm z z+4WUaj%j3yPI63$20;QZWmm$9t2meNi zZm{+Ai~2f5cQnl;;GYL|`<|&BkUi_h;)6;HO*;!dJk9muMUSp$S(YEv)7a4^fm`;CcHp5#Gp4EqOzD}562+C@fUa{v zI3>g}yHdorZ-v7PO5}=S66wIKjz|3OANTvJt$<`7CWrToUTRZh53rwL-jV_Q+W2qE zf2v>Xt2MU*Wk^VaXJZ#{z?ydL_DMSLlz`*3mD%T%W2_FwSsk_6zI%{>W%HI+L}~Nj zG(NFOEzjbkHw`6CuoDtppMq>G-mms%9sZ?^Y5dqY6lj|r8S{V zAKM)sH~({;Y{u+iEy$D1;*@MiUsL#R2AaiGI%hX{xBU(LU?OVn-$G2-V>*XDGe^}{H8X^xgSg>$|Sf9D6$gMzM z3)k${^<-wWJmIVx(HtgZ)TSu;dawDp7g=4IWj{z z?@#0@{g(&yJuU`j!OXZLRJ)RgTmIqB(1SpuFIB0+;sS#VU@YLF;6&`Y=Dnxm+xSq{PU2o85dPC#VRX6{=x- z*`49+Iz!7P@_3x#@|x4+_t5QO9#)W;3`$lms~l#Ec1!fc?rt>r4eJHyD$%4Tm0~mc zAB$psqWb;7IouFFGC4kfpP%QwvE``zC7$Ioe~Dpvy(m1+C_@?LRSkx|Ki?L94$q*|KPKV zR%jK`qpJtGVn##FF=q)9F^J8#hGVZ35OLMOuR$?)c^}?%!NJ>7Ny?ep!8NgxZbm>D zyPI_}khR+v>;F;0sjgrw`yJQKJpPAj72#JP=Bnc%qkqSXW-k(w0`A}u$jOLMzsD@~ zv%fvHkELFU%*;&M;ytbtsKY`CuDk3pf;sVM?DcEZgo;<$_qtrIMME+_-&p>n3~U6; zhp+exVKfI#=@Gq&MKwp1f#@z7Ynw6#$=H8EmhZV-j->0+IhUhMODA@mNd&O*R=+sJ zpSNU6WRjG8#z@OJIWict<;*Ag0}jl(OOPX#0nF0#?L>vg8}pZh%jP*L)hZ4)xH%>X zPPSie6QMy6r)t?BxO}IgU)`J!M3XG-+~OCrv0(md;fGb5lYudFcyB*O#Ctw$sAyA95e&2AESs|&G28?0Hu%K! z7Qkx;AmQ=TP7TrdSpjJ;tU0rX$NDP(Gt_5z^P!~V;O;J8$?^vY%`@(ude#9*O8*zE zvL}ce;C}nNEKDC{|D*Z(Udi!`=7tDF^Rs>=iHqtGRHm=R2-oZBW45DsKMdTxPNW>~ z{4NgXVq?G<#N_2OG`sYBTf5tJy`d@1e&6r({RMC`V*8OJFQ24N_QAmmkTW}LVOOoU z@JB`%=;Gm@^jc|9!lHPkZa(s|mx!Hl;VhH@Msu@WsKYoM2oNdZQ%(SRmR9L{f$J-P z(>OF3HSuQN!-ijN3%*Sl=Yu11%Gv6&cdbpHA)*hV`TBm z1;msa-fW`Lr!8pxM7N(d?>C)lBmH&)Wrnzmt-qrF>|rFYMExdfjxx<=WpgO6;qyfh z#Kt)Z-w%;JYq?xjt3~DM`z$SI0fxok*N$q(Iq!38T5m6g1X5CE6;(blp~oDl8L4Db z=v`}fvL}!E-kUL{TD)t0bw{yFJUy-MvRhwgvTEh+n35b%W`-k<$+16}ZAtGF5EoLg zHb?6sn`~8x!JQj~Qonk<&6fVGx>0v;lFZM@y1^gcOi&1D+;ns@tO?rGE?&->gWk2~ zP&ky6S+vY--0SBAvwW3cB=}0%@(|GfdY|)0t{#jVtNHt%iL_bSK%!ZY~{bs0{Ay!+oRuqiR?uq zVP-aFZ(A2wJY~rw$X6zj#w$8IHv+bj0~L(lMsYF1NB_e^j@mPX-WXl&rWL!F%^O#H z$)Mn-XZHSJ*ZnHHn$r2s_>ordb0!>X;TAc5r{`;);Z8Atu}v;Kk^!*%%8+Aexz~{@ z(r^{J)#_L>VrowjME%(Da1gPwW9c!l4mEVtK%Cptui-&5HLKj6Lzy-(% zy4cgWx2J}Q4n((9e)b#n(|abIo?CiE>D-Lsm^KOwb;wI$Y)c+6BX>~7(c7S*qNHIJ zkW|dO_gI?Ta(c70%z54kc09rBGJ7DBpqh{AbC+2Ho%r@w53o9DVd3lbIvDJ>$OlDG zEOuH5aghVj{eW)Uf>I=G)5%2kXahax$@G#2ragGwQjc7V>xp!N`6~|MaWM;CP z^@Y+kMvmo+L0? z1HIk)Z2l4eFB+%x3tz@<1wZp|lsP*+@D0E{Rf3g;88O?0qZAduO=>F$=s73q>B^rNrUsqb1 zff2aLQ#l^%rlub6^-$yl=1`v{K?C9JO~2Up0Gm|f&0}-J4EAmRH^XaD3A9@sM>B9^ z{~d-@<@|!p%^vhA-%VjkJWo-%5}q)^v-QAp?3Tmy7LQ>COW4I?!r3nVd|UMvNbss} zupy2Uy5w%8Yn80wc+GWaXI-!pW&UB76o1T^d2cqw1Vrr?%u*Km%v}xP^*I^(ASi87 z6c<57Fx~yyfS{-CI~~DzCYrS_u`d}$^<7BNWxAW&L3i3cJ6&0hr`+Klyu1yI2)4ng zTBZ#3P~Qt?-X|g^A;P_Jd@k6%5fR#+U(CLMc0KC0_W}2_1%isLX6N3Ik>}n%6k4Jo zrfG71T4uC2K5TBXJ5%s=++!+CBC)y8_WDX$EBl4ba*~#LwIH*XRP2dXHf|Y~ z+>R_tH)@MqTy^Wk0H^k9^|m8KY_ICpim!mYieXA zlh%eJT=i<|zk;&P3B@zNx|x*?w_*N5eD!_O z{-Sk*b`57|W*MO%WIf>H>_(URhsIu_)wJ$dy^H8wy_c%IHw6#quO1J0W^BB(PXi0r zyl=943-_gMkpULpM5Ei?*cn%f$AJr^{Nf*LgZ3KXfRNb2Luf z*1FK8Z29B$LlJKuBvJ2L!6pM!azsM(Q!%$=Mo69^qhM-hR(}R+o1@$%LdbAn;=3=m zyjms;89|wokBADY^NFJXNnJ<`;UT)e!7uO9$u#YFb6LlOAJVO%(HLOD`$CyKaCyU{ zX!|$z!fvZV48gv6DjVwgN1gl1e*VnFj!kh}@a<#g!)46k?jl4Kg$tGVW{@BFED6sd2!`L{^a=@T_Zvro z|3#Pxg9m2;46#xdzH&_QPrwlo9(#8=0qKAM zKVd?>OUf#@W6_p@B0PSz^GWtK{q6p0B5E^__pJFT;+`qT?==5RH>9(-oB{{lW71pI zAi{_R?)>ph*EaGEl4|fWoAz}5j9i3UMMY{=)KMwCd>g<(3?Lu<@sbvnzu`?O);}e3 zg{))QyfcR%Ko5cF;2l#@p7J)5JrpIzB?4z>dpY)U;plkO_|zDvDs@*o8jN>&7*?bT z%ADly>`ig;&pvqEwc17hdk_h|lZ1%%YLFB4A#?g0HH|zAY{$PC#~f z5!iDQJu_DsN2rukx%~T{Y79|=gpiz*NyrOpnrzms5bT3z3pK=is>q2LI!_zGgfshTbh=(IF+N!xj>*-u)Tt9|O2;GPtd~ zv=E2sI-3FLd8-jD;8Z1yy@wNFU~n_{X`Z_-UU!f8d8;%*$0s3mc(nbPyFC2alc3gX z+|z<8(x~QBOcaBEZ2JVI!aTp3lJ@QzO)04wOYJEPpXX};*gP`evhmqUq?o)|+XUoL z&Ajwb?6z0bfgHh$%9pbbejokRntyJs1n4I-a^!3Bpp=&@D%m@sn7_noKKv8g zyLu}myyyCf{}(;bj;CKb3Pjcn>m;bn_i3^mwR4)Q4IN%fLJT8De)L*1oL(>8 zo@!I8b}rC%5kqj4Uyd&Vg?HaCKwH z=TNYOv=4~$p9N$nle4F`!<6^>FQk6Sn+tYs)cP$~5vabeT<(1w#@5pZ6Mb48_+dAm z=q)Jilb%XvS%cA!8Q;y~Tg@?BTU(IhJ6+XYOonr| z7AW9#ck{UmTeYc~lX{zF z;BE1IYijUv-S53eJKpKZwXvD5GhSIYW*QlhQS*rL5!27kMOi--!L2~gj|TVPC#(Zs zW4p;6#F{!}&oIO-9fhYyABHX4Dk5HU->Ys+chQ$v920)RU3^S>qv#O??&@;u8Zay0 zf&E!s_22o>Z@F$~!v+8pFWP7i*QpJf3D@C7!$H@6D_5VHKJ2IgMRl?wndVKA%Bv^qU{;Z zeS}MmlnhyXRR;`5#)j84?Vsl%L`yoRSd}n843FGS*NO$ZNpID?10%bY%A^Rsbq0nm z0GFa$jb%h8laM}FVWj}8#sowZleA7>tveeI9oiJEKT;TfOod4Chh`252#U3V5Ukw6 zNPV;XTT?=}P6q0AJm@D#Nh>&+P<9BGe>TMn57TM#70P~by~nlJLI8~7-csGaLliz) z=gyvjSGTC%_*R82i(R{S**SvLrYIkfp*0J&41c&??Jck@ctG(8R@~E}3NBEE_C=Di z_pYIj)2Z*jCrjwxk0z-6UU#h}9>}h-TBNaUY8SE4?z(@!WHFj+>nC>!4%mwsDs*lP zwbUyzEavTfI=te&bEA3(ieLHh1&}Io?Qv8Dxk_@W{sPL~? z8S)O}X1QXLBhU5E? zll5)~Z-2>v6KI@u#ztDO^k($AHH8PK)?#UtxsKL)7BK?ZaWiapob`Iu_d8Cu9XG=t zSO}2qiNz2dqL*Nq1ZpZjKx7dl6EF3iqM?q&3;rYJN+2N?DnsA1kDro4X^pUA?IR

akFId;~EScv{L1AXt9PH^G`xrg~9AnwHXAAdJ9q@WQ z)@^LQadFZ|mgVI{d9(D}xV?k&$eTJ~2l~@;l39RQ)w%2n^FP#`^Ij&rV$xSw4(u8~ zGJ6iZiG220G&D3O3J6pMR7yVJUu{(xdUIeb!UftG?ZW@*m_!U_12q3CrOi>3z5q!?$@9Nv?cT5n-3=|FAZa| zewz<;6CVGPjvOqk*MtS;y5^)N2Y$8%Kz~vOdA|({dsc1W=YJLINb0^GHda=qyy)gHr;9oXBL_s~S62az zC&DuI3qk?!L~S88;H=IS#PK?xA>XUpZ2YoD=7QvWIp_GZ`o_3%a0^e6X_}z0@Lnri zYS6K!B^J!V{iqDUAta3UhRKU3c0MG4E?!?8(}Kp`cao0Hg#Q!~A5`+2&-SwUus!D4 z-gYE?9N?owlhdbg@+{o7g6hc-_j>~3O1lH+r{@tNcPkITt}m zPf5R^nJmDk5}Zh9cy@M9TyE(|EIsf|y_2az=Q|tq^^@}qYMQR0HJ3`UMktm8{>)3} z6`vLPZqPIU7hT!gu8V-Ynyj;4%Ah^GY;fkNpL^r(#$M zR8)byciCr>GnCmP~ZVZaj(-7*wremhSF}?!P(i_#XL61V2&D;RHe$q9@VCy zvVhi^1Qxmk^lJaEwS4uzRg#~I?=!jOHh69p|CvHj$K36_A;*}t z)+b`LnBXPj^7x<`)DNd8F*tbTcRBgF7$W7QynvYRxM3i37{B|Ybs?G>h{^P|x!IOj zZDSvxV-$P)`7hGvzs&RFzu>E?Q!-e4?T~mL(VP0%OBhBE71=m0*KZ3Up_QS;GcGjF z3}Vlv6PaZApE3RfE)&hI6>3GbpFGG(;_AAe$z#SuTG{~s3NaBS$_6F4#)DSC`!YZ@ z#dF*H{@(uc&9UqjBYEUrYL9g1?@nBw>2B*Z%CI0?-4yVRGUV;!w->k6X4sfsIyxd> z>X8x>sHrYga)I75Ru)4GT)uU$eDl~86w1v0zbT!h)hxR1>~-W=#2lL8T30KqHlL(A zRokSoIUW!aypLV_^3p<$&@>Dim->!qDp%imc)@g87%=F&iW&6K-8Qr;2k10lz2Q|C zF|WVNap5FFADgB9zrkWRtE(FUEbV9)(ZQTp>HY*Y>AvG*QPj|8%1m8W-|Ke_J5$5{ z>81J~B)&&RG*Xm5|EMOl_ZSwiWeG%D@$Cho;=Jw)J`)w<>)r8Rj6ELAmu@>4cPatR zrevU^Yr^pNLc3-9azn$fD?|WRxNi+Y(Q#e<98fgU)K327x9Us8Fr^|rqbM5qQG|HQ zS_OH>Nw?vmaU(-9A2V#vi*tK@qy1(W*obF)$V*laR3{bk0CVP0Yeh;^GTDh*miNJQ zQFwb@(t`+tO0;*W(9MgXZ&%0{6P^H&LqI_F4&4Q6lwz_G%35>eVBuqbnmR6aCp)J+ z)jaroqJSkx4o5>H0a;bT#3UdyUF~zY&agWe8}LXv3kS~pL6wv`z1_vI)nseLvhi|E z!se^KK_o=E<4aw0_86GY)BGw;og+=1e$V$w{i>5&(Uk8pqI=Vv6yjYcsVW|P z_Xf@f20DC@nX6q+-1k_#{_};6YG!n~+1upy2{KH!Yb*0e(?^5L+p6LnzhJ??9Q6i3 z(;qVl59p=?lZ8f`qrhZO`5Ea=Gh7_-KT_gZJ;+vOa$SQ{UOhXo+yXxS8-*+37*()j zdvl!Up}ai>2hCOYhB*$l#GkX~aw~Vxy5z+3htlF{`p5a&MtL8&Z&PM`{z1m7k|cAw zlOk#dkxjYE5^aQe>~9Amx9`VN->~d2 zT}&0;GoGjCv{Dre;kQFwa4rTZjRV(vR&I)I*RM?-y-IeRhOTy5DrG$jr!Gnc787hVp8IGf2W?=LSAu;OpmiJ;cO8^)j7DHjX6S!I> zkVgO;3wNrEt{Tw##is~*Fz~$9S)lY=O*bQNYT?lBr^;ija9@Lxmn}_9TCf$BjRhHd z&0{(6P7@c3knNk=q=^h=VyRs3|GvMtjPOupRRAEQ!#T&5(eOyF5&)ktelgR3Cr1at zG}nb3os+Qq*Frj=Vu2Sdm-F+;ApalW5Rs7?P|kDpth6(qv$TVwrYK3@b2B``SudPq z_hFpkUV@>sM%k8L_TZ2)cevX?%R@a0ormB(-)bD8;C-2d>M zTnTm_KN_z0H>Z;j(g3@lj{gDiCtjm32IIwseBh;$BarL9>`YPGpPS=U(w*@bDeQ7? zJ9VNZo6k3t8p}={A$!$Bg{NNVgXDlgAPpZU)zq{0%iYc)MCN#SeA4T)XoO&OBMm|D zc4FZbv=5hP&dVd0KF*HaE4~QX^X$=w;8Iib;XK9;f{4t!o%-~!Gci5%Uyr)X1agH0J@+JqRf__z zb85Hl02FX+^LR8Cs@!KGCue8jAx}Z6APJPk@|29SI& z-IBkKiw&S5d2*KS>O<9lbCF9CqQ(Z`Gfcw9)-C3MTN#Qwz}KeUGb@`ngMHF- z;?OtD!RL~m%Z>n+RAjlmFq!GRx0Zbl3DKX%nt*P3gmlDRi&O_lN3v@E`i{(vM~0WT z!^9sqJ=__ivJb#w{VEsVbcRZ@|XJpaL(FFT3*tF0x#ExJ5=m3{2y84;^+;*BUR`Pco}tWZ3nuo*1$H)bQqJ+jzn0Yq77kqJ}w5JC-U2zA+NmLr)`M< z_pL#t>%e>4V4Qq!bhP82sk%(i-}us$@W}9OA2U9ck}66jaPL=!Z~GSA@n?Qz#KNJ( zT#X3|Bw$-^lMX0_QLi$?A#UhdP`Eu=Ttq}ht3<(4D_qNTMHDQq`L4uxBnc}7Rmnyr4YZIpi_Q7s2lep&lmJxEOk$hc4T(G z2xPyAxSI3;rgMNt4L=s3P|)<0y3Zq2AEorH7g}vIKFBH z`ggWoI6IRzKfner^Yk&tO~iNhPx;-5+JY27!O;9-p|ttz?!~tKe5Z%df?A1N|5a0) zD`yM~fcBat@n6aX`Fb^wdH@K)hKX$M6og5qNA@m#xAQ=)J$P1-#juMJm2|oD=E?VH zgR)46S~~WZ#H}^Pevz|1v2F{m7%1^PfS#$2G&KzkX5Tt6lzZIB>!-Ps;!WC@f9iY)$?Y2X7*jwrqQwZZzO#}v1a9ZtV=I)5oG zD0Ex5Dr3Jbr_ufF`l3mM5S?Kakvaf|q-HrW4*pW}-rEnt*x0TUsG5n$m6_jzovtg< zZb`K{LoXh7E~Bn8Z-vyg!8U1Fep@M%n~(c!>ek0Fu6Gg7i#5X_i9G7CJ4vABpxJu` z4CsE@!x*3x9>i&ty!hnh?V?&|@Rf@5VH>z1FV4c}v2e`j48esBRKktVa^dR6^WG0+ zd-#-{nzmH6iuHzMpy)#2y-B*Ir}*9e0c?4pjwf&4_(33O7rO1>$apE313{@jMu7*p zOQdjSKCx?*T#mMdwt$N2<{JcdBQ}JYnHgx{yqYUzNf99^GJ!}WBUdJ_ldh9RJ|_bj z#Ot~h?_sP1fC-R6OSjg!dpp1TnX8-6pV!oHYy^F8j4S`GV?ZtW@nvY#)kg^_E-s$& zn)e3^Fkf>*e~hR?=0s~_o8uO#<-xXWND6xg*M>KdMHUswR}+_@tYS*CcmmS$Bg$Z1V;6y#gETgjy<;P zcCeo=wTtIn9CmIInAY>n{Ey68uZ zm3jA$p{iSeOEmnIUkm@y_OIKd(?=h+Xj+FT);>N2_Dw?eWoGICK&i`g=1)|BKcLvd z|LwG8VmL0a(M|$6%T3Spc>UU-Q|ND80{~R$TA>Hz@6k?<0!E?kr&~4X5hY#{-JhZ9 z@B{`*zyNEgb?;ykr%AWJ3anjkFCYwl3-v#o`;EuHfsXyYJ3O5v9XTYTR&MmIx)3=`_r{Ya zxI#_DrMOW_wMSwITDe)+Y0y+$IOgB|+A7J>)@dz?rh25(lRKz&KP!ILXUs#D7Wu;J z0yEQp!O>De%bsX%vCXe%lozfoG@D*dH@k5zeme8@TaH1E1ZT|T0D5M9OGm17^KNXk zB4&i&f8mGe34XXsPrRJN#HioLnL@UYW+e`RvFpCyHcO|zz>wtlXM<_^2Gx>HCwzO7 z6g3+uT&1v{K}XlAjzikC&uH7ycbZvJM@_D7}$Ty zqYCSLZ?~3S3Z>(us~aP%C! z))(;~)S8<3hNPc+e>D5eUe&`8(c>^GFsP9N-+^9=1I)fOFEz z;OT@t9UguNQ@(Ta#I~TYr-BQ@RXGtrxhfs2F3lGG(zvIUgVnC!W9~2Zw=d_v{_+wa zfacxk9<;SuH^xv3E0YGB=_0u3i&p_bXl=wD(JBz-dZJwUO9qG3z1wZ*B^LrIKYHO} z=rCO(DPA4DJdud3-dw16vaJu+;Mf#ZwUx%7E_Zdn?@0}Sdnh94@Zo3|2fyJek7`T| z8j;Aovzcm%l<6%z{j%EZi1G0_M|X*w)(6(xCIc>08P}~Wcr1LUXXl6_RslUS=iYrk zknQUUt!au?Id{rze(C<^>7hNjsCeBe2gJz46b3RwvGlC&LV(8%z& zNM*~jyjvQaYj3~mOpt58`rcMEwrlgN*m8<62Rg`B@6YTxk$DdDL<|E$c~G}GqSx%_ zXw}>5>RbYX{rFooruZ8-zMPidq$0q&rGQ7hxpb@;$Z(|-qNWWHO3)!}DWzafWy(~JlOBmGy{G!MDfE$sY;MsyTD``V z5M+=EDwfBnk}b)yRbQqyvzPs-SMkg^`J%#tkHnLU2a$!mhb!A%WsdY~ zq@ck(^8)1rMk=AqSr?r>D9lG$E%F+X`MI{1^R0O>k8iekJJ0s#%;yznCO3?Dz!|Rp z`8lNz&48!w$c&=wlVA$K6OoVE91#%+(Kw;5lD?B`N<#EX*-8M+hM7EN3Q5;TVW0pl z9TVpQZ!gNu!Xl+F($!(Q(-R6L`_Cm&<;Epf&_Bh~Y!h^MbykJ>>40cVH1csPtUZgm z^|hlU!ArtTj>wRQIqc7g=(&ja3@Zo-f}gYWcQANogfpDq&VKQ=niG(|Z`rxI#XI|- z?|{O7{2i%5@+0AJnasB2KCL_a>3MDVPE85LQZ#lHMIcE{_(u(yll;yA>DXcS9HKt+ z_$g*N3x)O3ow`=)f-A~NuM(CiPYlGqr44(nNo?#GCq_a_n~4yDm`-+SAn8{3st~;D z-$n8KKZ4#G>I@A>14Gv(aiUb_rj-+Uj+*jq8yhq9J59mSF1Vgr$qPpP-sO58kHv`X zF=nP)R!m}D<1oy<{Aco5#1bTJCAZ$1mN_U;v|M1|BQsxu-c)!?U5*T#onG!=Bj{+q z$x=oToHRBT1tuo8)NDt+h>xu16dD`Zo{gfvQCWXXRreliSjBKw(d4$TI$FMJ($?(x z6YBdg$$T)fuJL_pB^3g#$=g{N>z5urE)e7{#+Z>ySTPXzWZEs2z$7}1O+|Z zmE3)IsnTLQXmErP*|e>O|8X?bL}oY|1#I|OQ(Go%IZ}6Y(tj!sNir6~^QpGp^ILb^meU_B;bRC`!0+W($kKWuh%tVBzA=NM5RqbgOY9BOi zr0h$Uj%4jNe#5D?6R+)3SXC-PCeF8d6mI1I^7KIr+#g0JQt%lf#rE|RCJDf_zs@4x zVv-hA`qGxPe^69n=-ZIiROv%w4NU1T+SVe0L`7?E^JXN4gQq2WU)K8Q0eqb-&0jRj zKjxa76Gg|KcwMeMTw+{|B28r3r6|U9c(h-%BPjz>gXInr=n6*|jPqt=PVuaLEBm1m z8%*1c50Ct!G}boflj_h-B7T>z4(Dh54Q8tcx%kJSJBAY%nbzA!dW*IvjB|f#hK219 zLNL<2$z-Rm5T?H9#Pm_)Zx_7=wmHc4j4}DvYCn!P7h~*(qf40E@#D_@c>{VErSx-m38qUNB;0G;F-H4 zM6GVaQ!Xy1+#R}!Ti$Mo>a;Po@E6s$Qwn$glEDDd3t?kfCvZouS zXr97W4olRDbIC1A7~-#UXE5TCF$7bO&dRqP96RTAVog;qbDe=m(u~^xce0zuf0_LX z_J8c#UP+MIuIFd19ix^Xp`t34cOLBFbR=Sl8LDt|IXXRHi|#}Ak?-a9JX!Uz{B-*^ zVQ8K8ver_)1ejXB4F;{fFlx00J$At?RZh~n$a#F$+wxCCE z!op6zeZfInfZ-^Tx^~tCg^_hZS#w=g0?WzQTij=8#a7PAu) zZL?o|Jl(#$4VOf7@6{1F-Rt-b_^tefrVD5q++blx$Du1Q$Y=MQ;p-wbsHmS{Ixf!| zXk|Qc3tuow3I`=}v)uvHHS4<7Z-)xUE50}7bgP3}5cAx!66!n+w>tBzY8Q+w(tGx` zDOaGc&mu~}a_<^6`o`x%ZIf#_nw2TFxgmh@2n4omG@@;JnR@}?bd(tdBBuG`rzuRE5SSl`6O%eybw1I*~pP+6C(mw#kqQ9t~T zegXLA8nP1l+T;5};kbLc*FjBgs5I>V!MWI-%Xo0r4;HSjDE{JH^t|yk9JNQ+Ls+>t z_j+=#crgkw^zFzHjsx#N8%V-A&)uVzOmog29L<8fyvnB`azb^j%^aYCQ|mmHC$cO=|XgG@&T=c63Yg2Tm)intQ&yS zR-L*<^Iv?=0x-43(!>SQfp7Y^vot+@rJ|Q4tvv2lZU_x*dJ*;TcA+t}H#0R1A6ko@ zN}?~0Q3e~HZ60(6U^dgxU_7(VFxyTBK0{PlgWBIu-9ql8znwp{PoNG1Zfr}f*&P-Y zx@9Fr4utMClQWJ&`P?EyOFouqDY-pvscsF{AE##A^j9?LWLB3ypPcA6cfSHe5fOjr z$E?JBpGqTmO6k5%jCJ$jgs2LQzmxUQIx;-92TrvqDqDA}*nGHIYWB>kd^Y`jM$p9&n#H6H{`m{`v2L+hH*H(TNvK=R+P z;b>uC+5#>7(dkY(Cp^g=d<0A76JiYbd8Q_5Sjlrg|HlQe zLS2Xn)b2!;l9Mya(fp|jTf_r}Zj-=s$~0^~+3 ztPGOW+>52HDb_24Hhq9I%4R+Iwk#?d<2N_{6YWvI+&sfB!nfuqL(uW{I}Kv%Im-Fl z>fz_JxyG#!b-)b+Z0IQlnSnoOT9HIgCs?yi6=EwLqk0fJ6T6CTP4fLLm@Zf+jscrc&J^stu(3TT%ei+bXzE} z`2<;5Szo#|WS20|<8!dN5#W@|yQSsm_f1CQ;j+hpbcJ%loB3Fog`U>djt#!I`9`9b4*)9$7uh2AA1nXe_1NMxIs!UaA=rbB5$KvsWu zZ-6(U&%))Fa2WiGG?pRiiVcJdfGa$(#r^`+M?Q7C(q6GoL2DB?_%UndReS`i;A)2C zYKajd1SiW(aR9Z|90-Is%r|Ee+}5wTV{MC{I+sxEL-TNJ$L*+oujT`aM?odkd@7NQ zIdHRL(zoLvmAy351o8X`qw)Xo~-M#K9J_k`dVc*cZYld zH6ND%;q;CQuCoARR#X&Rpq%U002gZnFrmj-eOCfmzjm6lKT=^NmCNU?@|plLNP*bp9{JG+0Bb)Su_Qu$)N?~<4=BE+#Z??vx83y^l!^#=Tb9Oe%1 zB;xxnh!gwTqp=t`QIt>T1|&R+5%My9e8* zg*?ete47e}RIi#ElJqSs(|Ui8Y%p$Eei4Zu0Ipcm zu9RsR5XQ!$%6QQWpj%|(?F|yifVA{<%;jVQf={gEwE1XWT(jxOq1A*>=lWZS_8Z2h zFTb$Z%9 zm*OEly9p_kYUkJ38hBxi4Ik?mj9X zds*=6>#KNpS};Db0GJ8`E%|Kw!2hz)VaPw>jEIacjMuMJ2q%HR32);rwydnIoVr~0 z3(@TsJ_5|#Q8T{OEE&(tBM*20%y;>&R$_zBXs$ZBoCW4%6l=4~rsK@P?_kM;{sG(s zO=V^#15FE?`GA1a`GDy8vwn&?i_NE*e{JOcz3vxx1Gist|M1Uqp1Q)L9OGpW6m- zQy6V#$!m;SJ3DdliD*rhyQ8hm5dV>8hwX3v3tv7_z?g5`z?~5M8B&lz=A}C=0sH8C zEv_G2fO(Zed^q5$#~S+KOg;)#3?V8lJkh>vo|#GMMYtTIOq2QXx5{wR{f61L(#T z+V@qpzQMI~Hbb{g>idXGOhLf@?{ff03FnvlzcwO4?eEV~6XoXk5?#mg~!tjml3IU(KEd)(W92_l4o5aEnRcx9e@P0-AWnV z%E=ibjuY8i_pGJn-e((>eVM6l$@9^B)@f~lVq@r5fUF`VC zJKw(#H?q3?O=2`9(|MPM_s?q|rV4CB(OOvPj3<7eJKT_#QcCf#S5RFo?yCe`jUJkE zj!(3!Z+w1d)vXSZ`!1uxDw&~6Afi`HzNHq_4MrO}piHeWn-rYUFzy42(ZXW<-BL0q zMB&6+IBVFJJPlBNb|8QqN9ujj*K?eHc_8yuv#`g>f_qXiab};3?LDOTSQ===g*|+g z8xisP30aTi#gr03G%Yq`gVo*1pwU-HbYJ+ziPUH8(g!RG!U-V;lxEA6%csY6w2;aJ zy~3?3eV*Kpye|qyb*5|HMHikR2_2FMu`AjPlB=EwC*$_NS6eEww6l8`8F|Ck&rfah z@Nd@&Ji8r1g1W2y-b-cnei10T-^+q0taGT(xM4xy%@}IG*qGO~;v~8S^-7ijTN+ub z-?;U$VofR(tsKbV;zoYvA}#06E!{tw{WJgiY5dzPD}xH8mXd18fPp7Cx+&CrG}~em z+PC6P_}b8%sE`J?W5^u4xo3~mVL;o4IX)Z%1Wg$&T&1y zFUQ|y0CS{pSnF4zsA{)>fXMr$t&uJ3n#nhT=`@C8>1p1H!GmOj;k=6=A5#IPbxtq! z-qkj}_DEX@nA~ibN&l;H0yfdD-`}oZWlC`mzZ&qkqlZLrJ{Ze9a+;-v&TDUw{7AqJNq<*Z#Cij#T4Sco+)WQZ=Zj z|9eos%5>BY(q6uzH<_KCtziVXwtrVf#wWx-vycpDVW*j1FyaaatUd+T&CrQwa-!nH z2O@;9nl6? zCCOZtUdF8#JWwWkNtp?e^i^aPCN5!49*T#r^&ufA+T7hfG`pxf<6t1N=P!Rq8Ex!r3I<4&5 zuZ_tvJHk>1+B|;Y$C0tSwFkQH0(5Fop<0LTN|Hf0eA%3Zm`&LdK<5NNN}7vuOKhyuE(I&8LcWXAj0J|BtD!0E+T`yIw*NDG8+; z0i{E70g*5$5tYuRQ@UF~T0rR#6i{i9?pi=%rMqLLV}YglZv6Rw=X+)t5S(4O+aC31hqXjI* z1>4&TikXe+oWiy^(7?T0$)#E)2^0ptpZqSonh?7ILBMn@SKrmI-cH+k@s~ceZ18&< zuu5IG%<9Riz)e@xbv=0vk&9KWNMVV@ObZ&*_es{{m6}^v2T-ROaF2Sh&~x~YEWI(w z6h7{INTC-p)swD?x$f#bCOQWLgLWre!!04c-<|3Kn~;o_YwfF{@*1?`cKGJPTa)Z zozkC=@S|4hWfmacSL!k?^WJ7*Sjx37>TsV&2zSw?w?uG<#?Y>~H6GzYFVc9363P=T zU5=jBqQwvQ{}N&i$>XMiz2yv1mJLf~*rC66?3UCt5}5u-8S=AXD=p*HcciqE0)yRy z*XiUF`pf%}iDa$732I1{->#YGFTHdwFv8O>0E%Z5j6o61y5yy``Jr1BHu_~-2^AY2 zbCqyF-Df`0AnH=mUZLi0&uQ3J|jv(1JE(sMq$?86&OHErrbr*+@dkkS_u zen@p`G>P5SK_S>!6B5`el2sxv0{n*m_o&D>=r7HBHBNbM(qhX*BJUw*%O`a6o|BP? z?Pys~l%Em0HtkWvU|*D!mG@gw2+a9Ten`WLfR2dWx(U!*al9)4-;H&vkJmdp`ameK zS^c&rd&9Q>Ct?1n$F29d=A}kY>43X8di%EIi_5>>S;4D+0n^%b#sukR=qO3hWm8lw z9bWhWcu-tU`P2k03(DXW&Yd+|)ot_f&AKY_w23qVvHzdU+W?zW@< zFOC84!uEfE#GB8(%R&%quhZQWjpeZS&dn)}uf10Ur4e(pXqH(~J|*Cxhu-6P?L(_j zH++$E7Z_LP`35F$w;lo8f?+|!-<@+c)qjVD*^w0LT>l?5anRCC=4q+=^V0V>`^EJ= z*Qg--6JW>}W5OodRztrd&#o>gV|KRx?tSL6Rzkw9)x9V5^ErCFZx6b<7I8}NkqPsu zMTWuZMQaZ8pZ)G#b=g3??Eoh`FZZr+iEs^^omLgoG$bUXdLe{HTsQf@)$988^?zp5 z0_WE|GIa>S!I29v93R9k$JqH^|U5pZM#7T#%pp`=p{gh9Eg zp69g2>@>uiXLts(u!OGm393DPL5#QVa_;#aPgYdn?ZsiDUQ3k3tOL#ikg$539p$!I z>I=)lyh+WumzI{4R8@z7ZpgI_`un`0|6jOiL`FvT>cJfwS~BH6Ouq5DA8oJ0-m^xU zA9vN+nQX25HeT&wy{q`J*(J2FE>QmJq)qxn(D!nv%5md~^z_=x73dhjN6RLgL9Nid z&ws~=uY(Y=kk#)j=`y4w$?9AQc!6AM!;FiOS-5y|Ww-d)0;to8BhWrPHO{!aTb?P}+=|~dP2JrY(6blB-UmyW zAgVG?t4OdvKk>_bQ6m~L<~|&Suen3an(bg zYY+5RfXdXuR@LCiIxwNJhZokzzs$GibmI>NSvk7Esj48?|7JGqS{-bn1$CgP1AI+~_HVp~hNU{ts@c3?IHv>) zOO1q5M{(8Y1|c(i*6YDJ6{0TWORkvFVmvtua*C#WdzXvIx}}CStye76<@bBK7|DIe zmnToE-=gj=ie{h@la*%BM43H^TgWCNdmfq)f`y%?!>GTyD$ z%pVI6jax_LkG2_BtFE@ju4BGCJWU62z>XoQ?7Jg8HQ*h;|J@#dSWFTUElOq>+qB_j zE{kipJmn#xAIERLK~v?puo|(~d(PMg`gByv@)2xOgyqkRODYmh%%?F6XK87)#N zZhs9Bk-2@Fi-gv=Fz4m>7s=^HW@ahRO%tqgT0u1+%9Cymy%)q-bBJ}`-06-Zy}PHp zFS;A_h6YC9d;50MvWLv=`7;c?nVDNd9;qQAuBf52?NxJxr0f?pRW@zK%9r=l?SED{ z8`AkwF3LOYY&I4NNV{D`>DGFn;)1NeEh-=ng?B=_4qVw6E;F9w=0#L%xA86mW=J#8 z;7#ZL-yR14V=L~m+-)aQeLLTbVMD$EdfyEPr1p&`Y=@qX3s1Lp)fSVrAUIwK1pXc{ zbVkrNcDr*3kbPV&>ZE5X2sU|=Ygxb}C@I)BcD0nb8{szH&&}X%kf-f`QrM`7GpnJo|(i-%b%@$2K zS>P@_!cUMucR6_DKQ_2qy#3RO2QS&7$b%uxsZb|%x52gqM@94S^DDQ0FG058(e z$c$`Fe%+lwr$*d?`n^d`Z{$v6_iWZop(U`5eXqKDU+r%0`Bk3Q{?aXTAQRDZ!vc}1 zbE22N=V_FNhb0h5Yuww5Vv5J%y3rV8e|{jGOivla9}>y%b<6wK1Q$h-me*|4oV;9u ztl$f_KO1(+J%u{5OMkF^nGj1c(nbHp7vRd8{x3r_t@OL{b={uEYwqo_$9&OfgYVJ| z=l?VoY7rTU`F3E^<>P)W2MDPN$MhQ017=@)Z*)o<*J|Gr5s-(yPW}eDLit^Bg9LUj z*zX))G5Rxm*|avrW`*9*O_jH5*RsWbpR_serjgeS5bLGCaaM}t@lc(%kwCK2J6xew z|F%%H15(;M0x^5Z=?-7&6VYc5r#^XEU2?tChCO84?m_PhJx-gG;)WXNdj&NSvngR zWs78PcUHqUt0J%rRH~v8C~CP>L+nlu$k#`+(Ofz2u0-2?I|Gw z^Dyy6QMPCbhE#Wd{%%8jxT2jTFCM0qfk@%!^wpm=DJe0jc;fihpo}&A<28KtbXze< z3=<059r{c(hn}KmH==9Yfu+P;)Of(rLwxD1({1R!b4%afo_0P_FJ?-S4&)_G-1Q9Nmus^Re3v$k6UN_Vl)5 zk*-mzB+sDag9a*WsbFI~*y?OPJ$;9FM&q^}rnDitodaak@uC+J=9_U8-D06g4;%gR z1RCDC{>ghd`DLTVh4;$tZg4r+l(JUER*0I1Ep}jpZynNl(M;hSzE!M;%?!3gDppG3 zjn*t9rJ}=LHZ%pJ~c&@_=s(U~tLw_KuODiZ_B(DRC~D4(v<<91g9tR}6}qy;w_ra5dTh%k8-jpd{_m3z z>goR1y>op5)zl00T;{a&+awF<3D)?q6R+BIeZa3-Bb%HMqzA}$@IeV{y2e;uPNn5W z(8lpP@b#&{*Y6Inn8c`%9g>IDIzo55U<3@%c6*=02yg{6fv>l3d&$x)CY1g2`fze( zuCDyb8z%;Yj&l8vbE!DuU6sn-T-zp7!0lUqsV#8xdFhKzbo_^K#+%-rCzRB@nO=c;~--E zr%yf)OuL0SkNK9YRfTwkXOsfv;5QMAcSf9Va|fO>h}gHi=d<~JlO>z)D@n-k#^F~z z7LREQp_^?VI0)^vXx})kiu2W(z32<%qx{V6jyxDOOmEYEpRPEIy9V2!b=YvVJ8d0e z9o43;bnuLTwx!4jCo6?8-rNm>%n{!VG?`Saa}{trelb`%z$mD5&oz2gziY*j{ML;? zn}nNHf0kc1i1)a=9DTK-q84jcH8`irKrVQ7BeXVYwwKM-87Jy0i2@$YC09#~f_(Asr69x9NfR+gnCPs{l!jGjui^*oTzNWn6U#Yl&@n7z#rJxGk!~XO<*uC<(DcTnz zAoEBwpC7eP0|8Th@wjz?5|Ll~gW(twtdy2a!UZ)DhMczvlC zannVe0pM^ym#@@!HoA72N@q_&-P2s+0uFde+(a)%LDHqgj~VZ5X7Aej2FMGf<+HKF z$D90!A^B&xfC>Xh69G`_SSPCir`JDFfbDa293 zVWvXOBRR_8XVovLpOQTxiQ;&k8%*LrOCrxds+}#$ z9BrH}>O(8v-go9u|1HFQ58IKc&kKa|*lDk>{%thpViKMvH}7j_6EB}!cP zP6LF7ZwAH_3_dGU8!W$Px2@|YD0mMK?ofD!${4cAyc~m)IzeoW9v0PvI6p?I`fqI* z4tVP3XB?d;tk%m9&FEg>BhK3$lxRDJs1NUAk5vHB0q)NLBRR(TlrWp72(@ zzS~@|W)vUJZrtYr6P?~{q$et)v6>AbQb4VHk+6}Tk-;{k@p<6p#Kk(jv3Xb_%-L$6 zo7-HUJL3tM(A*n*%NN8?-tT(&Sc<0N)OSssLs+B&Tw{KI*3dbwk4gD4%iLLrVe^1RC9Mw^)&B-cUejk1`Jh!|v5#GCZaWoE5U-IaKo@0^0LA9DPGillFYF>Kx+SS)z!QI?y zUuk7w`uQRmlIkp8$t~-Cp40j-SU1-%S2rmyFOpE`v;qbGk>g_yw~Jk!$SC?05y|*& zhb@<#rF0Q*h<~Dir*Jww=G!&Xsp_@Wn0<4<(Jg3qKs>AQcAg(4BhJ%K>1|8{4V$Xl{jo8aw&+e`07J~rdLlbdIrl$>trS{XO}<^iZv{1|!g z>G`J#t54b$;VwKEQ@Wl)F1?Y_RrJDx4m@G$4)~8P3!G4xHfcd|TFNfMio)^d4P~#m z)E?YXy>GH2_e*lcq+xWSAg5+Y$4Cy6yLD;#%_s-dWrP<+@w}fu{=6uZ)J@t+Qd-fj z)@zf~3Wh`>xty*{g$wYQ+0=z`SUcJyb9AddkNT0Dcs1x)I z>mwA#_aS77bwLJ)7zPDIDR4m(?@Y(WN5b(p%uD<4T@`f1Vh1Z&YFY?FIV+vE(wsCC z-&rrrKK^Fm^*+{`XU-^DhmAE$qhFh=o13*sRoh5&)Ocu)RZIHwhn`r3$$b+i6K@6> z0ev_6b^Ij(O>qtJ;6<#8_4ZPYD-OcH<);+8F^!tF(6@)w!)<(cYy#aImV+-?=8m!9 z^Jh47tO1V$lJNz^6F9=ZPeJCK%{!CJ?2rQNy@Otc-R z>UV6sdNud!L}p@9LV0zSW2JXgT;s5AgBy#hax`O<%4FA{Gqn&mHmzOY(ryV!+Ue69 zTYP9Bf@o{Az9jTDcukiQJ8-D6`Qf2s+u%e4VZ9T7_+Jm1@ocPhxFnep1 zN8h1XXZ>UfD)EPiUC435tw;vR=lory$5K8HpSDY$1AGw>j54#Zct0?p_Mk2F&xAJy zP>khgzZ{B$WH0E1siPFsla^^o zJNex%=j}n81q0XDaA=L*NE5l&x!p#YNl3$MY_rJ+NoK^nPEkM5X&AI|Gn|N`FaLys z9;D+0&ZsAAdPBVF3jU2E&rS)6G9U9)!0ZCK4S$w5zP4t$C<<4_+L2cY-Z|^`;+R`F ztXkXHkob-ixBmVre|X(xkwfLNrA=ChLwg}(R99{m^(bkG5$QNdMTKpMyPN|xW-PX2 zd*Rz?6ROck6Hg~!o#RkzoM)nnHr)NW>Bl-lbi&c4U(+v#Ryv-ox9Pr+sWWTt$c83# zU~mW9B$p&%(MnX>r&ba7J;Sa|I(W#ZPg=I{uuVA9at2q_`41m&!~O$Mq&T5J=0w_W zD{ir0=hUp@t;CptLKbb5K|5!byRFkw79o5>ZNigz6>~*8B3+$!HOV$SZZ9ile0F@M zH3}V<|8S_08$~W;_oa533Fg%|^r5*bskA?`Qq-^}GZ8wywUr@U`ziFb^`UyScFPk> zN;&bFnv*Q_% zP82GoaNV{yi2as^oIPVOxw>wN^)x-N(cO0bUKWVmGTl+sw?U}t+J66kM@me(BCuEo z8BhL#iy0X$GUqOa7vG}B^V)JlUG)pe3wslf(=}W%$7M!{%$Hs`6 zZjnm%`>X6%4_s?L0ulX!_9Ltd2HF>&CgHWWW392&OO$_dA9-Z{SYUi?< z8>Yu}DiB82ibi|vubJ;fGHGxP%_c6{IpeUK%t^F*_SYrDm}dZTV7X z%ZfLRd=;~ZOx5ul91c{@T;y_~yf=pBuD|b6bdvc*ywBPPA($cJC$;9JRNmc+F4lQl zcdWMIu_m69C68i2D5vUNoVx<+FN!x_=8(3@AOXaf>uh*zzSYdF9*rz|BKhgz=y?Ah zN6pznn)!EL{(NWlO>NnK$;VWs%`B3?+XoispJ%3-V6I(NxYp;#Mu^z2KRDE;6fk>5J#?dad6S@`L`Eup%LGIWd3pvK zA_k`iTi)nPuZf30Lk;W0$3Vj-qW*kx<2--vLL7|Y8mtBq(unK*C@?IH==*13L8tix zUYuf1iqBVL8n+T^5FDAAEJGj@N|ENxla$s&k0>9fp}vp(sINxdFR=a4{U(f>e+Gz< z9&}1$#zFiEX+%n0w-}#9NAih#k|R*nyR8wLBTXSQbq3}Zh*U_@PZ*#7o)V``vtS?3 zmo;d)d&b`Cs>j;74UdSuS2V@CX=2it%?>U`hq2|XCq{jxOJ#0y$51bSF1NR?1^#Gh zzY#RXs=~E5MSgjDkt&GzS=W=sp%L2DowFVWlaLhmNYHhXbv8;pn%KAFuKswsJ5>!$22BD|NamK{WjRP-m%fpaQVY;)(sLlk&oF zxG)||X}4p6VlgZu_s4Dg7;)y-CyKFycpJCimNFdh* zbgbT%Sj-atcu&c(V5Q>5xA$oUEiDgw2?*8kSQK*2tH0#~t`%*YhSroKW*vLu)ThZ`=$#8q$ug5>NRE z&^UScobq!0cwbjtn+zTTzUFb+oaBFytg{Vs5wOu2f9!0w-eqD5Q z{z-2kgU)XHbGhYnBkxQFN&#Wv{^4Z;HQK!|5?8ek=lTdqr0j)kCC2ijD@!|&QLM9< z9*&!55z=m{nNj*WdG)L2CTHH|y>pyf4pLXq6w@}gQ2W&Ak=R}LP6>7^uXwXdYl=-cigZ|91l4c32FzMeY0C6otL=20iM0HUK8^gH>C(kp4$+cGL~0Y@Fl6$e zYdARO5^EH2ib?HM>z1Ku+>1Yfx3Sb5_UW1*tU7eo`=oDEgz7JjL&k znLysdL>-U$1j~oqGsb?15eQ;W&|8gAMN-7~g}Bp${v06jz4DnhZ93gA8q&Y2`NfBx z$@M$@(SH~4XyuJ;XEi{EsR?OIjAq0u^?cXv^Ma1ouN44GvrK-V>+3*E7Q&=PNut1H zL`l*?VuW&F0rlbEH;2xQ##89!Nuv0^&RVc`+K(>kI_i!=^&?<)^T&OC63CV5X^)~+ z{?FEQSZr6V9NBLQ`_G7AgD|xw4<0_kQqWlhnG zjD%U$ehuNKA#SO;iAFmltr4YK@tDpTw~DM!niH#7z)|(wNVIj>4s$Z&Q}l^LLMjek zg`KJl+f6?BJT6AS&eEAwzz!^u>85ue3wT?8Bd}YKOdrukQcPQJ|d;n2T1d6 z=-#x)L9idMh22h|k5lBu?_0h~naHX@#=f{S)9(!neG2ppc{c(?c*P%<}mO!4ywjq~n!#NN8wS_ETi( zKL|`hK%?H@QVACejKF$~&F}ZG18243VNs~qbp=|i*n2+3O`y6qbLaA)^A!!DV`v@- zdew0+51OuSoE;H6b=qcbIwzN5TFO~on;4I}#=S(pzLvJo_=wXD!UrQD>f3{FOQ!QE zn`oWSZ+r1&bZ%ufRt#N32Ia`*K~d%XgjG=Tg!rdl4ALbGr6$m+ISh*Rg**s*p0H>*1zh9dY^8Lmu8C`11`3$=bVMCLe3u zQ;ApI$xC?)49gOF-Fpw)u;!jamTLMdf}2IHb+Y*Se2j)5^47MTAKJyAz=^w%P9_4$ z@@JgUutkpNZJqI^aA88`817Mc_s{W4%wOqFz_1FZGTj9IKMX2q#?+p;ZWC>$1!m>q z9V%u6j`?H=Z)%4i#>&GDtp+eb<3GffB#euqLwW5gaYDDHK7eIxmDCFgW z<}@2@1>!>g1@Lu<)x82djjl^~aXB#f2gw-v{0& z6~6J<`=n7rcinhA`7WTt6wd68fPISE^DjCjPgbfNf$QvJb+)CVvj&AXDC6f&^Xf#< z1vh%!^aXj0#klsmOJCKt^Gnf7s=NrVVia1GV<_M1l%3^w-3$z_Sl7!wSsbDBYvP{F zAp7*&rt(!?@RYAWbcJ7Z!%1hFj{xV}Ua!19Yvf>6GAhLuNyIuGXkHy`-+hGs!*39g z!KrZZ z80|T8syuy=rRp>%IS1F4rA3Zcey5ppe;2#bF{6GQ5VJ>+I+nmeA-L=)=J_jGP=7O%=zM*BkKAF!G z_|fAzJ#YI-I@sN4t?F+e2kKAgy5{!xHsg#UJEb+M-rALFF0(Myt`!z)fa@i8s7;r2 z#`Pm7MqX}tSbYA#}J~2q2fL7TR?WGbOZzP^ZqNuz3yDK!yiit5u}TVNidpFf@Q;xD@MP30;_ zRR*&3M{$hjmzGZHb0*;;gR%7&6U&qE{3=)95+g62D#PKkBahL(O!IVGzY;_JDS?^u z!-`_xg?ck{RRn6+Cx`(XLFS-|D{cs^Fu-yX9s;@&x@gHnMdOCSys{#d4dr)G8;Bn)#9j{~fJXO3i zsrI;~%RmU%Y^A!9k^pAOp1<=<-(=)7g=RaK&kyO@d^V|wW0prLhi>JgE>_P*4V7xS zV0^Z=41W9fLx@2PVwmWj4z`410~gn0r_OGEEmJba^3h#co>bUWaH>vb=xpFT<`BKy z?;{WXoy)*K0jmzdT1jCaDp8Rly!9AyF;}BV>WCm3m6b7c>ml!Q`X7{im}@sOw#7Yy zNNe@R^WN0P-K0OFnfVdX^3#J;rNh<(m*QN9)IWEw0EsXY}l{dC>6%Pu^KI{95& z;u6Fwtqew=aW9E>X7F7-v}%;f;6Gm5lShqnMcXPg@&Cedq{hY$z~l7SqGzsPSalwu1dxUdj0Hm` zmeWik7aDdN0}3f@SF<|l&5a#zX{2@p6XJ{!m3Sd;^KN>E9d3-3TMn_=Q1bKfJyKOA zHo??2rABfI3JQXm?=sKBbrpLsuXFu$i7EdtU+G2r;Nakhy6-Z|s8U2(Ma4e*>n^qc zQ$XM3$i;bP=ysldOc#9y+a|Ai7M$T?&2Oo^$~RKg=Nu`nmzyS=aO-1f=bAqgvt#88 zv@HNH2ALB8wAqx@o&%UJ5Z8odhq$XRIo2$<`U*%r8dinFKBCo~&okt~?IW z754CM2_c+54?w$pg~PO>`I1*1Z*?q|U4vi0uCWtC4iMmlLkhWscj_ zx)ROi(kFNsehw6fE$>)SBCVz$sTuoslr(7C9eTl>IHdaWbc2e4LG`hUBr%1&doma3 zeEnY=!6Q}ZWBK3pvn;Wj5r+uOm_iiTI;Or+UkThglr%J7ii?RMyj_cnxBVNu(5?lp|1#ZA%zvCQ{+2a3 z2Tl(+JXVv|_Ms=e zPPF3CR{M+7#5IG4AJ-198CCB=F(5j;2L}4&;gN&un;hC3b$D^?6JZWuH30?>wZBT@&7T8^nX`I5QR z+LxFK2)gPn@6w;H%?WyceQtk0Xvb^%yahcpHPn_HMWa<^w;MTfU0NiazWUuZOhcGG z{!$UQv+mi8Ze}(iPpmsMXWBfc3WmRHyG-(f0aRO|uYh z!d_hehi!rwY) zXYSGPLJVzf!wDCJE*$R6fkC|J{RaE1`%e@?5SrX$dVYcp`J=ZxqxS$O`dP0MP{6xV z3GN05J}oevcN5dFQu~JC*-B#BVK)Bt=wF)oqUdT(I&XjKYT8n1UdC#j^f8m)UZ1@K zn3I|h*5efv7nZW$&2ef8aS19|-{=qvwH|I(tSzf431FE>aM>8eFg!Q;tzZtjp0$|@ z2>+Kny&?M7HAusexy{GN_hEYHJ{F(AcaS*6vMo_b`7WK+Y+W$0E}bQ5KXo;sCWH6( z_U|8F9k8GOVVB-=P6jB}=*HnqYL93=UKVh8R)ZY?PW)&$^0A1Csa0c@&dysO4^k2% zWj|?%a6A}@ij27i8H?e1ABUhza`SKzGCTxpMH)4qrDO)=$3<5wG%_V@H|&J0rhSkG zdrg=7*MO}{d}8TiA2xV2#3|HOc+2KK*jjtNdxUXe*~_SdU$z>~*RM%@(wO;fE>0JJ z>4ugPTMY7ANsJ?$a7@ku389t~87r?9Zm%a5h}4-0@TsRyCWpxiML1My9cHBUpJ z!AX1G8qeLm$BIY0_)R*eopsZ>g%zS+8b z%Uy<)Pf+Lk?h-Ej;$B{cnE7S28c*UexVJI@P}4zDDG=p!cQ8ORo5Q##f&1B#(p`#& zkZ~ZA>renu{%6V5bN<7E#SVQ1h?g~R#DoQvze?MLz2_=3GUPU>*+NcKn-Pk3(WkQ| z{RnV^o*&1br_No;g85Ym;Q4}~@%n>_v!eOXH>wmuXONV!bQ6Wme%O={@@}(~(9b!T}&u~;Q%{ivR6EEh){|-9I~h zFL{m&wz~(_`ynqL+*R#41+V@F;MV(zx9d~=t{5(p7^V+dwoke*ystvt_6m0{ee#vv zH1L)@uCD>Z<%ZvmVFk0Jl(s}kh`||qQ4fWGNQyWe8jP&-0>+|Nj_LHeC^`mqL~m(7G*5o znxvaCn!&^NCW_MqMENW#%=&QN86RHNrW0`qB8Jwje!~@?`gO`q)r{4qix!4GYlBl$ zGenyH`b$&nveVAT)I#GRBaxGn673n)r4@h^zH`XFwmr|tHXwXOSdYwq_?x0D%KZnW=RK!(TQ-;_dl>Xe!3%_jyoLUVio+OX8{EIJ*EYE?Y= z`Vz7%8NfkxpKr1!*6hv(+D=YVk^yP}!Ds9W%7clSg>NY2r z_iax2`Iq-0`Scr)Gnb5mzl;xvit@0H_0*uap_jurb~ToSWa}a9fA$?!(k+cQqSKvS zUC3?)YgRhrjS2TQZdQ7s8I}vTBzWrjmz{2hJ0AQ|OW@Ia?&Bk=tgNi5a&zfUNh=W` zYBt$l?r!rC|LdignPCb4vRQyAAkVI>1j-F}AK!Vl&%L!NKKm3(n!~LBW_@2yPJwpJ zp&H2|BADe#i?E%+PKLThsQTH!iv?&bOQ^Io=M73ejT4d?v2xuAK0<;&gdk0-?O z7lJD#I#tF4UAu~;qV$1(96)#?E24_5Nl5%HFM>W`j^Pj_duKQs@Zw$gvM}$++OuK# z+w0xTQOc_gQ&^In9j$gC6LULaP5+Mh@J?*R=)FaU1Rkwk<$R6Ur)(khwqWT8igI#3 zF+eW?4|OI+Gco4N1}evsbHsGjkFr2_?>|?S5%22_;@Oo=_P>VxbaO64H_Jq)i$0t8 zN>ZYRNpu({Yl_JTD;u!24I!GkQa<%qCW*l`H*N*`Ys|XG!`M}hcuN7m!e+WYIAK)y z4Q~_4ScChw$*`fk2%SkHwq0IrbIi=oA3BMGCn~Hd1kHMZ@(tc&BPA&;IZGQGlf(6q zHc$Qkt@o$g39@VRM5PeVri{rbkcHFZvZjRI?TzN9mGa7M{}lEMO-_ssYN<_*LW!{v(C`I1|c>TT>C9(9F}i-u4CbE93MMpG2N;uRb?Zz+AyANZSn zH9kjPuW*uR7SWhPb0s*_%{50yq##EA(yHu!A5#ydkUTgm8}LO5|?WTvm`YMVjS4-$NplSB@vtX{riut)$0%J^vlCTw;Mu(QAPL2Z{3mAENh@_ z@~2ZYt}zN^oR3nrADEgFDLAB+aIoT2f)mL*{CZHr!VifSqF?Hy$;e^;QgJ+QwhthV7ik8c|)fudo~moG3)#J{;SlY&7#mFs1WH5&f? zyBWm&pR?2UH;_YK$D;Zg#8c7qi#AVaIH^}j2tyV1a^H8o7xZ~488hu9J?G_%)kjD7 zPDkDSlS949$3%mHO*V$l=DCQSLlEA6n z_T*iXn#qaEKJa(>!lw~3f*OWp;T(=C-168<*9v4O*_sW(( zR1A$J<`!0jdGqwVdp1^L)z|59@u|~tt!rR1`AaQx@A0pj5Sk3HfEq%=NCpE5lPzGC zBVE~U9wT>rGaDPFpwgf7C4%StGVM=)-alWIB?g?WKNXMg1Lw1UTav`avc_`2P6)@! zmuqiqPM60t;1U_{Q*nvBBU7BulfVn~R}xm#(()c(-#s_}mTM}ZxxkTN3k!xB)+O1b zMECR1`>j)r7U_5YydRH|BcnRbGeO; z8M(P^TUSh|CKQ4;`>ohunhPcvdYRx*-6=IJ_n3P z-Zz{`+p<{tzLhFAG^@Q1W=$2ohReknT(*1ORm#NEtk$D?OxJLml8C`}x#_Z4dU<(m z==vUfVC0kbV)?t-nXXX_Zfs`uyvO-W zd`#&{v%bIy6z5Mgyi12D)*|i3SRrkkD*0O|S^ zp;0Gi32h=!Oh@rH{TijKyBX*o=HkLih8M|CSq$;tlkAmve4#9b)tn_8nj~cT(!q!$ zaxY>^L|B+;!{cv|2hPar+Kuagm06(I%F0T!$yX8#MF8F#<3lnI14nKZtwR>muXhf>)GQ(E^i!Hqv|u)m~At+L~FNq))PUnhP* z_5ay+-y;R)FCU6*02OMgrU<=%GdIq!pLw;4AZd<#D?zlCC-?~t)cB0?RNC_`s$dW< z9S4a4i*wnkfw8H!BW_+&Y>e0s%3Lq&ac5^om7bi{v}|$V$2m~cT?Oe2C!YPby*}}G z($mxHPvHuXmp)X`xjeAM8%-AsCtW}8+$&O%GqKp5aPtSw2*TAvPhd%<@j7^;wr$cC ztoclz$U-d-oYT-Txy1z>?asLItecQJ^p<%WK5uN_szuU6EQtD_t4m{o1edJ2m_13% zCjXtYg9CCzpR4Z8@C&P{si|(W@-|Pq>(vAgEcTzzEP{-=XqB50y3Km9mueDJajBdv zddRIu2zJxi+8MV+S6QeYeyn~8E}`XN_C0U28NK#aqk?+XWp85FewM@@l*ZMrpT|L{ z>c?6+DhwsV=X!zHwTDRKQByNUq5~>*xIg}wt3&%x93y#jK z$LP6UWX(_L8}oTks11u)Ys#X9Gp zmsqufmXSB~T(SKts-_Vv1{Zp7iW;rECVzbU#zaoEbP|$Vx%lY$Sm`&VcS*W5Uvilr zb1fQb-HuR5p5jY2xcZft{6fUH%L>e|QuQ4H%zjoI7~y$FaYn?YSO0!v6~So=;3Bf? zn_zD8Y9IHM`+5yUw@LWiYqP#;v)zl4 zWlvmL1Dx?JKGy=;9@jrx8%rZmsW@ZFmk{cnvXYtG)eDP`O^@a&cA-0u875y)o>tA3 zn73o-p&y~TfO;>ovi;y`~NT;jb$>0?-bhJ?Yoz{)KP>z&W+={Ssh z9Xh(vO9^GH*XEiemZaMuEg}Q=))F}hhT-!IIj)}8abeMp;X)MM*1e+Vath(HoiTf8 z=@XJGWOt|7)GQ9ACo?}L7irk@y9RzkAF8Ng*pL4d5@Y@zj9po-k@CJ;MA)Hy&tcwM zV@<#O&eE@9c)gE|{#G~+P`7Smc%M>1PRqogbL`Y%yAz??ybh*dt@HEq>yDdwX3-BD zWB4%uceRF+DvXO~z6@|qs3%)-|CZ!}V#kMB=YY|y)W`iv6Bmn@Vkjh$OxpXLsY zUJ(UnIf16pB2HetOHau1YG{4$Ts&Drx*(y0fX{tb#z zZTy1`y<~Pm_OD!??U10J2f9x?4HM{l0p8Knqs z4gC}*dpgT>0(>6}1RHzOjeE+j+Y{iwnNr@6X|B4uWZ;L--{1)-E#*o*J+;i?`71iB zAO?bQ&&z(Ie&#O*d#A$JrB4h-S|W8VHKIqiAK=`{v25#g|Y z?$P`KFI0>y|LaUNMv2YJ*7(t`b3ZvG{P5pHLv7PFPRT-+qzSf5?WE(e z$MdC;czi9vJ7Sef`l1ZQz&(OrC_f+UTeB;lK9N72ge$?C*gsB|NSA-b-uqeM;kUMH zkn|u+3OCh~TeteADL|aZr68OMTWay426R~a^mdKDRKz|9uFOmn5=b(!xuA6PT94UD zdDEqY??F6a4$t0?w@1?+!u7kPe&*q7%wv56%R)9$M1q+aARqhDoN~M>Fk{sjKBwfblF4X!T&TyM*8j$ zJs))8W_E08?wx^i`{Gz^Y;&24F~2mn)k{BL8j{Yf$j8U}%A%&y`M}bZY?(V0kY`Wo zY{LfPVhF71M7Zic;YwYkzIrn{?-BCFd{C&0f}PppqEFdoqS8lmiUJrQy#93ig{}dG z+S4F1-;~NqVSPU*GRXHvDNNXPY+pAzBQOovY;+v}psWKoC_td&QY4;jn9xJ#)18hN zMFAfiB@)^lbpi04x8Vrq3hi~}s&>V-<|t)AlM@Ymlj#{9wzz8D=s#EFMM$#8l)9f5yiB~$EWq5CE)~T4`py0fGBb;1 zM7BC7^zmydU#%qe4BwC;Wo7Rb{7e>FqQu%^{)Oq2yVsj{Mnub+%GrM|$X7SzpSx-{ z>ut?x{e}k_?=~Z2YI*}iKFF}V%&Zgdo_W`~ixy(7az`<=-{N-WhF_+Jh~47Km+E~NclfIvVIXrN$_u@5`^=~7erCVDf! zaARMlo7vID9fl?X5$TPw1sl<@IcWm}R#MYT7tR`oldblpFwU2XJ{JV^mpOBwRO#C_ zt4AX?meJwDZN}?nfsSVsn$?)m+Q9!=uByu_K%{ zzI)keCP7h z|9sDkj-w1-o^#IL`>eh8TF#{$9I)3nSLZ;hO;F-^L|f0E+?k>U+91(+`d%SNKv-B? z+6kG-fhR=bg-Gu}x_CiJ3C+RbeMC+Gn=7!oX_e0xM@r*8c{_FozK@; zlza`IrtDA3e*|;6p2?ZXeJlF53Ok)0Y;HWG{9u`i;d=C%%o}UvncMa(Z0vSE^=ehO z>F3$Y#u#5suM?X2+Qe7pw^`NbmQ)X*I358{=`fbi@py$%JQ}Vp6u|E1hh)G{9c*F` z+k(@P8+|A;eD?20Q;WCyUAZ@_2t2q>b`_wO?va+hK!NauhJkrlbnn9#7G#^i(ckl8t$wx!dN2Z)8q1zeU|!Y zY9!hf1@v|^Dd)pR!|F4JN0`OR zvkJ+c^Y#}S5 zJg=zzX*07xas<64zJlAE4?UK=Ss0ds87o)khawZ9 z;lI6pIJeAhd`5{4N+Z{ToZeJ}s)OawH7lt(zM8`Mux^sqXPuo@IQQlj(%Xs9kxdt~ zq*_oSWcVn!6_{u`paB7nKxjTK4@BpiJ%hQ`>gE%;<4mUS_f3c9Lk$v%m_V9rVKNl# z7lnphBL$l{cL!Xyy__q08Uy)|+8`o|I?-@U0bDw}{R`rlk)TiTATy1PW{0BL3rego zqFDCz{>FL_&&wBB*RAUTcClrVr{8o7Z^%KQ{=w+#nbCFAm^xnJ#bC#&76iM#fwTDf zA-pwn)Laflh3tJJB`;6nU~Am^4pDS*u;HmhiiR*CaJ#P;rN{WQ`FhXkb>=yV%6o&LYjnYn(FFOKrN1phTJbpw$lu}(pLMDU4EAz95@391St@nfy%6E5|4@F z3|RMZAX52)g^!%Yv_Yaw?-MPCi2IEMF&lAGOBabVfD?c^;qrhuobuEE9dOvc1Kt)z zBb@;}fe?+!MgF|S+>7p9uL%z;nyun`-*Jmi1cVejwy@QcmG8+s#R<&9O$u}dw9}um zdAMX!UNxNqzFg3$Zy?B0TANymA&BZeN7@@iuEzs0vHSFA0sJ-nkKKczlMCdxF( zG{C{i-p2Ie%Y{}V6TNPW#;iw(odXT>fAe+Awux@c5ix2alqNTUD~}4;(|1?H=5Dbk zr&5qgIldNSXd4jHk+RO_WJ*|TDZc?|;rV|DwUjZE`^0WLGvYOU_{e;<2+5$Exwwi6 z$|g+zMM*JJoD6uJNY{SjeDOj7O#B1C`^xHSUJI|KYWWVpzCN>RbLmT24p3G(%th~n z@>B(3UU)HjdIH})FtBIZR#W?nhQ;&=p?bQQyn(?(K|xvK>^s|75Z7M(W9Xs2tZ}64 z@9zgP$ALemDc-`x9)m)-UPGYVtaDo{k(r(^+er9(KuRwgwa)@YotGD8_0dO~MB4BW z4{)7!JQ%TVI;stGGMXXvK-|n9N>nS-%l$<=2o@$$~V7@DVKta5o%? zxz9OGd7t82UV`m2PeTv07%^n;fvaHsK51wMugn7pf_KV@T!hvt0qwO5&F) zvdl~B9lQQu!_>M>j6Xd*(b`u$mQ#4bMXy>vv&KEuLa4Z)JLMI;_wzYIuXJ}q{s{8| z+rT-b&AhrqiK%w$#6Z9LgrV|>`(C=A&u3Z1=%GJx7KY}c5E*Fqvh$I7dC>3LE&Ce` z@T)ss(~cDl-Mn9 zr5CqU(5TibyKmpWgG;={$u|C2{*S`KC|2z}$ITJeLPs3uMsm{@cFk9>)U~yV6P8E^ zMfZ4LQL~enj1?Od8dUGf{yMb8Q$yrnf)5`3xt2Ad?wfg-XJ;loTc!?9lty49@yXB%ZkHm=`>yik%&A zxHov(a|xU-oFKiuy~)+{XvOvR6uGzx)U%obGTg`Ny>MH%4CzX4^ulRQ1&^t*S%w$t_4{>4^- zc;d*9&CPLL*0`5CSE}PVK1=->?kUT;gd~a9M(Ndf7)vHAmA>tvf5ByZ(u5WcE;BfZ zC((FXlB}DZV?>c%b7Lpqy6Z=u+7HmQnT=Nm_Z%Fr`!>cL`#<-PNZ`+%CJVV@375Q5 z7NJCgKAG|Gy^iJHGxmi)1YM-z$=^Ur+O{vv7dO)rD#@R(@vx5gJ|RU`o`l59D(VK@)r^du zzxZ~Wh**5E{9eDmK17s*v4m`tcom>7$naRiY!mz=$CTTXE;*Q2ed;oH3}cN{cxsdl z@cV@Dj7LLJB^AdzK_WBy0BFk+8|WFfJiCD35;mW7lL4r&Vk9?OB;CjewA}Yc zpGjma0}G5(y{hA;m}feI(ciu~!E1fBe9HJUc}Y?BvF3cXoe*z|z-Mf(1|&A$MH0xp zW<716Ye9HD7+43N?sRL0>dXBGI@16ThUK_=cwi{rEafg;BoyHtR7NElB~$47`0sA z6Xv>iXpAm1h@%^{f$^iT@5=bU7vQ zdyxWQ6r^neEK^Z%Klca1Lc_XB}a?&C8N?ntNQqJ;C&PSr}C=8^8EqFX=&=-d|+6nw6$ix2YzCezMq>Fx)UHYKqtxsI=uk-0Vav>KZ2MDY^LLDw0u z{@I}+ZQGMSB2yijJoVoERrsR7{#P3Wf^SjoyrKeRN0q!U%o?7jcz;V2#@k(~l7Ct@ zXG#jRT3O3EQ|reH&7Y{@J`{5J2_wO%{?Ze}o+BQ=h=04yeLix1>a;Zp?g_4PWrdNq zO~Gxkne3{oYc|*izQN(CrgN>bS0{eAlD_*{=z4W$V$qor9i7!xr8a|77v=g9)6wj8fiOnkrx7~7&uD?4(2C)AXc-xR^AMPKld;>;7Zrec<5Uc;8X1n{aBJ{;6-K6=GGIQ_M;z-55Ga5VWN&$sc~bhe_@0D4C^c zs0+A0LB^8H0oc6Rn+MA*yGv9ZJXApCNlOE;i$6|@st zcA1DWU-OG5&Gdi*BLvJzVmwXcdX%jC>i5gPw{->Vzs#N}$HTS3{My=N;7S^sBp$Sz zj&7ylT5)*xEMdTw#nltkwQWPShZM&8{inw7qMtL#e#s5HszD850T9V;X92(E*;PJ` zmZomAK7U??^_Eb!dZ<+PTlXKoXGhy=Qubv>74-E3S+y-)E=CBoYEebGpU|h}ReVo% zxbB}bDsRN3-BN4~EH8IvV+*tFylW33&TDPmh(;R3-znl0&Ff+am8qrbZHcBC$7HD| z10>loNeb5CWHdVK?DzgV+kr$3e||JF8M6828=I#HA#}ss@(B*GRLN=%c66Y^X5s1l zmDv9~v4@CUR%BT#S=F(w;63;^^FO^SWK^bI#WS`OO;rB7Z)to9GATXOLZ~93Avt;oSC2w4!oRsWbll@)lnAP5eyUqnP&p2!i_(7(;YsY%Dy#YQx4{ro5o4F*ZEiqBkq)bx#1U-lizZX<^cHc zBA#MWw|yAUTs=yauqJ|Z{%A!W#J7TPW>={Mbkdvl56Gg6OwERt{n!55>|Z7NOsCzybrhkYwfok)K?9y4Y_jz(*A!D*;6Y4TmT?kFjPZ9>B>) zMVmVnaam>A$lzKuSMJRQI0oRBN!Uw>2;isU7$ z>L-(U$1h3*F6^f}^(>lsfO624>5b*zWE*WL6|*JceH>~03%(EF2PEfOfQ2;+J3G4xLSPf|Fd+D(h({s7QKSzHB6uvmXT}(NPFRrn zxOjsy6`$rmwpd2O5Ak(!gt5=E8aP_H{T8J%ysypOgsD3KLFT@9!#9x+T^f6HzPB-F zle&H(pu6jFuAIi=G3!%bSE)QK+4Z9+_CDaYJ^oPzx8qdkA zs0dJnLa|Y(mi8H4ijDdX?$c2HT}ueZRMWaALDK2Cme~=HjOHd0_@I@W-&E*hd1?)* zm&Ek$WsVjjNPtniwNEn0+-;HmVKh4@W<;C^vHvMce(T1_I-x;Ph&F^%a---hn4nVei_4eN27(&zZt-JK4Pdxe^1F)>Rb zXH79X!5GFO?kdQ)XP5qLiWdLW8i;=dD$;H9za7E_J_*~+^|f#F}6Bmyb3(6IKC z@T^DBnc%U9q%~H7fCJ?;%r4Tt#dFM`8N@6Jz`cR5x~fv@!d#|=WR0n(4trvr{u=$= zb9HQ+!ZceskT!WY#~qZq*>gg zqB@8S`F-$kT}n(3mTf|R;2|O-IOwYTO7!&bqP%yMYW@AFbm;l>!=rz6Hb2Rkg;R;l zDv8B)RNILaVvu$q#V6c*;a6E}9ubpOGaY(kcTr6>ZV!Ff!Uy;8{w)?{9)VpH5Ri%^ z!9`7D3gAy!#?KYQCnk$HwcYn{1#bg@52>6}5p*_^jXq}OwXLqh z`DzQM)g_41#M%Z#P$W1*4allzHZp96QoGMJ?P6ud zhIfx!=#wtl*Z}k@gff_(kqA@jFnRFTy-Z}OFZ z3Y5izS~KlGjF!`D6Nj;K&f;bhL2NS4wX1Xf<#PSSeGy_N)z5$&|5Sz)YVyiG0w-p< zn-DYsz05 zd;3ep;UfIyZ>!HgY{vNPCM)SgmH|*?t?L!bKOfs%l$GODN4+ z8*iCo+G2BporwWnm6}tnU6A?k_}i46e2pjF0TFD4rLgLoRk&V*Ba-pWRXZ?qXTQw` zrD#%x&EP8l89N2eFJj6+u;^z@WDo7eSw@Na{%u+MdbGsI8E2{rFe^H0M_)LHAU|V| zvNIqz?Y!B0t{LL$_ti2VopU0Jdb!PSw=e?-*aXnz~Qj%b3dpX-h>6=mjc_%AF&avU1C7yu}TH+_M!KaOqnd z=7CJmUTymxwe%=Q;&PEa&B1!$1u{ zo=~t+V!Pr)^lI1%I!rZHY(+BW$9mm)n%Dk)twtY^@JfqbOB_D_T4b(2UHRr7zI4sa zw~KTmaKH3)feA(N>P1K1e~$!>LLxSNK*CQzdngsyrADU+6(3(dwe0!y2o4YV+Y7J7`oDto8vv02ZL;BH z(&lIWpQY0;tVdrwm*%DHjlE@^n8d-f^xR@BOS8uq^I6ZslG3ep!s%k11TxL9;fO`K z>7u#DyuJC}`~-BH3!XO81M2TUluaHY;=In{XgnA3aZ)y%b#QV}Cmwd{KrZY3`rK-|;^f9z=gG=OCm&W7xkPbJ&^c$DXP()FS|Nhp?GM z2IIJ8r6s3~={?HKhRcDW`+#+oGmFjL_@wo)n@mE?iwl*dE?Sn4ka@cfQLG$#+D@$w z7)W1abk%_g(LF3`5HNBYD{Od_@&IAg{AnVh)QCE5x0SYxy) zO2NPE_Y&|LazXY3gmXJvb!BPfKXviPwRK6G1TLcv9L1VyH0_R(%9=d;-T`4C9P7xKAYBEn5AlY{7o%ZE@ zu$3yUKKofki$Q+&&51um%0aW3%c-&HmuS!Gwlnx25zkEf7y0R_m9`G07Vl!-p$}hhrp|^SU}q0v39k zM@Z!8M3oxfGa+)4I8{a^rpN%^9yy9E&2`C`dcXmHIVA=NwnxyfIFA`AEqW2FR%{8_ z%E9dmktg8FaA+SEO=*5Oy5o_d_-pI~RS9jn`e8cU8y!~8h4qaB8u%Z16tM^STo+!K zQvR^S{!ilRcUwiO>0-y(J7kdX9ww17?@wJ#x9(sJi|jtz9pGP_qfu%e?0{?Vwyls5s=E@G>F#Aor8)0W-G*{u(Rd7n2 zIQ{x}kKAW3exLdP4ba~0qYF8F@J78!dN8DT`9<2$6E|98eI zTx8L;+X(PcY%fG2dMwMborD}_`#>|)iE<64 z5%1qh^bFn>y}H}U3Q?LYKf%q;(J0Z;_1-Ej7->YfH^HH0-{PUW zPnsM@gwEdk$}goZ)U}2g2ms`;FOoa4?kD?VMe`ml-Poh;<$|aasLA@atx4C3FoKMH z_jo@}xNb!!0hB{?LBS;mk9wK7j*Yt|qCNe+Wj~J}6)jMYyhH*kA*9T%;ee$U^Zwa; zjF1R&NF0+oi_;H))=%m@e-438b+jJONV4|AVCTKuei^q{G)TMj^g!_q zN*Efz>h!PPlKDE20gC>|L1@DjG)dKyuLrQt3#fzvC?>-s|8ekjl*w?O8VE^C*+QTu zfRx%kw5=ysN7}vb)ak`)$=O^gYu{VC*=KzhHtI!8 zI~4USG4FLto@yKDV+Me7uWbWHjEXepwe57XUq1&(hM7M9J+p0XsGTk~w=@&Y%X*xA+J9`O=4RRBhvL^ENmj2@f9_T6p7|B6Gm9K?*@2W{aV@(>`5dQl|yzp6g9sHLg2~ zXJ_fvyf&S0A%TW8GFABgM)ht+BgU|Dj@_oq-NhwM)TR3n58y4?>D|nAcOwL!_@C;L z>0?=06l_wCmU6qrVdgkP9&~of?EI2M@X{9cCIAl`P%)l=Q(`c<7~5oXAmaUG_Bt9|HbY8u=GZ4Gl9}yuE0WE z6eWO9<|{eN@a(Ym-FxEkTiw3V^a2iMOe5*7@5WlXx5zk`o3EOUO@9ZTKPr3<7Omdr z62J8J*A(Q)f)AovT*3`loAi90$H(SY@NLuS_-jgZ^Uq+nY9UEd#k zW43?0DGI@S5T5hqFWw^h#+JW$abEN1KB`PhRgS~qW_+vERaTu>coxWbOiJ4N8oC`S9jy#NuQQsOXK?h)BQVR-ns>&{Lng-Cw5Kryozt@3dZDj?$ zzBnEk8G(j9`8?=AD`bkLCuBKkFi~oXoxbtB07gPc;R^ctyMi{gE)y!YQ*9gl#P;xx z1C*43bTHtuul67&lfyMxwz!Z3&EMQ;-OveE=T&BlEA_upk%AM=!j$UFA|L)1yaQo# zE#8q<5mG3)90T;Ct6Zk!hy}{Ta%{J=Y<^@0!#=nAx7krWTL0qQULR$#r=O(jelLwa@hYC~T$`2GT zj0-;w@E>IkMubFqtS3yp4>sH`RICvU(b?Nj&piv0J|}gso73MU3VSZ^3>Bi~7dhY= z&QDI3my^PP4efY<(zK|25W3QM(?-+5NKj<7AC2%$>wTs$##4ZC0{uZgkJFIhCX8{i9&+o0eWjJtimqUNk=Em z#;zlnl7sudqWZ{CEixv0(*Xb~uWxKE-CDv2a+XBk{BwRb8=Ln&bgKK;D}4k$ve}GJ zM-*OOHW`#JncH?%(Tg`FGper+^cY#}_PFi-q`tIBH6vY9Cz>0Nw(BY9`2F&0KaqSa zJ*(DY6ACTTYsH+0jib)DRuD#cr#Og^j6|jjU;{rNyJXLJ;p+P5Qi>aG`5{{?C1zDr z7!pPp6}8Wv?~7N}*-?lU3gJkEmHBk3qlJZz*E>iT+3ncav5*)&sp?-czH0MC zguT4%j9DqH5adu3Xi^uh!9&kgEqw~<{OgeRT(}Bq?pP+9CKJ*7U%!4K1S67d6WYUK zp!%fXYS))0dN_^$cmFQa|M!=M6*&$#Js#U-T|jeN@cQ~X_~BO15BGAoRTu(smI}?Q zdzay{{_JKYWNm#L-nF5oU0Bfa-O=M9@w@2cO#4{VnWw6Y^WcSj3R9U*sWA-*19NXqQg-{-&Mdq*%E`@|aA*#%#O z@fyXvrf-`(hW{EK8-)8UIlV6H@hNs~!%H^AYiDuo1uA6b#Y%F^iv(#Fd79vdb4;_h zu#D}YC*SxY-TOS>6KJl#d1DKm8ZbJm3b}WL{|ILEDO~l*<>ZuyNxQ)jC7H^fi8;SE zp;vvaMO?TM4L2#@&o6YFJYLz55XSawtc<-{>qs=d*K+JFF_^RNxqNufa8P{5rlfWg zi@NDH;}GF(q3T4XSP$XZ{)M@P(tM<^6E9NzIN6F(>m_;Zm`~kfim58k^{g<&co785 znF72N$X|Bhf_uOE&R@p0A@@(U35KOFrzR)r>>j44D}s$J%M^zM z^vL)H(nL+BKH3eJL#0AZhQ{VJ_(bKH5*aAnJm!nVYj1bOdz~;qad3|!A4?ElC4eV> z|4ekpK|qrUV}Ozcg~#XOEx37!8IE;SsmwK2*-icRC?O=sS!PpzTdV)yVvC1kk51o0ju71Ova^;e>-Bv*^ zPstO65RB(qGWRT)0NWmcBMu-;IZ$=&wU4rwjc2d+xrHrV`pRlO7!dOoS9OHsp&Gpq8*sEx+TM14SbJ~)s{y+&yyG>qZ7OV~)b8Qb z=tm^*LyG|85c1CP#Ji#w=tKh0ep}TA3gwQ z3*s|snR!!kCWKQoAQ-QWRQ>H{n&sEG-U<8m;>zA@v?^--^?N&J2n$JM zu*qSqe-=LTdYUc?GK&MC{ z0q{jHt~_&M&59dM3+883bkJFlE;CWfjbWZ9QglV z+lI?s3djqeoO}s}uy|GD98D!5mtrxWYuN~6BcC1?ih3X4gcU@0@fyc zzRkQ1$@Or^MLCnF;6)9#-W3#W_1~-74cNIKb|*ek&vdqE;!zx;H0T=I`jM z9Fzf7Bf#%T)ABLmq?)S9oom+?Eh|DPmG9PxY#umdv}?$vNRTF_BKhD0_2na| z?PW$rhRYk^gob#`$}3=qYaDpeq!VAgV+Hi2;MC0?s@*Rx|HaHGPA2P&Jr1#WL_|nI zhAa3(;$}YQ>MZvUIrp%m0 zpCml}U9qvT@%kc46cPXKo`ENhhL*mXztY3IlSf9M5C0i{3N;{?&%7}!pMLbdo6-5t zVy^9M1$OzphO{6W%zeMB2|qED)E`^Ido;J#G@lE=v92Yk?Vv};`|(L7cf87!Oxz8Q z2DK6ilIDZlz%nm!IQtKiXGg-V->B;Y{!H_dtP##sD@MrEEbajOCf$pAI3eoIxX-4X z`HE;Y{{t4{sNkWqCJo>`Z_3l(csdK){PUexHL`{Cbui_Nl2`qS%~vZf#WMf<_-5rP zlnjY?e>OAh%aqQno_!aI4Ao_JL=PLU^b<}!f#-drALyHWXE8E5{PF8h3oyx!p`-qA zka{ZFr(M$YGkR2Z9EAc01pfOb?RoASTQu_q&DRETuhE8-7z2sj09i4I`1+#?ZbCK7 zT?9M)d8#4Zp4)9^X7vk9DO&#-9RY#{g+u4%(z&3X5%uEVd|1=qNoR1f^GM)hmY!|^ z{Bxak$^^a4_+m@ei`l8BAh5q!T>zBfOs97{pzxx(Ce)D2-PRle;-B+5sH*mg9Hg=a zalxCN@3VUI#dG%2wzNlh3#b3u>);&ntUbNkVcNZ?bo?3EkLjIu1Nfqe9~j_y)3ghK znNdre&&h%|q?&ci)HPBv1Rn?2C@3irC~Ddk82>{&$x$QPs)$!+h6OGfA=qTdnq_-L z*@=Cf>OWg~l<@K=e*1GhU!hs`D4GXEpZxdeI7gQ@a!HHkrXW10U|EY71>^FN`C+A>3+?)sx? zjQtpzSf_)FliLd}kg89rja{g8?%yXbju{q|v!V?ej_ce|GhI~)Vwsz2%IO1@sZuR2 zQ`}X%^tC^T011X%VQZHphKb&-<~&ANalC4AKm@M>3!KDQ>`&k*mv1Uac`hA4W|in1 z#9hK?-X998De!GLqMdalYSzP2w@DdwY?Cq^GoK0lAaT0*psJ}k{dJj#mbkb({9X%> zDtT=))qA;tZ=GPscNF&}vX0=#f;@k;Ore>SPmX zfE17UOCL!{lN}O|NFie93CB7H-%pIjdnr&lgf{hw0v+h;;NBF{4xfqvOG9;L)j z>04OLStR^g(CcI;3^J5V*@&Wy_K6iuoAn?BxypS1xWxOtjYUo}7kX0DjYWCTAD<5%Yie?%nsVRCJG3H$H`Ist`D~Igqr!kG zO;t3i^MeJJP!k@T(ZUM6&(>Dtn5Dd&flpXREI{uX2Or;Wy8VvP2=*k&wlf)`c?Fzo zb-^4cf95%kot<4}Rn-s>>yM^fuyzg3|3i2tWzW{XH~WHbg0gvbpSqg+7B!(jLIoV@ z&EABkpkzPWVCVkSvxe!8`|N88qil5Z)#dE~nbaXmbzxoEw0XvmaMQt~n;E||Q^P?9 zBDRm5p%Xt`usI_W($D`#bBPN#VN+4yl4?Z{+{Te-0_NbOM|lbmYZ%{dU(8+MG61!5s<0`OapSFt@7ZF>x(4pTTl{BVBbO8wGJTJTqutyO zYZYl&-IHm))zw8L^XCmu`jU6`#&L#j>}+tjgW+QEEOG5UZGG5EQAM1rinH_+lKdDB zD(2x7Nf$IofO#O2{GchVpq!d{b|2`KnC)#(jy*NuO9;><>@0G`u-yu_+pWERQLF%^xil8G35t!6*RO!AnZ+BWECHd&f0SH?(myL376w2aOuWe@1_-13WljI>qYEo7Wu?_i=D>_d(D26B-*C zH|-A}{IELlf^UG+zx}k=s2J4IFN}@am+*ZeXqu1MC+q4Q-)YzU;hpZq;BL5j0JtdL zOYFvNpt4PT_bDqjIqC2fx&LIH^$LfgoY~OO9vI{6=@9t9@4)CBP|+6~eZb&g>0mbM z0;V+_haYTWP6)}5Jt|d;%GS{J%LG@%t#iUIo}^6?q!@ z<}&=S1P(6C0($xbLeC6EV`FKb>uXTu{F3HrnQx&D>S2^E5CH8Yzu8BIp6BKqwi)=3 z`QjIi{Z2?gu1Drc>yPWP*bf>SMxH9KaXvTq-uwikD;c2w7N{**9?uU`aSIBROey$GE zRW!#Jp`XTvcP1H?K#)LiU?7d&%k`pOPIPGK9lgFRMXw+))+l4^T`hti0^e%(rsF9M zO(P?nU9GOOrok2{k-v8tiCcx^LOCM(f`^YT5MRzOIY)+)J}${FvF;u@!+XAB#4UW_ zYg2K;K(RgYR2$315gtyXMMWT9M}@W^C`NLN(0f|slYv8HJlQLcfbJ-3k7S(l0qWVwAL-&?9D;ak z8wd35!tC@VoDX+K9)0s%nfai%;m!Iyk4wSk(&Xkyd~WHq`5d*va)86V;ITD95i!;? z7E<0Qe_Eb!-EXEjh=^tAjqGQp`KufMP-3u`m5*>+69a0Spg(pO0FqU0zH;B|4d&=3 z-FS+ZP|rwM3%S0S`Or}Axm0#P$CTU0@!c@V<`QZ`&)n6i-+at%_3aN1L2&m`tngXm z%D7o^!O7KPF2oN6&Uz{)ya8cr_dGH{Rgn}bBeG54q%x?Z=-H&f7oWHOZaksG6koa} zy?Xi!ttnwFD-;9{AZt^71Y`R8y&wx5r2fNIqW5x44L)cFdEUw=rxJa~I(ybqWje6U1L zPWNQWjrE_WJ`kMtu$C{H-HC|HnDXXPTq4M6$sY#zB;VBu36v^wA=A~5a6$#Bdt7G@ z?t}RvWdT8T)2%A1J47h=(+Zce92bx8e1*xH5Trp4Rd|(PoXKLgV?)`5L?SIiAjI0~ zKe4%5PA33@QsMJPf6oG zDVPl(r&G-*`Q`!!f|e-9Xnp{hp?Y{zYDNY%aCKGA(uAHLto(dk7BgZG467h$oqBuk zB&ctb6z^{9AYzFA?M=w3TZ6B}!NDoD9Hd^1Or@Bti&GWqDsgYCW2i_X!*qJKrm=Fggx|4o^PnY-Pm;JpZ9$=+?=AXm;Fc#zBSEpHDfuq} zpBMTzz^&aDM|Nz0o<2^-F;qr|J}wquiu@@ohpkAc;LVm(sHs6v-8Sl{TYhOG04Z!u zrqoC2{YaXHQU3aM;|C0M5kH)s1hqp@8OTh22nw#S0)ThGs=ZUKVQ&cbg+G~i)Y92= zs69E(d9mFjEJY46a53`d#jvKXqLC4&qL|o3!?7d)dz>WU!DE#iR;#egYXN>s)y(-E zL_Myoy(9p%6;P!tDv7*f{?ltYHF`NUWo_rcOoTTq0Vg6A8q9AhJ~91qy6Xi$-1VAL z*Rv!?BWFq?4Yj7aRNkOCS$9u3BrGlW+`0tW2}+J;QG@Ic<8Dr);J5HzKf%St1=RB> zW28{0>1?MITu`?n9xm#CCuH~~XqAB(VK80FmdHU{>&o0H8)Q3P9|yX5obF&KfGlJ} zZP@dwRb#)MOm~=HBz#y>uB-}~dv&ipQ%c@l13%MmTYE`};dkx&?#2q#MqCC`;7!@? zAHtcat*`Go3q;SrBRZ$5O%-8&P*E7$ip0?D=coxrvYfVSPR|$O zVM^!Is+ZKq>`)UeJX+NC-Er@AR#|IAVpSyqYgCN~F=_+w=ED$(@{Lk=>DGBohN4hv z&U_sNflV0b7JYGgiJ~_A0I)*yr{^5JH|e6^zICpw59{@~_r6!y+ z<3mg|^thv=V;Qaw6lzd0LgYaPmQ~DYWFWV;Q}0&cGiDFITwlabs{fFSjx;jE#Vbra z8W|egMqU+Uk^)W2$JM}W7+NzLu5`k&KPLc#Jhn4cjn9p1klO_c3JMldY>JbAxm8SX zI4%Ywt1+DV{O|3{E{&-M)Z-M9=r_IBdm*zpn_|D#O*qIGB@@pC=k zibp40+{2L8KSV|s6UR8t<(($Cr*BIcn*~hW#M_nqIWVZ5HdeQIpI3DlgeV*a zf5_(6pRy-+ORau0{@*X6VUgRcX!<2i5;j+Caw-8Zq0|IVd{p@yz$yq4F;HSA1kzvm zX9W0Ks15t@#unIbWf(P7`*EWbjC4Oh;n)2c6O35k)RGN~`qoWffp4(5gSEGr| znoWT~K>jlxjc8kp?+J-7!AEuy5a}_aFYAf1_U9$to#5%!>BH{pp!7u~Y6tAgGbQKu6PWw&s5*)C?<3=GPPP zqjs?ze1MHBO*}=7NmgyEDlSkZg_z$oQUi2-A0Hn8NTLv&QG3WkQXb@gIQ&hc%|Ytv zvm+Kr+fqu^_b~`uf1P2RmOi#Lf9B_*)^vL&%ZJ`zl!kcnuWNL7h}_?MfU^Q%up)w5 zex~n(H{ZhhGu15o9va~9GOPwCPyPCe1lrC^w2Q&#!l%=N6%IEk{a$V+%%FBsEEDUz z6n8twpF4kgv*+FX95J{Ww%RF+;50 zq;)=Wv2cM?RjaMfzXKP{2W<;`dS6xNS|GkcArwU%A-&{ip*#LNV45SqfF%TW#fc_#T71H za2epkjYHR+Q8mhrNE9v#TR;w7(=PlzuVl&Wcd!FL@R~d01a9;$vu|FyUb})@D|;6Y z@5N>Py4a+Q>2MTcLAvF;PGLr1tlT@C7DN4PM&JXV4n3dmlPs-jNRTOf?MW7*ITy?S zwWNe0S%pw9*S|Jn`EfEkQLHm-9T(!Ddc{eGrd#T zxeXK~iq~>MY|VBTvRmCSmI?zG;AL!itqmNcU*-QLOJ7{i{SH5O4U^xUo)OsU;y|mK7>Ilz$66_ zf6Kkk4=}CaL1N77Sc2hw2?_t_!fd;|@T z_!D9QXGE&&MnL2X`;$7mTHxAju~Te!g!c$$SQg&B?7DQo?zx>X1+HTj105UcCL}&+ zak5wW%~ua+J>6lR-_1Lii@)$uck!T5e#dCZ`_L@qfDl*&*@C;(ig}A~jE*nkiQCso zM?)#Cto4L^a!`eRv3_Z7u}k~>!StWh5q|vG0xJ-_uKG3n^Z@+zpQiEq)bM$ES!P>H za6B_K9Bv^c4P{lTe-OE(&~ru5_vDBlWRa}(Az_i9P__?bX96Q*`}G>$IwlBh4->>1 z%sM?3{G)>!5R<7)c$VwWKUD>W5#(~7fq+}e(Wit{k&VUw^1X?;e=F2E+8^%;s?Mi|HPt+mty5IV*tTOX<7M}s#7cVjrtNx{ORJU5}JM1#H zXC;EY80zTwQPS&#z}N$`H4x$;BJ0E>@8pOfoJ_CF@oUoOb5(}@Zta_Uf9|IQXvi(+ z=D-UM^5{SOQm)@Nql|SN51RUyH_`{=vZpR{>D3w@RC(6ri{IEi&c_^xu+6*c zb$}UpTr`7SUy`V08$z`R*HXdZq>j>8IhGO-C_3rC)?5c2#~ z?&IWuk-H*`&%^rKpm64d8e|=JO5fT7{Zu!Z;)L(9?~^G!Y6sekCP}0UB3Lb;kNTKCmVB&AJztL_qjJ|fWCF1_ z!DEQ=7xtuI+eS<;fQopg-hFs%ER3q8C0dst{g2%IWle#=M3wq>=p#k^!_+S?|E32kTuM%FpgP_-7l#&0l~J$lTSHgX)>B=jn_qxKFRxFtYxDx zV3wIN=za1Y(@s}z`L)S6ZQywKh2V@?p*JaSV2WSr6GGA_O2yD|!?>%4F+Si7=`HlN#trJBYghn-bf)8Yp*ti>gH zYGUxB76w54%5RJD-p2u9=MymQvQs7TtQ!-Y!7eqqvtt8?;o+%4xX+Re=>B1T&#KBx z5x2i#9Be$|yPsupU>}~b3qt5IbtI{=l*#`Z?VpF`(1k(Ey*tF_q%RqQnt+5xA{i6# zJfcocCz+i%_ORps@pKhXQFUE(KqRC?Bqb%JLtscnLPAhbLRz}JTe?e1N~NSrx*H@$ zKtj4ly1V{6eEPp7YvFP+>U;N{d(Ync>`h7P@u!Odd8CEaZNg6-YrGwIiiqqn7wEc~ zMbIoQzQN6PE``}JKlP~tQk8;n*OSkJ6+1yOhi7@;6|!Bw#3y>yJ$f}%DHP#=E z&eMY%)Vw1OhR`8y+P@^!C#{5o;s46=0ql z0@Uw7Z@2`gqemcmBdJUlx%$QY{Z@NsqI=&dMdha!+9CdwK{;JrgvdsNQtXLKY0lN< z?mJCNX@S1@#Vw^4pg{7^IE-|k84DSMPiW~eK&C^2f+;JZk|+PY9l;+{5O@%{mi7NL zoEn+dTqpTGKHjaYC?feSpMZy;bzsG0XUj-?>5y9$7)I6xJjcnX-*}j=bHYIGwB4eR zAXxOEAQNBI+cCP(WN)Pt%{E~uB-j^O8$Ri!Q9^Ar5YDo+h7ZCdYvJ@16P^FG0LL2OKx|?u)Zbd=ROjx7?vY5nBmNL;p@Jm02fv+ps%0#i9BI+EGADGSc*lOE6{HZapnEzYv!?I!UEu~j72>60hDN`()FQ6>OEZku3d;c^XQ(y zRUVCaFRNFM4LG$zO1O~`NZ-xE+)b;0U?WfpNgJyZKY5D*Sp3rGeA-`HrlEi#P5>`l zl7!)-M7G9{eF@q>c5MQ|UBaoVwEtd^(sF`+Po2p?Zh>0`T^uLJasO4R>%pq+lx20= z@vNkw;iD*#W0D{o%CDK3evy%pN;Tp4kqd}q?ZsQdH$Lpd_Q9bOlU=Q2e317;OfMrw zl0ba|r`wkrv%udKjRd1Lq=QrXSXD!#FaK@94+3E1@@HuH1Bh4j_Z}NtuLmtJ;*w|k z*L>TKPfzzRvK2l3{KY`F}tJL5`y!ah2T-!6D^>44 zgqo|kewC1L_?WH0%3#3U+9sX zBm?ZC^9xcE3Y5sZ#a&;AZjoO*+57jo5?Hl6VmrftH0t|9(Y7yD zPN3ahM2vqwoBqRz%bVOa8SmIysRCPR` z0Ivf!ji)=nb6F|@87uS6b1(^`ZiYCIfQ$LT5y7oYH^w$mo&jk$uma-0g*boU*D_W1 z*ZP-CpKyw~t*O!n1z|WN=o;nl7VnF0s-L4X?axnUL})C>rGIUM~Ey9~qP0D~9^P>SH?S4#6vHP%Kf&87%5?R6t{TeNVA!axZ6gjV0cPHyp zkT^xCsFJ*UH4(0-n)6;)tM4wUKfiLY6^V+rJP27yjIU<}SP)OB1TE{kpZ#C&4gmCj zGRnc`TT$9E9c4|i+^hcQTmZb*6-rY02yE6XfdAKa%~E6;-h;UlMe;vNuV1%b_3`ba3jBF`;fx!TJ!35b%OTShNzwO?r#LQwNcWX9vT{oapNqQHsn>< z&4ZPR760Gr4E`APw^AESS5_q$r86BTKI|DNEZ{JPg0)!$)P`Ogw`h>Jq_hr)f@0`< zONx@V1vu;~G;>D8V=F9!{3IEkJ30<#*!nH0=9gU4jZ6?kW=vT3i|atseEl+cucn=h z?}K9}!0nDlkmi-q;p9`eVhl4Q(LLMm)j@QPfEfG`gA{zgk*r({M2gF-C{3_>jX5;x zxIU!PMM71AsO~<6J*_7p*@u8BVZRHiw;@&f)Er?L{TYf0i?Af3WZJ9<(}fFuQ~ z))H`7c(3hw^cMI<068$QF&qLe^gx#cHlth%mWNRz!^7f0;swcjv+nPc45BEpgiwyl ze3FNv6C`L`f5fu@*}z!GO=fDGlIPNlx9sg+CSkz+vs&+VO^~YQy$Je zkzB;!XuBV$z0VCMJ{aYW2Cs`hKs!F}d1FEWN+j)1y`5UJlwoQZUIS%7(dq}Gs{cka8R#sIZ z&*Nmb9-#+OtUo3+1a891i^S!YqVC;|4d1WX#;n|N&6&_7sjB(9X0OnIT>MhZV8x(ayOml1QC`JkrL=hQ-)6KTo~W zc=AwH%W+iNtRg=@G(Z0_a96!8YLQEL_X4{1dPD{1PM~gwOklhcje1vvq&5Rgs;Al| zfMFj~SV1+kv62y>ISy+cCS)9B)k_5^uo;?#PY5&iy)?2Y0*;<~40J zzlP5OgM8!FIxEwK8Zb(Cm%FbjIF(8WhZ55AQeu~m5hpTL#2ht-ux%XFd=DT19Ox@) zl48#=?p>5DtT`uCqpFc&Sw3he+qN8QI5&rc(mnHyu_2jK8FvMR^%QU&OM@ELivfu` z?e<}(wR-(8?miP$zNd1ai45yRM=mr;Wz(oC1#1YLY($-=mVmzlOUeL3#sFBIAY7^( z&?H>3?RsKWI266o(a}NdJ-62nDd*1HZw;o2!XyEXA=`K52k9>yeJ+3>bFfAjmZ(Ho zviwg)mL$%W<}?)E}gymNRvKB&rB z@&T*>6GpwZz0)PhPV5WHlL7(AlG zQWG)3ftVp&VZWdQDG?xOVsdg4VG>hcf6>tlVw_d!ZNfl;%Kf*HH!3O#nVN_N06x52 ziG%C*J5v7k_I6;UvEzDLD-5|GW0G6|_z|~H#sdolCt~t14Jq0WY~2Dm?InRIL+sL9 zY|*&cnctf3}iQ;jy{FxqsXQw7_)Mf`P zA;VeaKrzo-UM(nQFqlfJrHvV+X-ks#Gl1X( z2y6g7pVqr@f%H6&XoIhzz00|})UsOvNT|SZwe`R=Fp%dEho0H(;r%kED3QabwYblL zNK1Sm9qOkcR!aaH-OFLm2o??<1hh$5@(n`WV+^n^&x_-j0i!6K1>@7_=LRwrAgtVx`AQ@~g^n=D~kMG%?IFbAf+X9Z*t#9b(Ec z#Lq84oo^Y6k~n$$i9cv|uj0mlzal$oIy~*W0wo;idix#4mM2?&f{OJx8Cn#h zIAXoc(YwR^3{8iC4;4J9h7nER?aV5cB~TfkX>mALQis`T*KSQm%a9_IPQ1%?Mz zvsz2vt%Qu{`DwtWTJ#`OdnqJI$k_@i`&YWeEL1=JUtUyCXFKmpP#pUKrY@IdO4d1x zbnNud$VOlwHBicEoF5NU`UfKT)o_I|6Wzi<9xhn z2a*fyUZ1b5!+)2W5<=E2A{XR|eSmb}jo?codfwG`p!?{4elk5!{wNG4S7c|FEFai> zZGF>H+z5PazGny2TQ?`yRv6(&sUkegjyI>Gs8IYZ$b}4m^+BmTP?VzwSg`hWRmt`t z3?x)c(<}+@K_?OdET;r$$fv48Bz}p>NaPexellC_|I|Bq1cG(tk#*Jh0L$0@_--Na zR`^4A^gwXVV=lM3IRm6;_-_P2C3aQysKOKF0KHkTH_FFxkd2XFw0Kd70 z-#lnP;=*M2qVM=p)sFb5CsS+8&7rn{rM>yWr5`jxAl_w<1XLB{tFD2pARdWKe9)nl znS2aY3zvIP`BT{13M%)2Iq^@Kk^tLD%I5$z`iZ=p@=ME z$HSp~53GFqQ$z^GGDxS!II%dllzhSsBkuN+(81k+ou`SZDRcLie`oW5W8nsxolCZ> zungGs)rAbJd28PTremDwovm(iSr$zxi7a`mMz_0;AtBh*d{{9GZ)FQN(n`1Zce zxQVs)*y_`4a_EI_jT|%#xAlCM=o>3yK81+feI}|H9x5cN0Q}=M+ z{ZP=uU}i!qa>x=3lKFjB*lA$ z_)0>Dq$ZcZst43*0+Gst++rW$t_X1;*fxOQ0$0_nqZZg^Ap*l=KMH}$vTdjgk93J> zL3_a_sjf~CSWl_dIWX_JTsBYy{r8M|0;HVD{%#pXz(xv~fq}3qCdgR76fF<=o}KGG z&pSkJXhiIEv`VOb8pO(JFLvV+bqxLq8=eJHc%Plz_;GlgzqYD3T~XiRi0eb{Hma>= zodKSVPz|s73|HWu$D9#kKCSF1L7XgqImBT}XKiu22UCu--Te`s{)A2IL2ys73vZXM zV1&BOo<-1cJ1DQQpv>o0m*DzPqjxn;%^vqwcqcFumU!z%S6Y|kHfF~8wmz$?cbCag zVze|S77=eW#TxHsH{#O7H5X9SRo5jYxtpl3I!iTT(i5(Sm&A~SN5bH1nmW;ewiA^k z#oV*%H$~pnGbeQn-4}ZLMJ?+UYizoY1$2ZrL;&Z@D|E)qd4CFk;Fl5_t%gfIY&x+D zpbPGi83Wjzrl`)ncK|*q!h?W8M1=pA=}1m|ZCl)m9k3#u09LkB0AkSJxC5ixy+_g% zW$1(JPy0I6WmM**rXWARt4$v~i*H3mqfn*4t(m{n+3geQslf!^?cf6u?;${dOTBNr z-f3tsLxz%HN*ME{@o5?vY26uTZ}`}ASAY;~ga-W8rl>le^Y~t;ZT5%Q*b9eQOuxGJ zGHJYaOT@D4tAk)7=RM3i-dUM(N96o*9K91 zSoNMsNqBdN1TC1R0-;8~Pq$UHbuRdT)m{6EBGym-O9+of#}6V-OiARvw%rCL0?1Ry zm<7pQ^q%stulGF}@As2aev|0)e>P%yJy2y9R z?RoDTzd6deB`_5TJCGi9PXHVi7&>t|T?pdhD7_#9dXf{6e+FVc!izA0tR)&yl)5A& zUpS2fx zG03aEy>c^k25!Hxn{`R=ew3)$2EN28x+w%5f)RdI;S1bBXo|a`8A~}VW5!nm5)#DO z#bbP;-aEOc7dzgGSKX1ZR3waM*7Rn~`#t(%^AmeW*DG-E$jb)Z62BnagZi5#%#SSb z&=Ho`ljtkMqZ{lK|3R?O5-d}Aq$}ln31V7(b6@T?{n*s66#$n>rN?S__*^$vSRJWK zYj+*-^5f~0^uxu8-QC0QswdmY>Yv?G-!lDSAO$O~J;WCYvbcVhJQ#V*+E;4=rnL4d zt;IU#f8q^hkB7?<5{?{L;_3I%Fobg1e!y-^-X&>y(~hm;;C!G6!cJ#`a5#kpWu1)~ z12oe)L)C^xnaFNSn>ziYlt)&0neu?G&e{|dff4D2cm-B6bN~2+o zya0FCX~H;^(&o^2}V0;3qGSLdl?|%K2@q3oqYK3Z(c4$s1}wtJ8XrG zrzh{mzNsCkWpIu*OqvYlwbg^F&3;YeM< zps8mQe8GJdss&$@u$70R4@ZBpOO_=8&eO_z0o3T<{AuE;lW=nK{E?m|1r7-$&QI~u zGhjXcz(gCW|ACV}A9VpTT1v(#@J)fc-z|#GpG~qfa7W}C#o4mS(rv6*#2qTi+2g2M z0_QC$LND3 zY2qtev?V1UZ~((a17Hfms#V7u_wOi5dsEo?oJlkJ2OT_%*ZTmM`s>xpNnuUQ6R%A#Yh!kxO?5_>q_b zUP|mukI3>jIP=t|Zlm1Fb1@Us?wgr&(la?cCk~o4o?=1+e&v=SU*81{9wxPr-JK89 zl*geI`?1}Q=IgI3!@@3Bkm(ky8|&ZkF2Tv!9+sBEQ=lwiz(r0*iZqOe>y!S-Ow6t+ zUiOhT7+7j;rIG6HCZ#0Lz=`XPP{_s%z$u}4CFGa@<_I}Dc!*@_!b3>=2Fn0UW+IzvH^D4;v`bvE31A^ zHTutjVY|txRsU}d8jT_|kTt;qI5$8}27jN=eRGi==jct<09X_2@?c#!h zFc1-5=Cp+vJgj(p8_5fr?4iGoZNUa+PBs01{xE^Jk#TNRA^Qd;2vy;By(6E7yyX8m zIyT7feJY>_rT1=-_&M6K+rxCTf_ojTb9I(sIP!#Cz0vHxhVy3DBc1mK`4Rr#pY>5X zd&L%v=_KwI+_F&66V1hP_GimlJgL*9tx$eO2{22nKwR%KSaY00`yg>h3B!jTt{Bu? zxT!JdlGoAmha`lHb!~Ir`yw6&v|e*&Krp(GgB=x)Y-;S`lfL~(J)wdL3ZJMo$1Sm% z>N-xV7jVeRpodEK*u{dd)7C~b8|0eH60=$p;!!1)i#`p9RJ;T zg8d`@N9q~KC@9fupX^g_$`bNh=g^+>JkE1ydHQn{i|^`Y zZ@54MQW_sTy-N>?PbWse75r2lNs2QUL-OnQ@zFo%3d(n_hU&7B+##{ylA-tz29U9K z>2s(@Rz{-E)Q^Fk`j~<-t?S6@DIM&OT-uXb79g%_=e)9kd=T1n(zuh|{`v)hydEYt zs8ae^Am3sdXxCVEnuJFL|MtqnEPo5siVM~nO?|I0_G@WREB&aj67;3wCqDA95@hyec zuDLQeon|V#5Z*WYB33)Z+!iVI@Nzb@Q1f?pL`rdAj!jJ1bVw@=B>bqfvrCzE=xHqd zs7*4{)q}ehQ)LH~cYn~!w8@n;b)}%;<`CxlaszJ`_gs#JQ~{7HKu1SMA3}%0G7*@t zR+_?6(h!?sRVVW-?e75${x8il%L)rCD?;V#-eDy4Whd$_eWq(Uz;?OVn6bD+<>}uj zjT1-Cs`pju>lp3a`Jgk#hv;-*%N(#JQ5MCOz*5}6uu=ZsV_fFlWF9PG2F?V_{fh!% zDU9OuHvwvbIBjTH0QcsPX{uZ^T=`kcu8Zj)_iJ~$5NlI&(}lVS@^U6+iRG_v%*6;) zPlh@H<32XVD);Uc&O_1u0*$H)V19eNJ*7w@$-@(eLM~_lZtfk6M_-90kmubKwyT^z zkqt*zcD<)dAnsQErv)e)c&XXA%Ka|o6USv3ej%5dzD+;MOboqC98GNuh7BaJvhQNT zeVJ1`??c~3$4l4i%aUe!cXRT@60Nia7Q9-4mCNt-DvR$IhdD_w$J$9S`L2u$qxOcq zL&8EbeL~ElSEj(hsdq%oE&Waq4w9~YfWu5zDNyv;pV!S6udc3|k-rKXkG`e^8Yzp} zhGcLsGJN-!o9^lS7dWZJA4vg4ekve{`qWxOI$;HX~v72 zwMlRh5)!^?i|#EA$Wg(atM>TQF4j4m%~H;;jyMl3YYDym6WH?}F&h}eld|ogu~lk% zpNX#g&*tfj@K*Qn1G7=%LMa-8f)iD19|#*EtnyFN4qa#>Q6#$YEs zI}J^;HfjrrAKX>VysYcJh(?-G*;xBKKh-VPP1m(%hY7jFJkhxW;c%|g^q{geUTUpe zE)t=Wp?7gkPf>;EQi`)xg7Vn)jm2POg=OGmwMbE`i32-fT0S^UR|J?x#!2tW{<1yP z1D2`AiqKS-Fm%PH`L@#NGAx%AJl~R@{ZY2W=;Ao#EnAEL&Fc?i9M(li95y585yF)#Z|&L%Aufc57LTsH z9I7jAVHaX8pPKG_oczvpwYne%e@dTD18Ld?q3_K%)y=KLv*}nm0X?0$x$YR`<2s$7 z4CHoymce3A9}Ga|9P8$*dUHp0*qlg@WdBmG#Aa)BqZh8&D2DUFhfX@mHtU8-I`W}m z*5oV!R@FrCzI^0s{8HHIE$TLMjT90LWWExOS7xBu)&GB{C&gHH4x> zZz$wZh!|;+#c0s`P}BBM>vcXUbSB8%C`5{Bs)_W4HRDWG{6T$ zjqJ6h9BEDz6k@Wuff}fDs z0N#)@c>)d1G{aL8r;rwa+pyDs-@J&W3ti%UQ6QKq;5@mrnl~7tW)228zvg|xpHqAu z=OK3Gz3qPOpalr|W5@IXFKQVA911~slE9BFNUw>8CMJ4X=6|N%P#w(W{+=pqy#B4H zROwwYSAAe=moIPnwWDL1$d-aolB+BXqaE)-x5Vg`CrQAXSF_+lN&KOPJprc<_G0$L zYx^>N8a-vlJ@X z321P4o<0?g#KA6w@9Nn-H~l6*cyiX#wNZ06`Eta&d%JG!3M(?Q^kVnfzTcw{=_;~> zgqPPhm&(^mH`f}u*a>(s2TPv(4M8WG^)Y+HDEdoFA7u%{6J^5_8UBblg>z!beBjRc z31PralF{ra(5Nm0>|OEi(sXQ9Eu@w*!aJru@;9$h0|OOAy{biXCW4PV!nqoN^AH>u z3W?_B(90lP zZ){#mXv&g{9)3pzY|)$ZTQ@`wuBvQ%?^9vq{BRLiOppQ6p$?+8z-2c`;z*Dv zx&A8+a^(5|9~!szG}#P|?XE)ztEh(a&R3;8&SV(A6h;vn+w#F#a^(5oYbGM_UK#jjqWQF(?<6R9&fi z@5Iv6gwqCpw)-^DlUz&xrTK)kMyHeN?wYvj zB3Dm*tNMX@9&~bRFOa?d{4q7_RH3zalv+K-edy#+>h}BIm{xhHTmrjt^cb>!#0n49 zB`2=%846nDQN`E#Al$|sBf)p?6yI%EIC~{EyX~e>kWx@Pf0g(-)fVFWtZCQS8)ST} zmTWXc_uNhBTluqTl3S7KIe6H3aeQzZr?~V1_?HwWwws%E1|Z3BN&ZLit zjfI25&CMxCi0D9z*vf%yy`Swo>kJ8mv2zGFBM%qa@Qu zXW6eBAt(KIeZ2EECwVJ%J9%WPC?KwXZhI5Xc#y%%AKgjcEB{T#vNlee!amV8cZa8U z8ZX{;WBt?PII0pn@^&=>?)wt*(V3OsBFm%u{eO_ep-#NHW6T*nk?fG#LGtbDJLl+{ z@oAo|67^tm((gOH%sFXqt_s~|%{+7SRxFU+a=Oi_-siW9SEz7bWpm0W$bMwZE$#A= zBOxcx%&ouRB^MOxZJ2XiB`WFE&A-v;Z&OiTwu^2G__RL4R-$i$mBG# z!TWR&mgZO4R6nzNiC$2lSJX+u!&2WnXfc_TT%u}ObABdsGoB3XYujAWZQy;TUltrf z8Nnz!F$8Iz%J9;A*-4vt$huM<&r-V>D`#qD;Wl+7=gGXhfBB1&N^r>zItS12I?eQ0 z^DW^K)}|GEMf=A}?_}2V@<{bMQs*=|qX{w^+LK(U<;jeOOQi=Rzj*N@jvkwh#JsFl zI3$BE1UdEx(TXhDmT~yYI|i5UeERcX${+g-AG$8%e`OL}OZviK8%fW!)OIgA`qVYt z8tSr34H8E>Z2Jingrc^$dJ?|Fx`_TN~PpxY$PRooS8b~`MJ)-P8ql2nV$7!@-gQ2t9 z$CRQHtZaBCKBhMW!zS|U z-X2-#$B3ovf|4(J6F$b4WY@aG)aY~XN>MemGU!^NLAOURjE+J4dJ=-*RKJe5xsT{W z+M&|o;uJ!fi!WmRC$gj1Z98nmKhO=#$mICZXeo)LJ7Yu|xOv42Xg>Mb{kGk0Rm|Av zw?kcJfQ5ja^vMrow5l|Y`t~z zy|3(_-?`Z=j@r*g+ctiTz8l1dAw+(*00t1gT0;R8#{UqcFW|;hw0uMt#QX_)B?m{aes*St@Ndg=nd05;g812<-@)dTn+5f+-9HI= zhxN2ME{&3tvM3Hc>_#DG&Gn$|WXtsd_R{(tR+z^fW9P=LOg3?#DQDk#;97TcZFys7I zmM-0wb=u}4g-=|@7Trb1NaP*;MxsWSlr<=;4_3#!@=#|rgm`B9AJ3A>ZNC4&nR;-Y z@%^E0cN4$M?(bYq)GkZ1OFI(}e;pTKsnbjvrb*N-VJkr-36_)8(BXH^(2ym8v_yfg zOtf}uE=2VX+7vH?;2pNSSL9j8dnuH5>M8seH;QDR+Y4=-Lk-Pf8S05CCr@7F6Dr*A ze;$jv|LcRR*+!w|QkGBpqeT_uVnw=d55)n}*r zMmI|O>m*{rv_&)ERT^`!=TXA41S&S#I4OOKFhxH@qb_$hw?7*jnI$DrV2HlKtfwDH z*8t!Y=O3?*cF@c0od^LgVHJhdATvORF=XV`Or~^{-ObfWE=-=nD&L=(7qSbI<7`J> z@~4fA1M8663y$#7KwR|pz?ahW&Ue|T!dw_F<%7lHKw1=YCiqE%^XX7WjYnk29v4BP zt_5Y)&s&ALD_Y@^jn(S*rfnsDWsmsk^qLSG5OlA-MEmi^RS=D#{Lf`a4tWx5qU*vD z<+7GI59iu5Jn2nx(N;L0H`4~e3T4lNa{q(Dn&}8~zVd?>uj7YMdAf&7GCk(jO|ACz zPBs7)XMdV~)P5rD0rRVHnOojsK|^XjSP^5CA*idX+ZB$|IX}x-DSu)&qi{><4z0-So*gr_i+Ox+VdkOJ?ltJj+}%6^GF1g0=Yq`n9X;?uV~gSn1h#gqKn*K5?ah4&PMWF$}MCfsh7tHQd){Yii%6!p|j@->9m->aydII zIJbbhMSvc!@pMW1;1sQ$n;wzvu8A1O_Hw$}#S= zyl4g^IPE62y=AafUh0U;?8w$z97f;kAlZ9^p_<-t*HDurx`RuGjcA-?*B*iu6*)XM zDQj;}*!dnGsMTGqPRCMa`|A3}h9`%`X~gUapXy^(eYva82EYVFip7J~fxq)8G4`^m zBDZ@Py?wTln=_`W!cOY<`WwzZp~TXxO13_r3^#ZP>)+xXnfNAU1jL#wG|&TaTH4s! zclzt^;>=Vn{n^T+M+FIgMM@PSD%GGY(c3$Q`9XKmbB$DJF*}bv-Ch19=O!^F=H_Zm z)~99E!k6sZz5pcjdcD=!?!5tu&xAO$Li5FjYH?kuq@0metrOvu-yMsY>clRARu|ED zf%gvO9amy*p>uU7JnD%|VNZ2b`KNH3WH{riLO_$rx)f?a15}6{mundnmhj>=Q@-F{ zDiC+}D2TkcCU$Dho-QKbJ?h&Z;#_<&RRe8uJJQp$W3hTqXzdz|a~4ETjd zMDd7nJ(Z(Ixf`&CCqYMG3ckdSX6Ns@GocRrI%f+bw*{z8yXfHn0MH4T9iKC>ZBz^5l=- z!+7Yv^~kExjLuU_uAE&_LL#3Gb1f}cK6bYE=+BVfN7*G_{(>^#@b^3aXs)V)>>wog z#Z^+1knz#bqkA7?0$`8q>mQ`9vwsJ@YdNA>d#NlzKql0Gd?3&M!xv9iW_?%tUX&1 z7D!^J9jQdY{hB%Bte4hU&rlT?5+8EN`TS|D;yc&8|x;X$qRLw65A4+L^Cgzrh` zQp-fW3j3G z517kK<(M9p8Ay>sO%>)H>Q+SY~pUdi7@Dt6nQp8b_-Ygn#UxGrOC5M^*S=Y83WGBpDkRX8&o?O8Nxzq~x4*3^c7%NTe6_J++(0Cx$u zy+;s>FZjUPS3n>b?h1&GI03XS-Ech%3t&6@_pV|F)As(Y4S+`TxLl$#1`;kcSf=5X z;VGphsD3Ridxd?#+CBfIurak^XDJ|#H*%|+0Y5Ho$z$WXSr3-Jg#cH|KdT)r5##5{ z9XP`VYvtGRpos+h{3N}9o&xl`&|fbJ=Z$k_I^0k-JUF$o4A74TD#5dtQn6(L%(%21 zS`5WrL#ijNE8}9v%#J^sgNxqP5&6^z&VG4H3YDHDOEG=S2f<6Y1HqvbjWv`}f?uD8 z>3n)v^^BL20RR{&85e&T536NotM=^JUNMMVgTB6J5sWXdZJNMi?|T+%)UR3w^d3?P zb>XJFp+ZtvbnWgQ@60Jubc5Tnv=~iqJMwG=7zjc+O8$C&N(|!8NC9OuxYotNtmbz8 z&MJ$}*}b^9xDjU**v7Uu*mN?h8{@nkVT$|kC{YPhv(UvqqL0~Ff=%bCsIG`v&Q+8x zOnU0%@nhhZJqm2@HGlZp3COG+s^;YtPhCYJMn^IHim8S?FRZUd*hX zO>lHAe;S|j142Lgx!+oNmm1gOBxcPA9il;*E>h&w^y^bCJZ?2ZNARsr*^|+^S6%b2 z#IOpr4d9EHew33-sy||yp7vy>{hg4==6Jg51w1!u?AI7z2Yiq4{4LONZ`jB>8 zalN9&zeL*tb)|8531H!#gR>eIS|>{nnF1+(pT|ngF$=adj9)Of@DkQUh3W% zr4LxAzrG5{qUE32H6iaxu8$41A~l^~1(BvDCGj-kF@E&z6_9Q28*QhabL$u_{YG!g zyNo$q=S63pc%(Jamc1SRGHd*sc}A3#RzZUOw~~S|{z%F%+;6|sW(H(-M;dCy{z_&F zy`{f78td-9@WVd1^Qa~IKscbcM~F|InNVtUj$hmDDK8iFuDqe@n=}(Mi}_;>tJRT= zQxX+^zv!_3SbS}T=M<*JS^C8TeO^KIbOJ5&EO3%6o5;>9NYjhJR0gvIQJJw~mHBPxIMc#v&%Jr=Q=Q?mgfFDgK~d zd+tB>`qd5a13Wh>aQ;)|$QzM)dWadu$~h|RuRO~I(rp!p{q+Q2VJG#S)nXL@mqk(% z($$iO=fv@x^jxO!i%BHUWzyJ5nnqu_I``V6{DNAe(RZO|-<1uZ=s7_vi{L-aa~}oL z!9H_x^4-xuJ(iW*Q%eMb5@+hu4hViw>DI&TBX8h}*Ws2z&H(C`4d*A7huvhmi^c0X zmj84edyftHTJQJ5X#yLEueMV0yZQxvJ1%`IjEzcoDHX$$>+>h?R;Z7}{eCbcZ#lA> zwKlSJAeYiO_`465tRtdQSZw^>E;Oj=hQ$4(xwquz2i(-c!Xt%4#XwJxi?c@=b{#z2 zfzstBp`Bi&QKiI6tX^UC#LA9h30`(a3!%E4N4t-hQ$}3nPycOC>r$WuQONCFj*U)- z=GHd{2mg9BcT&5OA2EHhtbe-l`tcdN0)<%r?k+VYr52)gDxDO@f@9TsZ1SvFZdCE4 zuciSFkbxOblcZS_;zP+_KT#V5)w3!0D))tmn^9i@APOhMdnEw{VQc!zK)}5AW=UCW zpj^WejEU(dc zU}gGd8W*Upnpg_%IxruL)Nfs>!{H9ng>mfAJDKt|4+%ZB+eA$=kIhU`jBNXPAJj#UGKL3J@ zX$f%b1K8Nho?90y(`%L+)bKNZfR{*}o>8FTJj_o~SdA^plpcw^ntdZc$zZ=V+2;a_ z-%zh~a81bWrM2Bbvw}Bnlo*wgeOAF7PWPN-vR&itE({qx$h6NHH5w3d7QA_&5^rz3t|bYJ14jCET;*%oT5hw9}7TM zCEIh%i&yI+RP}l4%CsrEH@)h=ygy5N;;8W1(_m3Tb)4@ac|Qjp^2 zYc~*^7cDdM-{PjVv-)EO{LR7jD*{Ysg7JFZS2;y_%zbvCYGUm-!2;tG_lL>rd+*Y9 zV9Sv{6diny>y@0d$|ri3=lx8>-FVC}H27CQ)+8sQ_no@@9Py6vUQB?+s(q@{dfDxP zi{*7{;G17=YO9x;fuo2~LRHu^_cu|tu~~fnw)5@}UsF^Z4e-}2eL68v&SFLP)88GC zdG}8XU4%9 zx15dMM6jyJ)hCpGHMhv>7)EV`_XvQY@yeH@^wNlsYBbPiW%PyAhG&OhbUpirxnH)g=;g%ro( zQ?@x#6#)pY8ofK(Zxq@MLSK^TgXZDRxQ_SL-GaZmFmTlPzc$9i#Dp3h`Etx?F@*V; za>Mv#$@X`8S|ylO?Y^0|n?C>bFZ8=uwoL&O#7RsM`&-sm-X5zJ&GKbmXf}X{%er)> zbR5_3Xp5+I@%x9@5XD;ZGov>OlZPHC5l}SK@J_Cnfu6zq=c~?h{7XZZ?N^JlFvbk`-rD z9Fxl-ATrLO<)F+fGK;%+kC3tErZuP*z`=IEKgrDvxux0r>%G7W^w*QXL-BvjE5de< zu8oNvU7R5|XTp1)+IDL?uq?>~e+kaTcNOn&d1?zz4mFFRETygVBtqag2vm1gO=qk2 zdrr3tHaPf2*ZDnpCNpq?j={APJLgpP~-&krNpXs41 z5mvM^OPc=0Ie3t4rZq6}2M<@|^sVU8T1K~;{VE8QVtpUtW)l|7%2e6t#HK4{K$C(a zJKU`fj=GYs{R;vV>DMxM@{;3Uh`dv3j5NvD`Ar?tOOA{65gX+-7OINViGf-+D+=Ax z66Du@aNWD9auzA#qNYK1?P<(b15zK52W_AkW59-vj1UV!mZfrcW$#0Z8!faF3_~<| z-304TJKekZ>MMOjd;H6^(it&(A>;V#UMD$+@zjeCyKe&dNFYPx0LZ%Q?XWMySbr(SK zJV-zOHD_?n*B^e^0HaJEUKDq@t%o@QbCd#M+m7g<8*KawBho!#^?;@(`+&( z9${|rTFo3aRwMNU0}~S$dTee7j9Inw+8W2DN((i6^{)63O@zSo^a0hC%=S%dro~h< zuD1&Tp?Cth@XSo4D5xe#@=bZ3KVGLtI{pZ z&do)bwPF^S|2<*Qh6VnAmjsG>AiHlqI7-Z8uno`d8W?h@8J6!dSp&3%RNZndU zDjG|@J6G3yTd+Xro=4PkU=Z~C(-ZYX22xXtZ-E%3Eo3$rgv!biwuJ{uv=5?pTs>C( zsB$&}s1Djyb=p|sxn9dpjP^9~EK~g{v zq(NFhX(^?VZcw@rIFxjGK;n=h0@5j+(k-BbG>7h#hHsziz3=~j-!otghcE>9v-e(W z%{AAYW=Mus&-Bmfxn7nzkH@D^&nf19-dh%>yf60R7KX;IS0dU9A{j+?Lp|skWp6;r zHnT?zge(ZZ`o_GS#U;x7Bnk*xcfUWPk$=NOy0B3z`DJ%o#1-P7|HkjKiz4D+;HvfY z5|gF%=a0|aDn8)GM#s@Iv)Dkgd5)_=0y)&wxHmR6+P5(I=-In5?f?E;zrA0y{=KwSR{ch^01NweKFTb87L*znq#*buF~ zjSVt8c7M!LS5?rU9T%YvZNr= z?Pd`6z4g8d@C{y=_Bt-Y1Y)QmMgnYso#~h8 z$i$L>D~q)*?&^HGKnX3#HhMNN0BkVOw=hamFSFSX)&%fE{onr(7Bho;uUf3)h>>b= zx_VW#;>JWl7K%`;dM?E|>JP%xSQMv4D5Wcjw{fj$nc6D^11MMfKA;Oq1NZ1>> zRuw;hU^w2}iGz-6?OtU(;wOUTd(r6{Y!=wTrsKeA_$S7t0M!`~L=PrxsCz~={>G03 zCsP|owg8%Dfb?tt8?qe&;d}hy`{~bt7hf`Lrz@%aC;6D10wwk)o0gwZcTj^uj&@Di^@&04=94=BoWTa;NXRHdC1BfnBxc{RQ$4Ub)9fn> z+6x`RabFS}75@Qg04mLu>IM|5kk1n^4~k09rW_{?6m#z*KK zABF}MWDj!4@Y;?A?UvjxD_19ObNP*86(V!zWMBq4;JZNI3>MQvzCRXzEhCsC2B=_7&PSv%b5?PQ$`%dpsy(rXXyU{-$9A`3v= zM(TaT$Nv@1U|37~-1iRz_{E-D3^Z4)h3v{|ikfiVCIqoERNUjRvCA%Xxf^;%^#hLF zSCYgsvrEOswGh1uVD9rpe4ybi&{X>wy74J`Gkb5txq#hg{7W~@w`_vEe>NU=`x|K) zx1Xioeq*y@DO?A}x74l3ldE)nCoss{sf^8KQd&$j`PtXlALz{yiu4j1InKOhsxc z+NA~wD4BoSTDfg6k$uB17`mxtLiEXy)tEN7N;F(%i(MVZi``z}UyZO54HF5joEsTk zP(gQ&B)W6o3RoKCnlCuszJeZqkHp1`g%}rwf+f4Ah5%@E#uE_@v{^_g;&m=;Kn-78UJf|tVW*ZLM`q?;cqMi93_e>ANK=Z`m#aF*DoGx zhk;clw>>=&;6JVlaNqcitJ^Z`hKSca~eUDi;pIw(s1W*tviY!aKzC1-+_>Qe$ zL6oW*D+RK3%h!5tGr*?=`BY5ifBV}``58>iqVf`u{7mGlXv3K8GsuAYXO&G!4*X_cH8{haF%DLdQ zoP=jCtqII4tEQIl^-WR1<l=!q_X%@n2p>rPB%+Sk; zTT+g}K_=nYvf_YG4e-N5_rRRujVhtl*p@$O^W{4C z5l2K=0mUz^P+aDD|MJA@Y5`=`Ze#FwAsL)azG8g&TeSz@+(04UVFw#Fv5kjjhLe{f z*>A4ETGP+Eo@+vub3<$%HQl{SE!-H(QTj9!=`~7j$dL@N`^{9BgEXh%BfbLZ6rIfoBkN|qU%=#JG6Q2U|7PLE9vCq z8R~g}Q={6&?B(woy5)Yq+iy{iKOTW`4)@);b_t&&6vOFinl3NNCXvb%Z#TBL zm(A!dDZuU|2Y0h>l26>p))==+YQGsc^d9rRf|l;6b^lh8?62SK{PhlU%W@CkotS&k zzL_v-3geELbUULbXxe9wZTdrmi5Y`P>#tP<9V9(LBey3KF4Lj=#i8UXFoF=!QiRK~ zCUgz&+Y-WLUhEu#)zxy2aKUdb?a!~+UvcJZlMnXE=rRo`iP3tUa)0BEL-vPZL>gj* zPOO*w=9r5Y*rI-cN;^FcR*$T@-$(a52w13n*fRdI9 zjlTSj(mTK%sJjtC1@=GnR+NwgwRbM*ZCMWjBT%0$n*;iT&s7G&k;BbN>0u~XahJVW z50rb?x7)K`$t0&HyO$1{U|g}Xl$#q3>khgpp**TW&+msMOz)Zc8*KYkY`eQzgx9+2 zh6i1C>*~CSSWcO`RkqWLSlnZh5VMI7-%5QavX-Gof6o1Udw~0LZp_<5b5`OVg=E|} zhBqNz62p9|9upd;jZaNqX#Q%M*IO|;#9J|@JdTYy92-nk*=djH!DObu+7C~isJse1 z_kZRnq)h*c4RgA2#pdQ<`c~0wdWdnhsp)F7P0n-moV>@pk|H;lGR91%pPM}rNCs$X z8+0NeaUjBY9doItsioz7zLI37OV(!mfy$u~77>BnV)ozVE&N$=^RMQ~7o@ThQd$C# z@L{^q?^EwTiel<`W)RH!L28^d1QN$%?qRn}-tTZ&WSkyylMo=Fs znM`KlLF({j@{8P*td2(zmON}WjC$*yOjqx`a4Xmqwy;`)$f=H1G#f%K_m4<*=9icRv2(;!|417XJW zC3e6FZU{o{Yg8GqHBrka@jJ_zZ?Cp%$?o(1NI_+GIb=Znb`SC*I4Fds4J(8j7j2Bc zZvAs4utQ$?c)r)@x}nC|xc{8JKc#j*^WWp7L~tJk%x!@u{`n)4r9aaSR@R!U`M46qsx)zG0cq-b$+1VF2SdD24b7t+O%FPzt zt=0Fed-jhco0;*MahZvH{KkT)#Yc9*GTSWX{?c|vJS;>hixUnEvT-!{vm?_+AItgaQ@F#6&XSZErtbq|0Z~XRd;cj>;DQZ#f1J zaizrg=g)9{-1bj(b#S05-__LxB(4zOCJY&Iq}PTRMtS3vyalIXINfQU%B#C^z+U$3 zO(G{g`8BjETPkTL9vKV@Q^%a80jvPzElMS8>F>Cq6BX=!-^0=@_^bvN_%bifs1oPj z^$#LNzK@KaN{UhE>O6{jOfm@$CqCWNF2D2aTWR`FCKwF7*Pw_WO+WAr^v{1z3G20- zZq|nM=zef|@$lud$E_j#C7-e?eh*vocH+i9ggAE5X?OKq;V_Q90KXYpIN{+2HO%uP zus>>H>?Pr?$$`&b4&h?1=Gy6W5?9(-ISU%@e^79{Z%^ zjJ@K)>j9guOSI_=h`P)VyPcSKGiTlu%1h-2DQXv+0~Co`$Thj|P^iu)K$^F61VM8( z=F!~kclCYkDhALuhw2cQ7+q)OX)jiRZ*Kt1O?@hU^ZWJN-~mSX&93FAeycx$7eJOxyhQ36AylsUWw0NkEpKi(0zJI z)4oduET0ccPj3TL4xJgY?g1y~ZZ{_b@(C9wgV^7P*yHR5T}yRG*H9`3^|`}w8K58o zEw|vSvn6ccQfTH>QT3DXJD9&sl(^_iN-idfQz*=;f~H{jdl+| zv~D?0QK!n9Ft^Y0pPB?vldwmzAJ;-Md_m47Zwti>DX;dy$mXHt1mJkX`nuiH52qQbMq8_RbEXfr6?6ln6 zHM+c*cRKdOJpV1!2IIG69yVq;04f}F^KzHOsddJyg|@Yu_t~m;h`o$nr>;2;*Xx}x zn#Fz?S}D8i>X}I7;Z0d6ZNA~SSx{{0|2&QX?fy9SMa`zVsWv{ldm05?((N(E=u#j? z*rc%QR=iJmtWAU+?4$B;7S3=umk&m2kWX$D(g^3zpV83TEI8h>h_~m>HvtCs^;z;x z3g!@+)+#$C(J&j#eSLzOm#vRUoQ`tz^vS#36dk+UIDv#>;?E-*|9=l5uMn3AE)gjaioe+~i)r$ud} zr)x&IYnA8>c{HD*LHbNzb*b6VdLHv^Zf)r_tX5RsxX}3=J3*T^cn;4|CyJT^y~Qs~ zK<^X=ER@(Y4up(fi$5fU3973bJ~NQPxX#X=)bdYLU(R6+)e-k-o*yyCevvx{@dQq% z>71NEZDu<~1Q-&yQAY$b1Q`39?a;8-Il{oVMchS4y;>yqiZ!bul9I}6xy9Oet0fcZ3i53+llou9{?r!7^_?IX3fW41BJ z?u7CL#_w@FEg{{w2nd(ht&l-_cdcDJizeGYuynIi+QDcPxf$UZuS>hD zW%5%(yinja<|@!#({d{X{AcPA<9b7V!(blupKEJqmP?i0`*6cbA!p2IV@`F;K~>sE z`w=2Po5WJ1>1}FeAH?%M(_8kc6a|(6w{bI z{k>1kpW`wX9~{D|!MloyA!hpsJN;5o5h!ul(%k1u@U-t}+K5Rp=DEyrP08MG!iZN? z4HCUSbOOo$>@G@?8#&_>N2XXmi}F!U6Wdpvzv1kS&8_`Y z@c24Lc&E0c-%QnhMcQhDvLA2kJ8n03(P&jcU*8L0fr)K7n6e_L^lub~5xmC+Eq(Bq zzd#BKW8zbPYG_D3`;6l_3P05#LCaAv8L@U<>UT5Xg%5NjA%v0>F$i%U6EW-P#)t~4 zmNaDAdPq$9#60cBudKO#Q8Bx4$e}=JplK|)BZBj)$NoB2(}xm;6%P&b1~UMwY}7Ma8yeB&h@iW zE;|`ehnMY+vz@PtRATOro`8mR;^>_SK4Jh{XcUUVf@8s+Ko7oDvNrle2$J^OkKi>M zG|qzyrqpbrtEn4IpkQ8~qN%RU_EEtqJh6Lyd-soMoRZ1P%8Jh_f^IR}!*)SX^=W(g zAAD3T|2mhH@b}MkP;mOOf6Pm?w#V8rD<_(IB`-LpkpKSUd_GEw?ncdd*qqS4G~>M` z3vJvm`F#m28{h!iYW$X!VPFS9 zyu$m}5EX{Xz@hx!Y8V_t>FNdoEA~#<949z+O)FbX>9*qC)@;4af3h`_68LJMcQ{V) z-Ut1eme7?pkBbcX?&F5&o^-O7@MV-bekdzEGpoS;By3T{oH6>?m2M4l{*w8KQ|J3{ zf>|Z_9Xq5hMUU`uv%-1Oo!EX?wK5n6ojHb)4VRGd`WM;km-bS;-nK!@Y_gChx zsmTZIgb~80PtUMUC9c*f`@t~l0Ap$1&eg%-(Rg%Msbqx0%2_WT%~H-kEmI=Z3{xU2Svy?dQymfhLEvfL zeXF9kdEa;Nq59amXI7LIDkpj|Yntez6^IvemPl-aTPBbzL(` zMEl*4t`|mJG{QYm1#ecL41CJZ#aASr0=ZCRXuH1mNdB`hK#uN<&430TB{ffj>kG|`pRwn((uCia+@k?|5%l{giHy$tgw zHRgwzgC5cCoqfPSb;^ZWKij zr`FU)oG6qZD&(p&joHL)kZ7)u@@q`&M{=av>~WBCnzN&Ivl3z7se?|v$W-sw;7_@a z*81c{ECLo5Yhx~wqAr2v@576h(XGSV+q3>CfwX=-(5EcXsOo(kN2Tz)Ml=>$2JVza zd8<%x^A3GBrf= zec7*=-QB)FfXK$P0`ngUzlCSeo7SMbaY4n$oNo+T1El22f{Za0+bOVRLSY>gP1k5* zHP}xa(2Wn`)ILCAG^P6s#<}0P~)~Q5NjK# z`pT>bzj(A3KXUN7J^tjg1?;PziTUd{1tkxxF&+uYfIaj~wC4b^qrs`S>A?@b!>RWz zF1uUQaYxN-$=LMgnl!^2-5B?j=gCP26^o(~b|Ko}2rN;<--DAnaks~pEgs{X z8O(XW_dCO9RaivD6&0BtWvO4j6P)+qm_Q#iQ zo3=&i7A1>jekys%$gmcWs-+KVQ<~vjzu+K)^be}Uy>vMg`Ap;`jOnyyM`kU?w(M;W zlS)oROa3{4-D0Qa@k$$7+7C%tb=^mZECmGio9J%d&)q=T`Vn7vg`LmEVh{@%KZGBEr>? z{{BD>&OU$JI}BhY^MlV?5>QZe)N^U-3mCk%wA;e@JIRa#6aB4WkF+FPHr^5LS! z;81unGdVd@6SQ;J?ZiD{&lH^>p5zUV&WUU7&6a$z62`Fh!6t=YOLL6phn#pkqc!Hn z`nG8uw#72FHT($oFP$%Pf1A=gCWC%r zw!3YY*p+~w+;Y*>!0wgw5RPKXTGvKkF=|UC4P_dN1;Q zn9OtHc@KT^i4&|lFXDfQH#(sumAnpLtG_yKzVxy=?U!zU!0;f|wi!b4zKf-(_;qZ7&q|Ssq;Nz;N=jG(W~b(6tcRX z7;7V)8$0nk7Ug9bu9`}Dm5X?D5N%DMPDb}vJ#_l}*hl$=4(12jWPacKyiC~RQH^~H zRW0~;jVR#NmcM?Eg4f5H{!oiBud=WoQJ86M7@8Q7bHl0R7i z^#`%=UXgBnnl;mRv|-z5ns3&|cfdw@jl?~yv+XSWY^V~8RD9CT`Xs6xk z;$(tM)~`JKJxy?#rY61IbillM7bMyh&P{wZze2KzxM5=$fzQO>of`OD?KUJ&k1BcT zQs(Ni>69tCd{$bmFDzXe)yz4xXy-p)H}Kf+jh!2e3VDayPES-3{ys1{R{@v+Y}wb| z;7M%dZk1$}@=zzu-Jmr8nZJ!e z(9l5T(kg&gM;*C)*$I3NBw||k_+H1@U|<22R-+a}i~lA(csVex@c%Y07#uh$a7Tat z?hC}gLBfH-W9!Pu%0z&kiS;;5XAL zH7#~MZ2z@-z&z#!^)kq}F6v)f4kaIitg$y(-|gpo{k>WH)CCNJv-g|JnlX|a)P_lN zpM{+4ybR;=y)kS)&8Bl{M4$t3JkBOkgSkB@m3D3OG1qPDd|sH6LvVaBFCy3_;9!)U z@Z1=@9maGTk~CCE;!*u`%HekBHp+RK*hv##PG&0^w$wYVl=E}iouF`J9Q!#FGRmVN zo`5pU7(d9%%`ItXS3KNnE^@XkxBI!NGCn9YHm)>=aFcRH-h-Uw;$5=l{JMu2>}V9D zGUfcZe)?;F9j5oq{w*9B#^Pn4{XHv6&cJ5Pyq5?Z4^EIka-*Rv6}yCUWyBKV@}{U% z*qq`U3PaH++~#jEWTbP$M8}I(;?8k+aLeRGxo5@B^+UA(G_HH_Bcq=%f!7>7UW-GD zE+?Xqrky{(puiNA=0!Ty$IAWYDmBaBWo7_yJL5bS{omh3Bz2xIt?gM%#dShD7#=`C z#SSievA26b-*K>Z7cS$1qCT-rbpB}>+pGC#>k|3juRz8VMLg7T8yS_5XI+6jH5z~T zvkNX}FcXecMx5lWDj~JIo>@xlyH-r_-1}^Wcc%qBY0rIZL_Hdt+SfFA4Zw{+2R-n( z8~WVy84in<$RFrgos|#R`_Q)q4hwT9HR_bHW+VpBea({3N1J=+ZxAhIW)lDhR-uF| zC5F;^r#0U|fk-%RH;)t{ZoBcpQs<2OwB7%(aF~s9HvQiSk{bqkJ)k?I z4M#Vd2H!C_@9HFWvWOp=eA1|=rq0xv8=Kg(Vkd;(iRc8dB9EbvhirLpSehn*#3hMA z5SpjI%WrGhH8=8CJ;FJ0!MU5S#c#5vfhgS51F_Q`ZLnHKb)}*)0#APEo2!BD74fO63VUfu(c$Bm zFeT#7cw(z=4+151sUqp25LZs`E<{EfilMj<*1kNP*32IEWn(dU!HYJ;FB#lqgYu&8Q)bxM@TIBEQVCDEnQ42k!Ks_3#I|bd_(mAU!!Rrh7|v?U6UF z>-3-?s77m_MVeZWC;?MEi{Y$^s~Bcy!$>(ZWZe(g5Upt5^x+9ZhNM~_Y8q^GL@jc`9ukj zHyl-bzgcist3!cSOxDTz`b5qKpk(Nf$QbUV@LLd;aW`IdRGBK9Os z9#m+;xMmEaLz{4|91)8(Zmg&2hDybgIsdVjrYLP(R@O!s3_Ql&}z zozJhL6aJT&D!I>SM1WtAwG*Xr_3mED>A)HL+99UZ=bBNDn2b)iGtkI^W#(C^7H6+u@dL zCj4k(EOo11?BHi5fX#s4yew0U2}YP~_Wu>T8A`K9{_=?!)b+u6^qBKv5p~}-9?p3B zo@xtAD>2?@2P;@QE(xD*;dc)CB@GZ+q!FE&?QIdiS&)V+F$>_}2003K#pNWGZ4xOn z+=Jy0^Zz>K1c4gP_K^@ya-V7w1xtrH(MIhN*?DTqEsK5A`5m%>)c%Ei?)2HGOzJi% zsg}HcbNayVtKrY~!-QV$(j53W=p`WNEW_7@R-Z&Va38b z5;jI8q6l2J=%5>?Wp>khUz@>|UOX&5d=P`*3hX0zis^yLz{%Exx>oMB@ZXI`2%8vV zDfxSd*HHQ^bSf?JTvi86fbt%b{5^;C{`H|IP(O@jQe>4hj_xHhFgR>kI|$xhoCPgo z2lMrr-?yqNGeP9tz2heGPfJjoqC`7|M;r={thBP*6BoS{07#@;GY#ml4K8MPpRG#V zPN$a8;i5kh!Jo778^Ck>R%G}s&P`Ciu#hCOM^w!GpwPE32F9ybc!$! zC?jqC^T}9pjzja^Kv4o>h=&^F1G)VA!@Z!6pyF&u^JMBX6U_)UFVSFACpDSB zLA&}j4~>+#ATVN}m1sFldJ3|lUZQB(A)T8U98n>F_ChR$LMX9Jrv+M$L|ddZH4_LF z{%z1nGfNnV18D~EEQ^f-r8{KsU?OUZcwbKS24&J^yA1qT>AByFyDHF|8Lb#avONu`hHQGzh&bO1}v}Q5k;4?Ba)3<#WfXGS`=>ZuhxB(J5uXQJG@No987^n8=k~o^=zI3CyCrT#w>i-A_OC zS_;407Rok5;z3&M4PpIS1_PanT<^3kh)cHO^0=St^9+*jn<2T;N> z7w}YS4<8A?oI9&-&TSkm6=Hx4{6B&3=fuQ$no@3RCk{De0Yj-3$q(p=vD5e1xbGJf zt|V0qZvNxJt@DvpIfXUnNnf+&w+P(WsKX>c{=Pl$H(Cy?@r!-KR}?dyk< zyEk_<3Ue^2=Z_vr+FbPjwn~4IZlzEEUjP9ND{FrJwsYDoJH~5^qmrLYYolzzN-F$n$_vu0U-fh@O zIS+)buTQ7h^{$|i2c9yY6%g+OKWT0L_B7T;V&raX?!2wZuZR_&gUZbB)owHF&ee4# zqOUkx&x$QT>wdYZXVpclWsejxn)qyvH4c+~jLB37ojOVFx+K7k!rXC#_Wm(ng%Yt; zcFuFk33PodjG&Ho6F;fmDs4T(XC3&k-nB=|*dV3=umSW`T}o`aZ~>2LN*_N@EHI(x z@Mp$s6jS%)e%2P2^}NnF2;-|qYN@e{YlhR5-j55pA8x-qSW4k-sZzW>Z5}3EhOrI=oi*VE5=P(r*td3+M;k@gXER#V zy0-okjQ!}1z|n0yvPpcNcFM15P>Iayj{u-jf= zZW8~TM&0~%eqq7tQO#`IDed`_pm20|qd*@!O5p{)+baj3-Hce5PK%@qnxi5hd5~S& zLf4M%uMVa*fZ?FVMXqMb&Cee{J{_I@7vlCl{4d0*gJQJzVNw~eO=B43E8lwCbAtO} zYX=aekR9(!k(dz;gZ@BxrFBu!c<2tpVZb^q?eYzIhJ~NiWd|>dhOD@LkXgcu;#GsP z_o?HvIfYOE>2iKCNzR=o1TXt_vn?w*r|k;pT~}TvG=a;<7|xt%M^q6cnfw_M*K6tY zl%O%3_AcP?wza~$3*G7cX|MpSOG!by;@N%o&-UBPV(s@(%V~G$VgDrxR;X>CSq^WS zPuqj|epvt7#txnTO@N>;w5OUiR)$+SUWrql0loz81gjMfAQ=OoLBREN(PG$B<|oO` zDoB}Id|=z3@+exk*XikK+Ux2+-*bwLzOCwae+2e$wv8_>ubeEDf_Zs`K@Ng#0dkOo z0^a)ihU*xnv7g0T_P_w9w>-nX`5GWG0~|Gkv0Ya&th~h<9sOrl zA)@DPj0B*G?msIb+sv%OgL(_Ra#GFN29+lacRU78IcOtCCnRoKu_enTJyf|Q^UXs5 zYJrSm$fuDHR0jV%!m+?>Hg3>zs>xeWmtG_c0bJBZQT`+_xwNr-21IJ^zIwD<_e zQh=w%Jv0&^T4vwuo3D<_iFdDI%N@qu7sAth%g$|PC8ag&X+Wl1D6J|ZlQ zadQuZ*DC#C@5=;0k*Jh$RR zr+Oj|;!UD8#O|$??1wQ&A#R*+;QcGbiaMiWYcrT1ZETp}=nKm&T?L+SKND#cJ`i&J zeMHbCRUI-joy=1j0NdqjNx|}^#0_O9*78^sqZ~%1D`r zS3=PwyslowxO$inM7{bNgXpk@o>dxwh<>m*?QkNxdg*-8`2+W{zczc?0mXj}Xh7Ap z|KBy~+hbV?#v6Z3O(}?H=9QGhOjTN`>*;NIRNVyyjahHpLm;Z~5ex^sd-twvtDt+$}tx%+qJU; zeC*EW`7@nvjs{5ueQfr18+QO@i#fw@B(C$l)C1btEA#_-U@|SwmcB@Lv(|Ey^>} zAvpJGc3rEg5LPb|l)LvI7XWmf_oh;E`h^{rgm#*mq-oHmu^pXXSP!vYOYC%66k6wl zWao>LXf`64ckT?uSQ(BDTG`1H+{FGqY>{hT;3mGfxEK}!6o#ad=0oQKw#R4PewRk( zy|7ZQ_FZMiqMFb=_okjFkGYOSKlfA-WB>M9T0OZs?CrJ@g+?vB#BO(EO$_#O978a5 zb)9Xqh)0~`5A!JtE?i0|K3m$v?>O&HMiV5_sT$ulbOcS^~`QHMoyVc&w7P z#n6a$flq)E0G>3T_aEDol$0{N%bLbf)+yUWv+kJ1dd{QOK}J9`*>Ra;?XO6d@Do2; z8@95x4g;?r5GJvB!VG>WnX3?=-#l~?zM9>XlV6v?cYDIqOi-P&}oX~N{eC>_LV`z|^M zUOAChDZp6r9Hv_1xtd##>`L!BilO>jNe&&gazBcczK&rXQ{s&Wpg$KuVNB8`rJVV5 zJ1-1EQEBGP><^EPL+wOV(q3jooxK5|_f=Bq&4b&Wy&FJskjdhG0qj)Ox%QSo^nuR` zweN*7jH$F%ob}*s0inC%ZOdO%8jY4l1)hUtYa(?xTsIl_y!&J_3xs#d>j<;N>Ptn8h=7+~N% zcRM}>I#BlX@82dyd=tOPFMVlH{H&CLAtXNz6-iT|%9QtvtNz7s=)V28m4m$29M9HY z0s7|lCuIhttGeT{XLm=v#Q_EE<;LXM=T36d(C1c-Lvc9dO)JA9&H#0Y*;(zft+B3%1IHm0ojvj`m#(s%Ch4g}6RCgTUC%owq?#H@`2$izG!rhp z%N047_BLilq>-S6T*m#jLh6cptW45(On`eqqws!8S$XENH}>H4_QEdB6N^vpy;6pe z?KPfJJ;MIG`}&R%m?^D4d0Wa%7F`Bf9XjFcLY%>UkGPtyu>G!!{g!Xf4#|f$F$RZ% z$GWpALr?&Dh{F{9#Y0{&E(n$R-)WBf?=+8T38Y$hdU}2qTV1}k74YtQC+e|l4yGOk zQl8*EBJG3J1~c?thl1eBJU-}l8e~HBHH^5Zq_w2L-}-$?2`A87ovgN_vaql~j!8@l zfZjI~TuDW&<%4{niKK26IO2xBCz>UVhcAFXu+R9sA2)?LXo&!-T5?7PEqL)l&dXSB zheF_Ew-L22<5|U1Uy=%8d{=kJPnG<4ySQ;pv#?f19<7W}tiVR?0HGfkPjW2xl49rC zAC-FR_W+Z|Id0w3`l7V0#FCDTCG8$USe$gdYq07tJKi?y<3cTXRG5+;Z3)P~fG=1Y zyH}_8)(IGoA?J!b3Lf?iVW|=CTxF>V!~?Jc2~CnumOr9i`uPJ?gat`bNnmzCAW+Kmg0jg%-}_er zuzjv1DP&B3DkB@G0KGm2LlrlcEr@U>y@{g6DC1)S zulbzo)8Qk>O5rq(JM9%%S_zdv%22?5Mjr6VDy@c@sqy0gGrGP%?@5<4WzesJT ztD}Q)$W3*}G5<6GNvkjA z|6~F+%h9U#PlY=*iMwT%XKVj#5|kU?V9cDhN~NuDG8n_ri`2EPYl5B$6tx6{aRwjN zQX@@GnXxEYkp}Ou_flVYbu;D(g!WQrK|SSt^`M6>Nml&;;&XL)3a zJ&9&U@&X#6cs;|*r%pOnWjXhVwf<)&8qhso7BSgcU5>a zm7toIRu>TTm;%Qeum%~$vhkIIjsvnaI+lu>99d_jf?V1HJM{?Cg#5%i;5^^U0_0!Z*HyO3_B2OVf&l&J&cgM8QYF?khp@s95x7 z4%>{i%Ww{v?*CSyw(8v$UR!<|*)!$wsWNEK-YZH&ASm)#8>gLw=>eAFzY2PlK!e@UjdkoZ^T;P28 zH8D|XKP&Qmu}n4mf7yTlNTQHWPZc*XyWoX)xEPGe{bpqz6UraRUrL@RSHcmcV2baL z^Eu&Oc}&KGjdYpPv#$#V6jP)^SM&9b1BlL3G4>Eybp^mK0Uu<8Z@{HJ%Ev2xx=)`j zg&duWkjf?rm7V7;CB!947sc_Hi6m=UY(FGOF`=lcs`@cHdU#vuG4EtQbDDl@r2Zpd zC%wOVJDq_wF7B)BE3#i4Qx)vf;fmCkrt`vsr=I%GNmp?*D~pOtlWQd1PRi_h)%r~R zn_4x$bY#jsoE120T&Tz_{Nd-^zG-YTX;1$yP9@-$eg=%oz zaL+XOSYCzkE;ZR;rsAyNhHCLg8SxmhD+^TRsj0*%?g0OcZ9$=bosEvj`z{J5Fsq>ez{s&C&8 zz~sIo&~^gmTv;!}Yy}iS^7!*c3L;i+8DG5-ZPA%{av`pbJC)dv_13})#PL?U{g!ve~|e&IcnYFdU} zKUq0|J8W#hA$t1;I~V{QJ}p;@2bAa53QBoqo2~T)MWb`8o0i*yJoKQpvDddFF)Gc6 zT(`2r<;^e~sa~cn0ejQ`!_-#*Rr$Pa9|Y;{?vgx&bf_Srq=bNgba!`&bcu9}2uPQ7 zcL@hUO1dQvAzk01KmYId%)ksd1M=+dy?0zO*P{SXEKElm2mLYLzaj%Ihl7S@YT{nx zrbwD4zP0OlKPg~m&|4}F2H_R7VnZo$v zVW=tv%hO=)+oRS4l-5%Rt`y0#A0{oi^F}^9;`Ze~O#VbB@JUCR@ITNy$^F5~JJ23_ zHj{$OYDlnsLo^;bQl0HQeTUumf{q%F(oDWAmN(kZOofK_ORu}k6ijAnY}8)8;suo| zSK|(Err(W6$I4cFjqI*)pT6apGkOPC1i=?p24%28p7KO~ry94kvZ~*y9PF88Wd~6D zzs~S73a4T?y$-0zfyrj>0X{&rKk1F<128*d5HY#8XP;{An7ptv_3aoV@z-0Q*rPU_ z%v&ODZJb5KdT9p5kCgrw7YD^H=eElZy6-vZ@1>J21KF}3$^{y#o8$E(XS~>o#p~Mn zZ_TII$tS~H%io~~zxr)L64p$9V_}X04cIuCSZ|5oy#2tjNOY&<^-S$A;fW9n(k`Qy z9qo|%COLtmP6x+T-6X8EH~9^fZ)0X%Hm0YV`GEMag_T`?Wm7u*YVlc9i;F0v{gMAu zjP-*?nijcsUbBzK`v#+%m~qUJez2dP^}Jm;7wS)2VqsHRH_HZW>;owRxk18wW>BLo z!Yxay;X3hi>%m6bC7FW}{o-*J-bDV%34>JR%nbr4C#9g$2Qf&Z!H0bX>)QPc?Rl5! zg=wIi{Gk43l@`*=@YHI6?S)2UpEhVx4!FOaZ%1%cq*Kl-$`9Eb`+f7ksP}EXlX-Dj zPIFa+w^*e3`}OY{Z;UVAg~e}s8N_}lD)_RhTHBQ6mF50!@5cA-oRrYG1La~?>$$Fk zFD#_)B7E?L?m8T~0i+?>|N7Mi9p(p^|CFXqH1(KaG#SCeQ z6#BS<{n6o);&iuuZC64-YvD-Y%^-2Jrkk8my3nWi-amAQrn&2P_*^(+cCx-3_%W&9 zo8zvCErugTvv7*RkbX&+hwzF%m@3AwX_NjpfO&zo2&tegC7AdbamlW$$&Yz!Jml7? zdk<ivwMSc`IGSYirxN7`RlPA$=(kg8tr>NpamF zGRGjBLl6ibA)f%o6hzWF(AQhWkv!GYtUY+>dvwSS_#Mkcog$V+MVouO-8J%t-%+JH z3&zODJ%)lO>)F@J!M(xLf=x2>&*qMCDdknG}#SIycf>qPqiAC9)27d*4ESR?C@|p zZ?h4+oq*{v$1UBUP?hCY9Jrn#se%dn!qcjvpSxv3#GO4kD>B_z2zA^F1*lR?HY4k4VCg zk$&+ytFOD1gLvcAwmI-J(>-2lP8Z4R1K2-Jvi|Vv{oc=`7PdOol|M}G1qr-k$@EQB z6Nxf-oxCIjZgz`NM$>P}FSme9#@}bys=@N_g~r7eLBgF^RTT${8GOEc-f|1kjO$*_ zRyPt179}R-CZYKwv1rO|13fQ_U7u!#K{L??v~dlirwqUoh8Iva@)Xi!!1xXf4+As_ z4f8eRzSghyRTlzflDVb=kP0;<9@Gm_hVrP~*Fdf7IB8UlQtz>z;0HgnKTx{F(6 zWwot-{;fBce#WdRUAzix%fNy8)W=bnge8k%dlfWsvyDHL0q1skbLtS26dku?^*<3BhkkSuI&QeO#SKK(@e!` zNR`4NYBl!WtDZrSii^W=l|;tFL~{0`DWBg^#fJUcpVQ-7%i+?BHO>c2O=nxLn?6Q? z`wE)OoaCZaYlR|;L$#VCI4dvZqEIjhr0;?P>3lcxX3qM@lq&Ogq3xM;jtM-o?xB}7 z?xBEeNL4%QKD-SEXvS68ioG_q$lTJBo;oILdyeMlZ96U8 zYvJ;&o7)#beNCDYPmsxd|I-nI|zAl=?yg}!2H>jgC_>dZzMH!`Xx&N zS-82u0T}1yz}f}J#LOtw!8NBKif%uLF_0?viB@n%;OO}gSk<%)k8MxB-NqN>3~qXo z{Ov4NWL+Wsn|c)qZjE*Dq+-M$GsmrG;$&(i7jJk7MN3UMgttS50W?pME5zxl zC9d1S(U=OQw|_}!I@UuRCTfupY@jcLPn!1>=vfqLl(m@O^ZN(d8fLC8|C8hOJ!QcU zE4LhHyK~fda{Q1q@A;NKMT&ed)}?FIH!~!}cUzXI4}a)C?O+%yDk`c6w{byP8BO)P zIsd?Fe;jPuSLaJ%VPV}?VUhdEv>95A9iw18qo1`uNXj~}l5}1O?N4O9l>Y2&J+prL zYVMn)gtO!;uBbH=hZ1P?(QwYk2q4;u=^{&rM|Sl44JZ9Z+^X^i8&M3KG^x%9j^|HU zZtAPdTGp<-PN)`dP{25VgPiV-^(`jyy{6m5G?@-#$d;ug6bmutiTR^>7hnh$_~g;o z?FNvM4ewD?dmKK%rWW}|ayvtl{&k4v`s(rB3LxDR(9rWGi^4h%`d(he@)M`VdZ9h1 z)id?>CJ4r7Gq71*{rc6?bwg7zW+xOtS!pRTd1b=`vgtnbuZkjfTrGcR0l!$jlQs!9 z=6Qx%5)!jNYxjm;f5!U^(GBeKH62fnT@l~w(IOxivmA7!i2P3jcl8s% z6|^O2yy>^|J)(G9t&UX4-skEZCovnH5sFt>MyISL!P}t$I^bJB3cjTa$AP2}U&C)H zO~i!_aIdZB8WPTa6C(@mf?9QbTz974bgx4NXz|-+o0UUTzncAA9fBf5Ek?hN5;M{B z2A{R)ZQ+CLk5H^xBcjj4nl%Lpy*DGJn2+}w%y=Jgm+8W`wqNm@97+Q_)B4+Xy~D$w z$7d}{Q2m&9{ok_q($egj0>TduUvAeRB7j)iKd~$Ng+uQBuxSNHgmN2~^ObOmE=#Yz zV{(b8>!{}$l%O|;M(dg1Ed(UhVvyo30p)0UsL=ElB2`$9%CEUT6OrnPTpNch)tE_OxGl0t$^! zdgHtwJC=*fXFjq@tq?Ex?dJ2rkZ`((2#vUE1W~~j)Pm9L4lA0~hvYXm?0Px1Wp`CM z1o2$#Kr_C56$;6^>Bu?+g(?~`ck(k0C2jzp$-lncx23`{<_+&ft^vD3aZuIj4gE$# z9kGxtbtkmWX?hB61s~xT4JA?=H+834&%A`Q;^+86d=s$ERi-iPt)umY`hYqtC{B!2 zRHekTZhx}~&rb9Rws>*d?CuIxJKSr2;FtnNuUwno*n0CIklS7(#q(`QJrepDi-?g6J*j}zi$L%SVvvIm&JN0_9*NeN~wUp z4cO0Mehc?C`xl6j{@0o5G96BTuB%IBHCcKmr28&y3r#SJTB|xcJ0OM6Y;<%~rSiKn z_p8Aq?tGvP4Z69@Rj)~BzXCZIPtdD*Nv0IvAcp4=hjr!=1 z%LaUQ_w2yot9qxiUvqBFyBF}fHB$ge+1%QrdxiNCLAGnfn3oJd;bWEG%L_!r4OW>g zw8uV5$(%R3g54f5fjJH%UIcHv{L%$=o`JHe3w;|iCFbaiRsardFz=FT3qx}K3#wyq#4IvysHy`wP47(Kkf`*?eS@*&&^#A(T^K-kC+ zWf#$%UdBxFn(c(0USQ8HSMMe{mX;Nd?kfVp^=-tC-ZCcii( zI)1q|AWwuue?6$ZJ-e+ttTdTD3OF5;g!a|8+)ABL384~p7!MfQ&5^N_qC%Z6__wyV zl6h>{tS0RA=Xxd~h=X6h6mWpTjuaDEAnMGo<+r+@aZV6|2j=Q=3>j|xeyuNc=zZpDNY7wNf&*290N%ENkT@Asb#LS1xy}{^Nm$nBAExg%q zN|T*J&a#iyMTjgbxR@vw@Es19=k##%t2&1(nB?`n+kKec#-nY6^exhMqt4YaVQRf2 zbSpP&qk%fp*W_s_!u7d7*1~nZCJtr5hEF=3U0jT?OxjNSHM-5M;Ko<)(311iG5sDO zceH)6CtVpr;DM_E`ZOW>%azeZxtq3u@s4-- z{)IKQWPLo4UfQN>3L~qPJsMmc4KIvetu0^gj9Nzt`j+_+6lyEMdb|x_u~k zdrH%1%$wZ(JvSsI1fg%^$oo92MFQWD02K-KJ|YtPAStC{#*c$Oek`ztft?S)P3Cd8 zeQ(cmvhMDG@{|n}$@A&H-4(jU3QcR{pIrwl(^Y+(8d8%ciZ^l}S|N~9 zQc|8bB6Q`v3|0-=C;@sZPyok-1a?|fMt5RxH+O&!$I%N!J5;&ak|!gIHZB08&SAI- zkT#txPu|kULbnB4f^AZ!UM<13UJ|2#!Y&#MlSqOif~r>@5sLm88f<`%IfaDCQlp`# zJ*ew8tEg(U@+H;M((>$EzQiz)3OR$(+@KzMK)}5*t&F;G>fkusx8Vq@kZ3t0@f*6m zF1mfHa6FC0GrZ=Mv!`vxW7!ZISp$fR5XwPPG?NCOX`)UR zi`I;(>2@k4m3`D&a-!du1@)L(e3DVn+poF7`vady6N7M&49%#QErH;ga;QGk{dH^1 zg2au{R{B39`PE{T|D2yuM*wAEw{{_VMF{baY8z0%eNZh^0X7XyAFnS zepZoGO>vbk9S;GT;rg!VuU~sT{FsI812Q6LR5;SYTzD~jYCDTms7Me1{bG#kkAJx(*mezbE4&78%BUqa~o%JwhOYdZShDW|dtdoh33+E#`<=_s7l)iJI{&1Lodt7yO z={Gyr5S7-)(oy%F)>I@U#i>F?EBfSQe>cRh{oRG9g!}GseD`uLm-gx>FaSYm6oJS} z8_KgOjbsikCcl?u1o{%oD}PVwD{h zIP(-O9ytFNd1_Wxz{x3ZV?p+?@*u;DQh;9LQZFYYf0!(BXkvIjLly3=1 zdch9J43UBY0^p>#eY$^iegLCcHTMz)6Q42uXHNpz1_>~+vEwMI*OhK3^$u|Sj*_Hv z%<`jzlGu@1NR(DMf`EX==;t10fxY?XZS3!Y&s$)VG=8CtT&<~LE?Bu-N=OjcDJdzJ zx7*T1kWu8;yL%?aJLG<1%BFR=tb9WJUHkjc3eDnpldyE+nVR#fe98WzZ2|k+K%DQB zlKvDpOZRNWq!*{4GQ(@iW-JSyzc#$x$1Qut$CDbYV=-Q9+u@{P1MVHCcPVK$WIQg_ zqPXCWr^}($@#$&A3!U6Qy9|74n*7&ir#E`-<0Ia#kBd@1NU(Z|VzIqzV0!dUC5f5- z>AAP>swbRhng<)ot7*Z9z&!(G63{s})mJ#M+I8I{f?6D}(5SDUv19cvG=u79wY zr-+4lbM>y<%v9K~Ar(6%Los+L5$*&1zo}r=tcq_hH<40r;Mh4g#szwYEBwUN_AvD>?`*@$a z?bADWi9z8ZBpgDN#F^hvxb=10t7@x|?PlBW{CdIjeC#C{Dw;_gJ3!K{6E!AFHVVwL zdi&QJXId|Xqp{~!m0@GF*!CMe|RniL-D>^_VSi`YGM(A?}4&XXbHt6SU9#n z^5B@s+cg&*%U9rZv7pblInRyI`l?TDC1`7SI`30FT^`GUJ$=C&nf|QYEi~IX_168$ zK*C|A1U&&y7$X`B>+olQxbw*=g8r1i5?U0Xm&$bLn+>IQcLZU`Y5jFx1Y0Z}xYGU$ zaJ%CgdfgAAiLIxCFiuq!PdGP*8o8!*qRm(WkJkQky)16?gf@HRfzO& zY0+oA2?jzL>t2#qJguH5_dTPJKMaW=S*JDb)kU4^dL2Kn1{eY4kPq=p%TwJO%qjBs zK>r3&>N$uZnt5Sbk=fRk=K6jB#P zJe+Z4s(DbOp5L`TzC8{4tX=BtrHh5YJjw57ZxE9yE}q4(uJqZ$B5s-8+^|(zt$qKM z2mHKdfix3SKgH6D*rTc?`|*U`LU`OD9y;>o7Ch(n>@pR_Bu}9S!jfgQ5i2!&d+6lt zIX=Wx`kKqN8OTta2e7rp_*iul&PQlW0fM=#%;nsy4E~{OfmxN)o$cyR7MGldnBZi7r(T zTHf<71<|rj45k%6xj?MaWH9k1=(Kda_*dz!TK~(rLL;?+fs`pgr-K%Wr5<~IW{0`( zij}2OYHf8;lMN4A%*&ZxK<@WNP)WmY*-M@Ra4uD!|+J6B6spJBtf zL5*|wm@&eM-eQI$jvJ-ELMsB}m{yQDp}^}hPD`2+A5sXE`}A^wHtDg8i+m=3z~)%q zcV)fP#6d;yg%1ig?pMUmeac!d6~*45DhN~aQ=v{V81Ooo!R}haFBr+MOSYT#Qj27n zL&Bsx;+gP~q_STg-It=Xtv^66ZM=B#=1pU?&n3>E>W)5}wsVso0@?=*gP^Ulce#m} z9Nb@MRZ5xS`|%j}_M!wn3Y^%KS!D;io_|Xb&Pd&20}!}AA?z@7LeQB$YS}I|nctcI zF`hAt?8$btF>G)%D{R&@tLe5KC1}5(`Pyw z!ATigQ>V9!m&ZEF2%(`(8E)DY%R_ldYkZ&d@X%WHM|d2Jz&oOiC)O#~?c=_9j`kJD zgP86YTG4$L1>9wy&C0WMnB^F$vzv3OelUeKu|FJF_g<>XTG!N*yqivbpBs}arGN3o z$iF3<@l@glD)^@6ZEE;{N)nsn{J^@SwW#-dU7L`D>yC4q^3v44E(gt}CzsEFFalWV zocj9u_}sr45r_f8AMMQlZVcmZKbt)GAO$`p#xsowni56=)h0wa>vAT1O_g4vE$~2# z4{k@!SiirkH$e%}bLeSsl2SCa%kWU1&KvQiv6MU9Qh)n~`_6K6)3(=TE;hFL&yVd9 zfgQ`tO;!|#_NB11bFW+^OgdfY^vrT{&wQV#Uz|}ySza8^=s!-c1yH5Bc?yt zMB)SZXucbnjSDUrAcUyB%4`TUWF%i}xHC|+DrL@iaiF1h;l(ldSq!h&Mb~<;qmsjV z%$PNUIbnFeGwUYZUZ^X4P0oQbVMdx=U1rfM zorBU-_>(IA8!^BsI8U)gD;4`Bq% z_NP>}FEzBCdS(XK4nd8D&PGDEHeQnUJdf{;c@-0iKw|GrGYAcBkk}8NjDoMM#Jch# z?Yf5*5(j`KgY?3#*p|aai5MJHQwxixUC$tjA{dV}+}y(0@jdL+)L-pO-mc=D=Sbel zffJvGYJ`KgFe0tOU_E zyNeBfV3JD~ut`N;`v-=tmj!^8zwO(eVs|k`wuBB$WCYavZ_gx*9kG`l*&DZTmZ0p5 z;WTn68s5k^sRipelDe5Ed-Dc~rqhE4`}D#yGd~*9=&!s*9`qQ@3hn$uD!Z9|_nD}< zBGGNnxF9X?C6BvXNmy%XSzh<^1A5+*x?V&R^pyJ|i9~q9&zSjR03{->-xzgDpx!(4 zZe<)#QEc=5^l|l#rFWH~XNpB4MfBfUX}oW3#P&xz-vuJjLbnd2`QL7wgCwHmGLQx@ zLPlspu&r$bx5h$6{iV$OvAv@QC1Cu)fUZxhJ!#`v3ZLKnEdI{)xxv+$scp-Wr|)miEbP23;_AwR;IrIOLKv!kS*P zX`?>0$CPc%K}^=6H6uk*z@VY&b!mqti~G{Ay$tG?wK!%$f!If|_>ABA3_WsEr=#Rf z8-R?=jRnFzNH3zbxgbPDYaDu&p&FBRj2d|DQTNd(DNKdpmgqgOOXMOGh>!qWP@TZ~jKMYh0rL$w52vytI0McYB9|;Ee%z z&IS3I^s}>%YO0c~nLAVGW`HU^044QI{&-0pRndCH3W@Ds0pcm_#O>ivKepHhWWYV@ z3i!{B!>`(C6(@OIDJ^oXK4uYBt>cMyV&4a@emBMjpKTVRA^N1u0gpCCJpOhqAHdjy z8HhzmUMGr}g@vYL1Y7W0bhraY4=FKn1AW%#&)fv{E_-U9tsjIN=qYk(d}71k(rpR_ zS=k${D&n!PUrGw{!12y#JO$lNtN7lW#YR1~gFmJuUNB2I zCWyR~+dRf%3Lx05NN!`JR3v{3QD-|9A&_h-|G~EGC-)Ar`}*FEzQNNQC9c1`SJu&S@-4eqJ6jy zR|xzPWZsNAsQLwk#jGYN5Rm;z53WAX$s5YxOViyHOoPnCKlXcT z5j(rZmolTf0wbm4%To3DI9NMJfWPp@K3%>dQtCSI)1_&1puF2P{ND8GEYw(lKpTvZ zX!HSm6Fzr0W-&2ALq-V+?KR4$jGE&N{`TKx>gYfri+!+o1hX%%GWzjbu!ox(C(a`$ zcg(cXcmNZKY4|0w6AFv>JEKEt-A6UF^8gO-l5N?6z8%+sMUE?tffRdmVgh`(ULU{& zIg857`k64moaUOT>3tMUdEc6jz~0nwcu>R(a3+(hFMr`pz~{8;jI^XvDNv(|dcUIY z{sgj?9J&qhm6etFul`Zt>2vegssBb*WBJCz0d|jH*&(tBv1kg?%=}BHyh6>_pqJW@ zLo7oOsc4OS$4>xY-^ka!pcI{(n*(&ga+mE_Zy&0I6T#@V*GopeE;u8|XEck%l_Ewo z_5<}deQT7O0G9vedPOs#2m3&#_{@LBL**;0LGwzApgnU+g@HQJa zF&9$BXOhgEb@ofV>8mLx6;%e96xG-+03(i6KoFT-u|Q~}xjxs6o)u7tdk%aEzc)&> z#rG2|I9`K#_J@zQO^;)&m+N(EER<~FUDHd{xC$L0Cb}QKBv)gC*G9Wb{6^{lOA(Ze zj1LSeI=i8QWu%m^;*>Wmg(ZKetBw8~4~TO>4G#S3=9#7${B4DFGJ$sI%h==;Xkw;`?S^}S$pty`qq@Iiq7xEFzXx0XkR5kMVdH$A1czAby zn}6e_Lzwj2MtDnFAPSD-VjDsmmU7*s2YR6Jk`cz+%-E@e7Iy(K5ibyy{{NSfZ=2RUr zgd4Yq4}*klE#3M7FaiaSFvI-8qZE3VeNbZ6ruIgy#7Nxgxi4>;O*gqvNc9_t!MbZW z03Nl{do%Z2mS{eJe{y#6*B{krpZ}a}MR@d-UUB{y6^Y|+f)m5%F&YMmljVP1sKSj3 z@J-8=YdLwKw2y-?oEkyEB)fEDS*Sj?93!w}tJLl$@3N%(req&)r z&Pq@VztVm6GSyIeSXt^R5hyfPd9`R2&60qZYsc5aLUxP*-tQ1s$yFV|;5&OG;WBtx zQ1FGr#e?3cXDO5G&0I5;zp@ckML|$aFn|Uoa%%TFNT48w6~da0hB7ZqSpCR&%1W1@x_=~SK_;%oe|-gCSVtHotq zA!#J}xh2L03_PX-AONU@c=rL>R14QAPhFCL%V%wUa z&-y!haIlfjY(ie*xFTkMj%GH*CMCYt2vS!Xvf%|vR_6&i;dFAe6yd$`V+s$KYZ-~# z%Pht$ZX{FEZV!$zv071j-kvi%&t^)&)wSoE0*M$weR*$J$}-Z^BvHo0(ld>u0wHJ2 zi;qWY!a_Q8IbW>uKU7yoSp1BRDD3R|pj?hiKIvPQoQui*W}oZTLc^(R3zcaOSgBrT z$g2{ry9IdiY=P&^Yz5K6DcZy&ZU!%cKOiMl0*yoYjMo1Z0%`wC4~N-nZ1@1`k69u0 z-G;{>$wjo*Wu;C{8jKQ4qs_a4;Vh zFXLoGh1iLLN`c%jC@!$Nj;1BBWVkNh<8RF)o0t7*YnGVp5F0r>fVcGJ89oDER6-?X zEFW)n9<~3DJ-L5C`{U7qA08gX9EXbXW2=ed@D)kF-vqPfxC^{!u2>cMyQtIYQmp&K zff!*rzZy_3Jq%{H&sv^+%=-XvYox*LKxad~4F4M`SSN7ugi9_Y^WsjS_6)i!fiPLP-9|$8lx`Vx?Z`8vbpU$f+DAQs0 zvu7TtcP-~~JX?*7EGq4W%6m_C4>fAmbOUgNe40q^kKC}Pjnd{rbnC%oQOPsBH+?;| z3gD(F+nsGc^uPer3)%kPOd;;R+sryJ0BL2B$hqIipCatUoTTfj_5Z(7`A*<2diV4_ zEoo>-6@@p&6{zMLCNo#`uY|!;qVZ5ik|yiAEi7B^@9?5Egr$ zK*TCeh^T!I?mM1)Z=w@Chz1NQcU*e`_L@7eW6Lh2-2O0)37>uD3+)H&j#1%}-cN~}Q(MZcjvum}3+;1A zS&gPG9q(?n*rS*Yk8bTCuHZj?$a*MgUjH0TT_Db^D+a{%BW`e$!HU(@YI_Lei)@yA(lT%#= zz%o1IV3!+Chz%@^ynH0B5Btslad##34-el0q@=s;cc|?!XZTUxq0e(hB?JuhV=?*< zXj4{*xf|XAuM=wbUj_|cUZ8}x=@ESB2ogI;ta7q4GtQ%*4riNAN{F~vL3L*1mH>$k zv(fA=?L;}aa+|-wD6?C2a`O%4^m41(ZS#H74&hW-(G)S0_^x~=KCc~nD)Y<^=TzbV zwKD}1D7$Sm1fgKIp>#sQZd}qY|LhW;KCoy{2P!Nt7lo9LnAIy4y*J&%3?cTsK|*Dv zw)Y46f_4vcBhI^XV!$Yec}6ojWf)H^kueE&^mBf$sm4u^XnR>l#0gu@6h=olQW2`- zJ_@cY>v>s`wD!p0=if4dEoS%y1n%$%@~XT4tUc%*E&p}A@jLD+qqL7j*9(MIq12REe|8Z0vrevfp(_hQsc%=w+H~LC+YfmDt`)Bc?0uSs+{6h*qq*MP`4I4o>e)HFxIi02jU7O``X1z;Wkk)$=`(M=gHuHC%0SK#j|!YNlTln60zgfO2u*gM)+E zI`xAPUFL;O!k=)PawKL4aE=>ZU#fd+uYO@)_?!sUhAO<*;}o6e~F2lN5~nT&7v zky>KrvbcuV0u2^_FhTh|FngIah?wj-?$` zo46Q9SmF5BNGpk2Q7%XHz)mU1XHI*ctn!zrF%Gko5Oz}-x0Vfkz7=gs*O7M{4Vq8s z19onkm-J@l-U?I@#Rgo~xM5>bO4858I!m&SOR2mb^nN!idir2EbG2RD(hFKk_2C_- zBj<;xuLj!52cYqaN1b}&J?mfM$jYdC}a<>TaKc=e*>ug%(bQX(MOk1YWPsH;GfPti?E*Ybd0}V);kH5(V;! zKDj(%K6A9HUNi;9(tVpIdw(4lLPVM|CkH73Qe=oNf2gXSOie-hw>tDg6NAG8Tt(fc zavcd+oYfnyrTOrt>LxFGXC8PxaWOl)-*KQ$OFkf1NfOgTLg!)+)kw3-k0OjVyd_VQCqNmuPbBp)TK zaW2E=O7H9C7g_R)SxUL_sVxS ztzR5$){{@8tTjBifg{u6taps_K~wqD7R^;y>$O6r=kaA-=H+)$q5=cE43WpMecEK^ zek`kU!7H&x5Y=qcoj^q5+)5TyUJ>B-%ehz;s3As%o) z3*t@8trrG?Cb410wj~Tq1sC;hXZ%q7DXI$G9nv*X%RGx0gIC5|IU!=5AE(k=^d&QG zUd2GUR#TW09q3_$}m3NJ(jObvO({tUWI;wQ6l`M!rk0KNUz@+VI`#HG{)N?cW1rii79H<%5UJ zXi@U*&OyMXWmJ;4OKHwSFjiTpt&3hV9T=@*XNn;|@*YQjQh)?-IbQJQBzG}tdy)Tk zIG$Fh+JE#!`a?W0ZUgN3ueG&DqjKDj1r$sNWgOwu`Me^-dki5$q5=ao>f5N(BIAj< z2B(ei{Znqq5P+kv;28V<3aUSSn4se{RP%A=Pv6noFj|!}z99MpJLm~Q-rb9Q4ORoR zIj-^j4)t!+Gl6wSKPsfa_=7Y@&#x|_Zo{yNJm!W*5i)A3+}bi4nA3E{HM6VlI#Av5 zL>a6!x3&IQksWZ+z|pAZ7btl-pm+ajM;d^YhqQ$qw~&Oe$;M34W5Tx~`w1JF%SVE9 zJ%u$U?ZJfSs4H=C5TRf{$v9c0WSP~F$#kGrFY&^nL7Ias|8_@zBv$%fmC4w{Vy)?+ z*4rG(138ma70q+}?AQm2zfTW#lk^s!NmlXwN~X{1Gp2*Fhb$n|j!sB_tw!sFp3QDZ zJY!2h7s~jXG=zq7sFAPz=L;Y3MUBlpv-TtMuM&XY1C>Fh&xuxWNXT;=ozCBz66pD! z!oD>zOZ{lJT7Fp5(!9UE&^xi|rLR+zwfJv%#2XzG<_zgS(l}M$Y1ruHk!Sc7`e%=4 zC2u#7%+_+Ue`Ew-t606(PCY-oJ!w6>o+~>zSz>T5{iVOLD_U+tG3mmia3n?J2SmJe zE5B8`6w_6g)wcwo*fvM`dEN+Pl6+{ZGXOH-*EtMV{RFq)Vv1k)lGslA+Z5;$oIijR z&SigIIaurn^+qpA@tj{4T6==$-%dv~&^MYW&wM^=cO~L?>~`B{<+aci7IGjTxUV0L z2&XZUnq({8dPC+c9~+aqEY#%ui#GQK8G8a_i{pLBq@JJnU}8br|1vILcQ!D1xO-wf z+;*mT-ncK_2QT!%JspceU16Ti!M$4SQ9k}qEAn@kami-NP_Y*Y=ysH%Pu%3# zGopt0Kl61leE-N0p`*{6g`%JL1y_Ut9vmCzsWz$}OR`U>XI zSyOU#kaaCMYmO>N-jU9A=2JFxl zZXt#L!lw%>QRql)4?RmxB1JCT0@<>JA!PIEg2f`JGyL1|uWHJka6b zz$95F)pQMgtGcvZ)&%jldF^dFM!a_&OCjmqOMhfeFL~czReWZUQRQ(D-g!2s)jkH# zKoGqh$w)E`HH41y3aAa=ybWsOZfQpLRV-=5_f`UhiPK9C; zcY6!cxw!gBQfbd8Dz-oD?)UTfi_mojqM!zqt7L1 zwQ9_6zr@73SvdZnLq!-UzsHaU{-Y zfv?-cU<2H3bEfJ|wn*9JS?A3BQ~1){Jm2G9!g~6a+hJ`;T`VIJJ93*%R&&;gN$QZo zU5!QDl5#YZqN3U;B73L$ZOm0?YeQTRk#2YE<;x@A&dVx71nJQE>1&*dti{nWuF^w* z=yOD(vMLqNPK2I|Z@=eL`zDCD(tkYvYSOO$qJf$e$dC0!S_^b0-6ZL4IEmWQ;iIht zalF7nn+<(hud;MpyMQk8sqa1zi{);0!i71Z362wJPoTG%NgR*>B9-&f*8dZ&)&4Ul_e>V0=TJ8BfW zO$>yDM_?Fsa5HnqxBX8t53YXfKxSSrBHqP)>n2aD_dI`w@uj5sB6apP$~`r2BmY#G z_;s6~^fYnrb>u~%kw%A@k;W?oTEMtd(8z8oj^xK9EzC1T3$Tph2&!t$EStzj$v<*p zXc(~#PFK7f7-KT*7eYh~eEbZ*;K8PID)-guM*a1~?$t2-7Nt$n6@fJ|{ILu{eV2BA zG@mY;A(LU(q%%S}5LyC%!LeLZ;%+z7Lh9wQbmB4h{|`B_*Y8+$EpA;$Q2h zRJ08rkd8jwXI)!*36j+J4ZU&{ObXqjFY@#d*jp+@2+IuJ9sZfN4A3{%z$N z%(u=U2M7`0E#iT_?#A0opfdaCa;*I7PSYGF`$)jG%orBiIW;b|_Q6D%SDelE{;;Sw zwgH5CZHvdnNQCd!;3=2U*Vn8oDgGFAgUn=6$P_PDRm}^ER(8jFA1GZ0=^;vWBCy~W zC@h@s9o=A!wP9$H5+&(m#d;K)i;8a#}G}TTsdHKd}{oje)r(pBSP2i&z{tPji2j+_zRi zDT>_r?>7w#Z6DS*xDbAz(tl(&Dbk=(iXl??r_du>5*lV2w4Onyy<0vGb!3?lJZUZm z*pTSi&V&ub9hqJw6&E0jxKH+M zRaN`d0_vj&l2~nRi?o^B$YjqyGdH)u6(Gerc%27+&ju82bhYW_v~3$6Wee>pRVJLU zj5Yuc4-_+l4SE2+RCw1NM!lY4iq-MhdqM1mg zc6XI%-Qz#gCcX!(^(ss#6s9?XQJ!~p2yp&USX)k1=;BLm%U%@%OvTnI2b6wLjr^jA zL~bx6*zd!RMh~RlJ4j1Z@2$UT0d^BARS4>{tEat2)rtJeg6>{gA5S9 zcv|}A`_P&U>weVoD0>GOv32;Nh!qLR{pL~AN!eT_Vbxy|-!zVEumdAHsT6}9iGA8nzQ*i&f< zqRt<^NA&d7T@LBfGjERVW-8yJ-NhxjNYjr=KTlV(n&V{qdK~FC$v^AFeKo^#rQHyA z&wNHtzCyBB7lK8V@wk^Lq@dPY_KP;JqWM<-j=GxrzI$4P368nUvu+g8TD5j$_!k;~7j+^zny#@l0#GU-l zi+7nv=kK)v5i$G4t_pvGaGm*w?62|oHqZ05QNv(dx2Jx`3qU#WaW_7KzP@*45;oQ1s{idg z)r-p@UK<-5uvh-Z6};G|K=k1(U?8J9o=!6U8_|5|7 zK^(a^kMq2S@9ke5!Bp82?hRfWfI&#jjI9wE*#Y4w!*O)Oj6sO|_78_QlAffnM(6!c zvhR_5o*_VWQ2bvMNZ0G2@qYLdMA8e?V!U8xa_n&ZRg3-U_0@0P(^pCE zgjBbDDYx%Rqz1LoQE#7~2BhYCscjn8wHNlQ34m++* zmQJ>Q1U@>st=*^mih^6X!Rj(ZthDI{C!v8Ci8PYlX>VQEtX?v>0{QS6smb10U!z4J zohK|IFjvBhyZJ594tTLq8B70t4uraW0!0~rDzTwB1tw{r^C=@E^SbOl$ZH~1mnkxP z3_LC__Xc05Zrn#PGcyCCC~(KQm~LKNBnkvTx{`)ts#4M|ic00{v8U0;>DfB>%l)V2 zp&HXAMDy&c>e&kt%P?I&-u{BBw+;EDNw z`O9dFAhe%ONnF!~!FbI3C@lK{*^!7dgx^uP`R`|7fv4PDBc1%Rr3G0seDvL^4VJn| zEt!{>@w$ft7x>D0d#-g>;)0eT`;Mnw-OCL@eQ*fseh2BylZyeTZzZ9oHKLCbtce^P z?oP}=O9QdXeemSLJqP{gEn@y)knJyASRg`6OAAyK35^EjzUAOm>9nSEFF+G_-!i9} z5_;CY*5)?rU`WcolV=SytAnGjVSgVhr=+1f`(x zX!{F2vcQ8@ei~8N_og*a(S$izs>jy?TMMUqazUmwvZb3%hP0!B?IZboAPUqlh*DqO z(o(EJg~Zm-)O6Ey$K8&VwFDKLJYTXv;9>p^DV(q1;|GY21~YDFt`7IX5*@w7~%B@E@>XzoG|EOq`IYqldO*BE5;PQr6b^ziee zjhe-1F`y9Sq#@BARoEi1Mo+s^hjlz)IK@sB_j8H~l0leaaQuBS5YT0kvl#w9sQd-} zGAQ{TXnA$%yGRJFVlzm^MUw^26&gsq9w5EF>3_pEm`jv_cmOafB(yP|F^G~!^73bR z_h?td%da>r$_qX0_7cqdm&6L)@+=8!pa|*)a z-Y)WgEJuQ3Y?miKD*(Zs6x>q~=u%+Ner-P~kjoE=%U44BqhNp(#nRowZI>Q|*v<-V zN5~-hU~@T?_wq(iyy@g9h`7g;v^b#BuALD~5I=y%f};}YDcA_~MO<#KPRgwZS&&}? z!&@|!f7yKu5y{1`{y@mEl=yCQFbA1vfT-oJ(T`qRv*t_2g(;Y44Ep;39`9n~#r7f~ z|DoP(SYv0I5pDI7>>PC5o-ZG@W2TM4N>fkxKwoE#wdVCIf7XxI*9WycEq$8K;uXuivY9DfLLq zG&C584HdfN0udhm6{HEBt?6F)nPNY;ImVVN4bx#)am++2hxV1+{31V#Xu9$>^s^9B zVTjcIY`pxIM%0^O^+lONk?qdh>A0jK8e`n#bC6sCVnu&KCy=)LIWj`#^jpsy8Hjan zyODnU6NEVxKqyhk2m8qIodq9%N@}Y2+)FG4CL*11iZ$Dk)=0T-@_cX08#?gfC>(j(wg)yTBa3R-GF}vf1ZNPEMhny^q80l2 zm18v-P=e;GlLnW^-D@s2)k@6?3srO19QJU`_B&P4oKAO50ALp!`CkU6^zPrcOn6I2 zFm<^Fi=HX9-&8K=qmaRyc&Hj@;%Q4==&pcF5jvAW!zcVK(+)^j=ljR)zmKS7{^&(5 z$1{Y{Z+}Ht%}UKS#tFD1oTt8K#A1Su7!easFsZu zy+Ey=3>KYd2~pI*fB+HD`=k-b6v>+veh4v+qZQs6yC7&f9=+@=xyFF+_;Y2Mm+9DV zKaa9_E=(-)Hkc8zInyBa{|b|#RmFdCa;kSw7UY|GVQ2RpH&mh62qUk1?mI>2xo>bZ ztCA)=6)Rmhs~ZtQVBh%`;`&fqGq8CuoFX`=AXQn6a``ES(=AUPb3FN$<3KyDOFeJ8>dl5R~CYX z6=V=0st@{!SwrtTo?gU$sdt;}zsuOe@Gao%wkeFwu=KkdTo(emqEUrAcz>Av;K63B zDx&|%Z(vkJK>lDkK@SpEDP+dH5XWwD+z==*XI`c$Cv9>g?{2J=E86x2x%IkC7y4)r zTD}%gC8Hd$fx4z@y&&1=o96cvWfvh7!)R+dOs(sc7GMD-$7g0>HWvmoJ=5lzy`#(d zyc}etI04yEBcniYQ)I94w2PL70=KlQcZ$;?!r{CQV;|nXg;dYLmjC4f@bZZ~einPx zMQW}`mRhHUq9!~Ys>jYRDA*BB%=!xNFB}evgAiIb$e(*5toZ?k-jP1>NVVR^+Su-^ z9j8k>dJesb7X^kCYDxVb*A(IZJ8Mi`YkXQJ29 zT3Z+WiX>_9);$>A3%ET+ZX0GT=GhhSRbgoE1T zIiEYzhi9CF`$BFsY0@bCG^RE-?4Zl?_bQ76JM{PYB>NF_+HFudP12w0*HZ?2Ws(a_ z@2dvJsfHs=P7O3_i-5x@{Db3yMM!mC;7@%fBD{Yy>RtV&N6wb3VJ1|dH~_cJJij0< zHuz&Nbf|bf-1&Nca@Ld~6Kig_KtsIB6TW$#tnFB%e(P>}S8hkX%dj3@2I7^8S|)%W zIk{=^lp#=6QV0bF4N%3!^-tv7FP-x5v|2O#*+PGre}kJBPF}{_gCBVGJxAQB*Z#}% zMuyd}vPWr@bW1O0lW`KFpeo?KI=7TLnMq_rsd~#+*Vj`zU;poJ*Ywc-yh|7r36Plq zCn6-wovRZ&G^tC~dG)Y6D7IUDzalXsXF*gL#$>^9t9iXb8!Jr_`G}T!3N>*oEGa@7 z<$<9XtY+DVoGvg+nzFzI-q4sD?neiI{Q+YDBea)pa5&LXsggU)3jhz9Y3R-Tc)YmK zK_+5V%rwQNo^?ALlq_{NAnXUQk@_-Kl42_%lpSKGRbZIx{zX!TP6d!J|o?`=P8*iAv zu-T{uP_%24$PbQYQECS83Z%LeH^am%MX+kS`u9;25gLwp8{9fkr!!<%9Gu0xN0P{N z+tqfZI%mQPOH?(EY9y%}Vw`>=>MjxUN~6V@Ryv`-O=zYyuQ(p$ay8B74!0pC=PAna zIiP!x%%3ca3dvs}_r;5eL_TH*4ARt6#px}374{!N zTnTsx{n^j5Haeh`1m3jhpvuB+PM&YM%h*i>;~_=a?F0U^dM#x#Ad(X5{;Q(6n_f&scShuR#%2SS@@woDSMGiY*B_CU#0t`rm{e+C z{C$7@z&J5i`c}|P<29%VIdzJ-`u)z7n%aX;Hi1`TwMm4F|0`495JdxA9`k1&H2C#_ zkvIGBo38HbnJh-7C@@3v)!r;QKsS=GGW$83D@a!laGG{;{H_m>#x~qtz=`wERfY~M z&i>rq$BrVS9k?k;PhN|_eUg02%zko7bP_bC@-lg5N5MeeLrKBb(i8l_QQzC}BS}+W)&Z`H?jvsT zgol6H=m*M+IJq5L^(JCXmp>5JJ?4<$Ff?Zl^yY|A{JC0(uPAZ@v4vzkeQ9eJh0Ny+ z5&duT$UsIHklokS#g=RO0AyDtFQvjA3^W^h#Pi=V4tE8wgM@{(G%wGI>-3nq&T2GuI3)QXVjI`k z($shH!x6t8WnTALep;T1sV2QZxvHyWaIzU4JiWn@id?dzczZVG3@{Jt2#C=J1+40v zKmjZ;aOE_}J8%`5e1W*SOumqJrv_iznDe9M@>^4_x;pH~n*47y;N0oQYzd zO+GaClp)twxp`3Ki&+EV;n5fAjlpqpp9>2>oO4nn4dlb_UC>k|DAZo}HHWG83Mdy( zmL+dg+O3T3#a{l*ye7}v$52#$iaW|Ikk*;TJt!vr-ALk$?PmQ+;QM!PWfG9ZKM$Sg z9KB}}OL)b!Y|5oA`$&;qCs)a7~V84 zzUy5^5qF_dUOAO?aYdt@``dxLRxfOg2oE)W_b1MDXgX`=8s9d7 zWnx}TdV4T!d##-#?rYxL$V41yeGTiX4o-&AYv9(QiQ|Zin{ys|-~cB`a_%S?=N_!03{oz{)Pd1y#dQd;v@ zs43Fx20dulzE|?+wd~3SG`p{FM_v#lc+p*H;UR59tQxqgDr)R;Va#SA1Cs~vqW0M5 zZI#B$+`u-e%Y&-11}h#AT8d-L;%HiPG$K`2yf$-p_Hr`EDcv;BNIF z0=i3;B~2;B!B_PjhrIIzk0D=LDIA2u=Mx?%Vc=dqzU?5aa{s4v4Q`CY`9FY0iu0{< z-SfFDy0B0X=%?EJs%fdc_8%PTD+OVRuPQ`d-iZclGWe@Ckswzqy{PY1JI37^xeZHp z#Q{Bgzq!1`@vf#FgZ;Z`pM4wW`bPM7BV8@n%Ij)R4@V*OG0s|kPf2!&6EjW;4vbe0 z6fJXlN%@lD&%VUn7voju{9!oyNStUn;b;_{R@q#OTS~6od2bfy(lhhiTy#v0!Sz#7 zBRGOIm=Yp?PL9&MF~Q^t8o7Isl!(1@sWb0@6N2k^E!igZNl(Wkh^aCbnlCz?Bu-1= zpEWJ-eHO;&sXt-~CN|4lb@ng_S*ndsx|a$V6$9yF*4Ea^IdQ*3FY=enw11Cjb3^9X zrx4u1?_3E^ID^m={5yIxJ%uHWJ#7S1k@g#IN2Wk5%e4J=G@XRvr|f9Z3gB;(0VTHg z-k{iamWUp_Fm%?`%LR4Noj1SJYBZEHwM?Uh9T6Uxo|UxqLH|`}cDUd_$b zS*dUNxtXLx(>j*?Sr%;?N8=u^-9N7 z&*sinYiDMYDz~nKzSG72r2ZxUfc=I+nJs*-{>o2yr`{jIfnRCD|5An$B;SN(_Sci; zvw0#Koh4HTcay#L&9=17izAm=PDd72jAxfI%B(nu57= zMCYR4+3Yo$QQ)C-hW|BlnioaRf~hKr*T(4sj}-@|SSSXqh9t_UyZ2doFbFC3u!*mj z{6zaPjN&Ce!dqu@$>qJ5!MI}SKwRbd^XFqVuB@OR{sZyfyK;FD_2W-k4f7_A>C|ls zkl3j|zz-izkKB=vopfE5e=K1_Da!9EA{uVCG`t`~e~=ZEHW8Hn?fR6Nz$ zTdU}=*rg6!o8;L(&RQeiUV%aJqNd{+8Vc?oUIbs2X(^k15f@2lN0=~6w@w-<0&c!@ z-pNc(KI_fj&N@t;fyihQ;qT<%uEB#(TUv^L^lfPzkUDgpPQLQFrmtW3dV15?!~?(a z9zH_ce8DN#zeVq^uT>;>MzJi|@x&fDz1H_mU1$0GO)b+~WlC)d(#J37j2L`YOKSDF zM9t*muC#uZsc5#4=z$vv^}w_LS|~93j7H{vUy)}Uo{-c2($oD%c5>8jVkMxBS9AqY zwyQfkh`mmFM27G7J*p^7+KN0dYII7T_5DNA9-BizN+ax^XsRBvC5AGGReW z&RL?Gd!}7SwL^-7~~lC|n>3}&HX z#98m|u08=d0J@zFnuLEi8{Cu@hekvM4&F>Ur?0!*Jh%?98mSrX6q|b)5wU@qA(jev zE}Ya3tkmY3+WQ=X!3!lWpLk(rY@E~qB?an9rYUKjv(0JNX9dM*ybrAOoS|)LT#p5y zZ9MKRJXm}KdR7Bp_<6nzI>UR9opEEL_8J;|0qnE{jlqO7Q{5&ecoQx{7j4bErX}pP zjxIyID3HgW`QnB_``6eK6U5=@N4SK5HzDPj{^lssnB61g!Bv z&Nm<-ZZE(W$S8<^fZL#oY->!p(A=Dw<*l>{6wS5v-7ELeuTaRGd9UV7bKT_VpAL?} zcD}Fa`M!T?Z21)1;vqt0! z%YEgWZ z=g((!{)f+43d^zImViGGa`Gn&nt^4jipPHH(x;-JMrkf*GzL~K$_D;spaX-vB-0Q+ zfUn8uBmBo}t_FJd=rqUNVO3-jT7XE>}bl#4a@ zA!+MZwdQ=)ybK2)i;C%j)J>>@GG>04hLr85w}O5+;X_V7z$q*oq7eDQ{Ni11HEt~~ zo$lT%{SxBG=N!oPZ)5q+ky53Ik*5-MsRBufX5N?-dh<+!FG8RWx#N&mm*3C$zvL&P zq*TYoWHmNfwpfN=Bj`bTNykbSw+Eq6=AunPZx~@6M3%(lw0Qjxk^^Lq`~r}l%FF@5 z6_WKnyq{alV?|TVIU(`{e!RaWVd#WXkUfZHnZA?Px zh|Se5tZg`-GGKfIh;k6nA^?8;4vs)v*8F)2;Mcx~|Em=NF+ksQ+8y$}Ho@%mRYYWi zX*W+iSPBmxwwuLBbnNary?bUW&j8CREhPj~Hp5mBVF_^xz-xD<8q|g0b~YJTyvzKc zU+gy~16pY4aM$2yup#MN-K}QwuTVlkJBu7yfG4~jmriEac;lg-qs4WCr5H*}&?{h> z_=J;su|7u3(m`Gt*#%hs9NaX$j&P1zg921`r5#x|z7@GSk`fSC%+<#S=;r%fVgf1P zoGHA=>o6pRdA_kD-qP3>imFoSbrg+TdeLWQ588MEmJ1Bugh)r}e{7xk^XVk~1qI!mv-{5EXc;QZx88D3P*b4<$JxRJ z?fF8K`)V$a!9%&LocNYRkr_fWD%FyDzm;6K4;(uvPKp-#o$cdbVe>7WVQ7tGi z#XL5ffx)u!k?e$?<*2tslV+Z{R^5~>`z+zu~HSGx5TTsy0%|W)vai$!eS6 zZk&RdhZBMYd*|OGIP4(LkiC0}MN&YOoCFzYphHRdm2BJ^)|X>0peQ&`P9OI+py1b9 zMh58Bb5aTc8d#7OmDezwgcS#aeE{p*PIo>LUZ&WHfQ(?a8xaRxAvbS$$@9lPi_iC2 zeRn_agnBwQT$f$=Ao`wWh*c-9x!mF)WCUGtz-R;9t(8>AjD!DWe0=n7%&-1zFZANZ z#ti$(OWjnWLajU2U=FBkf%j~rE>6A^-~i%hOR;G{T0HAx%Oscxw;D)mai__Prol4S z{T)iVhu$fo8P{H8JZEH-0daw_;C={88aZLX)96Kl)#7M`)}Q78eL8Cos#>Dr0guOY z@6BbbRBv0=%s@qVD4;0X(A%P!Y3kkie^^nlwROCxu`ja^g z%>Mt?^B)gB1&Kdb+Kr<=GIeK#Rpz;J7$iqeDS=VXudt<2;m$D0Lg}~jYlD*T761C5oPBPDECY#hID<4v5 zBadqvy~+tn{sF(S5~|H5u{*@ci1U4NrwQxP_$%is>2~*0<%smus=bmO z-`8Iy2@)Vt$|{gKtyzuoJtVVdWw-;F3g)rqA;qmFRUM6tz`G%9auV)KY&z6qDrB|< zGeL?5G`PYelWhRI4I<{|-c$JAIk8|Bc?I12-}>fh)`hS+kyXKVu25B&b>CN_a|%@+(!;wWFSfd zZvqwyMfb$njtI^JNT+|03Hwza>bGtu@cq5m)pBa$k3ax)hd=4`72SA7v09c68&TAg z@rxCdiOGpq(JW=F$$8zs2?8&ZHbtl#@RBMGx}c`TXVt+En}*7+x}#4{J@kPWz< zulD_|yw&Kk>fzi{9s~fm_5SDR#T%fpTqFHbL&gdOdOoI6ce4;_Sq4JMi*Y!2jcp9_ zZ6h!9wLg7Da5F<`)DG1szz^DK4g!kOq{=9S_gJ^E2m4FPBP;aVp@0LN9tZ|3Xv92l z#VE0iyDfiHm9ld&SBE4sK@-HC3NZP@e)6&!BMxHlZh~&BB$|{guA=)tv=spKb7(n#SgS^KmEGW1I;aDc`iBw*8(kJg7nnSzQ@#DL2 z2~7Y_kjpodO6W?)ML^1S{Kl(D76$b}T$y1&QLOm5pb6QnPnM?S0AU2oYM>{ryg|I- z@4UxQVJ9y1v{WBcoMx2ALVx53g&iC00IG#!K?4u;AIS&xi&F2AZSg{L_sQAKc-_I> zrvqXQJG0{K8=Iet8$a)eJP^V>d3*> zkl1$H%6VDHb^YpK*Lu!XFr7Q1zYDoV2MPCu^cnL8C$G7lr!=lhmhlY+YP!P@`yfeZ z62qMb;j7(W)<1tSQqk15Xaw4|shI}fJ*1h$H2h9#=-)dyBDTeLUI4ugy$s^p54B!F z%12%}ZrZ3;ef>~m{lqh*`wdPUtCdr&7%!uV4LMnSiJkfh2)uH_}8sF&S?*ud`~WgZ}!I>4eE15FjsbA z7bGmdCkayDA|7H=7emb)Q>he?6=PLGi8$prdLH=-3N{oiCG^M5e7@92M%bL$1%A1s z@uxS#-5%QRwsD{T2^wzB$uR%?7ADm5FBc%5Ieg0HiO1#&ap=z66V@4XYg4j8-luNg z_Esi4ffj=c&MC(|7)s&jK<}_(@A~*>kHbS32alAsT#VcKPZa1R9+}P-+xiq+=!)-m zF>X#)Ii?r>3y%|yQ;__o|9}rkJ%Jn|@H=%X>>c9;GIH^XV7jn$Vqqw;49Ycdu(GO~ zaNFDC(7f6eVQAO?frAkyY<%a9d{`CS?D&kCVbsCm(P3^8m6

PPp-M;#ipE3OVaRKV;fboR!RvTm>1>{Fs z$F3Frp+TjtO6LuC^^hp5R|G@1K6%qgc_Zux`k@D&k~bC%(Z$cYiYk)yFq?(&cJD0+ ze{Y46X*2(#3JvveHZ^^%m<`o?^1c?~ygp=oyfZrrgySpg2i(MPlzLAqF<9o>x`w$i*}lwL90LAcJ5gmd@ZUz29hyoh-$!oY!UY#2XW*FYx_^K4LqFT;dbB# z@^#X*@Psn^PN_jK2|S8FQ*WitvA)NwYWAs~z%h#6`=Sq8B_+3l3r2W~wQVXmP|a-I zPtdBgzi1}uCpp@Q{d~d|*V^26Xsct0H^^Z&!l7wKiQ3jGM2&{V026My)(ebLQ&3i6 zVA#n|)_8P>?YX?HIpf}yd{$piez~=7(QnOy%0&6=PXojj8ml&{2feC(DUMf%Ps}6a zHZ8exf?t}wVe{ffkR#5vQ%m;SFX(LSOUt%6$!|kW`{Bdp0yE&5Ki?SioM{UWCsd5k z-4AE8r+sQDahwONTpV6@(s?I2`fZf#GJ;9+JF7Z@>6@Et7N!Bw;b$U>If$op)GH$E&@%sE9m_q%6ILr+d<%&&Ai z$A1c3(AG0NA6!~I#O`Qd;LTewyfnCTDs=cf#NO;Rm6T;y$5(rCw2pzadqdNYxtu!eUd{;5_EZ(P;~TA zIXwu{G|!pj7w((A?kREd@rz50ZfZY$BLewyx0w%5TqmygZ>0-_^QXB)%% zTsu-BVrzA6xp|IvM%5WF-iBJeJzY55xzplrg`JIA-9Tdg*}iF zlxKTQSw?j-88u5?`NpIePYC-}5HYLDTxT1FVVo&9Zu5WvR`p_WjI)VH%9}U3WMr1z zmgLU1qz;pwV2(R5E;@QU^=gNRa9oR}>XNmPP$MHw=|7{}}zuB^#A zD*Lx{*d~9uWJ8*J{z-8AP~_eoW(V=yo@%R$ zU97I4f*|s(D5x`yJ9pJ0IEcq5@~kXTc&8#dPjVHLhsbUWQ*@tyTpwB8SZytJoW2up z!{7A-_n{#_4gPG|C>e55A+K@V|DtwTH!xlE^%d*w?UfC^xOMXImH4J?r!}p^3L>sAizS>`jrd1(Scbn8ZE;_bdM;US489~8woHe2^#l~*#7!dRaGj+Z$AQv z2+qw7P*2hm61Fs-?qUJY>)tPz{tr7`%_e{Al)#QGsQM4Sulyo-t`phieoip!n=nYc z2+`yUE*qujnoQlE^OQXDo*)j_N?@JTY#hUmyOqM~aXSvSRm?M;^zow>n?~V~69fM2 zWrXA2Nx+U{MKvF+Xsfw#@^oI+usPz**SBPr!;4$|JA1q7o>jHq+z&=pb)#cqAb0RZ zrb=B2d@nFZuG|r2y=iH7G_h3ucTyFY%C<}XqZ*eb|EKt6PE18ZWA5#ptPlua_YbiK z#2#)0b_Hwr78OI?S7@oawMj0u_VmH0S_gjYmG`_!wROiH{JeS3J#W3DrXDtVEgcm^ zQAY_OE=%1=L~k2Aw$X|74(9jJ1rm}(0NgJQ`R+Fc?}2t9;F$;@WWG7ul(~1nys$?V zO}z3lRMNlOt{cG1&u$5*tI3+n?4`Wq1LtM-JMQ1C!*jmAik2Ke^66hF;?GYt;X`4@ zu`y)Sx$25GxIAZ-YU|xeUpkFo99nnxu=F`=l_2;WrRxx`Uw|GoTAwgDoL~pkoVcoT z^2uM&m~kri!^R~PbVsA)MyAnDrrN8TF8n)KSoRq4Ei3wlF7*q0pKCL^@Rn0QLBYpm@?YBaLQptc&v1-R4NSFacImMV6y0opt7)|k^WxZmc>E6n&~x7oP;C>9cPb+mYVN1qU1Ll-a1dZu`I1ij<5 zA0=nBzicF=SvZ@c)mSTV)(@l^^o`TK6d`-rCcKGQont~2vKnk8UfVSYu+iVNQ$;8} z#BG~fO(!4@|L*W26&&ItQGVng?i4M08=B>c?EWZoqePaVBfx>Ox&4utRCUX-B1~^H z9mWrqquE2~O1Y<0v(-**jMc2y8!Mwg>!VVHWqw!u+sk#<47;aAW&YJi=j-S=0SEQP zV#ziZPZ_AC*%R*SvA927VGP>Fvza)Q~w*ib`N zqQa+6lYI{eNf0WsKt4sP5>syLUHMNRd`(3o5yXL?6b#vb0NK8ryU}k^p_TJ{NhY<7 z@;*rGl{V(S75YFrdu8X#@EpY=rj@!o4dN{%iQwFs29fZZ;It8b(sbhwX5e$nI?s~% zAigKlkFB(4L&X8-s(7?#G(N^MgPd?&q26+CsVD!yQY;YQbg=$T!PHLbe!*sHn^_X; zmx>i0?fzI;A*b_uW`2k$Z3woWAPc4ie0i8Z-)m`ZYjbt2VK}!(uq>{(xVXeG!-Hi~ z@1N+d5JCYx(Mumjg;4@j@CjfFALA{;?YxN*`H-(RQM(O4$OuZJU(>ve=X-c0y@x#w)Q+WnU%M3WM-ADgg(T3Q~{1ztM)H~!0H4%4@^ zty1~ho3JAW(|(|%!@|OXZ6$g?Ms?9GUpuhr8LEZN(K+cn?{MMk@0wFo4h;d*lS0zj z@~08@LZdt(ZC@JTHm}>K=5E66CwHjPT`PVhISGUP{a9eb-p?!9NsFJT`?h#R`aku7xlAy%U z8`d69`N95yUFXVX7h5O+-3#Ehpr_Sfh-ke;g;Iz%j|WzmuOM?PH#)b^ffIJ*6|mWYB#`o0)r_h zQ}1v2g3a^i5~Tj$E@yD4+Y$uN5>#YtG3ohUmbg%2Kl;%^;+C^6BYteu&&73uxGU`Q zyc`>&5^Sx!4``@enXx-`Z@s?t@Rey=$1gW&ib{W(;3MThzgefGlZ(==qQQ?Y^Q{<= zgaiYdVpV~Jxvrm~L*t6F=IIzzY-|i=*S)f)CW-WeFz{_ySMB~~MJBw`-v37%lAP<1 zQsa^_rmycwQKf+6zX$6)ZM!+lC*dGf&%;BZNUVS3PrM(%_{~{$7J`KtqNiD4M-CR5 z(}Oe)(g=_(!SF0pjiivNqJ9r?xZLSDN6CX9vz-#2v%|>pt{!7{}f(cH{F;`e0b*bi&osPb9!_AX16&$Dr;TvJVdtmR};gpO`|y>G>c8Q z+a38yhK9g1tgjG?8^=XTnVLE;&D|?4`DD7#Xpe%Qszrt6E3xyYISmJyLAv>;y1G;( z{R>FliX2WFbUKu0RjxScv9qt~V~7PH@&a(0w5$Br)iMVu9#f11=)i|44m z#xC>|rJ5~1Hr?v#f@8q?K@qz~B}~5*yIHaL8GCWdG6M&llnXiX`Bs0G3%H&)bkJQ_l9%F)6~|~fv~Xu#j!J(7%$4u_%HZ&U1+HOI~>D> z9FMg{?{Uk$pH3UvjA++jEe`b1Yy0kG*QbWfXl^FjzijdNK^}4I*R5gQtm1h4NqP!g z*ELmPn#RV7<=QWpJzh}*&!dU0k& z%izHMz&lASkH3HXH5yHbPT@{psMF4_B_ipP&;m?<>#w3?4v#o0sI08=zbZ%2PA8{| zviQ0lZrYsou1*Oc$a!{8w>$^O6VP?0D|c!kU~-r({iBBoY%TZA@FPl43gr&6Qf6ji zG;b@+e*_}O&R@K6+jM-n`pY*@e{buYI2UAK8yyQxq;{eSCw66PcQ?~!*8$fYw8 z-Mak-RmDoI;;cQwgfC$jJIorhJt;cML?|I~#!*1VtXP|gs3tEc>4m^s`@*NDIc)KY zkZK2hHI^@+a)aqT=7&dw+0htYEo6;!ol{p}t?^BgG0 zGGeSLPW#Q){c8Fmb{hM0LbugEMSiK1<`)lKz8Wn6eu@tpkGqJ`(d(VJadFHBy&Tdt zRa3|feUj}Y;iHY`q@2CyyLjPU?&B3^NjDcKHxFjdT4GLn9i?#c9tS-(PChlE<|O9O zo*z#P?3mgoQk6KwK7O)WwR#~b<#mCV5aA6mlsciS0v@6{Vlq|?;b)Tf)EjqP_b-Ke z+fkz}h@EL#?_pJq2T)Dc#qNJ6aj57(mg4Dk$6xb3gA_hFe<2^@t}LHeBdNfNfO2s= zbq+|FM_>fF?AyEKGElITP6x}L^V=Fq!4$q=b^^yyFugcirS)GRuMu4Tm;6xn1}NPE zet?L_CdE&K;MZ7uNh-*7ZfMoXI4Dpea+ifD{1YRbp z?;?KDi3cyvnmb+X)5CUT8C_XAkuf1|aOj@FmZ~sZw0EU#gqmgfxWKTj(r&^JXY^GW z0+0&Nj%|7Neyzn`&X6}k*%Mwk50}N0rjCl%TV_G)0HiVU)joCBYqOjwM{4;AYjml& z`^#Fr{PL!V#htXJ3n{-0xZirXR^t6KX5faDan_3PTEWRQ3owDz;2d23Y`W2~% zr|J6~@$AU!>acDI=v|9nFDW-!4!cvE@P)htU8&`WG)bwJwFBa@g#JfXYlWDUX~=D0pUUe4V~188NCL~l~J2Q0{36{6`R%Xb!Il4if8OB zUP#K1-E%f3$TnXb+ns9(2L5R8|E%|ho&VN*SpvAPKUZZEpt!jlZ|d#`k=`mfGhidB zU3mwxHNPYBcU(DIh4bEY5ciUw-4jSr^sd_50*m!wT|jQGfn)oE%@P&4tk3Qy)Es-Y zodA?I^+~pV#|hfqtR-(_iXs1)G7G|k=9Z6^lyMR*?9Wotxl5g*WWO8BCVr?a6Rgza>sA_}0Sic7xE7=)4;CWLbf)yJ=l$%R#|_esljy zK^-@MOEnD=I~|*B`wzI65~$%j8y#O|(A~+Kv^q;_PKzV7*-Vc;20fg3;tK#y6+7pR z&OzSfM?ZVO%Y`#|%cP36fCr(4*06QV6pmI0WSUy%d6AT*wzf8*ia&gOg$H(qylyW`}L%Hb}JJoS)qI zUT^Z;yd8~h2&c!JXU@^7xjlP5t~&m6@(BZ3)BILyUN=~X;HeFfC4}uzF~q45p`#3s zdn@ilz2`|R_R25|rGgVY3Bx}Mn6s5V_eFwJzI2bL8J!GX)rLBEpE&OyU!7)z8Wk*P z8%VD)g_!&R_-CxD7_tP<0TDT>I82lU_)-jl69}%2Zsa9a)Ib7rH%9K(7y@e4}xb} z{H_0CVnEg+!MHe4sc?ap**n)%>yq&J0w4D>FY`S%p~?6~m;%n{xGe@fHprZi>Xzwz zSaEo`U)XiD3gpsf(Y01bD=V_AXe4!Qe&;f=sb9PC6az9%AAychYHFw!-H7R=hm@((LX5CGo{<4*xYEg8sck^Aow!*d7JMp>nT*68}xH z*TBn{_t+hx1~rJi&QRaPTJh!(G6Xlg_7#1Q(lX`Pa76YbhRy=C4XcZlDxT-67pN6! zh08Jky1S_^+2cEaP}OZ&PI4OqNQE^tGzitJ{ul0Cu8Pwf{sZMJqw+HYQjo3=ZlY1v zR7{i7xOm@%>!rG944iAl+Jx^B!wdQOB?k0519}eN{-8l}buX6K>eDcL(F_Kt<>eO9 zOg!{!V}k*UVlg$3pN` zEZM%u^{!ap(}K^(=4Y$RKz-$Mh0=hJ$`<5jsnRygK%ZsNS2EzvuH(&g=A5@768X#s zIMBYvf%tWXSf0A~yF1#X-kZ#mn!Xhz*7VIM@M8&9P;zcNhcuV+;1V(qJM^bV?Cx?) zS4J5XtNA#_Eho-?5PuN0Goou~xY8+g{b2TTMd*IKB5;X*AS~RKA>j*zvzp7OI)g$? zz$`W;71aVbGj7NJU2ULVL_sRS|GDhUD(zi&8cz0=nhurxjtY&IuP=7;>*|32mBM!! z+(S8$Z&Ka%zC?#^p|?Vn{bmuZQ{F1|SFRa>+o|>YzfLHq{S#ek#@43+H2amCUX7Fu z8Rpt_l68>;h$XEuJKKJHz@o7nnjCL;lspnB@SQItsMO5#gM@B{+>=%|GG0?4o?O_yN zKl&7r*zWKBfth$753dJoamdjuTK%Vu^_CRnSjf5ckGz3kikQdtywZtO-*nvxAE!DU^So5G+cufe~2;A}{nHpuC2Zna=QDp=>;^ zDA@yw6+cHuLro~Y=LlXUvtczes;AA{97aBI0=r z^hk?`>lhiz?pb?fflh##A=UY?{&3_JSj}ZK(42AmLhsA@3sJMU{(?e@e#gLhC0x%F z2xcBZC6@dFmpwYl;~&*O$)YNY)yB(!bRER7e7Q&hEK`{69!HEg%A+E+yd?YAk2$%x zs>+yP_8ggxm}LT~Ov-4tm-m$&J+pEiz#_Fd7vnjifW#AQh7K~5OmWeS2(?Q^3vTn< zYYaUdyKam6Aqda$2?*IN>~wa;_&m%Gm%6!J-}|e91D1;&r$-^qU;QycSQPLMcLJsy zz&}O0M&HuTE)oVK9LSVXWkQ98$>oVj7p=hhYs?SaZ?}t%Z=!-9JL#hGAGqXL_@Szn zVdkH6hU=IZeyRUH94`VQfU+R0H+iL9L>M=6Sa%Eg_(x)a=tuk9GrZ=we$Mz8i&agh z7Tla%`wM!VUW6yf$VQ!aA%p>ql3k;mbE&+Ko9Dgt&7AESnEv1x>@0@TYeXE>KlF%h_lsUw zBYf{kyKs4SKqD29281N9^45Q!V#sv`i^=#eKa*WTlgoLAPb1v?5)JFquuWu448N#o z&*`Z!WZHmi+F-6$a=czi5TVZIL$a@X`>aaDcg6lgDSC3>9f{<76N6F7KYlMwLDWU| zVC@aVhQG(7OR4{t(nBVVN8(j8Kx1?g_-?(T;Fo#OZR z|2%_dK0XiIJ@?!b?|JVz?&fxQ{aXh;ou%sVY*PYHIC=3tUqoOL7Q2v{%GN&P!;yXD zb=T-}(>4 ze-nB@e{0Tq%ipE;!7-j9|F{5b&U>qgTG^a@e2w$-44~iA^N_4Sc1(-b`0RavFK2=@^DanY9I+(n7>?A zLQ9jXn7Ix#rz-R5drFy_Djpf*n0ie3);BOF>P4dQmHsW9^%ESAKptQ%T+3CtYVdU6$MLl@qR&w-_U^C@LZ+QD`T< z?&7|)CIlc{e(QJPiC1Rxnzs|OgswflhqsaI>b?JSC|e=A;&}>9K=;?l?S*b^8?mPv z>HqAskIVLdLFl7LPk$Affgqz1TwvO8jRienKno8tDyl?9rq0gQj?UHbgA1M_(WY4v zJle@hne2S0_k*U^biGBkxAD8W1z^g`)ab-nrrQIP@0GBlhC?~C?z}CA+`=}}omT3c z@HQnDIJ)Y?e{)7HAO)$gOYsoGDeag38BD{yQhEDgUiw_!)t7$Eb6YrzL zh-ven$1}}rSy_^x7QTc|ggy{c17WGSVM(-SBC;&y10n@(t9jb0?e15(alppW5rm0b zd926rNH$C=Q%XqrK~K!(s!w8Xo%mB*+qNc4>kpPS_wHIonT(oSlzafqFmmBu2F2ESaq{u?ig^nl$WFy_KHYe{Oe=zv>EaxTXYzvuqGDkLM;HxN(gitphB5xJFjt(v5Q zdOccN(H(*fXaRtN+?#P&3xBgSJ5+H^1+){(^*rgp8bA*TyEewpJYFd#h2*=Vyh->qeSL z`$hvzWAo^Na7zQjI&c#)uuaPeBD$@Qd)+%ebCd;Zxdy6X-PL>Ly+i$+4kAF((@B@{ z@`5tweh#exQgX$~7Ael9Zi^O|{`m~DFWeOMLvkaomDR%2Nz9}am!?iY#tosc(B*!F z%_DKEe8rX4js}{u!ZvdQX*2ylcB+Fd@yRvuDx|FBl%G$XT(U55oWVpNBn zqB{ugKSjcg>Shg6<|xJ@zrOrv!{55S&1H6V4<%%W!Ytp({#;gH?!2pQOKID#XW;lX zwbt=5>1=9G8qV+3%SmQ;{c1tKiIQ9@QtWcD&sW>{bnLapKTlp3fG-x7m#0Ua*XSZ! zA;1zhG+eW`wx*rr@hxtBZV?P0povWX+S;G0C^*Xo<8asgWFJ^5Rub=`B}JO?%9dHUpmo% zo9WPO<>89K$mCbkc*-BYEJbxM_VgI4UkF1&#;Eb!qQ#Y|cpK2$Ki(9~UfZ&IjB9ZM<$R|mjHB@UaW5^OS zOIvO}Z+&V|_E(tgmqz?vlIK?DA z7jEEu$eX*k{;ShD$IMncIPynS`z6wvNQGD6C~Ejs9!!(&$5TIRZWzY*JV4@YHH!@m zz1*?673k@BO3x;rs^~E5SJ|-$7cY#a5*0m87v6VuJF+;_#JSj9y)Hyz{q#OVkbf;8 zItQl{m$}^jA=C&K036Ir``K|j7?5t`j%#m>?r)Et4fwj};~h`Ll*m2AQGHWZQXsC) zP9&8Fzxy)KeGvLsSqq%^i3GZ|B%-YU&o(81x;C#jA@%I~M2#X7G3XVIJ%LtMsF#-? z-S&e$?J;)a)Tm2T*=#_PHX=zK*S0w(eQCp6*nvW!QUjIN{xn83wR&Pbf9TfH#SbK; zPs#D@_~E0-#^cR9sbZ9v*B3mbZjB#|M%3fm8#+vT;8HcWs= z?%uuY@9)q4?Agtpg;o6S5%M})SE~d5W(LDhy0h*E4ncv{ttL=mzHA!=bv&{tG_3Ign!v zeaP(iID2g6p5E`m64s{HW}XjzW#24s_Gf~idMPj2!b8aQ5&&V=ue$HZFcnZ742Z+J z6NI{dMp{rQ1N?wx_UPH!r1nWAPFR-rE0bSI187Huq1J@1sL1fiUmHcaMyym#;4QRk-sR0b2#TyyQ@`S~_b>pu*g*$JX|nAlej zJ$bA`5Om?2V@mWVy8YOS%^h{6SW{O-kwh+NcxdAF-T=O!gr?0i0_GS9rQ=OAk6C&x zv9GB%r!{EcP9$SBKr#lM06h(E1paZ%WL1$|meQH7egzj-6Ynh8dE1nJn7c}Z*ZMX*N;*>sX*G!tviuy;hb5&~ z8@6wD_l|r56r^EoQRqaJ#haI|6etTSZ z869(QpM?laapv+R!!0Bo@8s>1t)0qbR4L3jNTky-b5>6(j|a%KDSQp)zfrE2%^upE zHQH~lLl3fystqu-p7>&|FeJq38j~n;za}?V3h`D*q)-M> z9B+t!Px|?l#vAl&8P&p`97s5AP~)3TEFAlH@iMS@!+&a`uK=1uo}RiL9vxw)k`%w4 zs5UN!v4+xw;D43!T0gq@DG{6;eoUF)QVC2h03yWw$w<}4b|+|o>U*iP$Cr5W9--+Zua9cpgS% zVXcq9*py{*i#MYSG#Wr%$%F6}J?s|-^K<>#iJ_BTRiWXnO$EU zv-e4vTA#XW0dFT}h~bwUiW>@xjhzD}G=(qc(>$?$1O)2;L^NQ7U-K z3nZkZ$~8#v+erH38|jbN-d{^Z)mx3yMOvr!3Id=pEHWCH@h&QINcck#_I#x2R9Zu0 zU0%MA<-qv0G3E78@Q(~Og0|q+`Cj`#g$%`OFb0YXw(TE6I)e!ucD$Jn;y z5Et~KWQ%@w-QzaiZSwgm6tNfhwg0XE_5j8IOA{isBqgs>QBh%AYffA7VND0{L3Va% zhvCQfi^%5#;H=L2)~q1c#7yS03%6DubFD==gxg3G3WdLbgzJ9K6-&2=iWM@=+y&YH z%O^E7N?uim@5a)wReJr%%}dejO?CF>hk`i7A0)!?Gp?glZ(n}4Gpk-w8Sh8GR_sk9 zU^kWqK}I%&0xnnU&~?u`KaHR%y}A7#m3yU?pu@(=S?3vJ8&H+h`0DE;8ud`O%9X3wuAprR$%yg|DSBsu~(<&JLB&OIR(R0^C?(4 zxw*x;jBf|1Z5upNOuLUwz}1r#vwna8rfc$EvTTK{Iz%SPJ`85yBc|?*l?!;ZnN;v&rmpevp~MpXZU0vpi8ezn*s1z--rcX%rB!)+iA4hjkqtG;zzUBBep z>>*ZJqNH=DzqYf0m*wnslC{YzGKh0yBgUg6gInKJ9zgt=JWu_VOmKA6fxm{tcg!Uh}{msTTtG*jW6Z( zj+#r2pSiml@=YmQ@5%+8aqb%1QdBD7=%}lvk}DB$sSl$%9k7OEz2dCT1jedS#ZFM- z<@A&NHwRY(sqh&e?p0hh%@`kzB#qRII$T4HHE~OnyRXue91LIQ=Vlf%NW@7r<-hS0 z0GCa7*XkDDTpe!{SepiIV@tmWDE_x}9^wC|2!(g?Jb#xvKP|OitJ@L;m|i=8T;k*7 zohrIq1>L(ia_1{Si^}zH z#y9h;mGeQBQNl|6oBtm*0HnJ0syLc5PA8I~540rjE>v7l;{42E?8)xp;i2|}KtJb4 zDRQT&PbmXj?}*d*$8Xkk4w>Vks_o;i$k_8jXN>XIvR*F~& z_O$X;mW`$D?u7Ekd}BHM>0WB#AN6xfXj%WgOZi6-Z50*h^|=n-T&eve4uX6+m&v=! zVB$@={eNxW#nk>sig}cmsfw-z1G+&qQ1E!YrlqBY{cmbm`}(U*)5B=1^%D=5I9ZVF zG-G;<5p8lYGsn}arUGKh_QD{DFDU_3F8OqO>}(RTteTm3kaufE*!T;ip8+N*MW5M( z4tdWOB!zLRt^pLv&yo(7q$4u22i&^ceasJRSw=Yxlx2>;S)QW(8RaFW)qYRZac5jz zEtk}VJfi$i0O}jkNT$;35{GbAi!7vJvy)h zlK^KI8=ylVB0Q0F|KbcOY@8uc<-b(Y0{hItDdhDh%;*Fbq0|tk-Z$T=2>aKjMZ;R3 zhli+;3tt;O`-zP)s8j1Kz29v-{CszSY_oRq==kwB19C-BoFxP#5pDNnPC&J>FmlZk zB5Fb|YSFxWync!O0hL@nsCNdi-1f~=Y?wluh`qjzMu)0vqI_IDh6t%1+_Ou8$45Y4 zV=g2u{m@_uqNJn=fx%^!ffO>I)w9Fkxx57>H$1wB0ze^Wh)2MF`2lv;!V3!vHo0d9 zw4HDA5vBjjRf>H62ib~^N`iSvV3ZOTm;*pN2Lw_LPQ}*N)*piStxGRHVqpSMwbMxB z{)`!bg75+~&V&hGK0hd4JyZL+sl5+Rf#>Fboj8aOA z$|L3OZ2z+ZqniXPZ*&s@XF)1JCmu(seX7e>zj+a`-$`yb;`ke+WSOaFGE0g*6O*$i zbzib~^K(DQKJ&Rlycj2;gKtOarEB@qR+ZUs!C1PJSnhd&g#4ZgE6-_PF3W2H+^WK2 z&~4>ywJy$0D*j)hghHSw&oV4bxdKLsBkuJFOt(Z8(1| zJbHOka9{?cH!cCYHhUl_r@dqH7xFMQiJ1eI$`>+`)BWd?6G-;5qFqm-V#w&1-zg;rdQ0$3>e!_iFhEfhRMiqu(MZHRp9_qC73n0 zUoR{RhTQ8s*LD9B@MC`sef^{Er(pb}Aa9!h$J+7Meb;ZD#o4%oID%JVzB7DEU@%G{ zf5nLsnj-%^mqWj?Jh=2LFet!erN^8vQpz}cP_4coLXv9cdw37HD-)QISu zPkQ-^)Z!w+ovTof2k*>r0#^5ig-b46eDLzsom$fRy)EyKlZr~WBgZ&gpVRWSBQ6~9 zxPa}D0vD3I3(bZUnL>KT#XmSTUss=kW7i4@-IqGV5oTSSdtM%ZqPu!>SgM|xS-*OObb z&foZOkp1%k{#?e50(o{rmv0A4bLJ+ib|hJZBtxrZbJ4MkQCosPt8J|dZIkCTOkLUM z<}4;EyzCn|?FHuHH#gylHK-eIF$?pW%nf_JF+`fld>k{<)?(5b{0gIe%5UA7 z`pS`o(u?D$B*wL+g{;+GCen+;c`SxpF9L!u>Sffx)#9kfyfnLuPj1B|tiU<86)HS0N$Xtw>J^%IEWgt zy9A!}d!CTL@2Z4QFKP3U%_L?6dEzm1Mmjpr0rPHgZ7p;o%HeEQ+ab)Ov`Uz ze@Do|Swb80?b9+dKUk6DR0&qBEeW5s?%5pw@)f@!gEM?7BsMdw)f0h(Gk$92s!iAb z>XF^iMPVJrw}Q&*0{n|K54HrFwO~_lU!YjK)ZV;*Xf3+yAV$kG=7~a9*G8Bzrx_$; zbL=&}T#TZjA-#L#g}+NnC;Rc?e3A84g=S{Ib6!yLn9AR}OhG{b=ZQpUYsZ>1hBoq1 zv^z&I4Ks)GSuciBL=FZw+N5#+(DJ=Z|Lanfu@W=M&e>_ByW&{lX-fPslg9FDIa`@( zndn@fr@hN8A=%QZcRQ8Q@Nu@~TmVbONu+f1(Y;ZF6)GMQR-WCH7_&AYR%H~drsFu; zX-v^xr=_ys?GHbp*6)4<Hd@Rw;Q#WN;{{>yW z<5>N0YxC-8e+5o+tWkuqg^4deE)I^$L|XcjnV(4yg`oC_Kbx;qMmd6Lfqbg=X1w2B6b_@}{1F{K7vUH)FcV@%>6P1168Sm2l6tl^H{y(} zn>~?FPiAXY&#>s}9EMb#=c(Z>FDp&Sz^T?iM`6DcVZ55nC!E)+!>`~~M^+NmJcufP zz@Fky@T8Kqib1P~e6XCicj`Yhhb+ zg$4(w%DWfiRz5hSW{Y$XGZzhMVN%~PxywJ$pB|_{zA~2kWYMQe&>~tOez+%CM6~J3 zD9aLH%=kpPB+R zvR5+9YiRmyDxRhf+NcQ>**E895SC|h&b2KS=vgpbyGWiy#~F^+Rn23T1}MFfE%%wk z`DUe)|1)RL#h9BTlvz1>c~bx+r&(eHMfD7twxXN;XEbN5vhcbqvOa6|?sTT}yLQRz zDM*Cx$~GZAkgw@TT*glw-pp`ty06euh_KQ;IqsHQ2#R&kKoK!_!SjFTdBVCi zws%>UNQgePun=LUrk+)ml&TWC+!M@p;V`{*InOMz|2_^*vBl|t`=0Y5q5H0~)5>ql zD~(}gCBe(X`ECx&+-532lvoG?UP)f2g}xx0?+vn$MoA^nYD@ikZJd^>fOr%)5>2`N z`;q{1C@RqBC|;gfs>}3+k&q{(>ieg___cCdMU-M?l6Vp_ts+ZSpwLz_3SXrh&(p|t z&s#Vqx>9(zZ|HER^5n^;t9DJlM6Zf=wqn|1R$;F&Z-R2*{UBO$I}L+JbTwQE1%-G} za8+w)UgTwmYLr`o%ntG7Iyqc5cV;{rJPUqRl}-9HtluF~+n zFZ9jAb&U@SS4n+rY-*}#eU~)sA~i8-`9&O$6j0na0Uf>5c+BRzVvlE@PWRI4qXiws zmEE^TEEbdl1><+oN&{$OTg42kHBH{^Twkas>XRGh3+S>L(^Jt(C`O5&4sWzov@-nk zqS>0(wwL>r#6@(*oNQTKH?@c>f+5FDCO z8l0+fd2Qw74Gr0lXXFDsq<{9~$iki^T z@{b~yhVzAc^!ojC5jxj@n5hGo+5tLAPCLecKqI8ppce#v2?^6M46G9vMg*%iYbb^X zl3+q33TchUE<34Qfh7}bA-|JUoZZsl2)Y|I10jd%&Ug~}S%zH&QdMD$;Xf9`$R{y9 z=2mKsVQzZs${1X6R%a3s#X8?`Dj6T>i!hk3vprcLtW5r6a+s7@9o(GuMty>Gxto>o zkRsh*E`mfjF{sf;;evGg-k6i9*7%cGk?^#~blvRRH-yhjdvZMxY$Se0Lwzj#)~D}9 z#)8PDncn(geStt$4lg6Lh$Y1Gp5zp!tj>xrV6^y^s@gLHK+aR=J&V@G9Cc?VlNjnCZ79avkEsTHaESkFs1Wp(v%M7H-_1E>X{glyX zj&RiUL4`(pD6QE@K4a5M>|a}r8xbg6`daR6v;1plGkprYAks0D{f`sadz#nEJ!K?(H)=Lz}&-|HZ_^fvD(smNG0y zpZ@*ECFWN#a|`zy_Ba(1&0Y6SsAizGvL<@z{7Lk!-jR~M2A@- zW8L;{>oin@m2wBZ(101MrkTx%45IW_?k!c^n7NVq^1sW+$+;)ba4rgF(OeZ+B#&7a zm{d7klEtc7l3>b{{_fp7#~BDX0hqG%+^BdsV@JdKHwmw+NHugsWIsdqXdJrFHg83x zr}T2h+pQZ&5RkX>>R2LtKhidG;gd7PK6u8?l`xxB_tF|G{bKvmQ;Xw>wwTIq!uz3T zYA78MYvheGD@^I+|nIlQDv<6Ei8A zrKwd~PS5E_7>F@mNS!W0CFDRx(9`yh-ul_IA`v$CR5{ce6&NQ=DY2;4jO zPhp?`J2K&ZwXX-u9DjhORm}C4*bE8yDPT2Hm>3bQAh^a*Gz&0=xCG!6zR`Dho`g(I zL}m^`sEmy?r7`$8%r6L62UF+Vw#yzrrbi$`6m?5dDo-QV7UD)qzXyWo31|HN;%JHZ z*{=4n^~ul5<9`0J?k7+ylXRleS6?QsE>bP`?-E4P$ohuNE+;;7JxU~1WC)pMv1b;& zQmHZ8sn-8(%x!inO)fd!=UU4rRdhn+POIBE)@6SW+=&XIMLg|=dc_s2kQWpdibdg7 zX{0KKJUa?c-if9@o=4lp%{BNdLt|)bzUW4vjG$<`nw+LR(i~=KP$w)VY&<_X%=G`o zR!?3E-j7vgwO;6=+u7YUe*1Ra00UD8 zjJN4fpYZ93d&->qZrBXa7$N2m&t zv%mc4?|Tm<+x^cbU{aXVY`Ebz;6-Typeuo&pI<*BDGh}l97@YKGs(RFTQR;5{qc^a zLdDv`Vu)M$R-g3Y!sp63`%$M?HOfabM_N6lmvGWY<33yshCN0`cuj5;(=L2Io6H8G zE{*ITWtm#GWgWGo2={>ZaeV;jI?}LFFLs`vPndj1~;BJkDGL!c4D`pbI zy{)EopVOtY-OBz`Z|W{m;k_+mW7Fc5UF^4G7Ovbaauavo&pr)!pQdsUUvqI`%xx+1 zuxHfu@R#V(_dsvr@yVHoP?QPTQ%Zh(qo!*iTm%QY2j%XrpCA{R2{x{HLSokb9H~jW z12Wn1P5Qy zA2p22U1dR@=PFnp+5oueaIWzb| zgdS@LA76!+W9?iNL9uA-YO0agr#5i#J>z{m>8P6mp}FI8+l7b}n%Cr8F4}XrtRWWZ zg37rS7{sM`n$3&aK_QmDDzMKML&UG7bSfN7PmQv*K-`tn0o#D9FkX&jC64#Mq!VZ_ z8>4hK{*Bg1=k3c&A4CWDIzAYizUkN!c7~oteb0{`Dq`#&{4Ra+VR2!p`?rH^+*)JC zJ!=qn`s<&cJ{)H1|146v3M5?79`xlXEj4ULf>h7;U=xW@9!Sf|D|oDsnEF0>qbyyc zEo7>s#OmOCmPQ4G0EvRh5C6Kd#5lhxkHEzQGi}q5sQhmHAk{R>)6iwk9-pcBXUr4n=n84#2_8H#5wwSfffi0mlXmWv(Xef`xGTc>jM5q-TkBm-wuikk_DFud0EmFz|D5?yODSo{Uap%O5u5DWx!3K`i?7_O^kSRvb#D#&%Qh%`! z{O;fhl91T24(V(v1i(8SW9Vzx4L&zxCuI^IVs{ig>lM83u@)FS<0Osx@N>|VOGqda zAg0J4s+tupj&2xOoCYgrjQtDLDj0xg%U@98FY07v5-0zL8Mf zmCw3uKnL|ghK5F>;iI)nn1!3e6E3SB@qb3V1;XGp~YC1NF2L5tMyD1 zF+zDLEvvBLaZr!qPh~8I*`br|h3gD5u3q$lJV?I+WXQ4EzqxK)3n;22fScg0Zceir zH$qu>3??>9$*oH*_pDl?o8FLQm6Ga_s=F2G5!8H{;sx+%zvm578}J$Ac7QgASMxk> zj&WNGtfD_lyWd*)&^N~QP$Bpag4Ep75+(I!Buae&1Yb$ERIkLVA-mmE7B5jE3IHlu zwh~1l)i!IM>)vYOk})&WCVeF}uH>t-j7HM62Ryi*V!$MUv(`eX=?#X~g;lNDD#PZEMLMZi7f-yYx zi0XE6W|-?%zOty7h^LhX9?}D23}@u->sfSqmfWTIDz(HIOb&bbT^?7337Z55eHKn4 z)p8S$Q-|w>LGB{*(u|3`-r?5--_Azq4nQ(DD_yZCGyd~4rlHw8x6T#M-g`jo{4KQ< zQ%D!!^cPsq$;!ycq-JN!m6w-O+`q3>!k=Vg3o{uCiip_cLhl7P3s^;U9b1LNya$H_ z5Mv!u78~#io=iN7;_YegYRWDGnp6>2=a9JSSH~8XM zuLEngykia=9dHxR|v&FF)BN2({tx%jlhYEwgminzUDfJku+NOT*Rjj-!3~ z&7NHx0wl&646Y#Fc={YK6%G6my7b?H~JiYOW9%XE@ zB%f3+N)TX1q^MJiR}-GyTqJK$h@ZS^Ek)kb)i*qxF*|EO#ryX8*kNCh&B`D*xo>dw zWbmllS};J0;AS#1JsenLFr4Uh$R7|eH_e53VreGgHI-hH#QBgbHOb_$MWm-bWF3M`2Y;fN7tYp`bk87l+mwmsvxPl1$7fsW zBG5_1d#^LYhs8@0qLh4?HEE38v_36Y@4<<|x)Sqk+7`@QlzR}@rrfC)ouHyF)t67TG4_9PK# zzN*K5{9DqtJ>VRa8iQ!LdwQ6nCod`tH*L9|%xnpF9K3Ub!qr7TJlosX%`|CksVIsK zj~*`pDsD5{4D!0cdPB_VW4(7vcdk?oN50l*Hirl3OYzx5W z$ae;nrz|}+eeXk!IXyAPcLUnD@f(Ap@ht;GN-#~Zjl=y#I;PpS3q}|igGY}3MNaFTA-Wt2TK)|$6y%z zTVLP4Aiqf(&BFFsaMK5T1Q$0q9j8`eRd`?L6n(zi3PtVI#^21=f%=E|0|Q5`1T=(v zxGsII0>Kz`otVPQtG;e~t#T_i#K^R7W+@)-7(mOYYfbSG9V(U~=*_|T1Yr|3UyUQJ zXlNqgZ7-M-8|@?+AIh3uUMd~LG%t5L$+olSHr0=0&%PnH+Je~v8V6ED=j8VJ38B)0 z+;oKjzfdBgWRUCAEbMPg@mo#5%-22l$IR0A2>u=hoVR1WeSOBjq8(0>R;Fm5&S>|Y zo*eb|^w4&5DXQO9s2>cr6O>OUpz1X?^=Z!YAFv9K&pvt1cDgORupB-G3RD43${q;% zYqO+H@~in}zg}}t@!Pya>Hi9Xz@$AFjHuj~qJ92=at^{{2dAG6EQaoiL*WXVnu?Y= zzck5N+9N}lMGrbc4axCDS{Z}BCb?>(@@-oWQ(j-BmU1b)oGQqMuo}UN;`iL1a8g^J zfAxc&mt#m!h>^bZ;c!CEjlz}-2X*MpDviSLM$wiZ?3R}B3&K??r9$4jhq}+5uhiw` ze@TQ-4-C`7cGAVRkgk1_cHeROHa8DX6Bj{mFDpZ6>gUEhd@%7vb5S5YKHE)O_-Mhs z3&UvvXZ=9es{ZIw+J_K zUGYt(g$DIo!^w>E!L#CkNsT82@L=%oSs@ESXjB(vnEhs1ukGT7H z*;SjhUv>Vz#gT@)x|Rc(q?bGIf#ebf%pf)t00mY}Gnj1w$H9w~MyQ+~pX9-Hx!MKB z9i&`3o3k1sH6Mghz!)Ob`^k1zah^!rY9k5^W*fjbR&%03@IbLLQmSlGw&B$xCiQM@ z@$h$;Y^+dr^iXMhAU40(c{f|>GSgMR6RpE#;4qg z5gi?^ivf8?L-58uuBg)6GSA0pe1lVQJZW!CKBU&Q1%S77NFiqTqJxcleK9 zw^Y7)g8zO9U*oWvJ<2{-Bz(qXZ*|1@%^QFyLM9PFFUK5}6%;)Go_G}ofRvpKa-(RI z`GlPN`j_a(0@#Vsd1B02l_%k`%F0Qasba5x4$8aDG$EUFR^55WX+G5hOA@R>U&3Am z$t_G3M}Z-fbWqZxtKa=EJx3W)6ftw+i-Ju)Ts9Pz4#)qyyB?og0{PE38pq`p0Rh2a zkwq*v2mtvgsQ9E66)9shWOr;Wd;4o=uEuTN#hP}o)1K8I51r&v!D7?W|KOJfGRelq z6yHawbOyp%f>WdBOv#F3*8OLGa>)p7{JML%TU5zHgZ?tX4`9S>DuFB-Ik!iP4%m+- z+0WEIDmiUD+pJ{tSKU;&t{OylvL4XC(|xx-#Ajfzzg$ypb%fd$#{7^*@2R4d6ca1M zP*@?pV+B139~OiNC4+D7uips~2`2}JYRy7aTB2OpOED@+Nk%Ud*W2rR;N=Xb8#j(3 zBO`Y}>x=Y~k_d?V`I`4G|EsX#pfl_0B!D?H28X)D?c~rD1A7*$EUKwNU~75c_U$+! zS)&c%*45q9^D(cSK4e8Gbe zXC(s&UFDbl+S3a=gf~<5Mh5>nw=lhx2)mQ&AF-W96??82TPWi-B=J2=41NFBcC|V^ z_9s8ySr(_u2LpQ>af}!*u9YLalg+&LXD;&5nc)n2z~l>( zgwnRQNb$vx0@D}%#=;au>nMxyNL9gNAsz{Rvj!l{P@E?s9<&Sy3|#!>dl$sHZ+kk= zMUipqKQpg#J0cp0FBeepMQ=clfQu_LiYOxY zodL6S7D2}grwLC|eOeSmP%=nCfq$dTdGKsq^lz}o?rk=7Snj?Kh=!*%v5N(I^)t#~ zNaF!ieK(lqiFVJl&BN+o6+FDe@3f7aTvJ18#olo>d~ zrLyd&&h1dtvi^aEw}YTv@&wN62M0myITIOkTfGWu-MU6<5|BhNHbXP=sfCi@efP6~ z^S!U4daL-~`guU*d%Ws`W~rT7p@xB#m6a9-W?tRx(AN7aA-T~v%IWdwtM&tXMFoZI z!d+S9pa4QslM-dEmzST*0}Fjm}h}R;EE(FKiAbvY#~Q+-;I6kbayBEur&5m zL(Is-`N{n!q`ECFa(pqAK*!0+$jXztFNM-VcQOM|30DiveIa)|KGk_SQT;Ab20qp6 zVi5z)*WfuvrVy$BlzYG7zgRZMI6pr>B{5MP%qZw-Xz&3%AOMVlaUqFyhs6|zO~_3U z%g$JZ`}$hS!2Cm-k;ar*7FA|BV2Qar@X~E5eWbsO`o{&J{`k{Og4I=bCMedBbwIV) zLZ#wQ^V2EHu`jPJJ+(CA=H@f)-qxx>z~Gb%w*FZ#7_7@+F`sL2;pgTpwu zu}GsG%u6?|q(p7Oh9AtN`1>eb#6zCH&5#25nz5N#FSzbz(2UF*FvVyjJgwDLw8^RkW1>b(i6%KTYFc;YJa+>3)_gX=`VL zw0<5~5=c<*44k|OFnof`9l+qz(4L--Z!1IhJCd?w2Y9^0vD?j1J7oz9C+Vj@A7TP} zKYgA~l=5zPLO<3UlR08+^v0iu_K~GfYdLm4uzddMFa9V=D_|Dx!q>imwaeJd;- z$6U|U7>-g5k%gk{%$Jk^H6i#bj-tO-W!#=@>{qaO5mdhAltk0ON{z=;G%Mhr_RBN5&YKzLGS4JB^}ySs^@Y??Eluf`N1l=~A}B7km}2E&rR zkJ2&g{=_S`dvc9QnO><4Ih!yWf?OLdkBExuIoO&*{+fg{XI1S1c+WE{eo0TyX`#1& zr*7k}lTNdNnX`_c@qPk!D;_{9Pqa@$4`a{Pwcl77OC`dhX&EiK*{;N$9(qzQJ$2uB z(uw=am0LBeOS^KtEKixWT~*C(?9@(MX{ax{^OR-i`}M2CqMV+Px~R#i?{kbYpk|O# zqUd2;B@=ySZ@gBQ(8|v8BvJ`bjQytkc}IzCj-*L2)z=e$f14-D$@OzcS3Hg z8d83yBaTLOL1*>e)$YFoRY0bIIXVy)>o7Vj6vQ{l!5Y|M;l9SuuGNv!-r?bUAR+ks zJOM?l^S3!Zm>CGTfYjBSt_;vZE+N++8g&F*G4>(Nr4dn^Ty}b5dQT;6c3UjDd62hv^MUdUq*6*}G`;UTGDYScF5pi59YU&A z;Bj+IHqv;m$|oN_EK=W7bk)qXTN{qcjO3A^!WMB<5TKVJAOldJ`nnxapH$E`t~aj@ z2?}@kSy1)U-ybAJ3J%l9Pw9m~$c?J;iKNm(=o;ml2ot4JTkJnqCXF2ohdye>b5U&E zZ^bBK!NZ882bWY7Z(Zi+{LKbUOJgBb$}nmdBfsvE00?R6Yw!cZ?vymNZUojwfPD6E zJr#Tr9lE%G5E#xVXgFkSVWI5oTzcPmnL`s}CH@y4fxlvrxn96UH_iL5ZZpt|PubJx zKWU4LmW9z3_^{J}zkc|;c z1?{8BbBl@mo@~2%n!kzzrSs5!zwEN4jg6>X;bZxpPH@gW5Og6@3+sBH7Y(z^9t#tP zs@fnO-nmNa&k?wXA~?EZGkhAv%-mZ?bO;Dt)+I|2mjM{Y%8slWukeu-&^m`R>3 z1(gcZW|Ud@=JB`VJA{cSX>hQ@eu!R*V3KXlfgup|bWrEL^PuH3Hjz!s z^vd3CF4QwNQ%`P*VCCj6uzo$yWckB7QKK#|Cm4yj_I@0V zEb~&nTEpJc*%=oYcyq>zFPh(03OL%(DPBm1vFD2rk?e$TT)@jjD=`}^{b5gF0gDW# z_WK9HTEeGEQYfhv+fUk&!KyYp<^9^7;|&PcjUYKms@v4@B{l(zY3U)65%A%>nf;g~ z7Ey#7MzJolMMkl9D!5Tc+()%gaO|t@OI-%yXn4<854r`h-7?zLl3XPSKKD~@V;N`X zU#T9w&6f90rfWlqFTcYVVCB?eb#mHlqzBj`jqG{lRwr?yf&E-eE-#aei~$i%t;jqY z>n^dJk>q4aFhWr3@gKGkcWQNh_C{3vM%0sfTU*BzIZ$jP`b^&wu^@j0#Ke`~R6M|+ zN81|wjro{g0R{PCs-@c0^4n9K$=Z83Z?&&0M4tL}>5aN!^HRJTb!zM8Fv8*y_9#*V zV=EDB;-q9-K+JTWsUhldNvUUsGyLe$E-KywnZC_@$3r17tf%Dd#Cvc-JTW(y1Jv=L zUhm;AEGka2Oq=_%sD{1=Vjs+c z9G}FL@>!Ppmi93}qz+JK15Eodg58SM>|9j)sD%2$6@Om3w-&$AbWn)C)F#4a zzvI=CpF?*zZwXbpp-31H!N7pLw=J(d8Ptjc)Tv1qT?;oJ;z{NdQ}$=0EfgyfLB(FnWu{>M z;>eAV`(Q$CeCxXgfMl7CRcL}4NB!VV+s>pP8(LU~8=siBoBwe3`T&Re5D3)xnSk7K zjBT>Cv(dAUH7Uzkvw0Y6wvc=kT?j^1lC?3V5;-BO|KsYa(%qfXY0wDLA%e6>w{#B;QbS4&Azjk-9oSv>d-wTccm`(p&75=Yy6(6XItD(+ zQu4*RlZxC{QK%-be4>+)LpJ?TLwHU%q{DFN_wQc(*pNazi^l*oijj)SbW8U-Hy92m z1gKYDZ^huc$E6vIg`?$KoU{0=3anujE2}&}y+bDYPt2Q#^he*@M}PsVHZye^*UoXS ziV`q|*C`&5CBM!W<=GT;QF3YQaHcrL=Ed}M(!C_TXkf=OYQAWPF@E>$`S8ir6vkXi z)TRFWNtLn2MhR>|p1;<%WE!&rKihfPw57Z{1b+9kD3FQ=GNS8q zVv-pA%`rDjYlNYw@yS$Wg$W|y>(lG~%WLtU5x!m=XzBh-4dtb`{$|*ZqbznVZL*}P zqSnl2P0=^T^>t5c4>~`UL1xscct!U?UbfrG zOQW)2*GqU!vgw9RmQ77ZhnvCBp5KQU8+ArjCG& z*1v8cJ8U330`gy~ppXFg3D^FzhX*G}g8YGhK`k5xS7VuRCAo>{ZZ{Lp1C1(sVwj=P z13Rl~ohLohn~cKC7t$IJ;yUvm$R612Nwr30PM7DwWD4@XB?T#azXlGPRF;xrM-y&| z_nC`(O3rn>V#=PSkS11@`B2YYw$jAnxtYYs{cGJ%uw6|i!UAQ_(V3{WfDYvxk&S>d zu#7POGjq=s@dF$jhI#2Yg5j8LI+d?4dR2{NZANzeJgG~*kmN4%-={)~s|;8xhviU% zL^Q4xpp6p*D-+_nJndfZ_&XtUFAy^!*peuAD1jBrSS93fs@EPgYk0NO@gG$DX zykce-k4D6DxBr563%Ch`tpI8&5y6Rz2U&+6XPx?!%WWSJr4~!g~&%XE91E zH{>uF@uY{{nRWuDj6;3wwjBom8e-H4SG%0JeeuO>HqGnK@%MVCy>iN~Ftx5AnujFM z>91sccIHH{bxRb^-{)binE>PO^KkFY5ZE9Zm6xRr-4J~ z=Ma^xcJ6dqqw1+?NL)Z5nU8wm`r1#|+1SKB#ay6||{3lxS9$sg!eN{G@@8CEKF zWm-njxq}KUThl|3?-R$vKTc@d9IrbImw=)b|M+pBc=sn^EagPW9vuSke|Lk^e=qO6 zuB$wgRe^Rt&PWp&o9i;yq1D$Ycm56?@*n&O7@xI)!ZzR;lR0BSz61Fa1hufv%e{$G zxiYk~P6w^2=Q7vURZ}Y|G)IItd~@~iGzHO~Je8}G5ngmzkC$>1h8J{bQXIHgCc$dVa2|#u&|3y#-Qd&p z3>IkAw>2x3SJ6?Fo6{vs*WaVKvR=ms!RMcn@#Ah*Q?!g$fQ_`OOn}Ae-ck?0%SM9m zNtZlui~rs^3{y~<{P)&@0*!a>=er#hpht=*;K_9d!UTZkW_>SnYJ7|sZ=kuRkdf(; zud^5Ejk(4YX{@GQ(ljdFBVF?CRM71{I`ZZ{Za143V16bPu@}SREt`~vq3W*Dzr%Ik z4Wm`zVASHecV!R_ZL8!vY2GwDWvp~8q}O!`<_uNx*2=!D->!q4Kw4x}v${(4>@j!~X!y=;r{RdH*tfo+x6V8$``No{C7L}M?`-qXu zZwwv5*13#*7 zY5Yvky=2FEC4L=J6B7N=&hkon9UUF!s5{8ep&4}7zCs>GEzq4Y`3Nff_gd$n|FJS4 zuc@Apotu;5A+w)z*{OFvnsSf_L?cl9st7^fJU2?h!YQ+mGEgj?uj zQ!3$8DN(i)qafXC8~y3LO*RUF21ng~tAD@k%>D7#yl;7HM=qE;KOuR#>ekf(CD^jF zD@Cd2bQwlQ?h-e|LDjUQmRvqpuD*eJ@FHY#X7@ScoDiYQ?t%R<>Xpu+!i`(TEPWV4 zG&*ILcT*epEH9T=wii;b_KJ3`TxaDavf|WaA~lqMV>AVe5s8HCVLo+yv!+vg8`3z4 zGWR2`K@bttOAOcCI&ZOg&7#}eg8F&dbBq*4^tN&8R9JLuI+Io<<3Pf7H|Wj9j`Q{3 zZt&}_Wz!D`-s^E9j2fkxujq%tH#iV~*OB585FG3=bN{A`oLN)Pd(H`&2X}^YnmH>k<2R~5=m8F(& z_T#O4FAP!~UNB2WdmBOVk?*}14Yzo)9KY4BBY2#}vbUr5xQVc}(sdTO2|tg}YISWb zy$Uog#r*TRDI80bZz!Cvhq>Hbz4T+w)!PkczqYo7vs6s2y^=dpF6lnN^`JNNbt0Xt zMng=Lhx=c++;@-46ug}5@j4qM+uM}5#L#;fKL91I;J)0tz!_33FvR_ug`G)<9s!0p zcnNO1QIz%XYeO`>iQX&5=n+O@jx-w~Lt-YsK^Qg5X$Jtoan$yi;MGtMgs>>+0E0KY zmDF|mO`^5;%_xAIuIof9`j|iM*We~nW5xZk-sw=hdbzn`o=SEATO8tP#`$qD4WIol z`+t_1e~=Cp)568*37xzC+*}i+$aX48nme&NODFW?496RJz=4&HSI&ih&NJ|EDOtw& zFczcTI^EfPKZCWAmEz%7)^H?yL3BT!naP&O%M5pM+(cL4RdTI;K!fp*8xr|_vaJb5 z#eA@sEOWi_H`g-qKXk5tEo!GbsBo>mx;z8p^LpjJuv8g@nHawgqwzWA@Y!1&#(GTL zEpRi)sqWU`aooIL)hW~2I@5WN^L3m-x(Lnm^|B%KPLp-u=~dJm|V{Zy3VPBiooJn zm!U6ET<%qYp#dD%7K5W475iC;zZiFoE+m$#@~XIt|-ph>M?C*mv2ug`3C631w$RHft)?Vf@Ts z?u6_oZi6ts0gHdfH8hl_HvCO<@%NroD;KDq?8P_sroRkjg&Rr}BwM1x`k2wCE}C^4 z&RQkhmk#gB8I4X_QI$fb@A(!F-?XzpM<2J-wM|DgEMJ03yuBstBCtDv-m6Jd7EO} z&Mv}hrPeprRWOoovny4o!^*C%E2aL7kdP#qKAH`tpa0GQQ@!XtlPasO>fG_kfNx4j zNb)}??Zu*?(*Fu@va5}a&GjG->&fz9%ZiW^Y`N-yf^s902ukSq;g;w55)PS3&(!v> zbk=KGiX>7mu_n5@n7!iS7nnqn48_ik|IF`lZ0?&fXpDyac=c%*g%YOdx>>eViA)qF z9}Qljce|J>tr0b`iJ$nrMFNS%w+BsTw#!GCuvr5|Pjo1u!|!*(lFBYylYJ>Ths&h$ z#&Q^M{Vp?*A>)RqTHoeXCLO+g=B+^G9Sz@b{h5VPsn9~$8mp$;1>gurxqqhw?tj2A z`SUfw4dp`^At znS3z0%)=+ljsXp^5l^6GF!&nN%|{bmHaamA&ZUn_TZ<~GT)FYH-PdESLm8EW;$dEw z7!j+COE;$&5a47vvjUi%*Dga02I|{jG`tLFh_1)dXmWILuPiJ9Z&(*;oq#nwv}7WS zC|1fJjM9P^>h!=q5LX|~cvc_4we~~)um@7?Cwy{+{D0k*IIBIjRI^@aba8r62VQJF zRe4uCV#I>x!!4!8<`?z-@~NJ0&bAt&O{6{c!x^uoihYHI*X=fhnCg4R-Jmiww1Htd zW2aZ!>C6rGKgCnL_wR-{gg6UPrw1KjZ>=;6UW}bDd*dvVDjLJ_wYS@3)@yu3u=ejf zWk-MQ`g*VWfY{A+oj42|OL6mS=|%nLu<)>t8oczAuFW`PWAE;6D+Cr64nbs)Gz}`Fv=WugC;4hx_ ziM%%3|BZ#utSC@VQ#3!*ie#NJE3~#Z$0W$%mn|O+ekXw8KghQ;QB^5oGk#* zx4!{Bt&b1{YzEQuh^HHu`easP`TYVnBhfpPcbDN+C%#v|8gbuGv=;`i+*6b0MaUjL z=1X?s=OccKFcRErDccbCGPl$)OnWQ=$=}iyo84iv&a*~tN*KPnTN6FT_tUF#qxaHB zCyKgY>UYc(r>q>Kv|Ro6Q_VBpvR$PXUTP`BC`u}*;R59oDcm7WDkN}ew91y`Ueo?;tbMg5njc9Kcf$(-i`}}szP%bnp(tNh>;q8Q>R!ng9Fw~Bk ziMk5)CTHhIdx=t-9a&vdoL%8Bq5ST3{QHQROitNE+a<>=12eM>d6eWpRz39p3H|iFkq?UDTQv z5(fCo4^7bmVB#lLB9{!}>v--Gd<-zcra8iQYyrc+6)UgZN?!z~C# z#y2jlXUellNvw+D3w+q&&XPl%4F1>K^+ZkyY>Zr#s)I@tZjOd~k1>ofwY_A*Mm5EV z)%Ybn9ZjXY-|tNCObe-~Y)T8O&zx_%ObT{~IT=1cp;}YVl1;13lpkA zP-m9ae+G623~vI?n6YiOOKYq~nhgF&YBreZHq;89pH^1JvGV#~Q6u_~n}*s)*lH$n zrU546-3ilbLy;91?>KIbATt`aNzL$dQ2WQFG=J9-KqxGH3o2D&hoVG|YIV0t+nvjG z#@=Y=zDZIPr$ua6(|2S=lFt|YL($pt$|#WqPD4^TR-wG^_0ik%A_l26vj@<#bIt-b zEHs(P$(6-R8EzA~e5>BB$X=Ruf$ekJg+8I$?`KJ(aZE!4HK{Ngg6?s+7su^AOb+CM z`m)%;Qxr7T$^+6wAM-4ZV{tAT-;C5ZmV1`NYk%3TRS&?u+3GNk;@fc40}I zg&0YDSXg+e%~>sQq7$=GKYz|wZwNz1$B9IdO;#fCtK9+vpU7|1;$ygr|4q#b@} z^H{Y&vmJDXf$VlujMa|>{nyrE5@fznAI5b1Du@ePG|yHAZXEW+K)K8OWH)Sh1k&+x zwx_ypS5lo}7gn2t*r3yHYmlaO!eFkS+0a+V>;eWd-EEnwPZsxIo~BLl(X$4`#2~-B zppW50PFeZPPS%^LPA36PB8|ojm*%@nh&A2!JPSJ#sy2i_i#C+ovgOZU8jgm`@(mhC z%gKJGZRb1j@mqX;cD`fxM($zrM}p1FWbJ4t0AmF|`W8`Xm6)qSV`n5c8KRu>Alj!_ z*};)U&13Ja7kz+p&J?>{?*B%D%kKfh!Dmpb@}AtUd`NC#44UEBXJ@n2lqSsm z(*<+W#>TzluZVUI>#=}~Axxc>EpumOK(OoT+|}npx>_eoax%eybM@8o)bZ-_7-7NK zet5J15H9Cp*qnMO8=4iCi{<2kI`P0bmPEqNePJVNt+{)Q+N3r4rZs*1pL&}4eg3wUTz|(+*cOs z$)VaO_+2tdj7d(!_h-`O1P2f}mpdYREWTI1U0m^<+Iu5q15U5?A*=~vcfy`PadqA1 zQNd(>$k(y;b5Q?6^4URjd|!eQtGliy)m;-J1C|5@)go=tT=mS=Gn7!PadAllw_6J_1>4(;Woova z0_n;AR$~P#lg{hG3kjS;6?5cJ5l!p8L1#I=kdMjJv<^uZUi8rf1nQp%sAV4L$~@2- zhhHe~A0k57O;xwpA8rUZet$(9&2Eaf0C)1W*dEe$>LW;5Pi7~BIh8471G9oh#TK1& zaM{mtMW6C%fUW_Wbgu*I@`-YS&A_qd)r;u1-4U-ON)4jBbPiq%36UwU&x4}hQ_2Mm zzo!k6jCxNC4bnObj!vNLg9k_P5{p2C7QV+m1;#F&vN>tvSij(%krtI=__bM@VDHe( zH03D9`i^Qt+E$U~=KK@D-6ELh8WJ`e?<0!}UM^g49 z|JT1a?l-rxLNMr^U|jPZfjkGy zO@VgDv+*qAr2Yz_XYz0*UTEP<5Xa==+~8CCm_&qj$I0*5#karvQ*?qERh*D+RHrN{w7l`rv4R<#p0Pp`I%$>KLL{ z#PbmzRRSfIGnT|@#5XWv5X&t^LjK6`Gy?nMvGeVuy2h(}$nQFe;X{ghl8BF-d#t*V zpn~iFYXZkK-`zic6u1Fiw&r!Pa6Ob53?1!IN7u4#eb58hn5c~)J3nR%$HrRzD<)rT z8LY5JQY1mvPbbt|B7h|b8U^=S71h_0LUIl~P}E09KdUA4<;=O~^ac)2GsFa^2dTL> zU_R?I&iSod>Gd)t(m3V2WuKSOJ~5`-+w&w$g4cuiZm!5`dEg=bzl)v5+12%iKB9-Ek;DkAQURt~`ZjSl z_)dz?p}W`Yz~6WV>O4!sRYtCb-S;;fDc-6L*6rT_BGGH*eD%WO-F7mq%eT00_qN1n zLBKftQOH-6WQk}c|J?8hn>y((78*-`2)gZry-k0vaf5o9F%e|Oo)nLUWNjTWd$l6c z&llS{tw4(p#*RMsmiR?Ra?40vfvMz6{brj~!BK8uA?SVh6Y_U@<%snR%bLMeF!!{JIKm3{kg~CzPZSzAFWJmnbI5~=bSBt-Pg{e(S z$&2NJ`aqmpA2oxZIdLr3Rs#$}$%txOD|*k%xAt2E-F3wmHV~MTFZxVKD@w z0I~N$&AO8N!CN5!wIdDhe4??Vu#{_H@o_R1dW8XCWTZCUS8 zA1N(-y-AUE>Q*J(0ZxQgz;3|E5?Xtz34t zY|_sM82rpVC!@7rL#5*wQJc^-sz(8qvL8n2*lfj_^qX`wN1NGzB!XPdT(6vPomY81 z0sh+6)m4}64^s5Pejgifz5IJQ7Urv$ycJ7(b`J%_vyV=}3bS|~Ze^%24*m8X;>@y| z7i(}^p{9@B%h|eN8Cf)(Qaz`yWW*XP|35|Yjt)(ZbV?XAX zDVYp#2+cI$(CX@v8UQECRPbM}s?Lf3z(?AgfQJxZ5}-zsAV-C2HzZT^9Vdnb=O^X$ zyV!Ske><@hds(mqo`wU#`#xV|rBQA#8oqk7dZzM(CJ%#iQc#te?!8C@C$+zfXLhRJ z?djRch(IpFV)zxn%FMUu-Dc?aqdTgr7bi!p+zig9WZKxc*5?AB`0gFcAD?czmRv@0 zxpzdnr>iiU;uSb%<2?Kk+)KsMu=mLK_my`br>wlj%$RRX#=DN=oU31Cb2S{b?_2f- zYaTEe>f3)DWr!a(KfPv_I&?f5;mBZnLf8UcZhm$b{}e6A!w|z(a8j*KyASX( zgO&Mrzsbl<8H2y_F}Jb#o@^)!&dtKi;CivHFA~wkVI2@j9n5DE5)uI3&$gL;gAAg6 z;+}Y>`Hl!7Xj1mLco0-6sx-79kTUibIF5+a^RlbYCerc6^X%z`CXy)z<9s#pP8wfX1%?205S50@EZF;IQZdh}LA z1b1oA&`*gXD83bjKFkq39m0gr$3|-KsHQ^5olC_M0nQBYi{ZWIhKuu1-+kXyP5QWO z`~VtqxiX$$PAXgR_o4Iv80O&R?2WUTLi%+&cz~zt>6q#odMs=>wVd%-XL8w` ze3>x_Y4Sh~8xAg+@Mq7}BHvxlOdF6cYUuwp&dcMo>=DM6%K82;cZDT{0{h?qX)c@# zsTE)^fV*7idSL=x$b@e{`y9jDwPxJlvTrl(GwKXfa#@IO9&hDnFCJ{LqsR*>4`2HH z-B}~7%J+1v&edK7Pf@b{fVORC(Tb&PeyE4m!@tg``(^$Q52i$3BoLNy-Yn5jUeSH= z`_y60kCZwV8GvC3zjV#z&idK@e%6gc7}sU4X4iybV~_Epanrk{y)+)lfI-O8bs z-N}f9=K~g)vralK1;#B1HLSxT?-g5tSYk>_%7k0zjR4#{nDs7`KD#kEe?J&=$M%@m zRxds9SyJ=y*Sk8Z-lfjIU+3kc#!F0<@~41Ak7kYKYi6(~5+%?#^IB-whx>-h z563+3K${S8i=l+}uQtdp*DyEw48&I(Y%b|z9nex%%mv<`a%mK?LWDpVS2eNx?v{=X zoYjiV$zSeyq7+17MPiQr*l_@k3o68#PWAAUQT<7BowrAM*Gn%8uE!Ig!Z3 z=o3HbH^;Lxf4eZKDC4#;?(?-MLgaE-WM%fE!_Mhg@`@(hrXZ^-huDwxH_}&m8DrN< zVKZP}QinVKg@W02{tKe@=e){O-Mwa(JZ_K&V5?>ii_b3Rj2q&vbqN+cij(FTq-&_x z?l!n}JOoG3z2hbomskmk(yz#{N%`JFaqEnnCBOV~f9=fNDUj4z$2nBfctxt&i!jF(5*;D-8+Y4U)KR<6tcRp4;ifLpRqB=F6(9Ro{{Ac8~+u zz+^$vZy}tz{RDLi3+el6NZxS^j2JRrzAJ7!W6y*R#$%K5!v^P#HiU*cI@?hEo7t4c zngi}D7Q7hIUHHIcw-1Y}%6*lWuUq}rvHFE)0nDthHjXP#O|G7rWc^+T8x-F_Fc3Jd zOC5YiC`2q0$r|f=m<<%>uD;KQ zEOqWE=sGZC%owL(nOY{2iLY2+^|2<jk3^0W6^Z8!EX#p^lu!+1Y`g6lMcRpdkv zj`1HGbVlg9g_E8M&o#45L$kg*;_y{X=5ZA^EGkuQ%)Fc*=XJ=E1Z$w6M|O4Wdtr9o z7uYD3rk<(7sKAI%8!wHI`BJK#0+b#3b3}b=$dEv?fAmC72%^85&b)QG(U-4Lc^=~| z?N4E)mT$Zn5(^2F3)|Q8Ie#7=5n+^$0&&fJ6O6YY^`^~{>(KknV@~TKOZO$M+lr7G%L{dVcBVPplUl~t*@xQ(sMblEeo?L+{0@Mmn zK!zLzphjVXC2WtqH=tWHzfnCrYxcu$+*U{N{E8eMpCu}*0Vmx1NN#HfYLFn39Yp@` z#i*1S!KZ!hSz-p3lMuSOz&EK63sEEGnoJp%kV(Gu4=iJbUI;sOv8fRPINid)3zq|>GS8mad76t z&Jt*!{QAbOXtyKbyJwbKQ@>I(5x+9;&fG3`f6R#vUl1cjqC`D&&K(~E6$3RQUG0kk ztpXzf-2)8#P}C5AiY2As1!H&F^-85&uZ@*QiL>DmVGt0D`Hc$IpRdI?dWcU|s#%>c zk6oe_Sx<@K(qM&?n4LA$^CE=%zvG~R{Jy3=wBQMy2W26u)p)hl(TEQ&!v3}XM=qPq z*9VMmR2_`uBf7R47`)vghDPm?rJUDb05?B zelcu;KaN(eiBMAcoR!z?OvKUaHl(WTbIV)o?!5Tn<2lGD*X_&5f6zcE?1Tw-rL*x_+^ zTB!vVeE$d5Za7bHkL}?pd%(z#q<|5^VpGdA){xs7x0Cubx>oqH+YR3+l}P5Qr>ih4 zGRJ~*uhP8)R|}TPlB!V3R-#ibP@yBh1c_*=_FGv>(00y;i6GezN#I4D>y~Ez3_r{g zirLp8)Aq#!m|H7{SgI!fv6 zmSow{$(Aia^oL?k3_s+IuOaKHyO2D2j` z0)8O){O&pYa1ZlF$M1n5R6C!yy;C3R`E0heaMpGn*7PtB(1FNHl`d9G8LdMzoibaM z8S(A5F$^fS_AcX8EFZ#@GH)`X$7oIK*2rJ#>f+rD-_HHI$I?*y;jFMR(lYmTKTJSF zA`50Wb41S4aK;@`cZe&B&vpx+B=8m*kDR;Rm5fAgJ{&n;lzpb9Wcn1u^T2NZq zUs*}CX$Le=zD^0Q-&0_cJ&*65ot=$0*x4O!K88Vf4Z=7kQIsgEI>GG9?|a=0L}X;> zh`Ac(b$G!i#XtN__amJ|8%O_r3e@=tn2Xb**04w5b2^+_>U-s5oh$W-z>l*Qus=iJ zqFq-uczM0mEJ$(%MDpN*`0TYQ3tntsK67y>P{t`1MQPdt>Lw$&S1bEf5ab@s#LI2O zhs0P4$?UnBV}qb(2wfj5FU=XL9XFvJyqR!191j&WwjwWhUHI}CWx#H>TWHJ&ZOoy+ zD+jp5BzTZQghD9DB+s-Hf80iH zp`{3U+Cob$XPB<)-l2jllVlk6+R}4>P$xxb_z`R}-x$VM-2{8vwHQ`Oh zoPDR|BRLk41wo{YTJ!!_RR)!Af^VZ36_);$njb1PRe3pHi7DsGc;^P0x&Ufi#MuPf z>&m^a$5@$a%nmSxS#{Sk|6(MS$harfE{)msG0fBCcPOtYK6@|JwYN6z41 zWQ2cbEw%5ZoKHBNk7oGZ_2U_8BC=t1*Es4pNGhl8g45A_TVM z>vJV=9v$e*H)iehdEL~6IomlOGh-)tPc-_9R4_1`{4Q`M zdQ7%7dNjKPKOhF%L6%dS5$$^%YgfGg14(zH`ZLdAojiUAO1SisfPz|A0M_+agN?BK zroP+?PI$=EbMgdw^E>H5tQdDPg2*xMy!B%Z0Z(bM@3dOG6PmPh8hE8=nwAz*hZwc+ zeoBop)ysYbGwENWN&zTE^h-{FBmQ9Jvy+?ldCfObz&2qdB;2yI8)-qcqa6<{XRi7e zbw)*c0=jsqn4YZMDNu)5t(2`=P+VLV4G6L)tzHpCdxgC*nsAt;gdTd|dY#fLmWZQO z<;b^4;n_NHnB2JimFr#@^{CyWP**K4cI)n6e4G z^aEz&)})^A7Oh+-X!wa856b0r=WJ=)=z`Y=!=8p?;q1<&UF7RkvX6N=C9WrXJj(Yi z#4rgrdx@$mad>6BI+W!FhOW$^iyR|84O7r+3@EV?xRwk|D;w<+uTegtqv(9C%D2uv zs`_Cj`&*@>t<>!lHNnIA^ z1gkH?9<&1eHhI!H(`Ha=l zDV(2V|MHdYp$MMzmU%7LSbg7GyPE*_x4tp(D?NEdc4*{W`sW)ID|h4b`#7S4l8s+( zFijk7+JC$A1nc>U|CMTj9;=MK|C?c!!VB?6gAi+iiN*7~`0FFpLER1gfv= zNEU)=XqncZkdQtlAu-*4CNh=+5NE40yD#tYAtJZ?S1&VoP4$2CI?tki$#FueP&!Et zf8r>tZj=*ZVM-B3vDSxnch)Rj(X39_ti_I9u}ImD+X6*)twFx^=uQhOLs4)`1peU1 zKG}#T3>gk`Oo`CXs-k_ye0__1(U?|{SsXyK6j@SYA!2KU)h_l%DOa*urCZ7(#DqSU zeN-wDgj887*HVxhlPzUQ-Dp`sUnt-iPhVbDlI}F`c{?d5}0N7|B`W$m?8gN`!vmhz0o3{SkP-3m6rCzI_pDQ zQFMUtr`gHwrn!5cY-|0+3``&X#n+vjD{_`creMciMr0+4iA^0eaoKEZTer66)f(Ix zvlLo8G3-jn;tywttC`JIVq8kHV&2!r;Z+=(li*-cTO}4o^P3tBD2cn)tCN%2TY43i z1Yp~ZK&Qj^QH=RH);=fgwLPfr%n36jrK|fjztu`%r)k~9TriK`0EV-s;Mmg4x@~5? z5}z3;_oYf%A5yf+$bcWNGNiWQASV^1CkAXI&V)bw=r}^YQAHMLvghRBPv@+Zw~-&c zk^gyACYFRRll%-T;J6o^Cz&>`Bqwgr>wD003~mzKTm5-bHm7%L_O_Fk@oNux&Crz^ zK!63>3Dkc~xJ%ua1%^S%mS7}?K_$=RTP!^=>`JS>GY=b2Dgxb%dZtjGX)`Uzpa@>U ziO&np9`oka4Oe`xf65R;M2ubo67ak%h(GC#pk%uLL=7^^o}L0YLci|~h+GL?GnCQ2 zf|A5%YM5O$zZ2XW$MZUw@$5fdK)vpNEZf5ao^0xjj~6)@y&O zstAj#uib5hC^OEfbW`3E`9uCS_q6s4o`0@JCK8Q!(0d;a2 zqV=o8J7roT7(4Is!(ceK&S{hB)1S!Z2;<4+g;7uGe+xpx%q_{3Qx)WRC5cdHEe|ng zw6OY=>-dN~j3OW+g4N6Gy*D~`%E=C_*j$tbXWA3T)$0--p<@Rc>$Ykx_5}}rbF@|9 z_P=Pl%FGh~}Vt-LeEL*Ieuqcl9XE(s_H}{1`*}q;C{4~fGFUGM5H&rFh#AoG{Z}nO5pRag5zgbK_DwC3(sST- z;Y{0e6gu1vNABmT&??d6uNpR&SMIm^d6Yq0k1RNeIp0~& z;M{uTgC}xrwtWbH2v&ztW9_!W**H-b@Q3*;WothMy#Dr)+Sx``7@{ZO@AEo~-T+Yk_)#(9RufN)u99OzJ=JTCH3}z| z)4RkHyQDzzvT1o^bBW>tsFiyxmxa{?m`%Av4ORPe0h(m1b~TE zBC_>a5wClYoPvNU-PYWg9h@VCJg3{$&J+G`qZ=g;F~K6I@7{^>z_VhKe(2H%Z^eyt z%D+DHs1M3zeWxg8&C!~J*&m5~+2XM{^*JOs@H%}mOOdIKQYp;zWPnsS{XQ`(vF^aAyuWt7y);hxy9@1* z1l6?O@nhbGZDqy>`(Zb1X%9;@3t&+xwx_2NxUWZd!e#X@f^u|y{Xrv0S{)*|)8c!0 z>$@tO1p#>>Y(gnIlqS%Uuy4j9*!rBuhq?BnUVqTKTS0C z*2Hikeatm1%Gu-34k%DS!3oH~I$#hM>NpXFK4cU`c+2?cQTeb|C<^ z1PKxX;QTMIXoqX{2l+hkhn@6yXuVrIetjMJUhYZ<;LoV%FS2uP4kF0m3{NtL7+tpe zUJOvuwY6{H2JQw2%m3VJns0?9&>8e=x0lBw`Tv|erTKqN_}mAWyo508$P zh@dZo+iPO;PCo0M5NP5|f+P#+~ z#KeGcU%9?6=&~NxR7>A>=TTsWW*N2Cdb|z}GPq?>dnvLx0q^@>{ zufnNhm0^#Zu}O)I&)#^~)geg1@lOQR7}7uOQsR3l*qsUy#kTF;)*j_|3XJ+2PmZqU z@gg<@vCUFFZ4yY!9#pvYIu3;a(4AQW^Vz=6q_K~P$FyO~KLyM)>A0}8jyBS#;jo$|2KAD!XPGMtzo{`z z3`KZN+)JuLVVAAE(h)#pHFB~F@6)a{=Bvkiz^;_4pDEmIUf*x-{g(IS*S_y-R)Zgv1I2pdFKc zKx>9T=O?4>wlQ$fKX?azEvS9ZGvoHoc^$4uAKR~m{b%VTBaB46|I{?x{F)Ch^dSpc zQ~9OX$=nYGkgWxmaRVC-^#!00Jb1DA)_%pzZXuv&3|S#e`5O$BZ26zpr;2pEX?`P! z=)02=AN!TCl)8W%W57etyCcHnO#27gGeESt)e%!J^PpS5Y}npR$=E5o0c29bN?t%^ zRO}^{$DMZ|MH}P&M^}J_kdrt3cmMtwPecuiN*cyPqhW@0ci3*^^T20z-NX?@eQuefKb5L9@oT$m zBW3T^In4Tt5v&yoo~KKGG%wZi{>WH*a`u8;A@*c(|2$QOJQUURa;+^dxyJGS*#3;u znK~_spRbStH3@dKTn?MfCk4H;ZK7svkJ@?y>`1}7h+oII)gP>9$u@v2W`2B#tFvyq zrN0`@z|OlWxyn{!tmq%lSajscs487~a%phz>U3wbvfOn)3$`Y%GW6y%E7QhL8n6ch z6NKLDH3Ho*U_``FX{f8?Imw$U-(xNPDO zxy-v&L-#NCV@EQtrO*x}b1JbZwfB8RjIM>`_fMY5v@Wg>kgl|wrJy$Lk+05T#h$F= z6}gnwMYMaS>POeoy?#2rR1<->QL01>xhF}5L`X>JHc-j)*3=fI`?SGzU?o{L+s)b- z2XY|k2bUy^HNVG!3p>zeX6$9><8kV+5gI`34T+sO^jI7z7C9|;-iNdx3ndJ)x(EhX zBzf(Bnx(`IE+0Esk`!{dEkM+9pxr+(>mG)ar&Q#$&_X#Y;QY4w;1w&@+j zGeQnRz|$u)MJ+5Ww$SO5Z;rz7`04nttg-RO5&lBzBPV0V%M*b3uhI?$(Rtn!ddp% z_KvLTq*mV8T1EciVe{Cps|!jW+wEQO{7>R|QEuye@Xn1J^3TIw+RxiDY`uqfP1=VZ z^qEHMvyOL_UcX@xFMq;%uYb}15U&-2)pVtvhC$)z>%H7*WUQ=nJ`r(=47t;q{;T49 zO=+iUg%ri3O?&@F9pDG#el#;FYmzE?mZh5^5NT*=&hvaC#gp6ihi&65_r>9U-0-R7 z#mJ+(A*1XN7qwe{&CSh6)@0uw8yl(fh>Vpi)x7WZJmZUCA#o4O5=*JDBoZ-GL^15Z zp37g%)%j#pp$-vuwMMuwxv0X(}8BeqjOUO4NhoVwbay<}>b zoyoPW5VtWv&Cy0BH{ZtEtuE9q~&l0vR2Muuw$K> zU$wuB*J~n1yEwuQuy=Zok$OG7@?R`wtjke%#Y-Kl3Mfz~%FMvC!J?Y^o?PA1hm-6~ zO)U*2o@p{P4gNF&l83O4v(MuS67O8uZ<~2~`(G;PMIXg4Vb|#JKUb$tlw8gf4=YlD z!NS?&6R|g!GiPUAH(uu6FF+i0cx7l{ai?{^m|pe^DFkF^$`w%WuZDTIK0P;^z4X4U zYP^)j+CKG^^5X8!LKjvrHFZwJdpLmb5O|lrr}gq$%GDT~BY$QbQL0meIqm*HpbI62 z9cahC#SlBUydj@>u~!ukn2(PMQQsvrC4a_BIF0?GK6>*R(J)FY%528u*V+7)$8@TB zSSucqBMZHrj{_`*%sFodOg8gZp?#Zn0~4>DdJBr)8sLh2kJsmaNq%n*%-U6tYcDbC z;B{C)aXB~Ld9!_1jzMLK*~9CsN>V&p`thSv zM}V2a(e>5(!Qs30G@V?Pg-UL_&q5LgWkK^E<62x0Y^;dsB3#$6RY{xZmHtH7NFTeV zuk?xkwQjD;|J_SNjR%P`0S5=p#n$#o`9*fLe^s|{1*_?aH0M_NBB#ic>$T@sJvVmL z(IFurTDNzm*fTgVu3@{obN;DEaMpMG?&EtjEb{Xn%&LqbpXG3WNg2Lu;f#ZSWhp4t zn3%+ls_m;Kf>A2kh)oh`zh6V7eU$cRw2 z6oBzyy<6(L6)#^Wm8F|A^tD8T88K_^cfYuqlMSnhn+*$7riqme3%QlGxX_oURWwNa zYkATL4>z!`jEsyRYsKqz%o=ABIk3{TvhO-g2DF&JKk9=A4_p|FSn}sQA2(~Gt$P%| zGe~L^4=jEw`c2JDgL#pF_URsE|J;Qa{$anz!v|5xeR%+3YCT}n-0Vp8-UvQZnyqEB zEgw*BevQ$}*=5Y$hS&`s`A2O6W5w_gDuY7x_lYf4tg>R)ZAx-0k(i9OmS`9FO)o?KDEM)_Fv|XJBm|>*jfiQDOSdp8Q!S zHZBHAq3_SVaa)lHly}?2yn7`?emEimXAd&!FUYEiXOF6jSvz_sF_5OH?}y)ucp)in z_&bY3oy-7RtAgGtOBOEu5+3qW6LiXrSsF}o1ItBJ92|~~`*kCb3@JPA#C`8yU;g)1}wjz3j)cVx3MWhLc%nNDQnQr&oHdXgvy`&9~^}2g|G%Xs${UnP&?YKtLJLwP6<=cQ_xlK zZeS$Nkkr?E=RXWp(T-nOre-K}GDbkBE$_~vw{kYIv&mq#ax4|0!h=@!oSKj(+I@S`^U_@N-NcJGgVaOctC`qxLg_KF??))WYqfZu%i zj!>X~JJo{+@yBcN4NY@R5{>s2ZftcxVm04`xVWbM;;J=>*FoaIPH);%(n6WVdF6c7 zIs-g{*4mGz!?&-?p5&+qxa@83u2Q+>Ga?{!`0b)3g> zoad>qoU>rL)?q^-e5Dy@=rA0^cYi($ZUG0QH=DUtPWc@@ml|c`2fI=#In*;oKHD3+ z24}N{s4N$)RS6W!YN@}Ut;rpy9=iSQIyV~$o<7CYF;?vay9xK*nWgKJ2DcC%-D%O2 zpQ;MNpRg1Zl-0H^VBHh0d0{Q?evDPa{rUE?UV?h-zLTF{^=WC5TYgzw#*#g=Uh@OdtLanmP4)PVB=f1 z)$HXGo7b8uc^xDj4#XYlwcIc65EM!I$*?%6g+~UBX+L^IZ30^@TdVout7kfzv(;zM z&qXmXJWF#!W(D7|Jwz`TNI0=ZE)w?k(8R$HHhrlb_f6{JKgP_X()Vc{XAK~%2Y9hI+hal>f!pG}=dhsrM zSUNfPvP&CPbK2^ft{PTi2=6z$WwmISMitF49ob#%-f?oWh*J+{abi%Ur)*Yiy5%P< zVOlrMjcR1^x!(*jkpwWCI~b8qYgh7-seR^{AYmsBBgGAb>u<{%(|?F8RZ9Sp9z*?j z)%2#}cs4Dq_lAIEXHWfxVlH4c7}^%M8Lz&;WG9{EMg&PR^qJj$S%wFTSfZ1Oe4mN@ zu2}eUuC9)qoXjNnRo&XPC|mhkt@?<_Nme_P z1y=J$g#p zHI(|3>w0We4gPH*w_~e65Z9Bh{tp8F^ScK<)Wr8@KC<7Md4L!*yEy4cK}$W?$mLO0 z-yaPBqlLNl{8Y`mlhAAXl2rSRZ_4O&XG;QAje3uCGv!EKUqC?Xo^TC`?nIYjky%Ct zkG_07A!lh7Ke9`W7&anL5q5cnI%vzk6I0G#m2m0SA@NwPaOv_DLe96Hy;8KthY82J zySu6ym9IT|@ga67d75UWxJx&qNM~wl%IfXUA*UeuERC`py6Z$WicR^XYnv3p#Pu#} zKHPaSxlA5hZJG#0S)^Yh0g zB+P&)0u46S&S0s+qHk*)F&wVdyl-itk4*J~ChyH#v(4h0UQXJvDQCNx@bmE}53+RP zQ;~fHqHz>gr;$G^=}PltE4y|_ww-X=_HX4|)=8YoTVFwKE{5KaYMmM$4w1=Gf|;z_ zSLHc6deC1E^EojTr+HTo*X0asc@pvx)$rl74>nuy-CE`dH6g_#6@M{{jiHXjiOjwH z)8X|ChI{N}<%Tx$Jn@WVA;ck#zt+~$;fXj1h3QkQosOGL3lemikT%=CDAI5~k!6Yk zqkz87`O%lbm9IHD$l~Ir-@k?A72j60)UxG9mtb zL;rEr#?JB_<-*R|j#oajgu@0-hVd4*_a^oyn8~CO@!!qZlJjpWBjRK!X1kgdh6ulu_$v9nC07T1T$>`JmG1N>9dYpL*I`@gjLgjVgaiXy zTU+!ed7P3mZE)H`a+-oR_*uu`ymFA#>&% zH#;sKH%ABtHh~R<1|Yp{v^&f&3YF_W3v5|t(@>M*>k@`9F(k-VJ-5Mwe$zMr-Q}4i zn4+#l%E0*5z!6=#=tbABxw$-|qMaQbc#Sh%Df*dOsenq#9yf4o;7Pv@Oj}*<;u%W1 z5xeR(Icu8-vBV@j)HK1Napu6&BQo$|yX~QP^+8ETZqC_2@lT~7@9iFeU&lnL=FU+o zuJ4n|+K!GWJtmot4l$iXnxMk3V`@rI+U)O6OlbeUiFq?0r7Uy`Og0>NR=814niAt- z9sO3Tl4lz4U)ufy1F!Ax=$^ekhswP>0V~8><8?M7_t6p;BSc%DkOtyhc$vicc+S^J zUqAeb8YhA%Wk@bxSb^{A{OIHvKT>_wv!v2(j}?V^!e^%jmH|r5s+v;-wDQhk5A_Oc zB3F*P9(gwi59T6%MrGyVPj#L8VOG-RjT>(&C_7-7#G}o=Cyy#O4k7$!W!>b|sgNns z7=IjV{On|!?(Evn7rWOx*K$fGX5d>OK2%jm?QP>7ik&W5B|}8_v7EFmPf7L+nP1W8 zaZ-B=dx<--sUqFe*;yc#Qya2WB_Ve-HWD+s5*2i|KC#8~Wwq*${bu^)#X+ix5Vk+I zV%`>s;omOJm1Bu!Oi(0VlZChy)M!w0p&5w5wVF5wAqA$W)a-2DYwR1(Vc_ZT@H03B z&z?P-9+3MuF16!U+QHPdKz2B>|NR5a2l3ucCFk%e2Z7oHLC)&1Mb~#`Pi6ZrrQY?K z$nBsR{YoYfudS=^WEq{&i$3*ZlciZ|-{X_*1KJx=gPit``m}?4`Rt_a-|{(d+xc#B zM9FYB)czD@r1N=`Q7!KH(jdKpW@f(*my26WY+~sTwf6_^%@JqZ{hwmZNO#y+IQk-r>*QMvE-8$0SiZ|J@Jh@G9wkYD>{_Ki}n8|t~) zA?LfA)e)A@k~oy-&~BGkwQ+T)G#+>|T$hjx_?^!lGI^9VIZSZt$a4EgMEqo$aCl^- z&R(09JojfCIbx{9JcwDUSzPt7Ddqf^yL@NYjJlE&4Wi0s_oCP0Qn$yH7$;}f&OpCh zX)#K%*1 zrHB*OK=&#DvL*hBV=&mQ4f^P`o}8S7&u5tOh>3MYUYBk$vLf7d;Ywb-B_PlYJ>BCI z6YIJ0l3f=l!)Zl-|75e_ z%*~PxZ6*3jZMnRMX*uw{6@`)(aEvd(SiQfz0NrP+-7K-~C42e_Oh7mRUobE*0I@V~ z?V-WYzGd@afD(%&f8sbXHIVz0I}{=<%X>nFg@wRVaSI3p&I*pMhzvH~yliT9+0^p# zmS)bHV}O27)UrXoaC7cD`i@9?&tST*lIg*e6*fVe3rWC`!AbZkkYgvHEPZ+Q7>)Ea5`fiZ9Rk zn)nH`5lQRhcgvigQ)=YQ!1$o$m%nXjlFqMlCh!N43oT5nuvh@ z>FK$)YsGV`Rg(|A@<^@!^&MLC@pP)TZosJ7rND~ zIaY1VzH8$X;5W6jn0dM)T-?d{Rz&Q3>_l$TwB+-Qyv?rFqEYNZ4#-b{_U=w&gGOi; zO4Tz+>z${M7mmfCp`C|V zH(<#lk7N%qs1O_d*=4U?JRugLnWG<1cI=FgR2?(&%!bG)JfiUv2c?|hU>?qjpUp;S z>t?Bp5VQt2&(dXA2aW@Taw_eBui=hXIf}fK1hKZV#-(1*_H1%vnVXt|14dGX&%4dV z>-V$(D-CT?sPetM5}~I}IB$AI)gom$A zZ*Knb9K&U>%S!@A0~fdO71nW37y;6HQY@TK{Qn-`k3WF+;Oq^(t9D#Hx*M~trjKbw z%c!}$k8np*82=QtZ0jev9pjzP=$_sL0HMKdaCLL?MB4i$#C1-EIbY<{?CrFY$xjnz z2AL#`1RM3-3eXL=Wl`*)EMok;F@zlDzp~XPFHugb`i5dLa#Tt%SgrEqL)InVTJRK| zULnAA{$~0u;bh1Az#74lC>Fj*l5cT#Bz~5;add{%%G)}yPOjP0`sxyTc=i}{GM`}R zb^x= zHI4};T6pYb>sG2gah-b#=f)=9-`{`jEqTP4UqJZ#Qw@Mp_GVTUnW@m;D+KkXBos zX?XbfTRn1Ij^Ei)vF^`@>#HSihQC=A_|v+d9(M~0LGR}3?3z;ezMNgYJp4!j^_8a*28=xWTxm`URxUjJT zOOA0bybRslPgb#jdU2D|tKX-PXIgf!Jm9tcvNcHM3?^&1~fEw&rxml+w^fg_6qL$Y+=y z9f9Dwy;|5k5#=hQ$xdcyVDJ(aQX_|KXJ-d>lL-sU(FCngGWCrr%(t;yWp#`Wa@sl? zN6K(Zf@)Y*v7hYAslc(#>p#4xx3wl|GgsA0iLrqPuyvvCEe0#-6t39Z zZ#E*a=Nn<99_v#-X*TF+1{-a)b933zh}PTnxyDs>i0x+l1}gwqd7wF z`pivx#?{ipsO5^onGp3D$H8Vi|NE#C8pG!B=|91Ge%@GBRTVB{eS3RSwyU+Tr9NtZ0sM=fo-i`)TXAiRMlA25BbHp=D$xVS zBPnrhpAe6Dz?S?-vhBu`SAN%kxyuP-sI^FFkLB9w;O%z!{#TVYDv-EJ-u&NAS94i!y4uV*{v2jx7+0_sTYraZ1>P~s6W4`wz6RT+U` znFA5-JJ&th0DW+6K2TF5$0ndge9*}&1Vr4{b_vcVP%6Zfl%L`!jX=WJJ=uOP{F{QB z+Q`W%Mz#H#$*_u6AR9=j43A&#mvf@sRse$oUhk*!^2GJ^b$795=~`T_ike_j=D7Iy zVdPk`B|~J(zI{En(^pXVR9K5>=mDg!KMaZ-(+09(F~vI>vOQE82ePV4(PG2uzUMPm zH4|I8`6MbAT6iYOD+W5^ReOz3E8LQ7xEo@_#qLdwS7$S92OCjfT^IF~@9h4e-U*yx znZpvvBk|K+%RJ)$o_&S`zq7#me{WJr$xj#o0Rifon)Ug9hl){U{ujjd`bd*F}|;ZN+Xa>C*rbM)wvbL87;dNo#&C>Yuw^F(A!&IQhjO( zIZQXodvJIA7ur>}mA(w}P0gIdFi*lvCC0eUsUnTO1u`^{2J&6xl4tD5 zr<_qi&B9voe_)*j0nJc1icr-N^r6e=*5G9Bs^}a{KK1}cb&0}WSgW!5bqR)1vitg- zx2eTUh?tvMHAbJ?|##2R6M8|^Pq4TlU}6n(dSI6>l8KLoOMPhu@mAM z)pE6J(Py>bBVq&78qMDs+jgnVTAYN}LUR8XO`0N9+ z0;`Jfu6-H}%d7y+%W+c;st04LA^s;Z-ZrKF`d+7F+1 zy+=Ki!>Wi4R}e|J)x7uA;B7pX^J>1m4 z8ioZaDj%ODBgr))oUwi5XJk!Iap6H@`2W8rD)zZ;N!zzekU2HKeh{=l1zGu+Y_w{s zWVTYn&FJATPlq)=+u7<9^ztn|Our){BKzn|cJGtRk>xMGmZX&A>U=Ewu2?GG40FF- z*2@<2EyurK`|lw;h&^NdQ-l7Wzv%%-3aqfYmKJ6&`e5qB3x~f@k!#DHEpFfY7d$=> ztXz5*DLrzRNiItx^%)CEhjCnD;%qB(O2y)=PL)SIDYGI%sgnPZy{F&MFCutu06c8x z+pZK0vqOM7OqQOnyWJrZ_p60-%*}6m&Uj49FV}&jw?NQl3IP}AL4_5ut2a!z@i-ox zTsS$}c`xEhGV?~n$)~AJsA%cJd%Nhn3|QaJ*A1Hu0eS-sF49~(Jod5Z8H(96=Yu>E zK99y49tRYN(j<@9!@Y!8!`G=8%U~y6ZeLm9xJRN0lUlMdxOsW&lSSQy{yG<^vk@d> z_AeT^2d!!&s(W$tkruX(3eRxuYt*Ki(|25ID_Uz-O(*a=wq>Q=PBe1#Rs-~ zuFI@m*%$5_x`wsniskB5et{!{{Ysw#_7%$An&*9L&Z$*;x0FjdUpQ>g0)6vvHo_kE z)50Q(>6nFbhPYw{?nI_I1yYPLv#^m9p3Z1TMXmRr*vOcPgPol02=finJHT(iYtClT z|79qq6Uc`8VcOrl;~HFb3trNw^}gMO>t`J|j5 zyC!#?TFzgj%Oto*GwRiEFxu@sDdUkauSEDvz9?|quj}lRClwwbxV!0jo;z@pflgPD zdSNH!Tm){(siHxh>nYuaSR=8<2fMpO!IBhLug-MD^E!`Byp{@D8xPaW?q!X3T{{u3 zI2?MSo}p82&GIz6<7*CgdGURu#ssp!t93_FfwJ5#Y(e^+rjnXJr+xkt4-Ovh-Kb`E%H|asK5AlfeeQ z8hxr9EE6vn?~Bl`7(M(eLVdS$yoxAS!7iZ@*;=|D;h4`5iS1{c0Co}fxxp8fmyxr# zP}?9S1)Dxzo<~ryWon8Z$O+hh5h5@LX~uo>m^Mc>#3WT_eufWm?1aD7mwfte<@UsP zw_xx&UJYRbr%}xTH(nHS!V7Ln+q}Rq1BwR1P~u;*BzRbNoK}aL$FDHhMWB*`^6KMq zEjZ@s={HdJD;U3rCJ0&nkq2$J;}(@dg%obyaD!qavQ8hbml2Y&^b)3<@8sTB*+phH z6FRs^B{^Ff2WR=;xisI?=^yZr9;z`qiGHou<@CMCC4Z4?J;j#*jQf~{xhBBzxKyGp zRZ8b<*~(!(Cr|(3J*RR>#x}z=ca-C0akw?j;B$GPKnLz<>SJG{_iSppHiw(j|8qAI z{o`gpZAOQhwzfSg?TYAARc%|N<7143e$8m=FZ zGC-_>SAyB|a8)u?IjdoAjxj1K3W14^_O_L=)#$Ax19H}uA+m-~0iiXRj;bA0DXs>K z6hr{Q`AhRVU<07&+S{HR5<|>P{49S>PGUwkEiSU(=0lEUlm3uwPz7E-m-OT;t_o4cF&NnVD z@L-mgb6X#kgvCS3*AyIv53UQ-Tykzp-12NsuWCnc*W3`z+?jW6-()of(|N#?l&6@S zTEf;zYIrQuOnTt{W&0v|z9m-S9XJ)HxeFH=XSKdNJp4!gW~aOK1?{hF`me8%1nSz_ z7iyeGQ|?YCwgbfd1CV8)U6fWPjq)!|CM?dJnBM6xlC;#<%f!e8wqYMkSw+L;*SAPk zTaf?6_NDes^d&|UM)~Z1hLmoI%hoH++;|2^itt&byul5@7|ra$y{;QJ+7Pxp+|E-+ z@6-S8p{&}UD}<1TqTw~-42|tE&fVx$9J;wvC)hJgx97RMuoFO))h;cW0{tCafBd(t6)@VqRA^rxKSOX)nFTMV|CFQZyKUM@4O=$8xF+L6wynDzvv(fvfTm76< z`0Qr&NxOKuMxLP{r%4(OV_IVB11lbds6_(WR34$O?FB4|yKIRUz^vINMf^N%$m&I0 zTqM1T;HxW_^rfu41nRHJw|~^)v_4oVF?z2ImpOQLHt6v zhR5V{S9`yue&dCKL7TC}=|`#z08OMn3*gqEGLOy8O`1huNaIpco_l#Eg9%V0XCQnJ zXwwQP9u@)J$k~wmb&E8l#fJ+5)vYUe)m@OoM^2-y8ol54&pzxVgWT6P+wtS|@}O1P z8lW9|8}P7iN!+W@NLr45*43#{Xss9YgJYUCMI~%yvGA_iC0-(WY62jsY4=x$C9JJC zoMhC1+a)C>1;!Yq`RM306|nz4J{~SICr7GVly@5-Tei1(+S}XNIXIy3At)S=WV!uu zVti)V_uBsG2POlmDB*o-io4j@(dcZuwP!H;8a0lx^=;EDuQAJe;gkeJBlz#V=_rH4 zpO2R7_y4_0L=nwUO0TCeRranuS}~RpwRD8Rs@V_p3tM#0PY=rMEU(t@T+CIg*;!gz zp81iyr5MYyT@&nIzq&*P?g-&;sY(+DruKgGby#2~6zQ(d9@zTg_+Hq;8WTNkn#hGy zr?=KyEvOxT%jVr|U^p=V_+(dCQ(s;YK9oY9ArK^v12+10VjMR&%a z?2}imw4$QM@VYz2($XkFKJgKYe6Nx7BRa72nC4npV7H+h;lGFftJOvx{~s&xMxF`u zzFKa1j}PC9`j_6K?uj|Hr$b|N+x@27{^*H`589$HB{ni_yst+1Xn!{Nru8wE==@h> zERrL;{z{0*5D?Z;GH)L;-r?hWx#+5rh|jurRkP^oyjz%Ej#Sytvk3={!yK~p^7}^Y zy$n|`0h=F$Sr55+6SfmEie}a1u(I3kIoclrU>D0Y6m{cGsC5a_G7*};5zq)pKI&de zC1zH9uV-gRf|%T~ku}!vcM1x1m%D3fluzh0F)>kISP1^Ep>k&~5UQYURx|L%B!Nv? z-CU@wtE|{p)7pU9pfnnYz)RtBYa=3Bgh|}^h4s9p0t*9bH{X>61=JbMTujJG^5scY z`js30oC3PYtQ#8{y@CU?4SiuHcodh1?p-yfQpxLlY~FX&?{AMX2L>ZOcRzh!H^bk4 zL0L)6Qiu#*6oj4zF|o10aBch#22%Q8FSQIdV^k}ufR z@|hJBj>*fl)}vrjEen5YX^?9!pL>zzT zQ?S2HnCz@cb^UU~YblhYP9#V<>+F{f11cq}K$n`%3+dS6;X z|94Nk;yaH=+BzCT1fy;O^;WtwUL_dDR{55RsLoWU#|JwLiPk)~Z$Ds(y*4!dz*FCU zWQ>GL^M=<+q5x&rzMX{wVX(|@avwvAMZDx&6+T6zMn;(q{aEZQ6wv-dyZiszva;zT zgdO|LoUyW+|3Nk?JGgR!;ePrW6uw02WC8k*?Q3xYkXNrD#LkDJLh%V4OEn@NWqh!V zddS%7(NL3-ta7!U8_r^d1_m41wZu*y9-jL}8pd{ZZ`E`?qagr+_wA1ryo{1|+LgB7 zO!!?!^dx5Yb!wcR*!2wYB>ke&*68^Q=-L8cH*l`1|CuIz$Ke-|FCm4;b%ujv<7XlV zWA=D>c&N!4=*kzBBOWPLx!^xf!@0|IbyiL~#i&p@W8^FE(72zYXwY($k*y&OLO2P1 z5=xM2Y|*$^_b1!oN*2wzb~SAKWT)F6X1prC7p$$TLx&}~U-`_e5Er5eN^s|_Zt~TZ zpuS3bdOlpfvsk=-JaOJ#XmF#(bF%S4pH+K|F`KQKfMO3v4)5BxB-7{XDKpjc6J@*y z`xE;s9-~aQ)wU$e;pDE7Hy(dvT)*u65^>RI$hPYMTj|?n*GR+G4|9WtSQ6XzT}M-% zFbjl8WP{wsQrnA5w^L7=Id<_mi=`Fms)Zq7e;7ZZ_e`}??(ch<8K&+)dur8<{}mak zELo#330RFGYPiU6s`cy$6H!l-=!1dU`4oTn@H690r-K4ap;44| zeR-wM(z-VIw%&t!ihz5%x|5ly9T7@`)Fu`dp)lB;Bp9>Nj>WmEzg+EojsamjW6fZQ0Krv#!UN95++wHqDp-S# zcZ5au8~ERch+MpH{+^h+7KZ!UjtCXwoYyZ|R=(RM;|H<1#yo_;4Ytm%E6zWZeI zy>mlIL+nwYRNgwuK zkc(atC%R*V?u!7Q14PT>;$jeU->^FLu z-oW%zFDO9ikSa@#);ia+uq@FaPpQU%=DiC>zgcu-WTe|a=*35Zao4 z)o8E+xBO}b)>kE*Jgp`M=&}YKQfI%fr;UgbA6ck2z9YnLq-KLHhT#%SP_* zi2>G|dpx~-cc6SJEiDa&)WFU*wjlMsiK20jV_VMrlfCBePOY7ucSyg?^|IwON= zoYNc{yl>9vQ|@AjezU#gwROz4!+DJl@-M{omaSr37wwc%ejReBo>{$jS+nj!&8yVs zVF(-pa=`nz#9IzJpJW*J+E~2Wv=OIZvZq3k9ew2uc{k!8?hF*QpUm_$YQ%-=PZjge ze&g4lp!qy~?Bb6e-N)JF)uPI$k&+*Cm%av!Hb=k+2!n_3mVA_+Gxk;?GtREVOZ|f6 zkp=QtF+D@(r?FS(w|)+egqtR~l%Yqj(*CjNsBQei$#gNZB>kV6B5_s}s5p>RbF+K2 zX(d;5-PNU=w)s4f-g+&zeg5J4>W`7JPtH8hhRyZ<>DejarU+rZ(=8hEUcNFA$q>Pk z=swF6w1_ZAvu|XPc^S7z=9w3(+jWq4Tk!QXi}GKEB{7C1t{m!c$S@^#ZhN0^oTr2B z2s$m8n3y0oWu4KD*9ikJV!z~jRR^b)RoHZFzyyV5&yE(w@p-RAN^rpCgYvULQL`Py z&zGV!;41Pu8}*=Dhpi_jLUdvZ*QOUB@f&OC(s^D59D!}jTRxvaL=eTLQjp#y--d?xxB*L{B^a* zf=EWzfm?LI0RbRs)c@y#iTf8hxBMwHGq9}e4xT{JV~(it z(b+Ho?@ry5&11I%mm@8KjOQ)~Gl7uv08svr7rXV7*zLQ}Exfdec}P=QB)EA?YJN8{ z1?cNxnRO0;wvd5D68jkOT)gYZMR@ngr&KZj*DY!$2~7B@o1%u{Ps`u+a;e?SEF8io z{);97Zl*8Bl{VUe%;yc&VMkecf@aItIhJ%YUmpMa_h4g2!0homuG@398(#UDe%ns3 zWrf2W3ir#+hl=jrX|`Q{7XIJE=z;rhwLlSu zH6C%ea znHCy`$LlnQ6De~jX99P9Wc?Qv)~&NZI<&r**a{(#!aR8-df_fO3sqRB-D&%^(0npp z?AkAqM%L%uBDwJki{;&GBhE+qf&_|&7*2+GC3h5WtI-RTI1n-P_xAjb-`V9Wu`{3N zpYP*Dz^l6)@&Mhpo8SZd9OiiWZP51VJS-`&B9YgexU`?MRn~_^-(YgXURIwbKOUox zKePI(MD+PWD`+{d!L~aq2=4h<7Oo}Sh} z1BZ-XXQ#q_4AD6gveNH@&3f+4X#THS7G)Og5ZKkY&UFlb_Zg$T@-M!vFBm+Xzof-y z_6BvClN1eKU8PUaceG5JtlFXV-cBN4*8WJ%uu*Z2_M{{OjeDHPg#MLo&Qx@W(#^Y$?pG<*aC6{g4p_KN*Ij^J3pfj9K8B-p zD3-fMM1Z;StU%<$QP^#(9L^`Xs@(Xby?pScosS!jw3nM3-|r2T-q-S27s-3~Cdq&Z zYFjGQN=`Ahe4c1mCU4625I)y)_q0Z*m#(Mn7JnNr^ej`Z3X)8BW0_L{J?#q%C5?e~Va z<3Hnz+ z2Uu-T#^@IFcU{FK`ahBaR1nQd1EWgH`BBPFZ_3#_53vaH(5XeRA9j*n40PRJ;@#tX zOyJw#wB5@cuZP)t5uvBfA7eaweC&@E38DRQL~~(;1V( z%1Y{BqqhSKCJd3A*C(0b=alIh2)FJfmLRy%_3`RIq^J9XK;{La&D-upH1Kk5?-L*t zbnU`p>-7ann#%?9L^prS1uLBW9=l-C?)K_wt9}pBrJW>0<}Hy3Nv2LWv&15mw`(1o z8K!oh3Im^D)MKt+(uePJV6AYg1S$Ii-^OjTcPh?~CyeG|VO14MQ*4$&s$+im7GL8q z?zg4)oGN|oa`YVM#zaLIVYi4q3%XIY;+u}y+_W@5*vJbD3pn_Dk(Ev%iEJg5E9*C| z;`Nt{+%ej2WQaDqfQP}W;;x;CL?XMM{!Pq8DgKL?aU=_AJp38q)lhwYT>S(MM{4tu zI|KqLM(UZNpIdIRERMzBiwS)6%i|Qmv*R-DPmX{h4u*Jn13@$!^uvBLsHanAjP15x zYGaJemG9{tZ#--v#yUPGNa#Y5V~$}|B_^-}P|FE8ayQse#BrH1!&Es(b$DpRz|zw% zx(J_SbQBW<4H!%EUrWm;vd7@37|gILs3?|t^c-fz(=>922D;}1TY)S{l8@{%`n9su zRP1=Ox17!cFfc{2T;ooBQi8#Y7eQ-lmWVHnBqb=*sWu0P}~i5!BhOrNGd}WrydU;@p@+_#es6ZJ4QW6)Cd!LALRM> z_g$TTu+<-Y^?B*3%s&A{qy(y+`G)uTam7{>6|98_VcxsNaYC_=*@b>gm4<7i-3Ojd zy{0dH5w&`o$;O(;3Uf_fq)Vt|6)aPT<_J2J?VC!#3PeJQ3*2A1tLWu_Ws5@h`KaCmm>!M`P&G* z(K@zhWZgByS@-#o_{ng}DP`F2a^<-n<)qyD8cZfN7pBT5PdPy>`J{XkAa?6S+&siG zcqJD->hEz}dRwLjTmtkA(5iHc-c;gRk{f(BGD82e_mMff&c^l}5prL`s6si|j5Fd2 z!PbDL^;SLIS$9Z&GI!FV0X^P6?tzJmrPPs^h``B0!&6V z2LyLCcovXFMgG&JQ>BMGSE{w@xX4?{%?>;R^(iQdL#8orvE$~!U#>^WuiZ6U)T3d? zt}lROohv0niGBP0q`8}5A-MS}oY{|=&>|DDB_`R%w2TitwsD%HN+d^qe~*(x_#SreIBo5vTi=*pg# zYin*2lRke%q#I+ZDTnfH>*a3Ion48%)5kcNTIjiQNEO(=L!+bDW7~gfZR@!o=vD5! zkY3jo-7PAn3tdt^7qek!<%O-c6;P1&VH|yT6U_JsAa9s z4|lEhjF0_RT6YHYGxqyxq~4qBG~-a5M8_wyu)EX?2DH^+!nb9k(D1IaGg08$B`aw* zh<>pP8Lsmka5E|pL=LFG4{u`PcTzU8?jRQCt(}=+fGzx9(DvgWDEt?2Y$26BfADt~ zXb3%bBtfHl$Vh@J!K){jQfp(MsLHt;&)l-0`cn67p=55`6=AZlKo~N{0(PpJ4J^7#?$!kw>$fCmi&(IIG)6L?LUxA)wfa}zVB}BfQf9(H zp!eMOZ%%kYg_A*YcsReR+TgR6=M<)vAK%KL{g@o+(sN%F9bI^RA*O`%vTUQDQk-%b z8TAv~P}h8=I4)y2NMZV#*mPN{S)U3m(w&E7H#UE+ascMS`{wv#a71zHq6Let0#j+3 zU1Fb3%>68v?gG+N3Gn1Gk(0NOncd?7GvMkH{g3f*(@~0mTDH83`%j*bq6Awoo;aBi z};sJS1|bemOMti|Dk#8bC;(qw{eP>V%8MRy!7^C!KAo5yTve;3lqA*c)z7t+b}Q1_*zT`$h9X zC2Ne1v3KJB=e!k7I!1eGXsEK3nX*uMFmavlhlD9xtEyWdFgK?{Tkp#^utqkaxmK#*-+HiiLbXPK*@f=xf~{x1f-zylINsm8Q4y8f5Az< zxN?g0n~FQNZEiZL*pNm_-i-Y8E&5|ZYXLIK$dI`en^$1T%*^CNj^9KKKlSlewU#Bo zVa>tZG5ZSqLGY=5HYt$j9KS;LOAzA0DqVR@3>iv0OGrrgtitL6gSQcL3sz4$*U^+X zV$n7|BI1j#D7!y%g3FQhxI67kDP3baZCLZtJJ#9o<> zLhs@ofL>dmI=sc0>3;v&UwoZcAqoT>FO2Armcc7Hmcx<)7n)^9!z(kn`1ij zQDu~FiJG_Qls6+p&hGmnx+Caj1)@@vv_|VpL#K=RQR>HbRLTkFpkuYifAu%w$h@ho zbHd91rseR57SasZD>j1ioU!%!)F)=~>7#7$F7YZ)CmvXJc1#FZ4RM;#!}k+ z(L4OuHC1QwP&8D3{(Mo*Ose3IPzHv*;o;$Fm>~(SbtTSNN^t!EJNvD~d&K2rIXjOB zT0%h*hlB-Rw}Spc;PC_wM92HovG^eIV50*HL%2I0`I&j-z1F=s_|g!X*zncn18EU} zmf?TJ^lRAU9VSI0QVe$7lM!1qn{jLBCka63<_d6<*rUTp7FEVw>A*UVD^Rlh zozwR&ssiaE&YlCw^3o>_7Nrr{$0M@JbVO6tB+lzE2rEp8T|ao=?deH4}1Ge*<$i+ zZ1u^F+A2kW!$!Dw#1bkSAzQ(8cyFZZY|lnoi6PIy^)^X|o)$j}3ngvqz^n(rivP_m z9#Q;@(V*rD(C6mnt^wmgfHv;CXIeT7eZhu+9jadLg?0LIQ`S3evR$cZc95X3+U(6Z zP^!O|-v(`9fiz=EQj7xSdU#m>`SU;()(2TC&{JX?PUq>*+qVHNot?OXPx!oSB`%{C zs%ixtm-{^1;a&8r=^A@_(zF-6Ff*&Or7kWh0b7EJt7|+|ABxo2h*u-my3PXX^`X*H zmNnYI%Zs)?=XU1Ponb#mOU?5EGGf=aqMpAQ<=Wd1qe-gN8Xf%fG!FgQHG?t5Plve< zYuml=+drAD~fG_h{7ql9Tjg60w*VoradwCD2^H;yWe_q&rSN!&J$y=8r^b*pZ7{Rc4Q6$+adHb;I;At5U*!yR^pmW6uvt$kB`b;f)JdWHG}-JvUM=XWy{pMQ7(>=F zXFo@#8k8jTyX;;FIj5E&PRPZ;`jexS^E>|c(VA`ZX?v%bBCQKS{({~5Ok2Cr(mdmx z4Dk!=Y4BjCaXxdj#o4dHg0R!OV?2Kd&fze;SP~r1|>|{Gop?Ti!NQuuPKEri0e98G+adFSc zNLxJbbEtbo^=zo9kOywQ*b;2sVPRo>w{QQPnCOBi8a@kU364MRih;2<&ufqEgHy+e zY|fT=Y&$7IVAXKaWyovg&E;=f6k`Mv&8}Rbn5*BXn=^=R~@e0cg2Y*+obsZw+sb$+UA$1 zo1O?OYil?st#dnbul@b<)XA2M_mmM&vw!dJ{uLN z@VE(9mJJLP~^OZ_KP9w!(bMa~qq@Dr96NF+kqK z$@61xzqP4E{wlTU?YY~@;s+hqzp6`0F0XY2&!YBOY{;P^QGEfll;G|2QEO4=j6FK{ zIwk9Ve@EfTlk33TBjS9y5nwGkc-4xy9Mb4sp2@A=8LgU%Ucd0|;T* z9m)(3vs6s}cv!Ez442c@#QuNidJCv3)2@FQ1pyUl@X#TpA|(O>f(S~8Aj%NZ97<`F zPDM&eKuQD@RAgw7E)XzI%{jfXGY+?9^Qc@56_RKz_Yu8=Bwe<1*%Is*TS(A zz@u-#%W>3C_==v zFx!#ZcaDSHm3?b_dt8jv^v5~E^yzgi=T{mTJ-%B~A4>Q3qELkXXtX$~|AHZOw-d(V zPS%5t0*piwl#teeFeA|F`y1IorAl&}zYHlwFk(VafStY(qZmjA#l6u^ZXz5Cklg&U1g9l8nvZJGUmm4z2d&_bGDmXF>Kfw< zHvOL#fUhld?y1={ZC}&W>drzrZV2rxwd2W>^Y%+&Ax*ENAc-#sO2Zg$)C}d7 zuOlLMfAQiS422+G0gWT5G{);v#PWE?#-y&4$3Mw!)_8NLv~F|W`m3fb6)C}-?Sf%$ zmhZH`R;BZd6ks=tllg;BN*`=bOXe8@asqym_KuFV9~%(DN#?yPi==9l>V7RP-AlrY zZ?hb2Gb?~BD2Qe&W8ry@3XhU3xl{UroQrC4>GaQ!xn=g`%oG-uH;J{~W)huCT-Mlu zeFoD?M_1S5;j3D589Gb&6<&L#XZ@~A`${>T07>(0yz8^Zg!o!Dkl5$r zO3sQ#_if`76@-R`t&a!u4;Of`lEdb)L$#%GswMEvY;J9>fywH+gv7zqTxIsV$J>=P zLfC!6o4+OOEMzw)JKhlfw0c|1-(4#J8IONAVq^*bPsz-r7f2RBDJnp6=n!G$6fP%J zf7_NU#uTvqJ;tbBTY>75*G6%1pNOG~z@MfQhr16WY4*bJ@;ccpAT2C=vtJsGYc{#` zTq)KBKO)Z1(KAt33Nj)lK3RRZND(2e@2x7TgTtBRYac$N`;&&GDc!HJj}Jw-%e*Uv z5TdC7G(fhYs-|YI=f(q7RcP^6uX1|iD5*MM9Mao5Z?7}bH#v@tbvdXE&dj!b$Qum? zh3mG-O*;Yt#CKDGbX$cqGx#Mfp)g_P zqAwWItDnCM%9Wr^zUvEDd9AV^^Tra3^VP_1>i!9>(US6eD=GQQh4(*Z#otMnyAnMP z+h`2-D{Ceqzt3Nf3+)nrv7J13uG>QZoi1?*aO3UO#MnfGc}xwR?5;=kVP< zLf5Lc?saxNmHSj<$2O-EvvzOaNJ#xK_^BkiE=OHZkBB$QM5qB+SJ>`DLP{z{8&1T& zZU}>G3E26*q9^4{f<$hG`7O+yj+~6Nmcw7<(p?CMZN8lcYWe z`70JSHeZ3Mfdp3&6VO450(g#*i37TlTV9eTpB@GRi33;RW!hi>lrt3qZ<{kXiOJnC z_y`3$FRD%$q2{*uwC4>)i!~4Eh)YVc9+YG^0pd~F^!K0{!5ui}J@yCj-=_-s;t@ZD z2b^qGA789DrT_@{>f$M>td^F;RaFCa>T|!#<@WIX?!5GNJsN?>5eGdB)yIN@C`3@X z#kZ9A*GmB*HWf;A{K=)Zd%Ls5Bc8{l;_Beg3y*|Qu!OP(cNQ-KADSR^+z#Qh-JWw* zE9e2zYuBzFPQv`tOgM|^F)l?YJZv#vyUN*m>xeo{h4J9t_Cy$T*3E~fAB)=LB`Pt6 zFvNrc$}AxfSl<5YVad=8*%D zFV{JnKik@F1`f2YJ#$y}tv@WQfUTOhJn1FH=lu_x! zpVEdnr%I>0a?JTap$@ywB(~|AY16_?4t7u9aPY-FfgK$l=eIgZAyUmE>TK{#lNHxum688 zk|OJ_?(RCcj8R;DBI=C*+0w??bm4~X3VeGQ|8vqeT-wMJP4)A;06q|&qX#1=QV|ND zhris?cmfa@m|<$#Dve4Dr`@~icK)>DjvD-sG_@b91GGXNJ^j31K7jZHa9^MZMbpd$ zfNy+w{`_7Inb+++EslhiS4Q2f1z#Hguw0LCi7B=j8sFbq*sTgMXvUYCNWCO{L&WRS z0g!pSlk+zaUZ|O$FM^-?*}*hH?kkGs+r-e{kZe4+!CV{$-q7!&{>Q??Er$MN`36Tl zaR~`%R7T+*czuTrtdMZXuQJwJTXMB`y`&*MC8hsKE>9hxs`{)RTqaj>x_ZWI{8Jyq z{VcS;Dr!DH4^XB0xib}aD2fY_c@xU1#nY!ZwVZ8j!$JPC4#W%-!7S7QWvrRAb1b|F zfDSM*F~xn|^V@OXTQ}{T6ZR{7@TdDtJXqE@{|9{gMVj-O9L4doOfD}Z_ziTbv?ga_ z`SQzSD{Zwe7Y5@x1Lwq0F@88k?rvNVZXkr_+_>fyYEepcr|V)_4}fQc01$lq{iI;Y z%L6zZu;)N`L7RYp=V>a5vD!D^&9K_Wt)78e^&W z;`dLyDvD(4)koBl#Y4|$r*?>K4wdYm>?*lL>eM;BqIy|lnM#cEj z*swB(Zy-5=(5&92y?7CX8=$9c|NYx(WE;7s_F}z1J>(gsad4SB-J$Th`e>oL&g=Ed zOI0fc6=fJ;1xhL_90Y9QX#J^vRSYje;q}H$ z8$|U-v{hCkYb78msKVjQ$i|P2A3JNFEFQ_5Ul#Bx_6MEMo;e+UjQ2}ZBVA)JoNRNaPi9WQsQYL|_w>kwZPEehn9rTm>QJcwVOFcsL`?9o1myPrtgZ4V1a`$yCnnu-^IYHN|ENU`N{-4`s_uV!_#;PSwebwzUo+5oL#UL4@8i+)zlG<@ zU#Y@>FBiWs{GdhvZdQn45QJ>2+oxCzzQMbJSac!T8_>1*#6(j_3xI^9+=5V$ROqKG z{{?7&j%>{bndo!Tdies;ISZ?=)rE=E7WjE~1P2t-syv!k-d&+F9ut7;e?9oB))*_0 zcPA6xhh)$VkiIf$EPo1{f7LtteU~bAUoK8w`w+ubD_gmE%C>5c3pDr>wSMP!4w(n- zw->b`_mbz~?qUkbMA8qYy$R|j(`?@6{DN3hkS0fDCk2S?O!;X$)DP^m@yA|Hb2{tf zJX$0?RwUemxkXkzf2we04+0FpX=Z9_>IZPClarI3afk0s32|}eC!X-&E#%lKtZ-i+ zr5h6JRd~F7!IySB-ZmXFXq9uaANIFA9B#Q?@e;8T9v|-gO9%Vk$-0t+K!EHeRPQl( zLD)wwP{VX#<1`NHS2+x zGR9ma!;Db6)m}#*FAtEs7O=Y5co)yF0V;(I<-tp#Md_mAq9Uo)B5)glGXd7@>9Z02 zXumCu?^#K-0LrsgoA+`;ibC=1h2{4JfG_Ie4#FCfc^KdtsC#XPjRA31`f}RmfB0!a zveWi>fOa4P2Y^C|#)Q^K;r@JTYdZr&TV_rUG~`W#gN$cb`-Wt4%YC1HQh=BIox-D* z#k`~evs;Cp0`g+y9Lz{qd5~Xi-6e|gF`ngKV*19(=TJ7Z6}kHQ6vqyR)6QQD?%XDg ze&~ZV3lKm?TdvDl{auN(@Vw8{_aRPOLY+N7fki0RuzftNl9w>R+1DkLn-dJR|-lmjC>ExsVbBl{6&;@$$r+FJgZFyGsX2uonJg?)8Zy&R_~ zCEN>hzh!NbhDPvY4NUzPH3Hteh;h;d)z;iroy?`<} zTBiUrKyq99G>QL=XafTfEb0ItZVmDXksLk*=BUo-Z)I}yHZzG3boNA5{j4Yyd(qDPy&dSSDYGzAG8U5r?3 zo4PQ05E2g!=|R}@sa{iCuVYqajDT{L_xz%aKtul}bjS;*jj_dRB2JOiHaTj8gIto` z@-XWZ78bfMTfz{d%ZDv}J_A6xIEp`7$(coPH$;GLWM^xq7XR19;0o6*bZ6-;5^T+z z*WVT)Cq>KM;-wIJs4~;ac8um6wT4Jw2&r*gA@(gC4}-&cgHbV3Fi&AH_jGrTlbaMc zY5~cgn3y2@!UYSr%?8iD6O=9N6?S@FDz3?~^&-<2i~>(q4LQq+I*5Tx1Iz$X75sfN zn4kZbSkE;Co)wwbDn7KmOxXt2VKgD5@wEDa*g^);e#Nw#p5v&Y#KbMWEgiI(*GoB} zAR|GTiVa*(KgW=6)Ps{ z@b2aIz{a)Hc~!i1>8+X%uxe5MRJt_Mc$ z!6sa?LJ6Qp3_xpxrcgBkFJ~R%3DmECVQTx*qrqSaqgOg}@D2U#r`3Nfq&43Wd zUrrk?5j7qfJxuf{2Prv_82P!S_l~#e0moBTQE`BZUs=WT_b6%*oc-kA4Mj6_PtH{v zOeq~aAZ)G!+9nR5@~at^09SRO!UY9IFtZVCH<%^wfNdq5Pml12oiE&PX!IpOGaa)R z8z9*Ri3zf_v`i*lCTbK5^Qr=c2ld_^qm%2Y+hVq;!$ouH2_Qrz4;BlO4?e(#8;3oI zC67g#=R}{-cFry#7h?3zM+mmK-(mH@)nA=lz52zy=xS`!;Q{|Kq~fo^bUA4E3LrAH z^k|Ln0~pxEpu8lW+d9C2F$1PYNc2#@LIYhY#1n8wD7=M*S4>3Lmq+Uumit>X)TJ)O zH_&{Wwq!ZF6JcChH*FKtGSqzw2Qm=24W8Q6Jq_E8^eAaBwAixgRNA zQ|3akIysPBMb(XXli>ZjcwYBIlChI#Gyu0xZ32%vc6$4}n@1{FxpnnFO#N=OR$@5Y zn6Afu3BTmp1CP}jqUM&CHE!>9Zh&qjL-c?NksW0PA;w$2sJ5O0#+w9TI~Q`{aNLYY zDT_@bK!U`)4;^uA<&SkldW1 zX>R=!|Byve9#YE}Bn`%|CGTXKKjy!*F z!6xiQ$L3*3K!1~4D`4cwq&=2dGJcW=i_-yt(FK5 zheJLT@W^?Zlhu- zT>bi^okmmAH&4gKFnz5xERB)&WkrsR)MqY>kBOWLA zb|Dua*dpvPOO()Ipcc{=3Yr{~`l6c@e82cqZULP`@cDo*Vn`+gWa|$GOtWAGS1LA0 z@s_3>1JNNfskc2LG8vj5r*z355@(4FkHzmF2(}Nv^l{4_l=hvA9S*M$@TB@hW=;f$ap2_uJG>FV=#$)Y13QN<%(2bZwTGaGQxf0+Vo-&Kx zVS+$5H@EkIl)z%wfOBu8RC0R%5-A|Y&yNO{?GFp^4e)64z$;Wh6`F4?yY(@jS8r1qTdUpeyk1vF1g5hG!pr3k3;JfnoS zryJ9-X3xcqp}R(A*-;H*Blb7!!{smHorlX6P|O~-#T6Ww4M7ZqT5KQ_eE`l`oXHEq z2p~XFQ9RMi!eVyy5if0e&$B}a7dJ+u@qNV31(huww1#_OwTMh9Fk6CQ0i`AlV z#xwzRG@K!?;egv=3ee53vF%3r328{`>_@Gy zBb;Gmv;wUvs%!IC4Wt{tseb2qvx_@fIN=IIFK*&t@^@8F=Aw>6ut4@f`xmC;W zrPe^=UkyYO<5ec!df&T3N#t!uiq=N8aTW*!C$z1DH`Z>vE-0KyGz=XR6Epil9Qe66 z_2c;W<;TT9eiKS2wd*4R>r`m_QAv|cd;XA}N}eLI=fQrVxW19k@-(SY>RCqWeUI)O3$v)pRi4YPkt}PK zoFVLd*M_D$*Y(E5YQ;z!N);)m*zh3Y2H8klZ@i|aq9-R;#freu$;WfaaCv-VX)mkv z&=QDU_0X4ede!i0?2^i5gYQdEqFD@Fs6y@@``ul9-G=1kf-WIk{QchuspQMWUIXu= ztyI$gq|YIRAY4Tx!4wKE>`fUf<2yJwAdp!-xZ4>c%eeV%dF8t3bqK@}oByTy`AKE# zm#dnB7{k5Gcvbs7IZ}2t*^*D7zl87{A!%ttR0?GJh@mM`& z&&cvFv@oI0=%i{XM3Ct2jRxVE*dJOV7}VFVUtQ+D#3Fy8=;%5Y$|W5@{hpiavrq;w z3YwE@cS>gP6MI9tTI6-A&tI{MVX6R-+1U; zN~t0J@KLfi-XVe|d%VZ1tSTZ8+ASzWo{%y3^xK6YW(Q6xGyz9v_Kd)zv+eBz*}zS1SPPU0q#Z2kcsQS|vOW)m|n`u^MOk z)ICZmRpqj@Psa0(w0i@pxrGLw`k&&D(riF)4l=>~JJ+9~E>>u#8*B$KIr{$9jEbXWcRZpqM*63l z?8#QVp+YI7b+MFsQ{P2|EmPAi33c|$-A^fZ#BY0)gyvcCN(V(NuvBQE&X4RMP>%Pu zxi-${JTFLpuQxn=Zq?1#sLau0f{@9WG!zP^BhH zT`m#joR_J*o7FRk!O&+}9EE+U6-%|hcRH^R$ z_qFVRl%3N6|GYN(1)0KH{v{)+Wz}sB6IeSv&(5{9!m=XF`aC_xDNi>XLX$wy7$*Mv zaZ`~s{4S6?e2{PsgFG#uhmO3Goysr7;LF51rNIgpvu|3G^S@xSp?J0>j+}`Sha7^o zb;>&X5J7(cW<5-TbWr|>yIASz)Z0V@K2i({=1`Zl`irjc z@WFmpyK}^E7{gv23!5e#=c(a9fe#uEl`sa%fn7523*bh! za27YDd!-aQbT4rtl}c;pjZG3^(u9yEv#FU2L7TnB3-QeZ&)R#z!x)ju#B=u4Mro9& zrg3C77>p~g?O#uoYGwOQ^`UU$yu|y7!^_M@sr6d+f$O)&s0vVMc%|d$uh^r}7gC75 zKfj(5L+mN&`$f(&c-;*e3}4+#yM>1pnq>&8b)S5^}qYtZf5SsHXxTVz^f3WUwKb3>Qbx{ zlcW0HX^vaT`Pc`FeSa;*^Ppp^uau{_>i+3eso0yE)_joWUq!g}$Gmd;>KTbcu zETewvYOh$a%l@~Cpuk`F@Bv@--oF70Jy!I}NYoU%pPmxTGc~HNl@J$a2;*yXG|i)~ z3E`aK@y<>rrBcbMmuVZGzHnXMiGUwNPeSjd`AJK@F5U6^sD9-Xq?m3;pzG{CRxi$s zx&tu9S#~7F&n)qBL2@wXIoGXZjbhos1^m?ogOh!9F$)ASgX+2G^b62v)xkE4IGD{K z;o|~)G@OF^T#MVY**2@wEgA2K&WXvZi*p-%SgT=kNEa^Di2C>hdzGdihdb!oAo=@6 zi12RnIsy;6^gQ|B<0taPdOhUhKy$hGk(hIqioi2_sNyd5-FNpnGu_X#Pt^=8kxCz~ zsebEOK%tHH6hrcmtV_Q;W8Wqk@R1bn-rlFe^oAt%?dI;z;ZfM|G0DkVJwS%XIVsO( z50xk~-mO!+&FDw&hr(h}KOvtF8Qc+fA^;e$&4Kw{!*_-{HJ?1DOcPpkKjd@i!~UM* zP1Tck01oK(-kP5alH7*qDPViO+lE3N2U@u3a8s?nxk^nUU%r_BHo=sx-)?SMeW!aN z3U%2iWDEw4WEUIlj2=*k{$D9}hkMZ$GORoe&B)?4A zs3s&n34K=ZGErr0x&Zc@L4gbtkNHoxC-dL;&b$8!8hD)1BM?SpFULq|Wo2XU>>B^c zIO2u4W49p7{UMuJmgC*zZ|XZ_jV6zXg1dw3*+JFU>3LpsYV8pZb&12&IV}+a&stVP zcjwqV2fDV6F!3Z9J#Sx$pWGc}>{s^p;A?_D0=l}uiIHfo!z#wHkIG+F7~#|ZsbnS) z1K`Uv673Dyubq~Kzhs{kK0)~U%*;#}(C7LHvH6Oa+=>D}G!9S@JS+8WXt`9rsHF`p z0Nzn#ik2pv;#8ydYLC8sLW=@ zjj}{i=VH9Dz?r6&$v@2K(!-@d8)xq53xG-Dl%sgl!uQzU7CBb!{ew09 zG_#v-!t@t_Z)ce@BBzLG(*|8BOao>GK}!dlPTPIyJ#kkqMA>Z>gz%RiX+*U=J9Bkx z;sPyPRj?leF73Y$xGFhK4= zx%*CD!W1 zd{-sNcjO`2MVH>#>T|Q-4*zLG&Q7f&d_g-cUi7SE`J$DLp;fG$4IY{VKA*#YlU0^Y z@oVdXuu>u;Bf}*rV4)2DpO2SUj>AB0!55uUS)_=oBRCu0F(zbG*>KM^+@?M4BEjMK zdb!n-rdG~k{`bm;(5*lC_(#SX=P8|wMYQ4P9_MtN-#3Z6oXP*OFTLaG#)R|8cp|Ph zU4#K1Xi4(J?)9hY?=RR`XP+|ECCYh=-H-&ew6v2nngse@s5n4roy+zGWY0EDsc%8> zZ7Xy~(oP|FxbBztrVg!~A|wgm)Y%C_6W@8|MrG^rwo=Itro2Q6XP2EJXV;AuQIJj1 zLUt%C@$QWGu{kI(0~gAu&-t~vSwK~%V1Qe#G5V@j1HsX~sBc3?)%_+`cEnhKJd-@a z#4DNaOXwJCbKFysQ>z0G>)-E_^5KsYMe4urGx#Eczntfd%fV7H5_+RXO(9RARt!ZQ z@7GLz#p>eqknk`I3K8VtdadzSV^F@)%|=!URw7M1RXevj=Qh=_Q2`G#dUg#?7Q874 zPT8X<9pBff;r-a{<1sji%86{4wYr{>heudnE0@>6KRx9UkdKLEu7Yan* znOZ+b^c{;wgkz1oppvzJ z;1Tw-pa6SQMEqDj^q}0J_z-)(+B643C8rxce8A>gSFK0qAl?YcZZYU6PxhowxZ#Kn z+xTIo81SG)V2@JhJb(I?z(*Fs&7W_*$loe*-Mk_7Ks>@_G!8z#dO;&Tu~Mn(SnWT> z34JycYea4n(O?oL{$7#;ELvdM$jl^v&4$?$z_63z1L&k_J6N}KOUc()p6L%cIiE_U z=#v%slV3!dIrc}>*G5MV>(?VuXqUaI*iujd!|b2ZZ$(LP${z*M!G=E4CmYhe#`hys z?LgZFI`^PjaEcR z2om`++$9K%6goFb%PWJdwK;B`e8PGj{C4#6nmZjEv(i5Agr}gQIy!un<8axzI@na3 z?8a|cjC3C=^jQf#`q*q1TKvV|JIEzbXke69)TW=>>Qx|9Ib>X{k1lvJw%b>Sj}^uk zYSV^UPl%IVmX;BTHio%3cld`GsZ6=7tviCgB!*fau9M>#p*lx$x<<0bCxu{n3~Ubr zzs#p_*e2@X1BN_f}5_{#0Au~(& z0BGD-hrhrkV!c$2461s;^vT$2L#{XM$5W!!oFuX#$#q&H1_uMZfRanhTdZG(ZRAK~ zYWWc8^)8|%P*`6c4wBO`ni|?8gT}y4t+>iFY06Ee_t-e^j-BkCZP7T7=4B-W=mYQ% zdq(I+3ZH~NN|$qWiR<`u+Bcp$s;i5dFu+120U2N{xY^g^EQ@i2WsbpOZ!Gw;n5e72 zubTLtih5tr*Va)(3UP(NQu5tPlp;DW+-{lq%S$~T77KITn7#p$5B8Oz(uVpk61q>STE4*F^sAbtq9q20 z2Ux?N=|hds^rtXQspzjP{_x+LgP&f}IQ#5EtwsV5v4Tq2>2_^gitCohkrGWv zO^Z2_D(k2h4TV{fkhh5)5*Q~i7d|Mzshbrz?h{bqdeApdzJsreHOdrw(XBQ`kstDD zXeqz<8-=6W?i3riwY0Ugesr~E{@>IfH_7(x-#cdH1TX^P;*CJZgD@Kw_k>IsyF%b8 z+KM5>@6@;$tisGIt!!z*IlG*!69G~9*j9L%rkMj=U|CB{zeS4`(jvveo_9Y!1nS*- zqoxpg-`qoL7&Ty{8|3b($w#$;`wOztAVbp3(=*YFobeqG-T4$Bx73=R1<^I#*iSVw z&9Z!bG!zl?m*60-rP)4A*C0D*@~G7JIb~BVDmYOo8WIi+wSU)aACcOpol*;&aTW8T zMB_kl1BcVKu7JX|;sT_ELdYz7`Bw7$#T-a>c**)Pu4Qe$bf%=NOnH#ZZe5!)CUi!u z!hMc?Nk2Rctv1I@y%pVL`lcSqY=9=d)BOUWdD`rYa=@wlxw&VvZ6Dhf$Dw#5pb<`V zHg!&Lw$bB$lj2@nSGQKf`Q}mzk2sG<9&diyv|v%FAfagTr-Gt0JKF`16;r&DqlcIp z@y|S}I?0>y2(?MjVX#E?a-Iy*4SJADByw zm*OErT^=JN8^1uaMo6@J&UMg(Ry6ihQ%ZSN=zgVUQBq-tXP<&VeP7<$5I#mz2CXFx0`NRDQpAYmU;N z?I~=q$s7lxIwT-iR#v`D@M9X0SvitKUQ*iqonvy%_ho!k6;m z&hYa?BczV>4`Dbw*4vWU1of+&>9_H=7&iY+qh$uJZJ5xva!+8oGAi7_{qjdC+#-04s+4z1oFHWEc}B6=JGZ26XC0u-F2faH z>-Gx`@R8)hQ6T=FPpLKH--Raml<|Hvy^JY~kGWa+V?OHs%w_mpK@+}@;-QrT{wCNO zN4Dhx^Y9*QO8bHO3CGMRoXZawv+*p^z^w zFFOFZa+Im`_jM!{anAJbe?Y#Nl)|83VIBa5a0-&v*6d*u3|^MTc>yw>xI8kOaP+uX zm2IX|+RyGfg1OCri)K=ny$-g^;o{ccLqWbGW!T=beWFdqfoK1WHkjhIkL~#4A8~`x|{jJ?Pom)B0xYzB%{yIm- zm?BZKA_gYRwaIiR+;^OH^Rg6viT?{c|VSDfsSw~k6vbYG?oNBRGr}G$RM#qnr z$Bl227FlmVKyZhJFevv3{=$$N)*^h_6O5C*3RMOdPPH#PLMJ3s*l$=N_QHVet0{^5 z7JZ@9`KBE>L`agZF$EZ5lapuS&68YbDO+H31!Q&pg?J)pC!jtc)k2~G0b56wha@I~ zWDGQ{cfG4ss`FJ*e!NRo_MX;$X2thAw-olJ3N?avmIo()Pt(KEO>|kcC&;}P-0}?m zJ)kxdH~B`yo+p*A^ZeX9#fURY&4(d(BAnFMR1k=n`BQf#5TNBbW57ahj<5AZc#Hss zT=>a%2_}G?qaJ)kDVT?ef0exB_aeq};VPiuP9naEn=p95@WAN!S6J^~?T~A8`hOKV zsYp|803X1YC77c=05oj8LfGelL=N-n;{C z|K1CY-@o_vst?cMHK`hvO2Kj~aL2>=$3q(&LK2H=<`A?e_OaImFsI305Q7XO$Y{iz zlmSclfW81`<#9%@y#rlYLb>yfrm zrM@)Je#6%_eGB)f>9C`Iqw)o_xG>JpvEs;%##fNYsto8T2eA}NN#Z7!Hu!Ky=_s50~8#( zZ#8mq5gjOxDj^vJdrk0Oy2<=du};qIViSC145pO5Jy%MW$L#-c#HajMg>$utF^y=N z0#m3oZycB~ITKZ=?smx3gxutb3rY}qe@!Q&=pV#l@%S%Z$=3N%T{loo!xnxDM z)IYOyiV;8R&QWR@cX*&R4rJNL8TjXg^i7l=2Ke2+Sv7eYioH%4)^-DuD`ZgqfI_K! z4onGz`)GSx#GaAL87DVHTPKJ?Wy;axRG|fh`D(>$ryNG=Z@c#=uY6PcI?i*k7KsJ)II@a%v!iTml==RnNOPC1JF=E-=k2!$;b9S7tQwCV#cv#AYFE~+! znb%9o-M?;?JSa~HdI|XODwod5RAcK5gSzosb4JSDgEfkMqZP=BPT{GD_-ZoOYSHpn zteyrU#6&3mC)5Ny07dK;eqRF|KWS!d$<{mJqJc*QAio2Nq&9-#dDf9sm--qAfc+56 z6%esE@c%sX+|)6sr1vKa6W3{*;R?l!o)q;fOj5(C!eU|yD1XpeQ|Qnx-wvzOqT^0@ zDaK{xJhxqTJLK^%sxAB!0TU;e*RN+hCriStA2ag^K}+QLfo!Pyd*$8o-ui2kd5;yr z0Jh|mpi^vvcqE`3rekLQy`w`BaS3+QBZ5(|@>N#e0&KbUc3A5GZKZzr*dbngU6jru zFN?-6lhUH1JAF&WX^;ET2@+Kx5EodEf2`6I{4c=lm-%+Und`77auRGBx)4;yN*s7_ zEAUQ;AUxv60r50d#uHuICtmvWpsIRzEy%oOMrqU$#FxE319ZQBftF!jCOxAyQ8=Y)TA#hYqki zB|NdWA&MJ`UZ}rlU}9%S-jomE@!0kfZZnmb+cS5zs#u4uFXwUNR6H|tsW&6m$kaJN zB_}vqW!&V^i*h}%eL$%L*^YEdPTdL}8UTMoAdF$@VA&8K5XKVmKd#cO$p_?lkU4+5 z?cngPbzK~9#ys5Ugu;}6AzJTQ7MBX2Z&VZ1uzI+W0sb}w%K-2*fOr7n82;=}s6lif zumBNWJ-o%U+ip;4j8g9c1s&Ze&!o!ChAlc<`xcZ8xkDJ1%WCQBafykX@#?N`|AtT{ z`vRn&{A(qp+~jo!y;!(%5U6j8yGB~8om^yRZs(w4WB6{;tzsB!AK z6;^tVEMc4k!U6<|zKC6+*;|L-jqF(ke-*L>*myab_C=ZAZxNAr6vM6gKmg%Ch>p0% zLN9aJzJ!T$ucrjyUbcF~93tWXB^rl$CF<+}3N7Guu4(HO3YOd=0ycPm4K~%~s=mXF zwu=~4Y=+9}TU$wC90Y06pcTDn0-@47!VRlF3V{9Y8fp{G)WIjgco#MD^Xl~31Z%hQ zKj6n<1f_;}11!6Mwu$ErDa-Z67o)>lt7JAOvh~U_N~!m{&;Lr2BJ`OO1A=fZ%hq#& zYGw-IzIQIxK~@g{?Z>Z@k2lk-tgTPA=Pcq2JYfVy=0v^Bl~DSl$}3JnGSE6)pdsBk zsQ{xc96D$byPw_2)+@)rvO)`CdJYWfIsE;D!kDX4*!yX2we~v_grU1)9n6e}Bzd)G1bsnhTphdS3_VP{@tdmKG zX?eKPCH~9QA6I%jU$L^ruiAgW&J+lEag5IW_&+Vc!8YW0PU{HkTpRr;hgql80{v;M z7!Sw_fD^yZU-^3FK>mZ4lq%d2uu|?;?dp7}-frE6|=BKhdFiyd2n zAYoK<=h9Y*=Ya^|)hO0yqJgP+=yJFsVkS=8ft>Y!FN2FWFGQr>fl(A#Iw=0gH33Nt zpjCnR^f57_nc8x9_ZJ7ALa9HMlW)m(&l!`zJ)!U*3_i(OD=P>DpxWC1{#+3Wl>^Ua z?*c%}M?>dYbeg`~@=@#@;7Lk2Gp-D8FdA0(OqyTh&n+s(_le$I3xN9H0;@;8j{*Fa zuZ#s92k1QzMH)51cbjYYtK)f5E@Y_QLM9ulOv*y>&7vKEM~q$hKp}^AbKAc@v->?B zi@|^*#RPPekWB+~V$2L>k+|FvDPZFyrW+=a4L^^hv`U*2M6>fWbJP^fS;VSGo;pfo zE-yh_@FM2-T((UoZh&)o)Y6JKxGPN+){h>aX@)!yDMhK|neqByRPU$aV%6@2yvMk- z0jr0WH{f?~{v-$4qx##!*A7+*Ale+rAukf&P2~h287Wz-- zH8SGdhnSMp$`#LWR^q;)p(!Hi-BXw~0UJCcApaH@m+}gVu^?VL#X~YlN5^dTS+d!p zRQXEu;cNLlkIc-hjph3Lcv@cTti`4*!z%|;a9@F5Tu?;B-&9*Z@^O_G@&UQKGfcSE z9q~EGY7)O1&AW1klEQWH#`|j^Yet=yxQ=(55lfD}O>(=S2jLh1sWzqy9B>T0gy^C< zeSGWlM-Hb&0S=bGK@*V%qAN~V?jkDc?1J+?Zaay;AIrB^L&QQ(a4P5}qfBa$gEx62_GG0!SD2>dv0^u+{H(PrJU2e#O*yBi z?5wUJ!6nQMd%Mu%;K>w{+ADKKuqP^bSd`yOYnh5J59p2Rn&_MJ-MI!yt>Y|-6J0_W z0YSlf+M5$f&LOox|pG4W1PbGj=p&J5PoK%mjs`GgF>WGm#@YXA!ab?pz9YaM07 zCgmEYH9m%Xq zgjLx8)We{E{lEF-DOleJIV9j<0_jE`z#sPwby?67h9rcnVRJ9a78jT8&7a2a@O%FV z)o})1`Q3flzM>;VvMq)0IHuz9(}2|-Tn@>D6@K8;L{ zc&$2^?Q3epS)c`LIQt9C_qL0xAMnLWG^Pg<6Wt94#0-hI$IENIV2)Rd3Vz6b0S5m-4`r43v6 zfQM7z@{4LR{u0@DmTaPrh$c*pz+Rc0@VmR-w$1~mg@a5@C+&g$@qq!MBLS1|cHeU> z*E_75*u&5w88o#T4BnsXys|J*Am?8ErMLLsM&TFwzqL~9rQn0D-H=S-Ng1-C!p9Uz zs|!3YAr}mr+Xi-RF~2}_Yk zA@;fJDGb@aOoU)Q1PKnY>|qcEh(Dn9AAU&TT@jLJ{pwk$QbB8I=#BS@B6!1wFEk<6Qgd>z?ua)*IF8p|&4HE1jt|P5Reri# zGN{8SL=X|rfuHKQgYH-h1eZXDAv*djz)y+kuhlvw^i(o|v%!cu@tddonF$vh{v7m$AjskjhSe-Db{}S#27{_<2)DY#{e>VgGc*e zx;n^A(SUfDlIXK}uhL6AVuw?2?C`G6;;i$xK+R_FZ!fs!xBAoni02C(EniksRg}8J zmN+$yp_eIk*JACq5& z{Km>TGkBKsjsWn<`X;Zi*9XVutk(2c`qZeH3C6TQ)F9H({K0++4^-q1F!&gg^pO&H z(zkG3%~)twelT9vswPiO;hH&ATHZW>A;je8>Lvph2xRC_q{Tr#_muwqu87#!w8$i8k5Qx%|Jh|PhQ_9jSNkTh51FMw1gKrRI=7f3?w9klT}pFc*S zVFCtIgCTG5#}1Bf-FU>cqlR`kOv6|E4Q<|;(GQkJMlYeGJxQ)Su!@`zZ}&Knj-M(Y zNMWK6^|wX6B2A$QC4O|8gEXKZRr@m6vT_~f-r}-(U+f_dmFV>Ha8HeNZbppy3?bQo(=D>f9x_(>y-AC+y_E8XFoYiFcG@f zsD5S7r8*hCH%pbd`c#JaU6Bo|97ViCkh1f|t@B;o^cP|*Z(#O&Gh3&6F0D9t*_b&l z{_YeCZ7S$))&J~vOlhBfTbH*THj(V^x}<&ORooX9u^ooIT@*NsGqnr+VX1^vG6?En z0eCx~YuH9j@97FWHL6gj{xkWampc} zOEHoI`B4_X8zl0-U&B9&HWN(=fjc$KI&eI_^F(L5aOCJ^ zkmCYR^qXGJuFWYr{ga;zcyfE}Y+-;%Av-mDr`*bJWWgU1kV1c?U+;eQmbP3`gSJ#s zqUq#VT6$v6_SW6f!JfIe$QO_IVb#h;>)55Gi<*t+0P6PMarTz4)F)z1*E|(?&h!p3 z;tqzWhkOV`2{Vb=oI0}aP~wU*8maO;%sJVr#{1<|d@}T+SI>E^U6u@d*UcbxAZAM` zF=A3N z$NXXN?Crvi>_3c)j&qU%3v`m`5 zhV~xrgO1^3gTMOYlPn6Mo8x!R`gk5}3knF>wZKXg9WZ!;-4m(ZW*K*XO@8eEsF7j6 zzDd2%8wvtOai+(SHdoTV4o~!q95MTlo1ZN`&GrV-0QEeJ_ z@zDVUurArTDfU849(rk@@WUj!&;l?rV9lm91!eHl@9k ze90ppkZ1Mfo1Q<|UP^`R%|G+sTYf4pPq-u>)^2g*X;x+Nq3I{Tjvm&U{CxB6-~SCK z(ae_=%I*6{R~YNnl?@4Y858!xuROSl|GeiCEA1#S6r!`1OHr1dQn``v~wNlI3? zML~dJ(h|)z*Iyh2jVm#P^zLEE|HJlYy@e~!QUjU@G*>|W$m_DJ-V;E3KK3S+hEX)j zZ8n|}U?>vrF7Bn5=ariX!59FFRQHg<`x1W3Dg^`{zHE$U#rNDNFBEB$HaLvD3ucQ* zfjid^+@Iz3d`Sfb++x$erWe^J3^rcQjdHrK*xN(wOZsFcI}1ES>5{UUr?uffs@8jS zNE^B`AKs=RKG8h1=Cr-J*Y>7%ux)wup;^zYR5@ph*+;}FxUer>oqgL;`}gbjvLBFDkph)?Gv$}Fd;4_J=PB^7wHFg0ilB38RWSz~z+)%3#5j&4v#XtHSC;_wp+ z@7MQO0&jo`P@(hUaJOGBPPS=s)pEEhc5}ol*}PZ=&QbTPuaCZTcD8+qyO|imh7s_K ziel%f-nocUNeLpAMrNTyVndGp4&Eicq(ls$R^B2x{2}qBx3~947gm@dkP%WQq!PwrD%{?IcTmFWf=mj(c@-e#!eQn(z}+b;H?WSYhtkL+G?f zo_4<)-&SDKavlL2pxkEW!lg?aD3km&vJjzD##*2951}33FPtP&dB$b{vtgHzZag49 zk!*C_4*3Y*pOUPAVcE!A91&)Rt&cm4?mAQvHcbUh;3>y%`RzThrhtti zzRBa`CfeN>qdu`-R>W%zJsUo66*F$U>-LC?E8>m%z+x_4YLz{Q3QM7|b!5{WHcDjJ zG@u8y%M=mJdIE46!_h@kzBVXpm8))VUw*E$GW&f#JwKGUK}D^(IV6m=Wb02=yA zOo15Ud+a&^2ApLi_vVJ(biAxX_ zJN`xg8#$xK-*-I^S`3z{l)ZK-sN^8t^XNZ$jzoE0U)@T{iFXZ`(z3E9pS3C)5Ca4Z zo_UZ8T{e%o%&Eanr*s7)5SqrSgd#1N&j;kh2BzNOlS-304>@XrxrBIz| zUQr7g`{c7SFZ2t3fUeyprchBF) z!VUGU#EJ$;g!wO=jvTY#{chvCQ98mAm2oyRJUzYv(j-&UNpH!ihqb;1 z)@-L>ne}t{!P8nOUJo&c5g|-u+cf~pN5HwJz;oXM6k4svL!G@O z3Nyy-{3-s~Fp&yb1pkXYI96&fGrTZGI6Xc67W*wm)FM~N%Gi;Q^ z7fcv|;Isy16e+J3no@;3Myt}v%3lqGn;!>Vd4i}5mJf4J{Q7Z8Cq;>Iy7-eSpP?yZ z8+wsJGLKBu1}nck0tlVB=#y9t$he^Dhw$t8gaw;UgV;Gj5GmOA=;CRAyfW(I^d|mQ zSc{`@ocLdq(sRRa!^<S@hXJRqpwKM62W0r&+QAfAN~^OYRmkCax9`cX z9NCu3ozQApn3xb}{eYgbnY4ezGrxNl`g701Gq+n5Ytu@&obnE{;t@|wNMQE;@8S_`dLLY-$SZL>zj`!f(g>i znvq_1*a%rn|7--*X_Nmgen=Hc8RroXfsy?MXN1~EX4E53c9MbAWL0XL90FC@J(ign zCU!@PaWK58zQZeZU8RQT{r=_%sD|#aW~J%qmg}ClEcMk~1#QwKEsV7`uwPx>8%sX) zGtZSFB4e-udv=1v?)GJ0z4psxV0~np=zI{Mk-zoL>$#9^} zKyWn7;JjyGQ=Xb(RSi^ zt%2HS^@F0h=xFWS`Z_f=RMkem1)UPxuPY#%f-^GwzpHm>0Tkrt4}ba-mz&RN1c{-E zq->)hL@dlOEWm=DDA1q5st38^SdC^mKolsKp}H#_fOqen?%aJw%*+cuMWLm32G6yK zWIHq0I8uBD14duuq2bUX;l4B&cA>uKwh1a)IWgs}lW!gug)eE@YP*Qb-g1NHV(dXK zgq4lOkq*S&;q&Lu!7sQl6(`+ibw;3RoFXPL(%H(7Z4^p`e0q_==|?-1G|yx%Ow-)A zvXKbxJ0AD6I$?WX2QG3rz2LTM_}_0_@nICogoSb?|FHiqHk}7CYljjtSHlR-5twR4 z1IL8}GZfkeq&Al$M-#zGduKBueiUeCIlcqx1EM#a1_Aaw)2&-)NQj+;qnU@Uoem1x z+l#3kUHWR24yk0JR2{Dh3+z!-x$;;0X7+KYB-w5xIV3A%5fU?Vr|`7FhyL6$Op~c&^n6$usxZzbL5t4 zPQ;ZjVtkDm@-g3_)N6=t{(YnG%rrR&d;fQh%z7Nq;QbKxOiq5wI4?*^??d4ShX5*D z2)SVX%1d3V_qRowE;j)wTIy7Sn3oS-gwFGyWrZJ@r%ycDTq4uoAEE~tDr9324)Rcv z;7)|ZCZNOUl&)e*L-`aDMe~<~O*7jeHWU&}AnH1^reUzwWF8(K?z;mc6Uao0@|*jS zC6@QMzg-;`_xO(?cSle0tT3Glz0rOgLyyB|fy*P`>~iUkl01`VFPRz-m~tD`w8Dg+ z*o1^R2Zi6O6S&x+;O#H2P`{a2S{sm-DTGX}@?IzJz25e1y9ujUexr#AC08q|D#G=j=-Pw6CECv%n4 zONfnSLB&i=KHqVBlu+IH<=M$m-SggHQ|ri|{%aGZ(|klz|9<_*o3HVO6ABXba`$as zhIY~d7j(d7Gv3;_@4rp4joWELOu@yJR6#WG+$Xo8caMST_5r+7b=Htqkm5t%y)j@G zkYPFr|IIwq0}3`|d%~7nTU&Dw4q=`?&ksG^SY`xnvGn3;Yv#?3I@jLTeocs9iRkE| z<+ep1KIASeD3YoU%ZLhoo;f)kf3E>#SbdOuY`fQVUjO~h^&X0!_}AM`=YiVclGmQ? z!BFk4GjOY9Xt?7pM-Y7f))awUhX%v%D6)_?9k2{d#=G21^;~YqS1>atCkQc2Zn)(3 z!jgaBM>_Hj@-hJXONMk9;`wm-@zj8E?WhdxV#xom*Pl2+JvVK%|Ne4ttP9pXB*^|o z7k3B#(%x!^Gykjq|5uvl1LqLo6BnvC^-&+A(6JO*nV=F)e8GY-xL2$_Zjj{VGil)d zTpLnT!%KY_MvnDJBSrWmaFvyUU5?3gsX_b}?Xzv&-TBCqg| z)DXLN7t+lpV0TW&(spSI+HcTuaNG^7LuaL7cFvsVICn7p@bJ`o+shb=h3eV%_GcA% zV3|NTBGwvDIFh2DPe5vN+LuEbW-|LA85GROa~8~owWibj`2OK(6r2b;B%?IMfmy4=71Ci0hOKm2hn^WG`O^DiT2 z?8nfN44AkCLB}`|C+kIk%920W94<}V&G*`@*D;tz$7dMaC%%nushzx8~FI8b)8jH6U$r z*uY~*O}SB;Y~A!};c5HUB=IJ>w04L`TL>tr&Hj5!c^sEcJbU?H+e=ds>?wZM2cvvB zl%I;b?nx0+V0J`JO&{VBF}TlNk7_1|e92%&7~Zny{z}f?Y`$k(>)c?>#o1Mmv+%_$ z8cW~m`bP@@U$=3YVz1+H(Q9>Ow$>y=`wHY^DM7EhZc#pjKGeCP${0ZQv{;a*88U_H z6)zz0xVC(YX0tK=rqz%V|Ib1z8;x$6YCRSTd|SVT!%SfbT@R0iz2gV@iykp-75p9k+Hcff#wMnzY9VNK zT{C%9#;KsFD;I<7lWFPEQjO<``u5Dj+o8U70lT*8nVAZfSmfvoX_r{`9YH%KSqkc$ zVQ~rw_$a&Hv^3%K zG-m)12Bw&{>%zRP-`}G$RF`k){ao}~`jn%uX>s%K?*513hiU5U@=%J`Ek|U%Op4uB zm^{ib7~+|HonjGbF*N_tgC5&JFbLW0ItE}Nw!gCum47(B{-@^Y8woWIAJDP!x(xAY zSzUD>SIFD8rR|>XuMHOl)qQFZvL6!!pb;4VcM#)yh=Wm&*QQjE3wDPS9gVy#2xYwg z&V8Aug^3v60(v^^I-4uO9x2r1u{o>=L1&qHKOBzCkF*9suVwOL*Tg!xaf(m_eJ#Ap zQrFFJqq$EPmwG-pqqcG$9=zJQcZ|XA{EQoeRJs}dl3%m2hQ{9s zq8@QSvy|+AjArBvpH?}eGRPhHyk7zxfWcri&!6mrTaQ(0o-r0$l`lQ{jt8^WB%IG8 zk87YfP-10dZXP(egyP8Rc>KWn8H63xnlJEik1hQ z`R7v4nBk6nk5?8wh+XZObyQNSZg{SiCFHgsY8K~tL8zUSw|pZsRO{Hwk~pc1;qFaB zLc;RHgIz!(_8+z*H^%hF+XtUcAlmlWB;Gc^Q(4^l_j`AU>69{+c?Sm?zS=K#CKyzi zdu5i=;38iapyM(D{tM1Hhc3iKHZ6gl>e6QlWe1j`Uu#XbX#Vrgi~uEE&l{~zz~(bV zJe3JHVpY;+V;Yh&FTS{VN$8YhBnO%j4-a?VEN44>QgnHWN%U}3KCCF{Kai{hz080elSHMwjR^L1?<5aH3nsB&5n+dwJx#=Y>Y7P2z8v)Usp2P8{M<7fQLPBA^D6|(acStxs& zl9F<^L-NK3E4Q2TK-H+Z#?`OEUP!M#!k4;~_7%aoegxO(Y%^GIHkfSLn#sMf7 zRpFOyJl~(eL;t|g{fsxCS$K~HZ04fVS~$Mr_pLpXKFNmSk&e#Yo%AOyKK&?%w3_D9{Xrz)j1ZyiwCtQE-w;87E@c-*lPNDP<_DwoXo8b;NsX=km;X*u|euvCqDDXi%gk+(+Y; zxY(zU^urliT8sl~nc`xn--mjxrRB&e{JzD8;>35cBO={O`wK!7Kege$>@5UOQE zlkfM2%qNDhoGg1{cF{YmNv~MKS2C_ivU=ZjX8#66oO&7Avd81J@B+w99pL)6nc*liA~ctW)~L;FB^+jIb-rDjb|oq;s!e4UOP?2 zjd#s?nLI;n@<*uWA{HjI2#~1s^WtI9IoeFzV~Eqrla(e`k#l;#zw^!eDafn*=T|St zE)4Y9(N>G0v=p3zwQu&cbn!eP9bFJ`Z%}5Zrv)q#BIua z?nbx6IU)W1`Ni0zSO#B7b++)X9550Cc7^YXmOkqK{+2Mj7YVz@@@zAoec?6rC{Tg<>Bj|O{!pbK)hU%w%;`J?!jx8UjA6J~KGL1uZkBhH(p zDfL^D76_%fFT;no@!B2WMj_evS_UU)k^J=tb7Jp2_Y{xh)cF3#HWH{5ZKh!IIEFhp zy=-HvFNn`zJ50Ch>6~HCYL?6D*!7thQ&d1@AZ2gxN{+#P;G)N(8+61YaM;mD$5D;3 z;{N&k@JAKx{8s&+K{hPpzIDwuC5Sl?W8Q)U-@T9cBmKL?6)odR4UyLJz=rKBi+u?7 z+PQK5Jk>x3Z=E%ok_^~3Hj2?R41tew)n925UZxDZqi0Q3!OWGa5FN&W)!;xK-4o8; z#W-dLtDBkzwFmwJPxeV{P+#=83-4v?I=VL+L+Z@XUXpJRYqc19gSqX5S=tFqP*@v9 zRD~v$L$utLjfJ5W;1lyYc;eu}(+8RXEl1^Y`0KahpiQI@aD4UeP?|?%rMVmu|hQ`yv_KYkmEB;0}_t+NUL(qYT}}U6XQRdBkcc6 z7h`t*9w@VAf~A8thJ5slG4B`4w*{)>ThG-1x4*~E20&K^q491_TMF~$t?pti_Vkm>K+j1J_i082ok#;RJ(N=II6sLp5UWBGKlOEOs<}t z7I&mDwQTYy zFM#Ac`EeYu3=w|9-?ycKLgv4ba7;xaOzT`l1|=e<&PE{Pdacf)rJvqsX}9oE8aXzy zk=8ovGHKOhA7^Ts>CcHt_t6^LzmGC}X_^SKfNlJ*^ieGcRqTJsH2`qzuL&6$85=^m zEV<);8&{65#yrX|?w5i8v*gcjjw-sCzJ5_9B}dQP{>lgt0Z??3z*gv;i8%`52cJKp zcf~XB<`UfDraW45Bftg3)da0)*RP4)xOLM?WtdN?xb*Yhpmc#P{k9;B{R*wwb>#~) zX;IIG9&hQ@@PCnAoVwdUQ}>)?6N3=NPlGH*L#mh@r239n|LF@kA>V<~`m715nB$b(3PGdG!IObb*A zUg@$q@nXgO4aJq6-+dl!=8c!>DFDqE?1qyJFjBy5R5e`p21AXYtd|!(AdRi<9XIq^ zN#(9^(~2m;8iDxx4x3G{nkVYlA{|x>|3$iD)6YHuy(j9n4l#}oTn=3;-Gme5Dylu+ zUgNgv!OY&p@d5nt`dhU&3PRbjfK&9*^@EPRddUC0RGC+OZd&vJjR^&*ue;k16WRs@ zzJ(qL)m#n4|4cJf87}=oJO;+Gpqz3(NbHNy^f{ zOdk8R5?;?HJ~E;}zrm!a21ywFqnsM%eB2!>t>apGcbhgNoA|-aiTAB3@p=%be`tOT zIgb?o^8qXT?)@9FQYA#rDL^CuwUC> zX51ikWtk_BC#ff#nx1}ec(4yNq`}iZQ_=8qJ8fk>T-4u9vjuE#20BiuOfMhg1m8&6X@gKKN~_jE%`AKzUlon z9g3aDyzAJGzmhQUWljMe&nN|rWrkuT{YJ!Z=4GwiM40Y(MRIiY40J;g0$X@*f8-Dd zXmlQ+gXzKS00AY2uzFnKLNWDJ+DxybZB!VkGBWuY!^sR$l-0C#%M$pF#+H z^^14WEFHl7AR1dhnSmcvrn3hF3QYr#b7cj0c>GA~=tJo7M-C4*ft=sRzk%Ef=@vG& zwq)KtQMhosly6OfJO7c{*~v~Y$h=;9+xk@~ERLY4#Te(XURIX#c}~?&Fytz$4+*=v z#Uu|@*!ELj7#3=F7tXf+Q)5k@bNn~|f+;QhNH5k`S**%nrjGYbs61CKJU#!#W=GOb zLW!O0F%KW&0lBg_Qx{{#AD`^Hz>$AwU97-jZ1*|iQYxAX)1DhalXxH|Da(l=WrX?cEbyYK@WOe z=T*avGhiutMRz7N_yz}RCN1wqYX&_)tR!=F_1Fp>O#Coj*$Ub=?pre0FJ*%@$~BLF zd?aq-{B@M3TmEFk;ES*Yf^7=|rI0?vM4X4o$%!FXhE|jST4IJ$#8(&3JB%k>gQIGB z1COQDIx}nc=iwWxkrEK(aEG%f;tMrS-BWMa`B_9*zb zcfZ*tL-4%hI>i9KoGN35N67zB71Zj*+LgC6?^+!WMwP;P)SIc;sN~fDZsDV12hQ;Z zbapSwd91%It8D#euSxtJ!BCl*Jop8L8cKf5!}WVr6F;(4f8F>;zt6l~US8giVLAOC zFdN~QG8OAwoZLu`f`TxXt#Lb=3M3K%104pg070tcYJdUPyiVy7NMGXJ76#iImq`8G zlWK-9!TCBy!`gF$uWX`u%gk-h)Gd1mj+FRKgKYHzpu^yn`j>ynA+{_s#hR6o^$<0gc?7o4Sr=eqj6VV_i#Oq^p}& zZ}-8fu%O@*57r|VT%ZxW5WSu7PD(m|wQJSsdu&7B(2<)0b5E=JDSbckr;JUaT2bL#oO2*}QIZTR=Jy*dFiO zH9lO^?Hw%0JMr$tC0+@pxY&J>qwPc;n#`ND0W}tQ+;y=sBK<4#fZB=sn+rptdrP09 zL8p7Pqe@BtETm6DnZ1NWSY8*L=~F-g3#~1=D1HKmt5}h7CRYpUgEam8TXE#)D)DZ2 zI*};^{M=wH*Y!zPVa?Vkdoqoa4Jn4Q3PDR3!qWg4;+T90lya6*jXW03O>u*dw;9os z)_Cj&$NoP2&?1c3H~-!9sJ)%wt&78(PuXiGpzL;_l7~XjtoUzmi!_~#zM5x61%&nn zuduLOLK7*~>Cf{+?(-G~KP?P)wFx8Sf30VS@lUju{I4Gt1N^R&teh1PCS65fi$4)s| z{@!c`l7H~w%qL+o;}hTn@QAj_83KVA+gquN0R}>?J$kL7Czo!#5)AYrD=PqxXj;L? zC>{W#-}sf&qUGH|Zj^bllisyw`9 z(*6oCOhw1~xdxSEEz2)RzPu z=G^WkQ{ET()H9FS^-h;7JmX561w`uA^-4*cjwvuS8d%9kJUrXqleB*AG+b`mA1Sys z;|RF%f;87xkY!9BRps)XF0RegKLS&lq?+BBmpG7LC5H!{xnK(b4o3_j&rj*0bjuJW zVvRQQt(4ZL>`lSP-%+py5S=lgqbuc{n8LqQbr=-YQZ0Re=n7zj50BLGUo5Y{vro6k zcSe5lCn2~~`S_%F@U1jsPU`LEZ{j6MH^r(yub+Uc%v3W88mt5QGjd`TGC!R}{ucbw zJN+jaKmqz)I&0LlVzE(XUuws=+$2Bn@+Nl{Rrc~Gt~ z87wdidAr?+$L2e$&J%XI7jv6Ab2D79QPPiYJ`Ws{@*`(B#=^p~wJLFFPc@AE;ED`H z4K0^}#ywK46(xKh{q-GyfyG^S+1}bdi43p7yJ&x!x!MF~PF)7=pkd3?-+Lwhn8b&F zNj`Ckro~~5iW-}3Je;7N7mmDL;mF0!T_TVQT{9vc*fdd?5$(ZiF`uWOq2GnoPW^fU zeY!-;*XsTfwZ*lK1d&Uow6-1x7Y>;wyPwktd=yw%ZcTh(Y4jevLt1O((YLv>sW3yi z!<9X)RXlQhkFFVo60>uSC?ESv!&F?WHtViUL28mg3DxJj?B`IhLg24bZe>9~YdY1^AMW~8J=v01hKm)cvG@e+8 zT$!}5!;P19J%rb4_eRZKSO=pD82Em;k@Ijn%WGdKVvMWVU=+)_U8KMQ(D2`+F%=+PM1-s2 z+vz4pT5{`?a9K1pHEnEU97iqC(#_sy^tfBHw#Lg}7WJb>Jg$X-6O(kYwGt3>Q>5hD&WIaNI-i<@~uJY%P% z>bL>qlqQ41NCI$?eohbMEvCm0K~V;(#GZcPrhZ`tsX3V2>cHtCeRl4`FN*3ZFo^Oc^{UXw@h?`;{c_UElUtqu1aa*ROtLY^8>)}=VuEgxVHGPOm0x5T=P z48UH6|L!(lo~6?7=ZrX6{&C_!Cav6MxFmdIwBb!3cL0c>m@(uia9uz;6l%dT4jhux zF%b?%<8i#Pr1&b?@nyOUQe-+MmOuO@_89z0=u3VjYh2^d`ho&=D8XC%7SfEW493#G z=b!3O&&+12vW35S6A=}pkSGLMDryz_ z_&XngMoL~)?~29E*rf7CNiQ!D{`B6B%Y-3ns@zdqrCG@)KV~92(+sITFPoAnfGOe^ z?wHuP#N(Icb&So>g(ty*3Uup9UI#AVCJ7tsjS76)e3x3%$pFyZu)$3a;;-$U-dZKf z?K8hF6Dz*eaV7g;}e4z)1I-}6I#hrQkDTi&S z?`yr+kyp4-CBbJ_dny-~>jxIG08?RkOA9`@I)=dLpAzVW(fSz4Z*CmSt`%*i&nqRA zsw(hfMu?E)(wGn7rOPp^5BZUYvR1@k5u6S+6EorC^z}ATO2j({y0Ouh)dM9rimx?{ z;m+9&JbNkPoHSJFyo!_OvEAER{;wu!?cquc_pc3k^!pG313ynCYK(AP4=!;kIiRSqjLB|~9yW}raH#}j7Oa6!JnI)gM-5t9m{FJXmPXY;!Rvp zoh*IwkG0rB_tg)(LT{awvzX+)3f9+&57uL9;c+b&;$y4J%IQ*H-kD(uv}c~3uM4hh zaOQP6z}Je#W?a>Z#(P^*11i!xbE7MR_#pkP8P?xWoXZRg#q>ls7Ocf>9?q@fLG}Mh zpmtjk=H+OLIU-LvQwF`Y1YgRkQ15RaqM}sGBf=f%qJpFsX#47AZ&2OS(`G1j4C|Yw zc3K#0f=dJ(W~LmZe(gz&*NHz%2n>P`A7L2KJOdi*7)X}UHK=WTGaR!;SCcle=WcV( zi!)XxuWD;M!!snBK8`ZNqmnYBQ;q@T{00w^cp1i$G8S+$$q$%ZlW&|_2jUdj|BR?>S*IDUiHo;WD2slG zP!@0UAs_^hjjf#`hQn7k3B(X>HU6Sz~K$-w&d42cf+uWiOW^ybgYj^!rw zqI@EeXbtt+GlJ+&D5*XND(%5NQTim&?jOE5dd-|}L5~Se$;x9_6#+Kr>XwgefdOgA zFnAP@pOvmB5$qA2@RaQtpNW{y>WxB_B|Y4pNn-HW!=AHTaltz`7pd+1EbCoA|`x6EB>Y#V$@D0^wMM~m02_h`a3I>Wk_gwmz{q*w){#on`dnShvrZn zBs-6$b?&V_JfzRB-sVTnL7mk2rO`ZnG$p~~u|_g9Q59I~fOm1&m6J{N>{_^E&|J+B zc#>gst$|(*8m#)OWvQpECB&*L-YID^JmbvJw;{DVo|-3~>JE6}+ z7)YZk@XD^;Y>REOr&D6_m7RL z@ZkM**V;}@*Pk*g+$f)g-oAGrnT6sPoIbr}f;p}5!iuzwjrp*?VLa~~pG1=4%Z6SW zUj#3HDAV?uCn2Ijt9b=yi#S)LRu2BPFGB?Hqq@%>Y;W=`cUkbPc3IRKnRx_jU>!Jf z@r|gx4U{ZDrQh>L+;FYik*`txC0`YB1_5WQ=4by>UVIPj zse%qucR=?1Yk4~q+ZO-s4Y2+TDRh?J6I5-D20;o8jM){%iHXVB_~gk?YFS&Ai(a9E zAtH2lOT#_fSOi^m_~ctSP|!xR+(x*NR+_cqcU+buCr5O1ktfWAnn4pp_%Gv=9z1>= zR@7aV`4Z|(woQ-|0W}R?#MVdm7PE&>8#=bw5p|-1Bfi1TR)M?ytDH9T`Ux?@P3)DE z8S_kUY7WVQyKg3WOcGxbdh#;-;6un*uVz-(U|k5;Ed{PtmBbn;lSON!RTg@&V2~uR zPQTVSt^A$G^mhB2)JLwMFo29M)NKe@Im?0c=09-57>ILLc6<=Fy){yBm+j- zUWcV44*`Nok{b^_50F1slFNZW7Y#8w61v6+mSCzwFwES7HLBFy?teo-3aE%JqO3)x zNI*NYrufklRA_mqvUO_b<6pZo-6y)yKGuMkZj?*)CjNw0aa}I*X`!OfViKiJZS5bu zi`8|di^8oNTsrxO$JU~R-x^V=own!W<_TNqZ=acAhXhqYVe2>O4*f=NFaFc`4J%C7 zQ77_2qBMX;YV1)E^VQkNR-{oZ9ePub(L*872(`Js{}rrNy}YJP@;JFc(ZcRbfxZu_ zvZN&C^FpS^W~Y!eqL~V^AcPQvNkQk@f%=1kWDU;t(69&*Uuysb*PYpwlk{y$cww^( zsg5SG#??F1`;Si4@$ZEWV= z08ReVV5QBHa(-1KN0xZ{gfodiZe>X*!JT*@zsV7P7>uD7^I z6=Hs_oI?$JY!02x`t^aZYgupq;q8$>Ngt3(xr6kfp%AJK{2ZKlv1>wL$1QsJQ6A+B zVfGH>qak!6kcHb-DrA=Qa7R41N3v$3L1?3*6?S<2Y5Hh26K~(XMM=(@r?g6D;7i(Q zYVP{-W$-(O&vaeEnp@fHR_jlKRo27aJiS499$(U_3VSMsnF1&VluN zj9PKLVq$Iip6eVy5HhKmWI$Fsau7|p>UVvJ&prE386vr#y(!$A=556v~D>Lj6yFL*v8d`Zg&5osZ zWfyawZ)7Mrb5_@W2r=N4j{%Pw(x}Rl42V@7)NF_*S1bCj9NYCLeqfqGLb3{nkPJQb z#o$QSXw3~73HUjpusMFb1X0Zs%XB)=zKNGb#d4f>=M$-GjdIZrYI(!OO%Zq;b}^-_ z|F`=__6m9V{`GrNZN0Y6)Q@7?B4zv^<>qyk3Cb3KExV-F74tf*#ddPaNl76wjo;(> z$NLfhypAE`2I~ypf%gB`%kjYbKVKXUT8Yg_yWeRlqH=t#wB|nhNv_DR$(F7gjJ56? zz3FfrVwpuZIEe#K{<#TpVxHYdo{ zpt0_f=hg!x5}^t-A~>JE&OrwlLaBkw#Vb#c@Ie}N(rMWe)~5Av(0orRqVaj}fq0mJHRG#wDCUEkh*Eo<7(QJaU3K^CI)9kaf^2wtro{x$G|AB-k zyYj*35=RWcP!TX~s7JXrs5@63!_%itZKu4t)D}jk=-j5}XNCuPyrhYhMZfWosXd9>#$~OHc3k}_S4m*LJ<%UKrQ?pT4jb@bL&@JD{r&ZI(l;|0$LB^LJ2PJ-(|ML zt>=H}a+viDVCdHTKq&#~=tk$KjwF$hrrQg z2EK@b5HMc|7Bt?tMva{Xkt!|0)jl*eHhrHz92TCY(SNWhuhDC!8Q0iqjYGqdNQ zx`%N2dn@lV{7LZ9^h2+9uD_qC@^;b-1IB@u6gW(%f;^2tj;xA>tS*uQ%a*#a2Y=P0~XaMVKD z9pAlsx3LW4BsmMM8U$r)Hyjsg4?SxR_ZJODnvUpjuBjCNON_pf4<3c-8juu`p8_W& z_e#Fu$4q)bPgB&urZpUh_y!=MKsR&&Iw{N4nYm-wC{J0A)FjHJ;YsdbQWPvx zTHB`Dzh1A9H`yAy5zeg6qkHT-c!ohXeQ5ko50FxT*Gfe4Ui!Z+!+?{IY8gjBKLmHx z^#RY<%f?r`&4ZilCu6@=2cc8GOuw%9YkbvZp~^_0&d}#a3d6>r3*qkO!jIN5Arv6P zr1*&c9XLkyzDRue5&%pvJc0ucbAfzn#h&X$DDol?6+Y8H#D3-_;lV|?^B4BQIv|Vry$Nsz#9P6Rhyr-vU0^5r8 z9D{)+)f08i?Cx37-9?_I{n~8{!{keOJa@Qb1YM_++In*=EHq2;eNpd`OK$mRL%xfv z2aylLVL$A+gu*gILpESoFe?)AQsQj6ZD9csfK(bB6Kp%gl4}r|Eb}zaYOsy_(@=?n z3*Mts8Z(9Vd@-7@=W3r8lSoXY#hzY^Y@Qpbi6}Nd=Ut|YUp8@Rk;0Z1>5T^)NM*5g zO2FpQgHPlvdK@!rzOT$9HomeR|Eflv;n+?E$C{(&g$0`LD=UoMt2fj)7AAmBxDUF{ zF|O0UUI5nm!k=pR^!6z*lcPWQLBEB_)$BpX0g?!Yz<_2*;##>lmv9{UPQsbijC$j| z8HQwyw*@rd&_K%Kxlx#Gd$707LrVn=|1ku_0f+1plG-CED01at_6V)=YX$VHM+DQg7-)_jy1anu~7OW-7EYP!{a}Xz7K99h?^N}vO5-P zZ0G=!JBLzAJa|c>oHX-TZisVKaH3Xh=UN@whtn$D`b`*%A{Z~$Zq@NT0s9~fc8nyX z8jcV`PeMDL=^Di4n2+*UU2OY0{^Vr5x(7<5{z2;s_c|5b4%5cL3Ojj0v?Xf zc6X?022W|ptPk=b;NIC{?c7gIzi&H_KdlRnA;MNcOge34~F|~V;HHY!j0N8|_ z{RU*ug5bf??x-epXbDUWfVe;eTb9(;IkrB-McZQ5LGeWd&D`$Vpj{;?RGo_?`m=si z`rp9>$k?p8pD+uf0lhve?vr1t)#b+XJ$WngLgs2Hyn*Y4zYLyo!=AhI|0}6Z{*jR4 zGQkua0j9m3Qe^Wa<1&#W`SzX4yrtj}pDX*hOWQrSk{23z3z!+?)lkUb5^$HPQ})_X z11E7XJgAl}*1jUIZM^OXU;Wg)Um#RxX~0z(UOWoQI*48pJW}9rD!w52qOHX$MHWTi zjGfKBbKzool@X=4kB?7>-p?pa{U4v7Q_S&p~Lo(H4Dv-iJ^I+K5`_L z&jym82itd|ssMck4cLEyGKZ)?xUlJqAO{E8@G+#a4KU>Y`)<HBtrdptUPJ<7!Jw%TcR5yi(NszLpGR)#%Si9SO>C5g}qEkE`H9 z3@}k+yKYy{kf>fTkEsVQp~djZ*R*93?gl)tGoBKX=-=2t3J|CxK8E=vM$=q-&>vLQq6xVEW$gJHvYm+)kR5h3SsakKa3S=pOW~ zlsQb3!=31>dr6xZNN*v>oijN(7N5&sF642ei4sHprco!tD|m6b^M>RJGkhecYE@9a zAyF%tq7H-y%nO!^HZfi&hPD`8PEg^)ohXRZC~8M#fsTI4oy#q}pt)=!*`NR<;M8%% zd=k?9>gsABzrBHCc*z9^X2Gj#*G6MZUTYVj#_3+bDz7em3eKP;n_pz(u zf-ZrEDet%1>E-5Mz!m`G=$nI<&LS7 zbrOgrC40>ANzYZH%Ajcx#M)p&aa8bcID)njT-XrX1{8Q$U4w06@Zyz~lZ9sSM$X@~W!a_GW&#Z`Xh&OZ?q5!Tf(t6BVRx zd+P>=HxI#A;0$FW2za0#GehV6RsHpQT4=}8*M^7Sls7jhUZ0mJLOpU_CgskQgS#Wt zd`SKT(4V8d0TG$++ih1DljEcKXAwRsj!M_Y1e+)fCA zYeC-x>0SKsR|aD+ru+CSe*5P$k$rWJDCQS5h2%%dYHXuWUV~ zp-{)lP8lI&?@^KLO~yg?mfbOb_vcW3_51(+=he3-eLLrTKJU+a-1l`~_jP54$xN@6 z&83`$(|IA;C!VHNEbj5`5)?+<9LlbViHW~=vfXI^s)Dbd-#kd&&iilu^zVTp@m*X& zwk~@>4Ri`VW!;d_Erw<>1|JCZk$QgjIfjCi#id1T%`oaKgr{w%Q!Ly@GRc`WR#D#s zxFtmXvo{EWzon=FX%J|oGB6OS(?h1Rr6F*W0E0y-erqNxlXiF;@UoSGVJ}P&B2)HM z6cEV0<$nn@?)@ta!qEb6J|89~@;}JUj6fM5)L3BYJsqGe=ZE3Z)qkUvoSs!wOCZKf z3QWw*4E%IDHT*e%-o|*oXVg#9``B?f&vw>70!Ai}G^(85Hcgg}vznKxS(n zAhrm73^hGV1a;CdOmaYa>y_^P`}v*lXX@e{V}PXsG|OYxM2L5IhZ7XL&je3R1qCvw zp$#;~T!q3c6p<@g(~884^&XR7ZNL4!8tcuO8)I?y>|L6Z-_swL?ki(WEB;tW?dMDdt(;pNg?lp2;h}N!}exE_5U3b1|P7<9DzQ_$mgucN3J4t21H^R z1+*@Ukz?7N{61H;c^dLf*8SuwR2~Cc0fIdgH4$%}?04BQ_Gpoul(@qe0 zZ@uE7-MvG2KsKeH*h=8{Ah!Uq5u02Uw3s{rzz4N02xrensECeds%vN>KV_ZHj!0~154v^Gkjk;>+H(bsZs09BX5Su*?{s1*aH5ON~SokTAGZd!kPVSxdGF?=VhqysI$08s|C|_AgV1Hp9%! z8Hz(M;$Ik{C>HSY^4B`9klcUz(gM}WQAhk^u99Axd#4M<;mPj!Mkdoj+x5GmYAU$N zKP11QqcsABO~DA+j_&+JR4ABY&?gxKrHL1ehL}TM%=&x#K`IFP41x){+2Z4+r6nT8 zf2R^I7I_=Km3Ell!)oPG)|@=ssH4Luaoytn0aW7+o%sB`9`>hr z3Dy{hr|fPW^?K0|Fgwf8(Q!4Ssbs}>iYL2@8{?ncdyq?5R`goCr`o<&BTyANOoDSLP#jc7#r{RVl#VbbQ1DI?OakvzM#z)`S^Xk_txm*O*l3~zHH27ckl!CCX<8SJBYE>Oaz1^GEOee~EEd8yo^>1j(ZQc({$JDm3sc`X%ipfhf-Jd1_0RUB zwl;oQ>TmOlq=Svz7MmoYA!_?3aE^bGaV;;5Hbh%lWrd-pzKOJd>^hk9d&-1I@<6C2YfWW^b3m2T@NT7Moend42y_QpeQ& zSo|qL7A_VP&RIjlk$V~E;00n8na2-eL=&z3e(zbQ^vxzT$ouF4i5nkuVy4g4ONW-L zSrjN~VjwfV|HU(dFS$qTMw&^NWEKGC<^#(*Nk7`(GV$X%$Nqw^9RL!A^P1=@Qc5uB z1_qV>P2=S=W?`0;Uu*S>${V7c{fsm5(SF)mdPLBwEO80t>te9*b2#5QDVv&Muey2% zYHTv`t{(`$qu_{LwPhkahSg?YPz(G_zxe`;#NO!mMHMb9LgxOkY-m{11K*zfUY!@T z<9S~_ZF0=FHt=`}(yv-t1AvMCF2msTcID+5{V*st16Cr_z2!~L7MOqKumx_9Snw6q zsXcqRGO6$#(1*XY#GyyZm;0fy_sMON>FB8PxdhQG{7$zHdTFu7K?4mAC&$pi9t8zK ziKAcvF!e2cuqGO57ebHAXt0Oidsj-3c(g0c>3OrADLq59iL<+JLZ6H85+u_s4rfo! z09$zCKXeR#DM?wPO2Y5bYeDfYFcn+E4gSoi)8?0n{yo(t4KXn^``&MQ`8`?tq-Geo zgBl1deaQPNy4B6`N>g~XjpHU5YWB~KK5K{X8$);-_p|` zVV=Sb{yFY%?>_FEL1XX~tVXKm&#n4;q4D!J7BspPD4FVyrp}o2XhUZiM`lsR!7^|wL=n3SLm@MYyb@9_pwq3K*k!W=5_{cBJuWMpIz z%-rZCdiuYYblsIO{#&6itaYAmv-CjiY)jPDsf(`C;nmt^X>yWe?b&~@1G3VuFU#Z% z(vtB9(+XmT%WG`p2a2jBs~+cb%;@rV*!Z1git;n448Bm4aUmd>q#jLzMLjub%I)&5 zfP?y>gv=>!@_mY1eOfo(&vfDL@f@-$P@grC3_2yQ^BS1y#apXKOWh6L*onwFPcK^K z3wLyC3YA}aSg)bbe&@2fx(2`Job9NN@=YK?+)kIuR-F>kU?%H}i_gl77M#X)}?_lfQ3WDWL!UnP&^(xUNa`^j~0J6HFt^GDR znRWJ8>g>)@E%-mmte67Po+9T=yT&^x&;bZg;kA{GMc_Oj`Fo3h`f6>$i_cOzaQdN` z&dizfYN%Iyp7%jk4itHZ&)dX}TFg?3e_Pem(>`$1)Y^-!hQ#|A3d$kzg@vwy@!RZ? z%14hLp+M^HjqOpdC0}2mvu2N-Z{7<;%YU7q$qLqhvIbClN9lgG$0{ zWW0oG_9OnyQdB^yy%wzX2KZ)oYkF#2%MJ%fRDT_8v7g+N|O z_Q`S6+?@Jr2;b$H)6y{w7x+6*Pf^6L75IAYnG$18usV@GUa9Vfu@WRluU@?h+M&1w zJmI=$in&bcKjh^}b(ty`3hXO0cXb`u9`{Yz4HsVjtgw>7crs=|ghyd}> zxSy<%mQhkt;=o?Rnc?`1nFUw{62LP&b2q37ut7uZZ5CyLlQ;>ge7L#YZh^ICy}QA) zw$E)nKvibAZ$%k58hppxZKb31b<>@a>7Fksn$@n4_<`&LRWZ|q=Y)_Swh`f@ThNWR zAUe7mw9^OK4#Wc+kRl-WOQ~dJT`P>Vo%;H{Xwd!LiG%x23E4!v{C*2gXVjAK;S4tK zEV=eOFD_3;z6s5e3npTK4q?cj02;9DE0IfXJ0qi#q5dFCiK+YDm0)q5e&~Cr6}m^> z%)`K>0-1J8!fXn(>fSxzRsL~WhNes zCDKgB0H3%(X;LUU2b46`x(M01yL;qtkXnJO3qOn(1Vq(N&4ejNRtu3ieJoYaQuT`eHzR6bq#UN#t*;mz9SS{>~MkozWwhcZW6YzNT?nbO`-)Zw~)6`U@ zQ#7~0Cod+30Wg;ZznyFf7qUA@T9Jh;6EddG^9)tZJUCt5=YFK4baGa}0d)uT^BeD% zpAVS$mijS|9zOy}3~p*U9%^6tP}#yZmRDv@)ka7$N=^kK=c~b^ssncK4Lv<$8=I$X zZE8r9PW8Uq$lcgSBdxd~WOLiW!Z$WI8~_2W3tia`Bp*CY(X&sguPDSxTNpg>ZZitA zlR+2j1}>ATP}7_nA3vj;7H~O?V$}t~EfL&SiDH;ed;1tGnB9Hc&wzxI=8YRL|4)7W z+9fAW!RIk#U0<~bsq!Z=PtgNpwEbrX$!zDpUE05Y6?RGnz?kUioqt@}Tpv`(%qsdc z55jgau%UqwWo1_vwKsEP{Y?Xd2Wjrp=5P-y+jUU-*W`N;Xehfw@9cTBM8zHkjA?Cc zx@xkGZ69$trMDaNG(D|xTuFU%*FoP-=LudDvw99}P8V7jXE+`BPMJ~q_8aEgpt9jC zxx*ir5%f@z+`c8k?>H6ME1|MSB#wHGvmA|(npKA`FtSskUmjF~(e`?mmhYqrFA6!h zfM)<~lS@tu0x6`x?37Qx(X(8Od`PTo8ZiCa(ma9?FPE%ti-Q}*5^bE*T9K?=xqSJv zV!cO$9+2;e2Aug$I;h2CnvDb0Gykap8I~hc-fa8&7sp!=5q9S14dpH2cb6^=>t085~CWY$V{GpwisERxLh!t_?h6j z%2YDvYju&ASJHWwIa{WK&vT)`o0I;w62)A3({Ul&G3J`=%fTJywJB^|mmGY3Cv%w> zSB{0$z=6^=4Nm2wbUV0RLE29Xx<5e;)?UE^G?svzqL9G`ZH_>RgHk&2fg^A&n!!h} z-4_R=0}15cH}gCld<8tcK@@PEPW#-@(l&B*zBFoBt$nPLba~PCo;`;GonY0|bor{r zu5u&9(g{2-`5T^WKc;5)s$Bqzy#fw|KQl-_D2{m8*tvv({(?Bk!&ntsyZ*9~`UTDX z45*9T+<_W9-`xdGpio zhy6LQcZcBx2{RPcFXB+D=ZBH;2gQoG`YXzSOoK9K^>BT5T?S7hOJL%S)5yqU=npa= zU0_7a({x1rUDIY0b=RZPvp%D3YMJO=UNQTaUSLy-4%^?4^gu4T2#?zD+~~$`bt`*? zVol}%BE=M~iy7UQsSmU3Ln)S-f(Ws?=qqYByG{}*9x8Z_5Ov0`^#RQRXu%XNg-;6$ zrCI`OT6h=y;^^YjlEV}Hgh|R)gIKhZ&EbI1^W0d92-ta$D`dNqf8mxp*$6lAfaXE5 z?AtN5mQLdnmth_N18`uE5{1qDP*uvYlPK{~a~5xLhJ--m%44V10UJfSZsLm1LQ6RR zwH!@OR-Dc4yP^jkT|X_8sDRsp2o!CmNNwLJ{cg>MW?_}&Ho(R0&9A)h<}B>1u0D@q zmS#74t% zyQeK02oY*^19Xrh$&rtN^xFq;f6lYg;xOfx=Z|TaSf*#_6`GVv(ig=<>8%#JoR%}I zttI;Lg~kdlYWr>rME~A71-)U)?NK~WiD}_(kXl7e_2p7QcEDJp4DFKOfb5p3_(;%! zv++*0trUT5TipV*LsVS45{hxuShMe2p1CYUqAqi^eJ)Ez9_|3KuKdK$nT+a<3YL0! zM@I;M=GAw8YM$9L%TbimHkZDEM6CPz!S~dPl42*4c4_$QaH?Hhbs0T9+4}5#+a0%! za1Ks>hqINcE~Ow5{Z9S7*!6ZxVt|g8jALYPPKIf3%UaQk01Xj(ezB?NZLD}TgKfXJ zx9S?O_Y{0AZ@o;}p?=SO{@~WE%+|Hy&U+fACbt~CVOlasl;d55gYheEi;2 zT&^Trm?LlJ90XvD(~M3p0k4LMrQ5K3~XQ1dYCt z2*ufUXi6Jp*MnaB`r|2#KVX<2rp!&(eIk(mn;%Q2-xz}SbyVPrAIf@l;v7sKZG(0i zn#c#t|J5}F=x>et=jC5qVcLo^&ox0YlP)WD@vdHx=-^>x{O5qAK!@dEI~xkj2G4b~ zCGBj~i@kq8+XJWWd8s7GBh2&Qr%CR>phHn{=zp)yu8KH5p#YegsOOT#y8c!}=?{*r z<=OQyCQ&12qd2=%*wpeJCMlI#@#m#aqawZaQ`A{QwvQLLNCAg~Ua)<|D5Cnq(~2a_ zGw&^qMWxr5ai1GcJ*FnOa>&DaRinuE)@}2iS+3HI+MrNv?b5fp+6P|ec5U2mxVF-c zOah2&FxnRoR|JrL&(pyfC66g(5s!jrE3FQM7;B7!sfKr z2g?^fA5vP2Q~?1(Zy%>2(z;M{-SI(OT>YMs7Zgvc!4zsnKp!9`xNp3145>Z)MOb_} ztOOf0$Vb7u?%qcn4FOVsz1!rJGQp=0QSmmdE8I=*wAWY_~>CSoDq$5q}8K84Jo&-v8Qm3^l32=)5$r*MRuy zqI$BB#}J=cu+8$S+MUs~M)!%m?g}EZ)1TC+b4U4kFXu0L#HhydeUrRp?IrF>hN!Hz z-6*v7eqVBh&S|54}{zFepm=me94uyrH9FMd}_w5KF_ ziGE1_Dl&Yq!phTM%R;#C=IR6K;pP#g1hg@9(lofw*a@wUy@g}rF=%z>Y)+F-KiAdQ zXOe4~-ma&0fkgCour1&FnvYXL>NfVi2ud&C+R?n{xTK$*sXd3`$z&^?*SdYLUDyBB zB|CL)W;)*1n!Z>e;*f0M)dMeog1)VWkQJf;r^d*ZcuEbI4N^yoi5{9jylVco~? zN~o{}nb>I_6tFlOegQjKle-KkusL;A0Zd@&C;@V&%^(Gp@4atxqq`3l^tsu4tHRP1 zbrtu_63`&ZTRND>+_ipQn#533I!6eM1qyTz#_Hn8gOtr^Oy0N-H^Q-Kck5{u&KQCZXhi)p!XbZ+@Dhx09EbbUn3($d zA*Hy-5jR2^9G&5+V$#r zNBOHOQl1*T#ck|TDq(idP$1LCGWx4hIb*a7d#=6)#t#5|Lb3L4rfPin3kpDakOQmx zJiF4SblgBV8BbbGS67#yU$F`^D2L}jKS*BQJu6~DCkyg$1h*8G6L8(~@amY)9vSTMpNXcw3S0i4*>eCU!^l=%tr0de~UsqwxAN zz3;UO^WX-<_6!&=PXFIN9rQ4;f93&zw*j6bk{rWsenVH=z;@z#?_3s(p8>$@LSL0p z2p*qNw7#s{KMQVe*Iqb&VZV@{r-01b)~3F`h86|U!(vNciOY*|(BI`9uCl(y;Zdzn zAH{Hxh%l(@>q01a`ffdWx`Fq);Y9+hc9*@5rw!a`!Ht z4;uQ&J;H=VG8U4uPCF_<;c}@@&P-89w|9JP=0Uh&AY((5Yt>g`-lHBP`{eW_+l)3~ zv~71R%=HLIYW>pKTYpX=Au!KqT=~W)>@Ok(5--6czH5ho9y zl(CviRB(#`7Fb4>oR&7DMJ|ZOjfVHFGXiX=JqQUB0M!72f#ANgGk-|W_I3cpkP@I? z0y|3{l9N@Jard8S*o5Ek3FTd$k&i*JplQeOiVFEEKqtkL zGjj%u!W$$N#b*tD!C&E8SUl`?z;W9vR;Yg9b+RghpAMysC_i_`0k4sDPP60+fHHv0 z`x`}dq@VpY#)R>p18EK9l2M=)QC5zB7Hbw}!d46m?fbLnEm{ND73j7cUj@OE^ba4( zz`+CsmWsg8CLt0hO`${q*T(refp9#n24Y z=#<)UjjFmNgOV0i6h1mo=G^JCGJ?+vf!>z$1)86njtsnd-?q0ORG@>22@BLC4SGZo zwTX_B<;x;-PZb*5+OFxGKX&36GzlRdjer?>IYMnU%Ey~?C7fH%EWrXLevCM>l)!z2 zahjFK?g|-V1tAbUdGh2fP_}*%2(_ejNKjj_Mo{ zPlJOX#qR3WNW1c?kynf;Xz=U)@{lkOaBMzjj?jzLLYWfiAhq@NaEVgka$O+GGc`@` zrZ9^$&CUaGJ8qmNt81E!Gp9GLyF(JkK&Y^T?=FcA zR1FYdrsA1%W%KO6B`VYbj+DK)5_cGI!O=$`zNciuH21!ZB@kqrdPcT0c^sRZ3IZ(x z`2>;2L)BHBK&=)OBnDT{PHY6XtK&DV^oI5IRyjP@znFRO%n9`2mpHy=Og->RU3r)8 zOvZqYbUkQ83oS`eJJ%PhTUB@mxzL?oW|DwdA(rkP`ks-B%mLXNp?sduG3ES<*>*M} z^0wi-%tLO$IiQ}z13jP(;0ptOc|ex|+m8g*cpSQh6X74W-BC?$bNjp<)xKw|`3d?R zHQ=rm8X1Xm*=&xJ0j6_P_f%l1s!yEg_(qpm_0aT5#(2h1ZOtwh5%fQr$rS@#2WuuT zuO{izPf09Bad%%py{S7EsywbxNN8t*%bgj?egEgeG0lElA|gk`qz=OIlHB$xqTr?7 z`C_$vo%q~@17m^JDA@T?0HwnuiyRbx%2xBWx&FTopesh(ynP%#LxiY7KFA`dDz=U> zrR_4vB<6W+2vk7iY8*^yn%!Nx;*L;KhvOF928Zbvnmf57K{kt-luVJD<~})!nM%e! zsCvcY_G$okm>ldND$FWulndb8N*LT}t=$D1IuldVCt$mY95tE8mpT{VtcmNp%qi5$ z|E))OJw>om6as9q1duBv`SsS#JfKmbw9GG4>hsqPGcWVD>*l3E8jiw$Ny!@d> zN1jD7UABFKt+fz}13-iDyn)<%b1Jf>ij$yq)sh~sTz&F2Ozw^GGw2OaS662~vJ9|= z(;8jh;6MsZD-DeVY?29nEnACcC5Df&n$)-C36qt@G!?I>DR=~Lrp{P|hi~S68QFO7 z;&*CaO#j!&j{lq+L?~Re#|Iv=)x65HW|+O<^6Y!e$NDRUD$Iy|rk&kmCod$P|Hihj zS~-I|4rj?FEL=RTNg%8geg@ePL?aDV@$yQ6s4eZACnNLc0f>gf1whrFSEX{nMpmx= z&v>C}(BtOw*o0?onN*tLc@ph+o3*D04k@@j-et#ykpq)WIKPzt$(|zEb2M0 z5Q@P&lXqGQI8fVX4(XpWr=qbRr9=UMgl5q3IzJIAYTw%)fJf$3cS;y zqZ-KE%95cKb_pB>Ic_wD`N*PDm!P=0a}aR(0ZYKF7BDsJ1{Q=vK90OsdkS0t5%Ph|=4}_qMI#`T@ z$}u<)12b|z#er2+o`}=RXyc(=OOzrt9h5B1E;t@E5n1`B0`ND9(h#Rlci_Rm%^_8v zguD_OFv=z-CUQmyb;xNE0|NsT+8q}=>Ck*V0L!%bvS&ys>Z@(hAZ)^HAfjd1&G0M(d?G#df+t#Nom9w=Yf5#T8La zN~jD+laC!>ln2FcCtv(0suGmglS77Pqdnj?Qez=YP<83@g|Z>YAiTSQP6CEU8erz- z5aD{?7a_SHm#wBgIf>GVEQWxmT=xWa<~&V{9f}qw7(B|o$bOewaOJQ#7Nz+AxBE;3 zofmQKdx#QqH#plMTAx6ubVjJFz%N_NqI01Rq7}YEDc;ON^n1yy&m;avTvyXp8UW6mgtkM-&1AO;>oMw;!)KOd+!U2z;gCVd3Uz)u~ ze<#6nZ9hlpYEAuvybnumB;Qv`ndNeiOfIb!`!FJVL;)G>+6dnSI2w&wdfwLqU=IVW z#zdiu*PC(s%76%wy`UjA>2MJ9sZw4f(8Ru2#&-nPAg$9uvvD2I?SmFG8}-*!$zUIr zuGf?ffrusCcD1gAcm0tzj;(HthYe`p~I!w=w-w6wJ?<;($cK1I7% zir0y*)ONVqv0{7jD?^64?=_!*#CVxr2KO)`w+j7|pjBe!-pl4odQ3WU4|dRXg{u`8 zu5DcG>Z^X->qR-L+yiWH9)k0}EwyE)fN|L4z9Qgz-9b6yV4IF|U)E&TE0UtE1aEAcf%1PK^~n7qgdYk3DI(?@LvzQ}oo|2bn5asMgo>RW2jp)o4p3oV{TY1%z_kBjfTJKtrVw$VEWXFBR(-JaKX?MCN-C(=6@i+n^ZZf30M zt=o)U^k8Q61{-vMwgTA)1*Zh9h#S}}+tUe3ZB?F%TZ=J3pb*)*y7_Qcs)Z-1qD^qv zN1rag^yjemKsz7!;}(v_xbRLaxs2Y-R5X6u)b9ymOhizz47ZcI^IvJOO@8*A1prdpn>aip;PSh z8z_HDYm7J^VhW;#)}}H6c}K`Oz)@xKBUPq78G9+WY+{n?m8Mp$;G0b^(AE-@f?)!% zy5U#fK?x-+1ah-fE*IU<`(VoI8dw*Kfy%6Oq(OAD^fM05iK?d|hV-1OJR z0{m^JS3xfEK^87{-}(SmX@3i}R0#UfgCBfXwmCV~SL#W{BJbw!N^#1XM|0!lH^v4}`#_E#}Q52aV0>ZTUtUPFc{a>sto%mZ#@&vDrpIe0Ydrc*MsjaS0Y1ba7a@kFE)A;Z4S8Cu?ks z3snG2Nq?*`H<9LfRV(e~WtxY|L5x49hR0Z(+^O25;q-f##wx)Sm=28_X&ugU-F=y=Bf>80FCUxbs(37PcVN0N zWOQ)`o|mXN2ndhUiE4y420=0dh-o0h%@vK8)te(6`74P~)l^C(DZ5h~Wp`#ngr;t1 z_EJ9kf6v|(X)s-1h~5%{r$JsB8BGp+JEYeV4nI%%Inh^Cc7J0H^|i|a1)ZR?)Ph1nMfkA7(gHv$au^5&#PQFu2?+;~uJ)Ti>S*9w zC8kbcL@_+QU+?~lEHW$i7nGFm?CZr^alo_&@9Q4+gS8izO)n8hgQS0qliew|c>F&N^ zVE}j)04%cYmP8l1xH5%_2oH~*8YwhD!>YYnBJD)r*Y$x<{O!Fl>#F!pQyu~cmW~qB z(9rmUo$M~nF2*>*OfobavWVmCTdiNw)YI&w4mUb^=-IQLuqXz(7Fw0ryFr3+!kVL7 z@0v`Drnk&*-h6FGUhzSb8Oc5^PHtbu5peo|rs|f+L1NdZu7zgV+7Tr#ETe`l$#5Q` zph4Hi;D2WNUxeGhTzFy&4WbRtI7+^PFbb3~?A^UVJdLV!L-^FjR~E~&?j_&) zJqb}WmLjV|gS5hK%%h8f3Q&jv=FW5A0W&D3b%26|w!t=RY~kd1y3}Uy%kpDF6ogwr zura8uAsooIt81G4!XIm!Z}+AzQkpLbpkV%k=gB#ro~t|5B$u?JLPCJI^Y|p7a*{t9 zWdMax@@o>n2B*kWPo6_~)x*ghz!N4H2OVsn6>fn(%SiYZp3btNZj{bblEs33a}Q)A z@2uEK3*VNO(nI0;MI7|3CAR^o#9=2B5D`K!zbDm^4eztBZ;&1C;L+~RD^vthv*4do zZgWRvseJacW=zoCGM8 zOQ5eY7m{*yL4t6b==WabQo6f1j-Ez4NgL_8&0Paf?MdNk?=98Sf#(gq&y0T&&`kb_ ze-@JGwnPp3h?c=`b@J@JIfNEOI}1(hU76B}RnHsoPy?Iv9C>Mq;(kyPDOEXryh3{r zQd>JILdRo4AJU`-I}8>&UT+ttUrAK_${&hqhesYLT^7FY*Fn`A{?};>^?#iaP(&Mr z&LJ_Aqb(rl__NkTO5s*15di)^V`SA64R zCOqQ{MlsU#{F4T5rP?{~3)Q>qN<>Kl6-my0Tvo;}g*BNLyJoHN&nxuKIa@W|z%OuZ ztw@3;n{7zLSo@^w?4A#;4p;!TH?LMc_w!@K_+-3PjYJ;}BtoJ3>{*{e5u(N&F&ioByJc$Im&)>)Dve?neA*(PRZ8vsJj_IJB`?;amm z(pH1f@;SZpg4INU^kvZiuxniJwiB)0TAf$v%(D5MB6y#Da#lNE zio+oY4Lr@CjhCQvm6g{=S#duKf5cEOCn6S8V`|C4lda##xA>q)~w|2DL?wx-Y>gnPGu z0+-S4+qW-kapp2JFK8-uEKT%X>&%_+t?uu?$;$)-i44%6i;DhKRwjm&mPSAg7uswk zl_{=)rC)f6o(oHYe596db!+6XPKoWgkTjjDCWF~{wwkHl?9A>3tFXFoo{_IjPRbk? zVrRzdT3c0NU(ZLZcw{t#F&-xZF-obAOhBNpF{KK=^}Wrkq;xM?b?u>QH%7Ls?!?LS zEIw_e;n2Uzp0)@6f!9{=UL*J~;brLs4p&H?k?gtoS#j!@O*b zl%E)O+-&goh`7JGNlLmn8UvS)bDEy%{rN7taPb!xApB;-jNtr;w$~}G zcBD2Gkt}rv3O4qA`8{kbvrp^|e11|=!R3>18JEFS=^UoI7v_|kw&FXIK>P;7hu zn}WxD08-D!WPkuL8l%L6Es(|nDsOLc5x&U0YfY(TpxC-<>eKq2p1_$ zDF&M)9DOG-Qa&L7D!e>)c6K0^rOp3=P32HEe4zF5V*2xDiz|#qq26(hdV&sb3g3S1 z8Muwr_x9Mn|Na(pN7tP%N0m+A27w=b+aW1RN_7$E!qiEa%Waig;|CgsK-_Tn<>OPb zp8EQrS<6-W;lsSUhX^zajjKk2+uhl4p68=oOOy0J(Mu~W@- ziD)_Xz0A+`AI(;oHE#JT#pCbi;M!|pZfP^@j=erBtq7!@5C0#-cn$Q<7MMKenLr%y zp2y}wbON&v_x?x9PQfbKRLUH=cI!ilw4%-v2GOG_xqbLZz0%IR#v5a%Un;M2@d$*a zFHLggcyJfb>V9zGa^Fmsw3}XCiV*ZXp*1jYX^87sHb+X8J`~s$Lgi2>(Z0JP&QU*FLT*p@NyE?y&`FIxYg< z2-D=h?fnn_SayM1NGJjXN%%lBOAI`?0)hS=hpT`5i4&ttVWdof(PX?9dgj_hQb0jw z*8IKBpXF)V8ft)v+u^H&VCxws_CI|1i1Eg1)AKa_=%u%3Ptt2ge|MNv4jw)%IGe$? zut?=8y7i;jvwr+aOt=wVpWinkMgQJ)pwlDl#|O<`Ai>2DhXd+1h5?JRX}0l!kg^V@IBZ z1~5u4X)-nJZoh!{jQZ)Om2#iP7P^uQ(>L_k64Eo=Yl1IyW*EtMtPj$|_(O(q8nJw1 zNIL+xKtBws*7cx(g6v|XxLl?VefP6esd7WUTucjP^*CIVllHi(8fDk)KBLv0C2^f) zq9C$3QO7ga2r8@9HbK%8Jr4@FBf$k&xMXD`g^5>C-QR|PtQlV6ZkEf2tqjLsr1Tu zAafYIxCp?H5G3gPerk1y^jxp>tPNs?+6$l-NO7M_V6}?fHatAMrY%{6>(Zt4Rd={& zHS8Iq<}pp-9M~UVL+(+nj}nZ|9OW=vYrhb^N~;hd5QJt4D=lDtpOmCi=y(ArL3c}l zyNRR_Dy2u@D%LfiNnn1lMPW303m@H5YGe?crjX!nc7~&9No#Y(Kwm1eX>7T?`%}+= zI5u`l+d1uZLV~0$gb*l{CF%;CI)s;3!;1_yQO+bdf=fVF3o(fT1fw(G&V;(OqQU~0 ztndr;<8BnEB_+wq%X=_$bMf+qylIkkSyjGpVPyD0n(2hMjbai3m``g?kDc6aG7y=PSh5M_w~HdNmuqvcELLVX_?o&}wQpN+a5FPKM*F_9IkOwzuZ* zI6k+US}sDa8TQwGMu7Jg@FPyp3mk(kn0 zCHIltcynCQ>O`_L5J*Iq^5HZoW10h=!4O2U80;H16(+ObXrcb<1g^ro7eg9XLO*`| zXjzXOI$oDQSMvWleSQ$Z;fJ(!DF+()L~Ww0(g&I5-;U~kCEIM++DM6>?dKpfx#P0R zE27t-mQ<0CuHpb!PZ-!u%g^u`{khyQx=BgO8fr=273eDKqL5jb38Yto>Lt zcuW1-?jHT#B~bK=!A7TCr_#}wrtXjoPv&9QTcLKN9By}MN8BUjnGzbJY7U9IUaItq zzTw=v`H_3SWQ(b9>|J23^_Hkt_rfmpvS1=MbuvQ8c|Jap25xG-VC8Lm+o#*g9V|Ya zEem$}0>VLw`T4aR?8f;mZv@Z~W5^HPBGhP= zfrB|zA;4BO+S}V3P|AeVNs!MJL=+dlu)siA(}abGYZv2a>EvL`iAiTW##{4(O{O1wW$}Bga;BthE*(C>8kq{=v`C`wF+^KF?g;TCW-vLHG zhha>WOD#97zE1t%Ed9My@P(S{D-{Kn?Ch6B_^`6acfWmLz%&=$a(CfB3*7L*{b!3o)e(d`Zvep9Vwsznl@$ni zl&acNx~Rqljs$m`Glxdm-_5TKw{l}561~3uB!xCl0Bn`*4KC^>af;C)-_tg{?z~=UP zFkQ=J^1biSnP+3Lxu~#}6`qMKWT)nF`;4rt#rt1n3vu;81?{~z=!rLfgrUZ3Q4>z3DOm_*FAn#pi&0w5>Z$qq8eRSP3$v#;FoZ|H(Q!@I%r3aR5*X%#Y zfHoP~F zAA}(TI`mvGAbD1?m9sGqGEVN}ca$|S*!v}$Q@EV7t~qyQJQb{RM?B(%w!VCiD6qXm zT$p3j?>CLC=J{a`&;0I8Y}M zsi~E$Wzw6NIrC4R>J5qd9<%n;UH*D%{~G-3P>c-h9>HXwx@>Sb1lb{O`@HXhN(4DZU*vS!H!k!<>V32of^{ zYKP1e7exZsnk%cOh769L>vT4>E#6w%jGI)^F|cX56+8F6Wupb;p)#!KE}YGMNk7 zwxX7R(**uUj&?}cg?f+q>q>#HSB>=7BOi#s37y>m_an6f&}mV8!Nc+iHHWNxRYEx8 zQYX3hA7~z%l*{a_g#fxhn2>R{)Bc(I@ZnzCU;{exlqpIIyJ*!H@g|LT;n^YQh1x`R zjzYXK73KWIoD*zG;XG&zNY(~}LuK90G4RjtV*t6xo-+tS1IijIfks+RGqTtsn^g&j zND7OlMqo*ax~?s;IR&@So|4{LuESuVPv~_`4f4jD7RP?4oygC5-XO339gXSxlFt3; zadV=8^K|PRds>0BUxaYvvw#k4Ms0tupvpGdfeex>HS)IinEwHf2%kd-#{4Mmi@4yDqu8uEfE79I4xS_ zCHiF1nqOdXF-(;@m^Qt*TgWF_(=h)*LXf}ccl_Wq+l$6Dd^7clifVNTnzZB6)pHoU z;3RvR{5K^hWRjK+@<_JusPA{s)tjNA*nte?TLZv^&37;JAH z4HiACC)81KjkmqLRTUe{FZ2qH1kPh)raKs&h2&p@(N*YVg^jfuyr&$9#D9~S$enCS8D3K6Tsy_eYIP(Au7K}yWTgL6T zH{+h*zus&Jj8~W%at0Wsk*-=*MiY~Qq6w!=qm3IrZ=_5dMIyZ`pb|O?OB5Hi54qD^ zy4@QvduO_Vq*jW0byU>ia|lznmx~AQhH&vo{ao84G8$=282LznwmJ;*_P=Mz81@Zw z24Ug$jR1k%i6f#Wv4%>e!+|$pLq5mXmkHC=!5FX|vy1WmiQSRUvTs_u5*pR?9a)kb z9K(2Cve9V$P5&ah&AUlS6Z43f)bRn7cRHEKM~Fm1O55W+8kraztioLl%K+(8s6i&KFal+v+OsnLsBMR9i-j^fd^PK8-jal*c&zkkhp%TJNo0=a_psV(g_noDS#F|(9o-0%I~yP zXuz8vN4}iRA=oY^x1JS2=PXD4bPG8>m&J|!qokCAS!y_uWH*X%@|)`^bvWRrk0Rgt z>y?{~$K%~r3j69HshCKTRtg5Wry7mY)i#K~H1wR$Au+CSiTjevh(ZL$#F72&gUR_e z$x{k%r|M0PaIj@Bq?P`3me(tIaVWBa`^$A@$f0}OH6|90CsI;o%zSih;Sz`dBRWyU zxUDZJ68TSTO+{^!3fHvXGT5aBR(Uz~9y&bs(fV zUJVFEKxIQb zBrtaNe8O)(!(bpuP=_NDr7Qb*Hr!_;JG;_f3F;p9rvsje_IXp`szC~Sqlj(l+*-R=o!{}GZL4}6V2BWA=e zO7?Q;i#N>Jr0QDj$_(onW$X~NqkV1g++2Xr1~N}Xc-9PxYjiYneK`ehmgw( zw~WtUANbad!CC-B(Ag3G<%iQO&N~(!P&cxv=f7`<7az;$oKlCBKki+QDM<3f=)0? zs|S9Wg~l z-N<0{J2Gu!x5y9hYTO6#A4mv838m#n5!#r4Dz$U5k^u^OAHUnaUTD>7nN?e}{smjzw}P55#>eSD(CB*QB{ zJIxKxy((~4vKO99FmU`#s!`fs0Rg4n8$J*LdJv8!BDNSWudHbO;(zdMvY{4Fc1uOd z`1n9`mE`MO@tZL@xBhT;ywFph;nXhEv>&h?yUg!wfBkQpN;=*jDIIw2JbYeXiq$JmR^MAY;M3caBaD(u!2K(tzdbD;drg2-(wYn zX#cj;0v_y%oAzJwwk++6@@}6@y|G+&=JbrB#8RKL&oghDaqyIkKmCJb{YIZ1lTog` z^Rmi1D)~{3ZbtIkeKWTYbvEU0+oP%qcJN|b+v^~$eN>k-t;3(4+>Q8%d=_#w;Jd=! zqJgun8TEZ*mft3H@HiM-o4Fuw4;k?H^#8SO_k&&_;Sq$!?o*!|vsG%pcqkBX^0MfD zM8doDoIj2Xe7a$Kq34r7*s3V8oxfMqlz$S5O3>EM0121CdpPIKVOYN8B?5X|cIfQ$ zyJZ-Z^v4H0$Ns3-C0Xp1QO9jgx}+pZPQ8giIMyXqG1o}j{8#5p|=0^X}diaA=CodnY=0~( z_xpp+po@`4$AxyZm)4w3P&t$^ZEWz!e|nu3A;XZ!^n;*DE1JlZLhJv+)c6p1oNg99 z;@exg(~hgDJ@N52>}f#w`-{#yzfI`C=BgP_6B=K}SmJpJ(OsE6!-N9(`p4~EEp`)W zLxnwF&MkLy__s1%d+nphag;{vbF}ZAl2KUg2X}T*O-(~nbNrPx81l#B82c|OF%Me5 zSiZd#HuOB!2c@QR5UD>8u-(r!0y*1O(mI4}TJeC`@;rON&WqJq_CH@8ZVUn;K@K{v zW(2Hm!sq^(vLrW^-;H{~R_pKyZC!`X2TOb2`a7JHBIwO#=$DpHnWY!nb0*|BZo)x1 zUy@ZLPlzll>hx|SiPwgztqi+>-*~tZPD-^h2af{7>{c zCwASBIsQfb*zhp_*y(+dZzo@d%Vnph2jaAAdvl=&xg)qg!kkV`jG&^bW0m=2r>bi( zVW8Bae(!v)Tpbj4XvRDKTtf!m{sElf{D?SO<>>10W=Y0^bDGView{QVe$>=RRW;+t zf?BPs{UpvYK!?~D9GkP*zP7#gQ$zH@XC+$O{Jx$ASh54GdU>{u;6e2S!_y-bOFyHy zmZTU+lkBSyy_bkVRR{w6xh7Zi_-Y-VT{Sp@Pyt=BQfGp#5vQ>z9uY}<;<|< ze!sUZQOR~~yEScl56{rN_WNxKv)c$x=atY~#>#Wb4hauuILf(ac)tn>6Qrve!jeq% z^*5r9NyYE%hi9#VVL7)5QnPFU@_)gOjw|(O*`cG$ARMz*zlqV@e8gpBLR`nATo35b z&*^1_W!S1xJErA`E7!P91UD|wb!=@M`N?5wvPU|teGD1YYTD0 zbZ{uqRW3x*vS;ph`MwPo`sR@o8hVlV#k?-5PddJ~&XLL)PZA%NPAyzGT-rOV#Q09h ze{!1S-=}MF_A4Cn(2)sUf}!%^zW^yzH3e)MBXWL_@49Hefqbmb>f7hs=SNgL?OVJg zQ57XXug){KE^Q3kR01KBZV)y$)+DV#>0A8mP5QRBwh}6Le|1oZYUTKcTQB_&s!q3A zPV+-lw;`0_$(?rZ(V^R@kGb|J%&oyREKIXZVR{Xw&!sRS0TU81ApsK-P?(T_2?>~xfWm|XOh`caH$#FI zj<%czhV}|hlZ(WjtzY_#vQtocVWb($sg1R}ckc5HEM4;G;N4{&@;|+cTyh|G;C|$h zfL9VVDThX*E{(AVY!xp!HhBNR?s?1hojLvE;}^|KUoE_H?7PzZ_2mQE#txs(RL!Hd zaSO|b7qHWv6GFzu+P*J$t{5Rikncaf$!IgUAvdMJp=&qo{#Sx({ok=~H@+pb8CTr* zH?*$e#&0QX#s^pa4b{uMMaIxjD9llu8wloFoEr${c9|Q9|B%sH-R3a+g~F;h?ByPV zVmTj1>Xt&Wf2fz|a`eQBTU{dLBW?n|bD69Fq};b(UAoq9_6Nw+?l8w0z|yiZYdJ=) z^!x&okgmC_%smeI%b4eH@?$r)mJiK-=KhBnml@Z4)I_ceatjr!8)MDcSxVh;NyULr zT$~Z=BN7=rEbrZqoU;DWU1n5Q+>Lhr{Y(zqZ|Zu#<3{|RwDT@%nVty>n7gYvTWriD z=h(1<9`M79Ar8uZ0qM8$FWIKd`nlrg7S(pVVu6x>QM2oc=q#qIt$#WaF)!sR%c5cB54BquzI1r9<#fXAftTxF!=vDm`r;YYxp!xu$W0(D@e;#t zzxRXq*Dm_pQGCV50oi5bBQMs>#a6;45S_X3Rh{6YP$i@8(@lHZS7)vrmXOtx88_s& z`Cvp`oS^b+%KdIstln6>ivKLFLfh?jOZft0IlQ2K$i@q5cm`F0QIAM57Meo|+I}b~ zqsEt&mPTY}%i;>!8lf4K_~M`?uN=sW=k|C};S$Dx9IrI%z9N~q*cYE*yR7GF`iQaL9U?ET4YDy_;OX6*sv;p9E<*qLuOq^E z-PfP`at?L<^=IPC|G$UMzh%rF@RCn}G{UJg3!M|{>cx=FyQhBLjeqIvKvBq-?st+F8LhXC-$^LsiZw$*!Dpz8UW}F6()Z!{ zQRqPy78Y7H*w72}e_=7mcbjJ~CXj!vq*!bOvgt|C=7BtfGTB>)!(`W@fYIBcA+s<_ ze&`{GxbcycbFcZgB+pY%XvnfH4zbK#i^_7J;Naknx5?C7w{I6kAHCNc6PsW%WN%_> zigU9~-jIebh73_eWF)^d8Ut?LyjkSz3ttZDi^i+j92~jN+n1(^jhI2c?Wl&vTCFq- zFQ~W_cD|0fhXyC)aXXswTyF&g$XuQm{F9-fAvukWM`35ZDMdxA>adm)vOL_%eu-j~ z|4>5Jp%sDN^nBa5Z;yzG*eGH4W<`jExjU|AIPA$ICw($r(?5BwsfkH54uX0T9SP{- zx;Dx^zq-tW922yH=)}Y;AzwNtL`zXY z{r&w#pe}yu@!9<~G@9;tJ)-1U9w^d}F6D*L)zY%s?dEgal4=1Bn>dYReqH-k|5F(k z49)6NwsCTD3a97YzrQK+@Ey*kaavjg&iV>TbLHb?YfEQTxHsfo!$yYu{QLrUS?SA8 zkG53hIF7L0dGPqL=xsrbl>#T@u9K;S?5A*g8X8N8KuR}I#9;4IE{V83?emR=$1b*o zRpJD%KJ?F%jH@D`-uq_3h)u_<4Hh{=w9#>T9uKL+6FB^jSK_s`wLw(9HEY(8i758r zt<2Wd)Z`@RdrQo40{cezjbgn4TOnvgg}{I-Q9 z-EPrx9#04h77w(Rg{0&mx=T9$;TeaBzS0uaVLeDPd*WG($OX~^l|4!O<;lKl3T97B zD8h$x?_{8?zzbHt2t^Z)RU>R`))bD!$9-qC)?2o|4sw*o677e^PcbUx?jAnuZ>X?vF)jU^XSaa*&~gPyqS{F4#9RUyubhVh{ul~@1L;D?2J5x zdhlER{;7Ru$&$@)jsB5N%G<#Q>YYr~y_398o{HeOCNf5DwyRvUYACwi>qH@%8d4d;+BJGB~5 zkCW{BknISfW6JcgDUvRA*Kz!KTG69&6jeH6iXUzUEMmQF7&xUs4QC%g@4Lp*X01u#S{!KMi}a9?jy&K>8MutQ5a z4h0t{LA_jAvNVnEL?tBj;LC7n#u$uuCHnLd;kSu3g#p>IU7F>UW~0;KOVT>fTCQlp zItU{5WDi!nK|w5S2(v~W67^JXApdbfP0djE9ZEwz*U3msW7~}HUO;B1gRR&urWgVZJE6*mR$!KEK3~S5Ensny*)j)Y? z2O=C7FE5$@8#$A$aprP!b2I6{t`9}$Dim&%4?$0-5XM)(*n1r-tJTLBH#sCNw4rAq zC4I5umHuEYjTW}*cgWiuEDw{DiBt(%*^p@?(;kN6#Ui}ff)nl6F>h=k%iim^P6WLp z%_K0~Dq*rxdwqD;!OY83E8W)!G(%*}6WagOgsI7P1s@phB6L62GLv{;Dr!oLi#wmM zrmnL_RblF)Y+pW06--O{5EgAAK4j2cm&(f8KRwY~d}Z+}{lT`ERj9UM3yQyccYTrf zI=r#*Z25Rsk&mgTZ5u&(6W!*Eo)=&@m${)cD3X$-P_jKzE^hs!%Z-Ypa#kJdu` zDuKRhe(!`!5U$0+K5k4tvjfliHX;x&DGx{ZqZJ z3dzC(0v?zuY>X275%m)%3aAPbZ+BU@skGHWwulwVjAs2B^W;nM#Vt?XS(L@SOEqQ3 zz}~?1Lv3duFVS*a%c5lb{BxKY16rJhkVMP#_Ao=eMiSs?>xw<|d#D zYqpeo*NB4!3nRH#e`hDqa_q|C3SyDY1llqf3>USZz&>5(dlw_(BA? z+VMK7Qn~RsaK!OQl^aCQ(K;TRFbVy0wxU1EleZLkZzox61!I{0{+E_6V#z(2iAhL` z+yHFZ+3AwEiZW0_1a9phHbH>%UQZ5IqAFrgaGg~I%lTBY(IL;ZV*JTzDJdyxd8a=> zY}5w@5k@qi2jWfAKV0Ri$Z{pK`1+7!Axyp~oz%3D^>WaMF@M^7=h(FuL_4LUF15?P zsUz?7(_cdu8e-x&QKHa~cHjcm4CC$arDJ)HC0T)_QZJcD%t$5fR8mA?+jqt>Rri#O zyAt!lG%AC{wgAyi{V@`!nYz8}`7)i%i^S0Fh070d&UJTp=YTMD4V|v6q~yaRM|OZ! zcPd?CqH@0RxiJS~K4tM0ukZVoFUo<4M^&EdO!UKtCEAcIb73c%48i8uXX55{DRw;> z?V`{v&5?AOc-Q38Atz(o<4HCnfDzxuh)0ipgd=Aq%Ez~ZuoRkMWe$B`;&cQvxRm3^ z_0!WMdDy|D#R}f2rpDjEqKNwW$bXJ9bqkfU+S`Et;y1+lQYbBHmq~#Zk z9klxjNYR8(b}#U(4>6U=^6-G!1Em5&qAdnKa<^}kC@GP0Qhm{U!)-7Qu#XJ=9&4n6t9_KGrKG}(`Gt(kxo?R)=Oh^!hmTsX@NbI9W zeGvwttTXbx3Zom|{e!yMS7BfX!$V{v1awDpdYx5O7N*D9bk_~R1!-&LIM|$2i9`{* zi2cAvpKQz0TiXaUEzbnYOeBBUf*3{1>9TWWcjw=Z!Wx99%1``!hP@gn4z_mk+O!5G zzWcMa@v|$7tMDFwgX8en2!zii-)YYz0lJ)eVy0oF1I(od&ClSec1p@sCk5*rwQ!cn zG~!;XHYskOhFLBKLK5pDKnL?4a?vt3ETH1RdcD@cAV#qB!;CjnEi_T{)3Wi&0> zl`3NMsb=fet)nj{zW@IFip7;5%bK2&Alhwm{p@M?d_%bT4FYB>Sgj_y(x+*0BG}4f-C>Q8>kx6 z9N-fV<=Vc_|K;ehV}2UpKtwQjueI;(QJQoe?h)S`J21)8w~R0A^Y=eg|FG19E5*dn ziaWUUQTn}YN_)&r#s4t(d~z{q*h3s;eZniNV{WkVHUE0ON`DROgM|z48z1>j^Hx z?HzhysTGx#iT4h>oj75r`^30vqr*tg9knt@j=emvUcGgo+(wmh_Y&Iaw)^&~W3Kf+ zOtrd>q?)}Io##$mlj2py*^-7&zwPm0GmIy45D%x| zUHGuV)E8o3^|4HoAX;J4wcu{d1?M)NMCh0l+}d{hu?g%>{5=b|6N0+gyG(Uz!*i_9 z=*q(_YM3Uke6c1&*1E}MqC0LV;EW_nDBU3sU9?7Bn-w?fVe~S150*j%R=bFP!FBTe z_0|ibuWUYey8t1sSQkuzQtZk2?b&&1u_vvn_ir&IE8hqAchb~{F%VOmXLI6i4u4E? zaY8M@@}!BY2b)j?e2}u-7De-I3a*ExJMSAKD&OgE&v}yp55yCGD%{_n-Pd5JaM7KY@}0r`h#Wd zFU0BQNGDg6m3cthF#89Y`Jb`?n2Ot8h9sN#Pra3)x3y;559-5rYox{|WX5=B&KnKa z4$DAn`*NHo6YlHisZ$&XN<5P*qy-2EMS4u=7rL(@M&Qj8b1f&-4)&vCY9XTO2;guL z7<-e>1?z3prW)uUhHHjK-ZO@xXT|L9Rm^#W$&9l>U!d*I-UE&>$tNF#QM}a?DpT+S z!+6rcWE7zrCzM5fAjrdQJrlgsv>C|23yADqox}WHx*77;KE=eCf9a^wNQDTPFv9f{ z%IoHB+p4ewHFrEhnkmsWQWwtYy7U*aipA#$e>k@~dPiqk9dZjhF$dC|t2A+)@RkE$+Z=(Q-i<7FfCr zhM06NUayuhIm=r`&m4~Knk~${yRmfUs5t~{-BMs_&&hv*Z2WdGIhnbcpo7{SLD{==bm`_4ZN2$nGCT(#w}r@Zs{*;>qP zk4Y~p=H$!QIr(n3Z0pF5P)MR_bip8~jdQn-+){w$C>aX6ly1G#?9GqF%ko-VLR@ya z{i)9nqr%)VMCw|u6#tuDVrdcls$twP9i=f|93mSLUubpZP|h7VqgxTYQy_O{s<)V3 z&*|pFHSFxgVwJKjKWVLx!tRi(w&y_`_+1~atn$trxw7i;u8)mRNl1rU^V(`IMUx9- zv*hWKnZ>j9W_NY_lv5QCTyTzD*Q3p{aOrh~uqTYkyghC_g$Qn#1n4oba&8B3=US|w zxCr}U^qaK~q(Vq6wHNZb@x$})$L3a&_M62I0(3cnB+F~Yhr7AR$6>VSn!J=XH_OCE z&bM#dy7hXm%ShImIz4S|ZfIRjZ>=CU35|QE=I5~u||DT zpGX%OBGV>1+j^_obj5eG5$Q1?R)`L3$@X-PG8jo1I?j zJnw#VZWBY`ka8hp*0s8Ei@g|wZ~Tu%jP5Wr-^HS*+S>jOyd4G%zD!w8&qj+F z%3HSzuueo%(Z5@c5QbasTs-Eb%LPnf)7IA7T6iw%&TTbopdX{qOLgaN1_T6XBto-= zAes+T;ph`aq7>q8SIs)Rv;X+IIkpN4lCh`K2)HB&!EOc&>tkAu!%)nVMmT^msS}!- znjdm_T}IE)-sKP{hW#G@q;Vqyex){o*?BM=pg^{gS`Wk3lnYs6g;~MF6~l*xJsj$7 zQXs-R;7<48u16hWOS9|2j}w}YJfdcC8O;+1{quVqueo(13`@i^g$y>!^` zW)lBMOUw07y+oc>{9N^>Oq;ITYO&??%LtFD@s4PF)VYEoqPJdW{%j#>G&}l-=)b!A zlSZm!lT-4ui85YC+?x8&>XhQ%2oK>>O?AV_W$UEHIVIv6^`>+#lx)`MS}s3&_t*p^ z`~p+)DAxXtv(7!w1o1eDuHz*A!hrz$(WycSYryn#CWTckB!H-964{ny`Swt26Tvrz zt)>1V&_&rQAW&8VR8Inmo8jSleDv?4E#M*>R#BqmYV9kZ_2x4Cc;d>hV8jXr-!Og# z=K6$j6BcwcRME?0bYQ}3X;^Pt6<+JwefaJBynYg`D9fqaaL7B^(Z&fA zCPN{^3wjxkb~~Dy>LviI5g-CkQBnh^Ln6@mOWYhb2T*$q19aG6ib~?zUxu(_aU{HI zB>3;0W!@b%F5>rw7y0@Ph)se8z7F%xYuyBhY5-`cJS&yeH^l!Hy0l<0J&{>3q*=F> z-+2xeJ2EX z3?V0Mwu%baz|6 z*j*}=AfYYcPJSA;Ae_2fgc(cYYv@uCqZS(h4oG7rcU2;$0E zN6JGacYyl{i>vE(otbFq;kqmBAFfJr6!6G1QqBFCC+`r8%x$rk5U46+@_iicv;<|a zvJ$xx8mx9z68PbJJwX8KvcNzZsZGj_SnJGKT6VEUXqO*K;|!NEI{IS(Bj`6O+4;$61N

S4>xjf%rK0Ab_1R4JQ z_i!DeQ3x{c;_M^{#FM3`8wy@0FoKkNO5?@#4KVuxWdd|t$|@?X#=}{`V~H?RpI=@+ z+@1*e&(+#^jfac&|3+$Vtl-&zL4ezAbO=el^) zlHls9mmn}%cpv_Od_LCOu;hrwgaZJw*J!Q}VWhtbP6&*<^DX#VOHd+1FK@e%dA20w z1n#){0~^ksL>X8=U=$R7Y@WRi)}IwT9fZ)gDbU<9Y6Syy!o~F}_OZS`iG`_NTQF&i zENx?B;~KE2C0nhlzdinyO6lQ7(^LlO=m>YW!^dEo=Q5wt?g*!;5FFc)O%KOd*{+LN z^HA6;iPVt)@JjCGIOR?`RsB?f3&EoN?`;cmNbSX7Rd8?~^Y1D;FI&ocMpq#|O9Y#I2#=48Rfy4dH|Iye7hl9SV_OFN~v z)q8uTSNsz@TS*PcI?xZt&klEHoGF{>=w#k|C^9gQo$k}z`k}<43NPa4T}pl6f0|EZ zD?OVoMCsaJeb(ODXu6>cVMvR`h{dOZ2oIRA>*(uy!{DZ@3~zlPt#GDJ!>axRz0nkx z;UhhRMcCxq`1v<>b*+CdjAzxo19>Wx*NwOJ0jeGik%v5_WXzKw?$XmkLi1tbe{yxc z9m{D(1pNC}Lw4z;s;Hvt<;*j*hr;S4D;72G z_2pbfWMu3n?4VPv+?-Ie?$JYNsgX{Ki_ln1Vu$&qMKC#R#Iu;znYqXmuCi zH_OdC1XL?tqdKL4ZVj?9U$g6={u)yrG@k_|W-#EZL1>MX7AnY6Q*b<yrCdK zv-<>)KG$U>KN#u#os^XBB{_KPWIY886fm@q?9x!F2;uA&v9u?U0Vo&}kmlyd^JggY zT4uEpBpwO^hr?Q~(b3V8V2uE4CY%K@AAry&82<`}2IT)o&bo7bi{A5lDSzI7#jPnj z+eqabn4LH&G`iafkns-8+X7TSv!`gv0+w4L=O} z*Hqt&ot*A-UmOveZ*3(WPfszvc|xb)AHgX|)&vvPg|%0vBDY{nxEasMIe0!JKF}a&mT-IyiSZg1J1H6p$spW=t304o3o8Kwdcq z@s|Z3o1VhV8J7A;AkLR^*YgKRD+lFFn}J2GcptzG0Ilw{{1}Uu3$)Tlx#hnbUT%qh zN^iEj0pmnut~3^vLOEWJJUhQGh8B zu)cm=+tZ@DI+XIK=Y;&q&Er>>%dXdZ0T;)~zF8nAM1CQRYGtws$wQd|T>>xOp#mWq zBrXSdcrK@#&GRPt1abNc0OLf zee~O>D|-LmKpMg3G{fk4zp!5+D;#^RK;VY^>P8e4Re5EKB$d#Ej63iBKwq!Fr0v0U zy9je;WsQWH0UB78Q}cp73Uyf{qjfJAL)e`i`k^9Mhc8mjmcuSM7<9}axc<_hEu23J zu{Eep0t%b63RisFugyNX`}y4k1e8sA(L(3RF1x_NqtD(Le{p>Vk>vy3tkeC~G38rV zC!z~VU{wKabE`L|ND|4B^@qi3)95H5PW?4-i%6tR4A3X@fu#b#u zp$YHG&6^*R$p+`Mw0!>#z|qC9$gg=t*k+7I1KUYAyOi?RG7&l9UAM zG)v%S$+D>beuURLkAk*?fuRSHelW)>)6#!~bq=v+DXAWiX$Ok$LtEQ!@VMtODCtaP z_9cfffj&s3+UA)8T&(qZDor`3`_~s5N95q1X$A+i2pDK!fQ=NHcs6|bpV={zB$B@v z2rmo#y7EaCv;5y>-9}C%zIrtje0+q{v>QicMNjW*YWVvF!~GAYIeNENSNyq+&6yWo9dALz zz<3)DT_<8=Q~Y;se)O2vnDW{<&Pa`8Ma>z#Ib;hyehkKyKv8q%Wlm0ROk#=X^J3)@ zWAyuJwA84zszGoFFl)7Paz*ze7W*g1kq9zC4`sdY7J^RI!9gw0g4n56kMVe&4ngkg zxd%NdjO)WgNYgU1(EB>2u{LHLM4LVH^SLh;a6K}%~RA@Qz)^uky9HUM8if%kGKe5BhX z-w%bjqq@#r2Y+Tln+m$<~BdQxLHdd+qE0)dIMXW4XI&Qy`OMQSM++u(5@M-5%%hWAXRzaX*ZV z4C@=bBPH(Qq0Z;x89kk2NFUhGJ4}R?uw=uXPie9?jK- zGn1N@){2o1t@>SN7Tb#^i?!FV1d?s-h&Ygy7TI2x$={rmGBngq^FhPk-y_(8v#f6C z7E$6u&oC@<^ReHt-Lk_R9H;`vBvf3mgD7Pv$uoW>AN38xdezR=b;gzWA-T6C+5GS~ z24xBH`L%79zILd6MacPRgRU+vmy1DLV`m|rZrs(VD3>Iwd%T4U`n8G?Hsbml}c zv3Q)=KVF^#&nUQ9GsNDU`4Y&55KPu$(*DS_HNPSob!ua+M$eCZ& zyBd-^p^t)(!3Oaiynhw(aSQyPd71n8J-^ipK_>?v6msMQF{9vn?82c9{h%mOzGDf5 zK?U$qBSCG7@|iUDo{Tz+gd zHCZ`1KT=a~!8`2auyB7{7sFXJ7wDN{(-#J@Fm9Ze*UtF9eJASzU&o8ogaz z+}GA^v7dd6;9@NtQYQHIYYnkU^wZs)zto9?%jrOS+a&*Er5)2QgW~foP;zTJyi{NO z{+-gCmrwNiN*VR`_x+>R{)N0+a`5A5Ixatso1PwD+X$TL@B@>(c2;isak|XORE^a1 z#py{^r5}UCiKWqCbOeS7`^rW5057JYL-|HCfQCvsYMn z`JTS=n&Q@_L2}sW*sG(n!>oV*o(2alm2#MHYrYq2|9W@f_w~U$L^GJYZA*!^R|TS1MLsTAv?-Luc=+nvNp$_fWe=noWFNPUIW> zlK1_l)*R5xus^(0mn|rM5mar5SefFfVPZm5SxXWjt_~uWQk4|TG(t|*EI!6YOMd=D z^Uk2JwX-|WD*#W5^I)oSIO^M*$Y@C}XXmSvMNEJ*ul>md%>GSyLP0PKd;aM23VW8O zmEPMgUI?Ddp+I7opJI0U%UoKs9-@n!9KAp-7c5mG?7g$~wI~*Y&XkwzT?YNr{8q)XKxtU zf^|wPe{|o@1f_LF-%s>s4({&Bmc}!@Qap>ec<~aAVu`Q1-|hjT><&iCY|*Fpgc!;s z{7)yhW|(?UqZ}~wyF)MG5?c9P!5YqZ zssb&)ItN2BFOuMg&`bCh8_>wX&(270I?F8H@FANzc(sS?+J*lb^_#RfXrwm(IzD?$(=WQ%==BnK#Ju>Y%YF`g41 zS5S#X&p1Dp@#N6bGFmHxq%GssUa4RUA6m`hw2}2)8HLrsu|i}XM6G5Bd>O{2M75fj zzX1h>u(n1j36MGgE;Ay$5CMtg@)?oL(Wd-*|KCeX)DI_m;%ORhi9PS^d5rk^!38M* zK^rk{-I|m%7QUecCe4>=?n`=5&RN#kJ%E^L^dgf#z7dd#anlf96DBRUAW98o8!fb{;({Ma;0fqnA;*3qVDeCTfwNK1k$(Fc>9)^?OxU%g6fD_sVu zri3jyD_{-4n%{y(?gD3hy0eLQks?DF?%lg@*&XI@$AY0_!CPJ`Oa$diC68^BPw`cR z!W!Vp0*SeTnT?Ech7BG5_Hc>!zhDcm42yY6Iny1xvsq4HG0_~}EOrFGCYSkJ9QX0G z$w=jzT7x#AR&`J((UgHdUZMZMT}nzUSFP=Ph#+P8cXv?a>;q=c-fpM5(oflOhe9@~ zdoW!FJfw86jR4-BRc7j~`nu2J@A<97k~&%?3=M?^%!mY6R(2ZDERUIMg|2Hp*E@Z7 zUX&LSDmg!Xx47Q5eBpv8upd}4zW(pkWNrKlCM0n08b8H{6WQ3r#7|B} z7f@GkzdU7()M@KtkqO=#D-8cxgIGifx>a0U>=zWYT$oD9#;h)^Yr&#pC3&W=*iCU>|{~EwSRaJ@w5HI^qRUPko`cKDctG{yLg4=RLFn0{!a>ppTBaw zrd5OwX0(Lw{QN@r=XEAT_sVKO7Z{oRg2t*oppwj~ze1;*aX=v=E;PkjgOF1K9xLkU z5K>(w2X3_c_X^0kf_XSN*bPeo!fid*`Ix@S-k?F~%6)*?;uWeCteVL3wOCRU>+2I% z%V(vBA-W?bSEGv}<#%6*sjlvU4`$jQyA!SD57}Zl8)Jcp9-_*J1_lSfMZMaz;6B{y z@lp_cVzaw|M*P4d@R}}J_&qL=l%eGSk8D>knE!wQ{9V)sG7)e7hJ7!1jxyk^gO(3) z$Ta#b9a3M{5=c&o#co_2Dj9Z^Z}}D$vO=;GT!0|c{rQ4x^=P{KL`+iDro=QdiFx4R zn>W~>AnL5M(Ie&W(CPBe%=Yr4#vd7X4hufo+{I`%Ikke38Re4TMS)lfqw)=ns@LRX zy{E)n1bSw2F`0D#av1%hK*jAmGD6bRmDb*|dtPaIbGyN_@U*z` zcOYRAoA!bjT;y=5H*|FcAYW0y#{ij|QfFapV6cC?dRq(~dcE1nNqbjswin`t*Z&xv z?L|g@QIr{I4mnPki!p*st(5?Y5#MJ)JOkb)vTUoVTX?1tcK*nfji!OmJC?ngPCh938?0;XQs$KBnB8%TKoF`KuVr$WJ z(f{$=M}EOk3xfxL_i}PIVYNA$AMFUcgwRM-wK9H!O_Y<9lN7~lc){jj&TbRnzi_-} zSOYP(PoHM(zcALL-cH5Wiu@cGYdaCGn%mmb69le%!Lv0g&|5fcmX1DGDG=ra#%0oX zk6X{gN?O-1@R5(ouV4PKez}fz%l@As-Yg*v%Kv}+c0;oN#axeK1MyH!w(xde96GVk2lud*wy8p1^XOw#TUjIVXCSXf>bSsy1Z!YV`OK!- zVccy0dp040(#480&@<7TcRsGGw(^2H2Z>1c^?g*>)hnMcq9DYi(iY7UfMWw(p$oyw zk^}&5Qqo?XF|@+1E&@DQg~Wx0mH_By!Q>gr*&*AXH`v^K+>vg=BS}re@ZPDtkFRj@A1>gFaOpZYo*x3`*nn4Tt4xl2ow6xq#lt=q~9=`Rj)4tj+%)lbVnc-LmR)U&6w$U`ipHs~E74Jb9&YTUUDCekmxzZnzp_Rr&PX z;2{`|<2n6a6Om&U>lc1rl~-3+M>n<2F!C7U{_R>+@Ei0DN6k~!;kIhk(HCJYig3`BJRa+5 z006qCW@dc#ZNe)FiVO?YAtAVB!K64oyrF<60_G(w&05lxSPmfm43yNsSpW$<_VR8! zRrqy{X>3hInduYVPF(+dO&WL{@25$yYWGv{C@L#gQ@PBG_)+t^Y2ITNaBAP@GfzO@ z?CDATs->%|OF~M@<8<&83A#Tyu^egjUOKP=yx64G+2qdQH<8#%$MX|A3U2NgfT%&5 zD>APG7Lg}q-J~_OEu@-?wAPDzpB(Y7?~B-o2I$s9G6*d3A-D%rVu|--|GTnBIn6KM z{P6!cOfrxjQvt~hpcmOBClh33#Zk)p5+tWaW@9O%Xf6rY*jTv*xjclQCbvqss5SS1 z?48ZE5mkg%L88>Td}IH7`+F6UPgI5qd;*(%zw+^4=H$pmO@dg3vIoxDitWL4x6e=H zNa@XmW^fe z0u0^v0mCe{%J7;%jJm8Wif7NH@?iR3Mo*8!Y=t}A z{99XFfex#r?2e8Eqkp6eQ|hi7oOeMNqqqHB6K>#WO{brm#TN%Q2XykkPj=ZtpaWL- ze)yQq9B9Ke*C#$pMp_jVlq(55Yi?JupyurL`cCfp<;)4(J29}>0|(Xr$SwPReaJqU z_aW!DKVv^+se9UM1@N2`T}QVBUYal#Ew|~qdSF=D&wL-~^dAerC+t_HzUgPIQnt~s zu37R*5%w|sC#0`u*%WgJ9w+*S;2Z2Mv=nVai=dgEjnw&qj~j3rZ@-Q&cljmp;lr_o zWC8k+yS`EcspCj)qiHmAXhPufsMda4vtKhV{vwPA;WkT88O)AG-;$DILvuZo>V26R zajC2p@T&e(0B)l2mZ;2~viy9O0DKm_V=MWG@<~Zhb;EZ#kynh<(D0TqFu-|^0YW;# zpMf-z!~OzjQ&-D%pTirpROxU3BIVQW#Ldb+A7Z_F0Rt*nv6qyvgE|HpMiaiM|E}Tn z{?8h|-VfenPSY^}W9n7kNQ^)c_4X|u?#VTq1o0e*10?P2IBR(;9>Lc870B@&3=a(7 zKYVDp_oIS|Psf1nG&7zPfPl)qiCrDV28BgMNP&IU+jlK~l`fU+%<6@y(|@xR1B&}v z#8JEIDLEdyo_fUrAI$lP5eW$|6E*dPZv{$}>q_^5bs9Q{T^%ED{pYVPUh1SK$VlA5 z#Y=sgJ&-6E^jYLqFb@wwGXGs8BlciIQOK{#ii_*7JHW<$?4HY{IFx}^qH}u&(tK=o zDWyK2v;F&hQyv<7!;d!+2x=8@PcBh+?VlgwjIO7=1S)onZ%RxwUF8rHl%a4Q|AnCp z1THn3tSdSlYy}y;#|8UK!}PSq!gKg35jB)DHrQKQ&h0IC9o)a)v=zi9)=b3nR)d6dZP}Gou5A; z76#A?gj+E&bJu6Ccvyb%43s-N&My3w>FH~>yo~PXl9Eoz-0t)*a1J*oW9VqYEVs#^ zPJ-AgLGEN(x%BZL)qDV=r-S`4w5#tbOz>|yAH8NZ!Go|?+<{t-c!x<&Bh##blD4QX zxYVk;vJ%&jePm$4VK^a1)UuYjWXCrC%wEnl$Td!aN7S4(Ga_gJ+JJe zr7cPX#2>kv?9W^#Pml{56gN~7n_*G;k6($ilAFOy4X+b`!vOEH$1{>-bdzicD@Loo|>`o+C(V>u$wTG zoUN^$_v^u3aI9vUQ;`bS?xHO)^n`>4y)m9xADh#fk9&wK6QHd2Av=DU2u47e5fY-{ zJS3E>xZ>sMS#hy#{bT*mDVR*aAGkZ13UOcmCE70~xtyls*1$Y&c5CWcHgct*=!^jr z)8g_6cTl$LuLW;_hP*qG4<8JX&|wg;8}=tl{+AbXf%&rI|EGa-!6I(FP!}0{d0=6t z4aTM-^_qf$ceqVp3A98Yo`ALl+#d*llEPgN!*dW{vR0S=RCcIfH0$fYnlGVJWpX)+ z^{ogI^so22{nJT+P*c-E&%m02Czfnv1XDuz3%Vo@o&VF+%YbWAek;_A3sB)V3=iW1 zg8`T{QjU%wq2fWxi%W#jnlGvxc4ShYRG(hnxVLVO;i##+K-@x~Nt{@jUc zw=vdGM$DxQfMtkGb%9-%(aW28cz9nS@s*dCXdBjSW!w%N4xcGh81#p+@PY09t*`yQ{hS3Mz0oV*u9%?6kTZP=U-6#n1W8GSVh)1Pr zc)`nsB*P}IHsfoR1k62qrfuB0B1xWZHA27QdM%L7QZIX4sEaJ->N4fu*zQuo!or2s z=4sCzloui7t9d?X#4w{6*sfna*;}Tz-!huIR>R@%{LSkl0owT?Z z@`+@`7z@Eb|2libEinuRoRnY&e;CiT-;ATM(?ORUN>0=%>FNp;j$+;!8De5Yt${%R zg~N)h^TP@WDv#wPf&Ow9h?#l!?j0OmH=pO_emdG+vgpE2Bw5!vi zQJLtJ7DV;OraOQyk%UDn)D?guhSb#{2xbBcL!$Aw4RywB0lTfpR8hmMicz%}8QUfkG5^7wN=?>h|M~^xAI$o7O-;Lz z>2p?AP6c6U|1AO@{of(CFf<-_Jl(+rcnVle#5pakzi57r>{M8AFzme+0Ye3DOQ7+a zn)w+&=j7A}mtsuWJ>{dLaA#uj>y#VQ()F%8e>1z$?|$ze48Nq3w35iwjmh0i4(JoM zvg4fI->WD$BkrknUR+)taqU)ISY(C#7=&a<*)p~o0B!)PSZA(sWieVcb(ybRAWV4! z8%O-dkfGQY!1xeVkqXcw?rhi6&Hj8(fLwM`QoeeZ4H+Q~t*v($OicW@r>WLw1k8QD zYOBBgJv3eQF**i4DQRa&K`buL>hEeY#M>`JEd$?*uCcK+h>ZbqP5sM2!Tal1-}_~U zWbVG+SXh)gOzKZ5O|xYR^B#%{-#C6q-s-xeeFF>xNNO^a1K+{lsjeU=Uhcx9H1dzr z2SGGjm3IC{Or^|ni>0?)v2U{V>`2wFhfCdbFIDCXz0fCUpc1u$v1)TX*xj3 z&pmAb7F|ZY0Y!v^Xqn;DgzTw9t z!nXcrU~)V*@bA#y!zt?n=XEA0g;DN*NfP{mAUF*q z7b4?BL&Ms`t2xcC8PRq6-lIy!pfBO?os>VfdEl_5vjog~0; zY`ye~2pWjBRmqdO&qenrc~!UE+FHF14_|A_FTUstwV%Hw)SVQx8BW8`XG(AbxStpr zH8EY8@>n$%$rn&T`9t~+J3jtaMU@rw?14c+V0fl|_Uta``az4ImBbyEu)oTaqxho8 zv#at!E*`D?Qe-CG?V}^vc+Ll~1%kUDwvaL974!J8n$M7nS1xwq2w>3=nPe?nSdlxh zsO!MgZF{@88T5Cefs*BawE+H)7i0wyx9qmPiMhlA50AV}Mt9UIvD3O`k=nQQ!{*l3 z@WezpaD_})**3WXoOBlrv$e7yv`z3lkdcpXZ*Om`#<92tlb(UFT>n8eWD3@wI2gyr z6AGFV@L$(VB?Ef&Uek0UZ*7u=e*ltcw3}NlMq=LMvHj;kyhZ(TB{Vm(nN3%VA%6>P zp8fiB3UmpOn<3~5}Xg*kWdM4J2G92TDX8WWs3MLkGC`+S=ke)s&P>mL*U9qUecg#5-;iK#hX9ecJpcQ zY;ivwQdmf0=akrQBhM-U8R$Rpkp9<{K(f((u5Ds+KKIsyiwiL)7t>!?QvVpf+8NE- z*BX@~=@OnT)74oLAsI?GHj}5e;PdfDs?x%y*FcpvpN z&V-4cpbRay79a>_&?Iv*y@(*s$>Fv>=Y%e58P=Of8VQKZkY>crPMuCa9PZWSfy2L< z5JDsj{A_IOM$nt{wc)`kCup?H{F}ZpFrOV}{w4HuhQmh>H)Kk2j7!c)@uf{{6u4h?Y0} z`hgW;iwn=!4wW-91|#GAwzJ+#buBux_Y4{%0@#tB*6+~~Wyp4Hd| zP5q!&FE{`6+oB%paw$TrH^C3cTYyxAjBQ_73z2M3FXrX5l>b|YnqnJep8|y5OQd}5 zWrgztN?I)ta|}VRFqY%3JqMR?ZM9wcPP_#-y9+l;hP;_`bk5briw%V&>Oa$o;vhPB z($ys+W`Ks~hvB$F*dYLnc0g!CGYJ?ZWGp9;kZ%C2tQ8a{Z?Z@B$lAL+z3vwt?luhd z2G7M1K%mWb$=aHLpP(mzWnq0=0VMhTG?cf@-h}Z7K>Xta(P)2PzvfLQ06y*7Ybj? zB@Aj5q*4Aq+_!t+u>j0F5(HHb6LZjI%|XQniG+5p`2XGeaY=kK-1JEMuOxV; z%Q8%Boem+P%pD@VkhqCl7M4}h~ybZ*mmddkE2FevC z^|8O)#9XEnQ@z3ApUuAkSBQ}{tBnmi%FV@Y z**YWB=DxoC>5*yo?Yi?|P+OO{rHt+u)e5Y@;y}JxJV4C1I{6p9Un-;&lJsXQb@60m zNatR17atGhL0j{5^}x62;=?dW!qM^V8n?9s zrJ(Rv5IGWdor577Dd7R{HgYBpxLe)(_g*LSKO;`yZnz?MO|dz#%#e+3q)T=Yfk`Og ze!r+yZcB@m#r{6cucju^gp>RD;Ut6|u(otq{-z|hv;&6Bnm_V2CkUw%hY>1f#u&=43{o2%mY$$7Hl01!n4yABl~N+nh40)pl^Y z`lc_IYSne0c5JfPZTU4UL415R3Xt33&8b?d)RE(5}}_&i*kF{mEa2 z_@kQurvXuoHSC1obwJoyQe=rn2~cboS8%J$KO$jVta2z6`((2&F_Eiw0bk6Gn3x#I z1k1O>dl%rZH^tBY<0jSb!SwLa8K-&_l%J3nH`&vJBuaz#-ow+A5V|Q_QJ*47$rTplh#_8(kM%ZVCx~JWp{=bt12mxfKHH)GRp}eT5sG%`2 zzVN)l#u_vMZ$QuiA*Py|n%8^B|J`bozy5zl#Ork)XwO08jU1|gKN*nX1IDFD36f^5 z6O_qc8?=!RrEDDgU7$6?<_scregMS19o%W2!l=W)=sR2$vw7^dNZ>_Y0@*%@-ooC# z7S8zgSO7RY`$GyXau8?IsApBQ#7jr*>&z^qwQ%>&1MDXj3u1^(CS{7=#`;USCqt;*-^H13>*SF zydO}5Y(8TIRyUqOK|LtCe}LBvxNT&ZSF5e9?CyTkXk1$G zw@T+>q@Cisb96+>?&a+-3g~S{GDlQ6eusB=$7BK@wCViV#F!Om~?f`-GnU z9{g>Pm~Lol3bl8JHBKq=RX#nQ6*qJ}`G_c2NO;=vwOQ=hQ~up%6fAn!K|nQu4A+1^ z19P#^1gKgoj1m(k<1;F&{2l)M8{GUNpGoyUVrr*@wFbW*)QmbhmKgU@Jl(^~XZ}B? z&N{5>wB5p}2#6STgMxracY{iUfeCj`Qr9?>p!C z&&)N~NbLRY_xHqF_nIrJq%I({6xdpNob0`>x!}%F zWAd%CU(SptHDgeoOA4!>{Hf`9x#eyMNkcFS)~kMZ?TNOwe}jc3cC@7;ep0AN2xMCV z*@GH{FBC#f??!jYP&T?SdXl4^D{Qjyo(2Usoj9Eo1uYKcR6yHZ794!OznZguwwmKU zDs>k{S-Cd*M{0kQ_e1BSfcuo>Og%Y3xLuvr7ISoV1~_1lM4Aq;Qxb2g)KFkzvO2G` zJ=f6u%jLp5s>bBH+?6I7O2H0EGFjk3{<_#<>3FPT&>8cv#re{a*A_EtIfbKzV>|V@2e=dMVV7wUJ zP(Z+lm_Xys6R^krFbF36A6g)4eM&#wS9UU}%Nqjlq6;EU~)o9<~<<3_M zJ25GF`Q;QC=`&mh+0OjjTtltv84_mS*SDkHBma-~*!$}CW8(kXps&`lK?kf}Zk9;J z03Jm!|19U^*HQs548X$hV^lgFJOQu+ zQD5zax_<#i;9jQOMF;I?3-P9kH7 z9g)0!8~Tg7^HT_hdwF=M8iA_{HzP0K?@o7v>S10u!4I5EDR-5m@Lj?%s_uy?vWfg}zThk2;8)L67Yn3OIy2lSPst*mwXQRY>*y z#xL8LsVcg0*UL(b{7^wE?@R%Ev6$eHC@Cs+^|D+I>C<3Rm4zi7E@M1uO4qNyNO^ie zeXzOIm$o<+6aS~y73VLTu9qMobR=^n^$(cmGHF@a0Y>KueoG+TgNy(Gm}$2#shDYf zYU6oC--MH0Rc$R0KO7`~{ z==UhnA#SCm;kl)V;d`lWNZWEw>rl$gqcN;bxptT0(a>a~X_owFwczOb-wPauGh5}^m2F&IK1S19A-Ri?4O z;Qj~G8gjm=qvHX|uy7B6(E%2~aPKa*M>0U6;XhMg&l3FbVQ!^`2dsACkHco=GIFs7 zTaHYqQeclbx4wRknEMnNiNQocF-Nh#gN?nCli#SiF;A^K>T{>xVom-~PgmD7uu5P# zCx<@oM=CcLzUlMp_n6e1zxSp69bT1#=+Qo4dW=t$fhRP``7nJ8w5=gGR{ZKw_LlXu z6&eAu_XHI3Q04#i%Q!$BP_nd~Bhso?LCsz=z@|=ic{3-h22m2Q zWd(O%Bcus{c}(=oRZ1HBwQVz&f2)yk0}R+P8J<*t03}JU6-M3k zQplkIWAdobdRY#RX~T%?8Sm(zn2a8Eiu?I9nS3oVp@Xjr9yiAJZ5k-u6V6qO3&!iT zb)S2FrpYOnC5*dAxs+^Yw{i!KO4~IOAR`$TIAn~T+n=uWyS&N5^)>2AGA*RZJA%Ep z2_!7RyYL(~J3L$@%)hE|tF34@t(Vzt4?jA+OblrHN{{1jalsF9Q@nrmbRX?z6ut3k zrj~46#QZp325IeEAl#IFsZS&E;X@2KT{BA*#QK20Gm`+>W&wJ7P1&xeC7u4)ZhUuN zBDQ+_hN#+hkM4gi2(3#-h<%d0& z>AJy%ZGelb(~h@$`!+O#`amK!eR+lA?>tf@K6Mj_siK#)&ykZWz+nMvohTG+Ki!>Q zt@-R;1fbp~uo;^Ij}Q3#k$pJibtaMDCaK%ZehxaVn3vxr>~BzxyO|`RN8auesi5#NkE^F|j2* zL*Up~yppmqjat|E@Agw+yrE3$3#VYDa?~sm6PxFmeq_{1L>Vc>-sDw&38oE|Ac^! z0f={paNbx1M7++B-`_@fdx+G-I1w5RY*Nw=$n-&$51+&XoaZa7b`Je5!Fzhm^mB zJ@fHJ2VSs>idrfO_lw3Kw{S;FO$d=woZU!+*wlArIVb?q9J=h*mXtx#WyKN-1Eu!}J0_|d-)Mkkwrvqbi14P)IuH}5~xmA3@>dee0@!eEsV8h3`YSU+L5oRlwy<=r*DA{SqAwI(BnHoSN$QA{|lwBUyb? z3DTmX0IwY1;C!X@=6QF4PK>V)yXD~H3Ad|63h>PizV<6AT~u-6pX^R*ayqpkP981p zGc>dod=k*Lw1mZL?Sn#1?P=KKqw{BBOjl1lU8{y<%3Zsg;lWcXy&pMjViMtDVfA31 zk#}f0&8p%PKq5Gx#H|?d5tgcoZN~zgV zjp1U!T*LYbj3f9}*HcyQzrubdu7H{z&9{6qANhn<_00Z|&-tpmBELg+_cY_-+;#M+Km% zrUY8;+bpZcETKS6uWtCG-|gxu{+NPap&3!Z7Sa_T5f`T>bd(uP+Hu<69)65ZN;*;# zzbBt$p`Ar7D5ybl?7?e3UW$udqs&5|?%<4wEr;>9)y1jpFZ-=-69`r^k@5?IC5P&j zzCQcCQk8NuaydCU2vGI`Jv1U$GEyd?JtbwXKTmh}{qbhiD&rZjo0Rg@yct-TxgvoF zEXcwB*c@@U<7IsB#UUx0fdL)>Zk(>%u$DT*PS97T$P+91@DC5yYaAmO85jVK0Mmu^ zj0|iNvKReRHH})8&(G-JzEV_ZwT3G@$s3ne$_otrcqCCwxLMnO2Uu+$GrOL?v)+DC z$;YRnpw#a+&izx+MXDU=HtLmclA@DcY45I{yHqCm`&+F`N4&a;`c#)HZmagsyLFXZ zc+O3=j;bd4-o5*#;JYsrXghURA@gk!M4gE+6lb{fDFw%YzOQ<*{spJqoY=ztK137Qp{0`iHlP@Vu5W--YEUQd1Kq|w=!;}{Ih@d z^nA_)swG~~F@Q!5>7|FIV)cFvGLH||k^3f-aZB26Z4Fa3mOHz;ux@6lwg+QiIR3`s zO#wTwYU`)}!n}92_6QV_LI4 zZuC(#{DNlByyhUv#n8=7b7%9!xfaHD>i|~+5r&Cd%7Fg^my2JGQSgH0uN~~xkn{iU zil;JA>Ut{#XH2!)femWj&N!|diR#>3yp}zH@SwzgeWd$dQO?vAIsnEhdwGp`diuHE zyi{!wBHk}Ij<#@j^WFPaL@sZTkyn!9iS2vbfM-YVFIy8%QttcJt^&Vw{;B@5{;jIvIt7K$KQi>cM^RaZqLhbfGsfviURmN+-w?mL340Gb4#D$T<^ z51ElUff^H4=vSxF@0CNzR9g;!Da8-GmRNRu8QX|%LO=ho>u9aa*YlLDYLf}y>Kb%W zJzxnX;4t`hw!!1Z%C)Fk!6vSJ!pmFXNp>WFaG zot-ejiC7MObq587KR5WDmB?x#S4>5NL4@!-_F_Q5OdyL`_2!sjWAFFJg3Ou?Y3ACm za`-l9>)8@R`XodAj@gaAV6-EC`j05kyz5HRJQ7gKy&p!$@wUh;Igk*#Z9VASLF~V~ z|MxAo>6pSr7|@__!72_~I1F%?f%E@*+&JogwEzjXaE#Pz;imYcBsTMK-61M-cG14kj0NSLaz6o*V{#_tA^;F8CG! z4N&s#nm^bo%uTygI5=_v-SRNUP~JaxWk}X*oRp`4nEz`%JmZeq@h9LgXsSphq)~_N z?ZUF_J8?^j=vwXa#F6{bvx`uS!W8ARf24alA2Ep}H#9tlyXrXf>iFK~bX^Y&Ie1f* za0~62nn5`Kb8A5%r%6@l15U0c!+ed6wAVa^PG zA^;t-Qd){tBq z>wA5fAk0)H`NJ;a5pDZ~nrfR6jMx`1PE&*-qDQq@Z2RXg^RCVX=Yvy1YPQ`y%LEQ| zNdbY($gc%pg2b7az{su}$RGf9Tv|m15n@Ee@oqBjL-DlJlam_fj%nCVbN2S7u@8@R zab9`-JN4nUTEKvDg`n#x9>^l0(=dsP`A<+V<tZ z^zcjFiQ@%&FY(i1T_djUZ!{HG$_6qs=*x#m|!Qg|A;{B9i1(J~D>ZT~S=gB^pm;(aAS-CsGk8vfLB8I$svK zMg$D;-#Pg*Houj%+YV2i5P8pZb;U|*t;D-aqeiMfjY^h|l*lRarlHc#7~9Ta5x6J+?@CnxWM z?b+iePa3}E24T<69+!Qf-c#0Mp69hj)6A0l`XX6QT%RTq0>kQzBgJI!2xZ^)>9wT$ zv0G>Q^`0F{4EnvFxZR2snbJdPe z$_RLQHui1C(9!is2xym=muRiEZB31D=aTZk&T_&85fYI7wk=jTapuE-R>cI=$zZ5t zg!#;0*X0nro6VtFP>&Qj9~FQT8{u^Dyv~YdG&?&+*tK2v+XbXN9?zl+u5qmg1_#qn zQ-22Lc&1#U47e^9e#OKL3MMQ4^wMj2teAZ~+J}ws!+>ESJlm^xnn@j$o1zw$+RZ*C z3Yf$taGO54DL_eCDFT)M#nQ`8e*0$2+2Mn0Sb+lw- z048KTh;mc+F8D$zMGQ{hrk1d`_+q%+_T zMQPD;`zh>aqeG>eXQv0aSr+2nLCZBq3kQLOi-M#)1Up<$0y zWmI$^3L-_c%N`xokE2rQt+;8if!Nt;_^U;^o50lX1Rr^Ul)R*gQEM-?q{U?ATh#vL z1YS!|Q2)@XtIU+>e4emAm`nwqT;={I6Z4F8#3Rzl{vukX)Q3|}x1osps8Jn*fX@=d zAAE%AZ=>sWv5BOrGVHb->$+D)95xyK*Scun!h4l#Y@gvmh*LxS2iUtR8tG+#G z9tzR_fKj8>t-qs-?EnHPms23?k(f8Shc(;cy~>2xyKMOQ(s;7QT6l5Dzv2l zkPiWG%e*G!D0C3;$$zo7wMu=HXMo6lyQ28Stn9;QI5mI}CdFmk!LstTh` zy}UhcvcO~TV9ioSy56aWqB~KzYhJ%&rOJ|e_4IkMzdzpfRmr)=##R?aae}6%*Vx$g zKy3Is@{}zPz$}p3jDn0JrFSweWv9%NuY2`L9ez5X3A(_<|IOFzxO_hAh1!optD(z_ zH1FTPFM#5HDjV_r%|9@e**Z)bPtkw=75GX#knxHHbU{ZA_W>{(?_*=Xo(#Gr<^rl0 z?VX(+9SE6+hkfcl5n@QODJiKe@EYjklTaH|R3)WqtR*MXA*J2uhf?4SpUro_tf(l+ zqP#~TI8$z32i->>w{Rhx)N!Z1)wV;QfaneY5P4i>12$=IjtE zE%#H+PzoWcM~}Q&G+yQ*6#@o z)PtAt3lPglK={EFrb|2U_@Aw0ZC)Q`wf#{cKG6S2nU5At;ERLb-m>@$Mi##{ZUu)$@#@)V~9gVk0I9F{1Lq zddN2aBtXtT!|7ClF>k%pYTE{LoB~A#>=iB&zU5CS*yQ%>Uv`FBTws)Q2fgkxE~q=P zGCH#9Gx|MauX#U=O4!&x$|7B;y*jtX@@QsIdIw*hVqcp0`=;rDjtan4&ypQdnSt<7)DB>R~pt zw~wm15>_%Wh}mDGOD#>-PCNoFeiB4QBg5%Pu3bQ?+H2`sw3(TBqhnUTDq{Bd$?wX^ z*$CO+9iPy6UT)sf-YkL1W4$ah+cc?p7lHtJqw=*fCPrf)m&Q@tqYM|(LrY9eQ{}a! zBFK^-$g{iTY_;v`rUkncM1o;ofsujGapStA1#8FUrM(X#DOrsOfm4RWy~7-V;mE?O zXu@!Gbm-^|HaAF=6O1dMsBqK+CuvV2{d6HE$3I0$mLt~-^@AOcVMv8`xw&tv6f);^bUY$1 zQXIyKuzg1ENlHEp_<-{V+0=I@i-dyd6avoD&8KT2gv|oN8Q|*Q(Ju6Cv9!!>@1O=- zHtg~(^1pq;)6=8)djPo+H8ZWlYX=im_Mxy-#m2`+o<9ibHiTWbmzP&7f!%#JqnW3c z6F1QVd)F6f#yiX>aUTASkT;&Fb$<#W?x2#<2NexK7r4zP{N%EL--IVBDhhkpkxFYi z2qYU(QTfKsh5v9_pVRn}r`g5E)`RD&PW%XVjt^EdD623~OW;?;ymkZ4&myz$3n&1+ zO%S@XTcOhp-YT`HPoCr{HNL8$aD9!vXgY31OXpkVdirW}K@2hoP~@S1w>@__9-oG^ zD`dc;pC5)`PQv=-CC(LCc^59^5+1kIxTty+3%fp29v@LjmEa_4ZKql}n(i~uFPxvW zr*}S3g!1Cj`sMHSjrw-X#FU58P@&U2#>jU)6Z8AAg@J~hbK|<0*hcTOiT3X9BDZI# z4Q7*KD_lI$rRw+alyEsSh`tKHCjFQBcme8tuLt?T4XITg%SO!eV(HX0 zm-+fB%E`$I*b<=r11Gkq?Yz%Iak(kOU5oq5ZtvgQx|PUf&BIs?7Q46v1U{;Y&qOoA zuOnbydX=4RRYSn+_2vG4vRnI4`>BV28oi2BQf$DZK5>>P5ID0nPwiP;S0{Fmp5EF+ zLo-y_uGsa8bPm?U5VF{tuPs8xqAhW-nnP7P{EH_jCqnBIvx}SE-V?Jdv-Y^Su-C`C=dUl$fKnr=6-}G`4e4 z;isxvzxCfYn9+>&m%~hCB9}3LvgGGCHiB(8GE@1!C`iba!$2 zF&$Os#6<&Gcn&9<&mo(zU)eq0(F1XMYfldy7Z*Mh@IjiIY;gjF5SRys2AWxzI+62x zLBtXWL10Eu(!68#?m^QdXh>MDaJz1Gbae2!o%6!Lff~Xj?%fOhr3#8K zKmh^s4ks8i5eYi5!e$iI$x2nIEE*M0;f{cs{98pu3>4^GWa`@q*2~=xQ1-F~PLR0x z+#%L2>^{>|8%qqiB*up2PuHl{!AZ5ZUHPY?bBdxPQQ&XpQ2$AB53j?@{Ve%p7)b~q zf%!^G$S62)#Qz|m2E!T#poolqqYS1=TF)=N1eJY3QBi|Q2f;2AlfUae2ACK?9}Om) zOqj)htPE+Lfo>Nf-}PF*JltO&g@YDXJ@Q^ApD<-*S6`(_j4UW4qu(Oe-W+?iIVc;O z{tCiZxIu;WreWvPLmPh*^;(~~tRVR|~#Ku;fo?w5}_kMk}NtNs9EIYh$ zwzc=W(QD}P(&p?~4~nd3AbYI@mphWorzC@^86Kh2j0JMDO7|;ac;0>|hN#NUgUPBn zFZV5>N^niJZ(YA3F4)t09~*eIY%T|iL1pGGwUYP3$;pw?4Im%q%o{7ZN}f6LLhUCb zC+^L>vua-FUH@7Ca$-Wu=9Jrv(S-ZqGxih)1{2gA-+LLBsS?x(>9nv?I3CN#Yx#5B zc9vm8-W-PSLtsIDRGzm%d2g^4gWrDXjU(R&$qp_F>PKNA}}_SfkJFb%r#uHD<--%khYDe?hAKtMac zHT=@6GdCBlM=?(c7oSu%A(_(t#mm2B~1hNL7fd_pFCQQ z>VO2YHj&VP@Z&%Vp#{}}lpB#yd>#+dlL^?St}Q3yRv6=Bi;EK-Z1uplqO!=6npRr+ ztNmY3+YMVF{&w$sUVoC9fK2^Den}83kB=><47EG0^oe4AsJmiDO!Q&Dc+u*#{fQ_t z;4T}R3Lzd6Q?Q$0ZS%EsZk_RZiNF7Q^SYy?PR9t^mHGMCH_;k^x%t9E9 z&W;_ddAVG0HD_kxVB->>G*~zE_I?3>-5h*a%`PwBkB@+LfcRMitxrkl#`PBoMagSvl<3M$hTKszr69Ie3~F@+Pu#H%zEDl zo3EjvF}T8#8lRY0P#83P(~V-8TO-d_y>6k_oiX#jo2qt%!1G~S(ag+-uk^H%=c61ndPWxr<~;*)4Xrf z=#{0Twzn@#7<7B>+gQ5%R6oj6ueyziX*}^23E~FFALvKIV`8MhHw-)Qipolz^8xwY ziyWnz^G`lLR5oTK513^mWhQb{Qi_6WwM8cO_C_Z%@8I*8!4>tq&h4VLqhmfG65p`6 z_!gfPYT$=~nNwT7Oc|PGa9vH*bSTo%kqxe{s-S-YWw<4BswysN&CVE<39Cow8UZ&= zN@19lPAO}V;A%S$f zFfcg?z=J*WH8pmWtZar6tLrbZ?}PSQ-SKoLw!IH5SCyfntcUB%GKoc+~pVvRZ2p_^?3O9d)UcfKlHX#Waj7Ei!rBPIUR$lQj$?ShIJ9YyAev57iua`QKdT$6dED(co*svHzAV;fe!;&p;W z-4=X{K8uT}Jf<>Le+NJ(x?E5vqH1PVt$hVO+MB5|CJ_jUfn-v6L_*oqwuR=uzA~x4 zo11$+kRjU_9lhtAEbOIG zB{3ewJ!-g>3ehGVI0sIMqcvBqk2KWS&j zq4p>#_efqi`%)3S#n8n^2-x-3H>2gW%P7n@w{dhgdC$AKO#uH~fIqG_PtBu{O^=I& z*Z%IFKW-sA$NZpq9h=LUo$h!U(k~+Db{+!~NVOnh(c?sc3P^wbyD1lVG;L_E^N>4D z0viGtLH=;GHEk%rx3r&Ql`299OqcK9A49QT;e5mlCmxuwZ(qH73Y$VC4-eQ4$PfmE zVorgjEH3lwD|uLDla9i7h18eU%&46J(^U*8-_U`1)YThoC|UuXx1P+l0-O0E7bBewsq}^ z&z_qbWQA5-C_I5F%@Nq}Vhha7s6Hy_m@qtFxHyBn$5n1qDS+0Mt4ZJDew&3eR>^@y z=J&G%Pq8Ir1rzg;-Sx(UoHzcW1Bj!h!aS|u=8iy}%uE39`@@pN8h%h1$!Qo?xx?AC zSdS5-cW{)>G~1dg8mhC@J7KQTYMgv1DkgQY&VlVdoE!FH=3wpWmDk;S_m*Yy5=NiE zPitXqJr7OTe=?G&?d^jGjhl^2S$-9n48V}|EQCBl!u|4+YBN4ARqfYT53ul;xQoC` zOGH94{84sm(0`^{5DSLr*kJUfCt06nF@uryen)hK@y8cco0HndV_?%u_-LxrdLOB{ z$;->bdw7XKNJyNc#Bc&-G1V?Vpa1tOkOeZk$|+*Cd)z>WC3GyFz$F!|$x`8=+}J1v zR(}&J#iy8<FWW%yFL-3o)XB$7JVpE*xrr{zZ8>y-3Kw&KnW;K5{~K61;86yG zN*F}0!>q{>3}{B#13IwTCl|TWU=M|8>FB6t6HChp4i0K=kz`mu52P2|zcTD;y?2KO zu&0351flZ1Ecq7G9*W`GOMbW|4mk{d_oiSGv3~o7VFRXqe(zgPtqPNG&)=DaAT;f~ zi8*-s7G-_+EA5KYL3JrGAso~B^9mtiChm<<8AymQwK@KqwF3Tx+_!Ys*VhZc{=7sb zP(`adzw%na(QyQFO@1c3$!wOIAVqjF@$ry>4%iSZ)zSdii}w$<`Rn}gu>@wR+tr2r zFZ(r#vmE6n+lw(1s>k;z7@K^ZkkN~6>>PR4@`1R6Cp2|j_f3*O}DF(gBrC(k?3+he9&^1tAr$g-4!h%LafU6-kAwD_B17!1{Iq zB(Wem!6hM)flfuNg3n$ql|VzYNtMsyn+qtpiNDZ(jOUTf^^~J)aEfFlBYK=KDG~6U z&DQwyCO?cpZ1^W-^UwUSsX;H+1UlE|X}6AN_V$PCqoU(wrrJrLKN>yWT+DvkG<)36 zzz)Df9R%~BdO6O{MtMmxtA{9@J?AcxIA+!Bw{CqGIT4!}*Q{!<;4vrIaavaa`G=4* zw}gR#&39uGl~A~?Wp%E>-cdXsaaEeTba^4(32EeFmjq1d4+`z`{i1K(n%R=i+O~k= z40e$M5RR)dh@*4m2X_SI8#Dt8YP3lIcFIB7g|ar!+qbGBKy!1~cB9{UU}uNp0YyJ2 z*+hx-Pk_DdCbdef^ox^4F82h+2s;#1oUmx(^qo%6z(#jvb8>#=^x&O&&%$Jt9{uV5~!rXQrozAyN#|tO&tZ%S^ z;TlXOpJCBDUPoD1YO*6>FQ+l)B!uE>+%vv2@6Z$bxqC8EN88o=#2;5dE~)dhfK}SU z9Y{6BOAzpt)}n~(eMRB2cPIARHJFmz2uDoVuDl{1&wTk}y5z67URh@kx~weY#6*Eg zRg}i<+j1*5C1#T(TR%n;e=LRHy<3DkUy3kh@7B~vSJ~aq7Q{6swEU?l3K;!(*rVo0 z6B0;ElaUA~RG+(0O}mjI*z~sdcEgtew^cDlDHLv~GvADgjt*e1wjW*bYzX7OODj^n z+p|_I%0gG{?5_@1#fuNtJ`j)u0GJxgim<4KDL*e*#<4K&W*$;_fxZ?6`4GKOQw(wc zETHsMYy|xji_%eQT+f4oIQ<-e;ga@ z$Uu?D-%3hKn!W#xxZ2kK6n^c0uK=7xxfTdV0_@mY2YJ_lg`FL!4AEaI>M~RtoXYd;xOzl^ znORP3XqieAqHbYmlit$!#qN|-_%^|}lXGiJX@0)8O2~NUMI*KP>2^`d`&u#>hfvdu zdC)E_XJ{^bqEuEaWLY)esfGfILTJTfV`Bwfj=#Vkw0wK`3_uXxpYd_hcx|_O%LS>B z$?7)bZU+cGuw_6F>^mj#0jKL{tn;vt*29BcE*S0lbyky6oM0JoeH9|Mot@*;6P>X% zUyQd8Dr?~MwsJbM%MbKd#6~uSeZ`x4DK9Bxo|Iti`h-E}%#Q!+oCEqKFa+rt8Xol@ zG~N^OD?XpJ*S|o{XovlA!~cv|l{fmIUshG9w1jwne;fqTgS|oew(5%u`wC0ZB}OjA zrO630g(px5^IFWHKuv>83WwD%_;YhjB8 z(b^-A+WN;=pG-Eo{Rl>wg>-i+*K&H-#J5j(B>4=?m}$D=iwA$BBs;<|%Jz2E(Nx;v z#Tiw};X1uFr!ih8gVM~G@P<1K3}afq8Ve5A`0xmta}0a>yIRl{tL&gdnfp8Y3?RkT zhg*i_Y1D}Jc8er_{P^EbRp$Yb+YPrI`xdylu%s31VV#@)aF%EK8wo!i^j}zUT%s5C z=nk4S0UdKq9}$10WL`Fb9}?M1$`v;@dVOsa!}RpLbPy73`ThG7lxC1oBt-Z?D<3uxf;&8Pv3vyZ4A5G#C%rD(7VM z&M(r4M_s$Ia4@IqIQ>KMxHDN^+C@+pMop>8EFaa%7Uas!_FqapEw<0+^@XWJa?G;5z3oF729UxvP7^fOvpJwOEM>m5q~yKt z?0gn?ls)uDV|4`k@*rR2`m%;Jfuy3-TN4_Z@7MpL}S-G;3`90sx{rC-Bfy4TJ9INaLF~NB)c1|!?s&KsgaRRvN<5JfUv}J2 zXvWy|Dg^b=e7lpgs;kN1dw~}cNC56`H3v>3rMK^?s|&x*c7RJ0nRf-f7`#5LkXC^$ zq^qZMV&#wWp&!+thk)(UF^Q!#l>gkgxx1l(FdgmSr`k!ChE*#riq_x52A4P?b+WywB#zbI2s zB6hV;e-sf>iBBX|4lqaKAxs#Azw07VU{dp|$m{caa9E^*B_L24m60)Le7Jodd!+BR zF8b4nev;r^U+_%U8ck~j+%5I~GhV)EPDiI2s$S+dZw0aNKQ^cC93Fl>TyN_;+{k!1 z)1AnVCVl;(x}UkZ$kf-yrY69QdcLm~U3`9U;>T3m!ASlma5ee4o*F{6r)QcRowc#gg8%%o# zg5C2C-nT)^&|B?jO@?;&t4|m{zRDdEvCs-$dgk>pnxn#e7DhF%yezt_oj%EQD686f zUs>HH|3P}uivn~Tq&))eZ8WqOT^)bm5{5-VE1Av46H9iOqy~xWq^#d3=8+4K0>PQZ8UbLvuqcH! zLMBUdcz<F*uf_kt%{4oEA6>1b(vK*kQ+LX3O&@{^7L z>#Za?!>Cmq17D{PDHzpb&QP%aLn|2e@M#*KI5; zqtPOo!`lR3Hr9jm#8BalK*mTy^AAqfAQ)uY$;o~9#lqIHI<`3JR--BhxO=LpI;NGC z)T^9A|DeWZgmOasvu8z$?t2Dp_mlV)Q6oIBW4}lCQrWQ_IupDTRMeGOeHI|h1kBjX z!ovRUiyrG`v4tc-Rn!ppU-j0wx_>nPMsZ#4UJnj!0p|v1eSI~bGdCnnWB`Q=iqzAd z{EI)nR6auHLZ!$|t8{h< z#FLq&CFp>7K%xT44N?hXj*d9`I;Ko_he25VccwFTZWs;QSULBL;G&loNpz;iHOGt$ z!N*KA%skP!uv#5%^=sFvd2DIdY}t-S#QKTrdljTM1};;*Kv zRa0*Pjiaej&)4rKDR=AE{Cv}giSJ>4Gr)l@5VX$3uwNUNmawrX@aypQW?#BZDE7*1 zOhIhT?P6g94eQIq> zqOUU^9Rd&^xUI)vcq{*GRa5_^kSc*3@uS{(XY|2;D2A*5X1-Y zZqYyt0s{jBzs<_iPy!~4M1kl7m`+qy407(7e1e0!Gj3k@8lH&%0yA(H-$b_68sn47 zCsIjgJb$Ys@gJnrainm>!Qq{Pq5>;d5} z*z6_*KW5%JCehG!2<;!$1n14t?)?P z%O{nYj9gV$=NYgO0Wx4e?HUa;v3}q%5!x|9>jx^Y4w$Ed{)z_H!RY9|govSoHNZih zw`*&!*WiH%y>EE26P1Q zB?o>eGJt$QMouoo@9;ktPyGMCcpQ$mAA(|72Z}>@_yP*K^50NPY6!jsoC;9(b`ed6 z_py&B_^{KaT;8JkEn{DYFbjaRLjsf!48{Q-0i|yotqtV7e<#Gh`3Z#PKKS?(y=#1R zM%WKR+TdLpw8i}~G$*(|C_Rxe-|YVdV|S8TvOnW39YLvS2gn^E(*K#^{oE$93vUm zkNS?xfxpKWN7I$_bI+&o8I1Tpgkyx?;gWG7&dj88LZks94r<|o5B1lBe%VKNE|}M1 z@8m)_LSd#{`1jGH7?|Q9@iW_qU7UN z(iODZ%zdkZ(rEe1AlOfmfWT@qg4QFAnw;O}0q9+Kcdg*F^&4_&`K*^-92{*-Rz-KB z--}_@xgNE-Ib^1c@}q1`K0$?xZ;qg=hw!yrPNX%!h98bLJpXAZ?%kM!N6-*NJl8Mm zq7u?qoRx5tCRxONv>CbL_3eS>x6fka3Ond`XP`NMI+4fz(g~g{NKqg>rI8%5y=GE8 zqf(Xh^lvw<%FSr3hn`U3;!2m5(&V<&k7b2oY?hVvbM94bJGs8)?h*qod06JHE);6lxg|oce!kf0^e>Ue z=hgq|(Cv`J-TC>qHC(D0Z;)g5ygVl8i6jpMDG>l|42@oh9@e>V!q&Tfqv@r?S`_DM zJkLFY?)2Z&$t%uB&_9a8Uz?eE6;Yf$6d?MusA$Q-Nr?H6FNeAHR$WU&gD1%BKvE+HvKQjP;w%@pwc%eOTiX`cwj?t!h9~2< z@dJ;^l=GI*pn(C^A$TvTF4yvTMiRDf78Q$&x!igZ?6W_oTg`9VaBl7{T5245o~p=T zS$YYy3EpR3l_BJdaS)2Eb9gv1GG+y%KgepTaM+=Oz#%Mai*Jo16%vBQC0|WcR31O? z2g?bUoh5ckzA6WHSx1L9(e&CMpF+bn98Bfh-$mLYK~DSk!wAKWe}smG;qkV&i%o?1 zV?R8Yv@a|z)qj(B{`W`j3>1bydKTGPALY<;-r#~vv8(f6Bt%l_5{iwIiaTj`KR@;) z?b^H5Rsr4^&^Uno2eu1X+9oEy^31x^{n~D58J}sH7l^Qo1_?=?>}c25D&( zrI8Yl7Lbze2BlF_I;2y&8@_9u^S=N0J7b(N_Ss_(4}0;f`?>CU&H0<-HN{qszMJ&~ zN=lLUw)?}}m;T3MH6m6VoI0)VFn8MUafxs2kr4B#rQGOqdk9oCKn1N=+o>okkHNmm z#YqX|9>DVrtT|6L`KH1Eojz;@u|5Dp3^e&(*N&E?i;O78G43VFNJbze|%BU~D)#ekryk{!XWE zB|7{^*&z`?=v$?0Gjv6Y7wQA$xuFYdDh~OVdm$#@ ze2xgwKxq`Dy*D^g(B{3q_FP^(S^ie*BRYd#lGE-_Pv*6*P%*Kv)&?@}fYJ=+khj?q z;f_Zq4hXxy9^`f(+-4rJRNa6pTswqbzOb3ghecT1G0t2cO*-b^K-F_b88siIu9=2! zWK2x;ebVkw%`!>!`^#{WRG*wYC>$NNVLLvKE7%Wt9Q3x<;2pY!nb|O5FYG_(N$!9W zbh_I?W(kyPEd$tx)vHrAzpIvlN|DGn)BFynoR$cql1L>NSxF8W1tS43Zk)*~m1;v& zg`@54wR(4WZ(r^5*pDOTm2{ER366Vo05(E&+r=N!?H3z}+hslhj|{%FD)z5rzo3*x|F?a;PwP_2?Y z*sS7Mc+(4LGoG1JsyyxT*_grXE(JNN0vUY9%L}&0B_$soKSWZD#KqB2khrC}mVk|k ziV!gB8dw;eTn{nOP5al`F&doM+S16*60W z6XOG%oUc!qZ){HDJs|9YrWGV^G8qoqzCLWwqYCw#df{%~Z^3>7C0;JjHA1i5{;z5} zsxK}E`UYfy{U|9by9mPlRP}DtnCJcuL0{wbHAl2J{&?VqXhaNpiI}2R#jDMSONGiZ zGTLscE_IW2o@?Tps;>&fa=o$1MR9RtKG2JrJc{&=@AkSrF)1B9x)N;K-sekM@pvME z-DAS)q`Ts-H%hX9Ro{2Kf+pm3{KU4Q!TqfDE@pnd!M|6}?|;i`?uy#1-7i1#`3B%Kh3gL4b3i?zrm=Af1|cur%+5^KVCsy zeLPu-t%@Qv?6kH%33|&18fs)O>>DF3@V~t&29+8vC90~bz~Tx8ErQD!P2fs;H-|JK zVcyK(GAC_R56{87<35U>sn??GUHzoG{X&F@1Ul~7q&->}mJ(A~j~iir{HgO@uW zb3{KB2wQ*5_kceS{$NOKEy9CZZZ#Zip6VS7V`C`Pb|M7sX)j!9^ zMnQ!-@T+RiL@4Lm6PXP~Hv6DP0f=^}&=CWE6J)*%1_M~QC?-fEnPK%dgx|ge&hE^< zLw|MFZUMc(=+@EAhh1l;Oi%`^+n ze`6TS%FCf@&vZo|=UiE34(6_ndN+lH(8G-`mWqV0U!NxNxfOZ>#u$fAyDB!drMdOz z8O>@(_m3YaFnEefNZ{GqbpJYBk7qF!*B#9JXEh$YwSlBk!jB5e6m+-%($dmO%FAb| zWXoe!&Y~hFY$hn*_XXi07I}FDuHHUod{|{I@# z%UgLGO@bDSA@1yYN@HMb?5CEu)O&FXSpzVWb9zUWm4#+RMh5CYN3zq=ycm#(jTA`v zAFO!IG)AO`$2AGDcpkmJIB_^#A8`3!FTk&>OMBp83R_>+vv(95MtNf)h_o~UL-yOT z9A1x7Ff$_osPJfafCc2nGdjBSCcLk7bW{?@8=8boVZ?0(o3l?ph5{if{Y5zGJT=sE z-@^e0bX9U6pvi2;ir>NK2IN*`UJYt#FiE(J*Y1BjIWg03nV3j$4D$!k6u;}N!;Yt4pY_C9f}$now;S^gscvTqeqYCT?=v|avlquz40H;vs{~RhGh|Py+3Ry z8a>{X<%haDE$?*nr@i_TZ)k1T3sFs^>m5w4a7w*?&0JSyZ@&6XDnEh6&&BT!oAJ+^ zIQSBuJ|Ft7Mm#JO5ovw2u}En*DxYl7j!A#KwN$f`Vhpbbc()cq8ab3qAiW@-@Cv#_ z&L-`@@NhqXxABxt4K5Vbr+9Ah0GyZ*>T#_{^5Xb=xP~vkG~>78FeJWy|5MxC*~}cmos5lm@N%??ggt zrR{*Kx|7?A{KUWHjZN8`S>1hBk08t+({AQQxdm1r_Y2>3z44J@vqq49U+RU+qJ z{BCvo*YGrmhhSiY)ZPgWUL;MkZ`5*PWYp6WZEOGI)O>3w)$8V9_C91(eRw=Rv*hMl zAShV=^}hqLnZWbRx#c9K36=-Kn_9FC3`ms`c73d#M>YVvMW*ecQV_aIkqrjn;eB}f z{r^qa9z45Q{$Dgtvo9So)CQU+6zhPXDhbJZS65dO9>))0@qpJ-s=s#h`T&HqCjcEd zTY{wbz?HoW2mpGap{<=zGx3|pNfaI0e=3(@-t7H!Ar)Hk_xcaBn<0+VqdFd%_n?@dh$^go5NFH-8kDfBuR`Q_Slc`rzfubm#+upO+0X zBJLt))c^2kI!7$VN^J~!cbTWK4hIV#Wi?*ZsUgY;1`h@TUmKPFkH=cb* z-#qiuk8pqOh&%W1@)$PY4nL0JOVl%I?_{*4b2d2{BDuBA6yFGu0luw6aKPO7akP?J zV`cI|ZlQllx1$}2d4HvqSVVo-7*Kk^$cE^;u6 zC)_)DI{&4q=^YL*1r(dHi>WI8-b7^wP zLobY`?mD$#M~v}sOX84&P~7N!CYkn>Q|-gG%eqPS5B;yO#DfVQ`NcpsPC*XIzVXy- ze*yO)W$(^e4_PGt4pe?lY)*$=UYu$;Z-rX@y!jmcOZ?9-EMrT{^IKb=veUE~;!jnmVPpJ2VvTU6!tmjjT&?ls08!7|5n+x-(`NDsZ27e72^&TAub z>3ViEu?tgm>gnWP89llAv|IZ-loV0$s3X`N5aZzCuCP*Fe^$VNa(O~=alzK7Uyr`E z#n0`G{_EGtXa^Y*jQim(9<%+V8iJ=>D+q_z2@QdGcCt!gR93d;K7T6TgcSU}wV0r?CV<_*AfT|Qur5f>YL zVrO&{740jpyK*|;{QPY5?R#jLUpxCFENEyhtaR4cap!MnYP-85xQle@#3JWf#JHi) zSuq!gdXO?jE@sW0j@hi&Yi~|RQYe469u!~R-81cS?CX9=Wjh(`6B&7NFsJ~nWN7zEo}G?(cpQBIw-_rm8nCXF zo(w&@;PyJ{vQEc=<39;H$SV8qbPCwbzTgq^#(af^96X_^Y;gz{&j5pmD2f{jL_m14 z2t{aKzO3mL4vr=B(Wp9KvG31Sp+T;}t7d$(6S061EDzTgq=^;wTo8Ou8(f2I`z)Dn znL#GfT(;AM=Z7tHfh`#G-@DDjhgTTLDFH0)pd$j|LF&Z|6hlKpAk8Pj_yU#RJaEK- zQiN2uz%K=eZ|I$}ib&QZgNzGo*4+=*izu};`qQk{$9W6fdMd1GjN1Csu;$SKnC<`_ z6}`RkB&FckbcLs(+~#hd01aX^f;_6n%9!HjKcESi_-qS+&gkrYuI#di9-frEwy_!Z zGYD^fdUHssQnjN)#z_Db)!}7;KcN3#6>11~r25S31l+foX-xheMw|dU|>cIE-r9@`n3o>jXrEb6Z=z@D@Q@tRWvlz@RCz)thX? z#7GS;Oemu$aSaU%4gJFBW|yonLP8s3W6s5bGx~aa8ezk^+)s`}I$4qDNlz#9;RIhV zqNMBB`!M3WDI6GwrKYWf#0wnOkEy-SM{J|j^HQJH0tEr-T!p372#tIM3_O9@f^YVC z-gev0G~(jCKFFzN=LNbMD^;!!H*UT z_4@=dFrfGoF75D2;OHu~b*@^g$#LjA=G1!!Uj*r)z(g=AyTmL2&LfvGguGed&q9R-8{1du`UI7+?*m+JwqXrk& zgP8Xavpa^e{`cEVuYF=yoh=0TclP#h2d*|WHLY*laP-dCW9YTNBsc;yj1S}*Q@xsR zaB=;a@d!z$ka)ItXxjaS<;&Wr_V3szb3i56`&QYp>H~$l-`-4Z^hc>6%qcncGbxqZ z^)FKey)7my8I+WikiHkdbv$hIIE)(I>c63*vpSrI4}o*g{vmOS3dci7JexTRzbN zfJg(Z1Gy57sZ#%cP|X;VdltIy}F)*#p09DC5q6d>WSSwN^pvw%5+P z`s=U4^CLn|;#LXX7gzCoca)N8{O~oL~R2o#IAjh~PC2U`n9c4#K6> z1{k~@lf>aZm#_6Ig8wLGJfmfzVPyOS9YLT;w*frBVr~At*#vuG<~Qb@9pYdxKmrNMm!NBDJAbbBXyZ;U) zq<)AObpLagsfvt^6$iKr9CdA7U3aam*R?ugvwO z39g43s7xfTD~y=CNV`MR+}x}uy4i9D|RgiOgHWr z2^wN*pw#Y(V|;Y1C;9MxaGfler63$U^6!n~hl+~o7h!`;xp z2=N}=6YQ0>&Qh&5*4F8N{zyV)`f%$9_f+3cD|<^CUOP8{I|Msj*%pkJ`OyT&JE5%^X93hsTmZ1Jr8eEE`J4O2Yyp{q@AxS8hv}9;?Oh@vXZ4BNj{0pU*HbsN&qa zaEHpwjd`pe-{p{RgQFV9;PTQ`@FuFYu0MErKov%k3gxqnfd~p0AMsFvpM{>sotA$S zrZ3O0-Su+Q(gF)QK0%Whf*(9w-IvDqkP88jBA{Zf8Zvt@3sS?(2+T|9D;@((4}Msv z za?B?uMhS*xSa4;!>BnCGYyg2uO`+I_RcDSCfj*4E5&8xE8jZPz{T3Raa z>7fGh{@Yv?77XmTEdR6fkI?%tThzojU#~Yy%>07&Be6uYMFlJN=FH@`H!N59X%1uS_DUYQHWj ztOL~YOo1An18hedqxXGnAp{H>KaQ7{EUa4ru!|22;7o$Ug>c-v``v5^k&ZU0Nb4EF z@!JDMsSo90bMLv<7UI|#w!kedGw?0T@tccv;Y@uH=%kQr0yp)MZYY3SO( z%hKt@-(^=Aa6|y=DJ(Hj`(;Ukf0=pT{OYO(ej>y`kQ2|X&*=Yw79vRnoDg0?{vW}N z8=fve7k-_hCo z_$h9#LlCf?_}0>rgVP{2cnD3v9uEBO<%te5(COpZoT!i7wj_1Lj<=#T>x}P&61GI} zI8|R??1wtK;s4D1e((43Oa~MBjiwBVQy4C-DR@yFs9}RwW+WB@0VwG79{(zAK@{X) zVPvEFC~LCHxYofKm8BnE>R<~uhUQ10loD~ad*I5;Bc3TFQh%xw_7nXuxMotXtRiOd zg!f^gZnT*Z8rpm{3BQI;4TU($SGC+Ptfu$$y$>HXLCJ=3dniu85|{&cM$u_u2ZS7d zkuJc!JrrbJJCcfU(dbR-;aO(ZLqsk6mkWQ%Ig$fDmlE65HZQYI-~Ug zSdvd*&cd=0uJ}-Z_mqJF3-aQyoUr6F3uTYUxBO5Ie+F{(*Dvf>oTu6MIc}8Ka?@%g zqpXY#BxmGm3;5e`I(-rHZREcmpm5*_Cm?TL{ga8PhRoN_!EYu+ZJ|EX`&^%1&x42# z>tOzJE2@2E)nVqUkxt2Wa$YSx&uM<1Mz@)QC+84_Gcq!QCzhIy4g4INz&RY@5h&d{`8uo(1N zT@Z5y&RW_ruGjgzgP=~ey9z5*vEj&a5TRptv<-cZ9U0l!8pCO777-UP{6b_Rg*rSu zT+wqt^zhZ6KgH5A(fQD}X!)hqDO>atgsSSWk2WHms>-4rpwx^pm7k-caA1Ch2GtKj`~} zTy`YzzB5v_p?|#4v4D@~CnJ0VAW;iH$IJLnw)i$gUYZvAo{F_!U3qKnuaEq^ICUf| zF3%6qwfw79SfuY8OsFh{?-J4=e}qRp zwB%J~hoxO!nf8P84RWaMaI>u1 znwrzIW4wEPatF1(p8ND@l0ShN1ii1dNpcT5a+06$y!1yZ1W<~R^Zk3eiy?W|yLZrd z$!gY3!0WQ{?55$H>Q?i`l@J2ArQpS-f4b&inS23YA3x)6h;Igv`Mk(fE_uDKM*Ent zwN{r8=T2!^n`&~z)ATrTisq0K76PKZr<}2|%x#|%2*k7yYZeYw1Su(Aq{H^K0J7i$UUT5Nd|Gd> z@BBM9(%wwm%;Fi`MKYl1&~*#4637-=ZounU}x*@j2InJQ6d)^>W)XOj=Bk69VK!*5p&&;mBQ)xCU{-N z0wZ_7*GXE^b*9W`sHmRVm_YXIKnM&HcR1NJ9BKIqu9fI19ylb67x3Ipt^9z(ZKUfT z#?nwiPFW*+t%|7kZ!?Vjk}*6${t1bU#8GLyCLJzn`sMYH$4UId?5KWrx~WX##hy&9 z>*gx%5$;yI!^E-ENP=u$AhiP#H0gyERtKOZpNG5iu z@c@1q!m!8&(8Z2^he5bA~_-@}ktglH})B;l3R{O2UdlvGv4pd$@NzfcmMC@4_$ zIbFi12Q|a@g!xol{9!_TBrM8Cy}ffQOL5&c57(V1;ocpHZu9pqmB%U=6t1wz7)Rfw z>^btRjA_6bKo~Nm6O^74(1>z_8J4eW6pD&Zk9RN6Gdo$_3c06=2LW!vNJYirbph7+ z9pH?nelmwg1K4;)0%$9q#{}+cxUMWLzMgjdR!d{TTWdf!pBZ-A`<5S*_L59n!=f7u zWysPsa&mJ1^Nq4_?`g;-YgF10B5x9Z|6Z1eRQyNyy!ro&?e`#SAi;6r=;#>j|K3*| zgfrN{LyB{LdplfPlW=Xc(4kR*Oj%iFm(M$)Jndyo?BW;>FsA?fQ1^CcD@IW|Y3UXY z8ay$HIfB_yQCW3#?`qaQTnR+~<9YDoMM2i~`L{~~)3IW)&J_^ZE3|GGtg|?&`XbFGCt13Ugj)E54oSj@MXT z3d(Q;ITNb2M+BI-)Ddi3(=isY?R@v{VNm(iIj#7IGwIR4Hx1*f9xqv&(j57<+!GP? zo|iQ$KLDGM---GO>dh;?xz$01C7pFHjr~2`pVi{*uFlTLPQNICRWUHM#ZQ)H2i6dU z1$rNfTEO=Qh>|r93uuPwMd<)kH*^lJt7CVo^G-Cew#K!ezSwWKY;1HvRK~|Is$mmR zE(jXF@3u}AEH#^&dMcnx6y|eP)9Q*z@U)Hs?0A?<9w1iW0)!7fK8SVEiMO>Otkl$k zHGFo{H+msovFy}^i=%S*Y3mVPwbT0J1iw2VzH%gaikVHTepG>;U`2d$3VO<5anY0#F(RNLxr(nw>=_DmFIb zDEpVgnl(;6v6Xw+2HBW+0(}N{BB~3z^;^Z`Y;ejINezbv?`jZ1)da$x2W3N zUr9=*v+@uQPud%smc0EjAZBK7aol&B;Z zXKZ>4TVLnQ_SEy+;q6m36r)ND>zQ9)Y+e5RsX!uw+~*^$U0`nqG9bmX^HXzHRa*XR z`OCp3+xJi!J6Tl}*ypy@c{a4L_B@r&-ybVPwdd=w)i@+LVR!+(Ot9vK-_&nl-q(1a za{>o|f{*V!=#ub1!seA*#{U&8P4f6&@dFk_&Z?!l>?^^I72TkykOU|<8yAy_`yGFpps#`asQK7yzhZz zV}H{w+BpQ`CmNF(V`2#O8tJu@vSlN)EO?UxeE^jkf2=`U?|SR+gt#Z17iQbj4M={g3r%tgW3L20 zKF-5Jy_oCpAe_j}nw5X8Tw(t6bm|&qo?JzcCY#*X_tCr+v^go3M8uxMs0GM6+F!r8 z?ac!mL~e!;S)mE&3%W9ADi^EfzidZ=DQk^)G20Yx}=Z3~S)#371R3 zO!Y#D^y$0&9$A38?<8)An-C;wpPV$_o_&hY7l4Ue7(`+yok7UUCHlMmdlk#58w_h` z=+Y%|6TGedvF5fNA^?ChsQvucU#6%;V5>?P{nun2+vq-#jt z$DsMAKEz>^5$B7v%+eS!Mlg+h;15lqbxj4E{AzPDnir!I*?8H$N;sMjl>J^y1l8e+ zd^`dr5&dtAnS(0&xirrg@ie!?J~VfR3uT>4kVXEfVY}GFn4X>nxy0GQAqUb&BSg5~ zrB=hV$mT6*^mJbk53;bJUsP9D5wIniq@$DCJvN7+=PURdy1GETU4r{CfM&`J@#@=K z+qzDOiKKW)R9% z8-7$gbV58-+uNt|U&v0S{AD!zB3|gyWn+$fv@(+lz(6E?uKApwgn^?8awfcqj#r#O z8J@zhGP1Jbak#lPooO`6Sa^04LHJl))`q_2@6_s4UR>zf>HsT5gkE%fGMR1+ODPePKDL@vHwRyIp^*OOFn5U z-Gt96UDv6t^Bq)%FT8k)RPz!93+=n)XR# z(5`%a+>YgSaY4Z1N-uP=gGz-;^3(Qzy#Q2Hfc<;1mjbp@_uBkW#+sUkzK4(0is}(K zXk^}$`qM98{%n44+v3mSb?L#%q}$vwShiNua1d231EZbIM8pG}sO6qK?_cnv?h^7o zOpKx9u`v|>sUT!XM%p``L;_*sFF-w31F((9AhqMgrIfTZ;_1`3uxJ8{!KmWfLgM;b z@!-wL5RIkPXY-@2L5_^XoL`@?e(?MG6BGW#N?SbPl}Ybi?9A@Ph3&*5SoI3=FPk6C{I6uwpPoz|gCT&(Ndbq!HC1K$(6{xwQ* zLnvXXyxQX2CxVGQC@}Ep`i|jQGLPR}mfRaOG|nbHM<-L#o^E8f6HIXu&_cddx6SEw z6+`#>q_{doIB63C#WzR7hkJRN1{rgod=}50o7NtU!wgcT0dkTZDoSx^&4=sYkX5l?%aWU#Z>v6nQ9El zLb+wJS55x-@|#mr9OkC;!nJK$+Exa5bbQ@I1dq2>YE15qLVd(DCTwsXaRp#ysP?76 z&bXm6a#epm_4;#(_Zrn{P4NSdV`|5tXQe92lCRzDkE(eIiC8y!xW)n01a+4%i{nrf zs1c!WO$_HhO>sP97b|KEUgDa08*m4iu`Dgcjgb~}ap3^@4~SA=A|8F}TXR>dU=e#g z@p#So&o^k~_=b}m5b!YlKIvx*JazRN|FeV0zbNCgAud zl?wsNz28i0<7G&sOZF$jtwj~SR7-LS9o)YrUszVh!bO4Tqvc_KDsx1m;){~4id zmSs|=Uq>y5NWPz*(Z#_$`#B6t7=ojOB;6yc7E$~AmX_vVVQJa1V9XNfo2cl|i_?+e zeL_hS^2XYRp70`>H%%$`WHDL+U}<;a}Z=b^4jL& z4QaWBFm$}a8X^iGuA|3om*=MU^*nM%;&t@&K8a@_88^_Zg9UCRv)&}lm3im`UvH2j zuBo&towOdWQ3>WJl508tQs(5Bf7}kt_!6&E$Nc28!^YB)GvF#Yc+ zAd!Lo|4LW;!0ZZ(ip2euJ{53GKu{1QtG1z`hp^3rt$Ga&2Jzv*T22yg4Bzr{xo)FQ zBe%J!($Z#+zwdS8TT%h;H#<*3jjlgkP9zw16aVL2D(AT@i(@uY`0){)Xhf0_nU{Ch z={yFIE?VG}v6yKTfFs8Kgs7$_s)5HOFiJ_?5=+TS`ZLl239lt_xqNFBLXKfoI+ZDvMo zU%xA^i&q6sH#aBmpC(TsLyF_4JT2U3hu~Yp4rRT=w;^^|!Yxm%L&5=3%|NQe+g%5GU>x$dN7lI8@N=?>myk3O@bXUZ}NS= zU((Z8^BA#x$ujQ>7+~bj2Ah5ksQ_-=@pMBEN#Q4Gl1<}#jk0Y$8u(_5hu3*i8uH9a zdBd>bE47~ygf|#qP9Cw8r#Mx{zQ5_vWj9HE`)wfl^JZX~vk*Sv`*p_n94Ad{`-452 zw_tq=Hj(Kgp&+?LP6$Shn2bse_a?UjT<;UOkK^Lv_%$@2m#~zS;L;fz?XB2<9TxEs zY+}&*Ae~`ok}4Px>kqv|Ti`rT54xMOwRPgW`jiica#0`BdzZ#S9&H98gbrvbqO|17+T-}e)^*mJv`!pJT+xR zR8%v3dnoty)u>15CCN9s34?NSR`y1%D!_19>bNA0^lE~L3Bplf$cU6ow6R7>x}mI+ zX1q>E*f!Vg+k5q9?P__$rC{!YqIY-|*LsQTHqwI;u1qq=GDllgwe730ANmyr3n|u{ z6UAVet1HJDm)8~(4_Ig8rruC8D8PV*)5}3pMF$w>aZ@)!e z@0+i!K4bpB3W02}I+TFXmz9kTYQ-@6`1diP6daI1aj+SK&{r#H1`r-z0^hIP-)~`E zoj+hxz2S3#6Ep3usU{v9PiRg@3%^8DxY8o2Pdkm?x!=DdczB62nnh$cHpP;@2h8u^YfGY-^jjJ3QTh zYhB`;TaAH-N40D+!R|n;t$EpSd=p;5mhb}7#b;;+8`qfc89NlWVCm-Fxi6XYHj()0 zcsaz4U?K{t@3$K8I($?s?58-2A39nXgBE$#p`*L>#rIrp&rp>X`HO%(#5e$w<5ZL_ zhRbODQhX9(3$)Ta{ypcZT3xLTd|++;Tsf3vyfxmM#hz3RDiT>dInjiLcXm500zL&D%JT~vK8tX4&Q4nH4IA>Hxp#ec~{!AZ- z`Y`8JPEs<9$C)L4L;VhXmpdwLb3cV-e0+B!>*}hf!;yd>aMs@PdEroY>f_O6^VBX6 zpqpsaJ`CS^4G9#0PD44zO>lT3d!u15O+biK>qLVyS_IfEcx=Qnl_OstJbOeVUp&)# z3%uRn+^|~UK-L>W@EMdp^g#=P2PC1#s{kPoPZ2gMtIszf_;_V{CC~~t4wwDD+l!2lL z&L24nBhnVo79fe#Qbt{v?fT}OHG}}5eh{1}U~Hl>7BmTL-IPtCZwrZtpy8cfVANmE zF3|2OE&n$8O^O?v@Fp|^dF;zE5)nG&eY=HnXU?KU}AIp9>;|#KXtGcvW+uv={ct{YG;lIr)oe zarm$Xb%v~vI|0Xc#(NpI+LqMrs}ZfQhUz3>aROduq__*R9Qf%BCQCE9lfp?N&%Xr) zy+ew_dDpYk|AF@G2;rORhyF)zgd>R! z88m<=oRH6z-j1XBD=F-efc6K2K>P3CA&_iR1Y3iame#(VMY8-nPAq*S({PoYR1z3c znXMk$!qi{qD>TA!v$Y^keLz#o5&YIWm%9?bfVR2wFRxp(^j3vDjj!)wpve?xFa2%c z7k&W}7N8Pf&>3oXN8xvNrW|d4UmA+3#lwdO(WSQLj|67s3l$C&JcWgn0Us3UGW8oV z&CDPO^Nzv1x4%}MX)2cfC#@jq(MB3QGuSL&!Z8NFgE@F9SUB>71wM1TD;f&A)vGq^ zzP`|Te^@H2N~`K;eA{FS4f}EA8L-4tSp34C@BxN(zsd*&1t)s4JQ6)3)dzRr8C_mw zB!X5o`2mktwaH53d7({FQO<(_ljd6vGFMM*Y!t(ZCC;_0kh~Q5#dV?EdD> zERc&$OeifK9Jo^jCGt^lN% z-vd${jz177XE(O=@ay(2_7NU`8|YTNpomHI>|(W5)O~9x7h%X{<3GH|)QE4=RJ}dlC^bX&m%Gk#Eu$=~tb(hmxSlfZ zf(hr(chx+!9@G{4ztUQLDM{FO$r%~%?`v1RW@n=i5J)~aa7K2ffjVlHTBMfeemJbY zG(7-<`RHn**og7T&YVVKf}_u0UdJN+Yz0Tw?=?Iw1g)P9Z*>eSKVt>CXE<~7r`wa|$=_2s40m8C<-rg!d5SSvrYs&_ahyGFsspQy6#7`L75KUnhv zk$bQ@DMcU?z1*#+6$J|H;Owk^J$DnnTdlCmgW;{ra*!G#o*#C#?Sm5eSa8$|KR4y- z%jV`hr6zwj2s8?)__P(fy|uPBl@lKadrjbKGcz;)7#xg-?MHKS^S^e>9wKNJAO8Mx zVgsBUpohc7D{(d9FD{TuVTH@=yxQ--@=BM%dZ1lA*e8+e_X+Gk_=qMdq8$>2nzrmG zDq~K09MXkd1%AMk6bR)by8748fqVr#@~Gg*rGA6q3<3p2w}ZYJLzqza(8C z4RLlzTUkjRG(B^+T^ zprIOQ@N@(FQ#{m9zz!NY8hRev!Ge>SkuIZeyetVQHs}=zg4yzE!&YnOTXh7>OB_6v zXqrhv7f+kD!(N_Q1>9fE*Zs}R#r1yLv*^eY9!;cz3=#*ZHn1jb9v!W+`+Xfng`4(z z_HDHqK;nPWP;{?9|niq;9sRYk4azBJkb<#UI%pgXaGcXJaKm&+d-} zyH1U3*d3tSjTE*ukH&E|p55C|*ad1Q8FII>+BlL5aa@~oF7}6!0(3Gu;hsmGPU4?z z=6PXpxNKuWc?F;LbY5IiOTK1K-gg4vfKG^oaPtDB5C_96dO4Iky*=czM+wc>_GnHkphXvi_M`^pn9 z=&H@m>Q{6=WsUs!k${LO9p)EFNtCBB#sUg)WNH2TD@26Q;b->kp*n#IEu7XWdzy=7 zxn|F!#n<9!>S{&Q#rFD_H@aNTdik(0RBa~$i@y&Bb&eJ$^V?ZGyGb5+^4+)I)6I-Y zC(!J`g0Uw>4lbWllCmb(SC<s?Gu z{k!KHg0IpPX6E3)0wD!tfg2bK0Hln6+P2*kk|SU!QZ}jssycL|Kt>8q)SqBW;DHYT zOje-;EH?qR&-!U=D@x*Tri|`4ajgW=539rmLpiEr$CkvX#eyG z=d1-g^-E-)a$ZT3lZ5EIv%<1!?t5p46ecr*Jnbz3RC^g>7z6?du?-%usix|~!VbW| zSEQnZCX6O(qvQ9tF_4dU1F2wZ&DXbhw2!hLKZYv-O8cO#--nz?X*0USojL5RHorc)O5He{+D4g`c6%qb++d1`+`U(bs=oD&hS zKT;LEe5I4hVf6HAUm_HZJRh>Ml#flK7g6=97ZqO>yP!!^HvE%^?}tRna6Iz$y{?^U z*q66mC^NjYJQ8ym*)4e)xbd{*11W(yb_ptmNQU213ze&=Y&2YYtb05~hZmVU=UCjy+Ef-VCLE4^J6g9V9! z6>#_a(0s7=dOxe%SM-C96Aw?%y*?CZ>v{?=v7;600_*nB$YUvm03N5}THjRj?jCou zT_f0|Ak%Jef5o8?XBSu*DG);^;gT1td*1)c|#vvE< zvetGZGs_^TKh_6S%V z`0uqC_RGx`Y)S4D67Fq(6^1ra>cOl54!V%Xb91;6Z3kX$J!XL%jaA6Uw4f*2_EY)5atG{j-A0 zi;JS59}L54W4#4?H(p3Tm_y(9@4-Gy9(JKvm?k#OElU%F_~dmi(N2H3Hu8^C01r@T z`}W*z9NfPU1(i+WRw^z3ualc7?f*1YDi~`bVq@Fk%Lva763kDp-ywzV52rZ6HDrGf&TRkDK# z8mwZ_+tiDG;cuv9FUlO{YaV!Cx*Q4ZW6EnWEO6N^R;H3IlX<;mgvE3cPZSdo5$*jB z1wkD3<=q8E9eN{Uhmt@UXnBml#JWWd1+jDEW$x~+fxLH2r0$XkcKe;YxxY0nr>6GU z4;N2t)@t-Vxc~GTNs4~`s*N78So{LWo;Yo9X&HB`CF#=ZLndA-N@g~ifX+@ySO!B{ zXvt6s=i}U54glzKcq*Zz8IURvyg8|>Z7$TUkgGs4GGTu_JUtC}*Kv5V6h3`|s|mCB znKQ{@Zw;T@>(ed1V0{lMqQEt0#1<+4GlYsGtJkUNel)kOmMz5(YH%OE?;a_L(mjI$ zlvzxym{e~s()I3wrH}Z}e*ey(rTv~p!NI07^1|Dhw~GWMOowUC=C-zvB+x%jOKX7& z^Arvevgmy{%$p6ZS;|R}v&z9S;~>IO}_rr@T8oB}5&6QSa7SX`8S_Q+P#_bI|LET>3_I!wGp zg3McVeWZYp*V)3BlYM;LF)TYv8ngTTZDoyI{Zap8>B!cN>SaJFEG8!>1kC#d-@Kjsh*2u&j|FB5 zKNqMfiH#lcdIfP3M{ig`6Mgy9O>~CEOWp$^ZKi)jAAZv)<;@%L?iz&uDGN`2lCz2``epX*$Th6XS}Nn4ZFt)5s2z~N2)ta zItKHtL8X3~3S>1~FzFice zX7O=Yqc*g(tQ{^VmRc|56~QJIiC;n@+8k@vR(4dojuUaz-ddXt{!@y#Nw(3+-sMb3RQN> z#lwANjW4QSrV1E z3gvFy!_I|2xn<)r~w z>D8uk{~X|&Sxooyt3F)reH3Z9Z-(>2;~-*`mML!8_-}1cV!p30PAsg_%IRothM|FY z)BEE^!q{4}DbV;s32(WqH5WT9RL`x@$YCFE^Xk# z?tYQk46jePR%#6xK(3CYw5r2qQ%m_iDJ2AQfSX`oXV(i$s?H~Tv86;xv_e9u@HxP$ zume_}r}VrDpJn2{SlISpFx5YucXBQd{HDdA2SeuivRtgYr-}zK?nIz@d*eqm+^zFx zIt(F5H(PGWN^Ra7C{yX}>2NZP{yn^{^@AEG=NmG?(8~5Sj6g}K%V=2<^q}lGCosJK zbnx#Jx!YHwNn7xPjQJv>+Gz zv_6`Nj)RM6i{5j*x4)0%#@x9R^5Sf_qrZe=W0Gc_o&~2utH-(sO!#GNaAEldjs>$X zbSEbZ;V|RK-ot2_-K-KWKtdZ~{4ImVZz!YA&DY<^=?i`&ckgy@Z!cJ+MtJq0@WHyx zTp;{WK8SH)&g;}GR^~Kq{&j9k339TZS8OM#8tHPqLys!@Q}WmbBcXwS`Ne*aOPT970O8IxG}tU*l*aZn%1hYveimd{lg z8K;;SVh93-tVdS=(Yp8BHykdm2p3p;K}-N4fAsGoFXb&4>3jZaYPhPUMz=p3lM&JU zuNNS0(CiQ8bOL7>kn@r2-h(!FqUX~Wcb|aYB9RLfHOLhGemf1-$Lvo}T7Hfk1@%0r z%X?Mc{k!F2?j=qj7M7UK2v-X|W9+(ClN!)3j@itA38?mI+rJCJn1DSmKy$~kdXv`? zoQ!&(t$z%wE_eRHg%Y=}n5#=SO@;gS5z?a@M#w!aPy-;kP<>b6!O0!Z4~6;9m))C30{PxdN7vaEey{50jN*J(+*`|p%#zc zIQag264zMPxr5YLioT@kt5F8}*n{GC?+Tt$P#h^N~P4jG~hvhg>8Akf+QV{cZt z9)S>@9r+V=c^|_VUMdD}&dRGr*9rLv{O>;sD8Vd6Cowf8(Jp?QK)v-F9{&9S2{Les z+3x`Sf_1xx%X0sZOeoWHLqK&Pn_9VMyzn6Ea^LgK>w0qq5E%Z4uZ}!sk^emaA2kvJtZ;3uabCj(3HjT}X{4=P?T3Ii!nxOMt zUIfV8H3;kD<(H$rG#O@%;kD!)YVz1i=_U9v^_x2&xX=;>d>z}#*G zaSO+Sq3b#+il>+qo`=+0oAR*zy|lSDf`XMB|Q@x zdKNMzB}D&-{q>m(&SyMaMcNqIWZsyuF%8G{doi$9hWHLIr)_&~0oHb72sm^ShVx1a za!`=vWn&}ZX=P=t>dssAAEP{WFaD{PH#Z~aW-!UIx{Vh3UW^rLkRKPFk*sD%Mm*gW z00;q-pl?d?p5sH8+nF8nTZ|v;0yG9iX{h9xgqQ)!&HQ2O7h=_$|8yFBA{x`(AQ9#j1p_$=YNUlO8GQGihl`S`dgFu938dcSuY+ z)YSjXl0$UUK8#{ZjHNajI^S-Ys+l*bEN@*MdX5P#mYXXQspagi9ezTWRYC$0CMKq0 z(*>(Jbc7_myMgA1W(c)np_)*U43S9ueW+5@JO7v04k+cQ|BtD^j>3*%e+tSfTk8SL47v4B&tIYCwg4E3FNQTK#?V}*FcLR*|G;0p;Ld0G zCV?LG8vHw8543f?vh&AZo6+>?SFegO)2x#veeg5(afKxr1*tjiG3Ro3SfW9)G@;dd zQeK*d8_=wh6y#p#_#=;e(rH)8|GZl3*3ZuTR#lZSO#v3|Xj5R9ypDHRyxdstsFqQQyVr(VUISB=IcHVVy zv9+}Ydmtdh)5u;{sLO;b{v2t&J17q&BxYvxV`F3V9JlRk!mON;V4aJDavwo^1M@K5 z$NbqH#(|N6#~JHoGXX9~helYq7(|#~4MuW*6luJB?q&OlT*k>ss-t~w-T$%f*yy(> zn4jfaLtrsSGh|%RLqxo!2K50W;5t{(%Ixjo_aKpydgT}TwccAkh~SH+J3p4dbz8_( zRkXSG8@RXVRC=>&o9)w)^7ZC`v0gz7b1K5Vg{C4Dl4nvjUmt;2bTM>UPN?(P^BC_xA8J}6^xQy?PSbUA_0%+)p$N5ExDby zaq{Qv)T>&wUzuDw(uVl>va{xNb#ype{}Pt}-t>hxjt8x9=l*?W(v+0N%7VflZ6PPq z-VmkAdYAI<1*u2x1tFwlXu{b+zt zZveD{io{gwUJ_URUXcRJWKMr|H4>*B^*6V3A{i)ibVRe=&;0{FUW_-t5Q&!$Inuy%CS$QiJ#7a?ZD?XW1q;ECT{H6TjWNmx# zc}hSTM|lMnWIG~?S&gZs{u=G;TBXz;{y>_9_B5NGe)$k-(XTMlLxJY$BI73nJzD@g)b|mO4$6`-sz^I|?q5M>Sc=(r) zD9h}k__@d4{i*o)HCU$H_Vff3SMc!lHBAUfM1k>uNYl@igvWE;GnyewOv;0xK#)W2 zH)8au+qWM7m7aov=C-fh+>|6G+xn8}`vf}rq_`|K1;t$@B_-NQ(-{UGPOB6ozWRFl zs>d6dv@}WY-`vJ%Xb_9$ecCD>rh5&AlAXsUCc;4^d@6BQ3oY`j*3XeS%xAZ@y4Q#P zq&?LFOvq}f$%yF%++q-tBLHfkN|)?AQ%MQJQUvA53R!<7WBcTudgv_pj?m(uK;Xv8 z&Ta`z_TWz7)v$HL)@hYk1PdQ_``*_ecK}Cq55R6@S~g$02Oy&csA-eZa}r%B6t8@th@7p zx;dJ%;%4-@=H`}{<#B%ynXJK#P$7}UWr{Mh)APtKYSYsnxVXT7U4W|{XzmEE_F(}l^N))-3CcSuVPQ!5 zb(iFKQfv9MRVZ8eY|_hbq@@-?J_yvh+Q=i9X)KMb9uXuWz z8Miaip9ZGjf8}7C+lyg&*j($jDI?KPO(<$O+OXQ>T@pfhg- zu=YPp`1As*LnGcdD#A5Po(AX8RqbADFrjs?%U*NjO;tidm*=-{Emy2;5l&i0;uZ14 zpu4v~*G&{IzrzhWxT{+Mm0@6D016}`?gQEreCK&5415u1mf>lc(8A~8|E3=TR^GSp z1BAjRG%uU??;}{Ze?t;84zy)vy^e5E^~7E=$iM*7PYWDx#e9~xz_WZ~Iu+w(w_!N+ zL-8=);n^$9FJX_Jot!qgAmUx`-99udQt;`15ib4P5|28+;G^7;h?mXumAc3%cki0F zG;3R(F$3#EFzX#QCgx{wJVXF(cX_QH_|cj6*7Mtyc52ggq%U1uKyK(;pGn*dA%@TF zYcA*F^4p{xo@OJt#1GMlUZc@yy2>}{fL3WSJ{~-OIrQfTweta$k1w-f-?RVLp*-OI z$_V9M`A2C*3Uk3LKLs_{v9Z~?H>bJk@7}+c?_aIW8S~0DqiY~C|Jm5ZJIAl=QHM;B-2z>QNPV7-< zrhMVdPW8a-^>SL2ZuF%N!YBycyigPRFF9Q#~fOQ*Zz=OQ57cI8hiWzjr^B`MGE}kCMq9%vv61=XIS9=>Y^AfLD|c9LIkI6wrW`j4DAru z&&=xVmXVdsxH#JQK~`lsN0FyQgM$cx!bt^?%4P_wCUT3Q{mN*JVI$AadiSI3dOlFW zZ|^WXZsR`cFRi{`Vo7o|t0Q@&FiH;w1^He&&J^ev&D7Q)^+0ZmO+lUhldi%KAwc{w zju`5tm5Ymp;OwzcJ_G9v2on1{>FqhSyzHKr!SkYfVvX&hj z8cNH|L|UNoa#KVn<(KkGAPM_7z%*X|T@!Y|KpsWZql1tJ>So{2P&3TsK|w*Sxu%XU zzI-X%k(V#5+o^r&Rb0X4^HuV;;koTuRu&eXRSgR_jo7uBo^V7O{^F|A>nViimguc1|Z=|dx$MFr^yDGrWbFD*2Fe#TJcvSE za5=NWM99n+Z~pY@&$P6H8&J%-I1#;iuq+>tbA|3q^U)n1PtSKH7NI?)9)6ZHbsh_E zf{9;lug`y~h`hQ?vNH)HBBFt-6PNY0bCI!Vy>} zn#BO*8p4GL_LFY@KteGo9E0PqpG<=1&xJ$+cC$06S2&q}2v$@;2WVLw{WS-Wr0T(Z z0R1PJ$|Gt(SNO5JYYCU3c3^oVCEeoTscIFy^WS~T*Mo=kPVs*yPhZj;7Q#ov#AI~J z!@^P&y#YHzJlG*;$8Z*3Gk|`(e1uN?S_#k2iYaP)T6k_NSb2c4UtGM9&S{1pOMK9H z_aIfjm&7+R^50o2Dec;H{3{9yxU`88mJlTVQ@~zW*lTb5w$y|{@^`$1=EV!gv#Om@ zyK`3fYOBxJ|J*{D$Ma2}u5KuvUhE*SL(ljVI3gKWqQt|XIgbi7Rz&%CW?pX)5Nm{# zlu}--PX@r}7Rt4jKV1TlP;P(9VfXqX_>L_I3H*asX4=}GMMXA(K6mHrw-jqjRqo2oololSeu8D*==;D*F#4z1?%~?K*49AyqL4&H z@PEdnxNSsk>ev?3jq!VE2xW4EFVssSjXaazYtiW5LrM9h`#|>c4+?rtPM(sCm0DWL z4&xo@-w0u%3WNW1j%vYFp)kSekZ5jGlb>9%ZIlz<0r_q2Efjf|(l2X*SZ#N%2y zuH4yKf%RjVOh{3?>xUN+XfK(}r>nt~i)hOo{C~~#<_-GvmSAKf?bv)y0_?tx` zS`H!-C|{DL@|u?T{Aw}6rA8EJ6mD*mffa>?1@#)lz&Hm zC6gcpZR>f}`x1dw*oG#kpyDB7Q@kI*$fCV7y-CW8zjZR*sGR)mVqv@l`)R=^;i8IU zHd~r1^XcboWS-TMQTSo;!M`mu=V#nw(bLm^vercAc;M#d2JyR#m@7ieIixWiaI`D$o_?-q>!_ljW;#m zq6ke^jr=6Mejc-|<*mj6AX;q$QD1Mt&iUgR-M^o26LH%j!7BD}ZGez~@cito!2QY@ zjPwY!Fl-N{pmvVQM)iLeFx6E5+5agyh*<`l4oZ0%W|ps2RaC4O+pr3Yioj5TxXy$1 zligzd(1C_AigEVMo4(|`V-zC!OVFJwn-~JtSlyZ76*Cc$02ez@_1H(YLgV9!1HetV zHvS~^?n9dOe(%ghT^VBjpc8=`|7%|~-RnyheeiA;E+_CYv9LDDtHz>&yW##|jw%`5 zqlLLf$l^7WN#b=Fo6r`Qq_ytOft?Gid7%aV$WepFgS528BmyMOUD3cKftxPuxV3>p z7yQ;Ol!V-LZLL0E8_c@Uk@)%qLjY&*W0p_l(gmDi;6AdKGtJ@4^Mcbf?I()q6{ebBZY+0~h0!ae!DnCVq+e*!v=QdWTZx|TA zI?PZ~KKH4D8aH&L*JW-lKUvrOTaBP)36h}DS@XBP{x-bn;rvC6-6iTgQni-~M2Vrv zu(*a_4_FbsP^m$;Gr>DTBPqU zc|>~ijVgM49Ic@otP?P_L9JLNnIaD*{WT*E(;9!zj8`O#=Mr4X`m6E^}W5eg0&&BgM)in{@XE&E*475 z2{s=XqO-TR&I3q5MQEu7;{}_op^jkp^%X4|TC?enM$o~5)!C8Kp@vJ26`^s7>#|hh zwChppcu8Trz)kr3+ZHvH=&N5*80eGJ(!RjA6mcx*>G7%Tic5uGnZ#I40T0W%JD8Nw z=5N=dxVUn={pV-6xVG-)YwI4j!9fAmI0y?{6s7ya799Z^mWk(<2Pql)H;_$lX#DFZg?w7AR00}3L4GSypCxL3-*{$GtC=WaC7qw+!Pj|g>w+#zx-#^rq)O}ua zaY%NWcoQBsaInHOQH^Llz^s(Bg|)qu|j!>d;=(y2#*{*DrHlX_+`L@?0c!iE+TJe)V{NBjO7p)pT?y7F1);P zqiH?^@xcJ3os)_RxfVYn_i+o>mqVkkdWLa_v)^zzzS6f@3E2H5hgfVr0v9Z_=XuxN zpntBZ;mboOxL2evKkx@{j*x>H5*2XS;;@)*YHIqWY*Q&}IPt;V*ceJ&Tw6n1N2Y3$ zZxe2e2n_7;2f>cq1mJI}kE!LBS2!Mfbar+E`<0xG%rl6)Y!?C%d%L?@hpYYYezAe* z3OW(zYp@0W^1H`;4dvuASJZR!ZQ&jY)vNPaG@8lUr#xV<4Q^u1mzweTTQL4 zitzIR9SA{I2Cf+=Cnv9p&}g-Csp5xYF+mA1n89B5FRW-0-us&M<)+7H3m9Tz->!_f z8Nk!CDA^i9?mXODH^_1Lk^%R`Oe4WBvAG!xaaAoLP#eez3t{Sp!@RnNa;yCqVspiCAOF)=ff!%+#0iQOS3&Hf?-+4e4YDFxuugZ;V%j0byr zM@tea1h6<|VdljDs$8^~V88jZd?L0bv%IpyZ7<$I_o)4sxWeH1G9hg^yqJP3Y{VT;inGQmAK5*XyM~8?ra4)?T$eh^+Va&eewc-VG|kiwXge)|Qd~_E)|h0{_3e zRq|8NzQC-3K;P?!Zmg{_RrioR`r&k0Hd-!kEisbqnJP*cuL8D1zkk@@^qOER297_X z&nh-H%n}l-iqyawU$zFW+u%cVIRab}7z6^AI_0|)L!%Q&+98X-yb<_Dn~Z90ZFOTq zQB_q^ULNbbvhr}M@XPqw0U3Y7`fv_yTYLS#etDmA!LRsGH&Rkkf@t*m{P`BbXq}=4 z>)i3XSW%La!f{ZxLPE$YHtEa8wm-m{qBSps&l9=+4U-vU!d#=rFYxfNZ2tVI??laG zQ13%WTWZ7*_*GgO`4EFd3+{L-IU@4ZIQ)*gx8Sx4@9KOSx?fs1?*GmY5q$%OCMICV z_68{*4*pOxwKX8911%DEFNk+I;0Z(Gxtl*jt4{LLD3euHPYmT-U^)AJWoNfGrKH5J zgU~9AY(IDdRqo$o6~W~df)x~;4ZooNI+WqPfXj!L%WZY6r%zCnhc#6KHbyjc@;wA# z9g7zs(T+*VgFDp8IFJEZ6f-kvfC?k{cf2k2oh`xhmc*}K6X1jpzkEAfX-7VJg$Ez{ zI}rgE8L}BCYXjvE?`s=i7A@1n-j734vyyCpBSOk&! z`+a+lk?3*lr%3e8DwZ8hL9uyH#iJ`NO-om3?IEe9$(D*t?HLs}gs)~?8=Ha&+s}6e zt#AOq(w{3Xk{23^A%FX};d`Y8C53%4I^^bN>373&T<} z)$zBSA3pRIH*I`W_BV`=q&hKFSGWDvM#c4n7-lgtSYN{191{n}C#0YNsm)}hsD8$1r0})99?0)bWl5opFi9%tsi0f3)iNM!FFRXdE9Ljm&+) zdlkzQr2#?t9&mZ|53q9N5vqKyB8OmS#Dz0fsOLzQN5&U&l&Nfm$5P5lSp0^X}n&rkf_@vEG|cnqTX@ zL79cO2qIlWmLmAStCq|E-&IQvR$P#&LPAAd0P_wcsPRrJ+rFgJ;Glq2i?C_bV1ATI zd0s>AnWm}BNhD>*^))u5ylP;Ijwr8a=<+ueX%&$N051~BdbbY%B?LJUj7Xq=x*v8P zmYC!lenDBA=4IScQME~8y1mV|o zr$1#Dfur0W{6Hm|xxQwe{-cyC;KmIH_r3S;lZ#BFg?Jwk9JaYDtEwUx)ipWvABKku zYf8;1eW_l_#dKbsrgBQd&--Ne5U0O5Q>-vQHC1@kx#P$6R~S-~;Bq($u>1WcWcH=S zTL@e?U|gf2<`Xcj&?GLfwP|${d^U*y+(5iW>O{Yfr{!m#j8RHUuNvnV1t56#<1^Zay_?uHRDg`PQYkS2;9g#Ha+%10Ps%r3bb^gTTf7?Rk3~ zFymf%j4KorAU8c~sjc!~nHz?r{y70HO#U!lsO>?yBC=VdbGXg*$yOiWDt z-}SIUQITRLOPWx54dMe`D^FQS2vcEwT~Jg+!31EbulB3Apo^2QW*f@CyP?C1^vhdM z*dqXl0B-6muBVo;C-CzNT7;<7^*}~viJ=a~$Uu(jyw>nPY)`i)B--uCTKfAwgYQ0; z27O3Kz$f8)J9l=V8y=;DMeyQ&cOi3o83RM)o&E|N1-Y}u$4^NG1S<3epji2?>_@ZP z2-m+a8X>34F&!An;U|sgjDR07B1!{R-Z}e^__=_EevJ7Vq%N>w&4I`hC*Y9)sxq!X z=WR}p1n8D8$0h129?@(~GEp*G9%a2azrlphIhcgL!k$8!;_ZK%EsQr5uTB0Z2i?pe zTHTxu^kLM64=}>mLpE?&*X;d}T!sH6P6$UT;ZfZcRqi0Iq7eStgi@h~x;pq25Y@rZ zl>wO9!P#PVm}`M!LC^8xeC}cU*XcrGpU@JM=8EBa@UU?MYF|MC`^)?HKJNR-UGXp9 zwkGiXQ!_aYD-ERIdjF$jdfi2_c9 zzgz3??@W{~{fxqEfAD|^;N(E@1B=#UOw4Bt1+Z(%ayDlWad$`HuMkjABCfYExdZpU z&{Tk0v}pz6p+;P8m2}iQBeM6%92~GDMsmEpAL`LfyG4x>av07OP_)?fV?!AYEVZC^ zLJ*cr(Jd`;|cw3M90iZxX?(=n)T6p$}=?w}#Oz+9yQ-Zm6esEqvujp>w@hSDE|73ZQs%Q z@nl~R09@w)dLZWEp1o7GBh+QKp6+oR|9wO{5j~beF)Tr5accr+b4)O@h=r}B1STA2 z%h}f{DJf!Efq`)SNlGfj*0ixXe28w^-|htS3CNYN*w{rFd5MPRn}6__8IAFZR@{e! z>SL8Xy%OB}^#9&!slDN^q@rp{OJmY%d=Mllv8cwEGuxl+EtE#5Hj2sg4+m~gL_|ce zefSIKGrY{;6UD^Jy4VZC`%d`Bm0m>NYo5YxU9I zP*ELT&fcY!`{LVCke(6f2ZK(SBe;)FmY07lX>ue$){uzL8OOuJLybWlyI^!mot##s z4A)A4Ss^zHTKG09Q|^!y{S!%+`}Y0&8~DuJ24}c)C@BUT+q-w~3vAaE%x7wY0|Qav z6on2rbWlzp?1AVG04)SULWo2v&hoMX{!eykwYAR3cK*Yym!TMhR3~9R_bPl#O5kpu z{IS3*QA*l>V7R5f2mJsLqJ>R>ohXw&Bj=hPzw#WiqI-9xr2hD;#h&s z!Wy;9Uc4|tB5|hy154~CD^D0KqkA;Y=Rw_Is_j+ z{@*1{mKBTWfA*k8k5_Q-Hk~L%gI5M{YWBNA1~aTLO8wGSdc+5+dg9Y)XHXga{z!|8 z`jq4P1q2vd=0Y{%Qvm^iE>ew88mceJHxl^BlYmz)GY#FKbpQt4eM*XvqnetL)9up} zf40^~))OZn8#+}bY?~mU=~H=eBK#<`m*GCtnL>?-PE-chJ^3v?;XT{AN# zHnycHhZ$ieQ~b?|*4=gEPbhn`m{XnG^B_t%_361|^ebigTwl%gky#n@YrBKJCsmGyhMpGd;erox zC~wB}))Z!)ygI!Ny#9<79+K-`pJgD;fQR>Sp_!^xDwHoY-28t3!)&@B6$w0>us9uz z47VhIeh)U{r{0?me9{LRr0Ktemifi(3l(T()&L4;%D%0$Hu?0*Y(j2rExB(<@1J4} z0e_IcKe9?|Xs6Y+1B>1hlx>f5+7hfuga;;5Fs;(Q??w10giJnIp3ss_{;L_jJt^VV!yltx1d zKfliAN4l*|&V*=xkGFT04wmQAeAV5D*xV+#Jpz}1Hzd;3W+Ef8gZpc1CPB;+{slz6_NeUvQMFTabZb6X zc9t0n>%D(+5J|rv_vZEx6_w%AN+;iQCV7O0%-m z!e-p4Pm2F3j3u7TM5*oV)I}wVhiP3p;soLq^)-0uB)Yy`3#V1sjS~-p|JS}Lx53Nj0X~k0pL5f+TTk~H;}z_IeaZEE1Tl6 zj;KC>$SrikbQVKH5yW|*z;$wW2CNmLb6wFw(^X$TO>qyR;-wt4lHxl$Y3mxF3!L2C z!;pXX&IiN=7>$zQYPh<(+RA}9^q+y}2G{VOA!77_)w)19ph?()gbH+WK-t`|XtFx& zL^7_nhWH;i?d!Hf<<<4KzVaIAS;a1-S(}`e?${cG$EIvvdW%m+Z#i!Cr&&#;>mBoT`^t* z>wOfHm|ik{gUA7fJk!bY?-1hm+S(M7E4NCmZ-yJEFKDljYEOedLWmt#!LY*)jHr8O za}R$=OXZiA>cir%d~rEo_LXhsq8Bb+=WV4ADP>lvtU2e`F5yN-Fqy##0zuYRWF#al zh)MtY^-Igh2o7ah`_j_I9F5@iuIO6`-#J_Y$nCdM^ryIuJubi7JVc*85B1QRNc~#f z8$wLJ_%o(s|2XLx7wL-#Ka0NwOgj050M~4IJ6eU;c(H^Ef z!EU8LjA{&98bQuiazv*XOWVVWj6zRA#EKJ953%6`Pr)B38TIIo(rk$531z=7D)?T( zVV}J@ae0RA-Io<6B$+w1Up$<$_L9onS>xC z$i>2P{sc#iDg8dy$D9ub&3Kxums3FaI6vOH5Tj@UG{pSI#(y+^zt({1J8zuGv9spAzmd24h=}G7KMo4aG_cZt@Qj5e401=+dFp}&N5;mo z@#HzBk&42?ocK?_Z*2ub$dUOXLg`n#2{BL{Nf3`wl%_i(x-vRGs^zhY`JK->DJ)_7 zCl{Yp%4KdYEcP_t|J2v;#X8huk5cZ%%ZpvNGg|Gxv} z8=!6wdM^-7Rwv4KJTzVTZN=h}oSpw=W*Nxh^L`}i#l^)okW-}4+&tODGKhXlc1PVX z6Uk|(7L~=|6R_9#-@JML?FfAhD7;aB}TN8vrBF7d(3UQwU3us7{E; zf0WJB*8K0vd!4Ap@i3tUu*_oM`Fp{HrKmpDVu+48H#MNRY!^xr+CAX*6Rwy=v^<0x zvs&kD-6w9izkk0fElD%p)!H5$w1mUMSO1Gg6aumaw_N?+1ZkM1|nnYm3$vQhs6oC4e)pz8yS z?Vy`u=GN@&?B8mq1EANrWIxNy$oN`UCva|WznS-&+^`K3r@g%pn~YvMKxu12fcpfR zSh@Fi9j$F!>%H@BGU9r1TLuhU9&K)J%Gqrqsi@FYI(DJ6k|%c4Jf z*2A;UFHNow!Q?J5IY9$KQ)|PW_i~uON%&4T^6KE;2;Lf*tnfRx#KQmeCC{(k%sr&N zL?dOmPwn8~6q=<-nWv@{m1EG8l#wS3yYPOGOyrq_sVec%z=fcs%~Z{NR<*0T6z)-W*P=h=8hAR#p;Kxkmq<@u22;iCU6F@9F7@MsCLkS0;E5 z!qZz1o$$~Out9PEi+-^={Yg#Ivvy^uOU*U0vEjMiIL7j$C4NymIE+zaD!Z$(EF9q+!b(h-$$J)^`@%G(ze zzR#4Ki@>s@pf(5dIu*KF?ex95M?*+>1^{Fsc3vSpJxTyHQNMbXzZY1RoXpC|Yb|u# z+96>L(F=q?Sy>qahDJF>#k&@@w5`YAyrtj{8yR`LI=VSddFQm)XueoRHma3T4O4r* z4XfRNgi|ig3*?Op4N=%lrHTYYRoVR@0yY#)O-*AHleOU-!jqjDYO|I{zhx5jv(qRc z8{AhXAfuSUY`3dr{!VG2bthTmS|EFR$Hn z;DP(OxLUBb_Pi;u(dH=?6n@Qqi=*SJ+!_}j6uR1X`RsP_Tz}pQ9QyVqw#7m1njZd~ z31Jj(bK>K>!nolLYcy5K2CFQbHx;s^T-1Wlu-$P|Q6F5k1os}s=(`?bNkw~!Ydr&6Gd6VU03hnd z!Ym~{-4~1%*0Ayhr=Zc1rH@#dd10mY-Y2U_hplmZ0fny$s)UKeJdWEP5x$#_B`VU+ z&fNUDx%rMv<7;b8UwsQrZroueLJ$O>-MNHavogF5p;!w1W&Y4^y)+h=`8hY20q*NK ze})v^sTPYZ9|S!4F;n~Li%|OD!R3K|Q}qfI4tqy1n~}=p_rzPxy=g*MbxLV_Hxr2);XnatJPwjD!7; zdutit@80*jHQc-N`%hX%!wohN(BXf%&Z|lM-x)C@`nW#%e+R}TA+(jh0aLQKU?E_T z5uo(Bxi|1Kfy;us{+p!&wOTr-Xuu!z#MmNPT6`fffmt)|P)_JmA12luuU)Y3P{66rv^ z4X!bv>@2o+5kbAtEW&*W%=c?Au~TIQ^hWcw5%qs?RJ<}Cq~U$>QdrL7-$ygJzaW;+ z2(R$dNRLah1}W*_O|Y;2h^n+q_G9Dc{}BwCStPklU(5La=LM*{8h*wA6BuB%`%Rt7 z-zF!)sE24=gD}ggP4D;jkX(r4BIl)7eXvs(8Xt^yP+S5|^4^OR@dQ?XdI?Hlh)u!O za9U6Ap2uZ@A2mJaCL9@va^SW$BskW@;<;BPis9L-FX*B0m3R{+^SpnWHaL?O!b~wR3_zY>3-j)&* z@$)kS-Wj*Dih+w^dMi)a1Uh-vvorEX>U9h~b;G7&GUq_KKV6QsKsxaD(EFgB_HwWM-y}%e$0q(%|{@~%m&WoPd5zA?muI{zjl@ZIt&i3|X z!FM<^FO@oY`5i*`nwu}7hXZ;h5Iia9%_F$iKG*nlpdy!ctqArWU9byjgEb7OwW+BC zr=&pHPMj#C{6WJgn|l>P+$?XRM>!&HwU>H77%(NyUmqFKEpCpIr5Nr^Gxv6MrnQaS zfm3R5aFBI-03;ig^9xC<%pNNOST%z_baJw#6I#V%c76GnnwlE!Z=mV%AX<>29PiE3 zCzR$ZBN|~>@vP$8Un?r+kwOA~nA}8Z#&A`p!mjRTUMPuiL&Qs^S3SKM9o=Y<+(O`4 zV9jxZf~?&T$Y{Os1us9IKYqsJh8PYajnh3*tD%uWu{{}4(cFqIsnIf6GIvv8afiyO zN~$Ub<>>+wQJr6%t;|~?+{7bSQraR+x`@nQrhX~XHr1?hRn*V>2$qfm? z?fZ{UO73CLF*F0|tjLcZr^)5tG@XP=ZnmphR=N@~#B$Rh z?&B;w77EqL?BS$}%!w~oJY|P-E>)sc?dlq$5QuoYXXPMfb1QXGA zel4?j_;-4m1Y*VTpzayJ@bfA!xjB>d$2OYy(A0Y$byv9nfsls1axW=#hOMj(Jk`?n z{2(DA=;I5H2T*n{k47|s3C)fo3lqUTkEJJPcRcog`Q<^BWnS36)GsVOo!NcHZ6v?j z=hTs|q@+2^Z9Uvi=);E~PPZ5z2;UGA2k#}l`5DiT2F8I;y8%zgi^0P)Tpaco#l}WW zO}*gySQX|pMBOGGL&&V#g$j-%K)Mjw16I~>cq9e()Y#}waveJK_1Iecpt@>X7s}T~ z4Rpnl8@i-Ek=t*FQ+?BEX|oy5aoKlaONMtfV&(k3%D&z4dbcrE_IEZ8mTM1@GIt%c z_Brab_`Ny?&_Bc(AF0+Q^tii&x6B5H11NbQSP?{(S&G{<_1&40gv$7Cf)77pU+!q@ zQ+=u`EkzPM>c9PL#p%r2s@{C+#k|YKF(8uD?9ivv>p0BDh4l5Qz*-%;DQaj)1KEAR z2(=UW2mP9wt-mK7;{(Dg6dxr2`sD);JA~!rJ}9MvURdjPk!dzQiV52ik;XbSG_+`L zyWf5;zP`+&8?B2*yeDxu$uVlGm3GpPILs&80Mpc>YEd(k{YHfk?%}RV4m0341m?{E zI2H}=itzL<#KEqlt9UxjtrSuVO7=Gq@-t{lMn3kjWi3Vd^9%E6K)2Gt)Iq6 znmt|~2MKNc33exUyAm8az){SP?k_QC^d>yPa-ZbH5=s0E)SU-@o!7krH;dqUi}2Fy zO(4%7A7eu*xqY(z9Z;5M4<69``-fP~-s*r+zOkVkVAEz${;M^d?5(DH1pKY$;#I?n zGO0v{?bXVQCdh+=!NQE@77#jr!j?Vv(qps6;bXYLd96oJUm#9emMxC_?Kh^Q`K`F0 zHVcGwVk%9fK6Pxj*rxg$wHT%pJTJv3Jk}^6BS#s1T}l3|2KnwImO26RuPItm_9rJ( zQ@v`f_1_z{mved#esJwOX~dC|}A~)zucC zZf-LO2lzi;;`*dR(M%D~%-j@F>s*rkZ?qV>_Vmt&JV>lyjz9w3-`@!5wZ%kfFy!>0 z6)7M!l>$;B)J#m@z5Xe*XjIdDy9f=cF&QDiZAg%Vbe924vxo-5VhFWwkF6|FY?~=6 z-tL1n`_C(mKR_ji$y8XlnPQL5c@0E*=PL`bi%ppLgT*81<1pFnU6nT%f=Iy(N5LU7vO<{gS$n8+NGYXZnU+*F^LOk0y zI{GiKgTto>=uHME=2G$Tq;?V^gw$WWfZeP4J2zK{y*0B#!@&^+ zaR4}Zq7iLAc4uv}DZgJly$eNE&D<0e%3OP$j0(l)hl*lim`ZNF3Hz>`)oJ?A`vNy{mTA~Ga34`F$1Ez)A)I-m9DT{j z^~SD**Jfd1iObL!0S_Gma55w{mRI{zLD%mq)RP2B0k~G_M{5H(LL&2f2fYA4wSlAr zP%Ro^2~a>sw^%Xbt}`*1^|QoG5_)Cr?d`$PJ=eeRvHIh3ZkpayoP%xnip<5aLKh1= zu0fGMGE6OeU>cE%W?pJ1oUN#6cXT;7@^|}Ztf!fy^5*p|4lggxnG6iXgGWKCUgz#+ z*1wNsHcc0DJXVyr$@%)2N4G7}_|O^NOyJr5`wLQoBS+6~dG67xHjEWv|JiTEP_R7Z z_zh*|AW+`jcSS-*?&o+u_}^1Z8b1V5>CLmC^DDuM02C4@K-OnR_IXlZJ? zXTiwG9YWANEgrUey!*^>ds4tYd!-k(ZLBWw(q_dkH}e?~s}JGZ@8q4x!e&F z&$LH!cNG&DRm&y88{B!o*? zHPxN}eqFd~=#T%3DeEpla4YAwT*lmneYM`!u;)KYszCZ?+D z@gYFr!n5-Lv}0gPfo=xqNRYlE09T)z{U{^Ry&AeC7;Pb$oQl;9#0SN-4t_7WI|3b?_Pd(_pFzCNU+Ty6IfQWD8- z7stUnG<@m-4wZBsB?OW5VdR6Yq}~-=Fl#^O;UR?kWjaVRsi`_!twV$y*lu%or~y~@ zXDCIE2EuxOr>5e|%Q@4HSc_>G(&xK5luMo2VC&heScW2!`hC&?-h%}&w2p0vhy>?_ zXJx?R4m@@~pyAclB|30$92fW- zQd9se8>GDq2*ly@K0vxMqNEPIYx?i`nb*$xi@&)J7O!jjEMNx;PIN@QJ%kCt$%r_> zc4yx}0-eOlAd$x*0wglyAg2TFL&8e%?A+5eouIn)K5KEk-a9)qsA*^@;(ITDV87?x zdDnQZB3uSA<-U9I1QZ6y*xvWHs7r(2iT&<0E-t>4bHmIHLucBIn^NSA#Tfa8a=}}2 zZs(&rii+T(L`1o(tBGKljc8xZ2Sdzi-))(=XK>jsM1G7gYIm`j(DWN;?d~NnPdPBv z+DTfg)YOUodL6{Ob)xeoWQ3{)S|8=Xbu` z>%^}QgYe06H+Jgq^7(BuIq!CMrqz#2G9m}5RO6GA|LXswx0GmYWqrdx{!f9q(vE^b zfK*ntS2X^5Z7tu4B?{V(hlfka^37&QCZ{S2ttqFNne!8Qlv->o^UKNYpr^+3Gk0d{ z(5K_5IxT(={+QvMc4@Js0k8X$w)V@Fp&07mE1pfS0|0Axb&b63*14EZGZ3B?2y+nJ zD-q?Vd(+e5$|~4ISe{iX-HMIA{n>6VMt-NShlhuyS4v6w9|4iHO~K-w1SMd77U@+* zszx+L_x?`JWCjE-k=)4Gvp_5PWLL3KsGBNOFTRMuedW{+hTpDtivPDvMuIggG((R#^{g^MP{xpm$01Q195)E5fXiOT&K!)t92?mCLJ3h0}@=>9lg5^`Dw;`QfQVHJ` z)5YQ%|D{=*)l@Im8kJxd6c~i^Dy5{{rOuNpZ%nAfRdU zE_gBu9CkFI?TFwjj78Qmd9^AIjFt8gHk>ZFmG(>LIjRt2@2~T?5uK+E=W&?lwSHbh zE!zTkN6;5BAqW7A3Iv`$O+({US>?yc(a7ZfuGZp!EUKeMg+js@9)nnqvrI@+G$&`9 z1g5I0=el$zP|e|#`W6=E4U^Yhnrpug*_ct~A`~MpXv8%BXu4Y4Exl8~-qzFO)U2jy z{(I_ZX^SAlKx{i!yU~}8KMHEThFSo6A$a2=kHf~MpyhVHCV=*pf}9)_KF7ncoh8Zz zsA*h$YQHm`Xss;Z5AIHr*sJBGrM(7dki)?df`Mdf-4EoK^;E9^j*sikBUyXW|Au$=c$exC7vKD_srz4sX28(izU&hv;lf7549N%Z{L z>`Os?VnVv8ik~WQoo&qjnU&CJxkKK)&6WNdm(8rG)&VMw4E^`L61Pk&CWR$n_ zZs>%Vm^QQD^bbu6PR}^uP=$kzUhlkv7*%Ra6;^Y0j*dnnxzcd*JB-a|f^m-5W{x@L zSvhW3*>a7JRbYKw|`yDe+J0EG1fBjbg&FMp9Cw ztQM4l^A%pcQvXu?hVQskvrWsw!h2^dG-9rC#QTC3_J|Pb374DL&E*rQsN3OC`}~>N z6PM~E1h>*LFz}i^8yC;duT*#TT_^hn+)f< zY%p#R+@&@g@0Itpc~?}I?BKBU?;W%EW$esk89o`MVkmJR1WgK`k4HeuDn$Ni(KT2H}@D$+Fe$4)x)Y?tL!hAk@ z;g(K_Db1=qA%fN4-%kQUxpGLZMgULd4R>=8JwcN04dqW++s*&&5MYmaAI=4!Xhm;s znn8I3OBGk0xF#{6N84c>{|0xg)A{k6&}9<-n7x*ZDDV}HaD1LoNJ`p=u@6Q;xcx0Aleh`?0qEhiCUBcsLD)qh4f#I=^O z!sD~ryM={^3T^^0)9gUvR9W9&!>)CmRkZ;`yNCGX$@4OeECne`ytaIgj)7MANeGYDeLM50##$;tF zlg}mplq)4VZL-VLE|v~Y9UPc2??|Y(c%@_5y#N_n#o*k()qK1Yr};sKj1onKpM&Q< z^>nhNO6)4#TDO3w%X{(H^ikRW$EzBJe zKtB0)6$2`D1X2|WAec!#$@8XFilI@}(D2_tFvv{5x9=}BB%l}?56?cErYxH}1K ztf2()aTn9XzukS<_v3aXgqvL)=WpjqM@Od>eTr%2!6FVLXn16`z*a2Za^0|XA}j+V z+CS4Z2y}9s$h$W4NKEWOWVJ+oLI1yzy0TzM3;IohwGtY>dlT#{KtZyO~wj-K*ajFXubN( zE^+JQi#z;jJmJ6o+BQ5-4_Ur+v%7b3hViF+Ai;BZFas5hg%Cw^-kY33Nou5#&uXTo z9oQO!$;q~Tv*|_TyfHS`O1g*Z|6Kz<0}vfd&}b~$(a;9cx)R#_?M{zjM>-n{Lvj)s zshIos1D{%#t^Q~^&86s4Rqkoo_Lr>DqLHJZ>|lM>DxN)#srGr#9yH}B;;r5&XnZz_ zn}tu3~ZkdQ(9 z52?2}@UOs_j?;RU-~H%!AW#BeN0AOGm}6HLYM<21YNms5J+dKYn29i~vr0cfKD3@x zP%ZnQKjmP-WPl3Q@&5e}RWoW;?K1HxDPZQHY5@rD%Io|OO}~S&Fm0Mq`D}PIW#4Eq zuRvNv7cm~yCwP&hWMyF8kytnYzh`J+ui&3rNKZ6=>j%_g3t0|4d+_* z!uaPJdVUR?qhcn;cVBUF6Z-PmW)t=SUfj3UFqr=sdhO2GTj-)AM}lBkgXP&rILvUC zeW1lftQ?^hT?cz8yzN!SeMANZ24(#8U^aD% zs>g9i-ucqSA<0~wo&SG?&XcN4s~ZD+#uWed@M2@RCZ0;J3aIaSDk>@h6q6pNmJt!y z?qe51*&4+~oKM=R`AH%o5Yz8TJ)bp%(E4z{&2shGw02_M z?%u(%5)7lIm!5wmCixrVKJ2hS{6)fPAZ0b^8Q0+XdVRFsfs5@rg~pk-^2?VtP;|jm z5R@|T!(1R*+-t|-+tgGFEGgnrQz1M0m4AZz|EwBLp6&TgAf}Tr*SMjD1011i06&pT zG}RpS?s6!k7w%&eYw%?92-#8_V-Zz67Eb3h>>NJk94rOdJ6PBx9UUQ5Wy%S+gjn}3 zM~*|^XEme7#;SKe=}Lqg5pkUeZ!nAy1~WwzAhH9YLjolW0(T3xAFzLto(AX_X~;(B zLg?;6xo*DG%-2h}#^8qM0?oSLU0}a?dIPGF(q|u1tA16bhjrco+}#feh-Xp zbruk~rvv;P6a}jHw|Fj&Usf5S%UDeEX3puT(#9geDs_Mc9j`2$t9yu;$z}OA5Y#J- zdhT(P;UMr`{`b7UJ?FUm=pokQUN5pB!Z4ih{+R_`c4~#xJ|M-X9-Hf$&Zwo znF$o2RPY|lKaiS$((Q1+zKYtxW=G48xv>$eWK`n1(S@E3^esm0YXfD18<4eE z1NT?x56}KC1=&PI5PlMJwQYy4^0sG&;8COE{BH~R?hs!ZNd0s@c50yG3=i+=>qCSK z!-2dAN-ywit|g)4g%Jo*i>KEQiLs}&3JCn2Yz^}O#dBrnOikRgpx@?pf1*igyNVo$ zw#VwLRv$sasvVb*i|BFPs}fD9_Qh{4YUzP{9`0fozW4?Qqjz?8Y6ChNq~*Mp4Gj=G zy**hPr;fVU@@AtKibzbA%*=aEs(Qs5J*H8V9?NxspvtiY-D!bR#`&q`$;Aoku#D{F zeLik70iq{Q9^s1IrhuKBX0;hU1a`vNn=@kef{C!MpiuSqu99Mv2@J!5hVcW=eR4sq zjiIEg{^Wg|`P$4jne` zaTJwE@i;Mqn}JEsHOKmXf6POBtK*%#|E?2&`{5FVOR3e^3?lwGAa4SV0FgKi*==gx zrw<40?Yq5KaDsvYp6!3+^t!H(*l|0gvigL1(DY~OFcj;NpfO~eKzo}BDcTJ#d)G!H z_wU_XteG^LAB$!=CswFcS%%&NVUDROFCI5XxJ3b{3+MUxhQxpN7FWdb|M#>|VIqWK zH5v%r5nw)NXI@}2C~k;}mH_9L{kx*q>*M{U-R*K!PEQz3{B!%0qy@}(NKZi2(9mfo zvd57{inoH}?aM=PV|x0RFIVv>p4rJ^Kzb@1=`ccsH{v!3T>znhxMZt_L=|8^37;0o z;1DK4_yyksgcDwgT!0xW3b8ad@sC&1Gt$uRr}IX>`TF&F1|J?lh60?besNhoY~ueG zC0y4@&*uJ2ElZJee_G-l${^@+thLsRq8ccQqI`EV=b{-9aECjce;#Qu_J3&xNzW<<%BGew(qFn37^K|Y{M zHQk$UCedyR=@Z(!^N*YZ2^$+hEryipU(?f-Fh47^o_fE2?xb>cMP9eu_uxk+6E?O{ z%Gu@!%5hcYk1Y#pwimr^$iUe{7^29@;SI%t0lt-O4-AeZ;QIk(S;yft&*peI88I;! zB7sj{0AL6}EAY(yP|msAee+X6h58p9soNjuRU9$ym@TG1W@e@VSq$iEsK9j>8YhB2;;9St3e@n!bP{f^cEGh$HDH}lk}Ey%*oF0-(fO&z-nyfwwb3uM-T2?_+&x- z+Gj09^5NmgnA&XlWSL*97_fU_KVt`Q$>-0XBXGH(Sp@$a95*&2Ydf|3e@45EmnM&UEiFCKt2P2c`BqBb0;@K z3khos_mf@4a$ls+VPT(odTDwm64yPB^(PAPFz0GgIV8NXu{nUJBrHsUhZl{8{}O!Q z;2~gxHe>}dx?zH6m&S$K@#*F4>lTVh0f&&kCx!WG56_GUo=FZ<}f)7I^qWPoE}U}ENe`V<0h#alzeQSS8NM1)R<~lo3uSmV{IFKNpEkwQ@yTuysxhjU^h7NMhYSO z0-MCw-~SdgKc{DBBV{^5@HyYX!!rf#dx>r{86YsB#)o+v{Hh2hG~~ah2E z6GuQ5WwI#liG_Ll+h+PeK>^BT%aulYi^oathoj*aesav}?G^<0>22Z1M1b$lN`pww z<7AnTz<()Q0;Q2^0*qs0MHF7^q@M{0Fy!PV1*}rVzqa{zcumw-`KJ0J`LQ*-V^o7; zaW`ywxP6IoM(^1OUgc!N+#f(@ur!!Gb>5xxpVck_+BFkX2viUT78Wx|j;}Q} zZNWVYA)^o+a{KmeZXN28o-ws3S~{uDnbZAceJ2;6vHVLCQW6qdaJ<4_`%7iz=Wqts zEqY|d1}joB`6XKJYFvIwe(D$J#pRi zu0~P~C_a5^EyzE-)5nhLOHQuf_qk3}e<%2X{A{1zHI1#ViL@2#TD$U@ zU)&Lm$d7DcN|Qw?pi*Xhxc)+efz5($@>Qt@0RZ%klwQ(Bx7e=8pk;{;gc7kb@jC<& zoa`CS*Rlfwf!Fh}!KuQE91t){I|Y@l8R^sz{Bk~8$hR9($_Tz)@L|F>5=xw4kiEgU z8WErf%WQ+>YON{AF>xBw$pEDvLt!q8=w%EO7M62BU~F=%1UQT!_ALM~oj|yR?64yE z*F2UaA46Dl+Xz0?_^=HRiHuzP5lVoNyeB8a|G=5Z$vN;8^VD2CPhfG1yc#nn^;byx zK9YCu>WLlApr~lNu-iT81hfIO$CRViI|~6bQ%dkGnvJ{%L((vyI8bigg7FCpXuq2- zJISlz(z^I4m)<|r<+1q!8i=%(La65d%#k0)(sJTq|Jbe?3IVZt00c>yjmn6Efs{~4 z&=HAl;``iOv&2Vfh;RbVI}FQse$Ie&DJON$# zNs}lY8%tbn-;B-8uBNLd>~o+}GX$F$sKeob2MwmEx2KR`FQ*x|Q(!%#Tfw!&929uK zxrI-aiIo+2<2lE5kRAhy1_~i(1hB`=`9C7Bts^~Jk^k3v`Ezk||A46vY`-f29&mYe zwLRMsxpnTuZPOB(8~S{-x|*BUYU+J>1|_AUB5IUqQCQgRKgWMCj*`M`7T6R98I?-B zil8Nk78z`65(bwxax$kOnofh`TTrFL{tcn7KqQSq830HU1mzySa7eK?Kjg6K?1~!! z(#Jp=L4^sne;3SFiH_c&BvAbDM2BI$mStW0+LJuHFr)|fu5CyukU zj6owmcig7+Ew8E4(?WX*(Y`R?=&@l1!XwgBJx?l;aAD{z2vOum$laXZXPT1MFgF< z&=&7f;=rdZd_n;y63nlc0Z0o0VgS0JgW4oLo{$0ZI(mEBEXSFTWu^4NDpynE#3~Hx zAqE&4!k{)?MRm*iUFe?PHOe>e0Mxr3GC&2&0Q5hwvVm$&wl9$trgh?^cg05<_dfU> z&=pOVJ3z)_qdYx)&yYI@F{ji({X!sYK#EQ;B$NhOF3{b=JVnIzO;ymWsMjy}*Wjvz zQs{+>iX==@5Rfgt8D@6kyLILX{1ynAH=EAKcNuxK0Mk*J3&xYB#FtQdj_r-tE|sB_ z8NVZPBh0|S5cz#?c2*maDFJW_5I9sl%lUN^WNh2pT`b49xf@ePlJCpDU#y?7b1GT*_gCN zgT>Gl9DaKLC44Z)GF;@<=o@T}cnXIkdsqURkZ>G4wz;Ukdn&5EYOzg ziGRss^Ug?GR#u#RmDg#+I&gQu1CP4CPT}m7Z#G0#ASJ^E9ZxqO4}623z4nO#lxe7po}E;J_nE`_l$ZkvO!`3tZGNUTD_TVZsPcN zkgH?HWYy>>F{Rd4_*s5^VI=Q>B3X#IBly9G^D))*7H>-U-7KxFjH8m`$JWbVsi}dj zk{)(IW)mf(P!~dz8V5IRLc%!hmsjw})P1#(Ek526ARzAga_QNSB^3O<`%@XUK2V%i ztA>7S%=wnML;k~kWFJX5iC{m5@a6*qMf%;lt+*p)*FBL(p5`?uS2rE@j*f_T3hdQ! zF)_YS@B1e_0qP0Ju}7h+@F~lw{GYjX>$b8p_5a&s6R&P=h5%6tez{100biC^bz)Xz z3yR6&HD5U4r2xW2Inig3M}`Ay1e#B!q~o2A4iLpEPjFaFacNdROFWuDubeECTd5In zxE?-(qtzacEU2eIfmL+1JYD*R5B~lLP9coiV1BJ{V1Q^(p^1m1Ja@z_1aL^5ok1{_ zyAv^L-tn;Bf>^tiO^B11=;Uy$2nC7PhKP9j)?c0CNb-)HiJV*NJUo`x^YSG>6+d<4f%t(9 zEXtk*WeCxy3397NjrJAuYP8`GXNnHwn`Y%JyEhn(!07qgILI)*Rv_u=!Aud(D{fVRxq}e~q+*YC8sed3)4FT7b?N5LKsWq-h8*r+SY;t(w(tkQMh@qP+gie_-{}tb z@864C{(}tx#9o&(3%3QQem#2}C_{VlvN(YsNm;p{i0$KH0t=UQR|I}-L2xjCd>Riy zu)QjWY;oWpOZkb?TZn#2!=yeupp8yL|2G`e!1y6%kR%7TbGkCJgrBR1v_ z0u$v~-zHQGsc9rBKFY{ca_i-Pu!D-0d&j|rn5k6F0M2L-Zmx8>o>u%BYQN=uDp6U; zXZ2y9$EbUc80wZDLN+#{uG2nthxSS0+V?2^$c33A^yoTCKC>b5^7%%lSpv5p)F8F> zDw0;G!M39}?5nl4riQv5$S2TVQh6RF^bZBEJQH*wD*U}-q%ZDfOrNIf7Wh@3-j7j9 zpU3QO0eh2g*Pij8&d%?JSs%{Vl3-BYr2~ySvfei#o7(O~gtEzao9wFeS zGTZnxsJq$gp3^3^;qK8SsxL3fOQ)#~Y9x)~aRVEhA(rx{_kb+{d%Xe3E2^WyzQYka zQLZTg@dl+rT19FqFJ2&Zdm-NXTfo+#;Uj*oh#}$_^4P^?qFfKp7h3$)hM{AKyQX?2Rt`T5F&^-dg!8#KCfrRg8w+*x?A z?Xr+yWx0U+syyszQyq!(UgADPPS?V8Q1E^>o2YR=$#dn*c(j<8FQa+KREs{^@|i>k zUqBvt=Hd3l2sl&+OLTRJlMZ)kaYP06zab%fE3m1AZt#15KQ^dBAs)kDcqRA|p9Oo(wgLe77vxw)&~w$%O40X6dTmf3&% zz<=lLFTK4*;b;OSoYq&%v+fVqVtGJ~gBg=Wl^1#3^si)p5s#mxK0c60J^(Km7+<~} z`919$8Nm;fd^mtSFn}5&B`uN~dRbv$V07kbwwc#T&UIV#OseJb2D!eW;b*Qi7ASfV zY%hcc{PJ`kUZX!dJ1M+YTK*^7TtZG82e!L(n1PRvAo0%NzR4gV_2!?)cNCyK<64Bd4 z2mx`WF;*MwFuu6hL|vS|sJBSsW*c2=4+`x0dE|CzE3br9?)CWwX>yyrps2b}ObwU+2re(5FnD_>v*{@TSVdi3Jw7q9 z5~kR&yLDSnG39_dbz2&y=) z-T~o3)A6(gNPQ}Sfe#}Q4nDpO*d+ys9>veLCX*nWTwP2GM2ZOiaN1jE*i|DZ_iN_m z{W*-wq|=nFvpun2hO06&1C&UV5PJvXKk$-_80>2MX|ZVB$)2w#P?Sa;Xgx!_0W#2! zAHxmmERPiw1c>fQ9=@slo6Li?AsxOd6-`mph~BWSmzjB>s>6z!4!fK&#Z)?n-fu_{ z4CSC&wE9F{-QFjOE%4Iw9M~%K@H^}X2Dd6PD&28?AflyT=I7^mU0Q3@FIobquJ^k2 zG=DFvhV(nJ$L1QoKsLm|#S!h~Tn3wn``y{rR`I`G+@rv1${yWcslM8mJplfZWTW$J zoih%Ljm^5~jW86H>HK!@q0I{Fs&KF2&iBw%78!T_dhm3*-holT&5Z<Z4m0x2rXf#g02W-`q3QXL!}%R1MZqz?3bIgrp(-n%=f7pEVDUXN-b_ zR~8q24}hz3@{7!D{rMw7Y%1(GwG*9zn;+BkU<8&ABTED*4>V&00E*ri%m7yk77&$5 zJg<0)g&e=t87siNQr6Cn6XZ1D`a*MXaFBfZ^otKuVaxKoNLgp+Pd1T^ZAu|7=lQ0F z)(7DD7|M_V6&!#DOhC4C@Er`+$UESX@ruFr2$Wm|+5coz?2jK(V3m{$3H$!DFZ>u* zk{2*GL4g>}EWqZBqf-xU)mU(*^T)<|9NU7Ueq((oY2j##cIfx#&p}8H1!y1Q=nZG4 zULy%~S3x?KDx>o9>S{n-TwIgr+xNnZMC@pE(+ps2gBh#?u&ZGNLBeCM)=ncwO9s*s zu+85Nd>==^z+w4|BlM$ImCSNEHV%D|;kL#W-{RIImN!(j=3985a&u8iH7+jj#gA$% zQ?&O^7H*O#+S?KT4=})z%va&*?gHfut4-?_FEP6=!m4P}89}NkCimsd|197({?Czx zm!wf_3?g|jLo6;Yzt<>UgM3Y}uPp%!2l{uIwQB-QsEkpVGr7h4N)YzOI4z6$1+a5> zb2w9RIesjlT41{pNbKsfDBj!GhukCW1y?!}B4SKbG!r%mPvCDe-JcO|Fw1Yp&+A0N zs1#CMRq=P^&qylS>r|_^`{?EIn_v;k2emQ1LLvw$4}V$U!|>sPoSQe%4?>CT#`dUhmzXBo`pz(mt5Mph-VRDxW z5DSoP$|w^MOam@j^9`1#clPRgl%Ht0M#IEXl$%@Uj#PHLqOnx+kD30Ln*AejtnK1 zaf*sue;^iU_2L*5b9dU6++tQ#m^*ene#cAQFL}dw_p%#bAb7Me|89$I zf)q?tRzl3r_6{QyVo~<+-KRi3duX%%9C;WsFk&eJ+pbWznR!^QG|@G^g2S(3t|2tf z5s;=)4Gogo6mNK~5OJBNx<1WcsrNM#;=j2p#J+JxUN zt^miR)yJ4jJ}1Ua$TFGxrRPc{S|o;rxj7OjXrAs=c|oa%2t$S0EhubtF!`)<|CH7; z!H!0^NUBH;hJzQ+Vt3yb4GakI8{D2R)!IMjTX=?Sy(D=CS=1{31l|9|4uQ00Waj6+ zfn?5~i>j|QQv_7!9}qJRrNhokcoY3Ec)n5qvs2?N1o^mTHCm+T>grsXlD309 zouI(LccWCVw+H~Eqpwd5JeAz0rb~R^g=EJ-LV%5+Z68bmZg<_@h_30fvR{#yIMm|o z+~SNJWEp$b7ji~Gr-w!cK__`2mU(=neG%E){`A|avRIEfz21UPkKI@jD1?As|7X5A z4X*UEwmr}yZ2`dvGw?kK-?+RlPrC&B|2s`TABy>ZRwkc1n2U7x_Ab{<>K5;)l|#s} z%N`YQlxTo}4ucFR97fEzq4I(|9N`J+=?R6lePwIwtlPOpixq4M*q&x?XONc*e+(v7 zBfFa~pNoi)3R;o?S_XhyV07vOfhPtQWZZ9#AU#jxjf4UIK7e=*&bP}AMO-VS#K(q8 z#@>xG^vDnPxK)R~REtMa&!F8^epadhg8?$=y;4A%BDQm{JONTuOvcT7oOP?8Ewe(B zU^e*2P_V$JbfT-7EF~D9v{GS+KB^#p+SZSar>xxYSo7P}>#9>gxafvN7n;5%O@eXq z@In@bwKd&*OXU8qFNEZzFL|vgc;@E=bX%jA{2AOP`rhD(fw@-i<1|`h40dh?42&n&tKvsrC)e}Dcs9cqin}c??&-wmMTDA~>gpFNFtY<%MIpf4 zh>3}T+W^cn8!O@PoSe5ARrZ&zXEx6x2u*RR;+Mf0M#0Oy`hKu9O1S(1RyGe=oh`EL zlP9>54~9g<#4@w7k3SJ&K1%#E&wA)G{&|}J_T2Sk>6z zS0|;|U?7zU2LK^KStGn}?IbS5$)d3Q(t0*#g@pHcXOI786dD=#9fs%Mru)J__sYAm zK7PI~voZK#;c|eF>*VQEcvKEx*~W6aja*-=s5GsGu-)R7ZP&|#+o9%+Y_AVNI~%I(D`&-TrF z?%CQx8uo|8M2(Y1Utfj{5TX-l3QOSgKwKj1_>f_m5i(7~MZHfx*MQ+`JtA2a2kS#I z;v^rr+vvWqqKE6r;4lcstgqMTdRv3|)A)yR@9jiFbqn*=1$_K_SqD?5mG3*}uJr65 zAB}_j%z1ZqYIV=w-yb%eOCYmzM=C|wCXe)}|If%=zetT4HUv_jZ?af=a;L<+f{?^q z=Pg-e5Oj86Bm`TcDWa){*9RPwJeme+Ab!#+?d4N72nJI3Vqm6sQ#DbojpSx+IL z+w^lW>FS0oyN!+62#S?9g~-LfoT*%CO?8c*Wfd>Jh4|lUfz1Y`5E0jtE!V%HbM^3y*m<5IUncWr_5)?czxHv}n8y*g_ zN9t^ZC>|uBlagyccV@OK^^pnmyh&GZDSuO6F13R@s_#6izVr?1VCxyfyFA%A;7y9+ zwVRe|q^H^0If?ho>F7TU!QvO8^z`Zxa0&yFAqTKwJBM6`sQkEy*)hAt+*Gtv0p2tD zZ9Wqkhq(0g%Whd9QJ!5a+zjSQha-#>5RCaMs!7Q(QTQ?Wk_!1ud=6qBpZG2 zXDRvI?;)V&*c(7<-HPio=a0)9KV0LUT~&}+x$ z)t~Zox88vej5C1CN9=jAun_Lt&!0a}Gq^$YF5;Q#uQCm%aPKTWN2v_0ZYJJd!+6w+mgZAv6ocJAGq?j~<>W9R2OcrAIXf_haUSp{(3;8o-Cg!DNkG|_ zzP7uIk~dkJr(;BCT~NR;EB*GGTC84f=hwqS^EG*h+=# z!34L4NT)rvAu54Kc4T4~k3Z+qaIbXQ0djKo{9g{phknh>09o1fVy71IV+*~{Q2QEP zkc19OtdUw9Jtf3GlYkMiyTa6Q7`Zqxo<&0on?bO54tD2o^71gT z@~2ip36KD?76x>bSm0QsyMS}a*zD7fgUwvK>j1~V$K>Q`oj1CqBq3Ezl`7ho8A5%Y zs?7AXTKON;@lW=!C^U*-A-Z1n#cnPv;?naG7Xaq5ghh0&GfBwv>K!o(4>w4+cB5pi z%laX%EY$T&Rou4iMie*JL}U-I)oT3dgZI()h7ZZ^f7A#9TgcV_olUu4p>KoC1lCHzBL_|yPvE$QY&1X;kV0Dr z5|>b*T_GNc2In2Ei|fOUp-~{Bf3=>I2TZ!Zl>k4#{#Uy^@gW&|hK%%d5VdSvx7T)Mz0GjEp2(&pta(<+ogB`OWT4OdZFyhZoD_FSW&k72bmHtete~rsx?`s=3x6`~n z2>*7WEEc$^-y0DzJllA(iR--c;S}nZhRFiuq@AtRb(xN(_RDHhJQH&s@YF{>D5-JE zFeIYWJ71NvqkABLqAaHP+?*L!C6V5yLGH$#C`bV6`~P z>5nb7b1AE;qUt6j^)-iw++7?mO%rE`;f&2th=@}XIo@ZQBQ#TJhOsO=C>sxjlST*~r zo^$!rWHT{mn+XhstqU8anx$%)SWlRnuEm%DmR5jvFq?)sEbPu5C12k= zx&7@1rF+q7FVSj5E{{*VwuNzVjR*EFME9y(%P-u^gvfn-d=L_0Grglb7!p3?%$C8} zZD;;?FvTg0TpN0R zd!gP%2E)nyQDw2%goMDB7ExFe1q252m|-SC+6XM@EPPImj@Ilwh3$fZu%XJy48~JE z*zZc_7gW*K#(vR=2!*W~+IC+KxbwwF->F-6{LsN)orhNDnH@d1+Td2cg0$v*tKM#w z00B&xXODNB96A=R84lGVk-+Aj`ibeMo?9Re#Flt(v$~(`D73;HT^DKm4EW|MmDLY~ zsds}P)Fq}O@Gzr=$~N2^uhfL*LCPt`)aqS@)k`PG_c5DJL!vA{eS1pNrf zAZWTz^lDM$L3=6acsaUx+YJ5_y6lzKc-VnJ5EvqV>ZWKC(s8iKxIO<(18L|3cWmk!cZUP4!$o~FyDHI!v%{FOAxT#L?bnyAi?QMov&^uy!CI}rui@jX4uCD+?}UtTe} zwy3kP`5fIZrlh!2=SCpQ$0w}k`I2IofH4ef;zt1JoJr%;BdWr&eoY$~=!=)P`PYLv zeZI;xkNBR-hGQ|iFJuIDa~Ov`R?QNAZ6Ca?Gi*_#g~+0&e%geutEDlid2(+3p5^FultULY;wEg0NuF_h3nt)QRaodZk zD&xz^kP0N71`c?E_Qh;{RY80CXIX{#=4Ja_BhB$d*Eggii*o#<0lxU_l?S)yn#1>c z6BMn}By$$0+_MC>HeXuX%=g!}wVj@w4uk5L>GWd3&dy~c1syNsa#sj6vM-1ui*aT&5RAsiHkar2#MKyJuGTw`v%r7 z_FB8Zq5$q@hyn`%tO+8cQ_c6&!{HwRUQ|@+HZzGFrC-;6`S;3?>3R1w?lq0Bo*6?f z9{|yAPP@bq1;e0{(z4~%xdpz4g#oYkne>kd^OH|EiL9RgmV)abkC>F4Wh1k`zU~|- z(i?f2Ev{1?UV1EpEFhXYzdsSu@765|tfoAzFOt(E%t}@|eScVLNbP*3C zMCw5%6&U0S;Eo1)W`)mcO-UR7EU ztCu%PCKj{kCM39mXkI!K6^l-Wfk7rv{T zz{~aYX#@d5eu~k>@iNiLQG%hdDdXNth*L6?swjKM{6-P*qu^))^U_kQ%>z?IgTK?& zTX+~5;8;dz^`Mn+80Xfo41JIC=rkZ8g!ZhD{f*`N8Qn(+0m>V{_p=aBNm;8}Q8{U^ z;_Pr~fUkq+x`&a*>;XSDiqpw1&GVtONei`ZUg94>ER;-ql`UBrNNquSmCj^oG!Q8yxy&Ndk`1< zP%^8ORoIo9c+(#()MM}8JJ*xB1{0H~!C{+xmYO=pWhp7ECk^$XpWHX1LNp<5?ECt5 zd0*i5-=(@N!N9a;5xlO*l}oW}i7@%V4S+>c-;8Gc$S^m1HoK9v@V zCMPE`SN~*7RMb^di`V?4v`GO)`0m`>cC>f%_wUgxuSAQ5S-i-H{KLiVZ3TCC_rr_z z^P|pkJq?Ea$B^{;{a6)*QIKVh&zPILsj5PAu@OjYbW?2;y&nAF+08N*ByN4$Yn~V# zja&CSdR?#b<9A31+_=`P(t+*<`CqgmCkD9C&R z!b3!s7MxM`#66XfU5QH$S*dud-8*CoZS1d|nXXHC zKE9(0DkX~-ThIMHJTwHd0qD1QJ&~V21)CtZ#iYvlWUE1i6AK;@yNSWxyryo;c7*~zN8e67wm#WxYc6>V_ro@(zG99_j?aGXoh_b}sc1wzFLbu;14XJ| zK&8has5M)ARQsyfs)Cq@|?E z9+?;$BgCo=j$7X$<ZT7=VJY-ftr3%#jX`iIYl^~`ZIZZhzfcR;C& zi1!7Z9FC|$p2N{gqQ^0ZH;sFAsUICo?Nrm!`oN9icBV@%s7A34zGxTinXi@1pF?#C z2bOksl`JhEgW7?$(-vX*f_Vd4Ei|7TPQSs^vV;!sQEhT{XXu5%{S*!-uc)XfHl<*7 z+rlf5ssQp%jQ1FERzMZP>4;K|_%EBo`+6|vv7UN;P6$)y=~^3Q7Z4Bd0?QM$l~hdZlucIZIiWrdrQ9|vR_^A^XJgueG*oc_%*szkdTBEGc!hCBlV z*a)kP=2uHn7=ilm)~eX*g{Fd5>K&0RuONe-dnlfs zo7{FZrm|5bGeN<4Ur0HSpqoGf`)dcdHG6t{b89j)3B|u!`3pF74-T66bVWICkA;#J z6nuh`RQFWWRy-hYsePLwad(#{nUS7{B3Lnd+#GfXh~?gP5$lMhj7ue646>&TGF*P$l}>C=+)DF!8)Q`(kflmY(1J-Il2D~U!gSd z@!>7>in(U;z)%c~iHY0ld^Z*VzzS(t@P4yrRr4`FeqPJ1F0I&1-;0gfNR9ZBK$i4OGZD+j>6qpX%?6D2u~+ZIOln zZZMF_kYf##MG^wFJu%lv+?TK`@p0^ZD!d1xcJcBO63Ea^f%(7X_$#bxo`6_(m-oJ+ z+5>2AmI#ID2UJq-$A8Y)Uvo`=F_Z;FOE`>QpoauE z6eswlIu*3_TqUGB83|j{iZh4+g~dic_(H zr$e1G+WzkDmD;UA=L$hS=W=ZSPWFiX8c3mo?b>U-VPk8c5?O7YD5YInR|K+pMRm1Q z&I_=Wewdbthjkqc`-5PaPe4QjD?;fx{j`ujJ~rv>blIC7G{g|9e!~?W^*G zsq&XEIgIYK0CEtLRH`*J5X^S~@qiSQOemYr>K=YmsOMWGrA$Ib4}wAQI7*@J=&)kMsK_;VF8;d&gu!XCRkmh0NRr3nKCC7Wr9VPVOQm@(`98#u zdP7c|0@Kj2VUm5_)jjN%dT9_Aah;)A_dh-Fwxy+~_@$Lq^fyi$N@1!hbye>OsP>xt z%{wsd+FCB{SDKbL&FsppXBaM;MCs{isOafyNQQ2Kx@bDv&iocoGcGsCh}eD{wB0g! zto5Tlox***E-%fnkLZ!5)xzKr7BLb6_`AX%FZ-niRB5tZy2km0J@a0~1W>I);6~wy!-`^Lam zlFnc2)V8IYxR(!%Q$`~q^Y8GOM%DQ)_&k`Md!$(x6Am7ivDrf}FX_bzbBn+cuuQ^C zza1Tqi1?sAI5O-5sCJ+8dy$FI(z-3Mw-TZQKaS=*d^p9=dV4>HymR}Q#FVI7e7XH<4@ zj$R>kA&V8!03p(LV9ldd`gI?ZvQ%TeCd()BEXPD$+~{LO3Pct$cg?_BAFfc?Pm+Rt zd9HZH-h9_05!QPo6e7$QWlzxs@XT$U65bDI2t{t721SePFC=tR6w1E zU}d^J8F>hQ)s5fd#YhP1&08vWET~0){(eMx2#$0}hr9M5V@C8IT|Okucw!~3)-V23 zSwKOtAPJW-KM)SUHlxfa&g~x>iUC9G**d#hFp@#TqniE2lN?8@fWV@M9wvh<6GY1I zY&o&I?YEZNr7f9Q6R_50U$HlV27fa3`@#Gh-ecw3YK`LiT{}nH zG~RU$VU0iBy;%NN3$Qz>CoSxK?S{{RiAg7!rzcjQ4J4kPkY=wpKQtgm$XL+v?nwK9 zqV^CP8mmzI$qqr`zp)~x*NuwVBW4w~wOws(ez5Gh>#$1!=F37Rx&YV#FYWC`L)iJ1dSE`%mLQ@97_@1S4l=;@IQ2zlFXs%TNoW@S^Mq7sIKV4 zY#Y5?RaJzd2Z6=~VW`_fjhwq14w}hE1Au5=F@cy6?7>u2*{BetRwHn=s=R)L8kzI7 zV@J?iICid46-wrrvqR}kfFDh)m5iGstZ&xd-oF%+sSQS47J9sk@%O2O?-qJI3u)TO z`=my5Uh@Jwc0gruXGalATIf)RQe{%9r4zcJ;Tvz~m>T^E`(tU3jkA>*`!F!QV4WJ? zlkjL!6h=nG-J?=u1UR>7VrRhnZ*o{^%~_qD+3Pmcg~V0K;(>4*M$ur2#|O zOz0}i5ACbfN^b?84%paySIJpGEhQqtDddqj7EdU+H$~eKaOo*9p`o!nwlgLtb!ymU z^hVD;wD)A*P+1Ox0OWbECd=xI)o1|G&mvjWa!o*tMheQJ`6s4Ey72pCJt91~K04V* zV5!`p{_X^&@P_GNyxroO`v1q&cgJ)2w|!THBBN{~vSp8mknEYg_bPkuQTC=3*%=wh z-dncJ>=oG|TiHCvd0qGYJkNi>*Y8!~>pVZ7<9JUUVt)7C2OvgtwjJnzOSD z@x~|_1@ZCm?P1CXHVtYu6xtk=meTzGX*noArfTT4os)A^BVf&v#_BC{=HL?1lG^e=eOUXptt6$ z3_tqINZtyh*BWS)z*@~K$d;U$DT=z=#2=#T=A+5MBy;ZfaK6XmHQ| z+Ss@aqGxE%0cfEFvN>8>uDQ9n!8teub+>NYvk1Kn$4CI8BP+^$;;@JcK?`kjb7_#) z0mh^*co}OzPQ&!!_Gjg(Uv|u3DV3AMg5>eep`nt07wLh;O{d|AM`dkoq9*hta1>w9 zWoiPppyPQ74VjVu4nLQ&N(}hUo8wXN2Zc)8RvjSWsv;$ToPyO~+$pLdNu*$Gyw37E zp3wQZX+D4GYdj*21QwkmF+AeUh-X*S0ElTpeGeRxAnOHNNDIs+S|x_pVKcoWZ0Fl# z`Vkr^w%77i$^w0c9^eh3pqS+!y}myDvUgm)Jt8o$lV}>Wy5843E@P>v$;pKt4fM`b z8~vH=ijcy?D?2}j_6fV`(3*NEps@OB4J0vw-gNWYbWhgCK{J!?mkuj17sAau!M;g` zAj^y(7VQWp02iB5r{qi(^<6=kN?FyXK2LBi&L=7FimFc(LBzATV^;HpdVH%vJ=)KD zr{CRpj`<{ zc95wEus2|*#@>Iwh<)NtsJ+cen4@4bmrV&u%NKR4%m{)dYi9qR$T5Cs5K(~~ju ztt}#)E+)oe&b^R0u@1qKtkj~jLwa?gzpFee9|aVDxr^u2j?vxwywU`n1Zb(GCzjl# zpi{lpK9;L2eZ8YqRP1Wml%zm1Mkd-;H;0|otbw*AG}oQBhU%pv4vbR z-AuW8ROn^3ZBI(xi_w9Iq&WJM(_S``>H5co^osEwbUbRlkdo@2nDpJ^a+M6v3^XDs zk2D_)m>JC1?S0Lq-#HuCd1rFb%LWib!$nmjTNE0!)}a2y5sEcV%FXQyVgYWT14e*Q z*vn0vPTG`|RAHSTm`(Zm^^r*Xc<4eK$*^4M4|wscn3)+JS@a*Z<~B9qGgsLbl8szm zmR+ErNu@|OW-bB*04eu0R8-gR-Ma_ceOM{)terv3o)H9ZWbqe)aXgR5>P1Iqrgq7v zZ~R{;RCS}WOah4C=5};;qCs5r<;B@&1~f-qW0Mtf03(gO@j}@RbRS&-1S{I9G7QWt zoQ4Xy3aO<3Y~0^Jo{QzrH>Z`*Pm8>$sp*V?7F-fLK*R;dz~#8_wBV2b4YnofnejqS zS9v+;)L8@O;Tm+Mo#j{WC_$E7qIMkZB{A#-zhNSRdN{BsWkHz}Y@RS&z$yaWvPcsw z*uwx{gj{#10>DHxACNeYAl<-3BH6>qPa7=;DHazO-TzHlz|@kjm#PN#MYzHM6SaMB zV4$lj2g?>b8*o(agR~10E&W#`66Ie&IS*7VhDAhV0l#zS;qZo%zWxB1C$4LGxNVNJ zAV>lhmbdp?QDllryOD~b{oirwn5}bsJRX2{K+pC~Npi2SECxdJRF_1&MB&>&%7bJ@ zUi0NlR}tXVbyjX|Fcob;>KW_N&iI|}c_R9WW`snAx6ETL)os^yBsdKld$!giu7Fwn z6VMmr5|OyM+ZoTP(bx=Fi4J5w^HH50;%Q7B?>TZjwN2rZxi}ZYP-4*5KlMK61CcDY z4lY%xA|>8w)1~&muyUu7!Jn0~fl<&JP&j*>}#6r}@<7>Lc)EwgCay{QO zCqS_X0bz^Ztct^=c%2!RmwyRb;(y_>vX@m@-Gw5H$?4&dwg6odlbpu=+v=3wuk{@u zQ@^NGm@P&Hjxm)C5i84Z-wLYeon24OpW0Py6d@l{Nl8iThtxHjfBL?JVgNK{@8V(x$zv|E z%d#>Imltln6;*V3b_QREhfR~?-kF;9toAFr3%JUylF`#&gU-ypfDoKpAiN3+35jGj zFd(@%K2A*tBg`4~0}*vqXxT$)Y7udG)YTrEcLdp~&?MX5FKGYCIv0SODnR!7%!-Q2 z*aG}%MlNo(j{=5a1Xnq1NiU&x3}rzs>jx4nppYUYKMsMzRx|Mcc!YW#S5DM?Oz4uX zgm1qK&4e4VVbUw^%Q)`bx0U%w3D zPxCqd#)YI-=nsG>hii;{$k+rc3k-eGaD{X?A=Qmg7zZ(U3S$S~>RdL#GGx&niU(86 zJ+RFKmPJX{;Q&b%3MqVVAbtigBS;^3_i7}^;ds{wSZj#e$%eBGL{h;pk1ax=4G>fz zIFze!vLj#Z{M;Mf3aHIGY3@7!gy7Dfoc=FcHHPG1!SD|mMbDn~=h$9a**jZ*B$~#8 z_Av;bRMyv5fP@lIG=jlXWmeH`JM>ta5{e7iYaGpp-;ue9@{S91~v5^*8QZA6~}J-leAYljM(rYzAZ~9WU;I{O9f3xKOVdK(X^xF)nPdkR<@Tnliyz^(ZFicw`~XG$ghMMz+GDZGM43ma-L z3Y2^f@$Sb^N?u>aCJ*h|nyIO>8yvlfX}E8C{^-#s3q>SmtWhPG7_^iC%K=Q71_WxR za{drB$yZe1!_^6Q63NOA8*6`fxb{(&L>3hj(`|T(!N=I+=-SEiSVL&!BZr~g;4uO7 zHKaBJ=*x;^;q)6^T-tJI#bL7DJ+D$ibSZ^}vHO#Pv|=b41f3areNV%(vuPmc2!6x; zO9?_6YGFf9&B8GvDJWv!-LRS%4-*awa)~+Gjb-@g$^RW>_Aq!i{n+0|{Ip}19!Edj zk_ku8&)dbP>MHRw_7BL`M1{ZiB~sgJYiE)OBAo$<&Qw+w{u%{{@EaN$h=qLxAs?0o zb|F9?O4<2I3Ib8JiVR{%6P%&XWo~ZHF)Ju2vhX7@oW0lO}=ek z$5Y5p0D9VjDj^#gDcl7PCK=SDbMKydUo2pa@HGS!kbqW6X6B-F{^wzdB+!3jyxjfv zj#$PYyQXIlxf=FTkwDG^7oz!t+B4KvxJ-$OJtG-;%_@ zuFgL+IazG%^&c|aXBB>a{Ana4j`gXj7-L~!jzZ8xvGo1BDQj7I+`+$FOHbjAh7v>z za9JCI_WUJxl6LNA<^1gV(R}CAUnpo0=cyl+_taPLX9%{Li5M!pG<1(1$*F$}3|Rtm zJWdwq>K1PF7#XP&5Gs3a;KMF)*yI#4>Nb}#+Z94_dWs76Hcc%hm^?rf35w5@!@sl{ zc^F)U@s}XIy??I_;vD;5Uq{K_qZ0AppB^t{+&|2Ixub8{Flbpx3YZTlbYFZ(SgLhp zF^|DtPokw-=%JWE1@G1}Y{u1%e+!9$l)Hk3kry~O#D!cCZ}BQkg-1D#KgtWBG>P{ts^P}1=aKM zdlRD9%kg;j^aNZ*v`F4W5E||Ox}IdzmUhl_i2@EFo>PIZAp8Q*bkx$NP@ooIAJ|&o zzJK2idEM)ir4K;@3KB^bFhN4!2y_dt0z!qDz~Neb3n`(xy5tb|R~$uw(AA(<2AF;X za-+Klrx4+b?>Qg1(@mga3h93`F+rl104YaY7Vw1}plt$z7bC#h0skM0G*|-z1MR`$ z29N@zikiX84*#R#*cYT!z;?jGIl<>IkBn(aBL5FBUvc;H0$*IEU-7m3B#f<6#>Npi z(ENcUY<58P446M*x&8Rmityjc%J9oPUz5_)z@RW@UM>}}MhN!4Q5~dk5H)0Jc5656 z-cV(MX)T2?Yof_K~VY?-5JPhFx1yIwqGg66d} z_~ZM(zM+70sRe;<;jX9)3eLpBS^Krn2El9G&8AIB6Z&3JpnF(WOlqH$+^%@%#|zvKcyGPXwn0f?UFQ2|B0S z+J%Im;DbPpbxJbk%&l+&`(LkXPRZ}TDl8r>S?Sf{u%lR+soI056DW(RbA?3iTdM;$ z{JDZGQAG|8v$bwGaf(7l(vF-Ed}IoVj358oA}5y|QOU@Nw`YE28+NbORsP?aBxR3< ze#xixHAeh9oOSR!e02uJ2@sMDfa*%^TAI}y6q{6X^Ust^>b^HJx~nuKdWd-q9p{~$ z?Lb{N4NPA^7gf3?0#j=>{s>S85qMT0=Vk@=0?Ct$BWfDqRv7NC|HnQlFz2g7v9m@$ zGXqnRE(r-Psmzsu-)9K2^3c+n%*~d{*qpHwH@sNH48w=xMMsBvi3)zdM1#qSb{~Q4*`3o=TEY!GlP_?P(r|1#`2WCM!|7(UFmd z^zL$t%sDP7DE5bvT_k0G-ut;ukpEg_Wawl?SZE3RY3h@pZ+(d` z(>#LPXlYgRRgVpt`nt0u!+`wApD^F1-efZ3sPPtlT# zi=E44FZj+!a2$cL^d13$+Kkw6dwbw6rEkl~T$;&4$#>1JHe0g>Bah0<%HAoJmQK>s z%cAzhmDp$SjV8ZTp1up=*9&kIUW2&4XVJ3H-gr}PtV{d4s=Tbc`%Oh9`?{7Hmzhjf z2;d5cpcz4@cIH0kfg+gYfCvFm!1ad@A0kH~Tw3sh0RwoK zfS?1;QBr(5kW`*P^D8U~2y_VLZE#||IP?6Elz`^{(>BJowu%A|ikMQst57L#dTFz~ z)?4<6aMlfy43{B}6OMZh_*!)WLgz1Z!x$O+*%s9E+j+o#;X-Yu(tE_rERI@T6(2G6 z)T^EG{$1*U;**2VVTm6;geog2P><(ikLpz@rpjD?mR&|g%d~F&0O9cTa2f|fF5yao z0ont|9R?c~90CF00fq&=^XJd|klq0e%K!pXF)-vQ`8vjlNrVrLDYrdGN1w6_3tKez z-ehsuEYdw`U*wW{_>J_N?q_9WAA#^rDFp@do$a5{we7SVr`U}KfWTZP3TeC2>2#x) zHAr+pz~j6%{Q=@&oHj-oIXO8YYhQDT_D6iYqwbuaLHkEQx4*@+pak8374BHr#$>?#g=3h!P?QW{CBgfzgwb&7H{T1%#+ZZCym33z}NA68eT!&4w>8*<=E}{ZHPgcfk%MK5n5%m}n zy=3>jGU4N7_HW?b-oSEjos)+Eto;+6QCYnql&x(ca;bue&%r06veiir{RuX41=Hpq zaVWzzPcM#KipB#2>&WLG&s#Sst<<>;M;0di`SV92T^P6}xc#ReR}cRhW$fXi8yI>da5G7wnN)S$k^x()E@2>*c0=dVQ&^Pu$^Ht1+QGP1>#)E-Bthk540lao@a;&*(` zczqk!(ut_}=p{S1zNk^R2qjhOAQvxO0@9GWd|Tv|`S`J}=kB%6m^FS$Nf`lGu~L(e zSrEJW8(rL3B(rP5WGk`#j(`4Ca92TQad~eE%$=Y&hW_hLK$xLb0+_2l7@Qai2Ks#= z+yQc0xzl}58G&t(gXm2C14w8eLPP~gLVAH>=;(<8IFy7+lY@$xF=gcomp)AX0r?Q~ zal9zb_#g*@L3lniT8*>+o-j~SQ?-Z2Xo=NjLq1qWrdL*u>ud3Rw@6hbmq7x~i=Roz z`hG%I=AE2LAz?HH?XO{4^0;>lqZ4a0YiU^(Wp{H&Rlj_>DcBq%BwA^P`R4T0rTDR* zP$MU2H|!?wdJ{-i7X4wUfshFA)Aig+JCDV!YLX`o)Sf?n9D?c_0@=OyI*71B!;M>d z;_#t8ZE)lsgxv!%2&Gn?5VQs(zKp9~0&CfP+WU8RPX;_?{`1oNZS^H8Yet2=YOq{Y zQb>Kb^Wk(YOq8mW71B$C1&|OXFpk}l;#z{X4RGTBH2nM;^0b%y6&0c*Ba$Wxp)6Sa zwQ93@xm*&Bcuc9u%6#stQ=KUF0@~Va)Ditg;>+*M$`6=X2-YqqORwV7@ci)M<_9VL zh3X)n#_+CH_PoRch5)960AL1z&Y*qz^gfitMN>SL@$`HGS0M;|-p0kL=E4Lnajub5xkRd zKE}WrT&P{?`Nap;+2|`jrI(vC1c;IwS#GbaKr;0j9uruNUlfdiPss>eDnRsJzkXd) z*jDSDa;5zi9=*^hMqck;0|3a74hSHjBbciJb8%k?BHD;QE*N`f^2Gj=?x(5;zpf1j zZjLB+bnw}KYB&2cLr-*muo^~uG|?>c2)fRwU%*VDZz&PX$C*yEMi3evz6i%p!(Jzu z{2V3h??ALXL{|c-2|aX>f!hU8K-f)zhJtYisd)mSJrJoNN&~(EK1)!wEJ7w#Dr___ zm6WJYD@MBug>c_&w@N0j(km2HjvOc9MJ{Gr# zRkyq7KNT;?iVA(qP)|?Of2B>$C@uEm3lrYS<+(-AOA4ObTVN%Dd{zz~E_kLWfMvNu z5ZdDPI~HRHd~MW+U>V4itG4A-fNIGKO9F>iuMh%Vy#VaY1q6;fr1Bs%@yL&-40G=Lk3n9u$J zEfH&p(32#iEQzoZ+`H5>rJg(xhLdNbs)1Y*gNkX98Ia86lB<}|`aPWBPI5~WCEHo? zoYw@W^~YKL`*-fb^8-qgXm}KW(E(sCQ@tP&^wj_4J3=50(0^cmWzoBEaBD^xi-R}b zWIyyHXtcXQ&f&rH^nSroSBJPxKcw-Uzy)=!hX_m;v@mELF>BZ>%CGzy%78d>Qh0vT zytet_{y?Ha{fg*wCd#~P+hbD%8M}5C#T_{5X}@h2AN;UL|54{+1xkvMgJx> z@uJlBny~x8D>zuo5{%! zNz{oyBP=?m6kb;sXvJE!7C7h{g{@n5eh>dn^Pn{xVACF~W~A`mfuj_xQnfIE&lLQu z0o!NC{5&PJm%t2y5S-ib@qGZIEvbz>`U67R%c(N)O9Z6X@i`4`^EtL>=U(;|zu75# z)mOBZ_Hen6WE2~F^75SP2PiYVE(HN8tAREMASaqwbcnasrO)OX7k)jPGLVh`M8f}0 zj)+L1ww|lZ#Y(QVb$PbB{GP_n;riXF7v;)k!!!Gq!1!%+h zq-wnP>v~5{4nx70kM`$$8$8Ca9N%!OV*nivg&c1iA*L{%@J2{#s z%5Yf}!=tjIMyCjP^X6IM>uG%Rm6b#9r8{_J>F+-hPorp5+0t@w;K9U$1a7(Sk!*-H zMi4C=3~r+O-yy5<`;BX4W+nzn<$#icOLe!Phq6dZ|EYJ)agy2#o9yBF_8 zotvbUaqH)0Q=kb)MeJ>d`8R(-R$gZ2@;nGa>usk|%PqK^f4@MQ)(gg91&@9E_FI$B z*>A90fWF_Qwkapag+Ff$EQHsgXaMGNtxDsY2hHd22Cfc-UF6aI&g8{DpL-*T5J((6 zBsT(1+u7F_8A8NX#!VX}EqoC;vAf_%0R|;LxAXd)B>jDTZ6OF5et*MXreYlc9t-Le&LnN>XP6p5$Yc}o$hd%!c$jtwE z$6@yK@bHi$5g@ECVISq?bzfO=0LBN9BdebUQL~dm$X@6rFt ziYf8iy*46gEJ-0NCZ=Z!CM*1!^Yd&&4!@=bgT{-x%2UC-Z(ILtDo#%B+-&QK`=PFu zQCYS6eYvMW-(Uy_hbV#H9y+gJ4hVAI>t$wA2jxf)1H z`_H2{5&(*5V&zj50;lsL?>I*p8eYpDJ3 zU6rf2ICG-oe8;MiYy8T(?|`jYE}2o~MIORsmksts26S}%nJz_vWG^N(?B%(+#+Pla z?5u3L1pz2@JZU*sCzSkG7K4P(%H_!%o?BS-u9cKtCnI}*^Cn-@;oY6=oc*cyjD1&^ zURV=FwCfAc1tE0Q?q`xxem*A-+D+*_271XRN|+^5Qk7nE%SA^#glsf&LYBKnm!OqY zaNP*(Dl>Dpo@F?&s^ps?x9#cCwRaRP7!x{iD~^frPUug?3{4j1 z4Fu5o&EwVHZkX|-+igA$E*br2itlGbU-1Mz5Dz7ANd?I2k;7EOf&z%|H|F_&E+?D2hI3HhAe2M~OV74v(VA&1e{E-v&r~n5uuIp(|{n-eh$HGG( zl}#%o^u4@iYG&rJ{_EKvjbih`mNyNM?JZk^`#)UHZT@+xLkKO5qjz>VPXkhgR#BG!xD_OMQ!{DDSmfDVo zlA=3vrolm_j|IsmQU%t%{tyeZYKf*Vw1F*4wpUb9COkCDYFxxyFfi~%l|9wt{=VI_ zeOWv)e}8S)4oU&KqS{&~al=O}1XSe~ig@u`e;AmVmq20+Au~uFsR-)^@Vc54hxwVJ zbBc;F5E6n5aw15g+uhrHd&X;L+u+=sDJr&GsAF|=5YgEnEeBkd_-iwj56fV?NqZ7x z;KL^6RQPG7ZYsSO(&w4x-Q1Md!@g-8O}=4LNo zBtsfZD>eT%>DMIh+!tt_Fp$k*Z%Gv}J=*NDVP+ofjYl?;ipfic1Xk&clb zg}pJJ2aBW&%{I710Cb!+W?5QUiPR=h{P=+dmXD_b0Y-Bnm9%Kt&!Cg}LbyvVS z)T=kaX|Cs1%&4k&e_wVBG3jl##`gT*FA*LVFcrkx866!B=Cff4*oQLZ7e{(Z`q-3y zk2r3@IRAJ)l&r4vqTy8>#?Z=&@@v(CA50&-_r^59UBBz?vfK*``N?JZ;P3N3F4XP$ z7&UV`G`1#&;*}NJ0%QFcuO)DzmJiF4Xdue~-^2tj zOHX%s^2$H~HY5IjZ@22=y1g)yMz>FW$hbaJR3+Y{NUN8fbo4ZwI!v`Pq)Y%av zn71-QX$3di8Dx?F&<4q6EW2Yiw>}ql;LwZxD%+Lc8P99bZvNol#y`lW z@fSY6MkL(4+U2E{_=qQ+Te=;`&o2z;FfQIrnefvgjNlF&ycF4f5Q8eVSBypEQux0z)L&0smH4$RCfl343 z77SXWTgjUf3tf~QV_NB$L}Hqh{AE+m*O!;u;X3&ZfRmnnsXDU*1`1mDp69Il3x@U} zcps=s&{1QvlpR=k13C!P zjH+Hk=vJB8@4@sK5E}FHR`G5?;R5=HtSr9%=b~aC$4257MGDko*LGTi_Lo*@?@$Z4ywg4CPyYM>wqo7!mo=W7gfKFKKLGN91K!AVaJ7ZR zLAkEDDn3EAEuMhcZ3S4seZ3p->G5wLLI9o9CZQz?$_XjbiQpXqK*YTm4k-| z6l%e6dyRH#tj{+{>l;yFkB`r8jYlmdutB{eQr-m00N?W?zgPL*l!8aPBS*q#U-7SP zHVyz*Z)M^EL_G9TS{+Y;^w_ChpKC+{R`&xrm6K!nj9mH-4ipsrgbgCewAV0J0~ihJ z&}RoxD$mNgpFcPIx-|{OVtGo+hK_E2W&WFfRIm>rYnYwg{Gpo-4+5OR3Iz?k)|4uF zmsz8x3c^Wl#UN#aAqAOep!*pj*#Yji$`S$hUiw$!JOr%T8M^hq+gdXTXb6JukRi+8 zi2T4M5t0+mcRR5^)XwofA>xJ8S=F+>(Bk(qNLIDCw|~idRSU&qJ<}8%nGWr3 zS-_SUZ#@*vfD;(B5J0+4thSCT>$5J}f?P^SgNU}s!hGM!oNmd{X`PrL=!CiW6V@GZ zHa<;Vw|+fc3yX-6zd=M|rg@V3N_Yw7Wf+OV2B?n=3>==%HM0f1jS(g+eax!RS&*E3 z-kdFlT1mpy&M{G2{znlV9dGkXS2G|&P4Jy|bs@z%N=k3J1IjCwe+QsX@;!l84}&#x z)G1fH9lD=xqyhrQ8b$4l-1r>@#l{u(R1{`rngdDVGXdzOP2PzXzQ@;1tgIZJoRHKJ z(1VIeNZchM2`jCBEDf8PjLdD2+Z6N~K)_RHV7ftEeaWX!ui@Sp27CufJ2u-3n=jlhS{W>%>>ZBq~r3tB02=*vzXbws-Uo+|AOHB+b zt9Z|w?mg^$P*!SUW<45_#9mSIU}NCEZQ{qFgTq(al{T29cfyXg5rhoBy}iRjF$05i zNRa&pI&z4&dk?O9*vVn6S%3^4xPHMFEw;Nm>Ymn@4AC#+O+c{D`YuKzfMfSfkUIOKP)<$j+r^)_3PKuD+hp& zxwEhp_eMVEcfY%;aiEkwt}Ta>&Gm#W z*SmpUkG`)}bhYuJWV^h8Nie=F`F-&6EgLy-Kr%4nOjBy)8?LSxGN2HK5)w=)? z`W`%}%IfN!NIhPt>2#~;sITv=<$T(As^>54e#$HdVPUm-qAs}hphvK6U|{>I#BFXtO>OGzYBpKsN%q?t zfwSNg)J4+ekIl{$P8~jcGh2p!G*;w6EZTZdEOvgjuH(+d zMX95T6xEaXlgrhn!8rPrw6Z~dubsGyBDcl@UXsVgs4LOYT-axd={ypWOzP%(nTq$*d_ygR-eg%Z4I5*=hbaLf2Kko3uNE|6mmq#WSEBo7cQVv4p3ACFv$Ap z)f-YhoTrD!TN(79{ti8d{~TI!lYkl;Fz^8Wbv`A3ou+Ufns@rG{1wS>-VtZKSm=udnYpIFod8Hkj-w0lRZ$huXTQ4CMm%gu7m5Zxy z!*tzUFt`CjK1z4%3L`t`-Qu4~E@QlScb;Y7@+|i!JN9)BRTsxDJ@NmF1`td)a4^zRQlBCQ%4?LUnNNV zg=sJ>DvFkuHy*fR)v&P0s#2rw{guis?C;+L8Q_7o^aE)jTzCA=zhfDUFmLBU0m#|m ztLT4!dS1t~a9sY=!B6)MUug{jUnz2oAxt*(HGoVUauroTcV<=n(nRK-D7YY1?3~}ot2ed;uPVS z{1_ah&vG@aKV*Zj0swp};aw*xYt4b?pGH#5ZH*aG7TwNWbnwo}+?$Zkj z*0`MU0`W`-3O9(CgyLBXNGS`S$X6jAOqR6w76czK0JWe{dJMQq3|KlC$S=+V*(<7v z)UHwmGL@^#1E$K&F0E-|Awxm@r9FEUh(YdkLWoSLv0DbA@k`V8vG286B_+6&1_n8-ny>rI%qq4gVwf!khk+BJSn4vFY-+?^ z3_x%Dx5WTCo9j~+>th8(1klcWUs&P1)P%grt9ql(vPlQ32T!~&Ji}ivfkr7b^g(Ak zsxS_YXR+oRkmpy}yGlSQxgr_aX`xQY#ZbnfZdoA6jzFwl>-m?-vN8!~Fr=O+BZCT1 z+t~(>^6#CZh3ZaDLl1mwJmTO;0uLt)7LnxqWuAgx#wxtdY^Wn6-Alar|7A%YKpHnF z!mwHn*GG~SMp-l;IJrO6!qL>~5vVMqGyqLMK+ftq+^@KmVm_dvYrN@QfG zbcojx>A4ixwV+3;CypLq{g#p%&2VD~ozNr4mXeZ!q-Yd~PbiwsG2S(#VuZ2_@1l7x z#ZZ&`3mUqQmggc#L_hHi2Y=b8C5<{>WWvAu$KHjYcrQz`gA`!%pg-ey@xtd1P_5-D zH|3MtA3o-hNdbn57-(#UGz_GvzG4y$z2ru27SOE1#Y7_H z%?H^~phhVpV#{&z7W~=Y$FAS3kMYj)lPVK}6|^}Eb&1p#vXo0kEq1ktATl>N#iR!Y z*M66pEC&T6>BtkeM4?1{x=LuGIKph8%I0q0NhLe41W<%4($XK{NcE}J6SyU1W*)w= zr-T%?b;Eb2-o0C(u`teJ9ToY~?+7VXMATCD3$4>LiXR^Y{(VTyX^H`e#$xx|hs1}! zpABD})ntF(Qx!w)S1(?z3PAZE6W(z`yz=>W{p?4M0Jtqx8P%Xq6RE6#3~j*v4PU(q z173XM+nWQnrcg=GCtvlLFI-n-ZoNlESNT!NOm%fmpO%&eX+gEFZQs8?V2@QV&?txO zO(Y;Jo<(P}(uxSe(yZs3QWN4?o_j0?MyC3mKOb!a9(1}PjD4yhu{PaXbYOjCI3@%O zkF)mrjqbfE3x4lQ!M9aa&TPzWniFnw-YTJO9TDP{zQ-l_>5*Y?tymfHKEEnACkELW z7kJFs-PvCS1>X{+L%QZ|G5GY(U!)PDe*;I1t^yE`-j zRxVS|qj<0T1hnz;di9X(*cnUp9E6CD^WJe7!oomWn^4}e=ChvdJ`O;4fL0F&7HyF3 z!>^xs`zI#+*n|eYx13ggJ++7?_gj*%ck6PW;%v~aru$NX{~BUx$M<(N@>RW$7eXM; z92Yv}kjjLP7aGsX8c0intE|;G41z{bEb#bTqV0M4>8{fm z7_7?*U&)CTsDo^Dq|E$H)1)TjT~Mnm1-x)@P~I)3>iD~4Xv_L6>v;&x>mOpWXt18a z2Y;|RaO*BZc}eWa%C=sq&gm+d2c^3w@8#v0FdFp3LWU6NkSeS|ZjAomzbzoaIFv>7 z>BvcemZ2fC`M(DR7HCxwIaYeQL0iy;uLV3|yFcCLk(jvjbV{zJ#TUNEMk9|{@o!W4 z(#z%P)X0WpQd1GxSO=Qk7i!qU_v7N)+me^H(!Bp!<*?y6^AY*c_6K8iOrqObBXvBJ zlO<3Z0$idP*hFEz11yl;VX?i-V8Sj6Y8Q&Zy)7ip?rxYRdL_D=UCv1WgE$b8<{ z0vxRr+$pdngOfwfMlC)hWU~5q=un@WQeRGXXsa!d*KYkCR_A=dKpa@hRdJta9D;%k;X zN`!>gKkGh#{!P2mvIEX3fbnq)p?O%#hbB(@j?ZbV&8r@Ic<@2hd5=!ca5PT|ln}$z zPe|+Uki9Ioqs&p3bN6nZEOY4jiOB+l+a%)*+ zgmfEF`Bu>7q@9GHw>d0cb#PEnCbIYM-zqQ~_yhzO2vq?Z1Y~(eMn+2YhMKlTf@?BfH$ijr zKS@?6r6!D1CD*(9(7+*@!u$D$MLdFJX`pbFN9rR{C~kjdJ6c;E6r zJ+PgcS>iRkR&_fFHOV=V_V2TdmUD14*4R-#ZfnKhdfe60@|v)!%5i(&QR%_a4qNtG zssLvvh{deHDB4t2M%`c_yn1>zvbt|}yR9wksZ($qG{io2Z-MFEYVg}mBR$RGdq$U} z5r|#v?#WooO*ghPqFQV8Gw@eY6zvJd{$DMC5aXJVm--E{+c!6=Z1^cCW2$P1L7f9> zN)^^qcYzT?RB3E_)ZN_}XF@(-%21#PEAncldgW(UFX}C<_oA-b+x9EB`^(Ce=;^uI z`|osJN3o1j0zey_41BJCh>>uB)6-!tHk=TLr42Nf;b9tfE-&8iE4_Q$^XVWAf^7dp zA)hBu5c^dgOBmbCj57pMu41a+YnG!ar2NV(V1_Wv^UuBChX&GdKy(4|%$=Ck{(W%) zXgv+bR+|h!A~*^QQ&K;yU0Vk@0uKaTQG{zz&_>L{vX!7^KZ+hCdZWhI*YSQ;6(F#1Vnec8F1c<97%=P7)Ud{~1d3e&2ctD-yCN9j6+Znun`LXMaSKxY^)BB+n(@(^}gr^c+FFtGdR9UX?}SnlUnI{WhL zCnfpGX;Jr@SPFS6C6|9#+J&({+k&52KMLEZ)Z?pp^b}C%O7iL6be4v)j`QZ^{YDPDf9k7)Qz8Hpn~nuVAv&ojGZM}c$>5} zRiNzZ9qr$^^u)ydBS{Q-TyYyHT!rJ5TO*%c*ulSkYO1DCPiIpTk>P^Skl$%_wDQF@ z=>Q5r&G&~UUAGx|Ohfa)w2|FC?zMC4*1yxu-A*#qNK*0H#SR*C^Sd_Iaz^FmVML9Kh`<#F8lb4wX{8~K9ux1SB~$oHAS#u-ynIlo`{FHo`<8*e z$f0&I&^D8`@^aTDRts4n!Bi8?{k^G)6LY5L?pQQ24aj>b%!EOdJ>`cHH0J?8FStSFQ z6zG-qxteFWV+9=CoUQf)DbU6ON+nP~Ou=gP0sSw0^4B2b9bUIV+Sy7wWH|!(cD+TYf?0HZiE(O%%n$uN1w*7P?QvIt4ho`fPy< zz_mx)4t67SXoBt{36JLE2FqRlwt5^L7r`D3jnW0KRQ0|WhU1TV z%Alfm^%Dsfv|1M#pqroqO=FHTm2f{UV4&Vxyp88A6{njN{l46?Y7`P?woGbDeLlrkVIpWah@LcoPKowKHm!3$zHVPq`4OMIXWfMz5oQaN z(zI_VeeE9`+xD zPzrxQaj{*YxLaJt3w!uC(jy~@lT+lJD(j}>{yCJC;!!g`_~hH#ERIQ~utAl}rr*#F zTp&Yebf?DzYxtNY>&e*?07J5GenP=16l|1~m04;oSlF^&rd*tcHG|yVxJOx;Iy*|6 z#SikS@N-#o%Ba|4D%1-Zsw!w;0T}T0&0brM{qR8?<_s`X15YwuS;z0AtvXgG1Z~6F zaZypRiP6z;K$HiRapFVMz{FNXJHdcaUV;lf z8|aQa9HK|D9!8y5N?-hrQfDL3Za9D_%6WS>5d?OyS3?^~actfiHz3AF(C``&tA2LGTfB?Q6UE42oG$SB z{I;{8f5xk*cqGiMMiHpWVg|Jy?v0*;0YzxMgEgn#RZ0E%jPlr~Rq2Me4F(b^}cY z*c@(*ZOv3b4{pG@w?}kau(bW!G>>NKjr!j&WyUOZAvfshkD^r5#z>Nfw`aFz%zUd$ zV)u$(NbTAmm{YxW!MN>DD{J52gr4=sx+;dOi(fzhbggPPy=2vxBIDW64Gf0Suzo=k z_!L0#)-!}5udjLj+m?rvIfqBA!7U=&sHm{-irUUM$%FXNhFUHoR%A8p>Auf5e{D+# zn5?2L%oZ+o{7lp}84i?=o=755+^k@)NeoKbVl|pl042pP&Ibgp z@c0YV3#1$U(nlWK4fArprwTylvOaM{EIE*U3|VA|N(chFo{YO+0iyuz@cs!26Lxlb z=4P~S%8c5UYe~r>e#&o-%j2Y6C4iCx_wHR$dwX_ZHvnJ0;IvAZ$AHrfC}gOpkTf(j zRQvZm{lni}0CdjXM1>#z{-2GF^4jy~&&>zZ`a!ZH0Z=BWNG|jSHI$Y8wF_6_{DK+# zZCcvEdq$POZ1)S7Jv|#NUtiJpjaR-G>GL&IO+}Ey-Di+&%WoC0X%$I+vKfxrpAu#{ z^dQ{%@?%w%s3R&`_}UKT^(Zumf@&FzQNqTCIQO@Z9%`}E*fj!X|40 z%LQbh+5Jr(^!`RfJOthaUJ*3;l+Yz~%5EM7XcF8kytTAsG)!~1EBbS)ww~Q}F%T+4qYxB_=a}`za~HolgWYUj zm)AP>lf*>PqKD2%{4$=JwSy7WgP=}`ukeS4Zopo5cXz+ofUE)$x7s!A1?TmuF;QU% zpGt*hC9$*P-rOWI2yOn;McMn*dIG!Y{M|xywDojDA{epv#&zt}EFKA-eU0UM;=F$2 z?OU~GY%<XO|4*2`u>K+?{G;oQ&UwUmI5(&LWLnxnnk;!Wn!YbPLr~`vhl1aw%6-OX6A`2e(T(z;(4u} zF3qQ3n=>?b`%5Ko^TWT^JE8xrb^2ok9*Xz)|5F!+V|A?H#l2i;YsqA(j)_@&rCn(H znwU)X?BJj$G~!{Qi-kC9KkGJbHqYWygZn(wK%ce(#-zE6lMVaNjFHIfK`Z-I6 z))hM_sKlCNc{THA&D#`KJt-lNcVxDGMpM9lXRS5tFn zCr)wbkpZ^V_^0zx)DdjNo)O<9;e(ve7BAL%frf2<*O6n)=lN8d5c z{f3R_6WuzRL;`edsRym|2BFFyWX|1Onl=@MSqSMqGYST4y}^XWRX70U-Sy?uV25yqTT^sbnp$rhDHcJ3MeioxCT*r zu%^C)NlQZbH0`v|@D-zzuXvE@=e)7~Mp>fuTzT5lE6gD%)&+T$Kb&=tt@jirT(xh> z!YHn;uH1HWDL^PMZftz_KmA$&169nG*8jKm1q^-F;zCk1fvxb>xKRhfZ60_oRGA<< z;2TH^!1*g53QUT$q@C0UW!*>NRr1LjM|dnOh05RdzM*G&o+%C$B*f;S;|TG(G;q9p zhCvrQy1}X!Xu5xhzo@WQaO(AdMlAHFN-p3Q*Jc%^Gd%PuNC4j#^x_r1+C_oLuGq}? z&8RTXKsZW3naqAUAj)G+&4W+rEvN08-g?zoC*mgGp<LzpPa5 zw(EI^7E=u^cu1J8T5lb~!vR!8@EWu|P7rr`d3n@~*b&%eWxa2pC~@bYZT-|4-kkSV zIq#1le`C}p<$K{`zCHPE3`Z!>CgI@xz;Rw7?fpCi=4_GRzNif2G&1Du@_a)DaRwUJ+?5P&2vTK7{|4;d#x{vDTOL)0I%qQFV zi+;PODEJMs{s#e|@&^(GJQ7fLfrL_l3LFI1MbvzhwCT^Jf@q@zABy-(8yRsDa+5;- z3x2j<{rB>8_Kdv?D-oTn$?58O-w2RF^Lu#AQgWhpEgIjraRccTIsLmi+w9kDIpeuD zcI>WHZ_vQ7<*`b#zSHPAHZ8Z7krbEO-}uW=`>Re!Yuj`D!T5O5J}s?VC+;gUF1yb% z9(4V9OL$-4J2@dKljTkYH^t$f9*2hy-|Oo;C$hg0x;Rx!Rm@l2|36HfWmJ`G*sbYC zkQS6i5JB2NT0lSnkq+sS?(Pz#K?Fply9J~h=~lYCC8YD*YoGIt^ZnankF6Wt^{(f+ zW6o=KgDT@~ZXW70K{ub;=iR3+5TUS=fB$&5!?}y-2L@gf?3ckZ5cAmjep&ga-{zx# za1uc41fsNNSbu_ijSiUe5X%muH58F!a-DfyJ>+^fy&R>3&9FOr+hwM$trLPKx2}x) zKbai264(vYI1&#F()oTw#oT*WDfejsHn@4p+*!D|nFJsx$v6tWEjI47`)J9qlW^bu z7D4=(aW4fn+8-?4{zRS+2oL}iWvn!R!BHRkJzDgaqC6K2(!<oM~Fy4!5App<)Jz z&s8a`hA8K^aj)-GGP$g*vv{UtWK7OA_|lp|<}Cy|BY1b_=35%cxk{{Xv5wa|bAY8; zS>*{FGN4XESlYjOdO#bHv3KqWyDzYYOxL@U!>}0^oG)M?1hOPpHPZNS#(h+6y!n2Z z`KolL>h?^|-r*r5c)-A>wht%Lh^47SV9qd%nosz>u%T=VH&1#z&i}0I=3cg(G?Kw! zN}eUiJP;Tlh)RNe`5N@cg!!^Nz4VEyBRA2IKS z(;~s+J+IhD$4y3+TY7qFPe;s>w2+D*FzfR%gN%{m`v*MUm$!kL{qtyDwCg{!zb-_{ z!`%-0b9$hcxw~KR8;Z*s8XE3FWB{W5gn9{@V%|rO9#sg+igrdi&ymJ$`=Ty7PY@=~ zrTViBQSZPX{}=;0IsV#9qjAmys~K<~qj|A#m`GbaathB`nyjfVJvbU$NU~-*otg_4 zcEo|H*@1fQC!s2r(ww#W`oQrd;l`r3cYqL*0bj$r-q(|#qmex??A!-wZ%s{d?-qL-DHUsr$*fClTQ?RS zbB~$@zRur>znb@TxuvPml4Pxa{fnH@`;-oha7PbkYaMR$or7f7i#Qfy&MF>y+|(bM zWWL2pYxm>JmdDL?K6i+_7XZ5n@Crg}$qg~H8cD@!rD+QWS8q?xKd${-?h@k+3cy-8 z!DYvUw-8{ji;&*I3_m%7W|yxtY%s%*$IYE5H3~aTMZlcpDrRHh&Mi%U%(NN$Ymky4rWdeF25|zUdN;xS zAq~t9sMHzo8&%*^y03SYEw9!42ed>+}3#8K3h0<MpZ(Cbwfz%U%@|lapfk9;??qI6=+ zF3?>(v3@jmde9SoYyzhSFQx1^*KH6qfQ2Y^(;3vKF!TV)W?NSm_U{h_U2aFp{rLBA znm`F}>+EdO6~hz|5CFYCIHQoEKFNY2!D@6A?_CK}I@J?XO$CK)b~s{~AofeM(rV;r zW2R0WqZT*8%23R37C5WwIj2ADZ+T5+0 zG_Rv3Nb-cX5BN?XAj`L0^K~KF5*T?IM$sI6n}L?rM-%)?)Ledu_&kWMaw`-w6I)vE zOq2*UEp_D?VABX#0w&;KPVl8~)5j9mRsRX0 zp73O3GSfiX1cx6O`XFr+lPp{yUZb=3)7ttb>q+mp+TXsHG}xu&_t??STLK-ol_~xE z^K`)hyLej@YW=0?>JGqsz*Lctk`hua5E4UJYwA{5Qbl~YWqX|-S+)2#qT@5WgZaou zw|l1#S?BYMZNNF5QOt32d8uY$t#ftO6)UDK|BZF5(g=3~8Mz#6oL+2?+Pk|EewNOk z){X4GUz8<1ukR(wCA5M2kG$$zSS|?fE?7IoKtQ zLIm);`s2MQF8i&|IbDSXhS!5;Os`ryvErR}Nw@9Cnxp2w-eC%A$i1}UFXsF zY1#??;`;jy2WEW07rzqEUm2ycwhHuI^ zYL0qw$QMB@W$5U95s{Q&PDS`sm1#=S#FT2GGS(k8Tk-nyv>0w6D8me3*#Qg|-$(rV z?+QQD?g76``-LJ5jS&G1`9*g?EA-O+q6}vYJr^ouya&IWQJJ<{SU@i@Xf*>BL->6@BLNo1OVqk|i4rD^Hu?-g=C zd$83w`V$C$(rw*aSd8X(v6->Vk|+Nmmi;+TzCJ#RHgqfQVX8b0ysxlaYc9JVqNYIC zwtamima($ZJX=4l#QMzPkOdV0z$%7?YIKJ7vRkO`?i1Gkj61t>8zMW?_*q#$0)oVc z6*orGc9(j4GVsbDlWov!0>W8py z?taEgx&Nndpz-M1vsBe}BU2;e%Pj=X4>)tcCPW3h7=T3J>H!S3uBmA-Y)*g~2O?X0 z@JpYc?1D=V)qE<-N6T9>h)`x@!%kaM^Zi)=HzJ=wvjuB!;vd%M4s>b|KoKmes95^Y zB}``@dMw;Odye2KZ%9}48v}BJCr0p>snc)Hj7{Z6xTd^pyqqHGDvGle4|OJ{3~Fo{ z0431^V>P~zv;W2Gw45JRNl2t7@`b*;I951l z#x&HbYMO4m4BWfE3OP9d$sX9PQwzd|+>hsDl3x7-mhai}o}PlB^(3PTH!O$LUP%$6 za0uK5lPL(SM&XuCd9!Ea`YgY-<&BS;$j;0|MhNAS5qWrD^3N!c2y5C9?n6-0dvfTk zYU|Vg1huyZ^iu6{eQFot{ChZQgfgW zLjm9C5$pBu-@g%Vbr8OoJwh-SpzHD(?>HS>!*m-`VN%u_s zZ=_ZKQ?Lj8I^5uX#KRq+)?oW$m1oA??%V-8EAEq&jad3^qVpDXY^CbzE-p+wLd^ny z%oT4)hnT(7=t!o*WTruW^*uN&%y4(M9_spoUY>!duV2G5GmQ#evp}T?zGXYON%PKB z5S3Kx{5J>+UK_9qKu8r4e!@BOKb0`}BISK5yZak3AxOwDCw62HvMAClq2u08QILFpaL?V(;rNE+(u zzLu15;^E=J{~bO&1YGR9_q8kdNKNM&1ch%ddEgC&_t_V;(ioscg`#3J#-G;kV{L6z zR;@GcGsw&1o3PNOU54BVu{LvFF}2>W*!=mybpmu8vmRwK6E46%MbKctYPM1XS^#Y_ z(q=z&)9)TJ54pH5T{ehrD<~iuW zP+R~4{&VC*2f+GMr~l5{@%NSkd z9epC{g2_A?!HGnunRn5{^VM~hWfN2g#K{136i^$G0n*|IazvO0ua6c|LH`c_(iaNx z#f61tIEoSY{h?;j&U!d-Bd+%eHZ&6xhhG9?+hpuV=3#QD6kR%4zDE8w-mr@XsT4Bm z+AarsG}vXb7&tbJ@DY-bh=Y_A&`3Z-RP~MstXOQ%ZH z#~GD~Mn2}S04Ab!r~U-StoOm({A#T~x>gUh@395#pTQ{O-G-j(PAPC~n-4IhJ`pa})w8t+L#CYlog$@f6}`*=c-FO)eJCspzagT)Mo3t`)7`L_scHkiqMuq4W@w6I@gpp^FY)^NZ><47NCbk zJTCY!5M*FjNA4dT6+T+c8IegbxbadbGBFAvs&%%uambJeB|}82bV!79>XiDy{YwbY zG-wR=?+8;vwz76j8#}nR>gzapxk2NMy7l$$c9wj$`Ni?+Piy&`92N|%8gW|@r2At< zddL0G^^yM+BohAG8hdrq*-7XggG+80A@j=LX@^tDIii8aOG>BUOk-YW#g`@BmvPA8zSEj##3}S=frP?syB3?!w*#BFtVt>~ysi|q9`IE$Yv2u>= zZ6o(n;G0TAK05`!gXxkA2DtgY3Ugd>3cic@*UMuko3GmAo*7ghqmsV@@;*4f0N%I$ zCzlwJBAVwH4w5-UoYT?3+KUg}d?(uvJk?X7$MFL;3L&UZ08(5{Mk!NSIhO@`DSxmy z`GcokOlHjB2r}pUL7XBjC$|c&<&1ar-Hy+n#}Lw-b{K^Vd<+i8dIY>bFmWe5v%f!M zKKjlEl6tQ<^SP~ET=}#?3xJ{#3$KYX1c*Hq)O(btlV$g-HF-RKqLkmZe|`HVgiE5n#b=N>A;UXp_RD5 zvc3HpHf4aeV+0Ke%xEENJq%h9K!rFvpRm@(H%DT${HL~({$FGF@O>CKfiXtZ&W;Wi6nob;?<|;ui{l=v((ko-W(pq zq1RWQ?52(8f)Y*I_TICD(ojVo=rDku-w!QT-f)8V?N2gvZg}`i71JZiQelo;h6=8S zIT@Kx9CkDcb8=ore*R@79+30xi|H0vR^&A_G~&iqKzFkL?_aw0Tm!t*jb^Eq`ubv~ zrYyj{z7JC~_%^^R4B>u|LtCvUQ6Cx_mDLe}9m4Nw$5%>C&Wt;!svW%rGVe6?R6^zX z)BPBgxr&Fhtk>zaP7Av`viWV|bOqYp@1&}+i3cetf4J^y1BL=94XA*nZkw5ThZXnj zdEhqCH?`>lFd&Z{*o;!8&Sj}jV#Fm-#9C`c;&pF=NUiJ#7 zRQ4W{GZca;RVK)>kBDE>1_Trq-sRyaE;74Xi4R0`vLjkFzrNfYDA%}?oh?7cu5t2E z@4cRASu8UbBv!r*6vKKGC3LtLYG-|ZQXDVP-XeyzYP)3km*Vm3V9I+FRi3p`Q5zfj z&wsd<5vB>ckK%~HycCrD@_!z&!BCKe%zU~7ZsDN@Pxn>pxrnqnt>C7YJoNeosXD@J zb#Omk1uw!6~2fE)8r+fSfNj+M; zW}kZLjE%)4(b2K*tnTUv76T)3q^$`B+-&io zdW%Gs{Eo)a%^&=&h0rO& zt?k#vqW-4O9a&ZA=n~4!0(~=?2wusI^H|*#bR1QLfnhQ^dyM&GK2oO51g??mJ!)!} z%gav4+Zq1$JnXqQwS*04-JT!ei0~Do!SG;I-TsooyK2A5R{w)}-GgGSg|`yu!p3k|sMN11)m3Pr~-9jTmWrt}$65U2^E)_Qe;C!3xJo z-i?mFBwSxhUD|(zRz)rwObXjm<0)@gV3!U7<$iD@#DW$FHjbTVw=tmshq9W5u zONNH;okZm6)L`hmR2v=7S_Q`4}XjKx!A^u7?bqo z<>7A#N0J4O6SR&drZ6dy)F_h-7M}U3rzh3`TFBx@IH&pGH7#E_KjPOOfsnOL?au&X zf_(vS)fM8|&MO8VBsE;fkyH~nw1-{zjKCRro+`nY6lrl%kl6%%?X(Y1I{y|!Eft0y9O zYy%!1%j#>(o%$CaX!7FL7ZxsUj#xthin7YYw78QL$JACIipv`J5iW_ZU}c2gG)P%C z^D>b~Y}n&8mGA>T9p@XV&Z?)Z{7%dN*9|!$q+)QoN`;*TsL3@32-b#94Y3r5*#=aQ z05a+VgBdb_byJ|Lb?nId_AO`S7B$H)$b(0td@cKH%w?QYp$|w+fMUSA(*nC-sn@Ry ze#V+&!MT0*EnfATB!T|3ls8fzPhmqe%gip@Ii+4kDePqMCOS@24 zx@~$2(!cCv*{iaRKf#`5ms!wjqiQg$=ydA1v323WN+6&g;aT~&wk*x zhPulSIh&PYZ&La!ZcaaqzBKQv&@1BmSY3aj4y>mhV}H)b#_f7<9JC1Jr#t*4R85!^ z&+Hg)U2q5s*>#^E1-R_qi;on&pI4L<|g%ATj|~(Bijf|JAQJbZqCH$zM~}jqh&C6!Muw&NuUk-k>U+5>Tns_w6m{M=x$XKwF(C<9z=% zE)KyB2TnpOm|(zO%6Bacuof|;$GSSYCg!*+D^+-RJ3GCuU|UHClLJ^5*zC>sEj+XISRflh* zZhMZyH}KMfF8gFR{wC53*G`o@*mAC6a@1g{eRII^7nh|)-t{gEnjD19Pa;+&JC)lI z1Sq*Z^9s_$5dUcGeg44eMbH~9mHT5CLoW}kN=kBAB`=ca;avj}0xF!TuqQ`yS&36M z9WA&6C8yWbxt^}>n|xstV`F`Db4}92k^jua|9`Pbl?t+K(2XvxtQ^h7S^-XFBlCAw zs!IMur8NzVm=2vBJ_VNc%fno1pDiph9(~LE%c=$eBngIS6lOsW3sv0f*RMe%g-FbR zEjYwhVL`Ua+(a2y_{Wy=7!Ots4ik`Eg9HuwWlfN5O2FF(8&m;>T&)XPJzd(5Z7pJF zo_&;bNw6bBF&$x5|FbhrhdVj=Mt$$9<&#m=uOlErDX_+c6Dh)qyZERUZWzEySl7t( z_27D4tG_*`5&9%yDdxx0nCv39O*QMO`l%vYKGcrw(XGF8FP~dbBtBHpwYzv+ZmQ7J zN}}8InH{#%r3lO0<2%yQV)OM!D)qmrfd@EI=gI@Wbh*8=iIy#w_{%cz8Np&30iO7l z=8vCd^oov>vI+cNfOG;n*$?*et#LM-jr60yf|8# zBtwAq?(BiG22SjK1r4>}H7e_QGt2N+T#i3NUT!r}W3&VMmo75Kee@mEU(NOO9OL3? zuLK3(ZROQ2Z#!hCizxB1wk-rdiUZnfAY*+qv zBiza^b;>QNFSxx&*(mZ`a}78A-m0fgGNYI76E=&KJ$ga1qf|Vjc$kXiz zGcfQVj9E5jJ}fo$usDXuwPRyaCw<;Jc5mJ{3It&KJbX4OXtv;W`ILH;)HG7T+Ozze zg9AvIu2%hb@kR@mBmz+Mynat(Ed`WqpN zJJH{wMa|SG>>-@T|AC^7+uvv3RahVwit`Pbiust(Xyd6ZVx9&{1lS5g@Wu%J1@wOc z9;bvzi1SER7A|4L`qyION2Zxx(fcW~ImfNeMB!x6-x^q0gaLyTw2-uHYu!X;d>71pg9!hE6i7nQtioa21)~WF z{zw5kG#UoR5BI-XSypoqW`DI%v^^{Go{k!nn#DzZG-&6oQ3vbpQ;$5DD0{GM?^+!tqFMQIas<{oq~zq!bOa4yX-{m>9!3XCSpWq_ zLVhWi=lNlfGFbQ13dZyfO*g>$GSV@2rrLN)|MfZZ9RgakTc_?~_4ST*^^9gAb+a8`k@0E5}Y^Jmw5dU?=u`ggkPyHSr#eva-R_g&k?V(&ub zwi1~4LMCVT*YDBDqM{Teq6s8>qka#P8m|iXC-62fd7j(MjVCBRRDJs??ia%Q3Ec$v9}uY$HSW%JFgmx}iIo@k zYN(-3%k`4PJwwuw*`SGwXtp zZWoVh*L~t*aez3`N_c$`PWxI!0A^Hp*Wa*dP>P-W)mJ!}_Z27xXte}dd6DjBXS09i zY|DIen$XPxCN?1fCF3YBv`3r%bBrLuy|{39lhL)@RC-pFZ4zhHLlc4sl?T@uuoXvc z@MH`OUO&VgX4UqtcUyX>x_mK|KCCnA_G&eJs?z)D45rCA!9+F9wEl>-L5D%g;I+ca z+y68g;O4ne1h0tA_Ba>tJe6y8N0Y{igI}##Z6m`#&be>-DO)Z!4kQrgGZmJJzN@ z{$5ca9X26eHpJNe#gJ=sBxfk49p*@Cw-r7ai;8a4=Qso7%#WU%%_wQ@8eP!1drCSRe!H>I8t!-ZC;m3Iaq4q6h@hjZ8pez+Eye-_bnlv9OzXqdWsc7LrbFdtXHbe+sKDY`5cYn%|6J%oSaR392}-*W@!Zlcz(1Z^wCPw7hDGIP1V!!;iM zZ_#%DCZ4%Cw!ACK5L-HPi@JbEww@d2N)X!~4vrrX>lk!@dY~*Al+PfbwGuh=lRa*l zLnlULYa+I-Z>o}U-}^eTtvvcRZ5(~Ev-M@UJu^R;Hb52%8J<)i%)-}+CCZjlX#V`A z+nwy5Y)@n?vvk@mDoL?A^RdY}4lIGO0JN+|VHc6&lWckE6r~e7E2NhZcbh@bl3H9G z38RKTe`~F*#jpvwm2aBEjA_im!gS=V^oYxR6Ecv#3?~2N+C+pKy)pc& z#cF88eLPZWeLFD$EB$wNs--o-RH=b_!tTBSt0_C1)b#oJk9+hC8-*Ic3>VvjQLd@E zIRntyfWVmmWMq~^PGsik83hfEj{poudNaWT0$H|T>qaBt@fuRXkdlcJQour*i1yS8 z&^{rz!^G@dv4gZxY}n@vj*bSYu_0V5fSG<%A(HvJz1J6;m?Gef5cu>2J!>78t}fRZ ze!jmrR&F-~!kXBN7p1^Qmm(taX%Qn4^8DD>->=LT$IHu`lAewV009JAp54R4#}B1$ zvI5stpX*Cz_7W($5UD;++iI}?qld|LakB7-_GbURzheYnf`SM+w4|7>auo3Bdy`&< z5+Z?wYy9}Pd`WkAOUg6*6#IE3ZMg&=NP6LY=0UL`n?ye}aR=Tc(u`_XF%<2styVU6 zd|7=1z3;L9u}kd>twryma|-eE*G=of!vZoCnaj^WuTA|JFEA_1hMPBFq$SX%qJzyZL6tkVc49Sp5_w&vePJ)9ZSlqNv^1Hq>l#6@#iO+Q5>dw{(0)TWoBzuHg4 zZ!f>t3_nPz`EUb|{$wlLt;pV_|7G}_AJ@lI)`KG>zYtlyqg}mI{5a_>CVP-+vy#Nk zZ6e-Nudimal5TOKzx3hS5K&bnM<4^fd3aqWoZPhIfA8=`#iQl5mP_*6_^sUiTQU1o zk=1C5>W;#h=Mihz^i1h?b}}si!H12-Ux&HWPa-m6D;!(jPaCxF@$_`N6oSvu($WZ> zkx8LY`x0LO z7i>v_NfX#^Zps(M4MHLBot;z6Rk0Ma<~Mwhq3?JB3gVRf{7{G}fqSzFV5Lw<2EM-E zN>FAjih-1yYh!PZNb1YSAmrtJnx${>?C}#zly(rzMMY854fr8t zJm9;>gEAiuG%-Rn;6dxcCKu*aqA+*{tsU3z!6;;Uro`+wgU&7^tRo2&yuqSuJ|AD} z%;6{-JBXvXB_)WY9pcDK`!-0Soh)@AP~@TH9BE)xb=hA;hqjb9T51op_|pkIm8GZpD7X zFKKU&9F3Lu_%YVi3i+Y1CnblVU}|B0=>0EWZ14#_97oX&4h`kH@KOm<4(qk1oGxI( zl7MEdNaw>;EVF5Y)jfK0HlMSri;}_7cI@ZRr3k3S%gESi}i z{Tpgfe#pzi-ICcA8(sOHn9ahnbbG6q4t@tf$cVDW#rXW4zT-CVJyo+K0^!Pq8woi@ zhEx4|DbnR)72j!Vy@};987Nlx`T3)y7;WB<;Gnu47q~$94-eu1fMJF%#OM*CAw#)i z)OhzvgeNQ<`YS_1@Qg?JyyHIQNG%nx^+P6~t+q890)p{idA0p@v|j5|8l$DzB!}0;@Ce)nhn3x~VJui};WIIE=8#m#_Z~1bvyoeOq5en+(WKSJ& z0zZG2GM)UC$hEK#UUPlYUa0xi898RUBQn{rBoGMsNHMkmQk+6b5l+rOr>Jipri>sC(LZmN1ow`2G+`S=!>;*L z9PSTu_PZzEq-*^{_ZQpotsY6xXXyc8-SJB{vvj$JR0DAGw5sjUfkM?eFz^Aaj?m}B zHV9WL^DR=7@b!Kq4$Wdf02*RhLm!O=VmbtMRpX~c2!i%>mj|w1kj;cwCV?a1t=Ui- zP9_YvslDJ+2T$`I@XJ@(opFa5al?*tVJH*#fJ3_t)5=Ooc($$!-$@*;*mF@lCS-C_ zX`P8FT5EJPE7BzPK4V*+Chn)tKk6Up+;2XZFkw^^rzc~qvGxDBZohVV;*A6c{5Z@d zA;RvBl2QQB98#pK<(Ho?oja15YczfzJ3D44%@uTy*|wPc^s&|r$4EN!Exh6jpuJQ( zIOiMwJKcP3HA6f0Cjg=%B*Q3>>kkeOf!6%=Q#Rh%#~7l#u#@fFu{AOzL?`c)d;a8ldKQ)bm}kF-qHky( zhh?-TYhft^xeTBORWKodTBt<-7f!$Thg;Eu@QhcJREo2Rim7jwhPTG(*xr3SEHkm4 zpBF`H`ZAJFS7ZOdayAQp_ozgVQBzhHIRuUBv4sz4z-m-Ei1Gqnw>xbOB0u${oT#a( zf&syotPBvJ@NFmYHp6ly3bOT5k9$o=aK`wZ#9zCnh|)(Rb`poj%Jl5v;>t$5`|?7* z0?+O|udk1WXzxhKav)23yicuipjw1DdEwk@>hAt8Uvv7!ho~|;rhxu$h`b-ul~t6U z_;kauN6T@aN0o+Xp0{6I9zLLMbVUvIzQS#%rXCb@2wpaF{TWP)_0(<|3uYET@=8`# zFGCacp~WKfzT~>SH-piJ+b~;=~X4A$y1NA+x9V1?PIv20N-5UAix9<`Y zI&~)laeY3Mr8)f#_?7 zxqWzE1T`^m6WMxR=(k%pivBPm2%r|sJLjbl{8%tspUP)TukCR}+NR?f2>OUlKm}1N zW+6E_5ejDP$jxNR zKmaRgFrNM`D9j(1_PE%ojOsF^03Pk#yLZi)ZHbBR^lpwt@}cD!9i>zy_{tb%iJtuZ zO4ZXL`64(Zq!~&!gmoQb(!=Aa(|!3>Ts!+aB@k~&*$jD?qoS#AAWsTC_P(sy;9nU+ zv;uaH26YqUmrUOUm#$RKk1sC%?FM7@+j@C@y{L828|vzP-P8r9OKjl1d$)Gn@POv4 zOuerDOi+J>^;{K%UJ*z8$e-Dl_|M1@!!`hpya0y*8#_A}3fhEW$(&tQbDSAK8Ach}*`(+X&VGNeg@Ix5;h8<9_bu)_(!ODM zR`XgjLO<3!H&M{gKoB>zJjl4RravP^QY$?8694i*Rx@dN=j`8QSmrBfnZB>m zTfx>1dhXU!k|?9Cs5XvFwq^S07Z=WRT%E(|9Xj7Bfuw^d9C)Gf=Fn+qJDKy21Pya~ z&+!i4xDrDODGs{b(qh!-7(a)1?|9!2qk*ugq^!(eoW2?4+i*mq(FxwuhJxYz%6XlP zL?pYMM1tzEi17U&!;c>@{omeu9@G1s8$A(JT(CBp2kYPoc6?m)>7z2HuzSr1x?xe>`)O4 zlK^ZP6yW@3OM7NcMo6m6jBIIXi4TPrQqyq6JzEAgyyyoHnl^sB)R>b?8X3}>t;lEr z@eN5SV{&357sZ2^8O0CjSB)d5`!QZkU(yTbJ>3|i6+}6OupfdvoP`7j)Yq!}YUCl} zhey|!_N)SNC!9=y$K1buS=``~`&c*l8eY0|8gegxNu+y8FG`#k=G7KS9WBMCI^hmC z&#!#d&Z!FAiHnm~I$9qz(~INnhrhG!t*)l#p5FR9jr?7hxr<*HiT9CCdzV3nuAYJa zXW-L%9Un8ACGq*MAHL61>GCvTMeHn}V_(qM6CqzM ze4wFcVZj1zSQ`xT)ZH85Iu+OR5?b?Z@Jz%`!K1kMR75k`A9LaZhjzjHRD~5@J6(N! zln`+gQNsD%T>{AARsP&j+!!0F(gL|lC-7xv9#%POZvOlS~6iWZ4W{s;-F zras*D~$o&Bppd7kb>X}4}Mijm-0VN{gU#>tfGwPHX%IKZ|hyi*pM1`dx_+UI)lPEVK4 zaVep137K&HS2Z+M8{cN-P!PS*FPy5#JE%yVFcFEk_q+tmBU_YYee#|9^wC_3p@nX0)I{tnJy2 z7N_^k$}%S9JAm;OSmKVZ=y8gu2k1vrxcAg60&gnsqn zLyjpMK@A+r3$R@=r6V&K9xWUfvcGRQI;!^5j;Rg2i&zGR0YHzx1e$6BzoXemi)Lyn zEtgyb6xixN`c*Jy~ajc{|V+wE57NfWG@`ZgwUOS3Vi=`!+m{{^{u6% z$|vBN;WYch0>=UaU?A+O@51bnE;iL&jlvDaoPh6WnV6!|Am@l_dsz7bmaGIwx-emc zn!X95B})vuVkQR`jxCS#Vf#}v^CPhBhcEKlI}?+(LQTxjaH{>Kxtji_WUAt4x$l`Jv^&bJEcR~W}^CIK|bv(f^99aJX zOuGoFFumQPco7U!OT8^-dzV;Al&p8ByXX^SmRGquSC<36{abC$SLJZn9*@2W4W@0b zHB*kus;aZ5af6z3CzLGpX1ObGOtrntgq5h82#)R&AU_}+OJ15dKBATGCsnf{;^kvq zy@p7-tr$g17bj!qDv7Uypyhz=m6(nW4NhR1*bpSJb?0rB_@kocetT~375*`=V!cF( z^%qzn05BW?a$D6SmSWT=S68;+Ks~H15g9P6w`^L*qudy-A0M$5&U7X^`05#_OI9yu&tX+S&EKc_o()@;L+!1x)C_ ztHi3GSlP%yfnKr$O`x;zbtff3`pdDiQQ)ZH4Eb>XF5re#JWepwgKX($?W1r$jIVBV z#032jb1XPZ+MmyZCk(z%evy#_-pprsQJh*o!>H5JU;a*a*i_1M2oJv*OogD*h3)OI z4+J!e05L%F0V2X;f1#$Sfl=UJIXNYQojLhmQSszYB<-Gs7|Y7WxPY(miQ``_D}kgZ zYpZj;VT_>Tziir>I-7NStP7G?gxm;$SPiFok|rH{KS6`$y%tr*Tgckg@aisLK{_@Fn*_x%^j=k7{8T{r$nWa9U;x*m{$MY2Yj`sjT!q zu}#aAkkE$)E;bJnhUggBl&mh9;_n}zQrWMe)YNcN@?g-xxT9-j@AT><2&UhRKWF_t zZed|HfeJuZB_ySQ{L2@So9n#B5BN)K5bT{4LC!%jzIT{Gu$i5FASj#kwv_x%m)Ce1 zb4Pe4)6EI9I$B^r04+432oN|U5jG4;AQeg{wZvMdjwIAJPn82~4k@sU9Q^(J1x#Xj z`S?nql?tAodDc$Ojv})7nvG1Asgs_;m&VIyeac$F%nT>#>LNNO2F2ZIu;3+uc4P>4 zRFqG&kPzX{gg+FUAQ@3EU3dxvLG3yhUmzLcxnEK4h>6i|Op${rqyh z*3@X@UzADU2BZ0E7sK!E>M{>HU})@>N4}{Rzs&_Nm2%+DWOT+oZZxDQ7NS(^w?yJh zOn4a%yZwIles8>Qy1G$b%hFK_-6aee6yhWtuO%v}m z1~fDo#oFPjzq6Vh4^1N~xeTNpUGJgJZ)x79fE@c5z`K^%A7BM5Ry)usSTE9^+2`ab zWleYdLTQyTYh3R6uXsv%^;E4KI%Q(uXyQ7+h~ZDy-hlTHils7>!?att3=>*^L*60t@JzBiAUPdu$FMHeQkW2Saf^|<+!mO7u)Rn}$G5Gks~HbzMy>ER_3B0U1a8*F}A)$qEMb@nV`M z;{E-3Ef!8rhaM2vZR|E$(C&GiB08?7|gbcv^YaRJWLt_ofCuK6V!FHrtE@CL(tEzO*4pum$WPCd!ho(nJ`@Vf0 z6nsv#-_Q{J%m%4=>Ze4uLOSLBS+f_vv+xY@XyoX%LJHXO78vL^p<$^hDM&y&W0WAE zW;|1lV3n!)!5vdYK!fs7MPxLW7)q2DrpIKJsHj|4qio-ImpbxjzoawR>{9b0!=wDuN1A>`_dch3BNFW zs;H!-P+*3T)O0tHk+d}pLozc4y6z3mEey9KvB{}QDe}<$<97UYt?Cx1(c!ch;fJqQ z8a1ho|E^r-rnkB}b==aOv z2%Fp}=jjZ5U4S^&@nm#liP-xKjvfM&>szfy8;VshM7k&oL`MZ1tnqgtKRW)mH9qW0&^DrT?z7Lcet*`gZ}* zp$zE+uT7G#Zilp~wH9~Qj>}BWo+)PAQSZ(rBL_L{R6WkjD7g}+Z^%+)J{J{sK`PJ) ztT!K>Z*BdMdYkwKQ#E&qnMJQFs%}ctFZ5z`WMMd=*2vfg|85m4k7=k^TZWf#@Oi-A)t+?KvMwWD`Ux;v;U&ub?;2QkOolUabCh@4(Sf zPv7bms2L9J?ET#{Q3AZN9z9~s4|c;zcyDT|DD9XnST*F8Po z+rmui$=}`dg3XCos*P?Nr~B9xgd#tFwWO&O_X+z!3j$Y#nudlxtU+Lk2MITLo2pY? zD|L;DiHv=?xLaP9H`g9o4ZS|1Qdj}^Wo>?XFnGBPP_qq=Wpfv4S(+j>>0NtFU#?PB z!L~8HQ5YLDF)UBWdKW{n@FAxGM#x-uRM$GWX3~>#+NhHE6ETM7a}A7H82F1z8V-3bDqmC7$jSRFvGE zJcd{uuD`QbM;wfju$a(%0~CR!v=HaSy1&0o;C?*F;4sdacY{PNuSsP(jF!!zBdH{J ziu5Qr&9dx6ebBd!+kb9PpcWRi5Mov z6n{U80`-ykq_!Xo?P{i0iCxG| zoV%f@!g%^=-lD(1`M9K#h)%N1PNnq_tUZ>qvgj?ArD8N{o$Y%uFk=Y;L>!P2gdyDz z!(j1$2a6{7_qr=qS_ym;dEiQt+67FFIY#20-j{BVK__iSV z>(HYT`9hT;TzQuyOD+slVrNJi`@loPkxKX7V|ePtrK!Y*j>$!-sKoS zdbFBe{^@G+&!;u5ovMYT$8aB8;`$k+6i^$(Z!H9Egb%!%IA$V;`X7K2?2hZhtj6yhy2M zDQoB2aZ5<`{}A<-VO6Hl{xIF$-O?>B-5?0kARPkIDoRR83DTu>H%OGNzSsJt(Wg3EszG0ULZ-YKHWit+A^MeC}3SME(2{+*JtByx;UTrGT)y>m$vXrq!>N7_B%sziQ*@ zD-R}smVsr_7Jv~1<^qQkXxl3~Rh5)bZR@D6cpO*$n|m%5%4GiUtRWs89P9yrvd-tg zcH<_z87Bzq`r07D)I`_$SKICA99r>=$1`oWgVH~@9{il-DBs>2c?}LdHsY+TR$|fH ztX%rO{f79U8G%uKbaFBh^aVN6z9^tEg){x{NJmW>Cy5-bxY+dfzL60^c$0pVXoo50 z_rU%K$+0B)YOR85xsSbj z7Zw-+d52g$RTx~6dU|`20r5b*TnIWid2{{fZ?`@d6^+@G+ZK$Lok+2-nZLaWk zzaY#UlE#!uOwu>>OdiRw3X|~g$y?FNlLRnt`COg}fpI(vm?t|YxA2cCoZKuS^hEo^ zA4?!i4a3610?|marz*d`GD>R9lHcv=yD$rh7{D%%_RrB@>12m)>^vaJWoO4LQD+NQ z4u!F`2mXp6FMw)mmd3_Ln&DrAUs`fa%hJpWW^R8 zKV{q6RQ%eD{Jumda(FnKO)+J2{CsgoyU8w+fNgU)mm|8%PK_MpF+}--ItD`WDt&f4 zp8x3ox1s?9$;$frGJF-_a|>hPCx~!xP;Y4p2d@AC^wvNO01#FADqq%DG4u{|{_d0H zujP+<{|b(@J}3O0$m->J{uJ-~WTe{B+IGWuHGRt2xeJi~Xf7_x=P(wIHF8Nqa7DDa z!G|tWW2>W+TZxi>BGJ0A0xgYu9dqt~q`WNGP1vr+6n=vTD%ydjN@JmkUS$4CqouYc z(YNZwf)5%>UUdgTh`qfY*ITW(XrKQbCH$I385<)K5l!?yV8H<~URDOy+={)4ifX~W zM^JzH*5nwM93%bZB~yJ%sqpMTLEc4Y@ieX{pi*wz%f#1ec5klbeqZU^U2M^1ezjNA-4r8)cRfHgiRsz2zw8vpVa|cY#M%c69mtvNdrUOq6l1Yz`r^OqV z`}f)IroQrYco@s%seO3jP@+i>%-Ia)8S9*WXD2DP7!d~fA)?P~q- zUk|FsT?JlTCww%8w+tM0aLzkU?6vWw*2gnQ_FX&MDK!P0$p376l4a+@)m6298~kbg zv5!CAfUg5MQ39k2U*rGSb)5(^5pAE!eK~Gyj5=kp28bVp~-tWY(`{=gtZ$QLS z@zorl`o>~&L6GxF@)|mOUdy&39vdeyyMlGjQP#2 zWpf3E@Bw~2{Da;`XHN#P*k-mS-;(y$QQHFkJ5=GJFAHluKI%_EJ=DOYm6EtHN%f0! zY+|?R#miQ&Q3Aq9E%q=btp8YFdU`}krn>)$;=-W%)99#R`|E%#e5~M(QjQN$S#$6D zSpRfy^D4jSC34(Qrp9-KAEuH736DbNg_fe8PJB+oi3tg^Jmla(Qp>9`$6@Q~g=>sb z3O@D61PrlvMsn?xHF1D?LNf+`Xeg?u6gX% zho#1sKtYMXv!U0_YioiJYE`=)>T2gNW}UC5yB7K$on4-vTymw~9vmyeb`!0!Qd=re zIRm$kPq$k9T6?P-ZS=y5J;~@7-}W-B=JnxT4c-U`SPR75`Vx0$gjV-$;`Hh1D1$}F6p;s=_lA0TqOt}QJMC%)iF`}S?)Sy|;|3P0KCMa8g>Amm64TEUt;G-HCH z4w8a91OC-NgOuRd$*0R0w=Lg_E(_5r$j8%3l0aWB7Jx_KNrNsc%UgCU`%C=^UsvJT zg=jdXi!Wk=<3irt;~Sa<25bcaK>^aJ_eXLPU5))bjYHw;&pu?Sn%{Hbn4sbe^Jwy2 z`5{Qce)EqF{w-qiVDFlTH84J3lc+|L+(&ffYYX!V4@p z;|AAh3Vip3h7^RBd)28OHPIwQX0!)qg>kVVUncp5Kt^{e;3Gkmo?W z*X8o0K0PjFQbLEnu^~|<0~olGkcM-l!b8M8Y!z&nk6*>uKrFlGmDG8(@&;czD-#nE z*zO01hgBgt0zNJRP^}^PwAiZMP4iSTp+&~mElRfsNmgFY zIXo0@T^wp z+Srr`0~#73A@Au)_{uns`GY2$ct*KT2<|TVGq)w6_aVq&1aP!Pc~d9EfKMHI4{3dQ z^=r9h)jfGNmAVmHDolE>hl zb5VOLl8}lXeCk(L&> z&IGT`JPr)#R6BFH$uOlHF2{pUN)@7nL8o^g((@pS5yn6zmPC;KGYJdVKg#p`qi4OU zIp58yCc$A4sa#;T&~-t8q+9PonFN@EjkCs{TW}gxPL9FUz(=op@iEKOZ9sHYTg7L2 zZ|%?2SiBP!DdJQ05|Y_$@o;2v`iPS>(BgrhkbqZ&WKsdAOf%nz=hAKtoi>xoI?Nz5D0=n zB#1{NQg&efJ&5LL{mHVvZcq2}@3J+&%Z!%|N#7t$dbPW(T%&%q7uEf@THFf8*N@?B zb}jB~oVYknxq@D{VINmOM&z|VOpj13-o6R0Xg3mZ`+}d7YgI@#!$0(vd9P(b@a)*x ziIzsO(GK(TlIF{L(3K=S4%am^qXCx&eo#;ln2Hx+-$UT5>1CCnX?$-c=%`IUy0qea z`&M>H5}ons=IXB&ZIBv}K}#frOQtfw*0 z4UZREkwx5ahDLSS&@c+1+muabKCB46=VGk>7Nb(6Fz4Z!5O#4S;Z)1=vPN3tqmQSV zqLuf4*E6%RvxA<867;5=TwM1}MSe!?dsgIDCbQ!+@$le6JqTi-v~j3iZr|T$cGH67 z4dU`gMY_-d1`94KBrZPPn!pFE)BwP;FFR&h`dM$2N(l+II(fto{xXrEB=6N{3pL5_ z0psh^pFh~Z3uJ;{3?#l1&v(sJ74@4GBuAQ@#uQa#CsCe2vLf_E!(wx{qLRyTB*OQZ z7-EmjOyjHb{_Ad1Tw3_Rl^2baH0tn3vQ)%P(_#N5HuDQ$^8h|CeqU7KZE$7V`4Yc3e0%OjD5b7bW2nKqMB4j%V`(_ zM{?D!8=ajxtdZ%EE7Vw71V8no+7U3I!7FZU9o%{7D+=wAs&`WCVB4CX*D%5L!|+TBbeZnRObiCabsqx*Y*Qe zr-n{sO^v$>(+|MWz+Z_lXuw5?xBwtC4I*Y5;=ioY6*@Z`h(F&k`?1$X(Awe*g)R^C zEMh2l`=;t|?P>dVE2(14nCrxcyz~EygtUgl8-b^wY|m!a(Uw1cbzyJ<9V~yV%{~U3 zSTY>fH{_R=MxLGdNZh$oDI0L*Hw}l5mu#h5Ec|1hRx;@s3$!leRy{DTlxop0y$6HL z2Vj>EAnmhZWVZA3U&cE|Co=E-#wyqZYD;L|6L4O%)O$KX1`1??3PE_&TNUcc!YVwc z`K+9ePqJcrhp_C?Excb)pblS756*yuPur zSWrgjmTyoV{jdMy^^GYU*odq~I8R}tOVBKaq<{Hm&%~e^9l=H>e-?xgpHDnCH$RBb zWV5m|hBtTbFW#VZPmiYTh_46h-rbs26_@`@rjR1o_hNDpd$MH$QU zuB}VIFc(M0PdKJTG2*;-FANoNsLZEF!)}@99)6|Pk_tj(Yxkn;fkm4nGFMAX#jP_RpMXQ`4v_Q}2-QbOR||5gANY;m=+11DKlt$-!lznrvB zyse)XXBfR`P>=!CSi2*}j1 z0s6Co^!)JdaBkB#Mu^@99dHQ9qS25`;}{3>bYy#f#LM<=33MSne!~3k>iMzxJEYpZ zxiB|T^i2ezpZ>K{nuD85p|nxN@+&m$wU3T2(roPM2)~cRi-uSN#8t@rcQ=2$`$jwW z*{!OoGst=;%aTI>lO<^|$U|n{Jv(dg(Lz*YlfRuK)yOTzw4t>I6LYenXPnP?H$64A zd|HMx>TkYIZiPUax=&RG6~-?bWB?378OMC*4lTkt0B15%o|2uglf7^awRd%lg9B&4 zIhow`A+8iPRo;&nO2OKPx8OV{+JhkU!tR*x$VeFB@*oP>Fh+F(y)ElV)jJ0NR#w&~ z;jd>K@|h_+Gt_7q#|^z-wBxF-6i-rjHs zEv~E>+zveLMu)DA{!T~28v?>wGoPWM*J#FyDC3YRRK~*jNT1K}p7!6PMQ9}M=a1&6&S4)KNB|iD2l*%XR3O?G7xu#_Wfrhw1I!|YSWh9c5@A{0osItU zqtv*l#;9j5o4f2_+2wD7K_FGMxxykl+0$TgW|B&-r?XHm7Fcb z_2$Ja0Zyp4JzJ50m12v-T|cg%6Y`k%d=?c_iG7N3BXb>jZiWdikx)*sEe{2(V1;r1`UgCG=r3MNR!umkSY4T%nZ4;*y|hy92{J)M_e-)iBuX8L2HBWy%EACnmdw{D<>A4@-@Yls%c0Cd%quFQt7jBJDdW#F--lBF z_$&TUpW+#~vIo@StN{@P6a(?iLIo^b%Hx`V`KuU;7;cNw=D2g1K&Iig~O(uW66k)%|CY_`p~}TOOeggdfUpp)u_o~v6-8}VUd)Jxb zi8-*fSQ}6zlbJ4{1i?j}j52z}qfq`iq^0@$p%iZ{T3RKK_!S|8r=7)u47Fs^tL{(~ z5{Ac;;wvr_Nc|D_@BbtC@WcU@IAi8#P*@NHK*BNrTjV2w=YL8iyf?{U>j=AbH_gD% z2>QQtW22d==ZKV9%+S?~@rWAT9tcQ6S34SP8N{rrB2JjM9lpSg0Ie`8DpBehy*om7 z`x^HXE22soZqL*Sp}A;aYp4nca8Cul+Dg+bhA|XvdnaGqgCT999sMAUkNbOdow^oV z?|V;XRF2z@^&>{}${p?Bd0L3=11$iE`T*%B`MR9kq4z{PyBvfuTvAq?Bw;VLv9;A( zZ9U5hZFy&k6BH2GwbbV;FGoB_#xqoG zM^7_h^?XiNzdTSwd(9aCNAm(Bn0u^0GUVCL+26s$1On>NhVC1J7*xzreg4Q#+f%`B zsPWi!RJW!YG^#kQtm0aRht&Zd)%RFfBkjKI%T-ks9e+iFt#R}P3%}T{Z@dyD+L#$a zVas*WM>d~gsn1R(tssH$L4#nrNfpjF?aWVg@aMU4bk%x%_6Z+D9|c9-U~g8VBXxbm zIq~>lAS-@u_H2q(O>gJyBPI9Yzp2}CrHj^G>;mz~>Kq(7O1BJM6)YL}cNYjP@bRC{ zbmx9}qJYeIOHoPVLuQ8Owp>t+-qIr{UGM7h^22D%vNS_QXRrIRI)6Uf4?cdPbk=?I z+HxdEp;QHzyEN65o|^jd;sf?DBR~J>_wNNQUNng~P_ifG{O4P6_`EDTR3l?vKN z{s5l}oop;O+4kRs<=9dVux?#F7?zz_Gr-&hr7rLO zR+(?f4Kgy7TUo0}`PY{CgjYL=#k03=d}Hz;g&V-sto^LwF>i(*EB_byM|s z072GJvrUXGWi4&pWzn-@3}r&J5}Crw!a&;Z-K-WL!N=rxYJZ?p?5&Q9NNEKtvlsjm zholw5#*8*c&QZQJ?L-15AD}4_DNS_We+a>9{Bof^oK8k2s=xpK+9D_kU%^I>aF8Ri z&4I#%%%4{XUbDDUU_2cD@&J~lgL%LUXQPZWWp#bI4-6&1LLlXVoQB+#E?OG~RTxEi-UQfo;5 z&li7{c>`!XD-X%>u@R?emIYj@7M z>74^Ebj6R4gA?a-g5~?O*>^Su0ieSTpFY{@TodSCiP#%yjeCq0iWtsWSy>SReVEKa zT-y)u_Wo9Fci-eBC5RR(D_-V^;+~y8Nd2gxq|5EOx3FHw0Fv0Fb%>C0D-^qiVnCBl zAE6?pNER_!hHkKJ!~Qhtu1KVAAfk#~s+$m%Emn=go0l6pFvlZ6_XzHfX0EztOvB#o3gu*zsakeqlL0^=rGTd7)9tHrnEO7oJx)@jRfD& z%d|A3kKTlw-Nqn}CKscFbEb*%4KJs)_0~8KN%c5$dNR{o6Rvn9zEXfQ7lg|}F>-ig zqX?cw6HWmp;V<^~b{Op;G$s-jx`NKx^`D%@rRl+Kj)D^-Ypodwp z%?dnANK8l?$_fTOugD?OfH=&hxERkhH8rtnt}e{pvh*IWAV+G2Fc}+3s%Wrcua}UA zW$KFwphT!>XeM&c1xUQywKZ*-+;+|V_J=bEp8aZ!wm+^k<~~{JkIWi?z|NqX12yhz zOuWUdh0grd*m%NP|LXt-);pQG>)To%54R@i?p7Kh^B6JxJsJ@b;ly$#WK^ts#z&^A zN<>JFV)I+MB7x^(+PFD*V?O)IQ&BKZ&2~H|gdG)O+c`ctLG1X6>bmgwsXE%{!H4<* zDn8@eo>X>CO}|w@cF6peOIYo-{D@>!?nWzhyZQmSj*6-(i--srC{GpQi`bleeCrrO z9>2J+NE8fw(c&oc1{r1lr)e7PlM|bIJ51&1XrkF!U5TfhBK{|R?)v)QHWwJRQ~wIH zhAH0+XB&=BeocQO8y8dg&lhRh!EyPd`xaE89sEXA(A{GD;Iob5fS0NR|AZ7 z4uABHGsFp#g04x2808{%U(KYzQL_q+Q3ok*CIpS!=qu@6fpDx2?ReP-65t!*Mx)~z;wW!ZU zPA0qe-$b>BECfAhU;Rc8JHmG;hBzhJn&Q1qp92)6cYr!a#Hdyv=A}y&UDE$`hhB~# zY96V;ZGJPea{HRlf0CMFyy@8_-Zvyvr9CWGdIPfiM8qoF@6)3`eV}--{aKX#fL*+# zTu7DFh4+4ylZdTSF_vCYRGtWzX7c>jH^J4517Rh#(b+xOh3Aekgz0Qry@T}rcf*71mL33@nNu|n7NKa*$SAbe zI-!&|OyNUm?4@)->#CCQ$?3&jvLY^1s0w#+iajG^J19G&iza@sI_&Pu1U=|@5Y}tG z_*I~Ld;htiq2ae28Cpn->=Wp|MBz`5fk`HDvZ$0Jk^0uH!PO(1M~|k*1ln)Y$;}rO z*f%^#$*RtSrAYu|oOS=-Aj~A@F6?xx%Kx?|i^?{!4*+IR?#q%IS1{!0;3p*|RnHuc zaiyncxwPyq5%S(=N_4Cq`>9O3gO01tb$xiNe42EL$3 z-=j6}7vInQaB^a4R1^v=$$~)b_W@8aU32r<;yv+C@f^5sd*nB7vhV!)JJI?)e)?cN zSKgY*AfE0|eGm%^OF~joD0mUQ@5%G<=;syRK5XmC!TR{qU~!l}Ag?MGp0s6zYr@!A z&Crk>dS%fXpm4_=B5Lt4PytOO!U^Y_U~F#YW0<|ZRwlSPp?oRLP$6KU_$7^R(6Ipk z6kTX5TUoKkgTM@|f)e&e17FiuUi0EQealebI$R#m50OrcLh&^;RG!{jSolMgqR!@# zGw|h$vJnkU5`KIMdwHhZc~q$T)Rc1BT{in2&tpzg?{9CEt~S=yzRWBSL|;}_7Jegm zQ{SE!Y&r6!z~6rfg{$1nReh|oH1ZJ!s^i=&6N4<>BXM_m=xI;Ml@4hziOtBMLfHL= zvm~vB-+)|A9>!YmXdaER&YU%z^V1LgvxJZpUUqHdAfq+vNS zVZyobba(F9e}hgf3-bGRg6cwZo&4{NYa=Q`6lT7mdh8KwC5D6`OVAPYG0MLD+7&oh zT^qSvVYoqrQC5wvr=QPHV)J|Tt1{=!DXk1+U_g(jr@WE|wn66l6NvPOVucM;D1t09 zYI^77uf?DKX>G4tAF1?YIz0_zwjDjYP)+FDC=s|5*u24Kait>{{y?9UB|Dqg-4T;3 zIT{i`VJV{#c%$_pNA~p;DSOZN&*fX&Jmo2$0$s@cT!7Gf{YEWbaILadccxn|4rK7; z-rgw-ts!ks*1M)Se5dLe(0h;$2`HkKp~PBvc6L_q#ifsQ&@~H)ASuN?azHz@A%GC=FCh(?X_?vGMJknzH_HvK!3pF-*DXKa_kLS{{^ zm$LDgg{BR8Fp|pV#>1QC*=GK3$`#7D@BnB5OM3{!SG`nZhN=LV$#DY%15;8{ZKmoS z9^<}-2fLuNlMdtp2;c=^f2babI6wCTl*U5t{z&E04e{!*9mx&FrK`oo!QF8z|x=XGAooP&+7 z)adIaIvluhd3g+TJm#Ih975*5e9?p(p-=yGP7@iOOm|TZ2_3mQ7zKwjuO|qfo11&I zlvHQnMqk1wAtfN5@p%BB03jBZQ>O47y}fcwG4U2#6r30%uP98-n#+doWfuhD;zV)&J!I+Y{qT}3gMdI;@A;bZl{mm+OmOGIQNSr6 zpa#Mx#3TE^R$}XhDJWk>_gIuC+ntFdBESUj%mPEMzVw;_Z zA3j{MDX-G9Y@TWPQF7UbuIVP{6*{=SV$Z^po$bH2Gutgk?70^_@n;w&zCK7GSOlL9 z{NX~V>G9v!3;*c)S1jC@^%Eg!EtX=yHAY%^3|&-SGTTG1fsY7P|*#F zjRwDcdpQ+>??%=F&B1Em)f%w-@+yp+5)~xR63+<&A3t6^j1TJRnWh1QTM@t2z3U0# z)x&mgd3!eWsrm-zIY`|)JN`l8F>%|`DNsY5N$xltw*wDSVv=%-4^YX>f3+nK?))^s zS#({vr_j(Y#gd~I%Y-7$6!jK> z4!I`;bujRn&ep*Jk4g{;&Ri;Cdo0A_2aZ{-Ofh_r%=ZH{xwN}WASWjWB~7*fECSL( zrwL&JR1AbFgp4d8tk7a71-493Sol$$J#jSCzr(v!loSOvKiHjgGLV)FSc)#rA*!!R zTO3&B{eJ;q)e9L}FHG!L2n#`Oefu_pjtHsuOR8?N>D%KiHHOatUFNIK4{bx;;u-SS zwrUdrXMkknxCjoN#m&v>$4M33EYQOlT{ZJABnk}jt76#WQU23)v!yzHc}t%C5I#w%?$SHu0$(W#m}nGwb( zA}li$Zg4~+^u=Hxb&pF&qmG1rcKP<442mpawWy8$oFS zx<`=gw+%Ev04O5qTLwu4ec2ukiPEB5K~e{f_?!u5Je^;#AytJ z$H~dbnf(uTk=+^0V!0bM9to2gv1O-s)L zaczG^oM2FyR3)W9!IK9E;-!Fsg8Y9!;@r1F1s(!=OOgtKb($ zoTdb)^?r_iVQcpQ#{fHAdGI*p=^r#OGe16A0dfzTW#VCY=v*-8tW=AN&Trfn=w>6? zgzYn!idthOSXW(h=46X2{L(|&!h#+y4Y+cla48s8Ip0K0T3XsRnsLZt(bm?MfIL!@=@Ag#2I{BCsrLOuV}lCr#p+ljGOfhux)x(P%`h};se#3G4U;vOCD2Q11< zNZ$Dx&9A05AeQT_6f7Dxu$Q_wO(@@=M-tp(q%F7+qWvRHUDRmN>{(1zW;wcyn zf+zBKW}?yD=uJLQ-g)8l*PX?o z^d5SKmIS|PXyC_>qZ2b|#R3xEV!GGKg3;yhcqR+=e#L5D3TuR&#K?^lloj z0%Wrv6EJ>K!o@ACsDP%#(p6Kgqj%R!n0ik~-k^@J`3vCI0Lk48r>AABI7lFtmX=@& zgxgcs$Ot3mV`zOCYAY&6-c5lDnJ$Q_Yh1okvI$ZZrb6N2u<23|(%I+FyfaH3lC=ufbqYNKK*{;b+3kNF6K#={#( z=(E2gW&0~nVSk~E9_7|8r_~kfs#<|zk9oYY`S+vzyl8jX6q|AxA9cP@6t+dvglr`! zofo8vB?y*3Nq$L zj~>C@h8Ec$0%ywk)*qXd;cOoXZ*JbOP$oE;o*5Ydeh~^OTu?t43@RlX2md=M6Ym;} zm<&36a}yJh*^{v$t_9(RO-)Vx)$Yyn)6aw_^s_zUfZT-irAniGn*&?$ZsE~M5TS%1 zO-)Tfs8D|-;|nZO(&RY%&C?xwxdu<>x#g|NJ7`z{03xC`{_Vl67G}Z=pLQRi+$AjE zI|Qb*z_NaXh%i|5VDeu5Xo9Re1|^E>$}AZ*CJJc6gGy2?EQ;>&2=gv2Hg?&?wLcw6 zG*g=TD73^N?m<^ETKFmvsHm9xY}DrFBWWrTtmWss%04&OKKIRejUU2!@U>bY2jImO z$h@lB_nf7dV=(IN6|}Asv>zZ~!)J)ys;SY9i+vdvM*yE)&%=hLl@+u*cRIu-k%Dt3 z{ZF6zdVt!3h>i{qelO2!N|aL={en@lLzq*WE6)%IAL3tcbl`?Tq*+qv{Jy!Xu2Xt^ z?!9$=wXUhf=AHKnCsC{6;T7Nf7eE>ius6U!Kdvy;S(s1U?hzy^)6m$D3q5zADR_GO zVZxrX8=qlRZS}3gH4i5j@Nz-H86Id<5h2=CR6P(-1bRsyJ7jrvwz6D7Ycl24yZyp~Wl1uRfnnxvXVlae@PEYu?PF8!mx$ZrEB5`0C5kA=C!&Pv&h`RJx3+C0-#KF~Zc6OGx+l#7xdFko@ zjSAr%*4HP6M|S^UAL+@errwvk#laC6p%b;3w?)Yx4#f4=wB@;iCkG@n0`O~lCMKHu z+rWha#*+{m0ZaMtp%QPLp8v_mBY=D(B_$<@>9mD*SvMEDW2BCtOXB6jLn0TOki&6QtAsW%CNzO_SjR!Knfu-+*EP5<1Kb zoWYYgkG-E&F1WDke2RwUYGZqrJp=5YUQp=Cjbmzt1M9YN2$Ioc&C;R&p3Ucrz5aGX zw=frYFM?|Y(B|h`KQH%!EUn=9X%sC@o|REVJ~Y=QP5AOOh5>x568@*W;C_k#TCxWuS%||tF>x#tvN5d%dunPiIe78DB(o!; z_kfAd5Otw|ya7uPk;BB4@%HUA9jEdNl-IAzPLBHP3RuYOAKLyt{nb#Z?G1Huh2}vE1o1MF!pmC*wbe@GQ$CIU1j@g`k zZv{Yofg943LFO%vN!N`my1S<4;6v*Hg3b5}Zkixg)zN9&N1AL8Z?0F`&Lf)cK%WMr z*4g(TTuO3p@4&lzm*#JA@z0y1HDc`RGoi$*-rlFW-rkE=HwBWq zMygwrVVI4>!o4Cs0zfp6ms2mH#pbJu23sU)9or?l9OiWIW z?(csg_6z|A!g85i%N&N8toXnp`{xvgP7?j-uR1b`&Cpl__#4I#AVLda`RavZqN*wu zG*5%kV+6W}#jzMuZwt#ckfE!3<3+Y4>hg$e*nDlb;=(k|<-ziS&#_bMAkJ|U|C*x> za#;mSODk1vn|VM=W{eHwMFvg@$5IJ_CdG39^fcmcGRLBJ4&LW_2X*J>!>KwuOjT&} zg2&VvDl%c@?E&^3u_uExZiDv$Mn6ohpKKN0=OfRS>g1DBV~_83V?LP?105aWB!l${ zv8h76F=EDo8cWEQnl`x}gmx_?#~Cr7P%N)_8UG%8VMIo?L2*%!vOei@_azCa!+&e?13T#Igi;n#Szxb6JO~gZvH9NNjWWvoM0FJ4n)eFT?3Vh%5jjLq zEe+GkOHk6Z^|jxvvef4z#WLNdw%_*0{jKBg#u5uPECR2 z%h7%FVnzu4X$C8Nl@%z+vm82~g5it|Shs^01+X?%RgBHe&7S20K`3dDTK+9q5)?!g zN2@mA@(2Zba%zjv#C@edP|=bqSm}ppzj&eh+%x!3X>Q-}JOlihlN_na;Kqf+qPV!2 zlbc%++N{w~kcEYX6M}Z>>hEgi$=WEUBZq-;05sgTn?K8CHtzz!CLa=nNk&2U-&BQj zIhptV?W&usK%zP%Q=t(=A}q|G$*YBLjQ__R-17I&^xV?E&2-fJ&*`Sd>D&0%{8Us( zL6-`eD~v&Gp*}y@S-9pE9Uw{y4|MkX|1O)aQ^Lbnj->3dvhDiNSi-xm+pB-K$)tf` ztgtmhy@CFYncn1NHLFWp%R8dP;#Y*bHi;$ogo0$>c{20foCpAfaQ}K8D51jodJ?$W zq1O_T^(rk@M*yvgim;1hXtA@wcl6kf731pq4%OD=^U9weitjf1rjvWPU_|!!f{<)< zaW!1c(o+6ONFAv9K^jU2A9YdI>sYo2p_U}2zu(dv!_8IoNmb9=&!03gHCuavzvFpw zMN%)*Dodo2Y)d=?@zSx_{wcfMtW{88$B1}gdpk{eZ?8$;y3(J9k@<583~&G!mPFKN zP-OsuT#{osqv#TZ3IGXQOC2x5>V?V6c(_@LTN8=VlkR2Z9iI*pYEp3NaXH*^ox^dR zj|G(q^sz1@P)B&zVuCK3-R!fOQos9jc*n#oWVQ1XVG+^O+EvRMB;AFdFCi6tNhCl*)qRe8j|bS{yk?5kOtFxi%~$(_>Hx9lH8&ewPaz^( zBqShHs%__FP}F1 zFQ%&pqLdYJP63fC#m5`8yd{)4p*bZ@9zCeXCY%&?5_rKW_|B0~m0lJv`|vRt4Q-gI ziTakUB1+<BE&I|5dEcOF0a^9vP&h}ud|5&7l)LL`0t zj6Yk+idnr#;yk#}%ePri<@jST5lhY+=UJ_#f}vIJd0SO%4&THCnI{%DGKB!f$Op7c zUcQ4LI&#cFB?daEc-;Y*WwOl{oy%b$zO<<{^$IV3p#PmsKSFH>xoZgjJ{(l^VO7;* zTHn9sY_Vp>^kWwmE=fP*%@E!yWK}Ekz`^0XT`qcjViUB_WDxWZ{n~MOvAu+yTp3M@ za{@BI8(7R1e?fj(rNa4smEbiN(QsO~T`-2Yb_ZX>@^ zd32=d(cxU3SG$R zxLodt9~$oBmEKFl86T?tkuHf#X;Bvq zy4Js*n=G&aZI0<@YePkXZsN^$wzh~l2}xJRkBrONIYY<>rIDWg{=8NwerjSRA;ah| zVKMfZs3+@DWG=lRwDGAs8ylOft``PbGHCw(oiIHb%uRs{=xjRWU}xZk zn6R6hjfaCuQNvrB#KVIFvIJa0j?nj}pGTHFp+qJOjDjqATbmnMAt5WIvR*92-6Yt= zD=5eo{d?WXzk~j|f6=UOL{l;(w=*zgrjaBOM?ujot-#reChc`{-R_dFDdo5VA^hbT zt7=IpsfN3gdYX`z7ny|FyS%SW8g6Hv5+6SH%0d_!WKB)%%s}hX_9FSn@&RNs;|6!` zS8K@jg!YdJh^-jHd1PBr>tD6pa(AotXl@g#)UvXU1;UFOm4iDTBlE}G{m&dC{Epx9 zdPu{Nab;w9j}DNtvJxcS=|~+^rec^LT1`aXOp3fKC>j0gsSdM-dZ^Xls00Am;&8v0nI zk<59kgBmp0;qpwu&CO!6yRVqG=c1!CL`8QbB}*$bGk^1A4L*-B&~#ojH7(MbZcR)H zm2t{7;8uCz&R;Y>u6w>h>I7LA(^J%MM{=0^e~>;b)%iQ0DJYtn5(4T10|%=vt&fAx z_DZfd@@b@Cse^;%liba}k>@iB3+*Z&tSD8Ox3;#tV7LXA0~raimrrTnrq!04AkHTJPWTEW{G0gW(ge~CTMDE0!a`ifTAE$y*^te z6nvu<0D|22?son^CnkQc=LUTOsqhl}7LRQ1r|ZL2Wqv=u?-?*2=`}TyfuHYtqev%} zG*vAge*Q<>d;=ZADRcgcH(Kg5iFe|LD)bB6o(QE3gtd3vc@LqETz6l`I`PuWOoveY zKKhT71ce(i%&x%dK*|P?+^9eyMS!Rp>gMw+Di9DuTD@?yc{|#tXi`45t)WaZ6SMY4 zB}O1|E&+YgH8e!e9T@GnrIm8`l^jZ5u|NMt8^s6w z`g{Msw(G;$?>kKOxQKt|2Hn#qg3CkqzTA8g;sfsE`(gN^0;!8i{~-pNVy z<$EvGgUMP}P%;oWJL?k1m;7gHo7K?zBxB%fOL zmgE}Wkapd4*jPniz69omz=AsaP`9da< zE&XOKB@$ES=IAI|If(S7A`Zo`nL?jIB09K@Dk>@fMDGK`Fd{<&QFheTW%)ubV|_#k ze9>jJQe+>kUSQw8-S8YYiC#*1nO&&vtK%r_^@wD4*<3=1!>lrItJjYqK_cVj;Vr6b zdt{h?Dm#}CR3Rcs&4l+;r|*#zC5CyMqTPFo3ElL;uZ2j;{-S=yPLB$DG>s@6o;Mk( z-yGsrKLLjD0U<*k?1@m0vpMDEka0V5Ejp7Hz8i$Y1j((d8<@t+Uz_JZ?*jE0R@-%6 z@qAqm0V?@G|IXItyHPts zt6toA|KEU|y2`Y^f#Lh9ie-x)>(MnIsPi$oIVMe%@$*}`Jwr~+M-+Tt7wL#lHt)5M z84Zo00g;U>-r982AQyM&%J$TJ^3%9D`}g@JstnE5b)L+{clT!0!Uv3M*hVJB5k4Tm z_5op`=NbBoQK*(&?{>0zZ`=@;B$KWHNdkH)v=DhD!2HGv)%ro~v3v0gd19h5k&lzf zaJ~A$aZ3_Oz2N7;yz3pj0NF&^g+Pv*AE2FLmh>Yt{JW>*bI7KtqzKamB8CovuLLa4@6T-R6S)9X%G~oL!_Cclz>QxQX(lOC7lA&AfQOMv>+)ZA*eJ+DJ=qm zbPJsO-TV8_IoGxR*w0re$UHj$wkTG5(olFCs-BeKrdO&r< zp%e)692^22z`z32EE0W(4;R*xafyivYCYo>y=-2C%&b<|G}e-Qa0B42UWtvl=U^LD z-EhlZGn4c7<=eMe-N#0)`<^+oxIFnG&iYSKFregqgd`ym8)if=yNHXJwY7CziM@B! zl+l~CmXz3T{+>Rm|*3(d>yf&xyy1w7gEg2(){pv=N(?sdm`_<-wr&i>F$ zM)y{|bJF}!9ba^l%mw?{(aFBk!zLPi5fN(&!tJePjZr1E>@{Jk4_cY#!(UVQ4-Q`> z#FKM3q`l#iHM%P|$*&xnU?j;N^1aYu+SJT3c4f-Q(!h}A`5-efqeM+tOm6ulFcNFu z*FoUL+0^8LHAkK(@DblwF-jYEQ!2?i0FiB_zDYMw0u;^d9gec0lM|}9H~6k8`l%6m z6>m<+{TVnvqk1qpmT$MRI@N78BK4yhZ+Mx9&%?t5zP|`m5qx?(btlKi7^oULVo!&O zfIv27`RYXT&}Pg`t;HupIZv^&pbi|aaZub&3Y*aHXCDPc3yxP;Rd-i;O+he$ISFAj z8XL38$h2BCL#5LDp;hj^{bCcTUSX&K-c&(JjSmlV8MImHIJEhd)ePW0Yki;NTV6ZU$A~fJT3JPZXz=dENbe%21WjNllD@Z?EfB0 z$k_9)nZ4v;iw{A7=-Z$35LkiB9di0Y#t1OlsH<1g%Zd2ikY!hNLZY`8=jNnBUP)=s zcq@@0>&cXej%~WM#+t&_t2#?H2gFjoZ^FOuwdO@1RX=HKaMfnGO+)lX>}xBe$PRIi z8#@v>lDcOMx5Z6NSXcTp3#r!UOy6_c6ec6KIM~}E(U_-CFTus--}YxFurPgwbGngd zeS{Y(1O(_GAAKgdoo^`X(-b!w zP4}YF0XF8CKdYZ$*x8jj9E|dEbGL(D>AciKe&t8g<$fNT0$ZCvkdyPCef^f_zO)qg zeq@G`T(=;gebLNNtM~W!t!%S7Y{x^h!VuNg83PeLE3Zj z`r?jz)^9f7ysiM zBFDYEkgR3{wWN2Q{=~|dzDdC3qogcKN?H66NhoafEdZ+Jmwa0u6Ok*x=f5l>Jm}f_ zETZRAULMWqn{|8EN3*iBVxpo4F#&%2k)t2qy+eO*eXi*1wSaBtUvo(v7nfq_UhZNGQ7_f~abSD*l@2K2>Y#eRmr5RMw0oBU7uuN+S$!4}=l?vLoABzVhz z1Cs%ayKwEFx-P58YWiE#NC*?_7voIA>0vxA6X`=Y5x*wCt0l3FT|^8FA0O0{Dg5|> zaAT1o)X}25$PFK;@xh4QX)X5(6gmQqT7iqImTSy-agc>|>FE#aNY2_?nF2RF}7K5SschyT6kO|*=rxT3ym|3{zx^OJru zj6dr?nvG^>7`G0(s~11dS9uBmHqF$`3WyV=UpPBtF|Eo< zPCI>CYXV2T+QIJcCSPOtT)|HTVKvNa*9tF5k2zFYlb0#SGL0P4|xv5Qtk2b6}r{k_|c;AZq4`9$Y)f{K5LW3|4eadugrL- zE-fvM4Q!XF$(Fv2h%RMyVrqPcS3kSvo#0@Mf>#w%7r3+3i?r^5`YV`*6#*b<&pP_c z|2f1Q2|{sR{Est$+S=Z}(-D~OkgAqzx~e)x2Ml8}3JTT>Um)-~tcy+|d?z?-4c=Q4 zP*75Ck3aG^gH<5ysA~2bG4p9rwa+n8>t|1X_puF(*YU0&)W)gx;?DohR3$&_x(r{9 znqC)IHq4%hRM9x^!(q;HI{4t4JT|+btO*4}=uDWldLDI-9>v6zFT1u54?lx>GOMrD_h?B^{CSKv=s)1P$?0Ny>|(lrP6ES! zqZcL1%*@eJNk!Y=>*BAHm6o2|kmrB;jdq2Kx?O@h0)O#dN%)=v=hfSxX!&tt1C@)G z!-sd8B&Akq-!Ej=J^fIm5ggoWyO5}*%|({A+J<2e5=u^2lq1jnZKfH`&wYcky~dJ& zoZCnGs`8zeqX&V3R0hMttocRSD%ek}d51Fn&yhYB6dgzq5z>E| zQUQDKccyMY=?9XLwXrX!UYw@_sXyfSxJO7RI6j$%7!Z3=HNrY%bw*zg{{AF_ zN?4jZsrqq~bll(z0`U#{$U|yt-HEbg{H3KzrtkuMe0xj0eu%Gie3X1XFj3V5SqNlj ziV7&!Ep*@8FDuDq?v0g6!1?n2vGC1*|H6MC{0K0^<^5rO&D=tb={0RI4H z0oiE5r5;$0P51I6(X2j)KRuj0JU+wW)O0XOjUUecZ|BaN8+Y$g&BY(To1PrnwHaX4 z*?SRs*F8R$tuOlI`SqX)Rc-Y3SFC<3+Ty-@b`*dql#TR_ib!7aH@aC7Ic(+ZhytU+rA=3SYKAAbr|*(oGpQw=JIlZ%VI zsVOtu1^9tBUEibkd)9xp+3lWpse#-dvm1O?x8A%d(hN3GpH($F{cxE^r}EhssxMpC zPc&e_2!=cnTrhw4O`3{`2!~0ZmMVNtgc2WkeBnh57fJSuruBxSSpR>EWoy}p1&Q$E z4JtxwM9Kz5X;y)qq8(Vd!MG%A4Ia!G+EWz79J}CLi8)4UA0C(h7yCTyxvklvexBCHTH>+*Hs; z*Z=PWV>d@{1B1ACe|sr)+(0PDkH7}YFDd|5N6)kil3%@Qo>uDX4jaws?KOE<2ZsyP zdf9t=dLn>YfVFPk!sz>zfZ1FbR}LM&Itm_P+lvuLQ?=3fMgM%JChD$b-ndcR{AXOj z>(qUPgHxW1hHY_4^`oX{7-$%1mxGNv*XOKQJ7Kj6l*$eO5s))6&8~_d5<7%ML527; zm;DeH7Em|Z?l!@n3f+a^JgAN&%wOR%7+e-FC@3&!a_0pBoD9;<(|`XCf|;?1i+lb} zJUP5N!1M_Nh=9#7I~6r`HcX-**C>NZlBdHB48EB5>}=Cg!`)@S-=R0}T(BBMwpwB0~yqrySHM*s|JP-S9yjA7ZGS0 zg_HS|+q&thMGOxaO!q5XH#+jXzV)TwzN~;tBEOc*%jI=OANFUQvUqht{*RU^ zGq>ukE39>fr7?=C_wE&MHlZ>HHXjxfkO}zhau#p3o<#Pz1bnxUkzvi|pkO^Sru@J| zXMs)d;00+)ZC^lA?!>9oY)$|LdmhH)1PWzdUbhCb^ywB2z)L2;psY)_^ zm1qRZoX-DwRYI##WdUv!xQjq#$l6%J|95iZaf0M?^x6UlULtk1qQC|LF?5C-qpYlq z1UxqIQ(^(wmwQo?eM2AR=0u{Tyrd(F}`NLjzLA zh+!Cv(BNzYjzxe<>v+X#iL4vfzAp>s-@ML5v3pIUn%i@+JsoTy@!^J(x zXnvOA{50z#eE#=PR&jlCG5C?+asKZQ)ZZ%#Mar@RN9Q>>YR>mC1y2d+pn`?DuG-ng zI?H=x+K5ykEH0rz3WJy8u54F#m`~=kv5mtI6$@Z#ij-dk%QT!|&qaSzQm!_PM*N~l z>zySZXyZ7(ofnoy_yyx@h?#;()cXFdakZYc? z?5(mSaL|lpgdKJ(3Ha;&VPnVT^nZyw&&bqD*@~NtFRA&+u z6#N8l1!ssbfej#Iva2V_K(`?7s+u{ggWv6GQ>ct*m-Ce}q$a*PWj>7>RPs4>XYI?7 zWZ`&HjaM6?7g^lUz-3s4sV4M9-tmuqrNrG5DCI_s3-w;RoM0%Q!uA0e;{2aKL@-&5 zj*XcCEgMOJPE=V84Gsn{h&?q0PLZ${9r63x`sc60hoO`F?T5yjAP1_y7F0ZMviw5D z|E({+*;4?TjxfZ;#8y^To~1gv4_f7ZQ5Ksd2Xv<&qJ=gxl;Ai(UBDXKOv!^ z?V!@=9OV}#>bPF`NsI?#Su*A3p$Sb;=JEJ&9)p+TPou#TKfl6_G?R6lc-Sgvss zylQOp%qe-fM|q9keu5vAtDuK69_7ETJbjwiJ^S%BRmq(c%*IBb@f|fcWF-@WqZZyU zL10CJ?E(fqk-{t%9*U9lT;YXz{|Wm&_Q*P?R?>!@r)MVGQTw!`m$28V9Ei3ib2I)B2u%PW^id z*y@0p1!@+?hX(}jyc*RDNlAgL_&8XJI@@eU+8$SLxA&)Wy^)|66B2S3=D>mL^u+f< z(lWc_V=A8b`6X4I6aN$Lga;3tMrN55I5k7C+q?+~_>(79RoT%Gv{DBRueAtFvw%Vm zVFs5paz6_;>_V+v%RTEAp98vy)z$EcR;GkZKY2wXdbsAmUp)WL1kR3KuP57CqFbqY=nbfEhwKOYJJ_wgsang_qW3FfrF89BZ}?j zrC>YTtc3VLkc5IhFPd%5wL<`Z<-iEQnB4s19h)~G_5w#;^Nqi0ak7EoVig)pj@|} zYl+GKXKxR~&Q&seY?nvMu=;>I0IYT()(v?9`RlK0w-0zgQqk(ev4A5F5DvTDu1EwL z8VkE%-veG02>aAGHNk!Q%h?ea4G=>MXX51X@=dXn@Gl~EGZ{X(*44M3S#J`(YbN>f zMWxI{5B*Na%}p)w?95{-D>NidQ0?9;D$6v{Ahdlw0D8^rYm z~*;tP|((L8yh#m^ol zc~x|fCx>ATd=B!6_28F&VZBozKBca%PS34dcUkH_$+HSr7L~9Kf9eX=bK~U9yNR`O z4otJWK0Kzu?(b~@NzZk-V4NUD(kaY#z)BrlJiK0H6l2eo5Z*OZOps( zR{UT{u{e3QQaM?noN76Mk?Rnx~KY02ww6h8PKRtb+hKe|)(1D~1 z8TtFV3S|YH2D{6FRW2Olj%#ZU_)$4ItO%ME1$scBU%Fvm556X4qNbJu#2!tlsh3LL zvEH~&7&tlUq@{tQtB~uuZw_Ns&EFp^10y{uti9h$vuDRfdm{6z;_*L%1@f1hYbGfz zzbxa?qDzD4-U_*-l+<*_;<5()ixPeEs^ukg=J*I!aC-m*0H9qIF_eSiX|d25u~JwT z9f^gf{cAIJ;hI)JMQisY*s?r43Q_t7v}OLTziY8OP&zRZ67EmMIxKazx~H3hV~@Zr zGKEb$%`BdJ67ecugfc-UvZ+oGKd@18r@SoSOX}9~t@J*}Y=GLR0IXc25%C)*Gr>u;}$;qkR z|20_Cl-bj`uGT;Vi7qQJlFHw{9den9*%TNMQ2p~{0nI9K?_Tdr`!s_*8(R|lwMFVQ zk`Cv^xgOKG{ke87Rn@=~kcxXSpQp=dk$%Zl3aqv!A0;M1TtJW=LI`V}olAXoDc{2n)sUBCB)zc1;IX5*+y|H+V<>ljp3B>>WvE$Cq)Zf^YWBYJYt^?RgI z+=k-uGf5v6yTzegUONN3Z*L=ZdQ>b2((rtRgoMEWU+K)wto}XzeZ@nl2(=RVUxk;J&v;uM6c8dG(A4ilR{?O0BRM~eBO ziQF>9WtlkMa`$%~w^hhDb=H0?OqEF+$Jl&S%jw_S#}8~s;Uj>AE7%NW!5@X-7I1N4 zkAQ@bp#<(5U!&*Gtp zMu^e<&`d!j!Mbo0a(vO>nu+gSnpFL_)t#K23JLM;TqzdA2L$BcZ zfpJttakgw&tk%~w;5?h=SMcpq%3^?0GR>&>J$dihdmDqMWK3O2M)=g1BA>v2Z*I;M z9&a6#CJ(3l#LsklSxZskhK9T&DOX(7()Y{ohZj9LX}kQW4Ytjk?(SR+{3uY$5d0p1 zL;*#jrM8jjm$P3qW`HG&9x637nJo;)v)OoGmEAC<{*C}UD2C8FBIGZC52>hZWGepr z;eMHQD-9QgBP2nU^btzieV>)TlqFWX+E>FFmn}1K>K(g$bnwJ(97MN*XVrb8Qf-4Mvo{pz;gQ=KE zJ4jHFo`)cE-p9Gj(H~dT?d(9H43&G#(Vv!@71@O;BT557HV6@e5gH=MLgfz?*ViXe zDzA`$6vSzZjEr+fdkFwkW)`PM*!(pmLgh#Gi*+SSw66jd4n@=ZZVLQ>TdvG>Lbx=? z$Ca>M0s zuvEAjth3Q>NihWNnpErNf~$u6F;9T05>quW;X@Ctk z*#5zkjH`}LfZe#0!!WyKMQKQ6s|@57Fd;BFKqpjL`i^k?4X>EQzR)J2v$G}Mm;%M? zc2iSmYMK~(dv|zZ0>A&Z<-Pw3RlHQ#HUFcI^Th$15SAo}5e2!ch={zpe*x>Zx!q&f zT*(5V0E*v9VADS}WrR#1p!`04`V@AXfUjGx9gHJJIzB<3E;X!{xX4o^W!RUY zLOleW?`wblU{uk*iHSY_3$<*pIPdhf!l;!iV9}^o7}T4maZvBf%iU!+p5W48nEe=fjTB$f%)@R09~#r6 zqe-CSW+w> zoWq7=d0t^O^^Lsi@lGvw&1Phou`wY>3kH&pgr6+}{(+7NW{C8|I0)NugT`mv4p)GL z?!{Ss#hT=G-O^0+Qla-QCwbX}o8&&PUZKSS68`fA2G-Px((m88cN?y0sgzB=qrHZL z>o+UJMI;$Xm&+n2wvT;~*h^O=b+b-o>(Hb7VXGq%27c#ndssXUFWKHx&ro07)nM4& zY{?b)@w!j-=}mI&=g-j#9wG%zLEp5Fa%00~ukZ)_9S_3c#lghbGj5^@m6Jm@_dpOi zf6=@d6S-#FIwM5fG3d?5Y9bejj~U4tNzKq*9zZWbA1#oanrb~`ozq=(chRmR=;{q- zci|xXAZseJ{0IXsov?>tW`7Sqckt`sh-_|tHL4yr=kEA%`*(&n>!AaOu`9oeB43J-BqPH@Xepa*L!|-u-;EkW8+D z(ZkZR2>*ezfS~_5-A|}y-Wkkp`}W$&(JB$Cs_x+@CeJ@V7sfTJfZJo9^rr098Eg|1 z9qP!j3mzJf*^QpR-#NBSghs{E2det`eE=zO5ce@KzrfJuf6^T#%EVm@l7s+e^FU@H zb6hZ1Uu(&IZi6~gjQx>6i(?zNJ1P1osoLR42r?H?dDU$^bD=%YKl*c zjrA>`V1cRnqfbOt--#};0a{uZ;Za3^l?Vk8>OhgWEl>x}mIstKNM#U%4sl07pH*;| zc{?;kxApY0K+2cuswDpLigkTMW6*1UjCZ!S;9Pt4qptN_UQ0_$ho&yr!O-w%dW2Hx z;X~8Vu!IFT-ru_yXyndmK6o&V1q-;jukFDBQN)eK#Vj+^3^um5T(FA)(uLzALt|s2 zkQWM?kC^=bthO@?ko$Iq3j7{W2KNipoGT1cj8Ku@c8`$GdG z*{qfEWT%QVPSpL1o{aozH`X_AzJwA(tM}CD#t~Y z19!Wx?xbL?f^(}I2}g~-idJ9)9}}#$A%2QCcJU8yy@+cm1b&GeOz@E)i*6{fhxP|T zh#@;VI)aB$-f*4wq!q0};!xiFF?{_&%UjVhyYXQq$j7Ul`o9>kY%--~&APm_=X1xB$6c09`_K7&uwTW^NKVETf6`ClmU<);0J-gKY;lWK2apq zEX#~a`3kp=ko5GcFjT#4b>9qI4#eWmyhW+D*!`h`{*+AbKFFBXL#L{hR!|533F@9< z5fBS*O9)mirZu>(#+KRBPlal$5YC*Pa)(!Xixt1`j$$cEUM{M*Mr|#JVfg6i_yhak zn|U~F!B^BdXoa2wa^hV>LjwP*Uu`l3*>U0hp+vo>HMeNPRAxI~aM*10-8H_mWGF9h z>~g$rxCX{k`tfuU`Mf-Bqx#f>Jpy0%+$a_LO9VBz&5rIW+e;&ws*! zVH8p`7XOa6d7D=sHM3%J3svjVu)wVh*!^6Ky8>c7#Pq(W2^4-mC3G&nkLxx~6P1=d zjQ+>1tBwC<2Hq<{$;mWO0tg-$*-j-55-&!m1(SnlHIGRo5Vz-mT*CEy3l(_xu3lUJ zXiY@az}K(AU>3$BBZMI2 zTVs99X?I5ZzvZE_-(3fb5E+1QLHGh)2@eK?Ba05)z2eeNGASu4tH;@#qBN@R?xxTW z0UjSold2%SY%JV3^JcFsH7;y(3+J;>I1`T_w+D3P93QNZm$5;1N?uK?EWU@CTIo5ZZ^lX@n0`3~>8K1;v|~UqH|(a6ixSuu;h!NIG+3fAGo(4ZA$z-Wi{F{m zP;qYs0}S+&%GTC{Zyi3zfHRi`oX5x)8d`glU;s_)QE80T%J}GgrS=n8`w=%csx6L1 z0e+*SB7(x#Uf{3HH1}4YS-=;jEIm5(CH%WYA|fIXVm&_l+~T8Zm!HG>`10g*9kJC+ zy&T=`-veT0yk<=6iILoEnYRMwzY-_fJQn(Ssi$>|OqV7sU+o2fPYt`Aub0 zVqd|5m3KrHcRdRZGUR`b2brZ7jP~LX(L5`+HWu;;A9sQ)8$yCQKRfj&gXJaE+}8B+ za1Le?{Z*^2pM^3Du(x2bOC0y^0 zN|we!I5}GS;-3&XYj?M$$DmQ*lwqYoP2e+Ewu_Yj)YLZ|yb-I^E_pB)z{!L$*c=%Z z)d`9yOwl9&=#li=!A4$6t104sl4^9g)T*jSwr9`5bM+zZy99i95ctmWvb=^yS;Qa% zzayjOm#>Sf(F|J=Q6bAUHoRp7((qbEcXobmoyN_g{?^xrxXQq}H#$CU0RuA^a2>AO zix#uZ;$3r$-MVN!JKO0DaCxGGgh1+w=32G#wqHe@{*#jEBg`NE8b6#4QFH#%^lr zqT>_0B@Y-YrF{p1(jqH|vG5}h`3=It6^WaU2|dYbbz-T3lje3@%*ou6YU8!^(3H#Z zu7ZL^73E<;@2=xeJ)OZ`9>81t8v}H1HrP?Yg#z9*3UJrpp~Fo+{L3;qepzAmV<5Oi zK@y9Dl8#+&T@{f@LfAnS!Dy1dzP)Ifos_I(SzUgUJKJNkpn;y@j_s~VlM2by!+@n> zj-3ut0+z977GZ(FMgV|uo0djbd??X;QhKyvRh7yW5khh|x1OP~(4C!MPOh%O89A&= zVh-}Q8YJn7W>dKR;#W-DP#=50V0x?@(AGEV$h3MX1ipo9xH_+~k~@xaObx@}bNG3H zstp9B^^FZs%5NU$PE47?&T83^=ea(Q$<&e=A4D`MC@@542c{NRyiv9M6MezN66ILuFsgBB88Y5L@UuHXxF!u`89;L;5u zY{$26#IV$b_Lla4a=}@L7@;wL=&Kb#>43mm)4z0*{{Clt2?^2}0h;Q0ZJKNlhX#G` zQoPFE-%>!XeIW)1_@<1S8d^!~wS44JqlC`e*ejFfQh+m8aB$#-cMN-1v~owNjQ)Djk*WVrGv2dq%MWNdZ!eXt*nniwQEJ z;Nb_3T*uH*m8(te=BMf>=oTx>XDU&!(g03?2>BI|7ga!$RAHBgrwmF7SyZQ~71&wd zZ!2sc&ejy~927h|k~wE4g8SF%rtj%6=bev%Co25*q6-gOl}@7QD&g5Z8-ElG&S98u z#~wCs{YrVX055r{jSU9>rlh1KGMh?5yI;iHzd*xBt~zZ++U1i#wPuh_iOvJwW$S?CR&(;L|=aGR@aP z(4f41vTuh%N1XtyK1%3GoRl4n`0DCWlNM8+xWodqc}(XW!KkOJt;!Vw(Yu|FPh^=% zA$Ow}D@{7P+<3V@&uhDXZgiu4@4@%w=a29#<7WEG_n*>NtSuiuHXF)Ogvc)Jim`zA zp}oElJr#(>Qdk}Xa)2B=1qNzwXGc4?5U3WBq9y^QR9f-*k>f1uJw@nx^u>83BV+9< zUb*CyRZ&6up*w2<>>%+6TP(Fw-njYFzHzPIVqurAMuKcC&rSiqg+O>kGjVZgCx3f; zD=)~yol}0QFFL&XgB`aD`1ho8TaIzLxaDRw(gy8%DSqr7D5=`>m`qPr*DO0VP@yEB zCuJz&ky5<=5hYwwR;FlU!wvTfX7eh56vX)-$Fosc?`*UD$@M*bV}EZdm^dx^Xiz&! zNGQ>#o3AxaG0Ag7|6cw%32EUv6tfUY^u5M9j-_+~HCDeLg&X-`4ZSU(#>y^eu)-v-Owp1V_4R$8k}{NM&QA^f-misC){`}@OY<~ueH z7MqZ_8!7;$+R-tGQR;!Q>v0*?Y}HF?9IW%ALXd4@tK6#IQ@D$ofWa z_tIx3jtWJ^_|4NOI`pN>R5e~P5QdOfR#ujm#(Ks}M5FR=Yc@sIeT}M2p^P_9BEqoR zN{*R~8B{aCr^*3S30?wCR=b@4IjYFxCwmxyaDF&-8rr^ne4?V`u3Sb-^ZP zYaTX{`+7ikmfVuZne_UUVoNnClg=q!Sa>9xvbC$v3Ymi^9x3PJ%%jH0NNaUHJ(cjj z9M+SoDCj@$ji6jPTqYsDdNuI9U{Zf7#@A2s*7j5Ayl%(^E{F*G)T^~r!&c+`?Dz@m zJMf1rthHmY;=Ezw)mZ4`p&;kpU8Bwy5@Yj4#U*U)JZ8P3U&gu*YB~C$|AC=#=Da@& zfEY+^FO>Bl#z1&SAU|qmGGsN;(Bz)YB6U^pYqH2yN-*6+7*yWSkPbu$`^Y=ylR0gHe&TL}FrjI^NumFeW-#O%f|JM(3M+5EXg8GPW1yHA%?z6@8+kP-f` z7htlP;rg#%29?jaCzNAZJBBIZV;SQedI~i5BpE~^^}YdX(1?puk}mAz_oR@lKFvsf zda%10OMHJ=m>#X`xsR=uyJ(-Ug9B?pVj@SV>0?W45)k^IV&Tf}wqb19+O-qYW9vKd ze;E4`8FR}!d7Y1n%4z!(4iZy%^oR+$Y;o(iC8yLG)B*p4>eZ`k$P_hayqWsW_?i+x2^}%{~o@i;$CJ+`Bg>I>~fZ-tcus<^oUPSV_~~v4%CV zpUAZ-FG)tQSHe&)!I`DV+W4YOC`4U7pp=L8#pB1^ToSIFlexlHmp}}vW6$iW{E)v* zbLB_PaxGC8=Rg@i^(25i^?^H_=RfD3mV%n>o&Qd26=+zHKHp!% z87rs3KSd!tX|Q8~UB3e~FPRu0E83mjx3>?2CI5BOir7-YNEQfKd^2d$*xK2V2enU} zhbGzQLP`?{XC79iKz9UD4Q}!9CP6aSFkY>&i-_crrAwy|zpQw4je?CcEPOZ||HS0& z@+oOR$2>DLGYSg&khLNV(ay&^j~{Sz1$>Ai=7He$nqw=AcMln?Z4tj5)Bvo&$cBn= zkOM*ljHSpo9DtQQkn>7&u5vlWn)~%D6xP;1+??fFbqiM>;Nqgc`*D%CKI10uFs^-e ztnENT!Y+O*`~KnIL9cNJkH74ntbX?=XVd}0bed5z%iG>ULAtl>)q=g~83gi31!b2) zfQ^Mhd5JQ>8gI^6C+KL+*5Kr*?NfVTPc_G#@D%_UW=If@5!wvxE+`M8vCm()CiMx~4M?#)Su;Gog_i_-sf{8lc?> zoEF?Z?dDa?z&HUT4CMALPMQ2ob@XX~Gu?fagF_O^K|`a6Cm`H5@Qqm92}PRz)@ge| z5oB5fuOv!Bg5JCM=lZf1qHu^#j@05oxeY8E)%^|LWA}Uww*DzWwe;I!q%#6g$?|PK zo952{WICKz}43v=@!8{`-@gi;J^CM3~Fi44_4l z(b3#l&yEG7$A5jraC2kk3Sa&JY0>Mahu1b2ti~O|Dg$>I7H)0=2++W{-{EGaklXd7 z;Sn3Z#(Gn=i*uNi;faP9FG9?2<0pp5Mbr%RmHKF@FuUk#L{l{YwXw+mOa#Z}ds*&r zW+thpS2j@C`CzlX(-RNtHx=>-Q)c~B#|hboQ}Qg6p0xDCjaBw^QYCtNDPhSClQo_KWoaIpwI2=5HA? z72#O|3yJq^r3smh)_*im`bf9h;l zuT3T`@?m4v{cm38=h)SUyT_vyw{8{1Mzo)OQR62D1lGdA^zKg&sw~FawTp9mv;MkS zst+uWu%L{91cm4Wz%EgjxtC6a2>g+nvj5*H=j<#%J#qZvuCeh;xPc<-D=ievevThN z#hV(}>8NcfLzbJ3pP!6{g$22R0&oWt6B9*5q|PMO7=cf|2u^v3fXbU0(Kq(?v_1W! z?*s&V#nM0w@|PJI=%@BG>g>8VW(Q!I3fC_9`XTE8z*!(3J)C=NPPZxyqiYI#3Az>`{!+sLA&3YNnYNIz1a$tH8u8>p3oCv(?IU- zlB2P&Og0FyUfn`XMHLl%(C^xBd&CUeJ?UqsaM_wGcl1+^Vc!9`i5l~u7sh&E#QauBCcVli@C}cx>ae0E?WNOHYHXsRZn~+yvhF}8q~Vn`=-o1 zowoJg)K3nZHdpYNXVoYvZJAywrd`C5vATWy7#?8Qnlb!SIhOOoe6emG=KkTe;m+>m zpT3Z;^&RNraI=IL^1w*J-K<|-M66}+N+Kq}1(0OV!I6Xkk_Y)HCdOkf&*!xq&(D>6 z1_qR&U;^0j0zOAuG}6C;`t}I`0CRpz_$}q7Aucxr#R01U-3DQ=UQr`1NPcz71|2|? zhKJ*SyI)~CGl)7mHmgjgi3F}qx4Bt<$&LKQuf6kqd#kV}&v(Pg8a?dn6y3N7 z^q=NtDL|ZUO*^(`ubumHl|Lf2p9~5K!UPoEC2+V@)>Q`Ry9oY#G1JT<yo>(Xa~;s?2t1sD(~KG@y=`YpAzwEXcEVd24v+y0Ee z#>a_|_uS6BknQNdAkU_K(1A|>2I zLkN$Uii+yZKW7Xw0oY&12ler)eEg_#_A?i+`I>m@dcwn2PMv3+_=NASNQBhc+M3c9 zbV%UAtc(f(5zw8$+S7CJ`F$NsVg_8Amt#wpzbqUl7Y3$Wp(FzkH^*14cH*O$17dkpQL&Jvre5#JYAG04`W+=3@pyy&3 ze+oZ5(7&IXY-Z}VL2sX%6Zd?D?3u90Hu?@x25jdWJREiUBH?>>Z0R-k=Z+ysUk05Q zH#fiiIkDGqLeE5*al}9Wv)2$3U)g|Dz zN5JX`3!EG8$IH!nitcKI7-#pjzhDzP7?09S#uC45j7R^D;zf&ZO}~h6&7+!ffi!%$ z(Wm~~zrV8UsUj$h{Yak%pD5SaZ6`0UR_^exrGvRW4}s2G8Lf-3Q1a|IDawJ(ZL)LU zc_+lh+W<`3q&0>1?1iu z|8MJ)ORs+JFzcYby>$cbt@~G$Yx)vrEfi*EZJ&tH7ie@8nRQIbh^1+4X5LC{VX8T7 zX63+fdba+Yxr`2i$Nxd_V7_*EKmXrdq?rnV_5Z9TUscxDLSR4)irG(Nz4{@nh4?(d zObi3q=;y=%yK#!Z#JDXRdi?9AA1e28)gNXIdm0}TT>3js+WhHLR;BOleh3vZ!jvM$ zjFNDi&2j%B-cwMJv(U7uEo})I4VSif3$EzSk))uQn{2F>SVMh*=8)9o5s`hX+n3_rutbZ3t6=t%Xt#|+04V1w4l%b_1 zii2Yds6vpZMZ?8=`uc!UEa#`ZyCOsZJE_<8ju-yg{yx{?S78QU zyOovIQE3&Kp(~u-K?A=Rr?%z?ceevws$1cU4dPisQVq(0NB?C56f8Vlv9+_X(!5lo zp&tIx=B+o_G6Kc3LJfJNp3TU+=p?X0A zclPsp)nx5^a1>FOkVsVF_;`g?e@&T)ixra3Lf z0S9Ui0s>G-7S#Xz_!_V|vD`#NSc!9UB*qSlinAN~=26NqS?XM97@j92B&hPLD+Ag( zu-^3j{+oU~Z!ad+@!~Btby6e~Ww4);62GXZl9Lm^`{qnE1abpA=Ck0*0B<#KtZ{8r zscSNyqpA=0^wp;4GNvRQy*$(aB$)&j1}{XQ}e-+2|^8rJ0CT* zuvmdsN-17)azgFKgk0Aaq{dmX;iUwNEn+yPR7(vnU1jB{gQui^YO1HUS^;?tf9uPZ zcIVNHiV7!d_IVu?+|`9nJzOUk9h37rdtTYuPH^eP`BQsh2msrexaQ@Pn=#R<=o_Kt z7K3m2NEbhEct9^UKhK*PT~&onZfdIIL5sWdke3i+b&pXu$eiPIU||&jY!!Ck(7%E> zy#QA_{FrIJvXUR>4BhR%@`WR3+l#Z)XEM?uNe=sG@HIw60~lj$j$3wI2#?^;JbUAf z#kA-S!{r-0)9pj#Y}#O{yT{2%28E$gH}0DQ{&i(?YNqp3Q1|F^ABA!8GGe!(pgoek zBI9=jHi>ZCOGp?1v8?NYAP>6+gnqa`UZ_D=6fj+|;KC9LoMXJgKzHnTl@PEy%Y)Al ze5wCDcMREC@0lqRrfNkD$Xv@G?TO!O@R8=O^^{yGHN+}?NaAl|@&mSXdJXl=%7%2H zY>eM8m8DA~dCIoU!^aoI+1fr}-);0$I~h<-F0eN9vK@8|ZRNqk1 zzu1&lE&%?6cY}f)V`Eb*?eOe0V*T~4#L*b@g*!@N|G8G?Rg~J>IB&6_dt?HDU>0ab zt4>3?U1n-wfz`)r+-7aVBFTaCNHnGy$|;#)U5$E^^v;2qD#!6I`CjD9UL#pU`9~$i z#b(fVgOvQe@;fu7V0cO3u_@0jmNGok^&2q8bFy|jM5yzBl!Qhi(r{uq1K&s)D#9#T46Jfh(f?H zy^K*_K6tp7H@fc*+cFLqBH&_=QS~_{dwixj?sS0&ZD+&sXF>oJ3uL#RY`!CK^O9F@ zuQny+6bVUQ!lR~I4K;tt49V=M7u`=FqeuX|=UvXPaeikf7|h1pDa)M_FBM-Csj5<7 zN(jU++dpLd*)(OOQ*d&GvauoicYa&#*OGQo36Zg@tEY@_q;V|cyq5#7I!0x1kageQ zmTXlJrucY;!Yq{1I19u#l?kz4x{`%rc%gv(z>>Wi#g!oy1!lT&J5}5q5b`LhS#%sLAIJ-ZysVL&Wf+eK5nEQ*`oq1a7P%f0$ z&&KweO0tLd?s=vsA>3g|#>#0Z;^czeawCCbaQ8q7m>9hmnV*B@t+~20#RHe%w?DYKXK9cS_KQmqNetQ^?GAS9$HN+*P0WK-5(8VJP>B z))Auw`p*c6&KLJOMHrpHtMrUYY^X(%dI!kr&@97v|HGSuO=765ygY2ELW4{<;&dkjK%k+?)l09E z%|{2b2f>0{QvJlt(h?iV>R<=m99uvDMi4eBEi0R*!u(6sNu!^_r|Yh6(R3R}IKV)W)c5WQC$}DlVP=-a+Ta3I7Zk=tQ3MnzK-H{~nGSaQ?tc%fLvyY%IWx?i6i#|)M+kP8I{rtf~w z5RTAUhuH!OAK+1itqUOTF`)Ta2YY;!Y_k1Vf`sSzP1}@w4)VqgLw5t?k?v;WI?a78 z*Z_l`2bY&n$cJb9Uz|ht<{*rrCV?L%^P{jV$xWXqFC{?qLDFM$xZcTyHQ`%Fuuh7F zdHDL?E}PqAo@&kOiwiW)0U%N!-Z2lSDe@Dy`j$G>!i(7>WB?bu>&eOCJY2GJau|(Z zT7VZDBoL4n9_07!y-j_k4AMl~)z~pNx8~h9)H~P2g@lAg8ED(yIX>$7mZlszfPobr zKKi}DdBkV^`}oLnm}y_Xx)Hy4pYL&gpX_%~XOmTccM;$UKEA&58yh6I1O!To!dqF{1k5&!dg>d8KR&6pN#DR{ zB`3er7o-3YH-xti){yw*(=WGRap-rgcw9moD=Jv~}ZdhlYCIBx9D4VIo{zH3cksa9`Nk@h+E+c0fnW)i}eJ zx9_>SV+&ET?xJOPWzJPXfI>)~+j^$tS{6@iQDp#++b57gz;FkHkJ()#HS|mf!RUD> zT1QBXv~9;z_ToHFL?rb8Fm={pQMYZk1{6_BLO@ZvySovPF6od?Nogb$MOta3TR<8? zN(5=7LAnI#?v8!U`|fXl`}xb`cnoIdH}`$TTIcHffR(>;Fkj(9_x0#-*L_~nT998H zyhnEe17%Gf3dcpg&CR6&q{QCt(aUj667-lX%Ce313{&g7BdJ2a^vh8=(|teG{dyOb z7<>C&B+l+=Nv_pgS4<`C?@n>oedkzZ6K)iUvo{odUSXWR!; z?qW}{jcxA5SMfmH=Rl!08-&dNgWbA@@#kJzNx)RlCAqiy4;qnE-tNijgReiudg2q>Q_rLkiUs7{rFK_>NbpoGhTb_ zYHFyC47_Q6o>z7;!gP7HiVNk*E>Mp^Vnumz^wKq1_>q}*alrQGglAE4MCJt$EzL5N?tUegMJTo3Vx>tW;-v`3&#Eo)NC=UKWE^d`uGrWphCt$ zv=_exI%-7%%geKH;aBe~ZlT;_pqeLvHx1qf5d;V+$I|N7{(dJrkMvGg%rCv~;Q?F= zMR+tc=mrLL)a9pNOX)C@?WY7!uCi_cQXH`n1+WZ4AUT%zwSgS57Z^m9Z87@4`_Pxp zTa!G8Fm6})oqQspC<^-?nAD3)3j5GM{J^{Za*f z$opMFLh8v6jHM;KsQ?++IUtl%PyMe5{yIh0SzrLcnms=QX%g*zv?(A4DmXofY8|a* z#eC0kD5eCrstGG}h#$w)xleG)uQ-;pUWrM;Qc^jE9~n&QfZs#Vb!4_sF)H#osn_ZcNYonMJ4Lxe6{RJu`eaqDzJDRnyOZ9@GSSe8Mg#6XcRrZN(y;JUPZKQ z?e$gHos6^bB+kImI;G?$fF(cQKfvu@F{{s}vIUIn19WG|?EovBnPeElR+s+47LnmD=T_^9r5Ef4A@}E2GlVV{#^~OH|sFPL8{84JjAzR z;g*a|#i~ye$s8!+&w%mac6>rM)Ox%^+uN0Jv!dk}{8}C7c%Z3;5*J5rRi0sLD*5sQ zIFBsO;kxE*|$!IbEQZ_ zWE}tD#TCxO^9zhlV{NEcmshy+8(}^Wlq2F#YN@NMT3!(_41-TN7hnM0vpx50CXOj` zsxqXVB>|)V4U%W56po;vX~j1##dzk-m-yVoXGo@CoC^o!hFa zcKxLLM?1^{uMaG{6*Dc_+1bU-&2y;hU!Ly9OO#eSuIWB{qUdrXvOzCCM*^%74p`EI z+LPjEdAo5UnV?-NTgCZb}9$~_ipJy^+6+?Y$> z#QdTdrNi0^LiFY8xqOk_+|)^a-@6dVw+CIxcln=|uz^8rY5#iU40+rJx9{Qh%wvQ} z7~s(0o0ec0sH$3YygZqUZLYH=D4-3xpBG{J5_K320Ye{aBW*YB?8cXiO;a`>7%7yJ zX?*Dd*&{o?31}{I_X=WSV)S!vDqj3-ttmI#JDh*|fRTY>zZvy20nyV#5J0gQVITLU z8e+I#UUH$b2wI0h%L?}#e1kX~XN6(K45yAu4#nwQ82oy_!?8t|>$nIVOUp=Amp|8zQ$E2qb>3jLMKis_p#w8D??5xo_EgIN9!w?_;V z7qvQ(-oNv5G*WVOB(Ag1W>{7Y;Q%_ihrfD2@F1Umu}D{nzX7p}^gP|A2n`EmU!N9O zR7wn3@A!lOo*1!uHo^n z5ZPsumesUU13BG0D}A_+v_J~U!AYqy-OlqA%2Y5QWIrKM>oKM18zppu;0bb^H--k` z1sh{#2m4ErORx5>U{hA|&V=3h#G$n}DNmI@G=p z{G50rz+V2*(=(s1uqD{N6yPo@cJ7)bP5eY=R#C-MBqH+m(3Kq$*>6i5%pY(en0g;b*1jAicbgG3 zHw5R(rX8?gzKHF43hx5A)Zc~Ot{wT zAmCB%G4Ed=Rh);qy0O>$7&6;4VHdaVG+mE#?8d~D8y{MiCC4nlV_VWdnP$h!4`JL7 zB5wyr$1vPdFu*J)fMN;~r(_9f$S`19yEHiXpmV0N(WS$}V$gd88z2<0kNwD^_a2Om z#zu{-UbLfs22R3WG|$AVhh2z=!~K=dHM2Ua3$tH(t4c#Zx#<5s-Vow`Hm?w?u8iW2TxBgze)E}QU;gl zSB3I!QppTh;*cNx&61A&DdI?KpEfxq>n923L4Y2Xkq0I;uWA1=}np1q)K=RTmhkPaX*PCR@BfC z3*wl6@4;ZIr?i9?#qPjzJzVVn$V{wna(2+yTa|Bz`C{jSAcn!o=dpnD}=9}oCkA8GI7_w~~)RhE>rT8XgTFJjR*u5qR!3<{)3?P#GPAUG6p z3uU(VKBBBpQV1Kp1%9gKTWD|etF5uG4)HD0R@ab;Sj7*|R`TOwAbH{a|Cci`L-_wwDYHkwow44eWwnUAa-Bl|JONGpEwxwuX0TYFvK8p1*(7FCFYH_decLS2zArjJ3B3bUGCJfr>9L!7olog9#Hje_ooI&AuiDJSoFU)O->TS;O*8Xz8M_*k2-5m^Zz@E;1)bH2YC10vmdYd zoVJMVbwqh=U&@{3W{6XN`*c5w-&8+1ipu6`JNx20A$#Je)TO1$#QD8W1r4PLUOONP z)7seLO=M(<`)jLFNNc+B)x!f$% z(H`s12m-h7Twd-Omw?6tUlmfJcy*PyIEJm{-uN8%1J6peqQY!W3mWfo)w{HWl(3*I$DE$wH?3LI~tId82G!-x_mVs+K6f_@_qhAFV>Ca0l6h0HYw zab6pDF;I)z4oV}%r8M%9(0W+>+)tNTox#%byNWm(T8#I}B+t1abr#lDY2y%wm)CBc z6Y>jrc?~4zL+e-&FU15tO~}lVS~U5F6bQu@Xw)GSBp9~zcqV^vr6}v*$9{mbcaq0( zK4v6ky}BxE$C)OQ-FpPxemo{tNGJZ&CuO)yX!W5W$nq*T4SfGYMd9Tcsh1Zq+3ORO zvC`q1gA@P8q$B))K4>4`oc&(z+|lC zSKn0q!FrR&eEm-Fz+`~bfIL(8mIVLS)%FZB zA;yM=hH-i%QhKdRvhY%J6Z@gALPGR!5y}8Rh{rl&<|C@6Q<%O?EL^sfiyq6V!5TeP9c;q2Sln}^?QmxmA_{DF_ z%NIM~ktu%OyLZTNhTUjp;9P6qxwF*nv#)tkc&17_x zJIKHw7>Nv=@cw3R2a31_t`^9tEkBLxg!25P3Z(aPXrLP+S(kL_d2bOr#&3Rr(}`UeOf7{B)+y&@_~EY?FLO&%Tqc;&A>8usyn z-!4wWP*6Mr8!FVr^FxZpV^ChF28U&n53UYICiC5gxxWTJ%uXpw+Wbye`k$v)v)-+- z#uaIqeJ1`cpqnU7SfV_RAof1lhklSK0iy|tX1h{JOB>d6{oY^*HD4-d90 zCTwN*_tOUFv%`blOnASbT_3+Vqo~ZeZG@7ee8)OvV%#U%a%y4%ytT+MsA+@xpd5&! zfSQi%)irq1d+_UB!ER2v(Ue;*KEg!u`h*ptQ0Or-o&8YJ&~71(mKa{hl}ICcxh$st z)z)vQg3Sc%nTH!=JK6n5pBU1yFzd7)=5fJdqjzbsE648~!oSW?a`wYN(Y2|&^G3bB zzRt1q-G9%!^5O+vppz?i6o!^orHP6P9bR%9rTXcD^rYRlEHRbjTa6e}#&b zl++2k-l?GbgLA-mcGJ^)SWp~My|+i-;74MMjGW)w2aiA6YTLYV#=Bb@hevXQS~{}k z&T6<-H*FZUF*TmXwu}sgj9{n<|Ae-=WumW%I-EthYH9U6$?p|sl@NDq@M9vPeGNrL zYSdSH#JIQI-Tx5z`AIn(Z7Zcy&~8utg1x5`ly!h3Y?^{EJ;5UERXEqC97ANUuTH+F zwWOt0nj9b5>tps0MW4%HMg{*#Ut7x|esI_NouJ*rrll;fb7QuMljFFWlDoZW5?^nL zV|rW34dw|%Vl1rsfDg=TAKIox2P&A5D*MM1^$;tG`_r2T_e1ux;iJSvTmf}Wn)154 z_w)SGu+DeCe@BCVbn1 z`zBLdfeG6mw$|1e;OPkd^r-_5I&f!j^t7S6O;!I>s&;UiEJIEY*Ya@Ayciu2r>?9Q z>ea`>Qdbh>S5>v0kMdMb7-lNFo-1MdfUso6L9ZkgmyzzQxjASdlOdaay}N0v($J7;e3wPh6-}XerKrt z*;yH9X_T>;Eq@^$3ei`B%Hip+)TM5lhzCahG9+@E2}%We?Tta_<~s*ACGyaaw{3}B zo(^VD7d@XzRICl#%x=vv?d2L)g?4%&L8Bv^D1fj1@yV~8IHq6Uzfm!L*qXAjpRI|~ z7-407@DOE}U62^*Of4@br>U>+;{&k&KF7h#5Fo>q7!z@(bXvUob*$)D;aDjyI5%Q% zp&$a+b!L8qL<5Z9(8B{WmG6FvX5s1?W&2>ZxXhh)5LTwu*UszsiN^9dw!@!;(Gju` z21Z>YNGhL#126oipVDHzsw^@#7S@ley=OT;J(1^{#PzCQ{LHzCNZn|6OY>2j7*)Z=_{$IOe`z{nJ$hq`FRM=iC8l_A|8KEj=hcLoH;Dh zdEgnjvX>$DiW=Oy2pe+`94{f|<)59;ICTK7ZH|GFy|Nlb#h${Cdv$)?1}Wf(0Xk$_ zXTI%~+25K1HW1>E0&4LSfZ7Rx1Z3mqM;{&Y?ySanOUw*ZH+m;quN&K<8^x|PGzUEb zZ=p49%#p!EE}>y`|9hjDh{D&xwOYS3&f<%UE`>aqzSuxH|~l86dTx zDuUJl6iJL;>vaGTd-_;!#j#>)-j|v2v+Zm z6NvS=laYmj?ci|AM1A`a1x1;`w-0GvE-QX@ytjaz)$&!d5Y~LjQ+$CSKbMZOotrt5WnVp2`x9sK=5hO~& z`tn)97usp9QipPz(X-{p@3*Idz_rq;tJCDQZ+^JH7nPEuDN#~F?mop!e|{=neRMVV zv*F*n{*DfclM{3UHtu3$q$?Qj_2@%EF@q)_}T;Q1L%l13WI?U<>9c{R3 zFD+$~b;_{;^ul|SL#)sD6(~u1de=yAPN{GU#jd2rhU|Re_!tH1t0|T1 zAh%dn^clSo8fyD`)_>AU zml_3BS9o4MpX0xdF+A79iz+s;SNggo;}12x?mO~DtPj{z5e5U8JKCp zS||vPK{#0U7@06e9`jL-O%i{Cgx}Z%w11yyM%avK<94nta?BfjlQpi>{aMx4-6hJm z!5IMcASEj+HWX>&0Jb?hyV*mFI5TOH-SXXtUnIv4y6foguhZ!Dj`=OpwU4M2GVVQG`4wSwu(}7#KcNd}mrmx=$)B4$iXWzElN?&zp7? zPZCAymmcdfQ*QL7*vN^)yLA+kZPtAPtOBmb^hglx1Ixgkk9hCQa?pW<^xLT z*%=;6Qd?FPGz%~a2KnK5bo_^w(9pXEm3KE$G3Z?u5{!by9gY+Ml+l8)E8TR=dId>) zS?=6$wIDr>qGgmNQY#B_@o(x)ZQ?H|A6F-VOWqZj@ zTroYvQRkPcsSux`UQni1U_DjzsIl>gurDnwoK%DuL_nS0Ew-IFoHH{59=qf$5QBWP zh+liW(@69h9Ung&S(}dT)z(&5oqsy<^>xkRR@mIss%8~1Fcb0%i$|}dX_@CF^Y)da^#J~ zGsz^Rr>lUCRIiv2GDBnKY2X*R>LHSue?5)K??*=uoSqtw=VJ7AeEJ9Y#0nRyM@G-T z$PSe0a&-xN?TAq91!2eWtSxq-bGf>{^aWuhL`xvKZj44KrwYa;_y3+maZ^%^1sZdq z&nIVhKNgD}7j|CO-XC(ZkyQnpPxw`9<-Lb#1xBN&9=@#N4hf-XpC$bi@!05x-(}SE z{%$H3p14_s1of%k=u43lLpvhE=6*5~Z%^r8s_nCqaT_rsbC(R$7KscN2s;i&u0$B+}M;(5EI?#r~;2Yb>U&R%;Q8jQ7cJhs7<-uvb@F-bggmuG}jLP7{t z?N{A$PiT8a7V@?B zDH?^u&`|5_-)RB06Fyt&_Yg``>TVzvH}=!_HOw4pT$jV?Uu&1L(u{Y6M>QpV436T9 zI-7lM&H5tee70fQ-7R-!u?y32Fsss(Og4a&Frao>N39FZ;LpreTxI;S`gfYQsCG9Ek1RWWpJ3c?h~q{0ZXFbHcv zVpDLnQOfSa4{^DG{NY+ZcbisJ?8L^lR0$&-UzIgfP!Q<<*Fht+kbV>Emoq5qv|qo& z&cn0R5Q5KOH-dh{@LY$>ow-=@>00SQwy3k@vRf`5oIIFVSc%}K0+QM3;SSpg1?xvb z7Cp$Xz5`#M^3MK*4Yr><5NtyWbIvNg2$}56qeQOOsi}huU9QSG|NC!%0SB%*Ses@H zS`QFTeWQO68r>AHRoFH)_4xJc*DzXVC*#F@djI~K|I5)%9?e49e`kLs%BNKe%t;Nt zeHl8xO(NtjrMt;wZ*JZSMPiK)6m)u3%{iQ?uX>YmtB|};;;YP#Y}HP#)r5F*)lniF zuNg)E5cIm}6`NbFjurtyKt1c&&vlpF-hI1uKhXh$|8@8^u8;$Z$&)jB+|ykBIZUi55EP$@E-tRudR~|$JXJ%KQUAh ze-f`Y#>}AmWJ4u}LV|AV?_u$K$3M%KQ&>0!sJ=cvKC@5GF1PC!VrorVHpr+%3_D}$ zJ=(r`Ui+veEH8!ZA5QX2JV^QscScrh!QDG|Bm-`vVT4q^Ot=&^39u7=`6qwZ9`qP6 z2M7XsCIC9XaRy?FQYp1uRr>trdDuW7VDajYWq3Yb=f(ud02V-qrr9b`FED?8eaCrq zfC7g9Ml&npZMi@CcfZlUOxRz=MOsPX%^eHI9cPR)<%*1_T`&8hByA$#|1&ZjgD_aV z$bRZ~h>e26#Adn(lX*|XV@c+*Lb`$_XXh;0dZ$cooxf`gp+Ae5DNcWTS8BZhpdvmo zG2>Wb6vfF+{Z5Winh@Q}V|*&}iwp_LGT@QSvwM`_nBKYbs@SR@YP{dy?VTGuK7~~~ zm>4z)g50#NySvad(2_=0Nr?t5QTX^Vd@AC3Id|n2muZiY`svqSjTJuy-9n|K=0JYb zbWE#Mxv);1#&$~~UbSWuf(TYP;;F&=!EL~Lv7C9&Xkx?1hu!nW7r12IRWHX7DuB7U zbf5;RRXZ30V(I7=Mq-cRy_(C*Z#V&3TAckoiBwlVo}!f_-Mtr8OCzM;u2^n+tO;pn zZ=eKQw4V*%`%{o>e|0prgz^|vEKdYog8}D?v<|MRhor3UO9BJ)BT`eP-}?OfK;OR7 z8&fXm>n-py4!$P9d1;2;@oe*3KjUV<3TRDX0#m88zBQGl?3?JOs2F}&y%3OjxW)8) z4}<9ac#5ztdJ;jYqr5RhO<8jj!$B3Co=yhtwzyLNi<2-s{RGs5E;`c$RZQ?|!_Zg2 z=SK8ny~p$V*B-ShF3SLldhme2`KFH~P1s8kszm7c^1+G?xSzS7B=}WHLhkPH*Mh0P z>{~^azbp6CpJ!hVpJ09!+j3`i20*+Okn{Kx0zWxp&O36_ck~1A0 zdNJ6V{r&Y`*i-!S9oipcLDyB)5`Q3HRzQ0rNGcF;^gHf}|A`^&RwKX~Zr1UU#(73C zT=YD+X0l3-gdgWwAWBC(%lxoPfq?04z1(O3rQ$>285CKOYNe#0E0jV*8=js^x2KX( z{kzaS09i7ny*-KnTEBjAvauS_pQsbH4q2-vCS?(`Bh`OI?1j7mRzf15%$rp?*Pve! zRp-7mtRl7qO+7$WyF}Qqk@&wt80};QoL81YLJ7%cwuERuVcGX^u#jjQu%Q<%_aE}w zzE>}x=Hp9%?gqXt3IX)+DZeSICyw~g+$;&*Rj&BXw|upyD1VH6X~t^(8_jh=fwW;T zQ&;if2hvt|r7qM6r)zoX@B|m9ykQONPOvbzzOK(Nd9MEAIxWGZ3y&gWXQuGL8_frVgbNUF51$Fdq0!4dyZQ!V(U6!Jd?HqZ43Im2ZV1h)qO|7D`r@04 z;za&9_R>dft+qAsy4nd$|yii)kje}_Umo`#o;g_&6kq@E$_;^2sgwkzGze|*8<&l&z^ zr6PCcM-WcN#xM!X(=Z~r=LJrG7=)@FSgx!rzu0NaOuzTJC6_u|ts)HeSPu#eUtbHV zx$pLCuZ29~ktB^XBA@u*)aNHV%n>fYI@!zj>ReLPW0T&tyyB$3O!b9+LtW%=SOO2{ z9j0*woqEhhHQL*^xf~5rttH>O6MTgvEB-Wy=Ov@Vo4)>0O2+@u0;Eb5O8;Byf?Hwr zWIm|UdN6>@|1t`+&ZZZf_lG#aCJE_Ap8>^%Ak$xFPaq4nw%vO>R9~HMkxl_`Ym9Du zT-)DUXx3U?6pZhqq9PAs=rFv-%QEv93MGp)kfF|maF!_Ws-BA$1)FP@JvX(OR zUQ-Xza{+BF;?VRr{Mqwa;$8m9i1rY+*i~z4<7HrrEsqu}E5s^t!At@B3BNdy4&FOV z%bJ^0pRgHZz!?Iyj0+!QC`DA1r0jYpTcBhGmX9xuj{AO2`h{s(a zVJ)sRb+6WExqkgRyagG#XALj4mF*{6$2rWLSeVW8gV31z(mST7Q{tJloHm<~E&EdB zj@CzL%Cgi4E%wcoQ$%|q1bo<#c8_B8C~kD-b;hY-dPR+D$|Q|EOa5+V>n9-j8={ zCn_uylDKV}ug?xbuJ;wz-v^p#S&H!T@%bw^7{%9UGseLjOLOZ&<6v1*c4N7^UlhOD zcUjSEwntIpvN!3ToSwvuVWXeO@$s?deN3jfp?0cgp_ICXaY&<+RTWwd*dOjEl!JC> z|7uOQwKaI?d_n-K65YARQ%Q|3Kfh@Ym#4bFP6EMJaCvoA>wCeAWaN890NdB;I=3*; zaK#dFEv|$m%?_zg?yYO~O-w=JWj@KgxYKp zdV0jWcbMz`+x?OM?@7f0;c7up#q8zlnAqCeD?xxKKzuNXxmQPqTW-kfT-Tc6z1IEV z$pP$@KTKNBCZ?tuqnl&ip|z=ao@{H2g>=d?RB*rM^*PP78;XfG=XyZKW?L^4LA`aM zd5;|*zuaEu+nueQ#shkR#Eerx{xV7Mpf?KN=)+0bi@~b+?zl)2jZcym9AurbtdZrIslWlD|)D<1!zo6o#qRRgI z$sY17S7v`2{;6v4jyn&&L5AS-Xt?}{dF^y0@fvYNMI|>idBrTv?+TnRCE%ra-{Ixu z9UmVD;6>X9tjCCWHrO=hfKv~gCcmyOZg;es3i^x6-@0YTY7m(*@~y_-D7dO(0^fcr z{!XWOXB4a9*8%i4S-D@%N47pef zCzTyo>BQX=o~=@lZIKVP7xB9U(UJxfE{Iqspi5&uWY3WDN=i=dhI_+H``H^dJ?h)$ znit9jDUqjpdwB1O`AX!!E5i9<0WoyISxRU7d75QPPzj0JpUHfwUEXA7_8j!%M1wG$ zj*~Omz9}IHTWz3(WUu9eNuvuL6^NIrPiC3CiWMYLX0(g`Li`6YY(qYMx(}x!EelHo z#5&>*=iCEZr)1WKu?3AgzF|H3;7`-Q9widNjLqpsg=qH&zG_?w+Y?iLQT+8ZGxBV! zxY|55>=RlpUbd)jC(OS)&X2|k2`jvskowX@ds}Fgf`4~`3Fz&lvho8NX^x)$Pevq9 zRCRO*;qfsDkKnjE){o_}Ww$-F{zxL!-ma8v&G(9WM!O_utb^>EEd01QI88MbF0gyS@uQ%~DiZNCSpLgu_;<|cp7lg@^Qv|9 zkA|+Z?Rs^|@!1yvD8A>Nbq5=zG+)id(Fq8N{@M>_p^lD@TAv>;>39orNJt>jOvpHH z&8hhGCYdiT8ecuLXZ$UhjT@GCc3{!N{DOJqd^ZzkdtzdL#{As%QCPjZTza9Q{?GK! zN%FK24I;I?yu$FALi6wqvRxn%8EU7t;b9m)yo`SCbDt@&gnz9)V(9yvAJaikiD9Xq zAqR)LdFAIzwxF%4bhg_++zM}7I!s4ykcvL(UFuFbn@5xR_~f3rt1CC`69L^64HlC6 zdLd8{E-kc$73q`*EG|^}18rtpUw7W`M$}$8O=@i;%tk%hJp6FuS;eROc?oP*pc~D7 zi{1Kr6WS}|4(z?n*#`Z92sVUQ1jc7DrgH+SEBL{{taYJ%w{-)`EAJmR|2xT|^4$H4 z4E-S7uA;yg%v7ZZtBg#6hN+d+2^n2FGL-CRf8X5)sVN;fIZ*pcoZ)1Fst;%Y+;-zQ ze0*M_r3^&9kf-C?+#)4Yx2xU6L z%>X8GNQZwOodyB93NSN#AtUo1I3bTl3jZxGw$=!^9Hhx88V*d$Yl|aFqD0FAfVX^e$ zf&!Frh!+Z`D0t<0pzwgmIa;NpL-~ZPLF;h`3+aXc6rd&k1;xwZ>aU%~8|ASQ!@^iw z5+FuH{{!PX#38)UdJonq#~q>MhV@!{8Wku@U$OZdXLD+!a1CKJGq=*`e0k~&{&DN! zFIZTQd5ef~i?zb=&YMxYMA>->d5lrf7rv51YYs{f7@uG4d!bVQEptpieWm?=syf%` z^gN#M%WGtK;T=FYqkial$^SWNfBwE$B)1d!V782NT?W!hvA&JkX3RP0i(wfJnS;nx zq+;z3%Ze1st~IZu@ABp1k&4L(nV*A-L(_{0qXssce6H!%WECQp7T#4;Gcyhz9s=o=_J}Np;`cqQK~RK*x^Lp_ zv$CrOC?xZR$$Rya>M}7>;EM=&3CN$_;|P| zB5jPx7hmY25SuG2$>VW;GkZo6r(OC15M;+2&$3gVG`nxor!vLLQ}AjRMY@%g;Uw|p z#nlTbP*Ob-@noNQDp@xEljLI4?%c3OysABdf{#cu2%Fwx(>St<$BUNMvnM$y%h4z{ zFpx%c3fAC&dJi)ca{mj>Fkb>&-cr+Bda%s}3>|X0zhS&8Jm&$#gETWc>nwNk4oYe8XAQpr0u-g z&|;;dOSr?;{eVw{{y|NBO-5Bkv)h__ET~sKaz~<%ml94tKI!UdygusHL0Vdt|I5jt zrg8WVO~J{0g7d6|!?(`hpkFLO?~PJ2?Gc(*akQDaMb{MuW-M<{kCd8D=P3q}tnJWy zeO_KE8ro5J*d424&cM>q$u;jdJd~b4jsY^%Hr)K?N>-=cnmyvS8 z3q_Dddj0ll#>j6E*g2}b1;=ZD8a)=48vO(4_80#B+dDdHgApRAP=>(}f~Q%lSG;T> zj$~L|WX z(AZ~<*q&w9tX2Z~9o{g+hYcss0@{BjVtaD|X>UgV@0ctA+6;(0c%l9f)w7&&S?n$b zM%b&7NitC%Sz}{z82r#MF@=fxo)3I4iU`0yJIgY7QB!97)2Ft!LYIt3p0{T>52N;U z@L5IT>ZGRn4U^iMEjKZYIYWYj$!Tdn0Db5IIw~yHH43$`VDhL}+z#sk7+Av5hSGRb=Anbl8Zmb1?I0j+ozvC_So-${%+Am|3#Mbb>0s;ka@5As_8xxe#gcRO(h&q0; zr8H6)=6|5z1Uf?7Klyu>4TW*Phnk-~{}L;jp2GZ9Nnd}0|1oiBCM6F+^0&f0!Gf&myF3O5*Mw2Ji_yfd2TjD~V9PKcKDXgtpk88Rs- z{y?T9lwte2b3YMxC@hdu5hxuEMw|R^)CK61Rrqc@Uo|DmdXs2S`@aUmbQG9B4=)XK?C*Ert-p994^G^~ZFFbtKB2&(O^>W~Jv zu=AD=xRV9=+oYrrg=qpCov<(rv-WTXiffFO%N46agAm~VS-P40W^>r>SF_y+dq|ImqT z_C3G*%gRP~-e3c2TF8eK0KpV|9A9g!KdUp?4&K3fZ>`NZDD2bu&B}9oS^xYmiUSX~D zg?Jw(7@4yqiW&L*K|TpUSsyF?R9eag9Sk_$-X$fl-n%F0n1-_gt40Xd15@G&nMl^o z=^neEa1|1yHL$Tq9vJyYOl{A+_t;iU$bP2A&);dFS{Q%(W!N`mhnc!I7*2PwF;i!# zQ4uF456=$cXJr?}$A1{Co(qkTud?Ml@!N$GUk-}@AIhnwaL`v^CnbfZAAHq(Wv`Sh zpE1!cQxp}?Vm45ui^=%i+8Z7-CaoeQ<6wsuUyaBV6`hg<<0iSR)Q!gGTzN^W9YQ?3 zWbcN45^XNq^a!5wf98A1e?}#9$+0iM^*pv4HgV3|o6J|vZRm;m;uY1zeDQmDq^uGR z!FTsQ`0a?S)e{oF!sO!W>SP=i3+Li=x_|H2)uGKKREC7AKEl#kS`UskyGV-T-{mO} zf+YH@E?<>3g;+s>B&EK-0#Z}ALdm>^PPyc0Z+^adG%pjz=H}wL#C1X{%lh%JcQiE` zGR`ykYE+k@w>k~$-E$Qtim;304;x;Gj8}i^i;AiY346-pO8=$a!)$A-x4zBg0$KpX zcMo*ce~R@JAkghrEaSWpTDlLVM2C@ooL4c*YN#3t&387?i1Z}!Y#fPc|7Q_^C7~kz zp9*kwFOLe=Wq{q{g8Jp=xIp7xNl6J!^0n8&vdBu6PC&hfG_uY;6aB2)qq;1Y|Hu|< zg?wrv@s0dhKEVpeubJSK_+^zI6cl%{u$Dm2N&f&Hj-I#4$&atjj|#m7m+E&y&kHF1 zm$#;t_7aS8B2`>nM?Rh*0Mh^#L$I9SQTjJxr}zR{PEJmfZr7EaJ-=)qs>Gg!nHgM{ z5H1v6UOI1f@q55Fke`@OnYVk+m(He&mp3}CWUv!Rx}d$L0x`2`N2 zr5|GOlKP>(oPZ|nom<){TN5l`_}w=j!YV97E{1j}sPPmS*aR&>VQx=R5#~m? zI^f!Yxv33&BkzT*L0%~Aa{&Sj+8#uZGb+|(`0-w+jDD< z?M2(&GeMVSMZc>fZAnQm42F%<)>L(=w-YV7_;S2}OWMs`AVyZ&&D30)cJ9x+z8CVmP3t4{ z%`IyABY$4GFK2%eW%LU9_<6*dn?6o{|KOmu!s`AVVywm#Q7o%I)dp`j7#Q<=?vii8 z5%{Ja8Cge1huvqIKgF^y=WPLlRYis8#a4BBRh7lr{t~nPcT7hvt_Sn;DGzzWX|b^} zdAM^-T0YPqzh%-c!MW^aqbDKZP?j~mINpMf*#R(wuvkr_Gv^^L-*_mf5!=5t6}Ip7 zuU%bb-2d_&Tu!h4HX$o2DLoSNyL3?+E_hA{7u>j}qEy5~4#__&-3b^H+K)K7=9`cc zh5Sz?P(siHADs7e;hL)CMqeD2`iDq=OihifygKiy%g~7bn)ntb7Kl7eq!j43})t>+H5M&Ou$JVN0otiV9fOONm+H?C~b`LPflgSiqKeBF`Ljtd^GCj8yryaJp33T&E;McnNL9>DLPk!+?|lk$lNL@n&vTDvSd>4KK|+9+w%JQ+w46( ztiU$tUo}#MPt5F8}isAX+S(tMg3r9=^DqmN7 zO7tgEz0|08@ArREWoybcnECF~FlFAtY4hQoPo#sbO-Lf&#I zV1(^rxCxGhZ?PWUqV6}D(d^%4ej=Agr9*74&2NM5=YCoh-P!RcqJ);=o~3fC-Zl<^ zpv-{c3{#r8$-f4*ld` z0*pf|D_qt$enslfYlj+yO1^*p^I0&iRnX0Ib6!F|U6dXKA=J#6F=+Sylixl55Q@I2 zC|nSYKz`~1XSD9ImUF6AD z%!2jtF>s33=;Va1uROeFjy5ETH>VkLS`XJGS;34?@yPIdX?&nwu_Z*+Li*hu43Jy8 zuI(E*A+mp_fBGgv-5Ui{E1>eGYu`Otr@6{2iv(@InS;ZNJ~o5Gk@);D_$?6thYS4m z7}7`J2LkbVA;6fLCMFW$!}(FOy7ZAmGP)!QTT^`?hP3w0)QAAD>d>j znDer>riZP3dnG^5EObY^?{D|bG^%tY^O;O?H$Uc~Y?~p0ZV~d}tcP;$-MMqepvDOq z;y58N9a_HW!cRd*8-d(=M=Uo!uw|hj^V8wk7vR9H^GLXcPKT4wRr>D>BttR|PR=Y} zJ7%JreWE*Vo578ZVoFKenLzGLib>0uvTyig3tFjRz&&2@1%nw{Fe)-}t(N zAAE4KYJ6!~{pMRgL`fjJPoQw@?#@32Mug4m4}p1*RN7YQJc#*)jg1Z16_@KvFJ=~& zT1b+Cl% zILzcb8o$YW_b$JH&yF4|{{8#le&=cjYe;?M}*OQNtwMdfd94)|TLfTbj>(#`cY71e{syiNifQ5zH#;p+p)baZ(` z;{jP|Pi7up`TX}pMEQS`k@Qgb zw#P(9s?sbi-B3c6_bZfu3F6JDg@hi1t}z_cHsJ6|{MW8l{8Ag@1K_x%ayE@hrICz}^{TDocR(xQ&WB2=kg~6i=uO|G_Hf&sWVbL{QM` zs*dw(PtP|&XwNT>m$=K=M6U%<_~__@;Je%0($YP#C5!=$CLD$cOd!A^5%}-%iHS_D zLT7jPcJM#M{t$JQl?~!7xMF(;s=0{EODUEs%sRJ?cK8R!8~txE?yW*6j7=&W48xCM zE7{P)Lsuv+cDE1nhG0hOkluu^z?+oJBj$PyorlmY=j7(bohM!&C*$M`qSWc} zls~F@t$nxeyFCXVucf^5M;ySb^r53Z=5sKII~tZBk^V#%1`v~au)WY`mnNF}-W1OQ zt`NkA2{4!yu50Q@;RpNHwdNt=5hAbOi+A@E4f*vwp`dY`e&c-9*!&| zRP_32p?kTPftzE#Ae*Yg(6DQLG~)2}NlodXD!U~n?_)kwOPi3jND7#34|ony7pbIC zLtg+}xGsobu^uZSftnL@`X@<50+A&Jg{vmL@s&5FOt^7EIvFI_=D`yOp#5x+4_8;V zp7lIxR!(c39Z+5F$x{iGGAa`vEm09`JMO|yyL~%Dw;Fq?#BhjC=F^?P0B71;Up}k; zj~0M-y7YNaCA`Cc>V zjP;w#>T`uNRbig8#Yr?xc&bn}wQ*`{YHwfWQyc#!^lC`rD)M$)e$n_526yO4A0JU| zNZNi4kH8>mnoa9bNMJ7_XF`wMX!J8YANb5Mv;ynN#2xPwLdi2}eqX)dv-h{v&_L$U z?>I&K3n%jL!CQ$+MfTVo$2(tUgq z<>fa-eRd6(*n8KB4BMUA{p=BRfuG)0w{gQGx=Y`Y2>rf1*zr#wZ16cT+*@)Okr#b= zw!gAt<4|JGU8GO<2#e1lxWa4q?@C1nGowoaPJ>jq<;lA8g7*$GY zwE`LwK=nZMgn)1%VHSrPhWxiue28wZn@x^57@=PDdo^N& z-ETM3O6CqFmxpUqUyIm&MjAJr9}PXL)Z=%PM^8OF3%OZdN!R{ATzv&lmFu@RDGdTr zf(W=pKw7%H1nH0#6p#=B5$RUxl2YlAR5}#t5J9@TySw?;{@;7&-uY&nGjq;(6xi?k zJZt^ZtEN$E6m$e^t6T2JN@~ygGULw%tjqPcrhaz-TL1#(Z!ou=oSp4moo|~PVKPwr z9IjX2*oX*9ga2OkvLCwJzD75`fbI}RLBZ;;g-spE^d>23X^0J_2L=-KCEzFf^1bp^ zT6hFSR`QekCnP{P6se6{=le;9K%fN zym;KB*5H9s$XM){wfDX^&=Uzz7`(OzYdTy)Jk|)~-DwZavx%!qDUHEg&Cgp`tY!N2 zYn~nf1Gu;>hi=|DFc5(9o10^sAzu4GZXdj4sTd%iS< zI!l!k6MMljg*w;;_aDnNT+eCTP}mbaX}r^JHyENeyohdc5iy zu;PKYl9ZV8&*2?m%CufJyUj6;^WcZNnLT>ec^95LbX1^od1+v9R{qi-N^dx{U(3nM z@4sGBhGg`)i2xipSb5)9QS!d^hQ|G@?sNhw6{{(PD z%4$1mRXbaON2VybEt@}jtc#UYS_+>@k9{`^v7Qzycr$-e+Wq|Mi=ZZ2fU$9rw|Kt4 z9}>+4=pv`7F#$r9-{auO0Ne;53J4S#%n_O3AhNNs0Sz9T)Bf=^9_l&6!ousB69*xc z1PQAQIgF!?pvHk)(&pwj@F{&hWZfV5{_m*Re6_+9wcL7`oWylWS)HEfF1zm+0&0{* ze^@x0X_E44auharXhlgF4)N;d?^a{K1mv?Ia-Aq7?IZ zCrEwgKSS9y*$P?De-v_V7t9d4hs2X1OXDi#eu|`4$zp*tkTe7*IqG{Zj@+z9`ufkN z;OvohTE-RJWkIZZqw!kTkCo49>XSY8DdKeXSZ5ohNfy}ctAxeT8fNe(PkFbg{a_^m zy?__*9+k}HQ^RI^==IA4%E;7IqSWHwmEoQsz2pXwMQ5a$DjdDj4^-o78AS}wv?FNy zBEFk=?{aCg2+AFAWy#({M?;WZG@vWu*^ic7F#e{*4Mc-|0CEi*K$|=YO-;ZT{SZ3E z=X`;y!u=?BeYO4l0wkODRe^m0cn6r3h{?zT;Q|*Dy1i`a!S&ETEKH?ZN;M)qqk6Yr zRYbrUcOG`%9}K5p7{I~D$3RE#jE-jUG=d%9!NtWA2wAdhru7YO*cpwL#r&DJ&yFcH z4lj>iUabG%*_t-l>R&fIKiUg8kGf~p!fpAa1;hH)_sEEt2al(%rwl(zZ_RnQY@nL5;r_y-KNmvpc1!^f3|&FJIo5 zMEjdrAda`JU;etJBHQ%TQC~>d3DW6c^Xh&oE-rL_=GfHeR}}~M!2JGPXHbTGiuZRp z0>#zqSuFL0xR<)A2Q^}+7!az##U8Hebr#f|;zbf`Ba6uJ^_@5m#LMESuqOiVM6A-3 z+d3Q4i2%oKu6o9eZJ^K(y)TL}8b2wiyFW=GtgVHid``duKf+~uNlF5RKtp4J7WmA4 z5TV?3+F$Ag?W%*LV>f?zz&Q%ykiJw&^tYR1vPb?{i0p4p9n&eq zfb>iLO7V_6Tm=0ib#Jc>%pa3!(mXH-+5+R6%ukeYwAt_n5`2kZ(Z=bsuJ&5QCFo9B zmODRs<8hGymkIDlyL)?PK>KW5?8-ZiSCBo7tP!bxpTqPrrAh#N5S*@zufaI@0Vy@L z>|&j+b=msF5@3QsN_vCvw#+jrv?)c!HxosuI^RE?PS&H~<11XRJrufJH%VaCN1z6G zi&JP{6q`F<|2^m+QC;=%>8n4oOljA@I2`8Qu2WJo$cW+^`xbGK)e_PYEcGEnKFeg{ zx4{`Gais=8t#ms6EuvF4ggi*&`aZcF3Mk$HseKKaj`(4aZ!q6)#v=T*9u^+w3|XzW z`bZxrd6ySOZuo&NwBoVyr=yUF`1u^IBG*z3OPirjsYcVaB$*odFaFsLCewriT!z{Dyb6df0L!v}N=pz8Q>7iADR z=A6W&ro{gD#50eacmV!IE z0SWugK3HkMuWlMEYnE>NSyJJBgTHK|j(Wo%NYh2E&fb&z=yF_azW4Rpw@CDkxOR(k zDzxFgzGy)Fq9P+DLMYzp>D-6~#6O0yH_gSK@YX~0FFY@$l$G&8*#P7G>#K`X7Sf)@ z$S;rWOiVV)^}Qf2##o>22GQNG2u!-pLSo;i@cgJ(*%Q0FoI&%AU?RUC%S1p58vblJuJ zw*27AY4WV1tz^4tcHi&SPLD62IxDDR<;~`=#_goNdg@Ah~!YMTpW(1&`1VQuE7OS{*?6!ZiOf{Be*Pl~%J-Xo%PhqB5 zC=6Gh@1#QGxh>MzSd<{FE8-V5GYVLO;#heIV^>$1;JZlea+}gulR^-740GJG<*p=3 zi1X;PUR_&aw42>x*CBES5Af*U;3e_v&P0oUC)EOapkjb{!@MfJFKKBLKUkz*nECx} zSJYY(6H70$8^GqXrE?nNNx!^&sayFSJ|H}cZDT?Hd-v3@v%k%s?sx0S%B7#qpnp1C zYj?)L)IJqS_W$u?ger{c9?Od5d0~uZOUq@=??oYYqv)fJab3SJ6zmEpWh!6dz1~Pl zHmp-jKQx%>Zj&D>`=fB`x+l{b7!-8#pVM;igA4I1dYwC8_!Lp-d9}Y+>afxO0AV)Y z4-=CySqg=GIx7Pz_%>l>U_NZPCWT&)5PyGZMTZVr5c@s9gJQUI(0qR4pnpe1VJ<=( zlpjs-9KO3a;kq5Rq$>E}{|BR}WkDx%KtK{ z!c-FQ;X^5n)tAw~Dyc=kY*nrgtRqb6K%uB>X$8n-NT#Vp zf?xrDtPmm8(AemwpW=C>;hb7o$q)KS+p)4B5TwH0M+3XkW5BB5|HY@`UKk9*43t9C z_&|hr`pkkc;0@K_HeTAG5~tL1;l?({+7Kq*Uo7@F!SLs1F^z@aAt__>hmb{NmQ|ka zk1ivV(z4BG!f=a#=FjMi>4m>PDwR3B z3I!&0$-wHw<)yN*%FGJC`g-dT`s%Rrn!=7!266fWUNT%2)^eYhU@2P>%^K69}PB2IaiI?=h(asgm9$W3UZ-H~R z;urM7;i{%{T}Wedh)u7SCZa|pyuhf#f5sGv_=CMRU#Acm{kdpM^Eb_A_^*G|)>e9J zvXJ%$A4}rhSf%^buU;_~6v`I6t;a>a0`+oH?u*Ctm}Iz#_OO>o@e5WjP^#qVe!J>Q zx^4++B)BQu&AUYeJewr(~|H}a&fdql0bvczc1>U znW?bN&-1-9)K{+5e#nk-!z^DT%F;H}^*N%#*m!{)O9lp|6J%oJ68Q@qawBrKxd5HV zzEEraAHNY0RB(R-PZnu7F~ky!D=pm=eVg!w5&NcG7{le9tdQ3s8DDj^)Cmy{)24t~ z08_~PT!4V+8|6#BtuXb7}N{oNgb+7@)4v?pQZNa-|+G$#UPkJ$}z@6*NFQmUzpGub) zlAiv&;FiJXo&9bS(>!CNuH&6q@i({O$w1nxta=%;l@t963peln`fdhq&8vy32AFL+ zM6X*YOiT+NW@1Atam->zeADSZDD~NF{4(xAz6pnRcf6p*yLSRefsqyqbcH{@JpV6$ zxPOoP|EMeEpvSKnR2o#GZU@)m3;VN8W};Dv%wG~+riit5@^!pf|6SDu^?zFgx*Y12M=F8w__AvBNoE3QXDW6=PN|bz@_TsG;a_Ojr{LN>8izT>5d=cuehLZ; zd(oGvC?G5x15=2bn-D0u%^G}|3_<<*r?V4@&Ie%;M(%-)>o!#sC_TMN|UQQ&7t7o!}x_lLkLb zq=3P0j7OQnh@^X)@Y6}+O?(tTwKap5)zVTn=*MK`d4{s zC=u(!i_W-#O#7g`t`F?Gp`h#WZ%}(F)8b$AqZ2AfA}_J{2goO{^_qc(MOh! zkJt&}CIOY<_L_nvKfgL5(QU1>WV`WziHhPV6n(Ce($dj#8w#SkVhbT0we>Ee+-BU| zN>?Ux>V?uCHId-HmQr5B{qB3y2V8p%DS$V07IC&KtPB$|mCHiZr5OP499s`$WjQKM ze>zCpYNDaBXg%MasE!earR7X@{U!~oWMS03MJK|$aS%ow=@k8e!(11I;Fh`$YL?C+Y(ZI3iWI4yHSW;R1eu)x-$tdYGvyw~M< z+8LfPj9GRgWz697+kpD8Jv&=U_eEUDxj8v9Xs^mK-K+y62YeQg>m8Mt*lrlB#4V*$ zNFw#-{4LcZYhD`BzZvB=)yF@)W20y25G$a)uJ_&z%=sW$f^xKVzrM-82jb+WQYCp_ z_F>?mqvLN)$@czqRx~}Z_dcfvRT5ley)Q<&LwRm@d0z?MP`ZDEg$zbr_)#lmNdZAQ zS?$yey_4`bDrH5dr>93N69Fv+@wOF`9Kh}$|;D-Ek zUK}ge$H@UY{Md0rFEJ*hy#aKONS)({zarBn??H%M#%~+xlOT7`?y|tUROg|&*>r8N z9WM##3+1j9ldID&{DD5n0>u+m1CklNMS$4oSJBkeNU-v2Ca_j*YG8zrhy zM`BnoY0Vguo%>wlRk^4RK+z%7huZTed{(h!$!B!|5#r>$kxxc1@u8lf7>t7Ohk}|) z12jaCo%aWv2vj^)H~)eEI<-hmM9BRp;I6mF7A5>#7Y|nZLCG2xYG(EaO3}d?4^meU zd3PoW$Aj}l=ewaI)ZoGkP6%TL9F-s^&~;=@Do3_Zf*mcx;@{`R0S7wjsgV&qq^JlK z8ZdEXzwFNj5ZP4F<$I*4-8fRa3-C1RZh;QdEh&XJt5UFrniSsQy-mNyb9=NI&Qhg% zz}IB98v|qOt_PTz8FX~QyiSU2Pah$#vw0Y zK>DPNyf5=3B|74MPq~VEFkyZR4GX;G(K0g#1Se8u1SZ+^-~RrQPEVg|Go+#(ZA}`a zr(;3X#%%tmz1EFF9fj+~j;y;imv0w`89_>4w_=y+xmOhbCZ!=Mibi8I_q{MlU!+n7dNMP3Wsl zV8MB>ou43NL;hv>hoxDuzAz)>jSpt_OMvkMHo&MO$^WX}eOpo7)xv1B>?J7(PvB#& zH2al0phX3~o;gjA(~{1nw{O#NCu^Q6oP%luWQA>0F7mR@WqbY)HhoLLFNk);tD53l&M--f1h)+8vMLf>g=30{lg?lMNtMr ze7Z((yCt~Tc?JdgJ01P}i(U6ER@T=uAU*kQP|ynXtpK)C3tlw@Ki&3oZb-VD){HXr zu3^`!Klj$0&mjjff)wB(jH<~KJ7EQ^#_sDwWjmDI7=OB!xcvRsTlX^LYmym1Hi1Gg z14Jh~u6KymTA5fEE)0r%GArUK=9M)0NF4>qnky<)+8zW2C?=$Mdrdjc_ubcDH~c+T zua9MFsPg1VE8LZ_vewrQ0|T7J5HaR*cXh2KqP)zCn%hfcT-GQFrzVip1R;V9u(Ui)`F)=eYfYTr?KR*Pj=%weKU4GS|0njR~rgjsA zq^KbO0lK6Jloaulp(W({z26(qGfRMXLU?|FVC$r!^t*b6k56u5yP9|9gF zUkKeC7#J{J=}7}A(}m@_Sx%}S?)A4_ah7onNlY>=wb?pixPIVoS3ldn>Yg8c#BO+l zDEoG~t5dY|)s>6nkpATOF+>=zRS<*BM4ClP>**{OpF!?Vfzmr zH%453yO(-zPtH>s{))@gGN+_0A|RrDK1VN*V4hjrAzAw@3ZG!)U_}a7cU1TJgI+2)n#Xxy0i-fpZEQ7Z=&KR#Q`x`W@P9Ha2c7 zltMZZ@Iv4pcr@|bonmk4AN}_9UCa>jS(x>iSXl!U5Kamm&FMuGrqht=7#w28D|!v#)*Z=gVJ#*NkOWk|poX z-mrJANfu+ifrAms7&Olsv%h_7nwY3b``h*}OdNu_aS3PA$2;)MiYWoWX$EfUj+c9JH$>-!rjogF9 zAc;WLA}ytoymY_kPAUZL)9b^E&%t^OMDL>3dLVZ2f> z9E9>eds+g6yJKS>-RtpWxVHN#4PDO=iwY3wBc#@JmedvR#MK3S&I-Ga! z;cr0pA?}h3)LuU+9d_tUt%FNSxPd)Q2Xie4V=WKQ$?0h6DVjq1_K4)(%Kc3BQhk%< z&!2B+iAJIYqdn`tyfF1R<6$^I(oP1H6dkJ2kp08OdZ7R%%)^+MAnd|Ev;1MLQR-9e zIeQ-zn4=XV)vppypHhjP%%H=nL=S;Pa8(lEtemZk#{6}9_>j?Azmm~cN3-eLz(86> zg#avH$cQ^&f&$^IgJm8W;ry?#Fs;^06cisf9S)eH-47&W_m?OydgXhJev#WLt3{Cdu*~V6G{oU@_cscGgie^K1r|2Pr8PB4;hrtpfNRR4pK+@e z8-HQsX*q5JFCG&|TS2{q;pK_B2osY8;Oq#+cguvJA77T$8FJDgfkGzG4AY(B?}%w> z$v6w>;n9hTUY=I;4=w$!&G|S@A0PA8u*hecnDzGvDj%q^HpouO)Sg?0p_6n zw&@gWcwehKWKaWH%HgvH%Mwm!g zwbQ(+xVY&!-w}i}dxTN9?Vc^C*xr>jz{7ABRvjzL{l!0A*~-K`E5OC=_cNC{GVX>A zFE2#i{Nj60FdrUZUpqU3jWhcjXz0@o=PQxrk7_4hQ6%)wX|xRu3l2QHe#FmcL+d>N z&!4)VfnTu7Wt(547@fC0WVM0k|o87dRM~UX{jRVF4Qx-0=yV&l;!m zrqhsTPY)#vnm%%Nk_@c8;pF55LvjY>CkxrDsa(_%YB0w>GH)9qYXVWdfwK7Jr|aq8 zUlxLkxnfoCdMO-gDPZsPt0MOF%jg{Xb4e-c<>anCSypultFpvJXm*a|AngQ%K=iRn zxm`|gY*Xt?yb?d_N?I^Ji1F!cS7-Tt12%H-J8EfZA#>N^_yo~|3{1HIPX&UEi5xFK z(1LV4>Y8t0Ft^A96$1@v7(pf>1ETlmIXASuq0OMFR1*ksMrK0924Zb(zLmgBUhQVx zwsX-7yf$@nK$1tgy1XvUFSS3mATCkJGk&_oX0BwbNL0Scad2vy-Ff}#Hl+kKje)w` zPTy!et0SLm8uz)y-WlI3k9&JmD4^-iWxdME$nXae>>*h$=c9Q;cNOF^0h|Cy5C+QY zg+IigDqITdS}v!%*+b;IqGo&?$2Kun`27jmHz!LHgGZLp0z6#LST&lzX4Az+V>7cp zFJNZHXf}KEF;r&#D-FviDXF4_j#i{zdHJFXHC0q*cjrR&%a^+%o&OXI-nnuK-j9h& z)&H%(y6ryxpM3nHza34VY=-He=1{34_Mu{?xLY%2wFQB;KUBq0-XZ8Ow}~Pn!-Oyg zfu(Ox7I($366Uuqj}_-s5~Ug+r%l;m0Qdm|DGy?q-Q>o`2B%dYVq>iQKN{|*2O=M8 zJrh0h3lPuV?ID6%r+%B9JoxP{}zg(?gBJqoxfXyIVc%$yg7rma98oAuX zs{Qd@uCd-1Y23n?nyRn&eO>K<4xz6K;vSTq8R>K@J-&SW`ufUri_4{K=H{+qzui!$ zy+Zb(6AK#qK77CetW6ziS{xK{f-7GIUiqLR&@L|&(57qJy~G{RZm=1oCsp$EKx9VY z{QT+EYClcJL)|`paTZ*)cbfh~cL=c0I^q>shNEYJG(|RK!9|~zm4zuPDtZ*u=r=d| zXsWK#Hq9HN_nQBfy!aYnGtAv8D72ScYfHtmJ=wIHtI2hq5pj|f{M^v<)2AX)H1t!^ zV6Mr0infzXMUi2-`6mofGvM2QceFtTvOmHIMvpjZI zDVyWDeSAF6$Is786PP6&YjrvFZ}Zx;7QeZ=SQq_vF^P z%CI8TNxFDmLH+~RY1`dIrj?PX;{x&PfaY=P2#EKO8PGZi3Tg@;~YILWAmzRbKjAxV;bvBqJ;P44SlHjA;UR zsR(R4$c+E?^mLe*{BXT7|Ic9s+0uGXpU%SI=4{=3EenF7Kp0q^>!|s|*HRAG*RkmX z^Dou)AsE(Vr z&70h}qb?vhm;(!o(YdTlpsS!zF&XHL>EpGQ+S1Ao4#u?HVPU;M{dvyJH_h9;jQV)G z^d&wbf5!AGOlo!v`<^Vrt?8PeFuO6jj67Vv+qXkqkB&m^@5x0@#CAX=w>s=t-?eq; zr*uskSXuEOJ!Db9w|KE@2q6r6hf6AqSDl>-nYA-CVWFYO=0y-6y-^<#-xxtfDJr~A z58>sLJg98(n%bU=xa~Ov)Cv_y&6Vh_!zmPuYk$sHkw>wXtbAN=)cpb?I|BZe4 z%);V55#$uhywM@oj=g_>!+*Qh{MTgdze$wd-cW6qEfm$1bom$eg(j=fdsW3HGjy0m z9Oh(@r4>+P+e03LnurgBDtHhAx<-oYe{D-~z9eC_=&V<9cgI#un%g})#zI58S^MhF z06AOZX5>u)JdBn8Z$#D*J)mXHV%Fc+18ztBys)6ULLO6xl|ww&(IEzN&gLJ&IquWUK_APOTbBLh8Ac_@+FfyEmt~lJ7y5C=P}DhZD`DEBKb51!j0+Z4x+n#J zFVLYtuVHYIY%JJ@g>~WU%23$+&#MGJ-bEMiuQQ3h$&uV01*s&mTn04oV0L#GM7^9r zCHph&t@`kj%hc?C>((U46*Zv*BSf~oJ6%RO>m#CSbl03eC#%owdrweLBtGL%7^eQ@ zN!NJ!Ok}%&D$!jFDLR3K_Frugg3FAmOOHmol4|bWf1vpc{P^utRRWB#G9};-3@@|$ zuJ%_qHIG(5QBGCst3v~4xd6j|2InP;P={^uH_f;GTkrVJPYN?kErJG$}9!$XY~isEiYH;yYoLnG@#g#`bf`r6&zAeUw z@6o&zv+$RNiP@%!?DYki#iZ}-?e}zb*%huQIr*{X=G1=MQYj4%AX5Xpe%Pe#Ffb|j z@Y*PtUF~As5b+EamzIVTvtt?Oi#JwDN!1^(QJn>Ss9I@)G%N_U{fLJxVP?g|01umU zGj;;6Y{Cu9;%@#|9{c-wdDd=RL~6Yw--xs=z1zBve@IC~sK4~#Soz7|1kKynSgU(C zQR=R{b|)&>1_KXqZjh3aC~|11w6sJS;^TXm@14TCPz7ZTD5ifuF?W+ve^YguijAus z+Re+$LjrhL0A{Fs;kz!-T?K}W;I>S<)r0_Jx<%K*`Q@2U$(nsp}(A zGC{e_IL4Zqt>KInE6cZU&p~R!yU2u(#P{TCMxC{_qdwX^xA)0oiMIFhx~Zj;{%3@e zcWn*(tz#p?-hQE_CGBZp->qq{4$9RP?342hq5GJ}$)e~ekQ`I-WY@$YTQtDv!D|3#5j{yzYHn^2m`UMZ#i3w-ZR7chJthKp)$v-xE*l`Hcy_Bfu^ zmsR}k83b{j&bNL1_)!9k+OMIilhVB~P z#@Y9qs`^uH%VSrMXwYN&`h5_q@(<=zqIOLbJ42RMb~p zgNjI>isH1s!Li#?=H|-G577q()#sK!n5(OQv>7H$@;*spf116Md3|D@r`zABm*cWK z$7udpi$xZyfMNN>j8X{r`&SA21DXa0%fDj-cu`+>HF%(RI)}GaHuf{tsUTBk_1VVk zEGpRo6i$fK#cm|<*86nvki@~-T1&Am{6&I7bHzmE5B68Qa^1-a z1>fby6=NcWy+nYNa@ZK*%JMEwPNszjCyf5OvjRA?Q(8Pc1ib(K^UZoJNIP6;o(@Rf zQCc?Ray5tv+v3@|7(Gw#$53Gr?ws-4nu@S7%@iMP%!+O`<7_FtG&C(C=HcZVyYq0c z_=U-!b=%ka{`^865tZ2PuH+%I-Ec>kJE+90#c7@nltxfH^V-D)ItXvW>vxlumJmiG z0BzAxfb&D1WH1t#K|!>$a44*Km}FNsv@pt$5R@OTJ%L8WT0+C&7~ zPg<8Sh<@hHAmQSR3yGy5wq+pJ4n-j=z;%4KW6CZS&%SsKH+#iIooacwvK&cP*{6^! zXsz(MAboo)tk{Z}hlIrR^_2+zRQA}55zZ^+$I=g@u$LGav8ReqW4x|TH$B_d8;9cZ zI)-JPdFi53|1}0$L6qbXNDvB{nO7WV8}~8b?TUS6AG~HwF6KroxiZ(-;^=(n{odz$ z3+O#l*~v4;-M1T*(t-&H85J$8m13`po*_`*I1466+{tiLD`tDj{-76{4PyhnpGi`a zlA@#NRlR=JPfq8L6|>>00(^b?&!4v;MdR{(>hR@D#GSUV`NrvgVYrr<)ov>{gBT#A zE&zk%@8{2mWLDOb>I;uNa$%RHg!0Petq|zR4OsT6|kSZlW z=TmomsGB7YfdC3JiC-R7b2~72d#{tLY50Ax?2@?0O>)LfW%04)=9ACOZ&^6Jy{;g2 z`+yL2@kRfy!PMO5m~g`Oeo!dNoSm^umw-$x6MAAFI4w869%Q+tr*HP7PF(5wg4B+L zlnd0jLJ?jD28`}7x_-jSd2jslllhCYH?4(9!dz?hs5HmBl5gMgu|DS(up9O3wx9Gn zdru&6oBYOc_?;+mPod8oM!__>w~qV!9gde&65v|(>aIQuqsWD0==^wplr9^3H_XnRhsS5mY((4(AB6IS>Ws>!Cah1&j|gE*ToY2tM@z=-ASNt*NP4@oG|O&vp4p7iM7Nk@m@ECI4d# zc7s-d2T?q(s!9;)8nr&m<n4JEqW!oq`tE2_OvHpEJEZllxu z+qXwopA&ZWsrfixI<4Fs9O}<@SpHM;f}@70`!g>dWNlZy+hu^ul2dtiWB*1^Pmd4S zy$uZwi$I(Tj(C80&;h$4adtl0p6sYLs;jrQ+eA}9Obn(as16Q>j%#MWzAAe~fKUB? zZq5us4a`8gUX)9b0s3uFu`9m#O+-OK0coh%mR(qCgV_e9H5f)74~ zWInQ7BNw)?K;%!melR$gE>UuVCP`@G_Bn3}S)roF%jc+lm*0jZ(T7!^d3mm0YC(_( z5~!42S1+msNA_mpZvvC^Z5uHhbr@Td=sdh!atx9n#)kCbaG)fse*H2xbrqz@kLMUB z*0J}i5;(JNZTWrj2!?}(-yWx5?q0J=FviRRvAQx^YH8HVdXtg>u32E3_`R+YG0ObWe@r%Kc4?SHMaaj84_Awm5)|eZ z<|7n4Q$!TkKli9b;~a0tC}`gLg<+MemX8SdeA`_64bSrMNU_hi2a2)iSgEs1?{)gW zWgr9+Do9|!Dz<%b=oqmPfWcy4X?M?oF>0p<5q%?gihOWzh4OarZ!s|@ijY~&>8-gF zht?8Q^wd``gL1=2rWuw`kQ(n{JTUYmb#QRdtFWblTnjXaTLVGA=}a)$O))QJ_nfzzYadm7 zeYglEUdr7dA*7K=Y4Cs6`-@+(_AAW_1$p{j13KczQ-5e?mN3z!kp1N%ZP|3=4I!@7 zw<1mvh@h~`%L6l&-swr|CY0w1xv&>}<^_!RuJ=NCig}yB)dwQ1fkAlDd`&F6nr~uZ zRSg-(!7~7ef|`~V2C}FufeU^5K4ahhXuZ$80R!q%r|(s&BoY@A8q{1LXKFQd<`r!Z z2@$kVdOWK7{d>*!(KeBmRy{)KHX-g8%<8Yr9u8b~__um`QGtD2TkTg^AH<_LKgPm9 zdqHo6(lb1)OK!7&bR^dm`>^P0UsWVggo-hk>wp0pg9Z|$l=m<&9q@;z8KMz`HrfN7AaLr7LXCI;Q-@IIq*LJwz!r3H8Pcm0-331iyryP|HdE1ycD#$N6( zartg9G%rI`+&TtY@NlN4igp0qO3!)xZ9^t*m)0VdX{xUqhL*AM> zQ)r-7$S*kt6blukl79>e@`XT3p}`6pkYutO*I)x#5?QAvKRY%)BxF7rH{LHVg*^*TLH0y0|Bc zJ@g!$7SZ0^(da`#q2PuTffMG3?!|3(<~g}h1!z@8FQ=37Uf#Q>@A%Gj_Ypa{2ZV@q z$Hi#`IW6L98~*zowbS1_n_m8yf@O0`EeV-)1Hvd^_R@h=hG4Icdk4*b@>nSAx^yP$ zup3r-^+@kV{K(5w=nDvVO?ZPjQ*-p~A@N`9rb|sH6jRPy(1ixVgDs zn@)?J;NQmh&95HM_db@aZu>>g5F-_z`;m>iMy(25dJqUp4`V1KS{K5+I#0BCv^U%Wt{vop2r91(2oZbzeL3n379Ym;gFG{%)FgRG zvP5Pf_|@bE2XuWEG%SLAllvvP%t58Kp4Ek(t@skNPuXvAyPDc}p9)*w@;0ecB@_E9 zD2Vv-1qN0j_VARBF2-lsJ3p=#DQYRG+A#*-6CB*R%jIV$I|5aB!4TMkaD5 zu7m!L7!9Tr{aE{R#9h>AO>j9uFl=b%>35@v!QCI;QIO>j7Tg_m?=-1Dn-}rY$w^(z zjVIm1Bl2?GK7s44t!7g8SLo?(jnsQe@4okZ1a#6TL+|ikSZFX`joa4`6|NkdZ~xgp z{$M-6w4#tD@=Y;D;DO~ow_5D68dv4cI|3+>i!hRqNIy7E{X|G8bXffIz{AX8QK@z2 zZ1_eIhiWoLL4jJ4CDC3@%_rI>6y$B7cXBd7)}^fc{2CKufNbE+>(qaLKJ#8wDl{k9 zy~MG4DajBe!5%No81p-!vv>HLiccl~ruD6siJx!i)$6Q?+qpUU2q2Lf1U4;@fQW?P zpj)*p9sTfsv;e6v7eh9}YujG5%cZWsvF4xyV|$F^Kulcm6O>_y7CW2$u(GzM)Mwv- z_VERGr?a!HZzaF-+fBc#jnSUMJipW-jjT<}l&CT`R*bQVmY(@GdeJRKc{ipyp==ORCU#s%3rqR=?3nx6h9;yxEMDY+bj8Ve?@ z6P&MTG&D3mzxve@vdVFntYtxY-mf?)2*u|KzkOrx2qh&SzN4z@A5l^I(?eZ_za8|j z)yFC!{~6Q%`dbOfok!d=qR+8=()>%VZy(Gi39lUV%1b;)@L9cV;1;Hy(+^w=At3~Q zoNw}1%tpcY>^r*4U7?cY-I^pp3#WD6T}w3(vd6{3AD_I5gQJC6hXME>vN`jO^BdFS z)o(>Pl?F3e<|X89wzg`Hr`+65PP3qWhQMS7P|m=P1;0SGxP%2?;aA>}ikr7@|E&_S z9pOX{pYY?}+1-WuV6L|tBfbDTk+XGnKfpi*O~P68qY%U|~^nRcN3n z1juR$8&ZR-}1gNHRVAav)qO~1uJk3gLIC=DjDMrctXy>r~K`2{8gU8zhPT%Kn z`i+k@`Y9&q!{?pqvONVyq9knC;HZ2Lz(ht>6(v$O19FEaDPmy|&equ6jFBN1<_Ad! z@RLUhAij#alY<@$Q~*-IBLk>k?0Nncr5<1)BmoA~$iV3ozuXhT`CnQ0yRW;&ed(p? zHv6$G!$Kn~-T8m=+lNbL$Z@F;)ruB9$H}uP%o!W}Meakp0An3YloF8Z1h5a5xjEFN zS;4%N241(<&d#2$+$u z$v)M;P4Se1eMe7L7I7pOp80pIXD2Hj*?kStSY-AZlv7&e)3sk*=F;F1ExXjcfU)1| zHsy?i1>;vp*|$4g|H0amsaJNTSyVEIR?4h^K&;Y=Wtu%PG07#g#fLj54hQGt%^(X+ zaYgGnu6KW(-@t&bfsK{bj??I<_oe$41IX=xKng@^alvH(ij;KujSxDLK|7=49aFR{ zvC*pMIApfk+6a@F=!B1d{$=TpbcC22s77GKX$7zOp-C8B9(wS0C)u1G4-WdMeGKgu zYf8z^UNO|i9iDHSr6NI_Jlb^ag4Rj21Aiic>02RdBYMXEY6=<{bX0lu`M6d(T00}= zt&u(k)zOI4&O`(s%F$-JtX8PLLChOs?5fN2e$~_Hb^*fY+j1{1f!-Vz247TNpIe~u9U?Scr}UpOw-yvC_q@x_*0dW%LC%W z)o)b-ZagIg1pxLTlX~6{(W2mJ-?_ucXwhkk2I(Z``p?hjM-G_j^_yQxt04YbntZPOusSp3S z=eePW@3DMGZ?cX^K=>h!7T_^R%9Alh5;mn}Jlq*XRJ{PVhN~eoN2LN($L;B z)q42e?(Q_gZ}B0gIuM$(JO_l+R2h_y^Yfm5FL7&2j3VIOAG+zO)nhy> zw5$pXBY^0psO01+3ARZ}c!^H7er*fzH8v^YzZ$7;HdiO^l9i4I@{y_Ao7+7gi$H`w#9uvPi zP8_ejCR>ulRc&J5Zd(0#ayBcSY@&#>ZIt5mcR9K}rg}b0o=D7T zaDekDoVtyV2q#S;)zcm2z?uRZ1DR$3t%RU&LxXSgg(Sdtx)3OG4?6Hb`R%L5q@`c* zXVLKu%(LiNgw03}@Q@JYjPH1D5D!c{Ik~yMm6a~ibCuceyE)CcK>gDfjQi%^~&?!!Mq9RCwN{S*isI=51T4vH^Rmf30+S?mo4&k!up+lmhAfBV# z%bRn_$}+SCw%c|}nS_-u4lgS{Ei=F?f|wW~f*@gW3J$I++S{GIwxRed{B}bEo>sA| z6LScS7x%6?o_=t8cDv>53U}y-3EWn0sh*pD1Xovx_wwNjQfDbF7`jgt9cR`C-#33Y zd{Q?Uil4V(T>iT(6{V+7YV5A}OvHp?G?q7+_=QCJ`U}i#l<0)GxH6}AzGzk1**ChA zMInQ0_wlC6t-wk6xQvYz2QMefrm#Ik(?{9w6?C+r9JJ>g@_j16<(^9OR{c^kp%F0ge|O$!8f8d(6b072asn@F{q_=Q4 zMkLFR0`U+T5R%5#7LMuXPdr#i4R8M}5F<8YmZ!reinhN~6;ja>UAE|6w-Ht$5OhCH z#6czx=sy{_O*}EFvk;yI+L{ zNjes)7D>=aJc`2JPE4RXT2Wug{?@eFPKr%->>G%eXvM`PY2hV?!T*Y`S{5&1dnydn z9}v7-^MO`8{Ke^M0=F{@6uQvuAGVMh7|_^`l9>6TSSKc)ygRhciI1IaNRuA9K45M( z;{v#z6CAb3jLIkD6=`4#S zlEm*m6BDZ%|9}z66GMOWPBpC%xjZ6 zRsG0Z^$B6jO*c1X5^=B2ZOHXt^py)UV^DdPag*{-W__t8$9IBWjJ*8(VvkeDDd|^} za}#RsDD1~?(1-@d^naVzv1NsaUQJ&sfS#7t%KL;<(N&gVd^FMf+;5pOuskR&jUKcc z{*c-|50wBPUU`WHtERNlCgNvhW!=Qapah4|)^uG2U{^?*a$MX;mYS*q!3W9kSclzcKU_<2EehkpotlieW$q!BV9E7ROd*J1Dmvln7Y84&7=U7PQoFw;az1yfttE`9#- zLkJ8KU`N}S75NY>DteQ=yj1UIvm%`4ttC&BR}q=5(_W5&hKzqOk2jA>#kc_}gNHeO>z+Gz7Km1-Q{G1{sp%BeZXcQeW zC*@at2m1AqOmd-N@+|%PLvXXa8ZSqU6LM}xSXH?41=jNa?f8zP{tBm0VBr}i)d^5)nBDmf(c&YjJZA)$0y@W@P!e!|k z(bx5Te~A@dPgWYb^`!2mUfOuQkxDv1L;d$*4vD2ixIaQ|ce_e>rFMLCKwApbA>+6Lm#yw8X z&)Y420?{$(0F$aL`}WL2hXk#(bkA~@4B*a4pMX;o|Fh;-12izgZg%#Nc-0E=^3# zSRY(nYtYk+(~)SEQY1zaxCIWE!ick}v{&r#ve};pLPQiP+yHR<2zXwL068h)qsT|% z^QTYaCkr2d25F$d-ObFxA`@O4h&3drgb>DaXx`_0*c*X<{S;DJ{9pni0fzy#fCFZh zyaKhIgOxHRfQGORSNl4?HeLrJ*h~GW7zf(sD{|jc7PXl;@9)_EomV~Ck&S;!UNY-R zxe*Z||0yAH&}ptKK+;b6UVsZfKXWP(%WJ&(`V(S)A{MF$14^!kyBAn@NZT)lqZs99 zk?GPPFxc*VOS|_GDQWv?83%KZQu2KLR`&x2UjqGOPEPq*R_*3-UT2Ondq$p-5rZ=k zLu2D?mUE1G!IeGGogg^NCN%RPDaHh1*smF!#;apeol3LM`&Z}UtWPNlOii5~HVCZX zTZ~)JP~im--`Lw}z2~9zK9pnmTVEiB%}{rKB)*zWX9YMKGxe9h-tWH&o@=Dc04F9c zIk{G)4X!x8@GxA}eQ1VIs1_(-PY)Ua5%=@Tu2tOszR!_M5DIMwN|AsX7yRlR-x?B^ z8_DeitJSf5@7ALv{Q?BrYa5#|@FYP_11Uhio4^spVKL0aRwFMjn?C#$LM`pUS+EGf zO5JaQ0W?G`IY-YQ;A@!e)P0ns}*^@mW~XDJhjye}4GMkeu?|8q4>iwvL_dWd!ZlnPLTm784PB zw`?Z}D1XG57rZpNPwtGB=0wV>Oz1C=p7Aa0Dm@sTt$$TkZLQ#S<4E`ds(SIAY2?;7 z#DQ(`oJO}ml6xPr4mPVOvd+)Xolj<*Y(W))*mA-znZEubD8U6$&K=>8@pOZmzbS2O z3U54a$dhm=r40?K14vO(L7v$>FmNA~JEE_K`9{vmlKd` z;gF;T#S`#3sd#xGKr}8B8`~|UU@}2G>#r5L5pphfd*Y&s$pj;p_(juN4+nGTZhKzE zWPc9A4p@yQh`bFmw#gqKayA+%N}-uTDsy!35mV7B^H|Kz^zxBb#S8G23X+`!5^ohv zI$bhk%pm?jKruA@C;KL9ji1e@~2w+=UXVm4W6QGPU~KP&vsr}vHe*8JMVCmbthGMya*HRCDARk zvKxTZ)0C&mDKp2QAj!$eMK?ZXWkqDcWE{>TPdD696p3CFOJv-Gt?@gpUk4|11%w~Z zqXYcU{X?Z+z9hiH!s0OfO>DNd7LJ)Hnzoef@fj@g%=m!WzF6OUys8b4Hq;oomuv7{ zURzpXPt5$}U}b5A0CykAlm^ijPeO21m+?424Cuam32$%xwSW9hU}pmLDoj*b&Vm_G z#h6Gy8UwvHDkr%(dW~a4ZPXhxM#@X24)&+;G zkQEhBi*KxAtZilq@est?+REO+VTh=HPc6yI8~@>yLk^en))yRKMLRAuad8e7ruov) zG*8pa)=@%+{e6L}S+~>WBXb6{`nuDGSVHAj!NTt*=ex@c-#?f4k)-qLoY51URrB)t zRLMi<>$hZHZ5_{Lf`zXMa&c09eSaZal;(_Qwyxa-zf(mLB+b+x$g$})XJyk>Qt%ZU zPRI2KhFza}-#C59#nP6+Set$r`-YQlw+_|ki-cwS9f7%e?6syT^sW!Ym>FzC*F z$)R_;Lrh|K$tV4R@1p1_9Ug-vA$#e?OgOdU(@i8NV>GlfC5*d;YIlLKp~Yi}vQ%Cx zXpqFWKk<9GvR7_nfHri9;f)PE*7EZ5>HjjD3#*jD83Us(M7apyl9r|>WXQjfdG&7L z&CIw~G$7&SdQ+b5vu2BK^b4;&Pu^Q{5+r;9=CRLbE^ zlaoy4-&)`dRRNs`1_nlOeqM!xqoXgVya0vg1)eMiU~cvbAE+y#$G7aK z@N<9ZF%^CNP&k$|GBZ(NrUpJb$$&%>p)gVm1Zh7;vKf7_-tAT0ty_`ueLY#se^Z=f zd%yUN6|mi)K#vb2IOuYTn7>v-p5Zxr#e}jJHIu9tujNLxvJEO$Qiwv5EFH_MQ&-Qp zNC~^ueWUM6tgy;8w6?|pD=ye&mw@Vou#Ul*17x(*xQ6J%!!_~H`#`QGh=@Odz&9OS@nC%ZR9eag?<1HedIQ1e4HTY8Ycr4` za~D#nUN3h>bklf%+9qDWmImoH1g+G3*d_sKbAP#!3|t&^L|*0KjZ}?GRBQidR4Y

9T6-dnhPS!HQqfz%&X^IZ2!BY@Kd{LoO?1|PKX;^P-olmaBHE3 zl<7AzM{H}Gin*QvIdc@}EQ^lh*JThsh>i8mfXoCGkdK#Wk*4ch@IfcgAKkT=?&%4Q zO{MkB`B`&BSC z?6V4^SQ{?D7joP{gH<&6-_6X;Ghnm_-i2S#y>l`#VRG=bgRu;PAprfvp9Kq}yH>p5 zbN9Hpa+0OP`v~hZ4j`Nhmg@K_;^3?em(woO${?x?gsc{966oaQU&~=_wzvyHUtHORn&6BnYPBlgt6H4GM(PRgu>@V+~8=s$%`EI zp85oC+uTvgSE;eLKEF~N)KJ3xK}Z<9&2L?{o%Y1&1`F-wW=F>}K>RvXTT5Aum6}au zp!!s`@*HoYeso_jwF-^`lZeGzjH&}WEf#~&lclAM>z$v(#x`N|6i>nj>I9`lJnn4D zgbA>X4EM8h+!M^nDLeWnH8=C~`O`2G-?}X;D^S_$5weKQwJ&jVMqIsO-(kjYR7w@2 zco>j)bwQ1fNtMi}P#^&_<=R1^OqiUyz^ye`TpV8sZ0kpyoC3317-&_u`B!TCx(q#8 zbYxFUa)y< znwx91)>lmHJ=4@z?AwqABv>;nFi8mcw)#H@`A`%3~xXRG~!j##X)M^v_*8yGew6?K;*&CSI+KVBc=Xh5Qi8XB6o z6?kYd^yO>nll3qW2c|j8(cs&qEq)LEp57!Mnr`b9W`f{!_4glh!LjJB4ECpch2fpSn z*^`;ENL1lnukrD`zCCekUfTQ`VPYLhsPMp%FhDj_DWREeH~aZZS9YD&)~>aI8rFO1 zZu%4=y(!+apHa=e+0oB$-<|NkpFdsqFr)Dj<)>O67@cyk>h6P~*U-x94&3%I63GBo zHMrIOtN1WOs-pBz?tJ#25e+aZ{(#)c4^Ce|s$cKEY|{VsrM359<>gHS3TO#x>{jGZ z?J_|cf!GKDCa8-w3Ihkp4`)Gt>O10$X*gZP1{vhBpj1pj!6P6J*g}2`qG?7f?LU05 zcEvsknx9wJtStPIXgqlSFT5|&7s<#-^3@NYBu-AKa3TAF`~Bfx1&9)EhDPk!mpcWt z!afo@N&knE4$?@7zvOAy zG5u2$^7DFe`cH{9fAdhDRbL^q{tJDIE)U--KQS@&O79kIr5*s1q7V^XW|W2&7BXuY z)MKgm;mC`GkoO$oW5z=WH-F^cf2(6rjMJ0XZA35Q41Tst#z)+LZ65GHKRtu|rw^=W z#z3Ei(EDf*hcU9;k$U=+_^F-ovq%7-7ZR=Zz5P8=mvE>jZn3^DzBd19uUTTcP(6g- za`essCujcJAUcDJ%JhduPtgY_SO@>|(wyriIoa-ErmN_RDAM6I_4eXCO-=2Gm!=;U z*8EH!E+FX;c1XmCJ0>RPeKEZageBk8*7fOw^ro@Al0V1e)wo)fm|mPluiw4(gJ-lE z{44O>!t1M;)IhT|oMmS;WK}cisK(<8v6jpLHUk8(!c(>Y2?4-*Dfm`%cBu6F$jlgr zBAE5V2YYORv6;ii4|= zRsw{fCnaefZ)o053sBfxxz4xVHnW<&vzj7oNO=GAv#awa_hBaEx)TZq_m5Os)i{|E zv>7wi>{}_x^8nS-VK)f%dg8WsGw!xqR@hs$c~XrT;=S z`ot9d-?Qz+A&HVv`2$);yXd^f`uD}r(AVqPT=h0DZPg?P;w~(A3k^1AXM_hp?~ZPz>=q?+u_z%+cmuC>6_uof_rn~;{8AQ1J&{{Ehi$gj~r4< z4f_16ECr`>upt2lbRA2uZo5Mv5)Zsmu((Ib&8@;c4XDNgJHwjosT@6<@cWDN^I{+| z$E6TShn#rz%_v{r-}RiFndk1v;3NalUkG4)5?$P0P&KtY<7$6;_452neLcb1#UeJm z$IAuXV%uqD2BDVZdGrYSMN2=N%H6RrZz(B(*4Ec9tD)m)yp{~eKu(k_d8PJwdZ{Dl zD=ww}KW&$JRK~nQF++6Vn%8ffE#|Q5V1Aw|Nvd>#h!WBe>GKz>z3Sq2sHoJVx|QK9 zY%y4Mb^WZmUwTH0$hdeQh^B~(iUi325J?HTAn}5i2o57`NjrctSqmP2c*y~*4uV?; zEUFN8{Sk`8B zQSS3d(zq1!XZs!TycTrG1eBD-Jea;|l((+V4ej=*0*@T-z+QD>?R4-RA2)Xv^nx%W zL4z@#%J~7%^O;h`+Cp>xgp;uPH zqo*tApM*YaovyZZ28T#Bjb!;*rOE_{9}btYE)TW%W!8zf>+qRdR9P*jesgoC0JI+T zNBv+nZd}F4SN7kn`u44|WA3KPW9Dn?@wUXQLMlr)-P^Y+LiG?MayILKUmZP9AC;S% zTL&gspqZ+Lo&!2yfv45l-zq9-0FmnDg#wCrTj1O2fjG(eJQ}hi4)%l23ZN^C8 zyXW6bGq-p+!tY*nMvS<#Rq3cmd!FT7vii?71GfC~`m9fLP6QP--+*#E`#Bvw1D^dB zF$EF(Ak=<`q2xJ@=(n)6BhuJYJ18h5WIYd_^Hyj3E#?+iHeVw6ca-NcIk~J za$20VcPt#Apx`YpD-)}=p*+K9w43hqf6>s;`j7|MSv{cJ$+MDP(Ncs~z&yPz= zJ(QkDi1p{IaJ5fQXZvS-{Ti-uvUB@(Y{H}Uxj1(0vwaj4R8)u-;jgxyp%D;>kBr2F zsGV9f6RFSMsP_#G;|oSaN_B~TTF=aHX?HhVljM|?h1lh`FT+yxG_! zMA-G1Pg=&~#~0rKVAnZ)pubRo6v0V_yA!wqj7*OL6t%VUV_6~^j_SA?44RqhI3gyd4TJKd7*r&ky}ghl zk@D-87|i+2Vy92%Y?g-LAb+qXt@#Se286<@*j^QY%EzIT(i$_sJx-H>OT>45?L+d= zR+uwldioU{y8xdC1gHwA>UtoK=ZQyf(@>u3uihE*t?lO_p{C7)IhE6mX@o_ZMz)JS zN5b6P)QhpKEmv7#WxahJhL_H_YaF(j53eHWCCEaFsV9ir+n3{FR8&=)b6&(j=r{ut zlYd7+!LV+Hk6Lf9&v2=NnFPuiI=V=aUecxBPgz;H#q&%l9{`*_e?_K5fc0i)rsaCO zx>mJ_kbZN_h?3ZUHTYrW`w#8E231FgcN^orAH&gQJS(yYj)y4^>Sid>wGTAkypqm z*3t79(t6&5OF)hP@(e%&B)$VT8*(JrsEE)vlFPV$5vf5i;*S*E1hDZrh6HZn- zAJ?T0?vLFBP@yB#hbBF-i1a^%E%ow}iHQlJ4Jy$H0#Rj&PE{d+TWfo3c&#Oof|XS# z$&*BIe3IGP)AqCj^b)8fnjkW5f@;oJoO9 zST9NWI)y9z{OSza+cTm2>zu55lq?)4RMnd2}o=9tzfDh?X~$R=KnQhHi&>;jG*@c(DN zh+_lC&Jr>Hv-Q*cV)u)8vlkmh{6Zhh%^z8g7K11x28MDF7=;M@1jy*tTw@xbgVkMl z8^CuYLPbM^0)9$t}O-WjSSJ%Bn#q?4Ra&{SfvM;4$@q4i0q0u$ops@p4xKsP&}1*r)6)gPOh7 zIhSMk$wtq{aLl2+AO)C=h2Qz=t;m?vx6)&xcE(=@@JImfsu?Jos51@0)YFWDz$e$q zrkI=z5x)c)tzxZmFDSk_U60IyEmhYcX!J32AVyOY;Htm1+k@WgU_4JEf7GMo3tUH<8f(Ib6RQtfk3t4xf*Yqhujz_|&ZF|)xv$?`?)UfBB3 z&C%u877%a*1O_(4#&{CrmZ}p(i~{Q_HYCK^6_-*mznb471}p5>uSDF)R5rOEN&H2+ z`jXOEf@QW@!3(<$_=|%R+Ol`<uqMpOFl1+{TRqMZ^0tN6SoA zwesrfRj_NtP@FvL?g9&C>Ap;@d$?+W@!!9HhAD(&=c{LFSXo1!x}PJZU#!u3VPn;- zuSmVIV15zH{4U!h2)1BstlaxId#_dYMm|MX zS>FErJ3CuX7!DBaN;8!+dSCm6W+)w1q1s6=E)E7gI8bx`ZBWe<8OV}c#5{g&CJRX- z5DDG^Cl4IH;KL&}c^A@_Ez5zJygK-2(m9ZoOd=Rb?RH`}*WoAf_N|Vf&?1jD8J3OB;%F&7BO4A3 zW*Ulv-7H7v8%*!sg;9IPK$+c)5G1F;4ib3dAQIG&Qr&Qn2(PxFKLkBmq@(@mdwT7> z5er1-6F_1BPluR_1CzN=LP9o;+wYs+Pt~yrK%=|lZG5S+WYnO05f{k5J5prkc^*Iu zX{I_lauV`)^i55V(s*C=>Z;Np5A#~mDf4+g)r8{|k2I*Npa5;i%BmHmWAr=MJSf&X zAjSl{^H)4n7AEn zZRijd;UGlb8^@O6a!&AV;@i52ONFtOmQME-penseaVhbfHVLN)uuLJB)8sW(#EZB^ zuGdJyPTMrPCG9!pYG1<0gBHKu^NghcfevkBTYXZ=+RhlJu zQ&d$tUOgAbT_1JuGqX&dxR%eqZ6mp9!DT1PWMv_U{IJv>_xxRoBFYjjh3u_x3F+qb?_ji$>I$S^-7ZtNNJ=)$-3a}2UfWZ7*g?A zPoL5!r5^Q(t}d+f_yAb(xvS7N7~pq?3*ckEgQrgb5bU5(4W{JB=`-n}+gv%dbzwYT z#=lLWlt_p1m`!@@C%@&@<=WXi@*g83`u9I=(nQkwl_^keEiCZ3?mi)C`7-h`tw84| zq%%B+qE7$J3Eur3H}(G?qc6ASfY|3Eia3CAR_Q2!u>qt_TDrR2hRr@VV=eq4lLi_0549Hu8XyjD`8P zkmGWm0_mB%N`%#3sUE(n5I>Q;ynoI6&)-XQhZgEjm^%C3!p|3Yc*LI|l0)r+-O3f2 zx>;U9s!4w#2SoOnxvsWDdOFP88&>&X3)>Ny7$JWffwUE){s-q=e20kC0H~ z4=VH!So^sHzmB)HVu`3=S5A+FP&UJUHCezmGcnAWo{Zca{OJ=VI$i(9fIaXG^mTHO ztF5i6h*OUPK}5b1;vOCi_xgQ(?F?4`L=jwlLMk6{Cg^UXJmP|`!^1Yye_PMR<**W$ja^DT zRgm4`ord6BfEGNkQJZm7!NJjQK^;y~t-QK>@7fGps^k)1E zmtr0I!oAh5xA#o;0`Mgc`V#4v3iY2*JLyzK)^4UawWemdIbmXZ^IBrsJ9XR~nNN3j zoADc>0R6b+fZ7A+E-7E}PFr$nsP(Qsf?9AH^O$F{p45qvG2z+yam>>)yPW*=w8pm- z6pM4NryQu&RtruxHY}uk#xOhtR8_uQ%v>3DgXoQXUf(U zm{$qdjDLEjir09u+sAEW1g){wySvI@ls!#-Vg{BGi z%vkq#g7@~Hr0i4yaVHrWXmA5nkIoiDHpj53-&%)u4CSrW)jzabx+VHMrKfn}TREw) z#ulx`*ca)L_uYSdq0pbIUMi#avQW4V;JFWzx74z9hn;WWV_d7z`5di6eK-!}A@$a47f&wi;f&RwkiYyu2 z1Z)TnNJ2tIt+2PNAtik=dbEz_;yPHU{yIE?#2E~=7AKEu4Q2-|A4^eLN_M@2x1q~D~b(2tg`6h1`H=QysInN zUoum_VpJlWbJ5g1o6@Pec6et62w9L+=0E`I$XK*aRqJe_*C&rtWiC<_6sCH2(vGgE zmHH+~sW^oA2Z{5u)i`YCG(lSA>T#{wyq%r*Yxit5G(?DnqS=&El{Z^(yZ-cbfaccZ zWQP~O;eqp|7K$l5UO$%ac>dNTefIt#2j7=DkEl6xw9bp6!#UkX{l5!>_Qq@!+|qx$ zgNO`=7|iW`nSYQ8rH?m#{xg(!2#)iX)BW*RKO|@V{wY^f$oVGi{bw-8YOV?!NG!mR z);qkYg8v0cd~G((6?2ukbm)_N3Uuzy&`QvFGG38YQg8#KI1?KzZs zc=xUf{FPIdW0+mNxo7d5G(7SAO6R>Dlxi@V<&qA|&3CfVH+dBYSbKOX)~2d=Z|eTU zKtHg5L%R0A+{-#VnNTunPRhvT%(<-Mty*v4Tuv!K#u*FfSq;IN>M6J9 zd9hu+yt;Zg@iy(sg=79?F6ZEa($jx;DOr%$?O@ag9lP~lNvZRhgHUJZ>&;B5N?Ezg z-{bKWt&+-29FDdNp;f#sH~-jK(%6~)IfW-Y3LMA4HICAZI3^)vpj#cx$;5LnAD@n8 zJ(#guF$&qq<@|GyTyp-jPxhq^g*9Vwo$ff zyA>ZkHZUMD9zwjIw~eSIiMfn1L;6xnHmXBNu^+kq4Gzao^JJ4-gM0_pf;zAw!GFXb z59msUEpEqN-Uco&B)0+_9SA|!#f9+1K;^nnG z&8kypY@=d#C8T1%8abGIx1sS;HRYGikC)f8L-?fzGW;GQbG`B6J>TE$A0E=Ov4z6k z8&$bTgZ0btPRLZUpoE-$ElulAg^BvR=L)`m|D4$^Nh3YIxwKa?0u%S)<&+J!3phdF z^r7$T<$t_*2ka`nYHKnPTQ9gro?h-f8)l9nI28G)b-uLNCegh;#h8{R)VA~@ zuHR!Hoi8?a8i);oTzEDZ7|{=Ae~=5yeR|zT;iA~vi$@HexBY;ypr|vOW;E*USoXY{ zvhXxMt6!s|vE@YU2ifANc;70RurbrmLdl1(`aH7@L{@Eeb&3exFz#k1B|J2bVq6-k z91B3E6M&ee>o>7U)x;!+VvS(&c#> z&sSQy3|qT{D8@Swe2C}Sd5@ZMdy8)T!_|-9&sPA_wC3<;O8KSadp{f=hYy5bH?ryE z^z?2gaeCh>FOR=Ein>gRi~Ei5cG6s7QheFxNz7}4b$4To2s@ckDP0P?)S$5!+Ci0q zm-0X{&?F*KDK<3;nEY9z<)V<7{{6e@;cnwly`?6}$vSP{uW_x?{Yl>20?w{-rV>}@bjc#m1HQ6{)mJh?@T4n4v#sC7{9NV zHAD-173`zsd1>X{jaokv9!+O&nWxC>c``4a5C%ZzvlB)||C^)l@6^%F?Ct0T^mUlg zT+e>K78gf;+#SaKeqL-6I4$?@w^BY0zRFd|myKYm$vcezuLd z0s{{u!jwWU%^z3W|Fa--6#60R1~cRy=b~RQ|79e4(50i6s$JoBVhu^X99&$B-ndW0 z%Qu#2mrkYy<2k*vhBQL|0YZ*71{$=yA(dCJg45Cr9%w70Lhb-~(X&fSO033< zOWG*+Y?@&j1Op_HEqNCeZCVC+q$tY3zrh=}p_!@8O&#qZq(bhvPLot*$J=XZXmtl3 zZ}o)=P4NsQHMKV*7K6G~nZ@>R>sJ4?xSzg1KtbiizTLzsOxiYDA~7jq@Ow?&_rwAm z*7s;2*!^>FZ>)m$SN+U(k|#e*Y1o8xWWz}KRLrU*sH9|q7LVI96+BU4ZzbY-jgMMT5!HW9b<$~H;LFkNV0MPyR?P|A|1e{U#x&91AMMBa{?{eeOYtVhIR?m5~ z&@u-GY>t)>_2Oi8McF0_s7xL+7}Xcc^ZmkSsJkR1C!;H=hXEm`fzd+7h($LxD*OMm z028(Lj3%6%N5FA-X>Bbb4>zpvojZ~NbGaemVI(2p*y!jInDrb60C0s+GauE0R>Nt5 z4O~(NA31I9KgW3fek-uTf|ooW_*Cf^em~4j5%gBdQ)C(|Z8Q6Y1XyQC70QO_J!jB* zD`toZdOn2|g62+4_~cg3ocZGn2IAex6RkDbbl5^LRyHF`jCa`t#>ZItpQp^LN@0V};1WcBeD4 zGN`+)XM8$OjtIOwXX^^L@Gvk0+!KFPSr}?)F`Z0z2PWzLct6?Zd#X`l_SDdeN#rsNqyja5F=vSi0q14Z^^~%dDq%EuRNq93yoaSto=EdvMp0q#=j(K>T-%bA38E9WV&a8Hkk{(?__q#TK*37hmu7js$)Y@MfdM#k53J4dgF4yj&#x>!sKW< zfXV-4>psf)rHjh%>pgF#2&J@GUZ_4W?@B?gnM)XjVb%cHYH>$PrOeF(x^!*!gW`x7 zwx^c*bAp&G-2O!xG13pLbx;P7a3HNd)-)FRZYk51$U6;pc}-0`{fk)Hc5l^3OGAUI zv*H`0F`u4gNgovVu)ba!d4Zzjejzt+v?$qyN5Uof*UZ46tLD9?ox2t1pRB zL+=6R-4a!-FbdWWWKeOtB}vnEuT*fwbD@8OoH_eL)5()fKSoJyyAi0Uir>x@Md5@?ps=9}!~4Gdfe^ORov znj0gkD(8f#V_45cMn_8~XaqqxoR;IdSA{mWwd01Q-^pCZ6CQ%9^77v+Bnpl}(GZ?V z_5f?ie$_aYRnsX?#Ko&)xPb2O^6Q`G_+QvfmnX(CCjgn9|MFE=_afx$Kn9!-2w)Lo z?{CiKzfB$x8lRo*t;FTuT-jX0(iFT9{QTA3CkiQw&?Pa#h|dV%DL29uG;q3v-5B*h z{(o!h{QIyxfVN;{Z7FxeA|NP;7IG)xk0!cX^xP*Ug<^0D332d%n5$T~8pl`SGf<#G zuLSjN=FmFi5Tt|F5#p|~{~J~vM8xjVb+e=1Z&4-k@$?>S?8r7pTCAo8sC{}K*t2IY zCc|SKpO}bPS_1E)Bb3|-sywZR{8V?f%i|;_SqoKx25M&22zBNMFu>_p5gcTL_)1t% zBaR@&yk~hs<*%E(;)y-XCWn<#4HpD*?r;#XM+8qaw_cr2^`hG zfh(m1>s|=F z06rMo{RO`Y!$yaK$qxAa5L#vjnNLum#EZCa-E}=7T$$Tn;+^}nY)l<6J?)dNTdjy0 zP5+`*WAWOZgIB6(qyqAQJ|1sn7=GaU&TkVq0?TeZ%)JvLub;WK+Ijc~eeKdO+oBks z*>Qa?D1b!mcti!hsqV3FZa!EF=-1=zuDzq>YC={m9*?>sZ%U7QBk2$v=a?cKv}m_A z9(QFJ!IA`@XG4P zGH*Eo-O_5N6w~kD96UVPO9NTMkJ)meSmia)6!f_IHzpU94Eo`h%n!hk+BP|v2=f;> zQNc=x3_@ZkCosdy*H>3%V5lQ?-{sZX@ z{`Vzby1L3ynO-`NmwgUCbw&ZaXq>lqzA`zvNpS5?>@)M%RLfN%A>lPEW7_vfx_#Lj zTN|{wBe%B8McyOLNrx<-f7lA&yxNy>iLH0TP9P%2blkLC9e(ti-|E)^G`vnXPjP?$ zu6an>Q~BUANB_EVu@?0eWdhMxy`SxnTa3ImQbYuC1Ezn^|BZ`yuvm8WXK>|FJYl~2 z*M66SWB#C68#)edhz>>Kie;g0?+F@=W#v>U;NapE7q+7_6}|Rf!e;JWMO}-I=}P|g z#urT!he9$bRS~>NWp?!Kxw&}8Y6Z(OCAV@Sp&-@xs{f~h(({fGIX!eG`7cFuYVO5^ z;hs>4yq*QPy<0V!Ye(>B^`e?a8%l93^eA9g39tk^*xPe8-lV#FV=T?j{}SGMoDq8TN3nf7b^iHz6z7mtxW=!^A+umD? z2w%QA*QD2WzX%f*@Z2H0Iq&n--*tCC%tia!z1^+f{P&LpU1RBNyRMCT!Lg-;Ml2c) z314)%stP|1yAoD}#~J)aP4bXK~>6reG{|o^&P(ru%^@kINh8|oyZ$zVM zFD)8Rv*|ITIY^D_yvaO`HK=D^b=iHgHhy0rh_G1DH5!zCLp8QWsj#M(knkeNq!5Z; zb~#igBzV8ygt}-k@&*R+;Kixph7 z)af6NK_E%sbleyo(XmBqvHp|3Se7du6bGfd2vUjsRH%jKv?Zu`z&y z6#nH~cZl~+VCWsQ7)ma2bg97W56*3DLY8>|O+Ww~xqRAFa$VgixwLxNjt|w^zXfmW zds|!af11NBeOd2x&j!|ge5|K5_(nxN;@kBws_3=dzduyRoUX+`V^{c7|JOTo= zUw~c#-51#M$_KHDe1^X#iyEk=2L`mawKv)tWqO|Z2H-Plgm!><0yc_&(b3~Q&L7oBMRhfP zeAu%3*UQ5BKvK36Yb3e4`Z7BgtNdUL>deFMlas^3-I>nFE9X4U%_Vl&{9-tis~-4m)pqF%({#i2k9JcX z9i72k1=5cnKO&fskg5FEc;-j^$y(E6nId1`@Cg%>gWdHZsg#rJi@mE8i6gKJLD=~E z`g-#22=-f;A5h|uGoyKa)t5Lw-eg2;J`~5j*9_cDLH(Xs)%4*u^fcFh0zkwEVY_Kl z(Z|Kj;rkVsFk}p9a3{S;r&4*5n=9wJGpSC{Q>1ZQyxRD=`j0E@&Od+JN;Oz-%RV6R zH?TC!2p`ec&jhi{k3@s-ptyweuVoM-fkQGfCPpf4f2klUDG1(F-1+uz&H6uiN=y2W z-1bl0yIY|Oc18Hh;Hgsh6h8I95u^{!pMdWG`~i5b0jL!Os|@gtT|(+={2fy1pp!Ww z%lHr5bV1F1N-v{LOeCZg)7X%GEysNNp@vOu!M50hISFC~R8U|ZgWgwWi08x9m<#?O zK#JV1tFPzWnI)&Sw{Hin3&2arH&jdCUe@_j?|g_pUeIdc$yl$Wd+Mr8OXFn!vEpeLi;FS zF`cTrR4>bHlqK-@pDq%PPd#I$5!o8tcFkyH$XUOB#i1O+W(UMwkHX`_e@*Du%f5gA z`j<`P!rDrkw~!;##^i&n%`xOo%dyaKN{{*Em%jRw zJ{9GD%)&i0t>0^r#Pb}5_eE^yM<}YLoOUbRM_DYMeDs%!Vs0wPGG#A?Y|O~ucr&SlnwVIPiLRp z-ilA?5(dW;97Du<_1!g}Q8~X?!FOau0=#P~GQ_y57C67L3G4H}&qVPg()J88-}mNz zsL%dk=6WsmcdXo~C~#uKfy0gtODsqAJ~*90zy{fPc>tnE=!GfH&ZcW!q9jmJ|6U%G zZcJ5kvKhR+fdzNssWSx_AWJ5{$MEKqDQ`(#U)jJDgs{M}>V7XyRs!S};xvHAX(*}> zvA-r2|N6gEh#vCT5X2QISrJYZn0`Vi$3UHneIk#!7es;nUGWivOf1k!8xQBJIJ>&4 zDl3b9{3rs_)mwK-(v_JIaiySsq6QZ;E^b)&8%xhGFfdcq&}a{*er9phRHDq`=i_sa zfIt%NKOi5sn81<>WO?t##mpqpV3lviLjq3iy@LZ94i1Ev5gx~f0`Fhv3?8;gc;7sz zsF2h?6iv^40_O&}1K|Kl0o{qm=>i56l@JRGe!tZ}ALVYa0)yJpYToHiXn`)UaBbQ6 zd8492%%AN!sy~4Z3vuC8?>=59FfjI*LgZj!pU(H_kdyO&o@cIw8O8FQ?>s%JV;j!phF<`XLw~Fk z?JlvHUz7JrVk|3u&g#t13h~g82XEHaR5-X6yO%nk48W$Oq=XEmP(2r&n-|1A~wP;URe}>kUTvJ_T~j-Q_T{xlVkt(pSbzV&(vQi*<3(vG604E@mFMFlhtn*HZdbAdDag>Y`)-j zR)J;;7pHTM@7?QRCb;>=e>gt=@ZrO6pc~n)1YW*-868gX?QKw`^Ni4X7>HwuS#{{H zcE-z@=LYSPg`E_O$)!UH7RztJ$Oyrz1ShR5Ku5uUS$TXA>Bi?^7K3-S@a#68)dbC< zp>?UVu&#Dj9Uhtd^=@O-R5|VUKZ&=`4ndi6|L|bhwIc*Sas>ngiUQ8}*j~L}sdtMW zA5R~#KrZ|n5lvA3v9mYUs6?0X`uoDdBJTwW+>N8f+TJ=Pf1%;Id2zS_zBK?o5xwSSrnYk03U`~TEO2JiM61Rj$K$=KbCIAK>F)py2n3LcLKj|2vvs_6e`U`eoe-2? z0U%e*k_n5g+PpfUw@f!zYX.W?;*LpGf{_A>P}YTa)j9qEWIa(ddEZ z>c-tS78l$n%GfiV?Ap*kCNEFdHcP=>5?ed>@mXdPsd!J^P+!+=ldt+)T6M%yRxHop zpu61B8(y(glaN3G#vx+u0%ae=r2`asVuBf%Yy*ZtK?t)m;>+k@xt1}%omE)6>cph8Ch64k2->fD!F;-jr zByi?x_BR?I^2kPye#Ne9Zwt`5JpX5Ly~Iupy>4NFd6iXpa5mkJd}^?h7V&KZ_qHy7 z|L$^8k4tB$y%FlRo6`=_LLcIQ0It-Mk~S`rE7ydM#vA>=Hfm}KOMKRnt4l2)7Jd%k z|CyPT%uECnG=alV!bHWOB>gayflyI z(NRK(sV3pI@Cga|^SDbJxIhRFHa|ZjWYZq(g5DHF>Wg6K=CPS26BTW291caC17HaT zkbhZOSvrjG5swu3io?Uhf58H^tEZ=>w>K0@gh4pZqQ|~s-+%L#(cF7Q78Vk4Y#;>u zYipe#R5Gw6KQPEDQ&x?xwl0w-{y(1HIx5RG+TPZ!qJo4VNGKuQEg~h|DcvPV3rHiV zgmkxbH_{!_-JR0i-QVJz-}(O9d$@->_RI6$&${QD^O{$$Va$X_NeK4xFlNHQZqOIs z19m+e0O^2DZgHjOH;}i2qoYMZ4gw|j%7kiEiHJw*ZBhL-8D%0PBj0%4VL)crP5Qyb zV4Apkjs5=d`VBq2hNTrFf@)@}ysZWs`Ai>fZ3`|d52P0{O;mu(S3#eGRPaTbrDe!U z&QQnk#8iDWzy@VZIj5&ddM=xvj{o5mS-QFYL|pAqjCOB+zUc3(cR?V}?a@&AzC>~t!aKYkN=EFA$5c>Z zX|*v-3D+1H>nbWLpmSWc_MWT}<k@H5zeD+17{yg8rQoWD!Y`OHs z{P|%)?JxSjJ^nz{kLZc-$zWA!kk?+3APQOS!T67u`D1(VZvD$a!yeqH+RAFyM{BYW z*7=a3=Qx)C4m1{*YSp|F*Ac49e1}5;5R!^B50jHqQ8{<%5kHHIpZ7&->FSzx*MQ)% zG4SBO2b3sJ2#3dBx}DAvH~jsv_1*>>{OJzRYJ9KnQv>sPjCf~CdmvNSxnIZjl%bH1XwGR3V#AI(Kiv?*I??FkaL=G0M zKArt0ZDA4U^Q~*Ab6v&7MIj9>hu`+u?|y_p7{#JfS1y%GOBYMb<2y$UFGGO{EA+{0 za_7o?qt}vx(F-Ox5}48W!+lVphnvwly~Oawx%X<3AS|8-_1op3$(8*{05)%KHHRnS zqfZ_lCEGK<r zya>z9H4bQLD;HOPT~}HU%jQ^4|M^kX_h_l?_5cZE_S?%(Mp-Yy#Km+^sn*w#3x@UiMqAIG3zx5NE3i~(0-3T*;RF*+G|>FPg62-|?vSsd7=xQlFpFJZZm5 zS!<%p{(5 zhM;#MBAu^B(7uq4X~suFvhwv|5D{w}ZuLz1g%Yf(-W?#Dq6~LeYzPQdr4H-~!>f_Y zvH9x!5X>vnaolloj~~BxJ|5|MP0yhw(s6Umo+4)nS}}k|7d!2$s_k~~GI_W-ctbal zTA9~?6qu`}*6W|G%l5K}dmrL)G-G$L15m}3AhZ*LcOT&09DUp8D)zy6LBQN*M*@m1 zhEGq@mp4W@xgA0#)6<7FCX_P*cBTkA4Iik#yY7o6%KIel zm+Fc^w`+7 z!89cB#)8v+%@<_@v^G~f$N&D{9zPNWzB@lr6p!l-9_D=-N=jf15P6GN9c-OP}-*e54eC?gdgv4&)k5Pb*8Y?z9Pa4Zb&0|qZ zs`7-8Hw^BN*cQ_iSX90*AN(>mW35b6p3iQ-RsMa)5FC&)t;yl zmRE{-A-l^fK9QCN1`67S$Ht;91gv7c^#+oxrCbewQi=vmjiSG+)179vUaNhn)+y%^ z?wdDnpeB+I+_cK7s!WFeK7_6Ib+LOQhqBxL{f{VyOzK548!^8KEWtJ7KWa9B#tjQc zJ>W6G9QzS=TL5*2STK53cx1?gyzQX zl(4AC6GOF*g*?=_CcwFRdR@_R9+1c=$ z6*cHf7UjKfw%Q$hFFuX*>1yA{8b?;-_+kWca3gHhaB`NL27j3L!_j~JuAu;g{jVpc zVc+*_os{u;dP9%CZguw*R#|yqTU$$XcR#V1K<~>@>aenU(>Wcx1GSB#eSxYo)k8ZC z_vNXT&<(V|kF*EtPfS`l!&~d%AZmZc&J>Q~L2)q#Fw}t!d@xZsQ2z$n89G9rBBPRL znkZGhz?2=E!W(J!F6#YuQ>kvPjBSKUaIhKhy2Q^riB{X;n5uImN2eVPpT`NBvz?+V z^&XG<=*V_BF?fJ+Hw_>&<2B_j;ykeyp6{jCzHT zWOJ*xk0&%b#%FnZYFtoA&UI5Uj8?5PCMuYSw|HmfQ>}Ubht}iXxVZUq(rht$4hjQ80)amMOKv#sQCqHuh1VAUTv9V0sY~-uNiXLng_Kjuvz7B$EQi@afaF z$ud&ls0U1qgTUSb_i+d~X#>i2WUkWJ*W*h*+RxO~_So$Ws%Q+b%&n@@ZcTcOw*AU2 zpI!LHsK-D_k3E|qeW&2`!aJ-3wCSU@fs16fyBmzw&;Q>pW=ug#y9{4YY&^XBLcZ~a zhVOsf9xGka5EHvWE?|CX$sNp6pqzoR9s?a1FvW*ja+27%xOeVxxLO`>@E{_hTXg2B z-PZGRyP=hS%s^B*>7u_qp6BG^+IP;+J_kk@WLW8gyWvlP&iF#;K!g1=+>Ej{uXc8m zbyF;_tCUr~?$YUJ2@&7Y(qX+}VU%sh_u#vMGzZVbM9}~e3POW$3K2JzPs#dFAsyUc8 zL)Vuf?+FO#AN{BGV{lLoru)z1e{}q}L0{0_7|yzDEZw3e-{dJNBs$;IvBG1^S9H#V zm&w`L8PvLT0yyYTSy_5hx+Db@8iUf=osz6yJXKk2dInNWH`*5~t7L!?-c@k<3mr1? za_G8e{;fMpJ|NCh6c-VB0(j93tz{RnWgxp79UJ#LzE{{C?db-2+#rdi*$dM{M zNd9m&bZJNGk3TY3O0vvsS0oGupR9yBxBw+Mm zo4{x4hezJ`AK`mk@^GKv{e5Q>Gk=HA6#4wW4pJ@kaM_FnnlE=l;nL;>OukGCKh-2n z1fqZlI?TEL)7enl)n!qFVPlU(I;Fjp)zyzsMOa!|8YC|siRf@~xtqL2-={sW{uO}u z-gs;`1Sh>5G@aI)7xg#>Yqd&(&mY~VRxUh6chdDGZN=5|i%IG5&T1uz4^`IH%@vhN z8Bk8vZOT{vAoxh|!waLI-;Xp6>UiF^;BtxfUdA8R7Uy>%JvNAUoV$#6+AbaAmWGi! z8c2sHCnrVqV_K03Iyyx_C!X;9@x$*nm4s-2&P8p-;maTOA)ThBcTn>aK|28Rd@y#SjT_G?=2&@!`6TUUE-Xtk*L+J#?;T#=9# zGu<9U&br_kIyoJ!^oC!*#1y@Hf|zY$8xch4f4WgK!&aAS39_sh(K-gb*D^u3yEnF=4 zKHSq&EBU}|P1bp4Pqorb)HII0J6oG|vC88B^$5#BMAO^-Kf2liLor{tJ4vCC85pqq z<{@w^Gb43i_~a9Gi;SyXruVq+`m&3?K>2SM1Po>68Yj5FWil{m8~AVct_{eI6xo_> zQ_kEhVZ_98QjS?{DvA;US`frdCD|Wf9X)W4X1Gs7%brspEzVOfod5A??p6v2T=9<{ zS$#uz2IXuqMAdfIJWS}9B`kisGbu7@Z^}%Rau*gDVp);edgCa6v!U8?aWO%WFxUz% zT&`Ke>*`okYNDv&ja*jTq&>@-?EGyY09O!$jqN`Oy^hSpWhU|O=Vv$CEQ#bx#;eYSU)nhNSL(kTbpG@%jrA81}P9O zw##bLn*QTKM@gBG>$)7c)M1=s0ee9zB~5B>O>9uu3pwdH$JFFyplQ2%ctEs5 z+<3LOd$J4}2_v+M1UvDaL&)3TZ~sPW$r+eSjeBEk&6PYYuwGqL!I-M8ArV#kD4Uu= zj`iVmN5@280JStm93S6Zqdwq<=hj;xMab{l-uDpeRfg?ZjVG&RX3Gv>*fo0w_XZt! z`MeMkoChUn+t}-B6;z*vf4k57g@l+CyE^0RYjLR)dVYJn%a?+gz$F%zp7#!3fnDLV|0s>8kWy~^*xn3b9r7LlY zIGrMNP*5nyCD0xn{kHH?7;E&9k#~mz&>iSwi^!pFt-leQa=m&`o^dQ$X(LXhV?G-; z2GIjcFvSTwId08L@>(*oLAT8&91oM51s~yUdKbljRS&dU!mEeL;XwcOd9EAE`>U@0 z=l$>365(HmlffmJ0AmY3lCMy%qNBv+HRO-b%x3xUn`KWUQ)SQzdfACp2E6{OeU_RkMOF5`JI z)mFQR$`>$#A<6{_uIOdAlH&$&H94kv3-Nar>X~MmS3LxHHi1Uv8}}YCEn~ax{ir!P zKu_jiQ}QC!(^H9ET|wjpzKs4?@S~rczSMnBCM2?0!?~~0+ll_uvSy1H6Ams(T#N^MTeA*{Lz* z5X^{hPG_Cio5a{~V;C4Db4$WKPZQoTJ}WDojkDA0H@6jt?sqStapo6TV!D5)@F2%v_2pmp#j${zijIsdZ`(iZFw}FmjI^|lw;CEA z&gvy1tykc5u89oq*x#L|eApVxZljmdnxA=5>gy|>mkfBtyEce?1t$a;u~A;VYXH#@ z-0z`%Gu7myI7nDtJXZ(H3)GG$xzmfG2QVkYk3z+P>;{f3g#TQro6YYIsNMPgwfj$^kY6kdtE) z$8#P*YlUA>chP6~F3p?^B#5+ERPeBxkTtTtxnUwCDEh4_!d@nm6gDFe3bNb20aA$X6mpxy~R{2Sg3Vo z=Lvi*p7Jq+K|~_VOhG~P4I%T#e6TmXiVQ^ck^KD*1JlDn5ewu6poWSw>CSRimZ1_2 z%;HxkxV&i?ReVw`Z|LaB;?%;d~3OywzmG*FJo@i){>gn9-@p-rOZ}g z5->A^`9ypA9aU%N7t_fX;n6swo1;3=C{J=DA@L!FC`o~O;d@zIfX-A_C`n96D5>ap z1}d(e9`qwEPoumJIfv8tX4B72m zsUSJmMW_yqhL)85n)BIfDoj2iBI&mrF1P^nNfaWaEP~>Jxt(H^#mEf~26(X)17|Zw0YZE3AwJODJnJUMK z4Ej#pPe$?NlZ{*z5J>LQ+ZJ`_p0MLvk3rdh1K;(@`~OrQzy8|K`%4vYL3i=5^|`C)d2)x zaG3`=AfV`;>$Qz6>y3gWN`f0S!4H<1smXo(xSyl=6Y9diiM;3KbD{O~*Dti(J_?*$ zr6hT(budfPs+RnNo>thg+?Rn%D0GQR#i8T*^Sa#}`$LjGrQq@e^Abf|oXADU5AD%$ z`J9-8#pzCwhyvASSW;{20XsFdg9d*U1pUtK6vBgqaeGpz7Mp%~d}d{NfjPG~|HpyZ zX9K}R3JL28&RF7)u&lNg?+Z#Ujj#kq$IoMVO*^Bsj&y2dz6-o=OH~$AWJo~p6?}aH z^-wYN!ubg6L`aBJ4Ujq&fc>O?SYy)sOpvM3JIneSje)!wV zm_@e@4U241@8(Li$RCWDC7W|vTY9Yld3gN4P&&SK_Jms=6o9F?vb-&D>}`*@sHnrq zB_<-i^EK;oL_|=We~O~`r%$AtJ>5|?=C5BjHjdZX(c500=-f_OOlN2FCCP|v4I6LL z7#Vxb1)*h$dHIDM($htR?7@3>kf-gElalf&*t389xDW0Oc+Xga6&F(xtKi`e`G+23{EKhwASDuZHYjfd_f3}Z^w1~;i|6;M# z+t5TazBw$Ic+->*mo4J_{0;*GLGCypv?rrz&bDbAFlhu8hhC-Dkv(QC?0sc z(iJ8G6zcX^w(cUEQD%zvWA>u6Jz&KHH3VZ2$t_(O!F`gc70JR@6_9YB@$K{@I+1 zxQZ{NME=JJm*>y(3Z%E7w;ITAfCq-6QpnyQ+^xr< zHpVac$Ajf_T?=|^qb=o1gsw<8U!?3BPAE#r-unXlxXpG2k7Owo4y#l@;s*~7>aHUa zGbv2{{P&|-p4LvQSGqvf#nj6?_}lf~gILav4IzK+O+`~Pvw^X(48S%fKfF;2UB5i# zsW)!vmC{{o>WG@-mk;yXo~a&qhA*LGgI)>pz}+f1DCh%laX`La-pEsP{$oeqnWF@2 z?K_Nr2PGx&9J~_1IHIo=N{05zueA^L({YqSxe=r>=#9iVCTx7Z#piw;s#a&;zp^82hZ(2T5U|@c<9WLbJDYrlRXhTz~r_ zI*khvrPF#uFa$yWY;eW6axC&QnKF}K2J?Jjzu9gpk%a|2bT`MeJQ)5IKDV-LLpi_v z`KahKaOSX7SwH2VI_bHbC0%{}l4&Ay#86pgopBY*sdDoJt)Dehs&4Oi>;)!P4{OqEW@pOZK@z(tf@1(NUW}zr_Sop~gEKu`BP#s1bT9m2x7X z;*qIaW356jG=4odEjV1 zW>;YSZQNF;*muL$aqvx)na}vl%+{U>2+5@>Vw9V|hJ0ff4sHl0w%1q^e>Y&^3H?1? ztXF~n?g^CUzq_r-l`DsnRra`P|)UsY5NF11lgoFE4Wri|$H;F9VhZkicYw z8zoIn_&gk{tB}u_A9jEG6|S+xIZC0MTM{ds@zWy*^ya@7` zHKv10152Tb)R@?^vdOKSHe#(m3M{tOfT0G0_Z^N!nY3`e$Rj{X*f(lKo&V2a{awUt({^w*Js40Gh(Yj zXr2l01${y>*evGKFG23~^JldB5_DPQ=r~)oTKEhn-VC~9ZkG+;r5tGip>mN z_ln^5-)sb}dTws&SQsUCbX5BZNCIVL7W4|-SXfZpkdnWik~rXX;BsnS`Eq|hC?PPo zn!~@Tv0WzTu6DQb*1tHB|Y z)vsQ$r!T?bs+ld`*_rr}dcDH07OHvf83JUim)gs^AYoylj4OO>kG`|g{c5vw=pg9){$_qQ)qww zECNtJP@{?FTyMEPm|-S1Hu1N16n%OZi2Wn9fF5EFiMg#OOthunbB~LQlL(gXQ5sj3NSS8>gRxvO%W~zj&LQl zo$DtoxI`CqS8`&0x1mXLPaXCK#gkuUE8<*pFd7Y#z&IxcJ9Ch20du7XGYeF$!J%}E zdp}RcD`Xo-zf0?fqo80-oz4StPn1vR?ZGdm>-#Rl!=>LQJ3Y@;mNn#;(bOD!wq{AA z@}@IEqq_OQdzPb0TTE93paDY8T1G{Zj~kMBUEptrm`p3+x`~(#hAABhPQGr@F|lRoP~COcuomz`+Z3IA_{XrL8ro$(Sm6ew-{u+F5^j>XF#dg`u0* zT5$T?B7S16K$f-8=3m2o+_$D)E)MJuMvTE$={q3Jla!Isw$u>{IOJT7>InGwFbD|x zARz)JBqO2w)EsJ^w;595%7wZu#TGK5WCsOKcKgT#EF$?p$SSRCaeZP@_q5h2rSK2o z1}Fl@$3|z*`t}~9;s=F<{B#9eME}^TgaH|V=}D?oHFl3il>WGIWp|1p_`U9mK3v5q zwxeHhaNsj{zNz%P#AW(?a&W31aeZh%2vp*p7DR62OPS!zc9`v`p)O z0KeYu=JiQdKMaiZ{V&A*IZC7sR@=Dn9ISDxolzk)(_W1EUy(j z(_lvf5AF9JVS=ZO@Hh}(9)h_XqO8yxAlz0jL@Y2L$5B+@^P8Y>7o?}}&>>&t@)}A@ zJ{P+3z~4`H*2AWPh5mD8m~xuuD##rALoxW{{gEqwp$r&LzdM2~X;F@eQV}0NBQrzd zbd#HlDs5MWv~Zq0lhwX1tg#t)X4FC?yCSVW_u)^nn2H><2Y(q^is;K?J+mNtZUvjdSCf^#nX9Wk7ymUH33$f@YBwDDy5YrV~?d2;1 z7wkM98-s*oTD-3>=i!6@NO;Sg*<*PE7sDvOf|y`x-1$9*$}5|y^XT~8vG)~CnR(h> zp(uc-7oEjph<{hW{icP&s7`+PLc?c=figawy zu5h(2uM4-Rj*dE{gjS1~cB-mF<0FNC7SMa*;6$yghQ50KW8uOk*2-!vHq1Ruj&cfg zT3u$k{QNg-TPl^PPN(R9Y^WLGVm)Ti_;6v^*l(q$iH1J#&4UN{6~G6t3RC2R=YU`?WM&jy2BJ(H8nDD-I3_- zT@gB5QSa(b)%;AM>EHlR2)W(f*Utj*!?8D(NGxxr*+t*~?Ed|0o0*S){>+kZ&fe|l z=YR5{44d$w zo|sRNn(Hk`%|601flK@QG<2}|OxAs7;>{8;GY`m4{;zg4PZkAFXp@M)y|6T`v*Ekf z(bxBV@w9EY*c1;{+z|NQou7Npbd(tJH4kT!5fd-(Vvq$zML~Xv0UD^M>s=E-ht>r? z1&rRGK7C?=i=*MP=0MXh@C-WImW!%nEF-i|QtDUwu7efIbBH#Pv)~ zuiPJ(2&K$JmXd^o@-}bUHgvZ%sc1fM;b^0ji>6>g0Hkh2gK8m7XPphYgWhRs}XDh}2X-jU*u_&lu&V z1W!NQ;6R7`EVsDJZSd^Xd-qvD*B6Mtga<{c*r4Z&jZF(J4?+3)VOD15o%%Liz4zE=$rh~?(%JR@gnmk4M^tV+HG}Om|3|~-l&^eT2iZ5hD3DueBy>Uht zUG(;}sz>t6XA{yqpP+0r+_3lGTN|ox7e{~XZ=A!nr@F9fT(#O^CqN=qSs|hzBoic0 z>3o^zR}M5>Ch}j192}GmeaWY2vUG5tk&@N+D|M4ft$rEmd6|nk6^Cw_P5~ z%A9gDUKq>c6!8oXZxCo=p=qQuZ{CPdQ0fS8j!ql*fA^G(2@3t)^#h1kuNdyt|8=vZ zrN;2h249>47%TkTe&N0_VZlXt_?WqQ5_ib)xH)^xmtJ2pfs-;}{~+Y-wiVCjrowEh z6WfvITm$y<-ri4vz(NERUC1z_#fQ1~EO%WkZApA}Ly!OhyI=x$CY{E@GJV}YEA>}C z+~59OOwGwmSCbnLP85UuPDM?1=K$=@lD9uuZ#vPa{({5osR%xC*0!E@v=DIjcf);E zFefd?K`y5_!>0zzp_ow$%5*{Jg%t;m~oYv<%RZ z-s?Y^2oDb%pJ3FP<-`rd_y07OFOP$_Xm!Ksxm!#ARGOMvwn(d*tl3sKxdxx2aPK--@uX zc#-Ljdf~x+0Q|EkQ_RU?v4kllszLQ#=rraJQ5w@WLM_qa-^sJVK2gHi5+n2!IMO!dFhbDF@#nloa2TaL>2zXJZP14Ni05^+~YcPFAAbW#VR z*W40SKzRr3uAAE1z2MyHqDRGlA($CDl<<-4#sYRxDi5!Ja~(kkk~s9W!2Lj8LE(;R z4ELM%zCQA|Z?PbC1G^h=YlvwW9S;4``$a+h80E?YRVD|sXx^7T_3zY5PZ5DOSUaEL zvUov4g2$Dku&^j%P?9PjL;o*dzG#b3ww#)-1MUHPC*7z(j6uNZtTO+Wb&W5F3t>vXiK z5om=3U^uA+F3S^g0QTRE<%K>fh@VYanhvLyYrGi{{&GqeL-{ci!2VD}`Vs!8z}>5w zhXo#EnAU&gyZUEdd)<#2gNL)3cRxB4i9rP(SF)C zArOIF<^IRkF7i-H5|dB29Ze;y+~W3XQ^6ks;bqQeL@BN}(X^ptIzv^g`T6-!CBo!< zw)dXtrO}`xgo^LoDfQ4Do}I7Z(O_kj{n31NwW~6Y{Xw3p>^mzG6Zp;L^csAXPUS)T zfs37(K)t8oid!HRA0N-cs8m!efs}b<3CrN-ScX_q19*|kB;&-=R3#M@FdZEo0WOaL zSS1iPnmKOD=Tb{tPE4bT12Nt^I2>GFp8jq8+1V)uC@knk_?mZco0t41S4=z&M@RCo z7LU!HW~PuI{T>-vatK&A3n|~(1q^pZs%U9sF;}+ktO)*bEJfR69pxZA{rdO65UIF@ zjQbBhj~0<4di-o?XfSMRY8HrM@+jc2GZ-xTq&`)J8D7W;$Qg*)+(jB?4aoQv3tAJc z4Z8{GbhOH)7KS6WI-^ueL~>n>S4>r7l*NXXk(O4QRueE36otT4Sz_}gNS}~1m@o%^ z!uty?@7URaq#%F(Nikxa;2rzO1UDvT$G6L)k2p$%yG8?iruZwpj~+aLbB}_an*VZ8 zTwQ_U^Kd0|MoNk(7%Td_eCcu&lWe{=A08R?_Qi=ecp_uxD)SoTD2_|V`GA{v!Lizw zv%<#LLaCs&x%nZ?fp?7N3d_aMpPd=BBrZ?qXd@!FP|xV zv|NJcrpAY}0GSoGIZ%|=oPhFrY1(!RP2rrrzFisEy1q&UR*+5E+S-!I8Sw*?T7KhF z?J0@u$_@&bliba}`?s%{-0j50DXZ)PCF$to+21qKy^kr;to>s&@bjpV4`q8=G_vVe zN2XHXLqkJ2M`UwGo)Iv)li{&-p3N3Mh+*Z2DzQj&bNlg0CaVc191H+3Jne7sy$@!& z2k>L4;j*D}gwTpuT}jxtf;zFbE$s_0;#wVGn-Aaj_^lF`1>XSet!C3GNBo-2;Q<>R4#y9){+P(CucnC zVuHX_Sy6)Fc{`6^6gK-PZp+?B8Fh6D0|PRUPhWA^K4W|NvNZsQSim)uEOolN4a~3c z)zpzo`UqQdea9W4>=|;5S7TcHW^4c4n9p4)SMsK4I=Nb{THRd2Bi94(Ns z87wqY^CqsVJGeGmk;r1X=MZ0R{3u81Bdnj7f{4a1FBi{;qz~eoe(@$HW@l%Y3H$b* zs=$GKMx9vv?`~fIdd7nQ!aUrOpCBW*ba%tu<~K9QhLd#bw?>&plL|Rf9QHC;>wo{= zep_O0|1T~5!Fm02$YP{w);hwz5Jq!AI7I#a4F{MH$SsPBieP)Pgc=3twMm$6Xz}G! zboYe)D29o%3NmsU=Xv2a2Rpmv_9QDT>f_D+0$kOesX&c<44@kO-yf37|DPEW~UNQAl|>+1`fJIF#{U?0J6w_hmUF^8w^hTn%WDxK#4Q>0c*WMmPT z$O_HuH=q8#Ipz`T7=ijlA)F<_aXDPrB@eFB#Nmj=w%hFq?=cTsd_6erC+#UI& zF`CW9{QRdaX3*2P)J5MSwxZMA)|9V7A`v67S86hBXV=y=9c#}2tLSn^qbeh9zS!({ ztP}XoCdz=X>ELjmZ;PCSBq%;UAR{zX-L0YF{eOp+%E}^4sqa-F{(skh4xlJ~$Pzw$ z_}F@Cj-b!su=&4a1a59!478Wzhm+&VI~^GbK0XT4sF5z$Yx>#^aECK~dhoLGXq~|b z{SztabYC|K8(SpUor~VvlFSZ=t@HAdd@{7Iv(y7nfCs$Jz$Wn(LO*ot!SQtZW+G2~ z0(lHh|NSL_t0<63gM))%(Uv5aRRIH%a=*Jr z$7O3^!N>1-xT9QlMMV{AGT+yu7%4^zTrX;`moWCt%_rpQ@M7N)#c!qvTi5FecUoC} zIlG+80?H=bQJ+Ei6Zj+*b3VaYR?0m!J|&LPg~R->bgUm0N$+5?blPE^lrxf6FQ$@R zn2)cb&X0kzXJ_&Qc@34HIvKreq|1Yi?MimzEDang$-a@(7n=j16#%CX>uLd)Re*5A?7nnHOBF*n3z^`r#qO`aq~^2 z&tb);tHfw^hcIm$9LFA6?i$C#8#>t2xyyn8A1n$Ak;~{qzTh(n&=_ex^vC73Dk5p! z9C2Fc0}Lee19(6t=fj1W-)lChoAH##&IeEPS-J4<0nG%^4`2>Q1>e9k9HxiRJKfmS zbjJ&t(sJ+s&HrfT&;8Bo%gvMZWzwgZc6QOl#;h=^f|TG!S5}t%MOwmn;S7#LQT0+E z6#82Cg;r#up>N*^zL|S?@T%a%*v%3xLfRE52hqVqWlWO4M_ZxY3l{X+dq=xo|FbA{ zz4smo<$sJYxBO7_mvg-^4Y~*v7WjZ!-?bz|4cytVld0Kn#ml7A!dlR4_9E{Lx;5#~ z4u9q9e1)<6*Oe5a$}rP{w5exe;>%kqoGq4?3{pFcFP8fYf&h<&>p!H_w9U*k%6}9w z?f2&GGM-ii1ir$!*9(!8w zJw86ud}v7UsnfAB?fnxapp6%fuAY~UX*RXAEC=@eg@DeZZ^*$193Z!lz9af^0YtmB zi(kayL+0V?Fbbhv9QCT^15$YDyf#|{KHMYN)P@tM)Uh-+A zoIZ_|bnEk20Nvp#kCC9PERlYv({4wZiE|eCG!9*3a}_DvEB20FFcC7y%>E7{^tsIV zkTVhz9Q+r=W}`%z{_4qcM~F%;kVTiQ%86OK7fy{)|A zuoc<5JW(?T4MPHK)EsunF3Xsp^D-Qs2;FWdJi|nMll_~SjGR2Q%8E4n7fPXER%&wc z&l6^Y{=(d6*Db#61DVfhVMX^Emr6i0l#GwbZ2aE#R7zpdT}j;K`num_Dbn(6Z8F6* zmmqLA(SH-1&^&&2bi9s65NKn?1QDZuYiZ(;jlCNfWRtM4IxEd5-sqbNd7kYcJmj>} z0!iQ7%j+N5lwoJ9YiKA8lrI3-K!s>iNA7s$)-sX_SRz<;W&TkfIWMYEu zU{Zi`K{t#upnN;Lp1+%`Y&>R0WGP3KNBE@)( z12aq)U-6iQ&`tS&iOGT6VdZ*Et7|tqn}Laq{QdhF4!fOyiz}W~3^J{frT)CM&|%Sc zdsQ5yMz~bw<|cpd#S0miO{`<-xMW#N#&o>5P_MC;miiCtm4q9y@R#bZ-ajGrlcOa4 zVi(f!_uz$15sHZ@>Rw{{^yCC=$a3)M-I4vEgdJuc0old#YWqU8KUrDm)`q<=LI%eo z58}DbkHMF9yyHJHw1qY}ND<8)r>~|4y>=9v!%st#_+`Vw5?LAkZDLYagvWNbK&`E@ ziSPA%(=!y5^wlbxObqmP`5fS@hZ<_wSByVmHF`5fM09_9eJIw_sxd>Aa@)w%Z)PxU z98hxLs$9aunIBI>0^`L&!(@yc9$wY?xlXkMGxA5dvosZEn%FqTlRd(=nYfUZo~PK1 zKcT2)8jB8)l>AMe@|u;6`KcuE9Kz+<5YXt@Yn#5LVJXDGP9~;fvl!gp(U=5x#oSA+ ze>3UGv@dB0l~Rao21#n5askSjVu4F+&~PticP>ybl#B!-;OUB8cgR^FN5dN2oE3}Q z(NR}tWy9xYqL^i-5~C}ZMq+n%c`}Nz`SHVl`vbxxCu_V=G4>hCIo225X8V(Le+>Rf z;&j5IBiU+2M$oL6Dn@#lIbIpMxY(x0ZW?7DQf@}=oz)vh$}LY`ey?(eTFJ+3c(Xt} zd1w$Fg+Se@fQ$X0gt!;H;KNGXnUCtl>`yz0-^@Bd2h1;MWJrEwrEo zX&t)Z@0ty#r(+>|YpbXvat2|wa9<=vUfy@NM;M*!Lz^pR{%% zU~9TLic$*IyQn3L`ZVo-AFd2~!`zdiqbUXmJo)ZZVXj)tk#Vs__QHbSr__X$4qRuM z^6(|J+!|+uQ|FX`T4vx*R=-UA_+j%-Z@(h=u9!m#TcgFcK;ZKcz`b2_TI<9Wr=_Lk z-kRYj?`)G6L?VP+wIrGLpLS5FwSPnXDb(3)K_V=Sf!|_Ch80n{5LXxl77gk#7(k}y@L0~o9)Y8oo?)yYC=kgvjTYMQI8F0Uwt zPDCQ$0aSe&zWZAXfE>pvt2Hs3q*kB3?3O>Tb#DvM)&E5SWtWev> zllYT_QHx%`s;IOi2E-2eKgy*%p%e#4PDLs~kAi`A=V(^n$6QWU!()-1LjL^`VTlk; zr~3GjuQ&E@R_?Ri-MU5n!xe1rm@IO*uyU_@IkP^1I>8y1z48P&kc{z(Y5FK zWCO}fDaX`vJSabUy=H-C=Vu0|JO0_S#748HoGcbM`c@!eSxKigIyWI`mX^RX;Q{8S z*jKMUzryjZ64JTaZ?o#t(_5|~mk83!mf{0W#=Q{jDd6{k4-gLi`{+%uIAvg9Xc!y} zSs%){tF{9RSqCFSqLVgZZ{Gp8#T3@^ADwqfiVFaf0CpP*J-zgBIGCZl=+&QmFqcB9 zsGQG}0Z8zJ02&RkF@L;5lJ7OTE!(#AZnw%)WU+G`-1ejSeD)F4%gJBbJqlatftINCw zWG>W-+JoS)-G6`}(!DwHu};nT==rD7(cC!pP_TIqJ^?MBhzubGaz=-TDXFPFz2JAwP|fg2kwFg)!~8WxvoO>(dcQ7J&+_bM99cC}jM66mSaC+kf zD;-(ymz!IjcjM^dvHV+tfgypXFHxg<9LQC0btts63Abl(U;--q`r3f=95|rq)DxkD z`3$%-@VTw;A9P_u{c5QtaVs4iiL$bGNR&ve<1xv~`GpuK^0P1!V;g50hf|G{tqJ}n zg&b@MR?TirgqYq3<^X-|5xSz(bw z!GY0oLEsrOG9`$P+1Wl|D~3=iX#z7-wq$!veE4y9_M4Y4Ujp_`0Qyssl9KMd^T+0e z0wCw#tWBw{s_FcXqorw8KL|V&`}Pg~VjQ@boNkhLS`iaRr>N3?8Y|EXiV@>=V2>GB z4#V{)xk&gK6@@Leyu!3xy(<&XO{?(OZ0ctc5gf30KR7@!=p5vBQvA;}&U5eo85s9& z**l;tklv!mF^%bb`;+lm@g5=cQe^Ypp{2oBYP+Vg;xhj>qUoF^Pmk-1x%g`F?+Y zg%-qKg{EE(j^sDQj1m&5eX9wJ_?UtQn)s(~ZdtgDKLfdMq9BATTWElMpOW%ux@_TMtg?0YGn*3qqKf`xy`D}4w?J!T$E`u zMi48%t@usvZn*yhX`^S@xU(&AHMf#IhKPTy?6d54Ddkk5+w`#faCEdX@E5Yje?1|= z!^0z!h-$cNwWgv<1`LeU#5tPrZv!x$jeo;>f#@yylCB|y)P89>I5w7syEsn`iCvNF zbaP_-i>OvYzo73I8j8ekj_(l^{y&<|GOWtA>)I+RpdtteNGX!i-67qbl7c~rv~(!l zNH<7GcehA)my|Tp-SN$}pZD9pIF79dYu)R*W{hzTRoJ)nct}TAJ;Q3&3JK@$jq|fR zUc4Y=5?Yz)iWI_jIgZtK3-X4bCqSmO!CDv`65ps6N=ueXKYql-5?nET^9(S5EQ>zR zt2jP9IAUQYt3F_Th%YWq5)USriIr8#r)W`8u=D^~p3SHU7t8@<(a^juYuxlu766P7 z83eCTQ1yk!3uHJ{Kg0c7tK8sM-kUP5s?aDsw;)%0PIFdMF$a6jT%Ip2G%%sTlxB?{OSqZOnoT>h=;bGK%x97OiD^g-H}2DRSBQRk}s7q z!pPLG&cQ2bw=-+MGmAEyIedrg@qOfjc-XTs9vzY?f;2l2zqK0}aOo-rVKG$J*MHa? z&8K}kVLtfby+y9*LweZ+2?q(3jOAs}h`>=Onij;mIR>yU#t0O~w`-#@N;^(VvVFl{QvQLv?05DSmLI(iJvUu%+({yUX z;A#BzTS(HoCz&Bino_ot44753uz#E0L7QMckzW98h+b-Z~P zNYuA~dui)7CLxw{L-sJaiwC&~OV2Fvl;vXjJ`~NT^FEqR_%MjU=lFbSFfNVQD9+#e zL7MWPqVQTk4D7@3D`moKdU|#?$~Jw*AXG`Ovv%6YGi^NLo1B*Vg8Bi(3nLJor|KMS z7s(>y1w!j+&-P`!x*7>!D4A;}^aeI?%RD#rf9!5HRWS(L3GsL$eEbLcaS61ZGR@wp!BaJ=9YJD2 zp1zvZO88IsD?(2W4_ki!1_%V1Cd8Pi<%<4Luz+DrFfpHhW1|3{`ki6L9cwpGqVlz`CU^vd= zRB`EqNBz|Kn#*ssPk*L_oU-Oi#z=1v40pluPiI+?Cxen`viupikcf>n%sS;+#}5w< z5W$adQCtE-^gc3H#F&{BSa*HO?VrHw=T)+(NT_wVg5KvPo4j=2bN`&Fd>h=5(D zU~6+SHR5pZ`%()FrnY4wcQHM=SN8n8(s_ew?WYD9&4VF6D?0U|`Fn4IH2$k;Y>5E4B%vjE8ahl{BSKdDAL z^B5N7&oe@9Lu9Y1V{TQ8zia2O-dZZmbTKWp2+#5hxAe9luu2U;D1gYQK(}HGie+9YUdIVwUSt=eMuP>>nh)HXm9cGIKOH?dF0AGVnX6v@mUU>V!qraL94#-{NDq?{_o60H4z2#x)@^aZgt2 zWxk73S65fM|DE^z_wET=F^?l58QY!PB)+T^edx@~M_#R1NPNv=xZrk_Gl82ZAP>dl zs*tdy8g=p6uCQ9jGvPCDw56vwscO0Z27Vv`((6ZEULaUHR+|!eCR*CMSgO+R=Hk-H!FjKj~+j4wjNB){HzWtt`A+^4$^3*|R-QV!YJ2C zj%O@*ZmW;!yQ8InEqCXi-&@1>qbw?BW@fy7r(&i5PFHjx@&B7QxcNhC3XvJ=-ssQi z(STE?s2e;v-&|x(ImXY=nVDg^byI9NtEiYbb8^%3sNPPY#vKJGFKfb-c2EQJ-AD|F z$tOPw6HF{NrrsEla3g;~ieq{}L_*D9Zmp0h(*!M9kz=VV`)73ng_|S0oJrs5vzie;euk z+ggLxVLJ4rd$o4mZP}7oB=kwGc28i~)xOt^{_Kr{`&PAe*7;F**dF&%zZ+V!Pxp<$ zjW)`;Tk1UY4J3fYB>~^8Vw%{fsp?*jMzvB$UbL>`l03Lj0Cf!xCXe`df_J&jQ7kMh zTu^^PUO^uINdcPkX z9c_i3BIuZ)xEDQoB-Ew(#t%*8eLBVi+oz?qU;OZ`t}n#}O2tT%IVi=uDsnk4xVVJE zbZYK`?RO-fz_6~qlaAUz%Huw7tKj)RFe2U4Boctpj@6e$fshZiUk>^0f?dNYei)kR zNFRTmqen{wBfdij+~$z|*)%#@-nN4;k}*}F!}FMky9N4N(w5jCKb({3v|fT^&!+YL@vvto%H9 zpR8C(qa%n$oe@+DE=c!x#WZ4iPJaK!f9T)-l2OTIwJ23uzlsd%u$SlKJ?*4DtC(EwXP!D(yDA5F0=Y$uockypx07AZZ8hE4GN zr#V)H6lCK> zGJ+p-L3J6PPnYrK3nU~^NP4A{6+dKT`fls8)PYodvtZunw`%3$>x;oW+j>t(_|^6p znmjTx^Z9WGJauqO=Ba%J${ZM-V)zQIIyxosbH{?{Ab^@K07r1Df+~(ZLr7d4lLGi9 znDwywcVlOd;rJx+PD^XM@r>dmQp%W`%dQ~w+xPDpMy!WC_MtEx`2=xd`*QhW5O!ze zaLs!gjEx^uuyYCx9J)vYg|{!hC}&#rxBF1Ewr0`NiGFw4 z!1>qLXR|Y#s5UCuSnotmF`js;0P$}ifpUTW) zKU5EC>0)mC(8O>G#Ci!KX-Z2X&Hzin{&Cd0&!LTEjdo*SFrO11jD-o|){Xf*L#5M5 z3{8@Ofq_JzZ^}dm3NNn)h^ApmfavecuN)InQ&9jA*jHV{JUJB)VXuQ*L-(Rv1DI;8 z?tL)IaxQq+E+Tm|W5=4z>bJtrKah$3CJ3L&`N*UMvNRR@lh#xxWp1r4FF!fms*H$; zWSajgc*w%+Ir8|S2ZgK=M1;Emsw+rV7PuG?)y2ul2_Sh0wE7DS%)9W|^*SD=lu%o0 z>KH3l;%5}R7KUmJgy8p)(P8@RXaQ>y7(1^g`vl;2*HpRPD9WGu{7`^PK)9dBj&pxC z*`U*UFEwwzayIOpgOf5O>Bg6o8plL>O-`1+C!;8FSrn7XjgyIPX&(lVCMF+W@iy4E zcz6Ke4Q}h-{li#l1xre5I1tUkdb&pXgb@3w-=7+NVIWR%+N@y!HSbA?68=}J17|fC`WjeT9Yz1(XNcie<<+p;c1}l~1`wEEVBk_Sy1?bQv(3#E z%43|cm2tfrd3h(mw?Z_93@DH3-@LJ@v-mo_)0hd<0+{PUZvkNZbEn=tE9(pyhcyMo zb=joLPdhXWnM0j^$zs7R}2lq`>$C*)=mTEB@R!M;A;REP}z<^z`%^82v7p zIn=S^K=7Mv`uCUSJuA!N2<*99O3#C#3?V6q@u)L-nzOfPIa_k?lNp!&?ps+aDp*)S z3IKBC*oz9O?q5Yzr3$Sq?Cjy zm^dTU=V7k^)B?~~#GGKnYC-Zq7`Zgnt5@^Ai|v-r__ZT?V5rWoq4|5d+SA7e3mdxy z`MI;gm6#+RWK4zf`1z%3aIj(zon$62@#8%0JavSOCnXJ(XU{xmYsF1IQZzdreUl8& zx_f-@ZYYa0Ck!0hH1+gGfEFmV@V3?eyxj;E0jmhogWHV`?-cs;`$66%5I0%n#L*TT z+fuiCNA!OVHw7wy7=dHz0K_OoU$!&>@#i50`=0HYGNb932?#0%<-Mp1_6*18CFofL zH7mDwIJOCS@pK(Tv6JPS`XLP-2s+#@=db+d+@dW@OR<qfp?P}j(Rb7I+YOcw+g;mM)9QD&}q|-}l zJpP1!yUkz2!{LLrkwf@FJwYe4SgBK8Qe*o|oneg6cs25H`;s7FLJ8(_)8(b4eZOw0 zo0}g`PU^=b1S%^&F%uSou`odpzJ6q+S6e&sY9!5vV72gVQBk3vcI$Ux6qG#(P178s z!~PO-{LHt!Gd;KbY*u)m^x=7WG*OJ?W4l2taT%J3)*e!-tR4+f5Z;f8q{7eh9D&C2 zoy{hzg+W@{_(hG;lQQGxpdZ3q8{2(rs92u%9BfZtx(-uRC*}M!Ltu_sNIhZ~+ocUM zl_|4zm9jZYoj5x0-w*seDkX9Lt{qTq>>Fzem;~K1=8d9-Iew&a*TAo004 z5`OnVbS?s06SRezTuy2WZK0DvQ15B}9 zeI1JNSRhBG*`eNhg@qH^BOVNmm!JdX9)yI3c6B^%ZmESYm#6K? z7TelI<)VCM_~OXuKS5nC7SAqO=Wt;L@pDCm4CCKC{yoR_ak60aDs1dqh5)LSp6?IZ zhm;-%;|cZ?^Hs6fP=Rn3pi$IALs{AtkLm?Isvz9@62OhS42=-_K>+mPEMYu zTOU`TQww_2ZbN*^|BmFwfK~hU0xuj*qaUI!R8&-N!I2J5tJ5=zWPo>~m8LC{F0s7+ zzeXG3&;+~Fjn~6Vj;3DOk@VJ9w?fIjMil7Z`cxglg4c$9ra=tf+6KZhVHl^~yLS(< zx%)iLxu@@n9~SO~cee0w&&dS`kXQb-E*Bkf>_Jjq-x|<4g3k3kA@=Ynjt$G}i%l8T zzoa`*%t9F^3<3bizC&b#f#wu8MO?7e1>S19@=Tjfh_F5hd@y<$fa|p!Mh=Gs6uq)Q ze`;%M14YTAZpfAh{1{K3Jb_7bSaLE$&Qh0D^)*z(7ha`?&&xkCGGh+mQU&`jtS@)7 zLIy-xmha!uT!-b&H`{tZH;baP>FfAgS3u9r%?<9pMpw*&B87;aWVh>-5*x_PE*dL{ zOlHG>wFl~{Hit3V$E*t=u3d@AgJRALIAiFKsvxyXgt?& zg(M(=12|Uv=|6E00D<6)!EIzr5$E)M`391BsI(B?p1zGl-(RFcW>7&EL zn2Dcg>ilP(Glliu0LTQyYzvP4L5P3?oADj%Rlqnj!|nNsj_zqLG9Mp_CI9Jb+Bc8T zGPqJ<&AhTjH?F8nyRI)R{EVhNu4F`IC_IdjjXg>#u#OiSAMJ$O_V?l}UtWO!k}G7o zKlmeXgUvSEFEIYcSfzPPjrPv#k;<=Mg=j@ZegW7G=c(oB5N2VvvSogp9%QKirwA!8C~wj==Seamzz8{B=fZYz8@8pdN#1)k76@8LNFyKohl9X?EdseU`{GPDYjF z3CphsB_&3n0(!}$7f6@Q_hrCB^xF{o0ha#DenXYB_p$yB7TT@F~M# z{;G;}pV54XECSq}%=qtvpYwJU4QEakze9#ua0uoATphLRBF*3KVa{1uy}txUJSlBp z>Y9;a%<&eDA1cOg#|4qtex&;Y5FQ8pIN8bD)(48a>fd9C;y5UmE_SNdHv`SzJaaxk zi@d%D&0P0x47a`6R)*e6#0 zE9?T@*1eu*&W3#vOxiWr?upM`TH?VzlNi;Oi-W^DRdR2mMTFJqWFh{$pqdJHFyP1W zRGqvoE}G-mjQCI85z&hQe)_2yeHO;EymdFHNX?=FOWLlkHnK9^lT-OQkMrj`r< zgKniC4T_mvYRG=iI>{R-y>{1LUFi)gb2{Y*vgKZiVAWIH@bBMA8c&WQW1_-67LLvC z+iv%?5^xxS9Sj`Tz_dZ+HT{%{{r0B(rX+lr<&Aq}RFoBXlc7)ohI6J}01mU8uKf>P zX)3VsL6%_hCv&^M?#}92dCqlSG1XieT50|P&0YN=joR9H55uN)>+!*pxwI_@Cc;Nu z-6ZTdEF2u%V??<@1eR1(e+^#WA|hZ5^Y>hOZ<90Tl2p#tU2B^Lw}=qGDeI8-VQwLm zHHeKJg=)_K%HkXBvb$x76S(z89M%rY0IEZv7zVx7`mw%jV~0!t_i9RXdSnFK(9jSx zeoU|duvSHiUwvFqAhb=ZM<2g=lU5=QgXsN({oTub>A+0+_S1~$tlakeyu2ld3t50P zj&h>e4G>fht$mu|CYdKzs~z+CiZs6%@_|%OwC)pp%lXFKz4@DaghXDx(vnXMXsFj? z>%FJSO%by@(_FtXYUp+Zux=;L)v%5C_8K$V=47el=S#}VgND}=`c}vI;@b(Fmfs-2 z6pra<{LY-*gM$Xk^ULHL`NqSUNlv5dqX_Gui<+9vbN0Z5W}oVjoTrsvw$o2$>+vEY z-U2Rbo1w91CgsJa4doIo4V3xVIBF5_oEpp&z5UAi{BE{0H0&c^0h`z|FkPLxqE)4^ zGO3*R1~zeHV`Fuf``r-siwJ%NtMJ$8Xk56O^WK!+2TLDv_r(T0vO@e~B4DMLb8t9I zTenhHCK&+hFN!rKB}wG^3mAaw=;#2DUK$ugz`y{|OT!8$PG=|Q`aern4qV7c5DUU@ zh5BEE=A&JI?P=rAjvJ!T4~Mz_o-=U~MP7K=R}N5{C)Qw z-zVDLolRd(K96Wsq~yH2eV_v35*+dnLAXW1wgu5DPfk4VMu4%wV2pO zlFcR+^`sBVZde#5(3_yVLDxXNwdCaRgqTS7bbID-a}o>s6nwpRK&r~le$@ry^JwT2 zW+^D7utY*n&(Bt^bRe zB%~g>gsdCKp5AJ!b?kfk`iKq&CZ03396)-ZH1EaFbG?uqX@vw{LgyX6TiV*%Rgs}D zaPYmog{sVEX)O)TZAdBvQ9eSql|v2Nc4EVRrNdU-ycqVN&wG1iW>ab_hh@fLzNW+8 zz`EAd`$9yNO@+ty;1L=k-x6}=AXi5=hxhy>^QAy?6bT6{0e1w={5)rGjG$-0Lt`jV zjQ?OaLpc^6`U^VI9xSYkZxrlmVcO*6R(jBQHkxU%%O~|z0s25V%!fTGN!x7bZe}nM zQw#?>aKJ08@a`aWs#A4b9c#%11dx*q{_xNs>rH$}L9z6C@>?rq@>`p~w*rZSz&y&s zifv$E#QpBR;aDLhIjILfzz{zM_GFvDu$P;W6&us`%xb~KMN+RJ!S(!npSGtjYLDMR zX`y*6zvw;cHlO1FFzV2K_a6R#Edbfz<-bf!bpA7uZRKQsgI9Mjn{j9{q+?71iD(K{ zse#|!np?oFsjj{mcdP$n@9yRxl2~90h)KYnv9PhBCC%?a=DVRbI^qFWI6|TYh(W+X zJ$2#;63fxpo-2(01syfT%a;p&?XCUt5nDvu9W}0}oXg9Y(qQmG$NS}?tW3R5VGTAs z93okv%Fl=8W!U7l+6gUbAG%+V2u3WohrB!8C``~Ry|0Ib)r0&v!gIbW654`EXsQvM z!@CD|bCT9#92|WeJN*g|7#4Pz0pU_!s- zj}3yjd9pFTdHz9k7sfJE8~z5_%p^g@3Kj%AUZSMh;2l2nl;Z`89zyw2V3Qet5R zj^&3JyGp#tRG@-uV-+mgkY5oN9qr@iCuxS1nn(LeV0<`NRiA&;OcR%hDfKN8%+Q#o ze+FT^K*Wi|iY!Zy(}E`lq1c5T8gQlHq(_4PMoh{>U)Vxg zwgedQfO!fUswYpMw!&GZDU&Q$DClA0oGvRPvwL)u0e)*>o{mYsCgOJns=oEC^FQ*u zocx!(d|sR`L-n~Hpv*gfH{U>CUr<2-qphOC=KRuH==1d7l5#e?t<8bK(TsNr7!(k+ zdb-U+V*dO%2X=dWj(e$Ox_`=^q!vqJ8EbRd=7c_h(9rvnz^Ld;))NlCB3fHpvw+tO z6BE-OK-FMxCxuNSIV)=f$N*91P*rz)U4sdX&R z`$s)gh7bG6=?0g0s9nEp<;)P;0s*V$}DsH_j3?D1fI}bGqi; z8ZTVc&XgR73#{9^55IhfsS31iZRj zAyC3+dzqreQ5-Qa?&FPS3F7Op+elPk#4OdS7??lkSA?9w>0AogCFk~#?y8tLf3&WL z48DJusZbnGqS%;R>oC0O>6eyP5L;r1`OQX$;#XQ)nqIf=^o3+%JdJ5?Fq%i#?{E1g zZ0jY=)422z4ob<)r}|{%sDmd>$Vb$fH>Zo}1-kYAL9x$XQBX`UX#2|AhTMMmaIb*h zStFvXJ9<2xkPm|NASW(?&nXH%PEP=gDYZ6ufXd-K3HjTo_ii#RqEA)5HZ&KIuD{+|SRG@;@8$<>^hCs0Mc#<)%h6XYL z^Jxq#yH&Zf`rzPDFIc+n-tKx#)Z)6t6h(=62%DO|LP#IHv)`cCK+B0-`T3JjO5)c@ zr(c_#oYiIyULm-D%Z#xE-L56$V_CTVZpuKI%QG%3G8pa8!xHU~fS*uwwa=;_qA(VQ z=AJj4Kj?Nipjw-LR)|LM-kIAjs`2cid%Cm)bJX>1N?`xmAls5&-_b@o1sTRnI%>s# zVi7Tbv9wf9b)tgCeRJg1m*u5_LN_-DdfeA8pD*?-ItfZu$@d%W`O_w1hD%I>==J=0X^6$!0hsM<*78KAC5upMf zA7#?(yo7oNG>wR`mE2k$HA*=Qz)AiK#i&_XLhJ{wPdz3+&#WB{im%1RcOTurRIC;U z=kK!UN5R|0H8re!_6lJR)RB4F`C24=iPk{cUbJ!S$V~y5g25uq~f#7B(Y><47nd)?2w~Q z{y@SbupVyus>ku^1$@Fxi;G$RG$fV@dMIpcSi^u8R&yI6!=&O}XLpb!HEW~ZJ2}l} zl_+F4`9DqFcasr_fJ+|g2T!Sth5X9d-#;~j@)b}VE+MmdW|;&!XluBBzj=5dz(BI` z?D;pfmHGM3<9o+AO0}OaC#w{(Pmz$VcsZgyKlbABeSAcnfeFDtVmH_CllcN#hcZ~5 zuWU(H!2C%FrPWG5W%94eIRh*l?ih^YbUZm{I=VemTy+b2R9*}cnStw+?<3U}{!wcS{r9;uT&y1Mj~88TX$M*oqQ z_h>lhzFX^^}tA>-y(Igjtn3QoG6mA*>j&r)Y0!DY9ObgJOe% zf&v>CcX;*G()(!L%gN{Q5%GznU*@&T1!kQE$w}oW!A3m+5~7=r!;)~|L-DF890t0! zcLoN(VOR^}taMm@l{8(grTuZJw=1MF;^S>8oE%q2X|A^RqNRTIy&CU11Ho0aE++Y5 z82Q5FpRDhJdyT%ZOT&2bL=dW3NNi|@mxkZv9PtwYKf^~eA2=sBist%6L|uO>S4Cdm z0=G06{rIv9asxI$DIyD`U-tF)7b!bozfJ0ds@}LlA z2pBCP97yH_1lX142P?btZw-{^`cK`;26IOmE< zQ9pm4fRCPN5W#S%p}gX>2`dJ+XZPOXnuC*c&pi^-;bF!5cmJ-eh=Irc1El9xJK=gM zy;7t6{MlkXB2- z+uEFNNlBkSV>WZ!*q@)()i2i&BSF7JuT#^qww{Fa+>O>PD=)&+x4s@@~a1IWUu}1JqM~89PP=S9u#7&NiQ^Mm{nz$D$9bM#{UL94j z^@iFR7n>?(G>CM6*+TpI9g2eLYKN=#{@$mNu0r2JlK`E}ygf@tW>=od%%_us^|2pk z+1{ckbeExl>b<7w9kCw@1L=}jEB(p+!9+X=cRiTa*!(=>udm;0H^?+wE)H-o3&kcp zdTJ~5oKq&o-;`9{o#6>jSi3$lgyHn;GdNm?KlBkpa{y}8` z(~uotkxGb}ItDW;iO1fzn>uR|hRYD&32#DOw$k-1gHM3Qw^Vd-o zkT^Ib2^%g7sIm!I-8p7cHfwi$XG^?lDdoeGV>Djf znUY<+hkN76K74pWMA-8ey5epICXI5bhDAD!7gzUeY*G0v@4#Jx@LCvOoRl7Tpm#ie zuy8%!tfHdAYwu#Kc$CO-wyx^m{M+cNizcFun0=0LfM~tBCIE7#Tmi`&T~|7_8nE~U+B!A# za8QsURzPR2p^0?;b7%xv1HEkkqEzp1*D^o8IKEo#w>!?mXdWdF4EY)x z`wY~#=@8*f2BXvM6v3r<2pLNev_Cy(uH#qLmh=l%h0fh%b>E7F?lEE32_gK9P|S|z z1Sg4uHkccUMC0NJi}~mokiP|+z0oE?Re^RpF(TsbFHoQ$?jvaOIpIh6LV6`KT`Qi3 z&j0HLTV(S6$1T$nG3bA@2f-(U&qShnj?24^h1wmFCYMETswcUS z$Nb<|mSUPo7*vSJA8Mp#}R9ZY)Atk69r0uwP5E4Ky|vt!&vYyzKH^d%|xX8Te_$T4A6( zLo5ap3me;tHTCu0yrSNQ{F$y`qVPF!F@NsEv3%sXP&E~m5fyUyZ2P8SlNg`O)JXacGWj^mClRlNhQ`0bjefE{lY1p9 z_?67!{-aQ?vX4QbRh8!5bxKrA2WMxJLQQje5;@t*rX76Hy7rkHye!ly7TV+<%lp2n z8bUnKzy~PSA1NvBAbP^T;|Nq;G71W-yfSRBB;wnpAAjsD{Qj|EfUxe1PgPj;QNy#S z2tOLYfQzQ9vHH!XJc~94g_G2`{s?N|1)U$0gAqo&ot{Q|!MBvfW?QBwk!O?J31`@P zHOBFV{~S`Y(4Gf>Eo6X8qqwN(Ew~hcW&&s#*puIBgaFVPnAtbIYgYne`cKs;6gv=Q zrDrff&@W^MdW)rz7&PB60RviitR!5p2%t{fr8D+Uorgg`@ty0-aQ9cr?=S5(Q^prs zHzC-x<1&hl{K^1``=|` z`jj@fnmvt*jh&E!*)u!Hf?t^7 zC$}(_>&qj^{k6O~kdLrlRkHYdOOSv=$-qdW(DjOOV}?Mp>@^XV@L(8u%%4fcrA3d@ zYOcP6mHFrR50aALPz}}kAbkiv9W+TvNkn#Gz|WtDH(MNc`jT-|`N%Wae{M~`I;cxJ z4U3C=AhFNR%X>LUjV3NGX+$VMznA}*kdP2zk!NIWoAhBNJ@m-4%XMU_;9n6f^cCT0>l6w^n-!| zK1JwIo83{%dkvve>pij4{BDTU)VS;T760v%8LdLPSSCB^|}9Fm^2hMw97kjftsu zW7RAb2din!ETjOgJGSlo3B(yHD;sPrpW=6-k;);O>S=>eKts~e6QJM0i$s*6<5+vsM0QZ5{ zj1el7kb#xnHaULQ1Cqe*38;4A+`nKyX*qLTs_mn2SE*$bK!9o^xaQMbGYzq-2o zCvrZ<*VNP`WbJ3DQb!)Hk3LjaSGTdX?d-gWz9*{-=Q^KsWl9wmt<0$2otL0qQ1BskZlGXKENvQqh zfDMC>Hvoi#i3bV3!QhET24pczXXv`BehZP@9M7XBu<5hB zxOO^x`oR7`mZUb<&)DhWPgihD3x4V`T$q3hS8U6EjCfBfllV|iHyCPqlKV3zG$1tm za4B7@J1R9yHG3&eJP;$s2AzF*OuMbQ_*%x-n$Uo^*Esn)c^TnQ^+8=i6F+q%(c}mNK(|*lI4_?CezUL=N;@kxG&$kUuw7 z5i}&1XmNV_E}QBZlTb%RceMVY(aXB}>cnUtfVsdhvE(PPA@3e<6m}CH9Fa3}L?^|w zTlTjjFaCYIUs77kWqtp-wRLdLXjOIXJ3~VsA0K3Pc6Qin#{dX~UbjKU@9XUvt%{=B zx`eDXBTQ*&$#J8#$w~$(X=&IcY%eb_P1m&U7#qjL#wyy+-${a?8O{&>+RcDqic`o1 zW1Lh%BC2xkKTgBo>F6THwK=^NOXKX&42A|2_ksd?$V7uidhzey7k(kZM4i+OnS&>D z*5h-@WsB{d3fWb+CwO><8CjIaK1S1n&e>Q3K|@4z8*?0ZQ2jYiLi83@jAD+2nHRc>j$x?5l9Jw4_V) z$7uKN=v8ClN=tugIQ^!zHN|4obf=D&Z;*i@x)GdCEx#e#jl%gnJFgZn*%t@GbI)dG zX1LyDl+iOVP%1$P3_mX%GXfb1l;Y4&??Kk?RXoG)4aO*Octe8__Kj@vl;Q7x!>Mr&Co_gl zF7{QQ;^=k0`C*y*#=~TFl&Y^cHBB@Y_9m&`o1+^|VsDP#LcBfv<0&w(gnk#=d_-Uk z7{ZuLMzS0uL!qSpG+P(D1e-uxTT|aPXviA!vZIsk`mU~teufrQH_^z;Qx3Wo~?^Kr~2iHJy|Tu*P)(ki?pQ0Cy^fT5g( zjLdr|m2IG;{A?>x4bJ2*JF`Ksgono+!3>3k7KGL+H%c8@Ryinl)g>l+g_=)mpa9QR zG-!Q|>Tawioi#s?7RvOEf)WX2M}c<_?70?}miiD&0QEjNsShSjV4EE#V2bne>sM&z zSWQNJLDf|Pk}TMVsS>!s>7IUZbs`@8XOOly_m_ zP8!Y&>PRXK@W(n=xjnyghjC}`wAPf?-%XQuykBZvU|aP4b#26;{x=Grjw z%)epFSSF;JFRd?_o&@|BLKODyhQ@CUUIN%gsWyx27mF_M#btB~d+QU80p~)UBj5 zepl-WNJ_C9zZA)8Y*bNId4;fyqoScf1bD91jyHO=1N#Sm4Z}yzlx})2*J+Be?H_&8 zDg!9WKhMkz{oP5!EPwwcYg(=2zX>YTqMgr)=nmK@k#p)2N=r(J8^ykPkkCAY&UwDs z2Nh5YkTAriihiWKvpcW!5iYt^5q?V{XJ;%-;f4=-ZIYBXJV|Itdk(yKC8KG4I)bC|bvbY!vfmmA%FaPRTh*d{S&XdVH_z@z7K z(MZT^@!`VT-$@h7OBZzmaLW2Re*JFqc1A{a4kpeh`STJfeW!V)7vqT_Y_gWf$oC-A z>jRx8I03=rcQ@}W@u-;O@R~k&;Hgk3C!?w|!v0jd9=|n)37d%Xbv*FsuI7CVNJpwm zPklLzUZ_595B75zSxuI{_gWJlavEBvt66F3e=@&t=ck}h3Q{!d9nOp8b=$zgg5`#@ zd`?!V=h4x|-!)&kj}$+ey$5N??}bNTlMH3b<6fl9)_Yyb$rlERf?dvTO4 zy7~-)OA7&3Oe^d);KPJC#Gvwp`Blr*)P>^n z$r~K8kf@uR)3i`dyKP>fJg9aNf2O3g^!A>|HW-VqzHmp=ce*&^7ifP)BWOXk-e3B& zk%jcXfG@C*0xhh>;ou`|sElUoxZtNE0~`z}*AOC8LsJ=*H?KqtTpKW)3D|uN_AYil z5Etsu5Ny}+PO7M@b=kUHmG=}Yrjc=#7<~^7BPUNSyToO0kE2$#1g$hII>GJ{1n6au z*D0s{{bFO&GB~*B*ACUbhV$_o*`YQty$X}1;V|{}W@htUIlX84;lt9S@Q^!qux(`Eo zZk8V*LOd!`GQ1NMg-(nn*r2R{Vf-z`G#PdUU=l)yF)fHNtG_3M{|)ppM6?N5 z?3>+hBM~2==rm{-n6^DCHaOiCu5t)3(y5j33ljaeB;ue;yhp^%2zZZTGC%*Ylc*>u zq1FiviIsFRo1j3W&9#o8G;vEHo?)7_ppZmhVR`M=TO&V0gSMxsz1;_Pn&V;CvT+i^ zElwxt#xopqyi(T@QBp&sY^rs3rj!8@lMH&nu~1slX-RZ-q%2j=F*+&ppJ;DEo&`|WeDd;WA(L^}{*LC4(BiF0<&K}fUXz^9xizYZ^1C<& zF(=t>6zz=o@#yMmOirNufc@E3dx4nZ_nvmwt0m`njsPj^OM8+XAz|{SwQc$h7E1A1 zEJE6(5iH6FTxLcnGc`Z%(w^+B!W;$r=9j|0zSQEn++-;_m^IjYsF@nYMN<&dTSw zAOBwqaNu%bl%+P#Dh*v3;-ZHez7rpxUpuK6YPSfSr=z;++Jq`9jPDPP#;z|}NQij$ zqs4@~qjiP)hr{K-;%0GL)Zzm;!zx!IK2lQHEwumbBT}Hw=CtyxqmV6PVhnxX?ekp7 z<36MY4}v=9Pfp6I{o2Hn@ghbUbix;ASB{%oo4XQnKZn}9hw^AkfDZ%PZcvi|2=tbX zIyDogZO+(OmcDSc-eTK#ms3Wlx@4016G4`f`p$@Ik&u|)`UmyAC}2iGX?7B=w_EcC zEj*lZ+41rUERbE>WBHxHC~%L~T{vGKJ*1&&{Ztwjv53gBruI$9q(jbO;-zH zUtDybGqFdNZ>&;E=25-|u|MqR0N+kbo}8Dkf${X3@l!h+`-kO!(<&sjHTgRDPNRNL)@g(U^g#j?bVnjLC9 zx3T>oJ6kXPQJ(|`Mu^}~aKwRqABwl8-qFZoZ*P_Le}i?_hQ|O#s;}omuo3o)|Er6y zdlkSb(Cc>b^1p()>~u9{&%djJqCX;31-k@gc7EG;b}utXae9sK|l)(|p0 zh+J%ibq*st`wIM(o&>G~w?b-&O!Vyp^k8A*YrSMWNLz-Im6ndqlz;r4%XIFjA7nM2 zTC1q}-(h1`+C;CbOL`-j5Fg(S{{*CUv_M_ZR%$m}=MX|su|0=7)G?qyd*^ry>!rh? zQS3YOdUERGzC=@k=8W_XQ~v;RRHaJEx!N87jHU#x5+-@6unCKKp?ov(NMutNkn!EU zckg>tlsDAdFv|vZX5~-8h#dc{{5EjrBpb^RH(l&>pQ`m9!OAs?_6-zlNQnIO7tENI z?(WE#;sE&pTsEji+Ow52Ps>zkjJv8#Mv;8_y1EP|OFkg993ZV)@&9AHDE91Kxu!(p zy@xNjVmBaPD@7dL08$VxqN3~p&YEF2mobyTr7=_Wm6=63?nn72)Z${JzN8QNQlO)> zLnzduqJZTM?jL>_MALV6vgT*K1qL@@Jz$Zu)M;|!a6sk?!;QO3^Ub@<(Ft;rO_cP( zzFgK+Wkm>54`5aKhB5S@y+O>A&1ZQdCMSg!vPOmO&eYS81qVEYu|&S0$3&4amTVlW zKD>YB$kld*W7n(Y!Njg6J1@YVUsC;)1wvcd`^$Fh7BQ*Lb{OW|1x(6LYB)mPwCx53rODS7arb zRaJcbD}WFVg~4o#2sm^04ma*U8)h*SS$>duT2>xu{WWjO^R8m^SdjdO4+in2pA$nz zfBp>9&Y^sgl#mbzmXewEQH}L~Omce9ArDz{f{^Q_=k{dj-^J$aH6tLq`+?}{*RNa9 zOTlja-%o`B&KK@FdwVS{EeNaLUJ(OT%0w^P%x|G<5OYT=UVb& z@$vh@ZpYbvcT;hXS_uHlkM7NY^|4Ud4+?Cs1Et^>GOY~81wF7wPKyC&j z7njO*oO*prR@ar)yj(IgfDwG^1JJRh1zS^7vEtRF(w^(`lP=7_#v|>M%}V~q80-eE z0uQ2iTve4I(lu&*n9HL9?V#2POTMu&wKtCplvZ%hB3<~9`h^K;kg^?dY_W=2@vYMr z9<3RwVzXV5Eg^y_cSX%gX7{_PAe`v)?%{j{RU1llyM=`Z2Uk>kp=^ki=G;c7`L}P6 zu0AL1>{Ih`zI0l-IXKjx?Xdi(#6&&#Z@t^~CL*ndwvOU>RZB$opZMTW0fS4FeOHdsg3?0|ZetlK;iU6Pb{oI@x zgc_KEbiF8-A_Mf>pkh~i@tcT(f&$V|u`Rp4`f9Og6Zaqia)bXfTG7+fqXNX`U8gtU zjYdSP=1X&P$FWgY{zJe_Pnuy*4er&Ihhi3j#MUnN1e!|2q}PWKdGCpqr34>*2+4e8 zxkfH*VS&h>cKu**FkPbL1Wl6A#O-t560$-?jhD|+`!2r?OQH{}KJ)Tiz0`sr4AZt5yXksr@7Osr$? zS0!*}-P-c|(Xmozm)`62f6G7! zBvg>VfK_b!;?OZ-BLIWNzS8cV17p-q4I=tR@D%yr;0opK;NN0mOcWurn$ufzCl0M8 zsOYJ$UIz7CU2=(v(9Es&Q*Y6#n>O7bvB$xwFEmg9jf&8V7dx=&-=v^eK`{26@O2rB2_gR7oT*Bs8eGKF-u?>dY(J9ugvG zq4aoE_51gl?W1iXEv`%3?C@{(^r8a$xVGA_us(=Kaej=2f%byl z2&HFuSeM*p|L91rEB0a0)xN4oq6igZFxLSCHU_o4JN{`YOtGE%W!MRv zsEuyBvjEc|Q-_eOeoPFy&*6PW<%Ay23QG&_?C<(5nG(jd+jm9XUROSqM2)@NU*huJ zUT9v1sJL|uwBY9$^{3UI!sDYok=84&`w16+I~PPft~|nfkEbnd|NUindWXCVNG1Om6yytmltP0QHXzAlH?F}3vLw8`{d4wPjrQl5&Vd3NnR(4~LXd!o=kIIznn5d6;=){4aEcR&5v#3a*2-!F6#@7JKM9 zI4z>RxuemCf+U0Rat{a*>yC@l z2y$A))i(V1IclfBcQ(EJF$K%!lv)xp=>~*R!0e?1sSLqhANLNL|Kzby)^+Jj)L}QQ z^y-n`jrft5r_dJ=@S6B!+s7A`VueHcEuZ2t*+Yeq)ANU98&F9H>YxNLgK%?mzc!r~ zJHfw=@ta>gp6`7uS>5)Fo*_mmKKCOVca2&Vxbz?pmLA4XNVG1pReqI|KTOuWHl5=6 zIlgUkCOlm0cyTFO?R1`K@n~ zLh!4}3l8Y|Dri^)`6l;Ea+!llYdxzAJzMc5W}mX(;&wH)?>-f_zU6IFr%ERFRZtM| zfUKme>N}TrIVAom>W;J zhezb)xP1cGTU*Vf?61(%-5RO)l-_;s`3UHwPln#%zp&6?z8bf$A1YiqIN$!WfBeCA zfN4b`OXQnkjKBlSe{QwdV>PbIop%IKAQxdIA(4J?ocf87Q0TDu<$;Hp!=h5_%-Qgb zA`aDLjDiBSB1@vZnwn3vO(@9QK=0&afUHYd`S~>_#sJyCo7buT{(R=Ws8nc9uzQJP z^-_`{N`gIJnla{gLTB&rHx-{s{!Qy!EfYWA(5u&35w~-5@)1BHH3)24AOR5x!9llb zSvvaR|7ZbHVJ?Pjgx9vcXqQV}fn&`<2gddo#etZ(;wLD>5G{5#`(b5mO{vem0qx@p z?oMZCS>H;2<+q!DR~w@}g?WCdLmF9|mMKwXY^)e#6)ipUZS<}?KIZ&%KAVZ3|041t zBKDF`8xGh1FtaqiMR__p3Kf^laLz@3{)`KRuF1~nE;SSL7N z(P(IBe17$-C1jQ3E?LWh^1NShP!NjG6Mp-~-VsVlK72=2)jy)5^rwfq3V%E3VXKc- zLjE(R{q?sJk~@#MXGEW4_oVrkT;D#JO%h%?=#`gvj^ML;*}yGKJ*OYI7D7S@{5ap_ zub7R3@7Z^Bm%BnG%eys6f)-Bey1SNYAY_k=g+D%d69-2Nvkn9BKV);}8|OEs$E)9p zaw-jGvdl}!+iY#s98bBqot$Pt`wW4}44|BW9SeSeYHFJ*cRbRL?!mMTfxGj=Bm&@Q3#Op zwseMPSe#3P0_!b^*pZm?$M6*9l-BEOT?HNwb1^ zDGj`CubrJeUAa||^kf?C|1PbV-~f#5SiClD+4sh!qM9J7aa_!Ax5U)1Kq$UB<^IL88i-m+sHNf#3=MRB=JRu0!CJLUkqr!*@NFWSNFUe43>#B?2>(| zf1Bbd1^bSktSsV4E~2{s~xA&QSVFlD+Z9;1A!EX)Z&8602C?d@*5#^B!hNF$2+EISz@DA z&vD3XwY3o@G0_Ph|NP6+AL$4&H&Bhhh|>yQ^Fxy`x;*sY?M|{eJ02YLQTrI$E!LEh zoxNhHk2^fyHcLfhp1}bhLIx%v&RU z4636Mr=5uiK9r-)bXl!XeS?@c#Mo7r=l!au(d`0+&$;tliD>AkH13*l(UH#s4Krf@ ziV#@EH)jhmLVJf>MpuAd-IGrc;pF?Sna5$$wO!+ph;TJGOXKs^WR8`}EDS^CP^zU7 zk}+F3c!^RTcqDca8OJ7mrQoQk8$VoPii+cajvg(4c`m)M7Cd8LE4h8wi*EJZ7R|K# zQRwpKTw|T*u~9Po%?L(KO?thbx02qxd0i=sC-7<#_nD@(eNcd~p7EzDCzl7rhpXSJ z1l)K^3JL)1LnigSAEHIU(Y|wskMV&&pZW6M5i;%jaJR9sFZ!5NUS8{^RjOGFE=lsNbcY zy3ZxC8%2))7T&V5qO;jG%Xy4Q_~jw!r({#R%lrj z7DfQkO;O3oQxa^Gl<*RrZ2j66;A?DB#D6tX-)yc<+$AeZ5B7c7AtCf`Wh@I%Q9Uiv zT#0GngzM4#qh_0&6e1b{6v!r{y#Ju-v~v3O^EN_!YCil2@Wny_BvLH^14Yx%WL_n3 zrv2^cKpwvC>Yl2UO%ikWilnT1;p`U8ec{E=qBdqfRTY z(9YKO6N_Px3>y4G7Zq(?BfdvTbafF^oMWll<$Jn6di{auQ8BR6q>hunoIECecbqt0 zdrh_^i>unizTLF?@yL~%?243;b4%Pqf#hsfI@v@KXWJ;n>+f=Odrb9wmOPP|)8GK- zQ8;xQ9}!NPLaL`b%7HZnHU=`y09pw_--ZU?<_k%H?{pzhpXkr7y~ zQmb6-l?6N~t*QAWQu7~^RjOedR-^5LHUvtFsfvq>)_c+*H;nB7L0-#CHpgr0O>RQb$Q=n6v@I*zB1eFv;YEWsZNwmzQ%c_v0cC@!Qz#PJ5)kB9wM?pMCxtBNR zl9gp>3v9RTlrjk`UmRXmd|GCJR|GLJLIgp=;uIWQRkXJ|du>DUSNQFQ1U#)`S10BW z8ZYi$b3Fav^z3%a*%j{44->ep+)_O^{RpnE5bx!~7o^ToSTJ;-Dmu=r4Zd&wZ1|*Z zFcd#;!?^r+St?3TpVZi0@0o}R!)PpTGVu$E^z|2**(lKoadBl%?|jj!va@e=CyPP` z*Y4v@m0N+6@NpR%D-hI2h+ko&{B40QHBIVB5)K(h?snfy1PNB9{r>Hy#*^C8N3p$B zR5bfsTw3r`jr#PjGjndg0X;z66SsTkwbk1dlm@uM8#u^I|LDtN1_fdf<-EqnUl4)A zeeC4OE*jg-t$wtW39gKk7{-Rao|{Q{c+YA)1aYLKn{!a+z_foG{Nl0(uZj4Bl z9|hteG9V<4t1TSU&!2d(kQ(0pSs+Gi#w<^VO%!c^rz)hPCAw_Uy>26{LLlgVnuvo; z9?*X>aLK)MHF*DCBUkY4#=iAHFs_VI&Bx3lPUW@Hn0axIh=sF4gPJGO(iO9Tcrwz@H`TOltsy|QPCV#A;Ib1Nf&>TJCjG$DkEA`po%f$M?yaeo4_HJ}pm)Ct4U%*$ zR4tOAlXw(`y`7jqceJ9ulKrh|vz-*1?ASLDFVTvNOVYwi41@m_U9~J;!uC`cs6QZh zx8?(_c=(Ic(*$m37ASO~+dpg}H87yD9VIdIMX^pyJb8C$of98B+mI$ba(%$uY{ms} zJtsJ7kr|aw#w*h7z+)gI`&G;(ytuo`e_n(cr{vY-O)eL94O_b?$h}4e${mGK?<9%e zeI_PWHU9n1&$pYw5FnheurxOr^T6S{a(ZTE0Rt{!I1s?rCnd^3RLS^6W|`L}b*lQ2 zx#|!RRX&X2ziMEaN8SpUnDFOOEdZy%>4<`NbZmj#JXFCg z-ci_(-=Gl;2Xo8*00+GCaMu1 z`}<#xJ07tvAI-Id+G~E>Gp>Ds7lUdml9GUjkJJBNC{F>0!m1C zcXtQ~0!m1i(%mWDNXL7vy}x~Y&p)5TSZgxpyssGJ9QcwgkOo2VdQh1mi&fr`Itt@Y zQq=OTv>@cVBmGy(%Abyo9BO|2kbus*vXVeZNT@sB9SUEF0LcL90%Af6pBwP?Um!yf zgee&y<^&DY(kc-PQea^C*bm-NO%0m*ipb1+Po4x%SD3*8 zWJ}?N_ipu^#N5b(n5pU(Dq2)8qDLi```|5vw6LtYIx<8<9~|rh<5%g&lmF4}W!!&> zWroo2!D5FGMjQUIth(1W5q;|FugrQA)T-Y#+-4$F4g6RFQw`Wptj(QtF;3ICogdkM zM|t@0AxuHVz$=9ag@lD|)9fq-tQFXwGNM0>k5ShYFu(D@>reaGT(Zi>)_0SVO7Z-0 z+wt>)=nnr7`X;+W21p}hLRO}^m#)L$4Q4OIlrkXH7rQp!Jz=JalnSP{uwDB6fk zuyAfwR;lP~2V8+nAI{i2#GIKs7r_v1dToPMo7`OoM!&YxeY(Di3M~Sh*An95ilM|! zE}%tze$J?rpU=%fW&XtT=~o%U3rJ=l5BO$|A4G7yY4B3>?c0{xvU>@S9)-)&Iij!Y z`~DIuyq>Hybn8u1LNSGHyzka_!5bdFFAPY413}Qe!EyT0qqxcjH^1l^TO2K1El>#4 z8Ka>@#u&BtKXW;KAKCv8U!tk$*C*tfd!#`qYHGuhl43^vRH;dsbGeEuoBKwQU08E} zAqW+e5UYyGpK@~OD=RAz;2e06VN8U0C&4IOLjr~8$&-QO2MRRYe9~3Q{=K(vmn8`k zDM`}2YWVmN9E^L1htFW6k#tOZvQLd%|DJkD>WQi<8{yJqmdyLD*_7M;aT&Q^jLoX8 zFB?N~0@guGf&uZ?_S{ZvQT)OmkaVjhpc53z&Yqtb%KKC+2>f3T$Bma@=c63gRr7v( zaonV=glqrzx45eVPqJpI&yR@v=>@mH?!EWHA@gUPoP6KeleIC~7dH0o4SMlMcWUz) zlG^Xz-wU`#2juQHENM-Yqq0s;O#Be2E-^26TA!4UVcXO&t;s3f2pI`Wf^k}o=6xP=ZQH*<>oS(N_ z`~;$7&;ce@S@!Ljg$@Z?Y3ZKjEE&L^kv;*ZDE?>7uLfvfgx&1yA*_pmnt{rV}SviQLSL;?;2Y5@n#EO`ZL zI|nOeN&pRE9j^9ud~LiAM6j3oQ85m*%~#~Urz~nSao*pt|2waGvLhS+l)PltlX4>> zLjF@i;-J%9SAe9Q^1T2TetzauB9_;9^Ytgh{6s8N5eAf84|gxH?vS=$3`a4_&mz;M zL13`m`IdI?BT~}#(J~I^9;M{@`mOE<488>V$DEwwPH4^0&S~3Y($s{78H?o6ZVwG-m2Af4$#-6Fk>QnE_5rTyk=) zN*i2peBoiZs{7Ckp-?SQz@8p70wV6`m0hd2|9zh$mmn0{5R@VTH7@woIleU{E;o|f z30A9P`QEKZN%{o{w%0Z`VcWem8+5io;@g`M%a!x2-pa3iLL1rsmFFC$V?EjDd< z#?^{%c7)CTt~BvdBjdBMq*GEVss8-%lOZ|fxiyyWM{OND-OC8tuQSC82rVWe_HNlu z5K#VzF)w&&a-ZB8E6s_NRhiIVAU)$-*j0KkI$Qs$tlC<^>&B7r1yuFoJJZOmZ-@ii z;yI0Ofh6}nWF2f)QDmK;pF5w-IN5?K0j^XP)ZvbQU{QtqJliLd0^l^D9Kwv>qq*sSd-}#rb@POaMT_43WHKY1}-Nc)xsf3 z4T>k=b5im0K7eRkCN{QPNWo-+c-CJlawFti?)Jn*6_W`@F7b<|wH^-U(B1aDipl;Q zgdMONO%Qn-W^9u`KICjPQj|h7g;eI~;3KA@Rpzmno$2Kxt%?`mD-|R=2_)VsnsmBk z$e2O=gMeaa_)!8361>RAfz9ScnukAx9W7*onOHaox=(P(^Fc3SB4KrA#}KBfN?Zg$ zU`L0|<2qJpR^(5$_RqIah#Ndb*__tB0H5u=vSRzO{&(KtDC$-&Cf3IXmukSPtKEuMtns4nAifEdty`4ZmV`fLCAoxsin>Q$Jiw44Pqpo%e( zfHVerZB$ac0SW3|Y^`<*hF`zKV8SXyW1=EKKvIp=q9` znXRLQ4Ey^6SF>)X%SYx6X!Uic4Y7pEuY!f&P0n|h8NPom?;}a))j6XlIIHI6^{JAF z&ew0ryxKaR%LEHw6XfEg`uhGtwkXXR&um@034W)FBuJX6KagY7YtG81tEAv7Hk^*@ z5e&ON^}ccXkc*`)gRwUKF!l{6-EJMK&ld^H_B#S|_1JHDc@dRtpM`rNC_C<*T%D}d z*-&=We7S`m9>@M{amCl+^Zbf1I)i+=mj>JFD@Db>WU$0IcKoV8Z5ti+ENo}YN1maG zHXR)$+Rc^b?TK}Atve}9Q~EzRb@=0owgS=JR*6b1Hii6^W=V6KQAc=EQc!^ASBcZ3 zg29cyz?BATsU(!#F};vfPS{S|Fh`SQR(Gg;kNMsp(xOs=7m*B`q_ir4TVB z0pVxME56q)UlzI-S~%<-eLqWj4LWYVUS9RH;N>NouEO5_Y9K=j!q!Jy9bnL%`I1BL zbcdM4?vhXX1K&l_Q#w2bOG5V2iT5W^cAc&z2+<j_{0)|$Ge^TgxBtn1yU=H=KQ9Jq-%&Sj3(rMDw5k>jS z(;m2zh%OVz2?l5Pt_*yCI@Kz#kL|`#jsO6G?F~fPARag9;QYJ_2S-O=P(6+Tc`R?9lLMdf1g?vHQTPvPhO z(qk(6`k`s ztNTXZl~`ewYiMna16EwH%Ps-c31JezjX=f8c^}xR z#DC}aEN~6chlgw8q4$AYOArx%0)cNjxZ=V1{He5*4cm#EhM&!|?U!or2d z$f1ukH6!!U(dq7z7Oih@7m)P)rYqO5Jo%jF`L`Sm1%_NLAccIEbg-i_uAE<>!ds$D zmnzied%U-B_p-{;!UCy3tme7ymqq}m3;3a-unj(Fs3_evBq#3Fyh0n_U)nOz z)Wp*XBC@}%w#1N6?zCOpl6TzCc&3o{jCGw(R>{xgqsU?`i+J1iRDU9GP~g@=3n|lY zWRBR@HWhO{19Ijl&RG^6$*;>Gd=MM!odKB%C?Fp%(IQRPx!{9Npg+26FWu7<8k7DlC7@Ox(w=m)U0( zMzJ?p>= zON%K!h!=%T7}WQ~0`KR89&88-2CJy$hBIxAg$ZM^>18^-g9(Mti@3qjbdwi3>OJ)d z+_t%+l&?}_Z+(8HIH;k7`-6}$c$?q4Y&-3V(G3>b%gv6CXMp&1sJ51}8Y?xM%0Tt0 zYUMfJM*Zl%U}_Z{1tt-Tw-{9ic3Lb3p(jgA8P_{MiH&W-<|&?p57Y@ti+J4GlnE1H z8yW6r=eQ@BlT&u|Pik)F=kupwB))Z9R#u?0)gxpPn`>X<=8U*{#lFLg->8%-M)5Ep z@#=yaACoGXPoY2pX3DjLLYXi*b%9%JuDCe964=&{I5`DovoO%AZu76y^mQ3}vg)9n zo>y#xIt5ScMNs#efoIN@x;Qev`RC8_g~`Gl#*^p&=y<+;OAs^j@`>(Q0V_IOC?tf# zGcq~YdVSrD+w9)t$yV1zb`*YMUm|+-^;LQ65I#k2E~0k&usi9yotx|Id0=dY1aksO z@ZW(va1VeYEx&#tfjv~_%^Mm-A7W&L3N3HWn+IIlGym$4z*LDikbxb6sJ&qG)-*TQ zXsxf9)_bO@uh_RC4M?zNSYVP6@@@5h4#*RFV!4=7ulzd$Xeo9z}V{gd!#J z)AqKZ=P9N%e?mqL2Q~z}9#D{gE%6x+D}LG6G11XtGBOx2aE1I`DOd`?+z))sU$Q4N zW09!ByI$ktd3}50*1WX&HNwO?lu+S;BVmASrcy#P-EQ{tm#*wOt*u>a12wGo(%tka zM0!)aXFsEweY2yV-@ZHHe?Nb^?qNpbCCX2=JTN-tVAb6RL$9Hg)g8F)VI-0PtZHzp z{a5i}hEzrAq1^fGKO-7oRQv(ClOLSEfKk>sl%K1rOMP~k%M1NZyGzX}i~+zgG_voCiFXoYrjuo#I+ls?*)l0AkAR~_-SA$CiZkkj&$=rxtNky$62Z=)#DSzvRV>Z9jLkQ(eTQ~v^wK{QSG zH|aB_u%N}ys1uCe-lD?Vd3}S1<XqIt*h)PBBt;=2y38mIEi7c#GN{K= z@xzf92_f$}#K(+>5N`g+zyDUpq8O(quiJ=T#u@xxg+)TDe+S~<7bfoKrbX(?R)!sqAuZ3PuyaCU3_i+(_XX0bfJ0(zvbwi z0Zz{RwLx?S6_x1^jh>(l`!%SDv6;Y(aYwGRAd77Hq4=+tWEUfvN zJX}E1A?%Qd5qC^X%==<`8wg9jr>*PL2kA{?c_n|2$E$I*Dlxq{jb6Wd>j%$hGx%5F zxrNtPF{y!OX*kQyXvnH&(ov1a6=E%!0c-{cV1=h_0TKd$^-}Py=Il`E^^ut|4n;8Q zhY$XU=^zSn@GYEWUa->2UM*sWMtNMx=EEn!^aazFB(NkP&B#`m;g()~9Tf*xA*}=m zLr+T5Jl@c}ofe?5xpJLvy=`VSduKI8*pTr4=Vw>vP42@?#&stY4(=bRw5oA3BWN>b zs@bh;8J?`GU>x2&+YYV)KTi(FFdk!rNXvvU5eH@ozsTGi!J)%1xe z`oCw}i9-@4qw)u|jCRp^kM-}1qoJ?Yv$^VRUfQZj4#aPr2+g_lRku6Z(z9vVKeg}8 z`~7x$iK6;ncTBd`l(hLb)8J%5{3*vxAL6YE{5yA5l0}sc!OHabQB%36XM#*3uThws z)Rcbx8l>L=O&vJOFvbiB2p}L6mbRGsE{O!^FN~A%A3l8UtU;*cheN+~WZwR9A6-gO zk@(|j1{!uqNUg&*2?*!LV~LiIwx=HkwFQ}k1o?kr)fE`1pubyOvc9zRtR(DdWct9? z1l}FpO4%(+=3-Gomhc8%=d$AGU%uc;9v(zGc8_ae_D9g>hyodL$)uY=aI`Z5uit!F zHZ>;Zflx{)9YGu%zQ5}^IWy1Qk-2wvx`M+c#oG0 zy2ZBB$_zp+$@AzD^oy2$IF-9&Vct?w0gxJgb-(nC6p?Z9KoCt47ZnMR{~?kRbV1?;FA*F@*phYtWwI7L{_v6mSRDkn4p>wn z?D``X38F@~D6k3N&y2-M>goznigXrSUkw0g+T8r?U@|3*JwXOiHk=J=lu?*cgrnT& zk)&}c=Fj#!;(0CTkO?R$iFq)6(5AQ}ZoiY7CP|KrJ-Trk4GJ*G>-~qngRS^(zrXme3P@B_Iv9z-K z4ei7l%+lyHij|pwP)Nhe8w05NuG~f?N(VzjGzP|?xrN8CO-!WVFE@jXG{6MH(V(GY z2jj5lC`KhazyTo)PJ4UKRTZx?!tbW}qVw1&2G&0zN_}Fqvzn&%Q%`vE?nAGvf=5qR z&_4-%*g9Qp>kJN&Y8uJ%vr3f-4nG_&WnCU>@yo0eao6E9x2UpOPW|TQOaW*;=#Tor zY}~ktk+1B(TlMW*Wyjo2mB-B2*5hr7S%p-VZo0Q`RfOsxM&xYP|GqkUo<1r!H@6N< zus}0a3q1#PzyeRJwZBzV&;TOU%L@e*@wULX(*tpm^LaF6M;<}|oR_yZ1cz=H@mqU% z5EP6^>Sz!AxFw-k@DfIQ%}{#53BCZL9|W!yI-t6W86tLlIzhn%kE`<$tJ;i_z<1BT znPzVBaD?Bz>Wmn1XRFdtk@h^xxn%X9X$EZh<@H&g=9~yBYQ6#GcJ^~RdImiEEn*5H z_Ccuq4nxUv8qsfIX-A~7r*=?KNXU8~Jm;Hngkq4gmN-tj4?b!n-V*R(g$bCC2Wc%C1ZlzJ#V zj}Yt6SK(@(p3e5q`1&vM7J*k}7FD5$6qEy7=IJwqcP5FZ(d2T?n< zW+qafy;1KQ8paolh?MFQ{j{E$-_q`GxF*RdDG~ABvRdE8XAEo}{Vo4=clbGG_Tefu zb6~qshsI@wrUJ-Lk6L_<+NrJY_=y*2ex(5Tz(_}?pC40=ZdIfa z2}!1EfpWo1U`s(RA_jE89P)CJZ;$@)S4iI>!;Fmu;c!GuOdAH}M=_{KI(vH|M+<9L_&GE@MGBMH(zkDo=87NYDk{E$?dMO=Ykcn}ZFYxnQBB?|;}aQhdR0_(UR*h$2sz9L zN8yhSe}>AU`5~Gn&7^?x_X=@1DA;J`r3!&p{+1y z#PswlICcR(4G2&bP}TK79M2Pv;HIHG)nC0cvQ*eU5~= zxv3XpSzE5M!peI4It(wJZ`U|%Gap_>(o2wq5>rnQx3@3H#i*#NHs`#EgV1pXCMN%m zf`Vb)3LmxJUZ3Go1v3ehGjw#3BE6(by`QqOa*OAgQa%7Ueg29}i2&=(&P>boc6F_4 z5h4BNm=Pth|7!5V%J(1Ie+{aR4(~R`eLsey%Xn5~5gZSHhNERj?&`?M@bK{w)chEP z4G1JH$wx6L!0U}0n8pB5nVy+3pRVDAJENd>_L)xNy$u`UaC?Z}1R!1|5IDK!(PaDg zmb*5L%E^G_yR~H%XfyrGt(Poe%Cwh2Vy;(_<*{jBZ2DmW_n>D_*SnR4mKvzxHyhlE zP2L)Dyg}=$t5?B&=(W@uaL~YIn~5eeRUKFSJ#kiwhBk+?LF?tjxYqexkRz{>%s zFQoOn2b;bU)MHwP0i)@kldIj`sIyCojaf7Z$X_xSVP&$bpPepzdu9pU=zNMKop@_gO z_+=e6@VBo)-owDa1y}rr9LrC)S~ACBUd%DAQB)i@0+3C-9HsQM;MfHmJK+D%d=bY6 zj-4f9{AcT@`^D}T?`AJHiui>-n43Sc94!V>NDK_+ATSCM_z95Ft+~cDKnJV4@HT+& zNQ8=p1_fYo&}4RiqRV7xZz-%|AuKFTp)qal@yO4wQi`G3pDBgtNUJJ&RN~16sOZwG zs*+oN%gb`g$dpxsP}o1s^ZFs|Bfw+o105Xbh+#FYe&Xe>22krsd$CX1Sq3$Gt8*^L z@{^68jp3L>c|i&=84JJj)mxDVDHc@99f~lt&1%XellT9%> z86tiOG+M=4o#JnKEtvi`@ z`#OCO*6IiU#tgn0cSUZjvOK!qrnx2`1rli{Eo>rL{f!Atp{eg26K4WHsdy?gg*uAjzp_`-2 zuPq?p2nY;phK=zg#w}GRh!_RdRcuIzvnwv8VtzHhMGRKhuV0C{k*REQKa%*1boC{r zu>{L(vw|0P8}JtgC$wen+{-zDe1=M&xtBTeodO_g4kMV;NmleRVEg;y1WJM6- zAlhbFjUfQ{F)`?39qt!QYDHbvqru3ax#>4s*7rC`2|gnk+_;S!2a1OGWsa7as%quc z)vI9FilI1p*4+gb%F=zATK90(0^`4b{|r+I$Ie&J(y+3IJas=uO21g6^}@!gSznQQ zW5N6)mi=vq&uuyZK~C5&cfaxK;IqkH4o-iCB+LdN1XY{`I3(ZhEszSAsUR)dudT^lT{M(?KCo+&FxrllE+DsObL?9Bp z15O?|e8GoDZ1OIoEnR$2X{z#bR}?@yY=Gf!c#iE3$px{k1uI!4 zQ#CGAS=EZp#WC8+hLo)>r!_Ki4KBG{kGOXsQP~sc@Fa6{rclb&reB})$;cm%tp(nU zh6HAg%+@bIig|VL&!lr8E15(vlG^RWZmz>mL7_z+Ycebwo5j&mdPX)J7|b*j z2fJC0&NrCey$hrEjDa${86ikcgB>LB#z7>gA*H(EAQ4_|L4OE(v`9z$)A#h+c_S8x z%qM`v0GL8n@p!y`QRM6M#l{$=mo+Wyz>P_aZKkeRrhD%=0{e7Sc?0 zbmS!D@93MF9;NZV=+#xFK_2F{q*Lbee5wh@DIRH1RY3vTkd;*{O2_DTu6aUo0*Iql}2CU0*WZtLJdN|VJK8tRoM9gxyUhmv){+YhXA88D>cv7SDq zPf9)N6J1?c>G1)u;&WG_Z7{&^3>U!1d{*nG?MGJ8tU#KSp0}%>l8`MHF!WKWAmB^e9zZz0F! zJO$D-ca;dMy;41VRUv*Nd3pbu_n*I)=ngH^pD=ayy@j7I@bHK~K_rLT1-q3iGIg`O zf>e|KLJo-RGjm;ShxBxqw>Ku$hoAIepq(GPbCZS*s>&+FEL|$_z)1<65gs9-#vfGZ zA+Yvy2YwxIYsC^#!LFPh388F;{c5s+ZDwMaGd&r(Ir!5jN_4vZjRAY$8R+ZeAXi&k zQxT^g2ZD%vCB!{E8t(P``q~++{)r;E`h-+I;7rcNMTa@?)xhxptPLhhNzrtq*9Q_V zUnKx|Wc&U-6)i35*lfMYp@>;H(mXVC?bLz9S8@j!Hqc4(D1L@897cRv* z^o4t?U2pH1>;>RU9P}m9FBR%Pp?1=#imcsCacWJ?a&yAO_U5(3w0G*bIWnK_?l$8$ zL;?D7$pN(o&RtTz;+?kS)KKePeFU}OGUhSQWId@9BV)p|^W&JOWp+9F>1mB`DJT}_ zTu(VrtF0ECY;0Ia`HW$B2&k%jxtO^!>ITsp`MkcTOF(yeRqGI-ruXCCSLO8UC0y7` zVPayYgL6jB(((tTh-}es`DC!!TeaVrq-V5;gcF2ErniF50;)7;72`N&)X8Vza_Of>YVZ<2;_30XK=2s!7;BA zuo?gKOck&3WVeso$Ou|vt#@~o!6uQ@^zi?HI~itE+!#w{%PNcS=w3#J6%%VT~-IwqX;CB7#>j2HI$;l2c ze!~OjODz;rcD#Np-|_sdN&4*lLk_+#a~@H1=xCi6Lx*#^jrxBV1nrI4D7dBnb_Wp| z4l$V9`!fF^6G|U%`ut}o?+_g4EvNhAuYO3*{QXm|sF3qb+WXI7j@4WhHjr3=A+2|K zQ3d}ClKAH89xA*dYmbPifoO&hnGlrL=HIca#}`IXLlJ1Es)G|MF&mYeTnqi^ym4zTv{RIE)^@7~n?iGhA# z|Aut!f4P@+cru}6)SR3V2t zB!S`!O*60y_XcDr>knKH4-ab{*75$Oq?mJA#ap%B!nvGMfQ&O1(6btXGu2aW&+}rt zdU4?1@1!IDzvGY6s0&exlnQkAlDnZL*5 zD_SL$nK&G67ecFeTWlH>xhx<5NxO>+UoRDqhep8W7) zn@ImU@pp?6&l%}Y!0ClHM#@ke`H9<6dJAN$!7~(7^0}#p?k1?;B8OcejcucB)pjdB zd~9GqVmyR+KW`gRNfL7zV}|slmTXjqkYYb_{Tm#PpXSLXw+8tRtOa#oMS}l`KOWGP z3|riey}S)vUPx{QI659oFn6}6%vaW*H-?Ea*eps060v0i-W2X>FqFK2DaAK71L>G} z|D8d4m=+);CokHznOI{Q&YLh)KkZB1p=2}G(~4(Gv6&-eA9&k0--26IYQL^pd#-^7BOlG1}|Y5v-sTE)w2d74$H z&e%r9?n+3-el>D1_ijVurE1DAogXi+XNT}h4P^K|MCN+q#e2TL+dn*{Wn&A4y*H|I zkp}CR z+uC-&;3XFw6Q;Tru^;I2;U-f@e_EweuKkGZ%e$!>O|4FN8Lm%!V+7hV41hs9Xe(^% zMP+2Pn34j8z9}RHieTg9LOz#>)l8y%Odt%lRCRQ^0VDwupQer$Z$r;Z>W=HZXSIv~ z?T9QG!OQ=6@ebHkdezosBDP*|k37BHdp67*LvSeaQR{qZu}z|Tdx|kFO{i_@MO?qf zK004)>@*M?1iA2RFfgJY%>E!3mizR&kHSTgp5`x?$YSOiFlY9>uscRLc#n z3_$3p#U{#K#XRP`jlzn`xFq-o9J&6M&>$@hLZJPscSziwpH$?56c zPU7^wRbC!{brf}(5*POy-|eKi!ld}J&y$$f1ncg`7!h_dqf)vQcBw&QFSLUy1ux}+ zVxUPxq*82Z5-|C*M#~>^d9^XHv5d*k(F4d;4Ks=zt*saH05X-|z)RvXdv)IRFE(0C z4$DO$G5z~@)5G1yp?XVAl9P4XzF*^7rTde-w*{PC-*YjjvJRuB#%x5QzivBl8-`}aDo7vmZ3FzxEqq&~_ zd@U}H{J1-e`~AGwByd{p-*2US8hn+jkS`~9`fgUFF7-*))oNN+Vb>%Zi~MXGa|H$- zNQ5bcUYb9yw*O~A<|y<-)D33HJ+F z(Jq}#3&wMLXUWmWF0~K9)IBay9lisM18nW>vpRyLB>%HdNcEmY)q!+TSTc~@hZhO_ zMuffr2m=s;tDL7ujzI16^WVJaUcJ2h2pUIb{zKRqA`)RtO*OU!fbaII*3K7hXoP8r zo4Y82%Gqf7FIK=n=?rOv{sV*@YYa4Kc|$6%UInM689dNdMupq~@SmV&e}IC@iG90?RhYDGv_xW3#NhXuy6=evIIQo{ zK(PDg-riUR?XUWo?Icfrn9{Hb>BxqW@Tr(pNl;121T7x7Wh!{0!rn^6^~hiJ`ZTNJ zmj?aD=z|sYyUPW&wSv$Y(EykkAL_-)>WZ>W6i}HwW-zKRmgoD0&ro+sMovaoQV#<{Oar5Zj1h}&Y*hCDX#pl` z?HNrtIgfzj@Y32^LLP2d;X8LE1Lkr=!ox^H!m-iOB{1tb3;^H?p=Lg+1+9kD0voub z3_fz&+JBDm{QXv7g#|BpKJcm1FZ_O(nmPr*c8^~sre?}sK4L8OH5b2d+c+OA}m2-HOF@K zBlERJ9GfvCgWdM*6D)a!^@K>T#STjPXY(+Tl6OsU<);#}vSLv13cjNgOd<7gWF>FsQ z_2&dJS-Aa+G-9M5SnHq+AmKn-eXMCL^4(IVE0K2^?(&+Nc={KyvhCigkCui8RcFOF zMq@rb%aT4Q?qPksHu3^R$^AlZ-e^&>3y*|L@~@eJL08RtM_<@Aeq6dG7)FWjut}&= zZ8Jp09!5ySo>}9nj=8P(lkW9T`@GW>Qj)+YA#!ccNJ()Z;@1)vH`q}~RpsTsS4b2bgQ6iklk5T3 zlKrZ2Dyybbo`{QA$8Z7N-{sdo&GEmmn=Vg`V@?1vJOAaYuI@$1*MST;9}vJI#@^qY z%YU0ZAT&NZ+gpjtzqzuxgrzBXA^7>LyH6BS6roFEgb|++z*BC7D`?ry}$l6lwh($n95G~|Rz#mO?x9GV~N(#l`6cXa#0WnvxZZ(dt#Al#DgI)>h z+svVL$RS7vts}%;WB)g-I*5qfqw8izz2Blr+|ATHI95&N8x!L*Rb6A|*h-ql9B7$&dTGe78=)4#uyia26ML&Lm(u%5?$Q>x89 zaoHe8e#Nh{5Hz0ig2+{4-0xH6Vds5nc6~9#j%2Kq9Q zFzYXhJNH@`sy@O`qU#IFWnWV-7>F{PCw3@|}J^ zoeW&^i!@8$d+zF+o?RH7b}>qX){WzoXhe_BeWay(@xE+Y=Gik9q)>9~5E3}5e*;%a z3D&(3><2q7{T;Quz{st0NBF{!G5W;q7y;{0%mXh>60ANV$VudOv5Cwe*>gBBm;ih* zw)+cy6^4xt1(O}{`ysT<4l#&ZV~;bjV7k12UjO^nzu}#OyN*^(Ly6cGIZoXQDxq8 z1iGcwOev<{zd3k#vX=(3h99%#Lb1wgpeg8a^>0irC>iv_FPR^JBeiXEG7;u4aH4{h z5E+ETP)=Zmm#?p`%D_-Z>b}dx2X#?F7ga1;4K1b1%WwBoA6ysSCB<5=cCqKpggDV) zcc+og-?|fx)a+BcNpV(*Suc?-+LPEl8R>rjNk#zgAH?}rt zb4PA%my5hdnv)J$KL4;4zInAT;}To%hMhn}jOn;(w>tdjH^0@d188`iZl2=){$2Bs zw5RgHV~+lHd)ZHqj|b$ul!t<9M1!M44(77@OD zbFN9R?S2s^D&V<8c5~k6slV&)ewd5)wR^i;zxnSU3A)D8*>+tU^@3wd35{4Z8WO(f za#a<68g?bD2#+)R%T-YVhmDs7UK*h5tkN<49sd~uYM_K}?duOG3=KWFcHW3a(_UIM zo@UcyMstuF)p?V78f#F`yy~+1WNrMuLJ(oGpldWJ`-W<4jZ$GvFCpPYkVzpFz3g(R zOi1v4zX^5GV&n}B;=zku;jpec$xLwc)8V$sP_A9?Ge2XpiK%BlKY+Nk0@f4VMyS(2 z9D_iT!0EU#Jf=&yj#wI}pL`lcBw+S0J%G%HQVlZ(5ZQq4B`P&l5xh+nRU|MVKR7%z zAI!cDZ{e@|0-(%^kB^5+uM6a6oxrSUYx9Nd`F*HFK+VX^&keJSlD|E*Al?P#M#0T1 z=6^-$L+c>s#X?BxJNxf#c7$=-I!I2Gkp6>$3HHih{Q&<1;vE692pEe$Vq;?f2Pyo^ zx9$+{oxspLW-*jp;^7EU&`}kN-Y4DAT-mpjwaB&r49SI2dPZqpYqAt3jfw6(0-7+SlVzO9< zG6K{=f{+kZq>J(CGAedTbMmSWe>gjnD0Fedet3{+QR(Sx-ZKM$)HvhGxEj|-tR=;GHG@okmHGheCy+jAokWmsk|sRA?sIF4R{0uXuklx z0=h4-<&_U&6Zs5(PZl*$O%Dpnx$;CO37Jj<%PcOj*w0&c&4w~iZ>~=oYd@ZG(Oyfm zBel1it@g>B6+S&}!99?-7;A5|HOlln^9{gf)ClbW@dRuX|DvPEdz?S2kBaJQ{P?hC z^{`)$fXwumSq&t%rlyeZP*A}11PqGf)i#vt+mjiNP95OT z?c(RA?H!09WYw96-zO)Bg}XDIkyp-noSRGRu=&MsC|5o3+p6u-7pCck>mTi=IyyRo zxeBBoKYm0oBOz1yt?|r{_>;A!$1+8}zTp!lCI`FgLsBUx*B5(NClW_s7lN?y_4W1S z-4X1!Fh8KgA!kPO{HiZ;e!R(u)_f?Ad#@R|nS%N~v8w6AZRlyP{{(=D55jiSrlOCF zo5S}jFk#3T(BMvbkxr%ZA~#pgb7xYWpr=UVws^JibM+rr*qwj=w3TYG-j;np;BR1Q zm=Qjrub&BGmmi4+-$8K+>0iqrL;{CoWK4`y+Wt~OR8kPUskrm)-nYj58US{INz?)drHU!K|`5|yF;GJDBsAS@h|65{K7`j(N-ALSqA&8GzJ z=N^~wMQ$gm^J}sNiheR3p^#FAU0`iY*Q$m7=&A*GkO7F}&`^LFZY@`yy00hbO;sW- zoPHgHcz&5Q(fro^>DiK)B2^@Kcu=xg&HX@VKZ-Aob4DB7@8Do%PL$}5pKJwypO)au zmx@%1Cm@$k*C;ZdtbD|8GusNTFarYvP&`T(6czpcjDur0N6L$rbNzF-n-`bNf2TL4 z`yweKLVU0*YFS$9{!1M>SWM=$wH>K5`9GKaCGa#gddmuysWOmhi-iBfv4!?gz+yU8 zcd1^M*(gik?>}869G`l|N+Ys0xb2$J$dI#s{fa|5gv}0!yB>wdhyR+;ua|xQ{`D`L z#)Y+&Hg6$Erj5x5S({_Xot9&v;glZp$uSR%JTF4HsuEYSWQ-!?{QiNuiH8?_qayHD z%mI1N_|%kIPqW0Rgp*V4nBI@@xh#xse@qYTyE(nT6L>;Ha{iR+<)7@td?6QMLfdU{ zuecTzRR0cY{D;00O<*kP121S{{a0j(r+sPcyO`L7og$9^3iCr?j&E!-VAp~3eS9j) z{g{P&W?H}3B8lfY3h#^9&W})3OF8XUxR0_}Jo)G^6~{&_pX}c=lo#KZBvXIj(%1$Q z!UkK^w#R?xV0rJgMbaP@$vvfkI)NKoSjYAxz8*7yCpWb1#Sj{k!5L2ANo(l{OyES8;ZARaI6N z`}k1=q^q~?lB6p$A>v9w{X`8eW?bB`?l+d6UtnOSs-e*yPW{Z{sHsGm!_UX(9sz+Q z+^7mX;Q8#6+gJB8fLB>BEO)Hg>OxI+sHW zBS**?(9(m~S;9l|Sk@&75cc7-miNk{1sPz9B8CuoYEu(WiF#0Sok;4x-9DcHd`oLj zSg|)gacii!c{f>xocCDMj0CUwnVXv(3yZ(ic=(%~NT|&hx3+?z%e)JjKrNL#2i5P2 zEbPq-$flYlWGBb|?LTqznV+e@P_nsz+GGF>0phR7!X~TVE^J~(RPwAJg4le)?W_XL z6fREZ9N)Xw!%T4VjsI|b{Nclg-#|CAT?xE=_cA)1;@jJxNaq=$^)L{}60_>iUG0pQ zGtUj$B?~(#7L!Yd5-gVAf{_t|RS8a7S%8j$|FZJji?zLVO8!E_bMxYG1AJ=$d?J1k%hKeq zBu#DQv=#0)RaxN7rioUKLypILRp%l>Gt%Dy8W0E|6NN6klxFLA>;B4~Jvt#MzXCw6 zm?aYyTeW$0LT{OFuGS3ZLD(-N4SzLAd!&}znQUgQZ_2&eo7qaskWrogkKV>o$WrDp?NnX5=PJSA4 zogOR)z*MABDg%lmq~j9S&PXC>+I^PpG3y%snL?*uX;(=5BTo%#HrPo-lfMvr#Cfi zJ=&C!m}{V;V~mQ8l?Ev~sHQShTE5&l{zp&6@CAn7h(o-$H@7C=|3sr?QKHcU&DD*& zZ!9jjPn5A|I@z_MflOYWu5FfryCk-D?&Gt}BvSF7xS_tT+a_Q2x3ubrrL0(sT}Ca5tne!aEZ2P2ccIya)e#Wy(L zE!x7~{w#v9Wt^?u?( za>T4nJ)!`Ug7bNE_|b;%7mZzqZ*O0GS_l(m76p^_1JIsk!V)w)FYgdoBOG?ivMM91 zD_uHJ=MA!-?8fo_obE}QfBkUv>LO}o`wu+8$N&opCtzlM>}}X0o5~YFd$OzccTplG zn{H4+z7te>2VGHXe|vK}|J((!rq|&CW>;rAY%0emC-FSChz$n@>b_Y`Y+|go_(|Z* z)$DIHKID;&9{q}4*WMPOb9w&H;(Cdl8hYKr0`n@X^5AT`9r@H?CoSUJ2JUTL{{G$N zq8^vdPKMM-?i&2DTn^@tlvFFn)q|McXg3EwydVzPIABbVRXA+ z_!A380w%D((p>FUteej2%E~_CIsw!~B$cuKKN}W()F;R#&jiYzQ7;MhP2_}A7t zL8xS4Nq%6ERi>;OU2R<=O?*lIe>}Z)RF-SBy{%hC1qnfrP(r#}L`u3-x=WB2kVa4m z>2B$6q&uX$JEgn3zr{Jf^Zm8=a1V9tm*>5obS|e=QohIf}^8FK@I{X_sWE7REda3>upi}H5p|hBO~8<-C;mx*G>At#bBDa zdX4@5@%jxtyoRL}BZ6vXs=TcR8~IEhZfy%LD-Wa>F-=r}%U404f>iKDnx$pPO3qNn z@x)YpG{6RBOgX2gNqR1upN{|G6gnOe!l4Mt9L;l&+XAr`M`a1#Cdu_ zmuO5Vz#RdZVsk3et><^jQ$)Vy&932tlKsdpr};rXuIbaW#lkzh9!f^+jK@?^VQIB7 zObOQ*80#u3Dxh;*wf3H@5#`Zt-^pkm<^BO*#t_s*H$#%p($4O2YSh0(WP7bi z0%E(JX2)R)Q;5n!ByJ;X1bePZu(#EJYyXI(BLSZ19^1-w}JCpy$o00QI#(efgqy9YK#8SPF^K7~F#r*kU zLG3U4zdimy)Q{+i@5x|QX^_`mksu0L?ZNnunE7LS@NWIfLBk&0r`pPD)<ym5;y$)vGv{t8~o`G&}@5rxyyH;UPIB`t)$gaN&V9zN68n{D>&G% z!xNcwO~r*mD!#YG_vEr;Ls+3$XYKp4fMQ&%pPN=p|@%;P&p4KG812rKl-YjWqx ze52Qrg3${mI1-rA_``irp@*B%I=#g3#<}-uksvId2ld#ttZH7UoO7ZQ7ZZUCMVZ>`TWOwo&=yyS;1vL=9hb7d*3Rk&Ufk4rC$Vp{JaRu z%{2~aX)703e_dBv56k9QPXGB))%R$r?DhZ&WA@w2PexfU!ouAdN>lWv6zSL^9+%Gp7em@k^H-rw=4_Nj7F%~GGA(mZLuN?Fg& zpwXxo4xKEmdTtnALs`F`eL-|OSsFaqF5z?tnf|9u_lzK*x63!n#U&G(cFZK6b%vmK zA|joyM$o>Hj%mh6LbCGpVGt2(9B%bY`h^m#sootRo1zSNS8NCfRizH>3B#+A%dz?D z{1D75({bE!a*rRscRn8JdQH!vCem?p&7LA>30g6LMi)Ens;cdF?=pF~ICw)hky@G8 zfE1XkrPk}8t;_bZh~|0VfTDvm;>A_&fIG%PHk>fdaP@>G^urXTMMarbhvo4W1Ro+GR^C)4kKVt3;8NmReCCd9G?&FD) z7M(!wcG*@B9JKSW4!PT&0Hr6f|Fiz=c$LC`4s7P_&KJv($t?A@lCy#vqj@x9D)+%k z3ojuh%myl&FuQ^8_o5Sui}d3rDr852v6Uo=2T|OCs>(v^H5teAOY0yBwsCZ2Gqfb(555kYb`6q z{1l&*6r@0Z5?%w(KNcxg9&p!dQ!cABfabQarpajy{TN!A3-s zQAz|&p*$-K&8Lr;T=+>%hP1~EaN-a}zJBHY>T0asUAdzxRC4n%K|A~Am@6q!0&G>F zD*>C?K!TM0QVehgLI|r$`KdiCJ=h66f%7fC$!GaS#pQ;96hq{a**BGn)OcMeuLV5L zCk&Ixu6=>^vjjw-=H}+TQ8kPCjSU}BDHOpRMax_plg4=NPXoz}%Cy8e(c>B1g2k4F9 z_jj;;`<9Qp{zGToSLu}GrFhq~`QLNRjePB$$%Mpi;g3;(jv6aAI8PeOMa^STORDmO zkT(qOkJuK|6j)TgFCY9dn|cd{j1G3auQslZLeHuQILJ=n7?tgij;Hw%+3=yVHIOHw zuEZoV)}#j)hgwRi*}=*Bj}Cvj#f(^EZ`|jTotA|aNfe1_zTNA~j?=@%I@O-25|&qr zc_F*YD?X8y1_lb+hR4RDEd;D$z4Zo?tfgEHfKrMEO^u?ztJ9rkwqC1!sn#jy5$>Be zZ=fcU4&1cLs;W$e|2~AR_I0s)B8Rfu{{4?AhD_>3G8-|!2rR)h<3DOPfW{3AM?K&% zz#RJ#c3S{-hFQz7JBrcu!iyCbh8j~s9-agci|3ue#3aq-D8fKRDrjnlMfZX_fW9t> z(MVr@ao^>9`6UdNIBJXr-@bX6PS({<&gDV)2V$sq_Ox?C8i{~vJ>fJ|3vdBA!NkBy z;{F%!t+uf_%2Zh)DTP-O#5jy6n5J(s*3tZC2b$i`m)mn-w+a zOBUt5Z?@VUd@nwY^yzBf#~MdgrYHtIm27);2>&$#?BOu;z4mS1~Alt4SX-T!5YJRMo-i&&MkYsbK zw~r?@I>u*tdum)zNX~UrF^pENGbSpSh_`rW=2NYC|A*G&-nhLk`qb^&o>nc_PcSc1 zKvvRf`dy=8PvhE|<%Y+v6fx<@-Pass%{CH#S58aqou#Z0G5r%vTxd3d9(b^jQXpvi z_UfiOccy@k_lI)X*3{|hZa`Ors3$*i`~*NJv9Ymb3N*Q*A4JlHf1f+q);1CaF$yg9 z{3?pAQ{LVcj*dQpeTlr`_xoUz;c~SvJn3NHf8O{g%R?r~i;fm^?j(}}$MEUXwaGG4 z;HU>ojf2460{3wUIB5gQb!4v6*Vp4qKHAUJ)b`lz4XS7iu*|Kh(r!(9jJEyCEuUTZ z#i++XNsm37A$_Od^ujx=1GMR*wSkLdx4RpR*3bXnE@n(YOS=qTP;5NB`a-_(hKBEd z-5x7l(hw87K`vl^X~`YTQlOlHu^s~*7%;_$T5^)uxVU%jakyF@Z}1=@qFZ$4somD| za=W3Ge#}5rIq9OmJ)Y;};@Wr4&pro67i3uJgS+8RfzJ3s=s<)0Gu(`_HLrGdlXX)p zud9?*zV6cLX9*GC($ZnQVPTYQ$M@j7fiwrt#6-~m5(+|ta0(GOl~2j~P$A3P)*3xw zF(gEW3KxyKsp1T@=9`;?xIi8((zPUhzF2?^)GJYWY=PGQR{HsKz8WEccCs8@VwiC2 zd>$Y?`EhpG$7i3GDze{V*q8c6KM-G6c799!6UV`bQnHVYT_p0d?-y&Q?L1}x{=g;W zF3|{1#(K?TGwpk}ww&hu-%E}+ab{{Nl|MDNBB~ri_T*j8-iDtSn${BHf2ui{Hbd8! zA@2zY=pX&3^KDI_}I)3L&1%U5*HgqO+L z*%{QjbOJc&Pgz-dQ@SJt6dHrl*`1QCUp!S=Y;Uuv_F4>VDk*2NqMtHGw8_@JY3=XN3Zgx&*j*7ACHv*Em`}< zx$q?eW0qV{ofnr=s#bH$HR}P6yTHY_r>|DFvyWAJV^d< zHFRl5>W@D%S4y(XY~=%>+?kn4!aW4?(_aEVVT=HEpY1)48+L*dfq1x&t73P05(O$4HV z2s+HU{?pk|+tp=Jf?;EiL^`FtmDSacP(@f;S{fuT9*O91ak-nkMc=1Au>KW*_}+MI zHv}iW95kKQn-}#s25YrSg3lk_r&caJMR(HmC2hsk^NUI8@Xl%_i4RrQ)y)-^Nf}U1 z)@{mH{vh~B@WTtEpWlx(4eEH_w%~G!_Fl#x))wb?Aw4#TcbvP7cG@l->(^SR z$OLqBY(Qr_prBx*ylNNEQ7l|t61@PM8TM;h@6a-{Pg_@eZfLcr_}YbEh+L777Bk%* zM9#Y489F%~t@MUpzr+;1dV-j3VjB@e=zqS_c_qOf|IWlLLLk#qR=U`*B8l@S{)#{67x6Z7xe;(@h>_FIGcPmrY<}F+-_&(gz zQ!DwvY)#gAW>2-!P1H1wy*pc*b+O9h0QCsVK}6Hr{Xe?e0z)xhxI0OqkQo@T{N^EW zD>EZ?VEE({bc>9uU8eWA?)tKey+HYI7X%Dt!Yhj%K(|L(861AT7>QFP#7JXzo@D2wd@x9$9@u zcn0NcF+|mN);vt;mnAHIyE7>=X>ZC*lyVmq7-CtG+Ir(Cf3u<5ad9z0kucZ_E?llz z!|Uo;RBEEA;f-8Y+@w9rne6;+AOKeogN^M!2)&NX#APP&@8@SX+AN9WOUA3)eRz!O zlReY%R5ABo1KS*f?Ig=9L_~qY&2>sf&7APF;8;I0wn&(??OU5=M$73t!3HT1F63q> zgSN|R(whF`K}SiMkn6e}xYS{sV*z_XDkV*7ZcS`Z*b6!7ILFlFWuR%hdw4*!Lfm+@ zw|lY-83`k_iUd3HokPgm-*5j$YRMUxOO1PDY|WKCEwEl)Q^A<3tsxOr`zV{5L5}s| zbVtWTUjVfAw|gV+urvO>s5yBS&b*FWoF9`VAwT#2KNRXc=@~# z5}XGmXxrH9Y86zUg@3!x`-Oy<6uUa(>uYhT6MBAoyvvt@nZP9$mY(+xUV&Zm>*ds3 zzgn&86TNUmH39-nhh@w%i@9DQC8aBIu{FyzG|#buu5laNJCFpUUaJfQ=2r9aIyjvo zbWl(z$R*Go9sRcOQ5b9Vkdb$X0?-}kV~fb4Zmqu&n{vH+P@ZutS!p9qrDHxDHU`lH zOEAR=J2`I6O7dDVvO%}aCL9lwn*|@?ZF(2QfK?B)TEeS`$>Bi%^?9xv%KNLX{^$Mg z*An4hhm*l2m;hzUCMG6i((zXrS3$J2v_}1j_rX8=DDzrZlRpB8k@vK9bwLCEmY^kc z?o{Eb6_%Ia{6?(emLyk`woOUyU<-lG^*?Eo2v`{IA0LxK85N}0;r7oDLN4QZG1XSP zh{_i*f+5NU39jg6x02%qa5Xumc?ZM{YB|uWeqMa4X^A^{Nb1Ot5qMCw6Oew|EhZ&)boMX6WOUT za875P*qg-IaAO!4By&r`Jx>$fF+M9RosF~8>NmF)i0>&yPp;3DU1i6o+!6>>n>h}F z>j}$hp6gnw@NwoBSYo<=r|=-hVD;r+_r27_m`ay=wr`5Zv#f zeKXbMqc})dUOZO^%L~+wC%My$q2!14UwCAdX`piOVQt>vocr$k(ttsA4458*NZX$Vv+V zbtOIcxg|b6#jtS|3a-1T?i(RGI(w-Esr`YJOn<*8^)|j_3JPI!wZ3Y$Wqx`dd^^E) zbz6sxj~shr1o^%&q^YQ^*=%{~hifhJqkF|ji6p)i+6325M zL2HFyPGA_-W3nYlNS5)w@n&kxJ(O(z>Rch=RQ?|E_KB|hTDr4^` zH_-5*`IlaYHDp;s>X6Fff zEuQi*gF!?h%uGQ+^bH~N$9%9iyowA&^^yGj4g=G}K@kh&1)zqCGwIH9R+ga>4b0+K zC%C+67*%{yEaWf1yS4Dsh4;QWhwYQXh~K`ptOOVG=Mi zgZV^z`W;ng=NHq-7va%3qno2T&?rxGBO&o2g(yjZdf|InTY%0~RwzkKNGPf3cm^u2 zo*wigEl;Do4mpR@_i0-q;o7kG*3I<<>sJa-QqrS1h9Bu39tY0~i{08qj)Vh+)YK)I z4Gm-7nu)>F0Ob&+{tv=~gG&laNJcumA%c9jjRw$$ii!&ON(SNT2a$cyvad$dk!!83 zEyct_qF@rW>V|@YNIIP_hh(q0Fa2zrJfFj|s0WoN*Vo9Ro_5T-^;xuDLuSjHt^alFuVGKusA?~UByGb4j+rtxPSdYYB~>vgWo+wEQAI3i8S2J@2S^1hQk;vTWLeR0iMhU zkMX@PBfpcuQIK+GkE3*b*_2ZtXVHdocH_huK{LM+LQ3L%jEV32QvB8Ru~L?*Y))ll zT+fZs(As-zvUFyH59+VXQBdS&O0AYt{FUIdEfpfJ8yL&?&TA7U5Vb1BZJ8>^hz$Bp z-A_jGIONxO1 zb+D0BaF?Y4rQ?1SgU)|gSXg&(esCj~m$L!n7MM48F$sVn9`HpF1QK$niPZrFU~riS zIUu0up6j)ZEbEPeBuauCG{Fy+nW@Qr{J5W^_!H{Fz=^!)<#VC+^Vcu5+&&7NTcsp< zs&z0+(yEsHgPvB{vD}w|ODJ@SO2wh$`SZHn9Q#9(KBeID1oIL_T%5>7$Pew&arvB> zgT?7ik%$7-W>`{d>j678wSxwK6$Jgx?G(a;gmHUPs1}=kd3vJkFcz^7Vis6E{(7RN5{`&c}+W`w2pLYWWEc$Zc9}bQ)Ea$@D+T00_3DG zJ43={6WQTGv%7WFzVa9tMEPJQ<~IENgx~Xv;l8dE9Gqjbk`(ieEB$7Zpj%zIzx=EjEPa5qU$Sf!s{nGk6$nt783 z1D_8{q`06Ea|Fn;*k%a}#C z4GoKIQSatTwa6cgm?fKYT3dRp0eN`*zfd~9b@qf?9u$D7xU#%0aO`c5xTvVZ$t5Nt zzVkKfazsQ>oPUa<_@_^#n?2o8HRi8hH#Uyf+0olxp6J|8SxjeV^CiiMYz-T4(ij|)liFx^j9n#Z9gzUk4c95s-l9Q71DcG}r{J0P940z92gB2H4;m$2cYO^pt|4GB4 z=EYE|8WY5|T;t^xbPDXh@b&d2WfjX(EuO6(-GaUqC5EWrdaNncc~G7%nNp<228l+M zKiYqbsjW&>MK56QFZzgsLlgxp8>d$r3Pkq80b!}3{_s;iHJf^Jxi3u9=AW{j$h)?_ zK0?`eKeS!s;sNl?^j!f?H9y~t_%v8~pe#>)5m%m#jcaq^j(@g~h_r~w&;Mev)!WcS zGrl=2n0V8a50@?C{QM3B0z?PkoT|i>jiAj0!oWH&`X8?Q!y0?pEh;D~ohTl7ywV#d z4*kArD6jsd`MzY#$zE7mXc4g8mD1KGq&?ZqK3?OkIKqS*|<1T7pWL|;XSDY6wrq@mOZk#^783XHWXH`}5TZRT!DjyBNg?{{J70_1&?GY6%MOZKjH@u4(hHW5;G}G z{rvZ%S)SHTt5>=}*2UDzJNVo6-h)`qjtwDy?M+2fGqZuQu?)aACO^DU3SGZE<*7Gr z>6Ox5Z0d-bbV}o7^^1$6HI4I}?aB)DsUf#%4bN*vT-6-tKo%CEH#_0w^bLb(xtOgLs(#KJ&%0ZA{<~Y3wk9=(noA?($77UsyIzgzrJ7d%oK1_p^$fZ7@JMp&3pZ2}-gLP;`q+g*&y%(O z`(p^mOXteS{z6UQ6uv7PjKlw(@IMnhJ>u*8c`(?oB|f;Ppr8N_WhTG_)tBU&-ywM{ z=I~2ZHPo!Q*ONSr!QSu&M7qR8LNJp1LnrGU-EMX^9y)~pv>yG=a$yKFST&EvPpt&) zzXcx5TBojsf{F^MrxzBUV7DI2*U$sA92ono*9S>qpz#0?$wITYbf%)~OI&~ZB07x= z5v9|5L@)$F|7>u@xNt$7cwhpDAv{ekhhXs$4v(-PM6kaB}PUpfRa6Cn@ijpa2vy8A#~c1&n1&0F}ZOr za=m)K$*6aBP3wy=H@pk=b#!Fa;$y+H30_?|a9~muH@9N)eEZf^wLAbcLp@l(g5lsE z2%}&P89YCgH#h9{ieVrX#F}UAco^hyi^}6=!!O|83|e%dNqY}wG6my)AbH?uK4w>7 z{cYSgy>M`1#!3X{kdkp93o(IWI4B4vX$egD(S?1(3jGgc~JI zPWU_=s;iLCm>+h3`W3FR#W_l$n_Chqug2{K9_?Zo~3S3ybSA z3M~)B#e3ml&tw3`#h5ox&a6} z_)TE$?Wa)_T8`8@XqmEDR8VLUzr7;gV7C^?Qj;gyX!@AZjB9XgEQ`P+a5g-y>hbFr z(*5g}m(nvzR#pehfzc~HpJ;eeDHOBhzrwc<9DdJ$EonGRLFMmnNl8Njl*t@i)A;7?Fq1zmH7NkA4k9diA>MXjA;H`iyxrZZxzL1>-{ z?*)BAG1x5T(l0^o^z&!5`Vw?$@##^*Hz8*+#Cd=xpPsZ13+%ToKlaP~>*;Rijg)ZUgxi@3Cwmai%VL0-exqkbW@<-ah#*%u$vMn(;ZE`bm8`xNs7%3UH6LM z_TOv-t$J>5>R1>hc63zx2}lBEWft@b+*nvp+>nyLo{~7=b>MPpUior=KPVwExSGSi zsj*!q=dO0Q^5kSm;t$i0~&U=n!JePAWJldDcySgXMylhvk$eY;^{B@i15||HHD7Zi`}u{jXUT~s6T;DoBu4s*(`%uJ&7oG7 z7`_sBmkbz^S^z{tv47l>*^00zDDx5Xn3Lj#9P10rUek(t9=<_(x|l&w6ZR@ zT$+}au^ruE_Rw-)QI*`&wdlmb;raOSP(`MQ?)CTkA==bb=pl~nXrkjUun_<9n8lC) zoYTYpEmH`|<;^u3rbn3|5+AVMHdYh#))qgW&ZOglCk;|!H(fo=HvPPhU*mfQd>@5> ze(k>>B$)5(+od)3XNTzBXqX+(U768vj#8jblV_n`8wxNq?&{}&kWCRT299tgwVmrH zEVx7$bysp?ez&1Xa!(!h2E~(KWh>%bb1)hWlE64820L?*Z2@zo2Qv#)t-+ymi+ev$ z#w%nSN54z!hohiiO`XmIa!-^`=k38SrtAAI!^5TDCObXPRhBj6m(kQ5d$wjtqw=OR zL8H3)!F!gYN?S}<1fT&z&RRxAl8+mbcwOLchnP$&;JS&J4TdQl2~NIl&8WGks`_YA zdBJTc+=bc1#w<2*AM$bvS3*QKhXlsmYisd48NMM%r0_dFqka(S@O#*IID; z+ai8qtw5Hw(B@ymecZREUM>#o4@Qi^R_Qw+&6AXo(YDkP3OM9kjp_*a_%H|v`XC_! zB_t!E`_vq2owpfM;mU=&EyWfxp=1XIPImjq1S}%?K*%bsYjJ&IQTMdgDW&ia;RYxI z$Hzuz&-(Trqv8jJg#2^`Ttxras)PXcfP6gyToPseB+EW#&bnjhL3`hd=>jnRwSo4?vwfL$rN*&iyHzmaK%<29HtK{ z+&$>awJ+s;Kt(1&NJIGjDg+%02%&LIzzJgVZ-^_edf1M3=Mun&!NVu@8njI7fB?VV z?&kGLRzD1k_5Clz{W(gc4p!T^@Z{XhVn8ckTFonG_(&m83q~un^%P-o^aB+I97jh! zhUPBui&0Ey( ziQFLoBZqJkwxD z0}t)@9$|u~jPN)RUmk+F9HOky8z9_PFGMUbAIDKt-}9TGa2KSf@6aJ%b2zLrunC+8 zdj#<7D(If(jfj~}{JEbl@i%EQB15y>eAr}CUZkqbEI|aj@^`c)J^3$q8qlDjO`|j} zps^zYxWJt-(nPhYqzLqSN5)MGd2{pKB~`if1xOBlTh-+2fr(~5L#(5`T` zEw2l=sE&?0q=Z(Bn0BhFL*pZbe-_Yt;^0KBtcJdN{$t_7Cf3SoEjG+OO^$L3bXr|z zy8Qe%Yg;Ons7|Noe{853;bJ{z(D-m+*w}BSr-_C>@Xdn<_~YYfTPv+az!RdQEe9pMuNql2v6C|6FBssBmp7^gpkoBqoqaW;NbB7k)L1s7B@OYNC!yp za4k+vOS1%uoUZw7^JQA3m)SIS;OU%UbE`j`&sMuR1?{E9DZ0ZHTQxN@aNUvU?p+Z& zTv6}pPSyNOq3PfNPzbr*-q+6p@WZh;mPjmbrrAZ`|Lp$#Ynz#mfBwvpZ_eKB=;wd( zq2yi6Q$2YnwBSGjNG4aL{o)RG`HJiHbYSEEMIy9{@33AO=6$GbJ^kopn*8d4fgnVxDzF(0F~x2Vtj= zSs88YPELqnV&Jt|8!ue+&Dn=goqUZjD$(boBZ2dGj$dEnoU%}aC$CXcK3~{5+h2YA z;))q~hs$UCi?Dlt02=!Lg5<$&D;4|hFF=%|IPB;k`QWr~?Yhk>%Q&JO{tTP&p`Mse zkecf)N6kLMGJ#9``!sa0_)OM)X5!5fFf$LxPX4cUG*1=FU6`35~beb62Ev_)mq>u5-h2xLB(Sj-A+u8Zm>a9@2rV}L#c_{8;0O|RS^ zmk6cILza?+gycht(3#DKI~n<7VPW9~AKyEYbKZNK5Jtyce4*grX)*Dp?FGSS4<5)4 zvvfK;Pj5{>1%PK|RspJ_V(R30kcHu|o0Xm=goh20T2=)%CWzEjK#e3JC(jt=rUXwv z+~7cm{4BS)%Wd%N)qD3@K-U+Dzk~-xs@S0Ci;YbSEe}EY`C(RO=AHUBUE}bvmxwL^ z_CVfCsU)-QosDU(uEW6JvSy(c4}to6Ukwpss%Q9qz+2%@`o}B(!h9$_*#7!`86bBv zjnF4^Cl0SwEvAFUr^@osMw&cD`SiC{4>Z)rfec?zbI>`IV~Q_iLJ9j8Z7o$@9hxOKzqef;%gUT` zGhP_W;}r1>4{s1?VxeiIGjHCAP*Ca!Z;nnI_kZ`4j0p<;-Sq>ASFafE)&F&~q@~92 z%?4kb0vId&+{%=&62l2S#LVgsQ!Y(?5PMoan`n;cC-+1_jkj6RWK(l z$K#RW^~KYH$!a!9XXib$xp=6ikc#INg-=>$dyZa@m=&|-XnhGT87V5oB$n?Do~cyZ z9hT-$55ODIbd-jU#Z1ga0h~$s15Is@M-q9_O~4HHZno6-!Th|wzTwbusI&~wk>2Y+ znFtRL8=qj*ndQU{#P|O+mM@Qkw`g_4>A71={#2TpTDC~5nylGYH@OC%>7kELMQD_W zs4o^vcJ`ae{-7Y}q+n!gd&i8SXJ==s=@MOLQRi(W=5yvXMj{20FzIog8sCbruy~Q_ zj(Xw2eE|HkLwoG#SibDirnqL4r`+?sWEl#59*dg&t6iVgR`f$I&ZT!+_aF>S@scLd zOrK;MtVLP!$pfFq%gpfLEWDSh3t|bd2``cRTKy?4hP{v;qlOsj{IKS|FRZIq>3Yje zXSb91#X7}55LF|RPLSP&^FmRPWu`jv+qX+AlJ~eusHnMmdWBxzfAyLWtn%_8%lsza z#w35Hs-<#T{e7+qao^IIW~e)ql91T{_n!dmx686CsXPQ!RHofIL%1hP{3&iC;Z&~+ zRhXKG2I>C^Q<#qbnN0P+({q}@#hNo>d|Qsn_rC)Etph}uAQEv`M|UTp9&}O%qSxFK zRX}+M?5>;I+r8l2>Y_)*e<7F|I+XB{?8X9iQ7R9we{&r{2a-7SwZQ#AUP0lGX$<$9 z_P##yw{Ni^bpyK_aBGNZ7#$A%(fdU~{TSuS1XU&nvuNIzKK1X^N>34iHds5K;j(x^ zLW0MYqp+|jYGYOdYw{(XNY)0yUpN{)o14Alj^^C&<~)3SDJXpi2ncuuNpvWJgO>pg zgZ4ei-`tW)=N#|sq@En%bH!iB_r{5`yXL@dZL6svQofQwLY99UCPPMzUz?%HhRrOvIoU1pbEUQ<_-^YGtqw9HX#s! zT;=}9)-Li;N)nS#w;fF-tlZ-EYE!`<0^w!OXGAHkH_^1AWI97ttoix*P$k0Te75(V z>7~)2BZP|Y-6{3Z9iE-9;n84amHp9tb+xN9j{QNNs_Z)}5)=5%<@6eSl}_bB{DF&| zm_WU!;fh-z6(1kZ!l+bKEP<4HWC_dQ=2(VUQUiFA%OvB((o`iC6fhkf9RV(n0azsv zHkvtZ%I8u`Tuw}*i32g-J2)I%UY`DK{Mp$l1}H4(M);a{aGRI>CRa>64M#`vuojQa zoo1$xAN?K~S#k(iHw!7>*#!)DMXG3NWHDE^?yLy@aV$mKV;$unJpKCjzYwXog^c?T zK93fWB6|F6XlO8OYibsVV)7{9urnAe`lLQpg&AJR2*??T+1y1MWev#q6$@Gutqr>g z=ybHor51)GwK}6zOGI*Aj8{xmW0b{)m64WKn^qGr6cmNPR9Ry4B}ku;Gng<3e!}|; zE$`UbfutaR{z)-noZub%$OJbgX2-Y7qmMXBgu6xqe5Uv-y^kI|fOC(6o|^x1P+VPs z;`4ANb4E&vC>SgHyL{<#6q9VeHXj}t_4dVyH+Ujr=PL6WT!PlIuH{;3B50f};eM|1X~@e6(DG z=cdMovjCYDwmDFg)|`OydTH8r3r*pizP?=<*t)(-1y+zv+1lEY$r2iS~RlhS4XB& z;6p=0I7ei2MxGHcxs&0sb)L-@K8RuEhbpm1b94LgNhYfaCL9a^Fg)#V@x2dbxd-rL zsNu4qa)i)|SY1ijw}Lvcw&Tr8FbvxP5#r-#ic@;6*2?6cKD25TPKyW`O-+m)oyqX) ztpNcf{@6cMzOwX$i5;!>Jtil=yZl4l<-YN_Oo;6KeAru))}l{c#=qBW`nsCHB$=D9 zDadG*O5(XQ8?MJ`CspSJgxZeQXy(7|UOlHfNf~nBWZ*S6rdsUjv1DWkbN{>0Viizq z;Jx7h-s$BrP6Da85Hp)ivX1aaNcj6E0e*h^U^1Z@uL$0tcey zR9R7i;dwicUlca`C~nK%M;Uc>2?GN%kWXK6*gj)>`LZ)@zvCk zOZo^~bA87hq3juQj8|h?`(|^RtwIuh%?;M8B%a%IeW<_R0!Z_l<5h353mh$wu^B8h zQ}ZUSt2?+hTan0Ox#tjHZu}@m=_9P4mx74KFE1C*holeUn||>oC1z)5mkIm!o~pos zd`6vE{O@jF|9ZxQ0Kz=nk)I$Vw{&;I-R3tl$cB@2>$gUkMw1FTQXKX&SnGfP-hNwR zZvQVW{lR(tbI4+(YSuc!z7R%pKsZGG{tXA156CTwii%)+vVu(`{h^6dnZ_>st%Qzc5D{; zYJaXh_D)a9VMv6!AnWT3n>)xtU|=7?Z?|74-Z6)#?S|inGAf^GnOzB%R*>llIhMIoFe!ErfU*d-6H(!}A2#kSk+3GXovTYNn@?I-OiDbNVU1G$qM zT0Ob^@j@>Kgyo~78SQq|fu7h7F+CVY;QX)LrLQGf8te?`ltzL9?pHzzG5h6-Y6#QN%b-}Qz|GmpXpWfhf?=ZP?KAd2AO;Y4O-S)pDW1*31ob1|CD z#QglHEoRWuxYR}8BDSK_+}4z@K_U?&uvcm_Y-iWjG#zWs|EuV7N24kuZNAv-cdQfm z&L+x$uj$}$pKpttgd`|FJ|H7BRNbwi;r)MymdeT^OsVfxApU>Xe-5B1eaI3%eE8UU zYL1}K;jsC?WCU(*T@19BlZ& z>2zN=2^(7^*qw{s+mg%uCvqwP=E)#&cG(|6+%CB>%sAK`eq_ed;)n4 zPXGNSf#e2ck%1<5m*VH4_J#YT-%6-7gZ*KTaNyte%z!7hmd{xYWP*YmpdYK)bdH;7 zezN?rwROHfeox)EOYE7#6cV~QSFMnDcx*l%BFE#Pe81!1u-={JqB1e{)pU~dnkI0~ zhNOU5yfw&2wT_d33pmqeL1_F z%L2+K+)~npSyswDH9jSd(S^hOuXL;*6-n=4vUJ*Eos=_@RxhTKU6_xr zqRA$}X7DID-+VlDxcfXXWUr)4WEoK~`?A^3i~h)N_rC)Ta#B(cP&Jdw^?qdzg^RIxdcIIrdH&vkNhyXcqg1XV z`saT;B^G_%nH0Gi>J`u&UQ-F%aCo}nSiFlzM_D+&diki8pB;}V8AXS>{m!BUax}d5 zk@swJIWM-5haR z=mQKS^aFT6Cg;P2ncr(RshjbX$Ib^&^I5s@?*YvO&<|h^M+M)&GaROe&^z7O)O5!S zn$mLc0L}ks=Fk1j>&wlP^<~nhn09v2#m1~Ks)Cf@Mpssr{6$*AdEpF>Ls9io9~Amp z_k~tuqM>i!2)>znc<`#=#MsReEkfEACLrJLk-;7u#>6TZ^g@`)52QNYxW}V47xSx&kld( z>U@Q<{MVHfqRKGSg0!h;V&cnNDx58rmJCumj4zh^3xWWTh3h}0)U?gaG|GPzG41!} z?c?20%gng@#J*DbTz5SB(TocmPn{rTiAqX-8;(>+dEQc-mq!t!T8iG7m>zpt@I5|0 z(|l-1@Tt?WG41^mC7_KLj;@}Uj%hZvv@8eq{e^(eqi@K;2OJ=`kiH}OaREfTw2NZH zu7wgPF=(m!`aDD;C99e~L)v$yakBKF`pQ|B3gL0naF((}yhKnahM}Y+<5GMiH25K@4VtMo$C$ycG=I&m~?)&Ur|{(auMnl)Pd;1=QXy!m{6daV_x!Uq?|sD zlyvL!SODGODvyz%tSpg!r_*jnnTc~2_%se(V{;WL+$;8uUN8|d$jtr@BJ{b;_>eOa z5*+*&#Ac&Jnf~g@az`iIw@}D;m$V1J(pGRE^!wd|OfeMS`CHmdFcXeBPQ9(X;jk6i zx;#-c2Mt34Y}6cf$u7&7pz|^uo(SD;C_KYNe3Si~nT(t~w91M!{1-~0U{-2!^3M}y zgZ{$YXV)#h>;sw4X<(gI1} z+so@8*py*st7~W|43sYb*g%D7a6*DKkW`>R;U8qs@80H+#a2bZZO(5NXk=o7?qE`Y zazQtYGoXAsyq>?CtK|Q%JIk^&9-JJ44kpfD1qBu}*UDA$G&HmJZcwYf&u!x~KUFrr zyDNRT(qkke`{Vc&kUE(W^sa-URVvI`j#)UNC@6e&`KqMN1<)J+G%~X5n9}NBOU87(w@|OKmX`Vt>y?BXvGAAbuiif)^^>C{{bCo= z@%P|`O%aNTDC%Bf`t;-kY{+u(>D`h2poAS}9s$|K^J@D-v_Dx{=+=h4FG2>#A`jxZ z&X2*Db-d$0F|>s?I7kuA9jC9R2EBF^o5N2-llW!B!V*~-{%vAXSA@rQw?M6}v5D{X zeA6=&l=Rgqn@kM!cKICOtA`qD*jJ1{Vl{d*MnrUfdwnR@(yB2-m2%t2)Nf`mZ5&W? z;Hq50!93EcP`MFND12ghRxwAACW}4VI#*;n5wwbt)m7b^Aj6b2M zWg3ePkd*vQp7NTNjrpl0@EpSB*$~j^*lU}@`n3BA*dFC(XLaNySm$}O~@1!*0+ z;qRIar>A2fduywxByt8}wQye~MPA-_w?`PA>qDC>X8yM)B}OvaA6=oGb2^6Q?_g`X zIf_yW)w`%Ai~2O}e;=+4dc)k4qN6DW2t4`jQ(>-J%#m@iMfSpi->1}slnz{Hney-@ zwA>nJgj45~fLdnYPFBB6{PPH(>=_^y~k3R|Pawm{(X5x~7&b6V@f6{n@8<=&d% zC+}>N7DOV1TeT#a_Mdi8sI`AX{VCOz5uV3)-!51PQ?*jSfV(}J@{7Veg64eF)^;t3 z;>*qq#+zNr&Scy>>pkeo;IWYeO9$4)1s@Zf8=o%L*ZBf&s}p6s_+)ZCL__rpuWv40 zJJJ^y7ti7K3;}T%?T!OkRdRm_5$n$*HTL(TLBsJxh8XFmTSAhr*B4e=>C!I;&sQW> zuCQK+Sm#7x6TO1>#+&WSU7c?1m~45LjoCO>lhH4*&Hz@%5rwy^KZpWvfN!%~-1p>c zn@#=w*M^oB!S;`>$DSC&x74{U+f#!}uv>bOl*BS@Jdm%#Z)%#WtS+x8hE7Bx z-~zDMwjF+|f;mCs>~Rf=-(=af-!4K#KeTj+s)nmA*@i_$CLPz zgi(uLzpALTBnHF|`9I2~JfRc^M@~g5L63rgcIRkT-^W}|R>NbFokITo5n+iCO{eUK zlL1KZg8&*0u`z$VLgU%kA>Wsa(cvDKivnY5;(QGXJbm{>&0oCiDm_2blhw4{q47?N z)M_0Yi~RG4fdv@oM_?1f)+`a(8M(RUyH{=@J@g1Eis=jC?{ag&^S_VzsCYi%Co3XN zTrCFj30M2Wo>CWq`Gou+nCQC_EYbX5+H7mkkT zQ^my|uTW86vhD*GGI2DqBrF|7)!S~I7t~6fm%DQ>b+4~amtzqT3E7nL??WoI{@>El zkpRZx9im0K)W@5^wL4-UrNd(IVVayMz+dTK^8}b#GAi+$-GgBhaHEH7=c~)S24pVO zirRzVuibxuAkw`#@v%3Hk{vSP&r65$5IKZr zgniIL&(H62xrBjWKHYv{H~aVBFeM0`4h}Q#yPrL4u6je^HC2Dzn&ypR0RYb^zyQLfOjw=c-*wF9UW#b&qSC_XUgZT`& zGw`{s?;mtwL;Y&0C2=bq9f`8Cc1V;+t>ZDt%K3#DC-So}5@Q=@8i!MjldTE!qclMi?FJA)oO#u2+l9H0{z4OQBg#sYw z->glkt*Yt#kE5k&RX+$k6#MoK{$d=sn4E5scUln>N2jRLei|##3yKlrbzqMfR}RDV zC%H)Y85M;swY&e>B-6e{lazKjIli3E>D({mX18Q@qO76lEVMEawQ-j`HbtU$dx<6 zN8%0G#loww%yfd!)RYFa3+JU>xNEIK`vVHs z{EMhoLcgHz7aEGhZ;tN~6ck|J_W#jzmSI({UDsAo0Tn?&KuVF6?hfhhloSj~q@_dY zM!G>ly1PZXyQHL%?v8J+{k-4)#c^y!SnFQbHDio(^ms@|S3SdO)(Q#d?~U`bJ6^mX zWD;7L=!z7=b~%pKb_?=`peI14w82^!91`EC7D`K&Ny5K%f6~*E()7Dy1sOCL_;?a&O&(q{&YX&tOTIl9 zX9vr=A;hvEXPcd!rOK%{0tJk3P!Ks8*=3@C|P1}!RV)u=Sc*5*9@xbRQ zuY!LowWYl1h4Gp~o?H@kYbHcshpSQ-cNdkB<)|}^toAQ5eNG6CP7~`a&#B-xfs8P4 zwN2DiOCr_(78)2%dq2bdTdUmQSKga4t*X!{J+~lNdros!Q!xj7&Rm`^E#z#Gfy8`8 z0$(0sKX{~;pSs`k3EUA^6B^v?_2r$ru^y&+)RBb1Bi#Vo7;xz-24OK&*4Ka79L=YF zJ7GTf;k`w!=tFwh1PKQTl#JzN(1^fMD4H3|(h0_>JQfy3l__3W*%yI)4&eezVDT}X za}n2)mzTWba-y>pa}4>ZB_&}{B?!!+JFd#bHZ$Pg5U{<3LNRz}PX0nJ5#syoQzb#R z^9014FzX19j#kHYtE(eJefx>ly5i@nZD9rK$g)q9VE`~w0zwA>$+CFug41+r!{BNB z^;<~NyC<0;N}5u>3$L`|Cs3dXdF?~tL+dqrycPE1_{4|bg;BTSQDf!Y%5}VX7)aE& ze|u@`HYOpKb3^tpxr+z62usf_@s#Ca`aTrRr}I9VPWUj0!RPpVX)rF0*eK55`$3xW zpQ7+uKn(1|@GE7)YkGQiHp(`A#voKlud{aA$1`m_;+ve7`hxla#0w)3o~P;@Z5PQR z;{`(NXwUX#yt*0*U?`buCiDh2aLYV9DF3RAhxJN5B57K&Seca~KC|T%&NV^(RPAs; zasBhBjBd%@dUOG7Rh=M)?VCfqvEgtxm-CL_{E(ieX?No0pbSjUGLzAqKD)zygDp)G z!lbXTC%0JcdJ4`Mh)1EMr+@5jHdQeQ+X?Y_B7FP@`f&-go-)neslihdC8do+`_?L+efRI}FF;dL$d0)Par;%I|A>HHreJGx zGBx6G@B2~<3#PVZB6l%8xmWi5ywZ7tc{0^B8roo7T&j#5MZF*rKL2ORJ=#Ega*>T@ z)bDJjEf?iKV_!*Fy_*-hFD4RNW{*hc&C_a3G6nV{ScjoMtA-RExqJ5r&8MQS?Y1#? zJ1HUJ09%!^joW6;Jv;kf02}qaXDr~V+dF=vkS*dD8~PedwHohCK#!KF_<8zN!n%Dd zHkNgLJVe-TXNZrNaB4(_dSL-iMFAp2r5wsINYMSI6iSZWQmFjYk4N1 zyDbk9i5iU;^mP~XUXqeau`wwBDs8e`zMk5j9x6wej$^`Vaz&d~~3`Wulps|>m zd~!NzxCB#~X5r4qpvKyCI=)LvdIEGgGxbJr}zyP1py~;>Sex* zQ&(44y8oT`{P*q&S}~6!AsO49+a$iM6n*H-%ST?VSV(-$Vz}UTlrw>wC?F5T%~x@8;#f;fOFY z4h#&;k*9=*hYvzRa@xk&_lwZDhA+B&i#IESgO46RY_=Xu&HStmDy|P**lARz)fh~9EpWj=<_MfY$j>Cu2w zrl=b{Ip17lO*zKT&zYHFxph-)H>;?aICFB-^QhiVp~f8rCogNlly*=9^W8`chsh^D z3KL8$Hm2Sfk#Hk_Hj_YnEtO3jK~X`4^ep#pzEa5F=^1-=LWGrzm+0nBjw(MEMn3%- z>$Jmr;?S39nCx=w=l>Ee1t`k@KmnR-;Y7^jRAHZZjSD4pS63tr0;oAP6@MG){@YrE z)?qsIqPM_ zxm)Ty^bI6{#U%mXtYVtjsHy5+k4CjpM_#n923 zLSPD9RpE(=bW$@l9bI81>mmG@AN0!abhn9htu&qrvF91~p;#)nyG@OcS9-r69UX0j zog(O%ptu)3dL-1P`Nj`T!+>KQJQQ(%ZM1hbGwO{;MiM(?bje!(2Zp=bk~DkkZ?ClFLeSb{mrEu`3JQ%Z6*jcT)>c*~@seuq_6#I9N61qI zgJ&A*LkB*8X0&JgFz4J{NKOu!d5jS4=P)BL(DbLAx!~wWQRoId&=n@+rnzM*c@bcd zb}Dr&KiyOdw^05mVPJ7&LQ+W~7crruDRq`xxNy_WVDx$Vb+IcSY>L)#=oDn*L^6UO zb3t_(o==zYX^buIp$CPm5k!Q$0jeuVRu;Gz5Y@%W$q68N2(}UaN5*RzLC;J58cGpz7-6+bR`utFUOF+1v$BuJ8R^`>O+jdSzodyt?Utr);GrGX#xUEFDusk8Vxz0;Tp(*l_5LT>?J{Bx(?JuB-B8HY6m#dX=F z%TGHr44Ffne#v6NE#s51axf^_+`8&_DY|(W5rKlrY8XtVlB`G)2NXx3$8*~6z5ui3 zO&nVLl(|PPjhAvJ=94F1Aq*Xa)}+Ar1KBk*Ff0DtH%Avt8!Ups*!1-D8W{a9nK{(4 z<3RA6Z2I??<~=LR;t1@yT1wA@p$s7@i1Da1d787gXgOPQ?~@sq{q9>?D=Ju6K?(qJ zsLhYfLZMw>CGgtBZ9jHx$jMPIfw0rBS{1^b@unKGm4moH0==D>gP?qVD!}e4nPJ5x!XrsXja3zynONU40#j z@mL^7rP*Rl5L&Uz`2g^*oWbdMPQs?@`)6akX*j%8&si`nSACMjku?^O;xshI`D(*t zbU`H~!kl=-eG_%OJ(Myjzh;TOl>BT}duW_)Tp~!tLN`|00M&`0vC~l^uM+c7!5Ev0 zKZy|?y>5Fp14jMYCd1yQ+uIQ{jq*E99(yMz(HEH5WW~<=OPW(Y`C49g^(wcUl5XLn zRn;n&89fOo)c)aib8VFXp^$uXah@y9=x<8g1Yr6D%t8p$3xS{>FwTNIAuThr{UJl0 z`wmcH@g1r#|1tq>0v`9LW$aA)p@oGL+9MtejhCPUcCFPEq7$rjt% zMdhM=X87XB=s!VSE*8%&S?6$J2Jv%6g$(20JpMh$^>MOb^eSxZTZRCtm7ebp+J}@L z2jdC$6Z2KE*ieCR7NAkoLql2G6_4r#J*ptw`Vzp6y9|vHWNUhEo%WEqL{3hgr&}La zpi>Ka({4k2%Kwh!#(-7(_5v>)O`{*8E>u)hZ^4lcPOH;1ie!LyqLrpCk}k2l{=Y^W z;m`!T(~Z}|OOB>q*^%_tR<}aQzD5-2-}+P?!h+X^eWpPS-`WPkGGQ2}-Me=WvAO#^ z&AF%ViXRs4g?F~_aL>sF2as3(wJsMOaqK}-Uf&wfIfBmhJR$b*D2@%w>x)ep)xV@W zP|QLZCJX`q$i72lgMsE0Hbq>p)dk*ay7Ek$PKdBR34Abm8G!4x97Ya@1r)uqK!0j$ zYXe2eqHf5R2>cjNo;-m`b69dRL(Wo{RP{Af!xvtqhR@4CF*0Kg;Zg8@-T=r1#B2+W{XvL;0-Nz2>s7!wG{f!rijMASE;1hdygT@UxjEzMScO;4dN$YHS8MT%aC-u zhk#2$JgNtvcWA|R`NQgG2w~f1-b$#3eQzgIZiBmE&1|Zzs4a-8x9?|5UvO@{}gP-$u6b)xi7QaJ=S#SvE09+ll>mtqH?qSYZS-rmmM?5KQVCtHY zV$AUtjUOt;Z^s3Z*nXt@0}vhu{W#gl+tvq)yXxO#h~hXXmo9dy*Ea*r-#l|ZK#RP- z2G9u?YHwVz#o){P4vs_TnaM@#L-*1^jkJ4xVgECok(P&G)=kfM$8zxnh1e%n{wwSP z-PXOHXU>Lw5lq@O*zSqXU0UM7K9d;LmWzYKI#qISqeX<(>0}}PyP%p1b}-<_@l>6> zE-sqm*o^p3-4W4?0ea?m+k#sQRcRjCZ3(&Uzdz*p62W-~ zKx2oMpS}VNWp*GGpnVp`v%GaTr%27B0ZZDht~RnV*dY)Vq^;-rjNQzjb*7dK0E2F& z9}S9`U24dF&pOE)D7|*qUR~)8D|0&K2eRc}ieS}K-0<(;Ng7X%B4eV$Jr<75?%Qtn zv=VR_fgKDS*TA$vuWVo38y2U1=(? z@j;eg@+Wh&qj z*$og>53PNg;U<|UR;wNJ`HD2Z81jKsPqgk6e9QU9+`ajmdxS(@zS5FU3}~p=W9z-A z%1sfoJJVdhF>2^`1h8%=&egDu_x2hy+U8`b!S$kpo^NC&2#p^gl3=Wk({TMU$)avX6x}HBHjWn zYn!35XC~#vrw!#2Ee(|U*f?qt@SGaV6ute*`uuLTGc@cYUjdugGB918x}sI3urjHf z_Xaj`V`F1=m;2oi_KOI91*`Da=xAKHn)BY2-Umw`a`(jsJhDRkVj^IrmveA9OIx>6 zRwfw$>o1BmB_&DZ`U@C<>*(kJkX{-XM8LoR&`ZM#Cr)Q4=lVZORt{XqNDvFcZ-x3_ zgXKMn-1fH0_Eh_FceG-*N<>7&h$9+0G40)1yE#<-a;prCp?D5y1Eb9eM}aXf>(#0T zYs%ru&rkO^R+AO6vHwnGqTe@f=saRGttz*9#kV~RmpjhyPp1}phkO<(?D}eI6tlxH z2hzB@uBA#g?7{eOmB6)xPhf2~*U;Yf50VdyTrR#q*o-NbuD3U%f#*bwO#FTK9p5L~ z-JMNePCk!lRixy+yM3Sn;u0M45J9*_!L|j_Do;*4??!;J!Q{9ZU38upkLrD>2a?Su z74@VK%5GQ~CeWLpyg}DMy|v`z@PwF1_H=vZaB~t1`V@SkkRHL0cMHpT_TebjXwydX}Oe`sz0_M>MnZ=PbmuKiMOy7Pza41K8@ z00>)G7g?*l!fan?CnkRsD*V-3RXAAfH-rlU2B=mLG6laz zH$yoV9{LM9(H<!-{QS zV8s3IzTsFQB{``FKfn+_2KHo|z_6E_krf-$_RMO*#YIxDA;INcO_05Iy%efJ*ze=Pvn;N`zeOmzM;k!|H$qO454PGJo;JRBlf zp~}yPil}S%7=(@{5#!pq29*DsJlH~GYYk%&v0y^KX(@YbWi7E9h5zNq-rhf)u zyg!-_0RkL08gboGk>8mcExpSHqTr74pvS19OV;+!rkBeQ#SlmUKgV4jXizb4{$2CBaGtn)weyqx@( zynJ4qE<^RX9-z!SfH&VjUtdr`0i&&=!sh(aTIloi-;#1RyRFTE!O@I&3K$d+w0gSD zLt_5?I0trne2#mmWV(OKo}?B_Vi{|5+2({kfzZ(VlfbCxOV$$(z9L#%TeE=I3=|1{c&J^|3Jc|-hKJGjDJPdcqb+q$Qc!EUBx2O}u{X{VG$??lSaZ7O-5M`k z)y|YF+ZwnHYg9x54IbPjejiWY1#WsdT3JAK91qJ&DpM6rRid{}6o*iI1q8ghTp>`x zXM35V#ZeqFFz(}xW(nf!u-iyfV8krdsu-9*=vRcC!RcHI*(K-pknXCOIDfRRhYY@d zn5j@4PomhETFJl2RuEfai22P%hvHXSTAE(B?(~IZVmys$ZZMih*Y9unCT!~^ z%+t8^5e`bp%%}Qfnj4LAI$(w9##b`F<=?21ckW4bNv9(T2;DIO$yaY?S z>uVBL0B9m>Vm6J!$cl;@S}XK-&TmrJ^DA+f=2W19)f+?xK88TB^LUamuZ9LP0rP1L zE4x*>v-;rRP%l`z?%wWtOw{7K#1ut|cnF)CzCuVJytCh+*FejOT>1HvP)g$0NT*+$ zoSfBW4qhR+f6I)q1l_JB<6~L4{%*=Zn9DORD>4}E&%+Y!kbs|1bhXc_AEGc8hUT6( zoImJxIG|daepZM^@ZOo*E~@eDqI*%GpYaHk!A+MTB`VeIUFP_YT=MVAQisOXAr=(S5fPyRA0K7X z>%4?|1~iR`u$A0e9yLli48TeL3&p5eSwidwu1`HCKF_Qj4T`VD#djawz*MXj2j}my z=tsfZ#WgjoeD(@q4%Cr(+4))|e2LaT{ek#lNXV9yU^jXZw4-Y;80IM^wm-8p&2{=0 z>32Lwd$zH1LN1o~3ns@SlWYtW6n9wc)>(PQqY)Tns-)tx%OtU6WDL0hPX0i` zBd{KB`l`qA=>>ekOpA+I|1>0)33@1OY*@p97FKf`A;YBNU1xWYBsFWJ-a9$XW|b&p zH~BwJ-FK4_h=5BT>IYA$jD`Hl+221kgYp$n94;ZVd1jdeI%sRSe!qEmAizMf@$C6G zwUzn#&f|N>I7+pjFDI)Mu}_hZt#~=2JwNv1@qK(moq-9#Kw>x7@00lgT8A=Nov&<3 zR>1s82&L6ZKV|Z-$~glp9PcUc)-cevd{`7aM1FM3>l^G=!1&b%2Pb(SAwTUXcQ|Eu zTx2U4rw~U7qif(_;fHWsFU;M`zoYrzS2sxM>FF4RgaG(jOcJ z!=s^r|LXh*GITsafP4U9lq{xWd75E|4qt^x)+KwnnwSTm-lEm z=e}S+k&NuJHJjOkj~_802KAJZ?CbjHLxfqCI#RpJ0wJszv8QNnX(_T^m4jk~f`S4Y z7k7B|)YAKC-OI`6@e%Qfq+jN>%LQhg1<6U}C&5NN0TQB{kHeC1;6w4MC>#d5ws!^w zzhPJlu@Gaoo7H;U%^L_}SGDpy5b-vYNZ z82$LN3UUKBKPe&$q+j;+_ZKR5fj4vzUMmQaKuq(e+)lqn)9a)HRe(cT8S@Xb{10siC~$vO=|Y)%za&lq&V?%TMPI;_E4NvxVGAEz=kQs$2hOUTp<_uJZ> zZb?a>KVvp?+t{C<)zvT85FW;BR&f7wF&`5lUa>S~9p_Ws_dk*-4DLX!ZU%)C8IM`l-^%FL&egY~f=XW8DO zD0G*hf$F`c>K(Bk3IpkqSS$U>{lP>$2zNc0*4X?!!up4(H^>v|{Vf`irJ(;yC%e{;z)a8zuK20(ZR0(c1QQ1Gg&w+9Lyb%hCc+wd^I+aY?}WAUL74tDQVKJjA)BT z4?RQ!6tYyDf%2W~dRjmd!fWqht9X>iakj4N-~8L?s*5JItw8$cV*<5zq(_XP>^OyA|Caqu{Rwe-|Gz(~ zm`El^q>?d!mWgu%bL02ONY!{}2fTVGX*N;&sz60H@P&3*_j^(1!_P%U0too zQ(UK$mCN1vKmvh=3ZJIIwEeuxEspH4j^40_^l(s+ zB33|WuAzx^{c~spSp&oGV7d!)%$vcV*)VSK!nwI^glhEP9C(!wU>S(11k_&wb4%6+ zsS!_}bG{H6oqG+wGEPug!7LXdmj&GJvZ7S)Z`U$EzBs;G?YBG5!)P8Q4h;Dk8~Y5@ zx9Je!O$MXW?G(YKcnBFw5wt%&XRhN{)t2-NRfW#oWOd()gzhn6)(Ii}j8M#u<^(5+ zgEp8OiA3Y#2#fjX8IZpPo4wH{K~;fvJ24{S?k`ZFAnqe*@;Tv0_(FOmGF>a4hR*-% z1zTkD{l_iS6EW<5er4J8J8oi#$h?UOjT*b1>tEiZV`FMkQMrmP43(cFgPa^|Fgiim z)u*FK;u%+1Sa%$$E|T%lkkX`9&((oKI{wdXCGxjfL7BktUZ#Z>lG`kjMPs zSC(R$Nf=a!{$F{%gu;v>VS75((`<^0hDKOk9vw`2(5%osB?1#M6f3s|6tiRAf0i3d z;EITkOLe=h!?4z>{C%|HNlEs%-jWmvT+9}m8hJP80V(`0DCp>!7k*e}a#BK;N7Tgx z9AU0YC?G<{BwrM634mEM*q=bx%VIR}BJg-8T0lfZBKD@^`~DoDMI_G8P^(89u1K3f zE_pd}5e@`B;2x&A!JQXNGrEK?q@byx_3*aS{5Puj@x1KvTzkTA9vS#)#9CpXJVPu7 z6AK&LiZ%81-n^pThWweXV50CjaWQ}H!?AqixKK3}l@S$k_-y;8Vv`u3%+yH+M&o{< zQG)?YA0Rh~UvNBs?ekcOS*QBW&8bh%E39zMJ2Lq=%O?@9goehy!i|2iJ(GJSD)^Pm z;{KyhuCk9op;eXU-E~S-O9y9Xl0r>$dJ;L=%BCHB(7N`S8@w#kDHht~9?Sc_sv1H( z(7*>M)*mS;?jU-?zvBp0T`~#^tGqI7uO#Bzr5}InEd2hlV1Tghi%(Tp^-;sKs0cqA zz<`UUtFijcraX%_28EN(Wcrjg zxSBnUijAF+g4r`W$bw;l_}+ZFJ{>ekNl8R@VZhIyhc{asclwfXQ~Ag<*ne(KzdEQ(It`19 zdmypT&dYl_NR1{gE@?z4K);v&n2?YVVdSNudC0<2+8*9N8pA4y*=WmTo0GTqos{Wl zugQ5{NXhB&1!SD%i3Klh(d!V)^krs9_DD*E+78y&w)k+flY($z9sQ|mpk)BJ9T)YQ1^_~i2c&e9N%v2Xt?S-ILrbJbtb(mLnuY*^ne*F=Gc z;g;v8=Bay8&EK?AGC&F$=wh@0Z<)1=Rz4jW~dQA8b9an{{Z~3;=o^r_7WuK_yG5T*NhP= zl#qdy-sCIIl2R``NC293e7MNa*fQ7~1T-{y?W)%h@eC-9qa5-=y~e(=e64Exy_Xjk(oFDKjb0x#TBAv2VBjnNM42~u`=XNq7ndYXS=kGk6dm2+oKd&D2fwOwe9TdTY(I4xVtb331!mr>Co`m(?Qep?&C)>P(I#1 zA~)~qdfyM&jm8<1k)&q&0PmgNX+TzQN#$Mh0XtOlRo2s(uTR+~i`uh>D8R(9j5tifa2#DsBYwe)xr~hyYM6 z8FexTNxYhItS=JTq$M;B4PUi0&@3Ld1!>QfA}ib3#c916{d3Ig2?A=6=B({n)Y;G9 zd)Ci=*8waBK%W7jwp2m;m|8@gdI4`m4>3kbS<36NRfNR-v?r;z7#z=|Ca~$VytsBc zeEPutK$fI7*U#AL;!js_OACJLFHL zPAp59%G!wJb|d)fC3wDIXE<3FlihN5A^*4g$8_I`fS}mG-|s8T#35RXyRQ#hr|MTw zuDUT~&7O330h;#bPMLAKm*?ABeWWve{gyJbfY@p--R$gC??evtTaikVCy+lkRS`5K zmuPW%`YxO58Iw>)MR&CRq0!5_`s&1JAAq^QFtOw(up#drZxnVD9vqP~azrP^vs?DJ zBQO4ayI)dT%w>K5xwUn0&S+J2?K?w5A0HoNc6N5yYsUZxgkHBn#_#Lx8m)?=+PZ|S zH6u)EX~}V;waH2bDQRigC2TJ*FHP69?id@##KtPx&)-Rcpc&2&{@TreV2V@71!J64 zLL#bi?mte$;OXch#4mTG+7W#Wp2+oq1)JUg~v%v z`J%veDy(SM9g#>kYGl~g;b=UK2bNTnql4z<00tu#Qyeo{84D;;J*qgj8MM45^?&g0 zK!D@uXry!y{@~aj{25d%i=M9ETfgrGA8ks$*CvEhBY~YI&3;2I7=VNy<{E4^|2%yM z0pG+Ls`oNgs7)jOp)W4927n6=xm=TO^yTdA{@M9SboEsq4_k{sLBSC}Pj7E8cnV3G zn7+f=@JDs>8=rfccq=p9XAZ8aIsr=A2y19hj|?mnz}e(->3IK*HSDW!w6vs4^v7uT z?&wux;z~<@YB>F-wKc_J)O4qgmv4}PA-WNqPA$J7+l|8cJUg!zFxeLe!gJ4NW@fnF zWR%e}FiLU zpW^6szWHI9`o_a#b(E^FH#JQ(7WO8o-kYNvO=543-a@=R{NpJwu!MdW+I&P{4H&|h zOh&RCBSWF2{xn+`y9Ap+TU%4#HE75$&Dr|1DJG_8GGcWFzhVf6kN|p+TBF*E94H6y zxaq%r`#J!JZeVcGL4kzJDD?CNObUk!1@m#tC5ebgqFhgJ)6y!uBv9ty;DDi=gpAC4 zD3xuXr2K3vQ4P-IFFUhAu!M)l9l;ERg%*U?DmO|USynkHchw~(dWD)#YoGwnRWxXQ zjp}Z!CY?1uj~2@Gje-&hWJiH_5A3-XmX`VuO91sgIH?aNPGFlICSZ#5^Xpe==2%Te zd_mP!0+KA)hp7^{!RelUadjdd{N#U$6QFY`!FUBixDVS+O-oBl7GN3&mXvp4;Z7RP z3+hNJ4DiP~SGhgEbBA$f=$`cpn72K|rB6|z{%5BDbt8xX`*7`Rbq0A(80OkA^31yFyzil)Q5nLIs>Ycsw)&m~Mtzk7MLXKUBKH$c)A zMgL)@+_WqJBIJ#ggWFpNtJ~O*}Mi5%mV*BvvwTlo4RV>fTRP@n^s87(|YiEKi8M*5bnu9|N3Uzz1 zXthHr?`kw%c>mE#ywa;OS3c0g#&ejrb#!F0^OqalesJ&c*w`j9XJ{S)$H1fKa?wc0 zYw_X2+uunO%1ak@18~avI)43b^L9o?b`B=aDEadeDSfATr5EFgAZ)Uh$jJ8~)9VAB zCgaGTI2>TaS?AXH8yj|M>3=f6aObC>Pzq8s>mAOE<#pS@!h+?7vwTig zsOQnq#@{txxsMb-n!N{U$nS+mV3Q1G%Hv+7%+`Bd%E=c7iGp3uZcSbHJC`ygzq;4kBK#FQbQ%^%K<9d0KRIo}FM0L`J5z#PL*)9UMsx z7>QiL116+R$bI-LSX9IK-gxh51#>)YOII^T`_= zv5=^no71#VPP=Vhp**N|5r3wnwDk6#$2J&?ufA|c(|5W!;}>XuMI&fIw%%X*vyp}L zzkn~Wj{+^M#Nps0Y^aQ8>$u>jA_E)@DAy1oQ$tf3l{c?M3|t#9oC(-{4fZZ}J`fk` z&=73b@lL9!t99ABT$T3}E2fcgl^A^w4I?K{ExW{JZ;zu^wFIp+EIPsN5d`REkk=`v z{rzHN(=s@?=hqI^zJ~Mh8`+^YFy-wnwwIdE@sAbi^{1OW^h^`a&{yTVn+b$ph^8qp z`x6fk#pjF`$)>Xu27+v&dhM~6opQVCfJ~?fMNVC#55Up1z-|FhcPi31dFODxU0V>gZ~ZmF+{WpSnQkK zZzB;Oq3ASd7nrs^DmFOX6|Qm!FVd-%@Cy?Cw1LDWTR0 z4T+U>GMk`4qs_IBpfqtyAf92Gw4jhgU}1Uf)>|V#LW8!aslD9?cADd1*0OOD!YxiG z>Bci0bG%a55m8b@q-?5ncBYg85t9sh!Ld+U(rHO_b)+m+&M`VF38jlZ?C8Kq{RgAI zk_rkImV>>!HlJv3L7oLr)_n5vXd#nv*Zz*?kI>?+N#%~8zh0A^&$%_KiSoNR1~Dhu zZWQf|`0?oKYD`X`{DA%0ReOP$;`g3**Q+Jxc#Z%m>q~o*9U)=zrnPPQ4HioASu8@@ zq!BF22V7=GC^I!b?$Vy@til`x`{tU*`2KzD$mqoeOVWD)%AD|dzEEoN6mkld%FP)p zw+2W^2E_vZZXf<5BxLo4N@TF~^U!u?vdN~85GiRVD^rtW4<3a~V%JZvht<~Cykb0d z`|TBGoKq7PP7{pyUp6Ini1`@5Sh!bP7yl_ktu10aCgSe_lZ{8`<(am2EzZj4xF7#t z3vl3aVU(pd&MFOE8RDXc8@>}CpIe_@VDva+BjmEAoSxAU@_M^pw zyQ6i5`iH~iz~W|cTGZkLIKwJeB0f@5*e$gG?ITj4&gQi8tfP=EVqy$^-|h2U$m2ew z1`mQd=TA<`sr}l-lkp-(8Fa!IW>=1zTbsKQazBUKyod5=OMnjp+ip;k00{J!jXE_G zr)|#ISeCwUwccXecb8K}sJdj5`4d5wllsnxYLSqb-uegiyeMEsL1}gpt+!kA1uZC?qhAULEgbUQJgEVP9Ny zpEI#Xm2a$4O6F0%2C+Zv=K$YMOrD&ps78Sr|Lx8j0jUf!j>{|Zv&whKfU;AEl%vaC z{Xe-Xtp8@TW>@D)Oey(w!)V9GnESUp z2Bbg8bFh|t?djRk|NT3r`ND$d8juI7T+dlIXM?OiQdHaRgoPyq&&9IDjG7&4Jh!p^ zAUj(x{ZXF;21bbBPjJM6eIJUqrry!WV{dPj^?!qP)`rIbMyjvpL$DF{i~p;OuX`21 zDbVY7@$$cdx$JZ`WzY!xXsfHqZXe+z8xnDKEuU6`saAk38eeK%Pd@2}e0Fw*233Iib>3AwAej6Mw z%x3Wgh)S77A!3-BCtdo7#;lp6xI+jJcwLu zg>?=iJNpX!m7WBy1GhqIh)neD1oU8G<7>TSJxE)Il9iT@&Xj-roy&CYs2^lCo?5G@ z`QKqC$+_Ac|BR*tt`a7Bsjvx)d7*qW@knG-7m)GYy?5_> zRFpT=+c3)pc4p;I!H69Hto$}`<|G@-5I0@ybf2pA9>K~riuMf@Y)FXw^cT#SmG17y znBoBW0bDkyM%uHLGf&G@X^gw7Oh%D>`ntLdCQCjbv>YIxv_mM= zqN0H14elR)7(~-|cCzMYy#)q0U_D@wv(#yF;&4Fb3d4=NOY_aU%h3sPl1-HK!M7P3Z#?#|THkOc=kgt0`vpvOd!F_vr`t3JGc z<;c}`g=5#N<>SO=_iN1J^D=5Ix6W;23p+cDY+l)c@u08-b3BVG0-b|A7v0j5(Fg;W z*v$i7{(|Tib!zW^-Qt3{aCfp4S1><;e%E-sU}ljn9TRh@6qZSkb`P+W4p(F)nN?MM z{VRYF4u!#NiwHP#_6|4hKO1H-6j^?ddRkTEFfX>@_1GyZeFY>esJZ&`ZH? z{ohZ80nQihI(vI9EiDME-d+&{Rmwy!+RSgEYY=l)y5EX5XZa}c$#_Bm^Q~6pH$PPJ zsfxXWeu3dK<6-;@&nIndr%;`@$VILX8ZJfBgvn@C$e=WS*%HbAWX`bH(=M*kN-8eY z9!!RY@2TqZcp6!)?uz|D;0ha{#fh<<3zFd$#bqsfE3$oD+^JP|A-E@-`WM{{EY@SR z5EkmEQ4u)y@go(_m-qe4-R1pVKZNx!?WKl?xr$A3UF>$mD47(o%ZD?^*?;Go(AT=% zxTdD24$v{Ij+#yR5;NVg?T+H)=3a=659nO(PB=MUkussiqLBGJW!|{_{N@z-7#Urv zPOJ2%cSNDs1W4}bwZs;e-jmqGvyu$;J??*q+W`WAK2?>!_N$L)_V*Q%_-Oj;3v@nQ z$HZFRjO$4T`u;Lr5b1#=Qq!1q&!vCEVQ*Pjoi}YjsR{`;e4sI9dDr%cWEBunlfXh8 zhXk>(7qt$`m>jOI``WPrdLrnyVL7mhg+#Bly?!qu9qnzwFkUD-l^4o&|L-gN z$FS!WhkOhK93T4u{KZ}8@BJ?-2!Q>Xx}-;zEEu=!;OH2Zlyq%gRdsV4G)4QTbAqpL zu4^%n#tQ|`Y}W5aw`FmMGi5RS64 zGNK8-WtMb3ML{7pOb7~b$Tfj|*ZIGkt1nxgOIhfU(p;cci1Yh6fWg!A zl%S}jN3c3M;7s7=pUJkueA;dmFLHW)ILV59fN$;xL*sucS8U{v#U{As4 z!37~UxZ{gUONGV7eagyMVTidq!F3|TX)V?fLmdVSolvkP{qw}Hu0j<_bJW5&MXm&*Ed%_N8geok~i2d0;*NdQz$x=y0>a+IJ(EeMpaSG3#hYVMk+1FoH zXgj%>p66E*7sV-2N7kJ#1Q0?*3v5N8vtmp!O)PmrY^A&p|13EAqjW{{xuV z`}+F+8XWu%&fU@rKwYP$GD=E?oz=YanV3;&ZWpH|#Gwmo2?z?B@H+fQYFeU7<0mgB z2A12PU?LCI+zHpk`=6ufQJ+Au{Q(r%WzSvTPDZ?nDErj;+Rd#iEZkBdSMlFk5qJhb z_(4@!@|*SLopC-V1$6utfbC{vF9tAt^SYO_^gi|Sa!o~rtp2u)EVKSNC~_+20B!YcXh@0K?Itln(8FTu&(r4N zOvN#sMqmYUJ4K~5xEN2T`S9Y_)fKJHJ+Cie=7m(>@5#^cotz?IiSzEGDNT!ce^QEC z+TyzZ`R{uV78e-f1@y3wE6t^q4tD1$+aCsbX9?UaefdOdesT6=9KIP)5^w|jxvbNb zez%J^=&6xXh=ma~-q3&ZQO#{pf4(+d%>qN~qvXPr*DE(|LHmKFMWOFaB7-79MGrYo zh~H|6Y+rwEy~~M~)`S4GarC3KFpIWTX&>m2prR2z>*c7!!$Nw96KZqDoC%|W)a2(l z#Kd5e12ty|>~cZ5%68KLTI%r-qIY<^d*aW3oD^jqOqN>d{smT7nd!KkG`}fAlkn6i z9>WB_(Bw6Qy!a1*!2xtG6BuS4k2ha^NCi*CX6O*egf__EUB7`vkrEJcAgbfWto^d^ zhn@MPOp*XYe4QH(Q2uU@&JG=s2C;JYuTKb_OPZ54A5vhyDGcn)X^KCybuTT+J z*YbE9jMQprTtyrlT+Q_W!XgaQ83igx zaJm?eSCxx-@lFBx@&BXgDx;!ow>I5f64FviiwH<}h@^r@DTp*E-Q683-O{NvNDGJ{ zDJ9*YbR+TYIp;g?dVjcFE*)m(x$nKNBp`tJeLq`o?>xhn{+;e9?1pziK>6uaoBM%W znWyE9$$qo9^9G&i#9I_k#x@CC7BnI5LKow4-N6|J9%tXAaaf zE_c+;FS+eAecIeiFFDESPT6;+^0;I$)#s}^z%`gxI-{t{=_si5kW!U zmP<&BD*=D$;MQM&1d{ZZ8U_X~1H5=&PYF=&Dq?CNe~V^+r871WOdZv2`zk_dj`D$g zltym1Vh*GnK-f}fsIRt#zoLTs`?&&7iCP)jp%vBp^QG&H$oVr3r!!h>rC(2`i{HN= zq9}}SGWt?0h<+|o<^d%Nl%lS@;0R~r;+lPc)xAu-n4GF2`zrubw)llE5%KQd#}t@$ zy#h$FAXzpy-)I_4$0Qs%Bb}t{?TuY>>m_0mq{2HeIyq*cfgDx$XcrR`Cgk^tp=V<5 ziQ_zO=gv$Q5NQIedXUn(TmMMB;;)Gci}b~J$oKAv||>! zy!Bg-Wi&`!vUud21*%U`XQv=%FR_c{BqFJ1M~<4BcoL4mcG>m zFzrj*Uv~xA*(Lkt=^se-*v$0{kxp;v0B^0aGEunks z_z#(4b+znO6pgE~WjN#O*T!PrkChibP*{!zU_KgK_Y|j<(Tu+sy}oMO7>;#t2nej= zi=3G;kNiEQLF6!UXUp#7M2vjQ%uL{fRV{z_(Ytrm&dMq>Kc=Z6g%y!NoFx^|SWa41 zmH3hYt8nX2!o&d$&&A%JJsAZBlYju3larI{!3s8{um2-(tgRWQ&MHuFn4Yd7V^0%# zAN|NjywZ}q%~ZOmh8(rO-}v)uTl===uPmtl#v zcXSK{QPRKX4I*sN$v2ohszJ6!=no1-e}8{om_bilD{%s(iql{J=>2kjYE5C-oE6o3 zef2eAkb@&{X=|Qd$TLaM4y8X+t!pjiLABq+ukHAhnaRmeIGW+^$SE%;fc$)Q=nqRt zp@uE0d1$1q$muGwc4XbNu1%OgB zub_aL`vLiP0s`~V(SSciTE>*r&QHyqp&_-}!s+d%YiV;@Xhs5?1?u&;Te9NK_u>DZFG1Ql}xqnU@PuJ%Ld8}UrCPnn+5 zTWxh5N-y*ZV{rcza8lI7gkYkZJ;{*$JznOj`wYXw%d6hQ%sf za4Zcj{y19{bU^Y?zCrIk!^3td0$ zBN0zG^w@*|!T{utDb$m;lakNzkB`R$X#|nR#}`o9OUvbFyQ37pdeesW^&uMcLX{F2 z4%;yW%A1H2;C-Xi)yJ!;7O-4?vas)J&@&7s0Nw}V;8BgVr)#(vjgqO$||7Z%l&wKJY(aReqb_TynmlG`qe9lm*n_}8@>zxDZ35SHHk`#4GU^+e~K_4yjPA~<3f|4`{Y zk)A()4(T^|p!J1UnD&YiqQG?}3qD?t7W7mquvh77jpyfv^H)Ls^!jmou#Ts=ITl>$4;N zfz6`5-@hMMlbTzhK1q{wctS7&=hDpqOEDRFTxu$=jm@_6yyIGXfV#@#z-GyYYm6#n z7+=g+;1qfzb?e#p8Fg$4%T zA21plh}*AMu!|aAzqXjwQqPi(`N*xIewG^(x)L4D`q}#%4ih<>TK+yAB^C!5d8r-} zaP;*hfs#$x+B&P#Oy;Q)HeS2F%QD7Ls|1-sbYNqnNZuUT7j2EF-#V9GCF!@|S=rdI zN71YKK?o`@n_Bl_xBR3*J<`eMs6f8N&21r9B9@E{A`lJ~+1R)~e}T)arB#UATupnM z!R=DW@E!+a$tQHP@84q+KVUH5K?9o7_~Mt2@%9Y%Z!wRo*f`{%1_zG4_*lt_Mh7;} zvQqU2_6%TE1v^y`Jfa|)!+eIa+EDj!VA;}Ac7%{pGO)5yL|qdl?4FKs%KM<;3-{i! ziBY|iOJQ^&@vFpcTWJ*ZMhY&bK{F~UNd-)`GtbN7Pv}3sMP$D;k(t+-WBCVd7%7h) zt6I#3N3+&A$zvqh+Q#ZULj*&@jm;}*Oz3pV?e@Lm#l$|9re@;%`z9C+9N7O2%Jchf znvpJQn$;{PN4i-#^Jj;D~2ya(lbCF5MQEW7^RXsf~zw zEin&CG-6qz#fsowf0_UMN=zDhpj|&i?c%2yu+N?jgYirdw%@48?75 z7-PtIdGRhUg)-c`ms?AbpXNSV@%!x>-uYy?fr{nNmcN2Rx2FRI9}LUiz&3@1eW@Qq z%RE1lEz?Bi9Zt=Q1i`Shsrz-=HSb4eAddV~Q95m0&Mw3Nhq9-LHmIr4l_!#M6VgZP zqoWH6JnR(ak5?qX#AJGM)1Q^r)U+qrp6Z{j$<0kUZ7|Wktg*MYAceDrC1b%+=_x!J zLzg}DlR#&7wtabj;p8vX1z1gqAA4xcXp~hFVYIZ!mS>2_&E>nho7>pPy?e)>A?~G& zF8q=En<6f5Jv)aJ89j|a=!MKft4svnd7dFwc$ZW5?BRSHG_rwd>>J#!>gwu9&>h>y z85Wjpl`K@%^SUcIq;q5Heqn_HE_BS`Sj)-AUf3?lrkH@S{WTz?a1br53VUZ1->|BGAF626-S%TwL2_Lik#+z(X19NnXo| zhr7f;ddxI9AR0?RexJ!{NkE@(qM9n-ULA^+g8KP$Z${UT2!64jY1wY~1QPvi;B)7{ z%aN_2M@=$OzL>!EqRr91Z7+On)A6o*QZYl9Cw){cnCQ_&cOlM$_jA1 zj_&UK*&SBs)C6hb*UV0~Om!m-&79q~CgyRuC3kG_S5+hjGX>hK76uh)i83x^y$C0 zW`;OBK=^w;ul4ni$L zSlBbEx9VqM5u7M7YSlgs)yY%J9G^VGkWvI+f4aypyVA%FcqI7 z;@1-_CwXY1g!RPO#ALKnXBr&8x488spFgL1R;s)IGZT`(@F6@Vr=fugyq^A`+Z7dw zs{mk1cS^NrvYg_P#|Q78=^_*-!6ikQ~oon>? zC^%H|Y}jn>M})SAOt5-m1(LLOIz0P!HMfx@uS!10YwNqa%i7=2k?1~-)DEb#t@(|; z=PC-4c-SZLp`Xe4%akjm=K>(Y=dmaaLN#JyxX0S#qiDibo<7}v`F=m7Z89lb;i-f0h43LT1~gSraBIDc}ekx_wH}ZG%?(&uO5q*W*9oGq@X;&A|Q}&`|6=##Va4_EHivl5ZvUqgD(q3lYNg6}mz0=m^W({7GVT5_H zu&m6hsulcC3y@f$zquFikhd*}>qQpZJ>1t?TI`uZehmi) zV+xO6a9plSIHspFEUsg2dSBT?vyA7_u!7?ZtSeFf7BQJ5GexD^x}(^=_mJjHdi>um zp`l+v%Dt$!#5HATR8UGX6>CGoB2XH@_ipP>lpC?3Tx@7G0t(Rk`OikL z)ajMImrVJyGg;pkjjuOH*gLA8Cvh3;S>xr!fy9pXn3Yu2#wO*@=?+Ut zOfUw62=&_O?lNR(*8g1ztiJk(jC408#r|i1*P6|5Unn|Q4hhy29E)cmvyS_ya2!or zDd9?VtIn=xX0bCY4YJ=4&Y^|*jYSxSg+(uTH&0_SeK7J>WuCp`k4=pLCJ6Eu+u(6+ zX=!nV0?1u2B&1ib)Zb^u(4eCyeKo=4U+?$3s()(?b}LhJ=fcVk{k#1;%+5{MBr9{cDtwDgV4lUgk0`WD)lTDtUVAhx=uR)D-AU4C8d zlAbX`eX3x)t`=#^MESAkGpl=1KQg^hB>nyXO1pFou^L51$iB`h1U5D{0J#Sk=qh@x zjeLsEy6&Mzg~6&{Cje86cgNt%Y~H6wfvB~$#>nbeSdvG-N|Kn^6vR)9i+uypic3lm zO3oPZi;b%p3B)0JLmi4`4)dW@;3;CVf~*0#R`07hgE%0-psS_`(hMT{4r1EC_YfB! zk4Wy~1X9zLG3gY>+La~?(=iRKJ)6*Qrkvr?FZZZ=7l-7ZYsQDR0DTd4IQ1s4!_qQm z0$YjDXMSjG42>Wp08Y9}UC!#78b*jng!nI{!aa2tXgzuf;)Hte9Dvt92pyLK>#1H% zZS4}M-NAkc)oH}x5fN3U-$~5P%`dM9W)s+C!!HkTiK~9sjV}M0NVt3Wla}cKtrm}* z+>y}6+I%$SgS_d`VrL%wP%KU#Ke2GEqY<$$UPwZK1suu?tE<0GagAE?1{345_h$`| zCoti6!PA9^9{yZu%nLk(pRTJ=Jqt^cumdZ?FJ4c;RiG3g&3YKu(1{}!r=&a|Iq+a6o8 zhea&s_CM}*VGEg^3FWOQ&KcBHXF&Pe9mUIrJgp~ME1_&tdT*?6FHfb$*o0j%1 zn8rn)*Wl!4N)%XaW6;HfnDOx?mcPIRzTNX^ZC3&^1In*p>{3 z=pk$q+G8UD#?Y+gelZ^4X)R$#MFk((v8VLV1Qau4nNvjg3t0kboL;bm#$L;tW9Ajc`{wvi2=BIxY z0>>I0XfZ#2+}#}9-c*u+V8=tr=Tw%KmTk-Xm6pHmA_*96&oXdRTwcZ_YwyhG-0Tzs;1!5P@5a32;!H$8Du)$HxcqaW26KNcr&Wv+lwvofr>gi z)VFUd=^jz&wO)sx)eF@(HjVN@SVhI6u!Fg+S=ENv=H^(YPDQ@AfTs}j5vRO!Xum}o zAdnfOv%im(A%J~z{`X7yHs32Wj)~L1*={O2I_6)L6cw{z|5=MuN>Fqw$(C}^*Cxwb zT1Mzo!bsVeczKDo2nY%zBRV1WGJ9vy@9oac(R0YnGx^zv1E~hVDj%1i>D+#{@%>s4 zh`^$deIXHUb4$7^ALEkhep`|#6)!(ZOi#dC>aLwWcirq0IRgV)P_Ud`|Jz;M+{9k3 z6@+vrdP~Tr-=B3Mn-PA8hW`C~Z>k9S;6zzxXoJH`esiMPLFgO1zQdv9m$Es^p;A8D z%*Dcj4$2B>k2C?nI;EJqfMKh5RCl*L_?iJJj2Idj0b8QVM+TKg2ZtWIPF?m5g%2JC zO#__Yy|<`tY1NtZyDq!lmUfbhtKP&i{9?BypsC4YVt3Zoc5FR01&M=W@7z<=?EnqD zxc1J@2vib0H|o!yV`BvP!JE&iq*idO%iD8!F5B!vp;DetS5PjQ4M$6g5P z$QrPDKwBh#rSkNB;#dFHd14qUg}g6?aBy*7zIug15fKE^TSZ7M{WkT*)za9vKuKw6 ze7qY(8jC9{fpCtRTUfMDO;JIvF&JV4U}Q5zv-pJ+CwFo}rXBZ@?b90UlZzZ2Q`vo2 zMwMo&Y9taoF@Gh3@&8<$b%w~6IzGEuUnlkRI%FlbxV|RiC1Q7FW(wt0RzfBr$$H?x zYWsUq(tSnxaq+Kpt$a;N=HQh6%i7%5Yfdevvol>jxbQ0z%H+-ezp^c*sG} zbeisuqDcTLW4^C1UAH8D*P)tpXT9&~gf|?nF=UW#09e;PGC~4iaIg0n5zq4SK7$x7 z0L@_eu;7_10%7i(!3-$~C#b(A6!EM4vMZ58KoBhtq7!6&@oAN}6EoGu1s&Fg^pg`% zo!Hp+qUn3CjvOgD?#Xc9i&%qv%f@b7DK+?R_r%Z#{8)Xp(i9}MEl z2KJVsq9Q1gk^&1LeC>Gc_KeME>!sTJY$-u)lOZqfpZNjfliQ&?#eGx$F#GrKSzbAG z1Uh%{0&N1a6Zp{Ootz#};>mj$>pnH0txHJQpYFrKkB@gf+GEs@rbV^dGw$`;Lq1lp zu;^O?S(AVM$%&&iDQP1_aW%T+Dg?B83fqc#Vohij7`vQuPxizlG@cEdxAgz)CakGR zA_MXnK9)!Kq9)2&;yrfsnaJP#M6pgCPsyzzQ@7o%k)Z^o_1)tZ1Z<)jH3}+I|vq8WvK=MRZVPPmXDXXuMA%USa z=Vt){USP2;aXmal<|}!r0|GFzYih_JY;LNbp5zPOoV;+K^|=nnZxn$jV*;t@X!hr= zbjioZ2-ulU%pDC-VO~l+1RQW`x)DH68|ZI#dd=pnv}H zk$HNSmM(;_Gb;zBRv{WGJRHh;5Ij005^dDKdgWU$bVf)A>;X2+sPd|+_-2C{Q6S%G zo13G9%@TM3IgNMx-Si@8Q(ry8bZ;>*`ET)JkxiuoSjKz$5X}+2x4*xuWJX`eZc18e z0~r-Db^!Ivsaq+j?W&GAcz^HnB!q>*pvrXV(YAg_Ohn|HlfzW1SF?4+S=_TavgUYd z%k=Wv_&{I%_Kzo_68o(Lb8~qkTezZhahL0ZqxsRDj6uKtPRUBvR1e8dbp<9GNrnur zw&H;mYwNfHvX!B72-homz^oHqG%5xj?5(GWl@!h^0YO1&2xeDRRjsV7^o2?T7>wq) zHZ*h<`?N3udY6SAdP%YyQ+7VqJ&a>~%v!`JBNH}*jmymcTr%-KrK~YNm2^0S8+faY z9)$xa>`ea${B+t+pE_|p(|#uJUEnE>&NnkNmpo=;X(IP9!U}yJk^L75lkvg#R>SYc{E)Wg0Fc$-G9Gsf^Vq&?sS3MP;*KjF%dYl$02^^3? zkyx1z@Hh=+XmJd?=Ha|kG4=BU4x8GD35o|fa`f%&hM~zMGH*_b+0hGkk&G(7xHq=8 zi5UZ?(l~AYPy84GQUnY*8=#3l6BWDem%WObt5h@zUNUc_FGJ{i<8x}>D-Om; z1ko^%Y(Q$4MN|9aAmM?#yQ8f%Om6UaU=_6oSp4L<%M|}%kj-c<5)a269i6ynWnDr1 z2p`{+aBm5{BSRtt9w$~uoXwWB*Vh3ECn&wpTwG31a-2Ch zI5yZyD{WrToM&xqsPDHEGjE)hy`ViIheoSIa&p-tKFV!$y5|D}l&J}*4OJ%lm#sHJ z(z0mY(+#9IAXOHC`{HR`=qS+);Ydwv@K^0R5*)WOZCvf1zq{3pW)cboE`nPVM|_%*I!EFaXXY0 zEIc&rr;LEMH=Vf(1qCghhm%*bbNGEOVAFh((ZwKztR*b`*$yH`IK_l+i+q%eFpuQc zmAq4scL&~sJ!LIY`Jy7zI6iC20pazZ$ZDC=qd#y{mb(|h&x05OK|`HbYa6t$Cc#)z zTr8%J>5H?sJt@^gC4O7^?%mKNUgUSg#Ok;N@(HD!y3FznogFB}=jZj0UgMAq^fS;= z;{cZjLETyseSOlG1F7oCBJaBolJCd<8ulxVBSr+?gnv>Yh8(P<2TqnA8dIQ_1ND;0 z2n5e@R~Tt6yt{D3k;VS2ONp1#R8wP-Hq$UlNA{YRGHEWkYa0zl*p00%{~xO(UM624 zbOH&&0uYEfmyJzmOoU8HA{k6xAWy{u0VU|ea$8#HNPrtmk)W4{sPl}FHim-}TbyRkKQ5GOIl)|Mts%l89!pq~LkbH|8-T^^12 z8smR!y$=KAO)ajkhkSs4CsTr6Gu?}5o(*Ls-isJ5x&0pA5nMQ2a9y84r7l+#8U^B9m z1fbfO!|$U1P7}`ay?d7lrLjC(Tt}s(69+h~ur!aeSS&tdJp7w#=X1!unUAL329dA8~Vs)Vq9+h#|-!$emF|S=o8gcx9b*aeGbP z^kJr2pQjXc)0g{G9ANUBC@BcJI9y*`SVjf8VUXdMzcCUhp5hpaiU@r!I6N#Tom&Tnh6~fbQTg~5ex@mz7)kr1&|3?>MhOdxqYd{% zwqI3_`STP?tU=Ek)ARD>@Nn=~23|&F4cPYkCaZX1%~*?hh>YjwCG|+}#lO;f;GK>M z($r)h{N5e|7zaN7H!uYu2B+fUyJNq8#f`X43naZZ^=&f6?!d=e5OQRP?Pg(TCmLkI zW8>rgor~3&VW3k18Zi_Yf2XvV3Z5urBcspE?gxS0KYVUfVyLJ`lBT|dVChOo2+XwL ze~QF|ts^@H!_5sbiw7BbBeG`r=gBG^oSlOMi|>}X0Yom@H4wE1l_{HZAKyD+$Ci|o zbk5GwKD3=_1Cc9ZN$KOm$|4R93*;0nPEN(CX0J!~mqK^a(z1?@Ct?ZkWE1O!a3;XE zZ^1FGskPtNgGtKvByVu(U6|w5>aE5dC?~AIKp(D(ibN8mDJ{{-*3gvpI!U!Nw*g~O z{K2n#l1kW4n1ne`G>F0C=*UT-_t3`wD*chr@OUuoBWFjnjdH_J`^lLx7vCaY9vrY( zc70>yVGD`Bxx^$nIH%32% z?C2&0HS z@p+4;#N0+kg7GVBu!Rr_T!|q4m4S>lODij4Dk|(ZY;0-N_c2H|Hv!m0v;eTGWz2{h z0p2;{D*DzRGuf;VjUf1D!L^evkuUvTj4jOLkJyv|M&JZoeK6z z@Iv|fqd+RN@iVp!L^5<3DTfRG zk_jPs3x7EMuu#L)4~3|zq(tR(Y&M+^NbQMBjN{Q89GHHZJ;TNDciE+b1cRX8JXj2D3O1q+tZ`LvYu%M5C1paJZ=b(~MBDi@x|f%aPqPBB zuH&!kgBI2}oV1pfiX07IkBF&Do)H(>AF{?RLhEPo@7F&znghuK$S?rtg`7=5>u}j} zp!>qPx{{$oU-Geq73sc-nY@>ZdaUNqPZWu5+d$=C!?{8QB@wrklt6*Qz{rRUab&zc zxwet8o5BSLdC}5R5f|>%5`^@cK8BT9fB2S{ElMXRW2HyFV_Q&B#l}Pi9_%feJ{TSu zsoCBAt?(Sx4od|a8=I1n5;2%T`fOo&c`$@`RL94M8jp?VXQeg>*W5s$WlQ4wu%R^Z z^uO8y0wQA{Q2u-nA8PgS0ctYGsMQ;>It2uvj*N`P>1hY<^(qF6`$V&QA4dgM7+# zb(K*-f}T2tzO#3TsQjKzPI(I*;0zFGjTizzF^5=LVDrj?p&imPWnh~Cxh6;3b>@w_ zqoQuj80lrHEOH~55o)8?qe~!oGB#*kBLPlKpBdFp5P_e+uLtgRB0QjS#_leR}+*P z;I6F8Z2zgy5H`aTC@mu63IE6+1gk?%&gz^eIABSJ$Eh1i}Blyve(MD1df{g|VoDaC^@_@cWN| z?`ECg+=3%5^z1;zUPU=ez(?E^sF@G2w=FF*em9fZUXo)!JU6zULIGS^5$4;XPb%%j z<@q&zL$Pa6CcfX%g@zc5Z;`Yijx#H(d!X8CTeOGDZyXTnL{iuF+$3vL-L0XiT$l~I{SVg&Gfj0aHKP4WFh|(}-1CgyrK-d%P^^f=HCoLYG zC?$wzJ8&tyuZ7b){ZJjhrlizE*^TAXr;q2Vu|N0qQ6A)nW@g6`cORTrmX_o;RNvRr z>osJ4M5EhE$NBbcA?!tP-6Qr-*y1B0Ssf`e=GN-!#zY1Eoj`O)bSVs}p$jhP&rrDO zkWP}7M=8+>AS{mK2Yb^-^YZk6am+U|dH=&P5d$nN>%kEbxIhrx?2MjYfdKXZV8Qvk zg)=c=9wAKM3L$gWZ*<(;4jP?%qo|Ccq$Hb$J!0f0>i+k_Nz){nPPORf?c3_-(0Z0A z3nd4&@fRx6{#b`qCKiX#b1M734fWlIx;wXM+TCvwUdj{ZX7b?|am-<&3--NQ4|rn6 z5+RKlW284!yAQbj;Ml=}K^Ny>Xk&TjCaQ}w_JK{!*>&%oP@eeb&rF&)S=wI6OUs*e zsV_ok+YeT02XQs0=cP@*l0$lN@@%T+nHnT_aUm@L5*LeuFL&dMRL!l6ly1;89l^4H z?up_oe#Yv`XX3;_b!gDAZmUA!a6|s1nBfp)71M)U2XMkTJmwA903Ub zDm4D0-Av2<;FF51Jvo^={agF2Y9Ftwx)kk2>c#Mo}Lsub& zBw0(JbEd*|*U*w4S>QptgGX`=XhrD=q4BE!>Yv|i6W_}of<(Z& zfImXyPV2pRu|KLNu?YS|bjfejQIU~|&_y*hwXFnkaWW(g^{gzs7=^2a5cU)qg%dr!~sVG4RQjhf|QXZvLNsv93Cl9Fn;k%V$` z)f<2}2*+g<7N&w!a>Rlz^u$Z-_`BQThG*-)=eQDqX#xYB&CGxe_8Zoab^Qf zkp|w=`#ip?s3uDiA+PZARDYp^>11Q08GS$5_~PPKVHox?J#BjQt9F#?nqeX6S?R}R zRCGVVTM7=Q1Ph*F{wG9eCR79WBywmOPl|Oa8D^|8(Nzoz7lGEXp{Qt&@-?jXhvYM4TEcnQAW~F%3N_xN-P#ak6)uPBX8JhDM~l3j;8S-;RyT zca5BE=UtZ;W;qDEL~93GT2@nykK|}?Wie>7P>>Pvt*pq71D-_s_BP#<;%aowGyW@{Unp`z(a`jxlQ#iSIwR`hAoc zf3T>`JtzLx3in=ab~Z8q6hjb1Lh0j^C?d@GZqK;usWy_!jwJUTG}vg_IXMxEV1Pj& zAko;^*cU?QmOwul8y|0Z>Q0WBi5}X`k!9r1{KF<@Bq2Q<|JVMis%`b1k5PVT&4Vi; zVGX^Tzf*akV)nil8AKhVNY8D}tw@!Ym!xa4oSj#8A!Rmhh{tH;hK^2FK*C)XN1Cmm z?iPs`CW1kNmj{B(ZNn+CtQ_fOHqo@u<8Kk0`}@ll-jElH<48t6eB9d$(NSyf+C>~N z?#-hyKxPUfoTvmLqu22W2J*)@^kao+Nl0Vq?fh%agf~&XZQ-E#LM70|(z5B|nT!l- z&0|(u;YXbgzwV0Esiv~me|RsqW!nBmP>=-q?3Yd(q}80CW$CNpr@0-rd8bOp_vBjb z?qqUt6X-X|-x&+Q)NcFpP|v6ePA7v#GKkSb;Lu2e~yjz^2LveH)iMWluXcKVu$Mkn8ow}jL({Ujng)G_M5dv`5&LXOC2v+4e*gI)pTk-|-8v+MhX9-m-2HYk-EOM?;Xl)XNdK- zx{-Ec5)7p|?la9Asj6-~5HP;ZQ*up932%S!K=-~4^&RIOGzoqZ37u!JCg0yPR#c2N zUg*Zx%Z!TL_;TS3un9bd`*2fcqg6*nKK>|)goI;@-NNRW`NiL#U5G1^b9;iY6jaf) z#D4J~d9r6!i1Hr67+(n;mVLone~0I3%gPeDD$VfGy;fJ+B)q7PNAsne=R_YHHdcQv zWOxOY!i?|C+e6V)Yi7_7IgqyaaQ#mS zI3Ede#F-W^8hm_w-DcM+b)SJ#3>%vxIq!+`)<{nZNfninuY3KibOmaoWaoifrw{iuM`zbes#L9+9r= zRE*fYStnq5z3!;PNHbrT4M-v^1KZxo(Bh0>>fkwo5DkD;Zc<~;Lvr&1r)v`Wjs_7H zZ^&>Tg2dGAV2nsl;KM;kWP1Ki@-g0WN-8nD7h7AFaL*xP&tc~ii~eFZK%L!FS5+ki z&k#b~0!~)xhA){;c9oS3Ipw9LI!(yPXqKZl771l}vJ%9^WRe~Sf!g5-Y+4vnr{3UG z5q$XRQ{LL@I}XLqZugH}JUp0uV6c!Y*XNk2yYfNH98>_dco$7T(&X^ki|IH7FWcey z=Rh(~f9b&WK`kj>i_LQHWfYo}E?GG05e^zS-~!?61`sBcj~!_#63}1-fnZRa3;z!} z`KDn~YC^o&qoxA8s%V0u&W0Ih6olRih&XT~vC93ewGnujE-d4q55f|3ncXdsQHhTTk^jRl8z#jHgWQFm#ZRl}%Jf){R^jU}rK?LR z3LeIvI=Wv|y3hKP$LNfFRJ(HGh!<7@0po?B05rfk&KAJ#gHg}V-`m(VmKgfN%WG>C zsz>+aj50ZIdtXycen!`~v1xX+_f4*QSQaHp_ZqX*P;~<0d>2-Oo;f%OjE_ma{pSpy z4vd5cY!q$tnHOGfC@FnytZ+Yph3L(f_9VW5?su9bukp+D(68)T+BDbmi4WAvwm zb&qILl9TzqvBIr_sN(exT+9a|cZ+8qHb1Pct<7ohXv^Zs`=oI*^)*%TW+#bHrV!-< z9#_EZq>=%`*x(``{}$7p?D@?-I;5l^F_v8;QAr-U)JR( z&Sv!GrJ+p@Lh^NsDy$(@P-Bmd>nn?d#Z@^RPB}Tt z)6LQEE_)s5(@5lGM9HFFA~x~f7hyPyPqiJ%=5zQ-UV9AbYi&{3_0Ito6#2)I zg3ly%n92@=H%C}5xYVDc(DtB-Ty)Ksb}NAg5B61MWi+3(RxD^}aaRL&|(5Ns(wUInf@wXHd znBL&ynR`?7qrFpBE|hqO23`P^(ByT0)#(%9lCG%4A}_`ie&w_*>6Cs~$zu7c5LHcFJ;o{j_If7mLPw zj}_zl-Mi*5nkfwgF0THKJ}{^s`u3+0$aPy=Td@F~fq}en9~F6D03~7T*@KL~jH1){ z_@m`rwZQ8lt+qFr+0~_ZpoxY9+z)m);DHx*cL{-~fW|-F=X%oP-?1Yrd2zH`(5aG> z>&4&Q8JCxnx+~GD@YNr1a2N=EzrA8)W=2?r&dle<^SlqROCQ>hh(G(t$@u=D+(0%D zig$^_Yihm1Y;2SK>@4Da`|*nx{dD&+TJSK6cW3-8w8<|1Y!Y*bm||_gO#*7x zqwfj(jV*MC?;JFAbT9!)C8&7C{ZU*7E6wa@S6Q_H<;M@N0GM{KT_2L7I3}N`phY_a)`4p6FpwhF0)JTD{o@L3<>^m$;sGI(e&7$jvz9D zjRT2+Res`x+x}h7H8&myhipr$D>5%7vGBXKbNdV-1VVAk_S`kbp#27xL=XmPWE+FR&ZkGFcSO;1IGPS-w z*~e2;#ETA_BpfKWU^bbbu1R!mcDh$2d39w$nw%hGX{M^mq!}Kr_`KhkNTb$M*k%N* zdr^HU5Ayo&-edmtCGU>S3c5wJk#%RpD0^z5sSYvpW$jEk4Y)oJK9T zp&U2>$QlfMYBX5$LCA-|QD_9MH*!i>56@wD+omf6a2{^K0D!snn50{8>2t^3@*%0$ z=e~RIZtV5>deZp@F&-fun#1W1citR5KKzhidw{%|t=YM(V&%S><3Im6iOfw*0$@hb z*3kiQ9-v!n@I;}*N(93iSR!E4S=`>nw|UvuG-qroE1{&6cO>yHP;o5?*Ke`&dp8qj zX?C^IOjDcj@}LNb~hLPTHAqh*jGSx+1)_r#mgPA5Bkh=wf3_fBpEo-IQeCbDxRB zfL>y!7|-XHeS>c%J&^qNQaZO%u(1s$STF*@f4+WGNBRQrDfp?kU)haBFTH9s`dxc` z4v#Jg!Zfd}9KLsJ@7%PAjL4T)oPNoqM|yWvrK{X93Qp$s;bCHcE`UhivP@-WpFAf( zWP$w!Q^^?gsf%;zD{f6cL;%Hz^5iHQ%*}@|ynX&0%Fcz(Bi>Rli~dn1$n5p&BA>Zd zHLs^gIy#zt>nliF`3$qYSj*2Uc2YetHt0N0Xc#){a=ZvK~@M>n2;lFIVt$fwHc>c7(A@U*<@ z?~cNntig4j_rgqu`_$X=!clW|u0?eVx<~YMO3Si$)LPe0g#^L3)M`y0APc!8Km-(uV1qOc*nrZJo>~CG@!4BvZRuDUv{*1a_2N8 zhi71UYTd|#`jPR*W~)|$M3jyrfRr?hhyb63WgvupB>4A0)R^YK(}Z`fzwS;yp0Ahc zd&t4Tq>YB&FKEY_)7cj;_!&j>FoI{}H2MC~BeoF1_b5=W?sS2Q*-MvI8LPN{=E~%D zaKKJmUl=O*J1WXIgU%-Bv1(Z2=FaE^4|>G64xohhW?km9LFWS|EM9P5!-1F~=7E7Y zf}Vdy3n8HG0JVBHaLI@R;@LBx9jeoP*ACAS2E%}Mq||}#SVkF;fTO@2aP*IBv%RCz zN5aPW2JKPoG&n}}n<+cNmfv8{_!l&u*sc|%?DHxbeo7*1295(csQ@ijy~Yw*td8L1Hq64$a!{7&cO~FH;0n=&ji-E zt4lyp+p;dQ^6|Ty@9#O%T3C=# z-WO!e@!Ha6(jG5IM?wS!+!v!&0Ue!`3htKetba05jFw<(6fp>1L`83d9GgKTmEIXOlPfp7JjLkI2N^%(} zuUth^?VgB>)7vP-UG~TW1Qz^^SR*@_L@_Wnezl%5788*U!8Q3#v7c z_al6ic+{PbTr?@#Y2<1F`~VtnWYsGyIXPBabIWbp%`H#zt9SZmm+ETsvcGs zD01)V#9F`d5BEo@KR+M7>{=bE$HB=l-pi7bJ@Y=qx8EemtFsBXX!9HTccj%jHnwmS z$6QG%h!-Oxy#V(LWPpp@f^!Ql9}WH6FxQ^#`rP2kLDI#a4c{K)ED=Ep_%gupfLO0s zpQK^Il?McL+uv`v_Tdrx9g~!6GQqKWGgHY}W4N~pX(_nT#w$W5D_WV_+mHzRe(<$c z5{ab$!G}A&s8B84l1KbE6^~)FZ)PTae}Dhr(OFxwbK zs7ZHcvW4w_3mPxW3#BHvw=__J>Z}V2?*7@5{&$_i#uGPEr!YhuSWXKUx7*6Ztn88Qa_Y5K^o)HmcqYhSe!fp0-?Sd z>I|(N%ROO{u1BGQjKsv%VfGHphyi7d{JIO2rao*+To#Y$oZU0nOszniz)xrK_R zNs<;+6!P9*!2O?OVR7t9n5lM0UJjkZN$9p_4PSEg)MMqGR?uASo__}UslJDT+lKBhvndibV^UB%3Tp@mvEvxZ1)14WKowHqV#b3vK{S$4q<=M&> zK!o+ev`>?Wn9ZXww7!hAbiC}B-mPD?<0n=xO3G?}j%!%e?1V)$V#4@rTFAiOJIAC# zg)H5@8xz8d8aQ5C+nP4mL#P;^>M{Q>`d`Mn==wP^lvuR`9>1E3IhY1Xb!yYPiV+e) zAt5q%NV1{3e8`OdrIj7w@w6T<81;59c3TSsGXcO$);URqOIH*_H8ltQ1Lpad+4doe;KUetR~oz9zcXN#qq8hUF&vrge+4# z;KNX6Lx5CSSJwl{#D_gJX4jrfZ$5Cd@XNnQU8}Sh4dwj%`l78g*QIoMS}0nPN7~k*8lPJ-SJrV?f*7W zb||yU&XyI~myj*VP6)|L%HBKKL}X<|WN*rfr0l&3**n?%j`Mk*@9*FHbyr;1d44{} z@t$ON?;_(4Xc$UiTB{oPa6uytQl$r}QzSLfM6qgiQckLD_znh>* zN>YYZu?cWJFk+%X6b&^_K%n3OBnYxsS;^biHerJJRq-_1Q7l@CMX%IM;n~SGKVPg6 zi28uYjL68lkjaR+k+eNT+UCDkR6!H>$nA8fCIPL%A(S-Ho`s*CaTd&;y7@LES1?ra zguvC&ly9ZsYFvl*>t|L}dN8T8!%a2d{%X!&b@wvUN%V~O$rZ@r>av5#r_gWDlD!6S z(O|SrjF?rWd?Roag7H!K)S^_c z209cp>piFs-lq!Wd3V=1&S3$SHM_Pp(GV3y<2Sy)wj(ctvA(eZfeWOdR?5^I)y#8( zvWqUeC*ALF?C)gCZ+OT(d_d+mSut~ug;G<$o@%VBN^J6*f$h+z2W8~|h2}~nq^ix( zGHQ4!D2M&of82UK{7sdw9(TLTj8{kxn>tS7kL=n?T$t7zPY<6X?djv=Ja;3 zqkhYpV)y(6&BSAX#{JZtn)O={I_Qp<0!TuW0G8btX%8+EW(^V%;?~U)EPC3x`Y~PP z{5+RP<%n7m9SeW#;BvQ1ss?4- z3I^F2Hqb3-RE+dCq)HrVpZnd;>e>p62+AwGj2ljMqrVN8O5#;he_PJL_lxrFogL(y z$bhe$+U=`PKMQaW*IUa9uNi#E@YQ*KcHDQ!AkAP}+GO;V&VHo0_2rgHyp_dl*;lE% zPvBl3@Lo6hBx+R>W%*>Ql@(NYW zJ%7>Mv}TQo_9+<@^=igK?SaU+!@M+fcFyTXaPve8!K_t}(vKfYaU?G<&a=DUOVW;h zp&bGX%E^Xk4ZS$d{;cV;fnM(@&rMWW0k+SqZgec~K(1DDT|TFNn&*XNDx@1X<*Lm> zsk&^jgKe$e=`%nbzWT}5Ed3j z1jR5giGc;&w%XPYGhD$>IWzj$*_giTM3qfnhlN#`D$vdk+8dgOhpQ^B?nEj21;9QO zIw2?g)3W^e_z3kp9?4yjFdX3Yz%RW_MXlIF4OCiVJagVdAhn@og3OPbzFJ!%>-oGj z!)>qR;Uf2wC_HfU`_0FaYuC1a$KIzRg`%9Smm)VX-+-WSx0Qs$m_g{EDrU{Z__P5`tq6`Vnt9l2}S1Sgz$3apPsyO#KM{-r&YPoP_pKx zBrKam%s#>)0RZsOFi5?DnN%yQ@XfovzPwZk>hHG%Gtv`75)~s&4~GguIeFW+%dKK= zJ1_`gV?Q=Ax;z}h*wWOB?e&CnQ!xSyJc;{@iJ=U_gdouauOR%*ZJ+>$ohJ~!hs=fs zIzUC>l=G8ek^$!>>_Mhvj8Qk{=4vY4g(1)D4fx7$aB&eqrCXAygUOnd{S(|L6cpeB zXNK-FFscO?6mX$YWPpW{F)&PzTUsAGuV#gXp#^{56w#kagH8tjXWHviDpj1hx%{{# z(0T#$>nx=Hjn=+kw-UtB{y!}M%ri)BA;d)Ymy*zBoV3pM)@2k;-$@emkvdwLY2+Iy z3i)9n2gw%xz>^G(B)Sy=CI>?*f{zH^x&?`dSG>HuAPI#Lme$d)UJ{6~yblP9HBTMN z{k{bY-=7KqnSlAI_x#Q$UpNT2N#rwqb!FfnJPaTWLx)C0Ai3rO&>1ntS#|M*g_Z0% zIVn^9r=v$ft2X18Kj!q^esc}mb`(SG_S~PTddE5!67iFNWY6QGWoZ4$n0-m4S^O7I z-B8`YoJ3qK{K)1luVii8n<&(5d>&9J>GWbks%O=vt_q)IS^R?gp32H2o0~_D!NKI5 zedX-=68hZZ%i(S4&E=IJ>T%vbk?;ecZ_WEYC^!r@9zkoCD@6JH$M6BBEr@|=gKVi3 zk55%W8xx$S{U2ydRUqe@Sx}H1<0^xSnp%)1$2WL=U|aMDJGBlqWrm?6KOQ8u+sw(? zMulM}sd_@jPMLC1BjjRnA`_$(G>3zk!R6HNkq>LoMVe%U0*G^&KUkf*qJr*7KD`AW zY7CTvpq;$_lEu{2zaqPl8jHpMPU(SG^WK65`un%0!9mJfmcOEl!Nn8vM9mBp^H^Cq z{*RR9W!zVA(vimC1&R}uCiT};R{rQ#ln?k*$YbdH@8+RaRdC}YbjbV@VN*Qm(8!7}SS+{XRWwVgyZ(eXTy<0 zg(ybsf`{@>Cn69`g#kFBuo~elk*1!gW&DFlW+@b_0zqoW?NIRhUhBDF?>&K{mPv|7Rja zpN(m+tK`+ILa*R-JIdztgMW-{C4?B0U0ntOVAeIHnqM%Gq=D*)o>AjPWO=z!a|SF{ zcf`Euat*6w4*sZF>pbZ5WTn*hC?6{uaSIDnl>&c3o9I~GOQrqorj6zRK)!M5!*J@9l}o}SgNKF+uIN(1w~It%l*8`- zbc7cN9>YQi&rD5C^_;)S9PlUW{7gBOs4VZ~XeoVeef=^CNz`!q(eX3Wp_}pdSPsF* z0YF;hwOf`Q)HRZBvBQDB7-M5sj*hY^-wrc|hG%7%SX&p!IKU4Dl$xf2!Rx{#8dWat zz?DxAbZ{KIuGc|q;>ws)--kb)YmoLK5-*Ffw6HJ>+ooQB0kyOH0ox6E2~q-_Q5^@v z3OMRuQZ)s32rOK|pFi{LW75;F{;aLV2nm2Lci>hYLp3se^}GL$WH`g3GfEMxS2dCI zD4H6+YcbbtCWNyAoZyyQ!SjoUfF{^g`J9$^IZvwJU=LAJ&x}?gWQZb&y+W&Gx4f)G zyAPOk*~k}(9Ey{pnB8wZB+ElYoZM8Mx9O79(^R(%Yh%}ibPJgp`=-AuQ)hkP;9r~b#P{G_rx^cyjjs#TEQ~ZEwL579}-R!b8UDS z{eJOJ|6M5NxF=ooImervVqiI;Yf4{1yVYUh8r)Q(6QSSR+mT!uSbZQFUJjI%u6G!Ku|r1K zJ7H0ZQOt^_E~jGlqhmL`woNCMG(ui~x(P8jeOUoQ{~F0*14b4y_yft*kFJJYzts5+ zO?dgs9rOmPKsY?*hm-N8Y^6s~! z*M#{p!a}6ci6I}Wsz8^_6x-Sw;O~>}qb>{KJ~rh=#~chYHRyk zSlGy~xgHDU^Y8729UlKP6xXG|QimH3+Gk42%LBr~E}1mA`T^<+w0^Mv!-qviehCRz z3kwS~a&v>hz8H9wN={Uoadp1kZzx;M9v8RSZOeqF$S}kN8*df>cla)lLTFe6c}*HZ z0nY%a&)ifN(^*c=v8I9&@imTDa>cZ$&91J#4h=Y#x?f!s$zb+^hYsau1!~^j)yw%vc)u?lbeJWScb_L5*MDmJX-we9F;T1wIRbz#SCevAQ=x>nr$|v7e`-{wBtm} zo|nT|2cAT{faVOVQy7x;QWYLSKiHv)0&% zgGuutzU^cvZCzc56+bEDHc5FMBO@1`h6Zp9O;U~+b)P<&;^WFf4GMI$w6wM1;!V{v zbBI!3$8hH1j;{2PR+sh&_5guK&r)l5*A-nxufTJNB3=$4X^IvlS_~jrrdvzcB@e@a zZgoiYx;HUQx;BgnEqe+YBoJX&5h>}01%PATr%xi0)cVUKQ4Ql@6F4f$Vfx+2jLP_2 znD+%1(P+NbPpaVkn|fwrdh#1r$3I|4oQtT~$SC9BXer|R#z<7;(vsr5mch@qfjBI$ z$jIzydw&=NTQZ(K6r+<;6_yjXR)K^D7#!z*#IZv-1|C2iKma+%$M>GCKCqdf=IfZB zY{CHlJ^^&+Kz~WbUn&dcn;9^YRp9<_G0liW1{@G!K7R59S3{%6=h*q&n*gUG=4^!> zC2Syvy0N=B#D$VDGX63Aq2WEH#MiIcmYrR!3c8x4oJa2a9|pJh8ne|BHI-}{G^B3e zS{!Vmn*`t4*>6M4z&7-zh*A|C@jdRkZWGWJzIgGg$e5C4IYaz}R`J2r9D$FyX>XhTq;eeSZyGJjY5rsb@AI;`4dE8&eGD}}&M6KOp$jSRC*Hm8-_vb1wqJE&fH9y*2EITu8ZRKndd5m>cc(OErFut~~%I#Ng zuO^u4&AZ>bVeR01E9B`7@a}+1f3NC8+qdM!$613cynA%`2Du&?XU@N4u^5sd;3I?Hj z;UkTkI{63NYa{5+9oN6(k@TcJ$wBOlp1v?}BWEeBSMbw1RCg2r;0~V@k}7nBrGg?$ z)let)+S*-2$3A?}SNmCC{*^&m8fAxoP_~SkHAiY=6iKYgy=`z%$#YQpx0(6-0;n?!%cYe*1N_itsP?oz_PLUGjV6( z2L&X!ARcANGO)im=}BWvNmYzW#;=38Dt@V#uiN{+c%Zkd(K?hdKg_>l-LlNE+%Nz$ z1d?l9p!?b8ueO7GHv|Bm+zZH;K0|-oCXp6u;DMzE0{0Gk2Plj!yIF!vp4bFhajYz5d|a41Y=VXYlpVw^Q|(z9czpd_)h$Ql7nB)ui4bJ?e*2(_)l0lO6qqv zI$}n@*j^K=sNlC5xqp}TQoka~iHbeKFSC`im{fgqTe{$_cRJa$WqlJeLWiS5RV7{Mxf5D>0U z)>44%2y)W^ladd*{uNcf-Gi45r9g z1bKXj$dZLzm~_HrbFx{Jp5FD%bp@83H)drpp1U6Z)c|*f` z;Y;Te4(LA*9uAbt+#`I#$;yr$LNfm=OOZcK{DBnt`i^-rbB&SqapZLcVQQ(Pz~SHw zrt7!VHuV92hT2O=nu~q4X0twCN%Z8&6ENYmL0;7pd{T?K{b$#Ew!W&c{9Yf62$H`| zm+XRt#X)e|jQ_bk7}ySYff2VYhgvd4pVG{fk_j0DHVW?QxVRPr z<_IO{o8DPrjZdoVuys%-pkNYiDOL`NCitnWMn&}PR=eY;J|(V z@4>4h*pGY0v z)-hd<|HoxhvsX(cJan^3Mw=rgiAhqD9_FEz`mL|wX$A&^)e`zRS24Z~mPlg_pO! z956t8IVPkgf&r;{bd*K~k2o+n;i_$}8g_b5h=JGhvR7mj@~?z7(xO+_7k)IJnTqrImZ zXY%h03ka;7Hgs83Z7p@q^}4|!^HnJdI$&PQv$NY|0X5xt5q4YS;X`V8O1}f|KW!WQ zJ&s+dc!c_P>-yM2(9b1NzE?M~;avp;PVr!K3Yn$gb{<~1g`sCCe{|}0xO+5ul^)WO zA~7)HEq`Uq>Je3xeRA9J7qr1ZzC+k`K2P7*b0~)9!w}#?+L^liu+h%1W(#=RK;Zk> z!GVOG{o}tGYdf_{T=i7cP)@x^y_dp+2bJ#xB~U0t1&&i*MOEPC*@Ri*yaJeIJ@94? z*5`8t5BYt8548)4nhlS6Q=?%CjMF06L+o9T~1+ z*&DHx-~-_t9EqciKGM5;dxjLfIXUr}LtiBHd%&mDy9WU}2X4P;I>%QALWb#lht;U5 z4IF;YhZU-7u>UU8VD$ZoD-S8T4~t|P6-jEwCzyFes1`q}-_TIIa_7pGnxuEKTRY|i z@d-Qq{@UL&=6dgq6@&k(y|*(s&jlax00>gd%Vod@3QWj8BRpwvPrtbN5#CelrFG3 zE}WMtCi`{R#%5v6)>NiBGL)dKB9C3Wd9GKy!KK*tBs88K>m8Gmg>ohI zwfll;4)D4GBmn495O5T*{#K{EmgVomqD>&GsVGPuy*PALRAEvH|Cs(*!d4A+N=QcsvO?wLu!3|13xqK9-=mnz3ol1nTGHHc7a9b0s-7Z#zN{>m zhxnn#4@40G-{&(SVU4neUl0{*$e_eRnFN~9Ujg{}GRtpyLf^cxy(^=LMngK4iL4YC z94;4x90b2jg#kdIwM0ht76A$v$zhq|A@D=&h-rhxN133r?AtLy$ zD?ZkT{rKMo5robl%6`Zm#E`+6{uV|Nwypn_j$Z(?+~jPM7YA$Cs;euf>hSMCW4EOO z>IN3)4Zr@#k>Zc9T%O-Bv-nA+-CkQ8vuhw9AabBxQ-guQkeibkRY9twIJ@_BGv=y{ zxKm)f`=v|S>YKj5{_X9_1J=6K-WY<9JK6nymDFXj{>nIS~fzkwcsXaW;v%&8w4Z!|dq zb8?=XG{4?;s;kb;ZQ7VX^8$ayFyMsOHaRt=WoQ@; z9u{)nxu?_wcX#GQ+G}l8^S*I?G{2Ylq(O8K!l^-m3b^D2K-@)Bt#=>#Krex{5)S&9 zU19O$_LDzdXt7%~LerqM#;qBYo1eU$1YOQhSi60&-)6y^*s-)=;ck3C4hzHUxc5ct z%0RZ``5#*GNIg|^>j@E?`}(9|{O$`%?;#iDvYB8e7~&mQDZx{3`ga98rkL*oSSw#0 z3%Rqf`0h-5^ltCUeXSOK19qdAtWs%8Tg%qRUIT1p<$z-e))qw`H-5S~R*;lJaqVnC zgEDWd#7~e`M@Q*_(S7-M?C>Ow%7^qnyTibJM^fv3Itl25@}61yW)@DG3Y+ES;t}Au zLi=CfM~yx}HVm*8BR(9-$p`o!KN}{!202+;5<`O+ot+#bLqRs`#GdSG{*D7|j&yV# zCgwY4Owx?^UcFj=xy9gwM-qIIrAYH{!l8td8;AWS;njqM8hCRqk&!L`G}C(g=QSbW zGL*x-h!4QVrO(!t+xns?n}JVqy&;v>aR;Suh*qdXeLV8?{+XlXERV1Mf2pZxY~WHGq0jsM`}Y>q z)knpdWwHI7i9A^mjg`W7>e(ab;Ie=b$IhetkmLi9ddouv)X<30~#Mvlf3%LtV7bx;v(D7$M2x_QXY!ZRMKI7wceO6bQunY|A&#>d;NtO2w z1!8c|PO7!-&K|=#n8z;&V9ZD{=l(>qU+8t-#BqHlrW8CbF4Q@r`HyrE3k^Sa zvw=E^iRY;R{XuiUaIwHUG}hvR5S47#FP5@A1|%>NAPQh9p*9Kpw`}RF#@xB3zc9_rk+ZUf@*dsp4el^xae$ zs(DJmInKp3quONCg2Ti|!d*%OdRK~^)qcZjYdV$Bx)wLsf{#6{twSD}18D&M2^>7U zmRn*pg*9TRi$$bn20UQNITNDtc08%&WrEv%ihrwtU_OM*o|sCf+%aj0hsDUSv?mS( z!`$@iT+U`dNQsrJ?OkEr7BFwG(2&AzN|SUvJF+qYJ%~LMc?n2SNf_=RI#enigTX%n zFuC(*xHzmr2=TqI>jDB@*lb{KFd`#J?vjM<538|?>S_N`?MkfnMUdNbabS#$%IugWYd+EIWJp!OKQobq`vMPWH24ywj%Bda@i6o;<>|c z#&G@Kr{$_Yb!@mM?=b!*cW?19#V9#0bzXIK_Yfs25`uHd88N%M6A@uDkUTBWy}`tU zK^Dc}r@s}}^YT@@o~89WZI@Z+RZ`Y(-DZ*j2IfS-wg zbT80v-2j-P_)+8CnXg`pdlC=-14I!09}uyC@QXB;+kG0F6qS|DOEV{pv?G3{O&xm~ z7@&171ywv3fBxaNz~Ni)ffAXo60uI#y(EJCzYAWhV^BwW-|;!OjQl>Y^%^4h&{C2f zcfCU|bW8Nmqv8_Pn?AH6y}{~CGR+$kc?2XO&$P(&z(92Eb>3Iwv2Uz zhQbnolFgR-oyyVV4y3e&rKMT>n`_I%pHn;;$G@hAhW(qJmHAq6bQG;;INx8~_**yt z2t!YTAUVJ?32?BGOik~f39S%}~U44%*njT0ks^6$4z#N_{J z0koJj@Z3ll7$TRKtpUFbXq^MHpcU42gx!U-IV3<7qA_b~YJ8hbnIt4=;lCr1ImlH_ zMNcalYcn~T^e4$Z$ej!ByV22Jx{Li0$~T9%W*sqrK^!i`EY5G-0gJ+LMM#nH1lyq@ zl9K^}pvWkl1~#Hi`1LMJGRG+OT87cZgdSV!Qjt}tmA+sf^Ey1aFKrXcHbVuf2aMT< zTsEDEH%&MBLh_V-5cXqgqPkS)K1G1^MT7aGrvk32J@K3$c1ME;wKSAg0*KKJDKD@S zK+b%Him6M_uW!Dyrey-7HCiG92D*0@2om}5|7|%OzJPNMc|-vX7*3Cgl*Y$Tt_K73 z;E)zSP6ks*nV{EFp*|W5GR}QQ`Z9f?f#oDq9-6trV-gZH_jmk4{4fE^AO*wFpF#Y4 zfpRxi?I&d{i%pV*9%Ds(>BccCHfAP)gTAv+OE=dl?O}1AURn<86SLE>!nl#*M_Djc z)=nv_IEq#9etx7OdmRtkjEHCbQ84#5sH<1Ozf)^)ZwAp>HrJ#MPfB+9vBlRoLvq|jY|tg<1^`&s8~SL|)4 zRavA`rk?KBa?-(ZMM{d1!1j(9oQ9eyw?eQ!NJ%x#wf2rST-&R%%QAgx!GddVu}>}4 zC}7AYk>dYkr0B=#X0F1EM_)a|%)duIj(;Dd{2#b*8t;E&xgRkTRXE~0gJhSVswZa} z86W&b61=^2NbRQ^L>PTj{JL`Ed(O|oeyvWOI52OE6Fv3I^|_k8((G^@4=+CQQ!z=Q zfx^??GEc*cuGt;m=`SGU_G?(9KuBf>!11 zOl$vWiT|DWRg8!e;;XJ0IRoKn^qq@7e|U|$uBMfNMM^g6)DxxL*%{iqvnyw3Ob=G? z?bD+dFm=m7MHT`T-fO}Q4qU@_}d|p8VP2G$Z(LxY8e?#Zr8#BUR_1+ zc9u*KTPIE^D8lOh#IFtYA>wDw+DY8>ivJDyrm+%C=9FRF=zm?4lT{Dq+S_#s)rtAv zslwrbQA@&z^4zn0pO@G4Tm8Lx%CjJ}+`WHrUUeDzH#7BvvhnW8TVlaLSl9fs6r+CY zYm<8xnc%h#QVMi;Us*5(<-?#pw{>+1Wo%gT^;N?Zk<5Y+e5sPEyFhfQs;NonDp65k zrTY+@XOjNt?&dd`R1fz$<~(}U=&3wRxqnt>SZ!b9alm`%`SrAt8V9Q^5zOjxhWEx* zhPKssJXQm40=$?jIG%97xIHp7)S8AG1a85~9>ct4(FwS3=#-z~gvh^s^t5rL9~Jwr zkGV6JM&wPJ-?@xk5ZoLkW9yOWT#At_;o)V1lqxKt71fHRpLzZe25GvV)zyA(9j~m2 z^g7`oCC4IBR3vm&O9>9g!le24kLH%;W$<{Hxa~m$w}8B*q1g!UG4!tEZ04%{egE)* zf-VdBCESQSd~cEyUNOid}Dp(9yU5+vQAH_nCk1- z`MJ2TC3qvT?id(E3_JAo30bL>LpyJ_t)!hD;qs^azCAVlYftXBee2zSY90OiWb77U z9k59A(8n#3ZVritF%Sj-aI#*7rpnnXXQc zRTk_8essanH~U1%MqPJ4xIIVZ)3={&QD8Pay?=tcZt?{cyS-NYBM}GRczP+f;rqKg?>1}S_`5m*$&6BEko<7FQj+ExX5&TVN3aDY2@@%|hA@wgUmu6K zZs;`t6mX(q6xMYb0W%!PPD4OTyFL5SW%g zn1r9HNf4Gut-ZEE3Y7^NSy|X{fm(7wN zCw`N>Z{Kceyyl;-j;0K^XyW?q_=FY76cMso!2d8cM61=kz;jOpEE=$c{oa;uKiwqz zDB*&#+O@E7bv13Bo=wCuGcdJzl$)_EWQ2c5SJ`LeWKe8E^PBG{oP=l1mcpuj1zHI(-Xo zqbYM@rO{^GtP+%5T@BUj?y$am*?wBJdGX>bs$+v$G4D)HenlK(bs(Iouafv$zjeL# zLwr}a8xWQS{+S>oh49JP6XlJRn_N%7a`3X{TnvBy`-b}pY#o~EQBfZ+XA%21fY%#o zTEMt@my47DQqKkClVh^~BbMaz``<>ojA1KMzu`RTb1OD3EKuAflEL?ayE!dQJ-g2; zy^l@L;QcZW;t=3}xvGPZtl%u@^_;lc2t>odQgI+iW&F^nGQH92D9Sq*WQd0U!v`#4 z?I${l(YX@X*?%1BYAFapIezqf?6Ow9Y{#ARj~-;$xlXf9?Q#}(@9xG8G@i;WB!A|K z@#1<&{?6@>>I>GzXQ6Cd@{ymdE)pqfv$9tTQ`-v4apmm~_(&MA;I zMkugwGp$10b=~RGB$=9_;JkzpMR@2(37n+LSA- zG)@?~c~~n?Rt9{O+C~Ze{3ruGc0RP)A}q5JM88e_ZksLB(|a+GH~R12LKqj4&FlVm z*^fcZ(`sXV-SnXb>BsEsSqO%}2i1CS5h(j!IJ5Zw{oPjegI1qkh{Yq!erkDK+|4H& zxFo+^8JRP$(UNv*h;$jwt|G9$bxYgc1@D%n%{Yo~$xx8ubt! z?Th=q9DMSKUm_xpL)&t5LJ`M8v83#Sz#S{%v*|{k`ZK>SOYF@}nhMX`+6@hkkbv_m zS(pe?UQD--NGC=!rlz4JEM|VG$Hmhg1Ggqk`s04xvxiJ5ED~NL-x!(RLg^oY)uLpe z9wyHhHN(j$d;^Ox%=kxV);<@hIt7q@5A`CuUPbhvU4_BDX*bG3K#9fT1sPdiL&g#i;c0rUZi=xNqxUib+@d#TG7OWf!C-817=2`kW1|zxp;XoabK=e zSC3F|&Url^LHpx12XjEX3#d8Nu`ABAbFpki>iCRbkJpG%e*Y%p(1HUHS~EoIrieP= zrS~{^&)C>3yKRm6uR+hlQeGqU<`=RD+(Ydp>j+uWTQM3 zm64S}5M)AU3^1v{dUPSdLuWBJDxhsSS*P&2tm;%+f@mec@d+y#%wG<{y>0%z>etzT(7b1=<}@>tOx&vW;n zs5RD-odzadCGa3m3(a3_qGnMWjA!TnKqqvz&a-wW>B4dNE~Jct*T(SdOGydoM~!qu zNDkSEkWdi?yo>41@3w69@bIjPHFYE>k%N~PY5MrLIYsnw>uYQ1Tx&C+J|d^=>K*5> zzh}#ZhaNH~j$Wr=bGB{OiUM9to{7}d_Dc@lN%c%#k5Qw##d>Fg&rPo8&Q3x&rqRn6 z=ON=n)J@&LaMlWnJMR9DqKu*!jl5Ho$ero-n}l-VftHqRa>Nxf8?|uS>3YR`XP^~j zq$Kd2s1B=$!M}E`DMJ>xO5dN02w<#N<9GwMHBB8I90-d5r2q^f$hiwHDgc#0as=!Y zDdB&(YK*4cqZc(S?5&3j${a6)U8^ftUhaf2lK(gvdKj^m&CO4fhuQl%1A}v);R|SO z@+iZ#psanEIsX!hS$X9qNt!f!ivbf;f3Zoep`jsHx|+JHSeJZqvXBGhx^;Hu6&B*8 zbiM6~tEz}!Pd`1iK3!Rkmi(2D245OL@ zc@07L@Rg#-IFsNV7AL)T@2}C`%10qQ2y<_7?WQAS=pZB%ct`m+VI1e|@BLPl#*^a@ z^&i<|Cbb`T7V5{-m-$G4o>NvH)cy2{QuBOQ7k^UKa(cgJ2?o047S3yDnRp#H(^YO}3Ylx5(H_y{O z8+-M@tVm)vh0WAr${`^V$YJ1J1FAG!-0GrB#A{DM1L~{xfQqbzipkk0F zV4!CK@laULQY2Mop}A#2K$atS!|{N(O9g{-YIE{N&ie|2@f56Zg*{s*!K3J5W&moS zD+%$EV_{<>87>YE4p6^0_YYVV-O=%Ww^V5ji)SWjMs4fk{(V#Ru2v(wbQKlf@{acU zTBpvUVtTaS(8#v^qj@8}aOpE(r8fd(&CRC7?=9ggO-&X&oM2qo3!9Cj20-nXz&pJ! z?!sR|tOurud8iOXTmkS~z^ED&A5VFBc-RD-IA{<-4v7?yX?Zn^Tk24*#wR?lQlZXk zZ)>hE&t?l(@Urc?jv7f#eQIor-428s5Dzm@+zYA#0M_~c>^;^q<~hNZdz@A5q4>gB z0XOC;9$t2AszkMZbQ1JBJ!B||g38HMGr^TK)%OH}AMGVY+J8o(r2A`< zBoYS~tE%X|D?u9r&38o5oPrEnpx$fd))(Q>)#Zo&wYv-qVC+!MI>U-nJ~(e9B2>!F z)gD&ymU0_Ue2Xf3jPiU+eR+VJ~M(Ml1`5H}!ii|anPhSvvH+rj`WmUuz=;X&< z&nOH^5mnxRM7F@S^)Y(FE6~CdJ^i-sY*x1J;P!1h?{n}}DrsmqOt7I}ui9vfYrK=o zuK9cI-h%{xyldAi6e?fwko^t7k9*|7ZbO&-si3uWJh{DO&`IGs_f^7`6Jg<%Lzm5H z_v3e2?R!u7Ojtg6bdcJdu)R|Udn;nx5Thgh)169m|NcPm(hx9jU>B`qMcXzaY4)k905k+&ma)}z(U_w?eK_W#1Of4Kx%aZA_@Yej|ptxN_T?hs~8~+ zH_3D{+2$Hi`q0(>ARPyuj##MMVCLg1zL9!756QCNDMw6EMmu7*G-n>CNri8^({f5j z^@aZqd~E7W(4@UhzBe@V{JsJ%RCPN-Y8TKxz2#OKpszwJD#AV6)Z0r6SJg652as3- zm_wl4<26*|d^?$&=l)GxRdF)zc_^+eDr)D9A&^Jxe*)&cKih-jcTfKH)kHs;u`uhe zHU0D1Fgp;3tN`|>(ATfApoA7;u>Tua6;%6TNv_!B$J8epL(e;o+f4CRU2+aru0W#x z&x~jw!T;dFjiYV(Wmb0PT4jMc zJf$|=qoYASDsHBFdNzueS$F5UvlJbj;gc|?hXNfj6xPUXI@QJ(_?Fzddo9Uo<-utX z)8#cMmn@nyzYwRf(CK_1enlCk=(FFktn{DKf!T-zb#rUO7b#w?KfCPc z3cxmSXLbR7z{?w1mP$>Gp& zSU&{&Li#MyS-b7pfOpXi>jQiYknfmV`^l~e1JyP-7|L{V{7k$46%OF)3Bu1p-`rCT z?CeURsdc-BbxUw|X$hY#E({W^ure?TpneRfPDe-~gp!935Zr)dzC(N`7%cJO$r~LV z6}ow^@jUs@-*`&xfzGF6Ssib?6nw>Ddv8E^|c;+<;IaO^#OSUc=`Cf`Xw&jH1Nbf6<@P83W}qjYdY}Je~g7-07#(OIE|9tp{uIc*dQ8@HV!UCy=-nCWDs?zqQ}Y0V`BBP5?+9s9zk}TtTpiV9oT7xQ>cHy+|5dsu1}8Lyd`6>{Mkqzn-8i?9G8e2u&{TmS9Lh@^D?T^_!|LNMlvQK;{!FJ z&#kS^XQKK-6`Ye1PI|-eJDL9Z^-j$FF9$R|LAZe9_N*+1km73v)GsL);@k7zkcA+3XBwHp-V;mSwGx_4Rf z3!cqC>*o&sY&h{H7oL!ey1MIFei=tb#+ow2Fx+f-o1kJc;I6W3%&dqX?o~?}Cmx(? z7!xPpe?l113Na1<7}?&3xfnvy7Jt5{2+KP=*=J69rx>LaU+VP4+}J<2$4&c@0|QA( z3B)DIL`{E*;i8&fc*~<#Vn++$^(<6NgU{){tMq>qQ3n5`UNCPn?fbwQ45n;{YQ~C+ zRX7?Ty(-7=B5q;sU}m64K4cm5j@V(kM4~&iUC6?V1U;m1_q9#P8oYfQD}6BGe}#5= zX}Pb0v(9lYT{8U@DJ?A#L)5{m$?x5>l__~W}oYsl||QJYLZU02F>lppRkCIJC5 zs2lRFtQ2ne@}=3Ll;fr6q}V+kX&3cPO92s)V6dm4y3<4M8`0gVw#%XhN5Si-omf%$ zf7dx@sPjHm?NaDMPlJ+MxessxzumF%MWVGqb_jBaI?r?m67%-nN`Sz>m2rC{KrBVQ zhp0XS270hk$4Z5Tau(`MMUIRN?!De=lG#l-*o{@mmvY;+cta~ntjbm{o4~hkJ<`{Q zBm*P0x=(k^GIH^re(`9{uDed`<|gKHBGOq=iD;%E#}B#sKtTf+jqCpEReRt^+Cd~E zm&o1x^UY-$l%Lis5tFAj{?ykl-PI;1@9F~H)%3}ep>h0L3g9o>Aa)pEt8`=Q;!_ zlTcGr>lqr#|FSUa4ZyE?xu*LJ>v&waGh5s}epUSN1pASvA4)|93Ieor1B3DSU*2R9 zbuepR88D?2W2$%f)~4k%RTV)no@>&B!Rg^Jv$<^o2k|USG7wPSRFk_lzBV#gEYY!! z^lE^SY7W}1KzJ+iNd6|*ikr(y|DOd{mB2t!S$eAB(=AI&oji!QaX(L%tnb?6roVh=A!$mPJ^6`m%SV`q!$hD-9q_zuBdc@+X$uIFk;n8f4d3@`QMbB zBGHt<=*cD~aHUkIlnRiANVxRB&&VB~6qM)AWg3d0_04>|XC98G%+C9Sy4aQv5#Jb? z(#bJ^VFx(4!{cKJ|G@?wa*g+yc-_WCi2c#gvVb+|u~98nd+iIojL#9_VPVLf2BQk7 z+K_lN@L@D}4^qbR8fSQ{kpCGxn8H6l*OYK3IDvHWy*_4VPHyx9^ebv>w}AOY01|v* z^OIvDMZ_QQ=wSlZ%R!S5x_9_0kyH_gbAgQ!OvE-ELflm0&%rlV^kIYCA*U&iC&$#GD&3=dNwZq&@o8+9*Fr2lnG6#fW!Ht#~^5pek`h8;tTwYJ{iB@umA-1AO2D6n1VK4Dm95idWM=w7e9iFYbx@E^si(I` zgpjPcsQq2Pl%3t%V`)jsqv!j(D@DNd*3GW>(DhzRUAN-UpzuFN{6JaB$g=gisC+WH() z-}I~TFvh7E7%1s~FOMFE>*;GLhTXBXwLTKHWg57P9cd3*4rj7Y8NOyxMn-uU-xjq+ z&2*_Q^RvuCaeFz$ zC@Hy)mj>+KTtiXC?E#mh)L;!m7N?lUKW>O)v}nA=&+i)&qFAY<9RjjUS^!)y;UfZ? z8VP2D4H7X2sHm)Myx$9y)3=cGKt?vicO4o|6nwCu;(zYYIOLO2FL9|(`eM?4>k0;x zY>{dtVLX4r+A>nq24F)$x!D@1PfFoVK;leVLr5G>gILLJW=tB>z8U0;aZ>h27oTbr9PVZ|D4aJyv$8Tij;zRoIzkfn*^g3C!B=b5&a>;#8+-Ad48S!d;RnE{k+vMjrJJ3=HYV?#b_U^xgO-RD>r`S4D9GHei%o<~l1yMd zE|10vY^GpDYJ!*rI46_c=C@&ow|XH#x`75}{IfB&l^>rQLc2c5%07|mQqrZXlps82 z`0il~`M#Q%dW0=ag&Ous4FnU6eB&k(k1+W`4#!1csjwSDqhDE9M>9DaQW|qqKv;rF zXFEG_BqFwZr`D6$uunTgm=0SonVOjq`Oy+|g(E}8Rj5RRn0=_>pw62FQV|i6E*S?3 z&Gc((!SDBZ{rOg{ee`HD1*OT5Yj6MO#{+HEso%wWaeWIhTi%Vq9-bx9=9D;2V+p*f+wT5V?S6q^brH707 zCVMD7mZ&&cB0@vnQ&UfN8%`;7AgGjzii$pt{CjJi)SVHA=~k^aHKBy?^uHAqPSA8P zdMT8(tUZPOn-6)Zp6p^uc?#YV)*VOIH`k_!p3^~l!T-I_Np?#6wd0kPcR&N=;#PgQ0n(-D;SV$ z%Qo16fg5N2Zfq#AI)H3PqpnWbKh;no=6QSd9k=I~K4A1vs%(?CAZ}o7>eMtyj7d6o zH9tLKfet-bN}{DkY1ZAvxijvy1f2j^@-I;_wi|)RWWptmSujoPxBRKi#}dyrU9QB^ z)p^S6TWxJQ5EiU?xb#(D$~lKn+!SZ83uI7!+EATbrJC$A^$<2CqL~-TiXhP|@EJ1g z+(|(~h$69~laS1O`(~H+e7q}xJeKiwWpT1yfm2Di2Is*m0r$d}JI>EMH}UN*s-yoq zd~r&iK#kG6oL^AT=JGO^lAK&F+U6I@%j2ik60)B$F)5vh$~Y*0ZtSI&M!ch6jA735 zmCL8Z$A+%6l>YnIk(M9x{P|v=vWXUdQ_B1+9oJZBsxt*e%zl2jOd_gMfFZ@;#*J-x zAC-zrvK;#4MeeOq;i4qW+l z-NhBJ07pQ|)qh70B`*A?n~@b0qeHBxeyNviEUy6nJDIiN=pPI1SM)x_J6>aj9lb>JoXj5;TYNVFJE!UAAL-niN=%d(eY$aWw(s4@g z7Co9|t0G0Th|oEC`I0~8_j9QSzvQHj&!v4f)p>H-UeY@2gV=3$pFou3Ret_F5GT9X zL4NC7TAWeqql*FO>c&iwB6^LkgtJFj#IhTLi@FlP~dV8lVOIUMyzdCF_w!K-5&2CwO z{)goUV-!yxc{kH=&~VYDZ0i+O+Qw{XmnE)@UC5zEc&V`0Y@LXNO_L2e(*%#2TZpPj z{pxtEAZ8B0*wDo*8qd*j7J+;hz>O;&=(yuBn}S9q$HHDsfKB5bn8`D z&%ZjsXPpI`aSJ)7=Ftr>Wwt$4X^NZW>Qb>uH*RFVdcErloeIMbIqY!+Ob6Z8>Ga13U*Big3AYw6rIncy?kJS1tQ|;zM0M*|Fm<`6X_P6=613SQ*+u_@Mzx z5#2KHdzI9wJ#2f7Q7tG4PXXR9NQL{byUV*t=>259EX1-$fV^vNMAE5}%E`s9{P}zF zXYbyL&S&LOn~&@1zdEMQFx7RXublMj2S)|qS9ekC1nHdJzh9E~_U$(tb?qfxnv@b% z)l521G!y~JY&i(ql8M)MlVT}1gi2xp24X-3NgI-3;p7Nk_F59Br$!gyje)~TBahxt zToI4{79((ygq-@WtQW^pNC?#I48Tg~pG5!WVLRDAayjcA`D^$$1@j$c+vQlDTJM-%JE~JM1ApLY>`=p!4-K6w~h>hAKCB=%oF7NI67{*o%rFWuJ1B9<8&k^$R(5?KALCyiPx97F&>`BE$T1@#?0{rp z^R*p3QKn{U`i{P+1kYNCMXdZCI{nLh5)w=VpGETAUrSCk6Du4EjSzGbYGEy++wTH{ z?Xvnq6`}Et@=muL3wdknEw|XL!)j95pCsn+gS}Mn=0qhGI36XyWFeuUnHDXHUt+s% z-4ax-u2%jx7J~7i9}s18OG^czqh>!Mer1p3KAC3OHq~h(xxX_xK+6TZB9tLIlFZm|M~;%A&KlS>ey*I{5%J7!1+4m=0JL zH<*=^uxK8SzbqIUoWS3d*Gsmt;#Ocvd0O*y^LQ0a z$cta4u@5^NqHmQII@~WLeGefIM6l%$gtrtpnnPs7jopd}VP!8Z)t2+f?tgHDgs?E@ zSh5SBc}C*N#brF8D)IJQf0&XlK2>;6`0)nd{6Q2A2vm&n7~ZPEMBKVcNp;@-_RIiU z=cKD9I?LNqe+V_xRq^p@to#+}vUj@I_)->_zwL&%YGG6QRm~-b*`P4W$k;H)f`VH2 zX_9N|kM2f4zI&R18W0hY1qt+50>-d?nVCU3Icib4(#TLiejEed&8jb7Oc7{do44Z> zUP9VU(w$`4|GkAoUT>VwCXJ<~CEk(jmKp?}??6o#F^F?IeaYdx)iYB6^ho>}wbyk~ zH9p*Vwvj=z?M6QgHW|8`k?ui2Cj9*TSZgSNdSTrioakEibPG4kNDvKJiha3zbqVpi zOwEd;CvI|3!8J^D0^oz1wsHIwqjGC6E0PX}3QJ!ID!iiFi@ay+ar%Fc(8*0iD-hXt z7%$7V$V1_j)!7_tTl8%FrOz@wFlZSp$`Y*l^K%>?pX6jgtlFO;XGNwLreAp0$+?vN z-ruhMT!xtvVz#SjA9g#AXT{CK10|D#Sb#qHWrMaw2L$mdq0mC&M*U96+B-}ypJSl8 zMDLVJEbn;!h+G}3+hUH9m@*lTrI5I9$k7xE3kw>cq_|+^g=EkBO>q;X#wk+LQxfezyb}gb}$)x+J7#2fMw?@wLZf=_3U~KXJI9{-h6M1l6i@(it;vAR6Ck{%fwS9~I%ke?>-?y4T z)v@=9zq`lV6S6&zzC3+;wA8Ykq;EW<;=^Ts1ZG~Do3FAI5P)fS58`|Q2w(_D*yR`O z!q>?yGw@qSAGI-dgR@lH@uq*=SuwUj$PQ5ZbvIZ$=*q>5+hA%MoFOFLP-hWA2gqeb z&g|10HMU*(NQLDYMJ;W?gNcb-mkle28+3o%`m#F|X@D9|mwvT5FXuka?+^N} zo9pgCH_T8lLSJ&9cn#MrwN>pf(JCo(<0}W=Znw6GfW%QGCgs$P5P5b!TN_7-Xmns_ z($5!uTit9-JSgkA*vvlbVwK^YVdwnXWgw$8k;`4=t!u6*UIYwG0SNoN2Ez~#;yrS5 zoZk37dymRF29z#u#Qbgc>pHKa(?&kD$;T`Qk_BfN2ORTj2NlTY)!M$&g)^Ak-Yf5U zzH{}l&=84rIZf>2$7ImCidh6#u3qJf(DqXD^x&&9WuX|#uf8l6Wo6XT)|SQ-Bt)H4 z7wLDGY!tF9_xhb5R#z?UQV+Qva~kypnoq>xLaG3Yh=Sz#vY4yS(2Rx{G;IaqotEwC z%2*WTlOre^`GhE!n|wq=+2aSkOm+*NfB*jcznWL_M?QwuB&9z;dG9fvPoh)(!kaUG zVPR*-2QT5l?ig;+_+7#!@9fOQ9!JXZ<%CLIKTNa1e`bI7udfK|O8?k<*z9Bj)%3Mu zjc&^Qm!vhls7SDF|LW{a0!N%Pa2{h)|M++)0TNk9Az?@M68ph7pI_alr1|#cixcBV z8*Wzdt@SzHUD97~X5Db_UTFUQ{-FxZc7d5V6ODVDi-tQF$L=3>ahZ+V-yMNjQDT?*FL^x-3sbw}As6tkLv2amsO|Zm zg-S|so@2Tl(q)?lQw4ODeQ@PNJn^_u7+kZ>YN_3-6U(Iw=lAd&qUhJtbF(%f-LYfG z{6r@^EL(WYAFEN5#*ZdyDI|EA{avM@eeWI1Oq)WkGA2zOeo@q;XiBSFq%%)t zw%c`@`!Ln(FJGS74N|Q#aEGv)eIbNqfP|twuQ|H92F^r^7;h{K+;Lx^1?4>2Q*w-o zj)PD`%+2vaaKq_TX- zrG9R`{`AU7^gbkw*g;xJ>~=}?T;-QP#&@igno_d*2neLOEsVtZzJA@+&b*C+(Dqlo zcwu)fk0I`C%*pZT4k@{Zsd5e<9Yy38|Ei3X$c-eRPp%k|_-31F!jyQKMBn+J@YRdQ zw5cR5xEEt0C>FGIfViy$QXSJhTL2p^AwI`}R)dQeXMsVxxPi73P?pN`9*b5{o)bol zkJQtdg7059X%A0V^+Yax^_Yf3*94_M`mUCb$CNoEf+QgLK zIxj!}r>vJ@5Y}e!N1PjEYduKs%YOBc*S4h<)TRmUV{UG4y#D@a?@#;32(qvwMPAG_1zncvSkZ7)`+qoUYYaZ~U9lteSMxYO5$;22i6_<`ynWks zg5`f`DG@(&RP*zXof1-N>Cx<8ZF&RDAn=j4J!yYYL=yv%HEE#=b;wT?seJP$VVx~0 ze&0Q_xjA2Wv1teGee^9>P>YM}`r6x(C~R_k=rc~fQWQYLz#viRLO;Ev{`O+(dup?K zziQJ8o8N~t4jr1V8>n`hnHAdHT(iYKL&V%;g~08g|It|4*{gPLr1@v7rJhr?iqjEj zUxVO)C-2}_(8OaVS!yGAhBY%Y6SS#sWaI_sKe+|6vVACEr&S3EaC%tcpf>3&jEj+7 z{E8AjaMZw?J_}^<&v2`4f zGk$ZDz)Iz*o|1kPo|outD+Ofy?8q&a#i`y$MEwRJS;B)(H`JwDFC=t-w}WQ%c?z|+ z=aeoKgl>g>)Ss`eYl)zU5x?4V`HKVzL4M)yh>|=sPu`Z>p0yXZ`u4LnHbr8+p8l_e zhBY`j!Yj?Ig7OyifQu7Ye~0iP=U%S!=ihhVY81qHft@RSn9cRyFJ_pRYKVlS^IE`0BVPi-(+)r#Tbn% zCmJWae+($tC;qeFM<1N%9Fc3udtB7>4lW=hZ}&}3_Iz^lYlz-kx<@){Hog4=>7TC= zQ%wJw{U{hBw&lC;c-qqwH1>-*9c-t1tUdV5%ua&R((Pfk(O0)6;xzmoMjp93n2>pdjBgC6Ym#?%PJ~mc?iu zmK_)zY$){wT0z#G#Yg?* zcd@%ws#RA?={A06nb_XAzmtpW7q0N7eJX+Hlh20DU6p_Gv|_Al*D97*UPT_@JWxWy zOMDNOaIti95^h-2cgp|V$u1s$Fz(Ux;TseTNsJ6?%l7y&6Ft6|BrQvQD}0EGoH+-c2C_p5YauS!DEU~KHw80sz#PR;?q?MNYXB|Px> ze9eBm(}4(2t1=_@`KihzGV+wCt8-0;|DLR845ns`8tvbIdt_s##t9Y;nX{a79BFE`XXe@lX;s?SyN_6_VxVWUb?jSGsr>?!3Y3KI)kp9xYU@W}?&~^nf@&>>J>Cv|L*Msr4 z?WFzvOuM+ueto_lbmT}C_G9RQR4T8$J>%#0Q%pnr+C2@;?HQY!T&(!jM~>`-zzO&7 zKEiM7b+GPcRzyT3`OMMYcss;3H^xxE4xzpG`*#8g&+x*u`DfD8r})Re3)+OdZ!C^i zQ8?iO=MFw(x!z1Fb~Jxha_8)Qe`Ha0%X?}|cuFfY)cSgyARDgVe*edfOlz(J7q0Q2 z0}d%k@%7Gx&*8B9iH!HRTe-biXs#Z;aK5}JXZz{8I#Df66&ss$vG1x#(ndbZFu9B8 zLL!-NwD`iNE|^cugdP4oucud>x}L|h&g5RF*>y5In+UQ4aR8|*AK^Ww4_=Ba`*|LbX1w5S$ zl1h;F@WRSInt_FN8-;|Vq+ev@4yf0Cfm#r|aKmuo$NJ|_A|qQj$>2Abf9AVO@)pkwfyQ`mInlY$Q?X#235%8!|5Ep=5C#kn_=HzT_WDXXfo zACYkLoSRsm28HKy?Omh{LYsesF$>#`_EF z{@SoYGwNVNc!Vm~5tC7N<9c|0p1r{Efw!-9gzfd%oL||=%pW^@Hbh|8p?mknJM(Up zP*9MpE$WCvDAlOIdkg8PqC4xil3wwky#1q>EKO+H);V!&a&qGuhL5GIwCfM(u#uSJ zE+_UJ@zu3TtC4es3_k@Gd2b~oXpH`(hnL$QbUpD6;ssaH(#mLK7!4_KWHvYP>)C(F z)ajxsa+_(8y@T{peNEqQ$Y=K0A@bQ_-EF#biwB9u-c_c+M))ClB(9y@+>_5=VYiqJ zGjE7WP!&~Gwh;AzgBr=PKWox|Bp@!dwyEjAaR;BeCFJbF3OvVoc{z5nR=8GeJA=i^ zqr_{OPd47RJJI{J*ct1i&oli@q86s(c_2<=Wo^x@bA>Jq z%>d7`ESRkgZ(UMenj9*$9qlpiKOwgzedrnU^XE z2+D9111I9=&)S1yBhgg?ghn{^@rWiQCY~Qx{5$n}YwT)1Nm!P-j+{mKKiBUT?8uy) zpX}yByhjf8rjQV+&(_&-`?h@s(dp^Fq1!`_+J3>MCu#DT0=Ro+S6A`R(igZ8L8F;` zf4%+5;$+&LMx#3wNr)pUHfMzX3V#JjkjVzA1JI8CH*ra-5I1j+$p0YCO%ben%FwLA zqjEdcf8qg@qk13o{mRRgC@3hDAX5izcJjs%{{Xtk(qXi!0}q%njA zSl$TktM$#<$f<`@KY|qkquGPwEPsYGb>-|2e%iQx22^27OAEYm7T!mXhEiHsgg<+o z)M}S-Q4ZBx;Z=X8r#pOl%i^L^ZHhdaUj6WH;hdnl|>Z zxpOCn<6VZ9BJXjHha1m0>OX}&dh1+&vsF9WFt3*Nnt*LCYA9yXL%NIhuC4so+rjYN z`b{F)_`H*stj7_VEb|7Q^z{MCLn2xy^W<9i=tA#jvmZ1*cI&ZKK4E_}RCM(-3FqVp zigf%_Ue`#UG;ZYxJ?w6IkDUakdg;Q2{F_fGkIVg4-gB;8(|trdtZ?VZt=^PFC3B%g6WyRo1--( z{F(w~4)1vV_FTlCdeat{SP8$7U0LRljs+hcRCT2p>P*iHozRLqNqzOIC_CFghcBt< zrHj=dJ>KiF`-^|i&vG7rXV?Fi#%qqgpmkTkm7=I9he7`M*J{>Lm3&)Ss@ydoCxqhOH1qw`%(b#NW;edj?Q1^u zw}Vy2X`5Qv`rTK;!l)m4H>XoYI5&-r_lO;HCX1=5q)1@e%|I;_$}Z4WMZx~`2@*p| zBhI81fl|1l`)$ewkx(xtb5kedLi{TE@dOM6sP=vxc1y3Qa;F4uuk!dB~31`f@>S zsDQjfUt&aTY#5-`&#kSIrOi41nsY{^F=x|;SZE3^9JNVaj?jCIG<2M3ga;L>*Ru+* zOgIR)#tz{#fV6~4*Jm~1N#Pd~q6Ae+j03T;+%RX&U=$r18q&=>l1GNJI>=-Qap#|# zHwAGa=`jY}7G9d_rG~`}^eE>}MQ3Mc``MvW$PQ>ZWND#&-7iO~Kw0Fh$J>IxXFuT- zFgG!=_KZCjJCu7qkMi$F5j2Q=i8Z&94rY>+)ZJ~Cb?Sl5!|mQZ$M+m!d1!C%W@Qm1 z@3~ms(2(j*F10j4j+-!0{OadlYN2-4zYir-Q6>zwzQr~4pND4tufOC)@++}1hT(k< zw~E|6BZD|Nwm}g^(>ggR=papm0Ybw_g#i0}DZ$B4zlS(R=Kgx;T1AvSIvpF$eT+;% z{rrcJY?&u7PJh0AmLq`TcawtUa@Iw?$4PE=kJ)%1Im?2;z=uK<**AW9`EpjqDQFgO zzEFj>XtH-g!Uyb0r=INJpZd@P3`Cg6FfGjj&VgUc1C+AYvaZj?*l9_LJ?x0v9e1uE>-ZxpTmCc6&0}n5p;5js55jfn`FH+2D2VYy$1GNjLoO`X03vO+0gX*Yd>C zeFh}iK3`)sD`UeR#Q*CfG0)^Uy|u#V6eWJ&`vy_DOvKC@7|=R9FLW#&PEXJF5z|*< zJ|7&cd&J3sKcdL2W|i0Urx@q$Urf;lTQ|iRBZ4N!c@&b5yUH%<0V`31{k}QP@F?zf zR0zq#Kt)Yb;IGV8)$!t?vZEv3L|~z~vXe0FgWN)P6VntJptFtd^HxjnApYAY1c7}}Zkv8jK9wU9Ty}Qfe!qor$pj-s ziPTF;d-l@2N>V3;$)k@Wl+$-mHk!@dbl@s+S4n%F)_C8F5A!vFEW_#Yrz!3cTzAHR zrVurBPmf#V5)7`8I!ZzoNH|)6%N3Qav)n&yeqwF@FI$-_jy*zX53d=rL^+}PvB`L} z@Y95YN>WmC)O&=%`1Wb*_Vo0H01_b_mr!ta%)Y!B?`((4Pf!hJ*h1+Gw{NGVy{?AN zfqPhb3})n@WLP*P0HU^kXy_h3{+zC0gZrRn5ky3!Esx;OI%C8;h-2xzK;l)EVvhw{ znD)X#;xwbgDj?`*-nHxU1jW?v$b0dxHBUYBj@!@)Y}M7-j}$#mes;Q`s-`^rW3Sh47Ba$857i3nBRNU?$3BmcD{egq3<&sG z>b`@jr{@`>yk8+VmI$Om&nBcu)orKSzd7{BcMTbsT47Vioe?o%j{8JD-}N*(^Kz{q}GLg@x@5k9c$*XkNQkIki^J zo^7qL9N*Y|81n>O<&g}1z+Ke|54rcAD{sj(@J;30S3ewMJ1XbeM^X}SpR%ClH8-o3 zbTxN(@hM7jMMa15(mQ9*xi~v}G#UB4Hq}3?{HT!%g*b7Ra$;x!=!Mhf68j~8f627s z-7j|Saw>6lOj;_k_m3K^qG8FaHr-ccCnNYz-a|E`vrJL;z0WEQhr(`bK@ts3>gKYP zs?v`F6;uNDTr=dt*AFQB@DO8{r7s@EWimpvEmKUt%Wv1kO{#RM1r2@k z6%`ePyannRv3J=$VjeliM!Th!^|Ki6h0_cs?t^`|Zy(+h< zWg2ym(SGl7fVifQI>mmN79@YHoShgH+&0Q^wO`;;1R{njY`ebm8E$=+#IB=Y+yES(;G=ak~|Z} zr86)>y+BSqbmtW=e?nXQsv%1GkfZQ5xV)ZHZf6?%LnRqX>F78&#+N+z$K*i*-$Sxx z?W^2>+SC0^vie^{2O<}|?#k$Q6MqCT61^4pO=6bZ|9jny?)@JoO^2E&Qc_YBHl$CO zx*O{1hR0acu{hX-?WW0%;hKNH+Z3GVzA(Cvx6gg8+}a%wFyEVNJ(RvdO)-ix2_g<0 zqxdJ6TFCPTp^f>KWzI;LXP|-yXbej@A|i}|4Ig6G00cZ}WgX$Xu+OyeGokEuo9^@Y zETv?W2(R6ZfdIUfAY#GES4hx(AJ4TYs{u|s0DCho$iT@&wb8`)r#r=@Sbu#ag-(w+ zWdN-aW=P~{Vy#$v-Y{I>VM<9x3W<%RO_vPf`CpBJlD#mQ)jBUe0+8y zn|HFr!!OU}07*QOyGDU(Hbmv^)fZzq=j~N%;x$MGcsO``hX|Rx2Y~?+0tGk>$A_b( zg9_zj?ZNpm@!6JtNISsFrS7 z9BoNLhaojQC|8Yw7`7+9?6NI;y#VtBYfo2~Mwjg*NhhDmdo^da?PTie#Yja>Nv3dj zcmGsN!4{~J$@T4{@nInsLWC&C-{h)ect7-UqCKKy@_BU^8Po4g}K5FrCs9@IFsT}P@ z7(2_cz@ckc0FL7W zDhH#YPN)cyd3MVUd2h;kcugxW6lBZp+}S*`BlOmEQXFq=Tzl7A(P=us>{Aqa8+*|-@#`y8#H&QGw zIk3gasSVhc-Ery(4o%|k9c%MNH0-yy8p}+MgBu$ynPxSAT-V;c)874MB(8PseqdyC zvG+0AD9bN3fB))8LdUi$+k`|K$_vqn{46v3_upDE^mX!HK+QKshxd8uoI`=UqHG@$ z+7}k8i@%=v7bm+T^2}MCJUSK_RW+lNqto z?`k+Ab<2lCZl{%}Co=Z-6uyri8XXnw6b7g!AuWAU-Cf*~82Xo^|EC3>R#X9b2}SvB zdU}ujLDlos51QVlEVRCDXe@4p91ii8#`6oHpOSgbns8i>jFHz=J!Is}$_z6gzS z2|DcM#K(n`w&BnYQkD)iew_oC!2K~3!V9?NQ6da_2~Y7hVmz zHWLL_zr$0PVi6ZbJZZQ)P!Yt&z^gz<$OD%Da6v2gOzs%Q4Ep!4UV&*Oh2;c)btYU= zxGTU(5Sj`hAt9`O)rg7+$F76uhFU7ql=tuPuXJ6!pn>H(dXyb!3Qk2*U@<0^mYrg6 z`4I&JnJ>nJ?_#9DK?tcLjxu8oDx7JKBj4`7P$JnaN5LAgE$e%${rsp7;P|?SGjF1V z1O+Lu|28^>mYX%AwjFit>W5+|=UHrC;B^jxe4trD+Zh9{O%YKmJqaNLB0Gi9!t$ z>sI_=dk!DYy1X*r5D_Bx{=MLl*vNLg#TR zNSGiTJia!_$YI?>xAnJG^4MM)1NBF_@+w6IPU9!HhKK!vLskA3yNkAb|7^|9ZZSS; z43oeCPkHH>pIS;JG}piT1)V?nNLbluPkbD&Lb42r`G^4nS{6kubExlaK-n#+_GZyX?keYb-wof)h z*Pc6f^12#jA#&yLt*HL~RW2$(&dKZZ06`9O+%xZ}no!-2LP6mFjW zD+`zI@yLhh9Ou#J;hEh|>h3OR;o)WsT@o0tdyi1+_W1EMEGqRAbZ#rNLg0r8C;+#O zMM~<0CzWAbN@4wX&x2gT%OjkcTDh3lTb}$T(RkWe_v=XJAbCpS^5l~aUuQAVmdAOac6MzLW{ua2Y%)ffK`HCo4s2)(d9XoPx5e1 zN!;EU|0V!H2)~5HM-P%)j{SC`G45+F9T_8yN<-8UH?eGRe-#x%2RaYu5~Y#rGz- zJv$eByUa$1xw~c;=Xupj`=|PmuMXDi_qxcxPId8(P3hH8il%9L{o(#(vYkL4)LdD1LW^>U-?<6G5&y|=y$LoArQxns} z404I}4Gab_ye~M;|7RR5qqt9!rsQ{bYZsPZDAZRM@972K>pHldExeXx*Qv`7=(}_Y zp~py5oO+ys_jRLmKp=z&9N-z*o|=cir4g0|Cr_YBWk3QPs)RYEtxXL#ftQz8bBU)b zPOu~hmI*N#j;46jr4p(|fIUQXSfzx-;lnDYPty_|DtPiR7zv;V65}V_xQaTr7?Ejru#*HnzLl_0+AsG-b zS3*h$KN8Rj($$#Z{gNkaVvHAd85EzBp6x%f&-kU(8c z%;Cg@|KW1h?V1IW%FV>fluz&`{0Yy z%VnbD{`14;-<#X^VV}3}|4fNia&5M&zNqIJ)yv@-e_S&%xWmzL6t&#Vc?SUkt3U@B z5csD}NHpl1ijIzwl^C~wL4neF7FLV&YftGby$)U9M$m75`gGUY)0vD4$fPb^Dinss z+xCYj0hRQ16@278614cd$dxo=TM3`ZQtkiO0_f`69hYSOBJWZDu6Vb`>ATMwPp&7a z*NX4ETLN$GSAOOLt*MuE|NSa{9&!v7XU+8C9Isx|IgL}PtE+=o$la7Ha}bKnSl{qV zGfYV}9@S1;vSR7(|1o-(ASID0m zoW8tE)<$9DNf)bu!Py>dqybc70z#J%u{Q(lV&>)!L){_*1_z;UgciFT;U<(kkEj8I z5Oigf(m$-B_#XtC1(hKVI}T|p4%E*O=%g5n zedT^IzAb#ZbN0-cW|bFBmodD3&eJ=-0&g#AxNi~a4gL(r)We=j)V3nA`V$8Y%7dZu ztlc=XJgvf_V$*9g@9ga41bwkT99Bca!*#52o%Q8@Y?1y4xHTS@Lp-SO zCJ!+MYuI6wPxug`lXQ~E`-IerIJW_$LXGcFRLx-NGR@TgGsJ_em)+dlhPouCS-;VH z$>8PfjgDDTfUT&ZbsBB^<~H)=!n%lOtAuNFTcHL&V5nG-+vRXXieA zxZ^8kZj_BuvT;ttiuc`jlgLfOFh+l!YRvZ~M_*{A8L?Tj^!RHfCGpOuV{1ru* zQ3mJG_A}YCeeBAuTNHKCMu{Bd?q+6ZxDN+V{0yL~eeo< z2+B-#s-IX|o)KK;kx^=2?XT?jnc>Hc*7xTR@yg@t#GIP^<_$j-tR#d+0grkTMAB_b zBo|{3?#;N?pL3tmiJJZ~w`R(zQ!-P1z6#!}<#)RBZ&$Qe-=`&mM6AqbUHPul?R~+O z1_nc4&uNlBH&yV zlrgGf{XdFmfqNh^kWiG>zm|!n$siv27Xu1EKk&IOgXL2sBD&B4KuRLxJ}Zd#dsF@- z(|;rmpIC76w>;DTcDsW_04Ej#Vr52C!uL_T47RyZ=A0}l>elG+{z^-8J!xe?C3m(q zT!D}f-EtYJ2CY!+8vb^GrvI+VGq$|5ShGwaV+3RmANnA|2Yab_4Z-Dt(nL0qIsE7% zyE!?!=1R47q?GfZ*WE>8`U0kmT+p1ZvbS&Ee1^RpmBa7l z^Xn@73?BGw)vg=DF6kiZBKE^1WQwsi2dN?)%cRE zyM`xD(Xa-;=u9b>5S)F$r5@LRpeh(9&v&`4BJ+q?w1x)I@UUtR({agDe ztoqx4DYBK)^(x|pP+YmbKG$StZ?6o^3y6Qj756zz@mTc~lP-1StZK>G`Bn|R)$&_* zgYldezMr#hah3IoAY zP%-k*VZB#XQ!{~NX1<2~;HY<;qDV!K_{R`5j3=o_uHI*f<;F^KAR_mb!%VMh5=R~|NSw`- z@N4=hkpO|kuzVu8rgC-f1yPrO)!RE?m|j`bJMqUKogXr_`>8Bu3i$E^rF$JDfhoUdLt2v|h#! zKtz?qh$7oxxz=0?o6x0~*tT589H8BNPIUKw13`wG+$lMripT^Zc9sq;F9rL%U2Z!> zzDHYodl&ZG@FCWQjc$2#&i3L z4kWJoPV*!?gt`=tHOXw!`2TdXgsz{~)@+tw4aq zgx5NVZL$@V1WEAz#=DKe>L@1DEsxL`EpvUMel4}TmG=#(pKm)vAS4g?pqb>M_zY8#z8RnuN1dU*~ZC&EtI0PU}tB^OJ*1(r?%ie zb@=VdddGND{Hg$iAxe5p8cVjhe`;vrTi5~CXpYInr^!S=j|B3p)$S>XJwZ3^w-ey3x z{0kMOvhwuijQTsTO<7i|moJAxi=_JJZcTFsl2=vpjW=>t_2w)4>&Gd)HZ@a0&sK8C zZWs%(D$)`*WW>r~)w=I_RwT!dR870qP$8J2wo&c2*YO8bbiU5oO!U-N@4_Ra)f+%> zDFQdLu(dT>D->kAU~>KUR+ek52^z9p8zoe1zbh-f-@|`aoAlT|moTZQcP;ON4@h!e zIP#`c(x~22Ec44sPveoiJl&0`XxH7fD82a6)-uv=6j5l&?%;m>1J9A5^ubzYTBS43lzt!2 zx*6fDdZ{<>nHvf-&!>+Jkti#xj)@4f_?6iUZ0u~hbw!-=P3cQ4CNm`csVb&Mx z8?G-Z<5+p8XaU?2Zn(!y=Qa4M%Q(-I8PM)cUcST++>cnLqoUY=yLYQjmP({wdwpNy z44r(l;pLK#dGAX~yV=+;k(8K3?)$|#K%Mo%E~udiv=>`wFSqW zUs&i8Be!=k31hLxg?%=Gd&7CXNZJFa^2M)cZ0A?6iFR7N3UD~cs?aW>ogpPYo&?c{ z@Ut0%MLn2ZZcWsZmG}1Y;*I(8Ldx>v?Y4c8QIz9;f*47^&?!ar{t5|ULC5kSZ={5d z>5|2XB&YS{N!XZCRz-aGI^A){Bi{B78}`gAmROK?+=*~ zJC}5HR2lB92u0k9UGSsl(s(^Sd5&VX-0#WfZ`Z$j=jBGNs(H&>E4m+IZZX{&2%+WI zLj3gb4K3zfr%pFB3yiX|s}DuwH^#lL4aK<`cT6b;Jx7X)if5i5dcA!X&;m_ybuXTZl}zt8YwzPpd-K!&C%_O@!@PlPgcj1$el)HiBTfmlZy7)#Mft_i zK#hiiOz_^la$F4Ccd(SB(k}6GR=K0g$2; zc08*7uRoj_+#Wx^GdM__k>SneaKG~4XtdF&?a{nNWj(ggFS*g|VMTS3x7ONHWBh4O zpLRNzlCpET*x|Kzcp5vv8Pub;&&1^9I4KMd&vO?Q?O@)V=F9m#+%R7(eS2qP76h!; z15;YGbHO`K-I(kr?Jie(hUPh!I|`I1Z`??UJ#%(%c~ZQR53l^`iO3kushk5pev<;i z5MmTP#dm+_`Qq2%EY1JDowWG$KobWA2P1PR(zD5cZ-3~I6RDS4D_s~bOdPul?*?{! z;8k~t<)FIyb$i{&tGgA(N*6BdKm`~;z@`bxE@nWI5ojUrKs(;;+lfd7CZ^=bI#r}( zAkCE=4+mIEDAqAVCn9wf9G@CiKm022!rQ&QH@?-GOAZZ*F0@qmh48z3oSxL|;F_Ku zl^V|CfOcbgdRhr@7b+PjP??ANmedi}iB1AcI1CdALPUvz+NB;(M*M$&Av^-H#UTI& zmGQknT`~Ecs{nr{3{MB8|3n=WN!^y|y0|>k2qPC4Rnubr zpzVPmgNQp3f{16oBTjtW|MBx^l81Buh8hnkLH4(KV4$(!!P&{M!tCv zgzEc7;mjkXq!6Ill=Zfyme)n9Cc9E0h<7$ADf5UNCm_UpkA;0MQ$1k>27~n5rj7WgRo^uH1Nzu^?bU&+UZYy{cqo(%G_@(D906f?f?AQhAhY^Y6hjA z+Mtl8G=1g4=aqkdee$al+%gvuQf-Q3Jb-W?y$g}Lv!07iXOtRho%GLq!k2`n5vCjD z;G)&50>p>i-|s?CqMw@FOEU9xPSO5l)i5)j;j0~Vhmj{fqEfj(-@e)Qxp(0ka-eo_`pzvD*7PLTRi`sSQF2k5Z|i)g0HgaHdpSBd69npcikQ0WdHJP3&1 zq$B&*ycU)JA+ajTU9GKkcLk5d1pO*L&Obl#Pjs~2_{gLF*P6HPyw4EfZ!h;HJ55Tu z(@9e!Ub?5OY^m0qA+WZ))Z5Qz(@)Rg5a%ws+y3rzqGo*jcfYy+6no+LZ=!Ci>&KJ3 ze0%pg#XVPu{nO(|eya?%i*`4&QWVY2k9u3Z2%(+qDGAjvy7PPe_(x~U)-`@dN80db zFTU&RX~#>C3#**AifuDVquZMtej>z&Ihp5w?>ZTPaMWPrd#_0YYJ|AgsqTltq0)lqfdHT2v-{EB zj+}2oLj^js8gMQV+kYxjm=Ep~OcKVK`jG#_a~u#Hd}_z8Ujjj@Padw;@TOfTG7>Ib zfBd8PVC5ywAMK%`q4o%tgO{efrG>e*h+j;w3bQkz5+|aWf>qg2XZ+}q`nhuqgdG~Y z6v0G3dlnC^w4H+k8TzH*4F?fGg}4?dU*@VW&f#TKei5e?T7D_${ri1{@U*9=R7H)C zWbBeZRg0Uhhiw4oPP)$RA(x3RWl>FtbD z9z}(6#@}}D>sX=3ExJ~4qn;S+ zA|uHmwZzijKi8yaYkh3)|Iu_E&{+2U|F&iCopF;DQVQ97Bs(IqclOB2-XpWf-lPz+ zH)W(m5werAvsc3Zd%f@bKj%H~d7g86o`?IsuHWzb{miz3PaHR1*F7638p;y?%<8ur zUQrnu`tl7f4!Pmhy4qZ2krMfbvP$)>&QpQp;gp14m(DAg>p+AX_?$~nbFO2&&wbAV zaI>c$nPWU0+Q6H@q!7s*U_!|(i4N7&O^qJ69cBl`5jd9Z932&$ocICn%OdD9X>u+2 zz>1nrl@}xL82>P8q)_HcmPidXFy586r!_A8hZMCiuOFH`kqRs7ITGP70-*;x- z;>8D?no-eTvZj7M-aplz^$dgzo}Z=9@lEuo&quz5q`npE^YuxxJz4C%huS|oQvDIQ zqSYun3}O`pTwIIQp!2X(E=`N2V%5zp@9*Ec8l0#&?ALo|XtcFGJB6-eBrwTFMBr38 zJhD9G%9ANz{QC9dM?w(HR&!r1sxfom-7yaQckBkYPTR%#DTNcr6FXW*v>3u#AAfnl zBp8gDMaiWjZBQ4DsV*$MzX2`o|Bl(WkLGjyXX3t$$k3x+y&8+u*1p-$c^q0bJezYv z?)OlUF9&M*wC30_sXRnhRU~l(E!bS*9G&NeDGc1vNF~ zl)bM!|NHjx6cgCNUoBQ5Au{kzki$L$3q4%QB0Sc9U?=$!X0J(5=Nb0*uOA|wdKXFT z&rWz=4t{O8T49KVu)1Y{x@TDc&3Xa`8)$Hv(kzJkt7 z}%8?J}4ydncVFLS}*!$t3R!)J321p zKK6g%kV5FZfW03n8c0k`v+bHnPNuu-C z*Ve$SH}A%JFhIULrmnK`m-Xx~`S(A6G|pRxe{X^q>PNb1psb}OJ6H<@;XXxmK|BYt zK>+j@+-=tN=~Klma|jlQJ>78Bp$Iyp=h3qr#{Ib&k0CKHY86tfS%|n@D}}BQI#B^{2aic55rv z-ZJ~xJc|unIcier>FGsqd%WW1RcM0LgiVP4V`~MCs!m*_k6~-K-Kgc8#k<$ zg@G|ffmtxP!V>z+nGIVTPGZ)-W0^<371+AMArIIlz#2+?PY`ToJZpotK(7A zuzA2h2fd2nwYBbBJd?cv7Tad%Yj^HMx2qK;YjH!7Esr3~H@D5KeyvBhvyPWe~6z)ZB}ACB%pM zL2KF+8(YZ0Jtrr$ou9lfA7T`NP+6p3*{YG9iU5{UsHFMUievQrIgg5n2Pb(*nTGa) zhI|-R;^1KMT?zj*{B_7Mkt!}#QqYq@8FD$!-bs_ZdcT46L2+?Xi{Bs>x&}Cl(7WnS z2hM2~0J6U~#p}{43*s)|^{bzp>>j#kWS|Y%bQKj_`W>goc|S%%0su6^H33x!B;@FR z5R4*V{q!`>R_EsM4+hC_kG)03Lp2UFeHw|QE#=T6c5BW$B8BMX#Rx*4Cc=^7VJUVw zZ9QtDprD!8<=xRB!W|;e5`J$QM1Ff_SN!Lm>g+5gII5AZEqD%~21pQk43M4VHYI1U zknfEOQWoa`$&e5$Bj|wJm)x3CjD5($vheZRb&>1jJa884XxVWV1pOn&#KqG4^^4-0 z089blPA1GtMt=3);r>V5duzke<(lbfDFlZ*mbD;KDh&3?LivN=#M9H0l_I9)NiIAo zI8e9bXU|jbMCufd=tymCqoB3;1O7^b*^R9JuZz9=0aKGndQlnlIAFad;9wDz(Z6Q< zS!+SgH1CG=W5QOW@aobr~BM5uE1)mveO{ZS5;Nqb=$4bJ27aPg#W9Wnt$HRA8eSV z0dqnGeISSe;uu3yQxkqgR&epa4LwUS08dw1WPTp;(pwUkh+tLM6CH9v>gwP>f# z)vfQaQl;F0jGl5W3r2XRyP%K9F$E6(~;Myk8(-1$Y7Pun7K zjdP`01Z-@qt_YfAe&?yvbB_&}@^F871}fv<9Q?$(R8+x{xcJS+f{N(B=VN2h+vjVq ze_O(XOdMGw~p^bN;PkL)i)ArZlDJ}c0;(M0XuiGLGX z#K@=7o`0jKi?Zh1WWK_qmatahc?ESBIE`Lv9>kdz=hIfy&Q%X4(#9|U<-+&L^)zCNB0+G@n1`T8f^9!)+w zXbDM4@y6^Fc-{h{z>gMmwt!)Mn}|hY%Vk>WC=?4X^N3#TS>U0ZtTmil_}HPjn^q14 z0H+VVcFOA|Cdwr2VU{G|;F3Stw}0Y!$X6vQRtQ2MWgb;U2_$01*YhO_0S5`iS#oH286v$u-8d5Qib~yCOLGt^b;&?|QpR|tS zK32gbnwRO8kNLJR1WwxSz}WF)7Jz_-Vj?5aK@Ww#{L9O zP7bDOYIn@@gvz`%ZV07f;x5YFcVeT^u6c8I8dL2M215d8iVFCJ48TZ+fAqG~_7gV4~NfE0q4p$Kq z7oRFE41G4Tx12hdG|W{S)r&4{E(rN|Kar)Z!%!a=$dF`Lpx;=RAp;!mLi(a0I3b<3 zB=edBy>mJWqbG&-h zuM#e)W!Sy8omX`r8L#}Qj&4jbJhm$B@1j1m{20~z@Y}kdWKGlm=&h9&~!V%MS| zFi+0D8$MmEIwt(kXG0k>i;CZnE+5U8g{FX(JLp)@;p=F@;jeVF1}CF}q`&6YR{~h3 z8^gYgpvZ$;VkirC4<;1W_>GhTyeD~8)ms7r-(4v){h~XwayasM=ZU_wkY5h>_ zsFc8T$>0C<_xbnBhZ_aL35jLbMQw-D_^}rBsjnK$0hH>0GqT(994&3fLx+VixBMsL8B4S z@&sTJ(&GqwEC7jg^z`PCG}E59dyxW+*i)E}WdLUdjds9n*`6GHAV_xrsL>~j8@xO` zkjwUe@^ePUELx4{LFLEi{yMpv)5<}e(F_4gDi6ARd=EZ1A5cIbehfLg5>y8^k2=B6 zhv*&TAomMy&Sy`)oQQS(7?B&9NDu6|Lq(G^xZn5G`CIWDOi+?T7~p$Iq5kHdLDk#) zERBhIPTh zE9ny)KOdw#{yB%P)rs-Dd{dK_-`~6-if;d(xIA^lMA0`NKjw5lUC~DC?(M~x8F%JZ z={fR1<6v=u)eY6l^embjIiZ+C-HTg=rIAxh?;ri~?s`QV6N9j@C-eLh z`FU9@j`D}J*CM;-n2F~DqQ16Cyi`<>aT;MoN76&M=+f_$2xU9&u4Va!UlDY0%a_0E z(Kn=LZ!#7P{6}uk$?O|&8tT147q5V>9?oWa{WJ`(d_G#?rU+DsJSH|4I0@aF*9c@f&7CgFK}p`55= zRwiWJahEs1#f5;($CsR3fDKXmX=)CWY%+j6q~~3aS-l00gHoc>?xzeSDh1F+7%?x5 z?>vBiABd4a6eAD93Ygg7CIi?J#Cw!tb1}nQID1p|W8)_$vox;ZS}NTG7pKx|?-m(I zheIG}7yx6WLk(VFcsCG0FtH#0_YTy=1y@wJSGPJb3=Ox-G$ORP!=VlbB8&zcddC|^ zXPFfgST~kb4Z!M3NsZGC{v@}_PU(6)8IRRiYIWXi#F>DEi2x`v>IVHV+D1lkJi4V4 z_r+EIL-9EMkK$pBOOV)RU}Qwpk`MxcOqN4Ko6V!urne9`W^gbH#I(PMI8Qhf0O1G8 zEA%2@0Z$_bTO%kEkoaQYWlOzE{ho|&pB>eSK8=5JZYdFPCvJ|0Fir#mu$iWy3n{6y z{ZWlZ@~f|)g8e!qR=|I!qh?%CoeV#kd$vCAYmccg2@7Y>I`OXK#h=zKLHn;9kkw!8 zP0B|`_NCK-x}?6-ZbzB}$Z~BTz8_ z&sZp+mPTvloftvn)&qQc(<|nE?oHKNj}#Ofy#U}s zruBQ!YV80;_E`T8h(Ga3Nc!L#6hFF6bB(38R;7}kEGfl%Nu{M~(PFph?C&FVPPm*y zQM*6SW_v+MG`FVa8dgckl4AA?m5cR>#B-CDXH&o74S$G%rcPwO(xWYBz51~StQi=P zCkh$S4;OtQvHLY-arVG}ro3yd)_TlDvitefF=Y$OnB!~QE1si+F_b$uB`^046O^ek zID%#F8iMKrfcs3^2USunxIbHsG3fC-|Jg@HoIFww0oqVa>0V1;U#shMBOCK9NDvaz zTClMkb?4#3?WLvaC&SEkSGmb<0}p20rt*HHH;yb;p~-UrWehe}k@G#4c!pa9octAO zqV@Gn^`1O;8(g9)+a+gREG@XXb?z&lb$yHrMO$0n3@RzX5VA=UYmCs5=HkKwKk)J2 z^*7>ezafk!ChZF34q(a%y19@8*h<3rtjfnWUahsEg228Jq~mu2sh1M!j{u z{5{Ak49K@^ac>gnOImL`F4Mx#mQoKXuyvS%ISaNLvoD2;vw=$9pu0Ujm@oyCat-`) z<7a>Sh%+01E^;&4^$}&3`Nf(B7RZdPj#6bCwKXZrzL387M~U=`fp!Rp$p1W4-@X;V zw5_-|%v~tFb~13! zfd?HP6l_R61eqyFTBAUqfY70@n&_C%&#Pk+@$Rb;DoUSW?|~Ln%1nM2{ay#!i*3Aj`X0xh7%3oEhBuM zPJS<*q$2z*4A`YTS6sxweOm)61_=L^0T~mR7U33GgrCkwVs2eZ@{u(=g{n82i` z*D<**s-?|-^>zBA08sBAB#J}_+r0h0>3H7{2W}!QY8oAaW`m3=-6t24$(FR&8qR~{ zFw1S;^`Nk@0FVd#n;qQU;Gjnq0xhjBP;+zC_S1nh9;pR|;~da3;}*|Lpxa$fY5Tq7 z1Ah+qKw0PtZp*b6Ksrw#ihQ$uG2mzP^G|EUaqpGZHl3P)ApQ>j-)6prpF5PYKlpy&F^C zWhG(Z2jJl$?RUzfn6&bBiyq~QPdLFj;#ono{?2(4-~V-TX=Vn|zMkpb94RC9l@J%B z_`dR6>5l1@68(_4i3kYif*ldc>tx~POywY=dXbrlzJ5LVobFa^$9ithbQWeV{8)jL zut_9)^#Y_;a5X9v&aGHk_5rbUgh5WkC;TG&=vuVf;)YtCfCnGo}{*d@t`e5sA1sLproP z+&Ilp9|U_NxQM^mCwBs|_v3vGCE^&td{Ux1I}TT2-i&L2L$mih?@Zb$BZ;O-Gb6j21Y zkVn@-em5{~g5a*uKSUyE0A_*n@;<1cBcTcdU+s>dfC%kd=?kVi4h{f%!zLOAj0#X6 zZU<|6u&1I}=a0aEE|_umMMj4C?$QUy`^92l(2{aPf6bLr^pnRr_TG{^+qVzy?a5)2 zhoQv>Dimc+OgdH#P*8_V0@oDJ2_HaE|1^JW+R7l@>xC+Eg7@~~0NM&0w+jwNDQd*>TF(RlF|p2QyM1`yoXOjyG*+ngPTJVMaja2rLr9v1I4uxIxg6$S7V5|9E9lo_y3-x#N%5{4az= znRYX&Y5n}epbiuV`i~Gz)z4P7fImFXo_{c{&kt@3l9yMto}`RtnK###<$FjFPak%C zMQxi^kPKE9_`SfPgaiqILlbsD{~0_(KAM@?Sp@1Se$eLj6U2Dg`LAD3D-;_;Eg8&5 za9xMPhYNdD0W4PVZs~S(Y=bA-Sx>L}bdivE zG$GLc&X~)={ysGNvQ<>!?q#_Qd~7Zg^@t3-L02q+r)8Vzn9045TiuR$jfd|01zad@v5c>le*J?)~!coV->BRhC>ypn3fH*NJT)JH(c zVOZlM+P`#+?}P-&np{ILFIo0!nQLD+d|j&Ka4;XlH63RDj{B*+OWYKL?zyy$o-uh?3u@yd5e zZ1S#9REU(3LC2j(YohM``~8u`j00Pe2jaL z>SejTHRZcs?ry-DBCI5IA;3#IGd}zP3tT zwkXg5Lcs~5#YNOSs~1n7K7AqXEr7({E-aWKX-h~i<CGzSe3YR2&JV$(l;RbdXD)@uK&q77+Mb|C?o^BvckX!?B=)oVowaEZ3 zOs8aoM+H3uV=;Cevf}E8z5AhJj9T%6sHOVy$sv&cu});+WY3|HCKI4);FOqb_ZI<4 z@xRC9UkGVNLT^i6HmD8%r`)<5sjiamd9ut#YC;aXJYrse4H(jC5Xc(fdr(@yE6>Tv z3CGMM^aT7E7CyyDx>F=;Vx39Cm$4(eBk^Os~+-5lUDdf1qPu12& z`el?o&%(*6Rwe149+W+l^bKcC{Og=8;1I0_c=A`C>*~Xh z{7Ub2we2u7OhpJa1T| z_8u^=uIujH5zdMh3=X9i7QT5+N;hSAacBF~rIQVmLbcV=v4!Yh|HGtOuYW!cKS`y4 z7sj!VS{+ShpvK`${hnY9sV2FCcp%M!j)ayo;8At)db~*D!;i#KtCt;K?Yb&bVftMtA0i z)Kw3Z19V%V1MXL1a%zOP*IbW>7ZN}eIIqR8T!(5~@OS*DQ64gn5?jP@io~V@hnWdb z@ZI3K8rj)nXyz^UiOjPaKfDZ256pV-0KrTLtz|B?N$@BluuVWHTBnrH#WJjiDAo;-VA31Y0Px%F+cj_y%jXk=KtkHb&Z6$Av z*)Eo13D&Tjsu0!@B=ip-%z^#X3~ms(_rgG0fs%nx6JRWWXN;<-aP&CkGg8W348!yG z;lsm=N_gw0fEH_X>2x}uYi|#MU$es%LkUt1Fp-jJP>I4<&I(0GFn@xF9k{i?tG^oH ztz+xG!2I9)H(m%r2WSU-4`PDT7EMJo?CXV)NANCUrV|6&u~q4B042^O=82C~QN+c4 z%-Z7N!wr*Nojp9Ps|F(T=5_)ZquNsUa$e_@#|E1*q~qDx;DRdYe|?KU!o$i9cb9rc zH2k&C1thpLXdZAzQ$H>#QMh{v+lqas5S(O~2gD|<`g(fZqoaGj0#K={*qY7)$J2%6=d;53X!b3x*wq^YZpJ6)C(FSq*d{idk57+T&40*= z8W_rUwlTf)-r}U@50f3|9Ud_0>k1Kko{D9=`CtqN_kow(;j=9f-d>(lC93eq6alIN z!1c{C=>P(FEwSH4vDa6VxkKh>ovAeXDKt^u=;;m_cpG?@DOoK3)+s5OO)hSjt7qy% z%)kn>jnPeE;YAn)20nj=MLi&W5VGHgkzCOu>Vx61sRx61clOwCI2<{njp>Qdd8w%% zG=2KwC*1vj$3Vncu(6;-#l?R@00e@ch}DZzKwD{OTi@l&F+_pPf^=4zg_Y_@uV3-* zmXngY=ufAmVVamE5fg>4Cb6wFnq!f-RaIGCF*lPj`Cw63r|TOzIcWe%nP#w^r${!6 zijFY-1MF)5V(ltAJe?oQ%39mbCh`;$qm%$!aCk8EQ!@Kxb`EiAE;CNm`-MIGIn}%2 zpN{4&S5Nlr_IE;NQn{9h1DEj28-|9!rRaBsYjn9mQq#x?eGgphXQa{#@vY+b`1r5* z36Rs4hLv%B_o#21-#ejVdeD*GHrMKqS7TYQKkZ^r?ZN_qIY^>1JRuMz2J#2+pd!7= zFtFfXx`f;rplrPM3YH0BtDf18*Dj<|3EdI2weTumwkigmkY-%O_3OGeX#5@5VCAH1`;F&GU%ebHtgWh5xr>|MzYibi ztA7*&w;gBwd<5Y`Q{B5n$<Z3KMl5X59u zQqf6s^CsDk4)1G2?Xj_AWv^bBzhIMzorjKhYv?Emd3rw{u6+Hu?@&ah5D*{n8t7(^WfBm662h55v^HQ-D)i)(ADWztCrL^10#9(D93xuFm!c*NSJwB~ z6{dj5Wv)CeeHnQyU&7&x(I@fOIfD=eyVSnb$@RRhQ#!eLy0P(m25x&Y zCb7D++t=y3vTxhjIfgIHN%}-a%GsR#6}ZL@^*=X2@;~v0cv=H@m7zcNG`gVrrrg#&U1{Gs(46SAt2wiP(9)TiSJ_n)5~ zbuNHX)N_b|duch*hJY| z|DRi{lm36S<|ELb5W%em0Hl0D)}k2P)p7;Zdp!aa3s41v1mA$M{7SK}5=@qT@t{W_0V!VVS;Cws9euK#wtUz>c+!;^_sCP$#0zuq7mkJTwp& zGi%&>o%~Ep+|_6*o!0YhEV9e9#$B%okv$h&Ik43k)L1AsuIa%i4m&?YT&;h@z9oj4 zs65X9?c2@6_w%~$H%bOvrpMbVTgAz%*x0NXcL*w*K>3lBk)et+@SqFyQ*(23FRQAY zO$TamV1ISfRgCz2rdWIH&)k*XYgy_)H{V~{eRy9hA2kKA#Ri=O-M4fBbIxYt9p zkW3Nyu94&`_-Vk}*bAtCCP@yYGQoFg0g{8t^LhTk!OTr-)UF>4L8{=)H&w!=I(cFM zmW+&M4<1pkO@5r;@XbU@&#+C zUb<;%Sx)zRrg`Y-Kp0Ljm^Wnp)>y8%JW`7w!N?p9{CjD#nNl?jk9~1T6{N)wlZat$ zZH@GRYjFdHZ>`HF5AfX!(#r(Xj3O;03n32K07D3q_nqnL2y*aOszuxi>$cOu5fK(f z%9kLO4sv8=U0nr{Xlxj{!o%U+AIhr!x61W0@RZ-@&ma7u4m8 zfkb0tW`Ai-SvMDCUp&sAbh!k8gyZ*G9H3#qos1lM5JZ@TxvOsW_JfPqRka(KEfw*h z(#ylT)&3u82oi9x>uOa8p=3jaBNV1hI65-V^Kx>CAt!jYq2mH3#R#ektp9NsMsXm= zL3%R*N>-PO=ZBfv?e`~oiGaUUuxx?41_C7_e+ZS_v4xA>e%Jk;j*c9tDnU5{tOqev z6C${TP;SW?WL^sMFO+KJOgSgBFf%8Bs>cj`xRql%7mq=p%m$ukz+kaZ&}1Ua<2=Vp z$B1=s@XV&w?-u{P2szeU^_JHL8u5WfP32UV10_6s{8>*Z=KZ2+ON<(l6bIkdS;g#p zQML-$uGl)n1&SBq6+mJ>GC7G4xfEce0EQWAuMj&M#5zMe2t~;fQG0!=+oFVgXWZI2No8cf{Q)P*NqW!Y>)#84zreXzU1fu6=`XPs6-ZBw^u*= zRaGTCxyjo+ev{GP_J6$B!T&579s^`0fK5ygn*Z*UZLuM;UrS4@tWeDDL}tbP-$R1s zuh}VvW|#(14|GI$Uf-8r-nC}Ekur7niK)-O7nt`a-e9F<RmU4bVR_c)xd6Zda#ZM*%$l!o}#hOlP?Fek(vDl(jjmMCwDsjbydQK z!OYA+O3#<%w!X7}c6`zO6Ww85UrVa3-kM+c77#c-?t0QsVyCCSxWD^r(q|ES5TpR< zfFyoA++3k#CNXZoj_8qtPyDWqR=y?ARkhMK+Z!JU%5mThCx7=-HsBp@#S7^?m3dG+ zB=k*ZIo{jYw7*MBn_Afy#iEmcl@&GFLVf?)GePGbY|mHkXb4uDLP8$qnm}Se3NLT| z{;%{Gi;Hr3r%=!3!U&P3*%kUyr$pMBnJ@qT5r=Fa*`GU>5F~5<<3|%Y6*knjBLVC% z;u$nJ8jdot=dOd&6y)5oK9XR_A52+n&FU%ug9SL9#-Gw-J=c59`nu$b+i!W87yso_ ze}-6FZWury$N=6g{0^4rDMd}kt1Hyx7Wp8t7E+oK!(5B`gLBB9l9 zZH9UvGzSsj0Ktb1T5xsJ3mCECLPRz&cv4`Utqzd-pxq zj|(7F3eH>rmKH$dj?cw26R)Ip#=i5bRJ3rWDkPY zzj+{t_S-gTaHNMn2=84qERPn0&v;yxu^K}$lhJ5$UmK}_JLjpE{W@!v4Za3qwN z$Z79Xvc7z1Yz(V&{_q9$k9=E?Y4KIVu_2|^Kxp?k%<>oit zo!#9Y2K@ODlPwBg(Fw{99!OS3gdgjbTNf`zp7vSP% z-)pVg{SqkTl_FJ27cJ1GR@PZD$*tb1iVZ&3OVkpXzIXq*0VY%)jT|u?nm9!clK@FA zEg7Cqx}`}i+rQO!`ww=})^pM1R&T(C!c)<^(no0s#ylXRU=RtAS}%&kMF)KQ2H6B% z4;qNxm8w5d_lZkR3Qh^bOU}$o1Z9F?V`YxI>ZNjSf4NXDPE0%!vJZAyLnlRDcQzPK4t6#6w?m{D@+X>|1e|G*0~Wxg~Fkicp+kvLPUOLm%}L zd`pL#DEw-J3X&~bi)*F@T9XH|yL$!NCJB^f8s>*H%`gkDepkhhc(w*lCC*^r-#0Gq9Ptww*9o_=52!-JQk#b2b|#ev{53ky=u<8d`<*FCed)&3)- zWnrLZl;iWS2kdej8pT28fFk8aG?mBEg+8)JYkrDN~N!Q(t zq`M#)Ip#@Gux$brgmj2Meyrr~e&Zgn;nHh0maP)QK!6I;6WIao-j~KtMfaR643{_* zEE@nUGWbeJoUO2PQ_)~zVocW8SJ%HS^2J6KHPN9YuMI=QFT9nao-1Sk49%JF{Nt1X z*+vuz+unlgGprFUeNMUKvb=%Nk~lLX2wwpafOw$C7&n14LBvCU->q4-1G3NA_9Q9T zc;0kmAc=JpX@H0YNEt-`znG84<$TQmQ3e$f3epjM%9Cb+9Sig}3ZRn*&IDXw(J(h7 z819E%3&8yV>jB^&1h=_=B z#}j&w-=Ab5I}T_JL_r6Mm(SAEvGS<^4OH3oXwtLE2f%5&g)6atB5(_&{ zvVPY{PPS^@>t|WQkhax$J8x^W?NgkYCxmxYS-CUvou0X>YG})&S%HRGTnSrAbNjRS zJ_YT>*a#{%HkxXK)%qL?Z{axe5nzN24=mT_8Ro4cxhDT~f}iTyDmZOZX!fvy-p>w_ z`>XPMOEb+~IpXRjZPy546o5nG&&?OFfDYPc8lgdweqm3D{rWY3`($|`?fDOoaVUH` z#QycmD(3Bz+p`dXTIm0&C*o$5gTx@Ni52W*qDmwj#kT> z0)Jpi`5evKWbptbE0q&?u^~k8i6G+Uc{jC6Hh?uKho$@X8C7U?Wpe+FS@AnB=V03OTZY_4D>A^L0RE)=KZnfeSOZ~hJo{f zNJ5NY8#M?coSK-H?tSj?^~oBfDSdOgac6&3H%5pE zB8hpD(z0jxF)ATw;ISf3lZcC4_l$Aj&qnOlYO=|8#tpFh%om~^`ZI)9zhMF>d3^jc z5d#HN9c&ihMS2euW;OVNn1h@(L5dHCw4gAs9Do>g1nS-g<`Tep4U)J<^}BW(3JO}N zux?iBy?FX1@;O{!5pyP(N5(m?=6$+L5bXJ+XH2ufvEX)Db<)(^RL5uA+pYlfHU2dP zqXs~w#l3hX2t#S8Vk?a(3@Y)$x`QDA62#QVhRd871$tYU@#?R>9M^eD#==6XtgH+# zBcQ?yAW3oc@CXBq1j-B~NWk_vHja3Ddn?0agsAv1uy7GAHWuy7|HH=~fUD6Hagya14A)d_deIw$3nEuGhFPEPy?k%NSrzy4ZS6jPOwv9{Cz{* zXOrPODF+u86Uhk&v$TfQ!b|O?WHCp&5(Pr+I>_sbo|_mAyKBPCpmry}vLgPAg ztTd$nkMk!wPw5%u>w|*Egm22wQR9?`U<7bk_O(45h25eT*mlI94yZG1Cte$>*C@z; z=o_j1^x3syD7rY&T*lK>V|THjqxVN_EfU=V8`MKjq^%A~01=y3|V(>4fp#_gEoa_K@BAy1r$_PACJCeO4 zt{Y`Sa-7n6PoB08=DK+ncQMB)dMvB$JJU`td*Xsu1G0>|-@PlEZSMq29b9e48_Rj! z-2A;~%88k=&s4K7dmanoNagWlVI&ncv}9tk`5%&9N>Bb$w4MTF46u_3VFjU-DAv|w zPQeU?Lo5Y>MhTYSzmF~1$>$qgu=3-HJKuC7`M^YT0qK8aQ8OJieXw=HoaD@`>gCdxG5I`zABlKZxM*hbAu=MDEm4jhIS zP2aHe1rg+HgL@|_y*izCHb_!(^>4>XX-3`Cgi@4>4d>FuscE!rIcSW4PdIv+b3H)J z+Wk|m`ttN8I@{sJcc5NswWn-(mD~Nx9Xc4N`8>fDc%x?NSIow;`v;gthgrs<)I@R@@$C?3gVLX=A(H-TO>*v=hbXEg~>w zBIpxXnv~+{FhDa04op>M?B@tZd`$a4gUkhQbetcZmpKUWrW^Mi87#u;&VE2BOkeMvI#x9&i<=)cbN#gEK;cw7E1zu3AC+ft> zH~9%OZ{OB7e|fF*i9L&pg+=If%f1CLbU;0=PC9c9|8?8XOzZyqUA}+@Qdvn3ypZVdrA1f91NW z^sB$ePcXpU(vC}nD%DhuO{M${Z8%t1VdG1C*|&>7AME&^r<&Fjda)@}Q`hoA@F6~_ zOG%dzB%mUBM~sYd0C`$M_7z1?Jd7|vpSnRP7xU(Q5M>10-tmG7E}jf;PD~z@?08tX zBNAV}wQav6-CrYtmB{GPqtu+xa0H-$z*?kU0LtSlrZ;ggWz*LbA%YV^UVi=_%G#7D zBqkyN@oTr1MEBIzZ%VeD)iD2z^Xo7tGAIh8&CL}Yf_5(r^~;)ZOyAJZsTh2| z-vwi6F-kLg2LxzuY>{4sV^^GP%eMrTzZ?l%{`^H!oulwB*zclmI{(~xou3~pWuarT zt5hlj!GvA+O}*NP^GM@a5+}Dh%b=MuyKfXHBOe-e@4#Qkq{3M{t@ASi}8 zA8^z!Zk<+w(R8@n!3)dE9RE_exWQornD;|kjKG zGLLVPj*EJ6NyBHlwV0y}Mx5iI5)4nu}sfXskTy8|rw4_Cj7cRyVQ!05AW z_^5!i>!o%Pq6jhtk^&YWglns{{wUV;&D7q?`a=NGNMdprp8tm9yo+ly#}h0L%(zC` zyX%g!HM&l_OKGQ5F?^#qm`oBrh!|<>b1rdF1fknu>lW)(vi!OC*p!gG84}jd?$$pT z%QU8^w=`2#S+WvQ%1LoUQi6LI&HvQm(&G)*iH2;ZOEz9*dnu!X< zFX-HF{#sHAjArMIWM&afGJzN+nxky!|LB2Q>@yij|FppTxTBvTSR9ez!2(#6jo zQB`s!ywyAP_>q~6#=F%~)4@OYVUz%sw=3jnK;_pD;KA{hp#<|nK0TT%Gc4E}Hgv~E7L~A}N7<=;)k>iJNCY`woXZfsVgH#_1Va!45 zVId2|k00&UY|LleLK}jP3oS*(2d8=M}n%L2i(;xruknv%du>ke;;q2APPuc{C zI0uX?;Ojzq-5{96Mp9Ac*|U+!pnbcnR_IYd$&~3;x#QKoEjRG`!_=Ivr?=V^6&2>@ zrTC}nq39K6m%2JLaW}L8C&$7b2p-&CfaF8yItg>}FvQiokYp@e9(McHjRmE;f_>lV zO9uxRXlO7cm;v3DOUfah|Mz6<_(axggq8OzFON3UK&N}#Aagw~`rIa8zEgyS$7{|tQ)OhXL zFsz#-49BfWaO$rLrw~?ucuoDu#VD|^s zj}XErD+}bowH*<&)viof|9IJphQ)2|-p9`6&)}BPCXY!~SLaCJy_%Z(rXs$y6++yk z-`~2Ws+IQqO2ON@XW8|0b4$gyZe59*`FBDUq@$;3vD`SHGCedHi~ZeeUFDgc7OVE* z)Gdm~-^T2W;Oc3EC|8P_tGp_rZ(im{M~lpJ{4iFETqJ!Gz*9t*&yp`J%&|>H^VQwn ze!t^syvp7C_c*Q}{CVi^l9ryj4cJuV<=dFAQ@PykX_9J6NM0YAXK6h8)4OXL81i-S zIR~q0n~KHRTU&m#iuIM4zS`Pns-Fbww%%uCfI-avrl6gh_tuQ61(D22la0-OVDD&O zSeQ|QwiExX#)}c1_jdd?V54XZ!)siMKK~~)+xI>x%Vk=aH`3riN?fM7o&T*{_AK$t z>Qz3E9zirMQ6A~Zirv&!bMunUHC{BiPZ!EBfRa+|{Q2|!cNa(V_73OyvYxZnwxjz2 zJjP@2_)T^|S172EJQNjI92_v6otN6`>Nnj2P)kza^n2f+58K`Ss`rQn7IH!0q9?jD zA4HmwLctMq%%*>I%dhAbt-wf!6Tc5Vqb|vI(7AjK?oc#g`J!mT9Asi4)lPuUKncO) zEjnyiSG7z{NkQfcKnV)cbA67t*}jgBPX9iT@>jArnX12utHSQg#i`>NSLa)9dR^(1dfgNx z9Msg$|Mc2M76e>(F`1yBc>H*2;Ao!%&($#F-d33q$Wb}I7y_^@NjL&0j5hC=FHV0F z5)vXyOKqmU+ybKr(id)kk zEK;z>7SYp*xajQT%UEV-&}-n~gp?IyAF(ToG2oV}hXoHSZ;(oNoy>YeC&cqFK8x#W z6NWaNIhtD?YCm7gpeCo~Z@P2Hg@!@!@Ag7B7QiYhdTmL9uB-u%6%|H&rWxGE4|jh- z1Y|#eE?3;{qR40&<0`IoDjd|=zer0$$vW^3R#qBGahV`duAu2cSUYwj#rrC6O(5kH zK4Wdrq44wb1G5CD97yZ|nnNOBA&C#t=Y6y2k)Q?WQjw1&T73&OvoAi|a=MBJHwfqU zzRw?+W^`r=RLPqS`uAnm=aH4wN~?;er`ng?;j&W*Uw5AODbk!a0L8Jo`jBvc3WU7> z+QPpo^A>_Es{dU9NC62k2RI9=V)VBHyV~zW2gw8;P~TSQE!=#BnKv8-c`^!jcMcDg z01`y8LSGBa0B3u0?(X|s0ypa(_trc2T#+JuK~xikZxil_OF zR!Hrx?wYnLHOA3;&s>xF_^5$K&xp|ROwu28!W5?|sjCdzhn&}$SYzLu9rW)yv>tf0iY~DE|Li0B(xG`MXHA zm$&npAUV(a0&v11-ifN`9Up8J6r$)EB@4@xlP^(IbBs4oWB`Bw-Y812o*;c0Kqw== z9xd)?eoDFkOC^5MUQ|lh^yqt9SLX`VbWM$7v^Ru={AoHHor-vs(@9KVh%hR7H2TQuLK2&q*RJS-T*S$AD<#InjQdG#s zj3<~&Lqo8!TBbUY6bjn?mg#b#TK7gJ&dLiqUWU2$=`ZvT4e)^`$I;WfyLZ&@;qC4E zIVUV$1^dTb`&r5aA4Nv2c`~Dncci~%Y1+33#iJFYFr>}ksKQMap5ut z=ztZ{ymNDNt7~ey5irfnEEo=7#0<0gwItxN^gLuSL6ZORQRl_%>d!EU>~MA_*?QPo zZMSwWlb%)Jal`y@k#ZxIOSs&FzPa4Ks<*bMbpa?q_7Z_-yWsi42?IUfn;R9VA-M2+ zcGGuOzOZ9M6c@OCgAPjDM6X}>Y<0e@{xluUzO9!JZ}n3dq;?yz3Ic=yw7ERMe`x{_ z|I#{}le&uX_gou66E(zMSsD4qe?2+- zNCa(&Hf@8kJz<853O8#?B&EhZ+$zKD0nDG9l}4g>;>-IO{vA3C3}!of#|B>^>jg}X zwHF!5T|a-yqjl`KFR4LUGC5teoB-{8sOWUI9Zos*o0pd+k}8GbHRF|sxNR~r>rV4?ry}5O?i!XZ`Z2V~A)(8}s9i!2K0BCO!2?AW=Vu>%g`AZCMO}uH$(Jp$aq5*9RJVEDq7w`Wa z%`4}m(GUy{vL3H;foHADeqCR*?T8t~BhZvg{83X%7KolhxTng?FF`st9SE~v)-*Z{ z5{E;_4M^sf+dd039mLR4u4oDfPs9yVQ-;0X!m4EQGmHg3qsS0#ZMp}Bm%djEa{Krf zN%0a8#L;N~7@KTbwrPl?P1S{@>C9QI5k6A!)`mhmS3&B%jtl1Kgh+^l*3!e-vFrKe zUH~Te4_blbaMQAp;hWjoa(QXEf#wjPl^?%-C(RmC^~OP74bQ09YqJm5ENN4~>n{YUwe@ zKa;(5czAMRv=?es4&*jp)7xuue0ZYR{mi<%Z`v1zN-0qBC)KarmS z%-dW1?TW$7!b@fAckXL5=GI>Fwimm`FI<2wb?}xhqfqGv$F%j0a4tg=-IcgQhayKL zh1F}V=6)yURhA`dt}7f6-MKQP*_++-q5fI_Nf!$tegT!>Ov~CQWoHc4n^zvtT$~P( z5<6Pe8O|~zYr;mTkw#Z7>m{NN$ zqUsp5Na;htj`M{5(XRgxUK~t6Jj80k72pe|0v^k+FSoft2|&ZlP*vc$mg6~bq3+V9 zrOiWyx9;69NW5Q^{ZxUGGF?x&rIm#t2I4tAk}~u!$+$00DD-^6>vIGn6-Yi74h|~( z!<+quxlQda)6<7xa{>?K8=`orl%Ak3amONAZqRINm9se7kIZgkRnh{Fv&*tHa<3U7 z%?cXr7tgadB%PQt85>x-M}2*H-HF$8&9-i`n^ZHLruGqErFQX6RL#(ZM@Dvh;3}}* zzWvcfR?lPabPs^2>^$>&{=C-9#1J$)}=UexQ`Pk?qCpAiE#%}LA zzv_?OooOl(7DpUw7~C8Sxaig7g~%Mm#aj!!1$Yl0{MG!7Tvtiy>6ZlhsKtFZDJi+* zP9?s0`b@z41zDdj`I$O;#+TDfC>`2~2mlco0ghU1&T!b5XfE(ibKH+iLY=2`a z*yF}fE8yAyu8C|XEv>X&?e54cNpe_MOd$W$(mvUqe&!44iXLjI85Kg60WU=YNA3mu z+O(^KM$@XrteBO!^7eS^A%^YN+M+EO7vjdnX3N!awq|6!;;GCp8k6_;g-8$CR4oJ} z>qa~hWgtj$Oeoytu2*#9-0w_ZKqu}yLD^N3pEyqm}AG*4f+6yYPxZgA$f z-M)j8F?;WQuX)&dXPL!O@|@cA#!~q$$JD1dfn#G;oW*F_v$NSb2PaPIQlB_p_ptj} zUv@s1gM(msp-~wcsPWMt$kjhLcOhijhMr!!Htc!t7Y4elfl@!RpQ8_Y%_~`KZZhQE z{xNp0du%UwF9!z)pAR2oK`0_Rw9c+Y4^5Fzi|3e5BFv@OTlLE7{@l&c)7RW2HR8_Co*pT=3E+Z=msmp!lebfwGL;@a>stPWIpe~?}g?tas|9xmqF}afC z_b+^QwGFd##W)nodyow{BuZO|Y)cARt5l0B8m=&If8==pxhK-y2{r|QCBe$W>Is7+ z3UR<}sQ(TW&{wkKmC!v&498&mm`=4IWr{e<5m5UGt2WZF)Z0KLM)qr}nn>ec8)uRjUR?vy0#19S7@ z4@upZkWu2co8|JCFx8`Sw%i|`ov(*7F{QmLZ=e$sC$-x2Kom!1N5{vtcOO2oFCZaR zo|*Y+L1D#AdQzE5PV(f1Zyg%dqE=R!u}0VMXO|T5zK0l6`vkoU%>BUT9ta7QAvHgs z`@$$Hc|WiRFzre|5U6fxtVS|fYTI|6f&DAUmSGo$Sp11ra7 zW%mKSg7)-D4=41sxQT8G?{92u6vpoY>V|x4biZ91*e--1O)i_%AlTbjULMhiUdjiP zOE+U$B8pdP$piIjQ%V zr9BOlJfERsYIChwWVWp{`u&rprm@=5`UtsQw`VOR_B@DNE2h9q0g)Ce%DXvTvo~)b zB}!4%=~|;F6O#zbZQ*^8gAhu`#u%yT@7s4jI(=ttGFll4W0`6WOZ&D{zIrXb?Z8gb zW4gO`uK#X|R*af)xcI04_KnrT1iqk7UEQBv|7hQ1PKN6KeRF(y>JHhuOmU9tb8pke zT^Fpa-DvdX8sQpkcl>ke5~;C>P)c8u?tWbX5|l5JBh)ybc-;giV)J*kj1I$ zhgBMHRu;Mxp1svvSU4stTbb%h{<0<4YX|Zkxwy*g`wxln@KnB%I_joQzCGZgRq4_b z5Wo*0TX~!DfN}TkpCucvF;jJ&n6oYV3teVrXTvpqeJ{GR4WbpIH>hJrHV#g_czcPA z^%E#ga5m+Ky-+RlJsVNt@y>#hgve|L?2~_MIN;a96>c7xX~4{%3sWx&k~Al3LXU<> zkawE#w9JBdZ_u7g$dvKB_)H;~cvsiSv76@r+3jh+=jnm87cUaoiU@ln;`lS~j{@ze zc)y|8lZekwx}%wOANsVf)II*x*xA*dD{Fo{9+$^rmq({QRi*n{;nX6 zDwbKmpd;$D()N3gcz4Pa7R67EpK5)RwJZJBb+IY?ZlCW52C6>Y9+>nnl9FmT=e?Y> zwlwf1&cySReP00dh!x*kSvrp&m%H@q^R!r!M~7JK&a?Vzny;U71y8w6tFR@wvktyY zNg>6Y4!QJYt=FEC>~w?U;~~g=z!jqg*$CusbZ9sQQJJSi!beWaUQ+m?&t?i0YarGN*w40#(6qL1a=wnW6Ncm7(${L;(r4 zMFGS^n_jc8D<0qN;07AIQ-zWfsmDjs{(CPXJ?t} z<`Fv^D=Wu6pW@D3K**xHdZnpAV{9xp?AJsS7|1ljBaVH7$eHl+Q2wWv2>F9059uMG zQX@8976yjff~*8QT3>g0n8#KdLO}c_mU61h_t?o3mHPw6JcqMH^)g7~KQ_@RrJxC# zgr(preJ2ACRlMTPg~MNwiwre`$W{vymjeQ{-VOu?1<~S<@@sp{qP(_ZLzcn&tvg&QSH(}h|oZaf()f0Wcb4f-v z1eCP45|ua~s%}2$HuDK8F|F3X)oXrb{0H^M zF>Ly9l6R+#ssLCZTAI+zS_@w`VgaH03q))c;@K`E91w-F6}YYY*axv}A-rvuiDmVW z1^3d%`syw($(=h%F(9gFRs82YFmYq_>L>mxXWfLrTo7st_z2896CQ}Fsw%WVZ^IAM zONB3gD8L1Y10)=*vt4$2k~p0ZZsZFX%!RugvSd2^`^KML8L{;*kHnb4EJ%RhOo8MW z>4|}aPyoaKgI(BcuX(KbXy6sc{hE86qjKpU_n{9*BW|%LDTK4#)^R^=GIAcT-tALx zJh{}E_QdCaZSTjf;aY1Kd0p@6n-UwzN6P*r-9F?}P*TDV>gPh9oymaNr9Evhd>s_5 zuKlw%?Y6gO|+aJ>)p5-{SQLqmWe;uI{71Fv@VoMZfZ;O66B!ULt=0ssRqM3yGLD0GZk!YYciTOx`MGQ1Py zhWlb3ZJ{h~*?CjBhJw-@KE>t9yaA|aTC+|ZhJ6aNV87B!KEC>_z97Rq{N2lyq+=R? zG<0aIxt-@$h)+iU3`N#t->q?hEj3s3ooT;+U4}UMN+9ENo10r+Y^ka%6wA}zzFX^o zbm}Nbda(A^`|HiXd1vcA$iwgMi^$2!pfQt@0t^TpFbyGJ57IzJ{`tnIjnZnTm~w2+ zcTE@b2nh?%F3(zG(@uu=2_?hTyVmE$6Z(|-9|~}Au+RM(I%+qnblc}}b2KbA3sE=ZYVQtNxGD2LLIkHza3kYk2HAI6``fWPmvr$9NbFJaX5kRz$5ST_N|n0Tu3b* zU4Xmc`?e*SXOvGyNp5g_j=}+9c}*ENSmOZgIiG8or_JxYgeZ5rpPwI*n+qa=ND2mkq;ZC5{F-ssY2GOVoYbvb+5ZCm4T#{Wkr)g!5AXw`e+3CRz`k7j zDPBKAaZ@S=K@84>2N1UxH2?R}nM{}p8yXsrFs7xi|JZrobJcr)t$Y6@d1@I|v?)d} zO{cpB8htp#c|3qo__VqR*}s2c7Q005Q-mD&;g-^rfVx29EI6kRRUStq5iKes_@}OhA=NZC`6ABV3-rL_Hdko}9-XG}qPn020Dc z^#FP8t`bifq-84;R_4NQZ7ToXXU2qK2=}Ksq>+0qZUa#wDcM{d32D7?qpZx=ng2^t z7y@bFHS{%q`bdVMtxUR1PxZ8L4yRAwcM1bj)5J%X))Lh-$TnNq^B{&Yko?pw8Tm64 zL9Zl&qw>9q+h=P#J2~*=@J(?hIRR_mTk*c|kUTkL;%v`%P~i}2itF$^jbiN=nqQ{q zK*Z|Du_7^N?_NRc$pNV!#0~N&ZFi#8wWF1FG`p2t z)eaouW}(UG-Y%dgYrwY6_k&ga2Jd!Cb`FCpHQ6R28hyP6r$HMkbd`0#vt-2*547F_ z_Dw~%89}5R69pmoIf(7veRQc;9_5)% z6Xh=1);{vO!;BjdyOPx2G<@j(BQE#1CmRtkgQ+-Si$sDnuv7v%!qyNYHwVG1yNXFG zNl=UAc?031$-a8lMYaN9w;ywJfini;a@0UJst6k?2|f~d$B;wrh<#*U>=<%;KB{M@ z`uUM@Ox01W^9hlyS zO1JzA{57dL-Qg=_+qRAPMm~mY5Rxd=J@JPqE}D7KZl)&8J|63ij8CU*7#Z0{ z9|?&1j$hr$@)+@9UYFZOLWWUUNjlGB}3#Dfm=u(4&ZT1i34Mvg=_c&MDKhYCX(RiKfp?ms;w3D8nPn z%Ff=gTQXne(4j;9TC(Q#Y-lG6%lOSt3aAb0Ov36;yc%|Pr>X-p#DbsA{QK*A62ksU zU{>I}!{lu`%aFYv$|IfpGUwNrPOaVIO}1!0-a5*S7H@-{$9O+DZyZWc1%veNIC8S$ zwO{uzVyb|z6W$`?LzlTy$3h@N43(&u6gzWXy|SK`lAr&{+QqFP4Iz99KkvET+NTNy z5jdcntBo9^V}INJXuHU7kE^V#ABlggHr()|_)L|-`E-lMhdg*2*~@1qc6bK3-Cg|4 z4d1I46un@U2m$AyY%%UBz%~h5Vc>0s+VxbU9!y$r1rTOrB4(MFmw}TrM&am3tN^ev z-M!h+a~=j3eG3ug+u(wO0ck= zh7lHeAA~{@ibRZ}5m(YBAeq5^3r)nvVr;^b2=X@SJea){=pk*hODfUBb6za|;B}4Fr5{5ndTgpg8xi~3` zc`FQ35A{oz;%e^wbClrPFp`!3@1&WG4kFZvPnB~A6}oX8$Gx}s zaA0ExC1SH8A`D|@X>s$Q$7OW>-Nc(c58B#T#(t8lJ(DGJzMw#W22lL4dG!aCbn>78*%U zo-ur0wAq(;BlMg;QSJu8{XJlVhdY3FI)-}lF+U7zwHkA@yTeU3qEu!zkJXmolj)1}_N&Zi7QG`H_s$)aK zrtZH+#Ffs8QREvxKtrv<=sNOXFbn}4;eNrkTz-_a>7s;qbM zIe{W6R2UCV7>4r%v$#%a=`IldQ2d^V|4ghg7|CEmMIQulH6wtz4DctqS)@dj_V4ol zeuC$K>z7;69B0q6DL>-hHF)ac(vy^(`WKI<4lg5;bfZH&`Ca%wm6uiUI^o$lrlUi| z1QO4m$!FK%i$e4M^kp5HDpI0s;d2AE=?}>}ke&jPD*#SUMcz{<<~8kU>7Rd@;=F=Y zLCkA0RO4Gm#}ws<8m)%X-1lUPytrrw@kl(Cz9kfC)%?P8qftsk@F6el(^zB*oo>5q z0Lz&wk_?PZO!|xmkhzV6E8H#sc*Re4&PvwN-ps7$>dg(?M1824S4D2R2CJ#*ju;q@ z4P=3sR}mdmi*c((YJdM6prZNSQL6peoHd+7L}Va>0u=AqoZl!Vvs2ZA1@@y>Qu z+^l{0A|rBRO+3AXIYZvc7mo8hPoKt@HLrK?{&jzIOmt80J8~$Bh%H9idvpENhb?5z z5!VL-Hr3O6{2O6thwBu9d+JR5Rljv2VDdh7iV7Y_pHm)I?l|JrrT)Q>nio1l<=($l>XUKj=h-1W^s3 z?t~xl&$J#Qb6^xw$D>4e0TBgXh8zoQE1m+SFNt0N;F&qK;xxeI}T^z7f0ujIh0*mayfa1%~-zmIE zd(u9!HmzhI+Qq{a;1$Zmf3hIHSQBvWzeU^28+Vi6gjOY+20N0HlF~3R+($LQ53jY! zANIA4KDEMsehgKs-PUcWs;V(C%sG`N57!mZ?$BM}WHs<iVc9z{RHM7UlvW>I4^>NMf zDQ-K{l9PYFCn){uog~L?xr`8K497zCy!Mq9{*moa%Y4r##Z?c-pb(TUJPJ2QS)wYW z84%n;ut0EB!BATcYRG>K_`%9x;Lit6rAopg_pgx{moRW~9n0MylFBg^U=LPjW&QRo zGA}9Wn}MRvDJrkcXF`%yYh&f)y`|>n9XF+S`CpTP1h&iC!s0}z<}DfP-%XX4pq1e6 z&d3XiBqO;WU~uNdc)*KEPSBqI<>eQyUDbTMvCt*=1J;D5^Gf&3ukWFuOLh79@%puj z07mBxSC?$7t6vWy$RpCG-#SfQU!SF|tu5#7!ry%%5dduoM;M3<(D2fC{$1%tmF>!p z7cbG2irpGy331U8_gh}kZE+m{!bAwb8zbQYDIk-$l%95(j@s9P3?a(F5XI42cHA)IDh`Sjp8ra9q2*x&lj$};%8I2=-^7Fwv2D%X4qN{0oSa13 z*OLH!TtaX*L@PGnSRmE^{T6s74!IPT9kf~g^yS44q*p&&ODTHK1{9fS0ENs400pF5 z7_q3a`~$jyiJ$3c3JV-9Q22Xf#SdEKEn;F?`$KF0%*+SQVgvARZQG=2`$K z1eG9GTifoulwEc6a8lKh`;w2m%?#vC$Yw7`$J%%|#ve!D)iq&{Hj(=w8n*8(q0ZSg zOOCm3+5{#ZCR&I7pg0nJL-LbPNl+9>>*QJ871LRIH@Dqsxy#I36MHNIQFmqcm=$Wfim0+(J#kVs`XY-pcQhthX25oin=h6FKCNgBvTLL(KcQj5Rw_nZI zCpc(v@j90hhh||Rm*djDrptdbjf5*(<(*dcPx9OL zDwy4f=qlpz9^#(%L-Z4IW|Ba}B(T)?ML58m2&csLe|*Xivcb4G9)=ftl#kIPB%kPD zgmnA3Cn~{XNh81> zTPcy-k5`BgGa>??2yD21z5ATBY0=XvV2d(>``O52(=}gbWR!g@sK4l~7-PB}ei$N2 z{DDSliQYHPh$zj6wHx>2c}NXCc|n_rr^)wM)AuN|Gxnk?HH-Z$JNzktWv#!m0SzM% z5_lQ2$46tysYjp2#28ikil)#qHo$F#I2Xb@Son#zE9@P# z#HylqgtYq8@+z5`SI~W@KP-u{!M9(q8tn)OevU@E!R*{h&-UGHE$&B;_*U76)8u^8 zs$87RUtK?lGvnoIGbpHgSn-90$In;W7zfW+mX!I&nOwxzaA(l+1P!UyyI~XlI^x95fIcN-~T~TCkUXy{)aLV zv;b+C_bZYF>`VAVbtsPBVjw6nZ1fU691sOV&VPLA#oxcbg4u$^)R#xUGPQr-I?p9< z%?_Qwt>qbWxIW%Y>xM2)y`(ZTH#Z162KWfPF_C-=sTGDNa8`%%?KOp1F^~QH*8Sk+ zj~`tBYIxXozChR__E~}*x^W|OzE6TQU=Dhdt0Xco9Wve6|?yl@KnN+&6T--$25u^{fBr8#e4uk zk&qCLD)>T{vNFz`qhjDY&ML4$f_NHrb@eX#jEu+K*KJN1^%x{78OT~{bq(J>yFDn* z*H=a9`sbav+~HDy^?$NJ?arFQ%)EHP@3=w70)l!$v<)Fp0fq{09z+8<9$U096NNlP z`!nryDRXmr((&)@wr-1|6#f46q?|E_O9fy!gvE=fQH|BniOd`*%(!l)ofpO*UIuXE zs+cT;e0IESAjQl!(PR0!?~eQ{@s!SYp%0djkTxlLN--b8DIRdOXFt+Ytho+dXSw=~ zhsSWetFJg4GicHbIQBvZOG;Atxjxs66>lsgw6oJ*U-YIJV57tpc8uaW)I1k1U8+Rd8v>*f z_^ELnL`G7?WxxMXTr}$8=4+Fqg4-OB84D~(llCWS}LG%qyp;(#47~RilBm@ zfB#B&hSF3%R+{>I_GjC!%tbhrwl^oKGJ~q#V_L)o!NZfWq6FIk$N~wX{w|l z@jy$PE^GG;)9-HI*%q)v_B!{9RZ?z296B<9WD_JO@qk}z;vVBZpyELTIC)>CAdyM> zf+LxfNDsPR zmY$!Rm4=pqWv7?piln$WBGO9N{N?1X3rI*jxwokKNYjR2SuoJ%yxj~u6uEGVv`7)B zH{i^-!HS=E#tiWVz2nl z0|gHmThD&+WhdmDttsj_DeeKNH@R(O#K-yla}3=_y~M|#m&-_#Ke9)K@els~H{zgl zm;JlTxDP$2Aens2XGu}*VgF}4g36&*-`KI^t3ph4+hp<)_QsT#ns)ZyTTD_&(kEJ0 z(e;?>KHJk6vcK29|F7HRm8)Mj3JVP;;~>x@QA;Q|xDIab)XhDL)1`U^Z7N{g#d@Z? zb|CMRiP8)SobiV}xsef05Si?~@@roj8jj+M`&0cafQnmIb>)TLhwFtyz$f3(OpT%_9~e4ApsnVlChdk{XfEHYAa~M@@#Oltm&zMGDUOux*T}4HO>mgqVos`sl|NCW1lJsy}Ky*`sRFlDp zi9PkFCguPA`&ASXwQDK){eHgjt<9MDPg%{ofD%Dar|iDS06nQJ3DuAj%@;%^L=sw12(I2P;XLnSTZf6h3Mk-3#J7x&IkYcVkGf zqMcoW!tcm{q9SF2JVB&jzjoP2EvB z%HW4i#y2pntwn{T<-^6CGDLI&UDHQyk_{~^qqr=%zVKE zZEZ6}pE&kQp0B`rqTJL{TR!6eV3?F7o zVHanprLA2Fu4>NcJcIh37OUpgFTTy$#PK^5}}YC{rlH7k#Uooz}Rs?DGYxGjDU!V|0}vG zudAa0rt_rM#@ZTmY3mA?!w|*QoYKobJZuP$3o_aX{a%yne;)sjWrzNcDZ2y<4I#|{ za8cIK@XE|m5mI|Xdx4{pICw$+czbQj@4n!8l~4KDkjaN*OQrYG;_$@a!JNY&&1%Qk5`ub%BcZHgwIi`7D zzFX5jRPZc!2c_RH6$6UVA8^0*%!-OT&Xf$6uY1_>l?x$z5=Y`w!K}#tcSzaCb`o^e^SD7nf?jOtz;x~Sav(xz|DDB+F|LD&F`yue;Y`0Bt0YQdR|56-# z$S!Y{Xe5oMPpC_NbO+8v&@Mcf)%J(NZ7L*U4sRs&OUw8X8P#mIp z?ws2h(?|P_jMnq5xBpOerZKeo;!vzqyeSaqrT!06IQuW-@r<{vaSj%~F_! zPxthNeho1UMybF~EQ>fQAJ2G9^E<4{C1*Uq1WF*0U}Z5QL-17-NxLms#q$up$H(#U zp%4)f$|8t(@RIrg+{b8uX_Fdaa)d{d$jHddEG-2-e=h7fm6@Smb;5Cf6R*DE_|IS4 zL#7*}_qwN8&PlXBBj-*&y68tqkLF-1cx;deQTF2pKf)a$AVx#Q*;>)zIp2okKil=z zTzD!gD`k*}SemBxA1`(6|2!OT_u{ERZ$ve->bj45Ak$!oR7u(G0Z(d3qxN310gizeS~kJ=&RS= zyS962Em7g)o=J^03G9L&STev)OPODJDy4w~K0a;WHxVdc(HbsX2PY%ER?@Pv_~?sGa7A6dtXA;F-29gZJkU!w z?Q60q>BWMzlrN=K7NMjf-cN{x zS#Y#KOqAGPYjIS)eqk&1S$9^>`}a?N4JpXQv7nh6}`;kok0g#PuHlcD^wR1M4m6icPW0Iz^zm#boqe=Y$~tsrraaX{SN5$Ip7QNNiyMgiz-ZGp`cW>5~iw z19$14`T7!yuse4OuB7RK7NaXFo|TiJt4&hHGD1$QfRH!9`B8~u8t+Czb8|iFiHORp z!=J7(_S^MQX=uQ7_at>srSy~Khb11&cfWB-UnYST7$4T5y*G_6UL;0lKx_F>yknln zTmlDF=WIP{^lBQKtHur+;ATM0Aj-os2NEL)jNY5|f8wGnJY?mNND@X0UM1I)L;H)+ z90;y}>7Y2TEgmBb>snaKApA$LRsb;e;})cwj#WEe&;1S`&phk(XNwI0Dp5rg6T^wl zLo^T_6SBW0qibZEOLyV(r^W?r2WUa^glGUDIVlMdbmmm`DHS?8SSPVtB5s(Bgds1d z?13*i>&8e-j*Cl_sqr|bo`ZcPG_F$`3oCQWBmK8iE?nw!%ARZ#-092fSza!+s65^o zUdGSXmQ`nkFAWvoMCSs*iUJuzddp5$vwexG%y%RuPhKo7dB`P$Qe4PR2`5LPNsxz7 zc$LoE>E-R1JZ+52#mqMg^znd5t1)b2;I6m#ZGIVz_urQ-(LGj+VwJ zG@1iD7d^(@%*FFJZipjcdA=0_3>mCI(7N zo7ToAip3=*(Z@p=+#V=ie7WP`VFCO2!;E3K2Q(|`oAWPoY5kjqKn4Nro0&~H#E5UI zeS!49_J!P9keY}H*Mh?W{du592mq7!pd$r{)c#E|z!%zhNB`?i!*nwDSK;x>sIZ!u zKwW)G=$GtR2?L|PQobSA(9;sJqGn)7{WB~pE+~+h>N_lRg2yDD|a0ro*r+rnVO^bavi=*Vho^K zueeAoJ0)!8o##;Az_APC%!`x4Uq4WX>v`znfhSl$=s&tkJeBaL>d!CBeA3c*T-Ol{ z6}B`(dvOM0C$D}~pkL1lfBVXBB+i~}xTYM>^QT9Tx=X#idAd^Ynm}(wqymeGir#*9 z&;;ZsHXT^Ph&Y<*iyj=$lM$5=LBqkReRO1PntZs%rIf$5?Tqflno!b;N^!rk{sivq zrg)tpXMrjSknLBjtjI}#i3y5|ih3&R8g84Z6)2k>F81or&POdF(qxF})z90}Sfo+J ztoq{3uOCByv?(h($v&!)zyMJ*-;r7D-Rz2?zqorF7kAscfe(SP-}zN~7v5`!krfo| zW#wT|x5)A%>+ssx{%L8N0EnMd1Fv`ofZ6nqcVBO>5bSKFTboLlsP08m8ykzUJ>L$V zm+<&bATHnJ?DqV_huP0wu?qZ}nF)}r9N_Y3ET2j&ol@L^;jJE}>72A?h0p;V!3l95 z3hLz4j6K!;N}FW%1T>}_HC{F<+~^K0R|&ePO%5=`tzPT#usKv3v?c(K)! zxs6$tYh<((+U{OmBfGA|uOx1BR9$jc1#T4@GV|<}$p5qe^x25MmHhgZ3#QKAsHl|M zV)vh!86D8#1Afi3Hyc}Gxq7wiYdH5wB*sg-NSs;r@c36Rx_|r6 z0S;Ue=C-yb+q}=5CyAbS7v`c008mf{PXc+7E~6g!AgRzDB=YHGzR<~;qY-TawX@g z%pPM;%&fM^>nx?gq74?+5?glNX9v=eF#eq$J^Pix_s+NLp;8;e03f?Sj8MIK_F+WC z25h%*zDBkzh*1(Te2{lz{wK<`LPJBX<6FP0ZoT;OL&oxAapG^5kh^@gH>K}1^IraU zyroAb_6m;c=Ei?eDj7#Acc067;s2@hy+|R-;=tBNgsEc8tGJIkP*rd4-aM7 zTrd6BnrJ1>cMiH{!o}0Lgu(#v;q_Vp8-Yu?!H%J?H5)qxADy}Wi#0|X`{5P65t_dg^;>)>Yq^qFET^ilDs=Q9~GlC@@6oSiKzzn8(S#6daPo6@$bD(6eG8}UW``%GFjZ1mXHMfIqJgs&b}0GCM&`|0Ucb5e`{ zgwmJlBg!Clr>4wRv{~2HxO9mJn!>$Xq09^v4UH*EZaEh3e;i?jGuWg8rvSS^eKnzn zllq@rbTbM{xcP~mZ7C@!buBG{z@Z>YA|*k91`&b)ei(8bXm|H~zWi@DO!x=KPbH;I zXj97h-W|?(<@Y0ads%O;bb_jY-PNnapo9M&0z2eh7__szhSZrz%VJ<3rI|*D3-C$e zBt|4ynybgj#FHy2CWRz>oi8*712D$}KC`~!MC7@d#gB|l>rp2$Q4iK7##r{~W)R+NMz6MAN00g~|w5S6ffalSzvs5vNtv$s>yL>e?q$tNwDIB zpm3A?>`J`zHjCe$ACm2Ag{iv|n7~6A*=vE{#+lYthp@#Ne2THAP#JA^f)61fK2UD~TMu9E<#u)%Ta}fI^qNXi-g%_G>b{q% z$J3e~PP5ir1Kob3-60%%Dfcr_XrNNwMEhrSn6 zYipqw-ro6*Y+YwfnIMAv5OYNYO;Nz`aLh(bB5UPfMbhDyM*DA18${NX5|y%G?>|j6 zoju!O{BLb~`>N3nB$L|OPDT&>M|ZPnIfK0EoIw|R3VcZP^d~O0W*UkT$B-ENQJh4? zZ2}t`#xC3e4<(d3$_;(pZRk<`NbC!mZm+siiA7GZsMQbqjkDkxUH=4+ES!+!25tV5P;ZO}r~u+5l}+JKwnRL6V8u!Rh&& z`yZx*H$S^Xe6PwrFU6*IHK=5HLRL^R6^@37L{jd{!cP z-$^%VZ~{Oe22upH9C3D*`|{<>--AzH60&t%nM0s67OIMb3=Mf{7%1fA2Zx6Z2fp#M z9$|9YwX0AsL6P*e%ecdTLBv$EQZFJx+GTAqr>9_>#HUZvpKsl}_V&6Bp|b_yUJZoy zGMu=QQBlXv8{Qk9A5+t$TxH^+ihEmve)jT(d5!duMso@N^L=^G_v~d1{MK=KYGO~H ze2I&syi(-pr&e545Lgj^Mz(TS;QRfa{K(5rTkpuE`&?owDrH(k5>^{wdgW%YihD+& zZ))lbwbLf)dPy~iE9w0;P2{6Qdkfo#_lIB_@%Ps}4B^Y_{MbEKVXey;A^??C5^!!x ziZAZVhAD}=hIf`se#V%Mn$h!y+KY^gbg(y7J~!&hijF=Pr|Z5~N~#v@)Gm4}dd?@^ zw^tnF-hAE(Wo_CMAv!rZ>tPXP~|I z=s`FUrh}Khbw7RYI-ZOV0k9KtFMKKof8sbJxlXtCPQa^7mYVw4UH7gq_Ka6#`(<_F zFXR$r2QjyUh?DVLoj=zUj4itc0SL1wNsDz0=4k&QDt&uj(AU$a%MJ|ahaNRSbG_ix zBq`5>?djw;o%*-5<8Ku??37nNsTbq^0ZLatXfM7Oy1f1^10ftbp})nyhW?0G*-if+ z*^>xy#~1#0-Z1Lu>S}`Iwb;L2y7tIIf=M8H5~E_5DJnm6Sw$W5eRjc54*#6d@cNnV zlYIQl%d0j&J2GopWEeERBEoSaDe=^>M$J$sOjB@akOR2qJ>;CRa?_Lq;p_z296HYa z5+(@0x`#Y6a{HLzws|gOV1fp_6JB419J9R_w!`~BGnSrYF<9a6FwxKR+om%)?%58v zo*sQ>+LXEXu6y_?3SDu2JB>0zpbRxq=^xHi=1%Z_fYW}C-V?&B#23Du=O){oH z<1CVDYB5PejmCy3_Q6(zC5YWg=ldq!tw6YvrnlfJ#@KysC1-u9#@=SLwy-#0JL@JwcFoFgTLHT5ECo5z<>YldqR&Xze|aG@IHn^b;xgz^$J+avlQ!G& z%8`%|Rf{DjlS8f(56-?mM`VX#$VO<8^@MSe$FuuRl!%-)-uAU!DCUYuzVV@G9)-u2 zrI|t}FAD}mst4%5sK*eP^4|GI2#(DlhoLH3)U{ABR6^=pP_29R<-c<3Ux%fn-VW%M zH8DPw4_RDk-HC=dEy|?dM9Kv)B$%!#V41_MF2Ax0eykEZyXC773pgJh5cOU)_i0C$ z*9(5#vc1Vrv~_s9Ox5XqO0FbBPEu^72M?;5?<{C7FurTjl8DZ{pZSGoqsaS|^DUiO z^E^ppPeO!x>bn4{?LtDrV~TEWf|j!uMKlam`IyMZk15{eq6NXL9 z1jHnTNtJi`(+N2$1bG+|lHXM)eQrb;R%_|>Z0-H!wP1DLOq0`!KpHkja+v<>@7`j^ zt%nB~ON1oTU1w4G9b}w&epyT7BI{&@@*5xl;#`zAUa556h zot&opB?|d5^5hFK(D==?>y<&8dVO(rCn+n5-FFghg$zrsvTspoTkh@=%bhG|&q`## zb8dPCI>4Q%q-3b((rx(-{}T#{6CDsT?V ze3kmf)7QuG9V&Vd_xQ6iaP-^jn29Ei19p+G&)d4nk(NnRL@7~EIc?;W^V_63}W`|I*ZkLEVR4rz+sy-kkte zIHgP}Vj6AZsM0T9RCAD)_E4NeSV-iS@>M$86p|(})VsWKd#7&7jV|@}qNRbD8w=QT zsz2HG0j-`X%6=e9if$P!PeZura&@bQhQyf9C+_y%4;yMq>qvP;>bZ%SGZ|O73O}KW zzM>^`huoank>OFqGvq^>N@43F#mtoESMyAEe(iTtWDrJ+0?+>M7jxYplk%AVstuQO z4PM`u9Fm1D;{h<5La50Kn2cDpnobVQW#+_2cP{ImJD1BU-kxrlqINdwdmET!vAwhi zC&{|#Z_3PH2DrMn_UxJKCN3>=|3=tpce#EvD`griaGF`4kcF+O-b?V!n_rH&H+~ag zh!{oRzkPmie!i}!Kb^VB^}0m%A4UzZxtpae9Q$5SMbTO78>5WEvi4DVV>J2D;;wgwo%ZN^NStV=T>9 z-_ebSyB=a|Ylt9<>bruSQpO(+e!eX(am2UwHe?Z{`vatF^%)B z3oU>C;}yV?_Dv@C;-oZWc$9&azQOr3)q}0e(ITTE8XbbHg0uPVw_|BP-rQm9y-kH* z3pv!P1MbYR<>h5d1MTtc*Pp;B!W9QdJR^ri)Y5`Q)luYR=)+x{ySSf3sLQJS za>)5JGLozN$sy@5ySU>hOOAKx&AzPw!94QSRTn|wd)#>vBmw3QSUw2s0DByr(Qd3^ zjoys^|J@%#>=aa?7J$axjQA)qR{x95J5I{Q)yg>*$sX$(7q?cJcWi%qTKH2%Yxb+% zB|C|Crt+^?#5KP2o@;HhDz0yuKK&sq6LkI%B^`yaf{u>v;-_R*;bRO);J7`UZ6c>x zU~ZYN9d^vY$>I7&%>l|V?Pjfmj)CDZ)Xo##>*FYsGa_+`TTt;jnY~bP^oor&A#oyd z6q4aGz1kQpF7mnn=wsg}TOzFK+?xwuuj%d|H@7)4tamnw`#qz;DawS$EM@&Biz8e+ zNVnG2D=aN6BBT~(X4If=ZSwqZ5aP1Iv9Tajk2(H}iELdt&4Tfgh?9X)Tg-ir-vH ziTL?tTnLZRUOVVj598zz{p`;z241s)!L^v1$E z5qmKk|0%!zqC0f`n|Q1UiVKdu0LH1X19solAm>WcjSE0f7C8ywhBQn+_3d{)&yKHd zHy=D=3i@rKtddzq)w=2Vk5<#{X3tR>@vmRc%*@Z+so0L`xW zHRAFddomn{h&W}(&+nL?o;Hvn@VC%cQX(+Uf26X+;QtZz7EoEO?e;fFhaf0ODrYz=DJNZh4gCPFXbhFQWq;im9n7>@~$9LMA?PLHa8{NC)vK@We?-%047flN83a$lS`pon8hlYfaPNi>N&fBARj z4DjSXZ;lbYM8mubx*&jqd=|82gwuy)Ko0g%xPZ3sgQ@0xYmhlT`Yk0po}>ij3^}{s zo!1zjVRm=tm`*y*D3|)kN%cxgM?}3z{s7Ab<_B3DCa$iz96|p6NFtDStrIFpWFh&^ z=;#qUJ3gj_M9%XUA5WuMZ0=-(X#gs(G`Qkn^bJNi0;v10!5#f1S-8rgl~z%aSP}rX z`m{j4vL2j>-zu`eX-1(VdLlrDUtBH|_d7|MjQEa$FX$RbY4MHyz`AkAJ<5W8?t*2!pLEtf~m4zA-KS+0X?WTC7?xvFCD#rfe?P9ur|2iyjR|YbJ5@j`?y6mT3 zBnicAeHqNI*gSpR0b>ZRoT{wPCnw?#d{u)a;e%Ql8vbyg=t4{m%o;!B#kC`od7Z!a z&l&$?AvX>1A#6%889{}bPqYJ;c4T}G?8%15Pj3%WdRGexCQ8u}pSXQ6UE9q2yY{kE zP zq+qZH<&Q6b!jRBuIMb2Tb?7<3pHB;Vne1%!M+MY8(-_x~RTQUr8@`Ff41utl|F;Bw zWl&e)su#)V>(iYcZX!ZsXcS9B*f@A&Z0t&k|#K~dz$A1wYCi;z9r>Y79BbD+h z%G+8YRS85fg0_EobTq<=eD&6FZsM9#F%m1^l4%bu?KK~LA=Q*2%kWdgU5kyqrY4Hg zwiUN?$KEk})csNrr;m?saUuqTCJgtbV(fD&@92v!@Jd`BFAy>?G9t@kumQuE+tQ{V z3>>qDhI39YNhA-q+aU*LkwOJD2%ts)i-Bs$n6S;FoX;(yxB9=SI`{6grZ3#QJz8qQ zbn68w!=r?Bl!3vH%s)Tq-|sPsjQ$jnZX273bgj$rk3CsVS+uOE$hO_udRkStInijh z`MR6=zI0|e-@E`71JKOu8c>9+PEQ$PU0otkvhx%TI$F@l_(Kb??{;7J)PElsBrivZ z&tME??%+BJ(nrH|6UqAlH904~H&8k0VNMQ1CUc%nEU(i!XrG-8UU6tQyl+5RjE(UcEn~yk*49>iZZb-+GT<{g zU_Y;g80sLP170he&=j#}*X-Rz-#7{ihK!~pDLo`w6po#D-D6v5!k8GLeq@sPJLPI^ zDp675{GbBh0Xx`MCmb<^Mgue*f$K&{%6&vRSW^eJm*nEU}T= z^}iOLT^MRbjO}Www**_XW6-L;e)_riH081_s23(5;%aKKZc3}FFFUySKM28dVAJ&w zAAu~u=HB2{S(gn!TE|{ZZFGaZ8>B&q90%lbC^qjzVEO`n1_ZL^=Z6I&d-!v~Q;T>O zVJjpF6#!^_kc3Ki2nzR}noK=|goyn7=dWJ{d;~vL%gi0IX9<`xugHO2L?+@=IxoFK zKrP1*+gev`6tchK`;C<~pGrib3tjI0`a~Jyaw#BzL0Ieg+E%h6SXE7J-qqTjz0ZYK zl_4DyRwdzNhod?TLAM!12`QxX4Vz_h+ry$74mQXGY`Ws2#HneXHq{hye0LXtVFZIh zm*mXPTk1CF0#zUGCE5bg3*kAO9d14b=Qmv1${HGDZ!t?4n^C@eAv>$T((CeD{1pm%6_+T%0j%X=)C-h6MjA>sTIiK0VZoXVKRcKe}mXIJ*#LUSW9d zw1b+{*1mAu=v@i1e-G@cus{*_5TuYRMzq6n|L@t3Z)j{p z&3>9B37i?35Q^c$szQsN$b0)&{zMGH%mUjgbfE6O`H*$3=U1vFrn~(h82=ufOpoQ= z4oLDN81^SEK!~2mLIbu`NVfKY+1xZd*f8&eEi971BgALYnGFl-pC8WBi#`e5fQc~> zTSslb!4G>2v-m3Vv7Jp?}zkJYiq<1$o@<>=?v!)MU~Vd@us~32DN~ER59lh(%Kfp=gF-v5a%+eUM~) z|7#56C^(ycRd~j6pc)tu`!CGr;LL)V8uw}*FP;k}T$csMmo^Rh_}9A@W1PfX3-iqG z#-J98U0#lQ^nO==oK7$}#MHI8ME*Fg3HH9omj%m3#0QUnzTvE6z-yM5_lzOg|28%7 z$YBG~q51*(PM)f0z$r8Rp*Y=w*j2cO+b&%Q@4b7hzTHWR{k%p-o|V>#xhy^YeM4Uj z>g-Gx3`Z>X`JLV`EGsD)PLx9RtOvwx#9sp)3$hp-KT>=d)7HMfS}F#KD*gIZ3amA0q*(VJ6BS=0}Y5K!%WD;}^{R)+s~ zN1FNl8qfc1M{n-04dX$Vj%d|k;-IT0+wGDkFL!r$F6x;aHaSYD$0k2iZG)17O&oB4`Rv?g-OkOdA(GW5Q_bMzq%Kx=U5kKCZF4(5IIyHZ-4PkPD zFmq@iyYq~^l9lz=J>@qh5x8NpD*u9lR^4fr+<@s7Od~=8rDP>6U%@010UYH)~7MYR@!&#(Ek|t@$UPTPVKe09>PckTe|9do&%TeH=k# zJ=6wT&!x~@>+%X&dEL9ABJRP^R3If=f4cN@YEG0l3JN!XQvOFnOW7;+m$bS&x^|Fd-UdtdA*C0@0ZCCzDsJI*B7)hl zd;gq@MaZmk;&;cSO_>^5EJLa3oZf)697wEIHbxctcNrc=a_bp$a7O`=;eOpDeAc0cQXlX7?%=4i!g>2lr zDTVnlh+7l5pJi)o^QopX{Fs_%`dlbKU+#uZW%ywx4&;hp-@bhtC7kNc-5bx9b^k5K z`+=vE6LK#Rt2q=QJYZr42o8%qwTSB>`tup*!uROcY`&(5Dp~FyJGpH1)7!*3u4Cep zOGXefG7bd;;xcgh3nyw0X@{mFP#oM(SD6w;TuEg^sT$!1L8t=(qct#ZgyJ1p`HibX zD0-=my|KBf+JFeVAo*BTRLdY>S;^T4(yiWpg+(vC0D#wyKC4s1yWO;PwhfBw|Ax1l ze{KV!Xm)GdyHUhdzbBrTjEu;u!Q-+Kz}Nj>ozBj->k)Jb99*s9yZK(ry{iI{yGKOJ z`t9$*uDrbe_Q-XS+S--N&tK%Fsa#!Ip(9eJWuf&dBr!H7UZ3%}BkFcn7rW zT+%>$cJRptgmj=lKoY26j129No5%wb&&0EZwulnfEv-|^Io`py=zikjK6QiHtCOYI zfarlJyC4qws<8e9Dh`cll>e2;`ec%WDpnc%;&3^P*0BT{&xo4w@Yyj7p4{>h7k~8` z5@S+TR8`8=v4P+Qjxo^6#?|%&XFZ`k`g5>uQxvC1c6@r;1Uoxu2`vU#pdOP$foWj* z1lLoFw-jdTZI`Ic-WqHf~fw_?(vVsWpdxFU;K-Im55OY zsp+s5y1$f)42Sjr#Rgz(2(=2=R&-Pv)`>qKa`2G?i|}-Of&$cQHiSWxS(_8myAuLfMYDAaxrjm=V2Ufx??XG#G_$^PZvKx|P_U>@D_8o<|=c=mXM zuAr;g&n}rkz!X9bz)6L0XMnSG7ieFwF9R`S3mEXM4>w+cq=XK3y;={{^_8=Rp_GzF z@$&qg_KmgmS)%Z(^}r>YRd?r=8v#KmNzE{2aHHW3q`>y9Tw; zHX!i+_;^-puA}W4Bo`b8y2>gIXwA=k_hQ(h7pTZIDAQ1hgV%*(8t3{1AONG&Gg&k# z^h?O~5K38D*8PnM=^p%b@cGk-xwG?LW&^hl7Q4`R!N3uj=3i;BM1lt{MJ7>cye|zh0C8Q4#28T4BDceRaF3Tz~l~kiu-X zhpj!z{FM@Zg$(81{E+6M2wF(=W=>G}#cYR|nU!u|oufs^bseaIHwO-XgvIDylJ{TE z$a+ydDAJfvo<~dM>5>umXFZEsU4r3^&(rqMW1}U7cX+sx)1Po|C?&{9W+k3!LZp+F z@{i-;@UgKrrG4~kW|IyJm^hcfn8zIMh=8-S#S;~6g1!EY;wy6axED$5ti7}5f_$ps zK(~i{-W7JmjMl%Ej$wsAzOi<6b^S`UKtXxd8;==$@LBlFr=g28bKAMh#<}NDL8%f# zd6%yN%+)9X|3WHVE7X3)d<6LKv70CXl>nmdnuORWxE&C;B?9$>(IN=WSe|;41~8|; z-7~Urp7=9(0HGSKpNE!O@oZ`=C#2d94mVDF+1R4;DjlsT@UowR&<5shL3}+>H-qdR zcI&OMV4hoA@&P&`k_3;qAEARb*JitcjRX_}q=Ua+mx-xiAd*gsqUABlU0VBYGVu-W zJC9nQnB*LC6kd&!E8(4dCb5iWzq#y-ey~ck=TW>6>6Hy*eJuF4MPG zy;V6(;4H8F3d|B9pIm`y@P#XUEs>S1q(N+~zYYje!H5AD9oT6tT+V_+R?oqK@f~7S z-hGqatA>1U@2;hE=q8D8(?7Ti+*`md0>Ct9_24J&v0HVK!Vp@f)H%T*rYL{8{+f)zsCD5^238Fza8j5{_sNAlk4D<$j3e4 znYyf)`9(cWjEiUb?Q(yWq1MEl&4E&f3zmF{e;hiCPaqe{sI1gDut;NJr)F~?FHoR+Wq+tI90ZIeake7@60NxM61Zxs7iR!}?L8IPX1bVKI zAZ;_)oGAOusVAwl-vVZg1TC2oPW+{diE-uqCt)-Ug@iOu`UMBHV&fh}3=-ds`&lZP z1a9QPo&>K+E#kZsk&Gt)M9>9O!k58YZwpvTu=2r5rcKA=!Uvv)3{bb!uC3F7Z{)NI z{TcrtI+<(_tdeVeY=KV*f2;2(aka3wAP?LdH1LMdOZYDLFz5Q1pPti*Y;Zt zY%K*udk3SuM=8L#X_}m*Ivt?M;9G>UT4{ed#ZJfU2LHc*ONwOV}vJ(wNDtq@Symh{Bjp->NW(S4FB5$D-_%iwR^uGDH$vM7syyj z_P<*{y$DngXTcel4u5^P0VJKx6O*mDAr{!F*45F#Pe+9le|BB*LDS);SNUhUt3VjV zw}R9PQJTRzXdWJefA@8F^@;Z~pI}*G!$BAv{HdhGHp=o1*ey_ac(wFL3TuVkpY)^I z;Eunkwrhlt=f3t~5_KRl214A$cxNXMrrQV2auM~SNdG_K)(dO0?>8ppLsz~sEQ-1Z zt0eHvEhq3JkqHq036rG-Fg_JHb_YJp1;C|7iLd+gPincRGUM%c49@0TRXLCM2VGQ- zNS?kV;q(y2`JyE42=`w?Rbl=U0tr)txZdn13x-`ebGmk=`*NWyDkhZE9y;@bA};%$ z<>h>^3LqMOp7`P4C)``yq=GF3FQKsmk?L^E9oQEPTTwBwT|=G9z$8GAeQ>XR5qKAM zJLAT;68dgQOW%^F3mwM6qpxtag{Jo`IZk$K3GlaG*7S1f?P`$QsT} znA@>QE`~4%1f*?#1I?DIz)N-T>7t-~f7?L}mOXDhGSC7bkqjU>6L>$10?ijnQngQl zpsk!q(Vt2nR#eBLLPl_xT5V@frtMVj%_+)IstBhL$c!20F^Gok2qqjJaQdDZ;q>Wm zY?@9cB&Y~?vBeX$apD7#nc_}OAg++dyl=#PDdt=A$GZ#2Pt`p$|4I|-6s&~)7rD_y zM-N4X)9yS5_^Q}=n|F1*%Xsf5GfrwX7cIU;6g(D+Ce{1p^vS>PSL_(Rm9pGv_Dirs zj{~FwjB&l}#u zwBd0{tL!?M)uxQuqi03P{#sS6I<=Ba>j0#e1A|EzrPf&B2N)xvd$}wZn46`BK`|n(ENflQ$19BkvhiS zFOqUkvlf7$D_D?_?s0YMyag%)2XmGAuW`4NO6=EvaoxW^_@~($mz3DX?ZnMJJe6W7*L#E5~5(dTT`5rg`|30(b{rr04=}YVVwrSU=|csEKcF{F59@fL zJ83TjdwTTn{aXWMm?Q+Sq6%|_Q3~L1R^Tayv}Zie&{sXdL}}q|){niMk1Tcj>EI~3 zMM~P#)|R!p$@+ltwu3cS!0*sd7+0!Jnu>$qEGlFZXsD{+e9Qrh5xZnq!8!OUEqYN|Shs_Qxz zcY2#u&~3$F-Oqd$6etbVX*Uy_(~kX+$L$k9Mjpcp>vzZ9Lw3lA}(>TD4^6<ke-1l@o;Hh~pkT~(>#x>OMdT1nA zl-2)wdT5Kw+hDs3Q{f>yYttjkz#lSp|yx0Yh(hQMRR3PN8C# zC@zQS#lK=91z!DhCHDvgwmxZh!G=2?h{;nG6b`lEMs zbu9Ijjb!gWMG})--`HTDo^1_k+g5&&zE^3kUgrm5H){x|Md2woms6nIEs>xptOc?U z8k{vyBAZM$JYe#hoXdV1p(w&dB=8}=?aL3Ykjz+aC(fz$HC#XN>RDRe*Gx{PncaFi zUr;5uMA4fdds2Pf3Ao8H#d{kVj$EW55AcCvjRe}oY^<&>ukD{1wabFGzv>>W9~7oZ zDB<2)^7}J}0@<-8r~eEC7hx%y{8<|W09b@Hh^+@C?yhwjv@nE3_BN7f&kx^ypb2Z6 z%8)G!OA>rMza2KUArAOE0RdyoH;@)VCF@BPdiN0hYFSUg7|>qc6+t(z}Et+2`yl|o0PgMQVCx$xk4gPX#Q9R?FONJuce#P9Z(72be+ z$*hlEvGR!n97Ol-fya_~z2z)D1I=#h$+fTS%G@I(cJF{sKUU(GRb_5AA}aQdEHzX5 z$gA*;^~I?@_!4e_RS&U!$^D3;O3gi$md34m_BA^j>KF_-8@`wQKwaK=Wt00zXh7pt zd2q2O?BQ^xC#-uo#osbeKf4|>(caay`cs3tcaTn1HAgS$8>^t8%8Q(;uiwl<#;D;h z8X?Cpcw7v@%+R<)Ff;Jp#gLlqYK4ddYsMp`t^X5F2t5-RAfFHU1_kZcuArjH;oCVd zGOaCkz{=&{b^P}*)J6Emzkd^e9}R>%nst9I;V*{-m984;8 zgQyR5+$5gvkw0Xxd<=&ql&|qg@)^Lngf%zJ(jna9nuAi0xXaD&Wtpyktr_~N+SpnN zf;?n~34gPEYO$X`Rnb3-*1a4B^Q{0>Ul9B#H*)bG*#y^Q%1sekU}%D`?lzgp&I0BG z0;UO}*k*rK{I#Ra+Dc?=i-AE}y1#c~BASI&v9?k3DXaxyjob&i?nQ{a2F(M!#E2&s z{0YFtK~#NPTiSaVuRsV6zINES`3DAm{Pr9>dwq27YR-?jxcDRF&V+@9b@wCD3MhR7 zXeGQ1_sVikQh5ODwzD($7~a9V;NwC>@{rO6B_ZN10$~>Dfh3yyZa`Fe} z34e%h(X-f`!0`1M<|$!+t|k+jd2eWNFjslH+3%Jg?R_E8ZSij`b}$f&IEfQcs;M!2 zF3^y;^30+)ibrf2@RIZxx0FXy@-y2yk8zHt^RE@V2?m_m?-d>FGru+fcb1f^p`ncz ztZnC~y|Ef{l=l)Lpe8_@S!{@BNX6e>Cgu`Nkt+D8!kt=3$j*(-m%GyA*vlp_CMF^!g~PEP z6{vtPyQ6jAGuqdxqe%QrW=8cnX4uW$=`o*0`o`Mf=Dj;Q_wNHIckzJ+N{spF4ot;N zpm5dyQ}%cqz%xLqFJ0Fjw1-aeS~Dli-+YXw=4Dhq`9|(A|4wp0jh@_QVd>%fdH=x! zMlK{y@h_FI#$KZM-3D+c_5r&ZpF)f#@l^@K%x(3etb;p(1IN=4CqOwz?*-#_M#>u_ z(r(X`<)X&bQNyq%s~#&U826-~eG*m*PM8HMJu{d%diXimzxD=PT@<}cd4qWD;k<)j zM2%hKeqSQ_f3>7dI*83cwoeZ_uROJaCJ<;_Z%*(c`OI+Mf-8Durv9paki-J0jFs~8 zi^uVTQB?T_@2>4L!kU2`r2+UbW`X!HNrHih8%v=oz)Qga4nCLBzZF6P4Qq{P41k)i z*_v8n)j+m+;KAl?4O3ImkZZCkd!K_1j~wDsMyx16G=!vEv(hm5-D(^*5l<-MV*Ho% z$l4LCp%=Td%mv!l557EgqP^ zObp?auSr{;_9yVOw0X5>NTTW!9>TovE{eRAgle2(7alf><+PNw9xW&t#x>mBPa>t# zr|Xtx{Hkw}UaP+%$jnsihqUMY_jWB6ZEXSqcFd%m)zHGtV+0%r-R37vUGB9K{Vk;} zKqb^R&faijY?;V*yXXhfUYjf@Sjg5fn zaEo{M_oI;3Gj42xxikSEG}D@nMjwJRSi*)W_0#et8*z~se$yENSYH)MX@;3Kg*Wrp+&TcTN^@-;xn$KF~_t7%t^$=m^M~>!cvrAw|%+z^Vk8)X+_pDy>4* z-B+y5z7l6E%1FJHlVHq(1_LL6(t|`^21Zga8uf;s7zk;VhFb-|)y1p**!yyOx~{(l z=SKuUB;h}RRe}`gN1;zcTviz=9-*Muti5WzZ2}&U&&Iu}S}(2zlcAcJdL2zUuEZr1 z9JEN8p%_~zg}RA|boNmTMN|1h8#FjEA@2TD@~Gg!{P_`#Z`s^IYRxbyEgR)INPM`F zYtIri_nx_Ww*8KLON5{M1uT75KZDtH+iHepWeDfv(ez^uLqj|5n)2PVWZ|^))!5LI zi?iIj{TW#Acj-uK0UmbNc0K1!eQ4G6^nFcBTYo9L{BM-ueDfpsQ!6#f1#UVkzqn@f zTPh+5kGsOE{ZWar3eC~laB+aMj}PbXuI7cl=jf1m3MNCnxuus@?1n~0bfTg(@a2MZ z56tA$z+Yo_cFxUJD&&WoU_wY}XZpLBD5b-8R?|ppkSg}+sd=i^jLi1n@Ng@vd*_yy z{lM>|2c}PW!4wD2M)Gb~rR06fVeYHoFnn$GM+SqJCfkwhkQizuk>WBqYe- zZW#htknshGuMwZ?N{Q8-=&7kjUcRg!ef46kB5r$13t&DQJi)<#XEUg%ppdG}-J$R3F*tX2wre|X!dZ__Z|E& zi&>@6hse6!}&UyMz5j!$UnTi5; zZ#b{9zaJF^A(tXVc!0*k3JhqH!9X9B01r3<`u+YrM@MVneGU@oxsXi&u>g?$3HaZ8 zyJN#KqG%Aq6G+e%Hz+0|Vzx7`s}>Fb1W2$T0?5y!M>T&JWCW<i^j*aG+F>3g9Y0gxe9@G4tzxH)oJPqP~#dL zSpumza!1%QanVBIS+?~+u1ZwGlSoQ*qAi_IPP*zuZ7 zn2B{ep7Y}s6NB8OKj_z1rfU4igGePxiizoYdG)v)Aub)&20MtTJ+W32B1u1iuo_ey zL$2qrkN_4)8z6oAv!C4=mwpl9Pu0fs?1e$u$akab(h)omHFt=Ch;0x~qYE)uYm~ zDx%*r4eJaiVV~nkRe~dWRa?%Io<`pMtadxMC zuFlkdGH@?2nw&p0v@ZCe1M-By>NS{*>mv;?vf8S|E{5inVD8imiUdxW_2lp*(jqN( z)4<=_4>RchA$K*V-y=DV5M(?HS~sX)n_v;i1lc5_{i`Nsx3#)-F*1&yu$+~kshx#-AAykdsPeZkYkdygE!A1 zSnjY;)9+kJaKh^a9lDVH+9xi9HiQO%aA_dz8Js*jHv1;n$s)~7w#%t?A0Aa+Uh8-n=Q_S7VO{o{Wl`G}YCVh92m%}Pa4%wr^Xaq3TWKbG|K+T+L{h<|&V3;3a5m7j~ZzG%x zFc5CUFww-vmqQN=$?P_zq_larJ%IsIxQ#!ut&npLLr3_o-$QN^2n0Jv{WCP;GE z{WJhq_4WfE&0r%kOhOuA@vF-V7Ex)2^roR7S0#?qddkVGe?+l-r-`I)eGM49LD@Fl zO038p5TI<3ACP4+5&yPcX?}}iiXlPDfVd{WlKqD|&yS!nP$Ef)i$@FDk@1-0khBl`;}t= ztkB)Py$q;+poNSI4@a7@m9ZZg=UfN%A2Txrj$qn#Z!kA^fM?C`PHL(+h4A>8@P@Kl zCpe!4To2hn7|d+@YZ%9@tn#l>FDX$qsU%!hyfEs79*I%-WHAclJm0NmM2F0HVUqy! z3;07k>+9?N6@Y4UyfC1;p=|$^692n3y%Ag?E_0IXV#g>4S7#n:M2R62Zrh~0B^ zG!FFZH}Bl(g+pDg-u(hzBw9MUkMIu%LFw74E~!;{cYeC0cch0GKKOT&%IJ(B{M4rHECZMP~}V$=g2pBOyV@KQykq&$PE#p{At z(#y+zD*n(mR+2VK{-(*Q$g_#85bU%(^`J2)*K^;-yE8h@7(Y)H+Oqq9C2kDLZryy@ z0Kr?p90PqP*tFF*b&CGTD-cH+d7Gny)>;n_(De!0t=tew3SC@$%cvBus`eZYAO91Yb>V5fJRO+@zbOplr^6MO9MHxD&*&LP_GYw9@}Vb#Lc}-sPxHCd!xO z2iMK{t$ZD4V$6@@bT}6mcm8B5eoA`e2bu|(*}V*V%={o0JB`cWYxqbFzuS&PtCGCL zciJ!5V>=3mKp{*ZJ5Ed;J^lO74HeC{8@=V3Lj|`rwQJ=<4W4(SI2dw3LXZvS)B-g{IIGCP+(!K;U$Y_boj~b~nNMHmshPRRpcW<&-*g`0E44&g~TBQb^6BYHnYW>4^&b?XB zZmYjjCTeMwcR1po@%Mjg&UQBB31lNtc)MJ+*I$>Ik>FDv&i)O{ex`V{=|x(3C=LMu zBM(n>cCyP_V+y%Y687KB5Vp;YuPht;tM6yUzpNjDj#)-iRmwn9Q+s1T+9s(tF~Z{V zfCC$sj)gOP!PGQ(rb?x-qNtvf-`0c~9YdZ69B%jOFWNpfNy=bh&X4}Ad+Vj{+lX>@ zD6jms0fkH;e50tIapT;%8WJlF?OpG|bDZ_z!rnSPZ}|Pcul|!HL^tkoah4cIB_;Jh zvt&A1$<;fpoyhVa_81n_x?Q9!q4_!-^N)ymi(QW_LG1@e@%OjHMX&Frn~-3v0FoK7 zGEJ0LwbnDkJT7&~fN_9zo}dei%L-yW&KK@@Q1{!dt9|BrtX+f4T@w`Z>t3l2h zgR7&X1M`&*h#3ANU_CFQ)U3)%@=WxE0p>TbGDBGE|IX(V_@z08T}roFjBjvRtn@vi z8CX9+N;aq~PkWO?KGZlEUehc9GGT;u8$OY-Y#8a>z{G2txknDSBKCtgq<-P!e*1BZ zkBCA%t4UHMT3S@HX=Ga73Cts{U=*3y4(_l8C-6~xV zyT^$%#r~>Y?ZHA=_jFZMZkPz>Lt{y&%3ERz%kv9i2K!?MT9!lpkXXC~a?3!u0=1y1 z<0MDjKYW%?6J)#saGut=OzF5`R*hb#VNc)6Re8U1qxIq}%2;1=Kd&gT@(r~rYn8gz zPxkq@+S*If(ZA$6Xj4QeLu8sG?DVy>a=OBr?fSU$;Wss%aT{Xj6#SOKfcl;?6q^Z2pgcbQ zb!Y6rA07^PF55ZSg7UBki{08oT|{(Z`q%Xa8Bb`a@9P_0T}BeQ^SisxD}?x)99ye- z4UAF4!@^m$x1~I7LNU{P|jgxd*$TAhQ7+4mqPm*&R(j z8g|T&-d#7w6r$%rQMpYl?U?gL>w?R5 zUM`3CH`2s72ze;*zkHFBl`S#pr-R@?)6v4DcX6?ddo`regK)7xvW!%U=!Z3v9oSpo z;_^xp0qh3(MS%jO5SW6D!9ZQ%^d&})DyKuffA2#hx#X4cl43U~U94+{{cfI!mYVd# zmhBpxVQbqAQA}NT7M6bx&j^N}@E3b{BxXHZZtF=f;fZ$&49+kq!Q7K>{C;lcuyELU}<=uK4qq{n5+*0YiHR*`fiQ~FLg5S<&k6s1yU zJc<%*lLcshgF!bg1??Kc)%YJxeSx)bST&-(ht*xRpss#;@Q-h!t(O-sc=BYybO##8 zrJ)O|aWu?^bm^rgQwXMb!NAmY79T|~2>FXa8AnTTnZJ$(6pPpHis{S?SpxK^^55Cx z-sGJgezH)i+$v^@Tj(htd>e;j3e(cG03w>tPGpaV`^_PEUSFeF3VlCWge_Q-rMzTe zvS$0=u6V@BZh=}zD;npi%07;d27^yOqvu-N=IMo)q*IBa|g@BD^VrYk|${a=7q!f=Rb zm9&EcA2f1r!KVvG{h_&)|Gqr4k96WlrNGS0g90{Fu#Ch*O$E5KJBRPT^?(QF3n(-CLL# zhAxO*V-yP0{-D>DTl~4!_jUh3EtlbpU#Qw)S;$r<@Nxb5wfYN2jF^kFdw~Yi!mq}k zw@X)eYWCoQHA0&o%g*+uY+l`m;d0PNQSz_-ojgJ|_a;0P5RA5c?$dae{5M=tw&FLq z%3K{g1|999{i6;yGo9ex=2^$XiI}|bLd!h9LC&Ile{Z?D*l?%FLoYGPTUk#p(`O)Z z=Y1fDb_-P8>3`;Le)EQdblo_4t|gq7jEUiw`RWn|#5uT~dlSyiUuzFjWISlUqd51E z6fWgT=e^4QAM{xELTzDpdLd%rJ=+_i@A^KKlQV8Ap?XFR+q)JPY!7hP?DpNRKIGHW z3sTZ(Z!T|w8xU~9G37w&NQD#EBWc5!f$-{YPXfp#Lx4(7bo;h!K-_KTJoSeMGgnzt zTT`jSoo&v}k*1gbx_E`+w2O?P!$HTyjIBTV@3kc)Ss+A!%YGu*|8r(vVZdz)abG~2 z@`95>II_zO4;NR!{agTyf%+Gx2PS2&VGG^~iZB%D-_oFY5g7iF@#Dq2cT)Kq{f{XQ zR}bi3Ad2xg1|dfiAtfMZXAQlS?v7ibTXo+n0SCrvue~hSs9lyh!&irC+vJlr| z;+Jq~@wcg}JDwpS*TLaP%gzojhfDN~pDJrWIGM<6^r7x2ME&g{H?7N~8I`1lL>!*z zv$^cwn5(ikC-*2Z+G)bG3G4agd6S758#}ctnq?7a7(O*MlL^AY4V{6Dl>B1`7Cjhu zd07IQ+ru)3&31QoDy>xeK@5Mq?QzuwXhduroH?*mGl_|%BxGf2nGbxjJ;M>(HuWYsJLLK&pN`sUUJsy43RDYt+8gbR$T!@+#lzTM}OFQ>(JK47=0RtV7T#BIfx?-ZPQjBGv1N|b%v5-X^9P7Zs zX!-V%jVN)(>2YzTW@$KyG9KyB@k1^FfzPmT0ZQhp`jnaf9%NFp{oGGQfY#pCQQ4i9eP3dEZ@UNU;6q!Jl2M@4PH5_tVlmzq+PehL0QF3MJ=8G zVGhHZ6)f;;!{03uu(=BhNovN;;2D(vvQYE1wXsGyx1~V9rPRNqBAs{*-&-O!&*PX@ z<25nl*@EE(fRu$-M?WexVym$*6~1=@=2gw_gERspyXrPXU0nGg7W)HwCJKw~Zl?f0G zo8|nzFd1Ytb>O#37LZqLZAzpHkU#k|BQ?1(B#-{pcDcpykwtuB9wvlwAYLHwdP7+O zw$yO=p3@8Gc01)1qnvql#fOhh&TRu`neFe4-eiplbl99AA|;i1{W`uoV!Ph&j>oOE zk?tp2-EV3XzRDP0^9UlPs}vIKaJV@2s&ZbH|Ek-UjuA{1;8!n(b#Wm`P--=CD`To= z>4KWaKc9q6z|yos5tQhVy%k@-PYl<GLH@K7U^VJakFr;fcj=PrFUtKFmU|VWTD0p}f8(p?-E*hse(^7* zAb(L1wf2CtKP$`5Yp*FQ;AB@58=&>wZH*f}-9)m*SRY zrfnJKQ9W4WiD_tlgB0gZhh#kz7fn~JW#@Mi;QzrdN&Dw{!=PIXfU$zuM%tu=i;EBz z0hM@0|IS)oQLM-`n93fN11#bW?6}flP<+_*Oi4NSt)L)uBE@gdGQwK!^V()%4}UmQ z7%X|6S|1}gb@$6u2t~m6%akiQcF8w3`#F^_sj0hYSV@uw2M0S~9s`alE3575N7>qh z5D}@`=yApNYBa?|`)uLorO+qeK*gGpIjFB ziHu;P2|_{yqbrj!2R|EdARwx*8(b2dlr}HpUgj})jCbXA?@pGQ4!S1A8MMhIJ~qke zZa(93c;`G=-uK*j!OuMMHnj!@_b}7qThl>81v0!&sDrr3 z@Db(z-V36#EGi)egMuyI(V~>fR7w=+5I`o~09@K7RF0y5CNcT!RitY9PCMT`+i9YX zq%tGrGEmXBOjTcXHW1Mt^YO(Fj}{W`bh5#yzHen#VtypQ5nvwqu7{s2r*UZ}>8#Bltm8vT z^sy7su@y-@=zqw8PX(s5uP|_U8QO`6#o@5efMcgDr9MmmuD*9OKdFJF142|;IDWP` zuqnyqxmube1BrN$-@|uFal4QEC0J4pT55WOyxb zCZY~o%Z&Jrm$dGdS*0vij*$5HM4q`MMCGe?p8|>%e2ffm6+i>he_T%H`yzW97JL9n z$%e*essH*>v+j*Fr*;COh_&KIeXYb=K7bCoJfjSRLmHGZ_WAC3MTPS0TBd}kVG*L8b}X<)f0>n+@Zx2jk<4T||#@)VI{xn`e?%>kkDwn|VqZpw-?VbuX8F&H zUE$~ELPx5;AP-&WlP6D(|8;SE5pm^%Z3d*Eq(F2C{6oMfXF#O}8kmK}#ZS<0gV{6# zpkBy>yE>SCWtbs=d_4e`fsIA_(#5>0B@?X#MTv~;=*nesTwJ>qOqU>M=zVR$>^JDQ zQ+G^KvHSkJZ*i~xg20=;RlEJoKQNJ5B7kklkMiQTMdpWg`-7KJy;6wp;h?C!=oxNT$*^K^K8`mr=`_Ftz=+h^AuN)Nxf zo6kC8-En8$`}+O6mWGHuE&)xnmYSHD^VGI_DmQ;z`r};Aq-1Rxo#!w;){0_N`*n1a z>22->8cdYXQ9zsrFJP%kEw~$2)cyaTwmppXFtTm)Q5@V$YmuIWtdYVOD19_gLULD_ieY2T_UL68xkAOc$?ZF|E} zD2V_z0F~7PPV-X9zkkj06A}hE?f(1trbfz+=An$%Xr5Y!tEgchcE{o2QN8aY`^YT+ z8ixQfL6h)XB;Fr8-~4!8uqeoH$^QFd^Uquthu)fMcTk{{>5{_JL}B?Y-|M{Q43tz_ zm)jgaJr(10+k##B5*|4|NO3=90mL{X7uSz`XA9V}^qcUYV_`+b#eoI>fms=atgI}k z#981Sg@rH#-LHjh5;4J)6a*0ez(p~?w)Xmfy8cRAdzpVG|4{HcCK@aZ=s;_jBGehL z{@I#CodC5(*v!Mpkr6-J3T$G*9DABOn!iLO&c~Fud}9q z?6BQtG0tuIKqnMBFpc5mbL}#P$x2wk&j@}CfJYTN7Px7lQS`2P`Dyk7Sd$>jFx)+JynNX3#O8a+<45}F;1}lt4^r*P--H-r1t^W)F1R>%j5d1z zqu3r(F59zTr3;-OpzEEvdeEBMDYed~&d`1_D`7pS##sokL#VBKkj)YpXAybc}7FUjcOuc&6DL2f)sdckOcfs9;awaM_e;kv5iuxptgCt3pNB(Dw={B=xC>0(3fJkv5` zg$OA2KZX!1UKS*lbKT2p{@uo(qiMtC;YQsXs7qp3xdVT}|6r(t>7CZSdERpK+3f7B zI2@#qxd1aX17qX%EFF*5iwWNN)8pCjFCD#kY7y(R4Gqz^Tux8_Kcc<^tjE3oKL>>* z6&fUxqRxpCZQw{C2`5}^i*5uY_xLdl9M)$I=)>d59mYg1CNG^s zFryM=^QaPln{&TneRM`#JUmKc^iXq4%lj>N9>-J0#(|9vqe?-(#UnnR$5vM6Dtf#& zEcqg?=+akIF!PnqhXsDf%v>5SnCUKj2pX=dz`8NK^hilQ>&5E~eaBsAfSY0z0?>qy zuvKthxWES03nwQhHejr)+;kV7w`^{WiIkn`~Yn@kIHf3ZB_4-LRnkf`fggFN;u zS4G#u*HdMK5Mu~@E81k>V_ls+e4*O!%)~V`4q=94ZPXRooZ^sdYg>G!=i(8xFx~8PA}(7b8ZU)9uBKhR2BaMcEA_ZQ1frNMy*D+FJWde3q#YNnXtO+X#!?#Sj_*3oZ4bLv`TV z(%D30r7J}@kDps-2yB4}8<~$>cwf>U1kZBE@5+(?-sd$CeG{pxEyDAktB)%96GRzU znYroG84ZDGg5txv{8HxXfL^&lk+WPXmFzr^`++aN20qi@aGrYB>b)s>r@Mem$C+qF{N^ZV);wE| z;smIBqn=KL$N~*2ap^|kzT)=R&wER!Li4_Id`+*Li*8`$pMhdit`A9bnhYT#!e${iV?)Cr+F}h>uF0x&orWv4>+2741Bwt&p2HE8-qSE1KwMjxQCb8+E}kH?S6*G5K{9zomz>BAFzj7h2Z zaHrUgNz`jMER6j$J%s&NR^HV&p1637?7DuR!4?b$=E`8WQyf(k6>!{U@o`yM@_PM&MmoV%W;GW5)#P-Vvi z`vU8iiA6+eKSDm@=;zq0u96=@51Z5~os6x*XT1qr4_}CJt*vbS{V@>fTS#R~#S79c zbq>X|LTVj=FYBsp2^!!C z2fYtU`~1rsUN$?1gwlr3pNC(AYW*SkIvi_5WNng{RVn6jj@%*%7+RVn_vzx_CL$tI zFwidl?Y?b3^;5Ec(n|Ni1D3}H@-$k9`idQThq*d-B&slwRjj_Lq5B3xzOqaE$bBdI zmZTvO-7>nfhHmjc2o(kD;foHVdjTmE{XUV{jHzjbHyjO*?bs1`GdBsPt1$|(C1D$5 z;~H?hDu|cS0|tgTUg+WGaDG22ok6}D8(CFVO^`0(>IuZi87R5%{`SHtrtdLZyN5CA zp#4u$7Pb&Evh_9Kt(f%%y<+(~T~-AIv$Mo`IhryNfcG%;QdsFxI)~(_9b9)TlFEgJT9W9E9+5e+VAZk15(^fM=u>v|3 z)L3TKO;cmz{YQ>`CSa~TzWDJT^Gz2Bqr6GjG%|$%*#Xgen=G2VDZ2Fl1gY__#p~|w zH}PDfF`5olFCr}ut59k*aAtD+$Cpa#zdi7-4 zS>u2wN=gxtq~^`d2WCCj{Tif0jBPRvD3RN?VcK}e);a3P_~OLiq*enr=V>bOyjOC} z0vK`3?cmVx<=mMkYd4(v-5ebLW@$-UxC#C=ZK>nCr1v*3@9~7`uw2jzxR5q(PApeM zFli=aY|{QrOZK_})Dc4nZgSC~eLR7nC$y)KVffiO<*iVVYMtk{jw^F%2XN-?O4Sv`KL>(9^&NB>@)hRY@qsvE4nCUVZQ%c&*+Kqim#^B+QL zzuUt2-RNk|OAp>nV+^h_h8?ZXCvTnc<~ku6r(eER5lEY7s>mlc);!Xb#SnZ#wnl4p z#=DzTd24r-0@1~Zw@S5Un%(nlyk*v6!HvB6`RZXia=8eS(5^H^pB_yA4&ALD{L=MD3@@ z@XNg2`zavjW=?+o*_O4;9T1v8-;Zbl^o;~70O%4y&;y7OA!2uNuu~s6Kvc*`Q(aC= zlkBe;9v;p8o7WOE*Xv@t%rzPr*rYC<_H`DcE9Sc_v()uJbI~2+yEa-Caq>$Z+kZeF z!p;mj?#{eMYEk3-n8WY3lQz!3B#_mEk@iR|gq!*kaMVwkQ!wrBB}IyexZ`_E65%pzymNLS7m%aS4?!V1p<; zxHWI))j>!nP+E5=A99xuTDWD_IoB6SqdttY5B(0&;%%Ose@F0vn--`3dG{aabbF3T z;~|vE5TpR?NUUTN7_Z?}U3h)Au)l?u2* zruJ}cZ4imwayFmhL?2__11ed4$=QeAfsHfmn(2l8n;Xo{*SNQe)v&fZ42;@X?)*C0 zP?jMx=?~6oX}TAD04~I0*LhaF@Q<+e;k?AgLa5)(AK6CjF8jmijyKl}YCC6iOawiA zh>W8cP*k}#y@Jq~!LT@1JeE|Q89{0c;(@vKwB`4}JDQ4Deq#lg*!;j+pv%x8_rYLQ z_?C`itULrOJv}|sO;P1{t}u|))i$(5pR*h7G;Pqz_NgGFR1lVvX8x-xTKPipPc5zb zVdGNgA^i%Wg49=XbKlbs3p|Oqcl<)M;t82-*KenS&zu2(E}hjuNIg~3ppbt8Q4+8j z!Y^ycWoT`!jExG7GoCo1jx2GRX~s38*LT^moqc(jhN{G}I+oWKseFUgE9>(uu>kBn zf6_t)+6i+a2|9M1RM;<2RPtGT+l5#=?R*RM>7j2EBP9lf`;NLR9VOovwWdnZIR1< z%~?2!K4c%NrZnp2KkfK!KqMA7Vb=T2PxuV!73@-k7-=x&8Q<~$h}z6Zf`fx`P~B8I zyTh-`9!M=7lk3VzbWljh3EU@lx06K$?T0Dw{GsG+K;sBMO03!6SJb%RK(P_(#!J(A z?-*27R~Q7;{C?c7plY=llCt~0IHj|7V*y?JKi~3NG=5i=lKG0~UWq=NzT&E=Ff5Rz z!$HB`N}zCI9NWIMADBc3j^3lNFj6ci`nJAtzmVYp0_ z!38-~(Ki@(f5B}#0t}ag&${agIvW&6KK)bE17x$`u6`-XDPo=Q>E>0I4P~f>>6yfQ zd9hWNX&Yg7CBblBf27os`rd_)SncZ7U(U14FJ;3>Y+E z-vI&5Yb+m24(8dm%;1EU31}~7;HvyV3>z1*+V^z|L} zt-L&X-Jrmd9ood{t7^ru#1iXGxFN)=4 zm#9(u;6#Q6fD%LSUMDTT{Tf7~_xpOrP2dP2I1mVQ5$@vsDLqY1p;rs-qa5t*m(j9* z0Z01sWt;o>+_3-EqlEO)3^>Sxpu>+Jv5eyax!G&DTA7{r$Js@+x-^M(BVcjDL)ges=JyR%I#SW7UmsP{f)bmacRJR7~p zKGR4A|A!ALQAGe}1NISATDn#~yL+se`%72cJD0wcJ7X$J`W{zm6v)ZtRHIKl?ds`g z7t7G#MQjRoL>>NqbL|XnfpfP7S4DjkUOWR!02RjIW^MNx6%(aofZWekhMER+1<=fj zA(z%16=PG~zbMzA%UqiSzLX+&e)tmj>*dSK=_tUZFkKiKN}guQt4I&7MFEeCFwJGA z4{05tcu5hD9#!Hi&n_&yeLN4S?M3Bzj&3mZdJ_nquN2sz_CI*BAg^+tZT(beSMEfkm44mYipGx!_l3yUq6@ zr6`|8P5Y1Q`xpg@A`M_kO>He9a{+KL)0_1V{5A?$ps46D<>NkB^r6AQD~oJ7HjEDr zvo(*E)c0iWK$9QGZ><2u6Eu*p8HWI50IXXLrie(pIjMb?ZtwckL{`v5cl6@Ms$FYK zmeTMtR_`lE?{)97{2L-&Q3?ysq@97 z7`F30gTs2Sg_V`ZM|VbQ>MGPHX06ZshfQE}Ye_rTm#mRtI3SjtlY$-s5CEPoa!_j^ z^n-d3+5$jpJkYT@PWQyZvLRAbA05vjjgGozc70*eZ3hnPDT7$~09*}l3)-I`|{^q_oCOl+)?sj22U5jGaNugxxfcNvAanD`%L z)Ye{qzrw1LD5NM3#gv`I`vtXH>4(}kaB5?b<7cZ|SVTuf5t9$VxV)Or5q|R|GyBid zQr2d(mKIMmflHfe?F7v3)6=61+wO~Dk$>go4VV81T=_*t9t0;xInslf%YYK$aFxfB zZ9JOwMN69u`!9O;5v0_eIDI-O*?W^-RP_CCawaF-=G)M{AUwgy(o$z_JHz3S$CmZ` zscuS0Jl__Tm9?uVRpxG?OGfR92cbr*j#MSERkr5LS$}PVS+)b_dFqS?j$z2l2*auYuv9+t{>ad05AeO!e3&D&TcBqT1M z)mQrPcZ%hRX!EE>#;Kn2!}%(*RQAe!MRuuYBv&flS#vn7b{KH9*nYP-&MFhk6*)Mi z_e&S?>^DI0;1^u(pHTCVmRM zlkN=LG=l0vM>v=z;!;Ka#+1DW(_yWqCw@7Vio4YOs`)x}i{yvoDl6*)?|n@JMKo98 zy%=eHMMtaMa{dZ>Ky++q;3;*l%$|}}Zl~4GIOO0kA4fpnZ9R^IRSZ){fgZ#Bf~@2M z=KrjZ-TzYtlOnq>0htk0QVfBZorc(B6*vQMc3%9JDwM~AX-ddAM0|x08bV&D-`|9y z8ZI2be0O5AeEfZaxw22c2ijc)nT4+W+;3Z-4zBpRFPKsNv{;pOXpCZ(;?yC%U7@w& zteJ^}k|&8QrBzIgx~A?^vVQua^lwJ();C=6;v(65dj+I^He)| zdaW99#NWB6dAbLwZ`K~U;QV(enfdM-6hNk!GR;JE5o%xcNLpiZc6f$BgMmW`YX zKzrtWWdgv)+8@fg4epG&q;n(a@3cRokkkVadnt|W!i(2N)(#z%_j2$Mp6q6uQG9rm zdAvWLozOUAuF6F_i6ObS858Orq=dMvtt|pb-0bqthy5-(fMnGa$Vs;@#WA@J(V*^!5n`sE+`4Wfcuk|^%) zi!6<{RNH0tRVHk3T0e)p%W!`V^sFYuZiEx5i;-JmN9s~PZBEXfD+ejb!Ihv_hVv@r z)vG|X{B>cBAzvdohJ=}f3aU2H-~n{@1n4si(1XCnz`;O&j}WtSmaj%Y*r8)Uah+M> z+itkuF8}%S@AT#8nNLbb<*Fu~nbF(Yq&sgJ@GB#b39#PpqKgrFdcTB>cUgD6OTp!i z0IwX}-OS9)7hUIAEb`+3-~s@Z0q;`Z&|rjY`yU17zImlW!y{LQek&lz!?i}*E=Q^W z!|RoFk096OU`UL^=!e4os`-}3&;_AI5&#~E!ci%XF9`9~utG}$oFOoa#>NnQJ-8?( zaXF)S8R6i6@IWg3?72gB1+Mc7y&Z%<1T{a9rPbb|aVYv?94><)9a#x zE(RKX1N{ve z36Knb4Q7Rb_r-lejOj&&Wcx%hGNXv(RRH^7|B1<<7+ux# zi-&%Ajxka>zUdC1yz>0oWp5u2PDp;h3=bd}0GSv-mkt~}INQLM{KR^`&wWN+&*!KB zH7UhCO@oZ4@${A;nl_d{#bZ+AI{9y^?o}f*@)uyVz8b%Mw5wF76q&u!f&%CFloe7|Dawz+9nZDm=Tdw^x#pn`&X+7|1ba;jT8vK+X zu(*K%LTI4?pM>H#QjX&zrVXNhgMku5kU*)yq2Pxy8W19q&7)|qX6Zg!S?+Zi7&*Db zmyeNdzGir@mQTgYN(JFew3Gvwz9TMWp(7?ctf)-Q_9ZQpi}O4 z9_h~SEZW~}lUe$sm2+b!5>a2dZU4}tTTJ=Mf+{WMwNrcUdefcg#|<#1T0R}9=~L7 z>>pMwda~R-L}>jZ(@ZJmke(EGF(K*K-(~0M__n0}MMsF-kML%sx740@8xKElJjq)> zH<05gUrCip`U}&s<|V%8j?T_?EBsVnnw!HwOAwM(6n0<+NZ#rcM|@@!I+c@6LQYP= zd|`}&HI^J2*>jN#P!Wm`5WBwHtXD|>3l7W}1$ttMyU&!mr$n*-CuKmr3_ZT(sdNje! zca7OrWaC|5jcNFLAA*VcTi@nj@b&t}j5pZoc=!bgnL5fLpe@oF8fb_7G}3Foe?J6j z4fBc{{k+hEoZi2@`f0t)Lu)k7-@j)9Y2)J$1RUOUI8N77#c*xAUoUsg#Dr?Ck&_q) zC(aXno`FIzF;iiPxBmA7aEV*=+qz(Js_MSsG_9y{$Z>jax~3#WVk0;ktIk}1ILJ>8 z&CHfvW>m0BY&aF{_?l6iq|5 zZ8dM>u&Hdp=f6}*{1kkUqrSeLh^y<+p*j>f_w%9J4(yJA?U}5dokO-sT;g%r<%{1v zFLX>SVo1v_+($E)+y?l)gw=OzLO571`!spJ?(ld>2>s=2H7T1Lm?-+8!SKW6s#96m zQE80u1h0TEOaTcdk!YKM0qQucp+u#$vUf0QWxli2n>+r*;)3hjy+T68`wDFQM;f_B z9d`jcLoSLG_%7w8DPPz5fz`zlf&QuC5rnkoi#BH)seRtHhx*Ez!Pc7%ZVn^h7pT;R zuHU86eW8Y?NEUfRC}4zVYiRIo(fZ4xp1@lJRG(v1O^RtU7{5Y-N_=E`;lbX9hg)m? zDO$Y6Oil4@oz3m#{WUd#Mel6^6#sz(b{;Y`+#UvBDm>j`g}s(#Gydbpb*ncy?6p9f z5X6|@S2uqO$s^eEdms{_?7N;7J%jr6=4_`S7eO5m<5p01godRM-Ta^N|1anh14-Fg zV6BtLq?y&>u>8jeKJ><#TL63kzRCk``n~RvUs+r04;d&GJ-s~8CCFh?un}}i9Czb& zJXRIyJa(^G;l&Nar{jvEI(Tr=HqlZ;gIRcSileF6YeSu(aB=$V4ZD^k>hrcj&dx(| zUR$2mv&D`oDm|G}U>uc}j)+|AbD#69CSCrO7T{?^AzkX+c4lU(F#Ws7EHR8@kYG)9 zba)}zC3JuJtcjrvmCxn#>1@wmwEJguk*0FK>wJTF1tq$7Oj`+rC5vQLM)oJayR+-0 zA_W&l@szlvwUo}ZrMcX8Ef;dSQUB_SNjDG)UX%~H+ynyzD|P#M?PJ zl~=p!u_0N_ET79$FeB4o%zkN_+1};XKZ{P*$pYKE3lO?@zWe=ismzX%M(L;Lc}s6! ztt~kQ7#Inemx?~z>p9VGaULA8NvpI@fmI4P1JuuL&;tdDuY43`x%D&kp|Se?%43-b zQH(ROVG=&2Rmr9rm2nPi_@F;f9?(?+ zMmf#S{>*iL6os=}%Nid)|0wQS0#AArbV@wq&={PCAt7A6SN&ox^o7d=WM+E6PP+*O=+26qHU7ou9E9u;LZ3_nTBj(y9ODef%6bpj3R>sGer&Sd0PyJ ze`}X7`km!9Xjmxch{ z;j5Fs6(+xD#4NA0PA!;U^tfL0dG)FC;h>z?!TU9-*dvEolSL_+JV>@y9tM6{Bw!;H zxv-W|{UkGf(GPz<4`F#g`R6#*=AU-&Ubeg{t=)T<+p*iv>U>({vU^rjtrV}3r@H{C zzA%?LSDHNHEFptF8=`xvDRCN&G&n9pRKTzZd{ca`j++eYQvF=On``XY<9NnZC-R40 zor8dgn1B5rJLJ(aUwzJj}cHgvg1Q*$NR-euqBTqj&pcI&Beo&h?XjX~1tc4ROf=L=iw#WZA~w?nMz&uva#H zWm+?1uc?k6oipK*%lputZX)mIToCA!DkEQ=>rZ}C=zEj0-`GAz!!_q!`wl&t^!Cp) zO)oP?1#_R0i4}2QJ{S7#_~Iag3g2^!(ZSwu;6sV^Ef=8|#clEYm5Q8^rJdMU`huFiF`TwL0iQ`Ab~@~$v0zTgw@g%S_@sz5uL2KA7MVl;Jl zoWfSL!ONBT7R57P{!X=7WnWEmpMMk2ch{ms{RA^}(L1;El2PYImQG*IMhu|k+F!fz zFUR{_#}eHOIN8~&K7W4uTlvo$`CGSGfo!&SrGaxH^bDZ&1BKQ(B>;aCxdyh4wZgai z%E)F8P&2PAj5W&-z6+S_Ev3bS6&8L&eeC(a=d`KV|NKoP<@yG!ciICGhpBe?vd{hd zWHvT7e7F17Q~3X;b3h;!i?C@}kVc^+qp(*2egaYf_z6W@&l{On*M_*(JKh_2dR?bO zdcn;!suNPin=RfST2zPF>OyJK7W9d6duT1SiETNfkg$B2oYTm7-Ipmi=a0r z0!jeUt^Xk1{@^GDXT>Sy6BBXST-QrAdVX)LHM;9>*W855M*uw`YKWM~5_4YOlOZl$ z@47;BlndpzW(9QU>k|`qD72w@wDpb zsK)$15B>dXUN0{PKD}+JQ+P9-1iVZ6_~XS1Zf^dUY+sCO_h=m6`(X7qhp?bi#DwK= zz59~9qVMt@yD7~_@fU2uH|83LksQ(LPyTCgN*O}bABDG>K0ah(V__Li3W)5;GJxjq zrT%m$G$)`EeT`tBuoQ(hfGCIHRA`2sRB!C3#VKeO5R`F@hbICFhWO|hnnGB}(AK^aD!=F=R6 zHHjJIXr|4elk!by`A@_9PTRUuZAKQvD^-$^OO(gA44qn&0_($*y&MucW6hKgES443 z*lYUzAtNTr8X*^Ad?Zjri1PtEmH)n%puu4?+*Nb^T1{)J8sDi?;YvoQS{5?5q3tDs zJrybbb`B1Yib4mao1k`dD~7E8eaL z2H9v~@usN4z)Op#($hnV%X{6WCH!xVO*b@1bXZrP|U|f5t3vZ3#E8*Pnv1C;5r>|XmM6;D# zKEF5Qw|4iROOl#9#J5pd1>V!U_Tap8s?5zG2Awn97JNYl!9i>z36ITGRNT&U*By1A ztfNytkV88edg|CcwH>eTec<}+A*xUHy7{t|X>Z4Q+Ru~a9r~pdt8Yy&&E%Rm?xA?` zGwc0m4ypW%RgGOp9&f++!njk_63JZIA z>vZt5C|W>RD1#c_y?W3+?kEWPG4eiMDnzow>J|sbA+n{c+>8}%xSO={hDF#1Q3OW(~0I*&dba@}*r#BiI!H6xWaLUWe z18c_uIXLv}N#2{T7)0AyWOo9gEUss2P4}DX;F5r<*Aaf}s-B5kPUcuY-RR*f#j}GCdsEVAvhwQV+;!fSlj><}LG)eP37Eh#Pp41+^ z&G)G|JLm31$4QG6l2Vr$RuJuwZGVC4vTUd5hGR>8SQ`(T4iJ$!xw+4P_bg1cD<%c$ z=B)Gxpe`KZ(a7RYmoo{n>bLRQ@iE_W$oY1!_A`fR_MtnX^{2-rS{fcr@HoEOdrc{k zojJSplmySyZEs48F89{%1Q!e|qkmzc%izV+saO2Ay8Tbh$UF1@+E{%wJ|eyRQu!h+ z-IM&nLQ`C75QoJA1ygv^XpPSnfHVl0^`4@Y98C(KE_tF1J$NL$`VgcNMEb<7-3{R8 z9H+V>5ySQvGJkcY@5Q^V5c-d>0_ff?BYY0S8VDs3_%7q+KZD;e8N<<2RUzV^43l-8 z5&*NVR?IA_S~ZJ|ddKvzub zUIso)h!*8lRX?`3M>2UW--TSS4IRPnj;yVxl&MvKHjQCDM+uHmWSx8ZlVws<@GQWz zX)af=KcP5Wqn!R#USz>%o9&-tQqq+L)c00A{YKvsP9 z`CEk0kA}1yYt|EeKldxSlBA&_!XE?3@7`q=iKf9#L;4h0;0o=v*UVwvxrTfS2Hwl! zy0y}X?hI@-dyeU*E3~@r_emSCM3LbklRiZQ@nEt$TH(Cqr{X5*^vHW*Q(X=D!VWJz zoO@o7E5+YhT_vYg@Ul02T9oI$$e!#KQx67sbJXdC0yQd-f!i!~VXZ{XO-DAw`d-_u(&D%?y9;It(Yd`z?3qIb{ z@7{u~9ND}8-#{?t#XU4lawUb#2bm^>ld7pp6#@dZqeRf-NY{m{@=8i9!oo+0)XC@~ z8|2jhdb)w;nMgPx($HL7mfC_^`aRkD%Pqf)RgU%Vg|Vs_^cf!E8K=X0{3TNE+_|#P z4F7xi)HDsycATsg%NPR7Z~X~2OT0_M_5z1F=4C2FlZc9qKr--e;qnFoRRzTsyZRg9 zamiPg`4}hwK_RyC5wS2Pe{cuvrB_R#?*OC=TA&ri)%zF7x(-ZEKF{u4>X$5cqkjBn zEO}t+Z0uVb8!oqZ!}giikGod$ng;J$qzg|-Q0j`|zW(6w$J?S?N}zE;#6893g~CvQ z&sV@NpsJBGq&i>tD9qOSomQ@9Uiy)wGHwIR}e=g1$kg@kvP z74Nn3^E<%K{^O-Gu?1_<=*)#|XldC}a=(2C6k;2X`#-X>K`W=mwexfCQi}NKl@7d! zHk=>Lr5#sN@|zz^QDyr2-5^^`sw9kY@FP=W!EG9X{v>po9Nbj!RJ?3Fe7oMI`l&ci zjO~EW#ZK8!p4XQE;lS(%&l^WswuvGJYPnyCh$8JRvCC9GoQc@KRE7ORxY4%-KQOjv zd%hb|BDT|~U+V_1jovUfhmPz2_;g!9gS1mPHZ$;$8FqmWo&bo;hJ0V5fiWJjin zg#@&H-M8N(oHAMV1hpb@?B7b=@!wTJ1hhf#33?7TCeUDLO8ZxYPn__@eNJRm6@}yb zz0xcFix0I?i|Ku|1|E;lcERv)E#)6a=p+P?oq&Z)P!$IYlK04_A9NYP2xgbeUB=x7 z@}DJdJlkb(m|t$x%I1KWTEwm^^77Q&kK)|=dCVIh<6O%DK7azJy5nt1el+b_ew&&$ zwawUx%W*eLoGFBbKb;eCncVd?t@_DnR|$iifh`{rl`OIH*YCBBw^HZ*nQMGu`NPZ) zg27tp)y={C_Q?nL6DLDxe!kP-b-!CpHIEFo0q$KH=@FpP2(cd`4iItsW8h&@gO!i3fd^@}fsK=S@ZGb;>E8f2IeS2S@t1Ez0#D!v^^4Z-w41Dbf?Chs8LXLawDH2>CylDPmfjDP9J%2S)zZ0EBW=nK8>nfGg= z%McQ>+5xjTg}tv;8O_=FZT)`P(?LK+(w8sq$1(LB%}=&h`7i+im5_$Y2zYO;v+Yt}NR#)k8aoJ)PjPRo;S z-`u!O^-+{ISfj$ zKV;-sau7g#O)>@%DS~pDr~R`&E89Rvx%YFS7dmiawi`@5-`;9RR_5KZLs)Th!R?2b zw##@w4N#+Is-a}RArkO;4V55kBi8kA)E}rqpvMbMuMkDVJCp`@%U}x z<{+2_tOM|Az*W*9g@oGRC*%j{C6zh*G{X=E6$R14h(oBUiHY6jx+`#E1vs@p`w)1b zv`}Xg6j2C5yIz>7)I?xUa3w*DXWK9BPQ30O(Qg;Zh}V7~_W44Xn0*F^{( zo>N{;i|bc8oeg_cR>$^m4X&~7PjGHW$@uUy7=5OrFQXH_F5=)4E#an_buW(>J|UK~ zXG0-EK9qcAYb5$0Yn70Uj9OE7eE;wE>gN&hDk}C5kqo)g$Dt{4<(aGeTdfndm>|RH zm6&HbSW64Vexy2gi>fvQ*+a(E?)cjgytc<)Uvj(L-J2-5o%D(Owl+v~vXQP$_-TMz z*1B48$?-KRavs$7#ufrw#+@Ncd4@w>qW|6Lsr7X;2^gtDcTj-e;=%aM$EevZSOWu~HthDyt3U;T;N(zPj!D?;but z$p{P@<5$0~PxcYpo;<|)p&;$K`X^gG586LPLXiy3I;+ZoyMpJ{gLAFBSSE%?{a`~W z%gsxXCXdzLm?~su4hWFA9B#Z#bf72#LRxRObeU%h<%lnd@P0IDMM=)A~x9tMwBq00czF9c&4J7&Yg}?GbYHkE1!c`^Ex| za`gn zX5mtuF%s1QJYOy!p{F1Eo2jccr0~hXXQJ(7cH#Y|_y(_e<$a$Mg1&}uwoQ&i+r96O z)omu+GXUg?Ck~=eUQw~yYeZrBH%F||6}0C>Cej8z+^&4K;%J>xuEsFlKe6&tC}g$A4TrotGjQtcpbap z2m%7imqZm!Tk&5#klY6DGG{Nek>7#Y?9}3hnIzg_34%_+j6%++9zgzjZu&EM8kb~i zho?vaK%P!$fnS(V$hs{}D`&h^7MQCf`}Vud9|%WePxAwMW)V&ujS{Z|vMT!o$Z2zp z|61uU&hvV&4OZ9AZYFO9ifs;sytLL#j}qQ4{pbk`?`{c6qyCCHs^sb_7Khc5=oC+P z3H>{F^C~KI*WYhdH#CL5y!x`IkbVzB{;;bEy(#PBdzga%!C{Nbf|`lRAk+IW5;`v4`Ev|N$O!>~SPWx8?K9q8$QjzGT{I^W9vN8+ zxk>%!&tOi`li$tC;>2?X1R8{`8|}$Upf|>v_X#M=!BYBLPeL%=}_xQCMkC?kA3?&eI7}yg25V{WQouR|8W) z-@N#vO`j0sRxXlUG(0nttZFQX_TVtT70FXvBXB^S^WF|xvTi1b=H=8M7>+FT^FKL? zn{2q*MX<3cPRi^w{nAH{rHqY;`r`Sm%H{ChQt2ZXIwGz46du&;#STKtL;`j!F#6W# zr@y;z|KztDD(AgZXmvL@Mt|m~@88f1wo88uEAQFaD8I~D5WV<2PV7n$(fj#_A!Zkrco6Z zhaTpWr#D=ggD}V8_cHJ)D*;^t{ z>L?*GJFOfl6TD#Ee{QDVQ*%e7!m>)2^KLCDC>f(PIU?fm!($tRae&y!Cwt}X{}{81$#2(7 z6rw%*_Ld1?fw_^POn%zbD@o>!hlmAvtZf4p}8m^sw=)7eIVtV}1p@Ha!=8@>iLCju$p>R-GSQtKCvH?KH zCI}iK6l_p|5gPK5NKMQaV()XZym_MdosrR(r{c4o{B$f6s|H)_+6gTq-_P2WO!rYB z(yzC~UVrAGkX1j=n%HwO2en-UkQXh8t!lV zfe+h;N}Ow3o(x$+DRr32hzlX-JlR77VrXB%k9~#TrLFLFtK0!ujVOS)t~>kgq>ejf z8AQMRQ+o3vB23mGFrrFPz7!Ti*I;nF>snGdG@Nec`P5VP@qoE(C%&JB3h2^1?J3`b z)46%(Yct*stmneMRNohX(7Cg-lWxH+iJX${TVu%H#A%hIcCLho2SJx~=v9jIi*ee) z&^0RuV5w>zwu3#MHkOu+z*}GpI1b(vP|IVCut$N84h_}{D8}_(`51}t+xSU`7=C)9 zw!{fw6iehL43A)iBbVP|5p3Q3-@$&OmS}E3ogo&0qr=%DL{GipY~51Pz|ZZPSqeP? zl_aXdR~Fo~&kAq6tJ#0X;GF-<(I(%*{s7U<{dQdkYz$~O-ok*Iyfv`8)cAKhKPD|0vn9*p?`ETT$mwOx2f4n4esS&NUo09TlOACP})x8t(SWYn>O%gR& z7mVf%X)G+7K+LohZ`nqHlE8Z>j;vQdC9AN|2^km(=lga0)>*z^zqky2j2YwQz}}~? zEuP@!2*J!qg6;);3>OzbfrZJ=$Ebb{xAWY|@f3RUB)RV;#hL4dU4{XtpTB4*_i%su z3TG_A<(-q3z7Z1=O0m93+f#JhX1KyL#c;MDe7`H}t)_@2nbgm$%gZADud)uY|OwP`^TH{t)r<2p^YIRyH9RIm?bP08IyN;8pJ`jGk#!)4!V9 zT92zA`vDUro+))G5qtk3D`n+-!~gck1i^#Ab3^PpL`b?JS2=SENAJ}a3Xu_dh7Z}J zqSVZ|j)^72olI%3f>kNe?$6V}EFtH>^siMCJ+-XFYyyHu6TB(YcYmr&Ty7WV9as6% zq$K9>EPV=xQMvC6df3hbSCt;+QLl`jXkb4Z#^mLL0G=nDrvj&Y$@}_XnYl+EI6rfI zSj=YYDKb7&Pk1aP$`8%p=7ccCa1yhkZ@2l;!kHcx(*FHBe}4%8<_LoT%KO&c&o7$D zUlgqB_YUzbJ2UP`9UpOc>)wIfuM>+VmP(6 zhIVXMf4R<{xlkrb8rJ$_Er@^XAbl$Pkof{H-ChDu#=%Uu;Q!v_ppD6*evWN72gE9>cg57^J9*5s(@KHwNN?~gXHOUZqKzp)>-bOb50E?ht9Qve)q$HK|rlvMOx_^GjN;ZGiBf52Z`yo6_ z`Pf|V&C_FrZ`c1GR!ZL2k=a}91x6Vg7?AMH@IVxOh6brj+gEAZ>2A$w#r+*~rpfXJ zPPbT*mp(+oxh%}WQeVE%;vJm2IrILcj-X)IunmxV7%(J(ZP+xGIwUCn=J5HFZf`4j(yj|QB<|T+DYPtHi(D(BPPgP@Vr%f!UqT^4nvMBKIejw zr$Kmupyh|mCYkWNsTPJU_O{fn&&iHu|CH0eiC&h>w3`jT27c)MH25d3LlYp~vt&d|gSF!R)Ih+F- z_T-J1GOugNTVcv_*~&}v?xNzL{oOeyP&j&Q7Vk2bNe%o0j^=GU_2I*cGBTvVqEBL| z1ho4|S@N9uE9CryHt^NR&_8QS)%B04od8-DU1>VYKRTp#QUB+HIn|dirWTrH3Q{|v zwPm@{#m>CZsj+QDdL|lqdLd`4298YK-I$BXA$C6?fOwBUfatGgFsw?4Wb-+Nf2@*d z?)?-Q@ksB8xw-A2g#K(@TlnJ>H~u^oUm>Nm*DFL9ISOybInTA7pf|(@i|lv~ALF4G z7B+tR+(5M9LDD6iXZpW8q9v@4wKTM*4kcyk>rK~sucuzqBlHs_P$_a`rLrH+$(g(K z>}$h3pNT?>@B-URvtO1NX462^A@REK0z)W(wn1&K8zWRNfue&gqyQ1`T$dXke;BG< z3_L>4T*2k}NXl6r-?&A*Z|=p@LB>RVUQpSB-8;?y9Kum z#zzbvy1L@VlD#X&AGi_kZoTE{|Dn*JA<^Ow!5Rvg0>LeS;~s}PG`1Udt>e7BkN3SC zJtF$XEZ=rKJTO4W`NLJ!*out%WM{OPyG>0Mg)0*T#@}g2ZERf7wzRahe}?XoV1A(< zj2BfebueA|HNin&rlDc``^iNa%XaEQfS1g{{f(6y)1_?~-|>;6ZEJW~c-DT^5nBBn zGet%2g)95*Ao(H6ImEQso_SL=-0K$*Mfbk-^;I@vePIG`0Hw%>IVe`2)m)ParM`dL z**S$SQV4m*`ZJd z@=QxhZ6Q}r2vP=~!nLJn;f0lX#r#Ilub6ZofqnzlhBF85&WY96himPuzOR^4^W}0Z zc>NfyxD8R@k4_STt<%rjo3uPc~L73SCsFVN282_rUDr0$>pT*+5V1Ab<9KvhN1Q&o*Cy1|vgyFFa9cHhydh9m8p6v(|bYjUJY+xIFtXh*}VM>;vqd1CL z0HZ-)Pu9u``=Og6aBlRCPBW2Yl!xrz({+?W?+O88xWgFNWT$VzE#-N^pHpYKX_}j< z)vp}zUN_Q@m!3`DsuvTdA`DMx^PulV+?evGimYeLi<)-)-g7}XLYKUUl9GkBNF6uV zX|xN@JU$j56;+3`qxF{~f$G6_a9`4cba_rO=wvLv@?3gi!qJ%Jz0`}u1PhpDLe3?* zP$E!n=D>H41hAki?CftAny24yR#^;5m4H2XtY5whygd4RR?`dc>N%h`0Ks-=BBKza zF^LB~D;oMgR40O1x@c_om_|{d;Xm0Bih>9eju>~=m?4#?E))#B1i4) z-xp_4g6yZFGSW6!{Tmq=NR8=FH@^iR9Qe&%RaX4q=vkXZ%nv_w(tAU_XCj_Iwx3@v zd3A~Nd;V=c1{jFY$E7FYR$m zY|+I(^N;ubVmM!;?m52y#}Ba#?O_(Syv<21ZN1`qn%xB$>KZ&%U`>7UYH{wx&lBGs zx%Yq9`1>e|wb9Co+Q=g%3Oa^H1zdV=mo2Y42&J?SUf^at;W8stE-Cvm{wn} z+W?CE$Dp!GLbLS!3#-m&YqR+wkjt23}NDT~f4$;8h81nw>ou$I@)iSaPH2sj=qB zqPwrJn!MS}HX15JuG{*Wjd|=?Pji#i=7tN^YhE6yn0O)0nh$JAJ`Y6$5`}7CTW}5U z?%YW@|6wYJ1?Caj6zpH%k;Dum+*8Q3CPK7hcuW*3PH(~dhxJAUJ$t3$hyQ>YIHql! zxw9h>jzI=Z5Fw=lv2mr)M(<7BP|tL)j^8J0EC8wRZ=^ASiSL~9*y_^#gB&cusd}YV zjT7Gwj=7r4s~l?0r^Bcd3EYv;X1wT^l}`{jQQQ*ES*bS$$~PGx1`*Prh?L+ck9 zM!Xt7MJ!!%54N>3IzD?G`;zS@S76NBuMPYf8oGksN6TB~qWP_}-(~NQ-YRy;wRSEz zFaaeGvzVHi)IeXJY|?$p4ypY|xk$j&k(!DulY}wS>aEyPS7d)Aph44UE7qmx%7jGy?nxHHpI10(2K_mo9BI=WP~UMuG&I z=caxrM5jBv*CmH+6e>aH5ur+G0yT5~rO)f{|8HC7{^;t8ia*?rRvRoD;At6s?~O%! z^ZAsq@}=j2KVo@@?iJ(|kFjcI>SEX2g)o1tMbC3lT~01MVI-2{WLs4W<=-h^lg5Fu zWRB^JBuQS{`p5PutEy6Ua2f;z(bS$7baUKP8t+CyiO?fL`VITVhyH#hnDNalyZ}D@ zcxO(7iF9d@G7!O4gl@98M0)XeJCVhO%84*}0TduiK+uGGem?v3`VN$DKM9)=F~kF1 zPEzxwKKC5spk1*O9kitiQ>kDSLK4%>)6qXDrXrPB&Nf0t-ooXmfe>pas?xbuB! zs{1~q+plwd6o*S^q%J}`-Egq*-IIAbx>M7uGNDqAOv2ZXw54kVT~6YN>h2!PkDMra z-|gxxq_*qW^|TYyL(*qvjvo8fo^G2QK+(A7IaIUW_&|p0WnQin%Td8=Lsk(H#xMMiM7OnI$HcNONio~kk3-%*;MpTD9tUx?t> zm$0hnzV}Lu8?9>=uE7h6h>bPxlOgrpYw^IyT*WO%vZI+Uy zeZGOd!ddyqldbhMV@k}7T5sg6rP6Etn(LtVQ8`}0Lp(#9`s3_$DVG(U0EFwY5mlMD znxL>9L5}0KEd4}idKfXL^G1BT86TqWcz2MJVj8P5?$y_NrTo~`{soFEDx(O@s_E#t z^Z3Rt3W}XIubKAm_dz$V#}_Y5uXZ&=4>X5-TB1YRS`$)X=Hx7^P?bRf+(e4Ng&5s zMj;Ei03_3Wy`?4}5c+txE5E7B8gsgEoVxye;0oD>jx#$8gTL;g7S^LGHdPiG&`?7)WTgf5|d^OaBsF#78-{b-^~a z9xHykY}?0&jXo){pvZ`PUGz6GTt@f)Q+ixsL2;$>FIevX>xjXYx}e&?xsT6t&^-817bgSNEPy@A8kP2q0A;>5{k$5=^K zlAe@}9=^ab_tPt(KY-%oZI>ab@&4p@j6&DfC$c7my%H2Pvxctbvsb@V8Cg+DjQNsE z=KSl|l2uz()jeqHki*gP731QdPz*Vc0lHZgaQ&x~%_mW&#>CJ;6(fOWl8(=8KVBxP zT85YB!zZlH1TYj7tOGamjy_-U%-+N`}I*b-<)2d+_j4< zYw8}|UTUpv*|$P_@@UvbIs5MX3>fA|*L`E*trj&IuS@2|ro-nWJZ6WD@2pLg1=7*b z@!r~tp?a8;(*hyKld0>Uf?H1wZT+3%5xPrb}-A8&CY1ke~*EBqjI2;p6d|HC%w&_j%1Bw+8I?V<$M62?e6H*I{{B0+>pC5JzhAHC z^YOS(C|2^3ig`#wGE&HyRphmX4kL1~6`}nUp4>R!_9n<*f^MKEL?eLDqu3WKq?_@Ua^L9l?Q|o2pyunIjK~tKQ zb@YeJxW2u0yu`VAH&%~B@~gMEP^)X@XAK=QDd8<2U!775OA8Nw4;8lqt1bj;Yt)Da zIr~J&AFl%q7ECN-4I?W2$CblsXN(Ft(mD=GR#K(4)SifW%&~)^xR_P{FqGV9@rk;? zd>CwKBg{moMj&h;a@(M{$N%$6_Z<@ife>ndIYKfHoQMe0S4Rjb!gX6cPeshupj(Kq z9x9;4Np0D-Pl2)cPqy{3Tz5k<5|ocZxo?QYd5Km2zhjMcaDCb5#>Nqdk4G>76LGtE zKC-tLqBuYZ{%SyAN}#@xJVw|maX&o-mKbHV$jWl{Yb}pHJ>4U{p>z_Aib8$gRx4?! zLo#o^*>zzL(?>P_vJ~|}0d*CwO~cL@v8vAYJV9Qg`qY66>x9-8uPQR({Jk3QbSqEq z3&iR+gX*`1o1>>0cwdj9t0mmT!Sg?{xSCWLc@MgC^y z{BL$&_OW)gKDDmC`-iFdg>F2h=$@ZEUNax=t)ipoQAFYP{yO)A6OSKHS5QvZaoP>~ zbw?Q+SBa*7yNWPyD{xw%8DR{1waO`PWmzw)7=LQ|N4Sv7d)E_)4H1;iUsV3~y17W= zQ|#_xI(IWt5Ve3wsf&%9pu)Y2Oe1WUiQwTN_@IKwotUiP<_3L03)>EHw}IQioI(^W zToM4snwgRDv8E;f0{NIzN&SbFU$&aws82A~eOy_C6!^|TM`-B)6;yx!9)qt&Mpy9w zv0rEjUO~0OjGQy3SOWe^Ow@nl-Tq0uTu?9kz9h;6rW)|tj%~s|^;{VYCq()X+ ze2S-p8l}npz{%}y#d!sHaw0iTIBj?c_Y{UqKZ^;yNNv@qA_)QC&xLP#&FQSju6&cj zXgUqn4WdFp=#aHtNOIaCYu;+o zu&(~kpGQ7k`F?ln1u2=1QlV3D=(VIo-A3axUqSOqMQOWBL92zpHV6yK`s(6KEb<)B ze1)=|QWb*nha?QLmAdDQjRzG<-9&7An8k+j$}6gNd&U!H^xh&@z-UB36BY)9!kS@N zTW-6CV-mMUB1Ec-?`$c_Vcus$@B*HQ4@-}PPCU0Y;nqe*f@KaXQoA7N#qh*%-0?)^ z-<>>f=du5s#^#@)6(n*mh!PtJI-^f6z+0qp>(;_S!8bVckRjv;e!y{UX(o7l)^|8L zO5spgh;O086##5NL`~tQN=EtMpeQNDZPz)4BKKeH_C_U3iIu1nIPS4z+8J*C=PHsn z8o$3%3ROYAx55xYDNQyDoS8qzK#|8*t*E40r0~!EU4e%h059a8!CC<6x`ji1O-;=< z0nZgD!kUt$EU0e)uiA1NXDzMUR8L{5k&awlR`ZJ>+R@dyrnPwQ8GmtW^}`aKZ)2x{ zBqp|xO&NI{7x-sVgqbp2d| zZg*v7zS6_A_rU$Yy)rWUJGkybsstweCK9d9XPtFZpNLT^-McU6YdGV&a6O3XiIjog z0)OeJQuRN-BjCZb@G>ok?Z|iJ#N}PTXaLZKc#EK>gbM4QB&9w0`oMAz^f>ns&I=+^ z$$Ndwgn~){uSeJeUewSBVIqC zm2d6s>=M+X_`pjO1|IyYS8y}ofhWQ$&I!Dvr=oHm?|5K)HB%{xX!QE}`aCRTl)W-~ zgPufk9F7H`Y_D`usS%|^ZEo9i_ho!_Z|_E>$a;$rc)V%P7R8x&vIE@Ne7Fx4buaeFAn_Nez_cGGNODt_zg znc*lCg5yJ_@^xbq^}{F5vB@FuPim}tW6Wt#wyDQTVLPqJSdyiBT?vw#khQ`cWrLDu zN05~yK*qM$I?n$SnQYSg|TTJmeOGub+N%@mGhS{kpr03h%uj_-hG(453DZ zx~htlco|Ja=~+GQUmN&)sN!3d!gLND4v~5S?Q927GMuUA5CfoedT?aqR*k9K+LAr; z%_%+xQXL_a&_uTYmX1X8ny_%iNef`6@Kj#LHBT5>v6jH?+W!6h^WV3(%#VE|S9W$r zygL+OuF9_M7%h4cpo-tP0FdHL$yyIsw#DP;o{gE}HP8EwB>wS_0X=^3D<7aBw& z%eLcuDqG8LL?V5vRpSr(=fZ`7w^o|Ja$}fbVo7DQxj=z$bUeDm^=k)?%jFv5SyOA-}f+kqrRr5M9rZ@ zZ>75)y3~*_T&|i}qCJ=K;ll_-4>$->dXZGL!>XzNkL&tPs(S&HO*FcnlRe!f(n$Bb z2uE*Yg3D6NrPlJ8YP8fw@@?B*04_ZI6L&p#zkV%=X-hR5s%uPmeKeCv0eem25D^P zIKzpS8|Wg46AJ?^5~%vH+@U*!g81fObpm|?uT4~6!Y6YT{5wRAm1g`Y|EZ|;)nWH^ zZ*NBFt|3wIMRi0aDVm*NKkj%M?VnCO3spT_JKz7kYlAoUisHI+1c6jX!2nmNOk$H>J&)9t;r#$UL zjM#GIC>2ho3eKRD7W)ni0T- zBL4F^_T2Xy8}7VO`~ffH>6Nc4D0Hsc+)#I@3FBQ^xcD1^JBHz*Rm7~Je-Z9|$8sFP$9(OeQm||vnxP3B! z^|AoTkk{{SgV@}v-D65gm)T=n$02zIdNmN|e$TC#_WArGL)7HLgoSwY_x0ax$EPHa zZ%=j=f{Xc;y?eD~GfhuRFaTktDS-R+9dPD9uk|<`7p`kebov^(h_{(|hw2sH>JYw0 zsvh$N5@MoJ4KwlbZtr*xwx-V6VgIQr04{S)!^^c6KdR+tjxR?`8Ca53R;zv}2%78w zAcEj)6);o~-hmY0Ax2unHh~Z!(s~Ix8M`>T%8867HmkQ>vpDIG;eT4*ndVebWWdqq zVcvH8B8+#iStjG5auPL{RUu}qV4qiPe#A-t57)*^Ldc1cA20O)pj_O@AcS}^3Gmn# z;y1uA9n^A#@Xjoz<_`N}0mIaQ1q*Al44%bcljT~fI{CI=vu0e!n3A*>RvRS;S#Gq* z8@AXM9UcT%z;0WLzPRw*BYUt3fJGgJFaarg91y{uRt*;48X2i5doio>ZEb*$-`%^j zP?XQCjHM^x#D-81!Uq6OQWfQPwV#e=S)WU3da4LO_rOWdr%X?te03eBL(q>tqCxPI zz+-lI??F|Zf2uuEY~Y}&;%ux+dR^w!Zz(AXCd$rya9}^KzWuxJ&N-pS=g!R?XxUNs z>7jnW5#>sY>!bt{g-?}e4jGI!$=u3k6tVT5uC9gDzRF^cVO8Tb6m$)~j~7lIn!q(~ z`16F-(bt37O_h(dYFiP@L?ogk>k%)@@nv__Eg$jbVu^EVc=l}{Gf&t;!XbN^7;O)_ zO zgo^TVVpagoLPXOSI#*WEXnriXsa-iaRjSU@rmHK=6oh1oi?M}$-uynDA^fUut3sJ0 zhCMcYKF{x$?^C3ZqTi9(%`YlxM+3hi5&;(L zq!~V0QN;c8XlTe|tNZN8=e(W?hj+WiCx$P0{GlsaP4ig5F}z-SI-q>);>C(^nWx83 zZ6n^R-D*+6b}O?DXv^j0qMX@ZIdffjWOp+J4oCY!!VXq>UbW&ZpZsncLjI>)f^Vva z2vEUS+OYU6Qs@@1V0+p?zS)jFR!t*QWxky=W9jp((obLK{*X{rTwih6VBq6*TTYN0 zY=&aAs0jdLqdK=#fpz4r4O3G^E2TaT2s$BC-G{tSC^Dd#U4Lf56gtv49(nJ3{#Rh? zg`>9<` zJ+(G{8hcR^j2nrl|d<^hcd3|*{eL((p#6{q4c^R$PpjV%*D#kxkzY@-Jz-w@KwY$5Tl)Q_0>`8VucUQ%|_<0*y zku-)SpY+J-1rSRV%n+4k{ODS?eNrC3ayY%7dtb?Ndr0UbiXmV?4OC%a)#9Efv!99% zA6HgBCcQrYZ0V5$yP%dCmxEEQoLqz^3+?5uh0T?yp_q8_ElhhPAOiRkDpngSLDT1> zF;o~7&UsAqF+NE9jXF;2QVa4rZf^X-t?4~qlBvxdrxSJ!DptiXhVI*UXq$$!@)hVn zXJ#VwZjeFI_y?)v5t7F6n>WE&Ou#j;hJEA{3s%sw1ZlPeK`W6xpV5=2RYE@YwT@X> z@DAo^BE1{wtZG=L>iK<*iSK7~?mw3>nIg9}wnV`49!RsmfF_iA^zg4!b{K7dPNnLl zv%t*mAKQ(w7Drs1+i&hUza8&%w^x+;Rw)*mDM~D^v2=8)Zh0?yLt*+_C$(iGt+Mq* z7n_U!UDeX@iL#oP9VyU&5L3ggJxt9TCdd#P$z!C><6^XJt+?HSJLXKUi6 zo;)VqMx>s=)|719N_+Jib^8j)Rxh|}%&g?t*oNGm9y=8;!{6CxRG1hZQo$w}^LFM( z>d=r*$@)(FaIqUtW%!G%&)GkET3k_-$| zhKAw`4g9gaB?kk-4z~0aRJCoa*JXZCN^1Eh+fp5HyCMWb#E^o3a?B$6tbg2Grljp3 zIsejj>eJRnqDb@e^5xHObj#M3Q^+Ui=?5vCZyx`$+Y{ZVup<2gCb7(LevOqAzD6-C ztLss`4@NPlTI_33(1?>d16eM_S_g6_>2eeQzFANHBdh}me2+R4 zyyl4q+lyjUx{Fg$yKWm7&(7LRvEi_QJBdWVbK&~+m+CZHg{ODw7c*_$ zX4-fl$eydb*nl=)klDhX3`C+3PEe@I0+dU=-f!Qvo9g+(r~TZwtgLsV62`Ry1VP@D z&vkEM*Yxn*QtLH(Fl@X_(c9Vio|1VL`5it!wzdz~IL+q$$p=4t9{zoPzd}dWaPJNO zfRI8E!G`&JBO*Jbs^dGF*m~=EntSsbFI6N2BgNX0fo}&ZFLc85b>$|9z1ZI12FE zVO7FP1t>2VIxdX21bKzWL(k>YoquBhz@|n)Bn{9Dwu~b~lr) zlCSkNvur{ATCW$oJ?fK-KKfFBS`kH`xk*gWl5TOjOn#(1p(PfSHW%<6fx#=c*6=El%aVDtBa9EG>IFiEhX{l)A{N*LPHLlT_D@Y3*UsPUA% zGShl%)KHLKnxeM8;;Ohq?_ET>XOj%S#^Tof9XP6h(f=47RUVV`z0`c@SXE6@--poX zV)q$wZx*z4Kd*UjO~Tk1&skaSlR?9|YtQb1e56;82P3gzes}M{*BUA00YICM5+eC>x?{@ziO*)HsL^Z(FazV74>Jv$%y4Sfb&M#*GH zj|P&o=J1G1n(OC=VZ<@Vos4ET<4Js{yE?A52XCA260v6(g>iOjb?Wrzr|h?$6UtP? zG$Ddlh*bkgw98oaf->IK{ zCb6|zTH4K1qM+L0=&ZdhuPEr4GQXZSN`Cv@#m^<1oAAvXwX!-{v{8`PQ4`J}=-wfa zA9nb#1M97^TUIfI0tAU#fCRt-lN>6%dfscI`A+m3z5Nl$D2$c3oMRiVu0z{})(6hR zcd`+T9+hij0ooGr%BY;d8iBkJYIG%t-stk{3#QX~ec=%h+bs7*8$8r5Fz47c-aL*R z*@}RMbql`9Nw#i&ec6vbI{>^APyX+=cWS=cv`=+tD_);J%5Qw{=2WkK>B7^x7=S0) zz`L;4qVDlkht=PGXLIhq`wp!|yRc*XJWWzMrrXK;RRDZP6Xu zBqd1A#rOjxIF-$$FXZ?%$uwPiqseNo)OWfFX?Ir0{w#vAe%K)t^R&3r&wWU|z-fa} zbSQTr4r~T6LsSOM-~IKA?I}>l1FJJXB7PxSH?E`5yHvbns(#oA3jtg`gvkpd|Kt44 zs>JpXS=7t36{MupL$VZ-u{sjtpGzPZDW$7>_p&~I^>8cdWaF^^34#d-rV(+TBK6)Z zU#>lP^5b}?-9_3G26z!ZJvkA8CtgeMW#p^iC70=i#*5rsDnidW&mMB`mnA-%fr@}s zAbJRBCV@xr!Lw(f=+7o#cHoeTtuIfwZF-GU)3Ene_JVKeha`xNi)&X>OCW@?=-LER zgJ!Ae5|;;Iwk2m!RI~;8tcQ^?j3{no{zr>B9&x@UYc0SSDCz$A&$V`;jn874Z(c<| z+*G6>jTQ-^;N;Xb&M%)f$i_Ahd?v;c-!uGEV7%ci+;%=wj@V{(#DRECm+ho1p!s*Z zr41Ki3MD)N?}are{aWdgCCV z2|8Dxagf_`sq5O{ywk16;(o`@SMKO}shL>_BIOtX(!h_Pb8P3~-preu4;9P6Vttyw-zo^#eNSIO9)~kwpve<>MbNSfj+9b3FkzYvKLQalMj%w6F z=X)&UZ+Mre9J$As{7uz_&xF3lmG9>7p{7%fb$5VLr7I=TYF+F2$8V196@H1;#i>!0 zcf3a%Z_I2XM_=YP(HlN;zGVC-7>A-K>&5wkkf87nWH(5~fESl|Hm&mNwu1mDV3e#k~IGmiiUlD+Je})NYT$X zPkl#h9a_@=<%S1K64=E5LfZdu9orSERDlg&!g=xlTHPux2}~rq zwHv&kvn4ZF;f?>VR>k+lUPg&@EJsaE(e@U2=ZKQZX@7B0^6ome!$Xo@QgBC)e%c{XZB#fkXGZ3TK26LW7-#5oiyC@+;{fEu7+-Fx zQZyz(ZTnf^x@?mtCD2Sx&ZCQ^`fHp-r1Q0JgR`%+D%TcEdH*b=L=;M<&dhxM)f2;8 z%!0udHm(Lfop0}W{Ev7qD|U}Kjt2X7w4Q537>}BaW0L4(*a7alGudaWx% zfNCP7yoG9Ta8@!pgs^zQ?lKym{7*UyB9jswUGj=b*Il!chc~mGdrh^BmYFvNbbk2= zBUwmMi?_qwRxooh;>tadl<1O}&`$O5my?3HEho<0D~{@L-y%YPJ&=@+TrpWinbFeA z+asA$;8NX4)SN3+lp|=B!{=R9vskpa?f_Ek?($N9XMqTCXcrd}+GnGs8&$qlA^Bo9 z2m12zXDHp>g~P(Wq-)enZ>&qCw zx7{?s^d@hK&OB^cEiTB8l#;gC0@`x5X?Wkj3LTyMK~)!O=U zfPY<{-rL&@CbTsf@7@JA9@^i4Z~smatCxU_J~B99t^nBOn%Ei=5|ZTU>Q71@dH>K9 z67f1X)qVCJ?Ej{h{Id@k*1eun(u{&W7euao`Ji#oZTpTEA*t9qrEBHiw(b0R%1yZK zT#DV#AK}U2KWf+qP1oJ1EXm0ih6nl&HFg(`{rSS~8Xg`X?T)sJp~Zue38tr$3W_iU zL7t__XH{&j%A<5L*7#1D}Sm?d(sYGwi>Nj{$x-T-Lt+j zAn1}&`O(jxu4gK@@6w#5%lb|FJ&dwI;0Qk#*>-TTWep)e@EbMsvA)FX;1w7iwd^#> zTP3xpe|T6C#y5%gH+jb1y+aq%G3T&k7@d8QlWTMHci{bl2Pg_}oi8XYm2zLK@5_I3 zqV8(XQ<1Uu)-)qY%n0>8B0!2jBbr)RB>$^`l)CvJT+4ruTfnSxm+o8rGN9xHCqaVz zAej835m5#p^$=KAfYjZk=&?`FI+20AGVYgcHrBt|Qly^V&Ok}k40x#2^_^I)8k0 zC*@EqTKLMjDO7Z`{T1_jVE$ynYRV*hh;_NNvU1#1S5Dxr)Ye}epb$)RZIQGyZ{11?a&Wi^ z5CEGKccui;Q7p^BvAKOClVJxvtSyLg7s!~orG1NNG1Tbx7k$Xsx0n`lQL84mT>R9A zK7GZ;9P7NX@pb)tYMci_PTT>Akj!uxRzG}dQ^1GDM+s#p30CTxw$5_urg|nJXS(15fbXezk zdGii1*4{02o_S^b3|$81=L$aztr(Z^-UyLYu=-4$nPdNhjrC=6vf#BgUZOQRCg!_& z?7Iw%uUJHW@%0t4*~5W6UFcaD_$V!H*1a_)!z2Ila$^iU7R)r{zkvZ?31)x*8VcedQzKn=xZVqYunW$-^EQI3N+&?G~CtCcum>S935??!>_s=eb}2aD{Bpw7@xP zDp8rz;KlR;pV2N271{VWjbPtx0|NuZn~8S3!cXUPW066Rx*J2`_@&℘N&@+y)(5 zS`kG>qmPeUJgDw`l5N#Q&BRm>GnLM49Iu~o`Y3)7p@xPFr=_`;ll)%_yL*jtJzbGF z;o+y+6oX+B<2(`S-I{A_A|)-|!28tF#wH9C3<9uUfB=Crc@Sq3V$BHl5IQj!k;l0k z6DT;;spSN@RQzfOwYG(C0rH12;gvx)2OK9u2&4Z2``VJFh3SdQD$9c>RJ6*`+3mUd z%6(bLR!JdaZo?BciSkOdsEoW@d#c0yVJOr$Hf>oPIzy!qvb!1Dh_bI=zb@UgJc2Wj z4GtENh6oq7&eL+p`efb2Le(ZMb+oYS8{PX0RLYvqs28oT9=mLbECnQU5DFZe&dl@$ zXU~58qTT2j=eu0INcJJ%ZoRwG-B>*nlOVO0F^f;hdG!s0gg@ONn-p?m4^PibPi;0N z(prT4v9Y1%(I&&W1`HV8SvspYOk$~(yARs@!>6sjNGc1l9`Y8LMApZd-%^vTiEq&%S%}`*I(^WBO zo?6=%`QV8CD}zYr)+LAC`kSftk8E~Lm1CUD>r!8TWV4*)al%6EJ@WKXx_#mfe> zvZWd58ZTKYA#Z{R8T%A1Xc63m<%u9CmzG=*__r)0`uYs6wsdxjRYnFXBT zbX_$l{lgEHRp@|T-f?rovn|c20n!8n36~+0w6@{vS6YPIvq-tf0$*pjI8z~%YIM;| zK%nPKzGT&PSNxPI!B-jQ2Dk zC0k-*K<>?l8;ZgrB6KZQ%?UoQeCT*8LzjBpr(2XSj|^oX<`XHC1l2~bR4K^VfP)V* z+A7eiU_jBecxcdRgGxj&h7}s5R3~xqX$k zt?fR892L#B^wPb#wjn19h3$)Jp+LoNTQpP694?wNtDm<|DV)#Ky*-U>DXJWAJ&~K3 zPqiCHvK{>&pPwH8RByJ{ov$x^y*7Q~yCd*@P-(~Z^z4Rle|pLz)#k}OqPffjky=7}FhdN`H>9)9R%QD2R#fWAl zkT|>zP-HpI%S+@Y!s0LY=Gzxsr9z|I?WTIA(Z95(kKx;!3T9iChYibf!wY|+hH9zo z`)s?mQ<_^6oy2HnL4=1i$m--tHzW)ZHC))=_X}M5xY^b!MC^M@YKa@{L=Fk@&oriH zWRpNY4==b~R^cWMpJBcJU;FXe4iqCm_}omOh!zGHc=K&tlZ-`_X&)Ts}21o65zqZ4hD{6YZVs>0IyMV%?tBa;=(z z@uW_04$3r^E0x2`SEni(pIx#(^FcSn<};IqyBl@HBY&*I>BS3O<~Ikf=3D@zT!)h~ zWQ2L_PjiVhxT!q0YweGl&^OefjxpFVQ@_^wyAAEjqH^w2v+PYT<}hfh%5$D#f!)yx0`uVl ze@{=(U&!;sWk=+_EdG9@(|)CPZB{MJuoTrAJU=VGUo2^j_a^1!#ES8&w^$Nr>7|di zw~zqMi;Rg0$i-DjT)Zd;Y_8%0x^zRRlU3FnE3{I=915Zf60CQ=!>}uwR&u+_hZPvf2iwgG4cLvVn-wk;zq06 zEW|f#Y-V~4=pEQiDs;BvkX6HLxp8~u5z3-o-N5gN=3TO|PkyXOd>F-Vl7f41xsb5fSz1;DA|-N) zV`Vf8l|rZ2CJU)+(jpk<9_Vq|HL=*gqGaW3{0?VUeGb3opqFwGT`nWSId4`^jCqS*XrgmEq+{rIiPL;0yW{;~O__q=Nj$ zr-S4E1fNuF0RtbS)IHSTU|ceX9Ds=TY0b>cY99D;#Aa2j&#xk2j)6}~N{aEM6Bndf z=J1Fj8!!1Q_d_1pQTu)pkJ;Vbd0JlIWvB=w2)_vOh3J>PREI~@xrO)BZdZGJ+kXeK zETJg?p)3yw>vYaFJ!qSWD5-M4-AHv5#7B%HSs!&ZXb7`{Hbm8f$my-xJn(;ky*Pip zHHZ*BxA{vzeLp=F2_a7o)Czybp{_vjjs)J@HBhBQwn5XW)qA$!8R1SqD#4lfQ=Y1m z`&cPu)?~3^5k>_}`j;V3`56-A;}1DMF)CtWLkfSL%f*Xl8=q}+ceg*_<`zsMZ009U z{YEd~=M}0mAT1ZOEMDa0)lRuD)Q;Idi14xO60W9T4HM-KdR41J6^}gD14+a7Q*n7A zW8WH_HAjAoS{btX*TTZ|=}Cn*77keU4JDN4;rwFM>Y$RbO9%|t)upb{DlMs$xopKe zJ_rPnMDykJ$nxBDx1&X_poss(_vC#;r}5E29~ ztG6&(DN-!V`Sy8jJ35u?@>S7T;mp*@o6T_YlgpDbN;n*a_Nu13+-G%l@rQ&HSBr$i z^kOOU8zbaA2DcZ@2J_Y)Y7v77O9+C@0bqH^G5C0?4@W_@MS!Ga2ziNV#hS!=C*Xv` z$kK)iahM^1H!?gVp~81BQA+6u*>~Jn$Ahpw&wyVSZO=R}Dc52`Ihzce?z>(*cyK?$C-T`r zO3@pGz{*bDxf9`7Y`&9%dEv_FZ!}fKEX>^DFZt;3l}ke>T_Z1Ff^dP9#4ovI0Il&I zG%VzB%}PsCaz@b}@x!5gBFc*4Yqo><6+z4rNSy|Jeq6?9sBD{^)5F-&@~uvfj-ll* zFzlIRNOS4UH?(dPySNTN9&q?EM9^KfyfruhH^uDYn~S-8 za&d8A$NNkaK5LV;Jt5hfnfVn+Lp4ISR|AxBK2AA$aRT%}N!0l6>D?}gy+Po?N(_oS#0Uf0|lF-=57TB9# z@oRN4AL9$A75vs_rlxX4$guO&2(;vI(-Ef<5;T1ggdDu|MEM8T;DNK<-aI z9ly!g>ot?OtB|e|{YFqNRo~lx8lW<9zG7yCu#~8$`KQ#&GtPD7iMFE9sg+&2>GU-& z_SNB0W&fTr7v@z?%x8B3et^#Wm?%p$tF?hxj(=5QpaunetFC@ zNk_~Iz{ue)Ljo*aq5O_DmL1BrwgsajgT>bvI8Z3;-o!%BXVRFrgIph@HpJrW2bw{G zSh2F&KZ|-y=k+Th)|``*>WllrQLjy}+dgadzs_dWNIKoVIX1LDmj3+4MNFH@_%?|q z3QJW(9^rfjmTz(!I|+&Sh4)t;lrEhwymbQv^Le2N zc6P-B^Vix?j&%7+jN|ynEyT17Kfp8(|J9u;Dk_(7HxZ2@^Q)S~Bp1B7<$rq{L&cXb z5w~xXKyz9K*n|j3!E@~a;>CBy#6s8th()wg48HDT;H-eCM=Gx&@=4MO2YH|D>!1ni>EbMYV+W{O|E&kB&%J6JV%ig!;a>11Ej*`E~w$>JB& zjfWba`hyo}E-no0liA?nS5^iMIa~AW*>RgM{g>)IjEcK1Z4t$p$A|3r?tBt)cillT z)gvb_9QYD`8;2Uyu%!3JclGy|`4ZP17F=SigN9q@{ZcOyFo){yN;)|QfTZLGdb6<2RpSq{TCXY1qjLWni z#wK0>EqH&KZWZhLAU9p!?IdC#`bhWuYlU@|Di68fjm&kqCso z85y}~xFZ51(~D-wIQ)-Lv(P|V;HRX}EY0o@HRx@n)9^xoTA7WO(a~7z&DB)sHj8!P zDnQ2Fibgi{_Bw{%UM4pZ|H-fA8q$NVD4?7vAy~1?)*OZB1z| z%vBJjVC5_SmD?Bm>UyC2B8vOotB_3^6_RFV4(~-dN7QEV+O#k2=Qjq~U^0bk9CUgvIpPnQ;>%4iaASt!_HgF>)MSIDNky54x(A6tC#>W*H?)twkNzm>GJVNwd6&WJ z2yg^DmM{$5=T-;I?t|<-mvVLh`9|Zt#W5LEB}r$_QtZF^+pe-Tay;i6x*aTW9Mi2x z=2*_5ZdwU?>d1kE?-0J=Gw4X=o(8Efl?7+{!oBh4`#SeVSrK{eND`a&+7+af?C^_4ZTqpFY#+ttZG; z8?kP#Ff8&LU)Dopta5lYLLQ*kfG{r**;km6@ml;aRwZ@x-!H7frZ)09GBNbdomqF& zn&tP_+J0GfEsZf^ieIH~scKzVj{1@(9pLM@+Mag9a3lNh$~@HrDM78tWX=qMg}l1Yp9xhlgoPlWLJZ&F zqHq=ydz$>BKNr0rP0}^%kB<}evN(G_e*a!5@4eF-J252oh=R_m_xwBc$8R0}&lmhp zbD^`Xs7-h6d+S!1Ry?k+BMJ~w0d;s>hwayjmV!z=S>OF2XSmdOfIGty`Cu_L$gV~< zBzDIk1?9*$t)^(Ki(dGBKGQtEP;K&^vF3Qi+n=Palh)U+LChBz?6cSxAbR5{Yx{R* z4vmLWqiIHpM@t+OyO_@q26=e8I@46%>5?t4Zxo7OZjeu^=0sr7ZebhVv}p;)V6Ri=q>txDPh4u}GrREK<*m7x%9U3N zcNzEZOoD3c_*ff?Z7;@>2aQ7LMQEp?V1SH80dp`|4A=P?Yhh{$bb#;5=H^zMYjAXA zFE^{FC3HRPEF4HLmc8}!pS0*VEmvIrzyyhcj#GKuJdW^+caJ-iKB+iyJ<5YK$W6cN^)6l zpBeSRP;@&8^A$B~%i#vB2I#q8^m_DvzAn=Lq*DFEMOdPh!&!#$cw-Qpda&A1TYCwf z5g783N2d-^yhR1FxE@bb1_`)-pyhf?k)JEQDds4eZzz*svI7a)@m!a_Zg=?;uyW9)6G4IFjIYVLMU7jSpuI2aZ7WE7Di`e|@v_{2Nu_Gp^8~RvobI~WVTGSPsx zAt&6zC~kL1!#_zKq{+6ONOmttSJv+b)oTt2lfYh{ZdQz*{yPZ`{#T1AzeR;(9z+eA ze%~1KDjoL1o0pZH4a=glDw)ms*D7hV{^Tf*8Qz<5g{o-DY)xyy{0XL}9};k0wC@%7{zq#fB-l;CSm9H7Ju(3hFnvYTm-$7V5Y<7#`U>h%)c z(o=h*_y&p{*su4l{Vcb%E?VU)nvc*@j|5iYye9rk`<&qMae2PGsLe%HHGwVw8X2YyK=}B76}b01`vw|`dqg514SANP-HhZ zGeeB^E}}h0TKeE^N|YS0_)=b(U-%v|Chhb}O7WllhDPjnle|2GC|#NM_tVLyx6=Sf z1n#Yhrlx=HhwiN{Z_cuqb)F32XZfX%O_=}?v5xfr_%WyA$^CcjeeYV-)c^M%@x5%k zhomzW8Ba(jJOSSJSWgqqu15q3LjgQywDX%+2M!m8ca(csiJ6JQIB}5A9I;+x$ zuWt>`(I1(2%hw2Jjgo(a*Hfj2h0wE^C`PHz- zp%MGK|H5Zr#uz4WdBI0ZiVTH7xveTv=SE#8GXVXC6-WYqQ*nL>UoRkEi z)sPU*Ab|D(7?4c!twGpn{Qc$9joIRq6+ZgyMxO8B{QA!%pTH1{hRWyb$O`IzdkCio z2M5Ppq{}hdBz#l7UiC_=+L?)FTV^I5OUPl}G{c~PfSuqN*~Pj#v9m<@8d1eQdv310 zJQ+NIu_1)Nq!xJ?w=6HKRNFf^uq&I81qEeXi`tc+jGE+1@6A;c^qrkX!l3klgX|8; zw8Tn`h2m#>Ix9}UH!W6aN!x6puT0_ma#uXX$G2l zaXmz_UUY)BX3(~mR?J&JIsNM7l|=eKO)pJbv*)=DK;uWn+%$?! zktCDj^O9?AeSmfIzJG#k=_AhV$1+JOrw8m--b;Djf4Z_nYO=!kDJdZ1RcmFklo>R8?zkterxPo!^`C=2m z99#*+2f&=~L}R>66ZBBifBsm2bj5266w!8sA^8Lu4NcvxV*70r7Q30{-}uW5k|=g$ zD_0gY|HEZLQC3!Fm}mEV+?MNT2+A0^^x4gm>zit@2@@IHe+EGbi!3?O8(2Xu( zLjT}De*MDcs0>_;sWwaaOJ!ZIqsFd@P(94yC$Jf_DGt8B@J^x1X}tCs=^pXYYYZ5% zp&!9pz>HD36ES6+8nFr3qfvU6lhB-~!P#=S3J4qF6hJw$4sW{HF;z1j?Q?`HqkZY; z5qqntKK}i+H@X7njFaxD$6OjYOJ&*TU7A1{szgS|r+-LG;77IG+=#%<*W!TX$9*7U=cfyE|?6^TFJKzhSl@XhF@yhp@@ed3$@#5ZUU@&-7J3?IY`+LD6&t562 zuKJ%zz?=zB9acvMI<3|(3LV&^545GG3S8cGl>K@8*cnvg`2E4;PWwKW-`#k1AxONy zDRo!YZh~DHKu837sli@%mw3itRm#GDZmowfm-iIr4y>WpqRI#kVhh&q`wR>m;#lv{ z@#vyV5KpMNYOtA@jjUx#Y^m}?ZFMJiRNi2rysv4-drlfXKW1SbRQj^ zB3733uXTv{Pasv;*L9r)AOa9#Igt{0-)*v6;`WzkO(&nx4!qC2L&JHL$D?fPl}_zo zvc~AcY&T?Y8!EewBCa81VQ#XJO+fG61v}{x3w?AaGw|0pg)-fVX9XzjnUZ|wROX{c z-TdKOaP^^#eXlH*3{>E;<6%%_Hqe)CipydYa!l!NDk*8swXG|UOP*=qzyDxMu8nj= zMP3#$X5m?+J$||1(w3X$<*(pD|0LlRn;j!MaPbZO!ti=1mlB{#;9f^?y+Ps4Y&=Ai zEcp*=2L2a}p=C#~UlLliAR2yMDT=!sq|mGLZ|H&JyG!j97Nl~1k((P>lALK9KQP{> z9&?nz?ekLye;6=0@vT9koV80T-jgG7;bpwMVXV}k%r)Hyp2S;-&mR=e{lF{8VpwkE z(Nh(^eYo*iq=Q{X(=eVBuT z5Yd3x&M5R`UR|Esz45&-_yA!Z#-*|oG7_8~S`PbMw>k-mx#4Uej*337)#FD z?fw1r!3RzaDDSmnZR%-*?Dn5f63X~7NLD!#kY7%E=FEeweggvzGM6nMPh9ny$nlA9 zijSIs*<=3~I8-}|%@mjYr9;66?sRl?oKKdRe53nF@gWW8Pzfbvlv!N0LazSB(~ph` zwV_0=E|Rq&I&^?wW?sCYrQQ0eJ|cE3;Sh-1>z*Di`L2#78!OjJP!Wr=8*8UN82Bu} zeIP?q!1~LJh{58&RIRt!f05beTyoffh=&1e2mla~&AFn%i?~iHxYfAQxKdK=W?uwa zm#%G1Qf9W%D=m?#H;L{xq{=wyELyMl#AEXmrJ4D!`6>ps+uz=DQ|+avC(V9^tQVpa z2<0NeSDIx{IXTg0+O4_#>@}*a82t2vXc3?6i9O{Vcck^D`Q(q&tlJ)N&{OXCglnE? zDMBFZY)HXy_KldpEK$+n#ul`roC%xmFH;f;N1hERINW;F$e_hTPEZ-0&4xEmBIA9j zz4Vyahw|v?z*pWQXP<0+j~NEuRsEf$s;hiP3655uuC)=Lv9hu<5$ZE;g=YbkXL0^j zx}2PO$kzFeb;3~#C(bmW+gM8|uA_c#*sy_GkU6;Idx%|ToL(gdv^7}g?pyV92 zof~008O5;e9DTM`MOV%jWhdbS(ie0t^Mw@L9QK?sb8TvbM3Zqc;vUb&-i3{Y?^biqz@amvg?#mIsMg;j_PlxqHZ{*Sa zLwn~7ZnDp<51eDbIEn*h4iKr2Lr#Epe02LR46r!BCo&pAT(JY-W8mgraA++I5?*JHs$s8f7!DZ zy9KT8heo8bvLS@qz+iT{BGKpwcDJ6Z9CiCM*)fR@oqTY3v|Ef^6hDk}7sGf`58b4u*^_W~FAe_qr( zkWoWuOBjEk2SL)RJcNxT_||!}DeeU1qkgeCM~jkm(SJ2=G|}9IX-lbj3w47zd^YGR$`5 zGKpCtoR64yRMRO+Awb7H0AgZ=Cs2bMBk0eQ`MfcL04ulsUOF8 z%HbT=1M*OTrGn?g{Ma!vyw2ns6VsxOJSJuA?7$xd($II%ry4i?BTRV=aBoKMqPBO6sR!Np1At!C}6Y zjrEYgwLhbuOeeeZoti%JK4ndE$9L20wP}2q25l zlXCh}8AN^FVMQ3S3&udM`Xs5vMTljHfE5H96wQB8t7fqID}?#~UAUxZGv0m)(v9dR zPat;LLntHuaE=RCb|27vM?JtJ{Jwwg+{^yHP5PRlg^B4eYHT_Tw^Xm?40d_URBgSp z+-@>3^4VjH=+#ZHtNRCfjlq59+V)xg{+gN`avGwToNK2?8{a;WVFg!85WRSwz_|Ah z$9t!s>%eeffdgfA*YPyJV-oQxT~}x6;V0s_iS@c{XKPB!c=aBq7%?KG2uaN1uuEcT z_*?1=H~`cbTYq1ksZJ|i+g4OZ{iqzRiySWGn%wK9W9*@2cHC`#pIiYWXkElh%|JIw zWQ1d<@AT>?v5w>rgoWztsU_J)d)L9KcNeM0w1b=X;6&eMU$V8kn4G_qcM!DdV9~d+ zcd@*h%r>6=}x-X*vvkx_;3TEJcyu1J)oy$;8T%-)hYIh^@WKVFTPpBddSbp z7b++ZOB;1JJ^Iwp_OA{FH%co4*U>^~+3lI~m+XjV{2#bVA>=lHg^(#?JA=w10gJij zR6hnG|8E~`9t~dB)z!X~apR)B6jXCn4YPiEf5xhURz96z+xuto_{;&<@Q(}*n{BD* z0)UC29?I~w$}NZx2q|hfi*$Whd@T*V`$A=VO#nx{hYuzdbS-sv8-A+3_uTQ%Zzn!{ z-V-8qZ}}*n?Iook@%F|*YeZ(j#&1;c5WhGxzwFBtRm0N~@VwlA^5hJzkcO#q=>e}^ z)r@&HR#YqbP2@YWKTc-E{6l0z0+vOd5K;Mtq_L&tWz(*-XNENCrF>f47D($mAjzS) zWe;I6M#5L-m#bAzBt7zY+0H(@ATWiX?;VlI$r=BS4Vn0l$jW|93b}`nufkhw_4L(W zbq;*g^p&b{3}s>q^v%nfm{7d8@Mm}<^<3VyoM?;7wWE)cHCcal(cK!q-6Rumn*_l5 z+W$w?b;onvwr$ld6~Y~nnP^EUBU=#~vUf(x%E(GKEtHW;D#?gMMwFC{gpi#|$X=OQ z+4DWF?)!e;=dbtkygm5+zSsA>&ht2rp&x}GzR72?Qs2&=Yk1lnJLnX+(o7|U@xDlM zbC6KlNlFzO0N5JAtmyi3!eg#~%H+{|rVK|2)JnK54?dQZT*EdMl=Et+K5tfd@vfeS z@9gI9V};C5vh)NQd~u5$yBxQj;rYRXM-S6b?{mE2=@DUgI}?0(&;Y^aIVm#*njTym zlh7mgh5erI@A|&qPDLeWQmCaFJQ=ivd!6Sh_wAhBc1X4L6Br|(?2!8u^jbpv@>{o? zHN;flkVCsUs&i|B*V`qh??|%>eoap%@wz&-GE>eZ)thWGLYYf%BA|@zmA0^AYqhhq zRJw+xFY@2O;(#?u*Uz830CY(RImI&?=lc~-ol|+FZFwm>I+V5@|6p}4VZ&oiPN8#3 z8h3sd%pxf3#7N7K+0haba)?~YkjR&2ud@22{U#JEfbB;_M=bq?Y1mqBnemy*o!eblf3ra z$}){{4t@B6bG?QsPv@2(P7?-ithKe3Me0)8KR&t>59B5O%?sSan23fONPGcygS)UU zN&x)@i6={g(g)$&{a0XQWX_rXTK{WQr3^B*_j7iLvVN*O$X^{HA49KisAP`@4`ZH6 zjP$$K9cL-NrBFs4>H#49uq{vTVpLYv$Ez&Gb!zckCwTTAKRQz^(d6$4i#xc{z=NP!0qD!qhh}ZLf45Cel<#cIlH`ExQ{d)pqvE>*Fa7R!0pGvbZ{cFeFLsVT zFW*s#ru=P}ae!XJ9t^kM@ngq?F5LM*U%0eGk>=c4n(~wS`qD2)db-hr!ngMravA}N z5P2#xQ$SrU7Os=NhTYKPSUIjFO6uMp-v@g+#YCCz_*HFf%1Y|?sNv+)d?>R0@T&)E zF^q?ton}|dLN#w6kj(wUu+4*TGQV;6T>{+aGhk%9KjuXd75m08#d`Gs7%&LY*eH$+{q#QZh4f)C* zmBtr$*QGT+h#Wf&t6$>Z_vTI6A;CI>1ct7;>TLsGD0N@ltNtmisRcI_^DAZ5Do&%j zcHWs9&ExOL3UsTI;*yo^9lFTdkyoD0c8C})qUs?|gkr~N-9IW8VlrS`fQ5l>-z#mFT2LgLydx2&#zru2S`}4hgL-;?z|Sm+*`XlD!-(Q zCV!r~S^LQa04kljtg2G8w6|>xuH6To5Gg_7H4N(F^iIbt0R5gy+12wo@-TcnNq?fi(TCDGTb_P zpyERXwZ<6(<$QhYCTr}uaoQ|!6@qWjG`{8UD_1Br_Is#pf=c$*K%{Wr;$XwcZfSU+ zid<>`_?J>xz{+wdhpfx9qs=tzdxE7AQqtKuXs~zpMO7QVw|Q>mH(lokLX?ln zg${uxaVyn|8eBZiDZL8bT;MW~zu%Qxfv;B7a zY~p^y4`?oX&i=KqPcP@t*}t4*yuSQQ2ov&{6FI5~gORgXbb-1DFvl8fYQEOMKVZme zhx&i+A^!2j-|&*l-Nm)dCOzBgqSim*9J*fe(mlOPZ#I05IuuNOaQ`Xit5Kri?l&|^ z%=tR1%_92dYS=}xvhw+l@EwNk@EVeZ8b2NLe3#RyE-p~qZu07Ul_O{PJzgjFp7JW& zqO}Q|)~^L_&FVJF!BMq;>%;JHE#Hw(FO2^VK4=l7(c{IBeYk4#r%wm#s(^|S1Lh2o z2^^litRB-TALFYZt`W5jO7$Jq)z4Bg`f?aV7g)W0Y-ng0pu8^`$|j6uvU^Ka>Nn^O z*5t3QEK=ZwA{t3T8iEFzcuk;qmAUk5mi}O^xk_olHNN7*BJm~pWrQ-E1p&2f$E-kD z;s`QL8vfxkQF=9Ytd(ImMnUJ**A9Xn?Ta%NU)RE2@G?ck{LD1OQD)_v8RCZ1TU^vrDDx1A#mBsm$epv^~v!%c;fPStc2~A%+9`OYBOCeX0?++CTlWKqcAy>Av2w8k0|QA?6x7sCQohTgNE?*C>tM0-R=uoG=a-#(Mvf{uyCY-z zB-0*jL;r;D-P0I$DBCVt-tx!3yRm7}YF@}3-L#coN@>4OV7XbK)n zxxH8lh>YBke_z4I#-^DT!C{}KeGDH)R=5@T`b5?U80CBbWKy-Y-qiibi}2&&ygcq7 zC>WOMI2jKtaAUsu0ChQ9&HIKS2W4cUL3k(px%vcUgSQtrLJi+A&MrJV)u&qZ^=mlL zEqHb80pfcrFHdT>T8w#g1XC10;%$1uHqz4WFSrJu=>7Z#oVdARzK{urS<)4N;Q~vt zE-tohcbJc7Su=P~M@Vyjei7|0d&%y~KJSXZovuVZJf>1H(meV4$O8dQ{V&Z1o7C@b zHCqd`b+mAGr`hN2Vk^HKrXEUU6&Fvy!N%adw*=@ZmZ0sucIYsr4th7PaR% z`9JIL?fv*v!1&CZ<7?$xnX{j{jT~A#A)0^-WAXSbj7aJ=_6LBAdlq07Rs}HP)UIB= zG1kD6mc}ba*_jl(T}*d0DN>kw&jxvgophdkC!93t*w)ATtWVWD`M9R(C8fczf4}>z zz&mieJLvT^DW5QGc!>}hKi^_ipB87YY|JIN`2*9?att}cT z9|N`$t1HW~s=R^R{QSLlFuW>$K6Q+qxz{Sz>5ZF1uDN;KJJ+f+oRgT+E4K=qJd*U4 zfrBGdH+5&08kZe<>%^0Z*6~W~WM%*UMbB=RbL}xZL(J@`|IeDl9Mg0|C9b^I_$w5b zE~yuIMxIhpQGtqHumI7)P?W*lUE`crn!7tV2$_C`IrnLWkd=y{n2%VEupBf$*1TLW zeSfO)WdftsQe&aH$(1Xly}HYM0U|x6gd+*{y{mQ?E)XRUCS@Uh{h3i(n55RzU!!7^ zQ>LPVUs@KQ&Ome4Zk%|aeJ>%OghJ8q)$$wrh}tgI-dS4ZUG;*k;_qFcHk*PtNv5t-b zf8l7=a%>?bz>Y_=OXi8Gvv>cT`aS;-uenS2Dmnx055%K60G4Hb<)>mFK7IWgjuKXz zVVk9q@&1G!H8qJ$^QYQ;-K^wuOEbeZcxi?2judx_uWz$5HzztJfTHMBN%{*C@eH=W z0(=(HLAE(*XD{@W9dA*Si?HjC+rG^-Rk!aJoNA)ccVqky#vL%YSv6E?(yCf?Po0~~cKB-ZV@xF2ux#A%(uQ`C61u!|3 zaZd+rDwU96x@6doM7I-!GLF7!wJ9gG{7B&D$+hB+hmC%f-zqxPag3oD+0CzCXeyqy z-oaC0^d`i#tu4(>X)S zXE!V@gd95$`z}o=`?|Ae2)X=JDWOeII}!Tg(>a6}dLyqQKyjojRPobT)5~hvm_4T+ z9ZRbSpnc_j<}xB#K10F*2AG6n=Vh}s3zHTGkH@F|-*();!N|qMkS%D`S$2Q_H~Zf$qZ&c-~|=vOU6(~~KN*&la7S3pz^gwG3v1=>unqO!{r$$A-Q zd*olGqFrD0yHQsQgY&EC=2 zRa}N#t9zO&0LC^7Ii0QN2j03j+46dhHJEykAWepGv9a0anCadZFRa2EZxcLqVUZPd z;q!1`{=Kc-lOoud?O-|q;WiD}_z<&$$r8X8EknIJAGS2o%iHbQmYeCw?R5OOU7jaX z63|(_i|K~1;s{K-M{Z7TW>ktVMQXWc&MRQedCjLAcHGzzRNyvZyu~Y|fVb>n49o0; zHr~9bQyHv>+CJvkd}~@P+nTvPO@D9vnJ1f$Ih5S%z!;&C%i7lK5iM+09PKscJw{pA z?DI3SPD_6}+jl0C?}A=$qp6O`L=aPox*^FkBvJ<4^zhEw>%lF;7*ZxRQ;6VCJP@cJ z|3=~V^z?k*XxotDUtu1fDcLw#IAXe53~#BM#(8%kb@SVG>g>nWWz&eDI>2v)tOns7 z0;}~%s0td;#5w-!^zz!*E*_@l#{Y3+k&J!_2LMj-(XGR$9IJ6_b*0hCvGc^OKf{#E z)YO!4jKHnLs-;V_z>|0Q;%jk_zlVFuyCyC43k+Qg-q@#3K4lZ*cYU$%(4zq;jd}l??>CzpuMA{fi`h4S=7%l+={F(RqY#Dw?^*lKqz6STlGzwP~Au)xRhJ^h>~majjb zVL3>Q>qt5ZVwwmEiA;O+jy8~!{IFCIzBN7z+;edp32_|tY3YLv9o zZ#UypLCqt?8VcIUZ&0REI6{<;sp+kwnH|yKsNT3y$eLcnz7k0Ke0Q+m+_35DiS)@$ zS(KD~mwK`rwOh-(OLsD?>8~vs{K~g4cgLxyl%81k_%F5xBUOm6KKafo_hsDkJs`a0 z{gNir-F+DOkXEI}B5K39-|)5iw%jXMQZ_6KF~%KnJzQS;{K(a}nC30(;}vt>y+gL7 z2&gV6$8JZb=T?DsP-`@ryl0cw^x67-8ROOY9u~@Xjw&--DGEEqFT{Ol&{6cfXVEC& zKDhJ7jXecz=2zdgYx?Qkzps-!f@~j>&I9rlOK3iz);_^P^WXRP<2yZPWd-UXHD)7z zoin0QH9#_*5T#A}GK{0pBVsL#MfPsJ!Gan~VMr^8Ga@Fg)lr4nYD-~M7=i#GwFul* z&jQW@ldyX0k6*t0O+^*hz1bHumi5d1a=dSCl`q7~id<+2x;*o1AIBSgZS9ZH;1L!n zR#DGDf!5cZnB^g_&a2~V4F5c`B>}RtEcBIuIR@U{R5KsCn^&){m0cL%Ic&k#afi+B z;PbU3Grv-9voRELhTmK=D{(jfsUpI}l0m#f#YhlhOeCBfHciD>rwT&vfoZJ0k{VykkZvmsyd){`>9`!ry z)Xc>T(~fgOy+2d<2U})OXCAgV)$!v98&}5U>oBg2ndJhz^P9!%^Ko_0-hazkM`(pPQN!T=hHA;0wSBAY#CAgF&w$NNR&z+R-7~!D zDrs^1n$@*G{_yxcF6nf2rl-uzZ-9R4S871_ySxV++2cQ>Qs{q;WdzllnGH3!o6vHk zsaWrkUKV*Qu917g;1+B^H-g-<Tg+>0txeVPR_U_lJb51ukKsCfAzQlcNlX?KpaFt|gIVMX>9QBH=N2J4-l!fO0V&Fwb?dcrR)Zq;z0*$G zY3(>)jh}P5l_UUA%U&ZIb=BrxGQ^sMmqfQ~xdvWQvjd&-uAfxg%(0+0I zg{mf%zuvj ztJUgsMhXS%)@PgIV`5SUmL{t@dlC*NE8o&y)KS2W3kAUf--WxP;t_TAi1j+{ClcyE z=X72@V^y`6C<~1@%!9FmcZRT* z;0Ix0YJ<_$mg1LGnArW6G+aO4Vol5yViUa@>#ONR^Yz(t@vzf@tvU_18H9T1W=r!Nj4AUqd?6MIT?E z=UaGcrN*>;C+5XU-g?DmLRhJ{#*&C1I=8MaM;^&%x!4+p;21+B)F3+ptqixIARS%> zSXHQjkcq4_<%~wyYm<_N8v#(wW>o&Q>(+rxI&ExKIE;@p*SQXaPQGF<4>Q>F(=$;D zTYgwswsEwgMCrN_6x0pu0GBYco3tFwyD3tCxFSkVI}}WRzh;8>0WZSb@8=-BfeE>5 z-@ZSD$k9=VU0pdp8RFBGqi?}LoP@rov^1Hlb}$vqjJ6>tb2FkyLf9qlqO^8+{2i*K z$R}d+v|D^(T5H|F`(<5Mq&>tP3_fIcnNBvjSzbZ@L#d+cQN2zWHa(W{x<55_5se9% zNAX6BA62^B{E`Qs5r+stRNx65O{j0x(0`$&f2`m##TPa)UchmnFv8->$;BnL`Nvpb z{Ens^h5(wqSv|;yWw5fcf}87MtdO;jo(SG*bNLJU`t)80ZnD}C0Zu9sAqv|i6=&=@qo*Vnwt%R>d4dbnW4`X z{HNEFBLxeUl-TOCiP^>BM1dalR=i|(_ACravABc7TW?<0CM~SkEhM#Kf0+7#8;qeJ38_S4yl~@7USm zFlZ1Ve(Q8!f9h3aHFS18;S|hQFK}s%$Gv?0`t@Y4;*!(|?)1iCg5cri?d|VRsJGVE zc>jn@kXSi-Kzz2ZO%F1&;o&M6gOQoe)Nff7yWd2tMH>VM5+>i(K~{lp>$TlRHR(00 zOIH5nSV%&!R}Cf-F%kkHWMtj)8-G%wtausN|0z*VZbwB`p+&=72G6yv%F5*()64j@ z#wxqEfQW-X1*AWad)SaFl;g&6S3-iG;fbUkzT5l!&%dY_X&yYNJvx<9D8H@k6S?1T zl)wZ>IlhLxRHyP($kG@&WL50l+`vy)!vlmLmjzB4@zF+6fZ3{=@2brGp7NflBC5m} z%Q%E)2$`d6y#0ojt+VsUL%G6MW4yVFMPJpv?vQ>QFXQEiIyTg=c50_fHOu?a#;|6= zd|aC+OBb29ri}I$E>Wt+2KZC!7%43;43*sAQP!qCXLUZ|0!etlwCw}lPfLJkE#pyNRYnunJe;$3j;jarn(G?S9z+;jZG|>dm zk98K*%k9KmfYMw&Oa9cyannX~3XkAus=Jg?X{Hh$buuh=j+{QD}aC9$;~QyRS?~ zyNQKdtSs%ujVae81XP)Jr&d-R=ip*Wj9Hu&^c_UaLb6lHUae=XcQk(e{JCD(Dy7F& z^3fp&lcgV6C_1^hB_W4vz{R=gYtDiC`g&`*m52CliE#y_Ie|rI;^N{uUpSPsVI;wg z3BFLWlr!%Sw+@|1nBiKCI?z2H_~H+kP$JJ|cW&Hvpay_66C66;yX&fd`q;o!4g=3a zZUV}dwNHxzx$ft>m3DV)_g2=)rRIblIM*5F@J+oEZr}ksS9-YkvOH@a^O-svIkKk1 z`#0flU(Ai<@Ev6j;W*vr0xmt1n`|Bi8w6wVae3{7<0qit(D#X*0|TG%VK&mxnByFI z<1Qrz+h{(_&Yjcxc>peH7T`R)v&&QtG@6$0mE|-t*7pE_XzYZW2fbSR>UTs5Bgkj7v6&3g+?V3Hb`DyY7 zcJ}Qe+NH;}%c%vEt;1@f)_kg~vjV#I^x3n6N%`GBN1CAyN!eh$H9Xw7uzqf`VXoB{efM1CHKjTuL^~17YkEBoQ4$$DX%Q;&7OzW)^@?qZ(Fz;9c>^ z$;D!SL!>@fgn)McP-Pd6NzEQ+W|86V&qIE(9TXNO7AVB=QU)H@J^s{9s!>Wyk0p*C zJqnfTN6@$-V*XHC>W`+OtF!Ykc7>?0SX-S%h1JktfZ{Ji+%M*vu$BI|*L!gt0#`L~ zmF(|LK61^#fX@bWqrS^*p+dgWAuLZe)gD?6sEg5|)TRsL>&U{M#23*;KWn3dk*)nh z++q`Ad;N_+yyfHPH;3{jAI%%eEU}J-1`DM=eNytUD-TkgW0sb@p%)9brWljwzdZyB2?9vX4@TxV_n|%NLK_T74y5cJ{B9E1h{g}*bi_XZ;sikO z#LT-kMuvF(Kt==myFb2czkcoI%mAbinuq}pWUB1vBfs&BATsVET8GrhfA1G{{Px7YDu0i^#vdz$f`MD0*yH z_)VCalLTv!lsE6%;=QmpfAYjT%H~&ypuGcj8wlU9k>CMCpKQ`(w6pF`FCi`r2T=&F z->7z;dL4{826n2aPQko@3Q+^_E!fYzzxcqe^)*-4*_0n_SNOAlJplm+p$_BS7Oi|h z2Az+~Je1bt8E=^QjLD9Kkqu`QPRP5cGjB64pNQOf#HM)nqk1-ru@)`vH}G zi>~J}8_mBrhqAte%9}lq#!SUx-OPGgP0E2+xt1=@+HXhU?0qQDu8L$q!r&|b^8tVg zaE3rW$bo&kW!5(IR1iuWKXIbCyc~bC0;tW{XW}J^B#k7bNtmUH`y0j*yQa)5IM>9& z7Ds&}+P2-hle7;U*uOtL$5s*|4tN59xk2I!4n&G`u~qFgHKjn;(KaJ#znCK#g{momR7KD!K23^!|J!?T5K~bZo6woVk&0TJUNk>z zvOE z8}K(SpD6|?!sGFEOhIT-e4z@iaO9`L37SRPT?hs>FUFSuQCUpr&2VkBnBZ9Uz$@E4TKah5 zZF(ATzIt0FATS}Ok0VWM910RgYu?!F_{tro^=^HqB?AkkuSwypPdA?Yo}O^dUHlZY zz{kb!t%Et@4Mi(&3y*ZX?~8q#sm>I(??)01E>@t0x13Hr>Rc_NN{KT$MQ|7-Z4sv~ zgrt(-7?M(tOAH3hI@wZ@$nM1Xz*!fDDS=H!(!DwNWIZ~iTi2g!={$K)g9!rW@~c2T z2`JEZ$4!9D{DHxY|Me1rFrWe#{cn6Y3{~gKLW=6@GQP=f+qMnLJfdnx#16?}Idq5_ zC_HgCat@9rEiLxZ<{147%M-P4zR$e73HM_Qqv?Rsvf2O8aUL9*HozKv@m=tri^+&e%M0fDT zkslG5Ikbk0DUl5LP>R`eCT&gzN^JvSox?9I*SnxDFpFIL%oJ{{SptPR;?-E%RMo(N+RKzarej7iNiS8ybU;sTF6fz+oUF;4YccdA; zyE`yoO@U1ZCb|;P1F*>kSEdXmd6%2*e!^VpV{`NT5fj6`aBQ+HpZRt1#EJN^V*jT6 z`CZ2m>3(rZ9AgS7O%DmFk^RiUBbtBb$RF1{KczXS7Vm4LKK{)X^f&!6044b9zM^XR$R z<({&(JFDL1FKxeHj*1%cj5$adKy$?~`^2wHfZfUIgbe!F!j*M@jkVt7KJ=jL=FRbs zTXI5Kb+V~t-RUJSsw+^ZVr~rB;!s$Vqni%P`&3suMYQuImK@(ASodI$;)`B`N06>5 zT@J8;xR{~M14B7+XdML|hi0SGcwCU+yJZD`HW)R10=P=1K)}l%+uPquKG;o;In}XE zpHc9y(|7v?fmU>lPBv~hwDv1x*d69pRzRf7;Vyl>&t9P!mGoabB$Q}@R!wtP7ngGo z8oIZ(Gb~-+k2eAOX$t-+PfJ0Q>N;U7&E&83_T!zCJ@Tw#+6eFxdr#3yPMmLmxoh(b0lJ^K4ZGB zZ1kMrU+P$WUj55PAFlS(sxiEo9xgh(g``Qmfqn>7GnBi77YEc0@7*c!mda|b#?eAw z(EZZ6TR6!0eOk~;C|k+fj$*H|h{y-V0L}4piI>V9WzOd!n#$xmq>H7REfo4Qfm}~s z1K0&l=G8$=`(PhL*@-I;@h~&Dx`mU?F5)1?Hl}JsSPi-Z|RaL?G z8X-daL*x5WC|47rw7&Y0f7$n~mHQ57=s(G|sSBxuxNEom@v$sh$=92LNun z1O>ye=VEk=*UOtr+pNjJ?lqIVc1mvL$*A(R^@$mapSfK#7N)MW<>@p6akikN$w!9u zIDW_$diuDay13E)NMZMejJl6Wu|G|rbpa|jj*QC6%9L&vYA&v0$FE$ydLmG^oexf= zD-{)vF0`{(5PFUK1V=^Ksrx889)BoMFycjU&VJ$v%LE`tGAs2m+M}f+YlbH3{8Dc9 z*F<$K&sIsBg1HJr;sZW0s`eS<&_&)qbvN+8y1V)qgELtKy@HDpXip)hn9k8)ONE%C zr|{Z?uKEgYIsbB4bINACSy)fQ@&OGK>CS-}#GB$;^)Cr5YTmY0K)bn&%g<=x!)RNB zV_ro#x8y?Yt)EjD8>YQdv6qQ1E)>R#j!!ENQwCDfK<@kY!gz61tu=*--|(*_wUV;X zGiGa6R&GDWh?|mg_gp!2aqu`Ubn+lM?XPVIlXl*Q5>bbw}OP+C zmOrbTRko)T`$;3my|TNxrKQ85Gvz3jNyO|19SW9W^xL)})b?X>akp&xs|6@g;ZD41 z{k5*z;)R-IdOA9tW1=je`J5PFIQkzK;7iFmDL387T#M54z5NeX=BFEVj1Zs z-Fff;d$?dk#;H6OzXOeWdtUfyL-_{+^jp^-IKX$;yhmw#Cg9`)?ef`RLEYhdq@01u zjRO$ZV67c;Tz9KV)cR1?=V|Aush`1wVrmc_6^VaD@lr;X7X?6&c)KE>U`<4LNiX=!?^g5C?GF5Id{xfgGaoR+-}RUI!k_nOPNlC=#lua9`^ z3m(^9T7UoXYT?W?YrI$9EqLuuntL1(QHnXASoX)r4 ziQXLJXM$|LW$3Q%_S_BU=1J)7Pu?@o{CmYnTY}_g;^4!H*AhLR&ZtSo?TWt)_j}JL z@@>j{SCkNz@{lS)!!>Ajn5rZ|XYpGk4B#;oK&jh3()%D+6u$qwNX4tU1pqdmxq=C0}W`7LC|hu~_cU>|F; zJ|!kEVor;9@tm1i5#U`&AqWo=V(Ltoy%F3W$Pd=tAzX4X;1cT%wxXKvR9Gu$8X)QV zt;0}vE2R0OPFRPT1E40Z$R9p@pqg~hAm8n53=KC~5MQVFGsI?@SlYt%UsF@l@zSNA zr8bw!+ta~PLvDb)nHe_)VBczlo*U~>tz`}6)8*MtAuq4pe&BGM_J-aB`FR_E22 zr0TO%S+6$6EBe1HpM}3+Fu+IH5T@EtDqTCG7?|_!d0MAa&vrpN%UW&Y+I3VZUi6HA zy?>w5(rm72+{Ve7GLCM4=WHS?`Vrg-Wo2and$;T^UYfrhp0J+d`*WB6H4+j#OUGNX z-Z)?>3#ZpCwESoUJPebxO6Dpnj=V=WEflNe<>i5RCA&3~ZUuGR2=zD2PVqT)$Uh)} z;GGFaR+bx`lWNHp_~e+JX2(>*XD!5X2pNa z4er*Vuxp|p89AJxr@`^$$>-c@nS$C%(kckCoCvCG%t*BknfcZ5`9q8hK->r>b}qWF zNeb>cd}3p*8-M*c0;kG02#S+!*Sf|;)yc}H@Vq;xtn-+TF5{A&BG5RnOQj`TQ}|>} z3tx=7NR(QP{CeVGs>5%Z^{m<$vpifSfXQG&JTP=o|6^%H9%Puuz_=>Ew^!?10BZUg zKjzYY_|;}Y5>0|cut& zu2u>Cmuv3}=#W+iq_Ek_bJyUkmW9(A8XNbZl7(}s;jMadv9gL4i0E8BHB|$ z#l@537te(~HySvBO@uRS&SM@6t@*`ln(VqfY#PDrd+5SnY-~(lHEPurk<5c$qyn<} zn;eHWqvIFo>Jk@o@GXB2!#5V1fV;GN_oh_k2EYc2#M~gQnqNQ`fYD3b{Me@A`|QM5 zfnCzMgOQ;35kq#|tWluTLSX@Vi1Bl{ksKui$sfCRK5s&BiS}rgDisssy=hMw!sUAcRXxzw1Jv)}~3nKRi|lQU|Y)5Pcq- zaT`YA*Dx;XJsi58_0Ws&zjAZ{p5yKkLAas&X`E-kYCRRZW7Eb zK6w>D!^x_ku&`jQMI6M@A;sV`UGfpx`967-dPvmP+4cMGPQFL+iqsL;Xi_$`#;qB+ z_%LvD-$*%^7Cp02V!}>I)?y-iy zOO}Cg)qaU)Pz3;kYIJSo;3`fVVm2>sW z>$Bkf#KQP*6uFL7~0ia1Rs|6An`03jKenFC>%sM%bBYJuZpG}#an3lRaiA*5^0Qh19d+2zXfwifa*nNa&I)hw^u^W@5r~Swk{_nJKJ^4Ch{z?fimCBJA zh0=qT2*5#WPlV2q#ur0QzgS0pB);*Pj$obZA4$u7aD+*0aW*j5wV}?c_TJ;3-s97) z@3K4(zcVg)TM5_!-mVlX(URHPBMJt<&8whm)`#~l>Q)kLjvm%n0*FI1qLbJD>6qx} z&tJ7lZ)-pG^%4E1mavA4>!4+A@5M`ETP7zzXFHfC?zy=slq)0mL+YR0L8z_>wHINx zgo5`5`oIN;x|Y*@9*yegqu|f`HI)54GEzx{P~cRH`vZ6~YSu1@xv&z>y*MZj?k~}) zuL))CGEu+GEy`qU#Lf~5eq3mX5*9K0yvG0!6P_wyuYc%}OE>?+5O18o!y(-?sQ%Y3 zl!cjT?&) z%tIi}&QA5jbGTURa5<8d=_-tygM$+hG6UT~&*0!q$mGEnLn;y4Icwy@Lt2Ig-Rw>* zU4d7s{OcE+R^9rQtelGk3p0PUIBer$ydIvKTABU+v?RyW0NRn{TLX}|`*qC!?)tE% zp~#1aE+5kw79203;=|m|BIlbQG_!#wZQ?F5{sO>6a7tm}Ezn{lJ`PnOr zlUTTF^-L2!X}4e4|4!UT?1~8~4$@aFy%NQh;sIbsf`b0J&~Mf2kooupenV}|d)W3) zchuMOaY+hmxvtC0V`e^VyW`-&yBI|%&e+;kfmemA@x^xuNrWT73mo(9Umu#ABN3{F zU91F(EM8tTJ$N_JG4zjjmB4bHtm!^A>9dQneldK#eRatL>c{c%@#OJkoc$wGmp)H_ z<{pxsf0`@kSy1V_ve=O-=AF4?bwRJs-zQXw*2H_!o<-u7y9+vUIAm>?kukQvaq~)7 ziS6qU5c_~%A3t@f4>b^rtGkaM(|lla$Or3rJvK!GwKv5gRmko|CeKaSeZ_ly;nd%h zQkTwXEaSK7HjO*rk?=R2;^O}mUOx29GqXQIY^PMPh8^!lvETBzU* zSkN)s!CV+tVcv}p2*Tq5eK;1UKgFloGMTsXsWhJ6I_)EKH+RQ;02>UX4=OJ2%UC!! zG%$r%9L3fNI`&>~bKdB>n8bOPx}pzPmLA2{y=1$yAN@*cf5Y%J7WeVh?1N~1vb^V= zaqf6tvXMd;i~HqYU}-Jdda}DlrU;bKuw0A4oUJ?9gzk7TKbOzhSu^^Lzkf=nw^r5t zq503;(}pS`d`d~riff}gyVmFo7~xg!#aw{JK|zt{qJ+jn*3h zZve>MQpi@n4=gnhHYgmi%s_igcs{5fCT)4bnWxzJzEu!`37nX9oETz*f6mV|M%6!gIh!F&wwQ0mf`_>0J#uMLIEpUd!Ro>*O3;VW{`4n_RTpu_(4Kd zT=D5s94b>&W9DJc#`yTSOZIc4QaKEZBxJh#0W4Zcl>jsg42aR*de6_@vAuYq#@#*I z+F5BomZdxiu9IGO^Cq8g-mVy*t>4qG2p00%_b6fNCElk%jmlu*g^NH1=Dp7-sgGUy zljW8eDEPBKm5#b{p-txs7-1;9u#6)qQ80qUz(@Em0MqGF4GB4LxV_+^a+qbaGFMlo z`vEl?E>++_2%a`W7B>a>0AK|=P=ITE6J9ru*gSqv;07h^bx_;tF~vS=6a4e$a$8qh zX3ZZF#GxeP=Bg;FpHYEl1m1FhN4IoSOYtzVnZVoy*UmDaA6r5YfqWgcJ8IR<5y$=YCTfN7 zyKA$oT%4zEYJW5do&Um%f3W@kc9eAnCiJY zZ5&>nS<`yA`s3*W@bm{9q!AXKY#>-etZDlYhHP^kD6XlPEKn7be0&(%@gJq z-jZbB@;UIjqs59hr+r(lP5Pqn%wn_#QTB9d&Lb8hD*BV&V+pJm|)zKhE9 z8tfK6Y{U1coKwMVWhuHpBur3FE;k5G#2Thm4MbRwJITtyA`NO4+=Jdajw$=DCIFchk|~9s_#vj;An3 zUO+&|BB;`Qw8NBk^VDphbG$D2Hx#6A0qR0@*cY9gigs*2%=Fr!ualzY(Upv`Xv%?a z+JGxBUrx!G7JKpH1);WJ>>_>W5K|!F}KcACeeIaB|kd zAd-;kd6YsxC%F6Q(FyzuDEdACPeLzsU%>bT?y4Z_FMr;o|4zt98Sp5C(3`6ecpUk9 zc!8Kry(f+co;-f?8ag3Czjvu$N19$<>n)a-^j+8s9s}P(vGw(;2RaADgteGdWMooX zIlT2YZTe6{`$%m6qH6&sy8FrBFXv`Xa~3%J<8oZ5j^F&KAW1hh{y2qFho#-`72g;;2i9!g9PU^7-l;_9G`21trRuoj1#3`0#Xd2ri-`j&OJbW?@* zAHD&{|HdMj`*-fFNtVBer-GlQ-@y_z`ytyVas6N$<+Y;2_+hfLvKL31H0<-U^A=kr zM5`T#w3D@{zGnocpYFP&JZfrnQJe9h3Z!Y#8B9z?`!bSM`wq2J*xJH{i)=GGI#x$> zT^*FH)38g)P>T&nis^1d{_aJ0aUh-5QHSVkZHJ|L#O&;gzG%`i=VwzGzkN}eB^G(2 zBV)u)=ka?s0|T4P-l;*M3+(Rhtp~o1<0{2KKw_lOnw>{z5`|}hiBHpIR_TH6ZUj&) zV~cban`m^!kSR6hosRtj$2)RAun`E0Iipo)#~EXfFsXRWXs?^H zv4+AAzCGYCo6KxJ)WbhB>JOWYR6QMYMKf-@)(wj@4RZxm7D9*R+Su1rWLbGEec5Rl#t|GES`%Grr5@dN`fbYQUIeZ+ zj}BAkxusqSd>a&`N!j!0%W&5NQ|-+;N(qw14*O)+VV?R7yMNeS>lk^zufWL!YY(z1 zIQ`1tS-}luEBpx7gAnsOdn0-8>HZ(9Ikyg$k7tA&adN2&?!7wo&{0pK80`yWFU)kw zskb8{SkF9+NX(6YYp+$ZmUeyit)(T_jD&k&8Xm|#a_z1?+SsQtLTfB*ax*lxgTPLl zh8aEFKU@DYH1X)799mx3_aZWqo;m5eW=ypTOz#Wq`%XL*PMQ+C_T(qW=kVPnokinw zJxJ|+=g~j`0>#)HOG!%z>kmGVU20oPg2EYO=Qic;J0IX)j$FIu;0uv6XD5qGNl;Nxc;c zdcNA;o4daW6`vNh-_%f%Di+l>-{0UfUoQ8d{-t5#MJbStK`8_3Mq=TJ<{y9CL8#^V z`Sw`=5agu9)>!J~zs*Yh zv9>N+i@?XD!_Q8Q3A|s2-N!BzBR@aCU8;{ife=Wnk{Dx253IpG_%HFSTNVI3AgMrX z%m^K-Ff!O^4LWUnOoI3VdL%h)LqjJ(?<3n9kndC;i9C0wHwq19qw-nMUKGN=zIagt z{(!)S+uB$!Opjy@Nl3B9_!=@91kz~u4|4gcH`iO3GcilKDAE3=rqPzDaOp>;sX`d% zthonz0*Ss6G#Hvq}?6o@9-L?S3ctur*HQ>X&)ud07JJv znU0IXkIYxRU1<&Nk8?}#tn2P+=q#?}-Gx<|&F!uf9XFT3L^69}1%M@zudnayNd7;i zB7E)ZKShIn_6U|?glYq7)(g#-GicKRaxyW$fZGt_eiMC{7f?9BVtXsR*y)Qx! zrgTqmGBC~}snB4)0*i&ME@s?M6Q2*y{W@gb%F^1_Ad4rzcB;1`MF@1;H+}sj9V@yM z^QZ;0g8V9qk6UGLzYGvCeP4}kiE#a}R0B-c9{&4Jdr^1foY;fe*&M3hnOgLRsIfu|^10UCDk+n}i2m#W?`ArXnI5Iv;=ULkzJD$mXCtuF~El3RT) zX|eA%{(DRbc%nyB8vu2Dz?$4NYc}mU?pX%U@iPsB`L6rY4AzCoJj=ZvNUO!b;Zhe-Vd;`vj#OsHc z|G-4&-}l1)KQ2wTEQTRsX^$s?&AGR-9n#sD^#PQhdL&{7N|Lygl-^)II$i{nBD)+TV7b}1ABxXV^T1%EKnFWZ_-pGg@ z$Epu^ATFEUQJ2^;NTPuxfcz}x@;o! ztu3gY+6gWW_}@cIw@U(;Xo(^ZcfC$ zcXp)pPuXy}OJhw2HW0FT!1YG40vd<4;+JV9F^JTy;Avovjku`nY_diI$)#oueb(A^ z%Xxkg{T|ubf@YtIMSO;g3x`78CxN9Pt@ za_vtWo{HTZ>%Eq0bMk1XVM(HG{%!jXA5LU_*-aQ1Dd}uPvEs9>BPZ9R~WjN3@5!3b^d@bD!lTd7hBCTSe z5EzY#KK*AvGx`4)=Zj6Y^i0#ak&ePxOfaBpP!TA?cS#&Fui~Pjt`~KtJhZIIYwgC` ziSz5ZG8*C|O$FRxXVp;(yJtD7Evz-ZH7 zC)n)PA_j!KgF}|)Q0~_bk7d`_mcm<=cnq*#)C$~e^Ds6eV@UFnTX}MWv)G;+8j+DU zLfv|%N8H8JPA5$!?LMVR+3QfK)3P!x$dn3^?D&I1a3vrtT%38H|I=qt+s!3#b4t$2 zM7etER=ei-P3?mDagx!Ztaz!lC)oOWgBq`!WLTkVAn+Stibt!)q-B$DRoWr`Z&S(v z%n_s$MR4@hq$mC&gE@wReTTZc+`0gvyEz;^mS&husA#|*kEy9y!I`vgv)Yoeg{A!2 z_#t;rQFzm)woDjr#vQA#&w`irU(pmU8-ip$Pl}P(Q`+qUZzX^T)sH2zmbNf6CQD=9 z6n8$#6xxz~O))smRIXuffoFD5qkH$phCXS~93Ma5A$p5Lt8{q4TGZ$O&$`EtvHEm9 z*`Yv+3A|54Y`=#2{(dg6P&vjGdK7h=e$n*6L3}kXBx6vfV??7RL z2LXVPJJ^^Yq-GmpilRrIGfhJ=MyxDnIzFkii4mh^=NOxBA+~9NHDG0M1sQZ;HarDn z)>rnZm7TpASc%vB`)7A;d76|;w^8hZ_PX_rX&P-!v+B4{a2fOy{IR8FF(&5E*;~td zRpC#Ad7~p#Dd7oVB;rtlIb^J8YwVhKcZJdu-b)84ux_QvKX8wZBrTyqTP$LX^IO=s zvg{x#GJcJ&Qm3yH7 z!hL_Uou9V(TG9`KvMr9zBiM97MWB*SOF=PCyVjb5g5tv!i1V13nEIB+4eokQWy(m8 ztw#w)|iz2?+z7rdx|+Z_iw@|8?x> z_2(8y_CPSf8*3Q*ZrZr+nl9GqSKG1J$+)GlM+;;?%$?)9y?P&#${$ z+ItI^Yi8n*60Fkl+gliez~s!#h0nIBsi_f<9|PXEZ1zaW@R?7%clRuH_o>(56#N2V znXp{c)o(w~UPD3gJ~-(leg}RDD{D%3_gNH;+UA5~ii%%8KY8O*(g=*ldX-|K^T=RN z7`}C5BOs0~@2#W)>jKOM(7GDtT}sEu)D$-h)LaMuYh56dza*o0pTE&vXs)yK$}l!k z+2=LVbilsjef0P?3JP(WH6r+horkd+X2lBRXI*Rthtwr;w}+i)&X)wRwF~UuACa0G z?R)-Jy!<0!WzPx4=WY&zS#?htct*YsO9CntMNEu`yL&QD?OSgjW8-M>AJVXqk~kyT ztSSR(j^^shvxw?XpFU&pHPv)3Z148%A71C;w;ocUz|*4;*M}#Zs6{0sY$<`-D%NsX zwulY>uFLRB1uvbCk5ALk@R7&zChEl4m2a0O7nJ2*{qnx`f9-wuSJY?s?O0;Pki=dP zji3}oR1gIL6$>4uDoPWTUKA1OL?c8Im7xiWpfHp{dhe(~MWsj^L8=HiLsNPixciym zUH85J!2RKSZ`R7vM48WLo^r}Q`|RTv)YSB`=M$xMVG2a7AI8RZ?=te7nRa$|b(Ohn zG+5-GCI9nhOwi8VyBTHx{Q#anT>R^N3dQG7uSIz1lP!DqYU(EFAYRb&@F*HubkIdx z+G9EoU%_3{xP$@~2Stz(tP5FszZpGM7`%(-*kjFm#JX+fQu^w(YefYFj^QL) zRrNso4ChYJw{T2TPfulsx+3;kJ??RdI1gY^Wn`wTYMQUGBzAbiUCIVL-G07r>2t^- z^?(e~m~Qr9Xp!@n0dt3ZZhN2WK%pM*p&wp=ZX!LWJNW7OFN?l!6cG!a`LWo7?eeA3 z?`H>1&(Qx#!Tby0JOFSux}|py%^~sd($}9VXSshqm!&w?Vx?b(3Zp0_8(*5pP$*uZ zOCs@n%8r9B!*Q@#n^s!4V4jescI^tgb34&nTgpVk{h&uQBxd5`lTtKTj5TfG)-GowZZ{sG%)G^OJ4+ZMbgA1f;AF{Fsx z-KoAItaHxNq6Or!PcCAm27mlGg*4-d)Ul&Chle6s2LVXRv04iA(a-BT1Tk@CCKJffA;K|vbuU!tMS_hDwv6<6&t2|6@e>k z!)d@3stHT6qxo~|dk1(2+7`4=pKfnDGSfO6upvdCl!^4z)$b#JN-9dV2#~N0)Yjcz z{%EW0*pu4y*l_Pc2XB+O$jHNhgr5sAK`z?M6Ln-DT*88inl2sn>@fK=9!10duB`rA zO7-;>7KF505S98I^`gevmv``erP>G4{W!^}*o-qy87~62wFdWX)gOO6M;0c!{<8Lw!ksJ@D+96Jip_`4 z!2d|nw!?OY&)vCq&CLcnIy!mw?Kdx&nuhN?rb!*{F;WTG-aJTyzr5>s<@71rr1?fJ zN?$B3Glq($YDM;(F7oggjmY!|OpXy3M&F@z6DZK^Im-r`{HO(5oWyG2iVgn!ncMHm zo}Sj$)r~;`q4eK>AMJz5$&wVTiACNU6WEk(7XenH#MN(#>hiGVv8KN)##*%(Qgu`H^NP0OSah_bh^AUA1;?EYeIxDp2&g zBm)^-JmG!&w4i`8EqSCLbvGJn4ge_6rs;3I5@Ysqe%afTE^U9kaSKdg7M<=*_rbpi*9v82=BD|W{Q%H8` z-Y&NpGAm2%k@yjaYEq+7vC6b=7^Jsl#lRkm6sh|>B-Sg+4$jX0Ga|Diys9Dp} zl8);h_~=m_8qaGh&+F;M%1^iRiinElcNG(b_iG@j^);lQgmo-VpLcyASog)l7LWW? zewrb!C=&V@Fo+-NuB1>RQxDAJIH=S3P)zPf#+4A=zWoF!;nY}QL5mv-&)xM4nr74J zBFv}<(I7~4ejrY2)c(lIb>7c#OswEva7+S9FZlcT_`Lt{f%rMc?^Q1Y<@_=swufb9 z!Z;N7i})g0E}ZJm=L9y%E8n+jU!rALhkom^ak9Rk*;j~w~SVG-sbyD$Zrg=5jo8k*-! zjaYlSKyF?h9c21tD^}?Hr18DIRhoGVcnudp;?9_4TVH-?b-9nL82%+89X&tlcm``kRn z4B~Y}eX=%7*`mdT6^*>z9c^7B4894+xcK-_BqTtlZh;7IaAc&g({<+>U(A<}!Xg+H zxlPoou~^Y3`GX9dJM;201`t}sYM(tDkMd^Ng;+JWggtA{WoEzDufJ8_=!a2Y)`^Ic^r@WG?n{@q$h zEPdD#m}($d^t?QMlIBZ7HW9Y>^OXfTxec3-<=91h>*&ZSGIDToVj#c11`VjvH*Z)N zH?5z3*$+2m)uv55`DH%BAS8jHlAsbIwn5G<=Y`X6JP?XC2R#bQ7x>(6IOUD+TJ&c{ zkF`qeatn^0^A0e)F?9#9t@KgK*V!4DDFH|KZB}IgVPrJC}fy5UFepn`2D$v+) z*UvBL@#Aw*W)eIY70J#5;PecyYT!OJR7txz-(vbk+3ToJg+<8qlA%Jznw^fAHB}bp zg{|g&!U;CRwxE}<{Hg3Y;N|rwTaow(&a`F5Z-qjb>^WBTaaK$740}Tf{3D>v+Btul zn`g*2RaH~-g9L6Q<}2f5f**JmFX<0WYRm%f#B2ia707!cg@Mc8C!3OaW+yoGwP=BN zcBF(y>~^0{9qvt!@vfw1fOjk?An=>q0*cpmKTaHK{v4fOfe#;U0W^-Tt1}4w1M$)L zh9<=^NlBX5uLm4tPx~QrFGCmvKZ$2(A;bqiGZEn?6H7>z8Z&<|oQo)83X6;XxIcPO z>V&H5J#d$k0pT-}fB#hEjtr*SYhKJK`hDu5`i1$~m7)4;ah0qWR^b>QUdh134*-fv zD96;JW}>aB`J77qMClG2n`}#0~*Tn*aT@o{ zyUVGHC>+t{mCyolMl>Ro4jA9tc#_*R?y`*ZU)$HqsbobKAd||QZnPR484fgbDI4Al zL8#MEP5(A9VCQ0k4M^vvw@&K;=z-*BFlLC?z0WUis~#n372Q%u+hh7M-pPmObrtdh z7#r#G(0wPNZLJ>Ot$X3s>(v=IQjyoX*t{0M2F48{hmXUJ_}I~^jHf$^or*k-h%X36 z22J{J)_zHUJ4%s#ZSIzM0^>wZ85%xCBSGqRez}As^*%#)9hF%1pqn>UcY9*(b+onP zaMofNNGDPjb29zN^*;v(HQ`!u^7rFxNER8Z-W#qz=a*cw1kxarFL^z-fNdU&xn&OB z?`iI?mt0&Q4~@*;hucGQn;{&<|M795&g1Pqcuq9JTFIi%th(xtq2#mBO=a1TM$N5Q3IMOmdr?1%TYP!_LQ@EzXg_=ywm84N}($&W{m zah<#Zh*PZA;$oCXV*op@_iN}lueGhSGgPX{MhN*ijSCI1{^VSMMzNa zxU*5j1>BB$=>7~>$PC2cGMJPiyYQG$kx_SbcREgS|NgLV*daoWtOo@7g<*iS&Y>0U z7-~pPZ*Q%`6(}mLYakIXC50D$z-P0IBDI#TBU%V)xIFv|;}?^bwwD+`k|V}ITn`2V z@lZTi+Kk;EQvh>F_P_y^h~=tKEM*?9D9T2 z%z2r75CUYObce(*xY@PYA7b7o9t8In>QMt9KNdy2U&F8i+;|wy^Tn(k?vuTg$zp>4 z{E!{$+X4ls`VA#p{5p_n9MNNEvh17S*W^t+YU{uwZrgWAi)6Nrp+yOUl_3TE7Zscg$!~@wZ0B4V;pQLzhgu~(C zI2=k6oRaGbe!24yk7a>VkDSL^N^atqFLVBT6OADzL`Yw|JFX^)IF2MCgFCgBypP3WDts?gJA^!nlN@Wr-VfU;!s8^ZN3~ z;8)*ekljE2@+Etmjl}OHEMYR8>kO^VE$#4T z*ba}i*(FY31#-S{ZAFf3p-Y*~nC*!4)nkP*Y5@XuwY8*sM<1hVp~r#t)fiNpg{7tS zK|-Wj^VWh>@CXbi5qPHc-dF1GeBVCs@6xhngUO!{lJg2cm_u<~1EXw;1-=;eAWXuF zyvNC~%xwALSv)mnH#-aO%L1sPCoAy>_QaN(GPI5MH3{3a>~!ZloX<^5;LHgWiz=C; znmr5e(chdeDki25->HMH4EF=g-!7Sbx!FC|8d8)QF^L$OST7_zxsz6410YVcx%L4Y zL6A7VB$%!?)ioWDTL*~$^ZKHryWQDU#&y}$V|gQKcYT+Ux=9tlww_>h)IpWB^zGZn zEraD!t+n7MAXc{IxaE_%qrzLs`KkJ?cq$y0I6XF{xco7#)Hiuqgdh{8)-?S@#-X@R zJWz>4j!W!>YBC9l6}iW}|6^}Mb=swhr>~0OZ;+3*&a&wr5bC0Fr^Zpw?@>FjHDo~n zFLXUF;+37GiXP+SQ0&d-&yQ|8&z$HEm%YO-7!4aXniU-BcdzS&HmEXMTVR6x3>pn_ zKXART$N%>upZNF$`nUHA_nKC2W`5oifAT?s7^A-45_sx{y%+y!){mvpg!k^PwjIHf zHr?g~Iwj%x-J31S{$Tc=HPg6|L>DK0fPnxOWNi8Ud&az3)3knE`0*S^P&fz*=J5Jr*fBs3aLNY)( zxs{U)RNXMhQ*6#_n16nyj-H-X8C8%xG~Utf`>=(u%(*bh9{LAw6CoHu`0l`vkdWra zklMUPh^QjTocGWRKRa@DOf+Y`^4>LamVRyZ@+Lybnee+{eUl=^*}@OLr;=hIy} z5|WEF&z=nhwq?cmo#fW=J%Hhwlicw}b8GK)P|SdeX=Eaz8x81)wvpR~2q17(M^Bhv zlCui3SP55YsQzHln)TRwi9zdXhz^<%djoC|va zPN+xeDl79pdNevMO~%C)Uj)KS(U7i!{}zVPgrVBb>#U~5^plGA-$ol4hL?r8sDdr( zlerZQ7!ct>eUeNJIcVi`;e`2#qY5-|LMB~wN~L%QWDp6FEr-0ryTNew`_`NrKcBA= zJ0Azb{Jm(ZzXpwL*CqxpAwGNupxz&eyLeg??e=wmRcK&b^g!D#zyBQUEE?$l^y8D!B_<3o z1g3DUTDg*p0&cLwF{H`5Mn9EJ&UM5qxI=?9Ox)zv3I&IBxOx$cJ7HInGr>Js#$r-Z z%m9r**YOl`XMigvK-&Nbn*YV+kBhC)%?P!w)2gZ;br>g+#h}lTg$Sst^6crY1_eTZ zqbH_}97ztP61?*h{-mcnD;B(KI;4jH-KV(jCWn{{0agxFBlk!K)~_!vIK9;3mKJyXC}`_Xm; zu%NV)^{UbTZ~?x}`^VAIQ5uuk0iBwT8RF6R-~39-e3Y()r22P=%0}M@jf7yqKp7;- zs0B!ToVdv1JHGjc=4N&t4Kjd|P}_E&{`vOml`E&=Wj4wi9r^28o7c7Qpe+a?8uJ_z z(AnEGF1O-gaBvI~JKX7m(flyj+qfaUxIts7Z=r`pYrDA>;L_Nwm-8g&!R70n9f5&? z(YS$S;`d}W+K$=A=jm^dWQCpUu8d&7hfA=e$9kUu3IbzIs#{x%B-Y#{qU0KogJr)i z^|!P{Ep(p}B3y{d(SYt-0nNj$FDRTJBBqpFB(m$gko%7Dq!%x02~vShaa7bE?;k2h zHwpUYO$KKx6n?{X3R}*-pD{8hC;=l9NIWn6%fip~hL8SbF!Ufn`B0$n=bMe-Hygax zP?-Hv+@NdcX4aZvvW_@BEd5#@|JkG2f=j6x1sM2ZA39usnBWxq}12x+=m2 zrLreK2nq^L_NG?`hK1452Br<)ay@j&1#M#S2viPc?7(4(nma5(+1c55eSK#g|2!yg zY{NlK{p<=cHc&PRa61sxS%5FS(hI{x z=xV~S9fdeeH3FJ%EY>*x9dv}mV`E__-nJJKlg!Pzyy886+~WTZSCu#VW~dVNAf?%v zf$Mz(?d{KyXVHQ4?QL<>(wR3;dG^zTRfYzMdraRPxK{VZi7YA18YAQZJp2>^Ec@&^gdm7mw4#yMO zUvY$9+s{XMLh)jvPJ@j~D%^AZMPQhS`_J3#un4(be6k|!ey96qM?O)IAOXMBJ$m$J z`boT|z0llE6crJnCMOS!*d?9WDk#_xn`)vs`;%WY+g8&!(%q#g1{gF%%ap*N2&sGj zz!*W|)a})q@JxzoPTL6T*+nJWJuxbi=Ct<@@Uw&5sag57tKQ~sq^m-x z)+5fW*i7mT!gIcL6%07+OZaBDA4ksGj{GRT&qwpyNSmG9?GR?yEW(~-RBLI3YE>>I zMG{PaMKTjEyA02);btP@rGV~MZQh&&49dIkSw?Nv{-{)X0uA$;T4%D#UbH;4j*UP# z5r;yQ*#p?>HVJM}y#dt`2WhmH`SBmRAzOK98@t<6dHs4nE41<}pFXX*QrhA?$_03D z^LG!oa$h=rF6>lxbj&3A7f3~A7!otuGMyfwWcsGbc?kIWr4P~T_w^Te^Vv^gaY|yC z(;l2Nk$)d%6BSz^N2~ex+^2pq^faKy=caen)m6{3i>t#Vsl~J5bt$*()a5J9FFZSd zFS(C1^P%z8v{ih&WGA8z7OH``5(PNR5`z)A zZ&=2C!$|Oc;!vU@h%u-jcH?=lf1TakkNML8NnD%ExVTQr)8KN@xHLYLdvNy(q5J3JKA~DXfJsj|g69BcjMkXbx!@4mRz6B60Fq8wy)sh* zG-e5*I`jl3pin?BC^(O5Grr^~-+p-`m!4frT1d2=d>dwU(IRFG%5GO)x^#({2{a)b z9_N9*IU44Rs&@Kb*n)hHLgeN5aPzuSw@V}z5w+n z4;S&Ic+P(LQO?*8PylLE6`NuEB9*>!fUK%};j*r}R0)Ke1j7~QA&C!pPXLnyy4ay{ zgKvk1^3tW6wn;W4Z{7!0d(LLB`mL?EEQv_?;2oJh^3%^a*3mqTdkG~>fjm+LP$1ciT$kW;C|zHG6Omdty3>#sh#WYO!;HWsRoShyetq?;+tkvp zy%wxQqhdo;oLmsQ4?Im4#Pe5P;dn@MZ_pS3B@(kw3d%U~6`SMR<)%-8ptfwem1euc z)vIZwL

>@2GZBBz}`2WFW80-(k0Le2|jcj|yc&3Xb`}Gq9k*+B57QbY56uS;*ra z_rKnVzaF+_uGj!xSPn5!Dl4UrxTzSq3$FJbp6Jf1sZ=|L%MECXPU0>hp?3`(_;yV? zTr~Ic8*v_TBp?rshpo`l5kz~>wXeqlT)rDSJLeLn9sH%nf6h@`(reD`jto8MIa7cb z0J%%Jtn%x?5EUy%<4guTt_2IwmgUU!1fi3Gr{39n1<&hOp4(nBkGPr4lc}8a1C?uV zFna0AC$dU~sBjWC8)&hlvYY-EUoFRKu3qsDn~36O0)CNk4fH-+Z0Is^DPC=3{GEke z-X`W~=N%j#uEkO5f4T)pQRLDK9K5(n71n?-B*%ZWUv(^8UJ+*9Bvd$fxAyt%K8=;6 z-#aKU(EQckOVjix{DFf;?isg*R_jXhY8K8zs;vQq;LtFxn{gR>rC zzsxA%Rq-s4KY^cg_wKPxqAN=~YfiqEkN#^xxU5tto788f)t^CoRTZFY)qCRIIwgI7OOf^MW&Rm*z+aXUw zR;?1|C#{I$#BAgQh+CpgR;XJhBKM#d1LbRL*m;`uycasS{!DilYG5ay-YFa1b zf^*jGjG5DZG)Y^_GLUpxq5nvIQmz z;EXu12#K#1yaD`jcpu6g8xcR&i-54+8 zA{1dn&YLieU|B)Ly*^E`VklS2@8*-+nQ7iWKEv4$mk~=+$c1hW&R3*X7alfV)Uow% z&O=Qz^;aX@KqB*2svF+b%qH-a(uMxYdhTwEr}#3nH?WCtvT zgj-I>q{jzbiV>)NT4GrU&ZKo2KUGpUcT`E;0I~%lm`H_V%-&cLx(%kOLS}Segb!gG zae5f#kc^fLI)I>Gks(nijJM0klOxw(b#&ALAObSd)+s5`T|xTU!G`X2GlfM_(b2~U zjDvsy?Dw6o%t%Dz&E*Tk5by&W4fwYy$+Ow&5Js3R-5tH(rkBwzO=uG!K+plkxP0?J zi2$*^Y6j2Bk>o-g<=QC2z_NibM*wb*TXd0l@a)(Ff>KgLJ+1$O7m$hJ)v`ZI767Qa z!bw9VHgU2kuggfqUI=%2f=1}pAr0ENjMiv3)|!5L(1hvqusYEqBXvhLGojxcC8Uj!EaT>|Ti z-67Q)QrRSUbRmES%Evk4mljF~C_rq0c<1`k=;R`*$F!->-<6Lj<4tc5?P){g(kiaxeMR)4Z>LA>ePH@w%E6PWJiFU!FM!L;c`;Chty6VSn!f9@4^ z3=PHj`6J#8sLrrN&;4k6cI)7+W+D+v!c5>!VcF7v;8b+dx&5d`iPxL^H}Ll6sP~atBhsaLj?C&( z+d}+!+ab$nKDmHW(JNUC z0GV8*UluO>Oyk7|J$b-6EIBI3D?Wg&0nU{UXqg1~g}nh)4XnrZin~chyU!+qE!Fkw zR3;F9;=|Fa7$)bQ2hvV&HOafxxCK7@wV>4m3lK^M=nv%D3zS)A0wYkLnVHEp8kQ>d zpBxKWvx~ZO&Azum0-&y1v=lg7g5LrOQsIO;OBeE561&{qk`HaV4Wdcs*ROwKn5DCe zi!#-lXZ>?>EGjEC@O1)B)={lZMo_E`3=Y2DakHVJdU`_hT1MZ(j54%UzTibqD)c#O zP=_WAJxb9I?p18M4Sx)q@C-8hnUgLCCjixORNGRN=H4ABY-1GM-g#Sqd{-gfs@-H zt?lydcV?)WYWOE{9%5cV1ayJ$)9Ou|tSw0aMZ%p+@ajJbffEFlP}-#mfUaYOUhI)E zUOwq)*h7*1`*nF`haU={@!>E=`@F!+jRc5l>2!C!XFC-KfSgv8WEzYxjTj^(A1?@R&g5~b-lvLKu!5@A$VYXbT(aPY)Blil_hf6ZU-Q`tJ&c8iyeM!m*^ zR>77U;nex_Rl`$}MWQpi2!@GpPdV0nU=KG4aPmiTyX$<;DJ(Y$NNjGu$wm*P639WH z_EjE=^4hrY131L>LrF=KLelz5>?y0iP2QD8Pmr4LYEfNtbj5<0GAlWReFm7sJ=VU^ zb2>{Uu?|>PMRIM4$OOUYe2xZxLNN6P4-{2CX7TJf(=}qX=d9|5o@>RPklzI1DqTRh zpMWQhU^Yeq$T)s<97wOOIWCkh^oevHOWElnI7TlV`iZDkH*GMT8~A8v&l4w9fl7|7o_M5`qye0P}J)~}SJ#@%PISh(Gppo~*IAGr`5sp)%`De%9f-Pawv=|RKoc=E-S#A?cbDz4dq=}UQ z{7hPMKmr}_!cw!lq%<`_oT+oPJ9+##>bVhmxC1TD-F&beI}K-$jDY5E}u(t^uqgBjo@QT9;8Ea}@y z%9|~J?+5G10%712bW1K~4sHW#N3p%f!5T{pzCEtn2$DoClJ^a3Aoy16)-lz~BBL8KB>Kca0@K@B@^*HKBwfX;!fb zmj^r(b%L4@Rvx54!3{{BY4^dWlq7OdKPP|mbxamR0s1?ZA9(jeFtg#vJ26&c)(NDo zMYl^)AJ@;Ze+FO)qcwy^dKoIvqD41J5X zTCx%SOSrUJ9((}n0my{}ok5}UyhAZ4-Q={P&48rQr1XYYge%fVeJ@?=wiE_ACO<`f;l! z5?V-2NSfiz%P*z`=TL*Pwj+j%uHci-nEC4_t{DNL@NGw;_}Pkt75J3E%H_Xs-(D4f zh$Si+KreJau_taBW!&$88AyMcpwiUX00RZGI*3LA!Fq3*DeY{DAD7tiADo6^_pTjBrk7-yd7BgmL4?!QH-59pNZd5DEV#g zaPc_*l!$RbUGg8-k8naP^4pZT(ind0Wxzdjqny;0lJXnL3MrJG9N>*YS" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAC/CAYAAADXXJbLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAYU0lEQVR4nO3da3BT95kG8Oe1jS3LsmxjyxCuhnAJVzuJQy6ESy40gWZ63Z22QzOd3TT0ktntZXc6m82HnX5gZndmP7QfMjvjXrbdlrbbbZvZTpswoUlJmmwL2AkmBkMgGDAXY4MtyUdHthB694ME4WKwbEv6H53z/GYY2wfFfmycx0fH//97RFVBRETOVWI6ABER3R6LmojI4VjUREQOx6ImInI4FjURkcOxqImIHK4sH++0oaFBm5qa8vGuiYhcqaOj44Kqhsb6u7wUdVNTE9rb2/PxromIXElETt7q73jpg4jI4VjUREQOx6ImInI4FjURkcOxqImIHI5FTROzYwfQ1ASUlKRf7thhOhGR6+VleR651I4dwLZtgG2n3z55Mv02AGzdai4Xkcs5tqhHR0cxMjJiOsaUqSpSqRRKS0tNR5my6uefR8mVkr7CtpF6/nkMP/WUmVAel0qlcPnyZUybNs10FM/y+XyoqKjI68dwbFG/+WYHjh4dKfqCC4cHcebMcaxY0Wo6ypRt6z095nHpPY1f/GJ/gdMQAAwM9CMSGcCiRStMR/GkZDKJFSuqsXHjmrx+HMcW9eioora2BdXV001HmZLa2hgOHXoRs2ZtMB1lyuKhefAP3Lx5Kh6a54rPrxidP/8WKisr+fU3JBzux6VLPXn/OPxlYp75/VUASmHbUdNRpqz76e1IVvivO5as8KP76e2GElEsFkZVVa3pGJRnLOoCCAQaMDR03nSMKTu7cSs6n2uDHZoPFYEdmo/O59pwdiN/kWjKyEgUgUCd6RiUZ4699OEmVVV1iEYHMHv2YtNRpuzsxq0sZgex7TACgeK+PEjj4xl1AVRX1yMSGTAdg1xGVRGPRxEI1JuOQnnGoi6Ampp62HbYdAxymXg8htLSUpSXl5uOQnnGoi6A2tp6WBaLmnIrGh2C3x8wHYMKgEVdANXVdYjHbSSTSdNRyEUsK4LKymrTMagAWNQFUFZWhsrKGkQi/aajkIvEYlEWtUewqAskEGhgUVNO2XaES/M8gkVdIIHAdK78oJyy7Qg3u3gEi7pAgsF6WNag6RjkIrYdKfoRC5QdZxb1jh149G8/jc9tbcBjzzRh1u7in3lcUzMdsRhXflDupNdQs6i9wHk7EzMzj/2ZcZr+gZNofjE987iYd8TV1DTAsiKmY5BLxOM2RBQ+n3/8B1PRc94Z9QsvfDiYPqNs1Mayn7xgKFBuuGk4E5lnWeHM9xR5gfOK+tSpMQ9XXhj7eDFxy3AmMs+yoqis5GYXr3BeUc+bN+bheMPYx4vJleFMRFNlWRH4/UHTMahAnFfU27cDfnfOPOZwJsqVWCwKv7/GdAwqEOcV9datQFsb7NAMKNw185jDmShX4nGON/US5636AICtW/F6TROi0WWuWifK4UyUK7FYBFVV3JXoFc47o3YxDmeiXInHI6iu5hxqk2bt3oFPfuNePP7Eg0BTU3ppcZ6wqAuIw5koFxKJUahe4ohTg2bt3oHmF7chcPE0RBU4eRLYti1vZc2iLjAOZ6KpGh4Ow+fjGmqTlv3kBZSNXr/fA7ad3geSB1ldoxaREwCGAVwGkFTV1ryk8QAOZ6Kpsqwwqqo43tSkW+7ruMU+kKmayBn1I6rawpKemvRwpoumY1ARs6woKipY1Cbdcl/HLfaBTBUvfRRYejgTZ37Q5MViEQQCHG9qUvfT25GsuGHOit+f3geSB9kWtQJ4VUQ6RGRbXpJ4BIcz0VTF4xEEAtzsYtLZjVvR+VwbrPo5UBFg/nygrS29DyQPsl1HvVZVz4pII4BdInJYVd+89gGZAt8GAPPydPrvBtcOZ+IWYJqM9J1d3LO/oFid3bgVh1o2YebMHmzadH9eP1ZWZ9Sqejbzsh/ASwDWjPGYNlVtVdXWUCiU25Quw+FMNBUsau8Zt6hFpEpEqq+8DuAjALryHczN0sOZuESPJi6RSCCZHOGzMY/J5tLHDAAviciVx/9MVXfmNZXLpYczXTAdg4pQLBZBZaUfJSVcB+Al4xa1qh4H0FyALJ5RU1OPwcFjpmNQEbKsKHw+7kj0Gv5YNoDDmWiy0ptdeNnDa1jUBnA4E01WLBaFz8ei9hoWtQEczkSTFYtFXDX6l7LDojaEw5loMuLxCKqquCvRa1jUhnA4E01GPB7mHGoPYlEbwuFMNFHJZBKJhM05Hx7EojaEw5loomx7GOXlPq6h9iD+ixvC4Uw0UcPDnEPtVSxqQ64dzkSUDcuKoLKSm128iEVtEIcz0URYVgQ+H8ebehGL2iAOZ6KJsO0Iqqv5i0QvYlEbxOFMNBG2HUUgUGc6BhnAojaopqYesdiQ6RhUJOLxMOdQexSL2qDa2nou0aOspFIpjI4Os6g9ikVtEIczUbZisWGUl1egrCzbu+eRm7CoDeJwJsqWZYVRWVllOgYZwqI2jMOZKBuWFUVlJcebehWL2jAOZ6JsWFYEfj93JXoVi9owDmeibMRiYS7N8zAWtWEczkTZGBmJcg61h7GoDeNwJsqGbUe4NM/DWNSGcTgTZSMejyAQ4A0DvIpF7QAczkS3Y9sWSktLUV5ebjoKGcKidgAOZ6LbiUaH4PdzvKmXsagdgMOZ6HbSc6i5NM/LWNQOwOFMdDuxWJRF7XEsagfgcCa6nfSKD66h9jIWtQNwOBPdjm1HuIba41jUDsDhTHQ76Tu7cA21l7GoHYLDmehW4vEoN7t4HIvaITicicYSj9sQUfh8ftNRyKCsp5CLSCmAdgBnVPWp/EXynkRiFENDF9Hb+w4ikWEEgyHU1aX/BIN1KCnhz1OvsqxwZvcqedlEbhfxNQDdADgUN4d6ez9Ae/vLqK9vxJYtz8K2wxga6sPx48cxPDyERGIUVVX1CAZDqKlpRG1tA2prQwgG+cslL7CsKMebUnZFLSJzAHwUwHYA38xrIo+w7Rja2/+AwcEetLY+gblzl435uERiBIOD5xAO9yES6Ud/fzeGh8O4dOkyqqtDCAYbUFPTePUMnDvY3IWbXQjI/oz6OwC+BYDfMTlw7FgXOjt3Yc6chdiy5csoL/fd8rHl5T7MnLkAM2cuuO64bVsYGjqHcPg8otHTOHOmE9HoEETKEAw2oro6lDn7bkBdXSN8vsp8f1qUB7FYFH4/nz153bhFLSJPAehX1Q4R2Xibx20DsA0A5s2bl7OAbmJZUezZsxO2fR5r137ipvKdCL8/AL9/MWbPXnzDxwhfLfDBweM4cWIfotEwyssrEQzOQHV1A2pqGjB9eiNqaho46Mfh4vEwGhsXj/9AcrVszqjXAviYiGwB4AMQFJGfqurnr32QqrYBaAOA1tZWzXnSIpZKpXDkyLs4eHA3FixYgQ0bPpW3u0kHArUIBGqvu5SSSqVgWYMYHOzD0FAf+vq6cfTo25mtyTWorg6hujp97Xv69BCCwXre7dohYrEIqqq4K9Hrxv2/UVWfB/A8AGTOqP/xxpKmWwuHL2Lv3leQTFp45JHPob5+VsEzlJSUIBhsQDDYgKamlVePp1IpRCL9GBrqw+DgOfT27kd39xBs24LfPz1zDZwrUEyKxyOoruYcaq/jaVOeJJNJHDy4B8eO/QVLlrRixYp1jiu5kpIS1NXNRF3dTCxc2HL1eDKZRDjch3C4jytQDEokRqF6ib8gpokVtaruBrA7L0lcZGDgLPbseRkVFYJNm76AYLDBdKQJKSsrQ0PDHDQ0zLnuOFegFNbwcBg+H9dQE8+ocyqRSKCz8084dWo/Vq5cj6VL7zMdKaeyXYFy+vR+DA+HuQJliiwrjKoqLrQiFnXOnDlzAu3tryAYDGLz5mfh93tnXxBXoOSHZUVRUcGiJhb1lI2MxNHR8Tr6+w+jpWUTFixYbTqSY3AFytTEYhEEArz+TyzqKenpOYx3330VM2bMxubNX+HgnCxMZQVKTU0ItbXeWYESj0cwffp80zHIAVjUk2DbFvbufRXR6Cncf/9Hb3rKTxPHFSg3S9/ZhUvziEU9YUeO7EdX1x8xd+5iPPTQV3ldNc+8vAKFt+CiK1jUWYpGh7Bnz06Mjg5h/fpPIxTiNnmTJrMCpaamEYFAcaxASSQSSCZHPPVLabo1FvU4UqkUurr24f3338KiRS1Yvfozrr82WszcsgIlFougstLP7zUCwKK+rcHB89iz5xWIXMLjjz+N2tpG05FokrJdgXLs2NuwLPMrUCwrCp+v+C7XUH6wqMeQTCbR2fk2TpzYh+XLH8TSpQ/yzMaFJrsCJRgMobo6vzNQLCuCqipe9qA0FvUN+vp6sW/fK/D7fXjiiS9yHasHOWEFSiwWgc/HoqY0FnVGIjGKjo7dOHu2C83Nj2DRontMRyKHmcwKlPTZ98RXoMRiEdxxx+x8fSpUZFjU+PC+hQ0Njdi8+UtFuZSLzJnMXXjGW4ESj0dQVbWi0J8KOZSnizrb+xYSTUa2K1B6evbBsiKYNs13dQXKwMBpzqGmqzxb1BO5byFRLmWzAiWVSuDixdMIBqcbTEpO4bmizuV9C4ly5cYVKLW1c3Dw4B8wf/5KrjgieOY7IJVKobu7Azt3fg91dTXYvPkrLGlyrAUL7kJZWQDHj79jOgo5gCfOqJ1w30KiiVq1agPa23+LpqYWz456pTRX/+snk0m8996fcfz4XixZch9WrHiYTyOpaMyevQCHDjXi/ff3YPnytabjkEGuLepiv28hEQCsXr0Ob7/931i06D7j80fIHNcVtdvvW0jeMmPGHNTVzUd391tobn7UdBwyxFXXAc6cOYFXXvkBLKsPmzc/y5ImV2hp2YBjxzowMmKbjkKGuOKMemQkjvb21zEwwPsWkvvU1YXQ2HgXurp2o7V1i+k4ZEDRn1H39BzGyy9/DyIj2Lz5KyxpcqXm5nXo6TkI246ajkIGFO0ZtW1b2LNnJ4aHT/O+heR6wWAt5sxZjQMHXsMDD3zSdBwqsKI8oz5yZD9efrkNVVU+PPnkV1nS5AnNzWvR2/sBotFB01GowIrqjPra+xZu2PBXvG8heYrfH8CCBfeis3MX1q37jOk4VEBFcUadSqVw4MAevPrqDxEKNWLLli+zpMmTVq58AOfPn8HFi2dNR6ECcvwZNe9bSPQhn68SS5Y8iAMHXscjj3zedBwqEMcWtWoK7733Z5w71837FhJd46677sXvf78P58+fxIwZ803HoQJwbPOdOnUSw8Pn8MQTX8SyZWtZ0kQZ5eXlWLp0LQ4ceM10FCqQcdtPRHwisldEOkXkoIh8uxDB5s1rwkMPfYo3lyUaw5IlzYjHR3DmzBHTUagAsjlNHQXwqKo2A2gB8KSIPJDfWICI5PtDEBWtsrIyLF++HgcOvG46ChXAuEWtaVbmzWmZP5rXVEQ0roULl+Py5Wno6TlgOgrlWVYXfkWkVET2A+gHsEtV9+Q3FhGNp6SkBKtWrUNX1xtIpVKm41AeZVXUqnpZVVsAzAGwRkRW3vgYEdkmIu0i0j4wMJDrnEQ0hvnzl2LatBocO9ZhOgrl0YSWUqhqGMBuAE+O8Xdtqtqqqq2hUChH8YhoPM3NG3Do0NtIJpOmo1CeZLPqIyQitZnXKwE8DuBwvoMRUXbuuGM+AoGZOHz4/0xHoTzJ5oz6DgB/FJEDAPYhfY36d/mNRUQT0dy8HkeO7EMikTAdhfJg3J2JqnoAwN0FyEJEkxQKzUJ9/QIcPPgG7r57k+k4lGPc7kfkEi0tG/DBB528ZZcLsaiJXKK2th4zZy7jJhgXYlETuUhLyzqcOtUNywqbjkI5xKImcpFAIIg5c+7mWbXLsKiJXGb16gdx9mwPwuF+01EoR1jURC7j91dh4cI16Oz8g+kolCMsaiIXWrlyDS5cOI8LF06bjkI5wKImcqHy8gosXvwQOjt5cwE3YFETudTy5fciGo2ir++46Sg0RSxqIpcqKyvDXXc9zLNqF2BRE7nY0qXNGBlJobe323QUmgIWNZGLlZSUYOXKh3HgwB+hyhszFSsWNZHLLVy4HEAFjh/fbzoKTRKLmsjlRASrV2/EwYN/4i27ihSLmsgD5s69ExUV03HkCG93WoxY1EQe0dy8AYcP/4W37CpCLGoij5g5cy5qambj0KG3TEehCWJRE3nI6tXrcfRoBxKJEdNRaAJY1EQe0tAwEw0Nd6Kr6w3TUWgCWNREHtPcvA49Pe/Bti3TUShLLGoij6mtrcesWSvQ1cWbCxQLFjWRB61atRYnT77PW3YVCRY1kQcFAkE0Nd2N/ft3mY5CWWBRE3nUqlUPoa+vl7fsKgIsapeZtXsHHnumCU99vASPPdOEWbt3mI5EDuXzVeLOO+/jWXURYFG7yKzdO9D84jb4B05CVOEfOInmF7exrOmWVqy4HxcvDmBg4JTpKHQbZaYD3IrfX4re3r2IRvmzJFsbf/RNlI3a1x0rG7Wx5EffxL7FIUOpyOkWLpyODz74HRKJRaajFB3VFHy++rx/HMnHjNrW1lZtb2+f0vu4fPkyLl26lKNE3lDh90PG+PdUEYza9hj/BVGaqkJETMcoStOmTUNpaemU34+IdKhq61h/59gz6tLS0px88p4ybx5w8uRNh2XePPh8PgOBiCgXeF3BTbZvB/z+64/5/enjRFS0WNRusnUr0NYGzJ8PiKRftrWljxNR0Rr30oeIzAXwXwBmAkgBaFPV7+Y7GE3S1q0sZiKXyeYadRLAP6jqOyJSDaBDRHap6qE8ZyMiImRx6UNVz6nqO5nXhwF0A5id72BERJQ2oWvUItIE4G4AvPEaEVGBZF3UIhIA8GsAX1fV6Bh/v01E2kWkfWBgIJcZiYg8LauiFpFpSJf0DlX9zViPUdU2VW1V1dZQiLvgiIhyZdydiZLervRjAIOq+vWs3qnIAICbd17kXwOACwY+bjacnA1gvqlivslzcjagcPnmq+qYZ7nZFPXDAP4E4D2kl+cBwD+r6ss5jZgDItJ+qy2Ypjk5G8B8U8V8k+fkbIAz8o27PE9V3wLAIQBERIZwZyIRkcO5rajbTAe4DSdnA5hvqphv8pycDXBAvryMOSUiotxx2xk1EZHrFH1Ri4hPRPaKSKeIHBSRb5vONBYRKRWRd0Xkd6az3EhETojIeyKyX0SmdseHPBCRWhH5lYgcFpFuEXnQdCYAEJGlma/ZlT9REclqCWuhiMg3Mv9fdInIz0XEUYPJReRrmWwHnfC1E5Efiki/iHRdc2y6iOwSkaOZl3WFzlX0RQ1gFMCjqtoMoAXAkyLygOFMY/ka0nNSnOoRVW0xvQzpFr4LYKeq3gWgGQ75OqrqkczXrAXAvQBsAC8ZjnWViMwG8PcAWlV1JYBSAJ81m+pDIrISwLMA1iD97/qUiCw2mwo/AvDkDcf+CcBrqroYwGuZtwuq6Ita06zMm9Myfxx14V1E5gD4KIDvm85SbEQkCGA9gB8AgKomVDVsNtWYHgPwgaqa2Oh1O2UAKkWkDIAfwFnDea61DMBfVNVW1SSANwB80mQgVX0TwOANhz+O9KY/ZF5+oqCh4IKiBq5eVtgPoB/ALlV12tCo7wD4Fj7cMOQ0CuBVEekQkW2mw9xgIYABAP+ZuXT0fRGpMh1qDJ8F8HPTIa6lqmcA/DuAUwDOAYio6qtmU12nC8B6EakXET+ALQDmGs40lhmqeg5ITxMF0FjoAK4oalW9nHn6OQfAmsxTKkcQkacA9Ktqh+kst7FWVe8BsBnAcyKy3nSga5QBuAfAf6jq3QBiMPDU83ZEpBzAxwD8j+ks18pcS/04gAUAZgGoEpHPm031IVXtBvBvAHYB2AmgE+n593QDVxT1FZmnxLtx8zUmk9YC+JiInADwCwCPishPzUa6nqqezbzsR/oa6xqzia5zGsDpa54l/Qrp4naSzQDeUdXzpoPc4HEAPao6oKqXAPwGwEOGM11HVX+gqveo6nqkLzkcNZ1pDOdF5A4AyLzsL3SAoi9qEQmJSG3m9UqkvzkPm031IVV9XlXnqGoT0k+PX1dVx5zViEhV5s49yFxS+AjST0kdQVX7APSKyNLMoccAOO3uQp+Dwy57ZJwC8ICI+DPD1R6DQ34Re4WINGZezgPwKTjz6/hbAF/IvP4FAP9b6ADZ3IrL6e4A8GMRKUX6B88vVdVxS+AcbAaAl9L/H6MMwM9UdafZSDf5OwA7MpcYjgP4G8N5rspcW90E4Eums9xIVfeIyK8AvIP0JYV34YBddjf4tYjUA7gE4DlVHTIZRkR+DmAjgAYROQ3gXwD8K4BfisgzSP/w++uC5+LORCIiZyv6Sx9ERG7HoiYicjgWNRGRw7GoiYgcjkVNRORwLGoiIodjURMRORyLmojI4f4fugsxzVab6P8AAAAASUVORK5CYII=\n", - "text/plain": [ - "

" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "region_df.plot(ax=ax, color='blue',edgecolor='black', alpha=0.3)\n", - "point_df.plot(ax=ax, color='red')\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Larger Problem" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "n_points = 200\n", - "np.random.seed(12345)\n", - "points = np.random.random((n_points,2))*10 + 10\n", - "results = voronoi(points)\n", - "mins = points.min(axis=0)\n", - "maxs = points.max(axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "regions, vertices = voronoi(points)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "regions_df, points_df = voronoi_frames(points)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAD4CAYAAADIOotxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAdJUlEQVR4nO2df6hlV3XHP2smM4VHqCZvJio2775SatFa0eQpQm0ak6akoahtaYu8loFGBl9EVLQ2JdBiYUBjUeo/hgFDAu81oBh/tNDWGPzxT015ExI7NtpYOjOJTp0YWyoESpJZ/ePcl9y57/zY55y991n7nP2Bw7v33HfPXWef/V1r7X323kdUlUwmMw0ODG1AJpOJRxZ8JjMhsuAzmQmRBZ/JTIgs+ExmQlwW88eOHDmi6+vrMX8yk5kkp06d+rGqHl3eH1Xw6+vr7O7uxvzJTGaSiMjZsv05pc9kJkQWfCYzIbLgM5kJkQWfyUyIRsGLyNUi8jUReUxEviMi75vvv1JEHhCRx+d/rwhvbiaT6YNLhH8O+KCqvhp4M/AeEXkNcDvwoKr+IvDg/H0mkzFMo+BV9byqPjx//VPgMeCVwNuBe+f/di/wjlBGmmRnB9bX4cCB4u/OztAWZTKNtGrDi8g68AbgIeBlqnoeCqcAXFXxneMisisiu0899VQ/a62wswPHj8PZs6Ba/D1+PIt+KLLzdUdVnTbgcuAU8Lvz9/+z9Pl/Nx3j2muv1VEwm6kWUr90m82Gtmx6bG+rrqxceh1WVor9EwbY1RINOkV4ETkEfB7YUdX757t/JCKvmH/+CuCCV09kmXPn2u3PhOOOO+CZZy7d98wzxf7MPlx66QX4DPCYqn5i4aMvA8fmr48BX/JvnlHW1trtz4QjO99WuET4XwX+GLhBRB6Zb7cAHwVuEpHHgZvm76fBiROwsnLpvpWVYn8mLm2d79Tb+2V5fqitdRt+e7toF4sUfy21yyzbNiWa2vCL12l1VfXw4Um096low9sVfO6MybhS5XzL6pCPztYEnH16gp9yT3gCFSoJqurQ8ibifsytreL/jQeiKsHbHUs/1c6YKdzjj9WOdq0rrp2tOztw113FdVkkpbsCZV4g1JYjvANjP++YTTWXCN/mt+uO1yZLiADJRXhrPeG33QaXXQYixd/bbgvzO2PPbGLeNy+rQ4cOwepqcR1nMzh5EjY33Y5Xdw0SuSVrV/Cbm8XFmM26XRyf3HYbfPrT8Pzzxfvnny/ehxD92O/xh3BoVU2Esjr0rnfB5Zd3+52qayCSzi3ZsrAfakt2aO3Bg+Vp3MGD/n9r7HcnfDdZ2pRX37It+75I0ZFnDJLrpbdEXRswBGPupfft0No4EB/OJpFrkwXfh74RPpFK8gKh7fV5/OVbZHWdaG3+N3HSE7yvSuHjOFtb5RXFJZVLLUVPzd4c4UtJS/C+Kp3Pyru19WKkP3jQvd2W2m221Owdug1v1BmmJXhflc5C5U0tjUzNXtV2UbdPhLZQnxxJS/C+Kp2FyptQJVHVuPYmkh6/gIX65EiV4G3eh/d1L9rCPe2qAUS33GJzmmasAU8pDiG2UJ/6UuYFQm1Jt+H7sBzJtrZs2FVFjMibWuajaqc+OUBSKb2qrV5636RY2X2TUHp8CRbrUwlVgpfiszhsbGxofnosRRpfVu4icPFifHuGYH29SOOXmc3gzJnY1rzIzk4xrv/cuSJVP3FimOHcPRGRU6q6sbzfZhveAiGncI6hLdgXa5OjoF+/QipLZ5WF/VBbMiPtQrfVEmoL7sNnSmstPe7a1DJ4PUmuDT8kMdrY1iq7CxYqdshy69qvYLBPJgu+Dal2KIVm6Iod2uF0Pb+Q9aWjg8uCb8PQFdsqQzvC0Nelq0MJZVcPB5cF3wYLqatFhnaEMRxOl4gaqr70KO8s+Lak2MYOzdCOcGiHU0eI+tLDwWXBT5mx9KwP7XBikyP8hPA50nBMIplS5pXb8BPBp0gtp8GZZjz30ueRdntYGinlcynnsuGrdfv7YKkMx8LmZjHU+OLF4m/PYb6XeTEqdfaGVO6JbG9IJQwzjtrnUs4HD764vPbyfp9YK8NMKXnyDNibyOHTHpHqz3xee2tlOHE6T54RkbtF5IKInF7Y93oR+db8WfG7IvIm3wZHxdrTXnxOLJnN2u3virUytISlpk5Zw35xA64DrgFOL+z7CvBb89e3AF9vOo527bQb62IMTee19zm8uHhml/OP1UufOwfLGeguCX166YH1JcH/E/CH89fvBP7W5TitBR+rsHz+jouDcv29tnZV/XYMp5nS7b+Yt/YGcoS+Bf9q4BzwBPADYOZynNaCT21BRddK73pebc7fguBSuEceu5wGmn/gW/CfAn5v/voPgK/WfPc4sAvsrq2ttbN66MkabXEVqOt5tTn/nFK7sboat5yMRfiu9+GPAffPX38OqOy0U9WTqrqhqhtHjx5t9yuprQzj2nHlel5tzj93mjWzswNPP13+WVM5de14s7ayT5kXWN7YH+EfA66fv74ROOVyHNNteB+pqKs3D9GGzxG+maoyaionH0+sidzUoWtKD9wHnAeeBZ4EbgXeApwCHgUeAq5tOo52Ebxq+MLy3WHX5rFHLufV5v+GbsNbp6qJBPXllKAz7Sx4n5vJsfS+L+bQs8msd5oNSdW1Xl2t/15qfUk6dcHXCaHO62fRjAtrK9oEZLqCb7rIde26nBaPD0sr2gRkuoJv8s5lFzMhT54UKTc5ErO9SvDjnzzj8pSXvaeNVE0ZndITYUKxPJsOittTJ0/m2XQBmO6TZ1zuZe/NOa6aUGL1vn9K+Jzjn+nM+AXfZuBD20ESlmZBWSfEwKBc/u0py/NDbSZ76bv+b2odOUO3QUPc/rRa/kOXtU650y4UdRXYwAW/BAvi8G1DXwcS6hr1OU+PNmXB+6bu/v3Q4lrGyn1k1zUAXLKrqrJ3GQwT0gF2LWvPNk1X8KE8edWF3Vuswqe4+p5DCiPF+swvaFvOIR2gkQdSjlvwdQs/hPLkVcfuE3na/E6bc7AS4evou0ZAm3IJ6QC7lrVnm9IUfN/VY0JX9DL7fP+mj+NZaMM30XeNAHA/n5D1wsjw3fQE72P1mCFSWRe726Tovs7BWkfiMiFWAaoitAM0MHw3PcH7WD1mqFS27oK3vbAppOM+CLFGQNPv+XSAPo436V5618jWdHtsuXIcPlxMh0zlfnQK6bgvfK8REAuD1yg9wbsKo6mwFyvH6qrqoUNxL8xy5axqf9al6Nvbl67Ftro6fCUfE30diMEsLD3Bt/Garhcs9oUpO4eqzKXOBoMRZDT4KNuQfUUdnVF6gu9xspXE7sSrcjDLdjRVMIMRpBPWUnFVP2Ub6vr0cEZpCt43sYXTtJqOa8WP6agsDjkNiY+yDXVuPeprFrxq/Erny8HEclR9y6fOWfQZchoyK/BVtiHs7OGMsuD3iJlW1gmojR2xHFWfyt9kY5fKG+O8rWYeqjnCJ0mZsLtUshiOqk9621Q5u1ReX4NsXEZrWuhbWLZjayu34UeB1U64PnY1OYsuTq5v+9py9F6mytatrQn10o8Vq7PX+gjExVk0RdLlz/s+B86qYy1j8mPpx0yX0XYx+x26/JaPDr+yUZF9BkpZdaxl5NlyI6btoKKU0tKujqnKCa6u+j9mShG+6ak4FaQreCsdKr6xOjpwKEJE49Sc5XI2s5fldLA3TcFvbxcn7KEAksXgsM0ghBytZuUcm/D47Po0BV9VAB3TnCQxOGwzCNbsGQKPzr1K8LbXpX/66Xb7U6VuffW2a+U3HW8Paw+G2NwsnkIzmxVP+pnNpvdUGpeHpvSlzAuE2lpH+DJvt7fFInRK6BLZQozKS6kHeyp4zHLomtIDdwMXgNNL+98LfA/4DnBn03E0xZQ+RprpO2V3Pd5UOgNTw1OA6SP464BrFgUPvBX4KvAz8/dXNR1HXQRfNrRwuefy0KF47boYovAdaV2PF8qZpdRJNmI6C774LutLgv8s8Bsu313cagXveWihF2KkvUNFeFX/4swdb2bwLfhHgI8ADwHfAN5Y893jwC6wu7a2Vm2hxRQzxq0i38tuDSk6i9dwovgW/GngU4AAbwL+E4pnzddttRG+TTSNlTaGEE/VEFKfC2vGTqv3fq+qg7XtYhK5SdAb34L/R+D6hff/ARxtOk6t4F2jQ+wI5rsCji0Kll2PrueWmwTe8C34dwN/NX/9KuCJ3hHe9WKnLpix3Q6ri+xtBTvktR1ZZtGnl/4+4DzwLPAkcCtwGNiep/YPAzc0HUebBK/qVuh168RZuVh155G6w1qmad2+NtdiKGc4wsyiV4T3tXmZLdcUUYa+WE2VZ2yVy6cDG8oZjs0J65gE79JmHPJi+VgIIiV8OrChnOHYmlk6JsGrXiqYuvR+CEZYeRrx6cCGcIY5whsX/CLWLpYle8aUSYRkbM0sHbPgrV0sK/ZYsSMVRuYcxyt4VXsXy4I9ljKNTHSqBC/FZ3HY2NjQ3d3daL83aQ4cKCS+jAhcvBjfnsx+dnaK9QfOnSvmvJ844W3+v4icUtWN5f22F8DIdKfPYgouC2hk+rGzA8ePw9mzhWM+e7Z4H7isxyn4XGG7rZQDg1XEyTHUikNleX6oLcoy1W2XgB66rR2SLueX2/7hiHg7mVF32i1idRJOKlgYRzBGRxx5wNh0BO9aYXMkK2fochmrI+47JLylE5yO4F0rrIVIZpGhBTe0w9nDd5bRZ9JXh2syHcGPfZptjHR3yJTagiPu6vRCzZLs8N3pCF7VrcIOHcm6kKLNbamr3LEcURdxhpwl2cEJTkvwqu6iT6lzKNWspA1Vwrjxxv0VP5Sz65JlhJwlmSN8A2ONhBbS3RgsC2Nrq/rcQzi7Lo419DMAcxu+hrFGQgvp7hD4WiDTlS4BI3Sdy730NYw1ElZVxK2tcWY0ezQto9WXMjGVZRl1gjOWVU5L8GON8KrllXPM56tafX4i/QXlIlRXMRvKsqYleGPeNjh9MhpDlbSSsuspUkTdvrg4ywQd6rQEr2qjIlu+jbRnXyqOMVRZujjLBJuI0xP80MQUU9ff8hW5LDjXruQInwXvhdiVpIvofESulLKEMny24Q2RBR+bFNLAtk5prB2GIQZpDZz1ZMHHJgUhtF07oOx/y87RmmOLjcsw28DOIAs+Nqmkga6Vr8qBHTxo37HFpmmAVIR6kQU/BCl3Zi1TN/glBccWk7rmXKTMr0rw41zTzgqbm3DmTLFK7Jkz3VYktbI+X9Xil7MZnDxZ/BV58b2n1VeTpG4B0XPnyj+r2u+bMi8QaptchO9L3VDakJlD1VDTFCK5hayqrqwGjvDjFryFi9+WRZur2sd9p4nWlUtdZY1dnl16xq04pSrbcxs+EJYuvitlNrturhGiqVzqOudilp3FGWu+sNxLD9wNXABOl3z2IUCBI03H0diCT+XiL1I3DbRpc70N1lQuTZ1zsURvbU56YlQJ3qXT7h7g5uWdInI1cBMQqbehJUN3jnTBxTaR8v0uT5Sp+429/XXHifGghGV7XPdDv6ftTIRGwavqN4GflHz0SeDDFBHeHile/CrbDh58sQf83e/u9kSZpt/Y21/2xJpFYjnMLtev69N2pkRZ2F/egHUWUnrgbcDfzF+foSalB44Du8Du2tpavJxmLG143/OuXceODz2gpuv1S7GjNgD06bRbFDywAjwEvEQdBL+45V56B2LY7Dp2fGiHGWv8uuv3EqpPPgX/KxSdeGfm23MU7fiXNx0n34dPgMVKvbpabAlU8F4ZgWtWNbQDbIE3wZd8ZjfCZ9qRWKW+hK53ZVy/F/quj+fsobPggfuA88CzwJPArUufZ8H3xUqqaP1WZl05db0l5/o9Y8tQN9ErwvvasuBLsBRVLd/H7jpgKIUIH+DYWfCh6BudLUVVS7Ys02RbmUNwWejSQhs+gKMdh+CtpL6L9vStBJaiqqVsYxmXcip7Qo3PW3mh6l+O8CVYrIw+LpS1qGrNqe7hUk7WytKV3IYvweLFzItAxsOlnCxlS22x0kvvc+sl+KbHDQ0RkXw5IatR1RpN5RQ7KBi+bukLvupixnqEcBk5Otsi5vUwfu3TF3xVL+zQab5hL+9E6vYvE+t8LDYxF0hf8Kr7L2ZVip9Cm80CxqOUaYz3F1QJ3u4ilmWLNy4vCjmblX/3wIHhF32MQd8FLu+4o5jjvkjMOe9lWFm0s4mu06+HPr8yLxBqc47wfQZDLG9jjVhjGwOgmlbG0cXWiOdHUil9m/bRYpo/9BzumIxxDIA1e5po218Q8fyqBC/FZ3HY2NjQ3d3d5n88cKAoimVEinTe9/dSxMe57uzA8eOXpvUrK8OtKz/26xfx/ETklKpu7DPB66/4omv7KOSyVkO3vZbxca6bm7YeIpHismRtsHB+ZWE/1Oa9De/re6HsCYlFm/oyxnNaJLfhawi9XFEbura9Qt8THts9dNVxntMikc6vSvA22/DW6NL2stY+zkyKtNrw1ujS9vJ1j9ta30HGHYvXrizsh9qSXQCjS9srz6SbNgNfO5Jrw1tjiHuuVvsOMtXslX3VQLBIYwqy4H3TJKqhRsLlrGA4XEZ+RhrFmAXvkzZDf9tG2r4jB1MbrdYXS9lMXWTPET5h2oqqzZppfecGWBsfHxJr2UzdIi25DZ8wbUTVplJWOZKDB02O1x4Ey3MnmtruER1RFrxP2oiqzf/mnv16XDKgIbMZQ2WfBe+TNhe2jYjzGnn1uLSRh85mjJR9FrxvFi9s3UMX2071NRIhTNLURs7l9QJZ8KFoEmlbERuJEOZsUe3Xx2HtXAKTBR8KlwieYmWzmG1Ym0VpmCz4UIz1NljM3v42DrGL8xz7nYsSqgSfZ8v1ZX0dzp7dv382KxbaTJVYq7PEmFU49pV0Ssiz5brgMtvpxImigi6yslLsT5lYq7PEWDnXwkozVigL+4sbcDdwATi9sO/jwHeBbwNfAF7adBxNLaVv0+7r00a32r4PuXpQ7GcL5Da8exseuA64ZknwvwlcNn/9MeBjTcfR1AQfo93XtyKmtqJO2fnGenpQ33Ox6pgr6Cz44rusLwp+6bPfAXZcjpOU4GN0xvVxKlajVp0wqs7Xx/MBQwhycarrkM8w7EBIwf8d8Ec13z0O7AK7a2tr0U64NzEifB+nEtK+PusJ1jmhUE8ADuH8XIbxGu7lDyJ44I55G15cjpNUhI8RQfuINlQG0ue8m84nhJPa3g4zicZlGK/hW6/eBQ8cA/4ZWHE5hqYmeNU4beRQ4upKSCfk24k2ReE+gnQZxjuVCA/cDPwbcNTl+3tbcoKPQaj0uSsumUOVzbFHHTZFYde+kDbn4rOsAwaUPr309wHngWeBJ4Fbge8DTwCPzLe7mo6jWfD+CVFhmkRb52hidyTWRWHXIbeHDl36vUOHqs9l7/dC3bHwWFa9IryvLQu+AQu3fpoqootDiHUOdZNpXH53dbX8+6ur4c8lcKdwFnwXYlZeF48fy56637E0d6BvlKxL2UMTot/hksNnwbcjdnraJ5WOSd/IFGIwT9fjDSX47e12A446nGMWfFtiz7BqipxWZnz1cTxWnNYeTSm9TxZFW3UbUWR/WXQssyz4tsROXZsEbS2Vboo4Zf9jxWkt2rgsPtf2f9vfcVmLryyz6FhmWfBtiV05+3aWWaLqXNq0W2P0V2xvqx4+fKkthw/3H6Hn6uhcrmVHR58F35YhJrbUfcdaOlxHXe951f7Fc451rr6daFtH53J+OcJHxNqgGAu37Vxouj/eVPGr2ta+sxnfzaS+jq6M3IY3RJ8RZ2Om7vxdOq/apP6h7OxCG0cXOFvMgvdNnee11ME2BK5RyWW8ekiH6TsTc3V0EbKzLHjf1F3cqUd4VbcKXlVOq6vx+it8CtFQP0tagk+hrVoXxQ1deNM0jcu3XgfKMGJ3OoJPRSyWxpSnTC6nIKQj+FTS4VQcU6adUxmJA0pH8Cl1eI2kcoyaNo55RE48HcGnEuEzfgjtNNvUpxHVvSrB23sQxVgf7JDZz95TZ86eLaR19mzxvuyBH105d859f5v/TRR7gt/cLB4zNJsVjwKazfw+dmhKuDw5Z0isPXVmCk+oKQv7obZR3Ye3Tgrt0Rj9NbkNb7wNP1Zid/Cl0B6NZWPupc+Cj8oQkSOFux0jiqjWqBK8vTb8GInRVl3GUnu0qi8h99fEp8wLhNomG+GHiLZWoqcVOyYGOcIPyBDR1kr0HCK7GZq+d0dC3l0p8wKhtslGeN9RLqWOpRT6EnziY6UkD3WF5DvtUqrkZfiyP7UUOYW7BT7pe76eyittwadWyUPiU0CxFoqc0rXrm9F4yojSFnzoKJFS9uArRS4Tos9npy3/Virl25e6de1czjtHeA3bDkwtAvlyfk1LJ1suA8uU1ac2ZZrb8Bo2wqfWxvTloBJ//rlptrerF+h0KVMPGVHagg8ZhVPsRfaRIrs8HMFyGVhn4HpVJfg07sPX3VPue8/S0og0VzY34cwZuHix+Nvl3vqJE3DoUP3/WC4D61itV2VeYHED7gYuAKcX9l0JPAA8Pv97RdNxtE+Er8JH5E+tDe+Tqgc+TKkMQtF2lp7nTk26pvTAdcA1S4K/E7h9/vp24GNNx9EQgvfV/p5SL/Iide34qZRBSFzqVaCAUyV4KT6rR0TWgb9X1dfO338PuF5Vz4vIK4Cvq+ovNR1nY2NDd3d3XZOPZg4cKIpov8FFupupZ329WGVmmdmsaCpkwhPoGojIKVXdWN7ftQ3/MlU9DzD/e1XNDx8XkV0R2X3qqac6/lwFVttJqZCXExueyMtqBe+0U9WTqrqhqhtHjx71e/BcYfthZYLNlIkctLoK/kfzVJ753wv+TGpBrrD98dHjn+lO5KDVVfBfBo7NXx8DvuTHnA7kCptJmchBq7HTTkTuA64HjgA/Av4S+CLwWWANOAf8vqr+pOnHvHfaZTKZUqo67S5r+qKqvrPioxt7W5XJZKKSxki7TCbjhSz4TGZCZMFnMhMiCz6TmRBOQ2u9/ZjIU0DJOMJ9HAF+HNicPli2z7JtkO3ri6t9M1XdN9ItquBdEZHdslsKVrBsn2XbINvXl7725ZQ+k5kQWfCZzISwKviTQxvQgGX7LNsG2b6+9LLPZBs+k8mEwWqEz2QyAciCz2QmxOCCF5G7ReSCiJxe2HeliDwgIo/P/15hyLaPi8h3ReTbIvIFEXnpELZV2bfw2YdEREXkyBC2zW0otU9E3isi3xOR74jInZbsE5HXi8i3ROSR+UpNbxrItqtF5Gsi8ti8nN43399LG4MLHrgHuHlp3+3Ag6r6i8CD8/dDcA/7bXsAeK2qvg74d+DPYxu1wD3stw8RuRq4iWLq8pDcw5J9IvJW4O3A61T1l4G/HsCuPe5hf/ndCXxEVV8P/MX8/RA8B3xQVV8NvBl4j4i8hp7aGFzwqvpNYHku/duBe+ev7wXeEdWoOWW2qepXVPW5+dtvAT8X3bAXbSkrO4BPAh8GBu2RrbBvC/ioqv7f/H+GWS2JSvsU+Nn565cAP4xq1J4RqudV9eH5658CjwGvpKc2Bhd8Bc6LZA7MnwD/MLQRi4jI24AfqOqjQ9tSwauAXxORh0TkGyLyxqENWuL9wMdF5AmK7GPIDA54YdXoNwAP0VMbVgVvHhG5gyLtavmom3CIyApwB0UqapXLgCso0tQ/BT4rIjKsSZewBXxAVa8GPgB8ZkhjRORy4PPA+1X1f/sez6rgbSySWYGIHAN+G9hUWwMZfgH4eeBRETlD0dx4WERePqhVl/IkcP/8eQn/AlykmBBihWPA/fPXnwMG6bQDEJFDFGLfUdU9m3ppw6rg7SySuYSI3Az8GfA2VX1maHsWUdV/VdWrVHVdVdcpxHWNqv7XwKYt8kXgBgAReRVwGFuz034I/Pr89Q0Uj1OLzjzr+QzwmKp+YuGjftooexxNzA24DzgPPEtRQW8FVil6IB+f/73SkG3fB54AHplvd1kqu6XPzwBHLNlHIfBt4DTwMHCDMfveApwCHqVoM187kG1voehA/PZCXbulrzby0NpMZkJYTekzmUwAsuAzmQmRBZ/JTIgs+ExmQmTBZzITIgs+k5kQWfCZzIT4f25kFN7jUerHAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "points_df.plot(ax=ax, color='red')" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP0AAAD4CAYAAAAn+OBPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9eVhb5533/ZEQAoQQq9j3fTUYbGODsbFxbGNnsRO32Zo2TRo3bWauttPOMzNv5+rMPM+knafvzLydTtNp0yZNmn13Fsc2Nt4xttkxqzH7DmITQgghpPcPGdlCCxK2szR8r4sLOOc+9znnPvfvvn/7T2AwGFjFKlbx1YHw836AVaxiFZ8tVol+Fav4imGV6Fexiq8YVol+Fav4imGV6Fexiq8YRJ/lzQICAgzR0dGf5S1XsYqvJKqqqhQGg0Fu7dxnSvTR0dFUVlZ+lrdcxSq+khAIBN22zq2y96tYxVcMq0S/ilV8xbBK9KtYxVcMq0S/ilV8xbBK9KtYxVcMq0S/ilV8xbAs0QsEggiBQHBKIBA0CwSCRoFA8IPrx/0EAsFxgUDQdv23751/3FWsYhW3Ckd2eh3wY4PBkAJsBJ4RCASpwN8DpQaDIQEovf7/Klaxii84liV6g8EwaDAYqq//PQ00A2HAfcDL15u9DOy7Uw/5hcVrr0F0NAiFxt+vvfZ5P9EqVrEsnJLpBQJBNLAWuAQEGQyGQTAuDEDg7X64LzReew0OHoTubjAYjL8PHlwl/M8aqwuv03DYDVcgEEiB94AfGgwGpUAgcPS6g8BBgMjISKcebnp6GqVS6dQ11qDT6RAIBLi4uFic02q16HQ6JBKJU30G/d3fIVKrzQ+q1ej+7u8YLiy0e+3CwgIGgwGR6LPxgp6enkYikVh9/1uBwWBgfn4esVh8W/udn59Hp9Ph4eFht53HBx/g87/+F8LZWeOB7m70Tz3F5MQEs/v3Mzs7i5ubG/Pz87i5uTl0b51OB/CZfRtb0Gg0uLu7A+Dv72/6+3bAoTcTCASuGAn+NYPB8P71w8MCgSDEYDAMCgSCEGDE2rUGg+F54HmAdevWOZWbq7q6hfp6LWLxrb1wQ0MFPj6+hIfHW5ybmBilrKyE+PgMQkIi8PZ2TB95sH/A6nGX/gE++WTI7rUtLXWIxUJiYzMcutetorr6PImJ6UilPre137m5WSorT5OXtxtHNwFHMDU1xrVrjeTkbLHb7pF/evYGwV+HcHYW1396ltfJoa6unLi4FHp72wgOjiMwMHjZe3d2tqLRKElJWX9L73ArGBsb5Nq1Rtav345GM8PevTMkJibetv6XJXqB8Wu+ADQbDIb/vOnUR8C3gH+7/vvD2/ZU16HXg7d3HL6+y38sWxgdHWB6eoYtW76Ju7vlbh4aCrW15Wi1ehoba5BK5YSGphAfn4ZEIrXZ76w8EsmoZUzDrDyS0NAcm9fp9XouXbrA5s33IZc7x/msBDqdjpmZ48TGbr0ju1ddXSUSSRS+vlYDulaE4GA9bW0tGAz+hIVF22wnnRi2ebyraxgfn1DS0opRKucQieR2v8sixsZ0iERDDrW9E9BqNVRUnCM9fS/h4en09bXe9ns4ItPnA48B2wUCQe31nz0Yif0ugUDQBtx1/f8vHGpqTpKSstEqwS8iOnoNISGp7Nv3I1JT1zM11cmnn/6WEydep6WlBo1m1uKa5seeRedm3qfOTULzY8/afZ7+/k5cXV0+E4IHmJgYQSKR3jF21dc3iJGR/tvap1AoJD4+h6tXK+y2mw2wPoZK7yCmpwfYuPF+AMRiD+bmLL+h1T5nVbi52V7s7zQuXHiPgIAEEhLS79g9lp0JBoPhPGCLdyu6vY9jG6GnXyPllZ/ioehhNiCS5seeZaDwUbvXdHa2MDc3QXLyI/b7Dk3g2rUGMjM3ERmZRmRkGlqtlp6eBrq7r1Bff5yAgBgiI1OIjExELBab7u3MM42PD3Pq1NuEh8c6PwArxNjYMD4+AXesf3//MBSKAZKSsm5rv/Hx62lq+jWTk2P4+PhbbdP82LNkPncQ0dwN3cq82IM3MrbxmIuI7O8l4qHoYYt3IE2x68j87beW/VZzcyq8vVfOWd4KmprKUKlm2bnza3f0Pp+vtsJBhJ5+zezjSka7yXzuIIBNItPpdFy5cpK1a3cgFNpnaMLCEqmoOIpWqzUppcRiMfHx2cTHZ6PRqOnuvkJn52Vqao4RHBxPVFQq+i0PL7vwLKKxsYLm5rOkpa2ls7MRlUqJVCpzdAhWjImJIXx87twklsuj6Ooque39isViIiOTaW6uZNOmXVbbLF14Z/zCeDV1K/HxWWx88Uem+eI9OczG6sOmncve/Onv72RkpAuBwIPY2FQzDmklG4+jGB3tobn5IkVFj992xehSfCmIPuWVn5qt5gCiOTUpr/zU5qA3NVUhkXgQEZGybP9isTs+Pn4MDXUTGZlgcd7dXUJSUi5JSbmo1Ura22tpbDzJ5cufEBaWTHR0KkFBEVYXF7V6hosXj6BWj1BU9Ci+vsHo9XoqK09SWHjnXRumpoaJjMy/Y/37+4cxMzOGVjuHWOyYhtxRpKZu5pNPfkdUVDISiRSx2B13dw+zcR4ofJSBwkfRarWUlLxCVFQceb963GK+LGVVbc0fsVhAUlI23d1V1NefIDIyk+TkbJKrPyXr10/gotMCxoUj69dPmJ7hVqDVarhw4X3WrNllk6u5nfhSEL2Hosep4xrNLG1tZRQWPuTwPeTyKAYGOq0S/c2QSGRkZGwhI2MLk5MjdHbWUVn5EQsLEBycRGRkEsHBxgWgv7+TS5c+Jiwsmi1bDpp2jczMHRw+/Bz9/V02FVW3Y1fR6/VMTY3g7x/m1HXOQCQS4ePjx+joAGFhMbe1b6nUB4NBR1nZO7i6itDptMzP63BxccXV1R1XV3fc3DwQidwZHx/F29uDjIxCm/NiKZa202rnmJ+fJSUln7S0AiYnR7h69SIlJS9w39v/20Twi3DRaUn/ww9umejLyt4jICDxjsrxN+NLQfSzATY05TYUOXV15wkJicbfP9The4SHJ1Fe/qlTz+XjE8jatXexdu1dVFSUUlt7hM7Oy4jFnri6erOwMMG6dcVERqaaXScWi8nI2EpNzQlCQp6w4BBWIs5Yw9TUGO7uYrtKzNsBb2+jMs9RondmQXN3l1BU9AQymdHcqNfr0Wo1aLVq5uaMP1qtBr1ei1I5hFqttDlflmLp/JmaGkMq9TJ9Dx+fQDZsuJesLC2ef/5bq32Ip8ccemdbaGg4z8zMLAUFD95SP87gS0H01hQ2tjTlExOj9PXVUVz8tFP38PcPR6tVoVROIJPZttUvnbB1D/6Md1xlKJUD3HvvXxMUFMXk5Ajvv/8f7N//E5umrPj4bNrba2hqqiQ9fYPZuZWIM9YwNjaMTHbnlHiLCAyMoqvLMdOSMwuaVqtlbk5rpvsQCoW4u0ssFrLY2Cyqq89RWvoykQ/+jPV/+GuzMTRgzuJrXd04UvBNrlSdQa9fQK/XMz4+jF5vqbO+UzL26GgPLS2X2LHj8c/UGehLEVo7UPgodc88j1oehUEgQC2Pou6Z560SQG3taRISsu3a2K1BKBQil4fS399hs03o6dfI+vUTSEa7ERgMSEa7Wffbg2zqvMjevd8nKCgKMDqtBAbGL2u7XreumJaW86jVM2bHnRVnbGF8fAgfnyCnrlkJAgOjGR93zGxnb0FbiulpBZ6e3nYVsaGnX6PoyWjuvk/I3z73GHeNDvBnnYbKg78xzhcEjEl9qQ+MZUEgxAAsCIRUZWynLm0jAoEGkWgBDw8hUqkIg8H6vbRe1mXtabGEw4f/SEtLDVqt1moba9Bo1JSXv09W1mcjx9+ML/ROPzMzQ0PDGXx9Q+iMyqDm52fw9PRGIpFZnQj9/Z1MTfVTULB/RfcLCUmgv7+DlBTrjhnpf/iBhVznql/g3tKXKHni303HBgevERAQvez9/P1DiYiIo7r6NJs37zUdd1acsQWlcoT4+DVOXbMSSKU+uLgY7JrXFuHMgqZUKvD09LPZlzWuYf+RX6Pf9QwvhUTj953/ZGCgmwNaDbvf/1dcDHoAXAx61jeeQXxdCbgIrVbLu+/+kpGRAaRSbyQST9O5hqf+i6z/+jYuC/OmYwsurlx95vdkxK2lra2SxsZThIVlkJycbXMc1GolHR311NefJCgoifj4z0aOvxlfaKLXaGbR68VMT88wOjqMWj2FRjPN/LwGNzc3PDw8cXdf/PHi6tV6srMLV8wqhYcnUV9/Fp1OZ7UPW/Lb0uMKRTdxcXkO3TMz8y4OH/4fhoczCQoKB5wTZ+xhcnKQgIA9Tl2zUvj4BKFQDC5L9M4saNPTCiQS20Rvi2u4p/wtjt39M4aHBykuPsj2v05zSFwSi8XMz6s5d+4NDIYFdDo9bm4S3N1luLl5cm3vD9l15s94T40w7RtC9QP/wHDuPsLdJURGpqFUKmhtvUxp6Ut4e4cQF5dNVFQiGo2Kjo56+vtbmJ6eIiAgDoHAk7S0z8fV9wtN9P7+AaxZE2HhhqvT6VCrVczMTDEzM83s7AyTk6OoVAri47NXfD+JRIaHhwejo/2EhESZnVOrVQ71odPpGB9XsHmz+fW2lFfu7hLS0jZTUXGMPXu+jVAoXJHjz1IolZMIBKzI334llgM/v1BGR3uX3bkcWdDUaiUKRS8tLZdJStpqsy/bXEMvYWFRiMUCJBJPh7kLtVqFROLP/v0/QigUotVq0WiUzMxMMTs7TUdgEP+xppC5uWk0mhm02llmP/0fFhZ0iMUSxGJPPDy8kMvjmJgY5PjxP6LV6pDLQwkKSiQxcTMREfGIRCLeffc/kMk+n8DULzTRL8LWJFzU6ILxgw0Ptzjdx1IEBkbT19dhRvTXrjVQV3ecuz288JydtrjmZnlveLgTL68A3N1vRIgtp7wKDIyitPRVjh37M9nZOwgKCjfZn1eKsbEhZDLbu6QtrNRyMDenoa2tgpycbXYDpJYuaGr/MM4V/xUXvQJQnvozk5Oj6HRGiwCIUKlsa8ftcQ0Gg2PtbsbISBfe3kEm0VEsFiMWByCTBVifP3cZ7fQ6nY7Z2WnUaiVq9RQq1QQ9PTW4ufmzefMuEhPXmHGOavUMBsOC03qn24UvPNFHX3ifzJf+dtlJKBS6oNcvWO3DmYkcGppAXd0ZYBtqtYpLl44yPT1Afv4+WvwDrcp1DU/9l+n/oaFrBASY7/L2lFfXNtzD2bNvsn374wgEOi5ceAs/vzjWri00W9ScRV9fB25u9kNTrcFZy4FGo+bSpUNMTU0TEBDD2bNvUFj4mFXxSKkcZ2ysj0qpH68++i9MTCgwGMDbOwQfvSsREdnk5ISZrCdqtZLDh59HoykyW0QXYY9rMBKuYdl2N2N0tBdfX0ufhuXmj0gkwsvLFy8vX1SqSZqazhMenkle3t1WNf/T0xOfG8HDl4Dos9/9hUOT8OaPvBTOTOSgoBiGh//M2bNHGBpqJCYmmYKC7yMSiRgIjjH1Z4tjGB3tJS3NPCTBHnt58uSrREbmmJSHsbGZXLlyipKSPxIVlUNmZp7Tnm5NTVX09tYgEMCVK2fJyLAfourosy7F4GA7Fy9+SHBwCrt3H0AkEnHy5NuUl79PZuZ2FIo+xsYGmJoaYnJyDIFAhI9PCN7eQcTE5LJuXbDdhU0ikREYGEJ7e4NV+deuGFRx0rF219HW1kB9/Vl8fSNYu7bAbNFydP4MDrZTXn6I2NiNZGXZ9oKcnp7E09Pb5vk7jS880XuOWTcFLZ2EQqELBoN1ondmIvf2NuHqKmZ8vBWtVsXY2BgtLdVERycjlcrsst1arZapqQmCgiLMjttiLyekfvj6RpGdXWA6Jha7k5NTTEJCLnV1JRw+/DuSk7eQlJS5bAwBQFXVGfr7a9iz5ynAhfPnD6FQ9JKf/4BDeQkcYYV1Oh01NSX09Fxl3bq9REUlmc5t2bKfd975NV1dvyEsLAVv72Di4vKQy0MtYg0cEbni49dRU3PWptLL3vcwXNfW22un1Wq5fPk4Y2Nt3H33d2lpucCpU++wbdvXTITvyPxpaiqjqekSGzbcu6xX59TUBJ6en18e2S+8nX7GhgvpUnlMKBSysGCdvbdl6lp6XKvVUFt7gm3bvsG+fT/koYf+keTkHCYnOzly5HccPfoyDQ2XUamsZ/MZHm7H2zvYgqWzFoarFYlpiMrmZy9+n7vvE1L0ZDShp2+kepLJ/CgoeIi8vH10d1/m009fpL+/0+p9weipdv78YYaHG9mx4wl8fALx8fFn9+5v4ebmy5Ejv0Oh6LN5vb1nvZkVnpwcoaTkD0xNKSku/o4ZwQOIxW5kZ28nMjKR7dsfJCdnKzExyVYJPvO5g2Y+D5nPHTQbA4CgoDj6+lr49NOXaWmpsfBpsI3lk3ooFEMcPfon9PppioufJigomoKChxCLDZw69Y7J7m5v/uh0Rjfh9vZGduz41rIED6BWj+PltUr0NlF94B8cilsXCoUIBEL0ej1L4Wjse13dcfz8Yk3upCKRiOjodDZvfpD9+/+G5OQcxsc7bC4AQ0PtyOXRFvdf6lw06R3IhcR88q6WIRntWWbSR7F793dJTV1HRcWHnDr1DpOT5sotrVZLaenbaDQj7NjxBBLJDQITiUTk5e0hOXk7p0+/RXPzRYvns/esNztCNTeXU1r6CpGROezY8ZBNuTQsLI7R0X6r32IRjjrpXL1aR2RkPImJGQwNNfHJJ89x/PhrNDdXOWxRsYbGxgpOn36NpKRstmx5yMQFCYVCE+GfOfMeWq3W5vyp/dpPKSn5I3NzAnbt+pbDTjYzM5N4ed15T0lb+MKz91159+Pp6e2Q5l0oFKLT6Sx2WkdkurGxAXp6rlJc/F2rz7G4AERHp6PT6ejra6Gnp4GWltNIpUGEh6cwONhBTs69Vq9fZC+bm8u5erWW//rwF4i0jivMYmOziIxMp6npLKWlfyIwMJmgoCjm5+doaionKCiQvDzrCjSApKQ1yOVB19n9bnJz99t0L13KCqvVKi6depWZGQ3btn0DPz/7Xn4ymQ9ubl6MjvaavBSXwhGWWaudo7n5LFu2PIBcHkl8fDZarZa+viZ6e5tobCzFyyuU8PAkoqOT8fT0svtcYPT9uHDhMGr1CDt2PIaPj6XZbJHwz559kzNn3oOtxvj2m+fPxXt/yKuzSqKiNpCVle+Q6LWImZlxvL1vX6YhZ/GFJ3qwL7fdDIFACFjfXZbro6LiY5KTtzikVbW1AHR3X6Ow0LaCpru7gaamixQVfRPJi89YbWPP1VYkEhEfn8vo6BitrWfQaFLR6eYALVu2LB+w4ecXxO7dj3PhwhGOHfs9mzd/bdlUZH19LVRUHCYkZA0FBdscdnySy+MYGLhqk+gd0R3U1V0gMDDULMuQWCwmNjaL2NgstFot/f0t9PY20tx8Ci+v4OuhzskIBOYyPcDgYDfl5R8RFhZpFvUI1vULW7Y8bEb4i/OnubmcxsYL5OTsJSYm2aHxWIRWO4dON2fGjX3W+FIQvaMQCl1syvX20NJyCYNBbNX9djll080LgFjsRmtrNevXWyYUGh7upqLiGJs3fx0fH3+nXW31ej1NTZW0tJwnIiKOb3zjX3B3l6BQ9FFeftjhdxWL3Sgs3EdzcxWlpa+RmbmNhARLhyadTkd19af093exbt0+IiLiHBqPRYSFxdLYWGrzOZYzoymVk3R3V7F793fsvIuYmJg1xMSsMS2+vb2NtLScRq3WERVlFNP0ej21tWV0dl4mJ2cX0dHmDkT2THKLhH/69DsUFOynpuYoCsUwRUXfNMVWOOPMpFRO4OkpdYozuN34iyJ6EGIwOEf0Go2axsbzbN784C2HuKamFnDs2MtkZOSZ2ZUnJ0coK3uXdevuJjjYqNl3xtW2v7+LmpoTuLoK2LbtIbOQYbFYgk6nceqdAVJScggICKGs7BCjo11s2HCvaecbHx/kwoX3kEiC2bXrSZMPujPjERQUQXn5JBqN2mpo73IiV13dGWJi0hz2KFzKfbW1VVNXV0pHRx3Xrl3BYJhl164nrfa3nEluy5aHOHPmDV5//VmiozPZufNx0/d1do4oleN4en5+uzx8CRR5zsDFxbYG3xYqK48QGppq8nu/Gc5EhAHIZAEEB4fR2lptOqZWqzh79nWSkwuJjr6h6XYkclClUnL69CEuX/6A5ORsdu160iJHgLu7BK12zql3XoRcHsru3d9Go9FTUvIHlEoFDQ3nOXnydeLj89i+/YBZ0Ikz4yEWi/H3j2Rg4KrN+w8UPkrpC1188qGe0he6TO8+PNyHQtFORsY2s/Y3R9QttXaYPZNIRErKBvLyDvDxx38gIEDOXXdZJ3hYXr8gFApNi+K2bQfMFnRn54hKNYWHx+dno4e/sJ1eIHBupx8a6mR0tI/i4oNWz68kxDUlZTNnzrxLWlouer2e06dfJSQkk9RUS9HBlp5Bp9PR2HiJa9cuEhmZQl7eMzaVbmKxO3q9zmaQ0HJwd/dg+/YDXLlykbfe+r/I5XHs2PG4VU20M+Oh0+nQag3U1BwnPDzVqZj0urrTJCdvMvMrWIl7cGRkAuHh8cTHr7PLTjsiai0szOHtLbfox9k5olJN4O1tX8t/s7ig8g1Bpf4b+PGP7V7jDL6URK/ValGrp5mZUTIzY/yt0UwzMjKIQuFY4giFoo8TJ14mPDwDkcjVapuVhLgGBITj7S2jquoc09NdeHmFsH79Npvtl6Knp42amhNIpRKKiqxrl5fC1VWMVjt3S4kYMjI2olQO4OrqY9P05LgPez+XLx/BzU2Aj08kJ068SGHhIw4prxYzGCcl5ZodX2liEU9PX6anx5HJbBOaI6LW3JwaV1dLz0hn54hKNU5EhO0MQ0sXN6/xATz/8R8hOBgevT1JOL/QRK9UTtHUNAIYUKun0WiUaDQqFha0SCQS3NyMYbUSiRdeXjJycgqorj7C1NQ4mZnWzShKpYK6uhOMjAwSFpaNVqvk0KFfER4eR1zcOuTyG950KwlxVatnmJ6epbv7KFrtAlu3Poxer19WcTM5OUZV1QlUqkHWrr2LyMg0h8dJLHZFq9WYseIrQWLiOsrLPwG2Wz2/3HhotVrq6s7R01NLRsYWEhONXnTV1ec4duyPFBR8nYAASzHK1JdOR339KdauLbrlHXURbm6eTE4OEhZm22nGEZOuVjuHi4sl0Tunm2mls7OWjIxNNp/F2uIm1Gjgpz/9ahC9VjuPQDCHr28Q4eHReHr6IJH42DWrJSZupKzsXY4f7yE//x6TJ5haraS+vpS+vg5iYtZzzz37TT7tSuUEbW31nD9/CLHYhcjIdBIS1jkd4qpUTnDq1JuEh8ewf/8zDA11UltbQkdHDZmZ20wacPN31FJfX0Z3dzVxcVls3fqA0zu2q6ubw8Uc7EEuj8RgmGd0dAC53DK/oL3xGBjooqLiCDKZjOLip8x29ezsAmQyX86ceYvs7LuIibGe2KOlpRqJRGyRUxBWxnXpdDpGRjro6WlgfHyI1NTNNvMmLmfS1WpnrcZAODJHhoe7qa8vRa3WEBe3kfr6UwQFxVjdCGwuYj3OZU2yB4Etf/U7gXXr1hkqKysdbn/qVAW9vZbx9MvBaKI5TmdnE1lZO5ic7KOjo4HIyCwyMjbZXDT0ej39/Z20t19hdLQNuTyUuLhswsKSlt2pR0cHOHfuXRITs0lP32x2rqOjlnPn3kWvFyKVGtM/CYUuuLiI6O/vISEhhY0b71txrbmjR/9AaupWIiOt1ztzxqRUUfEper2Y3NwdDt1bq52jquokQ0NNZGXZJmgwKujKyt4nNjaNrCxzs6ZGM8vhw79j69avWeUGlrK9YNxRbaVNA7h06UNmZubZuLGY1tZqOjqq8Pb2Iikpz6HU6Dfj6tUKBgf72brV8bTlExND1NaeYHJynKSkfBITjfETJSWvEhYWSUZGocU1RU9GW0/qGRUFXV0O31sgEFQZDIZ11s59oXf6lUIoFJKdvYuQkHg++ug3xMTksmvXd+wmvFy8LiIijoiIODSaWdrbG6ivL6Oq6igREckkJKy3qi/o7++kvPx91q4tIi7OstJLbGwWExPDzM8LyMrabFK86fU6rly5jE43YZXgHSFWvV6PQtHHpUvH8PMLtunjbk8BplJNMjTUgULRw8DANRSKSXJyls9A1NPTRmXlUQIDgyku/t6yWXeDgsLZufNxTp9+G6XyLfLybnA19fVlBAWF22T/neW6uroaGBjoobj4O7i7e7B2bQEZGZtob2+gtvYcdXUnSUhYR1xcjkOclVarcTjaUaWapLb2OMPDvcTH55Kf/3UzRebGjXs5ceIlQkMTLTgPa+KC3t0d4bPOZU2yh7/Ind68j1eJiMi6pVxkCsUgbW319Pc3IpN5ExubSWTkGsRi8fUEG0fZuPE+u3JjS0s5o6OjFBSYu+nqdDqOHHmRxMS1JCXdiCRzdGe7erWSjo4GgoJC6exspaDgATPW3NbOofaQ8c9/9XvGx4eYn1/Azy8cP79wgoLCqa09RkJCns0xU6tnqKw8wfh4Jzk5u5zeNbVaLefPf8Tc3Bhbtz6KTjdPSckLFBc/dVtCTlWqSY4de4G8vAMWGZAW0dvbTmvrJZTKQWJi1pCSkm9z0dJo1Jw//xYCgTdFRffbvK9araKh4STd3VeJjs4mI2OT1TwAAM3NNbS3l7F799MWi46F9v7/+RtCnNTef+V2+pshkchQqaYcbm9td6XwUQICQtDpiujqaqGrq57a2pO4u3szNzfF1q2P2FVQAXh6+tDT025xXCQSsWnTvZw58yohITEmTmI5bbVKNUlj41mqq0+xZcuDpKVtxMtLztmzb7B2bTGxsUa52KYCbFZJQW87E8UH8fb2NxNfNJqNNDdXWCX6jo4m6uqOExoazZ49T5vMas6IEGKxmMLC+6mqMuYNcHPzJTY247YQvF6v58KFd4iJ2WCT4AETR6dQDNHcXMEnnzxHaGgcqamb8fEJRKWapKengYGBq4yPK5BK5czOdnLkyEukpeWbRdNptRoaG8/R0VFHaGgaxcUHly1ZlpKyloGBNmpqSli/3iQVl7QAACAASURBVDyP4c36hb6+VoqKBITcwpgsxV880YtEIvr7O+0mNViEIxlS4uPTiY9PR6mc5N13/4O9e59cluABpFJfNBrrIbkBAcEkJORz4cJ77Nz5FEKh0DaxjvZw4cL79Pd3EBmZSVBQjMmxKD5+Ld7e/pw79w5NTRcQiRbY6OGNXD1p0Y8AKCr9A6WPWDqRREWlU19/isHBbhPhqFRKKipKrleDvZuQkBtKyZXY0IVCIevXF+Hp6UNp6Uts3/7/2hg551BXV4rB4OHQ9wbj2BcU3INKtZXm5ipKSl5Gq1Xi7u6DXB5HbOxGtmyJQyx2Q6/X09FRS13dURoby0hJ2YRKNUxrawX+/nEUFX3bqXTWmzbt4ciRPxAenmQ2nncaf1EeedYwMtLD5GQnZ84cWjYvuTPeVVqtBn//AIKCoh16Dk9PHzQa26Gg6em5CIWe1NefAmxrpcc8vXF19Wbv3qfJzb0LvX4eieSGPkAuj2TnzicZHW3DwyOEju/8ykY+IdtcgFAoJC4uh5aWywC0ttZy7NgfkUol7NnzfYsJ6qxX2s1ITc0hJmaNw3nz7WFwsJ2Ojgby8+912rddKpWxfv02srJ24esbxr59P2Dr1n3ExqaaZHljCe1s9u59hoSEDM6ceZnm5its3foohYX7nM5fL5FIyc4u5tKlj9FqnXelXimWHRmBQPCiQCAYEQgEDTcdyxIIBBev16qvFAgEG+z1cbvgqBvmIgYH25mbW+CBB34CzFJS8meUSstdbxHO2IL7+zvNbPrLQSx2RyDAaq17ME6ojRvv5tq1WhSKPqsx3AbAS+jCfTNDSCRStFrtdZ8Fc2uEVOrDvn0/QqFooyZli81CDfbMXYmJGxgZaefw4Ze4du0CW7d+nfXr91hVet1qcQ4XFzdqakrsxt8vB7VaxdGjLxAbu/6WqgGPjRlt+vaUe0bizyE//wC+vn4EBFjXOTkyX2NikvH3j6Oi4uMVP7OzcGQ5fAnYveTYL4F/MRgMWcDPrv9/R+FoppWbceXKaZKSjMEvW7c+TFRUPMeP/8lmBhpHM+wAjI52EhIS79Q7uLtLzPQLSydFcvVhMjLuorz8AyoScnlj22MoxRLTTi0A3KbHTO+t0cxYuKou9nfgJxv5hhDKyz/g0iP/6lASkZshFouRSgNxddWze/d37YowzozbzVAo+jh69PfMz2uYn3fh1KlX0GjUdq+xBo1mlpMn38THx4+OjkucOvUuCsWQ1bbLEeLERK/D3FtkZCrj471WYx+cma+5uTsZHR2hq6vB4tydwLJEbzAYzgLjSw8Di8upNzBwm5/LAs6ykP39bajVGhISMkzHMjIK2bBhNxcvvk99/SWLaxzNsGPMbd9nk+htTSyJRMrMzJSpjbVJsW3wCq6ufhw+/Hv6tjyBiyzAZpnlmRklHh4Sm/0Vvv4zDmineXl+gYqn/tuhsmA3w8vLl9jYNbi4uNht5+i4LUKjUXPx4gecOfMOUVHruPvu77B37xNIJIGUlDzP2Jjj00mrnePkybeQy+Xs3/8T7rnnr/H3D+DMmVc5deodRkdv9LUcIWq1c0xPjyGX21YA3gyx2B0/vwD6+iwVtM4FJ7mxfv1eamqO3VI2IEexUkXeD4FjAoHg3zEuHDbLuQgEgoPAQYDISOfKMt0MZ1nIxsazpKTkW7BpEREpeHvLOXr0Ra5cOUNISBQeHjI8PGRcC89k6hu/IPfDf0cy1mdTCz042I2Xl7dVE489pZabm6fpo9qbFEF/9Sr+/j6kp29AMtZr871nZqZxd/e0219R6Z+oePq3vDqmYOj315zy9puf1+LisnygjKM2dL1eT2vrJZqaLhASkkJx8UGT67BQKGTTpmJaW8M4deoNMjO3kpBg1eIEGBfemZkJLlz4FJnMk9zc+wAjh7JmTSHJyXlcvXqR8+ffQCYLJz09n6JlLCKjowN4e/s4NUYhIYn09bWZrCWLcHa+hoVFExqaycWL77N9+zcdvv9KsFKi/x7wI4PB8J5AIPg68AJg1YXLYDA8DzwPRjv9Cu/nlBtmf38bGs0cCQnWvcNksgDy879GWdnbxMSkMDMziUqlYGKikzaxmD/v/QHz8/PGijfzBtzPfYRe74JAsMDMzDiDgx2EhFg3otgjZo/v/96UU8/epHBxcUGrXVj2vY2x6p7L9peTs5uzZ9+grOwTpzzKdDqtww4py7mxDg93U1V1BIHAnS1bHrbq5gvGtF7+/oGcP/8eg4NtBAfHXy8ioWRuzljNaHZWjU6nBURMTQ3z6KM/s+hHLBaTnr6F5OQ8Wlouon/17/GwUb56ceyGhvrw9TX/rsuZIiMj02huftEivmIlbsM5OYUcPfoSLS2XSE7OtdnuVrFSov8W8IPrf78D/PH2PI5tOBPY0NBglOXtaXBDQqJwcRHj6xts1XVUq9UyMzOOSjVBa2s1vb3111NTp5GTcxdnzrx23UvLPK20PeKTSn0YHjbKmvYmhTGd98Ky7z07q8LNTepAf0Ly8r5GaemLVFWdISfHdqmom6HXzyMSLZ822x7UahXV1UcZHu4lPX0bCQlrltWsBwQEs3v3E7z66v9GqxXg5RWATBaGRCLF01OGp6cMicSYfaaiopTy8nfYvv3bVvsViUTsVHSTefEDm/lxFwlxfNy8LJcjpkgvL188PDwYHOwhLCzadO1KgrVEIhFhYUmUlr5Of38nPj4hgA6d7nZa6VdushsAFmfOdqDt9jyOnRs6WK66v7+Nubl5m7v8IoRCIcHBSfT03FCe3CyLF38vkbS6UsRiLyYnh7jnnr9izZpCQkLiCAwMIyAgltbWyxb92lNqSSQy5uaMZbHsycECgYCFBf2y763RTJsCW5aTq8ViMVu3PkJvbw2trfXm7XQ6ZmfVKJUTKBRDDA5209PTxuTkGK6uK6vNrtfraWw8z5Ejv0MkkrF379MkJWU5bEqbn9eysGCgsPAAubk7SE/fQGysMdmJVHqjanFOzjYWFtypqvrUZl/WuC/TfcQeND/2LHq9nsnJQTMlnqNyeUhIHL295iTgTHl1gPHxYUpKXqOvr5bdux8nJiYZvX6G0dFrTE7atjitBMvu9AKB4A2gEAgQCAR9wD8BTwH/JRAIRICG6zL7nYYjCTIbGk6TnOxYdtLIyCQaGk6wZs1266v6b56iMvcAOQd+QkCAuXkuOXk9ly8fIi1ts9m97K3wUqkvs7NK07uAdTnYpaXGoUINGs2MiegdkaslEhnp6YWUlLxMU1P09RiAOfR6Pa6uIlxcXBGJXHF1FSMSuaLTKenoaMXPz7mdZnCwnaqqI4jFPmzd+g2bJi1b0Ov1lJd/jFC4gEajtmuCM2au3cexYy/i719LbKxl7IMt7ssAvLTpAWo1C4Q3VeHmJjKLDnRULo+MTOXChY+Bu8yOOzJfNZpZamvP09dXR1LSBtLSHjbNp9jYLPr6WgkIWD6HvzNYlugNBsPDNk5ZL+L+OaK/vxWNZp74+Ayr55fKZ42P/h8uqlSoVJPWV3XtLAfPvcJsy1kLAgoJiWJwsJdPP/0fEhLWEROzFrFYbJf4PLVaZmdvaGdtTQpjXb7lbdbGnf6G66q9SabRzFJXZ5xc+fl7iYpKRyx2RyRyt5nVZtGHPSwsxq5L6yLUaiWVlUdQKIZZs2b7iuMdqqrOIBTOER2dwujowLJ2d4nEk7y8/Zw79xa+vsEWsRo2RR95FIE/epn4jmoqKo4gkfg7dt0Sbs7d3Zve3qscPfoq4eGJREYmLBvcpdfraWurp6HhNEFBYezZc/Azy5D7F+WG29BwhpSUzVZ3eWs7+dr/eZpdRQfp6WmwuaoLsC7L9fY2ExaWQGrqFjo767ly5QzBwTHEx68DG8QnFotxcTEGrNhLeCEUCjEYdMu+79ycCg+P5SdKa2s9TU2nkMtDKS5+2uHiiVKpD9nZd3Hp0ifs3v2EzeARnU5HU9N52toqiYxcy91373O6/t4ienra6OurZteup2huLkehGHAozXRQUDjp6ds4e/ZtiosPmulalit0GR+/DrV6GrV63qxPR+RyjWaWU6feJDd3F35+IfT3t9Laeg43NylBQfGEh8cTFBRhNidHRweorCzBYJhl8+b9NtOE3yn8xRC9cZfX2dxdbMln95S/xT/GZdhc1W9ue3Nqpqam8yQlbSI2NoXY2BRUKiVtbVe4fPkIAsECUVFpxMevw91dilptrHGuVhvrnI+M9BIdbXsi26vAC8ZdYm5Ow/z8nF0CViiGqKwsQadTsWnTvQQH207TZAsxMWsYGGjj0qVjVjX//f2tVFeX4O4ewPbt3zKlhV4KRwJylMpJKio+IS9vHxKJDLk8nJaWGoefNTk5m7GxQcrK3mHbtsdMxx0RfRYWdLi4mJPDctdptVpOn36HwMAg1q0rBowsuV6vZ3S0l76+JqqrDzM7O0tAQBxyeRgTE8MMD7eSmppHUlLu55IK+wtN9AsLC4yNDSAQCBGLJbi7SywGSaNR09p6kcrKo4SEZNpMTWVrJ/eaHGJiQkH9Q//Euuf/yqbC5+Y+hoY6Uas1ZrZZqVTG2rX5rF2bT39/Fx0dV3jppX/Gx8cPNzdP3NykSCQy/P1jqaz8iNHRQasVafV6PYODPXR0tKBW/4GFhXkWFnTo9Qum33q9DoFAwPj4MHV1ZaSl5ZrZlhdZ+d7eOtLSNpGUtOmWJtf69fdw5MjvaG2tJynJqCBVqSapqDjMxMQ4WVk7iI21HV7riBZcp9Nx/vwhEhIyTb79AQFRTE0dcSjd2CJyc3dRUvIKtbWlZok6loo+SuU4410NTEwMolSO0N3dird3CHp9odm9bIlMer2ec+cO4e4uYv36e8zOCYVCgoKiTDu4SjVJb28jlZVH8fX1Ze/e5XMP3El8oYl+eHiYK1e6cHEx5oCbn9fg4uKCWOyGWCy+blabJCwsi127vktr63lOnHidzZv3WciB9uSzgIAYysKjmXn052S+9c/4z0xaNe8synJNTedISNho04kjLCwaLy8fBgcbuffeH1iwxSrVJDU1x/j449+SlJRPaGgEQqELGo2G+vpzaLWTbN16AB+fQFxcRLi4iBGJRAiFIkQisem+SqWCy5c/5siRRrKzdxIWFm3Gyu/Z4zgrbw9isZj8/Ps5ffot5PJgenqu0N5eS3T0OvLzv7ZspltHklpWVZ3CzU1glvZaIpEiFouYmhqzyUEshUgkYvPm/Rw//ifk8nDk8hgmJgaZmBhgYmKI6ekxpqbGEQpdkcmCkMkCCQnJIDl5KzU1pZSXf0Be3v0IBPaVZ2VlhzEYZti8+bFlFySp1IeUlHwUCgWBgcGfK8HDF5zoQ0NDKSzMNSlm9Ho9Wu0cWq2G2dkZ6urKCQ1NZMOGPdfbx1Bbe5zjx19i48b7zJRP9uSzsJAErl69wJUFPa2/vEBue7XNtmNjA0xMjLF5c+aN57TCulZ5hRMenmhVDpZKfSgoeJChoU4++ODX+PuH4+7uwdBQD0lJWezY8T2HdjaZLIAdO75NR0ctly69z8zMPL6+Xitm5e0hICCc+Pi1vPnmL0hK2khRkfU02dawnBa8o6OJwcFGdu8+aEFsUqkPvb0dDhM9GGvpbdy4j0OHfoW/fxBSqRyZLBAfn2DCw9fg7x9kdTHcvv0hTpx4g4sX32fTpgds9l9RUYpK1U9R0RNOejhqEIut60U+S3yhiX4phEIh7u4euLt7IJP5EhAQjF6vMjufnb2LgIBwLlx4G3//FGJiEvD2DkC32VjrzZp8FqWZpaTkRbZsuZ+IiBQGrmeCsda26dybxMauM+1utljXqo0P4Pqtn9t9n5GRbuLjc7nrrocAqK0tY3Z22GlWPDY2i5CQBN5+++fs3PkjmzuvM4kurMFgWECn05KdvdWpMFJ7XNbk5BjV1UcoKDhgdQcUidy5fPljYIH09I2msVnuXfz9g/HzC+TAgf/lMGGKxW5s3/4gJ0++yaVLH5pce2/GlSsXGRw0lgNfOs7LPZPRmWuV6G8JIpEIjWbe4nhkZBpubhI+/PA55udHrufFn0Ui8cbzkX9DIvHFy8sXmcwX2eQYMpkvQUHhJCXdiBC2JssplWMMDfVzzz03JoMt1vWBqsNc+PGfbT67Wq3i6tVKtm+/oXCKjIzn7FlLhx9H4OHhia9vBErliEOJJR1JdLEIrVZDWdk7zM7qyMv7GmVl77N790GHickWl3Xl4X/h/PkPSE7OtV3d1kNGSkouQ0NN9PVdZdOmvaTVlTiQ928KqdTbbioqa4RpLP7xECdOvM7lyx+xYcON9GatrfW0tV1gx47HLTgFR8Z3fl6Dm5uHxXW3shCvBF9qondxEaHTWTdtBQXF4OsbSH7+15FIpOh0OqanFUxNKZieVjA52cvAwBVmZpRotRpGRvpQq6fsylsNDWeJjs4yY9ltsa5+qnGKnoy2+THr648TFpZmVvbZ+LcYhaLPoWw8SyGTBTIxMWj12pUWi5iYGOLs2beRy+MpKNiJSCSipGSA48dfZdu2B22a8W6GLS34+yIfvFynSE/fbHPyCwR6PD392LRpL01NF1D/8QdknX8LlyUVaZe+y8zMFB4ezhMmGAl/x45HOHHiNSoqDrN+/V66ulppaDhOYeHDyGR+KxpfnU6Du/uNZ7qVhfhW8KUmepHIlYUFy51+Ed7e/igUg0RGJhB5/i3LSbXzSQDm5+c5e/YQR468yK5dT1r1IFOrlQwMXGPPnu+ZHbdt6hOYji/9mBMTw/T3d1Bc/LTFVUFB8fT2NlsQriM7gkwmZ3Jy2OpYrCTRRVtbNfX1p0hPLyIp6YanW2zsGsrK3uCTT54jIiKLtLQNyzrQLOWcWltrGW89y+7dB+1OfoPEWHNeKBQafegvHbIgeGvvolIp8fAwr1fvzMJn3PEf5vDh33P1aj1TUwrkcjm9vc24urpbEL4j46vVziEW39hUVroQ3yq+1OmyjDu9PaKXMzY2vGwc9cBAB5OTPURGJnDmzCuUlx+1yHDT2HiekJA0C7bOVoYbwZIkVTf7bFdXG7PNWnPQCQ+PZ2iow+yYowkZfH3lKJUKq2PhTKILnU7HpUsf0thYzpYtD5sRvPH8PLGxa9i58wkMhmmOHv09ZWWfolROWL3HUoyPD3PlSin5+QcQi93tTn693mCS41Ne+Skire2iHje/i1o9beHh5szCp1D0cfnyh8zOqpiYGOTxx/+FvLyHUKk0lJT8iaNHn6eh4bwpVHq58TVypAtmeoBbzTi0UnxpiN5aYgpXV1cWFnQ22+R11TE1NWJ3UrW0VFNZ+Qn5+fdTUPB1iou/h8Gg5vDh39HcXHXdYqChp6fJajmipYEVCqlt90sPRQ/9/a1MT0+TmrreapuQkChmZlSo1TeSaDoa+GEkeuuE52iiC5VqkhMnXkCpnGX37ieshsAuRhfKZH5s3LifPXu+i1gMx4+/wOnThxgbs85tGK+d4/z5Q2RkFJhyvtub/AKBsTCpvXYAuuuBM4tQq5V4eprXEnBk4evtbeb48Rc5d+59/PxiOHDgxwQEhCAWuxMWFs3mzXvZt+8HpKRsRaFQcPjw/3DixEuc2vEkOrHt8dVqNYhEYpv3tXVcrVai0dze/HlfCvbeFvs38ciztHpKbbbZ+c4v6M/7ut3Msi0tZ80KRUokUvLy7keh6KOq6gjt7TV4enrh7x9v0596kXXt7++iuvpjfnXoP2xoqyOoqTlBevpWRCKRTZY9ICCanp5GkpONi4wjO4JGo2ZqapCxsUFmZpQWNdAd8UobHGzn4sVDREVtICvLdtDS3Jy5FloikbF+/R4yMgppaSnn1KmXmZ8XI5cHA3qMpRWuRw0OdOPv72umNLWn3b858MhWO71AyB9z9zHmF0v6dUee2dkpPD3N6wHaUig2feNfuXatkpaWixgMriQm5hIXl25SAhqTn0ya0pOLRCKiopKIikpCq52jp6eN4wIPutffw0P1J/CdHmdWHkHzYz83je/c3KxFxKI9M7JWq6Gm5hjd3VcpKHAsFNpRfCmI3tZOl/vhv/P+g/9ou412ln2XP0TtH46nwjIDzbjUh507n7Aa6BAQEM6uXU9x7Vo1J068yvbt3172Odvb64iOzrD6MefF7ry5pojJySni49PtyrGhoRn09dWaiN7WZJ/2Caa8/APGxwdRqabx9Q3FxyeaK1dOs3HjvRbt7QXkXLlymqtXa1i//l6znO7WoNNpLJRkYMwBmJVVRHJyPm+//XOiojbj5uZh2qmFQiFRUWk0NJyjvv4ka9YYC2Xam/wGg8Fku7fVru6Z5/HK3sWVCx/Q19fKpk17mZ1VWlQNWrrwqf0jOLHtm3w0NYqHFjIy7iIiIsFisTNWvh2zWt0o+sK7FJv6C+fknh9yLCCK6elBgkViYvpbCQlJQKNRWxC9rYW4LCqD2sO/JSAggezsInx8bt3B6mZ8KYje1k4nHR8wsfe22gSoJyl98J8ofN18UdAJRXgi4OsP+9g1lcTHZ6PVztLT00hiovXoPTC6vg4Pt7Fu3dMMXK9RlvTy3+E5NsCYpzcf5j5AX8HjuLVfYnS0x27qpmv/3Uht7VFTzfnmx54l8zdPmcmzcy6uHNpwPx4egWRnZyOXhyESiVCplBw9+gcmJ0ccKnNtNMe9x8yMhrvuenzZ6LDFa9zdbTvLuLu7ExKSjEgktlp9NzQ07nppqzE2btxvlwtZOP+eiejttZMBO3c+SVPTBY4ceZ7BwT6Sk3vx9PQ1M9sNFD7KtQ330NR0nq6uJvz9o9mYkktwsO3Mxu7uMlQqy5j2pQu3p6KX4kO/IPSZ52nZdJCurmbq6s5x+fInuLl5Y83J7+aF2Oja/AnK+jI2bNhPWFgMfX2tNp9rpfhSEL2tnW7GP8xksrPVZlIWwOX4Tfg+8zzJf/4HJIpe1B5euGs1uKuM+T6XM5UkJubS2noRhWLIZmx4e3sDcnkIer2OurqTHJ6ZZP6+vyM8PJ2ioWYe/uCXeJx6EaV3MO8NNNpl2SUSTzw9/Skvfxe93sDY+BC5uffzjcsf4jl33RlJIiMtbRO+S4o6SKUyEhPzqKw8zI4d9rmTiYkhzp17Gz+/OHbv3uWw3d1YwdW+qU4uj2J4uN1qViKpVMbOnY9x/vzHlJa+SEHBI1a5kP7+Vtrbq5DLxwkLi8LHJ9AutyIUCvH09EcodCE/fzd9fbW0tJwnLm49iYlZaDTTNDaeY3Cwk9DQVHbs+DaptUdJ+WmBXauIp6cPKtXS3LDLa9/XrNnEmjWbmJgYpb7+EgMDtVafezHhSGtrBTEx6ygosMzteDvxpSB6e84dC9MTdtuc3/MMExPDNGbu5Lf3ThIVFc9PfvNdXJYsEPZMJSKRiNjYtTQ0XKSw0DLSzPjRTgMLHDnyAiEhyWRl7SUkJJLws2+Q+fLfmp7Le3KQR8+8xqy7F5JZy4o3i0ockUjI2NgMycnZZGbuJNUvGPfLN1I+LabCBsuFKjV1PV1d9XR21tusItveXktNTSnp6dtITs622sYWdDqNmenJGkJCorh82XaEnFjsRmHh/VRUnOT48T+yZctD+PoGo9PpaG+voq2tkoUFEWvX3sfcnJoTJ17F3z+Q1NQCm4489fXltLdfoKjoEeRy4ziOjvbS2HiO11//CLFYSlJSHnv27EIikTpsJ5dKvRkZGbS4n6Pad19fOQUFe3jllTqOHn0JNzdzq01/fzP+/pEUFX3T5G5s0veM9qALDYFf/vKrUZ9+ETbZurwDLBz6ld02wymbGTz9PqOj7aSmbiQlZdOKTCUpKXl89NFvmJwcM3NBNUaHvYVWK2DjxruJjk42W6Wt7QZuOi3TLiJ0Yg8zlt1c2zvDpk37TCWrnLHpikQi1q7dQVXVx0REpJo9j06no6rqMIODfWzdajtBpT1Y8yxbCrk8lLm5OdRqJRKJzKbSMjd3By0tfpw8+QpyeQSjo/14e4eyZs0uIiLiTKx9ZmYera21lJd/hEQiISXlRrlpvV7PpUvHGBtrp6jo22Y2dLk8gsLCR4iKqqem5gyZmfkms5mjYyqVetPdbZma2pnklyrVFG5uwusKQuP9F5WUavUYHh7eZgR/82LkOjAAB68np7oNhP+lIHqwroRyWVhgYWHBbhvpzDQjI23cd98zJvlyJZlKxWJ3oqNTaWq6RF6eMcBHrVZx9uxruLvLeeihHzpV/UU6N8ufip7ggapPkU0OMSmT8+nmh7ig0TH34XP09LSxc2fAsv3YOh4REce1a+HU15eSnb3r+vMqOXv2LUQiL5tJMRxxAtJqNbi52d/phUIhfn7hDAxcY0tfs90dNTk5m9HRLvr7e9m58xtmXoqLEIvdyMjIJSUlh46OJmprz1FfX0pMTDb9/d2Amp07v2ORqHQRMTFr6Oqqp7HxEmvXFtgdu6XHvbx8mJmZtmjnTPLLK1fKiY/PtJrWOzw8lZKSP3LlykUyMjZaz+mnVsNPf/rVInprcHFxQSAQmhRe1jA42E1qaq6ZQmklmUoBxGIPLlx4H6WyDx+fYAYH2wkPzyInZ6tN85atBUbpE8xH0gBanvpPxGKJMd22h5QMD28kEi8qKw/T2dlMcvJau/3YT6lcxCef/DdCoYi5OTUtLRdJTd1OTs42h7MLWWN3jdFiEotrly4WAQHxDA93Lruj6nQ6BgevIhAI8fGR2+1zoPBREhPXkJi4hu7uVk6ffhe53I+dO59aVg7OydnNsWMvExeXgUzm4/CYSiRezM1pLOaZo/n+VSolAwON7N1r7s25CLFYzJYtD3H8+J/w8ZHb5jh7bo/TzhfeOUen06JWK1EqFYyNDTA83EV/fytdXQ1cu1bF7Ow0s7OWq/AientbCAtLNDvmbKZSnU5HWdk7dHVd5aGH/p7U1G1MTIyjVs+TlrbBblScVacYsQevpxfyQ3ko//zS3/N/fr6PH/7qcbb0tRIWKkygAwAAIABJREFUloCvbzDJyXlcu1Zlvx87C5Ver6e9vZKFBRdOnnyP+XkhAQGRDAy0MThoffI44gSk1c7h4iIym/y2PAbzu6sYG+tfdke9fPlDAgLi8fMLp66u1G6fN3shRkUlER1tzFDkiOJLJgsgNjaV6urTgONjKhKJTLb6pRgofJTSF7r45EM9pS90WZ1DjY2XiIpKspvbwOjodA+XL3/EjF+Y9Ua3UCzmZnyhd/qurk5OnjyJi4vr9UytxiytQuHi3yJkskhKSl4gM7PQmJ/uJmi1WkZHO8nNXVqKz7FMpWBMVHH27Nt4egaxe/fjpkw3kZEJVFR8ypkz71BU9IjNcFZrtuE3Mu4iNCCUza/8g81dNSwsiYsXP+Ty5U8JDo5mLGMbuu8+R8Yb/7xsRJZSOU5Z2Tu4uEjZv/+vOXPmbeLikgkJ2UtnZz2XL7+HXJ7MunXbHQoeMncCmsXV1dXsvK3FYsOh/8ufin+A2j8MT0WfRb+zAZG0tlYwOjrCrl2PMz+v5dixFwgPT1q2Gs0i5uc1NoOkrHEK2ryvcfjwcwwOdoODOzXYt9Xbg1qtore3jt27v+PQMwYXPsaba3bxeNkbiLQ3vb9EAs/a50QdxRea6KOjY9i5c4tFdtOlGBzspqrqONeuVbFu3V5TsMrAQCfe3r4rzh7T09NIRcVREhPzycjYaHF+/fo9nD37JmVlH7J16wM2d/ybF5iysk+Zn5/gkWUmtVAoRCh0ZWxsgqmpSWZnpzgxO41L8ffx8PDEw0OKh5sHHrWlSKXeeHr64unpy8hIJ3V1p4iLM5qLhEIhcnk0/f1thITEEROzhpCQeKqrj/Lpp8+zZk2RKa+gI+yu0QXXfIGzvVj04u8fyemdB9n13r9ZiFOX9/2YK1fOsm3bo6Y8CZmZO7lw4RDfdlDenp9XIxZbxjDYE1UyMrZSVXWcPXuecHjx9/CQMT1tabZbDo2NlwgNjbVwFLL1jHd/9J+8XfRt3ix6ivsrD5m0965fNe39cggJiWLPnicoKXmb1157lrVrt7BmTRG9vVedriwLRtbY6ALZRl7eAbvpn/PyDnDq1MuUlx8lP3+P3X7b2hpQKK5SXPw0Hv/fY1bbLE5qhaIPgcCVXbseNltM1OoZZmamUKmUzMwYyz319fWg0TSgUPQzNzfD3Xd/36T1BwgJiaGxsdT0v7u7hLy8+xka6qSi4hO6uhrY8P+T995hbaZ3vvdHQgghQIjeQfRiqjEGG2zA2Ngee3oyzTOTmWR3UrbvSbLnXNl6TrJvzp49726uM9kkM5nZyZRM9xSPewUbm47BVNN770JIQkjvHzIysiqY7HH2/V6XL9t6Hj26n+e5f/f9q9/fzkNO+TqM6aTmvH72FovAwCjKXQ0E/9FrZjta0zN/x3vL82RkHMTPL9i04x2dGmDW048lN0881ZZm2732tkajsrrT2/UjvNFHd3cd7e0NpKQ4x+QulcqtJujYg1q9TH9/A6Wl37R63NYYH6n6nOcLjlHz7P8gPDyORx/1IyEhweo1NoMH3qZ3BsvLKsrKjqPTTfH003+Fl1c4Fy68S2vrFaKiNsa9rlIpuXjx35mamubQoW865HsXiUQUFh5jbq6PhoarNs8zJmicNVWWOSq26O6uIyIizYwppuRbCp561otn/utu8vvrSE3dyc6d+ykqeoJDh14iMDCKwsInzAQeICgogvn5WbRardnnwcHRHD78Xfz8/Dh//g3O+MZx83u/suvr0GiWLQpH7NnGISGRTE8PW9i+H7q4EBCQSHx8qoX97rs4hZtWhe4edlpr9rZWu2xWo74GR6ZKdvZh2trKLaopbcHT05vl5XnHJ65Da2stQUERVuvv7Y3RY3qYYwIXvLyCuXXrOlNT1isnN4vfe6EfHu7l9OlfI5W6cujQdwgOVpCVtYejR79LQEAC/f3O9/weH+/n7NnXkMmiOHDgOafNArFYQnHx8/T313H7tmXWlVar5dq1z0hJ2W0yPewJikajob+/zVTS6oxTa2pqjKWlcRQKyw4vYrEYb+9gxsctWyobY/oHKCl5gbGxW7y+pOGDn1636Zgy1oSbh8XsOUZ9fYPQ6QxmJb83b15ErdaTk2PsCGNtx3PVr7IsErPkH2FzAdLpdBgMOqs7vaNF1d8/nODgSBoayq2edy88Pb1ZWrJMprIFrVZDT0+NGdGns2MUAI+f/hmPL0+Qm3sYHx/HqdEbwe+N0N9bNht86R1qai5SXX2cnJwD5OY+aubBNZIgfI3bt+uYnR1zeP22tgquXv2EjIxD5Obu3zBPnVQqo7DwGW7dusjAgHlfs+rq83h5eZKcfLc0915BWfKP4PzXf8RvEfDpp//E/LzSNJmd8aq3tdWgUKTb9GIHBCgYHTUf1/pn+uR/2clLYnfi4lIpL3+fqqoLFpoBGG16V1fLWLg9L7a/fzSjo8YFZ3j4Nt3dTRQUPGYaq71chr9/6Z9sLkBqtcpC6zA9Dyc881lZBxkZucXMjO1S4DV4eclZXl5yeN4aWltr8fcPtln/oNVqOVf0AhoXV6vH196vUOiCi4uL07/rDH4vhN7aTrfjX19k/+c/4eDBb5sys+6FXO5HUFAyX331C5svVqvVUl7+AV1dLezf/5JFn/GNwMcnmN27H6Om5kvGx43e6o6OJqanu9m9+wmL82/vOMKr33+PP/+TN/nu4T/mtI+CgIB4Hnnkz0hKSqWx8RrgWFVVqZYYH+8gMdGy3n8NoaEKJifvetBtaQ/7xro4fPgVNJpJTp163WIBu7es9l7odDqUygWmpsYYHu6lu7sFjWaFjo565ueNlN07dz6CTHbXsWVrx1P5RzA7O0tPj/WcdbVahZub9U46zoRlpVJPEhJ2Ult7wep9aLVatFoNavUyQqELy8tLNunZ1kOr1dLdXU1qqmVJrEq1QE3NKU6c+BllYelc+8b/wlb/9t8VmcbvhSPP2k4nAPbcukJ99RdWva9K5QK1tReZmelFr3fj00//maSkHSQn55tU7Lm5Ca5d+whPz3AOHnzCIX+7MwgJiSUrq4SvvnqN0NBk+vvrSU3NYWCgFS8vPwQCY2fd8fFuFheVBATEolDsYO/eeLPGF1lZhzhz5g3i4zMdetU7OuoJDo6ya44EBISxtLR0p6e91GHCzN69zzI42EZd3Ul6exXk5OxHKvVkbKwftXoGrRa0WhVa7TJarQqNxvjv1dUVxGI33NzcEIsliMUSJBJXlpaWef/9fyQ9/RAREbFmv2vLgdj+4j+Sm7SXioqPCAxUWHjANZplmxl44FxY1tc3hKtXP2F8vBuxWIzBoEev1yMQCBEKBQgELggEIBQKmJub4Pr1r8jLO2y3bdft2zfx8fHD3/9uvH12doyWlgrGxozFPiUl30Qu90MFLJ/4lw0nXt0PHmih12g0zM3N2OkzZ7CI2+p0OlpaqujsrCQqKpnExCe4fv1T9u37IX197ZSXH8fLyxMfnxD6+1tISipk2zbrLDbrsRHWUqVSg7+/Lysri4jFrri6+jAw0I1KVUdv7y0UilQyM/cTEhJlUnGtXb8nIYuamvOk2PGq63Q6ensb2Lv3riZha6w+PmGMjnYRHZ3uVEw+IiKZoKBYGhvPcfr063h6hjIx0c3KiorAwGCCg2Nxc/NAIln742mXWLS+/gITEyMWHWvsZbYFA1FR26ms/MyialCtVtkVentQq1XU1Z1mfHz4jrYYi1AouhMqta4Aa7Vqqqq+4PTpN8nNPWq1HFen09HZWcnu3UbG5NHRbtraKpiZmSI6OttU7LMem80Q3SweaKEfHx+luvoas57++C5OWj1n/SQdHOymvv4cnp7u7N//AjKZP2fPvkNKym58fALw8QkgLW0X3d0tlJe/T2HhMbs18mvYCGvpwsIsnZ3XKCl5AYnEixMnfk5aWq6JqGNsbJCKik9YXJww7Xi2rq//7i95XT3LjYSDcE/Ia00o+rqa8fT0MGkv9sYaEKBgbMwo9M6moIrFYnJyjiKVllNbe4lnn/0B4+MjNDScJCkpf0PNFzMz93H27K/o6GgkOTnL7Ni9u7JWq0W9MItKpcTXN4i2tmquXv2MjIxik2lgDB9unEe+p+cmjY0XCQpK5qGH/tApRl8wOmz37Hmanp6bVFR8hEKxg4wM8zLYzs5beHp6sLQ0y+nTZ9BoVomPz6GgIMPpBC6zTeX/Rj29QCB4EzgKTBgMhtR1n/8J8MeADjhpMBh+uKUje+89nvrh93lxYpxFV8kdsklLLPtHsrAwR13dBebnh8jM3I9CYRxmR8dNDAYViYm5pvNFIhGJiRnMz/czP+9cKGQjFW5VVWeIjc00OXBCQ1Nob79hKnoJDo6gpORFyso+Ymlplpych2xef9t7f0Pm35+mvv4iYUdesapZdHbWkJR0V1OxN9bGn17nxo16YOO7y8hIF3l5xsaS0dEyhEIB1659Qn7+E0530xEKheTkPMy5c2+j0xmdhGr1Elqt6s7fS2g0RlNBINCvMw/cCQ8PY3FxlHPnXkcs9sDfX8Hi4iJyufMtohYWZqip+YqlpWXy8uznX9hDTEwmgYEKKis/49y5HnbtOoqPTwCrq6vU1Z1BINCysuJCUtIeFIokp5zCziYJbQWc2enfAl4FTJ0bBAJBMfAokG4wGDQCgcAxRctG8N578MoruKuME1K2sowOcMFc8HVuUk7veZFz535NTEwae/b8sWnVVauXaW6+zN691jPlYmK2c+3aF3aLZdbgbDVWR0cTGs00qalfN32WmLidq1ffIz29xDQ2udyPAwde4MqVjykv/4Cjdq4fEZHM7ds13Lp1w1QdtoaxsUE0mnmzXAR7Y/XzC0aj0aJUzjldLALGRCGlUkls7N3fiYpKRCAQcu3acfLzHyMkJNYpE8jfPxypVEpfXx2BgWGIxVK8vPyQSBRIJB5IpV5IJDKbu6Jer2dmZoSRkS5GRjrQaOz3nFv7TkvLNW7friE6eieFhbvum6TC01PO/v0v09x8jYsX3yY5eS/Ly8vAKvv2vbTpBeU/Ag7v3GAwlAsEAsU9H38X+KnBYNDcOWdiS0f1ox8ZSwnXQQQsiN3BQ47X3BiL8hA+TD9Aa2QcpTsessiJbmi4QkhIlIlM4V74+4fj4qJnfHzQ4QtyRhVWqZZobr7I3r1Pmk0of/9gpNJA+vqaiIu7S1YhlXqyf/8xrl37nFlPH3ytpHiuXT8n5yHOn/8N8fEZZvzy7e01xMZmmi1a9sYqFArx84tkbKyLuLgdTu8uzc3lREdnWwhKZGQ8AsFjVFR8zgsuAjJ++zdON27Ys+fpDbXGWoNQKMTfPxx//3BSUgo4d+4dmpuvkZpaYPV8I5X1lwiFnuzb9+KGeuI5g9TUAsLD4zlz5jVGR8cJCgrm9u1rzM+PEBaWhJfX1sbYtwKbDdklAHsEAkGVQCAoEwgENj1hAoHgFYFAUCsQCGonJ63b5RawUULopVXzR0f+nFe+9Tp/+cQPWHnqr9i370ULgZ+cHGFkpJXt2y0LbdYjPDyF3t4Wh8NxJuZbU3OeiIhYq4tMbGwW3d11Zp+FXnmPw99N4P/92TO46XSsCMxfxfrry2T+KBQp1NZeMh1XKheYnOwmPn6n2fccjTUwMIrRUXNefXtYWJhhamrEJrtOREQsxwRCit/6vlM03VqtGo1Ga5WLzxrNuT2IRCJ2736E9vYqpqdH7vkd7Z2CqA+Jjt5FaenzWy7wa5DLg/DxCeHxx/+YRx75U4KDtzE+Ps7Zs//OiRP/h6qqLxgYaLGa9/B/A5vVcUSAD5AH5AAfCQSCGIPBYBFyNBgMrwGvAezYscNWSNIckZHQb2W3CogkKCiRpaVhSkv/2CqNdOvzP+bUso6UlN0OWwLHxmZx9uy/o9OV2lX3HKnC/f0dzM72sWvX96x+X6FIoqnpkqldlQWh4vICOhdXFlwkeGmXWQ6wVI3T0ko4efLnDA/3ERamoL29joiIOIt7dDTWsLBoOjsr7D6X9Whru0pERKZNZ1folffI+OCvcbF89YCluTEzM4pM5m9hUm22xZNc7kdqajE3bhzn0KHvIBKJGB7uoK7uNDJZJIcOvYKHh5fN728FtFo18/MzhIbGIBaLSUzMJDExE71ef2cD6qO1tZbKypP4+voTEKAgLCxhU63LtgKbFfoh4PgdIa8WCAR6wB9wcit3gJ/8xEgPpDJ3MrU+/2NmZwcoKHjcJPAWE+XVPyRn77P4HXrR4c/IZL54e8sYHOwiOjrJ7rm2VGGtVkN9/Tl27jxs0w4ViUQoFFl0dFTh7x9u3dm2ugIyf15+9h/Iy3uYsLBEs+NisZi0tEIaGi4QEPACfX0N7N///IbGCuDh4Y1avcz09Iip2YQtqNUqBgZuc/DgH9o8xyrLyzrcGw2YnR3B09OyPPV+WjwlJW1nZKSHysrPMRhWmZqaYPv2w0RFJdr9HmxNA8n+/lsIha4W718oFBIUFH6nFqIArVbD8HAvo6M9XLv2BQaDhoCAMIKDYwkNTdp0NehGsVmh/xzYB1wRCAQJgBjYuqqAOyWEy3/5fSQT46adrz6xAJfaL00rpNWc7RU1L11+G8Glt5x6iZGRqfT1NTsUeluoq7uMv3+QhZDeO5n8nvobfrU4g1qtsuls85obIy/vSSorj5OevmhBrRQXt53u7gbOnfsAHx8/uxTXer0epXKG6ekRZmdHmZ+fZHFxmuVlNQaDiHPn3iI5OZeUlHyzWLder2diYpjBwU46OytZXcXuZLTbdcZKNGB+fgK53HKxud8WT3l5h/nNb/6B1NQ9HDnyit3kmTVsVQPJ3t4mFhZmGRxss5kdCkbKr+joJNNcm5ubZni4h4GBHurrL+Pl5YW/fyShofEEBUX/zhhxnQnZvQ8UAf4CgWAI+DvgTeBNgUDQDGiBb1hT7e8Lx45RGZrA4GCEqZ6+78ZpwsPvCqetCSHUG3nznHmJrq6eNDdfYXVVx7ZtuzbkdR0d7WdsrIXDh81pkKxNpp2//lN69r1CZ2e1XWdbWFg0xcXPU1b2EUrlHFlZ+83O2bHjML/97U94+OG7v6nVqpmeHmZmZpS5uXGUymnm52dxdZXg7R2El1cgERGZ+PoGIJP5IRKJmJkZp6mpghMnfk50dDre3qGMjPQwMdGFWCwiODiWoqKnaGkpo7LyLAUFR6w+A1v3sioQcOGpv2Xlnuc+Pz9NWJglQ+9m6MDWQyr1IDAwhOzsQqcEHramgeTs7BiLiwuUlr5EZeVnuLpKnA5hyuV+yOV+bNuWg06nY3x8iJGRXhoby1CpPsPPLxitVsuuXZa8evcDZ7z3z9o4ZF23/B1Bp9MxPNxGaeldtd12x9i7sPcSlcoFbt68wKOP/hFK5QxVVZ8hkfiSkrLLiS4vOmpqzpCWVmxhV9uaTI9WfcxfhCpoff7HZP7bt23GyH19gzhw4BtcufIRKtWn7Nr1uMkG9vMLxdc3iJGRTnp765mfn0Gr1eLl5Y+XVyByeQQKRTZ+fkF2k058fYMoKnqCmZlxTpx4Ey8vEfHxuWRkvGDmGPX3D+fChX+nrq6M7GzLXHJb8f7y53/KBzod2++h4VYqZ/HzsyS+3IqsNJ1uBZHI+Qy9rWggWVv7FZGRmYSHx5CT8zAVFccpKnrWoel0L0QiEWFhCsLCFEAxKtUSXV2NXL9+HJVq8/UgVn9rS6/2O8TwcDceHh5mE9LaRLEGay9Rr9dTUXEChSKJyEijSpaUtIuennqams7R1FRGUlIeMTEpVuP4jY0VeHi4m4Xh7P0egOfsCC4uHlTHZSOwkWFnOvdOQ4iysuNcvvwOe/YYyTRaWqqYnp4jIcGH4OBEfH2DkMl8NlwVuAZf3yB8fX3JySm1ukOJxRKKio5x/vybeHh4WXjxbTkOl4qOsXdyhPLyD9Hr9cTGZqJUzmEwuFg1FzaSN2ANer0evV63ofqJ+9UuOjpq6O3tICvL+NyiohLQaEopK/uA/ftfsllH7wykUg/U6inCw5Pw998YRZcj/N4IfV9fGxER5i2S1iZE3Js/QDY3ikHoYlLt12P9S9Tr9Xe8uxfRahc4cOCuIiMUComL20Fc3A76+pppb6+gtbWc+PhdxMenmWysmZlx+vpqOHjQOu+ZvckUG5vN7dvVRJR8w+GEFovdKC7+OjdunOSTT/4X7u7eSCSuBAcHIJP53ldF4BqUygXU6nkCA22bNcay4ee4ePEd3N09LBxkthyHAQGh7N37DOXlH6DX65FI3JHJbIfN7icrTamcZ3V1YyGx+9EuBgfbaG6+Rmnpy9TWnmbbtjykUg8SEtLQaJa4fPltDhz4g00751QqJQMDHaSn267H3yx+L4TeSHDZRU7OPotjPXlP8H+mJ9i790kyWq7afIlqtYrOzmp6ehoRiaQIhZ5ER8fa3CEVilQUilRGR7tpaSmnvf2qqT1SZeVpUlJ2WeU9A/uTKTZ2G62tl1lYmHKKZFEkEiGReKHTqcjNfZrQ0Dimp0e4cuW3yGTedn0Qznimh4d7CAgIc6gpyOWB5Oc/wbVrx3Fzk9rt/bYeAQEhFBY+S1nZ+0gkEnx9Y5z6niNotVrUaiUzM8P0999ifHwItXqFoaF2M7+PPWxWu5iaGqKq6hT5+cZU3pGRdpqarpOXZyQFSUvLQ61e5tKltykt/eamioLa2q4SHJyCVLr14cbfC6EfGLiNXO5vtbtsXd1lU+adtZdY/dh/4YyrhJETPycwMJ6dOx8jJCSKa9e+Mstus4WQkFhCQmKZnBygpeUqH3xwFi8vb7u16/YmkxgID0+nre0GubkP2/1tnU7HjRunUSqH+drX/ptp1/DzC2XnziNcv37cZtNJZz3To6N9BAc7J4jBwdHs2HGQiopPKCl50emMOn//YIqLn+Pjj39GcLC5QGq1atRqFRqNMQd/eXmJlZVl1Oq1st1ldDoNWq2alRUtGo0GnU6LQOByx1xwIzf3MDk5jzI9PUZNzef4+oY7vcM6q12sOdpGR3tparrI3r3PmBbczMz9nDz5K1JSdpjeRU5OMRUVy1y+/C4lJS9tyBOv1arp62uhpORllMqtpcqC3xOh7+9vsdr9dHx8iLGxNrMmAiNFxxgoeJq+via6umpYXtYQ5R7IQw+VmiVprKwsI5E4X68cEBBJUdGxOxVaZQ7PtzeZEhOzuHjxTbKyDtq0QbVaDWVlxxEKtZSUfNPivIiIZObmJrly5SNKS1+0cNo545nW6/VMTfWyffteh/ezBoUiFZVqkbKyDzlw4EWnhcvXN4jg4Fi6uq4zMtKMVqs1Ca+rqwSx2B2x2B2RSIKrqztubu64uwfg7S3Bzc0dsViCu7vxHDc3d6amBrh+/UuzRU8qjWVkJIPKyuPs2+c4T8MedDodk5PDjI0NMjnZx9zcCJ6eMjw85EilMhODsPF3ZcTEpNLYWM6ePY+aPt+16xBlZZ9x9aqxonM936E97aKlpQI/vzjkcr//fwr98vIS09P9Zg8TjBO2ru4827YVmLznSuUcHR036O9vxdMzkISEPURGJlhdZdXqJSQSS+pkR4iJyaSrq4aurmYSEqw3h3QEudwPmSyC3t4GswrANahUSi5d+hC5XMbu3U/bVL3T0vaiVE5y9ernlJSYn+eMZ3p6egw3N5GFw8nRpExJ2cXy8hxXrnzM/v3PORUiGxzsRq2eJC/vSby8fBCL3ZFIpJuKRSuVc1RWfk5OziMWWk52dhFnzrxFW1sFycn5Nq5gibXsudHRfqamBpidHUIq9cDfP4yEhExCQp7Ezc2diYl+lErLvnZpacWcOPFzs87GQqGQPXse5fLlj7lx41Py87/uUAPTarX09NyksPB3V3H3wNNl9fd33KnGMreLOjoaEQq1JCTkMDzcyZUr73HmzK/RaqGo6HlKS1+gYKCBg9+Os5rLrdEocXffnL2UkrKHtrYb6PX6Td9XYmK2WQebNczNTXP+/DuEhIRSUPB1h7Z2bu7jgIqqqvNmnzsihgRjX4CAAPNUUGdIOMHIJiuTeVJe/plDCim1epna2pPs3v0oUVFJ+PoG4ekp25TArzUMjYraaTWsKhKJyM9/lJaWSrvciEYtZ4ympiouXfqITz/9F6qrP0etniAmJoWjR7/HkSPfIzf3URSKVFPDTo3GOnGHWCwhMTGHhoYrFuMpLHyC+XklNTWnHPIddnRU4usbabMl+lbggRf6sbFuoqLMd1SVaommpvN4eQVw6tQvqKu7iL9/PEeP/hG7dh3G1zfI4eTVaFQmH8FGCz3Cw5MQiw309LRu+r7Cw2NZXYWxsV7TZ+PjQ1y69A7x8RlkZx926jrG3eRZJic7aGmpMX3uTJHQ+HgvwcHmguMMCeca8vIex2BYprLyjN0xVlaeJjQ00m62mrOorT2Bq6sPmZm2d3EfnwC2bSuiouITswVpdnaSlpYaLl/+hOPH/5WKig9ZWBgiMjKOI0f+kIcf/mPy8h4nJiYDd3frWqCRAty6Yy4paTdLS2MMD/eZfa64/gn//Mnf8Q//4wjuNvJK3KcG0Ol0dHXVkZJi21+0FXig1XuNRs3q6rLZZNFqtZw69Qazs5MEBkaTkWHJuQb2J2/f7q9jMKwiFks2nYq5bdseGhsrbMbxHUEoFBIdnU17+w2Cg6MZGOikuvpLduwoRaFwzOazHhKJlMLCZ7lw4W1kMl8iImIdeqa1Wi1zcyOEhn7N7FobSVgx7mLPcuHCmzaTdzo7m1lcHGb37m87dS/2TIuOjhrGx8c4ePAlh888OTmb7u4G3nnn75DL/ZmaGsPHx5/g4EjCwmLIydlvM/piDysryxbNO9cgEolITS2gsfEyYWEvm+7HmVySZf9Iurrq8PIKsuhbsNV4oIV+cnKK4OBYkxo4NtZLVdUX+PlFcODAMby9bXuP7U1etXoJNzfjar3ZVMzIyG20tJTT19e+oXi5TqdDpVpkcXE3fxt8AAAgAElEQVQeoVBId3czLi6fMzHRTUGB8yw098LbO4Ddux/j+vXP8fAwtnu250wcG+tHLve1UFU3mrBiTN55nrNnX2dxcZGAAGO2ncFgQKdbobW1jAMHnncqacbeAtyUWkhzczmFhcecpreSy30ICIgmOjqJtrZa5uZ6SUzcZZNjwRk44uWLidlOe3slPT2txMSkOCxIgrvFZLdv3yA7+67vKvTKexS99UM8/2jUWHn6k5/8529V7eIiRKFIYWVlhYaG0wwOdpOVddApIbM3eVUqpWni3E8qZlJSAS0t103j0Wq1qFSLLC0tsrRkbDulVi+iVitRqeZRqxfR6dSIxRKkUg/c3DyIjEyhs7OB/PzDmxb4NYSExJKUlMvnn/+S/PxHiY5OtulkGxnpIyDAMsa/mYQVjUaFXq9jYWEAkUhzh0UWtNoVdLplPDyc21FtLcBJb/83fvnYX5KefnBDtu7S0iwpKZkEBoYRGBhGZ2cz5eUfk5iYa5N0w5ET07jT295shEIhGRkl1NeXo1Ak2ZxHxkIVgamY7Gp4MuKuJsLCok3jMHsP/f3GylO4b8F/oIU+JCSU0dE5Tp/+BTJZOIcPv4JU6pzH3erkFbtT+chf0tnZbHLC3U8qZnR0GjdufMbHH/8rAoGe1VUNbm7uSKWeuLkZqZ+8vGQEB4chlXrj5eWDROJpoZo2N1czOtpJYqJlk0xrsDcxJyZ6CQqKYni4iVu3LhAUFE9MTDohIVFmvzs52U1urqXfYKMJK4ODbVRXnyQ1tZTExCyL4zU1/lRVnaC42IkmkTYERDo1SFDQNuLjN9qibMFMG4yPTyUgIIRr1z5jcrKXXbueNKubcMbUW1nRIJNZqvf3vhNp5gE6OnbanF+LPqH86SN/SWHh0/j7h9Nx8lVSUw+YjlvVEFQqI6vUf2ahHxsb5datbjIyDpjFRe3BWFK6wGBsHoOP/JDCsz9HvjDJtIcPH2WWcstVjJt2kpmZCRYWZu4rFVOlWsDFxZW8vIfw8wvB3d0TgcAxZ9u9iItLo62tHJVK6TDubW9invQOZHlZx8GDLyASiVCpFujurqeh4RTV1XoiI9OJiIijq6uJ3t5mvL3laDQqwsISLSipnaPRukZHRw15eV+7UyhiiYyMPZw+/Tp9fc0mwlJbsCUgM55+PLo0xrZvKZzOnNNoltFqdRYJWHK5H4cOvURNzXnOnHmNXbseNzH6OjL1dDod/f1t+Pqa36u1d3Ks7D3e1Gi49ew/kP2r71nMr86X/4mM8AzKyz8kPj4Hg0Filt5sU9O0wSq1EQi2uiLWHnbs2GGora11+vxTp8oYHY0mMNBy19XpdCwsTDMzM8n8/CxK5TRK5RRLSzO4uopM7Zvzum+y7+IbeM6MmjHSNDRcZWrqNgcOfGvTRArV1V+yuurGrl0HN/QcrOHq1S/w9vYiPd0y1Xg9Sr6lsCoYCz4h/Nmj/5XS0pesZhpOTQ3S3V1HdfUlsrIKSEzMZ2xsiIGBW2i184SGxqFQZDpFaa3X66mq+pzJyUn27v2aw8y8oaEeqqs/5+jR79m1h605vdQuIqYTdhHadg3Bul4wOjepRcea9Rgf76e29jxHjlivjwDo6mrm5s2zJCRkk55exNFHhQisyINBIOCdt0aoqDiOSrWKXC6ltPRbpuO23smMlx+vfv8zjswP2Jxfra11XLnyGw4ceMVMk7F1TaKioK/P5j2tQSAQ1BkMBqs1uQ/0Tu/uLkWvX2V0tJ/5+RkWFqZZXJxmaWma5eV5pFJPPDy88fLyIyQkDG/vLOTyQFNMNfTKe2R8+b+t7oq6gqc5c+Y27e2VsIlCD5VqgYGBDg4dcs4r7QhxcZlUV3/pUOhtEnDMjrJr16M2U4v9/SNwc5MxONhJQcFTgLHrTVpaLrOzk/T0tFJVdRKDYYXw8ERiY7dbJelQq1Vcvfo+ILWaCWgN4eEx9PbG09BwltzcR22eZ2ZaTA4w7eFNa0wue26dtaA/d+RsnZ+fwMvL/mIUF5eKv38I1659ztTUAPv8wvGYGrQ4b8E7kIsX3yMlpYiEhAxOnnzNjDDD1jvxWZyhp6earsPfsTnO5OTt1NaeICrKvBW11QpSqdTozLtPPNBCPzIyQlnZBby8fPDykuPp6UdMTDJyeSBeXv4OkzscqWt5eUcoK3uX8PCkDYdvmpvLCQtLdSp/3xmEhEQhELgyPNxJWJjtWn6bPgh3Gc//daFdbWV8fBAfH0tB9vEJIDu7kOzsQsbHh+jtbeXixfeQSiWEhSUTE5OJTqfl9u1KWlur8PAI5MknX95QqDI7ex+nT7+GQtFvV5sYKTpGTfwObtz4ioKCpzj2oz1W+x2AfWfr/PykVVque2FU979BXd1l3k3ZwzcrP8NVe7d9tVYk5uOso+zbZ4yIAKSlFdHYeNFkFtl8JwGRBAcruHXrBrm5+y2OAywvLyKVWlJ+r727hLd+iOfsKIIt9N4/0Mk5ISEhlJa+zEMPfYc9e54hK+sA0dHp+PgEO5XN5cgz7+8fjEKRQ1XVFxsal7HssY1t27Y2iSI6OovOzhq751hNuhG44LaidphFNz09iq+vfXKHoKBw8vJKefzxPyM1tZT5+QU++eR/88UX/wZIyc19End30Sa6+nqQnn6AmpoTdjP4Rke7uXHjK3btepLg4Ai7gm3P2apUzlgtRLoXoVfe4+C34/gf/3iQZ29doSw6kznvQAwImPLwoS69lOeaz/PiyyGmxK2YmBRcXDxNGZX2EqEyMkoYHGxgYWHO6u8vLs4ikVjPDB0pOsa7P75EZ3u7UaXfAoGHB3yn34xTbD2c8cxnZORz+nQHnZ21Fpx0ttDSUk5o6DazzqtbgdjYVDo6rpqaTFrDvSrwjKcvngJwW5w2O8+a+jszM0x6unP56EKhkIiIWCIiYpme7mHXrq8RFBSOXq+ns7OSsbHeDYcY4+NT6eu7RXNzGZmZJRbHx8Z6uX79c3JzHzM5Bm29QwPwyfZDMDtmolNbD6VyDrnc/k5/rw9BNjtC0dIsb+Q+zRm/EL4j86Xkw7+zah5mZhZTWfkpMTFZdiMeIrUKb29fLl/+lISEbSwvL7C8PM/y8iLLy0vMzU2zsrLC3NyEXc7DrcQDvdPfL5xJRRWJROzc+RBNTWWoVAsOr7m8vERfXwupqVufKimVeuDnF0Njo2Xr5PUYKTrGm3/7Fd986V8591oPYqVlowww13SMjs9xi9i8oxTkyckBBAKxKUtMKBQSGZlBV5fzDtn1yM09RFfXTebmzPujTE4OUFFxnJycR8wyLK29QwMCeg59h8E93+Dixd9SUfGp2bvr6qq3aLFtDVbNP+0yz9w6Q0JCFntOv2rTPAwJicLbO4KWlnLA+E7Ov97Db94c4uc/eJ+PRGJOnHiVEyd+zuqqC/39Ddy+3Yxe74qvbwwJCXvIz3+Kp5/+b+TlPcHFi+8wOtrt3EO8TzzQO/39wtmYc1BQOJGRmVRVfUlxsX3qv5aWMkJCUpxSHWHjFMta7Rz19ZUMDXXi7x9MYKCCkJA45PK7vHJzcxPU1p5h9+6v4+kpc0qjmZwcxtPTy8x2dCYu3dfXRGioOVOO0Zl13a5GYgsymQ8JCbuprv6S0lKjZ31qaojy8o/Zvv2IRRGNvXeYDsTFpdPUdJ1Tp35FcHA0y8sLqNU6MjNLuH79C7vORlumg2xuHFdXN4fmYVZWESdP/oKlpXmWlmaZn59CLPbExycMX18FiYn5+PkFo9frmZ8f4/DhF6wmS6WkZOPpKeP69c9JTy8mPt56Y5Gtwn9qoQfnY85ZWYWcOvUG3d0NxMZaJpmA0XPd19dMaaltHvj12Ghe/9TUEHNzU4SFRVNUdIypqTHGx/tpb68DVvD1DcHfP4Lbt2tJTi42kTg4k2swMTFickStwZkU5OHhLvLznzI7Ryr1JCAglq6uelJTCza8sKWm5jIw0EpTUxleXnKqq0+xffvDNmnI7b1DqdSDvLwD1NWJqas7RXb2Q6ZOslVVX1BWdpySkqet+oBsLZbz3gGIxe4OF1MvLx8EAlcMBlcSEvIJCAi3mjw2OTmIh4eP3RLkyMh4pNJjlJcbG5taM3+2Cv+p1fuNYE3Nv3nzEiqVZb00GHf5oKBkp3f5jVSsGWPfX5KefoCgoHjGx7tJTMxk795HefzxP6W4+CWCgpIZGupjdnbGjFF2pOgYjX/0GqqAKAwCAaqAKIsY9szMsIVq72gnm5wcQCgUExBg6fyLjc2gr6/R6VLc9RAKhSQn53Dt2pfU1l5Ap9PT0HCa8+ffpabmEj09rTYdX/dCpVri0qVPGB29xRNP/AnZ2YUmAc/JeRhX11WbVYC2zL+zhd/A1dXNoXnY09NKQEAg+flHiYpKRCr1sGouTU724+MT5vBe/P2DKS19iaGhXioqPr2v0m17+E+z0+t0OnQ6LXq98e/V1bt/r66uoNOt3Pls5c45d/9eXdXd+beO5WUNJ0++SnHx82Zth9RqFb29Lezf/7LTY9pIXn9j40XEYh+Sk7Pw9JTR2HiGlJS7Trc1jvSkpCx6e5s4ceJXJCfnk5yc5bC4BmBubpjs7CKzzxztZL29TYSE3K1wNN/RI3g3pZiEWxc2VbA0MzNATs5D5OQYdzSVSsnUVD+Tk0P09tbQ0DAFCJHLQ5HLQwkICMbfP9RsJ+3tbefmzbOEh8eyd+93LHZzoVBIQcFTnD//JjdvVliU49oyHepcPAl0dXNoHnZ2VpGWttvs+VjT7DpKXmK4yHaS0HqsZ0G+dOk3xMZuB5wrMHIWD7TQ9/X1cuXKReTyQHQ6HQaD/s7fq6yuGv/o9ausruoRCEAodEUodMHFRXTnj6vpM5HIFYHABZFo7XMXXFxcEQjcEIk8EIlcEQqF7NgRw+zsFFevHkcicSM2djsxMVm0tl4lMDB+Q51Wnc3rn54eoaeniQMHjFleYWHR1NUZs8qsxbQVijQ8PL7CYFjiypV3cXf3ITIyjdjYVKv268TECJOTw8zPTyKVyk3CYc8sUKmU3L5dazJlLCf0AC9d/wDXFY3Ve3dUsDQ83EVBwTOm/0ulnkRGbjOjRTM2zxxgenqI9vbbzM9P4+rqgVwewtLSEisr0+TlPUxIiGVp9RrEYgmFhc9x/vybeHn5EBtrXqxlbbHUXf4Ysdjd5nEwMgHp9Wqz8drS7ErL3ufU03/vtBm0xoJcVXWWurqz7N5tP2Fro3ighV6vX2VxcZnQUH+iotJxcTEKr1FA1/4tMgns1v52Cf39t+nurqex8RJK5SyPP/6DDV3DGVt7LaU1JaXIFAIUCoVERWXQ2VltVejn52dwd3enoOBJE6V3T08DbW1X8POLJiYmjYiIeIRCIePjQ1RUfEpsbDYtLdXcuHGCgIBggoNjUe44Avfw77c+/2PO+UVw+/QvEQjEdHY2EhgYZnVCi1c0rAoEVptX2ouhj431IBRKHFbMyWS+d6i+M03Pan5+gtHRbq5f/4wXX/yxU0yznp5yCgq+Rnn5x3h6yhzWq6+sqB1SgHV0VJGQYN4x2NZC57c0S8rNs2Ssa3DiyL9jZAA6QmWlCFdXV7tj2SgeaKGPiYlj9+4EmpvLCQgIdTqOvhUwklwY+47NzExw4sQvnK7wW4Mz0YPm5iuIRN4WFWqJiZmcOnUDrVZtMbGnpkbx9g4wjTMiIpmIiOQ7JohR+GtrTyGVBqJUjrBjx0FTlxmVaomRkV6GhrpoaXmDKxIJQd/5N8LDE1ld1dHQcA63FQHFxS/g6enN2bOv09xczVFbLcQMBlZc3cx2fEcFS319jYSHWxKdOoJQKMTHJxhPTz9u3SrfELV0QEAk2dkHqag4zv79L9rNsVhZ0Zh2emuYmhpjcXGU2FhzB6ctzW7Wy5+Ud/96U2ZQeLgCd/f7y1e5Fw+00AMEBoZRXPwcZWUfotGobdZB/y7h6xtISEgsw8O3zVo0OQN7tvbs7BidnQ0cOPBNC01FKvXEzy+arq469k/0mS0cy7ufYXH7AYvrSSTSO3Z+PnNzE5w//y5JSTlmY5ZKPYiLSyUuLhW9Xs/4+CBDQ93cuHGSqalh9u//hhlfQWHhs1y8+DaL8hBksyMWv7noE8rHWQd49tYVp7z3Rs2kh5IS5xl474WLiwurq5ZNTRxBoUhlcXGKsrKP2L//edzcJGbOsrV/a7XLuLraXlDa2qpQKDItfAjWNDutqxuXD3ybJz77R6vX2kgLra3CAy/0YKRPLil5gUuXfotOp9lwOGMr2hG7uHhRXv4Js7PzxMSkbMi2twajWv8FiYl7LKIBa+M9OjmA0k2KVKfFZXUFMKqFj578F5JnB4h99Vs270kuD8THJ8SkEVi7vpnzatcRGhuvEROTYnE8+OE/472UQv6g5nOzvHSdm5TbL/1Prs/PITj2351ipBke7kAq9XH4/Oy9M6FQiFAoRK/Xmy2WzrzntLQienpu8vbb/4BM5n3nend3UoMBJidHqKk5SXx8LgKBCxqNkXdfo1lGo1HR3l7Bc8/9jcWYrWl2H2XuR1XyMstX390Ub4PBYGCrC2F/L4QejEkd+/e/wOXLH7CyskxOzlGnvrcV7Yh1Oh3z8/3s3HmIhYUJLl16C4nEm7CwZKKjN5eO29xcjlDoQUqKucly73i9NEsW33XTaUkt/8BUamrrnlZXdbi4mBdy2Hoeiy/+lFrEVo8XvvsjWrIO82r6QV66fR354qRJqEaLjhHVcJWOjmqnhL6vr4mwMPuqvTPvTCAQodPd7V3n7HvWatXodCs89dT38fGx3mJLq9VQU3OJs2ffIC4uDZHIDTc3CSKRBC8vd8LCErl27X327HnOgv9gvWan1+u59Ok/83BA6IZ5G6amxujqamJoqJn09J0kJiZaPW8zcKZV9ZvAUWDCYDCk3nPs+8D/AgIMBsPWs/LfA09PGSUlx7hy5SOuXz9OXt5jjgkSt6AdcU9PC56eHiQnG8Mzer2e0dFOenubOX/+Oh4egYSHJxMTk+JU84e5uQlu365j/35LgkdnONUAs9pyW/ek16/g4mL+im09jx3H/4m3H/k+ye/8P1ZTU/+k6jgq/whOFj3HSXk4sbE72bYtFzEQH5/BmTO/tOp/WA+dTsfYWD9ZWfaZfp15Zy4uLuj1OkDs9HcA2tqu4+cXZ1Pgweg9Dw+PQaNJZ9++b1gc37ZtL3V1lzl37tfs2fOUzQ61MzPDSCQyJBJ3p/w7KtUSPT0t9Pc3sbKySEREEqmpuwgMvD+t8l44s9O/BbwKvL3+Q4FAEAEcAP5DjRKp1IP9+5/j8uWPuXr1Q/Lzv2634m4r2hF3dFSRmbnH9H+hUEhYWCJhYYnodDpGRjro67tFe/sVZLJQIiO3oVAkWQ2f6fV6Kis/IyGhwKqKez823r3fNbZudrV7zho8ZoZZWdHaPC4APKYGeeLsa4S8/M98NtfPyZM3SUkpJD4+FT+/aLq7600LozUMDrYik4U4LEd27p0J7gi989/RarV0dTU41UhCo9Hg6mrdgy8UCsnJKUEmC+Dy5ffZseOgVVag8fF+fH3vRgqs+Xf0ej1DQ9309DQxNWXsK5ienm8q2x0a6nA41o3Cmf705QKBQGHl0L8APwQ2Vpe6BTDGMZ+irOw45eW/Ze/e52wK/v22Ix4Y6EQgWLHJ2S4SiUzxZa1Wy9BQK/39LTQ1ncfPL4qIiGQUikTEYjdUqgWuXfuQ4eFR0tKss+3YGu96GMBqjfm996TX6xCJxBbnWH8eEayurrDsH4F00vbCI9KoyP70fzL3Rh+jo93cvHmezs4aAgMV9PbetCv0/f23iIy8P1LTNdzrzHPmO7dvO99IQqNZtin0a0hMTMfb24fr1z9jYWHCggBlZmaIgADravnc3DSdnTcZHGxBInFFoUgnL+/whmsZNoNNBbcFAsEjwLDBYGjc4vE4DbFYTHHx1xAKPbl48S20WrXV85yptLOH9nbLeKy9McXEZFJcfIzHHvtToqJiGRxs4PPPf8bx469y4sQv8fKKICtrN3V1X/Lll//GzZsVKJV3K8SsjXfVxZVFNykGgYBpTz9aCo85dU+rq5ZCb/t5/CMrKzou7PtDVuyEq+Du7hkSEsvhw98hKSmLkZEm+vt7GBxst/odrVbNxMQwUVGOO8o6emdTU0P099/m0qXfcPnyu1RXf8n54hdZucfjvv47Op2Ozs4apxtJaLVqXF0dC2BwcAT797/IwEAPV69+eE9zjXECA++q/lqthvb2Bs6c+Q0XL76FwbBEYeHXeOih75KSkv8fIvCwCUeeQCCQAj8CSp08/xXgFYDIyM3zjVuDSCRi797HuHHjNBcvvkVx8YsWD26z7YjB2HFGpZokJuYZh+feC7FYYup1r1ar+OqrV9mx4wixsUYn1vbtpYyN9dLVVcuZMxX4+EQRE5OBruBpi/G2Pv9jfjE/z86dh7h69RMef/wv0GQfdnhP1oTe1vM4LgkEWrkSmsL4rid4pOpLAtWLTmkUcXHbUSjSqaw8SWXl53h7/4FFG+7+/lv4+UU5letgbYyNT/81l3zDGPjq52i1q7i7e5CZeYiVFR1K5TyVMXnMFX+To9c/wEc5w4yHnC/zHqdVAO7VJ1hYmEYqDbFIzLHl8ddq1Xh5OZf+KpPJKS19kYqKL7lw4Q327n0WEKJWa5HLAxge7qOnp4mxsdv4+gaSmJhFRETKptp6bQU286uxQDTQeIfkIhyoFwgEOw0Gg0XzMIPB8BrwGhiJMe9jrFYhFArJzz9CVdUFLlx4k337XrRoae1spd29aGurJiYm675fjkQiJSgoEp1uxezz4OBogoOj0WrV9PY20tFRTn39acLD02j55xozZ5PiZgUNDeeQSj0Qi8VO3ZNev4JQaDn2e79bV1fG1OgtnnrqR8RUfkZy6zXc1UqUbh64r2gQrbOdbWlJIpGIgoJHaW4O4dKld9m370Wzxpj9/S0oFM4nV611Hx4cbKW39yYzMxMEuc+TlfUQISFRlJV9ysqKkrg44zVDr7xHcsNJ3JdmWQ6I5PZTf8tqRilhynkWF+eYmGgmNdVc/bbn8V8RShGLfe9e28ECKxaLKSx8goaGq5w9+2siIpLRaHR8+eUvcHHRo1CkkZ39itV26//R2PBsNhgMtwATxYdAIOgDdvxHeO/tITd3P/X1bpw//ybFxS9adGLdKBYWZpma6mb37oe2ZHxubjKUykWrx4zND3NJTMy9k7BTy6VLb+Ph4Y9CkU5MTAoJCRnU158mOjrB6jXuhV6vZ3VVZ8G9di+amm4wNHSTAwdeJqbyM4twoU7owqKbFE/NMssBEbS98I8OymZ3YjDouXz5bUpKXsLTU45KpWR2dpK9e21z/63H5OQA3d11DA114eUVjEKRTkGBeeOO4OAYhodvExe3w2pdwM5f/ylu6yoNVapxXFwcR0rWPP7aZ3+KRCLdUMhXKBSSnV2ITObHiRP/SkJCLjk5pTY5Abcif2QzcCZk9z5QBPgLBIIh4O8MBsMbv+uBbQbbt+9BLBZz4cJb5Oc/TlDQ5jvGtLRUERmZvKFUT3vw8vJmenrW4Xk+PsHs3HmU7dsPmXa55uaLBAcnotdLEIud6wev0+kswnX3orW1jp6eKpN2ZFUI9KsIPH35i+/8mKUlNTmJBYQ4+O20tDwMBgMXL75FSclLDA62EBAQazefXaVaoKurlv7+FlZXhURGplNaWmRKXLpXQHy+9iNeX5pDr9c7Fa4zGAxotebFQfY8/sb8e+mGQ756vR6RSI+7u4z9+5+3SeCxFfkjm4Uz3vtnHRxXbNlotgApKTm0tFRx6tTrREUlkZJSQHBwzIauoVItMTzczKFDzpVDOgN3d2/Uakt65TVYW/VFRceIjk5HpVqgo6MGkUiLUul44QBjuM5eDkNHRxMdHVcoLn7BpBXZC+eVlHyDnp6bVFZ+QlBQMtu3F9ulv05P34Ver+f8+TdRqZYICEiiq6sZudwfmcxIKKHT6RgYaKa3t5HZ2UmCghLZvv1hQkIiLTLt7hWQvDf/nPbdTzM5OWhbeCcHuHHjLJOTvUxO9hAenm123J7Hf2VFhZubu9MhX7VaRWdnNd3dN3Fz88bfP4Tx8QGzBhbrsRX5I5vF701GnrPo6GjEy8uVxx77W7q6blFZeRqJRERSUj6Rkc51mG1vryc4OGpTXU1twdNTzvLyvNVjjlZ9qVRGVlYJ27YVcObMW7S1VZCcbKwNX2uIaeydZyRbVKkWUSpnmZ6eQKlcMIuLGxNAWmlvv0xx8fNmZIyOwl4xMZmEhiZQX3+G06dfIy2txG7noczMfLq6GnFxWcLLS8zAQD1tbQuoVEpcXd0ZHe0hLCyZlJTd7NmTaFMTsCUgT9ad5Gd7n7Y57iWJB+7uInbtegiJxIuzZ99Aq9WYfsdelpx2ahw3Nw+Hz2R2doy2tuuMjHTj7x9PXp6Rxbe5+Rp9fW02hX4r8kc2i/9UQq9SKWltvUxh4VO4uUnYti2H5ORsenpaaW6upLLyCyIiEvD1DcPLyxeZzB8PDx9cXFxM19BqtfT21rJvn10FxwzO2Gaenr4sL1sn3nR21ReL3di792t8+um/0tFxE51Og06nwc1Ngru7FDc3D9zdPZBIZPj4KHB3F3HixC/x949hdXUJpXIa0LG8rMTFRUxPTxuurlJTGrEzqaISiZTdu59gdLSb2tpT9PU1s3PnIaupyAMDnYhEWh555K/MfAvG1mNztLdfZ2Cgg8XFWaxnHhhhSxDkC5N0dt7k0+xHeObcv+GqNy/CcV/R8NDcGCN3ajV8fALp6WklKclY0WgrkjG091lWPvwpYrG7zWdy7aHvcuHCvzM/P0dUVCaHDn3bbHGNiEimvPwnBAZGkZiYYbHZ3G/+yP3g91borQnab/EgMjLBjPFGKBQSF5eKu7sHV668h6urLzMzMwwMdKNSzaLVLuHm5o6Hhwx3d7XIb1sAACAASURBVBmzs9PIZN5WaZVtjcMZ20wikWIwrKJWL1uoxRtZ9efnp/Dy8iA39xDe3gFWG2KuISEhB5HoPMPDTezceRS5PBgPD2ORydzcBB0dNzh79jX8/aNJSNgBGwhvGmP03+XWrcucP/8G8fEFpKbmmMai1Wqprz/H9u0HLJyJQqEQmcyXnTuPkpS0m/r605w69ToZGSVWefJs7uR+YahU80weeIHVa+/heg8rsMvqitnCGRu7nba2GpPQg/XIjla9fIe7QWSxMCx4B/JRRim1bn7ER2RRVJRqNbozMzNJaGgk/f3VdHfXkZVVYupIC5vrDrxVeMCF3sDKitbiU2uClv5//oC63U/i9ydvWpyvVC5QVfUFe/c+aZFZp9MZ47yLi3PGhpZtzej1czQ1XSElpeC+u+ish7u7ByrVgoXQO7vqa7Ua6uvPkZ//uF22mPUICopkcXGYsDBzNVMuDyQ391GystR0ddVRX/8V9fViYmN30PeLDockEmAM0xkbkGRQXf0lAwPN5OYeJiAglMbGq8jlPmbMMtYgk/lSVHSM4eEO6urO0tV1k5ycA2YpyrYE5Erpd4kLUxAfn4PbknVfx/qFMzIyhfr6s0xNjdnNyjMm5txdqNq3H+Qzd08GBzvw84shIWEHR2007FzD0FAHsbHbSUvbS0/PTWpqvqCjI4zt2/chl/vdV/7I/eKBFvqenm6uXCkjJ8ecKdWaoLmuqPmDq+8jKP+t2QPU6XRcvXqc6OhUq6m0IpHIxD8HsfT23iQu7gijo32cOPEzEhPzSEjItSn8G9mlpVIPlMoFC1ZaZ1f92tpLBAQEWwiwPXh4eKNSWQ8VgjFcmJKST0pKPsPDHXR0VNHScoWIiHSSkrY7VUIslwdSWvoHdHRUU17+Pr6+sUxN3ebIke84Pc6wsESCgmJpaSnnwoW3iIrKJCOjALHYNlfdVZEPvnJjNMOZhdPISJRCZ2ejXaE3puCKGR7uoL29itnZqTvRhFeQyeRGLfNvi2wKq7GwqIusLCP9WUxMJpGRqTQ3l3Hx4r8TFpZBZmbBpvNH7hcPtNDHxMQxPR1FY+MZhoe72blzP2KxbT5y4R0ShPUq9qduvri5CZ2qwddqtahUM8TFZZGUlMPY2CC3bl2js7OWbdvyiYnZfl+2mbu7F0tLlna9M6v+8HAfY2OtPPTQdx3ex3rIZD6oVJbludawVkS0sDBFe3slFy++iUwWQWJiNuHhsQ6doImJO4mISOGTT/4niYn5G05EEYlEZGTsIzZ2Ow0NZzh58lekpe0jLi7VqoDMffU68fHGxFBnF874+BzOnXsbna7E5kI+NzfB4GA3BoOI2Ngd7NmTtqES3tHRfry8PM0cwSKRiMzMEhIScqivP8vJk78kKamA5OTsLad6c4QHWujBmIQRG7ud6uoTnDnzBjt3PuxUUYpIoyLuzR8w8eQPOXjwFadaZM3MjOPh4WWaDMHBEQQHP8vwcC9NTWW0td0gNbXQjIlmI7aZROJllme/HvZWfa1WS23tabKyDmw4P1ssdsPFxRWVSmm17Neab4SiY+zceZTMzFJ6eupoajrHzZsCYmJ2kJCQYVf11+t1SKXeZGUVb2ic6+HpKWfPnmcYHe2mru40PT2N7Nix30xD0mo1LC1N4+dnpJZ2Vl2Wyfzx9pbT19duNfKg0+lob79KTs7j7Nixx+K4M+bcwEAHwcFxVu9NKpVRUPB1pqaGqKs7S09PA5mZJWZdfX7XeOCFHowqaEHB1+ntbaKi4iN89zzPoyf/xWHduWxulPz8rzstKNPTY1aZZsLCogkLi6a/v4Nbt67S1lZBWloRERHJTk82nU7H4uIMc3MzZGYWbIjssLHxKjKZbMNUXWtwd5extDRjIfSOdi2xWExS0i6SknYxOtpNR0cl7e3lhIVtIylph9Wa9M7OGkJDU5zyCThCSEgsDz30PVpbK7h06R3Cw41qsUTizuTkCHK5r9lu7ay6HB2dSU9Pg1Whv3XrMhKJv1WBB8fmnF6vZ2zsNiUlz9kdg79/OAcPfove3iYaGk5w+3YI27fvs1vnv1X4vRD69buRyi+cT7MP8XbBMR6v+QL5wgQGoQtCvSVn2rLUm6f/Kt9pR8nMzCj+/ra7ukZFJRIREU9PTyv19Vdobb1mLKe0M9mMO0clXV21SCR+SCQ+nD79c7KyDtos112PyckRBgZucviw9a46zoQLJRIZSuWcBbPNRpyQISGxhITEolTO0dZ2nUuX3sbbO4T4+GwT865er6evr5mCO0VDm4G1+xEWHSMmJoP6+rOcPv0aKSnFqFQLeHsHObyeNSgU6dy8eZG5uWkzn8X09Ajd3U2Uln7L5ncdmXPj44NIJK5m+Q/23lF0dDoRESm0tl7j0qXfEBqaRlbWXruJT/eLB17oFdePk/HWD0yT02Pq/2vvvcPiOs/8788ZhgEGREf03kURCFCXQCDUJTvujtzikjj2ZrO72Xdb8tvs7rvO5s2W7G83cWInTtxkW5G7VVEDhIQEovfee0cwwDDMef8YMWKYioRt2eZ7XVzAmVPuc+bcz3M/d/neHXw7+wgnDv2IRzY+yP33/4ikuiv6JraVFJsZBVYKTUKMJWmOY2N9RESsNSnPfAgwJGQN9fXlXL16klWrHFi7NkNHqZTKaWpqrtDcXIKjo582aQOgra2OoqJzNDeXkJJywODad3x8mNraK5SWXsbXN9DgPpaGC+VyZyYMNLm8nQQRBwdnUlL2kZi4i+bmEqqqLlBSco6QkHXY2cmQyRwNdsSxBObuZ+vWB+ntbaW4+BTd3V1s23botq6j4UCIpKGhVNtsY56zMCYmzST9mbnlXHt7vU4GqCXfkVQqJT4+jbCwZEpLszh+/DdERW0lKurz6Wl317e1Wve+AfqmGQWZ2W+SkJBKb2+nblsnBIYcXJmTO2rJJBceZ6ilFNxy4s2vEc1BIpEQFZXAwYPfx8srhry8j8jOPkJvbwvFxWf47LP/ZWRklG3bDpOR8bBW4UFjMezb9xxyuScnT75KTc1lLRNrV1cDFy++TVbWHxFFG+6550UkElsuXz6m1+bI0rZZ9vaOKBT62YDGEkEsSRCRSqVERKSwb9/32bhxH8PDLZw79za+vuatF2Ow5H68vILYs+d7BAaGMDjYv/gUFiM8fD3t7RXa+vfy8otYWTkSHZ1k8jhzLcR6euoJDIxb0j3NQy53YPPm+9ix4xF6eio4efI1entN+65uB3f9TG8/1GVwu91gO1FRm7h06UPi4jbRnXaYqyEbKCr6hMzMZ3jksOEqO2Oz2GInnqWQSqXExq4nIiKBmppCjh37L+LiMkhPf8oMD5uMlJQMgoNjKCg4TU3NVaysrBAEW0JDk9iy5UHtujgj41EuXnyfS5feZcuWW80YLZ2p5fJVDA7qt25ergSR+RJhhWJchzRiqbD0fjTl1A9x6tRvGR/fYnFvwYVwcfHC3t6Ojo5GnJ2daWoqJTPzaYuONeY7qKoqYnCwXccqux1rys3Nh8zMZ2hvr6K09Bz9/XIiIiyrrrQEd/1MP2lk5p1yD8Dd3Q+53I7W1lrGx0coLPyMjRvv1eS5L3EWW9hAwhSM9XOXyWSEh6/F0zOAtLR7LXbIuLt7sWfPE4AV/v5JHDjwXWJiUnQcYTKZDRkZD6NSWZOTcwSlUmnyXhZu18SM62ltrWJ8XLf62ZLGl0vB3NzsHa1Fl/KdyeUO2NjY8fHHvyE39xMqKq7R3d2qV0lnCiEh62hsLOHq1Y+Jitp+W4MHaOoZcnI+pr7+EiEh6zl16lXKy7NRq9V3ZE0FBMSwbt0eVq9ebXbfpeCuV/riB/7eJHVSeHgK9fWF5OZ+SHh4ojZTbak0WSMjvUZZTedhrkPryEgXjo5L/4IkEglyuZ1eddlCSKVSUlPvQyp14uLFNzQ+AzP32NXVwMmTLzMzoyI+fj/nzr1Bb2+Lzv7daYc5/1orxz9Rc/611ttS+JGRXgoLT9LZ2YxKtfQmFPNYyndWUnIWtVrKjh33s3r1am7c6KK8/AwfffRLPv30ZXJyPqa8PJ+urhamp6f0jp+dncXOzoHKygvMzAhmzXpjaGmp5cyZ32NrK7B//wukp99PevqT9PZ2cfLky1w58IM7omv7PHDXm/etm+/D3t7JqPczKCie7Oyj+PmFER+fpj1uqWmOY2O9REaaduKZ83YPD/fg5KSr9JYSJfT19TA9bZjnT3stqZRt2w6Rn3+Ks2f/QEbGUwbvsXH9Qa7nvsfQ0AAJCbu02YweHp5cvvwhCQkZhIYmmLyWOSgU4zQ1ldLZWcX0tBJf3xji47dTUXGJjIzb895b+p0VF5+hs7OV9PRH9Zh11Wo1w8PdDA11MTLSTXd3BePjw9jaOuLg4MHc3Awq1SQ3boyyapXHTTqzCQYGus32uJuHpiS4gbKyS4yNdbF79xM6adEuLh7s2nWYxsZK3qm4SF/GU9xb8Cnyoa4vNN3WGO56pQfT8VcNHXUw4eH6hIeWxm2VSiWTkyO4upp24plan6lUKhobKwgKulXMYal3va+vEysrkaKi49ja2uLtrcu0snjg8Hv8JT5yj9DSgy1srlBXd5XqU6/i55fA/v3f0lkmaHqor+LSpfe5cWNoyZ2ClEol7e2VtLVVMDIywOrV4cTG7sLXNxiJRIJKpeLkyV/R1lZntKTUHMx9Z0VFp+jqamfnzsMGk40kEgnu7n46RVdqtZqRkV7y8z9idtaW9et34eHhq82ya2kp59Klo2zYcK/JJJmhoT4aGsrp6qpk1SoHwsIiaG6eor29xWAtRFhYLAEBEZSVXeYF9xDCwxOJidn+pXHjzeMrofTmYGMjZ25ObX5HIxge7sPBwbwTz1iMdsLFh5MnX0OlmqSnp5HERE2/PUvj4PX1JcTEbMfd3YfLl99n/fpDBARoqKWMDhwvvspxn7VaejClUkFBwXHAltTUx4zmlnt4+LBr11NkZx9jYuIYGzd+y+R9axp7NNHSUkpvbwtOTn4EBiYarH/XFODsprj4PL6+ocv6co+PD5Kf/wmNjWU8+eS/WtRUZB4SiQRraxnT09Ps2fO4nnUQHByPra09V658jEKRSWTkrSSo6ekpmpo0A93MzAj+/tFkZBzWxuHDwlLIzn6LvLwZNm/ei0Qi0Rukgx5/ieqdT1FYmEVb28skJe1eUv3EcuNrofQSibVeOGsp0DjxzCd6GGxQKLXhnZjtxMZuICgonlOnfktjY6WmnNcCz61CMUlfXx1JSc8jlztgbW3L5csfolTuJiws1vTA8Vor1tbWfPjhfyGXOxIXl2mwdnsxHBwc2bXrMS5d+oTz518nNfXbelmLIyO9NDYW09VVh7W1A/7+sSQk7DbbqMLfP5r6+kIKC8+RkrLzjhVfpVJRUXGR5uZyQkLWMzsrMjzcgYPD0rreFhefISRkvVH5vb1DSUt7lJyc95iZmcDFxZPm5goGBhrx8PAmLm6TtgHFQtjZ2ZOR8RQ5OUfIzv6QbzPF2t88b3CQds48TEtLLYWFZ2louM66dXvvmMvxdvC1UHorKwlqAxl5lmJkpBd3d3PMb4vWnAPtDNk7c3bHY7g+8XOt0qxbt5urV08SEBBhMntLoZiko6OBysp87OyctDOXl1cwqakPk5t7FKVyxmiL6PmBIy5uI5WVOezY8W08PG6ZtOZ8CZqGIQ9QUHCeM2d+T2rqI8hktjQ2ltDZWcXMzCy+vjFs3fqoRc0hFsLfP4rs7I/o6qpg9WpfvL0j8fQMXvILrglZnWXVKl8yM5/B0dEZOzsHGhqKzJbsLkRPTxMjI0Ns3vygyf3c3HzYufMpjh9/GZVqhsTETFJSnjdrVchktjxuJSP0tedxuTGkRwey0LoLDo7C1zeEiop8zp79I6GhCcTGpn6hJv/XQuklEms9eumlYGysh6goyxxbjevv5aiVA0NDLSQl7WZDUzHRL67RUa5aZ1cqKvIJMti62JY/Jezl/PFf4+Hhg4uLPdbWTjrXcHf3Iz39cbKz32HMcTXOY316csyHfKamFFhZoRN5sNSXIJFI2Lgxk6oqZ44d+w+cnNzw8ooiLm63dp1+Oxgb6ycpaQ+hobHk5x8nJ+cTXFxcUKtncXR0xcnJDWdnL1xcfHBx8dYj2RgfH+L69RNMTEyQkLBfu9QBCAlZQ2XlBSYmRi2iM1Or1ZSUZLFmTZpZZmDQ1PcnJu6lv7+OuDjL2mn7ZB/Rmd0NYaF1J5PJSEpKJTQ0lqKic5w48SvWrbMsLXs58LVQ+juZ6eedeC4u5pNKGhsrKSs7i59fCPv2vUDQlWMGlWvq6V/yu6FCanc9y+RT/0n8e/+E01gfQ/bOZKUdZnzXd7nXNwqZTEZ7exV1dbqNgnyyj5Dx1o95bKCdCRs7VFZSpHOGueeHh/txcnLRUdClki6uXu2Hk5Mbhw79+bLkfA8NdRMTk4GzsxsZGY9y4sT/smnTAzg6ujA01MfIyAADA300NVUyMTGMnZ3tzeo3DyYnx+jtbSc0dD3bt2/SmwFlMht8fddQV5fPwRvDZj39zc3FgC3h4ca5/PSfhw8XL75BWFgKvr7mabstaTpqKC6veT4Pa9OyGxoKSU7ep9coZLnxtVD6+bbFt4OBgW6srWU3mz0afhwa5p3TKBR9bNlyL15eGtojY8q17v2f4f30f/CnP/0Xbm5OeH7/ZXb0NLH15K949OTLTBUc176gcrkT09O3SC70W1UrmBUkTNo5Ip++ofdyDw/3sWqV7kuy1Cyw2trrhIcnL4vCT0yMU19fxZYtmrCdTCYjOnorpaUX2bPnCeRyBx0PuUqlYnx8iOHhAQYHe6muLmLfvmfx8zNcmgoQHp6I8vW/Yu21T0xaM0qlkoqKXDZuvH9JVkt/fzO+vnFcvXqciIhE4uLSTO5vjszSXFw+MDASX99Qysvzycp6nZCQOOLjjdf73ym+FkovlVrfltJPTIyTn3+cqalRPv30f5BIpDfX1844OLji4ODE5OQEra3XCQmJvZkcc+uRmVIuFxcvQkJE0tLuxy/3Xda+908GX1DF+nuYnp7QHmuQFUhUM24l5R//8n22bj2kI8PYWD9ubrpOyKUQeygUE/T11ZKS8qK5x2URiosv4ujoQF9fB6tWaZYtEREpNDQU0NJSq8eBJ5VKcXX1xNXVk7CwWKytrWlpuW5Q6Rf6KdQIWIm6ztvF1kxVVQ7OzgF6IVBz6OioJj5+G25unuTmfsDwcDebNj1gdHlg7HmLwJC9C+WP/DOTZkLHUqmUdeu2ERamMfmPH/8VCQk79boOLwfu+ow8S3CrV7nlGBzsJSvrDcLConn88X/hoYf+ln37vkdycib+/kFIpXMMDTVRXn4SOztnIiL0TU1jqZSjq9y5evUkc3MzSCQSk+a2XO6AWq3UptYaG0hcJ0dQqyfIzn5fuy/A+Hif3tJkKZltNTVFeHuHLEvzxJ6eNoaGGklK2q3TyFIikbB2bToVFTk6nWYNIS5uI3193QwNdetsX5wNuVjh5zH//BSKcZqby5dM5jExMcrY2Dj+/mE4Orqwa9cTSCQOnDnzCqOjhgt8jD3v4r96m3d+ls0bs0q6uloMHrsYjo4u7NjxILGxO7l48X2ysl5jYGBgSfdgDl8TpZctSek7OprIzj5CXNwWnQQVudwBT89AwsKSSUzMZOvWh3jiiZfw8vLhzJnfUVNTonMeQ1/2jJU159KfZdeuZxkd7UGhGDdrbtvY2Gl57EzlaqelPYZMBhcuvMf09NRNKukhXF11Iw+W5tSrVCpaW4tZs2aLBU/NNNRqNUVF54iNTSU0dB0DA806g1NAQAw2NlLq6kpNnkcmsyEiYhOlped0tluyboZbz6+4+Ax+fmst4vhbiObmUry8IrQDvEwmY9u2Q4SEbOT8+Tdpba3UO8bU8w4OjmfTpkNcvfoBTU3VJq+tVqtpb2/g4sX3KS09RVBQOBERG3F2Xr7+C/A1Me+trKwsNu9raoqors5my5Z7LWKUlUqlJCXtJTAwjoKCz+joqL7J8+5CYXgyNelPsSf3HdwmRxElVsjmZtl/+R1qQmLo8IunouIiB82Y23Z2ciYnb+Ds7Gay8k0ikbB160MUFHzC8eOvYW+/ir6+TkpLzxEbu12nusuSbMSmpkqcnJyN0n0vpddaXV0ZUqmK8HBNQ0lnZze6upp1zPl16zLJy/uIsLBYk8w6UVFJNDYW0tfXpu0DZ0kTiPnnNDjYSV9fJ/v3HzB7zEKo1WrKyi6wdq1+/8KYmBTc3Dy5cuVjhoY6SEzcreMnMPW8fX3D2b79IfLyjjE7O61XJz8+PkJdXSkdHRXaXvWaBh1yOjvrsLY2T/W2FHwtZnqp1BpRNK30arWawsLz1NdfIiPjcYsppOfh7u7Hnj3fw8vLlxMnXua9935GaWkuHduepOE7/8mcjRyJeg6BW2v2A2MddHQ0UPrgj42a29PTCvr62qmqusrAQLfZWVoikeDiEsrkZA++voEcPvx/mJuz4uTJV7h27RMmJkYtvqfGxkIiIzca/MxccdFCTE9PUV2dTVLS3lvH+0TS0VGns5+HRwCurh5UVFwzKZeGpmsL5eXntduMWUBzgqD3nIqKzhAVtVXrmDRWGbkYzc2lqNUSBo0MMF5eAezZ8zQDA4NcuPAG09PmLY95eHgEsGPH49TW5lJaehmlUkljYyVZWW9z9uzvUavH2L79vi+kV/3XYqaXSKQm14oqlYq8vE+Znh4gM/PZJaVw6l5HQnx8Gq6uXuTlfUpm5pPIZDLW/vIhg2v2hGP/it9zv+cz9Tg2L76qN2sWhq+n4NRvCQnZiJ2dlMuXj2Jj40RwcCKtv6k36DgqL8+nqSmfQ4d+oJ2hN23ay8TEFiorr3H69O/x9g4mLi7VZOinq6uFubkpo7HhpYT9ysry8PIK0GEOCgqKpbb2NVQqlY4vJDFxF1lZrxMVlYi9/Sqj8kVErKWx8RpdXXX4+kYatYDe3v4EI3ufIyxMM3u2tlYyM6PSVs1ZmrOgUqmors5l+/aHKS4+ycjIgMHyaLncgZ07H6Wo6CKnT7/K1q0P6OT5m4Kz82pSUx/lww9/SWnpWXx9AwgJSSAo6BGjnvqpKQUTE8vb4f1rofRWVlKja3qFYpLc3A+wtbVi585nliUM4ucXhYdHAbW1JcTHbzC5Zo+P38SJE7+hdvfT2pdMpVJRXHyazmunSE4+qE0+SUzcRXt7NU1NRVRWXsDXdw3h4Ym4u3uhVqspKDjPwEAtmZlP6yWmODg4snFjJgrFZqqqCjhz5g28vPyIi0vD2Vk/xbimpoCwMOPlpJaG/YaH++jsLGPvXl2OewcHZ+ztHejpadMJ0Tk6ut8sQrnE5s37jC4hpFIpa9Zsp7z8Ir6+kUYr8Eb81lJfn4ednT2jowNcu/YpO3Y8rTW9LR28GhoKsLX1IDg4mpGRdqqrr7Fli+HlgVQqZcOGTBoavMnJOUps7HYiI1OMPkvQWJoNDdeprr5ESEgKa9du1et/YAhNTeWsX7+8TLlfC6WXSq0NKv3o6BA5OX/Cx8efpKR9t51hZujFXLs2nZycY0RFJZoMkcnl9gQFJVFefp6tWx9kdLSfK1c+wMbGjT17ntaxOiQSCUFBsQQFxTI+PkxDwzUuXTqCnZ0bCsUMcjlkZj5j0vSTy+1JSdlBXNxGqquvc+7cEdzdPYmNTdXOSA0N16moyGVqKpLJyTF8fMLx9AzWGRAtDftdv36OiIj1Bq0nX99w2tvr9CrX4uN3cuLEyzidaGft6z8yOguHhKyhtvYqLS3lBAfH662bJybG6S3NpaWlBkGwxclpNW5ukXR3V2h9CZYMXkqlkpqafG1uQVTUFk6c+A0TE9tN1hqEh8fi4uLO5csfMTLSSXLyQYOTSk9PE6WlWYAdmzY9pEOdZgqDg72Mj/fg4WF4CXa7sKQ//R+AA0C/KIqxN7f9O3AQUAJNwHdEUbR8MWkh1Oo5hob6mJvTKLbuzy3RNea9rtL39LRx5cqHREdvZM0a/bJbS2Gqyq3CdTXV1YUG020Xhsji4jby2WcvU1R0mpaWKqKjtxMTk6JzDUPc80lJe0lM3E1NTT4lJWc4cOAnFqWSAtja2rFu3TZiY9dTW1tMTs4xXFzccHT0pL29hsce+wkqlZLOzmbKyy8xOfkRrq5eeHuHmjSnF4b9mpurmZkZJibGcLPPgIBYzp8/glq9Rzvgzt/rAwPtqAXTsXaJREJs7FYqKs4SGBirPcf09BQVFVdoayshICCC73znJe2go1TOkJX1FuXlF4iPT7do8KquvoSLS6C2nl4udyAgIILq6gLWr99p8jm7u3uxe/dTXL78GefOvcbWrQ9rrbDx8WGKi08zMjJITMwOwsJiljTx1NeX4OTkZlHPhqXAkpn+deBXwJsLtp0F/l4URZUgCP8f8PfA3y6rZEBvbx9lZY3IZDbMzamYm5vT/hYETc69lZWUublZxsZGqaoqJDQ0ls7OJkpLz7Bhw747zmc2ZR7G/+IKFy++R+uhF7X7GvJ029ra4eQUSHV1Ifv3f1fHrDO35pRIJLi6+uHu7qun8JZ412UyG+LjNxEVlURdXTE5Oe/x7W//vVYGTeLKDhSKSbq7W+jubqK6uoAcmZSdu7/LnktHWTXaq3d+pVJJael5NmzYZfRFdnZeja2tjL6+Dry9A/Xu1Uo0vFZdOAsHBUVRU3OViopcZLJV9Pa2UFNzlYiIWPbseVZvmTPf2ffcuTdZtcrd7OA1MNBNWdklDh3STU6Kjt5GVtYf2D/WQfx7/2yGYtyOHTseoLT0MllZr5GSso/+/lZaWqoIDk5h82bjiT3GoFTO0N1dRXy8Zfn/S4FZpRdFMVcQhKBF27IW/HsVeGB5xdLAx8eH9PQNBkNKKpWKublZVColKpWSoaEuOjqqKSk5hUql5MCB5y12sJiCKfPQ9WSOgAAAIABJREFUzc0Hd3cvqqoKkJkJkalUo6SnP6S3jrNkzTk9PYW1ta3OPpY6qOah4fCLp7b2ssG1pFxuT1hYLGFhsajVaoaGeqntbOZSwDpGR3twcXHH09UX74EOBgb6qajIRqEYxdvbdG66t3cYbW31eHsHLjnWrr1XnyiuXTtGVFQKvr6huLq60txczXw1taHBb2rLfVy6dBSH1AfBgBO1PvkgJZc+o7e3FlDrFGzN1z58+6aFMD/PmnrGEomEdeu24e7uxaef/pqoqC3s2vWsSTptU2hoKMfNzQu53Mn8zkvEcqzpnwaOGvtQEITvAt8FCAhYvt7bUqkUqVSKjY0mLOPk5EFISAIjI4OcPfsaMtnyhDzMmYcJCTs5f/5toqON564PD/cxMzNmUEEsWXPOzEzpreOXWlQDMD09oTd4GIJf7rtkLlCS8kd+SkHYJrq7m7l8+X/w9fVn+/Z7KSnJorm5WqdTzGIFXHXvj3hrDiBzSbH2hejpqSc9/bDWQw8gCALZ2Ud52taatb/7gcHl10TiXi5dOobdrmd0BtCKiiu0nX6VwMA1HDz4Io2N1ykry2Xnzkf0BtPFMPeMnZ09cHFxZ8eOpeX7L0ZzczHr1qVhxBi6I9xRnF4QhB8DKsBw4BMQRfFVURSTRVFM9vD4/Fv2uLi4Exq6kZKS08tyPnMprc7Oq1m92peqqgKj52hqqsTHJ8LgS2AqA0+tVtPRUUNR0SkmJyd0Pr8dauWZmSntIGkMhuLzya/+GVvaiggNjcPLy4d9+17A2zuUtWt3UlmZo02MMnTs1jf/jo3NBQwMdJuItUuMZg729LQxPT1MSIhu6XN8/A58fQOIWNAIZR7zihkauobg4PXk5LzD1JSC8vJrnDjxW2Zmhtmz51lSUjQJMFFRm5mY6KWnp80ia8TUMy4vv8zExAidnbVG9zGH7u5WRHHmc2PXuW2lFwThSTQOvsOi+HmMR7ePuLiNDA0N0td3540CLElpXbs2g+bm6wa7w6rVajo7qwkNTdT7DIwMKjI7stIe47PP/pfy8jxiYtJoa2ukouKqVsFuh1p5Zsb8TG/KgqiouExk5HqtE9XXN5xVqxyori4yeewDJWdoba0zOoC+nfk0P3/pqkE23urqq4SHJxscMA/eGMbVQOceuKWYiYnbkMu9efPNnzIwUEta2sNs3fqgXkfZqKhNlJXlWGSNGHvGLS11dHVVsnv3cxQUnKKrS7/XgCWory8lOPjOiEtN4bbMe0EQ9qBx3KWKomh5WtIXBJnMhujobVy79gnbtj2k3b6YUks0UrSxeHtf9FZKfpaj+/kCKmlRVGNvL6ekJJstW/Zrt4+ODlFVVcDMzIRR/8JiNp5RRzfei9tJo38y6yMTtRVidXV5tLUVU1+fT3BwMu4P/yMpC8xaMF/CqVROIZOZnumNWhAD7UxM9BARoeu+SUjIJDv7KBER8UaPdR4bpLe3ju6Dz9+61wXra3VsKnU5xwgLi9NZIjU1VTE42My2bd/SO+e8VWHMr71QMT08fBHFONLTn9A7x7wsGe7+HIlJ5YazN44j3YtPp4WxZ9zYWMnly8dwcfEhMDAKKysZ+fkfsW3bA9pUYkPXXewcVCgmGBxsYOPG5al6NARLQnbvAmmAuyAIncBP0XjrbYCzN8MJV0VRfN7oSb4EREau5erVD8jKehs7O3sAbkU+dGcNQRD0wiKiiN42/f0E5t08c3NSamsLuXGjDxsbZ0ZGOhGEWVatcsPGRsbFi++zYcMevXi2SqUi1y+aPz70YyYnpwgKSiQiYi1pC+LDarUaUZxjz57vMjbWT03NZX47Pkxr5vc5mH8U+2HLqJWnpxVmZ3pjPoyRVW5ERq4nIO+o3gtbvdqHiop89hvzf3j4MzY2wOXLp5E7BXLiz95GEAQkEivNM+3tRhRF8vJOkpycRnt7Pe3tlUxODjI7q+TGjUG9ngSmzPDFitnSUo1EoqCjowZPz1BkMhkxv3mB4FO/RUBjpMoH2nnq8jEuhW1ku2JU59zzZuyUR6ARSu5LtLYWkpn5OHl5H6JQTOLnF0JS0n7y8t4nLe1RrfzmHLB1dSV4eQV9uWm4oigaCsK+9jnIsqyQSCSsWbMea2sX1q0z3HZ4uTE+PsLRo79g8+Z9JCZu1TKmqlQqSkpOc+rU70hM3E1IyBomJkapr79Ga2slDg6rCQ3dRFBQlEapfvi4jlLVJR3AxsYGqVSKm5sPW7c+iEIxTm1tPn/m5o2jow9RUevN9jifmZky6+A0FOKaldnx/rrdpPc2GyR9nHnmv3mlr4PSB3/C+td+qGd9XNz5fSSiEqlUiUo1DqgRRTWiKGp/e3h4091dwzvvXCE+fiOJiWl4e4fS0FBJTs577Nz5lA7HnjGrQgRKX3iFngWOu9HRdkJDU6iqKuDKlU/J6Ksn+Nwf9KwE69lp1naUkfXAP5KW9Rvtd1D92L/yyo0hkpLuwdc3SLu/UqkkP/8kExPd7NqlyZL09PSlra2W6OgkgoOjUKlU5OS8S3r64zg7rza5fOrc/ihtbaVs2XKPye/oTvG1yMgzBh+f8JsOtjtTekurzSoriwkMDCUmRvd6UqmUlJQD+Pk1UVDwKYWFJ7CyEvDxWUNq6mHc3Ly01zE0C4w99m/Y3FwLL5al6vD/S45vCGVlpyktlRIWtp7Q0BiDceHZWQX29qZDSIbSXY8lHmB4xyPE/NdjRmoMXiLge7/i01l0agwUbr6c3v44H1vB7oxnzXYQKi09z9SUik2bdmu3RUbGMzMzSU7OEZ1sRGMWybCDKx/ZeTKfw9bWVoevbxCbN2uKgZRKJZnPBRtdFrhOjPKhrTOzv2vW8SOE1+RTU3NVq/QTE+Pk5n6Avb0NmZnPap93QEAc9fVl2tz/8PBYVColR4/+G4mJOzkwYNwB29ZWj42NTK+l+HLja1FlZwxeXmGMj/cZbGtkKSytNuvoaKKuLhsrK+NJGN7eoezd+yJzc9MkJu5l8+Z9WoUH446w5A9/jlzuYFCWxN88z46eRg4ceJHExFS6ukr57LNfU1SUg0Kh6/FXKmfMeu9Bt9XVOz/LI8c3hMjIjWZqDNLp6anmlIsP//yd/+S5p3/JC/v+go/l3jg6uuuYt4Yq3hSKCUpKzuLqqh/hiY/fhIdHFNnZb2lr9I05BRu+8x8MDtZRXHwJ0LDgBATcCinKZDJWjfYYvfdBuRO9vfWUlFzR2R4ensL4eBeDg70MDHSTlfUG3t4+pKZ+W2eA9fdfw/h4DxMT49pt0dHr8PIKZmBgmBtGfCpT7gE0NpYQGrpO5zk9/0I0wTt2wBGjAbIl42s901tbW+Pi4k5PT5seTZOlsCQe3tfXSUHBx6Sk7KWlpdjk+WQyGevX76W+vpDQUF0aZ2NKtWqkFzu7VUS/+kOTsvj5ReHnF8XISC/V1Zc5efI3eHpGER2dgru7F7Oz09jYGK9jN4SKijzCwzUee1M5C7a2cqysrKmvryIyMoWoqC24uq5GqZzhs89eZnx8mKjiUwYtmdlZJX+cmcLa2g0wzGq8fn0GubmT5OW9R1raY0YLcAbSDpOuGOfs2T+gUs3Q3V1HbOwmxscHkcnkWFvbmKC3Emh+9r/Z5hNNRUU2UVFrtZWAUqmU4OAE8vI+Q6UaZ+3aHYSH6/ePl0qleHkF0txcQ3z8Bq1ldmCgnUkbB+Qqpd4xKokV+Qf/grGxTkJCHtSz+Ky7u+G7mnU/h++8HdbXWukBVq8Ooqen+baV3lw8fGRkkLy8Y6xbl0lgYCw1NZeZnlaYdMSEhKyjuvoKHR1NOutwYy/jqKMHdnarLI7Nu7h4sWXL/SgUE9TV5ZObe4RVq7wYHu4nJsZyB1FfXyc3bnSRlqbx2JtKaW1uLsPKSs7Bg5pKxoXLkJ2OHpwd7yL6yocGB63wP/41bj94B29vuV5n3XloCEQOcPHiMfLzP2DLlgeNElfI5Y7s2PEEb7zxD8jl3hQVnUOpnGJubpbZ2Rm6Izbw3GAH1guiNCJwJWEnJx0csZocQioVuHDhHfbvf05r5js6utDXV8e99/5AzyO/EEFB8VRW5rNnuFHneTnM3DC4/7RMzv8ODREQoCl6MuikVCjgxz9eFqX/Wpv3AL6+EfT3W8ZPZgim4uETE+Pk5BxlzZqNBAfHI5FIcHLyNns9jZNxM1VVl3W2GzNZT2x5BLl86e235XIHEhMzOXToh/j7h9Hb28LQkD6HvjGUl+cRHr5BG5c3lrPQuvl+ysrOkZS0W6vwC5chLmP93HP8V9gZGNAAXCdG2LRpN05OLkxMjACGlwHznXtHRsYpKjplUna1WoW3dwSHD/8N+/c/x7e+9ec88MCPePTRf9BUXFrpzndzVtaMRKdhb++DlZUDPj4JKBRKsrJeY2JilJGRXkpLL3DPPX9uUOEXyvvUP+0hvvIckW/8nUVpx/YzE0REpODrq+lBbzRXoN18DoEl+NrP9O7ufszNTTM6OrRkvjQwPruVP/JTsrP/RGBgBNHRt6r4XF196etrIyAgxqQDUDPb59HV1YKvr4ZS25jJemVqlgR7J4sq3wxBqZymq6sWX98oamouMjraS2LiDuRye6PH9PV1MjHRRVSUblze0Oxacu0T3N0jtE4uQzOVzdwsc4LEIKGlKJFw4B4Jk64+HF27Ex9BMBnWSk9/mLNn38LGJo/Y2K0G7/fy5Q8ICFhrMDU67t2fYrXIzJbOzZJ+7lXER/9Bu23DhgxKSy/z6af/w8zMNJs3P4SXl/4Aq++AbefpkT6sVTN6+xrClHsAc3Oz2siKMYuPZUpj/9rP9KBJzujpab2tYw3NbkXfe5m35qxwd3cjMTFTZ//Vq/0YGekx6wCUSCRERW3Rm+0N9Yufnh7D3t7FYsJLnfN1N3LmzKs4Ovpx770vcujQD5BK5zh16lWqq4uM9gCsrLysM8sbw+BgJx0dTSQlpWu3GZupJKJaz5IRQUMzJoo4DHXxWM47xP7uz436LkBjwezY8Qj19cU0Nd0i2lQqlZSVXeCzz37NjRs3aG+voKurVU8OS5dJSuUMarWKqakZlEoloaGGG2YYGuRkqhnUgnn1mh+0Z2dntLyBhiw+5HJ4aXl62n/tZ3oAH58w2tubtWGUpWLh7KZWq8nO/hA7OyXr12viqQtndIWbH29Gbia6Pt+sAzAsLImamit0dbXqxH8XQq1Wo1QqtKSXlrbfVqvVlJaeo6WlipSUgwtaQ0nZsOEeQkM7uX79BK2t5aSk7MbD41Y4ra+vk7GxTlJT7zd7jYKC48TE6FoNxhN83Mnd8322n34ZlxvDiBIJkkWdiWzmZhFvmE6tBc36etu2B8jJeReZzIaxsQEaGgpxdg5kx47HcHX1pKOjhqtXPyA8fDPx8besMXNFVEqlktraIurr8/H09OXBB39EQcEn1NeXsWaN/jtkcpCT2SFV3ooeqQQrZmwdkE+P61h/qlN/0M70i7M0VT7eWP/iF8uynodvjNJHUFKSg1qtvqPKJ4D8/FPMzY2xffuT2rbEC007+8EOnh79CJkBLy3oviCa2X4jVVWXjSq9QjGBTGazJJqvyckx8vKOAbbs3v2MQfYXd3c/du16jvr6QnJz38XHZw2JiWnY2tpRWXmZiIgUs9esq8tHIpETGblWZ7uxZUjxAz/m9/3tXPzOr0lLu597719ajfli34WHhw/r1x/iww9/SWxsKlu3PqozePn7R+Pk5MmlS+8xNNTFpk37sbW1Mypf9WP/Sk1NCbW1l3B0dGbHjke0ocaYmO0UFp4hKipR7x0y5YA9l/4c+y8f0S7Xrh76S94VrDl06AWdfWdndcOp84N7Z2cdGRkCERERS3pWpnBXm/erz53mvr9KMctiag5yuSN2drb09XXckTyFhRcZG2sjNfWwViEMrl9VSkQjpt3iFzc0NAmFYoCeHsNOromJsSWlZHZ01JCV9Rru7uFkZn7bJN2TZtDZwP7930etVnDixG+5du0C4+OdREVtNnkdhWKc6up8kpP1STSMLUPG9r+AXO6s7RRk1DEpd7K4Wcfk5ATR0UlkZDyso/DzcHR0Zffu72JjI+HMmdcZHOw1KN/ZB3/KKzcmaW+/zqZNB8nIeEInmcjbOxSZzIrmZn3uemMO2LKHfsJpVx+d5drkPT8E5vS+79nZaYvKnpcDd+9Mf+QIUf/5M6xmpgHzJBHm4OHhT3d365JbHM2jsrKA7u4yMjOfRia79eUYM+2Em+tXc043qVRKZOQGKiryDMqmUNzA1tY8e+/c3BzFxafp6Ghiw4ZvaZ2DlsDWVs6WLffT19fGhQvvYG9vb3aWLyo6iZ9fgtE21oaWIeODnTg7e2JtrWnVZGjGVVrbcDzzGUJD15nNglSr1dTXF5CcnGZSVqlUyubN91FfX3izyUkm3JSvq6uFsrJs1OopEtduN8m0FBW1hcrKqzr8AfP3CvoO2BtphxE++b/09nbo8OL5+0fR0lKl833PziqXjQPCHO5epf/xj7UKPw9zBAam4OMTTmXlNSB1ycc2NlbS0HCJjIwndRpKgHHTbsjehbbv/a/ZF3d6eorZWYHGxuvY2jqRkLAFR0cX7eeTkze0BUPGMD4+zJUrx5BKnfTINpcCT89A7r//r8jKeouSkrN6Tsp5dHXVMTg4wP79+tVvptDe3khvbzsXLx7D2toOmdyTtgN/Tcb5V3Ec7WPC1ZustGe47BeCnQW+i46OBqTSOYvrziMiUnBz8yEv7xhdXY2oVFNMTQ0SE7ONbR3VrPmnvSa/q6CgWCorc2hvb9Bpnw3GfS1+fhG0ttbqKH1oaBJZWX9EpdqFVKppviqKc0um1Lpd3L1KbyQmaUm9syE4OXlSX38NKyspHh5B+PgE4eHhY3aN39nZTFnZaVJTHzHII29sfXgscQ/OyfsNvghqtZqurhaamsoYGGjCw8OHXbseY3i4i6ys3+HuHkZUVApeXv5MTo6bpExqaSmnuPgsYWEbiYvbdMc+C5nMhrS0hzh79k0cHFy0HWu096ZSUVR0hoSEXSa71CxGWdll2tqK2b79ENbWNiiVU0xPKyhdk0JBWCxK5TSzszOahppN5fj5Fet1glmM2tpCIiPXG/3cGOHo3r3Pc+zYfxIcHE16+osE5B1l7cvfs4h6LCpqA9XV+XpKbwwhIYlkZx9Frc5YkOTjiqOjM62ttYSFxaJUznwujSqN4e5V+oAAaLOs86opKBTj1NVdo7w8l7CwZCIiEujpaaCgoJSZmRlcXQPw9NQMAoubGwwMdHPt2kds3HiPZfXwCznY1FKC+ltxcLhFhjA6OkRDQzkdHRXY2EgJDIxn48Y9C9bsSSQk7KKu7ipXr36Ara0rIyMDhIVF0tXVgFI5xezsjPZ3T08zk5MKtm2znFbZEjg4OJKa+iCffvoyY2MDJCRkas39ioqLODh4W5zhaIqv32Aew65nGRrqJj//Q3p6mtmwYa/BfIK+vk6mpgYICnrE4HXNlbD6+ETg7R1mNAPOmFUZErKOyso8enraLFoqurh4YW0tpaenTWfJFRgYS1tbFT4+QdTVlTI+PkhVVR6urt64ufnqLCGXG3ev0r/0EnPPPKtj4luSiALzM2kdjY1FDA314uUVjYdHBCEhYVpeedB0KO3paaCvr5n6+kuIohQPj0A8PYNxcHDk2rVPWLcuE19f06O6IdPOpSSPgYE2/PyiaW6uprW1nMnJQfz8wti+/T6jg4hMZktcXBoxMdtpbi7lk09+zdzcNMPDI0ilMmQyW6RSGVKpLdPTSry8QpZV4UHz/OrqSnF0dGJwcICjR/+VkJAEfH0jaGoqZ9euZ0wePz09xchIP8PD/TQ0lGNlNaXH129KKUk7zJ49z1NUdJIzZ167WaEYonONmpoCQkISjfoezCmyRGLN7KwmeWYp1GMSiYSIiBQqK/Mt9g/5+kbR2lqto/TW1jZUV+cyNNSMu7s/sbEZjI6O0t5ez40bA9ja2uLo6I5EYsWWLWssuo6luHuV/vBhaqubCXzlVYtJIiYmRmloKKS1tRKZbBXBwYls2fIgMpkN58+/h62tbhslBwdnwsNTCA/XcNCPjvbT1VVPV1c5zc2VODh44O9/ew/c1dWT8+fP0N7egKvraiIjE/H3X2Nx6E0ikeDnF4W/fxT33feXBo+Li9vAiRO/oa+vU8vZfqdQqVRcuvQJMzND7Nv3PNPTExw//ltmZwXOnn0TV9cwbURArVYzNjbE0FAfo6MDjI/3Mz7ej1I5iaOjCw4OrtjazjE5qWJiYlxH6c0ppaaLzCE6OmooLPyIrq61JCWlIZVKGR8fYXCwkc2b/9zofZhTZGtrmVbpLW3sMY+IiA1UVV2mtPQKNjY2zMxoliYq1Qyzs5q/NT/TqFTTTE6OMzLSx40bg9jZOXHjRhdqtcCuXc8RGhqr992q1WpGRwcYHh6gs7Oe6elpg3LcLu5epQf6d+6hKPI5o11VYZ6DroaGhiJGRvrx8VnD1q364Zvp6Qns7Iz3TgMNyaWz82piYrayaZOCK1feJyvrLbZuvVfHuWYOGsbVHPz8gtm69QE955+l6OlpxMXF1+hAYWsrJz4+lcLC0+zZ85TB/ZbSeXZ6eors7GM3W4A9jVQqpbDwU9as2cG6ddvYuHE3OTlHOHr0f3B0dGBiYgg7O1tWrXJh1SoPgoIicXXdcXOGuuVbaGgoJjv7CJs23aed7SydXf39o3Fz8+fq1Q85ffp1tmy5h7q6EgIC1pg0gc0pslR6S+mXmt4skUgQRRUdHWW4uLhjbW2DTGaHnZ0DMpk7MpkdNjZ2N7fLtXIODLRRVHQaB4dA0tPvNep/0fQ68MTV1RNbW2ucnb/4Zhd3JW7cGKGhoYD29mpt08dt29YYdS4plZPY21vOIW5rKyc9/QkqKrLJyvojSUn7LFrHKpUzXLhwFHd3NzZuXJp3ezF6exvw8DBtQoaHJ9PWVkZ1daFO1hksjRt/fHyUnJw/sXq1JykpB5FIJIyM9NLX182BA5rMQ5nMlh07nuTdd18iImI7gYGmFe+WjOuQy+25evUD1q7dQ1hY7JJmV7ncgfT0J6ipucLZs39kamqK++//oclrmlNkqdQGlWpC51lYOjhWVeXh5BTA7t2Pmb33hfD3j6anpwFbW487drjeCb5SSq9Wq7UNHkdGBvH1XcPWrY8ajRUvPE6pVFgU716MuLg0PDwCyc//iL6+DpKTdxideZVKJRcvHsPJyYENG+41uM9SZt6BgW42bTLfkis5+SDnz79FUFCUjkViqYNqcLCX3Nw/ER4eT1xcmnZ7WdkFQkNTdIpWpFIpAQFrmZubWZKzydc3ktRUe3JzjzI1NYHPbRQPRUdvxtbWgcLC03qdbRbDnCJbW8tQKJQ6+1sSClYoxqmvL2DHjsfN7msIoigiWJCT/3niK6H0880c29ursbNzIzg44easbllcc3p6Cisr6yWlsi6El1cwe/c+z+XLx8jKevumua/70s0rvFxuzaZN9xnsP7aUmXdiYpSZGaUOs44xODuvJjQ0gWvXzpCZecubbYkJ3dXVQn7+h3qkEEND3QwN9bF5s37+vadnIP39NURFLa1HoLu7Hzt3foeLF9/mI681iC+8wpq3f2LRADgPFxcvi5NYTCmyJj5uOFXaFIqKTuLvn2BRx1lDUKvFZe9Nt1Tc1Uo/NTXF1asfMzmpwNc3hm3bDpud1Q2ht7cJheLO+mva2srJyHiS8vILnDunMfcDAzVJIRryww+xtRXYsuVBo6bbUkJD3d0NuLkFWGwGxsamcvr0b2lsrNRmjJkzoRsaKikvP8OmTYf0IhTl5RcID99ocLnk4xNEVdUFi+QCfesm9JGf8tZIE+/ZebLllcYlDcYymd1tKetiWFvbMDu7tPN0dTUwONi/5KSkhVCr5750pb+rc+8VCgWrV4dz6NCfsWnT7ttS+L4+jfNEFK20/Gp3gvj4dDZvvoeiohNcu3YOpVJJbu7HSKWzbNnykEklXUpoqL+/GU/PIIvlkkqlJCfvp6LivJYT0FR3noqKq1RWniU19WE9hR8c7GR4eICoKMNViY6OLkiltgwNGeeHn4exjjlPSG2ZmxvnwoWjKJWW1Z3Dciq9tV6nY1NQqVQUF59m7dqdS0pK0ocaK6svd669q5Xezc2NkBDDzK6WoK+vjby8Y6xffw+rVwczYIS5Zanw8gphz57vcuNGJ0eO/Jy5uXG2bXvU7Iy1FOabgYFufHyCDO5vjFzSyysYT09/rl/XzMKGCktKX3iFD21X09paSEbGkwbzBcrKLhAevtnkc3d3D6Snx3wHF2PWTdy7PyUt7TEcHOzIynpLh0jSFKRSKYIgajv93C6kUhvm5gzz8RlCdXUutrbuhIQYD+Ea+14WQq1WG136mTt2uXBXK70xWPKANAr/PsnJBwkMjMTNzY/e3uZlk2Heo+zs7EpwcIJFJqq5vnjzGB3tByR6GYJgnp133bo9DAzUaqu4FpJynHmlkXcFOaOjrWRmPqPDIz+PgYF2xsZGiYoy3IZrHp6eQfT3mx9ETVk3EomEzZvvw9c3kHPn3mJkZMDs+UCj+EuxDoydw1KLQdOjoISUlF1G97GUNVmlUuk58iw9drnwlVN6Sx7QwEA7eXnvs27dfu2629PTn6GhzmWVRZOdtYHu7nqL9reU+aanpwE3tyCD5zDlFwCN72Ht2gyuXz+tMxtOT09x4cJ7iOIUO3d+R5sos3gAlf7pJSIiNpq1rnx8ghga6jXKvDMPS6ybxMRMoqOTuXDhbXp7zZc/W1lZo1TeWcKKTGaj057aFK5fP0FwcLJJujVT38v4+Ajl5dfIynqLmpqregOWue90ufGVU3pzD2hgoJ3c3GOsW7dfJ67u6RnA6OiQSbPwdkyswMBI+vvbLTY3DdFhLUZfX6tRtlVL/AIhIQnI5bZUVOQDmsYMZ8++hZPTKlJTby1KNkOdAAALwElEQVRDDA2gD5/7Izv768zeh1zugJ2ds9nZ3lLrJjJyAykpu8jL+xNtbaavvzCx5nZhbW3D3Nyc2f06OmoYHR0lLs50pMJ4D8A2zp79A+Pj7UREJLJ9+0OMLOqVdzsdiO8EXzmlN/WABgc7yc09RkLCXr1EGltbO+ztXRgcNDyT3K6J5eDgiL29O729jbd3Q4ugVqsZHOzG2zvI4OeW+gVSUg7S3FxAS0stWVlvEBgYxoYN9+g4Go0RWCb/9xMWDXru7sH09Ji+76Xw+gUExLBt2wNcv36cmhrj/QNkMtkdO2U1abimZ3pNO7IzJCbuNGv5TLkbr3/4M1dPtm59kKCgWNzcvKmuzqempuSOOhDfCb5ySm/sQUy6+pCTc5SEhL2Ehhp2tri6BtDTY3hdfycmlpdXBO3t+owqt4Ph4W5kMnu9PIB5WDpzOjq6Ehy8llOnXiEubhPx8ekshlECELBo0PP2DmDASJumhbDEupmHp2cgGRmPU1eXS1FRrsF9pNI7N++trWVmZ3pNRaGvdom4GErlDM3N1eTmfsIbkVsw1K9dANa8/RPt/21tFYSExNPVVcJnn71MeXk+FY/+s8VMQcuBr5zSG+vn/vaa7axdu9uowsP8ut7wTH8nJlZQUCR9fS2IoqGvfWno7m40up6Hpc2cbm4BBAdH6NXEz8PcTGJu0PP2DmJ0dPCOPemL4ey8ml27nqanp5LLl0/o+Q2srGRLjrEvhkQiQSKRGrUYxscHaWoqJzl5p852hWKC2toSLlw4yscf/1+am6/i5uaG8wsvG73W/DukUEzQ2dnIpk0H2LnzabZuvZeRkRZeHh3i431/waS7v8Usx3eCuzo5xxAWp1dOuvrw9prtTH3rH9jeWUb0vx0wmuHl5RVIUdFxgwSZS620WggXFw+srOzp72832fnEEgwMtBEYaJq11/KU0RusWqVL/DExMUp/fysDA22s8ggkdaDNaDNHMD3oyWQ2ODp60tfXZDF7jaWQyx3ZtetpcnKOcPHi+2zbdq/WxNYk1tzZmh40FoNKNW3QdC8sPEFo6HocHV0YHR2ivb2e7u56Jib6cHf3JSAgks2bD+pUDk55BJp8h6qrL+HtvUZbpejhEUBq6rcZHe3netUlPlvlgq9vDDExG5dU4LVUWNKf/g/AAaBfFMXYm9tcgaNAENAKPCSK4sjnJuUizL/0Q0Pd5Oa+R2zsLlI7y8ymuMrl9tjaOjI01KnXGfR2G0nMw9s7nPb2qjtSerVazfBwH5s2Bd32ORbixo1xVKpZqqvzGBrqZHi4l9nZOVxd/XBx8SOpt8mkwoP5Qc/NLZDu7uVXerhV4HPlyvucP/8OqakPIpfb31yP33mCjpWVDKVyWq8KsrW1gv7+PhwcfDl+/BWUygk8PYNYsyYFH58Io+FZU++QUjlNW1sVGRnf0X62OFOx7OGfcEoqcvbsa7i5hREbu9HQZe4Ylsz0rwO/At5csO3vgPOiKP5cEIS/u/n/3y6/eMYxNNRNTs67xMXtJjw8luifH7AoxdXVNYDe3mY9pV9qpdVi+PtHUFDw8R3dU39/G3K5y21z3C1GV1czCkUPVlYOeHhEEhubgZOTm9bKcRgxnVFnyaDn4xNERUXWsshrCFKplO3bH6Gg4Djnzr1JWtojSKVLT6E1BGtrmV6sfnp6iqyst3B2dkEimSE5eRerVwdalA5t6h2qKbuAm1uINuxnqA4j5Xc/RPbiq7QceJGamitcunQEsCM5OeWO73UhzCq9KIq5giAELdp8D5B28+83gGw+J6UfGupCodDN1lKpZrl27VO8vKKQy2V0ddVjZ6zv90A7XV234ugymTU9PQ24uurTJXeFp1D4L4te4C7LYvBqtZqZmRkaG4vM1u0bQ3NzGba2jjry3i5EUUSpHGT9+r3I5Rp5FIoRFIpbBtmEizerhvUVX0TT573kwX+gMTzF5DNQqWYZGxuhra3qc+V58/WNQKEY5+zZN/Hw8GJ2ljt+Tmq1mt7eZmYWTBY1NUUEBkYQG7sdgLm5WbMRioUw9A6JnXXU1V0jOnqrVua01//G4CQV8frfUBiegoeHP66u3jQ1leDgsDyTwDwES5xPN5X++ALzflQURecFn4+IomhwESIIwneB7wIEBAQktRngvTOGgYEBhocNdzvp7e3Fy+tWLn5Ierqmpe8izPr40HzhVnHI7OwsY2NjuLvrk1zeKUZGRrC3t7/ttOGxsTGsra2Ry5eHCnl8fBxHR+MEHqs++wyv//N/kCxgZlHb2tLzL/9C4/r1eHp6WlQc0t/fj7u7+xdSIz48PIwgCAiCgLOz6fJacxgaGsLR0VFLyQ2f372MjY3h5HSLzyEiOhrBgO6JgkB9TY3ONm9vb5PfoyEIglAkiqJhD64oimZ/0KzdKxf8P7ro8xFLzpOUlCR+bnj7bVGUy0URbv3I5ZrtKzCOt98WxcBAURQEze+V5/XFIDBQ912d/wkMXJbTA9dFI3p4u8NZnyAI3jdHFG+g/zbPs3w4fBhefRUCA0EQNL9ffXXZ+n99bXH4MLS2glqt+b3yvL4YvPSSpinlQixjk0pTuF2l/xR48ubfTwKfLI84d4iVF3gFXxV8iZOU2TW9IAjvonHauQN9wE+Bj4E/AQFAO/CgKIqGF98LkJycLF6/fv0ORV7BClZgDqbW9JZ47x818lHGHUm1ghWs4EvBVy4NdwUrWMGdYUXpV7CCbxhWlH4FK/iGYUXpV7CCbxhWlH4FK/iGYUXpV7CCbxhWlH4FK/iGwaKCm2W7mCAMAEsln3cHBj8Hce4Ud6tcsCLb7eBulQtuT7ZAURT1OdT5gpX+diAIwnVjmUVfJu5WuWBFttvB3SoXLL9sK+b9ClbwDcOK0q9gBd8wfBWU/tUvWwAjuFvlghXZbgd3q1ywzLLd9Wv6FaxgBcuLr8JMv4IVrGAZsaL0K1jBNwx3jdILgvAHQRD6BUGoXLDNVRCEs4IgNNz8/fl1AFi6bP8uCEKtIAjlgiB8JAjCnbE0LqNsCz77a0EQREEQlp8F9DblEgThB4Ig1AmCUCUIwi++aLmMySYIQoIgCFcFQSgVBOG6IAjrvwS5/AVBuCgIQs3N5/PDm9uXVQ/uGqVHw6+/Z9G2eX79cOD8zf+/DLyOvmxngVhRFOOBeuDvv2ihbuJ19GVDEAR/IBMNs9GXgddZJJcgCDvQ0KfHi6IYA/zHlyAXGH5mvwD+WRTFBOAfb/7/RUMF/EgUxWhgI/CiIAhrWGY9uGuUXhTFXGAx5dY9aHj1ufn73i9UqJswJJsoilmiKM43cbsK+H3hgmH0uQH8EvgbMNhX8XOHEbm+D/xcFMWZm/t8KYSqRmQTgXmeaSfAdCeQzwGiKPaIolh88+8bQA3gyzLrwV2j9EbgKYpiD2geCLD6S5bHGJ4GTn3ZQsxDEIRDQJcoimVftiyLEAFsEwThmiAIOYIgLG/rljvDXwD/LghCBxoL5Muy3ABtr4lE4BrLrAd3u9Lf9RAE4cdozDLTzdy/IAiCIAd+jMZEvdsgBVzQmK7/D/AnwZJuGl8Mvg/8pSiK/sBfAq99WYIIguAAfAD8hSiK4+b2XyrudqW/+/j1F0AQhCfRNPc8LN49CQ+hQDBQJghCK5plR7EgCF4mj/pi0Al8eLMfQwGgRlNMcjfgSeDDm38fA75wRx6AIAjWaBT+iCiK8/Isqx7c7Up/d/LrA4Ig7EHTv++QKIoKc/t/URBFsUIUxdWiKAaJohiERtHWiaLY+yWLBhrq9HQAQRAiABl3T2VbN5B68+90oOGLFuCm1fMaUCOK4n8t+Gh59cBY65sv+gd4F+gBZtG8qM8Abmi8lQ03f7veRbI1Ah1A6c2f394tsi36vBVwvxvkQqPkbwOVQDGQfrc8M2ArUASUoVlHJ30Jcm1F41AsX/Be7VtuPVhJw13BCr5huNvN+xWsYAXLjBWlX8EKvmFYUfoVrOAbhhWlX8EKvmFYUfoVrOAbhhWlX8EKvmFYUfoVrOAbhv8f6mB+c3DciQEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "regions_df.plot(ax=ax, color='blue',edgecolor='black', alpha=0.3)\n", - "points_df.plot(ax=ax, color='red')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Trimming" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "points = np.array(points)\n", - "maxs = points.max(axis=0)\n", - "mins = points.min(axis=0)\n", - "xr = maxs[0] - mins[0]\n", - "yr = maxs[1] - mins[1]\n", - "buff = 0.05\n", - "r = max(yr, xr) * buff\n", - "minx = mins[0] - r\n", - "miny = mins[1] - r\n", - "maxx = maxs[0] + r\n", - "maxy = maxs[1] + r" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAEICAYAAAB735ncAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9d3xj13nn/b0gCIBgAwsKK9j7kBy2IYfTR9KoucRO4iRK31hOYu96N443fqNN7GQtR4mTzTpZJ47f5HXyJorTnLjIliVZoxlNIWdIDsuw994LAIIgAIK4+wdADkB0zow0tvj7fPAheM8t5x6c5zzPeaogiiJHOMIR3huQvNsdOMIRjvDO4Yjgj3CE9xCOCP4IR3gP4Yjgj3CE9xCOCP4IR3gP4Yjgj3CE9xDe8wQvCMKkIAiPHfLaGEEQviMIglEQhH91H/u8IAirgiAsPtieHuEI94/3PMHfJ34c0AIpoij+hCAIWcCngDJRFHUP44GCICQLgvAfgiBsCYIwJQjCz4R53WVBEERBEKQex0rdx42CIIwKgvBjB675FfdxsyAI3xcEId2j7dOCIPQKgrApCMKEIAif9mjTCILwdUEQ5t33viEIwgmP9nOCIDjd9937/ML9jUx4CNZvd3uOIAhvCYJgEQRh8CAzEAThZ9zjviUIwjcFQUh+J/r9oHBE8PcHPTAsiqLD4/81URSXI72R4EI4v8eXATuuheY54C8FQSgPce/nAOmBY1LgW8ArQDLwPPAPgiAUudvPAl8APuBunwC+7nkL4OeBJOBJ4BOCIPyUuy0OaANq3df+HfBdQRDiPK6fF0UxzuPzd2G8+4NAsH6D6x07gRTgBeDfBEFQA7jH+a+An8M1/hbgL96hfj8YiKL4nv4Ak8D/A/QDG8DXAIW77ReB6wfOF4EC4PdwEd4OYAY+BmwDTvf/f+s+vxG4CRiAbuCcx72uAC8CN9zXFoToa6z7mUUex/4eeCnINYnAsLsfIiB1H69w91PwOPd14H+6v/8x8GWPtnT39fkBnvNnwJ8H6YcJqHV/PwfMHvL3ynH34xeAaWAVeOE+fv/9fgNFgA2I92i/Bvyq+/sXgH/0aMt3/x7xh33+O/054vAuPAdcwvUDFgH/I9QFoih+FtcE+GfRxaH+CniKe5zrFwVByAC+C3weF6f7TeAbexzDjZ/DxV3jgSlBED4jCMIrAR5bBOyKojjscawbCMbhvwD8JXBQpyD4OVfAtRDsfRcOtOHRfq9BEATgNNDnrwOCIFQDMmDU47BGEIQlt1j9p4IgxAZ5B384BRQDF4HfFQSh1P2sU4IgGMK5gZ9+lwPjoihuepzmOb7l7v8BEEVxDPcCHGHf3zUcEbwL/0cUxRlRFNdxcdyffkD3/Vnge6Iofk8URacoim8A7cDTHuf8rSiKfaIoOkRR3BFF8SVRFJ8NcL84wHjgmBHXYuEDQRDqgGbgz/00DwLLwKcFQYgWBOEJ4CygdLd/D/hJQRAqBUGIAX4XF2dV+rnX53DNpa/56UMCLink90RR3Ov7IFANpAEXcIn+/8vfOwTB74miuC2KYjcuIqwCEEXxuiiKqjDvcbDfocY3ovF/FHFE8C7MeHyfwiW+PgjogZ8QBMGw98HFmdICPDsUzEDCgWMJwObBE936gL8APine0zHsQxTFHeCDwDO4uP+ngH8BZt3tbwKfBb6Ba0wm3c+ZPfCcT+DaEz8jiqLtQFsM8B2gVRTFP/B49qIoiv3uRXAC+O+4FKCRwFNiseAixrARoN+hxjfs8X9UcUTwLmR5fM8G5t3ft/DgaIIgRKp5nwH+XhRFlccnVhTFlzzOiSRccRiQCoJQ6HGsCv+idAJQB/yz20TY5j4+KwjCaQBRFHtEUTwrimKKKIqXgDzg9n7HRPHLoigWiqKowUX4UqB3r10QhF8GPgNcFEXx4EIgB74JzOHSbwSDiP8txkNBkH73AXmCIHhybM/x7XP/v3efPECO63f54cC7rUR4tz+4ONddIBPXPvsa8AXRW4lTDSiAr+BW2rnbPwf8g8e9zuGhjMK1kCzi0g9Eue9xDsh0t18BfiXC/v4TLk1yLC5x3QiU+zlPAHQen3p33zMAmfucSneflLj0CxOA3N2mwLVfF3Atglf2xsXd/pz73Ur9PDsaF2f/Jm4l4YH2c+57Cu4xegv4mkf754ArAd4/Bw/lY6TjGKzf7vZWXApLBfBjuJStandbOS7l42n3+P8D8E/v9hyOaP682x14tz94a+kNuExISo/2F3Bpgmdw7cnDJnj3sRPAVWAdWMGlxMt2t/lMVOC3gVeD9DfZTUhbuLTUP+PRlo1L7Mz2c50/QvkiLsuEGXgVDysBoAJ63M9ZBP4AiPJon+CehWLv8xV321n3sywH2k+7238DF+e3uMf1z/HWjP8N8GKA9w9K8G5iNAcZv4D99rj/FVxWkyHgsQPX/4x73LdwmTWT3+05HMlHcL/EEY7wyEAQhC5c4vbau92XHzUcEfwRjvAewpHS7ghHeA/hiOCPcIT3EI4I/ghHeA9BGvqUB4fU1FQxJyfnnXzkEY7wnkRHR8eqKIrqg8ffUYLPycmhvb39nXzkEY7wnoQgCFP+jh+J9Ec4wnsIRwR/hCO8h3BE8Ec4wnsIIQleEIQsd8qfAUEQ+gRB+KT7eLIgCG8IgjDi/pv08Lt7hCMc4X4QDod3AJ8SRbEUV9aUjwuCUIYr2uhNURQLgTfd/x/hCEd4hBGS4EVRXBBF8Y77+yYwgCvi6gO4Ak1w//3gw+rkI4mXX4acHJBIXH9ffvnd7tERjhASEe3hBUHIAY4DtwCtKIoL4FoUAM2D7twji5dfhuefh6kpEEXX3+efPyL6dwtHi2/YCDt4xp1x9CqusMV/FwTBIHqkEhIEYUMURZ99vCAIz+PK2UZ2dnbt1JRf8+A+dnd3sdlsQc8JF06nE4nE/5q2u7uLRCLBldYsMihKSpDM+CaqcWZlYR0cPHSfHhYcDgdS6cNxuXhY7+N0OhEEIeTvE/XP/4zs4x9H2N7ePybGxGD/8pfZ/chHgHu/tSiKYfd1d3eXqKiow7/AA4TnGMfExIQ1ZwVB6BBFse7g8bBmgSAI0bgynrwsiuK/uw8vCYKQJorigiAIabjyo/lAFMWvAl8FqKurC7m6TE3NMTBgJCrq/ibo7q6D0dFB8vNL/E72paU5lpZWyMzMJCkpmfAyRLtwaXbW73Fhdpa33w6+oI2PD5ORkYVcHhP28+4Hm5sm1teX0OsLQ598CAwO9pCXV4xMJn+g911dXcJms5ORkRX0vLOfecGL2AGE7W2cn3mBt9MaWVlZYmNjFa02nfX1VXJzwxuH2dkpEhMTiY8PNz3ew8Ha2jIrK8uUlFQANpqacklMTDz0/UJSlTuz598AA6IoeiYa/DauVMEvuf9+69C98IDTKaJQpKFSpd7XfYaH+1AoUkhLO+a3PTY2m8HBl4mONjIzs4ZOl0V6up7k5NDPtWuzkS/6ErZdm41aXRrwOrN5k83NfnS6yofGcQ/CYOhHJiNov+4HExPzSCQpqNXBCTNSxMfruXbtVcrK8pHJZAHPU6z4L/CjWFkkOlrD/Hw/9fUXAJibawl7HKan15DLdajVuZF3/gHBYjHT3T1AdfVZUlM1rKyMcb/h7OGwtWZcqZQvCILQ5f48jYvQHxcEYQR43P3/IwGr1cLMzBAlJT4SzT6Uylh0ukxKS+toaDhHVJRAT88N3nrrOwwM3MVkOpic9B7mPv4iuwrv5K27CiVzH38xaL9mZyfQajPfMWIH2Nw0kJj48IqjJCamsLGx/sDvq1AoSU5WMz09FvQ8uzbb73GbJpPOzhuUltaQmJiMXK5gZyf8raLdbn3HpDB/cDqddHZeJzu7mNTUB6ceCznzRFG8TuAEgxcfWE8eIIaH+9DpsoiLO5hg1BspKTpWVpYoK6siIaGG0tIaDIZVZmcnaGt7E7lciUaTRWZmDkrlvbTpG089B0DGl19AtjSNXZvN3Mdf3D/uDyaTgd7eDs6ffzrgOQ8Dm5sb5OeXPLT7q1SpjI0F11scFvn5ZXR23iQvrzjg3nvu4y+if/F5oqyW/WO7CiVvP/mzaDTpVPTcJONj55EtTVOekIKt/Qeorn8v5O9ms22/qwTf39+BTKakqChoUaGI8Y4Gz0SKpFdfjoioAIzGDZaXpzlz5n0h769WpzMw0IVHIlJUqlRUqlTKympZW1tkbm6Cmze/j1KZSFqanrS0LBQKBRtPPReyL3sYHx9hfLyHlJQk5udnSUnRhnXd/cLhcGCzbT3UfWhSkobNzZaHorxTqVKRy2UsLMyQkaH3e46/xffWBz7KyLETPDk1iP4LH9tfDFTGVcR/+8t97iVfnEL/4vNe99nD0tICS0vzxMTEvqMSGcDi4jQrKws0NT3xwO/9yBJ80qsve63cwX4cTwwMdJObWxJ037eH5GQNVqsZq9WC4oCILpFIUKvTUavTcTqdLC/PMj8/yehoNyqVGp1Oj1abHvQ5VquVu3fbsFpNNDRcRCZTcP36d8nOziMx8eE7JhqNG8TExD1Uq4BMJkOhkGMybaBSpTzw++fmlroVnf4JHvBafGdmJhkb66ax+hSZP17ixfnBV1SNslrI+PILXnPKarUQG6tkY2ORyckBdDo92dkFJCS4lGWHYUThwmIx09vbRnX1aRQKxQO5pyceWYLP+PILPj+Wvx/HE4uLs9hsJnJzz4T1DIlEgkqVwtLSInp9XtDzdLpsdLpsHA4HCwtTLCyMMTDQQXKylowMPVpthhdhraws0tt7G40mjdra5v22vLwy+vvv0NQUeDf0oCaUyWQgPv7wGt1woVK59vEPg+C12iyuX/8+r7/+DZTKWKTSaKKj5UilMqRSOdHRUqKjZchkMuz2HcbGuqmvP49CoUC2NB3WMw6et7lpIjk5lfr681gsZqanh2lre5PYWBWN473k/PmnkezYARcjyvn9XwaCM6Jw4Nq3X0OvL3ug+3ZPPLIEH+jHCnTc6XQyNNRDcXF1RBxNo0lnbS04wXtCKpWSlZVPVlY+VquVhYUJOjuvYTAYKS4+RkqKjq0tMwsL41RU1KPTeWuvc3KKmZ8fZ2ZmkqysHJ/7H1ay8QeTaeOhKuz2oFKlsr6+BoRn8opkQZNIJCQkJFFXdwaJRMBms+Jw7LCzY8Nut7Ozs832toGdHQfLywtIpRJiY126m0DWlIM4qPgzmzeJjXXVolAq4ygpqaGoqJq5uQnKfuvH9ol9v487drL++JP3TfADAx3IZLEUFj4ciwo8wgQfzPTlD5OTY8jlUnQ6/+2BoFZnMDzstwaiF/xN0rmzH2RpaYn4+ETq689hsWzR13cLQYjm/PlnfbYJ4JrAJSW19PTcIi3NV2N/GMkmEDY31/0uKg8aKpWa8fHwiq9EuqBZrVYkkiiSk32St/hFZ2cr7e2Xqau74Fehd7DEza5cyeTzn8NqteB0ijidTtbWlklM9Fb4SiQSsrLyUWyZ/D5Xary/jNoLC1MsLz+cfbsnHtnw2EhMX3a7nbGxu5SWBjbDBYJSGYdMJsVgCPyDJb36Mjm//8vIF6cQRNE1SX/vlzB8+QWSklQ0Nz+FWp2OXl+ITpdFWVmNX2LfQ2qqDpUqiaEh34UmUskmEJxOJ1tbmyQkPHwOHx+vYmfHhtVqDXlusAXNHywWEzEx4ReWrapqIDo6ls7Oq6xd+mmmXvgqNp0eURAwJKbQcvwchsRURASMqlReef+v8E1lPNevf59bt96gvf0tJicHcDh2w37mHsbHR7Db7aFPPACLxUx/fztVVScfyr7dE48kh9/ZsUdk+hoZ6UOt1h5afE1O1rK0tBBwD5r1x5/0EeOiHDtcevXvufvp/+11fGNjlaKi4yGfWVZWx/Xrr5KVlbOvDILIJZtA2Nw0IpfL3xENs0vsTsRgWEWnywx6bqQL2tbWJjExwetEHpS+kn/987yequfOnbepfvwjtOaVMzMzTm5uOTUDt4n5yu+AaQ2FIpZjlQ1kPvZhr/tNTQ2xtuafATgSUog2+bbtxKvY2JhjdLQHnS4bvb4gLMWsxWKmtfUN9PqysJy+7hePHMEbDAbu3BkCQB4Tj/yFryKXK5DLlSgUMSgXppDLY9ycWYHFssXi4jjNzU8d+pkaTYbbluxT+hwILK5Fm7wdTkwmAxKJlLi40NWDFQolOTnFDA520dBwdv94ILtyKKeegzAYNkhIeOfcQlWqFAyGjZAEH+mCZrFsEhMTeDz9bRFyvvAxHv/MV/h+Sjrf+tbXyM4u5uTJS2Rc/Sb6l3415HZCpdLQ2noFUXQil8cgkymQy2NQKBQMf/wLlP7RJ5Ds7uyf75RGM/vf/w+1teewWi1MTg7T3v4WMTGJZGXlk5GR7aVXsljMzM1Nsrw8w8bGOk6nk4KCh7dv98QjR/AqlYoTJy4QF6fCYtnCZtvGYrFgs22ztWVhY2Mdq3ULm83Kzo4Nk8lEUVFFUBE6FFJSdHR13cRut4dlzguEtbUFEhPD167m5ZUxP/8KCwszpKW5lHuHcerxh83NjXdEnN+DSpXK5ORIyPMiXdAsFjPJyYGL9gbaImR95Xco/NvbmM0G6uvPBD33oH5kZ8dGSooGrTYdq9WC1WrBbF7DZrMykKJj9EO/xtnX/5FE4xqbSWpuf/BjzGQUIR/qRaFQoFKlotFksLGxzMzMIMPDXaSmuky46+sLbG9vk5qaSUFBFVarldXVSCqG3x8eOYLfg1QqdYu6gc1KTqeTtra3UasDT4hwNMJSqZTExGTW1pb2CW8PU1PjlMbEodw2+9zbkeC9BVhbW/brUx6oDxKJhKKialpa3uLixQ/si/aROPUEgsm0gVZbdqhrD2MWVKk0GAy3QjrgBFvQnE4nm5sGDIY1TKZ1TKZ1JiaGOXv2/QHvF2yLIJFIiImJCetcTxgMq6jVmWRm+lpukl59mYxr30JmWsOmzWTyFz/DdvPTxG67mNPamoGdHSs2mxW73WVJWF9fYX5+hoKCSgoKqlCrdftjNDTUG5GO4n7xyBJ8OJNOIpEQHS3D6XQGvEe4GuHUVB0rK4v7BG+1Wujpacdu32Tiv/4JpV/8BBKHtxg38+kved3DYFilrMxbcRiqD/Pzk8TFxdHW9gM0mhwKC8sfiOLGbDYSHx85hz+MWdDhcDA42MHGxiqDg52UldUGfcbGU8+xdumnMZnWMRrXMBrX2bzxKltbm8jlscTHJ5GQkIROp0ejyWJxcZasLP9BLMG2CBKJEPa5njAY1gIu3J5jo1iaofxLnyYuLtHv2FgsZtrbr5Camkl19Qm/0qNLgnnnssM9kgSvffPf0P/pp8KadIIgCUjwkZi4NJpMOjreBlxcfWSki6ysPAoLT2GVSJhUxgZdgIzGdaKiZF4+96H6cD27mO1tG+fPvx+Hw8HQUCc3bnwPvb40qP94KExNjbO2No/Vao548YjULLi+vkxPTwsJCVre976fpa3tKjExA+Tm3tuTOhwOL+I2m41YLGYUing3cSeTnp6PSpXso2RMSkrlrbe+6dcbEkJvETyDy8LZTrh8K2bIy/P1YY9kbFZW5unpaUWvLw26P7dazSiVkSlk7wePJMHn/82LYQ+siyj8E3wkGmGFQsns7Djf+MbfERUF9fVnycjI2W8PJWavri6QkuK7tQjWh9XVZU6cuIBUKkUqlVJV1YTJZGBoqIOrV8coKany2WKEwtjYEBMTfdTUnKOj4yq5uWXk5YWvEAp3zJxOJ8PDPczOjlNaWrvv+lpff5bW1h9gMq3jdIpsbhrcxOoibpVKQ3Z2MQkJqrAsCFKpFK02g6mpcYqLfZWqQXUeB0ytofQjq6vL3L3bSlSUQH9/B3V1Z70WzHDHZmysj4mJIY4da0SrTQ/6fltb5nc05v6RJHjFypzf4/4GXBCEgBw+Eo3w0FAnFRWNaDRaVlcXGBy8w8TEIBpNFunp2SE172tri2RkFITdB1NiKrW1vv7SCQkq6usvsrQ0y9BQF5OTI5SWVoXlttrX183a2hSNjY8RF5dAWlo2XV03MRhWqKw8GRaBhTNmFouZzs7rSCQyTp685CXVxMXFU1JSw61bb1JTcxq9viQgcYerK8jOLqSj4zo5OYXI5b6JNoItxqLoDHmu0+lkZKSfmZlhKirq0Omy6etro739qhfRhxobh8NBT08rZvMmjY2Ph5wzDoeD3V37fSmcI8Uj6XhjVWf4Pe6PUIOJ9OE67xgMqywtLVBaWk1GRi5VVSc5f/6DFBdXYrWaaG19nevXv8/wcB9m86bPc5xOJ0bjht8oOH992ImWYTrzLI0/dYyaegkVz+aQ9Kp3HjatNpNTp55Gq02jo+MqnZ2tWA9IPZ7Pv3OnFYNhnoaGJ/bDghMSEjl58nFAxo0b38NkMvi9PpIxm5kZo6XlNdTqLE6cOOezhQFIT88iPj6RtLQMkpNTAxK7/sXnvZ2ZXnzeZxwAZLIYlpfnuXLlm7S1XWVqavyBpUGzWi3cunWF9fV5Tp16ct9Ts7y8nqSkZNrbr+47FAUbG4vFzK1bb+B0Cpw8GZrYweVjoFC8syG4jySHH/tPL1DqsYeHwKYbQZAEzAISjonL6XTS13ebwsJKL257MFpubW2RhYUpWltfR6GI9eL8BsMqcnms3/3ywT6YElPYOPkUWa//c0gdhUQiIS+vlMzMfEZGetyOOsVeabvsdjt37txEItnlxInHfYhLKpVSU9PI1NQYt2+/SXFxNVlZ+QHHPtCYLV38CXrvvM3mppna2nNBJQ6JREJKipalpbmAqbUi2Q8PDnZz/HgjeXkVLC3NsLg4xdDQHRISUklLy0SrzfQ79qFyvy0uztLb205WVg6FhZU+OpPy8nr6+tpoa7tKff3ZgGMzUn+R7pbXycoqjih+3WIxh3QqetAIO4nlg0BdXZ0Yqpjk6OgUU1Ox5La8Fpa419fXTXS0QFFR5aH6ND4+wMLCPM3N4eXy8CT+5eV55PI4nM5dVCo1VVX1Aa+zWi20tLxBXl4Fz3z8ol/R0KbT0/vKZMB7mM0mhobusLS0iFqdSVSUlOnpEXJz8zh2rCmkks9o3KCz8wZJSUmUl58I2wtvdXWRu3dbSEnJpKzseFjXTU2Nsro6S23tOb/tNfUSBD9zTxQE7rTdk9jW11fp7Hybs2ff7/Vch8OxT/zr66skJKSg02V5Eb/RuEF39w3OnHnW6xlOp5P+/k5WVqY5dqyJ1NTAZl2Avr421tfXqa8/67OwTEwMMD4+QEVF6P36QYyM9GOzbVFREXjeeGJlZYzGxhRUqtB7/vtKYvluIFxbtCsbaeR+z+AiwomJfurqLoR9jT/O393dgsPhCHjNzs4O7e1vkZ6ej16ff2h/+d3dXXZ2nERHS4mPVxITE8/s7BDl5SfC0ugnJiZx8uQT9PS00dLyGsePnw6aFcilmOtibm6asrK6iBSIWm06IyPdAe3y4epXBge7KSgo9yu5ZGTkkpGRu0/8S0szDA93ER+fhFab7Xe7YTZv0tV1E7k8mqamp3wI2J9eofyp5+jra+f27Ss0NJxDoVDgdDq5e7cFo9HEiRPhifAHsbVlJjEx8uvuB4/kHj4SSCSBlXah0N/fjlbrPxlF0qsvU/FsTsA9tuvZLuI/deoptxnMN3jEtb++Sny8el/LHMiNNOBxu53e3g7a2y+jVmu5ePFDlJTUoNcXEhsbj8MRfsCGTCajrq6Z9PQCbt16g4UF/+GjZrOJlpbXMBhMNDc/sU/s4YwLuKweMpkSg2HVb3s4+pW5uSkcjm2ysoKH3e4Rf03NGc6f/yB6fQEbGwt0dFxheXlhfzGenp7g1q3XycjIpr7+gl9iD6RXKC+vIyUlldu338JgWKel5TXsdieNjRf3iT3csdnD9vYmSuU7S/CPLIcPF4Ig+Ghiw8HKyjxGo4HTp0/6tEXqfKJQKNFodExMjFBa6p0lt6vrJhKJjGPH7klXkbiXTk2NMzraQ2qqmubmZ3wmqVQqxWazRazpzc8vJikphe7um6yuLlJeXr/PiaemRhgd7SEnp4L8/OJDj4srZ+A8ycm+7sah9Csu6eIuZWWR5TeQSqXuVGR6dnd36ei4QXv7FWSyWDY3V6irOx8wyCqUXqG8vI67d2/z3e/+I3V157zMhIdxWLJat/Zj998p/Ahw+MBKu0BwOp0MDLRTUuJ/PxppCCdAXl45c3MjXqL94OAdtra2OH78pNek3XjqOa+wTZtOz9QLX/WaGOvrq9y48Qazs0PU1p6iqqrZr2JKKpWzs7PjczwcJCen0tT0BFarzc3N1+jouMLU1Ch1dRe8iB0iHxeNJo3V1YWAz9946jl6X5nkTpuT3lcmvd5/YmKYuLgYtFrvYJxIuGhUVBR1dacwGIyYTCs0Nz8dNKIynK1Wbm4JGk2Gj09ApGPjdDqx2bZRKt9Zpd2PAIcPbJYLhJGRXhQKVcA96WH22AkJKlQqFVNTY+TnFzM5OcTi4jyNjRf9LiqBdBRWq5XBwR5WV2cpLDwWsoBEdLQ0IpH+IBQKBfX1Zxge7uM733mZysomTp485bfPkY6L1WplcnKM/PzpiBKTWK1WJib6qa8/53X8MFxUIpGQm1uMw2ENqWwMR6/gcNj9mtIiHRuz2WWSCyW9eOoUrOo0nJ//HHz0o0GvCYYfGg5vtVoxGNZYXJxlYmKEwcG7dHa2Mjray8LCbFCl2R6cTicTE4N0d99EpVIFvCbSPfYe8vIqGB7uYXx8gLGxAWprz4RtZ3U6nYyNDXHjxveIihI5c+bZsKrFSKXR2GyHJ/g9FBWVU1JSgUqVEpAwwh0Xq9XC7dvXmJjooanpMfr67jA62ht2X8bGBtBo0ny48WEkL3AlOQnkw+CJcPQKOzt2pNJon2sjnTOusN/g27CDOoWY5XmUn/zkfdXOe+Q4vMViYXx8DhjGZrNgtW5js1mQSqXIZHIUihjkcgUKRSzJyUnodOnMzY1z48brVFU1olL5F9kWFqYYGblLVFQMFRVNbGyscfXqt0hNdWWq8ax0c9iY9JWVZWy2TTo63katzsbpDM96sLKyyMBAJzJZFHV15yJK5CGTyXE4DifSH4ROp2d+fjpgfsTt1GAAACAASURBVL9wxmVqaozR0W4yMnKorT1JVFQUOl0W7e1vs7VlDGk+NJs3WVgY59Qp3/wGh7VuxMQoMflJWnEQ4fhtOBw7SKW+QTCRzBmLxczgYBeuSuyB4W+BE7a34YUX4LnDRVM+cgTvdDqJjo5CpUpFoYghJiYOhUIZVBxLS8tmZmaMjo63fBRNq6uLDA934XCIFBVVeyVosFi2mJmZoLPzJlJpFOnpOWRk5Ecck+50Ount7cBkWubJJ38KmUzBxMQAbW2XSU3NoqTEf7y+xbLF4GA3RuMSRUUuL79IERUV/cAIPi1Nz+BgJ1arNSwnIs9x2doy09vbjt2+RW3tGa8FVKmM5eTJx7lzp4Vbt37A8eNnAgb1DA11k5mZ73e8DpsNaGVljpWVNa5e/TY5OcVkZOQHnE+hzMF2u38OH86csVqtjI3dZWFhGq02h8XFKVZW5lGr/dvvAy5k05GlO/PEI+t4c5jacmazia6ua8hkCeTmFjAx0c/W1hZ5eRVkZeUE5SwrK4vMzLiizJKTU8nMLECtTg+5x3I4HHR2trC7a6Wm5qxXCKTdbmdkpIf29htotWlERUUhkUS5vQOdrKwsUlVVT2Fh1aFTUY2M3GVry0p1dWDnjUji2zs6XOGcer1vXIA/uLZJI0xM9JKVVUhhYUXAMXMpS7tZXp6mtvasT0YeV/DKTU6ffjaoO+5BLnpQ4emJ9fVl7ty5zsmTlzCbTUxOjrC5uUpGRh45OSURRxOOjfWxvW2loiJ4CLAnHA4Ho6O9zM2NoVZnU1RUjkKhZHFxloGBNpqbn/EbOlvxbI7/rLt6PUxOBn3mD53jzWEQF5fAyZNP0dV1nTff/Bb19eepqysMy6yjVutQq3XY7Xbm5qYYGemjv78dnS6brKwCvw4qdrud9vZrKBTR1NZe9HmOTCajvLyOhYUpGhoec1dYdeJ0OtnZ2aGnp82dY/3wgSWbmxuMjY2Qman3m8s8HEWXxWJmY2OF9fVlVlcXWFxcCYvgTSYjvb3tiOIODQ0XQ6bUkkgklJcfJy4ukdu33+TYsRNeWvihoW7y8nydbPYQqeRlt9vp6blJeXk9SmUsSmUsGk0aRqOBiYlh3n77FXS6DHJySsNOB+Zw7CCRhEc2rsVwgMnJIZKSdJw48YSXg45Ol8ny8gJ9fbc5fvyUz/V+s+7GxCC8GFm6M0/8SBE8uCZVWVkD6+urPmalcCCTycjNLSQ3txCjcYOZmXFaW39AXFwcGRn5pKXpkUqlWCxbtLe/TVJSMseOnQh6z5gYJXa7zStZJcDx403cuvU6anW61749XG201Wpxh9ieprv7GgUFx33234EUXdovfZo3tVkYjevs7jpRqdSoVKnU1l7k7t0bGAxrAf3l96LLZmeHyMsr84p9Dwd6fR6xsXF0dd3EYtkkN7eU2dlJRNEeUlEZSTagnp6bJCVl+FhjEhNVVFc3YLVWMDk5yq1bl0lMTCQ3tzSgeA0uTr2+vkxsbPDIRafTyczMGOPjvcTFpVBbezbgWJaVHefate8zNzfhs6U7uMDtaeljD7l/hx9BggeXqWl314HD4QhbVPbHUXnqORITaykrO87CwgyzsxMMDnaSlJTKxsYaen0RRUX+y1F7Qi5XYrNt+xyPi4snP7+K7u4bnDr1zL6EEMoBxOl0Mjc3wd27rcTFJZOdXYRKpeHOnauYzZuUlh7bv5csQCEG5eoCKSnpFBRU+SxEWVmFjI8PUVPj65RkMKxx9247MlkUTU2XvOzIkWwdUlM1NDZe5M6daxiNG6yvr3DsWHg+5eFgcnIIi2Wbkyd9OeceFAolJSWVFBSUMTMzQX9/FxJJl3ufn4tEIsFms7G4OM3y8iwGwxpRUTKMxlFsNgtFRRU+XpqeyuFjx5pDVpBx5UFopLPzbVJStD66C88Fbs+X/n7wI0nwLjgxGNbDKtkTiqNKJBIyMvRkZOixWLa4ceNN1GpdWMQOIJcr2N72bxbKySlgeXmBgYE7lJe7tlzBtNFTU0NMTAwSHR1HQoKGtDQXR0pIUNHYeImurrdpaVklLk6J2WzguCBB8OeJKIkKKLZnZxdx9ep3sFi29v3RXRl5+lhYGKWwsNKHEx/GRh4XF09j42Ncv/4GNtt2UO4aCUwmA6OjvTQ0PBZ2ko09qW5xcZbJyWEGBjqQSqPZ3XWSlKRBo9Fz7FgTCoUCh8PB1NQQbW1vkZiopqiogp0dG0NDnezu4qMcDoXk5FQyMgro6WmhoeHhFmT+obHDRwJXltEtOjuvsba2EvL8SOy7SmUsEonTbwqkQIiJiQ1qB66srGdxcZbV1UUgsNbZlJjK4uICFRVNNDdfJCYmxosjKBQKGhoew+GwMDU1QWFhtX9iBwhiMpTJZOh0mUxMjAIuZdqNG69jtW5w6tRTfsXuw9rIXb79p/wmtjgMHA4HXV3X/Uou4UCny6Sx8QJJSZnExydz/vwHqKs7jV6ft6/gk0ql5OeXc+7c+0lKSuLKlW/S0nKZ7OxSTp26FBGx76GoqAK73cH4+EDE10aCkAQvCML/JwjCsiAIvR7HqgVBaBUEoUsQhHZBEBoeVgcjDUgAl/KnpKSGY8fq6ex8m8nJ0aDnR2LfNZmMCAIR5XyPiYn1K9LvQaFQuP20W1xKQ39JM2Rypj/2+5w4cW5farFaLT41zCUSCadPP4NancrKyiJ2nf+qq4GO7yE3t5S5uRG6u9vo7r5OQUEptbXnAvrs30/FnISERKxWG4uL95+uubPzGlFRCnJywrMyBILdbiYnpzCohCCVSikoqKCh4QIpKdqAlqBwA7EqKxsZH+/HbPZfzupBIBwO/7fAkweO/RHwe6IoVgO/6/7/gSOSrCh7sFjMLC3Nk59fik6XTUPDRaam+unpaQuaCivc4ysri6SkhFfnbA/+OPzBSVDaeZWUlEz6+m6zdPEnaPmlFzCqUhEBpyQKqd1G0d+95PXudrs1YP2648fPsLY2Q/dH/kvYJbs8EReXgCiCybRMc/PTIX0EDuudaDSu09r6OoIQRVfXTRYXD29jHh7uY35+EpNpla6u236zE4UDh8PB1paBpKTwagyo1RlsbW34jZaMZA4nJCSSm1tBd/eNQ0eAhkJIghdF8W1g/eBhYM9OlQjMP+B+AYcTE0dG7pKefk/8SkhQ0dT0JDbbJi0tb/kVrSOpY7e+vkhqauC9pr/VXKFQej030CQ4PT3I4uIC3/3u3zNYc4HZX/8DnAolEucuAvhMFptt24vgPZ9d9+MlXFpb5kp6Dj2f+MOggTqBkJyspqCgIixbdSRjCC6TmStv3BU0mlwuXfowDQ0XGRjoYnDwTsQTfnx8mPn5US5d+gjnz38QhULKrVuv09nZ6kP4oTiuwbBObGx82ApfqVSKSpXC8rJvoFCkczg/v5ioKAXDwz1hPTtSHFZp91+B1wRB+GNci4avOtcNQRCeB54HyM6OLB1vpGKixWJmeXme06ef8T5fJqO+/gJDQ11cvvxtMjLySUhQERMTQ0xMLI7HPwKEtu86nU4MhtWAZrhAiitRFNmRRO8ngwhWLSXrpX9HEByUlzdQ8Ds/FXCyLJz/MFFRUfuT0t+zi//kk+z8ly/ymjqdjZc7w6p15gmXlcPXq8wfIrGRT02NMDJyl9TUTJqbn95fUFzRe4/R1dXK7duXqa4+FdZiMzU1ztRUvzvG3bXolJTUkJdXwdhYL7duvU5SUgYFBaXob7wSUrm4vr4ScdUejSaTlZU5srO9JaHDbHUqKxtoaXkNnS7zUA5owXBYgv814L+JovgNQRB+Evgb4DF/J4qi+FXgq+DytIvkIZG6Uo6O3iU9vSDgJCkursZkMrtL+9hZXt7GarVgs1kRpAoUv/UVYmJiUSiUKBRKYuZcdex2dx1sbhpZXV10c1X/9w9EyJl/8T+Q/cb/xmrdRqmMDVEt5R4RBzvPZtv28s4K9OyS//+PGP+LN7lz5xpNTY9FFDe/u7tDVFT4UySUjdxgWKW/vx1RjKKm5ozf4okKhZKGhnMMDHS7s/I0o1QmsL1tdpd92sJq3d7/a7GYWViY4amnftrHOUomk1FaWkN+fgXj4/3cvv0DGl/6eMhcekbjKunpkTEnrTaL4eEenww/h3EHVipjKSqqobv7Js3NTz/QgqCHvdMvAJ90f/9X4K8fTHe8EWlAwsrKPM3Nz/i0eSIvr5i+PgNVVc1ex61WK1arGYvF9dneNrG8PM3ExDAZGTmkpGhQqzVsbCwFLIoQjEDlcvm+mSt4tZR7KbuCnWe1biOXh5czPTs7H4vFSEfHDU6cOB/2BNrd3fUbKBIprFYrw8OdLC8vUVBQEVKhtueRp1Il8+1v/wNabToKRSxyuRK53CWVJSZq0Gpd30dHBxgf76e29ozf+8lkMkpKqqkf6UaxZfR/jsf4GY1rPj4BoXwMFAoFsbGxrKwseuW2O2wgVlZWDjMzY9y48X2KiqoeWO76w5rl5oG9kqcXgNBVBA+BcBJF7GF09C46XWDuvoeUFDV2u4tj7yHp1Zep+/ESLjyu4Ynnz1E/0k15eT2iKKW6uolz597HsWMnyM8vJz09n8nJQb/3Dqa4UiiU+7b4YPtdQRDY3XWEPM9qtSKT3WsLpTQrKakhJkZOV9etYMPjBVdk2OG5i9PpZHJyiOvXv4soSjl16smItOdJSSmkpOi4dOknOXv2GRobz3P8eCMlJcfIySlEp8skMTGJqqoGtre3GRvrC3o//V99lkB5bPfGyWQyEhUl8dGNhKN4S0lJZ2nJu6ZCJHN4DzabjZ6edszmdRQKBTMzw7S2vsHdu+1YLKHDfIMh5K8pCMLXgXNAqiAIs8BngY8CXxIEQQpYce/RHwbCcaUMl7vvQaPJYH5+iuLiyoD77snJURQNZ/edYfaQm1vE7ds/oKCg0ocYgq3mnt52wfa7kpF+HA4x5Hm24T4vDh8OJ6msPElr62vcuHGZ1FQNDscODseO2ytxh93dHXZ2XH93dx3Mz0+zvW05VFaW9fVl+vraiIpSUFcXPK11IPT3d2Ox+BbxPAhXKu5T3Lz5OgkJSRFHn4nA20/+HMLGGibTRkRx+J5zMy0tm7a2K4C3dBCuO7DT6WR6epzR0btoNDrOnHmfFwNbXBxGqby/ohUhCV4UxZ8O0BR+uNBDRrjcfQ9abQajo90UF1cG/DHr/v3LxH7UV5OakJBIVJSc7u4blJfXe3GCYASqGO310tQHmgQSSZSXhjrQeTabFaUyxuu8QM8G12SanZ1ka8uCQuHE6bQjl8tQKhVIpTKio6ORSmXuslcypFIZS0sz9Pa209z8RNic3pWxp4O1tRWKiqrJysoJ67qDmJoaZ2trDZVK5eXxFwhKZSzHjp2gp6eV5uYnIwqvdSQks/HUTzHV+TabmxbKyqq82sNVvCUkqNjZsTI01IteH/58BFdKs76+DqKiROrqTvtV1kVFRYV9v0D4oXetDYe7H9x/qX798/REx2C1WgL+mPEbK1R/sMCvplkQdrFY7Fy79ioqVTJZWfloNJlIJJKABBoTE4vBsBHyfVx7+NAmKZttm+Rkb04U6Nnr66v0999BInFy4sSFsLmtXl/I2toC/f2dVFYG93O/Fxk2iE6Xx+nTT/sN+QwHRuMGIyOd1NefZ3Cwk42N1ZAED67U2EZjMR0dV2lquuTjBBNICpr59J+Rn19Obm4pb775rz6ZZMNVvE1PTyKKTgyGRaanB4mNVZGamoZWmx7QQmK1WhgY6GF9fZ6ioqqgRUIeBH7oCX5kpJu0tMCrqT+RPecLH6PhuU+zUFAW8Mf0tHvDPQ66tDSLRCLj9OnHsdvtLCxMMzY2RF9fO2lp2WRmFvj1wgvlbbeHcNNu2+3bPl52B2G1WhkacuXHKygInR/PHyoqGrl581UWFmYC5gBcXV2kv78dmUxJXd2FiM1/nrDb7XR1tVBYWEliYjIqVQpGo2G/WGUoFBWVYzCsc/fuLaqqmrzaQklBEomE2NhEn3ENZ7u0uDjL8HAHzc1Pk5DgSp+2trbI8vIcd+5cBSQkJ6eh02WQkqJBIpEwPj7E1NQAOl0Wp08/e+gFMhL8UBP84uIMU1MTPPHEjwc8J5DI3vjtv+Zrx0/6/TEPnuu5Vxsf79sPB5XJZOj1Bej1BZhMRqanx7l9+zIxMQpUKpc3ns22jc1mxWw2srS0RFpaLjk5+UFi9AU2N40sLMzgcOzidDpxOl1/d3cd7v+dLC7OUVDgW011D5OTo4yO9qDVZtzXZJLJZFRWNtHZeZOkpBQvUdlqtdDX147JZKCoqCokUYYTTdfT04ZKlbi/OKlUqUxMDEXU5+rqE7S0/ICpqRGfRS6QFHSvpPW6TxbkUAvF+voqvb23qKk5vb/Yu6reZu7H+xuN6ywuzjI21kNXlxGLxUp6egb19RcictO+XzxyBG+xWLh79y6xsQlER8uRyeRIpdHIZAqio11/t7ZMzM6OsrXlynU3NNRDeXlNRJlWY1bn2dzcZOH8h3HuOtF86TeJ31j2q8Xdu8fa2hJWq42MDF+NeEJCIhUVxykrq6K9/TpTU2MUFBwjIUGNQqFALo9hZ8fKyEg3MzMjlJRUodV6F81cWppjcLATUXQwMzNKVJQEiSSKqChXlhzXdwlSqZTs7Bx6em6SlVVMYWHZ/gKyvr7KwEAngrBLXd2ZB+K4kZysITMzh66uVhobL+B0Ohkf72dqagidroCqqtCVacOJppuYGGF7e4Pq6nue3ImJqWxu3gpYwcYfZDIZx483c/v2D0hMTPIZA4vFjNHoUtCZzUY2N43YbDZiY+ORSJQMDXWQlOSttwi0UJhMRjo7r1NRUe83//6990h2KwMrWV1doqPjLU6c8Ou68lDxyBG8VBqFRpOFQhGPw7GD3W5ne9uK0WhkZ8eG2bzJ+voSJ0+6qqE4HA7u3r1Ja+ub1NSc8tnrBdt/JSVpXIopXR6SP/xXfv53fz7oXm1srBe9vjToxJNIJNjt29TWNqPVHhSBE0lJeYKFhSmGhjro6bmNWq1GEKJYX19FFHeoqTkZdpioxWKmv/82165NU1hYwerqEisrM4cW34OhsLCSlpbXaW29jN1uRqFIpKHhceLjwyukEErTvb6+yvh4j09BTIVCgVQazeamMaKtQkJCIqWldbS3XyUvrwSzeZPNTQMWixmJREpsbCIJCcloNHoKChKJj0/c/13v3Gmlre0y9fUXgi5kFssWHR1XKSioiCgNNwjExUUeyfcg8MiFx8pkcrTaDPT6PPLziyktPUZFRS01NSc5ceI8tbXN6HTpZGTokUgkyGQyamvPodNl0NLyBktL3m79wWzZanUG3d2t2GybVFaeDHqu0bjO5uaml+ukP59sg2GNnZ1t1AFKXoMrWaReX8rOjp2kJB0JCanY7XZKS2sjiglXKuOoq7tAcXEFN268zva2idOn/ae3PkzUoSckEgnHjjXS19dGQUE1DQ1nwyZ2CK7pttvtdHffpKSkxm8qsagoCUNDvT66jVDv5JojCsbHh1EqEykqqub06We5ePGDNDaep6ysiqysHBITk7wW8erqBhSKBNrbLwdMZW61Wmlvv0pWVl7Y+f/24HDYiY5++Pt1f3jkCD4UJBIpu7u+sdwFBRVUVjZw8+ZrXL78Cp2drQwP99FbeYqB//a/sOmyfRwfNBod29ub1NaeQyqVBnWSGB11JWk86Lt+0BlD+i9/SVqaPqgU4HA4GB/vo6HhPHp9gTv5Qsl+PHyk0OmyKSqqRKNJ97tXP0zU4UFYLGbu3m0hKUnL5mboOvMHEcwxqKurldRUbcCIvNjYeNbW5rhx4w2Mxo2I3kmhkFNd3URBQSlqtS4sU5lEIqGqqgGZLI729is+RO9wOOjouEZKisavHiXUQmSz+c98+07gh47gpVLpvifaQajV6RQXV6BUunLWOxzbzM+P84Y6gz/5z1/kiy/9O1/97b/mSnohw8N9LC/PExub6DUJ/JU/MptNbGyskpNzj3MGElGr/+VL1A51Bv3BR0f7SEhI9crGo9WmBy3LFApxcYkBCfGwySn2sLw8R0vL66jV2Tz55E8wOzvKxkboxCKeCCQ9dXzo19jZ2aK8PLDZTyqVUlZWR3Z2Hm1tlxka6iXjy78d1jvZbP4dh0IRpUQiobq6Eak0hs7Oq/vShdPppKPjOjExMT5OWXv3DbUQORw7fjn8/Uph4eCR28OHwkHHlINIStKwtWVBr/dNYGmxmNnaMmE2G92ZWhfZ2tpkfX05qMJlfLyP9PR8L+4ZSERNMKwS98X/HFA5ZbVamJsb5cSJJ7yuc+1PJRiN6xEVoth/bkIiS0sTftvuJznF0FAPMzPjVFWdRK121VHPz6/ijTe+SV3dObKzc8NyyvGn6R78+d/iWrKGk8dPI5FIAmrx97Tmen0hWm0Glr/+PLIAcfOe77RXv+2gE0646bgkEgk1NU10dNygo+MKx46dpK3tOoKwQ339Jb/PD8crz18xi8OkCDsMfkg5fOD0TImJKZhM98Q+zxUz4+q3UKvTyc0tpby8nvr682g02Vy+/C3Gxob9LiRWq4XFxTny8rz3xYFEVFESFZTzDA11otPl+a0nrlZnsLQ063M8nJU/Pl7F1pZ/N9TDJKew2+20tV1mdXWJkycf3yd2cC0uSUkq1tamuXLlFYaH+7DbQ5e78pSe2v+tn9dS0qioqEepjAvKGV307pqqaW/9Bxf+6UshfeIBrNZtoqOjfbZXkUg8Lt1FPTMz03z963+G1WrCYtmitfV1JiYGfJJehLO47uzYfDj8/Uph4eKHkuBB9CJOT4Jo+MkKijsuE/ftrwUVrVwFJG6iUEg5d+59rKxMcv36a6yseO+jx8f70Wr1PlzCbxqqaDlCgFxxsqVpjMZ1VlaWKCz0nw9PrU5jZcU7+CL8vaoCiUTq1/c80uQURuM6N268ikwWT1PTRR/Lx86OnYSEJOrrL1JffwazeY1r115hcLDHb9aXg3A6nXR1tZKenrWv3Q53wvs7L9A7WSxb91X40WIx09fXxo0b3yU1NZ3MzDwef/xDPPbYh8jLq2BjY4Nr177L7dtvMjMzht1uD2tx3dnZITraO4ff/UhhkeCRJvhAnE0iidpXpPgjiKf/46vk/umnAk4gq9XK7dtXEUUHJ048RmqqjsbGJ8jPL6G3t4WOjutYLFvY7Xbm56fIzy/x6dtBBZ85JY2WX3ohcA45bTYDA3fIzS0P6ASjVuvY2rJ4EU0kK39cXCIm08HkRJFFbE1Pj9HW9hb5+VVUVdX7VT56lltKTEympuYMJ048ht2+xbVrr9Db24HFsuX3HQGGh3sRRQfFxcf3jwWb8KJ4zwYfLACm9Zd/l7VL90I/trf9hzGHIkqjcZ3Ozutcv/4aIKWp6UkaGs4gCC65QiKRoNNlUlNzkvPnP0BaWj6Li7NcufJtrj/9szgOeOodXIgcDrvPHAjVJ4fDwfLyHDabze954eKR3cMH29NIomNwOh2AzC9BRO/YEHf8D4xsaZrbty+TkqL2URRlZOSi1WYxNtbLzZvfJzpaQXJyml/xG+45YzidTt5669vU159jLivPrxtm/3O/gc1mJze3MOBeVSKRkJKiZWlpZt+0Fs7KbzSus76+xNraMtHRUr824VARW06nk7t3b7G+vkZ9fXD3WH970Li4BCorm7BaLYyO9vHtb79MfHwcMpncKzZgd9fBysoiTzzx4QgSRQghz7Nps+gur8N+4w0qKxtITEzCZttGLvcl+ECusoM/95vcvv0mJtMm2dmFlJc3eBGm0+nEbvcmVqlUSlZWDllZOVitVhYKq/jBjpOm7/y/JBjWsGrSmf/ESxi8ClL6aumDue8uLk4zMNCBUulyPrsfPLIEH4yzRX3qz/Y5fKQijykxlYwMPfn5/sVqqVRKcXE1WVkFXL78TTSa0A4VS0tzKJUKEhJUfqqFZHDrA/+J70miqdSkkfLa14MqZ1JT01lenton+EAT3JKi4/btNzEYNoiOlpOU5DIRTU72B0zQEQgWi5nOzmtER8fR3PxESDdcu90WcOIpFEoqKupxOiVIpU4KClyRZ3vELQgCS0tz9Pa6koqmp+cAwSe8i8MLQc+b/8QfcOLERaamRmhru0xWVjFW6zZxcb7jcPA32k5N4+0nn6Nfl0eOVk9NTY5fRaRcrmR724xM5l+pmvbWN6hz39OmyaTl439IW+ExbDYL2t7bpKfnkJysYWdnB5nM2zzoT6k5+fxnuarJYHOwh7KyE0gk22F7GwbCI0vwodJA7ZnmAhHEdkw8cnHXa2LsRMtZa3qCD3zymZB515TKOE6efILu7laKi8uDDvTs7DgZGfecL6aan+FmTimLizNIJNGkpelpUigZG+sOak7aeOo5tNp0hobu7FfNmfnV/0nOH3wMqUfgzU60nI4P/ToZGQVUVqq9iHtnx87AwB2/tcr8YWVlnp6eVrKyiikqCi/XvsOx4xWL7w8ajZbJyX6/i0d6ejZKZSydnTfY3DRRXFwZ3F+94+r+taH82vX6QtTqNNrbrzIw0EtxcQWJiWqfgiQrj3+EjuIapqaGkcmU5OWVcDZAcNAeYmLi2N42+7WiHJRIFUsznPibz6F74atMNT/L3Nw03d23gV3W1lYCVqC9F7MxwMREP+nKJKqqTiGVSllZGQvav3DwyBJ8MBEvKirKKyuMvxX/jWd/gdKyOvR/9VlkS9OYElMwnHoG/Q/+NWzTR3Kyxp1xZDJgzXSLZQuTaZWyslrGxvpYXJxme9tGWpqe48dPkdvyfTJ+49eRLU1jTtIiW/fvXLO3wLn87pW0tV3G6dxlSyan5iOf5Ow3/hL5XnomZRyZWbnE+glWKSws59q174U0NYLL5DY7O05l5UkvLXwo2O02v5zTE8nJGnp6bgYs96VSpdDU9Bjt7dfY2jJRXX3SZ9tht9uZGetjfHwQi2ULXnHZHwAAIABJREFUuVxOaqou5PbEYrFgt+9w7twloqPl3L3bsk/UKlUqU1NDzM6OkZio4dixJlJTNa5t1keDB/YoFEq2tvynvg5ljktIOEZp6TE2NlZpaXmTzU0DsbG+W0WjcZ3e3lsIguy+Iw/94ZEl+GAinqsEkIvgA634UwnJyIuO01Fcx+zsMHV15zn5M9VhZS7xRF5eGYODPQEJfni4F5PJyI0br5GamkZBQRVqtW7fruz5DvHriwTK4umptImKEhAEBUVFRSQlpaLe3SF6d2d/JxttXAu4UMlkMgoKKunra6O5+amASrfu7uvY7bs0NT0eVqy5J3Z3fbXMByGTyYiNVbGxsRzQXVihUNLYeJHOzhZaW1+npuYcCoUCi8XMxMQAi4vTJCZqOXfuA2xubnL3bjsKhZScnFLS0vwrR2dmJhka6vCqTJuTU+yu+dbN9PQ4ZWUNNDQ8tl+ZJlwbuKu+gH9lZLha9qSkVPT6Elpa3txfZAXB9RtZrVuYTEaqq5vJzb1nBvbU+TgzMuCll+CQBSUfWYIPJrpFtV318rbzt+LHdd+ks/MWCoWEkycvoVAoD2X60GozGR7u8RsPPjLSu88h9foCH07mb9UXcGmUPe3IB7W4Vus2jY2n9pWF4aZY2oNen8fc3ATT0yPk5Hg7ILk00NdITk6ntrb2UHvCnZ3wfMGTkrSsrS3uE3wgZWV9/Wn6+rq5fv0VEhKS2Nw0otXm0tT05P5ipFbryMnJZ2FhhtHRQYaHu8nJKSUr616o8chIH7Ozw9TXn/cSu121AXPJyMjl5s3vo1KleJWhCnd8lcpYjEb/HoaRZKc1mdYoLj6GTuc9nxyOHXp6Wr22QQcXo6jZWXjenVHuEET/yBI8BE8DFcz5BsDplLC7a6Gx8cP7A3iYlMEAeXmljI8P7hO8S6PditFo5MKF9wfkkMEWks1kLXEby2wl67j9wY8xmJyO7e1XsVrNrK4ue93zMAtVWVk17e1XSU/P3X//mZkxhoa6KCz0LSu9h3Bi1sMl+JQUNaOjPfv3DcZFy8urmJsbRhBiOHv2rN9tgGdRz+XlBSYmhhgdvUtWVgEm0yZWq4GmpktBFZbl5Q20tV0hPT1r36U63PENxuHDzU67vr6K1WrkxIlzfhfburqztLdfJS4ugcTEJP9+BxYLvPDCjx7BB4IgSANGMe1he9vM8ePNXqvlYVMGR0VFMTExgM1mJjU1HZNpnejoGBobLwbVaAdaYDaTtPz5b3yJ9HQ9crkChSIGvTxmPx9+Z+c15uam9/PBHWahUqlSSE3NoOX/cvfe0W2m953vByAIgiAINrCCJMDeOymRFFWnaOQZz9hOso4zKXc3ieM45R4nsb1rb7kp9ibZbJzsJHt3vec6jrOzTrFjz4xnpKkqlChR7L2CnQQIggUgCIIgCNw/QEIEgReFUnyUfM/BEYXy4sH7vr/neX7t+71/g9zcEubnJ9jdtdPa+pygXxju1tbp9I8yH33++GSR8LnfZ0Aag9PpDLmKWixbmM0bqFQZPsYuNAGlpWWSlpbJ1tY6XV13cbnsPPPMT4Qs801ISCY9Xc3k5JCXtivc8yuXK7DbA7MWhSvEodONotGUCu6sEhNVFBfX0td3j+bmZ4Un9YXTFeQ8lYU3R/lOjwqs5TDPbGR1dQm9fp7t7Q3BmRY8rYs7O1t+klCnoQyemOhnZKSXq1f/FXV1FxCLJej1yxQUlIdMXwWqcHPGyGi/9iqfdjr4ma/8NJ/52Xpe/LWrlPW1k5ioQiaTo9WWsrAwFfQ4oSYqs3mDzU0DS0sGJiYGSUrKQCqNYnZ2SrB4I9wiH6dzT7AW/HgBVN4ffo66sT7W1w1BV9EjxdeamjY2N9dZW1sRPObJKsPExBRycwvIySkIm2izqKgGo3HB23kX7vmVyWTeezMQAjVeHcfW1joWi4nc3OBcBbm5BaSmptPf/wCHH6eC901BjyGEp26FNxqNPHyoQyyOOmR4kRAVFU1UVNThQ4JYHI1ON4bT6aSkpNbvQq+uLpGcrAp4A4RLGWy32+nvv4vLJeLcuee928SkpBRUqlT6+zs4c+ZyUEniQDn59y9/igJtKXl/+DnBlTQ9PYehoQdMTAyQkpKO7eIruN1uj4JNiHQigE43wtzcOIWFdZSVNTA7O0pNzRkcjlomJvpob79+WGug9flcOFvbI4qtk5Od0GTR9s5f84PnfiLoKjo42IFCoaK4uIKEhCSGhzs5d+7FsH3r/f29oJyGgVbd/PxyRkf7aGm5EpFMVqhcfDBMT4+h0RQLTkzHx1qZnsPtq5/h4Sc+R+u3/8D3PMjl8LXgu1IhPHUGn5aWRnNzXkhqpiO2z9u33/Rj+zQal/0CIpFga8tEX187aWlayspq/LZfGRke5ZeennZaWq4E9RmPJpj9/X06Ot5Hqy2i8NeeC3oji8VixGIJq6srmEwepZt9cTQxv/1nhy6AnJgYOfLZsWPSWJ4W0KGhe+ztOTl79nkUingcDoc3PSaVSqmqOotabWR4+CErK/NUVTV64wXhbG09ZbXhU4nFbRjY3FwTdKd6f/JXsVp3aG31yBOmp2dhMGQzPNxJc5i+tcOxF5CMI5iLor36GZaWdCwvz6NWa8JeCORy4Vx8MFgsZra2VqmtbQ74uv9YF3jmb1/j+qd+hd7PfY3qv/0zb5Q+6l9ilD4UZDI5dXXN6PVLtLffYGysi5qaNpKS0tjcXPNjLA0Xc3MT6HTDlJY2BiVl1GpL2Nvbpbu7nTNnLofc3g8NPSJnDLWSms0biERRtLU9olp2uVzs7tqOPXbY3vYE+HZ3PZprBsMC9fVXaGioflR7LpUSH5/M+rrBm6ZKTk6jre1jTE15Soi12nLy80vCinE4HHsBi0aEJ4scrFYrq8/8FOC7ik7+wpe5k5ROc72nsORohatfXcCSoMKhSCAmQI//Sd96f3+PmBj/NGGoHUJ5eSNDQw9JT1eH7Q7ExAjn4oNhenrMh0AlrLHu2bjywd/xu//6PzL/2nXkcgmtrakkJp6e9PKfrcEDGI16xsZ6qKioQalUMT4+iM22TXx8fMQsrU6nk8HBB1itFpqang26VT9CSUktdvs9ens7OHPmgmAgZm5uGqt1g9ZWDzljqJV0aUlHZmae93jhRM4XF+eIj4+nsrLW77iJiek+Bg+eiHdJSTVqtZahoQfo9QtUtbwAX/1m0O/ykDf4G7zwZPF1EhKS2dgwID22itrtdu7fv05FaSMKRbzfCpewtYYzSoIrKhrxwf6JY/puZ4WCiKEmVpUqA6VSyfT0KKWl1QHfexJHK3wksFq32dxcprLy44LvESRbXdNTVFSL0bjK7u6aoH5euHgqg3ah4HK5GBnpY2joPhUVDVRUNJGTk8f58y+g1ZZjs22HjOIfh9VqoaPjOiCmtfX5sIz9CFVVLURFHdDf/zDg62bzJtPTA9TWtnln92BBIpfLhV6/QG6uJ20WbnusJ+fu39UHoFKlCjLUKBRKWlqeJzc3n+7uW9zNLaf/h9OCgSeHwy5YFioUEE1KSsdkWvW+19Mee4e0tHxvqjPQCic5cLIniw0ZZN3f3wto8OG0qpaVNbK0NBW0u+84YmPlERu8TjeGWp0XMqMTEGIxVwzTnD17icLC8sdunnmqDT5Qe6ynqu19bLZNzp37mN+qVVZWRWqqhrGxnrC+w2BYoLPzfdTqYurrQ9Mtn4RYLKau7iK7u5uMjQ36vOZwOOjtvUdJSa0P93gg4xj/wjd4kF/BBx98D6vVFlbRzRE2Nkw4HLYALLkeJCensrNjDUpSodEU0db2Int727S3v4PB4E/EAbC/7xSsshOKUqekpLG19WjCGRvrBSSUlVV5nxNa4WQ727z12g3BCQg47GDzN/hwou9yuYKcnALGxvoCfv9JhCsocgSbbQejcQGttlzwPU6nk96f/FX2A5xXkevAO8HHxMgeu3nmqTX4gGme//BzKL/yadTqXJqarghGZisq6llYmPVJbZ2EZ5fQzdhYP3V1Fyko8KfEChcSiYSGhssYDLPMzj76zsHBLpKTkwLKB61f/Qy3vv2A7/xVJ6/99p9zPTmD/f0D6uoukJqawvz8DBBe5Hx2dpzc3ELBmyEqKoqEBBXr676ceScn1Myb36e+/gLl5fWMj/fQ29vho4cHkSvKeowxhs3NTWw2G3r9PEbjCrW1rX7tsYFgT8tGpxvBarUEfN2TNXAGXD3DTcMWFFRisaz5kZ8EQrBcfCDodONkZmoC3qt2u43R0W5u336DwcpzjP/Wn+EW++vHPUnmm6fWhw9cluqm/sF7JE30splfFvBzNtsOY2N9REXBzZs/oqSkguLiWp9GEk/K7Q4ecoPnIxL9E4JMJqOp6TL37t3AarWwt+fAZFqgufmqV0TB6XSytraMwbDI+voqMlkcqanZ1Nef94n6RkU10tfXQWZmdkh/32bbYWPDQFXVmaDjS0pKw2QyeGvQg0WwufYqKSkZTEz0c+/eDQoKqr0yz7u7NnZ2tjEYltjbc7C/v4fD4fn36OFweP51OveJiooiOlqK2+3k1q03cDqdtLVd8zvnQjEA/W/8Z/LyKhkYuBdQL07IxThCONF3iURCZqaWW7feJjc339u/73K5cbtduN0un7/1+kUWF2fJyQnMsnsEDz3aLOfPf8zneYtli5mZEdbW9KSlaR5lVBrb4I8/H/BYT4r55qk0eJfLJfgDRbgD1pC7XC6mpkZZXJwgJ6cApbIGhUJJaqqGgYFOpFIJWm0pMTGxDA3dJy0tn7KyqsfeIh2HXK4gOlrG2toSOt04eXml9PbexeHY5eBgn50dKzk5haSl5VBSUudNhwUKys2la5iaGiE9ROR8bm6ajIwcv/rrk8dTnb3K8PAjkstQEWyJREJFRSNqtZaRkYcYDAuo1fkMDj7EZtvk4GAfuVyJVOpRB4qNjUcqTT38v4yYGBlSqe8WdGNjlY6O9wVjAEfjOhkwLADW1paZmhqmpMQ3uLa3t/dYmmwOh4OJiT6MRj21tS3ExysOVX7E3n+P/gZPo0tpaS1jY72YTKtUVNQLfr9ON0VamtqbtjWZDMzOjmA2m8nJKeb8+Qa/ie+05d/h4qkzeJNpje7uedpS1cQaA/uRJycDg2GJ8fF+FAo5zc3PIZFIuXfvHRobL5GQkExeXtGhrtc4CwuTXLnyiqAw4kmEEyE/wszMBHK5jObm50lOzkQul1FcXI3L5cJq3WZ4uAuJRIxG86gqTGilvfClv+CNOCXz514SjJw7nU5WVnQ0Nz/rM95Ax3N/5X/Sc6iYG0kjUWKiipaWFxgf7+XOnbe5cuUltretLC9PU1paF5F2fHJyOuXl9QwNdXPu3DN+rwdbjaurz9Le/g4qVTopKene54ORcYTCEZNMQkLmocR0eDs9pdKjCjs62sW9ezeoqjqLSpXu8x673Y5e77k2y8uzzM2N43AcoNWWUFcnzPR72vLvcBHS4EUi0beAlwCj2+2uPPb8bwC/DjiBt91u95eexIBUqlQ0GglvnHmeT//oWwHZSY9mO6t1m7GxPnZ2NiktrfNSO/X3PyQtTe3dJovFYrKycsnKyuXmzZ2wb9JIqIOt1m3m5kZpbn4OAK22gL6+dgoLKxGLxSiVCTQ3X6G//wGdne/T0HAZmUwmuNJqv/m7aP7sR4yN9aEUMITl5TkSEhJ81FqEjpf93/89Sf/P37C2picnpyCilcQjYe2mtraVzEwNmZmele7hww85c+aZiIxeqy1Fr59nbm6a7GwtdvsuDsceDoedvT07e3uev4/cgr09z99Op+fvmzffJD09h5SUTFJSUrHb7X5lvqHgEcF8yPa2lcrKloi4AI4gkUiorm7BYFhgYOAeGRl5PkVas7NTOJ0OurpuIpXGkZ9fSXq6OuSOMmjV34+JAOPbwF8A3zl6QiQSXQZeAardbveeSCQKzrQQLl5/Hc2XvkyBfgV7qprZgirydMOIjnWRH8jkLH7u9xkfH2RpaYqcnCIaGtp8xBTX15c4f/6lgF+Rnp7D8vJCWMQCkbSljoz0kJtb5DW+xMQUpFIFq6uLXr/Zw3PeysjIAPfvv0tT0+WgK21+fjkrKz8SlGqen5+ipKTK73NCx0tKSmN93UBOTkFEK4nD4WB5eZ62tmve54qKPBp7nZ3v09T0jPd3h9oRefL/dbzzznfJyFATHS1FKo0hOlp6KB4qQyaTkZCQiFQa460sPHIPXC4XGxtGTKYVdLpBDAY9iYnhS17NzIwxMzNKVlahl0nmcZCRkUtiYhpDQx3cvfsuNTXNxMTE0td3F622iOLiaj+2nVAIt+rvNAj5a91u9x2RSKQ98fSvAn/odrv3Dt9jfOyRvP46fPazRNs8N2CscQmNeZ3e5ucpnxlBtraMIz2XkVd/i4/iElDubNDaetVndfFE3nsoLq4R9KvU6nx6e+9SXl4Tckjhbnvn52fY39+hsNC3KCI3t5D5+Qk/soaKihrkcjkPHnzAGQHXxZGee2gc9YyO9pOamulzc3oiygc+acmjzwmt3CpVGgsLHunlSOrH5+bGUamy/NqACwpKEIsfrfQ57W+FLfCg1ZZy4cI1IoVYLEalykCl8qzKu7u7dHS8i8GwEFTQ0WLZYmjoARAVkqQzUngCtleYn5/iwYP32N7eIzFRiUZT8GOVgg4Hp53eioHzIpHoa4Ad+B23290V6I0ikeizwGcBcoN1+Hz1q54+32OI2tulTDfMa7/z3ygvb2JhQcfenoXKssaALCpzczrEYnfANNgREhKSkUjErK0ZQm7lwtn22u02pqb6aWz0r7RTq3OZnOzHYtnyXvjj5aO7qixGCyqpMa/7cNYdX2nT07NZWJhEpxunpOSRjtnc3GRA0chgK3dCQhIHB052draJi4sPayVxuVwsLk7T2Hg54OtHzCxdXR9y9i/+XVg7ou3tTRSKJ2NwsbGx1NS0MjBw19tteHL8k5P9LC3NUVBQhUZT8EQDtceh0RSxvb3F+roJtTqPlZUFRkd7kcvlpKSkk5qqJikp9Z/s+8PBab9ZAiQBzcAXgb8XHZF2n4Db7f6m2+1udLvdjampqcJHFOjvjTWtoNGUcPPmG6SkqGhre4ni7pt+BTl2u53Z2SEqK4OnpwAyMrQsL4dOc4RTuDEy0ktmZm7AZh8PYUM+s7NjgH9tgXxtmdq+OwzUXWRHlSmYK66oOMPi4oS3Gsxq3cZsXkOt9p/YQuWek5MzMJlW/D4nhMVFHQpFctAVsX78Ib/6R79OzOpiwNdP7og8E2DgasbT6KupVGlkZRUwOHjf53mTycDduz9ie3uH1tar5OUV/ZMb2/b2JiUlVRQWltLUdJFnnvkkxcV1HByIGBnp5cMP/5GurlvMz08EFA35p8ZpV/gl4B/dHtGvhyKRyAWogMgUBo8jNxfmA6+mBwduKioaKCysFAykzc/ryDh/LawuppycfNrbr+N01gf14UJtew2GJba316mpeVHwGFptIe3t7+BwOAQaJHapmB3hL//tN0lNzQgoUHi8GqyhoY25uUmysjSCYw+2cqekpLG+vhJQey8Q5ubGKC31H9MRTl6PQDgZCNzZMZOW5h+TeBx9tZKSKjo6PkCnGyEnp4ixsS5MpjXKyxvCzsg8LpxOJ9vbW153AzyTfmpqhnc3abfbWF01sL5uYHJyhOhoyeHqn4lKlfXYMYVQOO1090PgCoBIJCoGpIDpsUbyta95+nyP4TgRf3a2p7ZcKJBW/73XKCoK7ZeDp9MuPj6e1dXlkO8VKhd1ODx00BUVTUEvkkwmJzk5g6UlnWBMIMa4RHPzs2xtbdLbeyegxl1BQSVm8xp6/SKrq/OCdfOB4HA4DnPAY6yuzjM97WHXDfWZkZEenE436enCmvXBpJ8gcCDQat0mIcHft30cfTWPxHMzY2MDfPTRPyISSTl//mMRpV8fV7l1ZWWWjQ0TTqdwCbNMJkejyae+vpXnnvsUtbXniIlRMDc3xUcf/SMPHrzHxMQgW1uPZ05CCCct913gEqASiURLwH8CvgV8SyQSDQMO4BfcRxKfp8Vhf+/+l76MRL/iXU1nW17A1dfuzb0GU21tPicLmSs/QlqamrGxQZKSVBGztgKMjw+QnJziF0sIFKXObXyGsbGHQWMCMpmMs2cv09d3n87OD2houOSncFJWVk9n503U6uyAqTBPvt/C9vYm29ubmM2b2Gzb7O/vExeXQFxcIipVDikp2UxOjqDTjVBYWOUN/NlsO+j1S6ytrWCxrBMTI2Vvz4bZvCm4pQ8m/WRPy0b/G3/ocy08pbqigBwCj6uvFh+vJDExDZVKRWmpf9egEJ6Ucuvi4jS5uSV0d9/kzJnnwioISkxMITExBajA4XAcMjvp6eu7j8u1T1JSGqmpmaSmqsMeRzCEE6X/jMBLP/tERnAcr77K/Nk25ufjvD7x0nCfTyRayGhEnsGGdbFcLhcrK3oODmzcv3+D5GQ1BQVlYXfJmUxG1tYW/VJ/gjfOV7/JWFwy4z/3O1S+9mXBVJinJv8co6N9PHjwHo2Nl3wMOzNTQ1QUpKdrsNvtbG9vYLEcGbYFm82KVBqLQpGIQpFIbm4x8fGJAaWyCgpKWF6eZ3x8kP7+DmJj43E4bKSkpKPR5JOaeh6JRMLCgo7e3nbOnvUXlYQgQiCpal77rT+nsfECx9dys3kDhSLweX4SVWYxMdERR+AjZQUOBJNJj8NxwKVLVxgc7Kan5xZNTVci2qJLpVIyMrLJyPDc71brNmtrBlZXVxgZ6WF720h19aceqx/+qW2eOYLRuEB29qPgVKBA2kmE2gZOTg4THQ1Xr36a8+c/TmysjIcPP6Crq52NjeBbKafTychIN6WldWHTPKn/8qvk5BRyP78iZDOHWCymsrKBzMwCOjs/wGxe9zmeWCxiaKiT9va3mZ4exWq1HVawneHSpU9w6dLHaWw8T2lpFZmZOYK6eABqtYbz51/AbrdTUFDKlSufpK6ujczMR/GB3NwCsrPz6e6+E7DbTiiwafjNP6KsrIGenjs+29Pt7S0UisA37Gm4+07i4MAZtLY+EB53Z+FyuejpuUNSUjoikYiamiaio+Po6wvsnoULhSKevLwiGhvPk5dXQkZGDnJ5+BJigfDUldYex9qaAYkkCqXy0YztE0gzLADugNV4QhdreXmOhYVJLlzwNDRIpVJKS2spLKxkfn6CgYG7yGRKCgvLA6btpqdHkctlqNX+jRPBbpycnDx0uiGWL74S1qpRVFSGXC6nq+sWVVVniY6WMTU1zNraOi+99DMRF3MIYXvbjFKZEPD3PBpLJXb7Dj09d/3olYMFNtV4JrCentvU1Z0nOTkNi2WLlJTA6dBIagOE4JFijqzy7nF3Fv39HYjFUra3H03O9fUtPHx4h6Gh+9TUnItoPCfhdDpZWtKh1QozMIWLp3qFX14OXEyxee1Vbn37IX/8h99jLwySAw+pxDwPHrxHe/s7aDRFfj6kRCKhoKCCixdfJisrh7Gxh9y79z56/aNUk9m8ydLSFFVVgXnJghEuSCQSMjI0zM2Nh/zdR1CrNVRVtXDz5lv097ejUqVx9uxFxsf7wiL4CCcQZTQaSEkJPXlUVDQhlYrp7b3v91owttbMzBwqKs7S19fOxoaRnR0L8fHCW9JQzK9CcLlcGAwLrK0tRbyqPs7OYny8l93dXS5f/jhisZvFxTnAM9E1NrZhtdoYGemOaDwnMT8/gVKZ+kSKeJ5ag3e5XJhMS97o/MnXxsb6KCmpYeXXvy54sez2XSYm+rl9+01mZ6dRq4vJySnwab44CbFYjEZTxIULL5OfX4xON8jt2+8wP69jeLiLwsJKQdLKUDdObm4hKyvzYbPx2O12pqdHKCgo4+LFlykoKKesrO5QiNHf8I4jXKac48owweCJgrfhcGwzMhIeWcQRMjKyqag4S09PO+vraz61/5Fgb28Pq9XipSxfXNQxPT1MZ+cHfPTRD9HpJsjIyGdyciCi456Gvhw8/IcGwwoNDZ54R3FxDdPTw94JxxOTOc/6upGpqeFT/WaXy8XCwhQFBYHbwSPFU7ul90gwywNGo2dnp4iOFpGTU8DmYVXdSXLE+2k5rN95h7S0HOrqzh9GQkGnGwrIjhIInkYRDaurS4yN9bC5ucm5c88Lvj/UllSpTCA+PoXl5dmAVXLHYbVu09PjWdVP5uZra1t58OA9RkYGqKgInIoMJxDldDqxWNZISQlvyymRSKivv0Rn53tMT8soLAz/JszIyMbpdNLR8Z43m+BpkrGzv79/+O8e+/v73l76/X0H+/v7HBzss7/vJCpKgkQiJTo6mujoGKKjY9Dr55FIYmlpeQalMgGXy8X9+zeZnh6msLAy9MAOEU7V4VEU3WRaY2Njhfn5WT7xiZ/3dtmlpmYhl48yOzvlJVSRyWQ0Nl6ks/NDpNKYkNf9JBYXp5DLE0lOVrG2Zo7os4Hw1Br88vJ8QMFAu93G3NwIjY2XvM9tXnuVtec+zfKyjsVFHfv7LrKVqVRVNfsF1hwOR0Ta6eApb01NzeL27TfZ2DCRnCxMoR3qxtFoCtHphoJe+K2tdXp62tFqiwLq2HuacC7x4MG7zM/HB5SNCicQtb5uRKFQRtRPflQ33tn5AbGx8qDMvichkURjt9tob3/b2ywjkUQfNs3EEBUlRS6PO2ymkSCVypBIog977KV+VXLLy7OYzSYfEhMP5Vgz9++/i0qVEZLuPBicTifr60bW19fY3FxlZ8dTIp2UlIZGU8TBwYEfPXZJSS09PXfJyXnEYSeXx9HQcPGwc07qQ0ISLF7hcrmYmRmnsvLsqX/DSTyVBu+ZSVeprPSv8BobGyQjI8dbUWe1Wg63VgskJKRSVFQrWCjidDoF6ZBCwbPVL0GnGyU5+fTMoWlpWYyN9QrKOa+urjA09ICysrqggTSZTEZ9/UW6uj62Yl+vAAAgAElEQVQkLk7hF8QLJxC1trYaMIAW6kaUyxXU11+gu/smUmlMWO2lnkKlHp5//lNBm1zChcWyxfh4Lw0Nl/z62OXyOIqL6xkc7KC19WNhp8acTiebmyZMJo+BW60bKBRKkpPTKC6uJCkpzXusjQ1jwJ1iYqKKxMRkZmcnfXoflMoEGhrO09NzC4kkmuLumyFz/ysrc8TEKE7VviuEp9KHX11dJjEx0e9CmkxGNjZWKCqqwWBYoKvrQx48+ACQ0Nz8PE1NF0hPzxIMVjkce0ilwWWOgyE3twiLxcTW1nroNwtALBaTnV3I/Pyk32sLC3MMD9+ntrY1qLEfQalMpLLyLAMDHVitvlzp4QSiNjb8/fdwff+EhGSqq1sYGOjwSjYFw/BwL8nJKU/E2B0OB/39dygsrPO6aieRk6MlPj6NkZFOweN44kRGJiaGuX//Qz788AdMTvbhdu8dpik/RWvrC5SW1pOa6lv2Goxaq6SklqWlCex2u8/ziYkpVFefY3DwPpmv/duQVYUzM6Pk55+eazEQnsoV3mRa9fMPXS4XAwMPiImRce/edaKjZeTkFFFXl+snPig0c26cvRqSCirYdlwikaDVljA1NUpT0/lT/z5PLf8odrvdO6lNTY2xtDROY+PliFRN0tOzsdm26e1t94gPHv6+UPEEu90jXnFyyxtJEUpqahYlJTVBC3PA455ZLKu0tQn3HEQCT2dcpqAC7hEqKuq5d+89lpdnUavzcLlcbG1tYDKtsrFhxGLZIDY2lqSkVPLyikhOzgh79+dJ/wVePBQKJWlp2UxNjVBV1eB9Pun661T+5Ve5uroAAoWpRy6XwbCAWBztLcJ5UnjqDP7gwMn+/q6P/+50Ounr68BgWKSsrA6ttljQjw52w47VXfSu8Kctp9RoSpibezNouWkoyGQyVCpP22txcTXDwz1sbOg5e/a5iNhjjpCXV8b2ttlPECNYPGF11UBysn+rZqRFKDk5Bdjtu3R33wmopuuRBOulvv5c2FvrYBPxxMQgDscBDQ0NIY7iqbGoqKjn+vW/Jz09k/V1EwqFgvz8UjSafJKSWk5NYBqKPLOoqIa7d98mL684oNCG4HEPXS6dboS8PGFq69PiqTP4ra0tVKp0H19paOgBcXHJfOpT/xexscHr3oPdsHt7du+sfNpySolEgkZTzPT0CA0NbWH/riM1XI8slA2X64ChoYfo9UtER4tpbn7+scgYKyvP8PDhR4yM9PmsKkLwpOP8fcPTFKEUFVVis23z0UdvkZNTePisJzW1uDhLbm5uwHhFIASbiCcaLrG4OENr63Nht7mKRFBcXMnZs1fY3t5iYKCT/f09VKqsxxJ18CjwCE8WMpmM7OwCJieHqK9vDdlkBI9crrW1FZxOt0/jT9L11yl/7UvI1vSeztKvfe1U+nJPnQ8vlUrJytJ6eeN7e++Sn19NY2NbSGOH4MUvHoZTz0V6nHJKrbaUzc1VLBZPmmRvbw+zeRODYYn5+WnGxobo63tAZ+dNbt9+m/fe+x63bv2Qvr47zM6OsrFhIC4ulqKiatbXDVRW+mcTIoUncn+BmZkhOjo+DMmx7jF4/4aM0xSh2O02trc3iYmREh0tOnxEIZVKiI6WIECVEBBCE3HWX/w7Bgc7qalpjqjZyWo1I5crEYvFJCQk09r6HFFRMu7fv47ZvCH4uVBFSx7yzODrZWFhJZubBra21oM2GbkRsZeR6839T08Po9U+0pA/mgRjjSuI3G5PG/lnP+thiYoQT90KHx+vxG7f5e7dd5DJEmhreyGiNFpAxpeYWIZ/5gssL8+Tnu5ZaR6nnFIikaBSZfDBBz9AoYhDJBIRExNDTEys95GcnIRMlo1MJic2ViFo0CJRFMvLMyiV9WH9vmDbXYNhEYUiiaSkFMbGuhkedpGZmU92tsanpn5ra53oaElA9yHS8tatLRO9ve2o1UU+Uekj5OQUcPfuDbKy8sKKTQi2EK8uodWWRRyx3t62EBf3KHUmkUioqTnD4uIc3d03ycsrJ/+ExkE47t7+/j5Kpb8Pf/L6uH/q1+iJS6ZN6H7L0PCd3/tbDg52aGi4zNaGEbvd7iPlHXB3YLN5WKIiXOVFj9vVGgkaGxvd3d3Bywy7uwf44INpSksb/PTLg8HhcBy2hlpQvfd31P3Dn6PYMGJOSOHeiz/P4vmXcDoP2N3d5tKlV0h597sBqaDCqbACuHfvOpmZeWRn5z/W6mw2b9Lbe5uLF18OuU0N5AcejXm25Srd3bd9+Nq2tkwsLupYXV1CoUgkMzMPmSyGgYGHbG+vUVJSR3Z2aGluIej184yMdFNWFlxpd2ZmCr1+OqCQxElUvqQNaBjbyemsfeG/Rlxn//Dhh+TmlgQMflksZvr7O5DLY6mubvVeR6Ex7GVoGP7RHE6nkxs3vkt1dQu5uYXe14Wuz41P/grZ2YVUvvbFgNdu/epn6Om5S1SUx1VQqXLJz39Up1HfJPas7CchEoFAGbFIJOpxu91+ee2nboWPi5NTW9siWO5ps+2wvW3Gat1mZ8eCzWZhZ2ebgwMHsbEK4uIU2C+8iEIhp+xv/oSEtWWe/ej7LJfVs3ntVbq62pmc7Kf0MRo1VleXcDrdaLXFj02ZlJCQhFQah9G4FDJlFWy7+/0YOWVljT6BRE9OWEVFRROrq4tMTAywvm6kufkZ4uOTWF6ep6+vA7HYw76qVueHXfY6MTHI0tIM9fUXgxYiAeTnF6HXLzA7OxawkOg4Au3QHBIpzvxy8v7Dz3kZjMMNstpsO8jlgTsGlcoEWlufY3S0j46O69TWniMxURXU3TObN+jvv0tMTAIrK3M+Bi90fS5/8Hd88yvfIl5AX0AM1NW1cu/e+2xsGKmvv+hzDKHdKME4IgXw1Bl8dLQUsTgKs3kTq9XiY9g22zZRUVHExSmQy+OJi1OSnp5JfHyiz/Y06frraP7yKwG3ZFWXP8m9ezc8xnVKOuDp6SHy88ufGD9adnYei4u6kAYfbLubnp4vuMqKxWIyMzWYzRbS0tTeHL9SmUhZWQ0mk5Hl5Xnu3/8AuTz20PgLAkawPcqvHdhsO7S0PBe2P11V1cjDhx+QmakJmok46VJYElKYrzpHVfsbfl2RoYKsTqcTu303aIuwh1++ieXleXp67qDVllApYGC2lAy6um5RUlKPWp3LnTvvsLq65OVrEJR8NukRiZwMV7ex+aM5wXFoNHnIZHK/bEagSRC53BO4ixBPncFbLBa6uu4TGytHLo9HLo8nJSUVrbYQhSIxrO1zqAh8YWEtw8OdtLZei9hoj1Z3tfrJSP8AqNVaJicHvKowQhCa6a3JaZybHyL7y68E3a1sba15NeKOQ6VKQ6VKw+VqwGhcYWVlAZ3ubRISEsjI8PQTuFxOFhammZ4e5uDAzbVrn46I3EGpTCAnp4SRkU6amvxVZ45j89qrDFQ0MzU1RFPTZVp/piZgCzQED7Lu7FiIjVWEdY3Vag0JCcn093dw92M/y6XXv0HU3qN7aF8aQ/u1n6e5+TnvBFJcXM3ERL/X4IPFhYqKahgd7SczM0dwPHt79oCdhEfXMfMwSi/6lxSlj4+P58yZK1y8+DJNTZepqGhEoykiOTktbF85VAReo8knOlrB1NRgwPcFg043/ERXd/DM7unpuczN+VffHUegCPp+dAzWS6+g/fqvBK2Oc7lcWCybJCYKp8fEYjEZGdnU17dy5corZGUVsrqq5/r17/Luu/+AzWanouIsCkXcqX5/UVE5Ntsey8uzQd+3vDzL1NQQjY0XUSoTghp1sCCr1Wr2CdgFQ9L112n+6Sp+8wvXOPvG/8dg/QV207Jxi0SYE1VMt73M5fe/y4XLCd6ofVZWLlFRMczPexSDg2U40tOziY2VMTcnrB5jt+8QGxt4wt+89iq3//oO5o0NmJs7lbHDU2jwIpHosY0pWGruCFVVjSwtzQRNzZzE2toKe3vOJ7q6HyE3Nx+9fi5oL/fJNk5zoorJ3/lvJHe8G7JMc3vbTExMdNiFJhKJhJwcLWfOXCA+XklLy/PU1p5BoylAKpVjFND9CwaxWExFRSPj432CWvUevbc+GhrOe+MRQtfTDdx78ecE6Z6tVjOxsaEN/mQ5sWLdQFXvbX7U+iJf+73/w9wv/y7FHW8TY1jwm1BLSmqYmRnx1OGHaLPVaksZH+9hdXUZvX4enW6E4eEuurtvc/fuO4yNDbK5+fiaLsHw1Bn8k0A4uWS5PI6CgmqGhzvDJkyYnn7yq/sREhNTiI6ODWlIm9depft74/zJH32f23/djf0nPhtWTcHGhon4eP+0WKh8s9m8gUgURVpapve57Ox8FhdPp3OmUqWRmprD2Ji/bsnq6hIjI93U11/wqZEPdD3diDB86rPoL/8UHR3vMjzc5TOJ2O125uYmOTjYDzmmQC6gZG+XF+78kJKSakr/5o8FJ1SVKg2FIsVLbHJE4NHd6eTu/+6mt7Sevr673Lz5BoODnezsmLl580csLS2wu2tHJlOQmamlvPwM1659mp0dKwMD9x6LGisYnjof/kkg3FyyVluIXr/A9PQwxcXVgQ7lxdqaHrvdEVGqMNJa/YMDJzdu/AOlpVUkJaWRkpJBcnKazwTjcrno67vjE6QLp6Zgc3OdpCTfRpNw8s0rK3OkpvpSPWdlacKKOQihtLSG9vZ3MJkMXg73tbUVhoY6qa097xf1D3Y9S/Fcx/HxYe7ceYu8vFKioiRMT4+QnJyBwTCPRlMQtAxaaMJUbBiJiYkNOaGWlFTT0XGD6GjpYWp4A4tlC6k0joSEFJKTM8jPryA+PoHR0R6kUjnFxYGzFWfPXmZg4AEPH35Eff2Fxy7IOol/kQYP4QvyVVU18eDBe2Rk5AalENLphsjPLw17dY+0Vt9i2cJqNZOZmYtGU8b6uonx8X52d63Exyce0hVnsLQ0g0Qio6zskYhkOMKQ29vrFBQU+3xnOOXFRuMSVVWtPu+Jjo4mLS2X+flJSkpqI57YpFIp5eUNjI4+5Ny5F9nYMDIw4OF+E+LqC3Y9ZTI5tbVnWF3Npr39BgkJiTQ2XiQpKYXFRQ/rbkvLs4KTk9CEuZ2UikQSHXJCVSoTEImkTE2NkZ2dT15eJUlJqoDGajabKC6uC3puGhraGBrq4cGDd2lsvHyq/goh/Ivc0kcCDzNoJcPDDwS3USaTgd1dOzk5wbuzjiMSUQWXy8XQ0H3KypqQyeKIjo6msrKOtrYXOH/+JTSaEhyOffr7HzA01E1Bga9bEcp3tNvt7O3t+kWAQ61cZvMGLhcB8+waTT4rK7Nht9OeRGZmDvv7It566zu8997fs7e3z8LCNJOTI6ytGQR9fCEsL88zNPSAyspannnmE97dTE5OAVlZufT03BOkFhNyATte+tdER0tDuohm8yYSiZsrVz5OaWkV6elZAY3dw/SzTVJS8LoFD51YE5mZhXR2fvBERSn+xa7wR/CQXrhwuZx+fx8cOHG7XchkUjY3PeqiVVXNfqv4aSLzkdTq63SjiMUx5OcX4Xa7WFiY9G51ZTIZmZk5h40UDczNTfDgwYeUlNSi0RR4U2PBVsCtLRNKpdJv/KFWrkDb+eOreVNiKjFOx6k53aOj4cyZZ8nKysFqtbC5ucbWlompqUWsVot3S6xUesqFlcpEv1Sgw+FgeLgbq9VEfX1bwCadkpJadnbuMDDwIGDDk5DLMCpPpE4iDeki6nQT5OQU+pzfQLse3dnniI2NDzudecRc3NNzm4qKJqKiwvpYUDx1Br+3t8fc3BLx8ascHBzgdrsODfUAl8vJwYEbt/vg0FjdOJ0H3v+7XOByHRm15yESiYiKkiASRREVJUYsjkIsjiIqKgqxWExUlASxOAqVKhOj0cjNmz9Erc5Hqy1GJpOzsWHEZrNFtLpD+LX6FssW8/MTNDd7uPLUag0zM0M+vfLHodWWsLAww8zMIDMzw6Sm5pCdrQ1KW726qg/IzhLKFVhZmaeu7lHf/0k3RblpRKgwO1QTktm8idPpJivLM6EoFEoUCqVX+fcojWg2m9jcNKHX67DZrMTGKklISCEhIQmRKAqdboiUlLSQzDa1tW1BeQADTZjOD3/owy8QaAKz2XZYX1+msvLj3ueE3LnVX/qPJNZficgFUqs1xMTEMjDQQUqKAghM+BEunjqDNxgMjI0NkZdXTnx8IlFREqKjow8N1POQSDzG6jFcideQPSSHUYAYiURyKmE+s3mT+flp7ty5TkpKCtvbW2g0FRFH5sPxq4+28gUF1d5iDplMRkpKFouL0xQVBSZh3N/f49w5T9HQwsI0IyMPcLnEZGVpycnJ86l+MxiWWFz05Im3t99EpcokLU1NSkqG4Mo123KV4bvXMRiWcTj2vMcK5KYIFcSEakLS62cDCkoeQSwWe2WYjoQvnU4nZvM6W1sm1tdXGBnp57nnPhEWi84RD+D9++8SFxcXsADpJA4O9pFIggfNZmYmyczM8dnCC7lzlf/nG0RFSdH8z38fEQ+Dh578Gbq732Nvby/ge8LFU2fwGo2GyspYjMZFSkurHouE8DRISEiiurqJ0tIalpbmmZoap7n5asTHCSdTMDMzSlRUjFdj/Qi5uYWMjDwIaPB2uw23+8AbyCkurqa4uJqNDSNLSzo6Om6gUCSRmanF6dxnbm6E1tZnSU5OY2trndVVPZOTw9hsHSQmppBW3oj+e6PIZHLsdjuTk30Yu+9QWFhNSUktg4P3iY297Kn5D9Liedzww+F01+sXqasLn08APLUBKSnpXppxk2kVlSo0xfYRZDIZDQ0XefjQwwMYrPPOs0M8CLpoOBwOVldnaWnxZTIOFvWv+u43TuUCKRTxVFTUEhNzeoo2eAoNHiAnJw+VKoOentuHkdsnR+IXLqRSKfn5RaytLbG+bgiLY+4kgvnVR+SbR1v54/BszyWsra1Q3H3TZ9IYefW3UAZoQElOTiM5OY2DgwMMhgVmZsbR6+e4du1niI/3aLkdrZglJZXY7XZWV1cwmVYOpbckbG9b0GrLaWv7mNedKCysprf3Hi0tzwrryMnjiVImhx2l39gwAlGCfHThQiQSR5yvVioTqalpYXCwg6amZwT1BPf394mKCm4eCwu6QzFS3yi60HmyJKagXAtcZxGurNXj4qk0eOCw5jiK/v57VFWd9RGU/HEiMTGV8fFBEhJUQZswIsXAQAd5eZWCx8zOLkD6vf8Xzet/6rP9q37ty8jPv0Te7/1iQAOLiopCrc4jJiaOqCiR19hPQiaTodHko9Hk43K5GBzsJD4+haqqBh8fszI9l65P/BI90lgyPv8HaL/+K35uyu1PfQ73Z34z7Gu0sjJHRsYTkE0Si3G5nHjUyj0Ixz9OTc2isLCKW7feIju7wEvQ4elA9VBSOJ37bG6asFi2fNK1LpcLh8PO3p6D2dlRmpp8O9sgsDvnjIml65O/wvnr//uxBTMfB0+twQOkp2chkVygv78dp3M/4lU20vxwIOzu2nC5HHR2vo9UGnfYSZZ7KonpI+h0I0C0V6wg0JjrVxdwI0Ls9l3BJA47JR9+P2Sb6MGBU3CFCnReksob2dw0Bww4tXz7P7P+8X/D39c9y8tf+AaFf/V1n8/ulJ5hY2k6LIN3uVysri6FbKARGqev8GaUzwofSe1DXJwnWp6cnHRo8L4xGrFYjEwm5/7993E4HMTFxeN07uFyuQ7jQ9FsbhqxWMx+bmcgd67zlV/EeOGTLOeXhYztBMLGhomVlSX29h4vJ/9UGzxASkoqjY2X6e6+zf6+A602PNreJ6H5bbfbMBoXuHDh40ilUtbXDSwvz9LRMYpcnnCoTKOOqNrMarUwOzvOmTPPhhyzSCAGfvL5QD6gy3WASOSfxxE6L5uf/xqmkkbBgNOl9/+O7Zf/DW+vHJD8+39LSUmVd9JTOxxMTw+GVXm3vm4gJkYeUpo7vOsn8jH4SHgKp6eHDxuzhIN3OTkFh5maFaqrW5BIpD7BOQ95yT22tzf91IFOunP9925QmJgcEaOQ3W5jcXEevX6OgwMHycnxj8XDB2EU3ohEom+JRCKjSCTyE8cSiUS/IxKJ3CKR6J80spaQkERT02VmZycOV8fQiKTwRQhzc9NkZKiRyWSIxWJSU7OorT3HlSufJD+/mM1NPe3t79DZeZP5+emwikWGhx+g1ZYHvOHDIToUwkkf0OkMHHASOi9lf/Mn7O/vC/qSyq01fuqLn+QTtm1iYiR0dNxgdHQAh8OBVColNTWHhYXpkONcXg4enQ81zuPXz7Olf2Tw4dY+bGwY2d0NL9XqdDpJSkpFLvenKUtISKKl5VnMZjNdXR8JXn+Xy8XOjsVbcBNMMNMjfLpIV1c77e3vYLWuU15ey+XLr5CVpXnsPo5wPv1t4IWTT4pEohzgOeDHEm1QKhM4e/YZFhdnmZjoD/n+x9X89kj0TpOfH1jqKSMjl/r6C1y+/Amys7UYjYvcuvUmXV13WFycC1jVNTHRj9PpFhQXCGdsQnnvkz6gy+UMeHMIkzSscHCwL+hLivCssgV/9HnOzU/Q2nqVvb1t2tvfYWZmiuxsbci2V4/wg4HsbG3Q9wUb5/HnRSIxbveB9//hdEmCx6XKzS0Jy3j29x1BxUtkMhnNzZeRShU8ePBuwM49i2UDmSw+aF282bzJ8HAfN2++yezsCGlpaVy8+DJ1dW2oVJmCn4sUIX+x2+2+AwTqIf0G8CWE78EnDrk8jubmK6yu6hkefhj0veFefCHMz+tISkoKSfkkkUhQq/NoarrMpUsvk5aWiV6v4+bNN+juvotev8j6+ioPH37I8HAPVusWw8M9AdVrhMbmEotxi0RYUzKZfPanwmKVdToPAt7QQt9hT1XjdO4HLCM9jqNVVi5XUFfXRkNDG0bjLCMj3dhsu6ytrQh+1mhcQi5PCCv+Ec71Ozhwsr6+ys7ONi6XK6wuSbN5A7PZjEZTEHIMAE7nXshcvKcU9gxqdTH377+HyeTLGLy+vopS6Z+RcDgczM5Oce/ee3R330QsPqCp6RKtrS+g0ZQ88cYZOGUtvUgkehlYdrvdIXV5RSLRZ0UiUbdIJOpeW1s7zdf5QCaT09z8DGazOWgb4eNofnskeifIywvOv3YSUqkUjaaIM2ee4fz5F1GpVOh0A7z33g9IScnmlVd+gQsXXkQqjaav7w537lxHp3skSRRwzDFy3vrJX6ej3cZf/+7foPvCn4YlbexyHQQM2gmdl9Gf/SKLizreSUzno5/+bbYSUsKqoktMVNHc/DwlJZWIxW66u28J1qyvrMwFFAgNhGDXb2PDyODgfSYnB1hY0PHw4U3ee+8f+EdZHB/8q99gOzkdNyJ2VFkM/8YfsXzxFe99Mj09iFZbEnZR1v7+ftjyZAUFJVRWNtPf38Hc3IT3ebN5naSkR63Jq6sr9PZ2HIqTLlNYWM7ly5+gvLzxiWjAB0PEQTuRSCQHvgoI6yYfg9vt/ibwTfCw1kb6fYEglUo5e/Yy3d136O29Q339Bb/VLFK65eNYXl4gJkYatnhCIMhkMrTaUjIyctndveGNyEskCkpLayktrWVtbYXFxWl0uiGSkzPIqb8MX/km6v/uO+a1jAJsC1NYLFskJKjC6gR0uVxEBSi+DnReJn/h3/JBUhoXS6qRyeSsq9L4HyU1fP6PP48yACFDoNU3IyOX559X09t7n76+2zQ0XPa5Jk6nE5PJSHn5mbDO38lx7qVl0/sTv8oDeTwMdZGZqaW0tJ7S0mrS07NxuVzEvfFX5N14HdmmkZ2UDB6+8suM5pay++AjHI5doqLEmM0WXn651e/7hDICTuce0dHhr7Tp6VnExj5DT087OzsWysoasFi2yMrKZ2xsCINhluhoCZmZGsrL60+tfHNanCZKXwDkAQOH+ctsoFckEp1xu93B1Q+eICQSCY2NF+jru093903q6y/6zdrhtsiexPz8BIWFT0bmRyqVcXCwj8vl8puUUlOzSE3NwuFwsLysY2qqn9HYeDL+y1toNPnerW+OyUhX14fExsaFfYM4nQeCQgnHz4vZvElX100qKxvJyMj1ufH34pQ4oyRIDh6t2MF2SVFRUTQ0tNLTc4+enls0NFzy/maDYQGlUhXRDb723KcZrGxmeXmWnR0Lqak5VGXnebv33G43RuMy6enZHtrx//qb3kCfYl3Pxdf/C1ptEZvXXsXlcmE0LjM62ue3VQ6WEdiXKb19COGmeZXKBFpanqW/v4Pbt3/I4uIiTuc+6enZ1Ne3RaQd+KQR8Zbe7XYPud3uNLfbrXW73VpgCaj/cRr7ESQSCQ0N55BI5Dx8+EHELZWBsLZmwOXaeyIqp+Dx72JiYrDZdgTfI5VKycsro63tY9TVteJ02ujouEFn500WF+dITExmf9/NwUH4v8/lcgZc4Y/DYjHT3X2bsrI6r7Efb3WVWc2IEbEbp8SNiN207JC8/WKxmIaGc7jd0fT03PJupfX6eTIzwzunJpOBgYF7fPTRD1leXiQ7u5CLF1+murrJp1XXoxe3CoSO6ovFYhSKBAKJ4AT7rNPpQCKRRtwGLJPJOHPmEvv7boqLa7hy5ZNUVZ0VNPZQzENPCuGk5b4L3AdKRCLRkkgk+sV/kpGcEp6miBbi4lK4efMHfgGTSKHTjXubNZ4UYmJk7O4KG/xxJCaqqKo6y6VLr6BWa1henubWrTcRiaJISgrfxQhVB26z7dDTc5uCgjJvQVOgG198sI84Pom33tDx2m//ObfVxSEnVrFYTGPjOUBCb+8d7HY7W1vrZGYKF+bYbFYmJvq5desNRkZ6iY1N5MKFj9HcfInsbC0SicTPKPLu38DpdHpaaUNE9R0OB5uba5jNW4LvCfT8wYETqVQacZrXbrcxOdnP5uYqKlVG0IzAaTkFToOQW3q32/2ZEK9rn9hoHgNxcQr2950MDXUjlUaRn18edoDoCGbzJl171U4AACAASURBVDs7G+TkXHiiY5PJ5Nhswvl1oa1idnY+2dn52GxWhoa6WV1dEmybPYmDAydiceDLa7fb6Oy8SW5ugU8hU7AbX63OIzVVzdhYF+3t71BaWhdUbUYsFlNX10pPz13efvt1Dg7cDAx0IpcrkMsVKBTxxMTEYjabfLbs1dXnAhJuCG27m179EmsFZYL167aUDDo6PsBq3UCpTEQsdvkp/wp9di8t29tGHUmOf25uHJNpjYwMDVVVzWxurgGlgufqtMKmp8FTX2kXDmy2HebmRrl06ePI5Qr0+kWmp8eZmhpAoykhJ6corJyrTjfmR2QQCuH4dTExcvb2dgU/H6qiTC5XcPbsJUZGBujvv0NDw2X29uzY7bvs7trY29tlb8/O3t7R3570mMWyRWamBolEgt1uP+RbMzM21k9OjsZPBSZUD79UKqWm5hwmk4GRkYesrCxQUVEvmGaTSCSkpqpZX1+huflZdnd32NnZxmIxotfPsLamx+E4oLr6LI2Nl4LuSISMovnN/8VfN7R56tf/4JeJOnae3cBCVSsFBaWkpGQgkUgYG+tlYWHGR2FXqJV55pf+kzclF+zcuFwulpdnWViYxOE4IDu7wCsQ6nA4uHnzDW+BUiA8bs1IJPhnZfBCxjU42EVOTpE3Z65Wa1CrNaytGZicHOL+/Q/JyysmNjbuUNxCcfhQei+CzbbDxobeh8ggnPGEU74bGyvHag28pY9kdi8rq+L69XHeeus7JCWlIJXGIpPJkEplxMbGoVRmIJPFEhurQCKRMjrazQ9+8B0SExMAN3J5HDJZHHJ5DHr9Avv7LrTaQu+KGk4PP4BKlcH58y8xNTXI/fs30Gorycvzn1TtdjszM0O0tj4fsM3Z5XIxOzvG7Ow4Tuc+RUUVERtFrGmFhYVZvp+cypW6C9Q/eNfbqisCiu9fJ6b3k95zqdF4cuVOZ40PW9DRtTh+by2fvUr06EPhcxMTS9cnP0vHzR8SF5dIfn4l6elqn/NwZPS3bv2IurpzpKam+/2GxxE2jRT/bAxeyLjW19dw5BZSVOS/DU9JSUMiiaakpIbMTA07Ozvs7trY2lrEZrNit1sPg2qxmM1bqFSpERU7hGussbFxrK8HrkGIZHY3GleIi5Nx9epPhJVHrq9vw2hcpqHhvF+K0W63s7g4xcBAO1KpgtzcIlxXP+P9XaEi0WKxmJKSWjIztYyMdGIwLFBR0UBi4qOg1NiYR2lFiNNALBZTUFCBWp3H6Ggv7e3vUFxcG5AZONi2OyYmhvr6Nir/9P8OKUflcSeU6PVLPt8TKKOzv7riXeFPTgrWpDQ+evbTmBqepTGvSJAV1263ERMTQ2lpNcPDHcTHp1JaWuPTJRnuRPsk8NQZvMvlYnvb4neTCBlX8be/ztbfDwfcho+NDeF2O6ip8c/TH8Fut2OzWbl580esrCwyMHCPoqKasJhCwzXW2Ng4dncD+/Dhzu4Oh4OxsV7KyxsiYvKJj08KWJwkk8koKqqioKCC1dVF5uYmmJjoR62tJu+QECMcKJWJtLRcZW5ugu7um2Rk5FNaWsXmpomtLT3nz4feMclkcurr29jYMDIy0sXioo6KinofIxIyirGf/SIqVTqJiSlhX4/s7AIWF3UhKccdDoe3WcXlcjFc3co7X/0f2O0O1OoCcnMLyA4RT9Hrl1Gp0sjNLSQrS8v09DCdne+RkVFIUVEZUmlozrwniaeOtXZra5OxsW5GRgbCaoxQbq3x7NUMv1SGXr+I0ThDba2wsYPnxk9OVpGYmMjly68gkSjo6HiXoaFO7CEaWcIt35XJFOztBT5WuBWBY2MDJCWlRMwLEBurCJohOBKabGl5/jCNZKW9/R16eu5iMoWvgqLVltDW9jFvfX13dztlZZFNTsnJaZw7d42MjCy6uj5iaKjHmxEQYuYdrbuEUunZVYR7PTIzNVitW1gs5qDjcTr3ATeTk4Pcvv0m8/Mz5OaWcfHiSxQXV5B58/shU2lG4xLp6Z5mIYlEQmlpLefOXcPh8JynublpXC5X0IaaJ4mnzuCTk1OoqWnFZlvn7t13MZs3AeGLKQK/VIbVus3oaBc1NefCimgf0UYlJaVQUVFDW9s1QMK9e9cZHe0WTEOFa6wymQyX6yBgyWkoimkAk8mIybRIeXlTyN9yEjExcdhs22G9V6lMpLq6hYsXXyYxMYnh4fvcvfsu8/MzguWyxyGTxdLQcIHk5FSioiSnqmUQi8Xk55fR1vYibrfDaxQQuMvMbDaRkuJxV8K9HkfNT4uLc0HHsra2wszMFDs7NurqztPa+gxqtadjLZxUmsPhwGxe9xr8o/Mk9/YhrKxMc/fuu6yt/XjKWJ46gwdP3rqp6Qq5ufl0d3+ETjcRsqkDjvy1r9Dbe5f8/LKwS2M3N9dRKB61q8pkcqqqGmhpeQGHw0V7+1uMjw/43fThGOsRpFKZYPFNsNnd6XQyMtJNeXnDqZop5HI5drvwCh+o4EMqlVJQUMGlS69QWFiGXj/DrVtvMjo6ELSA6AhW6xbV1ZFPTschk8morm6hoaGN5eUp7t17n81N/4Yji2XDK5AZyfXIzS3CYJgV7MWwWi2YzWs899xPUlfX7EfHFU5eXq9fIikpRXCXk5ioorX1BQoKShkZ6aSrqx2rNbzJ+bR46nz449BqS1CpMhkYuMf1pCye+eJfkPe/fhepYQGPupg/pIbFQ3GJsrC/x2zeClgBJZfHUVt7BoulhOnpEW7ffhOttgSNpoRw+OCP4NG532R5eQalUlh1JBAmJkZQKOQR1xQcITY2FqPx9CnBjIxcMjJyvXTad+9eJykpHa22KCAJpNm8gcOxT1pa+OSSwZCYqOLcuWv/f3tvHtZWft/7v44QQggBQogdse+rwYDxbs/YnvFkxknapG3q9qZN27RNbtukvfd2mV/XJ0nTtPe2vW1/v3b6a27aJk2XpMlMJjOZxeMFG2N2MPsudrFKAoQQQuf+IZAR2oGZsTO8n8cP+CAdfc/R+Xw/+/uDTjdIS8tt4uJSyc8vQy6XYzIZCQ11HZAZaDl1VJQKhUKOXj+1zfnvio6OerKySlGpPAfjAokXzM9PER/v3wVLSckkIUHLyEjPtn+f5TNjcRA8lhoeHmmecxdV/OIf/xLHeu7zckQ03/nz7/OVL/8HGwmeSRQsCiX/5feuB1WiuLKy5JNQMSoqmsrKU1RVXWRxcZG6ulfR6fr9EigajUu0tNyhoeFttNpC5udnefDgbVZXTX7XBGAwLDI7O0RxseeGk0DKMcPDI7zGIoKpHouKUm1XAF4jNlZDb28jd+68jk435GL5jI31k5ycdegDN9PTczl37nkkEpF79xw9+MvL8wfqLktOzmZycsTt+PBwN4IQSlZWnod3OeAvXmCz2VhamnMz5719Z1KplLy8Mk6fvsrmppk7d77PyMjgoQ+VfCwFPuHGt/b4R+PUfvWLPLesp6vrAWp1ItP/9Y/dTHxbiJSwDYvHsb6+YDItER3tn0E1OjqGmppzlJefYWZmitu3v+dxiqrBsEBz8zs0Nd0iMjKWc+ee59ixGs6ceYaYmCQaGt6iv7/T65dpNq/S09PMW299h9DQMI8R80DLMcPDI9jYsHj8nP0UfDjYfAs5d+4a+fmlzM1NcPv2K3R1tWE0LqPXT6HVBs/wu/u6vG1iMpmM0lJHkc7c3ChNTXUoFIHNf/eElJRMTKYFFzdlh4KspKTKSW7pCf7iBXr9FFFR0S7WRyDfmWNO3mmqq88zNzfK3btvoNd75xgIFo+lwGf/wxc9p+D+8U84efISZvOqh1npcWwplEj2jAf2R2tlNq8hivagBvap1Rpqa5+ipOQE4+Mj3LnzKjMzOhYWZmloeJu2tnpiYlK4cOEaeXmPTDOJREJeXjGnTj2L0Wigru5Vl9r/+flpmptvUl//Jna7wOXLHyUkJJzW1rtum0Og2tnx2SHOnvvdOChJSEJCKtXVFzlx4hJg49atl5FK5fsm+Ax0E4uOVlNbe4WcnFyPtfGBQiqVotEkMzHxiKnHFwXZbviLF+j1UyQkpLi8JxiLaucac3OL6OlporHxTkDxE394LH14+fyUx+My/TiJiWn09bU5UkZXr7P4zCdoaLhJbKyaT/zUca/v8wajccklYBcM4uISiYtLZHZ2kpaWOux2kbKyGrRa3yatQhFBTc05pqZ0dHQ0IJeHbY/OCkGrzaWs7LRzkzhx4jzNzXdpa7tDRcWjFGMw2tlh1q+6ZSwOq+BDqYyipKQaqTQUm23/JmiwNeUlJbXcuvWKx1HYgSIjI5/W1rvk5hYxNtbP1pbglYJsL7zFC4xGAyMjPTz11DWX4/uxqJKS0p3+/dhYL+vrcahU+3djHksNb4lL8Xh8R/NotTlOwsTe3g5CQyE/v2JfGstoNLhUh3mDL1MzMTGVpKQUyspqSU8PvBY/JSWds2efY35+joyMEs6ff46srFyXYI1UKqWm5hx2ewiNje84/eVAr9VsXsVgWPRIMBlMVDsQbG0Fzg7jCcEKhENDJ3Dnzut0dDSh041gNC4H5fdGR6sJDZWi0w0yOtpDaWnNvuMPdrudoaFemppukJycSWtr3TaPYXDf2V5IJBJyckooLKwgPDx8X2tznutA736XMPxzL/r0j7TaXBYXpxke7mNubpzS0tPA/mitVlb8+++BmJoONprgLQWZTEZERATx8d6JCnd6zGUypbPv39+1Oh6+Lurr3yAjo4Dl5UW6u5vchOEwCj4cTKs6xsYG2Nz0n6/3hmAFYnZ2nMVFPeXlNUREhLO4OEl7ex1vv/1t7t17k87OJnS6IQyGRa+bgN1uJzIyhjt3XkerLfBrynuDyWSkoeEmc3M6amsvc+rU05w69SwrK6vcvft9ZmfHD0S7BviMKQSKx9Kk1z/9MRSKSK+lhjKZDLU6jra2e1y69GGnqbqfEkWDYZHiYs+uwA78mZo2mw2r1UJUlOcUji/Y7XaWl5f8ahVH338tHR1NNDa+RdXFH3Wube+1Li3N0dXVSFiYktraKyiVkVgsFtra6mlpuUVFxbl9DdrcC8c8uxHm5qYID1eh1eYyN6cjP794X+cPxsWYnR2nu7uZiopzbu20m5ubGI2LGI2LLC3NotP1YbGYUSiiUCrVyOXh2O0bGI1LrK6akErlKJUKzOZVj8xEvrC6ukJ/fzdTU4MUF1e6dCAqFBFUVZ1Br5+mr6+d8dhEzv/GX5L9D19410toveGxFHjwn0+Ni0tmfd3icepHoDfQbF5DEES/ATt/pubCwiyCEOr2oATSOqvXTyGVSmhquk1V1Tm/wwLLy6vp7u7gwYM3OXHxoy7ns1gs9HfcY2Fh3q0JRS6Xc+LEBdrbG2loeIOqqotBDdDYwdraCpOTw8zOjjsn1u5sKgAtLbcYGuqhoKAs6HMHumHPzo7T1dVMZaW7sAOEhoai0SS6zCS02WyYTEssLMzS3n6X3NzjZGYWoVI5aLesViutrXdoablHRcVJnxuWzWZjamqcqalRzGYDanU8CoWcrS3Pr09ISCYuLpGhoV5eXTGQ8mf/SU5O2aFsusHisRV4f5DJwjzOPA8GRuNSQHlc7w0uWoaH+xgcbGdjw+oyeSXQ1lmdbpjq6ouYTEs8ePAONTXnXQTR06ZRfPU6AwNSGhreoqrqIkplFDrdIENDD9FotJw9+5zHoo0dK2FwsJv799+gsvJ8QPxqVquVmZnR7Qfc7OCWKz3lUdgKC6u4f/8NUlMz9zWLz9eGbbfb6e1to7OzgWee+XGPn+8NjrFS8czNTZKTU05FhWttg0wmo6bmKdrb79LYeJuqqrNu93BhYY6pqTH0+gliYtRkZuaQkKBFIpFgsZhpbHyHzU0rxcWO4qq9313sZ79I6vmP0NvbRl3d9ygoqNx3QdV+8cQKfEiIdHuQ4P5hNBoCMsO99ULfvPwJ5ufHOXPmOXS6AXp7O6moqAUCizibTEZWVxdJSTmHVptNf387DQ3vUFV1HqUy0uemkXf1OqGhMu7ff3PbpQn1aN56Qm5uMQqFkubmmxQXV3useXfMgJtgenqUxcUFYmMTycwsduv33guFQolWm0tPTxs1NYfHHKTXT9Lb20JEhHp7RHTw2QCzeZXJyVFOnXKbqwLsbIjn6O5uoqHhBlVV55BIBMbHHZudRGInJSWLc+euullHcrmCmppLtLTcpKOjkfNTA6TvGry5+7tTXL3O/PwsPT2tjI8PUlj47tNT7+CJFfj9jAreC6NxgbQ0/+OG9pqa5thE3nn641he+CS1WY4S3tzcMurqXmVpaQG1WuPXDTAal2lvbyQ+/pEA5ecfQyYLo7HxJsePn6XEz6aRmZnLzMwkUqmw/XA6zhOIK5GSkk54eAStrXdZW1tx+p5LS3NMTAwzPz9NeLiK1NR0SktPBVXmmZNTwje/+VesrCyQlpZHcnI6ERH7m7xrNq/S3d3I6qqZwsLjJCamMjTUi043EDSNeF9fK6mpuX7rBIqLqxkc7OK11/6ViIgIkpK0lJfX+P08h9t0mebmW8T/xX/z+d3FxSVy9uyzjIz009T0DomJaeTnH3vXzfwnVuClUil2uxenKUCYTMsBVdiBQ+iHTzxDV1cT4eEyLkzryPzVqy5ClVNUQ29vG6dPX/bqBqypE7l583uAyPq6ya0qLTOzkJAQGc3Nt7kYQJpKIrGTnp7vIuyBDtF0FBA9TWtrHZOTjopBT355sNjYWCchQUtZ2SnGx4epr3+JpKQ0IiNVzn/R0TFERsZ4Zda12+0MDnYxMTGIVptPRUWBUxhSUzO5c6c7YH4/cGxky8tLlJW5c9J7Qm5uCXNzs6SkaAMeYAqO5/LZpVmUS3qPf3f97iTk5BSSmppOT087dXWvkpdXHvSU5GDwxAq8IEjY8hYlCQCBBuzAEaTp73cMEcjPP0bpw/uk/+mvuAvViy8xGaVGpxshxoMbsBkaRvvHP0tFxSlUqli6u5u3e64fIeb1b1CyrZ1FBI8TZHenqRzpwEd+eLDFK0plJDk5JbS13eXkyStB+cXesLQ0h0oV5yxMEoQtQkLkJCSkYDIZWFycR6cbwmJZISwsnMjIaJRKFVFRKqKjYzGZlunra0WhiPG48cjlcjSaZKamht14+byhr6+VnJySoDRofHwyo6M9pKUFxokI2xvul37RY2MXeE4xOghATrGwMEdPTwsTE4MUFdW8K2b+EyvwDh9+/yZ9oAE7vX6anp5WoqOjOH36OeRyOSm/9JRXoSr8p0bq699iPjGdxGs/z8W3/pXI5TlESQjSzQ2qv/v3TKVksHz1OnJ5OKurj87jaVy0CC4Pz+40ldm8hkSCiz+5n2quyckxSkqOH4qwA0xPj6NUPtqECgoqqa9/g/z8EhITHxVV2e12TCYDRqOB1VUjOt0wCwv1rK4aOH/+eRITvXeapaXl0N3dQNVAu1/3ZWpqlK0tApoWuxubm+uYTGs0Nt7g2LGzAVkTviYA+8u5azTxnDnzDKOjgzQ2vkNSkpbc3PJD7Zp7YgX+ICa93W6nr6+LlZV5WlruIpcrUSgiUCgiiIiIRKGIwGaz0dPTzvLy1Lbv+Ghn9iVUDj9PJDJSieZX/5iF0hoivJjY8rJTLC8/mtPp6WERALsgQUB0e6BNpmUiI10LRYIlRDSZjKysLFBZGZip6w9m8xo6XT9paY8m9ygUShIT0+jv76K8/FF0XCKRoFKpXSod7XY7t2+/6lMT71hBV2Z1sMsK8uS+2Gw2Bgc7KS4+EXQF3fz8FKdPX2Fubob791+nouKsV36+HXh7NkSg79f/EouflLGD5y+flBRXM1+rDWz4pT88sQIPkn0JvCPfepeICBmlpVfY2Fh3Uifr9Wusr1vY2FhncXGR1NR0Tp/+kNsO6ytNNzk5gtm8Qm5uGRKJxKeJPfxPjS701d4eFgGR//mVb5OWVuScUQcOYd3bBxBsffzY2AApKRmHFizq6WkjM7MAg2HB5XheXjl37nwPkynfZzWbg/GmhIGBdjQa92j6Xito7/Dive7L2FgfERFqj737vmAwLGC3O7SuRhOPShWzPbijxKdP75UfX5PMq1EaKreDuv4gl8uprKxlaWmB7u4WhoYeEhenYmvrYGb+Y1laGwikUimiGJxJbzav0dDwNhEREVRVXUSjSSQlJZO8vDLKy09TW3uFixevceXKx3n66RcQhC06O9257TyVSNpkct44/xEmJ8eIjo5Hr58AfFsDcrnC5dy+SktPnLjMxEQf/f1dzuMrK8sola4PQDD18RaLhdnZcTIyvA9JCAbz87OYTPOUl59CKpWwtPRI6GUyGRkZ+fT1+R04jFabweamndlZ93vny2R2ftb2PbdYLOh0/eTnB18END09RkLCoxx5cnIa1dWX0OmG6eioD3pqsf7XvkJxcQVtbbcDprOy2+2sr68RGipjeXmJpaXlgKjGfOGJFXiJJDgNbzAscv/+W6SkpFNa6tu8c3CeaTl16jkiIhTcu/cDdLpHfe/LV68z9D/+hjVNEiIC5vBIbDI5L/z7X/HzX/gUV5emGRx8CPgWYrlcwebmhvPh8VVrrVAoqa29jF4/SldXCyaTkdHRfo+z0gKtjx8fHyYuLmFfFXd7sVMUU1hYiVQqJT4+lenpCZfXZGUVsba26PeBd7QRlzI42OX2t0CGM+zc84GBNhISMvZVHz82NkhKiut3tzMk0mrd4v79NzCbV93e52vDTUpKp7z8FJ2d95iZmXB77w6MxmW6u1u5ceO7TEz0k5ys5dq1/0JhYZnfSkx/eKIFHoSAAnczMxM0N9+iqKgi4KguOKyIwsLjHD9+nvHxPhoabm5TLd3iO+FK/uVL36Lzv/81YeIW8lWDs7Gm7G9+i8K2u0xNjfoUYonEkWlYW3M8OP60s6O44zKDg5288853yMzMY2Cgm6ammywtBc4wC2xPSxkmM9O7dg9mwOHo6CChoSHOyrGkpDTm5yddXuNIQ5UxMPDQ7/octFMhTE2Nuhz311m2c2+NxiXm5mbIyXn0fQd6PVNToywvL3rMAslkMqqrzxIXl0Z9/ZvMz7uTU/jacDWaJI4fP09PT5OTnBMcrqZON8S9e2/R3HwTQbBz8uQlamuvkJaWc2gu1xPswzseIJvN5jOKOTzcz9hYN5WV7sMYAoVKFcvp01fp6Wmhvv4tamqedhajFPzeT3r00c/94Ov8XcUpkrwMd5i//OP0dN7HYlnn/v03iY9PcxQB+SgttdlsdHY2kZSkpaLiLGFhYdhstm0zswGFQkF2dolLDbk3zMxMEB4u9xqECiafb7FYGBvrpqrq4q57pgFEtzluWm02Ol0fU1M6n7PpAPLySunvbyYpKd1pkXmKUex48dbEdGdQs+/B22RmFjsj64Fej91uZ2Cgk7y8UoaHe1Grz3pZWzHR0TF0dDSSkZFDTk6Jz2vZDZVKw4kTl2hquoHBsIwobrGwMIVKpSY7O5/4+NRDpwjbwRMv8L7aHnt62lhcnOLkyStBMdp4+6ySkmrW1oyEhIQ4NxlfI5Ck0ggmJoaR7BFig2GBjnuvERmp4YUXfhq73cb4+BAdHXeRSsPRarNJTk5z2cisVivNzXXI5aEcO/aU84GQSqVkZ+eTmZnLxMQIDx82ExYmJTu7xCeH/djYgE+ih2Dy+f39ncTHp7hNX4mLS2J6etLteH5+BV1drSQlaZ2Uz55SawkJyYyMKJmYGHRO9PXUYNP+Y79CW2El1dWODccxdHODzMzcoK9nbKwfhSKaiorT3Lr1MiaT0atLkJCQTGTkZVpb72IwLHDs2JmANbEoisjlCoaHOykrO0Fh4XPI5b573aemJllbkx+IAOMJF/gQj368zWajtfU+dvs6J08+e6h5zNzcMjo6GkhLc7Da+EqD5eYW0939AK022ymgQ0Nd6HQD5OVV7upmk5GXV0ZeXhl6/STj44MMDnaQkODQ+jKZnObmO8TGaigu9kz/LJFISE/PQavNYmpqnL6+ToaGHnqcojs7O8n8/ARlZZ7JMSHwfL7BsMjCwiRnzz7v9trERC09PW0UFpa6HI+LS0ap7GV0dJCqgWafmjcvr5TOznukpGR7ZQq2WdaZeO1fEcV3sFotTEyMUVhY6TrjLYDrsdlsjI72OtuHU1IyGRnp59gx7/dJoYigtvZpurpaqa//AceOnfFZ32G1Whkc7GB2dgKtNp8TJy4HpM1XV1dYXtYTHl7q97W+8MT68PDIpN8Ni8XM/fs3kEoFamouHUjYPfl8anU8SmUEY2OOIJ4vHz0uLhG5PJKJicHtEc1vMzen58SJy17HHO3wxJ09exWZLJS2tju8/PI/k5iY6lXYd0MikaDVZnD+/HNkZBQxPNzHnTuvMjXl4GA3Gpfo7m5ErU7lwYMb3Lr1Cg8fOmbD7b6XgZJRdHe3kp3tmVJZo0nEal33OOElL6+C0dFukv/6d3zyvMXGxhERoUan63c7h91uR6cb4v79t4iNjUOj0VJUVMOzz/44i4vTLv51INczMtJDdHS8M22WmVnE3Ny43wlEUqmUY8dqSE8voKnpBjMz7grAbrczMtJLXd2rbG6KnD79LHl5xQGb7mNjQ0REKA9s6vvV8IIgfBV4HpgTRbFk+9ifAi8AVmAY+FlRFPfPJrgLjh1wHIVCSUiIFIlEQkiIFKk0BIlk52cIISFStrY2EcVHGt5oXKa1tY7kZEcjwkHgy+fLPfkMLS13SUvL9NvDnZdXRkPDGwwOdqHV5pObW+TypXkzZ+VyBQUFx9Bqc6ivf528vOB39p0purOzkwwP99Lf38rGhpWyslNO/9lgWGRubpaRkQE6OxuIilKj0SQi/9SLFPyvz/nM5+t0I9jtVp956fj4JGZnJ51m8e7rrY6JJyyAmvP8/FKam2+SlpZHaGgoNpuNiYkxxscHkMmklJfXusVnyspO0dFxj5qap4mKUvmtvJi8iQAAIABJREFUT7BarUxMDFJdfcn5d7lcTlKSluHhQYqLy/3e7/T0HCIjVXR01GM0LpKXdwyJRML8/DS9va2EhIRz/Ph5n5TonmCz2ZidHSUnJ7hKQU8QRNG9VtvlBYJwDlgF/mmXwF8B3hFF0SYIwp8AiKL4m/4+rKqqSmxubvb5mo6OHpqbl1AqVWxt2djasmG3b23/bnf+32azbXd0RZOSkkVkZDSDg+3k5paRnp4T4OV7R8nzGZ6nlSam0/XqGM3N76BSJZGT43vghc1m4+WXv86ZM1dISHAdzuBeROJ4CHdH5g2GRR4+fMDZs8+5nTuQrrjd6OhoYGPD6rVt1Wq1srioZ35+lsXFGfJbbnLhzW+iXJ5jI17L9H/9kktrb13d65w8+ZTPYKheP8nQUA+nT1/xeL17S4d3sHOfd9DSco+VFSNhYWGsrCyyvLxAdnYpVVWeg2rg0Iqjo92cPPkMcrnc6/0yGg00Nd1CKg3jwoWrLucwm1epr3+Tj66vkP53vx/Qvd5hF9ra2kAmk7K2tkFeXqnfIKU36HQjzM6OkJWVSW1tbEA+vCAILaIoVu097lfDi6J4RxCEjD3H3tz13wbgY35XECAiIiLIyIj3W8K4A5PJwOTkEPfvv0FNzflDEXbw7/Pl5h6jufkOGRm5PgM1ev0UKSnJbsIOgQWSNjY2PJrLwUTRd+CYJe+9NVQmk5GUpHVOYjEdP8/rH/0lFhamMRoXUCojiepqYn3dzPLyPFarGanUNS+8V6hUn/kCD2XhmM1rHtt9BdyF3lNloEymYHNzhoKCEtTqs9hsVh48eAudboT09CyPwszV66ytrdDWdocTJy65+f4Wi5m+9kYWFiZISkpjenrcpQNvp4T3zPbGv7NGf/d6h13ojTe+S1xcHGfPXjxQWm1ycni7wnLT72v94TB8+E8Br3v7oyAInxYEoVkQhOb5ec8z0g+CqCgVRUVV1NRcYm5u0v8bAoQ/ny86Wo1KpWJkxN233I2ZmXGSkjy3OwYSSFpfXyckxP1hCYbj3Ll26wYyWajP9cKj2MWFp2P48K89w7NL0zz11EfJzi5jaKiPkBAJFy5co7S0hv7+Tpf37SX7zPjSL1I92MHMzKTPopn1+FSvlYE2mw29fpQTJy6RmOjIXigUSo4fv8jgYDv8y196JRktKjpGSEg47e31u+6DlZ6eDu7efZ3QUAnnzr1AcXE18fGJDA/3u18L7laIv3ttt9sxmw0UFJQfSNgNhkWs1rWARlYFggMJvCAILwI2wGtFhiiKL4miWCWKYlVcXNxBPs4nMjKy2diweSzH3A8CYRjNzT3G+Hi/1+myFouFpSW9VxojX5uK2bxKX18r7e11mEzLbq/ZT1fc5uYGUqnvIKY3ht64t/4NALU6msrKs9ulsgWsri46x0p724RqX/kq8/OTXq/XrEniH//wG14rA3W6YVQqlVv0OypKxYeMc1T8+a973fwEQaCy8iRm8xp9fe0MD/dz+/arbGyscOrUMxQXVzktqNzccmZmhrBsvzfQEl5PGBrqISQkhK6uxgN1dY6NDZOScniju/Z9FkEQPokjmHdd9BcIeA8gkUjIzy+jv7/9UOZxBVKTHhWlIiZGw+jogMdzzMxMEBsb5zVT4LEmPyycu89d5969N9jcFLl48cMYDCvU17+NwfBoeup+OM5ttk3CwnwLvC/LYWiom+zsR8FDqVRKVlYx/f2OyjlfNQkrK8uMffoPPG6is7/6FdbWlj2W3NrtdsbH+8nKci9siXn9GxT++W8g8dJTsbMeqVRKVdVZ2tsbmJ4eoqbmAhUVZ9xqMxQKJUlJaQwMdAdVwrsXMzOT9PW1ceXKjxIaKqel5da+nkmr1crc3ARpaYfjpsI+8/CCIDwL/CZwXhRF39vge4jExFSGh/tparpJaqojounrRvv+Euzoiqpo/5s3XA/r+hFFkZ09LiwsjN7eRlJTHTROjh7vZRYX5+noaKCoyPu02J3NI/mvf4ewuQlWVBrqrn6S9as/w/mUdOdGERMTQ0SEgra2OsLDo0hPz/VIsOGv33pz00poqO9abF+Ww9bWOklJ6S7+ckmClhtPf5yZrDyfNQlqtYZuzTFCX3zJzdc2XL1O7tQofX0dLl1tFouF7u5WJBLRY2DQnxbeLZASiRS1Ws3Jk8+4mNh7fX/lp/+AlyMi2YhPRa73Xu/u7V7rdCP09jYREiJBJpNTUXGKpqY7tLffo7LSNcDoL+g6MTGKRhN3KL0OOwgkLfdN4AKgEQRhEvh94LeBMOCtbXL8BlEUf+nQVnUAZGfnU1f3A7dgEgheifwFQcKOjbL3JRKJ978JgoAoSoiJSeXmzVeIiophY2Od0NBQ1Oo4iouPMTk5jM1m8+jLmUwGHqbmMPu5/4lanUhaWg6JHto4NzctFBZWIZVKmZoaZXi4kz55NKd//o+o/Nb/RqafCChKv7m5SWiobw3vTWhXVHFkZhYT+8Y39wQLx7nyrf+XN0SByc98gYxdxI3wSDCiozW0tzeyqM2EP/oXQEJIyLaB2dGEIDj6z9vaGomLS2BmZpzlZT0REZFYLBssLc25Cb0vLbxXIGdmJlleXqS/v43Y2ATU6kQSbvwHGX/4s0i2WYfCZnXkfunTnPqF36f++Z/j/De+siej4Agx7i7h3YGjeaiD+flxTp16hp6e5u2AbTrHj5+hsfE2HR33KS8/CQQWdJ2cHKa4uNLn9xUs/KblDhOBpOWGhnTodBEBR+n3wm6388473+HMGXdm0XcT9fU3CA8Po7Cw0uVzHVqqkdXVVUpLa1Cp1Oj1E4yN9WM2m0lJySItLRuFIsLjjq9/+uPcvv0Kly+7JkIWFmYZG+vBaDSQmJhNZmaOX3LGt9/+NmfOfMgnc4un1JktLJw3fvSXif/cn1J2LcvjhmCKiefNl+5S2dfodg1T5z9CQ8PbxMUloFLF7bKs7M7f7XY7VqsFnW6AzU07ZWVVJCVlIpPJmJmZoLu7idraSyiVj6bFekud2gUJA//P37P24U85jzU33yUkRIJCEcXSkh6TaYnPffHnUJhX3N5vjVLz57/zEs8bF8n5P19yXsvkZ77AdxWRlJScRKN5tPlYrVba2xvY2rJQUXEOuVyOTtfP3Nwc1dVnna9pbLyFShVDSUm137Tv/Pwsvb3NnDv3qIJxfn743U/LPWlwsKho0OtnSU8/WKFCoHluk8nAzMwYL7zw027+ulwu5/jxc0xNjdLQ8CZbW/ZtbZ5HSkqaX/LJdfMaMk2S1/VMnH2B0dFe7t59HY0mmaysfK+FHf4ajcBzrfrNyz/B5o/8AhKJxKtWjTTMMzLSjfbyjzvPYbGYWViY5eHt75GTU0Jurv8GE6NxmfT0fGdqEBydcxsbGzQ336S29rJzQ/VWTNP4879HfXQ8tdtzAqxWK0tLes6d29nsSrDZbIS/+GMe1xBqWiI1NZu66Hgsu2oBADJ1/YyO9jkF3mxeo7n5DtHRUZSWXnJ+n0lJmQwMPMRqtSKTyZDJZFRVnePNN7/F7KyOSj9BV51u8NBYbnbjiS6t9Ya4uEQWFwMjGfCGQEcXWyxmWlruAL5HFKWkZFJbexmpVEp19Tm02gyX13sLlmX+/3+EXB7udT3auu9RWnqCCxeuERUVRVtbHffu3WBmZsIlRmG1Wp2Vi/6wu73zxj/U03PslJNJ1VewUKWKoa3tHp2d97l9+xXq6l5namqczc1NkpLSnPfVW4vq/Pw0AwNdxMS4Z3MyMnJISsqmqemmMyviLbAq+5nfJCkplcbG29tDNCaJiYlxsWz8pcpGR/sYGGhndtZ1knFKSjZG4wJG4zILC3PU179FSoqW8vLTrrX7MhkqVSwzM49SxXK5nGPHahFFKRaFZ0Zga0IaFouZ5WU9KSnZLvfsmedyiSwthW94b1P2hx86DQ8QF5fC4GD3gc4RSFHMTgdbUlIqMpmc5eU54uLcC2x2oFbHkZiYyshIn9soJl8Rbrk83O96ZDIZOTklZGUVMTOjY2Ski76+DtLSctFqM7FaLX5Tcp4wPNxLVtajmm9fJarh4UoGB3spLj5OWloeUVExSCQS+vo6GRnp5vzUiFe/dbD6aTo67qPRJGG1eqafzs8vwWJZp7X1FjU1Dm3qbVJNfv4xbLZNmpocQh8fH4/RuIRUGkpISCgymQxbdCyhxkW399qiY7l8+WMMDj6kr6+N+Pgkl+7EtLQcmpvrAQslJZ4HeQAkJqYxNTXuUhhUqR9nXR5BmNXi/rkhIXRf/zxDQwMkJKQgk8ncLL+QyUn4tOOecT34mXQ/lBpeoVASGip1SWMFC395brvdTmvrXSIjoygoqCQ6Os6F0skbcnPLmJoacsvde9Oca+pEwsIUAefdJRIJKSmZnD59lfLyGgyGGerqXqW7uy3oXK5eP43NtubCk+5Nq06d/zAzM2NcvPgCOTmFqFSxzs/LyMhhdnaK5L/+bY+bVtJf/RYdHfcoLT2JRpOI2WzyuqbS0uOEhipobb3jd/3FxdXYbOuMjPRiMBjo6HhAY+NN6uq+z5tv/gevXfkEW3sisXZBoO5jn6G3twUQMZsNtLbec3mNTCbHYJimquqiV2EHx2z3lZUFlK98zcU6U6yvItlyp6raUkRxP7OE1tZbaLWOVJzHTITZDC96L/rxhR9KDQ+gVicwNzcbdKPCDnylmBzCfh+pVKC09MT258UyOTno97xKZRRqdTyjowPk5z/yab36ox/5RcLDFUGz0TrWFI9aHY/ZvEpHRz3T09NOnzIQDA31kpnp3tHlSav2ttwiJSXXY5OMNSGNzec/RZjecyWkfG6KoqIaEhKSmZ+fYXXV5PEcOzGU8vJampvv8PDhA+f99wapNJQrVz7msTsx2mZF+O5LsPlo8xVDpCiVMSgUKmy2TVJS8pmeHqO19Q4lJbWYzSaGhh7y9NM/4nUu3+51F8XEI9vc8FvEAyBbNVBb+zTLywtERjo4BLxmIsb3V2D2Q6nhwUG+sLS0fz/eV6Xdw4ctbG6ucezYWacwqNUajMZHlNO+fNXc3DImJwdctLw3zdlbcQ65POJAs8VXVgysrq4QHx9PXd1rTE66bxx7oddPs7W1FtAUlNnZcVZWVsnJKXJe+954w9l//jLr4Z6zCKJEwoeupVPyfAYFrbdYW1vxGUORSqVUVp5heXnJpbR3L0ZGetjY2CQ11XOlo/ZvfxfJpqulFWLbpPzf/pLs7Hzy80soL6/m8uWPEhIi5513/pM7d75PYWGVV0Wyd92RS3pkK4E1ku4oE0F4FGPwuqGn+ab68oYfWoHXaJIxmRb3zfLpTQAbssoxGmc5fvyCS+BHLlcQGirHZDL4DfgplVGoVO4Vep640DY2zISHRwTFRrsDu91Od3czXV3NHDt2mqef/jDl5bWMjDzk/v2bHvvUd+BNu++FzWajt7fFSV4JXuIfG+sIkhBseyb+ioDEvuW8T8f/7ndJvfOy314Bx7TX80xPj6HTuVpWCwuz1Nf/gIGBh5jNJkZGPFdCBuom2e12wsLkGAwGNjftPrvevM0W8Iedzdtqtbo8V542ehQK+KL/jd4TfmhNeqlUSlSUioWFWZ8TTHxhr+mq0w0xM9pNbe1lZ0Blt8lp/NDPsJyZx6kAAn65uWU0Nr5DZmaeTxN7Y8OMXB7hcT2+YDav0tZ2l5AQOadPP+sMgmk0iZw58xyjo700Nb1NYmIO+fnFLg/Z/PxswNq9v7+d6OgEl25Ab4IkN5v4/k/8Gpfe+TZh+klEiQTJHsYi6cY6J17+KjKj53jI7nPL5QqOHz9PY+NNwsIc48MHBjpZX7eQlVVEbW0GZvMq7e11LC8vUFZW7Uob5sdNstlsjI0NMjbWS2xsPNeu/RQtLbfQ66c9dj/6uva9HYH2kFAsYXLC11dd3BXb6gpS6aMGp71pUntKCiFf/vK+AnbwQyzwAGp1IgsL+n0L/G7MzEwwNNTJiROXkMsVHvPm5/75T7griAFpjqgoFWq1hrGxQfLyPDPpOkx+IWjWnpkZHd3dzaSlFXg8t2O6STEpKZl0dzdTV/caBQUVztz3wEB3QNrdaFxidnac06ddB0b4EqT+45d4kF1OeflpfvTHPBNnRBkWsCZqCfPQCLXXxI2Kiqay8gxvvvkfxMcnk5FRREbGI0oxpTKK2tpn6O5+wP37b1NRcdoZZ/AWN5n8zBfQ6YYYGekhMlJJdfUFp7+ekVHI8HCvV4H3du3rikhCotQu8YhXo9RkZ5e6PJ82m9UtZbiz0QdTeOMNP7QmPTiGAR40Hw9sD/lr5Pjxc85KL0+mm9RqoeJb/1/AjS05OWWMj/d7dTvW19f8Nrvsht1u5+HDB/T1dXDs2FmvG8kOHBryHCUlVQwOttHYeAedbihg7d7V1UhmZqlbRaNv2q/47crAXK/3aSVGw9DPvhhwzEIqDUWlUnPmzFWystwHP0qlUsrLT5ORkUtj49tMTIwBnt229s98iZcj1ExPj1BeXktV1VOuwzpTMtnYWHV2CO6Ft2u/8cKnaPjXhy7uWnJyBpOTYy6v3dzcfFdHRj92Aq985buc+smKgLjQ/SEqSs3mpgWzeW3f53DMcb9LWdlJl3Jfb1o8yrDgtSts78Pq6LZTe+2pX19fC7g8eHXVRH3966yvWzl58opL6ac/xMUlc+bM86hUKu7ff5uYmHi/2l2nG0QUBTIy3KvBfMUbbDYrCQmOfgFvwtH4kV9i9NQzAccsRkb6ycjI92sJpafnUlV1nuHhDh4+bMFutzvjJm+8Ns3f/fbfU6fNpaCgbHuSrvs9dJCF5jE62ufxM7xd++Kzn2BqylXzJyVlsrw86xK83dy0EhLin7Ngv3i8TPpvfIP4F38bicUxby0QFhdfkEgkxMTEMj+v31eZ7erqCs3NtyksrHArqPHaZBITx1DNUx67wjxdQ0xMIm1t94mOVpGQkOLyt40NC2FhvqmLASYnR+jvbyMjo8Rl9lwwcEx7KUOtTqS9vY6UFPdmlR1YLBYGBzupqrrgdWPwFm+YnZ1iddUxbUdadBLjZ79MwT9/Bfn8FBvxqUx99ktMpxcTumIMKGZhsZiZmxt3qTn3BZVKw6lTV+noqOP+/RtkZRVuj642kpNT6uyy9IW0tFxGRnrdOPd9XXvSwizd3a0uqVi5XE5MTCwzM+NOpiaHhv+gCPyLLzqFfQe+ZpsHgqgoNR0dD7Dbt4iLS3SbNe4NFouF5ubbZGTkejRvvfl/nT/xeRYX53w+rKurK0xMjDE7O4pUKiEzM4eBgTb6+ztJT893lt2ur6/7FHibzUZ39wOWl5c5fvzCvmsOdkOjiae4+AStrXfdmlV20NfXQkJCRlCfZ7fbaW9vQCoNISYmCrPZwObmBvrsIupefInNzU02N61sbW2xPtCBTBZGWlqOXwtnbGyIhIQUvw1Bezff6qvX6epq4tatVzhx4iIZGed8cuTvxk613fBwb8BTdzWaROx2q9smkZKSxcjI0C6Bt36ABN5LMUEgZAR7YbfbncGrxMQMDAY9IyMPEQQpanUCsbEJxMXFe3ygHCWzt0lMTPY6msobW62p8iIro+4z0Ww2G1NT40xPj7G2tkxCQioVFadc3AS9fpKxsT6GhjrRanMxmQwkJMQ7r8dqtWKzWdna2mR11cTg4EOiojScOnXlULn3k5JSsVjWaWh4k5qaSy5MMwsLsywuznsk1fQGx8Tee4SEiJw//2GfPqrdbmdjYwOdro97996kqOi4SyPNbthsNiYnh6itveTx7+C7DTXj7DXm56fIyir0+9q9Qp+RUUBd3fdYXV0JWIkkJKQyNTXuIvAJCVq6u5ud51lZMWG1rrlw6x0mHi+BT0sDXXDVZHthMhkYHx9kdnYcpTIGCKGi4rRzCJ/JZGBxcYaZmVH6+poJC4tArY5Ho0lArY5HKpXS1lZPZKSSggLfvcietHiM1Up7uwG73dFMs7Awx+TkGPPzE0RHq0hLyyIpybMpnJCQSkJCKkbjEiMjPbS33yUuLp7+/g7sdjshIaHOWvD19RVEMYQLFw5nrvtehISEsrq6yt27r5OUlEJ6uqNctqenmYKCioA2GJvNxvLyIn19rURHqygpcR/i6U2jFhRUoNEk8fDhA+bmZigurnTbKHaorzxZITvwlc+fufijLvPjgpm2I5PJSE7OYGSkj7Iy//MCAJKTM2hrq6eo6BHltUQiISoqhlu3XiM8PIytLRsyWRi3b38PmSwUpTKayMhooqNj2dpa93H2wPB4CfwXv4j953/BxawPpJrMZrMxM6NjamqYtTUzSUmZ1NZeQS4P5+23v+0ycTMqysGNlplZiN1ux2BYYH7e0Vve2VmP1bpFWFgo1dU/sq9LkMlkhIWF09HxAINhEYnETlJSBmfPBt6fHx2tprz8FDMzjpRXeLjSfUa91cq9e6+xsDAXVIAuEAwO9jI52cfFi9eQSKS89to30ev1WK1rRETEeiw8WVtbxWRaxmQysrpqYHXVyMbGGqLoCCgWFh73KOy+NKpGk8jp01fp7m7k3r03KS8/4XQjHNRXA5SX+y6t9ZUilUqlLhmSYHkCMzOLuXPn1e2BElJsNodbsrm5ic1mZXPTtuuYDZvNyvz8DG1tTSQlJSGVShkd7cFoXCYjI4eMjFyXzWt1dQWjcQmj0cjk5Bjr6wtUV6t/iEZNXb/OnH6B6D/5M+TzU35ZXEwmAzpdP3r9JEplLFptvnNeGTh6lX2N15VIJM56cyjbNhGHGRzsZHCwx21oRCBwfElGwsPllJfX7HuA5dLSHFFRaq/12jKZjIKCCrq7mzl79lmP6wyWt14URbq7W1lamuHEicsoFEr6+trJzS2lsvIU09M6ursb6e5uR6GIYGXFwNqakZUVIyEhApGR0SiV0cTHJ5GTU0RkpAqJRIJeP0lHRx1FRTUu5nkgGlUmk1FRcYaJiWGam2+RllZATk4hMzMTyOWhfu+vr5qAHYthxxoLtl9BLpcjlUp59dV/ISoqantgihSp1NGNFxIi2z4WSmiog2m3quo8VquZkZFuRkYGqK295BxttRdKZSRKZSQp27Hc+flhFIqDkbo8XgIPrF77CN3l170y3jh84VGmp4cxmy1Obe7Jj7JY1pHJAp+nLZVKycjIJzFRS2vrHQyGBcrLawP2pczmNZqablJWdpzMTN8DKvxhcXEWlSrB52uSktKZmhpmcLDHJfoLwfPW22w22tsfsLm5Rm2tIyZgtVqZmhp2TmNJTk5HpYrl+9//F9LTs4iNTSIpKYXISLXPe5SQkEpYmJyWljtYLBbnkMdgNKpWm01sbALt7XdZXNRjtVr81hmA73ZegJAQqZMYxN9r98JoXMJut/OhD/0k4eHBCaLFYmF9fc3vIJPDxmOXh/cGo3GJhw8fcPv2y8zNTZORUczFi9coKir3GjRx8MsFH8ySyxXU1l4hMjKSe/d+4JFNdS8sFjONjTdJS8v2KOzBzFoHWF6eQ6PxT+tdVFTD5GS/W118MLz1Dvql28AmJ048msc3OtqDWp3iMj1VoVBuT6bVkp1dTFxcckAb4s6I5LGxHnp6HA0vwTLvKhTK7c1diV4/QUKC52DebvjrQZBIQrDZfBNqeLOKursbycoqDVrYHRCdXInvJR47Db8bO9p8cnIIi2WDlJQsTp581i932w4sFgthYfuLdEokEoqKjhMbm0BnZz2pqXluWvTR55h58OAWSUlpHqP6+9G2JpOB2FjfGh4cQpCRUUBPTwu1tU85jweqPXcommJi1C6tphsbG0xODnPixBW3c8TGJrK4OOkc4RwolMooTp58hpaWm7S2mlH5IL30BkdZcBFzc9MBu1u+UqRSaaiLHx9ov4JON4jdLvFYeBQYRAThvde3j6WGN5mW6ei4z82bLzM3N0NWVgkXL16joKAsYGEHR6XafjT8biQkpHLy5BUWFydpaLiFxeLKVGKxWGhsdKTw8vPLPJ4j2Ckxi4uzREaqCQ0NLB+bmVnI1tYGY2NDzmOBaE+jcZkHD26QlKR16ysfHe0mNlbr0XqKi0tgaWl/U4QcY5gus7W1xltxaYz+1t8G1QEIIJXKXKLrB0FIyCMNHyisVitDQw8pKXEPRAaKnbjBe43HTuCNRiP9/Z3I5ZGcPv0s1dXnXAJxgWJ11cTAQDtm88Fp83dMychIJffvv+mso7ZarTQ13SY2Ns7ntNpgo7+B+O+7IZFIKC6uZmio07kh+eufn5+fpanpJjk5xW7kkhaLhcnJUa8+skIRQUiIzKX/3x92uzTHPpLD5fkZQkND+L4qgeZv9XmdOuMJoaGhbG0dfM4aODT8lgf2GV/o62shLk57oEInB99gII2zh4vHTuCjoqI4fvws+fklQWnz3VhdNdHUdAOttgCr9eC5S9gRqioKC4/R0XGX3t6HNDXdRq1WU1zsxgbsgmB91eXl+YD8991QqTQkJWnp6Wl1nMOHPzo1paOz8x7l5bUemVGHh7uIj0/zef/V6gQWFmYCWpu3mXMXZ8bQaDTcv/82q6vudNHeIAgCISEhXkd8BQNH0C7wzcORxtVTUOB7fLS/mI2jruJIwyMIwoFMnR1hz8oqpby8itVV075JMDwhMTGNkyevMDrazeamheJi/0UXwbDVWK1W1tZWiY31nm7y9jDl51dgMOjR66cBz4QaQ0O9DAy0UVV10SPhpsViYWZG52Sv8QaNJiHgTkRfLk1BQSUZGdk8eHAjKA5Chyl+cC0fEhIa8PPhIBRpIienzGfhUSCMx6Jo9xq0CzbAGwweO4H3hkBuwuqqicbGG2RklJCenoNUKiUiQsXysudWxv1CoVBSWXkmoEmsEFz0d3FxhuhojddNzx/1U1HRcXp6Wj0+xN3dbUxNDXLixCWv+f3h4YckJGT4ta5iYxMwGJYDmpnmz6XJzCykqKiC5uZbzs3KH6RSKZubh6XhAzvP2FgP5zhQAAAMRElEQVQ/giDz24jlL2bjoM6eYGPDnbk2UHr0/eKJEPhAbsKOZs/MLHHmeQFiYhJYWjpcgQdHM8Ta2ppbEM8bPGlbT1hYmCUmxrt29/cwJSamERWlpL//EU233W6npeUeRqOeEyeuOIco7t1Ela/8H6amdOTm+s8Ny+Vy5PIIDAb/TL2BuDRJSekcO3aarq4GdLoRv+d0+N4HD9yFhAR2HovFwshIT0Cjn3xtcE1Nt7l9+xUWFqawWCxuG+Z+xoAHgydC4P3dBLN5laamG6SnF7sIOzjYZP1p+P2YUFKpowlHr/dPCBkMHP6794BdIAHA4uIaZmeHMBqXsVqtPHhwC9ikpuaSM2fuaRPN/vJnOD3WF3AJsFqdyPy8f40cqEuj0SRSXf0Uw8MdDAz4nisQEhJ6KBreUV7r/zx9fS0kJmZ4bIfdC28bnEURRWJiKufPX+PMmedQKpUYDK6Bz/2MAQ8GT4TA+7oJZvMqDx7cIC2tiKysPLfXqNXxGI0Gr6bnQUyo+PhU9F6ol/cDi8XMxsYGKpVncxsC05ZyuYLs7BLa2xtoaLiBUhnhVr7pjbHn7Eu/G/Cmp9HEBWQ9BePSREWpOHXqGWZnR+joaPL6vTny5wf34R0C71vD73QI5uWV+nwdwNLSAo0f+UVsIe4lLmEbZsq6Gpz+v8WyQkPD2/T3dzkDkPsZAx4MngiB93axG/GpNDbeIC2twCvxg0wmIyIiyqvpeRATKiEhGYNh+VCixQDz8zN+2WYC1ZYZGfkYjQtERERQWurepeZtExUg4E1PrY5nZcUQUNArUJcGdiodn8FsXqatrd7j+aXSwwraSdna8v792e12enqaycs75jFQZ7fb0eun6exs4saN7/LwYT1jpy5j9zBKSmLbdD5X8/PTKBQxnDp1BbPZwK1b36O7u42xT//+vunIA8ETIfAeH/KwcG489TFSUvL8sryoVHFey2MPYkLJZDKio2OZn5/y+9pAsLjo23+H4LRldLSa3FzPxUD+NEYgm55MJiMyUn0ovIGezn3ixCVE0eacEeeyvpBQNjcPQ8OHsrXlPfA4OtqLTKZwGWRhtVqZmBijufkuN258h6GhTsLDw6muvsD589coKqoidNUzF/3OczU83ENmZj4qlZqKijOcOfMMdruV74RHcuenfpP1eG1QxUgBX++hnOVdxl6yiY34VN5+6mOsXvsFaoZaSfn8VZ8dYWp1nNepMPuZ6LIbDrN+IiDSR38wGBbJzPSdDoPAyz8tFrMzQGe32zGZllhenmd5eZ7pCx/l6r//FVK7d3M2kE1PpXKk5xISDs4MvBcSiYSqqgt0dzfR0HCDqqpzzuzBYQXtHJaCZw1vsZgZG+ujuvoSFouZmZkp5uYmMRoXUaliSEhIpaSk0jOJio/nymBYYG1tFa32UbRfoVBSWnqC3NxyxrQ5/O+cYqKj48nOLkSt3t/odI/X6+8FgiB8FXgemBNFsWT7mBr4NyADGAN+TBTF5UNblQfsPOQWi5mGhrdITs7hxFBrQDXqanU83d2NHssZg+2Q2oukpBSGhjoOXCq5umpia8seUFAoEFgsFjY21hke7sJgWMBoNCCThRMTE0dsbArKT/8B4uv/DB6GKe4gkE1Po4ljYKDtUNbsDcXF1QwOdvHgwQ0qK88SHR1DaKgMi+VwNLzdy6bX3l6P3R7Kw4cPMJtNxMbGk5qaQUXFab8EIL6eq+HhLtLT811Ghe9uY0767BeZv/zj6HT9dHTcRS6PIiurgMOoxA1Ew38N+Gvgn3Yd+y3ghiiKXxYE4be2//+bB1+Obzg60t4mOTmHvLxiUn79QwExlMjlckJDwzGZltzabr1RVQVqQsnlChSKKObnpw+k5RYXZ/ya88HAYFjc5ogTSE8vQKXSuHW1SU3eS2O3wgLb9GJj41lbWw1qZt1+kJtbQlhYOM3NNykrO01oaChrawcvm95pj92LmZkJRkZ6KS6uIjk5ndjYxKA2dG/Ple70h1hufIfy8jOA78Yq6dXrZGYWMjExzMBAK7DJ8eNnDnS9ghhAj54gCBnAq7s0fD9wQRTFGUEQkoBboij6bZ2qqqoSm5ubfb5maEhHT4/nPvbu7iaUSjXp6Y5y0Geey0bwsH5REHjjtWGXY+PjI8jlcuLjvY9z3i9mZqbY2toIiPHUG8bHBwkPjyQuLvFQ1jQ9PYHVuk5GhnvmYgfnP3mG8Dn3tJpdIuHtn/489p/4bECfNTjYQ0JCElFRh2Od+MLy8jyTkzpiY+OxWDbIysr1/yYfsFjWGRvro6CgwnnMbt+it7cDrTaDqCjvGZP9YHJyBJvNTkaGg7TS23ewHp/M7X+863JsdXWOS5fyA2K8EQShRRRFt5rv/Qq8QRRF1a6/L4ui6PHbFgTh08CnAdLS0o7rPHDW7YbFYvHa8LK+vk54+CMW1+jycse87D3YSk3F2NHhcmwn6PNuaKEd4sXdawsWDobasEProNra2vJbpiz71reI+NznENYf9RuI4eGs/cVfsHz1KhERgbchO5he3puQkMViQRAE7Hb7ge75DtbW1lyuVRRF1tfXD8wu4wk2m83ZCwAQo9F4VVrLC+6ZpejoaOd7fcGbwCOKot9/OHz1rl3/N+z5+3Ig5zl+/Lh4qPj610VRoRBFePRPoXAcP0Jg+PrXRTE9XRQFwfHz6N69t0hPd31+d/6lpx/otECz6EEG96tO9NumPNs/D792NRBcvw4vvQTp6SAIjp8vvbTvQXsfSFy/DmNjYLc7fh7du/cWX/yiYxrsbhxgOqw/7FfgXwE+uf37J4GXD2c5+8DRA3uEJxnvsdLy68MLgvBN4AKgAfTA7wPfBf4dSAPGgY+LouiXDSGQoN0RjnCEg8ObD+83yiKK4ie8/OnpA6/qCEc4wnuKJ6K09ghHOMLh4Ejgj3CEDxCOBP4IR/gA4Ujgj3CEDxACqrQ7tA8ThHkgEIoYDeCfO+n9w+O8vsd5bXC0voMi0PWli6LoRn38ngp8oBAEodlTSuFxweO8vsd5bXC0voPioOs7MumPcIQPEI4E/ghH+ADhcRX4l97vBfjB47y+x3ltcLS+g+JA63ssffgjHOEI7w4eVw1/hCMc4V3AkcAf4QgfILyvAi8IwlcFQZgTBKFr1zG1IAhvCYIwuP3z3edNCm59fyoIQp8gCJ2CIHxHEAT/fEPv4fp2/e2/CYIgCoJweJSnQcLb+gRB+BVBEPoFQegWBOErj9P6BEE4JghCgyAI7YIgNAuCUPM+rU0rCMJNQRB6t+/Tr20fP5B8vN8a/mvAs3uO7RBk5gI3tv//fuFruK/vLaBEFMUyYAD47fd6UbvwNdzXhyAIWuAyjtbl9xNfY8/6BEG4CHwYKBNFsRj4s/dhXTv4Gu737yvAH4qieAz4ve3/vx+wAb8himIhUAt8VhCEIg4oH++rwIuieAfY20f/YeAft3//R+Aj7+midsHT+kRRfFMUxR2a0wbg8AnZA4SX+wfw58D/AN7XiKyX9f0y8GVRFDe2X/P+sCXhdX0iELX9ezQQ2DjbQ4YoijOiKLZu/74C9AIpHFA+3m8N7wkJoijOgOOigcPjbj58fAp4/f1exG4IgnANmBJFscPvi98f5AFnBUF4IAjCbUEQqt/vBe3B54A/FQRhAof18X5acICTRLYCeMAB5eNxFPgnAoIgvIjD7Dqcwd2HAEEQFMCLOEzRxxVSIAaHmfrfgX8XBEF4f5fkgl8GPi+Kohb4PPAP7+diBEFQAt8GPieKoumg53scBf7xIMj0AUEQPoljGs918fEqZMgGMoEOQRDGcLgbrYIgHA7Z/eFgEvjPbXLVRsCOoyHkccEngf/c/v0/gPclaAcgCEIoDmH/hiiKO2s6kHw8jgL/+BBkeoAgCM/imLJzTRTFg48+OUSIovhQFMV4URQzRFHMwCFclaIoHv60x/3ju8BTAIIg5AEyHq/utGng/PbvTwGehxK+y9i2ev4B6BVF8X/t+tPB5MMTd/V79Q/4JjADbOJ4OH8OiMURfRzc/ql+zNY3BEwA7dv//vZxWt+ev48BmsdpfTgE/OtAF9AKPPWYre8M0AJ04PCZj79PazuDI4DYuetZe+6g8nFUWnuEI3yA8Dia9Ec4whHeJRwJ/BGO8AHCkcAf4QgfIBwJ/BGO8AHCkcAf4QgfIBwJ/BGO8AHCkcAf4QgfIPxf/E4F+C0qQ4IAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "regions_df.plot(ax=ax, edgecolor='black', facecolor='blue', alpha=0.2 )\n", - "points_df.plot(ax=ax, color='red')\n", - "plt.xlim(minx, maxx)\n", - "plt.ylim(miny, maxy)\n", - "plt.title(\"buffer: %f, n: %d\"%(r,n_points))\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Voronoi Weights" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "from libpysal.weights.contiguity import Voronoi as Vornoi_weights" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "w = Vornoi_weights(points)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "200" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2.685" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.pct_nonzero" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(1, 1),\n", - " (2, 6),\n", - " (3, 17),\n", - " (4, 34),\n", - " (5, 41),\n", - " (6, 63),\n", - " (7, 24),\n", - " (8, 7),\n", - " (9, 5),\n", - " (10, 1),\n", - " (11, 0),\n", - " (12, 1)]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "idx = [i for i in range(w.n) if w.cardinalities[i]==12]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[16.50851787, 13.12932895]])" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "points[idx]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docsrc/notebooks/weights.ipynb b/docsrc/notebooks/weights.ipynb deleted file mode 100644 index 3f867ad7b..000000000 --- a/docsrc/notebooks/weights.ipynb +++ /dev/null @@ -1,1313 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "import os" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "sys.path.append(os.path.abspath('..'))\n", - "import libpysal" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Description Installed\n", - "0 10740 Albuquerque, New Mexico, Census 2000 Tract Data True\n", - "1 AirBnB Airbnb rentals, socioeconomics, and crime in C... True\n", - "2 Atlanta Atlanta, GA region homicide counts and rates True\n", - "3 Baltimore Baltimore house sales prices and hedonics True\n", - "4 Bostonhsg Boston housing and neighborhood data True\n", - "5 Buenosaires Electoral Data for 1999 Argentinean Elections True\n", - "6 Charleston1 2000 Census Tract Data for Charleston, SC MSA... True\n", - "7 Charleston2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "8 Chicago Health Chicago Health + Socio-Economics True\n", - "9 Chile Labor Labor Markets in Chile (1982-2002) True\n", - "10 Chile Migration Internal Migration in Chile (1977-2002) True\n", - "11 Cincinnati 2008 Cincinnati Crime + Socio-Demographics True\n", - "12 Cleveland 2015 sales prices of homes in Cleveland, OH. True\n", - "13 Columbus Columbus neighborhood crime True\n", - "14 Denver Demographics and housing in Denver neighborho... True\n", - "15 Elections 2012 and 2016 Presidential Elections True\n", - "16 Grid100 Grid with simulated variables True\n", - "17 Groceries 2015 Chicago supermarkets True\n", - "18 Guerry Moral statistics of France (Guerry, 1833) True\n", - "19 Health Indicators Chicago Health Indicators (2005-11) True\n", - "20 Health+ 2000 Health, Income + Diversity True\n", - "21 Hickory1 2000 Census Tract Data for Hickory, NC MSA an... True\n", - "22 Hickory2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "23 Home Sales 2014-15 Home Sales in King County, WA True\n", - "24 Houston Houston, TX region homicide counts and rates True\n", - "25 Juvenile Cardiff juvenile delinquent residences True\n", - "26 Lansing1 2000 Census Tract Data for Lansing, MI MSA an... True\n", - "27 Lansing2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "28 Laozone Ozone measures at monitoring stations in Los ... True\n", - "29 LasRosas Corn yield, fertilizer and field data for pre... True\n", - "30 Line Line Shapefile True\n", - "31 Liquor Stores 2015 Chicago Liquor Stores True\n", - "32 Malaria Malaria incidence and population (1973, 95, 9... True\n", - "33 Milwaukee1 2000 Census Tract Data for Milwaukee, WI MSA True\n", - "34 Milwaukee2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "35 NCOVR US county homicides 1960-1990 True\n", - "36 NDVI Normalized Difference Vegetation Index grid True\n", - "37 NYC Demographic and housing data for New York Cit... True\n", - "38 NYC Earnings Block-level Earnings in NYC (2002-14) True\n", - "39 NYC Education NYC Education (2000) True\n", - "40 NYC Neighborhoods Demographics for New York City neighborhoods True\n", - "41 NYC Socio-Demographics NYC Education + Socio-Demographics True\n", - "42 Natregimes NCOVR with regimes (book/PySAL) True\n", - "43 Nepal Health, poverty and education indicators for ... True\n", - "44 Ohiolung Ohio lung cancer data, 1968, 1978, 1988 True\n", - "45 Orlando1 2000 Census Tract Data for Orlando, FL MSA an... True\n", - "46 Orlando2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "47 Oz9799 Monthly ozone data, 1997-99 True\n", - "48 Phoenix ACS Phoenix American Community Survey Data (2010,... True\n", - "49 Pittsburgh Pittsburgh homicide locations True\n", - "50 Point Point Shapefile True\n", - "51 Police Police expenditures Mississippi counties True\n", - "52 Polygon Polygon Shapefile True\n", - "53 Polygon_Holes Example to test treatment of holes True\n", - "54 Rio Grande do Sul Cities of the Brazilian State of Rio Grande do... True\n", - "55 SIDS North Carolina county SIDS death counts True\n", - "56 SIDS2 North Carolina county SIDS death counts and r... True\n", - "57 Sacramento1 2000 Census Tract Data for Sacramento MSA True\n", - "58 Sacramento2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "59 SanFran Crime July-Dec 2012 crime incidents in San Francisc... True\n", - "60 Savannah1 2000 Census Tract Data for Savannah, GA MSA a... True\n", - "61 Savannah2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "62 Scotlip Male lip cancer in Scotland, 1975-80 True\n", - "63 Seattle1 2000 Census Tract Data for Seattle, WA MSA an... True\n", - "64 Seattle2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "65 South US Southern county homicides 1960-1990 True\n", - "66 StLouis St Louis region county homicide counts and rates True\n", - "67 Tampa1 2000 Census Tract Data for Tampa, FL MSA and ... True\n", - "68 arcgis arcgis testing files True\n", - "69 baltim Baltimore house sales prices and hedonics 1978 True\n", - "70 berlin Prenzlauer Berg neighborhood AirBnB data from ... True\n", - "71 book Synthetic data to illustrate spatial weights True\n", - "72 burkitt Burkitt's lymphoma in the Western Nile distric... True\n", - "73 calemp Employment density for California counties True\n", - "74 chicago Chicago neighborhoods True\n", - "75 clearwater mgwr testing dataset True\n", - "76 columbus Columbus neighborhood crime data 1980 True\n", - "77 desmith Small dataset to illustrate Moran's I statistic True\n", - "78 geodanet Datasets from geodanet for network analysis True\n", - "79 georgia Various socio-economic variables for counties ... True\n", - "80 juvenile Residences of juvenile offenders in Cardiff, UK True\n", - "81 mexico Decennial per capita incomes of Mexican states... True\n", - "82 networks Datasets used for network testing True\n", - "83 newHaven Network testing dataset True\n", - "84 nyc_bikes New York City Bike Trips True\n", - "85 sids2 North Carolina county SIDS death counts and rates True\n", - "86 snow_maps Public water pumps and Cholera deaths in Londo... True\n", - "87 stl Homicides and selected socio-economic characte... True\n", - "88 street_net_pts Street network points True\n", - "89 taz Traffic Analysis Zones in So. California True\n", - "90 tokyo Tokyo Mortality data True\n", - "91 us_income Per-capita income for the lower 48 US states 1... True\n", - "92 virginia Virginia counties shapefile True\n", - "93 wmat Datasets used for spatial weights testing True\n" - ] - } - ], - "source": [ - "libpysal.examples.available()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mexico\n", - "======\n", - "\n", - "Decennial per capita incomes of Mexican states 1940-2000\n", - "--------------------------------------------------------\n", - "\n", - "* mexico.csv: attribute data. (n=32, k=13)\n", - "* mexico.gal: spatial weights in GAL format.\n", - "* mexicojoin.shp: Polygon shapefile. (n=32)\n", - "\n", - "Data used in Rey, S.J. and M.L. Sastre Gutierrez. (2010) \"Interregional inequality dynamics in Mexico.\" Spatial Economic Analysis, 5: 277-298.\n", - "\n" - ] - } - ], - "source": [ - "libpysal.examples.explain('mexico')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Weights from GeoDataFrames" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import geopandas\n", - "pth = libpysal.examples.get_path(\"mexicojoin.shp\")\n", - "gdf = geopandas.read_file(pth)\n", - "\n", - "from libpysal.weights import Queen, Rook, KNN" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2debgddXnHP1kgEAhhDXsYEEjYZDdsAVQUdSooijuLCwpVXKrWoVixdRtba6mtQlHcwApWUJZRa6GakLCEPSQhBAjDHiAkJGQjIUn/+M7xnHvuOWf2Oefc+36e5z7JPWfmN79zk/udd951xMaNGzEMwzCqYWS3N2AYhjGcMNE1DMOoEBNdwzCMCjHRNQzDqBATXcMwjAox0TUMw6gQE13DMIwKMdE1DMOoEBNdwzCMCjHRNQzDqBATXcMwjAox0TUMw6gQE13DMIwKMdE1DMOokNHd3kBSHC8YDWwDbBd9LQx999nu7sowDCMdXRFdxwvGADsAE6I/a0K6bcPfm78f37DE3cBxFW7ZMAyjEEoTXccL3gS8EYlqo8DuAIzLufzvQt9dk3MNwzCMyinT0j0E+FIJ694NfNrxgr2BG4E/hL67pITrGIZhFM6Issb1OF6wGTAb2KfAZR8B9gRGNby2AZiJBPhG4MHQd20GkWEYPUlpogvgeMF2wE+Atxe05Ezg2JhjFlIX4Omh775S0LUNwzByU6roAjhecCwwo6DlkohuIyuAPyIB/l3ou88VtA/DMIxMVCG6mwAvkj94BnALMDXH+bOQAP8WmGNuCMMwqqZ00QVwvGBb4E5gr5xLXQOcxMD0sawsROL7W+DW0HfXF7CmYRhGRyoRXQDHCzYHLgXOzLnUfwHLgXMYGFDLwwvADUiAbwp9d3VB6xqGYQygStGdBFxOOp9sOy4Dvg0cCHwKeFMBa9ZYBfwBCXDQy+lojhdMRe4SgI0xfwKMaPoTdAO7Hvi70HdfLmOfhmHUqbIibQEDf9nzcFDouwuBhY4X3AC8F7gY2DF6fyNwH8oVTnvNscBp0dd6xwumIQG+LvTdJ4rYfIFsBmyVc42t0Y1rNHBe7h0ZhtGRKi3d0Shvd78Cljsl9N0bmtbfGvgG8AHgGeAIYHfgb4CzgTEFXPce6n7grgfiHC94K/C7Apc8KfTdmwtczzCMJioTXQDHC3YHvgaclXOpXUPffabDdUY0CqLjBZcA5+a8ZjO1QNxvgNu6EYhzvODtyDVQFEuR6+by0HcfLnBdwzAiKhVdkCAC1wLvyLHMmNB316a45knAPwBHUU47y+eQAM9F7ozGL1q8NrLFa62+aixDboBmJgPvKfajAKry+3Douz8vYW3DGNZULroAjhdsA9yPHv/Tsiz03VYClOS626KUs9HAJ4Djs6xTMa+iPOcd4w4smI3AOaHvXl7xdQ1jSNMV0QVwvOAbwN9lOHU5MDH03WUF7OEO4HV51ymZjciXfHiXrn8p8I3Qd5/q0vUNY0jRzckRyzOetxX5c31xvGAP1Dyn1xkBHNTF658LzHO8oGpL2zCGJN0U3RuAuzKee6HjBXl8wiDx3iHnGlWxKXIxdItxwK2OF/SDO8YwepquiW7ou/NQUcMPGJjAn4Qdgffn3EK3HtezsrjL198LuN7xgjOjLBTDMDLQ1cGUoe++FPruJ1H6VVq2yHv5nOdXTVZ3TJGMB34GPOF4wTcdLyiqDNswhg29Mg04S/nprjmvOQ3l2PYLq7q9gSYuQOL7mm5vxDD6iX4W3UMcLzgs6wWj4omzgYeyrlExx6F83V5iF+Auxws27fZGDKNf6BXRvRaN4knLoXkuGvrucqIeC3nWqYhRZHPDlM3WqPGQYRgJ6BXR/R4S0D+lPO/xvBeOAnr35V2nInrBr9uKy6LWnYZhxNATohv67obQd1eQvo9AbtGN+DLQD7PUNuv2BtpwOPDLbm/CMPqBnhDdBu5NefwJRVw09N0/AP3Q4KWXU7VONWvXMOLpNdFN237xm1FLxyJYUdA6ZbIL3c/XbccSm7hhGPH0mug+DzyQ4vgdUPT8uAKunSWQ1w169eawreMFeRuqG8aQp2sNb9rheMEpwHUpT7st9N1jCrj2NSiboZdZTv5pEWVxHfDu0HdfLXphxwsuQ6XQV6DCls2BEaHvLo7eH2XDRY1+oBdFdxf0i/WGlKfOQn7Zj6Tptdt07SnA7VnOrYg19G4wrcbJoe/+Me8ijheMAb6I/h+MBw6mPoj0FdSecz3wGGoTOhlN8/hg3msbRpn0nOjCXxqdX4y6iaX12V4NfDCr1eN4wWeia/ciTwG7dXsTMdyLxinlagXpeMGFwNcznPpt4FtFtP40jDLoSdGt4XjB9mjiw7mk8z//ETgr9N1F0ToT0NDF74S+uzLBdb8SXbfXmEN/FCIsAi4EfhWlAqbC8YKdUCFIlmyIDcDfAv+e9YnHMMqk1wJpAwh9d3HUEOd04EGSdyN7M3C/4wUnR9/vDHwVmOl4QZLP/Pu0e62ADWQrl+4GOwGXA49lDK5NIZvggv5Pfwd40fECczUYPUdPW7rNOF4wHjgfDbdMigf8Eyq8OAlVvoWh767pcJ1jAB+1M8zbWKcoHqC7zcyzMh9Zvf8X+u5LcQc7XrAZsIBicpKXAn8NXN3tyc2GUaOnLd1mQt9dFvru19GY9aSPjj7wGuBU1BnrQeLLfucAPwb+LeNWy6BfJzdMBq4BljheMDu6oXViH4r7rNugSrnfO14wuqA1DSMXfSW6NULf/SXwKSDWPxvxE2CL0HcvRsK7ueMFm7Q6MKqqeiI6535gXf4dF8IElL3Qr9TGDt3seMGfHC84v/mAyB0wG03KKJKTgS9FAVrD6Cp9e/cPffeHjhfsiUQ0juNQAOq20Hd9xwuejV5r1WDnYJSiVPv7StJnUJTF08hq72c2A04ETnS84LXATaiv8WTghyVe9+vATODPJV7DMGLpW9GN+HsUcPkI8QUDezhecALwH6Hv/qzDcXs1/H0isqgvBbbMs9GCWEL/i24jH0M3w58jK77s3g2vw0TX6DJ96V6oEfru+tB3P4f8tXFcAXwTeJPjBUd0OG4kCv4A/CL03V8ArwfuIP0st6IZar0NVgN7IHdCFVV2387T+N4wiqCvRbdG6Lt/RoMqN3Q4bDTyK14L/KFd6ljou1cCB6C0sznRa3cB36X7KVtDrYvXLJTOVyXnVHw9wxhAX6WMxeF4wSEoNSxJutFBoe/OSbH2CFTt9MWM28vLOlT+2gtujiJ4EmUpVD3qZwUqVb614usaBjBELN0aoe/eB3w44eGpevFGeZ5fIn2j9aLYhMjyHiIsonrBBd20fuF4wXZduLZh9H0grRVPJzzuS44XjEXtJK8KfTd2ckTouxujVKcngHdR/aPxUOmidTdwZBev7wCHAf/bxT0Yw5Set3QdL9jM8YJPpDjlbxIetzuqVPsp8vUmIvTdJ0LfPR81npmeYl9ZabwZHEBnv3U/sA7oBSszSaqhYRROz4su+iX9huMF4+IOjNoBvj3DNU5Ke0LouxvQL25ZxRMPAc+haRrzkcDPofsZFHm5FVma3eZExws+2+1NGMOPfhDd85FlNCHuwMhF8P0M18jUyjEKxnwqy7kJWES9HHYycDwq6BjV9oze5zmgU7pelYwA/tXxgpujbnaGUQn9ILo/RQ1TFsYd6HjBrshtsL7N14Y2X9tk/cULffcy4J+znBvDEUh4hxKPAlt0exNNvAG41EqEjaoYMiljjhc4aOrD1qQfcAnw8dB3M5ehOl5wDjAW+AIQAGdE3+fhNuDonGv0Cr3eJe3Hoe9+tNubMIY+fSW6jhecjbqLPQfMqGUcOF7wV8C2wEUMLONNw+mh7/66gD0eAcxFTxFvAz6N3AJZuQ84JO++eoAZ5Ps5lM0KYMfQd1d1eyPG0KbfRPfzSFjHoUY0tyIf5xuQdXkTMBV4HPhcyuVD4KjQd58rcL9HRHts2dEsIc8hN8PBhWyqe8wEju32JhpYgyriRqOb2lhUrfj50HfDLu7LGOL0lejCXwZX/oD2/RZqftosOcjzUWDsz0VMlnW84KPAj/KuQ3/MRovjOXqrJ/B0FJwExQsWAUch4f0/4Noib8CGUaMfAmkDCH33GTS+51pa56yOJHvRx2RkLd/reMGkjGs0cnMBa4AEdxYav96v7IgCab3CTg1/3wvlQM8B3o1u6n/XjU0ZQ5++E12A0HfXhb77LjRlIG4KRBYOAnLP14oeU5/PvRvxOtTasZ9JWi1YNguAfZteG4XG+zwRff9Oy2gwyqAvRbdG6LsLyTamOwmnFDTi5RSKE8vFBa3TLbrZJW0VcAsKxDYLLqgnwwnAY9H3N9tcNaMM+lp0I24FHilh3YNRYUZe7kNpZK8WsFa/i8D+FPNzSMsTwIsoyBrXZKc2JeRMxwveUequjGFJ3wXSWhEF194TfftRNI2gCF4Gfg1cCUzLE1xzvOBtwFnoFz9ro5x5SLj6mdnAayu+5lzks03CIur+3n8MffeicrZkDFeGRJexKLh2MYDjBZeiooIiclvHoVaRDnAv8vllIvTd3wG/i/yEo1CwJm1D7VXR14so4r4b/Te+J/PPMAe7AneiSRW70TmXezF10Y3tPGcYaRkK7oUBhL67Bg0+3Ab4VpvDlpIus2ArYE0RgZXQdzeGvvsqMC3D6UegDIYRyP84GhUdzM67rwrpRoexrVEryeNR8/ROrKTeQvMbjhfsU+bGjOHHkBNdgNB3l4W++xLwZeCahrfmRX/OYmDKUByHo/4KVzteMLWYXXI9yl1NywjqObt7oCqvomenPV7weo3sR/fHHnViChLeZ6Pvb3O8IMkkEsNIxJAU3RpR+8X3oB67Z6Dg2CmoHWNSH1+N7ZFoT3e84HLHC3JF4kPffRn4LIqmA9yIXAeduI/W/2ZTUECxCGYgy/5e4Jmca4XIop+O9vcAumk8mHPdrMxFoh/HGuo35e0or5OcMQwZEoG0tESpYKegCcFpmtKcjfopvAfYJ/Td3FkTjhfsBixDroLzUApcsxtjI/UKqnYujnWo+GByzi09St1PvAKJLygAmIbnoz3t2vT6kmjNmnukbF5GlYbr0BPCxATnPIOqANeh0uWlwG7Wl8EogmEpujWizmQ/AN6a8JS1yHJ7E/Ad4Ouh7y4reE9vQa6HWr+GxcgPeWiC06eRcvZbE0uQldsshhtR74Q9kYiuRPms7bJEXkaP563yYWvcA0yi3FaPC9GTgZPx/NXo32E0cGbou1cUtC9jGDOsRRf+MuX3fcB/ZTh9l9B3n40/LB2OFwTIor4PidwOCU+9hfQWaSNxov0qslInIXG+DwnyuujrKFSaPZdk2SPzkdumjCbid6CbQh5Rvx19JpD//WDgeSuaMPIw7EW3huMF7wM+hsQiaYT94tB303YzS7KXL6Bf8A+SYn4bEsQkFnEzM4Dx5O93OxuJ7+EpzplDcXnVNV5EPZXzjqtfjVLNDkE3GVAhzj2AF/ruY+1ONIx2mOg2ETW62Z1kk2LvDX33sBKufwXwPyj7Ig1PM9iHmoRuFCzUWI2qxIoeQzQL9asoguXIVdFovT8D/BCJ8i2h7/ZzMyKjQkx02+B4wQLUUCeON4e+W8go78jVEQAnkz2z5GnkA34FWWcHEt/PdwOK2OeddJGFuyhvbtoMVMG3bQFrNbaCbGYp4AG/CH13ZQHXMoYwJrptcLxgX+AGOgeDQBkNvwfOCn0316w0xwtOBX6bZ40WxDUPfxbl5R7V4ZgyyRv8i+NOVBiRl5dRlsnjKLC2Brl+DkKFOAB/Rulwy1E146ro+2mh7/ZSW0uji5jodsDxgpOIdzMcjoT5MWBWniCL4wVfBr6W9fw2PIgCX+0s504WXBWULbrLkOVftN+4xq3AMTHHPAm8PvTdRx0veD3q2fsvUZc8Y5gxJHovlMjNxPsGPwDcGvruHQVcr1VT9rzsR+f5ZN2+65bds3Y8CtaVRRI30O7AbMcLvo/6bWyNGimZ6A5DhnRFWl4iq/XnMYedSXEVVo8jl0Yj64jvFxDHcbSuWHsclRJ3kypEf6v4QzKT9HdoLPBF6q0jzeAZppjoxjOfzhboDsD3C7rWfwP/BvwYBWceAf4J2KWAtbdCvsZFyBVyO/JFOgWsnZWFlBdEa+Qg5MYoo2tYlqyL1SjtzBiGmE83BscL9gPuJz4D4HLg30Pfvb+Aa45FvuLPI3/hD6O/j8mxbGOf2F5hIZ3bLBbNdPRzLbIK7g7U+yINl4a+e16BezD6CLN0Ywh990GSPQJ/FPXeLeKaq5Af9ivAG0LfvZD80zGKmtVWJFVPkdgEFU4UyRQk5knZQNT72RiemKWbAMcLVgObJTj0eeCA0HcLn2XmeMHeqCHO32RcIi51rBt0I3PiJeSDH4fysPM8PYDcFseS3Ef7vdB3P5PzmkYfY5ZuDFET67i5WjUmoD4OhRP67iOh734eBb4uBf6Ycoleu7u+Auxd8TWXorzk/VAK2V051lqOXAtpuqU9C/x9jmsaQwCzdDvgeMEY4LvAX6c47TbguKiXbyk0+HwPB/6WZDPXulnq244FyOJst//aQMnV1F0Ru6NuZ2lprHx7GVm7h5D8hgq6UYxBwdUtor2k4f2h716V8hxjiGGi2wHHC04ETiP9VOD/RsGvE4CvlCHAjhfshLpzjQQ+jXzKcfTiYMsVqHR5UtPrS1HT81buhxAJ8s4kK9V+OOFxnZiNMlWeQdkQacQa1DZzx2hUkzGMMfdCZyaTLfByOnIzHEu6jluJCX13EWo3eAXK5U1CLw5a3JLWQb6FyAXQ6ufvIDHeETUbj2Mfss2ka2QdEvnDSS+4AIEJrgEmum2JLMm3IyvsGdJXi70beCPqLVsKoe++gPy7SRupHwrcXdZ+crAf6gUcRt/fjsRtW+ChDudthaz92xtea3VjWU/+IGLe1Lbrc55vDBFMdNsQWZLnokquLyBxS8MiYETZI15C372EdGWueyOrrzSfcwa2R83XHSSyjcIZ19t4M2QRT0OBrdrUikaxXkS2CrA7UaP2JRnPr7GRZK1CjWGAiW5nngYmhb77S+AzqJtYUn4e+u76+MMK4X70OJ5ESMcjX/PtcQd2iUkMbICT5JF8y+icKUjAd0Z9hWvz3Zak3MMTKE/6SBRs2xYF/LIyp+ixTkb/YqLbgSgA9nA0S+0dKE3rc8D/JTi9KsEl9N0HkEAchVKZ1hM/3v0Y8vs5qyCrRb4lCni9gMqek67zJOqT0K5BUBZuK3Ato88x0Y0h9N051HuonoqajF9AvKilLQ3NRei7S5DFey5wEfDOBKcdQH0EfLe4I/qawcBx7dOj7/NYiKNRWtopqDgkCbsh4S0y6NWq2ZAxTLGUsRQ4XjABOC303UsdL9gODbN8c5vDXwYOqfVMjY5/Y+i7v4q+3zr03ZdK2ufewEnAJQkOr7V9vAf5UvehnEGRzTyKrPIsM92SMgelyNWMizQVcEXmNU8OfbdTQNAYRpjo5sDxgi1QDu/fUp8e0MhC6u6Iscg6Pg/4T2AisHPou6X4VqPRP2ejjmWdeBVlZ0yMvl+MLPtSUt0iHkEFDkXPRWtkDQqgOU2vL6X1v1XzMeMorv3imNB3u/1EYfQI5l7IQei7K0Pf9ZGA/CNK9G9kL+A65Fe8CEWxLwH+K/Tdx4nvXJZnbxtD3/0JarL+codDR1MXXJCVuz+DP0tRLEA/jzIFF9R83mnxepK83hcpTnBXmOAajZilWyCOFxyIgm1JynLfBawLfbe5aXnhOF7wGuAq0vWu7TRtIitVNbjpNALoedQjoxMr0c2hCNfHE6HvdrtRvNFDmKVbIFHQ7TgULY/jGuC95e5IREMRjwX+JcVpccKUhSp8xZ0E9xWSWbBboFSxIoZJFt1K0uhzTHQLJgqcHYf6HMTxdscLirYmWxL67trQd79A8p6/ZYy4KXNsznKUmtVpyOUYlHud5HH/NpI9scRhomsMwES3BELffQY9Rt8Sc+hWFDfqJyk/Q5VWcWxHvnStVpTVSH0O8lsfneDYg2hfGDKbetraISj4mYeNwLU51zCGGCa6JRH67ovI6noH6pbVjj0dL3i74wVlB5Zq+9qIRv/EWXubIBEqisUJrpmF+ah3w64pzmn1/34FmkV3Arph5hVc0KTjAwpYxxhCmOiWSJRBcB2ymi5oc9g41AzlsSjgVcW+bkH5xXF5wschUcvLKygN7agC1mpcczrqaZv2htXq+Lspx+e8soQ1jT7GRLcConLi76J82HbsjmaiVULou7UxM090OGwEylnNy4MUm/e7At0MjifbkMlWFneScUxZeLakdY0+xUS3IqJczQ/QuQdApVZR6LvziM+gSPPY3o6DC1gDZJk/gFwVRa0JSo+L62aWFRNdYwAmuhUSWZezOhxSxKN8KqKKuE4NWSYSHxDsxDJkMRfBXBQIcwpYayH6XDPRjbCseW1JG8wbwwQT3epp11f1f4EfVbmRBt6PshraMRVF9bM0QC8yGFdU57YTkDtnKnKxjC9o3VaUubbRh5joVs9NTd+vRR3BTi674Xk7opLkD6NS5nacgPrSzkQpZ0kKQJ5AwlYUecelN9JYgv1ayusvvHVJ6xp9SlH15UZybkOPyQeghiyfCH2366NcQt/d6HjBV1El2rltDjsI2Knh+7uQEB7U5vglDOzr0KuMoLxJGmbpGgMwS7diQt9dh2anvQNwekFwa0Q5vOcDP2/x9iwG564eQecqs6It9ykoE6Jo7iVdX4o03FjSukafYg1vjEFEbSH/HviHhpfvAQ5rcfidaGpFK2oNbp5HQcIdUCFDHp4FVpN/UGQjryKrfRP0GUdEr+V9Erwy9N0zcq5hDDFMdI22OF7w19TLlNcgsWvsRbsIuSPuQeluhzLQ8q01n1mIRHIlKkzImxO7NLp2o4CvR0KZ1+/7LOowVmM8Km7JwjtD3/1tzv0YQwxzLxid+E/qfRoWoaYyjWyK8maPQOJ6X9P7jZZiGB07i/zja7YBNke9DYiuuxoJet65bzujz1L72iFaOwtF5hIbQwQTXaMt0TTjz6MWhw7Q3Bd2WwYKi4PmtC1A0yFqFu1eqAx4a5QpUMtdfQ6J+gsJtnMHA1PGHOBhVNgwGQ2iHE3xRQ67Iku+uZpwI7KKH0Ad5ZahzI65DcfsX/BejCGAia4Rx0ySFzdMRCK8LxKkvVEq1jSUF/sSEt6aC2BblMXxKnWrtZmV0flTkIW8uOG9fVF/iEZ3RRkTL45FzXAejvYyDbWI3Bl9JgeVIx8b/f0WdPM5qapGRkb/YKJrdCTqG3FzhlPXICE9Cj2m70U9N7YWBLsTZUTsjKze5taP05D1WuuROxVZxZ2q+socjbMPdbfDbk17ejz6fovotW3QE0JZlW5Gn2KiayRh8wznTGJwYcBhyDKcgAonGvN7n2XgtIoN6PG8OTC2HxL0Zv9yjW5EhicwOJ1uIsrqiBuCaQwzTHSNJGyZ8vh2j/gjkBA/jnyl4xreay5OmIGCWK04Hglvqw5p3Xicn0X7KROnVLkRo/cx0TWSkLbnwpbIz/pIm/f3QOK4GrkQ7mJgkG4W8eXDq9Cj/N3US5KnU/wwzTimA8d0eH+K4wXjOrxvDDNMdI0k+Ehc0jABNQVvV0G2HgnmCSjlrLGB+Fo6B+9uRS6P7VCf3t2BG1AK23SKr4TrxOiY6x0OHOZ4wSYdjjGGEVYcMYyJIusbovLfuGP3QEUOaW/UD9K6Cq3TiPfnkPW6FmVDNPYvmIv8pc3W45NIfEEBrKeQcO8O7Jlyz2l4Ek2x6BQwOww4EfhelIZnDGPM0h3efAf4VZIDo05kWbIY2g2j7OQn3hFZkMcj4bwLpWHdgnJyWz2uN+bRvob6rLMJKMe3kdnRWoti9l6j3Sj2u5GPOi5DYT/gauDrjhdkCUoaJeN4wRjHC4rsYtcWs3SHMY4XTAU+A5ye0NqdAFwEvA/l2MaxGnUaa54+sRF1W+vkC30mOvfABNeZg/J9O7kkbkGpaouRCG6KcoDvYmDhR4h8xbUg3nRkqT6FBL+RJUiQ2/WeqPFItL/tgS+Gvvu5mOONDDhesClwGvr3WIOKcM5CN95ngT8C30ZPJi+i/PDTkPF5GPBR4NTQdzs19c+Nie4wx/GCHdBgzC+HvpvIknW8wCFZP11QhsFS6pVrtcYySUpk55BMdB+gfXvJpNyDfgnHoZvCq2jftRzhaQ1/b+R+kn2WB1Afi8kmusXieMFmwNHAV9HTTSdeRT74+egJaD5yZ30MeAuqLnxf6LudJnjnwvrpDnNC330B/YdNw6kpjp0Yfd2Ngkoj6CxSy1GxwVMkb4C+P7Js8jTSqXVQW0JrK36XFq+tQelxLxJffnwQmpH32awbHM44XrAlchvVvvZu+PtEkrtKR6OmTKNQG9Nm9gd+T734pXBMdI0sLEt5/ELqc81WMzDo1chMVFRR+2VKwlpUahxn4SRlLq3Ffh8gQJZw7VoLUenvk+gX+VViCklC3723oH0OaRwvGIvGSH0IuYN2rPDypTaeN/eCkRrHCz4J/EeCQ+9GFuAe1P2tG5Ev9dnoa0vkQtgU+Vu3H7xMW+5CFslOcQfGsAC5PGpukMYCi1XIv/wcsoD3QyK7Mbr2SOQGWYoKPF5HZ+E9MvTdu3Lud8jieMEUZIH+FeWKX+3Jqx0fD333h2Vc2CxdIxWOF2wLvKvFW6sZLDbrGDy5dwQS2n2iL5AI30e6ce/LkfWTV3BBpcmvo3Vq2d3I8m3MUGi20hv9zrXG7e34KhIUowHHC7ZD2TRnV3TJOGvzlbIubCljRmKiBP8bgdej/7QhGnXzAHq0vpuBvWdfTbj0Fkj00ojuAlq7KJLwIArwraYuuO1II+oLiHdzuJE1ZwzkW1QnuND5/+b/hL7bamRVIZjoGomIRvh8i3rQbTqyYg9FQaJx6HFtMQpGQToRTcM0ss80C5GFPRFZ5p2Cb9OpW+NxzETukiR8NeFxwwLHC7ZAvvyquA91v2vHNWVe3ETXSMqeyA3w7yhw1Sp9CmR9rkdtG8sS3aRC2IoXGOhWaye6j5EsOLcCfdZjGfwzmU3rSRZvidw0hphCve1n2ayndXFNjQwMEe0AABEeSURBVN8Cl5e5ARNdIxGh7y4MffciVEzxXMzhO6AE9U1L2k6r7mJJ2EByl0e7SrpmtmRgh7QnkMvlFvQEsDmt21CelXD94cAZVNMdbh16ImmXGXMP8KGoh3RpmOgaadmXwWN7qmY8g1tBJmEkco+0S3l7Ff1SLkDWVxJubzj2UWQ5r0AiMgL5i8cwuJjkXxwv+FDinQ9tJqPUv7RNldJwH8r9bvf08lMUq9je8YJPOV5wUlkbsewFIxbHC85GFq7D4MbkVbMaWdJ5DIbHaD3h917kJkjDK0hk5yC/5LjotTdG79cq3ZpHxo8Afup4warQd69Nec2hxkuoGmw1ekLYgH6WRWSmPI9uhp0KgC6uVQk6XnAlihe0atJUCGbpGkn4JBKpbgnuPOQ3vQOJ2EtI5GpsQI/1SYs22rViTOp6aGQKmp12FHI1zAROop6XvApZu63yj0cBVzle8NYM1x1K1NxVm6P0vBOi1/IUEWxAlvPmdBbcOcAF8JfsnDehHN20BUCJMdE1knAG1faorfEoami+P/IRT0GW6N6oGKHGLSgb4f6E6x7J4DHwc5Bopx1suRnK4CBaszmY1tjK8XbU6KdRTDYBrnW84MSU1x1KtEr9O5js7oY5qMnQ8XQOmq0FPhj67hqA0HfXAVND370x43UTYRVpRiIcL/gVcHoFl7oTCdVkOlvWr6DH0TXIx7s5snYnJrzOIuAh6iI5C1mkj6FH0u3INlSyudJpTbT2a5BbZNPoGssY6OJYCZwQ+m7aKR19j+MFC2idkbIe5VQnaXoESlWcR/LpIVeGvntGwmMLwyxdIykzS15/Pep7cCR6VI9zZYyJjtmJeiXcOJSmNQu5IqbTftTQI+hR9lFUTlzL+90TWdQ7MvjxdkGyjzKAzZDFtSv1bI5dGFy9twVwTVSZNdxY0+b1UWiwZ7shpDU2oqedkaQb1zQvxbGFYaJrJOVy5Lssi1HIUplDNt8q6Bf0tchinYLEbjdUMTcNifAC6rPURqKI9iQG/y4sbdjHo8DTKHNjRofrryZZY5a7aF0MsAdwpeMFw+33cm6H93aNeX8+soankj7mkOVJJjfD7R/XyEjouytQa8KsgpiEY9Gj5BpkuRTBjihftjZJYl8Gpg3tTus6+4kozQjkbqgVeoxDvtk7GWyhzSK+JeByOmdIvAX4dMwaQwLHC0Y4XvAF1BS/E0cz+ElrOfo/Mgn5/LPQbnBqqZjoGomJumNdWOIlav8fHyN/U/KkvED7zmZHol/Mxuj3ZOT+OBJZwI03ob2Rb7YTWxEfrDsz5v2hwn8C/5zw2ENRCTcoYLkWWbedpoW0Yz16Gro4w7m5MdE10vIdVApcJlvROepcJHGFHs2PoI1ztF5BbR8fR4G59cg6nk578b2TzvPhAA6NBoEOdd6R4tix6GZ1PxrzlKYFaCMLgPeEvnsnqlCrHMteMDLheME7gTKT+u+hPs2hTOaR7PF0JQp21ViHgna1TIXm6RGLkV94n6bXXiKZL/Ezoe9+L8FxfUk0by+unLyZ58jfzHwVmoW2NTI6L0kyH7BIzNI1svJb6o97nbgFBatmoIT1ObRuAtPMGOrpY2WyOMExtWkXjQMLN4nOvRX5dpuzDrZHVvCCpteeTrivNFZgP3JAhnOKEMexwC+B7wJbVS24YKJrZCT6z3omndN5HkEWxW4oW+AlFCg7gfjE9wOAncnWYyEJG5H4Hxpz3AMokDYZ5QM3+nDHo0fd5hHvNU5An70x4+EQkt10jh/i6WPdEl2AK1He9HcKWi8VJrpGZkLfrUWPz6NuMc5DojIHPUY3BsQa2xk6nZZGVu5TlNfybym6ESTxHdf8q/ujdK8atayH4xlc4Qb6DPMY+FnHIzFewUDLuZlRwPWOFzSPfe97HC+YCnwlw6lF3YCnA1eT3S+cC/PpGoUQNaL+CvBOkvW7beezvZ3ODaaLYDXKkEjiy30FuQj2Qj7dxlHsjX9fjwR5Cvql3gRZ6k6LNWcg8d2Z+F/8VcA2oe+uTbDXnsfxgnPQKPosN9OnKG5K76Wh755X0FqpMEvXKITQd1eGvvsl1J3pMOCimFNqvtrFKMH9FfJNhEhKza+cNLdzPrLWRyOx3IgyFWBgutIoFFRbjizfo2lvzW+M1kxiaY0FfuR4QdZc1J7A8YKdHC/4NXAZ2Z9eirQQ/1zgWqmw1o5GoYS+ux641/GC+ai3wYdQwn/z/7UdkMhOQG6I2bSfRlEkt5KuVLSWUzum4bzVyDXQ/JlGo3S3ONI+Jp8RnXN2yvO6juMF+wIfBD5Lsp9NJ4oU3SR+9VIw94JROo4X7Aj8DDg5emk2qvCqMlD0FHqym4eaVSeZVDCT9tVji1Ha2M4p97ER5fLGBfCaeR6J701lTzYogmim3kWoiOStZCtiaCakcyygHU8ysJPZ/NB3S+uXG4eJrlEJjheMAr6BLN81tB+ZUhZ3I4t6PAN9sc1sROW8R6KbQ6tm50TvHUR6Mcnjs/4+ygdeiIYnrgHWdyPtqRHHC8YCI0LfXel4wWjUk3YE8D/A21B6VhF9DkLSi+5vgH9iYNDym6HvlllZ2RETXaNSHC/4CCUP/mtDo9A2t19choJlNQtyCnKNbEn74ZozUClp2jlwa5CfeByDbzyzUG+IuMYty9DNo8Y69DO9MPTdJa1PyY/jBbsgX/hEZKlPQql0u6ObycdQwPGF0Hdvj84ZgX5WxxSwhYUMnsARx5vQz/V56mOTJnczMGk+XaNqrgI+QvqxOK24FaVzrUWVSmNRIGsVg0e9NAZvJqFA3ihkPe2BLFuajnkECdwoJJaNgS+HbIM3N0PW8zLkotgWBfZei3zFI+lsicNAwQV9tnOBIx0v8JEL5cGiLOBIOD+EGtO8DYloo1/8fuAmlGVxQ8N5+yCXSBGCC+l9ugFwM+BRL9+e2+1MELN0jcqJWhf+GqWX5SGk/rj5FLJmDkIitAJZrvci0dwWCV2tec10JKwv0brNYo15SNS3QhbeelQMsQnqvZtnjtcjqB3lduhR/BDqZa5ZrLpGzg5992dJD47KcsehG9dY9HOZgG40n0E3gWep+7A3IBGcQf0G8RN001uGKu8uIJsPth2PkMxN8dno+n8KffdFxwt2RemMHwd+EPruJwvcU2pMdI2u4HjBDsjCm5BjmaR9E0ApaXdSt9BWIjHdJsX1fof8sdvGHdjE88R/zmbr9nZkfWcdTb4MOCD03bZlx9HNbxJ6BP8suonUmI5uUHHpXY37XkF8M588PEx8DvgfQ989ufnFKKbwHPC20HdnlbG5pJjoGl3D8YJtgDcDf4Ui3GmyGeYiq7DKqqJbkeimyW+fhizIds17alMPDmVwdVycmyGO3wNuo5shEp+pwPtR0/h3ky/IlXePaViAfN7tWA+cGPpuy0bzjhecE/ruD0vZWQpMdI2eIBKDY1BJ8em0jzfMQJbmZLpT3PMAyjFO6lZYjFo/1gJ3z6NJByCRXUX7vOEl0fVGUp/ZltaPfDXwv9SbfU9EwjWm00kpuAWJeBU8RGdX0CmNPuVmHC8YFeWRdxUTXaPncLxgN+As5OPcH1W51VKzqmr52IllyEJtlWWwFPk1N0cuhVqK2AzU5OVVJNpZmEPyIY2deIyBroS8zECukJqQv4RS29aj6r19yef7rjEf3Wxb8TSwd22yby9jomv0PI4X7Ay8C3gv+kW+FFl9F6CgTzdYTH3cy3p0I1iEhHaL6P3H0P5qHbUWkU98VlHM553OwJFFjbyMrOsRKF0u6XTlp1DwbxS6sTS6HF5GGQ7r0b9buzS8OBp9+A8Cn0DVbqcAx4W+uzDjupViomv0LdF0hZupvtCiFX9GQlNE5VU7ivKfzkSP6a384XcyMH1uLfEujZnIVbIONaTp1Gh8FnpyqdH88xrR4b2HqFu6vwl994MAjhfsHvrukzF77BlMdI2+xvGCw1C1UZac2SJpzl0tmpXoM7bKJkgijM3cjdwczZZso7Avp32/hKUomDkGuSpqAt5ceNLM1HaBruGCdRkz+prQd+9BlVAvdXkrWR+Zk7IFg5ulP4+szAWDD4/lcGAXBjeTb0yhG0vr5jyLkcvgOGQVN1rMhyPhNdpgomv0PaHvXoEyGn7Z7b2UzB7oEX4dekzfDFX2Za2wGo2EcyH1SRoHNr1/V9M586Prd/L1rurw3rB/tDbRNYYEDeODzkYiUjVV+BR3R+XII1Dfh9qj/2HEjz9qx0gUBLsFuRWaNeF11JvF3IYqzOI6q02Kjm1lJQ970TWfrjHkcLxgE9Tf4RLKDWw18jLVjY1vxVqUTpelg9lS6v0rWrEc+W+PbvN+Ox5A2QqbN7x2bOi7rUYbDRtMdI0hi+MF5wNfIHnaU16SlPuWzVzSDX0Mkai+toS9PIlyi9ciC30N8LXQdx8t4Vp9g4muMaSJ+gtMRV2yTmdwh64iWY767JaZxZCEtaiabTnKeliDcmdrj/sjUD7tavSzKao6rRV/AC4Jfff6Eq/RV5joGsMGxws2Q30ezkAtCstqbdqp+KCXmIV8tmWzBDg89N2wgmv1PCa6xrDE8YLtgfcAb0C+yl0KXL7snN0iWIl8rVUF09cBk0Lffayi6/UsJrrGsCcKvH0SNQLv1FAlKbdSXOPusqiyUU2Nh1DP3X/tdiPxbmKiaxgRjhcch/o6pAlENfMi8qmmHVhZJd2+KawFLgp91+/iHrqGia5hNBAF3vZHwntgw5+vIf5RfDbKY807arxsesX9cepwDLCZ6BpGAhwv2Bw4GPgwshK3Z2DHsMdR/4NetnBBvtWnKXaMTlYuC333E93eRNWY6BpGBhwvmITKZmsFBbeRvnigLDbSvihkKSri6IWhtCuA64F/DH33oW5vpiqsDNgwMhCJxBtQFdgd9IblCPCvqNDhBZQj21yKuw2D+yl0iy2BDwDzHS/IM4SzrzDRNYyMhL47D3gjcDnqp3svKjjoFvehvhPjUTHI11DQ6jHgy9ExG8jeIKcsbuiXBuRFYO4FwygQxwt2Aq4ATqrwso8A30VpYJsg3/KTqO/BeDRf7WHABS4DfoAGgfYKPwt99+xub6IqTHQNowQcLzgauIry+z78Ajgn9N1YC9vxggmoIm8kEuir0By6IpkJ/CrlOQ+EvvungvfRs5joGkZJRMG2D6Msh9rXzmhiQ97uZ3cB1wHfC313ecp9jUQBwItRVV5RrAMODH03S1P1YYOJrmFUjOMFo5HF+TWST/d9Bc2Dux64MfTdpwvYxwjgNODfKGbyhR/67gUFrDOkMdE1jC7heMEoNOH4IjSmvBVrge8D3wx9d3FJ+xgHfBP4VI5lngYmh767ophdDV1MdA2jy0QW5x5o9M6xwDMoFW09MK+qSbeOF7wXZWJskeH094e+e1XBWxqSmOgahvEXHC84EPgNynxIyjTg9dHIJCMGE13DMAbgeMHWKEiXpCfweuDQ0HcfKHdXQwcrjjAMYwCh776EAn1JZpn9hwluOkx0DcMYROi7L6MCiptiDv3nCrYzpDDRNQyjJVH+75uBd9J+xPx3o0CgkRATXcMw2hIFx64DbmhzyGmo/7CREBNdwzA6Egnv+ahvQzM/DX13bsVb6mtMdA3DiCX03Q3AecCPmt66pwvb6WtMdA3DSEQkvJ9ABRQ1nu/SdvoWE13DMBITCe/HgR9HLxU5un5YYKJrGEYqIuE9B7gQuLrL2+k7rCLNMAyjQszSNQzDqBATXcMwjAox0TUMw6gQE13DMIwKMdE1DMOoEBNdwzCMCjHRNQzDqBATXcMwjAox0TUMw6gQE13DMIwKMdE1DMOoEBNdwzCMCjHRNQzDqBATXcMwjAox0TUMw6iQ/wfxzPa2QA8D1AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot()\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Contiguity Weights\n", - "\n", - "The first set of spatial weights we illustrate use notions of contiguity to define neighboring observations. **Rook** neighbors are those states that share an edge on their respective borders:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "w_rook = Rook.from_dataframe(gdf)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "32" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "12.6953125" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.pct_nonzero" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydeVwVdffHP9+Zu7EqIgiIiAuogLikKIp6lTT1STMrNbdKe/pVZk+bqWVOU5pmq/Vk5VY+mpqZS2rubOGCIi6oqCziCsq+3zv3zszvjy8QywUui2vzfr14IbN85zsXOXPmfM/5HCLLMhQUFBQU7g7MvZ6AgoKCwj8JxegqKCgo3EUUo6ugoKBwF1GMroKCgsJdRDG6CgoKCncRxegqKCgo3EUUo6ugoKBwF1GMroKCgsJdRDG6CgoKCncRxegqKCgo3EUUo6ugoKBwF1GMroKCgsJdRDG6CgoKCncRxegqKCgo3EVU93oCFeF5ngHQHIAzgBal350BtCCEtNRoNB4Mw7gRQlzMZvPVuXPnPn0v56ugoKBQX+6o0eV53gaAS9UvlmXd1Gq1J8MwrWVZdpEkyUkURQcANiqVyqTVak02Njaira0t7OzsWDs7O42dnZ3G1tYWNjY22LNnj0mSpG13cu4KCgoKdwJyJ0TMeZ63ZxjmuizLDlqt1mBjY2O2s7OT7e3tWQcHB42Dg4Om1KDC1tYWZcbUxsYGDFNzxEOSJOzcuROnTp2SZVl+BMApjuMUFXYFBYUHhjvl6cqEEO1rr73GODk52TbVoFFRUUhKSpLbtGkjZ2Vl/WUymUoWLVq0TRCE3wFEcBxnaKprKSgoKNwJ7oinCwALFy78wM3Nbe7EiRNtbGxsGj2eJEn48ssvpQEDBpA+ffoQWZaRkZGBS5cuyefOnSvIyMjQqNXqQwaDYQOAPzmOS2v8XSgoKCg0LXfM6PI8r9FoNMtYlp30xhtv6DQaTaPGS0xMxG+//YY5c+ZYDEEUFxcjKSkJCQkJhcnJyWqWZa+YTKZfRVHcDuAkx3FSoyagoKCg0ATcMaNbxpIlS048+eSTPX18fBo1jiRJWLx4MV5++WW0aNGi1mNFUcS1a9dw4cIFU0JCgrGkpMTMMMwuo9G4CcBBjuOKGjUZBQUFhQZyx1PGjEbj9piYmEBPT09VY8IMhBDIsgxrPGaWZeHt7Q1vb2/18OHD1VlZWUhMTJx07ty5UWlpadpPP/30qMFgWAtgB8dxtxs8KQUFBYV6csc9XZ7nXVQq1U/u7u5DxowZY1OXl1oTJSUl+OKLL9CjRw/zkCFDGmzADQYDEhMTce7cuaLk5GSVSqW6aDQa18qyvI3juKQGDaqgoKBgJXfc6AIAz/NalUr1gSRJc2bNmsXqdLoGjXPmzBns2rXLDACDBg1ivL29mVatWoFl2QaNZzabcfnyZZw/f96QkJAgA7gtiuIGs9m8GUDc/Z6OxvP8EADdSn+U6/gOAKTKdwAoBrCb47jrd2SSCgoKlbhbRpcAkABg/vz5IITUcUbNZGRk4IcffjCr1epIAD46nc55zJgxdt7e3uXHiKIIURStCkWUIcsyrl+/joSEBNPZs2eNBoNBIIRsEQThVwCRHMeZGjzpO8SSJUtOeXl5+Ts6OpYvEsqlv9AKv9dKRrfqZ19UVGROSkpiCSFfzJ07d96dnrOCwj+du2J0AYDn+ZdcXV0/f+WVVxwaM44sy/j+++8LMzIyJgP4gxAyRqVSrejUqZPd8OHDdXZ2dti6dSvOnDmDkSNHyt27dydqtbre18jMzMSFCxek+Pj4wuzsbJVKpdprNBrXA9jDcVxhY+6hqViyZMnZCRMm+Ht5eTVqnMLCQnz77bclgiAM4jjueBNNT0FBwQJ3zeh+9NFHPMuyH7z77rv1NoIVSU1NxYYNG24IgtCe4zgBAHied9BoNIsATOvatStz4sQJLQDodLoDkiSFhIaGqoKCghq8aJifn4+LFy8iPj4+/+bNm1q1Wh1TYSHuVoNvppEsWbLkwsSJEzt5eno2eqz4+Hjs3LnziiAIfe7lPSkoPOzcTU9Xq9VqfwHwr8mTJ+saaihiY2Nx8ODBX2bPnj3ZwjW6AggFUALgZ47jjDzP91CpVEffe+89TWPCGmVYWIi7ZDQaf5ZleQvHcamNvoAFSsMz1dDpdElTpkxp7+Hh0ehryLKMffv2GWJjY4lKpYowGAyvcxx3qdEDKygoVOKuGd0yPvroo7G2trZrZ8yYYduQDITIyEhERUUt/uCDD+ZaczzP880A5Lq6uhZ27drVzsPDgxQUFCAwMLBRsWWALsSlpKTg3LlzJRcuXCCSJEmlnydB5cUqUmV7xZ+r7keVc8GyrCyKYrXJEkKk1157jWloRogljEYjYmNj5cjIyFyTyTSA47hzTTa4goLC3Te6ALBo0aIfOnToMGXcuHH11mX4888/hePHj8/hOO4ra8/hed4WgF6j0TwhCMJLZdufeuopBAQE1HcKFpEkCQYDlX4oM+YVjXrFbVX31/b9l19+kZOSkshbb70FB4dGhcPrxZkzZ+SdO3fmm0ymIRzHxd21CysoPOTcEz1dQRBmX7p06QWTyYT6xncJIVCr1b71OYfjuGIAf5Z+/R/P880BJB89elQVEBDgWK8J1ADDMLC1bTJtn3I8PDyQlJSExMRE9OzZs8nHr4nAwECiUqmabd++PXrx4sW7jUbjSxzHZd21CSgoPKTcq84RRbIskzLPsD4EBwdrzGbzdJ7nG2wsOY7LBdCiqKjIrqFj3C0GDx5MWrduLRcV3f3KZT8/P7z11ls2Pj4+o9Rq9Uqe5xsnoKGgoHDPjK5apVKdXLt2bXFxcXG9TmzWrBm6du1qVqlUKaXx2gahUqlSevTo0bCqirtMs2bNSHZ2tngvrq3VavH444+rPT09h2k0mgSe593vxTwUFB4W7onR5TiuRBCEvnl5eSuWLl1akpSUZHVgmRCCJ5980sbW1lYDoHVD50AIcfL392/o6XcVJycn5Obm3rPra7VaTJkyxbZ79+6tGYZJWbhw4V88z/e6ZxNSUHiAuWeNKTmOk+fOnfuGIAhvnzhxot7vziqVSgLQ4CAqy7JpWVkPRojSxcUFeXl5jc93awSEEIwYMUI7ZcoUXb9+/ULUanXkRx99NK8xbxsKCv9E7oduwDeNRmPdWreyTL9Ksbe3ZwC0b+hFjUbj+9u3by+pb3jjXuDh4YH8/HwmJyfnXk8F3t7eGDx4MF588UVbFxeX+Wq1ejfP8073el4KCg8K94PRLbh8+bLjzZs3az/q558BnQ64fRvYtAlDU1MddDrdOw1Ntp0/f/42k8n046+//losSfe3vrmLiwvc3d1x6NChexLXtYSrqyteeukldYcOHXoxDPPmvZ6PgsKDwv1gdG8DwIoVK1CrJzdwIDB9OpCbC6SkoGVaGmRB6AigAIQMBSEBIOTD+lzYZDLNSk9PPxMTE3N/W10A/v7+uHr16j0NMVSFZVkEBgaqWZYdX9r5WUFBoQ7uudHlOO4sgEuEkOj//e9/Ncd2O3QABgwAfv8dePdd3Hr/fTBa7Q0AQQCOAPAC0A8AQMh5ELIQhDiWfrcY++U4ziwIwpKoqCjpXhSJ1Ac/Pz9kZWUxonjfOLsAgA4dOkClUrVnWXbhvZ6LgsKDwD03ugDAcVwnWZYHFRQUsLXGWMeNA9LTgYMHy1bzUyHL5yHLhZDlPyHLw0qPHAXgewDNAfwLAANCfgEhewAAhLwPQsoyH1JMJlPR0aNHzXfo9poER0dHaDQaOSMj415PpRIajQYvv/yyysbG5v94nh9xr+ejoHC/c18YXQDgOE7SaDQX09PTaz6IZYEZM4D//Q/usgyTyTTQ4uq5LCdDlq9Dlq9ClrtDlgsBzAIwB4SwAJ4G0BqETOc+/HCrKIrTsWqVgOP3t6qhnZ2deOPGjXs9jWo4OjqiV69etizLDqv7aAWFfzb3jdEtRaNS1VGZ7OsL9O4N13374Neli0alUn1nVaWULN+ELJ+CLIuQ5R6Q5WMAfgfwEoAiz5gYNSIigEuXADc3ICMDiIgA/vyz8XfVRLRq1Up19erV+yu+UEp+fr5RFMXUez0PBYX7nfvK6JrNZmnPnj11ZxPMnAlERWGEg4OuTZs2T5ZWStV/IUeWcyHLBwAUrJ882Xz56aeBtm2Bb78FnJ2B3btp1oQkAa1bUyOcmgqsXduAu2s8dnZ2KCkpuS+Dz05OTlqVStXjTo3P83xfnudd7tT4Cgp3i3uiMlYTPM8zWq328pQpU7xat66j2CwzExg4EHJsLFasW5eflpa2FMAujuNiGnBdNYB/29vbL3nzzTftGKbKs0iS6ALekCHAwYPAxx8D8fF0YW/kSOA//wE2bQImTgTq0SKovmzcuBGOjo7iyJEj77vy5fz8fCxfvrzYYDC8PG/evCZ5KpUa2WEA2rIs+yEhRFKpVIfMZvNphmGay7JsbzKZogAcAvAWgM2gnT2MTXF9BYU7wX1ldAHg008//Umn0z0zfvx4Ozc3t9oP/vNPYONGXF2wALt37y7MyclRm83mOfPmzfu6IddevHjxqWHDhnWzWs1r927AwwNwcKApbfHxAMcB588DY8YA3bsDwcE0Ft0ErFy5UurcuTMTEhLSJOM1NSkpKdi0aVOS0Wj0bWxTz4ULF75jNps/YxhGbtOmTUGPHj3sO3fuzCQkJCArK0tUq9UkKysLxcXFxenp6SgsLLQvPfUNjuOWNsHtKCjcEe47o1vaJeFFtVr9Tbdu3cjgwYO1NUomCgLw0UdA167A+PHIzc3F8uXLS4xG4+sffPDBygpjdgGQz3FcratQPM8HqtXq6HHjxjl07NixYTdw7BiwcCGQlgb4+AA5OUDnzkDPnoDBQI1wp05AXbFrC/z3v/81h4SEqLp3796wud1hJEnC8uXLi3Nycg4IgvBsqaRmveF53lOlUl2cNm2arbu79fo6ycnJWLduHQDkchynVMkp3JewH3744b2eQyX0ej30en1cWFjY75mZmQ4xMTGd7e3tVe7u7tULA1gW8PQE1q8HgoKga9kSvr6+6gsXLjwaERHRNSwsbK9erxeio6O3yLK89PDhwzZhYWERer3eYtBYr9ffCgsLi7hw4cIEHx8fjb29vaXDaqd1a+CZZ4AbN4D33wemTQO8vak3fOoU8PnnQEoKsHcvcPEiPc7Ghu6vGtaoQnR0tNy1a9cm7RTRlBBC0K1bN3VmZqZXTk7Of/766y/XsLCwGL1eX6/X/aNHj37Xp0+fboGBgfVac2jRogXMZrN87do1m7/++ouJiIhI0+v1D4bAhsI/hvvO060Kz/Nd1Wp1mJeXl9bb29ve19eXuLq6Vj5o3TogOZm+2gMQBAE7d+40XLx4MVMQhNE6ne7bPn369L9w4ULx7du3X5s/f/5PtV1zyZIlMaNGjQrq0qVLwydeXAx06wb8+iv1cqvuS0oC8vOBlSuBvDzqAV+/DrRsCQwfTo23hwdQWuW8c+dO+fTp02T69OmoM+xyH5CRkYG9e/cKV65c+dVsNk+3toU9z/NajUaTMnXqVI864/oWkGUZKSkpuHTpkikuLq7IbDa35zju3otWKCiUct8bXQDgeb4VgMFqtXoAgOeeeOIJu0qyjAYD8MknNK766KPlm+Pj47Fjx44ik8n0nr29/SJHR0eb27dvJ8qyvF0UxaU1hRs++eSTZJPJ1N7f37947NixttUW1qzlp58AUaTebl1jFBQAiYnAhQtAbCwtd27Xjqaw+ftjdW6u2Nrfn3104kSwTRQjvtMUFRVh06ZNRenp6fmyLP9hMpmiARzmOC6lpnMWLlzIt2nT5t3JkyfrGvy5l1LaaLPIbDb/W5blbY2NMysoNAUPhNGtCM/z3dVq9cHQ0FDHPn36/B0YPXyYLmy98QZN9yrffBiRkZGHBUFYDWBl165dkZaWZszMzHyB47gNFsZ3VqlUX0iSNE6WZd2sWbNIQxpolrN8OTWkX35Z/3Pz84GzZ4EDB3Do1CnJB2Bc3dyogR4+HOjVC3B1BZzu3/ClLMu4ceMGrly5Ih84cKAsRDQMwFGO4woqHsvzfCCA0z169JBGjx7dJOmMly9fxrZt24oLCwvnfPDBB982xZgKCo3hvovp1oVer08PCwv7NTU19SW1Wo02bdpQt69NG+DQIZpKFhhYfryzszPOnj3rLElSvCiKc3Jycp4VRVErSVLcoEGDoquOf+jQofnt2rV7uVOnTtpbt27laTQatZeXV8MNgJcXsGAB8PTTQH17qGm19L4GDUKUyUTyBwyQOr7wAoFGQ+PCt24BP/xADfvNm1SBjWFojPgOpq7VB0IIHB0d4eXlRQYMGABCiNlgMIwxGAxzw8PD/4qMjLyq1+vB87ybWq0+NnjwYJvg4GCiaaL5Ozk5wcvLS33mzJmB4eHhRwcNGnS5SQZWUGgg91VxhLVwHHfFbDb3DgsLkyppEcyZA6xeTb3DUmxtbTFixAhblmVHALhkMplGlpSUMJIkfWJpbLVaPbhXr16q4OBgmEwmu6tXrzZOgczFBThyBPi//6OLZg2kZcuWyMjMlOHoCDz1FDB3Lh1zzRp6z+3a0cKNqCiaT9y3L7B5M7BjB/W07wOhHJZlodfrVS+//HKz8ePH6zQazV4A0scff7xSo9HsDg4OdgwJCUGDFjBroXXr1njiiSfstFqtkkqmcM95II0uAHAcd0EUxbnLli3Dnj17BEmSALWavsbPmkXjvKWUVnL1AZCt0WgGALCHha4TPM+7mc3mjlqtFjqdDgzDIDk52bhv3z6hUWEYrZamiX32WYOHcHd3R3Z2tuUMDg8PmjHx5pvAv/9NQy3Ll1OPNzmZGl53d7pv5076dfFiw++nCfDx8cGMGTN0AODu7j6tV69eXfR6/R3rTu3l5QWTydSR5/n7M99O4R/DAxdeqEhEREQMgC23b98eZW9v39zd3Z3qJty6BURGAoMGAQAcHByg0+kkFxcXcv369V5arfYJs9m8U6/X51UcLzIy0o9hmKnZ2dnitWvXNNnZ2Qkmk6n77du3R4eFhbm6urrKLi4uDdO0DQkB7O2pQezatd6na7VaHDp0qOwVvfaDGQZo1YrqVPTtC/TvD7z2GjW8AC3i2LSJljtfuACEhQElJTSvuGGa8A1i/fr1kpubmzR16lSmQ4cOqgbq0VuFVquFSqVS3bx5s0dISMjKus9QULgzPLCeLkD7rHEcd8ZkMo3avXt3zp49e2SDwQC8+ioQE0OzAErp27cvM2jQIAwdOtTRw8OjKyHkaQvjHTObze5Xrlx58/z589dkWd7AcVyWIAhjASAyMrLh7q5WS0MNn38OXLtW79Pj4uLQqDinjQ1NSwsNpW8C69bR8EPr1tQD5zi6cPfSSzRefIdJTU1FWloaczdLmoOCgiBJUjee5xvc5klBobE80Ea3DI7j4s1m8xNxcXHnt23bVgwbGxpmeO+9SmEGnU6HPn36oEePHmqdTjeyhrEM8+fPXzF37lyvuXPnflK67RIhZHRubq7h6tWrDZ+ovz81dtHRtJquHty4cUPy9/eXmtQbdHamceDRo+linyDQz+vKFeDTT2k44g5lt2zdulXs37+/5OjoeEfGt4RKpUJQUBCj0Wh28zzvWvcZCgpNz0NhdAGA47i/TCaTPiUlJevkyZP01XrSJGDx4mrHtm3bFiaTqQ/P81anE8yfP3+HyWQa/9tvvxWbzY3QO+/SBdi1i5Yv14OePXsyCQkJTZ/iZ28PfPUVsG0bTT373/+AwYOBoCBa7XfjBi1jPnAAMFlV31AnUVFRkCSJ6d+//13//zdkyBCNjY1Ne5Zlt97taysoAA+A0eV5nuV53sOaYzmOy2RZ9mJ5Uv3o0XShKbpyZpiDgwM6deoElmWzFi1alLFw4cI3rBl//vz5O81m864lS5YYfv/995LU1NT63QxAY6ZffEHjzRcuWH2an58fBEEgmZmZ9b9mTdy4QTUiPD2pfvAff/y9b/BgGnJwd6daEt7ewIsvAgEBNBOigR6/IAg4dOiQPGrUKFKndvIdgBCCYcOGqSRJslLVSEGhabnvja5KpXoXwA2e5+vUauV5vpcsy/19fX3pBicnoF8/qkZWpQ3Q008/bffWW2/pHnnkkZayLFtdbzp79uxxJpOp49mzZ7du3LjR3CDPs1Ur+n3GDFp5ZoGbN29i1apVWLFihbxnzx4IgoDmzZuLFy9ebDpX9+ZNakwZhr4RdOhQ/RiWpSlqHTsCP/5Iq+zS06kn/NNPwLlzVFXNSjZv3iy5u7vLPj4+TXYb9cXX1xcODg4Sz/PP3bNJKPxjue+NriiKdgCgUqmm1XUsy7KjPT09mUoVZKGhgJ0dsH17teNtbW3h4eEBhmEm8zxvtaBBafnwv2VZvnz06NGGJcAOHQo8+STVW6iC2WzGunXrpJKSEnTq1Ilcv35d+uKLL5CTk8M2a1a9O1GD+frrvzMp2rQBxo+nMd6a0OmA3r3p4tuVKzRNbcsWYNgwGg9etIgWaNRAWloaLl++zIwaNYq5k5kKdaFSqTBixAgbQshKnucn8Dx/3/8dKDw83Nf/2Xie95Jl+X1fX1+oVCrvuo4XRfHT5ORkTbWY60svAXv2AAkJ1c4JCAhA27ZtHQA8Wm1nLXAcVywIwtDw8PCilIau9r/2GvDKK9U6UeTn58NoNDJTp07FwIED8eKLLzIzZszA888/j65duzaNtTKbaRbFwIH0ZxsbYOpUGm6wBq2WxoM/+ICGGvLzaerZvn00HY3jqhVkbN68WezVq5fkXKFM+17RuXNnMmHCBJWTk9NKjUajpJAp3DXu6zzdyMjIFizL+mdmZrY3m82f6/X6uJqO5XnelhCSCMAxNTUVJ0+e/Pvr0iVkZ2Yif/Nm7CkoQNyZM5X2p6amahiG8Rs0aNB39ZmfXq/PCwsLi7lw4cIznp6earVaDQC4ffs2HBwcrBuka1faBmjIkHJRHBsbGyQnJ0tXrlyRAgICGIBmXlg9pjVcukTlJCsKonfvTo3ok0/WL1+XEFriPHUqLcFOSqL3NHw4FSDq0AHHMzKQmJjIPPvss+R+EexxdnZGt27dNCdOnOi0f//+PL1ef393JlV4KHggBG9K+58ZANhxHFdoYb+9SqWKFEWxp729PXr16mVxHJ9PP0VWcDCyBgyotD0vLw8nT54Ex3EN8iJ5ntezLLtTkiSdLMssADzyyCNmNzc3lbu7O+qUKDx0iKZs7dxZ3mWisLAQ33zzDSZOnAhvb++GTKt21q8HsrOpt12Rxx6jlW3Dhzf+GgYD8O23MPfti+MffIDAvDzYHTtG2x9ptY0fv4lIT0/H6tWrBZPJ1JPjuHP3ej4KDzcPhNEFAJ7nRwH4Q6vV3iKEZJlMpi2iKO4DYK9Wq1eZTCZ3X1/fonHjxtkVFxdb9goNBuCRR2i1WsuW5ZuvXr2KNWvWGCRJasVxXH4D52cHgAWQBwAqleozs9k8CwBmzZqFGrtfANQIjRlDvczevcs37927FxcuXJBfffVVUuZFNxmzZ9P+bqVVe+Vcvkzjsn36NNmlrl69iq3ff4/XAwJARo6kC3affw7861/UQ25KD74eJCQkoKSkBD179sTevXtNMTExO2VZfr6h/wcUFKzhvo7pVuEkADg5ObkMGTLELygoaLaLi8sOFxeXjSNHjnTXarXCpUuX7BYsWIAvv/wSSUlJ1UfQ6Wh334kTKyX9e3p6ol27dpJKpfqN5/kG5TFxHFdU+seqAaB+//333wUAhmFqN7j0ILrQ9/PP1OstZejQoWBZVlq2bJlcUlLSkGlZJjeX5t1W8fgBAC1aAC+/TDMUmghPT08UOTgge/hwmlFy+jQwYgRVSPP2BoxGmidcoZDlTvPbb7+J27Ztw/79+/Hzzz9LkiSpGYZ5Uq1WH2jo/wEFBWu4r2O6FdHr9fmRkZG/FxYWvpyYmMiMGTOGHTRokK53795aNzc3PPLII6xarYadnZ3csWNH2dfXl+h0uuoDeXhQg3LsGC2LBc3d7NixozolJcVDEITnw8PDjREREadrautTxzwlvV4vlYZE3h84cKB14QFCgMJCWgn2/PPl8+rVqxcTExMjMQzDeHl51Xc6lomMpItgen31fTod1ev19KRavU0AIQSnT58WbW1tmdatWwPNmlHvVq+nBt5spvHgwkL6OYSF0Vh3I0XMa6K4uBi7du1iXn75ZQQHByM+Pl5OTk4mrq6ucl5eXmuVSvX2kSNHvEJCQnbekQko/KN5YIwuAOj1+tuRkZEfsyxbePbs2f6EELW7uzthGAZqtRre3t7w8/MjHTp0sGxwAfpH3b49baneoQPVQwCgVqsRGBiobtOmjVNmZuZgQRCGhISErGnEXM1Hjx7t3alTJ1+r284EBNDwwsqV5V4oIQT29vbM/v37ZbPZLLZr167xlujMGap61q6d5f0dOwKvvw5MmNBkAjiZmZnM1atXxW7dulWev05Hv155hS7qHT1KU9mee4523PD0pClqTcj+/fsBQOzfvz+j0WjQo0cPcvHiRbGwsJBMmzaN9OvXT3PkyJFu4eHhO/V6fdO5/AoKeLDCCwCoyI0oil8UFRWNioiIiFi5cmWxWF+tWHd3ukL//feV0prUajXat2+P5557zs5sNofwPN8oYVej0fhnbGysWaiPzoKXF3DwIEANAwCa1hYYGEjSrE3nqg1ZpsUitXXZdXWli2zHjjX+eqU88sgjuHbtGitJtbw8EEJzhWNj6TybN6dVcytWUBH44gY1Fy4nPj4e69atw5kzZ+SgoKDyFApCCAghyM/PJ3v37hWbNWuG0uaffRt1QQUFCzxwRhcoVxcLFwQhNDc3N6eSkLm1DBtGDdyvv1bbpVar4e7ubmQY5oVGTvXw7du3VT/++KP1YQoHB2DVKmpgbt4s3+zi4oKMjIzG51plZAAnTlBPtyYIATZubNIYa6tWraBSqeSbFe6pVmxtqfTkk09SD7hTJ2qIPTyAceNohxArEQQBP//8s7Rz5064uLjIAwcOJFWbjr7wwgvs3LlzceXKFba4uBh5eXkSgMR63KKCglU8kEa3jNJGg2Fbt241FhQUoLyND/YAACAASURBVKioyPqTGQYYO5a+altYdHv88cftJUn6huf54EbM7xTLsouzs7OZY8eOWW94vb3pvF5/vXzBT6VSgWGYxqea7N1Ly4/rChvY2tIMh+zsRl+yDCcnJzkpKan+99ClC9V/IIRWwf32GxAebvXpy5YtEwkheO211/DYY4+Rfv36oaruA8Mw0Gg00Ol0Unp6Oh599FGNWq1er1SrKTQ1D/x/KKPR+O+8vLwtX3/9temLL74QV61aVVRQUFD3iQCN6fr40Gq1Kq+9rq6u6NOnj6DVag9+8sknVxYsWDC6IfObN2/eXAAd9u/fn/nll18WbtmypSQiIgLJycm1nzh3LvDCC+WawNnZ2ZX0dAsLC1Hrq3pNJCZa1lioirMzVWnLb7rsqc6dOzMN1o44dIgWXrz9Ni05HjOGtrivEIapCUmSEBwczFgThrKxsZFzcnLwyCOPELPZ7AyaBqig0GQ8UAtpltDr9WJISMjvERERnwBYWFRU5JicnNxDEAS1Wq222G/LYDBAEASo1WqgRw+6cOPiQj3MUkozGtjg4GB1REREM41Gcz0kJKTuv3DLc8wJDw//UhCEHbdv375w9erV5DNnzvTp169fze3UyxpMvvAC0Ls3PHr2RFhYGPLz8+Vdu3bJUVFRJDY2VvL29iZ2dnZ1d5MAqDTjiRM0XcuaJpmurlRTd8qUJllQc3Z2RlhYGOnbt2/92sgfOECzLXr3pp03YmJoyEEU/w471JLrGxsbi+PHj5OYmBhcuXJF7N69e43ORnR0tBwYGMjY2tri8OHDIoCNer2+CaXdFP7pPPBGtwy9Xi/r9XopPDz8oMlkapaamppw8uTJzj4+Puqqhnfbtm3Ctm3bWL1eT41JUBCtwnriCbqSXgFCCM6fP19cVFR0Ljw83DUyMvJsA1PJZL1ef1uv18dGRETEAZil0WjQtm3bmk9q1ox6nCoVVB4eaO/rS/bv3w8XFxfy6quvkitXrkhRUVFMdHS0HBwcTJi6UqwSEmgjy2l1agf9ff2vvqIyjxWKSRqKRqPB8ePHxVatWjFW6y989x2wZAmtnOvVi2Y3MAxN9wsKog+Grl3pm0q/fhaH8PX1Jba2thg0aBCioqKY2loeRUZGErVaTdq1awdBEJiMjIx+YWFhG/R6ff1U5xUUauChMbpl6PV6ecCAAfsHDBiwIzw8PDUhIWFE+/bt1fHx8Vi9ejVKPRi29Fh6UrNm1PiuX0/LXyv8QRJC0LlzZ/Xhw4eDAIzRaDTPhoWFxej1+ga39tXr9UWHDx9urtPpuvv5+akAwGg0VoszAqDxzE8/BY4cATNsGOLi4uRu3box3t7eCAwMZAYMGIDjx4+DZVni6elZ+4VXr6YLUWUiNxZITEzEqlWr5Pz8fNKhY0eQ0aOp7m8DpBglSYLJZKrk1SYnJxODwSD7+PjU7jqnpf3daPOll+jDB6CGtqJxZRjg2WdppeH69fT+qjxkbWxs0LZtW8iyjOPHj6N///41etqiKJIzZ87I165dk8eMGUMyMzNb5OXlBYSEhFRfcVVQaAAPndGtyKBBg+IPHDiQeurUqREpKSmCLMuJSUlJrgDw+OOPo3nz5igvr/X3BzZsoK/0VQxMaVNIsyRJzKBBg5xv3rw5+a+//sofMGBAg3OqwsLCjuTk5MyUJEl9+PBh5o8//kB2dra5S5cu1d3VoCDkrl2LH1JS5HY+PvKQIUOYikajefPmZPfu3Wjbti1qlX7cto22ba/hmPPnz+PXX39FmzZtcP36dcTExMieLVoQ29mzwYwfXy+9BEEQsHTpUiksLIxER0fj8OHDckxMjGw2m0l6ejrp169fzUZXEKiHW1BAc4Xt7Oh2Waa/nylTaDpZGfb2dPucObSEuUrRx/79+3H16lVs375dDggIEP38/Gp8JfD29sbJkyclNzc31tvbGz4+PqpDhw61Dw8PX63X661cLFBQqJmH2ugC1PCGh4cvk2V5McdxSyMjIz9iGCb/4sWLj6Wnp4v+/v4MwzDUY+rfn67sP/kk/SOuQIsWLZiEhARcvnwZISEh6rS0NKF///4bGzovvV5vDA8P35yenu6RnZ19QpKkbrdv32acnJxkNze3Sgbpj4MH5XCDgbyyfj3pxvMMW8Vouri4gGEYac+ePXL//v0tG7OsLGD3brr6X4OXFxsbC5VKJU6ZMoXp3bs3KSgokPdER5OC3FwYPDzQypoFOFAPd9myZaKLiwuZMWMG6dOnDwIDA4mXlxcRBEFKS0tj0tLSZH9//+pz3bqVfv4//0yzS6qGTEJD6QOyaniAEGqMBw4sV0kzd+6MVatWiVeuXCHXr18nHh4e0rhx4+rsOnz48GGkpaXh8OHDxN/fH2azWczIyBAHDhx40KoPQEGhFh4YwZumhud5D61Wu1Kj0QwaM2aMbfv2pQ1id+2iHuGKFdXOOXr0qHjgwAEyZswYZvv27UaWZT+dM2cO14Rz6qpWq3eHhoa69enThy0sLMTPP/8sms1mZuLEicT1q68APz9qXKpgMBjw2Wef4f3334fF2G58PF2QevPNGq+/bNkyMSAggBk4cGAlq5S8dausevttsvX118U+ffqw58+flzIzM0lQUBCxsbGBwWD4O1QDYOXKlaIoimTatGmMJaGenJwc/Pzzz3KzZs3k559/nj70ZJkukN24QT3Xxx6rPsETJ6h4+tixtXyKAL75Bnk2NliTni45eHpiwoQJDACwLFuvjsrff/+91LlzZ9KxY0eyZs2aQlEUO3EcZ2WisYKCZR56T7cm9Hp9QUhIyC/79++PP3PmzDOyLDPe3t40gyEpiRYm+PtXOsfT05MZOHAgcXV1BcuyqtTU1MIBAwasb8I53Q4LCzuWkZExXqPRaDZs2CC3adMGU6ZMYRwdHamXFxkJxMVVUiMDaB7v4cOH4ePjY1lh7euvaVy0ynmSJOH06dNISEhAYmIi88QTTxBtlTBCCx8f4rh8OVRPPUUOnz2Ltm3bygEBAUxcXJx869YtOTU1lURERCAzM1M+ffq0nJ2dzUyfPp2pOk4ZNjY2CAwMJHFxcTh27JjUs2dPhnnnHfqgW7y45sKNtWtp+fbkybV+jvG2tvjl1Cn836pVpHezZkQzahTUanW9MiYkScLevXtJjx49iI+PD27evCnn5ub2Cw8Pd4yMjBQiIyMzG7KgqqDwj/V0K8LzfJBard5tb2+vadWqlaaPjY2mbVQUyKxZf/czq0JGRgZWrlxZIgjCIxzHVW9J0fC5PA5gBwCEhobK/fv3J5Veh8+coSGCU6eqhUCWLVsm9erViwkKCqo8qCzTnNZ9+wC3yl2Jbt26hR9++AGurq7SgAEDmICAAMsTu3KF5gw/9VS1XYIgICsrC5s3b5aNRiN58cUX0bxizLUGBEHApo8+kvslJZH2H39MNRasSWWrg6VLl0qtWrUiEwYOJCgooC2ROnWiOg71YN26dWJKSgrbtWtXyc/Pj8nPz8f58+eLb926RURRPCQIwlMAijiOa1jLJoV/JA98cURTwHHcMZPJ1CEnJ2dsSkrKyfVnz6alqNW07UwNuLi4wM3NzQSga1PNg+d5glKDCwD29vakWvwxMJB2N37vPSqJWIGWLVtKsbGxOHfuHCrpPaSkUOUyCw+QVq1awdbWVgoNDa3Z4ALUcH/9NWBBYlKj0cDd3R0zZ84kb7/9tlUGFwA0LAv9kSMoyc2V0bFj3Qa3b1+qQFYHEydOZC5fvoz4rCxqbL/9lhZV1JPJkyezM2fOxPXr17F//36pd+/eeO6552zffvttm/bt2/cnhOSq1eqrCxcu/JHn+cbn1Cn8I/jHhheqotfrDXq9PmXAgAErw8LCbl2xsxvd+9IlhnFyohoNFrCxsdEmJib2HjBgwFKe5z0jIyONer2+wV5PVFTUKADP+vn5yY899hjp2LGj5VdiW1uaaZGYWEkT18nJicnMzDSfOnWKhIeHk2PHjkn5+fmyz7Vr1OMLtlzRnJCQQEwmk1RrGlfz5jR7wdu7moddEasbTi5bBvznP1gzdqzc6vnnGauU2NLSaFujOppz2tnZwdnZmWzfvh35+fmizwcfMGT0aGDePCrS/sgj1s0RNBTSo0cPEhYWRnQ6HWxtbaHT6eDv768OCQkhbdq0cSguLg7MysqaEx0d7RMeHn4oMjLSLjIy0jYyMpJR8nsVqqKINVvmQJEoJu1t2dJ7xO+/64ifHxX3roKLiwtkWW62aNGinwE8B+DfABrU5JDneUatVi8fP348OnToULvlIgT48ku6OHb4cHneqoeHB8aNG1ee93v58mVmy5YtGNasGdgavNjvvvvOXFRUpHr88cfrfuvx8qJiMwcO1Pf2/kaSaJGGwQB8+ilyIiOZrl2teFkoKaHVeVaGCPz8/NCyZUusXr2aCQwMhJeXF53/9ev0DaEe6W+lRSzmQ4cOkfDwcJZhGBQXF0OlUqFXr17mZ599Vn306FH89ddfzxQXF08CALVabRBFUfXJJ58UsCx7xGAwPMNxXHGpzrIDgCwlLPHPRDG6FuA4Lp3n+YAzDg6X+mRnt3c+cIAamyrcunULKpUqoaSk5LnSTY3SHjSbza5W90Nzdqa6CJ9/DuzYUc3702q16Ny5M1yaNZOM8+czthZavQNATk6O6s0334RdWS5sbQQF0TzYnBzaAaIhPPMMzb/duxcgBCQqyjoNiV9+oZ5qPTpauLq6wtXVVdy+fTv76quvEvbVV+mOMWOo0bWgMFcTkydPVgFAWFgYGIbBwIEDER8fj3379rGPPfYY+vbti759+2okSYIgCNDpdDpZlpGbm+u0evXqxwgh13meH0sI2SnLsp2Njc0WANUD5AoPPUpMtwY4jhONRuN7vwUGFsrPPGPxmLZt26KkpKSsPGoax3GNyWTQyrLMVNXelWUZ587V0Ctx9Gja6vzUqRoHHefpyZz39UX40aPV9pnNZoiiCJtawgWVZ6ilce7du607viKnTtGQwnvv0QacpWEIlmVhsEZCcvp0i2pwdfH888+rCgsLSX5F4Z5vvgFefRU4f76SfKY1DBkyBHq9HgzDQKfTVQv/lG0HaKjFyckJM2fOZPv3728PINzPz089hab8WZf0rPDQoRjd2tl86/Zte4v91kBjh927dzdoNJpYAI1NHZMBYMmSJbh06RLdIMvYsGGDvHnz5prPGjCAGt7//c/i7maShDavvYYjR45UWlzLycnB0qVLpbZt20p1ajZU5bvvaNWYtUgSbcuTm0vjqaW5skVFRZAkCVZl0PA8cORI/eYJagRVKpV040aFqm0vL9qQc+lS6vU2EEEQwLJsnZPXaDQIDQ1Vv/feexg7dqym1FA3cadRhQcFJbxQCxzHiTzPY/PmzZg7d67FY0aNGqW7evVq5+zs7H8B2NKIaxl4ngcAbNiwAS1atJCys7MZAKRfv34yAMtxXo2GZhVcv05f/av2NTt8GK2efRb2WVnSd999B41GI4uiKBcVFam6desmDx8+vH7ShZ07A+++S0Mb1ojgfPwxcOkSEBVVbmwBmge7ceNGyd3dHc7OznVb/cuX6bUbQGhoKPPHH38gIyNDGjx48N/X+vFHeh9r1wJ5edXb0ddBVV2JuigrFElKSjKLolj/J4jCQ4Hi6VpBba/fDMNgxIgR9lqt9pfFixfHNLKTbEsA3QGg1OACAA4fPkyio6PNNZ7VvTs1uK+8Uqn9EIxGWkgRGAiWZeW2bdsywcHB7JAhQ1STJk3CyJEj2Xp7uQANDbxQR1MNkwlITaXlx6+/XsngAkBcXByys7Px3HPPWTeBNWuoDkMD6NmzJzw9PREVFcXs27evcgDZ0ZEWnLzzDn041AOz2Yzi4mImIcH6NG2TyYRjx46ZBEH4tF4XU3hoUIxu3azx9/evdZW5Y8eOmDVrls5sNvcA0MAVJoDjuCyO405zHEcIIY8RQsoW5vYdPHhQVavw+dSptLigYoxyyxaa26pSwWAwoHv37ujZsycCAgLQqM7CQ4bQxbSaepaZzbQd0kcfUS+8ShUcQB9WsiwTs7nmZ0k5Fy/WmSZWFz6lIkbHjx9nqsWQFy4EfvqJZmWssb4XaWBgIJydnVFr+KcKcXFxMiHkCMdxSiugfyiK0a2bBNmKoCPLsvDz8xO1Wu3Cprjo/Pnz982fP9+O4zgC4DMAWLduHbZv346CggJU64KgUlHt21GjaJcFgEoyhoQAAARBYK0tWqgTe3t6LUvFIzExtPHlvHnA8uU1DtGmTRuUlJSQdGuyETw9gXXrGjFhIDg4GHPnzkWLFi3Eb7/9FitXrhT//PNP2WAw0AW1gQPpZ/XZZ8CtW1aNGR0djVu3bmHYsGFWlXUWFhYiLCzMYDQa32jUzSg80ChGtxZ4np+kUqkW29vbWxW4Gzp0qM5sNk/ieb5JW7xwHHcANLfzhYSEhK1ffvklFixYgGoGi2WpvOGOHXTxysEB6NkTAF2Us6jX21DUahoTreipGo3AxIm0+WVoKH0Q1MDJkydlrVYrW+Vxx8cD7do1rD0RaPz44MGDWLVqlWgwGCCKIoxGI3v8+HFy9OhRGlpYt45W+508SePQS5fWOJ4gCFixYoV48uRJTJ06FX369LGqImTPnj0lsiz/yHFcfINuROGhQNFeqAWe5+MJIQFz5syxWp3q+++/L8zIyHhDluW1AFreCVUqnufLf2leXl7C0KFDNZUEzPfupYtDJlN5Lurnn38ujRo1iulUWxfg+hIWRlXPWrWiTSwdHGi5rRX6CWazGatWrZJKSkowadIkxsXFpdL+1NRUbN26VRRFkTz+88/EoFaTHWPHwsHBQWzfvj0bHByMqufUxB9//IGkpCS5X79+xMnJCYmJiVJiYiKxs7Mjw4cPrx5quXiRLqqtW1deOp2fn4/169fLXbp0ITExMZKbmxueeeYZxtp0u6tXr2LdunWZJpPJm+O4enRQVXjYUIxuLZQZt5kzZ6KFhYo0S6Snp2Pt2rXFJpOJMZlMOkLI+Pnz59cs4tCweWkIIRdkWW5Xtu2tt976W10sP5+2sDEa6SLWo48i+csvccbTUxrTuzdDrl6lC2Fbt1LBdm9vWiXWvTs9t7iYKqylp9MiCFtbunhWddHtp59oKOGrr6i3uGAB0LGj1fdhMpmwb98+KSEhAe+8806lwb/55hsxJyeHffbZZ+Hs7Ax7e3uIoojExETEx8eLV65cYbVarTR9+nTGqY5Cjc8++0zq168f079//+o709Ko/q6FPGY8/jgQFARh9mwsWrwYtra2sLW1lbp164b+/fszVpc8A9ixY4fx1KlTH37wwQeLrT5J4aFECS/UAM/z5eowR48erR5DrQE3NzfMnDnTlmEYFgC0Wu07TT03juMEWZYrJddXWmRzdKQFAEVFgK8voNWinZ8fCktKyO3z56lmQ3Ex9VSjoqhO7YoVNNOB52n7m6Qk2rro1VfpQlPXrsDmzbRPmbs7cPYs8MMPwB9/UH3fjRvrZXABmkI1aNAgxmg0MoWFheXb//zzT5jNZsbZ2Vk6d+6c6BwaCm1hIWxtbdGtWzdMnjyZnT17Nnx9fbFq1SopNjYWtS3Ide/enTlw4ABSU1Or7xRFoCahn2XLgNxcxG/eDEcHB3nWrFmYMWMGExISUi+DK8syEhISREmStlp9ksJDi+Lp1sDixYt/MRqNE8t+9vHxwcSJE2s7pRK7du0SYmNjN6tUqivvv//+e3dijqUPhnQAmDRpEjpWNXqSRPN3RRFo1w4HDhxAfHy8PG3aNFJrWx9LlD108vOpMXd2pgt1//oXXbz74QfqWVdp7FkXsixj69atYkJCAmtvby96e3uz58+fx6RJk9C8eXN8t3Qp/hMbC9utW6t52qIoIiIiQoqNjWXc3d3h4+ODuLg4uXnz5uTJJ5+EbWmYY/Xq1XBwcMCYMWNQTVTdZKKxZwtGVBAEHIuJQevnnkOJr6/st3s3aUhX5LS0NKxZs+bmnDlzrFD1UXjYUTzdGjAajRsq/pyYmIjMTOs7cWdlZZkYhom6UwYXADiOuwVgPADk5eVVP4BhqKc6axYAWsLq6Ogofvvtt4iLi6vf05Zl6ZeTE80msLGh7evnzaPC459/Tpto1hNCCMaOHcu+9tprGDx4MJuWliYJggC1Wg1HR0c4aLXmax9/XD20AZoxEhoayvTt21e8fPkyoqOjYW9vD5PJJP33v/+Vyn5fxcXF5o4dO1Y3uABd8LPQiSIuLg5ffPGFfCY+Xjo2e7YsBgTI2L27ch60lSQnJ8uSJG2v94kKDyWKp1sLPM9/A2AmgG4sy/bWarX/nTJlik6j0dQa4zWZTFi8eLFZkiQHjuOsEBZoHIsXL44xGo1BgYGB8qhRo0ilLAWzmRqshITyThhJSUnYtGkTRo8ejVo1dK3hzTdpxoSLC72Glxc1wKXVdfVFkiScOHECAQEBsLGxwZngYNk3P5/oatKfsIAsy9i/f7904sQJ0rFjR5KcnIxnnnkGHSz1eCspoV+lv8/CwkIsX75cLCwsZMeNG4fOZVVwZjMVcG/VqtZUOEusXbs2PyUl5UWO436r14kKDyWKp1s77wIAy7JHWJb9uLi4WPfjjz9i+fLl5toeVqWpTTIAKzL/G4/RaBwGAGfOnCELFy7E1q1b5a+//lo0m8301VmWqfxjqQB4x44d8eSTT2L79u0oKmrkQvr+/TRFjGGoUY+PB7Zvt9ojNBgMOHv2LG7cuAGDwQCGYdC7d2+wLAuz2YyIJ56Q0n/6qV5TIoRg2LBhzGOPPSZnZmZKsiwjKyvL8i/sww8rNepcvny5ZDAY2FmzZv1tcAH6OW7cSBcgP/vMopi7JWRZxvXr1zUAlLJfBQCK0a2VUi+1uSiKb0qSZAMAKpXqrCzLiVu2bDGU1PCHp9Vq4eDgYADQraaxeZ5vfF+av+eZV1rFth6gxjcvL4+9cOECPYBlaaXakCHAtWsAgC5dusDJyUk8duyYBND4ZSVRGGvZs6dyT7N+/aiiWFoa9R5zciyeJkkS9u/fj6+++kret2+fvG7dOixZsgQLFizA4sWL5cWLF2PhwoXo9uefrG0D38YcHByYnJwcpmfPnjhw4ACpVtEnSbTAo0LYoUuXLsRkMlkOv9jY0Lzn+HirO1FkZ2dDluVijuMsa2sq/ONQwgtWwvN8M41G86MgCOMB9CWErJdluf0zzzwDPz+/ascfOHBAOH78+F+CIIzkOE5YvHjxV5IkTTWZTKM5jjtUmo42neO41U08Tx8AlwDAy8sLL1TUSNizBxg/nhpChsGFCxewbds2DBs2DFFRUXJhYSHp3LmzNGrUqBqbSlbDy4t2ULYkRP7rr/R6v/1GX81L47KJiYnYvn27pFaryahRo0hZJ2ZZlmEwGFBcXAytVgt7e3vIPXuCrF5N09nqgSAI+Oqrr+TBgwcjKCiIHDt2DAcPHsT06dPhWlUUqAphYWG4ePGi9Morr1h2Skwmmsu7aBGwcmWtnTROnz6NvXv37n733XdH1usGFB5aFE/XSjiOy5s7d+4EAHYcx8XIstwLgPm3337Djh07jAUFBZWOHzx4sKZNmzbBGo0mZcGCBZuMRuMbrVu3bqFWq//86KOPngINP6wq7YvWlPNMBP29Pn/z5s38kydP/r1z+HAgOZnKMhYVoXPnzvDx8ZEPHTpk9vX1JW+88QZu3bol//e//5Vzc3Otu2DfvjRFzRLjx1MD9eqrtNKrlB07doiBgYHMzJkzyw0uQMMCNjY25Xm5AEDi4uptcAFg48aNkqurq9y7d28CAEFBQWjdujWOHj36d9xj4UKai1uFixcviv7+/jX/Xso84w0baHpdLeTl5cFoNCoVaArlKEa3nnAcV1z6PYfjODUA1/j4+OXffPON4cCBA0JZqSrLspg0aZLthAkTWoui+AwABAYGypMmTXK0sbH5H4CyrIb6JbdaN0eZ47g1ZrN50O7du7P37t0rlOcZt2xJvc7x4wEATz31FJk5c6Zq5MiRsLe3x4wZM1gHBwf50KFD1tXcTp1aexcJtZoqoD3yCPICArDthRckk8nE9ujRA3UqnK1dW17GXB9OnjyJGzduME899VSlfFpvb+/KpdMjRwLTplU7XxAEuWXLljUb3c2baW5vWBiwuvYXlaKiIpMkSRn1vgmFhxbF6DYSjuMy3nvvvdfNZnOH48ePn9m8eXNJmYEjhKBdu3aYPXs2pk2bhh49epC2bdtiyJAhtizLzmUYpgg16eQ2zdxOmUymTidPnoxevnx5UU5ZfHXNGmD9etqnzAL/+te/mNOnTzM3remq8MkntNtwbRCCixcvIs7DAz6TJzPvPPEEXKzJE+7fn2r31oOYmBjs3r0bTz31FByreOC3b99Gy4oawCxLDW8VnJ2dyb59+2SLKYJXrwIvvQRkZwN6PQ3ZfPVVjfMpKioSAGTV6yYUHmoUo9tEcBx3UxCEgcnJyUfWr19fbDKZyvfpdDq0adOm/OeePXti8uTJjoQQLaiQzZ2cV6bRaHw0Kytr/vfff19y9uxZ6u3a2wNubjT7oAqtW7eGra2t2WLub1VefRVo27bOw27evInLEyaI/qGhYJ99FnjrrbrHzs2lEpFWEhYWhoMHD2LChAnw9fWttj8/P182mUx/r2OEhtKKuipMnjyZZVmWbNiw4e8FD0GgmQtublQjuCxlMCOj1r5tRUVFZgDZVt+EwkOPYnSbEI7jSgRBGH79+vU9a9asKTYajRaPI4TA29sbQUFBkkaj2cjzfIM1eK2clzxv3rwvTSbTgD/++CMnNTWVLmpFRgKPPmoxvUutVpPimvRyK3L4MFChhLcmCgoK/m5+GRNDdXaXLqVx1ZqYMIEuVNWBwWDA8uXLxdjYWEydOhUV48QVefrpp0lqaiqJjo6moZOMDNooswKSJOHGjRvIy8uDj4/P30a3pITmIefmVq5e+89/1IRP9QAAIABJREFU6IKahbeC27dvIy0tzRaKp6tQAcXoNjEcx5kEQXgmIyNjw/Lly4suX75c47FDhw7VuLq6ugEYfJfmdsJkMs3cs2dPoSzLQLduVLi7VSuaPlUBOzs7cu3atbrjuhERNGZbBy4uLrh58yYjiiLtIqFS0ZJhrZYafUv5whcvUiGdWkhNTcXSpUtlOzs7MnPmTHjW0qLd0dERkydPJpGRkUxeeDiNR5ca0NzcXCxevFhesGABfvrpJ4SEhIjDhw9nUFhI84+zs6kojqXMh9mzgcHVf4XHjx+H0WhUA7C+37vCQ49idO8AHMdJgiD8Ozs7+6WNGzemrVq1qvBaaX5sRQghaNu2rUaj0Xz70UcfvcHz/B0NNZSyIScnJz06OlqUZZm+Ym/aRI1PhfTBUaNGMefOnWPqFBk/cKBmwZgKnDlzxpyfn1+5K+///R81qh9+SEuKK3LtGjBihMXy3zJSU1Px66+/ysHBwZg4caJVMosmkwkqlQr2anUlj3Xz5s2ir6+v9N5772HevHnQ6/UsRBGws6P6Eq1rkU34+GMqAFSFIUOGlP1TydFVKEcxuneI0gyC9YIgtL1x48aba9euLbJkwEJDQzUTJ070aNeu3SKtVvv7XZiXJAjC4Ojo6Ku7du0ySgAtmpg0qTyjAQCcnZ3RpUsXefv27VKtudyhobRYoAYkScK6deukgoIC1bvvvguLMow8D+zbR1/3yxbODIZaW/T88ssv0vr169GzZ085JCSEWKv6VVJSAo1GI7MhIeWtefLz85GWlsYOHTqULS+hFgQq6hMXByxZUq3HWyV0OtqWfsSIKpt1IIRIAKo/cRX+sShG9w7DcZxp/vz5KyVJWhQZGVlS1YCVert49tlndYSQEJ7n668aU/85XRcEoUd8fPypDRs2lEiSRI3d/PmVjhs9ejTJzs4mt2prXzNgQK1dgffs2YOsrCzy0ksv1dzgk2Gopu/587TVkCzTn0sF2Mu4ceMGoqOjsWLFCikzM5PMnDkTQ4cOZerTXNPHxwdFRUVE8vcH3n+/vKuELMsoz01OSaFGdutW2jLeGrp0qXZsaVmzUJZmqKAAKEb3riGK4jcpKSnpJ0+etOg2qlQqSJJEcJdWujmOyxMEYeC1a9dSEsoEzP38qLGLjCyfk52dnZiWllbzQMOG1VwcAbqYFBgYSKqmb1lk0CBqdBMTaaw3OLhSrHnLli3SwYMHodVq5X//+9+kXLS9HpTp7pp/+w2YMQPx8fE4c+YMvLy8xPz8fBpf7taN5uBaiNPWiI8PfWhVyIYoLCyESqVSMhcUKqEY3bsEx3EFgiDMjIuLK7C0Py8vD6IoEgB1r0o13ZwEo9E4f//+/YbCwkLqcc6bR4XKS/Hz81Pt2bOnZl2GpUup4HkNlJSUiNa2tAEA3LhBF60Yhi6ujR4NzJ+P8z/+CObGDebtt9/G1KlTWVsrWgJZoqioCEQUcYrnpcVr1mD37t3Q6XR4/vnnWf/YWBpWKNOpqC/R0TSHtxRRFEEIuSuiRwoPDorRvbtEpaen6yrm8AJUavGnn34qJoR8xnHc3RbD2G4wGA589913JdevXwdefJGW7AYEAJKERx99FH379sVPP/2Ezz77DNXKg995h3p5FoiMjEReXh7brl07i/srIcu0g8XkycDBgzRjYNkyWmrbrx9aMAwe27IF6qFD6f6EhEoLf9bi7OyMfl5e6LpvHzP1uefg7u4Og8GAzIwM2jI+PJz2emsIQ4ZUytnV6XSQJMm+YYMpPKywH3744b2ewz8GvV4vHD169BkPD49WZXq8hw4dEv/888/bJSUlz0uS9KNer7/bc5JDQkI2hIWFnY6Pjx/j5eWlbt6xI1BQQNuSl1bVOTk54fz58zh58iTi4uKkixcvSg4ODkzzFStAevX6u1igAtu3bzeHhoYy1TpaVOXqVeCVV2hoY+JE+oo/diwwYwYt0w0IgG2PHliRny93njqV2J87R+OtCQnAtm1UcMbTs9ZMh4q069ED6jlz4ODggFatWsH3s8/k/UlJxGfTJmhKNYcbzMWLVHXtzTcBlsWhQ4eYgQMHLmjcoAoPE4qne5cRBGFVRERE8ZUrV7Bp0yZDZGRklslk6jd//vw/7oGXW878+fN3ms3mJzZs2FCSVVJCwwxz5pRLGJYWN0hjx47F4MGDGXt7e3bTpk1yzq5dKLaQDgcAJpOp9qaRZdKKERFUY2H4cOrh7t9Pjfhzz9FebqXILAujjw8tSFi5Epg+ncaiFy0C3nuPliRHRAB1VdK98055/q+7uzs87e0JU1SEQiuKPOqkUyfgu+8AtRpmsxmiKGp5nq+5F73CPw7F073LhIeHxwqC4HP27FmnjIyMpWaz+VmO4+5aHLc2Bg0alBIREZERExMzSqfTwdPREXBzQ3H79ti8eTNatGghhYaGMq1atUKXLl3Qr18/sra4WLTx82PcLBQlREVFoW/fvkT3/+ydd1gU5/bHv+/MNmCp0hVFUAQjWAAVRIMldrGLvcUSjbnmmpti9GYzRmPUaIzX2JJYYozdYO9iQbGggoCKoiIiIEiVsuzuzPv74wUVAUGjyS9mP8/Do+zOzs4McPbMeb/ne0rnppWTdRkMwHvvAefPAx9+yBbkeJ7ZTsbEsIy3sJANzmzVCoQQ5ObmkosXL0rNmzcnHM8zDa2PD5O7NW3KZrQVFrIus1OnADc3VqO1sip/YI8escx4/HgYOA7fqNVwatkSrUrf5w/j6gp8+inO29igtDlGCA4ONnqoGgFg9NM1UgmCIMyUyWQz+vXrp/Jq1AgFAQHY0Lo1Qj77DE5OTo+3u3XrFszatkXBN9/AqX//J22+pcyePRsfffQRdu3aJSUmJnIODg5S7169OLsdO9j04W3bmB/v0+OF5s5ltdrPP2e12+nTWWAGUx4sXbpUUqvVGDFiRNWev3o9Ux8kJ7OW41q1mOa3Tx/A05MZrDs5sbE7PXtix/nzUkJCAjExMUGrVq3QtGlTEhERQZs2bUrMzc3xwot2Oh1EHx8sDAlBsZlZH41GY5yPZuQxxkzXSAWCg4NPhoeH779x48aQ+m5uSpvr15HfrBk9fe2a5O/v/7gktWHDBtE+L4+LVKnooQsXiCRJhvr163MA06hGRESgY8eOuHjxomRjY8MVx8YSnDiB2pmZ4OfMYbfiz9ZhP/iASa9sbQEXF6YDNjcH5HJwHAc/Pz9y4cIF6dKlS6R58+aE4zgUFhYiMjKS3rx5E6ampsTc0pKNg/f1ZX65Pj5smsWiRaxc8c47wJ07zPfBwgJeXl6kTZs2hBBCoqKipOPHj3PJyckkKioKZ8+eRZs2baq3oXwankdCx46Ij4+HxPPTg4ODa2hObOSfgLGma6RSNBrNJVEUP9+0aZM+etIkZGVk0A4rVpT7feF5HnetrKiXnx8ZM2YMzpw5IyvTwWZkZJR1ZMFQUkIyz59H//XrUXDzJhY6O6Oofn3k5eXhxo0bT3YYH8/qtWUOYXI5qymHhaHsjkwmk2HixIm8VquVTpw4gQcPHuDHH3+kcXFx9P79+1izZg0ynvaC4DjmDDZ9OpN0lRmiHz1aTv3AcRxat26NDz74gJ8yZQoCAgIwatQoqNVq6cSJE9V6UBgMBiQnJ0NbapdpY2GBT+fNw8Tlyx1f/OobeZMxFviNVIkkSStKSkrmHzp0SNbCyYlzc3RktdjScsCECRN4fssWEFtboE4dmJmZicuXL+fUarWUnJzM29jYSEhM5EYfPcodycvD2tGjoXZ1FQ3Z2TwAHDlyRIyPj+cbN24s9urVi1ceOcI6wZ6uqw4bhpzCQiyZNQtBQUHo0KEDOI5Djx49+L1794rnzp3jXVxc6IgRIzitVovvv/+eZmZmkipH8uzdCyxcyBpApk1jngrPmOpYWVmhc6mlZGhoKLdmzRo8fPhQfOutt/gyJcaVK1dobGyslJqaypuZmYmiKHI6nY7IZDI6dOhQ4uLiglWfflqYplAUaV71D8bI3xpjTdfIc5k1a9bkBg0azB86dCgr2K5bxxasypoAjh5lygNra0iShOPHj0On0+HiuXPwO3MGeW5uVJ2cTC74+QEcBw8PD6SlpdFp06aRw4cP08TERPro0SOiUijImIICmA8YwOquANLS0hB/5oyk+uEHLiokBHl5efD09JT69+/PlRszX8r169exe/dufPTRR5WXAyQJmDKFTc54/332AVK/PrB7N8uqn5oK/DRpaWk4c+YMkpOTxcLCQp4QArVaLarVaj4lJQUODg5wc3Oj/v7+JDo6WoyMjOQJIdTW1lbsO336bdusrF6g9EalOzfyj8OY6Rp5LpTS3cnJyd8+fiAlpbwN4+rVzBrS2hocx6FDhw54dOcOVPPnw6GggJK+fYlru3YwHDqEK1eugOd51KtXTyoqKuIvX75MAgMDCc/ziNuwAcWHD8N85kwATKK2evVq1HZ0JIPT0hA0aBAy5XKsWbMG8+bNw7Rp0yp4OdjZ2UGv11ddf42LY6OFOnZkXhPt2gFLlzJv3507mdysksU5Jycn9O/fHwD4goIC6HQ62NjY8ACQnp6ODRs2SHfv3kXnzp1J+/bt+bfffhurVq1CWlqaLM3FxcE2K0v1h34IRt4ojDVdI9WhlMlkT1zOZ8xgC1CffMLadePjy49ZX7AANCgI2X37il7nzhHPzp2hUqnQoEEDNGzYkD58+FAURZHfuHGjZG1tLQYFBSEgIAA+sbFUHDz48W6uXLlCraysxNHvvktUv/wCmJnBzs4OI0aM4AwGA44fPy4+29lnbW0Ng8GAZx9/zK1bT+rFZmYs4CYnM++ICRPYeURHP/diqNVq2DzVCOLo6AgbGxuo1erHt4wcx2HUqFEkMDAQuwYMKACgByE1MJ8w8k/AGHSNVIdaLpdXXEg6dYoF3F27mFdDdDRrpnBxwf5//UvMNTMjesMT24HGjRsjNDSUtG/fnk9NTRWVSiUZMWIEn5aWhksXLqBYqURx794A2CLcyZMnSVBQELvf37OHjQUC4ODggG7duuHq1atk9erV9ObNm48X2SIjIyGXy1FpyYxS4JtvgKAg9n29emzqxapVgLs7M/uJjGQNGk97/j4HnU6H06dPIzU1levevXu52oSJiQkcHBxgMBhqG3j+GIARNdqpkTceY3nBSHVkFBYWyjIzM2FnZ8ceIYQFqPx8wNubaWvnzmXKg9BQ9NXr+RUrVohr166VRo4cWU5P6+XlBS8vLx4ANm/eLCYmJvINsrOl1oSgXosWxGAwYN26dfD29qZNmzZlK2oPHrCgCJZFNm3aFNHR0cjNzcX27dupo6MjbdCgAXfy5EkMGzYMisq8b0+dYvVbd3f2fatWwMqV7Bzy8wGNhml7r14Frl9nZZNly57bWnzgwAFcvnwZgYGB1NLSskJXRZMmTbBjxw7MmTHDERy3zLigZgQwZrpGqkGj0aRKkvThxo0bCyvcticmslE9K1cyk5xx4wBCoFAoMGXKFF6v19Off/6ZFhcXl3uZJEnYsmULvX37Nj9lyhSEdu/O1Rs1igOYHWJJSQk6depEaF4e6zabPZuVNcDc2BYtWgS9Xk+nTZtGpk2bRiil5Pjx46CUYv369Thy5IhkMDxj7hUXx46vDEKArVtZiWHgQOaWduwYq/nWrs3sJR8+ZLPRqsDf3x8AYDAYKpWUEULw1ltv6cFxmLRs2XUQMqNmV93Im4wx0/2HIgiCjOO4SZIkPdRoNBuft60oij8VFhb2i4qK6hIQEPAko2vRgt2iz5nDxvZ07fr4KY7j8N577/ELFiygSUlJ8PJ64s2u1Wpx7do1MnjwYFiamzOzm1OnAACWlpZo2LCh+P333/OuMTF4OzGRGoqKiFVBAbRaLTZt2kQdHByksWPHPr6dt7S0JJRSqWXLlpyZmRl27NiBM2fOgOd51K5dWxrYty9ndusWG7vzNGPHMtMcgLUR9+rFbB0nTGCqjIgI5v9w/Dhr1HiGpKQkAMDdu3erTF5cXV3l8fHxONGunQdHCN//eRfayD8CY9D952IrSdISMzOzIkEQ0jUaTXhVG2o0GioIwoLz588HNW/eXF3mpQCAzTabO5cF3XXrWJAqpaCgAHq9nri6upbbn6mpKczMzCSVSsXh5ElmI+ngAIBlh4EBAbzbokWw//hj7MnJkXI2byY6nY6TJAleXl7o169fufqpo6Mjbt++TZqUzmr76KOPOEmSkJOTg507d+K3r7/GkLw8qOvVQ15eHtatW0eLiopI/fr1xb47d/IKCwtmoL5kCRsZdPcuq/kGBaF4xgxsDguT2isUXL2JE8udR3h4OOzt7TF27NgqDRtq164NuVyefd3HJ6vuzZvC3j59PKKaNx/xV5obvekIgmAJoBhAHQA/A7gD4ASAMwASn772giDUA8DzPD8GQIkoiis0Gs3D13l8xqD7z+WBXC6/q9Vq6wAYLwiCRTUeAceLi4u3f/fdd4OaNGnCvfPOO8rHwbfMT3fKFNZ+26YNADbHTBRF7uka62Y2goeKosjVqlWLTYoolYmVYVtcDNPMTKyLiaHTvvrqcYCVJAkcx1UIcBEREVKnTp3KPc5xHGrVqoWxY8dyiSNG4Ex2Nh7+9puYmZnJ1apVi/bv358cPHiQXE5KgnzpUsmyTh3O1cMDpxYtoo0uXoTj6dPkTloaNty/D5usLK7WL78A/v4suy/FxsZGLCgo4PV6feV1ZDC5mYuLizIpKWmvf1TUu7lWVsMA/AAg8jnX2sgLIggCkclk73McN5PneRtJknhKadkdSHCjRo0GJiQkqEu3BYA9AC4B+AJghvMWFhaSVqsdJgiCt0ajeW3m88bmiH8wgiCY8jx/XhTFMhNZXqPRPLflVRCExjKZbMM777zTrGXLluWfzMpi9oqensD48UhLS8PGjRtFnue5gQMHEmdn57JfeLz//vuwtbQExoxh5Yl69dg+vvsOMDFBQnAw9uzdK3300UfVrjssXLhQCgkJ4RpWZqZuMAD+/sjfuROHzp+HUqlEjx49Hmt5C7KzEb14MU6bmlIQQiBJtNWJE7jr7497SiVp2bIlAgMDseybb/Cvd9+F6sMPWUZf6lz27bffSv379+eeZ9SelZWF5cuX09LJIFBotQ2mz517q7rzMlI5giAQAE4A3AG48zzfWC6X9zQxMak7YMAAszJTJlEU8XQTTWpqKsLCwpCZmQme5yGKT5SQJiYmJe+9955y69athRkZGTd1Ot1ojUYT8zqO35jp/oPRaDRFgiAEAWgM4E51AbeUBEmSGnuU6V2fplYt5pUweDDg6wun5s3x4Ycf8tu2bcPWrVvp1KlTiUqlooMHDya2trasflq3LlCvHiiluHL5Mur+9BM9GxIiXdq+nW/RokWNfBYtLCy4O3fuSA0bNqwYoKOigDFjYFG3LgbUrVvhabW1NYIOHULgggVkdUICzM3NJZ8JE3jfgADg889hXtoOLK9VS7yYlMQ3FUWob90CPD0ReeWKpNPpuCtXroj169evvJ0NbFpFt27dyJ49exC6fXumZ2zsOsydG1STc/snIwiCAkA7AA1lMpmnXC73ppS6cxznJJfLDZaWljpbW1ve3t7ezMXFhdStW7dckH22a9HZ2RmTS6WHCxYskEJDQzkbGxsUFBTAzs5OyfM8hg4darZlyxavpKQkfwDGoGvk1aPRaHLBal013V6cO3dugSRJFUdFAICzM1MBDBuGh40b42yLFrh7967k6elJr127xmu1WnLq1CmxoKCAb7h4MRSlwx8zf/0V0uLF2Dh5suhav75sckAArK2tnxt08/PzERYWJj18+JDr3r175RlxTAzzzq0KQpA9fjxi4uJgaWuL69ev8yEhITD5+Wc2uqfUa6JZs2b8ybNnEd66NbpkZKBZly5IDQ0lZh4eyM3NJZcuXZJKSkpoQEBApcG3efPm2LNnD077+2/wjI39+nnn9U+mNIttJJPJRstkskk2NjZwcnKS29nZmVhbW8PGxgbW1tZQKpVyAC8wfK8iHMdBrVZDrX4yUalUX80lJSU9x33/j2EMukZeiNLambKqGiYAZojz44/Iat0anCiKbbt141q2asUVFBTA3d2d6nQ6HNm/X7QPC+N3ublJ9Y8dI/W3biUFrq7S5Pffr9HvZFFREZYsWQIPDw86YcIE1KpVq+JGBgOTin3yyXP3tSklReq1eTMX/957UufOnYlKpSJo2xaFjx4h08cH20aNknSiyOn1enTr1g2RZ8+KyYMHQ/Tw4IbJ5fg5JYUkJSURANBqtVL79u0rfABwHIc+ffpg//79b0vAUY6QVqD0vzU5138KgiD4KZXKNRzHuTVp0kTm7++veKwN/xNxdXWVX7hwYbYgCL9rNJqqp66+JMaga6TGCIJAlErlEoVCwZUZlkuShMOHDyMlJUXq27cv97hF1sICYaNG0anh4bxKoQBatYKFhQWGDx9OAPCIioLexQVNTUw4xylTsDU0lEpqNdrW8FjWr18vurq6YtCgQVXe1iMqiultK5F7lXH06FEUmZpytSnFlC5dODRq9Pi5pDp1wFGKTg4OnGPXrnB0ZC6NLVu2ZO9ZWAgEBOA/48eTB/374/Tp0zh58iTXpk2bShfWvL29cezYMY84b28/n9hY2xqe6j+Cb775ZrFSqZzQtWtXk6ZNm76aCR7PgVJa5RsQQsBxXIkkScmv472NQddIjeF5/n21Wj1m7NixJuHh4TQuLk4sLi7m1Wo1dXR0JKtWraIODg502LBhXOl8MPJoxQqoli1jTl49ejyZEnHgAOT168NPrwfatMG/NRoiSVKN/tL27duHgoICbtSoURW3NxhYU0NeHlNFlMnVTp0C7OyQpFTi0MqVYrGDA0zVapKdnU3atWtHuDFjmA/DU9y8fRs5H38sjjlzhkedOsyX92nMzIALF8CLIpxDQ6FzcxPb9OrFV3UXwHEcOnbsaLavpKTv7yUlzTSE1AWlr+UP+++EIAg+AKa+//77sLV9/Z9FkZGRIIQQh1KZ4rMcOnTokcFgGKvRaHSv4/2NQddIjRAE4QOZTPZtaGio4saNGzh79izp2rWrzNLSEm5uboQQghs3biAiIoKuWLFCcnZ25mrXri3aubrymDsXGD2aaXkXL2bdYNnZrLFi9mw2ugeofjoDpUiMjETy4cMY1bUrUe3fD1y6xBbwSkpYC++ePcCQIYC9PWtuePSIvXbWLKBZM4TZ2Yn/WrCAv75/P9S//Qa7fftQMnEia47IzWUfDj4+OB0fj2vXrmHkyJE8bGyYwqJTpwqHJMnl2LV/P+zy8mB6/z7fzM0NAFBcXIy4uDio1Wp4eno+ztyaNGmCY8eOuQ/48cfFAAaBrcL/04kBmGHR68ZgMODEiRM0JCSEyOXyCs+np6cjPz+fAAh7XcdglIwZqRZBEOQAHn/qy2Qy9O/fH56lvrdPU1JSgt27d4vx8fF8YGAgfeedd1i00WqBjRtZ80HDhk98eX//HVCpmCFNYSFTNDx6xPwQoqOZ74KNDctcDx5EZkEB7nl60hYdOxLk5wN2dmwcj4UFm4Pm6Mh8cR8+ZP65T5mZnzx5ElFRUXTq1KmE53l2THl5LPivXcuMzVetApYuRZxeT/HFF6RJ2cDMxEQ25XfhwnJ+DCtXrpTS09O5oUOHQimXw6VTJ5AxY3C5e3fs378fBoMB06ZNK7dYc+bMGZw6evTnT7/4YjIofS3Z1N8FQRA4ACIAaDQv6E6Rmsrkie++y6SGNWDLli300aNHdOzYsdyzJYyCggKsWLGiqKioaNwXX3zx3C7NP4Ix0zVSLRqNRg+ACIKgBNAfwC+enp6V1lKVSiUGDBjAN2vWDObm5k9+q1Uq5qMwYwYgCGx+mbc3M5pRq9mt/YEDQPfugJcXYGoKiCLQvj3zQrCyAmbOhIko4sCSJcSqRw+4lWaVFbh5k7mJJZZfA8nJyaEGg4FkZmay+izHsSxbpQLmzwciI6Hr1AmHDQZk799Pui1ZAmzaxCYT16nDjHDCwoB+/R7v08TEhAOAsq67sPfeE7Pu3eNN589Hu4ED6Ylr10h4eLgUFBT0eBy9u7s7jh8/Hhrj4xPelJApoDTgJX80bwL1AMDExETCi3jBFBayKSPLlrFJ0tWg0+mwfft26c6dO9z48ePJswG3sLAQ69evL9LpdIsopZsEQWgC4KZGoyl5obOpAcaga6RaBEEwB/AOgLpKpbKvjY2NFoDZ815TNtamHAoFu01fvJh5HowcyYKvjQ0LqqVlhudSUACe52kO8/CtvAZsYsIMbMzNyz3cu3dvsnbtWkRFRUk9/fw4/Pwzy3b/9S/AwgLxixbRyxERpCQgQHpbo+Fqubsz9UN6OhuWKZMBN26wzDgwEAUFBUhJScHw4cMhSRJ++eUXqVihQI6NDQYfOIBGPE/qzJ6NPXv2kNzcXHHEiBE8wOwpe/bsaXa4qOh/rnfubLes/qzfZBqZmprqi4qK5IIgoHHjxvDx8UHt2rXL3R1UYMAA1jq+di37INy/nxkvVcK5c+cQHh5OHRwcMHHixApKl9u3b2Pr1q3Foiiu4DjOG0CZXt0DwM1XcZJPYwy6Rp6LIAh+MpnsqLOzM7G3t1c4Ojoqm5UNd3wZCgqA4GBg+3bg9m32xzJ9eo1fvm7dOkmr1XKVSsQA4MIFNvV3Y+V3hx4eHkjfuZONf+/Rg43uKS0XGKKj0dXbG7bvvvsk4/L2Zl/BwSyD7tz58Vj4kjp1QCnFtWvXpB07dnBqtZoqFAoOABIXLqRO/v4ku2dP1Hd0JIanHc4A+Pj4EL1eb7lcoeg9yskpxiktbWmNL8KbRb6JiUnxv/71L/m5c+fEiIgI/urVq7CwsJCmTp3KVVrnz80F/vtfVocH2OToStQODx48wJYtW8Ti4mI+JCSEeHl5Vchwc3NzsXnz5mKdTtcLAFGr1TttbW26ofkfAAAgAElEQVR1GRkZ6z7//PNXHnABY9A1Uj0Nzc3NFaNGjVK90BjyqsjMZMYyFhYsizx37rmbnzhxAlFRUZIkSZAkiRBCOABYt27d4xrgwYMHpYSEBMnMzAzvcpzs2Qz3aZpeuYKC6GguqV8/uA4cWO65w927Y+Tw4ZW/UC5nNeOwMBao589Hrfh4DHRxkTbq9Vy3bt1wJymJJCYmktGjR6NevXrk/v37SK1fH60dHGDRujVPJQkg5PGimq+vL0du3bKxys39fuXEiTsnrlx5r8bX8c0hvaioiFcqlWjXrh0fFBSEgoICrF27luzevZv27t27fJTcv5/VcO/ceTJaKSiI+SNv3gyEhsJgMOD333+nN27cIL6+vujQoUOlEj5JkrB169ZCSZLmajSao1999dVsg8FgmpGR8UCv1//7dZ2w0U/XSHVsLioqunjy5MkqZuC8IN9+C/zyC/v/8OEsiK1fz5zGwP4QYmNjsXHjRixatEiMioqiXbt25YYOHcqNGjWKfPTRR/jwww8BAKtXr8a2bdsQFRXFtW3bVqa9dk2Wbm3NFsOehVJAEGB2+zb0XbpIv2Zm4uLFiwDYAsq8efOo040bhHTogApevABb9AsNZbXns2eZ9nfUKHisXMlpPDzgHxqKm7GxXJMmTVC3tN1YrVYj2scH0GggjR2L240bY8GCBTh//jwte48Wgwbx5w8ckLJdXU8KgvBP1O7WMTc3f3zBOY6DhYUFBg8eTOLj40ni03X5khJmZv/LLxVn2eXkAO+9h5jwcCxcuJDm5OTQ8ePHo2vXrlVK+CIjI8WsrKxrBoPhGwCQJOmIVquFXq9vo9FoCit90SuA//LLL1/Xvo28AQQHB9OjR49ezM7OHhkQEFBxauOLYm/PBkI+LQ+qVw+SvT123LiBMz/9RK+yhS7avHlzvmfPnsTR0REWFhZQq9XgOA4qlQpmZmZiafYrNW/enPr5+XFO06dTXUICMQ8NRWxsLORyOUxNTZkRz5gxLCMaOxYe7duTyMhImpCQQJycnJCSkoL79+9j2KRJJC0igq5OT8f58+el+vXrc+ZlWXN2Nqv/jh3LsvSjR1nGPn060LQpSMOGyKxVC8ETJiBHpYJ569ZQqVRITU2VDh06RKLs7MB5edHA2rXJlfBw6dCVK1xAQAA4jkM9S0suoE8fqzg/vx4HIiJ+Dg4OFiu/eG8eJ06cCKpTp06vJk2alPvdMjMzg1KppPv27YOfnx+RSRLQsiXw1ltAt24V9pNdUoI1dnZiQkIC16VHD9K9e3fyvJowpRSbNm3SarXanhqN5gEABAcHJwUHBwvBwcE5Vb7wFWAsLxipCXFFRUWy/Px8WFj8gfmKWi3Ty+7eXf5xKyuEmZpSunMnGRsWRricHJBKLByfxt/fv7x6orgYCVOnSrF37nAl334LhUKB4uJiUis7mw6/cYPQ7t2RFxiIOpaWOH/+PCRJIm3btqVhYWHUYDCQrl27wszNDY2GDSOj27XDiYsXucOHD9ORI0eSgm3boP/4Y6yZMkVssGcPHxISwtQOlpZsUVCjAUJC0EOrxZ6dO6mftzfBwoXAsWMYvHcvl5GRgSNHjqBN9+7E6ocf4LBlC79pxgyprGBJrK3Br1+PWoWF9QtTUn4AMK6yc35DEbVabaVP+Pv7kxs3bkjr16+Xxg8bxmPo0AoBV5Ik7Nq1i169epV4e3ujx7x54GxsgGrWHfR6PbRarQLAtVd1IjXFWF4wUi0ajUbkOO7733//vegP6bpv3WJffEW1mbW1NYl3c8P/Pv0Up/bupUVDhjCdbU3p3RsdsrP5HkOGkKFDh5Jp06aRzxs2RO/Dh7HB1RXfZ2Xhl19/xcKFC6UjR45g0KBBaNOmDTEYDJyHhweaN29OAIBbvRpO9+/DYDBIxcXFkCQJ53/9lcZ16SIFBAbyV65cefKeo0cz3e78+QCATZs2Sdpu3STXDh2ALl2Y/O3RI9j36YOhvr6wsrLCmfbt8dOkSRiVl8eRKVNY2QMACQlB6IkTpiY8P2TWrFlVFJbfSNIePHhQsUsBrB23X79+nOe2bXxmt27Ap58+6WgEEB8fj4ULF0qpqal0zJgx6NWrF8/t3QuMH1/tm2q1WlBKZQD+wKrwy2HMdI3UCL1e/0VqamqPs2fPvhUQEPByH9b29myWWiW0b98eGRkZlOM4knz2LOqdOYPaOh1kSmWlK9PloBRo0wbcsGHwsLNjwfqbb0CKi2Hz22+kg1KJunXrgud5XL9+nTM1NYWbm1tZ7ZbqdDqKMvnZwoWAhwd6NmvGr169ml7t0AEPGzQg/X/4gdy5cweiKOKbb76hHMfR2rVrY8i8eRx3+zaKrl9HcnIyN2XKFHZMTZqwL60WaN2aydfmzAGJipJaTZvGmajVwPLlrBFEJgNMTSGLicGwUaNMV508uVIQhJ0ajebRS13nvwmzZs3qK5fLf+nTp4+qqm1MTU3h1bYtDt6+jU4PHsDBwQH5+fnYuHGjmJ2dzb/zzjvE19f3iSrBxwdYsIBN/1hauSDEYDDg0qVLZd82BnDx1Z7Z8zFmukZqhEaj0et0uj7h4eHF6enpL7eTKVOe2zkUGhpKBg4ciHtqNS4tXizx9+6xjrPqRqJPm8YaGMoC7pAhbKDkv/8NZZMmaNiwIZRKJWQyGZo0afK4qeLatWtQKpUIDQ198ncQGwusWgUrKyv08PcnzjdvImDKFPA8j3r16qFNmzZ06NChZOjQoVx2djbZZGlJceYM5P37gxCC8PBwevv2beh0pY1mKhWTsDk7A7a2UCgUnC4pScLSpSzA//gjm0ah1QIXLsCuaVM4OzkZAHSt5EzfGARBaKlQKDaMGjVK3egpk6FyZGQALVrAdvJkOAwdKq1fv17au3cvli5dCjs7O0ydOhV+fn4VZGBo1AiozO8ZLMM9cuQIjYiIKPsl/u3VnVXNMAZdIzVGo9HcNhgM49asWVMcFxf34jt45x0maq8GlUolOTo6EuLuDvzvf2zh6sKFyjfOyQF27GABNzkZCAgAJk5kzQyl0x2q4ubNm6hbt65UTgpXUsJKIBkZaLRvH2ySk+FSWh+Uy+Xo1KkTqVu3LtRqNYqKisjdu3fJD127igVpaWggirh79y5Zv3495s+fj/xnPizONWuGQ82aUTcXFw5377IHRZE1Z6SksPNwcUFQVpaFUqkcVu2F+nvT0svLi9SuXbvqLdLSmBTMxgbt27fnCCEkMTGRjhgxAv369eNNTU0rf11ICDBiBLuTeIaNGzcWnTt3joiiOBrAXQCtX8XJvAjGoGvkhfjiiy826XS6drt3735w/fr1are/dOkStm3bhqKMDCA1FVLDhsjNzX3uawICAvgLFy4gKTkZhoEDmY9CcDBw/37FjePiWJC8d4/pZ//3P6BDh0rrxs9iZWWFvLy88g9OnMgy59mzmWKB5yFJEpYvXy7FxDwZJLBp0yaq1WrRuXNnBPTowZ+ZNUsa/PXXmNatG9599104ODjQxYsXl9v14cOHodPpSP3gYGb+Y27Oyi06HRAZyUbEnzsHx/feg8Fg6Fw6OeGNRKlU+jk6OlZZVsAHH7AP0dLAyfM8TExMpKCgIOLyHKtOlJQwtcrgwexn+AyNGjUqK6keAGtBft5cwNeCMegaeWE0Gk2UTqf76sKFC8XPW1grKCjAnj17UFRUJO36+GM8XLMG3377rbRkyRIcPXq0ytd5eHigsLAQGzZswPnz5ylsbVkXkpMTKx08eMA2jIxkGc333wPvv89kXM/ObXsO9vb2SE9P58udQ04OC9rjxgELF6Lg5k1s/uYbKSs1lbuyYAFy4+OBmzcRmp1NTAlB9uzZsA4Lk3oMGMARBwdg1CjUqV0bPXv2JJRSfPvtt9KD0uP97LPPwHEcsrKynrzfxo3Ahx+yVmgHB+DePZjXrg2/mzclAG/X+GT+ZnAc18L+KTOichgMzOfimblzlNLKfXYfPGAfuoLA9NOUMs+Os2crbBoQEKBo3Ljx0w+9VWGj14wx6Bp5WVanpKTc37t3r+7evXvQ65/0TqSkpODIkSNYuXKlZG5uTocPH869PWsWLsyYIfbs2ZN79913cf78eURFRVW6YxsbG0yfPp2YmZmJtCwiyuUsI0xPZwtrlLL5at26scxmzx5Whnia3NwnmQ+bQgysWQNs2ICju3dTk7590d7WViRbtjC3KoDZN6ansxbT9u1h8PND9++/56a1b4/uR48iYflyipgYKHbuhBml1EsuR/KZM9zD7GygVy8WAD78EE5OThg8eDAcHBzIihUrEBsbC5lMhrp16xpWrFiB8PBwREdHQ5IktpimUrFjnDMHePQIXX75xcw+J2eyVqm0eO2O3n8ygiCodTpdg0qDbmQk8NlnwOHDjxtmnoI+vhSJiSwLTkxkU5p37WIfyNHRrC34s88qNa/X6/W4devWY41amUb3z8SoXjDyUmg0mmJBEALj4uIWXbx4cbiFhYXUq1cvbtu2bbSkpIQ4OjpKHTt25Ly9vcFxHJwmToTT6NE8SrMMV1dXMS0tjdUARBEwGCDl5OD0pUu4ERkpktxcjrO15VsVF7NWYbWa+eUuWwbs28fKAHo9+7d/fzb2/cwZYMIEZvl3/Dj741u7lv378cdsu7g4SKamiLO0pJ6NGyOwSxcehDCtLcA8Gdq0YVONb9zAo4cPYc/zUE6ZAr5uXeivXycYMQJ09mzknzpFam/ejMt79tDVe/aQcbNnw6ZtW9Dx45H6wQcICwsDIYRaW1tLjRo14gFg1KhRsjO7duHS3r1ofOkS8s3NYeXlxTLsAQOAr74CDAboduyA2KDBO0VmZqlEks4ogc4gpD4ovfNX/LxfFYIguCoUiiNeXl6kbPpIOQ4dYj/XSlDl58Ppf/9j12nPHvZzHj2aZcVV1XefISsrCyUlJVWXNf4EjH66Rv4wgiC0lclkA0RR/EClUqFdu3bEzs4Obm5uT5K0Tp1YdtqtG3D2LDLOnUP2p5+i0dy5gJUVyIQJyFq7FjEuLmiRnw+VVovCmTNRa+VKNv0hMJAF1R492L8XLzIryGXLgD59gF9/ZSWG+/dZJuzmxt6vkiRx3bp1YkFBATdu3DiifLadtIxr14Du3bFx8GCabGVF/G/ckNyaN+eOR0VhpL8/SHg4tvI8BiQkgGveHIf8/enDuDhSv3dvpK1di8DwcPz20Ufihx99xHO5uWxyRVERCrdsQWZ0NOJ79pTqP3oEz3ff5bi2zwwp2rwZsLCAPiAAYp062Nut28/9t23TALgDwAqAG4B7oDSv4oH//0UQhM5yuXxLhw4d1K1ateLLJfCSBHz5JavllhnYSBILwAsWALt2YW2PHoZely/LagnCE7ObF4RSisuXL2M3a9Bx1Wg0d1/Fub0IxqBr5JUhCEIjQkgflUrVQ6fTtRo2bJjC1dWVBd7MTLZC7+wMEIKVK1ZQrzZtSHxsrPhIpyP29vYkNTWV9OzZU/Lx8alZ2Ss/n2XAEyaUH83zHMLCwuitW7cwceLEyttEP/2ULcxt2wacOoUfjhyR/Bs25By3bUOMTIY4X1+YmZmJLVq04E8dP47pPXuyW1wTE6QsWEDTzc2pe1YWZ3X2LEj9+qxW+/nnwMGDQFAQMr298fPu3fhs5syqD3LkSOYhPHcuHqSnY/Xq1brxixfrbDMzB4LSAyDkAIAcAEMBhALYjP/Hf8iCINRVKBTz5HJ5SP/+/U3rP1OrBcDuYvr2BU6eZBmsXs+MbT78kOm7VSosvX7d0LZdO1nTlwy4ZTx48ACrV69Onz59+l8ytcNYXjDyytBoNAkA5gGYN3fu3MmbNm360sTExMTX19fU39+fUzVvDoDd4kl2dgiPiIC9vT0J8PXFyZMnycSJE2Fra1vzdQYLC7bokpLCFA4uLs9VLWi1WsTFxZGxY8dW7dXapw/bF4CLpqawu32ba75mDeQTJ6Jufj66fPQRTp06RY4ePQpzc3MmVbt5E+jeHXWmTyd1AgMJ6tVjqoTkZGDFCqBjRxZQAJgVFUFfXXz86afH/3VwdMTHn3yiOHP8OEm1ts4ZTIgXgB5gnq/uAH4AsB2E9ABwF5RW3n3yFyAIQhsAEQDg5eWl79atm7zSO4u9e1ktd+dOoHdvZrV54ABbZHyqrkuvX3+p8vazC3BJSUkghFS9kvuaMS6kGXktTJ8+fZlOp3PIy8vrGhERsWP58uVFmZmZEEURP/74I0pKSuj06dMxadIkrm3bttxnn332ckMJZTL2B+rry0oKa9dW2CQ/Px+zZs3C999/T3meZ4qI5+xPevtt6HQ67N+/Hz4zZkAeFsYaGOztobh1Cx2bNOHe3bCB+mZmSvjlF1b/Lbs9/vVXtnhXXAzExDAlxFPtzEePHqVqtfr5UXfUKHZLXQrP8whv00ae0Ljx2Xxz8zM6uXwuKKWgNBGU1gKlegDDAAwEIQoQ8h0IqV4z95oQBIEXBGEESgOut7c3+vTpUzHg3r37RHny++/szuX4cVY+srCobCHthYNuYWEhli1bpk9JSXn8WGJi4qOSkpL9L3xirwhjpmvktaHRaCiA0wBOf/XVV2N+/PHHHyilJnK5XJo8eTL3tOUeXwNd7XMhhFn+NWkCHDsG+Pk9VjMkJCSAUgofHx/prbfe4tetW0e6du0Klarieoo+OBgbBw9Gga8vtbKyop6eniwx6dQJOH0a2LUL0oEDuF63LlE2b04waBDT9b73HhtFtHUrW00HmA3h2LFskez33wEAsbGxZNCgQRXel1KKkpISdkyBgeXkUoQQdOnSBQcPHsTiqVOtKMd93DUgoLeipOTert69IwDo8eWXszUaTQwIaQygPQAJhHwGIA6U7vljF7cipTaUngAayWSyJoSQHL1ev5AQ8g2A0l5o3OU4zq6goAAAnqx0HTjAGkH8/NidypkzrOxUDVVKxqpg165duMzazuXJycmoU6cOcnJycPfuXRmA8Brv6BVjDLpG/hT++9//rhEE4YZcLj/Wp08fRVUepzVFkiScPn0a2dnZEEURXbt2henbpbLWzz5jGeY33wBgo4N4nkfXrl15QgisrKyk2NhYzt/fHzdv3sTRo0fFvLw8jlIKxcyZpEefPgg/cQJarZZIkgSOEKYqyMlhJjaShNNt26KFiQnFvXsEej2QlMRkX61alT/Q6dNZZ1Upzs7O0u7du4mVlZUUGhr6uKvqwYMH+PHHH9GsWTOxQ9OmvFmpJ28ZrVq1QklJCTiOw7Fjx5Blbe3RwNPTIzgwsKO+qEi6cPXqjLlz567RffnlFI1Gw1roCKkHIB2E2ANYC6DHy9Z+BUHwlMvli2QymavBYPCSyWQ6a2vrYnt7e1lGRoZZZmYmeJ6fKYpimXmNL4BoSZK+unPnzufHd+9GcNlw0qZNWbmlQ4eKvrivkNKAC57nt2u12j4A+AMHDhRKkvS1RqNJfW1vXA3GoGvkT0Oj0ZyeM2fOvJ07d346cuRIhYODw0vv6/Tp04iMjET9+vUNWVlZ/Jo1a6ivry8XExMjGkaOhLWlJd+iSxdY+vkBU6aA4zikp6fDyckJDRo0QHx8PHx9fbFr1y6pUaNGfK9evaCMioLlli2QT58O94YNyZo1a6TVP/wgDZg3j987bpxh4OefyxQAbt26BXNzc7FxfDyPceOAhASmK62Mhg3ZQlCjRsDJkxg6dCh3/vx5REdHk927d0t16tQhV65coX5+fpwkSbh37x65+/nnsOvVC3Zff/14N4QQvF36odL2KbWDx7//DRw+zAWeP2+ydu3a0fn5+X3mz58fp9VqZ39B6aTSF3sCyCtNFdcCOApK19fkOguCQAAMALBFr9dj6NCh2LRpE+zs7BRyuVwBAJmZmQCA0oDbGmykurdMJou2SE/3DnzwAF5qNZN2ffYZuxN4BbXZqsjNzcWjR49gamqqLSoqmkIpXdakSRMeAB4+fCiKonjwhd/8FWIMukb+VAwGg0YUxZT169d/98EHH5hWKdmqhkePHsHFxcUwcOBAWWFhIXbt2iVFRUVJTZo04czNzUlGRoZU5OyMa/Hx3LWlS6HneaxatQoffPABfH19uVWrVuG7776TzMzM0LlzZzbOJSHhceYlk8kwYsQI7tfFi+nNunVR7OzM/frrr5RSCnV4OGkfH89HT5kiukdH89V5PMDSki3QUQqFQoGgoCD4+PhwK1eulLKysiQbGxt+3759sLa2Ft977z3+dGEhrhMi9gOqr7ksXAjcvw/Thw/x3q1bppmffGKanJzsfPjw4ZaCILhrNJpsUHodwJDSV9wEcA+ENAOwbtWECb5pzs4zCSHDVSpVLAA1AMvi4mJ/AKJSqUwzNTW1dnNzw8WLF+Hq6opBgwbhzh0mF46IiMD777+P06dPIzo6GgDOEkpF55QUvuX58/AMCYGiSROgZ0+myPiDVBd0Y2NjsXPnzmKe5x/JZLL/Adgol8u7/vzzzz2HDx+uevTokRLAXzoWyRh0jfyplNZ5V82dO7fNjh07Qjt06KC0t7d/4QUSlUqF9PR0ArApA0OGDHk2QHHo1g2u2dnoM348cpOSsCQkBFlZWWjYsCE6dOggZmdno0uXLrxcXnpHHBTEbnnL3mP2bLxrbU1oRARcs7K4n5cuRTNnZ/Ftb2++xNERtXv25FFNtn7s2DHExsaKY2bM4C1272ZliBkzYGFhgY8//pgDWGkhISEBY8aM4TmOg19JCbbevctHRUVRPz+/518YjmOqjaNHwcXEwMHeHg62tsjMzDS9cuXKjwD6l9ue0jkAcDw4uA0lxCPN2Vk/9qefEN20KerOmeMul8tRUlKCXbt2ged5fuTIkXUcHR1BCIGvry8AwM3NDW5ubqCUIiIiAra2tujduzek3FyD1507Mg8HB148dgwln34KxaBBrJvwFVBdpkspxbFjxwpFUew3c+bMQ089NXDWrFn/Xb169SyFQpEIIPOVHNBLYgy6Rv4SdDrd+0lJSYWrV6/uz/O82tPTk/P09FQ1aNAAzxuAmZaWhmvXruH8+fO0SSWr289iY2MDrFsH6wcP8HlWFuRXrwINGyIwMLBiFunnx7rWyrrT8vNBWrUC4TjY2dlhzKpVeNSwIS8/dgwmsur/dO7fv4/IyEiIoshfu3YNrTgOuHsXOTk5MDExgUqlwv79++mlS5dIu3btRHNzcx4ATMLD0e3tt7Fi/35Sr1492NnZVfte6NiRfcXGAkFB6HTvnuL69etdBUEYpNFotgiCoAbzjh0pl8u76du3dyt7qemMGejSti0UN28yx7PkZLi5usLc0rLcz8LJqbysVZIkFgTv3QOWLkVfGxsZRBHw9QU3aRJeTagtT1VBl1KKU6dOScXFxfcAVKj1UJbtQ6fTzSj94P/LMDZHGPlLKa0ZehJCeiqVypEcx7kFBASofH19ORMTk3LbZmRkYOXKlXB2dhabN2/ONW/evKKX6vNYuJBpQU+erPz5mBhmOmMwsNrjmjWsq+3dd4GQEKS5umJLRAQVKaUjRozgqguGmzZtAsdx0v3790mDBg1I+/btse6nn8TGe/bwp4OCoDQzkwwGAzdmzBg4Ojo+eaFeD/A8fvz5Z0NqaqpMoVDA3t5e9PT0JIGBgVy153z0KNCxI3LmzMGPPF9skCSdKIpmVlZWRTqdzpzneXzwwQdEp9NBpVI9CWSFhUyy1aMHUKcOa+qYMIFJ3p5d+JQkiKdPY8+iReh49SrU06YBgwYB1ta4f/8+4uLiQAiBt7d3hWD9sixevFjs2rUr71nmk/EUt27dwpYtW1J1Ot3bGo0m8dnnBUGQgQXjUI1Gk/FKDuglMQZdI/+vEATBV6lUTtfr9SFqtVprb28PNzc3dePGjUlCQgIuXLgg9e/fnzM3N0elvfs1Yd06FlDDw58s6Oj1zGD9449Z99iyZcyT18sLmDyZZb9ubsjIyEB4eLiUlpaGzp07cwCg0+nQrFkzZGZmYtu2baLBYKAcx5GWLVvyJ0+epMOHDydr1qwBIYTWrV2bDv7qK6546VI8bNQItWrVqngebduyQZpjxyIpKQlyuRyl5067d+9OvL29qz/H/HzA0xPiyZPIr1ULlqVZa3R0NI4dOyZOmzat0nqxwWDAzZs30QgA5+jIOvM+/5x1FKanA2ZmwJYt7HqdPo0Mf3+sKSqCg6MjHTRoEDE1NcWKFStESZI4U1NTKTU1lTczMxNDQkJ4a2trqNVqyGpwl1AZ3333ndi9e3e+UaNGkCQJiYmJqF27NlQqFTZu3KhNSkr6dubMmf99qZ3/iRiDrpH/lwiCoATQEMBbSqUyRBTF3gaDwQwA5HL5Q0qpWatWrWRvv/22XP6iNcPkZKannTqVdbO5urJW3jZtWIbbrRtzNOvShRmwPBPkiouLcfDgQfHWrVscz/MoKSkhcrmc6vV6eHh4wN3dncTGxkpJSUmcubk5nTJlCsnIyMC+ffvokCFDiIlKxaYipKYCpV165fj2W1ZbbtGi3MPLly+XvL29uaCgoJqfK6VMObFsGdCpE/Lz87FkyRLMrKINefXq1eL9+/d5mUxGzczMxJYtW8paOzszRzcbG8DEhJkMDRkCNGgAEIK4uDhs374dAFuAlCQJoaGh8PDwgF6vx5EjR8SYmBjeYDBArVaLH3744UuJsr/77juxR48evIeHB9atW1eQmpr6gBDiTClVAQjX6XTdNRpNycvs+8/EGHSN/C0oNfQOBTN7mQvAVqFQrHF2dg4aOXKk6Uu5H/7+O2teyMxknW0lJayrzcqKCfZFkQWaasjLy8PixYvh5+eHbt26geM4UEpx48YNuLu7V57ZzZkD/PYbEB9f8blDh9io8adW+2NiYrB3715MnjwZVtWpJZ5l2TLmxhUTg+x69bBi7VrUqlXLMHHixAoHNn/+fGnIkCGcQqHAqVOnkJubS8eNG8cu7vbtrHusdFyTwWDAqVOncM+gfaYAAA65SURBVLK0XKNSqaBQKKTRo0dzVlZWFeqvt2/fxrZt26i3t/fTNmIVSkRPfU8APA5QV65ckbm4uFAbGxvp4sWLkk6nawHAlOO4rZIkBWk0mhT8DTAGXSN/WwRBkCsUiovt2rVr3KZNm5draSv1WUBgIHO3WrQIOHEC+OSTGmtJk5KSsHHjRnz66afPXQQsB6WshpqXV1FK1aEDK2k8NdpoxYoVUr169Ui3bt3KHZROp8OpU6do48aNSbW108aNgaFDof3Pf7BkyRJIkkQ7duxI/Es76Mqy4OnTp4PneezZs0csKCjgBw8e/OSYCYFWq8XatWvFrKwsXqlUwt3dXQwJCeFv376N3377DSEhIWheSQZ/+/ZtbN269Z5Wq316pMazF5k85zl3AGkAigHoASzXaDSVz2//f4xRvWDkb4tGo9ELgtDr+PHjMZmZmSatWrVSvPCija0tKy2kpzPjmpYtmcvY5s1s5EsNuHr1KlxcXESO42oe+AlhHWyursDq1WyuVxlff81u3Z+iXbt23K5du9CpUyfI5XIUFxdj//794s2bN3mtVkvMzc2rX7CKjQU4Dqpp0/ChhQVOBwfjyJEj4HkeLVq0QFRUFOzs7CSe5zkAMDEx4R6WfSgBgChC8vXFj2PHiipTU27SpElMHVKqJ65duzaCgoJw6NAhWjbS/mlKJV8PNBrNohpfpzcQo+GNkb81Go3mrsFgaBwTE7Ng/fr1xWlPtdzWmAYN2JSJq1eZ7jUujikZADbHLD6eTSRYsaLKXbzUHaNMxkbKdO/Oashl/PprhXlwjRs3hlKpFPfu3UuPHj1Kly1bRjMyMtCrVy/I5XJamY9EBXieBXtvbyjeegvtW7YkHX196bFjx6SDBw/Ss2fPlut2K7XbREREBAAgLTMTScXF1N7KCqNGjSI2z5ReTE1N0bJlS+j1epKQkMCmYlTkH39rzX/55Zd/9TEYMfKHCA4OfhQcHHwsPDw8NSYm5u3k5GTRwcFBUaV9Y2UQwmwaAWZuU2a63qoV0+8ePMgW30aMAHx82PZvvQUsWwaLzp0RHh7OeXp6vriiwsYGWLoUmDSJmeYQwtzKWrcG3N3Lberi4sJFR0dLhYWFpGnTpqRfv36cnZ0dzMzMyP79++Hj41OpiU8Fmjdnxz5tGhxXrSLHPDxIWloaGTt2LNzc3B5nqPb29rC0tMSRI0cAADt37oTVmDG0e+/evKwK7wye55GVlSWeOXOGS0hIgI+Pz+OSS05ODq5du3a/TZs2P1X64n8IxpqukTcKQRBMeJ6fzHHcF927dzdv1qzZq58vdvgw4OHBsuOQEODuXSS0bk0tnJ2J044dLDj36FHjETLIz2fOaH36sO9zc5k5+wtIqzZs2CClpaWRvn37EvdngnWVSBJoTg7WzJ2LwHPnqOepU5VeqyNHjohRUVF8nz594NmhA7NjHDjwubvOyMjApk2bqLW1tTRixAgeYFra7du3n//kk09aPffFbzjGoGvkjUQQhKY8z0c2bNiQtmjRwtTd3b3mi1wvweGZM6HX62nwF18Q09q1Wf10/34gLIzNdDt3jml+nx2eWQalzBP4u++YQmDJknItydUhSRK2bt2K9PR02qJFC2Jqaopnv5RKJXief6wOyM3NRVhYmKSIiCB90tOJ6Z49rMzxPAe4ixdZOcbSstpj2rx5s3T9+nXOysoqXxRFotPp5AAiPvvss3dqfGJvIMaga+SNRRAEW0JIqFKpnEQpdfPx8eGbNm2qcHZ2fuUDdgsKCvDbb7+J2dnZfO/eveHl5cUC1MWLrKurQQPWYtuzJ+vciopiJt52dk8y4nnzWIYcFsaMzCuZZvs8dDodwsLCkJ+fT0tKSiS9Xk8NBgMniiIxGAxEFEUATEsrk8mg1+tRt25dKTQ0lHkbX7jARpdnZ1cdePfvZyWRZy0sKyE5ORnbt28vLioqKjEYDF0AZADI0Gg0RS90Ym8YxqBr5B+BIAgNeJ4fxfP8OJVKpW7RooWpj48PZ21t/UrfJzo6Gvv27cO4ceNQ6Yjxu3dZFrtwIfDOOyzg7tzJutA2b2aLeHPnMk1sDTTCL4pOp0NBQQEOHjyIlJQUfPzxx+U3uHwZaNYMmDWLmbI/W+Lo25eVVubNq/F77t69uyQ2Nva8Xq8f+nfR0r5OjEHXyD+KUq+H1gqFYpwkSYNMTU2pi4sLHxAQYPoqMmBJkjB37lxMnjwZNQroksRKCwMGsKA7cSJrUx4+nD22axebTHHnDtuua1fmDVGTBbPnsGrVKkmtVnNDhw6t+GRODvO8PXUKeAW+CXq9HgcOHJBiY2PP6PX6uRqNZt8f3unfGGPQNfKPpbTLzYPjuO6SJM0DAE2Zw9hLkpCQgN27d9P//Oc/Lx+9MzJYN1xODqsHDxgAzJ8P3L7NpmH07s1UFI6ObAFu0SJg925mUtO5MysP1K7N5G+VcOjQIURFRWHAgAHw8PCo+jgkiZU4fv2VlR0A4IcfmMxtfY080B+j0+mwatWqkqysLCXHcV9LkvSrRqO59kI7eUMwBl0jRgAIgtAcwKW6desW+Pv7q+3t7VGrVq0Xmt12+vRpREVFSc7OznTgwIGvbzCkwcAWvFJSgIgIZkf5n/+wRbru3YF//5sZ5ty7x+q0v//Oxg21bw8EBGD1V18heNIkuL31VvXvtWkT2/+RI6wEEhnJSiD//vdLHXpqairi4+PFCxcuaPV6fReNRnP6pXb0N8YYdI0YKUUQBAUhZLRKpRokSVJjvV5vb25uXujo6EicnJzUjo6OpCovBa1Wi3nz5sHBwQFjxozBy07EeGVQyox9oqOZz65GAzRoAH2tWnjwn//A6uuvof7tN1a2OHGCGf2EhDCFRVISM/8xNX2SLTdpAowbx9qTMzJYVv0HuHHjBrZs2fJIFEXLv9rf9s/GGHSNGKkCQRBMwCbevsXzfDO5XB4sSdJbTk5Oemtra75Xr16mZTK07777TrS3tycDBw7k/ujQzdfJxo0bpZKSEowaNYojmZksG3Z3B5YvZ4E1Lw/4+We20NevH5OGbdzIgvbIkWyBLTYW0P4xywODwYA5c+YAwCcAvv0nBV5j0DVi5AUQBMEDgK9SqZzs7u7u169fP1VcXBz27t2LCRMmwNbW9i89vpycHMTFxdE2bdqQynTJK1asED09Pbng4ODqa85aLasry+WsRNGsGbBqFStvrFnzh4915cqVUnp6Osfz/B1RFIdqNJqzf3infwOMQdeIkZdAEAQTuVwezvN8S0opqV+/vti7d2++Rm24r4mrV69i586dxXq9XpLJZKYqlaq4S5cuKnd3d66wsBC1atXC5cuXcezYMTpt2rQXm7rxmtDpdJg7dy4AQKPR/PUH9CdgdBkzYuQl0Gg0xYIgvEMp3Q6gdUpKCvntt99oQUGBOiQkhLi6uv6px5OYmIitW7cCgAnAZFp6vd40NjZWOnnypC4jI0PRoUMHaLVaWlRURIqLi2Fa0zbl18hTBvQ1s3R7AzBmukaM/EFK5281ANAWwCoAGDBgALy8vF5r6zHADNT37NlTmJiYaKZSqY5rtdogPJVMqVSq21qt1u3Z1/Xu3RuNGjXCs3Po/iiiKEL3tGNaNVBKsWDBAgB4W6PRVDG87s3CGHSNGHmFCILAA+gll8sXOTk5OY0cOVL1IrKzFyEnJwfLly/XUUq/NhgMizUaTd5zjqsPgJ8BlLW5USsrK93UqVNfmcxCFEX88MMPRfn5+eUmPtTgdaYA/q+9+3lp5IzjOP6dTB6TNT9OtrauUlw8SJGCF6G0l3rwYOlBilIoll1z6v4DGwSfp4+U9g/YVFihmqLS3bT0UNq9FBTsUAj1IsqCIIiU1h9Q/JHJj3kmmemhra2trcaNMzu7nxfklDD5nt48TJ7Mc10I8UujZnmSIboAV0BKmYhEIt/Ytv1aNBqtxGKxaiKR0JLJJEsmk9c6OzvpMrcgDg8PaWNjg9bX1493dnYi4XD443Q6LeuZi4g+1HV9uFarvTg6Oko3bvxrIXwphmHUDMP4Pp1Ov9GQCz6lEF2AKySlbCaiViJ64c+XpmnXGWOp1tbWxMDAQKz9nD2vpVKJ8vl8bW1trVQoFEjX9YeWZd0nou+EEMXLzjY5OflWOBz+tKurKz44OHitrucP/8Px8TFlMpmybduvnHUEOvwF0QXwgZSShUKhMV3XP2pvb4/09PTEOjo6qKWlhY6Ojsg0TXJdl7a2tmqGYdiapuWUUveIKC+EqDVwjhhjbFLTtNtDQ0PR7u7uS10nl8uVNzc3746Pj99p1GxPK0QXwEdSyigRvRuNRt90HOd113WTrus6jLGfiKjmOM4jy7LSV716lFL2McYe9vX1Jfv7+1k9PwBub2/TwsLCr7Ztv/Q4K+9nBaIL8ASRUrYRkSaE+PncDzf+u59vamr6tq2t7eWRkZHmi+xscByHMplM8eDg4JYQ4gsPxgw8RBcATkgpw4yxu/F4/L1UKtV83plv+XzeWVpa+tGyrFefpb/yPg6cBgwAJ4QQVdu2b5um+cnMzEypVPrvQx6KxSItLi5almWNIbgXh+gCwClCCNe27TuFQuHe9PR0cXl5mSpnPOBmdXWVXNf9QQjxyIcxAwu3FwDgTH+csjFMRA+IiDjnp07WME2TpqamypVK5R3O+dc+jRk4WOkCwJmEEK4QIqdp2ttEvz+A/O/i8Tj19vZGGGMf+DFfUCG6APC/OOdfhUKh4bm5ufLu7u6p91ZWVpRS6qY/kwUTogsA55qYmPhSKXUzm82ehHd/f58cx7GJaMvf6YIF0QWAC+Gc55RSt7LZbHlvb48cxyFd1w+FEAW/ZwsSRBcALoxz/kApNTY7O1suFotUrVaf83umoEF0AaAunPP7SqnU/Py8wxj7zO95ggbRBYC6cc4/J6KOSqXyvt+zBA326QIAeAgrXQAADyG6AAAeQnQBADyE6AIAeAjRBQDwEKILAOAhRBcAwEOILgCAhxBdAAAPIboAAB5CdAEAPIToAgB4CNEFAPAQogsA4KHfAACe7PcPYYjvAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_rook.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
POLY_IDAREACODENAMEPERIMETERACRESHECTARESPCGDP1940PCGDP1950PCGDP1960...GR9000LPCGDP40LPCGDP50LPCGDP60LPCGDP70LPCGDP80LPCGDP90LPCGDP00TESTgeometry
017.252751e+10MX02Baja California Norte2040312.3851.792187e+077252751.37622361.020977.017865.0...0.054.354.324.254.404.474.434.481.0MULTIPOLYGON (((-113.13972 29.01778, -113.2405...
127.225988e+10MX03Baja California Sur2912880.7721.785573e+077225987.7699573.016013.016707.0...0.003.984.204.224.394.464.414.422.0MULTIPOLYGON (((-111.20612 25.80278, -111.2302...
232.731957e+10MX18Nayarit1034770.3416.750785e+062731956.8594836.07515.07621.0...-0.053.683.883.884.044.134.114.063.0MULTIPOLYGON (((-106.62108 21.56531, -106.6475...
347.961008e+10MX14Jalisco2324727.4361.967200e+077961008.2855309.08232.09953.0...0.033.733.924.004.214.324.304.334.0POLYGON ((-101.52490 21.85664, -101.58830 21.7...
455.467030e+09MX01Aguascalientes313895.5301.350927e+06546702.98510384.06234.08714.0...0.134.023.793.944.214.324.324.445.0POLYGON ((-101.84620 22.01176, -101.96530 21.8...
\n", - "

5 rows × 35 columns

\n", - "
" - ], - "text/plain": [ - " POLY_ID AREA CODE NAME PERIMETER \\\n", - "0 1 7.252751e+10 MX02 Baja California Norte 2040312.385 \n", - "1 2 7.225988e+10 MX03 Baja California Sur 2912880.772 \n", - "2 3 2.731957e+10 MX18 Nayarit 1034770.341 \n", - "3 4 7.961008e+10 MX14 Jalisco 2324727.436 \n", - "4 5 5.467030e+09 MX01 Aguascalientes 313895.530 \n", - "\n", - " ACRES HECTARES PCGDP1940 PCGDP1950 PCGDP1960 ... GR9000 \\\n", - "0 1.792187e+07 7252751.376 22361.0 20977.0 17865.0 ... 0.05 \n", - "1 1.785573e+07 7225987.769 9573.0 16013.0 16707.0 ... 0.00 \n", - "2 6.750785e+06 2731956.859 4836.0 7515.0 7621.0 ... -0.05 \n", - "3 1.967200e+07 7961008.285 5309.0 8232.0 9953.0 ... 0.03 \n", - "4 1.350927e+06 546702.985 10384.0 6234.0 8714.0 ... 0.13 \n", - "\n", - " LPCGDP40 LPCGDP50 LPCGDP60 LPCGDP70 LPCGDP80 LPCGDP90 LPCGDP00 TEST \\\n", - "0 4.35 4.32 4.25 4.40 4.47 4.43 4.48 1.0 \n", - "1 3.98 4.20 4.22 4.39 4.46 4.41 4.42 2.0 \n", - "2 3.68 3.88 3.88 4.04 4.13 4.11 4.06 3.0 \n", - "3 3.73 3.92 4.00 4.21 4.32 4.30 4.33 4.0 \n", - "4 4.02 3.79 3.94 4.21 4.32 4.32 4.44 5.0 \n", - "\n", - " geometry \n", - "0 MULTIPOLYGON (((-113.13972 29.01778, -113.2405... \n", - "1 MULTIPOLYGON (((-111.20612 25.80278, -111.2302... \n", - "2 MULTIPOLYGON (((-106.62108 21.56531, -106.6475... \n", - "3 POLYGON ((-101.52490 21.85664, -101.58830 21.7... \n", - "4 POLYGON ((-101.84620 22.01176, -101.96530 21.8... \n", - "\n", - "[5 rows x 35 columns]" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gdf.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 22]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.neighbors[0] # the first location has two neighbors at locations 1 and 22" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 Baja California Norte\n", - "1 Baja California Sur\n", - "22 Sonora\n", - "Name: NAME, dtype: object" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gdf['NAME'][[0, 1,22]]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, Baja California Norte has 2 rook neighbors: Baja California Sur and Sonora." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Queen** neighbors are based on a more inclusive condition that requires only a shared vertex between two states:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "w_queen = Queen.from_dataframe(gdf)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_queen.n == w_rook.n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(w_queen.pct_nonzero > w_rook.pct_nonzero) == (w_queen.n == w_rook.n)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd3gU5fbHv+/M1jQIISEJIYSSAEkIRVogwAKCwBUElCJNRS8/FfHaUFFk7iAoYkWvqDRBkaJIV3qaoQRCgAQIkEIIJUB6353dmfn98YaYskk2hep8nidP2J2Zd97ZsGfOnPec7yGyLENBQUFB4e7A3OsJKCgoKPyTUIyugoKCwl1EMboKCgoKdxHF6CooKCjcRRSjq6CgoHAXUYyugoKCwl1EMboKCgoKdxHF6CooKCjcRRSjq6CgoHAXUYyugoKCwl1EMboKCgoKdxHF6CooKCjcRRSjq6CgoHAXUYyugoKCwl1Eda8nUB6e5xkATQG4AGhW+tsFQDNCSHONRuPJMIw7IcTVYrGkzZ0796l7OV8FBQWFunJHjS7P83oArpV/WJZ1V6vVXgzDtJRl2VWSJGdRFB0B6FUqlVmr1Zr1er1oZ2cHe3t71t7eXmNvb6+xs7ODXq/Hnj17zJIkbbuTc1dQUFC4E5A7IWLO87wDwzBXZVl21Gq1Rr1eb7G3t5cdHBxYR0dHjaOjo6bUoMLOzg63jalerwfDVB/xkCQJu3btwqlTp2RZlh8BcIrjOEWFXUFB4YHhTnm6MiFE+8orrzDOzs52jTVoZGQkkpKS5FatWslZWVl/mc3mko8//nibIAi/AwjnOM7YWOdSUFBQuBPcEU8XABYtWvSBu7v73MmTJ+v1en2Dx5MkCV988YXUv39/0rt3byLLMjIyMnDx4kX57NmzBRkZGRq1Wn3IaDRuAPAnx3HpDb8KBQUFhcbljhldnuc1Go1mGcuyU1577TWdRqNp0HiJiYn47bff8O6771oNQRQXFyMpKQkJCQmFycnJapZlL5vN5k2iKG4HcJLjOKlBE1BQUFBoBO6Y0b3NkiVLTowdO7a7r69vg8aRJAmLFy/Giy++iGbNmtW4ryiKuHLlCs6fP29OSEgwlZSUWBiG+cNkMv0K4CDHcUUNmoyCgoJCPbnjKWMmk2l7dHR0kJeXl6ohYQZCCGRZhi0eM8uy8PHxgY+Pj3r48OHqrKwsJCYmTjl79uyo9PR07SeffHLUaDT+DGAnx3G36j0pBQUFhTpyxz1dnuddVSrVjx4eHoPHjBmjr81LrY6SkhJ8/vnn6Natm2Xw4MH1NuBGoxGJiYk4e/ZsUXJyskqlUl0wmUw/y7K8jeO4pHoNqqCgoGAjd9zoAgDP81qVSvWBJEnvzpkzh9XpdPUaJy4uDn/88YcFAAYOHMj4+PgwLVq0AMuy9RrPYrHg0qVLOHfunDEhIUEGcEsUxQ0Wi2UzgNj7PR2N5/nBALqUvpRr+Q0ApNJvACgGsJvjuKt3ZJIKCgoVuFtGlwCQAGD+/PkghNRyRPVkZGTg+++/t6jV6ggAvjqdzmXMmDH2Pj4+ZfuIoghRFG0KRdxGlmVcvXoVCQkJ5jNnzpiMRqNACNkiCMImABEcx5nrPek7xJIlS055e3sHODk5lS0SyqV/0HJ/1wpGt/JnX1RUZElKSmIJIZ/PnTt33p2es4LCP527YnQBgOf5mW5ubp+99NJLjg0ZR5ZlfPfdd4UZGRlTAewghIxRqVQrOnToYD98+HCdvb09tm7diri4OIwcOVLu2rUrUavVdT5HZmYmzp8/L8XHxxdmZ2erVCrVXpPJtB7AHo7jChtyDY3FkiVLzkyaNCnA29u7QeMUFhbim2++KREEYSDHcccbaXoKCgpWuGtGd8GCBTzLsh+8/fbbdTaC5UlNTcWGDRuuCYLQluM4AQB4nnfUaDQfA5jRuXNn5sSJE1oA0Ol0ByRJChkyZIiqV69e9V40zM/Px4ULFxAfH59//fp1rVqtji63EHez3hfTQJYsWXJ+8uTJHby8vBo8Vnx8PHbt2nVZEITe9/KaFBQedu6mp6vVarW/APjX1KlTdfU1FDExMTh48OAv77zzzlQr5+gMYAiAEgBrOI4z8TzfTaVSHX3vvfc0DQlr3MbKQtxFk8m0RpblLRzHpTb4BFYoDc9UQafTJU2bNq2tp6dng88hyzL27dtnjImJISqVKtxoNL7KcdzFBg+soKBQgbtmdG+zYMGCcXZ2dj/PmjXLrj4ZCBEREYiMjFz8wQcfzLVlf57nmwDIdXNzK+zcubO9p6cnKSgoQFBQUINiywBdiEtJScHZs2dLzp8/TyRJkko/T4KKi1Wk0vvlX1fejkrHgmVZWRTFKpMlhEivvPIKU9+MEGuYTCbExMTIERERuWazuT/HcWcbbXAFBYW7b3QB4OOPP/6+Xbt20yZMmFBnXYY///xTOH78+Lscx31p6zE8z9sBMGg0micEQZh5+/0nn3wSgYGBdZ2CVSRJgtFIpR9uG/PyRr38e5W31/T7l19+kZOSksgbb7wBR8cGhcPrRFxcnLxr1658s9k8mOO42Lt2YgWFh5x7oqcrCMI7Fy9efM5sNqOu8V1CCNRqtV9djuE4rhjAn6U//8fzfFMAyUePHlUFBgY61WkC1cAwDOzsGk3bpwxPT08kJSUhMTER3bt3b/TxqyMoKIioVKom27dvj1q8ePFuk8k0k+O4rLs2AQWFh5R71TmiSJZlctszrAvBwcEai8XyPM/z9TaWHMflAmhWVFRkX98x7haDBg0iLVu2lIuK7n7lsr+/P9544w29r6/vKLVavZLn+YYJaCgoKNwzo6tWqVQnf/755+Li4uI6HdikSRN07tzZolKpUkrjtfVCpVKldOvWrX5VFXeZJk2akOzsbPFenFur1eLxxx9Xe3l5DdNoNAk8z3vci3koKDws3BOjy3FciSAIffLy8lYsXbq0JCkpyebAMiEEY8eO1dvZ2WkAtKzvHAghzgEBAfU9/K7i7OyM3Nzce3Z+rVaLadOm2XXt2rUlwzApixYt+ovn+R73bEIKCg8w96wxJcdx8ty5c18TBOHNEydO1PnZWaVSSQDqHURlWTY9K+vBCFG6uroiLy+v4fluDYAQghEjRminTZum69u3b4harY5YsGDBvIY8bSgo/BO5H7oBXzeZTLVr3coy/SnFwcGBAdC2vic1mUzvb9++vaSu4Y17gaenJ/Lz85mcnJx7PRX4+Phg0KBBeOGFF+xcXV3nq9Xq3TzPO9/reSkoPCjcD0a34NKlS07Xr1+vea81awCdDrh1C/j1VwxNTXXU6XRv1TfZdv78+dvMZvMPmzZtKpak+1vf3NXVFR4eHjh06NA9ietaw83NDTNnzlS3a9euB8Mwr9/r+SgoPCjcD0b3FgCsWLECNXpyAwYAzz8P5OYCKSlonp4OWRDaAygAIUNBSCAI+W9dTmw2m+fcuHEjLjo6+v62ugACAgKQlpZ2T0MMlWFZFkFBQWqWZSeWdn5WUFCohXtudDmOOwPgIiEk6qeffqo+ttuuHdC/P/D778Dbb+Pm+++D0WqvAegF4AgAbwB9AQCEnAMhi0CIU+lvq7FfjuMsgiAsiYyMlO5FkUhd8Pf3R1ZWFiOK942zCwBo164dVCpVW5ZlF93ruSgoPAjcc6MLABzHdZBleWBBQQFbY4x1wgTgxg3g4MHbq/mpkOVzkOVCyPKfkOVhpXuOAvAdgKYA/gWAASG/gJA9AABC3gchtzMfUsxmc9HRo0ctd+jyGgUnJydoNBo5IyPjXk+lAhqNBi+++KJKr9f/H8/zI+71fBQU7nfuC6MLABzHSRqN5sKNGzeq34llgVmzgJ9+gocsw2w2D7C6ei7LyZDlq5DlNMhyV8hyIYA5AN4FISyApwC0BCHPc//971ZRFJ/HqlUCjt/fqob29vbitWvX7vU0quDk5IQePXrYsSw7rPa9FRT+2dw3RrcUjUpVS2Wynx/Qsyfc9u2Df6dOGpVK9a1NlVKyfB2yfAqyLEKWu0GWjwH4HcBMAEVe0dFqhIcDFy8C7u5ARgYQHg78+WfDr6qRaNGihSotLe3+ii+Ukp+fbxJFMfVez0NB4X7nvjK6FotF2rNnT+3ZBLNnA5GRGOHoqGvVqtXY0kqpui/kyHIuZPkAgIL1U6daLj31FNC6NfDNN4CLC7B7N82akCSgZUtqhFNTgZ9/rsfVNRx7e3uUlJTcl8FnZ2dnrUql6nanxud5vg/P8653anwFhbvFPVEZqw6e5xmtVntp2rRp3i1b1lJslpkJDBgAOSYGK9aty09PT18K4A+O46LrcV41gH87ODgsef311+0ZptK9SJLoAt7gwcDBg8CHHwLx8XRhb+RI4D//AX79FZg8GahDi6C6snHjRjg5OYkjR46878qX8/PzsXz58mKj0fjivHnzGuWuVGpkhwFozbLsfwkhkkqlOmSxWE4zDNNUlmUHs9kcCeAQgDcAbAbt7GFqjPMrKNwJ7iujCwCffPLJjzqdbvzEiRPt3d3da975zz+BjRuRtnAhdu/eXZiTk6O2WCzvzps376v6nHvx4sWnhg0b1sVmNa/duwFPT8DRkaa0xccDHAecOweMGQN07QoEB9NYdCOwcuVKqWPHjkxISEijjNfYpKSk4Ndff00ymUx+DW3quWjRorcsFsunDMPIrVq1KujWrZtDx44dmYSEBGRlZYlqtZpkZWWhuLi4+MaNGygsLHQoPfQ1juOWNsLlKCjcEe47o1vaJeEFtVr9dZcuXcigQYO01UomCgKwYAHQuTMwcSJyc3OxfPnyEpPJ9OoHH3ywstyYnQDkcxxX4yoUz/NBarU6asKECY7t27ev3wUcOwYsWgSkpwO+vkBODtCxI9C9O2A0UiPcoQNQW+zaCv/73/8sISEhqq5du9ZvbncYSZKwfPny4pycnAOCIDxdKqlZZ3ie91KpVBdmzJhh5+Fhu75OcnIy1q1bBwC5HMcpVXIK9yXsf//733s9hwoYDAYYDIbY0NDQ3zMzMx2jo6M7Ojg4qDw8PKoWBrAs4OUFrF8P9OoFXfPm8PPzU58/f/7R8PDwzqGhoXsNBoMQFRW1RZblpYcPH9aHhoaGGwwGq0Fjg8FwMzQ0NPz8+fOTfH19NQ4ODtZ2q5mWLYHx44Fr14D33wdmzAB8fKg3fOoU8NlnQEoKsHcvcOEC3U+vp9srhzUqERUVJXfu3LlRO0U0JoQQdOnSRZ2Zmemdk5Pzn7/++sstNDQ02mAw1Olx/+jRo9/27t27S1BQUJ3WHJo1awaLxSJfuXJF/9dffzHh4eHpBoPhwRDYUPjHcN95upXheb6zWq0O9fb21vr4+Dj4+fkRNze3ijutWwckJ9NHewCCIGDXrl3GCxcuZAqCMFqn033Tu3fvfufPny++devWK/Pnz/+xpnMuWbIketSoUb06depU/4kXFwNdugCbNlEvt/K2pCQgPx9YuRLIy6Me8NWrQPPmwPDh1Hh7egKlVc67du2ST58+TZ5//nnUGna5D8jIyMDevXuFy5cvb7JYLM/b2sKe53mtRqNJmT59umetcX0ryLKMlJQUXLx40RwbG1tksVjachx370UrFBRKue+NLgDwPN8CwCC1Wt0fwDNPPPGEfQVZRqMR+OgjGld99NGyt+Pj47Fz584is9n8noODw8dOTk76W7duJcqyvF0UxaXVhRs++uijZLPZ3DYgIKB43LhxdlUW1mzlxx8BUaTebm1jFBQAiYnA+fNATAwtd27ThqawBQRgdW6u2DIggH108mSwjRQjvtMUFRXh119/Lbpx40a+LMs7zGZzFIDDHMelVHfMokWL+FatWr09depUXb0/91JKG20WWSyWf8uyvK2hcWYFhcbggTC65eF5vqtarT44ZMgQp969e/8dGD18mC5svfYaTfcqe/swIiIiDguCsBrAys6dOyM9Pd2UmZn5HMdxG6yM76JSqT6XJGmCLMu6OXPmkPo00Cxj+XJqSL/4ou7H5ucDZ84ABw7g0KlTki/AuLm7UwM9fDjQowfg5gY437/hS1mWce3aNVy+fFk+cODA7RDRMABHOY4rKL8vz/NBAE5369ZNGj16dKOkM166dAnbtm0rLiwsfPeDDz74pjHGVFBoCPddTLc2DAbDjdDQ0E2pqakz1Wo1WrVqRd2+Vq2AQ4doKllQUNn+Li4uOHPmjIskSfGiKL6bk5PztCiKWkmSYgcOHBhVefxDhw7Nb9OmzYsdOnTQ3rx5M0+j0ai9vb3rbwC8vYGFC4GnngLq2kNNq6XXNXAgIs1mkt+/v9T+uecINBoaF755E/j+e2rYr1+nCmwMQ2PEdzB1rS4QQuDk5ARvb2/Sv39/EEIsRqNxjNFonBsWFvZXREREmsFgAM/z7mq1+tigQYP0wcHBRNNI83d2doa3t7c6Li5uQFhY2NGBAwdeapSBFRTqyX1VHGErHMddtlgsPUNDQ6UKWgTvvgusXk29w1Ls7OwwYsQIO5ZlRwC4aDabR5aUlDCSJH1kbWy1Wj2oR48equDgYJjNZvu0tLSGKZC5ugJHjgD/93900ayeNG/eHBmZmTKcnIAnnwTmzqVjrl1Lr7lNG1q4ERlJ84n79AE2bwZ27qSe9n0glMOyLAwGg+rFF19sMnHiRJ1Go9kLQPrwww9XajSa3cHBwU4hISGo1wJmDbRs2RJPPPGEvVarVVLJFO45D6TRBQCO486Lojh32bJl2LNnjyBJEqBW08f4OXNonLeU0kqu3gCyNRpNfwAOsNJ1gud5d4vF0l6r1UKn04FhGCQnJ5v27dsnNCgMo9XSNLFPP633EB4eHsjOzraeweHpSTMmXn8d+Pe/aahl+XLq8SYnU8Pr4UG37dpFfy5cqP/1NAK+vr6YNWuWDgA8PDxm9OjRo5PBYLhj3am9vb1hNpvb8zx/f+bbKfxjeODCC+UJDw+PBrDl1q1boxwcHJp6eHhQ3YSbN4GICGDgQACAo6MjdDqd5OrqSq5evdpDq9U+YbFYdhkMhrzy40VERPgzDDM9OztbvHLliiY7OzvBbDZ3vXXr1ujQ0FA3Nzc32dXVtX6atiEhgIMDNYidO9f5cK1Wi0OHDt1+RK95Z4YBWrSgOhV9+gD9+gGvvEINL0CLOH79lZY7nz8PhIYCJSU0r7h+mvD1Yv369ZK7u7s0ffp0pl27dqp66tHbhFarhUqlUl2/fr1bSEjIytqPUFC4Mzywni5A+6xxHBdnNptH7d69O2fPnj2y0WgEXn4ZiI6mWQCl9OnThxk4cCCGDh3q5Onp2ZkQ8pSV8Y5ZLBaPy5cvv37u3Lkrsixv4DguSxCEcQAQERFRf3dXq6Whhs8+A65cqfPhsbGxaFCcU6+naWlDhtAngXXraPihZUvqgXMcXbibOZPGi+8wqampSE9PZ+5mSXOvXr0gSVIXnufr3eZJQaGhPNBG9zYcx8VbLJYnYmNjz23btq0Yej0NM7z3XoUwg06nQ+/evdGtWze1TqcbWc1Yxvnz56+YO3eu99y5cz8qfe8iIWR0bm6uMS0trf4TDQigxi4qilbT1YFr165JAQEBUqN6gy4uNA48ejRd7BME+nldvgx88gkNR9yh7JatW7eK/fr1k5ycnO7I+NZQqVTo1asXo9FodvM871b7EQoKjc9DYXQBgOO4v8xmsyElJSXr5MmT9NF6yhRg8eIq+7Zu3Rpms7k3z/M2pxPMnz9/p9lsnvjbb78VWywN0Dvv1An44w9avlwHunfvziQkJDR+ip+DA/Dll8C2bTT17KefgEGDgF69aLXftWu0jPnAAcBsU31DrURGRkKSJKZfv353/f/f4MGDNXq9vi3Lslvv9rkVFIAHwOjyPM/yPO9py74cx2WyLHuhLKl+9Gi60BRVMTPM0dERHTp0AMuyWR9//HHGokWLXrNl/Pnz5++yWCx/LFmyxPj777+XpKam1u1iABoz/fxzGm8+f97mw/z9/SEIAsnMzKz7Oavj2jWqEeHlRfWDd+z4e9ugQTTk4OFBtSR8fIAXXgACA2kmRD09fkEQcOjQIXnUqFGkVu3kOwAhBMOGDVNJkmSjqpGCQuNy3xtdlUr1NoBrPM/XqtXK83wPWZb7+fn50TecnYG+fakaWaU2QE899ZT9G2+8oXvkkUeay7Jsc73pO++8M8FsNrc/c+bM1o0bN1rq5Xm2aEF/z5pFK8+scP36daxatQorVqyQ9+zZA0EQ0LRpU/HChQuN5+pev06NKcPQJ4J27aruw7I0Ra19e+CHH2iV3Y0b1BP+8Ufg7FmqqmYjmzdvljw8PGRfX99Gu4y64ufnB0dHR4nn+Wfu2SQU/rHc90ZXFEV7AFCpVDNq25dl2dFeXl5MhQqyIUMAe3tg+/Yq+9vZ2cHT0xMMw0zled5mQYPS8uF/y7J86ejRo/VLgB06FBg7luotVMJisWDdunVSSUkJOnToQK5evSp9/vnnyMnJYZs0qdqdqN589dXfmRStWgETJ9IYb3XodEDPnnTx7fJlmqa2ZQswbBiNB3/8MS3QqIb09HRcunSJGTVqFHMnMxVqQ6VSYcSIEXpCyEqe5yfxPH/ffw8UHh7u6/9sPM97y7L8vp+fH1QqlU9t+4ui+ElycrKmSsx15kxgzx4gIaHKMYGBgWjdurUjgEerbKwBjuOKBUEYGhYWVpRS39X+V14BXnqpSieK/Px8mEwmZvr06RgwYABeeOEFZtasWXj22WfRuXPnxrFWFgvNohgwgL7W64Hp02m4wRa0WhoP/uADGmrIz6epZ/v20XQ0jqtSkLF582axR48ekku5Mu17RceOHcmkSZNUzs7OKzUajZJCpnDXuK/zdCMiIpqxLBuQmZnZ1mKxfGYwGGKr25fneTtCSCIAp9TUVJw8efLvn4sXkZ2ZifzNm7GnoACxcXEVtqempmoYhvEfOHDgt3WZn8FgyAsNDY0+f/78eC8vL7VarQYA3Lp1C46OjrYN0rkzbQM0eHCZKI5er0dycrJ0+fJlKTAwkAFo5oXNY9rCxYtUTrK8IHrXrtSIjh1bt3xdQmiJ8/TptAQ7KYle0/DhVICoXTscz8hAYmIi8/TTT5P7RbDHxcUFXbp00Zw4caLD/v378wwGw/3dmVThoeCBELwp7X9mBGDPcVyhle0OKpUqQhTF7g4ODujRo4fVcXw/+QRZwcHI6t+/wvt5eXk4efIkOI6rlxfJ87yBZdldkiTpZFlmAeCRRx6xuLu7qzw8PFCrROGhQzRla9eusi4ThYWF+PrrrzF58mT4+PjUZ1o1s349kJ1Nve3yPPYYrWwbPrzh5zAagW++gaVPHxz/4AME5eXB/tgx2v5Iq234+I3EjRs3sHr1asFsNnfnOO7svZ6PwsPNA2F0AYDn+VEAdmi12puEkCyz2bxFFMV9ABzUavUqs9ns4efnVzRhwgT74uJi616h0Qg88gitVmvevOzttLQ0rF271ihJUguO4/LrOT97ACyAPABQqVSfWiyWOQAwZ84cVNv9AqBGaMwY6mX27Fn29t69e3H+/Hn55ZdfJre96EbjnXdof7fSqr0yLl2icdnevRvtVGlpadj63Xd4NTAQZORIumD32WfAv/5FPeTG9ODrQEJCAkpKStC9e3fs3bvXHB0dvUuW5Wfr+39AQcEW7uuYbiVOAoCzs7Pr4MGD/Xv16vWOq6vrTldX140jR4700Gq1wsWLF+0XLlyIL774AklJSVVH0Olod9/Jkysk/Xt5eaFNmzaSSqX6jef5euUxcRxXVPpl1QBQv//++28DAMMwNRtcuhNd6Fuzhnq9pQwdOhQsy0rLli2TS0pK6jMt6+Tm0rzbSh4/AKBZM+DFF2mGQiPh5eWFIkdHZA8fTjNKTp8GRoygCmk+PoDJRPOEyxWy3Gl+++03cdu2bdi/fz/WrFkjSZKkZhhmrFqtPlDf/wMKCrZwX8d0y2MwGPIjIiJ+LywsfDExMZEZM2YMO3DgQF3Pnj217u7ueOSRR1i1Wg17e3u5ffv2sp+fH9HpdFUH8vSkBuXYMVoWC5q72b59e3VKSoqnIAjPhoWFmcLDw09X19anlnlKBoNBKg2JvD9gwADbwgOEAIWFtBLs2WfL5tWjRw8mOjpaYhiG8fb2rut0rBMRQRfBDIaq23Q6qtfr5UW1ehsBQghOnz4t2tnZMS1btgSaNKHercFADbzFQuPBhYX0cwgNpbHuBoqYV0dxcTH++OMP5sUXX0RwcDDi4+Pl5ORk4ubmJufl5bVUqVRvHjlyxDskJGTXHZmAwj+aB8boAoDBYLgVERHxIcuyhWfOnOlHCFF7eHgQhmGgVqvh4+MDf39/0q5dO+sGF6Bf6rZtaUv1du2oHgIAtVqNoKAgdatWrZwzMzMHCYIwOCQkZG0D5mo5evRozw4dOvjZ3HYmMJCGF1auLPNCCSFwcHBg9u/fL1ssFrFNmzYNt0RxcVT1rE0b69vbtwdefRWYNKnRBHAyMzOZtLQ0sUuXLhXnr9PRn5deoot6R4/SVLZnnqEdN7y8aIpaI7J//34AEPv168doNBp069aNXLhwQSwsLCQzZswgffv21Rw5cqRLWFjYLoPB0Hguv4ICHqzwAgAqciOK4udFRUWjwsPDw1euXFks1lUr1sODrtB/912FtCa1Wo22bdvimWeesbdYLCE8zzdI2NVkMv0ZExNjEeqis+DtDRw8CFDDAICmtQUFBZF0W9O5akKWabFITV123dzoItuxYw0/XymPPPIIrly5wkpSDQ8PhNBc4ZgYOs+mTWnV3IoVVAS+uF7NhcuIj4/HunXrEBcXJ/fq1asshYIQAkII8vPzyd69e8UmTZqgtPlnnwadUEHBCg+c0QXK1MXCBEEYkpubm1NByNxWhg2jBm7Tpiqb1Go1PDw8TAzDPNfAqR6+deuW6ocffrA9TOHoCKxaRQ3M9etlb7u6uiIjI6PhuVYZGcCJE9TTrQ5CgI0bGzXG2qJFC6hUKvl6uWuqETs7Kj05diz1gDt0oIb49g2zDn9zQRCwZs0aadeuXXB1dZUHDBhAKjcdfe6559i5c+fi8uXLbHFxMfLy8iQAiXW4RAUFm3ggje5tShsNhm7dutVUUFCAoqIi28WN43oAACAASURBVA9mGGDcOPqobWXR7fHHH3eQJOlrnueDGzC/UyzLLs7OzmaOHTtmu+H18aHzevXVsgU/lUoFhmEanmqydy8tP64tbGBnRzMcsrMbfMrbODs7y0lJSXW/hk6dqP4DIcCECXTR7YcfbD582bJlIiEEr7zyCh577DHSt29fVNZ9YBgGGo0GOp1OunHjBh599FGNWq1er1SrKTQ2D/x/KJPJ9O+8vLwtX331lfnzzz8XV61aVVRQUFD7gQCN6fr60mq1So+9bm5u6N27t6DVag9+9NFHlxcuXDi6PvObN2/eXADt9u/fn/nFF18UbtmypSQ8PBzJyck1Hzh3LvDcc2WawNnZ2RX0dAsLC1Hjo3p1JCZa11iojIsLVWnLb7zsqY4dOzL11o44dIgWXrz5JlVo8/amLe7LhWGqQ5IkBAcHM7aEofR6vZyTk4NHHnmEWCwWF9A0QAWFRuOBWkizhsFgEENCQn4PDw//CMCioqIip+Tk5G6CIKjVarXVfltGoxGCIECtVgPdutGFG1dX6mGWUprRwAYHB6vDw8ObaDSaqyEhIbV/w63PMScsLOwLQRB23rp163xaWlpyXFxc7759+1bfTv12g8nnngN69oRn9+4IDQ1Ffn6+/Mcff8iRkZEkJiZG8vHxIfb29rV3kwCoNOOJEzRdy5YmmW5uVFN32rRGWVBzcXFBaGgo6dOnT93ayB84QLMtevaknTcIoeXK/ftT2UlZrjHXNyYmBsePHyfR0dG4fPmy2LVr12qdjaioKDkoKIixs7PD4cOHRQAbDQZDI0q7KfzTeeCN7m0MBoNsMBiksLCwg2azuUlqamrCyZMnO/r6+qorG95t27YJ27ZtYw0GA/0C9+pFq7CeeIKupJeDEIJz584VFxUVnQ0LC3OLiIg4U89UMtlgMNwyGAwx4eHhsQDmaDQatG7duvqDmjShHqdKBZWnJ9r6+ZH9+/fD1dWVvPzyy+Ty5ctSZGQkExUVJQcHBxOmthSrhATayHJGrdpBf5//yy+pzGO5YpL6otFocPz4cbFFixaMzfoL334LLFlCK+d69KDZDbflOsePp4a4c2f6pNK3r9Uh/Pz8iJ2dHQYOHIjIyEimppZHERERRK1WkzZt2kAQBCYjI6NvaGjoBoPBUDfVeQWFanhojO5tDAaD3L9///39+/ffGRYWlpqQkDCibdu26vj4eKxevRqlHgxbui89qEkTanzXr6flr+W+kIQQdOzYUX348OFeAMZoNJqnQ0NDow0GQ71b+xoMhqLDhw831el0Xf39/VUAYDKZqsQZAdB45iefAEeOgBk2DLGxsXKXLl0YHx8fBAUFMf3798fx48fBsizx8vKq+cSrV9M85dsiN1ZITEzEqlWr5Pz8fNKufXuQ0aOp7m89pBglSYLZbK7g1SYnJxOj0Sj7+vrW7Dqnp//daHPmTHrzAegNsl8/Oh9PT1rM8fTTtNJw/Xr6XqWbrF6vR+vWrSHLMo4fP45+/fpV62mLokji4uLkK1euyGPGjCGZmZnN8vLyAkNCQqquuCoo1IOHzuiWZ+DAgfEHDhxIPXXq1IiUlBRBluXEpKQkNwB4/PHH0bRpU5SV1wYEABs20Ef6SgamtCmkRZIkZuDAgS7Xr1+f+tdff+X379+/3jlVoaGhR3JycmZLkqQ+fPgws2PHDmRnZ1s6depU1V3t1Qu5P/+M71NS5Da+vvLgwYOZ8kajadOmZPfu3WjdujVqlH7cto22ba9mn3PnzmHTpk1o1aoVrl69iujoaNmrWTNi9847YCZOrJNegiAIWLp0qRQaGkqioqJw+PBhOTo6WrZYLOTGjRukb9++1RtdQaAebkEBzRW2t6fvyzL9+0ybBjg5UXnMl1+m/9brgXffpSXMlYo+9u/fj7S0NGzfvl0ODAwU/f39q30k8PHxwcmTJyV3d3fWx8cHvr6+qkOHDrUNCwtbbTAYbFwsUFConofa6ALU8IaFhS2TZXkxx3FLIyIiFjAMk3/hwoXHbty4IQYEBDAMw9AYar9+dGV/7Fj6JS5Hs2bNmISEBFy6dAkhISHq9PR0oV+/fhvrOy+DwWAKCwvbfOPGDc/s7OwTkiR1uXXrFuPs7Cy7u7tXMEg7Dh6Uw4xG8tL69aQLzzNsJaPp6uoKhmGkPXv2yP369bNuzLKygN276SN5NV5eTEwMVCqVOG3aNKZnz56koKBA3hMVRQpyc2H09EQLWxbgQD3cZcuWia6urmTWrFmkd+/eCAoKIt7e3kQQBCk9PZ1JT0+XAwICqs5161b6+a9ZQ7NLKodMhgyhN8imTWkmRr9+tLSYEGqMBwwoU0mzdOyIVatWiZcvXyZXr14lnp6e0oQJE2rtOnz48GGkp6fj8OHDJCAgABaLRczIyBAHDBhw0KYPQEGhBh4YwZvGhud5T61Wu1Kj0QwcM2aMXdu2pQ1i//iDeoQrVlQ55ujRo+KBAwfImDFjmO3bt5tYlv3k3Xff5RpxTp3VavXuIUOGuPfu3ZstLCzEmjVrRIvFwkyePJm4ffkl4O9PjUsljEYjPv30U7z//vuwGtuNj6cLUq+/Xu35ly1bJgYGBjIDBgyoYJWSt26VVW++Sba++qrYu3dv9ty5c1JmZibp1asX0ev1MBqNf4dqAKxcuVIURZHMmDGDsSbUk5OTgzVr1shNmjSRn332WXrTk2XawfnaNRoeeOyxqhM8cYKKp48bR19fvEizGp6rlE799dfI0+ux9sYNydHLC5MmTWIAgGXZOnVU/u6776SOHTuS9u3bk7Vr1xaKotiB4zgbE40VFKzz0Hu61WEwGApCQkJ+2b9/f3xcXNx4WZYZHx8fmsGQlEQLEwICKhzj5eXFDBgwgLi5uYFlWVVqamph//791zfinG6FhoYey8jImKjRaDQbNmyQW7VqhWnTpjFOTk7Uy4uIAGJjK6iRATSP9/Dhw/D19bWusPbVVzQuWuk4SZJw+vRpJCQkIDExkXniiSeItlIYoZmvL3FavhyqJ58kh8+cQevWreXAwEAmNjZWvnnzppyamkrCw8ORmZkpnz59Ws7Ozmaef/55pvI4t9Hr9QgKCiKxsbE4duyY1L17d4Z56y16o1u8uPrCjZ9/puXbU6fS19nZwLx5VKui3I0m3s4Ov5w6hf9btYr0bNKEaEaNglqtrlPGhCRJ2Lt3L+nWrRvx9fXF9evX5dzc3L5hYWFOERERQkRERGZ9FlQVFP6xnm55eJ7vpVardzs4OGhatGih6a3Xa1pHRoLMmfN3P7NKZGRkYOXKlSWCIDzCcVzVlhT1n8vjAHYCwJAhQ+R+/fqRCo/DcXE0RHDqVJUQyLJly6QePXowvXr1qjioLNOc1n37APeKXYlu3ryJ77//Hm5ublL//v2ZwMBA6xO7fJnmDD/5ZJVNgiAgKysLmzdvlk0mE3nhhRfQtGnTWq9VEAT8umCB3DcpibT98EOqsWBLKlt5du6kqWPlzrd06VKpRYsWZNKAAQQFBbQlUocOVMehDqxbt05MSUlhO3fuLPn7+zP5+fk4d+5c8c2bN4koiocEQXgSQBHHcfVr2aTwj+SBL45oDDiOO2Y2m9vl5OSMS0lJObn+zJn0FLWatp2pBldXV7i7u5sBdG6sefA8T1BqcAHAwcGBVIk/BgXRdKn33qOSiOVo3ry5FBMTg7Nnz6KC3kNKCvUGrdxAWrRoATs7O2nIkCHVG1yAGu6vvgKsSExqNBp4eHhg9uzZ5M0337TJ4AKAhmVhOHIEJbm5Mtq3r93g9ulDFcjKc/06LZgox+TJk5lLly4hPiuLGttvvqmyjy1MnTqVnT17Nq5evYr9+/dLPXv2xDPPPGP35ptv6tu2bduPEJKrVqvTFi1a9APP8w3PqVP4R/CPDS9UxmAwGA0GQ0r//v1XhoaG3rxsbz+658WLDOPsTKufrKDX67WJiYk9+/fvv5Tnea+IiAiTwWCot9cTGRk5CsDT/v7+8mOPPUbat29v/ZHYzo5mWiQmVtDEdXZ2ZjIzMy2nTp0iYWFh5NixY1J+fr7se+UK9fiCrVc0JyQkELPZLNWYxtW0Kc1e8PGp4mGXx+aGk8uWAf/5D9aOGye3ePZZxiYltvR02tao/EJis2bATz9RacjSc9vb28PFxYVs374d+fn5ou8HHzBk9Ggairh0iaaX2Yher0e3bt1IaGgo0el0sLOzg06nQ0BAgDokJIS0atXKsbi4OCgrK+vdqKgo37CwsEMRERH2ERERdhEREYyS36tQGUWs2ToHikQxaW/z5j4jfv9dR/z96Ze7Eq6urpBlucnHH3+8BsAzAP4NoF5NDnmeZ9Rq9fKJEyeiXbt2NVsuQoAvvqCLY4cPlxUFeHp6YsKECWV5v5cuXWK2bNmCYU2agK3Gi/32228tRUVFqscff7z2px5vb6p9cOBAXS/vbySJFmkYjcAnnyAnIoLp3NmGh4WSErpgVjlE0LYt8NZbdBGuz9+iYP7+/mjevDlWr17NBAUFwdvbm87/6lX6hFCH9LfSIhbLoUOHSFhYGMswDIqLi6FSqdCjRw/L008/rT569Cj++uuv8cXFxVMAQK1WG0VRVH300UcFLMseMRqN4zmOKy7VWXYEkKWEJf6ZKEbXChzH3eB5PjDO0fFi7+zsti4HDlBjU4mbN29CpVIllJSUPFP6VoO0By0Wi5vN/dBcXKguwmef0bhmpTQyrVaLjh07wrVJE8k0fz5jZ6XVOwDk5OSoXn/9ddjfzoWtiV69aB5sTg5N06oP48fT/Nu9ewFCQCIjbdOQ+OUX6qla62iRkkI7b/SpqMTo5uYGNzc3cfv27ezLL79M2JdfphvGjKFG14rCXHVMnTpVBQChoaFgGAYDBgxAfHw89u3bxz722GPo06cP+vTpo5EkCYIgQKfT6WRZRm5urvPq1asfI4Rc5Xl+HCFklyzL9nq9fguAqgFyhYceJaZbDRzHiSaT6b3fgoIK5fHjre7TunVrlJSU3K49ncFxXEMyGbSyLDOVtXdlWcbZs9X0Shw9mrY6P3Wq2kEneHkx5/z8EHb0aJVtFosFoihCX0O4oOIMtTTOvXu3bfuX59QpGlJ47z3agLM0FMCyLIy2SEg+/7xVNTgAVIN3/HjagaISzz77rKqwsJDklxfu+fprWlRx7lwF+UxbGDx4MAwGAxiGgU6nqxL+uf0+QEMtzs7OmD17NtuvXz8HAGH+/v7qaTTlz7akZ4WHDsXo1szmm7duOVjttwYaO+zatatRo9HEAGho6pgMAEuWLMHFixfpG7KMDRs2yJs3b67+qP79qeH96Serm5tIElq98gqOHDlSYXEtJycHS5culVq3bi3VqtlQmW+/pVVjtiJJtC1Pbi6Np5bmyhYVFUGSJNiUQcPzwJEj1re5ulJDauVzYhgGKpVKunatXNW2tzdtyLl0KfV664kgCGBZttbJazQaDBkyRP3ee+9h3LhxmlJD3cidRhUeFJTwQg1wHCfyPI/Nmzdj7ty5VvcZNWqULi0trWN2dva/AGxpwLmMPM8DADZs2IBmzZpJ2dnZDADSt29fGYD1OK9GQ7MKrl6lj/6V+5odPowWTz8Nh6ws6dtvv4VGo5FFUZSLiopUXbp0kYcPH1436cKOHYG336ahDVtEcD78kBYxREaWGVuA5sFu3LhR8vDwgIuLS+1W/9Ileu7qGDmyWk94yJAhzI4dO5CRkSENGjTo73P98AO9jh9/pCGPV1+t/XrKUVlXojZuF4okJSVZRFGs5g6i8LCjeLo2UNPjN8MwGDFihINWq/1l8eLF0Q3sJNscQFcAKDW4AIDDhw+TqKioqs/Ot+nalRrcl16q0H4IJhMtpAgKAsuycuvWrZng4GB28ODBqilTpmDkyJFsnb1cgIYGKleBVcZsBlJTafnxq69WMLgAEBsbi+zsbDzzzDO2TWDtWqrDUB0vvkizOqwI2Xfv3h1eXl6IjIxk9u3bVzGA7OREq/Ref53eHOqAxWJBcXExk5Bge5q22WzGsWPHzIIgfFKnkyk8NChGt3bWBgQE1LjK3L59e8yZM0dnsVi6AajnChPAcVwWx3GnOY4jhJDHCCG3F+b2HTx4UFWj8Pn06bS4oHyMcssWurikUsFoNKJr167o3r07AgMD0aDOwoMH08W06nqWWSy0HdKCBdQLr1QFB9CblSzLxGIlDluFCxeqFempQGwsXVCzgm+piNHx48eZshhyVBStatu0iSqwHThAjbuNBAUFwcXFBTWGf6pMMVYmhBzhOE5pBfQPRTG6tZMg2xB0ZFkW/v7+olarXdQYJ50/f/6++fPn23McRwB8CgDr1q3D9u3bUVBQgCpdEFQqqn07ahTVIwCoJGNICABAEATW1qKFWnFwoOeyVjwSHU0bX86bByxfXu0QrVq1QklJCblhLRuhMl5ewLp1te/32mu0eMQKwcHBmDt3Lpo1ayZ+8803WLlypVg4cSLMq1dTL/zRR+ln9emnwM2btZ8LQFRUFG7evIlhw4bZVNZZWFiI0NBQo8lkes2mEyg8lChGtwZ4np+iUqkWOzg42BS4Gzp0qM5isUzheb5RW7xwHHcANLfzuYSEhK1ffPEFFi5ciCoGi2WpvOHOnXTxytER6N4dAF2Us6rXW1/UahoTLe+pmkzA5Mm0aeSQIfRGUA0nT56UtVqtbJPHHR8PtGlTe2pZYCAVyqnU102SJBw8eBCrVq0SjUYjhv76K5omJLBfvPACDvXoQfN8162jBvvkSRqHXrq02tMIgoAVK1aIJ0+exPTp09G7d2+bKkL27NlTIsvyDxzHxduyv8LDibKQVjPviqKIHj162PSlcnR0hIuLi5SRkfEsz/M/A2jeWKpUHMcVAlgDYA3P8zIA/PDDD/D29haGDh2qKRMwnzSJ5tBOn07jqm+9BQDQaDRSeno6Fc5pDLp2pc0iMzNpefE771AjHx9vk37C4MGDyaVLl6Svv/5anjJlCuPq6lphe2pqKrZu3SqKokgeX7OGGNVqsnPcODg6Oopt27Zlg4ODUfkY6HQ0m+PMmQpC7bt27UJSUpLct08f1rlZM9hv3y5fMJng3qEDadu2LVUvu41aDcyeTTtVTJpUVjqdn5+P9evXy506dSLR0dGSu7s7eeWVV2xOt0tLS8PFixeLzGbzPJsOUHhoUTzdmgmUZRmFhYU2HzB27FgHvV7/tVqtzgNwbcGCBVWrKhqOlhByCQDS0tI0q1atQoVmnMHBwF9/UUWyjz4Cjh3D2JgY5tyKFZK8aRN9hM7MpKpe4eF0wWv3blpme+EC9fYEAUhLo6v6olilcScAKoIzezaVY0xLox0cbBSsUalUmDFjBuPr64u1a9dWGXzHjh1ifn4+O3r0aMY1IoJ0OnoUb775JgYNGsTm5+eLy5cvx2effSbl5ORUPPCbb+g1lOPChQtS7169SJ+pU9HhxAl4hYeTif/7H5k5cya81eoqRRXo0IE2vHz+eWDBAggmE7788ksUFBSQM2fOSH379sW0adMYm/ObAZw+fdokiuLnHMfVoWW1wsOIYnSrgef5MnWYo0ePVo2hVoO7uztmz55txzAMCwBarfatxp4bx3GCLMsVkusrLLI5OdG81aIiwM8P0GrRxt8fhSUl5Na5c1SzobiYisdERlJPb8UKuhDF89R4JiXR1kUvv0w92s6daR5sjx6Ahwf1Jr//Htixg+r7btwItG9fp+tQq9UYOHAgYzKZmPI3tj///BMWi4VxcXGRzp49K7oMGQJtYSHs7OzQpUsXTJ06lX3nnXfg5+eHVatWSTExMShbkNPp6KJYuRBDiIMDc3DfPtycO5cWUZRHFGlYwhrLlgG5uYjfvBlOjo7ynDlzMGvWLCYkJISxWWMCNLSTkJAgSpK01eaDFB5aFGnHali8ePEvJpNp8u3Xvr6+mDx5ck2HVOCPP/4QYmJiNqtUqsvvv//+e3dijqU3hhsAMGXKFLSvbPQkiebviiLQpg0OHDiA+Ph4ecaMGaTGtj7WuH3Tyc+nxtzFhS7U/etfdPHu++9pTLdSY8/akGUZW7duFRMSElgHBwfRx8eHPXfuHKZMmYKmTZvi26VL8Z+YGNht3Vqli4QoiggPD5diYmIYDw8P+Pr6IjY2Vg5MTiY9//Mf2LVuDYgijE5OOD57Nvp8+CGqiKqbzTT2bMWICoKAY9HRaPnMMyjx85P9d+8m9emKnJ6ejrVr115/9913bVD1UXjYUTzdajCZTBvKv05MTERmpu2duLOysswMw0TeKYMLABzH3QQwEQDy8vKq7sAw1FOdMwcALWF1cnISv/nmG8TGxtbtbsuy9MfZmWYT6PW0ff28eVR4/LPPaBPNOkIIwbhx49hXXnkFgwYNYtPT0yVBEKBWq+Hk5ARHrdZy5cMPq7btAc0YGTJkCNOnTx/x0qVLiIqKgoODA0pUKunGo4+iZMYMIDMTP374ocVh4sSqBhegC363O1GUIzY2Fp9//rkcFx8vHXvnHVkMDJSxe3fFPGgbSU5OliVJsp7LpvCPQ/F0a4Dn+a8BzAbQhWXZnlqt9n/Tpk3TaTQaNLOiOnYbs9mMxYsXWyRJcuQ4zgZhgYaxePHiaJPJ1CsoKEgeNWoUqZClYLFQg5WQUNYJIykpCb/++itGjx6NGjV0beH112nGhKsrPYe3NzXApdV1dUWSJJw4cQKBgYHQ6/WICw6W/fLzia46/QkryHl5KA4MRA4hOPvqqzhpsWD8+PFoZ63HW0kJ/Sn9exYWFmL58uViYWEhO2HCBHS8XQVnsVAB9xYtakyFs8bPP/+cn5KS8gLHcb/V6UCFhxLF062ZtwGAZdkjLMt+WFxcrPvhhx+wfPlyS003q9LUJhmADZn/DcdkMg0DgLi4OLJo0SJs3bpV/uqrr0SLxUIfnWWZyj+WCoC3b98eY8eOxfbt21FkpYKrTuzfT1PEGIYa9fh4WqBgo0doNBpx5swZXLt2DUajEQzDoGfPnmBZFhaLBeFPPCHd+PFH2+dTUgLSpQvsP/oIJXPnSin29pIsy8jKyrL+B/vvfys06ly+fLlkNBrZOXPm/G1wAfo5btxIK/E+/dSqmLs1ZFnG1atXNQCUsl8FAIrRrZFSL7WpKIqvS5KkBwCVSnVGluXELVu2GEuq+eJptVo4OjoaAXSpbmye5+vYl6bGeeaVVrGtB6jxzcvLY8+fP093YFlaqTZ4MHDlCgCgU6dOcHZ2Fo8dOyYBNH5ZQRTGVvbsqdjTrG9fqiiWnk69x8rZBaVIkoT9+/fjyy+/lPft2yevW7cOS5YswcKFC7F48WJ58eLFWLRoEbr8+SdrZ+vTWGoqDXvMmQPo9XDfvp3JyclhunfvjgMHDpAqFX2SRAs8yoUdOnXqRMxms/Xwi15P857j423uRJGdnQ1Zlos5jrOuranwj0MJL9gIz/NNNBrND4IgTATQhxCyXpbltuPHj4e/v3+V/Q8cOCAcP378L0EQRnIcJyxevPhLSZKmm83m0RzHHSrNtX2e47jVjTxPXwAXAcDb2xvPlddI2LOHyiDm5AAMg/Pnz2Pbtm0YNmwYIiMj5cLCQtKxY0dp1KhR1TaVrIK3N+2gbE2IfNMmer7ffqOP5qVx2cTERGzfvl1Sq9Vk1KhR5HYnZlmWYTQaUVxcDK1WCwcHB8jdu4OsXk3zgmuioIA++h8/DgQEQCgowN4XXpBbvPYaegUHk2PHjuHgwYN4/vnn4VZZFKgSoaGhuHDhgvTSSy9Zd0rMZpqW9vHHwMqVNXbSOH36NPbu3bv77bffHlnzBSj8U1A8XRvhOC5v7ty5kwDYcxwXLctyDwCW3377DTt37jRVyJMFMGjQIE2rVq2CNRpNysKFC381mUyvtWzZsplarf5zwYIFT4KGH1aV9kVrzHkmgv5dn71+/Xr+yZMn/944fDiQnExzcIuK0LFjR/j6+sqHDh2y+Pn5kddeew03b96U//e//8m5ubm2nbBPH5qiZo2JE6mBevllmvtbys6dO8WgoCBm9uzZZQYXoItqer0eLi4ucHBwoO/FxtZscCUJ+OADqvV75UpZ3Hrj1q1S6/x89IyMJADQq1cvtGzZEkePHv077rFoEfD441WGvHDhghgQEFD93+W2Z7xhA02vq4G8vDyYTCalAk2hDMXo1hGO44pLf+dwHKcG4BYfH7/866+/Nh44cEC4XarKsiymTJliN2nSpJaiKI4HgKCgIHnKlClOer3+JwC3sxrqltxq2xxljuPWWiyWgbt3787eu3evUJZn3Lw59TonTgQAPPnkk2T27NmqkSNHwsHBAbNmzWIdHR3lQ4cO2dZefPr0mrtIqNVUAe2RR5AXGIhtzz0nmc1mtlu3bqhV4eznn8vKmKslN5eGCG7domlsAE6ePIlr164x7aZNIyT+b3vn4+NTsXR65EhgxowqQwqCIDdv3rx6o7t5M83tDQ2lOcE1UFRUZJYkKaPmi1D4J6EY3QbCcVzGe++996rFYml3/PjxuM2bN5fcNnCEELRp0wbvvPMOZsyYgW7dupHWrVtj8ODBdizLzmUYpgjV6eQ2ztxOmc3mDidPnoxavnx5UVn11tq1wPr1tE+ZFf71r38xp0+fZq7b0lXho49ou5yaIAQXLlxArKcnfKdOZd564gm42pIn3K8f1e61xs2bVF/XYqGP+qVl0NHR0di9ezeefPJJ2D/9NPDEEzRXGcCtW7fQvLwGMMtSw1sJFxcXsm/fPtlqimBaGjBzJi2+MBhoyObLL6u9hKKiIgFAVu0Xq/BPQTG6jQTHcdcFQRiQnJx8ZP369cVms7lsm06nQ6tWrcped+/eHVOnTnUihGhBhWzu5LwyTSbTo1lZWfO/++67kjNnzlBv18EBcHen2QeVaNmyJezs7CxWc38r8/LLQOvWte52/fp1XJo0SQwYMgTs008Db7xR+9i5uVQisjI5OXSRbty4CkLqoaGhOHjw9SKCjgAAIABJREFUICZNmgQ/Pz9a8HDoUFkvtPz8fNlsNv+9jjFkCK2oq8TUqVNZlmXJhg0b/l7wEASaueDuTjWCb6cMZmRY79tWSlFRkQVAdrU7KPzjUIxuI8JxXIkgCMOvXr26Z+3atcUmk8nqfoQQ+Pj4oFevXpJGo9nI83y9NXhtnJc8b968L8xmc/8dO3bkpKam0kWtiAgqaWglvUutVpPi6vRyy3P4MGCDNkVBQcHfzS+jo6nO7tKlNK5aHZMm0YWq8iQmUt3gwkLqZTMMjEYjli9fLsbExGD69OkoHyfGCy/QhpoAnnrqKZKamkqioqJo6CQjo0pZsCRJuHbtGvLy8uDr6/u30S0poXnIubkVq9f+8x+6oGblqeDWrVtIT0+3g+LpKpRDMbqNDMdxZkEQxmdkZGxYvnx50aVLl6rdd+jQoRo3Nzd3AIPu0txOmM3m2Xv27CmUZRno0oUKd7doUUXQxt7enly5cqX2uG54OI2n1oKrqyuuX7/OiKJI9WtVKloyrNVSo28tX/jChTKVNEgS8N13gK8v1X0ojSOnpqZi6dKlsr29PZk9eza8KrdoDwykimFnzsDJyQlTp04lERERTF5YGI1HlxrQ3NxcLF68WF64cCF+/PFHhISEiMOHD2dQWEgX57KzgaNHq7ZDAqjC2qCqf8Ljx4/DZDKpAdje713hoUcxuncAjuMkQRD+nZ2dPXPjxo3pq1atKrxSmh9bHkIIWrdurdFoNN8sWLDgNZ7n72iooZQNOTk5N6KiokRZlukj9q+/UuNTLn1w1KhRzNmzZ5laRcYPHKheMKYccXFxlvz8/Ipdef/v/6hR/e9/aUlxea5cAUaM+Lv898wZ6tkWFQGlnmxqaio2bdokBwcHY/LkydWrfoWElMk3ms1mqFQqOKjVFTzWzZs3i35+ftJ7772HefPmwWAwsBBFwN6e6ku0rEE24cMP6fwqMXjw4Nv/VHJ0FcpQjO4dojSDYL0gCK2vXbv2+s8//1xkzYANGTJEM3nyZM82bdp8rNVqf78L85IEQRgUFRWV9scff5gkgBZNTJlSltEAAC4uLujUqZO8fft2qcZc7iFDaLFANUiShHXr1kkFBQWqt99+G87WMh14Hti3jz7u3144Mxppi56EBGo0O3akhrg0RPHLL79I69evR/fu3eWQkBBSo+rXZ5+VdS8uKSmBRqOR2ZCQstY8+fn5SE9PZ4cOHcqWlVALAs2GiI0Fliyp0uOtAjodlcYcMaLS2zoQQiQAVe+4Cv9YFKN7h+E4zjx//vyVkiR9HBERUVLZgJV6u3j66ad1hJAQnufrrhpT9zldFQShW3x8/KkNGzaUSJJEjd38+RX2Gz16NMnOziY3a2pf079/jV2B9+zZg6ysLDJz5szqBb8ZBvDxAc6dowtfskxfr11Lx/b3B9RqXLt2DVFRUVixYoWUmZlJZs+ejaFDhzK1pp5ptTRbIz4evr6+KCoqIlJAAPD++2VdJWRZRlluckoKNbJbt9KW8bbQqVOVfUvLmoXbaYYKCoBidO8aoih+nZKScuPkyZNW3UaVSgVJkgju0ko3x3F5giAMuHLlSkpCQgItQPD3p8YuIqJsTvb29mJ6enr1Aw0bVn1xBOhiUlBQELGpY8XAgdToJiZSo2dvT73d5csBQrBlyxbp4MGD0Gq18r///W/i6GhjNIZhaLaEo2OZ7q7lt9+AWbMQHx+PuLg4eHt7i/n5+TS+3KULzcG1EqetFl9fetMqlw1RWFgIlUqlZC4oVEAxuncJjuMKBEGYHRsbW2Bte15eHkRRJABqX5VqvDkJJpNp/v79+42FhYXUOM2bR4XKS/H391ft2bOnel2GpUup4Hk1lJSUiHXpsIBr1/4WILezo2lh8+fj3A8/gLl2jXnzzTcxffp01s7GDhVl+PsDTz6JosJCEFHEKZ6XFq9di927d0On0+HZZ59lA2JiaFjhtk5FXYmKojm8pYiiCELIXRE9UnhwUIzu3SXyxo0buvI5vACVWvzxxx+LCSGfchx3t8UwthuNxgPffvttydWrV2mK1cmTdHFMkvDoo4+iT58++PHHH/Hpp5+iSnnwW29RL88KERERyMvLY9u0aVP7LGSZLnZNnQocPEi1HFasoDHjvn3RjGHw2JYtUA8dSrcnJFRY+KuVtm0BQYBLcTH6enuj8759zPRnnoGHhweMRiMyMzJoy/iwMNrrrT4MHlwhZ1en00GSJIf6DabwsKII3txllixZcnrcuHFBt7s8HDp0SIyIiMiwWCz/J8vyzntgdAEACxYseFylUm2aMmWKXWtXV+CLL4D33y9b4Y+Pj8eOHTugUqmg1+ulpk2byiEhIWybhQtB3nvPaquepUuXWgYMGKDqVjkzoTJpaTTtavJkoE0b4OxZqs/70ktUu2HfPkht22LJRx/Jz/bpQ9zPngXi4qixz8ykVWd9+1aQaLTKpUu020W5Ba/09HQUTJokR3XvTiZ8+GGZ5kO9uXCBziU9HUZJwmeffWaaN29e3dppKPw/e+cdFsXZtfH7mdkGLFU6oghKC2ABVBAVrGDBLsaG3WjMa2KqiXEzpphYojHGltg1doOCvWDBjgYFVKyICAhSRMqyuzPz/fEAiqCg0eSL2d91cam7s7Mzg3v2zHnuc583Gn2m+zej0WiWHzlypOTOnTvYvHmz+ujRo7larTZw+vTpO/+pgAsA06dPj9HpdL02bNhQmltaSssMn31WaWFY3twg9O3bFyEhIYxSqWQ3b94s5u/ahZIa5HAAoNVqmRrVChVUWCseOUI9FkJDqSb2wAHa8TVmDPXmLR+QKbIsypo0oQ0Jv/1GB0c2a0abEz7/nErKjhwBntVJl5sLzJ1Lz6lc/2tnZ4f6SiVhiotfaADpM3FzA375BZBKodPpwPO8nOM4/dRtPZWwX3311T99DP8pYmNj4zUaTZOkpCTznJycn3Q63dsqlepvq+M+j/bt2986cuRIzpkzZ3oqFArUNzEBbG1R4uyMrVu3wsLCQujYsSNjY2MDDw8PBAYGkrUlJbyBpydj+3RTAoBjx46hdevWRFE+N62KrEunA955Bzh7Fnj/fbogx7K0xffiRZr1FhcD8fHA7t0ge/agICSEnD9/XmjevDlhWJYutPn4ULlb06Z0RltxMe0yO368sqQAMzP6nnZ29PkmTagl5dix0DEMvlcqYdeyJVq1aoUXGTj5TJycgE8/xVkLC5Q3x3DBwcH6W0o9AAD9N/DfjEql4gFE/tPH8SymTZu2jOM460OHDn1h2revwsPNDUJAAExbt0bosGFV7t9v376NXsuWsUXOzij28nrc5luOTqcjRkZG2LJli3Djxg3GxsZG6NWzJ2O1fTut127dSoPfk+OFli6lvhCE0CC8bh2t4d6+jTC5HAtv3sSqVauEYcOGVfX8tbamZQYACA+n6oM//6Qtx/XqURVE795UFXHgAFVEPHgASefO8D57VkhJSSE//fQTWrVqhaZNm5K4uDixadOmxNjYGC+8aCeTgd+7FyepAqO3SqWqm2Obnv8E+pqunhrhOK6FVCqNHT58uIk9xyHW31+8xvPChAkTKgPvzz//zAfHxLDn/P3Fe3I5CQoK0oWEhEgAqlGdNWsWvvzyS6xZs4aXSCRs4YUL8NTpECiKkI4fX+l9W4VmzahBjZsbredeu0Yz1uvXgYgI6A4cwK/R0bwoisy4ceOIRCJBcXEx4uPjRY1GAy8vL2JnZ/d4f4JA25RXrqRm625u1I5x2DBgzZonNhNw9uxZnDt3jn/48CFb4RTHMAymTp2KKnPn6sCVK1ewfd066GSyRiqVKvWFXqznjUZfXtBTI8HBwZlHjhx5lJKS0tlg4ED2XkKCGLBmDWM5YULl/ff58+dF3L9PGnTtStp3746YmBgmMDAQDMMgIyMDV69eRVBQEM6fPYv8hAQSsX49UhUKRHl5oUVoKEpKSpCWloZ65T64SE4GHB2pYqEi0x0+HFAoIHbsCFKvHhhHR/iGhDBxJ04IarWaMTIywurVq8Xc3FxRrVaT48ePEzc3t8dZNyE0cw4IoO28t29ThcKDB1S7W15OIISgfv36aNWqFePj4wOGYdCxY0fcunVLUKvVorOz83PrDjqdDunp6ZDL5VRzrdGgc//+8Lx8eZPyo4/0bcB6KtGXF/Q8E0EQlpSVlc3av3+/pIWdHeNsa0trseVZ37hx41h282YQS0ugfn0YGRnxixcvZpRKpZCWlsZaWFgIuHGDGXHoEHPw4UOsGjECSicnXpeXxwLAwYMH+eTkZNbT05Pv2bMnKz94kN7+P1lXHTIE+cXFWDBjBoKCgtBh0iQwgYHo3qcPu2vXLv7MmTOso6OjOGzYMEatVuOnn34Sc3JySLWRPL17U6cwf3+6mHb0KA26Dg6PTXXKMTMzQ5dyS8mIiAhm5cqVePDgAf/WW2+xFaqTS5cuiYmJiUJGRgZrZGTE8zzPaDQaIpFIxMGDBxNHR0cs+/TT4kyZrET1un5Bev6V6MsLep7LjBkzJjZu3HjW4MGDaeq4ejVdsKpoAjh0iCoPzM0hCAKOHDkCjUaD82fOwO/kSTx0dhaVaWnknJ8fwDBwdXVFZmamOGXKFHLgwAHxxo0b4qNHj4hCJiMji4pg3L8/9VkAlXMlnzwpKH75hYkPD8fDhw8RIJMJHQWBYT//vGpwBnD16lVER0fjww8/pFMpBIGO0+nVi2pozc3pyPh+/YB336VfII0aAdHRdMLFMyRnmZmZOHnyJNLS0vji4mKWEAKlUskrlUo2PT0dNjY2cHZ2Fv39/UlCQgJ/6tQplhAiWlpa8n2mTr1lmZvbE6J47fX9lvT8m9BnunqeiyiK0WlpaXMqH0hPr2rDuGIFtYY0NwfDMOjQoQMe3b4NxaxZsCkqEkmfPsSpXTvo9u/HpUuXwLIsGjZsKJSUlLB//vknCQwMJCzLImn9epQeOADjadMAUInaihUr4GBrSwZlZiJo4EDkSKVYuXIlbt2/j7Ht24M9dKjKJF8rKytotVoacPfto228Dg600cLWlmp7zc1p+eKTT4B27YCFC6m3744dVG5Ww0BOOzs79OvXDwDYoqIiaDQaWFhYsACQlZWF9evXC3fu3EGXLl1ISEgI2759eyxbtgyZmZmSTEdHG8vcXL1OV08lep2untqQSySSxy7nX3xBjcc/+YS26yYnVx2zPns2xKAg5PXpw3ucOUPcu3SBQqFA48aN0aRJE/HBgwc8z/Pshg0bBHNzcz4oKAgBAQHwSUwU+UGDKndz6dIl0czMjB8xejRRrFkDGBnBysoKw4YNY+6bmuJBWZmofcrdzNzcHDqtFtpbt2hn2/XrtMmjYlLxzZuAqyv9u5ERDbhpadQ7Ytw4eh4JCc+9GEqlEhYVUyMA2NrawsLCAkqlsvKWkWEYREZGksDAQOzs378IgBaE1MF8Qs9/AX3Q1VMbSqlUWl3ydPw4Dbg7d1KvhoQE2kzh6Ig9//sfX2BkRLS6x7YDnp6eiIiIICEhIWxGRgYvl8vJsGHD2MzMTFw4dw6lcjlKyyVf2dnZOHbsGAkKCqL3+9HRdCwQABsbG4R17451AweKF2bMEO+uWYOKEtmVefMwed48iJaW1D/hSXWEKALff09tIgE6YujkSSodc3Gh3gynTtEGjSc9f5+DRqPBiRMnkJGRwXTr1q1KbcLAwAA2NjbQ6XQOOpY9DGBY3S63njcdfXlBT21kFxcXS3JycmBlZUUfIYQGqMJCmkXOnEl/Jk8GIiLQR6tllyxZwq9atUoYPnx4FT2th4cHPDw8WADYtGkTf+PGDbZxXp7QmhA0bNGC6HQ6rF69Gt7e3mLTpk1p0TYnpzKAMgyDpk2bIiEhAQ8BWH3zDWJu3BDcBIE5rNFg0HffwbQmR7Pjx2n91sWF/rtVK6oJLiykPyoV1fZevkxbhVesABYtemyiXgN79+7Fn3/+icDAQNHU1LSausHLywvbt2/Ht198YQuGWaRfUNMD6DNdPbWgUqkyBEF4f8OGDcVPG/Xgxg2qgV26lDYijBkDEAKZTIZJkyaxWq1WXL58uVhaWlrlZYIgYPPmzeKtW7fYSZMmIaJbN6ZhZCQDUDvEsrIydOrUiYgPH9Jus6+/pm2+oG5sP/74I7Rardhh0yZSPyoKvps3MyW7d6PQ1BRL8/Jw8OBBQad7ytwrKYkeXwWEAFu20BLDgAHULe3wYVrzdXCgpYkHD6ji4Rn4+/sDAHQ6XY3ND4QQvPXWW1owDCYsWnQVhHxRt6uu501Gn+n+R+E4TsIwzARBEB6oVKoNz9uW5/nfiouL+8bHx3cNCAh4nNG1aEFv0b/9lo7tCQ2tfIphGLzzzjvs7NmzxdTUVHh4PPZmV6vVuHLlChk0aBBMjY2psc3x4wAAU1NTNGnShP/pp59Yp4sX0f7GDVFXUkLMioqgVquxceNG0cbGRhg1ciQLDw8gLAxGJSW426+f0KtXL8bIyAjbt2/HyZMnwbIsHBwchAF9+jBGN29Sne6TjBpF3coA2kbcsyctS4wbR1UZcXFAZCRdYHtimnMFqampAIA7d+48M3lxcnKSJicn42i7dq4MIWy/511oPf8J9JKx/ygcx9kCyDQyMiopLi7uoVKpYmvZvoOZmdmO8ePHKyu8FCq5fp0GXUNDGqTKKSwsxIIFC/Dhhx9WmxoxZ84cYcCAAUzD27eBBQuA7dsrn7ubloasAQNg/fHHOJCfz+cXFBCNRsMIgoC3nJ3F3tHRhPnuOzqZ18cH8TExSD56VIycNo2gvNFCEATk5+djx44dAp+Swrydmwvlb7/h4cOHWL16tVhSUkIaNWrE99mxg5WNH08N1K9coaWMhg0rx8qXrliBTcXFQohMxjQcP77KOXz33XcwNzfH6NGjIXvGOJ/MzEysXLkyj+f53AbXrzexLCxcH9+8+bB/0tzoTYfjOFMApQDqA1gO4DaAowBOArjx5LXnOK4hAJZl2ZEAynieX6JSqR68zuPTZ7r/Xe5LpdI7arW6PoCxHMeZqFSqHc/Z/khpaem2efPmDfTy8mI6d+4srwy+FX66kyZRi8c2bQDQOWY8zzNPBqRNmzYBgMjzPFOvXj06KaJcJlaBZWkpDHNysPriRXHK119XLlAJly6BadSI4PffqbSrRQsAwOFr14QR9+4RjB1bGbwZhkG9evUwatQo5sawYTiZl4cHv//O5+TkMPXq1RP79etH9u3bR/5MTYV04ULBtH59xsnVFcd//FF0O38etidOkNuZmVh/7x4scnOZemvW0MaK8vcEAAsLC76oqIjVarXPDLp2dnZwdHSUp6am7vKPjx9dYGY2BMAvAE7V+hvSU2c4jiMSieRdhmGmsSxrIQgCK4pixR1IsJub24CUlBRl+bYAEAPgAoDpADWcNzExEdRq9RCO47xVKtVrM5/XZ7r/YTiOM2RZ9izP8xXL/Gxt5iwcx3lKJJL1nTt3btayZcuqT+bmUntFd3dg7FhkZmZiw4YNPMuyzIABA4i9vX3Ff3i8++67sDQ1BUaOpOWJ8swS8+YBBgZICQ5GzK5dwocffkg/ODt3UivHW7eqmYzPnTtX6NW1K9M4P58ulj3peKbTAf7+KNyxA/vPnoVcLkf37t1RMVetKC8PCfPn44ShoQhCCARBbHX0KO74++OuXE5atmyJwMBALPr+e/xv9Ggo3n+fNoiUO5fNmTNH6NevH/M8o/bc3FwsXrxYLJ8MApla3XjqzJk3n3ed9TwbjuMIADsALgBcWJb1lEqlPQwMDBr079/fqMJ7g+f5Kp4ZGRkZiIqKQk5ODliWRYW/BgAYGBiUvfPOO/ItW7YUZ2dnX9doNCNUKtXF13H8+kz3P4xKpSrhOC4IgCeA23V0w0oRBMHTtULv+iT16lGv2kGDAF9f2DVvjvfff5/dunUrtmzZIk6ePJkoFApx0KBBxLJC1tWgAdCwIURRxKU//0SD334TT4eHCxe2bWNbtGhB8NNPwN69QEwM1dnWMNXBxMSEuZWRITR2d2fQvj0tdVQEwfh4YORImDRogP4NGlR7rdLcHEH79yNw9myyIiUFxsbGgs+4caxvQADw+ecwLm8Hltarx59PTWWb8jyUN28C7u44demSoNFomEuXLvGNGjV6poN6vXr1EBYWRmJiYhCxbVuOe2LiasycGVSHa/2fhuM4GYB2AJpIJBJ3qVTqLYqiC8MwdlKpVGdqaqqxtLRkra2tjRwdHUmDBg2qBNmnTYrs7e0xsVx6OHv2bCEiIoKxsLBAUVERrKys5CzLYvDgwUabN2/2SE1N9QegD7p6Xj0qlaoAtNZV1+35mTNnFgmCYFHjBvb2VAUwZAgeeHridIsWuHPnjuDu7i5euXKFLTel4YuKitgm8+dDVj78MWfdOgjz52PDxIm8U6NGkvcYBiZ2dgQsS6dIsGy1AZiFhYWIiooSHjx4wHTr1o2BgwMd567T0QGTLEu9eWvw+q2EEOSNHYuLSUkwtbTE1atX2fDwcBgsX06Nccq9Jpo1a8YeO30asa1bo2t2Npp17YqMiAhi5OqKgoICcuHCBaGsrEwMCAioMfg2b94cMTExOOHvv949MfG7ul7v/xrlWaybRCIZIZFIJlhYWMDOzk5qZWVlYG5uDgsLC5ibm0Mul0sBvMDwveowDAOlUlllWki5vppJTU19jvv+X0MfdPW8EOW1M/mzapgAqCHOr78it3VrMDzPtw0LY1q2asUUFRXBxcVF1Gg0OLhnD28dFcXudHYWGh0+TBpt2UKKnJyEiePHS8CytHY6YEClVOxpSkpKsGDBAri6uorjxo177FQ2dCg1Rzc3p1KzpCTaPfccNqanCz03bWKS33lH6NKlC1EoFARt26L40SPk+Phga2SkoOF5RqvVIiwsDKdOn+bTBg0C7+rKDJFKsTw9naSmphIAUKvVQkhISDU1A8Mw6N27N/bs2dNeAA4xhLSCKH5Z1+v+X4DjOD+5XL6SYRhnLy8vib+/v6xSG/434uTkJD137tw3HMf9oVKpnj119SXRB109dYbjOCKXyxfIZDKmwjpREAQcOHAA6enpQp8+fZjKFlkTE0RFRoqTY2NZhUwGtGoFExMTDB06lABgER8PraMjmhoYMLaTJmFLRIQoYVm0dXEBFi+mQyqf05iwdu1a3snJCQMHDqyeWU6cCCxfTksL16/XKPeq4NChQygxNGQcRBGTunZl4OZW+Vxq/fpgRBGdbGwY29BQ2NraAgBatmxJ37O4GAgIwEdjx5L7/frhxIkTOHbsGNOmTZsaF9a8vb1x+PBh1yRvbz+fxETLWi/4f4jvv/9+vlwuHxcaGmrQtGnTVzPB4zmIovjMNyCEgGGYMkEQ0l7He+uDrp46w7Lsu0qlcuSoUaMMYmNjxaSkJL60tJRVKpWira0tWbZsmWhjYyMOGTKEKZ8PRh4tWQLFokW0lbd798dTIvbuhbRRI/hptYCfHz7IySHC3LkEHh5U7/ucgLt7924UFRUxkZGR1T84Oh2dItG/P91P79708ePHASsrpMrl2L90KV9qYwNDpZLk5eWRdu3aEWbkSOrD8ATXb91C/scf8yNPnmRRvz41zXkSIyPg3DmwPA/7iAhonJ35Nj17ss+6Cyj36DXaXVbW54+ysmYqQhpAFF/LB/vfBMdxPgAmv/vuu7C0fP3fRadOnQIhhNjY2NT4/P79+x/pdLpRKpVK8zreXx909dQJjuPek0gkcyIiImTXrl3D6dOnSWhoqMTU1BTOzs6EEIJr164hLi5OXLJkiWBvb884ODjwVk5OLGbOBEaMoAtc8+fTbrC8PNpYMWUKbR/+4AMwZWXUdvFZiCJunDqFtAMHEBkaShR79gAXLtAFvLIy2sIbE0PtHK2saCZa0fwwYwbQrBmirKz4/82ezV7dswfK33+H1e7dKBs/njZHFBTQLwcfH5xITsaVK1cwfPhwFhYWVGHRqVO1QxKkUuzcswdWDx/C8N49tpmzMwCgtLQUSUlJUCqVcHd3r8zcvLy8cPjwYZf+v/46H8BA0FX4/zoXAWpY9LrR6XQ4evSoGB4eTqRPONRVkJWVhcLCQgIg6nUdg14ypqdWOI6TAqj81pdIJOjXrx/cy31vn6SsrAzR0dF8cnIyGxgYKHbu3JlGG7Ua2LCBNh80aUJlV4mJdMGLDm+kQTIjA3j0iPohJCQA9+/TycAPHwL79iGnqAh33d3FFh07EhQW0uDq40MX2UxNaTbKsrSFVxBo1lvOsWPHEB8fL06ePJmwLEuP6eFDGvxXraLG5suWAQsXIkmrFTF9OvGqGJh54wad8jt3bpUsfOnSpUJWVhYzePBgyKVSOHbqBDJyJP7s1g179uyBTqfDlClTqizWnDx5EscPHVr+6fTpEyGKryWb+rfAcRwDgAcAleoF3SkyMqg8cfRoKjWsA5s3bxYfPXokjho1inm6hFFUVIQlS5aUlJSUjJk+ffpzuzT/CvpMV0+tqFQqLQDCcZwcQD8Aa9zd3WtcpZfL5ejfvz/brFkzGBsbP/5frVBQH4UvvqA/9etTv1sTE+Cbb+it/d69QLdugIcH7W7j+ceeuGZmwLRpMOB57F2wgJh17w7n8qyyGtevUzexG1XXQPLz80WdTkdycnJofZZh6IBMhQKYNQs4dQqaTp1wQKdD3p49JGzBAmDjRjqZuH59aoQTFQX07Vu5TwMDAwYAnJycAABR77zD5969yxrOmoV2AwaIR69cIbGxsUJQUFDlOHoXFxccOXIk4qKPT2xTQiZBFANe8lfzJtAQAAwMDAS8iBdMcTGdMrJoEZ0kXQsajQbbtm0Tbt++zYwdO5Y8HXCLi4uxdu3aEo1G86Moihs5jvMCcF2lUpW90NnUAX3Q1VMrHMcZA+gMoIFcLu9jYWGhBmD0vNdUjLWpgkxGb9PnzaONFIGBgK8vzWTNzGgArI2iIrDqBfokAAAgAElEQVQsK+ZTD9+aF0MMDKiBzVOa3l69epFVq1YhPj5e6OHnx2D5cprt/u9/gIkJkn/8UfwzLo6UBQQI7VUqpp6LC1U/ZGUB06fTevS1azQzDgxEUVER0tPTMXToUAiCgDVr1gilMhnyLSwwaO9euLEsqf/NN4iJiSEFBQX8sPJpyjY2NujRo4fRgZKSn51u395mWvtZv8m4GRoaaktKSqQcx8HT0xM+Pj5wcHCocndQjf79qXn+qlX0i3DPHmq8VANnzpxBbGysaGNjg/Hjxz9WupRz69YtbNmypZTn+SUMw3gDqNCruwK4/ipO8kn0QVfPc+E4zk8ikRyyt7cn1tbWMltbW3mzZs1efodFRTR73baNdpft2QNMnVrnl69evVpQq9XM0x+cSs6do8blG2q+O3R1dUXWjh10/Hv37rSGXF4u0CUkINTbG5ajRz/OuLy96U9wMM2gu3Shx3v2LMrq14coirhy5Yqwfft2RqlUijKZjAGAG3Pninb+/iSvRw80srUluicdzgD4+PgQrVZrulgm6xVpZ3fRLjNzYZ0vwptFoYGBQen//vc/6ZkzZ/i4uDj28uXLMDExESZPnswwNS2oFhQAX35J6/AAYGlZbXQTANy/fx+bN2/mS0tL2fDwcOLh4VEtwy0oKMCmTZtKNRpNTwBEqVTusLS01GRnZ6/+/PPPX3nABfRBV0/tNDE2NpZFRkYqavwAvCg5OdTgxsSEZpFnzjx386NHjyI+Pl4QBAGCIBBCCAMAq1evrqwB7tu3T0hJSRGMjIwwmmEkNXWtVdD00iUUJSQwqX37wmnAgCrPHejWDcOHDq35hVIprRlHRdFAPWsW6iUnY4Cjo7BBq2XCwsJwOzWV3Lhxg4wYMQINGzYk9+7dQ0ajRmhtYwOT1q1ZURAAQioX1Xx9fRly86aFWUHBT0vHj98xfunSu3W+jm8OWSUlJaxcLke7du3YoKAgFBUVYdWqVSQ6Olrs1atX1Si5Zw+t4d6+/Xi0UlAQ9UfetAmIiIBOp8Mff/whXrt2jfj6+qJDhw41SvgEQcCWLVuKBUGYqVKpDn399dff6HQ6w+zs7PtarfaD13XCej9dPbWxqaSk5PyxY8e0tW9aB+bMAdasoX8fOpQGsbVrAS8vAPSDkJiYiA0bNuDHH3/k4+PjxdDQUGbw4MFMZGQk+fDDD/H+++8DAFasWIGtW7ciPj6eadu2rUR95Yoky9ycLoY9jSgCHAejW7eg7dpVWJeTg/PnzwOgCyg//PCDaHftGiEdOqCaFy9A1REREbT2fPo01f5GRsJ16VJG5eoK/4gIXE9MZLy8vNCgvN1YqVQiwccHUKkgjBqFW56emD17Ns6ePStWvEeLgQPZs3v3CnlOTsc4jvsvanfrGxsbV15whmFgYmKCQYMGkeTkZHLjybp8WRmd8LFmTfVZdvn5wDvv4GJsLObOnSvm5+eLY8eORWho6DMlfKdOneJzc3Ov6HS67wFAEISDarUaWq22jUqlKq7xRa8A9quvvnpd+9bzBhAcHCweOnTofF5e3vCAgIDqUxtfFGtrOhDySXlQw4YQrK2x/do1nPztN/EyXegSmzdvzvbo0YPY2trCxMQESqUSDMNAoVDAyMiIL89+hebNm4t+fn6M3dSpoiYlhRhHRCAxMRFSqRSGhoa0fjxyJM2IRo2Ca0gIOXXqlJiSkkLs7OyQnp6Oe/fuYciECSQzLk5ckZWFs2fPCo0aNWKMK7LmvDxa/x01imbphw7RjH3qVKBpU5AmTZBTrx6Cx41DvkIB49atoVAokJGRIezfv5/EW1mB8fAQAx0cyKXYWGH/pUtMQEAAGIZBQ1NTJqB3b7MkP7/ue+PilgcHB/M1X7w3j6NHjwbVr1+/p5eXV5X/W0ZGRpDL5eLu3bvh5+dHJIIAtGxJJ4iEhVXbT15ZGVZaWfEpKSlM1+7dSbdu3cjzasKiKGLjxo1qtVrdQ6VS3QeA4ODg1ODgYC44ODj/mS98BejLC3rqQlJJSYmksLAQJjWNwqkrajXVy0ZHV33czAxRhoaiuGMHGRUVRZj8fBCGeW5Lkr+/f1X1RGkpUiZPFhJv32bK5syBTCZDaWkpqZeXJw69do2I3brhYWAg6pua4uzZsxAEgbRt21aMiooSdTodCQ0NhZGzM9yGDCEj2rXD0fPnmQMHDojDhw8nRVu3Qvvxx1g5aRLfOCaGDQ8Pp2oHU1OqO1apgPBwdFerEbNjh+jn7U0wdy5w+DAG7drFZGdn4+DBg2jTrRsx++UX2GzezG784guhomBJzM3Brl2LesXFjYrT038BMKamc35D4dVqdY1P+Pv7k2vXrglr164Vxg4ZwmLw4GoBVxAE7Ny5U7x8+TLx9vZG9x9+AGNhAdSy7qDVaqFWq2UArryqE6kr+vKCnlpRqVQ8wzA//fHHHyV/Sdd98yb9YaurzczNzUmyszN+/vRTHN+1Syx5+22qs60rvXqhQ14e2/3tt8ngwYPJlClTyOdNmqDXgQNY7+SEn3JzsWbdOsydO1c4ePAgBg4ciDZt2hCdTse4urqiefPmBACYFStgd+8edDqdUFpaCkEQcHbdOjGpa1chIDCQvXTp0uP3HDGC6nZnzQIAbNy4UVCHhQlOHToAXbtS+dujR7Du3RuDfX1hZmaGkyEh+G3CBEQ+fMiQSZNo2QMACQ9HxNGjhgYs+/aMGTOeUVh+I8m8f/9+9S4F0Hbcvn37Mu5bt7I5YWHAp58+7mgEkJycjLlz5woZGRniyJEj0bNnT5bZtQsYO7bWN1Wr1RBFUQLgL6wKvxz6TFdPndBqtdMzMjK6nz59+q2AgICX+7K2tqaz1GogJCQE2dnZIsMwJO30aTQ8eRIOGg0kcnmNK9NVEEWgTRswQ4bA1cqKBuvvvwcpLYXF77+TDnI5GjRoAJZlcfXqVcbQ0BDOzs4VtVtRo9GIqJCfzZ0LuLqiR7Nm7IoVK8TLHTrgQePGpN8vv5Dbt2+D53l8//33IsMwooODA97+4QeGuXULJVevIi0tjZk0aRI9Ji8v+qNWA61bU/nat9+CxMcLraZMYQyUSuox8egRDSSGhpBcvIghkZGGy44dW8px3A6VSvXopa7zv4QZM2b0kUqla3r37q141jaGhobwaNsW+27dQqf792FjY4PCwkJs2LCBz8vLYzt37kx8fX0fqxJ8fIDZs4E7d+j8uxrQ6XS4cOFCxT89AZx/tWf2fPSZrp46oVKptBqNpndsbGxpVlbWy+1k0qTndg5FRESQAQMG4K5SiQvz5wvs3bu046y2kehTptAGhoqA+/bbdKDkBx9A7uWFJk2aQC6XQyKRwMvLq7Kp4sqVK5DL5YiIiHj8OUhMBJYtg5mZGbr7+xP769cRMGkSWJZFw4YN0aZNG3Hw4MFk8ODBTF5eHtloairi5ElI+/UDIQSxsbHirVu3oNGUN5opFFTCZm8PWFpCJpMxmtRUAQsX0gD/66/UUU2tBs6dg1XTprC3s9MBCK3hTN8YOI5rKZPJ1kdGRirdnjAZqkJ2NtCiBSwnToTN4MHC2rVrhV27dmHhwoWwsrLC5MmT4efnV00GBjc3oCa/Z9AM9+DBg2JcXFzFf+LfX91Z1Q190NVTZ1Qq1S2dTjdm5cqVpUlJSS++g86dqai9FhQKhWBra0uIiwvw88904ercuZo3zs+nI3qsrKiyICAAGD+eNjOUT3d4FtevX0eDBg2EKlK4sjJaAsnOhtvu3bBIS4NjeX1QKpWiU6dOpEGDBlAqlSgpKSF37twhv4SG8kWZmWjM87hz5w5Zu3YtZs2ahcKnvizONGuG/c2aic6Ojgzu3KEP8jxtzkhPp+fh6Iig3FwTuVw+pNYL9e+mpYeHB3FwcHj2FpmZVApmYYGQkBCGEEJu3LghDhs2DH379mUNDQ1rfl14ODBsGL2TeIoNGzaUnDlzhvA8PwLAHQCtX8XJvAj6oKvnhZg+ffpGjUbTLjo6+v7Vq1dr3f7ChQvYunUrSrKzgYwMCE2aoKCg4LmvCQgIYM+dO4fUtDToBgygPgrBwcC9e9U3TkqiQfLuXaqf/flnoEOHGuvGT2NmZoaHDx9WfXD8eJo5f/MNVSywLARBwOLFi4WLFx8PEti4caOoVqvRpUsXBHTvzp6cMUMY9N13mBIWhtGjR8PGxkacP39+lV0fOHAAGo2GNAoOpuY/xsa03KLRAKdO0RHxZ87A9p13oNPpupRPTngjkcvlfra2ts8sK+C99+iXaHngZFkWBgYGQlBQEHF8jlUnysqoWmXQIPo7fAo3N7eKkupe0Bbk580FfC3og66eF0alUsVrNJqvz507V/q8hbWioiLExMSgpKRE2Pnxx3iwciXmzJkjLFiwAIcOHXrm61xdXVFcXIz169fj7NmzIiwtaReSnR0tHdy/Tzc8dYpmND/9BLz7LpVxPT237TlYW1sjKyuLrXIO+fk0aI8ZA8ydi6Lr17Hp+++F3IwM5tLs2ShITgauX0dEXh4xJAR533wD86gooXv//gyxsQEiI1HfwQE9evQgoihizpw5wv3y4/3ss8/AMAxyc3Mfv9+GDcD779NWaBsb4O5dGDs4wO/6dQFA+zqfzL8MhmFaWD9hRlQFnY76XDw1d04UxZp9du/fp1+6HEf106JIux5Pn662aUBAgMzT0/PJh96qttFrRh909bwsK9LT0+/t2rVLc/fuXWi1j3sn0tPTcfDgQSxdulQwNjYWhw4dyrSfMQPnvviC79GjBzN69GicPXsW8fHxNe7YwsICU6dOJUZGRrxYERGlUpoRZmXRhTVRpPPVwsJoZhMTU22cDwoKHmc+dAoxsHIlsH49DkVHiwZ9+iDE0pInmzdTtyqA2jdmZdEW05AQ6Pz80O2nn5gpISHodugQUhYvFnHxImQ7dsBIFEUPqRRpJ08yD/LygJ49aQB4/33Y2dlh0KBBsLGxIUuWLEFiYiIkEgkaNGigW7JkCWJjY5GQkABBEOhimkJBj/Hbb4FHj9B1zRoj6/z8iWq53OS1O3r/zXAcp9RoNI1rDLqnTgGffQYcOFDZMPMEYuWluHGDZsE3btApzTt30i/khATaFvzZZzWa12u1Wty8ebNSo1ah0f070asX9LwUKpWqlOO4wKSkpB/Pnz8/1MTEROjZsyezdetWsaysjNja2godO3ZkvL29wTAM7MaPh92IESzKswwnJyc+MzOT1gB4HtDpIOTn48SFC7h26hRPCgoYxtKSbVVaSluFlUrql7toEbB7Ny0DaLX0z3796Nj3kyeBceOo5d+RI/TDt2oV/fPjj+l2SUkQDA2RZGoqunt6IrBrVxaEUK0tQD0Z2rShU42vXcOjBw9gzbKQT5oEtkEDaK9eJRg2DOI336Dw+HHisGkT/oyJEVfExJAx33wDi7ZtIY4di4z33kNUVBQIIaK5ubng5ubGAkBkZKTk5M6duLBrFzwvXEChsTHMPDxoht2/Px0xpNNBs307+MaNO5cYGWUQQTgpB7qAkEYQxdv/xO/7VcFxnJNMJjvo4eFBKqaPVGH/fvp7rQFFYSHsfv6ZXqeYGPp7HjGCZsXPqu8+RW5uLsrKyp5d1vgb0Pvp6vnLcBzXViKR9Od5/j2FQoF27doRKysrODs7P07SOnWi2WlYGHD6NLLPnEHep5/CbeZMwMwMZNw45K5ahYuOjmhRWAiFWo3iadNQb+lSwMmJOpKdPElNak6epON89u6lQbh3b2DdOlpiuHePZsLOzvT9akgSV69ezRcVFTFjxowh8qfbSSu4cgXo1g0bBg0S08zMiP+1a4Jz8+bMkfh4DPf3B4mNxRaWRf+UFDDNm2O/v7/4ICmJNOrVC5mrViEwNha/f/gh//6HH7JMQQGdXFFSguLNm5GTkIDkHj2ERo8ewX30aIZp27bqe2/aBJiYQBsQAL5+fewKC1veb+tWFYDbAMwAOAO4C1F8WP3A///CcVwXqVS6uUOHDspWrVqxVRJ4QQC++orWcisMbASBBuDZs4GdO7Gqe3ddzz//lNTjuMdmNy+IKIr4888/EU0bdJxUKtWdV3FuL4I+6Op5ZXAc50YI6a1QKLprNJpWQ4YMkTk5OdHAm5NDV+jt7QFCsHTJEtGjTRuSnJjIP9JoiLW1NcnIyCA9evQQfHx86lb2KiykGfC4ccC0aTQ410JUVJR48+ZNjB8/vuY20U8/pQtzW7cCx4/jl4MHBf8mTRjbrVtxUSJBkq8vjIyM+BYtWrDHjxzB1B496C2ugQHSZ88Ws4yNRZfcXMbs9GmQRo1orfbzz4F9+4CgIOR4e2N5dDQ+mzbt2Qc5fDj1EJ45E/ezsrBixQrN2PnzNZY5OQMgintByF4A+QAGA4gAsAn/jz/IHMc1kMlkP0il0vB+/foZNnqqVguA3sX06QMcO0YzWK2WGtu8/z7VdysUWHj1qq5tu3aSpi8ZcCu4f/8+VqxYkTV16tR/ZGqHvryg55WhUqlSAPwA4IeZM2dO3Lhx41cGBgYGvr6+hv7+/oyieXMA9BZPsLJCbFwcrK2tSYCvL44dO0bGjx8PS0vLuq8zmJjQRZf0dKpwcHR8rmpBrVYjKSmJjBo16tlerb17030BOG9oCKtbt5jmK1dCOn48GhQWouuHH+L48ePk0KFDMDY2plK169eBbt1Qf+pUUj8wkKBhQ6pKSEsDliwBOnakAQWAUUkJtLXFx99+q/yrja0tPv7kE9nJI0dIhrl5/iBCPAB0B/V8dQHwC4BtIKQ7gDsQxZq7T/4BOI5rAyAOADw8PLRhYWHSGu8sdu2itdwdO4BevajV5t69dJHxibquePXqS5W3n16AS01NBSHk2Su5rxn9Qpqe18LUqVMXaTQam4cPH4bGxcVtX7x4cUlOTg54nsevv/6KsrIycerUqZgwYQLTtm1b5rPPPnu5oYQSCf2A+vrSksKqVdU2KSwsxIwZM/DTTz+JLMtSRcRz9ie0bw+NRoM9e/bA54svII2Kog0M1taQ3byJjl5ezOj160XfnBwBa9bQ+m/F7fG6dXTxrrQUuHiRKiGeaGc+dOiQqFQqnx91IyPpLXU5LMsitk0baYqn5+lCY+OTGql0JkRRhCjegCjWgyhqAQwBMACEyEDIPBBSu2buNcFxHMtx3DCUB1xvb2/07t27esC9c+ex8uSPP+idy5EjtHxkYlLTQtoLB93i4mIsWrRIm56eXvnYjRs3HpWVle154RN7RegzXT2vDZVKJQI4AeDE119/PfLXX3/9RRRFA6lUKkycOJF50nKPrYOu9rkQQi3/vLyAw4cBP79KNUNKSgpEUYSPj4/w1ltvsatXryahoaFQKKqvp2iDg7Fh0CAU+fqKZmZmoru7O01MOnUCTpwAdu6EsHcvrjZoQOTNmxMMHEh1ve+8Q8cQbdlCV9MBakM4ahRdJPvjDwBAYmIiGThwYLX3FUURZWVl9JgCA6vIpQgh6Nq1K/bt24f5kyebiQzzcWhAQC9ZWdndnb16xQHQ4quvvlGpVBdBiCeAEAACCPkMQBJEMeavXdzqlNtQugNwk0gkXoSQfK1WO5cQ8j2A8l5o3GEYxqqoqAgAHq907d1LG0H8/OidysmTtOxUC8+UjD2DnTt34k/adi5NS0tD/fr1kZ+fjzt37kgAxNZ5R68YfdDV87fw5ZdfruQ47ppUKj3cu3dv2bM8TuuKIAg4ceIE8vLywPM8QkNDYdi+XNb62Wc0w/z+ewB0dBDLsggNDWUJITAzMxMSExMZf39/XL9+HYcOHeIfPnzIiKII2bRppHvv3og9ehRqtZoIggCGEKoqyM+nJjaCgBNt26KFgYGIu3cJtFogNZXKvlq1qnqgU6fSzqpy7O3thejoaGJmZiZERERUdlXdv38fv/76K5o1a8Z3aNqUNSr35K2gVatWKCsrA8MwOHz4MHLNzV0bu7u7BgcGdtSWlAjnLl/+YubMmSs1X301SaVS0RY6QhoCyAIh1gBWAej+srVfjuPcpVLpjxKJxEmn03lIJBKNubl5qbW1tSQ7O9soJycHLMtO43m+wrzGF0CCIAhf3759+/Mj0dEIrhhO2rQpLbd06FDdF/cVUh5wwbLsNrVa3RsAu3fv3mJBEL5TqVQZr+2Na0EfdPX8bahUqhPffvvtDzt27Ph0+PDhMhsbm5fe14kTJ3Dq1Ck0atRIl5uby65cuVL09fVlLl68yOuGD4e5qSnbomtXmPr5AZMmgWEYZGVlwc7ODo0bN0ZycjJ8fX2xc+dOwc3Nje3Zsyfk8fEw3bwZ0qlT4dKkCVm5cqWw4pdfhP4//MDuGjNGN+DzzyUyADdv3oSxsTHvmZzMYswYICWF6kprokkTuhDk5gYcO4bBgwczZ8+eRUJCAomOjhbq169PLl26JPr5+TGCIODu3bvkzuefw6pnT1h9913lbgghaF/+pdL2CbWD6wcfAAcOMIFnzxqsWrVqRGFhYe9Zs2YlqdXqb6aL4oTyF7sDeFieKq4CcAiiuLYu15njOAKgP4DNWq0WgwcPxsaNG2FlZSWTSqUyAMjJyQEAlAfc1qAj1b0lEkmCSVaWd+D9+/BQKqm067PP6J3AK6jNPouCggI8evQIhoaG6pKSkkmiKC7y8vJiAeDBgwc8z/P7XvjNXyH6oKvnb0Wn06l4nk9fu3btvPfee8/wmZKtWnj06BEcHR11AwYMkBQXF2Pnzp1CfHy84OXlxRgbG5Ps7GyhxN4eV5KTmSsLF0LLsli2bBnee+89+Pr6MsuWLcO8efMEIyMjdOnShY5zSUmpzLwkEgmGDRvGrJs/X7zeoAFK7e2ZdevWiaIoQhkbS0KSk9mESZN4l4QEtjaPB5ia0gU6UYRMJkNQUBB8fHyYpUuXCrm5uYKFhQW7e/dumJub8++88w57orgYVwnh+wK111zmzgXu3YPhgwd45+ZNw5xPPjFMS0uzP3DgQEuO41xUKlUeRPEqgLfLX3EdwF0Q0gzA6mXjxvlm2ttPI4QMVSgUiQCUAExLS0v9AfByuTzT0NDQ3NnZGefPn4eTkxMGDhyI27epXDguLg7vvvsuTpw4gYSEBAA4TUSRt09PZ1uePQv38HDIvLyAHj2oIuMvUlvQTUxMxI4dO0pZln0kkUh+BrBBKpWGLl++vMfQoUMVjx49kgP4R8ci6YOunr+V8jrvspkzZ7bZvn17RIcOHeTW1tYvvECiUCiQlZVFADpl4O233346QDEIC4NTXh56jx2LgtRULAgPR25uLpo0aYIOHTrweXl56Nq1KyuVlt8RBwXRW96K9/jmG4w2NydiXByccnOZ5QsXopm9Pd/e25sts7WFQ48eLGrJ1g8fPozExER+5BdfsCbR0bQM8cUXMDExwccff8wAtLSQkpKCkSNHsgzDwK+sDFvu3GHj4+NFPz+/518YhqGqjUOHwFy8CBtra9hYWiInJ8fw0qVLvwLoV2V7UfwWAI4EB7cRCXHNtLfXjvrtNyQ0bYoG337rIpVKUVZWhp07d4JlWXb48OH1bW1tQQiBr68vAMDZ2RnOzs4QRRFxcXGwtLREr169IBQU6Dxu35a42tiw/OHDKPv0U8gGDqTdhK+A2jJdURRx+PDhYp7n+06bNm3/E08NmDFjxpcrVqyYIZPJbgDIeSUH9JLog66efwSNRvNuampq8YoVK/qxLKt0d3dn3N3dFY0bN8bzBmBmZmbiypUrOHv2rOhVw+r201hYWACrV8P8/n18npsL6eXLQJMmCAwMrJ5F+vnRrrWK7rTCQpBWrUAYBlZWVhi5bBkeNWnCSg8fhoGk9o/OvXv3cOrUKfA8z165cgWtGAa4cwf5+fkwMDCAQqHAnj17xAsXLpB27drxxsbGLAAYxMYirH17LNmzhzRs2BBWVla1vhc6dqQ/iYlAUBA63b0ru3r1aijHcQNVKtVmjuOUoN6xw6VSaZg2JMS54qWGX3yBrm3bQnb9OnU8S0uDs5MTjE1Nq/wu7OyqyloFQaBB8O5dYOFC9LGwkIDnAV9fMBMm4NWE2qo8K+iKoojjx48LpaWldwFUq/WINNuHRqP5ovyL/x9D3xyh5x+lvGboTgjpIZfLhzMM4xwQEKDw9fVlDAwMqmybnZ2NpUuXwt7enm/evDnTvHnz6l6qz2PuXKoFPXas5ucvXqSmMzodrT2uXEm72kaPBsLDkenkhM1xcSIviuKwYcOY2oLhxo0bwTCMcO/ePdK4cWMSEhKC1b/9xnvGxLAngoIgNzISdDodM3LkSNja2j5+oVYLsCx+Xb5cl5GRIZHJZLC2tubd3d1JYGAgU+s5HzoEdOyI/G+/xa8sW6oTBA3P80ZmZmYlGo3GmGVZvPfee0Sj0UChUDwOZMXFVLLVvTtQvz5t6hg3jkrenl74FATwJ04g5scf0fHyZSinTAEGDgTMzXHv3j0kJSWBEAJvb+9qwfplmT9/Ph8aGsq6V/hkPMHNmzexefPmDI1G016lUt14+nmO4ySgwThCpVJlv5IDekn0QVfP/ys4jvOVy+VTtVptuFKpVFtbW8PZ2Vnp6elJUlJScO7cOaFfv36MsbExauzdrwurV9OAGhv7eEFHq6UG6x9/TLvHFi2inrweHsDEiTT7dXZGdnY2YmNjhczMTHTp0oUBAI1Gg2bNmiEnJwdbt27ldTqdyDAMadmyJXvs2DFx6NChZOXKlSCEiA0cHMRBX3/NlC5ciAdubqhXr17182jblg7SHDUKqampkEqlKD93sVu3bsTb27v2cywsBNzdwR87hsJ69WBanrUmJCTg8OHD/JQpU2qsF+t0Oly/fh1uABhbW9qZ9/nntKMwKwswMgI2b6bX68QJZPv7Y2VJCWxsbcWBAwcSQ0NDLFmyhBcEgTE0NBQyMjJYIyMjPjw8nDU3N4dSqYSkDncJNTFv3jy+W7durJubGwRBwI0bN+Dg4ACFQoENGzaoU1NT50ybNu3Ll2taqQUAABC1SURBVNr534g+6Or5fwnHcXIATQC8JZfLw3me76XT6YwAQCqVPhBF0ahVq1aS9u3bS6UvWjNMS6N62smTaTebkxNt5W3Thma4YWHU0axrV2rA8lSQKy0txb59+/ibN28yLMuirKyMSKVSUavVwtXVFS4uLiQxMVFITU1ljI2NxUmTJpHs7Gzs3r1bfPvtt4mBQkGnImRkAOVdelWYM4fWllu0qPLw4sWLBW9vbyYoKKju5yqKVDmxaBHQqRMKCwuxYMECTHtGG/KKFSv4e/fusRKJRDQyMuJbtmwpaW1vTx3dLCwAAwNqMvT220DjxgAhSEpKwrZt2wDQBUhBEBAREQFXV1dotVocPHiQv3jxIqvT6aBUKvn333//pUTZ8+bN47t37866urpi9erVRRkZGfcJIfaiKCoAxGo0mm4qlarsZfb9d6IPunr+FZQbekeAmr3MBGApk8lW2tvbBw0fPtzwpdwP//iDNi/k5NDOtrIy2tVmZkYF+zxPA00tPHz4EPPnz4efnx/CwsLAMAxEUcS1a9fg4uJSc2b37bfA778DycnVn9u/n44af2K1/+LFi9i1axcmTpwIs9rUEk+zaBF147p4EXkNG2LJqlWoV6+ebvz48dUObNasWcLbb7/NyGQyHD9+HAUFBeKYMWPoxd22jXaPlY9r0ul0OH78OI6Vl2sUCgVkMpkwYsQIxszMrFr99datW9i6davo7e39pI1YtRLRE/8mACoD1KVLlySOjo6ihYWFcP78eUGj0bQAYMgwzBZBEIJUKlU6/gXog66efy0cx0llMtn5du3aebZp0+blWtrKfRYQGEjdrX78ETh6FPjkkzprSVNTU7FhwwZ8+umnz10ErIIo0hrqw4fVpVQdOtCSxhOjjZYsWSI0bNiQhIWFVTkojUaD48ePi56enqTW2qmnJzB4MNQffYQFCxZAEASxY8eOxL+8g64iC546dSpYlkVMTAxfVFTEDho06PExEwK1Wo1Vq1bxubm5rFwuh4uLCx8eHs7eunULv//+O8LDw9G8hgz+1q1b2LJly121Wv3kSI2nLzJ5znMuADIBlALQAlisUqlqnt/+/xi9ekHPvxaVSqXlOK7nkSNHLubk5Bi0atVK9sKLNpaWtLSQlUWNa1q2pC5jmzbRkS914PLly3B0dOQZhql74CeEdrA5OQErVtC5XhV89x29dX+Cdu3aMTt37kSnTp0glUpRWlqKPXv28NevX2fVajUxNjaufcEqMRFgGCimTMH7JiY4ERyMgwcPgmVZtGjRAvHx8bCyshJYlmUAwMDAgHlQ8aUEADwPwdcXv44axSsMDZkJEyZQdUi5ntjBwQFBQUHYv3+/WDHS/knKJV/3VSrVj3W+Tm8gesMbPf9qVCrVHZ1O53nx4sXZa9euLc18ouW2zjRuTKdMXL5Mda9JSVTJANA5ZsnJdCLBkiXP3MVL3TFKJHSkTLdutIZcwbp11ebBeXp6Qi6X87t27RIPHTokLlq0SMzOzkbPnj0hlUrFmnwkqsGyNNh7e0P21lsIadmSdPT1FQ8fPizs27dPPH36dJVut3K7TcTFxQEAMnNykFpaKlqbmSEyMpJYPFV6MTQ0RMuWLaHVaklKSgqdilGd//ytNfvVV1/908egR89fIjg4+FFwcPDh2NjYjIsXL7ZPS0vjbWxsZM+0b6wJQqhNI0DNbSpM11u1ovrdffvo4tuwYYCPD93+rbeARYtg0qULYmNjGXd39xdXVFhYAAsXAhMmUNMcQqhbWevWgItLlU0dHR2ZhIQEobi4mDRt2pT07duXsbKygpGREdmzZw98fHxqNPGpRvPm9NinTIHtsmXksKsryczMJKNGjYKzs3NlhmptbQ1TU1McPHgQALBjxw6YjRwpduvVi5U8wzuDZVnk5ubyJ0+eZFJSUuDj41NZcsnPz8eVK1futWnT5rcaX/wfQV/T1fNGwXGcAcuyExmGmd6tWzfjZs2avfr5YgcOAK6uNDsODwfu3EFK69aiib09sdu+nQbn7t3rPEIGhYXUGa13b/rvggJqzv4C0qr169cLmZmZpE+fPsTlqWD9TAQBYn4+Vs6cicAzZ0T348drvFYHDx7k4+Pj2d69e8O9QwdqxzhgwHN3nZ2djY0bN4rm5ubCsGHDWIBqabdt23b2k08+afXcF7/h6IOunjcSjuOasix7qkmTJmKLFi0MXVxc6r7I9RIcmDYNWq1WDJ4+nRg6OND66Z49QFQUnel25gzV/D49PLMCUaSewPPmUYXAggVVWpJrQxAEbNmyBVlZWWKLFi2IoaEhnv6Ry+VgWbZSHVBQUICoqChBFhdHemdlEcOYGFrmeJ4D3PnztBxjalrrMW3atEm4evUqY2ZmVsjzPNFoNFIAcZ999lnnOp/YG4g+6Op5Y+E4zpIQEiGXyyeIoujs4+PDNm3aVGZvb//KB+wWFRXh999/5/Py8thevXrBw8ODBqjz52lXV+PGtMW2Rw/auRUfT028raweZ8Q//EAz5KgoamRewzTb56HRaBAVFYXCwkKxrKxM0Gq1ok6nY3ieJzqdjvA8D4BqaSUSCbRaLRo0aCBERERQb+Nz5+jo8ry8ZwfePXtoSeRpC8saSEtLw7Zt20pLSkrKdDpdVwDZALJVKlXJC53YG4Y+6Or5T8BxXGOWZSNZlh2jUCiULVq0MPTx8WHMzc1f6fskJCRg9+7dGDNmDGocMX7nDs1i584FOnemAXfHDtqFtmkTXcT77jtq8l0HjfCLotFoUFRUhH379iE9PR0ff/xx1Q3+/BNo1gyYMYOasj9d4ujTh5ZWfvihzu8ZHR1dlpiYeFar1Q7+t2hpXyf6oKvnP0W510NrmUw2RhCEgYaGhqKjoyMbEBBg+CoyYEEQMHPmTEycOBF1CuiCQEsL/fvToDt+PG1THjqUPrZzJ51Mcfs23S40lHpD1GXB7DksW7ZMUCqVzODBg6s/mZ9PPW+PHwdegW+CVqvF3r17hcTExJNarXamSqXa/Zd3+i9GH3T1/Gcp73JzZRimmyAIPwCAqsJh7CVJSUlBdHS0+NFHH7189M7Opt1w+fm0Hty/PzBrFnDrFp2G0asXVVHY2tIFuB9/BKKjqUlNly60PODgQOVvNbB//37Ex8ejf//+cHV1ffZxCAItcaxbR8sOAPDLL1TmtrZOHuiVaDQaLFu2rCw3N1fOMMx3giCsU6lUV15oJ28I+qCrRw8AjuOaA7jQoEGDIn9/f6W1tTXq1av3QrPbTpw4gfj4eMHe3l4cMGDA6xsMqdPRBa/0dCAujtpRfvQRXaTr1g344ANqmHP3Lq3T/vEHHTcUEgIEBGDF118jeMIEOL/1Vu3vtXEj3f/Bg7QEcuoULYF88MFLHXpGRgaSk5P5c+fOqbVabVeVSnXipXb0L0YfdPXoKYfjOBkhZIRCoRgoCIKnVqu1NjY2Lra1tSV2dnZKW1tb8iwvBbVajR9++AE2NjYYOXIkXnYixitDFKmxT0IC9dlVqYDGjaGtVw/3P/oIZt99B+Xvv9OyxdGj1OgnPJwqLFJTqfmPoeHjbNnLCxgzhrYnZ2fTrPovcO3aNWzevPkRz/Om/7S/7d+NPujq0fMMOI4zAJ14+xbLss2kUmmwIAhv2dnZac3NzdmePXsaVsjQ5s2bx1tbW5MBAwYwf3Xo5utkw4YNQllZGSIjIxmSk0OzYRcXYPFiGlgfPgSWL6cLfX37UmnYhg00aA8fThfYEhMB9V+zPNDpdPj2228B4BMAc/5LgVcfdPXoeQE4jnMF4CuXyye6uLj49e3bV5H0f+3dW2gUVxwG8P/s7EkmyWYRTJsmJtRowFik6EtoiaU2UAWLplKV0mJQA0J9EXwxCM7pCcU8CKVgoiagSfFSTdqCJelLISnpUhoqiGQJCEuD1NYYKJvLXmZndub0IWoTG81uLrNu/H6Qp+xOvqePw8mZ8w8Gqbe3l44cOUJFRUUZzRcOhykYDMqamhplrnPJFy5csKuqqjzbtm2bf8/ZMKb3lRmb3qLYvJmovX16e6OjY9FZ29ranNHRUY+qqiO2bX/COf9t0Q/NAihdgAUQQuQxxvpVVa2WUioVFRV2XV2dmtJruMtkeHiYbt68Gbcsy/F6vfmapsV37NihrV+/3hONRmn16tV0+/Zt6uvrk8ePH09v6sYyMU2TmpubiYiIc575QC7ALWMAC8A5jwsh3pdSfkdEb92/f1+5du2ajEQivt27dytr1651NU8oFKLu7m4iojyi6WNalmXlDw0NOQMDA+bY2FhObW0tGYYhY7GYEo/HKT/V15SX0YwL6FO70m0FwEoXYJEezd+qJKJ3iKidiGjv3r20cePGZX31mGj6AvWenp5oKBQq0DTtZ8MwttKMxZSmaX8YhrHu6e/V1dXRhg0b6Ok5dItl2zaZM29Mm4eUks6cOUNE9C7n/BnD61YWlC7AEhJCqES0izH2ZUlJSUl9fb2WzrGzdITDYTp//rwppTydTCa/4pxPPCfXh0R0kYgev+YmV61aZR47dmzJjlnYtk2tra2xycnJWRMfUvhePhGt4Zz/vVRZXmQoXYBlIIQozM3N7bEsq0bTNKOgoCBZWFio+P1+5vf78yoqKmghWxDj4+N09+5dCgaDkw8ePMj1er3NjY2NIp1cRPSFqqr7bNsuOXDgAK1b97+F8IIEAgE7EAj80tjY+N6SPHCFQukCLCMhRD4RFRPRa49/FEVZwxhrKC4uLty+fXtB2TxnXmOxGA0ODtpDQ0OxqakpUlX1x0QicZ2IfuKcRxearampaZfX671YWVnp27lzZ15a9w8/ZXJyklpaWuKWZb051wh0+A9KFyADhBDM4/EcVlX1dFlZWe6mTZsKysvLqaioiCYmJigSiZCUkkZGRuxAIGApitJlmmYbEQ1yzu0lzFHAGGtSFOXonj17tKqqqgU9p6urKx4Khc6ePHnyxFJlW6lQugAZJITQiOhTTdM+cBxnq5TSL6V0GGN/EpHtOM5wIpFoXO7VoxCimjH2Y3V1tb+2tpal8w/Ae/fu0dWrV/+xLOv1xay8XxYoXYAXiBCilIgUzvlf83546f/2qzk5Ob2lpaVv7N+/Pz+Vkw2O41BLS0s0HA4f4px3uxAz66F0AeAJIYSXMXbW5/PVNzQ05M83821wcNDp7+//PZFIvP0yvcq7GJgGDABPcM6TlmUdjUQirZcuXYrFYs8e8hCNRqmvry+RSCQOo3BTh9IFgFk459KyrBNTU1Nt7e3t0YGBATLmuODmzp07JKX8lXM+nIGYWQvbCwAwp0dTNvYR0Q0iIl3XZ03WiEQidO7cubhhGB/ruv5DhmJmHax0AWBOnHPJOe9SFOUjoukLyGfy+Xy0ZcuWXMbY55nIl61QugDwXLquf+/xePZdvnw5Pjo6Out3t27dMk3TPJiZZNkJpQsA8zp16tS3pmke7OzsfFK8Y2Nj5DiORUQjmU2XXVC6AJASXde7TNM81NnZGX/48CE5jkOqqo5zzqcynS2boHQBIGW6rt8wTfNwR0dHPBqNUjKZfCXTmbINShcA0qLr+nXTNBuuXLniMMa+znSebIPSBYC06br+DRGVG4bxWaazZBuc0wUAcBFWugAALkLpAgC4CKULAOAilC4AgItQugAALkLpAgC4CKULAOAilC4AgItQugAALkLpAgC4CKULAOAilC4AgItQugAALkLpAgC46F9Kl8D7R8TGAgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_queen.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(1, 1), (2, 6), (3, 6), (4, 6), (5, 5), (6, 2), (7, 3), (8, 2), (9, 1)]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_queen.histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(1, 1), (2, 6), (3, 7), (4, 7), (5, 3), (6, 4), (7, 3), (8, 1)]" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "c9 = [idx for idx,c in w_queen.cardinalities.items() if c==9]" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "28 San Luis Potosi\n", - "Name: NAME, dtype: object" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gdf['NAME'][c9]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[5, 6, 7, 27, 29, 30, 31]" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.neighbors[28]" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[3, 5, 6, 7, 24, 27, 29, 30, 31]" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_queen.neighbors[28]" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([-105., -95., 21., 26.])" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAACdCAYAAACw0KL4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd1gU1/rHv2dml46ANAUVxY4NiIoGezdq7NHYEks0wcRfmtHcFGJyk1xvjCbWWG4MscUao7EQeywRFUtU7CBVUEDK7sKWmfP744CiwvZCdD7PwyOyM2fOws6Z97zl+xJKKSQkJCQkJCQknmY4R09AQkJCQkJCQsLWSAaPhISEhISExFOPZPBISEhISEhIPPVIBo+EhISEhITEU49k8EhISEhISEg89UgGj4SEhISEhMRTj2TwSJgMIaQ+IYQSQmSOnouEhISEhIQxSAbPUw4h5DYhpIQQoiCEZBNCfiKEeDh6XhISEhISEvZEMnieDQZRSj0AhAOIAPChg+cjISEhUSmEkFcJIRcJIaqyTdpSQoiXo+cl8c9HMnieISil2QDiwQwfEEK8CCE/E0LuEUJSCSEfE0K4ste4sv+nEkLulh1X6aJDCBle5klqab93IyEh8bRBCHkPwFwAMwF4AegAoD6APwghcgdOTeIpQDJ4niEIIXUA9Adws+xHi8AWlVAAXQFMADCx7LVXy766l73uAWBxJWNOBFugelFKL9lu9hISEk8zhJAaAOYAeItSupdSqqWU3gbwEoAGAMaUheT/XeGcboSQjAr/DyKEbC3bxKUQQmZUeI0jhMwmhNwihOQRQjYRQmqWvVael/gKISSNEJJLCPnIXu9dwj5IBs+zwXZCSDGAdAB3AcQSQngAowB8SCktLltYvgUwvuycsQDmU0qTKaUKsDDY6McSld8G24l1o5TehISEhIT5PA/ABcC2ij8sW3/2AOij7+Qy7/ROABcABAPoCeBtQkjfskNmABgCtrkLAnAfwJLHhukEoGnZuZ8SQppb8H4kqhmSwfNsMIRS6gmgG4BmAPzKvpwApFY4LhVsoQDYgvD4azIAgRV+NhPAEkppBiQkJCQsww9ALqVUV8lrdwD4Gzi/HQB/SunnlFINpTQZwEoAo8tenwbgI0ppBqVUDeAzACMe28TNoZSWUEovgBlObSx4PxLVDKms+BmCUnqEEPITgHkAhgPQAggBkFR2SD0AmWXfZ5W9hgqv6QDkAKhT9rM+APYSQrIppVttO3sJCYmnnFwAfoQQWSVGT20A9wycHwIgiBBSUOFnPICjFV7/lRAiVnhdwKObuOwK36vAQvkSTwmSh+fZ4zsAvQG0ArAJwJeEEE9CSAiAdwGsLTtuA4B3CCENysrYvwKw8bGF6DKAfgCWEEJetNs7kJCQeBr5C4AawLCKPySEuIPlHh4BoATgVuHlWhW+TweQQin1rvDlSSl9ocLr/R973YVSmgmJZwLJ4HnGoJTeA/AzgE8AvAW2gCQDOAZgPYAfyw79EcAaAH8CSAFQWnb84+NdADAQwEpCSH9bz19CQuLphFJaCJa0vIgQ0o8QIieE1AewGcz7sw7AeQAvEEJqEkJqgeURlnMKQBEhZBYhxJUQwhNCWhJC2pW9/gPYBi8EAAgh/oSQwfZ5dxLVAUIpdfQcJCQkJCQkAACEkMkA3gHQCIAzmGdnDKU0ixDiAiAOzONzG8BqAO9RSuuUnRsEVnzRvezcawA+ppTuL0tqfhsslycIrIBjI6X0X2WGVQoAebkXmxByGMBaSukqO7xtCTsgGTwSEhISEtUSQsgkMK9PNKU0zdHzkfhnIxk8EhISEhLVFkLIeABaSukvjp6LxD8byeCRkJCQkJCQeOqRkpYlJCQkJCQknnokg0dCQkJCQkLiqceQ8KDj4125uYBcDixbBsye/cTLgiDgyy+/xKeffmqf+XzxBRAVBfTRq3Juc5YtW6ZzdnbmXn75Zc7V1VX/wUeOAB9+CBw9CnAcQIh9Jmkk8fHxVKPRYNCgQZVOTKfTYe7cuXjzzTfh5WX9psm3bt3Cxo0b72q12hmxsbEbH399zpw53nK5fDGlNFen090BcCU2NnaH1SciYQscu4bl5gJ+fsDXXwPTpwM1ajxxyPr163U+Pj6y/v3toOrw55/AH38A//634WOrYvt2wNUV6NvX8LFVkJCQgEOHDuHll19GSEiI/oPVaqBnT2DBAqBt22q3fqWlpWH//v10xIgRpEYlf18AWL58OW3evDnp0qWL1a+v0+nw3XffqZRK5XwAC2JjY/MfP+brr7+eSSkN02q1qWACjj/HxsYWW30y1Zzq7eH5+WegeXO2SFRi7AAAx3GglEKnq0yN3MpQCvzf/znc2AGA1157TabT6eiyZctoQUGB/oO7dgVOnAD27AHCwwGNxj6TNJK+ffuSqowdAJDJZCCEgONs83Ft2LAhWrZsGQDglzlz5jQr//mcOXPIF1988YaLi8shrVY7tlu3bv/XsWPHfwP4bc6cOR1sMhmJpweNBggJARIS2IajioehTCaDVqu1z5zCw9mmzRJ69QKmTWOGiJlERUUhOjoaa9euxYULF/Qbpc7OwLFjQOvWQKNGbONWjahXrx4mTZpUpbEDABzHUVutXzKZDGPHjnUD8DGAf82ZM+fBWjpnzpz2//nPfzZrNJr/tmjR4tUuXbp86urqusjFxeWJRtDPAtXT4MnOBlauBMaPBy5c0GvRlz8INfZ4iN+4Afj7M8PHwchkMkydOpWXy+X06tWrxp3UrRswYQLA80DGP6v9lSiK4HneZuMPGDAAvXr1EuVy+bmvv/56+Zw5c3wB+BNCvh88eHD47NmzER0djT59+siCgoIKAbjbbDIS/3zmzWP32fXrzCOsB7lcbj+Dp1UrYP58y8bw8AA6dWKeIgvo3LkzunXrhj///NO4BdXZGXjvPaBpUyDtn1WhLooilcls18mpdu3aePXVV+Hr6/u6s7PzhTlz5kQBgKur6/eRkZEjZsyYgcGDB6N79+6kd+/eBM/o+lU9DZ4//mAGDyFAUJDBw3meR2lpqe3n1bAhcO1atXKpenp6ciqVyriDPTzYgnHwINCyJWDsedUASilsuWDwPI/o6Gju//7v/1xatmz5ikwmS3Vyclrl5uamadasGZydnR8cW7ZTs531JfHPRqUCFi8Gbt4EgoMNHu7k5ETs4qEGmLfp9dctH+fjj4GiIouHCQ4ORmlpqfHPoZgYoGZN4LnngLVrDR9fTRAEgdpywwYAISEhiImJce/Xr18rFxeXQ3Pnzj2g1Wqbh4WFwcfH58FxHMeBEPJMrl/Vq3loXBywZQuwcyfzRBgJx3FQW+BeNZpt2wAnJ6B+fdtfy0jc3d2hUCgEmPIA7t0buHyZuaSXLAFmzrTdBK2ErT085bi7u2PQoEHOHTp0cE5NTR1Us2bNJ44pM3iq170j4Xju32fh4/h44PZto0+Ty+XELh6eu3eB779n+USW4u8PbN0KDB7MNlJm4uPjY/raLZMBly4Bvr7MkzZhAhAQYPYc7IEoijbdsJXDcRzCw8MRFhbmmpSU1EMURdSqVeuJYwDIbT6Zakj18fAoFCy+3K2byafyPE/tYvAcPcpyYaoRZQaP6TG24GAgKwtYvtwqOzVbUr77tVUMvDL8/f3Rtm1bhIaGPvFameElGTwSD1EoAC8voHt3oMJu2hjkcjlnFw/P7dsWh6Ee4OvLvCx5eRYN4+npCVEUIQiCaScGBrICjF9/ZQZmNcdeG7ZynJycEB4ejsjIyCcMLcngcTTvvAN07Ai0acNCLiagUCig1WqJPaxnLFwIzJ1r++uYQEBAALKysnizQnotWjC3e1YWEBFRbQ2f0tLScjeso6cCACBsIs+kS1iiEjIymMcjL495UFxcjD6VUoqcnByR53nbJwa2bw8kJlpvvOeeq7KYxFg4joNcLqfJycnmnAwcPw6MGwd06cI8TtUUe3l4jOFZDsk71uC5cQPYt49VDezZY/LpgiBgw4YNYlBQkFinTh0bTPAxAgOBO3dsfx0TaNu2LTw8PMRffvlFFEXRvEFCQphnzcWFueWrGRqNxq7eHUMoFAoC1mVe4llGFIFVq4A6dVhxhb+/yUOcOXOG3r59mwwdOtT21vyQISz3xlo8/zwzoBQKi4bp2bMn2bJlC3Jzc80bgBD23urXr5brFwBQSok9PTz6KC4uBqW0eu5ubYxjnyKLFjGviYcHWzRMJD4+XiguLsaECRNs/z4EgXmiAgNtfilTmTJlCp+Xl4e9e/ea6Bcuw9WVaVykpjLjJyvLyjO0DLVaXW0MnszMTNy/f18N4KCj5yLhYG7eBD75BCguBpo0Mfn09PR07Nu3j4wcOZJ4WJAHYzSvvQYMGmS98WrUYDmAf/9t0TDt27dH8+bN6c8//0xLSkrMG+Tdd5nHqW1b4PPPLZqPLbB10YUp8zhx4oSitLR0kaPn4ggc8xT58kvggw+YsbNzp1lDXLx4ERcuXOAmTpzI2eVheOcOMGIEc6NWM2QyGSZNmsRduHCBW7NmjbBjxw5BqTTDAdG4MfDXXywB8H//s/5EzUSr1do1/q2P48ePq0RRnBsbG2unshqJase1a6wsu359ti54epo8hEKhwIYNG9CxY0c0bNjQ+nOsDB8foF07646pULA8GgsZMmQI8fDwEFeuXEm3bNmiu3HjhnkhvqNHgTffZHOqRhs3URSrhYfn5s2bKC0tzQZw2NFzcQT2fXqL4kMxrqZNzR4mJycHO3fuxODBg4mPiQmCZvPtt8Do0fa5lhn4+PjglVdeITVr1uSvXLnCpZmrU9GiBavmmDULmDGjWmgOqdVq2CXHwQCFhYW4ceMGEQRhpaPnIuEgNBrm5W3ShFULmYEgCFi/fr0YEBAgdu/e3coTrILyCjJzw95V0bs3oNVaZdxJkybxYWFhJDc3V/bXX3+ZN2BQECtbnzOHGaXZ2RbPyxpUFw/P0aNHFWq1+ovY2FiHr6eOwL4Gz4ABwMsvsySzyZPNHmbLli1iy5YtERYWZsXJGWDBAqZhUY0JCgpCaWmpWFpaSjZt2oTff//dvBBXUBDzZl25Anz0kZVnaTparRaUUhQXO1YJPSEhQUsI+Sk2NrbQoRORcAwHDjDvp6cn8OOPZnt7z5w5g6KiIvuE4svx8QFKS8020qrEw4ONGRdn8VAymQyhoaEoKCigKSkp/PLly8X8/Ce6JBhm925g7Fi2WZs9G8jJsXhulkIpRVFREczOs7QCOTk5yM7O1gH4xWGTcDD2ueESE1m8e/FiJihoISqVirRu3doKEzOB0aMtjlXbg2vXrnH16tUDACQmJprvQ23dmiWTN27MdHoceKMGBgaC53lx4cKFmDdvHj1y5Ijdw0kajQZnzpwRtFrtN/a+toSD0WqB334DevRgRo+FoQmVSgU/Pz/7hOLLWbrUOvo7ldG7N/v9WIFDhw6Jbm5uxNfXl2ZnZ3MG2+Y8zrx5wFdfMYmTjz5iOkH//jeQnm6V+ZlLrVq1xB07dtCvv/4acXFxgl2Ech/jxIkTJaIoLoiNja1evYXsiH3uuJkzWYJyw4bM3WghTk5OuH79uhUmZgI6HUvureY0aNCAZmdnw9fXV3zhhRfMG4RSVj0XHg6MGgV4ewNvv+2w8Javry/eeecd/sMPP0SnTp1IQkKC3X3D58+fpxzHHY6NjU2x97UlHMyuXcBbb7Hvn3vO4uGcnJxw//5986sqzYEQiw21KunWDRg6FLh3z+Kh2rRpw2m1WkGhUJDWrVtTo6tvc3KAiRNZFGHXLiZMWK8em1fXriyqYKrxZEUmTJggmz17NnnttdeQk5PDZds51KZQKJCUlEQEQVhq1wtXM2xr8Lz1FvDLL2xX9P33Vht22LBh5MyZMzh37pzVxtSLKAKbNwPNmhk+1sG8/PLLZObMmQgLC+P2799P9+7dK5i8sGZlMW0RFxfAzY1pIz3/PDB1qkMbj3Ich5KSEvs0iq2ARqPBkSNHStRq9Ry7XljCsRw7xkLwQ4awCkYr6UC1b98erq6uWL16tXkhZ3OYOpU1MLUFzs4s/L1/v8VDtW3bFu+99x4/fPhwpKWl0RUrVtAiQ/pgajVLOfDyYh5pLy/g8GG2SQVYeP6774Dhw4HMTIvnaAmUUgiCYJ/ejxX4888/NRzHrY+NjTWz9v/pwDYGjyAwb4CnJ/OKWFkwrm7dunjxxRexd+9e+7gcVq0C6ta1y6WsgUwmQ48ePTB16lRy6dIlsnbtWsEkJWoXF1ZuWvH/w4YBDRqwMlx7qFo/hk6nw08//SSeOnUKY8aMseu1Dx06pBEEYXdsbOxJu15YwnEIAlu/3NzY/624hsnlckyYMIHLzc3l7bZp8/ICzp613fh9+wLmlpRXQuPGjfHWW29xPj4+9IcffkBmVYbKjh2sIers2cyoKc9R+uADoHPnh8dFRLBE5v79mYyAA0hISMD//vc/tGvXjjZq1Mhu171z5w7OnTun1mg0H9jtotUUQvWHKcwzKFq2ZKGQTz4x63RjOHHiBBISEoR33nnH9rV+xcVASgrLa/mHodFosGrVKkGn03Ht2rUjHMeB4zi4ubmhadOmlVcOLFrEem398MOjP9fpgDVrgJMnWazcjHJcc8jJycGaNWtEb29vjB49mrOLZkmFa69atUqh0+kaxsbG3rXbhSWshelr2MKF7OvmTRtMh1FQUIDFixcjJiYGlfVrszonTzKNGltVClHKjIo9e4Data069MGDB3Hy5El07NgRrq6u4DgOPMehaUEBPNLSmIZbnz4PT8jLY+H4tLQnDdW0NBb22raNeYPsgCiKWL9+vZiRkcGNGDEC9jR2RFHE8uXLlbm5uTM++eSTH+124WqKdT/9J06wD9rKlaxNhA0QBAF79uwRLl68yA0ePNg+wga///6PNHYAli/w+uuv87///ju9ePGiQCmFKIpUpVKRnTt38u3atRM7dOjAubu7PzxJpwM6dHhyMJmMNerLyACWLWNucm9vm87/5MmTOHjwIKKiotC9e3e7JnpSSrF9+3alKIofSMbOM4BCAVy8CEyaxNow2Ijr169j69ataNKkiVizZk3bf6AvXWIbtsruaWtBCDBwIGvv8OabVh26R48eqFWrFo4fPy6KokhFUUTU5s1cwY0bZNcXXwjRYWH8I5k+ublAVFTlXrl69dimbcoU1m3dxp77vLw8xMXFie7u7oiJiUGNGjVser3HSUxMpIWFhddFUfzJrheupljXwxMaCrz/PhATY9Gk9JGamoqffvoJr7zyCurbq2t5ly4slv/GG/a5nh0QRRHffPMNLS0tJd27d6ddunR5uDqsWsUWr8e67D6AUhbyunWLSdX7+tpkfuvWrRMzMzPtvisq5+zZs/SPP/64pFarw2NjYx1XpiZhCcavYZ9+yqqNLlyw3WQoxbfffovAwECMHz/eZtd5hCVLWA7i4cO2vU5qKnDoEPDqq7a9xvLlwIgR+C0piZ6/dYv4+vpi+vTpD3vt/fUXC6/16FH1OOnpwMiRwPz5LD/RBpw9exZ79+5FZGSk0Lt3b97ewoMKhQKLFi0q0Wg07WNjYy/Z9eLVFMs9PJSyHdF777HeWDb+o4aEhKBdu3bCli1byIwZMzgnJyebXg8A8Oeftr+GFVAoFEhMTER6ejry8/N1JSUlvCAIxMnJSXRzc6MdOnTgIyMjAbBQV2lpKQGAyMjIR7dC69axmHxVEAJMn87KXLduZaWfVmy5kZubi7i4ONHDw8MhuyIAUCqViI+PL9VoNBMkY+cpZ+tW4Px51pIgNtamlyKEYNSoUVizZg2SkpLsoyU2fTr7sjVBQSxU1KMH86SYiCiK+Pvvv5GcnIy7d+8KCoWCqNVqTi6Xiy4uLmJQrVr88K1bCalTB2KrVii6fJkAQMeOHR9tLLxnD/M86zN46tZlhtOyZWw969jR5Pnqex+bNm0SU1JSuGHDhqFZs2YOkVjes2dPCaV0uWTsPES/wZOVxT7EVVHuHVIqWZ6LnSzYfv368bm5ueLKlSuFN954g7dpmCM5mSW6XbsGURRx//59+Pj4VJveTuUcO3YMf/75J/z8/MS6deuiZcuWssDAQLi5uSE/P5/Lzs7G3r17cevWLeTn5wu5ubl8cHCwmJmZye3evRsvvfQSG0gUWTWDoXJQQoB//YtVR8ybx8rWg4Mtfh+JiYmIj49HZGQkdcSuqJz4+PgSAKtjY2PPO2QCEvaBUuYNUChsW7pdgbp162LQoEHYvn07fH19EWjr/nxdu7JeU4MHQ6FQPMjhszpyObvW3bsmGzw5OTlYv369IAgC16BBAzE8PJwPDAyEr68vFAoFp123jnOdORPL3npL8KtXj0uZPx88z6NmzZrk999/R2Rk5EOjp0sX4/KI2rRh/RE//ZSVtQ8ZYsabfpSCggL89NNPolwuJ6+//jrs1gngMZKTk3Hjxg2FVqu1YrfYfz76Q1oDB1L8/nvlr1HKHoorVrAkMDujVquxYsUKCkAcN24cb+kHKzk5GdnZ2SgoKEBRUREUCgUtLS0V5Lm5pOWxY9yRHj2ITqcDz/MghMDb21sICwvjO3ToABcXF+u8KTO5dOkSdu7ciZEjR+oN/WRnZ2Pnzp1iw4YNSUREROVtOU6cYC7wdeuMn8DixexhMWAA6y9kAFEUkZqaigYNGjzys4q7oqYWtB6xlNTUVKxbty5fq9XWj42Nday8s4Rl6HS0ykTdmBjmld63z75zKuPgwYPiqVOnSJ8+fUi559Vc8vPzkZKSgvv376OwsBDFxcW0pKRE0Gg0CI+P5682b4673t4EYF4md3d3ISQkhO/YsSNqWzPJ+MoVlsNz4IDRp5SH1yMiImiPHj24RwopKAWuXwfWrIE2Oho7VCpBq9Wiffv2fIMGDR717JQTHc1CePo26xW5eJGpM4eGsjCXEdy+fRt16tR5pOjjwoUL2L17N23VqpXYr18/3lGtJHQ6HRYtWqQsLi4e8+mnn+5wyCSqKfoNnqIiisrCCWfOMAGuHTvYQ85Bf1iNRoP4+Hjh4sWLfFRUFHr27GnWOHfv3sUPP/yAwMBA0dPTU/Ty8iI1atTgPTw8UKOkBG6+vnCvXRvu7u7geR55eXm4evUqvXTpEr137x7n4eEhNGzYkO/YsSP8/Pys/C4Ns2jRIiE8PJzr3Lmz5bWzy5YBp08z6XxTWLGCfS5mz2YLhx5Wrlwp3Llzh2/fvj3atWsHpVKJrVu3Cs7OztyYMWOIt40ToQ2xZs0aRXJy8v/FxsY+81UN/3hu36ZPGOF37zKPjlbLvDvh4Q6ZGqUUSUlJ2LlzJ3x9fYWxY8fy5npevv32W4Hnec7Hx0esUaMGvLy8eA8PD3g4OcFLpYJrs2Zwd3eHk5MT1Go1bt68iUuXLgnJycm8XC4Xa9WqRdq2bUuaNm1qmfdaEIDu3VnzYSOroI4dO4bExEQ6Y8YM8oQBM2UKcPUqawpqjDSASsXCVdnZzONkLNeuserUyEiWoqGHxMRE7Nq1C15eXsL48eN5nU6Hw4cP05s3b5LBgwejRYsWxl/XBpR9phJnzZrV1qETqYboN3hmz6bw9Hy0n5JOx5JUd+5krsNqQGpqKrZu3Urd3NyE119/3WTra9euXTh//jxmzJgBz8dLrbt2ZaGa9esrPVepVOLGjRu4ePGikJaWxjs7O4tBQUEkKiqK2KMLclZWFlavXo13330XrtZQgr54kWl2mBGDx/btzFiaMKHS5rB79uxBZmYmiouL6ZAhQ8iWLVse9Mlq06aN4MhdUTlarRZz587VCIJQOzY21oxGPhLVihEjKLZsefRnL77I/t1RPTa/SqUSO3fuFFJSUrjJkyeTgIAAk87Py8vDypUr0aNHD9q+fftHrYJt25jRUEVPKkEQkJqaiqSkJOHKlSu8TqejNWvWFFu3bs0/99xzMCtH8vhxptWlL4emAvPnzxe6d+/OR0REPPxhWhrzujRuzCqujJWiyM1lFWnmdIW/eZOJJ1JaaYHK5cuXkZSUhBs3bmDo0KE4c+aMkJaWxhNC4OXlJY4ePZrztUEBh6ls2bJFdfny5ZmxsbHPtKpyZeh/ujRu/FCtUhDYjbNwIZMQt0eysJGEhIRg2rRpZMGCBTJRFE3aoaSkpODChQvw9vamv/32Gx07diz3yC7jwAG2E6wCd3d3hIeHIzw8nNdqtUhJSeEuX74sbN68mec4Tpw2bRrn5eVlydvTy/Xr18HzPBQKhXUMnv/8h/UNM8fgGTKE7cLefptJEzyWB3ThwgUaHBxMhw0bxtWsWRMzZ86s+LJjknUeIzk5GXK5/OLHH38sGTtPA7Vrs7w0jmNJqt7ewJYtDvNKV4a7uztGjx7N/+9//xMuXbrE9zDSUABYOCguLk6sXbs29u/fzzVr1uzRJP+hQ1mvqyrgeR6hoaEIDQ3lBwwYgJycHHL16lUuMTFRPHDgANelSxd0MXVjy3Gs5NuI96HT6aBSqXi1Wk0BkLI3xXTcunUDpk0zTfQxPh44eNA8g6dRI+YVWrCArV+vvfbIy4mJiTQ/P58MHDiQNm/enDRv3rzimlUtkjpFUcT169c5ANXDmq9m6P8jTZ7MPBxpaczguXGDuYOrkbFTjpubGwghuH//vtHnlJaWYtOmTbRHjx508uTJJCMjgyQlJT160Lhx7L0bgVwuR5MmTTB06FB+1qxZaNq0KV29erVNe+Z069YNYWFhdNWqVUhOTrZ8wIAAy1z8gwcDX34JzJjBXNFllJaWQhAEMmjQIM4uQmtmkpSUVKpWq01IYJKo1vTpwxR4ARa2SE1l61c1KzoAgICAANy9a5rc04YNG0Q3NzeMGzeOCwoKErdv3y484rWfO5cZAEZACEGtWrXQrVs38uabb3Ljxo3DsWPHkJGRYdKcEBXFvCRKpcFDZTIZxowZg0OHDmH37t2C+NNPbMO1dy+rAjVV4drTkz2zzCUkhKk0KxTM8Knwu1QqlWJERITYunVr67YOsCJpaWngeT4jNjbWxD/as4H+u/6zz5il3bAhWyiOHWPfV0MIIfD09BRNuTlXr14t1K1bl0ZFRREXFxf06dOH7Ny5EyqVih2gVrOHthlxdeNkm5YAACAASURBVEIIBgwYwMtkMrJlyxabtsB48cUXSffu3fHLL7/g/Pnz5l+ruJi9Z0vFuCIjgVmzgJdeetBQ8NChQwgMDBQdnZ+jD0oprl27BkqptDt6WvjlF5ZXNnUq01z5oPqq6/v5+fGFhYVG99dKSEhAeno69/LLL3M8z2PMmDFcVlYWd+lShSrk27fNbupZv359dOrUSVy/fr1oUu8njmNl3gsWGHV4aGgoXp82jaSeOEFSly+n4tSpLKxuDleusPXHEoKCgLFjmdr8mjUApVCpVMjPz+cjIiKqn6VcgatXr2q0Wu0GR8+juqL/j+fpycJaguCQ/kmm4uvrS8+ePQtjPCq7d+9GSUkJN2zYsAchrMjISPj6+go7d+5ki46zM9PnMHM3WLZ7Ibdu3SIrVqwQjh8/bpOmcWlpaTh58qQAACqVynx3UlISE+SyBlFRzL3cpw/AYt9iVFRUtV4syozlu7GxsbccPRcJK+Hvz8LyWVmOnolBfHx8UFBQwOVXkW9TkZycHBw4cAAjRoxAecjcyckJ/fv3J7///jsUCgU78IcfWCqCmXTu3JkLCAjAwoULxR07dhjvgerQgd3/+oVtAQCiVov8AQNoj61buT9ff53qLMkN3bePhcQsJSCAyW1cuQIsWIAD+/YhKChIcIQmmLFQSnH58mWNIAi/Onou1RX+s88+q/rV55//DG3aMJn1Xr1YuV9IiMEqHEcRHBzMnT17lh4/fpy6ubkRPz+/SvN5srKysHfvXkyYMOGJiqDmzZtze/fuJQEBAcTvs8+YO9wCRVRXV1eEhYVBFEXy999/0wMHDpBz584JISEh3BMJ0mby66+/wt/fn5s4cSLq169vvlEhl7MWGoY0eIzF0xPo0QPimDE45etL+o0aVXnvrmrCqVOndBkZGSu7dOliedtniepBv36fwdkZ+O9/2df//sfyWqohPj4+KCoqEnft2sWpVCr4+/tXKXmxcuVKISIiAu3atXskvFKrVi1cu3ZNSElJoa1q1+bg58c8XGZu2gghCAsLIx4eHiQjI0M4ePAgl5CQIJaUlNDQ0NCqQzsBASzR2M0N0CcZkp6OnK1bcT4vjzSLi0PHrl2J2dpbosi8M23bWkdPycWFPftWrMCt5GSxQd++fLC11kYbkJubi1OnThWLovhet27dHD2daonhp4+3NzNwCAF69mRiTTdvMr2Vavbw8vX1xRtvvEH+/PNPeujQIbpz507i7u4u+Pv7c82bNyetWrWCk5MTCgoK4OrqSmvVqvXEDevm5oZu3bqRHTt2YOY777CcJSvMq2vXrqRr166kqKgICxcu5EtLSx855s6dO9i7dy+GDx8OmUyGS5cuoW3btkYlYCuVSqFVq1a8xarT8+axxSkqyrJxKnDH0xOev/2GsVFRyG3fHsGjR1ttbGtz+fLlUp1Ot83R85CwMq1aMWO+Sxf2QNRqWV5iNQvP8zyPAQMG8M2aNcPBgwfF06dPc05OTqK3tzdCQ0O5iIgIlFcBabVa0rJly0oXhzFjxvDff/89vZ2bi/rr1ln88HdyckJERAQiIiJ4nU6HzZs3k8dTB3Q6HbZt20ZDQ0NJZGQkLl68iIaXL8MjO5vl81WGRgP06wdNdDSyuncXfUNCLPMAX7zICiYuX7ZomIooOA7Fc+ei2cSJXOHSpSKee44zqdzdjly9elUkhPwaGxtr0xSKfzKGLZYdO4ClS4Fz54AvvmA/69KFVeR8/bWNp2c6PM+je/fuXPfu3aFUKpGWlsYnJycLx48fJ3/88Qfp378/CQkJgUqlqnJ30qZNG+zfv5/11DGhYsIYioqKwHEcQkJCoNPpoFAocOrUKZw5cwZ+fn50yZIlEEWRyOVynDp1Spg6dapBQ0atVlun/UJxscUNBkVRxMWLF3Hu3Dl69+5d6HQ6IooivEaNwrDFiynq1yc2bWJoJvn5+VAqlSKA046ei4SVeeUVJpfQpQv7WrSIJfOamoxrJxo2bIiGDRtygiAgMzOTS01NpTdu3BASEhL40NBQcdSoUZxcLqdFRUWViga6ubnBzc1NEP7+W2btjuAymQxZWVmIjo4moihCpVIhMzMTO3bsED08PMjNmzexf/9+yvM88SkooMPy80mlJQo//vigDPzvxER4FReLsLTS6d49q2gq5eTk4Pjx40hNTRWUSiXPcRxI164Y8OuvnPjrr+AGD2bpDtWMS5cuKTQazWZHz6M6Y9jgGTuWNZKsyNmzrNJh3jy2c/q//7PR9CzD3d0dzZs3R3n5YFJSEn777TfUq1dPFEWR02g0lepMaLVa5ll54w3g11+t2lyuVq1a8Pf3F//9739zlFLwPI8aNWrQ8ePHk+DgYJKUlIS6devC1dUVGzZsIIsWLRKnTZvGeejRodBqtdYpfY+OBl54wezTb926hS1btogymYy0aNGCdu/enatbty40Gg1u3boF9ciRBF9+ySrfRo2yfL5WJDU1FTKZ7MhHH30k9c162jhz5tFE/LfeYuJyGRnsHt++3W5tcUyB53nUq1cP9erVI507d+YLCgrwyy+/YMGCBSIhhBQVFVV5LqWU+G3YwLzwm637DIyOjsYff/yB+Ph4cBwHuVyO6OhoREdHk6ysLOh0OhISEoKzZ88ie+JE5K5diybjxrGTRZEZJqtXsxBj7dooKChAQECA5fl9Li6s3Y2ZlJaW4ueffxbu3bvHh4aGCr169eIbNWoEZ2dnZGRkIKt3b5Aff2TVfu+/D1hDBsRKaLVa5ObmugI46ui5VGcMGzyJieyGWbjw4c/K/9DlJYNaLfsgV0OrtyJhYWEICgrCxo0bIYoiioqKKlVG1mg0zODJybH6HGQyGSZPnszpdDrI5fJyafQH3qaWLVs+OHbcuHHcb7/9JixZskScNGkS5+/vX+mYWq2WWOzhKSlhnjwzQ067d+/G+fPn0bNnT9K+fXtSUTLVxcXlofro998DP/3EqmeqUXgrNTW1pLS09A9Hz0PCBrz9NlMCryjo5+4OZGayNYvjWAm1u7vj5mgE3t7emDp1Knfw4EHx+PHjXGFh4UPtmscQRRH3vvkGXnpazZhLhw4dSGRkJGQyWcWQOwcAdSrkuDz33HMke8gQ3Fq1Ctn16qFL27bM0PT3Z8rJZSgUCqFx48aWW5zr17PNqRlKxykpKdi0aZMYHBxMykRcH5lPmeHJcno+/hj4+WfmDDBWENHGZGVlwcnJKXnWrFkljp5LdcawwVNczBaGynjvPfbvO+8wgb6//7bi1GyDt7c3XnvtNe78+fOoyiui1WrR+OpVYNgwplRqZTiOM0rBlOd5DB06lD9w4IC4atUq+vLLL5P6j8nkl+/ynC01NjUa1jTUhPi0SqXCmTNncPHiRUGtVnMTJ04ktWvX1q9RERrKBL2++ooZlNXEO3j79m0dgL8cPQ8JG5CeXrl4aJMmTIQwO5vlJKans4dxNYbjOPTq1Ytr3LgxZDJZlfcapRR1Roxg3isj+tuZirH5grXefBPyGjWwcedO4PRp2qVtW4LXX3/kmNLSUmqVkHy7diZ740+fPo2MjAwkJSWhZ8+eJCoq6sn2FhXhOKYz9q9/MYmDuXNZcYaDSU9Pp4IgGCe49Axj2I3Yrx+wcaP+Y775hoV+srKYdk81h+M4REZGQl7Fw12j0UDt7k7RqpWdZ/YkhBD06tWL69mzJ9avX4+LFy8+eE2n0+HOnTtwc3Ojem9SYzh6lPWhMZL8/HwsWbJETExMpLVr18b06dOJ0U0I69ZluyQXFxYWdTClpaVQKBROAKq/xS5hOidP6m8kWasW26z5+7MHmRFl4Y4mJCQEwcHBVb5ORZHo6tdn782RBATA99gxTN20Cepjx8jaWrVEsUzXTBRF6HQ6aDQazmKDRxBYXpCRCvGiKGLt2rXiwYMHkZOTI06aNAkdOnTQb+yUQwgzep57Dvj8c6CgwLK5W4GUlBSFVqs97Oh5VHcMe3ji4phB87gC8SOjyFjFw549rBfJZ58x/QVLH8IOQqvV4n5QkEXxYGvTvn174unpiV9//RW7d++mOp2O6HQ6ODs7Uz8/PxGWtmZISDC6dDUzMxNr1qyhrVu3pv379+cIIaZfOziYJb4vWMDaWcyebfIQ1iIjIwNOTk5XPvjgg6p7iEj8c/H1ZUnLlfR3e0CTJswL9PvvLMfMx+cfu34BAK/VouCbb+BRRVm73VixAvDygmzWLHQYPx6rV68m33zzDRVFkWi1WshkMlBKLc9BvHWLbdiMqBwWRRErV64U1Go1FxMTA09PT9PzhziOheeWLmWhrV9/dVgHAkopMjIy5JA81IahlOr7ojQ1ldJt26hJnD9Pac2alJaWmnZeNeHy5cu00MeH0v/+19FTeYL8/HyanZ1NFQoFVavV9KuvvhIXLlxItVqtZQOfP09pZqbBw65fv06//PJLevToUcGyC5aRm0vpihWUfvwxpYJ1hjSVgwcPCl988cV/qf57Qfr6Z35RunIlpQoFNYnQUEpXrzbtnGrEyS5dRE3jxo6bgE7Hnh3h4ZQeO0Zp+/aU6nRUrVbT9PR0ev/+farVaunmzZvp559/TjONWHv0cucOpefOGTxMrVbT7777Trd8+XKhpKTEsmtSSqkoUnrgAKUDBlBaWGj5eGaQl5dHv/zyyzzq+Hut2n8ZtmzlctOT+Vq1Yu5FZ2fWRM6GvaRsgSAI2PjeeyJiYhw9lSfw8fFBYGAgXF1d8dNPPwk1atSAIAji1q1bH+2hYypvv81yGQxw9OhR6unpScPDw7nr16+bf71yfH1ZC4qSEibyaGTfMmuSnJysEARBqm54WvHyMt1bs2wZMGIEU+61lvq4HTnauzcKbJB/aBRFRawgYdMmVvQSHc0U+48cgZOTE+rUqQNvb2+cPXsW169fR5MmTbB27VoUFhaaf821a4F1hlvg3bp1C4WFhXy/fv24rKysh22EzIUQJl0yeTLQv7/eRtO2Ij09HTzPJ9j9wv9ADPv/9u1jiVmmiDlxHGsiWVjIEpo7d2YKzTYiPz8fmzZtEgoLCzmZTEZlMpno5OQEFxcXmYeHBzw9PeHt7Q1vb2/4+vrCx8cHMpkMoijijz/+gFKphEwmg1wuh1wuR3FyMtoePEjw0Uc2m7MliKKIH3/8UdBoNNzkyZMJpZQsXrxY3L9/v9i7d2/T3bOUssq75s0NHjphwgSybNkyYf78+TzHcRgzZgxCLVXe9vJiYdDly4HYWPa9nUQtRVFEdna2CyR38NPLG2+wHDUjPt8P6NOH/fvf/zL18W+/tc3cwD6Du3btwpUrV0RCCGQyGXVycqLOzs68m5sb8fT0hJeXF7y8vODr6ws/P78HCsyXWdsWyOVyyGQyODk5QSaToe3hw0TWs6fN5lwlKSms4q1hQ+DNNx+Gyd9555GeXomJidi/fz9Gjx6N0NBQbNiwQYyLiyNTp04lValL68XZmfXvMkDz5s0RHR2NuLi48v8LI0aMsLxCbOhQoEEDNoddu4DAQIuHNJbU1NRSqcLUOAw/VUaPBl580bzRvbzYh5xS5vVZsoQJf1kJnU6H7du302vXrpFWrVphyJAhpLS0lCiVSk6pVEKpVKKoqEjIzc3F7du3iUqlIqWlpQ9ixxzHUU9PT9SpU0fUaDRUpVJBq9XCKzOTNExPr7Z9n+Li4sSSkhJu8uTJxLVMImDixIncqlWraM2aNelzzz1n2nY2I4Mt8EboSshkMkyfPp0vKChAQkIC9uzZI8bExHAWJ017eAAxMcDMmaxsfcIEu8TE7927B57n8z766KNcm19MwjFcvaq/vYE+9u1j/777LktO/fFH680LwLlz57Bv3z7Rw8MDI0aM4JycnFC+dimVSigUCrGoqIjevXsXSqWSlJSUcGq1GhzHQSaTUVEUSVhYmCAIAkpLS6HT6ahWqyUDbt/m3BUK+yYh3bjBnhcffMDy8iri58eEa3v2xLlLlxAfH4+XXnrpwWZp1KhR3IoVK4T169eTV155hTO5vURJCfMkGUHPnj0REREBjuOwZMkSPicnB4HWMFDCw1n16aRJLPe1EskTW3D79m0NgBN2udg/HMMGz8mTwKpVTHfAXAgBXn4ZiIhg8t/Nm1u8gz958iSOHDlCa9asSadMmUICAwOrukOe+LkgCCgpKYFKpSK+vr7gK7u7Pv/covnZiq1bt9KioiIyZcoU4lahi7u/vz9GjhxJNm3aBC8vLzQyRX8jMdEkSQGO41CzZk307dsX8+bNw+XLlx/RDzIbV1eWxPzZZ2zB/OADVsllQ9LT00EIOWbTi0g4ljFjWA+tiuKDpjJsGAv5qlSsLUWzZhZNKScnB5s3bxaUSiXft29frk2bNqhi0/DExotSCrVaDaVSSZydneHh4fHk+jVxokXzM5mlS9m6vnw562X1OCEhQGAgshITsfvAAYwcOfKRNYrjOEyZMoVfuHChsH37dmHYsGG80ZsoSlnS8OTJRk+3Zk2m/9yoUSO6Z88e+uqrr1png9unD9N7Gj6chUXDwqwybFWo1WoUFha6ADhv0ws9JRj+I4uidfIq/vUvplcwdChzE5tJWloavvvuO+Ho0aMYNGgQmTJlCmeqdc7zPDw8PBAQEIBKdxKDBwMffmj2HG1FcnIyrl27RsaNG0fcK8mratSoEXr37o1NmzYh24h8nAe0amXSYlEOx3EIDQ3lLly4YL3EG7kcmDOHeQa3bGHucRty+/ZtVWlpqdQs9GlGp7M8j7BTJ5bTs3AhMGCA2cNoNBqsX79eXLVqFRo1akTefvtthIeHV2XsVAohBC4uLvD19UWlCuw7d9r8QfsAQQDOn2fKycHBlRs7ZYhDhyJ75kzauXNnsUmTJk+8LpPJMHXqVP7mzZvc4cOHjf+D6XRMz6usz5gp9O/fn6SlpXFaa+behIcDn3zCOtVbsa9XZWRmZsLZ2flabGysxqYXekowbPBERzNL1VokJTFj4l//elS92QAqlQqrV68W165di/DwcPL2228jLCzMpIXCaGJiql1HZVEUsXXrVrFbt27UV8+N3a5dO0RERODnn3+GPun5R/j8c6MSlisjPT1daNGihXV1+WUy1u/o77+ZJIKx78MMMjIydABO2ewCEo5n2zbAWl2uZ89ma9jVq0yjzIRCgUOHDuHbb7+lOp2Ovv766+jXrx9nsWBoZYSH22fDVlDAPBm3bgHHj7PSfj3szsigQRkZpFO7dlU+dzw8PPDqq6+Sv/76i5w/f964X258vNntM/766y8EBQWJVWmymU2vXiyq8dVX7HdjI7KysiDp7xiPYYNnyxYmp20tnJxYiMvXl8XVS0oMCt6Vlpbiu+++o66urnT69Ono1q0bZ/UPaEVcXJioVDVi06ZNtEaNGujQoYNBC69///7w9fWlBw8eNM7zcuuWWUl29+7dg0ql4pubkgxqCnPmsMqLd9+1zfgASkpKnABk2ewCEo6ncWPr7rSdnZmhU7s2W8vu3zd4yqpVq3Tnz5+nI0eOJBMmTOD1bVosJj+fGWO25NYtlqAcGso84gby7dLS0vD33bvE5fPPwSUn6z02MDAQw4YNI7t27SJGVZ5mZDzaNsQEkpKShLZt29omX7NjR/aMmzzZZuKExcXFWp1Ol2qTwZ9CDP+hu3e3TYXCe+8B48cDM2YYlcis0+nISy+9xFulSaY+ioqYdV6NSulv3ryJ5ORkMnLkSI4zUhywVatWJCsry7D7SxTZ38KICofHOXz4MBo1aiTYZJeq1QJHjrBwW/36TMXbylBKodVqnQFUf2ldCfNZvJg9mK1J8+YsjJOSwgwfA15IlUqFnj17EpNy68xlwgQm8WArTp9mycn5+cD8+QbzMUVRxKZNm8TOnTuL3jqdYeV+AM2aNQPHcbhvhDGJNm1YCMlEbL5hKyxkjbZHjWK5sDZAqVRqAOTZZPCnEONyeNRq281g2TLgt9+A69f1KhvzPG98iMYSatRg79eWHiQT0Ol02LZtm9i9e3danmhnDE2aNEF+fj5ncIeUksIWRzO6Refk5Ois0vTvyYGZlIG3N7B1K9s97rd+mk1ZtYs6NjZWZ/XBJaoParXtNjANGrC1y9OTlWFX0pZCFEXIZDL+/v37FghlmcCFC6wiytpQyiptXVxYcYGRZe/btm2j7u7uiI6O5jBgAHDzplHnubi4CDnGNHBesAC4csWoMSty/fp1+Pn5iVbfsFEKvPUWe54dP84S3nfsYP0KrYxSqdRB2rAZjWGD5+hRYNYs281AJmPJblevsuQ34EGS9J07d7B69Wrx22+/RXBwsFBZoq7VWbq0WlVobd68mfr4+BgVyqqIt7c3eJ43vEMixOwkTI7jIFhbKDAzk+UT9esHREWx+Y0dy0rVrXwtlUoFnueLrTqoRPXjnXcAA2EUi6hXjxlVf/3FkuzLPqcajQa7d+/GvHnzRJVKhfr169u+TLywEOjWzfptMShlbTc2bmRCtJ06GXXa7du3ce3atYfe6YAAoFEj1tTUAF5eXpxRxRdNmjCtJBNxdna2/vql07EqPpmMVZkSwjxQ+fmsQtnKlAknSh4eIzFcGz5iBOt5ZGtefJF9nTgBXf/++GHOHKFQqeRbtWpFBw0aBD8/P+t7EipDLrd5KbSxXLhwASkpKeSNN94wrqndY3AcR9Vqtf4TDTVW1INMJrNudcOVK8xV/t13jzahDQ5mu8mlS9nOyUqUlJSA53nHd/6TsC2ZmbbXdHJxYfIOlEKoXRvHhg8XjwcHc/7+/uLgwYO5xo0bw9hwtEUUF1u/D1heHusvNmcOsHs308wyApVKhU2bNoldu3aFn5/fwzffpg3ru2jgueLs7ExKSkpE6NuY37tndpd7FxcXWHX9EgSWxF2jBrBmzaOvffYZ8PrrwOHD1rsegJKSEg6SwWM0hu/A48eBkSPtMBWgqKgI844dE7e89BIi2rblZrq748WBA3k/Owk4AQBefdWhjSzLSUhIwK5duzBs2DD4mCGaVlRUBK1WSwIMJfMdO2ZSl/SKODk5cZmZmVS0RrjgxAn2UPryS5Y39jhjx1rdLVxSUgJI7uCnn969WZKtHVi7bp1u3YAByOvcmb4RGIjX+vblmjZtah9jB2DFB9ZsKZGRwXJ2wsJYIYeRxk5hYSGWLFkiNmjQAM8///yjb75XLxayVij0jpGbmyvUrVtX/y/u0iXm1TIDd3d3qFQqzqKWFuUUFLC1dPx4YOXKJ19v2pR5ocqFLK2EWq2WQ1rDjMbwXejmZpb1bA5Xr16Fs6sreWn5ckQ3aUKc5s4F7t61y7Uf4O0NnHJslfKRI0dw4MABjB49Gs3MFDi7dOkSfH19RYOKpZMmmV2C379/f6SlpdGVK1eKBZZUIVy6BLz2GgtlDRxY+TH16zPvz5Ej5l/nMcrcwfcMHSfxDycgwG45eenp6bK+X32FYaNH8z7r1jHFXXvy4ovMK28NDh4EXniBeVi//dboPL979+7hhx9+oM2aNcOIESOeLLTw8gL+/FOvt0MURSiVSr6OITmBRo3MTkEICQlB3bp1xaVLl+KKGTlAD6CU9dHavJn97iuLEBDCBDAvXDD/Ok9clkKr1TpBMniMxrDB06oV23XbgdzcXPj6+goPYr137jB57oYNgQQ79UY7epQpQjuI+Ph4nDhxAuPHj7eoR9XNmzdpgwYN9B9EKWvcaWbT0cDAQLzzzjucp6cnli1bhnRzmiwuX852er/9ZlgavlEjtkha0iS1AiUlJRAEwTwBIol/DosWsYe2jdHpdNBqtXhQcn7wIKsemjgRmDbN5tcHwFpfLFhg2RiiyMbx9WVJyq1aGX1qVlYWVq1aRSMjI+nAgQOrbjnTpw8rmKiCzMxMcBwHb29v/RecP5/p8JgBx3EYN24c17dvX2zfvp3Gx8ebntDz998sBP/zz+xzpo+ICOZptEbTZTC5Fo7jNFLRhfEYNnh27QK6drXDVFgTUF9f30fnJJOxvI2ICJZvorPh3/biReZtcFCF1vbt2+n58+cxceJE1LVEBh/A/fv3hZo1a+r/+xYVAbVqma1hAbBFY8yYMVxYWBj27dtn2oJx8yZbLLy8mDFjiM6dmcfv9m3zJvsYZb3TJA2ep522bYFz52x+mbt37z5o3vkIU6awnX9+PltfbMnPP5vfN6ycH35g+lf+/uyeM5KUlBTExcXRTp060d69e+vvrzdsGNvkVOEZvnHjBmrUqGE4Vi4IFmumRUZGYtq0aeT06dN8cbEJNQyUssa0ajXTejKUN+XsDERGmtTGRx9lOYh2KF1+ejBs8HTtypJF7UBxcbHg4+Pz5Jzefpvld4wezTwCtuL4cas3BzSWX375Rbxx4waZMmUKatWqZfF4UVFRsgMHDuDePT0Rmzt3WLNOKxAdHY2srCzeKN0MSpkU/KlT7EFkrA4Gx7H4/zffWDbZMpRKpZpSKiX8Pe2sWmVap3QzuXPnDjw9PZ98SEdHszyi775ja5itEAQWejLXA5qTw0JYPXsyY8SEYoYrV65gw4YN6NWrFzp37mz4ucJx7OG/a1elL7dt2xbFxcXk2LFj+o2e+vWB5583ep5V4e3tDQ8PDzExMdG4hMTt25mS8v79puV8jh0LfPSRwfwlYygzeKyQgPTsYPiDWVLCyuzsQGlpKfQKC968CUyfzlo/LF5s/QnYIIveEEVFRVi0aJGQk5NDpk6dCmspsHbo0AEtW7akcXFxVFHVzXXokFVkz3NycrBixQrI5XLcNZRzpdMBqalMnr9XL9Mr4oYPZ4aSHne4sUiiXc8Iqak20UB5nLt378Lb27tqa+Pzz5n0RkIC++xbKTT7AJ5nHtAaNUw/Nz+fqeq3acO8FUYmJ4uiiB07dtBff/0VgwYNQrt27YwvD3vllSqvU6NGDYwbN44cPXqUu1yVSnZBwUOdLgsQRRFLly4VVCoVl5uba/iE0lJmEA4Zwhoem4KbGwtv8lUQOgAAIABJREFUWkEYUqVSgRAirV8mYNjgSUy0jYhVJZQJdFV9QPlrjRoxy76oyOwKo0rp3JndQHbi7NmzWLJkCa1bty5iYmKItVWkBw0aRPz8/MS4uDiqqWzBj4xkrmUL0Ol0WLNmjdi+fXtx1qxZaNq0adUHl5Swir+tW1m1gjmhNJmMxe3XrjV/0mUolUoRksHz9PPZZ8CNGza/jEajgVwu12/FyGQshNuyJQuBmNnDrlL++1/zKmq3b2eaVyNGAF9/zbwvRlBQUIBFixYJKSkpmDJlClqZkOsDgK3h33/Pyt4rITg4GIMHD8b27duRVtWm+7XXjJ5vVezYsYMKgsC9//77GDFihP7BFi1iHqUffzTfWzdpEtu8W+jlKSkpAaVUKrowAcOflMGDbSvaVQEXFxcYVe3z7rusmmfaNKBvX+tNYOhQthDZmHIjIT4+HkOGDCFDhgzhbdUbbMKECbwoiuLGjRvFJ8rH58+3eHe0du1awdvbGz169ND/WSosZO0hwsKYJ80SWrRg7vc7d0w+lVKK06dPIyEhAfn5+VKFw7NATg7QoYPNLxMYGIj8/HzDa2qzZmyHf+kSU2pm8giW07Fj1VWOlSGKzKvj7s6EPU3op3fmzBksW7aMhoaGIiYmxrD8RWW4u7NGp3qUl1u0aIFOnTph/fr1yHvcMNq1y2K5gaSkJCQlJZExY8YQJ0Nr4fXrzIu2YoVlOkfe3qxE/fffzTo9IyMDR48exfXr1yEIghFS1BLlGBYe/PNP4NNP7RLqqVGjBp+Xl0cBGPdpWrOGuTXPnGEKoJbkdqjVzLhr2ND8MYwgMzMTGzZsEL28vBATE6M/hGcFOI7DtGnT+IULF4p79+4VXnjhhYe1pSdPsio4A+Tl5eHIkSNQqVQoLS2lGo1G1Gq1VKfTEZ1Ox8fExOjXGSkqYmWbAwdap+LP15d5p86dY32MTECn02H37t3l/3UFkGH5hCSqNe3bszweM9R4TaFOnTo4cuSI8e6Gli1ZuM3ZmfW/WrCAfbbNJTjYtEbPn3zC1KG3bWMPYSPQ6XRYt26deOfOHW7YsGGkadOmlgnCTpnC1u2oqCoP6dq1K/Ly8mhcXBxiYmKIS3kYPDHRqN+XKIo4ePAgcnNzUVJSArVaLZSvXyUlJfwLL7xA/f399T9zZs8G/viDaRKZ0YbnCXr0YCkFOp3BXmSPc/bsWXru3Lny+Vqvzv0ZwPDN6etrF68HwHQRLl26BLWxvbtkMvbAzshgapuA+VVce/eyag4bsn//fsTFxaFdu3aYPHkyZ/NGqGU4OTkhKiqKu3Xr1sObWqViBmNIiMHz165dKxQVFYn+/v5is2bNSFRUFN+rVy/Z0KFD+ZiYGHh6elZ98s2brPrtww+tK+jYtStzK5u4O5bL5YiNjUVUVFS5xKrlGY8S1ZvWrY3OSbGEoKAg6HQ63DLF6xAQwO7Fci+HJVWokZHsoWyI5GSmCfPqq8zLYKSxk56ejgULFog6nQ4xMTH6w9fGEhr6sJ2MHoYMGUJKSkrII/0UR48Gpk41eIkjR47g3Llz8PT0FEJDQxEREcF37dpVNnDgQH7SpEkIDw+v2tjRaIBffmH6Rn/8YR1jB2CerdOn2ZeJvPjii2TaQ5kDA7XwEhUxbFqGhrJeNHagS5cuSExMpFu3bhXHjBlj/CdryBD2FR/PMudzc02P6w4ezAwnG7Fv3z6cP38eEyZMQJ06dewku/qQCxcuCJGRkQ+vm5gIzJ1rsFP92bNnoVar+bFjx8LksFtJCfPszJhh1ZYQAJgnzt2deSDNCGvm5eWVf/bPWHdiEtWOWbPsosPDcRw6duyIjRs34q233tK/EaiIhwdTGqeUbeDi4kwLTZWTnW1YUqOkBFi4kN0/jRoZHZopLCzEmjVr0LlzZ3Tq1El/ybkpuLgA773H1l491akJCQnw9PR81BMzaxarINYjjKvT6ZCQkECHDRtGmjRpYrq1Ut6H7bffrN+eZMIEVnXcsaPJp1YQlK28zE2iUgw/eA8etG6eTBUkJiZi/vz5glqt5kJDQ827m3r3Zr1eCAH+8x/TOiR/+aXZAlaGUKlUOH36NEaOHAmDyqE2QKFQoKCggG/duvXD36tMxtyqehBFEQcOHBB79+5turGzaxfLCzh40PrGTjn/+Q/7u5nR2oLjuPLfhSQ8+LTTq5fNhUtzc3OxcuVK8a+//kLDhg0FvcUXVUEIW79eeIHdO6mpxp975gzw/vv6PRBr1jBv19dfs0IUE4yWjRs3Cs2aNRM6d+5sPWOnHFFkIUc9JCYmCm3btsWDa4siM5AaN9Z73o4dO6ivry9tbOC4J8jKYuvWzJm2MXYA9lwlhLWkMJEKBs9Oq87pKcewwdOpExOzsiFFRUXYs2cPunbtyr///vvo0KGDeR4QjmPJienpwLJlLHfEWO7cqVIEy1xEUcSJEyewdOlSMTQ0VKhfv75VxzeW06dPIyAgQHxkx3nlisEQ3uHDh+Hk5ETatGlj2gU1GtYpuFYtwEIBRb3Urs36blWh5aGPgQMHlquUltpgZhLVibVrWbjHhmzYsEHw8vLC9OnTMWrUKN7V1HLlcqKi2Dq2erVpSa35+VW34RFF1pJFq2XeIxPmlpGRgZUrVwp5eXl83759bdPAuWdPFtIrrfpWLCgo4Fu0aPHQ0rp5kylA6zEsFQoFrl69Sl544QXTjDRKWTVWaSlQr57tGs8SwsJyW7aYfGrNmjVRu3ZtBYBM60/s6cXwNqSwkGm1WEHcqTJEUcSGDRuEevXq4bnnnrPODVWv3kPtjeBg1pnXUMKilXV99u3bh3PnzlG5XI4ePXpwrW2cMKmPwMBAVEhyY+zbZ9AVfOrUKTp8+HBiUuPDBQtYNcOFCyYn45nFwIGsHQilJu1YS0pKIJfLpZLOZ4Hjx1lo3kZ5PCdPnkRRURE/ceJEeFjrGuU944YNY4b9kiX6j+/Th31VxtSpLCwTH2+0ivytW7ewe/duoaioiI+MjCQvvfQS3N3dTXgDJuDkxLqxr1nDyswrPcRJVCqVD/MeT5826AHbunWrGBoaSoODg41/riQlsVYgu3ax/FVre7Mep3NntlbeumVywYxarRYBmF6q+gxj+El244ZBd6O5lJaWYvHixQIAMnLkSOvvHpycmAZHy5bAgQNVJwTm5bFdj2B6K5XHEUURq1evFi9evEgHDx5M3n77bRIZGalfX8jGNGnSBEqlkjySDD59OvPeVcGJEyfg5uaGRsa0fCinoICFDiZMsI+xA7Cde1ISUJU4WRUoFApwHCeVdD4LrFxptXYkj7Nnzx4cOnQIY8aMsZ6xU5FZs5hAX0aG/pYErVoB8+Y9+rOrV1lIZsYMFioz0tg5e/YsNm7ciNatW3Pvvfce+vfvb/sCi0aN9CZcu7m50aysCl1gnn8eePNNvUNmZGRw3bt3N/65UlzMwkvDh7NcKlsbOwATIqxRg4X+TUSpVMohheRNwrDB07MncO2a1S9cWFiIxYsXi76+vmTSpEmc2S5gQ5QLU02cyLLtK8PDg3W6tTADXxRFrFixQlAqlWTatGmkadOmsHq82wxkMhlcXV3FO+W6NYWFrOpAzyLWsmVLFBcXE5Uxwo6Usnj3+PHsd2xGEp7Z8DyT7j9xwqTTynrmSO7gZ4Fbtww3pjWDDRs2iBcvXsSkSZNgsFGvuURFsVLzhQtZCXdVrFzJGgGXo9MxY8fDgxlDRiqaHzt2DHv37sWIESPQtWvXhyXgtqZDB7YmVRGWq1WrFp+WlvZwR/ruuwafSx4eHsLt27eNk7M+dIhVTg0ZwsLx9mTYMGbsmVBxKooiNBqNMwAD0vYSFTFs8Bw/bpPu4StWrBCbNWuGl19+mbOV6N4jpKYyt+mYMSy/pyIXLuitEDAGjUaDxYsXCxzHkSlTphCbuX/NxNPT8+EOKSuLLYJ6QlU1a9bE/7N33mFRXdv7f/c5w9B7VZCmqCA2VECxVzT2HlssuRpbEk1yb4q5au5Nbpop35+xJ7EksUSxxd4VLIjGhiAWVCx0pMMw5+zfH8uRNg1BxYTP8/AoU88AZ5+113rXu+zs7KSzZ8/qVwSr1dR23rjxc5u5VonXXiMTxRTjEzZ5eXkoKSm5/ewOqo5aQ8uW5DlVg0RERPDU1FQ2bdo0uFbBsO+p+fJLyp7u31+52aCoiMrInp70/fLllL3dsgWYP9/oTMWBAwdw4sQJjB07Fo0bN67hD2AAhYKytDu1a3AbNWqEe/fulX6Q7GyDguXQ0FDx5MmT4IZGeFy4QO///ffVGqT81Li4kBnljz8a/ZSCggKIolgwf/78EsOPrkOD4bqDm5vu2vBTIssyCgsLhfDwcP2GdTWJ5qQPDqYSV1oalbGsrGiByMsj80IjkGUZ586dg7W1NerVqwcTExMsW7ZMcnR0ZGPGjHk+AVwVcXZ2Fh88eCABEKFS0QKqhatXr2L37t2yjY0N7O3txTNnzqBTp05luwLKM3IkiSK3bXt2B28IQQDmzaPPtGiRUU/Jzc0tUavVz2dIXB0vlj59quQibAwPHz6UOnXqpHheXloAaA3z8iqdYH7nDn0fF0fZnHHjqLyblERaOj1i21u3biEnJweurq5wdXXFzp07eXx8PJs4cSLqVdHMs8Z45RWdo30aN26MHTt2CJxzsJIS2uRoaaZQqVRYsWKFWpZl5u3tLRYUFLBbt26hoS59zJYtZKy7d++zbbAwxMyZZOExdapRIunc3FwoFAojBn/VURbDAU+9ejThtQZ5rJ94MbqWt9+mfwcNohTi/v1ViqwBGpa5Z88eWFlZ8YKCAibLMpo0aYLhw4cLOgODF0xWVhZv2LAhRZfbt5O7awV307S0NGzbtg1du3YVVCoVj4uLk4uKioR79+7Bq6JBYXo6iSDfffeZGzYaRf/+lKlLTzfKPTo7O7sIdfXvvwfjxtX4zr2kpATPrAyvjyZNgIULaYBut26km2vdmjx4Ro6kjZvGmkMPW7dulQEwlUrFSkpKYGFhwaZMmQInI86dZ0anTiRcvnaNPmcZkpKSYGFhwRljDAkJVDp/7bVKL7Fq1SrJxsZGCAwMFOLi4iQA4uXLl3nDhg0r/0B++oneMyLixQY7ACUW3nmHOvOMmG+Yl5cHxlidBrGKGI44Tp4kHUwNTKfW8OjRIxicW/Ks2boVyM8HDh4ks8JTp0g4ZwT37t2DpaUlnzt3LuOcQ6VSQalUirVBr6OLR48eyU+6FZo313qC5+fng3MOPz8/ODs7s65du7KSkhLtgemYMTT8b8yY5yPuM4SdHaX09+whLZEBcnJy6joc/i4MHkxZ3F69auwlJUl6drpDYwgOptI0AHh4UElk3jwS8xo4H1UqFUpKSti4ceOYh4cH1I+bOV5kY8UTGjemgK1CwHPt2jW4u7vLAERYWpKwWAuFhYVo2rQpDwoKQlBQkCjLMmRZrvwD2biRZmKFhwP16z+LT1J1mjShQG7wYIPGuXl5eeCc143FqSKG60nt21MEXINkZ2fD1NS06m5xNYkgANbWwH//S1mBTp3I4nz3bvK00EFOTg4OHjzI+/TpwwCAMQZTU9NaIU7WxeMSovgkVb12rdaT3NvbG5aWllJyGZt3ExOT8p8tJgaYMYN2YsuX145gR0PPnpTO1+PnoaGwsJChbnDo34MtW2rcVkOtVrMXGvAA1HRw4watW4cOUVfWtWv6u7kArFmzRqpfv77s/th9WqFQ1I5gB6DshhZX7AcPHkheXl60Ydu7V2cXaIsWLcTbZTryKlUS1Gpg+nTa9O3ZU3uCHYAy5aamVJY0QGFhISRJqstQVxHDf+VpadTBVIPC5ZycHJibmxunnn9W/Pvf5M3z1luUDn7vPUp7L1xIu6U33iDl/owZT2bNPG45lwICAhAYGFg7a1c6EAQBhYWFsFIooD57Fr/t2iVxpZKbmJhoFjxmYmKCwsJC0U2XgJtzmvIcEFDjmogawd+fAtiTJw26SCuVSg7g2Q9YquPFs2ULMHkyefHUEJIkvdiA5+xZ6sxasoSytcHB1GW0fz/p2K5do4zPlCnlPMgOHz6MR48eibNmzaqdmzRvbzrmli3LZXlMTExYfn6+DEBQHz+OP52c5FiAa4I1zTp269YtITAwUPtGnnPyH9Non2pZYwkYo+vsTz9RE4YelEolRFE0bghaHU8wnOFJTibNRw2SnZ397EysDKFJAxcWUknL05NMverVI5+KM2fI1l0QqLMjJ4es3r/8En/GxCA3J0cMDw9/6YIdFxcXacOGDXz/jh38l/79YeviIrq7uyvs7e0VZmZmCgBienq6yDmHo7YJxH/8QZqfn34CPvzwuX8Go3n3XaMmsj++WNUtGH8Hdu4sHS5cA6hUKqjV6hej4VGrqRvRzIw2o7du0Tw5X1/yvxo9mjI+nJOe5+xZ6kodNQrIykL0yZO8V69eL+bYjUEQSJt0+XK5m0NDQ4Xo6Ghh9+7d8kZnZ37Zxweenp6is7OzaGVlJYqiKKpUKrG4uJh5enpWjuSysykDbGdHa1ltC3Y0DB8OHD1qUEJiZmYGxtgLFFy9nBjO8ISGVtnUTR979uzBhQsX0L9//+c+QBOcUxZg3Trgq69osQgLozLWxx9TYANQpB0SAuzYQc8ZPx5QKND6+nV4//ADTlpYSF3Dw0Xm40PGUS8BEydOFCMjIyH98os8PDWVWQ0aVOkxO3fuhImJiSQIQvmALiODFqB//vPZ2azXFK1aUXlSM5NIB+bm5iLqAp6/Bxcv1thLJSYm4vfff5d9fX25iYnJ89/4jB9PwVtkJOkQQ0Jo6vmlS2TExxitWTY2pc0Yt27R6BwTE8z56it29sQJFCxdCgtT0+cyVLXKzJxJmfVhw56UzJs1awaFQoHTkZFseEQEs4yPZxWdswsKCvDNN9+g0gifzEwKIAICSkd31FYYo7EW335L3ks6eOyPZP/cjusvguHffBXEvIY4duwYrly5gokTJ6LcIMtnTXIy+VKUlNAf/sCBdLuLC5XrWrWi+neylpIoYyRqHjECwpgxMP3tN/yZlyfkjhsHdO36dHO7XgAKhQJdu3ZFj969BSsdw2Dv3Lkj5efni3v37pUkjev0smUU9M6dS7uP2g5jtEPU49oKABYWFgrUBTx/DwICSONSTVQqFX777Td07NiRjR079vkGOxMmUGluxYryrrxffkkBT9u2ZA8xdSoNBi2Lry/wySeAlRVML11CSteu8pmFCzlv145MGZcuJS+a2oKDAxmK/vlnuZubNGmC1wYPZpbBwVrHhPz5558QBAG7du2S0tIeT41JTCSxemYmBRK1OdjR0KJF6bVKB3UZ6qfD8G/f05NOqBrg/PnzUs+ePVH/eQnFZJkyE87O9DmKi+lk0jBhAnU4MEYThA3tBBmDVffuaNiqFft91iwJx48DWVm004qOpizR/PnP9jNVF01qVwuBgYGinZ0dYmNj2e+//y7Jx49TTX3LFhLTvSx06EAaIz1OrBYWFqao2yH9PZgwoUb0O0eOHIGLi4vcoUMH9tz0L5rSjo8PlWOsrUuzrIsW0UbN3Jw0Snl5tI45OlKWRxteXugze7YQ2agRy7t4kc7vQ4doWOnhw8C0aVQSe5EwRoGbNpf327d1bry8vLzg6emJnJwc8eeff0Z2VBRdA958s0Y79J451takQYyJ0fkQMzMzyLL8HE2g/hoYDnjs7AwKQI2hoKAAeXl5YrNmzar9Wkazfj2NxhBF4Lff6A+p9IBoTpjGn8PU1KhdjizLuHbtmtyhQwcRZmYUje/fT0GERmR39ixljQ4epA6wGpjRVWNs304zY7TQtWtXjBo1CjNnzhTcV68WsidPBu/Y0fDg1dqGiQn9Xg8c0PkQMzMzZmJi8gJsVet47nTrVn6j85TEx8dLbdu2fX4pAkmi4P3UKWqm6NGj/P03bpT+39mZvm/UiC7uHTrQ8GQt7Nmzh/v4+EjWzs60Nm7eTC7DmsngnANt2lBZqaBA53rxTHF0pOxVxcDt2DGdXUweHh4YN24cJk6ciFamplw1bBjyr1zR6tdT6+nQgbRG2dla7zYzM4MkSbVUiFR7MXzy/vknCeGqSWpqKszMzPhz8d/55BOanTV2rG6x4r17JErWaHBatiytf+vh3LlzUCgUrEkFnwgAZHC2cCENtPz0U1p8Zs6k3WVhIXk/GNEy/Ux57TVAX9BZVASzxYsR9OmnbN3YsfzQ6dO1KFqrAiNHAps26ZxPY2ZmBlEUdY+Lr+Ovw7hxJOytJiUlJUyroL+mSUigtmlJog2Tttl0WVk0WHTaNPre2po8bFJT6V9PTypXVUCWZdy4cQNdunSpXJJr1IjKPh4epbO5jh0jZ/pjx6hrNT6+pj+tdgIDKSN/r4LVTPfu5WeGaSMiAr07d2ZnZ8+WVyYmcpWOwK9W4+5OOqzoaK13m5qaQpIki4ULF9bCVrvai96A59y5cyhp2VLvTtlYMjIyYGFh8Wxb0c+epc6FkJDScRi6SjHDhgG7dpV+7+UFrFkD3NU/bUAURUiSxGRZj42QKJJNurc3BTmnT9NC9P335F2zcSPtXkqe8xiU2Fh6X30dGosWAYcPw7JpUzRo1YqVm1D8MmFtTQGvjo6tx10Oz+HqVceLJCsriwTsFbMjT4FarX62M/KKiqis5OtL65cg6F6/vvySMjBlkSRaWxijfzdvpiyBFkoMrT1BQaRR7NuXMt/BwVT2mjyZtCXvvkvt3c8KxiigW7++/O1vvaU/Y56YCLz/PlBSgrBZs4S8vDymMVZ86Zg3j9yXtVxrFAoFGGMygJeja6aWoDfgOX78uLTiP/9B8r/+Ve1AJSsrC1ZWVs/WbHDyZNqZ9OlDQmNdcA588UVlC+9hw2hcgh6CgoIgiqIUExNj/M+kXj0KqE6epHqyiQkNZc3NBdq1ozLT89iF3L2r22I/PZ1q42PHAtu2IUeSkJCQwENCQl6qFvxyjBhBP+dHjyrdlZycjJKSEv8XcFR1PEeWLFmC+Nmz5eIayEyUlJQwKy1i2Rpj5Ury/1IoaOOhzwxw0qTKXi39+lEWRoOzM4mcyyAIAlq3bs327NkjGxyqqcHenjZJa9fS+cQYdW4mJZGJ3/jxFITU9AbO05MyS5oLPueUYfLw0P74Tz6hTe/Zs0BwMLZu3QpfX1/J4iXppK2EqyswZEjloA/kii/LsgJ1OsQqoTfgmTNnjtgvLAw8OpoZ3BEYIDs7G9bW1jWffpMkCibOnSPRsTEeMZ99Rh48FReU4cMpGDFAeHi4ePToUVZcXFz142WMAq3t26nTYPZsWpg+/phS0Y8eUc3+WWR/6tenLFNFJImEyY6OgKcnbiYlYcmSJbxp06ayn4GJxLUaBwe6gGjJUJ44cQJqtboW2azW8Sx46623YHXtGkuq0PFTVQoeC2ifSUl+6lQqNc+ebVzJ6PJl6sRq2rT87c2bU1ZGo7l54w0KeP7f/yv3sN69eyMvL4/FxcVV/VgZo8z1zz9T5+uECWTtcfUq0LAhlZETEqgNvro0akSjazRlrZwc0mI6V6hEc05C6127gJAQqMzNsWTJEunRo0e8b9++L++GDaDy3fXrlaQWW7du1fy3lvuE1C4Manh8Bg3CL3PmyPerqdzPy8uDra1tzf3xqdXAqlVUPvrXv0iXYmzL4cWL2gMKR0fgxAmtKcSyBAQEwNLSUoqKiqpexkqppAWjQwcKwtato9smTaIhp2fOkJdGTel+Vq2iz1eW69fJ3bNPH2DZMpw6cwYbN25Ejx49MGjQIPG5TbN/Vvj7UwBZJoOWWTo6JOuFHFMdzw0rKyuc+vJLdsnevlpatNTU1JofIfP771SCHzWqtDxlzPmWkED6looolfR6ZUdLWFiQG3MZLYggCOjQoQPbu3cv11uaN4b27Smwat6cskudO1PZvmVL6hr7z38q63CqQkoK8Msv9P8zZ+i1y6JW0xq6fj1w+jSybGzw/fffy9bW1mz69OnM3v4lT4AEBJBwuYKW52apPuv28z6klxnDZ1d0NGb+979CYmJitcpaBQUFUo2mgxMTKStSWEiLBRkxGSY9nXY8Y8ZUvs/dnSLpLMPXwQEDBoinT58WMvXM3aoSokjaIwsL2uV99x1le378kf4dNowCImPT0Nrw9S0/If3BA2rznDiRdm2M4dq1a7KdnR339fX9a4jhWrSgn22Z3Wx8fDwXRfEEgMAXd2B1PC8Gvvsu2I4d1YrcMzMzYWFhUbMl+f/+l8xNe/Qof14aomlT0uhow9+fgh4NNjYk2GaMdISPCQsLgyzL/NSpUzWnq2zYkKZ+L1pEGZeCAmp62bePApU33qDbqrKGDR5MZS3NZwkPL72vsJCCKUtLGkfBGJKTk1FUVCS0a9dOMDEiW1/rYYyMVK9ceXJTXl4eBEFQAegyf/78FzuT8iXD8CLg64sL4eE8OTm5Wj9YlUrFKwY8nHOcP38et2/fhtHloeXLqf3bz4/SplW1SP/4Y9LR6MLPD/j1V4Mv4+3tDX9/f75y5UpUN/ulFRMTyrqcPEkp3LAw2v2tXEmLY0ICLSrG7tBkmbI7mhJVVBR1PDRoQKaCjxk3bpxgbm4uL1u2DCtWrJAvXrxoWOBY23nlFbq4cI7s7GycPXu2QJKkL+bPn/+SKrLrqArpkyfjtoNDtcryjzWIla7UiYmJiIuLQ3Z2NozSxBQWUqk1Pp4yzVOmVO1ALl+mtnNdwt0OHWizVBZnZ9osTZ785CZBEDBkyBDh+PHjOHr0qPF6HmPRWENERNBnbNWKbisupjVn+XLSAWnz2imLry8FhMeP05rl40O35+cD/fvThnDZMtIZAfD390eXLl2wY8cO+euvv8bhw4f5Iy0avpeKwYNJinD/PiRJQmRkpKxUKvfPnz+/+q2HfzP0jpaQZRmrf/tNsre3F/r161etclRJSYlQscOhuLgYO3fuhIXxks2PAAAgAElEQVSFhVxUVCRYWlpyd3d3uWHDhmKbNm3Kp48PHKDSzujR1TMRe+MN/XNUOnSgVLMRDBkyhB0+fBhr1qzBqFGj0LBhw6c/Ln2IYmlQolLRAla/PnllNGpEJ3xMDC0AunY1d+6Qk7SJCaWe3d0p01VBB6BQKDBp0iRRpVLh6NGjwqFDh6Rdu3aJgYGBUrt27Uonrpd76TuwsbFBrU0fd+kCfP457m7ZgnXXrhUB+A7A3hd9WHU8e6KiopCYlITwiRNRnR3/Yw1ipduPHTsmPXz4UOCcM8YY3NzcJC8vL6Ft27bMxsam9IGPHtHMvo8+oot048ZPdyAeHlTi0SVo9vOjLHFGBpXoNXz9NWUJbt+mbC6Ahg0bYuLEiWzt2rXIzc2V+/fvLzwzQ8WQkNIsVkQEHePPP9OIn0uXyLOsWzft08tdXWlC+pUrVCp7+JC+Jk7U2pzSuXNndO7cWYiNjUVkZKR86tQp0c3NTQoNDRWbNGlSaTJ8Xl4ekpOT0aiGJgrUOIIAvPcepE8/xQ9NmxYWFBScLy4unvWiD+tlRFywYIHOO7///vt/u6WmskEbNgjmH30EgIKg7OxszSwPozl+/DhCQ0NZWcW8KIqIjIzEG2+8wbp16wYHBweWnZ0tnDlzhru7u1P9VZLoF/7113TRHjyYUqdPQ1QUid60lbM02NtTN1PbtkbV0318fGBqaoqdO3fCwcEBLrq6oGoKUaS0tVJJHj/9+pHh2Lx5pXPCrl2jYKgskkQjIuLjSR80bJjeNLooimjYsCHat28v+Pj4IC4uDidOnGAXLlzgjDHm4ODw5AKyfft26ciRI4Knpyfs7OyQmZkJExMT1Br9D2NAs2ZQbNqEKCsrQZblXvPnz39Je1XrqAq//vrrgn9s2QK3Dh1IDwEKXqr69xkdHQ1nZ2fBt8Jm6+7du9za2lqYNm0aGjZsCJVKJVy+fBlpaWlyQEAAvYEk0TyrefOoqykg4MmMqCozaRJpVnTJAwSBvpRKKi9pEEXSu3TrRmvG42DI2toazZs3Z/v27eP37t2T/f39hWd+3rq7U/anQwf6PHZ2tKG7fp3a8FeupLZ4TfbezY0yOr17U8DTowfdN2uW3jXaxcUFbdu2FYKDg5Geni6cPn1aOnHihJCbmyvZ2to+2YBfv34dGzduRElJiezr68tUKhXy8vKqfI17pvj5ge3ejXgzMymjpGT+/PnzTxh+Uh0VMTQ8lA2YN48J06aBc45r165h7969PDc3l/n4+Ejh4eGik5NxA1u1eVgwxmBubs6Tk5OZv78/AgICEBAQgMLCQpw7d07y9fUV0agReS8sXfqUH7EMsbG089GHrS1w/jwFDUa6QgcHB8PCwgLbt29HQUEBb9eu3fPRvwgCpcc7dqRWTIA8f27douDuo48oUGzWjDyGtm4l4fK2bVXKknl4eGDChAmCLMs4deoUO3XqlHTgwAGxUaNGUnBwsKhUKmFlZYVff/0V7dq1w+nTp9G6dWupf//+tadDIiAA+fn5cExJETJcXb8C8PaLPqQ6nj3jxo2DcsIEwNERmZmZOHDggHT9+nXR3Nych4eHs4CAAKOEyIWFhZK1tXWlv2dbW1sxNTWVC4LA3N3d4e7ujubNm7NVq1aJKpUKyv/9D9iwgTRk1W2Nz8qitclQJrWoiIaLtmpV/vYGDWg9UCop+Hmc6bC1tcXMmTOFZcuWyevWrZPHjBkjPBeDWADQXD807fTnztH6pVKRILp/f/L8Wb2a1rjvv6dOMH/jHSXMzMzQr18/9OvXT7x9+zYOHz7MVq1aBTs7OzkkJEQwMzODmZmZfOHCBaSmpsrZ2dksPz+fvfnmmzCtLSN1LCxQEhQE5507ze4EB68D8MuLPqSXEb0Bj7m5OVekprL8mTOxrn9/OTs7m4WEhLDg4GBs27aNLV++HGPGjIGPpq6qg6KiIsiyXClifvjwIYqLi1nZUtDly5dxPzGRD96zR8DAgaXDPasL59SyOXWq4cf6+NACVYUxGIGBgbC0tMSGDRtgYmLCW7VqpXMVVavVuH79Om7fvi0nJydzd3d35u3tLXh5eVX/BPvXv+jf/Hzyx3B0pB1ddDSVs6ysdPtYGEAQBISFhSEsLEzMyMjAwYMHhU2bNvGioiIxMDAQLVq0wLZt2+T27dsL0dHRYuvWreFeW6Yxm5rigqlpoXNqqnm6i0vQiz6cOp4PNjY2KJk7F6f8/aUTxcVigwYN2Ntvv42LFy+yP/74g1+7dk0eOnSowcC8uLgYFTdsnHNcuHCBBwUFPTnXs7OzsX37dqlNdLSo2rgRyrfeMuwMbCxZWbRpM1Saa9WKhMOztFQ9hg6lNdDKqpyPj4WFBd58801h6dKl0rp16+TJkyfrLW/dv38ft27d4omJibKVlRV8fHxELy8vOFR3hEebNhQgck4ZMVEky4zjxykIKiysUrBTEW9vb0yePFlQq9U4ceKEcOLECSknJ0c0NzfH7NmzhZ9++kkyNTXlsizj4MGDeOWVV2rNpu2qmxtXqlRM+TR2KHUAMBDwFBYWss3r18uhly4JHm+8IUydOvVJGnjMmDHCxo0bcf78ecnHx0fvH8XjsRKVdlIxMTGymZkZEwSBAcCmTZvku7GxQrdXXmENNm9m2xYvloo9POAtSSwkJKR6edajR6nme/u24XTyiBGkb6nidHAfHx+Eh4ez/fv3IzAwsFKtGCCH03Xr1skZGRlwc3NjHh4ewv379/nly5clzrk4adIk1Ih9vaZzAaAuCRsbEi5fuPDUAU9ZHB0dMWrUKCbLMmJjY+Hu7g4HBwe89957AkCTpSMiIviMGTOYKNaONSMnOFhutWgRUl1dN73oY6nj+XD06FE5IDJSyLGzw7QPPoCTk5MAUJdS48aN2YoVK0S1Wq31XC2LNtPBe/fuIScnh2k2fLdu3cLmn3+GX1AQutevj/j9++VYhUK2srJiPb29RfOqNlhUpG9fClJeeUX/41q3JnHww4dkelqRt9/W2pihUCgwffp08euvv+Y3b97UqWmJjo7mBw8eZE5OTnKDBg3E/Px8nDhxQtq9e7fYp08f3rZt2+pnuBmjz1lQQO7TSiV9pr17S8dpVAOFQoFu3bqhW7duYkpKCjIyMgQzMzPMmDFDBGgywPLly9GqVatas2kzbdIENjk58L179wUMN/troDeIyM/PZ7KPD3OJi0P//v0r1bzbt2+PhIQE0ZCXQ0ZGBszNzSs9qHPnzoKdnR1ftGiRfPXqVThdvy68/fnnaNOmDdv54YfSA3Nz0dzcXDx8+DA7ffp09drvAgKorGNM7dzLC8jM1O51YYDWrVtDoVBI58+fr9T2UFJSgrVr18p5eXl8zpw5wvjx41mvXr0wceJE9s4774iNGjXiK1euRLaOgXFPjVJJLamOjuSWOmyYzqF0VUUQBDRv3rzSzi48PBwqlUo+efJkrWmbHPL665b57u4lPQ4dcjP86Dr+CiQlJXGzvXvR/6uvKpXfnZ2dYWpqKt+6dcvg62grybu7u6NTp07ymjVrEBERwa2trTHrm2/QNzNTvPfee9jdrBmzsbFR3Llzh61du1aWqjNEmHPqNOzb17jHt2ype9p2QACZHHboQF45ZVAoFGjZsiU7cOCA1s4tTbAzZswYTJ06Vezbty+GDx+ON998U3z11Vdx4MABxMTE1Mw5v2YNZXNCQ6nVfvJk8uIZPpzGhdQQrq6uCHis79Lg6OiIFi1aICIiovpeRTWEv78/U06bho7Hj+fVrCHU3we9Ac9HH32EkU2bMmWDBlrv9/T0hCiK8l0D86d0tXTa2tpi0qRJwlATE5bz+usImjkTP8yciczsbCQkJIiDBw/GwIED0a5dO3bp0qVKz8/Pz8fy5cv59evX9X9KWaZW9CAjKxnW1iSMe8p2827duolHjhxh586dw4MHD6BWq58EOwUFBXzGjBmith3l4MGDmbm5ufpOTc+o6dWLFo+RI8m/SJYpRWyE39DTIggChg0bJp44cULIeobvUxZDC5Moijg7YEChT2LicDBWze12HS8Ds2bNEhv07q3Tt8bDw0O4cuWKwUhErVZXyvAIgoCuXbsK/xg5Eq0++giXYmKwfu5c6WzjxvzKlSuSh4cHXnnlFcyYMUNIS0sT8vPzK73u9u3bpX379kkG5z198QWtS8YKijt10n+/mxuNbrh4sdJdvXr1QnZ2Njt48CBu3rz5xGW6bLDj/bjTqyy+vr4IDQ1lFy9erF6P+9GjZMTasCF1dP3xB9CzJzWstGxJpa0tW57p+gUA/fr1e66bNlmWDa5hJYGBeOTg8AjAUL0PrEMrhkTLpGdZtEjn3Z6enmzLli28V69eLDAwEIIggHOO9PR03Lp1CwEBAcjOzka5Fk0NeXlgKhWc69VjObLMV6xYwe2aNkVSUpJgYmIi169fXwCA+/fvcx8fn0oR7bFjx6Tc3Fzh999/R4sWLaQ+ffqIWltP796lE7sqxoeZmSSkeyzuvXDhAr98+bIcFhYmVuzUqEjr1q3x4MEDnDp1SiooKBCKi4uZUqmEhYUFnz59utZgR4OFhYUiLS2NA6i5CH7yZNrV+fvTEMAlS+hn0aYNicH79KmxtyqLt7c3vLy85IiICAwfPlywtbV96teSZRkpKSnIyspC48aNn5Qg4uPjsXnzZmh2z66urtLUqVN1OkR7BwZaxAYG3m1z7tyrAH566gOq4+Xhf//TPnEcVNpas2aNaGFhIXfq1OlJ505BQQFu3boFc3NzuLu7a9UgAgDu3oWLjw8KGMPN8+d5pqWlGObszKOiosSRj7U7d+/ehYmJSaW29gcPHiA2NlY0NzeXr1+/zkeNGsWcK45N0HDoEFlQGIuLC/B//wcMGACAjBP37t0rubm5oXv37lRj3rAB+OkncjMuM1dQoVBg4MCBLDIyUr506RIvLCwUlUol1Gq1zmBHg6urK2JiYp6uhl1UROvul1+SY3NYGGXkraxok6bpMhUEyr4PHUrr86pVT9/1pgdBEDB06FBx/fr18PDwgJeXV7USK3l5ebh9+zY8PDxgZ2f35Pavv/5aLigoEDjnMDU15RMmTGD1tbXng9bUPaGhbgEXLw5ijEUYZ/5UhwbDAY8g0M5CB6NHj2YnT57Evn375MOHDzNPT0/5xo0boiRJ4JxDrVbzrKws5unpWfkK1KcP4OOD2+++i6gxY6Ti7GzFa6+9ht27d0vu7u5PHp+RkSGHhoZWOoliY2PF8PBweHh4YO3atViyZAkfPXo0c3V1rXygV68avzsCaIH87jtgyhScOXOGHzp0iNnY2IgXL16k7jEDvEJ1dhGgxfP27dto3Lix3mDn8OHDSE9PR79+/Wru7D17lgaUNmpE2Z3ffqMJvP/7H/lg2NlRK/urr+ofVviUjBgxQli1apW0ePFiWFtb88DAQDRp0oTVr19f5+KhUqlw+fJlxMbGSsXFxfzRo0eiSqVijDGYmZnxiIgIZmFhITk5OQnZ2dkICgri4eHhQklJCVavXs2WLl0qTZ8+XWvQ4+fnpzjcsaNvm3Pn6oExEZxXa+RAHS8BVlYkftVCgwYNMHnyZGzfvp2fP38e/v7+8oMHD5CVlSWYmprKSqWS9evXj2nTIGLHDmD8eKjT07Hu1VeZnY2N1CM0VLSwsGCMsSdu5VeuXIGHh4eaMVbuBIuLi4OjoyP/xz/+IWzbto2vXLkSvXr14m3btmXl3is9nSafV2XD0LQp+dukpCBdFPHTTz/BxcVFPHnyJLp161b6WczNaS0YMqRc0PC4Y1YAaLNx69Yt2Nvb69UXpqSkYMeOHbxNmzYyHq99RpOVRUHOsGE0E0tzLGo1NZBoTBNv3qRMzwcfkJ/RzZvA/v3UYFID2sSK+Pj4oGXLlvLGjRsZ55z5+flJAQEBYsOGDXXOVeOc486dO4iJiZHy8vJ4VlaWUFxczB7rwHh+fj5TKpXcxsZGdnJyEtVqtfDhhx9CFEVERUXxNWvWYOzYsczT07PSazs7OyPF29s03dHxrnNGRisA1RsS9zdDrw8PgAVISCAR7z//qfNBDRo0QPv27ZlKpWI5OTlC9+7dMWDAABQVFeHatWs8LS2NhYeHl6aEe/YEb9IEeVOmIKVrV5w7f55bWFiIOTk5CAoKwp49e4R+/foxOzs7qNVqHDlyRAgPD69kHJaamirdu3ePBQcHs+DgYCE9PR179uxhZmZm3N3dnc4YWaY0aKdO5P9gLJ6ewPHjOGVqKh+OjGRjxoxhZmZmmhkmzNLS0mifBhMTEzg7Oxv0/fj1118xYcIEeNTkifvPf9KCMHIktbOuXEndWy1a0MIycCDw3nu0yzOUBn8KRFFEu3bthA4dOkAURRYfH89Pnz6NqKgolpqaKjHGBBsbG4iiiJSUFBw+fFjaunWr8ODBA8nT01O0s7MT0tLSuJmZGSZNmsR69OjB2rZtC1dXV6GkpITn5eWhS5cugo2NDRQKBVq0aMFiY2Nx5MgRnpyczOzs7MrtrK2trbH3/HmrkKiomwpJeoQFC/TXY+t42VmAgQOpJbt5c60PsLa2Rrt27QQvLy/cvHmT+fv7s2HDhiEsLIwdPnyY3bt3T27WrBlv1KgRrSlLlgA//ojiWbOQMXIk4m/fRlJSErexsWH29vYsKSlJEgQBmk7NQ4cOSQEBAYqK57VCoUBMTAw6derE/P39mZubG3bv3o1bt27J/v7+whOx/8yZpFkZMsT4T80Y4OyMRzduYOWxY/D39+ejRo1iJ06cgLm5OQoLC0l317w5aWLWrqWSv5ZNCGMMDg4OMDR1/JdffpEaNmzIwsPDjTcwzMwkEbKbGx3HuHHlj+HUKbrtvffo+6QkMlD95hta2958k+Zoffwxmco+g0xP48aNWceOHZmHhweSkpKEc+fOSceOHRNu3LghlZSUCFZWVjAzM9PYqfDNmzfj4sWLsLGxYfXq1RPz8/ORm5vLXnnlFT5kyBDWsWNH+Pj4MFNTUyElJUUKCAiQGzZsKDDG4OnpyRQKBd+xYwe7efMmB8BcXFyeBKiMMaSkpqpV167dbnDvnhUWLDhV4x/4L4zhLb2/v1H+EYIgoEuXLuVuCwoKwunTpwU/Pz/J1dVVTN2zB5GFhZKXJAnR69axzHr1oFQqZVNTUz506FAxKSmJX79+nYmiKHt7ewsAkJCQAAsLC25hYVHpL7lVq1bi77//LgNggiBgwIABTNMqGhwcTI+XJHLzbNfOqB8IQBH6g+RkFKSnyzc2b2bj581jDRo0gKmpKaKiotipU6ekQ4cOicOHD0dNThMXRVGrm2u1qNiNMW0apYA//pgW7tOnycU6M5Mybl98UTM2ABVQKBQIDg5GcHCwAFBHS3R0tLhr1y6psLBQtLKy4gUFBax+/fps4sSJcHd3f7JD7N27t7B161a+YsUK9OzZk7dr1441adIETZo0qRRBKpVKTJw4UYiLi0NsbKz0888/iwqFQnZxcWF9+/Zlrq6uaNCgQfGfrVtnh545EwrGIuvSwn9xoqL0u6s/xtPTE2PHji13myiKcm5urtCpUycUxMbi4s2bPOPKFW5+965w8ssvoVQquVKplFu1asVSUlKEwsJCHhsbKw54XEoCgNzcXNZAiw6yQYMGYIyxq1evIiAgAH5+fpg5cyb79ttvxcLCwtIMwj/+QW7DVSA3NxcPHzzAg/370fytt7gma2xtbS1FRkaiqKhIaNGihdy3b19RMDenqer169MG6ClRKpWCra0tMyrYkWXquKpXj+Ygtm1LnaQVCQsrNwMMr71G+sqZMykjNHcu6RPnzgUWLKBN3Zw5T/0Z9OHt7a0p54k5OTk4ffq0eObMGenAgQOipaUlz8/PZ9bW1nJYWJjYtm3bJxvcHj16sKtXr2LHjh2Ij4+XBw8eLHh4eMDDwwNhYWGVMmHt27cXPDw8EBsby48cOYLdu3czW1tbqV27dmJwcDAaN25sfjA83K/DqVO2YMwWnNdwl8tfF8MBz4MH1N68f3+VX9zOzg6iKMLZ2Vn88auv5AkffijwRYsEs8WL2dgGDTS6nicXLUEQ+Pnz51m9evWenDFxcXHw9PTUmiLNysrinPNyZ9e9e/fkgoICYdOmTWo3NzdFs4gIOBrhg6FJQ165ckW6evWqKMsyb+vign7duzPHx4tVvXr18MEHHzAA4pEjR7B9+3Y+e/ZsVlPmVAqFQs7NzRXK1nerxXffUe1/587S29q0oQXC3Bz49lsqZzVuTLXwbt2ohd3dncZXPEN8fX3xWAslPnr0CNevX2ePO9wqBTGPBdDs+vXriIiI4FevXuXDhw8XdA2jVSgUaN68OZo3by5KkoSkpCRhx44dPDo6GgMGDEDTpk2tjwwe3CD0zJmuAHYCqKYjXB21mrffpjWsc+cqP9XS0hIODg7YtWuX1PnNN0XTgADu+N//Cr6+vuhGWVuGx2vTpk2bkJiYyCRJ4o0bN2YAkJOTA5VKJbi5VW4MzMvLqyRSjYuLA+ccO3bskFxdXQWvO3dYw3v3oFi40OCxPnr0CLGxsfzSpUs8MzNTqC9JUtemTUWfvn2frJFvvvmmCFAjybJly4QmTZpQ+/kff1AL+L17T10asra2ZllZWRIMlbMkiTZW27bR2rRihfbHqVQ0KuPPP8lgFaCRFN27UxA7fTqwZw/pkCZPpg62Tz8Fxo6lwOcZDg+1sbFB79690bt3b1GtVuPy5cvMw8MDzs7OWj97QEAAfH192dq1a+XFixdj2LBhekcRNWjQAA0aNBDCw8ORmZmJqKgo8cSJE1JwcLDo6+uLPEFopxbFDxWSNBfA/Gf1Of9qGBa1MAY85dC9Y8eOwf36dTSfOBE+QUECy8nBsDffZM2aNdMqYhZFkT98+BChoaFPTtCHDx+qtfn8ZGRkYO/evWzQoEHlAp5x48YJXbp0gampqeLs2bNQ//67Ue3lFy5cwPr163lWVpYwaNAgvP/++6znuHGC46pVWh8fEhICQRDkL7/8EkuWLJEPHTrEDXZaGMDExETOza1Bi4WOHSt7CdWvT4HNtWuU5nd1JSdTSQLef592SmFhtHA8J+zs7NCuXTuDXih+fn6YM2eOwDnH4sWLEW9E5lEURXh7e0OhUHBZlpGZmYkLFy7InPMhoIXio5r5FHXUWtRq3cM29SDLMnKzs4Xe77wDq7g4QfHnnwg6dEho3749XF1dK5Wozc3N8fDhQ7i4uHDNfZcvX4aTk5Nc0YuKc45NmzbJbm5uUtmW6DZt2mD48OFwdXUVHz58yO5s2oSi2FiDx1pYWIglS5bg4sWLcrNmzYT33nsPk/79b9Hn8GFq2qiAvb09vLy8pI0bN+Lrr7/mEadPS3lLltDYiqdMeNrZ2SE7O1v/k//zHxIfT59OQYu+zJUk0eiJimaGPXqQrsnEBAgMJC3VxYuku/zjD9rI9elTqeX+WaFQKNC6dWvoFJw/xszMDFOnThXDwsKwceNG7Nq1SzJmoK2DgwNcXV3BOWcqlQqRkZFgjJktnjXrPoBBYKyGdsh/fQwHPPXrU2tgVUlNReaOHZL3kCHcdepUdO/RAwoDxluCIHAzMzNetkyUl5cnVkwHS5KEDRs2cD8/P960wvBLGxsbtGvXDoMGDYJZbq78YNMmusAb4MyZM3JISAgbP348a9KkCd2omUquxbPGwsICc+fOFd955x0EBgYKkZGRTKVSGXwffZiamrK8mjpJ8/KA3FxKAVdEFKktHaCd0aRJ1LEB0CKyfz95dKxfb3gUx3NGqVRi0qRJQo8ePbBlyxbEGnExAIAhQ4YIV69exdKlS2FlZQXOuQrAcQC3wFjN1SXrqH0sW0bBfxW5+sUXsLKx4Y6zZ6PvjBnMUUuWpiwaY8F27do9WVdv3LjBtXV1RkVFyZmZmRg3bly5SEgQBAQEBKB3796wt7NDWs+esuUmwz6ZsbGxsLS0lGbMmCF27ty5tBw2YABlQbQwZswYxQcffIABAwawhIQEIXb4cCp1p6QYfD9tODo6Ijc3V/s15dgxCkzc3amUbkwG5sQJEidXxM+PxuSUlFBm+v33SeujWTsXLqSMXnw83V7LCAsLwxtvvIH4+Hi2fv16o1reW7duDQcHB3z55Ze4fv26bGpqWpJtb58K4N8Ahj3bI/7rYDjgSUioWjvkY4o+/hjtduwQg3v1Yvj3v416jkKhYGWHb6ampkKSpEqtmgcPHpSLi4vlYcOG6SwWR0VFoVdEBGupuZDrITMzExkZGULHiouiKFKm49o1nc+1sLCAiYkJnJycZEOiPkNYWlqKOTk5NaMnOXiQUrva6NWrdCI8Y7Tj2r6dngPQNOWuXWm3NHFijRxOTePk5ATGGLRpI7RRr149zJgxA7Nnz0bfvn0FxlgxOC8EcBNA72d6sHW8WNq3p+7EqnDnDvw++QQdW7Rg4rx5pTOf9GBlZQVRFNGszEiajIwM2cvLq9w6+/DhQxw/flwYNWqUoCurWVRUhKItWzDqhx8EZkR36dmzZ+UWLVpULqcY6L4UBAF+fn6QZZk1atKEhMvBwTSzq4o4OzsjLy+v/MHm55M+cMoU+nfyZOP1lGPHAidPVr69QQMgJ6d0XQ4NpQ7UTz6h75VKeu69ezQouqwGqJZgZ2cHzjmaNGlilMraxMQE48ePF6ZMmYIZM2YIlpaWBQBUAGIBtKzzFTMOw2eSpyeweLHxr9inD/Dxx/ijZ0+c+uwzqSpBwIgRI8QRI0aU0+84OjrKZUVwt27dwrlz54Tx48fr9FoBgOjoaIlPncoEjbpfDxcuXOBOTk6S1jZDtbp0MKcOYmNjZSsrK+H27dsoKioy+H66sLW1xeMaePUZPJj0V9po2JC6M048Hrjr7EzdDtnZpbs7xoBffqHujVdfpf/XIrZt2yZ17NhR1urvpANbW1tourlkWbZcuHChEsA+AK51aeG/MF9/TcZ1xrBxI3OHzJcAACAASURBVNCsGdItLfH1Rx+hmQ7/Hm20bdsWEyZMKFfqKiwsFMvaZKhUKmzYsIG3atUK2tqONRw9ehTFjRvLip8MW0VlZGQgMzNTCAsLq3ynkxMFDXoM7RISEkp9rmQZ/NtvaWp5FUv0rq6uKC4uLu0BuHqVOj8PHqRsS1U3T2lpurPzb79N+kMN//43bczLBkiDB1PgdvgwldCqKTmoSQ4ePAgTExNWlUHTJiYmqFevHhhjMDExYQBcwPlNAPcAtHxmB/sXwnDAwzkZQhli6VLSysycCUyZgluJiXJwcHCVvBhcXV1RVojavHlzZGRkCKdPn+bnzp3D6tWrpd9++w2dOnUyWC8NzswUUo4f59xABoBzjvPnz0Obzw8Aaml/9EjvawQFBQmFhYXS5s2b5a+++gr79+9/qqDF3t4e2dnZ1e+rzM6mVK8+7VKHDtShpaFjR/K7+Pzz0sWRMUo9jxhBwVFy8lPX92uS48ePQ5ZloUOHDk81X+2xpYASwChwngLAGkCPGj3IOmoPxcV6L/gASAOybx8QHg68/z4OHjzI/Ro3loy1ngBIy1ExiLG1tZV27twpX7t2Ddu2bZO+/fZbKJVKuV+/fnpfq2WzZmgZESGkGNEFqnfDpumC0uNK7ObmBg8PD75v3z5p6dKlWPzgAS/ZsIGChCqgVCohiiLyExNJC2RuThnykSOr7vHVty9NSNdF8+bAnTul+lJLS8rkffEFefNosLcHevemtevOnVpRoi8oKMC5c+cwcOBAZsiqRBfe3t42pqammnrfKQDTwVj15k3+DTD8A3rwgKJpXXBOi8miRSRCGzgQOQ4OKCwsFCrOnqkqDg4OGDlyJKKiouSoqCjJxcVFnDVrFjoZ4RfjnZjILJOSmKGO4xMnTsiyLPPmOjw60Lw5ZTnS0nS+RlBQEN544w3x3XffFWbMmIFz584JZ86cqXJkcP/+fW5cT6cBZJlSuvq6x0JDaREqK+b8179ocayoixk6FFi+nNpjhw9/oUGPSqXCyZMnef/+/ZkhkbMu8vPzkZeXZwJg9cKFCxmAbwB8XDef5i/Khx+S9YI2NH/LS5ZQxsDWFhg/HsnJybKtrW21LyCvv/66WFxczHfu3Cnn5+cLQ4cOxcyZMw1uBO1SUlA/KQm5BkStKSkpiI6OZp07d9b9mm5u5bMhFd/Lzg4TJ05kc+bMET/88EOYmprKW8zMZFmzthtJ4s2bcH34EOKuXWRW6+Ji/OyvirzyCg1B1YWrK2WPyo4Vat6cvIquXqUOLw0ODqT5iY0lwbOhUUTPmE2bNsne3t6SZujs0xAVFYXi4uLghQsXBoLzEwDcALSpsYP8q8I51/fFuSxzXljItXLnDuc2NpxnZ1e6a/fu3fx///sfv3fvnvbnPkMepaXxbz/8kCdcu6b3cefPn5c/++wz+cGDB/pf8L33ON+61ej3T0xM5J9++ik/evQov3DhAler1Qafc/DgQf7555/zzMxMo99HJ4cPc27Ee/KRIzm/fLn8bZmZnAcFcf7nn5Ufn5vL+Y4dnO/cyXlsbPWP8yn47bff5J9//lmSZblar7NgwQLNV3fOOTjwFgcmcv3nQ93Xy/fFeVGR7vOheXPOP/us0s1JSUn8s88+kw8ePFjtv7WnYe3nn6s3/Pab3pM4KyuLf/HFF3z37t36X2z/fs4nTTL6vSVJ4t9++620fuVK+VHbtvyRgXWUc85TU1P5lRYteG5AgHFrjz4uXOA8JcXw41as4Pz//q/y7RMncv7tt9qfs3075zdvcv7LL9U7xqfkzp07/L///S9/bKny1Jw8eZIvWLCA/+c//znHaf0K4MBv/MWfb7X6y/AOJjm5sgNvYiLNO/H0JDGgFh1F3759ERISgjVr1iAxMbGm4jOtXLx4EcuWLZOWL18u/fzzz4iaOZNPXrcOfo0b63xOQkIC9uzZw4YPH87q1aun+8U5p64lAx1mZalfvz5kWUZMTIx88OBB+fvvv+cJCQngXHtm5Pz58zhz5gzGjx8Pe3t7o99HK7JMnRlxcYYfGxRUKlTWYG9PO+IjR8iXoyxWVqWvPWTIc6uJnz9/Hhs3bsSGDRuQmJjIBgwYYLyTqw7Gjx+v+e+hx/8eBdClLi38F2TChPI+YrJMnT0qFXlVzZ5d6SkeHh6YMmUKi4mJYbt375Z0nbs1QUZGBtauXSsvXbpU+vHHH/mPK1ZgyKefioP8/XVmbQoKCrB69Wru6ekp9zWURbl4sXzGwwCCIKB58+a4lZrKkgF+4JNPcOjQIVlrF6paDdXcubg3cCDPmjtXtrp4UecYD6OZNw+YNcvw48LDKXNV8XejqTZoK18NHEglzq++Ku1UfcZkZmZi06ZN+P3337Fhwwa5U6dOcnW91kJCQgAAkiQFLVy40ANAAoCHYKxt9Y/4r4v+xX3QIKqRlumcQkkJCdC2bqXvaWaUVrp164bu3btj/fr1uKan0+lpiYuLwzfffCPt27cPAQEBQosWLUQfHx849OsHcx3+OQBw//59bN68GeHh4fqdkh89Aj76iEYwGDlgU61W45dffpHt7e2lOXPmCO+8844QFBTEIiIi+Jo1a+S0CqWxmzdvYu/evRgxYgR0DYyrEoJA7ZmBgYYfO306XQgqpq2HDaNSly6zs/feIyH3J59QG+szvBgAwIULF+T4+Hhcu3YNQ4YM4frm+RiLj4/PkwrWwoUL5wG4BOAigKBqv3gdtYfTp0mUr2meKCmhv9fdu2kd695d51BhFxcXTJs2jcXGxrKIiAjJ0CTrqlJQUIBVq1bJy5Ytg5WVFW/Tpo3YuHFj5lW/Pi9ZuBBmOhzPS0pKsHbtWtnKykoePXq0/jV88WL6jEuWGH1cMTEx/MyZM2zixIloEh3NuvbqheJ16/Ddd9/h8uXLpRu348ehjotD7NmzPG3oUB42YYJQI/P4du4EjGjFR4MG1HF69Gj52x0caPREjx7aW+z9/UmTaGtL6/oz1vWkpaUhLi4OV69ehaOjo9CxY8dqb6oEQUCPHj00f5BJCxcskAAcAGDEwv/3Rf8PvqiIdvHLltH348ZRt0Pfvkb7G4SGhqJfv37YsmULLl26VGNXxoKCAmzbto2HhoYKc+fORefOnVn79u3RtW1bhEZGMpMeujWox48fl/z8/BAUZODa9sknwMOH5EVkBLIsY9OmTXJ2djamTZv2pIusa9eumDt3LjMzM2MrVqzA43EKSE1NxaZNm3jv3r15jY2o6NGD/C6MwcaGhu7FxFS+b9Ysuljoys7Z2ACjR5Ntwf37lbNBNcigQYMEgNp+/f39a0RnwxhD9+7dNd/+Z+GCBR4AEgE8m9HxdbwY5syhoDw4mIZp2tnRmnbpEs2TM4CdnR1mzJghJCYmsg0bNsjVNRcty/r162WFQoFZs2Zh6NChYnBwMDp16oSely8z+9K/zUrcvn0bubm5mDx5sv5UysWLNEbGxUX72AYtXL16Ffv372ejRo2iid2MwcnFBf2iooRunTtjz5498srFi+WUo0fBX38de1eskM9PnMh7zJ1b7awrADIN1GWnoY2gICA6uvLtDRoAo0ZR1522QNXamta+Jk2AK1doRtczokmTJk+acSp28VWHli1bPnkhxtj/AYgC0BuM6TeM+huj/ye/bx+19fn4AGfOAJ99VurfUgVatWqFIUOG4I8//mDR0dE1EvRs3LhR9vb2ljt06FBevHr+PJ0AetKqBQUF0DpRXYMs0yL5+utke27gRC4uLsbRo0flb775hicnJ/Pp06dX8tdQKpUYPXo0mzp1Ku7evYtvv/0Wq1atQqNGjRAUFMQKCgoQFxeHqKgoVMvAsFs32sEYS5cu2ndBZmYk9Bw5Erh9W/tzAwJoQVm7lnaRejpBqoOtrS1EUUSnTp2QWoOeGi4uLjA3Nz8LAIyx2KsBAbsBdANj1U8h1VE72LqVzodBgyjAiYrSL+bXgpWVFWbNmiWkpKRg3bp12ks7VeTq1atISUkRhg8fLtiWnYLOOQUpejosCwsLYWZmJuu9cO7dS+Ldw4eNGhURFxeHVatWyVu3bsXAgQPLjz3o2xeIiUG769fxbps2wugvvxS2b92KL0eNQqyHhzB8+HABAJKSkhAVFYXk5GTDPwBdBAXRmmQsoaFkYKgtEH3/fVqTli7V/lyFAvi//6OfT/fuOg0aawJLS0vZ09OTp6amVhon8rRYWVnBxMSkmDF2hHM+a+GCBfVBY3Kq7rL5N8FQFxPH3r3kZ/DhhzDWQFAXiYmJ2LBhAw8LC+OdO3d+qjA3LS0NGzZskIqKisRp06ZVHlGRlkbeE3qClB9++EFu2bJlZaNBDTt20E5jxw7aCRhg165dUnx8POvdu7egs9urAl988QVnjEGWZajVagYAlpaWEgAmiiIbO3Ysq3Lp5tIlakfXkaLXSnw8la5+/ZXKYRXZsIGctvWlmGWZyn5ubmTypafM+bScPn0aBw4cgCAImD17ttbRJFXl0aNHWLJkySPO+S9qtXqWQqF4/6N5824A6APOp1b/qOt44UgSh78/GeDdv1+tl1Kr1Vi6dKmkVCrZa6+9JlSlZV2DLMvYunUrj4+PZ6+88grXTFR/QmYmrTl6XIijo6Nx5swZefbs2drX0IICstNYvNioUvyDBw+wevVqtG7dGt26dYPWz3X1KpWPpkwBgoNxyNwcp0+fhqmpqVxYWCgwxqBUKmUrKys8evRI6NevX+XPZoicHNpcGZF5K8eoUSQ90Pa8+/epLf34cUDfenr+PP3cd+6k7La2Fv9qkJOTg6VLl/Li4mLWp08fHhISUiOZ6uXLl2cnJyfPB/CdUqmM77dhQ2jLS5fOAmgJMlatowyGAx6AfA3MzalWOmZMtd7wwYMHWLt2Le/cubPcoUOHKqnbYmJisH//frRq1Urq0aOHWGloZ0EBCanj4vQOvzx37hzft28fGzRo0BNXVFmWwRgDW7WKnIZDQoxKAxcVFWHRokWYNGmS0RqcnTt38ps3b2LGjBlMqVQiOzsb5ubmUCqVTxbEhIQENmjQIHh7e8Pc3Ny4jumOHYGmTWmHWBXCwmgAn2akRlk4J8fl6Giag6OPI0coK3bsGFnI13CXt0qlwurVq2UnJyc+dOjQaiojqUPx008/LZEkaaggCNsByM7373d5Y/nyfwOYBs7vVP+o63jBcBQVUWn60CHylCqbUakisixj5cqVklqtZjNmzKhSGUelUuH777+Xra2tMWTIEEFrlrl/fwpW9Myyy8zMxI8//gh3d3d5zJgxT4IeWZYhXL9OGdf33qPynRFs3LhRkmVZePXVVyt/GFkma5IFCyiLMn8+0jIysHL/fowePRq+vr5QqVQoLCyEJlMVHx+PrVu38sDAQLlLly6ipaUlKs4S08ovv9BxP3xo1HE/4dtvKaCdN0/7/ampZKnxyy/6N7BZWRQ89elDMwVreP1Sq9WIi4vDzp078c4776Amhk7v2LGj6M8///ynUqn8WJZlJ8bYdx9+9NFtACI4/7bab/AXwziFWcOGZOM9bx55I1SlZFKB+vXrw8nJiRcUFFQ5w6Opg4aEhFQOdgA6IRctMjjpu02bNszMzAzbt29HSkoKJEmSY2JiBCeVik/4+Wdm8scfEIwIdtLT07Fhwwbu5OQk1a9f32i1XmJiohwaGipqjMLKprQ1k8HPnTuHnTt38pKSEibLMszMzGBpaSlbWVlxFxcXdO/evfLPIDLy6QTE8+dT6v/99yvfxxgFRD/8QLotfc6z3bpRlmnPHmDLFgqiqtDdpo+HDx/i3r17SE9PF1q2bFkjOWHGGOzt7QvT09MfKRSK9SqVamyau/uRi82bf9Ty8uUeAAzb3NZR+zEzI03Hli20jn311VO/lCAI6NSpk7hr164qP1dT5g4MDNRdUp88mTZbenBwcMC0adPw888/sxUrVkht27YVT506JWdlZQlvbNsGm0GDoDQi2FGr1di3b5908+ZNcebMmZUfIElU6nFyAjZvprXg+++hXLkSdlOnyr6+vgJA5fqypodNmzbF9OnT2dq1a3H58mWo1WqYmJjA3NycW1lZyba2tujQoYPo7u5e/v3GjauafkfD1Kn0PLVau8GhiwuVvj74QP/UAHt7ErNnZZHma8kS48dgGCA7Oxu5ubnYv3+/7OrqClEUa0TI4+bmZmZqatpGpVJN4JzvATBn1cyZy6f88MMjxpgSNDOwjseICxYs0Hd/6Z1OTjRk8v59csDs3Pmp3lCWZRw4cAA9e/Zk1kaUi8ri5OSEq1evcs458/LyqvyAr76ierMRpSAXFxe4uLhg//79UKlU8nBXV8E7Npb92qWLfOb+fVhZWTFbW1utE7w55/jzzz/5xo0bmbe3N8aOHStWZaeXn58vXLlyRdZnK16/fn107NiRde7cGSEhIfDx8YGjoyMzMTERbty4wc+cOcP8/PzYk9Edn3xCi5IBB1etCAKVrQYO1L6rMTen3/f69RTs6vu9KZWAlxdpCFq2BAoLjRZMaiMvLw9RUVGIiIjA7du3MXz4cLRs2bLGtl5JSUlSamrqeUmSPlYqlX5qtbpVsodHN8/bt02t3313NxYsePpZIXXUBhYAoL/x0aOBtm2Bd96hC1lVSr9l2LNnD/fy8pIbN25cpYsWYwxWVlYsMjIS7du3r/w3vGcPuaQbMejU1NQULVu2ZJGRkcLNmzflNn5+wuDjx7GjY0dpnyAIRUVFspOTEzM1NdWaHU5LS8Pq1at5eno6pkyZwsrZYRQXU4no4UPS8L31VqkmMiQEoqsrom7cYE1bt34yMLUiZmZmCAkJETp16oSwsDA0bdoU9erVYxYWFkJubq5w5MgRWFtbczc3Nzq4zEz63bzxhvbSuj6UShJoW1lRYKuNtm2pQ+/CBTIo1IUgkGuzWk3yCAcHCoSqQUxMDLZs2SKfPXuWBQYGyiNGjBCf1jS1IiqVCnFxceKHH374zvHjx6MBjM21tGxrm5/vaJeRcdNk3rwX67JYy6jaT93GhrIn69dTLVeff40OEhISIAiCfu8bPQiCwEVRrHwGSxJF76++avRrybIMc3Nzaerrr4to3Rr4178we/RoITIyEnv27JG3bt0qiKIIa2tr2d7enjs5OTEHBwfhxo0b8t27d9mwYcOMHv5Wls6dO+P06dNCWlqawREZAC0enp6eT2zre/bsKUZERPAVK1ZgxIgRaNSoEdCqld72ypKSEqSnp4MxBkEQYGpqWppZ8vGhUtjt26QB0oanJ3WrzZlDuh59AZ6lJbBmDZUQ3noL+O038ObNn8rI+I8//uD3799n3t7e8oQJE2qmE6QM9erVs0hISOjwwQcfrFi4cOF4pVLJCpycRiUEBPS50K7df/oBlU1a6ng5USjo4pWeTtmeGTOe6mWSk5O5XmdjPZiYmOju0omIoM1EqUeUXkxNTVFcXIx//OMfgstPPwGyjNc++EC8e+8e/vjjDx4dHQ1ZlmFpacltbW1lJycnODo6irIs88jISObv749BgwYJ5Y4nKorW9evXaUxQxXlfjMFk4ED8Y9o0JNjYyA7/+pfB6EShUMDV1bVcVuvatWuIiIjAgwcPpPDwcFEoKSFfHT2lr7S0NEiS9GQNc3BwKC2VdexIv1ddmJvTGvfPf1Kwa6grdsYMCvxatgTGjAH/+OmM2FNSUrB37144OTlhzJgxcHd3r3YpviwuLi5QqVR+CxcuNJ0/f/6eTz755BVBELYlBAU1ybOy+n9R778f+f7nn2fX5Hu+zBin4amILJPI9dQpKnVU4Q/h/7d35lFR1/v/f74/HxhGQXYQRBANQRYXDEFBBcXdcstMKbeO3VyvWaYe60qkXb3ZrbTrN02vlZqGaykmiiKiCKFCCKIECiibC8sM+zCf9/v3x1sUZYABh37lncc5Hs/5MPNZ5jPz/rzW52vXrl3M0tKSvvTSS2268Vu3bpW8vb1Fv6fDvqWlfLFoheV89OhRSX3zpjDlxg2CTz9tlNunlOLBgwfIz8/H3bt3UVxcDKVSKcnlcsyYMUNsS9EiwNMz3377Ld58803Y2bW9gzAxMRGnT5/G8L59qZ+Hh0CakCpXq9XYuXMnLSkpIYIgMMYYUavVxNXVVRo7dqxoYmLCByx26gS8/XbTB5QkXpxcVcW9ZS3I2bWLnbt5k3W/do0MPXCAtDYvvnHjRjp58mTBxcWlVe/TFqVSif/85z/VdXV1vUJDQ2+HhYUJMplsT5eysqnDDx4U982Zs62a0sWhoaG6FWHR80fReA1jjAuqTp/Oi/Gb69h8itu3b+OHH37AypUr29RenJycjLi4OLp48eIn36xS8QessbHWEY68vDzs2b2brVIqCaZO5dpbT6W5KyoqkJeXh8LCQjx48ABlZWW0traWjR49WnxCCoMxbnDVNzA0EwWhlOKXt96iNh4ezG/ZMrHVEZmHlJaWYufOndTc3BwhHh5Ch2bS5fHx8Sw6OpoYGhpSxhh56Kxi0qRJxNnZmdeZvvsuv4bm6oUuXgSSk7nDrsX6XXHrFmL37pUMLl4U+61dC9sXWze94cCBA6CUSq+99ppODZ2G7Nq1q+r27dsfffjhhxsB4OOPPx5nYGBwaM6338ojR4++fcfGJiA0NDSvvY7/V6Jt31RB4Bb1nTs8BKtl3cjdu3eRn58PLy+vNt18SikqKyuJoaYOhokTeYthK7C2tobz3r0k9fZtqtTwIBYEAba2tvD29saYMWPw+uuvY8GCBeLcuXPbbOxQSrF3717q5+dHn8XYAQBfX1/MnDkTlV9/Tap8fVGnYe4OYwwHDx6Uqqur2YoVK8iKFSuElStXkqVLl0KhUGDz5s24cOECqx49Gti+vfkDiiJvGz18WCsdptLSUuzNyyOu7u5Cj19/JYr9+1tVY0QphUqlErKysnSqf9IQU1NTDBw40NDIyOhLAAgNDaUqleqNAnPzQ1WWlqx3QcGbMpns57CwsLbdcD1/PgjhHYUeHlyDRcvvFqUUERER1M3NTWqrlkphYSE0DvncsQMICmpVOkcmk8EpPx8F+/bhd0nS2G5vYmKCXr16YdiwYXj11Vfx1ltvCYsXL37S2Nm/n2vSDB3Ku5la6DQ9fvw4snr3Ji+amop44w2tz/dpLCwssHTpUgF1dcxwyBDc//VXja+7ceMGzp49S2bOnIn69WvlypXE09OT7N27F+Hh4VKRsTF/FqWlNX/QQYOArCwusdICjDEcjI2leVZWQleFgtF332WtrZEsKyujDx48EIrbUdxw7NixHQkhoWFhYVYAsGbNml/UavXU8wEBtSOSkhwNDQ2Tw8LCtGsffs7RvobnaSwseMfWxx8D//0vHzDZjPeuVCrxzTffMB8fH9a/f/9Wz8iklGLr1q2SkZERGTlyZOPBkYLA8831NS0tUVcHx3XrhI5hYUhwcqKRJ08KjDForA3SIeHh4UySJEydOlUn6RkzMzPYTZpEvu3USToXGyuoVCpmY2ND6hfVqKgompGRQRYtWiQ2NBRlMhn69+8v2Nra4uLFizTm6lXBuqaGMRMTYtxMuLdSFJF48yYVSkqIqZubRi/p+vXr+O6779jFixeJi4sLHTt9Ogk3NJRkhoaky/z5BKNGadUpQwiBu7s7zp49Sy9dukS6devW6rovbXBwcBASEhKcz5w5cyooKKggKCiIRUdH/1RmYfFiv6Qkt9LAwB7lFRU0MDDwnM4Prqe9+UjjVkJ4R1RtLS+2nzixxVqzHTt2qNVqtTBt2jRBo9PVArGxsUhMTMSkSZNIo9EChobciWwqpawB4x9/hIejI7k+ezb75fx5kp6ervbx8dHeYrp+naedAf5Z9OvXYtQjJycHp0+fxqxZs4ipiwuP+E6c2Ppp6A8RBAH9fXyEE97e7Hh8PMnPz5fMzc0FU1NTEEKQn5+PH3/8EePHj4dbgy5SQgheeOEFeHt7Iz09HTExMeSBqSk1T0oiHUaObDL6xgD8JpOxopQUZmdhQYgGjaKqqips376dRkVFkZqaGsxfuJAU+PiQSFGEX1gYQW0toGWkx9vbm+Tm5iIqKorIZDLm4OCgk/nQDTE2NoZCoWDFxcWWQ4YMOQ4AgYGBmcd//TXV+s6dV7v6+Jjkq9UvDxky5H++a6vtBk89rq5Abi4Pp8rlTXoojDGkpqbSwsJCoUuXLo1/8E9RVlaGrVu3MisrK2JmZvZI/2LOnDmN9S9++okbOs1N132a/fuBxETIlyyBZ58+QmFhIS0vLyde2oxkeAZ++eUX9vLLLwu6GI8AAMjOhuH48fD9738FGxsbXL58mcbExAh5eXnS5cuXWWZmpjBv3jyhKd0aa2tr+Pr6Ch4eHshLTMTtM2cQWVLCDA0NibW19RPtpLW1tfjqq69QYmbGOh48SMzT0mA0btwThi6lFLt372b9+/cn06ZNg7e3NwGAGrVauJKTw3y7dCEwM+MhfC0+A2NjY/j6+gr3798nUVFRGPL0XDcdIIoiOnbsaJCbm+tz5syZ3efOnZNCQ0Pp1f3798uVytVyMzPxDiHHg4KCtJMX1/Nn4qNm/2pjw0exuLryVH0zDlNhYSHJzc0loihSR0dH0lKUZ+fOnTQ/P5+4uLjg7NmziI+Px8yZMxs7VWVlvP7w7be1Lw9QKIA5cyAsXIiu/v7E3t4ev/32GwICAlregSTxNu5x43ga+513+PVrwcmTJ2FtbU39/PwITE25oztjBjcALC21O/enGTMGrkFBpN/kybh58yY5d+4crl69yrKzs2lMTIwwcOBADGoi3SWTydCnTx8yaNAglCgUhB44wL5/8IBU19ZSKysr8vSz4ujRo1JiaipqSkvRedcumIweTZ42dGNjY+m9e/fY3LlzheDgYFJfgxR9/jzpM3Ik5FlZvDja3LzF+0UIgaenJ7Gzs8Px48dhZ2fXen01LejatatBQkKCZ3R09M/nzp17EBQUxAaP2A9ZHQAAGPJJREFUGJFxY//+AIuiohduOTgUDx48uHUpkOeQZzd4zMy4h/S3v/FBbtOna/wSGBgYwM/PT6ipqSEnTpxAaWmp5Ozs3EiRuCHR0dEkPT0diYmJzMzMDLNnzxY0hoNXr+b/a6vQGRbGf+Dvvw/IZGCMISIigowaNerZh3e2QFpaGpXL5aRbt266MfNLS7nOxOjRsLa2xoABAwQvLy/k5+cL1tbWwvjx44m1tXWLu+nYsSOc3NxId5WK1PTpQxISEqTY2FihoqJCsrKyEjp06IDExER27949umTJEvGmvT2Kf/4Z5u7uMHroJVVUVODSpUu4c+cOCwkJIQ3vlZ2dHaKjo0m/d96BkbEx17qwtdVq5hchBD179kRMTAwCAgJ0Js3ekM6dO5OMjAzTysrKNQD+ERMTc1ZhYTHOyMBgtI1Sqb5pbv5dUFBQus4PrKe9+ajFVwweDFy7xiMVEyY0qV/j6upKunfvjqioKJacnAwnJydi0kyn14ULF2h2drZw6dIlmpeXR2bPno2umlSPT5/mUfL587W7org4rh586NCjrqRLly5RxhhpUezv3j1u6Ny/zxsLtJwRWI8kSUhJSXncZSYIXJG9qqrtLdxJScCYMTCys4OXlxcZNGgQqa6uJpIkCf7+/vD19W1xF4IgoFvv3uhcWkoc/fxw+dYtGhMTI2RnZ0vGxsaCpaUlysvLERERIcyfP5+4BAWRK2fOALW1sPLxIRAE1NXVIS8vD5GRkWTSpEmCg4PDo0JlQgjS0tIkuLgQp9mzCWbO5E5zE8+7p7GyssLVq1clW1tboa0NO80hk8lgZGREsrOz32aMfRQfH28VHR2tUNjbL3avrDQtlMnSB4wY8T8vs9G2omVNKJVceK6+46cZpcqysjL88MMPUlVVlThlypQnZcwb8Nlnn9Hhw4cL5eXlLCAgoHEaC+Dzvhjjx9NG3Co7my9sJ08+6jIrLCzE999/z1atWqXbWKMGzp49i6ysLOmtt97STRFbejqvRdAVwcF8MXV1rQ9f07t37wr29vbS/fv3xXHjxqFeTfqnLVuo78aNQvKSJVI6pUJtbS0xNjaWhg0bJvbTMPjwq6++kgYOHCgOGDCA59EZ4wWS772nlaL1J598gr///e9oj7RWQz7++GPGGCPdu3evGOjtbUKmTqWlZma+vomJV9r1wHraA+3XsMOHueaUQtFsxONhLQ9LTU0lAwcOpIGBgRodt0OHDqGurk5ycnISXnjhBdKk9o5CwYuVtU0LDR/OO7nmzn206csvv2SBgYHEu6kod3U1bzWfO5fXubz6apvSUGq1Gv/617+eVDunlM/ju3VL62aGR/z+O39mtCFFqJHPP+fPgsWLUVVVhaioKGRkZLD6ri61Wk3/9re/iQCQmZmJuilTUDt4MI3z9ERpaakgl8upo6Mjmz59eqP1+cKFC7h69SpduHChAJWKD1DOzORSHS1oJwHA9u3bqYeHhxAQEKCba22C5ORkHD16FJ06daoICAgw7vDpp+rKoqIfB8XFzWrXA/8F0J2rbGrKDYk1a4CpU5t9qbm5ORYtWiQOHDgQ4eHhOHz4sFSrYXaMubk5FAoFCwwM1GzsAFxocNw47YydAweAvXv5j/OhscMYw9WrV5mlpeUf0oXz4osv4u7du6KmAuNWo1DwvLsuZ1iNGvVoXpqzszPmzZsnvPfeezA2NhYppWg4OmPCggVCwYQJ6JKTI04eO5asXr0ay5Yt02jsAECvXr3ElJQUCQDg4sLb3FNSgE2bWixmLi4uhiiKOp2l1RQymYwBwKxZs0yKSkulUhubq76XLrXvKqXn/z9TpvCH2JgxvIurCQRBwIQJE8ibb76Jq1evsi1btrCCgoJGr/P09EReXp7g7+/ftLFTVsaV3SsrWz6/vDxuqBw69ISxU1hYiMrKStK3b1/N70tP59PBc3N5Cm/GjDbX3BgYGMDExES6devW442CwH+/K1a0fojwa6/xlJqumDaNO2yMoWPHjpg4cSKWL19OgoODSVFREQICAh49KHr27An6+ecwT0sTBrm7C++99x7ef/99QZOxA/AmkdLSUqG8vJwbVfXG8bx5LRa+q9VqqFQqUlhYqLMB2k1Rn8YLCQkxcXV1Jed69Kjzi4/v2aa++ucM3ecGDhwA/vUv/n9JSbMvHTJkCBYvXozMzEzh2rVrjf5eU1PDWuyGGjaMp6haQq0G1q0D8/MDZDJUV1cjPj6eff755+y3335DYGBgu7UNNsTU1BRyuZzm5upgaoGZGffcdJmGmzePey0NDBC5XI6JEyeirq4ODSOCgiDAZ/NmeJuawuXIkRZTTYMGDUJRUZFYXf1wxIuxMfeqlyzhc3CiojS+LykpiW3btg2dOnVihw4derbhqlrg4eGhAoD8/HzEx8erogcPng1gJghpWTRJz1+bl17iNYHFxbyFuRns7e2xdOlS0dramkRERDRymIqLi1seHyBJ0CSJoZEdO8C6dAEsLMAYQ2ZmJr777jtp586d6NWrl+bOsU8+4YbcgAHcUHrGzlAAcHR0FDMyMqQnNvr5cefl5El+TdqSnNzq7tpm6dqVR78aTFAXBAHe3t4wMTGRnh7c6TVyJLpv24YX//EPdKxpXmNUJpPB1NRUysjIeLxx6VLgyhXeEr9smcbJ7Pfv38fXX3/NampqWGZmJp54fztQn2ZNTk6ui4+PV5VbWHwjMPYzgLYJTz1H6N7gMTTkKa0ff+RfhhYwNTWFIAjs6UKuiooKKBQKsXfv3k1bpfXzcZpRfX7w4AF+378fddOnI3LtWmntxYvYsGEDPv/8c1y+fJkGBQWR999/n7hpmiPVDtS3V9+/f//ZdzZiBFcO1SWWlryY+OrVJzbL5XKIooiKiorG71m1iisra5q63gATExMYGxtLmZmPxT+rqqtBO3Xi4fbbt3ktRQOjqrS0FCdOnCCTJ0/GokWLSF1dncb2e13i7+8vB4C9e/cyAL+t2rDhKoAtAOY2+0Y9zwd9+vARFK+9xguam6FexNPa2rqR556UlCQNaKmuZccOHlFqAkopriQmomraNNzx8cEGW1usW7cOGzZswJEjR6ilpaW4bNkyvPLKK086bF99xSPtISE8aqVDp+hhpLXxs8PMjBsvGzZot6O1a/nvXpvofGvo1g3Q0OIul8sFhUKDBp+HB3ecIyJajDS7ubk9jlKDr+e1jHGnTa3m4q1K5RPvOXjwILWyssKyZcsEKysr2p4t6gDQtWtXyGQyKTEx0TA5OZnW1dX9G8BBAKNAiG4knv+itM/FE/I4wrNqFbBgAf8SaiAhIQEqlUp4WpMmOjoaXbt2lUxMTJr+NURGAqdOAf/4R5MvOX78uOS9ebN41sYG6VlZZOHChairq4NMJoOVldUfEtWpp37asoWFBfHx8Xn2HTo5Nfm5thlCuLdWVMRVRhtgZmYmRUZGkkYt9Z068fsQEMDl8ZspyuvVq5d44sQJZGVl0dzcXKJUKsnIkSOZ//TpBGo190QDA4EvvwTAByXK5XLJ3d1dVKlUkCSpSTl7XWFtbQ07O7u6oqIiQwD14cMoAG+CEBMw1vxTUM9fnylTuC7OiRP8N9FEmr6srAw3b95ko0aNemItUSqV9Q5b08dQqXh0pxll5evXryNj2zaYp6TgwJUrGD5mDNzc3KBUKuHk5NTY6MjIAMrL+cDPuXN5fYwOOXv2LNLT0zFnzhxNwmV8QCelPH3W0trk7MxlAXSNnx+P0lH6RNewp6enEBcXh759+zauA1y3jqfWCGn2fvj7++PLL78Uw8PDqVKpZEVFRaKFhQVbtGgRIV99xfdz6BAfoPywxkmhUAgTJ06EIAiora1lzRW66wJCCKZNmybu2bMHoiie+uCDD/IQGgoQchxAAID/WXkN3Ud4Hu1Z4JGCgoImp3efPXsW0dHRCAkJaRT6zcjIoL179xbj4+PZt99+S0s11am8+ioQHd3kKZTk5GDQ+vWiy759GB4RgXfeeUewtraGvb092qM1sDlSU1OxadMmKpfLyaxZs9qk4/EEt27xz1WLDqxW06sX9xCf8nZCQkLEGzduaEw/wtiYy7G3kF4cO3Ys+vXrhxs3bpDhw4eTKVOmIDY2lqhUKl5XcO4cH6D4ySdg6ekoKSmBkZERA3jUjxCChvVe9+7dQ2xsLNN1mmvq1Kn1N4jHxhnLB0AABOn0QHr+vFha8u9kaKjGGo179+5h27ZtzMvLiz5dt3b69Gk4OTlJBQUF2L17t5SUlNQ416FS8Sh1ly5NnkLlqlWst5UVuqelYfkHH8DPzw/m5uaPxsw8Qq3mDubIkbxGcf16YPz4tl23BupVkRMSEjBr1iw02Wnk4MDrhV55hTeUNL1DXns5b57OzvERPXpwfaAbN57YHBAQACMjI3b48OHG94IQnpFYv77ZeioTExO8/fbbyMrKIvb29uKSJUtQWVn5OE314Yd8+kBCAvDjj6itrYVKpYKtrS0AQK1Wk4YiqpRSnDlzRue1iT169ICRkZFUW1sb22DzLQDD/pdredo3vEUIb31UKFATFISLM2fiFmOsvLycVldXi4IgYNasWRpbNUVRZBERETA3N6fGxsbC999/z7p27UoppXB3dxddDA3Rwd+/2eLCvE2bqNzKinTs2bPVIw10RXp6Ok6ePCmpVCoxMDCQ+Pj4NF2A3RqCg4HZs4HmZQXaRIaREczS0hC5cqUkubkJjo6OxMjICBcvXmQuLi60R48emiNj8+bxVs316/lkYg1QSiHjUgCPiiwvXLig3rhxo4GLi4vk4OAg3i0qknrExAgdf/iBnJw+HV59+ogAnxJtZ2cn7dmzh8ydO1cwMDBAZGSklJOTI1JKWVBQkM5uspWVFby8vGpu3LixHMAHDzefAvASCIkEY+0j/aznz8XkycCECZA+/BC3qqvxq48PSkpK1NXV1aJKpSL+/v5s+PDhjYYHy2QylpOTIxYVFVFnZ2cxMjISd+7coUqlknXv3l1wc3Mj1uPHg8yfzw18DRSlpaHb5cvE6osvIBgaNu2dZmTwUQkrVvBUtBaT0rVFoVDgp59+onl5eYK7uzubPHlyy9Id06dzZ6m6umkhw82b+RDq7GydnWs9VVVVSOvShdElS5D0yivUzs5OdHJyQnx8vKRWq4WgoCDNH2WPHrwGacYMnqFoov5KpVKBEAIPDw+Ym5tj0KBB5ODBg7C2tqaenp5CRUUFpefPs0Hbt4s7r1yBSefOkoGBgQgAQ4cOFSMjI2Fvbw97e3tcv34dcXFxSElJYe+++67O1q/6KE94ePi7YWFhm0JDQ9UAzgKYA8ABwP/kqAndtaW3QPLQobTE1ZUYhISgc5cuxM7ODmZmZk0am5RSVFVVwcTEBJRSHDt2DJIkgTGG27dvS6SwUOxXUMDEt9+Gm5sbsbGxebwvxoAFCxBtaUkrfH2FCZMm6eoytKampgbffPONVFVVJQ4dOpQNGDBA80iMtkIp/6ejqbsN+fTTT+lwQOhaXY3rQ4fi9u3bkkKhEEaMGEE8WmqBLyp61CmRrFKhtrYWvr6+UKvViIqKwrVr15harSZ1dXVYs2bNo3t29+5dnD9/HiUlJdTKykpwcHBA965dYTtnDsjIkcDKlQ8vm2Lz5s20Y8eOsLGxYenp6aIoiszd3Z3IZDJp5MiROptEXFJSgq+//rpSrVY7hoaG8hAjIccAfArGzuvkIHraG52sYcnr1sFo/37kfvIJtXd0FDp37gwbGxs0911TKpUwMTGBIAhISUlBWloaLCwskJubK5WVlYm+8fGsbsYM5jJggODs7Pzkvo4cQdmBA/ivt7f03vvva3YwlEqeEnvzTZ5Sbo1woRb89NNP9Nq1a4Krq6sUHBwsWrZGWJAxPq5i7Voe7dFEXZ3u2tEbEB4ejurCQjb54kVyY9ky3MnPlwoKCoiLiwsbMWKEqFHLreF5r1kDUArFihWIjY1FcHAwOnbsiNTUVMTExEjl5eViXV0dpkyZ8qhrtaamBvHx8cjMzKTGxsaCvb09unXpAue4OIjHjnGNuodptKioKCQlJcHNzU26efOmoFariZmZGXNwcGADBgxoVN7RVhhj2LFjR0VBQcHi0NDQ7wEAhEwHEAjGFujkIH8x/jCDZ8uWLdJgFxex79KlvDjsGYdB1q1di8t9+yKloEAqLS0VDAwMiJubm+Tu7i46V1XBcPFiJH70ES5nZEgLFy78Q2t1AF6blJiYyObPn0+a/YG1hQ8+4EWIy5frdr/g3tG///1vrJo0CYZbt3IF2FYuouXp6ahauxb7XniB1ZmZEcYYVavVgo2NDQ0MDBR69uyJ+/fvPwrzNktCAhdmmzyZTziWyVBTU4NTp06htrYW3bt3R2RkJExNTSVJkoiFhQXeeOONZgUtW8ORI0dqrl+/vmn16tWrAACE+ABYB8aarjTV82dCJ2tYQkICkpOT6YLjxwUEBDQZwdQWeuwYbt+/jwsyGSsqKmK1tbWCo6Oj5OnpKfZ0cYHp5MmoWbgQn924gVWrVjU2rIqKuFhhSgrwzTc6jerU889//rPJCLxWHDvGU22TJj25hmRk8PR3/VgLHbNp0yZ1YGCgQb8ffuDRmv79W/V+WlaGvK1bkZ6dTdN69hRUKhUeDi0VAgIC2Isvvkiqq6thbGyseS5aQ2pq+Hfl73/n3WsPn3sXL15EQUEBjIyMkJeXRysqKmBhYSE8ePAAc+bMeaah0g3JycnBvn37ilQqlWNoaKgahBgCiAUwA4zl6OQgfyH+sIptuVwuKDp04N6IQsH1J9r6Iy0rg+EXX2DQnTsY9FAf5vfff8eVK1eE28uX0/zKSiFn7lzJtrZWLC8vb786pSZQq9WIi4uj/fv3ZzKZTPfGlp1duyxwlFLs27eP2trawtDLS4CFBa/BcnBo1X6OXL7M7MvKyCvx8XCIisLvv/8umJqaokuXLo/uhVbGDgAMHMj/hYQA+flATAzkcjkmTJjw6CUPC8BFtVqNLVu2SPv375dCQkJ08rkHBQXJ09PTl4SFhW0MDQ0tBpAM4AwIGQjGEnRxDD1/fiwsLFBdXU2wciXvAHqW9QuA8MUXcB43Ds7LlxMApLi4GAkJCeL1gwcly/Bwcc/ChdTNwoKIokgyMjLg6en5+M2zZ/PuzKQk3Xc4PeTYsWOsQ4cOcHBwaHvI6OWXeWPJq68CBw8+3q5WA+3UFXvp0iVUVFQYODk58QaINtTG5CmVOJGdjfGxscKgpUtRY2WF4uJiwc3NDaIoEuCx1k2LyOXAF1/wCNyyZUB4OODlBX9//4averQunjp1Ct999x0WLVqkE4FVZ2dn2NramuTn588CsBOM1YGQ1QCmAvjsmQ/wF6PVxkBZWRkyMzNbrYViYmJCFAqFhBUrgA4duNWd3kalfpmMF/sZGwPgraG9evXC61OnkuCiIsH7ww9ha2cn3rx5sxWCELpj165d1MzMrH20fYqLudHYTCdBW9m3bx9VqVTk9ddfF0AIX0yPHm31fsaOHUsSfX3RecECIhw+jF69eqFLM4WZWrFnD184duzgeXYN1PAiSbG6ulpncX0LCwt4eXkJhoaGPMLDmATgBoBgXR1Dzx8HpRTXr1+H8qnW4ZawsbHhBs+QIVwZPDCw7fVztbW8+6uB4J6VlRXGjx+PNwRBdJo3Dz5DhwrZ2dlMEARWXl7OUy1ffAFs3MhTV+fPt5uxk5qaitTUVPL6668/+6DLgQN56q1h04mZGfB///ds+9VATk4OTp06hWnTpsHS0pJ3ma5fr1EbpzmcnJxQ6eZGy5cvh9mpU+hsZQUPD48n5gq2mlGjuKq8IPDGjiYyKw87udBC5qVVjBgxwsTQ0HB9WFhYff4wDYAjCNHS63x+0NrgqaiowO7du+mWLVvw888/s88++4xlZWVpfSBTU1MolUp+Fz08eO7ZwoJLi7cWX19uMTfk9GneOhofD7OgIIwbNw5LliwRV65c+YdWK585cwbFxcXCjBkzhPaY+YTQUH797cDdu3dZcHDw4/lAs2YB27e3ej9FRUUw6tSJGfbpwz2alJRnPzlB4EZyhw48lVcvXtiAXbt2SVVVVRg2bJhOP/jAwEA5Y2xhWFhYfUvcGQAmIEQ3cWc97Q6lFLGxsdi4cSM7duwYNm/ejCNHjmj9VDE3N4ckSVxHixAesRg8mI9paC0ff8zrWhqmqaqquB7PzJkQV6+Gr68v5s2bJ6xcuZIMtLTkbd5RUVz6wd+/xcnubaWkpAQRERFswoQJ2kdhm8PcnDsoq1YBqalcq0tbZelWkpqaCmdnZ6lnz558g5sbNwpbqVVGKYVKpSLGwcH8+bRxo25OsF8/buydPg3Exjbq/Pv1118RFxeHAQMGqJsa9twWunXrhs6dOxsTQuYAABi7D+A6gCakuZ9fWqrh0aNHjx49evTo+cvzh9e36NGjR48ePXr0/NHoDR49evTo0aNHz3OP3uDRo0ePHj169Dz36A0ePXr06NGjR89zj97g0aNHjx49evQ89+gNHj169OjRo0fPc8//AxbghvG6iqaoAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "f,ax = plt.subplots(1,2,figsize=(10, 6), subplot_kw=dict(aspect='equal'))\n", - "gdf.plot(edgecolor='grey', facecolor='w', ax=ax[0])\n", - "w_rook.plot(gdf, ax=ax[0], \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax[0].set_title('Rook')\n", - "ax[0].axis(np.asarray([-105.0, -95.0, 21, 26]))\n", - "\n", - "ax[0].axis('off')\n", - "gdf.plot(edgecolor='grey', facecolor='w', ax=ax[1])\n", - "w_queen.plot(gdf, ax=ax[1], \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax[1].set_title('Queen')\n", - "ax[1].axis('off')\n", - "ax[1].axis(np.asarray([-105.0, -95.0, 21, 26]))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "w_knn = KNN.from_dataframe(gdf, k=4)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(4, 32)]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_knn.histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd1gV19bG3z0zp1AVEQRsWLBi7w1Bo0YTNcUWezRdvV8SY010HEsketWrSUyCJfYSNWqisUSJYolYo6iggmKhKE0RDqfN7O+PDUrnUKyZ3/PwAHNm79mHsmbN2mu9i1BKoaKioqLydOCe9QJUVFRU/k2oRldFRUXlKaIaXRUVFZWniGp0VVRUVJ4iqtFVUVFReYqoRldFRUXlKaIaXRUVFZWniGp0VVRUVJ4iqtFVUVFReYqoRldFRUXlKaIaXRUVFZWniGp0VVRUVJ4iqtFVUVFReYqoRldFRUXlKSI86wVkR5IkDkB5AK4AKmR+dgVQgRBSUavVenEc50EIcbNarbemTJnS71muV0VFRaW4PFGjK0mSHQC33B88z3toNJoqHMdVppS6KYriIsuyEwA7QRAsOp3OYmdnJ9vb28PBwYF3cHDQOjg4aO3t7WFnZ4e9e/daFEXZ8STXrqKiovIkIE9CxFySJEeO4+5QSp10Op3Rzs7O6uDgQB0dHXknJyetk5OTNtOgwt7eHlnG1M7ODhxXcMRDURTs2rUL//zzD6WUtgDwjyiKqgq7iorKC8OT8nQpIUQ3duxYzsXFxb6sJg0JCUFkZCStWrUqTUpKOmKxWDLmzp27w2w2bwNwSBRFY1ldS0VFReVJ8EQ8XQCYM2fONA8PjymDBw+2s7OzK/V8iqJg4cKFSqdOnUibNm0IpRQJCQm4evUqvXTp0sOEhAStRqM5ZjQaNwL4QxTFuNK/CxUVFZWy5YkZXUmStFqtdinP80M+/fRTvVarLdV8165dw5YtWzB58uR8QxAGgwGRkZEIDw9Pi4qK0vA8f9NisWyWZXkngHOiKCqlWoCKiopKGfDEjG4W8+bNO/Pmm2829/HxKdU8iqIgMDAQH330ESpUqFDoubIs4/bt24iIiLCEh4ebMjIyrBzH7TaZTL8AOCiKYnqpFqOioqJSQp54ypjJZNoZGhrauEqVKkJpwgyEEFBKYYvHzPM8vL294e3trXn11Vc1SUlJuHbt2pBLly71jouL033zzTcnjEbjWgC/i6J4r8SLUlFRUSkmT9zTlSTJTRCEnz09Pbu88cYbdkV5qQWRkZGBBQsWoFmzZtYuXbqU2IAbjUZcu3YNly5dSo+KihIEQbhiMpnWUkp3iKIYWaJJVVRUVGzkiRtdAJAkSScIwjRFUSZPmDCB1+v1JZrnwoUL2L17txUAOnfuzHl7e3OVKlUCz/Mlms9qteLGjRu4fPmyMTw8nAK4J8vyRqvVuhXA2ec9HU2SpC4AmmR+S4v4DAAk12cAMADYI4rinSeySBUVlRw8LaNLACgAMH36dBBCihhRMAkJCfjxxx+tGo3mMAAfvV7v+sYbbzh4e3s/OkeWZciybFMoIgtKKe7cuYPw8HDLxYsXTUaj0UwI+dVsNm8GcFgURUuJF/2EmDdv3j/VqlVr6Ozs/GiTkGb+QrP9XnMY3dw/+/T0dGtkZCRPCFkwZcqUr570mlVU/u08FaMLAJIkfeDu7v7fjz/+2Kk081BK8cMPP6QlJCQMBfAbIeQNQRCW1a1b1+HVV1/VOzg4YPv27bhw4QJ69epFmzZtSjQaTbGvkZiYiIiICCUsLCwtOTlZEARhn8lk2gBgryiKaaV5D2XFvHnzLg4aNKhhtWrVSjVPWloavv322wyz2dxZFMVTZbQ8FRWVfHhqRnfmzJkSz/PTJk6cWGwjmJ3o6Ghs3Lgxxmw21xRF0QwAkiQ5abXauQBGNWrUiDtz5owOAPR6/QFFUTp27dpVaN26dYk3DVNTU3HlyhWEhYWlxsbG6jQaTWi2jbi7JX4zpWTevHkRgwcPrlulSpVSzxUWFoZdu3bdNJvNbZ7le1JRedl5mp6uTqfTrQfw2tChQ/UlNRSnT5/GwYMH10+aNGloPtdoBKArgAwAq0RRNEmS1EwQhBNTp07VliaskUU+G3FXTSbTKkrpr6IoRpf6AvmQGZ7Jg16vjxw2bFhNLy+vUl+DUor9+/cbT58+TQRBOGQ0Gv8jiuLVUk+soqKSg6dmdLOYOXPmW/b29mvHjBljX5IMhMOHDyMkJCRw2rRpU2w5X5KkcgDuu7u7pzVq1MjBy8uLPHz4EI0bNy5VbBlgG3HXr1/HpUuXMiIiIoiiKErmz5Mg52YVyXU8+/e5X0euseB5nsqynGexhBBl7NixXEkzQvLDZDLh9OnT9PDhw/ctFksnURQvldnkKioqT9/oAsDcuXN/rFWr1rABAwYUW5fhjz/+MJ86dWqyKIqLbB0jSZI9AH+tVtvXbDZ/kHX87bffhq+vb3GXkC+KosBoZNIPWcY8u1HPfiz364V9Xr9+PY2MjCSff/45nJxKFQ4vFhcuXKC7du1KtVgsXURRPPvULqyi8pLzTPR0zWbzpKtXr75rsVhQ3PguIQQajaZOccaIomgA8Efmx4eSJJUHEHXixAnB19fXuVgLKACO42BvX2baPo/w8vJCZGQkrl27hubNm5f5/AXRuHFjIghCuZ07dx4NDAzcYzKZPhBFMempLUBF5SXlWXWOSKeUkizPsDi0a9dOa7VaR0uSVGJjKYrifQAV0tPTHUo6x9MiICCAVK5cmaanP/3K5QYNGuDzzz+38/Hx6a3RaJZLklQ6AQ0VFZVnZnQ1giCcW7t2rcFgMBRrYLly5dCoUSOrIAjXM+O1JUIQhOvNmjUrWVXFU6ZcuXIkOTlZfhbX1ul0eP311zVVqlTprtVqwyVJ8nwW61BReVl4JkZXFMUMs9nc9sGDB8sWL16cERkZaXNgmRCCN998087e3l4LoHJJ10AIcWnYsGFJhz9VXFxccP/+/Wd2fZ1Oh2HDhtk3bdq0Msdx1+fMmXNEkqSWz2xBKiovMM+sMaUoinTKlCmfms3m8WfOnCn2s7MgCAqAEgdReZ6PS0p6MUKUbm5uePDgQenz3UoBIQQ9e/bUDRs2TN++ffuOGo3m8MyZM78qzdOGisq/keehG3CsyWQqWutWUdhHJo6OjhyAmiW9qMlk+nLnzp0ZxQ1vPAu8vLyQmprKpaSkPOulwNvbGwEBAXjvvffs3dzcpms0mj2SJLk863WpqLwoPA9G9+GNGzecY2NjCz9rzBiA54F794AZM9Dr5EknvV7/RUmTbadPn77DYrH8tHnzZoOiPN/65m5ubvD09MSxY8eeSVw3P9zd3fHBBx9oatWq1ZLjuM+e9XpUVF4Ungejew8Ali1bhkI9ubFjgb59gZQU4NQpuNy+DZKRURuADEJ6gZCeIGR5cS5ssVgmxMfHXwgNDX2+rS6Ahg0b4tatW880xJAbnufRuHFjDc/zAzM7P6uoqBTBMze6oiheBHCVEHJ0zZo1Bcd2GzYEBg4Efv4ZMJkQ9+23gJ1dDIAAACEAGgNoBwAgJBWEBIEQLxCyHoTkG/sVRdFqNpvnhYSEKM+iSKQ4NGjQAElJSZwsPzfOLgCgVq1aEAShJs/zc571WlRUXgSeudEFAFEU61JKOz98+JAvNMY6YACQkQFMnIgHiYnos369I4CzoDQNlH4DSrPSEXoDCASL+XYDwIGQf0DIOQAAIctASJY013WLxZJ+4sQJ65N6f2WBs7MztFotTUhIeNZLyYFWq8VHH30k2NnZfShJUs9nvR4Vleed58LoAoAoiopWq70SHx9f8Ek8z2K7a9fCg+MQUa9epcBJkzgQ4prjPEoPg9LroPQoKHUHpWkA3gMwHoToAAwA4AlClogzZgTLsjzabv58K44ceYLvsPQ4ODjIMTExz3oZeXB2dkbLli3teZ7v/qzXoqLyvPNMyoALQSsIRSypTh2gVSu4HzwIOmgQkS9f/p4CtQghw0Bpwe12KD2d7TuW5kTIfQD/AEj3CQ7WoVYtwGRisePoaODQIYDjgLffLuXbKhsqVaok3Lp1S27RosVzV9SRmppqkmU5+lmvQ0Xleee58XQBwGq1Knv37i06m2DcOCAkBD2dnPRVq1V7c97Mme7SjBkxIGQYCLFdl4HSK6B0JYCH302ZYrzxySeAry8wcSLg6gosWgTMnw9YrYC9PXDgAHDhAhAUVLo3WkIcHByQkZHxXAafXVxcdIIgNHtS80uS1FaSJLcnNb+KytPimaiMFYQkSZxOp7sxbNiwapUrF1FslpgI+PmBnj6NZevWpcbFxS0etno1at64sQJAHAALbHxzkiRpALzv6Og477PPPnPguFz3IpMJmDwZ+OorYMYMYNMmICEB8PZmm3tTpwIbNwKjRgHFaBFUXDZt2gRnZ2e5V69ez6Oni6CgIIPRaPzoq6++WlsWc2Ya2e4AqvM8P4MQogiCcMxqtZ7nOK48pdTRYrGEADgG4HMAW8E6e5jK4voqKk+C58roAsA333zzs16v7z9w4EAHDw+Pwk/+4w9g0ybcmj0be/bsSUtJSdFYrdbJX02bVhHAbVD6U3GuHRgY+E/37t2b2KzmNXky8NprLI2tf38gPh545x3gzh3ggw9YxoW/P4tFlwHLly9X6tWrx3Xs2LFM5itrrl+/jl9++SXSZDLVKW1Tzzlz5nxhtVrncxxHq1at+rBZs2aO9erV48LDw5GUlCRrNBqSlJQEg8FgiI+PR1pammPm0E9FUVxcBm9HReWJ8NwZ3cwuCe9pNJolTZo0IQEBAboCJRPNZmDmTKBRI2DgQNy/fx9BQUEZXErK518EBq4B4AmgkjRjRgqAVFEUC92FkiSpsUajOTpgwACn2rVrF2/hlAKEsHDEjBlAz57Arl1AQABQoQLg5QXUrQu0aQPUrw8UFbvOh++++87asWNHoWnTpsUe+zRQFAVBQUGGlJSUA2az+Z1MSc1iI0lSFUEQrowaNcre09N2fZ2oqCisW7cOAO6LoqhWyak8l/AzZsx41mvIgb+/P/z9/c8GBwdvS0xMdAoNDa3n6OgoeHp65i0M4HmgShVgwwagdWvoK1ZEnTp1NBejoroc6ty5XqPTp+/oTaZaR7t2/YoqyuLjx4/bBQcHH/L39883aOzv7383ODj4UERExCAfHx+to6NjfqflT1ZhnNUKjBwJjB8PfPwxMGLE4/Ll5GTg3XeBmzeBPXuALVuYsdbrAWdntmlXCEePHqWNGjUq004RZQkhBE2aNNEkJiZWS0lJ+b8jR464BwcHh/r7+xfrcf/EiRPft2nTpknjxo2LtedQoUIFWK1Wevv2bbsjR45whw4divP3938xBDZU/jU8d55ubiRJaqTRaIKrVaum8/b2dqxTpw5xd3fPedK6dUBUFCCKAACz2Yxdu3YZr1y5kmg2m/vUvX17VcDNm423v/224d69e2OnT5/+c2HXnDdvXmjv3r1b169fv/gLHj4cePVV4I03gJYtgZMngezG22gELBbgyBFg3z7gwQOWJdGpE1C+PHD7NgtbVK3KvONMY75r1y56/vx5Mnr0aBQZdnkOSEhIwL59+8w3b97cbLVaR9vawl6SJJ1Wq70+fPhwryLj+vlAKcX169dx9epVy9mzZ9OtVmtNURSfvWiFikomz73RBQBJkioBCNBoNJ0AjOjbt69DDllGoxH4+mvAzw945ZVHh8PCwvD777+nKxkZX3parXOVGjX0dqGht6Nr1Ngsy/LigsINX3/9dZTFYqnZsGFDw1tvvWWfZ2OtIGQZ+PVXoEcP5rmaTIBOxzzdwubIyGDG9/p1QJJYLDg0lHnAXl6AIGBduXKyW4sW/CuDB4MvoxjxkyY9PR2//PJLenx8fCql9DeLxXIUwHFRFK8XNGbOnDlS1apVJw4dOlRv88+9ADIbbaZbrdb3KaU7ShtnVlEpC14Io5sdSZKaajSag127dnVu06bN48Do8ePskf3TT1m616PDx3H48OHjZrN5pVNq6vIBJ05g56BBpsTk5HdFUdyYz/yugiAsUBRlAKVUP2HCBGJzA80VK9g6Vqx4fCwoiG2wTZ9evDeang7ExTGBn88/xykXF6W20ci5xMUBrVqx+LCfH4tnuzy/4UtKKWJiYnDz5k164MCBrBBRdwAnRFF8mP1cSZIaAzjfrFkzpU+fPmWSznjjxg3s2LHDkJaWNnnatGnflsWcKiql4YUzugAgSVJ1QRAudunSRduuXbvHOVqzZgE1agBDH3dnNxgMWL58uSE9PX2e2Wzeq9FoDuoptRv83XeXPeLj24PSHP/4c+bMmVujRo0v3NzchNOnT9/38/Nz6tChg22u5f/9H9CkCUsdy+L+fRZ7LmVTyXXr1qGSk5PSrVo1DtevA8uXA/XqMYO+fz/LLXZxAWrVAtq2BRyev05EsizjyJEj1oiIiPTExESdLMs9ABwRRZFKkuSh0Wgu+fn5VWjatCmKFU8vgpiYGKxevTrdarX2mT59enCZTayiUgKeq+IIWxFF8abVam0VHBys5NAimDwZWLkSuHjx0SF7e3v07NnTnuf5ngCuWiyWXg8tFm5fjx6+oPQhCKmRXR5So9EEtGzZUmjXrh0sFovDrVu3bFMgS01lBvfdd3MeL1+ehQn69wdKIZpesWJF3H34kKJZM1Yht2cPK974+WdgzRqgZk3g6FFmjLt0AdzdgZ9+AjZvBvbuZaGPZwzP8/D39xc++uijcgMHDtRrtdp9AJRZs2Yt12q1e9q1a+fcsWPHMjW4AFC5cmX07dvXQafTqalkKs+cF9LoAoAoihGyLE9ZunQp9u7da1YUBdBogIULgQkTWJw3k8xKrjYAkrVabScQ4hhdo4Z9prFdhkwxdEmSPKxWa22dTge9Xg+O4xAVFWXav3+/ucgngt9+Aw4ffpzFkB2NhlXRlSIM4OnpieTk5LyT6/UsV7h/f2Z8N25kIY65c5nhDQ1loQ1PT+YBz5vHUtn272eZE88IHx8fjBkzRg8Anp6eo1q2bFnf39//iZWlV6tWDRaLpbYkSc9nvp3Kv4YX1ugCAKV0MYAmZ8+ejfvnn3/YwaZN2Wba/PmPzvPy8kKPHj2Utm3bQpbliXq9PgSAe2bFWjdQGgVCPvUPDu5CKeUPHTqUvnv3bgiCcEWWZe8zZ85cmzlzJi5fvlywlapfH/jww4IX6+fHMhk25gkj20S1atXw8OFDzqZwEM8Do0cDb77JbkInT7I0tdGjWVbEuXPAoEHMI+7fn4Vjbtwo0bpKw7Zt25S6devK7733HunWrZuuhHr0NuHk5IQuXbro9Xr9j0/sIioqNvBCG11RFKkoihcsFkvvPXv2pOzdu5cajUbgk0+Yh3f6scZN27Ztuc6dO6Nbt27OXl5ejQgh/QAgW6nw9c4hIQdf37LF505U1OeXL1++TSndKIpiktlsfgsADh8+nL/Fu38f6NcPaNGi8AWXK8fCDSXg7Nmz0JamxNjODnj/fVYxN20ayxlu1YrlFW/ezAR+UlNZXPwpEB0djbi4OO5pljS3bt0aiqI0kSSpxG2eVFRKywttdLMQRTHMarX2PXv27OUdO3YYYGfHPLypU3OEGfR6Pdq0aYNmzZpp9Hp9rxyTUPobKL3b5Pz5/3w5axY/ZcqUalOmTPk6c/6rhJA+9+/fN966dSvvAs6eZUI5Ol3hC61fn+XwbtrEqumKQUxMjNKwYUOl1N6g0cgKN6xWVqpctSrLtggIYCluWbmxCxawcMkTYvv27XKHDh0UZ2fnJ3aN3AiCgNatW3NarXaPJEnuRY9QUSl7XgqjCwCiKB6xWCz+169fTzp37hyTgBwyBAgMzHNu9erVYbFY2kiSlF99sQRgOQhpDEIeGebp06f/brFYBm7ZssVgtebSO09KYhtatnL2bLE31Zo3b86Fh4eXPNvk9m1WhKHXsxuExQLUrs3izP7+LDTi4vI488Lfn2VC3LkDdO3K4r8Wm+obiiQkJASKonAdOnR46n9/Xbp00drZ2dXkeX770762igrwAhhdSZJ4SZK8bDlXFMVEnuevPEqq79OHxTePHs1xnpOTE+rWrQue55Pmzp2bMGfOnE8fvUipDEotAOwyPwBCBACYPn36LqvVunvevHnGbdu2ZURHR7N82kWL8t9Ayw9C2GZW+fJARIRtY8Da9ZjNZpKYmGjzGABATAxgMLCc36y497vvsnBDTAw7XqUK83Sz30xatGDHPT2BH39k6x4zhnnplLKxJcBsNuPYsWO0d+/epEjt5CcAIQTdu3cXFEWxUdVIRaVsee6NriAIEwHESJJUpFarJEktKaUd6tTJlNR1cQHat2dqZLnaAPXr18/h888/17do0aIipTRvvSmloaB0GwhpD2Bz1uFJkyYNsFgstS9evLh906ZNVpqRwWKlrq55piiUY8dYelcBxMbGYsWKFVi2bBndu3cvzGYzypcvL1+5csU2VzcrfDFtGottt27NCkdyXoTJU3Ic21jLz5DyPODjw75eupSVN8fGss+UApcuAXfv2rQkANi6davi6elJfbLmfAbUqVMHTk5OiiRJI57ZIlT+tTz3RleWZQcAEARhVFHn8jzfp0qVKlyOCrKuXVmhwM6dec63t7eHl5cXOI4bKklSQYIGfwP4GIQIIKQvCCGZ5cPvU0pvJL7zDoWXTY54Tl55Bfjvf/MNM1itVqxbt07JyMhA3bp1yZ07d5QFCxYgJSWFL1euXNFzp6SwnGGLhcVr/fzyP+9//2MVbQArRR4wIEcMPA+CwMITlSuzjAhCWA7wyZPMS16+vNA0tLi4ONy4cYPr3bs39yQzFYpCEAT07NnTjhCyXJKkQZIkPff/ByovD8/1H5skSdUopV/WqVMHgiB4F3W+LMvfREVFafPEXD/4gBmH8PA8Y3x9fVG9enUnAK/keRFg2Q2U3gOQJahNAEAURYM+IeFV3cmTiLbFEBZEv37MW8xGamoqTCYTN3z4cPj5+eG9997jxowZg5EjR6JRo0YFW6udO5kGhYsLcOIEyw8uyLhZrSzOm2WQ7eyAM2eYUbWFrHnHjwd692YZHDdusONbtjBPPhdbt26VW7ZsqbgW96ngCVCvXj0yaNAgwcXFZblWqy34kUNFpYx53nqk5Ybnef7A1atXXwHwW2EnSpJkTwi5Sikla9asyfN6dQcHuE6YgH9694ai0eR47fbt2w4cx30JYF2BF6A0DsAYEGIHQv4A0OczoFywv/9HoX/9tWhQpUr2bm5u0Gq1SEpKgs06sPv2sW4TsvxI7LxChQqoXLmysmfPHjpw4EAeAMqXL4/yBaWb/fe/LNe2dWugcWN2rKgbQWQkMHhwzvMePmQbauvWFSkzmYeKFYE5mV3YXVxY2fPDhyw3eNMmnDpzBhkZGXxAQEDx5n2C1KlTB9WqVXP47rvvBkqSdEYUxe+f9ZpUXn5eCO0FSZLsABgBOIiimJbP646CIByWZbm5o6MjWrZsme88Pt98g6R27ZDUqVOO4w8ePMC5c+cgiqJtz7yENAKlYSBkC4AD0owZV3ie36Uoip5SygNAixYtrB4eHoKnpyeKlCg8doxtxm3d+uhQWloalixZgsGDB8Pb2zvvGIOBbRB27w6sX8+yDYojhbhhA8vVHTs25/E9e9icZaFkZjQCx4/D6ueHk927o0r37qg2efJj9bXnhPj4eKxcudJssViai6J4qegRKiol54UwugAgSVJvAL/pdLq7hJAki8XyqyzL+wE4ajSaFRaLxbNOnTrpAwYMcDAYDHDKT2DGaGS78ocPM88sk1u3bmH16tVGRVEqiaKYatOCWFDyDID3QekZSZIcAPAAHgCAIAjzrVbrBACYMGECCux+ATDpx4QEoFKlHIf37duHiIgI+sknnxBNlneekcEyJgBg0iQWRy1JfHTSJKBXL6Bz55zHZZllORRV6FEMbt26ha3LluGz//s/EJ4HmjdnnnZiIpPAtFXFrYwJDw9HRkYGmjdvjn379llCQ0N3UUpH2vw3oKJSAp7rmG4uzgGAi4uLW5cuXRq0bt16kpub2+9ubm6bevXq5anT6cxXr151mD17NhYuXIjIyHy6sev1wKpV7LE6282mSpUqqFGjhiIIwhZJkmwNubwN4CgoPQNCZokzZjTM/GfVAtB8+eWXEwGA47jCDS47iRncMWNYDm8m3bp1A8/zytKlS2lGWqaD//33wNq17KaxYkXJDO79+6yzcS6PHwCQlgZMmVKmAjlVqlSB0c4OyYSw0MPly8yTXrmS/T4oBQ4efNxh4ymwZcsWeceOHfjzzz+xatUqRVEUDcdxb2o0mgPF+BtQUSk2L4ynCwCSJPkC+AcAP3bsWGTfkMnIyMDJkyeRkJBAnZ2daZs2bbh8d/opZboMggB8/vmjwwaDAevXr89ISkqKs1gs8xRFWSGKojXvBJkQEgQgDJR+C0I6ALgEFiN/CEpNmSERQ+fOneHv72/bGzx7FmjQIMdmlqIoWLJ4sTxqxQre+bffmHRlaXf+9+17LITzlPjuu+/k1q1b861bt8774oMHLPabtQFnb8+84SeEwWDAokWL8PHHH0Or1WLz5s3KvXv3uIoVK9LY2FgiCEK6IAjrJk2a9NETW4TKv5YXydOFKIoXAWh4np/w888/p//99980K1PBzs4OnTt3Rr9+/Uj37t3zN7gAM1jDhgFXrjCPKxN7e3uMHDnSbsCAATU9PT0X6HS6/QUuhBA9gN0AWLdhSo+B0vsAPgYwMnOtGTqdbrdDcXRtmzdn+rhz57Lvr1wBN24cXunWjf+5b1/6182b1lIbXICFJ/LzcrO4e5cVlpThDblmzZp8RERE/u5zuXIsnk0IC7MkJ7PsivHjy6wKLjuHDh2Ch4eHXKFCBTg6OmLUqFGcm5ubnJaWho8//hhjx451sFgso2zJDVdRKS4vlNEFmMiNLMsL0tPTex86dOjQ8uXLDXJxH4U9PZkC1w8/5HiM1mg0qFmzJkaMGOFgtVo7SpJUkLDrqwCGgtLcAgqzASwDIe1AyGCTyfTH6dOnrebi6Cy4ujKjExrKChcGDICvry9qt29P4uLiivc+84NSVqONxZ0AACAASURBVCxSWHaFuzvTrShDWrRogdu3b/NKUSGEN99kOcxmM9Oq0GhY3Hrz5sLH2UBYWBjWrVuHCxcu0NatWz/aKSSEgBCC1NRUsm/fPrlcuXLIbP7ZttQXVVHJxQtndIFH6mJ/mc3mrvfv30/JIWRuK927A9Wq5fvPrNFo4OnpaeI47t18RgJAAoC8Ygssp1cBkArgHifLx1Pu3BF++umnooOVWXFNR0dWknv0KCucyNzocnNzQ0JCQulTChISWD5u3boFn0MIK64ICSn15bKoVKkSBEGgsbGxtg2wtwfee499HRDAmnwaDCz8MnUqyzG2EbPZjFWrVim7du2Cm5sb9fPzI7mbjr777rv8lClTcPPmTd5gMODBgwcKgGs2X0RFxUZeSKObRWajweDt27ebHj58iPSsXX1b4DjgrbeACxfYTnouXn/9dUdFUZZIktQuxwuE2AFYCKDgti+UXgKlB6bNmuUw6uefryUnJ3MnT57M3/BSygyhogDLljFD26sXS6nKVl4rCAI4jiv98/6+fWzDrqgwhcHAOk+UYYjBxcWFRkZGFn/CWrXYB8B0I+bOBb77zubhS5culQkhGDt2LHr06EHat2+P3LoPHMdBq9VCr9cr8fHxeOWVV7QajWaDWq2mUta88H9QJpPp/QcPHvz6v//9z7JgwQJ5xYoV6Q8fPix6IMD+kX18WLVarsded3d3tGnTxqzT6Q5+/fXXN2fPnt0n86X2AFJBaSH1splQeswjLq6Z+9279ZNnzUpf+N//pv36668Zhw4dQlRkJDNohw4xI8jzTEwmK5Vt7FhW6HDqFAAgOTk5h55uWloainxUz49r1x4bsMJwdWW5vGVYrluvXj3OZu2I3Bw7xn4eAweyPN/Zs9mmYj6FMLlRFAXt2rXjbAlD2dnZ0ZSUFLRo0YJYrVZXsDRAFZUy44U3uqIomiZPnjxYURQ7Sqk+Li5u6fr16w3Hjx9HfHx8vmOMRiMMWQI4o0axf+hcj9KEELz66qvaCRMm2FkslmqCIHTMfEkGMNzmBVKa/vEPPyT32L17YXpqavtL//zzRUhIyJKEYcNg2byZFTUU1E0iNhb45huAUnTs2BFJSUlk9+7dyqJFi5RFixZh4cKFSmxsrO3G12JhOhRZVWtFceMGC8OUEc2bN0dCQgJXrBg3wNLbdDr2s4iLA8LCWKy3bVt2syoiZKHRaMjGjRuxePFirF69ulDLazKZ4OzsDCPToFAA2HCHUlGxnRfe6GYhiqIsiqJVluXJKSkp3x86dGj5ypUrDfkZ3l27dpnnZ7XzIYT9M8+cyfJXc8FxHNzc3AxWq9U+cMqU0RT4GsX9uVF6jyjKjGmzZsVMmzVrVodDh74/1r49TlSqxK5fUPVX1apsVz81FXoAI0aMIGFhYcTFxYVMnjwZHh4edPXq1QgMDKR59Cby48oV1j/NVu2D6tWL9RhfFI6OjrCzs5Ojo6NtH/T996zTcfXqrCFnfPzjsMvGjUwdrX599rRQAEOHDuUCAgIwYsQI3Lx5s9DNPLPZzF27dg2EELRs2VLQaDTrJUkqXStnFZVs8DNmzHjWayhT/P39aadOnf7s1KnT73/99Vd0eHh4z5o1a2rCwsKwcuVK2Nvb4/jx43zmuWxQuXLM+G3YwDo7ZHukJoSgXr16muPHj7fWmkx9iFZr//PIkb/7+/vbLihLSD1IUltQeh6SlFAzOjokxcOjQWr16jXrN2okAMzDKlBfduJEwGgE5+uLs2fP0iZNmnDe3t5o3Lgx16lTJ5w6dQo8z5MqVaoUvo6VKwEvr4JVxwBcu3YNK1asoKmpqaRW7dqsguyvvx7LOxYDRVFgsVjAZ7upREVFEaPRSH18fAqPW8TFAZ99xmQzP/jg8Y2iXr2ca+E41hevVy92g6pShW1GZsPOzg7Vq1cHpRSnTp1Chw4dcqwpO7IskwsXLtDbt2/TN954gyQmJlZ48OCBb8eOHUufPqGighesOKIkzJw5czDP88sopVSW5WgADQHg9ddfR/369R9Xi1mtwMiRrFqtV68888yZM8casHu34NS/P3abTBmU0klTpkz5ttCLE+ILIBrsEbUpKF2deZxYBGHVj59+2rfRa685xsbG8teuXUOjRo2sb731Vl7La7UiIjISO7dto7Xq1lX69OnDZ4/vhoeHY/v27Rg6dCiqVatW8Hq++AL4v/9jHnQ+XL58GVu2bEGNGjVocnIyANB+HTtybj//DN33xdOCMZvN+Pbbb5W0tDSO53kIgkA1Gg3V6XTEZDJh/PjxBRtds5kVsNy6xTzdrJsRpSybY/duJqiTHUqZ9oS/P7t5ZuPPP/+EIAgIDQ2l9evXl/v27Vtoxdn3338ve3t786+88goopViwYIHJarXWFEXRxtQLFZWCeWnCCwUxffr0DVartbIsy+6iKPoC4DiOG79r1y5s27ZNfvRYLgisL9js2SxPNhd9X39daHD5Mg5GR6Nt27Z2PM93LfCihGRVZnwAoCEoPf/I4AIApVRjsYxIdnRs4TFu3HXtrl17ACAsLEw4f/58nrvgb3/8QfeuXYtxa9aQfm+8weduUFm/fn107txZ2bx5c8HPzUlJTPUrl75Ddm7evInq1avLQ4cOJWPHjiX169fHmv37Mc/DA2fPnClwXG4URcGPP/4oV6pUCV999RXGjx+P999/n/Tp04erWrWqYjKZyC+//JL/3X77dqBhQya4/tNPjw1uFgsX5vFkAbCnk7AwVlbcrRuwbh2sViuWLVsmnz9/np48eRJeXl5Knz59iizxtVgs5OLFi3ThwoVITU1F48aNIQjC2KLGqajYwkvv6RaEJEleOp1uuVar7fzGG2/Y16yZ2SB2925gxw6WvpWdyEhcOH5c/u3WLfLGG29wO3fuNPE8/83kyZPFHOcRUhHAEQCNQGnRgVZCGoB5wxVXjRzpFevjs7Vr164ebdq04dPS0rBq1SrZarVygwcPJu4cl0OoJztGoxHz58/Hl19+CS4/WcawMLYh9dlnBS5l6dKlsq+vL+fn55fDC43avp1yEyeSnWPGyG3atOEvX76sJCYmktatWxM7OzsYjcYcpc7Lly+XZVkmo0aN4jS5ZDQBICUlBatWraLlypWjI0eO5DiOY55qaCjrXuHoCPTokXeBiYk5m2cWRMeOSGvdGitdXBSnKlUwaNAgDgB4ni9WR+UffvhBqVevHqlduzZZvXp1mizLdVVvV6W0/GuNbhYzZ87sDeBXPz8/wd/fnz3aLl7MqsH693984qefssfy8eMBAMeOHcPhw4d3T5069XUAACHvAKgPSqeDEG0+1WqFQ8gXAJKkGTOulStXbo+fn5/j/v37aa1atWjfvn25R8ZiyRKmzDVyZJ4p5s6di5EjR+av5TtlCisG+fjjHIcVRcGFCxeQkpKC48ePY9y4ccjToVeWYY6Px6noaHry5EnUqVNHcXd350+cOEF5nqfp6emc2WxG/fr1qdlspvHx8eTDDz8kdoWoh6Wnp2PNmjVUlmXlo48+4oUJE9gm35EjTF84P3buZCl0s2cX8oMEwi5cwK7du/F/ixdD/9pr4FasKPT8/FAUBXPmzEHfvn3RqFEjbNq0yRQVFXVKluWtAEIAhBWqzaGiUgD/eqMLAJIktdZoNHscHR21lSpV0raxs9NWDwkBmTDh8eN4YCCL92bGTBMSErB8+fKMj+fNW1f+/v1ZADIAKKA0b2yiGPzdrt20JFfXmWdatULXrl1phw4dSI7WNjduMKObTwbC0qVLlZYtW3J5RGUoZRVm+/cDHjm7Et29exc//vgj3N3dlU6dOnG+vr75LywmhnWjePvtPC+ZzWYkJSVh69at1GQykffee69gwfVc436ZOZO2j4wkNWfNYh5sUYpsNrB48WKlUqVKZNDVqwTNmzPpyLp12SZbMVi3bp18/fp1vlGjRkqDBg241NRUXL582XD37l0iy/Ixs9n8NoB0URTLTpJN5aXnpY/p2oIoiictFkutlJSUt65fv35uw8WLcdc1GuCXX9gJwcFAauojg4uUFLgFB8PDw8MSXr9+EgADKE0srcGVJImcaNt2ZpynJ6AoKGexkDy9xGrUYDmrn332uPlkJhUrVlROnz6NS5cuIUcu7PXrzDPOJ55bqVIl2NvbK127di3Y4AJMoyIqKt+XtFotPD09MW7cODJ+/HibDC4AaHke/n//jYz79ylq1y7a4M6fz1rCF8HgwYO5GzduIOzNN4HXXwc++YRVshWToUOH8uPGjcOdO3fw559/Kq1atcKIESPsx48fb1ezZs0OhJD7Go3m1pw5c36SJCn/uI+KSi5UTzcfJEkaWk6n+3ncjRsCP2wY06/18WH/uEYjMw6BgYgYORLbd+yInjJlSg1JkqoASBBF0VTS686cObM3pfS3Bg0a0HYA8Vq/HtyOHXlPpJS11HnnnRwbTbGxsTh69Kg1JiaGT0tLI3q9XvH19UVPg4HD7dt5uwFnsnz5cnh5eSm9evUq+iZssbDChNKydCmwZg2+HThQaduxI9eqVauix6xdC7z2GsDEaArl8uXL2L59O5o0aSK/Vr48T+rUYW2NfHxYGloxMJvNmD9/Prp16wYfHx9kKdgpioJbt24hNDTUcvXqVQ3P8+tlWR4PgGZ+ZOTX6UTl341qdPNBkiQPQRD+amYwePdMS9OTTp3Yxs6KFWyTJ1OIJSkpCT/99FMKIeQ3s9k8AsD7oiiWqMmhJEmcRqOJGThwoEetrDJdq5V1iliyhMVkc2+QnTrFjGD79nnmM5lMuHHjBn799VdMKlcOfN26TL0rF99//701PT1dGD58ODw8CmqInMmRI8C8ecDvv5fkLTIUhTUI3bcPaNECMw8fxsSJE6EvqiFm1t9pMcqS7927h5UrV9LBgweTatWqMenMRo2AoKBitwtat26dNSEhgZjNZp7jOBgMBgiCgJYtW1p79OghnDhxAkeOHDEbDAYtAGg0GqMsywLP8w95nv/baDT2F0XRkKmz7AQgSQ1L/DtRFfLzQRTFeEmSfC84OV1tFxVV02XgQLYBlZU7SilACO7evQtBEMIzMjJGZA41lOa6VqvVPUc/NEFghrdCBWZwjcac3XqTkgrUm9XpdKhXrx7cypVTTNOnc/YFPJanpKQIn332GWzS/W3X7nHIpaT0789S1/btAwgBCQmxrYw5JIQZ/N27bb6Uu7s73N3d5Z07d/KffPIJ4ffvZ7Hw7t2B8uWZaLqNDB06VACA4OBgcBwHPz8/hIWFYf/+/XyPHj3Qtm1btG3bVqsoCsxmM/R6vZ5Sivv377usXLmyByHkjiRJbxFCdlFKHezs7H4F6z6i8i9DjekWgCiKsslkmrq5c+c0GhTEqp6uXGGFE6tXA0FB8Jk7F8a0tPblkpPBWa2jRFHcUPTMBaKjlObRJaDly+OSnx/zeFu0YAYri1dfZe3PjxwpcNIBVapwl+vUwV8nTuR5zWq1QpZlFJZlkANBYDedDSV4m//8w0IKU6cCu3Y98lh5ns/SOSgcP78SaeqOHDlSSEtLI6mpqSzdjhBWWBEQwETsbZWazKRLly7w9/cHx3HQ6/V5KtuyjgOsmtHFxQXjxo3jO3To4AjgrwYNGmiGDRsGqJoO/1pUo1s4W+/eu+cY6efHQgpNm7LNpGHDAB8faDw80MzX1/jhsmXWqV9/3QKEBICQH0GIJwipgDy7YIVCAWDevHm4evUqO0ApNm7cSLdu3cp24I8fZwbjl1/Yxh7ANtP+9z8gJSXfScspCqqOHYu///47x+ZaSkoKFi9erFSvXl3JN6+3ILK87+KgKMBHHzFtixYtHqWEpaenQ1EU2BTiOnaMtfUpJhzHQRAEJSYmW9X2tm1sc+2zz1iMuISYzWbwPF/k4rVaLbp27aqZOnUq3nrrLW2moS6DwLjKi4gaXigEURRlSZKwdetWTJky5fELPM88pYAAvKYo+u/v3k0z3r4dMmH+/AQAZjAlsoMAzCCkP4CpAL4FK4Iw5GdlRFE0SpIEANi4cSMqVKigJCcncwBI+/btKQCCcuVYaOPMGVbu6uTEDNi2bcz43rvHuj5k5/hxVHrnHTgmJSnff/89tFotlWWZpqenC02aNKGvvvpq8aQLa9UCatZkHnd+HZdzM2sWcPUqCw9ky79VFAWbNm1SPD094erqWrTV//tvNr44beYz6dq1K/fbb78hISFBCQgI4B7FhQMCWKx+1Sp2E/vPf4o1b25diaLIKhSJjIy0yrL8d7EupvLSoHq6NlDY4zfHcejZs6ejXKHC6sC5c1dIM2Z8DkrvgdJmALqCGWAzAEcAiwAkghANCPkBhPiBEG02j7gigKYAkGlwAQDHjx8nR48eZe5lliqauzvLpjh8mJ20fj3bcMuOycSaXTZuDJ7nafXq1bl27drxXbp0EYYMGYJevXrxxfJys9i1q1BVLwAs1hwdzeLO//lPnoKHs2fPIjk5GSNGjLBtARMmAPk1tbSB5s2bo0qVKggJCeH279//OIA8eTLQrBnw5ZesJX3mE4atWK1WGAwGLjw83OYxFosFJ0+etJjN5m+KdTGVlwbV6BbN6oYNGxa6y1y7dm1MmDBBb7VamwFwefQCpWmgNAaU/geUhoLSDwDUBRPGpgCqABgN4CYIqSfOmDFcnDHDV5wxg+co7UEIydqY23/w4EEhKnee7KxZLHMhIoJ5bLNm5czd/fVXpjkrCDAajWjatCmaN28OX1/fwoVxiqJnT+YdFoTVyjarZs5koY980sE4jgOllNgkSZmYyNLjSoFPpjLZqVOnuEcx5MhIFpb573/Zptq+fSxebyONGzeGq6srtm7davOYs2fPUkLI36Ioqq2A/qWo4YWiCac2BB15nkeDBg3kq1evzgETuskfShMzv/rk0TFCfgdwF4AbAHcAbaZJUhCAIQBM1729X1s3fHj3dWvXommzZujSpQvs7e3BZ6mFBQezXfl+/ZiR3bWLSThGRAAdmfa62WzmbS1aKBJBYOlqly7lLUcODWV6t1999ai/W35UrVoVGRkZJD4+HjkyNvLD3p7FYEtBu3bt0KJFC6xYsUL+9ttveRcXF7lzcDBfvV8/aDt1epzVEBvLNigLEQbK4ujRo7h79y66d+/Owj9FkJaWhuDgYKPZbM4/YVrlX4Hq6RaCJElDBEEIdHR0tClw161bN73Vah0iSVLx4qSU3gGlFlA6FZROAaV/A+gM4DAA95rR0TU7hoS4fzl7drrXvHmX1k2ciL29e+PutUxn6ZNPWBubnTtZN10vL7Z55eTEclPBNuUK1OstCeXL5zVMJhMrlU5IALp2zasQlo1z585RnU5HbfK4MzKAli1L1p4ILH588OBBrFixQjYajWh44gQcr1/nN9Sti+MVKgBff81iztu2sRziCROYh14AZrMZy5Ytk8+dO4fhw4ejTZs2Nm2Y7t27N4NS+pMoimEleiMqLwWqp1s4k2VZRsuWLW36p3JycoKrq6uSkJAwUpKktQAqlliVitKbmV+tBrC6CwAQ0qjV8ePy5dq1b9aLiMCGpUsx7NdfqX2TJsR+xQr2uOzvz1qsr1rF4r9ffAEA0Gq1SlxcHJdHzKak+PiwkuSEBJaKNWkSM/JhYTbpJ3Tp0oXcuHFDWbJkCR0yZAjn5uaW4/Xo6Ghs375dlmWZtNq/nxi0WnK6TRs4OTnJNWvW5Nu1a4fcYwpi165diIyMpO3btuVdXF2RmpysxCsK8fT0JDVr1mSpbNmJi2P96t5559GNJTU1FRs2bKD169cnoaGhioeHBxk7dqzN6Xa3bt3C1atX0y0Wy1c2DVB5aVEr0gpBkiQKAOPGjUMFG0pPASA+Ph5r1641WCwWzmKx6AkhA6dPn17KioI869ISQiIopTXKJSdDbzRi6IcfwnHKlMc6tPv3A25uwIcfAq+8gqiFC3GhShXljVatOHLrFtuE276dGU9vb+bhNW3KdvENBqZpGx8PuLgwI0pI3oq4tWuB06eZZ/jFF0z9q3Ztm9+HxWLB/v37lfDwcHzxxRc5Jl+yZImckpLCv/POO3B1dYWjoyNkWca1a9cQFhYm37x5k9fpdMro0aM5FxeXgi4BAJg/f77Svn17rsPy5cDQocwLzyItDVi0CJg27fGxzOIXtGwJdO8OsyhibmAg7O3tYW9vrzRp0gQdOnTgipMR+Pvvv5v++eefGdOmTQu0eZDKS4kaXigASZIePTufOHECtnSSBQAPDw+MGzfOnuM4HgB0Ot0XZb02URTNlNJaAPCgQgXc9fJCJMexjaCePYEffmAZDh4erL2NTocaDRogLSOD3Lt8mXUENhhYLDgkhKWgLVvGMh0kiXl4kZEstvnJJ8CcOax8dutWZog8PYGLF9l1Nm8Ghg9nnmExDC7AUqg6d+7MmUwmLi3tsUTBH3/8AavVyrm6uiqXLl2SXYOCoANgb2+PJk2aYOjQofykSZNQp04drFixQjl9+jQK25BrV6kSd3DfPtx+/332JJAdqzWvRnGWMe3QAbh3D2Fbt8LZyYlOmDABY8aM4Tp27Fgsg0spRXh4uKwoynabB6m8tKiebgEEBgauN5lMg7O+9/HxweDBgwsbkoPdu3ebT58+vVUQhJtffvnl1CexxswbQzwADBkyBLXzM3p37zKBmgoVcODAAYSFhdFRo0aRLNEWm8m66aSmAunpbOMpIgIYPRro1InFQE2mnGXKNkApxfbt2+Xw8HDe0dFR9vb25i9fvowhQ4agfPny+H7JEoy5fx/O8+fn0V2QZRmHDh1STp8+zXl6esLHxwdnz56l5cuXJ2+++eajVkxRbdsiuk8f+E2YgPxE1QvCbDbjZGgoGr3+OhIaN6a1Q0JISVrSx8XFYfXq1bGTJ08ufpKxykuH6ukWgMlkytEX/dq1a0hMTCzo9DwkJSVZOI4LeVIGFwBEUbwLYCAAPCioWmvZMhbjBSthdXZ2lr/99lucPXu2eHdbnmcfLi5Ml9bOjuW4nj3LRN//+1/WlbeYEELw1ltv8WPHjkVAQAAfFxenmM1maDQaODs7w87R0Rr73nv5Ct3wPI+uXbtybdu2lW/cuIGjR4/C0dERFotF+e6775SHixYBCQnYM2SItULPnvkb3OnT88Z0wfKIFyxYQC+EhSnnRoygxhYtKHbtenzzKQZRUVFUUZSdxR6o8lKierqFIEnSEgDjADTheb6VTqf7btiwYXqtVltojNdisSAwMNCqKIqTKIo2CAuUjsDAwFCTydS6cePGtHfv3iRHlkJWfPLWrUd6wJGRkfjll1/Qp08fFKqhawuffcaKDNzcWFy4WjVmgDOr64qLoig4c+YMfH19YWdnh/2DBiktXF0512I0xqSU4s8//1Tod98RS8+e5OKDB+jfvz8eqbdlx2hkhRyZ1XVpaWkICgqS09LS+AEDBqBevXrsPIuFhVUCAoollAMAa9euTb1+/fp7oigWb6DKS4nq6RbORADgef5vnudnGQwG/U8//YSgoCBrYTerzNQmCuCptHMxmUzdAeDChQtkzpw52L59O/3f//7Hmm4Swryzd95h3R/AijnefPNN7Ny5E+np6aW7eEAA22jjOLb5FhbGUtds9AiNRiMuXryImJgYGI1GcByHVq1aged5WK1WRDRtSh/m05qoQCgF6dcP3atX59xmzKC3AYVSiqSkpPx/YYcP55B5DAoKUoxGIz9hwoTHBhdgIZqTJ9lNZsoUFhO3aTkUd+7c0QJQy35VAKhGt1AyvdTysix/piiKHQAIgnCRUnrt119/NWZkZOQ7TqfTwcnJyQigSUFzS5JU+r40j9f5QBRFQgjZADDj++DBAz4iIoKdwPNMiaxyZZbiBdZB2MXFRT558qQCsPhlDlEYW+nTJ6cGQ/v2TFEsLo5JUhYgxKMoCv78808sWrSI7t+/n65btw7z5s3D7NmzERgYSAMDAzFnzhw4XLvG623MHEF8PLvJSBLg4wMnJycuJSWFa968OQ4cOEDyVPRRCvz4Y47QRf369YnFYsk//FKzJst7Xr36kaZyUSQnJ4NSahBFseiWFyr/CtTwgo1IklROq9X+ZDabBwJoSwjZQCmt2b9/fzRo0CDP+QcOHDCfOnXqiNls7iWKojkwMHCRoijDLRZLH1EUj2Wmo40WRXFlGa/TB8BVAKhWrRrezd6m5vx5YOJEluUAICIiAjt27ED37t0REhJC09LSSL169ZTevXtzOltFvn18WMw4s8w2B5s3s6KNLVtYb7XMlLNr165h586dikajIb179yZZnZgppTAajTAYDNDpdHB0dAQdNgwkMLBooRtKWfXdunVAjRowm81YtGgRDQgIQOvWrcnJkydx8OBBjB49Gu65RYFyERwcjCtXrigff/xx/k6J2cx0GsaMAfbsKTQv+fz589i3b9+eiRMn9ir8Daj8W1CNbjGRJMk+swOAC4B7AITmzZub/P39dU7ZPD5ZlrFx40bD7du3U2RZPi7Lcn9vb2/ExMSkWq3WUZTSLWClo5woimX6S5AkiQAYLgjCkl69ejk3a9bs8YsWC6tWAwCdDtu2baOxsbFyrVq1BD8/P6xevVo2Go3c6NGjiU1lw0V1dLBYWIXc3r1M1hHAwoULZV9fX/6VV17Jv118caCUif0MGMCMemY8e82aNYosyxg5cuSj9K41a9agfPnycp8+fVjF4IEDLANj7NgcU/7www9yw4YN87Siz8HNm6w4ZO9eVj5cACEhITh8+PC8adOmTSrdG1V5WVDDC8VEFEVD5ucUURQ1ANzDwsKClixZYjxw4IA5q1SV53kMGTLEftCgQZVlWe4PAI0bN6ZDhgxxtrOzWwMm9wgAxUtutW2NVBTF1VartfOePXuS9+3bZ36UZ6zRsLzblczBfvvtt8m4ceOEXr16wdHREWPGjOGdnJzosWPHbKu53b07p7B6bjQaJjnZogUeook10QAAIABJREFU+Ppix7vvKhaLhW/WrFnRBvf8eWDu3MLPoZTFkR88eGRwz507h5iYGO7tt9/OkU/r7e2N+Pj4x2N9fFg3jFyYzWZasWLFgg1uRARQvTorLsmnVVJ20tPTLYqiJBT+JlT+TahGt5SIopgwderU/1it1lqnTp26sHXr1owsA0cIQY0aNTBp0iSMGjUKzZo1I9WrV0eXLl3seZ6fwnFcOmwQSinF2v6xWCx1z507dzQoKCg9JSu+OnUqq1Qz5d9D87XXXuPOnz/PxdrSVSE4mFV1FQYhuHLlCs56ecFn6FDui7594WZLnrC7e75GEQDzoPv3ZzHjb75h2RMAQkNDsWfPHrz99tvIXfJ87949VMxeCFG+/CNtiuy4urqS/fv303xTBJOSgA8+YDcbNzeWOlcI6enpZgBJhZ6k8q9CNbplhCiKsWaz2S8qKurvDRs2GCzZepfp9XpUzVIEA9N3HTp0qDMhRAfWpPBJrivRZDK9kpSUNP2HH37IuHjx4uMChvbt821pXrlyZdjb21sLzP3NzsKFLHxQBLGxsbgxaJDcsGtX8O+8A3z+edFzOzvnr1SWmso86LFjc3QGDg4OxsGDBzFo0CDUqVMnn2Gp1GKxPA6p9enDvOlcDB06lOd5nmzcuPFx2EeWWRijQgWW8RAczPrmFXDjyiI9Pd0KILnoN6vyb0E1umWIKIoZZrP51Tt37uxdvXq1wVTAPyQhBN7e3mjdurWi1Wo3ZcaHn+S66FdffbXQYrF0+u2331Kio6NZ/PPgQVbokE96l0ajIQZb0qI++QS4fbvI0x4+fPi4+WVoKKtgW7yYhToKYtgwpiGRnYwM5v0+eMAMMiEwGo0ICgqST58+jeHDhyNrYy43/fr1I9HR0eTo0aMsdHL4MNAkZ4KJoiiIiYnBgwcP4OPj89joGo1MztJoZPHrBQuYwS5kE+3evXuIi4uzh+rpqmRDNbpljCiKFrPZ3D8hIWFjUFBQ+o0bNwo8t1u3blp3d3cPAAFPaW1nLBbLuL1796ZRStnj9YULrNlmLhwcHMjt27eLjuv278/mKQI3NzfExsZysiyzLhKCwDxunY4Z/fzyhbdtA7p1Y19TyrIk7OyYyE5meCI6OhqLFy+mDg4OZNy4cahSpUqBa3B2dsbQoUPJ4cOHufvh4cxzzYz53r9/H4GBgXT27Nn4+eef0bFjR/nVV1/lYDQyESFFYTcKOztg1CjWhj6wcO2aU6dOwWQyaQAUr9+7ykuNanSfAKIoKmaz+f3k5OQPNm3aFLdixYq02/l4g4QQVK9eXavVar+dOXPmp5IkPdFQQyYbU1JS4o8ePSpTSpmQzapVzKhly2Tp3bs3d+nSJS7HxlN+tGljk5TjhQsXrKmpqawrbxYffsjUyWbMYCXF2Xn4kOXDZm22paezhpwGw6M4anR0NDZv3kzbtWuHwYMHc7bILFosFgiCACdByJFDvHXrVrlOnTrK1KlT8dVXX8Hf358Hpeym0Lp1zvcYGMgU2YqIS3fp0iXrSzVHV+URqtF9QmRmEGwwm83VY2JiPlu7dm16fgasa9eu2sGDB3vVqFFjrk6n2/YU1qWYzeaAo0eP3tq9e7dJoZSVt86bBwQFPTrP1dUV9evXpzt37lQKTSvs3Jm1pi8ARVGwbt065eHDh8LEiRORrwyjJLEwQkICyyMGmJG9fZt1EP7oI+Ydr1r1yPitX79e2bBhA5o3b047duxIbFX9ysjIgFarpbyPz6NUsdTUVMTFxfHdunXjH5VQWyxAly6sVdDgwazABGBVaampQNWqLKZbCHq9HoQQBUDR8ReVfw2q0X3CiKJomT59+nJFUeYePnw4I7cBy/R28c477+gJIR0lSSq+akzx13THbDY3CwsL+2fjxo0ZiqKwtjtDhuQ4r0+fPiQ5OZncvXu34MlOnQLyKQ7JYu/evUhKSiIffPBBwYLfHMc0fS9fZq3WKWXi4RMnss20Hj0AjQYxMTE4evQoli1bpiQmJpJx48ahW7duXHFyfX18fJCenk6s48YBe/6fvfMOi+Ls2vj9zGwDFqRIVUFAaQIKWAARsWNvMdZYk5hYotE0E+NmTTFR38SYaMyrEY1RjBpjbyioKCoWRFEkIAIqVWlSlt2deb4/HkCpmrwpX5L9XReXyM7uzszCmTPnuc99DtdOlaCUori4mG1Us1D3zTe1qohakpKA9HR2kZgxo9n3qm5r1tbIDA0YAAxB909DEITV6enpuQkJCY2mjRKJBKIoEvxJK90qlapEq9WG3r17Nz05OZkFOWNjYPDg2oUxiUQCExMTIScnp+kX2rULKGx6l/Pz8+Hr60ueaWJFz54s6KamsszWwYH53Y4cCRCC3bt3iydOnIBcLqcvvfQSMX2WEfD1qPHdFRcsAIKCcP36dVy7dg2Ojo5CaWkpq9326sXOwZPeCzVMn86aIXr0eKqGuKysDBKJxKBcMFAHQ9D9k1CpVI+0Wu3cK1euNNpJUFJSAkEQCFiX25+1T9qqqqolUVFRmrKyMpZxLlvGFA3VeHl5SY4cOdK0L0NSUrPmL5WVlcKzjrQBwEx5iopYvdTFBRg1CliyBDe//Rbc/fvcwoULMXnyZN74GerIjVFeXg5CKY5u3Ch+um4dDh8+DIVCgalTp/IdamR+Z86w8kF9Vq1iUyYAVgppwnujBkEQQAj5U0yPDPx9MATdP5fTubm5iic1vACzWoyIiKgghKz4vVuCn4G9Go3m+Jo1ayrv3bsH+PqyGu306QCAvn37IjAwEBEREVixYsXjW/AaPvigTpB+klOnTqGkpIR3dnZ++l5QyiZYTJrEFBWZmSzIRUYCwcGw5DgM2L0b0n79mNQtObnOwt+zYmVlha5ubui8bx83efJk2NvbQ6PR4EFBAZOvpac33fDw8suPSzAnT9Z6WDSFQqGAKIrKX72TBv7RGLwX/mSWL1+eOGrUKN+aKQ9nz54VTp06VaDX62dSSvf/BUEXALB06dIhEonkx4kTJxo7OTiwABgYWPv49evXsW/fPkgkEhgZGYnm5uY0JCSEd/7oI5B33210VM+XX36pDw0NlfjVVybUJyuLDbacMIH5GXh7syyySxdWbmjRAqIoYvknn9CpgYHE7sYNFpjbt2cLXcOHs0YP/tcNYQbYVIe0Dz6gCQ4OZPrChVAqm4iRd+6wLLx6pP2zoNFosHLlyqrFixf/unEaBv7RGKYB/8lotdrvTp48uUwqlRpfuHBBk5aWVqrT6YJVKlXTgt4/gSVLlhxYunTp8MjIyH0vvfSSkVVgIBARASiVwJgxNc0N4uDBgzmNRsOlpqZix44d1MXKCoNNTYlJI6+p0+maHxopiqwmrNGwdtzwcLaABbBsc8oUVrqolmZRnkdV+/ZA374sy33wgGWby5Yx6VuLFiz4+vk1L+fau5eVUoYOhb29PYytrMjVsjKUlZU1HXTv3WOllJqgu349e5/OnZt8G71eD0EQ5Gq1WqJSqQxlBgMAAP6DDz74q/fhX0VMTMwlrVbbPikpyaKgoOBLvV4/XqVS/Wl13Obo2bNn+smTJwsuXLgwVKFQoLWzM+DsjAqZDLt27YKlpaXYp08fztbWFp6enggODiax8fGisbU1Z9eI9eLp06cRGBhIFNVtx3VkXXo9k4LFx7Pmg/79G2aq5eVscGa3biCEoLi4mFy+fFn08/MjHM8DJiasHDJxIussq6pizxkzhvkHu7gwG8b6zRtlZUwVsWYN9FZWWJGWBidfX3Srfp8GUMoMbrp0efyzwkK20NeM1298fDyqm2PUYWFhhltKAwAM5QUDjaBWqxdLJJL3Ro0apfB0d8eDqVPxQ+vWGDt3Luzt7Wu3u337NvgBA1D12WdoHR7+uM23mo8++ggLFy7Evn37xLS0NM7W1lYcPnQoZ717N8sUd+1i430kTdxwnTjBpjTExwNgmePXX38tKpVKvPDCC017/up0zBshK4u1HFtZscx3xAimSBAEllFHRwOdO2P38eNiSkoKMTIyQrdu3dCxY0dy5swZ2rFjR2JqagrjS5eYfCwysvH3a4SioiKsXr0aAEaoVCrDfDQDtRiCroFGUavV/lKpNGby5MlmDnFxOMxxNKugQHz11Vdr09GvvvpKMDY25ktLS2lZWRkJCQnR9+rVSwKweuby5cvx/vvv4/vvvxckEglfeuUKvPR6BFMK6cyZbLxPc+h0zCzcxaV2cUuv12P9+vUCpZR7+eWXiUQiQXl5OS5dukS1Wi28vb3JkxcGiCKzloyIAA4cAFxdmbl6ZCRTRtRuJiI+Ph4XL14USkpK+BqnOI7jsOittyB58KCukbq/P3sNd/dGdz05ORk7duwAAGeVSpXxK069gX84BvWCgUZRqVRXBEF4d/v27bqr7dqhND2ddjh4sM7vC8/zsD12jAY6O5Np06YhLi5OUqODzc/Pr+nIgr6qihTEx2P0li0oS03FfxwcUOHsjJKSEvzyyy9N74RUCixcCOzZg5rkQCKRYObMmbxGoxFPnTqFvLw8rF+/niYlJdH79+8jIiIC+flPVGs4jmXKV64w/9vqrLl+QwfHcQgMDMTcuXP5OXPmICgoCFOmTEELuVy8tXQpbTC54syZOouHer0eWVlZ0GjYHNInBpcazG4M1MFQ0zXQJCdPnrxCKX37zp07EidHRy64VSsi7dKl1iTGz8+Pc7t3jzj27w+z1q1x5coV4fLly+TmzZviqVOnODMzM7GblRXpuGEDeXT/Po4OGIDKrl2F8vJyLigoCMeOHRNiYmK4goICwdXVlZM0VmagFEWVlVh+4AAEQYCzszM4joOlpSUXGxsrXLx4kbOzs6Mvvvgi5+HhQeLj46mjuTmxFkU2IqjGntLEhLX15uQAkyc3O+1BoVDA1dUV5ubmcJLLSc6GDeScsbEAgDMzM4Nep0P62rV0z61b4sGDB7nLly8LcXFxJCEhgVy8eJE6OTkRBwcHXL58uVyr1e4OCwtrpqXPwL8NQ3nBQLMsXbp0Vrt27ZZPmDCBFWyPH2e3+t27N9hWFEWcPHkSWq0Wly9cQOe4OJS4uFBlVha52LkzwHFwc3NDTk4OXbBgAYmKiqJpaWn00aNHRKFQkHHjxtWZX5aTk4MbcXGiYs0a7tKwYSgpKYGHh4c4evTohgE6MRFpxcWoeOMN+Ny9C5KWBmzfzma01XSuiSLzW3j7bdbk8Pnnjw11moJS5OTmIi4uDllZWUJ5eTnPiyLG/PQTPfXaa+TevXuwtbWFi4sL7dKlC7l69apw7tw5nhBCW7ZsKWRnZy9WqVSf/U8fgoF/FIbygoFmoZTuz8rKevx7IoqPZ6wBzPP25k0A7Ba9d+/e6O7uju6nTsGxqIj6jhxJev/0E/wCAsDzPHieh5OTk1hRUYGEhATi4+PD9ejRg5SVlSEqKqr2hR89eoSNGzfiXnEx6ZyTg/nPP49Zs2YhMzMTn332GSorK5lCYc0a5v/w3HOwycrC6bAwkPR0JnV78cW6k4qTkgALC6ZE8PVlCormKCkBfHxgb22N0aNH4/XXX+fnz5+PmXPmoF1iIpkxYwZmzpyJ8vJyMTMzk1pYWKBXr178O++8AwsLC+Tk5EhkMtmzjQ028K/BEHQNPA25RCJ57HLevz/Tqm7cyBoYFi1iQayGFStAQ0JQOHKk4HnhAvHo3x8KhQLt2rVD+/bt6YMHDwRBEPjIyEjRwsJCCAkJQVBQEHieFwMCAmp/H69du0bNzc2FqTNmEMX33wMmJrC2tsbUnj25gbt2IfGrrwThhx+AhAS2qJWSAuXEiSg0NYWuRutbn9u3gZqJEtOnNz/bDWCKh6NH66grlEolLEtKat3Q7OzsYGlpCaVSWXvLyHEcpkyZQoKDgyGK4q/ogTbwb8AQdA08DaVUKm1oZn73LnPjUirZLfrVq8A77wBt2uDwa68JxSYmRPdEJunl5YWxY8eSXr168dnZ2YJcLicvvPACn5OTgytXrkAURSIvLweqqpCfkYHbW7aQkJAQHvHxrB3Y0xMIDkZLCwvYd+iA6yUlZIO/P019+21QjgM4DufOnYNUKkWjJTNKmQ9uTXNDSgowdGjzR759O8uM69OiBdCvH7RaLc6ePYvs7Gxu0KBBdUTGRkZGsLW1hV6vb6VWq7s9/TQb+LdgCLoGnkZ+eXm5pKDgiYG2hAAqFVucGjuW6V1feIGZxAwbhpHz5vEtEhLopk2bRG1S0uORO2vWwFMQMH/6dH5SZCTZu3evcHn2bOCNN6iPj4/gvGQJ9FeuYNfGjeiTnIyOHTsy85vERNZ95uUFzs0Nlt99B+rkhJKSEvz000908+bN4pkzZ3Dq1ClMmDABMpms4VHExrIWY1dX9n83N6ZAaApBYON8GlvcMzMD+vTBkSNHcPz4cXTt2pW2aKQDztvbu+bb82q1+g8bQGrg74Uh6BpoFpVKlS2K4vzIyMjy+kY9KCpiaoApU9htfmIicOgQZHI5RiUl8fqqKrrv+++pNj2dbe/kBCiVEI2MEN21K01PT+d7rFkD/wMHyJAhQyQ4eBBlnp4olMlgdfQoaEkJmx5x8iRz9VKrUfnhh4h4913odDq6YMECsmDBAkIpJSdPngSlFFu2bMHx48dFff16bVISq/HWQAjb34iIxg+c41hDRGMBfPt2YMYMdKnuUNPr9Y2ONSKEoEOHDjr2ctySp59tA/8GDJKxfylqtVoSGxs7++TJk65hYWFJzW0bExOTIIpiD5lM5tqmTZvHGVuLFiwDffCAmZC//jrTvxICMnUqAjp35g4kJMBmwABibW3Nsktzc1RWVSEyLo6MGTMGrdq2fey3AEAulyM3N1c4evQod/+77+B69CiK/P1BXV1RSilyVCraprgYg7/6iuOqF+bu3LlDpFKp2KdPHxIQEICTJ0/S6OhocubMGaSnp4vtnZ2JbM8eNgvuyZbg8nLm7dBYg0NoKCtFWFk1fMzXFxg+HElJSbh9+zb0ej3p3Llzo5lsRUUFn5qaCkppWGxsbHbPnj2vNP/JGPinYzC8+ffSUhTF1SYmJhVqtTpXpVLFNLWhSqWiarV6RXx8fIifn5+yxksBAFuQOnGCLVJt3syy3mrKysqg0+lI27Zt67yesbExTExMRIVC0eBOixCC4KAg3uXzz2Hz5pvY6+Mj3L95k2iSkjhRFOH51lsYNXw4Qb9+zGNh5kzY2dkhPT2d1NzOL1y4kBNFEUVFRdi7dy+2ffIJxpeUQFldkti8eTOtqKggzs7OQni/fnyLsjJWm36SnTsBGxuUlZVh+/btYnBwMOdV01Bx8SJgZISYmBjY2Nhg+vTpTZYOWrVqBalUWigIwkNRFP/78ccfO+v1+vf+Kje5fwNqtboFgEoArQF8B+AOgFMA4gCkPXnu1Wq1EwCe5/lpAKoEQVinUqke/JH7Zwi6/17ypFJppkajaQ3gJbVabfYUj4CTlZWVP33xxRfPe3t7c/369ZMrFArWolvTprttG+vSqtbwbt26VRQEgXuyxvrjjz8CABUEgbNqLIsE0LKyEsb5+bi5di0dd/AgX9MCLIoiOI5jAe6VV5ik6949nImNFfv261cn8HEcBysrK0yfPp1Le+EFxBUW4sG2bUJBQQFnZWVFR48eTY4ePUoSnn8epi1biuYff8y1bdsWmzdvFt1u30b3V17h7mRkYOvWrQDAnTt3TvDy8mKLZbdvA+bmsLS0FMrKynidTtd4HRmAvb092rRpI8/IyDjIcdxQvV6/CMB+AOee8vkY+BWo1WoikUhmcxy3mOd5S1EUeUppzUU9zN3dfUxKSoqyelsAOADgCoAlADOcNzMzEzUazUS1Wu3zR7rCGZoj/sWo1WpjnufjBUGoMUHgVSpVs2PX1Wq1l0Qi2dqvX79OXbt2ZT88c4Ytls2bB3zyCTOVeekl5OTkIDIyUuB5nhszZgxxcHCo+YXH7Nmz0bJly4Zv8MUXgJERfgkMRO7ixTR0/36C5oZOBgXhplZLpdu3k/bt2zd8XK8HunRB6d69OBYfD7lcjsGDB6NmrlpZcTGORUcjNTWVAiAAaJdTp5Dt748MhYJ07doVwcHBWLVqFd544w3UyfIBrFy5Uhw9ejTXnFH7w4cP8c0339DqySAA0E6lUt1u+qAMNEf1oqQ9AFcArjzPe0ml0iFGRkaOzz33nEmN94YgCHiyiSY7Oxt79uxBQUEBeJ5Hjb8GABgZGVW98sor8p07d5bn5+enarXaqSqVKvGP2H9DpvsvRqVSVajV6hAAXgDuPC3gVpMiiqKXW43eFWDGNfv3M2vGhQuBceOAgADY+/lh/vz5/K5du7Bz5046b948olAo6Lhx40j9gEspxbWEBDhu2EDjBw0SU1NTedfZs9FswAWAqCjcXLmStPv+exETJnDwrDfX89IlYNo0mDk64jlHxwZPV5qbY1R5OcRBg8jGCxdgqlSKnX74gZfdvIlBXl61HgomJibCpUuX+FatWsF53Trg+edxTqsVtVotd+3aNcHZ2blJB3UrKysMHDiQHDhwAAqFIv7tt982BNxnQK1WywCEAmgvkUg8pFKpD6XUleM4e6lUqm/RooW2ZcuWvI2NjUmbNm2Io6NjnSBbv2vRwcEBs2bNAgCsWLFCHDt2LGdpaYmysjJYW1vLeZ7HhAkTTHbs2OGZkZHRBYAh6Br4/VGpVMVgta5n3V5YtmxZmSiKj41kLSzYAlWNyXd0NDBxIh54eeG8vz8yMzNFDw8PmpyczGs0GhIbGyuUlZXxjo6OqBkuWfDDDxBXrULkrFlCx6oqyUvnz0M+cGCzEbe0tBR79uwR78vlXHhyMofXXweOHKm7UWJik+OEaijUapF45gxatGwJ5xUreBNRRMiECXW26dSpEx8bGwtBEDDM0xNcWRnir14lJiYmKC4uJleuXBGrqqpoUFBQo8HXz88PBw4cgEajOdzszvzLqc5i3SUSyVSJRPKqpaUl7O3tpdbW1kYWFhawtLSEhYUF5HK5FMD/1HjCcRyUSmUd4/pqfTWXkZHRjPv+/4Yh6Br4VVTXzuQNapje3sBPP7GgK5EA69fjYWAgOEEQegwcyHXt1o0rKyuDq6sr1Wq1OHbsmFBeXs6bm5uLXl5exHnnTlLWtq04a9YsCQh56vyziooKrF69Gm5ubvTll1+G0sqKGZbPmcOUFG+8wUoLSUm13WNNEVFcLJrL5aQyN5e2Xb6cyPz9CcCC+ubNm6lGo6E6nY7T6XQYOHAgLkRFCZXFxdTC0pLv3bs3tm7dSjIyMggAaDQasVevXg0WCDmOw4gRI3D48OFharVabVhIa4hare4sl8sjOI5z8fb2lnTp0kVmbW39p+9H27ZtpRcvXvxIrVb/rFKp0n7v1zcEXQPPjFqtJnK5fLVMJuNqDMtFUURUVBTu5eWJU44c4SRvvskmKpiZYc+UKXReTAyvkMmAbt1gZmaGSZMmEQA8AGi1Wlw7coSzmzMHO8eOpaJSiR4ffcSeP2NGs/uyZcsWoW3btnj++ecfZ5YyGdCvHxAXBxQXs+GVqamNT/at5sSJE6CUctMiIsAtWkRgZsaaHwDcvXsXhYWFpG/fvsTV1RV2dnYAgK7Tp/OIjgaqzXkWLlxI8vPzcfbsWZw+fZrr3r17owtrPj4+iI6OdquqquoD4Pizn/l/Pp9++ukquVz+cnh4uFHHjh0bn+DxO0IpbfINCCHgOK5KFMWsP+K9DUHXwDPD8/xspVI5bfr06UYxMTE0KSlJqKys5JVKJbWzsyMHOnWiNu+8g84bNpDq+WDk0bp1UKxdy2q+gwfX6fCSyWTorNMB3bvjdZWKiKJIUFbGMtZmOHToEMrKyrgpU6Y0/MMZPpx9Pf886yirafWNjQWsrZEhl+PYt98Klba2MFYqSWFhIQkNDSXca6+x0kR2NvNyAJCamgpHR0ehe/fudUsGSXVlzRKJBA4ODrh7967QvXt3viklA8dx6NOnj8mhQ4f+o1arOxmyXYZarfYFMK/JxdXfmXPnzoEQQmxtbRt9/NixY4/0ev10lUrV/C/ib8QQdA08E2q1eq5EIlk5duxY2S+//ILz58+T8PBwSYsWLeDi4kIIIbhjbIzSr76i6775RnRo1Ypr1aqVYN22LY9ly4CpU5kt5KpVbMFNEJjOdvFiNroHAPfNN8CwYc1mpikpKbh69SpmzJhB6isJ6rByJWvUuH6d/X/pUqBTJ+yxthZeW7GCv3X4MJTbtsH60CFUzZwJdO3KJGgbNwLFxTh74waSk5MxefLkugG3spJ1sVUvyIiiiH379uHGjRsQRZHv2LFj9WaVSEpKglKphIeHR23m5u3tjejoaNeqqqq+AKJ+26fxjyMRAJodYtoUovh0e84n0Ov1OHXqFB02bBiRNmKMlJubi9LSUgJgz6/fmWfD0AZs4Kmo1WopgNV6vV62du1aHDx4EKNGjYK/vz9cXV1rA4pzeDg6tGtH2vM8vXHjBhwcHNjvF8+zwOrvD/znP2z67507LIDVm+BQx4qxEa5evQp7e3uxqSylFmNjID2dzUgDgKgonB46FKJEwlGtFl79+8Nx3ToYXb8Oc3NzJlUrKwMyMoBhw9DijTfo0E6d0Kq6pFCLTgfk5tb+d/369WJiYiKef/55TJkypTZTu3XrFqKiorBz506Ul5fXbs9xHLp27Woik8nGNn8A/w7UanVtDOLrDyZ9Gjt2sN+tefOe+Sm7d++m1tbW1LO+ygWsmeeHH36oEATh5T9Sp2sIugaeikql0qlUKgJAAWAiAMHDw6PhhoRA4uSEgUZG/MSJE+Hr6/v49l+hYFN7CwqATp3Yotvhw+znAPPknT274eTeegwePBg5OTlceo2fQ2OkpjIZm1Hdxe2ioiKq1+tJrXmPQgHUBO9evYCCAmjHjcPBmTOR0K4dsVu9mnXcHT3KXhNg9d6lS2tf08jIiAOAtm3bwt7eHj9JwuXbAAAgAElEQVT88IOwbNky7Nu3D0FBQZTnecTExIhFRUW1z3F1dQWldKxara51xPkX4wQARkZGzyJXZGg0wPnzQFgYM6R/772nPkWr1SIyMlJMS0sjw4YN4+rXjMvLy7Fly5YKrVb7OaV0u1qt9lar1U1MPv3fMARdA09FrVabqtXqUQBelcvlM62trTVNbjx1KvDpp2jn4oIG2ahMBnz8MctyN2x4/POHD4FXX326qXg1PM/ToqKipuuhRkbAl182yJqHDx9ObGxscOnSpUb/wG/MnEkL3Nygv3VLDFKpYHXoEFNBcByzrXzuOVZaqF7kKysrw7179zBp0iSIoohNmzaJRUVF0Gq14DgOvXr1IhMnTkRmZiY5cOBArRLf1tYWQ4YMMZFKpafVanUjHR3/KtyNjY11lZWVnFqtxs6dO5GSkoKysrKmn3HlCtCnDzBzJrPrjItj3zfBhQsX8Pnnn1ONRoOZM2eiviIiPT0dX3/9dWVRUdE6juN8AIgArgNoKOz+HTDUdA00i1qt7iyRSE44ODgQGxsbmZ2dnbxTp05NP8HKimWHx44B4eENHy8rY2YyP/3EPHgPHWJG6KdOPdP+bN68WdRoNE22EOPiRTaGp4lx6W5ubrh27VqjjyXIZDRo1SoyfPTox8mIjw/7Cgtj2e6QIay8sHYtqh49AqUUycnJ4u7duzmlUkllMhkHAP7+/rS0tJRs27aNCoJA2tSrU/v6+hKdTtfi6NGjZ9VqdReVSpX5TCfgn0epkZFR5WuvvSa9cOGCcObMGf7mzZswMzMT582bx3FP1mtjY1mNfsIEYPVqtiYAAC1bNtpEk5eXhx07dgiVlZX8sGHDiKenJ6mf4RYXF+PHH3+s1Gq1QwEQpVK5t2XLltr8/PzN7777buofccCGoGvgabQ3NTWVTZkyRcE964JFt27M6rGxoFtQwP5gzMyYCmDfPuD+fTZ2pxFOnTqFS5cuiaIoQhRFQgjhAGDz5s1QqVQAgKNHj4opKSmiiYkJZnCcpLm6sJeXF44fP84lJSU96XcLALjn4EBM/f2BH35g9ecn681SKXNV8/FhzSCffgqr2Fh07t1bOH/pEj9w4EDcycggaWlpZOrUqXByciL3798Hz/Nk9OjRcHZ25mta7mv+8AMCAjitVmsZExMTp1arO6tUqpxnO8H/KHIrKip4uVyO0NBQPiQkBGVlZdi0aRPZv38/HT58OIEoMkWLkxPw1VfAu+8CeXmAvPruPySE/c79+CMwdiz0ej1+/vln+ssvv5CAgAD07t27UQmfKIrYuXNnuSiKy1Qq1YkPP/zwI71eb5yfn5+n0+le/6MO2BB0DTyNHysqKmafPn26a1hYWBNzcOrh7w8cOMAmS1RrXmtZuZJlJsuWAZMmsZbhNWtYc0VSEkRRxI0bN5CUlIScnByBUsqFh4dz5ubm4Hke1tbWKCsrw6pVq7Bx40aYmZkhJSWFGzRoEBe3dStyQ0Jg99//Nrlr5ubmcHNzE/fs2cNVVVUhICAAZWVlWLNmDbX75RdSNXQohCVL0GBJp6qKGbbPns0MfY4eBd55BwN69+YH7N4NumULDltbc506dYJjdbuxUqmETqeDlZUVSkpKsHHjRhBCEBYWRv39/YlEIkFQUBCv1Wpt4uLi4qoz3j/U4er/Ia1NTU1r60ocx8HMzAzjxo0jGzZsQIcOHdDu4EH2u/TWW8D8+Ux6KK9Xbi0qAl55BYk2NjgSH08tLCzoSy+9RGxsbJpcnTt37pzw8OHDZL1e/ykAiKJ4XKPRvAegu0qlKm/qef8rBj9dA80SFhZGT5w4cbmwsHByUFDQsy0sKBQsg7WyYt1hT2Jjw8oLFhbMPrGiAujTB6KNDXb/8gviNmygNwsKYGdnR/38/PghQ4YQOzs7mJmZQalUguM4KBQKmJiYCNXZr+jn50c7d+7M2S9aRLUpKcR07Fhcv34dUqkUxsbGDXbP29ubnDt3jqakpBB7e3vcu3cP9+/fx+TFi8k+MzPx2N27uJKSIra1tuaUNbrRwkJWGnn7beD999kf+a5dbKy7ry9Ily54WF6OzgsXoiA4GJatW0OhUCA7O1s8duwYuXLlCuzt7WlQUBA5ffq0eObMGS4oKAgcx8HJyYnTaDQmeXl5g6OjozeGhYUJDXb6H8qpU6dCWrduPdTb27vO75aJiQks7tyhpw4dgvfcuUTi5MQuzP36sYtfPQqrqhBhbS2kpKRwAwYPJoMGDSLK+nadT0Apxfbt2zUajWaISqXKA4CwsLCMsLAwdVhYWFGTT/wdMGS6Bp6FpIqKCklpaSnM6meuTTFhAls069nz8c80Grbyv38/+79SyaRd5ubYY2xM6d69ZPqePYQrKgKpsXBsgi5dujTQz6bMmydev3OHq1q5EjKZDJWVlYTjODp+/HhiamqKyspKtG7dGvHx8RBFkfTo0YPu2bOH6vV6Eh4eDhOlElMp5fKeew6Fb77Jp9++Te02bCBlu3ZB9+ab2D51qjCgRw/excQEGDiQycuOHwdGjgRsbTF42DB8f+4c7W1lRbBuHWBsjHGTJ3P5+fk4fvw4Bg0aRMzNzXHjxg1SXl4u1hQsCSHo27evND8/3zUrK2sNgH/TBGFBo2l8XbZDVRXJB8QtO3eKL40ezWPYMGZE/wTVOml68+ZN4uPjg8GffQbO0pIpZJpBp9NBo9HIACT/XgfyrBiCroGnolKphE8++eTLn3/++bXJkycbP1OLZrdugJ0d856tmUt2+zb74nm2IDJgQK2w3cLCgpx2ccG9t9+G/8GDtPO2bcR469ZnF74PH47egwbxjuPHQ6FQwNHREZRS7Ny5U9y6dStPKQXHcZDL5WJVVRU3duxYODk5kbi4OOLm5kb9/PwIAHD378PezAwnRo0SyisruUBRRPwPP1DpgAE0pFUrPsbRES417zlpEvuysgJCQ7F9+3bROCCAtmvXjnkAa7XAo0eweeMNTIiIAHgecXFxyM7O5l599dU6ra6EEIwePdp47dq145cuXXpyyZIlPzzr5/M3JycvL69u2erdd4E+fUBeegmBZWWcm7c3Hm7cCKtzdS2Ib9y4gUOHDokmJiaYNm0asbe35+Hk1PgkkHpoNBpQSiUAOgG4/Dsez1MxBF0Dz4ROp1uSnZ09+Pz58x2CgoKeHgklEibrOX/+cdC1sWELbJSy2/Rvv63tPuvVqxfy8/Mpx3Ek6/x5OMXFoZVWC4lc/nR7R0qB7t3BTZwItyfkQIQQDBs2jL979y4cHR3B8zxu3brFGRsbw8XFBdVz1KhWq63x0gWWsFFmQ4YN40+9/jrNXbkSD3r2JKPXrCEVw4YhX6PBp59+SjmOo61atcL4117juLNnUdGuHbKysrg5c+awN2/Viv2r0bCsn+eBdeuQk5EhBg8ezDV2x6BQKDBx4kTjDRs2fKtWq/eqVKqnzIj/e7N06dKRUqn0+xEjRjCxdk4O002PH19bljI2MYG+WzccVCjQOy8Ptra2KC0tRWRkpFBYWMj369ePBAQEPFYl+PoCK1YAmZnA1183+r56vR5XrtROTfLCnxx0DTVdA89EWFiYGB0dfTQrK+ul9u3by5qrl9VCCAu6PXqw76dPZxrdkBCWIdaboOvt7U06dOiAg/Hx0E2aRL0UCkLc3dmUiPoLJ0+yYAF77UbahyUSCaysrCCRSMBxHGxsbGrbTW/cuIHMzEy8+OKLj8XyERFAbCwUPXtCptWSFnv2wOarr2Du4ADOzw/327aloeHhxNfXlyQkJCBdFOHz4AHRX7iAcxIJysvLqUKhICYmJqzDSiJh0zQAoLAQKZWVRKLVii4nTxIEBjbYX6VSidu3b1eWlJTcDAsLu/n0k/z3RK1Wd5XL5fsnT55sUmsAP3kyO1d+fuzz/u47YOxYyPfsQZ6NjXjs2DFaVFRE9u/fDycnJzpp0iTOycmpgQwMDx+yi1y3bg3eV6PRIDo6mp4/fz6PUqoEMCYsLOxP9cAwNEcYeGZUKlW6Xq9/MSIiojIpqdlZlgxvb2YinlktQe3XDwgOZkG3GetGhUIh2tnZEeLqyiRCZmZMf9sYRUXA7t3Ab7AArDa0EetI4QYMYPrP/Hy4JCSgxbVraKPXAwUFkE6YgJ6jRxNHR0colUpUVFSQzMxMssrYWMjfuhWuHIfMzEyyZcsWLF++HKWlpXXe70KLFrhVWUldHB252oGXW7Yw+dMT+Pj4mMnl8om/+oD+XnT19PQkrRwcmITw0SO2MFk9YRkAC5x+foClJXr16sURQkhaWhp94YUXMGrUKL6xRVIAzL/jhRfYNOd6REZGVly4cIEIgjAVQCaAhle+PxhD0DXwq1iyZMl2rVYbun///rxbt241vzEhyPLwwK3581GRnw9kZ0Ps2RMlGzY0WzIICgriL168iIysLOjHjGHThsPCmJ63PklJtTPLfi3m5uYoKSmp+0Nra2YL+dFHTLHwyy8QDx3Cj6tWiaXGxrX7vX37dqrRaNC/f3+E9u7NJyxZIo7ftg0LZszAjBkzYGtrS1etWlXnpaOioqDVaolzz54s0weArCyWDaelAWfPAgDc3d2h1+v7V09O+Ecil8s729naKkAIMz+qrGRBFmBlhtBQVivfsQMA82UwMjISQ0JCGjSa1KGqimW63bqx6dT1cHd3rympHgFrQW5uLuAfgiHoGvjVqFSqS1qt9sOLFy9WNjdjr6ysDNs4Dqbp6TiwYAGKv/kGBydNol/u2oUTJ040+Tw3NzeUl5dj69atiI+Pp2jZkgVCe3tW76vJDM+dY7ekOt1vOg4bGxvk5ubydY6htJRJkl59FfjiC5Q5OiKiZUvxQWEht9vNDUVFRUBqKka6uxOZTIbsFSsgvXNHGNG2LZNbhIWh9ebNGBoWRkyLinBg4kSal5cHxMbinREjwHEcSrdsYS3PBQUsK7OyYncEl1lp0fSnn9DS1FQHoGdj+/1PQCKK/h1feYVdUF9/vdabGAA7Nw8fAvXmzlFKG/fZzctjd1MffACYmLDOwfBw1plYj6CgIJlXXZOlDg02+oMxLKQZ+K1svHfv3vyDBw86duzYUWZnZ4caq7x79+7h1q1bSExMFOXW1sR+8mTSu3VrXG/fXvBt1Yr3HzgQ33//PVq0aIHOnTs3eGFLS0ssWrSIrFq1Sqg2myaQStmiVG4uaidL+Pqy0oJRE1NbNBqmGS4sZF/t2rH2ZA8PnEhMpIqVK0mX994TyIEDPNLS2B//lCksc+7TBxg6FGX79sG3Rw8EHDmCR1Ipznl70/DkZGJ6+TLahIbS8IMHSXZ8PF86axbMNBqWsaakwM7BAcMHDkR+ZCTWrVuH6TyPNqGhcHR01N9dsUJSYGODVjk5aJeaCtK2LfDzzyyb79MHiI7GSxxn9s2CBa8WWlqesiwq0uEfNEG2wNq6u2bevHbitm2sUaYGStmMPb0euHGjsafS2qCblsZayAcNAgIDAU9PVgMuKGDtwqtXN/reOp0Ot2/f1oCZN6FGo/tnYgi6Bn4TKpWqUq1WByclJX1++fLlSWZmZuLQoUO5Xbt20aqqKmJnZyf26dOH8/HxARcVhZZz5qDH++/zmDIFANC2bVshJyeH3U8KAqDXQywqwtkrV/DLuXMCKS7muJYt+W6VlcyeUalkTmRr17I/tldeYT+7e5d5OOzbx5QHb73F/ghHjmQZZHExqwefOsUmFScnQ2zZEkkpKXRQp05o378/j3v3gJpBm99+y7Kk9euBuDikdupE23XpwnGxsVBYW8Pzm28IVqwAcXVFUUEBkeTmgh80iOZ/9x3RX7wIy7Iy6J97DvmpqdiZkADi6UktFArR9pVXeMhkmBIaKomzsEBSVBTEK1dgbWoK848/ZuWRdu1Ytvb++9BdugQoFP2zXF3T+ZSUbS2At0BIC1Ba0sRH8rfgx3HjvANNTaN827cnxvVtPQWBfZaNOdgBUJSWwn71avb5nDwJbNvGavA3bzLtd1UVMzpqxiLy4cOHqKqqasaI+Y/HMILdwP+MWq3uIZFInhMEYa5CoUBoaCixtraGi4sLux0sLWVSIHd3Vss8fx75Fy6g8O234b5sGWBuDvLyy3i4aRMS27SBf2kpFBoNyhcvhtW33zL5UHAwc5MaPJj9e/06G+vz2WdAeTnwyy9MJZGTw4KxqSnLnBq5Hd28ebNQVlbGvfjii0TelCoiORkYNAiR48ZRq+Rk0ubBA8ovWECio6Lw8po1wNKliDlzBj0++QSyRYtwdPRompqfTzp37Qrtf/4Dn4QERLz3njD/9dd5rriYZV8VFSjfsQMFV6/ixpAhovOjR/CYMYPjevSo+94//giYmUHXqxceBATQY4GBa6ds3PgGgJtgt8MmAMpAadNub//fIMQm19b264g5c/r36ttX2a1bN75OqSAqCtizh110agxsRJGVjlasAHbuxKYRI/SjDx+WmLZpwwyTKiqYjluhAPbuZRfORnxyn4RSioSEBOxnDTpt/wqjIUPQNfC7oVar3QkhIxQKxWCtVttt4sSJsrZt27LAW1AA3LvHAiUh+HbdOurZvTu5cf268EirJTY2NiQ7O5sMGTJE9PX1/cPWGvbs2UNv376NmTNnNt4mGhXFsuMxY4DYWKw5flwMtLfn7HbvxhUzMyQFBMDExETw9/fnXceOhf28eazMER6Oq/PmUW1GBpXNmMF1nDIFpEMHln29+y7zaggJQYGPD77bvx/vLF7c9E5Onsx0vsuWIS83FxsjIrT9DhzI6RwXNwSUJoGQ1wHwoHQlCPEBkPT/ufwQMX16+wJn5w87JCeP8ProI7mzi0vDjT75BFi3jt2VZGezYDt1Kqvhd+oEqFTYMniw3nfUKEnHTp0eX0z79mV+Hk/pQHuSvLw8bNy4MXfRokX2v88R/joM5QUDvxsqlSoFwGcAPlu2bNms7du3f2BkZGQUEBBg3KVLF07h5weA3eKJ1taIOXMGNjY2JCggAKdPnyYzZ85Ey5Yt/7CAq9FokJSURKZPn44mdcY2NmwxBsBlY2N0iIvjfJOSIJ0zB61KSzHgtdeg6dSJP+znh/gFC7Bg3DiWeVOKTjExBEOGsPqzhQVbGPvmGzazbeRIAIBJRQV0T4uPT3gN29rZ4c0335TtSUmxS2rfXj6VEAsAXwKgIMQUwFoAvUGIC1j224jE469BrVZ3t8nLOxMeE4PEYcN0fd96S9rgzuLhQyYL1OtZvX34cCYfi45m9d1bt9icu6FDUfzVVyA8zzLgLVuYLGz37oamSvWovwCXkZEBQkjTK7l/MIaga+APYdGiRWvVavU3Wq02+MyZM/MvXbo0aNKkScaWlpZYv349FAoFXbRoEanxnw0ODv7141qekdLSUqxatQpyuZzyPE/i4+PpiBEjGtes+fhABKDXanH48GHM6NED0kmTWDA+cACyO3cgmzQJIZs30zRXV4rvv+ewYwcwahTL1o4fZzKw9HQgJoZ5TzyhAz5x4gStDvhNa+amTGEa5+qJCDzP44azsxzApWRPz5uOmZkrTMrLNwF4BIDVJggJA1AKQrYDGA3gZ1D6lxjnqNVq3jov7yWnyspvMtu2xfUPP8SIESMaOtRlZrLy0HffMdtGOztWq33rLTavrpGJ0ARgWW5yMtvG0rLZfSkvL8emTZt0w4cPl7Zu3RoAkJaW9qiqqurw73CovwlD0DXwh1E97fYsgLMffvjhtPXr16+hlBpJpVJx1qxZ3JMep39UwAXYMEtKKXx9fcUOHTrwmzdvJuHh4WhssOWjtm2xecwYcK6utKWREbVfuJBFzKlTgc2bgQsXIMbGIjk2lsj9/Aief56ZsH/0EatXDxjweOJxr14soGzZwoIJgOvXr5Pnn3++wftSSlFVVcX2KTi4jlyKEIIBAwbg6NGj2Pncc16UkAj3iRNnmpWU3LnYpcsvAHT44IMDKpUqESwT7g/gJxDSE8BDUPoMnSy/DrVa3RKABwB3iUTiTQgp0ul0/yGEfApgDi+KaJeWVnzXxUVWLIoA8LiT4cgRlqFKpezf994DRo9mi2EKRZPKA/mjR3CdNIndQXz22VP3cd++fUhISAAAaVZWFlq3bo2ioiJkZmZKAMT8zyfhN2IIugb+FN5///0ItVr9i1QqjR4xYoSsqTHlz4ooijh79iwKCwshCALCw8MbtXEEgHbt2oHneYSHh/OEEJibm4vXr1/nunTpgtTUVJw4cUIoKSnhKKWQvfoqGTxiBGJOncKgdes4MSwMnL8/sGkTGw1z9y6wYgXO9ugBfyMjinv3CFq3ZubmRkYskDxJWBhbla/GwcFB3L9/PzE3NxfHjh1b21WVl5eH9evXo1OnTkLvjh15E8e6k2K6deuGqqoqcByH6OhoVMjlgV69egUa+/tDV1kpXkpMfG/ZsmUR2g8+mKNSqV4GABBiD1aGkAFYAOCz31r7VavVHlKp9HOJRNJWr9d7SiQSrYWFRaWNjY0kPz/fpKCgADzPL3ZOTpba5+YiNjQ0INfe/ipE8cM7d+68e3L/foRpNGyiR5s2LPs/fpyNQJowgSk3OjQhmdVogMuXoVEqcXfFCrg3MsW3MaoDLnie/0mj0YwAwB85cqRcFMVPVCpV9m85D78HhqBr4E9DpVKd/fjjjz/bu3fv25MnT5Y9daJvM5w9exbnzp2Ds7Oz/uHDh3xERAQNCAjgEhMTBb1eD3Nzcx4A/P39YW5uDo7jkJubC3t7e7Rr1w43btxAQEAA9u3bJ7q7u/NDhw6FpKAALe7dg8LTE67t25PvRVHUxcfTodOmcTHPPSeMeecdiUwiwf327WGanS24aDTMbjA6mtUiG8PVFXBxYTXdzz7DhAkTuPj4eFy9epXs379fbN26Nbl27Rrt3LkzJ4oi7t69SzLffRfWQ4fC+pNPal+GEIKe1TaZPZ5UOxw4AOzezXX/+mujTZs2TS0tLR2xfPnyJI1G89ESSrdXP9kSQFV1cXMigNug9PyznGe1Wk0APAdgh06nw4QJE7B9+3ZYW1vLpFKpDAAKCgog0enAV1ZKCRDe8erVnNjQULlEIrlqlpvrE5yXB0+lkqky3nqLKUu+/pqNPvr004YXqvpkZQFbtoB6ekJfXSJojuLiYjx69AjGxsaaioqKOZTStd7e3jwAPHjwQBAE4eizHPsfhUG9YOBPRa1WE0LIS8bGxl/MnTvXuEnJ1lM4dOgQSkpK9OPHj5eUl5dj3759wsOHD4m3tzcxNTUl+fn54qNHj5CcnFxnYW7u3LnQ6/X473//CyMjI9HExATTp09npY7ERHbr+9ZbwGuvQbNoETbs3k1ld+4QzsND5HieUEpRcesW6X78OFpptdQ2MZHUlhOa44UX2MJQ9Sp7aWkpvv32W9HExIRaWlryKSkpsLCwEObMmcOf/c9/UECIMOqNN55ec6GU+U8YGUE4fBgPundHVlYWoqKiinU6natKpSqssz0h/QDcA5AL4JP/vvzy3BwHh8WEkEkKheI6ACWAFpWVlV0ACHK5PMfY2NjCxcXF5PLly1CpVEhPT8edO3cAAGfOnMHs2bOR+9ZbyLl3D3Hdu4NQKjjcu8d3jY+HR3AwZOnpzEgoMRHo2BF4+WUgIIAZFTXXvn38OLugVV98vvzyS32/fv0kXvX1vU9w/fp17N27t5Ln+UcSieSrioqKz+Vy+WZK6ZBJkyYptmzZUqXT6RxVKlX+U8/tH4Qh0zXwp1Jd5/3vsmXLuu/evXts79695TY2No23dzaDQqFAbm4uAdiUgfHjx9cPUBwAFBYWwsLCAmfOnBGjo6O5hw8fon379ujdu7dQWFiIAQMG8DWddOjYkX0JAhAcDEVMDGZzHKErVuDhw4fcd2vXopOdnRD89tt8lYcH6ODBBJQC06YB//lPo4s60dHRuH79ujBtzRrerKgIWLUKmD8fZmZmePPNNzmAlRZSUlIwbdo0nuM4dK6qws7MTP7SpUu0c+fOzZ8YQtj73rkD/uJF2I4cCVsbGxQUFBhfu3ZtPdii2mMojQKAyAkTfDlRfCHHweGVHqdOIcvREX6vv+4qlUpRVVWFffv2ged5fvLkya3t7OxACEFAQAAAwMXFBS4uLqCUIiciAi3v30fL9euRumWLfmxGhsTN1pan332HqmnTIHv9dTa9t1UrpjLYv581L0yb1nTALSpiUrvOnR9bZKKZNuAnHo+Oji4XBGHU4sWLjz3x0JilS5e+v3HjxqUymSwNQEGz5/QPxhB0DfwlaLXa2RkZGeUbN24czfO80sPDg/Pw8FC0a9cOzQ3AzMnJQXJyMuLj42n9wZKNYVkdCHv06MEFBgbWtioHBwc3zCLfe49NhJBK2ey23FyQ0lIQjoO1tTXap6bCMT6eN54xA2Y1K+uUsrqkhQVrTXV2ru2Iun//Ps6dOwdBEPjk5GR0u38f2LkTRVOmwMjICAqFAocPH6ZXrlwhoaGhgqmpKQ8ARjExGNizJ9YdPkycnJwajAxvFGdnNneusBAYORJ9Dx6U3bp1K1ytVj+vUql2qNVqJZh37GSpVDpQ5+5eK5btsGgRQtzdIRMEln3+/DNcnJ1hamZW57Owt39C1kopRFGETK9nSo2tWzFSECTYtw/YuhU4dAjGTk4s0Pbpw54TGckWIzdvbuCrUIdNm1h9/JVXGgTmpoIupRSxsbFiZWXlXQBRjTx+CwC0Wu171Rf+vwxDecHAX0p1zdCDEDJELpdP5jjOJSgoSBEQEMAZ1fNUyM/Px7fffgsHBwfBz8+P8/Pza+il+r9w7Rogk7Hhh66uLCuVStngTFtb3A8MxK5du6ggivSFF17gGgTDceOAN95gGRqA7du3g+M48f79+6Rdu3akV69eiIiIEMwTEvi7bdpAqlSKer2emzZtGuzs7B6/jk4H8DzWf/edPjs7WyKTyWBjYyN4eHiQ4OBg7qnHnJwMeHoi78ABbL5xo1IvCFpBEF9nE9wAABOPSURBVEzMzc0rtFqtKc/zmDt3LtFqtVAoFI8DmU4HpKQwudrUqUyN0acP08XWV5fMnAmhbVsciI/HoOhoSCdMYKOYSktxX6FAUlISCCHw8fFhwTo+np3Xd99ltdzG+OIL1sIdGNhoJ+GqVauE8PBw3qORNuHbt29jx44d2VqttqdKpUqr/7harZaABeOxf2VpATAEXQP/z1Cr1QFyuXyRTqcbplQqNTY2NnBxcVF6eXmRlJQUXLx4URw9ejRnamoKk+omht8FUWQdc23asODz88/MA8DLi7UYW1kBdnbIz89HTEyMmJOTg/79+3MAoNVq0alTJxTk52PXTz8JXtHRpMzKCjYzZnCnT5+mkyZNIhERESCE0DZt2tDxb7/NVS1ZgvwBA2BlZdXwOHr0YLff06cjIyMDUqkU1cdOBw0aRHx8fJ5+PHo9MHIkhP/+F6UKBVq0aAGO43D16lVER0cLCxYsaLRerNfrkZqaCncrK3DGxsz8Z/58pjmuqGByratX2Xy4iAjkf/ABthcUwMzZmT4/bhwxNjbGunXrBFEUOWNjYzE7O5u3FgRh2po1fEVEBIz79YOkfg38wQN2fmNjmYrBwaHRQ/riiy+EQYMG8e7u7hBFEWlpaWjVqhUUCgUiIyM1GRkZKxcvXvz+00/OX4sh6Br4f4larZYDaA+gg1wuHyYIwnC9Xm8CAFKp9AGl1KRbt26Snj17SqXPKCFqltxcNtnXxITpaj08WJPCG28wOdgTVFZW4ujRo8Lt27c5nudRVVVFpFIp1el0cHNzgxelJDkrS0x9+JCzlMnotPfeI/n5+Th06BAdP348MZLLmWQqL495UtRn5Uq2L/7+dX78zTffiD4+PlxISMivO7Z589ituqcnSktLsXr1aixuog1548aNwv3793mJREJNTEyErl26SAIdHFjzgosLC7b9+zMtbatWgIkJkpKS8NNPPwFgkzpEUcTYsWPh5uYGXWoq8l59ld7mOBLboweUpqbC/Pnz6wb8vn1ZlvuUi8kXX3whDB48mHdzc8PmzZvLsrOz8wghDpRSBYAYrVY7SKVSVf26k/PnYwi6Bv4WVBt6jwXgAmAZgJYymSzCwcEh5JmHZT4NUWQB79Ah5lr2jJOPS0pKsGrVKnTu3BkDBw4Ex3GglOL+unVwSE0F14ivK7ZtA+bOZW2w9Tl2jGlWn1hESkxMxMGDBzFr1iyY/1rD9pMn2S17UREKeR7rNmyAlZWVfubMmQ3WdJYvXy6OHz+eM9u7FycsLWFy/jwdUFBAEBnJjGdWrADy2d25Xq9HbGwsTp8+DYAtbspkMnHq1Kmcubk5K1v4+bGyy+uvI/3ePezatYv6+PjoiF4Pl127+DujRongedAnst8nPksCoDZAXbt2TdKmTRtqaWkpXr58WdRqtf4AjDmO2ymKYohKpbr3607MX4Mh6Br426JWq6UymexyaGioV/fu3f+3lrYVK4ATJ5hk7NIlJml6xkCekZGByMhIvP322w0XASllc+GWL2c+DDWvSSkzAWrZsuHE4969gVmz2AJdNevWrROdnJzIwIED6+yUVqtFbGws9fLyInUWuhrjtdeAsDBoBg3C6tWrIYoi7dOnD+ni6gpYWqJi61bEbtuGvvv2gV+yBFHu7sJDiYQfN378Yw9jQqDRaLBp0ybh4cOHvFwuh6urqzBs2DA+PT0d27Ztw7Bhw+Dn4cFkYhcvMjNxCwukp6dj586dd2lx8VdamUwYvndvjxN9+lx8ZGb2ZHZKmvgeAFwB5ACoBKAD8I1Kpfr7OK1VY1AvGPjbolKpdGq1eujJkycTCwoKjLp16yZ7auBpisxMZhdJae1C2LNy8+ZNtGnTRuA4rmHgJ4RNvBg37rFngKcn+97GhtkRzprF6qY1fPLJ42GW1YSGhnL79u1D3759IZVKUVlZicOHDwupqam8RqMhpqameOqxr1oFEALFkSOYr9Phqq0tYo4cQcc1ayDLzEQCx6EwMFDkeZ7Dxx+DO3GC09y9+/hCIQgQAwKwfvp0QWFszL366qs16hAeAFq1aoWQkBAcO3aM+u3YQXD5MvMlrh4ESimF8tGjh7M//fQFAP6g9POOv+pM/zMwjOsx8LdGpVJl6vV6r8TExBVbtmypzMnJ+W0v9PXXbAbbbyxTNHvHaGTE2oHLy1ljQHn548e++47VW5/khx8azIPz8vKCXC4XDh48SE+cOEHXrl1L8/PzMXToUEilUtqYj0QtpaVsESw7mwV/KyvIKEVXZ2fSMzSUrl64UDx68iQ9decOOo5+LOutttvEmTNnAAA5BQXIqKykNubmmDJlCrGsp0s2NjZG165dYXXnDimPjYW4ZAmrBQNAYSGMo6JQbmamAxAKSvVN7/A/G8MIdgN/e8LCwh6FhYVFx8TEZCcmJvbMysoSbG1tn21M/O+AmZkZYmJiOA8Pj+YVFTIZUyVIpSzQenmxDrWzZ9mstJkzWdD/4ANWg3V1rfP0Nm3acFevXhXLy8tJx44dyahRozhra2uYmJiQw4cPw9fX97GJT2Ym6+by9GQLgjY2TArm6MheOzQUSEyEzfbtJMbUlOTk5JDp06fDxcWl9qpjY2ODFi1a4Pjx4wCAvXv3wnzaNDpo+HBe0oR3Bn/jBrzfeAM7+/fHZakUvr6+4Kr9lHV79+JKixb3u0dFff2/nfG/N4aga+AfQ2ho6NXo6OjVJSUl5VevXg00NTWV2dnZ/Y5C3sZRKpW4efOmIJVKuWYn1QIsqBLCplv4+LDg2Lo168Cq9lbAmDFsyka9Wq+ZmRkCAgK4Tp06EccnDHHsLS2Rd/OmGH3hAnw/+ojIundnsreEBDYVd/RopjzgOCaJq8HDA1zfvrh24QK6ZGSIPhMn1jlXhBDY2dmhqqpKuHDhAjdy5EgEjB5NiLNz4+Y0RUXg5s6FZOZMOMyejYSEBKrZsYM6HzpEMH48st3dkZycfL979+4bGj7534Mh6Br4RxEWFqYPDQ09Fx0dfTgtLW1qTk6OTi6XSy0sLH51q/GvISUlhcvPz6fu7u7kmSRsNZ1ry5cz1cTLLwOzZzNbyHHjWBbcXNeWXs9qtIGBwA8/wPPOHXLPzY0kCwIttbAgBRyHEnd3VFRUQFc9LZnjOBBCas9DcUkJfvz5Z1G8fx/9zcw4RU0jRL3z5OLiwoWEhKBly5asTNKlC7NgfBJBYBeRqVOBWbNg8vAhClJS6CWtlksxM3t06vJl7fXr1ymlNDUkJGTL/7V3t7FRVWkcwP937tz2djrtQsC+SbHQBsGXsrgrQnBdJEGUTa11KZAqVKRR5IMa32hMmLOHLDTEdbuJLcoYgQ0UZNjd6PLiW1LWbmvs0qya1m4gzTYoItalpe283jv33v1wWqC8lE47nXHg+SV8oTPTJ/Phz+Hcc54ngq/2ukOnF8h1i3M+WZKkFcnJyc9YljW9sLBQnj17dlJOTk7UA9jr9WLv3r1Gd3e3XFxcjFnXmNV1GY9HjKt5/nlxM668/MKq1DRFp628PDFlISUFqKgQgzgrK4GB9pCapuG9995DX1+fFQqFTF3XrXA4bDMMQwqHw5Ix0GLSbrfDbrdD13VMnTrVXLFihWj48+OPYgZdU9PVO3998IHo9XDPPRf+TtcBzkXPhOpqsY3iduN/gQB2m2bA7/eHwuHwEgBdALoYY/7IvpzrC4UuuSFwzgtkWS6XZblCVVXnXXfd5SgsLLRNHHiyHi1ffvkljhw5goqKCmRkZIz8jadPi9DKyhLXb+vqxJ7snXeKp/9FRcDnn4t+vg7H0NHlEdA0DV6vFx999BFOnTqFl19+eegLvvlG7PvW14tV7aXH2UpKxImLi5uIr1olet663aLxz/33X+i3AODgwYOh1tbWf+m6XpYoZ2nHE4UuuaEM9HqYl5SUVGGa5nKHw2Hl5ubK8+fPd0RjBWyaJqqqqrB+/XqMKtD37xdNvdvaxMmGm24CNmwQ54fnzRN7wYYBjLIl5iC32206nU5bWVnZ5T/UdTEcc9u288e9ruqTT0TYlpcDS5eKuvPyhlws0XUdH374odna2vqZrutVjLEjYyo+wVHokhvWwC23GTabbalpmlsBgDE2ps88fvw4Dh48aL300kujT+9gUOyZtreLB2xz5ojuXy++KLYA1q0Tq96aGnFrraREDLMsKxPnjAOBYVfCH3/8MVpaWrBs2TLMmDFj+FrKy8U4osEmM7W14nfv3i3+IVi3TvSpYEw0JL9Kr1tN0+B2u0Nnz55NttlsW0zT3MMY+89ov6JERqFLCADO+RwA/546dar37rvvdmZkZGDSpEkRzW5rampCS0uLmZOTY5WWlo7f0LeBm2E4cUKseG+5RfSI2LwZaGwU53x37hRB/dBD4obbpk3iKFpXF2pffx0PPv008i85knZFx46J0P/2WxHwn34qVrOPPSZWw5omrkynpo7ojPPp06fx9ddfG8eOHQvqur6EMdY09i8ksVDoEjKAc54kSdITqqouN03zNl3XM9LS0nxZWVlSdna2MysrS8rPz7+8SxbEePetW7ciMzMTa9aswWgnYkTVyZPiv/kpKaJBzSuvQPd40PT225jt8WDi44+LB2B5eeKq7pYtorWjLIsbcaZ5YU/32WeBBx8UzWk6O4HFi0WQOxzAI4+Ih2cROHHiBDweT79hGD+Ld3/bWKPQJeQqOOcpEBNvb5dl+eeKoiw0TfP27OxsfeLEiXJRUZFjsNdCdXW1kZGRIZWWltrGOnRzPO3bt88MhUIoLy+3Sd3dYo84EBBbBStXilWyJImVbEGB6Efh84nthKoqsd1QVyf2er/7LuKwHRQOh7F582YAeAXAH26k4KXQJSQCnPMZAH6RnJy8Pj8//5ePPvqo2tbWhsOHD+Opp54SZ1njqKenB21tbdaCBQukK03geOutt4yZM2faFi5ceO29gIFm6ujuFvvL990HbNwo2mBWV4vAHoPt27ebZ86cscmy3GkYRhljbETDMhMdhS4ho8A5T1EU5agsy3Mty5KmTZtmFBcXy8P2QBhn7e3teP/99wO6rpt2u92hqmpgyZIlan5+vs3n82HSpEn44osvUF9fb73wwgvRnboxSpqmoaqqCgDAGIt/QTFAXcYIGQXGWIBzvtiyrL8CmHfq1Clp7969ltfrdT788MNSXl5eTOvp6OjAgQMHACAFEMe0dF13tLa2mg0NDVpXV1fSokWLEAwGLb/fLwUCATgGLlXE00W391bGs45YopUuIWM0MH+rAMCvALgBYNmyZZg1a9awQzajobe3F4cOHfJ1dHSkqqr6j2AweC8uWkypqvrfYDA4/dL3FRcX49Zbb8Wlc+jGyjAMaJo24tdbloXXXnsNAH7NGGuIajE/URS6hEQR51wGUKQoyh+zs7OzV69erUZy7CwSPT09ePPNNzXLsraEw+E/McZ6h6nrEQDvABjsx2hNmDBBe+6556J2zMIwDNTW1vr7+vqGTHwYwfscAG5mjJ2OVi0/ZRS6hIwDznlacnLyIV3XF6iqGkxNTQ2npaVJ6enpSnp6esq0adMwmi2Ic+fO4fjx42hra+v7/vvvk+12e1VlZSWPpC4Av5dludQwjOxVq1Zh+vTLFsKj0tjYaDQ2Nv6zsrLy/qh84HWKQpeQccQ5dwDIBJA1+EeSpJsVRVmbmZmZ9sADD6ROmTJl2M/w+/1obm42Wltb/f39/ZBl+UgoFHoXwCeMMd+wbx7Gpk2biux2+zsFBQXOpUuXpoyl/3BfXx9qamoCuq4XXmkEOrmAQpeQOOCcKzab7UlZlrdMmTIl+Y477kjNzc3F5MmT0dvbC6/XC8uy0NnZaTQ2NuqSJHk0TdsOoJkxZkSxjlRFUTZJkrS+pKREnTl43TdCHo8n0NHR8carr766IVq1Xa8odAmJI865CuAxVVV/Y5rmvZZlpVuWZSqK8i0AwzTN9lAoVDneq0fO+VxFUY7MnTs3fdGiRUokDwBPnjyJurq6s7qu3zKWlfeNgkKXkJ8QznkOAIkx9t01Xxz9352RlJR0OCcn57bly5c7RnKywTRN1NTU+Hp6etYwxg7EoMyER6FLCDmPc25XFOUNp9O5eu3atY5hZ74BaG5uNo8ePXosFArNv5Gu8o4FTQMmhJzHGAvrur7e6/XW7tixw+/3X33Ig8/nQ319fSgUCj1JgTtyFLqEkCEYY5au6xv6+/u3u91uX0NDA4LB4GWv++qrr2BZ1meMsfY4lJmwaHuBEHJFA1M2SgHsBwCXyzVksobX68W2bdsCwWBwpcvl+nucykw4tNIlhFwRY8xijHkkSfotIBqQX8zpdGLOnDnJiqL8Lh71JSoKXULIsFwu199sNlvp7t27A2fOnBnys5aWFk3TtCfiU1liotAlhFzTxo0b/6Jp2hO7du06H7xdXV0wTVMH0Bnf6hILhS4hZERcLpdH07Q1u3btCvzwww8wTROyLJ9jjPXHu7ZEQqFLCBkxl8u1X9O0J3fu3Bnw+XwIh8M3xbumREOhSwiJiMvlelfTtLV79uwxFUX5c7zrSTQUuoSQiLlcrn0AcoPB4DPxriXR0DldQgiJIVrpEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDP0fG0H2/yWdIfIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_knn.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Weights from shapefiles (without geopandas)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "pth = libpysal.examples.get_path(\"mexicojoin.shp\")\n", - "from libpysal.weights import Queen, Rook, KNN" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "w_queen = Queen.from_shapefile(pth)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "w_rook = Rook.from_shapefile(pth)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jovyan/libpysal/weights/weights.py:167: UserWarning: The weights matrix is not fully connected: \n", - " There are 2 disconnected components.\n", - " warnings.warn(message)\n" - ] - } - ], - "source": [ - "w_knn1 = KNN.from_shapefile(pth)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The warning alerts us to the fact that using a first nearest neighbor criterion to define the neighbors results in a connectivity graph that has more than a single component. In this particular case there are 2 components which can be seen in the following plot:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydeVwVZfv/P/fMnHNYDggqKIgIIoqIqKi4gHrENLUs28xc25+e0t/TalnmNJZl9i3TbNOsTE0ryzRzl0URxQUX3EFEXADZZDucM+fM3L8/BgyR5Rw2l+b9evFCz9xzzzUK19xz3df1uQilFCoqKioqzQNzqw1QUVFR+TehOl0VFRWVZkR1uioqKirNiOp0VVRUVJoR1emqqKioNCOq01VRUVFpRlSnq6KiotKMqE5XRUVFpRlRna6KiopKM6I6XRUVFZVmRHW6KioqKs2I6nRVVFRUmhHV6aqoqKg0I6rTVVFRUWlGuFttQGUEQWAAuAFoBaBl+fdWAFoSQlprtVpvhmHaEkI8rFZrxsyZMx+9lfaqqKio2EuTOl1BEBwBeFT9Ylm2rUaj8WEYph2l1EOWZXdJklwAOHIcZ9HpdBZHR0fJyckJzs7OrLOzs9bZ2Vnr5OQER0dHbNmyxSLL8p9NabuKiopKU0CaQsRcEAQ9wzCXKKUuOp3O5OjoaHV2dqZ6vZ51cXHRuri4aMsdKpycnFDhTB0dHcEwNUc8ZFnGxo0bceTIEUop7Q3gCM/zqgq7iorKHUNTrXQpIUQ3bdo0xt3d3amxJt21axdSU1Np+/btaV5e3m6LxVL20Ucf/SmK4u8AYnmeNzXWtVRUVFSagiZZ6QLA3Llz323btu3MCRMmODo6OjZ4PlmW8dlnn8mDBg0i/fr1I5RS5OTk4OzZs/TEiRPFOTk5Wo1Gs8dkMq0GsInn+cyG34WKiopK49JkTlcQBK1Wq/2KZdmJL7/8soNWq23QfCkpKfjtt9/w1ltvVRuCMBqNSE1NxalTp0rOnTunYVn2gsVi+UWSpPUADvM8LzfIABUVFZVGoMmcbgXz588/9NBDD4UFBgY2aB5ZljFv3jy88MILaNmyZa1jJUnCxYsXcfr0acupU6fMZWVlVoZh/jabzb8C2MnzfGmDjFFRUVGpJ02eMmY2m9cnJiaG+vj4cA0JMxBCQCmFLStmlmXh5+cHPz8/zciRIzV5eXlISUmZeOLEiTGZmZm6jz/+eJ/JZFoB4C+e56/W2ygVFRUVO2nyla4gCB4cx/3g5eUVNXbsWMe6Vqk1UVZWhk8//RS9evWyRkVF1duBm0wmpKSk4MSJE6Xnzp3jOI47YzabV1BK/+R5PrVek6qoqKjYSJM7XQAQBEHHcdy7siy/9cYbb7AODg71mufYsWP4+++/rQAwZMgQxs/Pj2nTpg1Ylq3XfFarFefPn8fJkydNp06dogCuSpK02mq1rgWQdLunowmCEAWgR/lfaR3fAYBU+Q4ARgCbeZ6/1CRGqqio3EBzOV0CQAaA2bNngxBSxxk1k5OTg2+++caq0WjiAAQ6ODi0Gjt2rLOfn9/1MZIkQZIkm0IRFVBKcenSJZw6dcpy/Phxs8lkEgkhf4ii+AuAOJ7nLfU2uomYP3/+EV9f326urq7XNwlp+X9opf/XG5xu1X/70tJSa2pqKksI+XTmzJmzmtpmFZV/O83idAFAEITnPT09/++///2vS0PmoZTi66+/LsnJyZkEYAMhZCzHcUu7dOniPHLkSAdnZ2esW7cOx44dw+jRo2nPnj2JRqOx+xq5ubk4ffq0nJycXJKfn89xHLfVbDb/DGALz/MlDbmHxmL+/PnHx48f383X17dB85SUlOCLL74oE0VxCM/zBxrJPBUVlWpoNqc7Z84cgWXZd2fMmGG3E6xMeno6Vq9efVkUxY48z4sAIAiCi1ar/QjA0927d2cOHTqkAwAHB4cdsixHDhs2jAsPD6/3pmFRURHOnDmD5OTkoitXrug0Gk1ipY247HrfTAOZP3/+6QkTJnTx8fFp8FzJycnYuHHjBVEU+93Ke1JRudtpzpWuTqfTrQJw36RJkxzq6ygOHjyInTt3rnrzzTcnVXON7gCGASgD8CPP82ZBEHpxHLfv7bff1jYkrFFBNRtxZ81m84+U0j94nk9v8AWqoTw8cxMODg6pkydP7ujt7d3ga1BKsW3bNtPBgwcJx3GxJpPp//E8f7bBE6uoqNxAszndCubMmfOwk5PTipdeesmpPhkIcXFx2LVr17x33313pi3jBUFoAeCap6dnSffu3Z29vb1JcXExQkNDGxRbBpSNuLS0NJw4caLs9OnTRJZlufzfk+DGzSpS5fPKf696HFXOBcuyVJKkm4wlhMjTpk1j6psRUh1msxkHDx6kcXFx1ywWyyCe50802uQqKirN73QB4KOPPvomICBg8rhx4+zWZdi0aZN44MCBt3ieX2DrOYIgOAEwaLXaB0VRfL7i80ceeQQhISH2mlAtsizDZFKkHyqceWWnXvmzqsdr+75q1SqamppKXn31Vbi4NCgcbhfHjh2jGzduLLJYLFE8zyc124VVVO5ybomeriiKb549e/Ypi8UCe+O7hBBoNJrO9pzD87wRwKbyr/8IguAG4Ny+ffu4kJAQV7sMqAGGYeDk1GjaPtfx9vZGamoqUlJSEBYW1ujz10RoaCjhOK7F+vXr4+fNm7fZbDY/z/N8XrMZoKJyl3KrOkeUUkpJxcrQHgYMGKC1Wq3PCIJQb2fJ8/w1AC1LS0ud6ztHczF06FDSrl07Wlra/JXLwcHBePXVVx0DAwPHaDSa7wRBaJiAhoqKyi1zuhqO4w6vWLHCaDQa7TqxRYsW6N69u5XjuLTyeG294DgurVevXvWrqmhmWrRoQfLz86VbcW2dTof7779f4+PjM0Kr1Z4SBMHrVtihonK3cEucLs/zZaIo9i8sLFy6cOHCstTUVJsDy4QQPPTQQ45OTk5aAO3qawMhxL1bt271Pb1ZcXd3x7Vr127Z9XU6HSZPnuzUs2fPdgzDpM2dO3e3IAh9bplBKip3MLesMSXP83TmzJkvi6L42qFDh+x+d+Y4TgZQ7yAqy7KZeXl3RojSw8MDhYWFDc93awCEEIwaNUo3efJkh4EDB0ZqNJq4OXPmzGrI24aKyr+R26Eb8BWz2Vy31i2lylc5er2eAdCxvhc1m83vrF+/vsze8MatwNvbG0VFRUxBQcGtNgV+fn4YOnQonn32WScPD4/ZGo1msyAI7rfaLhWVO4XbwekWnz9/3vXKlSu1j/rxR8DBAbh6Ffj1VwxPT3dxcHB4vb7JtrNnz/7TYrF8+8svvxhl+fbWN/fw8ICXlxf27NlzS+K61eHp6Ynnn39eExAQ0IdhmFdutT0qKncKt4PTvQoAS5cuRa0rucGDgWXLAA8PIC0NrTMzQUWxE4BiEDIchISAkPfsubDFYnkjKyvrWGJi4u3tdQF069YNGRkZtzTEUBWWZREaGqphWfbx8s7PKioqdXDLnS7P88cBnCWExP/00081x3YDAoAnngBWrABmzED2O++A0ekuAwgHsBeAL4CBAABCToKQuSDEtfx7tbFfnuetoijO37Vrl3wrikTsITg4GHl5eYwk3TaLXQBAQEAAOI7ryLLs3Ftti4rKncAtd7oAwPN8F0rpkOLiYrbOGOvRo0BRUcVufjooPQlKS0DpJlA6onzUGABfA3ADcB8ABoSsAiFbAACEvANCKjIf0iwWS+m+ffusTXBrjYarqyu0Wi3Nycm51abcgFarxQsvvMA5Ojr+RxCEUbfaHhWV253bwukCAM/zslarPZOVlVXzIJYFPv0UIARelMJisQyudvec0nOg9BIozQClPUFpCYA3ALwFQlgAjwJoB0Ke4d97b50kSc9g2TIRB25vVUNnZ2fp8uXLt9qMm3B1dUWfPn2cWJYdUfdoFZV/N7eN0y1Hy3E2VCYvXw7PPXsQHBys5TjuS5sqpSi9AkqPgFIJlPYCpfsB/A7geQClPomJGsTGAmfPAm3bAjk5QGwssGlTw+6oEWnTpg2XkZFxe8UXyikqKjJLkpR+q+1QUbndua2crtVqlbds2VJ3NsH06cBLL+HeIUMc2rdv/1B5pZT9GzmUXgOlOwAU/zxpkvX8o48CHToAX3wBtGoFbN6sZE3IMtCuneKE09OVuPItwNnZGWVlZbdl8Nnd3V3HcVyvpppfEIT+giB4NNX8KirNxS1RGasJQRAYnU53fvLkyb7t2tVRbFZYCAwYAHroEJauWFGUmZm5EMDfPM8n1uO6GgDP6fX6+a+88oozw1R5Fsky8PvvQFQUsHMn8P77QHIyMGgQMHo08L//Ab/+CkyYANjRIshe1qxZA1dXV2n06NG3XflyUVERlixZYjSZTC/MmjWrUZ5K5U52BIAOLMu+RwiROY7bY7VajzIM40Yp1Vssll0A9gB4FcBaKJ09zI1xfRWVpuC2croA8PHHH//g4ODw2OOPP+7ctm3b2gcXFQGursjIyMDmzZtLCgoKNFar9a1Zs2Z9Xp9rz5s378iIESN62KzmtXkz4O0NuLgoKW3JyQDPA2fOKMeqOu8G8t1338lBQUFMZGRko87bWKSlpeHXX39NNZvNnRva1HPu3LmvW63WTxiGoe3bty/u1auXPigoiDl16hTy8vIkjUZD8vLyYDQajVlZWSgpKdGXn/oyz/MLG+F2VFSahNvO6ZZ3SXhWo9Es6tGjBxk6dKiuVsnE//s/oH174PHHce3aNSxZsqTMbDb/v3ffffe7SnN2BVDE83ytu1CCIIRqNJr4cePGuXTq1Kl+N5CQoKS2HTsGtGjcCtnFixdbIyMjuZ49ezbqvI2FLMtYsmSJsaCgYIcoik+US2rajSAIPhzHnXn66aedvLxs19c5d+4cVq5cCQDXeJ5Xq+RUbkvY995771bbcAMGgwEGgyEpOjr699zcXJfExMQgvV7PeXl5VV8Y4OEBdO8OODrCwcEBnTt31pw+ffqe2NjY7tHR0VsNBoMYHx//B6V0YUJCgmN0dHSswWCoNmhsMBiyo6OjY0+fPj0+MDBQq9frqxtWO2lpwLhxQGCg/efWQXx8PO3evXujdopoTAgh6NGjhyY3N9e3oKDgf7t37/aMjo5ONBgMdr3u79u378t+/fr1CA0NtetVoWXLlrBarfTixYuOu3fvZmJjYzMNBsOdIbCh8q/htnO6FRgMhtxBgwZtiI6O3pCWljbuwoULUlFRkdbBwYE4O1eSwW3VCigpUTa/IiPh7OyM3r17a/Lz8ztdu3bt6ejo6FidTndfRESEb2lpaZjRaLw8ZMiQI7Vc99LevXsf9PX1befhUY99m9mzgdatlQdBI7Jx40Z66dIlpn///qjXw6CZYFkWwcHBmqCgIIfc3NzexcXFvjExMRtretBVRRAEHcuynw8bNqyFq6v9ksn+/v6kffv20Ol0A7Ozs6fGxMQsMRgM9gs3q6g0Ebet063AYDBcjY6O/qmgoOD4pUuXriYlJQW3bNlS6+np+c8glgWOHwf69AEIAcuy6Nq1K+fm5uaampo6SRTFRXl5eUMcHR0dy8rKgnft2uUbExNz0mAwFFd3zbi4uJnJycnuubm5xqCgII3N8g6SpGy6jR4N6HSNcfvX2bhxoxwcHMz07NkTN2303YY4OzsjICCAzcjI6FRWVvbi7t27A6Ojo93i4uJKDAZDjfXee/bsme3j43NPREQEVx9ZDUIIWrZsicDAQNZkMiE7O/uFmJiYlNjY2DMGg6Eht6Si0ijc9k4XAAwGQ6nBYDg+aNCgTdHR0ZtSUlLGabVajY+Pj+J9OA4IDwcSEwFHR6A8BtymTRuwLKu9dOlSi7Kysg+Li4sf7NatWyur1drHaDQeMRgMx6teSxCEVgzDBAHokpOT49ivXz/bW8b/8AMQE6OEFxqZw4cP06CgIKYx2q03F1qtFj179tT6+/u7uLm59U5LS3sYwP/i4uIS4uLicgwGg1h5vCAIobIsr/H392eCgoIarDMREBDA+fj4OJ0/f36MxWIpGjJkyP6Gzqmi0lBu/yVTFXieP2KxWMJ27Nhh2rt37w2/tNi+XSluqETPnj3h7OzcU6vV+gDof/r06dLS0lINwzB+1c3Pcdzr/v7+E/v37++o0WgKk5KSbC9GOHYMiIiw+55swdXVlc3Ly7vthXmqQgiBj48PIiIiyKxZszBkyBBrmzZtfmNZ9qogCIMr2ssLgtBWo9HEDBs2DFFRUY32c+nv749x48Y5sSz70Zw5c6Iaa14VlfpyxzldAOB5/oLVau0bHR0t36BF8O67QP/+QCWZSCcnJ4waNcqJZdlRAM5aLJbRZWVljCzLH1Y3t0ajGdqnTx9uwIABsFgszhkZGbY5uqIioEcP4KmnGnRvNdG6dWvk5OTcXqkmdsKyLAwGA/fCCy+0ePzxxx20Wu1WAPL777//nVar3TxgwADXyMjIRo9Zt2vXDg8++KCzTqdTU8lUbjl3pNMFAJ7nT0uSNPOrr77Cli1bxOtVbEePAs8+e8PY8kqufgDytVrtIAB6VNN1QhCEtlartZNOp4ODgwMYhsG5c+fM27ZtE+tMrduwAYiLA+on71snXl5eyM/Pv62kHRtCYGAgXnrpJQcA8PLyerpPnz5dDQZDk3Wn9vX1hcVi6SQIwu2Zb6fyr+GOdboAQCldCKBHUlJS5pEj5QkJPXsCf/2lbGqV4+3tjXvvvVfu378/JEma4eDgsAuAZzVT+lJK2djY2NK///4bHMedkSTJ79ChQylz5szByZMna/a8XbsC//lPo97fDYb5+qK4uJhp9Lxqsxk4f75x57SR33//Xe7SpYv07LPPkuHDh+vqqUdvEy4uLoiKinJwcHD4pskuoqJiA3e00+V5nvI8f8xisYzZvHlzwZYtW6jJZFKyGcaOBQ4evD62f//+zJAhQzB8+HBXb2/v7oSQR6uZb7/VavW6cOHCKydPnrxIKV3N83yeKIoPA0BcXFz1Hu/aNeDRR4HevZvqVpGUlARtU5QYJyQAoaFKWXUzkp6ejszMTKY5S5rDw8Mhy3IPQRDq3eZJRaWh3HYVafVFEIRBGo3m644dO/qPHz/eCZmZilpYNaun48ePY9OmTdEzZswYZuv8c+bMGaPRaNZMnDjRydfX98aD0dHAggXKCruJ+Omnn+TWrVtj9OjRjfugfO01JRY9ZUqjTlsXCxYskMLCwsiQIUOa9cG/c+dOcf/+/emiKA7ief5qc15bRQW4w1e6leF5frfFYjGkpaXlHT58GPDyAvbvB6pJievQoQMsFks/QRBs7iY8e/bsvywWy+O//fab0Wqtoneel6ekizUhYWFhzKlTpxr/IanXAwaDEhqpel9NxK5duyDLMhMREdHsP39RUVFaR0fHjizLrmvua6uoAHeA0xUEgRUEwduWsTzP57Ise+Z68UDnzsCIm3W1XVxc0KVLF7Asm/fRRx/lzJ0792Vb5p89e/ZGq9X69/z5802///57WXp6OlBaqqxymzAeCSjtekRRJLm5uY036eXLQGYm4OMDDB3aLE5XFEXs2bOHjhkzhtikndzIEEIwYsQITpZlG1WNVFQal9ve6XIcNwPAZUEQ6tRqFQShD6U0onPnzsoH7u7AgAHAl18CVdoAPfroo86vvvqqQ+/evVtTSuvQkfyHN998c5zFYul0/PjxdWvWrLHSsjLgueeUcuRG5MqVK1i2bBmWLl1Kt2zZAlEU4ebmJp05c6bxlrpXrgB+fooa2vjxihNuYtauXSt7eXnRwCbQprCVzp07w8XFRRYEYeotM0LlX8tt73QlSXIGAI7jnq5rLMuyD/j4+DCOjpX0zAlRVqPFN1f8Ojk5wdvbGwzDTBIEoQ4dyX8oVyt7jlJ6PveJJyi8bVqI24zVasXKlSvlsrIydOnShVy6dEn+9NNPUVBQwLZoTOWyzz//RyOirEyppDM1nUxBZmYmzp8/z4wZM4ZpykyFuuA4DqNGjXIkhHwnCMJ4QRBu+98DlbuH2/qHTRAEX0rpO507dwbHcX51jZck6eNz585pb4q5zpihaCGcOXPTOSEhIejQoYMLgHvssY3neaNDTs5I3f79SG9kCceioiKYzWZmypQpGDx4MJ599lnmpZdewpNPPonu3bs3jreyWoGLFxUdYEApnz50CHBwaJTpq2Pt2rVSnz595FaN/FZQH4KCgsj48eM5d3f377Ra7Xd1n6Gi0jg0f1DNPliWZXecPXv2HgAbahsoCIITIeQspZT89NNPNx3vcPAgWly9imOjR9907OLFi84Mw7wDYKU9xr2yYEGLaIPhhcSYmAXj27Rx8vDwgFarRV5eHuzRga1Ky5Yt0a5dO3nz5s308ccfZwHAzc0Nbm5u9Z7zJlJTlU4XlR8YxcXKhtrKlY0uwH7gwAGUlZWxQ4cObdR5G0Lnzp3h6+vrvHjx4scFQTjE8/yXt9omlbufOyJlrLz/mQmAM8/zJdUc13McFydJUpher0efPn2qnYdSCra0FFJlaUgAhYWFOHz4MHiet28VScg3AA4J772XwrLsRlmWHSilLAD07t3b2rZtW87Lywt1th6qhpKSEixatAgTJkyAn5+f3efXyc8/A/n5wLRpN36+ebOy+cg2Xvqs1WrFp59+SkePHk26N7LkZWOQlZWF77//XrRYLGE8z5+41fao3N3cEU4XAARBGANgg06nyyaE5Fkslj8kSdoGQK/RaJZZLBavzp07l44bN87ZaDTCxcXl5klEEejVC4iPVzbZysnIyMDy5ctNsiy34Xm+yGajCPkPgD9AaY4gCM4AWACFAMBx3CdWq/UNAHjjjTdQa/eLGti6dStOnz5NX3zxRduVzmzlzTcVCcohQ278XJKAI0catdAjIyMDK1euxMyZM3ErY7lVOXXqFMrKyhAWFoatW7daEhMTN1JKn7TrZ0BFxU5u65huFQ4DgLu7u0dUVFRweHj4mx4eHn95eHisGT16tJdOpxPPnj3r/MEHH+Czzz5DamrqzTNotUrc0t0dqPSw8fHxgb+/v8xx3G+CINgWclEq2rqB0hwA4Hm+tPyXVQtA884778wAAIZh6uVwAWD48OFgWVb+6quvaFlZWb3mqJZr14AdO5TGmlUpKQFmzryhjLqhVMhR5ufnN9qcDeW3336T/vzzT2zfvh0//vijLMuyhmGYhzQazQ6bfwZUVOrBHbPSBQBBEEIAHAHATps2DZU3ZMrKyrB//37k5ORQV1dX2q9fP6bGnf5vvlFSyF599fpHRqMRq1atKsvLy8u0WCzzZVlexvN8zYmrhCwBkAxKv6jBVkcAxiFDhqAh4tmyLGPRokVS37592YjGko3culXRHp49u3Hms4HFixdL4eHhbHh4eLNdsyaMRiMWLFiA//73v9Bqtfjll1/kq1evMq1bt6ZXrlwhHMeVchy38s0333zhVtuqcvdxR4iYV2AwGK7GxcW9z7JsyfHjxyMIIRovLy/CMAw0Gg38/PwQHBxMAgICiENtu/Dt2imi55XGaDQahIaGatq3b++em5s7VBTFqMjIyOXVnk+IAwAZwBq89161S0KDwWDdt29f3y5dunSuT0z3n0sR6PV6Zvv27dRqtUr+/v4Nfzs5dgzo0gXw96/+eHa2ssk2fnyjFX3k5uYyGRkZUo8ePW7529X27dsBQIqIiGC0Wi169epFzpw5I5WUlJCnn36aDBw4ULt3794e5W2Gsm61vSp3F7f8F8BeeJ6nkiR9WlpaOiY2Njb2u+++M0r2vgp7eSnO5NVXb3iN1mg06NixI6ZOnepstVojBUGoSdh1JIBJoFSs4TgAwGw2bzp48KBVFGsdVichISEIDQ0lmZmZDZoHgBJW2bRJ+TeoCU9P4O23G36tSvTu3RsXL15kr0tw3gKSk5OxcuVKHDt2jIaHh1/fKSSEgBCCoqIisnXrVqlFixYob/7Z/5YZq3LXcsc5XeC6uliMKIrDrl27VnCDkLmtuLgoMpDVhFc0Gg28vLzMDMPUpEieA8AWsYWEq1evct9++22DPY2HhwdycnIanlKQk6PEtbt0qXkMIYoIzq5dDb5cBW3atAHHcfRKJYH5elFaCvzyC2BHObQoivjxxx/ljRs3wsPDgw4ePJh07dr1hjFPPfUUO3PmTFy4cIE1Go0oLCyUAaQ0zFgVlZu5I51uBTzPUwDR69atMxcXF6O0tNT2kxlGUdY6cEDJWa3C/fffr5dleZEgCANuOECII4DPAETbYN8RlmXn5efnM/v372+Q4+U4DgzDNDwAv3Ur8NJLdYcNjEbg22+rfSjVF3d3d5qamtqwCbduBWbNUnrR2chXX30lEUIwbdo03HvvvWTgwIGoqvvAMAy0Wi0cHBzkrKws3HPPPVqNRvOzWq2m0tjc8T9QZrP5ucLCwj8+//xzy6effiotW7astLiakt8aOXkSyMi46WNPT0/069dP1Ol0Oz/88MMLH3zwwQPlhwYCKAKlNtXLzpo1ayaAgO3bt+d+9tlnJX/88UdZbGwszp07Z7uNUHb+K+vplpSUoF6v6ikpQEBA3eNatVJyeRsxxSsoKIipt3bE3r1Kd46HH1YqC8eOVVbjSny2VmRZxoABAxhbwlCOjo60oKAAvXv3JlartRWUNEAVlUbjjne6PM+b33rrrQmyLDtSSh0yMzO/WrVqlTEhIQFZWdXvgZhMJhgrBHCeeUZR2Eq58U2SEIKRI0dq33jjDUeLxeLLcVxk+SEJgF3iszzPp1mtVq/i4uKBycnJr+3atWvRypUrYU+sNzIyEnl5eeTvv/+WFyxYIC9YsACfffaZfOXKFdudr8UCODsrouW2cP58tSpt9SUsLAw5OTmM3TFuSpV0v4pcZYZR/lwhNFRHyEKj0ZDVq1dj4cKFWL58ea2e12w2w9XVFSZFg0IGYMMTSkXFdu6o7IXaMBgM1GAwyDExMTstFkuL9PT0U4cPHw4KDAzUVG10+Oeff4p//vknez2V6+JF5Rd4ypSbVnaEEJw8edJYWlp6ImHzZq+I+Pg3CLAW771nx3L6un1XDQbDwdjY2CQAb2i1WnTo0MGm8zmOQ8eOHcn27dvh4eFBXnzxRXLhwgV517oFikcAACAASURBVK5dTHx8PB0wYABh6irdPXUKWL4ceLpO7SCFFi2URp+NpJWg1Wpx4MABqU2bNozN+gvffAPExiqdOaoqk4WHK5t+3bsDsgwMHFjtFJ07dyZOTk4YMmQIdu3axQwaNKjGIo24uDii0WiIv78/RFFkcnJyBkZHR6+u2i5eRaW+3DVOtwKDwUAHDRq0fdCgQX/FxMSknzp1alTHjh01ycnJ+P777+Hk5ISEhAS2fKxyUosWisO1WJRVVKVfSEIIgoKCNAkJCeFas/kBotU6/fDkk38ZDIZ66yAaDIbShIQENwcHh57BwcEcoKyw6tKXZRgGSUlJtEePHoyfnx9CQ0OZQYMG4cCBA2BZllQUIdTI998D3t7/iNxUQ0pKCpYtW0aLiopIQKdOICyrxE/rIcUoyzIsFgvYSiXF586dIyaTiQYGBtYetygoUBTPgoOV6rjKynGVYRjgiSeUMT//rNxflYeso6MjOnToAEopDhw4gIiIiBtsqowkSeTYsWP04sWLdOzYsSQ3N7dlYWFhSGRk5C/23b2KSvXcdU63MkOGDEnesWNH+pEjR0alpaWJlNKU1NRUTwC4//774ebmhuvltYQo7dMdHW9yMDqdDnv27LEO2bmTcX34Yac0YNLu3buLBg0atL++tkVHR+8tKCiYLsuyJiEhgdmwYQPy8/OtXbt2rXa5evr0afz000+0Y8eONCoqiqnsNNzc3MjmzZvRoUMH1Cr9+OefiqBNDWNOnjyJX375Be3bt8elS5eQmJhIfVxciO7XX8Hdd59d9yeKIhYuXChHR0eT+Ph4JCQk0MTERGq1WklWVhYZOHBg7U53wQLgwgUgMrJmh1uBXq+Meest4OpVpRNGJbZv346MjAysX7+ehoSESMHBwTW+Evj5+eHw4cNy27ZtWT8/PwQGBnJ79uzpGBMT873BYLDr7UZFpTruaqcLKI43JibmK0rpPJ7nF8bFxc1hGKbozJkz92ZlZUndunVjrr+WGwxASEi1m0ctW7RgAj75BOv8/NBn+HBNZmamGBERsaa+dhkMBnNMTMzarKws7/z8/EOyLPe4evUq4+7uTtu2bXuDARs2bKBxcXFk5MiRGDZsGFN1lebh4QGGYeQtW7bQiIiI6p1ZXp4iZvPYYzWK2Rw8eBAcx0mTJ09m+vbtS4qLi+mW+HgS7+wMF70eXjbqBsuyjK+++kry8PAgL730EunXrx9CQ0OJr68vEUVRzszMZDIzM2m3bt1utnXLFiUtzN5Gn4QAkycrq/iHHgIIgTUoCMuWLZMuXLhALl26RLy9veVx48Zxdek/JCQkIDMzEwkJCaRbt26wWq1STk6ONHjw4J22G6SiUj13VBlwYyIIgrdOp/tOq9UOGTt2rFPHjuUNYo8fBxYuBJYuvfGE1FQcS0iQNmRkkLFjxzLr1683syz78VtvvcU3ok3dNRrN5mHDhrXt168fW1JSgh9//FGyWq3MhAkTiKdndV3jFUwmEz755BO88847qDa2m5ys6C288kqNc3z11VdSSEgIM3jw4Bu80rl16ygzYwZZ/9JLUr9+/diTJ0/Kubm5JDw8nDg6OsJkMt1Q6vzdd99JkiSRp59+mqlOqKegoAA//vgjbdGiBX3yySeZG+z9/XelYrB/A+oSFi1CoaMjlmdlyS4+Phg/fjwDACzL2tVR+euvv5aDgoJIp06dyPLly0skSerC83wDE41V/u3c9SvdmjAYDMWRkZGrtm/fnnzs2LHHKKWMn58f4Oam9AyrWro7Zw7acBwz+K23iKenJ1iW5dLT00sGDRr0cyPadDU6Onp/Tk7O41qtVrt69Wravn17TJ48mXF1da31XI7jkJCQgMDAwOoV1j7/XNkQ69v3ho9lWcbRo0dx6tQppKSkMA8++CDR6XQ3jGnZuTNxfvRRwNmZJCYmokOHDjQkJIRJSkqi2dnZND09ncTGxiI3N5cePXqU5ufnM8888wxTdZ4KHB0dERoaSpKSkrB//345LCyMYWbNUnKDx45V/v0bQLKTE1YdOYL/LFtG+rZoQbRjxkCj0dQYx60OWZaxdetW0qtXLxIYGIgrV67Qa9euDYyJiXGNi4sT4+Licg0Gw60rr1O5Y/nXrnQrIwhCuEaj2azX67Vt2rTR9urVSxu4cSPIxIlAmzbKoHnzFD2C8vbrOTk5+O6778pEUezN8/ypRrTlfgB/AcCwYcNoREQEsVUO8auvvpL79OnD3CQqQ6mS07ptm9KWvhLZ2dn45ptv4OnpKQ8aNIgJCQmpfvLLl4F9+4BHHrnpkCiKyMvLw9q1a6nZbCbPPvusTYLroihixaefUt+ePcnwzp2V0uR6KrJVZuHChXKbNm3I+MGDCYqLgUuXlAo8O535ypUrpbS0NLZ79+5ycHAwU1RUhJMnTxqzs7OJJEl7RFF8BEApz/ONJ8mmctdzx+fpNgY8z++3WCwBBQUFD6elpR1eu3ZtZlpBwT/dcaOjgaKi6w4XUOKobdu2tQBoNFVuQRAIyh0uAOj1epsdLgC0bt1aPnjwIE6cOHFjDnBaGvDkk/88QCrRpk0bODk5ycOGDavZ4QKKRkUNBR1arRZeXl6YPn06ee2112zucKHVanFvdDQQHU0RENAoDhcAJkyYwJw/fx7JeXmKs/3iC+C11+yeZ9KkSez06dNx6dIlbN++Xe7bty+mTp3q9Nprrzl27NgxghByTaPRZMydO/dbQRBaN4rxKnc96kq3GgRBmKTX63/4f1OmcJrz54Fly5SMhtdfv2Hc6dOnsW7duvSZM2f6C4LgAyCH53lzfa87Z86cMZTSDcHBwTQsLIy0b9/erhjklStXEB8fb718+TJbUlJCHBwc5JCQEIwyGhlcvAi8XH2n+e+++w7e3t7y6NGj634IWyz/FCk0hN9/BwYPxherVsn9IyKYvlXCHg3l5MmTWLduHXr06CHdd999LBFFgOeVarznnrNrLlEU8cknn2D48OEIDAy8niEiyzIyMjKQmJhoOXv2rIZl2VWSJL0GgJZ/lVXX6UTl340q1lw9O0wmU+r2zz/3GwU4kAkTgLCwmwZ5eHiAUtrio48++hHAVADPAahXk0NBEBiNRrPk8ccfR0BAQL1qb729vTFu3Ljreb/nz59n/vjjD4xo0QJsDavYL7/80lpaWsrdf//9dTvc3buB+fOBv/6qc2idXLgA5OaioKiIaYoWPsHBwWjdujW+//57JjQ0FL6+vsqbyqVLgNmsNCq1kfIiFuuePXtITEwMyzAMjEYjOI5Dnz59rE888YRm37592L1792NGo3EiAGg0GpMkSdyHH35YzLLsXpPJ9BjP88ZynWUXAHlqWOLfiep0q4Hn+SxBEEKOubic7dqrV0f/Z59V4qEcp6h0lYcZsrOzwXHcqbKysqnlpxobcl2r1erZWP3QdDodgoKC4NGihWyePZtxunSp2nEFBQXcK6+8AucqfeOqZcAA4NdfG2bYM88oK+5yAXlCSP00JGzA09MTnp6e0vr169kXX3yRsC++qBwYO1Zxur/YXu8wadIkDgCio6PBMAwGDx6M5ORkbNu2jb333nvRv39/9O/fXyvLMkRRhIODgwOlFNeuXXP//vvv7yWEXBIE4WFCyEZKqbOjo+MfAG4OkKvc9agx3RrgeV4ym81vbz1/voQuWgS0bq0IrVR0m1i6FP4XL6KsrGygS2EhiCw/zfN8QzIZdJTSm3QJKKU4caL+vRLH+fgwJzt3Rsy+fTcds1qtkCQJjnUVH1TAcYo40M/1uM2KVj0vvniDrCTLshU6B03Ck08+yZWUlJCiokptzxYtUuw4ebJO3YaqREVFwWAwgGEYODg43JQRUfE5oDxQ3N3dMX36dDYiIkIPICY4OFgzefJkQNV0+NeiOt3aWZudna1P7dTpH/3dtWuVI8HBcAwIQFjXrqZnfvjBHJiSsgaEDAUhTwAACGlpZxdGCgDz58/H2bNnlQ8oxerVq+naimvWgxayjPbTpmHv3r03bK4VFBRg4cKFcocOHeQ6NRsqw3H/bDDaCqXK6vLMGaXgoTxOXVpaClmW0ZT7CgzDgOM4+fLlSlXbvr5KQ86FCxW76okoimBZtk7jtVothg0bpnn77bfx8MMPa8sddSN3GlW5U1DDC7XA87wkCALWrl2LmTNn3niwvF/ZfR07OnyZnV2Sn58/CsBZAJbyEesB/BeEFAF4FJR+BkKcARir8zI8z5sEQQAArF69Gi1btpTz8/MZAGTgwIEUQP00FhMS0OaJJ6DPy5O//PJLaLVaKkkSLS0t5Xr06EFHjhxpn3RhQADQsSNQXKw8iOri99+BMWOUwoxKm4KyLGPNmjWyl5cXWrVq1aQP/2HDhjEbNmxATk6OPHTo0H+u9e23SlbKihVAYeHN7ejroKquRF1UFIqkpqZaJUnaa9fFVO4a1JWuDdT2+s0wDEaNGqXX6XSr5n300TLhvfeU93hKBwE4AUUKsmKZ9X8AJoEQBoS8D0JYEKKttCJuDaAnAJQ7XABAQkICiY+Pt3N5CWXDKCkJCA0Fy7K0Q4cOzIABA9ioqChu4sSJGD16NGvXKreCjRsVIfS6kGVgzx6lBLlKFkZSUhLy8/MxderUJv8ZDAsLg4+PD3bt2sVs27btxgCyq6uycv/iC6D8DcNWrFYrjEYjc+qU7WnaFosF+/fvt4ii+LFdF1O5a1Cdbt0s79atW627zJ06dcIbb7zhYLVaewFwv36AUgpKL4PSX8r//l8Aq6C0ab8GSiUAzwD4FAD49957hH/vvWz+vfdYhtJ7CSEVG3Pbdu7cydkrfI4//lDKaTkOJpMJPXv2RFhYGEJCQpTd/PoyahTw4481H7dagYkTFWf72WfV9mNjGAaUUmK1N1RRTwLLRYwOHDjA3BRDfuopIC5OWY0vr74XaXWEhoaiVatWsCf8k5SURAkhe3meV1sB/UtRwwt1c4raEHRkWRbBwcHS2bNn5wJ4vsaBlMoATCh3tKD0axBSEd9zhhKe6PeuIMwApc4gZNTmkSO99/fvP2LlihXo2asXoqKi4OTkVPer7enTikoXAFEUWVuLFuqE45Q2RydOKEUXlakIOzz9NKA0d6yW9u3bo6ysjGRlZaGxMjZqY8CAAejduzeWLVsmffHFF6y7u7vk7e3NREVFKZ2j27ZV/q0mTABGjqy2kKQq8fHxyM7OxogRI2wK/5SUlCA6OtokimL1CdMq/wrUlW4tCIIwkeO4eXq93qbA3fDhwx2sVutEQRDsi5NSain/vgCU5oHSvQAq2gO5j9qy5ejA+HjPmR9+WHD6xIl1K2fMwPLnnquxMwYA5dXexeV6fjGltE69Xrtwc7vZMZnNSlrZtWvAsGE1qpkBwOHDh6lOp6P2rLjrm1omyzJ27tyJZcuWSSaTCZIkwWw2swcOHCD7Kmd1hIYChw8D77+vbLLVgCiKWLp0qXT48GFMmTIF/fr1synevmXLljJK6bc8zyfX60ZU7grUlW7tvCVJEvr06WPTL5WLiwtatWol5+TkPCkIwgoAreutSkWpsfz7zwAwHAAICXjz7bcLlk+dSp2MRnz77bf4z6pVFMuWkbZBQUBiInD//cr56enKarS8ik6r1cqZmZl1CufYTGAg4O+v5C23bq3IRo4eDezfb1M5b1RUFDl//ry8aNEiOnHiRMbDw+OG4+np6Vi3bp0kSRKxWq3EYrEQAHBxcZE6duzIDhgwAFXPqYmNGzciNTWVDhw4kHV3d0dKSoqckpJCvLy8yHV1uQo0GmD6dGVTbfz46w+WoqIi/Pzzz7Rr164kMTFRbtu2LZk2bZrN6XYZGRk4e/ZsqcVimWXTCSp3LWoZcC0IgkABYPr06WhZy6tyZbKysrBixQqjxWJhLBaLAyHk8dmzZzewouAmu7SEkNOUUn+nkhKUOTri1bFjod+yBXj7beB//1M6KmzerHTEuOcenPvsMxzz8ZHH9u3LkIwMJY65bp3iPP38lFY+PXsqu/lGI9CtG5CVBbi7K06UEGXOyqxYARw9CgiCkvf61VdKDzYbsVgs2LZtm3zq1Cm8/vrrN0y+aNEiqaCggH3iiSfQqlUr6PV6SJKElJQUJCcnSxcuXGB1Op38zDPPMO7u7jVdAgDwySefyAMHDmQiyjNObOb++4HwcIhvvomP5s2Dk5MTnJyc5B49eiAiIoKxJyPwr7/+Mh85cuS9d999d559RqjcbfxrpR3rQhCENgBeB5RX844dO1avU1sFvV6P3r17axITE6kkSayDg4NfZGTk0jpPtAODwSDFxsYuAsBbtFqAYeDZtSvaPvaYMqBvX0XM29lZWY16eMAtPx+Hrl1D29JSor9wQQkDLF2qOFirVdkY8/JSdvEXLwaGDwceeEB53T5xQslWaNNGceI8r8Q9eV5x0h4ewJtv3pShUBcsy8Lb25vs2bOHhIWFXdeZ2LRpE65evUpcXFyoyWSSw8LCGI7joNFo0LZtW4SGhjIDBw5Efn4+3bFjB9VqtcTT07PG/x+j0Uji4uLg5+dnsxgPACXGGxuLI9euIctioa+9/joJDw8nvr6+dgkRUUqxfv160WKxvGIwGPJsN0DlbkRd6dbAvHnzVpnN5gkVfw8MDMSECRNqO+UG/v77b/HgwYNrOY678M4777zdFDaWPxiyAGDixIno1KlTreN37NiB5ORk+vTTT5Na2/pUR0X78qIipbNDq1bKRl1qqpJ2NWKE4rztFMOhlGLdunXSqVOnWL1eL/n5+bEnT57ExIkT4ebmhsWLF2Pq1KloV1XfGIAkSYiNjZUPHjzIeHl5ITAwEElJSdTNzY089NBDcCoPc3z//fdwcXHB2LFjUZ2oek2Iooj9iYloN3Uqyjp3psGbN5P6tKTPzMzE8uXLr7z11ls334TKvw51I60GzGbz6sp/T0lJQW5urs3n5+XlWRiG2dVUDhcAeJ7PBvA4ABQWFtY5PioqCq6urtIXX3yBpKQk+562LKt8ubsrurSOjkCvXkr7n3vvVUIZz9ectFEThBA8/PDD7LRp0zB06FA2MzNTFkURGo0Grq6ucHJyshYXV9+ajGVZDBs2jOnfv790/vx5xMfHQ6/Xw2KxyIsXL5Yr/r+MRqO1U6dOdjncpKQkfPrpp/RYcrK8/803qRQSQrF58z8PHzs4d+4clWV5vd0nqtyVqCvdWhAEYRGA6QB6sCzbV6fTLZ48ebKDVqutNcZrsVgwb948qyzLLjzPN52wQDnz5s1LNJvN4aGhoXTMmDGkriyF1NRU/Prrr3jggQdQq4auPVCq6Cs4OSniQA8+WK9pZFnGoUOHEBISAkdHRyxYsEC6//772UA7uhFTSrF9+3b50KFDpFOnTuTcuXN47LHHEBBQt9xBSUkJlixZIpWUlLDjxo1DUFCQcsBqVQTc27QBliyx655WrFhRlJaW9izP87/ZdaLKXYm60q2dGQDAsuxelmXfNxqNDt9++y2WLFlire1hVZ7aRAE0S+a/2WweAQDHjh0jc+fOxbp16+jnn38u1VR40KlTJzz00ENYv349SktLG8cIQpSQQ1YWkJCgOGEbMJlMOH78OC5fvgyTyQSGYdC3b1+wLAur1QpKqV2ltoopBCNGjGDuvfdempubK1NKkZeXZ5NBS5YskU0mE/vGG2/843ABJTd5zRplA/KTT4CyMptsoZTi0qVLWgBq2a8KANXp1kr5KtVNkqRXZFl2BACO445TSlP++OMPU1kNv3g6nQ4uLi4mAD1qmlsQhMZpk6DYWcjzPCGE/AwozrewsJA9ffp0jed07doV7u7u0v79+2VAiV/eIApTX/z9gY8/VnJ1DQagimpaBbIsY/v27ViwYAHdtm0bXblyJebPn48PPvgA8+bNo/PmzcPcuXNRXFzM2qyCVgUXFxemoKCACQsLw44dO4gtFX1du3YlFoul+vCLo6OS95ycbHMnivz8fFBKjTzPV6+tqfKvQw0v2IggCC20Wu23oig+DqA/IeRnSmnHxx57DMHBwTeN37Fjh3jgwIHdoiiO5nlenDdv3gJZlqdYLJYHeJ7fU56O9gzP8983sp2BUIR34Ovri6eeeqrGsadPn8aff/6JESNGYNeuXbSkpIQEBQXJY8aMqbGppF2cOKGknh06pDir8k2olJQUrF+/XtZoNGTMmDHXc2UppTCZTDAajdDpdNDr9ZBl2aaskaqIoogFCxbQoUOHIjw8nOzfvx87d+7EM888g9q6KgOKZu6ZM2fk//73v9Vf2GJRFNPmz1cyQGr5tzp69Ci2bt26ecaMGaPtvgmVuxJ1pWsjPM8Xzpw5czwAZ57nEymlfQBYf/vtN/z111/mqps9Q4cO1bZv336AVqtN++CDD341m80vt2vXrqVGo9k0Z86cR6CEH5aV90VrTDtToPy/PnnlypWiw4cP1zg2KCgIgYGBdM+ePdbOnTuTl19+GdnZ2XTx4sX02rVrDTemWzclFjp7tlJEUc5ff/0lhYaGMtOnT7+hOIEQAkdHx+t5uQDq5XABYM2aNbKnpyft27cvAYDw8HC0a9cO+/btq3Mn7MyZM1K3bt1q/n/RaIAWLYBdu5SwQy0UFhbCbDarFWgq11Gdrp3wPG8s/17A87wGgGdycvKSRYsWmXbs2CFWlKqyLIuJEyc6jR8/vp0kSY8BQGhoKJ04caKro6PjTwAqshpqz/Oqn42U5/nlVqt1yObNm/O3bt0qSjXsuj/yyCNk+vTp3OjRo6HX6/HSSy+xLi4udM+ePY3TzoHjgL//Bjw9cWncOPwwY4ZssVjYXr161duh1sXhw4dx+fJl5pFHHrmhgMHPz6/20ulyRFGkrVu3rtnpnj4NtG8PHDtWa6kzAJSWllpkWc6pdZDKvwrV6TYQnudz3n777f9ntVoDDhw4cGzt2rVlFQ6OEAJ/f3+8+eabePrpp9GrVy/SoUMHREVFObEsO5NhmFLUVyfXNtuOWCyWLocPH45fsmRJaUFBgU3n3XfffczRo0eZK3Z2VaiNM2fOYJdejz6PPsq8PmUKPGys8LOXxMREbN68GY888giqljxfvXoVrVvX3bS3VatWZNu2bbTaFMG8PCU1ThSV/OQ6KC0tFQGoBREq11GdbiPB8/wVURQHnzt3bu/PP/9stFgs1485ODigffv21/8eFhaGSZMmuRJCdFCaFDalXblms/mevLy82V9//XXZ8ePH6zynXbt2cHJystqS+2srV65cgSkyUuoeHg72gw+A9Y2fthodHY2dO3di/Pjx6Ny5803Hi4qKqMViqXMfY9KkSSzLsmT16tX/DJQkYNUqRTktLs7m6rvS0lIrgHy7bkTlrkZ1uo0Iz/NloiiOvHTp0pbly5cbzebqu7ETQuDn54fw8HBZq9WuEQShdvGAhttFZ82a9ZnFYhm0YcOGgvT09DrP0Wg0xGhsUJ/NGyguLv6n+eWiRcBDDwFbtyo5vQ3EZDJhyZIl0sGDBzFlyhTcJGJTzqOPPkrS09NJfHx8jaETWZZx+fJlFBYWIjAw8B+nazIpAkImE2ytSrt69SoyMzOdoK50VSqhOt1Ghud5iyiKj+Xk5KxesmRJ6fnz52scO3z4cK2np2dbAEObybZDFotl+pYtW0rqWu05OzuTixcvNlqbXg8PD1y5coWRJEmJgxIC6PWKPoQs15haVhfp6elYuHAhdXZ2JtOnT4ePj0+NY11dXTFp0iQSFxfHVA21XLt2DfPmzaMffPABfvjhB0RGRkojR45kYDIp3YtlGfj8cyVtzEYOHDgAs9msAdAIqSAqdwuq020CeJ6XRVF8Lj8///k1a9ZkLlu2rOTixYs3jSOEoEOHDlqtVvvFnDlzXhYEoUlDDeWsLigoyIqPj5dqc7xjxoxhTpw4wdiy8WQLx44dsxYVFd3YlTciQvn64w9FGc1O0tPT8csvv9ABAwZgwoQJjC35vBaLBRzH3RTvXbt2rdS5c2f57bffxqxZs2AwGFhQqqSDhYfbJFdZlaioqIo/qjm6KtdRnW4TUZ5B8LMoih0uX778yooVK0qrc2DDhg3TTpgwwdvf3/8jnU73ezPYJYuiODQ+Pj7j77//NtckDN6qVSt07dqVrl+/Xm5ILrcsy1i5cqVcXFzMzZgxA9XKMD7yiFJQUVQE/GZbpeyqVavkn3/+GWFhYTQyMtJm1a+ysjJotVpaucqtqKgImZmZ7PDhw9nrJdQWCxAVBeTmKt0k7KyKA5RYPiFEBnDzE1flX4vqdJsYnucts2fP/k6W5Y/i4uLKqjqw8tUunnjiCQdCSKQgCF2bwaZLoij2Sk5OPrJ69eqymhzvAw88QPLz80l2dna9r7Vlyxbk5eWR559/vmbBb0KUTICrV5WiA6DaMuLLly8jPj4eS5culXNzc8n06dMxfPhwxp7Us8DAQJSWlpKKPmkVXSUopbiem1xUpOTifv21IltZT8rLmsWKNEMVFUB1us2GJEmL0tLSsg4fPlztspHjOMiyTNBMO908zxeKojj44sWLaTV1s+U4Ds7OzlJmZma9r3P16lWEhoYSmzpWdOoEzJoFZGcDAwcCP/xww+E//vhD3rlzJ3Q6HX3uueeIiy0t4KtQoUdR4aiTk5Nx7Ngx+Pr6SkVFRUrsduhQ4OJFoLL2Qj0oKSkBx3Fq5oLKDahOt5ngeb5YFMXpSUlJ1eoUFhYWQpIkAuBqM9okms3m2du3bzeVlJRUOyY4OJjbsmVLvXUZysrKJLu1E9q0UTQcvi+vkF6xAieXLUNpaSnz2muvYcqUKaxTPWKsAFBaWgpCCFatWiXPmzcPmzdvhoODA5588km2W0WaX3y8UvzQQCRJAiGkedodq9wxqE63edmVlZXlUDmHF1CkFn/44QcjIeQTnuebWwxjvclk2vHll1+WXbp0837PPffcg/79++OHH37AJ598AnvKg+Pi4lBYWMj6+/vbb9XSpcC88s423t5w9fOD3S9PvQAAIABJREFUprgYmuHDldBDaanNSmaVadWqFXr16gVHR0dMmTIFXl5eMJlMyM3JAebOBdLS7MpQqA0HBwfIsqxvlMlU7hrUdj3NiMFgEPft2/eYt7d3mwo93j179kibNm26WlZW9qQsy98aDIbmtolGRkaujo6OPpqcnDzW19dXU7Wljb+/P9zd3XHy5EkcPnwYSUlJ8pkzZ2QXFxfGzc0NNW1irV+/3jps2DCmro4W1SJJSrugiROBrl2h9/PD7n37aNCUKUQfEADMmaMI6vTrB+zerQir2xjb7dy5M0JCQoiLiwvatGmDFn/9RbefPk26ffwxtG3b2m9rLezZs4cZPHjwB406qcodjbrSbWZEUVwWGxtrvHDhAn799VdTXFxcnsViGTh79uwNt2CVe53Zs2dvtFqtD65evbosL+/mXP7y4gb54YcfxtChQxm9Xs/++uuv9Msvv6Q1afJaLJY6m0bWiKMjMHWq0sOtHMqyMFeImb//vtIM02gEPvpI+Sw+HoiNtesyXl5eCG3VipCSEtQUYqkvVqsVkiTpBEFQu26rXEd1us2MJElf5ubmrl29enXG2bNnP7RYLAE8z9dcQdGMzJ49e4fVan158eLF2Ldv3/XPjUYj4uPj0aJFCxoYGIju3bvj4YcfxowZM4jFYpFTUlKqnc9qtZIKecZ6pZ316HE9hYxhGISEhJBNmzbJVqtVyXjgOCV/dtMmJaXLalVSvSgFxo1TshBqyMwAALzzDqxHjuBznQ6effqgTXm79cbiyJEjFX9stCITlTsfNbzQzJS/zv8ZGRn5+eDBg3cZDIb6lWI1EYMHDz4UFxcnXbhwYaCHhwfn4eGBM2fO4NSpU3jssceYyhkDaWlpOHr0KOnSpQvR6/XXu/lWEBsbS4YMGYJ169bJ69evJ2fPnpXbt29PnG1t056eDixYADz3HAAgICAAe/fupSdPnqTdunW7uS2Rnx8QEKA43RYtgOBgJTa8di1wzz3AuXOAm5tynBCAEDDduiG/tFROTU3FoUOHQClFq1atSExMDNXr9YRhGLt6q1VQUFCANWvWAMBYnudrVpNX+dehOl2VmzAYDLtiYmI2nz179gl/f39dx44dUVhYSPfv3y/37dv3+tvRqlWrJDc3N+b06dM0Li6OyLJs9ff3ZwAlRzU+Ph7Dhg3DoUOH5JYtWzKZmZkkJycHNjeJbN8eGDQIcHEBNBowDIM+ffqQAwcOyElJSaRXr16EYRiUlpZi7969NCUlBU5OTsTF1VVJPyNEEU/v21epLHvwQaV1/IsvKnnB99wD6HTo2rUriYiIIIQQcvDgQTk2NpbJyMggBw8exL59+xAREWG3DGV6ejpOnDgBADMNBkMjiBOr3C2o4QWVauF5PkmSpLfXrFljOXLkCLKzs6nRaLxhx4xlWeTm5tLevXuTp556CgkJCVxFHuzVq1crKrJgsVhIamoqRFHEuXPnsGjRIhiNRhQWFuLs2bM1G6HRKG1x/vzzeniC4zj85z//YU0mkxwXF4fs7GwsXbqUHj9+nF6+fBk//PADrl6tlHXHMMrqlhBlw81sBjZsuCkljGEY9O/fH9OnT2enTZuGAQMGYOrUqdDr9XJcXFyd4QGr1YqMjAxUFF1Ualyqit2o3IAa4FepEVmWvzGbzfO3bdvGBQcHM48++ugNx59//nmWYZjrq0BnZ2fp66+/ZvR6vZyRkcG2bNlSBsBMmTKF+ah8s8vDw0PKz89n/3975x1WxZX+8e+ZuQ3upSpVKYoooKCIolivvaOx95rExMRk1/Tm7CS/XTermxg3xZjEssYSNUbFEkVBEQvYBVGUKBqkKgjC5bY58/tjAKUK2NZkPs/D8+iduTNnBu73nnnP+75fANi/f79w4cIFNigoSBgxYgRbo0XQlCkoKCnBso8/Ro8ePdC3b18wDINhw4axu3btEhISElgvLy9x2rRpjNFoxBdffCHm5eWRWi15WrYECgvrzHRwdHTEwIEDAQATJkxgVq1ahVu3bglt27ZlyzMxzp8/LyYlJdHMzExWq9UKgiAwZrOZKBQKcfLkycTLyws6na6kuLi4BYDzDbnvMn9s5PCCTK3o9Xrx4MGDd1q0aKEfO3asSqPRVNrOMEyldLHw8HDGYDAQW1tbJjs7GwaDgZw+fVqMiYmp2Kl58+aMyWQSe/XqRW7evElMJpOYk5PDnDt3jrRo0QL3x3uzsrKQkJ1NC1auJPnt2+PKlSvIycmhAQEBxNXVFREREUzPnj3Rvn17Akj5zleuXCGRkZE1p7FRKjXW6dYNePddYODAB7ZptLOzg7+/P27evMmcOXNGOHToEHPs2DHk5uZSlUrFFhYWwsnJiQkMDMSoUaMIy7J0165dTHx8vOjk5MTcvXv3d71ef6RxvwGZPyLyTFemTkRRjLpx48aS+uzLMAz69u2LoqIiJCYmwtnZmer1esbf3x/79u3D+fPnwbIsfHx8qMFgYM+cOUO6detGWJZFbGwsoqOj6ZQpUxhASlFbuXIlmrm7k4lZWegxfjzylEqsWrUKn376KRYsWFCtl4OLiwssFkvt8VeLRYrxOjoCISFStkM9mpF7eHhgzJgxAMAWFxfDbDbD2dmZBYDs7GysW7eOXr9+HQMHDiR9+vRhe/fujRUrViArK0uhUqmeB/Bpfe6fzJ8DOaYr8yDUCoXigWaO9xMdHQ0/Pz9h/vz5THBwMDQaDVq1agV/f3/x1q1bgiAI7IYNG6iTk5PQo0cPREREgGVZGhYWVvH3eP78edHR0VGYOWcO0fz3v4BWCxcXF0ybNo2xWq04ePCgULWyz8nJCVarFVVfr6CoCJg5U/r37NnA3RorsutEp9PdH6+Fu7s7nJ2dodPpKnLiGIbBjBkzSLdu3UApfTTlbTJ/GGTRlXkQOqVS2aA808LCQsFkMpH7xS8oKAgTJkwgffr0YTMzMwW1Wk2mTZvGZmVl4fTp06CUEnVJCWAyITc9Hb+tXUt69OjBIjFRytWdMQOgFG5ubhgyZAhSUlLIypUrxStXrlQssh07dgxKpbL2nODhw6W0MUDqZjZiROPuSBlmsxlHjhxBZmYmM3To0Eq9H21sbODm5gar1dqM5/kuD3UimT8UsujKPIjckpISRV5ePQxti4uB0lJMnTyZdThzRly9ejU1Jyffs+T56isECgL+Mns2O3XDBrJ9+3bh1CuvAG++KQYHBwstFi6E9fRpbFm5Ev0uXkT79u2BggIpJHDpEvDhh2AYBu3bt4ednR0KCwvx888/i2vWrKHx8fE4dOgQJk+eXC1fuILjx6U8XgBo3VqqYHsIfv31V+zfvx/h4eGig4NDte3t2rWrODPP84/NgFTm2UIWXZk64Tguk1L6lw0bNpTU+Nj+5ZeS+wMALFgA7NoFlVqN0cnJrNVkEnf897+i+epVabuPD6DTgdrYICY8XLx69Srb86uv0HHnTjJ8+HAFdu1CcWAg8lUqNNm7V5qxDhoETJwIJCYCr7yC0k8+war334fFYhEXLFhAFixYQERRJAcPHoQoili7di32799Py1PXKli+HLjflJMQ4Ny5au0jG0Lnzp0BAFartcYnAUII2rZtawEAhmEWNvpEMn8o5IW0Pyk8zysYhnmZUnqL47gNde0rCML3JSUlo0+ePDkoIiKi8owtPBzYvx/49VdgxYqKl0lsLOZSyi5evFj8rXdvBALS4z0Ao8GAwwCZOHo0HDw8Kh3OwcEB/v7+whdffMGazWaEhoYKHTp0YB0dHWFUqXArKkrsaW+PtkuWsOWZBw4ODkQURRoeHs5otVps3boVR48eBcuyaNasGR03bhyj9fCQqtTux84OqIcle22UG3xev3691smLr6+v8sKFC6CU/u2TTz7J/Oijj75r9All/hDIovvnpSmldJlWqzXwPJ/NcVxsbTtyHCfyPL84MTGxR2hoqK5S6lh4OLB4sSS8a9ZIsdcyiouLYbFYiK+vb6Xj2draQqvVUo1GU02sCCHo1q0bm5aWhvHjx+Pw4cPYsGEDNZvNDKUUgW+/jdEjRxIMGACMGwfMnQt3d3dcvXqVlD/Ov/HGGwylFAUFBdi+fTu+//e/MX72bHg0b47CwkKsWbNGNBgMpEWLFsLgAQNYh+JiySSzBoqLi7Fx40barVs3JigoqNK22NhYuLq6Yvbs2bWGDpo1awalUpkvCMJtSumKv//97y2sVusHT7O50R8dnucdAJQCaA7gBwDXABwCcBRA2v33nud5HwAsy7KzAJgEQVjOcdytxzk+WXT/vOQolcrrRqOxOYAXeJ635zhuex37HywtLf35888/H9+uXTtmwIAB6grxLe/89eqrUvltWbhh3bp1VBAE5v4Y608//QQAoiAITJMmTWo8UZMmTdCiRQu6detW8t5771UsUFFKwTCMJHAvvSQVOWRkIP7wYdp/wIBKwscwDJo0aYLZs2czadOmIWnuXMROmSLk5eUxTZo0EceMGUP27t1LzowfD7umTanj3//O+Pr6Ys2aNdTBwUEcPXo0e+3aNaxbtw4AmGPHjglBQUGVFsucnZ2F4uJi1mKx1BpH9vDwgJeXlzo9PX0XwzAjrFbrewCiAByr417LNBCe54lCoXiFYZgPWZZ1ppSyoiiWf6nr27RpMy41NVVXti8A7ARwGsBCQGo4b29vT41G4xSe54M5jntszefJw5gOyjzb8Dxvy7JsoiAIbcteYjmOqzNTgef5IIVCsW7AgAEdwsPDK2+8fRv4xz8km5sXXkBWVhY2bNggsCzLjBs3jnh6epb/weOVV15B0zoe7VNTU7Fz5076xhtv1L3uEBGBFLNZVG7cSPzLxb8Giu7cwb79+6FWqzFs2LCKXN7iO3ewLyYGV65cEQEQAKIoitBqtSgsLCTh4eHo1q0bli5dijfffBNVC0SWLFlCx4wZw9TVqP327dv45ptvxDJnEABoxXHcb3Vel0ytlC1KegDwA+DHsmyQUqkcbmNj4z127FitR1nIShAE3N8UKTMzE9u2bUNeXh5YloUg3MuEtLGxMb300kvqzZs3l+Tm5l4xm80zOY479zjGL4vunxye5x0BBAG4xnHcA83QeJ5nGYYxzJ8/X1W12TkAIDNTWvhauhQIDQUVRWzZsgVZWVni66+/Tj799FNx4sSJxMfHp9LbRFHE+fPnkZ2dLWRnZyMjI4Pt2LGjOGTIkLpX/YuLsWXJErQSBNph8mQGgVV8PY8fl7qVTZxY+zHWrgXt0AErExJgZ2cnDBgwgE1JSUFQUFBFTu7nn38udO7cmW3WrBnKBfbYsWM0NjaWadu2rTBy5Mg67YJPnTqFnTt3QqPRJL7zzjtyClk94HleBaAXAH+FQhGgVCqDRVH0M5vNHkql0urg4GBu2rQp6+rqqvXy8iLe3t6o1nmuFhYvXkwnTJjAODs7o7i4GC4uLmBZFqWlpdi0aZMpPT39VY7jvn8c1yWHF/7kcBx3B1Ksq777C4sWLSqmlDrXuIOnJxATA0yZgltBQTjesSOuX79OAwICxIsXL7JGo5EcPnxYKC4uZr29vVHeKjIjIwM7d+6Ek5OT6Ovrq4iMjISTk1OdgltUVIRt27bRm2o1M/jiRQZ//au0oHc/Wi1QSxijnHyzGefi4+HQtCkuXbrERkZGokePHpX26dChA3v48GEIgoB+/frB1tYWiYmJRKvV4s6dO+T06dPUZDKJERERNYpvaGgodu7cCaPRuKfOwfzJKZvFtlEoFDMVCsXLzs7O8PDwULq4uNg4OTnB2dkZTk5OUKvVSgAPVXjCMAx0Oh1098Xzy/KrmfT09EZ2338wsujKNIiy2Jm61lxYQGou/t13uN21KxhBEHoOGcKEd+nCFBcXw8/PTzSbzdi3b59QUlLCOjo60qCgIGIwGIijo6Mwb968ev1NGgwGLFu2DK1btxZffPFF6Jo0AcxmKa7s6wu8+aZU5uvnBwQH13msVXfuUEe1mpRmZ4sDBw4kGo2GAJKor1mzRjQajaLFYmEsFguGDBmC48ePCwBEJycntm/fvli3bh1JT08nAGA0GmmfPn2qhUQYhsGoUaOwZ8+eSJ7neXkhrTo8z3dSq9WrGIZp2a5dO0Xnzp1VLi4uT3wcvr6+yhMnTvwfz/O/cByX9qiPL4uuTL3heZ6o1eplKpWKKW9MQylFdHQ0MjIy6HPPPcdUlMja22PbjBni67GxrEalArp0gb29PaZOnUoAsIBU0XX69GkmKSmJ5ufnQ6FQ1LuAYO3atYKvry/Gjx9/b2apUgEDBgBHjwJ37gAXLwI8X332ex8HDhyAKIrMrFWrwGzYQNC6dcW233//Hfn5+aR///7Ez88P7mX+aeHh4ZVms2+88QbJzc3FkSNHEBcXx3Tv3r3GhbXg4GDExMS0NplM/QDsr++1/hn45z//uVStVr84ePBgm/bt29fqu/eoEEWx1hMQQsAwjIlSeuNxnFsWXZl6w7LsKzqdbtbs2bNtYmNjxeTkZKG0tJTV6XSiu7s7WbFihejm5iZOmTKFKfMHI3eXL4fm66+BqChg2DBpFlyGSqVC165d0bVrVwYAKKX1+qTt3r0bxcXFzIwZM6rvP3Kk9DN+vBRfjoyUXj98GHBxQbpajX3ffiuUurnBVqcj+fn5pFevXoR57bVqzW+uXLkCb29voXv37nXGaxUKBTw9PfH7778L3bt3Z2t7CmAYBv369dPu3r373zzPd5BnuxI8z4cAeP1Bi6uPimPHjoEQQmqzZ9q3b99dq9U6m+O4x+LqIouuTL3geX6+QqFYMmHCBNXly5dx/PhxMnjwYIWDgwNatmxJCCG4fPky4uPjxeXLl1NPT0+mWbNmgouvL4tFi6RGM/v3SwtsbM0aVh93htTUVJw9exZz5swhVTMJKvHdd9I5d+wA3n5bcg/u0AHbXFyE1xYvZi/t2QPd+vVw2b0bprlzgYgIqfsYxwEhIThy4QIuXryI6dOn1ym4lFLs2LEDZQUQbPv27QEApaWlSE5Ohk6nQ0BAQMXMrV27doiJifEzmUz9AUQ/8IL/HJwDpIZFjxur1YpDhw6JkZGRpCb3kuzsbBQVFREA2x7XGGTRlXkgPM8rASyzWq34+uuvoVAoMGbMGAQEBFTar3Xr1vDx8WGioqKECxcuoFu3bpKKsqwkghs2AP/+N/Daa0BdglkHZ8+ehYeHB3Vzc6tboS0W4Jdf7v0/OhpxcXGgJ08yotmMIJYFevUCCgth4+gofRn8/rsUloiMhIPFIo5YuJA0e4Al+3fffUezs7OZyZMnQ61WV8zULl26hOjoaFitVixYsKBisYZhGISHh2sPHTo0AbLoguf5it8jW8uXca1kZgJhYcDkydLfVT3YunWr6OLiIgYGBlZ7SiouLsaPP/5oEAThxceZpyv3XpB5IBzHWTiOIwA0AKYAEKoKbjlqtRpjx45lp0yZgpCQkHt/2BoNMGUKkJcntVVsZKrisGHDkJWVxVwt7+dQE0aj5K1WpXVjQUGBaLVaSUXzHo0GKH/E7NkTmDwZ5sGDseull3CmVSvivmyZNNa9e4FaHI9tbGwYAPD19YWHhwd+/PFHYdGiRdixYwciIiLEsl7BtKCgoOI9fn5+EEVxAs/z7Wo86J8LHwCwsbFpuGOyh4dUDfnOOw/c1Ww2Y8OGDTQtLY1ERkYyVWPGJSUlWLt2rcFsNn8miuJGnufb8Txfg5XJwyOLrswD4Xnejuf50QBeVqvVc11cXIwPek+rVq2qW5qrVMDf/w4cOCDNKBsJy7JiQUFB7aqt0UjNbe5zLgaAkSNHEldXV5w8ebLGD/iuXbvokiVLkF1aSiM4Dk1275ayIBhGcpoYOxY4cULqpgZpZpSRkYGpU6eCUorVq1fTgoICmM1mMAyDPn36kClTpuD69etk586dFZn4bm5uGD58uFapVMbxPF97Rcefgza2traW0tJShud5bN68GampqSguu8e18pe/AOfPA1OnSgunc+fWumtCQgI+++wz0Wg0Yu7cuaiaEXH16lV8+eWXpQUFBcsZhgkGQAEkAfB+6KurATm8IFMnPM93UigUBzw9PYmrq6vK3d1d3aFDh8YfsLgYaN8eaGT8bs2aNdRoNNZaQoz0dCljoZbuYa1bt8b58zVblqWkpOC5555DYGDgvclIcLD0o9dLs9133wV69ADefhsmkwmiKOLixYt069atjE6nE1UqFQMAHTt2FIuKisj69etFQRCIVxUjzJCQEGKxWBz27t17hOf5zhzHXW/43fhDUGRjY1P62muvKRMSEoT4+Hg2JSUF9vb29PXXX2dqjfOPH4+KTJOmTWu0XcrJycGmTZuE0tJSNjIykgQGBpKqM9w7d+7gp59+KjWbzSMAEJ1Ot71p06bm3NzcNe+//37NjzcPiSy6Mg/C387OTjVjxgxNQ23IayQvD/jii3rvfujQIZw8eZJSSkEpJYQQBgDWrFkDjuMAAHv37qWpqalUq9VizuTJCrzwQq3HCwoKwv79+5nk5OT7+90CAARBILWKuVIJBAUB//wnkJ8PQOoR4efnJ5w6dYodMmQIrl27RtLS0sjMmTPh4+NDbt68CZZlyZgxY9CiRQu2vPqz/IMfFhbGmM1m59jY2KM8z3eqT0XgH5Bsg8HAqtVq9OrVi+3RoweKi4uxevVqEhUVJY4cObKySsbHSzPcefPuvdajB9ClC/DTT8CECbBarfjll1/Ey5cvk7CwMPTt27fGFD5KKTZv3lxCKV3EcdyBTz755P+sVqttbm5ujsVi+evjumBZdGUexE8Gg+GVuLi4cL1eX325t6EsWSLNTMrcgatCKcWFCxeQnJyMrKwsQRRFZvDgwYyjoyNYloWLiwuKi4uxdOlSrFy5Evb29khNTWWGDh3KHF2/Htl798J91KhaT+/o6IjWrVvTbdu2MSaTCWFhYSguLsZXX30lmkwmsn37djpr1iym1nJSPz9JfMuYOHEiWz7uPXv2MB06dIC3t/RUqtPpYLFY0KRJExQWFmLlypUghECv14sdO3YkCoUCERERrNlsdj169OjRshnvY+1w9T9Iczs7u4pFK4ZhYG9vj4kTJ5Lvv/8ebdu2RbkDMwDAy0syGK1KQQHw0ks45+qKXxMTRScnJ/GFF14grq6uta7OHTt2TLh9+/ZFq9X6TwCglO43Go0fAOjOcVzJI7zGSshuwDJ1otfrxQMHDpzKz8+fHhER8fALC66uUtZAlfACpRRbt25FVFSUmJ6eDnd3dzE0NJQdPnw4cXd3h729PXQ6HRiGgUajgVarFcpmvzQ0NFTs1KkTUxQXR8n586TJ4MFISkqCUqmEra1ttSG0a9eOHDt2TExNTSUeHh7IyMjAzZs3MX/+fJKSkiLu27cPiYmJtEWLFozd/XFhSoHmzaVZVpWZEyEEt2/fxqVLl0Q3NzfSpEkTaDQaZGZm0n379pHTp0/Dw8NDjIiIIHFxcTQ+Pp6JiIgAwzDw8fFhjEajNicnZ1hMTMxKvV7fIE+6Z5lDhw71aN68+Yh27dpV+tvSarVQq9Xi7t270alTJ6KgVFoPGDTonvvHfeSbTFjl4iKkpqYyg4YNI0OHDiW6Wtp1AlKvj40bNxqNRuNwjuNyAECv16fr9Xper9cX1PrGR4A805WpD8kGg0FRVFQEe3v7xh/FaJTyZaOiqm3atm2bmJaWRiZNmkS8vb1RLfhWhc6dO1eewZSWwtS1q7j7wgVx15IlUKlUKC0tJQzDiJMmTSJ2dnYoLS1F8+bNkZiYCEop6dmzp7ht2zbRarWSwYMHQ6vVYubMmUx2djbi4uKY6Ohocfr06aSwsBDR0dG4ceOG4P/NN+yI+2zi72fYsGG4fPlypXzjiRMnMrm5udi/fz+GDh1KHB0dceHCBVJSUkLLA5aEEPTv31+Zm5vrd+PGja8APN/ge/vsIhiNNa/Ldu7cmVy+fJmuXbuWvjBtGgtHx2pfdmV50mJKSgoJDg7GsE8/BePsDDxg3cFiscBoNKoAXHxUF1JfZNGVeSAcxwn/+Mc/vvjll19emz59um2jSzR/+036qSEf08nJiRiNRmzevBlhYWFiQEAA8ajiKlEnH36IIUFBrP9zz0Gj0cDb2xuiKGLz5s103bp1rCiKYBgGarWamkwmZsKECfDx8SFHjx4lrVu3FkNDQwkgPd56enrCarXS0tJShlKK77//nrq6umKAvT2bGB0NjB5d4xA2btxIvby8xFatWlW6QFdXV0yePBkAcPToUWRmZjIvv/xypVJXQgjGjBlj+/XXX0/6+OOPDy5cuPDH+l/8M01WTk5OjWErQghGjx7N7HnlFSTqdAh/7bVK2y9cuIDdu3dTrVaLWbNmEQ8PDxY+PkCbNg88qdFohCiKCgAdAJx6FBdSX+Twgky9iImJiTMYDOMUCoWLl5dX41SXEGD+fGlRqgotWrRATk6O6OTkRK5evYr4+HjSo0ePelWpAQD69QNp1w5N3NxQbhJJCIGfnx/j5eWFoUOHomfPnnB0dCShoaHw8/MDpRRHjx4V7ezsxODg4ErX5O3tzSQmJuL8+fPEaDSSuXPnEnrqFDKuXMHuy5fFo0ePiunp6WK7du0IIQQGgwF79uwhU6ZMYWxsam9+tWvXLhoWFkZa39fjoRyFQoGWLVsqz549Ozg2NvY/er3+sZSh/q/w8ccfP6dUKjePHj3atrbyX6VSCdeUFBy8dAnNO3aETqdDUVERVq9eLZw9e5bp168fIiMj74WB3NyAzz+XCnGGDq3xmFarFQkJCbh+/ToAxOv1+prTWR4TsujK1Au9Xk9jYmL23rhx4wV/f39VXfGyWpk9G7h2TYrp1kC7du1I27ZtERMTg7Zt24pBQUEPijJILFwIeHvfK3S4D4VCgSZNmkChUIBhGLi6ulaUm164cAHXr1/H888/Xy1ZXqPRwMHBgWRlZQmRkZGMk5MTNO3b45aTk6jMlcDMAAAgAElEQVTX60lISAg5c+YMrl69iuDgYGIwGJCYmIiSkhJRo9EQrVZbY4XVpUuXCMuy1N/fv8YL0+l0+O2330oLCwtT9Hp9yoMv/tmE5/lwtVodNX36dG2tDeDv3AGOHIHtjBkoUCrpvn37xIKCAhIVFQUfHx9x6tSpjI+PT/W/kdu3paepLtXbFhuNRsTExIjHjx/PEUVRB2CcXq9/oj0w5OIImXrDcdxVq9X6/KpVq0qT73fWrS8DBkgFBg9Ao9FQd3f3+gkuIFm0e3o2eDhlDW1obbPpoKAgzJ49m/X29gbu3oWyZ0/079ePeHt7Q6fTwWAwkOvXr5OlS5cKX3/9tejq6orr16+TtWvX4l//+heKiooqHS8hIQG///676O/vX+fnLjg42F6tVk9p8AU9W4QHBgaSZs2a1b7H9etSihiAPn36MIQQkpaWJk6bNg2jR49ma1okBSA1OZo2Dfjmm2qbNmzYYEhISCCCIMwEcB1A14e+kgYii65Mg1i4cOFGs9ncKyoqKufSpUsP3P/06dPYsmULDLm5QGYmqL8/7jygGi0iIoI9ceIE0tPTUc1KvSqHD0sfsloWt+rC0dERhYWFD9yPUorla9bQS++8U5GEv3HjRtFoNGLgwIHo1asX6+/vL86ePRsLFizAnDlz4ObmJi5durTScaKjo2E2m+u0FQKANm3awGq1DixzTvhDolarO7m7u9fegOPoUSAkRGpABKkvg42NDe3Ro0e1QpNKmEzSTHfiROD//q/a5jZt2pSvY/0KqQS5Ll/Ax4IsujINhuO4k2az+ZMTJ06U1mX3VFxcjJ07d8JgMNAdb72FW6tWYcmSJXTZsmU4cOBAre9r3bo1SkpKsG7dOiQmJtZ+gtJSKe/XZGrUdbi6uiI7O5t90DX88MMP1JKaykQdO4byHgojRowgKpUKsfv3g7l9Wxg7diyjjI4Gdu5E8zVrMEKvJ3YFBdg5ZYqYk5MDHD6Md0eNAsMwKFq7VmqwnpcHJCVJJ0pPryiNtsvNhbOzswVA70Zd2DMAwzAdXV1da95otUoNbG7frvSyKIo199nNyZGaFfG8lMcrikCfPpJVUxUiIiJUVVyd21bb6TEjx3RlGsWhQ4eSS0pKphYWFupsbGxYW1vbihhmRkYGEhMTsWvXLqrRaPDiiy8yTcPCcLpZMyG8Xz82IiICu3fvho2NDTxrCAvY2NigZ8+e5PTp04Knpye8vb1rjjOwrNRhqoaFuQcRHR0txsTEkM6dOwutWrWqPPno3FnqD7F/P/auXw+No6M4sbSUiFlZND07G626dSPCiy/imr292N3dndh/8AEjTJwI7fXrUi6pvT10o0fDTa2GePEifkpLI343bsDJ1RXpomjVLVnCpLRqBcvp03COiwPp109aYDQYgMBAwMMD7HPPKa+VlqpjYmJ+1uv1Db6+/2V4nteJoriof//+ymqVYhkZ0u912jSgSvjgxIkT1Nvbm/Hw8ADS0qQKNCcnqSLNxUXqo/zaa1Jsv0cPoGxB9X4sFgt2795tFARBAQAcx731+K60ZuSUMZlGwXFcKc/z3ZKTkz87derUVHt7ezpixAhmy5YtoslkIu7u7rRfv35McHAwGIaBx9y58Jg5ky2v5vL19RWysrIklRYEwGoFLSjAkdOncfnYMYHcucMwTZuyXUpLgYQEQKcDUlKAdu2AkyelGWJCAnDoUIPHTilFcnKy2L17d+j1+sqrXQaDZPuzYAFw5Agcb9wQW6lUjPrECYQMH84cS0gQAUA1bRruHDtGQp9/Hjvd3cWLq1aR559/Hs6bN8M6bhxysrOx+cwZkMBA0UmjoW4vvcRCpcKMXr0UR52ckHD0KNRFRZh59SocAaB/fykubWMDlJSgtdXKHF29enhxcfFhnucncxz3WFwMnjQ8z/uqVKr9gYGBRFtTSGjdOklAZ8+utklTVASP//xHWhfYuVNq7ThzJnDpUjWBro3bt2/DZDI1rq/oI0IWXZlGw3FcHoBpPM+vMBgMY9evXz9fo9Fg0KBBcHFxYVq2bHnvcdBqlXrqZmQAx4+jX0ICm//OOxCbNQMcHUFefBEFq1fD4uWFMUVFrMZoRMmHH0LxxReS51m3blKcz85OajwjCMDKlY0a99q1awWVSsVERERUn0Hb2gLnzklWP//5DzImTsRRqxVhQUG0eYcOzAmTiQymFDZDhsB46hQsFgtGjBhBrFar+MMPP5CIiAjcDAhA0NixUE6dKvzlr39lGYYBUlOB06dxo3t3OHzwAQIGD6Zsz56i/ejRkujPmHFvDNu3Q2dvj7lz52p/+umnrteuXXsBwEeNutj/IXieH6hUKjf16dNH16VLl8pfdqIohQneeede209Kpb7IixcDO3aAHTYMyvx8oFkz4OuvGzUGd3d3jBgxAlFSgY7vQ11QI5Et2GUeGTzPtyGEjNJoNMPMZnOXKVOmqHx9fSXhzcuTBNfTEyAE3y5fLgZ2704uJCUJd81m4urqSjIzM8nw4cNpSEjIY1tr2LZtm/jbb79h7ty5NZeJRkdLsdVx44DDh/HV/v20s78/475lC84pFEgOC4NWqxU6duzIxsXF4f333694a1RUFM3MzBQ7hoSwnd5+G+Tll4Fly4AtW6T4c0ICcgYMwMqVK/Hee+/VPsgTJ6T2lMHByMnJwcqVK80Mwxx/5513nskYL8/z3iqV6lOlUhk5ZswY2xpTxC5elExFt2+XvlQtFmDOHKmFo6sroNHgy0uXrD179VKUu3M0lrJ7mv3ee+81oPrm0SHPdGUeGRzHpQL4FMCnixYtmrdx48a/2djY2ISFhdl27tyZ0YSGApAe8aiLC2Lj4+Hq6koiwsIQFxdH5s6di6ZNmz42wTUajUhOTiazZ89GrXnGrq4VmRCnbG3hcvUqE7pqFZRz58K7qAiD3ngDhw8fJgcOHJDs481mKYOiXz+MyM9nkJsrWf907SrNxv7zH+mLhmEAf3/YGQwPzsjo3Lnin25ubnjrrbdU//73vzvzPB/IcdwTL1ttLDzPdwcQDwCBgYGWIUOGKNXqGtp3ZGZKoaKvvpLCLAwjmYlu2CCFk8oQL11qlGFl1QW49PR0EEJqX8l9zMiiK/NYeO+9977mef4bs9ncLT4+/i8nT54cOnXqVFtnZ2d899130Gg04nvvvUfK+89269at4XYt9aSoqAhLly6FWq0WWZYliYmJ4qhRo2r+9AYHgwKwms3Ys2cPxn7wAZR//av06HvlClQZGejXrx+j+fJLapXcMxgsWyb12x02TBIMQHokTk2Ver7e94E/cOCAWCb4tavHa69JncxeegmAlC5lNBptAKTwPL8KwGscxz2gy/fTg+d5FsBkAP8FJBfkUaNGVV/tvH5dslT64QdpQSwoCDh48J6VU7vqxhoNFd2SkhKsXr3aMnLkSGXz5s0BAGlpaXdNJtOeBh3oESKLrsxjo8zt9giAI5988sms77777itRFG2USiWdN28ec//K9eMSXEAysxRFESEhIbRt27bsmjVryODBg1GTseVdX1+sGTcOjJ+f6OjoKAYEBEgqOnOm9NgfHw+6cSPOe3gw7UJDpQYs28tSPauWsrZpAxw5Iv28/TYAICkpiYwfP77aeUVRhMlkksb02WeVthFCMGjQIOzduxcAZgGY9cknn+wRRfGsKIpmABYAOzmOO/dQN6oB8DzfFEAAgDYKhaIdIaTAYrH8mxDyTwCvlu12nWEYlzIXiHsrXb/+CmzdKvmbffONJLo9ejzwnLWmjNXCjh07cObMGQBQ3rhxA82bN0dBQQGuX7+uABBb7wM9YmTRlXkifPTRR6t4nr+sVCpjRo0aparNpry+UEpx5MgR5OfnQxAEDB48uMY2joBkHcSyLAYPHswSQuDo6EiTkpKYzp0748qVKzhw4IBQWFjIiKII1csvk2GjRiH20CEYjUZCKQVDCLB6tRSXdnEBKEWumxvu2NiIqGvGKp280kzX09OTRkVFEUdHRzphwoSKqqqcnBx899136NChg9DXwYHVentLC4hldOnSBSaTCQzDICYmBpTSIX369BlCKYXZbKanTp36YNGiRavMZvOrj8Panef5AKVS+ZlCofC1Wq2BCoXC7OTkVOrq6qrIzc3V5uXlgWXZDwVBKJ/RhgE4Syn95Nq1a+8fjIqC3miUQgbt2wOjRgH9+klVirWVAT8kZYILlmV/NhqNowCwv/76awml9B8cx2U+lpPWAzlPV+aJodfrf4+Li1OlpaVFtGrVim1U/4Yy4uPjcezYMdjb21tv3bpFTp8+LVJKya5du4SEhATxypUrTHlPXYVCgXPnzsHf3x92dnbIz88Xr127RkJCQrBmzRrasmVLdtCgQSTM05P0tLGBe/fu6NChA0lJSRFPnTxJPefMITvy8oSA/v0ZlmWRlpaG9PR0ITg4mKkpz7gSOp3Ug3fZMiAwEEEdOxIA5Pfff0dGRoZYWFiIXbt2iTqdjly+fBlWqxXFa9YQG50O9vctGBFC4OvrCx8fH+j1euj1evj4+MDX1xd+fn4kLCxMeenSpbaCIMw7evTooAMHDlzv3bv3Q6eZ8TxPDh06NA7AIUqp/5QpU1wuXLgANzc31sbGRqNUKlXp6ekAAFEUWUhltfMBuCsUij2Oublj+127hg42NlAmJACvvy7lVv/0k1TQ0KdPjVY7NXH8+HHq5+fH1FpUUcadO3eQl5eH1NRUo8VieYkQsmDo0KFKrVaLgwcPGg0Gw0K9Xv/UXDrk7AWZJwrP84QQ8oKtre3n8+fPt61xYaUe7N69G4WFhdZJkyYpSkpKsGPHDuH27dukXbt2xM7OjuTm5tK7d+/i4sWLlRbm5s+fD6vVihUrVsDGxoZqtVrMnj1bCnWcOyc9+pa5yxqNRnz//fei6to1wgQEUIZliSiKyM7OJlarFW3atBHKnSMeyJdfSvmlZZbuRUVF+Pbbb6lWqxWdnZ3Z1NRUODk5Ca+++iq7a9cuFBQUCNOnT29QzEUQBNy6dQs3btxAdHT0HYvF4sdxXH5d7+F5XgHgQ0LIVI1GkwRAB8ChtLS0MwBBrVZn2draOrVs2VJ76tQpcByHq1ev4tq1awCkL79XXnkFR44cwdmzZwEARBQFz4wMNjwxEQGRkVB5eQHDh0upXoCUEpaXJ4VmHB3rfX1ffPGFdcCAAYoqFWWVSEpKwvbt20tZlr2rUCj+YzAYPlOr1WtEURw+depUzdq1a00Wi8Wb47jcep/4ESOHF2SeKGWPvisWLVrUfevWrRP69u2rdnV1bfACiUajQXZ2NgEkl4FJkyZVFSgGAPLz8+Hk5IT4+HgaExPD3L59G/7+/ujbt6+Qn5+PQYMGscryirb27aWf8nP88gteYRgiLl6M27dvMytWrEBQUJAwbtw4trCwEGq1+oGiGBMTg6SkJGHWrFmsPaVSfLd7d9jb2+Ott95iACm0kJqailmzZrEMw6B/UhI2p6ezJ4OCxE6dOtX7xrAsCzc3N7i5uSEvL8/2/Pnz3wEYU9O+PM+3hNRH1hGQ4qWDBg3yUyqVMJlM2LFjB1iWZadPn97c3d0dhBCEhYUBAFq2bImWLVtCFEXEx8ejadOmGDlyJOidO9bAa9cUrd3cWCEmBqZ33oFq/PjKFYNHjwIrVkjhmgbyoJiuKIqIiYkpEQRh9Icffrjvvk3jPv74449Wrlz5sUqlSgOQ1+CTP0Jk0ZV5KpjN5lfS09NLVq5cOYZlWV1AQAATEBCgadWqVZ09dLOysnDx4kUkJiaKVY0la8LZ2RkA0LNnT6Zr164oF9hu3bpVF8wPPpB6sHbvLv1frwcpKgJhGLi4uIBhGJSUlDC2trb1ctC4efMmjh07BkEQ2IsXL6KLUgns2YOCoCDY2NhAo9Fgz5494unTp0mvXr0EOzs7FgBs+vZFb6sV/92zh/j4+FSzDK8P/fv3V126dGkwz/PjOY7bxPO8DkAQgOlKpXIIgJbl+86ZMweurq6VzBtbtmwJOzu7Sr+Lqk3lKaWSCP7+O/Dll3jO2VkBQQDCwsC8/DKqpSuIIhAeLqXlNZLaRFcURRw+fJiWlpb+DiC6hu2XAMBsNn/wOGLeDUEOL8g8VXieJwACCCHD1Wr1dIZhWkZERGjCwsKqNQPPzc3Ft99+C09PTyE0NJQJDQ2tf/vH+nD+PODhAajVkgB/9lmlWdrNmzexZcsWURAEcdq0acyDxHDjxo1gGIbevHmTtGrVivTp0werVq0SSHo6e8fBAWobG2q1WplZs2bBvSzsAEAqDGBZfPfDD9bMzEyFSqWCq6urEBAQQLp161at929tZGRkYP369aVWq9UsCILW0dHRYDab7ViWxfz584nZbIZGo2lU7isohXDkCHZ+9hn6paRAt2CBZIvu5ISbN28iOTkZhBAEBwdLYl1cLKXU7d7dqI5wALB06VJh8ODBbICUqleJ3377DZs2bco0m829OY5Lq7q9LIwSDWDC0wwtALLoyvyPwfN8mFqtfs9isUTqdDqjq6srWrZsqQsKCiKpqak4ceIEHTNmDGNnZ4caa/cbC6VSxZy3t1Tw8MsvwIQJ1XbLzc1FbGwszcrKwsCBAxkAMJvN6NChA/Ly8rBlyxbBarWKDMOQ8PBwNi4uTpw6dSpZtWoVCCGil5eXOHHTJsb49tu41bw5mjRpUv06Ro+WUtQiI5Geng6lUomyaxeHDh1KgoOD631ZgiCgqKgIDg4OYBgGZ8+eRUxMjLBgwYIaQyNWqxVXrlxBmzZtan7iuHsX2LRJ+mI4cgS5nTtjlcEAN3d3cfz48cTW1hbLly8XKKWMra0tzczMZLVarRAZGck2yc6GbefOqNVp+QF8/vnnwtChQ9k2bdqAUoq0tDQ0a9YMGo0GGzZsMKanpy/58MMP/+fLpWXRlfmfhOd5NQB/AG3VanWkIAgjrVarFgCUSuUtURS1Xbp0UfTu3VupbESXsWpkZwMjRkir6506ATXMpsopLS3F3r17hd9++41hWRYmk4kolUrRYrGgdevW8PPzI0lJSTQ9PZ2xs7MTX331VZKbm4vdu3eLkyZNIjYajbRibzDUu1ELAHzzzTc0ODiY6VGPnNbaKCoqwrJly/Dhhx/WuH3lypXCzZs3WYVCIWq1WiE8PFzRtWtZn+9bt6Rsg3HjgEmTKtLhkpOT8fPPPwOQnDoopZgwYQJat24Ni8WCnGHDxAOtWpHfPT2h0+mEv/zlL41Kyv7888+FYcOGsa1bt8aaNWuKMzMzcwghnqIoagDEms3moRzHNa7P5xNEFl2ZZ4Kyht4TIMUiFwFoqlKpVnl6evZ4KLPMqvz4oxTTbUDuaGFhIZYuXYpOnTphyJAhYBgGoiji8uXL8PPzq3lmd+KEZDO0p4bCqH37gLZt7632Azh37hx27dqFefPmwbEBK/5Vyc/Px/Lly9GkSRPr3Llzqw3sX//6F500aRKjUqlw+PBh3LlzR3z++eelmxsVBbz4IpAlZVtZrVYcPnwYcXFxAKTFTZVKRWfOnMk4OjreC1tcugS0bImrGRnYsmWLGBwcbLnvlNVCRPf9nwCoEKjz588rvLy8RGdnZ3rq1ClqNps7ArBlGGYzpbQHx3EZjb4xTxB5IU3mmYDjODOAtfe9lMnz/PDMzMxTR48eDerevfvDlbRt2QJcvgzc18CmvhQUFEClUlUILiAJR5u6XGk7dQI2b5YWl6p+YZw7J/VruE90jx07RkNDQ4mjo2Olnc1mMw4fPiwGBQXVyz3Z2dkZCxYswLJlyxT//Oc/xX79+pHOZb0eioqKYDabGU9PT7AsC41GI+h0unv3dfhwICsLRqMRq1evFm7fvs2q1WqEhIQIkZGR7NWrV7F+/XomPT0doaGhwH//C+TmAm++WXEIURQzEhMT77fUqPptSerY5peampoFoBRSFd5vHMcZ8ZS6hTUWWXRlnlk4jrPwPD/i4MGD5/Ly8my6dOmiapBt+/0UFkqNVxpBSkoKvLy8BIZh6i/8hEiFE7NmSb1je/a8t+2t6n21e/XqxezYsQP9+/eHUqlEaWkp9uzZI1y5coU1Go3Ezs6uWnZBbWg0Grz66qtISEjA/v37wbIsOnbsiJMnT8LFxYWyLMsAgI2NDXPr1q17bxQE0LAwfDd7tqCxtWVefvnl8uwQFgCaNWuGHj16YN++fZKl/YgRwH0+cWUpXzkcx1Wuc/6TIdv1yDzTcBx33Wq1Bp07d27x2rVrS7OyGlloNGeOVMDQSBodpvvoI6kr2f0sWABUMf4MCgqCWq0Wdu3aJR44cED8+uuvxdzcXIwYMQJKpVKsqY9EXdja2qJPnz6kT58+YkxMDN27d694/Phx9LxP/MvabSK+zBwyKy8P6aWloqujI2bMmEHK0/HuP2Z4eDh0OTnk7uDBoPb2gI9P1VP/6eOZchmwzDOPXq+/q9frY2JjYzPPnTvX+8aNG4Kbm1vjbOIbgb29PWJjY5mAgICGZ1Q4OUn+aBwHDB4szYAdHaWYcpWUOS8vL+bs2bO0pKSEtG/fnowePZpxcXGBVqsle/bsQUhISI1NfOrCwcGBHD58mGRlZZHZs2ejZcuWFY/0rq6ucHBwwP79+wEA27dvh+OsWeLQkSNZRS29M1iWxc3iYuFMSQlzOisLISEhFSGXgoICXLx48Wb37t2/b9Ag/2DIoivzh6FXr15nY2JilhUWFpacPXu2q52dncrd3f0RJvLWjE6nQ0pKiqBUKpk6nWprw9ZWygcudwnW6SSHjCopW/b29ggLC2M6dOhAvL29K1738PDAjRs36KFDh+Dm5lZtBloXKpUKJ0+eRNOmTYXevXtXOiEhBO7u7jCZTEJCQgLz3HPPIWzMGEJatJAW+qoiCGDGjkXQvHlMM70eZ86cEdPS0mj79u0ZQBbdcuTsBZk/JDzPt2dZ9pi/v7/YsWNHWz8/vzor3R6WdevWwWw2ixMmTCC1dTt7IOvXSw3M586VCjM6dKj3Wyml2Lx5M7Kzs8WOHTsSW1tbVP1Rq9VgWbYiO+DOnTvYtm0bzc7OJlOnTiXl/Wbr5NQpKVWsBtNHAFJWRqdOACH46aef6KVLlxhHR8ciQRCI2WxWAoh/9913B9T7wv6AyKIr84eF5/mmhJAJarX6ZVEUW4aEhLDt27dXeXp6Nq4Kqw6Ki4uxfv16IT8/nx05ciQCAwMbfpCNG4GQEKCOhi51YTabsW3bNhQVFYkmk4laLBbRarUygiAQq9VKBEEAIOXSKhQKWCwWeHt70wkTJjD1brW5Zw/g7Ax06VL59b/9TXptyJCKl27cuIGff/651GAwmKxW6yAAuQByOY4zNOoC/yDIoivzp4Dn+VYsy85gWfZ5jUaj69ixo21ISAjj5OT0SM9z9uxZ7N69G88//zwe1IKwRkwmKb779tuSuD1izGYziouLsXfvXmRkZOCtGjIl6uS55yQ3jE8/rfz6pUuS9XkN9zMqKsqUlJSUaLFYJj8rubSPE1l0Zf5UlPV66KpSqZ6nlI63tbUVvby82IiICNtHMQOmlGLRokWYN28eGiXo2dlSj4KoKClX9zGxYsUKqtPpmMmTJz/cgWJjgf37gb//vdZdLBYLfv31V5qUlHTUYrEs4jhu98Od9NlGFl2ZPy1lVW6tGYYZSin9FAA4jnuoY6ampiIqKkp88803H/sCXmPZt28fTp48ibFjx6J169YNe/NXXwHHjwNry+pUioqAa9cqtcSsCbPZjBUrVphu376tZhjmH5TSH58lk81HiSy6MjIAeJ4PBXDa29u7uHPnzjpXV1c0adKkQd5tR44cwcmTJ6mnp6c4bty4x2f69pAsWrQI48ePh5+fX8PfHB0t5RBPnw68/LJUNt0A66XMzExcuHBBOHHihNFisQziOO5IwwfxbCOLroxMGTzPqwghMzUazXhKaZDFYnG1s7MrcXd3Jx4eHjp3d3dSWy8Fo9GITz/9FG5ubpg1axYa64jxuDGbzVi8eHHjwx9ms1Ta26wZEBcH9O7dqHFcvnwZmzZtuisIgsPT7m/7pJFFV0amFniet4HkeNuWZdkOSqVSTylt6+HhYXFycmJHjBhhW56G9vnnnwuurq5k3Lhx9c8EeAps2LCBmkwmzJgxo959eSsRHQ1ERgJnztTZie1BWK1W/F2KA78NYMmfSXhl0ZWRaQA8z7cGEKZWq+f5+fl1Gj16tCY5ORm7du3Ciy++iKZVbdifMAUFBUhOTha7d+9OaspLXr58uRAQEMDo9frGxZxNJqmf7oQJDQor1MS3335Ls7OzGZZlrwmCMJnjuOMPdcBnBFl0ZWQaAc/zNkqlMpZl2XBRFEmLFi2EkSNHsg0tw32UpKSkYPv27aUWi4UqFApbjUZTOmjQII2fnx9TUlKCJk2a4MyZM4iJiREXLFjwaF03GonZbMaiRYsAABzHPf0BPQHkLmMyMo2A47hSnucHiKL4M4CuGRkZZP369WJxcbEuMjKS+Pr6PtHxpKWlYfPmzQBgA0hpWhaLxTYpKYnGxcWZc3NzVX379oXRaBQNBgMpLS1FoyvnHiH3NaCf+DTH8SSRZ7oyMg9Jmf9WKwA9AawAgLFjxyIwMPCxlh4DUgP1nTt3lqSlpWk1Gs1Bo9HYA/dNpjQazVWj0diy6vtGjhyJNm3aoKoP3cMiCALMZnO99xdFEYsXLwaA3hzHxT3SwfyPIouujMwjhOd5FsAIpVL5mYeHh8f06dM1DUk7awgFBQX45ptvzKIo/sNqtS7lOK6wjnGNAvADgPIyN9HR0dH8+uuvP7I0C0EQ8NVXXxmKiooqOT7U4322AJpxHNe4hsbPGLLoysg8Bniet1Or1TstFkt3jUZj1Gq1Vjs7O2Jvb6+0t7e3adGiBRoTgrhz5w5SU1ORnJxclJWVpVYoFIveffddviHjAvB/LMuOEwTBY9q0aWjZstpEuFHEx8cL8fHxh99997P6GxwAAANmSURBVN0+j+SAf1Bk0ZWReYzwPG8LwA2Ae/kPIaSZUqmc4+bmZjdw4EDtg7p7GQwGJCQkCElJSYa7d++CZdndJpNpI4BojuNKGju2jz/+eIRCofihVatWuqFDh9o8TP/hoqIifPnll6UWiyWkJgt0mXvIoisj8xTgeV7JMMxslmX/0bx5c3W7du20Xl5eaNq0KQoLC1FcXAxRFHHt2jUhPj7eQgjZZDabvwWQwHGc8AjHoVUqlR8TQuY999xzmoBG5t5u2rSpNC0t7T/vv//+O49qbH9UZNGVkXmK8DyvATBFo9EMo5T2EEXRXhRFqlQqfwcgUEpTTCbTu4979sjzfLhSqdwdHh5u37dvX2VDFgCvX7+OdevW3bZYLD4PM/P+syCLrozM/xA8z3sCIBzH3XwK53ZVqVS7PD09g8aPH29bn8wGSim+/PLLkoKCglkcx21+AsN85pFFV0ZGpgKe5xVKpfI/Op1u+pw5c2wf5PmWkJBAY2NjT5hMpog/UynvwyC7AcvIyFTAcZzVYrHMKy4u/mrlypUGg6F2k4eSkhLExMSYTCbTbFlw648sujIyMpXgOE60WCzv3L1799sVK1aUxMXFwWg0Vtvv3LlzEEXxKMdxKU9hmM8scnhBRkamRspcNsYB+AkAFi5cWMlZo7i4GF9//XWp0WicuHDhwh1PaZjPHPJMV0ZGpkY4jhM5jttECBkDSA3I70en0yE0NFStVCr/9jTG96wii66MjEydLFy4cCvDMOPWrl1bmp2dXWnbyZMnzWazeebTGdmziSy6MjIyD+Sjjz7aYjabZ65evbpCeHNzc0EptQC49nRH92whi66MjEy9WLhw4Saz2Txr9erVpTk5OaCUgmXZOxzH3X3aY3uWkEVXRkam3ixcuPAns9k8e9WqVaUlJSWwWq0uT3tMzxqy6MrIyDSIhQsXbjSbzXN+/PFHqlQq1zzt8TxryKIrIyPTYBYuXLgBgJfRaHz5aY/lWUPO05WRkZF5gsgzXRkZGZkniCy6MjIyMk8QWXRlZGRkniCy6MrIyMg8QWTRlZGRkXmCyKIrIyMj8wSRRVdGRkbmCSKLroyMjMwTRBZdGRkZmSeILLoyMjIyTxBZdGVkZGSeILLoysjIyDxBZNGVkZGReYLIoisjIyPzBPl/0//yxVJMaGoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_knn1.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The two components are separated in the southern part of the country, with the smaller component to the east and the larger component running through the rest of the country to the west. For certain types of spatial analytical methods, it is necessary to have a adjacency structure that consists of a single component. To ensure this for the case of Mexican states, we can increase the number of nearest neighbors to three:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "w_knn3 = KNN.from_shapefile(pth,k=3)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd1gVV/e2nz0zp9EUERRUxAIqKvbejhprojEm9hKjSd4k6u9Lea1Rx0liJPqq0SQm9tgTY2zR2FEQjRULKiqIXVBAlHrazP7+2KCAlEMRS+a+Li7gzJ49eyjrrFl7rWcRSilUVFRUVEoH7nkvQEVFReXfhGp0VVRUVEoR1eiqqKiolCKq0VVRUVEpRVSjq6KiolKKqEZXRUVFpRRRja6KiopKKaIaXRUVFZVSRDW6KioqKqWIanRVVFRUShHV6KqoqKiUIqrRVVFRUSlFVKOroqKiUoqoRldFRUWlFBGe9wKyIkkSB6AsADcA5TI+uwEoRwgpr9VqvTiOq0gIcbfZbDcnTZr0zvNcr4qKikpheaZGV5IkAwD3nB88z1fUaDSVOY6rRCl1VxTFVZZlZwAGQRCsOp3OajAYZAcHBzg6OvKOjo5aR0dHrYODAwwGA3bt2mVVFGXLs1y7ioqKyrOAPAsRc0mSnDiOu00pddbpdCaDwWBzdHSkTk5OvLOzs9bZ2VmbYVDh4OCATGNqMBjAcXlHPBRFwfbt23HmzBlKKW0C4IwoiqoKu4qKykvDs/J0KSFEN2bMGM7V1dWhpCYNCQlBVFQUrVKlCk1ISDhktVrTZ86cucVisfwJ4KAoiqaSupaKiorKs+CZeLoAMGPGjKkVK1acNHjwYIPBYCj2fIqiYO7cuUq7du1IixYtCKUUcXFxuHLlCr1w4UJyXFycVqPRHDaZTOsB/C2KYkzx70JFRUWlZHlmRleSJK1Wq13I8/yQTz/9VK/Vaos1X2RkJP744w9MnDgx1xBEWloaoqKiEBERkXL16lUNz/M3rFbr77IsbwVwWhRFpVgLUFFRUSkBnpnRzWTWrFmn3nrrrca+vr7FmkdRFAQGBuKjjz5CuXLl8h0ryzJu3bqFS5cuWSMiIszp6ek2juN2mM3mDQD2i6KYWqzFqKioqBSRZ54yZjabtx47diygcuXKQnHCDIQQUEphj8fM8zx8fHzg4+Oj6d69uyYhIQGRkZFDLly40CsmJkb33XffHTWZTKsB/CWK4v0iL0pFRUWlkDxzT1eSJHdBEFZ4enp26tOnj6EgLzUv0tPTMWfOHDRq1MjWqVOnIhtwk8mEyMhIXLhwIfXq1auCIAiXzWbzakrpFlEUo4o0qYqKioqdPHOjCwCSJOkEQZiqKMrEcePG8Xq9vkjznDt3Djt27LABQIcOHTgfHx+uQoUK4Hm+SPPZbDZcu3YNFy9eNEVERFAA92VZXm+z2TYCCHvR09EkSeoEoEHGt7SAzwBAcnwGgDQAO0VRvP1MFqmiopKN0jK6BIACANOmTQMhpIAz8iYuLg6//PKLTaPRBAPw1ev1bn369HH08fF5PEaWZciybFcoIhNKKW7fvo2IiAjr+fPnzSaTyUII2WSxWH4HECyKorXIi35GzJo164y3t3ddFxeXx5uENOMXmuX3ms3o5vzZp6am2qKionhCyJxJkyZNedZrVlH5t1MqRhcAJEn60MPD438ff/yxc3HmoZTi559/TomLixsKYBshpI8gCEtq1arl2L17d72joyM2b96Mc+fOoWfPnrRhw4ZEo9EU+hrx8fG4dOmSEh4envLgwQNBEITdZrN5HYBdoiimFOceSopZs2adHzhwYF1vb+9izZOSkoIffvgh3WKxdBBF8UQJLU9FRSUXSs3ofvXVVxLP81PHjx9faCOYlevXr2P9+vV3LBZLdVEULQAgSZKzVqudCWBk/fr1uVOnTukAQK/X71MUpW3nzp2F5s2bF3nTMCkpCZcvX0Z4eHjS3bt3dRqN5liWjbh7Rb6ZYjJr1qxLgwcPrlW5cuVizxUeHo7t27ffsFgsLZ7nPamovOqUpqer0+l0awG8PnToUH1RDcXJkyexf//+tRMmTBiayzXqA+gMIB3Ar6IomiVJaiQIwtHJkydrixPWyCSXjbgrZrP5V0rpJlEUrxf7ArmQEZ55Cr1eHzVs2LDqXl5exb4GpRR79uwxnTx5kgiCcNBkMv2fKIpXij2xiopKNkrN6Gby1Vdf9XVwcFg9evRoh6JkIAQHByMkJCRw6tSpk+wZL0lSGQAPPTw8UurXr+/o5eVFkpOTERAQUKzYMsA24qKjo3HhwoX0S5cuEUVRlIyfJ0H2zSqS4/Ws3+c8jhzngud5KsvyU4slhChjxozhipoRkhtmsxknT56kwcHBD61WaztRFC+U2OQqKiqlb3QBYObMmb/UqFFjWP/+/Quty/D3339bTpw4MVEUxXn2niNJkgMAo1arfdNisXyY+frbb7+NevXqFXYJuaIoCkwmJv2QacyzGvWsr+U8nt/ntWvX0qioKPL555/D2blY4fBCce7cObp9+/Ykq9XaSRTFsFK7sIrKK85z0dO1WCwTrly58p7VakVh47uEEGg0Gr/CnCOKYhqAvzM+/iNJUlkAV48ePSrUq1fPpVALyAOO4+DgUGLaPo/x8vJCVFQUIiMj0bhx4xKfPy8CAgKIIAhltm7dGhoYGLjTbDZ/KIpiQqktQEXlFeV5dY5IpZSSTM+wMLRq1Uprs9lGSZJUZGMpiuJDAOVSU1MdizpHadGxY0dSqVIlmppa+pXL/v7++Pzzzw2+vr69NBrNUkmSiiegoaKi8tyMrkYQhNOrV69OS0tLK9SJZcqUQf369W2CIERnxGuLhCAI0Y0aNSpaVUUpU6ZMGfLgwQP5eVxbp9PhjTfe0FSuXLmrVquNkCTJ83msQ0XlVeG5GF1RFNMtFkvLR48eLZk/f356VFSU3YFlQgjeeustg4ODgxZApaKugRDiWrdu3aKeXqq4urri4cOHz+36Op0Ow4YNc2jYsGEljuOiZ8yYcUiSpKbPbUEqKi8xz60xpSiKdNKkSZ9aLJYvTp06VehnZ0EQFABFDqLyPB+TkPByhCjd3d3x6NGj4ue7FQNCCHr06KEbNmyYvnXr1m01Gk3wV199NaU4TxsqKv9GXoRuwHfNZnPBWreKwj4ycHJy4gBUL+pFzWbzl1u3bk0vbHjjeeDl5YWkpCQuMTHxeS8FPj4+6NixI95//30Hd3f3aRqNZqckSa7Pe10qKi8LL4LRTb527ZrL3bt38x81YwYgCMD9+8D06eh5/LizXq//b1GTbadNm7bFarUu+v3339MU5cXWN3d3d4enpycOHz78XOK6ueHh4YEPP/xQU6NGjaYcx332vNejovKy8CIY3fsAsGTJEuTryQ0aBLz3HvDwIXD5Mlxv3QJJT68JQAYhPUFIDxCytDAXtlqt42JjY88dO3bsxba6AOrWrYubN28+1xBDTnieR0BAgIbn+QEZnZ9VVFQK4LkbXVEUzwO4QggJXbVqVd6x3Zo1gddeA/78E1i7FjE//QQYDHcAdAQQAiAAQCsAACFJIGQxCPECIWtBSK6xX1EUbRaLZVZISIjyPIpECoO/vz8SEhI4WX5hnF0AQI0aNSAIQnWe52c877WoqLwMPHejCwCiKNailHZITk7m842x9u8PxMYC+/ez3XxCroPSYFCaAkq/A6WZ6Qi9AASCxXy7AOBAyBkQchoAQMgSEJIpzRVttVpTjx49antmN1gCuLi4QKvV0ri4uOe9lGxotVp89NFHgsFg+I8kST2e93pUVF50XgijCwCiKCparfZybGxs3oN4Hhg9Gli1Cp6Uwmq1ts9195wZ4mhQGgpKPUBpCoD3AXwBQnQA+gPwBCELxOnTg2RZHmWYPduGQ4ee0d2VDI6OjvKdO3ee9zKewsXFBU2bNnXgeb7r816LisqLzgtjdDPQCkIBlcl+fkCzZvDYswf+depoBUH4ya5KKUpPgtIgUGoGpWVA6TEAPwEYByDVNyhIh23bgH37AEdHIC4O+OMPFs54QahQoYJw8+bNFyu+kEFSUpJZluXrz3sdKiovOi+U0bXZbMquXbsKziYYOxYICUEPZ2d9lSpV3sqolCr8Rg6ll0HpcgDJP06aZLr2ySdAvXrA+PGAmxswbx4wezZgswEODswgnzsHLF5ctBssJo6OjkhPT38hg8+urq46QRAaPav5JUlqKUmS+7OaX0WltHguKmN5IUkSp9Pprg0bNsy7UqUCis3i44H27UFPnsSSNWuSYmJi5gPYIYrisSJcVwPgAycnp1mfffaZI8fleC8ym4GJE4EpU4Dp04HffmOesI8PMGAAMHkysH49MHIkUIgWQYXlt99+g4uLi9yzZ88Xrnw5KSkJixcvTjOZTB9NmTJldUnMmWFkuwKoyvP8dEKIIgjCYZvNdpbjuLKUUier1RoC4DCAzwFsBOvsYS6J66uoPAteKKMLAN99990KvV7fb8CAAY4VK1bMf/DffwO//Yab33yDnTt3piQmJmpsNtvEKVOmfF+UawcGBp7p2rVrA7vVvCZOBF5/HUhMBPr1Y5t8gwaxz599BlSuDBiNLBZdAixdulSpXbs217Zt2xKZr6SJjo7Ghg0bosxms19xm3rOmDHjvzabbTbHcbRKlSrJjRo1cqpduzYXERGBhIQEWaPRkISEBKSlpaXFxsYiJSXFKePUT0VRnF8Ct6Oi8kx44YxuRpeE9zUazYIGDRqQjh076vKUTLRYgK++AurXBwYMwMOHD7F48eJ0s9n8f1OnTl2aZc46AJJEUcx3F0qSpACNRhPav39/55o1axZu4ZQChLBwxKxZwBdfMK+4Y0egXDnAywuoVQto0QKoU4cVehSSH3/80da2bVuhYcOGhT63NFAUBYsXL05LTEzcZ7FYBmVIahYaSZIqC4JweeTIkQ6envbr61y9ehVr1qwBgIeiKKpVciovJPz06dOf9xqyYTQaYTQaw4KCgv6Mj493PnbsWG0nJyfB09Pz6cIAnmfe5Lp1QPPm0JcvDz8/P82lS5deO3jwYP2goKDdRqPREhoauolSOv/IkSOGoKCgg0ajMdegsdFovBcUFHTw0qVLA319fbVOTk65DcudzMI4mw0YMoR5vBMnAgMHPilffvCAFXjcuAHs3Mk26igF9HrAxQXIGdbIQWhoKK1fv36JdoooSQghaNCggSY+Pt47MTHx/x06dMgjKCjomNFoLNTj/tGjR39q0aJFg4CAgELtOZQrVw42m43eunXLcOjQIe7gwYMxRqPx5RDYUPnX8MJ5ujmRJKm+RqMJ8vb21vn4+Dj5+fkRDw+P7IPWrAGuXgVEEQBgsViwfft20+XLl+MtFktvvV7/Q4sWLdpcunQp7f79+2OmTZu2Ir9rzpo161ivXr2a16lTp/ALHj4c6N4dGDw49+MmE2C1AocOAbt3A48eAQcPAu3aAWXLArduMWNdpQrzjjOM+fbt2+nZs2fJqFGjUGDY5QUgLi4Ou3fvtty4ceN3m802yt4W9pIk6bRabfTw4cO9Cozr5wKlFNHR0bhy5Yo1LCws1WazVRdF8fmLVqioZPDCG10AkCSpAoCOGo2mHYB333zzTcdssowmE/Dtt0D79qxqLYPw8HD89ddfqVardbKTk9NMFxcXw/379yMppVtlWZ6fV7jh22+/vWq1WqvXrVs3rW/fvg5PbazlhSwDmzYB3boxz9Ve0tOZ8Y2OBiQJqFsXOHaMecBeXoAgYE2ZMrJ7kyb8a4MHgy+hGPGzJjU1FRs2bEiNjY1NopRus1qtoQCOiKIYndc5M2bMkKpUqTJ+6NChert/7nmQ0Wgz1WazfUAp3VLcOLOKSknwUhjdrEiS1FCj0ezv3LmzS4sWLZ4ERo8cYY/sn37K0r0ev3wEwcHBRywWy3IAS+vXr4+YmBhzfHz8e6Iors9lfjdBEOYoitKfUqofN24csbuB5rJlbB3LlhX7PpGaCsTEMIGfzz/HCVdXpabJxLnGxADNmrH4cPv2LJ7t+uKGLymluHPnDm7cuEH37duXGSLqCuCoKIrJWcdKkhQA4GyjRo2U3r17l0g647Vr17Bly5a0lJSUiVOnTv2hJOZUUSkOL1xMtyCMRmNsUFDQ79evX/9Qo9GgSpUqzO2rUgU4fJilkgUEPB7v5uaG8+fPuymKEi7L8sTExMRBsizrFEUJ69ChQ2jO+Q8fPjytWrVqH9WqVUt37969R1qtVuPt7W2fAVi5khnERiWQrqrVsg24KlWA99/HAYAkdeig1Bg1iqBCBWDrVnavv/8O/Oc/7JyLF5kgUIUKzzR1rTAQQuDi4gJvb2/Srl07EEJsJpOpj8lkmnTgwIFDwcHBN41GIyRJqqjRaI537NjR0KpVK6ItofW7urrC29tbc+7cufYHDhw42qFDh2slMrGKShF5oYoj7EUUxRs2m61ZUFCQkk2LYOJEYPly4Pz5xy85ODigR48eDjzP9wBwxWq19kxPT+cURfk2t7k1Gk3Hpk2bCq1atYLVanW8efOmfQpkSUlAgwZso+wZUL58edxLTqZo1Ah4+23m1c+bB6xYAaxaBVSvDoSGAkuXAp06AR4ewKJFzCjv2sVCH88ZnudhNBqFjz76qMyAAQP0Wq12NwDl66+/XqrVane2atXKpW3btijUBqYdVKpUCW+++aajTqdTU8lUnjsvpdEFAFEUL8myPGnhwoXYtWuXRVEUQKMB5s4Fxo1jcd4MMiq5WgB4oNVq2wFwQi5dJyRJqmiz2WrqdDro9XpwHIerV6+a9+zZYykwDLNtGxAc/CSLoYTx9PTEgwcPnp5cr2e5wv36MeO7fj0LccycyQzvsWPAtGmApyfQsiVLZ9u+Hdizh2VOPCd8fX0xevRoPQB4enqObNq0aR2j0fjMulN7e3vDarXWlCTpxcy3U/nX8FxasJcUlNL5AILCwsK2eXh4VG3cuDHQsCHbTJs9G5g6FQDrvNCtWzfl0aNH3IkTJ8br9fq+JpOpL4AbOab0ppTyBw8eTC1btqyjIAiXzWaz8dSpU8H//PNP3X79+lF/f//crWqdOszbfEZ4e3sjOTmZo5QWrNvO88CoUezrt95in9PTWZaHkxNw+jTzkhs0AMqXB2rXBr7++pmtPS/+/PNPpVatWnTgwIE8AN2zvJazszM6deqkP3To0C8AWj7La6mo5MdL6+kCrM+aKIrnrFZrr507dybu2rWLmkwm4JNPmId38uTjsS1btuQ6dOiALl26uHh5edUnhLyTy3zHbTab540bNz67ePHiLUrpelEUEywWS18ACA4Ozt01fPgQeOcdoEmTZ3WrCAsLQ7HinAYD8MEHLH946lSWM7xxI1CjBvC//7HsiVLk+vXriImJ4UqzpLl58+ZQFKWBJEnP7t1RRaUAXmqjm4koiuE2m+3NsLCwi1u2bEmDwcDCDJMnZwsz6PV6tGjRAo0aNdLo9fqeecxlmjZt2pJJkyZ5T5o06duM164QQno/fPjQdPPmzadPCgtjQjm6Z+es3blzR6lbt65SxO5EuePmxnKGFy0CypRuf8nNmzfLbdq0UVwKk1pXTARBQPPmzTmtVrtTkiSPgs9QUSl5XgmjCwCiKB6yWq3G6OjohNOnTzMJyCFDgMDAp8ZWrVoVVqu1hSRJdncTnjZt2l9Wq3XAH3/8kWaz5dA7T0hgG1rPkMaNG3MREREln+Ln5MT0If7zH1ZNVwqEhIRAURSuTZs2pf7316lTJ63BYKjO8/zm0r62igrwEhhdSZJ4SZK87BkrimI8z/OXHyfV9+7N4puh2TPDnJ2dUatWLfA8nzBz5sy4GTNmfGrP/NOmTdtus9l2zJo1y/Tnn3+mX79+neXTzpv3zDbQMvH394fFYiHx8fElN+mdOywXuHJlphFRCkbXYrHg8OHDtFevXqRA7eRnACEEXbt2FRRFsVPVSEWlZHnhja4gCOMB3JEkqcDkV0mSmlJK2/j5+bEXXF2B1q2ZGlmONkDvvPOO4+eff65v0qRJeUqp3fWmEyZM6G+1WmueP39+82+//Waj6eksVpqlIKMkuHv3LpYtW4YlS5bQXbt2wWKxoGzZsvLly5dLztW9e5fJU3Ic04goha4UGzduVDw9Pamvr+8zv1Ze+Pn5wdnZWZEk6d3ntgiVfy0vvNGVZdkRAARBGFnQWJ7ne1euXJnLVkHWuTPrBLF161PjHRwc4OXlBY7jhkqSZLegQUb58AeU0mvxgwZReNnliNuNzWbDmjVrlPT0dNSqVYvcvn1bmTNnDhITE/kyJRl7/f57VtEGsOyG/v2zxcBLmpiYGFy7do3r1asXV6Kx6UIiCAJ69OhhIIQslSRpoCRJL/z/gcqrwwv9xyZJkjel9Es/Pz8IguBT0HhZlr+7evWq9qmY64cfsgKBiIinzqlXrx6qVq3qDOC1pw7mgyiKafq4uO6648dxvYQ3oZKSkmA2m7nhw4ejffv2eP/997nRo0djxIgRqF+/fslYK5uNieu0b8++NxiAU6dY3u8zYuPGjXLTpk0VtxJ+KigKtWvXJgMHDhRcXV2XarXapQWfoaJSMrzoebo8z/P7rly58hqAbfkNlCTJgRByhVJKVq1a9dTxqo6OcBs3Dmd69YKi0WQ7duvWLUeO474EsKYwi/ts3rwyQUbjR8cOHJg3sEIFB3d3d2i1WiQkJKAwOrA5KVeuHCpVqqTs3LmTDhgwgAeAsmXLomzZskWe8ymiopgSWtY3jORktqG2Zk2BMpOF5cSJE0hPT+c7duxYovMWBz8/P3h7ezv++OOPAyRJOiWK4k/Pe00qrz4vheBNRv8zEwBHURRTcjnuJAhCsCzLjZ2cnNC0adNc5/H97jsktGqFhHbtsr3+6NEjnD59GqIoFs6LJOQXAKek6dMjeZ7friiKnlLKA0CTJk1sFStWFDw9PVEUicKUlBQsWLAAgwcPho+PT6HPL5B161iu7pgx2V/fuRPo2rXEul0ALFwyZ84c2rNnT1I/M5zxAhEbG4vly5dbrFZrY1EULzzv9ai82rwURhcAJEnqBWCbTqe7RwhJsFqtm2RZ3gPASaPRLLNarZ5+fn6p/fv3d0xLS4Ozs/PTk5hMrIAhOJhVYmVw8+ZNrFy50qQoSgVRFJPsXhQh/wGwCZTGSZLkCIAH8AgABEGYbbPZxgHAuHHjkGf3i3zYvXs3Ll26RD/55BOiyeGdF5sJE4CePYEOHbK/LsvAmTMlWuhx8+ZNrFmzBpMmTSq4mq4UiYiIQHp6Oho3bozdu3dbjx07tp1SOqJQfwMqKoXkhY7p5uA0ALi6urp36tTJv3nz5hPc3d3/cnd3/61nz56eOp3OcuXKFcdvvvkGc+fORVRU1NMz6PXAr7+yx+osbzaVK1dGtWrVFEEQ/pAkyb6QC6toqwtK4wBAFMXUjH9WLQDNl19+OR4AOI4rksEFgC5duoDneWXhwoU0PT29SHPkysOHrLNxDo8fAJCSAkyaVKICOZUrVwYAPHjwoMTmLC5//PGHvGXLFuzduxe//vqroiiKhuO4tzQazT67/wZUVIrAS+PpAoAkSfUAnAHAjxkzBlk3ZNLT03H8+HHExcVRFxcX2qJFCy7XnX5KmS6DIACff/745bS0NKxduzY9ISEhxmq1zlIUZZkoinknrhKyGEA4KM1VozUjJJLWoUMHGI3Got0wWN+xBQsWyM2aNePbtGlT5HmysXv3EyGcUuLHH3+Umzdvzjdv3rzUrpkXaWlpmDdvHj7++GNotVr8/vvvyv3797ny5cvTu3fvEkEQUgVBWDNhwoSPnvdaVV49XiZPF6Iongeg4Xl+3IoVK1L/+ecfmpmpYDAY0KFDB7zzzjuka9euuRtcgBUxDBsGXL7M9GczcHBwwIgRIwz9+/ev7unpOUen0+3JcyGE6AHsALAon7Wm63S6HY6OjkW51cdwHIfXXnuNDwkJoQcOHCiZ6oXU1Ny93Ezu3WOFJSX4hly9enX+0qVLz19fEsDBgwdRsWJFuVy5cnBycsLIkSM5d3d3OSUlBR9//DHGjBnjaLVaR9qTG66iUlheKqMLMJEbWZbnpKam9jp48ODBpUuXpsmFfRT29GTqWz//nO0xWqPRoHr16nj33XcdbTZbW0mS8hJ27Q5gKCi15HcZs9n898mTJ20WS77DCqRevXoICAggMTExxZoHADOkf//NfgZ54eHBdCtKkCZNmuDWrVu8otgnT/wsCA8Px5o1a3Du3DnavHnzxzuFhBAQQpCUlER2794tlylTBhnNP1U1MpUS56UzusBjdbEDFoul88OHDxOzCZnbS9eugLc3E/nOgUajgaenp5njuLwUyeMA2CO2cOT+/fvCokWLim1p3N3dERcXV/yUgrg4lo9bq1beYwhhso8hIcW+XCYVKlSAIAj07t27xZsoJYXpBheiHNpiseDXX39Vtm/fDnd3d9q+fXuSs+noe++9x0+aNAk3btzg09LS8OjRIwVAZPEWq6LyNC+l0c0ko9Fg0ObNm83JyclITU21/2SOA/r2Bc6dYzmrOXjjjTecFEVZIElSq2wHCDEAmAsgyI71neF5PvDBgwfc8ePHi2V4BUEAx3HFf97fvRsYPbpgrYi0NKY+VoIhBldXVxoVFVW8Cf/4Axg5EjhwwO5TFi5cKBNCMGbMGHTr1o20bt0aOXUfOI6DVquFXq9XYmNj8dprr2k1Gs06tVpNpaR56f+gzGbzB48ePdr0/fffW+fMmSMvW7YsNTk5ueATAaYl6+vLqtVyPPZ6eHigRYsWFp1Ot//bb7+98c033/TOONQaQBIotatedsqUKZMA1Ni7d2/83LlzUzZt2pR+8OBBXL161f6bBNv5z6qnm5KSgiI9qkdGsvsuCDc3lstbgiletWvX5oqsHfHPP6w7x3vvsZLlPn2YN753b4GnKoqCVq1acfaEoQwGA01MTESTJk2IzWZzA0sDVFEpMV56oyuKonnixImDFUUxUEr1MTExC9euXZt25MgRxMbG5nqOyWRCWqYAzsiRrKFljkdpQgi6d++uHTdunMFqtXoLgtA245AMYHgh1xhts9k8k5OTW4eHh38REhKyYM2aNShMrIvO4w4AACAASURBVLdt27ZISEggO3bsUObNm6fMmzcPc+fOVe7evWu/8bVamQ5Flsad+XLtGgvDlBCNGzdGXFwcV+gYN6Ws0aZGw7Iuzp1jX2cKDRUQstBoNGT9+vWYP38+Vq5cma/lNZvNcHFxgYlpUCgA7HiHUlGxn5euG3BeGI1GajQalQMHDuy3Wq1lrl+/HnH69Onavr6+mpyNDrds2WLZsmULbzQamSfXvDnw2WfAm28+pT1ACMHFixfTUlNTLxzZudOzTWjoOAJsxPTpdrrT2dZ332g0njx48GAYgHFarRZVq1a163xBEFC9enWyd+9euLu7k08++YTcuHFDCQkJ4UJDQ2mrVq0IV1DpbkQE61g8skDtIEaZMqyvWglpJWi1Wpw4cUKuUKECZ7f+wi+/AAcPss4cvr4sHp2ezr5u3pxt+tWvz55UWrfOdQo/Pz/i4OCADh06ICQkhMvoSpzr2ODgYKLRaEi1atVgsVi4uLi41kFBQeuNRmPxdkNVVDJ4ZYxuJkajkbZr125vu3bt/jpw4MD1iIiIHtWrV9eEh4dj+fLlcHBwwJEjR/iMseykMmWY8V23DujePdsjNSEEtWvX1hw5cqS51mzuTbRahxUjRvxlNBqLrINoNBpTjxw5Ulav1zf09/cXAOZhFaQvy3EcwsLCaIMGDTgfHx8EBARw7dq1w4kTJ8DzPMksQsiT5csBL68nIje5EBkZiWXLltGkpCRSo2ZNEJ5n8dMiSDEqigKr1Qo+S0nx1atXiclkor6+vvnHLRITWQWhvz+rjstUjqtdO/taOI61IGrShP3+vLyYMHsWDAYDqlatCkopTpw4gTZt2mRbU1ZkWSbnzp2jt27don369CHx8fHlHj16VK9t27ZP77iqqBSBV87oZqVDhw7h+/btu37mzJke0dHRFkppZFRUlAcAvPHGGyhbtiwel9fWrcs66RoMTxkYnU6Hw4cP2zrs38+59O3rEA0MPXToUFK7du2OF3VtQUFB/yQmJo5VFEVz5MgRbtu2bXjw4IGtTp06ubqrly5dwqpVq2j16tVpp06duKxGo2zZsmTnzp2oWrUq8pV+3LKFCdrkMebixYv4/fffUaVKFdy+fRvHjh2jlZ2diW7DBgivv16o+7NYLJg/f74SFBREQkNDceTIEXrs2DFqs9lIbGwsad26df5Gd9484MYNoG3bJwaXUla2/M472VsjOTmxMRMnAvfvs04YWdi7dy9u3ryJrVu30nr16sn+/v55PhL4+Pjg9OnTSsWKFXkfHx/4+voKhw8frn7gwIHlRqOxUE83Kiq58UobXYAZ3gMHDiyklAaKojg/ODj4K47jki5fvtwtNjZWrlu3LsdxHPOY2rRhO/tvvfXkHz2DcmXKcDVmz8ZmHx807dJFExMTY2nTps1vRV2X0Wg0HzhwYGNsbKzXgwcPTimK0uD+/fucq6srrVixYjaDtG3bNhocHEy6d++Ozp07czm9NHd3d3Acp+zatYu2adMmd2OWkMDEbPr1y1PM5uTJkxAEQR42bBjXrFkzkpycTHeFhpJQR0c4OznB007dYEVRsHDhQtnd3Z2MHj2atGjRAgEBAcTb25tYLBYlJiaGi4mJoXXr1n16rbt2seKNvBp9BgQw4fWc4YHMopf27dnvjxDYatfGsmXL5Bs3bpDbt28TLy8vpX///kJB+g9HjhxBTEwMjhw5QurWrQubzSbHxcXJ7du332/XD0BFJR9eqjLgkkSSJC+dTrdUq9V26NOnj0P1zPbpO3Ywj3DJkuwnREXh3JEj8rabN0mfPn24rVu3mnme/27ixIliCa6pvkaj2dm5c+eKLVq04FNSUvDrr7/KNpuNGzx4MPHwyLuXoslkwuzZs/Hll18i19hueDjTW/jsszznWLhwoVyvXj2uffv22azS1c2bKTd+PNk6erTcokUL/uLFi0p8fDxp3rw5MRgMMJlM2Uqdly5dKsuyTEaOHMnlJtSTmJiIX3/9lZYpU4aOGDGCy7beP/8EKlViseScxMcDZjM7nh8LFuCRwYCVsbGKc+XKGDhwIAcAPM8XqqPyzz//rNSuXZvUrFmTrFy5MkWW5VqiKBYz0Vjl384r7+nmhdFoTG7btu3avXv3hp87d64fpZTz8fFhXlRUFNsRr1v3yQlffYUKgsC1nziReHh4gOd54fr16ynt2rVbV4Jruh8UFHQ8Li5ugFar1a5fv55WqVIFw4YN4wrqmisIAo4cOQJfX9/cFda+/55tiDVrlu1lRVFw9uxZREREIDIyknvzzTeJLkdX43J+fsTxnXcAR0dy7NgxVK1aldarV48LCwuj9+7do9evXycHDx5EfHw8PXv2LH3w4AE3atQoLuc8mRgMBgQEBJCwsDAcP35cady4McdNmcJyg/v0YT3bcmPvXtYBpFOnfH8W4Q4OWHvmDP6zbBlpVqYM0fbqBY1Gk2ccNzcURcHu3btJo0aNiK+vL+7evUsfPnzY+sCBAy7BwcGW4ODgeKPR+PzK61ReWv61nm5WJElqrtFodjo5OWkrVKigbWEwaKuGhICMGwdUqMAGBQYydTJvbwBAXFwcli5dmm6xWJqIovh0S4qir+UNAH8BQOfOnWmbNm2IvXKICxcuVJo2bco9JSpDKctp3bMHqJi9K9G9e/fwyy+/wMPDQ2nXrh1Xr1693Ce/cwc4ehR4++2nDlksFiQkJGDjxo3UbDaT999/3y7BdYvFgtVz5lDvhg1JFz8/VppcREW2rMyfP1+pUKECGdi+PUFyMnD7NqvAK2ijMQdr1qyRo6Oj+fr16yv+/v5cUlISLl68mHbv3j0iy/Jhi8XyNoBUURRfCE0JlZeDlz5PtyQQRfG41WqtkZiY2Dc6Ovr0uvPnY6I1GmDDBjYgKAhISnpscAEWR61YsaIVQImpckuSRJBhcAHAycnJboMLAOXLl1dOnjyJCxcuZM8Bjo4GRox48gaShQoVKsDBwUHp3Llz3gYXYBoVeRR0aLVaeHp6YuzYseSLL76wu8OFVqtFt6AgICiIokaNgg3u7NnMgBbA4MGDuWvXriE8IYEZ2x9+AL74wq41ZWXo0KH82LFjcfv2bezdu1dp1qwZ3n33XYcvvvjCUL169TaEkIcajebmjBkzFkmSVL7gGVVU/sXhhZwYjUaT0WiMbteu3dKgoKB7Nxwdeze7coXjXF1ZKlLlyk/lgRoMBl1kZGSzdu3azZckqXJwcLDZaDQW2esJCQnpBWCQv78/7datG6lZs2ahHoldXV25+Ph425kzZ8iBAwfI8ePHlaSkJOp76xbz+Fq1yvW8iIgIYrValXzTuMqUYRuNVmu+XSXsfpP480/A3R0rTSZas0cPzq7uGtHRLOSTY5MzJ46OjnBzcyNbt25FUlKS7Dt1Kkd69wamTGEFH4UQaDcYDGjUqBEJCgoier0eDg4O0Ov1qFu3rqZt27akSpUqzmlpaQEJCQkTQ0NDfQ8cOHA4ODjYMTg42CE4OJhT83tVcqKKNefOvlRZjtpdvrxPjz/+0JPXXwdy6e3l7u4OSmmZmTNn/grgXQAfAChSk0NJkjiNRrN4wIABqFGjRpFqb728vNC/f//Heb/Xrl3jNm3ahK5lyoDPw4v96aefbKmpqcIbb7xR8FPPoUPArFnAX38VOLRAbtwA4uORmJTE2dXCh1Jg6FC7y5L9/f1Rvnx5LF++nAsICIC3tzd7Url9m23G5RFvzo2MIhbb4cOHyYEDB3iO45CWlgZBENC0aVPboEGDNEePHsWhQ4f6paWlDQEAjUZjkmVZ+Pbbb5N5nv/HZDL1E0UxLUNn2RlAghqW+HeiGt1cEEUxVpKkeuecna+0io6u7vrhh6z2XxCYSldGmOHevXsQBCEiPT393YxT04pzXZvN5lFS/dB0Oh1q164N9zJlFPO0aZxDHo/liYmJwmeffQa7dH9btXoScikqo0YBn376WECeEGJfGXNICDP4O3bYfSkPDw94eHjIW7du5T/55BPCf/IJO9CnDzO6uSjM5cXQoUMFAAgKCgLHcWjfvj3Cw8OxZ88evlu3bmjZsiVatmypVRQFFosFer1eTynFw4cPXZcvX96NEHJbkqS+hJDtlFJHg8GwCcDTAXKVVx41ppsHoijKZrN58u/t26fQFStYT7XLl590m1iyBNVu3UJ6enpr50ePQBRlpCiKxclk0FFKn9IloJTiwoWi90rsX7kyd9HPDweOHn3qmM1mgyzLMBTwuP4YQQBu3mThlsKS2arnk0+yyUryPJ+pc5A/7dsXykhmMmLECCElJYUkJWVpe7ZgAVvHxYsF6jbkpFOnTjAajeA4Dnq9/qnwT+brAHtDcXV1xdixY/k2bdo4ATjg7++vGTZsGKBqOvxrUY1u/my8d/++U1TNmoCzM9CwIbBxIzvi7w9DjRpoXKeOadSKFWbfyMjfQEhHEDIIAEBIuUJ2YaQAMGvWLFy5coW9QCnWr19PN2ZeswiUURRUGTMG//zzT7bNtcTERMyfP1+pWrWqUqBmQ1YEAbAVsoEFpcy7vHyZxVMzcmVTU1OhKArsyqA5fBh49Khw1wUzgoIgKHfuZKna9vZmlW3z57N1FRGLxQKe5wtcvFarRefOnTWTJ09G3759tRmGuoQ7jaq8LKjhhXwQRVGWJAkbN27EpEmTsh/M6Ff2evXq+p/u3Ut58OBBDwBXAFgzRmwF8DEISQLwDiidC0IcAaTlZmVEUTRJkgQAWL9+PcqVK6c8ePCAA0Bat25NARRNY/HIEVQYNAhOCQnKTz/9BK1WS2VZpqmpqUKDBg1o9+7dCyddWKMGUL06kJzM3ogK4s8/gV69WGFGlsIERVHw22+/KZ6ennBzcyvY6v/zDzu/CO3sO3fuzG3btg1xcXFKx44dn1xr0SKWlbJ6NTPoOdvRF0BOXYmCyCwUiYqKssmy/E+hLqbyyqB6unaQ3+M3x3Ho0aOHk06nWxs4c+Yyafp09hxPaTsAF8CkIDPdrP8BGApCOBDyNQjhQYg2i0dcHkBDAMgwuACAI0eOkNDQ0ML3RzObgbAwICAAPM/TqlWrcq1ateI7deokDBkyBD179uQL5eVmsn07K5cuCEVhHmpCQjaDCwBhYWF48OAB3n33XfsWMG4cUxUrAo0bN0blypUREhLC7dmzJ3sA2cWFaQxPnQpkPGHYi81mQ1paGhcRYX+attVqxfHjx60Wi+W7Ql1M5ZVBNboFs7Ju3br57jLXrFkT48aN09tstkYAXB8foJSC0jug9PeM7z8GsBasTftDUCoDGAVgDgCI06e/LU6ffk+cPp3nKO1GCMncmNuzf/9+obDC59i0iZXTCgJMJhMaNmyIxo0bo169emw3v6j06MFa2eeFzQYMGcKM7dy5ufZj4zgOlFJisydUER/PlMSKgW+GiNGJEye4p2LIX3zBflb79jHpSzsJCAiAm5sbChP+CQsLo4SQf0RRVFsB/UtRwwsFE0HtCDryPA9/f3/5ypUrMwB8mOdAShUAJmQYWlD6MwjJjO85goUnWkyVpPGg1BGE9NjZvbvX8ZYtu65ZvRoNGzVCp06d4ODgUPCj7aVLTKULgMVi4e0tWigQQQBOnAAuXGBFF1nJDDuMHAmw5o65UqVKFaSnp5PY2FgUmLHh4MA2vopBq1at0KRJEyxbtkz+4YcfeFdXV9nLy4vr1KkT0ScnP9ENHjyYyXvmUkiSk9DQUNy7dw9du3a1K/yTkpKCoKAgk8Vi+bRYN6PyUqN6uvkgSdIQQRACnZyc7ArcdenSRW+z2YZIklS4OCml1ozP80BpAij9B0BmeyDXHrt2nW0dGuox6dtvEy9duLB5zfjxWPnBB3l2xgDAHu2dnYHGjTOmpgXq9RaKsmWfNkxmM0sre/gQ6Nw53yKK06dPU51OR+3yuNPTgaZNi9aeCCx+vH//fixbtkw2mUyQZRlms5k/ceIEOXr0KPDttywlLSAAOH0a+PprtsmWBxaLBUuWLJFPnz6N4cOHo0WLFnbF23ft2pVOKV0kimJ4kW5E5ZVA9XTzZ6Isy2jatKld/1TOzs5wc3NT4uLiRkiStBpA+SKrUlGalvF5HQB0AQBCakyYPDlx5bvvUoe0NCxatAj/WbuWYtkyUrF2bdbK5o032PnXrzNv9L//BQBotVolJiamQOEcu/H1BapVY3nL5csz2ciePYHjx+3ST+jUqRO5du2asmDBAjpkyBDO3d092/Hr169j8+bNsizLpNmePSRNqyUnW7SAs7OzXL16db5Vq1bIeU5ebN++HVFRUbR169a8q6srIiMjlcjISOLp6UmqV68OLFz4ZLBGA4wdyzbVBg58/MaSlJSEdevW0Tp16pBjx44pFStWJGPGjLE73e7mzZu4cuVKqtVqnWLXCSqvLKrgTT5IkkQBYOzYsSiXz6NyVmJjY7F69eo0q9XKWa1WPSFkwLRp04pZUfDUurSEkEuU0moOKSlINxjweZ8+cNq1C5g8Gfh//4+laW3bBnz4IfDaa7g6dy7OVa6s9GnWjCM3b7IGj5s3M+Pp48Na+TRsyHbz09JYuW1sLODqyowoIUxzOCurVwNnzwKSxB7/Fy5kPdjsxGq1Ys+ePUpERAT++9//Zpt8wYIFcmJiIj9o0CC4ubnByckJsiwjMjIS4eHh8o0bN3idTqeMGjWKc3V1zesSAIDZs2crrVu35tpkZJxkIyWFCaZPnfr0sTfeAJo3h2XCBMwMDISDgwMcHByUBg0aoE2bNlxhMgL/+usv85kzZ6ZPnTo10O6TVF5J1PBCHkiS9PjZ+ejRo7CnkywAVKxYEWPHjnXgOI4HAJ1O99+SXpsoihZKaQ0ASHNyAuV5RHEcM7gAMyD9+jEvrXZtQKdDNX9/pKSnk/sXL7Ld+rQ0JuQTEsL6ji1ZwjIdJIltWkVFsdjmJ58AM2awPmQbNwJNm7KNsfPngZ9/Zufv3Mk2oAphcAGWQtWhQwfObDZzKSkpj1//+++/YbPZODc3N+XChQuy2+LF0AFwcHBAgwYNMHToUH7ChAnw8/PDsmXLlJMnTyK/DbmGDRty+/btw/Xr158+aLMxTz03Fi4EHj5E+MaNcHF2puPGjcPo0aO5tm3bFsrgUkoREREhK4qy2e6TVF5ZVE83DwIDA9eazebBmd/7+vpi8ODB+Z2SjR07dlhOnjy5URCEG19++eXkZ7HGjDeGWAAYMmQIatas+fSge/fYI3O5cti3bx/Cw8PpyJEjSb5tfXIj800nKYl1dnBzYxt1X3zBuvIOHMgMWC6i5flBKcXmzZvliIgI3snJSfbx8eEvXryIIUOGoGzZsvhpwQKMfvgQLrNnP6W7IMsyDh48qJw8eZLz9PSEr68vwsLCaNmyZclbb70Fh4wwx/Lly+Hs7Iw+ffogN1H1vLBYLDh+7Bgqvfsu0v38qP/OnaQoLeljYmKwcuXKuxMnTix8krHKK4fq6eaB2Wxen/X7yMhIxMfH231+QkKCleO4kGdlcAFAFMV7AAYAwKO8qrWWLAH+/hsAK2F1cXGRf/jhB4SFhRXu3Zbn2YerK1NcMxiARo2YtzxoEPN2P8w7aSMvCCHo27cvP2bMGHTs2JGPiYlRLBYLNBoNXFxcYHByst19//1chW54nkfnzp25li1byteuXUNoaCicnJxgtVqVH3/8Ucn8faWlpdlq1qyZu8GdNi17TDeDsLAwzJkzh54LD1eOT5hA5Xr1KHbufPLmUwiuXr1KFUXZWugTVV5JVE83HyRJWgBgLIAGPM830+l0Pw4bNkyv1WrzjfFarVYEBgbaFEVxFkXRDmGB4hEYGHjMbDY3DwgIoL169SLZshQoZQbr5s3HQj1RUVHYsGEDevfujXw1dO3hs89YQ0gPD6av4ODAxNLffLNI0ymKglOnTqFevXowGAzYM3Cg0sTNjXP76Se756CUYu/evcqpU6dIzZo1ydWrV9GvXz/UqJGL3IHJxOQqM6rrUlJSsHjxYjklJYXv378/ateuzcbZbEzAvUIFYPHiQt3T6tWrk6Kjo98XRfGPQp2o8kqierr5Mx4AeJ7/h+f5r9PS0vSLFi3C4sWLbfm9WWWkNlEAha8iKwJms7krAJw7d47MmDEDmzdvpt9//71ss9mYwZVl5o1m6A/UrFkTb731FrZu3YrU1NTiXbxjxycbbW5ubPPtyBFm7O3AZDLh/PnzuHPnDkwmEziOQ7NmzcDzPGw2Gy41bEiTc+YCFwAhBF27duW6detG4+PjFUopEhIScl9QcHA2mcfFixcrJpOJHzdu3BODC7Dc5N9+YxuQs2ezNDY7oJTi9u3bWgBq2a8KANXo5kuGl1pWluXPFEUxAIAgCOcppZGbNm0ypefxj6fT6eDs7GwC0CCvuSVJKn5fmifrfCSKIiGErAOY8X306BF/6dIlNoDnmRZupUosxQtAnTp14OrqKh8/flwBWPwymyiMvfTunV2DoVo14LvvWK6u0QhYctfwVhQFe/fuxbx58+iePXvomjVrMGvWLHzzzTcIDAykgYGBmDFjBhwjI3m9nZkjOXF2duYSExO5xo0bY9++feSpij5KgV9+yRa6qFOnDrFarbmHXwwGlvccHm53J4oHDx6AUpomimLBLS9U/hWo4QU7kSSpjFarXWSxWAYAaEkIWUcprd6vXz/4+/s/NX7fvn2WEydOHLJYLD1FUbQEBgbOUxRluNVq7S2K4uGMdLRRoiguL+F1+oIJ78Db2xvvvffek4NnzwLjxwO7dwMALl26hC1btqBr164ICQmhKSkppHbt2kqvXr3ybCr5FL6+LGacUWabjQsXWOrZqVPMWGUYt8jISGzdulXRaDSkV69eJLMTM6UUJpMJaWlp0Ol0cHJyAh02DCQwsNBCNxaLBfPmzaMdO3ZE8+bNyfHjx7F//36MGjUK+XVVBphm7uXLl5WPP/44d6fEamWKabNmsZh5Pj+rs2fPYvfu3TvHjx/fs1A3oPLKohrdQiJJkkNGBwBXAPcBCI0bNzYbjUZd1i68sixj/fr1abdu3UqUZfmILMv9fHx8cOfOnSSbzTaSUvoHWOkoJ4piif4SMnqtDRcEYUHPnj1dGjVq9OSg1cqq1QBAp8Off/5J7969K9eoUUNo3749Vq5cKZtMJm7UqFHErrLhzL+fvHb1bTYW312xgsV9AcydO1euV68e/9prr+XeLr4EWLVqlSLLMkaMGPE4vWvVqlUoW7as3Lt3b1Yqt28fy8DIoS72888/y3Xr1n2qFX02bt4E/PxYCyEvrzyHhYSEIDg4eNbUqVMnlMBtqbwCqOGFQiKKYlrG50RRFDUAPMLDwxcvWLDAtG/fPktmqSrP8xgyZIjDwIEDK8my3A8AAgIC6JAhQ1wMBsMqAJlZDbnkeRV7jVQUxZU2m63Dzp07H+zevdvyOM9Yo2F5t8uZg/3222+TsWPHCj179oSTkxNGjx7NOzs708OHD9tXc7tjB9NbyAtBYGM8PHC7f3+sGD9esVqtfKNGjQo2uGfPAjNn2rWMrJw+fRp37tzh3n777Wz5tD4+PtlLp319c+0bZ7FYaPny5fM2uJcusU3Jf/7JVcwnK6mpqVZFUeIKfRMqryyq0S0moijGTZ48+f9sNluNEydOnNu4cWN6poEjhKBatWqYMGECRo4ciUaNGpGqVauiU6dODjzPT+I4LhVF1cm1b21nrFZrrdOnT4cuXrw4NTExkR2YPBn4z3+YVkIuvP7669zZs2e5u/Z0VQgKYlVdBXD58mWEODmh6TvvcP8dPhzu9sRpPTzybKaZF8eOHcPOnTvx9ttvI2fJ8/3791E+ayFE2bKPtSmy4ubmRvbs2UNzTRFMSGCpcTt2AFWrFtizLTU11QIgoVA3ofJKoxrdEkIUxbsWi6X91atX/1m3bl2a1Wp9fEyv16NKlSqPv2/cuDGGDh3qQgjRgTUpfJbrijebza8lJCRM+/nnn9PPnz8PZLSTQevWubY0r1SpEhwcHGx55v5mZe7cfB+vM7l79y5MbdvK9Zs3B//NN8BWO9JWXVxYhwc7CQoKwv79+zFw4ED4+fk9dTwpKYlardYnIbXevZk3nYOhQ4fyPM+T9evXPwn7yDKwdi1TTgsOtvvNJjU11Qbggd03ofLKoxrdEkQUxXSLxdL99u3bu1auXJlmzsOTJITAx8cHzZs3V7Ra7W8Z8eFnuS46ZcqUuVartd22bdsSr1+/znQU9u9nhQ65JPxrNBqSlmZHn81PPgFu3SpwWHJy8pPmlwsWAG+9xTb09uzJ+6Rhw/I/noHJZMLixYvlkydPYvjw4cjcmMvJO++8Q65fv05CQ0NZ6CQ4GGiQPcFEURTcuXMHjx49gq+v7xOjazIxASGTiXm3c+Y8znvOi/v37yMmJsYBqqerkgXV6JYwoihaLRZLv7i4uPWLFy9OvXbtWp5ju3TpovXw8KgI4On+7s9mbaesVuvYXbt2pVBK2eP1uXNMHSwHjo6O5NatWwXHdfv1Y/MUgLu7O+7evcvJssxS2AgBnJyYXoOi5J5a9uefQJcu+c57/fp1zJ8/nzo6OpKxY8eicuXKeY51cXHB0KFDSXBwMPcwIoJ5rhnhgYcPHyIwMJB+8803WLFiBdq2bSt3796dg8nEuhcrCvD99yxtbORI4MCBAu/5xIkTMJvNGgD293tXeeVRje4zQBRFxWKxfPDgwYMPf/vtt5hly5al3MrFGySEoGrVqlqtVvvDV1999akkSc801JDB+sTExNjQ0FCZUsqEbH79lWUhZMlk6dWrF3fhwgUuX81eAGjRwi4px3PnztmSkpKyd+Vt04Z9bNrElNGykpzMRHTy2Wy7fv06fv/9d9qqVSsMHjyYs0dm0Wq1QhAEOAsCkBnjBrBx40bZz89PmTx5MqZMmQKj0ciDUpYO1rx59nsMDASaNSvwWp06dcr8Us3RVXmManSfERkZBOssFkvVO3fufLZ6x4elUwAAIABJREFU9erU3AxY586dtYMHD/aqVq3aTJ1O92cprEuxWCwdQ0NDb+7YscOsUMp24GfNylbe6ubmhjp16tCtW7cq+aYVdujAclbzQFEUrFmzRklOThbGjx+PXGUY336bFVQkJQF/ZFTKpqbmG7ZYu3atsm7dOjRu3Ji2bduW2Kv6lZ6eDq1WS3lf38epYklJSYiJieG7dOnCPy6htlqBTp1Yq6DBg58Ish8/ztbp5FTgtfR6PQghCoCC4y8q/xpUo/uMEUXROm3atKWKoswMDg5Oz2nAMrxdDBo0SE8IaStJUp1SWNNti8XSKDw8/Mz69evTFUVhbXeGDMk2rnfv3uTBgwfk3r17eU924gSQS3FIJrt27UJCQgL58MMP8xb8JoRtmt2//8SAV6jwlMbtnTt3EBoaiiVLlijx8fFk7Nix6NKlC1eYXF9fX1+kpqYS29ixwM6dj7tKUErx8OFDNigpiaXW/fwzkFMo/fx5lptrBxllzZbMNEMVFUA1uqWGLMsLoqOjY0+fPp2r2ygIAhRFISilnW5RFB9ZLJb2t27dio6IiGBGzsEBeP31xx6mIAhwdHSUY2Ji8p5o40YmdJMH9+/fR0BAALGrY0XNmsCUKUy/wdMT+OijbIc3bdqk7N+/Hzqdjn7wwQfE2Z4W8DnI1N1VPv8caNUK4eHhOHfuHLy9veWkpCQWu+3Ykf0MsmovZDJyJNC1q13XSklJgSAIauaCSjZUo1tKiKKYbLFYxoaFheVaSfDo0SPIskzAqtxKa00Ws9k8be/evaaUlBQWP505k2U0ZODv7y/s2rUrb12G8+eZIHoepKeny/a2tAHARHlu3GDeb2Y61+rVuLhsGVJTU7kvvvgCw4cP5x3siCPnRmpqKgil2L18uRL4yy/YuXMn9Ho9RowYwdfNTPMLDQWypPg95vvvWZcJO5FlGYSQUhE9Unl5UI1u6RISGxurz5rDCzCpxRUrVqQRQmaXdEmwHWw1mUz7fvrpp/Tbt2+z5oyXLzOPDsBrr72Gli1bYsWKFZg9e/aTR/BMpk/PZqSzEhwcjEePHvHVqlUreBWUMo2GoUNZRkVUFPC//7FjXl5w8fGBJjkZmi5d2NjUVLuVzLLi5uaG5n5+aLptGzd8+HB4enrCZDIhPi6OVepFR7MMhdz48MOnQjD5odfroShKwcFflX8VqtEtRURRTNZqtZdu3Ljx+LXDhw/LGzZsiE1KShpks9mmPYc1yRMnTuxlNpv7r1q1Ku3GjRtAjRrZBMk7duyIN998ExaLBYsWLcKCBQuUVatWydHR0aAjRzIDmQtnzpyxdevWDRUKamd+8ybbrLp7F/jhB9aJguNY1dyjR0DnzvDq2BFWg4Emfv0184JnzmRjAaagVghx8a4DB8Lz7Fl4eXmha9eu6HT3Ll23cCFSVqxgIY7cuHaNtTMqQCwnK3q9HrIsF66Hkcorj2p0SxmLxbLs4MGDaTdu3MCGDRtMwcHBCVartfW0adO2PQcv9zHTpk3bbrPZ3ly/fn16QlIS0LIlE6nJyCbIKG5Q+vbti44dO3JOTk78hg0b6B9ubjQ1j9iq1WrNv2mkogAbNgAHD7Jy3O7dgUxRdYMBePfdbKELyvMwZ6qZff01K8xIS3uizxAayuYqiK1bgb/+AgB4enoiwM2NkJQUpORXYXb7NpN0LAQ2mw2yLOskSVK7bqs8RjW6pYwsyz/Fx8dvXL9+/c0rV658a7Vaa4iimHcFRSkybdq0fTab7dMff/wRR48eZbmozZohLS0NoaGhKFOmDPX19UX9+vXRt29fjB8/niS4uCiRN2/mOp/NZiNOTk5QFAVPpZ3ZbMyTXb8e6NYNGDfu6f5qDRo8Nvocx6FevXrk77//Vh6LswsC2/z7+2+W0mWzsVQvSoH+/VkWgpJLfUelSqx0+csvYTtzBt/rdPBo2jRvj5xSoF074OOPC/XzPHPmTOaX9okHqfwrUKUdVZ5CkqQpgiB82bdvX32dWrUQP2IE1lSujAFjx8Izi6rW1av/n73zDovi7Nr4/cxsY3fpUpUiICp2saFosPfee0tiYmKSzxRTjJPRNzGJKcbExGiiMcZu8lqCRlGIgqjYBQuKAhYQUBBc2Doz3x8PoFTBkryJ87surkt2Z6esy9kz5znnvi+D7d0b5k8+Qb0+fe6N+Rbzn//8B6+//jq2b98upqSkMB4eHuLggQMZt99+ozq0W7bQUVpFFYngvn3AO+/Q3ljQzPGbb74R9Xo9Jk6cWLXmrygCUVG0y2D5cloa+Phj4PJlKrIuCDTAR0cDbdrgt717xeTkZGJnZ4f27dujRYsWJC4uTmrRogWxt7eH9tgx2j62fn3lx6uEvLw8LFmyBACGcBwn+6PJlCIHXZlK4Xm+tVKpjJk0aZKDd3w8djGMdDUnR3zxxRfZkm2+/vprQavVsgUFBZLBYCDh4eG2rl27KgDao/rpp5/i/fffx88//ywoFAq24MQJhNhs6ChJUM6YQQXOq8NqBS5eBAICShe3bDYbVqxYIUiSxDz//PNEoVCgsLAQx44dkywWC5o2bUru/2KAKNKM19ER6NKFBvFRo4CffwaGDbtvMxEJCQk4evSokJ+fz5YoxTEMg3feeguKW7dqJaR+/vx5bNq0CQDqcxyXVuMXyvzrkcsLMpXCcdwJQRDe3bBhg/VUUBAKrlyRmkRGlvm8sCwLjz17pA7165OpU6ciPj5eUdIHm52dXTKRBZvZTHISEjB8zRoYLl3C597eKKpfH/n5+bh48WLVJ6FUUlucrVtLyxMKhQIzZsxgTSaTuH//fmRlZWHFihVSUlKSdOPGDaxatQrZ2fd13TEMVVV77jkqcJOdTTPdcgMdDMOgQ4cOmDVrFvvyyy8jLCwMkydPhqNaLV6YP196UMC12Wy4evUqTCbqQ3qfcaksdiNTBrnAL1MloiguM5vNn+7Zs0fR3M+PadOnzz13YQDPP/88yxiNYNq0AerVg06nE7777jtGr9eLV69eZV1cXESkpDBT9u1j9ubn46cpU6D39xdsubksAOzdu1c4e/YsGxISIgwcOJCttFwwfjzyCguxZP58hIeHo1u3bmAYBv3792cjIyOFI0eOsD4+PtLEiRMZk8mEr776Srqdmkrc3d2Br76iQXfWLCqcY7NRAfJvvql88KEYJycn9CoegBjVrRtz+fXXsXHjRqFJkyZsUHF3w5kzZ6TExEQxIyOD1el0giAIjMViIQqFQho3bhzx8fGBXq8vNBgM9QGcecz/NTL/YOTygky1zJ8/f2ZQUNCn48aNowXbvXvprX6nThW2FUURf/75JywWC44fOYI28fHIDwiQ9FevkqNt2gAMg+DgYGRmZkqzZ88mUVFRUkpKinT37l2i0WjImDFjyviXZWZm4mx8vKhZupQ5NmgQ8vPz0ahRI3H48OGMonwd+MoVpFy7hsj9+/HKqlUgKSk0q9Xr7xlniiLVW5gzhw45fPFFtYI6AABJQubNm4iPj8fVq1eFwsJClhACvV4v6PV69vr16/Dw8EBAQIDUtm1bcurUKeHQoUMsIUSqU6eOkJGRMZfjuE8e6T9B5l+FnOnKVIskSTuuXr36WekDoli2I2DiRFonDQkBwzDo1q0b7qamQvPpp/AwGCQydCjx79IFtj17cObMGbAsCz8/P7GoqIg9efIk6dixI2FZFjExMYiKihLHjx/PALRFbeXKlajr6UnGZGYifNQo5CiVWLVqFT755BPMnj0bdmYzlX+cPh349Ve4e3qiUKEAuXSJdjOUt9JJSgKcnanjQ/PmNPNVqaq++Px8oFMneJ06heHDhwMAazAYYLFY4OLiwgLAzZs3sXbtWjE9PR29evUiXbt2ZZ955hksX74cmZmZCpVK9SwAOejKlCLXdGUehFqhUNybPOjVCwgPpx5rRiMNuH5+97ZetAhSeDhyhw4VGh85Qhr16gWNRoOgoCA0aNBAunXrliAIArt+/XrR2dlZCA8PR1hYGFiWFUNDQ0s/j2fOnJGcnJyEKdOnE83PPwM6Hdzc3DBx4kSm9cGDOP3114KVYWhngiQBb74J/fjxsNlssFZ193b5MjWTBOjEXXXebgBdfNu9u0x3hV6vv79eC09PT7i4uECv15celGEYTJ48mXTs2BGiKNZiBlrmaUAOujIPQq9UKiv2mV67dk/ikGGAU6eAt98GfHyw65VXhDs6HbHa7skOhISEYPTo0aRr165sRkaGoFarycSJE9nMzEycOHECoigSdWEhYDYjOy0Nl9esIeHh4SwSEoBvv6WOwt26wcPDA37DhyMxP5+sXL9eujR5Mkqi3aFDh6BUKiv2BAM0MH/8Mf3CAOio88CB1V/5hg00M64Ci8WCgwcPIiMjg+nXrx97/3N2dnbw8PCAzWary/N8++oPJPM0IQddmQeRXVhYqMjJuc/QlhCA46jrw+jRtN914kQqEjNoEIa++irrePKk9NNPP4mWpKR7ljtLl6KxIOC1adPYCevXk23btgnHX3oJeOMNqVmzZkL9efNgO3ECW1auRPfz59GiRQsqNJ6ZSafBGjcGwzAInDABkp8f8vPz8euvv0qrV68W4+LisH//fowbNw6qykoGsbG0RzcwkP4eHEwn2KpCEGi3Q1U9xKCylXv37kW7du0kR0fHCs83LZmuAw7zPP/EDEhl/lnIQVemWjiOyxBF8bX169cXlhfqQV4erXtOnw6cPElVwXbuhEqtxrCkJNZmNkvbf/5ZspToz/r5AXo9RDs7RLdrJ125coXtvHQpWv/+OxkwYIACkZEwNG6MXJUKrrt3Q8rPp/20v/xCywjvvgvjggVY9e67sFqt0uzZs8ns2bOJJEnkzz//hCRJWLNmDfbu3SvabOXEvZKSgGefvfd7iYrZqlWVXzjD0IGIamq+bYvdI2w2W6UTZ4QQNGnSxEp3x/zluhoy/5vIC2lPKTzPKxiGeVEUxVscx1U7aiUIwg+FhYXDjh071jssLOxexubjA/zwAxUb37u3jPMEiYnBDFFkFy1aJF1+5hk0BoABAwAApqIixAJkzLBhcCy32OXo6IgGDRoIX331Fet/+jSeSUmRbEVFxEmjgUmlwq0dO6TODg5o8tlnbEnrmqOjI5EkSWzXrh2j0+nw22+/IT4+HizLom7duuLIoUMZ3eXLVCv4fuztgfst2e+nSxfgxx/v1YArIS0tDQCQnp5eZfLi7++vPHv2LERR/GDBggUZ77///ooqdyjzVCAH3aeXOqIoLtHpdEU8z9/kOK5Kp0WO4ySe5xclJCSEt2rVSq8psXAHAE9PKjqTmko9zSZPLn3KYDDAarUSf3//MvvTarXQ6XSiRqOpEKwIIegYFsYGfPEF3N98E7/n5Yl5GzcSi8XCiKKIxm+9hWGDBxP07ElNMWfMgKenJ65cuUJKbudff/11RhRF5OXlYdu2bVj30UcYm58PfXFJYvXq1VJRURGpX7++0KdnT9bRYKhov7N5M+DuDoPBgA0bNogdO3ZkQsoNVMTExMDd3R3Tpk2rsnRQt25dKJXKXEEQbouiuPzDDz+sb7PZ3vs7xY3+7fA87wjACKAegB8BpALYDyAeQMr97z3P834AWJZlpwIwC4KwjOO4W0/y/OSg+/SSpVQq000mUz0Az/E87/AAjYA/jUbjr19++eWopk2bMj179lRrNBo6onvoEHDpEu2BDQoq7eFdu3atKAgCc3+NdePGjQAgCYLAuLq6VnqgOkYjtDk5WH36tDR7wYLSBSpRFMEwDA1wL7xASxvXryMuNlbs0bNnmcDHMAxcXV0xbdo0JmXiRMTn5uLWunVCTk4O4+rqKg0fPpzs3r2bnBw1CvZ16ohOH37I+Pv7Y/Xq1WLw5cvo9MILTGpaGtauXQsAzKFDh4SQkJAyi2UuLi6CwWBgrVZr5XVkUBUzHx8fdVpaWiTDMANtNts7AHYAOFTNey1TS3ieJwqF4iWGYeayLOsiiiIrSVLJl3pEw4YNRyYnJ+uLtwWA3wGcADAPoILzDg4OoslkGs/zfDOO456Y+Lw8HPEUw/O8lmXZBEEQSkQQWI7jqlXE4nk+RKFQrO3Zs2fLdu3a0QfPnqUSja+8Anz0EZ32eu45ZGZmYv369QLLsszIkSOJt7d3yQceL730EupUdmv/5ZeAnR2SIyLwe2Sk+Prrr1e/7hAWhnMWi6TcsIE0KJF9vB+bDWjbFgXbtmFPQgLUajX69++PEl81w5072BMdjUuXLkkACACp7f79yGjdGmkaDWnXrh06duyIxYsX44033kCZLB/AZ599Jg4fPpypTqj99u3b+O6776RiZxAACOI47nK11yVTJcWLkl4AAgEEsiwbolQqB9jZ2fmOGDFCV6K9IQgC7h+iycjIwNatW5GTkwOWZSHcp8FsZ2dnfuGFF9SbN28uzM7OvmSxWKZwHHf6SZy/nOk+xXAcV8TzfDiAEACpDwq4xSSLohgSfH+t09ubSh+6ulKthDFjgNBQeLVqhddee43dsmULNm/eLL366qtEo9FIY8aMIeUDriRJOHPyJHx/+EE6PGiQeOLXX9nWrVs/eMU/KgrnPvuMBP38s4hx4xg0LufreewYMHUqHHx9McLXt8LL9U5OGFZYCLFfP7LyyBHY6/Viy19+YVXnzqFfSEhpT65OpxOOHTvG1q1bFyUB9tChQ6LFYmHOnDkj1K9fn62w82JcXV3Rt29f8vvvv0Oj0STMmTNHDrg1gOd5FYAuABooFIpGSqWymSRJgQzDeCmVSpujo6OlTp06rLu7u87Hx4f4+vqWCbLlpxa9vb0xc+ZMAMCiRYvE0aNHMy4uLjAYDHBzc1OzLItx48bpNm3a1DgtLa0tADnoyjx+OI67A1rrqun2wsKFCw2iKN6bEHB2pv2vaWmAvz9tIRs/HrdCQnC4dWukp6eLjRo1ks6fP8+aTCYSGxsrGAwG1tfXFyXmkjm//AJx8WKsnzlT8K9fXzEzLAzOzs7VBt2CggJs3bpVvKFWM33On2fwf/8H/PFH2Y1On67STqiEXIsFp+Pi4FinDuovWsTqRBHh48aV2aZly5ZsbGwsBEFA9+7dodVqkZCQQHQ6He7cuUNOnDghms1mKSwsrNLg26pVK/z+++8wmUy7qj2Zp5ziLLahQqGYolAoXnRxcYGXl5fSzc3NztnZGS4uLnB2doZarVYCeKTBE4ZhoNfrob+vnl/cX82kpaVVo77/aMhBV6ZWFNfO1BVqmFFR1LXh889pb+uKFbjdoQMYQRA69+3LtGvfnjEYDAgMDJQsFgv27NkjFBYWsk5OTmJISAipv3kzMfj7izNfeqlGn8mioiIsWbIEwcHB0vPPPw+9qytgsdC6sr8/8MYbtLSQlAS89Va1+1p1547opFYT482bkv+nnxJVcYZdUFCA1atXSyaTSbJarYzVakXfvn1x+PBhAYDk7OzMduvWDWvXriVpaWkEAEwmk9i1a9cKJRGGYTBkyBDs2rVrEM/zvLyQVhGe59uo1epVDMMENG3aVNG2bVuVm5vbX34e/v7+yqNHj/6H5/n/chxXuRfVIyAHXZkaw/M8UavVS1QqFVMiWC6KIqKionA9O1sc+t57TGn66+CArZMnS6/GxLAalQpo3x4ODg6YMGECAcACdKLrzB9/MJ4vv4zNo0dLol6PzjU8lzVr1gj+/v4YNWrUvcxSpaJqYvHxwJ07wPnzdIGvMmffYvbt2wdJkpipq1aBeecdAgcHoNgu/tq1a8jNzSU9evQggYGB8PT0BAC0a9euTDb7+uuvk+zsbBw8eBAHDhxgOnXqVOnCWrNmzRAdHR1sNpu7A9hbw0t9Kvj4448Xq9Xq5/v06WPXokULEPJkZ0kkSaryAIQQMAxjFkWxckuUR0QOujI1hmXZl/R6/dRp06bZxcTESElJSYLRaGT1er3k6elJ9s2eLdUVRbT54QdS7A9G7i5bBs2331JPsv79y0x4qVQqtLFagU6d8H8cR0RRrNFf2s6dO2EwGJjJkydX3H7wYPozahRw4EBpbzBiYwE3N6Sp1djz/feC0cMDWr2e5Obmki5duhDmlVdoaSIjg/q1Abh06RJ8fX2FTp06VVmvBWjt0NvbG9euXRM6derEVtXJwDAMunfvrtu5c+fnPM+3lLNdCs/zzQG8WuXi6mPm0KFDIISQquyZ9uzZc9dms03jOM7yJI4vB12ZGsHz/CyFQvHZ6NGjVRcvXsThw4dJnz59FI6OjggICCCEEKQ6OuJUfLy4bNkyydvbm6lbt67g5u/PYuFCYMoUOkCxeDFVABME2mc7dy617gFKOwqqIzk5GadOncL06dNJ+U6CMqxYQRf0kpLo7/PnAy1bYqubm/DKokXshV27oF+3Dm47d8I8YwbQvj3VZ1iyBLhzBwfPnsX58+cxadKkagOuKIrYvn07igcg2BYtWgAAjEYjkpKSoNfr0ahRo9LMrWnTpoiOjg40m809AEQ9+J1/KjgNANWamFaFKD5YnvM+bDYb9u/fLw0aNIgoy3vygarGFRQUEABba38yNUMeA5Z5IDzPKwEssdlsqm+//RaRkZEYNmwYWrdujcDAwNKAUr9HD/SbPp0J0Giks2fPwtvbm36+WJYGwdatac3XZKLDFEZjBQeHB3Hq1Cl4eXmJD7R1t1qBXbuAw4fp71FRODBwIESFgpEsFoT06gXfZctgl5gIJycn2qrGsnS0edAgOL7xhjSwZUvULS4pVMWKFSvE06dPY9SoUZg8eXJppnbhwgVERUVh8+bNKCwsLN2eYRi0a9dOp1KpRtfqwv+l8DxfGoNYttrvt4rExNCS0v/9X41f8ttvv0lubm5S4/JdLqDDPL/88kuRIAjPP8k+XTnoyjwQjuOsHMcRABoA4wEIjapwXlBv2IABKhU7fvx4NG/e/N7tv0YDjB8P5OTQ4BsZSYNiddlqJfTv3x+ZmZnMlRI9h8owmWgLWznpxry8PMlms5FS8R6NBigJ3hERwPHjsPTti8gXXsDJoCDiuWQJlYDcvZvWhivBzs6OAQB/f394eXnhl19+ERYuXIjt27cjLCxMKtYKFvPy8kpfExgYCEmSRvM837TSnT5d+AGAnZ1dzR2TTSb6Zdq0Kf0Sf+edB77EYrFg/fr1YkpKChk0aBBTvmZcWFiINWvWFFksli8kSdrA83xTnuercD59NOSgK/NAeJ6353l+GIAX1Wr1DDc3N1OVG7/+OjBlCoKCgipamqtUwIcfAlev0rayh4RlWSkvL6/qeqhGQ8sKJY4RxQwePJi4u7vj2LFjlf6Bn50xQ9r00ku4aTSKYRwH1507aRcEw1DZyhEjgKNHAYMBAM2Mrl+/jgkTJkAURfz0009iXl4eLBYLGIZB165dyfjx45Genk5+//330k58Dw8PDBgwQKdUKg/wPF/JRMdTRUOtVms1Go0Mz/PYvHkzkpOTYSh+jyvl5Emqbvfmm8Crr9KF0xkzqtz8yJEj+OKLLySTyYQZM2agfEfElStX8M033xjz8vKWMQzTDIAIIBFAxcbux4Bc05WpFp7n2ygUin3e3t7E3d1d5enpqW7ZsmX1L/ryS6BxY6BPn4rPGQxAx47UzjwvDzh+HOjRo8bns3r1atFkMlU5Qoy0NIDnq1QPCw4OxpkzlVuWnVSppPaDB5MGPXrcS0aaNaM/ERE02501C7h5EzhxAmazGZIk4fz58+Jvv/3G6PV6SaVSMQDQunVrqaCggKxbt04SBIH4lOugaN68ObFarY67d+8+yPN8W47j0mv8Jvy7KLCzszO+8soryiNHjghxcXHsuXPn4ODgIL766qtMmTp/bCyV+Bw3jn5+iuvnqFOn1LfvfrKysrBp0ybBaDSygwYNIo0bNyblM9w7d+5g48aNRovFMhAA0ev12+rUqWPJzs5e/e6771Z+e/OIyEFX5kE0sLe3V02ePFlTk4UuAEDXrsB9XmdlyMmhhpFaLbVXP3So2qC7f/9+HDt2TBRFEaIoEkIIAwCrV68Gx3EAgN27d4vJycmiTqfD9HHjFHjuuSr3FxISgr179zJJSUn3690CAK57e5NeJXq75VEqqZPEF1/QnmSVCq6urggMDBSOHz/O9u3bF6mpqSQlJYVMmTIFfn5+5MaNG2BZlgwfPhz169dnS0buS/7wQ0NDGYvF4hITExPP83wbjuMyqzzxfy83i4qKWLVajS5durDh4eEwGAz46aefyI4dO6TBgwcTiCLtwfbzo2WFkBC6JlBiZBoeThdCN24ERo+GzWbDf//7X+nixYskNDQU3bp1q7SFTxRFbN68uVAUxYUcx+1bsGDBf2w2mzY7OzvLarXWvFBcS+SgK/MgNhYVFb104MCBdhERERWXeyujZUuaFRYUlPa8lvLZZzQzWbiQbteyJe2n/eorYNkyiKKIs2fPIikpCZmZmYIkSUyfPn0YJycnsCwLNzc3GAwGLF68GCtXroSDgwOSk5OZfv36MfHr1uHm7t3wHDKkylNzcnJCcHCwuHXrVsZsNiM0NBQGgwFLly6VPC9eJOaBA2E7darCCCkA6jzRpQstOezdC2i1GDNmDAvQP+Bdu3YxLVu2hG/xuLFer4fVaoWrqyvy8/OxcuVKEEIQEREhtW7dmigUCoSFhbEWi8U9Pj4+vjjjfaIKV/+D1LO3ty9dtGIYBg4ODhgzZgz54Ycf0KRJEwRFRtLP0ltv0VbAVq3uBdwS8vKAF17AaXd3/JGQIDk7O0vPPfcccXd3r3J17tChQ8Lt27fP22y2jwFAFMW9JpPpPQCdOI4rrOp1jwr7wQcfPKl9y/wLiIiIkPbt23c8Nzd3UlhYWM0XFubNo7KP5QcT3N1p4Lq/PcjeHmKdOvjt6FFEbdwopdy4AU9PT6lVq1bsgAEDiKenJxwcHKDX68EwDDQaDXQ6nVCc/YqtWrWS2rRpwxQcOCCSM2eIa58+SExMhFKphFaqQBKJAAAgAElEQVSrrXBqTZs2JYcOHZKSk5OJl5cXrl+/jhs3bmDS3Llku4ODuGfPHiQkJIj169dnSsaUYbEA/foB3boBM2cC6em026HYH44Qgtu3b+PChQuSh4cHcXV1hUajQUZGhrhnzx5y4sQJeHl5SWFhYeTAgQNiXFwcExYWBoZh4Ofnx5hMJl1WVlb/6OjolREREUKFk/6Xsn///vB69eoNbNq0aZnPlk6ng3NqqrR/5040nTWLKMLDgQ4dgCZNgL59K+wn12zGKjc3ITk5mendvz/p168f0ZeX67wPSZKwYcMGk8lkGsBxXBYAREREpEVERPARERF5Vb7wMSBnujI1IamoqEhRUFAAh/KZa1UsXVrxMZOJ9svu2FH2cY0GW7OzpZwjR8iLe/cS1bFjICUSjlXQtm3bshmM0Qhzhw7SzrNnpcjPPoNKpYLRaCQMw0hjx44l9vb2MBqNqFevHhISEiCKIuncubO0detWyWazkT59+kCn12OKJDFZI0Zg//HjTFRUlDRp0iRScOYMbMOG4acXXxQaLFvGDtTpgN69aY/o3r2l5ZH+/fvj4sWLZfqNx4wZw2RnZ2Pv3r3o168fcXJywtmzZ0lhYaFYUrAkhKBHjx7K7OzswKtXry4F8CyeHgSTqfJ12SZmM8kGxDWbN4vPjR/PYty4CgG3uE9aOnfuHGnWrBn6f/IJGBcXegdVDVarFSaTSQXg/OO6kJoiB12ZB8JxnPDRRx999d///veVSZMmaWs8ovncc3TVv6ROevky/amkH9PZ2Zkk6nT4dtQotIqOllokJxPnmTMrXSCplLlz0TckhG0wdCg0Gg18fX0hSRI2b94srl27lpUkCQzDQK1Wi2azmRk9ejT8/PxIfHw8CQ4Ollq1akUAgLlxA14ODrDZbKLRaGREUcSKqCix3htvoKdCwSZERQHDhtFjFhZS54zwcECjwYYNG0QfHx8pKCiozAW6u7tjXLGATnx8PDIyMpgXX3yxzKgrIQTDhw/Xfvvtt2Pnz5//57x5836p2YX/48nMysoqW7Z6912ge3eQ555Dh6IiRjl0KHJ++QVu+/eX2ezs2bPYuXOnqNPpMHXqVOLl5cXCzw9o2PCBBzWZTJAkSQGgJYDjj/F6HogcdGVqhNVqnZeRkdH/8OHDTcLCwmq2ojZ9+r0+WICWFk6erHTTrl27Ijs7W2IYhlw6dgzq7dvR9tlnoShfu6uKTz4BY7Mh+L6+X0IIBg0axF67dg2+vr5gWRYXLlxgtFotAgICUOyjJlkslhItXVoWATBgwAB25cqV0ql+/eBTrx4z/PvvkfXDD9DcvYuPP/5YYhhGqlu3LsauW8cwRUUoysjA1atXmZdffrna0zxz5ozYsWNHprI7Bo1Gg/Hjx2t/+OGH73me38Zx3AM84v/ZzJ8/f6hSqfx5yJAh9D8tM5N+XsaOpaJFoC4jjTt3xu4rV9AjKwseHh4oKCjA+vXrhdzcXLZnz54kNDT0XldC8+bAokW0/PPNN5Ue12az4cSJEyW/huAvDrpyTVemRkRERIjR0dG7r169+lyDBg1U1dXLSqlbl1qz161LM9Zp0+iqc5culW7etGlT0qRJE+yJjYVm8GApxNeXkBEjgCFDaPdAVcybB/j6lg3wxSgUCri6ukKhUIBhGLi7u5eOm549exbp6el49tln7zXLr1oFxMZC88wzcHR0JBdNJqHDpEmMk6cnNC1a4JazsxQREUGaN29OTp48iStXrqBZZCSxXr6MQxYLCgsLJY1GQ3Q6XaUTVhcuXCAsy4oNGjSoNIXX6/W4fPmyMT8//1xERMS5B73F/1R4nm+nVqt3TJo0SVcqAD9pEnUeKVkoy84GOneG9uuvkV2njrhnzx4pLy+P7NixA35+ftKECRMYPz+/Cm1guH2b3k21b1/huCaTCdHR0dLhw4ezJEnSAxgZERHxl2pgyMMRMjWG47grNpvt2VWrVhmTSjQNHsTChUBWFv13z550wOABaDQa0dPTkxB7e+C992h7WXZ21S9o3ZoKqdeSYkEbsUwrXO/eVBMiLw8ha9ZgxNtvsz7NmgF370LZuTN6dO9OfH19odfrUVRURNLT08livV74qqhI8nR1RXp6OlmzZg0+/fRTFBQUlDnekSNHcO3aNalBgwbV/t01a9bMQa1Wj6/1Bf2zaNe4cWNS19ub6l3cvQts2QIUOywDoJlv+/aAiwu6du3KEEJISkqKNHHiRAwbNoytbJEUADBoEDBxInVzLsf69euLjhw5QgRBmAIgHUCHJ3Fx1SEHXZlaMW/evA0Wi6XLjh07si5cuFD9xoTgxLx52BIXh6LsbCAjA2KDBrhz5061LwsLC2OPHj2KtPR02Nq0oZ0DvXoBubkVN46NpX9kxVKTtcHJyQn5+fllH3Rzo7KQLEvHTAmBKIpYtnq1eGHOnNIa84YNGySTyYRevXqhS0QE29jbW3p26VLMfuklTJ8+HR4eHtLixYvL7DoqKgoWi6VyW6H7aNiwIWw2W69i54R/JWq1uo2nh4cGhFDxI6OxbK1/1iw6uVgcOFmWhZ2dnRgeHl5h0KQMZjPNdLt1A+bMqfB0w4YNS0qqf4COIFfnC/hEkIOuTK3hOO6YxWJZcPToUWN1HnsGgwG7tm5F2Pz5+H32bNxatQqfffaZuGTJEuzbt6/K1wUHB6OwsBBr165FQkKCBJWK2u64uAA//1w6hgujkfb9ms0PdR3u7u64efMmW+YaCgroiGleHjB+PAwGA3788UfRmpzM7Dh0CCUaCgMHDiQqlQoxUVFgbt8WhoSGMqRnT2DePNRbvRoDIyKIfV4efh8/XsrKygJiY/H2kCFgGAYFa9ZQgfWcHDphBdBJuuIvI/vsbLi4uFgBPPNQF/YPQCGKrVu88AJw6xYVrLl/mMZmAy5cAMr5zkmSVLnOblYWreF+8AF1db55k3Y5lHcRARAWFqYq5+rcpMJGTxi5pivzUOzfvz+psLBwQn5+vt7Ozo7VarWlNczr168jISEBkZGRokqrRY/nniOugwbhhI+P0K57dzYsLAw7d+6EnZ0dvCspC9jZ2aFz587kxIkTgre3N3x9fQkYhrZobd4MhIVRfQWWpSOh1dV7qyAqKkqKjo4mbdu2FYKCgu4lH1otHYKIjQXi47F73TponJykMXfuEFVqqnj59m0EnThBpC+/xE2lUpr844/Esm8fw/r6QrNnD71F9vSEfuxYeKjVkM6fx8aUFBJ49Sqc3d2RJkk2/WefMeeCgmA9cQIuBw6AdO9OM7uiIjo+7ekJ54AA5QVHR3V0dPSvERERD/3/9L9IjptbpyPt27/WYe5cpbK4z7mUQ4eAr78GfvmlwlTj0aNHRV9fX8bLywtISaHbuLrS8lJsLJUJHTWK/t6jR6Xi9VarFTt37jQJgqAAAI7j3nxyV1o5cveCzEPBcZyR5/mOSUlJXxw/fnyCg4ODOHDgQGbLli2S2Wwmnp6eYvfu3ZlmzZqBEQR4dekCr9deY0ukHP39/YXMzEwapQUBsNkg5uXh4IkTuHjokEDu3GGYOnXY9kYjcOQIzWDOnQMmTAC2b6fCOQ4OVICmloiiiKSkJKlTp06IiIgou9pVVAQ4OVFX44MH4XT1qhSkUjHqmBi00mqZm999ByxaBFWnTsjLySGay5eh7tdPyvniCyIcPAgXgwG2ESOQfekSNp88CdK4seSs0YgeL7zAQqXC5C5dFPHOzjgSHw91QQGmXLkCJ4AGCW9vwM4OOHAA3oQwDidPDjAYDLE8z4/jOO6JuBj81WwcM6ZpB3v7qOYNGhBtZbKee/ZQWc5K0BQUwGvJEqrp8eefwLp1tAZ/7hz9fGi1wP2GqZVw+/ZtmM3m2knbPWbk8oLMQ8NxXM7bb789EUCXoqKib9atWycxDIPevXujR48eTIsWLWj2azLRzGT5cloOGDEC3d96i22Qng6pbl1IzZsDy5Yhr29fWJctw/DYWHbc0aNkfGgoFF99RTOaM2eoE0R6Ot1Xu3bA2rUPdd5r1qwRVCoVCQsLq3ivqtVSM0sHB+Drr3G9ZUskxsbivKurlP7ee9jVqxfEIUOgtlgQkpgI69mzqKdQkMuzZknrlizB4aQkxNvbw65bNygVCuGNN95gXnnlFVaVmgqsX4+rV6/C8b330KioSAzq3FlweOMNetzJk+lCIwDcuAFtQQFmzJihq1evXgeGYaoWk/inQIj7TU/PTVeaNo3LXLdONXDUqLKBTxRpF8rMmVTovuQxsxn4z3+AFi3AmkzQnT0LbNpEa72ZmbQn192d/r/VAE9PTwwcOLDkV//Hdn21gFRXk5ORqQ08zzckhAzRaDT9LRZL+/Hjx6v8/f1pHS4nB7h+nWZzhOD7Zcukxp06kbOJicJdi4W4u7uTjIwMMmDAALF58+ZPLBnYunWrdPnyZcyYMaPyMdGoKFpbHTkSiI3F0r17xQ5eXoznb7/hhIMDkkJDodPphNatW7OBo0fD69VXaW9onz449eqrkiUtTSJz5jBtRo0CmTOHfjFs2ULrz0eOIKtnT6xcuRLvVKcBO2kSbbNbuBBZWVlYuXKlhWGYw3PmzPlH1nhXTZvWIKd+/QVNzp8fEvKf/6jrBwRU3OjcOWDoUPrFmpFBs90pU2jPbsuWAMdhTf/+tubDhilatGxZ86GZSih+T2++8847Xg9/VQ+PXF6QeWxwHJcM4BMAnyxcuHDmhg0bPrCzs7MLDQ3Vtm3bltG0agWA3uKJbm6IiYuDu7s7CQsNxYEDB8iMGTNQp06dJxZwTSYTkpKSyLRp01Bln7G7e2knxHGtFk3i45nmSUlQvvwy6hYUoPcrr8DUsiW7q1UrJMyejdmzZtF6IoCWrVsT1KlD0LEjlR18/32a3Xt7U03eBg1gX1RUMpRRNT/8UPpPDw8PvPnmm6rPP/+8Lc/zjTmO+8vHVh8Wnuc7uWdlxfWJicHpQYOsPd56S6mubNglMpLWcrdto/52d+9SveXXX6cLagMHAgMH4s7XX4OwbK0DbvkFuLS0NBBCql7JfcLIQVfmifDOO+98y/P8dxaLpWNcXNxrx44d6zdhwgSti4sLVqxYAY1GI73zzjukRH+2Y8eOtbdrqSEFBQVYvHgx1Gq1xLIsSUhIkIYMGVL5X26zZhAB2CwW7Nq1C9M7d4ZywgQajP/4A6obN6B64QX4RUeLnrduAQCDJUuo3m7//vf8uiIjqZ3MM8+U8fDat2+fVBzwq44ckyfTdrX33gNA26VMJpMdgHM8z68C8ArHcdWofP+98DzPumVlPednNH6X7u+PxAULMGTIkIqrnenpwH//S8sJKhUVSPrzT6omlp9PJxrLUVuX4MLCQvz000/WwYMHK+vVqwcASElJuWs2m3c91MU9BuSgK/PEKHa7PQjg4IIFC6auWLFiqSRJdkqlUpw5cyZzv8bpkwq4ADWzlCQJzZs3F5s0acKuXr2a9OnTB5UZW97198fqkSPBBAZKdezsJK/XX6cRc8oUunBz/jzEP/7AycuXmaatWtFgsa241bO8k23XrsCPPwJr1tBgAiAxMZGMGjWqwnElSYLZbKbn1LFjmXYpQgh69+6N3bt3A8BUAFMXLFiwS5KkU5IkWQBYAfzOcdzpR32vagrP83UANALQUKFQNCWE5Fmt1s8JIR8DeJkVRQSlpNy5FhCguiOKAHCv6PrHH8BvvwGhobRTZMUKICCACiFpNHRYohKqbBmrgu3bt+MkHTtXXr16FfXq1UNeXh7S09MVAGIe+uIfETnoyvwlvP/++6t4nr+oVCqjhwwZoqrKprymiKKIgwcPIjc3F4IgoE+fPpXKOAJAUFAQWJZFnz59WEIInJycxMTERKZt27a4dOkS9u3bJ+Tn5zOSJEH14ouk/5AhiNm/H/2WLWPEiAgwrVsDP/1EZ/rd3ABRRLaHB+7Y2d3TbKiKiAjanVGMt7e3uGPHDuLk5CSOHj26dKoqKysLK1asQMuWLYVuLVqwOt+yTjHt27eH2WwGwzCIjo6GKIp9u3bt2lcURVgsFvH48ePvLVy4cJXFYnn5SVi78zzfSKlUfqFQKPxtNltjhUJhcXZ2Nrq7uyuys7N1OTk5YFl2bv3z55VeN28itkuX0JteXqcgigtSU1Pf/XPHDkSYTNTxwceHfllNmUJ7ahs3puO/TR5vy2xxwAXLsr+aTKYhANg//vijUBTFjziOy3isB6sFcp+uzF9GRETEtQMHDqhSUlLCgoKC2BrpN1RBXFwcDh06BAcHB9utW7fIiRMnJFEUSWRkpHDkyBHp0qVLTImmrkKhwOnTp9GgQQPY29sjNzdXSk1NJc2bN8fq1avFgIAAtnfv3iTU25t0trODZ6dOaNmyJfmvSiUezcgQvadPJ9tzcoRGPXowLMsiJSUFaWlpQrNmzZjK+ozL4OJC+0aHDQNat0ZI584EALl27RquX78u5efnIzIyUtLr9eTixYuw2Wxw5nkCgwG67t1Ld0MIgb+/P/z8/BAREYGIiAj4+fnB398fgYGBJDQ0VHnhwoUmgiDMjI+P771v3770Z5555pHbzHieJ/v37x8JYL8oig3Gjx/vdvbsWXh4eLB2dnYapVKpSktLg8JqhcJkYp0KCvp0iotblNC+vVKhUOxyys4e0T01FS3t7KBcvhx44QW6OLZxIx2CePVV+h7VgMOHD4uBgYGMe1WuJMXcuXMHOTk5SE5ONlmt1hcIIbP79eun1Ol0+PPPP01FRUXzIiIi/jaXDrl7QeYvhed5Qgh5TqvVfjlr1ixtpQsrNWDnzp3Iz8+3jR07VlFYWIjt27cLt2/fJk2bNiX29vYkOztbvHv3Ls6fP19mYW7WrFmw2WxYvnw57OzsRJ1Oh2nTptFSx+nT9Nb3rbeAV16B6Z138MNvv0mq1FTCNGokMixLJEnCzZs3ic1mQ8OGDYUS54gHMnEiXRgq1nktKCjA999/L+p0OsnFxYVNTk6Gs7Oz8PLLL7MHP/8cOYQIw954o1Y1F0EQcOvWLVy9ehVRUVF3rFZrIMdxlcxO34PneQWAuYSQCRqNJhGAHoCj0WhsC0BQq9WZWq3WOSAgQHf8+HFwHIcrV64gNTUVAP3ye+mll3DzrbeQef064jt1ApEkwfv6dbZdQgIadewI1ZUrVEjo9Gm6wOjtTbtZVCraE11DvvrqK1vPnj0VIZX19xaTmJiIbdu2GVmWvatQKL4uKir6Qq1Wr5YkacCECRM0a9asMVutVl+O46oR83iyyOUFmb+U4lvf5QsXLuz022+/je7WrZva3d291gskGo0GN2/eJAB1GRg7dmz5AMUAQG5uLpydnREXFydGR0czt2/fRoMGDdCtWzchNzcXvXv3ZpUlE20tWtAfQQA6doQmJgYvMQyRFi3C7du3meXLlyMkJEQYOXIkm5+fD7Va/cCgGB0djcTERGHq0qWsQ14eXTR67TU4ODjgzTffZABaWkhOTsbUqVNZhmHQxmzG5vR09tixY1KbNm1q/MawLAsPDw94eHggJydHe+bMmRUAhle2Lc/zAaCShk4ArZf27t07UKlUwmw2Y/v27WBZlp00aVI9T09PEEIQGhoKAAgICEBAQAAkSULmqlWoc+MG6qxYgUtr1thGp6Upgj08WOnHH2GeOhWq//s/4MQJ2gJXty517n3vPVquqSUPqulKkoTo6OhCQRCGzZ07d899T42cP3/++ytXrpyvUqlSAOTU+uCPETnoyvwtWCyWl9LS0gpXrlw5nGVZfaNGjZhGjRppgoKCUJ0BZmZmJs6fP4+EhASpvLFkZbgU37p27tyZ6dChA0oCbMeOHSsGzPfeozP7SiUwZgxw8yZIQQEIw8DNzQ0Mw6CwsJDRarU1ctC4ceMGDh06BEEQ2PPnz6P9jRvA5s3ImzwZdnZ20Gg02LVrl3TixAnSpUsXwd7engUAu5gY9H3mGSzbtYv4+flVsAyvCT169FBduHChD8/zoziO28TzvB5UO3aSUqnsC6C0WXb69Olwd3cvY94YEBAAe3v7Mv8XXl73tbVKEkRRhMpmA65cAdauxVBBUGD7dtqbvHMntH5+dMikpEwiSXSo5QHlgeqoKuhKkoTY2FjRaDReAxBVyfMXAMBisbz3JGretUEuL8j8rfA8TwA0IoQMUKvVkxiGCQgLC9OEhoYydnZ2ZbbNzs7G999/D29vb6FVq1ZMq1atKmqpPgpnztBb3tdeo24XixeX0XW4ceMGtmzZIgmCIE2cOJF5UDDcsGEDGIYRb9y4QYKCgkjXrl2xatUqwenkSfaajw+Uer1os9mYqVOnwtPT894LrVaAZbHixx9tGRkZCpVKBXd3d6FRo0akY8eOTE2v+fr161i3bp3RZrNZBEHQOTk5FVksFnuWZTFr1ixisVig0WhqfZcBAJgxA4K/P35PSEC/6Ggox42jVkwFBbih0SApKQmEEDRr1owGa4OBttTt3PlQinAAsHjxYqFPnz5so0aNKjx3+fJlbNq0KcNisTzDcVxK+eeLyyhRAEb/naUFQA66Mv9j8Dwfqlar37FarYP0er3J3d0dAQEB+pCQEJKcnIyjR4+Kw4cPZ+zt7aF7yD/eShFFOjHn40OD3n//S9XGypGdnY2YmBgxMzMTvXr1YgDAYrGgZcuWyMnJwZYtWwSbzSYxDEPatWvHHjhwQJowYQJZtWoVCCGSj4+PNHbOHMY8bx6ye/eGq6trxevo3BmYOhWYNg1paWlQKpUovnapX79+pFmzZjW+LEEQUFBQAEdHRzAMg1OnTiE6OlqYPXt2paURm82GS5cuoWHDhpXfccTGUmH6tDRg1Spkf/ABNuTkwKF+fWnUmDFEq9Vi2bJlgiiKjFarFTMyMlidTicMGjSIdb15E9q2bSt3Wq4BX375pdCvXz+2YcOGEEURKSkpqFu3LjQaDdavX29KS0v7bO7cue8/1M7/QuSgK/M/Cc/zagANADRRq9WDBEEYbLPZdACgVCpvSZKka9++veKZZ55RKh9CZawCN29SDVadjvbVVpJNlWA0GrF7927h8uXLDMuyMJvNRKlUSlarFcHBwQgMDCSJiYliWloaY29vL7388sskOzsbO3fulMaOHUvs1Go6MJGVVanbBT77jJ5L69ZlHv7uu+/EZs2aMeHh4Q99mQUFBViyZAnmzp1b6fMrV64Ubty4wSoUCkmn0wnt2rZVdGjShJYJZs2imgc9etBe2rp1AZ0OSUlJ+PXXXwFQpw5RFDF69GgEBwfDarUiq39/aV9QELnm7Q29Xi+89tprD9WU/eWXXwr9+/dng4ODsXr1akNGRkYWIcRbkiQNgBiLxdKP47iH0/n8C5GDrsw/gmJB79GgtciFAOqoVKpV3t7e4bUyy6wOUQS++oraA5XTcq2O/Px8LF68GG3atEHfvn3BMAwkScLFixcRGBhYeWa3bh0NYrdvV3xuzx7as1q3bulDp0+fRmRkJGbOnAmnWqz4lyc3NxfLli2Dq6urbcaMGRVO7NNPPxXHjh3LOGzbhn0uLtAdPiz1zskhWL8e+Pxz4NNPS51AbDYbYmNjceDAAQB0cVOlUolTpkxhnJyc7pUtLlwAAgJw5fp1bNmyRWrWrNn9MmIVSkT3/U4AlAaoM2fOKHx8fCQXFxfx+PHjosViaQ1AyzDMZlEUwzmOu/7Qb8xfiBx0Zf6x8DyvVKlUx7t06RLSqVOnRxtp+/JLapr588+1fmlaWhrWr1+POXPmVLsIWAZJom1TdeqUGRMGQLPcmTPLWBstW7ZM9PPzI3379i0ToSwWC2JjY6WQkBBSZqGrGkwmE5YsWQJRFKXu3buTtoGBgIsLitauRey6deixfTvYefMQ1bChcFuhYMeMHUv1DiQJIAQmkwk//fSTcPv2bVatViMwMFAYNGgQe+XKFaxbtw6DBg1Cq1at6HuZnQ0UK6lduXIFmzdvvmYyme631Cj/bUmqeS4QQCYAI+gU3nccx1Xu3/4/jNy9IPOPheM4K8/zA//888/TOTk5du3bt1fVNPBUIDf3npdbLTl37hx8fHwEhmFqHvgJoav4wcE0wL722r3nPvqITmjdR5cuXZjt27ejR48eUCqVMBqN2LVrl3Dp0iXWZDIRe3t71PTaNRoNXmnVCmfS0xHzxx9osXQpVOnpOMkwyO3QQWRZlsGHH4LZt48xXbt2T2BGECCGhmLFtGmCRqtlXnzxxZLuEBYA6tati/DwcOzZs4da2g8cSJ04iilu+criOO6LGr9P/0JkPV2ZfzQcx6XbbLaQ06dPL1qzZo0xM/MhB40WLACotsFD8dB3jD/+SKe07ueXX4AbN8o8FBISArVaLURGRkr79u2Tvv32Wyk7OxsDBw6EUqmUKtORKKWggIqzX79eujioyctDu8BA0qVnT2nJ66+Lu//8U9qfmooWw++19RbLbSIuLg4AkJmTgzSjUXJ3csLkyZOJS7lJMq1Wi3bt2kGflUXu9ukD0cEBKO8McV+54GlFHgOW+ccTERFxNyIiIjomJibj9OnTz1y9elXw8PComU38Y8DBwQExMTFMo0aNat9R4ecHHDxIzTVnzKBZ5QcfAB060La1+/Dx8WFOnTolFhYWkhYtWpBhw4Yxbm5u0Ol0ZNeuXWjevPk9EZ/0dCqP2LgxVS1zd6fKZb6+tEOjSROgfn04OjqS2NhYkpmZSaZNm4aAgIDSW3p3d3c4Ojpi7969AIBt27bBaepUqd/gwayiCu0MlmVxw2AQThYWMicyM9G8efPSkkteXh7Onz9/o1OnTj9U+uKnBDnTlfnXMHfu3FVWq9U7NTWV+/HHHwtOnTr1l2RVHh4ecHV1FVJSKrSH1ozQUJqBltR29+yhCmXlqFevHp5//nl2ypQppFOnTqWPt27SBA0cHcUVK1ZIhn79aDuXxXIvW16/ng4oKBTUX+4+9Ho9tFotPD09hfLlCUIIWrRogXbt2uua5GQAAApbSURBVAkHDx7EsGHD0GX6dIZs3Vr5dQgCFCNGYHh4ONt/7lwUFRVJ69evFyrf+OlFznRl/lVERETYunTpcig6OnpXSkrKlMzMTKtarVY6Ozs/3BBADUlOTmays7Olhg0bklq3sKlUQJcuwEsv0cA4ZgwQElJ9B4XNRoc3OnQAfvkFjVNTyfXgYHJeEKQCZ2eSwzDIb9gQRUVFsBZ7jjEMA0JI6ftw584dbNy4USwoKMCwYcOYqqbsAgICmPDwcNSpU4eqprVtSyUYy8MwNDsPDoZOr0daWpp06dIl9vTp0wXx8fGWxMRESZKkS+Hh4Wtq9wb9u5AX0mT+lXAcd5rned/k5OTRaWlpL0qSFNC8eXO2RYsWKm9v78cegAcPHox169aJS5YsYQcPHozGjRvXficKBfUEGzMGaNDg3uOiCFy9Cvj7U6dcOzvg2WeprZDRCEyZAgJgqMWCrYSQC2lpkjk5WbRarZLNZmMEQSA2m40IxRKTCoUCCoUCVqsVvr6+mD17Nqmx1GZ2Ng347duXffyDD+hjffuWPhQWFsZkZGQYDQaDaLPZegPILv55qpFbxmSeCnieD2JZdjLLss9qNBp969attc2bN2ecnZ0f63FOnTqFnTt34tlnn8WDJAgrpaAAeO45OoQQHQ00awY4O1PLmsOHgWvXqAljecH0GmKxWGAwGLB7925cv34db75ZSwfyoUNpx8Unn5R9/MIFOuhRyfu5Y8cOc2JiYoLVah33T+mlfZLIQVfmqaJY66GDSqV6VhTFUVqtVvLx8WHDwsK0jyMDFkURCxcuxMyZM/FQAT0xkWaMx4/TzgY3N2DOHCo52aEDtRoXBOAhJTFLWL58uajX65lx48Y90n4QEwPs3Qt8+GGVm1itVvzxxx9iYmJivNVqXchx3M5HO+g/Gznoyjy1FE+5BTMM008UxU8AgOO4R9pncnIyduzYIb3xxhsPH71NJlozPXeOlhtatQJmz6Z6vDk5tMXs8GHgm2/o1NrQodTMctw4OsBgNFabCe/ZswfHjh3DiBEjEBwcXLtzW7qUHntNcVm2oABITaWSmNVgsViwfPly8+3bt9UMw3wkiuIv/ySTzceJHHRlZADwPN8KwAlfX19D27Zt9e7u7nB1da2Vd9vBgwdx7Ngx0dvbWxo5cuSTM30rngzDxYs04/Xzo1NfH34IxMXRPt9Vq2ig7tuXTrjNn0/rrtnZWPr55+gzYwYCy7Wk1YioKCApidrEv/giPVYtrJcyMjJw9uxZ4ejRoyar1dqb47iDtT+JfzZy0JWRKYbneRUhZIpGoxklimKI1Wp1t7e3L/T09CReXl56T09PUpWWgslkwieffAIPDw9MnToVD+uI8VhJT6dCNXZ2VKDmrbdg3bQJB1esQItNm+A8YQLA83SB7osv6CRccjLAsnQiThQrjihbLHQxrW5d4MAB6nb8EFy8eBGbNm26KwiC49+tb/tXIwddGZkq4HneDtTxtgnLsi2VSmWEKIpNvLy8rM7OzuzAgQO1JY3/X375peDu7k5GjhzJPKrp5pNk/fr1otlsxuTJkxmSm0trxEYjrRmPGUMzV0KA8eNp4N23DygspI9/9BFtU5szh1rvVKPE9iBsNhs+pHXgtwB89jQFXjnoysjUAp7ngwGEqtXqmYGBgW2GDRumSUpKQmRkJJ5//nnay/o3kpeXh6SkJKlTp06kMvGdZcuWCY0aNWIiIiIeXHMuFlNHbi6tL3fpAnz/PW1f47halRUq4/vvvxdv3rzJsCybKgjCOI7jDj/SDv8hyEFXRuYh4HneTqlUxrAs206SJFK/fn1h8ODBbLUaCE+Yc+fOYdu2bUar1SoqFAqtRqMx9u7dWxMYGMgUFhbC1dUVJ0+eRHR0tDR79uzH67rxkFgsFixcuBAAwHHc339CfwHycISMzEPAcZyR5/mekiT9CqDD9evXybp16ySDwaAfNGgQ8ff3/0vPJyUlBZs3bwYAO4C2aVmtVm1iYqJ44MABS3Z2tqpbt24wmUxSUVERMRqN0Gq1f+k5VsZ903tj/s7z+CuRM10ZmUek2H8rCEBnAMsBYMSIEWjcuHHN9XUfkvz8fPz++++FKSkpOo1G86fJZArHfcmURqO5YjKZAsq/bvDgwWjYsCHK+9A9KoIgwGKx1Hh7SZKwaNEiAHiG47gDj/Vk/keRg66MzGOE53kWwEClUvmFl5eX16RJkzS1aTurDXl5efjuu+8skiR9ZLPZFnMcl1/NeQ0B8COAEj1GycnJyfLqq68+tjYLQRCwdOnSooKCgjKODzV4nRZAXY7jMh7XufwvIwddGZknAM/z9mq1+ner1dpJo9GYdDqdzd7enjg4OCgdHBzs6tevj4cpQdy5cwfJyclISkoqyMzMVCsUioVvv/02X5vzAvAflmVHCoLgNXHiRAQEVEiEH4q4uDghLi4u9u23364okSZTihx0ZWSeIDzPawF4APAs+SGE1FUqldM9PDzse/XqpatXr161+ygqKsKRI0eExMTEort374Jl2Z1ms3kDgCiO4wof9tzmz58/UKFQ/BgUFKTv16+f3aPoDxcUFOCbb74xWq3W5pVZoMvcQw66MjJ/AzzPKxmGmcay7Ef16tVTN23aVOfj44M6deogPz8fBoMBkiQhNTVViIuLsxJCNlkslu8BHOE47rFp1PI8r1MqlfMJITOHDh2qafSQvbebNm0ypqSkfP3uu+/OeVzn9m9FDroyMn8jPM9rAIzXaDT9RVEMlyTJQZIkUalUXgMgiKJ4zmw2v/2ks0ee59splcqd7dq1c+jWrZuyNguA6enpWLt27W2r1er3KJn304IcdGVk/ofged4bAOE47sYDN378x3ZXqVSR3t7eIaNGjdLWpLNBFEV88803hXl5eVM5jtv8F5zmPx456MrIyJTC87xCqVR+rdfrJ02fPl37IM+3I0eOiDExMUfNZnPY0zTK+yjIHmkyMjKlcBxns1qtMw0Gw9KVK1cWFRUVVbltYWEhoqOjzWazeZoccGuOHHRlZGTKwHGcZLVa59y9e/f75cuXFx44cAAmk6nCdqdPn4YkSfEcx537G07zH4tcXpCRkamUYpeNkQA2AsC8efPKOGsYDAZ8++23RpPJNGbevHnb/6bT/MchZ7oyMjKVwnGcxHHcJkLIcIAKkN+P/v/btX+UiIEojuNDwmCzraWHyGHsV608RF68SUYS8A/iSfYO2yapBAkJzzDYCTa627xh4Ptpp/lVX14xu52rqurCe/+QYl+uiC6AP4nIe1EU113XLcMw/Ho7HA6qqvs0y/JEdAH8q67rN1XdhxB+wjtNk4sxfjnnjmnX5YXoAjiJiLyq6k0IYRnH0cUYXVmWH03TfKbelhOiC+BkIvKiqrdt2y7zPLtt2y5Tb8oN0QVwFhF5VtW7vu+j9/4x9Z7cEF0AZxORJ+fc1bqu96m35IZ/ugBgiEsXAAwRXQAwRHQBwBDRBQBDRBcADBFdADBEdAHAENEFAENEFwAMEV0AMER0AcAQ0QUAQ0QXAAwRXQAw9A3dQSBdlJaYIAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_knn3.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Lattice Weights" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "from libpysal.weights import lat2W" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "w = lat2W(4,3)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "12" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.n" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "23.61111111111111" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.pct_nonzero" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: [3, 1],\n", - " 3: [0, 6, 4],\n", - " 1: [0, 4, 2],\n", - " 4: [1, 3, 7, 5],\n", - " 2: [1, 5],\n", - " 5: [2, 4, 8],\n", - " 6: [3, 9, 7],\n", - " 7: [4, 6, 10, 8],\n", - " 8: [5, 7, 11],\n", - " 9: [6, 10],\n", - " 10: [7, 9, 11],\n", - " 11: [8, 10]}" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.neighbors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Handling nonplanar geometries" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "rs = libpysal.examples.get_path('map_RS_BR.shp')" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "import geopandas as gpd" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jovyan/libpysal/weights/weights.py:167: UserWarning: The weights matrix is not fully connected: \n", - " There are 30 disconnected components.\n", - " There are 29 islands with ids: 0, 4, 23, 27, 80, 94, 101, 107, 109, 119, 122, 139, 169, 175, 223, 239, 247, 253, 254, 255, 256, 261, 276, 291, 294, 303, 321, 357, 374.\n", - " warnings.warn(message)\n" - ] - } - ], - "source": [ - "rs_df = gpd.read_file(rs)\n", - "wq = libpysal.weights.Queen.from_dataframe(rs_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "29" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(wq.islands)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{}" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "wq[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "wf = libpysal.weights.fuzzy_contiguity(rs_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "wf.islands" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{239: 1.0, 59: 1.0, 152: 1.0, 23: 1.0, 107: 1.0}" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "wf[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAM9CAYAAACMlGBDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3hUVd4H8O+5905PhTRCGgkhIYUWkkCAUAVEelMEBBQRlVWUVVSU2QuyYl9YAQsKC1iowspKlSSUUAJBCITQQkJLD2mQmczMve8fJ4EAAfHd+Lru+/s8jw9m5s7MuXfC8/C953d+h6mqCkIIIYQQQgghhDQe4fceACGEEEIIIYQQ8t+GwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEL+8GRZ1smyzH7vcRBCCCF1mKqqv/cYCCGEEPIHIcuyDoDDbDbbf++xzJkzZ7hOp3u7pqYmWFVVjUajyaupqRliNpuP/N5jI4QQQihsE0IIIeSBvPPOO2/b7faZgiCU2+32Tmaz+dzvNZZ58+bNMRqNLz/yyCOmgIAA6HQ6pKenY+fOnYdnzpwZ+3uNixBCCKlDZeSEEEII+UVz5859ymAwvPTyyy9LvXr1ctfpdCt+r7HMmTPnUb1eP+Ppp582tWrVCnq9HowxaDQaABB/r3ERQggh9VHYJoQQQsh9ybLsLQjCwscff9xoMpkQFxcnaDSaNrIsd693jPh/sWZalmUmSdIno0ePNjo5Od18/Pjx4+rmzZuvWyyWqb/1GAghhJAHIf3eAyCEEEL+m8iy7A4gCkCm2Wwu+b3H00hGhoWFwcvLCwAgiiIGDBhg+v777ze/9957R1VVbQ6ghUajKX/77bdnOxyOT8xm82+1Tk202+3u3t7eNx84fPiwsn379mKbzdbHbDZn/EafSwghhPwqtGabEEIIaSSyLMdKkrTL3d1duXbtGux2e5TZbL70e4/rTrIsCwD6AYgEcALAdrPZrNzjWEmn050YOnRoWHh4+G3PFRcXo7i4GCaTCb6+vigpKcGaNWuuV1VVLXvttdf+9FuNf/78+TsTExN7JiQkCDU1NXj//fettdf6XO2YDQDczWbz1d9qDIQQQsgvoTJyQgghpJHo9fo3HnroIafnnnvOpWPHjgaNRvPK7z2mhkiS9Jqbm9va2NjYvzZt2nStTqfbJcuypv4xsixLsiwHabXa73x8fPzDwsLueh8PDw+Eh4fD398foijCy8sLTz31lElV1cmyLAf82nHJsvzQO++8s3zu3LlP3O84q9X6+sGDB68DQGFhISRJulQvaDfTaDTnJUnKnjdv3ku/dgyEEEJIY6EyckIIIeQB1a5J7gZACyDFbDbb6j+vqmpMQADPmHFxcZrDhw8/Kcvym2azuaKB9zLodLoljLFQi8UyzWw2H/2/OAcA0Gg0j/Tv398UFhYGRVE0K1eujL18+bIZwJuyLAfrdLoPBUF4RKvV2sLDw4WHH35Yz9iDLcfW6XR1//urSudkWe5vMBjWdevWzbR3795RsiznmM3m3fc4/ERlZaVRVVU4OzvDbrf7yLIsAmA6nW5tbGysZ4cOHaTFixfPk2V5Nc1wE0II+T1Q2CaEEEIekFarXaDT6Z7U6/VKWVmZdc6cOcNnz569BwBkWQ6UJMnL1dUVAODu7o5WrVoJZ86cmQVgZv33kWXZV6vV/hgcHNyqZcuWhi1btiTJsuxnNpurGvrc2pAfBcAfQKrZbC77d85DUZSrFRU8/wuCgKFDhxo//fTTGe++++4IjUYT1LlzZ018fLyo1+s1v/BWd8nIyABjLPPXls9LktQ/ISHB1LlzZzDGjMnJyc8BuFfY9hdF0QFAdHV1haenJwoLC5eJohjq6+vbpmfPnpIgCGjfvr149OjRlwC8UnsN3QFc+w3XkxNCCCE3UdgmhBBCHoAsy4wx9uzzzz8vubi44OzZs85r1qz5UZblCLPZfEmn0y3q1KmTZDAYbr6mf//+hrNnz744Z86cHFVVPzObzYosyz00Gs33CQkJTomJiRJjDBkZGUJOTs4gAN/e8ZkaxtgknU73hiRJHm5ubo7CwkJVluWBZrN57wOMWQDAzGazo/7jVqt1RWpq6sNRUVEmg8EAV1dXvPjii/r8/PzwZs2a1Z+dvkVVAYcDkO79TwdVVfHTTz9dt1qtM+4xniAAWrPZfObO50RRdNNqtQCAkJAQJCUl9ar3OmcA/bVa7cOiKMZKktSyf//+Yt1s+5gxY5zS09PHOjk5Ce3atYMg8FVyfn5+2hMnTkQDgE6n22C32x8RRbFAluV+ZrM58z7XLQxAKwB7/t0bG4QQQv7/ogZphBBCyAOaP3/+rj59+vTo2LEjA4Ddu3fb9+3bly8IQq7BYGg/depUY11grJObm4vNmzffKC8vtyiKonU4HE4xMTEYOHDgzWNSU1ORkpKy8vXXX7+5VlmWZT+tVrvTx8fHr3v37qYWLVqAMYbz589j9erV1202W+d7dd6WZbmJVqt92+FwTFRVVdJoNCusVus0s9lsqX2eabXav5tMpkkNjfku1dVAmzbA1avAnj1ASAhQO4N/57l+++23F61Wa1D92WNZlpvodLqVAHrWPpRktVqfMZvNl+uOee+99w4PGzYsJjQ0FIqiYP78+VabzTZckqQEAC/7+vraw8PDnZs1awZvb2/Uv6nRkLy8PKxatepGdXX1RFVVzxqNxn0vvfSSMT09XU1KSjoyc+bM2AauW1+dTvcxYyzI09PTnp+fb7HZbCH3qjgghBBC7odmtgkhhJAHZLVatxYWFnYBX7ONbt26Sb6+vn4Wi8WvVatWaCi0BgYG4rnnnjNeunTJuH//fjUrKwtZWVnKwIEDbzYpjYqKQlJS0khZlp8FoDLGngKw0MfHR504cSKrv146JCQE3bt3N+7Zs2cmgHG15dFjAfgB2McYi9ZoNPOioqIMiYmJOo1Gg40bN47Nzc31rZ0RV8xmsyrL8p8YYxGZmZk927Vrd++Trq4GbDagVy+gXz9g717g/feBsWOBvn2B2nNWVRV79+6tttlsi+qCtizLzoIgTNJoNHJ0dLShX79+OlVVsWfPnr779+/Pmjt37kuKoiwF4CGKYpS/vz8AXto+YsQI3fbt279r1qyZ2Lt3b4O7u/sDf08lJSVYvnx5tc1mmzR79uy1c+fONbdp00YrSRJatGjBdu3a1fzO17zzzjsfm0ymKQMGDDCGh4dDEAR8/PHHgs1mCwXwf7aenhBCyH8PCtuEEELIHWoDbFcAdS24swBk63S6p0NDQ28masYYWrZs+YvvxxhDQEAA/P392dy5cxERESFUVFTAxcUFAODi4oKWLVuq2dnZ5xwOh3tgYKDNbrfj4sWLbO/evY5u3bqJ9d/P29ubCYLQqvbH3k5OTp9GREToDh06JKmqiqioKAwaNOjm8aNHj9YvW7ase1FR0ReyLE8xm80Os9mszpkzJ2/Tpk3IzMxUgoKChNDQUHh6et76oBs3gLg44NVXgc8+A954A5g1C+jTB7h4EejZE3jmGeCJJ7Bv3z77xYsXcxRF+bssy931ev1sURS7tGjRwt6zZ0+Tr6/vzbft1auXFBERIW3YsOHjioqK1xRFCTYajYper795TFhYGMLCwpwf7Bu73alTp6AoyrLZs2evAQCtVtvO29tbAoCqqioIglBad6wsy6IkSbOMRuOUqVOnGutmzCsqKnDjxg0BfGs0Qggh5FejsE0IIYTcQafTfa7T6cYEBgYyAGpeXp6joqJCGxISooSEhPxb762qKtLS0pCfn68+8cQTTJIkYPt2jPLwMBZ27250c3PD1atXdStXrgQAlJeX3/UeZWVlUFU1u3asT3bu3NmYkJDA/P391fPnz7PMzEwVABs4cCAEQYAkSRg/frzx22+/fSw/P7/fvHnz1tvt9iKNRhPftGlT6HQ64dixY8rOnTsFURQxcuRIhHl6AqIIzJwJjBnDP3jVKmDkSKBDByAiAvDxAZKTgQkTcEmSFIev7xCm0QzW6XRf9e3b1xgeHg6DwdDAAnDAx8cHU6dONSUnJwfv2bPn37qmd2KMgTEm1vvZpNHwXm+KoqCmpiZg7ty572q12giNRtPVy8tLM2rUKGP90vTq6mpIklQya9YsmyzL7fV6/VuMMQ+bzaba7fZvAGQCyDSbzSWNOnhCCCH/NWjNNiGEEFKPLMtNJEm6OmPGDF39mdbGkp2djaNHj+LECT5hOqZPH7Tq2RMIDgYyMwGjEd+PH68ERUcz17/9jX03ebLaIjOTBXTsiC4vvggA2LJ1qy0tLe0tVVU3ajSaoy+88ILByckJAFBTU4MPPvgANpsNd64NV1UVFy9exKVLl2CxWBQ3NzehQ4cONxuK2e12/Pjjj+rPR46wN1atgjRlCg/bt94AuHMLMFVF6bp1KJ85E02Lih7f9Oijn/eSZafmze+q1G7QjRs38P777wMAzGbzg19IVQXsdkBzd8P0wsJCLF26tNJms4WZzea89957LyU2NjYxISEBWq0Wp06dQnFxMVxcXODv74+mTZve9R7V1dX429/+ZhVF8YjD4Wjfq1cvA2MMW7Zsgbe3t01RlBvXrl0ziKJ40mq1jrtfw7X/K7V7pQcAuGw2m62/93gIIeT/O/Evf/nL7z0GQggh5D9GSkpKpJub29guXbo0OCP773J3d0dwcDD27dsHAPDz94dfQgJvQOblhbMDByKpqIgNeeghVpKVpXqNHcuCPvsMTa1WuPXuDbi7o6pfP5h++qnTsLVrp7dt2lTTtH9/hvPnAXd3iBoNOnbsCBcXFxw5ckRp06YNq1tLzhiDm5sbAgICEBwczHx9fVF/PbggCAjTaFjxyZOOjLAwZn34YVRdv85uhtHXXgNWrgSGDbv5mtJr1/DdoUPYHxqKUi+vwd2zs7V+er0ArRbw9v7F66HRaGC1WnH58mUkJCRAFMW7D6qq4qHabAYKC3mjtoQEQJaB48eB69eBAwd4APfwgMnVFaqqClevXp2wd+/ejlar9ZHc3Fy4ubnB19cXnp6eCAwMhI+PD4xG4z3H1aZNG6l58+b+/fr107Ro0QLNmzdHSkoKgoODxSeeeELfpUsXUVXVZvn5+a26du268kF/B34Lsiz31Gg0B/R6/Z8APLtr165FPXr0sP+eYyKEkP/vqIycEEIIud01i8XSQOJrPHq9Hm5ubqioqIC9sBDqkiVgaWmojo1FGWMIfuklVd+xIwvftInZ7XasmjlTuXr1qtDp2DH0On8e7by8xMDSUhf3H34A27yZB/UVK4CpU4HsbBjS0xH97beoMJuFHeXlGDZ7Nt+y685Z6TupKjB4MIYMHChu7NgRybt3K9evX2cTJ06Eh4cHjH36QM3PR0FeHjw9PSFJEs6cOYOioiIIgoAzLVtqLoSEYFrr1nCZORNo0QL4+GOgoa3E6gkNDcWBAwdwOScHwc7OPFi/9Rbw2GNASgpvyJafD1y6BISG8qD9/fdAUhKwaROg1wNFRfxmQGQkIElI9PDQRNhs3vnBwY8eKCrClcpKtGrV6r7juJOrqytc7+i6Hhsbaz98+LAEQBk+fLggSZKiqmph3fOyLIvg25tV/6oP+1+o7S3wsCRJ/XU63eRRo0YZPD09sXDhQhGABoDltx4DIYSQe6OwTQghhNyupbOzs+OXD/v3CIKgKorCUtPSECWKcGUMXwwerCQ6ObHH3N0Z7HZAkiBJEiZMmCCsWrUK6enpSq8zZwT24YdocvYsMGkSXzvdogUP2lOmAOfOAQcOwKDXo6PdjvQDB7B1xAj0y8oC+/xzYMcOwGoF5swBDh3i669dXIB9+4C8PGDPHkju7hhZO8ykpCQsX74cAOCk1cLv7FmcyckBYwxhYWFqZmYmAwBPT08UFBRA5+wMoUMHYN064OhRoGtXYMQI3kitfkfxq1f5nwUFCJ43D94hIdD07g14eAC7dvEScVdX4KWXeIjWaoFly269fscO/n6HDgETJ/JzWreOn8ulS0BpKTy++w4eqakwWiyoSE+HNS0NzhMnAgEBQFAQ4On5yzcg7vDwww9LTk5OSEpKEoYPH4709PTrVqv1CwCQZTlWkqTtiqI4zZ8/f85rr702t+51b7/99iSNRvO6oiiba2pq/mw2m5Vf+qy5c+cO02g0461W66tms/ncnc+LoviSs7PznOjoaH1MTIzo6uqKb7755jpj7GOz2Vz5q06MEEJIo6OwTQghhNSSZZnpdLpZMTExLr/1Zz377LNs9+7dOPzTTxD690dNTQ2uqargP24chLFj+Yztp58C4OXfww0GbD12TPikdWu19WOPqT0VRRBMJmD+fCA7GzhyhAfOF14AWrVCeXk5vuzfH1VVfIvo6kGDHMPi40VcvszD6OXLPMQOGQKUlQFLl/JGaCNH3jbOnj17IjY2FqdPnwazWtH2nXfA8vNx/MwZbNq0ien1esyYMQMLFy50ABA7derkcHJy4pUBXbsCP/0EfPgh8MknwM6dgMPBm6pFRADPPsu3EAsPR2BoqLp84kT21tzafPrFF/e/gOfP863IGAO++gpYvRpYswbw9QUGDeJhukMHAMDl5GQc9faGa34+RmZlwSkjg8+2//OffKZ87FjAaOQ3LWq3H7uX7OxsJCUlIS4uDgBQVlZmAHC0du/y1YMGDXILCAjA3//+9zdkWV5gNpsrZFmONxgMn4wcOdK4bdu2KUVFRacA3HaCsiyLGo1mtiRJQ1RVza6pqTknSdK0Nm3a6DMyMtxxa4/ymyRJiu3cubOpbizV1dXIzs6WHA7H+3e8d2sApWazueD+F5UQQkhjorBNCCHkv4Isyz46nW6DzWaLkSRpzuuvvz7vV7y2syAID+v1+v5OTk6RHWpD2m9JkiS0adMGx374AaU7d6rer7/ORFHE5bw8NP3hB+DKFeDdd4HJk4EmTWBKSUGC3Y7PbTZ20tMTqfPmITg4WB3Tpg0TDhwAFi0Cfv4ZGDECZ199FeuSkqDyLqjMx8cHmYWFYuCpUzDFxiJs3Dg+iAMH+J+vvgqEhwOdOgEZGUB09G1jdXJyQkxMDP/h0CFAp8OB2tcOHz4ckiRh+vTpYnJyMnbu3Cl26NABNzt7u7jwtdUvvwzs3s3D7JEj/PxMJn7M228jIjeXHcrJQUFBAbwfYK03xo0D6sYkisDjjwOpqXwmvFkzfg615euhYWFIPXBALTMY2Kl+/RAbG8tL5p95hs/oV1YCx47xbc2WLQPus51bXVl569atAQCBgYHWixcvvq8oyiWj0egVGRkJxhj8/PxsOTk5AwB8ByAyODhYDQ4ORr9+/Uxr1qx5RZblpfX2I9dptdq1Xl5evXv27GksKytrW15ejsjISDg7O+PIkSOdZVn2NZvNV+uPxWq1fpOWlvZIXFycMwAUFxdDq9XmvPrqqxV1x8yZM2ekVqtdoSiKKstyX7PZvO9e5ybLcjudTjdTUZQcm822BkCEXq9/TFXVEqvV+jWAnx5kRp4QQghHYZsQQsgfXm0H8RNxcXGu7du3l5YsWfKmLMurzGZz7i+8jmk0mn9JkvRwfHy8w9nZWYyOjoYoilixYoXjwoULYkJCgvrQQw/9ulrjB7R582aHRa8XTwYGsqNbt8LZ2VkNDg5m0Ot5KE1KAmbP5oF70SK4WywYevo0rly5oqalpbFz586x64MHw7lJEyAnB0hMROGmTbg4axb6TJsGbXAw27hxI0aMGIGlS5fihx9+gMlkUsLCwoSbg6iq4qF30yZevv3XvwIzZgAdOzY4ZmXNGhyvqkKByYTu3bsjNDQUAPDll1/aCwsLpfj4eIder7+15t1sBk6fBr79ls/CX7jAZ9Yffhh47jm+LhtAYGAgAODrr7/G9OnTb3ZIBwCLxYKioiJ4e3ujoqICGRkZ6DJ/PrT/+Mftg0tI4Gu8ly4FPviAn0ttMzrGGHvqqadwc79vxoCmTYHBg2+9Pjz8vmXlqqpixYoV0Ol0qp+fHwOA4cOHm3bs2DHe4XCo3bt3N9Y1nPP09NTl5OTUbS5ukCRJqDtPV1fX5uXl5ZfefffdNMaYqNFougQHB+tHjBhhlKS7/2mmKIoOwJU5c+Y4JEmqkCTpXE1NTQoAW1VV1c127E2aNIHdbg+UZbmj2Ww+zE+TtY+Li9NJkiTs2bNnJIAGw7Ysy0ZJknYnJiY6l5aWWs6dO/d806ZNERUV5VxdXa0ePnx4RHV19R4AA+7xegMAS90NBEIIIRS2CSGE/HcYHRwcbOjVq5cEAP7+/jXZ2dkdAdw3bDPGxtlstocZYzh9+jSKi4uxd+9eSJLkKCsrEwEgNTWVFRQUqOPGjWvUwG2xWJCbmys6W62IOnECy44dw5AhQ+Ds7MwP0GqBp5/ms8CtWwOVldDn5aFt27YIDAwUTpw4AYvFgqysLHSIjITy9dfYevmyeszDg4XExzu6v/uuKMyeja16vbp06VL25z//GWfOnMHatWuF9957T5kwYYLg7e0N/OlPQJ8+fK306NE85Ccn8/B+R0k5AFz4+WeU2mxoMWqU2q5du5vXJD8/X1IUBVeuXGHZ2dkI9vAAs1qBzp2Bdu14iBVF/lm7dwMffcTL13v3Bp56CnjsMQwfPhwbNmxAbm4uvL29ceLECRQXF+P48eOq1WplkiRBURR4NGmi+BQWCtvXrVO6du8u3Jx1B3iztOefrx3sBSAtDQYnJ1gsFmzcuBHTpk2795dy4QKfHX/33QafZoxBFEWIooi6UOzk5IRhw4YZ7jy2vLy8BsC12qUJY1u0aGEAAFEUMXXqVGNeXp6xsLCwuSAI8Pb2fqDZ/Oeff14URdG9sLAwNi8vr6Pdbkd4ePjN78BkMmHEiBH69evXJ8+ZM2fE7NmztymKsuv06dPTfH19NQ6H48x93t4EQNe5c2cwxvQA9ABQVFSE4uJiFhwcrM/IyLhryl+WZZ1Op/uGMTZUq9XulmW5j9ls/s17HhBCyB8BhW1CCCF/eHq9fkDr1q2NAOBwOFBQUCACuHq/18iybNRoNAvGjh2L8+fPq5IkCZcvX1YuX74sxMXFCe3atUNubi7Wr1+P3NxcpijKbbOt/66MjAwAQJ/u3SF9+y0AICIi4lagP3WKl0kXFfGfP/oI6oIFWPv++8rprCxBBfDII48gKSlJ2W6xCJO/+Qb5RqP62BNPsJYtW4rYtw+4eBHPu7iwDwsKcP78eYSEhMDLy0stLCwUvvzyS7VneDjrlJkJVrs2HAAPxy4uwCuv8JnfHj1uzvbW1NTg2/bt0S8+Hk/07XvbzYfmzZs7PDw8BADC119/jRfXroVrdDTwzTe3DhJFYPp0/v4tWgAAzl+8COmrr2DLzsb53FxFFxwsrF69WrXZbKxJkyaKwWBQg4OD0bdvX7G8vJzPgOfkCNczMuAXGIjNmzdj//79jmnTpt2aTWcMmDaNl8T//e+IjI7GYUFAy/uUhwPgNwV+/PG+h5SVlQHAL9546dixo9OFCxcWAphuMBhaRkZG1hseg6+v761Z9l9Q+52x1NRUDBo0CG5ubmjVqlWDYwgLC8O4ceNMy5Yt2zpnzpz3AcilpaVavV6vACitO06W5SAAJXWN1Mxmc9H8+fMLLl265B8QEACbzYa1a9dez8nJqZEk6bjNZkuz2+0L7vw8rVb7uZ+f38OjR48WFixYEAcgCsCxBzoxQgj5L0dhmxBCyB+ew+Ho4ufnBwAoLS2F1Wq1Azh1r+NlWWaiKM4NCAjQBgYGIjAwsC643PZnZGQkmjRpgvXr16sLFixQR40aJXh5eeHChQuorKxEhw4d/tcBvKKCL6v1iY6G6dNPYTh9Wv3kk0/Y+PHj4enpCTz5JC+L/vBD/oKXX4b6/POwfvYZXp03D4tffBHt27dHTEyMkJaWhksaDSZfuSKwukDZpQvQogU006ahR0kJXJ55BjqdDs8++yyrqqrC4UOHmGn6dHzcvz+cV6xQw8PDmYuLC9q2bcu3z1q1is/wHjwI/PnPgCRh8eLFSpvyctbxyScZLl++7XyefPJJHnbnz8eN3Fz1q6FD2ePPPYe75mtfeglYtAj2p5/Gki++cFy7dk10fuQRBGZlqd0OHxbiEhKgc3FhrkOGoK70uo6bmxv/n7NnYaqpwYgRI4SCggIUFRWJN27cuHvP7OhoYMUKNDt6FBMmTcK/SkpwISwMLWqD/l0SEnjDOEUBGvhe8/PzAaDhvcDvEBoaiqeeesrp008/baMoilpZWQn3+t3YH9C1a9dQWFjIAKBr164P9Bpvb2+Iogg3N7c/VVZWTnA4HHqTyVQDoBkAzJ8/f6FWq31aURSrLMtdzWbzCQCw2Wzvb9u27Z3Jkyebvv/+++rc3NyfbDbb6DfeeMPa0OfIstzFZDKNHDVqlMFiscBqtQoA7jd7Tggh/6+If/nLX37vMRBCCCH/ln379v0pOjraxdnZGQaDAcXFxUpJSclrqampU1NTU5kB080AACAASURBVAft3bt33K5du/6WnJzcLDU1dZhGo1nk7u7ebdSoUSbdffaAZozB2dkZERERzGKxYMuWLSw1NRWnTp1CVlYWIiMjYapr8vUAFEWB1WpFcnIyDh48iJCQELVTs2ZMO2sW2n78MUtOTkZaWhr83d1hePJJaIYMgc3huBnumCShoqZGSVMU4aqXFxJXrQKrrkbzvn3hGx0N9uOPQGwsUFeK7uyMK5GROHL6NKKXL4dhwADAaIRWq0XAvn0oSE3F8TZtEN66NY4ePcqysrKQnp7u6NixI+903qkTbxim1eKfR444cq5eFbuPHs08IyL4LHB9DgefUV64EDc8PHDSZGKRUVG3AnKtyspKiI8/DqVTJ+w4dUoAgFdffRURgwcz05QpcBZFGD/8EMLJk/wz7gzQ/IsBWrUC/P0RFRWFy5cvK/v372eRkZHQarW3H6vTQfD3BwQB6tGj6vEDBxiCg1UfH5+7Z4ZFka/zjo+/fZsyAMePH1dXrVrFBEHA+PHj7zqvO23atMnx448/CrxHHdjBgwfh7+//qwO3wWAAYww5OTno27cv2H3WlNvtdpw/fx7fffedKgiC+uKLL2p8fHxMx48fR4cOHcRLly65JScnu2o0mj9Pnz7d4OnpqTt37tzju3btKklJSclSVfVATU3NJG9v7yYpKSmC3W7/BEDi/v37JyUlJQUlJyf/3KNHj5sl4gcOHFiYmJgYFRQUxHbv3m3Ly8tb9tZbb22UZbllSkrK2H379o1LSkpqnpKScqpHjx72X3XihBDyX4DCNiGEkD80WZZ1giC8HhsbazCZTGCMISIiQtOlSxcxLCzMOSAgIKhZs2bB586dMzDGOrm5uXUcNWqUa69evbR6vf6BPkOn0yEkJIS5ubmhrKxMLS8vZwAv435Q586dwxdffKHu3r2bVVVVqbGxsaxbt25Mr6rAvn3Qjh2LhIQEKOXlasTAgWylxYKjV64oP/74I0tNTUXTpk1hNBqxbt06Ifaxx9CvXz8Yf/4ZaNOG70mdlgb4+ACFhXyNdy03Ly/8kJ4Ot/Jy+O3fDyQm8pnbEyfwnV4Pq8GAPn36sEceeQQxMTE4d+4cUlNTVZPJxLz8/YFhw2BdvhyVq1cLLUeNQrsePYDMTB7o6wKnqvLmYgYDMH8+0iwWpaCgQCgoKFB8fX3ZzXXoALZt26asadaMnSwtVRVVZS1btkRUVBQPkYzxcxg5kp9D3758Zn3AAKB+47CPPuJblyUmQqPRwNfXlx07dgyZmZlqTEwMY4xBURTs3r0bq1evVnft2sXSampQ6ObG+mzbhopdu5j7mDGoqKjA8ePHIUkSnJyc+Hvn5vLtwDw8bn5ceXk5li9fzry8vJQZM2awXwralZWV2Lx5szBw4EAMHjwY3bt3x9mzZ9W9e/cyT09PeHl5PfDvDQCsWLECAODl5XXf127ZssWxfft2ISoqio0dO5aJoghBEHDw4EHk5eWpwcHBTZ2dnXuMGjXK5OLiAm9vb+bn56evrKzsXVlZOV1RlH85HI4qk8nUvVOnTqKiKN1DQkL6tm7duqPdbu9RXV0d17Vr128A3pSQMfbpsGHDJI1Gg82bN9+4cePGtoMHD84RRfHtqKiovpGRkV1UVe1948aNsbt27fqiflAnhJD/DyhsE0II+UPbt2/fX4KCgrp16tRJU/9xQRDg5OQET09P+Pn5oWPHjhAEAadPn8bx48eRlZVl79ix4wPXgDPGUFNTg927d9+cWhRFERUVFfD09ARjDHl5eRBFEWfOnMHZs2dx7tw5bN26FSdPnsShQ4fUrl27Yty4cSw+Pp4FBQVBr9cDFgvfBisxEaIoIiQkhGkiI6F/6CHYbDY2fvx4HD9+3HHixAlhz549cDgcKC0tdcTExAjaAQP42uevvwY+/5zvW/2Pf/CQWi+cZmZlqWpCgtJ6zBgBPXoAhw+DFRcj8I03cOTIEQQFBcHHxwcajQaRkZGstLRU2bVrl5CSkoKjP//s2M0YC6yqYnFBQRAMBmDmTB6s4+KArVsBPz8eUIcNAyQJ4eHhQqdOnbBjxw6m1+vV4OBgdvXqVRw7dgwXLlyAp4cHGzdjBstp1gzZdju8vb156fytCwu4ugJPPMED+Lp1wLZtfG9uFxe+p3bbtvxGA3hjsKioKBw+fBh79+7FiRMn2I4dO1BcXKwOGjSIDRs2DAkJCRCcnLDDyQmCt7eqf+UVti03F+evX1cOHTrE8vPzHe7u7oJzcTFw9CgvKa/1/fffKyUlJWzq1KnsrpnzWtnZ2Vi1apVy6NAh9cSJEzAYDOqgQYOYRqMBYwwdOnRgKSkpuHHjBtrdWRXwC9LT0x1BQUFCYmLifZctqKoqnD17Vh07dizTaPhfh8rKShw/fhwWi4UNGDBAk5iYqK1fbu/u7o62bdtq3d3ddefOnRsnimLXuLg4Q2RkJIuKitK2bNlS9PPzQ1RUlObgwYN+O3fu/FePHj0Kdu/e/VSrVq16t2vXTgMAGo1GtFgssZ07dw4bNmyYJjIyUgoICECbNm206enpWovFsrVHjx737aNACCH/bShsE0II+cOSZbm5IAjfjhs3zvhLs9RarRbBwcHw8fFBRkYGqqqqhP3796uxsbGsoe2WGuLk5ASdTofExESUlJQoGRkZLDMzE8eOHVN3797NDh48iNTUVFy4cAGlpaXKpUuXmJeXl9qkSRM1KipKiI+PZ3eFpcuXeUB+7DEeXF96CZg3D15eXggLC4NGo4EoioIoinB2dkZsbCxqamrwww8/sOLiYiUiIoIhLg6YOBFYswaYN49ve/XGG0CvXkBSEs56e6vDp0wRhSFDgPJyYMUKwGpF2WOPoduECdjvcCiRXl6MzZoFccQItCooEEKbN4fo46O2b99eCGrRgrV//nloTp7koX7+fL622WoFunXj68PvCPiHDh3C+fPn4eTkpHp6erLPPvsMFy9ehNFoVOLi4oSUoiJc9fODotHg5MmTaNGixd2l2VotXz/evj1w+DAP+J9/zh8bPPi2EnOdToe2bdsyh8MBh8OhDB06VOjTpw/z8PC42UX89OnTSlF5uTL5L38RJJ0OnXftQsLMmSwsPh5nz55lycnJzHrhghKSk8MwbBgAvmZ6x44dbPz48fedVf7555+V8+fPCwkJCYwxxgYPHszu/J1MSUlBWVkZEhMT71sOfqfr168LR48eRWho6M19vhvStGlTnDlzRs3Ly2NhYWEA+I2Ibt264ezZs2pxcTGLiopq8LXe3t4sPDxc16FDB11Da9oFQUB5ebman58fkZycXKzRaD5++OGH3eq+M19fX6F9+/Y6X1/f29a0V1dXY/fu3aqiKHN69Ohx/V5jl2XZKSUlZXRKSorQo0eP/Ae7MoQQ8p+NGqQRQgj5w9JoNK+1b99evF8AuVN4eDhmzZqFQ4cOYceOHayiogIPWk4uiiISamc8CwsLma+vL/r3749Vq1Yxi8WCVq1aobi42NG/f38xNDS0LlUz3K97tZcXMGpU7ZGswf2tY2NjERsbCwCwWq3Yvn274FlQAKfKSj6rPGUK7/Kt0fAO5qdOAdXVwMKFgJMTOiuK8El+Pgb5+CDks8+AkhIgPh7+/v6wvv02CgsKhORt29CjuhoCAMyfD9+WLeH70UcMOh2Qnc27iq9ezUP8+PHAmTM8AF++DDSw7r1NmzbIy8tDWVmZsGzZMoiiiOnTp8PJyUkEgMiVKyG88grw0kuQFy/Gd999h/HjxzfcodvdnZ/j+vXAiRO8jPzrr/me2i+8wLdICwuDweFAr169GIAGO5hdunRJjY6OFgHA7emn+ZZj/fvDOygI4xYuZBfy8vDd558LPoGBqNq/H8XFxY6TJ0+KoaGhalBQ0H3TcZcuXYTLly879u7dy1599dUGp58nT56MjRs3qu+88w4zmUzKCy+8IDxIg71evXrhwIED+OqrrzBr1izc6+YQYww6nQ5ZWVkYXG//8JqaGhQUFLChQ4fe93Nuqy5ogE6n0yqK0tPX1zcmJibGOSgo6NaTdvvtpf61srKyIIpi6qxZswpkWXYVBGGaIAhedrs9GcAms9msyLKcqNVqv/X19XW5ePGiVpZlH7PZfO2+gyGEkD+AxtvDhBBCCPk/JMsyAzA+Li6u4bre+5AkCTExMdDpdFiyZAksFsuven1FRQWsViuLiYlB8+bNMWnSJDDGcOnSJQQHB4sbNmxQ7fYH7AdVVAQsXsyDbJMmwJw5DR9ntQKHD0M7aRJ6enlh4ObN8PvpJ0Ft3ZrPjE+aBDzzDA/AlZVAfj7w8MOA0YgWISFoER+Pr7/9FmlpaSqWLOHdzgHonn8egyZMwCFRxDcDB/LP+te/gAULeEfuCxd4oI+KAvr1A2pq+Hvb7Tz4RkXxcu7sbB56k5KA8+fhlJuLEcOGwd3d3V53fevf1BBEETh0CDhxAl27doXFYsFPP/2EK1eu1F1kYN8+4J13+PXp3Zt/hsnEZ9E/+ogfd/YsYLMBmzcDdXtVP/ssn30HeFf16mrk5eUhLy9PjI+Pv3VNBQH45z95Q7SlS9GisBDBbdsqPitW4MyePY6SkhI2bNgwjBo16henobVaLaKiokStVqve65jmzZvj6aefZhEREUp5ebnwzjvv4Msvv7y1jrmqCjh+HDh5kv/Mm6tBEAQMHz4cAG/Udr9xtGjRQqiursaNGzduPmaxWMAYQ9OmTX/pNO4rNzdXAYDx48e7dOjQgaGggN+E+cc/+Pr92bPveo27uzusVmuvuXPnvq/RaLIiIiLe6t69+wteXl4rADjmz5+fbjAYtg4bNsy3a9euTowxO4Caf2ughBDyH4LCNiGEkD8qX0EQtP/bAKHT6TCstlR49erV9w0w9WVlZWHRokVwcXFBdHQ0AN64KiEhAdXV1Thx4gQsFgur29rrF9lsfBb6gw940KpTWMhLpq9fB1q2BB5/HFAUXHJ2Vg5mZ2P55Mk4OG0avvvxR0Vt1+7mXtgAeIn1q6/ytdVeXkBmJoYMGYJhw4Zh27ZtrMJi4Q3IagNZSEgIEhIScOHCBaxZs+bWtWAM8Pfnoa95c96ZfPlyfmNgwABekt6pE59xNhr5+nFV5c8PGwbk5qL/yy9L444eVZsUFKBs7lzg4kV+TqoK7N0LdOwIgTForFY4du7Eltmzca5lS1T4+WH7N9+gukkT4KGHgKwsfvNg4ULg++/5DD4AbNkCdOgADB/OxwPw6oCICN4Ibto0oLoabP58PPXZZ3BxcQFkmQd5ReHjeOopoFkz4Mkn8WhsrODZtSsm9OkjTpw4Uagrx34Q58+edTQ3GkUoCr/pcOYMv1nx3nvApUvA4sXQTpuGYb17C69s2oSY1FQ03bxZVH18+Pr0bt34WvTaKgbExgK1s9ER8fHwKChA9l//yvJ8fVFeXs5f8+ijwFW+FLq6uhppaWlgjN12Y8PZ2RmSJOHyHdu1/VouLi7Q37iBgi+/BF5/HRg3jlc2tGkDTJ3KKyYOHLjtNatWrQIAdOnSZcbIkSN9RowYoevatSumTp3qFBkZqUqS1G769OmGwsJC2+rVq4sURRliNpvvWW5OCCF/JFRGTggh5I/KXa/X2wAY/rdvEBYWhoEDB2Lr1q3sk08+USZPnizcr6S8pqYGGzZsQFRUlNK5c2eh/trUli1bYt++fQCg9u3blzVp0uTBBuHnBzz/PA+LDgcPUF27Ateu8cA2ZAiffW3VCg7GsGzLFgEANJKE/Px82O12oaSkBE5OThBFERqNhs9KG408QFZW8tCWlobo6Gjs2rXL8fOFCyxxzBgBpaWA0Yiamhqkp6ejefPmOH36NFu3bp0ycuRIfkM+PZ3PLrdtC2zcyAN1QQEwaxYPuceP8/BsMPASc4CvFX/jDUBRYF+yBJl796pO5eVwOXOG4fx5XhJ+6BAP0L6+6NGlC9p7eUFwccGNnj1RkpCA9YqCi1ev4sT16+okDw/mnpvLZ+63beMdyxtSV8b81FO3HisrQ0VFBbK7dMFVRbGPBCRkZPCAmJnJtxez2/lscr9+wFdf8ceXLgXGjuVbjH33HZ9NP3+e31hYvJh/X+3a8cefew6YNw99V60S9Vu34mudTh0jy0x44gl+oyAtjd+ccHXlJfGZmTAOHYqe332H7cHBuNK3L/xcXfk1GTaMh26AB1dH7cT3v/6F0S1aIG3TJqQqCoKzs9FeEIC1a3mTvY0bUVhYiPLycgQFBSn169MZY/Dy8lLWr1/PXnrppQdfLF7Hbge+/hojDxwQMux2XNq7F65TpsDtr3/lN2QUBXBy4hUPX3zBf0dqqww8PT3ViIgIlpiYeNvnMsYQHh7Orly5YtdqtVJhYaFNUZTVqqru+tXjI4SQ/1AUtgkhhPxRlVksFs0vH3Z/MTExiIiIwNKlS9lXX32lTJ06tcF1tKWlpVi2bBm8vb2VQYMGCXc2uPL09IQgCLBYLCw9PV3p3LnzL1ePORx8ZnLbNr7m+soVIDCQb88VHs5npoGbwSW/rsS61qxZszB//ny1oKCALVmyBAAwY8YMGENCgPff543EBgzg4dhkgnXCBHhFR4snT55UEqdOBfbtgzp6NDZs2KBWVFSwyZMnIzMzU92yZYvQzmJBy9WrecO28eOBQYNuzZ4fPcqbrH3zDfDpp7xb+PPP32peVkcQsOzMGZRptQLz8sLfAgLUFzp3ZvqtW4HSUmDnTkAQwNzd4bZmDcAYXAD4AIgE35f822+/xaovvlCfGzSIiTt2AKGhSE5OVoODg1lAQAAAQFVVLFmyRDUajXBxcUHv3r1Z3Tp+VVWxatUqpaioSHAJDubfybp1t8ZYV4Hg48MbspWU8PM7epQH2U8+Af78Z+DFF/ks9Q8/8BL2o0f5GvmHHuLl6CYTatq0QdX58ziXk8MuuLmpIcHBDG5u/Pv78EN+g+Ldd/ma+uXLoenYETmnTiFLUZRXXnlFwNChwJtv3prZlqRbNxASE2HPy0NaSQn08fEY3qYNn5UvKQH0euDNN+F/+DCaDR+uqLWbe9fXv39/4fPPP0dBQQG868rt76ekBDh9mjftS07mv0djxsA7IAAb/vEPVPv6qg/V/iVYv3ixMuyFF4Qlf/+7PcThYF6PP872Dx6sKIKAqqoqsYHhAAAKCwuh0WhY7fiMxcXFk8rKyuJkWZ4FoFqn000TBKGtoijpVqt1ntlsPvXLAyeEkP8cFLYJIYT8UfURRbFRlkMZDAaMGTOGLVq0iJ08efJmebjFYkFVVRXKy8uxdu1alTHGOnXqdFfQLi0txaeffgpvb2/HE088IWq12vuP68ABPju6YgXfysrZmQesXbt4w697NKpq3rw5pk2bhk8++QQmk0kFwHQ6nZKamio6Ozsr169fF9avX68AUMedOyeyum2qnJxQnJ+PG7t3Q/H3V/sMHizcyMmBbu5cHAsNRXZ2NqZNmwYnJyfEubgwl0uXkHfwoNry8ccZunfnW3HV5+wM1G9kNnIkX7NbVQXlq6+gTpiAU6dOobS0FGVlZQCA4OBg1W63q5s3b2YuLi4wFBWhW0wMsHs3XzPdQHduQRCQmJjISgYNAlJTgY0bkZGRgZSUFJaSkgKNRgN/f3+1pKSElZeXM41Gg9zcXGRkZCAsLEx1cXHBpUuX1IqKCjaT37i4/XvJysK1Vatw0dcXoQsWwDh8OL/Z0aYN39Zs8WJejr56NS/Nt1h4eb+LC18j7ubGZ6rNZqBtW6SnpjpsgYGim5sbTB07Mnh78/OqquLVCXPmAMeO3TrX/v1Rysu+hYJLl+BdVsabvk2dCvz8813Xo7i4GAD/vSxaswZeksTHuHMnsGIFLBs2oOLsWaFFTg7s48bd1kitWbNmiI6Odmzfvp2NHz/+7t9PReF7jBcVAR9/zMc8bhy/DjNn8rXyALRlZRAEAbrapngVFRU4UVIiXJ4/H906d5ZYfDy8/vEPDL14USgaPx6MMTTU3fzUqVM4cOAAHn30UZH/ijphypQppvT09NhDhw6tt9vtrEOHDqaAgAAhNzc3bM+ePcPnzJkzcvbs2T/e9WaEEPIfisI2IYSQ/3iyLAsAugCIAWDQaDRBAKbcuHEDNpsNly9fxrVr1+Di4oKrV68q0dHRAsCbMz0oDw8P+Pj4KDk5OYJGo8GWLVvUioqKmwnwoYceQufOnRvcskkQBKiqioKCAnHBggXqK6+80nCp7owZvMTa3Z3PSioK367rz3/ma4/PnOGhrEcPPpvcwGc5OzsDAJo0aaIAEJs1ayacPn0aHh4egt1uR05OjqAoCv4WHq66iaJy/eOPBTtjuH79OuwTJ7JO8fFq84QEtrlXL5R27YrCjRvRKiKCNbFaeUn4qFG4FhGhnhoyRO02blzD5+HszBuj1denD46sXAlPsxl79u/HuebNAcZgNBrVbt26sfDwcPbPf/5TycrKgpvdjlFffIGkRx9Ves6ZI8DdnYfYBvaw/mH5cnj17o12b72FgoIC/PDDDxgxYgTWr18Pm82G7OxsBgDu7u7quHHj2Lp165SqqiohNzcXer0eYWFhwqRJk6DVavn1PncOts8/hxQWhvyVK9UrFgs78sgj6tahQ9mrixaBtWrFz23uXF4dYLPx2fovvuABdMYMPrAOHW4NcuRIAEDgY4+J3wEQKyuRNmiQOqhfP379li/nywEuXuRr4Ov93kydOhWffvopMj74AN6bNvHlAyEhDV726OhoGI1GrFq1CiUFBfCaMoWXpoeGAv7+YFOm4KEVKxD0+ef457Jl6vBJk1j9DuExMTHi6tWrlZvr1bt25TcWNm3iNxTefJOvzV+5kt/8qbe1GgDs2LEDqampYIzB1dWVXb16FStXrlQTjUale0GBKNRdkxYtgEWL0PzSJV4RcQe73Y4NGzZg8ODBCKl3roIgoGnTpkyv17P8/HxtUlKS6u3tXRkdHe3crl07w/Hjx8cDoLBNCPnDoLBNCCHkN1XbNdztXlv5yLKsBzAcwGGz2XymodfrdLqNer2+Z8uWLTU6nU4yGAxCZmYm8vPzsXjxYrWsrIwBQGRkpHry5EkhKSkJADBu3Ljb/jH/S9q3by/s2LEDmZmZaN++vRoXF8fc3NygKAoEQbjnWlc3NzcMGDBA3b59O7NYLGzDhg3qyJEj+fHZ2cBbb/EAU17Ow1tCAv+vTlERbzRms/FZxJ9/Brp3B95+m5eU16PRaGrfNlu8cOECRo8ezY4cOYKYmBhkZGTgzJkzGDRoEHbs2MG6Tpokprdvj5/790ePHj3QpEkTJCUlqbaRIxX/ESOEEZ99BtVohOTlxWcxH30UOHkS+xcuhM5uF9LT09Ghfqisc+4cX8s9ceLNhzZv3uw4kp0tRsoylF27MGrtWlx4803HI2PG3JwW12q1aOLkpHrabOreTp2EE66uQnejEfZp05D0ww/wCw+HTqdDenq6Wl1dzapOn1bHLl7MStavR7VOh1Vffqm2a9eORUVFobS0FP7+/jh27JhqsVjUxx57TACAKVOm1N9yjZdDl5Whevp0OLZuxa5p0+B0+DDO2WwoGzBAnTRpEut44ABbdPSo4+qrr4rNPT15IzgfH762PD6eN6jbtYuH5fJyXlY9ZEgDl+WcAkBwOBwoLy9XUH8LstdeA/Ly7nqNTqeD4fp1dPrySygzZ0Lw9b21TrsBLVq0gEtlJdxXruTd300mIDsb6unT+HzrVtViscDjww/VHq1aCQgM5Hugv/wyIAgIeOgh1LzyimBZuBB6Z2e+NvyRR3gZelgYr6rIzuZr1tu0uSts13YjF0aPHg2TyYTly5ejS5cuauKNGyLj/Qq4pk15yF67lt84iIi4+VR5eTl2794NSZLU6Ojo2/5OORwOfPPNNza73f4MgJ8AXM/Ly+tTUlIyRBTF6JqamqX3vDCEEPIfiN1rHQ0hhBDy75Jl2Vun022tqalpq9Vqd1qt1vFms7ngjmOed3V1/fDGjRsORVFeevPNNz+/4/nWBoPh8IwZM4z1G5IlJSVh//79anR0NEtPT4eLiwvi4+OxY8eO28bwzDPPwOdeDbXuYLfb8cEHH6gBAQHq6NGjhXvtZ3wvn3zyiVpSUsJ8fHzUsH/9S71uMqHbyy8LLrLMZ7DvCC83paTwRmlHj/IO4ePH8y28PvyQN+EaM4aXN9f67LPP1Pz8fDZw4EDE1HXlvsOCBQsU8exZ4ZFnnoFfePjNkH4bLy+grIxv3ZSQcPMzTp48ieTkZEiS5HjmmWfu3rP67FkgOxv23r2xZ88enDx5UikpKRE8PDwwbtw4rPzqK2Vkaqrg89xzPKjWzeaqKjBhAkpKStQlnTszo9Go+Pj4sPJDhxizWFAaEADGGBwOBxw2G0Z27oyIvDyoEyZgxYoVSk1NjTplypQG99C+SVWBjAw+Sy8IcCxYgD3h4eplRWEVzZvjetOmalxcHGvatCnCw8Mh2WxAYCDOh4SoVarKIkePhmQw8O3D6nTtym+GfPABcPAgD9onTvDy+nrVE3l5eVi+fDl69eqF27YYA/h4Fi3ia9zvqFjY8s9/4nRSEqa+8w70gsDL1Csq7prpv3z5MpKSkiBs24auGg0Cly3jT/Tpg9JWrfB3b28MGTIE7dq144+/9hpfn/7ppzx0HzqEZefPO5r7+Yl9+/a99cYnT/IO7YMG8b4BHTrwUvKPPuJd6wFcvXoVS5cuhaqq0Ol0KmMMdrud2e12mM3mhr+L1av5OvfnnuPnBF4+vmbNGvj6+jpUVUVoaKjYs2fP2q9OxZIl/8PemUdFcaV//3uruputgWZp9h3ZN2UXBNod3PfEGKNGo8ZJjJPdyUJ6sqhJJjGaRE1iJtG4xESjcY0K2IjsCgoIyCI7qOw73V1V7x8XUFwymfnNe97fvNOfczxHurqqblXd4vC9z/N8nx29XV1duTzPl4AumAhqtfoagJ/v/92hQ4cOHf/bYd95PFCIhAAAIABJREFU553/12PQoUOHDh3/n6BUKl1VKpWXSqVqUalUHmKxOC0iIsJtyZIl7MDAgPPt27cfS05O3qNQKPqG9lGpVNF+fn6T5syZY1BcXDwxJSXFMjk5+axCoRjaPsXOzm56cHCw3r3ncnV1RUxMDPHy8oKbmxsqKyu5pqYmISgoCIGBgaSsrAwA0NXVxdfV1fHl5eW8h4fH79ZSMwyD4OBgcvz4cdLf3y94eHj8U87NbmZmxPbdd3HV2ppENTaiXyRizovFfPjWrQQPE7tDHDsGnD1Lo9gvvEDdtF1cgPnzqah76y36s5kZYGAACwsLcvXqVXR2dvKhoaEPHaO/vz+5UFgIx02bkNTUJBTW1wsuLi5kqNYWAI1i1tbSNOjQ0GERaGVlhebmZr63t5f4+vqSgoICnDhxgj9//jwuXbqEtkOH0Hv8OPbcuYPW1lYEBASQhIQEolAowHEcki9cIE5r18Jaq6X9vH19ASen4f7chm+/TcYqFCgrK0NzczPmlJcT95QUTP/pJ4wbNw7R0dGw/egjQX3hAmw/+4wkJSXxFRUVWLt2LcveXz8OUIF97RptC0YIbffFcdCsXo3dPC/UWFtj0tq1ZOqiRYiOjiYuLi6wksvBPP00MGYMsHw5bl65Qs6EhCBUo4Fk6tS7PbsBmqY9fTp13HZwoJFiiYRek6XlcEq5vr4+Kioq0NTUJISEhIx8LlZWtM57/PiRIrqlBbbjxuHyhAmImTSJCvjnnqMLM/eJ8uPHj+NmaSmmnToF259/hmho8ebxx5FrZoa2tjZh1qxZZLjUwcAAGDsWmDGDmrm5uKCoqIipr68XwsPD6Zc4jtbDe3nR63jnHZo+D9CMi/Z2wMkJly9fRlVVFQICAvjZs2czQUFBJCcnB66urgjasYMu2CxadP8kpO7qSiUtleA4DHAc8vLy0NvbyxgbG5PCwkKSnp4ueHt7EyMjIwQFBYnNzMycHRwcQlxdXUNcXV1DDAwMxre2tm5ITU3tT0lJyVIoFLpIkQ4dOv4j0KWR69ChQ4eOfwubN2/+TCKRrJZKper29nZDlmX5+Ph4cXBwMAGAKVOmiDiOs7169eqPACbfs+utrq4utaWlpd6aNWsMv/322zUdHR1NAD4c3C6VSqW/G810cnLCunXrhr/T39+PiooKAEBpaSkzeJDh6PfvRaxv3boFiUSCuLi4Py60Dx0CmpthsWABhIEBwUgQiNn335Nj330njP8jruRubtQoLDSUOpMfPEhFKiE0wrp4MfD99+AOHUKWmRl/QSplAGDJkiWPPLZUKsXs2bNhcewYCqqrSQXLkpqaGjg6OsLQ0JBGuteto/24XV1p3+qEBLS++CIuX77M5+TkMGKxGB999BGkUqlga2srxMTEMDKZDOx334EdGMCcOXPg7e09XMdeU1ODvLw8Tk9Pjz1+/LgQ8Je/EGzeTIXjqlU0/bqoCNDTgxg0EqzRaMgPLi7wTkjgXBiGBeiih6efH9kHCAV796K2tpZZtWoVrbsGjYCS1lYqsp9/nhp7/eUvtJbczQ24fBk8z+PQgQO8mmWFDevXsyMc5gUBGBig/alv3ADefhsOO3fC4Px5rvjECdZv3bqR/eRiYmiKv5UVrakfO5Y6kJeUUBG7di207e0ofO011NfXY9WqVSPmjlqtxvHjx7kgtZpVr1/PF0ydKujp6SEgIIDlqqpQGxmJ5S+8cHeH556j92twwWkIjuN475ISxm78eOjf21+eZRE+bx5qX38dI66zoYGK5XswMDDgeJ6/+z4dPgzs20cXfDgOCAigfd+ffJJmV/z1r0BjI8SDhnh2dnawsrICALi6uvLNzc3A6tUMeh7RGvuFF2jqvZ4eYG8PhxdewOsbNoAnBAYmJqS7uxvbt28nSUlJmDZtGkxMTBAYGHj/UQxaW1tx6NAhZXt7+0ylUjklMTFR/fAT6tChQ8f/HnSRbR06dOjQ8W8hLS1t16JFiyzi4+P1oqOjmZiYGNbOzm6E6HBzc2NzcnKsz507l6VQKG4CgEql4vr7+9dER0dLxGIxPD09xZcvXx6XnJz8i0KhuKNSqUy1Wu2iiIgIvYef+UFEIhH8/f3h7e0NjuNQW1sLtVqNyspKyOXy4dZHHMfh/jZfR44c4T08PARfX9/fF9v9/bQtVlgYcPIk0NICMmcOjP70JxI5cSIMDQ1RWFgoNDU1kStXrggNDQ1ELpejubkZzc3N0Gq1IIRQ0evoSIX1UJ3sW28BLIt2R0fo6emBGBig298f+y9eBNvQICwuLiYdBgZC9WCv4kcN0draGuyTTyL5yhWIjI1RUFCA7OxspKamQi8vj3Pcu5fBmjXQarWoMDPDuZ4evuDIEcK1t/MTH3uMiYyMxMSJExETE0P8/f0ZS0tLSKVSGNnZwSA8HPKAgBGGcXl5eXxeXh4bExODKVOmECMjIyrkN2ygCwhaLRX3HAewLAoLC4XQ0FA8sXw58XvuOQYxMVQIT50Kbvt2SDw8SHZ2NiZPngxPDw8U//QTn/rZZ6Rx2zbIt2/HFbVaMHR3J+LXXgMbGUlF8WBa95kzZ7iKigry7LPPsiNS6Pv7acR19GgabS0tBYKDIU1IQLhczrQfPizs02jIqFGj0NfXh9raWlhaWtKIs7c3FcCE0H9GRoC+PgR7exxNTUVpXR3iTp/Gz21tuFFZKejr6xNLS0ukpqbiypUrjNjAAM7p6aRl8mSmu7ub5KWlCRbffEOy4+MxcfI960+nT9NsADe3+6ZcP+m4dAmyp56CbNSouxsYBg2FhbjMMCTy3uNkZtJxDkbeBUHATz/9xDg6OsLHx4cuIPz1r7QdmYUFXUDIz6fPzMKCOs6PGQN0d6Ni0yZUOzrCx9eXt7OzYwaPR2pqarhId3cGLi7DjuUAgGXLgHPn6LEnT6YLFK+8AjzxBEQ//QTxrFnASy9B0teHWx0dKC0tRXZ2Nvr7+x/qs2BgYIAxY8ZIioqKLHt6eq4qFIoH/B106NCh438bOrGtQ4cOHTr+LaSkpNwqKyub5uvrKzYyMnqka7epqamkvLx8XHJy8i6FQsGpVKoWABvc3d2NjI2Noa+vD0IIU1tbm5CSkjJeJBJtdHNzM87MzER1dTUxMzODVCr9Q2NiGAaurq5oaWkRmpubyahRo5CTk4Pa2louKysLJ0+eJB4eHtBoNOA4DhqNBr/99huZN28eMTAw+P2Dr15N+0pbWlIzrZkz6f/vuW59fX1kZWWRrq4ucufOHWRkZCAvLw8FBQXIyclBeno6rl69KnT39ED+3nukfepUSC0t0eXujpKGBuHQsWMkr6QEnZ2dfFZWlqC1sBAef/99RuzqCpfLl0nPiRMko7dX8AkNJQ+7362trQDPY/zjj2PsX/6CbpkMMpkMzc3N8G9vZwzb23He0JD75ZdfmPLeXt4xIICZl5uLwNpaxvK552BsbPzwLICffgLS0oBJk0Z8LBaLSU5ODqZPnw5LCwvao5rjaAp8bCy9Z6NG0RRtMzOcb2oiigkTiMzMjEb2w8JoLXh5OT64eRPFxcWwra6GxZ49uNHSwvu++y7TwXHIDQ1Fur8/yggh2f39uHjtGmJiYoYXTrKzs4WMjAzyzDPPMEPu7QBov3ETEyro582jQrC2li6aACDbtsEqIoLUOzjwSUlJJDc3FyUlJUJhYaEgEomIZXQ02Lw8KkA3bABYFv39/Th77Rqfr9WSQEdHOCQloTIkRHAuLibJlZW4kJaGxsZGxMbGYvKTT8KEYeA1ZQoCIyNJZEcHYfbsgWT9+pHtsSZPBmxtaTR4kI6ODpz+5BPEZGbC5cMPQe5Lp9cGBODmmTMImjXr7rt36hRNex80KCOEIC8vD93d3VxEeDiDlSuBJ56gQniIa9cAc3O6HwBYWoI3NUXHV18h1tkZXkuXMkNz/Pr168KNGzdY3xdegIFGAzJhwt3jmJoCQUHUB4AQKuwDA2m6emgoTTmXyQB7e3AmJuDd3bnxMTFMakYGP3bs2IfO56amJmRmZmp5nn9HoVC0P/AFHTp06Phfhk5s69ChQ4eOB3j33XcXZWVlHUhLS1uYlJR0RaFQ3P5H+8TFxRVeuHChMzc3V8GyLOPg4PBAP2oAkMvlqK2t1evu7nZNTk7+NTExUUhPT5/h5OTkPJSe6uDgwDAMI7t586aPmZmZpLq6mnR2dpJbt24hNzcXgYGB+IdieBBCCHx9fUlcXBwCAwPR1tYGjuMYPT09NDc3k5KSEly6dAkZGRnIyMiAXC4XYmNjfz+q3dND20Dp61OzrKoq6no9dy5NS3ZxAXp7YeXpSS5evAiJRIKEhASYm5tj6dKliIqKQmxsLNra2uDq6koKiop4vepqcvrOHZJXUiKoiouJ6/HjCG5qIllyObq6ugBAWLp0KSuWSABnZ4gTEiDr6oLj+++TfJ6HU2DgsDjjeR7p6ek4ePAgMrOy4LNxI0zGjYOXjw+8vLxQUVGBW6WlSPbyQn1DAyMSiTB58mQhJiaGMPPnU1fyTz4Btm8fbms1gtpaGgUNCxvxsbGxMXp6eri0H34gFpaWxFypBKZMARISqPlbVxcVWosXo9nODpLPP4f/hx+CefFFakL2449UmD39NEz/+ld4lZaCCAJkcjkyxGKiioxEk68v/+Jbb5Go2Fj4+vpCT08PtbW1uHLlilBeXk6uXr2K/Px8snjxYmJ3by/w/n76XEJDqcBkWdrGy90dmDiRfufAAWDpUvjFxZGwsDCEhoZCoVCQnp4ekp6ezldUVAijExIIvLzQ6eiIg/v3C+YWFuTMmTPEwcEBUkdH/pRcTiT6+mTpL78gOi4OPnPnIn7mTLi4utJz/vwzPZeHB2BggK2EoKW9HT4+PtDX10dDQwMMXn4ZzMGD9DkM0tXVhbpff4VNQIBgNWPGA/Oz/exZhH7wAeoWL4aZuTn9MCODXt89EXI3Nzfk5OSQKImEkKNHaRbFvQsqqal0DsfFDX8kGBpi761bcLe3h8UHH9D7ZWQEBwcHIpVKcUAmQ55MxvM8T5wuXKBR7S1bRpj6ISyMppMvWwaVgwOOpKRwmdnZwuXISL5MX58EZ2TA//33SVZMDK79+iv0bWzIvRko+fn5+Pnnn/s4jntSEIQslUoVqVKpfFQqVaNCodA+7DXVoUOHjv/X6MS2Dh06dOgYgVKpNGYYJmP+/Pl2dnZ2LlVVVcuSk5OTFApF/T/aNzY2Njs5OflAXV3dQltbWxPzoT/674EQAg8PD3FxcbGnRqPxS05ONiCEPDt9+nTRUBSVEAIbGxty48YNfjB9lFRXV8PGxgZSqRRBQUEYYfT1T+Dl5QV/f3+MGjWKZGdnCx4eHliwYAFpampCZ2cnWJYlY++N9D2M06fpv337qEDT1wfWrqV1rmo10NwM7NgBJCUhiGFQX1mJ8s5OfvGyZYRlWYhEIrAsC19fX7i6uiIyMpJxqKkhY4KD0SGXk4SEBHitWEHM6+rQ6uoqMPr6/KpVq0amQ7MsJGPHon7SJPTs2AGHy5dBDA1xqb4eBw4eFMrKyoYFWVhcHKTLlwMLF4IRiaC9dg3R27bhclSUwPE84TgOUqmU9/T0ZAYfABVghNAobmPjsJs0AFojLRaPaOk09Nw8GxuZoI0byWFBwKjvvoO+tzfdePIkrdeeNQswNcUPR46gyNwczmvXwszRkWYFnDsHZGWBLFwIEcvicni4UO7kRNi4OIyLjwdhGGHp0qWMRCIBy7IwNjaGu7s7ioqKOAMDA6a7uxuNjY0wNzfHpEmT7kZ4Dx6konPZMlqbPkR8PKo9PNDW2wszQmhUd/ZsQCSCSCSCnp7ecHaEq6sruXjxIomJjYV21CiUP/aY4Lt/P/lOJIJYLMaKFStgbW1NWJblK6uqSEZwMLq9vYWQzz4jZOtWWoMNULf5hgZ6rueeQ+DXXyM9PR05OTkoKSlBWloaigUB6uBgwWnIxAzA/q+/5qZ/9x1DduwgMkvLB6ak1s4OO9VqDIhE8B16LhUVVNQPLmIBgKGhIcpzcwXDzZshO3qUMPc+V4Au2Fy4MKI/9u3bt5F5+TKc4+IEO42G4MYNwMYGrLk57O3tEbNtG+rkcmSXl5OoBQvA2tggpbUVWq0WFvfWluvpAceOIU0mg9zBgRk3bhzj6uXFuPv4EJsFC4jxhg0IDAoiIY89Rq60t/NeUVFE292NL/7+977S0tJ8tVo9RxAEtUQiUUml0jUymWyhRqN5PDk5eYfivvp2HTp06PjfgE5s69ChQ4eOEahUKn+ZTPbktGnT9Ozt7YmVlZWktLR0fnJy8g8KhaLrD+wvY1l2hZ+f30PFNkBrqgMDA8X9/f2eIpFoakJCgpHVPYJg6DthYWFkzJgxxNzcHFlZWRCLxbxWqxXS0tJIZGQkHupM/QcRiUSIiYkhvr6+xMjICGPGjIFKpYKenh5kMhkKCwt5V1fXh0e4f/iBRve8vWlP4qYmYMIEWm8dGEhrgufNA2JioFdeDnFSEoSODuJ15gwVqtbWtL713vFfvAhReztGLVsGY2NjKmZdXeG5di05L5cz4bGxD71eM2tr7K2rQ4+xMW4eP85bHjpEgidPJgPW1kJzczPR09MTpiQkELJrFxAfD5iYwMHREQbR0YhZsYI0NDSgtbUVjY2NTGdnJ+fl5UUFt7097TG9ezc1aHvppbsp8qdOUcF4bw/wH38E1qwBNm7EzagoZN6+jaysLISHh9O69MhIICwMagMDfP7551xzczMTGxeHwAkTwNy8SZ2va2uh9fTENkKQptGgTaMhDMMIM2fOJM7OzvDx8SH3p7Xv2bNH29DQIJo7dy7i4+Mhl8uRm5sLd3d3mJqa0oh2QgK6Q0Jwy9oaBgYGqK+vR25uLs79+CNv+Pnn5EhPD26dO6ftyM4m+27fJsXFxdoxY8YMZ2ao1Wrs37+fd3Bw4O3t7ZmcnBxB1dpKbjs6YsJTT2HBwoXQ09ODkZER7ty5I1RUVBBBEHD7zh0S+7e/UQfy0lK60PDaa7Sf9YYNQEICDEaNQmxsLMzNzZGbmwue5zExNhYtx46RXK2WH+pFrfnqK6ZVq4XZ0qUwuV8gg9Y06331lWB/5QqRL14MAOA/+ggIDQWxtwdAa7Y/+OADhB47Ru6YmpLOkBCMiP4DVBAXFND5PEhVVRWKi4vh5e1N7BYtAniejt/JCXBxAbN3L3wXLyZhf/oTdurr84WGhrh58yauXr1KLly4gKqqKtqOTF8fWLwYPZ98AjtBgM+8ebC0tIRcLqelIQYGkBgaYqehIW8UEsL4HDkC8uKLSPL3F/wzMw+2ubrOF4lEf509e7Z8xowZktDQUL0LFy6YC4LwsUKh0CiVSlOVSjVTpVJ5q1SqeoVCMfDQ9/cPolQqRQqFgv+fHEOHDh3/3ejEtg4dOnToGIFKpRptbm6+ICQkRA8ALC0twfO8uLGxcVJSUtJuhULBK5VKkpaW9mxGRsaetLS019PT05empqZ+cPHixZdYln1p3LhxxqNHj2YflkY+hEgkgoeHh2j06NF6jxLlQ+jp6SEuLg7u7u4kNzeXqNVqREREDLtT/7tobm7mGxsbSVlZmVBZWcmwLMs7OzuPvIjKSupIvXEj/Tk0lNa8rltHBcrQmAgB9PVBIiNx1tCQ63R0hNekSUSr0UC8axcV7Hp6tPbZ0JAadtnYUJE7hEwGpqIC9Z2dvKGfH3lUpoCTkxMuNzby3kuWML5hYbC4fh2SI0dQLpeTAYYhvn5+kD7/PBWeRkbA8uU0RdnMDD4+PrC1tUVRURGampqY0NDQkfc1JARYsYK6Wq9fTwWjkRFNTba1pX2nS0rod729gfBwWLi6wtHREdeuXUNNTY3g7u5O9KuqoJkxA1sHBni5XI4lS5YwXl5eEFVWUifsoCDgzTfRHxkJ/V27oCEEet7e3PPPPz+y7vo+SktL0dbWRjo6Orienh4SHBxMWltb+XO//UYs//QnnL11C5dmzOCTy8tJQUEBVCoVCgoK0NXVJUR7eZExZ88S9rnnhKDiYtZm1CgSsGoVioqKSH5+Ph8aGsoAwHfffcfxPM8sWLCAaWhowMmTJ4lGIoG+pyc/LTGRoL6eCmrQ2uri4mICABKJBEYmJrD196eGYx0dNK1+0yZqXvbmm8PXYWVlhbi4OPT09Ag1x46R2WfO4EJICAoKCngfb2/m+nffIS84GLd6exEYGAie56FWq4dr6tVqNbIOHyaCRgO98eOxY8cOuB08iH0ch9yqKsHJyYlIpVJICwtR29wMq+eeQ/i9iyVDGBjQjI0JE4bLEqysrJCRkQF7e3s4OTlRQz8HB6C1lWYrvPceiJMTxFZWQFQUGhoa8PTTT5MJEybA3NwcmZmZuHz5Mpeeno5Lly4Jtvn5xLa7GyYLFz70maZnZSFwzBhit2wZyNq1cDY3Z0NfeSXae2DAO+6zz8S29vYghECj0SAtLY0HoFSpVGNEItFVJyenOaampnN6enpeSElJOaBQKDoeNXeUSqVIpVKZKhSK/vs+98zIyMjiOO6T9PT051UqVVtsbOyVR05CHTp06HgEutZfOnTo0KFjBBKJZIWXl9cIB7LY2FhReXm5R0NDwxoAXxBC5hkZGX08Z84cQ0NDQ9TW1jqcPHkSixYtgpeX1wMO3/8utFot+vpoi+4/apL2z7BgwYKhgZPU1FSkpKQwgYGBNEI6xOHDNHp9L/r6NMJdVESjwffB8zy53dHBfHzxIsRiMf5y4ABNNb99GzhyhLZH4nkq5PPzR6Zsf/opAqZMYdr37eORmPjQG+vi4oK1a9fSbaNHAwoFqktL8af9+3H7r3+FtVQK1NRQc6rqaiAnZ7iPtEgkGn5mPM9j27ZtiI6O5uPi4u6ey8KCXlt1NXUUP3KELib4+tLWZLNm0f7M99DZ2QkAYFlW+PLLLzFjyhTCmZsLTo6OxNbOjvniiy9g1tqKKVVVvO3EiYxpXBwwcSIGLl+GyVNPYYZSiT3m5uymDz7AmrVrqSP4Q1i0aBFTWVmJkpIS9vz58wgKCsLc2bOZsMBAmKWm4qatLQ9TU+Gp5cthZGQErVY7JFDJ4ENHrCAQvPce8O23gJ0dVqxYQb744gv2gw8+QEBAgMBxHHF1dYVUKkVZWRnHMAzr5+eHoKAgBr6+gI8PfX4MA39/fyKXy7Fz50709/fj2rVr3JgxY1hIJLRWfPly+uzb2oDiYrrvPUyfPp1sKSgQ6rOzyWpra7Jnzx5yYP16RDc1wfjVV5Fy4QI2bdoEjuMGH40FHxgYyNTV1XHd8fHsnWvXUHLgANRqNcRz5iBkxgxUNDfjm2++QYifH+f9449M9ahRQujEiQ9/SQmhfgQ1NYCfH/r7+/G3v/0NWq0W7e3twvB9mzCB1navX0/Nzr77DuSZZzAWGFGGERQUBHNzc2i1WpZhGFRXVyOltxdsdDQcNm2ikf77fl9IpVLhxIkTRCqVwsvLC86jRwNr1sDq1i3gu++AP/0JIATNzc3Q09Orfe2117gtW7Z8OmnSJJOQwTKB77//vquqqioMQM3QcTdt2rSZZdlwjuOqGIaJYBjGgxCCzZs3pwwMDMxOTEzsVyqVRCKRnJ44caJrWFgYaWpqsti7d+9WpVKZn5iYmKNUKgP09fX3CYJgqFarX3777bePPvQ+6tChQwd0YluHDh06/utQKpUGiYmJfY/YttDY2Hh6eHj4iL9+CSGIiYkxOnr06AqlUvl3iUSybebMmYZDDsqtra0AaCrrv1toa7VafPbZZ7xGoyH29va8o6Mj29bWxgH413PI/wDjxo1DSkoKGhsb74ptnqftkMaNG/llQoBLl8CXlKB/+3YUhIcLtbW1HABiYGDA1NXVMdbW1jzDMExfX5/Q09NDjCwtaZ2yRAIUFtJocV4e8N57tLbYz2/48PrTpkG6bRvDvfnmH0udNzBAhqcn0V+2DDFHj1LTq2efBa5epSIvP59G0wdhGAaPP/44Dh48CI1GgwsXLjC1tbXCzOnTiam+PnWSrqujqeIHD9J2UQxDI/G5uQ+IJQAoKioCACxfvpzJyckRjp46hWBzc9KYl4ea2lrBR18fkziOZBgZMckikbDOxoYMrF2Lbdu2AQCkzz+P6UeOCO0SCTrnziWPEtsANf1iGAY5OTkQ+vpAAgLguGsXkJSEGcCIwT3grh4VBURH0/s9mFJtaGiIl156Cfn5+Th16hThOI4AEDZv3iwMDAywtra2w7XccHenPbstLYGkJGDMGFhbW2Pq1Kn8b7/9xvSWlZGcV19FSHMzGHt7ajj397/T77q7077qU6eOGJLMzIw3iYxk9bOz8fTTTzNl/f1wmzwZ7OD4LC0tMXPmTMjlcpw9e5YpKiripFIp093dzT3544/steho/rHduxmzF1+EPDoa4YaG5M6dOzj15pusYGiIYnd3VGzdyr/88ssPf1lDQoDsbPA+Pti9ezev1WoZuVyOoqIiMn78eBgOzR1PT3o9v/0G7NxJFxOuXHlgwcnR0REANe77/vvvERISAi9vb1p2EB9PfQHuYdWqVcwnn3wi/PLLLwgLCyPju7vBfPop3ZieTo0I9+wBIQSCIEiUSiUxMDBgh3wctFot6uvrxQCyh46pVCptxGLxhhkzZuh1dXXBysoK9vb2YFkWhw4diqmqqvocwCoAkfr6+lZhYWGEEHJvzbkGAPT19b+KiYkJsLa2xo8//rhfqVT6JyYmVj70PurQoeO/Hp3Y1qFDh47/IjZv3vwpgA2bNm2qVKvV0xITE0uHtimVSn2xWLxz4cKFhvr6+g/s6+zsDIZh/BiGafPx8eHu7YXr6ekJANi3bx/eeOONf9t4eZ5HUlISuru7GQsLC6G2tpbVaDQAwJ46dUqYNm3a77uG/w9gGAZ+fn44cuQIAgICuOnTp7NMZiZte7VkyUP3Sfv+e8H3669J2muvCaM8PUVarRaNjY1CQkI4wBmkAAAgAElEQVQCUlJS0NXVBT09PfLpp5/CFhASmpuJTWYmmI8/pvWvZWVU/H31FRX08+cDDAPn9evxXW0tPyMxkbF6770/NH5jY2NBXyYj+OILKlCSk6mo//VXKrzffZeKPqkUGDsWHm+9hTeeeQZlBw9Cfvgwdjz7LDFavZqKoRdeoCnPH35IDb6MjYHOTiqSNm+mx8zMpOng4eGArS26u7uHo6BhYWFELBbD/OBBITQhgVjPmUOQmAiMH4+bbW2cm4sLe/LcOcHt0iXE/fnPRCQSoaSkhD82dSoz79o1wa22lkb7B0Xbw7Czs4MTIOz89lvy0htvgAymdf9D3nmHRpo7O0csGjAMg+DgYFhZWeHIkSMAAB8fH0EkEpHe3l6uvr6e+eSTT0hQUBCCgoJgtXcvTYXneUAQEOngwISXlOB2WhpzZsIE9EVFIWrlyrtiPz6e1qkvW0bv2z0CddGiRWzlV19ByM/nQw0MGN9t26DatYvLPnqUAUBcXFxga2sLAJg2bRpwd+GJxezZmGBlxUBfnzrkD7r2y1ta8Hh+PtL+/GdE29qSCxcukK1bt/JGRkZgGIYwDENYlgXDMLBraYFpSQly1Wo0NzczLMvCx8cH6enpSE9Px6Shlm8DAzST4vZt2uKtoICmyZeW0kUdDw9AJMK+ffu4zs5O0tHRwQiCAH19fVg6OND5XltLSxHuE+gLFy4kt27dwslff0XURx+hYd8+uA/6IODYMeD0adhMmQKRSCQbGBgI6+vr256ZmRno7+9vnJOTwzMMk5mYmFirVCpdAWgBNPM8z3Ech6CgIEgkkuGFwblz5xp8/vnnT7z77rsFhBArLy8vyVAJTFtbG9RqtQDg1uDQbFxdXWFpaQlBEBgAPX9sounQoeO/EV3Ntg4dOnT8F6FSqQ6vX79eIpFIZE1NTe7jxo3bf8+26TY2NgvGjx//UJtvkUiEyMhIUUREBBsQECC+tx6bYRhUVlZyWq2Wkclk6OvrG5l6/U+SmpqKc+fO4cKFC3x1dTVxc3PjVq5cycTGxqKxsVFoaWkho0ePJvb31jf/X8Db2xuurq44deoUY2pqCtuCAgy4uKDW0hI1NTW4fPkyb2dnRyQSCaqqqnC0qIgI69YJy6ysGO/wcPiGhSE4OJjY2toiKytLGBgYIC4ikfCMjQ1xOnSIlKjV/C/x8RgzZw4RGxnRGthVq2h69o8/UtHi5gZibIwblZXw/PvfYRAVRTAotB7FxYsXhZKSElJWVkYNytzcqIj/5BPqUF1fT03P9u+naeFjxwJ1dSBjx8I8JgYH79xBh5kZvL75BsZr1tCWWatXA66ud3skE0JN3KZNo1FhDw+6OGBmBhACt+efJzlBQQixtITE2Bg2jo4wHT+eSEeNotH7GTOARYtw+vRppqGhAb29vZj01VckIzpa8PDyIjY2NqSyrg413t58eGsrgw8+oO2ozMweuF6e51FWWIiYFSuIOiBAcHv1VXJ/H+pHYm5OFzd8famx3X2YmJggIiICISEhxNvdnXjq6cFv7FjGub2doKqKy6yuZow//1xwXr6c4Kef6L28eBG4fh3c3LnYJpejzdISVd3dqKio4ENCQu6+OEZGNCXaygpYupQazhkZQaPR4HhtLSwcHXnnzEwGdnbIksl4qVTKzps3D2PuiwSPgBD6fKZOBXbtotFjjgOOHYMoLAxuS5fCxcUF1dXV0Gg0CAwMZMzNzYmpqSmkUikMDQ0FCSBIm5oE9ZgxvEajYZYuXYqAgABUVlaivr5eiIiIoNfw0Uc09X4oQt3YCKSkACYm6IqMFCoPH8bPra1CS3k5GzlpEiktpWt7+vr6CAgIoGP99lvafuy550ZchqmpKezs7BAbG4vM2FjhXEGBEB0dTcAw9FxVVSCvvgohLo6tbm+3FAShQqPRzBo3bpx47969GrVaPevixYuLxGLxUYZh1jMM08Jx3Gfl5eXjUlNTzYuKirRDGTwikQje3t7impqacQAiJ0+ebDDkEyCVSiEIAlNfX78iOTkZhJBJISEhBuXl5aiqqsp84403tgOAUqkUq1QqR5VK1aVQKIQ/Nvl06NDx/zu6yLYOHTp0/IehVCpNAfgDyEtMTOz9Z/blOE7fyMgIo0ePJhcvXoxTKpVMYmIiDwBisTje29v7dwuhGYZ5ZH/ruro6VhAE/PTTTyCE4O233/5nhgaApn8mJycjIyMDADB16lQSFhYG9p7caR8fH1JTUyOMEC3/F1Cr1di+fTvf3d3NAMDZn36C/PBh/PDUU2AOHRJYlhXUajWTm5sLf39/lJSUIDw8HAkJCQRxcdR9e8uW4eOtWrSISVu5EtKuLiJ68kmIvv8ecW5uzLXt27mUlBQyJTqaEZ0/D7z+Ou1P/Le/0frUDz8Epk2Df2ws+bmyEstrayH29aV14g9BEASkpKQQgIoaQ0NDGoH+8ksqrj/9lNbj1tcDX399d8dBsy4GQOC6dag9eRLso3qZGxrSvsmZmbS+99ln6eeDqeNXT5zg2lxcWFYiEXoXLoTUx4dg/37q0N7cTFOO585Ff3//cK24g5MT6bp0CT1ZWfzRo0dZQRDg7OwMDw8P9qeqKoSvWwfn48dpJP7pp4eHUlxcjJtvvSUUeXqS4K+/5mMWLnxof/cRcByNqDY0UHO33btpZLWoiEaaT5ygCwLXrtEUfKmUps57etJU6aoqWP/wA6Z0d7N35s3jvL79lkVd3d1n0tEBxMdDtG4dXjx8GOW//oqykhI4JiQ8mLZtYEDT9Lu7gYYGaE1N8eWXXwrLTp6EDcuyYFngzTfBnzxJWltbkZKSgilTpuB+9/5hTEyomV1DAxAcTD/78Uf6rHbvHv5aa2srzM3N+ejo6PtXJQhaWgiOHUPA7Nl3HegBeHh4IDMzk7S3t0NmYkJF7+zZAAD1t9+ioroatUlJ/JSpU5mDr77KC2o1O6m/n7jv3Anmgw9QfukSV97VxRoaGt6t/X7xRSrWr14FAgJGliR0doJxdkbz5s2CVqsdee9mzAAqKhBsbMz2mJpOazA2nhQeHq6v1WohCIJILBaf4jjOOSIiAsHBwdi1a9cWAH/TaDTvANjb0tIi+vDDD3kjIyNeIpEw4eHhzOrVqx/6+y8uLk7k5ORkWVxc/J5cLhdZWVnhhx9+6Onv738TAJRKZaRYLD5OCJEyDHMWwOyHPxwdOnT8t6GLbOvQoUPHfxBKpdJRLBYXmJiYrNBqtetTUlJ+/D233fvJzMxc4erqKrOyssKVK1fUAwMDFxUKRY1SqbRmWfarKVOm6BsZGf1LYzMzMxNKSkqG/zLPycnhHR0dyR+JcNfU1OCbb77hL126hKqqKmJnZ8ePGTOGj4mJYe6vAS8uLha6urqE0NBQUltb+z+KoD8KrVaLTz/9VJDJZGTFihWEZVlE19RAZGSEgBdfxPTp00lUVBQJCwsDz/MoKSmBRqPBkiVLaJrwkiXA5MlU4NjYAN9+C/6ll1BgbY2SgACc02iQXVAAkUgkKBQK5vz588KFtDQirq8X6tzdSU1NDapra3nnuXMJDA2BzExY3biBDAsLXrp1K7FsbAQzceIjx69SqWDa1obYs2dhu3IlSGcnjWw7O9OU78mTqZgfO5aan92HpaUl8vPzkZ2djbq6Os7Ozo4xvKfGGxkZwJ//TF2rN2wAFi4cUQOeXVJCMvX1iZ+fH1G5uSFq61aCvj7qwt3dDWzdSlPbXV1x+84dNDc34/bt24h8/nnEfPYZEzl5MsrLy/mqqipSVlaG3t5eFHd28lEzZhC8+y41FbOyAlgW33/1lTB7714S+vLL8Jk3j7YGE4S7Ttnt7TTtuKCARrB37KBi+7XXaH3xpEnA2bM0Jfqxx2ikPzqaCuu4OOq6vXw5dRv38aEu9AYGdOHg8cdhZ2/P7NNo4KBUCibvvUfw9ttUwD/1FLBwIcReXtA/fRrIy8Ol3l74L16MpMpKPi89HVxyMmH9/XHk119xxtycv3zjBh8waxbT7OaGsI8/JoxWS03I5s9HX1+f0NDQgPr6elJSUsJHRUU9fEWBEDrexkZ6naNH0/m4axcgkw1/7dy5c5gwYQJjPWiUNwJDQ7rYMGcOcM/7paenh8zMTLS2tnIB+/czKClB76xZ2L17N38uJ4eoz55FyPbtxPTFF1FQWAhzKysSvXIlyPPPA/r6CJw5k+EkEiFPoyGGRkacnYMDfblFInrPJRK6iDOESIQ7RkY42dxMli1b9uC7HhkJcWkp3PfsEY1evlxP7u9PPvvsM66vr4/leV5GCEF1dTWmTJmCwMBAcUdHR+jAwMC08PBwEc/zYFmWaW5uZjQaDSksLERkZOSDNf2DmJmZwcPDg7W3tyctLS3IycnpePPNN59TKpWmIpHo8oIFC8wjIiJEV69eNRg3btzWhx5Ehw4d/3XoxLYOHTp0/AeRkZHxRWhoaOiSJUsMWlpamNu3bzfExcVl/tH9VSqVo6GhYYSrqytjYGAgrqiomJGSkhIhFos/HDdunNTX1/dfNh2ztrYmsbGx8PT0hK2tLUxNTXH8+HHS1dUFLy+v4e/xPI/09HTIZDIMGRrV1dUhPz+fLFq0iEREREChUBBXV9eHmjdZWFgQlUpFcnJy+OzsbFJUVMSFhob+42jmP8HHH38s9PX1kfXr1xMjIyO4u7vD/M4dmC5aBNN7atVFIhHc3d0xduxY5OXlCYQQ4uTkRPtnHzhAjZz27gVMTCD6+mvcdnZGF8D39/cTAJgwYQKxtbVFVFQUCQwKgvW775Jzjo5cQXEx093dTczNzXGT43CDEBjU1kJRVER+9fKCnZsbTBwcaO30fZDaWpSeOgWNRIKo3FyYbNhA61yHhIpKRdO/16+ngnDGjAeOw7IsoqKiIJVKkZGRwZSVld1NHQaosdeGDVSULV5MBeucOTQCDEAQBFJUVITJkycjLy+PxMXF0TZSTz9N24jJZMC8eci8cEEoVquJIJGAB+BdUQGzp58GY2KC0aNHk9TUVACARqOBo6MjAsePJ1i6lNbNf/458MknqAdQbWdH6jMzwaSk8KY//kiY9naa0n7lCjX7qqqi9d5D44yOptHUJ54ARo2CsGAB2sLDoe/kBBIbC0EsxtWGBiGjtlZwdnYmYnPzkT3R76Hh5k1UZmXBorGRWG/YAGJoSM8TEUFTuV1cwMXE4O9tbegXi1Hv4gL5+PHErLQUDvv3k508j8WbNsHDwQGOkyYxfH8//F9+mRhkZFDX+MceA1xcYG9vz4SHh5OoqCioVCqSn5+vzcnJ4aurq4mfn9/Iyb9zJ10MkcmA48eBDz54wPX80qVLmDJlyvA7+AA8T+eMgwMA4MyZM8KpU6cIQFO8A2/cIJg3DwczMri+vj6yatUqUqfRCEJNDckxNuZvlJUx3t7ecHFxoc+eEOD552EcE0Os9uzBqPfeY36wtBSC/fwIxGLg8cepT0FzM51HajXU69ZhK8tilKenEBMT8/AX3MsLkMsBtRqorobG3p5paGgQOI4jgiAgICCA8/HxYfT19eHr6yseO3asnqurK2NnZzc8v7RaLeRyORcSEsL8EQNCjuOQmZnJpqSk6Ekkkk8DAwMto6KiROXl5aioqFCNGzfu4D88iA4dOv4r0KWR69ChQ8d/CEql0lUsFi+IiYkRA4Cjo6P+jRs3wv7Rfvei1WpP3bhx45kJEyaYBAUFEalUavXDDz8skMvlsBt0Ov6fwDAM7O3tYW9vj3PnzhGWZXHlyhU4OTkhKCgIAJCeno6kpCScP38eMpmMW758OZuens5ZWFgwo0aNIv9INJuYmODxxx9Ha2sr4+fnh927dzPHjx9HeHg4uru74eHhgba2Npw9e1ZYuHAh6e3tBc/zkEqlyM/PR05ODtfe3s5wHEckEgm/dOnS4egez/M4dOiQ0N/fT5YvX343ylVWRs3ETpx4+HVnZcG+spI0NTbS2tO//pWKWoAaiolEwLlz8C8sRCbAaAcFTkZGBj/UbkwmkwHGxnh22TJ26/ffc3fu3GGPHDnCC4IAkUgEFcsyTmIxEs6dg42JCY1enjhBhTMA9PTQGuA//xnRpaU4vHAhepOSHnQKX7CARnm9vWm9bHw8TZV+SIZAcHAwzpw5g+Dg4AcfSlAQcO4cjTCvW0cjvt9+CwA4fPjw8P0EgNu3b8Oqu5u2TXvlFbS2tiJtyxbuWm4uu/76dZgMtU2Ljx8W/szNm9iwdCl27tyJqefOQfzDDwSvvEJT4A8cGBa/8/39SW1NDV8mkzHnRCIGJiZYu2gRyMqVd8f6O1kA3d3dOJSSwmszMphFR45gz+uvC90aDRGJREJfXx/j5uY2PHfvpzE1FdbTp0O7ciVOzJuHm8ePC/PmzSPQ0wPefpve1/BwGBkZwdDQkLe2tiaL33yTiKm4JNznn+Pl/n7oR0TA0t6eoL0dyM6m/dCfeYYK3uXLgW++oU7pISGQDAxg1VNP4U5Hh+jIkSNoaWl5cGBLl9LI/pkztB/6Q2rRAVpy8EhkMhodH6SqqgoajQbOzs7CExoNgzVrgDFjcCcnh4mPjycymQxzV6wgGe7uCHrjDeZGVBT87z+voSHkLi4wO3wYB7ZsgUwsFiCXExw7RuvVz5+n11tVBdy8CWRkQJg/H5MnT/79XwoJCcCFC8Cbb8L77beRolaT0aNH8+Hh4Yytre0fWkCcM2cOO6K//O9gbGyMp556Sr+srOxNKysr4jfYOaCgoKC7v79/uBWYUqkUA9AmJiYKSqXSGIACgBmAMgDZiYmJ3B86oQ4dOv5j0YltHTp06PgPgWXZp4KCgpihmunBVkgjnJKUSqWbvr7+3wHYaLXaO1qtdh+AA4mJie2DX7nW0tIyHMpyc3PDuHHj+GvXrpF9+/aRV155BSPShf8FeJ7HN998w3V2djIrVqwg2dnZwtmzZ4mxsTHc3NxQXl4OT09PwczMDFlZWeyOHTsEAwMDZs2aNf9QaA/h7u4Od3d38DwPExMTkp+fj8LCQjAMA0KI4O7uTkpKSsi77747vI9EIoGenp7g4eGBOXPmkP7+fpw6dYr57rvvhNdee43wPI/du3cLAwMDeO6552Bubn73hJWVNFopEtFaWEGgzt7vvUeF30svYbSxMU6EhQEff0y3VVRQh+uhOt7kZFgeOYKI+Hi4v/8+coODEfn00yOV8ObNgJ4eVq9ezdbW1sLLy2t4+/vvv4+ojRvhIBKBfPQRPXZNDY0yCwJgY4OuPXuwPSQEmsE+4A9NsWcYKmQAamy2bx/tmXzhwgMR7vT0dGg0GlRWVmLc/e3O7nWPXrGCivW33gL3zjswMTGBqamp4OnpSSQSiXD79m1iVVEBHD+Ogvh4HDlyBI6OjuSZ556DiVxOr+PkSRp19vQEioshTJ6MpokTeQNHR3gODDBqOzu6PTWVLmBcuAA8+yyY2Fg4BwUx9kVFGHPpEi66u2P/p58KT2zcSMjQQsR95OTk8HV1dYK1tTWbmZkJU1NTPP3FF2iWyTBJoSCsiQm8vLyYLVu2CFZWVg+flAUFsAwMRPVf/oIxUVECIQRXrlzhMeQMvngxvaYnngAOHAAhhNTV1ZHq6mq4ubnh+vXr8PHxgaGRETB9+t3jlpRQwe3sDHR1Abdu0VTy3Fw6D5OSYDN6NCx//RVPtrfj+qxZAjZsIHBxoSnYLS10IaS8nB4vMZGmZ9+HRqPB+fPn+fnz5z+8/ZeVFW33NoihoSGJioqCYuxYwvj4AMePQxAE6OnpCT09PcP3aGxsLCAW47WEBNoO7SGIRCI0isX8gthYBlevAra29H41N9OUf60WsLODpLAQrnv28CqViixcuPB3fzkcaGzk+qKjid333yOgr4/pcncXbH/HSFAqlcLa2prv6upCUFAQY2Nj83uHfwBHR0c4OjoOj6m9vR21tbUA8CMAvPfeewsZhvlBJBLd+fDDDytFIlGojY2NxtjYmG1qauJ7enq6lErl9MTExPx/6sQ6dOj4j0IntnXo0KHjPwSxWPyEn5/f8F/N9vb20Gg07kql0jQxMbFDqVQSPT29XyMiInwsLCyYX375xdPQ0HDswMDAp1u2bEnv7+8/SQgxNTQ0HI6mEELQ09MjdHZ2MgzDoLGxERcvXoSXlxfGjh37L42zs7MTt27dYtesWQMrKysoFApy7do17N27FzKZTOjr60NERAQZP348ZDKZIJFIiJ+f36PTWX+HHTt2CM3NzQQAVq1aBXNzc2zdupVcv34dAODi4oLx48fDwMAAgiBALpcTQggLAP39/ejs7MRQenR+fj4aGhrI+vXrYWZmRgUsz9O662XLaOpxZyd1rX79derCvXw5dcdOT8edS5cEgytXeFRWsmhqAn7+maa2+vsDN25g982b2rqAABFTXY3W4GDoSaWw+uQTKsx37aIp2R9/DPj6wtDN7W7qvSAAdXUwB4SWoiJCtFrgjTeAV16hKbQWFkBTE1BYCI2xMcTl5Rhsj4bc3FwkJCSMvGmOjrSWdwh/f2D7dmDmTFrPbWIyvGloweHmzZtDhlp39/v007tRc4ahgv2bb6BNTUVrayvCwsIIADg4OOD69euc/6JFLGbPhuVgtHREvXBBAa3ldnenbcYANF26hINffcVAEPDFihXo3bYNYrFY2PjVV4TY2tJ7f+0aja4/8QREDAOL/HxMPn4caZcuka4FCyB2dITB448Do0ejVa3GhQsXUFBQAACMq6urcOfOHd7FxYWZNWsWIxKJYPPRR7B56il6LV5esLS05I8cOcI8/fTTZIQx4PXrwIQJEGdkYNTGjbBoayM7duzA3LlzR0ZRJ08Gtm3Duc8+Q29vLxEEARcvXhSOHj1Kenp6EBAQwM+dO3dkCcSXX9I6659/ptkRjY3UJG+IQddu0bp1aDt+HC0NDTxGjWLBcVSMX7lC5+3339PvP2LxLCwsDLdv3350aNvOjkbnV60aPIwhMjMzUXHiBHqeeALdx44Bx46BEMJw3H0B2qE2cyUlNIPiPsrLy8HzPOPi4nJ3Dv3979R938xseNFHe+gQqsvLGb9HROaHuHLlCm7evMkuWLkSXEEBnN54Aw3Ll/9uRFsqlWL16tXM5cuXkZqaiszMTKxZswYPrWH/Aww+QxaAI4BSiUSyOiEhQWJqamrf09Nj7+joCKlUOjyJrl69anzq1KnjSqXSKTExUederkPH/6foxLYOHTp0/AegVCrNWJZ1dbynz7BYLIabm5v65s2bXyqVyg9EItE6mUzm4ufnx3z55Zfw9fUV5s+fz6jVar3S0tLx9fX10QMDA/y4ceOGbaz7+vqQl5fHAjQiferUKa61tZWtrq5GREQE7jcn+0dotVrk5+eDZVm0trbCysoKZmZmiIyM5DIzM9mOjg4SGhrKRUVFsQAQGRn5Pyq0XrBgAdm1axdef/11DKWAzp8/H5mZmfzcuXOZRzmn//zzz3xJSQlDCEF+WprQfPiwUCqXM0vy83mzr79mMH48rbf+29+o+Lt1i5qCGRjQyOFQXedgBBkAqm/e5BJOnxbB3Z26kA+JnLg4oK8PxsbGDADwIhGKBvdznTkT/jU1NP07JIS6WM+eTU28du4ETp8G6uqg9fNDYHAw8XN2psLc15c6Nx89SgU9ADg5wZwQvPzyy9i0aRM0Gg2am5vvuj4PYWVF073/8pe7keyoKJoGvmwZ3TbYXsvb2xvPPvssduzYge3bt2PlypVwGKzhRVQU7an80Uf0Z3Nz6p7+zjswk0hQVlaGyMhIxMfHk6+2bWM5Y2PcOH0ah5KSYGRkJJiYmBB0ddFU+MOHgZdfpj26B3u2W1lZwd/fH4WFhdAMDGDJ/v3ImDOHF8rLWTKU3s+yNLugrIzWoI8ZA87dHTkMg6sdHZC3tGDyxo0YaGtDoZsbCMvC3MEB8zduhJ2dHXng3gC0tdngYsWKFSvYnTt38ufOneNnzZrFQhCoudvKlWhPSUGnRIKsn37iWltbWZFIxPv4+DAAfa+6u7sxMDCAO5s2webZZ+Hi5YWb7u6oqakhAODj44OCggKmoKAAISEhMDUxQUBbG2T79tFab3d36iI/Zw6NWN+fyi6XA4GB6O7tpfXOQ8yZQxeFfviBOs7b2gKzZtH978n00NPTAyHk0SLP15fOA40GEIsxb948tJaWwiwhAeqzZyF2cwPDMNi+fbvWxMTkwb8nd+4EiouBpKQHNqWlpQn+/v48o1azeP99unDyyy90fM3NtDRCq0V3YSGcq6sx9bPPcIvjUHb6NCeprSX8pk1MpL09YG+PL3bs4Do7O9n4+Hh4enrS+RMfD48tW6jg37hxhKP6vaSkpGjT0tJELMvCyMiIH3pH/xVMTU1hZmamf+fOnRKlUrlILBYHW1tbP9I1PigoCCdOnJADsADQ/K+eV4cOHf+70Rmk6dChQ8d/ACqVarK9vf3MkJCQEf2e3N3dJe3t7W59fX0rPTw8QubOnWvI8zxycnKgVqvh7e1NWJaFqakp/P39WR8fH9G9buNisRgBAQG4fv06BEFAT08PAwCjRo1CamoqL5PJiOUjUkHv5fbt2zh06JDw22+/kc7OTl6hUBA/P79hsS6Xy5nMTOrjNmvWLOZ3HcQ1GuDgQeDVV4Enn6TC8+pVKjw2bqRGT62twKFDaHZ2Rsfp04Kou5tY+/sDOTkw8/BAgLc3Eff3U3EMUKdpADhxAh2HDyOpooKs3bcPMXFxkJWUIPzkScb//ffh1NlJytRqnOnvx1WGwW1LS9zy9hZuJCQQl5kzQSorgU8+QXdEBG5UV8PKygptbW1IPXcOjlu2MD3BwaiaPRtVTU0ghCA7OxvNHh449fPP3M3mZtbR0ZFfvnw5aWtr41paWpjQiAiYjR1LhXlcHK1ZnTePiqOpU2kU09QUGbGxSDcwQNzq1WBWrqSCOTaWCvOXXgL27KFiddkylN64gWvXriE8PBxTp04lD8ic16gAACAASURBVNShEkJFkI8PcG8U7/+w997hUZVr1/h69p6ZtEkhhVRSSA+BNEIIJPQSCAjSexcRVIoHj+LhYFAUPCgoKggoIKJ0FIQgoYZAeiCkk0ISQiqppE7Z+/vjTiVBPed7z+/z/V2zrosrmszs2fPsZ+ba617rXreTE6394cMUqNZqf9fT04NarUZhYSHu3bsHOzs7Uv6nTCGy3cmRkPH4Me5euoRRd++K/T76iOlSrzJyc3PVj0SRu9XcDJ7n4ebmxvrX1YHbsAEZRkbicUtLltLQIKiqq0WViQkz6t8fHMfBwsICCXfvQs/AQBymVDL/t97iWGfywhidq58fnQfPQ0tLC4MGDYKbnx/4vn1xWhSR4ewMUSZDr+pqBCUmwuTBA3A1NeBkMiKUnUOxAgLILbBtG9j48TA3N2cRERGcr68vGpOTIXv7bSS5uuLojRtITU1FRUUF19LSAsYYu3XrFiIjIxEdHY379+8jPT1dKCktVQuCwAXcuIFkb284OjlhzJgxGDFiBAYNGoS7d++iurgY/Xftwr26OpSuXIle7u6QSqX0+ZFIiLjOnNnto9Lc3Ix79+6xoKCgDjY5ejRZzletokLIokVUCBkwgIo506cDS5fi0aNHqKurE729vXsmmBxHLRN2doCRERhj0BVFcH37QjpiRFvLBuLj4wUbG5vuNuyxY+mcnz2j/V1fT+q1pyf41atZn5MnuVv29mrrb77htEJC6PHr11OLwNOnwPbt0Pb2hvm0aUjw8VGHZ2RwRpWVzNXAgLtcVQXv+fOhqq9HfmoqN+LGDURJJIK/iQmFrRkY0P7+9FMqVJiYvIhwcw8ePEDoxImYPnYsk5aUALGx1DO/fTt9rqqqaE/8+iv10f8Obt++Lerr6zMTE5PxXl5euv369Xuhui6KIm7dusVEUQwbMWKE6ncPrIEGGvyvhUbZ1kADDTT4XwCZTDbFzc3N4Pnf6+rqYvr06V1mdcnlcsyePRvHjx9nX3zxBQBKl/5H6xzl52FiYoJly5YhOzsbBQUFSE9PR0FBAZRKJXf79m2oVCq0BQD1hObmZhw4cAAcx7Fly5bBwsKi2827VCqFg4MDHj16hNjYWLz00ktdH6BWk/315k3qJ46NBaqr6W9lZUQ4BKHdMoz8fCg++wxHSkow79o1VpOYSKnaY8eSknbtGqnLVVV0493UBERFATEx0CkpQXOfPihZtAguM2ei/5tvMgDQAwBPT/yyc6fQ9OgRt/HiRcRxnJA2ZAi4mBj27NIlGJ48CVy8iKPffCOYpaZyiaGhePLkCRYdPy6m2tmxZDMz0SArS1QoFOz27dvMyspKHfT119xEtZrTvXoVxsbGXEtLCx4+fMgDQEtLC9nE33uPVMi0NCowyGTtyd4AYGlpCUEQxC+++ALLly9nBm1W74wMIumzZxOZaG6GbUUFAAq0et5CLooiSkpKoBMQgF5tinhnLFhAo7I++gjYvLn9HEaPHo2WlhbEx8ejqakJrS9ANuHWmdePHj3CyZMnMW79etg2NzN8+y3Z7QEs6dWLx65deNnGBndu3YLwr3+JV3R0mGhvLyY0NzMTExNYWVlxYkQEYs+ehdWMGThz5gyy09Lw9ief4Mflyxk7dKjLmrTDxYUCwfr0ofMGzRfX1taGubk5/Pz8IJPJUFFRgX379iHB3x8WJSWwuXAB41taIFm/HrC2JqLXSiwhl5Ol/t13YWtrC1tTU6HE15e7EhqKykWLIM/NVc+ZM4d3cXFBVlYWTp8+DUXreg4ePBijR49uC9fjAHDFxcWI6NNHeCM5mTN+7732UDtdXV1seeMNICMDQl4enrz0EqLu38etxEQAwLp162AweTKYQkHOiudaO3r16tURclZaSn3aJ07QuDlBINLd3EyFG4Cul78/wBhc9uxBfdsc7hdBpaK+bTs7eu6CBfTZ7ASe59vbFrpAKiUr++rVNGZtxgzg88+BiRNh/vHHiLt/H9UNDfxnM2ZgvqEhnAwNaU9Nngx88QVZ4l99FRYZGbCYMYMf8dJLUKlUTFdXF68rlbjk7a1OuXeP72VkhKZevdDMGJFhuZzcB2vX0n7YupXex44d9DMtjcj3hQvoW1qKpb6+4KZNg8LCArKZM4GKChrz5uzc3k4AxshJolQC779Px+whtdzKyopTKpXCwoULu31XPw9BENqunUVYWFi+xkqugQb//wT73SRKDTTQQAMN/hLYsWNH8vTp0wc4OTn96efU1dWB4zgcOHBAsLe3x8svv/yHFkmlUolPPvkElpaWoouLC+7evcuampqwefNmKBQKlJaWIioqCoaGhsjKyhJaWlo4URTh4OCgnj17Nv+iGbUAkJeXh6NHj8LLy0ucOnUqyUzV1XRjfOkSqbja2hREpq8P3L9PtuLnUFxcjAsXLojl5eWsf//+6uTkZB4A3nrrLejq6qKyshJmZmb04LIyCtR67TUis1paEEUR+/btE8vLyxkArFmzBp3V+8cLFyKa48Rca2s279VXYWdnhy/37BH9z51j9yZMUNWJIicrLeWW/PILMgIDRe/0dKbz9df45NYtODo5Yfr06V1PuKqKbsw7qfkpKSk4e/YsAKB3Q4MYkp7OHA4fpkCpV1+l4LI33+xymLKyMuzbtw+zZ8+GW1sfrL09Kf9tpDoiApgzBxf27EFSdjaGDRumjouL401MTARzc3OxrKyMlZeXc/3v3oVKWxs6K1aoQ0JCurIGQSBCYWgIrFnTrnCHhYUBANauXUvJ6V98AVy/jpYTJxAbGyvevn2bqdVqbN68GayhgcjO8OGkrPr50TWYN4/+394eSePG4UJ0NNqunVwuB379FWciItSpxsZ8/+RkuG7dCvfGRhxJS1M/fvyYnz59es+Fn7t3aUxWa793S0sLnjx5gr59+3Z52JUrV8SCggKmp6eH7OxsAMCEwYPh19QE/s4dUlS9vEjVnTyZiFm/fhCkUtQtXgzJ8ePQNTFpd2zU1NRgz549kEgkUKlUEAQB7T3/z0OtphCwkJD2AgVycqgnet06sn+DSFh9fT127drV/tRxDQ2wSE4We585wziex4MHDyAIAvLz88VHjx6x4cOHI/DLL8HV19OorzakptLork7ztdtQOXAgIqdOVb88ZgyPJ09I8X4eO3YQeV2zhloWIiKAr77q8pD9+/cLnp6e3JAhQ6iopaVFKvqmTWSFnzWLSO/8+d2PD2D37t2qcePGSTw8PEj5Tk2lglvv3kTuAwNfOHZNFEV8+umnUCgUWLlyJX2ORZEKRj/8QAW41hFxMDKifvj0dHLJAKiTSJAhleJuYiIcBwzoXgScM4eKE2+9RTPi8/Opj/7BA/pcP6fmHzhwAMXFxRg0aJBqwoQJfyhoRUZGKu7cuSOIolirVConbNmy5d4fPUcDDTT43wWNjVwDDTTQ4C+OsLAwX4lEsnHixInSf6eHWktLC0ePHlVXVVXxpaWlrG/fvjh//rw6Ly9PbOstfR6MMdy+fRtLly5lTU1NyMjIYFKpVFSr1ezHH39sv8mvr68XgoODWWhoKBs6dCh8fX25Pzq3Xr16wcHBAVGnT7NeKSkwO3OGenWdnICwMLJFe3p29DqPHUsEpFNgV3V1NQ4dOiRaWlpizpw5zMfHh7OxsUF9fb1w48YN8c6dO4iJiWFpaWlq58OHOX7TJvD79pGyBgCt1ld/f39mYGAgPHz4kCUkJAAA7Pv0AVpaYLhvHyxef51FFxcjICAAcrkcllZW7Fl1tRAUH8/3XrGCBYWGwnj5cvQ5coRJ8/Kg1tXFTY7DvHnzuge9SSREGmbMaA+DMjc3h5eXF/yTkuB98iT7ZuxY6JqZwdramsKxRBFwcGh/fFRUFH7++WcEBgaq/f39OwK11q0jBa4Njo7AmjWoy8vDwF27EKGry8mNjUVzc3OupaWFMzExYQsWLEBfQYBpaSnO19dzVlZWMDExAQAUFBRATy4HP2oUcPIkUFSECmtr7PzsMzDGIJVKERMTg8rKSqHaxYWVjRyJCxcuiEVFRaKjoyMrLy+HKIqQGxtDz9eXih2iSCp5aioR7cOHgVmzEJeWpq6qqmKbNm1i7WsWHg4PpZIbvHo1PN95B71Xr8ZjAwPU1NRwVVVVoqurK+uxB7b12uHcOeRbWuLw4cNiUlISs7W17UJ8o6OjBQsLC27atGlITEwUFQoFyykqQopCAdsVK6A/fTr1QufmUgDdqVPAhx+C9esH7WHDIDt/Hmz4cCKFEgla1GqU3biBeokEXh4esHdwgHu/fugxVZ/jSGEuKSEyWVlJBNzcnEh4Kxhj0NLSgoeHBxITExEcHIwbT55Ar7CQ/fbgAW4kJ6OyslL99OlTsampSTRrbITk+HGm2LQJvd96q6td+o03aP/179/tdGKcnFAmCKJPSgqHy5eJWIaHd91PUilw4wb1b+fkUBvHcyg+d45pGxvD9vRpOsbbbxNBHzuWVGFvb1rHadO6rwmAmJgYwdnZmTNNSaFixzvvkP18wgRyePj5kSW+B8LNGIO5uTnS09PF0aNHM47j6P3r6JD1WxDoO0ShIPfI5MmkVru7A+7uOBEbKySkpTE1z2Px4sXoNmM7JYVaOiZMoMT45GRy33AcYGtL310eHu0P9/HxQWxsLAoLC7mhQ4d2P95zsLOz44ODgyUmJiby7Ozs+devX48aMWJE4e8+SQMNNPhfBY2NXAMNNNDgL4SwsLBAiUQyg+d5I4VCkSOKYq5UKv0iJCRE+/dU4xfBxMQERUVFkEgkOHToEADwpqamPVqaVCoV4uLioKWlBX19fZw7d45JpVLIZDLcunULhoaG4qpVq5g2KZ3/XpBQYyNQUAD5mjWYkZsLk48/poCtgIDuc6ABurF+7TUiagBqa2tx4sQJ9dOnT3lnZ2dh2rRpfNuNrJOTExwcHLiff/4Zqamp8PTwEKp/+40/ZGAATJuGGUVF6BMRQf2rGRlobGxEdnY2PDw8OF9fX0RHRyMhMlI9/O9/55N8fcVrEyaILTExnIuLi9rCwoIHWsf8rF7NYeBAmDo7U2ryypWknvE8iuPj4fPjj6j7+GMYfPRRV8IjlQIFBUQkOvVI96qsJCJ04QJGFBcLMTEx4qBBg3jY2BC5aGpCSUAAzp49q25sbORnzZoFJyenrnfvvr6U/NxZuZTLYeToCF5fH7xSiSGursx37Niu6xscDMvoaAwePBinTp3C9OnToVarcfr0aVhYWAgTJ07k+uzejaqpUxF17RpYv34QOQ5KpRITJ05ETk4O9+j6dWHyZ59xhQcPYurUqVx0dDSysrLEqKgoVldXJ0yZMoXGOk2dSqRp/HhSO5uboaythXjoEG8/cSK45GRSG+fPJ9tzeDi0N24EyssBxnDs449FhULBPD09mUcnYvM8FBIJlDt24KeGBgweOpQxxnDmzBnxjTfeYM+ePUNmZqaYm5vLe3p6Ijw8HIIgsA0bNkAQBOzbt0/cv38/27x5MzgXFzqP116jMVSlpbRH794loqxQ0HWvrIShoyPm3riBk4MHw+3oUdiUlIB79Ij29bJlRFwPHiR19dAhKgiMGUOktHdvSnRfurTH9yORSMDzPEaNGoVRo0ZBHR6O4AMH0LxlC4xMTDr2wccf49GjR2KdRMIEUQTXee+FhFC/dg9oLwhs2kQ/KypIhc7PJ4XayopUcZ6n8WFyORWNAODOHSAxEVi1CuN27ULKpk0CVq/m2pLSsWhRxwv5+wMHDpCLpQfFXxRFOpO33wY2bKDPziuvUO/5/Plk6S4vp3PpAX379oWZmZn4r3/9C0qlko0ePRpDhw6lufPW1qRCf/QRFfQcHakw04pZs2ZxX331FRoaGvDTTz+pFy9eTOt66xYp2eHhdD6enuTSCAoi18f771NBplcv+h6QyYAvvwTHcQgICEBkZCRqa2vxZ/IuAMDDwwNaWlry48ePXwoLCxuwZcuWRwAQFhZmKZPJtgKYBOAHhULxtsZuroEG/7ugUbY10EADDf4i2LZt2xqZTHZ0yJAhwc7Ozr7GxsbDeJ6fMGrUKOMBAwb8R6ndbm5u3KBBgzB69Gg8efIEVVVVmDlzJjM0NOyivqlUKuzatUvMyspiL7/8MszMzNCnTx8oFArhyZMnHAC0tLSw6Oho3Lx5E42NjaKzs/Pvn5MokoX7zh2ynqamomX6dHxrbo5SY2N4hYa+MCUY9ILUpzpwIPbt26c2NTVlkydPZoGBgd1UdI7joK+vj3v37sHh/Hk2+to13B02DM0yGe7fv4+clhZB39+f1VtZ4cCBA8jJyRFjY2MZANG0ro4lZ2VxPGPiFWtrNiYkhE2cOBF+fn5dRzLp6REBuHiR/r39NtlRjY2h368fGnJywB8/jow+fWDLcV1nDL/6Ktmx28778mW6Sf/0U8DWFpaWluzatWvcgAEDoKOjAxgbIys5GUcSEuDi4iLOnz+f61HRjYigfu1OhRi1Wo2vDh7EAzc3yFpa8NJbb4EfM6YrWWEMuHABTm+9herqanVUVBTLy8sTvb29mY6ODrt27RoeZmeLV3V12YyHD6FobESpqSkWL1mCfv36oX///hjg78+0WlrgvmYNY4zB1tYWwcHBLC8vD0ZGRnBycmIwMKD+1qoqIquvvw7U16PexgY2W7fC7/33wV2/TrPKlyyhfzU11Fbw0ktAbi5chg1jTU1NyMnJEevq6gRnZ2eOMYaKigo8ePAAlZWVSE5OFs9ER7PsoCD1cm9vzm3sWNjb2+PBgwdCXFwci4yMZNXV1WKfPn2Yubk5bty4gfnz56N3797Q1taGtbU1S0lKgvnFi4KZoyPDxo10jW/cIHL8889kKZ8yhVobliyhUXAeHsgdMwaRhYUoHTtWiPDxYal5eUJNcLBgMWMGJ+vblwjfgAEUFGZoSMfbu5cU0Tt3aLTco0dE8Kqrad9oa6OmthYPHjxon2/OOTlB8tNP0A4IIKKek0O2+e3bcU5PT4yLj2eRkZGoqanpaDPgOFJnBw7stnXy8/NRXV0t+vj4cO37+913yVkybBipuLNmUcHhvfeAESNIcR44ELh9m67nnDk46+SEZhsbwdXLi2ufKd8ZMhld0+Zmcms8h5iYGLF/eTln+OabqPPxwYkTJ0TL/HxwHh5M4u4OFhJC3x+DB79Q3U5KShJramo4AOB5Xuyfmsrg40OFjLbX3LSJXAvPpbonJCTA3NxcLCgo4IKCgqhFIDOTiipjxtCDvL0p1V0mox70MWNI2WaMihD29lTU2L4dqqAgpKSmIjMzE35+fn+obrfB2NgYarVaUlJSYhwcHPxzWFhYH4lEkubn5+c/fvx4w4KCAm+VSuUWFBR07k8dUAMNNPhLQKNsa6CBBhr8BRAWFmYlkUh2rly5UruT7VXa+u//Crqttuy5c+fi888/Vx85coQHgEWLFsHBwQGCIOCrr75SNzY28p1HOzk6OqJv375cSkoK9PT0YGdnh2PHjon5+fksMTGRFRQUqAcOHMibmZnB3t6+64umpFCfY3Q0Ecr33gMcHdELwFATE0RHR4uNjY1M9wUzgAGQMnXoEJ5MmoSGhgY+NDSU+npfgCcFBfCLj4fR3/+OA1euQM0YdHV1hbVr13JRUVFc3IkTIjZtYoOXL8eoUaNYRkYGLp86hdWffw73kBDcGjAAaoUCtra26JKWXl1NCldbv3F6Oqm0gwcDR48CL78MTi6H75YtiJswAU/27xexfj3DxYtEqBgjpTo/n0h2ZiYRjz17iDQB+Pnnn9t7ydeuXct0J0yA7L33MHbhQnHIlCk9360LAqUlP2dbj27tgwaARrkcR155RXzF15fhn/+kPnBTUyJ9ffsCjY2YMmUKP2XKFKDTGKxhw4YhIiKCjRk7FibvvQcnX19Y2dmJ9nZ2HdUHHR0aFdbcjM4kq7a2VrCysuLa1chjxyiY6vPPiaQBuPHzz+rMjRu5dzw8GDw8yA6vUpFVt7GR5o2npaFh40ak+vkJuioV8/f3Z1EJCbyjoyOcnZ1x7Ngx1NbWAgBMTU2FWbNm8U46OjyCguh1bGywcuVK/vTp0yIA9ZtvvskDQFZWFvT09NTHjh3jBw8eDB8HBzjk5GBMWRn07tzhMG0azbXOyCDl0seH+tMPHqSihrc3sG0b9QODlFUjIyNRT09PnLt2LfLy8rj4+Hh14vHj8Pf3F4MmTiQ3SOee5Vdf7VC+y8vpX0oKXc/LlwHGoM3zGJ6SQmqqiwsRxW+/pd7qq1dp3JlCAUilWLZ8OQcA4eHhQnV1NdfpYtBIrVWrum2fHq3ubb9LSKAwsO3bgf37ScmvqyNVWC4nkt/aHy/T0kJLS8vvq622thSsNmpUl18LggBZaSnP79yJn1atEpiTE8vPz2fHjI3ReO8eZvXvDxdnZ5o5PmAAFWCeQ11dHZRKJZNKpVi0aBGsjIwYHBzounWe8R0Z2TEmrxUSiQQrVqzAzZs3xYKCAlb59CnM166l6xsS0vFAX19aE0dHypKIi6PPj7Y2Ke8AhTJeuQLDNWsgr62FSkdH3LVrF1uxYkV7m8YfQRAEURCEktZzW+3n56c3fvx4CQDMnTtXd8+ePdMBLPxTB9NAAw3+EtCQbQ000ECDvwZ6aWtrq3oMVvofAkc24PY77O+//x4LFizAhQsX1Hp6emzNmjV43qrOGMOA1pnQERER6vz8/PaZ3OXl5fylS5cAAA4ODhgzZgystLSAf/6TCGlAAPUpt7SQhbM1HGr48OEoKCgQv/jiC4wcOZIFBAT0fMJjxgBubgg/f14YOHAg5HL571rXB5WXg+Xl4XhuLlpayR9jjJPJZBg1ahQUZ86wmooK9G694Xf/7TeUGBuzQ6tWoUwmA69WUyp5W9r2uHEUDGViQir23LmUWP355/T/VVU0F7hPHyA9HeLp08hevlzQ691bxLVrPPT06GZ/714iJo2NtC6rV5OtdciQ9nMfOXIkXF1dcfXqVXb37l2MGTMGuZaWYv+oKIb163t+w2lptMaNjV1+XVNTIwDgXnnlFVRUVEAikTAIAqm0Pj6kzrbZorOziTw+B2NjY8yePbvjpTZsEDx27+bg49OlvxiDB9Pc707hWu7u7lxxWpqAqVM5pKWR8v7kCfVtX7sGjB6NiooKTiqVdswAFwQaXfb114BKBWVkJCJ0dJAwbRrsra05rwMHYHr9OnJDQ1G1ebPwmYMD19hphN2aNWs6ChJHj7bb6jmOw6xZsxiA9r+7urrC1dWVT7p2DbHXrgnOR49yhp6eMP7Xv3BNELBg5kxIOxNDY2OyNT98SAR72zb679OngREjwJuaIiQkhP3000+8gYEBfH194evry2dkZCAiIkJMTExk69evb58DD0Egdbgt7LB3b/rn6dmxtpWVqI6NhSIvT8TJkwymppTOrVIR6bWwIBvzc2nzDx8+7DpWz8+P1l0Uf99F8jwiIug12tLK+/YlW/XTp1RcUShI5QVlQzQ2NqKoqAimpqbQ7kndHjaMCm5r17ZnMjQ3N+OXX36BurERD6ZNg8XQoVxsbKwIAG/+8gtODxxIM6oZo+LJs2e0dhwHURRRVVWFa9euCRkZGRwAxqlUaAkNFXHjBkNrIn8X1NXR+ygt7VIcunTpkpCRkcExxvDLoUPquTk5vP7zLpLz5zvs53p6VEB0d++YMQ+Q62X0aJz/8kv1uj17eD4piR2IicHVq1eF2bNn/6m2m+bmZrVarTYKCwubIZVKX/X09Gz/Qr53755aIpGc/zPH0UADDf460JBtDTTQQIO/BjIaGhp0VCpVN8L7Pwm5XM61j24C8MMPP8DNzY17+eWX2R+9roODA5+VlSVWVlYye3t70dLSEmZmZuz8+fN4ev8+ks+eFWUVFcxgxQrIPvuMbkjHjSOLZUwMjRCaOBHce+9h8eLFXFxcnHD16lUWGxur9vDw4IcMGYIuSrdMBmH2bBj068f6TZ78YqbQ0gK8+Sa47dtRHB6OnO+/h1wuF9RqNZs+fXr782RffYXeABGP2lpg7170+/xzlMjlGPvdd/h1+HAEx8eLugcOsGcZGah2ckJhURG0ra3hnZ8PJgjgQ0PpRj04mA768CH9NDZGY3MzcnJyuPX79hERmTSJHiuKZMXNzaURVW+80YVoA0Dv3r0RExMjNjc3s+joaMTHx0Pt48OGenjQuvXUr+rqSgncz8HQ0FAEgG+//RabN2/u+MPt23QuHh6kcHt6Uj9rD2T7edi4unJXQkPheeMG9aDPmEF/yMvrNo7L4O5dlPftKyInhyzUAP1cu5aSsh0cUFxczACwH3/8UXRycmI+zc1oOHsWXxgZwbi6GssOHkTpzp3CrDlzOBcXFyR6e4tHrlxhpsXF0MnO5qylUkyWSqFydkZUazGoHYGBpBgfP95jmj2qq4GSEvi+/jp8163jPlqwANYuLuJihYLleHsjQkdHDLG2Zl3Ykbs7FYxGjKDrKopUiPngAyA2Fnfv3hWMjIwYx3Gs4ynucHd35z755BMhLi6ODRkyhAK8CgqosNCpQKFSqbBt2zbI5XJMnDgR7u7uaOjTB8ljxojDW0fTISuL7Njjx1NPdUMD7Skfn/b2BMaYWFVVxQ4dOgSe59HU1IS5776LQ0uWgHNwEGUymdA6ckpsbGzkmpub+f3796v19fW5uXPnMiQmEkHfuZMKQz/9RORaS4uKOqdO0Z62s6O9vGkTtCUSZGdnS7Kzs2FnZycYGRmJmZmZ/Lhx4+DbStZFmQyYORNs/35g3Trk5+fj+PHjsL9/HzNv3cLFrVuFFaNGcUFBQUylUoEbOhQFV692OEz09SEOHYqyGTMQ5+2tfvjwIadQKJi+vr7o7u6OjIwMcBIJxIYGlhobiwHPFSEAUNHkvfe6OTFkMhkHAJ7370ME+N/efVecYWDQ9fsmIoLWpa1g8s03QFMTHqek4LuzZyGXy9X6+vpMEARWVlnJP8vOxFSR3wAAIABJREFUhpG9PWa++iridXW5m+bm6hEjRvyhnzwwMFBWW1s7X6FQzB00aJCBTafPfXx8fHNLS8snf3QMDTTQ4K8FzegvDTTQQIO/CD788MPGt956S0dHR+e/cnyFQoGPP/64/f+HDx+O3r17o2/fvj2rUT1AFEUIgtDeh9hcUoK7K1dC1dICma4uYtzdodLTg4dMJr506hSTdCaDokg3radPk6o3ezYazcxw48YN9ePHj1l1dTVzcHBgAwYMgIGBAaysrJDx6qt4yPPilK+/Zi9MO09OJpvs9evYe/iwWF5ezlatWgXzTmFk7fDzAwoLydrcGnKFX38Fhg9H2UcfYf/lyxB4vjN5gUQiEZVKJTM1NcXKkSMh3bGD5gf3sDZbt26FTCbDu+++S6Tqk0/IiuvgQK/l50d21E4QBAFHjx5Vl5eX8+PHj0dUVBQqWpW5cZGRop6Bgci2buU8PT27Wn9zcigZecWKbueye/du1NXV4Z///Gf3NbhyhfpPIyMp6X3hH7tS7927h8uXL4vvLlzI8NFHZJ2dORPYt4+UvrZjNDej2dgY3y9ejJV793Y/0LFjaD53Dp+6uWFAQADq6+vVVUVFnDw3lxWamcHdywtpaWnob2IiTFu9mmu7Dmq1Gt99951QXFzMtS42QoqKhABDQw7BwbSnNmwg4skYjXry86NQq9Y1Tk5KgvuVK9D+5hvg7l0omppwOT0dmZmZ8KiuFkJPneIur1mDpMZG+Pn5wdbWFhzHQa1Wo6SkBAGnT0P/1Vfbx0YBACoqIG7ZgrTkZLFo7VoWMmtWt7f86NEjnD59WlAqldzcuXPhYG4O3LtHPd+dEBYWBgsLC5SWlmLdunXIzs5GXFycsPq11ziUlRHh//lnGsf1z3/S+3NxAZYvB9avR9mzZzhz9qyor6/P+vTpA5VKBbVaLfqHhbHS115DjaMjOI5r/9fS0oLm5mZIpVLcvXoV76xdS0Wd7GxS2t99l/ZqYCBZwMeN60gjLywkhfjaNSiPHcPxCRMENWNcoa4uxB4UdB0dHegVFGBcSgrSNmxAcnIyIIrwSUqC0sICU77+ukuR8f6CBUJ4nz7cxg8+QHJyMh4+fKhuuX6db5ZIoB8UJPr4+DA3Nzfqr25uxjNzcxQfOoRyMzMEBARAIpGgsbERgiDgyZMnKCsrw9OnTyFmZYny7GwhzdOTKZVKTq1WQ61WAwBmnDyJ2v79hSHHj3f/ounViwobxsZQKBSQSCRIW7cO8gsXkLJ7t+Ds4sJVVlaivr5edHR0ZM5tie5nziCpthax8fGYbmAA048/xr8zUaIzTpw40Zibm3tOqVQu3bJlizIsLKyfRCJZwRjjlErl6S1bttz+jw6sgQYa/FehIdsaaKCBBn8RfPzxx5WrV6827mID/R/G/fv38csvvwAANm3aBKn0P2wJVyqpvzQiAurhw3FDT09wHz2aO3jwIAAg+NYtKKRSjLpwocM+2wZRpH7lAweIrLm5QTQ2Rm5uLh48eKDOzs7mm5ubAQDyZ88wW19ftNmypfsdfFMTqYx79xLpAJCamoozZ87A09MTL7/8Mt3Y1teTAuvpSaqsIFDgko8P2Y3d3QGQrfXLL78UjY2NRalUymbPns1kMhmKioqQnp6O6OhoWD1+jBUJCWD373c7naqqKuzZswcBAQEICQmh9/nNN2RrDgujoLBZs6gXVColdRDAuXPnxMLCQixfvpx17klXqVQoiIxE1ZUruKWvL9q7uopTpkzh2q/ZyZNkY31O3VYqlTh79iwKCgrEtWvXsm6jyNpgakoK/yuvkNV4+3Yau6SvT1bfTqTgxx9/VCuVSrZ48WIO2dk0vmvQIOrJNzCg8KlNm5A3bRqOXrgAOwcHccmSJd2umaKlBZcWLoS1TCb4Hz3KgTFgwwY0Jyej4Ouv4ejoiEePHuHujh1YFBsLlpLS/tyoqCjh1q1bXK9evdQ1NTU8QHsY1dWkwAYGUiCWlxftq337yGbv44OiESNQ++wZbo0cCR0rK7FOLmcKhUIwlskwuLSUs1uyBHcuXRKzpVL06dOHlZaWqpuamkQArKmpiVMoFMyouhrzz53Dxfffh0QmU8vlcnh6evL2vXrhztSpGBgWBt3q6heOuNq7d6/o7u7OgquqwLKywN55B6WlpaiqqmqfX+/t7Y2UlJR2Aji0uFgY89tvHB4+RPGDB9CWy2F85w5lB0ilUCuVKMrJgfG2bWiMiMDh9evFSZMnsy6zyFNTaS/2MP4LAJRvvIGaEydgVl5OarmrK/Wnh4RQgJuzM/3s37/D+t4ZGRmAmRnEoUORb2yMO6NGqYcMH87XmpnhwYMH4HkeZmZmyEpPF/r9+iuX4umJWmNjjLx2De4TJ8LsnXe6HbJFRweZP/4I00GDcOTIEfTr1w+enp5wOHQInLMzZQUAQGUlipqacO+115Dk6wuZtrYoCAJTq9UQRRGMMcjlctHQ0FAwNjaGY24u7/rZZyiNjoahoSGkUinK8/JgevQoypcvxw/Hj8PGxgYTJ06EpaVl+/lERkYiKSlJrVAoWHNzMwcABlKpuKKqism3betQvHtAYWEhHvztb6JzcjLL271bmODhwbV99v8dtLS04MSJE41PnjypZIzdE0VxbEBAgEwikXBRUVHNSqVy4JYtW9L/7QNroIEG/1VobOQaaKCBBn8diIIgAAAeP36MmpoalJSUwMzMDCYmJtDR0YGZmdn/1Qv89ttvIgC2YsWK/4xoq9V0c71iBVmpv/wSvKkpxrSOAhswYIAqOztbwgkCsvv1w7gerOmCKKJ24UKUBgbC7sYN6O7bh4bQUBgNGwYfHx++qqpKKCkp4bS0tEQXc3PYfPklw+bNXUeECQIRRTMzdL5xNTc3J9UpJQV6Bw/CaNMmDP7hByAlBZVnz6LX4sXgliwhK/UXXxDhLy4GcnMR++QJGhoa2IwZM1jnwDcbGxvY2NjAxcUFp44cEffo6rLqsDBoa2sjNDQUbdb/iIgIyGQyMWjAAIZPPqFQtbVriXB7elIP8MOHZK9PSiK1EEBOTo44ffp07vnwN4lEAsdRo+B48iQ8jI3ZvoIC8dixY+LMmTOZnp4eEfdOSmpNTQ0iIyPFhw8fsubmZqjVapadnQ1PT8+uFyA/nwKefvqJUr9Xr6Ye3IICIlvvvEO91Y8fo2HECDyZNQtFhYW8YXU1sgYNgqu7O/VhHz9OvbgTJ9K++O035OjpwcrGRly0aFGPtv/frlxBmrMzQp8+5XDwIIWGvfkmtKVSuLZazh0dHXHC3BzqoUMhUSqpMAEgPT2dqVQqzJ07l29ubsb+/ftRWFgIW1tbeg+iSI6D334jR8Gnn1JBZskS8JMnw2HbNoRPnAinmzfZtIQEZISHcwGzZ4MVFaGlqgqJdnZs6Zw5bSSri+VXEATk5uaiJikJZrGxYom/P69Wq/HDDz9g5MiRiBw3Dg23bmHC1atkqx8ypJu93sjICLdv34YyMhLGVVVIMjVFWVkZ5HK5SiaTsd69e/MjR45EQEAA0ubPR4uWFp6NGMEdGzIEeTt2QBAE+BcWYqiODppCQ2Fubo6Cx4/x45kz0OrXT7AwM8PfJ03iMHMmKeCtBSiEh1MAW+f+YoCI8/vvQ/n3v+OwoSE2FhXRaLqvvyYV+5dfqIVh6FDg5ZfpemtpdRmdBaC9WMUyM1F5+TJsf/iB9T19Gjh5Ej4qFRXETEwwfvx4DhIJhpuaonb4cMiPHoVWJyt9G4qKivDtO+9gfv/+KC0thYGBgXpKW0igoSF9/wDUPmJjA8uoKFyYOBEoL4exsTEWLFgAbW3tdgWZkR2Eni+KwKpVsOtUTHLIygJu3oT+9u0IDQ0VL168yPbv3w8AmD9/Pu7du4eQZctQffAg5+TpyZycnFBfXw9DQ0MmaW6mz8Avv3QZ69cZtra2UO/YwcLDw6F//z6Nwisr6zqu709AS0sLCxcu1C0oKNCtrKzs4+bmBr3W3ILs7GxFUVGRDQAN2dZAg78YNKO/NNBAAw3+IoiMjHy7srJS98qVK+r4+HguPT0d1dXVKCgoEBMSElhSUhJ69+79p2e3Po/GxkZERkYynueRnJwMLy+vP20fhyiSpXTfPrqx/OILCnN6Lk3c3d2dq8rKEk3u3GGZXl6QyGSiRCJh5eXliImJEW/fvo0rV66whIQE5BUVCVEKBUsXBDy+fx8mH36I+w8figaDB3OTJk1CSEgIcx04kMHFhQh1G9luaCBV1deXgso6EfrG48fBR0TgsaUlZp46hd8Ywz1vbyHR25ulHj8OSWWlaPn22wy6umSFnjOHyJy7Owzd3ZFRUgJbPT30dnXttgRGRkYIkEhY/y+/xNMpU2BnZ4fIyEhkZ2cjNTUV8ooKrFWpmHZdHRHabdsoQKwtbKmmhgjQ5cukJp89C+U//oHrxsZs/PjxLy5+GBpCduYMPLduZYmJicLNmze5Z8+eqfucPMlJDx2C8NJLuHnzpnDy5EnW0NDAPDw8UFRUhGFUvOg+emjyZCLXr79OhYbz5+lazplDfa0vvwysWoUz586Jz2JjWa6eniB/8oTNOHUK9bNmwWTDBuoffuklSpxft44I2O7d6K2ri8SYGAiiiD4cxyCV0vWqqcGdpCQk3byJgYMHq52nTOGQkUHPl8mA1jnggiDgzJkzKK+qwqjXXyfLe6siq1AoWEVJiaDIyGBWDQ1QZmaKzYcOiWl37oiWW7cyrU8+oX1x8SLtiexs6s9duBD6Gzfifn4+6lxdxUnvvsvky5bBZsAAsLVrgfx8XFerxQqOY3lFRcK95GQhMzNTVCgUsLKyYgC1E5iYmMA4KAjO+fnMd906uHt4IDo6Gvn5+RAEASU8j+F799LaTppEWQVtdmIA/fv3Z8OHD4fjlClQhIYiOydHsLW1FZYtWybx9/fn/P39oXX2LOSurrB/+BA5KhUeGBuj0tgYurq6kEqlMEtNxQMAEfn5aGpqUhsaGnIFBQXqtzZu5L1CQlj7uLkhQ2hOeFMTqft6elRgSkig6/bKK9TaEBoKhbY27sbHI3DJEjxsaIDpa6+RFf/772l/TJxIx1y4kNoPnhud1Q7GUPD0KZIYEwO+/ZZBT48s79eukfshLg7o3x/cd99B9/FjSPbupZTy57D388/FN3buZMYffID7ycmCVCrl2wtGQ4eS1f3gQSK5y5ZBYWeHhIQEtSAITEdHRwwMDGQcx4Ex1j1xnTEqgF25Qu/r1ClqNXjzTYDjYGVlxUaMGIGGhgYUFxcjPT0d5eXlCJTLMWDLFta7tZinq6tLZF4mo5FtlpYUvtYDUlJScPz4cTQ1NaFfYKDQ9/PPORgakrPG0PCFjoOel5jByMgIVlZWXRxDjx49EqqqqmQ3bty4PmLEiJY/fUANNNDgvw6Nsq2BBhpo8BcBx3F1Dx8+NLG3t+fmz58PpVKJ1v5tBgB37twRTp8+zQ0aNAjjxo373WPl5uYiPj4eQUFBsLGxQXJyMi5evCja29ujpqYGNTU1bPfu3fD09FRPnz7994N7btwgi/HIkUQeP/jgd5ONhcJCocHUlFeIIqKionD16lXwPA9LS0vW0tIiuri4YBpZbTmFQoGGhgYYGhqCi4+H461bDL/8QkSgzcYZEUE9rhs3kiWc50nRbQspUyrphvnSJYgFBTB5+hS8VIrdGzbQ38vKOC8vL7VBVhYvGzSItbkHOI5rDx5LCg9H+MWLGJaRAbfTp4ks/fQTEc9OPfQSc3PIR47EvHnzAABDhw5FyvHjgtbBg5z5pEmQ6OiQ/bbN5toZvXoRSTUwoPVzcUG9sTGYKEKZn09kqCcEBwNlZTCIjcXq1av5kpIS/Prrr+xcdjZctLWF9B9+QHl5OcaMGQM/Pz/k5+cjLi4OZWVlaplM1nFtd+8mVTA8vEN1HTGCFODWlOc2xKWmIjUzkw0+fhxB1tbc+fPnxU9dXdmWwEDqjxcEUkafPiVyuWkTMGwY9OfNw3RLS5ZUUIDapCRUz54Nu/v30RQZiaT58/HGjz9COy2Nx6hRwIcfkjthyRIihhER2DFvHuZ+/z08Q0IE/PYbhzfeoNT18nL4PHiAQltbrl90NKp79xZf2raNPe3Vi6XJ5eL3PI+g6dPhNXIk9RN7elIvs5cXqYh5eSh56SWgokLUtrJi7fuX44CFC3EvIoJNvnABFhIJl/7VV0hMTERpaak48Pn51H37AiUlQFwcZAEB+Mc//oGamhokJCTgzp07qFUqYThgABWjBAH4xz9ovToH3E2YAPuVK7Fq1aqOBS8poZ9vvw24uID77DOw8HD0KS9XL1y4kOc4DjFXrsD+s8+wf+VKAIC3tzdfVVUFjuM6+gE5jooookjXp6WFeqvXrqVrNX8+kVRRbB+jxS5dgqy2Fp8vWQKlXI53AHIqbNxIe7YN9+71vD87oVevXqiuruZqmppgZGREhTlRpALI/v3Al18S+U5JoT3zHE6fPi0oW1q4IgcHVMTGCk+ePEH/58no0qUUuMgYEByM5qVLUTV0KD8SQGBg4B9Hrk+dSmvR1ERrdeFCR0GsFQ0NDWpdXV2+sbERWjIZUkaPFgM5rudvvaNHKQMiPh7w9+/2596txx45ciS8vb35OlGEAUCvPWoUFbsqK+l9/YcICQnRzcjImA8gDsCe//hAGmigwf84NGRbAw000OAvAp7nn8yYMcPB3d2dcRzXLZW8rq6OqdVq/N5s6rS0NERERAjNzc2cjY2NcOTIEU5LS0tobGzkgoODxZEjR7bf4O/atUtMTU3l3dzchH79+nVP7ampIeVm6VJK7505k+bM/g7UajXsfv6Zf9TaMxoYGMiuX7+O6dOnw41m3na5X5XJZB0KTUAA3ayePUukYPt2sqja2pLCplBQKNRbb1Gq8PvvU2LyyZOAszMU1dX4ycRErJkwgUGthr+/v5Cdnc3V1NRgTEAAz2dmYteIETi3bRvs7e3F2bNns4yMDHh5eeHmnTvqYWPH8sFbtxLRqK+nPmuZjJK0nzyhBG65vCMgKyYGhiUlCDp+nLvn5SX+oq2NNX/724uD3ABSWz/5hEiHtzfKNm6E/UcfQcvXF1HnzwtB48a9+MlffgmMHQtLS0u88sorXM3YsQiPiIBKpcLq1au5tn1x4sQJAEB+fj7/7Nkz6OvqErlIT+94D23o25fIwqVL7XOj6dd9oaOjI6SkpIjW1ta8kZFRx3UbPbrj+ffu0fovXkz927duwczCAvzVqzg3dizKy8sFxcCBnODriyVLlkBnTyceIJeT2vnKK0BFBa5bW0OpUMDg9ddhP3gwh8uXqZBy5AhiNm8W0pRKrtTeHpn9+oHjOLY5JAS9Q0LQG2DFx46pcysqeK/MTODQIbI8t7kTNm4Eiosx7uJFfPrpp9ylS5cQGhracR4rV+KtsDDEhoQg6/59tBw+LFrW1jLvbdu6cyueJ0W0tLT9V0ZGRpDJZAIA7uzZs6qlS5dKMHw4Ed2LF4lU7d/fQegWLOgYKyaK5Bb55z9pjxUWtheyamtrIZPJ2u3QgxsbgblzYWFtjZKSEuzfv79NYe2+ZxgjMltWRj3kxcXkMJDLKTyuDaIInddfR8CwYYh0dsa7b79Nv//pJ/p85eR0Pa69Pb2XFxT72kLLuuQ0MEZ7a9IkOp+qKiK6zzk5VCoV0tPTuenTpsFoxAici4riVCoVZrQl37et1/LlHePueB45VVUAAKtjx1CZkwOLffvIodEWIHj5ckcgoq8vnfvevbRfCwu7zakHgJEjR/IHDhxAcHAwEu7excB169jWigqEhoaiWwEGILv9d99RIeE5mJubw8jISH3z5k3++vXr4Hke7733Htjy5fSA1FTg8WMqOuXl/eF3bE/Izc0Fz/MP1Wr1oX/7yRpooMF/FRqyrYEGGmjwF0BYWBgnkUgGWFlZ9ZhW29TUhLi4OMYYw+DBg3s8xoEDB1RVVVWSwMBAFhgYCKlUytXW1iInJ4dzdHSEkZFRlwObmJigrq4OKpWq+8ESE+km/cQJSuEtLKQb1z+4EeRVKrgLAhx37sSD/fuRn58PAFAoFGJLS8uLw7rawHFECKdNo5v6b78l4i2RkPq3cydZnkeOJNLXOrYqae1a8dKxY0xfX1/YvHkz39DQAH19fe7Zs2eoqKiA3vnzwI4dWDx6NCIiIoSnT59yu3fvFpuamlh6ejqePXvGe7eNwOJ5CgnLyqL/372bCgBTpxIxfPSIZm/v2UOFiBs34PTsGYs9dkzYvn07k0gkgpGREbS1tTmO4+Dt7d3RNy2TofMMYDc3N9wODlZ/aWbGq27c4IKOHKH3/Ly9f+pUsgKXlLQr/kbLlmGulRWHH37o8tAJEyYgOzsbOTk5aGlshP60aVQwOHy45zWvrwd27SIS2br3TE1NYWpqympqakQAMDAwAID29oN2HD5MxQcDA+oJ9vaGZOdOCogDIAgCt3//fpSVlaFL8F99PV3n5cuRnZ2NkydPQqVWY8To0Wrjn37iERdHJD4/H/jsMzg8fcoNfP11HNqwQagxMmJq0Ni6OXPmMIlEgt48zxw2b0bS9OnwjY/v0lqA774DVCpoKxQYMGCAkJCQwFVXVwuTJk3ijIyMgHv3cOzMGTH/1i02aNAgYVBpKbPMzaUgrp4QEkJzsn192/uX23pnbWxsOl5YS4v2q1JJzzE3p/VSKknpnjGDbMSffgrMm9ctZCs3Nxfz58/v6jpZuBCzHByQnZ2NS5cuobGxEYwxThCEju8NUSRVfdgwavM4dYqU4Of7o/fsIQdAVhbu79snDvH07CgUBQfTPnwe//pXz+PUWlFTUwNBEKBUKrv/URSp4HDlChXRPviA9uWyZQCAY8eOCUZGRsypvp5pLV0K248+EgoLC7mKigoYGRlBsnYtkdHwcCLcdXXAnDng338fSEzEsfnz4ePjg5d0dakIZGVFx28Li9u/n4LlBIHGtvXt272Y0AozMzNMmDBBvHTpEjPQ11cn7tzJs5oaXLx4Efb29t1beTZupILTC9TttWvX8gCl+p8/fx4pKSkY0Dayrk3h/+gjKiK+8Qat8x99V3aCnp4eBEFwlclklz/55BOVIAgOSqXyjc2bN2vmcmugwf9jaHq2NdBAAw3+Arhz585mIyOj4GHDhvUYa9vc3IyUlBQwxsT2eb2dEBkZidzcXO7NN9+Eo6Mja+vT1dbWhpWVVY+92VpaWiwtLQ12dnawsbEhOe3qVeDVV8n6OmYM3VhzHN3Y/u1v1Lf5e8FqKSmQWFujvn9/xMXFYerUqbh//z4yMzNZVFQUBg4c2D2dvCcwRoQmOJiSkN94A/j8c1KdXV0pSTshASgsRE1pKRIPHGDjBg7E+F69OK6yElpSKVBUBK3mZvQyNgb79luw0FAYSKUwy8xkBTo6gsvFi5xMqURNeTkWJieLev7+THL4MKWGz59PVvZnz+jnkSNkSQ4LI7I8axY9rpV4amlpwc/Pj3l5ecHNzY21tLSIMplM1NHREa9du8bc3d0hl8up93zyZFL2Wm+mf/31V06ppYX1K1dCduQI2Xs5rus6cxyppOfOAW2q7Esv0X8/d22tra1x4cIFmBUV4VF4OFzmzcMpCwvx2q1bLC4uTigoKGAKhQKGhoZobGwEZ28P3tAQsLBo78EPDw/Ho0eP2OzZszkdHR307t0bmZmZSExMxIgRIzpeLCyM7MpeXkRkxo4F1q8npXzCBDDGcPfuXXVzczOXk5MjDBo0iPbZhg3Ahx/ijKkpbt26BSsrK3GVlRVz8vHh0KcPEUVrayLNrq6QW1ujeOZMRGZlsRXffMMMnzxh8aamzMXFBQbFxTCXy1l9drZ4xsKCBQwd2tUVwvO0f21t4fr++2zAsGGIi4sTb968yaysrGBw9Cjca2pYLM+jb9++woAVKzi2ZAmR4PffJyW6s4GY56lYkJwMBAUBAAoKClBZWSnMmzePA0ilvXnzJuzs7MAkEiK6jBFRfPdd2j8WFtSmYGPT7RpmZmYiMzMTkyZNor5jhYIS42fPhraZGaytraGtrY3m5mbU1dUhMjISiYmJQmV8PLN77TUwXV1wr71G59nS0jEXvTO2bgX69MFDPT2kpKRgzpw59L2iUpH9/ZVX6L12hrs7fQ4HD+4aWNiK6upqJCYmorm5uc3J0oEFC6h4t3EjEX1zcyA2Fo2jR+MMpeezZcuWMX1bW2DYMDiPHMkqKirUSUlJLPLSJRa8bBmtt7U1raWWFnD9Om5nZQmCvT2GBgWxmJgY2NraopeLC52fg0NHu8nSpVQgiYmh13Z2pu+QYcN6bIuxtLRk/v7+qC0v5/S/+gqWK1agrKxMbGpqEs3NzVmXEY2MUVFyzhwKD2wtvnSGIAg4cOAAACAwMJCKT4JAe8HMjIoRFy7QsZ49o4Len8znqKiowIMHD+Di4mI7ZMgQezs7O8PCwkKnoUOHHvhTB9BAAw3+a9CQbQ000ECD/8f44IMPVunp6W1dsmSJ3ouUXy0tLSQlJakbGhq4yMhINDY2om2Wa1VVFc6ePYvZs2f/W2nljY2NuH//PpydnZl5ZSX49HTqHTQzI+W4NR0aACXnOjiQMvV7c8DDwwGZDNm6unj8+LEwYcIElpqaqm5qauIAwMPDo10l/UPcvk2kbe5cusGfOpUsuV99RaTO1BRgDDIjIzzLyxPy8/JgkZjItEtKALUayZs3i8rDh6GXlsa4o0eBAQOAe/dgcPAg/A4eZBbff4+ylhZUGxtDnpfHfqmogLmLC+KLi8USCwvBdupUDuPG0Q36nDkUbtbYCEyYQOQoObnLzGXGGLS1tWFgYAAnJyfm6urKXFxcGAD1hQsXmJubG6WIT5pEffCtI6LawpgCR42CrLUfF9bWFHLVeUSQuzupvdOmEZHYv58UeCurbktXXVqqDt2xg3tqaopfdHXxtKaG6enpwdbWFiqVSoiOjuaio6PSwfhfAAAgAElEQVQRGxuLmJgYNCYlCfbff8+EWbMQERGBpKQkLFy4sH1WOWMMoiiKOTk5zNfXF+37dNIksv+3kRXGAMagMjXF6bg4WGpr405yMvfKK6/g9u3brLa2FrW1tUjs1QtNEyfi9r17EAQBMplMDNizhzEtLWDmTFTr6uLmzZtwfPddsAkToDQwwL7vvoOxsbHwyM1NbTR+PDfX1ha9WlPRZRMmoNfGjexWZCQMDAxg3XnvAlREGDsW8PCAjo4O/P39WU5OjjohIYFT3b4Na3Nz3NPVFYyMjODi4kIs0saGyJCnJ9mfOyvzgwbR+gcHA3p60NPTY5GRkVx2djYSEhJw7do1PHr0CAEBARR8J5NRO8QPP5Ca6uNDxZT+/bu7GAAcPXpUHRQUxGxtbWlhCwqo6LRoUftjbGxs4Ovri5qaGujcvYvxp0+zuw4OqGppwTm5HF5jx0Lr11/JUt15Nvj69aT87t0LeHnh+vXrajMzM87DwwPl5eWQ5eaC37GDHvc8GKNzGDWKigUgNbu0tBQtLS04duyYKJFIWGlpKVQqFRwcHDqe6+lJBTQbGyLe27cDCxYg39dX1M3OxsC//53ZtM35vnkT0mHD4OnpyQVeusQ8vvkGsu3bwXVOQmcMmDIFt+7exbLvvmOOb70FbVNT8fz588zKygrGxsbdzz81lSzl69cDU6ZQZsDOnVRYfK4I2D7b/eFDNvHSJdjs2gVXV1eWmJgoREZGcmlpaaKfnx9rD2GzsKD3aG3d43dkcnIysrKyMH/+fDgUFdF32bx55BgaPJhyJ6ZPp0KHlxc5TWJi6Dx/JyOjrKwMh1tdKzo6OsL48eNZcXExcnNz7wQFBZ1+4RM10ECD/0+gsZFroIEGGvw/RFhYmI9UKv1s0aJFOn9EQmtqavhZs2ahpqZGuH79OmsNUBOzsrJELy8vODg4/H7Q2XPQ1taGLs+LERcuMNuDB5Hn6AjHM2dg0XoT3Q11dWSVPP8CZ6Io0s3skiXIfvhQbWdnxwPAokWL+OvXryM5ORnffvvtH8/3rqggde2334jkWFgQ8V60iKyfs2cTyfvwQyAvD9yPP8Jr4kTuwIED+D/svXdYVNcaNb72OTMMDDAMvRfpIF0QpAgRNTaMLZYYY2xRk6iJqcZ7rxdTNTdNTW5ijIkxGss1xlix0JugiChFmqiAghRB6sCc8/vjpQomufm+7/n9cWc9D48CM+ec2Wfvw17vu9715jQ2YtOmTQCAE7dvs+7ubjg7O0Opra3mbG35yNBQyHv6+srj4tBy6BAabtyA1aFDeLB7N441NKDJzY3ZFhdDLyAAHoaGkDU2kpHY558T6e/qovr18nLKtDk7/+5mOCoqim9qahKOHDkirlq1isPOnX1Z6//85z+ora0FABQWFiIoKIiyYufPExH79FPKfNnYENl7/nkiKRs3UmDD2Jjq2AfegzfeQIAg8F+vXg2VTIbQoCBx3LhxvWqHvjZIjY2NkEgk6OjowNmjR1F1/jx+3bJFaOd5buHChbAZaOoFICkpifX0LaYf3LpF5x4giweA7uhovP/++4g+exbqt99G98sv96kZcnNzMfr6dXg0NwsnJ01ixkql+MK773KnX3gBH8+dK3IdHeh4990+E7uHnp5o+O03GNnZQSqVCi+++CIHgIMgkPy4sZFOeuQIhOBgAMDNmzfFvgz6QAQFUbZWrQa3ezfGjh3LHzhwAM3Llql3XLnCM0FgEwfWzNvZkUv1Dz8Ab71Fdbm981YqpePt3w+88gp0dHSgVCrF6urqvvOam5v3+ytkZ5PXwMcfkzxbpSIStW8f1fArFINMujo6Oni3gY74339P8/5RHDyISW1tiGcMJa6uWPfPf0KlViN361akvPceJn/2GbgB2en7NTW4UVyM5u5usennn1l5eTm6u7t5xhiuX78OURSh1dmJ4K+/RtRAafpAlJf33ctTp04Nkow7ODhg5syZaG5uxr59+1BdXS0sGD+e4yIjiTj2fqY7d3oOVY704GC2IDgYWkolzd+8PJK+v/IKUFQEtmED9j18iPZ//UuUSCQiz/OiSqXiLC0tmba2NtqMjSGdPRtobUWwjw8TBEH46aefOIVCodbV1WWRkZGcm5sbBcouXKC13FsO89RTQFERran16ykw0YMDBw6o29ra2KuxseDefRcAIJfLsWrVKl4QBLz//vssLy8Pvr6+/a7nUVEUFPvoIwoODoCPjw9kK1YItysr4bR6NcdGjKBgzldfUcmKiwu559fX0zMgPZ18FpYto3KFDRsGBWa6urpw+vRpdX19PYceL4zq6mpOEASo1Wqo1Wr32NjY1wGc0vTf1kCD//+gyWxroIEGGvz/hNjYWImWllby1KlTzQZlgIZBTU0NsrOz4e3tDR8fH1ZZWSnk5+dzlZWVTBRFbuHChdyQFk9/AN2mJoxes4Y1chwKVq2C0YIFcHV1HXaDLQgCdp06JVqcPs1SR4xQV9+7x2lra0NXV7d/o1leDnz2GRpefBFxcXHc9OnToa+vD5lMhrKyMlRXV0NLSwtjx44d2pIH6K81dXWlzNA//kFS6StXqNXP5MlkavT++yQvlsuJiLu4QOrsDJ3nnkPZ/ftibW0ts7Ozw+XLl8Xu7m7W2NiIaj09Tp6YCNe1a6G1fj3A82CMwc3NDampqZgyZQoaGxthbGyMpqYmsb6+nrtx4wZ8cnIgcXSEJCam3xiM58lteudOCjwcOUJZ0wHjVlRUhNu3b8PIyAgdHR2Qy+UsIyODSSQSxGVmCuKGDThx86ZQXl/PdXZ2QhRFBAQECCYmJjQwVlZ0vA0biIj5+RGh5ziS4S5fTrLY3rpPgAywGhqAffugXrUKWbdvE3nS0mJ99egDoKOjA5lMBl1dXXgHBLBSPT3B5epVzNyyhRkOdKHuQV5enhAQEMAce1sctbdTACAsbNDrDhw4gKamJni9+iqO6OhAWVeH0ceOQTVxohAUFMRCTUxgqq/PxujpsdFr1jDe2hpG8+axSzk5TCKRMCsrK9Hd3R1RUVHM/eRJ5Bsb41ZdHQCwgoICtXlBAWdw9ChlA7/6isiJszO4l15CvUqFO4zhVk2N6OXlxa5cuYITJ04gPj5eDA4OZpyxMe4ZGCCnuRlxcXEYO3asevLDh3zw1q3IGjOGXbt2TR0UFDR4Afj5UaCnpobIcnQ03QsLC6op9/SEVC5HSEgI8/Lygre3NxobG9VGRkach4cHyf+vXCHy9cQT9F6JhEoyZs4kwr1kCQVVmppwubQURUVFCA0NpfIPUaTzPv98vzt4XBygUODB8uW4UFODfH9/+L/4IiytrSGRSHA1OxtzP/wQqcbGGNFTY929YAHufPIJTkyYgLu6uqy1tRX+/v6Cu7s7Ky8vx9KlSxEVGYmQefOQJJNBy86uT9kwCK2tEIyNcUihEN38/dmSJUvg7e0Nb29vREZGMplMBoVCAR8fH2RlZSE7K0sItLHhWI/7OQC0bNwI1dat2N3aKo5++mnYTZ/OEB1NveffeYfm9/ffU3Dv7bfhGRYGFxcX5ubmxqysrLj8/HwGAI2NjeL4CRNgvWgRQ1kZMG4cbNevZw5eXrC2tuYkEgk7e/YsLl68KDR/9ZX4MDMTP9vaChkZGWJpaano7evLsbFjieRu3gwEBEA0MkJOTg4yMzO5V199lUlra+mZ9PrrfdfPGINcLsf58+fFlpYWwdnZubepN3kq6Oj0t327dg2YNw/s2WehLCtjqQ8fslpHR8F5zRrW98yoqCCC/dRT/TXfUik9B0aOpDp3S0saHw8PgDGoVCocOXKEEwSBiaIIqVQqOjg4CD4+PlxPoMdcqVRG1dfXr0hLS9MNDw8f6t6mgQYa/D+HhmxroIEGGvwfIDY21iotLe31zMzM7SkpKeMvXLiQEhUV1fLIawyTkpJWJyUlhSclJZVERUW1AUBycvIb5ubmUydPnqw1LPkcAD09PaSkpECpVMLR0RHe3t5cREQEtLS0xLCwMDasZPJxKCmhmuTZs8EHByPXwUFdXlHBKRQKuLu7D0uEr127hrziYpiGhzN27Rp3taNDyMrKQmFhIdzd3ZmWlhbVE3t7Y29RkWBlZYWQkJC+A+nq6qK2thaNjY1oa2uDlZUV2tvb0dLSQtm/sjLaZI4fTwRz/Pj+k+fkkOz6X/+ijK+TE5EOGxuSbfbAdNEiOL33HrROn2b7W1vh6uoqeHt7c01NTWJ7eztrMDKCUWSkYBUaytDdjS5RRHZ2NsrKyjB69Gj4+fnB3d0d1dXV7P79+zBqbYX/F1/g544O+C1ZgpqaGvA8D1EU8bNcLtbV1LBSExPIT51Cu60tdC0sIEgk+PHHH9WZmZlcUVEReqXahYWFUKvVuHnzJpycnMTQtDTOLCqKGz1/Pi5dugRtbW00NTWhsrJS6JMxM0YkzN+f6kpLSiijHhFBztW9NfXW1kSyo6OJxH36KXSsrTF27FjcvHlTqKioYEZGRsMTpx4wxmBlZsbM//Uvxp55Zlhpc1lZmZiTk8MKCgrUjY2NnF1jI3gHh0G9kg8fPoybN29CKpWKra2tcPfzEyybmkTn27c5l40bmYVKBc7enrL2S5aQN8CoUai5fx/Xr1/H22+/DT8/P+bs7MyMjIygu349Aj/+GApHR3ja28Ooro4zeecdiIsXQzZvHl3nlClEukeNgqy2VpSVlzNWUQG3qVPZrj170NzcjK6uLlZSUiIm3bwp5paXs5APP4TV+vVCaEQEDxsb8KNGwXfWLJw/f56rqqpCfn4+LCws+ozPoKdHjt6ff07SX4mE5uD3PebPPfXJcrkcBgYG4HmeJSUlsZFHj0I3JYVabw1jnAWep6DBokVAayvE8eNxNS8PEStXwro3AHf7Nvr6wt+5A1y6BHHdOnxbVobzwcEIXLECc+bMgWWPcR5jDB6enviXRIIaURSbGxsZ19yMlLIyodzNja3ZvBlPPPEEwsPD4eTkxNra2lBUVITJkydDRyqFlqUl0hUKtZ6+PjdcEHD/f/4jFAgCMx0/Xpg+YwYnkUigq6s72AAPVPoScPw4q87J4XLGjYOXlxcYY0hNTUVySgpuMQbjiAg2ceJEek5Mn07juHkz1cp/9RXwwguAtjZkMhkMDAxgaGiIgoIC3L59Gx0dHZg7dy7z9PSk91tbU1mFry+UAMydnODk5ISAgAB46egw919+Yerdu5mrpyenp6fHXblyhcvMzER6erp4T18fnm5uDJcv41Z1NY5evIgnn3wS9r1lHC0tg59JIG+E+/fvo7KyEkFBQf0PTU9Pysy/9BIFpHx96fk2cSLueHgg6dYthIWFsT6TtaoqKg9ZtozKRh59lhsZkc/DnTsUaDQ3B+RylNbUID8/H1OmTMHTTz+N8PBw5u3tzdG04mFtbQ1XV1fexsZGmp+fb3bhwoWdaWlp/0xJSQlMSEjIjIqKEqGBBhr8PwcTRc1a00ADDTT4K9i8efNUnucP+fj48CNHjpSVl5d3Z2Vl3e/q6grYtGnTPQCIjY1lWlpaBc7OziMkEgkKCgpEiUSSLAiCto6OTuCiRYvkxsbGwx5fFEU0NDRgx44diImJwalTpxAVFYXwHlOm/xr37pHLuK4ucOIEud/2yHuPHTuG3NxcrFy5clgZ+e3bt/H999/jeVNT2P/6K3D2LLq7u/Hll1+qHzx4wAcHB4vjS0pYq58fPo+Px8aNG4e0LgOA7du3qxsaGvpS8Lb37mGplhbw4YeU4Vu+fKgku6WFrlNLi+pMKytp0zncmF2+jPLcXMgCAmA1bhy2rFwJlY5Ob80x7OzsxKfi4pjy9m2ceucdoaCggIWHh7OQkJC+jL7Q3Axh1ixUrVyJ1NZWlPVkiAfC0tJSfOatt1jymDEonjhR9P7tN2ZdVYXTc+ZAamkpPvXUU+zgwYNiSEgIG3i/BrlGd3aiE8DevXsFQRCYrq4uSktL2RNPPIGxY8cO/mCZmfT5OY76Tu/fTxL2pUspa2pvTz20Z8wYYlyVmpqK+Ph4zJ8/HzKZrJ9ADIdLlyiT7uo65Fd3795FcXGxyPM8Ll++jEnffw+3p55iiI0FQOqLXbt2YcGCBdDX18dXX32F6dOnw7+3Xjg9na6ZMWpFBpDJlVyO7777TpBIJGzx4sWDb35zM83XGzco4xkWhriRI9UXL13iRVGEvr6+sH79eg6lpcCHH6JywwYc27YNT6lUsDE0xG2ZDN8DkOvqwt7eXpDL5aKzgwPvumEDuO+/7zeg2r4dwsqVePfDD/tObWZmhtWrVw8do8xMClZlZZEE+dAhIuED5q3Y1ISbMTFitqMjYt59l8kH1hr/DoouXsTJQ4ewIi0NCm1t6jG/ezdJ9Ssr6fvCQoAx/HvXLtTV1eHvf//74IMcOAC8+iqab9zAyZMn1SM//JA3aGrC8TfeEJcsWcJ6AwgqlQq//fabUFJSwsaNG8eCg4OBb78FgoKw5+pVCIIgRkVFMUNDQyiVSgiCgN27d6tbWlq4eZMnM8vDh6m++Pfw5ptosLbG9gcPAACrVq3C4cOH1ZaWlry/lhbMQkOh9+jzz9KSnlWFhaRuGTeOMr7Z2UBkJI5euIBrPZJ3Jycn4dlnnx084Y8eJUl4Tg4FRBobyQ3+0KFBHgiiKKKmpgY1NTX49ddfsXjxYjjcuYM7f/+7WBoYyJ7417/ohZ2dQG4ueRMMQFNTE7788ktxxowZzNPTk2Tq27ZRMCYwkObuf/4zqKXewYMHUVRUhDVr1vTXlL/3Hq1hGxtaI9nZjx9PlYrI+bRp6Fq6FB+0tODpp5+Gp6fnY9/S3t6Ozz77rANAtqWlZZBKpRIaGxurAWiJoijp6upa+I9//CPx8SfVQAMN/k+gyWxroIEGGvxFZGRknJ83b55JSEiIxNDQEI6Ojlx3d7fO3bt3p8THx++LiorqTEpKmqitrb0qLCxMJpPJuKioKGlXV5eTn5+f/bRp06T6+vpDjtvS0oKPPvoISUlJyO7ZeJWWlkIQBEyZMuV3+2wPC1GkDMuyZUQQNmwAnnxykNOwKIrIz8/H5cuXcf/+fdHOzo7JZDKIooiSkhKcO3dO7Orqwrhly5jUzg4wNwenrY2QkBDO2toaWfHxosFPP7G9jEFuYCCEh4cPm6oPDg7mbG1tUZ6aCr2HD7HUxwd8WRkZAwUGDl/7vHQpkJREGUwnJyJqpqZECh8Bs7KCUUAAFKamYHZ2sHrqKfi+9hqs79wBP306ykpL2VWFAvkKBe49eIAlq1YxNze3/mx+XR1YWxu4S5egfO01+AQGwtjYGIWFhX3n2LBhA0aPHs20li2Dy4oVCBkzhiEsDHcKCzHS01O0UCrFX5KSmLGxsXrmzJmDiEDfeSoqAAcHSDZuREBgIBs1ahR78OCBUFFRwbX19BAeZPJlY0Mk5L33qFY7IoJIiFxO2e4JE0hmP8z42dnZobKyUp2cnMzdvn1bDA4OfryMote46bnnhpB2fX19ODg4MDs7O6ZSqcT47m4uaO1a8D013IcOHRIcHR3FkJAQpquri+LiYnV3dzfc3d3pfEZG1L/ZzIzu6dtvA2++ibpnnoHD/PnsgZYW3EaPZti1q38uODmRoZiFBWXDly2Ds4sLFxoaCgsLC+Tl5TFnZ2foWFtDiI6GIioKDaGh6hO6ulxuczO0MzIwLiEBkrAw9fSlS3lXNzfOxMwM7JlnSJp76xbV3I8fD7ZoEXzGjkVYWBiMjY2Rm5s72Hm9F1ZWFPgIDSVSmJ1NY9UboGhpAVu2DAbjxrF4CwvW0Nk51Jl7GFTdvo2DR45gYkAAbC0swBYupODT11+TpHjLFqodl8kAnkdSUpIwYcIEWFlZDb6f7u7AmDGQWVjAW63mDJYvR8vMmYieOpXJZDI8fPgQgiAgPT1dKCwsxOrVqzmn3hrm558H/PzgHBODrKwsISsri8vMzERaWhoSExPR3d3NrV69mhnp6FD9+6pVw3cn6JVlv/cedMaMQVBQENLT09HR0YGmpiYYGhqKYxYtYlrR0dS7uxcPH9KXjg7w4ouU1be1BTo60Pj667hYVwfPb7/FE+fOoXXBAvXYb77h9E1MGGQyug9WVjRPRo2iLHd1NfkeTJ1K9dQD0FOnLp48eZIplUpx4sSJjDk4oLCpCXxlJbOtqyNVSVER9ebu7UHeg2vXruHGjRvM+dIl8d6OHdD28WE6n3xCr+3qIvn4d98NWpPOzs7IyMiAjo4OHBwcKJDo6UkmkNOn05j+nsqJ56HS1UWyoaGgbWXFXD77DDJRhGFU1GPfJ5VK4eDgIDE1NbWfOHGiJDAwUGpnZ2cUEBBg4Orqql9UVDQ3ISGhLDIyMv/xJ9ZAAw3+KjQGaRpooIEGfxGiKEra2togimIfiYqKipK0tLS45OXl3dqyZUsSx3FPdnR0aJ87dw4PHjxgMpkMgiCgtrZW8Pf372MzarUa169fx8WLF1FbWwsdHR1hwYIFXE5ODlpbW9XTp0/nOzo68Lgs+GPR2UmmYnPmUMbrMW23PDw8sHHjRtTX1+O7775jN2/ehI2NTXdlZaUEgGhjY4MlS5aQXDwhgYyGtmwBALi4uMBh3Diu/PhxcdLs2SwgIGAYVyWC0NWFn/buxYs//giThQvBVq6kVmO/h2efJXINEGG7e5dcnd96a9iXNzQ04OjRo7h37x64O3egN2UKdHheXO7lxYRly1B19SryCgsx+e23GadSkZkR0L+p/vXXQT2p1Wp13/91dXXRVxtvakrkxNUVju+8A8cDB4A9e1jd3/7GDObPF5e9887j/8Y6ONBnGJAx7+2DXltbi9OnT5NZ2qPYsYPan735JtVK799PhlLDBG0GYuHChfzWrVvFhoYGVlFRQRv94TB6NMle6+pIrjoMWlpakJSQwL124AAaXngBhw8fVuvr63N3797lYmJi+l7n6+vLJycn0zdnzpAsuLS0n8Tv3InkxEQkfPklgr28EPL88wy3b5N6Ye1acoG/d48yybGxg65HKpXCxcUFcrm8r50SACyZPx/j9fT4UkB8wHHs2ty5aJdKheiDB3ncvk2yZA8PevG5c+QR8OSTlIVkDL0CXqVS+fjB5DgigqWlFADasYMywtOmUS31+vXAmTNIq6gQH8THs3v37mHbtm3ddkolmzFrFo/6eiJhGzeSaVpXF7B5Myzc3BDwzDOiq40Nw+HDVCM8axbV/vr7kzP/qlUAaI50dHRwQ0j83/5GdfRvvEHS9awsaGdkYODd/vTTT/s+yZNPPtnfHaCzkxz2GYMeY1izZg0vCAJqampQXFyM3Nxc0draWpDL5TzkcgpUPA7XrpGXQY9Zoa6uLkaNGoWCggKR4zju6tWrmNHUNJQgpqfTmjh7lvrZf/ghBaaUSuxZulTd1NTEp02bhiUTJmCMjQ2vlZNDz7TsbDKa272bAkV6enRvNm2isZszh4h7UxMFI3oCBE1NTVAoFGJraytLTExEZGQkugIC2N3WVhGZmQwqFQWGMjMHX2dNDXw2b0a+vb3YffcuOhoaWIuxMQxPnybifOAAEefW1kFrU1tbG76+vmJiYiILCwuD5N136blz7BjNqVmzhsjVB6Krqws7d+5EfX09lwzANzJSPe3OHR7JyXTfh/FmAABbW1vYDlBXDFz/S5Yske/du/f7999/36u7u/sfmzZt0kheNdDg/yI0mW0NNNBAg7+IhISEvLKysuiKigqJu7u7VCKR9JpuSdzc3LTNzMzcQ0NDJW1tbWJlZSUzMjKCo6MjIiMjkZ6ezmpqalBeXi5IpVKWkZEhZGRkQCaT4cknn2QzZsxgCoUCiYmJahcXF97Jyem/z2gD1Cv49GkidmfPAj/+SIRyGHAcBx0dHSQmJsLS0hK3bt3iFAqFet26dZyPj09f724olUByMkk7e8Bv3QqTpUuZ5aPy54G4dw/M3x+2EybggLe3WOLmxiwsLPrdrQdApVIhPT0dgiDAsLiYNsy99bMjRxIhmzUL4HmUlJRgx44dcHFxQXFxMY4dO4aGhgZIpVJ0dnaiy8AAbXp6LGLmTLCQEBiMGgXXOXPAwsJImvzwIRmd+fsDY8bQ1wCYmZkhNTUVhoaGmD17NpRKZX+GurGRHJadnel7Pz/IoqPReuIEWq5eZRbjxj1+PFQqImc9G2Rzc3N248YNsaWlhQHAzZs31QMDMgNuFN3HkhIyTHr9dXJv/wODvFGjRrG0tDR0d3f/ruwUTk5EUh5xU+7Fhx9+CGl7O9yKi7FHW1t0cnJiOjo6gqurq+Dp6dl3vUqlEikpKRgdFATpP/9Jdck95+3u7kZycrKYmJTEPDw8EPP++9Czt6e624gIIk5btgB791Imd/ZsGusB9ay1tbW4cuWKOGLECObg4CDevXuX5TKGqpISTDp5ElFffcUiIiPhHBjI+MWLSeZ7+jQFi5RKyhpPmUKqib/9jbKMPfdi+/btAICsrCzx7t27rLS0tK8euw9GRkR+nZ2JcFdUkHR57Vpg/35ojxnD7PfvF4Lj43ErLIyfs2IFx5mYkBphz57+Fm6enoCfH25Mnoy4mhqW3tyMZFdXjAoMhCwigup1LSyAX36hNTxhAs7Hx+Pu3buY+Ohazs+nAEJWFpH5ZcsGKRTa29uRm5sLhUIBtVqNmJiY/r73zz9P4zNgXTPGkJiYKGZkZLCOjg42d+5cru85dPEiZZHffHMwaU5IoJ+vX9937kuXLonp6emss7OT8TwvBgUFqZ1u3ODw+ef9feM7O+mefPAB3R9DQ/Jk8PEBbt6Ec1AQl5OTA7mBgVAnimJ6djZL43moR4yAzcSJ4FevpoDMnDmk9AgNpc+jq0tjnJZGvcrHj6fM9/nzSGtoYCHHjrFuXV2x4coV1nXhglAkiqyrtVXwf/VVDrdukTljWhrdh3ffJbO6uXMhuXgRfn//O7Nevpz9dPcuIiMjIbt2jUwclyyh8TQx6V+KjTUAACAASURBVHdg74GbmxtLTk6GoaEhLGxtaR6YmJD83cuLgqOPQW+vewCYM2cOxi5dynEzZlC3hnXr6NkuldKa+ZPQ09ODj4+PtLS0NLCrq2ttSkrKOykpKevi4+NPRkVF1f3pA2mggQbDQkO2NdBAAw3+IiIjI8vj4+O3t7a2Ol66dMlVT09PamxsDI7joKenB0tLSxgYGMDT05NxHIeoqCgEBgbim2++gSAIaG1tFSsrK7m8vDw0NDRg6dKlLDIykpkNaAGUmJiI4ODgYd2h/xQuXSIDpunTqY1MXR0Zabm40IbT0rKvNzKA3npidV5eHieKIjo6OrikpCRcuXJFCA4Opp6yVlZEXDo76f+CQEZRy5ZRRulR5OeTNHnhQsDaGicY66598IBvampCVVWVGBgYOET/WFpaiuPHj+Pq1asI/+ADlLm743p9PVpbW2FgYQEJz0O9axfY5MnYsWMHACAnJwe3b98W/fz82OLFixEREQEbGxtcvXoVWlpaYnhEBOvbyE6ZQqZjKSlErk+epI3+5s2UiRIEyngHBYGlp8P+4UNk1tej8ehRNImi6ODoyNDSQmPb1kY1nT2EmzM3R0VZmeC0YweXoK8P4xEjIAgCGhsb0d3dTQ7TAHD8OI3b0qV9n3vkyJGsvLwcLS0tMDMzY97e3oPHpraW6u3/9jciOStWEMGLjKR7/DtGeRKJBDU1NUJhYSHr7OwUnJ2dh9edKhREtidOHPZ45ubmsNTWRnN4OEImT2YhISHM3d2dc3BwGBQY0NLSQsGJE2LAhg1McuRIX6/nu3fvYtu2baioqGAAMG3aNBgaGgIPHlA28+hRyjQ/8wwFQ9asISfwmBioLS3RYmOD48ePi2fPnmVaWlpswoQJCAwMZCkpKQCAJoUC0xhjMm/vvl7QACijHRlJwZW8PMqCWlqS/H7CBAri9NxDOzs7+Pv7w97enlVWVqoLCgo4xhjcHB2JZDY2Uhb4o49oLW3eDKSmkolVeDjw1VfQk8thFhDA5DY2zHHqVOxQKGD77LMw8PEhIqajQ9fk6gowBlMrK5iamqKoqAgBAQGCl5dXfw9nAwO6RgsLdE+dissqlWgXFib2SfQBCkw8+yxllU+cICfvAQGY+vp6bN++HXp6euqlS5dy48aN6yfaQL8JW4/RGgA0Nzfjt99+Y8888wxmzpzZbxgH0NofNao/0NSLadNo/YSGAgBSUlKExMRENm/ePGZhYYEbN26wyspKzpHn8eDiRSjmz4coirj55pvQcXSEZM4cNDQ0oKurC2onJ9xNToZucDC2cRy6OQ7m5uZiVVUV6+joYLNmzcLZs2dRUlKCkSNHUktBuZzIq64uEdeODuqrHRpK2WNTU2qjNnEifMLC0FBWJpQwxnm0tYn2mZlcoauretG//sVLrlwhlcennxKBDgigsfHxobkcEwPo66OlpQUZGRkYz3FgLS1k7gbQeR0dqQTkEbS2tqJr0ya03bsn1gQEMFNTU7Dp0/tbkj0GJSUlqK2tFY2MjMTg4GCm09vP29eXMvoFBUT07ez+8FgDIZPJMGrUKKm7u7tuSEiITmtrq3ZNTc2dqKio9D99EA000GBYaMi2BhpooMH/AaKiooSIiIhj586du1hRUeGRkZFhZGBgIDE3N+/bBDPG4ODg0LdRTUpKAs/zWLduHVMqlaiqqhImTZrUXzfZA0EQkJCQwMaOHQuO44Y1HPtDaGuTsY9SSVmT3vZVokgZpfffJ8K2bh2QmAhYWMDB2ZlzdnaGl5cXpFKpurq6muvu7mYRERH9Gd0zZ8gZPCaGWn61tREZGIjKStr8NTRQFnbqVMDXF8dPnOB6DcdeffVVVlRUhD179iA3Nxe2trbQ0dHByZMnRTMzM9bV1SVkOjiwMkDd9PAhCgsLhYSEBC7r3j04792LH5qa0M7zmDdvHmbMmIGxY8cyJycnMMZQWVmJvXv3QltbW5gxYwbX5/4L0HjI5bQR/u47urZly4hI+ftT8OHoUfr57t1QFhQg29QUC/fsgdLdnelVVNDnXbaMNt9791LtdI/cXcfZmcvw9ITtgQOo/OknHKypwdW8PKSnp6Ompy0VAgKIaItiX7BDKpVixIgRyMrKQkBAALMb4PQNgBQK27eT9F4ioQyWrS0RNj8/ul5Dw2ENzgCA53mWn5+PyspKNmw9Mr2IghEVFcAwbtSmpqaw2bsXNleuwHDp0uHbuAGAIKB1xw5Rb9QoptfTezkxMVE4duwYc3d3x8qVK3Hp0iXxUnY2s7e2hkFEBB5WVWGrkRH05s6FlrY2dL75Bvj3v8FeeAE/d3aKZwsLmcPatahsamL3TUzQ1dWFvLw8XLx4EY6OjkJDQwMTGUP71Klw+e03MtkKCRn82Tw8iJzwPAUt1q8ngmhlRWPX0QFDtRrKjg6Y/fILfIKDOb1t2xCwcyfqx42DbNky3Lx7F7dlMpgrlWAuLkTkSkpIIeHpSQTUxIQIV1ERZMbGCHjtNSi//Racjw9l7u/coa+8PMDQEEJ1Nb4/eBBObm6YOXMmGzKuPI9uMzP8WlIihBQUsJAxYzjm7EzZY0Gg+RgXR1n2554bItFuampCdnY2dHV1MWbMmMHHLyggx+wnnxxw+wRs2bIFoihi1qxZQ+8zYzR3v/mG1AiCQHNmwwYgLAyiKOLs2bNCVlYWW7x4MbO3t4euri6ysrIAALnNzci1tERyYiIunz8P9yNHsNvTE1nXriEjIwPp6enIzMzEtaoqZI8eDZVUisDsbNjNns2io6OZj49PXynB9evXxZSUFKanpycMqmGXy2kOREYOvnZ9fcDQEMzAAL/V1Ij1WloYs24ds9u4EYEREZzk7bdJDq6vT+Z0hYVUKuDh0V+G0IPy8nLcunVLDP3iCwZ7eyrFAOjel5TQXHsELi4uMDl8GFd0dcX4qirWVFYmuo0Zw9jf/vbY2uvdu3cLubm57Mknn2QxMTH9RLsXMhmRe09Puu6XXqL1OwzZHw6MMejq6kJbWxstLS38nTt32sLDww/GxsbaJCUluSclJbVERUV1/qmDaaCBBn3QuJFroIEGGvxfRGxs7GipVHp00qRJlgEBAcPumlQqFSQSybD9rAeitLQU+/btg0QigVQqxapVq6Cjo0PZmz+L5ctp8/fCC8P/XhDI3dbWljZlH39MpO3AAfS6TO/fv1+oqqrCmjVruL6sbF0dkWw/P6rNrKkBXnmFfqdW03EnTSIzrJ9/HnTKiooK7N+/H11dXfDw8BAKCws5juPAcRwEQYBCoRA7OjrEZcuWcUYPHgDPPgtuQM2kIAgoLy+HQ10dGuLicD0iAlFRUUPGMzMzU4yLi2OzZ8+G14AWYQDomleupM9x+zaRrby8YYeopqYGpaWlSEhIgFqthoGBAdatWwd29ixlYGtr6XinT5PM1McH6tmzkZOTg7qCAnXg99/zKdHR6mJB4FWMYfLkyf312NOnEzHudT4GcPPmTfz4448YNWoUpvU6GZeUAF98QUTqcRBFyrT6+RERb24m+fXgMUFcXBzmzJmDkSNHPv5YNTUkIz9+vN+xeyCuXKF/e53GH0V7OzBjBn50chL1xo9nSqVSzMjIYCYmJoKjoyM3oScw011ejpqxY5EREYGbtrZo6wlI6evrq1tbW3nnigro1daia8kSNWMMeXl5vHduLhyUSjjFxOCnzEyx1cSEtbe3Y9WqVTA3N0dWVhbOnj0LH8YQ+vPPMLp8GdzjZLWCQPfso49o/IqLKcMdFUVZ9Z9+ApYsQZdEgm927UK9iQm0dXSgVCqF+vp67pV9+yAPC6Oe6wCRskfIWC+++fprQaujgxvt64uRXV1EBAsK0Jmbi87Jk9H+4ovQbm6G3pYt4FNSSHnR2kqy4GnTUJaSgrNFRYLU0RHPPv00p/3ii1SK8PPPROxyc6m8oPdaBKG/vOC773DeykqoPnSIcykuhvybb+D75puU1V+wgBQAPE+f2d2diJuhIX4uK0PZvXt4e8OG4YN9aWkUqLt0iQJO69cDtbUQRBG//faburi4mFu2bBkb6DUhiiKOHj0qXLt2jVv/8ceoXLoUWhIJ6tRqUWfZMhw9epRZWVmJMTExrLi4WAgPD+eOHTumvnv+PP/s3r1I/PZbccrs2ezR6/nyyy9RV1cHhUIhhoWFiaNHj+agVtMz8IsvhhgqqtVqNDY2Qi6X49y5c6iurlavXr26XwqgUtHckMlI4bFixbBmcAkJCeg4eVKY/I9/cIPOcfgweSocPTp03FJSKLjj5ITGxkbs/uYbMUQUxbANGx77R2Hbtm2inp4eWzpACfNYCAIZ6xUXU0DUx6ff9+JPIDk5WUxJSbnN87xaFEUrPT09VXNzsxbHcTtUKtVbmzZtEv70wTTQ4H8cGoM0DTTQQIP/ErGxsXYAxgNQAsgCcG3Tpk1NALBp06as2NjY1VeuXPkxICDAYLj3az3GpOxR9BoX2dnZiWq1Wti+fTvf3d0Nb29v9axZs/ju7m6cOXNGzRjDlClT+GEzjOPGDepFPQQcR0QboEw0QAQrKwuiKKJ9yhToW1tzbba2KCkpgbe3N73GxISyZ/PnkwT75Zfp562tVK+5YQNlv4fZnDo4OMDc3FyorKzkCgsLOYAI9Ouvv466ujqUlJSwsWPH0ma6pmaQrJUumYOzszNgaAizL77AuMWLhzhnA4AoigwAjhw5AolEQo7Qly5R+7MVK/qztra2lPEvKurrl1xSUoIzZ84IRkZGXGlpKXiex9y5c3Hv3j0knT8P1tZGNbGLFpFzdloabcq7uoCHD3Hmu+/U7RcvMvXEifyR+fOFCfHx/JT2dki+/x6SgeT15ZeHkNnegMbly5fh6ekJR0dHyq6VlT3+PgKUEduwgf6/bRu1Opo2jYIiPQQwJCQECQkJYnt7++83djc3J6lza+vwZPvAAZJ3Dwe1msbY2hrdAQHCtWvXeIVCIcyZM4d3c3OjG3XnDhAbC8nWrbB+5x3MWbkS3aKI2tpaKBQK6Onp8U1NTci9cgUPbtxAfn4+Lwi0v7/m54eoNWtQPG+eMD8nh0v44gsxNCqK9fYRDwoKgra2No4ePYqrM2fijagoaO/aRST6UXAcSebb2igrbGRESozeedtTvy8FsOzjj6FSqahuOz6eS7h9W7jw2mtczPPP02ubm2kuXL8+rCLAydmZpaWloTo9HU6vvYaSkhIkdnaqGy0seDEnB1i+HO9s2AC+rY16cuvrk2FYaSkqL11C19atiOF5zmrCBHDPPQfMnElBHisrmh95eaRIcHenuezvD7i5of7LL2G4cSOuL17MLZk8GfpSKThf3z5zvz6zQZWKgj/NzSTn/+knhN68CVelEjzHkXQ+LIwyp6amNFZhYbSm2ttpLUybBrUg4NChQ+qqqiq2atUqpniE5DLGMHPmTC40NBSyOXPgoVQCX38NpxdeYLC1hbe3N3rT7hYWFhwAzJgxg28ZPx73XnkFJV9/zcr//ndonzkDuwH1zS+99BKam5uRkJDAzp8/z4KCgsB4ntZFRQURzgHIycnBqVOnYGlpibq6OnR1dfFtbW3kjSGKZAJZV0fGfl9/Te3nhnmWqjMyMPbHH7m+tdeLiROHn3OCQMHPDz4AnJxgaGiIxcHB7MwPP7DRXV3DBlO7urrg5eXFsrKyRAC/v3YBFBQVwX7xYlJTvfYaeQtkZVHA4Q+8HQBgzJgxTKlU2isUCtjb24Mxpv3w4UPs27fvxfv375cD+PcfHkQDDTQAoCHbGmiggQZ9iI2NNQDQsmnTJvVwv9+8efNCqVT6mZaWlr6jo6NaV1dXeuvWrY7GxkbtLVu2lHd0dBwC8C7HcR4KheK/SD/3QxRFtLe3QyaTwczMDK+99hq0tbWZRCLhT506Jebk5LAbN27wO3bsEOvr6xnHcbxUKsXkyZMhiuLQbHlBARGA/wKt48Yh18hIzPr8c4zu7ATv4IA3PDyYfNIkyoLX1FDGetEi2oAKAm34J0ygbM7OnUTyfydzX1dXx3l6esLY2Bjp6elQq9V48OABLCwsBrnmwtyczNCGg7ExZV972mg9it4azsrKShw7dkx0sLNj2unpJJdfuZJqMAHajAcEADduoNnKCocOHVLX1tby3t7enCAI6tmzZ/O9mfHijAys2LkT99RqWGRn03tTU/sdh7dswb1799C1di0/Mzsb/K5dQGMjh+XLSW7bS8R6+/1OnEhmWR4eVMMLwNLSEtbW1qiqqoJNXR0wdy5tlE+f/vM3ce1a+rp0iQhYSgrg5ITk9HQAYL9rkNaLGTMo89nb47sXokjkY+3aoe8RRSLhLi7A7t1YCvA9vcVph9/SQi7eV64QKZfJqI4WtCGxsrLqO5SBgQHGBgcD0dG4/tZbEGQycBwHKysrtSiK/KnwcE4aFATfn39mep98QkEiGxswxuDj44Pk5GTU19dDe9Ysyvj2uOcPixUrSII/nOdAD3R0dNAn3d26FXK1munExPTPc4WC5uJjMojh4eHM29sb33zzDXbs2IH29nZER0fzDg4OsOwJKDHGaKxHjaI3uboiOzsb586dQ9iXX4p2QUGMk0ppHerqUpCgV/WRl0c11z2KFGRno/bBA/z7q6+Al18Gx3EwWLCAMtkA/fvGG0Siv/iC7l1XF0npAWDZMuyJjYW9nh5GTZ1K9+ziRSLyNTX0bDE3J6J95Ah5MuzYgabvv0drRgYf/vTTUJSUkLSZ5+k5YWAAMAbGGCwsLGg+bNhAaoyedT9c0JAxBn19fejq6oKJIrolEpw6c0Zc9eKLg16sUCgQExOD4uJiYf/+/fD19eVGjh4NdubMILLd0dGB3raLNTU1UCgUor6+PiQSCR1v3z4KKB0/Tmv85Emq9ffyQkdHB3bt2iUGBwezoJEjcU8ux/GXXhLnGRkNvnK5nII1tbWDDcs6O6n/9oA1qExIQGhKChoaGmA+TBeAoqIipKamDmsm+Siam5tx+PBhmJmZiatXr2b45BMKpvz4IwWUPvtsiGnbo5BKpfB5JDihr68PZ2dnWV1d3Z9rGq+BBhoA0JBtDTTQQAPExsaO09LS2sPzvIUoivjoo48SOjs7X9q0aVNJ72vee++9Z+Vy+Tfz58+XW1tbD9wQanV3d+PAgQPu5eXl/wCwQUtLS/3EE09o/5VrOX/+vJCens4BQHBwsPjEE0/0ySUnT57M7ty5IzQ3N7P6+noWGBgIiUSCzMxMfPzxx/D19RUCAwM5Y2NjMMagUqmgdeHCY12lB0IQBJSWliIrK0tdUVHBK5VKISwsjA9ct44IfEsLufIClM2aOZPqvYOCKNvT1UUkUlv7d1vXALTRValUmDlzJrq7u5GTkyO2traynTt3Ijo6GmFhYQB6Nt0ffUQZ9wMHhj/Y5MlUj9lDtAZCoVAgMDAQAQEBqPD2ZlW//CI6XbzIhiOJgp0divbuxa/5+XBxccH8+fN7N7ZEEru7Ifz971BZWCApMhJFEgmeLS+Hk5MTOWgPcIU+ffq0oDtnDuMPHmRobqbrysigGsovvyT38DNn+jPGGzfSa3rr6QEolUqxqqqKHb50CQsiI/+w5OCxCAwkKam+PmBvD2HMGGHsK69wf8rZ3tyciNfly4Md2tXqoQSiF9XVRATff7/vRxzHEZHrLS0wNKT7tWTJH17CDwcOiLWvv85EHR1AEODr64vp06fze/fuFXmeZ10yGfLGjEGUri5d16uvUi9yXV2MGDEC9fX1qFm0CObV1WQe9uOPwweBGhqITP0RPviApNmnT6MrLU1MTUyEq6srM+o1kjMxoWzmnj1Dglza2tqQyWRQKBRiU1MTGzFiBHx8fCCXy4clmCqVCt9++y0ePHiA2bNnY5AZmoMDGco1N1N7LCcnylK3tQHz5qGurg53797FsWPH+ohqnyoFoPuxaRPVaIeEEHH38yN/h2++6XuZn7+/eOXKFdZsZQWFu3s/URdFOndSEnkVSKXkQv7wIYx++gkzlEqc2r8fnlevQvHyy6T8OHOGMvW+vhQUeO45MhMrKKBnlCD8boAOoLmk7ewsHJ43j3tOqWSwtaUs/ABJOcdxWLFiBXf69GmcOnVKyL55k4toaIBZczN0dXWRlpYmpKamchKJRNDV1WWMMdbR0YF169bR+Obl0fzcs6e/fvrAgb5g2OXLl1FfX88uXLgA0/XrxactLNgn/v64evUq/Aa23pJKAR8f1BQW4lBKihAdHc15enjQvNi5c1BtdsPLL+OAtjbe+Z12e6Io4uHDhyw2NhZz586FxzDlCoIg4OeffxZlMhnq6upYZWUlbGxsKDi6Zg0FyebOJXO/v4CbN2+2qNXq/NjYWKZpEaaBBn8OGoM0DTTQ4H8amzdvniiVSn97+umnjWfMmMGFhIRwUqnU8c6dO4vi4+O/jYqKageAjIyMd8ePH+/l5uY2ZGPcY14m5OfnM1tbW2716tXSP5OBGA7FxcWijo4OCw4OxsWLF8WioiLR1taWxcfHC3fu3GHFxcVsxowZbM6cOXB1dYWVlRWuX78uODk5sZycHHb58mUkJiYiOTkZKSkpyFcokFxbi061unvEiBFDdrINDQ1ITU0Vjhw5woqLiwVzc3N+wYIFiIiI4AYFFbS0KFsJ0GZtxAiSJqamkkz53XepPvhPmLhdvHhRrKurE0JDQ7nGxkakp6czgMi1VCpFZmammJycDAMDA2bq5UVEb0DGcxBkMpLQ1tUNXz/83XeAhQUOVlSgxMdHHD1u3LASzO9Pnuwe9d13nMennyI0PJwbJPWvr8fDzEzUb92KHEdHwXXRIna/rk68dOkSq6qqErUKCwWT1FQOMTEoLy/HxYsXsXTpUsZLJBR8eO45GrsnnyTp7YYNlCm7f58I0iuvDHEOdhYEFrliBVJGjxbTlErcv3+fubq6Pt6M7PegrQ1wHO64uiKttpZFV1VB+8gRClT80fFmzADi4/szrQA5qL/yCpnDDcT27SS5/fXXPmICgEjhxImUQd2yZej7HoP09HT1rVu3OPe0NNjL5eLsDRtYj8QYxsbGrLy8XO3l5cW1d3aK5xsbWWhgIPjDh4kI6uhA394ely9fxvX8fHTo6kLv4EHcl8uRUF6OIev4k0+ILM6b9/gLUqtJWuzmBnh7w9bWlrW0tIhnzpwRfX19qQc9Y9TLOSioP0M8AIwxhISEsIKCAtHc3Jz98ssvyM7OxpUrV9SCIHA2AwJGR48exa1bt7BgwQK4Pmp419lJGWylkoI4dnYU9Nm3D3j6afz755/FsrIy0c3NjXl6eop37txh9+7dE5qampiRkRHk//43lSUsX96vyli0iIJoPeNSWVmJCxcuwM/PTxg5ciQ3aLxUKpoDoaGUtT5zhrLk8fEQvvsOn06bhkYTE5RHRopBK1cyzJhBQSalkkonZs2iOR8RQWR56lQKxBQU/O68FAQBcXFxTBRFOEdEwMzDg+ZmQ8OgOaetrQ1vb2+EhYUxUSbDg6Qk4WBVFbt06ZJYXV2N2bNns5iYGBYaGsry8/MFmUyGwMBAhuxsCtjs2kUEtQf3vvgCTStWiId1dFBYWMiMjY3F5xYuZJmXL7PqKVNEj1GjWFxcHAICAgaVCXU4OWH/kSOioFBweXl54ig3Nya9e5fWwIDP+CA6WtTW0REdp00b9oPv2bMHWlpaUKtJdFVQUAAdHR3IZDLo0DXh5MmTQlJSEh4+fIjnn3+eFRYWCkZGRsza2poO0txM/ciff56e3/9Fe7BecBwnvXXr1tTu7u73MjIyno2Pj9+jMU3TQIPfhyazrYEGGvzP4v33339dJpNtnj9/vo59j6xXJpMhLCyM1dXV6RQUFOyJjY2dtWnTpi6VSpXT0NAwFb2ZzkfQ1dXFSSQShIWFDTHu+W8glUqZWq3G6NGjYWBgwB04cAA7d+6EjY0Nd+/ePZiamooeHh59GzK5XI5XX32VA4DJkyejtLQUubm5Qnh4OFdZWYng8eOxfcMGJCcnS0RRRFBQEGQyGQoLC5GZmSnU1dVxpqam4vTp0+Hh4fH4tFJFBUmgz50jcr18OUmvGxtpc7xmDTksD1ffOwDt7e04f/48mz59Og+Qs/Vbb72Fzs5ObNu2DTdu3AB6ahIvXLggeuroMISH//6gbdxIJOGJJ4bKyXftQm1DAxrt7MTg4GBu+/bt3SqVinV2dvIymUzN8zysrKy4uw8eSHRmzIDxlSuDie++fcAbb+D8e++pG995h1u9dCkHAKNHj2bHjx9HXl4eM+3o4Nx7Mk+nT58W/Pz8BpP1Xln866+TjLajg/olFxdTJrGmhsgHfXagqQlaXl7Ad9/huQkT2Ndff43c3FxER0f/KRnpcOjo6MD+/Hxx7IIFULa3M8TFEUH54QciF4/LKMrllNULCOjP1Lq6DiXM7e20kd+0qf9nDx5Qe7LNm0livHjxYBL+O1Cr1Th37hwPAKE1NXAcPZoN7HFtY2ODtWvX8jt27FDX19eTX4GpKdWpq1SAry8so6Ph9cQTwvXr17m07Gykx8Qg6MABiDIZEhQKcByHiIgISCQSVLz0EizMzHDrxg1YWlqiq6sL8fHxmDlzJhmDLVpE9+3w4b5rYIxh0qRJXHNzs3Dw4EH1smXL6NnwzjtkjAUM2zO5vb0d9+/fZ01NTX3ft7e383FxcTA0NERcXJzY2NjI6O2OgrOz8+CbIwgkB25u7pfG8zxw4gQEjkPprVvQvnuXrd66lfUoIlh4eDhu3LjBpaakCAVbt3Jt3t7iyNdeYza9RLv3Xk+bBuzdi+vV1Th27Bj8/f0xefLkwX4Q1dU0FunppNi4dq2fOM6ZgxP5+WpDfX1u/gcfsCurVw8mj4wNNioLDCQH95deQucPP6CzpASKL7+kzPInn5BKYMDc5DgONjY2QnV1NRefnCx6rV3LcP48rZ/GxmHrkQMmTAD+/W/O5amnUMtxzN3dfdAz2tvbm8XFaUlgCgAAIABJREFUxbH2oiLoHDlCgcMBPhGXL19GdlkZxnl4MGdnZ1hYWKhHmJryxuHhCN+3Dzvj4tiEnkBkRUUFvLy8+tqBmcTGil4mJojYuhWb//lP1vzKK5Bv2zZkvd0yMBDtIyKGXYTd3d2QSCRiZ2cnAwATExN0dHQImZmZ4unTp3me5yEIAkxMTFhQUBAbNWoUGhsb0drayvXVf58+Tdn0o0dJUaJUknHafwl/f3/e399fR61WY+vWrTYATAA0/9cH0kCD/yFoyLYGGmjwP4l33313pZ6eXuzSpUt1Bm7iezFlyhTt5ubmcZWVlRdiY2OnAbjX1NTUCWBY/a2VlRW6u7vRS9r/KqRSKevu7gZA7WEWL14MhUIBIyMjpKSk4Nq1a481yNHW1oaXlxe8vLw4AHCwsQE8PLDqtdeQmZWFtLQ0pKSkQCqVQltbW+3t7c0vWbIEWlpawzvm5OQQuXZ2Jrfs8HByGzYzoxrXSZPI6GrjRqrlnDeP5MMDWy09Ao7jwBhDL9HovW5tbW2sW7cO6enp4sWLF9nIkSNFqVRKZM3EpM+47DEHpbrkL76gesTubsrynTgBZGRAt6UFOt9+i9TUVACQuLq6iuPHj0dTUxPf3NyMlJQU0cDAQJQGBTFcv07HTE6m7POqVUBSEm4eP85FR0f3jbtEIsHMmTOhVquF0oQETnj4EAaZmWhtbcWTA9onDUKv1DwxkUhnbi7w1FM0XpMmUeb0wQO69rIyYM4cyLu60NHRAQB/iWhnZWUhNzdXkMvlsLa2RkhICAfGqKb+xg3KUsfE0Lnd3IaSbqmUyOPANdLcPLjN2/nzVL+dm0sKCJWKasXb2ujzSKU0jn8SvS78vbj//vsYNWnSsK/18vLiU1NTwRjDli1bIAgC7OzshGczMzlpTQ1mf/45N8PICKULF8LJxQWXvvwSge+9h10+PlBxHFJSUiCKIp44fx63ASQ8UgJRdPUqwtzcYOTvj7KODoy9fx+mA2qyGWMwNDREc/MjfOPrr0lq3+vQPwA6OjpYtGgRCgsLhdDQUE4qleLy5cvqxMRE/sCBA9DR0WEABaLmzJkzlIDt3Utk9D//GfRjYexY5M2cKeoWFWFxczPj3nuPVA2gdefh7g6P/HzuXleXuEdXl3WWlQEGBrCysiKpP2OAVIqcuDicuXkTDg4OuHr1KnN1dSVDQgA4dYoCbcnJdM99fYdkoUv09LiosWOZkVSK6FmzqHSis5OeHQNw8OBB4fbt2xwAPJ2QgEstLbjh4wPfkSMFU29vVJw9K04dN44vGDVKTBs/HgJjEASBdXZ2cmq1GpGRkXTi8eMpEKhW05p/6qmhE0Uuh1lZGcxmzhzyK2NjY9FGS0ssWbiQU02ZgoDwcAwc9JSUFLXMx4e3NzSE69ixAGM8KiqA6dNhFhQE5cWL4pkzZ5ipqakgCAL3ySefiO3t7czIyEg0mz+f+Ts7gzGGcFNTUbpjB/v0hx8ERxcXbuLEiZDL5Thy5IhYExnJFj9y3cnJyUhNTYVMJkNXVxdzdHQUysvLubq6OmzcuJGTSCRobm5GQ0MD7OzswHFc340wNDSERCJBXl6e6Ofnx1hCQn95T2QkUF8/dIz+JL766iuxvr6eAWCbNm0q/8sH0kCD/xFoyLYGGmjwP4fY2FiFRCL55Nlnn5UPR7QBMohZuHCh/MSJE6Pz8/OvA5C6ubk9ttDV1NQUPM+jlyj/VUgkEqjVagEAx3EcHB7J1KpUqj+vI+7oADZuhFxPD+PGjUNNTQ2Ki4t7e3zz/KNZIJWK2mAdOkRZVxMTysoGBFDNZS8Rq6+nutzGRvpijAjj5s2UOampGX7DC1IO2Nvbd6vV6iF/fxQKBSZNmsQuXryI/Px8BgBX58+HaWUlVoni70uo584l+fLWrUTQt23rkz7r6enh1VdfZd9++y2qq6vh5OQEU1PTPtLU16KtqoqkxNXVwC+/ECF2cEBBYSFUKhXchjEVmjNnDqdSKnF961bx+NmzLCoqivvD+uqoKPpqaqKAhkpF17x3L0k8i4qIcIPmQ3R0tHDhwgXu888/F1555ZU/Xbx9//59nDt3DhzHcXfv3sXKlSsHj6GbWz9JcXammuZ//nNodjAsjIIdmZmU8du4kcbZ1pbcynNyqLZeS4sCHStWUAuszMw/rN9/FG1tbTh//jwAwMjISDQ2NmbjKyupfvzGDbTLZNDS0kJnZycaGxsREBCApKQkAMDy5ctRV1eHX3/9lduyfTt8fHzU/pGRvE1KCtxEEcjORsi6dcCKFdiwdi1uPvMMbgJISUmBWXAwtGQyvPHGG/j/2Pvu6Kqq7eu5zy3pvVfSENKBEBIglNBb6CAgICAgRUDxqWALUURBfSgWQKRKEUQQUAg1hATSICTEhADpJCEhvbd7z/7+WKnkBvC93xjf8707x2Bocs89de+TPdeaay7WbOBVU1MDcexYVJ88iQMzZ4Ixhvs//shtbW3F2bNnS6RSaUvvamHevHkdLyQ8nDLQDQ0q5bpOTk5wcnJqfZZDhgyR3Lt3jz969IiJoojg9gqB9khKIqXBiROdPsrIyECeXI5Ra9cyWUAAPdtu3SjjzznVduvrw+DECVbfrJa4fft2S2tBUSKRwPu114Toq1fx0iuvwNHREXFxcTh27BgmOzpyt8uXGT7/nNQeY8fSXFHRw9nOzk48FxoqyXJ15VOsrBg4b6sv//lnYMkS5OXnIzU1VQAAFxcX6F+7hkmZmahycsLhkyd5iZcXMzc3l9z66CPIi4rYi3fvwuD+feR/8AGONL+LHj9+LHLOSd5ub09S9uXLyVH9yXfFokV071Sgu62t4GRhgXAjI0RIpYjctk00MTFhQUFBLCkpCdXV1ZJX1qyBRu/e9J6LiiK5e3O7PkNDQyiVSt6vXz/h9OnTkMlkzMfHRxw+fLggT00ln4AxYxA4cCB7FBsLj/R0PHz4UPz8888FExMTZX1+vuTNzZvB3nmnw3mlpKTwpqYm1qtXL9HFxUVwdnYWPvnkE/j4+LS2YdPX18eTbu8ABTD79OmD2JgYVjZ9Oow/+6ytDGjSJFIitbjo/0UUFRUxuVwOznnOv7QDNdT4H4OabKuhhhr/c5DL5Vt79OghmD2j76ggCAgKCtJwdXW145yje8ti5SloaU8EkHT35s2bUCqVSE9P53369GEdDHTagXPeWo8niqJK45m6ujooFApWWlqKVkOmpyEzk/oyT58OAHjxxRcRGhqK27dv4+DBg3zo0KGsm5ERGZDt3EnZyLfeohrO9etVO9Z+8QWR7rAw6v3cXk48cCCRxI8+IpOhDz5QeVoSiYQ9LSgxf/58aGhoQBuAjpsbtrz5Jk6ePAlPT09YWVmpzvAaGRFRzMmhDPu5c2SUlZREZGPDBgSam8NhxQpsEQTm+vHH0KupoXpkCwvKvpmaEok8fpyuDUT+Tp8+jREjRrDWHuNPQG5jg+7jxjFUVCA/P1+JLkoNOsHAgLKfjLW5NZ8+TZnk48fJWXvgQAQYGgpFDg5iVknJcxNtsbn9kpOTE3r27Mlyc3O5paWl6vOSSCi4UltL9bQpKZR9byEsWlqU/U5MJLK9bx+R75b+5MePUw3o6NEkm/7qK5Kp/oX68qrKStxOSID0m2+gMDeHhVKJV3fvZiw7u9XRmY8bh72ennhl3z5sXbsW+goFbwAY09MD5xwNDQ3w9vaGp6cnsrKycOPGDeFwXh638ffnL2VkCGzNGpJf29kBVlZw/OknOO7di2HDhtG1aGiQlBoAkpOhmZcHnDoFU2NjfNhcFpCens4uXbokHDlyRJw3b55w6dIlpY2NDbO3t+/4bBgj0mdg0CYpfwZmzZrFtm7dioaGBmzZskVcsWKF0GGsR0ZST+uIiA5yfM457t+/j+PHj8Nr/nwuGzSI4cABGsM3bxI5bFGpHDsGTVNT+Pj4iLdu3RJee+011NXVobGxUThy5AjyfvoJ644ehXTjRgCAb9++MFMq8WDjRkgaGrh5dTUz0tIisqaCaAPAhAkTJHl5ebhw4QK+++475Zw5cyRJSUnQPnIEbu+9h9u2tsi4fp1DLmcABZSMbW2B5cth7OuL1z78sPM4bWwEjh3Do6IirP76a0T1748oURQCAwPb+n+3dEvIzAQ+/7xjFwNzc5prT0IUgW+/Re3du4gYNAivvvoq0tLShIyMDPHrr79mADB48GBRT09PwA8/0LskPJzaG7Z7bmfPnsXZs2fRvXt3Pnv2bAY0J8cZo2x7UBCEV16BTUoKbJydBQAoLy9HamqqJCcrC7s//JAvlkhaJ0xtbS2KioqYg4ODOG7cOAEAGhoayFG+iwDxkxg7dixyfvsNtTExMLS1bcvWGxpSkDQjQ2WZgypwzpGWloaYmBgRgNCrVy8kJCQIISEhtsHBwbnPtRM11PgfhZpsq6GGGv9TCAkJ8dPQ0Jg9bty45yoeZYw9F8l+EpWVlThy5AgKCgpgYmLCnZyccOrUKTQ1NcHX1xcA8OOPP4qFhYWCUqkEb87cCoIAe3t7lSxl2LBhSE5O5j/88AObOHEintm+ydy8g+OzIAgYN24cLBQKlBw8yBKuXOHGDx4wvf79ydzsvfc6mAKpRFwc1d8C9J1DhzosPOHgQAvds2epl+x33wEyGR4/foz6+noolUqUlJRIjFSYR7XAsaVHcVkZMGkSRo4ejfDwcJ6UlMQAwMPDgwcFBbFO/cpffpmISGUlmXU1NtLvb94ETE3hIpMB8fHwffQIP9XVIWj0aNgBlBF3dSXSOWgQMGkSeHQ0kvLycKuykhsbG4t9+/btmkBnZ0MvJgarvvsO33//vaSgoAAWFhbPNjNraqLgxbp11P7qu+8o0KGr25Yxrq2FMjQUumVlwpw7d4jYfvQRZQidnCjTVlhIta9NTSgSRfwSHo4KOm82ZcoUQVNTE71Vmce1h0xGxPDjj6kk4P59Crzs3k0EY+tWOk8TE9rm0CHaZtYsMkVbvJjGxbhxKo3BWpGWRvfZ2JjGz6+/Qvnhh2j66SeErVmDl+Pi8GjAAIzesgWsV6+2fseXL4MFBcH0rbd4tY4OU2ho4JWvvmJgDF+98Qbe3LMHGv36AebmEB4+hJOrK5ycnFhWVhb279/PvtLX51NPn2bdGhpI+rxjB431devIYfzNNylgsGULnWdICBHa/fs71Gy4uLggPz+fhYWFsc2bN3OFQiGZpELFoVAokLZ0Ka7Hx/PRubnMtgti2h76+vp4+eWXsX//ftTV1QkNDQ1tgaWsLDrnAwdaAwI5OTkIDw8XMzIyBKlUCltbW0VQUJAUSUnAP/9JZLuggAJinJNPgEyGC+fPK3JycgQNDQ1uYmLSenlLly5FU0MDpO2z6jNmwKGwELonT7K9u3bxycOGITEgAJbvvMN7dlHOoq2tje7du8PR0ZHt3buXfffddzA3NxeVSiWu/OMfAr99G6u+/polTZmCeF9f5aBBg2huffkldT1QKDobLcrlwNy5cMjJwZHZs6HR0IBlSUmQBgWRa7ixMX2HMSLVWVl0zS1z0NmZfAWamtp6qAOk2ImPh97Bg7Ddt4+fOXOGL1myRAgICBDKysrQ2NgICwsL4qnJyaQ+2bSpQ023VCqFn58fUlJSuI+PT8d74uZGah8dHTJda/fOMjQ0hL+/P/rW1SH08GHW1NSE2tpaHDp0SBQEQRBFEYMHD+4QxFEqlSgoKOhqCHVEeDhG29pizyuv4IP2gULGSNLf1PRcuzlx4oQyKSmp5f0njBs3Dn379oVcLreLjo5O+/TTTw81NjYGq0m3Gmqohppsq6GGGv9VCAkJ8dPU1NzAGBPr6uqOAzgUHBzc2PxZX5lMdmHy5MlaXWUp/x0wxrBv3z6FXC4XCgsLBalUihEjRigHDhwoaWhoQHx8PM6ePYuamhoMHToUZWVlwpQpU+Dk5AS5XN6+vZPKDKZUKsW0adPY77//zn/99Vd2584d5axZs7omgRkZVPsLANnZtNiuq4PP0aMQAwLwi54e+8bGBoFBQbxXr15M62nmVdevkzT7559psdbYSA7Czf2nO8DEhLLLlZWoHjUKp+fOVT7IzZXo6OiIjDFwztEpE6gKTU3A2rXo5+2Nfv36MVEUERsbi/PnzzOJRMJHjhzJdHR0iOSZmVFG9eJFcvluHwBoX0fv6YmRnp7IzsnBnqtX8Y++faHTvq3Vp5+iuls3ZCxezC1v3WKV69aJryxZ8vRMtVQKGBvD2NgYNjY2ip07d0oBYPXq1VAZVBBFUhMYGhKBWriQggNz5lDGeP16Clg0m1cp587FjU8/hfD667BwdUVUUhKc/PxgYWpKJmeJiYChIereeQeyhw9hOnIk5mRnM/1+/ZiwfTttM2UKBR2sran2vraWyOaTpMbUlJ5rWVkbad6+nTLbublEHBgjkt2rF0nPW4zf5s+n7XmzMGPDBqrVjomhQE5yMrWOGjCAjL1MTABRRPSIEbimrY0hQ4bAITgYDi3n0r7Ou5k4Td+yhWWvXAmTP/7gCb//jsjz55lGQwPE2loaA+PHU8Dl7Flg1y44mJjgg2+/xe8bN7LoO3eU3WbPluDLL+nad+6krO/Zs6Qm0NMjMpWaChw5otJsCwD8/PxgYmICXV1ddvr0aZ6Xl8da+rDn5uYiNjZWmZSUJJFKpXC/d49VvfEGxy+/PDPNX1ZWhri4uFZPBhMTE/ogPZ0yyRs3IhnA8ZCQ1neFjY2NsHTpUlhYWEAQBHqYnp5ENnNyqJTkt99I9i2TQaFQ4NatW1JfX99OQcRWpc/p0/S8xo2jZ+jkBFMtLSydNImlnjqFCBsbDC0qYj2f5qMAel8tXrxYEEUREolE4JwjLCwMERER2L5+PWa9+CL6b94swdGj9H554QXg/ffpGWzdqnKf9vb2WL59O7744gseqqeH+draDCUlwODB9AznzKEA1LlzVNceHEyt67S06L/37rW9s/74g8ofwsIAiQR5eXlMW1ubZWVlwcHBoW3uKhRE1A8coADYhg00b7W0gBdfhPLwYfxRUMBdzM3RXansSPIlEsq4W1vTWFN1n5KS4JSRgTNnziAlJQVGRkbM0tKSOzg48PYdJORyOXR1dZGcnAxPT084OzujSzNOzoHXX4di/HgImppofgZtn+fnU2/0779/6jMEgBaiPW7cOPTu3bv1mMOHD5cPGDAAV65ceSkxMXHOZ5999ltDQ8PC4ODg+mfuVA01/oegJttqqKHGfw1CQkJcpFLplWHDhmnL5XLEx8cPKSgo2Lxx48azAAxkMtmoqVOnaj9rkfivgnMOf39/aWlpqdic7RA9PT0lANUqv/fee9i0aRPq6upw4cIFNDY2ory8HH+F+Nvb22PZsmUsJiYGFy5ckDx+/BjmqrLRnNNi6rffqJbxH/+gLNfw4cCqVRAYwwxRRHR0NKKjo8WLFy9Kpk2bBldXV9U9nW/fJtLasoi8do3IVlfZW7kcuRMnIjQlBdM3bZLUfPstbMaO/WvNog8epHO/cAEAZeb9/f1hYmKCs2fPit99951k7dq1kM6dS8QVIEfyIUNIEtzcr1sVHj9+jG7dukHjiXpaxZIl+GPgQJQGBfGFhw+zNUePSjB9OpHMroIR9vYkoQawcOFCaWVlJbZv345du3ZhzZo1nY6BTZsoy5WVRUGQFpSUUMYpI4Pu9+DBAGiRbW5uzqNu32aRN2+2bm6uUKBXr17oP306ysvL8f2sWRg4cCCfOWAAQ34+1WI/ekQZaJmM9nn+PBHtAweIAJSW0lhZtYrGi60tEdacHCIqSiU5cBcXU4upwkIiYW+/TYR0wQIiHgsWUKBjxgwi5TExRNrGjqXa+bfeopOOi2u73qNHwTlHXHo6tCwsMHToUJW3tyYlBRqzZ2NrSAgsLCzEzMxMAQC7GBlJGUMAaZGR1Efax4fk1rdvU7nD2bMQKisR9PHHiBk8WFIXFwet8HB6ngUF5Hadn0/Z81mz6HkYGHRJtAGay+7u7gCAoUOHsj/++IM7OzszS0tL7N69G926dRNmzpxJfb63b0fukSNs27ZtfOLEiexJD4YWVFZWIj4+HikpKQwA/FtMBouLgePHoZg+HfDywvHm/uUTJkyAnZ0dTLty/+cc8PKi3uF1dcA77wCennhw8CCW/vOfkH/yCfTNzOhaKyrI86C4mMoqpk6l7PmLL7YR048+gkFSEvyio1F4+jS/c+cOH9SFe3Z7MMZaSV58fDwiIiIAALUKBf588AB2X35JZQvZ2dRmrqWM4ylISkpCTU0Ny6ypQdSoUWJ/V1cBBw/Su2jmTBrfx48D/fpRAIgxCjq0BGI8PCjrf+AAKTSayWP37t1x//59nPzlF7wREEDEvKmJPCwmTqTvJSZSoCYri4IXpaUo/eADyAMD2QgAzN+f5nH37qSg2LKF7mv7gN6TWL0ap2pqoJGVhdGjR4u+vr4t97XDy5UxhqVLl2Lfvn38xIkTTBRF6OnpKRcvXizR1m5nJ6JUAj/8APH8eRzZuRODAgK4pJ1EHQD9HeiCaFdUVCA1NRXm5uYoLS0FACxcuBD29vadttXS0sL48eM1hg8fjh9//DGooaEhEMC5pz0/NdT4X4OabKuhhhr/NZBKpct8fX1lLTJtb29vnby8PJ2zZ8++XFZWxhcvXsyeq9b5OZGfn4+wsDBwzsE5hyiK8PLygqamZstiqcNilHMOc3Nz8c6dO4K+vr6oUCiEa9euwdbWVuVCpisIggBfX19ERkaKO3bsEN544w3oaWsTkamoIOJQVERkIieHSJSXVydiLAgCBgwYgAEDBkgOHDigOH78uFRTU5N7enqyluwd6utpAbtjR8de1/v3UyaqCxQUFOCngwfhNmqU0nD+fInhl19Sy5+nEOBOmDWro+t1M7p37w57e3tBa8cO8CNHiFi1QCqlVlaJiZRB7SIYEBAQgIiICOzdu1epqamJbt26CSYmJrx8xgxWq6+P5cuX07ObOpUIa1MTtToaPrzzzrKzqY5z4kQAJAd+5513sHnzZr5//37MnTuXaWtrE3keOpRq2d98s/N+zM2J/IaH0z7HjiVSqKmJ6dOns8jISNHKykqwtbXFlStXkJmZiQsXLqBHjx7YsWMHNzAwQEBAAINE0pbNd3Jqu+fta1hnziRCVlhI5NjCgozwqqtJ6n35MtW/7ttHslxPT/pOYSF9v7KSgi2nTpF839yc7tGOHa0EuMNzeYoZU0VFBYyMjFozumVlZThz5gwyMzMhlUrBGEPTO+9AizLmgo2NDZ8/fz779NNPYW1tjfz8fCK/DQ0kn37vPcrKM0b/OEdTXBxu7t+Psrt3MZYOSvfW0JCylXfukGT+SVfxZ8DDwwOVlZU4duwY9PT0oKOjIy5YsKB13tu88QYsFi9G/b597NChQxg4cCA3NTVl7u7uyMnJQVRUFC8vL+eFhYWCXC6HjY0NnzFjBtPV1UV8ZCTwwQfcxMeH7auvJ6d/UNszbW3trok2QNd95QqNt5oaGsfnzsElKgpRixbxhKwsBAUEsG4nTtBLats2UlwApGKwtSXyC9B9ra5u9WCws7NjWVlZnXwloqOj4eXlhTt37qBv374dsq7NnRA4AGZiYqKUSqXw9/eXQF+fMtE1NTS3hg6lGvcFC0hW3pLdbwcjIyOYmJgoS0pKJPn5+TTBW9rS7d1LAaXERPIfCA6mcb9xIz3v27fJvG/VKirbsLend9yjR9A+eRKT792DdPZszteuZayl+8LkyaSaAEgNIZdTRhxAblYW9i9dinfeeYeCpu++S9ulpLTJ4Xv16qiueRJDh8LLwACBR45AW1v7qQEMPT09rFq1inHOERMTg/Pnz0sSExPRvz2Z//FH4MgRFAUFQRTFNgPI9rC2pkBEcjIFnJpx6tQpZUJCggQgci+VSmFkZKS0t7d/pg9FVVWVACANAD766KO5MplsZGNj45rg4ODyZ31XDTX+m8E47/S+VEMNNdT4W2LLli23pk6d2qe1TU0zmhclcHV1RVNTE3r16gU3NzfU19ejrKwMoijCptn9+a/g3LlzSE1Nhbu7O2eMQUNDA4MGDWLPrNVtRkhICADA0NCQa2lpMRsbGz5+/Pjn+zLnwL17OB0czAPHjGF6H3xAi7q33qLMRt++RG5LS9uyvs9wyQ4JCcHw4cP55cuXGQD4+PjwCTY2DO+9R5LM9tm+ggLK9Kow6zl48KCYmZkp9OvXj48ePZqu5/FjqusNCKBzfJ579NVXRPJUENy7KSm4dOgQN8vIYFbLlolDhgzpeHErV1KWu9kcThWysrKQnZ2NjIwMMS8vTzA1NRUDz55llzw8MOvNN5lJ+4V+fDyRkKtX21x9W3DhAmVxv/22w6/Lysqw44svMP3oUXT/808iP336AJaWXV9zZiZl5U1Nidx+/TURAhX368svv0R1dTUACpysW7cOsvb1qP8XaGqiwIqXFxGU2Fiqf506lRbrqsoI/gIaGhrw2WefwdHRUTF//nxpQ0MDvvnmGzQ1NcHY2BheXl7QqayE52efgYWFtX5PoVBg7969vLCwkCmVSujr6yuXbdsm0Zo7F/XvvYfKAQOQZWMjXh4wgGlpaaGiooIBwNtvvw1NTU2qpxdFylA+eEBSX21tmi+bN1NrtGf1d2+HgoIC7N69GzY2NljwZGDh4EHgrbeQdOECoqOjxfz8/Nb+x3p6erxHjx4s6gmJMRNFeGRkwPrBA5wfMwZgDD169GjpQw8AMDAw4K+//vqzJ1JJCb0P/viD5uuePYgcMkQMj4gQFApFx6wl51A0NkIqCJS5jYyEdNEiIq/Nyo4rV64gOztbuXDhwtYXwp49e8SHDx+2zkFdXV2xmagJ+fn5vLGxkclkMjQ2NmLlypVtgQJRpLEdHk4O69u2UbuyhgZysr94kVQZd+/S3Pv+e5qLL7+Mqw0Nyrr589nYH34Q8PPPRBzv36fgYUMzAAAgAElEQVRShcRECpJ160Y16zIZlWps2EDvSamU3pODB1N7Ng8PZA4ciKqKClyur+f1cjlbt25dZ9+FujraZ1xcK4EOCQmBo6OjOG/ePEHluz83l+6diQlEUURMTAwYY9DS0kJdXR2kP/+MOIUCy7755tk+D+2wf/9+ZGVltRF9gO6NkRGgo4N6fX189913oqWlJebMmdP53DZtor8Rr70GgFz5r1y5AisrKyxduhSiKKpWOalAamoqTp8+Hf3222/3/+ijj4K0tbV/NjU1lebk5Gz48MMPP33ui1JDjf9CSDZs2PD/+xzUUEMNNf5thISESDjnW0eOHCl90jhLV1cXWlpaqKmpUVZWVrKYmBgWGxsrRkREsMTERNy8eRNyuRx2dnZ/6ZglJSUoKSkRX3zxRcHZ2Zl169btuYk2AHh7e8PHxwcRERGsuroaTU1N3N3dnakkTKJIztr5+WSqtXIlYGKC3Lt3YRUYyDQ/+4za2zg4kNFTi3RZS4syvAkJJKN8CsLDwzF37lxWUVGh1NTUFOy2bmV5nMP2hx86EvWcHKB3b8ogqrje06dPMxcXF0yePLntQx0dWjzfvUvS9kGDOtcLP4mNG4l0tmStWhAVBbPRo+F35gwTPDxw9uxZZmxsDDMzs7bFqpERZeIWL+6S2BsaGsLBwQG9e/dmUqkUaWlpbMKpUyzL3R2PGGMdWn1ZWbXVEA8cSIv0Fvl+aSllx/z82rYvLYVWeDiKLSxgduUK/rSyEu0nTWKsuQ67S6xdS1LXyZMps5+YSORh3rxO96u+vl7Z0qeYc47IyEgMGTLk6ft/XmRmknxWFCnDOHIk1dP26NEmM167FvD1JXKk3WVXvC7BOcfx48d5bW0tVqxYIUlISOC7d+9mBgYGytdff13w9fWFnZ0dLHR1wS5epPvQDEEQ4OPjw5KTk5U1NTWCVCoV4q2tkWxmJl6+cQMSAwNuNHSoUKmvj6KiImZqasrnzZvHDh8+LFZUVEBTU5Pp37lDgZyNG8mhvOXZhIVRQIExCjA8JWADAKWlpTh27JioUCjQkpXuAE9PYOlSWNjbw8fHh/Xp0wcODg4ICgqCv78/c3Z2hrm5OZqamuDn54fAoUPBd+2Cc2oqfp80Cd0cHFBRUYE5c+Zg5MiRGDBgAGpqapCdnc0SEhJ4Wloa9/Dw6Prdo6lJHgvjxtF42rIF9rNns0EzZiA+Pp5raGgwR0dHpKWl4dratTBdvhzfADwmMpI/PnGC5dvZiYK/PzM0NIQoivjtt9+UHh4ezMTEhB0/fhyhoaFiZWWlMHPmTLi7uyMgIACZmZm8qalJ0NbWVvr4+AiBgYGt799RFRUMUVFEenV06P2kVFKruKlTKUhWVUXEe8kSknv36EHvgp49gZ49oczIQJOTkxCRnc0G3rpFhPrXX0k+PnculZJYW9O74803aV/Ll9PcKimh+aylRUGVZcuA2bNh1LcvLAIC0H/oUBYWFoYBAwagU3tEmYzM2AYObA0+SqVSxMfHM3d3d+i0qDraIzER2LULGD0ae/fuFdPS0lBSUsIzMzN5UVERl0qlYr8FCwSTpykVVCA5ORlNTU0YNGgQ/aKykt7xbm5As7LAy8uLnT9/ntna2nbwj6iurkb03btiWn6+eDopiYWFhbH09HQ4OTnxBQsWsJb2d8+LZi8A/StXroRqamrumDhxorW7u7skOTl54PXr16dcvny5Jjw8PHno0KHqDJ8a/3NQy8jVUEONvz1CQkI0GGPrlUqlZnZ2Nrp3794hw2doaIjBVP8qAYDs7GyUlJQIpqamsLe3R2ZmJo4ePYrS0lJMmDDhuY9rYmKCmpqa51+RPIGWxc+4ceOUZ8+elZSVlQlffvklPli9msixnR1lYzQ1idDt2kUL1H/8g6TStra4WV8Pz759VWaYW7F9O5GH54QgCNCXSuFZW4vDVVVI2bNHsWjRora/F9XVtKAVBCQlJeHy5cviiy++KFhZWeHu3btgjKkmfWZmtLDdto0k12fPPrU2Fr/91pmQKxREavfsAWQyuLm5wcHBgZ88eZKJoghvb29aJA4YQFLPn3/uQNK6gp6eHmpra1GZlAQeGipyzjufmI5OWy2rREKkbNAgMhMrKqJtGhuJOPz8M7BzJ6YkJiKnXz9E/vSTcPXjj7Fq1aqnt20LDqb72wJfX7repiYKeLQb18OGDZMEBATgxx9/5EVFRR0z8f8qLl8mJcRXX1EAYdEiyjrGxVEWOz6eyMt331EA4KuvyLn7vfeoRvZpz/MJHD9+XLx//76wcuVKFBQU4I8//mC9e/fGiBEjJB0yahYWJAFWgV69ekkunDuHl7/5BgenTIFjnz5svJsbs7S0ZOzCBXiWlLCrgwcjLi6O7d69GxKJRMg8dgz6d+7A8vJlSK5coaBJWhoZ0y1bRvPF05MMrVrOoyXgMW5cp3PIzMxEfX091qxZo7o9HGOUQZ80CUhPV9kb2c3NrbW7gBgTA+f0dJyYOhUAoKOjg/fff7+V+EmlUowfPx6CIEBTU5PduHGDhYaGYpyKcwNA1/DOOzQ2p00jqXVdHdimTRg4YgS7efOmsq6uThIXFwdLXV1UvfoqZk+axCzmzmX8iy9wrqyMHzp0CPr6+kpbW1tJTU2NpKqqCv/85z9hbGzMfX19MXjw4A5Z0FdffZV+2LuXTrquDtNfflmy+a23UBsfD+2W8Xz3LgUIgbae7Pb2NMdsbOjZ3LtHY8DBoXXbTbW1EJvnSeO1a5DLZNQWbc0a2keLAkAUiVwbGVHZy4wZFCgbM0ZliQoANDY2gnOOo0ePirW1tWzevHmspSa6vr4eMS4u0Bg7Vnzg48PL7exQWloq6devn2hmZqY6DVxdDaSm4u7duygoKBCWL18OIyMj+rtRWUnn1uJp8Jxo7jPPbWxsWOt1ZmVR2UdzGRVAgWYTExPFqVOnJK+//nprQCY5ORkRBQXC2u3bYXD6NIqqq+Ht7Q1ra+t/6e+ZpaUlJk6cqP/rr7/erq+vh4GBAaysrPDmm29qPnjwwOfq1as7Kyoq/rFp06YYxhhrbGzcEBwc/OhfOZYaavzdoM5sq6GGGn87hISEsIiIiFUxMTHfhYeHb+GchxgZGfVzcXGRx8TEiFevXmWmpqYwNzeHQqHoJIUzNDSElZVVa79SIyMjuLi44OLFi0hOToaHh0fXLq/tIJPJcP36ddZM5P86RBG4exc2xcWCh4EBzHfuhG5lJZz374dw4wYtPisqaFE4ZQqR0x9+oDpcT09g+XJEx8Zyz969mY6ODrKzs1FbW4u6ujrI5fK2rIylJS3EfH2BV1/t2PqmHcLDwzF48GDU79rFzWJjBbsrV9Ddzw9hYWFCdXU1ampqUFBQAFl8POqGDEFobCyuX78ObW1tFhkZifT0dDE2NpYFBQV13S5NKiUi7OpK5GP4cMoUqYKxMZH6FmJSXU2Effp02kczPDw8WGxsLE9OTmZGRkawbJFp19SQCmDCBApYPAWnT59GVVUVhr/0Em4YGwsDJk5U7STOGBFsQ0N6Jo8eUZaLMap97N2bpKzBwZRJA2BgYICePXsiIyNDGR4eLkgkEpibm6uWfBsa0sLb2ZkIhkxGxOCHH0juunBhB5WBRCKBmZkZS0xMbHUn/suku7aWzM4MDCib3rcv1Z7OnNlGnh8/pmDDsGHA6tVEOs3M6Dl4egIPHxJZtbMjsvQcyM7O5hKJhPn5+WHPnj3c0dGRTZ06tfN9SU+nLKWKvu12dnZIT05W2hQVsTH79zMnFxemp6dHAZeffwYiImC/di0ePnzIx4wcyQa7usIpPx+1f/4J6xUrwFpaOIWF0TwbN46I3uLFJBOeNo0+j4yka01OpizqggXIzc1FWFiYGB0dzTw9PeHq6to1UTEzo/E7YMDTAxIXL4KtX49zS5fCyskJ5eXlKCwsRGBgYIfNBEFAjx494OzsjPDwcOTn5yM8PLz1nlpYWHTY/vHjx9DQ1sYlV1ecf/gQvfbvB37/Hb8ZGqKioUHIzc3F1KlTMQ6A8auvwrCiAtJHjyBbsQKubm6Cv78/Hj16hKSkJMY5R1lZGTw9PTF37lzm6OhIFG7XLno3nThBpHbVKuDDD6mV3fDhuCYIyASgNWYM7BcvphNrKXFpj+PHyYBx8mTK1Do4QOzbF0wQWtUjWVlZKC8vR0BAgLJ79+5da50ZazM2NDWlcggzM3qeVVX0Hur0FYaKigrU19ez3NxcFhgYiMuXL+PEiRP82rVrLDMzE+PS05mVj4+g7+8vVFRU8PT0dOHmzZvitWvX4Obm1rGzQ/fuECdPxqGjR0V3d3fRy8ur7Xw1NGiuPcffmxacOHFCeeLECaGuro6NGjWK5vv771M9+bvvdlLyuLm5CWFhYYxzjtzcXH737l3ExsYyv4ED8UJGBqwDA9F92DDoPUt18wyYm5vDy8sLsbGxCAgIgKamJgRBgJmZGfr06SM3Nja2tLa27iuVSnuXl5frDBo06I9/64BqqPE3gZpsq6GGGn87REREzDcwMPgqKCioW2BgoObIkSMFf39/uaurKwYOHMg0NDQQFhbGjY2N2fbt2xEXF4fk5GTR1taW6ejoqJTH6erqwt3dHX/++Sd/9OgRc1WxCHsSMpkM165dQ//+/TvLDVXhwQPKDJ4/T72KzczIXKqgAA+9vPi9ggJmPH06NN96CzrLloGZm1O20MaGSJeZGS1gAwPpvw4OcJ41Czwuju15/JgnxcXhTkoKv337NiIiIlhGRoaypqaG29vbCzA2pszWkCFdyqqvXbuGwYMHQ/nll6zMyorZTJwIDQ0N2NjYIC4uTszOzuY5OTncedMmdrWkBFUWFsqZM2cKw4cPR1RUFCorK5mfnx8GtCPCKsEYkac+fUgmOnBgmwFRCzhva1klCFQrqaNDdbQ+Ph02FQQBAQEBLC0tTZGZmcm6d+9Oi11zc5IG19URCewCKSkpiI+Px6hRo5AXGwuTefPQ62nuwXRQ6iPu70+EYPt2CgIsXEhk7Yl7rKOjAz8/P6GwsJDHxcWxW7duobS0VMzLyxO7desmtLREE0URVTt24NKff/Jz2dkoLy/nxcXFTLdfP2jq6hI5YKwDYdPX18e1a9fw+PFjJCUlITExEf369Xu2DPTePZKLf/MNtUqaP5+Ivptbx/O/e5dqtVuyhnPmEHFpIcUWFiTz1dIiU7WDB4mAP2Px3tTUxBITE0W5XI60tDQsWLCAqZxHuroUeFJF4ouL0ePWLWGHtTXT1dfnVlZWbXLqwYOBKVPACgvhOWAAM3rxRWhevAj++efYX1aGJoVCdHJyou1XrqR/lpYU6Pj4Y5I0t6C5fVN9WRlSk5LE/ZmZzPuVV1Amk3G/l19m/fv3f/rNZoyI4mef0XmpejapqRRU2bIF3mPGwM3NDc7OzoiPj4etrW2XiohevXpBX18flZWVyM/PZ3fv3kV4eDjCw8NRVFSEK1euiBERESwiIgK5hYWora2FYWwsLvj7wz4lBSMNDRG4bh3sJBIKgBUUkEHfli2t5ymRSODm5sYCAgIQOHAgAsrK0GPSJLD16+mcZ86k8R8QQPO6Vy/yNpgzB/D1RUZWFn6/cwd6+vpIT0/neXl5cHFxYSqDmhcu0NhpDmJG376NX0QRtbq6otPlywymppDb2CAlJQU5OTmCSrl3V1i3jgj+5MlUD56bS67hHR4VQ8+ePVFcXAzOuTInJ0e8deuW0NTUxIKCgjBq1CgYr1gBwz59YCuVot+IEczHxwdmZmasuLgYUVFRPDU1lcXFxSnT09OF+tpaWLzwApKGDsXMefOEDsHfP/6gVmeqjBe7wPXr11FVVcUA4N69e3yQiwuDmRkFgZ5QTAD0d6q8vJw/ePBALCsr4/fu3RM0NDT4Sy+9xNCnD5UmtS+Z+TegoaGB27dvizKZDPb29q2DXBAEmJubw87ODllZWU0FBQVhgwcPvvx/clA11PgPh9ogTQ011Pjb4ZNPPvm8X79+b4wcOVLlCkuhUOCTTz5Bz549UVRUJI4YMUK4c+cOT0tLY0qlElOnTuXu7u4qF8fh4eE8IiKCmZiYKJYvX/7MdMNnn33GlyxZ8nwS3oEDyfX4xAnKtPbp0+rcfObMGWV8fHzr9VhbW2Pq1KkoLy+Hs7MzEUZLS6qftbJqrb/+dtMmsbG8XBhiY4M+774LVlICNDbiUU0Nzp07h6qqKnHNmjVtq7v336f9NJvitMc3a9Zg5aNHuDB3rlhaXS3MmTNH9XWEhxPJbNfSSqFQICkpCWfPnsXixYvxZGatS1RVUdus+fMp695CQkpKSMbbIuu3saEs2auvdrkrURSxY8cOsba2VnjzzTeJbD56ROT30KFWwl1QUIAbN27wKVOmsOzsbBw5coSPGjUKpaWlvOzAAaFu0CDMX7Lk+WsWnZ2JtIaG0jHq6ynD/RSEhoaiuLgYBQUFolKpFMzMzJTV1dWSsrIyyKVSPsbFhQk9eyIuLk5ZVVXFGGPstddeY9LVq2kMRUZ22F9NTQ20tbVx7949nDx5Eo2NjXB0dORz585lHRb3nAOXLlHAwsODstRvvfX0bOvbb9P1/fIL/fzpp+QfcPhw523r68nE6sgRynT27KlSVaBUKpGbm4t9+/YBIBn1jBkzVB+/ro4I/JIlnT/75Rdg0yakHjmCEydOYO7cuR2d/bdvp7KL/fspY29tDVEqxaFDh3hubi6mTZvGXnB2pox9WBgFUZqaiGxbW3fo9V1dXY0DBw7w+vp6GBsbs5H378Nm1Soyx9u+nUo/ngaFAnBxIaM8J6eOn929S0Two486kb/t27fj8ePHAIDXX3+9VZGjCrm5uTh+/Djq6uogCAIEQUBtbS1ee+01aGpqQlNTEzU1NUhISODu7u7MuG9fMKWSyHXLfHnzTTLPcnCgAN3du3ROs2ZRC6sZMyggk5ND11xTQ875XaC+vh7V1dX48ccfuUwmY6NGjcLNmzfFwsJCJggC19DQ4IMGDZL06dOHvhAeTsEcd3c8ePAAP//8MwICAhB1/Trm3LyJ+qwsfnzCBKZhYIDa2lq8/fbb0OqqLd+TiI4mxcwLL9D5f/EFZbsXLepkIJmTk4ODBw+iqakJ3t7eSExMBEDEccmSJbBcupTGe3NrQgBoamrCjRs3RACCRCJBdna2mJeXJ4zJyhKdN2wQdJ5s03j4MNWRt+8U8AxUV1cjOjoasbGx6O/kxAM3bGA4doyu4znw+PFjGBoaQi6XU4u+b78lwv9/AIVCga1bt6K2thZvvPFGp3IJAPjyyy9rqqurXw4ODv71/+SgaqjxHw412VZDDTX+dggJCXlBJpMlvPrqq1pdkdyjR48qS0pKMGTIEIl7u9YmsbGxuHz5MhwcHBSNjY2straW+fv78969e0sAIgGpqak4d+6c+I9//OOZVqxffPGF2L9/f+HRo0fK8vJyBAYGSpy7qo++epXa9/z0E7WGGTasw8fp6ekwMTFBbm6ueOrUKUGhUAAAgoODadGrrU0L9u3bqc5v1qyO+8/KAhwcwB0c0DBlCjJefhlXQkP5a+vWtbHGL76gdjoLF3Y6vRPTpmGyjg4uvvSSWFRUJMydO7fzNfzyCzmTHzig8hJPnz6tzMvLw/Lly5+/eLekhBygW0zItLSAo0eBzz+neyaTkSrAze2ZjuoKhQKffvopvLy8lKNGjZJoaWnRNXt7t9ZoxsbG4ty5c7CxsRELCwuFwMBA7u3tzbZt24Y3vv4a2+fNA6ytsXr16mdnzO7fpyzcgweUiVu/niSw16/TIrrFvKgLiKKIrKwsXL9+HXl5eXjllVdgIpdDeOEFynQaGUEURXz99deihYUFC+zXj1kVFhIRtLbuEPBoQWNjIxISEnDu3DnY2dmJixYtElBeTuMjIoLqOo8cISO9Z7mXl5VRqyO5vG3bW7doDDxNGdfURAGdhw9pMe/oCJFzXLp0SZmamsoqKysFmUzG9fT0RF1dXcnEiRNhqEpSDFD20cMDKH+ig1B5OWXymsfE1q1blSYmJkJQUBAzMjIikn72LM2TVauoLVg7XLx4ESkpKXzFggVMtn8/BR7aH/Of/6Q67d69oVQqsXHjRgDA+vXr0cGE8fFjCgxNmkRZ/l27SI4uCKrHa3l5R/l0fj6RLnt7yhA/gcrKSmzbtg1KpRLLli17/kBWMzjnXQeOcnLo2c6fT8/V1JTG3YgRFNi7dYvq8QsKSKbs6tqacX5e7N27Fzk5OZDL5dzAwABLlixhgiAgPT0dnHNUVlbi4sWLsLKygra2Ntz37YPdnDkwmDcPZ86cQXx8PBYuXIiIiAhlWlqahIkiXjp4EJVmZjg9ZgwcHB1FT09PwdrauqX9Wtcn8/vvFDhatYp+Li2lwIKtLSkbnpgPxcXFePDgAfr3748tW7bwuro6JpVKMXz4cPh7e9P8ex7H7gsXKCj3F7wzVKGhoQF79+5FYWEhmCjiw0WLKHij4n3+XGhqopKXjz/+S34LqpCbm4tDhw7x+vp61qdPH+X48eMlqtzMm99NuevXr/9rjqRqqPE3hVpGroYaavztMHTo0JLw8PCye/fuBfbp00emihB5eHgIvr6+gvkTmQQbGxsIgoBHjx4JeXl5QnV1NbOyshIbGhqEI0eOiGlpaaKzs7Nw+/ZtFhMTw01MTJiqfrbnzp3DsWPHIIoiS0tLg7GxMTMzMxPOnTsHU1PTjs7YLXBwIAn4Bx9QS6eRI9scrQEYGxtDU1MT5ubmTCaTIT09HVKplBcXFzO7bt0g9/GhTGFqKvVSfbLFUPMC/oyFBU4XF0N5+jTm7NjB9llY8D+vXOHRf/4pxslk4s2qKi55/338UlGhjImJEaNv3BD1V61iCe7urO/33yM7OxspKSnMzMwMZk/KuyMiiPB3YS5kZmYmXLt2TfhLdeza2iRvDw2lPs1TptCidNw4MqYKDSXi9hyZZkEQ4OLigoiICB4WFiZIpVKuN2oUExYsQKKWFq7fv6+MjY0VAgICkJyczHR0dODv78/OnDkjampqcr+lS1mJmRmycnLQo0ePp9cxZmZSBrt/fzJsmz6dSMorr1DGvlcvIjHFxZTdVUFsGWMwMjJCTk4OtLW1lX5+fgLT1KTrd3EBNDTAGIODgwMLDw9nGbm5vN+0aQxz51JtqwrzN4lEAhsbG2hpaaEyLk706t1baJWLbthAteSmps+3uJ4zhwIeU6a0/c7amoILPXoQUVMFiYRapdnbU/Bh3z6kco6rd+6wESNGCGPGjMHw4cOZr6+v4O3tDZXGYi3Q16es75MYOZKy9M1u4VpaWkJiYiKMjY2Z1YMHJBV+7TVgxQq6jifGj6OjI2JiYnhVerrocu6c0OFe6utTHe2OHcCoUUi+fx8ZGRl83bp1nbsF6OjQvARoLAQEkMP5smVE4Csq2rL7nJP6oWdPun+VlbSttTWVlKiAhoYG+vTpg5s3b4IxBmtr6+dv8dbUBFZZSXXvlZU0fyMjycTv++8pm//oEQXRSkooS11RQf3Uu3envtfBwXTv+vZ9er/oJ3Dv3j3s2bOHV1dXQ6lUMlEU2euvv85kMhkEQYCJiQlMTU1hY2OD7t27o66ujtfV1YnSGzeEiKYmpFZUoLS0VKyurmaenp4YMmSIYGhoKKbev8/ynZzg6uQEVFaKVcXFQkJuLpKSknhkZCSLjIxEREQEiouLuZaWFusQxAkNJfl4i2pHS4ue1/HjQEYGBXXajWltbW3Y2dmhtrYWUVFRLW3mMH78eMi0tMgBfe7cpypuANDnZWX0/m8Pb296Vwwc+Mz7mZSUhMOHD6OsrAx2dnbwO3YMOlFR0Pr03+isJZGQMqOy8t9u47dnzx5lY2OjsGjRIvTt21d1GzRQvX1aWlr11atXER4eXjp06NCSf+vAaqjxHw61G7kaaqjxt4RSqdxeV1c3Izk5eWjvZ0h2n8Tdu3fFvLw8QRAEuLm5ibdu3ZLU19fD2tpaSE9Px9SpU6GhoYHa2lpWW1vb4btxcXG4deuWWFNTI3h4eIje3t5CRUUFvL29GQAoFAr+66+/suaseueD6+uT43NoKP08aRJliZ+QhpaWlooABIVCwZKSkpCSkoJXfvgBxzIylIKGBvquXCnpf/myylq/Jrkc9p6e4uh33xVuzZ2LnsbGzC8oiOW9/DJKpk6FtLQUPTIzodGrl8CNjaHx8CFslEpMXrECUqkUL7zwAktJScHly5eVrq6uHRlZjx6dSX4zOOeoqKiAXC4XATxfg9YWyOWUXQkLI5Lk7U335Jdfnp19fQI2NjZYu3atJCUlBb/88gsLDw9Hbycn0fH775li9Wph2bJlMDU1hYuLCy5duoS9e/fC2NiYL1++XIKZMzHh8GEUlZfzkydPYsWKFapbKjU2EmlKSaH/f7KeWE+PDLEYI5m8pia5q+fnkyS+HRQKBdLS0njv3r3b7pmLC2UWm3uxW1lZwd7evrWuWzhxgghRWBgZ37VvN6VQAA8eQD8iAmN37pRg+HCSnj/Zkup58NZbnSXPAMnyLSzIVf5pGDSISg5+/BGmeXkYEBrK3JcuhVSFvLRLFBcDo0aR30F7nD9P/Zib0atXL9yKioL20aO0/aZNbSQ4JIQyylu3tm6fm5uLxsZGhvJyjoqKzscdPpwy89u345apKYyNjZ9tnNjSmzskhLLiABHpkyeJrAoCZSJ79qRxExpKwaZnkDVdXV0EBAQg+vJl5F2/zl9ZtYohIYGIsrs7BTT09akOv6CAnsuHH9IY+eQTICYGSnd3xIeGwrp7dxRLJOhhbw9NGxuSH7u6UgZbIqGgnYcHBVRiYkgqLooUPHFwoPO1tqZ3wVOyugqFAnV1dQwA7O3tuaurqyiVSlVGeCwtLWFpackASBRnz0JvwgRk1deLlpaWbOTIkXB0dAQA6OjoCABQamCAU1pa4rSHDwXHkyfJuE5Li5WVle5hALoAACAASURBVKG2thbFxcVISEjAwYMH0bNnT25lZcVeeOEFmC1bRuS4PbS1ScXwwQfkX7B4MQWjmiGKIrZv3y42NjYKAFpN6xwcHCgY0dKJ4Gk4caLNqK09du4kRc8zUF5ejhMnTsDDwwNTpkyBoqEBMXv34pynp/Kl5i4b/zK8vSmg9qRS6jlx69YtXLlyRaytrZUsWrQINk+83zofzhuMMevHjx9vSk5O3vjZZ58lNTQ0zAkODk7/l05ADTX+w6Em22qoocbfFTqiKNo9j2v4k+jfv79w4cIFZWVlpSQlJUWYMWMGbG1tsXXrVvTv3x+ampoIDAzkYWFh3MXFRbh27RoYY6iqqkJiYiIUCoXAOYeOjg5zaGlb04ygoCBWVVXFr169ygYPHtw5u21gQBmUyEhafBsaUtshGxuqpW7G+PHjheLiYkVjY6N0xIgROHDgAB4bGaGyslIiSiR49PixEseOSRAT08nRl3MOXV1drq+vjwEtZCg/Hw6MwWHXLqoLLSqC+9WrlN0aMQK4dQv2OTlAcTG6iSKmFBUhVF+fY/NmIo2LF5PENSGBFu/Hj5Mc/eWXgdBQFJWW8rTyciatqUE/Hx8iKpqaJG+8epUWtJxTjeOwYUTWampovzduUB1lSQkt6gcMIKIgk1EvZxVS6eeBm5sbBg4cqLx+/brkvq8v9+zVS5hhYQFp80La3t4eCxYsQFhYGAIDA0nyGB4OiCLmzZvHNm/ejKNHj/IJEyZ07p08axad15EjRGjakb5WtDz78+dJrpmYSMSzqookzs2Ec9++fUo9PT3Wr1+/NuaiVFK5wYYNrfvx8vLCb7/9xj7++GMsXrwYMg0NmKxfj1p3d0ROny6aSKWsj5cXk86Zg+r8fJx+8UWM/PVXGLcQwL+KhQvJjVuV4d22bSS9fR7IZMDy5TAsKIDkl1+QO2IEZBs3wmbMmOeT4MrlVGPbAs7JgG3XLsokt/t930OHuGFjI/tMEDB35UoI+fkkT3d0BKurg4YoQhAExMfHIzQ0FP7+/nyoubmkS9XEtGkoXrMGGnV1sFqwgHHOkZ+fD319fWRmZiI1NVU5efJkifzJDL8gtJ1zTg6N73ffpXnz4AHVOFtZ0bj59ltqrdbQQOMkLY1KJnbvprn34ovAwYMY3NQEd1HE49xcVu3oCJ0TJ8BazOl0dCj44+lJhNnJiea1oSGNn+XLUV9Tg7MtwcOcHAAAKyyEY1mZaFhSglEzZggab7wBnDpFc3LyZFKcNDXRvC8pofkbH9/mmN+zJ73TKiooa+voCJiaIurPPxEdHS0CECwtLZGTk8MsLCyeKwAnLShA7wED0NvAoNP23bt3x+rVq5GTk4Nbt24JB2pq8M6NG9D88UcgPh5G27fDyMgINjY28Pb2Zvn5+bh06RKau1QIy318oLt6NX4NCVFWVFSwV199lTKwEgm91z79lOr7p09vzeKLooj6+npBIpFAqVQCQJvjv6kpkfe33qKyl65w/jyZEO7Z0/H3aWn0d6ALcM4RFxeHZsWUctq0aRKkp0MYNw6RU6fijXXr/j2iDZARoKYmzau/0FsbQKvM38DAQJgyZcoziTYAaGlpwY9c5TXGjh2LmJgY32vXroWFhIR4BwcHl/1rF6GGGv+5UMvI1VBDjb8dQkJCXORyeWRTU5Nzamoq8vPzubu7u+oMpAqYm5ujf//+QkJCgrKhoUGYMmUKNDQ0kJubq0xNTRUkEgn38vJi4eHhLDo6GvX19WJxcbEoiqKora3Np02bJgQFBcHJyUnlAd3d3VlsbKz48OFDrlAomKWlZUfSzRgtoEtLKdMmikTCXF0po9mMxMRE0d7eXujTpw9KSkqUJteuCY4rV/IHWVlM08FBUPTuDQ0LCxTX1uLq1av8zz//ZE1NTSgqKoJcLuc9evRoW6zKZCSL9fMjWa1USovlmzeJYC5YQKZZMhlJTw8dQpq9veitrS1AS4sylA0NVKPs5UXy2GHDADc31Do44OjDh6zH7NmwHDECLhMnMmnfvrRQd3WlbFifPkQEevQgEvLCC3Qubm5EOtzdSbZqZ0cO7D/9RERh5kzKHpub/6X2OC1wcnIS/Pz8UFFVhazwcCbbvRsp7u4wMTWFXC4HYwxOTk5tz+f11wFNTQgSCSQSCeLi4lhBQQFvUS60okcPkrkbGVHG9IcfupQBA6DFvKUl7V9Li0hKWRkuNTUh7d494eWFC1kHybqVFWU7a2paJcgWFhYYMmQIcnNzlVevXhVuJyQg0sEBaRIJd/v9d+b01VfscmoqLvv44JKHB2wdHeHq5dV1LfTTwDn1Y542rUOpQyvu3aPezc/Rw7z1FujqQjcoCGcYE+02bGClu3bxnyoqWHpODl544YWus8ZyOWWq20vNi4rIqKvlO8eOAUuX4pdhw1ichwcaBAG3b99GfHw8bty4gRvl5bj1+DFw5Agvc3Bgp0+fxrRp09CvXz/G7t6l6xk6tPOxNTQQlZrKdZKTmY2/P64lJvILFy6wqKgopKWlobS0VEhISODXr19n5ubmqh3DtbVpzo8YQc9UIqGsd4u5mLU1ydUfPiRSXl5OgQwzM5pDfn4kmV+wANKXXsK+mhpElJYi3MYGei+9BOt+/YiwubjQ96ytaYxpaXUgT5WVlUhISMD69ethY2OD9PR0GBsbQ0dHh+mcOcOqamq4zdSpDG5utI+GBuqnPngwkWgXFxq3AwfSdUyeTL+ztCSJdFwckceTJyHZuhWWDx+yoAED4O/sjEeJiXiQn88i4+J4r969WafgRAsUCvrn798l8dPS0kJFRQVu3LgBABgwbBhkbm6kGPLxocx+c0BNT08P3t7erH///iw9PV2MuHmT6RYXo6x/f1ZQUMDs7OzaZOYtbf3u3CH1gYUFYG4OQRAwePBgDB48GDk5OcrKykohOTmZ+/n50d+cpiYy4XvpJdXZa4Bc+jMzO/Zpr6lp83noIuh0/vx5fvXqVTZ69GhMnTqVNoqKQqOGBq5pa+PBgweiu7t759KGv4KdO6m0xNi4tbXa80Iul6O5dANjx47t1GbzWRAEAXZ2dqyqqkqrpKQkICAgYN9f2oEaavwNoDZIU0MNNf4WCAkJYQB85HL5alEUZwwfPlzOGOMpKSmSiooKzjnnEyZMEJydnaFQKNDlYq4damtrUVtbi/Y12d9//73Szs5OkpWVxcvLy1nfvn3FsWPH/rUVBIBHjx7h+vXruH//Pndzc+Pjx48XOiyIcnNJaiyVAjo6KLp4EYcvXYJHQgJu9uuHJg0NcM7h5eWFSZMm0XcGDUL9sWPY/MMPkMlk4LW1eO2bb3B4zhxwT09RJpOx/Px8ZmBgABcXF+WECRNasx6cc3DO2xZDSiVJRc3Nqf77ib7Y8fHxiIqKUqxcubKNAV25Qt95911yqG7O3CUmJuLy5cvKtWvX/ntZlpgYIiRFRR1rXHv1oqzZp58+vyGRKnCO1E8+4VFFRSzf3Bx9+/bF6NGj2z4XRQo2NGevADLd8vDwkIxsqVEvL6cFfVRUGwltaKDM1bMk1c0oKSnB1bNnkZOVJbomJgojr16FpLiYjt/+2pYvpyz4wYOdd6JUApWV4B9+CPbbb4CFBeomTsRRe3tkZ2fDxMQEurq6yM/Px4oVK/464T5zpq2fuCpkZFDda3T0X9tvM0qLi/Ho4EE0/PYbKjnHg9GjseTdd1VvXFhIMv2GBuoJHhxMhnqCQFLsxETgxAk0DRiATc1Sc0EQMHfu3FbzOaVSCbfcXD78t9/YN81O/OPGjRN9fX2F2uvXIb93D9JFizoduri4GDt37kSvGzegWV+PzBkzlJOmTZMYGBhAKpVCoVAgMTER9+/fR1paGpYvX44nfSI6oKCAzLK2biV5/J499C54800Kvm3ZQve9i9ZznHNERUXxixcvtjLR4ODg57rnoihiy5YtmDhxItzc3Dp8VjJ7Nq42NMBv2zbYtigWKipoztXUUOb2Ofunx9+8icvHjiFAT0/s7+YmoK4OyuhoVB88iJSePdF79GhoGhpSEGXgQCL2pqb0PLOzqQNBUtJTj3Hjxg1cvHgRAKCtrS2+9dZbNHEuXaI6/aNHO7m6NzY2Ii0tDT0vX4awbBl2HzgAFxcX1eU+v/5K7e6mTaPgXztwzrFp0ybY2tqKgYGBQqv7fUEBvRNUvZ9Ekch2O4O0xsZGSJqDeqqQl5eH/fv3Y8qUKWhtRfnGG1SqMG0amkt9UFVVhTFjxqDVzf15ERxMRo7z5pE53Pvvq/ZGeAZ2796tzMvLk7z77rvPLrPoAo2Njdi8ebPigw8++DeiBmqo8Z8JdWZbDTXU+I9HSEiIjoaGxjlNTc33/f39e0+ZMkXu5OTEbG1thd69e6N3795MoVDg/PnzLCYmRvzzzz+V/4+9946K6ly/x/f7nhkYekfpCoKKNAuIDRGNLXYTYzS2JBo1Xk3UtJv2JfeaqKk39psYozExGhJN7AUEFGk2pIgKAlKkShcY5pzz++Nh6KAm9/e5n89as9dimQzDzJnT5t3P3s9+/P39H8nIlEolDA0N2zymVqt5fHw8LCwsJE9PT15UVCT5+fnxe/fu4erVqzA0NERXs7pbw8TEBJ6envDx8WHh4eFyeHg4u3HjhpyYmCgnJCTICenpsvzJJ2jcuBHfazTyjeJiiSsU7NmMDDasb18MW7sW9+7dE62trbmrtmfW1hbc0xM3b99GdXU19IyM0GhoiOA5cxAyfz4rKCiQqqqqYGxszG7fvs1lWZYKCgqgVqvxxx9/yKdPn2YDBgxA1vr1MktPZ4Y//khWya1bSaVqhYKCAuTm5srN1ub790nJfuMNso9/9RVqR4xATGIioqKi4OXlxdzd3Z/Mg6hFRgYpe3PnUl+ogwNtT0YGKXvLl5Mt/Z//JEXtb397YrsjAIAxWHPOBp46BdVzz8mRFy8yURTRvH8liQjGxImt/oTxyMhIMMZkZ2dndj8zEw+LiiBPmQJJkiDLMi2WfX2p57WL7aqvr8f58+cRFhYmXbp0idU0NGDGnDlsyMsvQ5g5k/aptTUVM7T2Y3d3Urhbz8CtrKSfIUOA2lqwV1+l4seyZSjq0QNG778Pj1dewYxnn4Wfnx9ycnKk+Ph4KBQKZmxsDP3HseRXVZHKu2hR12TbwoJ6xQWheXzdk8DA0BC2gYGwmzkTQmwsiouL4VVYSIWV9uTDwIAImJ0dWZi3baPzQBSpOJOSAuzYAaFvX4wePRqurq64du0a0tLS4OPjg2eeeYaupaFD4bVrF4s5exaSIODOnTtMo9Egc/NmlMbGYk9eHpydnWFhYYGCggLs2rULMTExNHd5/nwE3b+PwcOGcSMfHwiCAMZYcxidj48P7t+/L0VFRTE9Pb2W0UqtIctELC0t6Xz/4APa17m5wM8/07nz2WekqDJG19uyZVRQaCrUqdVq7Nu3jwHUx61Wq+Hg4IDHGT1YW1uLmJgYTJkypQMpUhkbI83cHOcTEuDi4kLjxVQq2r9Dh1LuwP37HQO+2uHbb78VL1+5whv19DD7jTeY0scH8PEBnzwZvzk5ySkqFVNbW8Nt0CAqriUl0c9331G/9LFjFObm7t7Sb98JIiMjpfLyciYIAoKCglgz4XV1pW3lnIjpU081t6EIgkDBlS+9BEydipv374NzLnl4eHS8aD09qRjw738TgW56/crKSvz4449STU0NjIyM+KVLl9CnTx8KUnR2JgdAZ0FjDQ2AuzsuDhsmxcTGsri4OPne5s2scdMm/FhTI9+8eVOura1lnHOYmpqivr4eYWFhsr6+fkuxt6aGci3WrAHMzWFjY4OAgADIsowzZ86goqICaWlpqK6uhomJSdfX+h9/EMn+6SdyTyxdSsdgxw7KGuhqDnwnUKvVOHfuHBdFEWPGjHn8cYntUF1djcuXL9cGBQX9hbQ3HXT43wldz7YOOujwvx56enrbXV1dR8yePVu/MxVAX18fwcHBzMrKSs7KysKNGzcUGo3mT1XZR4wYgRGUDCtcu3YN6enprKysDD/++CPMzc3l2NhY1tjYiJdeeqlFAeoGZmZmWLNmDS8vL0d+fj4D0Lwa4Z6eyNi6VXZ0cODuHh4wNzeH4u23gfp6KIcORa+gIIhOraajLFsGnpiI559/Hjt37pTfeusteq1164CGBphaWTFRFFlxcTEcHBwQHR3NAUClUqG+vp4BwJYtWzArOpqVm5tL1oxx+PsTmS0ubmMXbgriarE+9exJKqaxMS24f/sNKZ99JsVbWXEPDw9MmjSpzSpLo9Hg3r17EEUR7u1U8zaQJFKxzp4l0ujtTY/PnduipDFGC9+PPiKlKTeXel5//72N7f6xMHIkcPgwHDUapqenh4bWvdayTHb3VggMDMTly5cRGRnJajdtAmcMqSEhUs0XX3BBEKBUKjF16lR4GhgQKeokVTs/Px/ff/89bGxsxBEjRghZWVnIzc2FkZERuELRQqbPnKHP//rrZO+/cIH6PG/epKLI999T6FdcHCl3fn5t3udsdLQ0taKCW7e6RubOncvPnj2LqKgo8dixYwJjDOvWret+PJJSSbbq9kn07bFhAymwr7/e/fOaoNFoIMtyc5J2Q0MDfjtxQr7t6soGm5kRaX73XWppaK28ajQUJObgQG0Jly+TxT0vj1L9WymYjLHmz9bY2IgTJ07A3NwcixYtop1SW4u/f/opiqKjEZOfL+fm5jJbzlHRVFT4oZN5w3379tWMDApSwMuLzksHh04J1fPPP89jYmJw4cIFKSkpCS+//HJLIvOmTdT77utLZEnb21pZSQRbO+f58GF6vLCQbMlKJRU1vL2BPXvAtm0D12ggKRSoqakBAPz0009Yvnw5bG1tUVdXh9LSUhgYGDQXBrUoKCiAUqmUVSpVW0Yky+Dvv49nT59G5I0bOHDgAN566y1UVVUhPT0dNjY2ODFjBsbIsuS5fj0ve/pp/DsuDrIsw9nZWWxyErHa2loUFBQIAPD22293IHvTpk9nn2dk4Gpjo/xUcDBrY9uPiaGiyty5pPCfPk1Fp7Fjqc9draZ2kldfBQDMmTOHb968GaIodjyX3d1JjZdlysbw82sbQrZtG2Bri6FDh+LQoUN8yJAhnY9TGz2aroGPPgJqa1EzfDh2794tW1lZ4a233mIKhQKfffYZjh49Ki9btowhI4MKKZ1BpQK+/x7nIyK40tAQjo6OrE9AAMyMjTF69GiWm5vLkpKSxAsXLgiNjY1oKozJCxcupPM2OZns3vHxbZRzxhhGjx4NpVKJs2fPwszMDMnJyTh58iSCgoIwpnVxpK6O7OwzZpArJTaWzq/Tp6m4VltLLpoXX3xsF8O+ffsktVrNBw0aJDLG/rSz6cKFC2rO+cE/+/c66PC/GTqyrYMOOvzXERoaOpYxNkaW5d8//PDDxHa/G66vr//s1KlTOyXareHt7c28vb1ZUlISMjMz0be1IvgnUF9fD4VCgSNHjoj6+vqCi4sL6uvrJVNTU2ZjY/PYJXyFQoFOx2gB+PHqVTz9yScwT0hoSd02MADeew88MhIGmZlEbgWBbOdNSqosyy3v7+wMnDqFoF27OGNMFEWRjR49mms0GuTn5+Po0aOiKIrCmFu3oExNxW/PPAPGGFd+8gm8vLzEqceOCTh/nvrIm9DB3qgdbwUi4lvc3DDrs8/48l9/hXlTn59arcaxY8eQl5enqampUSgUCjQ0NCAkJERbwGiLv/0NuHaNFsStR0sBpKa1cx2Acxq1JYq0WLSxoQThYcPa9kI+Ch9+CKuBA8GeeQYTW6nYqKwkG6U2RboJq1atwt27d8HS0+EwZAgmrlvHKyoqIIoi7t69iyNHjkDx9tuyR6tjcuvWLcTHx8sPHz6UKioq+LBhw+SQkBABAEaOHImdO3dKN2/eZE0JzARtUNK77xLBfviQnAQffkik47PPaKFsb98hnCwvLw8FZWXc+Pp1WlBPnQr8+isUenqYNGkSJk2aJHz99deSRqPhXSle9+/fR3ZUlDx42TKWfvo0zOvq4Nzdovu11zoNrxNFEffv30d1dTWUSiVMTExw//59HD16FJIkwdPTUxYEAcnJyQwA8/X1xfjJk+n8Ly6mhP7+/SkgjHMK5fr8c0qczs6mcL3duymQql3BAQAsLCzg5OSE3NzcZsK9cuVK+qWREdjNm+jp5obZTYWvKhMTnE9MlPr06cPy8vKgVCpZTU0N1q9fr3W+0FrJ0pLOj61bye7dSaL6iBEjMHToUP7pp5/KhYWFsLOzo4LSrl1UTNC6SbQIDqZRfj/+SHZl7T2rZ08qPgFkZ66uBoqKoPfFF3g/NRXFH32E9MREKDZuxNmzZ7Fz585OD5GFhYVsaWkpz5o1i2dnZ0tWVlYd71sVFVREs7SERqNBfX09du/eLd2/f5+bmJiIdXV13NzeXv6lsJDP4Fy2nzuXeb3zjuw9dSq7mpQkSJKEhw8foqioqHn/d3aOHT9+XALAR40a1bINDQ1EAp9+Gjh+nJT0wEAK4MvPpznpffqQCnvqFLVW9OgB/dBQvDR6NJI3bICis2vfyIiIY3Ex3Uv++U8qXgA04aCxEX3GjYOXl5e8Z88etmDBgs7DvTw9gc8+w8MFC3DGw0O2DAyUFi1aJGg0GuzatQsPHz7EkiVL6PNYWhJR7dGD7PftIJeXo2d1NSa8/DJdV/X1gL4+ejMGf39/ABA0Gg2+//57KBQKzJs3jze7I3btou+FLlpohg8fDltbW9jb20OhUCAqKkqKjo7mxcXF8rPPPsv4u+8CX31FgZQPHrR1rOTm0j3FxITcRCUllG7/GOMbLSwseEVFBVq3LD0JEhISNLGxsXUPHz4sUavVT+5h10GH/wPQkW0ddNDhv4rQ0NAegiAcCwgIUF2/fv31Tz755IharV7x4YcfVoWGhvYGEDN16lSo1WrU19fDwsLika85YsQI6ejRo3B3d+dPGtjSGt7e3jh37hyXJAkqlQqJiYnM0tKSLV++/E/3prVHvZkZJD09Sgdu1c+HOXOQ/fCh/PTGjRAjIyEcOEALODMzKIhstzx39WogLQ3s7FkEjR/fvOjR09ND7969sXr1amHzpk2Sp5sbTwVkAEylUqGuro5URlNT6tsOCelczayvpwVkk926rq4O5ZWVUH/5JczXrYPm/HmcOHkS6enpkpWVFYKCghQODg6wsbHBF198IQuC0HaBf/YsLUzXrOk8xRugJGxvb7KWtocgECEFiCBnZJD1ND//sRaIMDWF3syZGHLrFjIzM1uUdzMzGs/VCVx/+40IXlMBQNsDbWVlBRsbG4hPPcXKJ02ChZ8f0tLScOTIEQwcOFA2NzcXbG1tO4Tpubi48JycHBGdje2xtqa+XVEke3ldHRGQ+npaCNvbt3m6JEk4duyY7OHhAZVKxZpV0+JiUlAZQ1ZWFsrLy/kLL7zQ4dzV2lDj4uJgo9HIlZMmIf7MGQYQcfLx8ZGCg4M7Xkh9+lC40+7dbR7+6aefpLt373JjY2MRAKupqeEKhQKTJ0+Gqakpjh07JjPG4ObmxiZPntw2VKxHDxpndvEiqZyjRhFBKCuja2TePOqnvXix0+MkyzKuXr2K3Nzc5sfs7e3bjqJzc6NixOLFwOzZMM3IwPShQzlmzQIA/PzzzwAgdjqmKiSEyO/WrfTZO7HNKhQKODo6St9u3y68c+gQFLt3E/l7+eXO51RzTq6G6GhKWG8PPT06DwBS8wEk5OWBGxtj8sCB8A8Jwe9vvinnVlUxZWMjfOfORU5ODkaMGIGMjAyWkJDAzp8/L9+7d4/Z2tp23ODs7GYiGhQUBO1c7NmzZ8Pc3FwAgFu3brGff/4ZiR4e8tCTJ9nUb75huHIFvTZtwgOVCgcPHoQoihg9erTcdI9u8z61tbVIT0/nAFpm1+/fT/eAoiI6VwWBFO7586nwtHYtpf2bmFDbwCuvkFodHg5YWyPnp5/glZwMydiYer9dXWm6wo4dRHqtrcmtc/Ik/V1oKN1XSkpoBB+AadOmMVmWcfDgQXnFihXMoF3AmUajwa8xMeK9oCBhwenTzHbUKAGiiOrqahQWFgJAWwv/hAltpkq0we7dcLGyQvM4ST8/SgL/+OPmpygUCrz88stt/+7LL8k90jT+rCv0aeXyCQkJ4XV1dZLP3/7GS95+Gz0++YTupVoHRWuYmVGIpRabN5Pq3cU11hpPP/00Nm3ahIqKisf6bm6NiooKnDlzRhRFcQWAkx9++OGDJ3oBHXT4PwJdz7YOOujwX0V0dPSiPn36jJsxY4aev7+/sqKiwr2srOy1qKiocs75Gs65R2VlpXTmzBkWHx8PKysr2Nradtsb5uLiwlJSUuRz587hwYMHrLCwEA0NDW2C0B4HSqUSVVVVKCkpQRPhlh0dHSULCwtuYmLyp/vTWuN6UhLTzJ0Ll2vXiIC2UhyKiork45aWvLZ/f7ifPk2kZvx4SBYWuHjxYkuwD2OUoPvqqy1px61x4ABcN2xg6u3b4blwIQsODkZERARkWUZ9fT3TqFS4l58vpxYXi0n37klpaWnS3bt3WVVVFVepVJJ9fj7Hiy8CTb2Eu3fvFkVR5EZ9+sDKyQmp//iHdKtnT4wePZpPmjSJ2dnZwcjICLIsIzIykvXu3but5X7VKiLJzzzTedI1QOrm+PFENLrDpEmkXB09Skr56tW0mH7ETGkWFITq336TCg0MWG/tnPbycvp7rQKmRVYW7ddXX+10e8zNzXHnyBFZNW4cM7W3R1hYmDh48GA2btw47uTkBEtLyw7nSkJCAhQKhezt7d15NaixkSzz9fVEFmbOJPXzjTfocx4/TnZZxpCRkYHr169j8eLFTBAECt2bN49I4ZIlwAsvwMDICKmpqVJCQgILCAhotnLLsoz09HScPn0aPaursaKykvXZs4cFBwdDrVajuroaqampbNSoUR2ThpVKIpArV7ZRM8YuugAAIABJREFUuKurq1lxcbG0fv16Yfjw4SwoKAjDhg2Dk5MTrKysMGzYMBYYGMh8fHzQntw0v66bGym9Bw9S0cHbmz7Xs88CL73U5XGtrq7Gvn37AABLlizB9OnT0a9fv44Xak4OuSQcHMim3Ldvc0hgTk4OkpOT+cWLF3H58mXIsiwbGhqy5nyHwEAiSB4eXY4/83Zw4Jdu3IB5cbFsm5jI2MGDLS0SnWHGDOov3rePSNgj7i0H0tJQ4OiIkcHBUI4bB8/nnmPDEhMx5Phx9Nq8GT7bt8PCxwduw4fD1NQUFy5cYKIoyosXL2YdjuPx41SoCg6GIAjo168fPD09mapVS4S1tTWGDx8Of39/1sPOjq678nLg/n2c27ABGSYmcHVzk6ZPn87buDWaIAgC0tLS8PDhQwT8+98wT02lc1PrUBEEcrkcPEhFFhsbIq6jR1Prh9bmzRj9t4kJjiUlSZljx2L0U08xFhzckqS9YQMdoy+/pMT8996jaycxkXr+N26kY910j/Dw8EBSUpKUk5MjDxgwoNn6L8sy9u3bJ5WVlWH56tXcYulSsE2bgIcPYeDnh2vJyVJDQwOLiopCQ0OD2KdPHw4vL3Kk/P57h5YU9uKLSFKpxOzsbObr68swezY5GzppPWlGSgp9hldfffxshIoK8Hnz0NfQkJVVVyNXXx9On3xC11Nn59X69ZSJoC20jh9Px+bOnZYiTxe4ePEicnJyEBIS0mXQW1dQq9VITk5WKxSKKZIkvRkTE6M3atSo80/0Ijro8H8Af17y0UEHHXT4D0BfX/9v/v7+RgApsTNmzFC99NJLJj169Pi8T58+IQsXLkReXh7XqnG//fYbGhsbu31NzjmWLVvG586dy8rLy8XU1FT50KFDUKvVT7RtSUlJuHr1KkxNTcUZM2Zg4sSJ7ObNm8Lu3buRn5//Jz9xR8iyTH1zn3/e5vEJEyYIPoMHi42SRP2K168DW7dCKC8Hb/9Zxo0jwtlk5WxGYyPg7IzrgYGS1EoNd3R01Li6uoqCIIjx8fFSxaBBfOTGjQqVRqNQKpUKS0tLZmxszM6eOSM8nDIFNVFRAICIiAiIosgDAgLkixcv4t+ZmTB+8IAt8fJiAwcObEMqGWOYPn06oqOj8eUXX4jw9aUZtidPkq2zO/z4I+2Tx8WiRaTQFRcTcbp0idSsrqBSwcLVlVt+913Lk+rqKGW7NXJyiAjk5nZJ4CVJAmtoYHUFBdixY4dYXl4u+Pn5dcmWIiMjkZGRgfLycl5SUtL5k44cofddsaKlf/m112j7SkupKPD770BaGmozM6FSqcQOgVwBAUTcGhuhUijw6quvcisrK3Hbtm3NT0lPT8ehQ4fQq1cv+ZWBAykEq+kYjh8/HtO6S1jX06PtaZXeDgB+fn5oaGjgWnWZc/5Y0wE6wMWFCkxXrtA2nTtHn3nGDCJMMTE0wz07u/lP7ty5I9Om6cG0E5t3M955hwoEx46Rs6OV4txkuwdAfd/nzp1jO3bsaLnmFQoi6EuX0rFoj5oacCcnvD1tGqyzs1mWNnG7O3BOdvMNGx5LURzeNPv8xo0b1Auurw+EhoKnpdF5n5tLx+Wnn+C3cCHeffddvDF/Pld05vTx8moTCtgV2hxDQaBCi68vRpSXo+/Nm+ghSV3+rSCKmBYRIRtVVyPF2JjInaVl2/nphoZUTNHCxgbYvBn1334Lqbi4w2u6uLjI5eXlkCSJXBbe3jQ6MCaG+tzXr6d7qiiSdXzKFGrJcXAgYl5bC4DOz0WLFgnZ2dn80qVLzR8iKysLxcXF7NVXXxUMDQ3puB84QEWsf/0Li2bM4FpXRkJCQgvTjImh57XH119j0nffCXl5ebTN27d3PSqMNoAU+NjYR5JeAHTvO3aM/o2MBNLTcWjQIIRPnNg1oa+vpwyEzlquAgLo9bqBcdM9UaPRPHr72sHU1BRr1641fOONN4xef/11PcbY+tDQUN9H/6UOOvzfgs5GroMOOvzHERoa6gLAGMDNDz/8sMMKLDQ01ByAHwA7Q0ND597t7HE9e/bEsmXLmht2X331VRgbG+PEiRN48OCBVF5ezhUKBVQqFZRKZacLecYYevfujd69ewsAsGXLFjkiIoJNfIxFpRZqtRpWVlbiqlWrmhdSlpaW2LNnT7ONuLa2FmfPnhUNDQ1ZUFAQV3WnUnQCxhiR7e+/pyCorCyyC0oSsH8/Bn77Lc93cyMV7uRJICAAwnffYeXWrZAWLwbPziarrZ4eqeJDh1KwlpMT2XHnzQPu3kXq0KEY0GoxvGTJko73/6goTLGzIzUJNBrt4sWL2Pfii3IPgFlGReH69evw9/eXx44dywVBQJ8+feA4cybDsWO0OGvXqzlgwACYREVhf1mZ0KygPA7S02kh+CTgnIKQtHO5g4KIiGzahPz8fBQVFaG8vFyuq6uTGhsbUdWrFzfMz2d+GRm0WLezo4Vta7zyCpGCn37q9C2rqqpw/PhxeFdWIu7IEbjMno0FCxY0L0Lbo7KyEtHR0XB1dUVxcTE7duyYtGTJkrYM6McficQtXEgL99YESavs3b1LpOrll9Hr/Hn5yptvcqSktA3uMjWl3tfPPwd++w2K6Gi8+OKLwqeffgpJksA5R1VVFQBg0dSpDGVlHVT93377TQwMDOQdWgG0eP992qavv25+yNjYGMOHD5f27t3LDQwMpHnz5nG71gFVTwoLC7LAuroCX3xBir+ZGSV5R0YS+WmaS62vry+PT01ld8zN8c0nn+CNf/6zJQuhPfbsIUXXzq5NYYZzjoCAAAQ0jXx68OABtmzZgm+//Rbr1q2jY2tiQts0f35LUUiSaF+vWwckJoKvW4eSzZvx+82bGBAWBkEQpHHjxvE289Rbw9iY+tIrK7vtmb1161bzjOlO53ozRmo1QNeB9rMNHUrW+TVryAb//vtEmt97jyzWfwJqNzdsGz0ajvfuIXDrVgYLi7Yj8NRqICoK6oEDYZSSwvTs7VGjbQ9oj3feoX3XCln9+yMyLAwjhw9H9KJFUpm+Pq+rqwMA9OnTR6irq0NWVhb09fXRs2fPtt8FPXu2WLpjYmg/vP8+PVZYSPv6X/8C3n4bht7emD17NgsLC2ODBg2CgYEBJEmCUqmUOrQTbN2KinXrUPLOO2h0coK5oyPWrFnT8vulS+mnoqJtb7SfH1SSBHVVFctMS4P7N99QHkNXWLCA3A7jx3d7DFBTQ/f/zz+nlPvJk4H799GoUED98cdw7i7IMz+fUvHbq9KMEdE3NKSiRBequlKpBOf8L7dVGRkZYeTIkaqLFy+uA7DwL72YDjr8L4PORq6DDjr8R/HJJ598LQjC9yqV6kUAqyMiIk4EBwc3y3ehoaGBCoXimo2NzXNGRkZTp0yZYvyosTWGhoZQKBSQZRmXL19mCQkJSEhIwKVLl3D79m1IkiQ5Ojp267ssKSmRb9y4gZEjRz6R9zs+Pp4XFhaKAwYM4AAtvG/cuAEXFxc8fPgQe/bsgSiKyM/PR3x8PNMqTo+LpKQkmJmZobe7O6m+y5cTyfz6a6ChASmDBslZXl7Ma+VKCmfy8QEbNQo7i4sxaOxYKJYsoXRqe3tKkA4IIJVOlokk+vgA3t6IjY2V+/fvz7qdtzxhApGZiRMBzqFUKuH2zjswsLVl58vKkJOTA1EUMXHiRHbt2jU5MjKSZWZmyu7BwczwyhXqndaGfGlRXw/jyZOR2bs38ry85L6+vo+3/ydPJqL8Z2BiApkxyP37o8bBAae+/BLKjRsRa2mpqVeruSiKnDHGBQMDNs3CAopjxyigKTWV3lO74H/wgIoVs2d3XIwC+Oabb8SIiAiuVqth4OYmDX3hBTZ49GjenYp79epVFBcXi8uXL+cpKSlS3759uUvrPt7qaiJwa9eSK8HevvMRSIzRz/TpOGlnh/rr15nfunWMjR9Pi2NT0xaS7uVFhNPDA4JSibiEBLlXr17MzMwMx44dg0ajwciffiLV+Pnn27xNWlqanJubyxwdHZmZmVnH7bC0pH2jteI3oVevXszd3R0ajQaXLl2SmkfIPSm+/prC4aZOpYKItohRWUmBfuPHE4EcNw7o1Qu2AwYwZU4OTC9dgmFtLcSvvoJJdDTqzp+Hvla1LysjsjxlCimpqanU89sFoTAwMMCgQYMQFxeH2NhY+Pn5QaVS0XWm0VCC+Jgx9LovvQTMmUMW5kGD0HPpUqSnp0tZWVmsuLiYpaSkwMXFBV0SbqUSOHcO0qJF0KxcCaGTQoGxsTFiYmIAAKmpqejVqxc6PTYAnQc+PvTfr71Gluw7d8gZsHIl2YVPnqT9eOUK3UP09UntLCqie1FuLp1LRUXk/lAqKWtBECAolRBlGak1Neg7cyYzV6koiEs7m/rf/wY++ACJo0bhJyMj1Bsaory8HPX19VJsbKwUGRnJIiIimIu9Pcw2bCDy2aT2SpKE7du3o9LMDEY1NfC0tmaDZ85EQFAQevTogRs3bsiyLLMbN27g+vXruHLlijxw4ECm7Ky4Eh5O58s//kHFhTVrSDnPyaH3274dVnV1SFepxCtXrzIPDw+mUChw5coV1uE7gzHE6enhfnQ0Bicno+/8+bJ1u0wGJCeTWvzmmy33Djs7MM5RpKcnZeflwfeHH1hXgWeIiKDzesaMR4/h6t2blPsxY8gJs349oKeHxsZGxMTEwMzMTB44cGDnL5KYSFkII0d2/J1SSYW/iRPpc3QCxhgSExMxevTojm0mT4i7d+9Kubm5V0eNGvVHaGioYVxc3LGoqKit58+fPxMcHHz/L724Djr8F6FTtnXQQYf/GD766KPJRkZGL61cuVLfwMBA/+jRo4ZJSUkvAlgPAKGhoYKent5P06ZNMx4wYMATv76npyfi4uLk3NxcNmrUKJSUlODOnTuIjo7mQ7X9el1g/Pjx/MqVK7h79y6SkpIwcOBA9GodCtMJHBwcMH/+fPz888/Nq4hevXph3LhxCAsLk2VZZkOGDIGtrS0/deqU7OHh0XngVTfgnKO8vFwGwLB0KfVsZmXReBobG1SdPg1Ra1X19wcOHQJ694a6Rw9s3rkT837+GX2cncnut2ED9TwOH05EMSmpdcq3LHVj8wRAZKO6GvjtNyIMAGBriwHPPIMBAwfihx9+kO7evcu/oRAnNmvWLPzxxx9s2/bt+HDZMlIKb96kJOl792gBHx8P4cEDTC0txfbt25larZZnz579aML9zDNk9/zXv55kd2oLMvKpU6eYLMtgjGGApaXk3qcP91u1SoHPP2/b/9jYSD3kFRX0flqinZ1NJCUjo8u+ckNDQ+7k5CQtXLiQs+ef5+jfHxg8uNvtO3fuHMaMGSMAQENDgxwbG4usrCxx/vz5QnlmJqy//JJUOGtrIiwU1tUpRFFEaWkpJkydyj5NT0fJ5cuwdXam88TZGfjhB/p85uaktL30EnhWFnouWCBfvnxZysrKEoqKijBu7FgKTurEdr9w4ULh559/xsmTJ6Vly5ZxURRRXFyMS5cuISUlBbNnzZK97t1jEMU2BQnGGOzt7WFoaMiuX78u3Lp168mnA9TWUlhTa2Vv5kxSJd97jwpT27eTvbcVqbTYtAm1eXmQbt/GLzExMKivh0NeHuY2NtK1dfgwhfStWEHE88cf6TWWLKH99NVXRJZOn6bi0wcfwDQwEMueeQb3lixB5fTpMC8tpecsWkTq45491F+bkUGvs2gRFQAYw/LlyzlAVtuPP/4YN2/elOzt7btkJveHDsXeJUtg+dprqLSxwUM9Pbi7u4tz5swRJElCbm4uAgMDERcXB41Ggz179uDD7hRSLTgnIj14MGU8AGRPViopVMzHh9R5CwuaxaydC56VRUr0xo2koK5dS+FmogjY2iKwuBhVJiaw3rGDrhVtL3tgIJHG1asRyBgqqqvl+Ph4Zm1tjZKSEt6jRw/4+fnhzp078vEdO5jXK6+Ixjk5Qv2tW6irq8OFCxcAgNwEH3xABYzt24EvvoCdnR38/f1ZRUUFSkpKUFpaiuTkZPz666/SggULWvatWk1uldOnSdXWhiGGhdHjO3bQ/xcVAZcu4aXnnxeSdu6U95WVYdTUqW2DKAEUFRWhsLAQtQ8f4uqQIVA+eCBP3LaNwcWl7RhCb28KbWxdeKupAaZOhbRli+wVF8ebE9bbIyyMxo1dvNg10c7LozFyr7xC52tGBpHzVrZ0bSK8k5NT1/fb+vrux3w9/zw5ImS5023Rtlbk5+fDpbPwv8eEJEm4dOmSprGxcVNoaKiJnp7eSTc3t8E9evRQXbp0aTWAxX/6xXXQ4b8MHdnWQQcd/mPQ19dfERISYqgNPcrMzHwoimLrpq9nLC0tbTxbz9B9QowaNYqlpKQgODgYnHPEx8fjzJkzj/w7rfXw559/Ru/evcW9e/cKpqam4gsvvCB0NpJLC2NjY2g0Gnby5ElMmDABnHMEBgYiICCAAUSWN27cKAcHB7P8/Hx8+umncr9+/aQpU6YIDx48QHp6OoYOHdqlzc7GxgY5OTlEthkju3J1NZEtAIwx1rzg69evmSSuWbMGO3bskMvLyxn69KFU21mzSKnRkvMTJ4gA/PwzlIMG0es+Cu++S327skx27DVrmheoCxYs4Ldu3UJBQQEsLS3h7e0Ne3t7bN26lRblLi5E8KZPp3CgmTMBY2NUVVdj+/btAACFQvF4yvYrr5D62A2Kiopw584d9O7dG1euXEFhYaFUVlbGBUGQ58yZwxwcHNDUbkCL7/Jy2r+DB9MC08mJehmXL6dtPXSIyIIk0e/Cw7sOcAPw7LPPss2bN7OSkhLY2tg8UoGqr6+HLMvIycnBqFGjMGrUKOH+/ftISEgQwsLC0GfzZtT07Sv1NDbmqqa05NYpwXV1dUhJSYG7uzvMzc1x/Phx8dq1a4Ktra0EgJvb2dE2JCTQwj48nEjf7dtEtL78EkhJwciaGn7g4kXIggADAwOM2LGDyMHbHSfvcM4xadIkbNmyhX/88cfNeQnaMKQbycmy1++/M0ycSOSqHczNzTFlyhQ5LCyMDRkyBBMmTOh2HzVDlqnocOdOx77Wnj3JLpuZSYr6pk1tRr/p6+vDzc0N9vb2UKlUiI6Oxq3+/ek4A3SdSBIptpmZRG5u36b3lCT69+FDsqkDZLUtL0cJ5+hRWoqelpbkJklMpN75W7do/JyhIRF3Y2NKLW+n9JWXl0OWZRQUFKC+vh6dtZxoA948hw2TJm/fzusLC3HihReQl5fHdu3aJVdVVTHGmGxubi6HhITwiIgI/JnCJQDKeCgtpc8eHU3KqPZe+NRTHZ+/aFHH/1arkZeUhNQjR+D/1lswsrKiFoeLF0k55xxgDFVVVbhy5QqbMmUKBrcrSHl7e7PsyEiU37jBL1pYaPT09JhKpRK0LTbx8fGasWPHKrBmDRXDLl2iVhelEubm5jA3N4e7uzsyMzORmZnJt23bJq1YsYJzWSZV1tqaipCtr88ePdpavJcsAZYsAU9Lw0CViuVXVYmVa9YIfceMYZ999plUW1vLlUolZFmGqamp9ODBA25qagqD4GAJKpWAF16gAkRrwt2zJxUwDh+mwD8rK+DYMfTX1+fxUVHwnDIFHc6AvDwqsh040OloOezfTw6EJUvo+6Cmhs611r3uTWCMwdTUVI6Pj2eBgYGdt7b88AMVG7sC5/SZBg6k6+b999v8+sKFC+LQoUMFx+6s6o8JpVIpaTSa55VK5UJPT0/7qVOnqrKysiDL8qjQ0NA5SqVyBOfcWq1W7/3ggw8e/aWvgw7/S6Aj2zrooMN/DIyx5qRbWZbR0NCgYIy19oi7u7m5Gf6VFG93d/fmUU35+fmIioqShw4dKuERirKZmRlefvllGBsbw8zMTGhoaMAff/zB9uzZI/Xr149bW1ujuLgYISEhbYKVrK2tsWDBAhw+fFiuqalhzzYtalpb5iRJYlevXpXr6uqYn58fi42NFSZPnozDhw9L+fn5PCYmRlq5ciVvv9jJz89HcnIy+vfv3/KgkxMR1Q0bgMmTwTlvUVc+/bSZhKtUKujr68uiKLLs7GxS6SWJFnj795OqzTmpTE5OEJVKOIeEkGL85ptkO1y+vO2CEyDr4yuv0N9++CHZCzdsaPXrvm0USgMDA/jcuEEEb+JEWgR+9hmRlaZZs60D7bTHLjc3F05OTl0fsF69uuy1TUxMxKVLl+SKigpmbGwsh4eHMycnJ8nc3BwlJSVYv34979RKamFBIXMALVANDEjB8/EhonToEPWynjtHKm27kVbtoaenB0dHR/ncuXPyvLlzeXdpwWq1GpmZmQCAIU1Wez8/P/j5+SEnJ0cy+uEHnjJ4MMpcXVG9aRNeHDwYbPlyOHKO0tJSHDt2DDk5OQCoQBMcHIyUlBThb3/7Gw4dOsQBtBR0OKeF+rRpRAStrKgYsnw58OabcBg3DrMrKhD23HNYv349JWt3Q4ItLCywYsUK3LhxA66urnBxcQHnHNHR0bh9+7aMgwfpvO0Cvr6+zMzMDHv37sXAgQPx4MEDnDlzRhwxYoTQnng1Y/9+Ot+vXOn89woFnau7d9PYOlEkJbkVMTcwMMCYMWMQHR0Nj9ZBXNp95OJCPykpVHzR0yPiDVDxResK2b0bkiTh3FdfSYH79/Nezs60L5cvJ+fA//t/lBD/j3/Qft+yhbavHWxsbLBw4UIcPHiQ5eTktLmO6urqEBcXh5iYGNjb22umTZumwIQJMH74EHPu3kX9tGn8/PnzcHZ2xoABAxgAJooiMjMzpfz8fKjV6m7bFzqgtpZSrg8fpnvGjBlE3j7+mNLAHxM1ajWOXbgga/T02OGrV7Fq1Soq6n3+ObljBgwA/v53nFQqodFoMLBdu4EWvfr3R69589jAwMDmHVdQUIBffvlFvnjxomLQoEE0WurLL0nBvXiR7k+tvkuGDBmC6upqubioiEfOmyfZP3jAS2fNwi2VCs/X1aE5TR6g893fn1wSrUd1eXoC+/ZhYk2NkLdoEcwOH4bvqlXcztkZpYGBsLC0hLGxMde6ZqD93jl0iPbhN9+0uFsEgVoVWhVV8rZtk4q8vVm9hYWst2hR2y/C+nraZwsXthSGtNi9mxLgFQpyHt2+TXkFXeURNGH58uVs586d+OGHH6QVK1Z0dFM0NrYNqesKX3zRqWtHX1+fK5XKJ04ib4+mkDqD+Pj4dxwdHfX8/PyYNnfFz8/Poays7FtnZ2djQRBYeHj4s6GhoarO8mB00OF/I3Q92zrooMN/DBERET6WlpbDXV1dGWMMLi4uitu3b0+Jjo4eHB4efkxPT+/Fvn37+vwnquAAEBUVBbVajZkzZ/LH+bI3NTVtVpMUCgX69evH9PT0UFhYKKWlpXHGmBQZGQkHBwfWemaoubk5ysrKpIqKCnSWMm1lZYXGxkY2ffp0dvr0aWns2LFwcnJisiyzrKwsKBQKlpqaioyMDLi4uDTb+/bu3Sva2tqyCRMmcO1jYIwWfyoV4OaGu3fvssrKSvj5+ZEas2RJs+Jx+fJlKSMjg12+fJmlp6eLQzZv5rh6lWayDh9OlnR7e2DVKsTFx8tWH33ErWfNorTaHTtIvXrxRVK4pk4lW6WjY4ud/J13SO1qvYh//XVadB06BMyahYYVK2CwYQOsevak5xobU29kfT1ZNwcNglqtxrVr1+Dq6oqYmBjk5uYiIiICiYmJcmFhIbtw4YJYUFDAioqKWFxcHBobG8EXLwbi41E3cSJUKhUkSUJOTg5+/PFHMSkpiXt4eGDs2LGYMmUKGzZsGPz9/ZmHhweLiopCXFwcsrOz8eDBA7QP32vGggX0mcPCaJF84gSpkl98QcRx1Cg0z6vuBs7OzuzkyZNsUEoK9MvLW8YPtcMvv/yCCxcuwN7evoO6O0StZn1OnMDALVvgGxzMEhMTYRYWJt3NyGD2Tz+NkydPynfv3mW2traYPHkybty4Id+4cYNNnToVvXv3xs2bN2ULCwvJz8+v42LayIjOqeXLSZ3auROKU6eQ8Y9/wKOiAk5pabQfWgerdQIjIyO4urrCwsKiOXG+vr4eiYmJ3Pv+fRhs3twtSYuKihLLy8uZUqlkZ86cgYeHB28qmkiiKLI2FtSHD6nYMnVqt84CAHSMpkyhAs/WrURW2hGQ1NRUaDQaafDgwZ1X+Rij87qb5PVTp06hsrIS06ZNY833moMHaRTbjh1ky96zh1T2boouFhYWiImJQWBgIDM2NoYkSdi5cyfOnDmD/Px8uLu7iwsWLCDCqVCQDXr4cCgCAuA+fjxsW+0Pzjnc3d1ZREQEi4mJaRkF+Cg8eEAZBadOtViIBYHyFmxtyWremph2g5qaGly4cIF5e3tjzJgxMFMq6Rh8/DHdN6ytcU1PT0q8fp3pm5rKnWZm1NRQSNff/96GPJuYmMDa2polJycjICCgZUzchAmU1m9l1Wb0mrW1NfPv3ZsFWlnB5Pvv2QkfH6QIAqqqqxEXF4dbt27B19e3pVA6bx4VG9qP+gNwv6QEv9XUyCnu7syupERy3ruXmU+eDL3jxwFPT7D2hQ0zMypkzp1LbTTa83nsWAqq1Ggg29ig5K23WDbApv36K1OWlUHROrCztJT2/6JFLfuhspLaHT7/nBR9Q0NyH73xRqc5Eu2hVCpRWFgoZ2dnc1mW27ZO1dbSd8FTTz1eX3hWFrlXli5tvsYiIiJkV1dX5tydFf0xYWRkhL59+yrs7OyY9h7DGIO7u7vCx8dH38XFhUVGRtY+fPjw1/fee+/Xv/yGOujwPwSdsq2DDjr8R9DUjz3fzc2tecHv5OSE1atXG/7xxx+Tb9++fU+hUBj+actjJ6itrUVRURH75JNP8P777z9xQIsgCBg6dCgbOnSodtXCExIS5AMHDiAkJASBTbbY+vp63L59mzcpSh3g6ekJT09PFBQUoK6ujnt5eUGj0SA3N1dmjLHa2lrY29v6pQpMAAAgAElEQVRLjY2NbP/+/dLKlSuF+vp6VFRUCPPnz29W0u/cuYPLly+LM2fOFFSrVkEyMWkOQjpx4oQ46exZgWnnzYKcBHp6eqxXr17SzZs3hYaxY6E/Zgz90sCAFOw5c4Bhw2BtbS2fOHtWNnzmGebs50cWY4BsgSUlZKldvJhGcjU2kgXUwIAs5c89R/9GRxMhz88nguPpCUmScOiFF/CeNo137Vr6Ny6OegknToTQ2AhZlhEUFITi4mI5MzOTAYCtra1cVFQEQ0NDnpubKyclJTFJkpCeng7ruXPl8ooKJn71VUtie9NhW7JkCZydnZuPhbZQoVAosGrVKhQVFSEjI0OKjY3lVVVV8vTp0zseN85pgTxvHrkFjI2JeO/dS5+vm9aC1rC0tIRSqYTay6tlFnA7aDQa3Lp1C3369MH89gv77Gzg3j3wf/8bcHCAIYC///3vwOuv850aDb788ksAYEuXLoV90/iofv36saKiImgTvuvq6mBnZ9f9atnYmH7efBNsxAgM9/EhpR+g4/o46lY7uLu7Q6lU4mBSEhYqFGhNzyRJQlRUFDIzM/HgwQOpvr5eaOqnx/z589GrVy+Iooht27bxyMhIBLVO3l6+nLa1qfXgkWCMgrguX6Z+/JAQIlCMoaioCBUVFejVq1fXNwcjIyIydXVdjmIqKCiQfX19WRv1mHO6Dvbvp4LVqVOPJECiKEKj0bCIiAgYGxsjJydHLisrY5MnT8bgwYPBOW/7AmZmdC3Z2lKLSLu+WCMjI/j7+yMxMRHh4eEYM2bMo++Dr79O6mn7c3zECHLEBAaSavoYxSatWycgIACOjo5UYLOwaCk4PPccjn7wAV/31Vc4PWtW5y8SHU0Fxk4IX69evWBgYCCdPXsWzz77LOec0zH617+ol/+558iJA1BexPLlUM2di57Xr2Ml0Jy6n5qairCwMGzcuBHjxo2je/v333c5EkutVqOyspItWLAAR48elS/OmyfPrqlhzidPgqWmkm3b0ZFIqBZWVjQJ4umnaSzac8/ROfL118CECWBeXrjw7ruinkIhRM+ahZkzZrT87a5dlNORlNSyH86dI+dRUhIF7125QgWJ7saFtUNdXR1u3brFjIyMEBUVBXNzcyrcAmT3T0/v0O7QJTw86DuiaZ+lp6ejrq6OD2o3T/z/T1RWVooNDQ3f/I+9oQ46/AegI9s66KDDX0ZoaKiJQqH4u6WlpUX70DE9PT3Mnj1bVVRUpDI1NW1r5fuLmDVrFr777jsUFRXh119/FadNmyY0NDQgNTUVubm54s2bN4XVq1ejtUr9KAQEBDBra2scPHgQhYWF8vTp09mRI0dEhULBQkJCuiU0kZGRcHR0lO/du8fCwsJga2sru7q6Sunp6cLw4cN509gnWZIkXLhwAZIkQV9fHzU1Nbh58ybOnTsHAPzMmTPiNDs7gf/yC8ycnGRfX18WHx/Pfe/cwY2yMsnBxYXr6elBkiReVVUFz5oaLNuxA8qcHEBPD2lpaZAkCV5eXmQ/fOUVLDhwQHE2IgL79+/HoEGDxHHjxgkKhYIs61pkZFC/6tGjpDbV1JBSN20aqRoNDbTw18LGBnJlJTptCwgMpACppCQYzZoFx5AQODo64rXXXmOyLEOWZfC2rKDti2zZwhpsbFD2zDOorKyEgYEBrKysoFQqO+11BUgFsbKygpWVFTw9PXlAQAB2797NnJyc0OWCMDmZ1MOcHApJA2jxP3t2d4e6Gffv34csyzDjnBb7nYzp0dq/J7fqKwZASdavvEL9xq3Dw/LzgZwczPv+e4SFhclWVlawt7dv3j+cc7QepdWjRw+WkZHRceNqa0ktc3EhhW3bNiJRf/87qZuzZ5NC2Nms6McA5xzm5ubifXt74XB9PYy//14cNnmyYGtrix07dkilpaXcysoKvr6+vLi4WH7uueeYUqlsPl8EQcCcOXOwd+9ehIeHY+zYsfTCgYHU9/8kYIxswWZm1IPq7Ax4eqKxsREajQaZmZnYsGGDrFKp4O7uLk2bNk0AgIqKCly/fh2BV65A1c34Is45GhoaJAB0zi5cSPsxKIi29ZdfHkm0tYSPc47bt283b/lbb73V5TkNgI7fgQNUPMvI6DBeb/LkyTAxMREjIiKEixcvwsLCQtTX14dGo4EkSZg4caLg7u5O1/batUQU25+LWvj6Uvgc0OnIp127dknl5eVMFEUmCAJkWYaRkREctMS8sZEcNU2oqalB3wEDsG/hQhgPGkTE0bfdKGVb207zAgAqoHl7e/OEhATU19e3fH8oFNRvvGsXEBVF96yQEGpdaTXFQHuLGTBgAAYMGICIiAhERUXJAQEBjJuZUWFn9OgOKfy9e/fGgAEDxCNHjrDXXntNiIiIwIHISNl43Di8tHgxM/j0U7q3xsXRiCxt+rpKRWPXli2ja2zZspbCZl0d/A8e5MqsLDgPGACuHYPY0ED74Ntv6TyWZXJJbN4MBAdTK89rr1EIZnR0ty0fWjS1ceH69evQaDRYu3YtPvvsM/z++++IiorC8OHD4ZeVBWWr4ytJEk6fPg1/f39YN7UrtQHndG589BESr1yRTgwaxN3c3GSVSvXn+8KeECNHjjQ5derUvtDQUJ8PP/yw8n/qfXXQ4a9AZyPXQQcd/jRCQ0PHxMXFhcuyvMHR0XHwnDlzjDtbNDLGYGxsjE77aP8CtHOeq6urkZeXh5ycHKSnp+Py5custLSU29jYyCNHjmRP2iNuYWGB/v37IzIyEhcuXGDl5eVs6dKl3OARioKDgwMiIiJYenq6rNFo2Pz581lgYCAfOXIkLC0tUVxcjOzsbOn27dtITk5mAGBvb49Lly6J8fHxfOzYsVCpVEhKSuK2M2fCpndvFJWVSbWCwDnnUuDGjfy8vz/LzMoSk5OTWXV1NXN2dsbo/v1Z2p07cFm0CL/88oscGxvLUlJSMHLkSHB7e0oGP3UKbkuXol+/fjh//jwSEhLg5OTETNuH8KSlUZ9lRgaNBJo8mVTvn38mpWb4cFrs9+0LCALqyErcVpnUoskSrw4IQPS9exi2Zw/Qty9Yjx6dE/TWOH0aCkmCyaRJsLGxgbm5OfT19Z9onquxsTGsrKxw/PhxWFlZoTkIr6iIgt98fWlxfv068MIL9Lh2Zrmvb6d9t+1x584d5OXlySMFgeHOHepbb4eSkhKkpKRg/PjxLZ9blqn38qmnyHraen+cOQPU1UF/yhQMHDiQ9evXr9udZWFhgZtHjjB/b2+whw/pMyxfTgTiwAFSo2JjicSOG0e9uoyRKmdvT4R//Xpa1D/hNTp48GAeFBQEp82bUVhezmOqq6Xw8HBWXV3N1q1bh5EjR6JPnz7w9fVlgiB0OO7GxsYwNzfH2bNn0d/DA0bTptGx6cr+/yhYWVGLwOHDwJYt0Hh4oMrAAKWlpZAkiUmSxAoKCvj169cRHx8vRUVFsZycHNgcPIie69dT4FknSE1NZSqVSnZ3d6d55F9/Tdb7F1+kffuIgl5jYyN27doFABg1ahQWL16MK1euiGPGjOGPmooAgALsnnqKCI9K1UGNdHFx4aNHj4aXlxdMTEy4ra0td3Bw4EZGRjw8PFzW19dnJd99B010NKTVq6HqalQYAPj5kXK8eTM5PzhHTU0Ndu3aJZWUlPDJkyczNzc33Lx5E6IoNmdhiHl5qF28GOd795bziovZ1atXxVOnTvHa2lo5cPp0NnnsWAY/PyKmrY/vqlUtoYXtUFBQgKNHj+Kpp56SXbXjtdRqIrBeXkS233+fgvQ++eSRDg1HR0dERUUxfX19yoxITKQ5602FmfT0dNjY2IAxhr59+/Lo6Ghma2uLgIAAODs7s9jYWFZRWSl5vvoqw8qVpA7/7W9UZFCp6PzT06P75q+/UnFrxAg6p0NDYfnZZ+yORiMbHT/OMidORE8LC7qnzp9P+0U7CeLmTTqn9u+ndgrt+RUWRgXSzsLOmtDY2Ijff/9dPHz4MM/MzISNjY0mMDCQjxo1Cm5uboiNjcWdO3cgnTolNwQEMLWDAw4ePChGRkYiOzubXbt2DWq1Gq6urp2/wa1bSMrMRJ85c9i0adOe+Pv1r8DS0pLFxsaqRFH8MSoqqi44OLjx0X+lgw7/XeiUbR100OFP4R//+MdsfX39H2bOnGng5uYGhULxn2XSjwlzc3M8++yzuHjxIg/XKggA/P39xYkTJwp/dvantbU1VqxYwfbu3SvLsiybmpo+ckVhaWmJd955BwDYli1bxJycHKFnz57NBNHJyQmVlZWK8vJyODg4yIWFhayyslJyc3MT0tPTERgYiNDQUAYAf5w6BVVsrNSjtFRwCQuDjY2NUDx5MlaSlVjIzs7Gvn37MObrr2WLrVtZ+uzZUtzmzUwQBPbUU0/h/PnzkkKhoA//0kvUj3z0KGymTsXq1av5Dz/8gD179iAwMFAaM2ZMS8/7rFkUGLZlCxHCAQOIjE6ZQiFUa9eSfXL3bmDTJrDjx9EnPZ1SdJv6J4uLi3Hnzh2IoojGxkbU1dVJ1fr6HA4OZDNVKCjhtjsy+8EHf+q4tceAAQNw/PffkXzjBjy3biW1/uOPqSedc7KNr1hBhHTaNFJ558yhoKRjx6j/shvY2NigtraWaWbMgKKL8KfDhw+DMdbW3vvNNzTXun1KMkCzq7Wj1zrD0aNEvI4dA3buxKkFC/DcoUNg1takPA0cSGF5v7Zqa9y5s+PrVFZS/39DA43CWrq0rcL+mOCcw/LLL2F85w5Ks7I4ACxYsKDz9ONO4OXlhcjISPl2eDiz1dOj5Oa/itdeQ46pKa5s2wabigpUzpiByocPJX9/f65QKBAeHg4bGxtmaWkJOzs7Oby+ntl+8QXsuni5vLw8uWfPnvzKzp0YqFCAnzpFRYrdu7stUGjt9NHR0eCcY82aNc1tI7W1tUL140wI0MLbm4oldnak6rYDYwzW1tZtVElZlmFiYoI7u3bBs6BAvvD883L2vn3MyMhI6tWrlxASEgIAyMrKQmFhIdLS0qTZs2dzx7VrieBVVEBtYoIvvvgCsizzFStWQKVSadsbMHfu3OY+8qO//CJyV1fhWmoqc3R0hJmZmTBo0CCMHj26xX6fkUFTBnbuJNVXoyEFXasMt0N+bi5MKivh7OTEMGsW3YfMzKhgdP48ZVg0NNDjpqZE4s+ebZsK3g76+vrN0ykQGkqEubERaWlpOHLkCFxcXKSxY8fy+vp6qNXq5hnme/bsAQCYmppST4tKRX3uFy5QRsXMmdQDff483ds2biQ3yerV1GdtagqFnh4C8vLYx6amUJw6BTuNBrbBwWTZ/+EHOp969qRiTv/+be8NQ4cCV6/SOLXnn+/Udn/06FHN1atXFebm5li7di309PSgp6fXfKN1cnLCG2+8AYVCgbvPPisn3LrFsr79Fs7OzmzatGnc2dkZ5eXl2Lt3L2pqalBdXS2XlpZKQ4YMEUaNGkUvsmwZZFtbZvnGGyj+9Vf0+Asjv54U8fHxkizLxwA4Abj5z3/+c9l7772ns5Xr8L8aOrKtgw46PDE++uij55RK5Z5FixYZtLaz/jeRnJws2tnZCRUVFRg5ciQGDhz4p4m2FgYGBnj++efZ9u3bWXJyMry9vTs+SZLaqEyccxw8eFCura0V2isDFhYWmDdvHsrLy3Hy5Ek2fvx4nDlzhnPO4evrKwNgpqamYlVVldDQ0ICzPj6Y5+cHExsboKEB9sOGkd0Z1Mv4wRtvAJcvM7i64uWAAJ6fnw8bGxt8++23speXFwfI5tyjRw/8cf++xvOnn3gfLy9+LDlZzsvLYwBw+fJlHhMTg/cXLwavrSVbpLs79a/27k0EVLuoEwRSugCyz06cCI2JCQIvXqQwtTVrgH37kBoYKCfk5jIbGxsIggCFQsEHDx1KvYwAqb8NDbQo7Qrz5hHZP3Dgzxw6WvRWVgJlZVi9cSP+eO01CWPH8uZQpUOH6Hm1taQs+fuTGmpjQ5bOdeuAsrJOrbSt8eDBA8iyDHbtGlmy9+/v8Bx7e3uUlpbSeDeArOvu7pSs3Bkh/de/KAG+upq2aeFC6rOtriar6ZIl5Dro1w+YNAn6+vrY8eqrWLBgAVwVCrKgPg6USiJu+vpk762spGMTFtatctYpLC0x5I8/EOHtjVmzZnWtinUB85oayfrqVQGnTz/Z+3aChoYGhIeHy9fu32ezVq1C//37EaJSAVOncq16OnLkSKDpeIiiyM4YGclxhw5hiiAwpfY8bUJpaSk0Gg27dOkSpv32Gx66uMB461ayC3fR11xVVYWYmBgkJCQAINfLyy+/3OY5QUFBuHTpEoqLi6V79+7xtWvXNucPdImDB6kgVFraPJmgOzDGMNzLiw2/fBnYtYsNDAxkWVlZKC8vF5KTk8WvvvpKaHIeScbGxrJC8f+x991hUV3r12ufGYZeBKUjHemIShMLFrBrFEti7N1EU+6nuUm8iVfT1JjEmKgxxt41sYdYEVAYFQFBRJFeBKT3NjPnfH+89KYmuff3e75v1vPwKDCcOWefffbs9b7rXa9YdOTIEcHFxUWYtGoVp/D1xV1tbaHX5MmYP38+09HRAc/zkEgkUCgUrfJ3QYD3zp1c/hdfYOL06d3XjffqRc/VF1+QAiMvj2TtzQELhaLVnHHpUlj98gtcjh7FSRcXfoG7O8ecnUmh0VzmYWxMcv4lS2gtXrKE1q3Vq+lYHer+L1++rJDJZKKUlBTeyMiIs7e3h2TIEODLL3EuKwvNa9axY8cEkUjE9+/fnzMxMWGPHj0CQEEkGxub9vUCKir0df06Xc/ly+Sk//33tI5dvUqBhY8/Btatg0p8PD7t1w/3HRz48lu3OMPjx4lYe3lRGcq773a/5ixbRtfeu3enkpWsrCwkJCSIFy9eDHNz825rGjQ0NABBgKO/P+e4aBEEAwMwxlpumImJCRYuXIjdu3ejd+/esLOzE8XHx8uHDh3awhkmjB+Pkg8+wLHvv0fwmjWIiYnhe/XqxZmamr7ys/8q4DgOjDEfFRWVMQ4ODkhPT58MQEm2lfhfDaWMXAkllHglfPHFF++rqal9P3/+fI3/LUQbAKqqqtjTp0+ZIAhISUlBv379oKuri1u3bvFRUVG8m5vbn2Leampq4DgOoaGhvL+/f/tUQkUFbRjnzWvJ0sbExCAuLo4tW7asy7q3pkwawsLCMH36dDDGEBgYiEGDBjEA8PDw4Orq6mBvb4/ghQuZ2vHjVJM4fDiZ2TTXsp45Q5nNnTsBLa3m+lns3btXqKysZOrq6rhy5YpCKpVyhYWFwuOKCpEAMNW7d1Fmb89kCgW/atUqpq6ujszMTLjv3g127hyOi0TQ/eAD6Lm4EMkODCSjMyMjyri2vxjU1NXhIGMY+u231Jf4xg3kWFpi1I4dbKggoP/atXC3sIBDsykPQBvQYcMoi3PiBGXrOta7WlkRCW4yBXsplJaSa6+PD/1tWhqwcCEaJ03CxbQ0pufnB+O2vaB376Z79/PPRLJv36ZxNjamjW9aGmWQZs7s1pSovr4eSUlJGO7kRC2kOtQaFxUV4dq1a+A4jg0ZMoSCAG+9RdlnP7/OBzxxgurkjYxIEhscTLW6HEcbcjs7+t7MDDA0RL61Na5duwYAGDhwYEsW7qVw7BjNYSKeJM89f75LR+8Xguche/ddSH19MXHSpFcuGTHavZtVxsWxnwoL4eDgAO0X9FjvDs+fP8eOHTtQWloqjBs3jrn6+JAMt76e6l41NEi10AYcx8HIyIip/fADUm/dYvd0deHc5jXHjx9XmJubY6WREYswMxO0qqthsHQp6855PiYmBocOHcKzZ8/g6OgorFy5knXV4szKygqenp54+PAhysvLmY6OTosJXrfQ0Ggt4/Dz61J63Q5VVSTT3rGjpVa6V69eMDExQf/+/TlPT08MGjQIAQEBbMCAAZyXlxf09fVZREQEGzp0KI5lZCgMdHUR/N57XLP0nDEGf39/PHnyRLh9+zYbMmQIuIwM8Hv3spO2toKC51mP0ngNDboXIhHN76Iiams1axZJ15cupSDbqFHQnDsX1728kPTkCbNeuBB6HVzzs6KiUPvHHwgzNxds7e0ZFxBAz4pEQmNjZESKgIULAVVVREdHC2ZmZlxtbS2fmJiIyMhIhjlzhDxLS1ZWXo6SkhLMnTuXjR49mg0ePJhrLuHIzMxEamoq0tPTBSsrK9bt/NTWJmXQhAkUyPLyomdpyRIq1XBwALZvBxs6FOJr15gkIQGqV69C5O9PBH3ChPbdHzqC4+j4u3ZRPXfTunT37l3+/PnzrLmU4IUoLydlxocfdlnSo6WlBV9fX/j4+LDKykrk5eUJ3t7erZ+hIhE0Vq9GYUqKkLlrF0vgeZaRkYGEhAQMHz78xWVCfxIWFhbM3Nxcx9/fX2JoaIiEhAT1GzdufB8QECC8+K+VUOJ/Bn8t7aOEEkr8f4MNGzZYfvHFFz+pqal9vnTpUg3jtr1J/xdg5MiRbOjQoS0ZlXv37il++eUXhIaGcrm5uX+6CSjP88jJyRG6NFnT1SVH2xkzKAMKIDExUbC1tRX0OxLTNmCMQSQSQSaTYcSIEe3MrjQ0NDB58mSMHDmSrmX8eKpHVFGhbE8zoqOJQLRBY2MjCgsLmYeHh0JFRUUxduxY0WuvvYaCggJeW1tbUTNyJIofPxY0Dx7km+SF8HZ1xRxtbWGXry92jh+PCf/8J6L27+erq6tbD3zlCnD3brfj0wJHR+DAATSYmCB69mwiqnFxVGMYEtL6xXEkFX7tNWrzVFxMRLcttLRe3nX33XeJMMfHU1aprIz+f+AAoKkJjQEDEBAQIFy5cqX1ZMvKqE700KFWZUJ+fvta2OHD6d6Wl9N5dnHNly9fFjQ0NATY2VHgpQNqmuaFmZkZSWabCXyzOVIzGhtJHvrwIc2r5GSSw8bH0++DgjrVg8vlcuzZsweCIGD8+PH8y7Tfqa+vx4EDB3D8+HFkJSejoS0p0tGhvuOPH9OGXqF44fGacTYyEjuXLsXcSZNe3QTx8WMYbd3KnG7fhpWVlXDo0CGhqKjo1Y4BcvoOCQlR9O3bl1+zZg3n0WzExRgFX7ZupaBYs0qgDXR0dGATGsquBwVR7/Am8DyPoqIizktHh8OKFRhz9ixLVFeH0IWzdnl5OcLCwoRLly6B4zjMnj0bs2bNYj0pbLS0tLBw4UJmZ2eHJ0+evNyAa2tTiYCbG5VF9IRVq6i2uam/fedDaUNPT6/l+6ZaZchkMjQ2NiJLQ0Pk/N57HHNzozWnCRzHITg4mAFAQkICkJIC7du3Mfm111hUVBRq2zwvncDz9MwvWkSy8jt36Bn78UcgMpKe/dOn6bxVVfEgPl4ICgpCV/P717NnEe7oiNjYWHbhwoXWB3P0aAp8icXA66+jUVUVmUOGCKZHjnAeHh5YtmyZaO3atdz06dMRm5XFW86dC0VFBe/k5CR0FbDy9vbG+vXrYWtry3799VehTXeErmFhQQG8hw/JIf/GDVpboqMp2Lh8OQxlMmhyHHZ7e2Ofn59C/rKfqc7ORLT//W9UV1bixx9/FG7evMmCg4ObFRsvRmwsSfd7IMWqqqrgOA7W1taoqKgQ/fbbb8jLy2v3mkkNDWxcdja0tLR4AFiwYMF/jGgDND+tra1hYGAACwsLqKio6ANwfuEfKqHE/yCUmW0llFCiEzZs2KAbHh4+ISoq6h2pVLohPDz8a5FI9N6AAQM8p02bptbJVOt/AeRyOU6dOsWPGzeOVVRUyPPy8kRlZWVMU1MTffv2VTTLql8VSUlJiI6Oxrx587guHYMNDWnjvm0bMGMGevfuzW7cuMFEIhEMDQ27NfSKjIxEfX09HF7UcsnCgt7jxg2qp167lur/1q3r5EpbVlaG+Ph4YeHChZyzszNnaGgIjuNw79495uvry2Xn5PCVNjbQfvSImxwczESWlsCRI9D79ltm8913KHr2TGGqpsYeuLggLCKCicViMhGaN4+yqtnZ1IqmDaqqqhAfHw9fX19kZGTg+vXriqdPn3ISCwu4v/Yanf9bb5G08+hRkm8HBZEhkK8vZVcePaKa6cGDW1sArV5NxLmDSzB4nohvWBhtqBcsoM26szOR0UWLaLPegeBYWFgwqVTKeJ6HZbMR2kcfta9RTk6mLG8zWWSMvt+5k4jarFlIzcjAjz/+iNjYWN7FxYVdv36dBQcHM4PycsrUd6i11tPTQ3h4OBQKBfyuXydZ+Jdfdr7PkydT+6n166nP7rRpVDJw9Chw7x5lMTvMpS+//BI8z2PlypVwcHDocYcbHR2NX375BZGRkaioqEBJSQmEzEzcKimBND0d169fh4mJCQwMDIjMFReTg/kLUF9fjxs3biAmJgZzpVJYyuUUpHhZyOU0H3r1gsjPD25ubiwtLU1ISEgQvLy8XnrXnp2dje3bt6OiooKbNWsW67Je3NiYsp2xsaRqCApqF9ApLy+H7+zZ8Jg6lWk1uddHR0ej5MkTjPDxYZyrK1RMTXFBTw/3799n169fh0gk4k1NTdnvv/+Oc+fOITc3l40fPx6zZs3q2tG5C1RXV+Py5csoKSnhAgICXu6CLS1JhTB7NmWCu1pnNm0CRowg87+X6MncjJqaGkilUsTGxvI8z7PRkyaBmZlRprY5sw4KDJaWlgrS8HDm8v330Jw1C3369UN2drbi+vXrbNCgQazd+icIpMZZtYqO5eREGWdDQ1oDxo/vshVXeHg4mzBhAjoaVJaXl6Pw+HEMqa+HxvTpuH//PouOjgbP89DW1oaamhoEFRXc1dTEyZMnodbYyPsvWsT10dentWPZMhj07g3fwYM57du34ft//g9zeYGhpp2dHUJDQ5mxsTE9K11BoSCzxdJSeoZLSuja1dQoQPLHH0BFBdiPP0L1p59g5+WFe/fuMZlM1rMioAk8z6PaxgaSQ4dQIBIhrqQEay9ojXYAACAASURBVNasYYYv6knfFhkZ5MfRTRCmLTQ1NSEWi+UZGRmQSqXMzc0NUqkU5eXluFBUpAjt25cbo66OqatWMYOXbJn4d4AxhszMzIbS0tKYgICAhP/aGyuhxCtCWbOthBJKAAA2bNggBjBBTU1tuUgkGmlmZtbg4OCgY2RkhD59+kBHR+c/GrH+qzh79qygp6cHNzc3uLu7i5uzfoWFhRg2bNifzmw3NjZCJpOxhoaG7l+0dCnVAa9cCfMdOzBx4kSEhYUpwsPDRbNmzYJtF4ZP8+fPx4EDB+Dk5PTiGreqKjIUiooCEhIo+7hhQ6eXPX78WGjKMLRcb7OTd3h4OBwdHYUJEyaI5M7OUDlyhIx9PvoIWLAAZoxhTkWFCBs3YpWlJUtLS8Pp06cRFRXF8zyP2VFRnHlmJpmltUFzG6+ffvpJqKqqgo2NDTd8+HB4tG3v07yB/vxz+re8nLLKCgWNXXQ0XZtUSiT855+JZDbPt/p6qu8eO5bk03PmULZo61bKxm7e3PP4gTJxrq6ueHj1Kj/0nXc47N/fvs+wXE6mbKtXd/7j998H1NQgf/YMF86d4x0cHASFQsG+//57ALQBR3FxtyRz2rRpuLZvH4oA9GlypG4aPJK9JycToe/bF/jsM6CggL5/802S8d+8SRLgjRuJkDRJWNXV1VFdXd2uzvfBgwcICwvjR4wYwclkMjg7O+Ps2bNo2xpswIABsLOzg2FBAU4JAsrKygAAx44dA0COzboeHjBctgyeFy8icv9+WFlZwcLCAn/88QeSk5NhbGwsyOVyVlBQ0HJck08+oVr8V0F9PWU0mzJyIpEIU6ZM4X744QecO3cOr7XtRdwBgiCguLgYWlpaCA0NFYyMjDBmzBhm1E2/cwBEFtevJwLk70/z7733AMbAGEPo2LEInjy55eW5ubkIPnoU4pMngfnzIfroI6yqrmY7duwQeJ5nN27caDFm1NHR4d9///1XCupFRkY2t/zD0C6UET1ixgyat4JAX23X5/Pnaa1YuvTVSwIAuLm5CTzPcykpKUJDQwNTmzWLatQXLKD2U001xdOmTWMpFha4c/8+7h85AhMTE8HR0ZErLi7Gnj17BB0dHcx/802GDz+kgOHOnRQoDAig8718mZ7rkBAKWL73XrvAwe7duwWFQsHq26h4FAoFqqurceDAAdjU1cHIwwNmI0dCoVAgKysL0dHRfFhYGGdubs6rqKggKyuLCwwMRP/33hNJJBIKGo4ZQwG5adNIvn7qFBHQ7lBfD5SXQ9zYiEHFxYr4Tz8Vmc6cCa2SEuDpU5r3YjGtR/v20To1axatdTxPLuUBAa2tEwcPppKQY8dgMGcOXFxchIiICObu7o6uVFHFxcUoLS1Ffn6+IJVKmUKhgIaXl/D6hx8y+3/9ixeLxa/2GZeY+OIShDbw8/MT+/n5YcOGDfj+++/BGIOKigo8PT3Z5MmTYTJwIIOREV3zfxHm5uba6enp/QF0NstQQon/JWAvlMIooYQS/89jw4YNKhKJ5Kquru4gb29vLVdX1577vv6HIZfLwXEcpFIpvLy8IOmphg3A7du3ERERgfnz5yMnJwdJSUmCm5sbc3Fxwfbt24WgoCAMGDDgT0cKvvvuOyEoKIi5uLh0/6L6enLItbNrIWwRERGIjIyEh4cHP2bMmFbH7yaEhIQoUlNT2VtvvcX12NJKEMh8Z/t2IpgODq0ba7mc6oBNTXH2H/8Q9M3N2fC33qIM+L/+Bdy7B8X+/Sj7+WcYvP462NChtGG2s6MMcFYWbRDr6igLHR/fYvrU2NiIZ8+eISoqCuXPnyveXr1a1HHjXlhYiF27dkFdXV1455132CvPm+pqItvu7lRr7eFB/XL37iVitHUrkfCdO4k8FBVRYOMVze+ys7Nx8ocfsGLfPmj/9httfNu/gLKEHeXsbVAZEIDU2lo4hoVBXV0dKSkpSEtLU4wdO1bESkqA6dMp494GgiDgl3/8A5OOH4d2WBg0HR3pFwUFtBHftInadDXXkt++TZvzjq3Umk2jBIEysqNHY+M330AQBKxduxYaGhqIjo5GSEhIt+f/1ltvQV9fHy3zcOpU4OuvIdjaQiaT4auvvmr3enFjI2zS0vDU0RFinoe8zfzt16+fkJyczAAKHFlZWZHi4F//Ar79tttzaIfUVLrOJ09oDrbB3bt3hcuXLzMAWLlyJXR0dDqtSQ8ePMD58+cBAKqqqsJbb73VuZVdT8jJoTICPT1g6lRUamlhx9df4w2RCGd1dXme5zkhPx8z9fTQt6SEAiNt5l1jYyOioqIQERGBoKAg+Lb1A3gJ1NfXY+vWrRg+fDgcHBzQY5CgJ0ycSMqRH36g76OjSQ0xZkyPrtwvg82bN2PAgAEIDAykefn116S86NOnNVs+YwYe+Poi0ciIb2hoQGFhIWtsbGTGxcUYFBkJj/nzIeY4Op+OSp5Jk6j85LPPiIT37UtKmKZ1ZkNTUPHjjz9GTU0N9u3bB57nW8oz+icmwi04GDavv97usA8fPsSZM2egqanJDxo0iEtISFCUl5eL3nvvPbSbIxs3Up10cjIF8fbtozVQW5vWwfv3qZxj2DAyd+vTB8KdO7hRVwfvJUugIxa3dlfQ0iJfC23trtenjRvpNcOGkYt5aCgZnsXGQqitxVf79mHq1Klw6tABged5fPbZZ9DS0lJoaWnB399f5OzsjCdPnkA3KgpmFy9ScOVV8PHHtF41KTheFg8fPsSFCxcwf/58mJmZtQbgm41Cc3Loc+S/hMuXL8vv3bsXIQjCO+vXr3/0X3tjJZR4BSjJthJKKIENGza8aWxsvHvJkiWaHQnhfxvPnz/H/v37hcbGRiYIAuzs7IQ333yzW6LM8zy2bdvG+/v7cz4+Pti4cSP69++PpKQkGBoaClVVVczMzEwxffr0P31hmzdvhlgs5j09Pblhw4Z13+u5WUqso0MZJVBGYs+ePcKkSZNYR+OahoYGHD16lC8tLcWaNWt6Zo/r1pH8eMAA2kzr6lLdZm4utZaprkaKoyPK9PTwdPFi/o29e7nUTz9FTXo6et2+jasjRmCxkRHENjYkHzx9mjZGa9fS8YuKaJPYhtDIZDKEhITwjx494mbPng0rmYyygZmZgIYGKisrsX//fgVjjAsODmZm3TgzvxLkcnLDfvNNusZDh2gz/BdVFU/v3MGZs2dhV1LCv/bTT52DGxkZVC86Z063x4i9cgXFx44JQRs2MHSUe5aXE2F+8qTdj5/ExCBu61ao19XhtXPn6If5+RRQWLWKMvRtsX07Zb0GDeryHPhHj8CdPw/U1OD3p0+FGCcn5jFwIGpqahQpKSkiALCxsREkEonAcRyXlJSEvn37CmPGjGEmJibt1SmBgSRrb5JcFxYWonfv3iguLm5pI1VXV4f6t98Gf/Uqzqxfj9deew2qqqrQ1dVFXV1de2mvIBDpCwtDp/HpCo8f02tXruzy1zk5Odi3b1/L9x4eHvD29oaRkREEQcD27dsFNzc3Zm9vDx0dnS4zgi+EIJAp1+HD4MPCcPq33/gp777Lfb1mDWyqqvD67t0QTZtGZnJ/Iy5fvozo6GhoaWlh1apVr2wo1w4JCcCzZxSEKS+n0ot33211//+TEAQBn332Gby8vDBu3LjWXyxfTpncAwcowOLkRAS1ucTk0CHU7dyJPwYPhnZGhhB4+DB7KXf7xkYKVHp5UemKRII//vgDT58+FYYMGYIrV66wXr168Y6Ojpy5uTl0dHRQvXIl7hsYCJaLFzNzc3PExsYiJydHUVxcLAJIKaGqqgofHx9ERETgjTfeaK80EgRS2Njb07o2bRqpR2xtyZxRRYWuq4Nnx6ZNmwQTExM2Z84cvNRnZn09ra8SCUnYV66kjL4gkIO5hwd+mzFD0J46lQV1cBlXKBT48ssv8f7773dup8fz1L6wqqrbHvGdwPMU1Lx37+V9Mdrg6tWriI6OxqpVq9obMl64QPetrOwvr9cvi9zcXOzduxdisbiBMXZYJpNtWr9+fdp/5c2VUOIloZSRK6GEEgCgrq2tzf4niTbP8zh37pzw+PFj5uvryw8dOlRUUVGBX375pdu2W9nZ2Th06BB69+6N/k1u1xoaGnx+fj4LDAxkRUVFQl1dHT948OC/dGErVqxAcnIyFx0dzd+/f5+tWLGi6wyanh7V7C5YAAwaBLmbG+Li4iAIQpcmSaqqqpg5cyb3zTffoLq6uue+xAMHkhRxxQoioIsXU4ZETY3qlAGcX7JEcHNzY2l37nCbJk2C+OFDwcDAAOKxY1lBVhYSfXzQ390dAMD37g0WHU29j3ieyN3p0+363T5+/BjJyclYsWJFK5HZtAlpeXm4eu2aorS0VGRra4vg4GD2l8hCWyQmEvlZs4YySx2NxP4MFAo4LF+OmQMG4LCVFTdRLu8cMElNpexWD4jJzoZ6QACPceNEWLmy/eZWR4cyn23lvIIA/S++gEF1NaT+/sj+8kv+zfv3uSvq6nD//HO4NrcvaovTpym714Zs8zyP4uJiyGQy7DtzBmZmZhCnpvIGNTXc/IMHEZGRgQxra9GUadNga2sLiUTCVFVVGUDZUzU1tc47X5mMyEQbM7Pmms+2tZ8aGhrQ2LEDYUeOQFcQFIYSiQhNG+yONbRgjMoBuqtlbYu9e8ksrqv69SZYWFjA0tJSyMrKYowxFBQU8Hv27Gl5kLS1tYXAwMC/tqtnjBQp8+aBe/99zHRw4C4cOACt7Gy86edHtbd7/npnofr6emzbtk2QyWSs2WDvjTfeeLFnQ3eQyymzXFNDNc+2tlQHHRREa8S4cXSP/+RzWVhYiGvXrvESiYR1GuNPPiHX/OZWgSEhRFi//JKyvHI51Netw1Bvb/z8yy/MsawMFt2tbdu2Ub32nj1ERHftIjLP88CCBRgzZgwePnwoXLp0ifPx8cHYsWPbLaR6o0cjV0tLiImJEUJDQzlLS0uFpaUl3N3dERoainfffRfa2tq4efMmzxjj2hHtnBzK7q5eTa3+CgqADz+kjPMLauetra1ZWloaIiIi+BEjRvQcKH30iIwi792je7V5c2tQk7GWDHr6gQNs3kcfUd/vFSta/jwvLw8qKiqClpZW57nOceSt8OmntHa+jBN5bi51Q/gTRBsAgoKCEBMTI9TV1bF2ZHvyZApYNM/Nv9h680WIi4vDhQsXAAArV65UvXv37rwHDx7M2bRpU3hDQ8NJAEnr16/v2tlTCSX+i1AapCmhhBIIDw/PqKqqWsHzvIaurm7nTfR/AceOHVMUFBSwBQsWMFdXV04kEkFTUxN6enq4ePEiBEGApaVlu785ePCgwtXVFbNmzeKayV5mZibLzs5mHh4e8PHxYTzPc4Ig/LmsVxPU1NRgZmYGLy8vVlZWxl+6dInr6nwAUDZ23Dgo1q3D8bt3+Ry5HJMnT2aOzfLhDpBIJCguLubDwsJ4a2trTkNDAwcPHhSkUinv5ubWmoG1tKTs9sCBtMFtrhFet47qXVVUkJKSwvM8z1VXV/ODBg1i8+bNYwMGDGD9+/eHQqEQbt68yUpKSoSMjAzcPX2aCQ8fIsbQUIGGBo7T0wObNAniNpvz+Ph4oa6ujmtoaMC9e/eECxcusASRSNF73TpO4uTE1Pv2ZUFBQVyPQYKXBc9Tj+otW6iXsKkpff1VSWJjI4TMTJS6uiLM1FQoLStjAwYM6DzHExJQVVyMcwUFcHZ27tKf4NKlS5g4eTLXa+ZMkotWV7fWfTNGm83Fi1sJTm4uNG/cgM3x4ygMCwMrKmIa8fG4P2gQqnV04Orq2uKeX1painv37sHq7bdJedB033meR0xMDI4fP4709HTU1dWhtrYWpRzH8szNkWZjgyGRkQgSBFgNHgxVS8t297BbFUZNDQUXRox48RiqqKBBSwvm773H9G/eZHjzze5fu3079fmeOrXnY/78M5naddESqy0ePHiAiooKtnDhQowYMYKZm5tDLpejoaFBWLZsGfeiEpOXhrY2MHIk2LlzcMzPh9/mzRQ4OH+e/rWzI0VJWho9i9u3E0kqKyPZ/IgR1AP90SMiPHPmkAolKQlVy5fjp5ISPuDMGc6ouBgiT08s3rMHxrNng4WEELFasoTUDqmpJKu2saEx3LaNpMbvvEPlE3l59Fz07UtBvY8/Bv79b6p1/vBDcr+OjaWSjIAAev316/T7YcMoeHXxImVyV65sDZA0Kyo++gh8ejr2nzkDt+hoYdSUKZx2QQG1H7S3p7prDQ0yGPTwIKIdHU3GX5GRwNy5lB3u1w+aWlpQUVHhz58/z5qDCp3uV3ExEbPmNniMkbT855+BoiIwNzfckkqhUCjYokWLOj2X4unTYbVtG/MeNowNHToU7u7unIODA2dpaYk7d+4IHMcJ1tbW7MyZM8zd3R329vakBFi+nGre1dUpwPjwIdXyP3tGLuYzZ3Yyg2yLvLw8ZGdnIysri9nZ2aHH8oXAQApOXLxIa8SCBZ2UH3ItLYTeuoVhQ4ZA1dCQWvIlJkJhY4Ndu3bBxsZGcHV17TqwpKtL53r5Mt3DFwXNc3PpHrb11XgF8DyP8PBwNmzYsM594dXUKFD49Gmn7gl/N/T19XG7qeyntLRUmDZtmnjw4MFihUJhqaamNqaiomLuzZs3NyvbginxPw1lZlsJJZTA+vXryzZs2DBCKpWuu3379gSJRMIZGRkJgwcP1rL7izV/L4v8/Hw2efJk1qeDm6mbmxvU1dXx66+/QkNDA4OaMn6///47FAoFN2rUqHZZ49zcXB4Ad+fOHcXTp09Fjx49glwux6effvqXDd4YY5g0aZLIzc0NJ06cQF5eHj9z5kyuU9ba0BDXXFyECbt3cxoJCVB7QaZv8uTJ3PHjx/m9e/fCzs5OKC8vh1gs5k6cOMEvWLCAw+PHtCEsL6eNVHPWIyeHNsEVFcD587Crq+PSOQ4ffPBBp5TCqFGjmL29PS5fvixwHMcN9PKCmlyOgoICZrp5sxDm5ycUffcdFxgYyHt7e3MKhQKpqalCRUVFswkWmzt3Lk6fPi2SNDaiJDGRlYjFOHbsmGL16tV/TRJRW0uGb9XVJGvW0SG3aE1N2jz+FbzxBsoLCvBjUBDEYjFjjKGwsLBT8IXPyMC11FThiSCwXbt2Kfz8/ET9+/fHzZs3+cLCQtZc829iYkIb9OxskoPu2dNqjGZuTtlEgEjJhx8C9+6BnTiBoCNHhONTprDzTS2jMjMzERISAjc3N9y4cYN/9uwZBwBDJ04El5OD5xUViIuLQ0JCglBXV8cAcl82MDBASUkJjI2NBX9/f9anTx+ULlkC7fx8qjcNCaHgy4gRPUs5Cwt7rE/vCFtbW2yeMYOt+cc/oHrvHpHPrgJYI0aQHLgnHDhAY/MCqbkgCMjKymIAYGpqii+//BKKpnZkvXv3Rm1tbc9qkJeFTEakedcucqdft46yczo6RBrmzCHSumcPPWvDhpFhoasrzYWQEKrHTUkhEsMYUFGB0sJC/PHbbwrn4mKRh4cHnGUylEokiCktxSNLS8FHX59h0KCWkhN8+CER6d69KfBkYUEke+5c+v2DB/RMqKmRLJkxku2HhhJptbSkczx9mn6enk5BrPp6ItampnTeYjEFCubPp2soKqLgi7o6oKWF2IQEXk0s5rwMDGhlk0rpPQIDiZAOGkRzXhDI8yEwkAInO3Z0Glo/Pz/u7t27wk8//cQAYMaMGe16mGPUqM6kjzF6/letAqqrIeF5gVdR6awOqqqiIEk3veXnz5/P9u/fz+zt7VFdXQ1fLS1yAq+qotpxTU3wixeDa/awAGjckpPJSTwtjRQDXcDGxgZSqRR2dnY4ePAgli5dik5u4DxPgaezZ2msjh8nbwoLC1IHLFsGgMolrl69ymtqakJzxQoOHEf3cds2CDEx0GpogFgs7vnDa/hwqi3/5ZduyzJa8OABKTb+JLKyssDzfPdeKkePdjtufyfKy8sBUFvFESNGMIDKBkaMGKHS2NiosnnzZjkANQA99KFTQon/PJQ120oooUQ7bNiwQQTAGoC/RCL5wt7eXn/KlCnqf5tMuBt8/vnnePvtt9FlP2sAt27dQmxsLL969WqO4zh89dVXmDt3LszNzdu9Ti6XIzU1Fenp6UhOTuaHDBnCXb16Fe+++26njXlDQwMePHgAb2/vVybi5eXlOHTokKCrq8vPnz+/hWzm5+cjKysLYWFhwigbG3jt3Mlw/ny3G8JmKBQKbNmyBTKZDMuXL0dlZSV+/fVX4aOPPmKoqqINb4davnYIDkaBRILf3d0Viz09RS/MKiQmEtmaN48yaXFxCE9MxO3btyGXywGQ6VRz7TxALtXPnz+Hm5sbCpKSeGtAKLGyEtXX18vz8/NFAGBoaCjMnj276zZpXaG4mDI948e3d07+5BPAyIg23H8GPE8ZPk1N/HLtGl9aX89NnDix/Ua/5aU84iZNQrqZGSZs24YbN24oYmNjRcOHD4dUKoWDg4Pi6dOnosbGRqxevbqVqEdFEYGpq6O61a+/Jkl/r16UqfTxIQfnb7+FXCLB5sOHW8ZWRUUFMpms5V8A0BCLMe/kSRQcPIjzTWqOtlBTU8Ps2bOhr68PxljnftaCQM7lMTGUqVu5sjVj2BEREUSOTp586SH9+uuv+VmzZnF9g4Mp0NDBUK0F+/ZR3XBXCpmSEsqCRkW9kGxXV1fjm2++afezd955B4WFhbh8+TI0NDQEU1NTNm7cOPTUy7rLcwgJodrg9esp8/vZZ+SWv2kTkW1jY/qZlhZlQWNjW1pevSy+/PJL2Nra8tOmTeParp+1tbX4+uuvMXDgQAQEBEBLSws5OTkwMzN78XU0lymYmtL4T5hAxOn8eZJCq6pSVvjIEQrEveK6VlFRgR9++KHFTK9HxMRQ3b2TE43Zrl1EVjugqqoKZWVl+PXXX4WAgAA2oK0p16lTJONv4wReXV2Nc+fO8c/z84Uhly6JaiQSeOzfD4MOaz2Kiqjmf8aMbk/xxx9/FKz09Njj5GS8e/EiSvr1w53XX0dJSYnQ0NDAN6amilQbGmAwcCA/a/Hi1sH/9FPg3DnKgncAz/PYvHmzMHjwYAwdOpQdP35cqKmpwZIlS9oHBE6fJnfu1FSaV59/TjLyhAQi3E2fdVu3boWKigoWLlzYLkOenZUFo6wsiIODsev11/HW99/3PD/y8ojcT5nSs5x81Spam5qDOK+IXbt2KSQSCVvcdrw6IiuLVCvp6Z3MD/8uHDp0iM/IyOAGDhwIR0dHtE0MVFZW4ocffmhUKBRLBEE4sn79eiXZUeJ/DEoZuRJKKNEOAQEBQkBAQGlAQEB8aGjoTxUVFf1TU1P7urq6qvwna7qlUqng5ubWdX9cUCbrwYMHiIiIELKzs1FYWMgmTJjQafPBcRx69+6N/Px8pKamsoymTZyRkVFLNqw5Ip+ZmYmzZ89CX1//lZ2A1dTUYG5uzqRSKfz9/RkAxMTE4PTp0ygvL+fd3d0F/4kTOaaiQrWMs2b1uPHlOA4DBw6Et7c3DAwMoK2tjfDwcGZmZgaDrVu7Jy/NmDULfFAQMo4c4Zy3bAG3ahXJO01Muq6dS02lnrfu7iRD1dKClZUV+vbtCx0dHeTk5AAA43keenp6fH19PausrIS2tjacnZ1hsXkzs42LYyl+fiwjI4NbsmQJ8/DwYE+fPkVmZiZcXFxevMtPTCSp7BdfUO1k2/klElH2ydj4hYfpEl9/Tde1bh2SMzP5+vp6TJo0qdM57d27V3758mVOr6ZG8Fq6lOnb2KBXr17cw4cPhczMTDZ58mQEBARw/v7+sLe3h4GBQeucs7AgwrFwIUlff/kF6N+fggdz5tAY29gAkyaB09NDUVGRorCwkKM/teDlcjlbs2YNBg4cCE9PT0jq6uSPq6q4+5WV0NHRQV1dXbtz1dTURH19vaCnp8e67OHcnOn09aVz++YbIiOurp0lsYWFlJl+BSlpfHw8r6Ojw5mtX0/ZzN27iTB3JP3vvEMy546qGEGgrOG6dTQvXwCJRIIhQ4bg1q1bAMj13MTEBL1794azszOuXbvG8vLycPfuXcHV1bVrJ3y5vNVQcNYsIkCGhmR45uwMVFZS4EBVlSTWdXXkF+DsTM+GuTmN69ChRGKMjbsklF0hMjJSmD59Oqfd1KqtGSoqKrC1tUVISAikUimePHmC27dv48GDB7xYLO7eaPC330hqvmYNqRfGjKFgwKZNJA2ePp1eN3Agkal58yiI9QplQSdPnlTo6OjAz8+v5+e3qoqO/dlnNMfz8mgsnz+n8Wmz1jUb6qWlpQnPnj0TPD09WU1NDfLy8pApCGgYMQI69vaora3F4cOHhevXrzMDAwN+1OjRoj4zZ8IqIwN6MTFkztg26BsdTUGGSZO6PMX6ujpEnz7NXv/uOzzX0EDIqFHIdHLi1dTUeEtLS2ZiYsICzp2Dp6kp+72hgQ0ZMqT12Q4IoLUpJYWCfk3XU19fj6NHj/Icx7Fp06YxkUgEGxsbFhYWhvT0dEFFRYXJ5XLU/vYbGn18oD5xImXfv/qKzCg5jgJdxsaAjg7S0tIQExPT4rjfjOvXr+PCxYu4k5uLRAsLVOjrw331asiMjaHaRcAQAL1PQQFl74cO7br3OkCqm7lz8VKmdR2wc+dORU1NjWjx4sU9+3To6ZF6wsvrld/jZeHg4MD09fWRnJwsREVFsfT0dLmnpycH0Jyzs7MTpaenBwmCEHjjxo3fAgICXiC5UUKJ/wyUZFsJJZToFgEBAbLQ0NBTDQ0N/eLi4uzNzMxUdF+Qof0zCA0NRX5+Phs1alS3kXuJRAIvLy/Wp08flp2dzRsaGgru7u5dvvjZs2c4c+YMRCIRJBIJGhoaYGtri19//VWIiIhgd+/eFRISEoTY2FgmEonw5MkTiMVihYWFBVdTUwORSPRSmbLGxkZER0czHx8fhKH2QwAAIABJREFUlJeX48SJE5g6dSrGjx/PbGxsOMYYZfH09UkmPWlSj/V0KioqLTVwIpEIJSUlwtP79+G5bx/D++93v3lqgqqqKiKePRNyZ81izq6urRsuOzsiHW0zczk5lNHbtInIRhOp1dPTg7W1Nfz8/CCRSGBlZQUvLy8WHx8PADAxMVHExcVxyQ4OiHZ2ZvKGBoVILIaFhQXLysoSZDIZKyws5H18fDoNYHPLHgnHUf3i2rWU+e2weaytrUXV7t2oLiuDho/Pq8v/w8PJIGruXMSmpgpSqZRTKBRsWId2Wo8ePcKdO3e4qVOnwu/QIaa9aBGgq4vS0lLcv3+fCYKACRMmQCKRgDEGHR2dzvPCxobusURC2fTKSiJ0jx6RS/CQIS0b9fT0dIHneW769OkICAhggwcPBsdxUFVVhaamJqwyMjiXK1fAz5nDJyUltVz0/Pnzoa+vj7KyMj4tLY2Li4uDm5tb58x2MziONrrBwUQe168nabe6emuNeWwsqQpeYTOcnZ3NVVZWKpxdXGgQli2jDGvHLJq7O93Tjuf3889UY9zU1/plwHEcwsPDAQAODg5oLjNRVVWFr68vXFxckJiYyCIjI1FSUiL0MzVlrK6OlBGpqTTPdu0i6XefPpQF7d+f5r+vL92jGTOIqBYVtZoPhoVRH/qJE6mUQRAoG+/nR87bZ84Q+esGcrkct2/fZl5eXl16YOjq6sLMzAxGRkaCXC7nx48fz+no6ODq1avMzMysfVbZ25uMpxYtouvo27e1/V1cHJ3TjBntOgmgTx8ixDt3Ug31S453RkaGkJOTw9nZ2XUb+ARALbEKCiioxHE0z62sqG3XnTs0bh3es1evXiw8PJxFREQgKioKDx8+ROnz57zWwYPs4LNnuHPnDhoaGphYLBZWrFjB6evrQ0tHB6qjRtHzdOoUyc6b18EnT+h568rMLCQE4ilTEOPjo9BfupTz+/BDDA8IgJeXF3NxceEsLS1ZX3NzpvXsGZO/9RakMTFISkrik5KSWGJiIhIfPUJmURFsli8Hq6kBGzoUjY2N2LJlC6qqqtjixYtZ8/MnkUjg4+PDkpOTkZCQwD+IjcWod99laaGhyJg+XTCsrWWizz9vDRQEB1O5grMz6urqEBsbC0tLSzQH0Hiex5EjRzB06FCMHDkSpv37w93TE9kPH/LSnBzWGB8PM1VVmgMd4eJCQVRNza6DQjIZ1Y/PmPHCz5OOOHfunJCens4tX7685xr1Zri7U2Dt5MluAyJ/BSoqKjAxMYGtrS27e/cuampquLZrvLa2NgYNGiQpKSkxLisrmxAaGno0ICBA9refiBJKvADKmm0llFCiR6xfv54HMG/jxo0hhw8f/tHMzEwtMDBQ09TU9G97j3v37gkzZsxgPfaaBm28+/Xrh379+vWYYjczM8Ps2bORm5uL5ORkRUNDgyg0NJQ3NTUVVq9eLUpJSWEVFRXM2NgYqqqq2L17NwAgISEBZ8+ehYaGBtTU1KCuri4sXryYdUf2DAwMYGVlpfj22285hULBHB0dFc7Ozu3PjTHaIF67RiZE//jHS298VVRU+KLyclFFQgJ0X0KWnZKSgpKSEjZ69Ggi9VlZ5BL8738TicjOpppTXV2qCx0yhOTOTU7ubSGRSODfRCa+/fZbAQALDg6Gq6urKDExERcuXEDv7Gws2r9ftPmf/8SVK1dQWVnJALQQhcjISCgUCgwbNgy1tbXYvn27ICorYzMbGmBZXEyGSmIx6urqEBUVxdfW1grDhw8Xbd++HYNTUoT8/Hzmm57e0qpHLpcjMzMTVlZW3dcM3r5NWZs7dwBTUzy6epUB5CjfEZcvXxYAMDUVFbDERMDUFPn5+cjJycG6desgEolejugPG0bqhU8/pbrZU6doTDv8rUQi4bSaFARdwt0dWLsWurq6TCKRICAgQPD29mYikQhWVlYYNmwY19zqZvfu3VizZk3PPehFIjJ6mjKFAgAHD5Kkc+ZMImKvWBpibW2NyMjI1ouKjSUSumQJXX9zzWpNDUlVT5xo/eOGBgqADB78yi7FK1euxK5duzq1x1JTU4OJigrWammhwN4e+Rs2sLq5cxF36BCGyOU0nitWkHwXoGt/8IDqjx89ovZyly61nrMgUDBAV5cyw59+2vpmjLX2sd63j2T6PE/P9NtvdxrLsLAwqKmpCb169ep2Atnb28Pe3p4BEAGAqqoqE4lEMDAwgJCQAMWwYXh45Qo8t2yh+aSh0Z7gV1WRxP1f/yLy1hErVhBRDwykOfkSLvGvvfaaKDQ0lN+7dy+Cg4NZv66OC9C93bKl/c90dGidy8mhex0cjIa5c3E/JgbV1dVCXFwc8/f3h7+/Pw4cOICKigph+fLlHPvqK7j//jvkCgU0NTWxdetWdvLkSWHq1KlMIpEQKXznHQrWLFlCNf8iEWXRPT3bn8OBAxQEGDUK2LwZamVliKut5R3E4s6TbtYsYOlSaBkbY8mSJcjMzOQaGxshk8mE5ORklp2djczp01FbXQ3DTz5RNJiZiczNzfl58+ZxHVVeEokEs2fPZsjKEkEQwPfujXIjI6SfPi24HTnCJBkZFJAD2rUHbFZj9O3bt+VnKSkpAABXV9d2deD2p09z1gUFyJ45E9mHDgmxGzeyoMBAaHRUuWzZQs/ZkSMk8W+Ligoi4S9b5tMGPM8zAPjxxx9haWnJz549+8UGhf7+FPD7D0JPTw9GRka8ra1tp3ssEokwZcoUNZlM5pKWlvYdgGX/0ZNRQokuoMxsK6GEEi+F4cOHJ4aGhn5fWVlZkpCQEGBmZibprr76VXDmzBm+urqaBQUFddke68/CwMAA1tbWGDRoEDds2DD4+/szd3d3rrl/sJmZWUuPUKlUCltbW+7333+HpaUliouLoaWlJRQUFLCcnBze3d29E+GuqKiARCKBvb09Z2RkxBITE+Hr68uZdCWP5TjadNy7R9JHX9+XugYHBwdu4LRp+CM/n7cMCGA9bWzkcjn27duH0aNHw6NZGswYvffIkZStq6wkMthsnvXxx0QUupIkt4GnpyeTSqXIyMiAv78/+vTpA2NjY7iMHAnNCRPgPHYsoqKiwBhDr169YGJiwrm4uODUqVP806dP2YABA7Br1y6+b00N5xkRAQMTE2j9/HNLlv/y5cuKxMRELjs7m+vfvz+io6PRNzMTgqkpnCZMYOrq6oiKilKcOnWKi42NRWRkJKKjo+Hr69su01x7+TIqzcxQN3MmyjQ0UF9fj2vXrgEAxowZ09nJWCxmqamp0AdgNXAgKl1dsWfPHqSkpMDa2rpb/4B2EATqm71rF0mkRSKqnR01isieSEQGcFSXy0pKSuDZkSA0IyQEKCuD0dixbOjQobCwsOj0TOjo6CA8PBw8z6OgoEBwdXXtNhjU5kLpXNzdyYRu61Yi3r16UVbwJUm3trY2wsLC2stteR747ju63uaseV0d1Y42G38BJGnOySGi/wpQKBTYv38/6uvr4T9wILTu3yf56/z5pMoYNgw4dgxa/v6QTZuGg2Zm0Le2hu3bb1MGmDEKOlVXk+y6tpbKFoKD20vrv/oKuHu31VzKzIzIbP/+nTOAnp6ULS4sJPIXHEy1qZqaLeqRixcvKgYPHsx19JToCVFRUcKwHTuY/NIl/qBYjDw1NXa7ogJ2o0dDp6P5FkDzzsmp+6whYyTXLywk6bKPzwvvNWMMNjY2TFtbG+fPn2dxcXGK9PR0LicnByYmJhTcefCA5NsLF3YOnIhENK/MzaG4cgXHb9xAWna2UC0IqKioYJaWlnBwcIBEIsGjR4+Yf0AAxB9/DBWJBKqqqi0B1cTEROHKlStMKpUKiYmJglgiYcbjx5PZ2+efkxLhzBkK8Dg70/XxPHD4MK1xU6cCTk6wsbHhrly5wow0NdFbEGj9ffyY5uzFi2Qs5u4OHR0d9O3bF9bW1rC1tWWGhoZ48uQJ//6nn7JBOjpwf+cd7p6NDabOm8c6lgW0Q1AQsHEj2OnTsOzXD/oGBuxySQnKjYwUVlZWNFhjx5KBmIUFeJ5HUylSSzBJJpMhJiYGWlpaCktLS67t862lpQXdGTNQEBTEFMeOCSbLlzO2aBFEbVUIYjHNiy1bgNdea6+mun6dfB2aSw5eAf369YOVlRUGDBiA6Oho4fnz57yTkxPX4/pjb09fEybQdXenxvmLiImJEUpLS1lMTAyfl5fXLkjEGIOhoaH47t27/cPCwr4MCAjg/yMnoYQS3UBJtpVQQomXRkBAgGL48OHRoaGh99LS0qb7+fmp9PRBW1lZifz8fJSUlEBPT68d2amvr8eJEyeEJ0+ecDNnzmQGL9Ob9z8AiUSC5ORkPj4+nqmpqQmrVq1iAU1yQwMDA0RFRbHw8HDcunULYWFhiIqKQnx8PG7evImIiAhERkYiKSkJjDH0798fXdbS0hvRpuOrr2gj1F1dZhswAEXa2rgCsPSMDH7QoEFdDvbPP/8shISEMG1tbUVwcHCniMXz589xLSICBhYW0HzrLcpsuLpSneX06ZTxamjo1gBKLBajvLwcubm5GD58OBhjMDAwgK6uLsRWVtB87TVo+PpixqpVuH37Nurr61FbW4vs7GymUChw//59eJSWCgMiIpDv7c3Shg8Xrl27xtva2nIaGhqIjIwUHBwcuJKSEl4qlTKJRCLYJCczr0mTWK+mwMRvv/3GHB0dmba2NiorK9HQ0IC+ffuC53nk5+ejLjcXkrFjcb6iAqFFRbh//z5SU1Mhl8vRvME/duyY/OHDh4KTkxN3+fJlSKVS8DyPKc7OUI+MRJyJCZ4+fQoAGD58OK5fv66IjIwUzM3NOU1Nzc4DI5WSXLm4mO7p5s1EBDQ0iBD2708kfNEiYM0aqL/1FkpFIr7f6NGsS3XD9u1EBkeP7nZOHDx4EOXl5Rg+fDgSExNZZWUlHOzsiFiFhdG56OsT2QgMJFK9fDl9OTkREVq7luZhbi4FXo4codrbuXOJ8Ovrd7kplkgkkEqlQr9+/VolxhxHpEsioWNNnkxyYj8/2vSrq1NAIiaGiGkP7ZTaQhAEPAkNRejNm/DYuxfmeXlwUVGh7OaAAUR4Fy4kCf/06YC1NVR69cItqRTz58+ntSYvD4iPh+KNN3CnsBCnBg/mo4yMhF76+u27HpSXkyLiX/9qvW6Oo0y2nV339eVaWiSJ19MjT4Xbt4GJE1Gdn4/wu3e5UaNGvZxbenk5BEtL/Kary0o0NZFiYwM7Pz826p13UFNTg4iICKGwsJCXyWRcnz596NouXiRvgG+/7VkpwBhlOaurqZxgzJges5r5+fkoKipCYWEhVFRUMGDAAK6hoUGRk5PDbt26BX19fdanthbw98czkQjx8fGQSCTQaApuxcfHIyEhAVmM4Uh5OQY8eCDMvHePeW3dyp7m5CgeP37M9evXD0ePHoVYLMaIESPIm2H4cKqNBnkTeHp6Mk9PTzg5ObGIiAiWkpKC4QEBtG4JAqkOxo8nbwKZjGTrAwYQoVNXJ2XLuXNQKy3FoI0bobZvHyQODuDu3CFSXltLQSGJhAj7hg0UjGh6zisrKxEdHc0CAgIgNjODeNQo+EydCi1V1dYMdUc8fEhB1dGj6TxTU6G7cCHy3n4bkVIp5+3tTYT63j1SFfXpA4lEgry8PMXVq1eZo6MjA4A7d+6gsrIST58+5VxcXNBx7ZFIJDA0NEROr14slDE8SE3lB/3znwz+/q0BL0tLCrL88Uf79n7nz9M68IKWe11PJQqm6urqwtXVlV25coWpqqrCzMys52gfY2Q2N3LkSz//rwobGxtWWlrKp6amcgUFBRg8eDDaqg+uXLlSV1xcfEUQhGMBL+ihroQSfzeUMnIllFDiz0BaV1cnkcvlnaSdbbF///6W9hzq6urCBx980PKh/M0330BVVZUtW7YMXWaD/4swNTXlnj9/Dn19feTm5rY4nLu5ucHa2hqxsbG4ffs2tLS0oK6ujufPn2PEiBGwsbFBVVUVLl68KEyaNKnbXtotMDQkk6PFi4H33++x5hMAsj/4QLhaU8OM3N35gQMHdruj5nlecHR0ZFOnTu0kr8/JycHhw4cFVVVVJjp0CAH5+dC5c4eyYbq6JD/96SfKghQV0SZ2zJhO5zZu3DgkJiYiMzMT1h1qATl3d/j4+QESCYKDg/H06VM+JSVF8PX1ZY42NlzZTz8JDhkZ3IO33xakqakQPX7MZDKZKDw8HFOnTkV5eTnn7e2NwMBATi6XQywWsz/y8xXnnjzhJhQWMkNDQ2hqagpJSUlMLpfDxsaGf/LkCXfixAkwxtC3tFShkMuZ/KOP+AUffCAGgIMHD8oLCwvFcrkcGRkZOHr0KPLy8sRGRkbCli1boFAoYGJiwufn53MRN2/yw9TVOQcHB1y5cgUaGhr89u3bOQAiVVVVnDp1Sli4cGFLjSZu3CDzsbffpnH096fNs50dEdevviIiCFAWdeNGQC4HLxZDXFPDsGsXEfO4OMrIOThQdm7Tps5mVrW1VCs8ejRw4AAsr1yBeOJEPmDlSq7X++/zafv2cfLgYIgbGuicHBxa5b0KBd3LZtl6VlbbidFa86mmRrXXgkBy3ffeo9rPDz6gLNjjxzR3LS2hoaGhKCgoEHcyFNTUpPdu9nT45BMi+0uXUjZ7xw56j+4gCNRuaf9+wMkJ8t9/h9GJEyiYOxfGWlqwXLqUZN9vv93tITiOg0KhQHFuLgy//x44cwZPjx7FpalTYejoqAh0dxdJpVKEhoYKTk5OzY5XlP3btKmzzHrIEDqvFyAqKgqREybwpkZGbMiOHcz4o48gfPABDF8UQFy3DnxSEs7OmSOoenkxpq0tjHnvPdanT5+WkprJkydDKpWyZ8+eif744w8+PT0d4wIDOYlIRMGZl6m7be5dHR1NsvnmZ78D0tPTcfjwYYjFYojFYkEmk3H19fX8ggULRIIgIDIyEiGnTglmJ0+yxH//WxF+86aoV69eQlhYGBOJRC2u+hKJRNDQ0BC8vLw4/08+YSwjA4qTJzErPFz0s51dS9nOG2+8QW/8+utdSty1tbVRVFQExhjebr7vHEfz6eFDum+qqtSKzMyMyOWvv1KwKDCQzP9cXHB+7Vo8razEP19/HSI1NSoZWLeOylgYI1VCeTkFHBctAry8UNMUVGzBoEE09x49oqBWR1y4QAGuuLhWcpuRAbi5QU1TE7q6uoK6ujodcNu2diUmEyZMEG3btg07duyAioqKIJPJmJ2dnWBpaQkDA4MuiaxMJkNYWBhgYgLW2MjJhg6FSnN7MW9vypzPm0djFB/faoRobExBib8IHR0d+Pj4sOjoaN7b27tnss1x9Ln38CGtTR988JffvyP09fUxbtw47sGDBxgxYkSn8hobGxtJenr6SJlM9nDDhg3j169fn/23n4QSSnQDJdlWQon/h7FhwwZDANNUVFQ8FApFEc/ztwDcWr9+ff1fPPQUCwuLOhUVlW71dDExMaitrcXq1auRkJCA8PDwdh/ITk5OyM3NFfT19V/R/ervx/jx45Genq4oKCgQ7d27F25ubopp06aJAJLtDRs2DG2NVx4/fox+/fq1SGlbNu4vA11dyjDNmkUZjh4yXxqXLqHf6NEYumJFt0Q7KSkJpaWlnIeHB+rr69ttMq6EhPCxMTHc+zt3MrWdO/FrUZGQYmDABgIkt2zG2rVEsuiAlJGNiABmz6Zes4mJkJiYQBAEZGRk8NbW1u3P57vvqJ3NlSuwHTMGLbVzeXnAiRMwqalh2L8ftjIZMzh+XCgqKmIAkJiYiMTERKipqaE5UNFMMsaWlIgiNTSEY8eOCU2t2ZhMJhMUCgVTaeq5u3LlShjo6wOOjiKsWAG8/37LeVlYWLDi4mLBysqKZWZmoqioCADQt29f4fnz5wwAFixYwNXU1CDln/9kcdnZSPvtNxgZGfErVqzgoqKicO3aNZibmwsFBQVCWloac6uspM30o0dkDjZ2LEk0i4uJrGlqEjHuCJEIEImQtW4dsh884LFkiQju7pRl3r2bslDNbbpcXIgUmZoSIfD2psxtaSkqkpLA5eVh6NChHJYuhcfEidzFnBw8dnSE1dGjguO//80GNmesLl5sff/mnreMEZGOjycS3QwPj9bNeGoq/ZufT1JpTU0KwGhpAT/+iNnbtomTVFV56OpyLS3P6MZRFj0xkbKMP/9MpOfxYyJBHV3lKyspaOHhQZ4CV68S+UlIQG7v3sJhXV3WuHo1BgwahMFff91zbToACAKy4+KENw8fZmoPH+KSjw8ezp4NhIcjaOpUYeDAgSIAuH37Nm9hYdE6f2NiyOSuq9IOa2si/z1kASsrKxERESH069ePU1FR4c+UlEC2ejWbOWsWmJEROdRPndr6BwoFBbguXYJizBgcy85GZlISC96yBeMdHTuVDXAc1+KdkJOTw+3btw/OmzcL9osWMSxZ0vOYtAVjpF748UdyM//mm04tmfLy8gCQv4GBgQFXX1+PrVu3cllZWbC0tIS/vz+MCwpYxrVruJmSIgoKCoK3tzeTy+UICQmBiYkJZDIZBg8ezEDCHIKtLa4bGeH/svflYVWU7/v3O3MW9lVFZJNVUXbBNVBRKnFJ3DXLXFvN1MzK6nRcSstyqSy3XDI1s9xyQQVBwxVE3BAEUZBFQET2s838/ng47CD2qc/39+nivi4u5XDOnJl33pl57+e5n/uxzMiAmYUFuhoaYujXX9eWIkye3KxjuomJCXieJ0MunY5MHyMjaf4AFDD6/nvKcFtY1PSurnY2x6PkZFGlUrFRY8aIBgYGtE+7dhG51hNeFxd6DaD5KJXC6dYtTNixA8cdHPCsPnD25Zc0X/S+F3pkZFBWfOrUWrPHykqa9z/+iKTVq3UhISF8DXk3N6ea96FDq381x6hRo2BkZIQdO3YwjuMwYsSIFuXqMpkMoaGhiI6OhsjzKPvgAyp7+egjqptfvZpUGlu2UJBg505yKz9/npQOfwNyc3NrFA2tavV48ybdd/4Bsg3QmAwfPhwnT54UQkJC6l1Ifn5+vK+vr/GZM2e6xsXFnVEqlUEKhSL/H9mRNrShAdr6bLehDf9SKJXKbhKJ5IKHhwdvZ2dnWFFRoUtLSysvLCyUyWSyuKqqqihRFG8ByAGgA6AB8AhAnkKhaLFFxooVKy4OHTo0yKvahVitVuPYsWPo0aMH7OzscPfuXWzbtg0+Pj6IiIioyZj07dsXYWFhAMhxdf369Tq1Ws0NHjyYde/e/R8dj9YgNzcXGzZsQEREhNCc0/nfhpwcyjr88UetsVRdVFVh35Ejws3kZK5bt25CZmamaGxsjAkTJvCxsbFiUlISk8vlusrKSh4ATE1NxbKyMhbg5oZKnQ42O3cKXqdPc0VJSXC+dAnasDAsW7sWdnZ2wowZM558bGVlUO3bh60VFbrBX33FV8rlODh8ON6IjobFwYMkV6yb+Xn1VcoY7dhBv587R4s+Cwtg9uya98bExIj6wIuxsbEwZMgQzsrKqrG6YfhwCK+9hh9zc7UVFRXM1taWHzx4MCoqKrB161ZotVqYPXqEAYaGov/ChayhPPGnn37SWVhY8ABw+fJlSCQSCIIAQagt11u4cCEtEr/6CjcKCrDX0BBBQUEIDw+vPgUUvPh97lydf/fuvOuWLRSU0GfkACKXkyYRCX9Ca7zExETExcVp33rrrcaB7oICykB7ehI5GzaMMuV1JKSbN28WraysEBERUTPwGo0Gn332Wc17FApFi/uAvDwgNZVqnZ8WpaW4M28e4rp00b1UXMxj924i5/37k1JjwADKnkdF0ZgsXEiZ9QkTqJ7d0ZHIkExGcvMNG+g9lpaU2bS3R0lJCVatWgUnJydMmjTpySQbAE6fhu7DD7G9WzfY63QIXrkSX3zzDURRxPz58+tJuSMjI4X4+Hhu0aJFRJyWLCGJa1O4dYvmdbUbuh537tyBiYkJLCwssGHDBp2dnR2aUpUgMZECHQoFsG8fHf/p00Tapk7F1Zwc7Nu3D0Arzls1LsXEwPLVV+EaGwv2V9riiSLwwQd0/oODiYBVIzY2FjExMZgyZUqNid8vv/yCO3fu4LXXXsPBgwdF31Wr2MVhw5ArlWLEiBHN+w80wPnz5xEZGYnX+vaFzaefknnb5Ml0X+jRg7LVCxfW/5AgAByHi4MHi26CwKyio+kzixdTIESlos/Z21PgMj4eAPlX/Pzzz7h79y4MDQ1RWVmJnj17imFhYaQYSEyk427Ymg70XLpx4waidu9GjzNnUPX222LYypUML7wAvP8+jZ+zM+3DlCnU5cHIiIh2dcYeAJ3j48eBEyewbNkyjB07Fh4eHvS3e/co+NRE2Y5KparpftASRFHE4sWLIZfLMWnSpHoGaxBFCtTt3UvBri1bKKv89dekkDlx4qmdyJvClStXcODAAQDAnDlzYNFaifgvv5CB3j/Qf1sQBKxZs0b09/dnzcnFY2JiNGfPni3RaDR9FQpF6t++E21oQwO0Zbbb0IZ/KeRy+ad9+/Y1DAkJ0S8C+cGDB5tVVFQgLS1tUG5ubsiDBw8qS0pKRFEUIQgCq6qqkqhUKoMVK1ZcV6lUi0VR/F2hUNSLyCmVym5yudzLs47L6b1795CYmIikpCQwxqDT6eDg4CAOGTKEAYCLiwvCwsLEEydOsLKyMkRERIDjOLz66qv877//jmPHjomt6sv8D+LatWv4/fffERISovPx8fnnGorr0akTGZRNnUpZyIZ1lxERcHr0iLs6ZAiuXr3KPffcc8jIyBBWr14NjuPY2LFjIQgCX1hYiIBu3WCYmsquy+Xo0qsX4mbNEvhZs9jjDz4gybezM6DVgud5jBw5snVBBBMTRFlbQ1dayhmfPo0d69ejj6cnLO7cIdmxvo/0hQuUWVq8mGoui4upTvDaNVrQP/98vc3279+fGRoa4tixYwgNDeX2B67GAAAgAElEQVSaDbK88go4b2/MGDq03nPK0tISs2fPxuHDh8UeX3wBK3v7RkQbADw9PbkjR47A2tpaGD16NLO2tmZbtmyBpaWlqNPpMGPGjNq+zO7u6B4WBk8vr3qGawZZWcCvv8Lv9GlO5+1NmdeG5yk9nUyR9ETbw4PGYsKEem/Ly8tDdHQ0TE1Nm57nHEfuylVV9D3TpwNr1tST81dVVQmOjo715qZUKsXcuXOxatWqpsexGspPPsGbW7eicO1amPXsib/US8DUFMZLlyJr82ZeXLIEbOlSWtg//zwFCs6epUBEVhZJaS9fpqDL0aN0TD/+SOMTGEj1tnUzvtW4fv06TE1NhZdffplr0TBRFElGfekS8PrriPP2RmaHDihv31534bvveMYYRFHE5s2bhTlz5tRsqHv37tz58+eRmpoKw+nTkT1wIDplZsLe3r5xWzcPD1IclJbWkNIffvhBm5+fL9EHb3Q6HT9p0qSm99Hfn85n375U/21uDrzzDkonTcLqdesgVCc7eJ6HIAhPbjeYk4OgNWuwfOJEjC4thftfINs6QYC4dCkkn3xC9fkrVtQEdIKCghATE4Nt27bh5ZdfhrOzMwoKCkS1Ws3Wrl2LTvn5zKyiAlXW1ujh7t5qog0AgYGBiIyMxLGcHEw5fJjUIIGBRAAPHKjNFKvVlBHu0IHGPDUVD3v1ErUSCesLUDAvLIxUEx99RIGjjh2Bb76BUFiI0kWLsMndXSwrL2cA8N577yEjIwO//fabmJqaisHt27OuS5aAv3FDbzKIO3fuiNevXxeLioo4gAJYvKEh+sXEgOM4BhMTMpbbto3m3OrVVJN9/z7t5+TJFDjVQxBIjj5+PABAJpMJSUlJzMPDg679Awfo/tBEkFXejG9GQ1y4cEEAwGk0mvpEG6AAxtKl1N7r1i0as+efpzZwnTv/50RbrQZUKvh16gTzZ57BiT17YJSaSt+bn08BPWtrel9eHgXanJ1pDNPT6Xlhb0/PCGPjVnfnaA04joO3tzfLyMhAc2S7f//+0mvXrhkWFRV1B9BGttvwj6ONbLehDf9CLFmyZIyBgcGwoKCgRqTRyMgIPj4+8PHxkQJoVHCt0+lw+/Ztn8jIyG2VlZVjAEys+3e5XP5Jnz59ZBqNBn/++SdiY2OhV8gsWrQIOTk5kMvlaN++fb0naN++fZmdnR22bt2Kdu3aITg4GBzHwd7eHgUFBSLqyg7/D6BWq/WGPf880dZj5EjK/I4ZQzK/ulI8pRJl167pLMvL+alTp8LU1BS9e/fmMjMzYWxsTPLpnTvRZfBgkoTu3QuvW7eA/HwMMDdvtGqXSCSwsbHRXbx4kddnbluCIAhITU0V+vbty3Xs2BFmZmbiueRkNvCnn6hOf+1ayhDl5VFdcmYm8OgRZXfGjqW6Zb18uQ4YYwgKCsKxY8dQ2VJLmFOnKCDRcCEJwAzAxHv3GGJj62Xm6iIwMJAFBgYCQM1Y9OrVC6mpqcJbb71V/xwfOgRMn15LdiorySzs7l3g999x0tRUCPTz4xsR7ZQUqjNeubL2tRUrSFLaAKdPn0ZZWRlmz57d9PyaP5+ktN9/T626XF2JTMTHU61yu3aQy+V8U9eKmZkZJk2ahJ07d+Lbb7/VAUDv3r356uPHrVu3wACk29rieEIChKQkdO3aFeOrycDTwMbGBqIooqSkhNz8GaOMZGkpmZVZWtIiW69UMDKiDKJUSkZWhw4BP/9MgZrDh0kmn5VFGcLXXwc3fz6CrKw4rk8feo+3NxFWvcFgaSmRB19fIDubCHvfvribni4iI4NZW1tj/PjxuHLlinDx4kXOzc2t3kmzt7cHz/O4PW8eHvfqBa5nT130jh28RqOBVCqFTCYTZDKZYGJiwltZWbHeW7Yg7fZt3HV2xp07d8BxnGTu3LnIz89HYWEh4uPjxXPnzolDhw5tzJR//JEyjJmZdBzbtgEADGbOxMjycqSOGYPh8+dD1pK7dV38+itgZQXe2Fh8+PAhc3d3BwAUFRUhNTVVvHv3rjBy5Ei+KUlvZWUlIiMjxaSkJAYATm5uwsT0dE4eFUXZTiMjGBkZYd68efj6668RFRWFl19+GQ8fPmRhYWE4ceIEXhg0CB2mTcPbf9FcC6gmkxYW9PPee1R+8ttvJAvfurW2N/zJkxSocXLCRZmM8/DwQI34edcuMnwzMSHSO2AAYGiI6A0b4PnHHyifPp2NHzUK9tWZa2dnZ8ybN487deoU0n75Rch1ceFyduzQ3b9/n+c4TrSwsBC6dOnCd+rUCVqtFjqdDvv27cPvv/+uGzNmDF8TMFRXC770BmOlpSRfT0urb5q2eTPN0WpFxPDhw7lffvkFmzZtwrRp08DWrgXr169pRVMrYWVlxQHUZaFJcBwFeyoqqDTFz4/uMb17EwHXammc796lfed5us6Skug51K4dHd+FC0TOO3em6/foUbqWBw9GTl4e1JcvY5CxsShzc2MwMqLnAc9T1loup0CIrS2Nk5ERBWB376aAxMmT5OWgUJA/wt+AhIQE8cKFC6zZcQFQXFyMx48fMwCHAGDJkiVDZTLZLJVKtf6TTz458rfsSBvaUAdtZLsNbfiXQalUWkml0s2TJk0yNGymDq4l8DyPrl27wtXV1Xjt2rUjlErlQIVCcap62x0kEskLPXv25FeuXAmdTgcLCwsYGRnBxcWlhjw3BycnJwwZMgRHjx5FbGwsnJ2dBZlMxnXo0OH/tJ4lOjoaV65cga2trQ7VPW//awgJIVnfmjVUO81x9HtBAUKmT+cbin0d8/LIoGf+fDKhat+eMqn6XsJNGB/p8eyzz/I7duyAgYEBfHx86junV1XRYiotDdDpEH3woOCVnMy6+fkB06djWno6O9ypE/J79RLtunRh4DhajM2cSRmqwkJayK1fTwTR2ZmyjkFBjfaD4zgwxtBsD1+ASFtzssTt24Fjx6j29CmyIsXFxaJKpWpMii5fJmltWhoFEcrKqE90nz6AXA6xOovZCAoFLSLrondvyt7UMQO7evVqTZ1/s7LosWPrBye8vEh6vGIFdKNG4cH8+XiQm4vw8PAmD9jFxQWjRo2CRqPhs7OzcfjwYaSlpWHUqFG4u3q1MLqqijPavRvhRUXC/fv3uStXruDKlSs4e/asyPM8pkyZwp5UdykIAiIjI6HValGRnQ3zL76gQEt4OC3eT56kjN7hwyRR3ryZCEXdc1RdRgJRJDdtUaSSigcPAAcH5NnaghMEpMXHwy0/nxbov/9OMvs5c2iczM3pO774AoIg4GxcnHD//n2O53kUFhayH374AYaGhpg5c2a9PsV6eADofv06On79NQw8PHj9sZWVleHRo0dccXEx9+jRI7GgoECXYWbGFd26xWRduuj8/f35sLAwGBgYwNTUFK6urjAxMWGHDh1iAwYMqHWNPnyY6niHD6f5L5XSXHFxAUxMwJ89i0KFQjA5e5bLjI4W3WbOZBgxosVrF8ePE2F/4w1UfPYZ03sQpKenYweVbjBDQ0Pu119/FcaNG8fVzZDu3r1bSElJ4QCwTp06oUePHvjjjz+45TIZxqxZA+dffkHBJ59Aw/NITEwUAHBDhgzB48ePAVDPcKlaDes1a2rLRJ4CDx48wA8//AAAGKx32n/8mM79oEHAvHn0/5Ur6VzrTTcDAmq6A/j5+dEcCwggsq1XxOzejYKVK3Fv1SrEDR2KuFmzsGDGDBh5eBBxrCbcHMdhUL9+wNat3K0VK6DOzOQHDx6MTp061fQ51+P69euQSqXIuXuXx6VLVGtsb0/S8Ph4+nfECCoB6tWrsTu5pWWtBwaArl27om/fvjh79iyWLFkC2fTpmNSuHZyeeiTrQZRKpSwjIwM9e/Zs/l1GRkRok5PpOJKTiQg7OdE9//ZtGtN27YhU29oSsba2pt+feYb+ZmJCJHzJEsDQEBUVFdj45ZeQde+OhQsXshYd8euitJSeX3FxdC/Qaim73b8/lc4sWPCXB0QQBBw7doyNHDkSLZWlWVhYoH379sKDBw+WKJXKa1KpdH1wcLDJn3/+GfbZZ599qdFoPm2o6GtDG/4TtJHtNrThXwapVPqRl5eXzK4VraWesB0MHDjQ6MSJE+8D0LspBdjY2Khyc3MNdDodAODtt99+Yn1ZXQQFBcHExAQajQanTp1ipaWlCAoK+mfro5+AhIQEoaKiguvXrx+XmJgonDhxgtNoNJg+fTo6/pW6yKcBx5EB1TffUDZ40SLK6ubmUt0rQMZAL79MNYPJybRQee89ctFtDlot8PAhbf/2bSA7G05eXpj64IGYvWoVzkmlzOHuXXQYMQKddu+m+sc1a4ggOTmhKi+PPePiwkyMjIDQUJiPHg3h9m3Edu/OJs2dW781lL7Pr15SbGdH3z10KBmx9epFC7zqBVlubi5EUcTDhw+bb5VWbdZUD4JApGX2bKr9fUo5ZMeOHZGdnS2g7uJaEIjkLl5MSgNPTyKMdcgKx3GNyXZODklgGxKk7dspc3v1as1Lzs7OsLe3R2pqKtavXy8MGDCAqxdoyMggwl9tmFSza6KIxLAwXHz4UAxYtoyNdnAQOhUXc025evM8D29vbwCAv78/unbtitOnTwurV69GQH4+V5abCztLSzg7O3NeXl419ZY9evRAQkICS0tLg96DoSnkpqRg+/79YsSuXeg3fDgzs7Mj0qNUUm2ofj4sWkRZv88/p7KC5ctpkb99e/0NMlY7dhYWQLduEEURN4KCoNVqYdOzJ9z0CoHRo+lfUaQ62aws+mxJCfadOIHr169zY8eORbt27XDv3j3O09MTJiYmTd9TdDqMdnLCxueeg1l8PCZV19FyHAczMzOYmZnByckJIPUAGdlt3w6MG9dkEM7T0xMnT57UrV69mp81dSram5gQ2TY3J0Kjx/ffE/E2MQHH8+i/eDG3ZMkSwMqK2ZqawrhPH6pjVSga17Kq1TTnV6+uIaIlJSXYtGmTkJ2dzTk6OoovvvgiEwSBrVy5ki1fvhwAMGzYMERFRaGyspILCQnBgwcPMKG6vCEgIABJSUn4TRDgf/kyhAULcM3HBzqplBs2bBhsbW3BcVxNLbmQnAxOrW4cXGoFfvzxRwDAtIkT0W7bNgqsdOpUa0538iRdS03cCwoLC8HzPDw9PemeNmgQKRz0GD0autu38cjODiO6dhVdhgxhRubmVNLg5kZeAq+8QkqIPXsAjQZdvbzQte5cF0W6/508CaSk4FZSkjgiIYGZlpVR4M3YmIzPli6lgMfFi0QYT5+m3vV1cf48BRKmT6/3cnBwMO7cuQNjY2MMevddRFVVwUmpfOqxBIC0tDT89ttvTKPR1AYvWkJcHBHql14iUttg354WgiDgULUB49SpU59c/qBHVRWN34kTFJCYPZvUHwCpeK5do/ry27fpvNVtz9cKMMag1Wpx9erVFsk2YwxjxowxPn78+Gy1Wq3r27evibu7O7y9vQ23bt36bklJSRWAz/XvVyqVcgCeAHIVCsWDp9qpNrQBbWS7DW3414HjuPFBQUGtsAZ9Mrp164YjR470VyqVZgqFogSArLCw0GTXrl3o2LEjnnvuuaci2gA96LpVL6wLCwvx559/Pp2b9z+A2bNnc/v27RNPnTrF1Go1s7CwgEQiEdavX8+98847JJf9JyGXUw/iiRNpAadU0qJ6504ykzlwgBbc5eWUOXVzoyzsuXO0aLl9m7KpERG0WC8ooFrTkyfp/dnZRHQ7d0Yne3vWqWdPVHp74+dvvkGvZ55Bp/nzaUHJccCIEcjKysKVbdtYyNtvI+7aNegcHHDhwgWhoqKCk0qlKCgvR/sm+jBj61YiCqNHU2ZE/72DB5NE+vBhAED79u1hZ2eH+Pj45rPbVVUUZKiLK1co27tgQfO9bltAQEAAi4mJ4TNOnoTzmTM0zra2FBhYuxb5AQG49+ABAmWyejptjuOYruG+zJpFWZ/336//+nvvNTJ6MjU1xbPPPouYmBhdVlYWf+TIEaFLly61K9Tjx2nx/vHHNS8lJyfjwIEDoiAIzLZbN9F94UJmefQohxMnSMr5xhvNOjgzxuDu7g5XV1cu/7PPcHrMGCHu9m1OSE5Gnz59IJfL8f7770On08HIyIjduXNHvHfvHmtEtr/6Cnd9fFAYGwufL79Er8hIwb1jR565uRGZ1Ad79AZkd+9S5uvcudp9Cwxsvk91A5SWlkKr1YIxhl5NSPERG0slE0ZGFJB64QUYvPoqALpXAWgyk10P69aBP3cOD9zd8eD27SfvlIUFkcJqs66G4DgOc+bM4ff99pvI+/gw1YwZkK9b1/R2mrhmzhcV4XxRESxffFEYyxhn+9ZbRGhfeIHGjuPoWI8eJWIKwMDAQExLS2MymYxbsGABjIyMGAA8fPgQ+nkqlUrFP/74g1laWgqjRo3i3JowA/P19YWrqyskjIFbsADDMzLA7djRpFqE+/BDCpw8DXQ6IDcXL4kidNu3w6FXL6qxHjKkfo2zKFLAqby8niEgAJw4cYKy2mlpFNxp4E1wZtYsxCUkYLq/P9qvX09GZnRwtN3bt8lHoriYSPqyZaTCiYujAJeNDd1zO3WiMhgfH7Tr149Fm5tjilJJteENMXcuzfWmTO3Wrm2y9EWr1cLU1FS8ffs2c3V2xjMNAmtPg+joaEGtVnMAsHHjRvH9999v/vn5xx9ErlNTKZDo7U2GgHXH/wk4f/48YmJixEGDBrEjR+qrrE+fPi2OGzeudc/vx48pWObuToHSjz+uva7CwugnPZ2CGbm55Gmib0PYCjDG0KFDByE/P58rKytrsce9tbU1Jk6cWG+ymZqaYvLkyUbffvutUqlUfq1QKFQAIJfLY2UymVdlZaVk+fLlUSqVal71R/TR7oEA7raZrbWhObSR7Ta04V8GxliZvt/pfwoDAwPY2dmpMzMzhwHYyRh7TqvV8qNHj0Zdg7S/gh07duhycnLYlClTmJPTfyio+w9hYGCAiRMnsuvXryMtLQ2enp4wNDTkduzY0WrDmv8IFRW0+FiwgGSy+fm0sI2LI+L86qv02u3blDFs144ysSkplHHx8Kh1sv7+e1pAduhAC5WGqJZ1GwIo7tpVLJbLWcO658LCQpiZmQkJCQncuXPnYGVlJQwcOJD5+/tj+/bt+OWXX8Tp06ezRmUKSUlE/vWZSL0cNDKSFk+RkcBrr0Fy+TJKS0vFGsOgpjBiRP12UZ99RouxpKQnun7Xw4MHNG7PPAPDgACMHDdOiDt8WHT+808eo0dTlmX3bsDDA4dOnBDu37/PHTlyBGFhYbq+ffvyAJHtepltUSTCMG1a4+9jjCTUO3bUy2w6ODjgpZde4k+cOCFcuHCBO3ToEDp27IigoCAyWHrlFRQUFEAQBFy7dg1nz57F888/z6olosTyXnqJxvHnn0nmPmMGSd2bAadSoeO332LcmTPcrYAAtK+TKao7r4ODg1nU/v3i0PBwhq1bKQN49Chw8CCuXr8uXHFw4NSHD+sGDBjQ8sCvXk3nv+68GDyY5vDmzU/MqOnvW/b29k17OEyYQPM7IoIM2D74ADJBgFNCQqsNxtCxI7BkCQZmZyMuLg6iKLYcMLSxoSBYaWnTMm+VCpg1CxELF7Ltr7wiSLy8MFEUuUbbNDZupJZwcnLCvXv34OvrC2NjY2y+cAHz1q6Fkb63+aefUtDqyhUKYFTDzc1NzM7OFmfNmsXVlf7rZd9Dhw5FYGCgfgdaHJQaQrJ2LZ1zhYKyjHWDWTdu0DlswoOhEUpKyHjN35+u4YAAWL32Gnalp2OYry9sGhgmAqBr5tw5KmOZObPm5by8PABA//796Tr9889GHz2TlCSOPnkS7V9+mcHWlgi03lSQMSKbAGWgr1+n+u5Jk+je2q0bqXJGj6bzDJAPSVQUDOztYd4U0f7uOwpkTpvWOChRWAhh9WpcvXMHD6OiwBiDkZERzp07pysrK+N5nmfDhw+H11tvQWZp+eSxbAbPPfccd+zYMeTl5UGlUjU9eePi6Jzu3EmBgVu36PeSEiLeT0G2KyoqoFKpaoi2ra0tRo4cCSMjI/A83zqiXV5OpU8bN9Lvzs50j0xIqF9q5OpK13hpKV2ru3fTebKyIiPKJwT3XV1duXPnziEtLY2CNE8JS0tLeHh4aDMyMi4olcqVAHYaGBhUhoWFGXt6euL48eODbty4kcAYEysrKw0ACBYWFprS0tIKpVLZWaFQVDS3baVS2RnAMwCiFQpFE9KtNvxb0Ua229CGfxm0Wu2v8fHx8xwdHZ++YLsJhISEmO7evXvD559/Pozn+ZETJkyAa2sWXU9AUVERFxYWxvQtZv5/gJeXF7y8vCCKIlatWiX26tVLNDAw+Hsk7qJIRklxcSS1nj+fIvrjxlF93+zZtHA3MyPpYlISLeqcnSkzaGBAi/WXXqrdZlNuq01IjJvDgAEDEBkZCUtLS3Tr1q2GrFy9elXo3LmzaGxsDAsLC+G1On2+X3zxRWzcuFHcvn27OHDgQM7d3b2WrKxe3fQXyWREPO3sgC++AMzNMX7NGpY/ZUqzLagqV66E4OkJY71Rz08/Ud/nJxHtykr6vp49gVOnIH77LYSjR5G7fz90s2bhkYMDl37jBh4FBsJy4kQiEsXFwMmTYE5OorW1NUpLS8UTJ07wycnJwsCBAznGWH2yPWQIBUOa80Rwd2+cla/GoEGDuMrKSly+fBkA8GdUlDBn+XJOffMm1ukXovQ+sWfPno1Xlra2VKuemkoZdHt7GveG45KfT3OumrB0bWpnoqKAwkJcKS8X5i5bxmHoUDJS0hvXxcaiePt2ziAvD30HD25+4EWR6m5ffZV6SDdEfDzV4z6BbKtUKgCAWq2uL/XXIze3/mL7xRcRGBuLgIMHcWndOvR6663mNy4IVJffty8EZ2ec/fVXqNVqVFVV4YneFidP0rkeN67+62lpRALy8wFzcwxftIj7/vvvsW/fPlhaWsLPz496HwPU7qnOHNq3bx/u3bsHABhJxIe7fv26+OWaNWzEiBHw19coz5hBhHvXLiIqc+ZgdFoah7w8uk/8/jvKPTyw9cwZFD5+DDAGn4bS5tZAIqH70pkzpJrYtKn2bzk5RICaK9t49Iik9lIp3bdKSigrHxUF2NvDCEDF1avipYQENmzYsKa3MWgQjXMdsp2QkCCYmJgwi6wsqmkfO7beR3JycqDRaFg7jYbmxrp15Px+5EhjCfLcuTRHFy8mRUozPcqjo6NhaGhYI7evhz/+IOXK1KlNk74FC3Dl5k0xcuRIZmNjoxNFEeXl5VyfPn04Hx8fGOmVDTIZBVD0PbmfAqIoYuvWrZDJZLCzsxM6dOhQv6c5QPdLjYbmJsfR3PX3r1UaAc0qNZpCSEhITanV3Llzqef50+LPP4n0173WrlwhRc9PPzV+v6kpqWQAMhZ87z0KKMfHU9CtmedAVVWVYGJiwnX7C2Orx9ixYw2vX7/ue/r06fWPHj3qrVKp8h8+fAiJRILw8HB5eHi4HKDgoE6ng4GBgWzPnj3szp07kUql8kWFQpHZcJtKpdKa5/mrTk5OLDMzkymVyn4KhSLpSfuiVCptAPRRKBTN9Cds8jMSAEMBnFQoFOVPceht+IfQRrbb0IZ/GbRa7crk5OR5JSUlf+2h2ACurq545ZVXjDMzMyd6eHjA2tr6b9hLwM7OTsjIyOADAgL+lu39XSgoKEBUVJSoUqlYZmYm8vPznyxN1aOigurOXFxI/p2YSIRo1CgilV27AtHRtBB95hkiTqGhRPgkEiItP/9M2Zk//6SsxNtv0+f+RpSVlUGr1SIwMJDJ5XLxwIEDbP/+/bCystJ16dKFv3v3LhccHAy5XI6oqKh6KzKZTIapU6dya9euFXft2gUAePPNN9FOFCkr8ehR84RYIkHViBHIzshASrdusLGzo3G6dIlMh6oXsCkpKWh35w5++vFH+OTlCQ6dO3MOly/DoClSlJtLxHfNGsqichzJsv38sHvLFiFFIuEkERGQ7dolyGQywTY5mXvh3j1O+tVXtQu/4GBUvf8+inv14gU7OyEkJIQ7efIk7t+/zx0/flwsKyurDQo9eECL2ZbOycaNNBeaAMdxeP755+Hq6oqqqiqc3LOHO92jB9KPHoWdnZ0QGhrKOTo6QiKRtJzC8fCgzNDhwzS3li2jekw9CdDX9+szooJAJFqrpYV3airJk/PykOPszGVcugQ3fSunOi2devXqhd27d6O0tBSmzblmR0VRhsrJqekF/JAh9KNSNdlbWI9OnTqh2vmaT09Prx/UCwmh4NPEes0RYNS7N76ZNg1OJSXoNWsWZR71ioq6yM0lkjN9OrRaLVQqFcaMGfNkog1Q5i0xsT7ZjowkRcLNm5QRBmAJYNy4cTh27Jh448YNxhirbT/0yiv1iMadagl+YGBgTRZ/9uzZbN++fUJKSgrn7+JCxPWTT2p7OH/3HQVyLlwgqW1VFbB3L26VlYm9jYzQ/dYtJvv6a3Cvv07ne/lymh99+lBQxtCwZZ8DqZTqkvWEe+1aKl/5+uv6PaR1OpIEb9tG96h168ijYMIEOkcNiGhJSQmKiopYnxZUGBg9mqTkVVXQSiQ4ffo04uPjOXNzcxHjxhHRXry43kf03QyMT52ic8txJFNeupTuB3UxciSNoyBQlvuHH4iY18Hp06chiiIcHR0FR0fH+hM5O5uCpVeuNNmf+/HjxzgjCEJqv37c66+/DgsLi+aDU1lZTdantwbVc0qMiYlhQUFBnK+vb/03vPceBQVu3qwfjB05kgIas2dToCEvrzbr/wRIJBLMnz+f+/zzz5Gfn//06wp9L/JTp+q/PnYs3Q9EseWM9ZQp5Fly8ybNt9xc8oXw929kovn48WNWVlaGjIyMlg04WwDHcfDx8YGTk5NRdHT0tIqKCp3eD6MupFIpdeYAMHr0aKMzZ870jouLS2uJopUAACAASURBVF2+fHmxTqczkUgk93U6nbUoiu/LZLIe3t7eBsOGDZPGxMSIcXFxH3722WcPeZ4fotPp/tBoNFcBnFIoFGn67SuVSgeZTHZKq9U6K5XKIQqF4ngrD8ELwH6pVHpfqVSGKBSKjKcdg+o6dV8A1xQKRbNtQ5RKpRmAMoVC0YSDaBv0aCPbbWjDvwwKhaL4888/3xkfHz8lNDT0b7nG7ezs8J8arjWESqX624j734W0tDTs2rUL9vb2GDNmDA4ePMj27NkjhoeHM1tbW1qY603HEhNJ2jh/Phlbde1Ki5stW2iBLJHQwtjRkeqMXVyIhOpdaquNmerh0iUymOrShX48PYE33yTpeO/ejeoZ/yrWr18vlJWVccOHD0dAQADz9vZGeXk5jh8/jjt37uhcXV05GxsbZmhoCJ1Oh8rKynqkxMjICO+//z4TBAFLly5FRkYGrLt1A1u3rsXMc2ZmJnbu3AmJRCJ0nDRJDJ88mcehQ0ReVSpaJH/4IU6cOCG49urFVRgZwTE+nrvGGHZ+8QXM1WrY5eYKKS4u3PQNGyAdNw7Zzz2Hjr/8goSwMITv3VtrLrV5M1IXL+ZGjBih7wfMAeDwzTdEmOvKOBlD1auvov/atXCKjOTatWuHbt26oaysDD/++CMDyFF8YP/+YLt2UQauJefumTOJzDYhewUoYNG9e3eIooh7q1bhZteuKMrNRXBwMOdSXZfbKhgbEwEMDKR5cvcuBXEcHEi2nZFBc+eDD8ikzs2NFqtjxxKJWrqUegp/9RVKm9h8VlYWYmNjIZVKm69/3LWLxuLYsSZrkmuQl0dk/MGD5l3mQTJeALUZYT1Gj27S2f7GjRsoNzVF5169KEsWH0/jUZdw371LZD8+HpBIsHfnTgEAZ9vKWnJMnkxBMIDcsrdsoXZVN240yqC6ubnhrbfeYlu2bEF8fDwkEonumX79eLz8MjB5MnJzc7Fp0yYIgoDBgweL/fr1q2EZHMchIyODG2FiQsf64YfAwYO147Z7N9WsP/cc/QC49dlnOL5vH5s7dy4MVCoinTodjfejRzQmlZU0Hw8fphKBuXPJMOu11yj4FxpK14OxMf088wwFED7+mMhz7950Xe3bR+qUt9+me11wMNVQ9+hB860ZyOVyeHt7644fP86bmpo2TYJ4Hrpr15C+bRt+LSyEpaWlIJfLucrycnbiq6+EsOefbxTF0Wq1AADJ2bMU0CwuJkL988+18wAgbwEfH/q7REJzydcXUKlQolLhp59+0qnVar68vBx+fn6Ci4tLfeYninSsJSVE/OoQQ61Wi4sXL0L7ySdiu+7dmd+8ebBoYX4DoODFxx/Xeh08JQwMDBhAtdQ1ZPvcOVJYzJ1Lrv0NMXBg7Xi8/fZT97auLnsQf/75Z/bhhx/WkMxWYd06MlE8fbr+62ZmdA2tWkWqg5bAGNVuHz5MWftJk6gsICqKnjk2NkhPT8edO3eYmZnZXybadWFubo6IiIhWKQR5nseAAQMkffr0kZSWltrIZDI8evSoy8OHDxEZGfmZIAi5nTp1kgJAQUFBpVarjXB2dmYDBw6UJCcnzyopKdGmpKRolUqlp0KhyFEqle0AZGo0Gnh7e2uSk5PDARwHgGXLlo3heX6ySqV6S6FQ3K+7H0uWLJkik8m+FARB5+/v3ykpKWkvgKfq1bd48eL+Uqn0d47jTLRa7RdKpXI1gEcNCbVSqRwC4IhUKj2/fPlyC51OZ8dxXJFarR6nUCguPs13/tvRRrbb0IZ/IdRq9XeXL1+eMHDgQMnTGpj9N6DRaJCdnc3/JbnjP4jy8nKYmZnppk6ezOPePcw1NcWuigqhbORIvtjaWjRcuJDhnXdoMSOKJOPkeTLa8vEhCffUqbSxui6xdd1zW8LevSQb16NvX5KdKxRkajNzZmP3278AtVrNhYaG4tixYygpKUHv3r1hbGyMiIiIRkxZJpMJhYWFnEMTLsQcx6Fbt266I0eO8Enr12Pae+81WyAqiiIOHz4sOjs7s/Hjx9e+bfhw+snNpQX+xImY4e7OFV69ik737uHnyZMx7/ff0f+tt5C9d6/YJTaWK//qK2QZGAin8vK4sosX4bZmDdKvXgU4DlKpFH369AHHcXB3d9edO3eO9/f3pwz6Tz9RNmf27Eb7Zz5qFIy+/BK6vDygXTtYWlrq5fWiqakpu3DhArK++050/PlnVretT5P44gvK5jwBWq0WIceOQfziC2x/9EiIiYnhCgsLMVpf895auLjQ2G3cSAvpY8dIKTBsGJnWffABBQhMTWnRumJFzUcvXrwIqVSq8/f3r3fu09PTsWvXLtjZ2ekmTJjAN3kfKS2l+t4dO1om2gDVXyYmtki0Acqkx8TEYN26dbC1tRX8/f25gOJiYPz4+jX8APLz83Ho0CEYGhqKQYMGMYSGUjbf15eIoX7BvXMn1dhWB6uysrKYm5tbY0LfHIyMiPT27Vtbky+TtdgnOSIiAvv370dUVBTv3rkzOhgY4ODBg7hy5QoAYPr06bC3t68ZVK1Wi5MnT8IsP1/0aN+eYe1aMosKD6fv3LyZyF5YGGWcPT1RVVWFo0eP6kJCQjgDAwNWEwDSdwcA6rvAf/kl/btgAW2ztJTOSceOFDw4fpxM6KZOJQLOGM2tOXNoPywtSV6+ezdJelsJuVyOUaNG8YmJieJvv/3G5s2bh7q15ikpKThz5oxoLIrs8eXLGPr66/Dz8+NUqamQ+PpixTvvcEk3bwpTp07l6gZok5OTRQCs0tcXpocO4eHDh7C0tEQJAMny5TD59Vc6ho4d6ZrQZ/UVCkAQIFpa4tD48WKhnR0PUBBs+PDhXKPa/7g4ypT369co4Ll3716kpKRgyt27zGnBArAWWl/W4NdfKUj7F8h2Tk4Obty4AQC13QNEkTL1hoaoMYirC5WKykP0ygIfH7o+7txp+v1NQBAETJgwgX3zzTfC+fPnWXBwcOsWFoJAcyc0tOm/BwTQvjwNpFIaw5ISup9/+SWwahUSr17VAeCnNeWl8V+CXC6v8cMwMzODo6MjOI7rkJmZaa73ucnIyACARVqt9iMHBwczBwcHGQDZ8ePHVQkJCfFLly7dASAdoOemjY2NNCUlZRyAd5RKZTupVPqdh4dHu1u3bvVfsWJFslar3abVajcB8OJ5fuNLL70ktbOzw6VLl0TGWNWT9lmpVJrKZLJ4xhivUqle5zhurouLi7GHh4fs0KFDHwH4iOd5hVKpPCKTyX5kjMWrVKoZAHI4jtPI5fKgsrIy/fPDFID67x3V/320ke02tOHfiSsajeZxTk6O8d+dkf4rEEURqampiIuL0/E8j5ycHN7c3Fzn7e393+1pXRePH5P0tVs3WoxfugTLGTPw0pIlPFJSAF9fcNHReHHpUj61tBSn79/HC8HByI+MRG5eHhwdHWH7xhu0raZMf54WOh1lH3v3rv+6VErmYPv2UZYqOpoknn/BjRugRb1Go0HPnj0hl8vFuLg4nDlzhllZWekmTpzIW9UxBSouLoZGo+FaIiWjRo3ib9y4gf4xMVAJAgz1rVyq8fjxY0RFRemysrK48vJyNr25ul1bWzofANQvvgjb7GxYFxejS9euYpWvL9rb2DCrVasYVq2CDIDlu+9yhrdvo7S0VAwICGB37tzB0aNHBa1WyxISEvTGQTxjDMlJSfB0cCCSVAe5ubnYv3+/8Mwzz3BOTk5I7tIFw2/epB7X1Rg7diwDgBvXrol7MzKY35tvCtbXrsHX17f5gkdzc5JzfvVVi3WRPGP4cdo0vBYRgbnm5tySJUtw/fp1eHt7w9XVFfzTGMEBFIzZuZP+P3Agkc2UlNp9agBRFBEVFYUxY8bU+yJBEHDgwAEhODgY/fv3b3on0tLou5KSWk8aPD1JyrphA3IMDZGdnY2ioiJcvXoVI0eOhJubG0JCQuDi4oJHjx4hOTkZhw8fRsAff1Bm+tNP623uwIEDAID33nuPFv6M0fX8xhtErBITKftlYUFZ3GoYGBiIRUVFjBUXUzbQ0pJk2YxR8CwhgYjJ+vWUIX7vPSJcetl4KwKYFhYWNTXZW378EW7h4bhb7X7+7rvv1vbkrsamTZtEw3Pn2IvnzjHutdeoJOP992sdr/Wt0nr2BGJjcSorC6epRIBv0rm9AQRBAKe/Z9Stm9ZnOyMiiBipVHSOrlwh6bROR5niZ56h1/LySJ4eEkIkqrCQrpdWyPH9/PzYwYMHcfbsWfTu3Rt3795FVFQUioqKEBQUJDwzZw5v8sYb4KqNreTu7sDRo4iwscGePXu4rKysemqo8PBwlpSUhK+//Rad09Mh0emQ5uEBCAL81WrkvvYail1cxInXrjHHpUtRXFyMW7duQafToXPnzjj04ot4YGPDxnXoAOuICOw7cED48ssv2eDBg1mPHpQM1OzaBX7yZFx8/XVwNjY1BPfWrVtwcXFBamoq+kilcIyOBmvChbxJtNSysQVoNBps2rQJoigiPDyczBVHj6bAx7ZtzX/wxAkKMGbUUROfOkVzvQWyrdVqcfr0aaSkpAj5+fkcYwxSqZSLjo6GtbU1WlUXvWoVXYNbtjT99zFjSBmTmdmki3uLMDOjDPfgwYAoYuTLL/OOtrZgs2a13LP+vwjGGPz8/ODn51dTP2NkZCSq1eoxPM/XeziEhYXJPT09bVNSUuZlZWVV9unTB126dIEoirh8+bL58uXLb8lkMklAQIDls88+y2VmZloUFRX1OXbsmB/HcS8JgtBPEATR3t4e0dHRqvPnz1dqNJqZjfeqEV7s3Lmzvbe3t9GJEyd+l8vlQufOnZm7uzt69OihNTU1lZw7d84JwAGJRGJrYWHh+vDhw2fVavVmAInu7u49bt26pdZoNMVarXaoQqG4UnfjSqWSq5sVVyqVARzHnRYEYZJCoTj4Hw7x/wSYKLb1bW9DG/6NWL58+dbQ0NAp1W7G/2fQ6XTYt2+fLj09nfPx8WEcx6FLly74x43RRJFq4wwNqQb62DGSZQ4eTCTkhReox+eiRfSgLynBQVtbXWV2Nhs/Zw7XcEG9cuVKwcLCgsvOzka7du10jx8/5m1sbHSurq6cl5cXa7ZfdGsRFUWkOiqq+ffk5VGGxdiYFll/wRH+/v372Lx5Mz755JMaYzO1Wo09e/bo7t27xwcFBaF79+6wsbHB6tWrBXd3d/GFF15okfUVFBRg48aNYt++fdmAOnWClZWV2Llzp6BSqViPHj2Yv78/ZE8KEty9CyxciFK1Gn907ap7aGfHjR07ltlUuwU/CYIgID09HQYGBjAwMEDi5MkIvnEDhvfvY9u2bUJxcTHz8fFBp06d2L59+yCVSqFSqaDRaNC1okIYz/Mcli5tRJIvvfKKziY6mt9SHSwYP348ujZXty0IlBFMSCBzq+agVOLW4cNi8dq1rHd1kOXHH38UsrKyOAsLC8yePbv1PWznzaPM9YcfAocO0SL2CdBoNPj888/x7rvv1po3AYiNjUVcXBwWLFjQvFx02DAifp980rr9q4Z25kzEeHnpLpSV8TKZTKisrOTqrkPqzsvExEQcOXIEixYtalTXmZ2djU2bNsHZ2Rkvv/xy4y+6c4cI4qNHwIYNRC7UaqBfP9xZu1bM7NiR9VepwHieaoG3biW5dr9+lFHu2xcoKqJrrXt3IqCvv06ZXX19/BOQmZmJLVu2QFZZifF79sClGZJVXFyM3959Fxbm5hg9YgRtOyWFMspHjzYi93t/+EEc9NFHrHj9enQaNgxSqZRqhs+cQVFREUJDQ+Ho6Ijbt2/j5s2bNdn09u3b6954442mr+Xr14mwde1K5Q/379N+ODmR0ZaNDY2flxdJ6SUS2q8dOygIsXkz/b5pE7T796Pczw9yHx8YWFnV7L8gCPjss89q2pPp+9e/8sor1Ntcp6N7859/UnlCWhrVqQOIiYkRY2NjmZGRkTBo0CDOw8MDBQUF2F6duR916hQ8nJ1x74MPIJFI0O7WLYjffIM7ixbBYeRI7Jk6VSw0NWXW1taCKIp4/Pgxp9VqAZ0OH69ZA+7wYYj9+uHQoUNITk4WFyxYwB7m5iL2gw9EI0FA+QsvCPn5+ayoqIgTBAEymQyMMVFVVcUW7N4No8WLGxvoNQd7e1JgNOeB0ARKSkqwYcMGlJeT39WiCRMgadeOnmv+/i2branV9OxoSGZFkRQ41de4Wq3G9evX8fjxY1y6dElUq9WsXbt2gouLC3r27MmJooiUlBQkJydj6NChrfMy+fxzKl9pYG5XD/PnU8Dro4+evL1mcPDgQd218+f5jlVV4islJYy/d4/mc8eOrTaC+2/h8ePHSE5Ohre3d6OgW3PQJyw0Gg26d+9er4NCYmIiDh48CJ7nNcOGDZP6+flh5cqVZeXl5QoAIoA9AOwA9AOwCeQR0QFANgAtY+zb4ODgmQMHDmwyinjr1i3s37//pkqlGsVxXNKrr74qr6qqQkJCQqW1tbU8MDCQk8vl+O233zTJyckLFQpFTX8+pVI5EsA+iUQyd9GiRauVSmUvnueP63Q6MwBDFArFsb80iP9jaMtst6EN/wIolUoOgBuAXjzPe0ulUgdBEAa3yvznH0RZWRk2btwoarVa9vrrr7O/w7CtHvSmT5mZJJMdN46yWlot/fvuuxTRl0hoQSGVAt9+SwsTa2vgxRfrba5qzx5IHR0bEW0AcHZ2Zjdu3ICvr684cuRIvqSkBPHx8XxKSoru7NmzvImJieDr68tcXFxYSUkJkpKSdKIoIjQ0lG9VbWhcHGXvWkLHjkTIz54lkjNwIB3nU0Aul0MikdR7WMtkMkyePJm/ceOGePHiRSE+Pp4HIFpZWWH48OFPTK+2Zwxzf/qJrRJFODg4wMzMDHFxcbobN27wFhYW4syZM7knkmyA6kpXrgReew2mAwZgQnAw/6O3N354+LDJbGBTqJaP0xy4dg13BwwQ240bx8zT03H37l0uICAAaWlpQkJCgujs7CyOHz+eFwQBSUlJsLez4zB3LpGtBtL/oAkT+NQBA4B79+Dg4CBmZGSwX375BU2683IcBQ0aQBAE5OTkwM7ODowxCJ07I9nZmQXVkZ6+8sor3K1bt/Drr79iyZIl8Pf3FyQSCdejRw80GXCoJgxwd6d6WrmcFtf5+S3KnIHaVlE3b95EYHWG8/Hjxzh//rw4cOBA1iTRVqvJJfi77546E5WXl4cNDg5wz8nBq6NHo13PnjWr4I0bNyInJweLFy/GO++8A41Gg5MnT2L0zp0ofvAAmo8/rte6LCsrCwAwatSoxl8kCHR9OzjUtkobNw5wd4fg6Yn96emsz4gRYHWd8AcObHnn58+nAIOjI8m4y8qIkLeg+nB0dETHjh3Fonv32OMWMm2lR44g7PhxWGzfXkvijYwogNLgXlRYWIgbDx4wg+BgaM+c0R29coUVSqUcYwydO3fWWVlZcT/99BNzd3dHcnIyAMDJyUkcMGAA27lzJ69UKtGzZ08MGTKE5s7ixSTF/eILmj9DhtQaOH76KUl1168n0n35MoTYWAiTJyM+Ph4eHh6w0t9De/XCkbVrkbZqFXpeuIDi48fRrrAQARoNuHXrgG+/Befnh74uLtrU2FhJpZMTSjQafPzxx7UBJZ6vbVXl6lqv7r5fv37M3t4e165dY4cOHQIAmJmZ1ZjLGW7aBImzMzz0ahAXF+DkSfhLJCi/dw+hWVnMxcUFMpmM0+l0WLp0KRhj4GQyZCYmorOLC9icOQhftAiJiYls2dKlePvLL/G8pSWM791jjDEeoGxveXk5DA0NER0dLVy+dInPXrAA7i2RyYaYPLmR54MoitBqtc0GtziOqyHaEp4HFxpKioum6rMbYv58Ci43vF6fe46CKNVu4Nu3bxeys7M5IyMjBAUFITAwEKampvWYau/evdG7ofqqORw7RkqtJ11bM2dSMOBJRmktwNHRkUtMTESHPn0YP2QIlX3k5FD7uY8+eqpWZ/80zM3NWz+G1WCMNVuH7uvri8jIyEqVSvX2kSNH1rq4uBi6urqyrKysTy0tLQ0yMzMnA+jq4uLCpaWlfSwIgqWxsXGZSqXiOI4rNDc3t/Ly8mp24D08PMBxXGfG2GUPDw+dlZUVJBIJ6na8qTal0wK4WO2GbiiRSCYB+KH6LR8rlcq1AMIkEomRRCKpUqlUD55qEP6H0Ua229CG/0EolUoGapVsxRgbJZVKFVKpVG5nZyfa29ubGBsbw9raGv/N/tUPHjxAZGSkrrCwkJNIJKKRkZGYn5/P29nZCVOmTPnP5OLZ2ZQlDAighXNcHEl0Bw+mh2lgIBniDBlCBjbt29ND/tq1xttqICWui6KiIq4507aIiAgWEhKC9u3bM4DqsUJDQxEaGsprtVrEx8dzSUlJurNnz3IymUxwdnbmNRqNuGXLFshkMtHS0lKobhXCjI2NRQcHB87W1pY5OTnBWC6ngEBTfbEbgjHKvtnZUX3luHFkQNPKzLq1tTUYY8jKykLDOuzu3buz7t278yqVClevXmVubm6sVZlVlQqGwcHo7uWFvXv3QqvVolOnTmzGjBmwsbFp3bkvKKh1Eq5enLHwcAzPzsYPjGHNmjUIDAwUwsLCGvcwbgorVgDbtoFfuFA8+fAhNLt3s+eee06/yKl3UBzH6U3UKCO8bBllOvX44gtALofb7NnAkiXIzs5merJ3+PBhMTw8nJk3JFNTpxJhqs7MAZR9SUpK4l1dXXWBfn582eXL4rVu3VhEHbJdXQcPKysrsaioiCUlJXGMMVy6dAmOjo7iSy+9xCR1HaX1Lvd15fuLFtF3P2GB2a5dO4SHhwvHjx/noqKiRMaYqFKpOH9/f6F3795Nn7etW+la+/jjp14Yx8TE6KytrfkJhw7xTN+erRpWVlbIycmp/oqtqKqqgrm5OZJ799Zd1Gi4u99/zxhjsLOzE8aOHcvdu3cP5ubmgomJSf0JKghEgn19KSglCLToP3sWKCpChYcHSk1NYfY05owqFUmnx46l2lM90Vm2jGpHmyjVEQQBP/zwg1BQUMAZ6nRgzagIy3//HcdOnQKefx7T65L/efNIItsAV69eRadOnXT+M2bwDy5e5Ie+/TbYtm2QUE0sDwA2NjbCsWPHOE9PT3HkyJFMJpPVnCipWg2X7GxyDvfyooDMxo10bx0wgIzGXn+d5lWvXhTI+eMPkgPrdLgycyZyc3NxuU8fREZGwtzcXJg2bRq36eBBodTamps6dSo4joOYlYWjJ0/Ca8YMlFRWosOAAYBajf7GxpKgmzdxLiMDnR48AJeQQGqdw4dpPqSmErnfu5fu7fr9lkrh5uYGNzc35u/vj23btqGkpIRxHAdDQ0Ph559/5uZ+9x2KV6+Go37cli0DzM1hPGAAuq5cSWU4Pj64cPGijmm1vCiR4O2336ZgmVYLnDsHycOHePPNN8GlpUGWkgLDJUtY3XkukUigv9aff/553uv118WKhQvZU10L+gBwHRw/flx3/vx5vn///sKAAQMa3XRNTEzgYGcnBK5dy7l9/z24OXNanxnPzW06u7tqVb3nhpOTE1dUVISwsDBYW1uz/zhY//77RPSfhK5dKWisULRKMdIUfH192R9//IGqqioa21GjiLzrWzSOHEmqiWXLWnbk/x8Ex3EwNjbWqFSqKzzPx9y+fXtIRESEMUCqmW+++cZ/yJAhQmBgIP/rr78a5Ofni2+++aZJUVERiouLHZ2dndHSM5XjOAwePFguiiJ69OjR5HNBq9VCrVZLDA0Nv6qsrOwFAKIoVtnZ2eny8/OZIAiWcrn8olardQ8JCZFERUUxAIZKpdISQLlCofhX13n/u2ZcG9rwL4VSqewtkUhGSqXSZ0RR7MjzvK0oijKJRKJ1dnbWBQcH/9dqs7VaLQ4cOKDLzc1loiiy9u3bC6WlpcjPz+c9PDy4oUOHsoqKClZaWorg4GB06dLlP6/L7tuXnGQPHCBZ5wsvUKbl2rVa9+kpU+jfJtqytBYFBQWsOdk9x3H1Mmt1IZFI9BF//bHq/2VarRapqamssLCQl8lkkMlkePjwIbKyssSrV6/qysvL+W75+UL3s2dZ6bPPCoGBga0br86dKXNnbEw145s3k/HNExZ9giBAFEVIWlhwyOVyqgdsLYyNgXXrMJxkocLt27e5hw8ftq6tEkBy0alTKcNS5/xp330XuYsXI6JjRxx59Eg8d+4cFxISUs9cqRHS08ns6f33gXnzMFUu53bv3i1qtdrWZRPCwyl4UbeGMCYGeOMNcByHsWPHoqKiAidPnhRVKhVLTU1lFhYWaN++PQICAmqzdBMm1MteqdVq3Lx5kx80aBCysrK45NWrdSGRkfyLMTFN7sbs2bMZQBK+X375Bc7OzsjIyGDLli3D1KlTYXv3LqR61/GG5nXp6a2WTgYGBnKenp4oKytj58+fZzdv3sSzzz7btCHaTz+RZHX8+Kf2DNDpdEhPT+enTZsG9sYbNE/rZLJCQ0NhZWWF4uJi6HQ6WFtboz/Pg+vTh4evL7RaLRITExEbG4uvv/4aPM/DwsKi9iBFkVQfAwdSoKVPH6onfvFFUr307Al8+inK9++H6+3bNVnCVqGggLJkdcfkiy+ofnvdOsr2v/suZQmrsYR6BHMAIFOpYK7RNN5uYiKkS5aABQZi8Icf1s4dUaR7W/V8PXjwoC4jI0M0NjbmCwoKEB4eztvZ2cEuIoLq0Z2dKZhQ3cqqV69eXHUdN+2wSgWUlGBaVBSM4uPBHz1KAYKwsFriIYokuS8oIF+Iw4fpdYmE7isHD+JK585QiSI6FBRgxvTpKCktxe7du7l169aJUqmUW7hwYc21KZPJcPz4cazYsAEABScrKyuhuXIFGDwY9vb2ol/37gw5OZTRvnGDSKE+s/3llxR8ZKxRMKNz587/j73vjovq2r5f584wQxk6SC/SRVBUwK4IKjaMsddoNagyxgAAIABJREFU1MSSGM1L1fiNzxdTNCbPxBhjS0xiYsXeEKSKBRAQkCIKiIAgTUHqzNz7+2PTm2g08f0+rM+HDzAMM3fuPefcs/Zee+36FnGYOHEievfuzV25cgVRKSkoLSpSWtavv9nZFCzQ1KT6/ZAQoLoarsuWifoVFcF/7lxBbcoUhgED6ByOGwfU1sLAxobaqqWlNTesbInqalRqabFrPC84tOx13REsLGjM1J37xMRExMbGilxcXBAZGclVV1fD2tq6PqNI/1NZCUc7O0FSW4taxqDeWaJdW0trRFvKip49SaVhbw+MHQsfHx8IgoCgoCBeLpez7t278zNnzny2+3dODgW5Oln+g4ED6Ro9I9kWBAFKpbK5+omxRqNSVVXqv37uHB3XBx88lcnfyw6JRCJSUVE5Wl1dbXHr1q3qfv36qQLkHbF27doGZUZZWRnU1NQEAExPTw9NPVo6Qt++fTscBzo6Opg3b56KXC7vn5KSwsfFxXFeXl7iIUOGiADad+zatcspPz9f49atW+A4rozjuGmCICwDUL1+/XqbdevWlfylk/ASo4tsd6ELLzHWr1+vKZVKT8lkMnc3NzdVMzMzkaamJnR0dKCurg7G2N8+h+Pi4oSMjAzm4+PD1dbWoqioSGRqaopXXnkF3bp1ezHW51u3UnbF1RUYPZo2vunpnb+RdwI1NTUQBAFudeY8zwtisbg9IxkGQFRbW4u0Q4e4hMpKFFy9yvXr16/DKHMziESUiR07liL3ffqQZK4DuX5hYSEAoNNtjzqDESOAAQPAbd+OV199lautrcW+ffuwdetWTJ06teM2LMXFdOx//NFAtHmex9GjR4X09HT0uXOHOe7fj55btmC4l1fHRBug9jIXL9JmSk0NHABNTU2+srKyc5tGqZSyLMHB1Bv5zBkqPahryVV/LXv16sVKS0uRkJCAy5cvAwAiIiKwYsUKCmR4eZGhFMjl/ptvvoGGhgY/aNAgjuM4hkmTRLh3D/pNe0m3gXpvgxEjRqCkpIR/9OgR98svv2Dxzp2QTJoE9U2bWsvrv/iC5L+bNnXqI2toaEBDQwOvvPIKbt26xd+4cYN5eHg0H4RZWaQ6OHHimcyHMjMzIZFIeBMTE2IPK1eSWqVJq68RLeWm9bXYv/0GsVgMDw8PeHh4cHFxcSguLhYiIyPZsWPH8MqgQeBEIpKO+vk1OvarqhLZAmit2L4dhteuoe+2bcj95BP4z5unHPnKK6JWqoSW0NGhgEtLODvTfNu4Ebh6lc753Ln4fd8+JQBR7969cePGDVSpqeGqqyua0bZjxwBBQMWOHcg9dw5qamooKyujLGtqKpHNujmamprK3N3dRWKxGF5eXrBrGlAcMYKe//rrRKqGDKHHeZ4Ie14eqYDGjIHh6tXYFBQEnRs34OnpiX71RFsup/G6Zg2VqrQM3HIcynbtwglPTwpyWllh5dtvw0RTE+9s2YI7d+4wW1vbZnOzW7du6N69u5Cfn89ef/11nD17Vqmvry+6fv06Vq1aBW1t7cbxdeMG9ekOCKBzvWsXuWf/+SfV/BYU0GeYOrWhvMPJyQkXL15EaWkpAGDgwIEILSlBrb+/aNu2bULfXr1Ydzs7GOfn0+vMnNkQkC3u1Qu//fwzBrm7MxVLS5KrP3hA108iodIkTc2OiTYAxZ49uDpzJiqeVvpcVtZAtHNzc3Hq1CkMGjQIXl5eSExMxIkTJxAVFYUJEyagb9++5B1gZ4eBAQGibxcvRk1ICHoVF/N+fn5PjqgdOkTlALdvt/33pCSaI2PHguM4jB49GiNHjuSCgoJw5coVUVZW1tP7qwgCrelr1lCGuTP47DPyVpDLm7ft6ySSkpIExhhrt468Xz/6KiiguZqTQ2Nr+nTyY/gfx9y5czXy8/M1unXrBnV19WY3yab7iYKCAvTt2/eFFLHXjxM7Oztu2LBh0NbWbtifchyH119/XaO4uBgGBgaIjIxUr62tfaukpESUlpYmBWABoItsd6ELXfh7sX79eiaVSo85OTkN8PPzkz61M/ELQHZ2NoKDg5m3tzfr27fv3/fGY8eSvLCggNrVSKXAkiWUsTl1iojarFkd9nh+EsRiMf4Jw0gJx8H1P/+B1enT2HLgABMEofNkux4aGhS137mTarlffbXdDEFcXBy0tbUbah2fC8LDaYNVB4lEgoULF3JXrlwR/P392ZIlS9ruqZ6QQNctJKShvrguAs5XV1ezuXPnMlNjY4ji4tBdS4t1KJs8doyyjBcuNLZfqwPHcU93bV1c6FyWlhIpPHCggWw3/YxGRkYYNWoUjI2NkZCQgNu3byM+Pp7qn+/fBz90KHZv3crfz8/nAGDFihWNbYW8vdt36G0CVVVVaGhoCBkZGVi1ahUXP2gQ0iws8OuyZZArlcDmzfDx8YGHhwfEYjE4jgOzsaFjfwY4OTlxERERQjNlQ2oq9YCPiHhiHXh7yM/Pb2729tZbzcZMm2jatqoJ6iT/TEdHB7E7d0KxZAkkQUHAtWvNn6itTVmsJhl0rn9/sF9+QfHRo7z3e++JYgMCMKKuh7YgCCgvL4empmbDHOR5HggJAbd9O80xkMmguro6ZYXU1IjM3LwJbNyI2tu3kVtTI4KaGiorK/k33niDyw8Jge3hw43HlZMDrFmDsu++Q26dMd2OHTsgCAK0tbWF4VFRzERXF8Z+fkhJSYFCoWBGRkbo2bNn2+fJyYmCkSoqRPz9/IDFi4lwHzhApm7W1uAEAVYPHggFBQXs7NmzUFNTg7OdHT1vyBBaY7dsaVXbWzlxIg5ER4NTKvHaokVUnnTjBpCeDl2FAu69erWpdJgzZw6rV9HMnz9ftHnzZgBU36mtrU1rlYYGEbPhw+n4P/iAvsrLyeX+3XcBpRLKkBBUqKiANzCA9PRpHB82jOc4jgsLC4Obmxt0dHQwSFUV3NGj2OXhIZi+9hrL1dPDubff5mdHRnISXV2wuuBNRUUFIBbDxNaWsrsAfR8xgtQKOTlAWhqU69ejaOlSPHz4EDKZDA8ePED37t0RHR3N3wwP5xZt2YL8pUsxzs+vYS2tra2FXC6HmpoaGGOt13K5nNrz1ZV95ObmCgDg5eXFAMDV1RWurq74+uuv+diYGK72q68E3XXrmOPZsziVlydUVFQwALh161bbY6ElvL0pQNIedu6k7HdtLSCRgOd5bNmyhReLxWzw4MHPFkCvraVA2dPUSXMcZZ1NTZuVD3QW0dHR0NXVbfCeaBdGRiQll8upHO3oUaCyEqioIOL9kpmpdRYaGhqwfULgFgD69u2LmJgY9O3bt3MGd88AxlibveYlEklDkN/Ly0sKAMXFxRCLxcrU1NSwDRs2vL527dqn7AP3v4Eust2FLry8GCqVSl8aog0ABw4cgLOz89NJjJ8HVFQoy+PvT7WiAP0sCCQ9XLmSbuxBQWSM1EFddnuIjo7mVVVVGcdxf29j8ps3gW7dkPboEZ6JaNdDRYUIzNWrdI4eP6YNdJOsXXV1NWJjYzF9+vTn9xlLSiiD8dNPrf40YMAAlp2drfzxxx9F7733XjPHa9y+Tdft6NFmRPvXX3/lq6qq2OLFi5msvqXUo0fARx8RkW4r61FTQ5JAL682ZfQcxz1d5w17expb8fGUyW2P5NTB1dUVjo6O2LVrlxASEsJiY2Pxyiuv4Ld168A9fsxNmDAB9vb2jU7sNTUUMGojY8TzPLKzsxERESHMmTOHAUBVVRXr6eQECAJ69esH00GDMGPWLGRlZeHMmTMIDg7GxSYu9r2dnZGdkYHyzz/HiBEjhEGDBnXqegcHByMxMRGTJk1qfL4gkKHTvHnPTLQB8grgOK7xIjg4UO33smXA9u2t/+Httym41pSkNkVmJvr98AMCjY2xf/ZszG+v/7yeHmXQmzjHS3V1kSaRcIUzZmDwo0eCsGYNY3Pn4rfoaL7ORE8YOXIkk0gk+Pnnn3nVhARujrc3qisrcenSJVyhllvw9PTkfX19KYDSsyewZw/ygoKwcP58XOvfHyPee4+TyWQw7dWrsb/4/v1AejpyDh/G3uPHG5y53dzcBEdHR5aRkSFUFRQIp8rLOT1/f6SmpkIqlTJTU9P2T65SSXNk+/YGsyscOkQZ6ibzgTGG2bNnMwC4ePEigoOCBOf58xmmTaPM75w5lP1tMYdSc3MxOiAA4cOHN2ave/emr2nTSK4fEtLqsFret9TU1HhXExPO7KOPKHMvFpOk2tER+OILyOVypCUlkePyqFHIevttFPj4QC6X4/KwYVBWVMA8N1foc+8eisrL2cotW3DZzQ2KefMAjoPExwcoLcUyxrjqYcOQn5yM7ORk7lddXfQoLAS7dAmCICA4OBhisbhZ8EIQBDz+9Vew995D3MGDMJDJID11SojJzGTZLi5KhULB1bUThJaWFl595RVUTp0K+enTOHv2LExNTREQENBAgiV1xNXKyko5efJkUcPap1RCuHQJ0VFRuHTpklBeXs6AutZsTYiegYGBUB4bC8fAQJa3dCkee3rifnw8xGIxfHx8YGZm1jlWeOLEk1tTuruTYmzzZmRnZ6O8vJxrZlz3NOB5KvPasePpiev773fae6QpBEFATk4OG/40EnQVFbqnABSQ27aNuntERpKiqem96v8jjBkzBvn5+UJISAg/Y8aMf3xjqa+vDxsbG9HNmze1VVRUXo5+bS8AXWS7C114ScEYG+rs7PzSEO179+6hpqaGXGz/CcyYQRmbpi7LjFEkvLiYfj95ksjlgAGUPdiyhUhNJ3D9+nUMHDjw7yXaAJCWhiPjxyvvBAeLRo0aJbBnZtt1GDCAslw//EDfX3uN6uEAhIeHw9DQkHdwcHh+4fvcXMpytQHGGGbMmCH64Ycf+Js3b3INQZrgYJLfHj1KstU6BAUFobCwkHvjjTcga9q7edQo6oP88CGZ3zXF9u1kgpOVRTL6do6D5/k2/9YAnqcARWQkja/SUnLrTU5+0hkAQJvrZcuWsa+++kooKChgP/30E0ZeuACPZcsgqevZ24A7dyhr20R2GxUVhcjISL6srIyra4nEvv/+e0GhUAgmJiYw8PLisHgxuK1bUU95ra2t8dZbbwGgus+rV6/i/v37KA4MxMI//sA3H36IwMBA1q9fP0ilUgiCgNu3b6OsrAz9Wh4TgNjYWH7SpElcQ9lDTQ2dX3//jrNjnUC3bt1QXV3dfDGTSqk9X1t4800i2y0hCCSNDgsD4ziMnzoVx86cwdatW/klS5a0dr0/dqxVpraeuD4yNka2jw/L/vVXjJkwAZW+vtzY6dNxNTGR37Rpk0hbW1vgeR7acjl/ID6ey/j2W2hpafHjxo3jDAwMcPDgQSaRSODt7U1BMhUVXC4tRfH06RinqirINmxgWLyYxtOaNZSt/fJLyH/6CftOn4arqyvU1dXBcRx8fHwYADh268Zh1SoYnDiBmNhYhUKhENva2vLnz58XcnNzRa+//nqjSqRO2YCjR8kUr55UzZtH62IH6OPkhOtBQaxi+XJojBpF2dzAQApOtEDfvn2RO38+xLdvIz09vbkr/r59dD0iI6l8xdW17Tc8fRpDL1/mgkxN0SMlRbhy6BAmffQRk9atz1lZWcjIyMCVK1egra2tSH/jDTzW02PCrVucWCxmNjY2GD16NAwMDBgAPDh/Hn+++iqGjxkDg2vXKDiTkAAsWgRcvgzV3Fz079kT/QFcCAjgeyxcyB0bOxZ5df4GLbN65w8cEOLS0pjWrFngk5OFmpoawWj0aGG2hYVIPGGCCBYWUCgUSEhIgIuFBSfp3Ru4fh1jxozB6dOnsXXrVgAkZ/f09ERhYSHkcjmCg4O506dPK6dPny4CgNziYlxYvZp/EBLCevTogYcPHwru7u7NjSivX8e0tWtF3y9YgDsXLiAlNZU/8s03HAAmkUiEAQMGdP4esXEjBZo6ksQfO9YwXupreKurq5sHRzuL7Gy6Hzcxfew03N2J8MbFdejy3xKMMWhqaqKysvLp3xOgeTNmDN3LQkJI4TFlCpU1Pc9yq5cEPXr0YLGxsX//XqcN3Lx5Uzh//vwjAIPXrFnTuZvt/yC6yHYXuvDy4u/PsraBqqoqnDx5Unn79m1R//79OzTWeqEQi8kB+K232s921TsyZ2dThlcsJiJmZkYb0CYoLi5GYWEhxGIxUlJSUFZWxnq1lx17UVAqIezdi6IePbjh06bhqTZRHUEqJRfY8+epbvPiReD995GVlQWZTPZ8x5SrK1CX6WsP3bt3F65du6bs16+fiAsPJ/K2e3czor1//35lZmamaObMmdBta6P11luUqQ8PJ0KgVFL/9NmzyfyqYzdVymzX1tJGTiQiMn3qFGXz3n6bPAAuXCByOWECBRCMjWnzfuRIa5LfBCUlJYiIiEBVVRUUCgV7++23sXPnTkEkFkPc1hx+7z2SrH74IRITE3H69GmB4zg2dOhQ1rt3b4jFYty8eVOZkpICD8ZE3ceNIxl7nQFWW6iXnwIgieSiRVjXvz++/fZb/uTJk6xv377szJkzDTWubZFtkUgkPHz4sLHEYN06Oi8rVrT7vp2Fnp4eamtrm2fwXF0pIHTjBmVJ63HjBnD3btty0oUL6RrGxQELFsBZoUBCaqpw584dLjQ0FKNHj27+/MpKMv1qEixQVVVF3759ERsbi5vJydDy8cHXrq4YceUKPH/6CZ5r1oge29oiPDycDRkyhGl8+SVqdHRQsmABzM3NG1iRl5cXCwoKQlRUFBQKBYA62bmhISpeeYUCRBMmUK37t99SVjs2FlmZmaipqYGZmVlr2evVq4CDAxycnODg5CSOjo5GUFAQxxgTzM3NhRPHj/MLBw0SYd8+MvAaNaqxPzZAmeZOqDjUxo2Dt4oK1D7/nAKZ+vptqlPqobl4MWynT8f5ixcxpL4uHKC1pnt3Iv23bhFhr4dcTrXWkycDN26g8s4dVDg5IXjFCnb37l1cuHABNjY2EAQBx44dg5aWltLJyQlTpkyhm8yiRWSS1gaBr66uVt43MxPFy+W846xZHMaOJRlyaCitDU3Wg9G+vhxWrYLFpUsotLGBnp4eP2/evEZ2q1TCa/16xjk6Cr4nTjDQ+KcX2LqVzBZ//RVisZhqqO/fp8dMTNDHyAg3btxQ5ubmisRiccP4q5fRqqiosIMHD4r27t0rqKio8PnJyaK3fviB4+/fb01meZ6UTlZWEC1dih4uLrgQGAi5XM5paGgIw4YNY25ubk+3fmdmPvk5trbkfj9pEo7cvi0YGxtDVVX16e8TgkBBl8jIZyvpUlMjV/yEhKc2SjMyMlI+fvz4r2UmzMxob6FU0l7j8GG6t1VV/SXj1ZcNtra2CAgI4CoqKjrd5/tFISgo6LFcLl8JIO0fPZAXDNG///3vf/oYutCFLrSB0NBQlfLy8qmenp6Sv5rsfFbExMQIe/fuZdXV1VixYgVzaiLF/Edgbg4cPEjy244i59rawNKljXVgqqokDfbxAebOBc9x2EySOWVqaqqgVCqZr68vM3+WaPxfwePHyElOxiUtLebr6/v8b3x2dnSuYmKAkychsrVFSmHh8yP1AGXNHzzoULpvbW3NRUVFsYo9e2AeHs5En35K0tE6nD17VkhKSuKWLVuGdl31VVWJiGhq0v9+9x3Vdn74YWMWj+eJgGRnA/n5qN2yBRcvXOAt9uzh+v/5J+DjA27lSjC5nM6NUkmbu1mzqH7U2pp+7tmTpJDvv0/Z8t9/J0m5p2eb0sijR48iOTkZhoaGSm9vb87S0hJDhgxh5q+/zpiTU+uNp4MDMHIkzoaE4OLFi7C3t2fz589H9+7dmUQigVgshomJCdfL1ZXTHzsWIjMzqsPvbKBLJCKzLBsbGDk4sIiICCQlJcHCwoLV1NQIgwYNYi1Nj1JTU3H79m0uJSWFOTg4QPPUKcr2vPZaq57AbUGhUIAxBkEQUFNT0yood//+fdy8eVMYOnQoa/EHqpFfsaLxfX75heZ5vUEaQG2KoqOpHv/ddxtqhDmOg0wmYwkJCcjJyYEgCOjeNIs3ZQrVabbwmDA0NERUVBR4nseUKVNQ8ugRxn/9NTg9PeDuXUj27IH9jBmQGhiAMzeHirs7tFqcM3Nzc7i5ueHKlSvk8s/z0C8qQo1UCqM7dwTre/cY/viD1CbZ2bQmWVtD18ICBgYGOHnyJFxcXJqTrtxcGoN1AScdHR1ERUXBwsyMjc3NZcbbtnF6zs5Izs5W7jY05Kxnz4Zmk9Y9grExCktK8N+rV1FcXCzY2Ng0bxX38CGCduwQLqqrs7tDhigHmJtzcHUl6WwHxlQ1ggDJxo3IsrRE8I0bSEhIEIyNjZmGhgYFT8aPp8DXN9+QciUxkUjyBx8APj5QTp+OX+7fx9ixYzF+/HjU1NTwt27dUmZmZvJZWVm8pqamsHz5clHPnj0bJ9iBAzQnW/S8B8hbIDY2VtDX12c9qqoYtmyh+bxhA7B6Nc2VDRuoZpkx3LO0RMX+/dAYMEDILCjgMjIyBKlUyjQ1NaHCGCJTUvjrTk5cXw+P5r2uPTwoSHf/Pq0Z1dVkoPjvfwMSCRhjCAkJQU1NDVu5ciWkLZRU+vr6cHNzQ3BwMDQ0NIQZM2dymrq6UPHyan2Sf/qJvEjWrIGKlxdsbGwQHh4OKysrLF++nJmZmbWS5neIHTtIKl3fqaMjHDoEmJoi9MEDXktLi3NxcYEgCCgsLISGhkbnypvOnKF66Pp777Ng9GgiuH36QC6X4/r16w0dCqRSaZufvy5Yw2lra+O5BMw5jlRNb7xB43jJEvIW0NV9JnPIlw3q6uq4fv26UktLi3uuRqnPgMTEREV5efl0FRWVecHBwUe8vLzK/9EDekHoymx3oQsvL4Krqqpiz58/P2Ds2LH/COHOzMwU7O3t2ezZs18O1xAVFSJFx441tMV5Ij7/nL7n5FB2UCoF99prGFFWJqivXSt6oqHKi8S//43imhpAUxOBgYFKPz8/kWYLEzCe5/H48WPI5fK2TcaeBH194JNPoIiLg/68eejfowfVSj8vfPFFu5LVwsJCJCYmCjU1NXC/dQvKwkJ2yMWFn2tr22w8lZaWCmpqauyJbUh+/bWxzvvTT0n2feIEZTnPnSPp/PTpwODBiB8+HEUxMci0t+fSBg1CzfDhqDh3Dhg7FkZGRpjSsycM29rwPn5Mm/vgYMp0eHjQ53vnHcq+2tu3arU1bdo0fP311xg2bJio2ebl9GkiMUVFjY+dP09GW99/3yCVT01NxcCBA2FZL3cWBKplXrWKMlNP2WYLAHD8ODBkCGx8fLB69eqGxePy5cssKipKGDZsGKuurkZhYSHy8/P5gIAATk1NjZfJZFzgf/4Dv/PnBdGpU0y7A1M6hUKB3377DffakIK7uLgIeXl5bOrUqTAwMMDRo0eFNg18TExIXt2U4KxeTV8ASVJFIgq0zJxJgYoWsLGxwZIlS7Bjxw6Eh4cjLy+vod4dN2+2eexNnbPNzMywcOFC+mXUKMpk5eWR8aKpKZWnvPYakS2FotErYudOyP7zH/gdOwZOTQ25q1cLY6ZMYTsWLEC3Hj0Yrl4lBYeJCf2PigqwaRM4pRIuY8bguELRWvr6zTfkzAwAgoDi+Hj4REbC8s4d3B01CjHDh0PTywvhpaWstqAAP9epeSwtLWFkZITkuXNRK5HA1tYWCQkJLD09Ha6urvzgwYM5dXV1CNOmwSo/n6UvX453xo0TYdQomjtPaNMXFBzMF/v5cQveegu3Kytx+fJl9ssvv8DFxUVwcXFhxcXFwsCBAxnLy6NAmKYmOV1/+CGgrQ1RRQU4jkOPHj0AAL6+vpyvr2/H95X9+6nMoM68qyU0CwsF4c4driIoCA+XLYPZypWNGe2sLJoDK1ciu6oKdzIyoFZVBZ/sbOaxZAlCQkIQEBDAW0dFcd6RkQhbvJizsbbmf/rpJ+Ff//pXI6PjOCLsixcT4WKMykCaBEYZYxg+fDhart310NLSqp+DIigUrRUbFy7QNfj6a1Jg1RHVzLqs9DN3yHBz67yz9549wMOHKP/mG1FZWRmOHTvGFxQUsOLiYjZhwoQ2lTDNIAh0T96//y8ZlUJVFcKOHYgzMEBgcjJUVFR4xphQUVEhEgQBJiYmfGlpKbdixYqGOcwYg7q6+pM7VTwtZDJSIIWG0hgcNoyCPwcP0nz5HzVTAwA7OzvR1atXeUNDQ05FRaV5acjfiIULF2pUVFTgxIkTJhkZGVMBfPePHMgLRldmuwtdeEnh5eWFixcvnigqKpopkUi0msoX/w5UVFTgwoULzMHBoXmm6J+GoSFtfnV1n64uTEursQ1JSQmypVK+7OFDzm7aNMqq/RM3zn/9CwYbN0Lf0RFRUVGcnp4eiouLoaWlBbFYjPz8fGzbtg2XLl1CfHw8hj6D8RsAgDH8988/+ZtGRmycqyuTfP89MHgwbSb+CsrLgZSUxnZDTSAIAnbt2iUUFhbCMiAAunfu4IqDA8vX1m5lZOPs7MwiIiLg6uradm9unqf64ehoIqEJCbT5jY4m+eyQIbSBdXEhifaUKciSyxGiUOCxpiaq1NXRw8NDcHRyYnfv3kVFRQWio6MRFxfHu7q6smZ1vgoFjTFf38bHtLRIahsTQ9kyM7Nm5mYikQhRUVF8TEwMs7KyanRiNTOjTE3TbH1gIJCfD4wfDwsLCxgbG+PmzZuIj4/HvXv3hOqqKqatpQXpnj2kGnjWWumlS1s5qNMhmSEiIkKIj49HWFgYi4+PR3p6OpsxYwYmTpzIBqmrw8HSEhcsLYULaWnM2dkZampqePToES5fvoyCggIEBQVBU1MT27ZtQ1lZWcNr1zu06+joCMXFxSgtLWXXr19HREQEBEHA4sWL27Yk4Dg61r59KZC2dCl9lZQQYTA3p/NeR9Tagkwmg4ODA2JjY1FSUsK86gMp778PJCSAHzCgmQH9AWGYAAAgAElEQVRhREQEsrOzAQCenp7NM5IqKiTZt7Mj4njsGNWPz5tHRmeGhvT19dc4a26OuwUFcH/jDfSaOJGx//s/uPv5wdDfnyElhWqp16+nTOvcuUTmLS1R/tVXsA0JgZWDA1htLZUsyOVk5jZvHuDvD8VnnyE8NBS1cjmqVq+GyvDhSHn0CFeuXEFFRQWTyWTCihUrmFgsRnFxMe7evSv0un9fmOzjw9wnT8awYcPA8zxSU1P52NOnuXt79uC8szPie/XC1ClToCMIFDwaNuyJw0lVVZUVnjoF7a1b0XPDBnh6eiItLU3IyMhgSUlJyLhzh+WfPQuniAhwGhqkBrG1pTmalgacOwfj06chu34dUomE5rNE8kSS3+DDUOc7AYDM4M6fh7W/PytTVRXO+fnxVx8/5vT19dGtWzdUVVWhWKmE7KOPUHXvHkTu7jinrg6d0aMF56FDmZajI3q7ubFBgwYxI7EY2QYGcJwyBd7e3iw0NJTT09NrXtMtk5FxV2kpke3PP292v6iurmZXrlzBoEGDnmwqlpFByplPP63/Z8rk3r9P6oAma1F4eLjw4MEDlpmZ2VoR0hlkZFCg4Am+JYIgoKioCOq9eqFaqYR48GDcvn2baWpq8r6+vly9AVyHwdAjRygTvHbtUx9mU+QXFyPq7l0+Oj+fDR83DlOnTmUDBw7khgwZgl69eqGkpIQVFhYKMpmsmWmgvr4+IiMjhcGDB/9l25NWqB+nb7xB69Hvv9P1c3enYPb/IOkuKCjAzZs3WUpKihATE8Pavfe+YHAcB6lUCp7nxZmZmXrBwcHlYWFhWV5eXvK//WBeILoy213owkuMdevWla5fv35CcHBwrLu7u+hFmqUpFApkZmaisrIS9+7dE+Lj45mBgYHCy8vr5VonxGIiQunpnc9ut8SiRVCNjhbdDA5W4r33RBCL6bV8fUkeCHRYA/xckJwMfP01xC4uUE1Lg0KhQGhoKMrLyzF16lT07NkToaGhPM/znFQqxaxZs576LXJzc3Hp0iVkZGRAJBJxq778EhKxmDI+3t4UoXdxefbPGhVF5LdFixee57F7926huroaH2poMG7wYGDMGDiYmrZZ8y8WiyGVSpWRkZEimUwmWFtbM0tLS3BlZURuPD2pp/Hu3ZQBkslow7pxY7uHlpeXBwBYu3ZtvfSQ5ebmIjw8vOE5ZWVl3IEDB7Bw4ULaJB85Ql8HDrT9otOmEfktKSEp84YNDRmuOXPmcDt37sSlS5cEKysrOqEaGpRZ1dcn4gGQ3H7JEgBoyPT93//9H/bu3QtFdTVzGDsWJ/z8MPfcuc5cgfaxciW1s9m9u9nDHMdh4cKFXHh4OCZOnAhzc3PwPE/XpaoKmDsX6h98gKkffMDt3btXuHTpkmBvb88dOnSo2evcvXsXAPDOO+9AV1e3pZsyqzu/CAgIgK+vL2QyGWuXiDBGDvq9e1OJgJkZnevPP6fgRCfLV8rLSYHYTF1gZYWMR4/g/803fGVlJaeqqirY29uzvLw8AQDT1NRsNyMJAwNSNBw+3Gg+lpfXGKSKjUXl4cPIsLeHcvBgyu4dOUKb8Q8/JOLh60ty6tRU+my+voCbG+5t2oSAPXuwAgB39CiZOVZUAIWFUPbujeujRws31dRYtqMj3lqxAgZ1Ls02NjbYtWsXb2hoiFGjRnEymQze3t7w9vam8z59OkN0NDB+PDiOw7BhwzBs2DBRzquvoiopCem9esHKwkLAunWoVirZo//+Fx3ltARBQHV1NcRiMTJtbPBqXh4FvzgOixYtYtu3b+d79ejBmR8/jkeXL6P6+HHILC0paGVnR3NpwABAoUDkxo28tyBwWllZVN8dH0++CwsWEOk3M6P51dSROiKCygDq8fPPdH7XrIH+/v0YYWzMRgCi7777Tunv7y+6deuWMjExUcTR8WHX/v0Y4OmJca+9BiexmGHFCqpP9vMDfH2hv3499L/8suHlZTKZcOnSJcHJyYkTi8V0fHI5BV+MjCjD+dFHFMT59FNgzRoMtrFB4tGjqKqqam7s2Bbs7Oj1AAqq5OSQKdeCBa2eampqisTERPA83+4CnZubi7y8PNjb20MulyMrKwt2dna4ER+P/hMmYN/ChdDz8uKnTJnCVVVV4d69e7C3t28mC09NTcWhQ4egMXMmKmQyuOnqChMnTmQ6OjoijuNQU1ODgwcPYtmyZW37aQDk3v3xxx1/9k5g//79MBCLubcDAyH+4ouGxzmOg56eHvz8/GBkZMSCg4Ph6ura0OHBwcEBtbW1rKSkpGGuPHeoqNBcdnGhnt1qajSn33uP7oP/Qxg2bBg8PT2RlZXFDh8+jNra2n/0eHr27ImQkBC32traAxzHbQLw0T96QM8ZL9cmugtd6EIrrFu3LuWLL76oKi8vV22rd+HzQkpKCo4ePQqZTKaUyWTc3LlzYW1t/XKuEb6+DZvWdt1vn4Di4mKe09Ul12OAjHC0tMiAy8+PnK+rq19cC5DDh4mMjRvXUKtdXl4OxhhycnJQXV2NtLS0BnZy+fJlpZWV1ROjLYIgQBAE+Pv788nJyQ3/v3z58sbWU5MnE3mYMYM2Du+++2xtnXx8KCPTAjU1NcjPz2d9r19HbFGRoHz3Xdbf2hodiaGHDh0qioqKUmqoqHDRZ85gaI8eGLB8OdWD+/vTRlwspkzx6dNExD75pM3Xevz4MRITE+Hq6tqsxs/MzAyLFi3Cnj17AAB+fn44deoUPvvsM3AchzGlpejdo0eHxwlPT6CsjNrMbdkCzJmDxwYG2L9/vxKAqJWj/Y8/0ibN1pakrb6+9L0J8eQ4DgsHDQIcHZGRl4fc55EpGTeOyHMbMDAwwOR6lUfd+6OqihQjR440kNshQ4awP/74g8XFxcHExEQ5Y8YMkXZdzeKRI0cwdOjQhs13W0RaS0sL06ZN69zxLlwIfPklSY/XrqXjMDFBh73VW8CqTgVQUFCAH374QSkIAqt99IihpoaNmjCBc3R0RFpaGktMTFTW1taKAMqItZkJ++ILInU7dwK7djX2bm9BpoYMGYLk5GREHzrEu2prcxaHDxMZGzyYnnDiBJHwoqJmruhmZmYo19ZGTv/+6D5jBtVqW1sDYjEe6+ribnU16+fkhCmzZkGrCXnQ1tbG+++/3/4AaREUQVYWsH07zA8cQGlFBUyOHROKioqEBzk57KyTE7hjx4SlS5c2nICioiLs3r0bMplM0NPTE+7evcs1bMRVVSF9/33g8mVgyBCIxWKsmDOHQ0gIyu7fx5Hx49FnyxYqk0hNpfNQn5kWi8FMTYUMKytYU2CASHt2Nl3zkhLKxL7xBq1Fr75KpNvAgIJTQ4bQ+06bRuUiLdrxrVy5UnT79m1ERUWJVFRUIJfLcfLkSQEcx/S/+AIOlpZE6FetImVJWRmt901f59df8eaIEezCoUNChYEBFLduQX/DBgr4jR5N6gNdXWDsWLo3pKUBFRWQb9uGefv2IW3BAvSbOZPuKZMn0+ffsYNKQSorSUFw/z6NpfXraZx3QM4dHBxYQEAAfHx8Wv0tKSkJKSkpSK7rliASiSAIQmPXBUFA3JtvokxbG4Vpadzu3bv5vLw8jjEGFRUV6OjoCJWVlczHxweXL1+Guro6KgDMPHIEjpMns6au9O7u7khKSuJDQkKEyZMnt74HBQXRtfuLRorl5eUoKyvDhNdfhzgwkIwN2zCm9PT0RHR0tPLnn39mAwYM4Hr16tUwhxMSEuoDTy8OjNF4ACiYVFpK41YioTVMS+vFvv9zgqqqKiIiIuDm5sYbGRn9o+l5iUSCt956S+Lv76/Mysr6/84C/uXcSHehC11owPr167U4jpM9UxuOp4BpXdZRLBYLLi4urQyUXiqIRCQj/uUXcvl9SgiCgBs3bnBTpkxpfLC+LZW9Pbl3cxwR+enTqYaysPD5tQERBMrg1MmveZ6HSCSCg4ODsmfPnqLIyEj+5s2bgoeHB5ebmytwHMdlZGSIrl+/Dhsbm/azCwACAwP5K1eucIwxDgA+/fTTtsmEujoRga1byYHb05M2kU+DWbNIvt0i666mqoo1amqo8fDA3YED2YmoKMGD59vPbALw1NaG59tvi6rd3ZFZVQXbDRso6KGl1XrzUl1NGad2cPLkSQBAeXl5o7N2HczNzfHpp5+isrISYrEYHMfh9u3bgvrPP7MoGxucBTAuOrrjXvJaWuS+nJEB5ZQpuGplJZhOn86mTp3aOnMfHd34s6Ym9XNtWUdZU0Pn/8wZyJYtg3znzlZ9d58agwd3um0ZAJJtK5U03utgY2MDkUiEqVOnwsnJqdkme+rUqc9+bE3B82RCJJfTRrW8nFQMBw48teJCVVUVs2fPxp9//glHR0eRqqoqeu/bB1lSEri6Omg3Nze4ubmJAODgwYNIT0/H119/LaioqAgKhQJud+9yalpayDI0hMvHH8Pl4kWIOiijMTE0xJIBAyBftIi74eYGi9OnG/+4YgUFpCZNIuf7nTuB778HQMFNjuPIEJAxksr7+wO9euHckSOCaloaeubkMNHBg0BYGMnP58whJ/6OxsVnnxGB3bWLfr94kYivRAJdqRSLZs1i8PVl/B9/4MJvv2Gql1fDSeZ5Hvv37xc0NDSYsbExq66uZjNmzIClpSViYmJoHbl2DQgIoLXrzh2qMTczQ8DMmdApKeH5uXM5buVKmnTLllGZiZcXkJkJTU1NoV59AIA+h7V1837zq1YBt2+TguD+ffI4OH+ezLe8vIicDhlChHn5cso0//Yb4O4Ou23bEBUdzU89c4Y7MHcueoeGokf//tDp3Rv4z3+AS5do7g0cSIQ9IoKux9GjtJ5s3Qr1Vasw6b33uMsFBfy9oCBuxv79FIzU0aH/37CBjtPYGAgIQE5ODvZoa8Nk40Z+cZ8+HH77jer8GaNgqooKBW3S0ui4LSxonpmaNnbPaAcaGhrttrQKDw/nCwsLGwZCfb/2uXPnQkNDA/xvv+FOUBCCR42CXC5Hfn4+N2bMGLi7uyM0NBQPHjxgMpkMoaGhytraWjZjxgzO0tKSMu0VFa3eb/To0dzevXuRn58P4yZdJADQWGvaTeAZkZycDIlEItg7OzMcPkyu5i1UU/VYtmyZ6NSpUwgKCuJDQ0NZXzJAZOnp6fDy8vpra+fToN7zxdGRVEQ//kiBQhcXYO9eKgvR1W2zpOefRk5ODh48eIApU6a8FDp4qVSKrKwsplAo/tk0+wtAF9nuQhdeYqxfv14qkUiOOjs7KyUSSSedTp4N+vr6ePPNN5GdnS0OCAiAVCpt3ZbmZcKMGbQJi4jo0Am7LaSkpACAYGNj03o3z3GNxPvGDZJDXrxImYrHj2lT5uLS6f7dbeLKFcpA1UkHLS0tsZZq3UQA0MyRt44sbtu2TXn69GmRt7c3XF1doa2tXV+PCXt7+4Za7zt37qAug4fp06d37CLLcSQ3vn6dWqQ9ekSb+s4asTk6tjILgyAAf/wBcWoqxF99BSd9fRyJjGQFBQVo5Xz68CFtqrW0SKWQkYFfZsyAlqmpsodUKmq33dbUqVTfeOdOozy7CWbOnIkvv/wSWVlZrKamppVDMGOsQU3g5uYGNxcXJnzwAXbX1VafPXsWffr0eWKbuxyJBGdHjeKda2ow7do1TuTl1aydGQDgzz8pKBQYSPW/TTO9PE9uzevW0SZXSwvdAIjFYiErK4vZ/JUNWmIiBUIKC5/83GPH6Djs7JoRXI7jMHDgQPj7+0NVVVWo62fLa2lpQalUCtXV1ayiooLV1tYyR0dHvn///iLDDlqkNUAupw1pUBDJMcPCgJEjiXzs309Z9n376PFVq2i+dRJ37twBAHh7e5OqwcGBxnUbqKqqglKphLOzM9QlEujo63NGa9fioUTCVyxfzsKSk5GdlMTsBw5Em0L2+Hjg3/9GupkZHz9zJjf8tdd4AI1zV6FoNNLS1YVQVYXgixd5CwsL7sKFC3jllVdIbZKTQwGrc+cAKyuwzZtxo7KS3QCgzXHCqvffZzh3js7Z+fNE2tzcgF69WitS3N2pFVdWFgVQ/P2phVY9YmMBIyMklpRAqVTi4sWLgpqaGrOysoJSqURJSQmbMmUKXFqc8wH1JTtWVkSGQ0NpjA0cCMybh/QvvoBMJuPOL1iAMhsbYdg77zAzMzNaI776ClBXh6ZMxhU2NQtsAZ7nUVlZiXINDVSYmsJ64ECIS0spYJGdTQGutLRGgzrGGtUC48cDJiawcHDgHoeFwdDQED0MDZmOQkHj7dw5mnuxsTQeHj0i1cyMGVRSA5AnA4CHDx8ipHt3zq6iQsC+fQwKBWWl1dXp84SFNSgXDAwMwHEcDAwMBMZY89ryX3+l79818Xw6dozG9Hvv0TX/7LN220oJgoDy8vJWninR0dGwsrLiCgsLMX36dCgUClhbW0MmkzWu9zo6MPXygvuHH+LRo0c4deoUf+7cOS4kJETo3bs3Zs6cWT/Rm2eqd+2iTHxdqUA9TE1N4eTkxO/YsYObO3cuGswO79yhTgHPooyqQ1lZGfLy8hASEgKlUknHVV5OgZyJE9sMLnEch1deeQU8z3ORkZFITU3lNTU1hZKSEm7z5s3C8uXL2RMl/X8VPE+B34QEKk04fpySANevN3aO+OQTCtJv3UplCFeuUAnFn39SkGfvXlJX9O1L6oenUPL8VWRkZKBbt25KPT29F1ef2AKlpaXQ0NCApB3TT0dHRyEpKWnRhg0bRGvXrn397zquF40ug7QudOElxPr160VhYWF+EonkqLW1tcukSZPU/o5IrYaGBkxNTWFiYoKTJ09CVVUVSUlJsHsZe0wyRiRtxw4iX0+BgwcP8v369eOeaPwmkVA7Ijs7upmqqBApKCqiTe35852uJ22Gn34iktgJY6J6eHp6cuXl5bh8+TKuXbuG6upqZWBgIBcTE4NLly7h+vXruHz5MgAIr732GktISFBqaWnB2tqaKZVKVFVVtXuDg6kpbWpiY4nwaGg8ORIvlxNRauoOzfOUKbp9mzJA+vr4448/lOXl5czb27uxBdGFC5TNmjaNXL+XLEHZ0qXY4+/PP6ysZLNnz+aeaNbyyy9EJlo4qycnJ+P48eOQy+Xo0aOH0LNnz44Nc3geuHwZbPNm9B4/Hi4uLsjMzBQCAwNZVlaWws3Nrd2Jt2vXLqWtuzvnvWQJxyUmUvZs8uTmpk+CgAZPgPnzySSrfmNaUUFS0vHjmzm6V1RUsLCwMAwcOLBzLXfagqkpZUKfJGk8epRq3998s822NjY2NnB3d4exsTGzt7dnampqnFKp5NTV1blu3bpxDg4OzMnJiaWlpSE8PJyJRCLewsKi+UHX1hIxCwsjx+Vbt4jYDB9O7aJmz6ax5OxM88LZmQJe+fm0UfXzo5+HD+8w2/3o0SP4+/vDxsam0cG5sJAysZ6ezZ6bmZmJ8PBwiEQiLF68mHUfOZKZWFhA87vvYDhzJrO1tWX9ZTJmsX079ujpISYmRpmens4qKyuZrooKJF9/DWhpocbMDL8rFGz8nDlwdXVtPLikJKrJrW9b5eCA3MpKnIiPZ0lJSTA3N1eOGzeOxlZxMakQpk4F4uJgP28es3V3h5qaGu5kZLB8VVXeeeVKxjw8KLBoaUlqlE2b6PwcP06ExNyczp+9PZGg1FSaY/Xn7PRpmpubNqFbt26wsLDA7du3WUJCAvr37w+xWIyioiIhOjpacHV1ZS2DVABobRgwgPwa5syhFnmgYO2tW7eUvoGBnMTIiJ3Ky0NoaCisrK2h7eUFbN8O09WrWaCDgxAXF6cMDAxkISEhLDIyEpGRkQgLC0NoaCiuXbuGxMREpF25AufVq6G+dCmRUyMjWi/79KHAkK4uERctLfp8mzYBY8fiXmEhIjQ08FChQLm7u7LnG29wUFGh8W1kRAGKTz4h8i4WU7a8iby/pqYGP/74I3QePMCwn39m5cOGAStWQLV+HpmY0HiuM+sTi8V4+PAhEhISuD59+nTsiP399xSkVSjI5Tovj8YJQHLpFutzTU0NLl++jFu3bqF///7gOA6VlZX49ddfkZeXB7FYjBEjRsDKygpSqbT5WlG3pquoqEAmk6Ffv37M09MTWlpaLCwsjA0dOrT9tcXGhghgk/aMANCjRw929epVwdzcnBkbG6OkpASiOXOgfPQI4rY6O3QC9+/fx7Zt25CSkgJ1dXXluHHjOCMjIzrPGhp07+3AUZ0xBisrK/Tr148NHDiQDRo0CA8ePOBPnz7NOTk5Pf92mrm5RJT79aPSpvv3aU6KxVTX7+5Oao533qFzOHcuZefFYmDCBDqnjx8TsR4+nMaiRELlElZWVE6zeTN9zZlD9zdd3UZlhZXVc/OTKS4uRkZGBvr37//CW93I5XJs27ZNERYWxkkkEshkMly8eJE3MTFpts7Y2tpyjDFkZWW5hYWFBXl5ebVudfE/CCYIwj99DF3oQhfqsH79emdVVdXPlUrlCB0dHW748OGazs7Oz77h/guIi4sTTp48yQDA1NSUr62tFdzd3UX9+/f/24+lXSgUJN3q0wfo5HHxPI+NGzdi3rx5eOa+2oJAdYlLl9Kmbe9euuF2JighCERoZ8x4ajfwkpIS7N69m6+qquL09fVRXFyMPn36KEtKSpCXlyfy9vZuyEBlZmZi//79ePPNN3HkyBG+oKCA8/X1Ffr3798x+QwLI/O527fJtKq9zcqBAyTjLCmh33mepLJ//EHXREsLCoUCmzdvhoeHB3zs7Kiur08f2jBERwN2dsjLz8fZs2f5vLw8zsbGRjlx4kSRVmdq3nieCEWTHrwKhQJfffUVLCws+NGjR3euh+hvv1H95K1bDS1rBEFAdHQ0zp8/j169evGTJk1qRbjrSf0HH3zQ2Jf38WPKwo0dC6xZ07h5Tk+nzZJMRkT84UParJ0712YrK57n8dVXX+H1119vrQZ4GsyfT9ewvXEZE0PXVyxus5fx0yI3Nxd79+7FggULYFZTQ2Ope3fKrFpYUMlHbS1tSNtTDXz0EbVyu3Ch8bHLl4mMlpTQMX/yCWW7WxhGbtmyRXj06BFbsmRJo9T1/HkKlDWR1JeVleG///0voFTinXv3oLt9O72nh0fz4/r2W+DhQ1R89BHu3buHrKws/kFMDPoeOsRVaWsLCRMn8m7e3qLTp09jzpw5zYOSxsYQNm5E9fTpUFNTQ21VFeDoiC1z56JKKkWfPn14Nzc3TnT9OkyNjcHqM6KJiUS+68hLeno6/P39MWDAAHi1JDQKBa0/585RADAqir7HxFC2vOnYEQQKOPzrX83KPniex7fffssPHz6ceXh4MJ7ncfz4cWVGRgZbtWoV10zdIZfT2LW1pXFblwluCZ7ncfjwYaSmpqIhS/74MTJ+/RXHqqqE0aNHs9y8PMTExECpVGLFihVQU1ODRCIhNUJJCcI//1xpnpUlsjl8mAIJGzdSbexXX7V+w/rM9dCh4FesQHVEBH5atAgrMzMh+uijtgOitbWUOZXJGmqNBUHA/v37eWlsrDDR01OUFRsrHNbSYnUGgvz06dM5G0tLujZHjwLdukGhUGDTpk2Cn58fc32Sf8iYMUSmTp+muu0RI+jxOXOIdF+9SsHduvW5uLgYP/zwAwBg/vz5KC4uxum6MgVzc3N+3rx5XJsBVJ6ncoPExFbKI57n8eWXX0KhUAAAXFxcoK+vD2tra1haWpL8urS0oc97Sxw9ehSJiYmQSCRQKhSwS07GbTs7mNva8lOmTOHaNRtsB4cPH+aTk5O51atXtw4G//ILKdeeILdvCz///DOfk5PDGRkZ8fPmzeOeuQxPLqfs9cKFjYZ2+/aR2q2oiAh300RIQACpmMzNKUj0NFAq6bXi4mheT5pEwbJly2icjh5N7zl5Mj33zBki7N99R4HS06dpLD9+TCqMJyRoamtr8e233wr29vb8pEmTXpgBr1KpREhICCIjIwEA/fr1Q2xsLOr5p5mZWXVBQYHUxcWFf/DgATw9PUXHjx8HgNp169b9BQnhy4MuGXkXuvCS4LPPPpuvoqKyfciQIdIePXpwT+w5/ILRp08fZmNjg/T0dKG8vJxFRkZySUlJyv79+/9tkqMnQiwm2e6pU7SR7ERQIiQkhBeJRMzU1PTZIxiMUTayvr/wnj30mFhMMrz63t5tISaGjre+r+9TQE9PDx9++CG3detWZXFxsUhTU5OfOHFim9fD0NCwPpoMExMTwcfHB+Hh4UJ8fLwwY8YMrt267+HDSaK6ezeZvqxf3zYRmz69cbOoVFKmLSaGov51G/SE+Hj0iooSPBYsYPj0U8oKnDlDG3bGkJqaCn9/f7i4uLDhw4fD3t6+82OL4yir8Oab5OYLMkbjeR7z58/vnAzk8WPq3TxqVDPixhhDnz59cO7cOSQmJnLdu3dHjx49IBaLkZycjLCwMOWjR49EY8aM4VVUVBrfSyZr6KGNw4eJUDs50dgcMIA2Zp99Rhm2hQvbVQ9wHAcrKys+KChImDdv3rPPt/v3ibi1Rbbz8+n6fv45man9VZSVway6GmOuXhW4c+dYgzS3Tx8aFx34DDTDp5/StRWExvk8aBB9VVeTlFoqpXNX76cglQKMoXv37iw+Pr55P/oxYxqdxOsgkUjAlEq88frr0J00iTa2TeW/9aiuBlasgIaGBpzs7OC0cSOH5GQoLl1C3sOHzCw5mV2oCwqoq6s3ay2muHUL3+3cicebNsHV1VWZnp4ucu7dGzzPY9GiRTh+/LiQmprKDz12jNNUVYXy6FEUFxfDNj4e7PjxBrJtb28PfX19/sGDB63HtFhM5+Gtt+j34mKSJ9dnBptixw4amy1k/hzHwdfXlztz5gx69eoFqVQKCwsLLjExkRUXFzf2342Lo83+zZu04W8rWFJdDd7ODkc2b8b9/HxeT0+POTg4MAAolcvxe1ERZuzfz+wvX0bB8uVQKg16CPUAACAASURBVJVkzFVR0dBWSkhJARYsgNLPDwlDh8KmnjD0709y5bagotLQu5rbtw8Hdu8WVPPzGScIJBXfu5fIeGwscOUKalxdcejkSd7YyAgDv/ySu9W9Ox6IxXxycjLrHh+Pifn5ItHMmbCfPp2tAZHw33//nf3+++/o06ePMNHNjeH2baBbN8TFxUEulzP7JwWrDh6ksSuT0TrQ9Pr88QfN1a++otKl7dsBExPUmxEOHz4cCoUC6enpAIBly5ahW7du7a9xPE+EsGWJD+h6L1u2DEqlEhcuXODT0tI4XV1dPiwsjDM3N+cXLVrEQUeH1qsjR1q11xw9ejQcHBygrq6O7kuWIHvWLHhPmIB9+/axsLAwfsKECU8lwXN2duaSk5MRGRmJEfX3k3oMHUr306ZrQScxb948rrCwEKdOnWJ79+5VLl++vHPrqEJB88TDgwI8Bw4QwTYzowDTxIkUZAbaPL+4d4+e19SboLOovwf17UtfAN1H6vHwIX3fvp0y4zxPQUddXQrW/Pwzke2BAymD/ssvQK9eeOjvj8KoKGhGRyN+2jRYFxaCt7BAVmUlPD09WUREhEhVVVUYP378c8/q8DyPPXv24D4ZqboBcI6Li9vBcdxPIpGIr62t/Sg3N3cTgJqEhAQZz/Orjx8/DqlUerampub/Gxl5F9nuQhdeAmzYsGGZqqrq5gULFqh1qubxb4K2tjbc3d1ZUlISxGKxMGvWrJeHaNdjwgSq/czMbEZeBEFAaWkpdHV1wRhDcnIyf+XKFSE/P180efLk52ugcukSfb9wgaSNAEW1p0xpXU/OGGW1/4Ja4Y033hBt3rwZTfuMtoREIoGGhgavVCrZ7NmzRTKZDJ6enty3336LuLg4wdvbu/0D0NamTXtmJsng/PyolVHTc7ZhAzlr6+nR5uTKFdrUisVAYiLKIyNxPi8P71+6xCQFBWQO1eQc3LhxA8ePH8egQYP4kSNHcp1Vb/A8j9raWpJrOjvThofnkXrrFgIDA4Vu3boJaFo32xH8/IgIt9FCTCQSwcXFBUlJSQgICMClS5f4yspKVFZWcgYGBtw777wDmUzW+n309SlAsWsXXefjxymjHxZGkldbW5L3tuOkXo9XX32V++abb1BdXd2xNLUjXLhAgZCWKCujbPv27c/ePo/nqVaxsJA2hKmpwMcfw7J3b3b04UM81NCAmZmZcpar69NlTDQ0SE7t4UFZ7qZQVaXxCFBmKT2dggVRUSh4/32kXLsGSKWNSgOAsnR9+lANc/3L3LyJjzZuxNc8j7U3brR9HDk5VJOtrU21t5mZRNp/+AFiDQ1YamnB0tKSGzBgAL777jvs2rULs2fPhr29PeDiAm7nTlhYWvJ37txhRUVFMDMzU7r26ydyNjaGubk53n77bREeP8Z3UqnywsOHonrjtPl+fuArKqBbt3bV1taiuLiY65Rhpa4uZUcDA5s/fuoUBc9ee63Nf3N1dUVoaKgyIiKCjRw5kisvL2disVgwMjJiKCkhMrh4Mc3v+hKI+nZVmZmN64JCgZR+/XA7IwNeXl6sd+/eDT3s69oP4tHHH0M0bBjK6owDq6ursXfvXnh4eKCfSISwwEBBbGzM7mpqikzrW2QBFAQsLaXASBPZd1vgxGK+UKkUxbz1Ftzd3cF69qR1WKkE/9pruGZuDhVXVxinprID8+fzIz78kMuaPp1Nzstj1vPnM5iY0NpSB8YYDA0NWWZmJuLi4pjMyor3DgjgMGhQgzHZ9u3b8e6777Z9QKmpZLLm60u/1xtwNu1JbWJCa8KPP1IwY/NmlCxfDsYYwsLCAJBkfeTIkYKhoWHHi+XFi23P+zrUBzbmzJlTv35x586dQ1RUFFdbW0sZZje3NrsZyGQyUipUVQEiEawmTwZ0dODj48OOHz/OpFKpYtSoUZ3iFkVFRfD394dUKhUGDx7c+jPZ2VEA4soVCrY9BVRUVGBqaopx48ax3377TaRQKNr24KhX937zDa1lCxdSmcLu3dTebe1auqdt2dK5Nw4MpBZoo0fTHuBFZIvrvEUAkOEmQGqx8ePp53rDSZ5HrLe3cPH4cdYzJ4fvnpjIHgwfznt89JHoVu/eAu/joxz86afigk2b+N5hYQznzzcapvr60jwThA5l/E9CaGio8v79+yIAs9atW3cDwA0A+5s8pWW/uDXr169X+fjjj7v6bHehC114fvjss8/mSSSSbxYtWqT2T2ez20Jubi5OnTqFkSNHsry8PNjY2PxtTp8lJSXYs2cPJBKJUFtby9TV1XkAGDduHNe9e3eUlJSgtLQUcSUl6L1woWAfEsIUSiUqKiqQk5ODI0eO4P+x991hVZ1Z9+s951649N5UUBBQQEDBigUsWGM39ha7RpN8lkniJEMwxYxmYmI0OoklxhJjsHdEULEDIgIqTZpKlV5vOef3x+bSQVAz3/ebsJ7nPuKtp7znPe/ae+219fX1RUtLSzx58oRzc3PDxIkT8acd5+HDa1qCPH9OC56bN0mOGhBABGX5ciJgrwGZTKY2VGvyRGhoaDRoERQVFQVRFOHk5NQyZmtrS47lBw9SBvmTT2qcg+/epah6SAhJdH/9lQj4smXAmTNQnTsHjBoFIS0NKZmZqIyLQ5eqGsCMjAycPXsWw4cPR79+/Vo8mARBwP79+5GSkgINDQ3RyckJnuvWMZPff8eZZ88EW1tb5uvr2/LBuXZtk2ST4zhMnDgRw4YNw8GDB5GTk8NxHIe+ffvC19e3WWd1AJQ1HjuWFi7XrgGpqSTNT0ysU59dH/n5+UhOToabmxskEolYVFTEXplsz5xJi6Xfaq1tRJEIa/v2tG2tgUpFGbqQEDKVOnSI6mjXrqXv09GB2ejRmFZQgJycHJw4cYL7448/VNOnT2/dinP8+Ebrx+vA3p4eI0YAwcHILS/Hsu3b8cTVlTK9hoa0SNbTI2m/KFJw4MwZYP16XPnHP6BSKpGVlVWTva2NkhIa33fv0n5u2tTAcbm4uBhbq0jykCFDyMhKEICJE8F5eEDrxQvI5XI2bNgw3s7Ojo5TbXLfqRPe3byZ36+vj7KyMsHCwgL7Tp/mpv/2G/6IiEBGhw7Q1taGIAjooW6h1RyOHydH99oZt6dP6TgdP95sG0MfHx/+2LFj1VJPAOyfGzeKb5eUMLvgYJq31It5gAzCPvsM2bm50NbWpv7SSiWuDRgAd2dn0cvLq3qOKSkpQUhICDw8PNCnSkUxwdsb3WfPhs4HH+Ds2bN4FhAAl4sXoTFzpqi9ahUKbtxgdYI0jJGk+MkTCgQ2g7lz5/Jbt24VAwMDWUREhDhz5kx2vqREVfzrr7zJv/6FhPh4Ye2QIRz39ddwff99hh9+QOfPP2cYOJBquhsJeGtqasLGxkY1btw4fv8//8l1vXAB2u+9h759+yI0NBQA6igbqqFQ0FiOjqYxCQD29lDevo3IsDCEhoaiuLgY06dPp/nxgw+ArCyoXrxAxEcfiV06dGClLi5If/YM5ubmQv/+/V8+v508SRnaqnr6lmDQoEG4e/cuNm7cCHd3d0zYsYOMvprC7t2UPa/aJ3d3d1y5ckWMioqS+Pr6tug3U1NTIZVKxY8++qjp+1F8PAUqW0m21cjPzxeUSiWXnJyMavXBo0c0lxUWUknFsWNU8tOxI2WE4+Je6beQlVVTKuXtTcHAV/F0eROoIshnOnZk48aNg9p7xAngMXcu+gEMCoUEXl6Y0bcvh5MnawKSP/1E83lcHKme7txp4HnREoiiiNDQUPVFfKeln/Pz8/uvItpAG9luQxv+1+Dv7y/R0NDYqqWlNW/u3Ln/J4k2AGRkZIgKhYJduXJFKCsr4zp37ixOnTqVNWm29YqIi4uDvr4+ZDIZKisrYWFhAZlMhqpsIpNIJDAwMOCKi4tx+vRpcfjw4ez333+nDzs4oNf160wVHY1zKSliZGQkA8hp2sTEhMXExAjTpk1j/1GjN3W/25s3a8iVmxvJBaOiKNtRXEwkwMqKIuBKJS0CjI3p5i+K9DAwoNd5njIiWlo1/28FoqKiIJfLX+qyXQempmT2cuIELbYPHqSWaAEB9PeDB5QFYoze4+sLfPwx+JUrofj2W/yzVtZYV1dXcHR05GJiYqCtrS2mpaWxwMBAeHl5Qb1AKykpQXl5OQoKCqCpqYmEhAT069cP2dnZOH78uEoURW7OnDlMKpWyY8eOiRk3buCdH35Axdq13JgxY1qWBS4sJKldaGizzuscx8HAwAB6enqqTp068WFhYbh9+zZcXV2bVRVUIzOTFnP//Ce19+ralVQAn35KBNDdnTK5ta6lwMBAPH78GOfPn4dSqWSljbThaTHWrCHyVxshIaRSaElGWy6nhVZ5ORFOLS0aD0OGUF16vZZvahgaGsLQ0BAzZ85ku3bt4vft24cZM2Y0bdBXH3PmkIt2YeHLSTfHAcOGwSovDzuXLYNRQQE8tmyh7N7PP9PxXbeOzOgSEoCbN3E/Kgp3lEpI5XLIiovpOuQ4IkSMEYFYvJjIac+eVIfZCHbu3Fn9t6urK11XO3cCH38MyGS4d+8eBwAXLlwQVqxYweGzz+qej4gISKytMfTpUxw+fJibMmUKJk2ahMrISLjKZMiVSlFZWQmVSoWrV69i4sSJqKofbrgxas+EpUtrnhNFqg3u25fk9s3g2rVrAAAjIyPMmjULBps2IWP3bnZy3TpI5s0TK7dvZzzPi8uWLSOjQw0NYM4cPPf0xOmxYyHV1RVHnDqFKQkJbNfq1Wzo0KHV12JeXh5KS0uRlJSkQpX7NXf0KOx69ABUKszT1ET5nDkonzgR48aM4YKCggAApaWldVv3zZvXpLO8IAgoKSlBUVERTp8+jcLCQmZvb4/k5GS2ZcsWaGtrcxoaGqJQWirOMzDg4OpKga8ZM+icTZtGypN6RDspKQkXLlxAUVGRaGxszJmYmGD88uV4kJEhxnz1FRMtLYXKykpOLpfj2LFjwoQJE7g6QYJ160ghceVKzXPDhiHq+nXh8uXLzMzMjBUXF+P48eMYPnw43N3dwVtYIHDaNDx/8kRccOAAY9nZKNq2DeD5lgUSt29vtXJKR0cHq1evRkREBK5evYpxo0eD8/YmpUT9WvSEBDLweqeuylcmkwkFBQX8tWvXhEGDBjW7rXK5HLdu3RItLCwE1HdEr42336b7p0LxShnW7Oxs6OrqCg7l5RxmzCBp9eTJFBT39yei7elZ08LrdfD4MZUlAdQnvqjo9b/zNdGpUydVcHAw7+LiUlfxA9DxrHLVx6RJNc9HRtJc+NVXFDB+BYd0QRBQVHf//+vaebUGbWS7DW34X4C/v7+lpqbmSUtLy27Tpk3Tfqnz8v8iPD09mYWFBTIyMriOHTvi2LFj4rfffgtra2smk8lQVFQklpWVCR4eHny/xuoeW4CUlBQcPnwYjDHwPA/GGBhj8PT0FDiO41auXFndW1qpVGLPnj3C77//zmtrawvu7u6cra0tTr94gUGzZ+P+5MnMyckJ8fHxSExMFO7fv8+ZmJiIRUVFdXoXJyQk4LfffoOjo2PrM2+tgZcXRcwXL6Ya0Lw8kt0OGULZzsxMImGCQFmopCRa3Ghr06Lm3j2Kkstk9P7Ll4moWVrSYvHyZapdNTenm3tQEBFeGxuq8bp3D+jVC+X6+rC+cgX9cnOhJ4okuVcoSJbZrh0tMnmeMvJGRlT3KYpERLS1KVu2ezdJe0tLiYRNn04EPCCgxtilCnp6evjkk0+QkJCA8PBwMSkpiZWUlHD37t1Dz549ER4ezgwNDQUAXFRUFHr37o1Tp04JKSkpXG1CoVQqcePGDfA8Dw8PDzZs2DCmXjS8//77DACK16zBArW0vCUoLKR68xa2OBs9ejS/bds2aGlpiWPHjmXNEu2HD0n22KEDmaR9/DGdr7Vr6RhradFCODGRsqwXLlAm4YcfgB49YNO1K8rLy0WH0aNhYGzMbF4imW0WnTpRr1o1tm2jAElQUNMGZampRMgtLEjN4OxMWd2lSxsaiL0E7du3R4cOHZCSkoKff/4ZU6dORYvLZDZtouuhntt8UzA2NoZCVxeZ2toQPv0U3MyZNG5HjKDryNycghsWFsj96CPMSkhAp+Ji8JWVdD7MzCiL3b17jYR25cpm69mtra1VUqmUT01NFb///numJYp4f8sWXNfXF28kJlazHbUZFVJSqObz2jW6/qOjAY6Dubk5KisroZbwav36K/o9fox+vXtDFEX88ccfQkxMDBdT5Vxtbm4u+Pr6cp06dUJhYSHVqCcl0XbXDqJkZBDZU9fPNwO5XC56eXnB18iIISkJmDQJFd264cWTJ0AN4WUbN26EIAjQ0dER7Tp1Yj0LCuBhZCTajhrFJJMmQWJsDIMjR1QHDx5kAwYM4OLi4gSuatLNy8vjnzx5gg4dOkCjd2/KWjo5gbewgO7589Ct6s5gWJUtVSgU7NSpUygvL0dFRQUqKyqEKX5+3PGlS5UF+vpMpVIxlUrFBEFgSqUSPM9DKpVCUSU/T0xMxMcffYSMlBQUrVghPm/fnmmVlzPh1i18n5AAQx8fUaNbN+Zhbw+n9HQa8xs3AmFhyN65Ew8fPsT169fB8zycnZ1Zenq6AIDZ2trCtmNHNsTYGDE+Ptzp06cBADExMdyIESNQ3XJKECAuWoRHqakI2b5daN++PdLS0phZWZngGRzMLwwNhZmZGQRBwK+//qo6e/Ys//DhQ9HCwoKFhYVh+vTpHFu2DEhPh/7y5TQvf/tt3W4H9VFRQfeG58+bVTI0Bj09PXh7e+POnTtISE5Gl9zcxn9LW5vmuHrmmUuXLuW//fZbMSQkhOvTp0+Dlou1kZubi8LCQjZ//vzm770GBsCpU3QNt3AuQGUlBTg8PeG1ZAknsbamuUtfnwKIsbE1wYg32d40N7fG30Qup/H9ChnhN4nZs2fzn3/+ORITE+FU5aDfLESRMv/Tp1Nt+qNH1c77rcH27dsr8/LyNCUSSZxSqRzg5+fXdM+/vwDayHYb2vAfxoYNG2ZJpdIfe/fure3j4yP5T0myXxWMMVhbW8O6Spq4fPlyLjw8XHz69KlQUVEh2tjYcFpaWnxwcDCUSiViYmKEMWPGcGqSEBQUhMjISGHatGlcU8QhOjpalEqlbMiQIejevTs4jsPVq1dx8+ZNzs7OTmVkZFR9Q5ZIJFiyZAl/+/ZtuLm5VbuMWnz+OXT8/eHYqxc0R43CrVu3BIVCAVEUcfXqVf706dO4dOmS2L9/fyYIAq5evQoLCwtkZ2f/eS0ZYmMps71nD2UZt2+nbMDMmVRPO23aq9/sRZGy4JWVRNSrarSwejURIlGkG/5bbwEyGS6fPYvn7dujQE8P0NUVXGxsOFRU0HeoSapcTsGAoiL6u6KCFjkqFZFtxigLr5YpVlQQcZ0/nyR09eS4PM+ja9eu6NKlC8vLy4OOjg5UKhV0dHQwevRoPH36lNu/fz/Gjh2L7777DhzHcXPnzoWVlRUkEgk4jsPhw4eF+Ph47sMPP4REImn0YtETBOh5eJA5zcsCV+fO0fvUtW4tgL6+PqysrITCwkIYGxs3TBnl5lJdr9pUx9iYAhNhYXT8pk4lwyv1Am/DhprPfv45navBg4HKSnSvqIDl778zMw0N6Obmkpx540YKbvTq1bgpT1N49IjG24sXNUGb0aPrLpKLiugcbt9OJHvRIgrAODhQpuY1W+csXLgQiYmJOHLkCH788Uf06tVLGDlyJPfSee/s2ZabqlVBqMoacxxHQYLAQMrAJydT9urLLwFjYxSFhKgOJSXxDi4uwvTp0xvfkLS0OrLxgoIChISEqPT09Dhvb2/G8zySkpJ4lUqFefPmsRs3bqCkoABfr14NJCQwDQ0NccSIEczOzq6mtt/RkSSmurq0mK0iIzKZDAYGBqpjx46xkSNHcobPn5MU/u5dMMYwZswYbuDAgcjNzYWenh5iYmKqg5MqlQqdOnUS5kREcKxPn5oxFhlJ2ap7914aIKnKQjGPHj1IejxgAPDPf8LW0xODb96Enp4ezp49i4ULF+LChQvgeV40NzdHZmam6sbXX2NIly68hbk51bWOGoVFixbxx48fF8+ePasqLy/ntbW1hW7durGYmBi2f/9+zL50Sew8dizDsmVE3GQyGt8rV0K+Zg2izpyBtqEhRHNzVFRUKHV0dJiZmRkvk8k4uLtjuLGxRDF2LGQyWfVDU1MT6ozyL2vXIl8Q4BwTA4WJCQ6+/z6mKZUM7doJBV5enGrLFiwxMsLz589ZdHS0eG3bNmb1++/4af16wcfUlCs1MFBd276dN1GpMGriRJWnpycfFxeHpKSkmmt/8GBo7NkDj9WrceHCBVGhUDBHR0dRR0eH3iOKqOzZE/fGjhWvyGRwd3fn8vPzqd5ZpeLbZWVB19S0erzOnTuX//bbb5Gens4yMjLQsWNHwdHRkcZNp07UMm/fPjIbjImh4Fdj15BCQVL0V3TfLikpQUVFRXXAA127UhBK3SEiPJzGVWJig8+ePHkSxcXFjOf5Zok2AFhZWcHc3Fzctm0bpk6dyuyaazU5bBhJyZvfcCpjmjSJVDFHjgAJCbg/cyZuKxTwGTSoVa02Xwn37tWUWlha1g10/i9AEATcunULPM836NXeKPLzSbEQH08lBG+/TSqoVkIulyMvL08TwFqlUvmdn59f0wYCfxG0ke02tOE/iC+//HKNrq7uhmnTpmm3r21y8f8ZevbsyXr27FmHdOTn56tCQkJ4Nzc3tn//fshkMpVEImHl5eVcZWUl98cffwhr1qzhAODGjRsqiUTC+vTpwwGAo6MjHjx4AB0dnerspK+vL4YOHQqO4xqNfPetJ4PVNzIC3n4bfFVNpJeXFwdQzfnDhw/FiRMnsoKCAvZHlbunKIowMDAQFQrFm89qh4dTxrKwkLJN167VSOAWLCASk59PMmY3twb9VVsEtft5/YV01QKuGlV10u7m5pCHhSEmJgaPS0s5Z2/vV28pl5JCtWmiSO6ns2YRyR86lBY0FhbUY7QqA8wYq+sQDZJnHj58GAMHDkSXLl3Qu3dvMTw8nP3yyy+ws7MTZsyYwVXVTXMcxzUvfW/XDvDza9YUqBqnT7+893Q9SKVSuLu748KFC9z169cxefJkeuHf/6Zz++67VBrg40MksTY2bybC19SxVgcHliyh/wIIzM8XNKRSvDNpEodbtyigsn8/kcd27YjEf/wxBXMsLYlAc1zD3/DyoiBIXByR6H//m86LuowhJoYWVXPnUhDll19ocf2GWw3a29tj/fr1+O233xAWFsY9fvxYWL16dfNs28iI1BdXrpB3QBMICwtDTk4O5HJSKbq4uIhISGDYv5+CTwsWEHH+7Tc6fj16wLV/f/7h06eo7nPdGEaNomNUhYcPH+Lx48e8UqlUEztRqVQyqVQKa2trzPTxgaJTJ2xeuxYKTU3I5XJ29uxZLF++vGbsamhQcG3PnroBFwALFizgt23bhu+//x7/+PRTsHHjKKAllUJHRwc6OjrVbeA6derEDRo0qHqfd2/ezGUFBOCsiwsMAgIwYcwYSHge+OYb3EtOBpKT4aF2N64HQRDww3ffqRbv28cbWVrSnFRF4iQSCbp164YffvgBMpkMVlZWeIekw+oBQnOnszOR9MREoG9faGhoYNq0aQwAj6IiQKnkkJSEie+8g8//538Qa2LCNCwsYG1gQPOIRELS/V69oGFhgWFffSUaPX7MDsyejQk5ORKNefOofh4ADh+G8ZUrDZ38AwKIFC5fjjmHDuFEv36I79IFac7OGDBihND5yy+5zvXkyg4ODnBwcGAKDw+U2tpi7Nix3OXLlwVp377s44wMaBw8CHzxBQ9QwE0ul9dcGEOGkEIkLw9jxoxhMTExYnx8PPvpp5/QrVs30dXBgT2SSnFfT0+cNXVqw0Dzd9/RvnfuDADIyclBaWkpdHV1MWzYMMHNza3u2LS2Js+MqChSRnXrRkE9F5e635uW1mR5R0tw4sQJlZmZGSwsLOhYjRpFBF4NHR0yE6t3z0pLS8P9+/cBAPPnz3/p7zDGMGvWLLZ582acOnVK/OCDD5qedKZMocBubXO81FRSJn35JRAcTI8HD0givnFjtellXt++kMbF1S1H+DOgVFKAVW165+FBKoT/JYSFheHq1asCADaWAlPN739YGKkBNDXJgT0igoJgapl5K1BLrv4Nz/MTvvrqq/T169fPbPUX/RehjWy3oQ3/IWzYsGGkpqbm5wsXLtQyeFkd4v+HGD16ND9ixAhIJBLm6+uL2NhYLiUlRRg+fDi+//57AGBZWVlgjCEoKIgHAAsLC5w4cUK0sbEBY6xB3+tWZ/379iVC0bNntXyrffv2WLFiBQMomu7t7a0qKChgjDEuMjKSVROnN4GsLMpg6+hQNnPAgOrsVTWcnUk+/P339L5+/ShjWWW09GfB2toaVlZWiI6Ofv0vO32ayJtUSkRvzhw65h06UNY4Lo7qvQwMKNPg4ECLyiq57PHjx8XExEQ2cuRI9KzK7I8aNYp5eXnhzp07uHXrFqeuLX9ZhqQaCxdSLfTmzU33Fw0KotdfIVubnJwMJgjwtbIiRcKoUZQxHjyY2hI1ZuCTm1vTL7UVGDduHLd7925kjh4Ny+XL6cnjx+nfwkJaFHXuTAZFublEKj//nBQTRkZUPjBvHi2SJ02iMTlhAr0/LY0k6wMGkOmVkdErZ8Fag5iYGCQnJ2Pq1Kk4cuQI5+/vj6FDh2LAgAEN3qtUKpGUlASVuzvu7d0rcF27Mg0NDZafny907NiRy8rKEp8/fw6lUskkEglsbGyU5eXlDKLI6+3axeRdu0Jj4EDa58pKWvgKAh2TW7dwNyJCNDU1hb6+ftML0OhoWrSPGgUAcHFxwdWrV9VKGfA8jw4dOqCwsFDFcRwPCwvk//ILOoGctzmOgyiKqFO/0GNwgQAAIABJREFUW1FBJMvAgIJTtRAbGwtBEDB9+nQwjiPZ+8WLpExpBLV70a8oKsLJsWPxLDMTTzMyYP/NNzBwdsZJNzexMCaG6ejoiEFBQWLnzp1Fb29vXi6XQ6VSoX379nj8/fcoycvjLd97D9zkydXXTpV8XRUXF8cbGhqKxcXFLD09vVrhVAf379clXzk5Nb2ke/SgDNkXX0Bx7Bhw4wYiPTwgGhnBGiD5/qpVFLCqMoHrePcue5qaCsWWLcjNyUG72Fjgs89oPP/rX0RorK1p/lm0iFy81eZOHTui7PFjxH73HWbMmKE2xWr2RiLNz4dhjx4wdHKCk5NTzXtXriQ59q5dMFu/HnK5HNWu1ozR9ly/Dvdx4+Du7s6io6Nx584dMfz4caYbGIigKVMwd9o0rtFjpqdXh2xbWFjg3XffxdGjR3H37l3RvZ4ZXzXc3al0KDWVShLmzyenc3WAbM0aCrDSPbdZlJeXIyEhAc7OztU+Genp6fzatWtr3rR5M/3eiBFUv719OwX+6sHGxgaWlpZCVlYWd/369RaVZqmDvba2ti8nwmfPUrZ68mQKMIwZQ/8fP56uUR0dUi3VgiiKiIiIQLdu3f5cog0Q0V+woCZ4ampKgdGiolYHd18XZ86cQWRkJLy8vDB48ODmzTxFkQJsX39N5qaLF9PzwcEkI2/hGkzd/UVPT69ObbhKpRoAoJleqH8NtJHtNrThPwB/f/8uUqn08LRp0/4riTZAN051BkdHRwe9e/dmvXv35gFgyZIliIyMFHft2sUAwMzMTFVRUYF9+/bxFhYWLDc3V5gzZw5rsvdzS8HzdPO9cYMIbCMZOm9vbx6gmrHo6GikpaXBzs4O2q9DOOLjKZP9yy900/L2bkiy1bCyokxOfDwtLvfsIQJ1+zZlKhwdX307XoLaN12lUtnQMKUlKC8nUrtoEe3HN99Qz8//+R8ivKtXU4uklStJypqQAERFQfzhB5TFxOBqt25imb4+kxoaIjQ0FE+ePIGxsTGGDRsGAwMDFBcXw9HRUaWtrd06xYFMRvL2xYsbd4AtKiKSfO1aw2xQc5DLAbkcA379lRtx6xZk06YRwZ4wocZduCmsX0/SxlYa2ZmYmIDnefHZs2fM0tKy7osGBjS+AGoTpIa6NvD6dZLkZmaSCdCzZ1TK0KsXtT8qKyPCoqX1HyPaWVlZOHXqFMaPHw8nJycsXLgQu3fvxuXLl3H58mUAUDvTQ6lU4uuvv4ZKpULP2bMFz/h47qGmpooxBkdHR/7+/fuijY2NMHPmTN7Q0BDa2trgeV6C9HSUTZ+Oq/r62Kuri6XqIFpGBpGFTz+lEglBgMbBg0KWRMIfPXpUNW7cOL72dZCRkYEnT57A2cMDRtu2VT8vkUjQvn17JCcnw8fHB4aGhuzs2bOim5sbh5ISYMkSmO/fj5k8j5CQENy7d09cs2ZNzQRUWUmGbatWUab+4cM67aWCgoLQp0+fasd+5OVRXWwTZLsamZnQS0/H7F9/BYyNcefmTUErMJC7ZGEBXV1dDB8+HA4ODiwlJYUdOXIEDx8+BEDZJ83iYizdsgXjd+wQuXnzGkyWjx494ufNm4dOnTqxPXv2IDo6WrC2tm64+tbQIGXGzz/TIp3nadzPn0+lDFVEfG9iosAY4yQSCdyreo7L5XIgLg55t28jp7JSbYiJsrIyFJuaInzIEIwbN45UI5cu1agy+vUjr4P+/cmH4LffiGylpEDPzg5ubm7ioUOHmJGRkcre3p4fMGBAnQBFHRw4QMdb3ZpLDVNTInmBgZD84x/Q0NAQCwoKmKlaPfTWW3WubVdXV7i6urLLK1YImpWVnJLUU43/5po1DeYPU1NT+Pj44MSJE81PGIyRtPzaNVJIeXvTtqxbR4ZfLVD4PH/+HAEBAWJBQQE7fvw4pFIpBEGAvb29SkNDo+b3y8spYJeSQvNIM/fo6dOncydPnkRcXBxfWVnZdKBUEADGoJWdjSHl5ULw/fvc4OBg6I8YQfvStSsFBT/4gMZTdDQFeMvKKKM/ezbNay8pj1B7wLyW70VLkZ5erSIDQOPC05MCsv8hsi0IAq5du4b79+9j8eLFsLS0bJ4p5+VRUNzUlK4ldbIjK4uCuN27N/nRsrIyvHjxojr4du/ePZw5c6bOexhjU0RRPP3JJ5/8pc3RgDay3YY2/Onw9/fXlkqll0eOHKnfol6p/4WwsrKClZUVZ2pqKsbFxbG0tDR+1apVOHPmDMaMGQMDA4M3V7g+eTLJmQcObLYe2tTUFG5ubqqwsDA+LCwM7u7u4oQJE1oXAY+IoOzTixdkIhIW1jJiNXgwkdSDB2vMR1asoOi4umf3nwCO4/Duu+9i+/btuHPnTqNZxZdCS4syp7WhrU2LYKWSiLaPD8mce/Sozlal+vri0g8/YLBMxkYaGKDy2TPkX7ggZru7i3cNDLh9jx9j3sqVSEtLE/r37996aT/HEbHPymr4mihSVjE+vmWmaEolLehzcymIsGoVdBYswD5HR9glJmLcsmUv/47ERDKtag2xR3W7O1EulzOFQtFy+WOVxBhvv02P9HQi5h4eZDS2di2N08JCCoJs20bZoAkTaFsFgZQhBgZEBtUmekZGry0rP336tGhoaMhcqo5Fhw4d4Ofnh7S0NISHhyM6OhqBgYHo06cPJBIJGGPw8vISfb28OCxbBqfHj3l1f2dvb2+SJ6tRWkpO6Tt2QHvvXsRcvIiy8nIUFhYS0TE1rWkVxRjw3Xd4+8ABfs+nnyImJobv378/1AGNyspK7N27FwYGBkJQUBC36tQpVH73HSz698f58+eF1NRUTktLC927d1f3G6YD8+ABBTd4HtHR0bh+/Tq6dOlS47KsLrfQ1SXjt6QkUoPs3Al4eKCkpARKpRLe6iAKQO/Pzn75wX3wgOYOY2MgIwN91q/ncOECupCDcPWJc3BwwLp168DzPPjkZIjjx+PFkSNQrV6NbiYmDU6wmqiYmpoiISEBmZmZaNBWr7ycMqgffkjBQp6n/8+bR3MhY3Uy3ra2tmJW1fV58ODB6h7V0sGDoZmVJUquXhU1NTUhk8lEmUwGxhifm1vlq2RhQWR4+nQi2OqMub09ZdF5nqT5Q4cCXl4YsmwZyxk3Du3u3uX1jhzBuRUrML1DB7oe1AZmanz6aV2pdG2MGUOPa9ewbPNmljtpEqrJtp0dZVVjYmqukfBwDF68mPu8aryqpf4NcPUqBfLWr6/z9K1bt1SCIPCNthGrD0NDenz9NQUitm+nvwMDKZATEUGZcHWQtVaw9cCBA1AqleyTTz6p73Bfd+7V06M549kzmh+a6iVeVgYDpRKdOnWC+aFDUGRkQDMzkxRbhw4RYe/cmTLlEgnw5AnSduxA5/37ueClSyF/9owCotraRKZVKjov69fT9ZOYSJnsVataNR+5uLiIt27dQq9evf7c7HZ2drVKoRqZmRRUa0m99Gvi1KlT1V1YZs6ciQZB2vq4fZvucXp6FCCvrUy5f5+y8o0EVhQKRbUHBwD4+fkhKysL8fHxADmOvwdgJwCIoljo5+f3lyfaQBvZbkMb/nRIpdK/d+7c2djDw+PPlzL9H0fv3r2Zra0tfvrpJzx//hwuLi5NR/5fBxs20I36/Plm3zZ69Gi+b9++qKiowP79+xljDGPHjn25fD0tjRYBNja08Bs6tMZkrCUYPpwWRamp5FQOUJayspJIeEICLcTfcO0sANy5cweMMYSGhsLBwaHxHsPNYflyitTXaukFgCSdUik5xhYV0UJPWxtwcoIoijh97pxYamnJLFeuBKerCy2FAlpPnrB2x46xTllZeHz4MKIDAuDJcZzrwIG0kG+tS78gELk9dapurdk335CC4NGjpj8riqSIsLIiObZKRQvYo0cBOzsYCAIKY2MRGRmJPn36vPy4xcZS1qCVkvXo6GiUlZWxtWvXotpsqTUoKgK2bKF9vXaNggtr11K2e+dOWrRaWZEyQRTJWCgjo+aRk0Mk4OBBMhabMYOe19Qk4mprS+oLlYq+p0OHRqWGKSkpiI+PR8+ePeHh4cGCg4MbBA5sbGxgY2OD4cOHY/v27fj6669hYGAAURTh7OzMoKNDi9Uq4tIA9+/TdWNgANy6hYS0NIAxEQDLz8+nueXuXarnHTuWPrNmDbBqFVwCA5GemorKysrqr0tPTwcAvPvuu9y///1vMbeoiN3Ytw/ZN29CpVJxS5YsaXjeBYGOS3AwAOpyYG9vr5o6dSqRFpWK5qNhwyiwIZFQBuyTT2iMP3+OS3eoBW0dpYlMRlL/iIiaQEp9lJfXrf8ODaWMZxOtejQkEspOdu0KNmkSTNUt+5qARCJBcXExzp07p+rXrx+rzmofPEgBqXHjqFf7woVE9KysKPgRF0ek2NmZ5N9VGdwRI0bwJSUlYmxsLFu1ahX09PSI5KWmAk5ODMXFrHawcu/evSpjY2MegkD7eP48bT/P09hljIKqAwfSB8LD6V+FAs+/+04sePSIDTQxgW56OvoNG0bHc9Eiuia2bqXvO3SIFEnTp9fU2zaGnj1x39dXpVtUxCMujs6hjQ2RlISEGkXS4sXgZsyATceOSEtLw44dO7B+/fq65QQAfb6qxrk2CgoK0Lt3b5GpmbZSSQHEzEwaS0lJdDyPHqXXBg2iGm51F4mcHMrUf/45kePMTJqrDx4kwuzkBEybBm1NTXHpV18xbt06cNu2Efn6/Xea++bModKYFSuofvfwYQqgDB5MpTijR1OARSaj6yo7mxRlHIcQLy+8Gx4OMTmZrkt1dnvZsppAZ3ExoKODWB8f8Z6+Pps8fjxM/fxqDsLGjfSvOqgxfTqV6axYQVLtHTtafL91cXFhDx48aNF7Xwt799Ixrg0bGzpetfvT/wnIy8tDTEwMpkyZAmtr66YVHGr8+isFZBYvJvVJbahUdG3Uv78DKCwsxO7du8tLS0uVAPQAwN/fv/ZbNPz8/P7t7+9/HICLn59fyOvs138T2sh2G9rwJ8Lf319XKpWuHDp06P/d3l7/YchkMiiVSpw8eRIAEBgYKAiCgLlz53JWTS0qW4t+/SjjoG6T1QR4nq9uRTRx4kQcOXIE3t7e1U6shYWF0NLSqukPrG7XtHcvSXEHDGgdyVZDIqEMQWhoDdkGaGEycCAtXkpK6Mb3MqlyK5GZmQlnZ2chISGBO3PmjODo6Mi5ubm1POgxZEjzJFjdKumLL8g9Ny4Oz58/R15eHgOo13f//v2JmHfpAnz8MQwB2KWlIfTQIZVXdjantX07g6UlLaoNDSk40bXry43keJ6kpGozJYAW5TNnNpSIqhEWRov09u1pkacO0qj73ldF9zmOw5QpUxAQEIDMzMzmyXZODpnl/Pxz89vbCNTSy1b1Qlfjzh2Se5aUAHv2QNTSwtUrV0TX6dOZybp19JqxMRG/jRtJWq6nRw9HR9TJps2s8rMpK6PxWFhIcs6iIvqeS5fo+hozhhb9Zmb0vh49kGlujmvnz4vl2trs9o0bEDkOjDH24MEDuLi4NCAeurq6WLp0Ka5fvy7I5XJ4e3tz1QaSycn0GxERNR/IyqLr8OJFqvWtyggfOnQIAJiXl1dNH/SMDDoeVRAEAQLHwWn+fJS6ueGMuTlkMplQ5aDLOTo6CgC4xYsXs6tmZpjo4IDT9++LHh4erNFzfvgw9aGvysBmZGQIjDH+6dOn5EGxZg2N23Hj6o7fceMo+LFxI/pv3YrY2FgkJyfXuAZLJLQQrrXtDZCURMfd0ZFIo64uzU1NYedOyiwmJLy077YoUpMGhUIBQRCgp1Ry4siRYCdPUiaX5+naSE2lbfzwQ+DECco0u7vT9XbuHJGw4cPp4eEBLS0tJooisrOzq9s5omNHCpDVQklJCZ49e8ZP8Pam8hBNTXoPz1Otc58+dJ01BqkUsr59mZiWJnT196+JBFH2jaTXFhZE/hISKDAWEEBke8AACpL17k2BFHWZhbY2YgcOhE9CAgUX8vNpm378sYZsp6URuTI2Ru+HD5GWlgZBELB7925xyZIldaMa3bvT/J+ZSb+fmAjY2WF6Whr/6NIlCN9+C04U6T526lSN2V9ODgU7R42i7KO9Pam59PXpuDx4QD2e6eTRv5s2kZEYQOfI2BjmgYHihaFD2ViJhBRg6vtMu3b0XZWVRM4BOo+CQMEdgFpTGhjQb+/ZQ89dugQAWFdWhi0SCcaZmsLV1bVmPA4fXrPvOjqQy+W4e/cuA0AO7c3B3p6ucYmEAjmtUAyp1YRlZWWvVyrWHJKTaZzUz2D7+jY9Rt8QysrKsGfPHsHd3R3Ozs6sWTVEXh7NR2PG0P25MaVlUBDNI42ck9jYWBQXF2sBMAHwNoAwxtg3oigOrnrLRQDw8/PLBtACWc5fB21kuw1t+BMhlUo3Ojo6Sk3rO0T/haGnp4ePP/4YUqkUZWVlOHnyJJeQkIDExES8MbKtbv1z4gSRwxZkiLt06QI9PT0xKiqKeXt7IykpCQcPHgTP8+hcWKjqmpfHGyYnI9fODt3DwyF5lXrn2rC3J6MZdYZGjT596KGWBCYlvZpbeRMoKioSHBwcuMLCQtXTp0/5p0+foqioCFFRUTA1NRVmzJjB6TWRGave7mZquarxySeUUf3tN5hv3QrnRYuQUlCAsrKyRt9ubmODyR99VFcenJRE2Z916yiD6upasxCo3eaoNnr3pgX+xo20IBs6lLJZavIIEAHbtYuyQt9+Sxm5xYspS9PId1ZWViI0NFS8ceMG09DQENu1a9f8gHr6lBaHrVQN5OXl4dKlS5g8eXLLjeGAmiz8jh20H5s30/Nk5sWuAhi9aJHQ64MPOOzbR4Z1pqa0yHdwADQ0cO3aNTEkJIQBwLJlyyCKIkkRtbVrFmW1TZumTKF/FQoi2XI5cP06inNycOXyZbgXFTG3igoo9fUhGhsjVi4XpXPmsEgnJ9Fp4UKmI5WiTEcHzNYWmkZGMDQ0xFtvvdUwRe7qSudbpaLr+uhRarHTrh0Fc2oFfnieh0qlgq+vb83nvb2BAQMgiiJiYmJw6tQpqFQqmKxcKVh268ZpZGSIpqamnIWFBezs7GBubs4BFFwZnJAAHD6MOUeONH2+Z8yg4EUVxowZwx04cAC7d+3CyqdPoTNsGDB8eOM94JcsASorYV5YiH69e+PQoUMYN26c6OrqSr/39tu0r+revbUhivT5X3+lYMc//kF1l41dEzt2kKv7gQM1XgtNQBRFJCcn4/z58yIAtN+xg419/Jj7LS8PnUtKYFRWVp15lMvlCAkJES3KypiFszMszcyqpQsFoohYGxvkv/++oHvtGvS3bUOHrCzOzsEB4UZGyMrKqqlPB4js7d9fnWlTKpVgcjmMZs2irOa//lXz3k6dqPWVStVk2Y5CoYBSqeQuXrwojhgxou5BMTIi8vf553Rs3n2Xxpko0nixtqZjtXo1BZc2bQJ69YJCoRCZuzsFVnieyO/bb1Nwrls3mnsiIwHG4OLiAicnJ2zdulWV8fQpf/3ECbGvhweTfPopBWc+/ZSyixkZNeqIbt1gOWAAghQK8TcTE8xatYrByIik0y1BZCSNFzXZrg31/arqmA8bNYr7ITERvpWVkNVWB3zzTc1n1q2jOfHkSfpOtS9E7axnPU8BbW1tGBgYqG7evMknJCSobG1teXd39zpqsYMHD4rZ2dnV5yQtLa3puupNmyijrQ6e3bxJwTa5vEX3RXXZQkZGBjrXl3m/KaSkUPa9PoyMSHFQ/x7/BrF7925Vhw4d2KhRo7hmiXZ8PN3r3N0bBv5qIyCADAcbgYODAy5RUGW5n5/fl/7+/ma1iDYA/Lkp/P+P0Ua229CGPwkbNmyYIZPJFo4ePbotq10P6kyxjo4O0tLSYGVlhV69er3ZHxkyhLKW0dHUXusl4DgOAwcOxLlz56CpqYnr168Lvp07w/PSJS5LELg4Q0MhaupUsUwQuCvffy8aGRlxVlZWGK3O5LYW3bpR1jAlpfGarnffJaKYlkbZs+Ykji3E7du3UVpayvXo0QN9+/blHz58iMzMTCE8PJxTqVTIyMjgTp06Jc6aNavxu3Z8PMmzS0tb9oMyGTBxIqRpaRg+ahSuvPsuIhQK0dfX9+UrDx0dOm9ubtSaqqiIyPfjx9TmS1OTZI2dOtHi2NOTFjSMUfY2O5skk7160VgAaMF++zYZ76SnU2arSmHRHMrKynDjxg0GAM7OzkythmgUFRW08HqFHqv5+fmQSqUvz/TURno6HY+BAylAU8vRXxRFcByHPn36IPDWLa5HdjYkQUFEMAA6Zn36IPXDDxESEsKMjY2Rl5eHnTt3AgDGjh2LnJwcQVNTk3N3d0ejBoZSKdC+PZ49e4bTpaV4UV4OmzFjRLfZsxljDFJBAF68QI+KClZ+6xauHjzILv76KzxlMuSFh8O4oAAFenrIsraGVXY2pBYWovWKFexZairsvbzAtWsH5d//DsmxY5R1cXQko7tG3Jp5nhctLCyYet/z8/OR8be/CRBFmGzdyh07dgwAIJPJhNyKCm52584wmDOHITu7cen15MkN6zBr49gxkiDXysqqM+r9r19HfGkpQszNoYiLqw4E8DyPXr16wdjYGKGhoaKrqysb4u8PVyMjJPbtizNnzjAnJydSNmRmUneFadMa/nZQEGWEO3WibQgLa1hjWVBA142pKc0lLQgQRkRE4PKRI1i5axfTfPQI/OXLsHd1Ze0rKnCua1fMqvqN8vJy7N27V8zJyWFjT57Eyd694RkejoyMDKhlu9ra2qKZmRlT+viwFyoVHkdFqfTu3+ffPXwYt6Ki8FRLCx3U8/6tW2RGVkW2hZMn4XvhAp5+/jk61FelcByRwNTUBi3ARFFEXFwcfv/9d+jr6+PBgwcNyTZAn/3jD/IxMDCouUeoM8CLFtUQqAcPABMT6Kam8g4+PjQPXb1KaouNG4kAGhuTSZuZGcmkk5LAbdqEdj4+4oyNG1Gqo8PuffcdeuvoUObY2JhKblavpjnL0hLgOERHRyPl4UPm6OiogolJ67wrnj9vsRmXcZVyJzo6uuG9Vy6n+VNfn7LeHEfS4rKyugqTJvD222/zR44cUT169IiPjo6Gra1ttVqsoqICiYmJTENDA1paWuLUqVNZk0RbXRIzb17d53v0AD76iIIWzSA7Oxv79++HVCptWZ/pV0VaWsOWmwCdY0Eg5UdzAexXRHh4OEpLS/lFixY1X/q2fTutIfbta9gyrzYePqR7otpHpgpKpRKRkZG1kyFfAPjSz88vx9/f/28ANgGoAKAPIP919um/FW1kuw1t+BPg7+/fTSqV7po3b57WnyZd+i+BoaGh4OTkxDWa+XkdcBxJjw8coEh8CyLL6szezSNHMD4zE53j4zluyxZY9+rFrKv6VCqVSoSGhgp5eXliWFgYS0lJUc2aNYs3MDBAVlYWBEFoWYaeMcoy7NtHdY2NoWtXChb8/juRb339Vjtbq6FUKnH58mW89dZbUGeuu1OGmhs2bBiioqJw5swZvPXWW00fKEdHIgCtidJrawMffwzt+Hj43L2LF6amLOPpU1jVa/P2Uujr1xiuzZhBkriHDykztHVrDYnu0IEyMs+eUdbpb3+jesEJE2jhM2kSlRm0on+oeiHTVKuqOjh5kr77FdQsJSUl1bLdFrW9O32asugeHhSQqDU25HI5zp8/L0ilUjZo0CAWHx+vCl64EMOTknjk5QHGxhDv3MG+XbsE6wULuLmAaHv5Mjt//jzu3r1b9fWnIZVKOYVCgaSkJCxcuLDJTYmIiEBWVhYGDx6MgQMH1sgZOY4ICAAta2tYdemC4OBgVZZMhq4zZ/I9Bg+GdX4+bDIzkR8Whrg//mDR+/fDMDcXWX/8AcdHjyAtK4NxWRktuufPb9LkTi6XM8aYmJiYyAICAiAIAnrKZODNzLhz+/dj/PjxOHnyJJYsWcLt3LkT5VZWMAgLo4WwIDSsPbe1pYXqpEmNt8CxsCCFRS3k5+Whf1AQek+fDnHsWFhXKQSeP3+O1NRUPH/+HImJiYJCoWDFxcXs1q1buO/sDPeICOhlZQmZosg9fPgQbm5uFEwyNW182x49ogDczp2UjWqst/GwYUQi1VLfpqBQEBGfPx/uz57hbP/+KJg/H+319asVIQMTEhAQECBu2LCByWQyyGQysbKyEksnT4bWv/+Nq+3aiVeuXBFVKhVzcHBggwYNgpWVVd2JYvJkHgD2fPONsvPlyxKLgAC6Xnx8KHu7ahXta1oajLduRe7IkeKtx4/hpqHBSkpKYGpqioqKCpSVlanc/f25Ej098erUqWJlZSWrrKxkCoWCKZXKagl8WVkZlEolFxERIXp6etK2PHlC5/PGDQrcbdrUePcCoMZI7cABAEDeZ5+xuIUL0U1Pj1QE1tYkt/7iCzIczMqigMeaNVROY2qKqW+/LUns2xcHjx/H2/b2JDuPjKRzM2cOXbP29sCsWYC/P4qKimBiYiJU1/y3Brq6VKfdQri4uIh37tyBp6dn3fZQM2dS9v7KFTo3AMnrW2jeaWFhgVWrVvE//vijmJOTw9REOycnpzqQZ2hoKCxfvrz5SS4zk+a3+ve8R48oQPIS7N+/HwqFAjzPt76NaGvw4AGdv8aQkUH3ptpqmzeE4OBgsUePHkyrqbKu4mLA35+UMQcO1C1ZawxRUaRaqxeUCwwMFMLCwjgAAqiNXnWk08/PbzOAza+1I38BtJHtNrThDcPf37+TVCoNHDNmjFarzaf+gujcubMYHByM58+fi9OmTXuzWqsJEyiL11T2uB5mduuGvGPHBPu8PE575EgOBw40WORKJBIMHjyYBwA3NzccOnSIj4+Px/Xr11VFRUW8np6esHr16pbd2RcsoMzBhx82XQft6kqEOzKSpLvXrlF9cSuxZcsWQVdXl2uqf6u6bUez7cA++YQW71Ontvr3pY6O0E/C6L0cAAAgAElEQVRLQ9aGDTDt3Zt6Pb9Oj3NjY1oAAkSqc3Np0ZOWRlm+r76ioMCmTfQ7kye/cpurGzduiADY7du3BQcHB67J61qlogXL5tavPc6fPy/eu3ePDRo0SOBetjIURQrQJCXROWmELFy5ckWIiYnhZsyYAZlMhhkzZvA7duyAQUiIaBcayu4vXChERkZylZWV3JB582BTWMhQWopRJiYY5ecHQRDw6NEjuLi44IsvvoAgCM06o1dUVIgAmKenZ7Muyu7u7nB3d6+zeuaMjGBkZAQjJyfYzJyJwsJCaGpq4l/ffIN8PT304XkRsbEMeXlUL7x1K2Ueq3pgA9THGwCePXvGDlYZFZmYmKiG9e7Nc15eeB4TowwKCuI8PDyYkZER09TUVGVnZ/OWbm5E8h48oGxlbfA8ydaXLm14jBMS6JqtLbkURXDHjsEkLw8xHTuiT/v2UPteq83g1Lus/qOwsBAZGRlw+NvfwA8axKn8/cG5utKLMhm5+r/3Hkk/1Xj4kIzffH2p/nLixBppuLq2d8IEkimrvQfqQxConlRDg8ooEhKADz7AnagoESkpzOiLL+rMSQ4ODnj//fdZSkoKLl68KPbo0YP1798f3IMHwNmz+J8ePRhe5pwvCACAcomEPezTB31Xr6ba+5s3yXBSTVZ79ADCwuCQlMSeXLwoJCcnC+np6bympqZoaWnJZDIZ/+D996FpaMhcjYygp6dX/TAwMIBEIkF4eDhiY2ORkpKCx48fM09PT1KdmJuTVFxLi+qunZ2bba8mVG0zABh36CDmd+nCUFlJAT9r65oxKJHQIyOjJotZFYixNzKC1oUL4h9//ME+XLsWsh07KDOvJpF37pCM/rff0KN7d4S8eMG9Uo1xXFzzSox66Nu3L9u9ezd++eUXLFiwgIiZnR0FEupnYletouOlVL605ZYahoaGYk5OTvWYOHnyJARBwIcffgiJRNL8HHfqFAVJq0wL68DAAFi8GIK5OZ688w7s7OwakGmVSlU9D2lqaqpJ4ptHaSlljTdtavz1MWNIRfGGkZSUBLlczvrUC/ZVo7iY1CzTplG/+5dJ7ktKKGi3fXu9p0sQFhbG8Tx/V6VSeQOo9PPzE9/MXvx10Ea229CGVsDf398cwEiO47pKJBJzjuO0GWOGAGwVCoWNKIq8RCIRhwwZInV3d//Lu4+3BL6+vryNjQ2OHj2KFy9ewKQlrZlaCsaoBm3ZMjJTagqxscDOnehgYYEOw4dzGDu2RU7Y1tbWMDY2Fi9dusRMTU25t956C0eOHOEeP36Mrl27oqKiAjt27FCZmZlh5syZfAMOpaNDWdjLl1/eT9fdnWqgjY1pEV3bcOYlOHXqlFhWVsYtWrSoSSJkamqK3NxcbN68GUuWLGk8O19URIutVwSTSmHv5qa6vWABP9DRkaLtHh51+g2/MkxNa+TiAAVX9u6lxedr1uq1a9eOmZqairm5udzOnTsxePBgDBo0qOEbz58nWWpTBKcJVFRU4N69e2zOnDmwsbFpflEYG0vj+YsvKIPWhGw0JiaGc3V1hV2VbNDExATvvfceIt3cWNDx42LRhQvMc/Ro9OrVq8a99tgxIpaZmeB4HupWXTY2NkhOTmYnT56Eo6MjBEFAQEAAAKBHjx7i4MGD2aNHjxhApSGvA4lEAhMTEwiVlfAJDoaFm5to8fe/M8TE0Hm0sqLgSkkJZSjbtwf8/KBZtZh0dXWFpaUlgoOD8eLFC14VGQnO1hZz5syps97R1NRkd+7cEd3c3BjWrqWx3RgiIxvvLfzTT5SxCg2teW7HDphlZeHcwoVCyt27nIWTU7VBU1MwMDCoMSfcuRN8RgYRDDUx79evoUlaRgYR7UWLqE3S8uX0fHo6HR+epyxWY+Pw5k36zgkTaJ+vXKEAkbU1FJaWuHzyJOvXr1+jRE9bWxvOHTvCuWtXhv79SWkQGEgZ/gcPSFXyxRd0PQ8aROT2rbdIhXLzJs2pv/yCJdbWPNatw7P589Fp3z4iAn/7G53XoiKaDzkODg4OcHBw4GizbyImJkacP38+TWCpqZTND2nc8Lh79+44e/YsACImx/z8hLf++U/u4DffCCpXV2DPHjhfvoz2ERGcrFevOoaHUVFROHHiRN0vFEU4xMczh9BQkmsfPkwZYJmMsq9Ll9I2NRHUnT9/PtuxYwfuHj2qGsTzfJ35vuqeJ9++HREmJoK2tzfjeb716wd1WUELoTYhtNTVJXVDRgYFlRobN0VFtM8LF1JpTgtQXl7OOnTogOvXr4sJCQnis2fPOBsbG0Emk708mOjrSz4UTSm5fHwQ+uiReOXgQaajoyOsXLmSk0gkKCsrg76+PhhjKC4uBgAsWLCgRUS7rKwMR48ehampKVxcXFrWn/vBA/LJaGo7PTwoCPKGERQUBEdHR8HQ0LDuvokimSVu2gRcuNB0J4P6uHSJznu9lmGBgYEAAJVKNcnPz6/ijWz8XxBtZLsNbWgB/P39NSQSyccSieRDW1tbVfv27XVkMhmTSCTQ1NSEnp4eTE1Nq11237gk+r8c9vb2sLW1FQ8ePCi89957r6aTbgrdutEi5Ny5GqdsNZ4+pb6w0dFEer28WtVuSiaTYfHixSwpKQl2dnZMJpPB19cXp06dEpKTkzlzc3MUFRXxAMTt27cLc+fO5Rq4fnfuTNnql5FtjqNF9fPnFKn+4w/a3pcgJiYG0dHRbOHChY3X3IIIzsKFC/Htt99CoVDgp59+gqWlpTB69GjO2tqa3iQIFLh4DbO2O3fuiA8fPuSTdHWRGhUlenz3HbR4XrS9do1DawzBWoIFC+jx6FGDGrTW4tGjR6rc3FzezMxMVKlUYvfu3Rsu3qqkq5g7t1Uye6VSiR9//FGwsrJqnmgLAsk4t26lbGftnsz18PTpUxQXF2NI7eADAH19fXiPGwcoFAy//kqEqLaSYdIkyrhlZZF8NDQUsLDA0KFD8csvvyAqKgr367UrioyMZJGRkQCAqa+geGgURUXI/uwzSBmD2bp1DFZWJJF1cyPDPHUtbb9+wKFDKAoJgcbf/oaxkyah+8iR4LS10bdKTsuFhTUwGIuLi0Nubm7Nse7Ykc6fvT1ldmrXCG/YQNfeli01z4kiqRdqZT0RFkZZ8EOHMEyp5Hbt2oWQkBDhnXfeaXlGzcuLsuuzZxOxadeOAiq1M+55eUTsLl6kDN/48fT8ixd0fE6fJif82oiNJUluz54kX374kOqL1XNdlWnW3bt3RQBsmNrwLTmZ1BN9+tD8tHAh1e1u2UIy7CFD6HX1+Th+nI6htjYFKQDaDzXKywGOw5VLlxC1cSPWdOxI3/Xzz2T0lplJsuz33qN5W+3kDvL5UCqVNRlKMzMK/DUmsQeVQKgxnOOgHDyYe9ihAxycnKrfXKSlhQgzMxhcvIjZs2cjLi4ODx48QGpqqiiRSJiTk5M4wcmJcbt2kTw7OZmO1eTJFBj44AM6Ju3bU6nP7Nlk8la/jzcAc3NzyBgT7T/8kP916VJxliCw2q78586dQ+SoUfD09BTfP3CA4w8epPmrNfj668aNuppAaWkpmCBg6IoV1G2gSuLdKDp3Jqm0+n7QApiYmCAqKgpPnz6tVj107tz55dfDF18QQa2S79eHIAiI8/BAQmQkm6ihgRs6Ojh69ChSUlKgVCrRvXt3qDO+rZGQv3jxAk+ePEFeXh7u3r2LQYMGYfDgwc1/KCcHcHVFWVkZQkJC0LFjx7qeG1padC3Mnt2ibWgJQkJCkJmZCR8fn7o7lpdHwa+LF+nxsl7baogi8N13RNLrwcLCQoyOjmYAnr+BTf/Loo1st6ENL4G/v7+OhoZGaLt27bqMGzdOqynC0oZXB8/zGD16NPfDDz8gOjqaWoa8KXAcSeCOHiXJH2MkRa3dV/Trr1+5Flomk1VnAAHA1tYW58+f59R1r507d1ZNmjSJP3LkCPbt2yeuWLGC1Wnr1LcvbceLF03WotZBu3ZkVCaKlN3etq2mx2sjuHLlimrgwIFchw4dmmWAMpkM06dPR1xcHDIyMpCens4dOHAA69atI7OmoCBayOXlvXwbm4CDgwMLCQmBo6OjKjo6mk8ePx4yDQ1x3Qcf0OIqKKjx2thXRVkZSVJjY18ruz1ixAg+Pj4eubm5DAALDAwUp0yZUvd4RkSQu/Ht29VPyeVy3LlzB46OjtWZM6VSieDgYHh6eiIgIEAoLS3leJ5nM2fObPr8yOW0qC8qAo4cwcsCE0VVWdom24dNmkQBpoyMmgyqGlIpSW1nzKg2kGs/Zgz+/ve/Qy6XY+PGjTAwMBDfeecdZmBggKioKEgkEgQEBFT3yG7WFfdlSE+H+PnnCMvOht6nn8JEXWeop0cZtejo6vIBlZUV4seOxYnjx+Exb55yxPDhEowYARgagvv5Z/rMzJlEVmtl6xp1xGeMghj1a/IHDqxu61WNuXPp+lOTgSNH6HH2LCCToT2AlStXYtu2bZxcLq9pHdgSeHvTsU9PJzKtUJBz9ZgxJN/9/Xca08OHUyApL48ya3v30rFReyFUVpJx3oYNRGjVstLS0kaDQUl79oiP795lXg4O4Ly8KAi5axfVNV+7RqTe25sCE8uW0YfeeYeuMXWms3bGUx3gqk08q67tPn36IOXsWTF8/Hjm1qkTNAcPrhvM+PZbOhehoUQYXFygoaEBlUpV8x5tbSL3RUV12iOmpKTgxIkTQnFxMTdlyhQYPnmCdnPngq1ZU+O4DQAVFRCXLUPs1KlITk7Gxo0boampKXa2sxPGDBvG62zcCI1t29jeUaPQu7wcrr17E8EGiOTPm0fnSS0j19Gh62XPniaNu8YoFMhs1w7JjLHw8HCxT58+jDalAmFhYZBIJHjw4AFvLQiCi50dJyoUYC3telFeTmO8Ba0iCwoKkP/iBfIXLYKsVy9Ig4NfbiIqlVLpwldfUcCvBZgwYQKzt7fH8ePHwfM8LC0t6zrQNwUHh0YDpEVFRQgICBAyMjI4mUwmjk5JETsXFnKxCxaI8VVt3aRSKbKzs7Fr1y7wPI9PPvkET548wZ07dyAIAnx8fJqU51tZWUEmk4kFBQUMQHVbUEEQUFBQUG0qVwfx8Xikq4sz27cLBgYGuH//PqepqQkHdYDPzg4IDm4yKPQq6Nq1K65du1anxAHPnlF3Ag8PCly1BiEhNDeoHd9rwczMTD1Z6ABopg9hG5oD/1lTxjxtaEMbAAC3bt3abW9v7z1jxgytJo0o2vDakMlkEEVRGRgYyFlZWb1ZObmZGRnxPHtG7cCiomhR6u9PC8Q3SPAqKiqQlpYm9O3bV3Bzc+Oc/h977xlW1bV9D4+19jmHzqH3jiggClhQkYA1xl5SLIkl0WhuYkwxuUlubmJMctNMNUaNSUwz15ZobIgaC6AoTUABC1URkSadA4ez9/5/mNLkUHO/vL+X8Tw+Kpyyy1prrzHnmGP6+XEbGxt4eXmxq1evytHR0bKJiQmzsbGhiLtCQVLO6mq9Dst6oVLR++LiKNNiZNRpPfKpU6dYaGgo60mQyNLSEj4+Prhz5w4KCwshiiLMzc3JYdnenjJ+fagXb4aRkRHCwsLg5+fHhw8fDhcXF6SmpbGwV18Fd3KiDcnvv/dYptgtlEqS3tvZ/a32K4aGhkhKSoKJiQk0Gg1KS0uZra0tGhoaWn4v/fQTaoOC8NGJEzh//rzs4eHBvv76a+Tl5SEpKQl5eXm4cuUKjh49ivz8fKSkpKC6uppZWVnJ06ZN69zhPCaGSPzDD1N9dg+Im42NDaKjo6HRaPRvbhmjbOWYMaT2uH8TyTmZc0kSkQl3d8DfH4IgYNy4cRg9ejRrVu84ODhAoVAgISEBFy9eRHR0NOzt7dGlY3tnSEsDDh2C5OaGSCcnqeD2bWZiYoKjR49Kt27dkga98ALH4cN03ABu376NHTt2YExoKCY/9RSHqyvVKFpaUsbpyScpiBMR0S4g5ejoiPPnz8vDhw9nPm2z3sOGEaGYN48k2ozRuZeWtq/Z9vamuermRpndV16hjGYbomNoaIiYmBiMGzeu9+ZMI0eSp8HevXQ+Zmb0/TodEeDHH6f7Ym1NGcmjR+l11tbAb79R0CokhDKvc+ZQcKCZKDY1EUlVKEiuPXcumhYvRuP8+cyUMbg9/TSqOYfhpEng8+ejbNYsGBsbg4WGtpxfU1MTtFot+TvcvNmS3WuL/Px8HDhwQDYxMWGSJEGSJNTW1qKmoAB1r74Ky+pqlsc5HN57Dyb3152amhK5T0ykse/jgwoTE2RlZUmjR49uvZjz5lHgsY351L59++SSkhK+6MEH4fX557B87TWwf/6z47y5dQssJgaDPvoIHh4emOTvj/HGxszvyy+5nYkJLAYPhtmLL6Jy0CAcq6/H6ClTKHgly1RPfOUKOYm3DdKOHUt1zRYWHWueq6pgt38/kz//HBnU6pI1l6L88ssvuoaGBubm5saamppw0cSEFQiCaDt9Or926BCM58zpXi1XXU33Pzi4y5c1NTXh848+wtXERISdPAnzxYvh1lPzrm+/pev93HM9ez2AmJgYub6+HkqlUqqsrORNTU2iRqPhUVFRYnR0NBNFkZWWlsLKyoqu77ff0lhq006vGVFRUbh+/Tpbvnw5pkyZwmwfe4wJS5bA1sKC19bXi/X19Vyr1cLa2loaPHgwKykpQUxMDDIyMqBQKMSMjAxeUlJC5oOg7hyxsbGyp6cnA4CNGzdKZmZmmDVrFmtqahJjY2N5RkaGmJ2dzaKiopilpSUUCgWioqKImBsYAKtW4WcbG9Qzxl544QVWWVkp5efns1u3biExMRHuAwbAIC2N5u99ppmVlZXQ6XS9C8aB5taVK1cwfvx4GBsZUdBv505g9Wqa673FoUO05ugpgYiNjW0oLi5WCILgEx4evrf3H94PoD+z3Y9+dIn169erBUFYMHPmTOXfytb0o0eIiIhQaDQaad++fczMzEzy9PTkU6dO/fsXnnPacD/xBLV/Wrq0V3Lx3sDa2hqrVq3qsLs2NzeHu7s7T05Oxp9//omoqCjZ39+fTZ06FYrnngPmzUPx5Mm4dPkyxo8f33lWsu05bd1KG3B3d2qFoqcfqyAIcl1dXa+uYduNXYvsfffuXjl4dwczMzMYGBhAqVRCYWdHpCAhgbIm8+dTLeTfrP8FQJ/z4INEkJpbXvUSjDGsXbsWjDFoNBp88cUXLTXLSqVSNi8qYmPOn8fhGTMAxqDVallzzaeXl5dsbGyM9PR0du/1WL16NfLz83H48GEEBwczvW1pGhqoHvCll4h49aBkoO3xDhgwQL548SJ74IEHWtrutIORERHKEydI+qsPCgVJZzknyfC4cdTP+T5YWVnhpZdeQkxMjJScnMxv3rwJv95K90+coJrxmTMhTJuGlwG+e/duMTo6Gmq1WkhNTcXEiAgY799PxxEcDCcnJyiVSlRVVbWat5mYtJqJabW0AdXpcHXTJii//14++fTTrE6rlXQ6HU9ISMDYsWNba9YByvA9+GBrAE6no0zljBlErH7+mQJOkyZRacrbb5Oa4b75qtVqwRiD0EfFDNavpzZUubmUlf7pJ8p0x8XRWiZJ1Ee+sJCk2g89RAHFkhL6Y2BA7bT27iVS+v77dJzHj9Mx/+c/RMw++QRnzp+X45YvZwCgiIqCsYmJ2Lh9u2BqaipVVFTwgIAAafbs2bypqQn79+8Xs7OzBVmW4enpKT1eU8NZdjawaBFyc3Nx+vRpqbKyktdSnTnLz88HAKhEET7Z2QiNjcXF0aOR5+cnVwsCm95VUHX+fJK+p6TAecMGGN3vg/LZZzS/22DcuHHszz//lP764w829dw5VhgTI4+JiOj49C4tBd57D9Z1dbBevpyURVFRRO5HjYJOFJGUlNTibF5XV0fr4rZtdE+2b+/YSs3amsocoqNJGdAWW7cCnp5wGjgQ1tbWkpWVlQygeXBwrVbLSkpKZMaYDICrVCrOfv0VmampcuZ778F/6lQ2fOLEzlUjeXlUZnJ/mywANTU1MDMzg06ng/LKFbz+1Vf44plnsO2ZZyDk5yN92zZ50aJFzFSP/L0ddu6k7+mivzkAlJWV4dKlS2hsbMT169fZypUrYWNjIxQWFuKvv/5ieXl5Og8PD4WXlxfS09PF6upqdv36dXnhggUCNm6E9PHH2P7996KRkRF79NFHuUqlgiRJGDhwIC5duoS4uDjxkUceoQPYvRsOq1djQWmp0NDQgLq6OlhbW3MACA8PR21tLczMzHD69Gnk5uaipKRE+uqrr6SBAwcqrl+/LldWVrIvvvgCgiDAyckJS5cu5YwxODo6CteuXQPnnN+6dYuNHDkSBw4cAOccgiCgqKgID7q6wmHgQJh4ekpidTW/Vycu5+bmwt7eXlKr1di8eTN7ys6O2RUUtATs4uPjkZGRgYKCAlhaWmJNJ0oISZLQ0NDQLhOfmZmJffv2YdSoUaI1YwIiI2mOf/11927j+nD7Nsncn35a769LS0t1AJaLovh77z+8H83oJ9v96EfXsFKpVE2GhoY91HL14+9i0qRJ3MbGBkVFRUJKSgoMDAw61J72CbNmUV/hr76iLFdIiN7auv81rl27hlOnTolVVVVcpVJh5syZzMHBAX/++ad89epVlpKSAm8vL9l3wAB25d135Rx7e5adnY05c+b0rIVYc4bbwIA2dOPGtcvCGRoays0Z2J4iIiIC8fHxsiRJLDo6Wvbx8WHYto0IWmdtcvoAtVoNxlhrq6uQEMoYXbtGsrZDhyjb+Hfx9tsd6nZ7i+ZNrpGREZYuXYpr165h5MiR2LRpExuWnIzbDg4AY3jllVdQVlaGhIQE0c3NTQgLC2OWlpYICgqCh4dHC/mytrZGSUmJlJmZyUJCQtrvoHNzqX+vWk0BiD4Qtscee4x99tln2LJlC1577TX92dV//pMku3v2dO4w3/y+116jzExaGmVT7zOIMzc3x4wZM3hycjIuXLiAKff3Ru4KP/1EJmBPPNEuoDN//nwBoAz2999/jxqNBsYfftiSieecw83NTdJoNB0ZyPnzlO27cQNgDLkffSTbKpVsoL8/Alev5mVLl0I3c2Z7ok0nQlLZN94gWeXzz9O8kiS6DydP0hzw8KA2Tvv26XVn1mg0fSfaAJHId9+lLL6nZ6tplJERlcG89RaVR6xY0UrEP/+c3jN6NElKn3ySggNhYZQNX7CAzi8zs/V7fHyQ/913DACWL18OGxsbGBoaChkZGSguLuZDhw7F999/z2JiYmRRFFFUVMSef/55CIKAzz77jH+j0cDL0lIs+uEHduvWLR4cHMwHDhwIWZapTZ4ooume/NjA2Rm4dg1zjI3x66+/smoiP3BvQxLu3r2L27dvQxAEaDQaaDQa1BsbyzaCAJdr13g7c0hbWyIZ773X8n6vqiq8/NVXHNeuIWPZMpz4/Xc2wN8fdnZ2JK1XKCg48cwzpHjZsIGun7c33V9PT8iyjPPnzyMmJga2traSm5sbU6vVDEVFNBYOH+68Z/nataQ0KCmhzweoFt3JCRg/HjqdDlqtVi4sLBQaGhpgaGiICRMm8J9//hlPPvkks7S0bB7LDACWTJzI7vr5IScmBic//FCaOHEi10u4q6s7mCXeuHEDFy5ckK5evcoNGxsxJCUF9UuWSA/98gt/ZdYs6HQ66qt+8iT75ptv5Jdeeol1mWWNjKQgzdGjFATRg+LiYvzwww9wcHAQBUHArFmzuI2NDQPIkG3p0qUcbZzBw8PDhZs3b2LXrl1UsnDpEuITElB17RpXKBTyl19+KdnY2ODu3buQZZm5u7tLfn5+rRfg4YdbJOf3WtK1/EqpVLb4lHh7ewt1dXWio6OjYGBgwOPj4yXOORYuXMh27dqFpqYmTJ8+veXampiYwNTUVFar1UwURWnq1Kl83LhxUKlUyMvLw/Hjx6WMI0eQBfC7d+/yl156CYIgoKqqigHA/PnzuYWFBbZs2SKfy8rCNI0GiWfPIi8vDzdv3sTo0aNhYmKCnJwcubKysqU9WkFBARITEzFnzhxs3bpVLC0tFQwMDKDT6SAIgiyKIjM1NcU4tVooe/JJNAwaBKf9+5Galib9tXs3f+CBB2QrKysWFxcn2trawt3dXQgICOg8SBMdTWuZnuSDLMu4ffu2KYB969at68RBsh89Qb+MvB/96ALR0dHVsiy/NXLkSEWXLZH68T8D5xxOTk4YNGgQjI2N8ddff6GhoQEDOsu+9fyDSTr+6KNkHnL4MG2AeurW2QNIkoTz589DlmVcv34df/zxh5iWlsaHDx/OJk2axCZNmsTs7e1hYmKC4cOHs4CAAJSVlUkNjY3MXKuFIiuLqR98EHfu3MHNmzclc3NzFhkZiaqqKuTl5XXubGxhQRm9DRuA7GzajN57uFZXV/OMjAxpxIgRPc5uM8YQFhbGDA0NkZmZycaOHQv29NMdpKJ/F4IgICYmBqGhoa3EhDEidUFB9H3/+he5G/egr2qncHOjjNNrr1H7tL8Jc3NzeHp6Un1gerrcWFMjF48ciTmLFjF7e3tYWFhg8ODB3NfXlyS4jMHKyqoD4dVqtSwxMZF5eHiQgkCWqd4uN5cI1iuv9LnEQRAEBAQEIC4uDg0NDfDRF2xgjGTFr79OpltdfdeAATRftmwhA66nntIrzY++Z+Y1dOhQdFt2I8skG01LIzJIfd874MSJEyguLsb06dOpXCI0FFi+HI0AoqKi2NixY5mVlVV7crtgAdVL3jNKcwwKYrtqauSykhLmaWMjec+bx2zj4ymj0ywZb3suaWk0DocOpYxeXR2tFfPnU53yP/5BcuJO2sBVVFTg8uXL3fdl7wqMURb77l0ighs2kEz000/pOvj7k6GbuXmrOdpjj1EwYO5cynwvX06k1Nm5tZ77Pri6uuLKlSuIj49HQ0MDBg4cCDs7O3h6esLY2Bj29vbs1EsV2EwAACAASURBVKlTcn5+Pn/44YeZk5MTVCoVBgwYAMeKCvhu3szvzJjBXF1dMXPmTLi7u8Pd3R3s/HmwbdugSE+HYs0aGmP3nqMmJAuXU1NTmbe3N2pra2FkZIRPP/0UV65cwa1bt3SFhYVSRUUFGnU6XjdsGPMJDGS233xDa1xEBN2HZcvI3JIxIrguLoiOj5d+v31bzsjIYL6SJI/U6RgbNIiu0/DhdN3q6ym4FxoK7cCBqKmrI2JfX4+ysjIcOHAArq6u8rRp07iXlxfTxMUBK1Yg5csvkX9vPc7NzUV2djaysrJw/fp1XL16FVfz8nBt926wL7+Uf66rk86ePYvGr75CQXIy+6WyEjExMWhsbOT19fU4f/48Ro4ciT179ojOzs58xIgRekmR0T/+gbKQENR88AErv3pVkgYMYMXFxfjxxx9RXl4uDho0iCMpCRUqFX5KTpaPHj3KYmNjkZKSAlNTUwwfNoxNbmhAwJkzOO7ujujCQubi4gJbW1u4uroiNDQUp0+fZrW1tfDtKpgqiuQlMHUqjSlQFjsyMhJNTU0wNDTE999/L48aNUqaN2+eEBQUxO3s7Lp97jQ0NODa6dMY9dxzqJ49Gxezs1FeXs4GDBggubu7CzqdTnJzc8MTTzzBO3wm56Q+eewx8mfohFRaWlrC19eXu7i4wMHBASNGjGDNNfMJCQkYPXp0i7wcoGegTqeTkpOTuZmZmTxy5EimVCrBOYe1tTVCQkKYb2Ul8w4PR+jixS0k38jICHfv3pVHjRrFFAoFzMzMUHvxolz9xx/sOOcwMzPDtGnTMGLECAQEBKCqqkr666+/5FGjRvHIyEj89ddf8u3bt5mnpyfi4+P55MmT0djYKE2cOJGNHDmS3S0vh9uRI7iTkSFdMTTEMXt7VlNTI1+8eJE3NDQgOzubpaenw9LSkomiyBMSEuTTp0+zu3fvyiqVirWrO29qoufh9u0dFCLN1yAxMVEriuJzERERH3d3H/vROVizRKYf/eiHfnz88cc5TzzxhJfz36hV7UffERkZKWVlZfG5c+f2rBVHV6ipoUxpXBz1Ns3JIWOZNWv63IO5GTqdDj/99JN0584dLooilEolJk2ahICAgJ71Sy0uhuajj2Dw3nv44ttv5fr6eibLMiwsLFBRUQEAWLFiBbodh7JMG20vL+SvWYODBw9KOp2Ov/zyy70+px9++AG3bt3CmBs35PDUVFby559wdXX9ewZYbXAvoyH985//1M/yGhuJhE2a1FqL21dkZZE0txOH277g5s2bSH/mGfiYmEieO3fybqX/90EURXzzzTewt7fH/MmTiSwdP05Zy/+RguDs2bNSbGwse+mll1indZ+ZmSQx7qn7sSxT3e+rr5IKoc15R0ZGyomJiQwA1qxZ06kDPhobSXHg4kJGU/fVMzajvr4en376KRQKBf71r3/RD5ctA158EX/m54vp6elCs3GWgYGBLAiCPLGhgQ1btYrB1rbd5ru8vByHDh3CjRs38Morr8CktpaydUuWEBndsIHGmVJJ79Nq6bsMDMgbYft2qmU3MaFr1dZ1+D5kZ2fjwIED8tq1a3s2WWpr6XuysijDN28eZdVnzCCDtmY34zVryOPByIjqt//4g7LfISEUELCy6lOJjCzL2LRpk6zVatnatWs7/L657rrDGC8sJNVQcnLrz65doyy7nx+piJqNKfXg999/R319vZiXl9cSKVGr1fKLL76o/w3V1US216whGfmoUTQe4+LIU6K8HBs++UR+9Icf2M4FCxAaF4eRnMP4zBly2W8bHDlwAEhOxvbqahRYWkKlUslt1jbGOZcByEySsPDbb/mJiAjc9PSEg4ODpFQqZc45OOeyIAjs3t/gnKO6rEzx8MGDqHz/fSjValj9+99o+ugjGDg6QqlUgjGGxsZG/PLLL5KDgwP38vLCkSNHJK1Wy8ePHy+OHTtWrySi/qmncLGyUoobPRqcc9nJyUnIzc3F/Pnzcee11+RSgBWOH4958+ahuLgYhoaG8D90iMZIQgIgy5BkGVu2bEFZWRmefvpp8uNA61q/aNGiDoE5rVaLqKgo6MrKMOvkSSimTAGWLIEkSdiwYYPs6uoq5+fnc0EQZC8vL/nRRx/tVYSwuLgYWzdvhp8oSllGRtzExERUKpW8trZWFkWRy7KMVatWwaaTNQJaLc2X3bt7XXokSRJOnTolJSYmciMjIzEiIkIIblP3XlVVBZVKpT9wuHAh+Wi0MUjVi1u30Dh+PLauXi1PmjSJtTVUFUURGzdulBUKBe7evct8fX0hSZJ0/fp1bmZmhjVr1rTOuaoqnFy8WFbfvs1yH3sM+YCsVqvFxsZGoaKigjk5OUnDhg3jqamp0vLlyzlA62dubi7+/PNPWFpayjY2NlJhYaEwZMgQcWxWlqCoqoLqjTc6PfSkpKTmFnq8v79239Gf2e5HP7pBXFzck76+vg7/KxdyURSxe/duqaCgQLKzs+OCIPw9ueH/cVRXV8uXLl1iGRkZeKCtm2xfYGBAG0ETE3L39fEhuem5c0S2/0ZAZd++fcjJyWEvv/wyxo4di9DQUHh4eKDHighTUyj/+18we3uYDx0qW1paytOmTWOhoaGQZRkFBQXIysoS7e3teVdjsbqmBk0ODjiflYXziYnw9fGR5zz+eNfywE4wcOBA2NjYIDU9nZXJMo4WF6OmpkYaNGjQ/4RtGxgYIDo6mo0aNUp/jbpCQRmLESNICnvhAtV29wXW1rQh276dzK3+BwGDbVu3SuPKyuD9wQec98EQjHMOe3t75P34Iwb9+CMUERFkutTTli09gIuLCzt9+jSTZRnenTmyc07O1X5+PZsDjFHW2NGRCOenn1IGmXPs2bOHNbvkRkRE6B//d+9SRlanIxMvPaqFxsZG7NmzR4yMjOSCIGDOnDktpmtiaChuf/gh/tLp+OrVqzF58mSMGDECVlZWzK+6mjm9/z7bDkhVOh3z9PREY2Mjtm/fLkVHR7PnnnsOFy9elDnnzN3fn+qWOSen6qFDKXO/aBEdV3k5uXx/+imNQU9PchZ+551u28ndvn0b5RcvysPc3RkEgcpXnJ3J8O7VV2mjPmoUScHVavr88HBS3DS3fdqzh3733XeUUXRxoWDA5MmUWXRyIsJ4/DgFK/7zHyLi339P8nFLS6r5j4ykf+/eTWQ1M5PWQXNzCjg2NYGZmCDq2DGmbWrC2bNnERYW1i6oxhjTX4pgbk7BiYAAyhZ/9RV994IFdKx+fl3ONRcXF5w5cwY6nY5xzmFhYSEvW7as88CQgQGNO2trUoFs2EDft24dkJQE7NoFqzVrmOHp0/LIN95g8XZ2cu3s2eSLcH/ZkK8vUF0Ned8+uIwdi8dffJGFhYU1/8HYsWPZWH9/NnbdOmZ+4AAsxo1DWloajIyMsHLlSh4UFMQDAwP50KFD+ZAhQ/jgwYO5v78/Dx4xAoYPPgiL5cthlp4OxbRpMAgLgyAILddUoVC0dCsoLS2VZs6cKZSVlSEvL4+NHj1a7wVTzp4Nt/nz2djPP2ehSiUfsnYtNBoNjh49CkVVFZv47LMYN38+zM3N4VhTA9uaGgoSjR1LY5cxMMYQEhKC6OhoXL58GVqtFjY2NqioqNDdvn2bFxYWtrTNAiho9P3338ucc7mishIBO3Yw1c2bwJNPIjMzE7m5uVi5ciUfPHgwDA0NWUREBOutCtD43DkEv/suql96iS1YuBBjx47lISEhLCwsjAUHByMxMVH28/NjHdpmNkMQaM7Gx/e6bpkxBi8vLzZq1CjcuHGDJyUlQafTobGxsbmkQv8aVl5Owdv33uv+WWJqCkVxMUY//zyzu691Guccrq6urKmpCZxzediwYXJERAQfPHgwJk2a1DrnLlwAXngBdkuXsl/NzVEqSdDpdEwQBLzwwgtcrVZj6tSpzNnZGcOGDWs5IKVSCTs7OyQnJ0sVFRVcq9XC2dmZZWZkMOHPP1mUoSGCp0zp1MQxJiYGFRUVl95+++2+GZ70A0B/zXY/+tETCL12k72HxsZGVFVVoaamBgkJCbK5ubmclJTUUrOUmJgIgHoZPvPMM/0ObHpgamrKFQoFAgICWk2Q/g42bKCM0ZQptGFbtw64eBH45BOSF+oxgOoJlEol/Pz8dKampn1fV1esADZsQMChQ7xtr86wsDDodDpJqVTynTt3Yv78+R1k9WVlZdixY4dYVVUlAIBPSIi05MQJbvLRRxwLF/bpcExNTTFs2DD41dcjz8AAKZGRuHjxIq+qqpIXLlzI/m6QqLCwEJzz9i1MOsOJE5RF+/VXIgy9cMRtgShS1njwYCI6fwORkZEYdPYstx84sO/14E1N8Pjvf1GpVkvHTEwwe+ZMXlxcDH5PbtitA3EP0Lx2XbhwAZM7cx22tqZNY0MDEeCeZOgNDIgwFhW1ElRHR6xduxYbNmyAJEm4c+cOOpi/5eZSq73QUKoZv3d8ubm5uHDhghgUFCQ4OjqipqYG+fn5/LnnnsOWLVvg0CYAkV5QAKtjx/DY11+3GPiZmZkh2McHsLZG+b59CFer+bFjx1rKOnBvzS0pKYGJvuxX83h4/XXqNS6KlJX97DNy916zhuqg166lkgRXVyLFVVUkRX/oIeDNN8l4a80aaA8dwoyff+a4coVM/w4fJj8Fa2sioLIMfPwxfY6nJwUgGKOg0rp1dCwLFpASIyiISMSSJURohw1rdRff28YguLlEQqMhMmBsTGS4tpZKTZqN8lJS6L6ZmlIgoa4OmDAB/zx5EucMDOB54wZYUhIFHA4eJFIfFERmSsOHU6bd1JSujyjSMZqY0Bo6cyadr7Ex3WtZpkx7WRkdu0JBf6vVQEoKzAUB/xwxgp/64QeZ1day8AceYML339N1iYqiMTlhAmX7q6roOqnVNIcvXaJ7AVCAwc0NGDQIfjodcPgwg5UV7G7eZImJiRg5ciTM7ncIB5ATEIArrq4YvXcv+US0DUhJEt3/2bMBLy94oqWlG2tqatJPwiSJHNqVSjrn1FQqOTh6lK6juztdG5UKISEhTKVSITk5mf/666+wt7eXHnvsse43G//4B7mdV1RgyvjxMDExge+hQ7Buux4//zwFd7Zv1/sRb7zxBk6cOIH4+Hj5/PnzDPf4wP3z9ejRo2JQUJAwdepUlp6ejqiLF2WPyZPZMFGEJEktAQRra+s+B8O5tTUsXnkF4/V4s/z444+ik5MTd+2uv7coUgD95Mk+dbNQqVQwNDQUm5qahJiYGDg7O0sDBgzoXK105QqtCT0J2jbvH2/c0FuK5eLignutOVs+zK653l+WaWzX1wPPPw/Thx7CstGjkZ2dDR8fH/z6668cAIK7caFfvHgxl2UZtra2dDCXLrHbly7htJ0dfv/9d3nmzJlM37ro4eEhXbt2bej69evV69atq+r+ZPuhD/1kux/96AayLJv1JSt45coV7Nmzp+2PGADm5OSE0aNHw8XFBRcvXsTZs2dRXFzMms1S+tEeJSUlkk6n46mpqSw7O1ucNm2a0GVdWXcwNiZCERlJG0OANq9ff01ZpwkTyASni97V+mBkZNRijtJnjBlDZiW5uZQ5bPPZU6dO5QBQU1Mj/v7774Ktra00btw47u3tjerqamzevBmBgYFswoQJUKlUMDAw4Fi0iDane/bQpu+DD/p0WEazZsF/5048+OCDiI2NRU5ODouLi4OzszOuXLkCANLUqVN5b4NSN2/ehLm5uWxsbNz9dbOyoj9Xr1IN7bJldB97U8stCETYRVGvoVBvkJaaKj9z5Qozevfdvn1AfT3VsDo6YtCLL/JjO3ci94svpLq6upYyhNdff733baM6QZcBDUmiMffMMxQ4WLuWSGFzyzc7u3abysrKSvz2228SAF5eXg7T559H7Xff4Z9ffYVT8+dDcnKCra1tS0udFsTHk9w3NJTuXxvk5OTIWVlZQnFxsajRaITmGtC9e/eKTk5OTKPR8M8++0y+5x7OTsydKz91vzv1c88BsgzrX36BNQB/f3+kpaVBkiR4e3tj06ZNAEga2mk5BuetNf6ffUak9Ouvqb6xuJhes24dZQuLi4nYGhqS4sLfnzLIDzwAze3bOPjvf4tPP/00MaCYmNbvaDaBGzdO/zFoNNSze8cOUjloNLQuPfQQKQKeeopk/J2NfSOj1vrstkZ2zWaD06a1/mziRDQ1NaGiogIV8+YhfvduXPX1xYo5c2Do6UnEhTGaLzk5lFXeuBGorKSs+Sef0H2NjqZxUlxMJm1OTiRfDgykY09Pp/f4+ra2VLtyhQihJGFkaCg7Gxsr7790iRmamsoTx4xhRvPmEYl3dSWZvKEhBXmUSiL7ixdTZv+rr2jdNDOjub1+PX3X/PmYEhsLi7w8lLq742BCgmwWFCTNWrJEAEg6v2PHDmDgQEybNYsUB5s20bFLEo2nceNaAxsgY0NBEHD37l3YarVgGRlgnp70vqIiCkbExZG03sSEggu1tUQCNRoKbNy5A8ydC2H7dgx3dsaAJUtY4uHDUpmZGVc6OdH48/SkZ5U+Qt/cFmv8eMDaGmG//05lGW5u9EybPJmeb10EQ1UqFaZPn47p06ezlJQUHDx4EEOHDpWmTZvWbsEZPHiwkJCQgKlTpyIgIAAet28zec0abL9wAUVOThg8eLCEVlf13uPQodZSLj3w8PAQcnNz5XPnzsHMzAxDhw7VX8YkCHTP/8Z6OXfuXMHNzQ1HjhxBYWEh/89//oO1a9dCr0t7QYHevtSdwsaGgkW9gSQBzz5L5/bmmy3f5+rqCldXV0iSBFmWkZ2d3a2nTQcJflISnKZORbCFhZyWlsY+/fRTPPPMM7BvU2bR2NiI9PT0BgDGAOzWr18vApDWrVtX37sT6Ud/zXY/+tENPvzww9JVq1bZWN3fi7YbrF+/HgDwwgsvoKCgAM7OzqitrW1Xd1xUVIQffvgBAEUmp0+f/r878P9DaHb2jY2Nlc+dO8fUarVcWVnJrKyspNmzZ/Ne13KnpVHm5/5IuiwDsbGUcXvvPdqoGhj06CP37t2L6urqllqpPuPHH2kzeh8ZaUZFRQV++uknVFdXt5QfiKIIKysrefXq1UzvRiQ6mjbIO3fSZrS3NZ2NjbTp4xxarRbbtm2TKyoq2P0Ebvjw4WCMwdXVtZ3ZTGfIz8/Hrl275Ndff733QYrdu8lALCWl03rfTjFlCvXdPXSo11+bnJyMw4cPwyMvD4M9POQR77zTu2OXZSIhb71FRMHHB2AMtbW1uHbtGlxdXWFkZISNGzfC0tJSfPbZZ/92jUl+fj5+/vlnvPHGG9TTtbaW+uWqVNQqaNkyCmR88AERGC8v6hes0aDpyy9RIAi45usLA6USDbKM27a2qFKrUWdiAvlenaokSXDLy4Nu6FD5MYCpQ0NbzMkAUGb3yBGS8uvJsFdVVWHjxo0wNzcXBUGQtVotf/zxx/m2bdvw8MMP49ixY7IgCGhoaJC1Wi0f7+ODsW+/Tfff2JgyoEeO0JzWU2Zx4sQJxMXFAaDyhbVr10IpSZStvXqVgh87d9JYnzCBZNZqNZGXp54iIn2vnVtPcOrUKdy8eVNctmxZ7+5fbi6tAZJEZHbOnNbOCc2BnehoOu8lSzr2SNeDpqYmNNcTNzQ0IDExUS4tLZXUarVQV1eHzMxMNDY2AiAS1tTUhClTprSTE3eALANffEEBwk8+IYL5n/9QSc6333boa33z5k0kJCSgub7eyckJsixDluWWenBJkuRbt26hoKCAvfnmm12XV8XEkJ9DdjZluA0MqAyg7fFVV0OXloYT27ZJckUFd6islMtMTdn4q1fBw8NxdsAAsTgjQ9A4O0tLP/6Y4/x5OoedO+n6fvMNqRcUCuD0aSAzE/WDByP7lVfQpFKByTK4JMF340YYXr1KUvpRowDOIcsyCgsLUVNTA4BIeku2UpJonGVnt5C2rB07cDUvD+OtrWFaX0917uvXU0DxzTdJ+h8QQGTd0pLmVlERrX2FhZTB3rqVWpNNn95rz4c7d+7g22+/BQAMGzZM9vHxYQcPHpSbnf4nTZoEc3NzBGzdCnbtGjSvvw4WFvb3EwRPPEGBhTaO8m0hSRL27Nkj19bWorCwkLm6uspPPfVU52tuUBBl/let6vMhaTQafPLJJ1AoFHjjjTf0Bzw//phM+tqucV3hp59IQbdxY89en5ZGSreNGymA00nC5/PPP0dISEjvjBhra6l8Jj0dMDBAeXk5Nm3aBE9PT3nJkiUt1/by5cvYt29fu7dyzv966623etiYvR/N6M9s96Mf3YAxJvZI5toGCQkJAIA5c+bAwsKipc/t/YQ9KysL9vb2YmBgoHD06FG4ubnJQ4YM6ZeT34dmc5IJEyawmpoaXUVFBZ86dSrbuXMnP336tLx06dLeXTNfX5Jr/vZb+ww2Y0Sw4+LIxfeXX+ih2oMIdlhYGLZv385LS0tbakv7hFGjiARKkt4ovaWlJRYvXoyffvoJdXV1mDRpEoKCgmBiYtL5NYiIoD8//USbmsuXe24It3s31bV/+SUA2oyvXr2aSZKE0tJSWFpaYvPmzaiqqkLyPZOkpKQkODs7w8rKqkszNRsbG+h0ur6N9/nzqR5RqyW57bff6s307dmzR8rNzWXNDrKBgYF0X/vowXD69GnJ2MiIz9NoYBAc3Ltjr6oCfv+dNjn797cbe6amphg+fHjL/5944gns2LFDiIyMxIMPPth93/UuYGBgAOPaWtStWwfVkiUkh9ZqSR79+edUr5yXR8fV5n7V19fjK41G9jA2hoeZGdPm5sq2BQVsYkMDVEolKurqYFlSAmZpCcybBzk8HMzJieGdd+hchw0jovLdd5QZXrGCNo56oFarMW/ePLm+vl4QBAGRkZG4ffs2hgwZIv3xxx/cwsJCeu655wTOeesBxsYCt25R/fKIEVRPre++yjKaiovhlp8PH5UKfiNHQjl9Os2Dt9+mwIK7O2X0BwwgAsMYmR9t305BiPLyXl3zxsZGqFSq3mUzjh2jGm43NyLS06fT/GtsbB8gCw+n2uyFC0lq3ckcq6urw48//iiXl5czgBzAtVotDAwMZCsrKyErKwsNDQ0ICgrCxIkTcfz4cRQXF0sNDQ08KioKxcXFmNXcs7wtNBpaEw4eJIn1++8DO3agNCYGtdevw/jWLVjs3YtL4eGIS0iQ6uvrmVarZQYGBggICBBTU1OFnJwc2Nvby4yAe2ZjrLlNYXx8PBwcHODVRuHTAkmiuf7xx63mdaGhNLeaSSZjgFoNRXg4poaHNy+k7IvPP0d6QADsSkqgu3VLWODrC8PGRo6JE0kNMGYMXX9XV2qdNns2GU6ePg24ucF49mwUzpihuySKCgNHR7muro7dqauDytsb0GjAY2IwatQo6HQ6nHzrLbiVlEixo0ZxlUqFiRMntpxCy7poZwcmijhibo4Zb74J07atDhcsIGWSRkOE1MyMxnxGBgVZfv6ZgkXx8TSf7ewoMNRZ14pOIMsy4uLiRBMTEzZv3jz+66+/sszMTBgaGjJRFGFtbS3Hx8ejpqaGxZqayqFjxrAghUKvg3WvcP06rQ1dfA7nHDNmzGA7duwQAQhqtbrrNfettzq0JewtmgNCSqVSzsnJYUVFRQgNDW1dg0WRAk2rV/f8Q4OD6T51B1mmfumffEIlHmPGdPFSGTU1NSguLsaOHTukJ554omeB/i++oBKRe4kEa2trrFy5Etu2bWNnzpxBWFgYFAoFPDw88MgjjyArK0uXlpamAABJklb06Dv60Q79ZLsf/egC69evV3DOrfTVeumDVqtFU1MTcnNzAQCBgYFdvv5expuFhISgrq4O+/btY05OTrC2tv7bx/5/EYwxzJkzRwHQRhIAHnrood6TNQMDMt7KytIvF+ecNtlHjlA2KSSEMn73SfqysrIQGRkp6nQ6ZmtryxQKBdu8eTMsLCywdOnSliBLr+DvT3LG2bM7zU7Y2NhgypQp2LdvH2pra/XXoOrDkiW0odRoaBP/5JM9e58eYt5s7gUAL774Im7fvg1TU1NwzrF161Zp06ZN3MXFBUuXLu2SKEqShIMHD+rf1HeHoCAyONJqcW7HDuSUlIh8wADB2toadXV1KC0tlerq6vjcuXNRVFSEI0eOoLa2FmPHjqUNzYoVlDG6L6gRHR2N4uLilvpJnU6HqqoqWFtbQ6fTsanBwTCT5dYyhJ6gpoayVQ88QPLkbuSO7u7umDt3Lk6ePCl/8cUXbMaMGfDrxpSrHRobAUFA48qV0ObmwtrbGwYlJUR6T51qHcsREURehg4l8t1mc/ftt9/C0NCQzVqxonmMtZtrVg0NlF2Ljwdqa8Gys6m2/tgxGjOTJpGxz+DBJMU+doxk6XfuEEmePZuyPR4egFqNwQMHMiiVyMrKgiAIcmBgIAsODuZzyBSvY5rzjTcoWLBqFY1td3fK/FVVkYy2uJhkypGRmJKXhzQPD5TJsrz/wgU26bnn4DF9uv76dFlurTH+xz8ow3wv69fzy9+IHpcf6XREnFJTqfZ9zBjKUHp7U6DP05PIdTMYoyBBYiLVmK9bBxgbQ5ZlXLt2DadOnUJlZSWampoAgK1YsQKiKOL27dtwd3eHo6Njy+DTarUtxzlv3jwA4OfPn5eOHz/OU1JSOs7LlBQK1nzzDd1rpRLIy4N2+3bkennBVKPBoS1b8NivvyLjyhWMeOgh5h4WxnJycuDn5wc7OzvBwsJCjo2NZcuXL9e7dsfGxuLEiRMA0KrGaIYk0Rx66y26VgCVg6xeTcS0C6Snp8vVNTXMNyQEzc9cw2ZvDEmiLPOBA6SSKCqiufLhhxQgevbZe7dKhwQDA0VISAgmTZrE9u/fj+Lm8gKQiuTKlStoamqS3auq2Hi1mgevWYM9e/aISUlJMgC0VZQ2NTUxjUYjNGf520EQWlpsoVm9FRhIxPriRRrjSB8yoAAAIABJREFUFy9S5vuvv6jM4Pnn6TyOHyeH+Jkzu1UyVVRU4OrVq8KaNWtgamqK559/HhYWFm0zuuzeseL25s1M/vJL1MfGksN7XyGKVCP/xRfdtmPcunWrVFdXJwQFBdHa3RUefpiCqebmfTbTbA6EaDQatnfvXpiamsrx8fHy+PHj+YgRIyjr3Fzi0FN4elIAR0+7xBY0NpKcvqiIAkfdqOoYYxg5cqQuMTFRAYDHxsZ2Xzff2Ei14ytXtvuxo6MjrK2txbNnzwoXLlxAeHg4hgwZAlmWcfXq1eZF0njdunWanp1wP9qin2z3ox9dgDH2pJ2dXaOBgUGP7DU//PDDln9bWFhIuGfK0xnu3r0r+vv7C0CrWVqnjpv9aIfi4mIYGRlJ9vb2fZNtv/giZY4iIjq61AL0QJwxgyLS77xD5Gj4cGDIEGzcuFEWBEGuqqriY8eO5XZ2diwvL08CIAmCwLOzs1lKSoo8fvz4vmVtH3mEJIH3ssn6MHDgQAwbNkxOSEhgaWlp0ty5c7neXsptwTkRoLQ02qxPm9Zpn+AWTJ9OWeRu4NQm+79mzRq+d+9eOTs7m124cEEOCwvTex1MTU3x5JNP4rfffkNTU5P88MMP9/56mZvj94UL5Tt5eVi5dauQ+/DDcnJoqGRkZITAwEBh6NChMDMzw6BBg+Dp6YnffvsNKSkpooeDgzB08mTcjo/H3YoKDB8+HGq1GpmZmYiOjoYsy/yrr74SJUli1dXVHECzXJqpP/tMxuLFrEf1gaJIioIjR6g/dS8Is7+/P1xcXNiZM2fw+++/Q61Wi2vWrOlcW5ueToGUvDwiYb/9hjwrKzlep2MFbm4wvley0gGc0wbvvhr22tpaBAcHdx7MMTSkTeT9JmjvvQfk59M5x8bSZ5uYkMR4xgySY586RWNr1izKxg0aBKxdi7rffoPRa6/hH6WljD/7LBGrNWuING/ZAmzeTIoUUaQa8++/JyWKuzvJbnNyqM5ZFClINmwYMG0aBDs7DAMgSRL7448/8OulS3jQwUEaNWpUx5u4dCllso8cIcMzOzs6vl5Aq9XCyMio+/FcUkLSZW9vIpB2dpTxq6uj7JZGQ4T7/lIZxlA7aBAyzp2Dw5w5csaLL7LmZ4iBgQEUCgV8fHwQFhYGR0dHANDbOlFfQGDYsGH8+PHjACgYxjknMrp7N13nF1+ka3sPadXViH3iCUxcsAB+bm7w+e47NF69imVqNTBwIMPkyXD55psWkhEYGMhOnjyJ8vJyvYHloqIiALQ+fPPNN1i1ahXq6+thbm6Oprt3YTJsWMfs5apVtJ598oleE6q9e/eKmZmZgq+vL+bOndvxvHfvpkz9f/9La2JcHJ3njBl0L86cAVQqKJRKmJmZid7e3oJSqcRjjz3W7mMSEhJw4cIFyc/Pj4csXQqo1bAAsHLlSr3ztlmqu3Tp0s5bW+p0FLQKC6P1Y948UhPs20cy47AwMmXz8wNee408Aa5coXOprGxtebZ8ud467urqaqhUKsnU1JQDHRV4zVAqlXCfOxdZqanSkYYGPvHu3U5f2y04J1VGd22zABgbG8t1dXWwsbGRbWxsup9TCQkUpOgj2TYxMcGbb76JW7duwcrKCsbGxmz//v3syJEj8Pf3h/GdO73Pnpub03O3rKw1gNIWly7R2hYRQc//Hgbqpk2bppg2bRpOnDiB69evd0+2Y2KodEnPc3/16tVCfX09du3ahTNnzuDEiRMQBAGiKEKhUGS8+eab/US7j+gn2/3oRydYv359uEql+mrOnDk9KnD9/PPPAQDe3t4YPXo0PDw8utyJV1dXo7q6WvDw8EB9fT00Gg0mT57crk6tbdahH+1hamoKrVbb9/popZKy2v/9b4cobzs4O1OW6cgRMuJ54AFUV1YyUZYZAAwePJjZ2NjAz8+v5VhEUYQgCH0vB1i4kKTkXZh4GRgYYObMmWzChAn45ptv+OnTp2UfH5+efWdgIEW3c3KofjkyUr9UXpZp85+S0iuyoVKp8Pjjj7PLly/jwIEDbNCgQZ1K611dXfH0009j69atLC8vr6N7NSgQFRsbKzo6OvKZM2eytoY1R48elbOzs9ny5cthsHIl/HQ65vfWWwJGjaIsRxu4u7vjxRdfRGpqqnDjxg3xkK8vC1u7llU+8oi8LTmZS5IEY2NjhIeHyx4eHqyiokKoqalBQEAAkpOTZWtra+ZjYwOzvXsZ7ttk68XNm7SJioqijVQfWnqZm5tj1qxZGDBgAPbu3SvU19e379uekkIk9IMPiLwuWkRy6HPnAEdHeI8YwXZ/8AHMzMz0u/lXVhIhTUnp8KshQ4ZIaWlpfMyYMb1T20gSmfJdu0akl3OSu/71F9Ujv/9+62sLC1v+qX30UXz6wQcwHj8e9sbG8hIjI4b33qNaVZ2OSIWpKWV8NBr6WbOB2MKFwNixkMzNceTYMQBAQUGBNKKighdcuoSAgAAMGjQInHM8+uijuDc2eWNjoxgeHk6LbkMDScvnzGndTOflUUCglzJ+rVaLbiWv8fFUThAQQAEHQaA59/bbVDeuVtM1XL++gxJCkiRkXruG4xMmwK20lPm//z5Gvv46wsaNg/nfMP4DaG15/PHHsWfPHrm+vp7m28cf0/3bsYMk2/eg0+lw5MgReemFC8zZxQVYtQqqAwegCgig63j5MmWc33mHSNDhwy3j9/Tp03hET1ZzwoQJMDIygrGxMc6ePYs///wTWVlZGBkfD8eiInidOQP1/WobxqgEZ+dOvWTb3d2dZWZmIjs7G3/88YdsYWHBAgMD4WRlRXPAxoaIH2MUXLx7l54Rp04BOTnIfPddWP/3vzi3eLFcq1QKnbW3CqGsOd2sLVvo+RIb2+m11mq1UCqVsLGx6VgbvGcPEeiiIhrfpaWUrbawoAxlWhopoR55hHwgtmyh9mdTp9K1aPYY2LaNjsHHhxQmq1dTEOveOVhbW6OxsZG3BFa6gosLBpSU8KaCApzevBkP//vfXb9eH8rL6Rl0+XKPXv7MM88IH3/8sVxZWdmzjiSbNtE8Ki3VT2x7gGYZdTOmT5+OzMxMnD59GtPz83ttoAqA1sXr19sfkyxTYGTRIlI8TZnSq4+UZRk3btxAamoq2nYw6RRXr7YLlN0PY2NjPPXUUwCAnJwc3Lp1S46Li7us1Wp7b/Hejxb099nuRz/0YP369aGCIJyYP3++UU/Mt8rLy3H27FkoFAqsXr0aVlZWXT60JEnCjh07JDs7OykkJIQLgoBbt25J6enpiI2NZWfOnMGZM2dw9uxZcM5Fd3f3/40l8f8hKJVKxMTEwNLSsl1boF4hIIA2Vd30ggVj9HANCgKKixH+11/wX7gQ2ZWVUkJCAvPz82tHgP62g7RCQRus6upuSa5KpUJ+fr5YVlbGhw8f3vPaXsZo01ZQQNH0vDz9G5OHHqLr1Ie+1Pb29sjJyZETExOZLMtwdnbWW8NtbGwMpVIpR0ZGom0WXJIk7N+/X05MTGQTJkzg5eXlUlRUFE9PTxe1Wi0/ffq0nJWVxZ566imStBsaknz5xg3KILi5EUlpI8dTKpVwdXXFkCFDeEhICHPYvZsNWbSIeYSHY8SIEXjooYfg4eHBLCws4OjoCHd3dxgZGcHb25s5OjrCYONGkvl3ty4kJBBpsrUloqJPPdEL2NraIjs7W8o7d44F+PsTAUxPp/O9c4fu4RtvkHLB2JjqOwFcu3YNmZmZmDdvHuvgSAuQVLa2ljbo98HX15fduHFDio+PR3FxsVRdXc3Nzc1h0JW8UasluXh8PEmvN2+mLOGDD1JQy96eHK4bGzu0X9OJIpKSk6ERBFRyzi4kJsrGw4Yxx8GDiQyNHUv3ePRoIgsmJrRxjIoiObmxMTKvXsXJkydRVFSExsZGdv36dVhaWopxcXG8oqKipUe8vb09Ll++LFtaWjIvLy8ac7NnUwbxnXdaSycOH6bv0UPgukJycjJsbGxY2w17O3z7LbWDmj+fvrd5zYiLoyz3/Pmt5SxpaR024VevXsWBAwdgbGaGZ99+G84XLsBHpYJBZw7nvYSpqSmKioqktO++477vvAPle+9R9rhNTXxDQwM2bdokWVtbIywignGlkmrnFyygwEFSEq2tZmZUCy+KgKcn+Btv4JKlJUytrDBYT2bT2NgYgwYNgpeXF2pqauSMjAwGAAOys1Ho7Azb8eNRXl6O1NRUyd3dvdUUcswYoKEBTbKMLbt3y+fOnYO9vT2ztLSEs7Mzi4iIgJ+fH5KTk+WsrCxWWVmJwDffpMDm/bW+zY7q3t748eBBXaJWy+0nTQL38MCijz9mVmo1WJugQycXkVQfXWRvU1NTcffuXbi7u6OoqAiFp09D++9/I9rYGJZvvonLOTk4Ym4uXggPl+IuXJDOJSfj1MmTzGLTJtne2Jjh1VfpWhsYUJBtyRLIRUWo5xwKhYLW2+HDKRvePP/t7Ei98fPPwKxZUFVWIiUvT7548aLk4+PDjbqSnTMGtnEjTAQBWU1NOJyXJ126dImZmpr23KukqoqeJw891KOXM8aQkJAgBQYGCj1+1r/wApVX9KVFpB4olUqYmpri3LlzGBUVhcaHH4aqO1XY/dDp6LkUFET/v3uXyhQOHaI/3ZjaNe8bOefM3t4e9fX12Lx5s5ySkoLAwEA2Vc8a3g63bpHqaN26Hrm2K5VK7Ny5k4mi+A2AuHHjxok9PNN+3Id+st2PftyHd999dw5jLFKSJNXly5dxzygEdnZ2yMvLg1qtBmMMDQ0N4Jzj559/lk+cOMEAYNGiRd3KqiRJwvbt28X6+nq+YMECrlKpwBhDYGAgCw0NZW5ubhgzZgxCQkLg4+ODY8eOMVtbW/0b5f8fQxAEGBsb4/Dhw7h8+TIYY5238+kM5uYku3N37548AZRp8vcHjI1h8scfGO3ry86UlsLJ2bldy4z/CXQ6cqvtQc9QtVrNMzIycObMGeTm5uqCg4N7xvabZeV1dfQ9QUHt+8wePUqbgx5I/TqDn58fy8jIkNPS0tiYMWP0BgPOnTuHuLg4uaGhgaekpIhxcXGIjY2VY2JimCRJ8qJFi9jAgQMxZMgQHhwcDFEUWVJSEszNzeVHHnmEdbj2ISFExj78kDZdzz/febBg8WLA1BQWZWUw76Z9Cu7cIfK4bFnn9Xp1dZSJ1GjIF6AvtehtodWSvFWjwaBDh9iAjRtxLjAQzm5uSAoIgNOsWWBTpxI5vO8cjx07Jh8/fpwBwOTJkzuS5Pp6kra//nqn18fPz4/V1tay2tpanpKSIqenp2P06NH6X9zQQPWjaWlkfMQ5Zdh1OiLKzQEHBwf6/4ULlIW6t0lUKBQICQmBh4cHZs6ciaamJnb58mVxxIgRnY9nZ2eq+eYcsLSEnZ0dqqur0dDQIL/66qssJCQEwcHBXK1WIzY2lsXFxckpKSlSQUEBLyoqYlOmTGGmJSWURXzmGSKUbTeiH35IxLfZSbqHSEpKkhwcHFiHYG1TE8nibW2J8LR10C4ro/Vo5szW1l1KJc3Le1LwZtjY2CAxMREGBgYYNXYszeOaGqpXHT++T8GxthA4h01xMZf27cPtgQPhsWxZu+x+dnY2tmzZAisrKyxfvpwLXl5Uw/3AA0T8rlyhOnpzczpHS0sKrlRXA999hxvOzqIf59w+MLDLFlWDBg1iFfn5mLhpE/6aPBnFbm5IS0tDeno68vPzmUqlkl1dXdmNGzeQd/MmirduRemPPyLFxYUZGRnJNjY2rPm5wBiDiYkJsrKypOBdu3j4yJEwfOMNSIsXQ9PYiJqaGlRUVKCkpATVKhVuKhTYvn8/7t69y52cnOQqMzOxRKNBtosLrhcWonLDBqY+dgwGkybpN/kyMKCAZhdmjN7e3jh//rzs/K9/sRt5eXJhQ4M84MwZZIeFSaUzZshs9Gju7OLCvb29ua+vLx86dCgz//NP8KYm5vzll/QdNTXAyy8Dy5dDqqyE7OSELXV1uHDlijxw4EDWEgg2MKCMsqsrcocNwxWtViq7eVNyfPVVPsLbm0kaDWIOHYLnmDGsS8I9YgSUixdj4LhxsPTyYklJScjIyEBGRoZkYmLCOOft1TdtkZlJJL+X3CM6Opo5OzszKyurnqn9wsMpuNeJAqEvcHR0hJSXJyr++INvMTSEm5sbLHtjtFlcTN0GQkMpGBsXR6qKzz/XW59dXV2N3bt3i6IoMgAsIyNDTkpK4tevX0dJSYl85MgRZmpqKr/wwgvdl5AB9Fx68MFOTSrvh06nQ2pqalNTU9MkAP8aN25cH/tc9qNfRt6PfgBYv369PYBQlUr1hKmp6UOPPvqoYufOndBoNKiurpb37dvHmlsg2NraorS0tO3bmZOTE8LDw+HdlqjogSRJ+O6770SdTsdXrFjB7n8gcc7bSZdsbW0xZswYtn//fixZsgRmZmaor69HfX09SkpK4OvrC3Nz8/9ZL97/ryEkJASenp5ISkpCVFQU8vLyUF5eLg4fPlzosm1NMxgjslVd3fIjrVaL6urqjn0p275n1izggQdw64kn8EhODvKGDu1Rq6teYdQoikA//HC3G313d3cEBQWJt27dEm7evKk4evQopkyZgtLS0p4FAWxsSO5saUmmYf/+NxGYM2coC3GfHLs3MDQ0xLhx49iuXbuQn5+P+3ukS5KEs2fPyqNHj+acc5iamgo6nQ5OTk4wNDSElZUVb5sNNzMzQ0REBIuIiAC6kxR+/DGR7agoki///LN+F/Zmc6WoqK5PJiurlSjpw6VLJNfU6UgW2ENjxQ6QZSJNhw8DGzZQTe+bb8Lkww/xx/jxUvrlyzzZ2Bj1Fy8i6uJF+Pr6wsjICLm5uWJjY6NgYGAgOzs7s8zMTAYAERER+qXF586RN8ALL3R6KCqVClPuZVULCgrY9u3bkZOT03Gtq6sDfv2Vrk0b7wq8/DKdT1s0ByDS00laKctU1750KVQqVctnW1tbIzExkRcUFMDV1VX/ATJGWfSLFymzD6CkpETknHPGWMum39/fH5WVlbKDgwO7ceMGy8jIkGfNmgUHBweG2bOJ3K5c2Z6k5ucTOe6JPPM+6HQ6uYPUuKyMCPbs2bTu3E9ocnKoLVrbzfD69WRGdh80Gg1cXFzknJwcOmBTUwpgbNpE0uc2ztd9wlNPwebyZXw3fTpkzhFx36937doFc3NzrFixgnHOiWzu3Alp0SJwd3dSWtjZEQE/eJDayc2cSWvMiRO4/fnnwtQNGyig+OGHXdaozh00CJqBAxExZw5CRo1CVVUVLly4gNTUVNjZ2TEAOHDggKzT6WSj4GDZ381N8LayQqOxMY4dO4YTJ060mI8pNBo0KBTCII0Gx44eRdaNG9DpdBAEAYIgyIIgyAqFQnYoKkLol19yxbJlsLCwYGq1mhkbGytcXFxgGhwMMzMzHNm2DYOb+2avXElKlrZj5dtv6X7cuKH/xE6dAl+zBnWPPsqqLCwgmZnJ5qNHyw7vvcfnd9a7etcumNTXY//Qof+Pve8Oi+rcvl7vOUPvvQsodiwgKFgRgxqx9xpbLKkmUa8pNxqTmMTEJGpMNMbEHlvsIipWlCJKEVFEQGJBaTJ0Bpg57/fHZqgDgpr73d/V9Tw8KAwzp75nr73XXlvlra9PrxGEqmdYbGoqwj7+WJr/0UfCtm3bWEREhDR06FCh8phxa2trxhjDsWPH0MLFRUhLS0PakiVS3v37mJqXJ3TcvRu3fXzgnZBA16imROuGDYBKBdm9e3A/dQodOnRAcnIy4uLi8NdffwEAvLy8EBAQUJ8YnzlD62Qz0a1bNxYWFiadOXNGGDJkiNStW7fGgx4DA/qszz+nUXnPAYwx+Dk4iOXvvAMfd3fV9u3bxYEDB8K3EcfwWnB1JSf506fpupg9m+5vDcjPz8fq1avBGBOzsrIktUP6xIkTUVBQgKSkJObl5QU/Pz+hSfFfTg4R/ZotPE+AgYEBxo8fr7VlyxYwxjKa/IcvUQ8v52y/xAuL5cuXm+vo6HzLOR8qSZKpg4NDmZubm1H37t1Z3QdEWFgYIiIieKdOnVhkZCREUcSAAQPQpk0baGlpNblH7o8//pAUCgWbNWsWa+p8SkmSsGnTpirHU5lMxmUyGVepVKy8vJwBgJOTk+Tk5MQqKiq4i4uL4ODg8Mx9e//XsH//flV5eTnMzc3F2NjYps9uliSq6h45goeMYceOHby0tJSZmJioVCoVUygUAmOM6+jocG9vb8HOzg5OTk44efIkbiYkwKOiAp3++AM2P/wA2ejRTZJnNRmffEJSxiZK4SRJwv79+7maZAGAo6MjJk2a1HCloSaUSuoNnDyZzIaaOGO8KQgLC8P58+fx/vvv19qW8+fPIz4+nr/zzjuaZ4Q/D2Rl0Uzudeuo4lY3EaNSUXVN/V0TioqAceOo51FTBfy336j3fcmSps9eVaO4mAIhlYqSHXPnUhUxP5/IfY1tqqioQGxsLHJyciRTU1NB7doMAL6+voiIiKj6v3r+9cSJE9G2bjuCSkUktxm9yHK5HGvXrkXXrl2lESNGVF/o5eVU7W/RgnrHa94DISEkK25sdFZGBlU/ExJoeyrVQZUzdqFQKDCjgbnzACiAjY4Gpk3D/QcPsHnzZujp6aFSaikpFAru5eUl1ptFe/YsybQ3btSchDl8mNor3nvvyQenDtatW6fs1auXzMPDg35w6hTdz7//DnTuDIVCUXtG8aVLpMCIjq4+fmVlJLt/9KgWMVepVPjqq68gSRKcnZ2lGTNmVB/w4mK6zg0Nn05CGxFBbQADBwJdu2L91q2SXC4XFi1aVEWcDh8+jGvXruH999+HelLHb7/9pmJRUWKWtTXeXrIExkZGpO7Q06OExZUr9P2XX4D4eOzp3Bm9Bg2C46uvUpUzIYGSP3XXgBUr6H6qkzzYs2cPbt26BZlMBl1dXV5cXMwmTJhA1/nq1UB8PJQbNyIvLw+CIIAxBqZSwbhNGyjWrEGapyfCwsKQn58vLVy4sD5hKSigHuf79xtMBHz++ed45ZVXeM9OnRhWryZimpxM68Po0fX3pbi4uiVh/Hhyut+6FT/r6EhFxcWCIAioqKjAxx9/rPnchIYCV6+ioGdP/HjyJMaMGUN9uqWlwIoVODdggCoiIkIcNmwYOn3+OW6mpXHFxo3MwcEBBw8elEpLS5lMJlOVlZUJrVq14qNGjRJXrlyJ8vJyCIIApVIJPV1dac7QoYLZ5s1EDh88oPdfupSq9IJA1/Djx9UqnhpQKpWIiorikZGRrLCwENbW1qrZs2eL2tra5GGhq0sJuWas9QqFAklJSQgJCZGKi4uFV155RdWrV68nz6/PyqoeofW8sGcP3VuBgQgNDZXOnTsnLFmypGnzxh8/pjVy8mRqW2hETadQKHDx4kXExMSgf//+6N5In3WTsGMHrSezZzfrz/Ly8rBu3bpSlUplt2zZsvxn24gXFy/J9ku8kFi+fHl7LS2ti126dDH09vbWsbKyanQe8PPAnj17+MOHDzF37lzW5FFNTUBBQQGOHTvGlUolkyQJmZmZvLy8nHXr1g0eHh5VTrQvCm7fvo1du3ZBR0eHC4LAe/bsKdQLsuvio4/wWKXCr6am6NWrl9SxY0chMzMT+vr6kMlkUKlUyM7O5jExMbygoICVlJQwS0tLaejQoUKLFi2w/dtvpe7btgk2b7wBsyFDqIrzPKCuhB092iwSL5fLkZmZiVu3biEtLQ36+vqqefPmPTk4UUOSqLKdkUEGToGBVPl9WufZSnz//ffSkCFDhJojrL777jtp8ODBQqdm9sQ+FVJSSGK7c2d9N9mEBArqc3M1B9exsVQZr+sQn51NZGz8eCKMGgzeNCIri95v1CgKvrS0iKxHR1NVsBFpbU3k5ubC0NBQXZkDQIEaYwxr165FeXk5fH190blz59pqjY8/JjJ540aTPufGjRs4dOgQOnbsqPLx8anunczPp0Dcz69277EaRUVQRkcjpKQE+fn5qJzPrqrMrPB67uotW+J+v37SyV69MGrUKGHjxo3o1asX+tY5X1lZWUhISICfnx8pewIDUbhoEbYnJiI7Oxv9+vVDTk6OysbGRlAqlezixYvQ0tKCKIrS8OHDhXZubtR77+hIva6a8Oef9PunmNu7Zs0a5YABA2TubdsSma8c0ZRjbIzDhw9LDx48EFq1asWdnZ3Rq2dPhiVLwPr2BavZdpCTQ9dJhw613luSJKxYsQJt2rTBuHHj6iub7t6l6+rQoaa1xwCUeCksJFI7Z06VaeTjx4+xbt069OzZEwMGDMCFCxcQGhqKcePGoUOHDti6davy0aNHYkVFBZutVCL7+HFYHjoEh5ISup80JVlycrDvrbcw2tERYosWtL61b09y/VWriMxZWBA59/Iix/k67TS//fab6uHDhyIADB8+HCYmJnBxcaFjkZdHpGL3brqvlEq6R1eurHbtBhAUFISYmBhYWVlJkydPFuolqOPjiRw3oFjbv38/EhISsHTp0ur4Yc0aqqiq3cLv36fPvXCBElIFBZRU6NoVMDREZmYmfvvtN/j4+PDU1FQ+fPhwQeMzOzGRDNBGjgT8/XH16lWcPHkStra2KittbXj9/LOwdcQIzJ49m1lbW6MgOBhbTp1C3+nTcfz4cTg5OUmTJk0S6rbxVN6P2LlzJy8pKWFLlixBLUVGQgLdB5Mnk8LpzTdJQXH9OsmiJ0/WeI1JkoT8/Hzs27dPys/Px9ChQ4X2c+eSGeOaNRqPZ0PYtm0b0tLSYGhoiDfffBONStzroryciGal6dczY+FCSkh7eYFzji+//BKDBw+GdxPavbBuHVXaDQxITp+S8kQviPDwcB4dHS298847TX9+14VSSUmHESOa3RLGOcdXX32lVCqVA5ctW3buqbfhBcdLGflLvHBYvnx5Sy0trUuBgYFmXbp0+WcZdiWCgoL43bt32dxmk91DAAAgAElEQVS5c5s+E7mJMDY2xuTJk2vuBwsLC8OVK1ekK1euCB4eHpKFhYVw48YN7u/vz9ye1Jf6fxyVs2VRVlbGjI2N2ZkzZxAWFsbd3d1Zv379EBQUhMDAQNR0tMaHH+LuwoVwattW1a9fPxFAPRm5i4sL8/b2ZgDUVamqCHfKokXCXy4uKuM//xR7HT8O43/9iwL0Z61yW1pSsBkRQQFOE2FmZgYzMzO0a9cO6enp+OOPP5r3oBYE6hEtLiZZ9JAhVI2Ij6c+W7Xr7ccfUxA8ciS5AI8f32ilVCaT8fv371fNiy4oKEBJSYnQ8nklJ54ENzfaBx0d6uv++uvqipm7O1UfNRFtlYqqhGp3XzVSU2kGc2AgfTVWJS4vp+P6xhv0fcIE6tt79VU6xmoVgb9/s3ZJk0eErq4uCgoKYG5ujgcPHuDixYu4dOkSPvzwQxw8eBCDBg2C6aefAlOmNPlzoqOj0aFDBz5y5Mjqa4lzqvYPGULXgIaEZbm2NkI3b+aJLVowVWUbjKenp1haWoqUlJT6HxQXh0t79/IWe/eKRV98gfJZs6DuRywqKsKxY8eQlJRU9fKEhATJ19dX8PTwQNyKFTy7Tx/Wt29fyc/PT0ANKW6vXr1QWFiIv//+myUtXQqnmBgYJCU1nNTgnM73t982+RjVhCRJTFuSSIrbogWwZg1yFAps2rQJrq6ubM6cOdi9eze/e/euwL/8Evk6Oki2t8fwlBQYGRkhIyMDZrt2cafMTMY2b6713oIgwMTEhBsbGzONElJnZ5LWT5lCxGDUqMY3trSU+tU5p/u7xjExNjaGg4MDDw8PZ+Hh4RBFEVpaWjh69Cg/cuQIKioqZIGBgWjdujUMo6IgP3IERUVFKOYc7O23oSwoqK+ysrREYseOUH34IZ0gLy+Smh84QORu+/bqCn9cHJFupbLW/aVUKqv+bWdnV9sk09SUWmEWL6Y2jMJC6o/Nz68i2qmpqbh69SoAIDMzU8jMzKy/nQcOUDWwZltEDbRv3x4JCQm1fzh9Ou3Pjh2UZMnPp+q+kxOpPpRKUtZUEtrr16/D3Nyc9+nTh73yyiua45HMTGpx6dOnan1wc3NDUFAQRFEUi5VKnmNry6ZOnQrrypajRHNzSca5YDxmDAL/+gtdGvDxEAQBNjY2+OCDD9jatWtVhw4dwtixY8Wq5IG7O203QLOfS0poH+/fp7XT1paSCBre18zMDDNmzBAuXbqEA3/9hQ9++w16zs4ad7ExKBQKCYAgk8n4lStXeJ8+fYQmF0dyc0ltNH78M5tUQqGga/ObbwBA7bXDL1y4wL29vRt/2MfHU7uSev2/f58M4tavJxVJA5VxzjlXKxifGvHxpJx6Cu+ViooKKJVKmSiKJ5cvX67FGEtdunTp/3YQ+Q/gpUHaS7xQWL58ua6WllZsQECAlaen53+k0Tk4OBjXr19nM2fObN74nGdAixYt4OPjwwwNDXHt2jWemZkpcc6Fy5cvw8jICDY2NvWqIWqVyz9d4X8eyM3Nxfr163Hu3Dnk5+erbGxsBLWMy9raGl5eXjAzM0NSUhLs7Oz44MGDWWhoKC5duoScnBxERETgwYMHKCsrg52dHfIUCpStWQMLCwvBtn//J35+3eqAIAhwd3cXCtq04ScfPkQXuZyJBw6Qu6ip6bPtbGkpjU3q0uWp/vz69es8IyOD9+zZs2knds0aCiqWLCEyPXAgkSj1DGBTUyKtHTpQRcrOjqrg/v4k1X7nHfq7N96gvzUwoNd8+CFMJkwQIvbvh7ubG3TMzKClpYWIiAiIoshdXFz+Mxeenh4FuiUltD+PHlFvtTogHjSIvtd0kT5wgII2NTlVqUj6+vXXVB3u1UtzYuXGDRptdfYsyUr79aNgu39/Ol7jx9M2NHOsVFNw+fJlHh8fz0xMTHhZWRkDgOjoaJ6RkcFsduyA3b17tebQKhQKKBSKKqlwcnIytm/fzuVyOTt+/LgqIyNDsLa2Rvv27dn58+dxYs8elcfnnwvCl19qlsyCnNB//fVXjNu6lXm8+y46Dx0KLS0t7u/vzxwcHBATE8P79OlT+w91dGBmbS0kKxSqh4Bg5OmJXqtWIdHZGZt27MDjykqpt7c3pkyZgoqKCly9ehVhCgXTKihgBU5OmDRpUj0SqjZUtOecmefm4pSeHh4aGjbss/H33yR5/vDDpzr+iQcP8t6rVwuyhQuBefPAtbWxYcMGuLm58XHjxjEjIyP4+vqynu3awX7lSrTZuxd35XIpIiICV65cYYmJiShNTWV/a2ujzfDh9dblkJAQJpfL0bMhR2xRpAkKS5YQ4W6oJzoujva1vJxk7nXk9KIowtPTk7m4uODatWvgnMPIyAivvfYa8/b2Zj179oSzszN0dHTAWrbElZgYfi45md07cwbXFQqcun4denp6kMvlePToEUpLS5Gfn49r166hZ8+ekOnoUDIiIIC+OnQgyflvv5HR3qJF5CmwaBG1VDg6AoIAhYkJG/fhhyysd2/4BAVBf/duug4HD6bXGBqS2d2KFbQWzZpF92hlslu9DUCV0zSvcqVXw9ycEhAN+HFYmJnh2uHDMM3MhNWvv5JSJTubkqO2tpRoOX+eqr85OaQUMjKidVFHB7h5E7bh4bgC8LDgYCYvK1O2adOm9oVbUkL7YGQEvP467t69i02bNvHU1FSpuLhYmDBhAnw9PJjNF1/ApMYYrmvXrkmlSqXgW1wMp3feaZJSplOnTsKxY8eE8+fPw9TUtDqBwTklDQIDyfBu+XJaQz/8EPDwqO89UOf6cXF2RseJExFvYoIWTXi+1sWdO3dUpaWl8PDwEEJDQ5m1tXXTnc8NDYF//YvW2GeNbaKjSXFRIyGqUCjYnTt3Gn++FhXRVJGxY6sl9CYmdF22bk1JlIsX6fqtgYqKCuzZs4f5+/sze02jOZuKr7+mbX4Ksi2KIvz8/KCW7d+9e9f80qVLxefOnYvwe06TD14EvKxsv8QLBVEU33RycjJ7YhbyOSE4OBjXrl3DrFmzqjLO/0l4eXmhppPvgQMHcOrUKR4VFYW5c+cyURSRkJCA27dvq5KTk8XKvmSmUChQXl4u3b9/H0ZGRnzChAnif5MJmyiKKCwshImJCX/06BFbt24d2rdvr+ratavo5OQEQ0NDeHt7w8DAAIcOHWJubm5YvHgxcnNzYWBggNDQUNW9e/cQHBwsBgcHQxRFuHXtynvY2z/T07hbt24sKSlJ2qVQ8NesrAQcOEAB2/TpT/+g796dZJ1jxmjuK30CSkpK6nkQNIroaAqk6j5I1ee/ZctqmXxNSbXaZG7VKiKmADkku7lRoHn+PNqvXg3h1CnOzp9nuHIFCnNztJsyhXfX1mYYNYok6ydPkolS9+6N91A/K9SmYIGB9BmHD9M58vKqnSDhnKS8n35K/09OJrM1e3syuqlbDYuJIQOhb76hoHr2bKpo+PmRc3YTnWCfFgqFAsHBwYiPj2eTJ09G69atmVKpREpKCkRRZAkJCVLOlStC3X78TZs2qR4/fizq6upyNzc3lpSUBHt7exYbGwtPT0/WsWNH2NjYsP379/PkmzfZ2G3bxEOdOyP57Fluc+MGnzlzZtUCoVQqcenSJURGRoJzDr3s7CqJe0BAAAPIeE1XVxcrV67kpqam0vTp00V1wszR0RHjFy4Uo6OjEXr4sJT94IFw9PRpPkomY9d0dXGnqAhXrlyBt7c3+vfvz/r374/cx4/BhwxBqZMTCgsLNbsEf/89sGEDrG/cQL/cXGzduhV5eXl8/Pjx9W/OiAgiqs2FJAERERi2fbuYt2MHbCuVEyXFxSgtLcXIkSNZzdfKfvgBsnPnAGdnTK4x4jEvLw9JEycizM4OR44cwYgRI2p9jLe3NyIjIxvfli5dKIjv3p28Bvr0qf37Bw8o4fP551QFbgQuLi6YPXs2du7cie7duzf4PAu8f58FDhtGhnddumC7q6sUFhbGZDIZl8vlQqUjPjc2NpZkMhldFNnZVNlOSCDi5upKhPvBAxrntWwZJT4A2h8LC9zavFn1cPhwmbm5OYx69aLqNUDE2NKSKoXa2lQVT0sjlcLBg/TvTp3gumABlkyeDO2vv8Yhf3+eHhoqoXVrETUrr507U1Lt1VeJZJWU0Fpw6hRw5gyEtm3hd/kyN+ecISCAiKezc/VaGR9PVd+AACKr6pFPsbF0nYSGQpGUBMO+ffnrP/+M4mvXRGhrUxJzwQJaj/bvp2Tl+++jsLAQu3btgqenJ9PS0hK7detGhLioqN46JAgC07e1hf7Ro+RL0L//E1tc9PX18cEHHyAsLAxBQUEICgrCNF1dtPjxR5KNr1xJa5qWFsnB168nJcSlS42+L6uoQHlgoHSupETQunwZTTIvrYFx48ZVcZW4uDjV3r17xUWLFjVdJahS0TPl1Knm+2nUxP379fw6zM3NUekWrhnZ2fQ8ycmp//xW///IEUrE7NpFz5Z9+4DKqTcAqtbOp8Lt29SC0Ezpfv23uY3Q0FAAgEql+g7AOgCKZ3rTFwgvyfZLvFCQyWTv+/n5NZ+xPAVOnTqFa9euYebMmf9fiLYmjB49GpIksRUrVuDLL7+Es7MzT09PZy1bthRGjhypnskryWQygTEmuLi4ICYmht+/fx/OTyH/+qegq6uLdu3aSQ8ePMCcOXOE3NxcBAUFsf3790tlZWWChYWFJAgCysrKWEVFBcvNzYWlpWWVNHzQoEEiQJljxhhVqjln8PCgsRzP4Czu7+8v/Pbbb7gxejQ66ugQ8Zo3j4jpU5BlWFpSNSY0tMlzSWuidevWVXLJRtGlC5H6bduav401YWBQPRbrX/+q/nlcHAAg9qOPEKFQSNbHjwulY8bwwR9/zPRzciiYBahf09GR5OlaWsCtW0R8Nm+mKtGKFUSIBw6kinH//s8m1w8KomD1o4+o13XnTuqn27mTKtlhYRTgz5tHUrwRI0iiOmkSBcMZGbSdU6ZQINe2LREGxogs/AeVIkqlEps3b0ZWVhZMTEyk1q1bCwApMdq1a4eMjAzknDolJHt6IuDdd2v9rUKhYJMnTwbnnJ09e1by9vbmAQEB6ihPAMjMLismhi06eRLCX38hLStLVRYeLt67d6/WTq5ZswZFRUXo168funXrBvHjj+naX7as6jWMMbz11lssNzcXJ06cYHv27FFNnz69KqosKipCYmKiVCCKwi8jRmDIq6+i87vvovOQIcifNw/ZWVm1qlvmFhbA229jWocO9UctSRLJcPv3p+qRtjZsbW0xb948bN68GZs2bVLNmjWrdkIxLQ14ktdDXeTlkXQ4LAxb33mHT3N3rzouDx8+hI6OjlTLiWvbNpIIa3BaNzU2Ro+7d3FnyBDExcXB1dWVd+rUqcpEsG3btoiMjERCQgKZZDUEbW0aLbRpE5FBQ0NqD1mwgMj3pUtNHmvm6OgISZJ4SEgIa7Ci/sEHRDjXrgX09DDN3Fy9v+zu3bv466+/eFFRERs9ZIgoxMfTMQgOJqny669TZZsxIrVHj9I9//bblMwbMgRwdaXrsKhIltO1K8pzc5HesiWqWlHUsn/OaS2fOpWI++uv03EAIH32GYSuXaELoDgxEbdatGDjgoPF3EOHYH7tGpnS7dhBa29YGDBzJpEsuZzUSrm5VJX08sJ5c3Opf//+oo0m5VFFBSmTzp4lopqYSIk99ZSCYcOwNz1dlZmZKR77/Xc+etAghocPq4lz//5E8N56C9zbG3Jtbd7TzY339fAQYGtL95RKRef4nXdqfbQoipAkif6zZQu9bs6cJ55jfX19BAwYgL7ffosUpRJpEyZILXbuFGBmRolJNRQKkuY/Sa2nUAALFsDu55+FgLg46cKFC/D29m6ag7YGvPfee+JXX32FkpKSppNtUaQk7rOajGVl1euxNjQ0hEKhYH///XetSTJVGDaMWhfqtILUgp0dfbVoQWoobW0UjhqFo56eklIQhJKSkqff5v376Vp9xufQ3r17AQCMse6c87+XLVv2kmg3Ay/J9ku8UFCpVGbNMtd4SkRGRiI6OhozZ858/vOXnxGCIGD+/Pm4cOECJEliw4cPR6dOnRhAM01RZ5xSbm4u37ZtG7O0tJRsbGy4v7+/aNoMaXRpaSnS09ORnZ0NHR0dlJSUSPfu3ZOcnZ3F7OxsKTMzk/n6+rLOnTs36WmQkZGBjRs3wsTEhL/++usiQNnladOmCQAF6QkJCQJA1bO4uDi+ZcsWvPfee6yu/LuWEQxjJPc7dOiZyLatrS0CAwNx4sQJVceFC0V8/TXJIb29yTSngd7WRvHJJ0RUnoJs29vbg3POGgzKIyOJvH7+Ocmc/2EMHz6c/fDDDyw9PR0zv/iCGdjbU8V30yZ6QeVDHQBVgwwMSOKq7tFMTaWgJD8fGDqUvi9eTD2qkZF0fOfNo0B7zRoy7yoooMC0Ibm2oSHJTA8eJPL8449UkZgyhSpmgYFEsNPTKekRFkZVuI0bqQqRnEx9saNGEXGZNOmfPYgN4PTp06q8vDxh5syZrEWLFrWi2ePHj0tXrlwR3jhwACZ1eiwzMzNRVlYmuLq6QiaToa6UNTg4mN+8eVNiWVni7LQ0yJYsAbp0QQAghoeHA6BKrKmpKSRJglKp5KNHj2ZVpndt22rsSdSuJL0DBgwQdu3aJdX83bZt21QAhPnz58PKygqCIDBUOq2bfPYZTLZuJUJcEwMGkFTz0qXaCZgVK2iM2vnztSSvpqammDdvHtu2bRtbt26dav78+eSarFQSUWqO7PLWLTLkYgw4dAjKlStrrS/JycmSekwVAArczcwoyaOpcqVUAps3Y0L37ggPD8fBgwfZ4cOHMWfOHNja2sKksvKlniHdKPz9KeD39SVS6+RECYixY+vNiw8JCYGrqysa8vZQk6ScnBzN4xFtbUnVcfUqeRLUgHOLFlg4YACL+OYbLj9xgt10coL72LGkOKh7DFQqIseffUYVv5Urqa98xQpwzqFUKtGtWzc4OTnBVVPFNjOT1rOpUynR8u23wLvvQu7qinU3b0J2+zbv168fS//gA1TcvImo995DSkoKPpUkCNu20ZoYGUnn6fhxWsNbtqwnmS4rKxMafB6qfRpmzyZlS1pavcrorFmzxKioKFy4cIGFx8dL/fr1E7BiBSVEAgIoYffWW8jKzkZeaip63r8v4K23aK0JCqLfL1pEygUnJ/IK0dKCIAisimyHhlLyITGxqmddI+LiaO3ctg3iuHE4n5wMZ0dHzc+FCRMoWRMdTceooYRNTAy9RkcHPXr0EEJCQrBy5Uru6enJ1CMFm4Pc3NyqJHmz4OtL+zZ1an2FR1Px669E2jVA7RVTC8XF9PqmKsssLChGKC5GZlYWN05PF/ra2MDnaWeFFxRQsqOhxFgTceXKlap/L1269EojL32JBvDfowt9iZf4D0AQhM9+++230tu3b/9jn3Hr1i2cPXsWEydOrG3a8l8EKysrjB07FuPHj8eTXKAnTpwoLFiwAF27dhWysrKELVu28IyMDFRUVODkyZPShQsXeExMDE6fPs2/+eYbrFu3Tjpw4IAqKChICg0N5UeOHOE7d+5EXFycKjQ0VFXZNy6LjY2VCgsLmSiKQlRUlNToRtTArl27ePv27fmCBQtEExOTer83NDSEj48PfHx84OnpiVmzZjHOOU9MTHzym3/wAQXLcnlTN0cjbGxsUFxcLAYFBeHnjRtVf1taUpXmxAkKIGvPaX8y3Nwo852c3Oxt0dbWhq+vLz9x4gQvKiqq/UvOqVJ78CB9f9b+8iYgJCSEM8YwcOBA6Yl9aEZGFKy6u1ePLPnjD+qFNDWlqpG2NvWIq8l6+/YU+KWnU3UaoCSKOmBs2ZLI2LVr1cY+YWEU3C9ZQqTp+HF6vwsXKEADqOKgUlFVa8UKCpyXLaNg18iIXvf/UcFy9epVfvnyZXH8+PGshQZ34NjYWAEANsyfD5VaEl+JsLAwWFtbS3WTUQD1bkdFRbFAFxfx3StXYLJ4MZmiVWL69OkAqJq9atUqrF+/HgqFgnWo6aA9cyZVeBqAvb09lEqlUNMwraioiA0fPpxp8pfAZ5/ROcvJITn/o0f0czs7Okdq06r8fLo2Zs4kyb+GRKu+vj5mz54tmJubs7Vr10oFBQXkEnz+PFU2mwK15LxzZyg/+QSHjxxBeXk506kh1U9JSWEdOnSoZgirVhERadNG83v++SfwzTcQBAG9e/fGRx99BEmSsHXrViiVSuTl5YFzjiZXvWQySvgNH05JqjfeIMfxxYuBO3eQ/9VXuLhuHW4eO4ZTq1fjSnh4/fnoAN5//32mq6uLn3/+GRqn2VhaUsJSX786wZKdTeqQESOAxYvhO2cOw+LF0v6OHfFFUhIUmoiKnR2dPzWWLKH7bcMG9IuNhbmuLmeMoXPnzpqJ199/0/oAAIMHI6NHD1zeuBHHP/tMsrOzk9zd3XlISAhu3rwJPz8/7urqCisrK0kQRfJtOHCAEnX37tFaMXkycPMmcnJycPjwYRw5cgTnzp2DQqFgDT3nC42MkNW2LVWYW7QgNU6NZGJ5eTlWr17Nz5w5o+4Zr77QL1wghcCJE0Dbtrg5f750dNQotnP6dOnhr7+SasjXl8zWbGzo/a9fp7aAVq0gA5jR3buUVAGoB74h88WlS6nyb2hI++nqityRI/HYyAg9e/bUzBO0talS/vXXtI0aoJTLcTM9HQc//hh30tIgSRIWL14MJycnduvWLZXmjWkYcrkcv/zyCxhjmhM9TwJj1e0GzcWtW+TjUedcm5mZwd7eXkqu+2zeu5fOibFxoz3tmlAqCNg5cCAThg9Hn8JC5EyZwr9duhSZV5rJcyMi6L5/hji0oKAAx48fB4ApAP47A9r/A3hpkPYSLxT69OkTfvbs2di0tLSRPXv2bEYja9OQnJyM/fv3Y+jQobxdu3b//U5jTYSOjg6cnJzg6enJ7ty5w0JCQhAWFga5XM7lcjnu3LkjFRcXw8/Pj9nZ2bF79+6xhw8fIiUlRcjOzmbe3t6YPHmy4OPjI/Ts2ZO1bdsW3bt3F7p06cJsbGwQHh4u9O7d+4nZaqVSidOnT7P58+c3ayZzdHS05OjoqHmkSk0IQnW1oCmjPBqAnp4eFAqFKjs7m9vZ2QmhoaG819ChDIGB9AD897+p0mFu3rQqtyhS4JmXRzLGZsLBwYElJCQgMTGRde3aFUyloqDb3596kf8DY7fKy8uxd+9enpKSwubOnYvWrVs/v/vD0LCa6L7yChEwK6tqaeXkyUS4GKPgp3dvqnxdukTVvTfeoN42f3+SsUZEEBFZupT6NFu1oqDWwoKq3HPnUrVWX//5zlV/SpSUlGDfvn0YMGAAayh51qpVKwx66y0o27RRxRQUoFOnTkypVOKbb77hjx49Yh06dJDc3Nzq7YyZmRkS//oLvnI59EeNqjfv2NTUFMbGxrh9+zYqKipQUlICV1dXVM2XBijwfOWVBnugK2f8SuHh4VKPHj0ESZJw9uxZNmDAgNrqk5owMiKTKV1dOm9LllA1+vXXidy5uFALx+XLdO4baeEQRRHu7u4sJydHOnHiBOscFcV0unTRWBHKysrCzz//DGNjYxhpaSF8+nTJJCyMXR8/Hkdzc/nZs2eRkZHB+vTpgzY1iHRcXBy3tLRkTk5OlBy4cYMqkg1Vva5epWu4cgqBKIqws7NDUlISj4yMZCqVChkZGbCysoKjo2OD+4byckoObdpE1254OBHiK1cAZ2dInTph4/790D5zBun5+fArKOC9IyJYUHExPMaOhfLcOcisrGjNMjBA1Pffc6urV5n7xImwv3mT1mwDAyLmaom0vz8pTK5coUReUBCtX1OnUiW/ZUs4tm/P8vPz8ejRI0RGRqKgoIC3adOm9prg60vnVy3RtrMDevUCO3YMjqLIrkRH4/Ldu7h+/TqPiIhQnThxQjh//jxCQ0NRuHs3sjMzcUah4CEhIYgqLGRaOTkYmJHBvIYPZ+1feYX16dMHffv2hYuLC2OMISoqiv2dnCy5//03Ey5dIoLapw/1WM+bB9W+ffgzMhKCjY2qpKQEiYmJzMDAAJpGS+bm5uLIihXc9MgR9uvjx1Bxzl2nTmXFLVpApqcHpq2N4uJiREZGMkmSoKWlJQ0cOJBctktKqJI/dy49hwQBLhMnMmdnZxQVF0snrl4VDK2tYTd/PvDaa7QWtW5N63hMDHDzJvLc3NBr6VKIycm05mlrk9JHFGkdzMykBKGdHbXReHjQtebjA4giDAwMEBcXJ8lkMjg7O2teq42NAXt7SP7+gIUFwsPD+fbt21lZWRkUCgUyp0zhxvv3sxBHR9y6dYtfvHiRqVQqlJWVIScnh/n4+Gh209cASZJw5swZPHz4EPPmzas9TaSpGDqU1CSZmfVbTZ6EmBhSDqj77mvg/Pnz6NChA6tSmahUlCAePpzu4WZCS0sLjx8/VsbFxQmJLVpIke3bC3YpKej2ySeQTZxI99uT+rg5p1aOwEDgGVoA169fryorKxMAdBAEIbVfv35NqFq8RF28lJG/xIsIc0tLy+c+YD45ORn79u3DkCFDeFMl0f/XIAgCpkyZgpKSEty4cQPdunXT2HtVOSKLZWVlISUlpWHHXNDYlsrxEg0H1pVITEyEoaGhShCEZjmGVFRUPPG9qzB9OvXuStJTEyktLS0MGTJEBChBEBcXx8rLy8npedEiInhLl1KQ9PrrVJl4EtzdyZBm6NBmm4Zpa2tj/PjxbN26dQg6fBjDRo6k4Kuk5B9xwq6J2NhY6Ojo4MKFCypRFNncuXOZpnFV/zgEgQIQf38KVrKz6ZiqVNSLPWQImaRZWVElQl1Va92aiNvcuf/R/usngXOOAwcOqAoLC3H37l1REATWmPGQg7098OmncO7eXYw4dAg7duyQ7OzsBJlMxqZNmwZHR0eNF9X9ffvgd+kSjOUTutEAACAASURBVH74oR7RVsPT0xOenp5IS0uDjo4O6ikWRo584qzqnj17CtHR0di2bRt3dnZmnHN89913GDZsGDw9PTX/kShWJ1QKC4lYpqWRS7KpKcmPm+jELAgChg8fLpqYmEgxX30Flw8+YC0kCTk5Obh+/TrKysqgUqkQExMDADj7+++4m5ICy5wcYb2/P5TJyXBwcMDUqVOZg4NDrcRhcXExcnJyhNatW1O19bXXquftNgRzc6oE10Dbtm2xaNEi9sUXX0Ct1GlQwqyuJn/2GZGqTZvoPadMIZXNTz8BZmYoO3AA5c7OKFm1CgM9PGBsbMwAoGdsLN/ToYOU8+CBqBUWxtuam3PLoiKhi6cnS05I4OdOnGBe169T8q9lS1Kc/PvflOA4f562YcwYqsC2b1/dp1wDAQEBuH37NlQqFa5du8aGDBlSW8UwdSqtkTVhYgJ8/z2sDh6E95EjYAYGvGj4cGZoZCQzMDCAiYkJioqKoHX5Mk46OMDZ3p77+/sL5ubmWLNmDUZ6eUErNhYAINYgyU5OTpgxeTJyRo0Silq2hMnevbRmtG9P60HLlkjQ08OgTz6B86BBonLgQKxYsQJvvfWWxsN/4MABVQcHB9bOwoIZGhry/Px8bExJUTkdPiy2S0rCpaVLJWMTE0EQBHz44Yf46aefhNjYWHTr1o2UAUZGlPg7fhxwdQVjDM7OznB2dhZFUeTXr19nVfeFkVF1i9HWrYAkoTQ4GCGBgVxHkqTW77wjOKamMjEoiKr2np6UANHTo7WtgeeznZ2dEB8fz93c3KBOVHPOkZubC319fSQ7OsL2p5+QvnMnjtBkAwYAERER0BZFrj94MH979mz2KVVWWWRkJCIiIiSFQsHKy8uZXC5vkqt4TEwMjh49CgAIDAzktra2T78QjxtHyVi16qmpuH+/wQqxra2tdO/ePdHb25vaP6yt6VnytHJ1AGPGjJENHDgQp06d4qIoqpR+fuIfLVuq3rS3F9GiBak83nij4Te4coWq8c+wDQBgbW1dLgiCjlwuby+TyQYA2P9Mb/iC4iXZfokXCsuXL3fU0tJa5+fn94wDF2sjKSkJ+/fvx5AhQ3jXrl3/eyLyfwj6+vrwbkLl19ra+onmcIIgQCaTITMzs9EKDeccFy9elDp16tRsa05fX18xKCgI9vb2Tx6/1rEjzVTW1qZq3DNCJpPB0NCQJyUlVVcdXVyoarJqFTmRWlvXC6zrwd2dqq+3bzfed9cAVCoVtBQKvFoph9w2cqRSceaMMM7cXNDo3PwckJ+fj+DgYAAAY0x89913n/uc+XooK6Pvt27Rsf30Uwowvb1JxjluHJGNe/foSxSp8ufrS1WeESPIpG3QIDI2ys+nKuTAgVQZqimP/v+IixcvSqmpqczV1VUAgKlTpzb+B4sXA59+itZGRhivrY29e/cKqampsLS0hJMGgy4AKDtzBgn798P41VclccCAJ2aeNPbOAlSB/ukn2oYGrjUdHR3MmjULISEhUnx8POvWrRuPjo4Wg4OD0bVr1/pScoD666OjqXpTXk6y8rg4+vL2piRWMxIkjDH4de8u3JXJsDM0FLL4eJSqpcg1XtP+0SO8WlGBqxYW3GH9ejbfwABGRkbQ0tLS+GE3btzg+vr6kpWVlYiICCKnvr6Nb8z335N3RB0yIggCpk+fjsOHD/OKigrWpq4MPTOT+tOTk+m4nztX28Tq99/pntiyBfjhB0Q4OWHMgQMw9/GBrpNTlTmXh4cH8/DwECVJQnp6OktOTsalmzelw48fC2JgINPX1+fshx8Y7t0jQ8M//iBF0Pz5RPL19amilpYGnDlDa2odx2x9fX34+fnhypUryoKCAtk333wDKysrrq2tzbS1tWGipQXj0FCU5uejR48eteZgy0aMQOSlS5jq4sJMtmwhOXPNUVWOjpj75ZeAlVXVhWNiYiJFm5oKPh070tprZFRdNX/wAPZr1uBSmzaIHTQIAx49gqORESVH/fyAkhKExcWpfBYtEpxv3WJ3bt/m2traiI2NZb6+vqg78UEulzP7vn2FsMxMLgiCNGjQIHHVqlXi9C1bUPbddzDW1+cZGRnSlClTBB0dHbzyyis4ceIE79iyJdNdsYIUCAAR4m3b6LiCpg3ExcWxV199VeNlU1hYCLlcDm5mhnsDB7KsrCwxrE0bWDCmetvYWARjlIgZOJCSt8XFDV2BGD16NFavXo2NGzdCV1cXjDEwxmq1Lsy/fh2ti4rg5uaGMWPGVD3PhSFDGPz9WU2CWtne1ewMtppof/DBBzAyMnq2+OrUqaoZ581CdDTw5psaf2VraytGRUVxcM4gk5EpWXPNFTXAyMgIY8aMEQHyovnxxx/FcsagffYsxSeffELPsG3b6q9zGzfS758RkyZN0vv++++VgiDkl5eXf/TMb/iC4qWM/CVeKISGhr7u7u4+0MfH57klml40ov1P4MaNGyoArN6c0xpISkrCtWvXMGXKlCZLz9RwcnJCdna2dPLkSWZjYwNzc/MnG6wkJDw3w7CioiKekJDAu3XrVv2hMhlV+ySJZLapqdS/2Vh/l709uZoOHdq8DZAkGBw8CNHHh59nDFGlpSw3N1fQ1dVFQkKCVHM83PPCnTt3sHXrVt6pUyepsoUA+k/jxq4JKhURrd9/J/nje+8Rge7cmcbbtG1LxOvQIZKQa2tThr9HDyJ8Dg7kTKvuI1ZX3srLqQ9RkuhcnDlDRK5lS6pCbt5M7+Xq+v9VPl5QUID9+/ez4cOHMz8/P/j5+WkedaVGXh7t9/z5YDo6sLKyQlRUFFQqFSZOnIia3gcFBQXYsGGDKm3zZiZs3sxKvb2lTgsXCs+cJFmwgBIYjSTf9PT04O7uLvTo0YO1adNG8OjYEelBQTh6+TJUq1Zx3fh4ZuTiQkTV2prOz6pVRESuXKGE1Ouvk8Hdhg3kj8BYw33RVYcnD6dOncLhw4f51YMHmWFaGlLatoWOjg48PDzg4+ODoUOHwsTQUDLbuZMZyOVot2ABXN59l5mYmEBPT6/R8TzBwcFS69atxVbl5cDChWSq19j6I0mUNBo0SOPrTE1N0apVKxYVFYVOnTrRfVVaSvOPjxyh63PSJJKx1r3nXF3Jkd3HB3B1hezbbxH1+ee8U1ERw6+/EkE3N6+qujPGYGJiAldXV9a9e3fm6uQEYdMm5AkCa3/mDHTffJOq19bW9HmtWpEXQm4unZ+uXYk49upFP7ewoNdUQi6XIyUlhb/55puCiYkJTExMmIGBAWQymWR78aLUct8+dsDMjN26dUvy8fGpOhiMMVyIj5cMe/RgDoaGRDjMzIjg5+dTwmXo0FrHLy8vD3fv3kXXUaMY2renKrC+PiU0BgwARo5E6ahRvLikhJ86dYr55OdDtmIF4O4Oyd0dp7t3FwbPnMl0bG1RvnYtyrKz2U0tLSQlJUkXLlyQLly4wKKjo6WYmBheVFQkZoeGwjk1lQ9ZvVqUyWQIDw9HqSRJpkOGsO4LFghec+Ywk8rEqY2NDbt9+zY32LiRWc+cWd3GFBFB5m6VZPvx48eIi4vjY8eOrdqx8vJy7N69Wzp79izOnz/PkpKSpKSkJMYYk7S1tVl5eTm0dHXh27kzQ4cO5LQ+aBC1WKiNBmNiSMVT4/kjCAIUCgV78OABnJyceJ8+fViLFi0wbtw4iKKIgQMHwnbuXGiPG4fOvXpBZmAAURTp2fr4MV1nz5jILSgoQGRkJCZOnFhfMfM0EEWS6P/739WeHU+CXE7r54oVGu9HExMTREREMKfFiyXz0FCGhQufuwpKEASEhoaS0ayjIyxat6b7tKiIrvkPP6RnnK4u+RWkplJiuTljP+uAc46TJ08iLS1N4Jw7Llu2LO/57dGLhZeV7Zd4oaCtrd3Z3t6+vi3uU0JNtAMDA3mXLl1eEu2nRJs2bcTY2Fju7OxczwWXc474+HgEBQUhICCgnqN4U5Gfny+Vl5cLu3btAgB88sknaPC9ZsyoMg6qmin9lJDL5bhx44ZQWlqquXXB25tIwrlzJJucN6/hKre3NwVH+fkkp2wq7t4FPvgAvrdvM8X48dKjR4+ksWPHinl5eWzv3r3PnTVW9hDz3r17o1evXmKznWMBclI9dozk3Tt2UGD4xx8UYCxZQsdi716SxfbtS0GioyNVbdTGVBMm0PeJE5/8eXl5ZJA3ciQ5/f72G8nsAQqcxoyh4H36dJr5e+DAMwUyTwvOOXbv3i05OTmhQ4cOTTt3KhWQlFTrR5IkgXNer6odGRkJp+vXxd4tW8Jw7Fh0Dgh4PteH2rSsLnJyKNFx8iSpNubNo6Bx/nyYMIbpR49CceYMcu7fx42EBG7n5MTw++/kFq2nV129+eqr6vdUV6PVCRk3N8DeHgWcQxCEqn7P4OBgfv36dV5RUSEoye2e9U9OhkXnztKyZcuEutvZ/dQp4bahIU/w92fqXurGUFpainPnzqkyMzPFUaNGUWVsxownB+IXLlCw3MjrsitNFiOOHFENMzQU8e9/07F4773Gjd3MzEjmnZ4OBATg/LBhPPDLLxni4+l+CQ0l6X3fviRTVbdf/PEHcOECnDdtgtm1a8ixtMSW9u2lBZmZAhij1pjDh+n+SE4mF+RvvgEePqS/lcmoQnzvHpGdv//GzcmTEX3nDoqLiwVdXV2SUFdDQK9ewDvvYAJjOHDgAJMkqZbCoaysTOjQuTPJoPv3pyp0UBCRPA1j90pycyUDXV2xaob3+PGkXnJ1pevP3h5eAIuKioK5ublKu1cvEba2SDI2xqUZMzB40CCura3Ncq2tYbN2LRsaEYH8R4/wc1GRIIoi5s2bh/T0dLG0tBRubm4I+eEHXvzoEX799VdV3759xddeew0hISG4du0aH9+qFW/18GHVzjDG0K9DB0G+eTNXLl/O0u/exePHj5GuUkmOf/whdFapIIpilTP/3r170a5dO7i7u+PixYs8JSVF6NevH9zd3WFpaSkolUrIZDIBAJQVFRAmTBCgo0PXB0DPtZYtaQrDgwe03nXrRoTSyIjOlaEhzMzMYGZmppw2bVqth2U/dSL6wgVKsqxbR8aVAPDuu/T8bEAx01TcvHkT8fHxsLGxkepOSHgmDB3avEkD16832kZkYWGBt99+G/uysgSLkSPxT9iMymQyTJo0Cfv27UNSUhJat26N3r17o8W//kX38r175Ap/8iQ9A52cGm9TeQJyc3Nx4MABZXp6ukwmk32gUqk2LF++fPWyZcvCn+NuvTB4SbZf4oUCY8xJV8MImqfB/xzRvnmTKiPu7tTTlZ9PFZbsbArebGxoUX/4kKqJRUUkx7p7l35nY0MSxsxMqiwqFLTYJyZSRdbGhgJruRwqGxsoy8uhY24O3L6N/mZm0FKpWPQXX8DcxwfmLi7gAK4kJUnp4eEC19Hh4wcPZm55eUTAZDL6bBMT2p5K2SCKimiby8spEDcxoc8sKYEyJkac5OUFPX19lD9+DDEqioKKoiIiWi1aELnS1qaqjEJBZj4//kjb3wwkJiYiJSVFdefOHaGoqIg5ODhIgYGBDQcLenpEKm1siHQvXEgjQOpWuU1MqNoeHd2ws2xNXL9Olb6wMCA7Gww0B1z9a0mSUFZWxoqKip7OcEYDbt26hX379qF169ZSo0S7ooIC+86dyQxq82Yiz23aUBXsrbcoKO/Shc6NSkXn/PZtOk6CQNUZgIJmNWo4QDcZFRV0/OfOpUCdMc3BlY4OuURHRFDlcNQoqpz/B6vc5eXlyMjIED7++OOm/UFYGElGCwtrbaeHhwePjIxkGzZsUM6fP78qFtCLjkab2FhuPWcOQyM94M3GyJF0X4WG0nnz86NzP3s2kbSbNym5ZWhIyZT+/QFbW7B586AHQPfbb1nYL7+g4tw59OzZEyYNKUDWrqV76OBBMkabOZP8EQ4dwpbRo7mcMdatWzdwznHt2jU2ePBgFhsbKw0dOlSwtLSE1uTJwLvv1j6hly8TmRg2DBdtbSW3du2e2MpSWlqK9evXcx0dHbz++uuwCA6mxFBTVCnh4bT+NIIOZmboe+eO1Co6WkTnzlSZbOo9fPgwrZcBAXAeP57tVyoxpUcP6IeF0fXv4QHEx1M/9uPHwJ499Axwdwe0tZF04ADuHj8OCwMDXuvaHzGC1ntLS7pvBw+mdo4BA0h58v77AICYvXuhOHoUUX/9hQl79yK8Z0+WJ5fTrPSaMDYGxoxBmwMHYG5uztevXy+99dZbIgAcP36cS5JUfYOqW3P++ovIn5ro9ehBiYCuXTFk1izx8KJFHJGRDKmpdBxkMnpO1Vjjy8rK4OvrKwrBwYCFBeIzM6Enl+PuN9+woM6dIYoijIyM+BtDhjDzlSsxoKyMn27ZkhkYGKBLjXnbowMCWPHt24x37Yrg4GD+r3/9i82aNUs4evQoIpycpFaGhsAXX5CsH0CrO3dw0cUFK3fsgFKphJGRkcrW1la0HD0aFwYMkKwWLBA456ioqMDdu3eltLQ0dvr0aVZYWMgCAgJqeaPUTCTLystpDVWT4ZoQRaqMfvklPf9DQkiRcPMmkJICs969odLkFq+Gjw8Zs6nNwfLzifB98YXGlysUCtSMwS5fvoyLFy9KkiQxbW1tlSRJTKVSiRUVFVXjtObMmSM8VcK2IXTsSOd8xYqmSa1zchpvH4qJgcX48TBeulR1PDtbmFxnfOrzQps2bdCvXz/pzJkzgkKhkDZv3ix07NgRY8eOpbgoJ4eSKYJASZCnQHp6On7//Xf1pAEZAJVSqfwBAARBsAXQuPnGS2jES7L9Ei8Eli9fLgMwQ1dX17dej9tT4H+OaANEbI4coey2SkVEQ/2A45x+VlFBQWB5OX2pVPRw1dcn4pqfT9Uka2uSQZaXU8aVMUBLC/zhQ8ivX0fYw4cwMjTkfsOHM1y/DsHBAX1btULsrVtI3L0bHgEBuJWaKqUXFwv+enowsbdnEASqjj1+TAGCqSkFdVev0nb16EGZ3cJC+rK2pgAqLg7IyoJTaSms9PRgpq9PMqtHjyjISEigAHHwYCLenNN7GhnRA6xjR6r0tG5NiYQzZ4ic1yR4dRASEiLp6+uLPXr0QPfu3aHRRU4TunUjSfMff1DP15Ej1UGMGq6u5KL9JLItl1MAWulmqwnJyckQBKFev+Gz4MaNGzA2NsbYMWNEdvMmSTQzM6kH9ZdfSNrGOc0sff11VElXHRwoUXLkCBEBQ0MauQPUrkI8yVG+ubh/nwjG5s1EJgC6xo2N6Xqqa0AlCJQMsLOjSriZGZ2zZ1RANBW8sjrbZIVHr15EeOpcA15eXszIyAghISGylStXcmNjY3ROS2OGSUmIHj2au/To8XzWNaWS5hUfO0bnNyGByI+nJ0mMHz2i9aEmsdcwp9zS0hJ+fn48MTGRR0VFCS4uLtKECROEesnTTp3qz/T+/HNg7Fh0+vVXZhIRgVRbW1ViZqbIOYeXlxeq2ijkctqmGjJn/P47XSMzZ6K8d29k//CDGNBQb3olsrOzsWXLFlhYWEizZs0SkZlJBmU//dS0xMzo0Q2bJhYWAitXoiA9HQWFhcKj2bN5ixEjmneutmyp+mffvn2RlZWFP5VKzAwMhHj4MK0xrq5AcDCdu/79a5nMqefuyuVyMTs7m0yuBg6kc6gmWWFhlMDy8KBES3IyrqWm4k5mJhKSkjD4xx/xVufOKOvRA6XBwbg/fDj0DQyg++eflFTU0qoawyhkZmLatGnCqlWr8P3330v6+vo8Ly9PnDZmDAxjYighHBdHrQSTJtHan5ZG19vChZTUcXPD8W3bkJ2VJaGSsOPQIbrHv/uORsO98gqKiorQpk0bdvnyZZVPeLiILl1QZGcntXrwQDApL+d+GzcyMzMzrF69WorKzBR6Ll/OfIODWZeUFOjVue50ZDLo2Nmhd+/eSEhI4Nu3b+fTpk0T7ty5o+rbty/1T+/aRcmlggKwCxfg++WXDPfu4dy5c5g0aZJoZ2eHirw83KqoEM6cOaMqLS0Ve/fujX79+glFRUUICgqqGnepEX/+Sb3ZoaFPVlSIIj0H1c/CoCBY/forvLS1BchkNPe77jQMHR1SbOzaRQm069dpvdHwWStXroRCoYCxsbEkk8m4JElQKBRiYGCgYGpqioKCAlleXh4ePXrEe/Towezt7fHgwYPnIx+vi+xsSsw0hWwnJjb+vG3dGnjjDQwKDBQ3bNiA3Nxc/FMmoL179xZ69+4NuVwurPv+ezy6cYMjNZVh7VpyzZ8+ndQzNdewJiInJweb1CM0AdjY2KgyMzPVN36eJElDns9evHh4SbZf4n8Cy5cvF0AzAJ0AmAFwkclkHbW0tNpzzlsJguBgY2NTNmzYML1nrWz/TxJtgEhPaSmRyPbt6QHj4vLs71sp5U1LS8PJjAwpz9WVmXl6soqKCu43aRKrGVh7jBuH1atXq07n54uOvXtjzJgxMHnS7GdN2fqamD4dCoUCkStXsgGffNJ09+3CQgoyZ84kE5kVKygYCQ+nav748RQU7thBgem33wLbtiHh9GleJJcLM2bMqGXo02To6wNvv03Hbdgwqp6++Wa1m2+/fjQ7+J13Gu6H27uXevweP6aKXAOQyWScMcaemmzL5ZRwUSiA1auBRYsw7OJFZB86hHVlZfztL79kslWrqk2IKiqogmJiQpWntLTq91IHM08x2uypkZ1NEvPvv68m2gAFkOHhjc8db9mSgvU//iAitWABnZt/2LFc42zjhnDsGPUuHztW71cWFhbw9fWFiYkJbt26xbJDQuAQHIzIGTOQpFQKw5vj4N8Qxo2javapU5Tg2rGDrpVBg6jS1gwwxtCvXz/Wt29fdu3aNZw6dUrYvXs3nzFjRu0Dbm5OaoO66NwZTnPmQH71Koa0by/66+oiu27l/sYN2j5tbSJq779PFbA5cwBXV+zZvl2lpaXFHB0dG2TMnHP89ddfkqurKxs7diwFqhcvEglt6oi9OXPIjK9mwP74MV1vK1cCX32F866uiHvwAD66uiwlJQWtWrV6sg9FTTg4VCVXx44di+U3bmA753ht2jQImzbR7zdsUO9UrT/18vLiwcHBTJIkGKnXpSVLwK2soFIqce/ePRhqa+PvDRtwyt4eWlpavNvKlbBNS2M3x47FuIkT0a7yPteaPBljRo3C7o0b+YMLFzDo8WMm8/amPvCpU+nYKZUw0NPDu6++ityMDEFv716URkbCzsGBZOPdutE5f/NNSoJNmULrjEJRKylaUFIiKZVKITMzEzZ37tA6e+sWrU/btkHp54dffvlFbYonlvz0E/QtLZG9ahX6bt6MpKQk6fj69cIrAQFMT09PLCwslGBnx4Thw2G4eDG1+Lz2WnVCxcEB8PcHYwxTpkwRtm/fLn399ddQKpViUlIS2o0YAb3r1ykJqa8PWFtDy8UFRnI5ZDIZysrKIEkStGbPRkBaGgLatRPXrl3L1XMvDQ0NMUHdKgOaulFeXg5JkqBSqSCpVNBOTkbFzJlQZGSAMQZtbW1kZ2dXXStaWloQBAGiKFZJ9Lds2QKVSgXOOXi/fnAoLkYvxkjhMXcuJU/efru6jSY1lci2erxfaqrGCQCtWrXCjRs3UFBQUHX/vPHGG5pMVKsu5BbNXCeaDG9vIqd5eY2v85xTIvbttzX/zt+f+r8XLoQqKwsAmncfNheFhcClS0jNy8M7v/wC448+YvD3J28Ra2syCnxKWFhY4M0334SJiQnKy8vBGBN3795d+uDBAz0Ag5ctW1b0/HbkxcJLg7SX+D+N5cuXW0VERHzPGNuppaX1vqmp6WQLC4uxLi4ur3bs2LFXly5dWvbo0cN04MCBYvfu3bWNNIwfaQ6Sk5OxZ88eDBs27H+LaANEQgcMoKrKjh1UDZg5kwhSE/qb5HI5wsPD+Y0bN6ScnBwhPz8f9+7dQ0ZGBuLi4vjp06dZ27Zt2bRp01i7du1w6dIl5OfncwcHh1pkz8vLS2jZsiX8/f3Z85L8p6WlITExEX5+fk3/I86JQM2aRUGFlxf93M+Pgg2AyESXLiSvDwuDNHo0lH37Mp/ycpjNmkVJi8mTqbqfkNC85IWBASUSzpwh2bhMRgRVEIjQhYTQttTeUapkzJhBn/uERIWpqSkLCwuDiYkJNM4glySqcJSVkdmUvT1JL2fOpN5aZ2eSrnXpQlWCV16B2LYtDF99FSpnZ7bNzg7hZWWw9/aG+axZVHG0s2uSaU5eXh7WrFkDW1vbf6ZKEBZGCY3Dh2sTbYAkr4LQtPPl4UH7n5hIlUtPz+b10zcTN2/eRGpqKu/Tp8+T15/Hj+ncNWD0xxiD9f9j77vDorq6r9e5dxjaUAQLIE1REQSxgYhKxIItlmgsUWONxhqNpppCMK/GaGISoybGXqOxRaNYsKGiWBAFBEUUkF6k12HuPd8fm6EIKCYmv3zv63qeedCpt5yyy9prN20K5zt30PHWLezq1w9JjEGhUODGjRto3rw5TExMns94zM+ntaNTJ8qQTZ5MLAVjYxpPCxZQcMLL60+xFBhjsLCwwL179+Ti4mLBw8Oj5hs6d6ZHtcyOWq1GSEgI1AAuGhlJFmZmgs1336GxQkFCeVrn6ORJundaVfo33qD5X6EInpqaipSUFNatW7d6RRoTExNx48YNvPXWW+QTnTxJ9Ob58xumgsw5MVemTSOHJTGRxuj69fTar78C7dvDslUrxMfHS8nJyfzGjRtCly5dno+h0qwZZaIr6PgmJia4lpYGa1dXmO/YQffP1JSUlfv0oXroClhaWrLU1FTk5OSglb09TCZNAps1CyeiozV79uwRoqOjkV5WhpKCAjgOH8779+/PmvTty0zu3IH3jBmwdHauEZTS0dGBm4cHO5Gejit373IvPz8Ga2sKKk6aRKUB+vrQ//VXmJmYQGrXDgEGBvB47z2aw9270z2q2N9lAEUdOkAYPBhFnTuDcdgpXAAAIABJREFUmZlBFEXY2NiwvLw8+dyRI0LYo0eyzZdfMiMbGwqWFhejSJIQcv8+rK2t5by8PPbKlCnI7d4d1x4+ZLdu3cK4jz8WSqytWVBqKsrKyuDp6cmaNGlCjnLv3hQYOHWK6t0FgZg5+/cDw4ZBV1cX7u7uzNXVFQkJCUhISEDr1q2pddtbb9F9PXYMUCigo6ODCgYHs7S0ROPAQAoKfvABdHR0+MWLF3n37t1rTEpJkrB06VJcvnwZ169fR/ilS3B6+2385uTErwC4ffs2rl69ym7evIk7d+4gPj5eioyMZOHh4SwiIoJHRUXx8PBwfuvWLTDG8O677zJvb2/4+Pigs68vg4cHrXOdO9Ne9uuvlC3X0aGgtJcXBdGesu+0bdsWrq6u6NWrF3x8fPDw4UM5PDwcHh4e/ze2VEoKBUTmz6+//Oj2bQoYvv563a9HRNBaYWSECxcuyIwx1u1ZnQaeF0VF5PCr1dB8+CGEgAAEd+iAkBYteNfPP2ewsnqq8GRDwRiDYYXInVKpRGlpKU6dOqXDGPsMwO+9evXS/PWT+d/Ey8z2S/x/iyVLlryqo6Ozy83NTc/T01NZYZA/Rcr5ryMuLg6yLFf2Iv2vg5kZOR7R0WTANG5MDlZsLBnRFX09Oec1DPCIiAj88ccfaNKkCYyNjcXU1FS5pKREViqVkGWZ6enpCZMnT66kgxkbG2PatGls37598rZt2+TZs2dXWq4KhQL2LyKjXgG1Wo3ff/9d7kGtOBpeXKunR85KaWn9CuFaMTcPD+DXX5GdlYVtc+Zg8UcfEX22Tx8yPNatI0pmcDAFLj74gOoKv/ySnNj6enrr6hIF9vRpEoCaPp2Muv79icIsSTUzCJcuUVZ7zpwGZQ4NDQ2hr1Ti4rlz6HjjBglTpaVRrfrJk0RlNzcnw+rkScpcuLtXGd7p6VVG86FD9NfeHgKA+1u2yKampqxZs2bs3LlzkoODw3O1bHvw4IG2zY3UqlWr52739lQEBxM9eOfOWvX4JSUl0OzcCSNr64ar0Ts5EZUwP5+cEysrCsS84AyHRqNBQEAAunTp8uwvvn2bxvDnnz/9fZGRwDffQDx4EPOaN8fDhw9RUFCA33//HVu3bkXbtm3lYcOG1aZrPwltFv2PPygL1LFjbSXstm3JER89mtaay5fr7fH7LOjp6QmJiYl4UjQLly5RGUIFIiIicOTIEW0NLC8sLBQ11tY0p/LyyIGYN4+CR9u3V2VUP/uMnIhq97B///7CzZs3sWbNGr5gwYI670F8fDw3NzfngiAwFBcTW2jRoqd3GaiO6Gi6dnl5xEopLycWxYoVNQxqY2NjvP3226Isy/jyyy+xZ88evPXWWw2/gEOHUiDvtdcAAB07dsSVK1fk33JyhKmenrBcsYKOe8gQoHFjPHr0CHfv3uXJyclyVlaWKEkS55yzPevXY1FxMRQqFe7fvy/2798fFy9elN3d3ATn7GzAx4euU5Mm1Nt4xAjK8Pv71zgcQRDg2a4du7tjB8vgHE1DQojS360bZVTt7clxNTaGwtUVmbGx+H7tWt66dWt50KBBIlCVUTx48KAUFRUlDisuxt2vv0bZgAHSxIkTRXNzcwwfPlzM+vZbpObmCpsZQ9OQELlfv36CfVkZDA4ehF7jxtzc3JxZN28uRZ06JZ44cwbWdnaSra2tGJyWJqfZ2zOUljJ9fX1uZWVVNQaMjUlQbtYsWguHDqV7l51d+RbGGBo1agQuy7KrqSns1q4VwDkFb7/7jkoq7O3RuHFjvPvuu2zt2rVyUVGRgPHjKVsPwM3NTfjjjz+wc+dOecKECZUDXxRF9O3bVwoNDRXUajWf7eUlGCQnY9by5ayedaj6msrQkDpjxmi+uLlREC8oiHROBg0iVoipKTEFntyXqt3jxtXE+xwcHISrV68+82f/NlhZUYD6aQy0hASqS38SmzbRuX77beVTjLGnCrjGx8fDyMjo2e1Htdi2DTh+HJmzZ4P/9BO/0qsXv+XiIhh4eqI4Ph6vjhz5t9qh6enpAADOeYCfn1/JM97+Ek/BS2f7Jf6/gL+/vwqAHYBCAEkA+iqVyt8mTJigX1+P2L8Dvr6+CA8Ply9dusRUKhVFtf/bsHo1RVHv3aNaNgDSRx+h7MQJ7HnnHSktJUUsr1BGFQQBgiCAc86HDBnCXF1dtYu/gGc4tk2bNsXbb78tLlu2DOUvgrJaD+Li4lBcXCz8qbqvMWOIttUAQ1mSJOzatYvb29vzigsDrF1LL376KT0AuqaurpQN14qY9OlD2b8//iABpR9/JMOlsJCy2X37UhZqxw5ysidOJEf41i3KNCxbRlmGEyfqp9UfO0ZOiFJJRvTatcDHH2PmqVM49sMP1EKpSRNyHEePpozFtWtV9a/nz1d915OZ4CcQHByMlJQUYf78+SgoKMDmzZuf21nW9myOiYkRpYrx9kKwaRPRZ9etq10PDyAsLAyB7dph1KhReK6O2goFOZkJCeTgnj1L1/gFHXdsbCx27doFxhh8fHye/YH16+lYjh2r+3XOKdiwdSs5vRXH2bKi9tzNzQ2FhYXYtGkTX7NmDWbNmlWrR3pRURGKFi1C0xEjKDDXsSO9MG9e3b/ZtCmtL4cPk7M9dSqwZw85Vc+J3NxcmJiY1HS0r1+nObJ6deVT1YW0Fi5cyCpUmulFPT0KEEREkGObm0t/9+ypM1PEGMOoUaOwe/dudvHiRfTs2bPG62VlZbh+/Trc3d3poNauJfq8dh1oCA4dotZgW7bQOOrRo1av7ep4+PAhAFTSjnUbKhAYEUFBuQpnGwBmz54tHD16FL+EhmJmq1ZotmkTMG0aZEdHFPn64v7bb7PWrVuLHh4eaNeuHVszZw6sdHSwa+JEOeOHHwRJktC+fXsEBwcjJDUVjrKMWqN/9WqiyGdk0DWOjqa1xcEB7lOmwNLCAnuNjDBm4UI09fKi7PaxY8DAgRR0UCig+uYbfBgYiFPvv8/k9evFVefOwapzZ+mNN94QARLhcnFxgdvnn6N8yRIk3LwpqMeOhSiKSEpIQKCLC7qNG4f3u3ZFYGCgsHv3bkwePRpWZ85gwsyZbNOuXehkYyNYjxsHRUmJPGnSJDqNjh0FBAQg1ccHW7ZsYTt37uQjRoxglawgbXvAzz4jivLo0eR0a6FWI3flSgz/+WchePRoGebm5ETb2VFQVatvUOHcKRQKEgkTBCoLGjsWYq9ecHd3l69fvy74+/tj+PDhEEUR5eXlUCqVYpcuXcDfe49duHGDD9iz5+9zxiSJ5svOnTROx4yhYOOECSRyWcEWgKcnBWhNTWsErrKzs3H58mUMq6/zxj8FS0tirR04QPfhSWRn1/28vn6NDL4kSQgPD2d9+/at8bbCwkJcuHAB9+7dk/Lz80WVSoUFCxYgLCwMaWlpcr9+/QSlUkmBoqIiYsEtXEjdL8rKUN6lC7ZduQLTuXOZk5MTm92mDSIiIpCVlSV37tz5b1XmLCoqgiAIybIsR/2dv/O/gJfO9kv8q+Hv799IV1d3myiK/Q0MDMo0Go1YVlam1NXVLR81atQ/6mhrMXLkSOHMmTPyhg0bmKGhIXdwcJDt7e3FVq1a4UXRnv8vwfX0IJWVgX/wAXI2bEB4eLgc2qiRIE6YIHsWFIiTV6yAnJGBUo0GZWVlKCsrg5mZ2Z+ifCsUCiiVSp6Xl8caP61dzV+Ao6MjfHx8sG/fPkybNg3N6hMeqgsZGVVG4VPAOceJEydkWZb5uHHjnu5dDarQGLGxIXo4QFnv/Hz6tyAQHXLHDqrPTE4mmtrAgWRwzZ9PEfXz58mYadasqp9uWBhF6xcupNYrAQHk3Gdnk0E0ahTR/Dp1Iud+3Toc+/13XlRWxrRiZBqNBrEDB4LHx8PR0fE5qABVSE9PR+PGjWWVSiUYGBhAEAQeGhqKGn3Gn4FHjx7BxMREysvLE1NTU2FdLVv5p8A5CQWVlpLBX4ejDQA5kZHSu999J65RKPD48WNuY2PDmjdv3vBgkJ0d0Ybv3KHrvHTp8/dFfwLp6enYtWsXWrZsyX18fJ7d/k6WKZhQX30356SofuAAtTCrJyCgUqkwf/588YcffpBXr14tODg4SJ6enmJeejos9u7FxkaNMPjyZZQ4OMD2vffA6hNpqo7CQhrHCQkUXFKryWCfMOHZn62G3Nzc2gyYtDSihoLKWrZu3SqXlpYKixYtqnxLrWvXowc9rKyohv/YsTrnuyzLCAoKkktKSgQAOHv2LG7dusVHjRrFLCwsAJASP2NM9vb2FivV9jdtatgJSRL99pdfUtYwP5+Cac8ouWjVqhUmTJiAnTt3YvPmzXzWrFkNm2Pdu1deq+p49dVXERERgf1KJUYaGyP5nXd4So8e3C0vT5gzeXKNdkI9Hj3iphER7HCLFsJrr70GW1tbplQqMW/ePGHVypWc//QTg79/zRZ51tbkWDZrRsGODz6gMWBhAeHhQxgUFCB77Vr8FBiIzzw9KZji5ERrXEAAfceWLRByc5G5erXknpMjumVkIHrTJjFowwbc6NoVhbq64qiKWu02Ojqw2LePfW1uDrG0FLPXroXNsmVSu549RQAYPHgwioqKpE2//ir2tbDg7l99xZp26cKLjh+H0f37NYUwk5KAefNgmZWFIUOG4OTJk0hMTKxZgiOKdH4LFtD4Tk6ma/3xx4CeHs4plfLj/v0Fg06dhEc9e1bVJDMG/PILBT0rtCwUCgVXq9X0uixXKtQPGjRIaNeuHbZu3YozZ85wURS5Nvitzs8XhqekIMTXV8KLtPE5J8V7Y2Oq21apKLg4eDCtb4sWERvD3p7YV6amJDS6aRPtb5JEn23UCPDxQUhMDDQaDS5cuMAPHDjA7O3t5cLCQnh5eQnl5eUwMzOr1Qb0b4EgEO2/vrXy999rZK9RXEy0/82bawgxPnr0CCUlJejUqRNkWcahQ4fkpKQkXlBQIFpbW0u9e/cWAfATJ06wFStWoOK+Cg8CA6FWKjEsMBA2KSkou3QJpmPHEm3d0BAXz56VcfMmpk6dWqmz2pv0TV64ox0TEwNJknD69Ony7Oxs7YbXHIAXgLMv+vf+l8CeS2zlJV7iH8by5cv3tm3b9rUBAwboaJ05tVoNHR2dv1eEogHQaDQICwtDTEwMMjIypKKiItHKykpyc3MTW7ZsiUYNqEv9pyHLMjIzM5GSkoJHjx5Jjx8/RmlpKVOr1ay8vJyVl5dDo9FAlGXYJSai3MCAq11c5F69eomOjo604V+4QLXCb7xBSp7PyHI+C6tWrZLc3d3FHj16/K33dO3atbKzs7PQoKygFuvXE2X7GbT2oKAg+erVq2zq1Kl/T9Bgwwai39rb0/W+d69K+VUUieY/eTJRx7//nu7LwoVk8BQVkQNYx7XVUlCbNWuGpk2bIj4+XiopKRGVSiUvLi6urNl7Hjx8+BB79+7lw4cPZ05OTgCAw4cPIyoqCh999NEz77EsywgICJBCQ0NFIyMj3qFDBxYSEoJx48b9tfKCxYvJUFq8uN7giVqtxtolSzCqqAhZkybh3LlzUn5+vti8eXPu5OSEJ+skn4nISBKsGT6c7tefYMLIsozt27dztVotz5gxo2Fp8m7dyID8+uvar3FOxuOZM0T9bkDmPT4+HlFRUci6d0+SHzwQRCMjaeDGjYrNU6bAukMHPHr0iFtaWnIbGxtBrVYjJSWFZ2VlsU6dOsHBwaGSpVAJSaK1REcHCA+HNHw4bi1fjsZdu8LCwgKCICAuLg4ajQZOTk51jplt27bJycnJgqGhoaSnpyd26dIFnV1dKx27EydOQEtR/fjjj+uvZ05KokCUqys5t5mZVU5dNRw9elQKCwsTraysYGtrC319fWRmZiI6OhpvvfUWmjZtiiNHjkjFxcXi2FGjyAH5+muat8/CgwdEGX34kAJiMTGU4QwJAfz8KNCmpZPXg8ePH2PNmjUYM2ZMpfjYM/HZZ6S58NNPNZ7ev38/7ty5AwDon5gIw+JilL32Grq0a1fVAikrCyGxsTh58iSMjY3ld999t4bx/+2338qTz5wRzFevriq3Aeg8ysuppl6tplKdhIQa2cPAwECEhITg/fffpwB2SQmpnR87VoPym5iYiM2bN+P9998Hv3IFioMHUf7GGzCYNg3Cm29SvbeJSVVXDFtbCkLVUVqRmZmJnWvX8vHr1rHf5syRx44fL5QnJGBXWJj83nvv1enY7Nixgz98+JC5uLhIIzt3FmFmRi3Tvv2WsqVLltC5fvghZXgHDcLuffukjIwMcM5RUlIiOjs7S6+++qpYGQTSaICkJBw4d06KfPRI7Nmzp9a5qr/cSIuLF5G2dCmOvf46n/bWW399M5Uk2u+Liyko9+ABsa5yciiAIIqUwR47ls4vLIyYCgCts1phTM6rAte//QZkZyNfqURhTAwkzpHcoQNKmzdHpqEhHqanc6VSKefn54ve3t6Sj4/Piy0hqg+BgTS2qwdhk5Np7oWHVz0XH0/MsjNnamgwpKamYsOGDXjllVcQFxeH3Nxc3r17d+bk5FTZVrOkpARbt26FIjwcr7dvD0WzZhAWLMDjDz5AYEKCnG1gIKiVSnTq1EkeMGCAwBjDyZMn+c2bN/Hxxx//rQZvRkYGfnpiHQCwFEA+gB/8/PzK/s7f/2/Hy8z2S/xr4e/vz3R1dbu5u7vrVM+avsg2RX8FCoUC7u7ucHd3BwAxPz8fV65cEYOCguSjR48KkydPhl1d9KN/EJxzpKWlISIiQo6NjUV2drago6PDDQwMpKZNmypatmwJQ0NDGBoaQqVSwdDQEEZGRnSNL1wAli5l+OorsbJ/qyCQ08A50atNTWkjsrFpkOhVXejTp48YEBDAjY2NWfUepS8apqamQn5+vozniQiHhBDd9SlOXnl5Oa5evSoMHjwYf1d2HtOnV/07M5P+jhxJzvb06ZT1sbIiAyc7u6bx/BQHr0JsiqelpTGVSiUNHDhQtLKygomJCTt+/Lj84MED5qOtuXwGNBoNNm3aJD1+/Fjs2bMnb9u2beXnhgwZgsjISCQmJtarLltYWAhBEHD06FE5OjpaBICCggLm7e0NhUKBXbt2oW/fvtzDw4M9V1BGkogN0KMHsQqeUp939uxZrpuby6yXL4e1SoUOHTqIiYmJuHDhAjt9+jTc3d2fb/1xcYG0fTuYnx+E77+n2vcGquuWl5cjJiYGUVFRckpKCps7d27Djc7166vU66tDloki/fgx/W0gxd3eyAj2ffoAW7aIKCwEjh9XxL/9NiwuXMCrr74KpVLJjh49yuLj45GTkyM3atRIUKvVCA4Oxu3btzF06FCkpaVJDx48gIWFBbO3thYcPD1x9L33ZNnVFffGjhVaHjqEkg0b+M5evZhSqYQkSRwAoqOj5REjRoiMMWg0Gty7dw9t27bFxIkThYSEBKSmporp6elyQECA4DJuHHTnzUPO+PGQJIkzxtjgwYPrv2eyTLXDzZpRZn3+fHLopk+nLCNjKCoqwuXLlxEaGiq++eablTR7LZRKJd+4cSN74403EBUVJQ4bNoz0DfT1nx2ILCoiI3/zZqLhLllC66m3N+k12NmRw7hiBWUI4+OJ8u/pWcvpMjc3R6tWreS9e/cKH374YYNYVupOnZCdnAyLJ56Pi4uTAQj9+vWDp5cXBfvCw+lYzp6lkpbWrdH555+R4uqKiIgIITc3l8S+KuDk5CQEh4aiR2oqzLTOdkEBlRr88AMForKzKbDg5kashAphwZ49eyIpKYmvWrWKmZiYyKNHjxaanD5NZTe+vpBlGYWFhbCxsYFKpZKioqLELn36AH36QBcADh3CzTNnUDp9utzy9m0hYuhQqd+uXSK8vetU5t++fbuUnZ2NfMbEI0OHYoKJiWC6ezeydXVrz5H586mG/OxZjL91i2VeuYKr+fkUfB46lNabu3eJ1fLRR+R8urrSfFywAONWrhS1WgYVIpCira0tOlXooUChAEaMgLVSKZovX17V0mvPHuCdd8hhrQ8HDqDE1vava0WcPk2/N3Uq8MUXRHX/7js6B+13FxZSJjsyku7n5s2079y8SayMu3fpfW5u9JlmzehRochvLMswTkkBoqJgExJCwRAdHSAigqFNG/FikyaIOHJE9OnRo2HCgn8V771HooTvvFP1XEwMKdxr8c03FES7cKHWxxs3boyOHTtKERERgiiKfMKECUINeyAxEdmLF0M0MEDf8+dhVFAAxZYtwJAhMNTRwbQKuyQuLg6//vori4qKgp6eHrKyslizZs00+Jv9tbrWSB0dnSaLFy/+9O/83f8VvHS2X+JfC0EQphkbG5vVqZL8L4SxsTH69+8PKysr4eDBgw1qWcE5hyRJKCsrg1qtrmzboVQqKx/a1hwNBecc6enpiIiIkMPDw5larUbTpk3RqVMnwdnZWSvu9uy57+1NNOe0tJqZCYA2T63RolXr3bWrwcdYHW5ubkhOTmY3b96U3Nzc/pYotizLSE9P53W0GHk6bG0pq1INGo0Gx48fl1JTU6FSqXhSUpLCwMBAateu3T8Tgb95k0TVtmyh6+7uTkbAzZukXPz99yTC5ulZ2V+2PjDGMGPGDFbRu7nG8Xfr1k34+eefce7cuWdmtwsLC7FlyxbZwMCALViwAAYGBjUGrCAIYIzV6wCEhobyY8eOMQBo3LgxnzdvXmXrGYVCAW9vb1hbW+O3335DUVGR3Lt374ZNCEmi+mFra8ouP8UBkSQJV69eZe9rHaUKvQIbGxuMHz8e/v7+CAoKQr9+/Z75s2q1GocOHZKUSiV79OgRy9fVZY6+vvIrH30kGFlb497AgVBZW6NFixa1aM2SJCEiIgJBQUFcrVZzQ0NDPnv2bKHBbeTmz6e6/SezyZwTZVebyWyIYJdGQw97ewoUVHPQ7e3tazANXq9S6xUAmnOXL1/GmTNn8OuvvwKA6OnpidjYWOnOnTtS++nTBbWNjZCTmck9+/ZFb3t7YNQoZuvri1RJgruHBysuLsaaNWuEr776ClZWVjw9PZ2VlpbCx8cH3t7e1Y9B0NPT0xyKjVW0trNDyZ07uHHjBgOAo0ePwt7evrYo0c2btHadOkVMB3190ijw9SWRte+/hzx/PrZs2cJzcnKYt7d3LUcbAAYPHszMzMywa9cu6OjocEeViuHMGSoDedq6ffYsaSyYmpKjojXMhwyhTOjMmTTPV6wgvYePP6Ya2WHDiHbfqhU5P9XWtPHjxwtr1qyR9uzZI5ibm7Pi4mIMGTKkUmwwISEB+fn5PDExkdna2vLCwkJIDx4w2+3b5VyNRlapVBg9erSic+fOwsWLF9FRW4M/fTrV9s+dSzWujAFRUdCxtIR5UBAHwFJSUmo4276+vojYvZtfWruWOVlYwCo7G4ZublWZekGgzL+nJ9HZjYxIkHDlSuh5eMDb25vt3LkT2dnZwoYNGzDMxwetRo1CyqFD2B8aKhcXFwsAYGBgwE6ePAkDAwM4V2TdT6ekICQvDx3nzRO2XroEW8Y4ioooGxkSQjTtCxeA9eshl5QgISFB7NWrF7Kzs9F79GgY+fsTTbplSxrvskxikHv2UD29ri6wbBmEhASIenpwCAwUb7z5ptzl008FWFhUza3Ro4nZ4uBAwYrUVDrvBQuA2bORULG31OqSEhyMUytXYlGzZlVr5qBB9QdvNBoS+PviCyTFx5OT+DwoKKB9fuVKOm8LC3KKnZ2rdEWexLvvkgjjtWtU+z9xIgV8lywhscgWLejcP/us7m4mgkDrsrU1zTmAGAiJiUBgIDyKioDQUPBp08CSkyl73qED7Xn1MLX+EirKqMB51XcnJdG10OLoUTqvOpgjOjo6GDJkiHYPZeCc9p+FC+navvsumiqVaOvhge1WVvjwww+hqCOI0KJFC3z00UfsyJEjiI+Pl8eOHSs4Ojr+7b6adgwKgnBRluWPAHxXXl6+7e/+3f8VvHS2X+JfCX9/fzuFQvH9yJEjDZ/H0fw3QE9PD3p6eqRqrNEgJyen8pGRkSFlZ2ezgoICoby8HJIkAYBWbIxXOCVclmUmyzKTJKlSbZcxBsYYBEGAUqnkurq6XFdXl+vp6cHAwAD6+vqMMcaio6NRVlaGJk2aoG/fvszV1RWCIPy5nWnOHNrgDx6sf6M/dYqMkfXrKfqtjWg/B7y9vfH999+LxcXFMHhSwfgF4Pbt29BoNOy5acC+vrUM5tu3byM6Opp5eXkJ+fn5aN++PVxcXP4ZRxsgWiLntIFnZZHDMGUKbeoA1cvl5pIh+9lnVJ986xZlXVq3rvV12nH1JExNTTF+/Hhs27YNpaWl6NOnT43od2FhIU6cOIGEhASpuLhYtLGxwZgxYwT9epw4xhjftm0bGzhwIHdxcan8waysLBw9epT17NkTvXr1quX0a9GyZUtMmTKFbd68GdevX0fr1q2lPn36iCb1tdnKziYnYcoUakHVwP7qGYGBsK+DkdK5c2dcvnwZDg4OdTpdWnDOsWrVKpSXl4vm5uZys2bN+LBhw1hYWJiwVZLQ4+xZPE5Lk8uUSuy1txfMzMxkFxcXeHh4CPn5+fjtt994aWkp79Chg9C7d+96W0zVi3v3ahuiGg2J6Lm4kAPQEEd71y5y3NPTyTl5TtaGIAjw8vKCgYEBHB0dsWrVKnh6esLX17fq/s6eDcyYwSoF0m7cgO3KlbCNjQW6doVKpcLs2bNZQEAAcnJy2LBhwxASEoJz587BxcUFurq6uHbtGlQqFbo4Oiou5eXh6M2blUJugwYNwqlTpxAcHAxjY2OUlZVJvr6+IsvIIEf33XfJWeWcauzt7Wm+f/AB8PPPeLB0KS/R0+OffPLJU+9Dt27dEB8fL+no6IjC559TNu8JMblKZGYCy5eTYzJoUO32fQkJVf+eN48cs927Kbtoakr3A6C62dBQety6VdkpYvLkyeLevXv5zZs3AVCpGodgAAAgAElEQVQdOQAYGRlxc3NznpiYKKhUKlhYWPCUlBRM3rGDHX30SEh0cxMEQcDXX3/NK8oLWU5ODirn8+TJNCbc3GgNyssDJAkdOnRg0dHRPCIigmmdXYCYXx379mV6R47wE3v3ym8tWybuHDcO6NVLGivLosgYmNaJbdSI7oGLC92D69dhWsHIkWUZw4cPx/6DB2EyZQryzp+HRfPmbMKECQgJCUHz5s2Fs2fPIrua6nfz5s0hyzIM4+LkwWfPMterVxUwN6esZJs2tD42bgxwDqFpU/QaPFgW7OwwLDpawODBJEhpbo4SS0sYHDjA1E2aoNzMDIU+Pmjq5gZmakpK9W++CVM7O8TcvIkzZ84IJhoNmqrVMNHXJ6p1ZGSVMn779rSPlpRQcOHGDTgYG8MtLg5HjhzBvHnzqtZXfX0IZWXQdXND8E8/8SIbGzRq1Ajud+4wKBS1nb3gYOD+fcDCAsnBwZWCgE9FUhLRw7/+uqqkxN2dgpLPKnd58ID2e20gundv0n8AaD9avbpKgf/KFXI6G1JOoVRSYMLBAZfOnEGkQsF7zp7NcOMGXctbt2ieXr5MyQB3dwo6NW9e0yn+sxgxgv4ePEh/4+NpjsbFUVChukhoXZAkCqhERdEasmwZBSxefRXw9ISia1ecW7IEKpWK6+np1XuPBEHAcGov+kKM38JCao999epVfunSJQYAY8eOhaOjIwAKDn9V0Z9bluXzfn5+lwF0fRG//RKEl872S/wroauru8XLy0vvucSs/iVwcHCAoaGhtGrVKrHCMZZ1dXVllUqlMDMzEzt27AgLCwsYGxtDpVJVd2DYE38BkLFRXFwMreNdWlqKwsJCVlhYyIqKilBcXIzi4mLk5eVBo9HAx8cHbm5uf97Brg6lkrIZ5849nRIpCGQMWlvThjNxIinwPqPPsxYqlQomJibSqVOnMGzYMPFF124XFxejpKTk+R35mBhy2qr1zTQyMoIgCKhoJfbP4do1chxv3yaj98gRepw4UdM4EkVq17ViBRn1Dx+SMbZ7NxkCbdtS5rMB7UdsbGwwatQoXLhwQf7mm28EX19fdOnSBenp6diyZQu3tLTkXl5egru7OxQKxVMNgzlz5rDvvvsOwcHBzKXaWDI2Noa9vb0cHBwsyLKMJ9Vcq6NZs2ZYtGgRS0tLw8mTJ7FmzRptT1Du4OAg9+zZUzQzMyOq5ddfk0E8eHCDsiCyLKNZair033yT+uU+gVdffRX37t3jp0+fxowZM+r8woKCAsTGxqKsrAwVtZaV18Te3h7qwYNRMH8+zGNiBPz4Iwp0dRHetq1w8/Zt6UIFNdHZ2RnDhw8X/lSQ8d49EiN68nxnzSLnYuzYp2b3AZBx2b49CewFBdF4aoCjXasFF8ho1NJjGWOIjIyEtbV1FesnN5cMWq2zzRgJ+C1eTE4YtRLE2LFjK7+zbdu2WLNmDX755Re0qVDmBYAWcXEYfu4c4nv1khQKBevfv79Q0dNYunv3LpMkianVatHl/n00X7OG7rF23pw9S9dOSxk1N0fBoEFgY8aw0d9/36CAR0FBATMIC8M5c3MU29jAKiwMrq6uVcwFWSYV9k2biLKuFTV8EiNGUF2xhQU57KtWEb3V1JTGsvZYNm4kpzchgboZXLoEiCJU1taYNm0a8/f3h4uLCzp06ABJknibNm0YKnR6KtZX+qIpU+CeloaWjx8jJSVFio+PFzMzM6FSqVCLVWZiQiJdZWVUijBzJkwSE1H25pvoPX8+bty/L3d54w0Bfn6UfTc2htODB8zpxx9FecYM9NZosH37diExMRHbt28HjIzQJCYGWf7+sLC0lFmHDijavVsY88MPSGzSBOLQoRg+fDhcXFxgaWmJrORktOrfH5oLF5iepSVeq1BSVygUOHHiBMzMzNCmTRuEhYVxI1lmHbp0ER6vXo17d+/C8e5dciQZozGuFapMSUHT+/eFkI0b0S0sDIIoUtA4KgqWenoY2bw5u+/szB+6uvL7enrC6z/9BNtqjI68x49RVlYGzjl2794NJycnafTo0SLy8oix8KQ6vL4+1S0DUK1ejeHR0fjS2hpBb78N5yVLUFBUhPz8fGiUSuz69lswpZLJ4eEIKS6G+6lT2klQ9X07dlCp07lzgCiitLRUtrCwqDv4GxVF+0W7dlS3Pm4cBdRWraJ72xD9lQsXaBzm5ND4LCujNUXb7cPDg9gZR47QGD9wgBzP9evrVvWuB/Hx8byoqIhBR4f23+q9qwsKyOFOSaE6cX9/0i1ZuJCuhZ0d4OiIyvK3hsLPr4opolZTZ4IPP6S/hw9TqceT0GjomnbrRuUVDg5039evp2tRbS1mjKFJkya8wa2/XgA0Gg2+rRJ4qzyYPXv2wM/PDwBw6dIlNQAlY+wY53zVP3Zw/0N46Wy/xL8OS5YsGa9Sqbp6eXn9c9nCFwhBEPBEfeUz22A96/tUz7tpvEi88w4JvuzdW/dmo4VKRZvw48cUCdbXpyi0k9PT6ZQVmDRpkrh27Vrepk0bVM+QvAiEhYVJFfXgzzemTE2plgyUgVUoFLh9+zbX09P7Z5UlJYkyMuPGVWVoBw+mrJixMf37tddIJbU6BIEi/1pBoOBgai104QIZ68OHkyDTU4Iijo6OcHR0FO7du4eDBw8iMjJS1tPTE+zs7PjYsWOFhgZGjI2NYWtri0ePHuH48eO8T58+7OHDh3BwcMCwYcOEH374AflaRfanQKlUwtbWFtOnTxc1Gg0yMzORk5PDrl69yn766Se4GxtLvU6fFpUzZxJdtYGIiIiAIMsweIrqubOzM7t27Rqio6NlJyenWoP6119/5ampqaxly5Z1BmOUSiXRmbt1A9q1g1FYGLp/+im6/+c/YrydHQRBgK2t7Z+LNJWVUdbx9m0yNAFyxmbMoHvct29NVejqSE0l9dsjR6gut1MnCsY0wCh8+PAhDhw4gOLiYjRt2pR37NiReXh41HK8ra2t5cDAQMHIyEhauHAhzcPdu4mhkZlZ5fhaW1O/6/nzKfu2d28tVsLs2bPx+++/Vzra/fv3h1KphGrDBizQ0akxx19//fXK/4euWIFLV6/C6z//QTMTE1RejYgIyhBXONuccxyKiJBU06axETt3CnBxeWatfV9PT0H85Rd+q3t3FKvV8o0jR8SAgAB88sknlAWePZuc602bqHa1PuTm1jxfIyMy3AcMICeiukOko0O01owM+syAAQBjkA8ehFlWFhwdHeHg4ABUM7JrzdfkZFhNmgSrs2fh6uoqlpaWYseOHeCcyxkZGUKTJk0glJRQj2sTE1JnvnWLhCO3bQNatsRrOTks8+FDXMrJEZo/fAjLvDz67u3biT69eDGEbdtgBcDQ0FDevn27qFAo0NvHB51eew0358zBbVkWMjIyIIoitrz1FmSNBoOuXYPp/v0oDQlB48aNSRNjzhwonqijtrGxAWMMR44cAeccr54+jdGpqVB88QXubNnCb5w4ITuGhIhhaWlIiorC4MGDq8ankREcO3XChY4dpdVt2ggziouZwfTpwKJFEBYsQLOPPkKz3FzWzs6O+fv7Q37idgUEBCAjIwMWFhZSdna2WNkhZeNGWlefptD/zjvAO+/Afd063nH9enaKMciNGkklVlZo06aNOGbMGAjbtkHz1VdY+s47FFCpjrIyqqnesqWyvEOSJKbRaKreExdHDnnr1kSDt7EhlsLFi/WvB/UhLo4yysnJVWM0PZ0CK9W/S1+fsttDhpC2iI0NtdibMKFuSnkdsLS0ZElJSXW3BTUyovGnxbRptE/fv0809KAgyib37UtBFX19mr8dOjzdFnFzI82GkBD63IQJlPF/990q5hhAgbNdu6oU4nfsoOTC5ctVzno93S7Ky8thaWn5j6n7Ptky85133kFJSUnl82lpabh48aISADjnE/z8/HL/qWP7X8JLZ/sl/lVYsmTJMKVSuWH8+PH6z2xv8xL/HNzdiVL++uvPFlUyN6dNByBnZ+FCokI+A8bGxloWwAsNsuTn5+Px48di/+qbc0PRsiUQFYWcnBysXbsWgiDAyMhIfmZ7rxeJqCjAy4uMiE8+qXre358i+xs3kmHREOGt7t3pIctUe5mbSwEUHR3gP/8hA6pduzozwY6Ojpg1axZ++OEHQRAETJ06tcGOthaTJk3CyZMn+bVr19jDhw+RlZUFxhi0XTGio6NRWFjY4OCSQqGApaUlLC0t4ezsLOQHBeHumjXCYaUSvl5eqIdgXgsFBQU4evQomnXsqDGaNavehWfgwIGIjIzEtWvXoFVarw5XV1eWmpqKHj16PFtIzdiYalT9/YGLF2F/6xbVXf5Z6OqS06qt/5RlcvDatKFyiLrW08OHydFcsIDuu1IJjBmDjIwMHNuyBYIgwNnZGZ07d8b58+cRHBwMfX19lJWVQRRFLkkSY4yhvLwcLVq0AGOMnzx5kp05cwavvfZajaBZWlqaIIoiqgvnAaAAUvPmZLBWh79/lUK3rW2NjLwgCGjdunWlsy0IAjqtW0fG9Ny5dV+fNWvQ+Y8/kPXWW3z3gwcoW76ctWnThnt5eTHbJ9an6OhopKSkCAsXLmQIDKQARGDgU0sRWsoyMG0as5s1CwDEK1eu4MyxY7jzn/+g9eHDOOjszMu6deNvNmny9NDj2To67DRqROU6PXuS09umTc3Xtc7IyZOAWo3TK1fyGb/8wsSPPyaBrtat6z/2Zs0oUKrRAAoF9PT08Oqrr+KXX34Rfv75Z7Rzdsbrv/1GTsq2bXQf+vcnEa3Zs4GlS2HbqxeKli1D/rffIq1xY1j+8Qd99++/02d69KA2WIcPY/qaNSKAqlrkI0eQHxeHrNhY9OvXD66urhBFEZcvX0apnR2uHD2K7klJsAoKIqfq00+pFnju3EqxwzNnzkBXVxfjEhOh16YNTH7/nbEyEk92d3dnYadOiXcNDHA8KAj6+vp88+bNvHnz5kJqaiovKyvjjo6Ogo+Pj5g0dy7XrF9PAYKJEylL+vXXxDRISICuri50dXWh0WigVqtRXl6O8vJytG/fnvfr10+7J9Df8nJy9hqAAbNnM8yahXEAMGCAiPBwojI/fgxMmYLTAEzS08kR/OIL6ieflETBqsjIGmUhSkGAWFxMc/r0aTr28nKqwX7jjQYdT53QfsfZs5Sx1WLpUhp/a9ZUPffqq1WBajs7en96OjGqzp9/qkhl5TUZMAA3b97E9evX4eXl9fQ3M0a/Uz1zvmABBfuzsijr/ccfFFAbMoSo3Xp6FLhq1armfldSQseamUlr4rRpFBy1tCRhvG+/pb3y11/Jvpk797nWbQsLC/6IAvj/iMP95B69evXqp709E8A/oEb3v4eX3sxL/GuwZMmSMTo6OlsmTpyo//8jffy/Gt7etLns3k0bZkMRG0sb8dy5lMHavx8A0boLCwthZmYGhUKB+/fvo3nz5igrKxNfpKJ3fHw89u3bxy0sLNCoUSMGkADV+fPneWhoKOvcuTNEUeRxcXFyz549xVatWqGkpARXr17lXbt2ZUJJCXSSkvD48WMAwOjRo+Ho6PjPOdrp6cQM2Lu3trq0o2OVcTFrFhnjd+40LHMgCFUZF19fMiJKS0ncpkkTquu1s6vleJuammLq1KkwMjKqIYbUUAiCgIEDBzJJkhAWFgZRFDFt2jRcu3YNsbGxcmFhoZCamorWddSWPxPnzsF4xw6Y9e3LArOyYBUZCQBIT0+X1Wo1LywshFKp5EqlkjHGuCRJaNKkieDl5SXcu3cPnHPM+PRTBQwMyLmqB87OzvzGjRvCDz/8wGfPns10dHQQHx+PuLg4XLp0CW3atKnd6upp6N2b6IdffEH/Dgysv963PiQlkUNz7x79Pz+fsldvv00Gf/UAGeekLj1gABnDmZnkbP3yS+Vbtm3bJpeWlgraczt16hT09fU5ACaKIgYOHMg1Gg07fvw4AMDDwwMDiUUg3L59G7///jv27dsHHx8f5OXl4e7du7y8vJy1bNkSnTt3rulrHjpUN53a1JSy21OmUKDp1ClAECBJEsrLy3Gwoq7S1taWd+rUiaF1a6JwPgmNhsopBg4ERo5Ef0tL1h+0NuzYsYPdu3cP7377LTLWr0erN95AXFwcAgIC4OHhwZRKJbFG9PSINbJlS90lCbdu0Zi5cqXyqW6MwSQtTS65dUv4rk8fKC0smKKoCMuXL+dz5sxhdWoNREeTYZ9bR3LJxISybEOG0BipT+xRqcR1gLEDB9DPyormd/fuJH6Vl0dZxifejyNHqH63wiG3tLSEhYUFb/7HH8xl506k7t+PZi4uyM3LQ9rDh2jZsiX0LCyodGjdOuDBA1xr0QKcc9Q6L5WKaMRvvQWYmkJPVxc4dQqF3bvj7t27uBEYKHn99ps4fPduVC8v6dOnDzjnWJKQgHZnzsBq2TK6xoJA1OSWLaksAkDvzp1xIDtbigsNFZX5+VKnmTNF7XqpVCoxvl8/FMTEYNq0aTAwMGD79++Xs7KypJYtWwolJSXC1VOnEC9JXNfbm3dp25bh7Fmql4+JIRrx/PnAo0eY9dVX+CknB2UGBhAEoTI73u7JNTc9na6ntjyiIdCOq5MnaS0+fZrm8O3b4AYGmLB5M4ebG6vs+/3553S/9PWJVh0eDmRmYsDKlSzC2ZnKEaZMoZIQb++GH0ddSEqi8ZacXKkYX4np02szowSB9qLt2ykYDNC4dXWlbPE339QOGD2B9PR0SJL05zu6CEKl8jl8fOg4i4tpjczOJoHEL76g+WZrS/NCpaKSjBEjaLwOHkznPGIEldJMm0Yt3Zo0qbM9YENgZmbGoqKioFar/5bOOrm5uUhISEC7du0qS1jeffddfPfdd7Xeyxi7zzl/E0AigAOMMemFH9BLAHjZZ/sl/iVYsmTJAF1d3QOTJk0ysHgRQhcv8eKRnk6R8TVrqnqtNhTR0ci5fRsZDg7InTsXJwYMAAShcjOQZRkKhYIzxpiRkRHXaDTylClTRJVKVYuOmpSUBCsrqxrPP1kvKkkSAgMDce3aNTg6OsrDhg0TtKJ1P//8M5ckiRsbGwupqanQ1dXlZWVlDABmzZqF69evSzdu3BABwKCwEE4PHiDUzQ26uroQBIH7+vqyDs9jRP1ZpKeTWFBsbN2UtJAQMhC0r40ZQ4ZQNafpuSHLZIhs2kQG+KefUhZl+PCGCdw8AwkJCUhOTkZqaioiIyOxaNGiGlns58lq18DvvxOVtk0bZDg74+jRo5AkSa4YF0LTpk3RqFEjlJWVVdZXiqKIW7duoby8HIwx9O7dGz0cHCjr8gxnNysrC2vXrgUAfPLJJ/juu+9QXFwMd3d3+Pr61lIYbzASEijTO3o0OcoNaN8EgJyzdeuo1rmggDJ/JiZUd62dF7JMdZ2vvEJG6HffkcP9BHbu3MkfPHjAfH194enpiYiICERGRsp9+vQRqgdBJUlCdHQ0SktL0aFDh8pzLisrQ2xsLGJiYuTw8HABAHR1dVFWVgaFQgFDQ0NpwYIFNQNWS5eSw7pvX+1z02iIKVNYCHTtip3Hj/MHDx4wgJzCGTNm0Pvu3KF16UlneOVKmiubN9dwFB49eoTt27fD3Nwc1gEBMJkzB7KenlYEj48aNaqqVluSSAMhL48c9+qQZVJ3NzamQOTjxxSUjI0F9/XF/uJiuaSkhL355pssODiYnzlzho0bN67ugFJxMZV41HFfKnH/Pjm5hw9Ttq0OfPXVV+jcuTN8fX0puKJWU1Z08mSaJwkJlO3Wnt/8+VR3qg3WFBQg7fx5pH/7Le64uuJ+tQCooaGhrFQqWc+ePZluQgIeBwXJXTgXlI0aYZ2JCXfr1Il5V3fuHj2i471wge5NbCzK27fHyvnzoWtuzr08POA+ZQpThIbWWc6ybt06GYBgZmYGt5Yt4eTrS9/VvDll/AWBsvPLlqF0/Hh8//33fPz48cymelAhMpI0L6ZOrfX9sizjTufOvKVSyQwr+rLj0SP6jQkTAAB5eXk4+NtvUvNDh8QrHh7oefkykl95RSpo1KhSxLRC1BScc7QJC2M2sbE4+dpr4JxDlmVoNBoqdVCp5Nzc3MrNSldXV+acs+qfB6iUwaCwECX6+ljwzTdI9fWVW2/bJiAri+593760NrdvT86gkxOwZQvuRUTIe65cEbT1uC8EHTsSu6pizatEaSmN+braCBYXE01+/fqar508SS3Rrl59Ko1948aNUk5Ojvj++++/uPOoC48fk+BbdjYFte/eJUZDQAAlCm7fJsfcx6eqLv0voLCwEPv27ZMzMzPZwoUL2YticGZlZeGXX35BeXl5jecXL16M+Ph47N69W/uUB2Ns/eeff97pWd/p7+9voVQq1+jo6BSVlJSkybK83s/P7+ELOeD/Mbx0tl/iX4Gvv/46bMiQIR1edK3uS7xgBAWhUrCkARTi0NBQdOzYEYIgYPny5bxJXBzzDQjA3nfewaIxY5BvYgJRFGFoaIjk5GQUFRUhPT0dly5dAuccSqWSd+nShUVHR8sWFhbCgwcPtLWhmlkVdN8ff/xRys7OFkVRxKRJk2BjY4Mvv/wSskzVdXPmzMGVK1dw//59XlJSwlQqlTR//vwalsGOHTukhw8fitp2ax06dEBYWJhsUFSE6WvWCIUxMYiJicHdu3cRHx+PPn36oE2bNjhw4IDk6Ogo9u7d+8Ve5zNnaHNPS6t/gx8wgByziRPp/2VllOnQaGqL8vwZcE409W3byEDX06MSgXHj6Jj+hIjd9u3b5bi4OEEQBFhZWUnTpk376yyB/fsp6zlzZqUic0Nx/vx5BAUFoW/fvuiuVJLxWr2v6lNw/fp1BAQEwNvbG8XFxbhx4wY6deqEIUOG/JmzqEJ2NqnIe3mRAf2sc8rMJGN33jy6T++8Q876a6/RPVKrKdN9+jQpBMfF1WvkHj16lIeGhjKVSlVTHflPYuvWrbKTkxO6du0qcM5x6NAhKSUl5UlNC8oI379fNZbrwqxZKAkNxY+vv46SkhJYW1vz9u3bM3d3d8q8OTuTM6wdl3l55Fx+8QWxQCoCF2q1GpGRkfjjjz/QqVMnebCLi7D/l1/kaD09AQCMjIzkhQsX1mZ6FxQQu6e8nEpqtPj5Z8q8L11Krx87RvWeQ4bUYqOcPn0awcHBWvG8Wj+hiY+H8OABhD59nn5hz5whB3/9+jrr6pctWwY7OzuMHz++5gslJXQdmjencTJjBgULlEp6XqkkJ6lnTwrKrFqFzMxMBAQEIDExEZ6enujdu3elYnnvI0eYWXY2Do8di/E5OUi7dAnHR46Eja0tHj9+LPXs2VPs0qUL3V9BgOzujrCwMBw7ehQjR45EO19f6tE8ciSN4zoYbRERETw5OZknJycLkiTJM2xsBLzyCp1D06YkkJWZCdjZQaPRYOXKlXzq1KmsBjtuwwYaXytW1Pzyb74BDAywy9CQP4iLY84uLpKLi4toFBMDsbgY5d27QxAEJCQkICgoiPfo0YOVlpSg64IFSJ45EyXt2kEwNYVCVxcKhQKiKEIURejGxEChUECuyC6KooiSkhIkJSVBT08PSqUSgYGBkqWlpejh4QE9PT3o6upCqVRWdofQ0n8FQQAePoQiORns8GGqhVYo6NjDwylj26FDjcCcv78/Pvvss+dqGVonNBrag4yNiX3ypGMYEUGlZdogzZMICCDa+JPXPS2N5sjevXV2yIiLi8OOHTuwYMECNLjl4YuAVsRQu07a2xNbZsIEYlW8IOFWzjl+/PFH3rhxY4wdO/b5O07UgQsXLvBz585VP8ASAPoAdUu4cuUKRFF8JElSSwDOAFQAIvz8/Arr+84lS5YsF0XxAy8vL5aYmCjHx8dLCoUiV5ZlA4VCcausrGwRgFA/Pz9Nfd/xEoSXzvZL/J/D39+/ta6u7u33339f/0kxh5f4l4FzcgJnzqyk8FVHfn4+fvzxR9jZ2aGwsJCnp6czBwcHCIKA+/fvY/HixSR2IklkiAYFUT34E9iwYQNPSUlhrVq1kh8/fgxZloUmTZpIhoaG4u3bt+Hk5MRHjx7NTp06hdDQUMyYMQNr1qyBs7MzoqKiAFA9r0ajgY6ODkRR5M7OzszW1hYODg51Zk9lWcbJkyeRn5+PYcOGUU2hRkN06sREQBBqZDQZY3BxceGRkZFs/PjxWiGiv46SEspYnT//dBri2bNE865uVI4fTwbzli0v5liqIyyMKL+entTSZOjQKgphA42QlJQUbNiwobJP8l8C5+RwyDLVkD4n9VyWZXz55ZfQ1dXFW2+9hcaHD1OGXFtv2oDPr1+/HhkZGZXPzZgxo7aC85/Fvn3kTH32GQW36nN8DxwgR+/YMTr+oiIyFiWJjOOOHSmTvXUr3aen3KtVq1bJ7du3F56mCP9X8J///AdTp06FVV0BpLg4CghMn17nZ5OTkrB31Sp0un0bOb16ScM++USsNFLVaspIadkXJSVEYb1zhzL41faVXbt2ITY2FnZ2dvKkSZME5u8PHD6MH6dO5cXFxRg1ahSrt7Xbo0dE3504kSj/ZWU0R3ftogx6hw5VNaFPICMjA5s2bYJGo8GiRYtqdUa4ffs2Ej/7DB4hIbiwbp38+uuvC8nJyYiMjET37t2hp6eHs2fPokWLFpQVP3CAnJlvvqEMbzUsW7aMi6LI5s6dW9kGrQYkiYIGP/9M9aeZmeR8l5eT0nXv3jWYLAcPHpQjIiKEMWPGoG3btpAkCXl5efhp3ToYGRlJmowMsUgU4RwdDdfwcOwbOxZyhZPJGOOjMzOZQ1oazs+YgaCgIJiYmGDixIkwu3WL1pNZs6rGr6kpcOMGqV27u9NzeXm4kZXFG6emwn7kSIZVq8hhAyjr2L49IIq4ceMGLl68yBcsWMBq1Kp++inRlrXBnIpALJYtA0xM8GvjxjwmJoa1bt2ap6eny71/+40JGg07OWYM55yjvLxcMPDchjsAACAASURBVDY2lufOnVvTKxowgMbWsWM1r6+HBzEpnqLuvX79eql9+/ZiN63KtlpNgeyff6YgmygS/V7LWElLA77/nkQxmzUjUcM65jLnHEuWLHkxzrafH7E07t+v+/WcHNrH68vOastboqJql4qcPEmZ8l27agWlVq1aJTk7OwsDBgz4x4TEwDnNhYAAGi8//UT7ys6dFLj78ktaVyZMaJDg67OQmZmJdevWQaVSYf78+X+eDVUN5eXl+Oabb7harWYAXAEUCoLwvizLT4sgC35+fjUcQX9/fwZgDoAfBwwYUN61a1cd7THn5uaiUaNGuH//Pj99+jRkWWaMsc855wf9/Pzu/OWT+C/FS2f7Jf7P4e/vv7Bjx47Lhg4d+gLScS/xt+PKFaJ8Tp9ea5Pdv38/7tyh9dbIyAj9+/fHiRMnUFhYWNvBys+niPnw4WScLF5c+VJxcTG2b98u5+TkCIMHD5bbt28vAKScuX79egBAjx49kJKSgiZNmsgDBgwQDhw4oImNjVWoVCqMHj0ajRs3rrN/9HNj/XraYKsZrZIkQa1WQ19fHwEBAdL169fFiiwg9/b2Zt27d/9zv7VyJdWKPc2A0WLyZHIkqhvaYWFEKfbx+XO/3xBwTvc/IYEM4exs4OOPyVDs3LleZy43Nxdbt27lVlZWfPTo0X/NWuGcjMDAQHI061F+rQ8ajQZLly4FgKoA0J86DI6ffvoJ2dnZGD9+/PPVajcE6emUabl0iSjh2hpELcrL6XqnpJBh3Ls30TqTk8nQv3yZ6gvNzBpkIPr7+6NNmzZ4468IKWlRUkLOaFYWGd0mJti3ejW8u3VDM616tq0tndvly0RJjYmhjPyBA0BUFEpatMClS5e4paUlO3z4MCRJwuhbt3hbgFX2wgXIYBcEKnN58IACgRs2kLpwtfGodRqHDh3KO3bsWPmCRq3GsuXLMX/+/No1x08iKorYHuPHk0PVvj05vCtXknFez7w9fvw4v3btGmvcuDFXKBTMysoKurq6cnh4uGBpaYnY2Fh069YNt27dQklJCQRBqGTnVBcRVCqVfOzYsayFvT2JNZWWkghlhTOjHdsGBga8uLiYmZmZ8ZkzZ7J6x3hRETmfJiZ0rdasIef3CaxatQpOTk545ZVXsHHjRjknJ0cAgM/GjwdcXLB9xQqkFBTAPjISPUNCYHrxIvIZw9GjRyHm5WGItTV2JifLEufC/PnzoVudfTNoENHYvb3puqamUv1s377k6DVujM0XL8pdu3QR2nl7k1MUE0NaB++/TwGC119HyuzZ2LhxI1QqFWeMYcSIEczOzo4CTZ07V82frl3Jyf/hBwA07kVRxKeffkqvFxZSoLWC1r58+XLeu3dv5lFdGAwgBzkvj2jqfn4UPM7LA/r1o9KFupIHN28C5eXYe/48733yJGvyxRdUsrN2LbEnBgygTP/QoaQYPmhQ1Rq7cyfNqYEDKeu6eXOt39A623+ZRp6YSJ0BcnNrBXMq0b8/aQIsWlT/99y5Q4GCutgacXF0rjt3VgaowsLCcOTIEbz++uu1a+H/Lpw4QQyYzz6jDLZWtVwUqYPHrl3kbGdlEYsoIYHuz19kkK1YsQIlJSWYN28ezMzM/vJpbNmyBRXia9P9/Pw2+vv7ewMIeuJtAwCcA6AB0B1AMIA2jLGxOjo6b8iyrANAt1GjRibDhw83rDMwWoHt27fzuLg41qJFC3VcXJxSqVTGqtXqkX5+fuF/+WT+y/BSIO0l/g3Q8JdRn/9/0K0b1b8tXlxJD5NlGUlJSZWO9ueff17p6LZr165uMRAtPezNN2lTv3ePakpnzoSBgQFmzpwprF27Frdu3eLtK7Is1VuaXL16FaIocktLSw4AI0eO/HvWs/Pnyaio5myLogj9CgXYQYMGiQMGDEBOTg6OHTvGrl27JqekpAhDhgypUtxtCGSZjMKuXZ8taMM5UfB+/LHm8x07UmZ20yYSc/k7wBj9TseOwLBh5HgLAhm9ANXjGRsDnTujqIJezTnnwcHB7P+x991hUV3d1+vcO8NQHHrviIAioNIEFUSxRTSKmtg1do1Rk2hM/KUYYkzMG32NJiYxMYnRaCzR2Cs2iqJioSOo9CrSYSgz935/bIYiYEnytnyu5+FBYbhz59xT9tp77b0dHR3/PNFWKiknGaBIzzMUartx4wYSEhKQn58PAJg6dWoL0baxobF7hnz8Bw8e4MGDBwAAq2ck/E8FMzNyaunokGQ0PJzk4mpCt2QJOb9WrKDCPcXFtD4vX6ZiWh1UTO8MDQ0NAICBAwe2/UVjI0WwlEq6fkUFkYKaGiJo58+3RCFTUshIz8sjRYiXF60fAMoJEyAvKIC0ooKUG2Zm1Ev6/feJYMyeTeRx8WJyxPn6QnnwIPJ27WLK4mKYjR+vmjt3Lg+AQaEgY/ett0jyfP06FYry8qLq5a+80uFzLC8vh6urq9CnT5+WOThqFPDBBxBFEV999RVWrVr1+Iigqys5s0JDaQyKiohAPWGtu7i4sFu3bqGkpIQB5DhEU0vIu3fvwtLSEsEJCRhUVoakiROhVCrRs2dPaGlpNef9iqKItWvXsoiICHLsvPkmiufPR/HixYgfNAgyHR2kpaWJZmZmmDdvHrtw4QKio6PZY52OFRUkx/74Y1pPEglF79PSKMqqrw+lUonq6mrwPI/PP/8cJiYmrH///oiOjkahtjYsU1PRq6wMD8LDBdvFi7nT+vqYNWYM5Hv2wNHRUYiOjuYK1q+Hk7U1N2zfvrZEWxRJxbFtG9UpkMmApp7sR44cgUQigVZ+vliqUnE+VlakWKiooD1ArWY5cQKQyWB57hxW7tqFjN9/Z78fOiSWl5dTga2EBJqfp0/TOtmypU2BLiMjI6Fv374tD33uXIqCN/XilsvlYmlpKfBoBWkNDXJm2djQnGCMSNuSJeQEWbuWyGh+PkVLL14kx4itLeDtzaotLWFiZUXjvXYtjX14eMv1J02icyE/nz6zKJJT5aWX6DOEh7dtgQXgLzGl7tyh9VNS0jnRBogoP6nLR2Mj1TkICGivznFwICfFzp3k4LG1RX1TFfm/TCn2ONTX094RGUl1C7y8yHHQ2EjnSlwcdQAZOrQlf3vtWhqX8HBSHlhZPX1tjUcwePBgMTIyUjA0NPxLJJ3e3t5idnY24zjuHQDbAGS2/r1EIln67rvvng4LC+MBWNKPJFcYY7179erFTE1NpZWVlTA3N0ePHj2eqIyYNm0a+/TTTzFq1CgNqVSKtLS0rseOHYsLCwuzWL16deFf8Zn+LnhOtp/jvwEX7t69+zzn438JL79MBvKHHwLa2tiyZYuqtLSU9/DwEMaMGdOuJdRjcz/Hj6fvP/xA+bcLF5I3XV8fvr6+iIyM5ERRBGMMVlZWmDp1KjQ0NMBxHIqLi1nv3r3/tbkHurp0+D4GHMdR/2RAVVlZyScnJyM5OfnpvfNz5hDZSHpKFZYgUGGXjqo437tH3vh/FdluDTXxBsiQLSkhqfnvvwNz5kB57hzSlUrkWVszb29vhISE/DmirVBQND0zk3IXn7Fq97FjxwAAhoaGcHJyUnbr1q3lDHznHYqQPSUSEhJw48YNEU0GeH5+Puzt7Z/pfp4KjFG0LzeXIqiLF1M7In19MlCLi4F//pPIkqUlfQbGqAJ1a6hUFLErLiajvaSEjPurVwGJBJyZGQIuXoTBrVtERGpq6D02bqRrjR1LxfoUCnoPHR2KmHfvTgZnt26U56urSz/X0KD7aHLCcIKAIo4Tvs3L49xv3BBGHz3KIS6OnuPgwUSWQ0KIDMlkQFUV5KKIgPPn0XDrFvqGhvLw9KQIsjqn+ORJci5s3EgR8mnTSP7ZSYExlUrFtevlrq8PiakpXn75Zezbt+/Jz0OlImKYkUFOprlzaT9ctYoISqs2TK1RU1MDQRAwZ84cWFtbQ6FQQKlUQt5aQrt9O3iOw6MFGBljzX1x+/bti6tXr+Ljjz+Gjo6OqsrKin/x8GHYdOkixru4iKGhoZyLiwsYY+jWrRuuX78ubt++XVS36muzNzc2UmR+yxZynr79NjlP1DnclZVA//6QrF6Nnq6uqitXrvC9evXC6NGjWVFREaKjo3Ho0CHh1Vdf5fpMm4Y+06ZxP6WnC5r9+4NbsIDDsmUY8t57XImLi4rz8+NfNDVtQ0yE+/fB+vQBy8lp6avu5oaG5GQcOHAA+vr6CA4ORmxsLCsvLwfbvRsPRBEmpqbkbElJoQupZf8jRkBTpcLN2Fhh9rZtnOnQofTzzExyKLz0Eq2f1jn3TWgT+dfUbFNMT19fn928eZMZGxuD53l07doVehzX4mh5+JBI9/LlFC2XyVpymYODSfr966+0PpucT6rdu5E6darg4OjY+Z54+DCt8dzcttWvAwNpLSsUpO5Rf85W+Oabb1Qcx8Hb25v38vLq9C3aIS+Pahzk5j5+fy0uprXwpGrhvXuTU7aigsboUYwZQ063+fOB9euRlpYGfX39Z3NU/xEIAo2bpSWppEaNoiDCqFH0zAYPpmf54AHtL9u3U6pKeDj13Q4NJefgmTPUUkwq7fg8fgyys7MFTU3NPyW/UygUiI6ORmpqqvLhw4cSxlgDY0xdVU6H47jjgiB8xxirVyqV0WFhYUGgyDYkEonS3t5eOWHCBA3ZH4jScxwHExMT4fLlyxg1ahTXp08f7tixY2CMRYaFhTk/Kk///xnPyfZz/DcgWaFQSOvq6v71G+xz/DWwsKA8teXLUbpmDUpLS/kmKdQfJ1Nz5tBXVhYZ+yUl8PLywrlz53D//n04Ojo2G5BqWFtb/xWf5vEwNSVi8hQ5wZMmTeJTU1Nx+vRp1NbWIioqCo2Nje2M53aor3+24iuxsVR9PDOz/e9ef50MtPz8v6R66lODMTKm5s+naOzDhxBv34b3sWOwz8iASVISEbOuXf9YoZmKCiKZPE8S4WfIm6utrcUXX3wBAPD39xeGDh3KMcZazr/UVIpAPeX+09DQoG49xUJCQtpU4/6XwdqaSHVGBklglUqKMC9cSGNRUkJRZXVrm4wMKnYVHU3PxdublCN5eUQQa2upuFZhIeDkhBptbeRZWSHNywvuoaHgpFIi2x9//JcUBuI4DjN//53LqKkRj/TsycUtWYJehoZEsNV45x26TxcXgDGk372L3Vpa1LLrzh34TZpEpP6bbyjfNi+PooTFxbQfff45RacegbpbgZeXF06dOoWkpCRygtXXk5NPJoNNdTXkcjn27t0rTp48uf0Hzs+nKLyREe1T69YRwbezI8KqpUXR0Bs3yGm2bx8RiSblxdWrV0WVSsXUe5ZWR6T8lVceO4Y5OTm4fv069PT0UFNTg759+/JaWlro+uab0J0+nQUMGsRaO4zs7e2xfPly9tlnn7E1a9bAwMAAs2fPppoVP/1EkdubN2kMAVpbBQUtxbcA+re+PsZv28aPy8oCW7ECEEVYWlpi6NCh4tmzZ2khLlwI9O0LxdmzsLCw4Kq6doXuli3AO+/A0dKSpQcHw6O2luasXA5BpcKXR4+qTEJC+HubNmHChAno0aMHCj77DD/v2AEtTU1xzpw5rEuXLrC3t8fZdesErcOHuUOjRmHeG2+QA+pRmJgge/BgZP/8M2fwwgvgrKyIKB07RulASUmUavPwIRp1dLBr926xr78/BEFAm3oxK1fSHBRF4O5dvGhqyiKuXBFq1q+HXWwsl62ri+5BQZCKIq21F1+kvbaykhwxu3fTHn3gQMs1H9mLpVIp6uvrxczMTKSkpAhKpVIMCQmhOgRKJSlWhgwhkvfoXufuTqoyXV1SIyQmNkeNOY7D+PHjUVtby8fFxeHGjRsqLy+vp3NIiyKln/z4I5HJx+HQIZJUd5By0A4BAXS9yMiO95K+fYHZs9EQGYmqpCSUm5igrKys2Umv3lv/CCFsB1EkB19uLu0jrq60D4SEkPPmH/8gsq1uhRcWRl9vvUWqGbWS5rXXyDbYupXW0LJl9LfDhz/1fjlo0CB+8+bNuHjxIoKCgv7Qx8nKykJ0dDTQxOdEUdSQSqWBAH4HUMAYK+J5/j3GmJVSqbRkjIlSqVR47bXXuC5dukjanINPQENDA3788UdlQ0MDGGPQ0NBgcrmcj4+Px6hRo8BxHLS0tKBQKLoBkAGo+0Mf6m+I52T7Of4bIIqi+NfIn57j3wcLC6CgANU7dgCgllx/Rd4R7OyIKMjl4AYNQkC/fuK+ffvYggUL/prrPyt4nojMU0BDQwMeHh7w8PBAVFSUKi8vD8eOHeOdnZ3bFUQCQF70IUMoZ+1ZYGTUYRubZqxbR5Lo2Nhnu+5fBcYAY2MUz5iBw1IphtrYoEd+PhkrY8bQ5161inLTn4Y0FxVRBIExMnyesUDNt99+KzQ2NnK9evUSm4h22xds3Ei5oefPP9X17t27B5lMJr7zzjv/mgI+dXWkUOjZkwhkt25k5PXuTdEXZ+eWQm4PH1J0muep9sGhQ+SIUSop+rV7N0VcDAza1EV4FHoANKuqcDw9HdfOnhWnT5/O/hLnZ0oKRZx37QJeegkRycmsXEMD4Twvnt+4UZgyZQrfXDn67FmSloJSRtRRaG1tbcGvXz8O/frR65YtoyiluoihSkU5lWfPori4GA0NDbh69aqYkZEh1tfXc+pCiRzHiY2Njez06dNEttevJ9J59y4aGhogkUhQV1fX9plmZpLDYeFCeg5Ll9Ln8fcnUnbyJH22V1+l6OXdu6TM2b4dKChAIWPIOXgQJYMHM9/+/ZuVEB3Cw4OcPuvXd/jro0ePijzPs9dff739L3/7jcizmVkbVYOGhgYWLFiA+Ph4pKSkCF988QWnq6kpvvLpp+xmdrbo9/bbrM1TnjGD5Mtff02qI+qfDnTvDnb8OJGUkBBgzRp4DBnCzp49i507dwrTp0/nEBGBQWfPst99fHD16lVMnjwZzp9/DoM33oDk999pXiuVuD9wIAw9PeEwejQ/cscOfPvtt+KRI0dYWlqa6nZhIT8oLg4B9+8z9vbbAIAu9+4hND+fy926FeWXL4uYPZth584Oxyg9PR0WNjYq2fvvE8HctYtyq3/5BeK776I6KAg3PT1RZG6OiYcPsx0zZ2JQdDRz+v57Ik29e5OE/s03iRzyPOTjxyPEz4+DpiYeTJ6MgzduiLqzZzO71kqWr7+mub50KTlNDh6kefrFFx2Sr5qaGmRlZfEpKSmitbU1l5GRgaFDh1LA4Ztv6O/u3qX58CgYo/lXWUn3+OOPdB40kVN1v/KGhgakpqY+3WZZWkr7RFpaxxHoRzF7NrUcexq4u9M6vXu3U6d1Y2gozi9fLgZHReFKcLC4Z88ernXxSblcLk6aNIk9Lof4iSgqorP87Fk6I3v2pHztpUtbVGU1NfR93TpykCxeTKRbIqF5/9JLtNf88AM5G86doz3r++/JJurdm173ySdPvB1tbW2YmJiIUVFRzN7e/g8po7p3747Vq1dD3anl4MGDaGho6AYAEolkrVKpnO3i4gJXV1dYWlrCyMiIdZpXUlNDc1ZPj6L2rVBXV4dvvvlG0NLS4gcNGsRUKhVqampw+/ZtAU3pMAAwcODAxlOnTkk1NDTOA+j3zB/obwr+ww8//E/fw3P8f45Lly4NMzAwGN+/f//nBdL+l8BxwIABkBYV4UZhIVw9PWHyNIf000Atrbx7F7avvsqKT58WypOTxa6Bgf++6qRqKJVkwD5jlWlbW1vO1dWVS0xMFM+fP88aGxtha2tLeVCiSF/V1eRFf9ZxKyqiv+nscPb1JWPsr6qM/QcgiiIOHDggyOVy9uLs2ZAMHEhtVNTF2377jXLODQ2JMHbWTiwzk/IzpVKKLD5jlDUzMxPXrl1j5ubm4rRp0zq2M0aPpsI4T4mLFy+qGGPcM8kzW6O+ngx7KyuKjMTGUosvKysi1cePU/R0xQpyxMjl1ApMV5ci3IsWUbRu7VoyequryXkxaBBFspcvJyMyPJxIoI0NGeKmpvQ+r79OeZLR0ZTLGhEBGBqiZ58+cHZ2xoULF1i3bt2g/wz58O3w4YdkkKpboY0YAZWHB45ER0NDQ0N0dHREQUEBV1NTg+aWj2+/TWvN1hYXL14Uw8PDmZaWlmBjY8Pc3d3bPji5nKSgM2dSzvjw4TgQHq6ymDePO5udjVoTE3Hw4MFcr169MGLECPj6+sLDw4O5u7vDx8eHnF+enmQ86+vj1KlTyM7OxsSJE0narS4AGBdHYxcSQo4xDQ1SQixcSOTEyaklHzU5mSLrcjkRrgEDcOHsWaFLWhrjhw1TjVm8mENlJZH2tLT2c37kSJIcdyLfvXPnDquoqEBAQED7X/I8kZ85c+j6reS9Ojo66Nq1K/p6e7Ne778Pmbs7u79wIaLz8lhUVBQePnwoODo6tvT85TiaW+npLRJlLS1yBhgbk4zZ1hbc0qVwOXoUkXZ2LMDbG8jIgMmNGyzgq69QWFiIhw8fqoy6duXS5XKx8eJFpsjNFQ916SJG37nDHhoaom9YGAyMjaGpqclSU1NRV1cnzpw5k+s5ZgyYiws5laqqKCr67rsotbbGvago5n31KrglSzoco7y8PBQWFsI7JYXh229bKsdv3w7GGDYyhsAPPoDn1Kng33oL7sOGQT5kCLqMG0fr48EDUicsXQp89BEpdfz86LO7uqLBzAyR168zl+7dYazuPx4RQXNxxgy6BseRNHrTJmDwYKQUFCAzMxMFBQV48OABSktLkZ6ejq5du6rmz5/P9erVCxcvXkT177+Lqg0boL9xI+OXLOm4wJoanp60P0yfTs7CpKR2Rcju37+PiooK1ked6vM4jB5Ne8rjnLit4eVFe9LTqMsYIwfrb7+h2WH2CHbv3q3KlskwfNgwTquqihXk54v9xo5lHMepvL29OY7jEB4eznr27AlNTU3k5OSA47jmdmlPREoKOZEsLMiBaWrarFyAnx9J9r/4Apg1i16/aBER56Ag+tmYMUS8hw8nlYtcTioANzdy0t69S3vX+PEthdV++YXO4k5SSyQSCXx8fFhGRoZw6dIlJopiuyKbBQUFkMlkeFKnHkNDQ5iZmeHSpUsAkDVw4MCdFy5c8JDJZEELFizgzM3Noa2t/fix2rOHHD2VldTic8AAcpRYW+P48eNQKBTi/PnzOXNzc5ibm8PW1ha3b98WbG1txR49enAAYG1tzcfFxQk1NTW2ly5dOn7p0qWioKCg/+8jac8j28/xH4dMJnunX79+8ie/8jn+06itrUVjYyPKysrw888/w8zMTPTZtQvDdXTQ/ZNP/noi/PHHAAC/rCyuJjpaxHvvUXTk35luEBtLXu1n7OEMkKRv8eLFLDs7G3v27MGVK1cwcOBABH78MRGrP9qia+9eIgOPFrNSQ1ubCPmMGVRQ6D+A3NxcFBYWcsuXL29baKVHD/qaPJkMIMbIsCktbWnl5e9PBktiIkUh+vZ9fA/mDpCSkoLDhw+L9fX1TCaTYebMmR3PT0Egg+jiRaqA/ARkZ2fj7t27/Mim4kkdQqkkiXFAAElJk5IoIu/iQgV3HByIWJWXk3EPkIG+fj2RN1/fln7f33zTct1hw0iK368fRWWWL6d7vnChpZft77/T91Wr6AuguaBSUeRCTVIKCkiaD1B+6S+/AFVVMFu0CNpvvSWqli4FBgxgWLmSiPOyZS3VdzvLTSwpIXKyfDk5Vnr2JONWXa1YpYKurq5oa2vLysrKRDs7O3HkyJEtz6W8vPmerK2tmaamprhy5cqOI3OiSOPw5psk6dTWRvr+/Zzx8OHiy3PmMO3vvuNYUhJJ75sMzHYt/7ZsaY7OmZmZiWlpaZA3NjJkZLSoTh6NTH73HUWOW/e39vKiCPfcufSsWzkpDIcN405LpXhvzhweQ4a0FGV67z2KhO/eTeP0yiv0HDuKZDbBwMBALCGVTcdzuUsXqpS+fDmRgdbpK/X1AMdBz9ERfuPGATY2CB4yBE17E1u3bh3c3NzE8vJy0dzcXAj57TcJqqtboqat0XTd+JUrcXvbNsz09aXaDWvW0JgePYqePXvi4MGDfEJ8PAY4OopOW7dC7/332dx//pM1OjigPi4O8nXrgJAQWJqYYPTBg6LHjRs8Dh6kubl4MTmJGKM9wMUFtoIAXUtL1T8mTeLHp6XBuanIWV5eHg4ePKiSyWRobGjgDaVSEaWl5HSIiaGc+pUrAYUCXVxchJKSEs62STqvAbS06Dp7lgjGRx+RjL6urh1RSktLA4CW9nV37pDTcOnStvnLRkbAxYtIfPFFsbSigiVNniyIogiVSgWVSsXq6+tZ64r4L40bB8nJk6wqNhZ19fXQeFJ/aYmESKC6IGZJCVVDb3UmKJVKkef5J5/LhYVENp8Wokjr28Xl6f9GXx8Nhw8j0cwMrhMmNKcMVlZWQqlUIi8vj/f09ITGsGHouW8feh44wKCnh76TJ6tZJtu+fbvy66+/lnAc16xSsbe3V82YMaNzJlpbSxLwl16i56RuNSoIVNvh3XdJvXHmTNsz3tqa7AyplBxMp07RmVVSQqlQGRkthR5XryaFwa5dROLffZdSXG7fpj3t3XcpRaaT/Pbp06dzBw4cQEREBLy8vKCrqwulUomNGzeKtbW1rMk5yfz9/WFjY9Pu7zMzMxEZGdlcQJbjuOtr1679J2PscGNjY8P58+f54ODgx88DQSBb55dfSClVUdGcBpM9ZQq8oqPR+9Iljlepmp1A6enpePjwIT/1kZQOFxcX7urVqwBwnef5u2FhYUsBnAUgBaBavXp1w2Pv5W+I52T7Of6jCAsLc5fJZH09WvX0/P8dgiCgXSGb/xJs2LChuR2NpqYmnJ2dWfXrrwt+NTUcKyoib/6/AFkrV+L69etwPniQDFqqDPvvgb4+Raz+BGxtbbFy5Uqk3LqFk7//LgauW8f+1FjNnk3G8+NgY0MFdP5DsLa2hpmZXPu9qAAAIABJREFUmbhhwwa2ePHilihQa6irZV+4QEbM+fNUmTglhQ796mqKKE6cSBJ0IyOK7j5hbQiCgH379kFHR4fNmDEDBgYGndeDUCiI4D6GaKtbvUkkEuzatQt9fXzQq7iYDLkrVyhi88035BQYOpQI55gxFBmsqaHPAVAEytOT1klVFf1M3W4IoGhCZ9i7l8YhP58It50dXSMoiAxJNam4d48MxNZQyyBlshbiu3Jly+/Vcs2aGqRt2oTGjAzWxceHDGpRJEn0woVUnXrTJjLOBw4kQvr66/RvMzOKlpuYkDHaQfu7I0eOqOrr6zlPT084ODi0f4g//9z8bI2MjCAIQucPWhDISB4xgvJ3jY0x/eOP2c8//4x+vr5gjY2kHoiMbMnxfrQ12759FNVycoKPmxu7u3cvGgYPJgJ/61bHvc03bqScz0fxwgtAQgIao6KQdeUKrvXsiZycHDDGoFKpUFdXB021se3s3FIY8uhRIpeHD9O8mTCBxtLfnwizoSE5b+ztUVVUxOrr6h4fJbK3J+fI2rXkbOnVi+Z4t24kdd2+vfmlHMfB3t4eK1asYN9//z2SkpKYpqYmy83N5W7fvg0nAwPhpX/8g2NeXnSdR+Dq6Ymo3r3x/Y0bGL1pk+Dp5cVh+nQgPBzumppw2LIF5devw/izz/jE48dh0dAAZmEBDYkEGnV1RFT9/SHq6sKkqIiedWZmSy0KDQ2am02kjuM4vLJxI58xfz52798Pd3d30dHRkR09elTs3bs3p6WlBbslS0QLMzMeZ8/SHjlxIjkC8vLI2VBZqXZYNE0jocUZ+OGHaHzxReQ5O8N60SJIevcGtmyBIAioqqqCIAior6+Hnp6eqFAoWH5SEmTR0RD8/FCmpQXV1asQBEFNqCEIAu65uiI0JgaBU6ZwaN9Wjt54xQq4RkQA164hTKGAV0RE28J5HcDKygrdAgNp/hgYEPlbupScbV27oqGhAQqF4vFpCwDlmL/7LjnknoCDBw+iuroaBpWV8Jw2DVZNlcqrq6tRU1OD5nSQDpBZWIgLjo4Qbt3CqexscebMmWz37t1CbW0tJ5FIIIpiS9u9l1+m/TgiguZ+kzPklVdekQiCgMLCQpiamrK6ujps2LCBr6+v7zifOy2Nzm6FguZA6/EvKaGzxNeXHKM1NW3z1D09W5yL331H+ytAxDs3l76r25cyRmqPHj3oLAsIoLX27bdEtjU06Fzr2pX2oEeUBhzHwcbGBsnJyQgPD0dOTo6qvLyc79KlC1u4cCHKy8vZiRMn8OOPP0JXV1cYPnw419DQgLKyMnTp0gXnzp0TLSwsUFVVxQBApVL9X9N1XxEEISQqKuq8mZlZc3pBh9iyhT7T4MFARQXEJUsQu2IFLh49KmjY2nJTgoJgYmhIr/npJyAgACX370NfX1/Q0dFp4xAdMWIEAgMDIZFIcPDgQZs7d+6cYIw1iqIolUgkpWvXrn3r3Xff/bHzm/n74Xmf7ef4jyEsLIzJZLILgYGBAf369ftzVYr/Jnj48CG2bt0KlUqFPn36qEJCQvj/FtKtVCrx6aefYuXKlVAqlVAqlS2H465ddMjv3/+XFFN6FLW1tdiwYQNWrFgBrawsIkeBgWTcqyvR/quQkkKy0ScVjHkKNI4di5z4eOT9/HPHUtCnxapVRGZGjXr868rLKdL2R/t+/wEIgoCIiAixR48eLDU1FRcvXnz6quxKJcl2dXTIcLG2poJZY8cSEVepyBA3MaGfHT5MZHDePCKZtraAIEDQ1sYXp07Bs0cPIWjMGA6mpp3PS4WCIhiP/v7UKXrv/HzcmzFD3DVuHJv6669QaWuLzjExDMbGROSKiogIb9tG/7ezayk49VehpIQIR0ICEfzGRhqfyEj6fUAA5aXu3Eky4vBwiso+AwRBwOHDh8WUlBQ2evRosZ1su+WFFIU/fpyInZUVfV65nAy2MWM6Heu9e/eqCgoK2Ny5c7l2UWaAoszOzsC6dcjNzcXu3buFDiPb4eEUpTp0iN6rrq65ZdSGDRtUw4cP55sNy5ISko3Onk3pCEOGUM51a+zcCXz2GXaOHAkFgPlqlcCjyMqiSKepaSejCFQdPYq62bOxdcECqKRSWFpaqqZOncp3WLOhNZRKcpwEBxMxVqnoOYsizXPGkK6lBWVWlthDR4c1RxbNzMj5YW5Oc0IqJaKSlEQkws+PJMLnzpEE9jH1Dq5fv44TJ07Azc1NbGhoYGlpabDW0xOHubszGy0toF8/lJaWNjuekpOTxaioKGagrw8+Ph6TLS0hV9c+KC0FfvsN4tdf4+YLL+B0ZSVCQkKgr68PO1vbllzwkydRVFyM7du3i2+//XbzxBFFEek3b6L+9m2YjR4N06YxF8+eRU2vXki4dw/nqcaCKIoie83NDfrGxkR+bGyIgO7YQeoY9fMsLsbdV18VDvj4MKlUKiqVSrG+vp6XyWTCOBMT7kxpqepBdTUPAJoKBUKnTcOeffsAiQQSiQSMMVGlUjGe58FUKjH46FEm6umJ1158UeQ4DowxcBwnNkVewXEceJ5HcHAwbzV3LhEZdYtEgJwsRUVEAquqAA8PHDp0CKWlpe2c7a1t9YqKCujq6qrmzJ7NY8ECUp307EmEUFMTYrduWPPPfzb3Zx8zZgx6deAsQXEx7aXFxTSPHoPMzEzs2rULvr6+ou2WLWjMzGRJq1aJw4cPZ1u3bhXr6+uZhYWFEBQUxFlZWUFbWxs5OTk4ePCgyt7eHj4+PvyOzZvx9oEDuLRmjZBSViaWlpby06ZNg6amJuLj44Vr165x3t7eGDp0KDlA9u6lqP2PP3YoV4+IiMC1a9ewYsWK9jf8ww/kFDt4kJyGrbFnD41VU9HM5nz3b79tec2sWbRPBAfTOhw4kAi0+hz7+GO6r/v327/3zZvksJs9m5xn6rX/0UfkRD5/nhRNrUh3WVkZfvvtN/HBgwfM29sbxsbGsLOzU3c5gSiKaGhowIkTJ4SkpCRO1aQS4nlerKmp4aZPnw5ra2v88MMPytzc3OZAKs/zuSqVajOAf4waNQqenp7tAzlKJeDhgepff0VCbS1Kiovh8u67iBoxQvSaPp25ubm1yNizs2mv37AB4vffY+1rr+EtJyfIxozpVC4viiJqa2tRXl4OhUKBvXv3NnActxOAwHFcf6VSWa1UKkesXr26rMML/A3wPLL9HP9JvKytre3dpr/l3wSCICA7OxsqlQrm5ubQecoWRQkJCaKRkZH48ssvc99//z3T09MTAgIC/uPjU1FR0VzNWSaTtfciT5xIErx/UXRbnWukUCig1b07RSwcHcnQP3WKvNCPMYD/FIqLqW/xnyHb5eXAnTuQ7tiBe+fOIenGDVVAQEAb6VtDQwMaGxufbq6kplIO4ZNw+zZFPYuKOjWys7KyUFpaCltb2+aDvSMUFhYiLy8PNjY2zYZvRygrK8OlS5dYU+4YtLS0hJ49ez5+DtfXE7nYtImiCDdvUgR26tQWg0SdU61UUo4uY0QuiorI2/7gAV3j6lXUlZbCqqIC3a9cYfjySzKYCgvJUIqOJpKo7hG+cSNds6iIpKtJSfSauXOBr74CXF3RCKBP795ocHaGi48Pg1TaIsEGWvJa/4wDpSMIApHnLVsorx0gR5M61/CNN+gzq6Owc+ZQ5HvcOPr9M6yJO3fuID4+ns2aNQu2trade8zU80hdRfznn0kCvWoV9QuOjaXc+g4iTWPHjuUPHz4sfPXVV+Lrr7/evgDba681Kwx4nodCoeAaGhratw6srqZnqTYaCwpofkREwMzMjL969arg5uZGN2psTFXsBYGiswUF1Ebp229p3Pz9gUWLoNq+HUUXL0IqlaoAdCxLXbSIIulLl3Y6PPLRo1EeG4u+CxZAplDgwuDB/NatW1UeHh7cY6WcEgmpDczNKdrWGvPnAwCOf/GF2HPmTNbD25vmq0JBz7++nqLECgU5F+7epbxjpZJSE9RV5199le6/f3/aQ7y92xjI6shkcHAw09fXR0FBAX777Td2fcsWGEVFIe/SJew9cACMMWpbpq0tjm5sZC4nTyIaEM9WVrKRmzdD09iYWgFWVoJpa8Nr6FBg61aBmzmT2x4ainfffReSgwdp/PfsgXZ8PJFkqB9nAfbv3y/W1dWhW2oq0pOTxXEbNnA4cABHTp7E7cuXIZVKoaurq1qyZAn//fffi9w77zDMnNmSOgGQ4651W6zaWtgnJ3ND33oLiXfuoLKyklu8eDH2/t//cWZr1qB60SLeuU8f0d3dnR04cAA5y5ZhZk4OdC5fVitzmp9fyqZNrMzGRuy3Zw/zlUie7GFet45SBsrKWnpXv/46RVSbWhICwNixY594qQsXLiAjI6Ol9eKlS7Qe/PyAV14BEwTYDxmiysjI4DmOw6FDhyCKYtuuGCUl5CS7d4/O0Q6Qm5uLw4cPqzw8PPjq6mro6emJQ4cOZejWDWUPH+L85cv46quv0KdPH8HX15e/desW2717NwBAX18fVVVV6NmzJ0tKSuJu374NYxsbsPHj4SqRcJeKiyGVSiGRSGBmZoahQ4dyDg4OOHz4sBgTE8PGjRsH94kTKRK8eTMR10daM2ZlZYlN1f1bxj8tjdb7okXAkSMdS7fPnSMVEkB7ybfftj8fx45tKeYmldLe1Po177xD+fINDe0VMJ6eZA+tXEnP9rPP6HN88EHbfutr19I5bmMDAwMDzJs3r9N5xBiDTCZDaGgoN2zYMDSRbYZHlAtz5syRbN26VXzw4AELDg7GmTNnrDmOCxEE4b1Tp04tSEpKMvHx8dF0cXFpVnSo9u5F5Lhx4uXjx5mmpqaop6cnWmzbxmatWMHY66+3rR2gdiR//DHYO+9A78svVTWvvcY/vHcPSicnWJaWQrJgQRuHK2MMOjo6zbbNggULNNLT0+cAQElJCW7evAkAwwDs7ezz/6/jOdl+jv8IwsLCDKRS6behoaE6Tyr88L+IEydOqBITEzmpVCooFAre2NhYCA0N5R4nswKAnJwcwc7OjjcwMMDkyZO5HTt2wNzcHE5P0XbqX4HLly+jtrYWiYmJKgMDA37ChAkdv1AioUhTUBAZWR1Jhp8RRUVFuHjxIsrKygQTExOOMYaKigqqSC6TteQir1lD0aoPPqAN/hkrVT8R5uYdEodnwpo1FGW6ehX2bm64HB/Pr127Fn5+fnB0dIQgCDhw4ABqa2uhq6srTpkyhZmamqK2thb19fWoq6tDUlISDAwM4OXlBbZ589MVPwsKoshOU4QjMzMTNTU1cHFxgSiKOH/+vCo2NpaXy+Wq8vJy/oMPPmjn9a6rq8P3338vVlVVMV1dXdXJkyd5fX19US6Xi4GBgZy6oEtubi7i4uIQFxcHa2tr5fjx4yWlpaWQy+WdPxB1lNTZmQjb++8TkVy5kohkRwW6JJKWgnKt55maoIwbh6gzZ5B65QqKAwLYkiVL6H0qK+naw4dTFElDg6SlDx6QVLexkQyopjQJ5OYCAFJTU8XfJkxg8/38Hutk+JdATaLUhjFA+YHqcVm1qn3FeUtLcu4IAuWfbt3aEo15DBwdHaGvr686e/YsmzVrFsc9zTp68IByHdWF7jZvpujPmDEtkvJWkMlk8PPz41JTU5vTUdrA0BCK3FzUl5fju+++Q4f38H//R8S6NSkxNQW0tXHv7l3cu3cP3Tvql85xNKcAykm8dInmwKuvQhw4EOs++QRKpRLOzs5cTEwMSktLUVVVhdGjR0NbWxupqako0NISVPb23JM0A8dOnIDU2hqT8/PhvXQprty8yUdFReHWrVuCp6cn17Nnz44lty4u5Lx4lGwDKC4uRkVFBfMPCiKHRGunZkfKleRkIgP9+tE88vMj0q1QkJNp+XKS1//jHxSxj46G+bJl6NqlC5Tp6UBhISyGDMGsV17BESMjfN29O0w//RRBkydjgK8vhIsXwe3fz0EuBz76CAPd3dlnn38uGiQksEEDB1IxqnXryFDX1ITLoEHczYQEMaBfP1ESEMBh61a6bx0daGzZAp1Bg8Si6Gh2LDUVubm58PT0ZCEhIVCFhiImI4NlZ2fD7PBhGN+9i/lr1sDCwgIQBB5jx8JDRwcXPv1UGBMa2jJhlEpaC+ocXQCwt4ckORme8fGosbJidxoaRB2JhE157z1kjxiBF6ytcfv2beHAgQM8AGjNmwebujpwj55nv/wC0717cXniRKGfRPJ0BkyvXrQO3dxovxs0iBRhf8D+EUWxZW3MmUPXnD4dZUolro0ZI1gkJXG6TVJ5QRDg4eGBEydOoLi4GMOGDaN1a2zcknfcAZRKJbZv345evXpxly9fRn19PcaMGUP7yty5MDh4EHNdXVl1dTVMTU15ABg6dCizs7PDnj17UF5ejq5du6pCQ0P5oUOHYt++faK2traAefN4kxkzMPW992Dj5NTGcd+tWze8+eab7KOPPkJRURHc3d1pLRQUUL50VFSb4oF+fn7s119/RVRUlNi3b18mLS6miLOLCzkhHh3bhgYizZ980rI3LVxI58KuXW1fe+gQ7Q/qfXfkSLIzoqJICSWREJF3daWUkDVr2v69VEqO3MhIOs+GD6eghFxOCofLl2mOenmRk/abb57azniSQ37BggUMoHliaWmJiIgI7/v37w9UKpXIzs7+LTMzc4STk5PGxIkTNYSqKtxfv14sHj1anD17NjM3N28h8BMmkBpoy5aO36hLFzh7evJfLlkCNDbCY/duiLdu4QwgTDh6lOsSFgapt3e7PzM2Nm5OK8vJyVGT7T1hYWGRq1evzn+qQfgfw3Oy/Rz/EWhoaGxyc3PT6qjYw98BycnJ/Msvv4yuXbvySqUSx44dYz/88ANmzpwJqw68yA8fPsT169eF7OxsfmBTgRMbGxuMGDEC+/fvR2hoKHqo81v/hbh58yaSk5MRHBwMMzMznD17FgDQtWtXTJo0CdJHc0FbQy4n437vXooQ/gmcOHEC169fR8+ePQUXFxcuMzNTEEWR6zDvl3pMkvF4/jxFS/5KyOV//JrZ2eRdX7++mcQ5OTlh1apVyMrKwu7duxEVFQXGGPz8/BAUFIQ9e/aI3377bYcebk1NTbGmpkYYOGsWj1OnyGh7EgoKgAED0JCQgB07djRLC3meR5cuXTBz5kwUFhbyUVFRYutS3Xl5eSgpKUF0dLTAcZz4zjvv8BzH8aWlpbh9+zZLTU1lO3bsgK2trVhYWMhEUURjYyMAYNasWRKO4x5fzTohgYyMzEwyPNTrQkODDJtXXqGo46ZNTzfWTVAqlYhpyq8bpi42xXEtBNXXl57nZ5+ROuKHH+i91K1eHul1/ODBA1FDQwOmpqb/vnyOxkaKOu7aRWOjxjffUFGtiAj6/6BBZFyGhrYlaOqK92opflHRE2WiGhoaWLx4Mb9+/XoxOTn58fl9anz9Nckr1S35tLQo6uvjQxHFr7+mZ9jKgSOTycAYQ2JiInyb7jkuLk68fv264HvqFKcZH89+nToVenp6qtdff72ttVxbS+kq8+a1vQ8dHWDvXkT98osIgL388sudewoaGmhNh4RQtMnYGIwxDB48WMzOzhbLyspw+vRp1tQvFmlpaZDL5YLn4cMc7+PDRdy6hfi7d8WxY8eyrh2ksGRnZ6O4uBgmnp6izrZtDLNnYzBjsFy+HHn5+bh8+TIiIyNhZGSEwYMHo1u3bi2Re5mMZKZr17aT4p85c0bkeZ6lpaXB83HFGkWR9hulkhyfBga0xjZupMJmalVIXBx937aN9ghRRF6XLhB4Hhn79wvG4eEc3N3R5YUXMMXUFMoffwTfrx/YmTPAK6+A09Ehx0eTwoajZysqFArWXM180iSSSF+5gkI7O1wYMIBZ37uHMmdnCBoakIeFQSMrC6X790P7gw84+UsvASNHoueIERjdVMWeO3wYaT/8IETu2MF18fSE4Okp9Lew4JCfD0EuR6qGhnjD3Jy9NGBA2wFLSSFHY0dqnRdegN3s2YgzM1NhwQKJZlUVnJt6Yh88eJAHKBp39s4dOI8aBeN588iJBNC+VVWF9AULwHXkMGqNggJy2jk4EKmbMoXWy3ff0bOZPJmkzCNH0l74lClY6rouAFAviigODUXmq6+K57t1Y+bm5lyJXC6+uG4dP2TnTvyUkiJWVlZi1qxZbOfOnSguLhamvv02x95+G1i6VO1MVTHGEBoayltYWIDjOGRmZoLjOIwePZoNHDgQWVlZcHNzY3jwoLkatzbHtWlpyRiDi4sLxo4di+zsbDEhIYG/ceMGvLy8MHv2bIYmxQiTStHt6tWWwnSPgDFGRFuNMWPIWTFxIp0HTbJwJycnTJgwAYcOHoTVe+/BuLQU+Xv3wsnFBWlpadi7dy/c3d1VY8eOpf7l0dGkXGrdQnTBgo7VePX15KBVQ1+f9o3YWLJz1Ni7l85hteP4UQQE0BpZt47WmqcnzQH1uCUk0Pp85x0qyrd7d5u9Wt0Wl+M4VFVV4ebNm/D19YVWJ5JtNVQqFX788UcxPz+fDRkyRMvIyEh1/fp1XqVSTQCAe/fuZUVHR9vUREaCc3Lixn3wQUs3AjVefZVSWI4coV7yHaB79+6IiYnBirfeQmVlJVTV1bCPi+MeZGWJNz74gPXx94fR7t007h2MT2pqaiOocBokEsknn3zyiVFjY+Mrq1evfvjYD/g/huetv57j346wsDA/DQ2NdVOmTNFqt7j/JkhMTBQaGxuZk5MTOI5D9+7dWVFREe7fv69yd3dvs+PcuHFD3LNnDxMEQRw7diyzayV7srS0hL6+Pg5TpVBRX1+fqY3VvxrXrl3D8ePHUVZWhtu3byM7OxtlZWVYtmwZ+vbtyz2VAiE4mIw4ieRPyckjIiLg4OAgjhs3jnNwcECfPn1YYGBgx0VQ1Bg4kCIl2tpkSE+aRPfxZyEIdKBOn/7sf3voEBnPs2e3OWh4noeRkRG6d+8ODw8PJCUlwdLSEubm5vD19WWBgYHo3bs33NzcYG1tDX19fWhpaaGkpITJ5XKxh5ERhzFjnu7zGRsD+fmQDBqEe1lZqt69e3Mvvvgi+vfvj8DAQE5PTw95eXlISkpiMplMtLGxYQDw5ZdfIjk5GS4uLmzq1KnNkU4tLS04ODjAy8sLubm5yMzMZCqVCosWLYK7uzs0NTXRrVu3zu9n+XLKdVuwgKJtPXqQhFQQiOi+/joRx7lzSfL6B+b6pUuXEBoaCldX17ZrpbKSIhBlZTQ/79yh/zNGRlRmJkUvmv5GpVLh4sWLokKhQL9+/f49ZFsQ6LlmZpKR2Vqi+PnnZJy9+Sb9XyKh8VQXtmkNjiMDSSajugZGRu0K8zyKplY67OTJkzAzM3tsWgFSU8nonjSpfa6ejQ0ZxosXE+lzdARkMjQ2NuLnn38W6+rqmJeXV3N049ixY2JhYSGfrqvL7nTvDgNLS3HMmDGcXuuCRllZ5GTYsqVFhtsagwfDvL6e3TAwgJ+fHzo8Wyoq6Pm6uRFRfPiQci49PWFjY8Pc3NyYt7c3CwoKQv/+/REUFIT6+nqllqYm6719OysaNAi9Q0KQkJDA4uPjoaGh0aY68P379/Hzzz8DAFasWEG+qx49wCoqYOLri65ubiwgMBAGBga4f/++mJKSwq5evSr06tWLaWhokEH/4ou0hz1y/7///jsTRRH37t2Dn59fx62AVCoyajdtonltZkbzgDGKYL/wAkXF//lPIgE3bxIRMDMDNDRwWSYTkxUKpuPry1z++U8wAwNak6NHg5PLwcrLKVK3YAHtsXZ2be4zJyeHJSUlob6+XrDv359x6elEJI8cgeGxYzCcPBnX4uNZrLExbqSkID8rC65eXpB6eMB+yRKcDA1VVZqZsck7dzKJpyc5vxob0SskhClkMiHkl19Yv19/ZXxDA9C9O86kpQm3AwIwYd481k51cu4c3VtHqR3LlqHYzg4piYmi/wsvcJg6tbl4VnJyMjQ0NESJRMIaGhowoF8/yNavp/2/oABYtQr7a2tVsaLIGRkZiR4eHhxEkeoIVFTQPJ06lRwbb7xBZ8DcubRegoOpq8KdO9QVYPlyUlj4+lIxxeBgIuBHjtC87EihASAjIwNJSUnctWvXxMjISPawsVHlWlnJDfv4Y/Tr1w8efn5M5uoKDRMT6FtZsRuJiWzYsGHo6eiI8OPHWZKnp+jz9tsMjOHrr79WyeVyTqVSsaioKHbz5k0BADt16pQYFBQk2tjYMJlMBjMzM9pLq6qIhD2mI4i5uTlcXFyYtrY2jh07hvr6+rZngo8POb26dm23vzPGkJGRIdy6dUv08fFp8f/q69PXokV0njbNf5O4OHS7d4+ldukiRgUHC7dTUnD16lXcunWLyeVyobS0lOXm5orO6emM19Sk4oHqtfP117Q/ddTVw96eSHRrh/Ho0fQcWz8XMzM6TywsKM+7o8J2mpq079TVUUG7hARqqSWT0RxV798yGa3PceOoboO9PbZu3SqeOHGC1dbWiocOHWIZGRmIjo6GQqGAnZ1d8z5QX1+Pe/fuoa6uDrGxscK1a9eEzMxMDgDu37/P8vPzOWtra7G2tpYJggBRFPUfZmXVDdq5U+NK797oq04Lag2epzm9YkVLXv8XX1DU/sABNLz3Hn7Jy8P8H3+EPC4OcqUSusuWwdHfH0Z1dcwkPh4JBQWwvXULbODA9gUqAfA8z6tUqjpTU9PGuro6r9raWhcAa4KCgv5WFcufk+3n+LcjJiZm95AhQ7rZ/tVFhP6LoKmpya5du6by9/dvZlimpqYIDw/nfH192xiCly5dEqytrbnJkyezjiKBZmZmsLCwQGRkpBAVFcWlp6cL7u7urLWxJQgCamtrwfN8x9LLTpCTk4PvvvtOiImJEZKTkzmZTIb58+fj2rVrEARBDAkJgZ2d3dOTDJ4n7+zmzWRw/EGnwKlTp8Tu3bs/23tLJHTgFReTQThpEkV0UqY+AAAgAElEQVS67ez+nLRcQ4Pyujw9n/46iYlkTK1Z89i+pV26dIGenh4cHR1x9uxZREZGIi8vD7169YKWlhZ0m/IYjxw5gpqaGowfPx4eDg6ckJKCIicnJCUlobS0FDk5OTAyMuqYYHAcGTc//IA4ysfiXF1d2+TBWllZISEhAYmJiczW1hZSqRTR0dHQ09MTZs6c2WFvasYYrl27pqyqquJ0dXUREBAAQ0NDOD5ajAYgI2PECMqTMzGhqG23bm0P3/v3iUgtXUrz6O23KZLZicHZGfLz83Hz5k34+PhQyoEaERGU369QkLGYlkaGljqn09+f/h0aSgZVUBCysrIQERHBFi1axJ4USXhWFBUVYdu2bbh8+bIYFxdHskt7e6pS36sXRcJaE22lkoyyzZtb1hXP0zy3tydi0hEYI8LUrx9FV9RGbiewsLBASUkJLl26hAcPHqiMjY25drJFUaQou4lJp31zoaVFBGXvXoooWVkBxsa4ePEi43leHDlyZPMeZmFhwVJTU0XT+/fZkPPnURAYyAYMGNB2L1u9mir9dlaxPTAQNd7eiE1NxfXr18XCwkJWUVGBI0eOQFdXF8YcR/OpspKktxxHToFPP6Xn3kkBM0dHR66HSsVKx4/HiYwM8cUXX2TBwcHQ0dERT58+zXR1dUnSDFLklJaWQiqVIjAwkC5gZERz6+WXgaNHwV56Cebm5vDz82P9+vVDcnIy8vPzWXOv8SlTaHwfcYxER0c35z5GREQgJiZGuH37Nqqrq5mDgwOtsTfeQE1sLHa98AKOXLiA69evC/X19czB1ZVaimlqEql87z3K1V21iox7PT1ATw/Ozs6ssLBQmZSUxBUUFFCRPA0NIhBaWkQG7OzIiTJpEkXhpk1rno9xcXEoKSlBWVmZyLZuFc1/+IHd9veHxUsvgdXXwyw3F9YjRmDwsGFQKBRCikLBBixbhob6eiSeP4/uH37IjYiIYJLCQnKINCkyOIkE3RYsYJoBAeB37KA9YeFC7MvPZ1OnTmWmpqYoLS1FWloaEhMTkZaWJuh8/jku+/kJtzIyEB8fr4qLixNu3rwpxsbGitdv3ID56tUYvX07xw0ZQvvj5s2Ajw8i9+yBn50dM+vZEy5OTnB0d6e1eO4cpZ0YGiIrIYENGzOG+eXlcdzEieR8GD+eSEhAAI1Xv36098+ZQz8fPJjWr3rede9OZHvkSCLoW7aQSsXbm1IJ7t0jibKbG/3s4UOa/+7uUCgUyMrKUo0fP54LDAyEX0gIZ3jxIjS6dm2Jijo5Afv3w3D7dsTY2gr5BQXQmDuX+cTG4s6IEfD28WF79+4Vi4uLuYULFzI/Pz8WEBBAEf2zZ5mFhYU4evRort3eP28enW9PUYDR0tIS6enpyMjIEAe0Vh7o6hJpNjWlc+ARODs7s3PnzjGZTNa21ZWTExHewYOJINfVAZMnQz51KhxXrGBe/v6cv78/09LSYv7+/njhhReYm5sbCz99Gn5r1jBJUFDblJrNm2l9dpC2gc8+I4VR68JyKlWLo6k1qdbRoWt0VISuNRwcaC8oKSHSb2zcUryN58nxZWJC80VXF/jiC1TEx7NsExM8ePCAaWlpoaGhATKZTMzOzmZRUVEICgrCnTt38Msvv4gJCQlISEhAQUEBKisreU1NTUEURSaRSMBxHMrLy9nw4cNx9+5dAIBVdjan8/AhF+flhfz8fBgZGbWvgv/11+T8iYkhZ8KmTbQHuLvjSmEh0nV0MCwsDGzSJAp2vPYajcOLL0JWUQHdkydRY2QE7U2bOrQH9fX14erqKjEwMJBeuXJFKYqi1+rVq3MeP5D/e3hOtp/j34qwsDBvDQ2N/wsNDZU+Cyn8X0NVVRVSUlLE1lXWtbW1cevWLZVUKmXW1tbNu055eTnLzMwUvLy8Oh0QQ0ND9O3blxswYACioqKEoqIisUePHlxZWRmOHz+uOnToEBcTE4PY2Fh4enp2TLo6QHh4ODQ1NcVBgwbxffv2xZAhQ6Crq4uBAwfC39+fmZmZPTtb7tWLNuPCwg4riD4JSUlJSExMZFOmTGF/aI7o6ZFhC9DB1r07eaj/qBqAMTIux4/vvL/wo8jPJ4IxYcJTva9cLkf//v2hra0tXrt2jXl4eDTLxORyOXR0dJCdnS0kJSWxrGPH4LB9O7Zra4t3795lKSkpyM3NFXNycgQPD4+OB6yxERg3Din9+oldTE2b86xbo6qqCjk5OYiPj0d1dTWKi4sxZcoUpte+XU0zrly5IioUCm7+/PntexgDFDlbv54MyshIkj17ebUne7dvE/nduLEl6nDkCBmlT1PFHCR7j4mJwZkzZ8Tu3bujT58+TCqVEnFZu5YK1UybRpGjK1fIyOlIrSCXA6amUFlYIDY+HnV1dWJgYOCfimqnp6ejsrISV65cgYODA6qrq7F9+3ZUVVVBKpUyLS0tlnP5MnMPCICGr2+b6HozNm6kXGV1bQI13n+fIg+vvdZ5zp+ODv3Njz+SEderV7PjqK6uDvn5+fjll1+EM2fOsOjoaBQXF0OlUqFLly7s/PnzLD09XYiNjRWLi4tZYmKiSpqby/HHjoH/4APwj0stYYyIbFUVsHMnOJ6H3/TpuBITw6Kjo8V79+5BX1+fxcTECOXl5czZwEAwz8riIkxNERcXJxobGzMjIyNSHUyfTtHyDiK6Dx8+RPSZM8BPPyHT1haBgYHIyckR4+LiWG1tLTJv3YLX229DYmxMqgD1viKTkZPnzh1SWXSGiRMht7JCuo6OmJ6ezjw8PGBlZcUuXbqEtLQ0uLm5QVtbGxEREVAoFHjppZfat7obNYryPwsKyKCm6tYoLy9HQUGBqKOjw4qKimDaRHyhJt9NuHDhAiwtLcVXX32V2dvbQ0dHh2lpaSEmJobV5OXBWaFAfXw8NhgaQqKpiZCQEGhra7OrV6+id+/eSMjJQfyXXwoW69czjVmzaA3OmEH3FBAAJCTgoZ8foi9f5urr6yEIAktLS0N8fHxzLYbiiAjklZfjvrY2Hg4fjsYXXoBueDgaX34ZR01NkZGdLSqVSrZgwQIWr6WFg+bmLC09HTJNTcFm+HCGnTthGB0N2fjxSE5JEYuKiphKpRLT79/HTX19jBk/nkFbm8ilvz8556KjKSr/5ZeUp792Le3FXbsiMzNTFRERwUVGRuLmzZvIz89XNjY2cqywkJkkJbFLdnZcWUUFrK2teV1dXc7AwICz5DjOzNGRuezZw2QlJWCDBxPhmzkTWLYM0rVr4Xn5Mrp+8gms3d3JQaFQUM7t/v2AkxO6nDnDdFxdoT1oEEWjHR1p/Q0cSM/O0xPQ1ERlZSWys7ORkZGBo0ePCpcvXxavXLmC3AsXoLN2LdsOiDEZGbja2CgWMSZGNDSIDhMnsivGxuLR3r3FaykpYo6ZGaIqKlC1bx80d+5kO6RSwX/WLFbPGNd75EjoXL1K919YSLnYrQif4OaG2J9+EnPNzNiD3FymPWMGErp2FRukUuTk5LD79++zadOmwaBJKdLUgor5+PjAx8en4/NXU5McN60dmY+BTCZDamoqa9N9g7GWiHEHqVBSqRTx8fGilpYWc279e5WK9q/kZCL92tpUWbzVGcEYg4WFRXMKE2toQNm33zKLPXug7e/fcq2cHHKsdlbUMi2Nzp/W9XJkMnI62dm1KegHgNbTxo3kyF248HEDQvfbvTtVSj9/njqrqG02xkgV4eAAlJbCMD0duXV1cE5NxbT169E/IAD9+/dniYmJqK+vh7GxMfbt2wcvLy+mq6vLysvLRYVCwTk4OKi8vLz44OBgDBs2DFVVVWJhYSHLzc3F7NmzYW9mBvdNm7j9Y8ZAxXGwsrISzp49y7Kzs1UeHh4crl+nVAd7e0qF2L6dnFLHj9OeLpPBePNmXPH0xIAJE8B0dVtUNACwbh1UH32EG97esNmxAxpPUDpu27atob6+/oPVq1cfeOwL/0fx99TwPsd/JcLCwrylUump4cOH/23l42ooFApIJJJ2ffUGDBjAnz59Gnl5eSo3NzfeyckJdXV1zbmuTwLHcZg1axa/ZcsWcdu2bUJRURFnZWXF5s+fj+rqauzatQsVFRWd9xQGUFlZiQMHDggNDQ1iXV0d7+DgAJemPqZq/CmZOsdRtGTlSupj+5SHMgDExMTg3LlzGDVqlCiRSFhdXR2uX78uGBoa4okVrR8FY2TYchxFVS0sqD/kH0FjI0nFnlT4LS6OiH58PBkBzwgfHx928uRJJCYmtkTG6Ofw8vLiUlJS4GBhAe033sAqZ2fW0NAAQRCgVCrZhg0b+J9++kmYMWNGe8m/XE7G2LZtHRemAjBkyBAMGTIEUVFRuHjxIgAgPDxcNXv27E7zBzw8PPjU1FSVoaFh29ccOEAGYEkJySMBylfrDB98QAZr66JXX37Z+es7QFZWFq5cuQIAbOzYsSSvu3WLIuUffkhGkHouvvoqRZVaV+dVIyQE9fX1KLOzQxdHR/ht3vyHFkNlZSVUKhVkMhnUFXoBIDMzU2VqaspXN/XeHjt2LBwdHaHQ0UEKz8Nr/fqOLxgcTBHJR9fm2LEkOa/5f+y9d1hV19Y1Ptbe53DovYOKIKIgSBHFgtgb9t5jTGxRozHGm+71ptybGFPUxESJsRs1tqhIUEEULIAoBJAiCAKCSK+Hw9l7/f6Ygiig5t683/e995fxPD4klH32XnuVOcccc87atiWMLdE0/ydMgKxQ4J++vtBqtQAAQRCEefPmQU9PD5aWlk3yRJaTk4OMjAyhpqYG+fn5XFtfL3p8/z2OBgRA7+RJzJo16/mDMWkSRW2++AKKu3ehr9HApFMnZm5uLh04cEBsbGwU5s+fj84dOoh86lQMKSpCQkICDhw4AL3aWry+dStu79iBWxqNbGtry0aPHs0Akm2HhYVJlZWVgnN9PXpduMDUHh44d+4cW7NmDTMyMsLdS5dw+cIFfqJHD9ajTx+0om7WriVHe/78tuXpnOO6n598qbBQMLaweCKvceHChYiLi5O+//570cLCAlVVVXzUqFGszQJtJiZkVAcHk8H+yy8AADc3NxYdHc1OnDgBtVqNG/r6GHzvHuwmTGgmTase5Y66ubkxxhg6duyIR8ow5mVnB/XcuYjv0oWf798fxvr67KWXXoKhoSHc3d1RVFQkb9myRZAkCR5jxwqH9PUx6uRJ2M+YQRE0U1Miu+7cQf7YsRiiVuP+229z0cKi+Rx49JXZJSdDbWnJb2RmyrW1tYJGo2FSRQV6dO2K0tJSeVZ4OLMICYG+uTmmzpzJgkeMQOnkydgTGSlkZ2dL9W5u6JSUxAI+/VQYumKFkJycjKKiIsYYg5+fH43T4MH0taGB1AyvvEKqiLo6ipxRMSUAwJw5c8SQkBAUFhaib9++8rBhwxSCICD80095go0N0zU0lPv27ct9fX1FcE7qEENDukZqKnD+PKSQENwZPhzn3nlHwvbtvHrcOIXxlCnoCtD+JUnk+Bgbk0Nub49UPz8ekJDAkJJCKpgbN8hpUyrJeTQyQnJyMo4ePQojIyNJlmXY2NgIAQEBTKlUgvXvD9szZzBiyBDGH60zPmwYXACUOzrCub6eeaSkMKG8HHcWLkTKlSvwf/dd3OccfWRZKFi1CtlFRfQMr79OxMSxY1SsMCIC2LUL0sKFuKBQSHfGjRNW/e1vDJyjdscOMHd3Fvrbb9DEx2Pu7NlwlGVSg+nq0v7xSD3RJiorqUDY81pOtoC7uzvOnDmDzMzMJwu9jh9PJKy9fZvpLXZ2dsjPz5eRmirgwQMiMgwMSKE0Zw7lEs+Z89xUqjsLF/Jev//OzJ+uDzR7Nr2zTz9t+w9tbel9Po2AAJJ5X7vWei+eO/fFlVg+PjRXdu+max492pqEnjMHxrNmQV62DG5paRDi46GTnY2tBQW8vKGBAcAvv/wCPz8/lJaWypmZmcKECRMEV1dX6OvrP3EmBwcHMycnJ/zyyy84fPiw3O3cOUF2dZWHjB2LPn36COnp6ezevXs8LzdXQHk5kZsrV5I6w9b28Vl5/Dh9vXsX4pw51JLM2Rm6CxbQOX7sGJEODg44vnixNCgpSTRsS+3WAqGhoZqqqiodAL+82OD978N/t8fzF/6vYMOGDU66urpfy7LcT5ZlPcaYVpIkfaVSiYkTJ+q4P8XY/zeiqQjV0/Dz84OhoSGSkpLEY8eOcTzqdT9//vwXLklqbGyMJUuWsGvXrrGJEyfC0tJSAID9+/dL/fr1E59X8Tw9PR337t0TDAwMYGRkJP+P9Dj39X3ccuoFne2CggKcP38e06dPR8eOHVlcXBwPDQ1loigKCoXixfo0P40mZn7bNnJGbt+mvNedO//YdVaufL6EXJLosJw379+uXv6oUJocGRkpuLm5PVGxWBAEGoM9eygyu23bE1LwuXPn4tChQ+zSpUvy4MGDW99sXR2mrlkjXn3Osw8YMABOTk44dOgQd3V1fea8lCQJNTU1QklJCUXyIiJI4rd5MzlYq1dTFORZuHKF5KhPqwZ69CDjtmVf2megV69euHjxIg8MDOSiVivg3Dl67+vXk6PahPx8+sxnROx1dHRwbvlylJeUwOrwYcmvZ0/xj+b/79mzh5eWljIdHR1uYmLCKh+1Cnv48KH48OFDAJT/3iU1FbC2xrHPP+f5NTXQv32btSqGWF392MB7GkOHUrTh2DEiEV4AVZ9/jv1bt8KoqAgzfHxgPGsWdHV12yTZnJyc4OTk1PS/DKGhgK8v7s+bh6hLl1BWVvakXL89uLhQvt/WrVhQWoqjRUXotHSp2L9/f8THx/OOHTsyFBWBBQYisKgIAwYMYLExMbh4+jS+W7YM1XfuoEuXLoiNjWWxsbHNl3V1dRX79OkDHx8fSB98gEUPH+LOnTu0NtRqdF68GHYvv8w+c3eH3t278GhZeAmgtbp2LRm9q1c/8SNJknBv2DCeY2MjWHh48Ly8PNbsFIKKWHbo0EHs2LEjP3PmDAPA2lKNPIGTJ4n4+uEHIDgYjo6OWLVqFUxMTJCYmIjz+/ZBZ+9efAJAR1eXGxsbQ6lUMgDwerrd3+3b6JiVhdJVq3CwqIihoQHLli17QmUyZcoUYdu2bTAzM+MTJ05kZ3V0eNVbb7GyH3/EufHj5ZdfflkwNTUFvLxQ/OabwPbt8DEyYrbHjpHx3DI9Yc8eYM4c5jdyZPO+cObMGSQZG+OlIUME++PHySm+cQPo3h16AQFw9PDAFGtrZGVliU5OTig1MeFZX38N+9JSGHXsyBsbG/n06dNb911XqSiVhB6Cqts7OdH+HREBnD0LgXMsXrwYxcXF2LNnD8rKyqTp06eLNjdvolIQ0NDQwGxsbARs306y4KwscixNTIDMTNzduBH3NBrkfPopGry8xCFDhuDXX3/F8ePHZaVSybvfuoWAs2dF6ZtvYBkcDMTGAkFBSGCMV7u6wkhPjxlnZED33j245+ZCiI0Frl8Hc3GBoa4u3CVJnjZlioiePYnsbbm+Nm+GO2OtlTtNRcMyMohwNDaGwa+/wmvu3GbJcYIgAGFhko6Li4jx44lw69WLWtrV1aGqqgopd+9yoVcvLFi4kAmffAL07QsjjQZ1hYUI0NND5aVLcNTXJwJZraZ5aWJCZEdjI6k97Ozo/gwMSEJ/9iyN4ahR5JyLIpE1lpa0f7dx7gmCAC8vL+ns2bNodZ4MGEB7/1POdvX9++j19ttMcf48w8aNtF4GDyZio2kvys1t9VmtEBeH3LFjebKrK+t79Sp3cXFhlZWV6Nq1K4Rt2x5fqy2kp5PE/Gm5vLMzpeJkZbWWwFtZUV2EgQNpzq5a9ez7MzCgPXvcOFLtzJ5N/1rsp1VVVSi0t8f5t97iiz09GT75BKOrq9lZb29YeHpyr/79WWFhIW7cuCEsWbIEts+IIHt4eMDBwQG3YmLQpaiIOy5fLjSpDy9cuMDtFQphXGQkvf+kpMdpTK+/TmdMyzXauTP42rUw//FHOXz9emH8hAk0P2bOJEXAzz/D5cIFMbaqio/W1283fBMfH89v3br1EEDP/7aiaC3xl7P9F/5UbNiwwUmhUCT17dtX393dXdTT04NWq4Wuri50dHT+Rwp7/b+CsrIynDt3TqqpqUFlZaXQXo6nm5sb3NzcoNFo2L179+Ds7PyH5dLm5uYYM2bME98zNTVlxcXF7feIfQR/f3+EhoZCFEUsWbLkf07L/8orFM3atavtnKin0NDQAEmScOLECTQ2NkKlUnFjY2N4enqy5ORkjqf6Sf4hNBnAkZEkCQQouvGsqr4tkZlJB3N7DG12NhkMd+9S9PE/wMiRI4UHDx7IBw4cYEuWLGH6TzuhstxawgZq3TRq1Ch26tQpFhQU1Dp339gYMYsWSVxP77nEjqOjI958881njndVVRUKCwtRV1PDdv3rX+jTvTsf8OabjGVmUtGfF0FmJjmR8fFPHuQAOSNt9UhtBwUFBWhsbGT9e/RgmDqVDKXjx58kSUpKyCi9erXttmKPUFhYiGxZhtLaGi/t2EHj9dlnz/x8WZZx+/ZtuLq6Ij09HSqViimVSsyYMYN17twZWq0WSqUSpaWlqKurQ1ZWlqyrqwssXChgzRrMXLqUXbx4EYcPH8bgwYOfUDYgKYlkj20pVgSBDKGwsBdytquqqvDVzz8DlpZ4RxCg89NPz6wr8AQqKqi41vHjCFAqkXr7trxlyxZh5cqVL+Zwq1TAm2+iOiQEzgcPwurkSZi99x6GDx9Oc83WlmTCIOKpz/bt8Lt/H6Gvv84DAgKYtbW1kJWVhX379sHc3BzOzs7yqFGjmpUcQlAQ7GfPhv2yZTRmRUXA8eNQdu0KfPwxsrKy2r6vwEDqtVtd/YQ64NSvv0q+ubniqE8+gUm/fkyW5TZrYjRVqp8+ffrz28MpFBSpvXCBlBfff98sefX29oa3tzfq+/WDbWEht3FwAOecp6enMycnJ9nY2Pjxh5eUUErE6tWwWLoUjj/+iKKiIuzevRvl5eUAADMzM15bW8sYY7y4uJh9/PHHmD59Oqv85huId+6gY0EB27dvH5YuXYrMzEzcys2V6wIDhS62tuQ8xcYSYTp6NMnNKypaOUbDhg1DRUUF3//rr/yt8HC6v759qf3S9u1Afj7cnJ0fq6f692dJtraI2rULwzjHUVNT4dtvv8W0adPg5OTUenxra4lkKiggx18UyalpbCSnZO9eWPfrhxVjxwpbT5+Ww86elUanpYmdfvkF1S+9hNQrV3jj+++zjrt3QwCaSTZtWRmQnY2HY8diqkKBhgULYG5hgS5duqDiwQOBJybCYv9+VKtUyNfTg6WJCaUgrFkDPz8/oaCgAJWVlcgpKwMMDXGhsJA32tpCCg5mA+3tce/iRZhZWHCEhhJZO3cu3bOTEykoYmJo3+vUiSLuajV9ZYyIW40GeOUVaLOzwRjj+PlnhqIiQBTRrUcPGO7dK2bExvKuixczvPUWRblnzQLu30dFRQUihg1j77zzjiiUl9PY6eoCjGHP99/LD42NBavXXtN6Ll362Af4/HP63Pp6IkwqK+l9V1eTfF6jeawq2L6dctLT0uhz3d1pbd+6RVL2SZMAY2Noq6tRlZOD7t27iyW//w7p7FmIskwRXT09ygGOjKTzIiiIzgIjI0RPny676+mxDubmDN9993gutHSOXVyIjHjKDmpGYSEwYwZGHzggdA8KwokTJ+SYmBhBkiS2MCaG286Zw9qrhg6AFCht7beM0X575Uqb+eYASEbesmL589ChA0XsN2wgojooqFnhkZ2d/ehxCtnvubnwDA2Fi0aD195/H8Knn7K6y5cRevAg5r788jMd7SaYmppiUHGxAI2mOc2vtqYGHcLChD4rVkB34kTKS28Z1Tcze6KqvyzLCA0NRWJiIrRarWDt7k4/T0uj8+jIEcDSEt4bN+Ly9OlITEx8ssf7I+Tk5CA8PLymsbFx8H+zow385Wz/hT8ZKpXq7/7+/noDBw78j5pnS5KEjIwMWFtbw8LCArIsIzU1FYwxdOvWrbkCoyzLiIuL4zdv3uScc9jY2PABAwaI/6f74dbW1mLHjh1wcHAQXF1dmaGhIby8vJ65vnR0dJ5dtfkPYurUqcKWLVv4uXPn5MGDBwvtSfVrampgbm7eJHP/n2M/FAqKGEVHv5Cz3bFjR4wcORIWFhYwNjaGjY2NIMsyNm/eLD+Kav/n9zp4MP2rrCRJYlNe1vPg4tK+RLewkJz5PyiZfxamTJkibNq0CV9++SXef9p5DwoiQ6ANOD46PLdu3YpJkyZBoVBAFEXExMRIpqamLLdHD4zatInGoA2H/Y8gKiICmenpmHz0KMwqKvDjokXMNTUVtk/1Vm4XajVFRKKj287tb2h44YJ09+7dw6H9+/m44mIurFkj4M03aZyeJvf09UnO/ozoI+ccsbGxkiiKIgeQvns3evfqRVHyqVNb9Y5uwrfffiuVlZWJurq6XK1WMysrK/nVV18VmvaiprZ5FhYWsLCwQIeQEAFjxpCxCjqMhw0bhoSEBEQ+Km4VHBwsdOvWjZ6jsrL9mgG7dhFZUV/fujL4U2hqiyYIAnQ++IByvk+eJKl9QsKzawxs2kRjYGQEXQCvvfaasGHDBkRGRmLKlCnP/NyWyO7WDXlBQdJAHR0Ra9aQkWlsTI5UcTEZ+0ol8N57UBgaYryDQ/NNubi4wNraWuvn56fo3bv3kxNkyRIi+GSZ0jmWLAFGjGhmH6urq5t/lXMOjUaD2tpa1DIGlVqNyp07UeTri6qqKqm6uprX//abIvXNNzHqURG49kjRS5cucW9vb969e/dnTlhZllFWVoaCggJYf/017IyMSL6+bt0TbZD0oqKwpGdP9iitounZH1/71ClyQI8ebSYAvby8kJ+f3yw5f9QeiBkbG8PX15cBwBdffIHDhw9j/fr1QNeu8B47lu0LCsJXX33FDQ0NWadu+88AACAASURBVF1dnbBq1Spy/nv1Iudw8WKSvG/eTJFOIyN6R5WVgIEBVHl5MMrOhsvduwwHD1KO6/Tp5KSPHUtVunfufKKlntewYbDU10fl0qXw9PVFeWCgtHfvXnHAgAEY2lKFAlB0fdMmIubWr6cWXE3qhKQkMvJDQqD7+ecYExEhVC9YAKbRwNTVFcZz5rDbpaX8cHi4rNFoBOnCBejq6sqiKEKj0QiN8+dj6ODBskFoqGCQmgoEBsKIcxitW0dr6Ysv8Gt0tOxka0tjf/o0YGuLIS0iuJcuXcLFixcxdOhQplQq0djYiOjoaLnnokVCv379HttBpaUUDa2tpWeKjSUHNi2NSITYWCoY5uX1uDWboSEUtraosLXluHeP4dIlQKGA3sqVsBg+HN/v28eW9ukDi5gYUgFs3gxcvIiOkydDqVTy/Px81nHVKiJ3tm5FRkYGqqqqBBcXF8yePbu1gSCKtI8YGgJ37tB79/Ghr8eO0XtfsYKiu1evklKlyc7gnPbs4mLUV1biQEgIN2IM+qWlrOHGDQT6+UG8c4fmQ7dutE8VFZHjzjkpjt56C7CyQs3Nm/zAnDnsDZUK7SbE/eMf7XdXaGig8+WXXwBfXzgBaGojuGPHDkmj0QjtEudN+O03uq/2FHWbNlGEv61aJbNn01i5uRGp8rz0M4DG8aOP6Pd/+onm+6RJ8PLywr1795CYmIioqCikpqaiX79+6PD555BXrsTxf/2Lv3TkCLPy9SUy4nldY9RqmoNN67G2Fvd37ULPpCQcP30aS59O31Kr6Sx9NOfLysqwd+9eiXMuTJ48mR05cgSdrKzobFq+nOa4kxNw5gxYnz4YPG0aO336NM/Pz+fBwcHNBfcqKyvx888/q7Va7fz169dnPn+A/nfjL2f7L/xp2LBhA1MqleN69uzZal5pNJqmqpQQRRF+fn7PjACEhoZKKSkpAuecrV27FteuXeMxMTFQKBT8+PHjgkql4lqtlsmyDF1dXd67d29BR0cHycnJOHLkiLx8+fIXjtg+fPgQ0dHRkp2dnejo6AhbW9tnFhgrKSlBRkYGGhoaYGZmBgsLC4SHh8sWFhZ87ty5/xHJ8J/gUc9kdvjwYTkpKYnPmDGDObZwYvbu3Svl5eWJTfnhAQEB/7PONkARs2++IQfn1Vef+asKhQIBTxUpiouLQ2VlpdCtWzdUVFRAqVS2n0/2R2BiQoy9QkG5SIsWPbs3+MOHJI3093/y++XlZHj8/jsV0PmTYGBggNGjRyM0NBTJyclP9jx+6y3K8Vq7ttXfqdVqKBQKlJeXY+fOnVCpVJxzzqysrFhubi6vra0V9aurSSL39LP8ETQ2YszChcDEifKZceMEy06d+IdLlrRZtbxdLFpEh/6xY23/fNkyyqtevBh1dXVoFeFvgbPffINOBQXMW5IYvvyybQLl/Hly6pp6VLeBwsJClJWVITExsXkdx6ekyL0HDhRw8CBqy8qgXbECxcXFyMrKQsKjSI9WqwXnXPTw8EBKSgrz8vKSJk2a9Oy9ICOD2p716fPEt1977TWo1Wp8++23wqFDh7B+7VoydkJCSFbfFgoKaF68/TaNWzvIysrC1atXYWBg8GSudd++pEQB2ld8pKcT0TB16hPfdnJyQnJyMprz5F8AxcXFksLNTcSkSaQ+WLgQeO89Mp6//ppkmFOnAnFxj/uvt4BGo2l7PgQHkxw8LAy4fv2JVIFXX30VISEh+Oc//8k1Gg1TKBSQZRlKpZKLosgdGOM9jh4V7ujqQtfYWDQyNETwlSsQm6rVt4O6ujrk5OQwLy8vFhUVhezsbK6vr8/S0tLg7u4uOzg4CLIso7CwUE5NTRUAitoLgoCRI0fK/qamAsLCyKhvWj9mZuSstj149J5DQp5Q2vj7+8PAwABlZWWIjIzE6NGjW/3pyJEjcezYMWRlZcHFxQWKb7/FFCMjXE5KQty9ewCA7du3Y9y4cejevTsRHj/9RBHXDz6gzxRFcgjUauC996C9dg16mZnMWleXDO2m9+XoSPMqLo4iuLNnk2P12muAIMC+Xz+Y7NrFsv75T+5fVibmg2qdPIE7d6h6fGAgOR91dQCokv/JkyclzjlGjx4tdlyzBlsVCm35L78o3rl5k8iW4mIIK1diBMBGAOzWrVs4efIk1Gq1sGDBAiS88w5Gx8RAd/16AY2NtD+o1eTkjh9PeadqNaqsrZsVebK1NapdXRH2wQcQTE2b1XpNQYAmQs3FxUWorq5GQUEB7O3t6e8fPqS2bAcPUpHIa9fQaGGB1EGD4CIIMFy7tk3SsTApCbeiouTAlSsFREWhbOFCbNm3D/3794ebm5t09swZNnf8eAHHjlEl8thYgHNYWVkhLS1Ndly2TMhWqXAnLEy+fv26AAAODg5tn/0NDUTc2dtDOnsWWTducFMPD2a9ejWRAH36AIMG0Xz44Qcimpuk/oxRJLhjRyTHxeG+pSUzMDCATpcu0owZM0SrJpJy5crHn7drF82xigp6t/b2QKdOmOriIu7bt08KCQnBihUr2t5U3N3bzqkGiCCqrob6wAEotNon7DnH/HzhyqhRcsc+fZ69WckydSFpC/b2JBFvaGjb2QbIwZ48+ZnpSm2if3/afw8fBj78EIrhw9Gpc2ckJiZCkiSelpbG0tLSsH79etSYmOCOtTWbeuECmKnp4x7emze3f/1Dh2iOr1hBhMLq1XA9cQIlkyfjwY4d0Gg0EAQBhw8flnV1dYUhXbuChYYiYeBAFBcX86ysLObl5YWRI0eyyspKKOvrYfTNNxyzZzNUVVF3h23biBDcsgWexsa4e/cuu3HjBhs2bBh0dXXR2NiIvXv31kmS9MmHH3544o8N0P9O/FWN/C/8aYiKinJSKpVvDB8+XME5R15eHiIjI3Hq1Ck5KiqK5eXlcaVSKdfW1vLIyEihtraWu7q6tmmdp6amckEQ0NjYKF+5ckXIzc3FzJkzWXBwMOvZsyecnJyaKmZi2LBhrFOnTnB0dES3bt0QERHB+vbt+0KGX0lJCQ4cOMDVarVQWFgo3bhxAxcvXmQpKSlyeXk5NzU1bZbx1tXV4dy5c9Lp06eFqqoquaamhmVkZEiJiYlQqVT85ZdfFv9vV1g3MjJCQECAUFNTw8LDw9GzZ0+oVCpEREQgMTFR8PX1xaxZszB06FC0N/Z/OpRKcgyXLHk+6/oU7O3tkZqaKiUkJCA2NpZdvnwZ3bt3b7vy9R9F07vq0IHyjKOjKefoKecHAEUfa2ufbHPUxNC/8sofkju/EDiHHWMo3b0bZXp66L5vHxlpTk7E6Ccm0sFqYNAsDwSA48ePS05OTsKiRYsQGBiIgQMHssDAQPj6+rKAgABh4MCBUC1dSiSBldUfr9B+8iTll73+OoRBg+C2bBlzdHXFtdhYVlZWJnfo0IG1zCNvF5KECh0daGbMgKo91n/lSsDPD2q1Gp9//jnu3r3LFQoFU6lUKCwsxO+//w6BMRhFRUFv+3YY+vigQ0hI+8ZNaipF5VrKs1sgMzMTu3btQuqjSLOzszN69eoFtVrNLkRESJddXBDT0MDs1q5FZGEh7mu1mDlzJoKCgmBqaipbWlryoUOHsiFDhsDd3b39jWD6dJKEb9qEtmSMOjo60NfXh729PZKTk5F1+7ZkqdUKeuvWQWyPaCospEhTUBAZxe3gwYMHSElJQWNjI7y8vJrly82ta27cIGP6zTdbFx769luSeT/V6qtLly64evUqSkpKuIeHx3MnVH19PaKjo5mtrS1z7daNxsDJiUi50lKKXFpaUsTy6SinLAPV1bh14QL3kWXBqLiYUjcuXyYD7+BBkpZqNJTHWlpKEXPGYGRkBB0dHeTl5TFJkmBkZCT97W9/EwYMGMD69+/PPEeOFGxOn2Y+o0Yxz/Hj0dXFBSpfXyiDg5+5TrRaLa5cuYLCwkLcv3+fV1RUsMbGRq6rq8uUSiWys7Plhw8fcn19fdHBwQELFy7EgAED4OjoiF9//ZU5vPoqzAcPpkiyvz8Z8n360P7UUjbLOUn4f/yRCmG1seeEhYVJSUlJgqOjo+zt7d3qpm1sbJCRkYHY2FgEBgaCde4M1Z49cD1zhgV9+y1s7O2RmJiIlJQU2NjYoNlBEgR6F5mZVFBKqyV1yJtvQggORpWnJ07X1eG2lZV8paBANhk1SrAcM4ZyPu/do8h2VhY5Qa++ipJz5wALCxi4uECPc6b8/HPkOzggq7ISGRkZckJCArt06ZJsf/ky435+UPXuDeboCEyciLz0dOw+eJC7urqirKxMLCwsRG5uLs/LzxfXrFkD1dixREp9/jntjV26QJZlXL9+nZeXl7OZM2fC2dkZUbduyZ1HjmSGvXsTYfrWW+TgTJ5MEf3Vq4G+fREfH89tbW2Zo6MjToeFQbx2DaxfP1lraCg3NjbKdXV1ck1NjaBSqVBcXIyEhAR+7NgxlpSUxOOuX2f90tMhbt+Ogvh4FFVX4+H8+aj9/XfELFwoH/fxQUVqKnP57jtklZRIBoMGCU/vn7m5uSgqKuLGxsZCalkZj1KrWY2REfLy8uDu7i7obt3KnH75BcKaNXhYU4OGN9/E4dxcKbe+XghMTeVlhYXs8P37kCSJ+/j4ME9PT0RFRSErK4vX19czWZZhWlpK79XVlXLihw1D0cGD4IWF7EdnZ2TY2sqVUVHMrqwMiqb3OmcOkYUrVhD52+JMvnTpEtfX15dfeeUV4cqVK0wUxda1DG7dosKOM2YQ8WpgQHuBuTmYry/c3NyEy5cvCwkJCVKfPn1a76eDBpFt8ajCeFVVFcLCwnBmzx5k1dfjvIsLIq9exfXr17m/v39zYUOHWbNYjY0N7zR27LONNTs7er72auBUVxOx2R4Byhjlex86RGd2U4eUF4FSSUEAe3tIycmwOnECAX/7GxoAlpeXB0EQkJiYKAcEBLBr166hXl9f69qrl4BBg0gxcPky7aO9ez9JBnBOQY/33wf27ycZ/PDhqOvRA6np6Tw7O5u5uLhg586dMgAmCIIcdfGiUAcg38xMUiqVfMKECYKfn58giiL0lUoMGDcO9wwMWOHatbA1NQXr1YtIspQUYOpUnA0LQ0pKChYsWABzc3NwznH06NH6oqKi0MbGxlWDBg168XH5X4y/nO2/8KchKipqPGNsSnp6Oj937hxSUlKYjo6ONHz4cDE4OBgDBgxgnp6eQs+ePQVXV1eEhoay3r17gzGGtLQ0PKpMCgsLCzg7Owvnz59n8+bNE+zs7DBhwgTW1EpFV1cXZmZmzS2RWkKpVOLWrVtSRkYGzM3NmbGxcas88YqKCly5coX/+uuvuHr1KnNwcOAvvfQS6927t9C/f3/m5+cHURRZZmYmj4qKYpmZmXJubi4/ffo0a2ho4PPmzROCgoKYj48PAgICmv5G+L/taLeEi4sL7ty5I928eRPu7u6soKAA9ymXS87MzOS9evV6YlA0Gg1qamqgUqn+/Lx6e3tqFXH8OBmUfwCMMTS9l8DAQFy6dAnl5eWtCwX9J3hUPRZhYXRAjBtHOdgtKxMrFOTENVULbWggA2PQoFYtel4YWi19nlJJTuzmzRTB8fAAMjLAJAm6Bw6gw5w5MDE2ps8JCgLeeIMcKnd3Ml7//ncyVsLCkNbYyHPu3WOpqano3Llz63xvgA5cf3+Korxo0bmFC6kgzYgR5AB4edHfMwZTU1N06dIF0dHR8qVLl4SYmJhmia65uXnr+VRRAbi740djYx6ZkcEKCgpgZGTU7PjV1NTgq6++4tYrVyIuP1+WHByE1NRUWFhY8Fu3brHo6GhkZmZynpPDjd57j+UKAmK7dIHjrFmwb6/X9KlTZHi3kLK2RJMSYPDgwbKurq5cUlIilJeXIzs7G2VlZQgODhb8evViQYMGwSo+Hr2nTkW/efNgamYGlUoFBwcH1qVLF6ajo9N+n/umKvDl5WQEPactnrm5Oezt7eH34YdCYpcuPKq2tv32gM7ORPzExlKKQDtr2MrKCpxz5ObmQhRFuUuXLk+qEeztiRiTZZJIjhlDRnB6Ojnzq1e3Isx0dHRw+/Zt5OTkMFdX1+be8C3R2NiItLQ0hIeHy2fPnmWiKMozpk0TRM7JsblzhwoK7dlDBQZDQ2ld3rhBxNLWrRTNvX0biIyEMipKcMzKgkJXl96rJD12UmtraW326EEkWmQkYGGBqpAQnElMhJGtLZgoyg4ODrxVhwNvbyIaFiwgZ/1RP9lnISkpCenp6fD09MTixYtZUFAQAgICWEBAAHr27Mn69Okj+Pv7Cx4eHs0pUKIowsLCAsXFxbhw4QIGDB4MoaGBpJh2dhRhnTqVcj8FgZ6vKSq6aVPbVdNBJLVGo8HSpUvbPYy6d++OuLg4XlpaKnfr1k1A376AWg1mawurLl1gZ2eH5ORkpKSkICMjA56enkRcM0Z7pCSBm5mBiSLQoweq33sPd+zsoKNS4d69e0ytVgtlZWWyn58fQ0EB7ZteXkSerFmDI6dOocOyZUg5dw4HcnKQWVLC79rbsx5JSRAdHeHarx8zMTGBaUkJcPw4O2xigs6PosaFgYHQ7tiB8nHjMGzYMCEyMhKNjY28oqICL7/8MjNtivb36UM1Gd57D3EdO+LA8eNyXV0dmzdvHmvq2xx7+TJ3c3dnRo9aS0kJCTjr5ibrhYSwtKIi/quODr9x44ZcWloq5uTk8OvXr/P8/HzW76OP4MoYiy0sRHFxMUpLSxVarRb379/nRUVFUlZWlthdqcRiW1vm8eWXyKqt5el9+uA4Y+yumZmM8HDut2sXK3J1ZUOXLWNBGg1USUk4NWkSN1m0SJCOHOH68+c3r8vs7GykpqYKycnJqKup4fN37mTuW7fiZmIicnJyYFZbi+pevXCjogKhoaFwKC/nlqamQoa+PnwuXWJZpaUIWL0aI0eOZJ07d4axsTGqqqpYRloa0z11CgXh4XDLy4NQVUWy/5s3gZwc/Ozjw6N79GCz58yBvr4+qzp5EnoWFjBrUnooFOTYnTxJEWA/P4Ax5OTk4PLly2zu3LmCkZERHBwc2NmzZ9G1a9fHJHllJUVAPT0fk58KBTmuXl7AO+9Aoa8PK39/xMfHC1FRUa1I9pO2tvxQXh67kZAgR0dH85iYGMZTUrBk3z5027cPPkOHYsiQIcjLy5MjIyNZQUEBe1BUhAtWVrL+kCFwdXV9tsF25AjteUOGtP1za2siv2bNenbqTlMnk3/HqbSzw43GRly9fBlmGzbgvr4+ChUKcACiKKJ///7M3t4e58+fF7p37w79jh3BPDyovkJsLCmF3niD5OxWVqRMGTSIitKVlwOvvopya2t89dVXuHfvHuvZsycuXLjAe/bsyadPny707NlT6CWKcLt6FX7/+pfQo0cPobkP982bwNdfg/Xrh7ylS7WR164J5RERuOvrC5vaWqiGDMG+ixeljIwMYcGCBc1n840bN3h8fHyeRqMZvn79+hdrw/NfANZWxeS/8Bf+HWzYsOEfAD4YMGAA9/DwYDY2Ns903Hbt2iUVFxcLnHPW2NgISZIgCAIYY3BycpJyc3PFVatW/eEoplqtxokTJ3hubi60Wi2zsbGRXFxcBH19fXb79m2poKBAtLS0lHx9fUUfH59nSsbVajUiIyNRUVGBgQMHwqENSeP/q5BlGT/99JNUWFgoAsCYMWPg5eWFTz/9FEuXLsWDBw8QHR0tV1RUCE3tf/r16ycPHTr0z2cNKirImJ49m5wBlYrYcZWKmNcXJCpCQkJQWlqK5cuX/znR7bZw7RpFcaqqHjsWp08DFy9Sz+gvvySHwNz8+ZF6rZaibJmZdI033iAHpqnN1bvvUgTmwQPK3fvkE5Kkd+8OqFQICQmRdXV1MXfu3LYHqKltS20tMGkSGlasQGRCAhoKC+H80UfwbI+UyMigA/kZLeJQXk5qhN27ge++I0fk6UjjU4iNjUVCQgK0Wq22oqJCoVKpEBAQIAUGBj4eqMJCqLduxRd6ehg5ciQKCwvl5ORkYdq0aejUqRPUajW++uorvHbzJqK7d5dTDQ0FzjnWrVsHURShaWiAXlgYcOsWbtfW4oihIbggYPbs2U+2lmmJ/v0pEvNUAbFHbdNw7NgxpKen4/3334coisjLy8O+ffug0WgAAO+9996T+0RDAzlzO3e236f1aQwfTg72H2k/J0mAkREKJ07Eod69paa8wzYRFET93Y8cabul2SPIsozTp0/j5s2bAIC1a9e2Ts2oqSHDd98+yl1dt44ifi2LEdXUkCFpaIi6Q4ewOTkZ3fX0EAxAsX49pNWrUWxlhVgLCx6wYQM7NW8ed46PZ97JyTAtKoJgY0P7wauv0thcv04Vpz/4gMivL78kYsfCgtaZpSVgYwONJOGzzz7D22+/3SzbbUZiIpEDTbUwOAeqqyElJ6N482act7WV5508KcDamlrznTtH6R9NUWLOqRCetzdFhjZvblPG3hIXLlyQoqOjxTFjxsD/D6Zm1NXVYePGjQCACRMmcO8OHRi8vMipjo2lyJlCQSqPqqrnthOMjIyUExIS8Oabbz5zQy0pKcG3336LV155heo8cE7O0sKFwIoV4Jzj+++/R3FxMczMzPD666/THx4+DH7mDP7h7Aw9PT241tfLA7ZuFX5YuhS2FRUosrKCoFBg2rRpUCqVKP7iC/Bbt3jY8OFMFEXo6enJNTU1goGBAd584w1otm6F8h//QFFSEuyjo2l/vXSJnJfdu1GUk4MfAKhUKt7Q0MCMGhqgVSpRLwgQBAGyLIMxBmtra1kQBIz65ht2u18/+Y63N2RZ5jXV1eKsn35iOiNHwm7zZrAW50zE+PFyYGKioMzNBbZvR22XLrjyxRfo+PLLqHV2hsw5JElCdHQ0jI2Nub+/PwPAvY2NWYOPD3Z99BEPGjGCWVtbw8zMDEyWgf37ceunn1AJwMHXF/YrV+LniAi5sbGRDxw4UERlJYy3b4ftiRMQL16kfV6pBDQayJGRuK+jg3NHj/LAqVNZl+xsYOFCnDp1iickJLBFixaRw/LSS8CWLdDo6qLhk0+QoFbLV83MmFarZePHj+degsAacnJwJD0dSl1dWcfenk+aNEmMiIhAbGwsV1ZVscG3b8vVEyei35YtwmkXF6R5e+PtYcPAbG3JIZs4EV9dvCj7+PiwQYMGMc458jp3htHRozBrUY0fAM2dsjJgwACUbt2KH2/cQMeOHaWZM2c271Xh4eHyzZs3mVKp5EaGhvwlhULU0Wja7kfNORFednbA4sW4V1GBn3btgr+//xNFYaOCglBsbQ33v/8dJiYmUMgyzOvroZOURJ1QHqG2thYREREoLi6WRn74oZg3d67s/8kn7da0aUZYGOWRPyv9LSOD6gY8lVrTJhYupN9rr6BbO2hoaMC//vUv6NbWYkZYGPS9vKB57z04tuhYsWfPHik/P1/09vaWxowZ8/iMqKkBPv6Y9k5jY9pbbW3JxtHTa0pXQm1tbXP3nClTpjyZtnb8ONkAJ1qovZsk/4GBVDdCRwc8KgoNCxbg2EsvyQN//FH4acECQEcHy5YtQ1OgLCcnBwcOHKhubGzstX79+ow/NBD/y/GXs/0X/jRs2LChr6mp6W+rVq16TrNXQlVVFTIyMiDLMiorK7mOjg5LSUnBw4cP4efnB39/fzyvjdXzUFJSgqSkJNy9e1fWaDS8Q4cO4pAhQ56Z//nfhpqaGgiC0PzM27dv15aWliqUSqXk5+cnuru7w8rKCr/99htycnJ4UFAQMzEx+fOJBQcHinKMG0cGcXY2RRyHDaOflZSQlHv8eNrI6+qA5GSSiT3arLU5OTiZlgbZ2BjTZs4kKVdT0R4dHYq+mJiQsaZSvbAT3wp1deSIurnRQaPVUr7h3r1kiG/c+GRLq5ISMhIHDaKfFRZShHDkSHKwLSzIsN+yhZ6xS5cXiioXFRUhJCQEa9aseaE5W1tTg6iZM9GvrAymp05R8aW//73t/Oxhwyha+HRrk9hYiiBOnEgEyaFDT1QifVGUlZXhyJEjKC4uxoABA9CzZ0+Y792LvFu3cMjDQ3ZwcOCzZs0SASAiIkIbHx+vaGxsbO77/NK8eXDq3Bky503V6YlceOUVcvI2bgTs7BATE4MbN27wxsZG3qaTkZxMkV89vVYR3+3bt2sLCwsVoiiid+/e0ogRI5oNlYaGhuYCc23iu+/IcDIze3ZeXlUVzZ+8PIoutBd9bwtpaYCZGbKrqnD46FH+9ttvt89enjpF4zJs2AsVv/vss8+4sbExW7p0afukaHHx45ZF4eE0z195hZ7Jz4/Ig717AQ8PXH7jDfl+fLzQPzERsR9/LFlu3SqW2dgg1dkZveLicCcoiBuJImYMGsR0AgJoTNoyeFNTaX3ExJC09/r1J0it9PR0nD59mrdZLX/GDFqf77wDgJzZ8PBw6fbt26JCoZD79u0rDPDxIZWGJJFDP2AARb/LysjR2LmT1sAHHzy3rkFjYyM2bdqE8ePHw9bWFnFxcSgtLUVubi7v2rUrnzJlynM3oLKyMvzwww/QaDRYtWoVTKOjyQnbv5/2H5WK7nfJkmeTYyBJ+8aNG+Hl5cWDg4PbnStarRaffPIJXFxcMHfuXPpmSgqRFWPGNFfqLy4uxrZt26BUKvm6deuYQq1G3ZYt+EqrxZx583D37l3U19fD3s4OHsOH4+Hq1bjYqZOUm58vKhQKbnj3LtOtr0eBi0szkS5JEkRRRJcuXeRp06YJqKigtWlhQQqGiAh673PnAgkJqKmvR11dHSwtLZGQkMDZu+/idycn9sDFBb1794ZCoYAgCBDUakBfH4IgQKFQQKlUIjQ0FGN9fdHjt9+ILPL3b25n9MXGjfK0KVOETra2gJsbGoYMQdbNm3C/ceOJXOBt27bJvXr1EloSKZe2bUPkgwcYOmwYdAoLYXbjBhz27sUlT094vPYaYtVqvI7XNQAAIABJREFUOSUtTdDR0Wkm7ARBwLxdu3gDwMLGjEE3QZD9o6OFsvXrcfr2bT7/n/9k4cOHI8PTEz63bsHnxg0cXLFC1jQ0CL38/TGi6bz57js6V5ydIfXsiYO9e8N54UL4+PhAT0+Pai5s3kzqCH19YOdOhIaGouTnn+FjZ4fuVlZQJCWRbNzREWdDQ5EcFYXXvv8ewo4d0Js+HdevX0dYWBjmz5+Pzp07oyw5GQXz5sEzPr5dgln65hscS0mRRW9vNnTOHGbSYk+UJAk3b96EWq1GTUgI75ySwuxCQ2H8vGKajwqBZm/ZgoMHD8La2hq9e/eGh4cHUkaM4DmmpmxCU82PSZPIVli3rtVl6urqcPXKFVl/wwbB78gR6LxA1W5cvEj7b1uEQBOSk2ldRkU9t993sz3wVA2IxsZGhIeHc29vb9aezZWdnY29e/dCkCTMA+CUlEQqoxZFQEtKSvDDDz+gZ8+eso+Pj9B8repqIvM9PIj4X7EC+Oc/UZGejh0RETAwMJCcnZ3F69evo83WYXl5FCxpUvj89hspj8zNqc5G03M3NAD5+SgPD0fy2bM8um9f6OvryzU1NeKYMWO4i4sL27ZtW31DQ8OkDz/88LdnD9Z/H/5ytv/Cn4INGzYE6ujoHOzbt6/loEGD/r0mwwDi4+Nx/vx5zhiDp6cnOnTowGJiYlBdXS2PGjVKcHFx+f+Vo/x/ElVVVdi3b5+k0Wh4fX29Yvjw4a3k5v8WZJmiY0VFlOf3tAPMOR0CDQ1k8DZJS9Vq2uhVKjpQ1GogNRUxiYnyg7o6QanRYKC+PnTMzCBbW8NAEMho1tGhg6GujhhcMzPKM9XRoQizSkX5zjo65DwwRkatri59BucU9VWpKLI3ezZFpbdtI+NcFIn13rSJjLfhwylyun07OdO3btE1Z86k5/oP5+vu3bvlBw8eYN26dc813JuiwiNGjIBf164UKRo5kqKdN26QIVtfT+TEBx+QRO5RixFcuEDj8vXXJBt+ThQtJSUFqamp6Nu3LxzbkUTLsoyQkBD5wYMHgo6ODtYUFOBMfj6cPvzwsTy1Baqrq5GZmYnOnTvD1NUV7FGUBQCRFe++S2Pc9P4AnD59WiooKBDLy8tbO6NlZRSBDgt7Ipf5zp07SE1NRWpqKjQaDTw8PKRJkyb98ZoLNTUUFT16tH2ZYHAwzanQ0D92bYCubWWF6shIfPPNN3j33Xfbl6knJ5MyoqSExqoFfvvtN6m2thaTJk0SmxzrL774gtfW1rKlS5e2JjXv36dc6IULqfiaIFDbo7VrKQe3e/c2perJyck4deoUd3Jygo+PDzt8+DCGDx+O+Ph4WFhYYObMme3fP0Drq1cvkpY+eEDR5ffeo+d55GyEh4ejqKhImj9/fmurPzaWyAxHR5SVlWH37t1cX1+fjx49WujYsWP7n/vgARnXnp5EVhQW0vd37CCyrGkvsrOjqBnnwMmTKN6xA8aLF0MWRexYtAgrN2/G5cBAuDY2wjwhAaFr1kgTv/9eFDp0IIm8nx+tvb17qcDSoEGAjQ34wYM4O3my7HT+vOBubU0G/MyZ5PQtXvzsgkdP4eLFizwuLo6/9dZb7Q50k7M9atQo3qdPn8cv8vZtItguXKBnBVUN3rt3L+ecY/ny5ax+0iTs7tgRw19//UklSVPbqqaUk4sXIa9bh5pOnaDzyisoKioCQNX4ExIScPHiRVgrlVojhUIw6NxZCE5IgM7ixeTsZ2QQ6dFWPuzcuSgdMACHOecGBgZ8/vz5wqML0zjNmdP8q1988YU8depUwcnJiYjHmhoiD5VKHF+wQB6iUgkmixYBly+jyscHOyIj8eaGDU983HfffSf37t1b6NWUAiXLKPn6a4iff44HLi68wdgYDwWB3fD0hFpPD3369OEjR45kkiShsLAQenp6JN1OSYHlnDlQb9gA7ejRuHzpEvR375azjYwEiwcPYD5/Pmzc3KDT0ABDZ2doNBrIcXEwmzEDhTdvwqVbN/r8OXPIsTQ3R4G9PfadPIm/NRUpA+jMmTKFSFZTU+C333DT0hI2a9Yg2d0dgSdPorkt6Z07wLRp0O7cia9PnkQtYxBFEZIkoWPHjvLMmTMFPT09PDhxAjF79uBOQIA8YMAAod+jug2yLOOrr76Sa2pqBENDQ0l+8EBcvW8flD/8QKT600hLg3rXLhxUKHi+SsUCAgIw/FkFCCsrKa+7tBRXDx/m4XZ2zNjYmNfV1TFZlmFubs6XL1/O0NhI59maNSTvboGUlBQcP34cvZKTZc9VqwSHRznez8XBg2Q/fPPNs3/v2DFSfL1IIbTqalof+/c3n18fffQR5KYUIwC+vr4IDg5utU8mJibyEydOMABwbmjgc1NSGJs8mc7wR6kR+fn5OHXqlFRZWiq6u7lpx0dEKHDuHNk9CQl0HvbvD+nsWWjnzMGJn37iM+zsmNbXF1xPr7VSCKBaHffukeKntJRsHjs7ygtvcY98/Hj87ucnG+zbJ9zetAljxo6FIAi4fPkyYmJieENDAxNF8Z/vv//+u88fqP8+/FWN/C/8x/j4448X6urqbhk/frx+9xbSln8HPXr0QE5OjpySkiLGxcUhLi4OAGBoaCgce8RgqlQqDgAjRoxgvi/aJ/kvPBcKhQKNjY2QZZmpVCpERUWh1x/MsW4Tb7xBG3NTj86nwRg5tipV64jc0zLo4GD0B4SEhAScOnUKTVe0trbGsmXLqNp0Ezgnx7K29rGcu7KS5NEqFTn0JSVkWGu1dBDm55Oh5+pKTrVGQ4ZvUhIZ3N9+S7mxO3c+bnuSmEj5Z8uWkZHJOTklc+eSo+XiQvcVFERGdkYGOe6XLpEB2KsXReRefZUcyaQkKr62eTPw4YcY07WrsKukhJyOtWspAnX3LknZf/6Z/t7aGrh0CbojRsC6vp4rs7IY/Pwo99TWliKQERF02Lq7k7RswQKKsl+7RgfonDlEGDxlbLaHY8eOQZZlZGRkoEuXLnzo0KGsoaEBNjY2zZJrQRCwePFioa6mBgmjRuH3Dz9EcmwsJrYjczYyMkLzmg4LIxKktJSinD/8QNVrn1IEJCcniw0NDRg9enRr78/IiIyhp+bRmTNnJFmWRT09PW5jY8OnTJny73URMDSk+/T0pPy+loZcVhbNrSNH/n2FxauvAl27ora2FpIkIT8/H+06jU1kU7duNAcZA+cc+/btk7Ozs8VHkUV5woQJgiAI6Nq1K27evPmkPD4ri+bnN98QiXTrFlWSLi0lJ+Xrr2kethMJ79GjB3r06MEAICQkROacC+Hh4QAogrtp0yasXr26baMOoLloYUHOto0NFfLJzycHNy0NsLPD/fv3YW1tLbTseZ2Zmckrysrg/9FHDEeP4u7duzhw4AC6deuG50aX6+rIufzsM1rX69ZR5P7cOZo3mZm0zs3MaK3b21NU/LXXcCoxUctmz1YM7dMHS2fOhODigqDhw4HqahT8/DMULi7sQt++XM/YmLuIomAXEECEo60tzZVRo4CcHLDOneETFCSUhYXhXlERbNRqqBgjAjIigvaVmzfJgXlG6opGo0F0dDSbPHnyM0nSpnceERHB+rQsCNm9Ozn3Dx7Qe9DRgYmJCebOncu+++47fPzxx5hqZwc7Y2OcOnVKWrNmjdjiovR1yxZSLeXlQfjuOxgPHgwsXw6nadPIIVKpMHDGDHS5dg0m8+crtJKELcHBGHXwIPXzfv992jvfeYf2pKcihuVbtmDP9u1oZIxVVFQ8/sHNm61UIxqNRjBrym//6Sdaq999B4wfD1GrBS8thTxhAoQOHVDk44MG1VNxAo0G1jk5MG5qxZWeDpw4AUtvb6CsDGYDBjDs2QOYmGDYpk0oj4hA6Zo12PO3v8mzamqEDv7+tD/n58Ny7Fhg40boPpI4jx4zBhgzRvC8fRslkyfzuh9/ROeAAKY4fvwxYTt2LCKXL5diT54UVh86xFR/+xtFNBkDJk2C8W+/NUfOm8E5reMlS2iPP3MGaZ6eUsQbb4g1NTUYJIp0lh0+TE7izJlQeHtDPneOL5o7l5mZmYFzDn19/eZ1Y5Obi3FTpuCn2lrh3LlzSEtLQ1lZmdzY2Mh0dXXZq6++iocPH4q3bt3iu8aNY7OdnGBw6tSTDndZGfDFF9CdNAkvBweznJwc7N+/H3379m0/JczEBOjZE9i/Hz2vXmXhEyZg8cKFTGIMyunToWNpydCtG82Va9cAQUBVVRUiIiK4sbExe/DggZSZmSm6dOqEUZs3C3jvvbY/py0MGIDntgcDKJiwcCERrs+DKJLNUV3drBZzdHSU79271zzWCQkJqKqq4hMnTmT19fXNEmxPT0924pGUO1ulYve3boXDmTNEqA8ZAowfD0dLSyybOVOU3dxwMjBQUf3xxzD6/HOaL35+wL590DCGM4Ig5370EX99xgwR3btDsXAh2SJXr5ICpCWsrOicO3IE+PVXqg/z9tutzoAHhYW89uJF5jRmDFzGj2/+fmBgIPT09HDmzBlIkvTJ8wfpvxN/Odt/4T/Chg0bDBQKxeaXX35Z/8/oba2rq4upU6eKxcXFePjwIZycnOT58+cLpaWliIuL44/6brPdu3fj1KlTSEpKwsyZM6Grqwu1Wg1dXV20NML+wosjLS0NtbW14ujRo1FUVCS7ubkJ6enpiI+Pl7y9vYUXqTTcCg0N5NgVF/+p9+rr64sePXrgwIEDyM3NRXFb12eMosr/bmS5pITkrNnZFOmrqaGCI5s2EXFgaEjRYlkmGWRcHDHM9fWPC6l9+CFJ5o2MiHTo1IkY7aaexH5+5NgrFGQo6ujQ9SSJfp6bC4WNDVQNDai9cAEGy5aR4xkTQ872Z59RHrKXF/DaaygNDUVAaCjrcOwYVT/18qKccDs7Mr6KisiB3b6dHIqmiEhT/9r168nACAmhSN6uXVQAZtEiqA0NceeDD3jkkCHompoK38ZG5vaPf8A2NBSnb9/m+69eZY4lJcjo0gXdGOPOHh6s1toa6ZcuSZr798WpaWnYHhODISNHymjZM7g9pKaS4bh+PY3TmTNt/tqSJUuwefNmhIWFoXfv3oiLi0N4eDjGGBnBZ/NmICMDWq0W4eHhqK+vR21tLSorK8Vp06ahe/fuDP9p+zt/f3JGx48nKXdT+7ovv6SoTDv3/Vx8+ik5mh98APHhQwAkFWzP2a7r1AkZu3ejIT4eFmfPwmX0aOTk5CA7O1sYPHgwvL29sX37duzfv1+2t7dnWVlZMgCKdFdW0uclJZF6YN8+St1Yvpwivd27EzHj4ED5lF9++dzbb2hogKWlJXR1dbmbmxvz8fHB5s2b+caNG9nMmTNhZWUFIyMjaLVayLIMHaWSHICn4ehIhjoA3qMHmL8/4pycWGJiIjp06CDb2NiwK1euMIPqanS7dAnnzpzh5eXlTBRFPmXKlLbfbVkZGb6jRpEx+dFHtCb8/Ojf/fv0NT+fnO8ffqDxaEna2NigLD5emLZ+PTo1VQ1vym0G4NC7N+w5F9L690d0dDQy4+Px8pgxtJ6cnSm61YR162AHIKKmBnczM+GamsrHL1vGVGPHQvjyS3KeNm6key4ooOJxbRRuUigUsLOzk48ePSoYGxu3qzgBqPhkm8rG1auJcNuyhSqfAzA1NcW7776La9eu8WvbtzP/X39F8vTp4qeffgoAvKmApSAIRJh6e9OeX19PstPGRnrubt0Ae3uwqCg4dO0KxMaCcw7h009RExcHvSZZ8YwZtKauXqViTt9+CwgCOOc4fPCgvPL994VTH38saWifFTFxIlV8brE21Go1tFotmgs6iSKRn19/DYwfj9szZrD6W7dg2bUrqsaNkzPDwoSudXUcu3YxlJUR0fr99/C2sGCYPJlIyqaIsZ4ezZnFi+m/MzKADh1gVlkJvVmzWF5eHnt44gQcRJFIo6b5ERdHY7N3L5Gzurow79QJxrdusR8++UR237uXNVdD19EBBAGDNm4UC3fulBvfeYep5s2jdVhUBJw5g/OxsdyvoUEGIGLCBCpwNno0KRQUCiA5GWpbW3SIiRFnJCdD6NOHyIaPPqLzrLQUuHIFePttiEolsx0yBML/x953x0V1bd+vc+8wMPSR3rsCCqiIgkbsYm9YYheNGmtM8mLK0/BMVxPTjUZjNGpUlFiwoUSUJoINLEiTKr03YZi59/fHpgoqeS+/l/e+z/X5zAc+lJl7zz333LPXXnvt48fpOH/+mci74cOB2FiobdiARebmeGRujjSZDP29vTkjR0fo6etDQ0MDFhYWcHZ2Zluys+k6zplDz5i5c+mZdukS3ctN0nBbW1vwPI/q6urn+q+c0ddHwqxZWMQYtLy9ScHy6ac0Rjdv0mc17flKS0uRkJDAeJ6Hm5sb7+XlhUHu7nQvd6VTRjNiY2kdPHny2X83bBjdm42NT29F1gxNTRrT+Hjgxx+RM28esrOzOYlEgnfffRdbtmwRGxoaWFpaGvv8888BAIGBgQBaiGs8fPgQYWFhOPDrr6RouHsXijNnoHr9dciqqoCCAnBhYUg5d050YYw567RWdYorV+JEYaGYqVKxJUuWkKlvcjI9Z4ODaT8wdSolA8aNo3mrVJLq77vviKTZv7/Dad27dEm86uODuT17MlnT9W1GXl4eLly48BiAd2BgYO1zx/3/KF4E2y/wr2KooaGh6s8ItNti5cqVUCgUUFNT4xhjMDQ0bJe5CgwMRFZWFvbu3YuvvvoKoii29E5VKpXgOA5vv/02utSG6AUAAO7u7oiNjVVdvHiRX7VqFaelpYWDBw8qi4qKJCdOnICjoyPVzXYVzfXWBQVdY4j/IKRSKZycnJCVlYUJEybg1q1b6Nmz579+zd9/n0zKjh+noFNfn+qTmnHzJmW5XFzau5A2udpCJiNWHCB5eTOWLqWvhoat9U+vvdb6+5076euUKa3S6X37kHfvHspLShC0ejUCLC1bA2SAsjmguvzoXbuE6ydPclZr1wo95syhnUd1devfNjTQ17AweoBqa1O20sWFAnY/P9qsWVtTRqKkhDao/fujQS7HsaNHhQFaWsx/xgym/uOP0JNKITEzA8LD8fLq1ZxQWQnuyy9R9O67kMyaxUqPHMHtCRPEWTt38jd790aqqyve3roVeOMNTnRyAvP0pEBm0SLarDx4QJubuDgat+vXaXP7wQfPdLGXy+UYOXIkwsLCAAC3b98WtLW1udtJSZBPn46CuDiEh4eLOjo6UKlULdmwoKAgTJw4EX+KOsbAgDKgGhqU5XB0pADhX8Hp0xSs79yJe/fuiQCYqpmEeQL379/H0aNHMf/gQYhKJfLNzVEsl6N5Xba2toauri7Wrl3L/fDDD6qcnBzOw8ODH+rqCq3AQNrA795NWeu26pLCQgpGnZ3peiQk0JwKCAB27CCFyFPg6enJIiIihPnz53PNDuXvvvsuO3jwoLB//34OAExMTITCwkIOAGYePQojHR1RPzKSdTAv4nkIgoD4Hj2EAmNjziYzE2ZjxqBUpeJyc3NFDw8P0bNHD5YycSIK798XKyoqmEKhYFVVVa3u6A0NRCA1q0b27aMNu49Px/O4e5cCqUePKGCoq6NN9+TJLX+SmZmJxsZG7lm+IowxuLi4QE1NjR08eBBZv/wCm7b9zdugoqICfXr3xuTLl5F05w7b4ueHWZ9+KjqvWsWwfz/VhfI8rRnh4XT/njhB5mlNkm+O4xAQEMDt3btXuHr1KjejjVHUkxCbvBA6xfLllIWurSWysAne3t7Mu0cPiCNHwnzpUqg4DnFxcbh+/bqYmJgoDB8+nLezs6NSrx076NgWLqS1xNm5dY308Gh5z9u3b4PjODx69AgymQzas2YRCbJmDX3+w4d4XFSEtJQUXE9PF6pqa4GYGEzt04eHRNKi4ngyq33x4kUYGBiIHMe1J1zWrQPmzMEbdnZMUleHlF69xIbYWOaZlQUDLS3W0ufY2hp4802E791Lpm7FxWIfS0vOq5m85Xm6P01NUWdiAkVNDaJLSnBHTU10sLER5BERPKRSIqymTKG5tGoVBSx5eXQfvfkmEBEBLjkZkw4c4PLGjoUtz9N68t57wMiRYPb28EpJ4YJmzhSnxsUx+VtvERkbEAD9kBBxQGwsL374IdiYMUQGyWTUIzw5GcL332Pfrl1ClYsLN+jiRfrM5ufM66/THFq2DA06Oqi/eBFs2TIiBzw8iDScOZOIOMaAkhJIS0uB2FixzMKCOcbHQ8FxSO/bF8bq6tCfNQs1kZHwyM8XOYDmrFxO89Xbm2TZp051mINPS4zk5ORAXV0dx48fV9XU1HBLlixhJgYGrcRFSAiRzh9/3O75YGdnh0WLFuH48eNiSkqKOH/uXE7d3R3VQUHQeZqzeGfQ0upaq1IDAyKmQkI6ZoWfhrQ04No1XHd2FgEwd3d3cByHESNGsLNtyo102gTKAGBmZga5XI6wsDDo6upSr/RevXA9NBQDMjJwdd06eAoCpO7ukF2+LOTk5DBnZ+eWAc5/8ABJu3YxJyen9qaYjJF52/TpdD/t20f7lKoqUpowRqq6FSs6nEpRURHKP/yQzS4vh6yigtaOJtTV1eHAgQOPlUrl3MDAwDtdG5z/m3hRs/0C/zQ2bdqkKZVK706YMMHO7TntUf5/ITIyEpcuXYKtrS0GDBiAyspKKBQKXLp0CWPHjkX//v3/kuP6b0VCQgJCQkKwfPlyGBkZ4fLly2J6ejoqKiqE8ePH887NdWPPg1JJD6qrVzv05f2zsamN7FlXVxevv/76H38TUaQN1uHDxPZXVlKG4FkYP56Y8uPH//jn/UFs3rwZ3t7eGDJkSIfflZeXY+fOndDR0VFNnz6d77Kp4OPHrWSBKFLGZ8oUql0NC2vJvAmCgD179qCmpgYrVqz4Y4QLAIwciTpbW3zfvbugqKzklGpqeMnaWhwxdiyDjg4ZYPXuTVLZL76gjYunJz3oJ016rnt3cyurffv2QU1NDTKZDHYxMXBxdMSpbt3Euro6NmHCBPTu3Rv3798Xo6KiMGPGDLZz504olUq8+eab/7qzvSBQNikoiJQcRka0EX+OodVTUVoKFBcDdnbILyvD8ePHUVZWhrlz56JDv1oAFy9eFGNiYtgaIyNoNDTg4P37yGvKaspkMnH9+vUtAUdISAgKTp3CXJUKms7ORCTNn98x4ExJoQ1ns9FOWVlrKcSFC1TH9/nnTz3H2tpafPPNNzA1NRUDAgLaBTyCIODBgwd49OgRLCwsYGFhgbLUVEQEBamKjIx4Pz8/uLm5tRi3KRQKfPfdd4IgCNzcuXNhPGUK+JdeovnSjA0baBN7+DDq6urwzTffAKKIpR4eMOjXjzbkL71ExyyTPbV9FgAKZurqSJECEPm2ciXVhE6dCkEQsG3bNqFfv34YOnRol2RU+/ftg9q5c5i5fz+4JzJgSqUSX3zxhSgpLWVDIyIQO26cCAMDBHz6KdNMTCTCqVev9s7IycmkbFmxgrKV7u4UQAHYsWOHWFFRgWcZ6m3btg3V1dUtmbMOEARSbXz6aXszSICyYH37kiQerY7JampqaGxshJWGhuh96hTTLSkR45cuFQxyczHg0CFe/dEjQCJBTU0NMjIy0K1bN+zevbvlbXmeh3d8PFyXLoX5hAkAyEvkxHvvYdr+/bi6ZQt85s6FdlkZKRE++ogIx969O8hat2zZIkydOpVzcnKiLG59PT2P3n6bSnisrWkNPHaMypzWr+/UvDAjI6O5hzpycnLEgQMHMkEQYBkcDE4uR+XUqQgODm5Xd2thYaEaNmQI77B+PWWGMzIoW5+YSAaDbQLM4vx8HNq3T3C5cYN5Ll3KutXUUL2+lhbN2e3boVq/Hr+pqcF76FBYffwxnc+9e/j54kVVdnY2r6+vL06ZMoXZ2NgQSVJXByxbhoPBwaoaAwM2f/58TlNTE2hoQGlSEh6XlsJEVxdqqanAnDnIzs7G4cOHsX79eiKarl8nRY6aGuDqipNubsrc3FzOJyICYR4enJePDyIjImCorQ0HmUxVe+cOVyCRMLeEBJg0NIjd33qL4fBhmkOhoXQ8e/fSmr59O62V3t6IVleHy5Yt6DZrFoSQENzcsEGwjIvj9q1bJwRs28bd9fBAna+vatyOHTwXGUkkWWwsrUFOTrT2lJS0I4SaIYoiDh48KOakpzPXGzdgtH49BjaT4F1BQQGNxZMGop0hPJzUAr///tQSmyeRnp6OpLVrkWFnh1GrV8PZ2RmCICA1NRWHm/xSxowZg7ZlHvX19di8eTMAKqf09/dnISEhqprKSl63shJ6lZVwsbGB9z/+gfz8fPz444/o1q2bOHnyZGZtbQ0sWYJcZ2f8bmws5OXlMXt7e9bY2AhjY2N4eXlB/uSaeOhQa7vM/Pz2SQfQfb99+3bRXV0dIyoqGPr0adk3NY1/XXZ29u733nvvNfyP40Wf7Rf4p7Bp0ya5VCo94eTk5DJ06FC1P703cxdhbW0Nc3Nz+Pr6wsTEpEU2d/v2baSlpeFpfV9foHPs27dPHDlyJLO2tkZjYyNu3ryJuro6ged56Ovrt2Sontk2QxSJfTY3f37A+ifA1tYWDx8+hEKhwKhRo57ea7kzXLxImWx/f8p6DRhAWeentZBqCz8/6peclUVZrz/Y9uePwNzcHKdOnUJiYqLg6enJGGMoKChoNoGCXC4XVqxYwf+hoNHCgoLC5o2qjw8FIFVVtDH19gYmTcL52lpklpdjzpw5HR/Gz8ODB8CiRVCbPh0+gwYxZzc3lJSWolSlEvsOGcJaTOoSEmhjduIEjesHH9BD3t+/U5fX4OBg1e+//84cHR3ZqVOnVL///junrq4OHR0dGBoaqgZevMiM3d1ZilwuDhgwQPT29mYcx8HExIR5eXkxTU1NDBo0CNHR0YiLixM9PDzYHyYRABqnb78lWbWaGo3n+PF0LqJIWaI1VhkwAAAgAElEQVRONoLPgiAIqF63DpKVK3HUyUkVevEip62tjcbGRtHW1pa1JVOUSiXS0tJw5coV1tjYCLfRo2GQnQ2X48dhs2YNCmtrBX9/f05PT4+O58IF2H/1FbI4DqWamoLdBx8weHl17qTr708B9tChVC9eWoo0URQzGhtZRo8eqKmpAf+PfyDJ2BiPKipQWFiIuLg4HD16FLGxsYiKioK+vr5q4sSJ3JMZGsYYjIyM4ODgACMjI2hkZ0N+4QJ6BwZyampqCAsLE27fvg0jIyN26NAhITQ0lJmamoqvvvoq09XVBdfcLuxvf6MsjL8/yX49PQEHB6hlZcG+ogLyyEhR84cf2A2ZDLbffgu2cCEF0M/qiwtQMLRkCWUCe/em69hcf7pmDS5JJCiqqsKsWbO4rj77YnbuxKSwMGi99VaH3xUXF6Pmxx/Z3OhoWN+8if5Dh7L+/fsztTfeoGMdPJhknG3bmhkaUqbd3Jx8KGpqSLr9zjtIEEX20pQpzOwZa6EgCHj48CEGDBjQeQ19c2eH+/eJpGh7nidPUna2KaMokUgwePBg+Pr6kjv40aOsRFMTGjU1TDFxIpcpl3MXevRA8YkTgmLzZvycn8+SkpKQlJQkMMbw1ltvMV9fX/jY2yMhJUW4WFHB4uPj4ePjg6ioKKGA58VBr73GHPz8IP3ySyqF2bSJyAcnJ6rpb6ptBYg0romKwrD0dMYGDKDMv4YGnUfPnkRMODpSBnfoUAq2q6qoVjo/n96z6XwzMzNVKSkpYk5ODtfQ0MAqKytV6enpKCktFY3OncMZmUw0MzMTVq1axZWVlYHjOMFBX583XLgQeQsWiAbLlzP27rtEhMyYAYwdi1uPHuGnn35CTU0NtHR0cPPOHTZwzRpmNWAAlSb1708u2B9+CBgY4KJcrrqrUrHxcXGMbd1K2UNra/Tx8uJ8fX0RGxvLUlJSyOwuNBRYsgR1mzZB/fJlbti337IWU9m330b6Dz+Ix3R0WMnRozDatUs8Z2vLrl27Jhrm56O3lhbDK6/Q87uuDujVC8LbbyM4OJgb5OnJen3xBasbNAi9R4/G3Xv3RG25HOPmzuWshg5lAyZMADdqFLTmz2farq5Eog4eTP4ECQl0/xw6RNnTl14CnJxwuqICbuPGQezeHXtu3VJVGxkxl8WLmePIkcx42DA4LlyI7iNGcMzDg57Lzs7k5+DuTmSwjw/VGneCuLg4VXx8PDfhwgVkDB0qykxMmMMfUdjduEEeDl3JVtvakm+KsXGXCdaQkBDRMziYeQ0bBusmJVtiYiKOHTvW8jc+Pj5IT08Xjx8/Djs7O5aeno6UlBS4uLigoKCA3blzBwqFghtz7hx6z5kDbz092O3dC7ZyJXR0dODi4oL8/Hzx0qVLrG/fvlC/fx+6ffvCfdo0pqWlxaqqqlR6enosMzNTvHHjhuDt7d3KAgkCEZMffEBrrZcXfd/k6C+KIo4dO6ZS1NeLs06c4JCaSiqDJsTGxqoSExOzGxsbpw0dOrRzSdb/EF7IyF/gD2HTpk1eUqn0NYlEMtXV1ZWbMGGCxl8VaAO0aeveLE1rgo2NDd566y1s3boV6enp/1W9sf9qmJqaqs6fPy8JDaXODHp6esL8+fP5X3/9VXXhwgWEhYVBKpVi3bp1nWc4RZFeP//8dHfmPxm2traYP38+tm/fDven9ZV+EuvXU02SsTFJ6YB2D4ouwdCQXgcPUkZzxQrK6D+vbuufgL29PSwtLZGbm8tlZmbi8uXLQnFxMcfzvGBnZ8emT5/+x00KYmM77yE8ZAi9amsBDQ2UPX6MCY8ewTw0lOTDXUVSEtWz3bgBdOsGDoCJiQlGjhyJn3bu5Gq++QbaU6dSdsrcnGSnbZ1pTUwoCyWTUZ0kgKysLMhkMiQlJfFWVlbCjh07mEQi4V566SVcv35dGDJkCOdWWcnj/HlATw/LGXvquPA8j7///e/YvXs3jhw5gqXNMv/nobGRApDffiPp4Ouv0zn06EEb9IoKqk2USKiW8LPPnimDfxKRkZFCVn0959a7t1hQUoIVK1bg119/FczMzODk5NSy2FZWVuLnn38WKysrGQC88sorsNDRAaZMgaa9PbqrVOi+ciUHlYqyVMnJQGIi1F57DdoA7qans+HPKrn44QfA0hKpqakIDQ1FaWkpGGNs8fr1SJo2Ddfc3UVHS0vofPMNHgwerKrS12eiKIqenp6ShoYGJCYmYsWKFV1zeE9IINn8m2+if//+6NevHxcaGopff/1VVCqVnIGBAebNm8e1uNczRq+5c8lToaKC/t/RkUpWRoyA+ZQpMN+7l91NTUXE8eOojI1VTZkypetGeK6uLS2wABCRoq8P2Nri8aFDEO3s2HfffSfIZDJMmzaNM3hOezzt2lpUGhjgt127RJlMxiorK4Xq6momiiL46mo2mjGB/+knrp2Z3tChFKCtWkXzaPz41uC/GYy13pdVVWjMzIRQXCw6z5zJMHw4BekSSQdJrFWTg3FsbKwwbNiwzi/Syy9TVn/4cDIXa17zvb2pBrcNcnNzoVQqUZuRAau6OlFvwwZWvWoVrt67B5mWliDR0GCuffpw5jdvYuK4cbCxs4OBoWH7z/3xR8yIi+NyDh3Cnj17sGXLFtTX13MAUDJjBgzr60lJ5OtLx8UYESISCZF2jY3A/PkodnQUvCUSxm7dovPOy2slvZydKeD74gsKpBYuJL8KXV0izX75hWrqw8KAJUuQmJiI0tJS3tDQEEZGRhg3bhzN6cpKYO1a9HjzTdYcmHfr1g3V6ekYfv48Ct5+G0eqqsSwwEC2wMEB5y9eFEYkJnJnTp5U5WZm8tqGhrh161aLCWxwcDAWeXjAPCyMrvsXXwDjxiErKwuxsbH8su7dwWJjiRAeNowy2H5+qKmpQVVVFUaMGCHgzBkeVlaAszOK1q1D+PHjsG5sxP79+1Ucx7Gh5eVcjJcXW7FiBTQ1NXH50iVW/8svcC4vZ7YZGTinVKJk+nRVn7AwrtcrrzC8/DIqysrA8zx8hg0DCgowrq4O+O47rFy5kn355Zf4okldYmZmhqGurrAOCqJjq6mh65SYSGv7kCFEaHTrRmTByJEolctxITISGRkZorW1NZs+fTonlUohB1rl4kArae/o2Eo2bdvWqjzpBDk5OcxaTw+9CwqgGDgQF2Ji4OXlBf229/SzYG7epfacAGgeJicTCdUs0+8EycnJKC8vx927d1FUVMSkly/DwNKSCNs1a1Dc5M3RjP1UH91sOCk2raUsKSkJADBw4EDExMTAsb4eBg4ORDouWkQZ9pEjYWJigrlz53Jbt24VSktLOd3AQKCpzNLT0xOenp48AFRWVrJvv/0Wt27dQp8+fejDN24k8nLsWLqHqqro/EaPBvr0wbWEBDErK4tbO3kyw3vvtVMZ5eTkIDw8vK6xsXF0YGBgQ9cG8f82XgTbL9AlbNq0yVNDQ+MbTU3N3j4+Phru7u7cf3LGODw8XAWAd+pKhvIFWrBw4UJJVVUVtLW1m2upeABYunQpX1paCiMjI2zbtk0oKSnhOiUxAgJIAhsS8m89biMjI+jq6qpOnDjBpkyZwnWaqSkspFq2zz6jjF1JCW1qnvFw7BLmzqXXhQvEsj98+C+3++oMzffb4cOH4eDgwBYsWACpVPrPOQEuWUIbnmYjt86gpQUEB6Nx717UZ2WJ0NNjqK4mI60PPng2qdDYSDLN06fbB/TJybCIjYVxcTGqdu0CeveG9hN1fO3g6goIAgRBwLVr18QLFy4wADAzM1MuXLhQAgCCILCmejcONTWUlQoJ6VKAyxiDnp4ekpKSkJ2d/XSnb4Dmy549RB4MH07H9s47HbOkiYlkBlVWRhuU4mIKzJ+TIamvr8fu3bshuX+fm5ucDJ1Ll5iHpiZ/4MABgeM4NmfOHNZ2Xh8+fFjQ19dn69ata/9Gx46REV9KCtXAa2hQRmnpUpJBAzBLSMC9Bw+efjAbNwLa2jjl4qK6desWL5fL8fLLL0NLSwuJd++K41xcGF55hbJg586h74EDErzzTosXQWlpKe7cuQOlUtk1D4UZM+jVBI7jMHbsWAwdOpTt2rULpaWlOHbsmGr06NF8u6C2b1+SVwcGkjzVwYFknxkZLVLdXu7uuHT5spiQkMCPHz/+6U7oIOl7Y2MjNDU10bB8OTQyM5GVloaCggKUlJSoysrKUGFhwUkBtvL4cRSuXcudbWxUbd++Herq6hgwYIBqyJAhnQb0j2UynB80CHqamjAwMBBsbW05Ozs7aOXmQnfRInChoRyenH+vvtrq72BpSYHmtGkUCHaSnRd1dPCTTCY0mJhAeuIEQ34+zYfNm2mds7KiIILjYG1tDZ7nERERwQ1rbv/XGXr2pOD+9m0K9ABaN7dta6npbmhowN69e8EYQ5/0dEHbyIiz8/SESkcH3IwZkEgk3JEjR2A1Ywa0AwLQd8cOqle+fLm9U/8HHwBVVbCSy7Fx40ZkZWXh7NmzKC0tpTaBcjndf3V1rSqchARSJ927B9y5A2H0aNyrqGC91q5laO4Z3Paal5WRWZaREd0b+fkkmx4+HI1r1uDGwIGQ3boFq+BglNfUwCIhgRdNTMRadXXx1q1bnLOzMxwdHSnrb29PaoIm8mOwlhYcduzg0j//HI7+/lgPcGHffSdGJiSw5ORkLi0tDYu//57PMzfHBX9/KJVKAICxsbFYk5XFHnzzDdjixTCztaVgFdQqrV9WFpLDw2Fy4QKVIKxc2VKnn5GRAQAYMGAAj2nTiEgAoDQwgO+FCwhNT4dq+HBuZHg4khwcVFIHB6anp8c9TE6G8dtvY+SdO0h+7z3Iv/8ejxITxXEffMBftrXFTYVCNDp3jqlUKkilUhWa9gK4dw/46Sdov/kmXnvtNeTn50M9IwOxhw+L98+dY2YqFXQ4rrX8p7kka/p0WjN37qTn4y+/wFZLCxb5+YJTQADr7eXFddnY9sQJmn+amp2S+iUlJUhNTeVG2NgAaWnozxjLKC5WffPNN7woiti4cePzTXQ5jkiarsLfn3pYN3sItEFNTQ0SExPFixcvMi0tLbG2tpYtW7YMZmZmNH8++wyYNQtt17Zly5ahoaEBp0+fFocMGcLc3NxYVVUV9u3bh7KyMshkMtTV1QlSUeQMmt3rm/HqqzQ+Ta7gmpqaYnh4uGB3+zaHK1fonmkDPT09WFlZ4cqVK0KfPn047N1LteiLFrWSdLq6VLIhilDa2KC+Rw8288cfIXv8mI5/3jwA9Bw7cuRInVKpnBcYGJjZ9QH8v40XwfYLPBObNm2SSqXSL9XV1QNGjhwp6927d4feuP+JyMrK4rt16yaamZn9dWn3/1J0RqJIpVKYmZlBEAQ0NjZyycnJYnBwMGbMmMHMmh76EEUydWnaJPy7ERAQwO/YsUOMjo7G0LYP4MhIkpj26kUGLR9+SGZQfzZGjqRaMjU12vxv2PCnZbmbW2wBwLp166Ctrf2vzevS0i7LmydNmoRvs7JY3/ffB0tJoQD6/fcpm+/j03nAvnQpZfkPHKB5ERREks3PPwfKy2E2fz52mZoC4eEYJ5PB62kS/IULUX/vHsI/+URMVFODn58fMjMzMW3atJZnV4dNU1TUHzLkmzRpEktKSsKpU6eE1atXt3+z2loKWn/+mbIFW7eSaVDbrMuTGDy41X1/6lTKeLz1FgXry5Z1+i/l5eUIDw9HVVUV5pmYQOfmTRQ8eIC9YWGilpYWCwgIaBdoC4KAgoIC7u+dtbIJDiZi6cAB8kv47jsofv0Vp0JChPJdu+Do6IgePXpw9fX17PLly+A4TnRzc2O///670L17d+7Bgwcqu/h4Lktbm92rr+cHDhyIIUOGQCqVIjs7G/f79xfH6ekxHD3aIovF48dUt1hTgwI7O+zduxe2trZKqVT6/D1GdjYFlKWlHeTsMpkMa9euRVVVFU6dOsV27NgBT09PlZ+fH7monz9PLWn69qUsTHY2BWFPbHY9PT1ZWFgYPvnkE0yZMgWOjo7IzMxEcXGxUF9fz8lkMmRlZYk5OTlMaCJ3dCoq8OrOnQjeuFHsZmgo6uvr83Z2djAzM4O1tTVks2fDtrYWK+/d45Vvvonw6GhER0fznfkqiKKInnfvQmVjI/rOndvqgF9VRef9+uvoEGgDVFLR5MQOgO61desoG9uJc3tNTQ0KCwu5adOmQeLm1hqou7pSffXAgUR+HTgAVFVh9OjROHfuHH766Sdh8eLFnUviOY68LD7/nNbSv/2NxtfammqgR46Euro6vL29cff6dXH8jRscFxUF8Dz4119Hr1690NDQAI7jWr0RpkyhEozGRnppa9Ma7eVFihvQfW1iYoKSkhIEBARArqtL1/fiRaq5NjWl8bt6lUgwfX2A4xDt4wNlXFzH3vEAyktLwS5cQM7Onai8eRMSiQTyH39E96IisPp6PCooQGhoKExNTVUxs2ZBFAS8lJfHvZSXxzQWL2anv/pKbHj8uHWQqqvJKd7EBIiOhtrRo4gcPRpaHCc4NnVcGGllxcqdndFj9mwcOnQIpxYtwogFC7CkWzdcvnxZcHFx4QzlcpY9YwY0nZ3xU2oqxhgaQj5zJkquXYO+TAafs2dxcfZscM3Elbs78n/6CYetrVX19fV8r169oFZRQSSZuzvKysoQFBSE2T17iuMGD2Zac+cybNkC208+4XNyc5E0aZKgyMnhUj08xN5BQczF3h7Iz4fJjh1M9e23cNDSQnFxMQoLC1Xp6em8gYFB6zl7edGadvs2dMPCoLtoETB7Nmx9fNgWV1ehWC6HSXS0KJfLeQ2FArZKJURBgHFEBM0lhYLWxalT0bB0KXplZHAZwcFizK5dYrK7uzh5zhzOsE1JQKfIzSVjz076sOfl5eHnn3+Gq4mJsv+aNRIMGwaYmWHy5Ml8YmIiQkNDcfPmzee3NW0y5+syrK2JwD57Fo+HD0ddXR3y8vIQFRUllpaWMolEgtGjR0MqlbKoqCiVmZkZbaSNjck8r7QUPXNykNu3L3R0dNC8r1q9enXL2EdGRqKsaT3w9fVFSUkJN/HECVGMj2esueuFpiaRcXI5rR3dumH+/Pn8V199BeH998F1Yor46NEjZGZmYtmyZRyuXqWgetWqTnuH1z1+jANz5sDFwwN2V66Q+szDA1i1CqIo4syZM/WNjY1H33///Wew6P97eBFsv8BTsWnTJgepVHrC2traYdq0aTLZ8+rc/oPQJMdhL9qA/bkoKSmBUqlEfHw86uvrWV1dHf0iMpIMYLKzO6///DdAX18fQ4YMYZGRkRRsBwcT27x7N23mRowg+e//L3AcyaBLSigAWLCAMoz/4njU1NTg4MGDUCqVcHFx+dfNvLKyKEP2nPIPhUIBiUSCyspKaGhokFlVjx4k3wSoLVBODqkZ7t6l8QUouB4/njJoP/5IDufNmccmkmMygMlTpuCzzz4TL1y4wPr06dOpD0Bubi4Kly5Fz+JiDLh2jXXr1g3eza21nsS1a1TDmpPzh4ZDQ0MDvXr1wt27d7mioiIYGxnRBvrYMTovX18iUr76qmv9shmjWlI/P8pw9+hBY3X/PhmRff99i+N3Tk4OSktLcfLkSTDGMHPmTFhXVQFvvIGs+/fR0NDAFi9e3MGVFqBgpKqqCt2eMK2BoyNlI5ycgHffRXV9PQQLC+Rt3AhLKysuNjZWvHHjBkRRxM2bN4Xq6mouPDwcALjc3FylDWO8bNEi5tCjB0Y7OLQj3wRBoHmgpUWEy/TpdL7TplGwvWcPrmtoCC4jR3KTJ0/u2sQ3NSXp7jPuE11dXcybN48rLi7G9u3beRc9PRh/9hk0fH3BFi8m9/olSyiA++YbmuM//NDS6sfHxwdhYWFgjOHs2bOiQqFonvyctra2oK2tzSQSCZs6dSq6d++O6upqyOVyCNOn421vbwae73iz9OtH8vWvv4bk4UMM+/RTxMbGoqGhodMSmxJDQzBnZ6ZUKnHx4kUxITaWzTh6VBRmzmTh5ubCuNxcrkOrrg0bKPi8caP1Z9OmUWZ3wwYqX2gDHR0dWFpa4rfffkPPnj1bn33N0tA7dyiTGxcHvPUW+v/wA7RlMpy/d48TBOHZRPrw4VQq89prRCLOnt1uDfHx8YF861aWOXky7PX1qXThlVcAMzM09OwJtYYGnD17FsOHD4eGqSmRBh9/TMZZKSlUd+7o2C5jr1FbC8eSEkFj40YOJSW0nufn09r66adEbv7yC2Xwms716tWrwtixY9sRB6Io4vr160j9+mtMOH0aF957T9DW02N1dXWoqqpiC/btQ769vRg3YQL09fWF5cuXtw7EqlX0NTwcfa9cQd3gwbTWTJhA2eWzZ2nNCQnB9VGj8KigAMvamuZduQK5oyPk3btj/vz52L9/P9RPnIBJRARmnTvHAUDFzp2oMDSE186dyL54Ubh6/jwbc/o0u1peLg4LCWG7Fi6EZdsSKUGA9q+/omrlSl4ikSA1NRWXf/gBmrW1ODdmDHieR79+/VR2773HIyICCA2FEByMuwsW4L6FBQwaGjinTz7BDFdXMqm0tSXSZ/Nm8AcPojcAeHkxXLvGJ6qpCYbHj3M4fpxa2335JRkIZme3KgTi4wGex/SHD7n09HSUlZWhqKhIVM/IEOqKi7nLu3axwMBAcg8fMwaorITIGPKtrbHHxUWlWVfHxsTEcLZXr7KTDx/CadQoNGpoQCQAAExMTFiTsz+Ra0OH0nO2jQHrvXv3cKpJKeU9apQErq4tCgANDQ30798f9fX1Ynx8vNCvX79nZ41sbVsMB7uMujqIe/diT2amWFJSwjQ0NERHR0c2a9YsdOvWjQHkJ1BdXc2Hh4ejnaJk925Ig4Iwse29/gTGjx+PgQMHIioqSggNDeUAIHPECHaloQFj0tPRUpNua0u9x69eBcLDIZFIwPM8UtPS0CMigsro2qBZYRF95Ihqek4Oj5kzWzsHtIEgCDhy5IjAOTqKg/38eGzYQGtRE+l7+/ZtMSUlJV+hUKz+YwP3fx8vgu0X6IBNmzapSaXS79TU1BYMGTJEzcfHh/8r67L/GUilUigUCnz44YeYN28ebGxsnm3q9QJdgrGxMRYsWAALCwsWHBysCg4O5tetWweppydl/f6iMU5OTsaZM2dUjysreYfGRhENDSRxdXcnA6V/JwwNKbBSKkn6+cMPxOT/E6itrcUXX3wBdXV1ccaMGczV1fVfPz53d9qgtmlj9CSqqqrw7bffQiKRiKIows7Ojnq5tkVzzeahQ/Twzs6mgGvRIqqBPHOGNmGLFpFRWicYP348++2331BTU9Oulk4URfz8889CXl4e57J2LTxnzmTPIwdgYAB8/fU/pSYwNjYWZHV13IkNG7Csqopcrb/+mjInzcqNPwI7u/YttIyMSAVw7hwF7WvW4GF5Ofbv3w81NTXR2NhYXLJkCSe9c4c2kfv3Y4C/PzIzM8Xz588LCxYsaDf2HMfBwsJCde3aNX7skyaECxbQ5xgYQNWnD4L27BFtBwzA6jVrOG7QINyxthZ/c3VlUjU1vPHGG1xwcDBKS0vFXr16sYEDB0owbx4F6y+/3OG0BEGASqVCobc3TE6dos1zs8PvsGGAhgZ0v/sOJgkJz5xf7fDjjxS4dQFGPA/v7GyVxpQp/Ek/P8h79BBGDxzIMQAqNTU0Ojvj9tixKpuyMt4sLY0IH3191NfXAwDmzZsHW1tbJggC7t69C1tbW+jr63dgUJqNALmkJMpuzZ/f+QHp61OG+dEjSIYOhV3fvkJWVhb3pI8IYwx9CgpwuLYWtz7+GFKJhAX4+iI/MpJdkEqhLC7mrl271rEv9rffdiR4eJ7GduPGVkKxDby9vXHs2DEUFha2ZMfa/a+lJb38/AAANh99hKkPH6LG3x96KSl0LTozeerbl6733LnkocDzNJeb2hvqVlbCqLxczBs0iNkDVKdrYABUVUE3PR1vf/YZPtiwAfJt20Sf/v0ZPvmEJOp791Kwevs2rdVRUfQ5pqbgjhyBN2NcopeXauRnn/Ht7sWqKlpX160jQ7EPPmiZc4aGhlAqlcjLy0NZWRmuXr0qFhUWMstBg6C7bRveNDZuN6i1M2ZArKpiAxobYWZl1XkQNmwYjr/xhujTvTvDl19S2dC0aXTMcjnw3nu4f/06+vbtK8rl8tbFSkenxc29vr4eEokE3UaNar2uoaGoDgrCo+HDRV5dnU2YMIGDry9QVYV11dXskZsb6jU1kZaWhvT0dGhra8PAxQWFBw+Cu3IFfby8BENDQ+amUrGsHj2Ae/fQr18/+Pn50Xm8/DJQUgLlwoVorK3FpEuXIMnJgdTbmwijzZvpud3QAGH0aCQUFQmPGUMPFxfOwNERafHxYlWvXjAfPJjmTUEBkaZ9+7Z2HGnKMNvb28O+VenEsHcvX1Zaiuva2tSmatAgurYcB7FJQfLGG2/QcW7YANTUYMSiRdBetQqRy5ejXl+fKZvI5Tt37qhOnz7Ne+noqHy3bOFz/vY32B89isfr16OyshIxMTGq1NRUbuzYsSwuIkJUGzWKoakevi3c3d1ZZGQkr1Aonl3iUlxM7eea6qM7QzMR0NLVaeJExD58KDYUFuLdDRsglUo7PLSsra3Rq1cvISIigtPQ0ICPjw/94u236Tl67Rpl7Z9SpimXyzFx4kTOz88PQT/9BIvwcEQMG4YrV66gnQFcYCCpQJRKaGpqwsjICGePHIFjUBD4J4JtGxsb/G3VKiRPmMDH9OuH6zduoDwsDLNnz27niXTlyhWhtLAQrxcU8PjoI7qWGzcCZmaoqKjAuXPn6hsbGycFBgb+NfLG/2C8iD5eoB02bdrESaXSI+bm5mNmzJihofn/ofb034EVK1bg0aNHiIuLEw8cONCy4I0ePbp1cXuBfwqampo4cOCAUFRUxEGphMTZmTYcc+f+Zcd0+ehRsRMyq6kAACAASURBVKahgQ9IT4fZrVu0kSsv/8uOBwBtYA4fJonVvn20semq4UoTSkpKAADr169nf5pCIyen1RTuCeTn5+PcuXNCYWEhs7S0FI2MjMT4+Hg+OTmZ3759u9CvXz+uQzu92bNpQ1dXRxt4pZKy++PHk2T/GdkyNzc3/Pbbb3jw4AFcXFygoaEBlUqFgwcPCiUlJeydd94hkmzLFpKvR0R0/ka7dlF93dPaGD0NggDEx2NwTAznnp6OGKVSxLp1DEOGdLmFS6fYuJGk3G0hlQKffoqw779XeXp68jFDhsBrxgyMGzeuVVZsbk4Zs6Y+xKNGjWLbt2/nCwsLO8hifX19+SNHjmDYsGHQaBsc8Txt3IyNkWtigtz6emb12muU5dy6FW5GRpxVUhJ0FiwA3n0X/uPHAxoarSe7bdtTT0tPTw/q6ups//79wt/8/DisWkV1t03BaaWrK1JNTLge8fGkDGiqH30qRJFIulGjKDB7GhQKICYG2L4dfnZ2vJCbiyElJdizZw8Xe+MGTExMBHV1dU7m7Q3e0JAPNTVFwM6dsL5xA/jtN9xKTQXHcbC0tATHceA4Dr179372sQHUvq3hOf4+EgkpWJYtw4ATJ7iEkydV3d96q/2kr6+HdVUVFq9bh+SHD9E7KAha+/fD6OJFmBQWYteuXbCxsen43oWFlEl+UjKur0/1919/TcROm17xDQ0NIgBWUVHRMdhui6ZAg4WE4JfNm7E0Lw96Bw9SRuv8earPbmq/1e5cHR2prOLjjylTXldH0tXgYOQMHCjoXr7Mo7iYSnba3EOsrg749FMYDxnCWsowliyhcwgMpDKNnj1J+u7rS4Zac+bg0t69Kmtra9aB9Dp0iBzJ8/Iow7l5MxqtrPD48WPuwIEDYkNDA1NXVxdkMpmgr6/PDb15k2nv2dNpr2AtV1fYr1oFe54nZcRTwPE8hJoaCvDV1CjYLymhspH338e47Gwc9fOD161b0B83joKmkpIWOW5KSgrs7e1V2v368XBzo0yxiws01q5F4bVrLPrYMWHQ9Okc4uNpPH7+GRYDBiBQKkVYWJhw9OhR1tDQwHiex9y9ezHd319wHjuWY2fPoqG6Gkfu3YOFhYVq+PDhPBNFkhHX1gKNjZC+/DKy3N2F9MhITvfSJYxpqr8VV67EzU8/FR7m5+N+UBAn09NjjDEWFxsr2tvbC+kqFW/Xv39reZS+Pl0zV1dAFJEaH4/GffugPWwYjI2Ncfr0aVRUVIgmJibMNyQEF42M2ipJiOx96SUITYqBqqqqVvWMtjZsjx0D0tIwNTOTSJ1XXqG9hZoa/+jRI8ScOMFdHDdOdaOigsfMmeC//BJSqVTQ19fHmjVrmLa2NvSrqlg5Y5AyhidDVn19fRgaGgqRkZHciGY1VicIvXJF5VFRwe9s01q0KxgVGsom29o+NZCXy+WYPHkyl5CQgAsXLrTfjzJG5PTCheQH8gxIpVLM8fBAw+bNiJFIoFI9YfitoUFqM3t74Px5jBgxAgfy8xF96BB8AVy/fl3MysoS6urqoFIqmdvp01y+oSFum5hA1bR3Mm32PACQFRcHk7VruZVubuDXrSNypEnuLwgCjh07VieK4ubAwMC7f2jA/kfwIth+gXZQU1P70tDQ0G/OnDmyZxnJ/KdDX18f+vr66NmzJ2tsbMT9+/fx6NEjMSIiAm5ubuxfluL+jyI+Ph5NTuWcj48Phvj6gtPTI3favwBCXR3CoqIw/5NP2NXp00WrAweenwH9d6K5dvzECapz++ijrkmRm2BgYACe5/HRRx/BwMBAtWrVqn/NMGHoUMpktOndCZCz9a5du4SGhgauV69eoru7O9enTx/G8zw8PDyQl5eHuro67sKFCzAyMmrf67mqirJT588Tk66nRwFAv360SRo7ljLFL7/cqfKhT58+YmhoKAsNDYWamhpEUQTP8+zVV19lLWoUf/9nm7mlppL5U1eRl0dS43feIYflzZuhvXgx7v/yC0u+fVs1zd6ef6ZZ2vMQHU1Ztrb1tgBS09IQXVrKq6ZPF8eamTGDtoGcIBBxsW1bi+Nut27dIIoi9u/fj5UrV6It+eno6AgrKyvV4cOH2cyZM7mW3zHWQnJY+/hg/oABOHLkCMzMzODWlIXWd3KizBxjtGluzlZu3UoqhL17Oz0tAwMDTJw4ke3fv5/dUCjg+dFHgEqF6upqREVFCYmJiZxN//6Cydq1HI4do8zs6tVPJy4Yo+vwLISFUeBmZkbBlYsLOJD78bvvvovi4mLcunWLu3HjBpTOzph565bo9u677OfQULg5OsLsp59UhSUlvLqJSdfM2trio48omOwKFi5EtEKhGvP++7xQVARu69bW3zU2Ajt3wtDMDIZqaiTD/ewz8Dzfskk+c+ZMxzpSqZQyiZ3Bzo4yq4GBwC+/QKGlhaioKERFRbHx48fDxcWlS4ddWFgIcBy0Ro+mGnxRJIPB8HAKsE6fJvKmOev+0UdkkvXuu61SVScnoKgIWhMmsNrNm8VahYJpLVyI0tJS1NbWwtraGvfT0qClVCJJXR3qSUmw3L6dFB9nz7Z6GYwbR983PZ+VSiVKSkr4CU8G/QDVxy5fTt937w588QXKvLzQ38tLlK9dy1xdXaGrq8uhqXa6wtgYZ+vrMbG6utOyDMyZQ/L6zlBUBOzbB8OaGrH7999Tne2pU0T+paaS4/vWrTBMSoJpTg57+MsvsCkuhkFNDUndMzOByZMx/uOPUV1byz8WBMh27CACieNgFBWFCadPw3bnTg7Tp1PAVVKCilOncPTYMVj6+YlV1dVoaGhgTk5OwvDhwzmZVAo9BwcOjAH79kEyfDhQWIjFixfzXFERjU3PnkT4hoSg3ssL1Tk5XGbPnnCprkZhYSGO/+MfmHTyJCKsrDCgtpbzzMiA+Z49rL6+HomJiSw/P59HaSlqz53D459+Qu2aNdB85RVobthA53TiBG4ePCgODwtjB159FVWCAH19fdHa2lrMy8sTk4qKuEwHB6ZQKPDtt9+KCoWC1dTU4CVDQzE3OVkEY9yXX34JU1NTUU9Pj2lra0NPTw+mpqZwGjmS1vyaGiIfx4yBxdatmJGczLBmDT8gPx/d5s+HmJsLiUTS7qFqW1+PbUuWCLKDB7lXX30VTyoz+/Xrx0VFRalGjBjBK5VKnDp1CoIgwNzcHDzPIyYmRlTW1HCDN2zA35vnGNr7g3RGfqtUKuwsLMTiJwPfNqiursaePXtEAKxXr15C8/xswd27RJgmJhIx8QxwAwdClpmJgeHhQnJysogn1Weammh84w1E/v47rlZXgzEGx9mz8euUKUg3NWUODg68RCKBXlAQ6mtrkeDjg0UBAcjKykJYWBhSU1PhWVcH5aZNuNK9OwaOGQPNTZs6GMCGhYUpSkpKEpRK5R9s6fK/gxd9tl+gBR988MFcTU3NwCVLlmj+Uz1n/0PB8zxMTU3h6OjIHjx4gEuXLrHBgwf/1Yf1X4mQkBCVgYEBV1VVBa9vvhEfHT2KK4MHq24nJooPHz4UKysrOVNT0///dfKCAJw7B1W/fvjVxgb2W7fCc8UK1tIS6D8NL79MLPOiRSTB66IKQCqVwsvLCy4uLoiKiuLKyspEFxeXf+4ERRG4ehWKqVMRc+sWLly4IHIcx8zMzBAeHg6lUimuXr2aubi4cObm5i3XUFdXFxYWFtDW1saNGzcwZMgQyqSKItV+37lDG4TmbEdzT9u1a0lifP06BfgLFtB56+kh6OZNVUZGBrp378569OjBMjIyYGdnJwwbNox5eHhg7NixTKutgVtzXfKhQx2IApw+TRm4JqnmU6FSkbz65EnKhPE8ZbneeAMwMwOnpYU+ffogOztbvHLlCnfv3j1BV1eXPdespzNYWlJmvykbXVpaiuPHj6uio6O5UaNGYWhAANO0s6PA5f59qofNzaXghTEKOppw8+ZN1NTUIDU1VfDy8mp37R0cHLhz586xmJgYcBwHKysrlJeXQ/boEbBjB5hSCbmfH/Lz81VpaWnM09OT/p+x1uApIIDqHvfsIYfo+noKcJOSqAxgzx4ar9xc4No1yGNiII+IAMvOhmmTRLbs4UOcVijYmDFjMGrUKAZ9fTKp+/lnykq7unZ+X/r4UOatM7Lu4UOUzJmDq7duCfEymRBqZCRGp6QgOjoaMTExYnR0tJidnS1YW1tz58+fh6ampqhUqdjwsDBm1b8/LEaNAnr0QM3Vq8znwAF219kZPm1by3UFSiXNvaVLn2soWFdXh9CwMO6lr7+GhrY2zTVLS5KDhoZSOYmGBrn2njjRku3U09NDTEwMxowZ07FNpaZmu3Z7ubm5UKlUUCgUePz4MR48foxSQUDNF1/gp+xslJaXqyZOnMh5NCkjugKFQoHr16/DyMiIMuGMkUeBnx8Rg3FxVPM9axbVSw8aRGPxwQeU2Xr0iIzCzp6FWU4OS16xQjxRXY3U1FQWHxSE8t9+Q+LFi2L3f/yDvRQZibs6OijPyQHn5YVu331HhoM9e9L64O1NAUZ1NTB4MG7cuIHCwkJx5MiRHSfPpUvt2gUmZWQgpLISo4yMWA8jI6g3m8MBwI8/QoMxJNjaqkJDQzlHR8eOAbe1NZ3v6dNkticIZGx4+DAReSEhSDEwECtXrOBs//EPIkIMDIgY09Sk4CggAC4+PjjFGIq6dxdc//Y3hsJCIrIGDQIfEIBjurqqLB0d0eW99zikpBCZs2IF9jAmFs2ezbS0tCD/8EPg4EEkv/oqPD79FLIrV9hNS0vWzdhYHD16NGdubg4NZ2dae83NAQcHCH5+iIqOxqC4OPB6ejTv3nwTkXv2CHlFRSj+/ntmEREBcfJkpKSkoCQoCEaVlbi5YIGw+s03OauKCsgzMiDx94eGhgZsLC1h+/AhDHftAlMqcdrfXxnX2IgrERGsuKZGTHN1FZJLS3G3oYHze+01DBw9GkMmTMCAAQOYi4sL62dnxywfPMBL27bB2dkZ9fX1YmZmJhsxYgSs/P2ZSUUF84yPR8OgQbCysmI8z6uqq6uFvLw8MSYmhvP29obEyIjW0EmTSKn2xhtEBL35JrSsrcFVVIB7sowmPh6YORNO27ezyxERcHV1hdYT965cLsfvv//OXblyBdeuXUNjY6NYV1eHlJQUVlJSorKzs2OL/P2ZdNMmcAEBLWoYxljL60k0NDTg1KlTyKyrQz8zM2g0NBAh9gQqKysRHR3N3nrrLXh4eHR8I44jgq1XLyKenrXuODoCLi6Q9ezJrl69ynx8fDoo4L6MjhYsb97E5OpqNurzz4HiYjR6emL2qlVwd3eHzrVrUNy/Lw7avZt5+vnB0NAQ1paWGJqeDvOQEAi2toh69EgoHzBAHP7OO+zJMq2EhATxypUrxQqFYsgL+fjT8SKz/QLYtGkTx3HcqxKJ5PM5c+b8Vxmh/REwxtCvXz928uRJPLde5wU6hY2NDR8XFwdtbW3BZcMG7l5xMfT09CQSiQTV1dWIiYkRbt++jeXLl3fubPtnYPBg6pW6cyeCAwPh2bOnyqF37/98i3yApJdpadSaKCamS0G3TCaDhYUFLC0txbKyMhw7dkx0cnJieXl5SEpKEgYOHMg91TSsDYTLl3FixAjc2bkT+vr6op2dHTt79ixiY2NV5eXl/PDhw7nODJIyMzMRFRWlys/P521sbAQ9PT0OSUmUxU5IoDYjT6tpVVMD/P0Rb22NrJAQDDUwQLfKSmjt28f3un+fAmdNTZiamuL69eucurq6csyYMZ0/lzIyqNZ87drWnykUFAg1t7vqDOnpVE++ahVtot9+m77vpERGJpNh7ty5fFVVFWJjY3H8+HEwxqChoSGIosjU1NTEsWPHcvbPyrIDFMhHRFBme+hQBAUFCQ0NDfyyZctgZGREf2NqSlmvu3dpHixbRhn3J4jOxsZGEQArLi7m6urq2mW3tbW1sWDBAvzyyy+4efMmYmNjhfr6eq5vaqow9u5dju/VCwBgbm7OZ2RkCGiWq7eFri4dp5sbZRRffZVMjDiOAq+qKsou6egAjY14mJiIFCMjOBob088EASa3b0Pq5gbLPXvI4MrFhTbJP/xARlZpaVSP+OSau3Fja9/cZlRWkmz60CEkeXujoHt3+Pj68v2bNrk8z0MURQYAwcHB4oEDB+Du7i5MmDCBdplvvw1UV8OpWzc4OTkBL73E0ufNg9NHH+Hu3LlCrwMHuC4TchIJBXRdIJ+vXr0KY2Njla6dHQ8bG1JNzJxJ5pENDTQm6enU+uiJDatSqYRb2+CwLaysUPPhhzippqZKS0vjGWNQU1MDY0xUKBRMR0tLHKihgQVZWcxs164/vA6amJhAR0cHV69eFfv27dt+YOztiUQTRbpnqquJLDxyhK7t779TAH7+PLBuHVhGBkbq6XFO8fGCZmIi05o0CRo9eiDX0ZEVeHuLJnPmsHEKBQ4ePIjraWmYl5MDOzu7VnKWMSLwHj8GYmMRd/Wq4EJzuOMFq6lpcf3Pz89HUFAQZBYW4hmFAgF79jBkZ7dKxi9dAgYPxrxVq/idO3cKSUlJzNzcvPU9a2sp6P31VzJy/PhjIplsbEgN5OsL+Pqicu9eNPszt5ivMkZk1caNZGbn7d0sixbBGN1Lly7R/a2piclLl/JfffUVho0ZA3lZGXDjBgq+/ho9b95ktxQKpKamws/PD/23b4eHry9UGRkIf/99jDlzRnS1s2MtPadFkVouFRQAOTmQODigT26uWHnvHjOcMQNYvhzV1dXIzc7mHPLzUT11qjisWzfWe/ZsFBYUQGfwYKROnozEsjIafH//Vpf469eBb79Fdb9+uDVqlGrB55/z/ZrihfrPP0epILC7ffrw8fHxMDIyAt/0TGa7dxNxCFC5Es8DjMHU1BTjx4/nUlNTRblczhwcHGhNePwY9q3eEDxA2eGPPvwQRb/+Cmt/f1oLNm+mv9+zh8ZbV5eC0Ca/gHbw9ATi42FoZgYtLS2hrKyMMzY2bvcnTes8lEolDA0NIZfL2aVLl4SkpCRh9erVdA81NHSpfSQAJCcni8eOHWNqamrC8OHDOf3792nd6KSlnrGxMTQ0NFBUVATbp3W1MDUl80WJhJ5dT1NZvf460L8/TPX0oK+vL165coW1lcZXVlaivr6e812+HKypPEL373+HjyDQ+p6SAusHDxBlZQUzhQKOHEcqjZ49aX8yZgwitbSEOFdXvL5oUYcMSlFREc6cOfO4qZ928ZO/f4FWvAi2/8exadMmY3V19d/09PR6+/v7y55clP6voWfPnoiMjBS3bNnCfH194evr+1cf0n8Vxo4diz6lpTD+6iuOi4+HG2Nou0UUBIHbvHmzmJGRARsbmz+vTVxREW1WMzJo8+foCIVSiQf19Vjk5vbfEWgDreZER49SVrPZ0bcLm/9Jkyax3bt349GjR7h3717zj7mkpCTR29v72W8gimgcNw6Ny5aJ89auZfb29owxBh8fHyQkJLCkpCSxe/fuHd5DEAQEBQXBxsaGHzx4MPp7eXEIDKRs14cf0gb8Ode4pqYG586dg1wux/dmZughCMh0c8P/Y++7w6q6tu3H2vtw6F1AEBDpWEBERBQUReyxYNdEjUZNYu8mN9GQoolXE40lJlGxi713EUERFRRFwQJIV0GalMOBc87evz8mh46a++77vfteHN/HRyKwz9prrb32HHOOOafIGA79+afw+cqVnJ2fH5LatcPzCxck6N+/6QsNGkRfxcWUNwhQBd3ExNrItxoKBRGCvDyK/nTpQs6BpnrDNwEDAwP07duX69mzJ9avXw9zc3POw8MD9+7dE8PCwqCnpyfOmDGDvVEBdOMGRdMDAlBSUsLJ5XIYNmylYmBADoeICIrMBwVRZK3erSiYj4+PmJubK27evBlubm7cgAEDagiKra0tOnbsqHr58iXXt29fztnZGRvXr2fbDQ1hyPOqvI0buYKCAqalpcWadDLOmgVERtI85eRQ9PUNjsizsbGwk0rRceNGcg7s2AFu4UK0lctV8k2b+D0Khejq4cE6FxZSXt9XX5GD5OhR4IMPaiM1MTEkI1YX4FEoqOr2l19ShPPiReQePw49DQ2xOefGnDlz2NatW0kKrYa6an5EBEWHANj7+OCUoyPcjx3jkJZGxuu7FnN0d6exNrMvo6OjkZ6ejpSUFADgc3JyKEK9ejXt1aFDaZ1jY0l67Opa7+9VKhVEUURsbCx0dXWhq6sLU1PTmiJfD+fPFy4nJ3Nmzs5s8eLFdZ0trOb7J59QO699+0gO/RfRtWtXJCQkiGiK1AI0p+oij5WV5KiysaEzrLSU5nLVKqBjR7BOnWA3YQKHX36pIQmt6YsBgIaWFj799FNs375d3LNnD9PS0sLEiRNr88urc4ELnZ3RvWVLzu3zzxsNp7S0FAo/P1yWyyHftUuVnZ3Nu7m5Cfn5+Szz1SuGn3+mQlNbt9LztX07jVmphF55OeMfPhQRGcnQty9FnePjKfXj7l1SM7RpQ1Lxrl3JoVQNnuehVCqxZs0aoaKighsxYgTatm1L5OjDD4E7d6B0c0NGRoY4dOjQ2oMxNBSYPh2CIODQoUNKURQlLDeXrm1ighRTU3SLi0P/0FDsP3NGvHDhAmv3z39i87x50DAxUYnm5tyxvn2Zi6Ul+KdPqf3a0qWUX/78OTkd+/SB/qJF4oGOHdlwbW1oFxVBpVLB2MVFVGRmMrmbG8tp1w42np6w8PICjhxBVVER3I8cUSEnh0dJCUWQlUpyUkyejFQ9PcgfPaq3J7QePkSrbt3Qql8/pKWlqTp27MhDKqX0F6m0ts/00aONUn/Ky8tZTR5wv370deoUPVsSCfDbb+CSk6FpaoqW8+bROgwcSGkKBQW01yZPpjNy6FBg7lwIw4dDJpNBKpVCmpFBZ2hKCuRyOcrLyzmbZtKLHOs4+RISEsTY2Fju4zoqEkgktIfegvj4ePHkyZPMxcUFY8eOpUO5Y0ci/SUlTRY6s7W1FS5dusSmTZvW/HtbU5POzoMHqVp/4w+mugaGhkhMTERDp4JMJsPevXsFKysrMD8/Dl5eVP/h/n1SZOzYAZw4Ac7LC3ZaWix90SLRZsoUphkVRYq07duRkZGB6L17uUmTJjUqMKxSqXDw4MFylUo1932e9tvxnmz/jRESEqInlUqjPD09HYKCgiR/hxZZGhoa+OSTT9jZs2fFiIgIdufOHXHatGnvc7j/Alr6+ZGktAmCyHEc3N3dxQMHDjBBEGBnZ6fq2bMn36jK7rvi66/Jo71/P7Uc0dOrKQbEVberaO5l+h+NUaOoeNTdu2Q0PHhQU2SqOZiZmeGLL74AQNJPQRAQGhoqWFlZ1XtwZTIZ4uPjoaOjAw8PD9y5cwf37t0TXoeEcAsWLaonMzMzM0OfPn24Pn36NPmZSqUSFRUV0JRKha6FhRz8/GhNZs0iovQOUCgU4DgOM2bMwL1793Du3DkEDRkiuC1dyt359Vdu3ezZ8GzTRuXz5AnrGhZGRbfOn6d1rtPWBQAZWVOmUOGo+HjKB1f3QhVFkmSnpJDcMDiYfnf27H+537mmpiasra2F1NRUbty4cWjbti2nVCrx888/4+7du6Kvr2/zxtK+fSQtPHRIVVlZyXfp0qVpNQ3PUzT52DGS79aButXWrVu32LJly9iTJ09w/fp1cf369cLUqVN5AwMD8DwPtWGfn5+P33//XVWpVPIzjh6F0sSEj16zRvzoo49w4sQJcdeuXcInn3xCJOC338gQXL4c0NDAixcvAF9f8dbKlWzgyJFNjzUsDF0OHxYlISGM/fADGYSffw44O2OwrS0v79MHTgkJ7MX69QKqqmojzUuXEuFJSCBprrExGXuFheR4unaNiCjHUbG76qq6NVV+mwHP87C3txeriS5BIqFc8TqODcYYAqdORaiRET7buBHmGRn0+U3l7jbEhQu0Ns2TbaFVq1YsMDCQVVVV1W/FZmREz8qQIUTIGhBtACguLgYAPH78WFVVVcUqKytZaWkp09LSEquqqphVfj6b0KcPLD/4oPkXtKEhpals3kxz1zDV4i2wtLREdHT0uxkAmpqkyDA0JIfWwIH07EmlFM1cu5aiY9VVp9HE2c8Yw9SpU1lqairCwsLwxx9/YObMmVCnbAiiiN/Gj8cnY8ZAc/VqIvrVjpPc3Fxs3boVvuHh6JqcjLj16/l58+ZBR0eH+/7779G9e3cRrVszcBzttTlzKAK6eTPg4wM/c3MolyzhUFBA97BnD5EPnqc6BleuEAkcM4bu59atmncdz/NISkpCeXk5N2jQIPHo0aPM0dGRZMb+/uDOn8ezZcsgdXKqrQwdFATY2+NFcjL2nTypKisrkwBAXlISjKq7S4QXFUF69Ci6fPUVJnXqxOIGDULZli2obsfG8zwvlJWVsWg3N/To2pUUEvfv01lcWUmdH8aOhYlczvKPHcOff/5ZM9cWL18yN4kEd+/eRWJiorCkRQsOoaHAo0eI9fLCsMOHeXTuTM6uoiJyEGVnAwC4nBzBrl07roZAP3pEDpbqNZXJZDVrhmHDKAJ9/Dj1ZJfLazsVgN4DKpWqptI/qqros4YNo/9PTQWMjMCsrKCQy7EpJEQY37YtZ2FhQU7SIUNIFaKvTxXr9fSA0FDs2rVLzMjIYDzPw6aiQunp5cW/CA+vIfVFRUWNZOR1IYoiwsPD0aNHj/oFBTmOitsplc065qKiohAREcF8fX3Rt24ak74+PQPu7vQuagAvLy9u3759CAkJgaWlpTh9+vSm3yPffkt7uKiI9mpdG331akAQULV7N44dO4YPPvigpv6DTCbDpk2bhBYtWtQ6ALS0yJk5bx7N5S+/0P316gW/lSuRnJuLnU+fih/u2MF0dHQgk8lw8OBB+Pr6Nk5vAXD27Fl5WVnZDUEQtjc7ue9Rg/c5239ThISEMKlUutfZ2bnL4MGD4egSiwAAIABJREFUpX8Hoq2GhoYG3NzcWHFxMTIzM1lMTAz1ZX6PN6Oykoy44OA3tvVxdnZm/v7+cHV1xfPnz7krV64gJydH9eLFC6ZUKpmpqWmTOU81EEWKRPbpQ0aQkxMZqR4e9Qh+eno6kpOT4Vfnhf6/CoyRAW5qSvP6++/kEX+HZ5HneUgkEpSVlbHo6GjY2trWGDF79+4V4+PjWU5OjhgZGclysrLEj3/4geuyaBGkzUmt3/A5Ji9fovDQIeYSEwO2fn1tzuY7QkNDAzdv3hQtLS2Zu7s7/Pz80Lp1a6atrY327dujc/fucPf352z79WPc/PkUpd6wgQw+HR0yKLt0IWLo6EjefGtrItC+vmSI7dhBhO3IESJymzZRHreZ2Vsj72+Dm5sbu379OoqLi+Hi4gKO41BYWMiSkpLQuXNndu/ePWhoaEAqldavVXDvHlQdOuCkszPHGIMgCEJNznRDREXRHpgypd4/nz9/HllZWQgICBAdHByYhYUFOnXqxPLz83HmzBn2+PFjobKykllYWODChQvimTNnmKurqzh+/HhOizFo6ujAccECpqWlBScnJ3b9+nWW/PChqqO7O4ft28lg7d0b0NZG2O7dKrcbN7jLjo6IunYNSUlJwtOnT8FxHCt/8QLGHAfExKDw1Ssxydpa7ODvT/fy22+AuTmYvT00NDRw7do1VVmbNlzHlSsZRJEUEKNG0XodO0akzMKCIrDu7tSjVRTp/qdPr6dSSEpKgkQiEV1cXJp9KM6dOyd26dKFq2cQtmlDhcMGDKg5MywsLJCRkSHk2tgwN46jfaNUNttipwY+PlQRuZkzKz09Hbq6ukLfvn25Nm3aoF5h0ZQUqmHQpg2dmS4uJH+uUz0+JycHaWlp4qxZs7guXbowX19f1rZtW3Ts2JElJSWJ/S5eZFp37+KegwPKyspq0xAaokULmtvr1+nM/AsOZF1dXVy9ehX+/v6Nz+ayMrr3PXtIajx3LhW18/Kis0oup2etXz9yHmZmkvR661ZSTLx8SXvExoacZDo6NfdvYmKCHj16ICMjQ7x06RLT19eHlZUV9YC/f18Vc+8eZxcRIRq8esVY374QBAH79u0TbG1tMWDaNGYUFAS3AQOgUe0siouLQ0BAADPS1wfLzCQ1wcOH5HDz9gYWLcJ2xkTe3l50nDaNwcKC5onnKZXj7l0iMenpEOPikP7HHzA4cADcd98BQ4ciKSWF5eTkMGdnZ6Ffv37cjRs3EBUVhaioKMTFxQn2o0ax/D17RJP27eGodsTxPPKDg3H32jURnTuzKVOmMMaYkHztmtC+fXuOkWJG1cbBgbN0dQVCQ2ExcybySktRYmcnuLm7q0aNGsXfj48XLaqqmN2RI+R42LuXVD2iSBFuMzNYWFiwVq1a4fHjx9DX1xclEokoyGTMpLQUvvPnIykpifnPmEF7cu1aZHEcrrm5id0++4zB3p7OHx8fmrMPPsDD6Gix58GDTEOt0pk2jeT2vXsDjOHq1atcjx49UJN6aGBAkdjRo2kfUqcDpKenIyI8XGUcHc0Vt2gBg0mTIGzahBJ3d+gcOEBn9vffA+7uKOnQATExMejQoYNw9uxZLi0tTTA7dYoptbSgPW0afc6BA3TtBQtwSUcHoydMYL26dkWrmze5pIEDhaLiYvHBgwdMEATWq1evZlMGy8vLsX37dkEmk7Hg4GBWL3rLGPWrdnRs8p2clJSEM2fOwMnJSRg2bFjjw8HcnIrINSF1f/z4sfjs2TNG24NvXpnGGD0r7dpRVL9nz9qfjRxJthjH4fr163j+/Llw//599uTJE/Hq1avM0dFRGDduHF9zHqkrnSclkXNXKiXntakpsG4djKdOZQ+ePhUiIyM5GxsbnDlzRpBKpcKIESMa3fyzZ89w5cqV11VVVd1XrFjxlnYN7wG8j2z/nTFIW1t7wAcffKD1v62H9r8DjDH069cP9+/fh6mpafPyufeoDx+f5nNjG8Dc3BwjRoxAVlYW4uPj+WpjSPT19RUDAgIav70uXyYZ5Pbt9FLhuNpq3k0gNTUV5ubmKjSswPm/CRxHL8DXryn/zsuL8sTe8Zn09/dHTEwMIiIiYG9vD7lcjhcvXsDMzEz89NNP2YsXL2DeogXTUKn+crQLr18DN2+iQ2goSqytxZXu7kz7wgVhsIYG5+Li8s6XkUgk0NbWxpMnT1TOzs58XYOmUfExNTHes4e+p6eTAcdxFOX29CTpeocOJFEdMYII94QJZHzMnfuXqr2/6/gDAgIQHh6OIUOG4P79+3jw4IGoUCjY999/X+93HR0dVS1btuTMzMyYqYEBUgIDRUcHB+bRsSMOHjzIRUVFNZ26MnMmkZoGPZOzsrJU+vr6vK2tbc2G4HkeQ4YM4by8vPD06VMWGRmJq1evQiqV4uOPP4alpSVN4qBBFHVWqQCeh46ODiaMG8e02rWT5GVkwPz332s+R6lUoiA/n+cvX8bH+vo4dOiQaGZmhsTERJaSkoJZv/6KjN69UfzVV7hjYICX6em1k2xhUS+K7OjoyC5dusRCQ0OF4OBgzjAmhn5w6RKRzeJicioplZQLO3EijbWBJL+srAz5+fmNe0/XgUqlQmFhYeP9qKND6ojERNor1cjOzuZGjBhBRH/rVsqrPHHizekFEgk5+rZsob3WAP7+/mzPnj28t7d3/QhQaSlFNb/5htYBoCjXxYtEZqrx+vVraGlp1XsHqeWg3t7ewlVDQ3AcB2ViIsvPz+faVkdDm0RgIHU9WLMGWLnyjekAdSGVSqGuu2FoaEiS3Xv36Ho2NpS6M2BAbcX/f/yDvu/fT1Hn+fOpXZGtLeU737tHZ1hwMK25oSFF+SdNIqIeFkakbORIwM0N48eOZZu3bMGdO3fg5eUFjuMwf/58vqSkBKGGhoKmhgYb7+XFPQsKQrGxMZs0aRLjXr6spwaqrKyElpaWuHvHDrbs4kVoGhgQKWvZksh2NSwsLDiZTNa4XHRgIKlpGAOWLMFmQ0Mh/+xZTq+qSpzWrh0zqKzEqOfP2WZjY1GdDjJ79mykpaXBwcEBFy5cYLtPnRJ7DhjALLZupRShasfRIx8fVKSmshEjRkBXVxfdu3fnzv/2G249eCDa9O7NXFxc+Hv37qk6TZnCw88PvJ8fHPPy4PjddxwcHTkMHoxPbt9m52bOFFBRwcHKihxXR46QE2vCBDozJRI4OTlhxIgROH36tLBo0SIeKSnA1KkQXV0hCAIUixZBMnIkVLNmoedvvyEpKYnSS5Yvp1z5X38FYmOhyMjAbUdHrufvv9OapaXReXz/PtC7N1SVlTD29IThunUkt+/alZw827YRaRfFmjZh+RkZQrmWFj/q1Cmc8PAQn/XtK8iKi5nswgVuYV4enVGvXwNGRnjy5AlatGghDBo0iO/WrRuiDh4U844cwfXAQEyrqoKWpSUEPT08DA+HY1QURFdXJpPJYBgfD8OTJ2G9atVb7YHi4mLcvn1bSExMZDo6Oli4cCFrKJOuXmBywKjTluqgsLrTRHJyMpeVldVYYdetG515sbHk6KkDd3d3FhMTg/Lycmhra7/9hRUVRWdURQXVxHj4kM7Nu3fBA7Czs1OlpqbyPM/D0tJSHDJkCKt5DwAUwT5wgOrdfPMNKRTmzKHuE9V7mQPw8ccf85cvX0ZoaCgAcDo6OsL69euVEokEGhoaTCqV8lKpFBkZGVVKpfLDFStWlLx17O8B4D3Z/ttCS0vrsx49euj+nYuEpaWlgeM4fPTRR++J9tswbRpFFzdv/st/amNjU/Mi+u2330SVSlV/vr/4gmRNhoa1JHPNmiavVVxcjMePH0NXVxdPnjxBQUEBf+zYMVWfPn34Jtu5VKO0tBRFRUUwMjJCcXExjI2Nm27/8j8FQ0MyZgAyTleseKfiaS9fvoRKpUJJSYkQEhLC8TwPbW1tNmPGDHAcR8b/778TmXvXHFWApIB79wIjRoDt3YvupqasXXExzp07xw4fPgwDAwPV4MGD+TZNVFsNCwsTkpOTOQMDA5WZmRn/4sULQRAEztXV9a87RezsyPhTqSh6lpVFUeuHDylK5uNDxt9fubd/AT4+PggPD4cgCCguLoZCoWAA9QkfPHgwlEolUlNTkZWVxWdlZSExMVEpl8s5QxMTLsDQEC5ubvD29hZTUlJYk2R7+3YyVBugU6dO/JkzZ5CQkCC0adOmnlFmZmaGY8eOCYIg8N26dRN9fHxY3eJpeP2acuuzsshBtmQJtD/9FGGjR+OlRIJeUVHQ1dWFVCrF2bNnRZeUFJj27cuQmoqZM2cyVFSw4X/+Cfnixcjr3x97L12C7pUrqtatW/MD6lYALi2t1x6rbdu2XFVVFdLS0vDnn38KixYtonGr2ztVVlIuokxG45s2jQxTb28i7s+eAbNn4+HcuXDU04P1ggUcTpygmg2GhkQujI0BxsBxHKysrIQDBw6I06ZNq91fjFFLpga9zi0sLFQ5OTm8q6srRavbtqW9FBf3RrUOhg5tVnJua2sLT09PcefOnUwikaCyshKzPTxgZGRExnbdAnBr1lBBscxMSh0ZNAja2tqo14e4Dnr27Mn31NQEvv8epfv3Y8OGDc2PUY1PPyUp965ddI/vCA0NDYEtXMjhhx9IJr5rF8n+09JqyYa6+JUaqakkI1+7lhwnp08TMRs7liLdRUVEqPv2rY12qlRUG6BNGyIP06ZB4/592H7yiWh65Ai7nJ2t6rNiBR8RFYX09HTMnDmTP3PmDG67uqpkaWk8xxi7efMmAo4dIyJ07RoAwE5XF0sTE1lMdraY/8MPrJV6rA2qVWdnZ4uCIPCXL19G7969SY0ybRopaKytgcOHkSWTQSgv5+aEheHsypXChufP+d7nz4u+u3ez4CVL2K5r15i/vz/09fXRvlrePmTIELZv3z7V5YwMPsDYGEfmzkWGp6cgCIKoMDLihpaWQlcqZQCgo6ODQZaWSFQosG3bNtja2iI/P5/2L2M0fwsXUpTdxgYICcG9zEyxKD+f3g1qHD9O5MnSkhwiCxcCALS0tFBWVsYLggDOwACQycAYgzXPC8rERO7k1KmCe3w8lxIeDsYYFAoFpB06kMNBWxuYNg35K1bAxMqKagS4udHXkiVU/XzKFCQfPQrlw4coLCyEVnQ0dOPiwE6fJofSoUOkeJg8GUhOhoEois/NzMTXT56wcZaWDABf5e6Ou0ZG5Ex9/Zr2Q2wsYmJiVOqOG8bGxhian8+rFi/GyZQU/PnnnxAEQeV57x6P1FQxavt2Mbh9e87ByYnOz6ZaxDWB/fv3C4IgcD4+PujatWujCt41MDUlp0ET8PPzQ4cOHbBu3TokJibWku3iYnpmPD1pf54/T06RV6/oetbW0NXVRXl5OQA0ruPRFKyt6dywt6ezQyqt131j/Pjx/Nq1awUfHx/Wo3NnDpGR5HCcNInGs3YtBTM8POhM2rKF5PtNFEPu3LkzoqOjAQAymYwTBIGzt7eHpaUlFAoFoqKiIJFIHi1fvvz82wf+Hmq8J9t/X8grKysb9/j7G8HKygqCIODhw4fo3lRVy/eoRXV7kf8qFAqFeO/ePc7H3h56O3ZQ39ysLDK+Ro5s5AGui8LCQmzYsAEmJiaCKIqCUqlknTp14l+9esU2bdqESZMm1c+5qsazZ88QFhYGiUQiVFVVcZqamkJlZSUXEBCg8vPz+8+JiqsdDatX04v60iWa82aKQyUkJOD48ePQ1dUVZDIZ98EHH0BfXx8mJia1hemUSjLO+vZ9t/zUR4+oQNX48ZRnW12NlYEMn3HjxrHc3Fw8evSI27NnD4KCgtClS5ca+XROTg6ePHnCeXl5iWZmZnxWVpaqR48eXKdOnd6tWJ5SSQa4OmJTWEgRm6VLSZL67BkZxQUFRMSlUiIUo0dTFPFfzM1+E9R9rgGqSdCzZ0/4+/tDEISaojFSqRQdOnSoW1GafhAQQOs4cCBcXFxYfHw8tmzZopw+fXptjYzvviMHgtrZUgcRERGCh4cHN3DgwEbn9Pnz51FQUMAvWbIE2trajcmajw8RJn19IsSXL0N/yhR0+uQTlJeXIyIiAhoaGlAoFADAUi0sUPXrr5ACRGC6dgVvawvddu1gY2YGFbXX4vX19WueM1EUUfziBSQvX0IfVJ02NDQUKpUKCoWCa9mypRIN3zE5ORTtefaM5sbKij6vqooM0tRUyFu0QKmeHvy7doWWri7DkSNE4uLiiACuXg3MnAnm4oIRY8ZwKZs2oVhLC0aiSGT+gw8o13bSJIrGVZNFHx8f7sSJE/D29qaK0d26EQGcM4eeueaq/s6bR9dpBgMGDGBBQUE4ffo0Hty5A4O5c2ldGzpW1PL11aspMjloEBxIHs5UKlXTz4ixMWBtDcYYlEolVq9eLXAcJ44ePbrpXvAcRz2WFy8m58SoUc2OGwA9X1evQtPdXeDu3uWQmkoFuBYtop83EdUDQPMcF0cEzMSE8ks3b6Yz/fhxciA5OlLu9rVrtBaWluQMcHKiOQXobHr5EsMZY4U5Obhz8yZ/s3t32OXmIjUwEA/v3EHvoUMh3b6dT0pMRI9Bg/Dk7l0BFy7QvpLJKIo/diyUrVsjwtqajbK1pfNUFGkv5OUB2tooKCiAXC5nPj4+ePLkiXD//n1x4ZQpvHjzJq7ExeH+zp3CJ5s3c7t0dGDVvr3IDx7MJowbx8c/eoSTJ08yn9u3YaVQYOb06XhRUQH9devqTDtX08ngxYgRaDd+PJ55eXEGQ4ZAEAQ4XrlSWwgRgGbHjvD08WGR4eHIyclBu3btUFBQABMTE7Dhw6myuZER7UsdHciLi1lh3UJZSiVFLO3tiXDv2wfs24fC/v2xY8cOeHl5CRzHcTAwIMcHAGtTU2yZPBklz55xRYMGodP69VD27YuY4cNRZmKCCj09uBQXw8zMDHnW1vCOjKxRxgCgyOgffwCCgAxnZ7zW08Nuc3NVSUkJP+vzz2G6dCm1TFMoSKkyZw4gCHC2tOR9S0txackSTPzjD6C4GM9++gm3Hj8WugIcDA2B3btxOSEBKpWKCwgIoPPs+nWgogL88OHg1q5FRUUF+vXrxzt6eUF37VqGOXMYTp4kdcpbnlE17ty5IxYWFnLz58+v19mhSUyZQvcDkBKjupc51q9H5YYNyB02DIEKBdrPmUNy75gY2u///CedVwkJZN9kZ5NDR6EAQkJQ9sMP8DcxgbeXF/SvXqU1PnaMikV260apF/b2dHar7QJLSzo3zcxoDCEhNLaMDHAWFui/fz/XuriYnIf79hGhnj2biLqLC11fje++ozz/kJB6NQnKysrw+++/g+M4fP3110hPT8eNGzfE9PR0MTk5mbOyshIkEkmZUqkMxHv8JbC3FSB5j/+bCAkJGdiqVav9n3zyyVsS1v7voqSkBL/88guMjIxUn332Gf93jvI3i8uXqZLq3r3/lssJN27g8L59QraGBrfg7FnKH3rHnNrnz5/jzz//xNdff92oj/elS5cQFxeHiRMnolWrVigsLMSFCxdUVVVVyMnJ4QMDA+FTR0atJuBdunQRS0tLBT8/P77ZXMj/KQQH08t2x456svLc3Fzk5eXh1KlTUCgUMDIyEgMDA1m7du0a51uqC9u8Da9f01pv304GxrBhb12XR48e4eDBg9DQ0ICzszOCg4Oxd+9esaKiAs0WfKkLhYKMhtOnyfgOCyOJ7fHjVNm4Xz8qSpWSQpVt3d2JPAQH10quT5+myMHWrUQqiovJaWNl9fZ7bgBRFKFSqfD48WO8evUKUqkUDg4OCA0NRVVVFdzd3TFcXZH5XaFQ1HMAvH79Grt37xZbtGgh1hSumTePKpffvt3oz3ft2gUNDQ3VuHHjGi1GTk4Odu/eLfr6+oo9e/Zs7DQVBIoayWRENm7coMiGtTWqqqqQ+Pgx2rVrh6dPn+LOnTui0dOnooWeHte1d2+KED14QBJcAJGRkeLVq1dr1tTCwkIwMTHhXr16JZjeucMKjYyYe3AwYmNjRWtra/Tq1YslJCSgd8NIqCjStYcMIUJYVgYMGAAhIABbbWxUCoVCZIyhqKhIolQqsXz58qbrOwgCGbFyOcDzuPnrr8JLQ0MMa9GCw+PHVBn6iy+I5Dk4UJT7xQvAygq//PKLaG1tzUbVJaFlZeSYSE0lQ7lhpOvwYbpecnITi1yL1K+/RlpCAvrs399ka7lGOH4cOHMGPzk6ih9//DFrthuISgVwHAoKC1FZWYm7d+8KmZmZ4ueff978Q/rkCY27f39KT1Gjqor2pLU1cPYs7Y2YGGy1shJdXFyYv7//28cNUEG7Awfo3VBaSsT62TO676NHaS4//bQ2J17dWsvIiOTnH3/cZCQyIyMDyY8foyI2FkklJeh38SI05XI87dgR7RITxWxPTzi2a8esHz4kQuftDVy7houBgWLs8+dMqVRi/vz56vZb9I5xdUVxSQlCQ0NFU1NTYeLEiXxJSQk2rVmDJT4+OFBcLL54+RL+3box3WfPYN63b21u/I8/QpwwAWvCwmBpaan68MMP+VthYYiNjsYMQ0NoODjU64Veg+RkclrevEln6dOnNBfqatzLlgEffogSW1scOXIEr1+/Vr0uKuIn7tqFWxMnYvDixdALDQUMDFA+ciS2bduGoqIiLF68GHK5HLqpqSheuxayVavQpk0bus/p01G1bRvWHDmCUaNGUes7QSDJ8c6dyBs2DE80NAS79eu5VsbG4AIDgZ07IY4fjweTJ+OGVKoqLS1loihCXl7O+dy8iX4ff0yRdvUaBgQA2to4OHOmUlNTUzJo0CCsWrUKy5Ytg8bly6QyMjam81oqJfK5dSueZGWJNrdvMx1PT+D6dbycNQv7JBKIOjoiZ2IiuLi48DZffgmrKVNgOmcOfdbatZS60acPvv32W3To0EEcPnw4Q2UlRfJLSylFo6yM7v9N6hQAWVlZ2L59O4YNG4ZGvejVpPrnn4mcimJtGkRiIjl3//wTMDOD+OWXWNm9Oxzv34dPYCDsZsyg89LVtfa8FwQ6hwYOpGejuj3n1fBw1Z1z5/iBgwfDTVubHNy9etH9SKWUyrBrFzmPDx6kiubbt5NDqWNHesZ27SJnWnExcO4ckJCA2I8+Ep46OTFtf38hMDCQf2vEvLAQ2LIF4rJlOHnqlJidnY38/HxW7TRCww4QmZmZann59BUrVvzZ5DXfo1m8j2z/zRASEiIB0BZAF47j/tbyaQMDA/zjH//Azp072dGjRzG2tt/je6ghilTo47+Kc+eAAQPA/for+vI8t6VDBzIG/wKioqJULi4uXFP7NigoCDzPY8eOHXBwcFClp6fz1tbWnLW1NfPy8qqR+qlhb28PBwcHVWpqKiQSCR8WFibOnj37P+t5OHqU5v+LL8hDfvYssrOzERoaCkEQEBAQIPr5+TGO41iThKSqirzgcXFNSpQB0PVTUkju5+1NbVjeMefZzc0Ny5cvR2JiIo4cOYJHjx5BEATm4uLSOI++qgp4/Lgmyotx48jIP3SI7s3BgYzP1avJUDt4kMjRs2ckS5wyhQxGtSFjYECRtZgYMrCGDqX9dOgQEYwHDyiS4O3drLPh1atXCAsLE+VyOTQ0NGqii2poamqKERERTKVSwcvLC4PfUaJYD1lZ1IO8WpZnaGiIMWPGsD/++INFRkZCWVKCNpqasK+WwqqRlJSE+Ph4FBQUoKZVTgO0atUKPXv2ZBcvXmQPHz4Uxo8fz9VU+hVFkjAqFFQAqkUL4IsvoJo8GdF5eYLPxo3cg/nzBcmsWUzv9WuUTZ8uBv/6KyetqiIVQUZGDVnMz8/H1atXWefOnVFaWorCwkJoamqyp0+fgjHGDc7OFhVt2+J0XJyqbdu2fFBQEDiOa0y0ASLHPXvWypv19IDjxyFeugSn33/njUNCoNTRgUqlgnV1NLdJcFy92hFpvr5iSUkJEfiTJ0mmvnQpRf8++YQiXh4ewPXrGNa5M9t35Qpu376NLl261I5j1Chg6lQiSba29SWWH3xA5OFNUKmgFRYmtpw8mb0T0QZojo2MoKWlJeTl5vLNkm0dHeD2bZhWEwRDQ0Nu3bp12LdvH7p169Z0v14XFzLO9+6lfTh0KKWTREVR9GvVKpLuengAQUEwOnyY5efnv3sNjLg4eiYBcgqmpZHiRFeXSMo339DPjx6l9dLRobVQqei/MzJIkTJ0KDnOqoumtW7dGq1bt4bYty8CKyrwfPp07N27F728veEokTBHGxtg3Tq6Ly0tSjOZMQMvd+2CUqkEz/P45ZdfIJVKRZ7nxQlRUZzZxo34/cAB0cTEBMHBwTwNWR8BT5+KJaGh7Nn06ezzmTNhIpfTuVE3hefMGTAHB0yfPh3r1q3jt27dSuk7LVpApq0Nw1u3iBhJJLVEGqAzd/Vqiujv3k3EcNQoSnsByMFpbg4DAwNUt5ziqyoq8PLaNaRVVmLr1q2YN2kSsHgxUioqRLlcDlNTU7ZlyxahtLSUc0lKgkVuLmIPHRIWLVrE7bx1Syj19ORGfPklOgcHixcvXhScnJx4cFxNezBVhw54Aoj+asnzrl3A2bNgJ0/C3doa7tVrv3r1akHkOKR4eMBswwbxcXy8qszBgWvdujXn2bUreFdXKGNi+NZjxyI7OxuamppUGPDoUVIgbd1aWy+ge3ege3ecWr2atXdxQf/MTEAQYN6lC6Z+9hl4QWB5ISF8WUgIWpibC6ZGRvQCCg8nQljdoWHMmDE4ePAgGzhwIDQ1NSlFQU+PnteLF6nA2huQm5uLvXv3wsPDQ/Rwd2d4/ZrG2bs3dRz48UeKQEdF0Xk5fDit3apVdIE6UXN29iyUISEoCAggog3Uqw0BlYocLWvXkrNl374asm1kaspkhobQtbenc0YdBPj559q/Hz2avn/+OUW5DQzIoaOlVdNbHomJ5KDt1Al48gReU6ZwEp7H/aIibvNn+3GRAAAgAElEQVTmzRg9enRtRfymYGKCklmzkBMUJFqUlbHXM2di7NixMDU1bfLXs7OzBalUGldVVbX1jRP9Hk3iPdn+myAkJITxPD9fIpGs0NbW5szNzcXAwMD/oKTV/xlIJBJwHCe+U97M3wlyObU+2bGDDIl/BUolETk7O7rWvXtAWBjO7d8Py6oqAQAnimKNQS2Xy3Hp0iXVo0ePeDs7O9XAgQP5ui3Z5HI5jI2NmyXEvXv3hqenJy5fvsz36tULPj4+byTPY8aM4QHgwYMHCA8P/0u3lpmZiV27dkFbW1uYMmVKLcn5d4MxynW9dQsoKsLrAwdgbm4uTJ48mdPU1Hyzc0BDg4y85oh2UhJJzXR0qKhNE22J3j48hvbt28PQ0BDbt28HRBEd3dx4hIcDV6+SwfHhhySdHTmSDAeAImJqQtMwhaOsjAyJpUupcFZsbNMOgAMHaH+p4eJCJEsuJ7L+xRf0+bq69fo7V1RU4ODBg0JGRgZnYGAgjhw5kispKYG5uTkMDQ2b6mP8r6NlS3JW1VEYVLdbE69evcp8U1IEu23buGgbG8F7+nRu7969Qk5ODsfzPNq1ayfIZDL4+vo2S358fX3h5eWFsLAwtn37dixcuJDu+9IlIkNyOf3iH39AaNcOe8zMhGKpVGxx4wY6cRyn6eEBoagI3Tw9mbJjR0gLC2uJEagmwO7du2FsbIx+/frV7bXKFAoFNm7cCHlxMVxsbTFv9Og3kzS5nAzOkyfrqyZMTVE5YAA0Nm9Gx++/J8P3LxTtlMvleP78Od85I0NEz55kNP/0E9WYGDSo9hczMwEDA9gFBWFcejoiLS3R2cwMnLrugJkZjW3dOlJL7N5d295OU5MqavfvXyPJrYfvvwfS0nBqwQKxjb09c5TLoamp+eauCwDQty/SnZ3hNXMmb7thQ/39XBdJSfWcC7q6uhg6dKh47949HD58WKzJi2+IQYPIAfHLL+Tw+fbb2oi7mihXw9TUFM/UbfTeBrUisi7BCAuj90VUFK3fihV0BsyfT+uhrsDO87XtwtzdKYWCMSIRH35IRAd0tmhra+P69euCg4MDetRNpfj9dyLZW7bQuixciIkTJ7LY2FicPXsWixcvRmJiInv16pXIr1+P7WvWoIWnpzhlyhROvSalL16g1cqV7Pc//oCRsbFgYmLCISencaeFa9cgVFTgRUyMuhMBBg8eLBYVFYl/xMVh/saNnGTbNnIuPH1KBFC97n5+5BQ4fJgcEFZWQHk5EfPz5+vXQFm1ClITE9heuQJ+9WpKKTA2BsaMgd6BA0w0M4NKU1P09/fnPDw8kHfsGHR1dRF15w63atUqmJiYsKIWLXA/JQWtV65kN0ePru35LpEASUngc3KQ6+xc+/ClpVEaQGIiycM5DoIgoKqqips7dy5UKhVUYWHMPCtLcqqsDLGxsagqLVXZbd3KDX/0iMlmzMDjnBzoZGYicdw44dX06Zzn06fQs7Rs5LGxad1aVeniwmPoUEAUIahUKPr6a1Hb3p7Z9+pFaQvBwRx276aorYEB1TjIywPMzWvaXSqVSiLbbm4kh87OrmlV1ux2zcnBk88/F9sEBrJhu3czfPUVnTOXLlGq1MSJ5GDR06MzQI2ZM2v2Y0O4u7urcnJyGJpKxbx+nd51Vla01+PialqIeXh4cCdOnMDz58+hqakJCwuL5geuoVFblPCDD0gF1bkzOZadnelMy8oClEpwt27BUxDg+eQJy9bUxKXsbDGe5yFv21bQMDYWtbW1mY6ODqelpcXUZ9O1a9fQxsEBA4KC0PUN6SalpaW4evVqpUKhmLhixYr3cuh/Ae/J9t8EGhoa3xgYGCwaPXq0TrPe878pZDJZvYjWe4AIj1zeZAGNt6KwkOS+ixeTNPnBA5JCVSM/P180NTXl7t69ixs3boiFhYVMKpVCoVDA1NQUw4cPR3h4ODZu3IgRI0aA4zgwxvD8+XNeUEu9moGxsTFGvS1HsQFat26NiooK3Lp1S+zSpUvTUWIaN8LCwlRVVVVQKBQcAObq6ipu27ZNaNbYfUfk5ORAQ0MD5ubmEAQBr169gqmpKSQSCR6Ul+Pi8+fCuEOHOOcff8SZefM4zQaVm5vEggWU39wQxcVkxLi5kVf8o4/+tfZYKhUZEHv2wKagANOtrSH58UfxQVQUs+/eHVKlkgyVvXvJMHiXiPnBgxRtmDMH2LnzzZXvNTTIkA8Pr1cNG1paZDxNnEgy4kOHaD+npgJTp2LHpUtiRUUFGz9+POzt7bn/1raHOjp0H6Wl9VpM+fj4MB8fHyA9nTvFGO4WFHDhP/4Ic3NzfPTRR2jRogV0dXXfaWASiQR5eXnikMhIER07cpg+nZwMQI3RL/r4IOnMGbH41St8NnUqL1W316orpbx2DcjMhLB0KR6OG4fomBihqKiIc3R0FEaPHt1oLHl5eZDJZGi9dCmDm9vbB/rgATlEmlhTJWO4GhQEvw8/JILy88/vXD0/9/hx2EdHQ/ryJTvl4aFKvXkTr0tK+IGMwXv6dHoOPvqoJveYXboE6ZMnEDZuhDBvHrjkZJKstmlDpGTOHPr+/DnlkKurf6vl+A1RXk5Ryo8+QkDLltzJkyeF2NhYTktLSxw4cCB7Y/VwAAcOHIDQoQP0AwMFj8pKDtnZjetjxMeT0qNOm8P27dszJycnrF69uvGBlZND0eJvvyUD/f59kuNu2tRs0TQLCwvEx8e/28OQlUVzU7dGxtixNBdqcBypGK5eJYfhrl31r8FYTdQTT59S7viePTTHM2YArVtDJpMhOzubW7JkSeMxaGoSOV+/nq49cSI8PT1x9uxZCIIAb6r/wYnZ2RiRnw9jY2Ou7tle1LMnnrdogcr+/dG1fXu6b2NjIu91oFQq8cjPTzTKy2Nm//iHMGHCBE5fX58JgsDS0tKEXbt2CVNmzOAwdChFWT//nCKZ9vZ0Rv3wA5FCT09yBkZHk2OzZ8/6TiVBqJEy6+vrC3l5edyBAwfEwsJC0fPZM65LaanQa9WqmvWxjogABg/G7NmzoaGhAT09PaZQKCAoFMjdvRs+x47hVocOCA4Ops87fx5aeXl0Fqs/z8mJHB6Mkdpo+XIonZwgCAIMDAwoXWvmTGDWLARwnHDGxASD1qzhuTNngO7doW1rC297e5heuADDmBgu7dIlbOreHTNMTNAwPpqTk8M7VhcLfF1Sgh07dgjinDls8uTJ9PkffUQpay4utAf696fosr4+EBICmw0b0MbPDzVvvqAgmtt582rvCaA1OH2anmMPD6B7dwgjRqDlo0fM+9tvqQicsTER4fNvqPElipSjXlTUZFV/b29vPiEhAWfOnBEHDRpUu5AvX5Jq49KlWseltjY5h+r03L5w4QKkUqmooaEh6urqCjNmzJA0+y4SRZKbJySQXZaURM9I+/aUt6+nV3s2ZGbC+s4dTDAyYsX//Cc0L17kc3x9oaysRJaLC/IlErHQ0FClFAQml8v54m7dBM2RI3l4e5OjMrBxOvb58+crAPy2YsWKvyZHfI8avCfbfwOEhIR01NTUXDxp0iTt/6gKzP8h6N69O3fixAn0798fTbZ/+Lth2TLyol648Nf+Tp2f6uhIL5amch8BuLq6shs3biAnJ0do3749N2XKFBQVFcHQ0BB6eno8ADg5OfG//fab8sCBAxItLS0VYww8z3Oenp7/dqm3gYEBRo4cyY4dOybk5OQIaplhQ8TExKCgoIAfP348cnNzRY7jVJ06deLj4+P/S5+v7tPKGINUKhUqKytrCKCDgwMyMzNFhULB7VIooJg1C4OcnUU4OTFERzcv8ZfJyJAICan9N0Eg58ehQ7RG/ftTddR3QUUFveQPHKDIT04OEeOVK8mLb28Py5EjsbegQCzQ0hICZs3ia9b+bbnwokjG0dq1FJX98UdyArwNLVqQsV1WVp9s14W/P30VFqJq2zYUBQfDpk0bFvTpp9Bs0+bf3iasSQwZQgZknVZbAMhR4eODoB9/hEdgIMzMzN6tDUwDxG7ZgvLycs5UKkX58+fQbcJYqnJ1xbHOndlSxpjU05MiWg3uvbi4GHcePBCcw8K4p0VFguOoUVyvXr0gkUiaHJOZmRkYYyi7fBny0lLoODrW9LN98eIFOI6rjdqoUwYOHGh0nXPnziEvLw8czxPh/eYbIiebNzdfsAwgo7q8HK1/+AGyIUNw0MMD1tbWfICXF06cOIHw8HDRe/p0pi7yVwOOg7WbGyRduqguBQTwA1q1ov3Wti1FSvPygFmzaLzffUeRLjs7+ll+fv1rLVxIUavISACAKwBXV1cOAG7cuMGOHj0KPT09NFnIrBq2trZ4Kpejw7x5HFatovzM1NT6vxQWRqSoDtkGqA2cIAj44YcfwBjDIAMDeNy4QQ6rYcOI0JWUUJX3ykqK2nfqRMS7gVPR2toapaWlbM2aNVi4cOEbo/LFUVF4lZuLIz/9hDZt2sDY2BgODg5waNmS1njMGPUAgeXL6YyYMoXmsKnaKM7O5BgoLyeHwLBhwPffQ9PMDDzPIy0tDU21GxSMjXFKV1dlun8/K7hzBxW+vhzP86ioqIBaFcU6dICZuuhjNWQyGSK7dUOfBQsw3dy8Nj9bXYk9JQWQSiGTybB+/XpR1b8/mztvHj41M6t5FjiOw5gxY7hNmzahpqWfmRlFMjU1af9OmEBz36MHEe2BA6lQ1T//SecSQFHZ776juamecwMDA5afn4+cnBzRy8uLw3ffoecXX3BITq5VKkVHA4sWwaROX3qpVApIpTiYmYkBhYWic2kpXdDeHujWDVoffQRh506Ubd8OvRUryGmyfz8q5s/HbW9vOE6Zghx7e3COjpDJZDVziFWr4DpqFBfp4YFnRUVwPHOGrhkUBKmdHVwvXgS+/hqDzMzwYswYNFR6CYKA0tJStK52oISGhqrMzc254OBgpqVWPKidMWfPkjrCyor2j1wOREfDqKgI/c6fB2doSGT5yy/pDOjWDbhzh5QDn31Gv3/+PJHRjRshc3DAhn37IHz8sbi4XTv2lzpXREc32z6vVatWGD16NE6ePMmMjY3RrVs3+sHCheSEqqsc6dePiPaCBWCMoUePHsq8vDz+1atXsLOzE5OTk/nIyEj06tWr6XF88w3ZV1euABs3Ug0GR0eStuvq1rYEA+jMtLWFFIB5r16AIMAwMRGIi4O7nR0wdy7D69cSbNkC+aNHOHr/Pnf84EFx2PDhrF7nhGpkZGQgOTlZplAolr/7xL1HQ7xnFn8DaGpqfufn56f5nmg3xsuXLxEZGQmuWj71HqAoQ90Ixbvg5El6uRQXk6H4Bll1UFAQevXqBY4AAE1WBf3ss8/U59N/e8VwJycnfPrpp9z69esxdOjQRlWBo6OjcffuXXTu3FlwcnLinJycGAC+oqICABGGfv36NSrc9iakpqbiwoULqlevXvETJkyAmZkZ0tPTOScnJ+jo6ODFixeIjIxUtWnTBkOHDuXVEsYWRkYMqalUAfjUKZKKNvxcxsgTrkZFBRnAEglJxt8ke5fJyDt/8iTJRP/4g4zl8+cpR6xfP8ofmzGDrtO/f82fplRUcA5WVuI7z0NsLI0zPJyM0cDAvyQhRlAQRTYOHXrjr72orMQfMhkwYgSmGRpCc9s22qv5+WSEv6vT4V/Bnj1NK0TS0wGlElpOTm8kY29EaSk6L1iAxHnzVLv9/VGRnc13j4oSnZ2dWd1cb57nwRjDJRcXDDp5kgrTXb8OYcQIpKam4saNG0J2djZnZmYmtjl6FCNzcznY2r6xpZpUKkXv3r2FWz/9xBXExCAzOxuurq7CyJEjuW3btkEURUyaNInu7aefyAhuYm3j4+PRvn17ofqZYggKoiJMvr4U2frii/r7Wy6n9Q4NpZ/Fx8NOoQBWr4aXlxc6duyIhIQElZGREQ9j45pex42nP503V+dsqyX3N27QZ+bkkINkzx6KJl26RBL43r0poiuKZOh37UoGfhPo2rUrwsPDawt1NQP1e/nkyZNCr1mzOMP58+na585RdA4gGXITkEgkWLZsGVQnT+JmQoJYnJ3NYGlJBGHZMvqle/eAdu1I8aGWqbdrRxFLdf/v6nHo6emhrKwMq6vnsmfPnpSLWwdxcXEqrR9/5O8HBEBbWxuvXr0Sk5OTWUxMDPo+fgzfkpJask2DpOj1mTMktw8Jaf4Z19UlWfPixcDu3ZBs3Ijhfn7io7VrRZctW7iG59y+fftUJfr6nNeHH7LWJ06ID1+8UAUHB9cvdrl4MaUUqKFSQdWlC2QDB4rm7dpRf2V1VFldC+DxY6B9e9y8eRMqlYpNmTkT+pmZ5KhIS6t5LnR1dTF69Gjs27cPDg4OJNlevpzO0MOHKYd9wQJKoVEq6b26cCGtrzoHODubrllnTmxtbVlubq64YMGC2hveu5fy2yMjaZxjxzbbIUTPxkYonjGDk/I81W64cwdYtw7S06fR1dBQ2F5UJE7duJFPiIlBWloa2mdl4ZW5uZgzdargc/06/9mJE9AcPx41ihV9fbCffkLfkSNR2K8fOQpSUykHXV3lWiJB0tGjkD14IDSUC128eBEAEBERIR4/fpwB4F+/fo2bN28iICCg/uCdnWsj1QMH1vyzMiMD+9etw7AzZ2BnbU1zJor03LZsSc6agACK8lb3VZd37YpdO3aICoWC6enpCXFxcXzHjh0hlUrf/q4uLqZ3XzPtThljcHNzgyiKOHHihJiens4+cHaG/pdfktOwLnx8aB88egS4uaFXr141B2tlZSWfk5MjlJeXN/1Q5OXRe/f33+l+i4pqVT8tW9IzfOsWrXFT4Dh6j6tTPhIS6AzLzobWkycYYmPDKubMQYWnJ7TbtCGHXmoqIJVCpVLhxIkT5QqF4rMVK1b8RaPwPeriPdn+P45vv/12tLa2dmCXLl3+ti2+moJMJsPx48eFtLQ0ztbWVpwxYwb721cjj4ykQ/3o0Xf/G39/irj8+mttNeV3yF/+T1QQKBQKsOrevQ1RXFwMAHBzc6v3Q21tbYwcOVI8duwYe/XqlWrixInv5BiQy+U4cuSI4OzszBsaGgoODg4cY6xehVRLS0uMHTu23vVqjMhly4hAf/YZRbHqEF6UlFCEJSODDOzQUIpof/UVvaTV9yeKZBQ+fEgFZkaOJEUDQLmXWVmUH7Z2LZFRbW2KujWDwsJCMMbg7e39dracnEwy3WXLyDDaufNdpq0GCoUCEokEzMEBYmwsylJSoGtvD47j8OLFCyQmJoqlpaUYMmQIy83Nxf79+6GhoYEvv/ySLjBvHhlrO3eSxDUoiIyMBoX0/i3Q0iJDcP36+v+ekUGG8Juk8s3h+HEy3lJTwZeWYoqGRk39gZiYGOHatWv83LlzoaWlhZycHFRUVGDKlCnYs2cPTM3M0PHmTWD2bGxOTRWVHAdnZ2du1KhR0NHRof22bh0Ro+joNzo/unbtysHDA+jYEQX+/ti5cydbu3atijHGe3l5CUePHsWswYM5yeTJtbmHTaB3795c3foM0NCgCNfu3fQ1ciQRsdWryQA+c4b2fPXz8DIrC1KpVOzQoQMrLi5GWloaP3HiRCJ9M2dSoaM6UDtWa4iwWu7Zpw85YDQ16TOHDCHyvWQJOZ9+/ZVI2ezZ5Ciq0zanIR4/fgxBEN7aR3fw4MFwcnLCgQMHuLS0NHz66afQvnGD2hmpyfbu3US2GspeY2Oh6e4OYeVKyC0tmXTBgpqCUjVgrLEC5uefiUhFRNCz7e6OBw8eoLKyEr1798aDBw8QHR2N6OhozJ07l3qGA6isrMSF48f5iWZmmLB6tTr/mwHA3bt3cVqlgn5gINrLZPWrsWto0H46d47IwYYNb3TkgDFy3o4fD/sHD5ji449Z5bBh0PzmG3IUaGqirKwM2dnZ3LBhw5i1qyugo8Ns4uL4RvfaoQOtpxqvX0O0sUGulhZbuXIlvvrqK3C+vuQQUBepmjABcktLxBgZwcnJSWVlZcWjZUs6rxq8H+zs7NC9e3dh3759mD9/PieRSOjer1yhVJvAQJr/NWsogr1vX030Ef/4BzkDqsmoGs7OzoiIiGBKpbL2XWljQ3O3fDk5OzMzm917KpUKmp07E5FfuZKIvo0NcO8een3zDXd74UJsePRIrLp/n/E8j7KuXdHn6VNmHxrKY/p0eifMnUsKg2HDKMrs4QHWu7dYtGoVOzF+vDD05EkOnTuTRJ0xwMEBuUuWwNzcvKmcXgEA9/r1azZ48GBUVVXh4sWLbw9wzJmDq9bWYl58PBt++DBU338P44kTKap7+zadg6ampJrYsIGIdh1kZmYiNzeXff7550hNTeVu3bolXrx4kXEcBx0dHdW4ceP4ptqFAiBSe/lykz8qLCzEw4cP0aVLF7i6uqKkpISFnz6N10uWIGXmTHgsXVo/kZsxcuA9fYq6KTehoaFCZmYmp6Ghwb18+RIlJSVCQUEB8/LyYp06dYLWH3/QM3/uHP3Bw4d0LiyvE2T+8Ud659dt0fY2mJnRl6cn9ABEOTioqu7eZcMsLTkUFpJdIJUiIiICpaWlOQCa9va9xzuD/+abb/6nx/Ae/w0ICQmRRkVFzZRKpRsnTZqk/b4AWC1KSkqwdu1alJSUsBkzZsDX15f9J5K//+84dYryKt/SPgMvXpBH/fPPKSdqzBgyLv47o4P/H5CcnIxnz55BV1cXBQUFyM/PR0ZGBiIiIlQPHz7kAGDo0KGN5JUtWrRglZWVYkJCApeYmKhszrEVGxuLHTt2IDMzExcuXBDt7OzEESNGcO7u7s3mib8RGhpkjDs7E1EURYq8qInC7duU25WcTITZxoYIzJYtVLCsb18iC8bG5D338qKq5F9+SbLZfv3IIDQweKf+1adPnxYKCgpYcHBw879UWUntUzZsoGjT8uWUy/iOuHHjBg4dOoTw8HDcuHEDV6KiEG9nh5QrVxD17BmKiorEU6dOseLiYjErK4uLiorC3bt3UVVVhY4dO9aXohobUyRk9GjKV165kuR/6uro/64zQaUicj97dn1DvVMnImwNiOAbERZGBH3AACLp7dvXM7AsLCzg5eXFJSYmqmJiYrirV6/iyZMnwsOHD1n36kJ0MTExuP7yJZL69FH1MzXlhhw/zty++QYaajknQE4ZHx/aPw2jNA1x+TJgbAydLl3QqVMnZmpqyvXs2RNubm4sNjYWrVetYgaC0GShxczMTMTHx8Pf37+xA05XlyLHf/5JEezYWLrfpUsp6lynkNWFCxdURkZGzN3dnT18+BDJycmQyWSi22efMXTuDFEqRd1ijAAQGRkJTU1NsV27dvUfPvU4Zs2iljw3b1LKhK0tSZwzM8m4nzWrtuhXEzh//rxYUlLCnJyc8DZVWYsWLeDt7Y2IiAikpqai89SptC/CwigSOn48fZY6olVaSnncwcHAgAGIGzAAkRUVmDx5cmP5d04OEdS657OjI6VehIQQ4R4xAimpqSgtLRVGjBjBvL290aNHD0RFReHWrVvw8PBAZGQkzpw5A+uyMpVfp05cwx7ilpaWuBYdjU7ffgu9qirwDVuISSR0rpw6ReNv3/7taRwcB97SEhGGhqpntrbMbf9+hk2bkGFmhgPHjglt3NxEPz8/ysV2c6PCUadOkXxevY7jx9P51rs3zUVYGDQ3bICDoyNKDxyAYGoKyyFDKEqrJuU9eiDlt9+QoauLj2bPJgLNGHU3mDqVzq46a9q6dWv29OlTMSEhQayX6sRxFJ11cKBo4YMH9BlVVTSudevouTA3x9OnT6GhoQGlUonT/4+96w6L4ly/55vZxrICghQBUSyACIqCCtixa+wlRmOLJWqMNcabxMSQmHJzbxKTG3tNTIxGY41ijYpiQ0WajaKC9N7bzny/P16WIjXt5ncTz/PwAMswOzvzlbec97w//SQrlUq5e/fu1W+Qmxs9r+Rkat1WNWNfBffu3ZP1er3gPHo03YdLl2gd/+gjYOFCnL90CZIkMXd3d5iYmEjJer3Q5OFDHLl1CxpbW9h07EiZ88BAmncpKYCLC8yGDmXYsAHpAHcuLWWYMYPWtZISIDUVP1ta8oLCQsHFxQUGXZGUlBSkp6ez+Ph4AFSu0L59exQXF8s3b95kt27dklFSwgo++QS7b96UbXftYqbLlgGLFqFk/Xpczs1lMW3awOrzzzFs1Cho+/Wj+9akCfDjj7R/5ORQsmDQoGoBCHNzc1y4cAEeHh5o37498/b2Zn369EHnzp0N95mFhoZKOp1OqKFl1LRpRYbcgPz8fHzzzTfSpUuXhOjoaAQFBeHq1atIS0uTFPn5TGVqyq61asWDgoK4Vqutxi6CjQ2tHZ6e4IwhPj4eFy5cYMuXL4ezszN0Oh3S09N5SUkJu3v3LlPn53OHy5cZVq+uLMUyNibafNUAgVpNz9bBgea4h0etY6I+lOj1wo2EBNnH21vA0qWApSUKCgpIT0KWh65evTrhF5/0GarhmbP9F4S/v397pVIZYmdnN+z555/X1qt2+DdEYmIiwsPDsWrVqlrpy387lJZS5uYf/yDjrS688w7VVb34Ii3uXbvSAl+Pwfm/hGbNmiEuLk6Ojo6WY2Ji5NjYWDkxMZFrtVoxLy8PsixDoVDILVu2rOEZ29nZMWdnZ4SGhgqhoaHy/fv3WUJCAhhj0Ol02Lt3L7927RqTZRmtW7eWfXx8hH79+gm/ysmuCoOxyhgZHSkplJ0uKqIMiiwT++CVV+g5JyTQ8xowgIIkM2ZQwMTPj+i2Zma/qo45LS0Nx48fZ46OjjX7lwIUCPj3v8lQNQhWubs32qHlnGP//v382rVrTKvVGlrloKCgABPc3eETEIAgR0eelJSEiRMnshEjRjBfX1+YmJigf//+sLa2xuXLl/Ho0SPJyspKqOb8MEaU5VmzqP776FEKSiQmklHzW8tv1GpytqveV87pOfj711Q/rg1xcU+qzvUAACAASURBVHTcd99RxmXYsHqz8G3atBGMjIwwatQo9OvXj8XExEinTp0S4uPjYWVlxadNm8b69usnNGveHOzmTSpFKCiodDYYIyryiy9SkKYuRXuAnH1HR8DKCgqFApaWltBqtWCM4eyxY6ybqyuMly2r9VmvX7+ed+vWDc7OzjUnAueUkfviC6L1FhXRuuPnVy2DdefOHVy9epVNmjSJGRkZwdbWFq6urggODgbWrGGnQ0NxPCwMV65c4S1atGBmZmZgjMHKygqBgYHMx8enRtlIxT0QRbrPPXpQTbeh/tjOjoIoPXrQuFm8mBzjMWOoPtfFBa1NTJjNp59id14ePCIjoY6LQ7G9Pcp27IDS0ZEclAcPyAgvK0NSaipu376Nbt26Va4xSiUdN24cGdxmZuR8L1lCGa358wF7eyQkJCA6Ohq9evWqycwx1AfXpqo8ejSd+8MP0eyzz3C+dWv06tWL0cdnyMzMRGpqKq5du4bU1FTY2NjIU5o3Fxlj1Xt3l6NVq1Y4HxOD+7m5aNm3L2oIOSoUxEg4d46ydf36AdRXHbt27eJ5eXnc0tKSRUZGwtTUtILCbtGsmXDmyhUW2rYt7pmYIP3iRQwPDmZdnJwEwcmpctx6elL2LyiIng1jtB7260fjeedO4NAhxPn5YdeuXZj8/fcwc3SE0cSJ1bLfX+/fL182NmaLDx+Gxty8UkiQMQr+dOhQjZHCGEO7du3Y+fPnGWOselmIsTEdm51NmVgrK3IMXV2ppMfMDOHh4TiyaxfCT5/GxZAQNE9IkCeOHy8qSkooQ25lRQHB69dp7k+fTutTnz7U/tAQkHnuOeDOHeSbmDCfBQuYqk8f0sPYu5eCrnPngpmbw8nJCZ07d0ZgYKDco0cPcdDQoTBOSUFOVBTg5kZ9u0WR7qGlJV3D6dNgNja4amMj9dy6VdSsWEHO7pYt9NmWLIGkULCoqCgeHBzMnjx5Il+9epWfP3+excXFwcvLC4mJiZjy/PMwDglB+yFDWI+vv4ZjeDjOK5Xw3rSJRTg6MnWfPmi5ciVgbo7vysrwSBAwd/58tG7blubpZ5/RGJo2jRgu/ftTpt/Ojmrkn3uuomznyJEjSE5ORv/+/auVQ6jVarRu3Zp17NgRgiCwU6dOMQsLC5iamlauBadP07q4cCEA2uN+/PFHSJLE8vLymIuLizxv3jzm4uIC67g4YfB//sNaBATAt2dPptFoEBAQwAIDA9GqVStit5iZAf/+N7L1emw8e5Zfv36dqdVq7ufnx0xMTODo6IjOnTszb29vlr9hg+y9bZtQsm8f1OWMIEmSgIULiUbytA4FQIG4oUNpjP5Cu+Ls2bNSy/x8se28ebS2qNU4e/ZsaVpa2vZVq1ZtavgMz9AQnqXz/mLw9/d3USqVF4cOHWr+R4hJ/RWgUCigUqm4LMvsD1Ui/l9BbCxtLIZ+klUhyxRJ3bePsqcGVXFDb8m/EBQKBV588cU6B8SOHTt4QR217Gq1Gvb29nj55Zdx7do1VlZWJqenp/Pbt2+Ler0elpaWfMaMGaxp06YwMTGp+R4lJWTshYdTRN3amqL3y5ZRPXNoKNENZ84k49jLiwyhmBhS5I6MpL8pleSgzJlDBqGLC0X7BwyoUGP+PcE5x/nz5+WUlBTB2toacXFx1Q+QJMoKhoXRZzp5koR1Gong4GB+/fp1rlKpWEpKChs7dizcy2vPhgwZgiFDhpBTdv8+Vi5ezKrWRqtUKoMiMaytreHi4oKAgABx+/btcHNzk0aOHClWC3YIAhnrnp70PN5+mxynzZvJSejV6xcbMRUYP56MVoPS8cKFZPwuXdrw/3JO2YqvvqLa50bA3Ny8UrAHwPTp08WPP/4YAwcOrE7zt7amMoRLl8jxioqqLAMxKDPrdFR7WhdzJSCAsoodOlR7mckyZnz9NUx3764zIKfRaGp3dNPSaJwPHkx106amFGQICCDj+qOPADc3SC1b4siRI/Dz82NVRZmsrKzw6quvMvn4cXgOGYLigQNx5coVedeuXaJWq5WHDh0qGBsbg3Nee0kL56SiHRNDQYijR4nyO3Uqjenr14F588h5MjWl14uLab3s2RNo1gxN8vPh3q4dHnbpwqM++YSVqlQIvHEDc7ZuRUhmptTdzExUvPMO0dZdXMDMzGDaqxd6jRkj4OhRyiju2EEZbDc3muNr1lDg7K23yBkqD9S4u7sjICAA165dQ4+nW+kFBdUfMGIMaSNH4tq9e1Dr9bTWl3d0GDt2LEaPHo2EhAS0IKNfwKBBJCRWCxwcHNDt9ddRMG8eNn3wAdp6e8ujRo2qXsKrVtO9e/FF4NIlFHTpgm3btqGwsJBlZ2fj4sWLkGUZPXv25P3792cAZc179+4tBwYGCk07dpR9lywRLPV6unddutCY+PxzYljNn0/Xt2EDsa/27KG5PXIkMHMmQnv0kJv27Cm4T5umb5qcrABjKCwsxP79++W4uDjB2NgYubm5wuJly2A0YQJRvOPiKsX6jh2jzPK9e9XaJep0OkycOBHff/89WrdujRr0ZB8fclqPH6fnumwZrdf+/rBbvRojjhyBQ3w8ks+dg+OECWLkvXsQu3SB27lzlMU+cYJKT4YOpbXkzh0ac82aVSrmT58OODiAFRSwM3PmyKM9PAR4epIjWlhIgaoxY2A7b17F5ylXMofuhRfQ6exZfjYigrVo0QLtDAE2V1cS6AoMBP7zH1gmJQlnxo6F78qV0HPO4xwdeZc33hC+SE9HmUIBjUbDioqKkJ6eDkdHR2F4374oFkU4rFqFgtJS8MuXaW4/egTFhAmw1WrZgj59cGvAAOQEBMB34kTkFhZCJ8tITk7mEydOrMwQHz5MgYpp0yh4MmsWrT2M0frj5UX7zYwZiE9Lw+3bt9GpU6c6kypmZmbo2bMny8rKkgICAoSioiKmUqnkLl26CH5t2uBO7948Ys8eVlRUhJSUFM45Z1OmTGHlwRQBoLXGSq2m51keBOzSpQu7fv26nJaWJuzatQtdu3aVBwwYIBQOHIicrVuhHDcOq1atAmprL/noETo7OAg/WFryJ//5DzMyMoKpqamUmZkpDrl5E85Dh6LWHjE9epCd0L8/BdUb07EEVFIZExMjDh0xgoKmJibIzc3FrVu3JL1ev7pRJ3mGBvHM2f4LYc2aNbOUSuV/hgwZon7maNcNe3t7KJVKHDt2DMOHD/9FolZ/OaxdSzTasLDqr589S1Hr9etpA5Mkctr+xkhNTcWgQYMqB8ujR+SsFBSQATBuHHTHj6O/RsMwciTDuHEo+de/INy7B+WXXwqYN48cmvbtibJsZETG/KZN9JWSQkbE8OFkTH/6KRnWT56QoQ1Q9tnIiDJ8EyaQUzBnDtEyATLkEhIoYz137h9+T/R6PQIDAwWAjLYKQ59zcoxEEfj+e/o8DbRyqqjDLndob968yY8fP86cnZ1ZcXExXnnllRoqtwDI0HJ3J3rxl1/WeX6dTocJEyYgJycHmzZtYgEBAdKwYcNqL3JTq6k+eM0aoknv3UtOi60t3fdfyohZsKC6w3PlSsPaBrGxZBxHRJCR/Rsy7JIkoaysDMbGxpBlueaa17MnORFGRpQ9nzKFXu/WjbLvYWEk+FRbsIFzWh+eQsbt28hp0gSBjx9jgLMznqZpFhcXo6ysDE2aNKk8aUwM9dv97DOiak+eTEZ1SgoFQZ48oTmyfTtw6BDumZlxc7Wa16DblkM4cgQqUYRKEDB48GBxwIABuHXrFjt8+DAAEo6rdi/CwqiOf9w4KqcYNIi0DhYtItZDnz7kuD16RD9v3UpjvCplumrQct8+jATYKa0WzZo1w0w7O5QuXozre/aw6yUlvPW2bWgdHs7sgoOR8uABSs6epbXXyYkcKnt7Os/s2bQe2NrWKoplZGQEURQRHR1d3dnmnDK7VemsT6GsrAzbjx+HaY8eWOTkxDBlCpUSlWuYCIJgcLQpm2pqWntmrRyurq4A52hubo4dERFCREQE+vXrB41Gg7S0NJ6amirn5eUxh5kz0XPtWuGhRsPlTp3g6+vLQ0JC8Oqrr7Ldu3dL+fn5QmJiIqzKGRM9evQQYmNjZaVSySoc2RYtqKzi6FF6TmVl5IC98gqNkcOHKVBkyHD36gVxzhwhvkUL5Bgbs9y8PJiYmGDfvn1ySkqK4OnpiQcPHnDGGGvSpAmtK02akKO+eXMlbXvBAhrz5ePIAEdHR3h7e8vfffcdlixZItQayOnalYJIokhrvZMTzHv2xH/KadbKU6fA5s7lbdq0wd27d5n0xRfEFqrKJAgKIrE7g+iVtzd9Lw+SZP70k5zt6krBx7g4yoY7OpKzf+8esGMHIiMjubmjo2Bra0v/27YtbI2MmE1UFD9QVISVK1dWp8P37Qu4uUH3r3/xAQcOsLyOHWFz4QJT/OMfLH/7diw2M4ORkRFYWRnk5cshTJ8uYN8+WkuysqiEID1dDtZomE9mJp176NCKt2jXrh1OnDiBvXv3Ijo6GowxcM5ZRelPUBAFF9aurWRpbNhAgQRzc3rGH31EQbIRI1C6Zg0YYxg9enSdYxUgVsLIkSNFzjnu37+Px48fCxERERJPSxMTjI2ZEWOSqampGB8fz5YtWwbdU3Xh2LixsmVgOU6ePCnl5OQIb775JrKysvDNN9/g+vXrECUJ3czN5Z4uLrW3nAwIAF57DbbnzuElKytmKGdLTEwUbS0tERIZCbtevWp3tgEaDxs2NNrRBoALFy5IXZ48gdl774n48UfDayWMsS2rV69OavSJnqFePKOR/wXg7+/PgoKC3tJoNB/OmjVL26ZNm2eOdj0op3mxS5cu8QcPHsgeHh5/T2+bc8pQd+5cacC9805lP+Br18g5HDbsD8mK/ldRUEBZhMREyt7Z2pLokEJBG9PLLxMFdONGcg4HD6aMvqUl0Vfd3HClVy/e69NPmWrzZnIEHByIXpiVRcbX0qW00aWmUib566+hGDYMopERHePnV2mo2tlRBLpdO3p9xQoyFubNo9+VSnI6lEp6PgaDYfDgyv6tAwbQ/1Q1yrdupfPWJfryO0MUReTm5vLk5GS2YsUKtG3blpzErVspE9O3L302w/WVIyUlBWlpaVCr1QgODsaVK1ekgwcPCnfv3uUpKSlQqVRs3759zNTUlM+ePZt5eHjAqL6e7woFOfRP10XXAo1Gg9atW7OjR48KtdJuq39AekajR5MD9N139Fw6d67MKjUGzZtT1sHZmcZi587kzNX23hERFOjq35+o/337/uZSjfIWUdLJkyeFzMxMtK+tL7a9PT27F14gA9ng3Pv6ksHu7l77dZSW0lyoKoCWnY3suXP57sGDGRcEXL16FRcvXkR+fj4vVx3H5s2bJUtLSwwYMIAJMTE0XoqKiD0zfDg5NoastyG73rUr/ezlBfTujetnz/LeQUGCyd271et0DejcmY4vpwELggA7Ozvm4eGB27dvo7SoCH28vMhQ3r6d6L55ecRoWLaM6MeiSPNs5EjKkk6ZQuthhw60Vlhb03pSD9q0aYPmzZtDp9OhSZMm6Ny5M0tJSWHp6ens5s2buHbtGmzt7RHz8CFaeHnB3MqKHAjDc/L2pvewtq5TgfrcuXPIzc1FNVp8fj45hGPG1Hltjx49wp07d/iSJUuY4OhIlGRDf/EJE6q31bt8mfaHOmqFKzBpErSuroiIiZFLSkpYVlaW/OTJEyknJ0e0t7cXnJycWFxcHL+q0XCPn38WfGbNYq79+rGMjAx+5swZPnr0aPHatWvy9evXhaioKN6kSROWm5sLR0dHdvHiRfj6+lbqXKjVJNLZrx+NndJSCrw5OdFaP2wYBZR79QLmzYPV7NkQp09HZHw8CwwMxKNHj9jDhw/Ziy++CC8vL3Tr1o1duHAB3bp1o1ZaZmYUrDC0VzI1pXKryZMrFcyroGXLluzevXs8PDyc10h6FBcTK2L1ahpHBgaHgwN6vPQSevbqBZVKJSuVSj5+/HghNDQUsbGxso+PT/Xz6HRUp/zmmzU0VvLy8nDo0CE2btw4ZmJiQgyd7dtpjxs6FOjaFRkZGQiLjmYjHR2hO3aMHHljY6jat4fdnj3soq0t02g0sLW1xblz5/DNN9/AxMQETe3s0HzoUKYZNAimO3ZAzMlBk++/h/G770K5dCnYv/8NvPQS2Mcf0z42dCit/woF0L8/rqSkwMjIiLWpZQyr1WpER0fLDx8+ZADQu3dv3rJlS7l169YC0tIoiDJoEK0BBsTH01w1lOIwRk59dDRMmzXDrdhYOHt4NKpckDGGZs2aITs7G+Hh4YLtTz/huVu34LFhg9C+fXv07t27ZlmELBOjbPr0irICWZaxe/duYcyYMczGxgbGxsbw9vZm7u7u6Nu/P9qFhTEbw75eFeHhNF/HjKlgKmjLg3SOjo7IPn0ajlu3YrMk4e7du3pjY2PBwsKiukaDIcO/YgXZIpMm1fuZi4uLceDAAWGcVitoWrYEevZEcnIyTpw4UazX68f27du3sMEb9wyNwrPM9v84/P391SqVaquxsfHYGTNmaBtqM/IMBDs7O0yePJlt2LBB3LdvH58wYcLfK0Bx9SoZJmFhRMX76CMSIbp7lyiLEycSLenPREoKbWbNm5NjPGoUZbYOHSIj4733yMifPp2u+cIF+tvmzWTQdOpE4jP+/mSc5ObSBhQQQG0ytm6lLNn48eTgcE4GrkGM5IUXyDmytwe2b4f60SP54erVgptBgMRAqQco8wgQ1deA48crfzZkIKpE8uHj8/veL84pAztr1u973gYQFRXFAODf//wnxp4+za3j4lja5s1wWrIEgkoFWZaRmJiIa9eu8fj4eEiSBEObE85JuNbR0ZFNnz4dt27dYlFRUfLNmzeZIAhYsGBB4+ZlmzZUmxge3iiBmLt376J58+ayKIqNC7QxRo7O+vVkEH3/PdXCTpxIzsfw4fUrwZaW0rG5uaSNsGkTvVYVxcVUAhAURA7S/PmV7Zt+B/j5+Yk5OTlybm5u3Z/ZyYmYESkp5LwePkzOxpIlZMTt3l2ToRAZSc5I1fH89dcwNTZm7VxdpWHDhol5eXkIDAzk6enpFc+TMQYpJ4fJiYkUJLGxIXptVWX9qhg9mupWR46k35s2RUnfvuxEy5aY5eJCDsPCheQgGoIgK1ZQsKAqSkvRJDUVQ5KSYP7DD7TOtW9P1+DmVhnYehpHj1af83360LweN47m9euv13lbn4ZGo8H48eMrft+yZQsuXLgAlUqFK1euwM7ODpqnAxvjxlFQoF+/OgULZVlGRkZGJYW5rKzBgJCpqSn0ej1LSEig1lWGsW7oF/zjj7T2KhQ0Luqr3zdAkiA7O0O5ciV77bXXoNFoBKC6QHPXrl3p93feISfq3j2MmD9f+PTTT5GamopFixaJubm52LdvH9+9ezdjjOH5558HY4w9fvyY6oqrQqUiB1aWySm+fp3G5g8/UOeB2FjKBtvZwQ7A9OnT2eXLl3lpaalsamoKBwcHAaCAjEql4llZWczY4MSNHk1zYfZs0i2xtiZ6+dSpRCmv4vCU/z9iY2OF7OzsCiV3ADSGli0jJxGgbHNICCCKUHp5Aa++Ct85cyruU0FBAcaNG1f7fDUxoc9TxeFPTEzEli1bYGdnJ9vb29OLX3xBawtAz7OsDKr16wFfX65duJBh/34av6tWAT4+aOLtjendu2P3zz/j5MmTFW8X8OOPOPv99xjp4gLnEyco8GgIBuXkULBZqaRruXix1kvu2rUr++mnnzCoDpbcpEmThOzsbDRr1gxKpZIBEJGbS/f8P/+hkoGqCA+vue4yBrz3HsTduzH20CGcaNZMnlK1hVoDsLOzg7u7u9x15kxBU6VDTa36Ktu2EfOpnDnCOcelS5dkURSFqv3PBUGo7Ic+dizZMVVx/TrN7Q0b6hQMvZ2SglbTpvGFCxeyoKAgduzYMQQEBMhjx44VasyFiRPpmTSAkJAQ7pKUJJtNmCCiTx9wznH06NEiSZJWrV69Or3BEzxDo/HM2f4fhr+/fxuVSnXAwcGh3fjx441qRN2eoV5YWVlh7ty52Lx5M6uVWvlXxq5dRNk0NSXncutWMhYb6FdcJwoLaZMVhEphkcuXKZM8fjxlA194gaizL71EVK/XX6ds1bZtlOndvJkcxokT6XyG7NrBg5SpcHOjTMCpU+Rsl5URlY8xyv4pFGQAG+i5P/xAdaZaLR0nCEQLXrOG/n7hQuX1G3pUTpxY+VpVJdKRI4Evv4TUpEmN9iL/b2AQ92rb9r/ydmlpaUhMTERZWhp63LiBHhoNHk6YwE5qNDz2xg0mXbtWcaxKpeI6nU7u0KGDaGJiAmtra+h0Ohw7dgw9evRA27ZtBYAElgAIgYGBCAoKQnp6OmwbyBpWIDiYaJK7djV4KGMMpaWlvy7AptMRdX/aNDLiP/6Yaqn/9S9yVmtzbkxM6PkoFOQ01WZQde9OjuGGDX+YJoIgCCw1NVXGU45PNYgizZsWLSp7Axsb05x79IiymlUNz3btqlPiExOBzp1hPHMmJpmYiEVFRQgNDZXS0tIErVbLATDIMqYOGSKWeXnhSWQkWh871nDbmgcPKEhhcLYBuLi4sP0REbjZvDk8r10j6v9XX1HQbMIEEpYyMqLAxsmT5Bz37UvZvUGD+PnRo9krgwY1XCJz9ChR/z/8sPrr5uYUeDl5kv62fPkvonAaMGfOHOTk5OD8+fOIjIzk//znP9mQIUN49+7dK2+0UknOxc8/E8OlCvbt28cBsK5du1avFY6Opj7b9aBZs2bw9fWVd+7cKbzxxhu0DwoCBVj0enIOGSOHc98+UmRvAMVKJe6NGgUTlUrWaDT1P1jG6B6uXImEn35CaWlpRYtDExMTzJo1S5BlGVu3buWJiYmMc14zEFEVgkCskP79aU0wqOC/+SYJpHEOMAaNRgM/Pz+GKnWzsixj8+bNkiAIovnT/dlHjSInOTa2sk3czp01SitSU1MRGxsrLF++vDrlmHMak1WCLAAqGSQff0zfDx8GzM2RVx40LCkpqf1ztmxJ++itW9Uo5owxvPTSSzS/MzLoPty6Vfl/Dg5Q79uHlPXrWd7x42hiUL7/xz+I2eXpiVaPH+P50aPxeOdO2fvxY8Fo0yagZUvc8fHBjeJi7tylC8Ply6T+vn07Pb8VK+p6IlXe2gF6vR65ubm19p83MjKqyWCaP5/WotrWzIiIWktYABDz4OpVyNHRDElJjWZ7NW/eHGPHjhXw44+03i1fXvuBly7RevTCCxUvpaam4ty5c8KkSZNq1uwbYFC079CBgvmhoZW2SS2fMSoqCoGBgXK7U6dYkY8Pt7CwYCNHjhQlScKJEyeEgIAAacGCBWKN9+CcxsW//00BuqcgyzKCgoKw4NQpEV5eQJ8+ePToEdLT0zM457U3F3+GX41nzvb/IPz9/QVRFJcolcr3+/Tpo/Hx8fntqsZ/UygUCqjVai4Iwt/jBur1lMFet45UO9eupY1y61Yyyjw9ycn86CMyLn/8kTbgyZMrlXft7CiT+9FH1JP77l1y8ObOJTr1xIlExTxzhjbD8ePJQMnKoiyxgW46cCBR8wCqkyynsiGhvMtE1R6XiYmVPxsM4/ffr3zNYACamVVmXqq2efqN8+PChQvIz89XWFlZQZIkBAcH8xs3bnCVSoVhw4YJ9k/RpP8U7NlDgYhfGzBpJAoKCnDjxg1cPH0a3uHh3MvBgbXSamG0eTNcbWzgCjBZlnH37l0oFApkZWXBy8uLKRSKGkb39DraXvXu3dvQZgWvvfZa4/qyT5hAqriNwJ07d2SdTvfbBoVaTQJJO3cSO2TtWqJsrlhBzufTTunq1fQ/W7dWGr8lJXTc/v1Eo/6DO0cYGRnxkpISISYmBrVROat9tm+/pZIIe3sSR5o1i9aKl1+mwJgB9+9TgKFvX/r97bfJWe/dG1lZWThy5AjPzMwUnJ2dWe/evSlzP38+dLt3I2DVKsSqVHyBIDQ8Q8ePJ2pqlUxehw4dsH//fty7dw+enp7EdklJofu5dStl9caMoedx/z4ZtFeuAM2bo0NGBjuXmIjExMSGAzp5eRQsqQ02NjT23n6bRL9+5fwzNTXFqFGjMGLECPb+++/jxIkTrPvTLAKD2FcVSJKEO3fusOHDh8Pr6VrqoqJKJe16IIoi0+v1yMrKgkVVITyFggJKgkBZxSdPatR/h4eH4/Lly3KfPn0ESZJw48YNOT4+XrCxt+fDk5MbF8Fu1gwln38OqWNHjBo50hB0q4AgCOCcs6SkJJSUlODBgwfIy8tDixYt6i8v8fCgGnhJoj1o1y66h2++SdT8KvRiWZbxxRdfyDqdji1atKj28y5cSE7punXkZA4aRGNy927Axgb379/Hnj17YGtrq9fpdNUXrXnzKsVIa8OwYfT9ww+BH39E/KZNYKWltQsIliP38WNofX2Rcf06rDt1QlZWFoyMjOSKguD8fNpXnxozqvbtoVOrJf7GGyLv3BnMxYWcstjYilKZNh9+iDZubgJEkdaD5GQkXLyI/IcPGaKiaK+ZNo2CMvv3UyDIwOCqA5cvX6b3r5IxrhdbttC6U5c45Zdf1qp98dFHH0GlUqHY2hrT8/MZXnqJWDP1aBfUQHw8JSRqQ0kJBVC//bYi+P7w4UPs3bsXtra2emdn57o3LMZovTh4kL7Pn0/j8bnnahyamJiIvXv3wtvbm3nFxDBWhekliiLMzMxgoN3X+j5jx1br610VFy9e5E3S07n2/HmG5s3BOcfp06cLysrK3lm9enVZndf/DL8Kz5zt/yH4+/sLANxVKtVmCwuLDuPGjdNa/I/3Nv6zYWZmhrKyMpaRkYG/xb28coU21eBgMkR27KDN/7PPaFH29KS2LDk5tFiX03zRsyc5FioVGQOGdkazZ9PfqzrDBsXud96pfO3AgcqfDZnHqn13Bwyoo29pcgAAIABJREFU/LmxG/F/EfHx8Vyj0bDjx48jLS0NCoWCq1QqISkpCREREfKNGzd4VlYWnnvuOdGQlfmvw9iYsqZ/MCLDwpC0cSMG6fWyl729ICxaVINaKggCOjylTv1LMWTIENy8eRPFxcU1RWlqg05HRvWnn9adjSiHtbW1EBUVhc8//5y3aNGCjxw5UkhISICNjQ1ycnIQFRXFPTw8WEP9kSvQrBk5cpmZlIH9/HOaI6+8QvWkGg0FmSIjiZ2hUpHDOncu0aabNm18/fdvQO/evQVRFPHtt99iwYIFaHCsWlkRPb99e3K0+/UjOmdWVnUjt6zcNsvJoTHYsycAYP/+/bJer2dz5sxhuvPnqa5+zhwyLjt0gKNCgdsHD2JNOdtElmV4enry5557rqYBaWREzuzcudWySa1atZKLiSZLHoW1Nd339HRyAkxMKGv4lMNhyI4GBwdj1FN1r9UgSZTVnTy57mO0WmI23L5N92jHDqod/RWoyrB6ujc4SkvJwbt/v4IJkJGRAQDo8jTFFqA50YhyoO7du7PAwEAcP34cU6dOffqC6PmWlND35GRk5OTgZkICIu7ckQsLC4V27dqxvXv3wsjICK1bt+YLFy6EWX4+g4cHzYsGsv2cc/xw+LBUMmMGe0mpFHD2LGVkqyAnJ0dOTk4WTExMcPv2bf3NmzdZYWGh6OzsLI0ZM0asEZDLzKS5FxREWeBu3Wg/a9OGAkiurvTa1q2AkRG2f/21JEmSOGPGjGptomrg/fcpiBMaigql79xcwMYGtra2EAQBEydOrGlbv/suBS4awptvAv/4B1x27MD8TZuwrbAQR5o25U5OThg/fjwDqNY2KioKZ86c4SXLlzN+7Bgm6nS4fv061TgbIEmVHRCeQq+lS8XvRJH3O3gQLj17MvTqRXogb78NJCXRXHvKkRU5525nznB89ZUAExMag9bWtHZ9+indy3oCoz179kRoaChSUlLQskrrtFrx9ddI/fpr/vPkybKusBC9e/cWdTodQkNDkZaWJg3o319kI0cCaWkoKy1FUVERkpOTwRiDmZkZLy0tZVOnToW9gwMFWMLDKdnQ2MD4kiV1/+3990kN/sABlJaW4tChQ/Ldu3eFXr16wc/Pr2G/6rXXKOkRE0PK+bVkngESIFUqlRjQpw/D6dPVdTFAYr+XLl2qO0751luU8Hj+eSR+9x1OnTkDExMTZGZmIuXRIzZv61a2p7RUMurTR9RoNMjIyEjlnH/T4PU/wy/GM2f7/wH8/f1bMsbGCILQSpKkGAD3ATwCkAbAAsBAIyOjSaIodtVqtVLXrl01PXr0UPytaM9/EJRKJTQaDS5fvowRI0b82Zfzx8PHhyjeL79MBn/r1hTJtrEhytk//0nR6f37KZq8YAEZLQsWVJ7DQHG1tKysb/6LY+LEiWzdunV48uQJhgwZgg4dOgiffvop2rRpA0mShDt37sDKygoBAQHS1KlTK1pK6fV6pKWlQZZl6HQ6ZGZmIjExESqVCu7u7vXTIX8pYmMreoL+3uCc48GDB8iMjuaWS5cyO3NzbnfkiICnFKZ/TwiCAGNjYykiIkL0NqjtNgRX10Y522PHjsW9e/dQVlbGTp8+zT/66KOK7DnnHDqdDhcuXMCiRYtqpTvWCXNzyph99x0ZrK+/TuJin31G1N+2bSkIFRZGc23WrEa38/o9kJGRgUuXLgEADCrRDaJHD3KiV66kQNnFi6R2//bbRJs31BBzTr3bZ80CTEyQlpaGtLQ0Yaq7O3RRUUR/trEh+mR5j3AXFxesXLmSpaWl4fTp04iJiUFYWBhr3rw5ZaqfxsiR1bKRWVlZSEhIEGpkgAFyACwtac2rZa8sKw8QdK6jRrICu3eT4V3u1NYJQ/Z3wQL62rWr7nZpDWDEiBE4evRohbFdgdatqb42M7Ni7TU426WlpTXXk/v3iZ3QANRqNZo3b87L162axntWFgVR3n0X6zZskCa8/77YwtVVTp4xg0+YMAEajYaFhYXB1dUVSqWSogBmZkRjLy1t0NnOzc1FXFycuOLNNyFkZdEYevyYSo7KMW/ePCE9PR2tqXWgAgCio6Px/fffi5mZmTXU7iFJ9NyqOnWMVTo2t27RPPz2WxTv2AGVm5u4YNWq+h1tgMb68uW0j3p40HMODgZCQqBwcYEsywgODoatrS1sbW1x8uRJbrt9Oy9u1465vfUWaxSZWRAgzJqFbFnmquhoNv7IEXZk0CBZHjuWlZWVYePGjVyWZW5hYYEpCxeyEnt7fB8TgwQHB2HevHnIz8+HUqmEsnt3RL76Km60aCEPGTJEKK+FBkC1yba+vuz27t1os3kzlBERlUJjCQkUGCwPmhngGR3NCq9cYRnFxbCoysIx6FGcP189cF4FpaWlOHbsWPnHa8B2vXgRuTod9nXtylrY24tJSUny559/DnNzc15cXMw558KdsDA+WaViGz/6CIwxCIIArVYrlZSUCE2bNkVBQUHlfJg0idbg996j4GFV0b+6MHkyBUm3b6/+ekkJBXHKu30cP35cjoqKEiZNmgTnqmy6upCWRsmJb76hc23cWOehtra2KCsrQ0FAAIzfew+4caPa301NTSFJUv2kIHt7oG1bnD51Co/j49GhQwepRYsWbNygQYKRvT2cunUTw8LCpMePH4sAFq9evboOXv4z/BY8c7b/ZKxZs2amUqlc7+Liwq2srIwyMzOLU1JSSnJzc4Xi4mK1UqnUt27dGu3bt9e2atUKFYIdz/C7oUWLFnJGRka12q2/LBQK2mzKyshY+/bbypYVhYVkVLu5ETX83j0Sb4mOJhpl587kSKSnkzKujw/Vm/0NtAJUKhWmTJmCbdu24d69e1L37t3Fdu3aSWlpaby4uFgcOnQoa9OmDTZu3CisW7dO1mg0PDc3VygoKGBqtZozxnhZWZmgVCplExMT5OXl4caNG0yj0chlZWXo16+f2K4xwkN1ITOT6KsrV/5+H7oKQk+ehPTWW7DIy2P6L76A3ZAh7LdS8xuDjh07ikFBQdzb27txbzZkCGXzYmPr7ectCAK1KALg7u4uZGZmolmzZggPDwdjDG5ubmz9+vXS+vXrRWtra3n8+PFCo7PcAL0/56RH8NprZLh++SVlPnU6UkkeOZLmUnIyGbfDhhFN19Lyd59TxcXFiImJwf79+yEIAkaPHl3Rr7xRMDWlz1RWRtfp4EAZs88/J4q5kRHdbyuriprq4OPHJUVOjmg2dSoO+/mh55YttbKHBEGAtbU1cnJyJD8/PyE7O5udPn2ae3p61nzmL79MIogg+vS5c+dgZGRU0Y+5Btatq5MxYAiINehcvfhinZmnWjFhAjkcvXpRNvPpGt1aIMsySktLce7cOWg0GqSkpMDW1lZWKpU1vZLZs4mCWm7sFxYWQqPRcI1GU/MexMc3Wsne19eXHThwAMXFxdWd9gMHKGt/+TLAGPR6PY75+8u9vL2FqUFBYN7eQGgotad6Gt9+S/vNiRN1vq8kSTh27Bhv2rSprFKpRFhbU0nG1av0rMsF60xMTKoFvlJSUvDDDz/Ax8dHtrS0rH6f1qyhPau+QJa5OZU+9O2LWyoV8mJiYDRoEAWbN26keVoXo4Yx+mwHDpC41fvvAw4O0Hz1Ffr16ydHRkbi1q1bQlFREaysrDDIwkK4U1Ymb9++nbVp00aaNGlSAwIFBMc5c9iivDzICQloVViI3UuXyhmtWgkFhYXsrbfeqnjeCn9/eDk4IPnWLWys4rw1feklyMbGkqakRNy+fTskSYKlpaU8depUQafTITY2FrmurljbsiUmLF6MVosX0+cfNIhsAIOzzTnw3nswmzEDFy0spDt79gjz589nFc+DMWIirFhBjI5adEN27twpcc6F8ePHsxZPZWirQh8VBfbuu7jm5SULTk585MiR4u3bt4WjR4/CxcWF9evXjwHAhVOnICxbhrkzZmDPnj1yYWGhwBhDly5d2LVr1yDLMrZt24Y33niDTrxsWWUgdMiQevcHAET7fzpLzznRvZcsQTxj2O7vDwCCubm55OzsXP8zLS2l9XLnThrXX3xBc0OS6tSrePLkCQUSTEyqBZ4MMDU1hVqt5j///DPz8/ODXq/H2rVrZb1ez1QqlVxQUCDKsgx1u3bw+PFHuGg0cvfVq0U8ekTr9NWr6KLRQKlUisnJyWElJSU/1X9TnuHX4pmz/SfB39+fKRSKN9Vq9ZszZ87UNKs0CDTlXwb8/+PU/sWQk5ODv127NKWSjIQ2bYgWOn48CYhotRSxHz6cjjNQJ5OTKxVUExOpxvrKFcreWVjQ33r1qmzL0aJFg+1w/tdgZWUFHx8fBAUFiZxzTJ48ucYOuWTJEhYcHMwkSYK1tTXs7OxQXhtsGF8CUNFygzdt2lQURRE//PADFi9e3Di6dG1QqUgYqiHH4ZciPh7y2rVIiYuD3KoV99yzh/3u71EPevfubWgNJvv4+DRM5TEI9ElSTTGrOv9FgGH9reqALliwQLx37x4CDh/Gl598AkcbG8nl/n1YLV0qmh46hCZlZZTh6tKFSjNycsgxy88np9DKipztW7fo9+7dydkuKaHgyN27pBJ86BBd87BhVF+7YAE5AZMnU8bsyy9pfu3dS/N06VKaW3v30s8PHtDzd3KieuanDLfk5GRs2rSp4velS5f+unGmUNC5bW3pGktKKvtMl5aSyNKOHRQoOHYMg955R7R97z38Z9EiQKPhA42M6lxjU1JSkJ2dLXp6euLkyZOSjY1N7danQgH+9tsIVKtxLSYGRUVFqJVybsCaNZQJroUCblqe3Tp06BDmz59f+/8XFxNl/RfWYeubNEHEqlVg27cj9tgxOa5TJ966TRvRyckJdnZ2CAwM5FFRUXJZWRlUKhVycnJEWZYNvYUNpxHS0tJqUv05J/bG7NmAICA8PJybm5vXfg90OsrCNQJOTk6wsrLi69at48uXL6+ca/fuEUOjPDgxbdo08dy5c9h3/Dgf6u3NPN55h+bbyJE0HqoKQ40dS2O9Hvz0009yXFwcmzt3buUzb9uWPqehd3Z5/+iqiI2NhampqTxgwICa60JxcU3V/DqQkpKCn5OT8cLs2WD+/hRc/uEHyjyuXUvZ3k6darIjzM3p8w0fTvNh6lSw/Hz07t1b6N27N0pLSxEbGwtnvZ6xefPQgzHBLScHW7ZsEU6dOlWnIncNNGkC4dtvMay4WCjp0AH37exw1M8Pp0+fxkBDKda8efDYuBEdBw9GvrMztFotFJs20Xrw6qsV91Wv12PLli1848aNKC0thV6vp7do3Rp3IyKgHDECTUJDIbRuDVVcXKXxGRZGbLeFC9HJ11e8df8+iouLq7N+WremNez2bfpZEJCdnY3IyEh+8+ZNnp2dLQqCgCNHjnCtVsubNGnCmzRpAlNTU9HY2Bg6nQ4lKSmIXr8ehfb2yLa1xaypU0VDRrx///7wrdJZoH/nzsA//4kbAwYgJydHePHFF5GVlSWePXsWOp2O5+bmsrKyMuj1+krND19fEkMdP57sn/q0QHQ6esZVkZ5O1Pr+/ZEaGSkBEAGguLhYqBGkMiA3l+Zqbi4JOE6fTgwfJyf6ez0dNHJycmBsbMyNHj5kT5dVABQw9PHxwblz5xAZGSmZmJgIBQUFwpw5c1BYWCh+9913AEhkT6vVcmcnJxrEsbFUQqHRQJZlnDlzpqCkpGT56tWreY03eYbfBc+c7T8B/v7+CpVKtVWn002YPn36s3ZdfzLy8vJYg/VDf0U4OZFB8/33lLmaNq3uY21sKsVFunatVOouK6MMQlAQ0RWfPKGMxPXrVMvVsiUZewkJ9N3Dg97rf5ShYTBQatRSlkOlUqFHI2okNRoNJk+eXHGCsLAw6fDhw4KNjY3k5+enyMzMhCAIaFqL+EuteOcdyoj26tXgoQZjnjGGnJwcSJKEGsq72dnAl18iXadDSGgoQr29sezdd1m9xskfAJVKhUmTJrHdu3czrVYrd+rUqWGHe+ZMYmSUqw7XipwccmDd3Kh22tWVxuqcOZR5+PJL4Nw5uFy5AhcvL6Fg6VKElZaKjrt3Y7ORETrdvo3+Xl5QiiJRqp2dKej04AE5nz//XPlee/aQE7JxI4mkabV03L175IisXk1fQCVVuaSEBIiaNycV5NRUMpxNTSv7xR88SPPw7bepFnHXLpqj33xTKYT46BEU8+djYEmJ5Pv99yL+8Q8yGJ88oXv0wgukuGthUamKXB8YI4e6rIyuTaUiocSYGHK4v/6aHNMDB6A4exZurVrh8AcfQKtU8iNHjmD06NGsNoM0NjYWFhYWslarFRQKBatTFEqlQsonn+BSSAgEY2NuZ2fH6x0TXl7VacQ1/uzFb9y4wepSR0ZyMhnJjRz3jx49wqlTp+TMzEym1WrhOncuH7B5s1B85QqO6HTS/fv3hYKCAmZsbMz69esnarVaFBYWomXLllAqlTA1NUVxcTEOHz6Me/fuYf16EgWeNm1aZasrDw9SrM7PRy6A+Ph4VmcJVGZmpe5GAxBFES+88AJbu3YtTRrOiTr+xhvVehs3bdoUY8eOxaVLl9jJoCA4zpsHU0NrKVNTyta5u9N9t7UlRtSlSzUoyQBQVFSE27dvC4sWLaq51rVrR+va3buUQR47ttqfO3XqhLNnzwq55e3YQkNDYdOsGdr9+9/k1DSSwp+RkQHGGNHTGaO1wNWVqNGckzPdogWdU6ejGm0DzM1JxOvJE2oxuX49CfSB1i4XZ2c6Ztcu4LnnYGpqir59+7Lz58/L3bp1E6q1BWsACo0Givv3cW/9ennk9u2C5c2bxKAwrHEnTkAoKoKJ4VllZtbQP1EoFHj55ZfF69evo6CgAJcuXYIgCHj55ZcR7uuLXd99hyH9+iGiQwfYJiTgRk6O3PvsWWR7eAjiJ5/AuZyaLYpi7Y7lrFkoGzoUMVFR/GdTU56VlSU0bdpU9vT0FLt164aCggKkp6ezzMxMlp2djdzcXDx69AjFxcX6suJiDPrmG9GjTRuWMX8+unXrJjDGsG/fPsnU1BS+vr7VFwVjY2DUKHh5eSEoKAi3bt3CmDFjDCKB7MmTJ5Akqaa45quv0pq6cCGVGbi41H7DFy+mHt4ffEC/x8fTa3v3AkolPD09RU9PT2RkZODrr79mn3zyCRhj8PPzIxvg2jUK+E6fTmNo1CgqrTCAscpx9c03ta4x7dq1w6FDhxjftQusDqEzb29vplQqodfrxYiICG54zm3btsXy5cvxxRdfYNy4cXBZvZpVlPr4+FSIXIaGhqKkpCQKwNnab8Qz/B545mz/l+Hv7++rVqs32NjYtH3hhRe0z9p1/bnQ6/UoLCxkNfoU/l3AGNEDAaJKjhpVvzDI01AqyZioauwZRLqys2mDkiRyIvbsIQcjNJQMc2NjcsC7dCHnwMGB+o7+P1XW1+v1uHXrFh8yZAh+b/V6tVqN6OhoFh0drbh+/TpkWYZer8fSpUsbVzNcUEBtz+pBWVkZ1q9fj+zsbCiVSgiCUNFWZvjw4UhLS+PRkZFMExODURcvcpNBg9idTp1wuVcviKLYOEXwPwCOjo4YOnQoDh8+LJTXhNZ9sCRRjdrYsVRrd+wYBZFataLscseOwJEjpHS/bRvVUx89Ss5ju3Y0/pRKylAb+j1nZ8NYoUDc3r1S5McfC8UJCcxt2zYoDUI7S5dWvn9tQaQ7dygYxTk5qB98QJmiHTsoAzRxIp2jap9qtbpSRbpqAGXbtsqfDa3VymnVAMgxFASae6amgCDgQdOmcomJiWgQt0JhIV3PunXkbA8cSGPnlVeIPnryJNF+z5yhoMHUqTSnDWJSixeTs//pp/TavHmker10KQUJ3nmnIjCnALBs2TIkJycLly9flj/77DNmaWkpDxs2TLCr4rQ8ePBAtrKy4gBgY2MjxMTEyLJcKapcFYWxsRgSEICOV6+yL7/8kgcFBcl9+vQRgMpAUlxcHM6fPy+ZBAWJmsxMyVKtFuLj4/mIESOEquN42LBh7MaNG9i0aRNfsWJFzTltZUVq1o3E48ePkZSUJBho+oIgMAwahCZnzmDWqVMi1qxBsUYDtVpde99eUCDu+eefR3p6OtavXw/OOS5evFi9r/Tu3UBqKrLeeAOyLCMiIoJ7eHjUPKGlZaNbHl25coWfOnWKlbfFgyo6mhy2OrJuPXv2xJUrV+TvvvtOGD58OFqW1+Piyy9JOMzfnzLMN29SYKcWZ/vBgwfQaDS8adOmtd+MDh1ob/D3p4xiFTq/VquFtbW19M033wh5eXlMp9NxzYMHrPnly9DodI02bp2cnKDX62s6Zobg8s2bFOz64QdyrLdsod8HDyZn1s2NPufZszXbojFG7K8qjmmnTp0QFRWFbdu2ScuXL28UnbwCCgXGvfyyEAzIGadPM9vwcCYYKMGHDtH8y84mUcClS2ulwQuCAIMGRnBwMPfz82Occ3Ts2BEdy1kQHhkZkMrK4DRkiGCxdStuTZnCo1NT5ZuhoaIsy+CcY+fOnVhUXoKWl5eHyMhIHhISwqX27YXRO3bAffNmobuvL1QqVcVnNDMzQx0BBgX276e1Y8QItCt/Djdv3uSxsbHCokWLao6PzMyKGuZhw4Zh7969OHHiBIYPHw7GGOrtEOLgQEGguXOpzry2GvKAgOoO8A8/0Bh8av+xsLDA3Llz8fDhQ6SlpsoZH38sSGVlEFetonVz5Mi6g3X9+lE5wsOHtfavP3r0KLextubYtEmoax4KgoCu5QEWV1dXtnbtWuzatQvLly/HzZs3odfrK9X9o6Kow0w5q6e4uBgnT54sKikpmfMsq/3HQnz33Xf/7Gv422DNmjXz1Wr1t4MHD7YfPHiwssFasWf4w8EYQ1hYGM/Ly2P1tsL5O8DYmIykoiIyIn6rKrhGQ9ltGxuqlRozhhyKUaPIwDeUTsgyZfE++IAoVWfPEpXvp5/oWpRKOqa+Fi9/IO7fv4+AgAAcO3YMgiCwsWPH1p15+5Xo0KGDYGlpCWtra3h4eGDs2LG4ffs2kpOTuaurK6u3tZ9eT9TlKlRLvV6PzMxMSJIEURTBGMOmTZt4QUEBevTowXr37o0mTZrA09MTubm5UmhIiFASFYURu3Yx8+RkfD96NLtmZoa0vDypdevWwtSpUxvfruUPQHp6Ou7fv49u3brRdeTnk1GZnk410a6u9H3+fPpucIBfeYWOdXOjr2HDyHnw86s8ZvJkchp1OqrH02rJSSnPiN4MCcHJkyeRkJAgZGVlMUtLS7nOGuGquHuXnNl336Vsu+EZGhnR3Jowgcb27ds0vg0trX5LH3cD1dvYGHByAucc39+/z9qNGAF7JycSCrK0pHk+bx79z6JFZBBaWtIcdXKiAFqrVnTPLl0ip0ehoJKT0aMpGxMQQP87dy4533PmED3zqXpNtVoNCwsLeHh4MGdnZxQVFfHjx48ze3v7imzm6dOn+cCBA0UzMzNYWFggLCyMnz17FomJiWjdujUz7JWccxzctg1uCQkwf+UVWFtbs+PHj7OkpCQpPT0dP//8M44dO8bCwsLQvHlzYeCjR8jLzsbFoiI8efJE6NKlS7WMHGMMXl5eCAwMZBYWFrCuKvpUWkpOSy2qzHXBysoKly9fxoQJEypFoJRKMqTv3wfeew+KGTPAGrF+aLVa9OnTB9euXUN6ejr6GlqrAfSsHjyAydixCAwMRFZWFqv2dwNmzKBx1gile6VSyW7evImVK1dCHRxM6++OHfX2P2/Xrh1LTEzkFy5cYEZGRtzOzo5h6lTKuK5dC0yZQkFWg8PxlFMTEREhJyQksB49etS9xhlE9W7fpvleZXy5u7sLBQUFrGvXrnjO0pLZGBtjZ9u28oWLF1lERIScm5sLU1NTpq0iqvc0YmJiEB4eDjc3t9o1cRijOdm9OwWeNBpSDD96lDKT2dnkuNna0rwbNIgCaGVlFEybO7fa3iWKIlq2bMkuXbokhISEcEmSmJWVVaODmbIso5WPD/vh8WPmXFwM3YoVdJ85p7renTtp3A4c2GDv6/DwcDk0NFQIDAxEnz59KAA0YABQVAThq69gUlAA5ZkzcPDwYB4eHkKPHj3QsmVLhISEwNfXFykpKfjpp5/kc+fOsczMTLlDhw7i6Jkz0dTdnbXctg3ihAmNC55v2EBO4GuvVdyr5ORk7N+/n40fP57Z1NayKyaGWDQzZ8LCwgLNmzfHxYsX5eDgYKhUKmZiYlL/nuXlRbbI0KG0Hj7ddnHpUnJKW7WiwGazZrS/1DIfVCUlsN63D604Z6mXLyPYxgZs0CBYDhxYuyNfFd27U3D4pZeqndtAn5+gUAimmzbVzzwsh0ajgZWVFTQaDW/bti0zNjZGcHAw3O/cgW7fPspqt2tH4xdAYGCgPiEh4fCqVau+bPDkz/CbwHgjKUbP8Nvw3nvvjVapVLvnzJlj9LdoMfU/hPDwcJw8eVJ+7bXXnsm7AyR0Ym7+h/drrhWFhUTJKysjYy8tjYyrixcpC+nlRVFpNzcyhp2daTP8g7Kuhr6pnp6esomJieDq6opm/4UWTQDVEm7cuBG9e/euUzW6sLAQoZs2yW22b2dxO3awpKQk6cGDB6KRkRHS0tKqHatUKrFkyRLUMDyDg0mspWtXwMcH2U5OuHDhAjp06IC2tQjd/Feh16P0/Hls+flnPtDaGk4//sjw88/kCA8YQPTrDz4gKrVWS4awiQll+lWq31zDfvbsWVy/fh3Ozs5Sz549RYOqfKNqnp88oZrT7dtrGlyPH1OmpKoxPHculWCEhNDxvxPDY//+/TwyMpK1bdtWmjJlyu8bJTpyhO79K68Qu8XGplHXfebMGenKlSuiLMtwd3fH3bt38eqrr1ZjcTx58gTnz5+X4uPjBW9vb9anTx8kJydjy5YteGv4cChatQKaNcP+/fulkpISIScnR87Ozha8vLxY586dqdbAs60nAAAgAElEQVT59m3AzAz5zZrh008/xejRo6HVapGdnY3MzExubm7O7OzssGXLFrRt2xZTpkypfqENCO09jZ07d8qCIPBp06bVfp/j4sjx3LyZAjyNwMaNG5GSkoLBgwdDoVDA3d0darWaKPudO+O+Wo09e/Zgzpw5NfuF+/hQUKQRdGXOOT788EPMnj0b1lOmkJNu6DxRDx4+fIiDBw/ywsJCNnv2bFRzjFJSiKVhYUGskpAQygKXBzwkScKaNWuwcuXKhjszXL1KteNbttC6/zR69CA2yttvIy0tDdHR0YiIiJDT09OF6dOn19lLXZZl7Ny5k2dnZ7NJkybBxsamYbVsgALBO3dSNvvbb6l0qrSUxOROnaJ9acOGOpliISEhcnh4OMvJyeHZ2dmCUqnkJiYm8vjx48UayurlSE9Px7p162BqaoqioiK+dOlSplEqqSxlyBCisXt709oXE1MnKwEPHwJPnuCGQgHN3LkI8fCAe8uWvONXXzEhIoKCNGfP0rjJyiI69Lx5kM3MsG3bNp6UlMQEQYCpqanUoUMH0dfXt/rzKyujQOPcuRR8qA+XL1PAwsWlYq6VlJRg3bp13NnZmQ036Mc8jZwcCspX6VogyzKOHj3K79+/z/V6vTBp0iSDen3d2LGD7IuNG6snGKZMIQr4gAHkEC9cSL9XRXIyaaWMGEF76Ouvg3fqhAMHDuDx48eYO3du4/aKl18m5kd5273CwkJs27ZNUiqVbJ65uYCQECrX+YWI/eorHHz4EC+0aAHbpKRqgoFFRUX4/PPPi8vKytqvXr360S8++TP8Ijxztv8L8Pf3b69UKm/MmDFDW9eC/wx/HnJycrBu3TqMGTMG7euoi/lbQZLIIDpwgDZag1r5nwnOqTb83r1KWt5PP5ES8vDhtFk3a0avu7lRX2BjY6JQ/ganJTc3F59//jkmT56M36QW/itx9epVnDlzBs2bN+cTJ05kOp0OxcXFEEUR586dk0NCQgS70lLZKilJuN2qFRdFkVtYWAiZmZlS586dxaSkJACApaUlPD09q6tB37lDAlJTppBzOn58w1H4PxKpqaQfMH06Rd6jo4Hdu1HUoQN+Hj6cD5s/n7Hz54nGLIp1Z9wmTqRsxcyZv/mS3nvvPUycOBEuddX11YaYGKIHRkbWXQcdGUlZ9Kio6oGi/HyqCdywgajcv0NgJyYmBgcPHgTnXF6xYsXv84BLS2me2dqSge/qSsZip041qbS1gHOO/Px8REZG8lOnTjF7e3v5pZdeqvXaHjx4gGPHjnFLS0uu1Wr548ePhaWXLjH4+jbY4g1vvQXY2kKePx979+7lCQkJXBAErlarodPpxNTUVLm4uFiQZRkAsNpQOw9Qbefs2ZV0/gZw8OBBHhUVxebPn496lesvXSKH7F//qhRJqgcpKSnYu3cvFwRB1uv1KC0tFZ2dneVuP/7ImpuastJPP8VH5Yb4zJkz4eDgQP+o15Nw3+uvI6Xc+czIyEBiYqKcl5cnFBUVwdTUlJeUlDATExNZFEUkJiYKb2o0UE6eXKOnL0DOzOXLl5GQkAAjIyNER0dLJSUlYseOHeWQkBChZ8+evG/fvpULbk4O3cPjxykYlpZGc0OlAk6ehH7QIKxzdcXM5cthYmTU8HiPja0U9KyqjREURI6lVltjvT916hRCQ0OxePHiOjOdpaWl+Oqrr+S8vDxBFEWsWrWqwedSAb2enK4VKygra2lJLAadjpzwRqCwsBBJSUkICwuT7969y1555RWWkJCAc+fOScXFxZAkialUKs45FwoKChg4h4+PD/r7+dEJOKe90MWF1vOoKAoE9O8P/OMfFEh1cAAmTkTm1q0QN21CaWgoX//CC2z40aMI79aNi66uMDt3jg04dw7qqCiIjx9TFlStJmbB6dN4fOQI7p/+P/auOyyKq/2eO7NLLwICgiIqKFVUVARBLNhLRGOJscUSjUZNNDHdGNO+JLYkGqNJ1BjFXkBFjYqIKKCCShMQGwIiSO9smfn98bL0qvjF/D7O8+yzumyZuXPn3rec97znRO7dd5mHh0fDAZKsLOqO8fXXlZT8moiPJ5XwTz+tdj2Dg4PFmzdvisuWLat/vTp/nuZ3PUr3Fy5cQHBwMHr16qUcM2YM3yAbLSOD5uXevZX3u1xOa3N0NI2vk1Pl3IqNpYDF6dO0D61eXU0jIDMzE/7+/sKTJ0/YtGnTWMU9CSpxSUhIqBS3ow/QvP7wQ0BLC/v370dBQYE4e/ZspnbpEjEnmpOky8sD9PVR1rUr/ra1xc0+fbBkyZJq+39QUJAyNDT08EcfffRa07+4Fc+K1prtF4w1a9bw6urqh4YOHarZ6mi/nNDX18fYsWPFY8eOsbi4OLi6utYbBf+fgIqGmpdHjoMg0CbzT9ZSM0YZy6rZoBEj6FkuJwG2oiKKxkdH00Z/+jRlG+bMISPMxoYy587OlBltgl6Cnp4e2rdvr9y3bx//2WefNS3j0YJwdXWFrq4uDh8+zI4cOSI6Ojoyf39/SKVSCILAjRs3Dj22b+fw2msYMXBgVdXz+i2Lx4/JMDt9mujUQ4f+99q3qYSUVG19Nm6kOukxY4jifPQoZQmmTaNr3rYttq9apXRwcGCsb19WVaipXjg5kXH4nFCpQzfrmsvllNFavrxhwTEHB3IckpLo/Sro6BBdUBTpPlywgCjbzRBSqgkrKysMGDAAERERLRNZV4ki9upFtPPyFmo4coTE1pqQDWaMQVdXF66urszR0RHq6ur1DnK3bt1gbGzMtm3bxlQaA/joo6aVuZSWAoWF4DgO06ZNq6u9I5eXl4c9e/YgMzMTkZGRYo8ePeg9CQlNXvMKCwsRExPD3n777YYdbYCCEr17k+L85MkUMGjgd0xNTVFes8oDJGjk6+vLJZqa4v233oKaVAoPDw/l5cuX+WpzNT8fuHULhcXF+Ouvv6Curi7K5XJBR0eHd3Z2hiiK0NLSYubm5njw4AFXUFAAjUuXwMXFEVMBVb8qH2fOnMGjR48EnueZtbW1UFhYiMGDB/OOjo74+++/OXV1ddja2tKJZGWR43LpEjnb+/dXBscCAmitFkVItLSg26GDcP/TT7me58/T2jR1KgWipk8nzQAvr8rx6dKF6mAXLCAHu00b+o3XXycHqI5xHD58OGJjY5XR0dF8nb3bQayf2bNnc48ePcLx48eR9OABLDt1IicoKYkYVT4+tIdYWlKGfd06Yn8FB9Pfbt+mDGVKCgnYqa5Br17UuSMoiPYiQaB5eeIEMQ/69oVWRASsrlyB1ejRXPeUFDHx6FH0vnED7RwdeYWbG9Tv3oVWdDQKunZFqY4O8gQBXb75htaRkSNpn46KIo2BR4/oGIYNo+Pbt4/uzYMHkWdhgSubN6PEyEhoa2ODrurqSO7Th03p1Ytpl5SgYNUq+OrpIXPvXgwdOhS2v/8OrkcP4O5dKBQKPAgKErsqlazzkCG0Tm/ZUr8AoZERzfPVq4Eq3RAqkJVFY/vWW9UDJwByc3MFU1PThlk4Ojp11jmrMGTIEDDGcOnSJd7BwQENlgmamNCaEhBAAXoTE9L++OEHepw5Q3MrNJSCKePGEaW8nsBi27ZtMXPmTO78+fPi7t27YWlpKUycOJErKCjAnj17RLlczu7duwd7e3u4uLggMS0NspAQUVi2jHXfvBnZ2dlKa2trpqamxvDRRxQ4aaqz/fAhBV1SU6GemIiOt27hpp8fbt++LQwYMIADKLgUGhoqKysrW9O0L23F86LV2X7B4Hl+hbGxcac6e4a24qWBk5MT09DQwK1bt5R//vknr6enp7SwsOC9vLyevR3Tvx1LltDzp5/SZhMR8c8eT32QSisdlqpO1pw5ZNQlJZEBIpWSgvOuXbS5JyaSk2lvT1kcW1vKTHTqVJHhDQkJwePHj/kOHToIjLF/JO3r4OCAdu3aYceOHfD39wfP8xg1ahQcHBwoU+PvT/WyjaGggATrXn2VMkO7dr24g5bJaL707VuptD1rFrVe+e03ygZlZZFTeewYZfi0tckgBSqcNUEQkJeXxzdZTyE0lMaiZv1dM5Geno6dO3eKbdq0Qdu2bZu2dufk0DyKiakumlYfioooixIWRkwMFaRSclBycigTGBZGCsgODs1mHoiiCIVCASMjI+Tk5Dw/hVwU6Ti6dKFM4mtVkiKmpuT82NqS0FETmQVNWV8NDAwwcOBAXLx4UXznnXfoerz+OrUjaqiE5O23G3WY9fX18fbbb2PNmjXw9fVlPXr0IGfo7NkmHT+AinrbJvdi19QkCv6ePURfnTu3yQGvHj16wN/fH0U6OlRzunkzLl++zEul0mqiUMVPnkD55An2+viIhoaG4rx58zjUE4Tr1KkTcP8+dp89i5RNm2BZ5Zrk5+dj69atgrm5OYYPH845ODigZpowNjZWHDNmDGtnbEzK22VlRCH/7Teqd09MJJGzPXtoDqvGydcXY9LTua1bt+LO6NHKKQAPZ2dagx89ovMrLCTnNiurUtTQ15cYLF98QQ5dcHCF6BNEkQLFWlr0WapH5pPXroXdmDGQjh8Pcfp0ZK1YAY1Hj6C2bh12vPmm+MqGDUwwNoauhwfad+2KtIMHYRYXRzTju3dpvRw1ipywp09pDbOyIjo5QMfSsyc5Y7t30/3QqxcFp/bsoePj+UpthrqC2IzBShAYGAPjOFTrEcEYDMtbwx395Rcx7eOP2RBVZrsmZs+m37W2Js2BIUOADh3wsHt3QUtXlxvbrx/HgoJofD/5BFi1CkJODoqiouC9ZQv8/Pxw4sQJkT9+HHr5+cxs6FBEREQgvH9/0ePddxlkMjqXNm2I3pySUrfjOWcOBVDPn6egrgoyGWW0O3akHuU1UFhYKKpa89WLNm3ovBrA4MGDERMTI9y/fx9WVlYNL54zZ5LOxsiRNM+2bqX1/IsvaO/csoVYR999R4G4RkqUOI7D8OHDWd++fXHixAlxw4YNAAB3d3fR2NgY6enpLDAwEIGBgWCMoeewYdBKSBB//vZbVsLz/LBhw2iOLFjQtODxxo3E9gsIoLKCcufcyckJfn5+uHDhAhcTEyN06dIFOTk5DEDA6tWr4xr/4la0BFqd7ReINWvW9JFKpWsmTJig2aDAUSteCnTr1g3dunXji4qKEBMTwyckJCg3bdrEvfHGG8ysiYqu/y/x8ccUJc/JofrepvYHfRmgrV3ZygVARa9KQSDqWEYG1XUmJ1PWe/9+qiFbtQooLYVebi5csrLEkRMmcCgsbFp7pBcAIyMjvPfee+zy5ctwdXWtpEPm5ZGz6uhY/4cFgYydzZtJIOzKldr9Q58HsbH08PYmKt4bb1DW8YsvyAhu144MTWtrYiCoqIdTp9Jzr151fm1+fj7++OMPwdDQEB06dGial7lgATlhH3/crFMQBAEpKSkICgpSKpVKLi0tDb179xaHDRvGNWntTk4mw+z06eqZ6oago0PBgbrqTwFyUo4dI+ehVy967NjRqPMoiiLKyspQVFSEw4cPC0+ePKkYu6ysLDyzZkh+PhmY77xDRumaOpIi6uoUmNPToznRAgwDFYqKikRzc/NKzYGYGMqiN0TF/usvGq+q9PB6YGFhgeTkZBw5ckSc+PHHjE2eXNn2pxFokMK4kJ6ezjWoglwVpqYU0Hz//UpWRxPtBLlcTn3C58yhdQuVSuwAZa6O7dghdhEEpqmpKb722msN3z+CAMyZg866uuLd4mJmJpMhPDwcBQUFiIyMFG1tbTFu3Lg67wVBEFBaWsr0798nJ1OppDVg/vzKN0kklCWuA6GhoUqJRMK3UfUK//DDyj8WFdHziBE0/wDKQB48SLXJ7u401x4/Juf7yRMK2Bkb07XX1wcWL4ZzSgrU09KEm7/9xgUmJmLiw4e4cvq0IMpkrJulpejk5MRZ7N8PCyMjyNLTsU5XF4PMzWE2cSIFm4HqwZeTJ+l52DB6AMTyCA+nTHtkJAUahg4lJz0qioIFU6Y0qi/SmHheWloaCgoKUKcgngrff08OYVAQHdM33wBFRbjaowdLS0vD5agoMENDiIcOQWfAAPEVuVzMf/qUO3XgANrn54vybt1EpVLJHR49GhAEtPnxR2Tm5cHe3p7U/CUSChYBtPcYGlKAysaG2Aiq4KiGBmW+f/uNGGWGhrSeXblC12/BgjoPv7CwkDV6H928SWM9YUKDb2vbti2XkZGhbPjLymFnR/Pr8WMKkOTm0nkJAq3tb77ZbB0QAwMDzJo1iz9+/Lh48+ZNNmjQII4xBkdHRwwePBglJSVQU1ODVCplWLgQLm3aINTBQezQoQODiu3R0Lrw6afEBBk8mMp6AApilIPjOMyaNQvGxsaIjIzk4uPjxfT0dCaXyz9p1om04rnQ6my/IKxZs4aXSqUnvL29NWv1sG3FSw1tbW3069cP/fr147dt2yZERUX9bzvbOjpEedy7t6J378vanqvJ4LjK3uHl7U4AUHS7tBSK5GQE7NihzMvJ4WyiohjWryeHPSSENt6xY8nI69aNHAwbmxcm0lZ5yBw8PT2rv+jrS3TEw4fr/pCvLxle331HzlE9jm2jkMvJyNi6lQxZKysyHH/9lRz5sDD6/+uv01zp2rVSTEbVkx1oUNm4KnJycrBt2zbRxsZGHDduHN9kKvetW806LT8/PzEpKUlZVlbGKRQKzsTEhCkUCtHOzk4cOnQo3yRHWyYjI+3cuSb1Oa8Ge3tqu/Xuu/UbjYwRSyArixyzR4+q03JBjlZJSQnWrl1b8ZpUKoWRkRFWrVqFoKAgXLlyRdyyZQsbOHAgXF1dwXEczp07pxRFkbVp04a5ubk1rHrfvz/1T75zBwgMrD8Ta2NDTvDIkTQ36xNpagYUCgViY2NRQfEGyKHJyWn4g717k/PXBMyaNQs+Pj6IiYlh97y98c6SJWhOcYUgCM3vUqCuTsJKYWHENlm/vknBGo7jkJeXh6/lcritXw8MGFBNVyA0NFTJFxQwFy8v5jZrVuM3T1QU8J//wMzEhO3x8UFYWBjatGkj6Onpie7u7qx///71Bp04UcQof38YXrxI2U07u9r7Q+fO9dbW5ubmolevXhg+fHj9x6kKkgI0/wEau2++Ibq5mhrVwKsyxXJ55fsfPwYAOFy8yAGAOwCsWQN7QPV7FQcbExODkLAwQcfYmFWba03Fnj00J11cgC+/pPVo/34KPG3dSnTvt9+uzMI/A1JTU6Gvry9wHFf/ZGvXjtZ8Q0Pg778hxsdD7NEDmR9+yD7+7DNIJBIoFApwHIdbt26xaGNj5tCnDz6WycDc3dm1gwdZSdeuCAkJwcJNm5BoZYXzo0ZBQ0NDKC4u5qqJbKrafioUdG4dO9I+mp9PdPp+/ej8w8MpUL95M60LJ0/Wux8IgsDu378vDhgwoP5r0LNnk7oEZGVlKS07dKBgeXo6sS5UHTzu3qX5IpUSQyE0lI4pO5uCX2ZmFLDYvJkC85aWFNxqQN2+Pri4uLD4+Hix6iLLcVx1BfwPPoDeypUYsWIFvSc4uP41LiCA7ot79yiIPWlSvWutqm2gu7s7SkpKFBkZGftWr14d3eyTaMUzo9XZfnHw1NXV1bZXZdRa8a+EXC5HYWHhP30YLwdef50yMJGR5BycO/fcas8vJTQ0sOnkSUFo25bvO2oUTL78kjZdUaRI96NHRE1PSyOBl19/pc3unXeIXmhkRAZzx470bGj44oITJibVqbwqXLtGho6BARmkjfTgrkBJCZ2XsTFRoWfMoFrElSvp9dBQymQMH06qwK6u1Q3hGrWezwKFQoE///xTsLGxESdMmNB078XLixxWVflDE5CcnCzIZDLJ6NGjYWVlBQ0NjebxtM+fJwf7wQMas2fBK680TnvnebrWS5dStvvRI+DYMZQtWoS79+/D398fJeV01lGjRqG0tFQVmOEAolMOHjyY+fr6KkNCQrigoCAmCALU1dU5CwsLdv36dVy+fBm6urrinDlzWDXho9RUCij4+FDt59y5FGhqCF26UHlDhw4tkuG+c+cO5HK56OnpWXkjHTxIAcBz5+r/oJoasT+aAIlEgtmzZyPr++8RfPMmLt++Da9mBFkVCgVrVFG7LnAcBTJSUylgFRDQKINmypQpOHLkCOSiCKf793HPygr3qjgAqampTM/MjOObMu7+/pTNu3IFVnp6eP/99yGKInR0dBq+F+RywM8PirVrkWRjI2osWsScGrJ3OnYkynENxXcnJycuICBAGD16dNPvPT8/cuz19YkhI5XWXzvcBCgUCvzyyy/K0tJSfuDAgaxv377ND5zs2UP1vapWlcHBlc6PgwPVTj9+TKU1c+Y0m32jQmpqqlJbW7vxDWXFCgreALiYlqZMWLaMGzF+PFObNAlYvRpq5fXrffr0QZ85c2hPnzcPePwYbhIJ8M038PziC/xRUACXV1/F/A4d4OPjg7i4OEycOBFWVlbVe8VLJET3B0gU7fFjcrhNTMhmmDePGEC6urR3VNVcUFHrs7MBjsOrr77KnfjkE+xjDNO8vCjAN3gwzVULCwpSfvYZrYuiSOtTTg4Fwzt3pjKNpCTAzw8jjI35QpWganAwsbu6dKHPPHpEAWgDA9q3R40iZzwxkQKGq1ZR4PjmTXr/gQO0Bufl0Tro4ECaC1u3Epujnvs/ISFBjIyMbPyaWVkRQ+yrr+i358ypLS4nl5Pj7+1NwYL9++v9urKyMpw7d05UKpWiRCIRRVFkN2/e5ARBaJzq04oWRauz/eLg2rVr13+mMXArWgyTJk3iduzYgejoaHTv3v2fPpx/HhxHm6edHW2u2dktS0l+CVBaWoqioiJuyZIlaFNVmIox2pQNDKorFL/+OkXKMzIo65+TQ5v6xYvkbB8+TNm1JUvIqOjUierNunZ9/t7hgYFkVKmQkEB0zSVL6PUZM+p39C9dIvVfVf3c1q2kPJ+eTn1FFYrKPsMzZtC/q9Z5N9WBbyb27t0rqqmpsVdeeaWW8S0IAg4cOCB27tyZubq6Vv/jzJlNbqekwoIFC/i1a9fC0NCw8dZDNSGKlL3/8cdqPc6bjffeIwfr3LlKSmp9KBdf2/fZZxiyfTuOJCWB09UVPMeO5VxcXBoVc/P29uYBGse4uDjo6ekxCwsLJCYmIjc3F9evX1euW7dO4ubmpvTy8iJvY/Zsmifa2nTNGztGFZycKIP19tuUOX0OkbeUlBTB2NiYVTu/8eNp/WkIMTEUJJoypcm/ZVRYiK6amrhy757g5eXVZAdQXV1dSElJ4Qya2JO7FiZPJjZA//6UFW2AHmtjY4NPynvlKl55BcW+vhXBFoDq0E3u36d7f9Kk+n8zN5cCIlu3VgRQ6uw1XRNXrlCgMSAABydOVCrNzTnbPn0a/szevXWWu9jb27MTJ06whw8fUu14U3DyJDkh06eTnsFzIjAwEFKplL399tuQSCTNj4zGx9N9PGYM7Q88T86rINC19PKqDAicPUvZ0o8/pqBlPW0d60NmZiYrKyvjwsLCUGsNrIqOHWk9XL0aWd27o22/fqx3r150H5ub0z3ZqRNd9++/r2Q96etTDfaxY5CsWAGn8eNFrFwJ89Wr2cqVK7kLFy7gwIEDcHBwUHh7e9ftQ1ha0iMvjwI53brRvTh/Pq0fb7xBzISLFyn7/8EHVBc9bBjg4IC2f/2F2bt24SctLQj5+eB+/ZWCdj/+SMwpW1taW6ytad/V0qLHgAG0r+ro0Pe/+y7C/v5b1DY0FHpNmtR49OT2bbpekydTEFuhoNcvXaJnR0fa7wG6Tzt0oPd88gmtkx9/TOt4eDgF3ydOBNzdcX3/fjFDV5e5uro2PreGDKF5tHQpOf9nz1YGkr7+msTS7t6lsW1gvRdFEfv27UNSUhIzMzNjenp6uHv3LhhjEa2tvv77aHW2Xxxyy8rK5Ggd43812rVrh7Fjx+LUqVNi9+7d/+Xc6RaCuTllc2NjaTNPSWkSnevfAJlMhi1btgiWlpZimzZtmp7akEhoXFQ1U1V7gy5cSJHynJxKsbb33yfja/JkctC1tKj+0NCQIvNt2zZOSy8spAzPmjVEMb50iWrjZs0CbtwgQ1sU6X3bt9MxBQSQYZWYSGqqU6eS4TNqFP3m6dOVzvmffzZn6FoSzNraWqwrs7R3717h8ePH3J07d/D06VOMGTOGHMyjR2n8mtmeTU1NDYaGhsr9+/dz8+bNY3qNZWxV2LqV6jGTk1umXdrJk5TZbIIj6+fnhztSKe4sXIhOBgaY/d13HLp0IZZBE8FxHByqZD1Vbe369u0rKReH40xzc0VHNTUGPz8yiH/5pVZWslGMG0eG9uPHNA+bWs9cA7m5uYKBgUH1G8LQkLJkN25QPWhdmDKlUsCqKVAogDVroIiORpqvL1dfjbsoikhJSYGGhgZ4noeuri769u3LnTx5Etra2pDJZNDS0kLVlj9Ngq4usQe++YYybQMGNM6K4XlM37oVWxYvRlBQkHLgwIG8XC4XkZ4ugjoU1A1BoLVi0KDqAbuGkJREbI7AQJoLe/fi8bp1bEC3bqy+tloVMDCgcoiqTBhQK6Tyns2N/75cTk7Nd9/RHpST03gpQRNQVFSEtm3bipJnKQWKj6drlZxcPVurqUlreU0BwE6d6OHrSw76jh20b9TTW7smJk6cyF2/fl0IDg7mwsPDlSNGjODrbUvp6gp8/jna/Pwzn5yRQWvVvn30t2nT6Ph27iTHrWqwsUMH0mVISoLr/PksRk0NGXfuwGTIEAwZMgRGRkY4f/48L4piZXY7PZ0cai8vwNOTgp8DB5IS+VtvUYC+tBQoFwrD3bsUMOnXr7KfexUR1vMnTghcXJzILVnCV7CVqrJY9u6lkpUGkiBhYWFIycpii6ZMaXwvV3XIWLqU9pIPPqDsds0SLdUcqapJoAr6LV9eGXjNzqb5GhWF1776istKTYXpN99QJnrLFmIdTJ9eO1V60vQAACAASURBVHOtCn4dPUrBt44dSdR07FgaR5Wz38C+k52djaCgICQlJWHAgAEYMmQISktLsWHDhlK5XD610bFoRYuj1RF8cbiTlpYmB9Ca3f6Xw9bWFidPnmQXLlxAveqf/4twcCB6mJ4eUbpWr/5X08oLCwvx119/CQYGBpg2bdrzKzeroKVVu1fvjBlk7ObkEAU5OZmMtpwcMrp+/pmo64sXU8TfzKwyW6CnRwa4IBCVdts2EgNat45UoP/8k5znKVMoc+XnRy1gevemLErnzvT52NjK41m5ssVO93mRnp4uuLm5VbMkBEHAsWPHxIcPH3KLFy9GWlqaeO7cOezZs0f09vbmdL//HmzaNMomNRG5ubk4ePCgkJ+fz8nlcvbjjz/Czc1NGDp0aOOiaPv3U+bE2vqZzrEW1q+nwEh6eoOU8vz8fNy6dQtOTk7geV5ITk4GoqI4iCIZz05Oz0xPVcHU1BTe3t6scM4c8bEgiGY6Oox9/TU5Wc9SDmFjQ+vDiRPktD/Dd+jq6nLZdWWxIyJoHtfnbPv703t+/71pP7R8ORAcjB63bsHf3x+bN2/GsmXLUFhYCJlMBisrKzx58gQ+Pj6iXC6HKIpMEAQoFAqoqamBMSYcPnyYSaVSobS0lLOwsBCmT5/etNp/Fbp1A/74gwzsQ4com9cApZlzcECJmRnMtbTw8OFDNnDgQGhra7NH+vqsb33jAtC64uREQbfGIIpUW375MolE/f57BSuHMSY2KUi1axe1ZazhbOfm5qJNmzZKAwODxtfcixepVEdXtzJ40wJtC3v27Im9e/fyaWlpaLY+y8SJFLSsKcL311/kmD14UPfnvL2JnfH773Sdv/ySnONG5oqhoSFGjBjBeXp6IiwsjB0+fBiGhoaKhQsX1rbnrayAEyfQ7uhRMUZHRxQEgatgh1y8SHvIjz+S0z9nDu07KSk0vmZmQPv2UAwfjuO6uvC2soJJSQmgqQndkhKoJyUxhUwGac+eFKQ9dowc96gockT79qW5nJhI8/nzz8nZvn6dMsR19HFXQRAEhIaGcrNVuh81cekSUcEbcLQFQUBQUJDo7e3N2jTGqrl3j8Zg7VrKWAMUgFIJ9DUVJiaVQZPduwEAJSUlWP/FF/jE2JgC3jIZ/X3bNhL+O3qUaONpaXQMPXtSIPettygALgjUIs7env7fQC/6vLw8pKWl4ciRI1AqlXBzc6uwWa9evarkOO7k6tWr7zXvpFrREmh1tl8cwjIzMzXlcjmk/2IHpBWU/fL29saZM2eUQ4YMaTkn7P8DrK0pgnv4MBlhz1E3908gNjYW58+fVwLgioqKmLGxMaZMmcI9U4ajueA4yogYGVEf16pYtIicb5mMjJW0NNqcOY6yBjExlKXOyKA6stu3yQAZNYoMGrmcouOGhkTfvXy58rsbUm/+h3Hy5EllcXEx36VKn+bi4mLs378f2dnZ7K233oKhoSEMDQ1Z+/btsWvXLmxcvx7S8ePF18aNYzW7O5cbbbh79y44jhM9PDyYvr4+fHx8lNnZ2bytrS26devGJBIJEhISxPDwcE5TUxMeHh51H+Bnn1GG5uLFlj1xjqMM15dfknFexeA+dOiQkJycDDc3Ny4gIAAWFhbCyJEjuZs3b7JHjx4JFbXiU6eSoXzzJt2TNZyaJuPWLdgeOIDCs2fZlk2bhLcWL2a6Bw+ipsNYLavVGL76ipSH//6bDMdmCkRxHMcUKkpnVaxdS45gfdDWrreOsk6sXUsMAwAfffQRvvrqK8TGxiIoKAgKhQJ9+vRBdHQ07O3t2dixYyto+4IgqP6tChLxpaWl+Omnn7igoCBh0KBBzaM/SKV0Xx86RGO3bFm95TqcRIKOe/dixIUL2PnwIRcbG4uQkBBupoZGhVJ5LQQFEb0/MrJh0UKVcvTKleQIbNhQTemY3iKymJgYwc7Orto5KhQK8DxfOUd++KHW1yuVSgQFBcHZ2ZlPT0+HaUPaBYcP031x5gxRa/PzKZhYj8p5c9CpUyf06tUL+/fvF9955x3WJEFGQSBWkqrfd00sXkzBjHXrKEtcl3PJGN0Xbm6kpD52LPDtt7WDs3VAU1MTgwcP5vr3749Nmzbxfn5+4vjx42vfkGpqsD13jp10c2NXr16Fm5tb5d84joKyX31FTrIokpPH87QeuboidMYMwfXePTh+/TUHY2MIaWkQ587FVAMDUaquzjBpEt1jy5dXtjycNYueRZHmrpkZ0apPnKB53UhbQI7jYGZmJkZERLA6Swt+/ZWCPTt21Pl5QRCwbds2pYaGBtetsf3u4kUKOOzfX/0aGRjQeZw581zspczMTKirq1OUY8SIyj/cuUPP3bpVMpq0tSk4Lwh0PQAKwCYk0Lru40PXa9Uq0ggJCKDsuFIJ8Dxu3rwpBgUFMVtbW+XUqVMrbuyysjKEhITIZTLZp898Iq14LrQ62y8Iq1evLvrPf/6TX1hYaPTMNVyteGlgYWGBoqIivll1Zf8rMDQkx7C0tLJGubH6vZcAgiDA19cXLi4ufFlZmejs7Axzc/N/pJd2LUillVH7ciEbLFhQSQu/d48McaWSstW5uZVORb9+9Pysgl3NRFZWFrS1tZtf8wwyyCUSCU6fPo34+HhlaWkpz/M81q5dK/bt25eZmZnh3LlzAsdxbPbs2axtlah+mzZt8M477zClszMe9u0Ln717oaurqxQEARKJBIIgsIKCAk5HR0fs3r07y8/PF/bv388rFAr06NEDc+fOhba2dsX1dnd3Z5cuXUJISIjg6upad8ClqspxS2P2bDKyaziw8fHxnCAIOHv2LDw9PTF48GAOAO7duydqampWekre3vR88CA5R7GxZLQ1lRqvQmQkcP8+dKRSLD11ivtr+HDIg4LETklJyMnJEfr27ctHRkYK8fHxnK6urqinpyf06NGD69u3LwPIuNTQ0KjeP5sxctKWLSMhqT17mnVIlpaWLDw8HOvWrRN4nhfNzMx4Jycn2FtbEw0zIaHu+T5kSPUe5g3hzh2id/74IwCoqM1iQEAAs7e3F/r06cP5+fkp7ezs+FdeeaXaR+tyzjQ0NGBsbIySkpJnKz/S1CQGzLp1lBELDq6/tCQtDSY7dwLjx+PEiRPi4MGDWZenT+sPasTFUeauIUf7wQNyRA4epHGpp5PByJEjuSNHjiA+Ph55eXnizZs3xeLiYlZYWMh4nkeXLl2ULi4uvKWeHiRDh9L8AvD06VOoq6tDJpMhLCwMoaGh0NXVVVhbW0tGjRpVfUzlcuCjj6D85Rfcvn0btvv2QTptGgUNWiiZMWLECMTExIhxcXHMoSnCclu3Ep09KanubPSyZRB1dZE8ahTu3rkjPgkOVgqCwNTU1ESJRMIGDhzIV5QodO9OTLHHjynzGxjYNCFCAOrq6pg1axbbuXMnCgoKIJPJRFEURQcHB87ExAS6+vooHDkSGunpSElJEVFFfR0AUdj79aN6YG1tat0FAAoF7m3YgBuxsezNBQsYAgIApRK3rl6F/7Rp+OSTT+h76uiTDYD2qq1bae6+8gqN0fDhdL+WZ8gbAmNMrLd+ft++BoNs0dHRKCoq4pYuXdqw0N29e7QmHT1aOxiirk6Bt6dPGxewbABZWVnQ0NAQUBmIqw41tcrypy+/JDvq3Xcp+9+lC12fN9+sLIcRRZrzERHUXnP6dLIRrKzguX8/6+XtjVMffMDk585Beu4c8MMPuHbtmpIx9vfq1avvPPOJtOK50Opsv1g0EHJvxb8Jurq6GDRokNLHx4cfM2YMerZAO5v/d9DQoDonOzuKwvbo0TL1rC8IERER0NLSEocNG8ZQ0wB5WcEYZavMzMjpLisjqttXX1W2vvkvIT8/H4cPHxZSU1M5nudhamoqjho1ipmr6tbrQEBAAHJycpCXlydmZWWJpaWlnFQqFUVRZGPHjuV5nke7du0QFxeH0NBQMMbE9u3bi97e3pxmPcYZ//33sLKxYW/r6CAlJYXneR755T15ra2tYWxsrBoUXqFQoKysDNra2rUsMMYYPDw8cP36dS4kJKR6m7Xly8nY2br12QesMfA8GVY9e5KavJoaIiMjIQgChg0bJvbv37/axe3YsSPCw8NrG3FTphAFOSqKaKpHjzYt+BUeThT0M2fI8V+3Dpru7njz229xPiCA3bp1S1AoFPz9+/cBgBs9ejQ0NDRYdHQ0f+rUKaSmpirbt2/PnTp1iqmpqUFDQwN9+/aFjY0NjFWO8KFDVB+6fTv9RhMZJLa2tli8eDEKCgq4y5cvIyEhATKZTLC3t+ewYAHdC3U520FBVOe5c2fjP5KURMZ3FcyfP5/l5+dXBOHefffdZjGb0tPTG+8X3BA4jtbUV18launatUTPrYkhQ6CxYQNWu7sDUinNk+++q5ty+sYbZKDXpw9QWEiqzuvXU6b19OkGD9HR0RExMTHw8/MTJRKJ6OLiwhkZGUFNTQ0BAQHC3bt3+aSkJLQ3M1POdHLioVTiRmQk/P39IZVK4ebmJjo4ODAdHR2cO3dOEh4eDmNjY7i4uJCQ3/Xr4LZtEx795z8oLi7mog8fxpsyGcz696e51EICnRzHoXPnzlxsbKzSwcGh4eucm0vq2uPGVay5giCgoKAAmZmZKC4uRllioph26RJy9PVFz9BQrvSrryQA6YLk5+cLW7duhYeHh9CnTx9OW1ubrvXs2bSef/wxjf2RI3QNG1nXTUxMMHXqVAQGBio7d+7Ml5aW4u+//644L3OOE2b4+HB/6euznKFDUSsB9MUXteeKRIIjSUlwHTqU6RgbUx3z4sUwXr4c7WbNEnmeb/igtmyhdeznnysDIhoa9Ftz5zYs3Adau2/duqUEUP1afPoprW0nTtT7WW1tbZQHNur/gRMnSBvh2rX62S8REZW072dEZmamqKen17R1IyaGsun79wMbN5J6/48/Vi+POnSInm1tK7VhwsOBsjJwjIFbsQJyfX2E//KL0i0qild8+y1CQkJkZWVlnz3XibTiudDqbL9ACIKgwRhDfn4+5HI55HI52rZti/8KRbUVLY4BAwbwBgYGOH78OCwsLOoUzvmfx+LFlE0bNYpogyo62UuIqKgo0dHR8d/hZFfFe+9RjXdQEBkJqankUBQWNtoy6HmRn5+P8PBwRERECMXFxZyBgQFbvnw5srOzcevWLfz111/iu+++W60FUmlpKZ48eYLbt28jMjISnTt3Vnbs2JFzdXXlunbtitzcXKatrV1NBdnDw4OVU7kZahpbVbF1K9XrduwIQ1A9Y0OQSCQNrr88z8PExERZUFBQtYk1OSaC0NjwPD9MTcnZLiwEDA2RWU6RreloA4CHhwcXFBSEOum3PE+ZyIMHqdRjwgQy2OpTkFdlS2xs6LO7d5Px/8UX4Hgew4cPx/Dhw7n8/HxkZGRAV1e34je7d++OuLg4+Pr6cpGRkUxNTU0cN24ci4iIQEREhPLSpUu8ra2tcsKECTyTSkkwautWyla+9VaTh8bAwACampp48OABhg8fjoq6/nnzqBa8vJdsNTg4NN1YHjy4lgOqo6NTPUPfTMjl8mdifNSClRXRi5cto2taMwvHcZSRPHmSMuEA0VFrrgepqZTVrk9Mz9+fmEmurlRjXVO8qR68Ru0HK4KWBQUF+OWXX2Btbc2pq6sLycnJ3KOUFH6np6dQsHEjyy0uZpMmTYIoiggICBAiIyO5KVOmsKioKLRr104MDAwUnZ2duTNnziiNv/+eM5XLuaeDB4slpaWCYVYWVyIIuJ2aCotLl5BVXIxbiYlKU1NTrmfPnqy+oFxT4O7uju3bt/MhISHQ1dWFTCZDdna2+PTpUyEnJ4eVlZUxDUEQ3/jySy7knXeUmQ4OfG5uLgoKCsSSkhImkUigrq6ulEgkonNEBD8oJoZp+/oybtkydBo9uupPcampqTh48KAYHByMjh07Kl977TVeTU2Nsss//0yBhGnTaE3YuLFBNX+ZTIaioiK4ubnxpaWluHr1qqijoyMOHjyY69mzJziO44TkZNiUloonT54UZ86cWT1At3MnrRcLFlS8pFAoUFJSAmdnZ5oLM2cSU8TcHHbh4bUz5FVx6hQd95df1mZXTJlCQeLGrwV36dIlxMXFwa4qO2XSpEbFIMuFCYW1a9dyQ4YMEfv06VP9WK9dAzZtovuloftz4UL6+7ZtjR5vfUhLSxNMTEwad7bj4khf5ZNPiFo+fz7NgaZ0cZBIKgKXup9+ioGLF3Ppjx9DiIvD7du3ASBq9erVMc98Eq14brR6fS8Ia9asUWOMaUVFRSEwMBA8z0MikYg8z7M333wTjQo2tOKlhIODA+7fv6/ctm0b37t3b3HEiBH/PmftRYPjSMVTU5OMw1dffWFtop4VhYWFyMjIgLu7+z99KM1DTg45QlWNFSsromZGRVHW6sqV528pVo7CwkIEBgaiqKgIjx8/RkFBAfT19cUBAwagvNUUA8gpsbCwYPfu3RNPnjwJe3t7XLlyRVluoHJqamowMjJSent7c3Z2dtUMD5MmqvDWiWPHyElsZsuv+lBYWIgHDx7wlirtgQ8+IPpuaGiLfH+j4DgyfLdtgw9jirtPnkgcHR1rZ3dAgYGePXsKR48exaJFi+qmkLi6UpCgRw/K3F69SqyIqnW30dGURbt9G9i8maisGzdSdqXGPNLT00NdYlh2dnawsbFhqVTvzCwsLOBIbZ744uJibNq0idu3b58wePBgLjU1FeY+PjA3MKDs1+LFTR6egoICKBQK9K2a3X30iBT562qVJQhUC9sYYmOJillU1DC1upkQRRFV9QeeC/37ky6Duztlppctq57xHDAAOH6c/i2Xk/NUpfc2IiNJPDEsrHamND6e9Ai8vSkAoipFeUaUs4aESZMmcQC4/Px8XL58GZ7z53OFQ4dC/P77CiEyBwcHfvfu3eKBAwcgiiKmT5/O1q9fz3x9fZWGISEsbcIE9FuwAJ10dBgAFrVuHVLS04UbZ88Kw0ND+eicHFY6ciT/6NEjZWBgIO/i4iLY29tzOTk5SEhIUN67d49XKBQQBAE8z0MqlYr6+vqitbU1l52djZycHNHOzo6VlJTgxo0bgq6urorFIfI8z3R1dXkjIyO+W7du0NXRQWxkJA68+ioeSSQ8EhLQrl07TJw4kbVv314VWKEJVFpK6vY6OlRr+/hxZbcKAO3bt8fy5ct5mUyG33//HTt37hRmz57NVQRn9PWJlbJ7Nz3n51OdfXmWWBAEPHjwABEREcrExEReQ0NDqVQqeQCinZ0dN2rUqGqBRW7zZgycNIn9oaNTm3E5cmRFZluhUCA0NBS5ubmQSqXwP3IEQ2JiYDxuHMBxeLJ8OfRXrWI4fpzo4eUoLS3F3bt3UXjpEnqePg2N1aurabgoFApwHAdOVXP8+usNZuwLCgrA8zyqMaWSk6m8YeLEBuefmpoa3n//fe7ChQs4deoU6927N2kHiCLVex85QgyexkoQli0jIcHnQFZWFtcoE/LwYRIg3LmzUnTT1pbGr1MnKnFpitaKXI6ckydRcPkybi9ahL5qaggODi4sLS39+rlOohXPjVZn+8WhiyiKXHBwMIYMGQJ3d3dwHMd2794t+Pr6YubMmVyDtSSteCnBGMMrr7zCd+vWDQcOHGDu7u7Plfn4fwuVkVdUVNkC4yUSCoyIiICmpiZsbW3/6UNpOu7do0ydSo23Jrp0oeycVNqkmrjGcOTIEWVMTAwvkUigo6MDhUKBSZMmwcHBoU7aPWMMrq6uyuvXr3OPHj1i1tbWGD16NGdgYAAtmg8tu+AVF5PgVgtCQ0MDenp6uHjxIkpSU8Xhy5Yx7tVXW/Q3GoPP3r3CsNWrOfUBAyRTvvoKNYMTVeHl5cWtW7cOycnJsKhP3bc8Qw2A+q9fvEhlHjxPWd+OHYktoa1NmZRVq8i4b6Y2BcdxdR6DlpYWXn31VbZ//36WmJhY8XpbpVJ4/ZdfuKPx8WKaiQnT1tZW8jzPFRcXgzEGjuNEbW1tsU2bNpylpSVzd3dHRkaGCIBt3LhRXLlyJc3BQYMo8yaKtY33lBQKMDQGe3vKdrXwnqyuri5mZmaiQ4cOLROUlUopa/jDD2SgjxtXmZkbNowYEUlJdO///TdRblX4/ntaP6qOUX4+XWtfX6L2jhnTImOQlJQkWFhYVASA9PT0MHr0aCA6Gjr6+rXKB6ZPn878/PxgZmYGmUwGqVQKtYcP0e/IEc5/zhwB5GgDAJzOnQM+/5zzdHfnoKsL+x49VGUS/MOHD+Hv7y/euHFDUFNTE9u2bcu5ubnh6dOncHNzw507dxASEoInT55whYWF6NChg9LS0pK/efOmoK6uLnp5efE9evQAX59x9uabMImPZ5uHD8ekiRPRYG13VhYFme/epesQHk6B0BpQU1PDokWL+N9++025Z88eYd68eZXdEDQ0qF73/n26L8+cAYyMkGNnhz///FOUy+WipaUlN3/+fJiamvKpqanYtWsXk0gktXUEJBJomprCKTSU27Jli8hxnDB27Fj+6dOn0E9KQmlQEMISEvD48WMAgLa2tmhvbw/d27eFe9HRvM/Ro4JMJmPm5uYsx8mJdVq2DFtCQlCqqQknJycxNjaWGRcVCaZxcdz+tm1Rcv26UHDhAufs7CxGRkaywsJCGBkZYcnbb9NY3L5N87Ee5ObmQkNDQ9DX1688kdOnKUDXiLMNAPfv38e1a9cwfPhwgTHGQRCo1vvePbp3mmKP2NiQWvygQY2/tw6UlxawznWxblTw8aH68J9/rt7dYtQoEmn75RcgKQn5W7bg/v379ZcwlpYiZf58MeP2bXZiyhTMHjsWycnJyM/PLwBw6plOoBUtBiY2pOTZimfGmjVrVgBY7+TkJEyYMKFisZDJZNi8ebOyoKCAHzFihODq6vryFrW2okF8++23mDFjRvN7qf4vol8/evz88z99JACAzZs3K+3t7bkhQ4b8O5gJCgUZqMnJDbZMAUD1luPGkdH9DIGg3NxcXLhwAbGxsXBycsLIkSOh3gLtdVocjo5ESfz88xb9WplMhrT330ebXbvw03vv4fMW/v6GkJWVhc2bN+P1KVNQkJWFnr16gatCr6+Ju3fvYv/+/fjoo4+aXp5UUkJZ6++/J5X72NjK/tdz5pAB/P77z30uMpkMHMfBx8cHjx49grOzs9LNzY338fERO3fuzAwNDYWOxsac5N49aCUk4JGXF9LT00UtLS3RysqKKy4uRlBQEB4+fAgA0NLSEouLi5muri7s7e3FkSNHVt67CxaQVoRKDVmF3FzKKNrbN3ywixaR7kEDbXWeBadPn8adO3fE2bNnN95+qDkQBDrmrCzqN6yqTV28mFoPjR9PGWpVoOHXX6nm29q6sm1gQgJdb09Pqg1toUCDTCbD+vXrMX78eNjXHPeICCp/aaCvd0xMDM4dPIg2mZkok0rRfcqUSgZSbi71MT51ipylH36gDH4d9eexsbE4XN4j2cjISMzJyWFqamro37+/2K9fv8b7gteEKAKhoRC1tXGloEAMCAhgkydPrn2OKpSW0jp89iwFsUpKiFVSDxQKBdatWyd6e3uzuoLAebm5yAgIgP4334jRJiYs5403hEmvvVbLfkxKSsLRo0dFc3NzTJ06tfr+lpaG9HPncEtXV8iVyRAfH88ZGhoK9pcvo+Pjx+zGkiWiuro6GzZsGKso61m0CE/79MGjnj1x5swZqLoC6GdnY/Tp0zg0eTI0DA2F8UOGcNbffIMyT08E29ujqKgIDx8+hFQqVRYXF7OSkhKO4zg4OztjlJER7WMNjEd8fDxOnDghrFy5svo51hVUq4KysjLcvXsX586dE7t164bRo0cziCLw0UcUqN60iQKLTUFZGXULSU9v+meqIDg4WAgODuY++eSTut+wfj0xTTZsqL2vT5xILJbZs6G4cwdrAwNFmULBBg4cCA8Pj+rrfWEhcPYsrvz0E5Sffw5PLy88ePAAfn5+ivz8/Pc+//zzl8Pw+h9Ga2b7BWDNmjWcVCpdMnbsWDg5OVVbKNTU1LBixQp++/btSExMhGsjtSeteHnRvn174cCBA5BKpbC2tmajR49uWsuQ/0Xs3k3GUVgYOYBEMf3HUFZWhvbt2/87HG2A1GqnTWuaY9m/P9FJNTQok9IMqnxycjJ27twJURTRtWtX5ciRI/mX0tEGyGFsbk/cxiAIULt5E5YbN+LG0KEQb97E8ePHYWBggJKSEnTo0AH29vYQBAHXr1+HtbU1CgoKEB4ejqysLKFz585cRkaG6OrqyqytrSuonhzHobCwEN3r6QsbERGB5ORkREdHQ1NTE9a2tmDDhhGNcPv2eg9XqVRCqVTWqYZdL1Qq1998Q9RhlaP9++9ExR45sjkjVgu7d+8W0tLSUFJSwmlra6OoqAhjxowR+vTpwwPA0qVLVfcdHXRODrBhAxznzkW5hgIrKSnBnTt3kJKSAltbWwwdOhTZ2dlMT09PVSte/d7t2bPumvqICKqBbCi7XVZGrfGqUq5bCAMHDsSNGzfYTz/9hPnz56N9+/ZQKpV4blYbx5EDff481eKvWEGO9IoVxFZgjOpNAeDGDXrvpEn0elQUMQHkcsqqWVk9/4lWQUZGBmQyWd1O6N275Hw24GynpKQIk06c4DS7dYP8xx+r972OiwNee60yK2loWK9OxaVLl5RWVla8p6cnLCwsWE5ODvT09FCvwnVDSEqioER0NJieHgxv364on6kXGhp0j5WUUN3t2rWUga+r3AGkJ+Hl5cWOHDmCvn37ipaWlszU1FSl1i5ER0dz2traStOFC7mhdnYwXrSIQ0kJlQ5VcT4tLS3xxhtvsK1btyI8PBx9qoojmpnBNDAQI3r35sS334ZSqYREIuEwfTqQmYmu3bpVH5vERCA2FsZbtsCYMYSHhwvt27fnBg0ahMzMTHSytsanUVHA6tUcfv8dST8dwQAAIABJREFUmDYN6q++iqHVT4338fERNTQ0lK6urvyuXbtgo62NLl98QUGTemBhYQFRFLlTp04RK+LaNZrDSUnV3icIAu7fv48LFy4os7KyOLlcznieh42NjeDp6clDoaAyE2tr2j+b4zSrq1OwrpmOdkZGBo4cOSJkZ2dzU6dOrf0GuZw6RowbR6J4dQX5VqwAzM1RrKWFuFWrxFFaWpD85z84e/asGBwczLS1tZXTpk3jzXR1ISxahGItLZwfMgRdHj/G+vXrhcLCQg7k49XdH60V/1W0OtsvADzPLzU0NDSpz7ACgMmTJ2PTpk1cZmYm2rZwNL0V/x28/vrrXGJiIrKysnD16lUkJiYK7dq14yZPntwqglcTqnqjr76ibIyf3z92KKdPnxYLCwv5xsS0Xirs20c08abC3Z0CG2PGkLHQiCORmJiIgIAAISsri3N2dhYHDx7M6lLsfmnwxRcUVGjpoI2vL2UE09PRY8wYPOY43L9/X0xOTha1tLTE0NDQijHheR5nzpyBuro6zMzMhI4dO7KbN2/CzMxM9PHxYVpaWigu73PM8zyUSiXS0tIwdOhQ5OXlVSgCb9y4UcjPz+cAMjBnzpxJ9YW//too1dHa2hocxyE1NbV+GnldyM0lpokqExwcTI7bunWVWdJmQBAEPH36FEFBQbh//z43bdo06Orq4tKlS0pTU1OoHO064eJCTti+fYC+PlJ698bBgwchCILg4eHBDSzXe2hQkHLhQrp2NbNeqgxaQ5BIqG79BUBLSwtLly7F0aNH8ccff6B///5CSEgIZ25uLnTv3p1zdHR89jIkjqNWSjk5VGsdFkaOs6Mj9TTOzqaMXF4eOTWiSCrXnTuTovmUKS+kW4Senh4YY5DJZKiVPZ46lR4NoOjqVTFz7lz0Wriw9lyMiakuGBURQWtbHUkLURRhYGAgdOzYkQMaF09sEBoaxCTQ00NqaiqOHTuGsWPHNsxqu3+fAlerV9P1KClptCd4jx49cPbsWcTExCA2NlZZUlLCM8ZEExMTvPnmm6gmtLV7N2lW7NhB93KVtdDAwAATJ07EkSNHYG9vryrjISxfDkREgJW3SARA8/+DD2oHpfz86P3l95RMJkOHDh0qhQMXLCBKtpcXBbyqCB5mZWUhLi4OOTk5ePDgAZsyZQrfvn17jBs3DscPHRKXZmUxXhDqnYPa2tqYPn06du7cCUdHR3SwsEDxihW4GxmJtLQ0ZGZmIjc3V1lQUMBLpVLY2tpiwoQJLDIyUoyKihInTZpEYzVnDgUtZ85sWAytPnzwAQUkP2uamHdSUhL27t0Le3t7bt68ebXvAaWSmCQKBfVXr29vjozEk9xc7Dp0SOzXq5fooVBwEkdHODo6srKyMly+fJkd2LwZvSIixCxtbXbHzg5t9fWhr6+v7NWrF5+QkCCPj4//6dNPPy1s/km3oqXR6hG0MNasWeOloaHx7ZQpU7RYA1QXPT092NjYCHv37mVLly5lDb23FS8npFJpRfTe1dUVV69eZYGBgfjuu+/QtWtX5dSpU19eZ+Wfwo4dZPRt2EAbfFNa8rQg7t27h4iICPbmm29WtiN6mbFnD2VH4uKa/1lXVxKHyssjg2/t2nrfGhgYKCiVSm7YsGGii4vLy78YxcdX9iFvCSgU5NwuXUpiYYyB53mMHTsWqKKyrFLozcvLQ/v27Ss+zhjjAGDUqFEAwPn7+yM8PByampoYOXIkunfvjoCAAFy5cgWh5WJr5ubmKCgoEAsKCrilS5fWdga6dqXs/Zdf0n1TB+7duwepVCo2i6WRm0s08R07yNF8/Jgoxe+/37hjWgfCwsIq2gxZWloKM2bM4KzKs6VNXgOlUsrI/vADdo4YAQ1NTdSijzYEVV16ly7V+0FbWlLmryGYmNBYjB/f5J9rDvT09Coc6qioKMydOxe3b9/mwsPDlRcvXuSnTZsGyypCUs3G1KnkdA8fDnz4IdWXpqdTK7R58yjQ2acP1er37EmZ4eb2Xm8G9PT0oKWlJUZHR7PevXvXfoO5OWUp62qJduYMhvz6K39vz57ajrYokkBc1Tr0Dh3qdVb69evH+/v7Y/To0Xgu++r114GxY5G9YAHCz54Vr127xmxtbVHnuamgUFCtdVlZ5dq9YQNdlwZo0P7+/mjbtq2wcOFCDpUaF3W3pnR2psdvv1HG188PpW3b4ujffyusra3h4uIisbS0VB49epTNmDGj8l5yciJGwy+/kAAYQLoNNZXnS0spMF4lOKKlpSXm5uZWvqesDLhyBfKoKJxxcRHjN2wQlUolk0gkYmlpKWdiYqKUSCSYPHky37W8l3T37t2RkJAg+KakMIvffuPsZ8yoN+D09OlTMMawd+9eOIaFIdrZGdqXLgmGhoaiqakpc3Bw4Dt37qwKXPLl38+uXbvGFMXFkMybRyye4cOfXTOmT58mO+m3b9+Gr68vBg4cWLf4akYGdWj59FNytOtJyuTm5qLsp58QYW+P/u+9J3p4eHDswgViqTg7Q11dHV4DBnAuH36IVGdnsf/mzUxaeb/wZWVlOH78uFKhUGx6tpNuRUuj1dluAaxZs4YBcOB5foJEIvlg0qRJWk2Jok6cOJFbt26dsGvXLnHcuHFcayupfy+kUik8PDyYu7s7UlJS8Ndff/GpqanVDPJWlIOxyl6xMhlF/Gu2B3lBuHz5MszMzERzc/OX36EEiGb2DJnGCmhokHprQAAJitVhmKalpSE7O5u5ubkpXVxcXv4AUUYGGYstKWYVHU31cwsWEHWwHkgkEujq6kK3kRZrcrkc7dq1UxnNAAAPDw+YmJjA2NgYSUlJYnBwMDM3N2fjxo2rP+vWuXO9RmJhYSH8/Pzg4uLSvPKVY8coG6quTnTGTz8lA7yu/s2NIDMzE+fOnYOxsTFmzpwJXV3dZ0+Vzp8PXwMDhdf69RL9efOa91nGqBazptP68CG9TkGTuhEYSMq/LxCjR4+GnZ0d7OzsOJWQ3IgRI/grV67Ax8cHY8aMEXv06PHsa5KBAWU6lyyhDNymTSRwt3QpZdGKiqjv9n+JzcNxHDIyMur+44cf1q0lkZkJWFoicPp0waKqKJYKCQkkeFf1WnXvXm8pSWhoqNLDw4N7rkyGKAIGBkhQU8ORrVthYmKCSZMm1SmsmZ6ejpMnT6Lfgwei4/79DB9+SIJeamrUmq5HD9IOOHiQMsE18PDhQ8TGxsLLy6t599CCBeRQ/vknin18UGRvLwlISpIZGBjAxcWFP3z4cG1hpokTSRRR5WxbWNBeUxUREeQMlgfgCgoK8PTpU76XKph1+zZw7RoyZDL4zJkDVyMjvAFw8lmzUFRUxDp27Ah1dfU6F+mJEyfyaZcuIfPoUeHHzExOU1NTaW5uzvfp0wdWVla4ePEibty4IYiiyA0ePFjszPOs3Q8/YMyhQ2BSaYPjY2RkBGVZGYS5c8mhHTny+faK6dPJyW0Acrkcp06dUt6+fZsbN24cq5PVmppKKuiDBwMeHnUGXARBwNmzZ3Hjxg10+/JL5ZChQ3nDtm3pfK9dI/aKnx9pt7z/PnS3bYNt7961xuP69esCx3FnVq9e/egZz7oVLYxWZ/s5sGbNGic1NbVlUqn0VTU1NamNjY3E2dlZvakOFsdxePfdd7mNGzdi+/bteOutt6Ctrf389Vyt+MfAGIOFhQUGDBig3LVrFz9mzBj06NHjnz6slw8DBtBj7VoyDJOSGhQ9aQnExsbi4cOHGDZsmICWVsZuaSiVlKHbsYPonk1EuQCj6OLiwgRBgIeHBzg7OzIWrl6l1jFXrlRzKA8ePKjs0KED5+np+XKPiQqenjQmX375/N9VWkr9TP/4gxyzFsCJEycQGRmJsWPHVjOCNDQ04OTkBAAwMzNjTdLr6NePnItDh0gYqhyiKOLo0aOCvr4+hgwZ0nTj/PFjql08cID+7+9P92Fj2d9yCIKA4uJinDlzBnFxcRAEAb169RJGjhzJNVtwqgays7MRGRMjWd69O/SehcmhqUkORFW2TIcODTva69cTjf05j70xaGlpVVOuLiwshEwmQ79+/WBoaAhfX188ePBA+corr/DPrPthZUV08TFjKLjGGN3rW7YQxfi/yJ6zt7dnd+/erbNlHaZOpXZKVengMhnN72nT8MTKCpZ1jUFEBGWZqyIujrLIdQSKyjOsz34SYWHAtm24PHeucCk4mOvTpw+GDx9e5yAGBgYiODgYkpISiCdPsmwNDehMnUoU4qQkcvrS0+m6lGd4VShvN4gTJ06I9vb2qm4PzYOWFrB4MR7k5QntwsIOuIeFjTv59KlaPgWxa39fv37Ut/3IEWrNyfOU6Z4xozKL6+9fraVicnIyysrKKNB46hSxbiZPht7mzSj44Qd0dXVlbRcuJOe0xjnWBMdxaL9iBdo/eMDZ9u+PBw8e8PHx8cpjx47xpaWlMDIyEkaOHMnZ29tXtJdEVlaT5jCfk4M3jh7Fwb594ejpiZ7Pa08/fUpzMzW13t/fvXu3kJeXxxYvXsz060ochIcTHf3rr6n8qQ6cP38eERERYjl9nlm+9hoPnq9c95csoX8XFFDd/wcfULvCOhAVFVVYVlbWKor2EqHV2X4GrFmzRkNNTW2jurr6bFdXV7Xu3bvzz5qVVlNTg7e3N44ePSpu3LiRGRoaitOmTWOtddz/bnh6evLq6urw9/dHYWHhv6+f838LK1eS8ZWWRkJQq1a9sJ+6c+cOjI2Nhf79+7eIU1lnTWJLgePISWhmTbKvry8KCgpYWFiYWFZWxhISEmBkZITbt2/DVEsL093ckHz/PvTU1FAkijh06JAok8n4jh07Khlj/w5nOyioXlGkZqOwkJzssrJnq+erAYVCgZs3b2LYsGFi7969W8a7yc6m7NXo0RVCPVFRUUhLS8Py5cub55mtXEn04gEDgBMnSChr+/ZGa3eLi4tx5coVhIeHizKZjOnr64teXl7Mzs4OBgYGz134GxkZKfr5+TFTU1OlzqpVPIqKiBq7aVPTRfAMDclBqkrTVSobzkqFhhKNfMCA5z2FJiEjIwPbtm2DUEXMTSKRQCKRIDIyktfT0xOfuUPCzZs0j3/8kVoWAVSH37UrlZEMGkR9tj/6iMZIS+uF1GyXlZUhPj5eNDMzq/s8pk6lIIiPT+VrubkUJJg7F8LWrRW079LSUoSFhSExMVGcXljItDw8qn9XTg61LwNw/fp1PHnyBL169YK5uTmKioo466qtlJoJMSkJqenpYvDly8zOzg7h4eHQ0NAQPD09aw3alStX4H7xIgZFRODyrFnK43p6/KDoaNr3LS2plEciobn27rskRgggJCQE586dg6amJjw9PcX+/ftzzyOymmBpWZySkxPY+/r1DK+LFz1jbW17pffqJaIuh1sqpe4gKvbU3Lk0LwDqXe/vTyVM5bC1tYWmVIr8lSspM/7uu9h+86by6Y8/cqIosiIrK7S9dYsCxG3aUI10Q+jUCXjlFagfPAhbW1vY2tryoiiq9tXK9meCQKUHwcGNOvHIzAT75ht0ePtt8Hp6ygcPH/I9q5aVPAs6dqRyrnro/w8ePEBycjK3YMEC1OloX7xIgYJ33qnX0T558qQYGxvLJk78P/auOyyqa/uuc+8wM/SmooBIERXEXlBRwK4x9hq7JtE0jcbkJca88EjPS56mGI0lGmss0dhLFBURBVGxg4qAgoL0Xmbm3vP7YzP0Lpb3fq7vm49h5s7MLefee9bea689hrVs2ZLG/8CBZbfX1JRq4gMCKPBURVIvISEB6enpAHCu7hv7Ak8KL8h2HeHv799EqVSecHR0dB41apSh4WP2sgWA1q1bY9GiRSw1NRVnz57F6tWrMWjQIN6lS5cXtdz/xejWrRuMjIzw119/oU2bNtUb/Px/hoMDEag9e8g5WBAaPAuj0+lw//79Oh0DWZaLXZ41Gg0SExNhb2+PtLQ0/P7773Jubq7g5+fXoOsJgGr7MjIo81BHxMfHyx07dhRGjhzJYmJiEBISIsXGxgoGBgbsYXY2fmjWjLf497/Z6B078Pv778Nn8GDepk0bZmFh8d9BtN96i2R4pbK89UJ+Pkn5du4kJ+oGgEajwffffw8jIyP07Nmz4QawkxPV3mu1xS9FRETA1NS0bsGe9HSSjbq7U2lBejqdb1VIi3NycnDx4kXcv3+f379/n5mamvJhw4axdu3aoSFvTLIs49ChQ8zKygpvvPEGjUMTEyInoaFk/lUbuLpSb+mkJIAcy6l0oiqyLUlk7vQUsXv3bt6oUSOMHTuWmZqaoqCgACkpKZAkiQUFBXFjY+O67de0NHJY/uknItS2tsCvvwLLltHEXqkkCXlcHGVY9++njNjQoTSeAgKonvXHH2kcXLpU4lpeT+h0OmRnZ7PZs2dX/iWnTpX9/tWrKeATEgIwBs45Ll++jKCgICk7O1ts1KiRnP7okaC7eJHMrkrD3R3pSiV++/57GQCzsrLiv/32m+Ds7AzOeVkn8zqAf/QRAtzdpYs+PsKrs2axJk2aoFu3bli/fr3Qpk0bNGnSpGThtDS8YmmJhxoN5JEj4fPVV2Ly0aPSuXPnmFarFXr37g2FUom8Tp1wX6nkTe/dY/tXr+bMyAj37t1jkyZNQmsKjjx25MPMzMyg0NT0kzVz5zortNq80bt2wfDcObbRwqIwV6fTTZ8+3bi4pVfPnnT+37tH587ly0SyW7cGNm4kD4RSx0nIykLP48dhYWFBgRFrayQePix27NgRQ4YMKVFkduhACqrx42sOYHbsSK0Hi2T5jLGKbSYlicZsTa750dEUTHz9dbAhQ6DctQvR0dFyVFRUcdDlwoULyM7ORp8+fSCKYu1r+cPCKJBFnhxlYGRkBMYY0tPTK4633bsp+PDZZ1RfX4S0tDSsX79e1ul0jDHGRVFks2bNKjuu+vev6KFx6RL4yy/jvk4HRRVlipcuXdLIsrzUz8+voHYb9wJPAy/Idh3g7+9vpVQqz3Xr1s2hf//+ioYkwkqlEs2aNcPYsWPZnTt3sHv3boSGhspeXl6sY8eOLxj3fyEEQdAbI/GoqChWW6IXGxsLURTr5i783w4fH4rWhoXRZO/mzXr1tawKGzdulAsKCoTevXvXOKG5cuUKDh06xLVaLWvSpAlcXFxw/vx5CIJQnJHS6XTCEwuEWVjUK+N04sQJaDQaoU9Rls7JyQlOTk4iAGzdulWOjY0V+vfvz1rOnQvVq6/i/U6dYHD5svC06jgbBArF49edck4y+h49KpoC1ROxsbHYsWMH12q17K233no8Q6bKIAgUlDp8GDdMTBAVFYWJEyfWfpBwTgZg775Lda7ffENS0iL57ZUrV3Ds2DGZMQatVssYY5BlGaamprC1tZUnTpwouri4NHjwNzMzE8uXL4dOpyvboogxkqlGRtJ679pVpZlQGXz2GTmQf/st/W9nR9ncyjB4MGUat2597O2oDRISEvDo0SM2ffr04km1oaFhsSt9mzZtar9zP/6Y1n3qVODsWVJo7NtH7/34I6kgVq0iEpOcTMd/82bKApuaknt7nz40roYMoXPq7FmSuY4bR6ZqL71E5OXjj6nuW5bpUZ0DN1BMYuTKWrEB5Cj+739TjblOR6R/6dJiYte4cWNeWFgoeXt7i61atYKxsbGw9p13oMrLKys9B4C8PJw/c0Zq+dJLwvDhw5koiiw4OFi6desWXnrpJaY3LqwL5NRU5G7cyCNnz2Zz33+/uD+6vb09zMzMdHfu3FGYmZlBrVZDp9Mhes4cNDl2DJoFCySDhQtFmJpi5MiR4tWrVxESEiKfPXtWaNSoEWRvb7QaMIA9MjPjthkZSNdq5ddff10sQ7AeE+bm5ipZlh0YY/O5Wr3nrylTupsmJTkOWrpUmW1unr08Pt7w7cWLhWJDMgsLUs38/TcFZKKjKROfnl7s8C7LMuJ374bR118j2sMDgc7OGHT3LkyTkqBWq5GXlyeLoliyn729ibjPmUO93V95peoV/uEHMr2rDrt20Tiv7p546xYFkkaNKm5dOHz4cPHkyZPyli1bMGnSJAQFBUkPHjwQASAoKAhAiapEqVRypVLJVSoVV6lUUKvV3NDQkKnValGlUqF1cDC0iYnIcnKCSqWCUqks/mthYQFjY2OcOXOmpN0d5xTwcnOjUjk3tzKre+7cOVhaWmLYsGEsPz+fNW/evDhYwTnH6dOnZbdZswTzH36AasSI4s+lHj+OX1evhrB1K9doNMzBwQEzZ84svt/odDpcuXJFlmV5U/U79QWeNl6Q7VrC399fqVKpjnXs2NG+oYl2ebi6umLRokUsKCiI7d+/H5aWlpBlGRYWFsU35hf474FSqcSFCxe4p6dnjYNm//79uHTpEhQKBRYvXly3/rn/C+jUiWSOhoaU6WiAPvTR0dF48OCBMGvWLNhX5oBbDidOnJB69uwpuLu748CBA/LZs2cFS0tLPm/ePHb//n3k5+fj9OnTskqlatiDU1BAMrHVq+tcQ3rz5k2EhIRgxowZlZpteXt7C3fu3EHHjh0pc9C7N8QTJ2hinZBQrSnYc4M7d2jS/zhBGFmmTPHatVSj2EC4ePEi8vPz2ccffwyD+rreVgcDAzJWcnPDpb17ZaVSWez4XSvk5ABduyLL2xt3164F4uPRaMkS6MN5AQEBcps2bYQmTZqgWbNmuHr1quzq6iq4urriSZUXcM5x4cIFmJmZyTNmzBDMKnPIdnIiMhYTU7OEFKC6xtTUkv+zsqgc48GDistu2UL1j08BcXFx2Lx5M+/Zsyd3cnKq+3WDcxr/gwdTAMLKinrzNmpUMXO/ZQuR5WPHSO6rL2GaMYMeAJ1H5uZUv29hQVlDF5cS6e+RIxTc4Jz2P+f0mWPHiNi4u1NG3dOT6v8XLKC6X6USWq22eL5SKUSRZNXZ2RRk3bq1jOnZpEmTyow3zjlcIiIglGorpUcCgAStVvTp0KGYrHh5eYn1LdvSnT6NU3//LV9+7z288cYbQnmXbF9fX8WRI0f4iRMnWNcHD+Q2Dx4INwUBpj17crf580V9MMDAwABdunRBly5dhNjYWJw7d05uP2eO0LagAHjpJQYLC+DWrcc+rwoKCnD16lVkZWUhMjJSTk1NFQCAc+4rSdJ9AI7p1tYI7Ndv5pwVK9zuubi8zbdsMcWcORTc8PQE2ral82PFChoLYWEUsGrWDKcDA3nGqlUwS01l6d278zg7O9a0aVN+8uRJJkkSVCoV9/DwqDieRZGI7/r15K9RVd20JFFg7KWXqr7nffABZdqrCkqEh1O5yZgxZfwZlEolBg8eLNy8eZNv27aNOTs7w9LSkjdq1IhZWFjAxMQE7u7uyMnJQV5eHsvNzWX5+fnIy8tDQUEBsrOzkZKSAo1GI18dPJgLOTm84MgRJkkSZFlmkiSxor+QZRmyLHPOOTGDDRto/jJpEqlNSkGj0SA6Opo7OTkxG70Ch44Z7t+/j5MnT8rJyclIfuklnh0VxWdyLsTFxqJJjx7YMWYMdE2b4oN332WbN2/m9+/fZ7du3So27IuKioIoijc+/vjj6Mp31gs8K7wg27WAv78/UyqV6+3t7dsMHjxY+TSk3QqFAn379kV6erq8Y8cOFBYWCowxeHh46EaMGPFEyf4LNBwCAwOllJQUkXOO1atXS7NnzxYrM23RaDRYuXKlxDkXZs6cyf766y++bds2afLkyY91jhYUFEDdALWoTw0KBfUzvXePapZu3apws6oL9u/fz69du8aGDh3K7e3tazxp7ty5g/z8fNHLywsGBgaYPXu2kJOTA0mSGGOsuEVPXl6e8Pfff/OcnBxW7z65IDlwQEAAHzNmDLMtLARu367X9wQGBko9e/ZkdnZ2lU7kbW1tYWZmJv3www/i/PnzYWhoCPTrR0Q7KYkmK//+d72346lg+HDKktRXuq93Y//yS5KiNyDs7e1x586dJ0O09RgwAHjzTYzt00f4zdCQr1q1Sn799dcrvZ6UQWYmMG4c4n74AaHz5qHnpUu4+N13/PDmzUwURa7Vapksy0Lnzp1hW3SuNW/e/IlH+Q4ePChdvXpVHDp0aOVEG6Ag0KFDJPf+4guaxFaHDh3I7K17d8rgGhkRYS+PgAA6195887G3ozbYsmULt7e3ZwMHDqz9jTsxkZQX3t5U37pqFclzRZHatFUGSSLXYoAkrzpd5cvdvEl/N2+mjPj8+fSds2cTkXZ2LllWn/nXB6dkmRzPu3enrPmePfT5Pn3ATU2x7eWX+cxNm4CRIxnMzMjEbOjQEkmyuzs5Kl+5QlLmGpzg79y5A+PcXBhUYjRqefMmHBITeUBAAJ84caJQU5eAqpCSkoIrV65wh3ffZdZWVuydv/9mld03O3TogA4dOrC87GxcWrRIkCIioG7ZEuy77xiqUK45OjrC0dFRX49E7dgGDarXepZGbGwsNm/eDGNjY25ubi5LkiQAgEKhCNfpdCNKLbpk7i+/bPRv0mSIS3r6AuODB8m9vmtXOs5+fkQKnZzo2BQU0HkEwPKrr9AoO5u5/fEHWIsWbDR9X+kxXPV4Hj6cSHTPnuTFUt7tHCD/iKlTqaynKrJ9/37VZQ1nz9JYHj68SiPEt99+m2VlZaFRo0binTt3sLVoPJuYmEje3t5iLfyRBISEUNDgfuXm3tnZ2fjll18QdOyY7L1jh4CXX6a6/HI13Dk5OVi1ahUXRVG+cuWKKEmS3Lx5c8HY2BgxMTH80qVLzNHRkc2bN4+pPvgAKx894l9++SVExriPry/Pc3YWxMJCGBkZYebMmeybb74pzmrLsoxjx47lFxYWrq5pg17g6eMF2a4FDAwMPjE3Nx9VU+/sJ4ExY8YUT3oiIyOxY8cOxYgRI6r7yAs8JwgPD+fBwcGir68vunXrhi1btrCff/5Zfv3118tEzB8+fIitW7fKZmZmwowZM5hKpcK4cePYxo1+vyYjAAAgAElEQVQbFXFxcfWSk4eEhODixYs8JSWFjRw5Eh07dmzITXuiiI6ORnx8PLyTkugmO2oU9UAuqofS6XRITk7GhQsX0KpVK7i6uiIlJQUWFhZlalhPnTqFiIgINnPmTFTW6qugoABxcXGQZVlfM4fU1FTodLoypKkyMt2pUydER0fzLVu2yHPnzq1XhuLSpUvYv38/GjduzC6+/TZOd+8ujTl1SqyP6VpOTg5r0aJFlQRJEAQsXLhQXLZsmXTr1i2xeDyoVJQJPHmSatKe5wz3pUv175UKULZvyZInQrAuXLggabVakXPe8BLy0rC0hJEkYc6cOWzz5s1s+fLl8htvvCFUG1ALDgbUahw9cEAampEh2B08yOxcXZmTszPy8/OZm5sbDA0N8VjOzXVAZmYm9u7dK8fGxoqvvfZaMcGvFt27U8Y2N7d6ZQNjJFM+d44IjVpNk/nyuHGDMnhPiWzLssyio6Oh1Wqrr7MPDydVT1YWkeyMDAqEOTnR61WRbD1at6ZSgXnzaB+MGUMBtaowdWrJ/gkLo8z20aMU4Pjxx8o/IwjkOA1QNjw0lJ6fP4/M+/eRvHo1s3n5Zaq7P36cMpdRUSSlHTWKAgbOzvR8x45qNycjIwP7f/8dY1q2rLRmV+3qCp/27VmcgYG8YsUKjB8/Hs6lAwXVIDc3F9evX8eFCxfkzPR0oXNCAi/YtIl1aN+eCZVkYuPj47Fv3z54HzrE2yQlsWQvL6kJY+J9T08MKuU0Xy2USvLiGDGC5NOfflq7z5WDRqPBn3/+KXfo0IEPHz5cBCCeOHFCDg0NDdVoNDMZY6M450v9/Py0ACWM1Gq1X/vZs9WCuzsR1KlTKXg5bx71XVer6bF2LQUEhg2D+ZgxbPO9e1BLEmq3V8tBFIHFi+naPWAAjeHysLSkMgJ//4rv9exJY/Kttyq+FxREJSL6PvNVQKlUQk+oXV1d8emnnyI2Nhbbtm0Tam1y2qkTrUMVJmmmpqaYOWYMC/nkE5YmCLAaOrTSe+nt27chyzJftGiR+OjRI/z999/s7Nmzkl4N8sorr4hOTk70AwcPYvjSpcL1wkIMDgxkwrZtrFfRb3/22WfgRWZ2rVq1AkBZ7dzc3Aec87U1b9ALPG28INs1wN/fv7WBgcHiqVOnGj4x5+FawtLSEgqFArIsV9oeLD8/Hzk5OWjcuHGZ1/UTwMLCQuTk5MDS0rLW8mTOec0ThBcog4KCAkRERODAgQNsxIgRxa2/Zs2aJfz111/yzz//zJs3b87S09Ol/Px8ptFohB49esDHx4fpSZ69vT18fHzkTZs2MWdnZ1ZYWCgPGzZMKB+F1el0CA4OLjZjS0pKQnR0NI4fPw53d3eekpLCkpOTn/o+qA/y8vJw+PBhXL9+HQDg4OAAx2bNSmSMGg2Cw8IQGBgISZLQqFEjfvPmTabVaiFJEhhjEAQBCoWCF2XshEmTJsHW1hbXr1/H8ePHJQsLCyE9PV3WarVMq9UKuqLMT7NmzSCKIk9KSoKHh0eNrcEYY+jTp4+wbt066HS6WhMVnU4HjUaDhIQEHD58GAMHDkSvXr2g27IFYXfu4Ouvv0azZs2kOXPm1JrAZ2VlobCwsHhbqkObNm2Ew4cPo2nTpmiqr1fu2JEm2qdOkRFNcPDjkdongXHjyJSnvEFSbRATQxnCI0coc9PAkGUZWVlZ4ty5c58s0QZoon73LlTXrmHmzJnCli1b5G3btskzZ86s/IKekABdair2jRjBB3zzjWi9YUOxHLvSXrBPAadOnUJMTIzwxhtvoLSMslo4OFB/8AULKGP9+edVL3vmDMnmAbpurFpF5Rl6cE4E4ykGzl9//XWsWbOGr127Fm+99VbZH374kIKJn39O69m/P2Xx09KI/NSldeSOHZDs7SECkDp1Qtjgwfz2hg3Ms0cPREdHyy4uLoJ+cl4BgYH0Nza2JCM+ZAiNuVLmTlVCEBCRkADR3JyrvvqKttHFBXj9dXp/2zY6djodHc8bN2r8ykOHDkkeksScmjQRKpUit2kD0cAAM3x9xbNnz2Lbtm3w9PSU+/btW62r9+XLl/mhQ4eYqamp1KFDB7FXfj4Us2cL+P77CpLnHTt26KKjo0UpO5vZyjKCXVxYQn4+2oaHi+K2bZjq5la3cq+AALoWHTxIJnb/+Aedkz4+lKmdNImCFIWFFDj56y8KFNrZUV11jx44vWEDd9VoMKxvXxGPHgEWFrh165ZOo9Fc9fPzuwXg29I/KYriFwUFBT3c3d1JPda+PQU69AqyOXMoSHXyJAVDJk8G5s6Fw/jx0H72GTZt2oR6m4GOHk0qqnbtyCzM27vs+3Z2VN9cGdmeN4+k7uVx+DCVVcyeXVImUUswxuDk5ARDQ0NERETUrjWrSkXHIDa2cqVMfDyafvghOvbqhV81GsxKSytjlqbT6bB582b54cOHgj7wb2Njg2nTpjFUNde4dQvNFQo0P3+eAm5F16ubN2+Ccw61Wo05c+YU33NCQkJyCgsLv/Hz86vCLOEFniVekO0awBgb3q5du6plbk8RNjY2UCgUclRUlKDPxOkRGRmJ7UW9U2fNmgUHBwdwzrFjx468yMhII8YYZ4zpFApFJgCzuXPnKkvXdqalpRUTdb3D+uXLl7F3714OgDk4OGiys7MLGGOws7MzcHZ2NnRzc6voHPn/DDExMbh9+7aclZWFpKQkZGdnC0XBCT527FjmXmpyL4oixo4dK0RFReH69etS8+bNxUaNGsHR0RHGxsYV7tZeXl6Cubk5Ll++LBkaGrK1a9fyoUOHsujoaH7//n1Zq9UynU7HOOcsODgYAIqJ3/jx4+Ho6Chcv34dfZ5SW5vHQVZWFlasWMEbN27Mp0+fLgQGBmLDhg0wMzOTbKZMEbWHD2PCvHl4+MorGPuPf+gz0UyWZdy7dw/NmjWDSqVCYWEh8vLyWHp6Otu+fTt27tzJzczM5PT0dNHX11fMyMiQHR0dmYuLi2BkZARra2vcv38fZ86ckRo1asSGDh0qNG3atFZE18bGBpIkITs7u1ZeCnfv3sXOnTt5YWEhY4yhY8eOkmfbtiIOH4YiOBg9AdE+Lg4bN24UCwoKEBkZCXNzc7Ro0aLKyVxqairWr18vOzk5wd7evsYZ39ChQ1lycjI/evQonz59elmTt/btKfsgiiWS6+cFnTvXuQ1aMYYNo0zSN9807DqBJj579uzharWalQ9yPjH89htw4gTEkBAMGzZM+PXXX3HkyJHiWsPOnTujVatWiI6OhjRlCs8EmGW7dmg8ciTU5VsnPSU8evQIwcHBUlFPYbFPnz61J9qlMWYMSZBluWrDpDNnqM7z8mUiFlOmlM1IrVtHTstxcfXenrqicePGsLa2ZllFbaoAAAsXUubOw4Ok3J9+WpIlBqo9/5KSkmBpaYkHDx7g8uXLUuPGjcVG69fL14yNccPKSnB2dpaSk5MFM2NjZnz6NP8rIQGyLLPz58/jgw8+gFF15/bIkfTgnFzd7ewoGHDiBLn3V4OcnByYmJhUHqwsTWrOnwfu3q32u2JiYnDv3j1xQmIincOV4d49ul75+qJXr15wcXHBpk2bEBsbK0+cOLFCzXVBQQH27dsn3b17V+jfvz88PT1F3L5Nrs+3b1fIvOp0OkRFRSl69eqFnitWQJWQAO3atdCOGgW2Zw8My83DqoQkEZnMzKQx3L49kTcjoxJjO0kC3NyQbG6O6zod7NVqKOLj0UKrhaCvcQ8NxfGrVyXnrVtFe5WKCX36kCmgqyt6h4crzVNT5+Bf/9oJYBmARABfysArvQYM6GTfsSNXfPUVw+TJRFabNSODxL59qTzj+nUqKYqIoKx70fywS5cuiI+Pl/E4bunm5lTzn5pKv1G6/rp3bzJKS01FGSl+QAAR9PKKhjNn6Br44YeV9levLezs7OTo6GixVmQboKBdnz5UQlEaERGk3OjTB44LF6LrsWPYvHkz3njjDZiamiI9PR1nzpzBo0ePGGMMr7zySu2ifPb2FGhxcyvTMcPBwQFmZmZybm6usHPnTrlTp06Cvb094uLiBADbarn5L/CU8YJs1wCVSjXE0dHxuWGUnp6ewsGDB7mLiwvTZ9NiY2Oxa9euXAAXAPgEBwfnCYJglJOTg7t37+YCaMI513DOpcWLF8tffPHF4p9//vkra2vrLCcnJ8PExMT8xMREQaFQJGg0mhbt27fnI0aMUIWHh+cC+EClUjVLTEw01mg0mwEo09LSOt+5c2fCqVOnus+YMcNIpVJVf/P+H4NOp0NkZCTOnDkjp6enC/b29oIsy2jXrh0cHR1hZGSERo0aVXpBZYzB1dUVrq6utSJ0Hh4e8PDwEDnnOHHihBwQEABra2u5X79+orGxcbGLfVxcHERRhJ2dXTExy8nJAeccDx48QJ3MlGoBWZZx7do1KJVKtG7d+rGN3DZs2CA7OTlhwoQJAmMMjo6OSElJQXh4OCssLJSMbGzEhHXrMGr4cBjs3UsTBTMzCIIAp1KRZrVaDbVaDSsrK7z33ntIS0tja9asEe3t7eVevXoJqGTC4ODggMmTJ9dLCm5paSmfO3dOeOmll6pdLjo6Gtu3b4evry86d+4MjUYDMzMzEWvWAN9/X9xSpHnz5nBxcZG+++470dDQkEuSxIoCKLKRkRE6duwotGrVCoaGhti2bZuclJQkuLm58dGjR4u1PQYTJkxgy5Ytw5EjR+RBgwYJxSoZKyvKYu3ZQ5mOBw+ejwz32bMka6wrOQsNJcnx+fMkaW1gXLp0CQcPHkTnzp2Zr6/vk89q6/HZZ0TMCgpgbW0NX19f6fbt2zAzM4OpqSnbs2ePIEkSjDIy4DxhAh+g0TDjBw8Y/vOfp7N+5fDw4UNs2rQJkiSJ7u7u6Nu3L7zLZ7dqC29vmvD26kVmaHo5c2n4+FB2WE/IDx+mDJk+MDx5cv0DN4+BzMxMeUTjxgLat6d6ZYWCiKK7O/1fC2RkZODPP/+UHzx4IPTu3Zunp6fzGzduiAAwMzxcaDdsGAYuWIBTp06Jrq6u6JGcDNy9y/DbbwCAH3/8UQoODmYDBw6s+WLBWEmNfPv2tD85J1O17dup5rccmjVrxsPCwsSsrCxUm6CwsiJi6+xMJN7Rsczbsixj//79vEvHjkxx5UrVZDsvr8y/NjY2WLBggbBp0yb5l19+wYQJE4rvD5IkYePGjXJhYSF7++23mZmZGW2Try8pCWbPrvD1d+/ehUtMDHxsbMDWrwfOnoXBq6/CIDy85rZWANXd//vflK3Oy6Pt6NKFJP63blFWe+1awNYWWVlZ2BkdLSckJAgGzZvjjqWllBkeLmpEERb5+XJubi50zZsLgiCI3cPDodTv34EDAQDmUVHYvnq17oPvvjsDYBoA5e4xY+y0CsWcLDMzdHF3Bx49IlIfEUGBCpWKDPeGD6cxqNXSvfXuXcqu9+4NMzMziKLIa97YGjB+PAU0vL1J5aAvZRJF2ge9e9N1Xo8ff6Tx8cMPJa/t3k33g2++oXH4GLCzsxOvXr0qoQYVWzH++IOUGaVx/nyJIuW99wAAgwYNwsOHD+U1a9YIZmZm8qNHjwRRFLmlpSVTq9WSSqWq3e9NnUpBrtu3ywThTExMsHDhQqGgoABnzpwRzp07J2VmZooKheKgn59fbq2++wWeOl6Q7Wrg7+8/SKVS9WpoovI48PHxwaVLl+TDhw8LRa0tsG3bNlmn0/0N4J+CIIy/fft2blRU1BcKhSKDMfZ5+RNQkqRvAWxJTU1tkZqa2hvAdQCBS5YsyfL39598+fLlLZGRkVyW5YcA1n/00Ufl+/WFAlj5zTffhP/0008dTUxMCt577z31f6tpmyzLSE1NhYWFRaUGR7IsIykpCWZmZoiOjsaxY8d4QUEBnJycMHPmzKdiQMYYQ//+/YX+/fsDldwcHMtNVgAUb0uZbEoDISYmBnv27AEAWFtby6+99lr1daPV4OLFi8jOzhZee+21YsLCGEPjxo0xaNCgspNCzqkGMDub2tdUA7VaDVtbW7Rv317Xtm3bJ+Ko7OPjI+zbt4936tSJVdXTtagmH15eXrpevXop9OuGK1dIYvnaa2WWnzRpkpiRkQEzMzPGGENWVhbi4+OFhw8f4saNG3JQUJAgSRKcnJywYMECmJiY1Gnb1Go1Zs+ezTZv3swjIiK4Wq3mkiTBy8sLnTt3FjBqFJnS6XQ0mains2+DYe5cIlUffVS3z335JU0cV61q8FW6c+cO9u/fDxcXF3nw4MHC06p3BkAk7cQJGjexsRXcl4cNG4a7UVFo8dprUI4eLWDbNnKRfgbX59jYWGzYsAHu7u4YO3Zsw3RXYIyywoWFNEbL73ulkgjU2bM0gb99mwyYVCoyqProI6oRfRrIzKSsXqdO6GluLiTPn482EyfSdey77+r8dbdu3cKDBw8EOzs7pKamonnz5sKNGzcgarWwOHEC5kWGTCNHjqQPdO9e5rhPmjRJXLt2Lbp27Vq3ziZeXvTgnGpXPTyARYvoGnb8eLFyQJZlaLVaJCcnV0+2ASLbr75aaR3vxYsXuUaj4QNsbRlcXauu02/alI5pKSgUCsyaNUsIDg7GH3/8gR49esi+vr5CSEiInJycLHz44YdU9sM5GbxdvFjsB1IeRkZGaHHzJphaTUT5k0+IKNZ0rwsJodr3AQOopKFpUwqqAkS8ZZlk3EOGABER0FhbY+XKldzFxQVjx47VO7mLnHOkp6fjxo0brGnTpqxx48YwMjKqtKzvSkSErsDUdB84LwBwGQBufvHFp5Ik4a233oJ5aeXNihUlz/XGZXPn0vkUHk4Z95Mnge3b4WZrC3blingekLoPHiyiefP6X0tataLAhigSodfPrSdNovO5NPbto2Okx/nz1E/+t99q7rldC9jY2CA3tw7cNCKCjN5OnKD/9+yhYPS779JxLoUJEyYIv//+u+zg4CBMnjwZRkZG7IcffpDat29f+3t1t27kayBJlb6tVqsxYMAA9OvXT/z3v/9dUFhY+G2lC77Ac4EXZLsS+Pv7qw0MDD5TqVTvTJw40fB5y9pOnjxZ/O233xAeHs455wyAoFAoWi9ZsuQGgBsA4O/v/5/FixdXWrtRVNNxv+gRVO7tK4yxizqdzlyn0/Xx8/MrT7SLUVhY6AugkUajOZ+amqquhavjMwPnHPfu3YMkSThz5oyUnp4uFBQUMGtrazktLU2QZVlfhwutVgsTExMkJibKV65cEdRqNddoNNDpdMzQ0FDu3Lmz0Lt3byiVyuc6uqBSqWBqaoro6Gh06tSpQb/7zz//BAAsWrQI69evZ99++y0GDx6MHvVo1aUnKoaVmaeUB2MkD2WMpI5Dh5atx6wEo0ePfmLXOQ8PDwQHB+PUqVN4pYp+ooGBgXBzc5P69u1bsh5aLU1eT56sVApXum2Oubk5zM3N0bZtWwwcOFDQ6XRIT09Ho0aN6t3r28bGBm+++aYQHh4OURTZqVOnsH//fnTW12Z27w4cOEDOzgkJzzbDrT/etcXRo0B8PMmNnwDBTE5OLg40TZgw4ekSbT0GDCBZJq+YcBIEAa4tWlCGd8sWqsWtqg3TE0RaWhq2bNmCnj17YlADuC+XwYQJRGRdXek4t29f9v0LF4hk9+5N7+vJ2p07dM5V1YqoIXD1Krksnz9PQaKsLOCnn9BUrcbWQ4fQZNIktK5n0KFVq1Y4cuQIBg0ahF27dskPHz6Ep6en2G/BAigLCkoInR6CQEqA114DZsyAjY0NDA0NpaioKLFbfSS4jBHJBijgcfs2ETRzc+DcOVwNC0Orli1rr6RasoTaOiUkkCwY5D1z/PhxNmLECCY8eEAErSpotRXIth5eXl4QRRFHjx4VHBwcEB4ezrp3717ir/Hxx9SbucgjpALefx+Kq1dxdNAgdPDyguHAgUSiqyL+nFMddqNG5ERtZkatK8sHK//5T0CtRnx8PO60awe3efNwvlcvbtm1Kx87dmyZazpjDFZWVujTp0+NF7Lw8HCRc34YAPz9/ScC6ATADqByo1qVuSgUJfejlSsBAI1v3YK4dy92hYaKHl99BSMTE6ohjoujLHVRh45aY9w4koi//z6VJbRsScGxsWPJvVyhIHf7pCQKbHBO17F9++h41dNxvjyKyLZYa88VOzs6tgCt/6+/UkC3S5cKixoZGeGtt94qPsljY2ORmZkpKpVKjqoc3GWZtlmppDE9fTplzYvOi6pw9+5dMMZi/fz8Lta8ES/wrPCCbJeDv7+/j1Kp3NKiRQvL4cOHG9a3lcSThI2NDezs7HJiY2O1AFYrlcphGo2mzEy/viYJfn5+NwBU1IdVvmwmgMxvv/1254oVK16zsLDI7d+/v0nbtm2fq+bQnHOsWbNGTktLY6IockdHR6FLly7M3Nwct2/fFvr27QtnZ2eEhYUhLCxMMjQ0FAsLCyWVSsXGjRuH3Nxc1rFjR31W5rnatppgbW2NpKSkqi/w9QRjjANgOTk5mDhxIrt06RICAgKQnZ0NLy+vOpUVRERE8KLautqto34yMnQo9Qh99IhqvZ4B6ZEkCYmJiayyIENkZCSSk5MRGxuLKVOmlMzus7Ioy5aSUjspYjkoFIraTZxqgJGREby8vFBQUICjR4+iwrVO3584Lo4mj19//di/WWf07UuTsHfeqf1nQkNpvUtLEhsQq1evhk6nw7Rp056dcaQgUB36qFE0YS09jnJziWS2bk2BqGdAtAHgjz/+4EZGRryCOqWhYG5OMlxZpnZFpffBwoUlJl+TJlE2yt6eJNtXrzb8usTGUqZrwQIyhHrnHTKaSkgoJrwusgwcOoTbt2+jvOdKbVDkQM2NjIxga2vLFi5cWHJNOXGi6oDY1KlU+1r0HdnZ2aKDg0N9trIs7O3pAZByol07dJ4xg9kVFlKQITmZgg41QZbLtFQKDg6Wzc3Nedu2bUV8+21Jb/DKYGtLqoUKXyljxYoVUkZGhvjyyy9zAwMDlp2dDR8fH1ogL4/q+isL1Op0lI3u0wcnk5Pxcrt2MFy3jtqkVUa0NRqqre3cmZy3v/4aetl+BRw5QgGK+fOx7rPPYGJiAu20aXLXXbuY+uuv6x08BYAmTZrkPHr0SN9Qvkzt7r59+/ISExMFX1/fut9wWreG1T/+gZSvv+bnp0xhvq1bU43ytWuUdf3xR5KEL1lC+61du5qDWXoTQJ2OvqtlS/rs2bNE4KdMISd+zklyv24dtf9rwPm4sbExRFFEbGwsWtZGku7oSMoGPz8ySVu9moz+JKlEwXLxIo0RCwsK+np5ATduIGXZMj5oyRLe5euvBXTrRvOW//yHrl9r1tC4iIqiQIe+pt/IiO59NeD8+fO5BQUFT0mq8wL1xQuyXQR/f38TpVL5s6Gh4cQRI0YYtqmh9+OzRH5+PgYPHmyyiuSR9xcvXvxsbGWL8OGHH77h7+8/Pz09fdqJEyeWtW3b9olFKCRJwqlTp+T8/Hw+dOhQsTJXdj00Gg2Sk5MRERGBlJQU9tFHHzFBEMrczUq31fL09CTDFMITTH08PZiZmcmxsbHCb7/9hjFjxtRNOlgN3n//fXbgwAFs3ryZz58/nw0ZMgSurq7Yt28fv3jxIl599dVaG0ZlZGSgVatWdZ9l6CdKffsS2S7Ktj9NiKKIfv368ZMnT8pNmjQRT548yVNSUqQid3DByspKHjhwIHNwcCjZvqlTaYJ25MhTX9/yuHPnDrZt24aWLVvKEyZMqEiKVCqKtp86Vblk90ljxozK3Wgrw86dlFn6/fcnukqdOnVCeHh4rVsMPTEYGxOxjo8vW794/TqRz/Hjifg9ZRQWFuL06dNySkqKsGjRoier/nnzTcpid+hAE3W9wZKFBU2O9VlvlYr2iZUVkR09SWyI3586lcjbxo0kKY2KKgkIlgrGREZGAkDtJvbloNFosGPHDjk3Nxfz5s0rq6b4/nua9E+YUPmHZ80iMgwK1Nna2kpr1qwRW7duLQ8ePLiC+Wtubi6io6ORnZ0NMzMztGjRomIgrjx69QIAZP38sxywb58w9Pp1tOzcmaS3CgURkaqCPjNnUguqH34A5s/HzZs3Wa9evQRkZFDgrLrz+fJlIvXlPDPCw8NRWFgofPjhhzAwMGBxcXHQ6XQsMTERDoaGZDp17lyxM38ZDB9OZPHAAeDkSd5i8WLgyBFWwYU6PZ2CeuvXE8nasYMCOdUR5kuXkHn9OlYVFMgqlUqYP38+FAqFgM6dqbxhzZqqP1sDHj16ZArgkL+/v+jn51e8Ev7+/ur8/PzOgYGBwbGxsbkjRowwLm2OW1twziFzDt6sGZitbYmreL9+1IYrLg5Yvpwy+i1b0rk2ahRlgysLBA0bRufMsmU0PteupcBLVBQF0F9+meTuR45QJrmBVUqMMajVas5KRzgkiYI3OTkkp/fwoN8OD6dAWo8edB9ctoyCndOnk6v+0aM0nqZPJ9PD11+n9XZwoGu0IEACiHx37kyB0E8+oeeenrRtFhY0ngAa1199VWNdenZ2NmJjY18Yo/0X4AXZBuDv7+9pYGCwu1WrVlbDhg1TP40a3Pri7t272Lx5Mxo3blygUCjydTpd9Y0qnxL8/Pw0n3/+eTMHB4cG05vm5+fj6tWriI+PlyRJQpMmTYSIiAjk5eVBlmWWnJwsF7lHIy0tDZmZmWjatCmuX7/OT58+jZycHKZWq7m5uTkfPXp0ta1A/lcxYMAAwd3dHUFBQXz58uXMyspKmjBhgvi4mVFBEDBixAj89NNP8oEDBzBmzBjRxcUF7777Ltu9e7e8evVqplQq5ZkzZwoKhQLm5uYV6jVlWcbx48eh7wVebxw6RDfI/fspGj5t2mNtW13RqVMndurUKXH16tVo06YN9/X1VVhaWqJp06YwMDAou9FaLZFCfWuiZ4zr169DlmVMnjy56qxKjx40kTh8mMy5zpx5sjJcPXbvpmfjy48AACAASURBVMlJZRPiymBtTVK/J4wbN27IRZnBZ3tBEQTKaAYFUc2psTG1kdqwgTIvfftW7dj9BJCQkICAgAD57t27goGBgTBhwoRKe9Q3OLp2pcAb52Vd9CdPpqDWoEE0XpVKukY8LtE+eJAI7smTJRPzwYOLjaqqQps2bdCiRQvs2LEDc+fOLWm9VwucPn1aTkpKwpw5cyp6Y8TH12wAOGECEBMDoUkTvP7662JWVha2bduGX3/9FfPmzcO5c+d0169fF7KzswVZlmFsbCwZGBiwjIwMQZZJJDdp0qQaM/I9evcWCnQ6ee/Ro3xRSooIMzO6HkdHU0vBI0foeJQfl7JM+3TIEOTm5jILCwuqB//gg+rHsKVlpZntlJQUWFtbywYGBiJAQXVfX19p04YNonfv3uizfn3F60pYGJGtNWvoe2/cQPPISBzo0YONsrREcajgwQPa3+3a0X795psyQZWqIBcW4qiLCy7KMrx79GA9evQokS/37k3kKiysXg7bmZmZerXZik8//bSMqrGoFPCsv7+/UVxc3KKtW7d+9M4771TTrL5yDBs2jO3btw+Ghoa8Z8+eJTcLB4cSo8K+feked/QoOZpfvUrHsGtXUhpxTs/1Y3j6dDoOV6+SCmTTJjqPdu6kMXHhAj1/HKItSRQwtrAgUq9SUQ39H3/AITUVVt9+S2Nt3ToqvenRg4I/f/5JwbSMDMqom5lRACA+ngi0tzc5qC9dSsEkgMzm9CgKQAFAUEoKdyookLFwYclgLjr/OedISkqCIi0N1vpgYWRk5T3Jy+Hy5cuyKIp/LVmyJLv+O+gFngb+X5Ntf3//1kql8p8qlWrMiBEjDN2fQA/WhsaFCxfyGGOfJicn5wAI9vPzS3nW66SHUqmc2a5duwaJVMTHx+OPP/6AUqmUbGxsBKVSyaKiori9vT0bNmwY0+l02L59u7xu3ToMGDAAx48fh1KplAsKCgRRFDFkyBBma2sLGxsbhgaWUP83wdTUFK1bt0br1q1Zbm4u9u3bx1asWAFvb2/07dv3sb/f3Nwc165dE4cMGQIjIyMIgoCxY8cKcXFxuH79Ov/1118hyzKUSiW3srLiLVq0ELp3746MjAxs2bIFxsbGfMKECVWai9UKhob0uHGDMilTp9LrT8kQysTEBIsWLUJGRgZsbW2rnhleu0Y34JSUsi1OngFu3LiBU6dO8ZSUFObg4FA2ul8VunaliTJjRDCeNJHSu/guWFD9cjt3kiTxyhXKsjxByLIMnU7HPD09n59ryttv05j/xz9IPn3rFgVG6pG9qi8yMzOxevVqWFpaonHjxjAxMZHd3NyeHtNfuJDkrNu3kwpDqaQsc3AwjY9evajGsgpfhWqRn0/Xl1atqH7S25tIBVAnFYUgCDA2Nkbjxo1506ZNaz1+OOeIi4tjDg4OrELwIiuL5KjVBb+USiIypTLYZmZmmDNnjrBy5Urp6NGj7MqVK4p+/frBzc0NjDGEhoaKYWFhZda9tp4svXr1EgIDA5EjCDABiEBJEplajhtHdfNRUUS49MTS0JCk5Ckp6GZrK50+fZq11GiEqozLitGqVaVSdSsrK0RFRZXZx3369BFt330XqQcPUu11efzrX6SG+OUXupZ88QW6vf8+CwwJQU5ODpHtgADKSK5bRwSxlufYypUrdc779ys8L11Cp8uXUeH4GxoCu3ZRe7CWLYns1wHHjh3LEwRh2SeflO9LVQI/P798f3//r1NTU/1rXadcCh06dMDRo0fl3Nzc6s9rAwMipS+/TP937UpZ70uXgL//pozwunV0Ts6fT0GLFStonLi7E8FNSqJg6++/Vx5skWUKLIoiEd7z5yngtXQpGa1NmULHqV8/uh6Gh1Pd9/ffUzZ51izAzAwFBQXI7d8fljNm0H5/+LAkcKIPIJT2m/jyS1Jb/eMfFID+/Xcyenv/fboOjxpV5lzknOP48ePIysoSfH19y2zIgwcPcPbsWenhw4dCRkYGA4A5c+agUaNGUAQGgk2cWO1u5pzj/Pnz+YWFhT9Wu+ALPBf4f0m2/f39PVUqlb9SqfTu0aOHgaenp+J5M0GrDFevXkVUVJSWc/67n59f6rNen/LgnAcFBgbanT17Vpeamsr79Olj2rZt2zr34s7KysKGDRvg6emJAQMGlJ5FFN+glEolpk2bJly7dg0HDhzgDg4O8tSpU8Xyy71ACYyNjfHKK68I27Ztw+nTp9G0aVO4ubkBoH1en17yiYmJYtHfYlktYwwODg5wcHAQBwwYAIVCgYcPH7K7d++ymzdvymFhYYJSqeQtWrSQp06dWuuWVTVC71b9+eeUQSnqPf40YGRkVH2dOuc0qQgIKGlB9AwRFBQk5+bmCr1790bz5s1rd740bkyTwc2bKVsRH//kMtySRBPiSgzAykCrJeJTheM+5xySJNV5YlkZCgoKsGrVKigUCtairqZATxJBQZR5iYigSe3ChVW6Kz8JJCYmYtWqVbCyspLmzZsn/v3334iJiXlqv1+MuXOJtGRnUxYrM5OuCf7+pHjYvp3cn8vLgSvDzZuUAd+4kT6fnEwTeS8vIkKfflqvVXzw4IHctWvXOt2frly5wuPi4tj48eMrvjl8OLXE21GDwO3kSVI87N5d5uVRo0aJa4qkyx06dCi+B1y7do17eHiwoUOHgnMO46pMwSqBKIpgjCEiIgLFJmyiSGNUr+j517/o+PzxBz3/6CM6dgsWoE9cnPifIUMgZ2RAKOfyXAEJCSXS21KwtLRERkaGcO3aNXh4eIAxhmvXruF269boU75Oe8kSOqYHDlAg8eZNkvFOmoQkV1ewM2dgOXs2/U5QED3qYAZbZI6l6LlsGczy8oozmhVgZUX9p/38yHW7DoiOjoYkSZtrWk6hUHxqaGhYKIpiLdxIK2Lo0KHC3r17YW9vj1qXWlpb06NjR2qvptXSdl67RrXuO3cSUR49mso+rKzomPToQUoUpZKyzDNnUieSCxfoWM2aRb4trVpRCUn37mTWZmJCZQJffUVZc0vLksD76dMl69WhAx59/z0K3d1r727u7EzLxseTXLxnT9qeefNIUTNpEpWr/PYboFYjX6FASFFg56effoJCoYAgCJBlGZxztGzZUuzevTs8PT2xe/durF69GkqtFjP37MHFIUMwpJqgSExMDLRabRKAsEoXeIHnCv9zZNvf398G5MKYCSDCz88vo+h1UwCj1Wr1QmNj41Z9+vQx7NSpE3tmBjd1hE6nw969eyVZloc8j0QbAAoLC+fGxcVd55ynAIg/duzYvw4fPtytRYsW2n79+pnob+TVSQs559i6davcvHlzDBgwoEYW1q5dO7Rr147hf6TG+mlgxIgROHnypLxr1y7BxMREJ8syy87OFlUqFS8sLGRz5sxBTZnmK1euICAggANgw4cPr1ISqT+/7O3tYW9vDx8fHyEpKQkPHz5kbm5uDUe0S2PuXKq1ysmhqHYlbqFPHR06kNT1rbee9ZoAAMzNzQWdTsf79+9f98DU5MlUc5afT9mdUnK5BoOnJ9UcV+fEGhBAmbKUlApmaBkZGbh8+TIuXrzICwoK2HvvvVc7t/tqsG7dOp6RkcHmzp1b5wDiE4W5OWVs9+6lCev06TQBfAoO8qmpqdi1axcHwObNmycCRHRu3Ljx9AOeajX1hx8/nrJh27dTHejy5SjubV0doqOpRGLaNHLwXr6cJvSTJ9P7+kzdYyA/P7+Cb0h1kCQJAQEBzMHBoXKlwOHDlcqoK8DRkczEyqFZs2aYOnUqwsPDywRbDQwMZDs7O7E+SQhRFCGKIjIyMqpeSN+OLzWVAhoffURZwmHDoBoxAk7ffivn7d4tmNTUHk2WSdJb/K+M0NBQXL9+nRsbG7PdRcGFRvHxsJk5E+Lff6NJhw60MOcU1FOpSArNGGXdv/uOSJyHB5pPmYIejRvzqIkTWYcJE6BVq6HRaCBlZSE9PR06na5WzutGqakw+e47Go/VYf58Kg05e7bW11XOOfLz8w0BuPv7+ycUGddWCkEQWhcWFirra8TWrl07nD17Vo6OjkabNm3qd/M2MKBuCvpAyrRpdAxXr6agliAAEydS0MHbm0h0r15EpJcto+PVvDmRdT307TM9PEpeq4XXh5741hqiSJnu2NiSchQDgxJvDC8vck1PSAAmTYLRrFlYOHIkNh4/zgUjI3ns2LGiTqeDgYEBzMzMyhhsjhs3DuPGjQNCQvAgNRU3IiP53dhYDBo0CG5ubhUOWFhYWJ5Go/nBz8/v8Xugv8ATx/8U2f76668XKRSKL2xsbAoLCgqQkZFh9OWXXxaKopgtiqKVg4ODtkuXLiZubm4N0+/zKaGgoAC7du3KVygUxzUaTWjNn3g28PPz0wD4T6mXAvz9/ZtER0ePvnfv3jJJklQGBgbS4sWLK50FarVa3L59GykpKcLHH3/8dFb6/yGMjIwwbNgwwdvbG3FxcQqNRoOWLVsiOTmZBQUFyefOnRPGjBlT7XekpqYiOzubAUBISEhJy6haoEmTJmjSpMnjbUT1P0A3v40biaw9fPhMegyXwZdfPvt+1UXYsWOHHBMTI4wfP75+O0UQSP65YwdNDh88aPgM9zffVN/yJy6OMtoHD1b62ydOnMC1a9cwYMAAFhoayn/66SdmZ2cneXt719uJWRAE1rp1a7lp06bP7uYhSZTBdnEh5+OmTSmz+eef9J6+57G+h/HgwbTchg0ko7x5k7JC48ZRpqhFC3r9o4+IaOqN1Q4dokmusTFNgJ2d6biXum9KkoSwsDBkZWVh1qxZAEghc/z4cf5SOcOqp4qVK6n29cEDknoGB5MZ09tvkyKjNDin4NwHH1CLtHXrKFiRklJyzahDVrcmGBkZ8UePHgF1UF/l5ORg8ODBFcfcsmVENvWtuKpDhw50LXz0iMZLKTg7O1cw+/Px8RGPHj0KpVJZp2s7AOzfv18HQNGnT5+aF7a2BvQqiJs3iUi5u2PSl18K5/r3l3vV5ItgaFimXvqHH36QtFqt2KpVK6hUKsnV1ZUplUph/7FjGPTSS3DXE22AHLFdXUuIf0wMjRcDA1IunDyJ1ClTcCYxkbU1N+dJISHs+vXrPCsri4miCKVSyQsLC9mCBQuqNZDLzMyEZWIiEbCaYGpKYzAhgZQ9tZinMsbQv39/XUBAwC79S+WX8ff3VwOYzBhTiKL4WDdDIyMjISwsDGlpadL48eNFSZKgVCrrrx5Sq+mxeDE99Pjjj5LnTyhgLggCtFpt3T5kakrXl969K75nYlISnAsMBLKyYPKf/+CNI0fYygkTxIJ9+9B85szq75fJybAbOBAfjBrF/vjjD5w6dUouT7bz8vIQFRUlcM431W3lX+BZ4X+GbPv7+wsAvre1tdUmJSWpBUGQbW1t80VRVHp4eDRr27Yt1Gr1c5SOqD1CQkIQExNzWZKk8f9tUSw/P78kAKv8/f3/BjDG3Nz8MwAGkiSBcw6FQoGCggKsWbOGZ2RkMJVKJbu4uHBBEF5kqp8wTE1NUdqnwMTEBDk5OcLx48cl1KAU6NevH/Lz8/mFCxfYc+vcP306ybru3KHJ9K5dT99Ne+tWqhUtLV97hrhy5QpiYmKEN9988/Gd6SdMoF7nt2+TtPzLLxtmJVesoDq/qkhxZCTQqRORwHLZH51Oh/DwcNy7dw8KhQJeXl7w8PBgoaGhSE9PFzds2ABjY2Pu6urKhw8fXifSbGxsjFu3bgkxMTFwqo0U+XERE0NBBTs7ktr260cT8LNniTArFCVuyNOmUbZl0yaaoGs0RL61WqpFbNmSSIS+FZW3N2WHGKMaR85JnpmSQgZFX39NtZOFhfT89GnKRJmbA5s3Q375ZRzr0YNL2dns3Xv3mNFbbwEzZ+J2Vpbs2rs3OqxfL+DVVyljFRpKrbCOHiUJd4sWFABr3pyIUkMHwho1Irm4uzs9BgygzFdpQrl1a4mE9eFD2u7XXivJkD2h4JyNjY2QnJzMc3NzayXNFkURHh4efPfu3ezu3bsYPnx4SaKA87oZ4L35JpHbDRtqXLRLly7IzMzE/v370aFDB1TX9aM8IiMjFZ07dy5eT61Wi5iYGGRlZaFLly4ok1VNTyc5eWwsHYd336WsJgC727eFR4mJsKnOSK7UPjh+/Dg0Go343nvvQalUMgBifn4+7vfsCdcxY7jj0qX0w9HRROo//5wUOgBlSceMof/ffpuubc2aodGbb6Ln338jJCSEiaKIHj16MM+ijKmJiQn75ZdfpLVr1wqTJk2q1HckLS0Ne/fuRb8xY3TC6NHV33z0JTONG9O5feECBbxqAS8vL4OgoCBZp9Ndq2KRNwAs45zDwMBAs3v3bp21tbVRy5YtYVdHU8kpU6YgPT0dW7duxc8//4y8vDwolUr06tVL7t69e0UDv+cMqampyMjIQLNmzSAIApckiaWlpUEQBFjUpk1it25U+71wYfXLNWlCj5UrISQmosfJk7Lun/8UsoODYTpuHHkoeHlVvNacOwcMHQpBEODl5YWdO3dWOMmvXLnCRVE8uGTJkvS6bPsLPDuI//rXv571OjQIfH19eUhIiEVeXl6YVqsdL0nSyqysrHOZmZlhsbGxnaOjo2Ftba2s1cn0HOHixYtyQECAjnP+tp+fX8SzXp/6wtfXNyMwMDBKq9XO5JybbtmyRb527Zru/v37hSdOnFBotVq+cOFC5uPjw9q1a/ffIzv4H4OZmRlOnz4tuLm5VTsZDA0NxenTp9m4cePgWdvWTM8CokiTuVOnKJtXWPhU5LXFMDIiQvEc7KOcnBxs376dOzo6yl27dm2Yc0yhoIzU77+TcUxDkJR//pMmKZ06VXzv8GGq5aukf3R2djaWLl2KW7duQZZl3rZtW9amTRuo1Wq4uLjAw8MD7u7uyMvLY+Hh4SwwMBB37tyBk5NTrSTmLi4uOHfuHGJiYtC9e/eGU0fpdOSSm5BAk/5584iIvvsukdwpU4C0NMrkT59OZCAjg4i2Xkq5dy+ZpCUkENlkjMa+gQFlMg0MSEbcqhUds969SQZpZ0fyaFNTItkjR1J2Zs4c2v/dutGk0sKCCPPMmbj64AEO5OUhp00bPvadd5jKyQno2BGauDiEJiay/lOnMsPQUKrRvHGD5NwzZlDGJz2dsliTJgFt2pCJ0ezZlFm3taXae0ki+XbnzkQM168n8rxwIZ1PhYXAtm2Ulbx2jQISTZtScMLQkLaVMcpm9+lDtZt6J2EnJ5KUW1tTFt/bm9arVAvIJwkHBwdcvHiRnzlzhrVt27ZW487e3p4ZGxvjwoUL4JzD0dGR5Nc9e5a0X6oNBgwgc6palkCkpKTgzp07dTLSzMvLw5kzZ5CUlMSDgoLYuXPnEBQUhOjoaOnejRvsRmgob3rpEjNbupQCZW5uNJa7dQMUCvAePRA/cSJyFQpcd3bmJitXMqtp06oOKmRlISoqCutCQuTExERMnDiR6R2dJUnCpvXr5ZYXL6LTV1+xYtMxX18K1L36Kl2b//qLjK2Sk0klMHFimcCMi4sLbt68Kbdr144PGDCAKZXKYvlv165dheTkZBw5coR16NABeqIZGxuLM2fO4MSJE7yrSiX7LligqNFZ/aWXaDz//DP9n5NDwaJaIC0tDefOnQPn3M7X17dCQiYwMPAigEgAh3U63c9JSUmX7t+/H3n58uUuDg4OirrMixljMDIyQrdu3QSlUokhQ4bAzs4O586dk48fPy4wxmRHR8fnzjeHc479+/cXHDx4UIqIiIgJDg42z8/PFx89eiQFBgYKoaGh6N27d4XrukajQX5+fonk28yMCLGtLSIyM6FSqZCfn48dO3YgNze3TDvZYpiYwLZdOxbZrZv8R1ISk48c4U1+/ZVxHx+Iy5dTYNnKioKj+tp0AwOo1WoEBgbC29u7OEjFOceuXbtyc3Nz5/v6+t6v+GMv8DyC8ZoMaP4H4O/vb8AYm2ZgYPC1tbW14YABA0yfeY/UWuLw4cNSWFjYyk8//XTes16XhoC/v/9LAA4KgvARADNZlu+JovgPSZJcfH19ZR8fnxdE+xljz549UlJSEpszZ06Vx+LatWvYvXs3mjVrJvfu3VtwdHSs3iDsecDNm0TU7t2rs9trnSHLNLldvbrGXplPC+Hh4Th48CDmz59fLzO8GvHnn9Qr9/Tp+recyssjwlQZaU9NpUnwtWtlst6pqamIjo7mhw4dYvpsQL8aXMkfPXqEPXv28NTUVKbT6TBhwoTitkbV1TPevHkTO3fuhEqlQtu2bVFQUMDHjh3LakW8ZZm24a+/iMgeOECZ6NOnyehq0iSa9EdGErGu7BjpXXj796csrL097atJk8ifoHNnIi8NGFCSZRmRkZEQRRFGRkZYt24dWrVqhVfKOXsvX75csrGxwfjx42ufBpUkOuYmJuQYbGNDQYLjx6lu9vRpykS++SaVLIwcSWR96VJyjf7kEyJJ69cT+Zw/v6QPbmgoSeIvXqT9odHQ/h4xoqRVzzNAbm4uli5dCm9v7zKT6JqwbNky3rZtWzZo0CAihImJJFWtC/S9i2tRSrFmzRrZzMwMEydOrPXJrNVq8dVXX6FD69bw9vaG8NtvUD96BPUrr4DPmoXb/fsjIiMDL3fpgjs+Pgi+eFHKyssTnJ2dZVNTUzE8PJz3OnQIV4YOlbiBAUYGBSns+vUjr4ty+ykmJgbXPvmE28fGMuGXX9C2bVsYlBr3d1evRuLOndzz8GGmUCjItb1dOwrAGBrSebZpE+3HpCQ6d7p3p3N09GgKQBVh+/btXKfTyVOmTKl0bC9fvlyytrYWOnX6P/auOyyqa/uuc+/M0EGQomBBEHvFhl2j2GNPjBqNsSTGZ17K+0Xj0zhv1ERjfIkpLzFRo7HFEmvsYgnYC4KKAiK9S6/DzNx7fn9shl4tURPW9/EBM3fuvXPn3DNn7b322p2ZIAjYs2cPGjduLGVmZgozXnmFWYWHV16DXVBAgZ9jx2gMN21K90S7dhSsqkFA5uTJk4Zr1659u3jx4g9r8jkBgEajUYiieKlXr15d+/fvXyv1QkW4ceMGDh8+jDFjxqBTp06Pta+ngZSUFPz0009per2+mVqtztJoNO4A5jLG8jjnu1Uq1a9Dhw5tX7ZsYuXKldxgMLBp06bB1dUVsiwjavlyhN67J18u4aNga2uLrKwsKBSKovffuXNn2Nrawt/fH6mpqbh//76Uk5MjduvWDSEhIVyKjWV9L13iBgcHbmNlJTQoKICNuzuEEiqxTz/9FO+9916R11F0dDS2b98ep9PpGr9oSte/M/4WZNsIjUajBDBOoVBsfvvtt81q2sriWcLX1xdnz54FAFGtVtfCyeH5hUajMVGr1QUAsHLlyu91Ot07ADB79uxaS5rq8OQRGRmJX3/9lS9atKjSVaBOp4NWq8XRo0fl2NhY5ObmCosXL34irs9PFdeuUf3X99/TAu5peTfo9STtXb++1KLtWSIiIgK//vorJk+e/HRk0ImJZAD073+TadOj1Lq2a0cSzrJuz8uXU9bJ1BQQBGRmZmLPnj2Ij4+H8TusXbt2GDNmTK3HoK+vL86fPw+9Xg8HBwfMq8DETpZl+Pv749atW4iJiYEgCFCpVGCMQalUyu+++65QdFxJIvn0gwcUgJgzh95TRgZleVetoqyaiwtJR9u0qdk4jIkhObnR9XbGDDL9Khnkiot74r3Gr127Bh8fH65UKrlOpxNMTEzkOXPmCGUDNqtWreKvvfYac3V1faLHrzVkmTLkOh21mBo+nFr1LF78bM+rEBs2bJDj4uIEABg8eLDcu3fvGk1CPj4+PDQ0VJ43b55YZAxW27ll7FgKUHTtWu2mX3zxhdy/f3+he3VSZmPJwvffA7a2SE9JAb76Cse8vdE6J0fu3LOngPffp8/FxARr166V8vLyRADcy8uLOTk54fbt28jJyeHdmzRh7efMAQsNpQx8Vha1dHN2LmeCuHXrVjS+epX3l2XG/ve/cqcV/957eHjzptzR11cA56RsGjuWMsjnztFcNXMmEevwcFJ96HSkdGCMPCkKCf7KlSt57969WdeuXSsMKiclJeHgwYNSZmYmKygoEBo3bszfeOMNBlkmxckPP1Qe4OnZk+TrZdvILVpExnZvv13uJbIsF2Vgc3NzsWbNGgCYr1ary1+ISqDRaCwBZAOAubm5dt68eaa1cZ03IiEhAX/88QfCw8MxYcKEanuxPyuEhYVh3759txcsWNChouc1Gs1rDg4OG+bOnWthvLayLGP58uVo06YNj4mJ4SqVimdkZIhNMzJ4T8Z4k08/FRhjUCgUYIwhIyMDFy5ckDMyMnhYWJgIAAqFAjY2NrKVlRXv2LGj6O7uXlTjr9PpEB8fj/j4eOQeOSL1XLtWvNC/P2LGj5f79+8veHh4YPXq1fLrr78uOBcaHP7222/59+7d+88nn3yy+k+5cHV4InjOV8ZPFmq1Wg9g9+rVq+enpKT0fRHIdokFTT0Aac/wVJ4YjES7EL0BQKFQZMXFxVm6uLjUZbafA+j1ehYSEgIA8PDwwK1bt5CdnY3s7GwEBwdLWq1W1Ov1MDU1ZSqVijVo0IA/rvHKn4Ju3ag+8/PPSZr6NLLOGzcSedq588nv+zHQrFkztGrVim/bto2NHDmSe3p6PtnPq0EDWsivW0f121FRtQ9m7NpVvjWOTgds3w79sGH4JTCQx8fHFwWJu3Tpgu7duz+W4V6/fv3g5eWFL7/8Eg8fPsTWrVul7t27ix4eHkVutWvWrJGVSiVr3Lgxb9euHcaNGycIggBdRAR2HzqEI1On8i4JCazRjh2UHRs9mkheXh4dZPt2IgwWFvQeawNJomvq4kIZ8bffpjr5t98uTbQB8idYsICO94Rw+fJl3qtXL9a/f3/jeCn3of76668cAGtkdOh9lhAECkz07k0qgsGDiWANGUItAZ+hBFCXxgAAIABJREFUOWpSUhJSUlLYxIkTERAQgODgYPSuoXGiubk5k4ykNiSESGhtsX8/maTVDOzixYvo1q1bcfbdqM7YuZOyxIcP01i7dIkCmaNHw3buXGD+fLQLC8OpU6d45zIGbvPnzxdv3ryJjh07FnWDadu2LQAwpKfTvGGEtTWVFEyeTKok2g5JSUkIDw9H30GDGCsoKLV/yDKwYgWyX38d59zc5I6DBgkYOpQCXwcOAMuW0by/axft/8wZKs24d49k5Xv2UNnG8OE0dv71LwwcOJCdPHkSiYmJ0quvvlouBezk5IS33npLBMhj548//qAL9vAhKXEqCoqEhVFQcuvWYmfrknj7bWDdOqSlpkKn14NzDlNTU4SFheHo0aNwdHSUmzVrhqCgIEGlUl3U6XTVF+OXgFqtztFoNAoAol6vD09OTnapbRD27t272L9/P1xdXeXp06cLz8X9Xwmio6O5Vqs9U8Umu1NTU386f/681K9fPxFAUaZ65MiR7Msvv2QtWrSQXnrpJZgzxjB6NIMklVIe1KtXDyNHjhQA4PTp03Jubi7r27cvs7W1rXDSUalUcHV1hSv9KyIoCF0tLYEbN7Bjxw64uLjIKpWKR0ZGomHDhsjNzUVISAiTZbkaW/s6PG/4W5FtANBoNMzExMTtqcgonwLat2+PwMBAXXx8/BkAz5825zGxaNGijgCg0Wj6+/n5HWnevLmFnZ3dsz6tvzVcXV3Rr18/aefOnaKJiQkkSYKpqSk3MzPjgiCgT58+op+fnzxq1CiBMcZOnz7Nx40bxx61ncifDnt7IDqa5Hvt2pG515OUvUVF/flGbDXEiBEj2L1792Bvb//0Pqy33qKgRlYWSTW9vGr2OrWapJaFC2oAlGX6+GMgOBh+Z87wlJQUjBo1CsHBwRgyZAieVMBUpVJh+vTpOH78ODjnbP/+/dzZ2ZlPmTJFAAApM1OY5emJ+kOHMrz3Hsl3Bw6EaulSTP34YyGmbVuEZGRgz9atctMVK9jYGTNIWj5mzOOdWHg4tTi7coWy/YMHU83xr78C//d/5be3tydy/gSQmZkJHx8fKSMjQ+xY0sW5DPbu3ctjYmLYrFmznr2yJS+PJOSLFpF8/KefSILerh0RqehoyhY+Ixw/fpw3b94cbdq0gSAI2Lt3rxAbG4uakJTAwEBub28vQKEoDuLUFtevU5CxpNt6JXjrrbfYLytWIHv1alhPnEgS/YAAkvhfuUI19x9+SB4LNjalgosFBQXw8/PjFhYW5Q6iUCiK+2+XxOXLFBBJTy/t1tyoEeR9+5AzcSL8Ro7EDa0WoiiiQ4cOUhNLSxF375beT1QUsGkTTAYMAMvPZ5gyhWTzU6ZQecbMmeTOboS7O9X1G8EY1fRrNETQr1+Hl4cHkpOTERcXV+282aFDB5w4cQK5ubmw4JzaI1Z0refMoWNX1g6sSRPo0tOxe+lSZDVtKgOAXq8XRFHk/fr1YwCEgIAAKYd6l/cCkL1s2bJXOOd7GGNHli5dWpNedY0AROoLyXxycjIcHBxqVNogyzJ+//13PmzYMHTp0uW5T5IkJSXlc87vV/a8Wq2WNRrNa2fPnj3SqlUrODo6IiMjAyqVipubm7MlS5YAJY1jLS3JrHLQoAr3N2jQoJpfk48+KjKPrM8Yhg4dKkRGRiIhIUHw8vKSfX19+fnz55lSqeSCIOxUq9V/icTb3wnP54rw6WK0ubl5vcr6Aj9vuHbtmiEqKkopiuKhZ30uTxm+Wq32Pz/88MOyYcOGmXbp0uUFYW5/TQwYMEDs378/AIruWllZFfWHjYuLg7Ozs3zgwAHBwcGBT5s2rciU5oUBYyRJHj+eauSiouj340CvJ+dmjebZtxqrBCkpKZAkCY/a/qpGEASS6m/eTJnumJiaXY/790svgo19cDmHVqvFhQsX2PDhw+Hp6VnrdkQ1gbOzM2bOnAncuSPoGMMPgYEsYe1aiL17o/edO7A9e5YCAZ06UWZsyBBg7FgwxtAEgIskwTk0VDhx4gT/9ttvpX79+okdO3YsZbhz6dIlyLIMc3NzNGrUCA4ODgCAoKAg+Pn58QEDBhS7+//vf0Sqv/+eJLSck2nSq68S4a4I7dqRsuIx5eQPHjzA7t274eTkxObPn1+pS29eXh7u3LnDxo8fX/RenimuX6eM5Qcf0OI1NpauiVJJWdgVK8iUa8KEZ3J6+fn5UCgUnDHGWrduDQ8PD+zYsQOzZs1CdXMoY4zbS5KA/v2pFv1R0KULsG8fjaWy9+SDB0SkJ04ERoyAjYsLGpmZ8YLbt4GhQxlWr6aaent7ClBWAp1Oh++//x4A+LvvvltzwtG1K+DnV4poy7KMhIQE+Pj4QO/hgbFr16LRgQNyh27dBMaYiHPnqN7ZiPPnyc37wQM0atIEnq1bCxg+nNppzZxJxKissuH48YoNLHv0oJ+lS5G5cSPuvPEG+o0YUe1EFhcXB6VSCTOlksaary+pAIw4eJACCsePV21WJwgwdO+Oer6+mLtgQcmTLjqHgQMHigaDAYGBgThy5AisrKy2ZmVlgXP+U2GHHqZWq6uKvg0AAFEU/Xbv3u3GOTcxNze3mDdvnplSqURycjLS09MRHR0tX7lyhSmVynxra2uDp6enZWJiomBmZoZOnTo9n192JcA5R0REhAjgt6q2U6vVR5cvXx78ww8/tPrkk0+g1WorDyC+9x4FnSoh2zVCSAgR7U2bKMADIDw8HPv37+c5OTnMxMSEe3t7C4MGDUJoaCh27drFAKx79APW4Vnhb0e2VSrVl97e3hZ/Vp9tSZIgCEKNTVCMKCgowKlTpwr8/f2VnPNtBoNB/ZRO8bmAWq3mGo3mPmPs+IULF4Z26dLlOXfb+uvDOGZtStSaGY3RVCqVgnOOtLQ09syzWY+DZctIdtiiBbXzeOONR9/X3bvFPYtL9H59XiDLMo4ePcqbNWsmo5rWbk8EM2ZQNikggOSry5ZVvm1SEskpjQvtQYPIebtQcp0UFQXG2JMz3jES+V27SIptZkbS9/nzgSNHoEpOhuvrr8M/PBwRCgVaLlhgEIYPp4FeSas7URRRSKDYyZMnceLECRw9ehRubm7c29ubJScn4+TJk2jYsKFUUFDAsrKyBGdnZ9na2loICQmBXq9n0dHRaKXXEyl8800iNa6udL7e3mSkptFU/d4++YQW+NevP9KlCQgI4EeOHGHe3t7o3r17lV+U165dg0qlMsqAnx1OngTef5+yiLdu0WOhoaSqKBlYd3KicfaMyHZeXp7coUOHontv0qRJ2LhxI7969SofPnx4ldfaysqKO23ZwrF6NSt6j7WFIFCt90cfkcy+dWu6bgMGkNInKIjUGCtWQNehA+5t2MA6vvYaHNzdi3ZhzIDa29uXM9VKTk7Gli1boNfr+UcffSTU+Lvh2jUa8wcPlnp4z549CA4OBgCMeucdbr9gAbOfM0fAkSOUWWSsdJb//fcpyPL558j8+mu4ffABQ9++FICqzMDzq6/IcK+yuWXZMmS/9BI6rVmDFsnJDD16VGlAeO7cOdnT0xOCKAo4eLA00QaIZNevD65SwaDXQ6vV4ubNmzw+Pl7W6/XM2dlZcHR0hCRJaDloEAYsXkylNJV8pygUCnTp0gVdqBe16c6dO/UhISEHAYAxdhLA0EpPFtgJwGfJkiVxAKDRaJx1Ol1cfn4+rl+/bvDx8ZEVCkWETqdrCQCSJLXVarXuPj4+PxsMhiZvvPEGe1xjtT8Der0eer3eRK1WV1tDIctyX1EUr3711VcNcnJyzArbyJVHkyaVB65qAlmmgLSnZxHRBshbJTc3lwGAqakpB8AEQYCVlRVUKlWCTqe7WvuD1eFZ4wVeJT8aOOeq8PBwfdOmTZWVuSfrdDro9XpkZWXB0tKyyMygtsjPz8eXX35paNCgQcGMGTMsxDIR28oIf0JCAvbs2ZOXk5Pjyzl/D8D9v4ProEqlWq3T6Vr069cPx44dMwwZMkTxIkzkfycolUoolUoMGjQInTp1Km6H8SJDECjCbGNDRGbUKMoA1Qa//04L1sI69ycNnU4HAI91vU+cOIHs7Gy89tprf95NpVKR0++FC1UvSvr3p4ytkUiOHk3tqQphYmICWZZhMBhqL1XOzqbayE2baEF9+TJlunx86DFvbzKz++wzyq5NmoSEhATc2rABcseOePXVV9G6desaH1ShUGDEiBHisGHDEBcXBz8/P/nHH38UDQYDxo4di44dOxbVA/r4+HCtVitNnTpVPLxvn+ycmCgUGagNHVp8vQwGqiGdMqX6E1i2jIhTLWEwGHDy5EnZ399fmDhxIlpVElQoiW7duuHChQs8IiKCuZcgZH8aZJkysi1akFy85Njw9S0/3ubMITXLJ5/QWPsT67ePHz+OvLw8sayqxMnJid2+fZt5e3tXObZbtmwpHh80SO7wz38+Xibxiy/IIOzKFTIHCwggCfjcueQ3YGcHfPcdMtesQf3oaNgeOQL+7ruIO3sWwenpPCItDUlJSYxzDi8vL2nw4MGiMTB78+ZN5ObmYv78+bULwublVdh+LTY2VnZ3dxcsLCx4x44dGRQKulffeQfYsoWCcxYWNA4uXqR5pn174OOPYZWbiz2TJvG5S5dWfr1kmVzwq5lXHXv1wv327Xmf69cZwsJIFVVJfbOpqSm/cuWK6LlpE2w/+ghFtHzVKlLvbNyIrVu3SpErVoiyLEOhUMDOzo67uLiIWVlZ8Pf3l3U6nWAwGGBvb49eDRqgweHDNG6rgVarRUREhAwAoihelSTptaq2L/TPMRLtIQB+B6jDw5kzZ2RZltsuWrQobMWKFX6SJPUBEK9WqyM1Gk03AEkVtrl6DmEcnxqNxlOtVvtXta1arU7RaDTNc3JyegNoIsvyhpSUFNNyJUvNmlEAJyWF1BS1QXAwfd/5+FCbyxIIDAwE5xxDhgyBubl50QR1/fp1rSRJG/4OXOCviL8d2dbr9V4BAQFfpqWlvTxlyhSzsmQuIiIC27dv1zPGdKIopnHOHWbOnGlqYWEBnU4HMzOzcr0xZVlGQEAAkpKS9AMGDFCampoiIiICt27d4gqF4kpycrL+8uXL/Yyuo7du3ZIOHDjAOnfurHv55ZdNy57j/v37szMyMpZwzr/9O91YOp3uJRMTk/3Hjx93NhgMgp2dnVOPHj2e+1qgvxNatWqFgQMHwsfHB1qttshI5IWH0Sfg9m36EvX0rF20euFCkpVV4Bz7qLhw4QL++OMPKBQKWa/XC7Isw9TUVGaMQZZlWFhY8NatW4stWrSAs7NzlX2fk5KSEBAQwIcNG8b+dL+KoUPpZ+tWIrlnzpS/tn/8QSZCAwYQIS5j/qRUKiGKInx9fTFkyJCKj5OVRT+JibQQnzmTFuVRUbQIDw6mIMqsWUS6nJ1psWNEodsrAFy/fh2yLGP69OmP7NwuCAIaN26MKVOmiDqdDlFRUfDw8Ch63traGuPHj6f7JzUVw3/6STBr3JhqtEtenw8/pCzt4cM1O7ClJbVgM/bGriH27dsnBwcHC2PGjKkR0QYAc3NzWFtby2lpaeIzIdurVpHjf3g49ScviR07KjYRs7KiNku9elEA40/ApUuXEBAQgNmzZ6NsCduwYcNw48aNagNJlgcO8DH79wv8o4/wyGz79m0KKgUE0FyVkUG9um1tyUTO1ZUCO1otHBwd0SEnh2esXcvW5+dj9urVsPHyYtrWrbH4m28Qcf06Yt59V8z7/HNY+PhAevVVKDw80MTWltdftYpk5/fuUZCtbVsithXNUYmJdPzvviv1sI+PD/Ly8gQPDw/06NGj+C3PnEmZQGM7OA8Pmlf++U9Sw8yYAdjZQT91Kh6uXcuqvK6HDpHDf0BAlZft8OHDyDA1ZXlbt8L61i1SL/3vf+QkXgZTp04Vz509C/2GDfhx82Y4R0eja4cOaGBvj3wbG2xauxZZWVnirFmzkJSUBBcXFzg5OZW8MIIsy8jIyMD69eu5X9++rPOlSzUi2zExMRBF8TaAHkuWLKlV9xoTE5M+BQUFKkEQTu3YsaObwWAoqh2RJGkMABO1Wq0DAJVKtUCWZb5t27bcxMREwcPDQxg4cKCp7dNuqfmIUCqVaNGiRe79+/f7AaiSbANUvw3ADwA+//zzGfHx8YPLkW3GSCVy4QK53NcUmZnkJzFjRjmiDQAeHh48Pj6e9+zZs2hMZGdn486dO1ySpG9rfqA6PE/425FttVodp9FoZsTFxR1Zs2aNV7du3VS9evUSTUxMwBjD0aNHcyVJmqVWq3cBwKeffjp3/fr1XzLGJMaYTpIkaycnJ92cOXPMGWOQJAlbtmzJTUpKCpEkyTw3N7dVVFRUnl6vjzcYDHslSdoIwPbChQtnu3btam5iYoLTp0/ncc6XBQQEfD5y5MhSi+SYmBikp6cLnPMf/05EG6DPBkB3gNowhIaG/tSjR4/no29SHYrQs2dP3L9/H2fPnhXPnj2LTp06yWPGjPlrBEV+Kyzp6tePsjzUUqVyaLWUrQgKeuJ12j6FRHD06NFC/fr1kZmZCb1eLzDGYG5ujgcPHsghISHy5cuXBb1eDxMTE+7g4MCMQZD27dvDYDBg48aN0sOHD8UOHTpQduhZoX9/ICGBFt1abXFrsHfeIUnr2LFEniogt/Xr18f06dOxbds2NHF2RitJogX6uXMkBd+wgeTdr7xC8ms7O1IqHD5M2wkCZbFriOHDh+PWrVs4c+YMZsyY8dg9aFUqVSmiXQStFnztWly9eBGh3bqh/QcfoGHJcaTTUQCiJhntkjAzI9JUQ6SnpyMqKkpo06YNqjJDqwi2trZibGys1K1btz8v8Hb+PNX3vv8+kayy996dO9RSrV278q9VqSjrfe8eyZcrMut6wrhx4wbv2LEjGjRoUO7+S09PB0BB+4rAOQfnHEnm5szQtCkubNokT5kyRTA1LRenrxqBgcDUqcDevUSsJ0yg8g5joLFkCc2JEwCAXtu3s/j4eHQLDkbW9evo1qwZuskyMHs23Fq2xJUuXaQLBQWsT16eEJWaysOtrVkbNzeGX36hDPqqVeRefuQIjcmdO+m+nz2bzOr+9S/KsBsMlJHWaOjvGzdw4dYtNLWxgWdZGbYg0PmfPEky3LAwOvfmzSmQ8uabQMOGsABlNENDQ9GmTZuKr0nDhrR9FUhKSsLdu3fRpEkT3qBBA4YGDYgkKZUUuFu7tpTbuCAIeKltWyAiAr1u3YL40UechYaylbNnQxRFcM4xc+ZMuLi4VNrqVBAE2NnZYeHChUybnU0dBu7fp8BCFShUQBU8SpvYjz/+eCmApQC1ZwXgCSASAMoacun1eh/O+b/i4uJO6PX6hUFBQXPCwsLemzt3rumfEcx9FIXTSy+9ZBEREfGpRqM5oVar79XkNRqNxlqhUHgqKysbGDMG+PHHmpPtoCD6jtq/n9q9lYEsy7h//z5KEm0AuHLlil4QhB1qtfphzQ5Uh+cNfzuyDQBqtTofwEsajabdlStXFp8/f/4VzrlgbW2dn5eXpwew27jt4sWL16GEIcHKlSvXiaI43fj/hQsXpKSkJP+CgoKBSqVyXmho6GK9Xj9VrVafLnnMVatW7d+/f/+E1q1bm2ZnZ5sDuC0Igv7YsWNMkiQJAMvIyDBERERYqlSq/5Vpj/W3gkajcVAqlRP1er1SlmXcvXsX0dHRei8vL2WdU/mzx6lTpxAREQEAsLOzQ0BAgBAdHS2988474gtdv10S//0vScSCgmghVZmh2NdfU2YtLOyJn0L79u15aGgoJEliDRs2RMOGDUs97+bmJnh7exctxmNiYlh4eDhycnLEo0ePchsbG3bw4EFJpVKxd999FzY2Ns82INKkCS0a16wh068HD4gkqVSU1dqxAzh6tPRrHj4kUtW3Lxp/8gnmBAfjQnKy3MrXV8A//0lmTePGEbFOTS2WEdewnVJlUCgUmDt3Lr777jscPnz46QSTLl8G0tKQHxgIvxYtIDg7o5mbW/HzBw6QWuLBg9q72//rX1QHn5dXea1qIXJycvDNN98AANxKHr+GsLW1RVran2iOa5QMh4VV/t6uXqU2aZUFwMzNqbZ71SryWnjK5Ur5+fnc1dW1wjHk4OAAS0tLKTIyUixLChMTE/Hjjz/CSq+HXWYmb/7vf7Pk8+dZUFCQsUa3ZkhNJZL71Ve0yC8oAOLjSQJbjaO/s7MznEuoPiAIRb4FY1asEH/88Uf59g8/oJtazZL9/DBn1qzinthbthS/LiODxnFmJhFUgGrGu3UjL4LBgwG9HjnHj0O/fDkwZw5e/eYbKP39ab5o0IDKdI4do3tjxw5SwURE0D2ycycFWEpAqVTi1KlTlZPt1FRg0qQq339ISAgkSUJ2djbLz88nZWOnTpTVFAQK9o0cScTdiMGDgWnT4DlhAvDNN0yWZbzXuDGsra3x2WefITAwsEYO9ABgamVFJTWRkdWSbQsLC8iy7FzlRjVA4frzUmXPL1269LhGo1Ho9Xq5MCn08fLlywecOnWqy4QJE57qIiApKQnr1q2Di4tLgZeXl4mdnR0aNmxYpS+S0WeAMaYA0AFAjcg2gIYKhcKsdevWFT/buzeNxYKCqs3uABqjubmkgqukF3lGRgays7NZSXm+TqfDtWvXJJ1Ot7KG51yH5xB/kZXxo0GtVt8BMFmj0cwEYMjKyhoAIKGqjLIoil2aNm1qFhwcDCcnJ/j5+ekNBsP0QsfHbwt/yqGgoGBOZGSkdVhY2ADO+Qi1Wn1eo9F4X79+vSuAApDDZCaA/YsWLcp90u/1RYJKpdql0+kGxsTEYOXKlXpRFIN0Op2Fra2tR88KZFt1+HNhdM1t164dhg8fjmvXruHcuXOiTqd79q1/nhSM2a4pU6jn6vHj5bdJTKQvzg8+eCqnMH78eObr64sjR47Azs4OldXHMcbAGEPTpk3RtGlTyLKMmJgYbNq0Ce7u7njllVcEk+oWAn8mPvyQDNBSUynzPHUqtf0KDKQgx/TpJJns2JEyk4cOUYucl19G7sCBCE9L47hx46mfZv369dG8eXMEBwcLaWlp/M0333wyqgBZJtnrgQOQFy7EsYkTYbh/n3/84YfF+9dqiTh8882jt5EbNIicpf/znyo3K7lIPXv2LNq0aYPaZE1NTEyQmZkpaLXaWr0uMzMT+/bt4/Xq1eNjx44VamQi+o9/kGT82LGqt9PpSCZeFd58k+r1z58nJUstlSl5eXmozPel/OnohLLlZyVRv3598datW7x169alWigaZblvmpjA9tgxhm+/RUREBI+KipK7dOlSswiBwQC8/jpJnpcupcdMTChgceoUtQJ7RJibm+O9994TVq9ezWVZZoaq1BTG929vXyyJvnyZjApfe416dQPYb27Ow+fMYS+//DJUixfT+Jck8sVwdKR5wWCgAIlRDXD4cIU13w0bNkRERAS2bNkiT58+vXyw41//omBpBd1pUlNTce/ePZw9exYAjdfVq1fD3d1d7tu3r9C0aVN6bVoaqaDef7+4bGPLFsp4TpwIBARAAGDUZHPOkZKSUu21LYVu3WjfAwdWOR/Y29vDYDA4aTQapVqt1le0TWFv7VcEQZA++eST3RVtUxOUdTmXZfmDuLi44wCeamo7MDBQL4rihri4uLl79+6FUqlMBWBtYmKidXR0ZI0bN7bUarVSSkpKvl6vl2xsbJTp6elSUlJSlsFgmAvgSC0OlypJUuWBVjMzUk4FBVHpWWW4dYvUF//7X5UmrHZ2dmjWrJm8adMmwc7OTurcubNobm4OQRBuqNXqB7U47zo8Z/iLrIwfD4WZbgA4Vd22nPMz169ft71x40ZqQUFBV5VKFbJ48eLIGh5jdJnH/FBYF1KHYhgMhnWmpqamWq12nsFgeLh48eK4VatWnYmPj3fNz89XqlQq6PX6Wi3s6vDk0KZNG1y7dg13797FnTt38MEHH+Dq1av44osvYGJiwufMmfPitQKrDDt20MJu40b6wjTWgObnk9z5+vXSfaGfMPr16wcA2Lp1K0aOHFkjGbggCJg7dy7jnEN8FP2zVluc6bt/n0ifMSrfoQOwezdlWkSRFpUffUSPGQwUnJg9m2oas7Mpc7hrF2W07ezo8fbtyXX444/pugKU6dq1izJFs2dTxuvf/6aM9cyZlP3u2BEsOhp5W7f+aXLlIUOGYMuWLYiOjmaSJD22nBx//EHX4ttvwceMwebff5cfPnzIhg0bVvy5xsbS4vrixcfr0338eLVZS4CyYR988AGCgoJw8uRJXLx4ES+99FKND9O7d29cuXIFp0+flkeOHFljBcDVq1fluLg4ITo6mrm5uaFNmzaoVK4ZH09Z+ilTiklbZUhJIRf32bOrPwknJ7rG06eTiqCG2LVrFw8ODmZz586Fk5NTtdsLgsDz8/MrvXeHDx+OH3/8kd26dauUjN/oVcDmz6f7gbYV1q9fzy9fvix7eXlVf70TE4nclpVLyzJ5F+zYAfTtW+1uKoMgCHBzc8P58+cBAKdOnZK9vb1rNg6mTi33UIcOHVh4eDjatm1bHLwVRSKaAN0b7doV9/h2dKSggb09GSuC5Lj+/v5ISkqCk5MToqOjhdu3b6N9WUn6tm2l2w0WwmAw4LvCGvJevXrxl156iWVlZeHGjRu4evWqcPPmTd60aVP6PO3sSNKemEhBw8REMlD74osKFRNKpZK3aNGidpGdFi1oDrx8uZRxZFlYWlqiYcOGPDY2VrdixYqrsiyfZIzNA7BelmU1Y6yvUqncrtfrHUVRDEEJFecTgJ2FhcVTL30MCgoqkCRpE0jyrtPr9bkA2uj1el1OTk6PyMjI1rIsFwCIAJAK6iWeAOCcWq3OrM2xlErloqZNmxoAVB6tdncnFVFluH6dfDRWrao+AAhg+vTpQnZ2NgIDAwV/f385NTVVAPBLbc67Ds8f6sh2LbFw4cKiDcmqAAAgAElEQVSFABYCgEajcSkoKMh4xqf0l0NhtLXUl0BBQcGroaGh/42IiHi1Xr16iI+PN/nggw/YozrF1+HRYWpqCi8vL/z+++/o2rWrbGVlJXz44YdYsWIFCgoKnvuem7WGQkELOktLyrDk5dHfEREVZkRqhays4vra8HAi7rdvE+ls2xbYuBH9JkyAQ0YGIj7+mMW9+65hRGysQnZ0hDBmDGVONmwg2ezOnVSXPGsWhO7diUC0b09mLJs3U53YuXNkEvbaaxRhb9KE5J3vvUdy7bt3qT/zxx+TK3vnziSRW7WKjMZOnqQF7urV9NoNG4hsBwRQn/EpU4gsGiWWRvLk5gYYa/lGjyYS/e9/U4ZSpyNzK7Wazk2no0XwmjXAokWUtQoPB9q1g8s770CZmQnu6Qnm70/ZrtRUMpu5eJGuWYlWdY8LBwcH9O7dGydOnMAvv/xCfbgfBdnZdP3Dwuh9du8OcI68vDwmiiLv0KED3Td5eWRstnp1pW7HNUajRnStv/mGjK+qgLW1NSwKa+hlWeZAzT24TE1N0bhxY2Rk1O6r8OHDh/Dw8EBOTg4OHDiAAwcOoEOHDnzcuHHljz1pEi1qN2+ufscnTtC4r4kiQKkknwYTE6ohrmH/eWMZTX5+fjVbEuzt7dmDBw+k1q1bVxitcXJyQtOmTXHx4sVSAbWCggI0Cw6G1aBBMKo57O3t4eTkxO7cuQMvL6+qD/y//1H29ebN8pl7pZLMnR53DgPw6quvstWrV8v5+fnCxYsXhQ4dOlQfhNi6leqsy6jV0tLSYG5uXnngxWCguc7UlAIIY8cSYf7hB+Dll5GZlYVz584hoND0zMLCQhJFUfz9999Lk+2DB2luWb++1O5DQkKwb98+7uTkhJkzZzJj6ydbW1sMHjwYzZo1w7Zt25i3t3fRPQM3Nxo7GzcCv/xC9/CQIfRTAt98841UUFAg2tnZgXNeu5awK1fS/F4F2QaAGTNmWBRm5btqtVpPpVKpuHPnzgeZmZkDFQpFu1deecVcp9Ph8OHDcTU/ePUQBKFv06ZNLZ/Evjjn0Ov1UCqVpa5RdnY28vLyGIAbZerSbxf+fmLtQJYtWzbQ1NT0nbFjx1Yd3WvXjgKoFZkthoRQsPjLL8kktIawsrJCnz59mIeHB1u/fn2uJEl1ZPsFRx3ZfgwUGnrV4U+AWq1OAfDG559/npaamtpMqVR2z83NbVhHtp8NTp48KXfp0kUw9oaNjY0FQG7lf5msdkm8/DL9rF4NLFlCC6uwMFroTZtGEetevYgUfvwxOV8fPEiLsBUrqNZuwAAioaNGAenpxQvdLVuIcE+dSsR36VIi81u3kgTY0xOtRRHuycn4b2CgotGRI0g0N0dwdDR/Oz6emeh0tPC0LFzntG1L56dUkhmLiQlJio01gv/9L5Gv+vWJfKtU9JhRApqaWvy+jS2kSi5IS7Y3M/792WfFj5WU3G/bRr/nzi1+bGVh6ZmDAxATQ6Sc8+LsZU4Onb/RvXjAANp+yRLwHj2AH35ARrNmsAUoMBEdTWT7lVdIeWBtTZm8nBxyXFapgG+/pedXrSISdu4cBRtSU6kmv4rWP15eXrCwsMC+fftqJR0uQk4OmcP16kUZ/EISyBjDvHnz2Jo1a9jGjRshShJ/Wa1mF7y8wGfMwLjaHaVimJlR3Xs1ZBsgEgcUt5mrDaysrOQ7d+6Ip0+fRqtWrSo1fgIo6xgXF4esrCzWoEEDTJo0CQaDAWvXruURERGl2cfSpVQffOJEtbXnRfD3r11pR7NmFAhZupSkzJZV84WDBw9yY1DRtQbXFSAynZCQUCWzat26NQo9XIoUFCYmJkizs4Nu0iSUXPHn5ubKLVu2rJqpZWTQPbZtW+US+SZNaL749NPaOSpXAGdnZ+HBA1K65uTkVE+2d++me7sE2ZZlGXfu3OGenp6swu4KskzBo6goqj8XBJrbevSgz2/RIsR7eiLg3j20a9eOT5gwgQEQt27dysPDw9lXX30lDxkyRGjdujWE9PRyYyopKQl79+5Fnz590LdvX1YRGY6Li4O9vb1csi0TDh2iOXLECBqrq1dTRvOzzygTP3QoYtPSkJWcLEKpxM6dOzF16lQ0b968xtcXbm4UtIuLo4BoJRBFEY6OjnB0dBQACAAQExPD0tPTuw8cOBDNmzfHLerTLlW6k1pAo9G0QyHZbVlJLXJFSExMxNmzZ3Ojo6OZwWBQWFtba3U6nVBQUKAEwAwGg1ivXr0CLy8vs1atWjFra2uYmJjAYDBYCIJwZdmyZauWLl269zHO2xmAQq1WR1f0PGOsr52dnVhtCZanJ43LxMTSgSsfH/pe3rq1QvVETXD79m2DIAjrlyxZUvtJuQ7PFerIdh1eKCxcuPADjUajEgTh5r1795waNGjw13DBfsHAOS+1mNq5cycAIDQ0FBcuXEDvxzSoem7xf/9HX6CFmS107Uok1tqa6iIBInWFDsNYv56ybNbWlHkFiuXSAJFLI4yZwf37ix+LiaHfnTtDNXIknH7+Wdrv7S1aWVnxvKwsFvj11+ju5ERy2P79adsPPyx+vZHYtmtX7MxsJK8AYMyMVUMwnhoEgaSs6emUYTQ3JzlocDA9P3o0PZeXB8ycCcXRo3BMTkaySkVku1BaC4AWoQBl2G8XJjrGjSu+1vn5RHRv3KCF+htvUM1uq1bA9u1Euu/fJ6n33r3Anj0UhOjaFe379kXY11/LP2/YwGbMnMksa3K9MjNp0R0WRoGXCmpKBUGAt7e39CAkhNe3sBClBQtwJzsbJmFhtcouV4pdu4rHUDWIjo7mKpUKI0aMqPVxx44dKzZq1AhXr16Vrly5IjZq1EgaMmSIWLLNVWpqKoKDg3Ht2jWem5vLnJyc+JAhQxhAxkC5ubmsdevWEgARBgMRxPh4MqOqKdFOS6PgRg3Np4owbhyNm4KCcvfC7du3ERISgsTERDkvL0/QarWsR48euHXrlizLsmAwGKCqpk9zbGysXF1P4tTUVIiiWKo7iZCfjyaZmTxszhxWUgCt1WrRvHnzyj+n+Hgiofv3F5mZVYqPPipF3oKCgiCKIm/VqlWtxkHPnj1Rv3593L59G8eOHZPmz59fec1FejoR1DJk9vPPP+eyLLMKHfE5Jxd5X9/Sc2iXLvSYlxeQm4uWFy7AvkULHhwczC5fvgwvLy9MmjSJxcTEYNu2bcJvhR0nPPR62bRHD2GUToddu3ZJSUlJLDc3V7C1tUWfPn0qJNoAXfuUlBSBGQykrDEGDf75TzK+srIq7h6waBGpCnJzYXv2LP6xfz8SJ0xAnqUlv7JlC3dfulRgNfVksLCg44SGVkm2K4KHhwcEQcjr0KGDOUC1wZzzqt3Wao5UALC2tjY0bty4Rm8mPDwcO3fuzDMYDIs45wcB5KelpbkV7isLxE0S09PTJ549e3b6qVOnBrq6uqJ79+7mACDLclcAv2k0muaPUsus0WjqAYhTKpV+APpVtI0sy6uTk5Nfun79ev8qFSSCQNnrkJBisp2URAHmdeuqVSJUBs45AgICCvR6/dZH2kEdnivUke06vFDQaDSiQqGIsbS0NHd3d68j2s8IsiwzmxJy3ZkzZyIlJQUxMTHG/qjw9vZ+hmf4lCAItKgyYsmS4r+XL6ffXbsWPzZoUPHfxgWkUXr4CJgxY4Z48+ZNmJmZsT179uDcuXNwd3d/sdUEc+ZU3H8XAErWDmdnAwBctm+X60VH0wuaNydZ+5gxZFLTqxdl9I0S7JLmT8Y+1U2bFhs0+Re2XOWcMoCOjrSQNZrdXL1KCoCOHTF2+3ZhmYsL0idO5Jbx8Qy3blFG7cMPKdAxcya5qe/bRzWkI0YQgVu/vlhCXwE6d+4sdl62jLLQO3bA5IsvkJeXx3Q6XbUkrlrk5REBuH+/ygX6sWPHDP7+/orxNejlWxm6du2Krl27ilqtFgcPHhR+/vlnNGnSRHZ0dGSmpqY4f/48s7Ozk9u2bSsMGjQIQglWmZycDAAQBEFITEhAg0GDSK2wYUPtTiIqinwFaqs+AIBXXwV69cKDTp2wq1EjbmdnJ1laWuLBgwcKgAiLg4MDWrRowd3c3NjVq1eFVatWQZIkWFpaSm+//bZYkerhzp07ePjwodC3mrro4OBgWalUCrdu3ZI7duwoAAD38cGAgwdZYsmgEqjOPjIysmL3eJ2OFBtz51ZPtAG6zuvXIy81FZeUSmPtNVuwYAGqMnUrC3d3d7i6uuLq1auwtLSs+ru5c2dSAJVQvFy+fBmyLLP333+/WJ5dEvv2kVT85MnS84VRqbJgAfDNNxDS0/GPhQvZtalT+dETJ5inpydUKhXc3d2xZMkSaLVahIWFofmwYcLBN9/kX0REMIPBII4dOxaNGzeGlZUVKsyqAzhz5gyu+vqifVAQBTJ27KASnAEDKHAwezaZ+BmhUtEcAcDipZdg8cMPsL14Ebrr11nsH38wuXVriL16URlNvXpUKlGVtLxlS8rs9+9f+ZxZAXr16qXs1atXkS6/QYMG0Ol0jTQajZVarc6u8Y7KQKPRuKhUqv/qdDq88sorNeITkiTht99+y9fr9aPUavXZEk9V1NZqN4DdGo3G/MGDB2/FxsbOUCgUzgCiDAbDOhS2Jqvk3JoDSFWr1ekVPD0KAARBqDQSqVartcuWLTseFRXV3cvLq+obwcaG2g32709B2tRUUsk4OFT5sqoQFxcHg8GQAeDmI++kDs8N6sh2HV40cEEQstq0aWPdpIb1dXV4sggLC0NBQQELCwuTjQEPBwcHODg4oFWrVtDpdLh3757k7e395/Xd/ZtAEISilj+ffPIJNm3aJH///ffC+PHj0fYpGrU9VXTvTtnk9euJeFcGUYS/vz+/2KiRIE6eDCeA5OHt2xMpnjSJJNMff0wkw9h+qCZ1kYwVy2j79i02jNq1q2iTswcPQnHhAixXrmTYv5+kg/b2wJkzpBo4dYoyXZ9/Tv2bp06lzHZ1SE+nBXshMbKwsEBeXh4iIiJqJcusEObmlFkr0zauJBITE3Hjxg3FrFmzyrWXexSYmppi0qRJLCcnB4cOHWL379/nnHM+fvx4sVWrVhUyhDZt2mD48OEI/e47digsjL/1zTcM/SpMOFWN3bvLtX+qDeSvv8bNL76AwcGBJSUlKZKSkmBqaopp06bB2dnZeO4MAKZPnw5LS0uoVCrs3r2bHTx4kE+ePLnUYNu8ebMcFRUlDB8+HJW2DyrElClThM2bN+P8+fPFmd3Ro7Hvyy/l2N27BUtLSz5nzhxmaWkJg8Eg29nZlb+WnBPh8/CgIFQNwf39EblzJ7/98stwcXHhWVlZ2L9/P58yZUqt5nCjjHzUqFFV33SHDpVrf3T16lW5V69eQoVE+9YtCrzs3VueZHbqRGUDBgMRbxsbICoKnpmZ7CiAwMBAdCvsLiGKIiwsLNCxfXtg2TJMmT2bJSYlQZKkKksfACAtLg55X36JrgYD+ru4kKz7wIHiDXQ6CuitrKJDk1IJ9O+PxGbNEJCTg5T+/WF38yasv/iC2zx4wGSlElampjxn4EB0mDuXmTg6ln59164UUAoJIRPJR4RCoYCrq6s2PDz8VQAbq9teo9EoATC1Wq0r/L+VKIpfKBSKXk5OTrZDhw6t9voZcffuXXDOg8oQ7SqhVqvzAKwt/KkSy5cvHwngPQDegiCkazQaT7VaHVlmM6Wtra0hNzd3sEajEcs6qxvBOb+Tm5urA1A12e7YkYIvubl03/3ww2MRbQC4evVqvsFg+KGq7kh1eHFQR7br8EJBrVbLGo1m7cWLF7+LiIjI5Jyjffv25j179lTWymykDo+MHTt2oH79+mjbtm25xZ4kSQgPD+eurq51RPspQxAEzJo1S/jll1/42bNn0bZt2xf3BvD3J6fdKsh2fn4+fv/9d9apU6dit2yjKU2jRsXSfRsbqlMPDaXFaXAw1dLr9aUz5WURGUnZZc5pwbxsGcnIAwOBAwcwYNQo6IYNQ7SDA6936BBjCxdSyYBSSQQvIIBcg0eOpGPWhPR99RWZWN2/XxQUaNKkCR4+fAjrKrLhtYHMGLRjxyLuv/+FR5k+vZIk4ZdffoGnp+cTIdolYWlpiSlTpjDUUA7fvXNntDlwAA9atKA+xbWFXk/qhHs1baFbHgGiiCRHR/xr+3asnTQJA0aM4L17967w/EvWa48bN05Yv349NmzYAEmSJM45s7GxEeLi4oTJkyejRYsW1R7byckJM2bMwLp169jBgwelEY6OomHMGJh9/bXQsmVL3Lt3j0VERKB9+/ZwdXUVz507x/Pz85mx9R9jDEJeHhrn5yPBywuyvz8EQUDLli3LZaijoqIQHh6OS5cuUVcPd3fOGjbEP8aPZ6omTVh0dDS2bt2KyMjIGtelc85hdOmuMhA+ejT5WJSphc3KyhIqrPM+c4bKRU6dIol2WZiaklz7xx9JUi6KwPHjOPif/8jDTp8WulQUdPDzo+0YQ4PqDOIyM4GQEAhTpqBxo0Zw37QJZhWZF8bFkQ9HDUhWkyZN4OLiImXn5AjdFy5ksbGxrHHnzkiJiEDa5s0wO3iQZWVmwiEzk9Q7/ftTQM/Kinwn1q8n063HQI8ePSxjY2OXajSaXwvJbBE0Go2tQqF4X6lU9uWcN2KMNeecM41GM1CtVp9jjP1bkqRRACDLcp6zs3ONpST+/v7ZWq328U6+Emg0GjNRFLe5u7tb9ejRA7Gxsda+vr6BGo2mqVqtLungGFBQUKCzsbGxSElJmYEKAg4ajUYliuKbzs7O1cs7XF2BK1cowHv7drEx6CMiLy8P9+7dY5Ik/fhYO6rDc4M6sl2HFxF7AOgSEhKiAFikpqZ+fe/ePbtp06ZZPLbssg7VgnOO1157rchQqSTy8/ORnp7OsrOzERMTI40ePVqsrlaxDo+Ou3fvIiMjg4mi+GJHvz/4gEhuVlaFkmtJkvDVV1/B1ta2+vZSJRfXfn6AszMtTMPDadHarRvJzNesoUzZhg1Ejvv1ozruGTPIlT0/n0hf585EhDMzkbZ/v3zl/n0h9/vv0cvCgrY1om1bYPJkynZ/+2317zklhWqFBw8uItoGgwE3btxAo0aNHpn85uXlITY2FtHR0Tw8PFzOiowUX715E79u24alGk2pbY8dOyYBEB6lTvuJoaCAzAfXrMEPixbJvfv3f7TyoEuXgMWLH8t/ICUlBSn29sj19MT/TZ0KkzZtanRd6tevj2nTpiEoKIhbWVmJGRkZuHr1Kvr371+rNk9OTk74xz/+gXXr1omxsoxGPXsiOiYG9evX54MHD2ZGN+1Ro0ax3377jd++fVvinINzjqY3b8Lz2DFh78KFEg8NZQB4VlaWGBcXJ48cOVIEqN740KFDUmhoqGhnZyfr9XrB2dkZnTt3Zu03bYIwcybg44MmTZqgefPm+OWXX2BnZ4dp06ahXr16VZ060tLScP/+fTanKnWKJJEipIKaeoVCwU1NTUtfqzt3SKq9eXPFRNuI3r1LtV+6FxKC+1qt8HJ6OoT4+PLHO3iQSHRV3QVSUihg98knkDp3xrrXXkPf4cNly2bNKh6fq1aRDHzBgsr3WQKzZ88uCkgbP1enBg2Anj3Z6tWr5amTJwvIyyMS//XXFEycNAlISCDfibQ0ajv2iPDw8ICpqamDTqcbAqAoRa/RaPoqFIpDrVu3NnV1dTW1tbVF06ZN4evrCz8/v5EAznHOZwKYCcA6Li4u9caNG+hasnyqEnDOkZCQoABw4ZFPvAqYmJicsrOzM33ttddExhjc3NzEtLQ05b1793ZpNJrxarU6FwDUavXNzz77TD948GCb33777RuNRnNJrVbfLbO7VyRJGl8j/5m0NJrH3njjsYk2APj7+8uiKB5avHhxLRuy1+F5RR3ZrsMLB7VanQygyB5Zo9EciYuLy83NzX38Gsc61Ah37tyRBwwYUG7RYWVlhaVLlyIrKwvbt28XT58+jRkzZiAlJQXJyckwNzevcaakDtXj0KFDvKCgwGgs9WLP52vWAN9/X2w+VwZ6vR5TpkwRFDU1FAJIYgpQhhogqaebG0mrBYFap3XvTs9FlzClPXWKfpfIeglmZpgyZYpw5coVHD9+HK6urnB2di59vMmTidxXB39/agVz924pp3CjE3hNFq5lERAQwE+fPo38/HxmZmYm2dnZCS1bthTbT5yIuEmTUH9vaeNerVaL27dvi6NGjar1sZ4YMjNJTdCwIfKsrZGv1wtRUVFSr169aq+M8fev0ISuNsjKygIYQ9qyZXDcsQOwta2xs7mLiwtcXFyKyGK/fv1gYWFR6yCGvb09Gjo4GJqfPCm027BBGEOZ0lL7EQQBr776KgNA14lz6uv81VeYN2FC0Q1y7do1nDx5UtTr9TwmJgaZmZnMzs6Ovf3227hz546Qm5srT58+ncrnNRoil4WYNGkSgoKCcPz4cf7777/L06ZNq/IzOX78uGxlZcWdnJwq3+78eZJeV3APm5mZ8fj4eFZUh37jBvlgLF9efe3522/TvQTg/v372L17N8ZPmwbl559TK67sbKqLNmLlysrLS7RaMrY6fpzKO9avR0B6OgoOH4azs7OQlZUFU1PT8muNdu0oaPSY0Ol00Ov1gpWNDY3nli1JkRMbC/z0U7FRXGhoscHlI4Axhj59+pj6+Pgs12g0PgDamJiYfKhSqcaMGzfOtFXhNeecY+/evdqgoCBTABkAoFarDQCg0Wh6AqhRr3mAAoEGg4EDqJlrYy3BGLMdOHCgaUmV48iRI81kWe4XHBx8T6PRDFCr1eGfffbZW3q93qZ58+YYMmSI2alTp/ZqNJoOarVaDwAajUZQKpWfvvTSS5KVlVX1c9HRo1SGVFH7r0dAQEBATkFBwQ9PZGd1eC7wYi/O6lAHAlMoFJHbt29vOGPGDIv4+Hj4+fllP3z40GTOnDmqF9o86jmDLMuws7PDH3/8IXTr1q1CIxvGGGRZxsOHDyGKIj7//HPZYDAIZmZmPD8/n5mamsqNGjUS0tLSJBsbGz5lypS6eegRYVxUODo6Kkq2DHohMW8emVRVgLt378LExITb29s/XgZWpaLMkyCQURpQo7ZYJdGjRw9cu3aNX7p0iU+YMIECTgYDLbQ3baq+b3FSEpGH/fsBBwcYDAYEBgbC19cXubm5AIBGtXDT1ul02LZtmxwXFyeMGDECHTt2hEKhKDUQEtRqTNm2jaTxIKL97bffwsbGptLez08diYlEJC5eBH75BbqMDHDOMXbs2NqfjySRGdwjBClKom/fvggKCkJMTIzcystLwJYtj7yvCmuPa4hZ3bop8OmnpJKoDrm55Kr/88/lSGm3bt3g4OCAkydP8rZt2wpubm5o0qSJIAgC8vPzYTAYilts2diQ58HYsUW1yG3btkVAQACLjo6u8jORZRlhYWHCvHnzKt8oNZVMAyMiyIiwDAoKClAkPw8JoYDX3LnkyVAFYmJikHDkCK+/Zw/2hoez/Px8CIJQ3FPbxYV628+bR9JxzikgFhRU+l7NzSV5+9691I7xlVeKTAV9v/qKA2BbCseDmZkZX7BgQfFc5O9P4/kRAslarRabN282ZGVlCXq9XjAYDHBzcyOSl5tLpRH16pEJXHIykex69WpmflcNunTpwuLi4prfuXMnWaFQsJ49eyq7detWZPTHOYevr68UHBycJQiCvyzLRc7fGo3mdQBbAeD333/PUiqV3MXFxczd3V3VvHnzCr+LdDodRFHMW7JkyVNRYmm12pUnT55c5+bmZmE8vlKpxPjx402vXLni7OPjc1uj0XwJYAlAruhdunRhQUFBTeLi4v4DYDEAKBSKf9WvX9++e/fu1c9FwcEkIf/66yfyHnJzc5GRkaHCU8r+1+HZoG6RW4cXHmq1ukCj0bTIzMz8cfPmzbOysrJy9Xr9O4IgdDx79uw/Jk6c+AjWtH9PHDhwgEdGRkoKhQL169cXBwwYwGJiYuDi4gKFQoHNmzdzSZLY8OHDq3SqtbW1xTvvvIPMzEykp6cLzs7OaNSoETMYDDhz5gyysrJkd3d34erVq+zu3bto8ximRn9nzJkzh/n5+fE//viDtWjRonym9UWChQXVRy9cCBS2kjMiNTUVj020jTh2jGTkj0HMxo0bxzZs2MBat25NYzc9neSx1ck6s7PpuOvWASNHIioqCjt27EBhoIQPHz6cNW7cuMhd/vTp01JmZibGjBkjVhZIOXDggJSVlcUWLlxYqbLHfcUKbBQEpGg0eP3113Hz5k1uYmIiz5s3788n2rJMC9N33wXOnUNes2bY9tNPUmZmJgMgPFLAKCSEPtcyrt21hampKQRBQMOGDQW0a0fy5DfeAL77rmoZ85NG586llRaVgXOqEW3VqpzhmBGurq546623SqmQDAYDrl27BicnJxnG7DhApRBKZXGPe1DtvYmJCWRZrtSlm3PiTnq9vvJztbMjslgYhMjIyCCinJCA5ORkGAwGoVGjRmQA9vXX1MmhZDeBCnDlyhXp+PHjorkksa7u7tzZ2RnNmjUr3XrS25tKNd59l+rF+/Sh1lxGoh0WRjJ1hYKCABcvlgtydOrUifn6+uKNN96AIAjYvn07Dh06BMYYRFFEy02bIEoS7p86BUEQin6MzwuCgLZt25bzYbhw4QL8/Py4s7Oz0L9/fyE6OporlUo2MCdHZGPGkMHi0aMUKFi9Ghg4kBQMnToR4X5MCIKAsWPHmhrbtpVVDd29excXL15MkCSpdwX9qC8JgpClUCj8Hz58+DWA3ISEBM/bt29P4Zx79OjRQ9mzZ0+Fqalp0QskSQJj7In0964E27Ozs2eeOXOmt7e3d6nJsEePHqKzs7P5zz//XNRC5NixY5g/fz48PT3NIyMj/63RaPap1eobCoViep8+fSwqG++l8J//0FithTt8VQgLC4NKpTq/YMGCKm6mOrxoqCpNgwIAACAASURBVCPbdfhLQK1Wc41Gsyw7O1uUZfmQWq0+qNFo/O/fvz8/MTGxehOUOiApKQmBgYFs3LhxCoPBgJs3b8o//fQTU6lUkGUZkiTB0dERb775JkzKmNtUBEdHRziWyWAoFAoMGTKk6FtJFEV+8OBBXL58mdnY2MDd3R1ubm5PzBzqrw47OzuMGTOGRUZGSsHBweILTbYB6hfOyyc9mjVrhosXL+LSpUvo2bPn4x3D2vqxHKsBkgwLgoC0tDQKEERGAidOVP2i7GzKwG7fDvTrh8jISGzbtg1t27bFmDFjIAhCuWDC+fPnRYDupT4V9GvNzs5GVFSUOHDgwCpLaExtbPB6mza4tmcPtgGoV68enzx58rPJaIeGUvuiqVOBzp3xx7FjSEhIEIcMGYIWLVo8WinQtm3Ffe4fA9HR0bC0tOTt2rWjz8LammpkT58udqt/2oiKInfjhw+rr/9cupQI4s8/1+oQer0eoigiKSlJjIuLK3aSbtqUjMZ27aKSCADDhw/HF198gbt376Jdu3YV7k8URahUKgQHB1cc8IuIgNSjB9Z/8omUlZ/PdDqdAABWVla8Xr16soODA+vRo4cgpKQAPj7Uvm3ChCrfw927d/mJEydEJycnvPXWWxCGDmXo3JkCBmXBGEmyDx+mOWbyZDI0XLuWDA3t7cl/oRICG/j/7J13WBRn18bvmVl6UYogYEEFpIiACthBY0F9xV5fS4zGFhM1JjEazWZjNDHF94sxMRoNJsYSNYqJGOyoWADBiAhYUAQU6WUp22ae74+HRToLrCbR/V2Xl8rulJ2dGeacc5/73LjBd+nShevQoQPKysrQtWtXQSaTEUIIIwgCSezZE6WtWzOKzEz1z0AIgSAIEAQBRUVFXFpaGqZMmVK5zrt37+L06dMYNmwY/H18WDYnB24//8ygQwdqijZyJP0+jh6lPcHDh1Mzxe++oxL7Dz5o8Pg0Rnl5OVJSUqBQKKCnpweVSgUbGxvoVTnnMjMzoVKpIuoItFEx37pVjR+fArBRIpF0jYqK+vjq1auj+/Tpo9e/f3+RSCSCqakplEqlhUQiYZ6Fy3bFc+DUmJiYu926ddOv6XvRvn17LFq0CGlpaSguLiZmZmb49ttvy/Py8ow5jivkeV4FADzPJxQWFtZ9slclKoom46qO+GwhUVFRJeXl5T80/k4d/yZ0wbaOFwaxWJwBYG6V/ydJJJKv9uzZs2LFihWaDwx9ibh58ybu3r2LkpISkpGRwfTo0UPVvXt3EQD06NGDlcvlMDAwQGZmJvLz8+Hu7s5o0/U9ICCAsbGxQUZGhpCdnY2zZ88yYWFhjEgkEjiOg56eHkaOHMnWdFHWUZ3evXtz4eHhSE1NJdbW1sIrr7zCtUTG+rfRpQs1RLp2rVrluWPHjpg6dSr2V1S8WxRwR0QAM2e2cEcBPT09YmlpyWDHDhogjRnT8AJDhlBzti1bwPM8Dh8+DA8PD4wbN67eRQwMDCCXyxEZGQlXV9dapoQHDx7kraysmB49ejRaVmklEmFI167ovWJF43OQnwWJidTg6fJlalZXcR/p1asXoqOjkZycLPTp06fp+0UITWI0dvw1oHXr1pBKpcy2bdvIrFmzGCMjI1oxv3KFSqufR8Bta0vdphsLtGUyei5v397kTRgZGWHy5MnYt29f7X5buZzOig4KAiwsoK+vDwcHB+H48eOsh4cH6rv/u7u7k4yMjFovKhQK/HHqFDH292e6uLoy7u7urIWFBYyMjFDxy4QmfYqLgfXraZ/8++83+hkuXboEY2NjLFTP6ra1pXLu+kYgrlwJlJTQQNbSkt5fAgNpUNvAvVIQBCgUCsbf3x8sy8LU1BTjx49/mqi6f58mPZKS6uxFB4Ddu3eTBw8e4MSJE0xeXh4KCgr4kvx8tq+TE+n9558sM2kSNXPs3ZtW3au2vj15QhMBn31GZ3afO1dvu40mKBQKXLt2DZGRkeUArhBCChiGMSOEOCmVyvb29vbyCRMmmLZq1Qo3b95UcBzX5BlWYrH4NoApEonE+erVq9/cuHFjwOTJk43t7Oxgbm4uLywsHADgQrM/RMPbzl63bt37J06c+OLVV1+t9sUWFxfjwIEDZcXFxSU8z18RBGEMgP8B2LRmzZp89fuUSuW13NzcsQAMUR8qFZ0mMX06bU/SAlKpFNnZ2RyAw1pZoY5/DLpgW8cLi0QisQGwpn379v9up+YaqFQqSKVSFBUV4eLFiwIhBEFBQez9+/eRlZWFbt26oVOnTvVK/kpKSpCSkoKEhASSnp7OtGvXTjAzM8OsWbOYdu3aVbsnqCvYdnZ2Wh8NBNBKt6enJzw9PSt3Njc3F5mZmay5uTmuX7+OAwcOwMLCgp88eTJXlwO6DtpHfP/+fb64uBjx8fHc7du38e677/7du9U84uKoXLKoiPZYVtC5c2dMmjQJBw4cQMeOHZsnmZfJaMWwhRLMkpISsCwLeXw8NXZrKAFFCJUEf/894OEBnuexefNmwvM8qctkUE3FPHsAgLGxMdm6dSsTEBBAnJycGDs7O0ilUmRmZnILFiyo91qvxty5wLRpMOWfpYqzHtLTafVw3DjqFl7leOXn02fckSNHNi8BkJJC+201NGlqCKlUCkIInjx5wvDq48RxtB982TIamD1rE8716xuXw0dFUTnxhQuazZGvA0IIDAwMiEgkqr4COzvaV13l2ps4cSK7ZcsW8tVXX2HUqFFMXTPD7e3tmaSkJFJSUsKYVjjCX716FVHHjpEBt26h465dsLKyqvs7lsmAQ4do3/jKlY3ue1lZGR4/fswMqToibt06WgFuCBMTel/JzaXJn48+oqZtw4fXu8jOnTt5lUpV/1SN0lJg/vx6A20AKC8vJwDYRw8e8O65uYypszPnsnkz9KZOZZgxY+i12bFjdRM3gF43775LTfoGDqQBvZERNXlsBhkZGdi7d285IeSSTCb7TCwWn6n6ukQiMXv8+LFkx44di1977TWD4uJiPQDNdn0Ti8V3JRLJCIVCMSMkJOS7vn37Grq5uRlHR0ePwDMKtgFAEIQfHz9+vKGmqvHSpUuKwsLC3TzPvykWi5USicRULBaX1Fye47j2VlZW9QfaAL2n+/trxRRPTUxMjIrjuKNr1qxRaW2lOv4R6IJtHS8yOQCm3rt3b8exY8cMBEEgBQUF/NSpU400kUE/b3JyctSGHbV6p7KyshAREYG8vDy+qKiIVSqVDMMw8PDwICzLYuvWrTA0NESHDh34/fv3cyqVCkZGRoKZmRkxNDTkioqKeKVSyfA8z/A8z5iYmBBTU1Myb948xtra+vlXuRrA2tq6soLXsWNHDB8+HIcOHWK2bt2Kt956C61a1VSu6QAAtSw4JCRESEtLY3/99VcyZcqUf9/sbV9f+jBcR++us7MzfHx8+KNHj2LRokVNl0GXlwPvvNPgg3FjXLhwAZGRkXDq0EHwXrCAg4MDMGBA/QssW0Yf6GNjIZVKcfnyZaJQKLBy5coGrzu1SZG9vT3mzp3LXLx4EUlJScLly5dZQgjDcRzat2+vsra21vzDBAfTMUi7dmm8SIv59VdaKc3MrDRoU3PmzBkSExMDNzc3oUEX64bIzKTVzBYqbgRBQEHFrPYpU6bAtOoIsWHDaLvAkSM0YfCsAu7Hj6kkXixu+H1799LrpAWfWS6XQy6XM/fv30fnmsGbnh6VXcfEAJ07w9TUFO+//z5z4sQJHDhwACuoOqLaIj179sTDhw+FH374AdOnT+d+/fVXXiaTcVNtbZn2J0+Cqc+oVKWigXJJCZV1a/CZ9PX1YWlpSc6dO8colUoMHDgQ7N279Lzeu7f+BRmGqgHUieOHDwE3N5qwGTaM9m+rVNVUBY6Ojpz6vKiTw4cbVsrwPDokJjL+Li7wOn2aQ2YmDc5PnQIamkeemgps3AhMnfo0GfDLL9RorhmUlZXh8OHD5eXl5W+LxeLv63qPWCyWAnj7448/fiMiIgKgLvitQZ+lmkWFXHy3RCKJuHr16m65XB4A4H2JRPIXgKNisVjW3HU3sE35+vXrf7pz585bbdu2rTyhnjx5IuN5/rTadbyuQBsA9PX1+zZorFtQQCdZHD7c4vuOGp7nER0drVQoFOu0skId/yh0wbaOF5aKm/yvEokkPi4uboxIJHLleT74zp07Rp6NOJw+T1QqFY4ePUqSk5MZIyMjcubMGcbIyIg3MjJCSUkJ5HI5JwgCPDw8eB8fH05d1SOEgGEYDgCGDh0KlmVhZGTEEUIgk8mQk5PDPn78GOXl5bCwsOAsLS0rjW7s7OwY1Bgn80/FyMgIM2bMYD/++GMkJSWhdwvGnWgDQRAQHh6Ox48fC0qlElKplDEwMICNjQ0zZcqUequMKpUKt27dgoeHR61kijaZNm0au3HjRshkWn+GeX7k5QF9+tCH3xqBTZ8+fbi//voLBQUFsLCwaNp6o6Np8Dd+fJN36f79+zh+/DiRSqXMtGnT0MnBgcOQIQ27j9+5Q93P164FIQQhISEoLi5mZmjQX2xvbw9bW1uhXbt2LMuyCAgIQEBAAAdQB+acnBz06NGjaSdSSAhg2HDBRmvcv0/7099/n843ryGLVigUuHz5MtO/f38EBgY2v3983bpaQXxzuHPnDk6fPg1XV1fB1dW19kVsZkbl3TdvUtfqZ4Gtbb2j7wBQufy8ebRf18mp2ZspKirCsWPHwLJs3QoRY2NqCmdc3Vu0T58+uHHjhrBlyxZ2/vz5EIlEUCqV4HkegiDA0NCQlUqlzPfff4/evXszg/r3hz4htSu2agih/eampjTBoGHgIhKJ8OabbzLJycn49ddfYWZmhp49e9L+5sYIDaVV9Lt36fUA0AkBixbR7fv7Q9W9O6Jefx1F27fzCa6ubLlCwdy9exe1nhtKS4Hdu+v+fFeuUKPHmTPhc+wYkz9jBg2WNbn+UlNpb/bAgdVbF5YsqTMJ2RgKhQL79++XSaXS3wBs02CRlfHx8f9jWfaTtWvXNjvQropYLE6XSCSDGIYZRQj5A8B+AJBIJABgIxaLtbIdNSqV6tydO3fmDBw4sNIAxsnJyTwjI2MlgEMNLcvzfHJRUZFvvW+IjqYtCFocY5qcnAyGYRLrmPet4wVAF2zreOERi8VJAJIAQCKR+B09ejTijz/+0H///fc5jeSXzwCFQoGEhATo6+sjLCxMaN26NebPn89YW1sz+fn5yM7O5oqKimBqaoqOHTvCxMQELMtW+y1btXeuan8uwzAwMjJChw4dno5S+ZfDMAx69OhBIiMj4efnxzzv700QBKSkpCA+Ph53794lcrmc8fT0hImJCVNSUsJYWFjgr7/+wpdffil4e3uzw4YNq7WOzZs3C1KplDU2Nsaz7EHPyaHPLEVFRYxCofh3zp53cKBBhSDUesnCwgLdunUT9uzZQxYvXty0azg7u9kPSAkJCcjLy2MmTJiATidO0Nndd+/Wv0BYGJWH3rsHmJridnIyCgoKsGzZMo3UGdnZ2cjKymIFQeBR1TEa1OinXllrQ7RvD6xYQc2n+vZt+vKaop4FfOkSVRHUkZC4fv06BEGAm5tbvX3AjZKRQQMe9az0FmBZ4SQ/fPjwuk8olqWJGqUSiI+nJl7apLiYHqeHD4E29bTJXrhAA7EW3Ndv3rxJzp8/zzAMQ1atWsXUm/ibOhV47TWaLKlwOjc3N8d7773H7tu3j9+yZQtHCAHHcZVu5DY2NjAxMRFKSkpYFxcXVv+zz6gaICGh7m18/jn9PF9+2Sy1gKurK/r3748TJ06QnqtXMxCJaLKiU6f6F8rMpEmL0tKnvdq2tlTxAgCRkdi9ZQtfFh7OLTh0iOuRlIRWoaEwioysPYZMLgf++OPpFILHj2kfr4sL3Q8TE8DVFeFr18Lc3Jx0AphGQ+3UVFqhd3OrNKmr3O/u3ek2mkhsbCwyMzMLVSrV65oYkxFC0gBAEIRNTd5YA1Rs+xgARiKReAFYDmA2gGfhvH0xKyvLsKIoAYCen4Ig9JJIJPZisbjeA8myrGu9Jq1379JESMV4PG1x+fJlqUwm+1yrK9Xxj0EXbOt4qRCLxdEbNmw4TAiZXDN4fZYoFAocPHhQSE1NZUUiEVEoFIyxsTEBgH79+qFfv36s+heClZUVdLPBazN06FDm/v37ZMuWLcKQIUPY5zUu7LfffuPv3LnDCoLAtGvXTujVqxdeeeUVhmGYag/lgwYNwu3bt9nffvsNPM9jxIgRla+dPXsWKpWKNTMzQ2JiInF2dn5mqoL27dvD29ub/PXXX8ynn34KJycnYdKkSey/LuhetYpW15Yvr/XS8OHD2e+//55s2bKFnzdvXuVc2EYxMgKmTUNBQQF27NiB4OBgdK1nZFJNgoODUVBQgN9++w3dFi5seM5tUhIweDCVj1fIbaOjo/kuXbpwmrZBqGdum5iYaPc+lZNDg9RnxVdfAQcPAlevUmOneigrKwMA/Prrr/zSpUub9xlv3qTJAy0k39RJmwYVIVZWNOCdO5cmEuqYF91sTE1p4FZfoP3LL1QdcOpUs9sgCCEICwtj5HI55s+fX3+gDdAqr1RK5fM1rpFp06ZxKpWq8pjl5+dDX18f5ubmDABmy5YtJDQ0lFn2zjtg6lNxhITQyvn69Q0alDX2eczMzJ7OdC4ro9L3hoLtkBAasObn171dY2MQa2uuXdeugqi0lG0L0MCc52nyz9GRmvy1aUPvTW5uNLG2axc97xmGjhd7/fXKVfbq1QuHDh1ipFIpZs2aVf++PXxI1SB2dsCcOdVfKyig11Njxnk1UKlUuHbtmkKlUh3QVLLNMMxqQgjEYnED+vmWIRaLbwB4teLPs1h//oYNG8qLi4v11ffcrl27wsrKSlZUVPShRCJZVFfiQSKRuADwrTeZuW4dMGKE1uTjAPD48WPk5OSoAGg3gtfxj0EXbOt46eB5fryXl5deQ3NDW4pKpcLXX38tyOVy1sTEhC8tLeXatGmD+fPnQxAExtzcHEZGRuq79b9Czv13Y2hoiNdee425ePEiCQ0Nxc2bNzFu3LhnWrk9ceIE7t27x02dOhWOjo6oGWBXhWEYuLq6YvDgwapTp06J0tLS+Ndff50LDw8nsbGxzNixY8mpU6eqfu/PjDFjxjBeXl44d+4c7t27x6alpcGpBbLTv40vvqAu0zV6Sg0MDLB48WLm8OHD+Oabb8jMmTMZjQzTLlwAWrVCyNmzQllZGRsWFqZxsA3QXt5Ub2+Uu7jAqGrVqSrZ2VT+efw47asFDeDS09O5qVOnarwtR0dHtGrVirRv316758vPPze777NBSkpoED9oUKOj1X788Uc+PT2dAwCpVMrFxcWhR48eTd/mtWt0FrYWUPtE3L59u+FRkQMH0oBNoaABWHPmgtfF8uXU1bouZDJAIqGS62YG2mVlZfj222/B8zwWLlxY24W8Lg4dolXp/PxaM+SrBuo1jStfeeUVJmPlSnIlPBxd9+5laqWOd+2i393q1Y3Ppm+Aixcv4ty5c/D09KTzwpcubfz4BAfT89TdHaGTJiE1NVVYtmxZ5X09OzsbLMsiKyvr6TKrVtG/lUrab+3gQPuoT58GFiygzu3ffUcTcJ/XLk6amZnBwMCg4UA7LY1K0q2t6TprEhNDvQ8aQRAEZGRk4Pbt23B1dUVcXFy5VCqNBaBRL7BEIjEE0BPAJU3e/09GJBLdy8nJ6Vk1wTlnzhzDnTt3ziwrK3ORSCTjxGJxUY1l3nR3dxfMzMxq/66/dIn2ajdgqNdUCCE4fvx4Kc/zq8RisUJrK9bxj0IXbOt46eA47vvr168v9/X1fSYO2wDw1VdfEZ7n2dmzZyM7O5tr3749/mlGZP9GzMzMMHLkSNbHxwehoaFk06ZN8PX1ZV7R4pxLgD6wbN++XSgoKGDnzJnTpDntffr0Ebm4uGDv3r3sJ598AkII079/f9ja2jJlZWWoS2L+LHB0dMSjR48AVG8z+Negp0crUMq6FYZ6enqYPHkyd/HiRWHXrl1MUFBQowGb0skJe6OjUQ6w06ZNw5EjR3Dy5EmNvxNZeTmKWrUCW5/nw8OHgIkJyKVLuMcwuPzTT7yVlRWTnp7OmJqaki5dumh8D2AYBv7+/sz169f5wYMHa6+6TQjt9z1yhPYdaou5c2nvKzVWqhdBEJCens5NnjwZnTt3xr179/D777+TTp06MU3qwVcqaU/822+3bL9rUFhY2Pib+venhloeHlQ23FJkMuDkybp7wR89ouO9btyo1UOtKYQQhIeHk7KyMmb58uWoVyJbF++/D9jbN2nEmJubG9yGDWOuR0cL27dvZziOg0qlwrJly2B88iQ1Kly2jAatLSAhIUHo3r07O27cOHp93L9PExINSXzffBMqqRTH//pLSE5OZuVyOZudnY2MjAxcuHBBKCoqYgHU3eqjpwesWUP/LZHQ72Tu3GpjCuuiXbt2UKlUKC8vh5FRHVNI09PpfPOOHWkwD3qdVBYDBIGapdXhV5KZmYmkpCQ8fPiQFBQUCOXl5RzHcWjTpg0fHR3NqVQqIwCTxWJxboM7+ZQVNf7+18LzfGx2dnbPqolmExMTvPHGG8ZhYWF9EhISUiQSyRixWFw1saDS19dXoObYL56n1/rMmYAWDXbv3r2LnJycPEEQdmptpTr+ceiCbR0vHatXr377s88+63no0CH/mTNnGrRu3RpqSVxLKt2FhYVq4yxeEARu5cqV4DgODi18oNBRGzs7OyxcuJBRP6gnJiYKb7zxhtZ68I8cOQKlUsm89dZbzQpUrayssGTJEkYmk0EkEkEkEuHjjz+Gk5MTwXNUMgwdOhTh4eGIjY3Ff/7zn+e1We0hCLTSc+JEnQ+aDMNg4MCBbNu2bXHo0CHo6+ujW7duda9LpYJiwwY8nD8fC5csgY2NDaZPn47du3ejQ4cOcG1IFg4AxcUw+fBDnBk1CokxMXwvQjhjY2OYmJjA2toajx89gsOgQeDmz8eZXr2EmJgYxsXFhb1z5w4pLy9nmnr8IyIihOjoaLam63OLUTsyu7hoZ307dtAH0R07NAoGWZaFhYUFn5SUBDc3N87d3R2xsbFk7969WLRokeZ+DL//ToMfLSaSjI2NSYXzdOPXaEgIDbaq9v42F4ahrQd1sXYtPa7NDLR5nsemTZtQVlbG9OjRo2mBNgDs3EmrxYRoLp1NTAQmTYLPkiUsrl/H77//DgA4KxaTUYWFDLN4MdBC3wpCCKRSKVttDFnPnlQN0wDFhoY4fOKE0PfKFWbA3r3Ysns3zp8/j8TERHTs2JHx8fGBj48PzM3N6z4R9+2jhnxJSdTUTYO2EJZlYWhoKGRlZbGONT0jHj2iPes+PsCrr0KlUuHUqVOIi4sDy7IwMzPjRYQwEz//nIWVFRIvXEBqairJz88XysrKOACwtbXlHR0d2T59+nD29vbq75gLDQ0VEhIS/lyzZk1mozsJQCKRiAB8AgBisThKk2X+ySgUirgnT56UAah28XAch+DgYENXV1fDQ4cOnV6/fv3XKpXqBAB9kUj0qoeHR+3W+qQkOuYrOFhr+ycIAv78889ShUKxRCwW68Z9vcDogm0dLyVyuXySXC7P2r17Nxk3bhyzcydNKr799tswMzNr0roEQcCOHTv43NxcztramgwdOpRzdnZ+2kem45nAMAycnZ2xdOlSZvPmzeyVK1fQr4WS0tjYWFy8eFEoLS1lZ8+ezTQ10FYoFCgoKICxsTGUSiUsLS1RXFyM06dP8wA4Pz+/59oyoJZ3+vrWb6z6j4ZlgWPHgEYq1i4uLhg7dixCQ0ORk5ODgICAWomzO6dPw1BfH/0DA4mNjQ0D0P72Tp068bdu3eIaDbbj4qAXHY23IyJw/M8/ubNnz/I8z0OhULBEKmXalpcLxWPHsi5eXoi9epVdsGAB2tD+W2bDhg0kKiqK6d69u0ZmYA8fPsT58+fZIUOGwNfXV/s3kk6daEXul1+a3+9MCA2yExLoOLEm3DeHDx/O7d+/H0FBQTA2NkafPn3YvXv3QqFQwFBTt/TTp6mJlxYxMjIi5ubmBDUM6erEwYFW17t1o3Ovm9u/rVIBFhZ0HTUVE998Q53HW+h6XFZWBg8PD4xuzkxgW1sa8Kenaz4ybt48Wu3dvBnq4PXO3r14GBLCXBg8mA/w8WnxOX3r1i3I5XIMGjTo6Q8dHIBZs6jCog6ZfFJSElTLlpFX2rRBO6mUKU9JAcMwYBgGtra2wquvvtrwxVBQAIwa9fT/rVpRebcGiQMTExOSlZWFqsH2w5gY2Pzvfyjo2RMXjYyQs2ULX1JSwpqYmGDGjBmMiYkJUlJSOGHpUtw0MsLlIUPQpk0b3tHRkenZsyfn4OCAVq1aVU4lqUpZWRlu3bql4Hl+aaM795QRAMBx3KdNWOafTGJmZqZKLpfX+WLHjh0xe/Zsw2vXrr394MGDNzmOIz179jSyt7eHQlFF0V1UBNGSJeA3bQKpR2lVH2rzwLqIj48n5eXlyaCmcTpeYHTBto6XErFYnC2RSEYXFhYe2LlzpxEAsCybefbsWduRI0eyeo2YkOTm5iIkJESwtrZms7OzCcdx3NChQ+Hh4cFobNakQyuIRCI4OzuTiIgIJjc3F4GBgTAzM9NIpaBSqRAWFoZ79+7xCoWC5TiOcXBwwJw5c5o8zzsxMVE4fPgwyzAMVCqapG7Xrp0gk8kYuVzOzZkz57m5w585cwaRkZGV/4+Pj8fQoUOfy7a1zoAB9OF91SqgS5d63+bu7g5DQ0McPXqUXLlyhXF3d8fIkSOhr6+P/Px8hJ86hdaBgZjav3+1aNfPz487ePBgw4qD+HhqEhUVBUMA4+noMA6gyTZ+wgToyeXslbVrcfLkSVhZWZE2bdpUru+VV15hIiIiyKFDh4RJkyY1GGgUFxdj7969GDJkSIuTR/ViakorNbm5zQ8SBw+mfEUDqQAAIABJREFUMuotW5q8qFqim56ejq5duyIjI4MAYDT2X5DJqLTZ37/J266P69evIy8vj21SS4qjIx37JJVSw6zmmCaJRNRwq2agffYs8NNPwIwZLeoLV98Hc3M1VRHXwahRdB81gZDarQSpqXA5cgRtXnsNm+/c4dqlpKC8vBw8zzd7FOKjR48EAGytiQtXr9JAu0YF8sSJE4iNjUXw11+jvacnC3NzGJeWoodcLsTExLA+Pj71RkVKpRLyXbtgsmoVmJycpy7hBQXArVvA9OkN7mtxcTE4juPS09N5f39/DgD2f/898dqyhTnWvTvuyGTwNDLi/fz8OAcHB9jZ2VV+b9bW1shxcoLe6NEInDy5zsC6Lq5cuaJiWfaAWCxO0eT9FeRyHPeE5/mfmrDMP5k7BQUF5l/UUDvUEQDrVfzBmTNncObMmWov2mVkwI3ncTYsjJrhtZAqCVeG5/mFmjjE6/h3owu2dby0iMXiYxKJxASAHYBiQRAsEhMTdyUnJ/dfunSpfkMVlsOHD/OmpqZcZmYmhgwZwnh7e/87Ryy9IAQFBbG2trYkKSlJ+L//+z9OX18fbdq0Id7e3kz37t3VM2CrLSOTyfDdd98JRkZGzMCBAzmO49CtWzfo6+s3q9Qnl8sZhmEwc+ZMXLhwAYMGDcLRo0eJSCQic+bM0dwxu4WEh4cjKioKZmZmGDZsGKytrdG6devnsu1nRn4+7YduINgGgM6dO2P58uVMeno6jhw5Qn7++WdhxowZ3A8//ED88vPh16pVrYDu7t27vL6+fsNz5+fNo8ZYX35Z/eeCAPbCBbDbtwOtWqGPvj6srKzw+++/Vwve/f394enpyXz55Zdcbm4urK2tIQgCioqKwLIsTE1NwTAMkpKScO7cOdjZ2Qn9+vV7dh4PLAtcvw5o0p9ck7g4OqLqgw8Ab+9mbp6FlZWVkJycTLp27coJgsDY2NgQlmU1i1b/+ovuexMTYg1x/PhxdOzYsfF2gpq8/Tat/JaWApuaMSlp/nw6i70q0dF0HnNYGK16twCpVAoAkMvlzW9h6d2bJmh27WrQYR4A0KcP/UyvvUb/r5ZJv/kmLAYOhNuBA+SXX36p3I+IiAi89tprTVaUDRkyhL116xYOHjxI/vvf/z79XJMn00RMBSqVCj/99JOQn5/PzpkzB3a//87g6lXqLL99O3z/+IONiYnBgAED6gxic588QeTq1eRGhw6Mw5IlcL5wgVfPu8eUKbSKXoPk5GScP39eaNOmDQkODuaOHDmCzMxMZGZmcvfv34dQUoLJe/cyZmvX4j+TJ0OlUsHMzKzuIDovD23GjqXGXBqiUCgQFRWlUiqVH2m8EACxWHwF9HnoRSFbEARh9erVbHMSOgCoD8CUKcDVq+inRbXisWPH5PHx8SFr1qy5prWV6vjHogu2dbzUVGQU1fMWSyQSyRwAD8vKymBoaAie53HixAmkpqbKX3/9dYOSkhKEh4cjJyeHW7p0KbTeT6mjWejp6cHPz4/x8/PjCCF48uQJkpOTmTNnzuD48eNgWRb6+vqE4zihY8eOHM/zePDgAbGxscHMmTOZxpQMmuDt7c0UFhYKe/fuZRYsWMBYWFhg8eLFz72XIDs7GwAwcuTIpgcO/1QOH6Yjq8rKNOpdbdeuHUxMTIipqSn3+eefw8HBgfTz9WX1a5gTEUJw7949Tj2Gr04KC2mlrq7k286d1LgoMRHQ10diYiJCQ0Ph4OAgAKgWLBsbG8PT05Ns3bqVMTY2JuXl5ZX9yWolhKGhISkvL2dGjx797M0UL12iPYh5eZpXZAmhM7qXLwfeeqtZm7158yZOnTrF8zzPFhYWEgDQ19eHTCbTPBi8c6dRx/OmcPXqVahUKgwcOLB5M7/HjQO2bm1aXzNA35+QQEfSqZHJgNmzaT9wC2ehl5aWYufOncTIyAgTJ05sWQtLVhY1BZs9u+HP+OqrgFpFI5PRoPvVV2myCsDkyZMZdTVaoVBg165d5KeffsKsWbOYpvSTcxwHhmGgrCnrNTAAPvsM2LMH+fn5CAkJEVq1aoXFixdT/42SEjrTfNYsoKwMalM+uVyOirYQpKWlVa7/7v/+Jww9coTtk5SEn3fvJhERERzLssKAAQNYFBYCkycj9fhxyOVyODk54fr16zhx4gR8fHzYpKQkYf369TAyMhImTpzIOjk5ISstDabjxuFCUJAwZtYsttHz7dAh2jLRhGA7ISEBHMddXr169QONF3oBEYvFZMOGDdKysrJWTfYqUPP11y1Wl9QkNTUV8fHx5Uqlsp7xAzpeNJiG+gl06HjZkEgknJ6e3lGlUjnK1ta2RKFQMEVFRYIgCGZ6enpQKpWws7MTvLy8iFoOpuOfiyAI4HkePM+jsLAQWVlZCA0NRfv27YV+/fqxLi4uzXu4rgdCCDZt2oSKIF5r620qO3fuFDIyMtgPP/xQq5/vb6VLF/rQvnZto29NTU3F3r17YWdnR9LS0pgPP/wQzGef0eCyioFabm4uvv32W8yePRu1jIsAICWFVm8fPqw9oujMGRoMlZUBVla4d+8eDhw4gNGjR8OzPrdyACUlJUhLS4ONjU1lT70gCFCpVMjLy8P27dsxffr0ut2QtYkgUGlwv36NB4iCQB84FyyglctmqngKCgrw3Xffwc/PD+bm5nBxcYGFhQVu376N/fv3AwAGDx6MAQMG1L8SQqh8/cIFap6nBT799FPSr18/pl+/fs332igro2PqfvwRqG9Gb02KiqpX5+Vy6lHg41Nr3F1z2LRpE0pLS/HBBx9oZ8ylQkGTXvWZfn71Fa0CtmtHA+25c+mfwYPrXaUgCNi9e7eQlZXFzpw5E23bttX4nhUXF4fTp08L77zzDlv5+VJSgOHDkfj77zh69Cjx8vISgoKCnppnyuXUa8DYGNi7F0Lv3th0+HDlXHs1pkVFCLhwARFTpwpvvfkmq29ggLKyMnzxxRfgOA5vvPEGLMzMUN6rF74YMwYiA4NKefLQoUPh5+cHQRCQnJyMzp07U2WVTAYMHYrwvn3BDB4sDB8+vPEv5f59mhxogopk69at0uzs7Olisfil7wXeuHHjw9mzZ3doykSRSiIjgXv3aNuAlhzIBUHAN998U1pUVDTzww8/PKKVler4x6OrbOvQUQWxWMxLJJKJAHpnZWVZAJACiACgBICKvlvdCK9/CWqHeT09PbRt2xZt27aFl5cXUKPqqC3UlZYKY6y/jREjRrA//PADSktLXxz1RUyMxpJaKysrKJVKpKWlMUFBQfTh/cYNGmxXIS0tDQCwe/dumJqaCra2tkxeXh5vYmLC9uvbl+3q4kKD6pqBdkoKfQCLigJxdMRf16+T8PBwpkePHg0G2gBgamoK9xpV2QrlBdRGPtnZ2c8+2GZZWq2RSICPPqr/fWVlNLhmGCq9bUG7DMdxYFmWKBQKwc/Pj1MHVZ06dUJAQACJjIxkzp49i7i4OH7p0qV1R73R0XRkmZYC7czMTCgUCsbf379lppbGxjTIjI7WPNju0IGa1KnPy2XL6Jx26gnQIjIzMyGVSrFkyRLtBNoA7fMPCgIePKit9BAEOmt66FB6HObMoSPSqhqY1QHLspg9ezYbHh6OHTt2wNDQEHPmzKk1u7suunTpgj/++IMNCwt7av7WuTOi587Fhf37MXLCBHh5eVX/UteupUqUY8eAn38Ge/8+Ro4fj5MnT/ITJkzg7OzsIBKJINy4ASYuDr2WL2fVVU21AsXS0pLs2rULvXv3ZjI7d4aPgwMZOmsW8+DBAzg7O1f2oLMs+/Ral0qB8eNxffRoXOd5zPTwaPxLkcuB//yHmudpSFZWFgoKClQAwjVe6MVGJQhC05fieeps/+qrWh31deHCBVV5efl1QkgD8+l0vGjogm0dOmogFotloAF2JevWrVttamr6Ydu2bQ1VKlWzDF10vPioHXL/bvm2VCqFnp7eixNoAzTgfe01oHt3GpQ0gJmZGVatWgWZTEZ7QQkBRoyoVS10dXWF2tF3z549UCqVpG/fvqK8vDyhaN483JLLifWxY0w1X+OrV6kxVlISYGWFC+fP81euXGGHDBmCnj17tugjOjo6wt/fH2fPnn125mhVKSwErlyp//XSUupcvns3sGdPizdnbm6O+fPnM1u2bOG8vLzQrl07AFRGHhgYyNjb22Pfvn0oLCzk9u3bJ0ybNq12QJKZSSvIWiI6Ohr29vbEwMCg5RKQkBDg3Dng//6v0XMUAJWQq6vEZ89SaX67ds0zWqtALpejtLS0sp0kISEBAQEBzV5fNby8gB9+qNvBXiqlSShBABYupL3TwcEaf5agoCAEBQVh9+7dJCwsjMyePbvRYPTIkSOCqakpevXqxQI0GN61axff79dfuTnvvQcrL6/aG585kxoDAnSMl7k53DkO7u7uNKKOiQFmzwYbH1/vzPjp06czZ86cQWxsLD/yyRPWsU0bhjU0RLUxZFXJzwdefx3yRYvwZ3Iypk+fXnnuN0hqKtC6dZOc/mNiYuSEkO91o6QoDMPI1UmSJnH9Ov19o8VRX5mZmbh8+XK5UqmcqjNFe7nQRQw6dGiAIAifFxQUbPjqq68EQRCE+fPni/7u6qWOfx5Hjx4FgLolyc+R9u3bQ6lU4oVLDPXqpfEYJH19/aemhY8e0R7Y2bOrvcfY2Bhq47q5c+dWfbhnebkccbGxwo4dOziGYWBsbMzrAZgtFnOR48YJWYMGMb6+vkxkZCQ3c+ZMrTrNa60S2RgjRgDDh9M+1pqJmZ9+opLg0NAW9w5XJTU1Febm5sTe3r5WIOTi4oL33nsPGRkZOHToEJufnw/LqqoCQmgwO3eu1vanX79++Pbbbxme57UzrtHCgo7sWrCgei92TebMoUZi7dtTOf/y5fRYN9EorCpZWVnYtm1bpZy5Q4cOpGfPntrtIwkMpH9OnHi6r1IpTRokJNDzxsYGGDmyWX2uo0aNYrZs2cKEh4cLw4YNYxu6FrKystjevXvDzs6usj+7devWTJe5c6Ffx+gvAFSZoa505udT87fbt+n/FQraojB9OnWJr4H6uJqYmGDChAkAwMHZueF7UnY28P77wNSpOKJQkHbt2gmOjo6aHZiCAuCI5kpjpVKJ+Ph4olKptmm80ItPgUwma9oSUilV+4jFLUp8VYXneRw9erSU5/l3xGLxI62sVMe/Bp0cVocOzRD09PQ+53l+uUql2nPy5MnSxhfR8TJRVlYGU1NTWFlZNUOzpl0MDQ2hp6eHGzdu/N27ol0WL6aV1ri4pi13/z7g5KT5+2fMAOflBd+PPuJWr16NBQsWYISrKzfIzIw7t2WLENWpE1tUVMQcPnwYHTp0ELQZaJeXlxM9Pb3nV/VYsAAYO7b6z9QBQmqqVgPttLQ0FBQUoLi4mFFXXmtiZGQEZ2dneHh4CNu2bSPVqlLqUUuNSPWbgrW1NfT09PDokZaef729geRkWgFuaNyWVEqD1bQ0KokPCaHndgvIysoCIQSrVq3CihUrMGfOHEbr6hZTUxpMVz1epqa0Mr9vH/0s773XbOmtpaUlxowZg5iYGPbzzz/H48eP631vz549yc2bN/m4uDhs27aNuLu7kzlz5rD6/fvTftu6OHQIWLeO/rtjRxpcK5XAtWu0TUJPD1izps5Fo6OjAdCRdZVIpfWrPrKygA0bgIEDIUyYgNTUVAwePFjzDMTKlcDNmxq/PS0tDSKR6K5YLH6o8UIvPjnl5eVNW+LhQzpW0NdXKztACMHRo0dlBQUFlwRB2KGVler4V6ELtnXo0ACxWExWr169cs2aNZv19fUHmJiYmGzcuFG2fv16RXh4OF/LEVXHS8elS5dQUFCAKVOm/O33VZZl0atXL+HYsWNITk7+u3dHu6xd2/QRS2ZmtDdZE0pKaE9qRZDCMAysrKzQ9csv4R4djdEzZ7Lvv/8+LC0tCQCtft+hoaFCfHw807Fjx+eXsBGLgW+/pf/OzqbqAZ6nwZSW2yH27dtHrly5AqOGKr4VjBw5klUoFMzWrVv5yp7LkBDaz6xF07+8vDwolUrqVK0t9PRotVod1NXk0SPgwAGaAPrvf4E//gB69GjxZtWJia+++gpbt24lzepV1YQjR2gQKJfT6yUwkCZmbt0Cpk6trZJoIl5eXvjggw9gZmaGw4cP15t46t69O5OXl8cdO3YMlpaWGDFiBDVCMzCoVwKOFSvo8QZo9Xr9euDoUXreR0TQ764e4uLiSKtWreBQ1SCO4+puxcjKojPou3YFXn0V0dHR0NfXr75sQxBCK+yBgZq9HzTZolKpLmm8wEsAz/M5TapsP3xIJy7UHMfXAuLi4sjt27cfKRSK8WKx+G9Pxut4/vztD4U6dPzbEARB78aNG5DJZG+oVKr3oqKiuKSkpL97t3T8zfj4+AAAvvvuO0TU96D3HFH3Maanp79Yv9wPHKCmUk2ZpHH6tGbV8IwM+t5Ll56aopWUAPv3A6GhIFu3Ij8/H3fv3kVqaiozZswY1Jzb3RwIITh58iRu3LjBTpo0CVOmTHl+kw7ataNVyT17aJDi7w+0aVN3X24LYVmWuLu78++99x4acwcWiUSYP38+CgoKuDj1d5eUpNVKOwDs37+fd3Z2FixrmuC1lJAQYNUqej7VxNeXBmL37tHq5dtva2WTzs7OGDlyJKZPnw5CCLNu3Tp8+umnROu/nxiGBqkhIbR6r1DQc+j//o9Wh7XAX3/9heLiYuLk5FTn/UupVCIyMpIHgI4dO0IQhKc3hK5dabCkUNRe8MQJYOnSp/9/5x3aX/7NN9QPooH7io+PD1NUVFTdLX34cOCTT6q/MTubutJbWACLFuHBgwc4e/YsRo4cyWg8HWLXLqC8vE45e33k5+fLlUrlC5ZdbRlKpfJJkyrbe/bQXm0tmaLl5ubixIkT5QqFYrRYLNYpIl9SdMG2Dh1NRKVSTeY4biOAXwwMDOYC0DxbreOFxdraGu+88w4A+vD3dxMeTs1o27RpwyYlJeHhwxdEWciy9AF5+HDNl2nVSjPpcUgIHV9Ulc2baRBhbIyI8+f57777DkePHsW4ceMadR7XBEIIzp8/L1y5cgWDBw+u5VT+TCkro39/8AE1jiouplXuZ9TnHxgYyCYkJHA5OTkavd/Ozg4jR44UwsLCkJuUBLi4UNmvljh+/DgpKSnhJk6c2Pi846ZiZFRpjIWa197t23S++YIFwKhRWqvUm5mZwdfXFx07dsS7776LESNGkE6dOuHAgQPYuHEjTp06pZXtAABOnaLnzKVLVAmxerXWHOLLysoQHh5O3NzcMHz48FqJp/Lycvzwww8kIyMDy5cvx4gRI5Cdnc2uW7cOPM/TavPnnwMXL9Zeub5+dSf1oUPpvcTaGti7F3BzoyZp587RZEgVUlNTBTMzM+hVrX5zHPWCUAf22dk0UOa4yiTK4cOH+UGDBpEmGWeeOdPk86K0tFQJIK9JC73gEELyy8rK6si61EFk5NPfL1pApVJh//79pTzPrxCLxbqKzEvMC+Sco0PH80EsFl8FcBUAJBLJDI7jvrp48WKAt7e3XmpqqlBSUqL09vY20MhtVMcLhdpg6Z9gnhcQEIC7d+/i6NGjYBgGhBCsXbsW+fn5ePToEezt7WFtbf3vnMM9ezYNDDUlIgJ45ZWG35OeToPO1auf/mzHDmpc9fbbKC4pwdWrV7mJEyfCxcVFKyZm+fn5iI2NxeXLl9nRo0ejhxakxA2iHmezZAnw2WfAzz/TnuHRo2nQ9NprtPL3jAzafH19cfz4cezcuRPvv/++Rsv4+PiwYWFhSNm/H5Y8D7YBmW993L59GydPnuQFQQAhhKhUKtbFxYW9efMmM3fuXK2oE+rE3R0ID6fzlUtLARMTOkrI3x8YOJAavT2j649hGPj5+TF+fn5ITEzE5cuXyeXLl5nLly9DT08Po0aNUo9BrBuVil5jHEcVHyxLP8OjR7RyfPIkbUEoLKTVbS1VtAHqqK5UKpnHjx8Lt27dQrdu3SoPklQqRUhICDEyMiILFy7kWJaFubk5PD09kZ6eTliWpe/t3ZsGvjUZNAioOjXgrbeqO8f7+dGRbLNmUSn4Dz/QZNvy5fDx9mYjzp+HSqV6GnAbGNARZyUl9PrauZMeq5UrK1cpk8m4JiXmFAoaqDf0/dRBRXVf50JenYKKJETDFzkhtO1jwYJmGfvVXh1BWFiYvKSkJFIQBJ1h3UuOLtjWoaMFiMXieIlEsiA5OfnP27dvMyqV6g+VSpV748aN1T179jQMCAgQadKfqOPF4PDhw+A47h8xcsvBwQFOTk68hYUFN3jwYGzcuBE///wzsrOzIZPJoK+vT3ieZ9q0acM7Ojoybm5urK2tbWXgcfv2bVy4cIG0b9+eMAzDGhkZoV+/fsjOzsaTJ0/g4eHx7IKUxvD0pPOMv/kGePPNht9LCO0nbUgmLAj0Afybb6gDN0ANk9atA8aPx/3CQhw6dAht27YVXF1dtRaJXr58WYiNjWUtLS35Hj16aF86rlLRKvW6dcCTJ1S6vGMHdYpeufKpEdS2bbRP3cICGDyY9oq+/vozCQRFIhHkcjnOnj1LeJ5n+vTp0+D1ovbDEE6fxp9ubsJQhYJt6nkXFRUFmUzGBQUFQSQSobi4GLGxsUJwcDDTtm3bZ5tt6tqVzmQHqIEYywIbN9KkhhaN9QDQc728nJ7P2dlAURHQpg3cHz6Eu60tk2lmhpSwMNxjWUiPH0epiwtMpk+nFV1BANq2peZuQ4dSgzxbW2rwdegQNUVr145W5M3M6DVlakr7tvfsAd54QytBCgBYWFjgzTffxL59+9hz586Rbt26AQAKCwvx448/EmtrazJjxoxqTuWenp5ISEhgPv74Y3Tq1IkfFhzMWd65UzvCOngQ+PJLQG0e6e1Nz3d18kc9vuu33+jf6ek0SVJUhJ7r18P+5k38bGoqzPXxYeHvT6+R3r2Bv/4CLlyg73333crNZWVlAYBGPgWVnDxJk2H1mbzpaApSuVzON/quixdpP//QoVrZ6NWrV/nExMRHCoVikm7Mlw5dsK1DRwsRi8X3AXSt+rNPPvmkbVRU1Fuurq5/+xgoHc8HlUqFu3fvwqkprtfPkNzcXKSlpXF+fn4wrJBNqqXkK1asgKmpKZOXl4dbt25xiYmJiI2NBSEEXl5eePjwoZCTk8MaGRmBEMJmZmYCAM6dOweABkxxcXFk5MiRjJ2dHVQqFWJjYyGTyYhMJiOFhYWkX79+XE5ODry9vZ9N9TwpiVYNGwu2y8vpe1q3rv89hFDpqFr+v3cvMGAAcOcOYGCA0F27YGVlBU1m/2rKkydP4ODgwMbGxkIQBO2Vkk+dokFQly50HFNWFtCtGx0xxTC1pLEA6LGcOJHOSVbL5j08aFLD3FxruwYA7777Lr7++mtcvHiRAWj7hdrvoC4MDQ3x4VtvQYiIwBddurCPdu3CvHnzmqQsUKlUaNOmjeDp6Vm5kL+///Nro/vhByA+nvZvL1tGR651rfIrg+epqzXD0Mqxnh6VoGdnU+n8mTPUib1/fypvtrMDEhNp4DtpEg3ec3NpNfbyZRpAXr9Opeyvv04DRzMz2AUGws7bG/19fHDxl1+EKxzHDu7cGezs2bQybWtL96V1a+r8r75uJ0+u/ZlSU+m5sXQprdKHhFAFSatWWjlklpaWYFlWMDU1ZQB6PwsJCUHHjh3J5MmTa313zs7OeOedd5Cbm4uDBw8yRy5fxoT4eGIze3b1m8+QIdXl7lu3Npz0aN++0pCR3bEDt778khjl5QHz5gEzZlATwZ076XGbOZOqRqoQGRmJLl268FxT5srZ2zerj9/AwIAFoEWnvxcCM0NDw4aPfUkJ8L//0T5/LfyuSklJwblz56RKpXKQWCyWtniFOv716IJtHTq0jEQiEQF4q0+fPrpA+yXi+PHjBABTMX/1b6WoqAj79u0jTk5OcHZ2ZgBg6tSp2L9/PxiGqawkWllZYeDAgRg4cCAAICEhATExMXBycmLnzZsHfX39yiePwsJCREdHw8vLC4aGhti3bx/Zvn074+HhIaSlpTFSqZSxt7cHAJKfn8+mpKSAEILc3FwhICCgydXIRpk9+6mcvKGAUD37d+rUul8/dgxYtIjKqQEqlX3nHeDwYfqgDWDYsGE4duzYU4lqC4mNjcWxY8cq/9+lS5fmr5cQ6gy9ZAmtrG3ZQuXLn35KA2tLS2DcuIbX4er61OSpe3dq7vTOO/ThMyys4URFE9HX18e7776LLVu28Hl5eVxKSgrv7OzMNVTdZi5fBjdsGGbNno1ffvkFv//+O4KDgzUOuDt06ICUlBRtfYSmY2pKlRjLl9PK58yZtGqZmgqMGUPPP0tLGtSFhtLzztiYnotmZrTn28CAfg8uLjQppJYYOznR5JC5OVUm1BUsjBhR60esvj5z6fRpJIWF8W+++WbTStJSKW1BUJuA/fILbb945RXq7K0lD5MhQ4awv/76K65du4YzZ87Azc2NBAcH1/ulGxsbo0OHDlixYgUb/scfSM7Kgg0hlcfk0qVLfPLZs2ygSoWOQ4cyIpGISuS7d9dsh2xsEGthgdGjR7NYs4YqR8LCgNhYGmxHRNDkx9SpwOjREFgW9+7dIxMmTGja8f3uO3r91kFeXh7S0tJQXFwMAwMDtGvXDuqWNUNDQz0A2s2O/fuxNDExabj3JD2dur736dPijUmlUhw8eLBcqVSOFYvFaS1eoY4XAl2wrUOHlhGLxaoNGzYsi4qK2iAIAhsUFGTY+FI6/u04ODgw8fHxyMjIgKOjI0TPyGSqMS5dusSfO3eOc3R0JBMmTKh8MO3atSs4jgPP87h16xY86jCa6tatG9SSzZq0bt0aw4YNq/z/woUL2eTkZFy/fp319vaGj48PLCwsGACVD5ZZWVnYs2cPiYuLw/jx4+Hs7KzNj/rU8fnJk/p8pX9pAAAgAElEQVTfk539tGJdF76+wNdf0wfys2efys4rkgOCIODhw4cCIURr5XljY+PKf7u7u2PkyJGaL/z4Ma1eTpwIdO5Mq5mLF9OAWRBosKNGU6M+IyNaeR0//qkL75df0gBxxw4a+C1apFVZ+cKFC7mEhAQcPXqUS0lJQXBwMNzUEt6aSKVA376wt7fHtGnT8PPPP+PmzZvo3bs3XnnllUaDbkIIVCrV8zcnePSIypM/+ogqJwBale7QgSZEfHxoNXnOnKfHVi05r0rV8U919fE2w5isX79+TF5eHq5fv84JgtA0D4K9e2mFvnPnp/sUFgYMG0YVEQcP0gpyC88XZ2dnuLm5ISwsDB4eHggODtZ4hb59+yJz1Spmx7x5MB06lAQHBzPnzp3jhiqVsN6yBf8zNcWQIUPgPW8emGvXqisN6iE8PBwKhYLJy6vwIBOJ6HfTvTut8BsYUDWIvj5w6BBkixfDfskSdLlwgSoRgoMb3/FHj2iLwbbqbb6CIODkyZOK2NhYuUgkOqVQKO6IRKI2AP7j6uraasyYMYYmJiZ6HMc1bPP/ksGyrLWxsXH9md70dGDsWHqvayGCIODAgQNlPM9vEovF51u8Qh0vDNxHH330d++DDh0vHAMGDIiKiIi4nJubO7N///66pNZLgJ2dHXJycvhz586x165dEzw9PRkDLY0P0ZScnBwcOHCAHTVqFIYPH15rzIybmxtiYmKQmpqKfv36tXh71tbW8PT0RKdOnersSTQ1NUWfPn3Y/Px8REREwNPTs1LSrhW6daNBZ0P92Hfu0J7Kiip1NV5/nVak1H3a//0vrRAGBAAAzp8/zx85coTJycnB+PHjWSstmUCZmZnh0qVL0NPTI1OnTmUa7OdUjyIaPpwGZ5GRtJ9z0SIgKIg+KJqZUZOzlgQ3kyfTilzVY+ngQMeAbdxIAwojo+pOzi2AZVm0bdsWubm5yMzMRGJiIgIqjns1FAo6W33uXMDEBK1atYK/vz9YlsW1a9cQGRlJHj9+LHTr1q3eaDE0NBSFhYVMYBNmFreIdevoiDpfX/p9DRtGq9lt29Ie6IAAmiCJiKBu5IaGz8worSEUCgWSkpIQEBCgeavH/fu0+j59Oj3vqjJ+PE36rF8PKJU0gG3hPfDx48fIz88n8+bNa9IBMjY2huHVq2CUSkQBTExMDAwMDITJq1YxhitWQN/QEOfOnROiBg+GmaMj08bGpsFjcPv2bZw4cQL+/v7Ey8uLMTExoVL/b76h7uNWVrTKHxgIdO2KJD09/GZoiP+uXMno791L70MODvQ69vSk7S05OfT6qkppKb22ayg9oqKiyJUrV5KUSqX3Bx988FNAQMCZAQMG/H727NltBQUFg/Ly8qzbtWunf//+/dJ+/fr90pRj9SJz5cqV6c7Ozj71GtYePgx06kSv0RYSERGhunPnzl9KpXJWYGCgrk9bRyW60V86dDwjRCLR+B49evxNDlI6njcMw2DixInckiVLUFZWxqanpz/X7Z86dYrfvn07nJ2d+fpcrdUu6Y3NONY2wcHBIIRA3futNfT0aL/d2LH1vycyklaD68LICHB0pHLrb76hMuwKF+GHDx8iMjKSGzBgAPP222+z2qzKFxUVAQBWr17NtK4p0RYE4NdfaRJgxQpaNWQY2oMNUOl8fDz9d9eu2hvT9eTJ021UxdmZVvxv3KBJiZs3tbO9CiZOnAgnJyeiV5/LeHw8DdxsbCp/ZGBggMDAQPV4KyY1NbXBZxlfX1+t7nOdpKTQ3uWoKBp49elDj2dICJVce3nRzyEINJC6eJH2C69ZQ03pHj9u2uz4etixYwckEgm2bdsmfPLJJ/jiiy9w7do1IpPJQGqsX612uXPnjuYbuHaNuqnb2dV+zcSEJm26d6dJhY8/rtsjoAnk5+cL9vb2zcpEmH/yCXq/9RaCgoLQvn17vPbaayxu3QICA+Hr64u3J0xg54aEMMf//FP44osvIJPJ6lzP/fv3cfDgQQQGBvJBQUFM5bSJ/fuB8+epoVmNkX3Xrl0jjr17C8bm5tQH4bvvqPmaRPL0vBg+nBrMjRpF+/LLy2kC8I8/au3D+fPnZQqF4lWxWJxf9edisViqUCjWZmRk8FZWViCENGG+2IsPy7K2VZVE1bh6lSpOPvigxdt58OABrly5UiKXy8eKxeLGDdl0vFTogm0dOp4RKpUq9ObNm2UKhWYjHnW8GMTFxRETExNSl0z7WZGRkYGYmBhu4cKFmDZtWr39gTKZDK1atcL9+/ef276psbe3JwcOHIDWkxDqh/76AhU3t9rSW5UK+PBDOgarf39qcHT+fLXANTQ0lPj5+cHX11crY76qoq7u5+dXeW7euJHuj0LxtId86VLg+HH6+tattJL/rBgxgrpO1wXDUKnzokV01NOmTVoJDNWIRCKmdevWQp0vHj9ebYxSVViWRZcuXcDzPPPjjz8Ke/bsIZs2beJ//PFH/Pjjj9ixY4eQnZ2NpKQkoVOnTtqtNBFCA+c336TjpFq3pi7v7u60aj1jxtP3Ll4MfP89de1WB7YMQ42wNm+mSZW7d6kT8qVLLdqtvn37AgC6d+/Ojh49GgEBATh//rywceNGXKwxd1pPTw/q0VkakZgIbN9et2FaVbZvp60OT57Q7+706SZ/jkuXLgmbN28md+7cYdPS0oja1btJZGYCn34Kf39/zJw5E5aWljQhUOGlwjIMWnl5YdmyZWx5eXm9qzl58iTv5eXFBwQEPL23PnxIk3xhYTRYLimpfEmlUiEjIwM9evSofuMwMKDL2NlRdUpaGj2HevWiTu4bN9L7UI3kYcUECSMA9R2EzhYWFoyxsTF4nteOQ92Lg029yqGPPqJKhBaqSkpKSnDgwIFylUo1SSwWN9DTpONlRRds69Dx7DinVCpDd+/eXZaVlQWVSjf+8mVAqVQypaWlzPnzz69lq7i4GCKRSGhI5hwWFoaNGzeiqKgI/v7+zz3zPmfOHMbW1hY//vgjPv30Uxw7doyvWWlrFjY2VAqo7omtycaNtXtab96kVSmlkvZ8r11LZb8VFBcXo6SkhHmlsdnczaRVWhpa5+Xh7LZtVIork1EpsbEx/Ts/n0obO3Sg45aeBwMG0OCvIcaOpXL8yEhamWsgQNGU3Nxc3Lt3D9bW1rWfRwSBypYbcPg3MzPDokWLYGNjg6KiIvTt25dLT0+HQqEgJSUl7Pbt2/HkyRPW2NhYOzptmYwGzF270t7asWPpOWZlRfuza0qr162jPcz9+1PFQs32DY4D/vMfevxffZUmW15/nfbeN+P6cHNzg76+Puzs7ODl5QU/Pz+sWLGCCw4ORmRkJFJTUyvfm5KSAqVSCZsqqoF6EQRaoZ8/v/FWAoZ52pf++DE1UvvlF1rF1QBCCE6fPs1yHMcsX74cbm5uwg8//IDff/+97oRMfXTvTr+PqsexfXs6Hxygsv5t23Dr1i2YmJhA3fZTMecbAK1YZmVlcb6+vtWTmNOn0wSY+ljMmkWvW9CpDa1btyYOmhjFGRnRandgIE1oSSS12mIePHgAAwODX8Ri8aN61iItLy8XTE1NoVKpTCUSSdOH0b+g8DzfybKuNqNTp2iSa+LEFq2fEIKDBw+W8Ty/+cMPP2x6VknHS4Eu2Nah4xkhFouJXC6fnZ2dHfr9999j8+bNcq0EFzr+0QQGBiIoKAgXLlzA//73P1JWVvbMt/nnn38Sb2/vBu/nCQkJBAA+/PBDBAUFaX+mswYsXLgQ8+fP/3/2zjssimt/4++ZAXbpXQQRsaJiQewNsfcaS6yJmpgYYxKNxlQ3m3sTy83vmqtGY4lRo0ZjN3ZAEbAhKIIoVRClSZW2y+7OnN8fB1CkLU1R9/M8Pio7O3N2Z3aZb3tfTJo0CcHBwXxiYkX3jtUkPp7drD4f/GVns2Dm2Vbt+Hh2kx0ZCVy/DvHcOdyLjsazd/EpKSkwNDQU6rSiffMmuyEHoJw+HW4hIeBatWLzrxIJq2IvWlR3x6sus2eX3xr8PM7OLFHRtSsLHJ+rllaX06dPU41Gg07lKULHx7POhCoSDpaWlhgzZgz30UcfkV69euHbb7/Fhx9+SKysrKggCHB0dMT48eNrvsj8fHZtvfsus9VycmJWQSNGMAXuHj0qfm5h4VP/6XnzWBt2eXAcq4YPGMBmvY8eZTPdXl7VWiohBB07dhTPnz9fKjDt0qUL3Nzc6K5du+Dn54cHDx6UdFhs37696h2fPs1s5KZM0X4xX3/Nro/8fJZoWL2aVYS1eA2jRo2i2dnZyMzMxPjx4/m3334bt2/f5kSxGvG2oSFLWt29+/RnMTElmgxYuxbo2xetW7eGKIrijz/+iF9++YWuXbsWq1atwp49ewQfHx/wPF969EahYGMnxUE7wJJCOTkAgPDwcKFXr17V+/IICWGt9+VYfiUnJysKCwsruHDYKy0oKDDgOA6GhoZKAC8oQ9ewkcvlxhqNxqLMqE5BAXNtMDRkn7ta4Ofnp0lJSYlQq9Xf1mpHOl5rdMG2Dh31iEwmE1Qq1f/p6ek9sbe3183xvAFIpVL07NkTkyZNQk5ODomLi6vX42VkZCAvL48MGjSo0u06duxIAOCXX36BILy8S9He3h4uLi7o0qWLuHv37pL55VrRogXzIX6+XVCpZDf4z7QJ0vffh7B0KVTffougzEysfustHP7nH+zatUtMSkrC6dOnhWPHjtVOTT4v72lQ1aoVqwJLpSzoAJB+9ix8Bw9GW1dXFqy9BHGsMqxdy/5og4EBa82Xy1nl8s8/2Yx5DZg6dSrhOA779+9Hmc+Kr2+NqrvFlsbNmjWjRf+veCa8IjQaVsGOiWHX14ULbL76yhV2LkePrvq8+fqycYW5c9n/bW2rFgzjOFY93rmTqbB/8QULxK5d03rp3bt355KTk8vc340aNYq0bNlS4+/vj507d+L3338HABQWFlYewWo0bP76yy+rf63q6bEkU+vWrGK7dy+bca76NZD27dsLFy9eFAGgZcuWkEqlpSzztCI3F7h69en/mzdnCvsA8OGHwF9/wcTEBMuWLePmz58PT09PsmLFCixduhSpqakkMTER04oFFAHgyRP2WqytS+slBAQAzs5QKpXIy8vj27RpU711+vqyTptySEpKUgG4Vcmzj2RnZ0vz8/NhZmamAeBcvYO/tnSxsrIqKJM0jYlhdoj9+tVq5w8ePMDly5cLVCrVOJlMpmtd1FEhOpVkHTrqn07W1tbSt99+W6K14quOV57ilu6W5YlO1QERERHw9vYWs7KyOGNjYxEVJE9zcnJw/vz5kuAxp6j68rIZN24cFxkZKZ47d45MnTq19h8MpZIJD4WHA+ZFY4uBgcC5c0jr0QPp6enIS03FtSFDqDotjbzz228IXbxYGD1xIt+uXTscOnSIbNu2DWZmZqRbt25wcnKqXvVfEJia+YYNrGpy6BBby6ZNrPJpYQEcPgwAJcrtlXlLv3A+/5y1CleHsWNZkuO991gFc8uWagdjGo0GxdXKMp0/v//OZp1riKmpKQcA+vr6RGt7q5AQ1k6/eDE7f2FhrCuhut7RlLIW1T17WAUcYCMLzZtrv49x41hQf/8+CwxHj2Z+6paWlT6tuB1aqVSWUf+fNWtWyX3fgQMHEBUVha5du1b+xvz+O7B8uVb2WOXy1ltMqbxbN6bEnZPDBOUWLHha9S8HOzs7Pjo6WgRYtbtx48a4desWevbsCTs7O+2OvWBB6USQKLKRk9GjmZhdUYsxx3Gwt7eHfVF3h4GBATp16sTFxsaKrVu3fvr+KBSs+vy8rd6AAcDAgQgaMgSWlpaisbGx9sWs6Ghmlfbpp2UeopQiKyvLEMCdSvZAAHbera2t9VJSUpy1PvbrjbuTk1NpkdrERJb8qm7S5jmUSiUOHDig0Gg0b1fS3q9DBwBdZVuHjhdBVHp6unL16tWapIpUkXW8dly9elU0NDSkdWp1VcSDBw9w5MgRtG/fnluwYAGWLVvGlVeJ3b59O123bh3Cw8Nx+/ZtAMCnn35aUvl72UyZMoW7d+8eyS+q+NYKc3PWhv3sayssRJy+Pt22bRsuHjokdBo5EiMiIshnnp7QhIdj3vff8507d4aBgQFmzJhBVqxYgU8//ZQbNGgQWlUyJwyAqXMD7AZ51Ch23OxsICODVXzDw9njw4aVamMPDAykGzduBMCs0xoMOTk1uwG1tGQtwl98weaOtahaPouJiQn69+8PAKWvy8hI1qZeC1E4d3d3jBs3jsbExGDDhg0Vb5iczGakHzxggfHNmyzADAtjyYPqBtoAC7ZTUp4G2gC7VqorgMbzrJLq5wd88AETshs3jlWbK8DLy0uwtbXVVPXdM3LkSIiiCIlEgpSKvOqTk4Fbt1igXBsIAf76iwW5gwax5NiSJUB6eplNKaVIS0uDQqGAiYlJSQZm4sSJ0NfXx86dO7Vvd0hPZ4mTYgoKnnZw/PknG+OoALVaDQMDg6fHOn2aKVeX0+otfvcdIrp1Q0BAAO3Tp0/1Mk4ffMDem3ISVampqSCEFADIqmQPhXp6enGXL19WW1hYGAKowQX7+mFgYNDX2tq6dCtJSAhL/GgzMlMJXl5ehYIgHFy5cuWZWu1IxxuBLtjWoaOekclkVwRBsFKr1f/9/fffRd3c9ptBfn4+USqVpDxhPFEUQSnFo0ePcOXKFWzatEk8cuSIGB4ejtzc3Ar3KYoi/P396d69e9G9e3c6aNCgSis8qampBGAB9sqVK7Fy5UqUmV97iTg7O8PQ0JD6+PiIAJCVlYXt27fTUird1eGLL1h1tahSWhgfD1+lksyaNQsfffMNLzlxAq2jo8EVFsKuHPszqVRaefVz/XoWWKans2p1Rgaz4pLL2eNnzzKf4Uq4f/8+BYAlS5agQkual0FUFBOaqwl6eqxd/ptvgH37WLCqZVv5jRs34O/vD47jYPqsuNiNG6xToZbdQF26dCEAkJ2dXfoBQWCt2lFRrNX7v/9ls9iPHrEA2cSk5seOi2MJluedKD78kIl21QQDAyYG6O3Nkkq//cZmvMtxFkhMTOTc3d2r7Fw0MzND9+7dcf36dWHHjh0IDQ0t+8vJ358lPapTka+INm1Ytf9f/2KJjK5d2TXzzBz7/fv3sW3bNmzatAkBAQFo3LhxSQbGxMQEkyZNAsdx2v8S7dyZfV6Lf+/a2LCAG2CiiP/5T4VPdXFxwcOHD/mSJPndu+WKCJ4+fZpu9Pam1729MXDgQLi5uWl/4RQUMPX2lSvLfTgiIgKiKB6TyWQVvmaZTKbSaDR9rly5oiiyVyy/H/0NQi6X6wuCML7UuQgOZp+bWlp9JSYmIiwsTKlSqT6r7Tp1vBno2sh16HgByGQyUS6X37awsFA/efJEkpycDCcnJxgbG7/spemoJ4YPH042bdqEH3/8EU5OTqKLiwtnamoKhUKBixcvlni6mpiYiO7u7tzDhw/p2bNnhYKCAt7AwADNmjUTJBIJbG1tOTc3N1JQUIDdu3eDUkpnzJhBnJ2dq7yhmzhxIg4ePIgLFy5g0qRJ9f6aa4KxsbFoZWXFU0px584dJCYmkp07d8LBwUF49OgR5+LigqZNm6JDhw6kyjlqQlhAPGgQ0KUL8i5fhrGTk8bp4EE9HDvGrJX8/bULotLT2fxsXBxTnE5IYIJdgsBu2JVKtp9KFODLY/To0VxkZCRCQkLg4eFRrefWKzNmANOn124fI0eyQHXSJFZ5PXKEeaFXwK+//iqkp6fzBgYGmDZtGkqpBisUTCisDnBwcKBJSUlkz5494lh7e8786lVWTfzPf1ib/9atT6+JuvAtb9qUJR2eT6YkJz8N9GqKiQnzZ/bwYPvKy2NB94oVrEUbgEKhINr+bhk1ahQA8AcOHMDZs2dJKaG66Gj2OnburN2an4UQ1v0QF8dsriZOBLZsgeraNYT17o3Tp0/D2NiYLlq0iJTX+ZGZmQl9fX3tg20zM9a+n5DAWr8FgQXMqamsE0MmYy3c5WBvbw+e51kC7tixp9Zuz+Dr64vQ0FCyKDMTJmFhIL/8on2gTSnQpw8TRqugkyY7O1shCEJwVbuSyWQpP/7449b79+8vA6BroQNmWVhYCKUSmj/9xEZ9aoEgCDhy5Ei+RqNZLJPJKus20KGjBF2wrUPHiyM5KytLsnnzZpUgCKnNmze3mjlzpi7afk05deoUBUDef/99XLt2jQsJCREUCgV4nic9evTgTE1N0aRJE9jb2xeXUgkAXhRFhIaG4sGDB7xarUZISIjg6+vLE0Lg6uoqTpgwQeuOpLCwMAqAOFRl6fQScXNz4y9duoSgoCCam5tLJk2ahKioKEoI4QcMGIC7d+/i3r174oULF/D++++T4uqnRqMpK2LGcawVuEhoKKVTJ+SamnLo2JGpOufnVx5o37zJ2onlcqY6vXAh8NlnzBqMUlb9LKYGVU+NRoN9+/ZRiUSCtm3bNiwBh9jYp9X62kAIm1e/eJGJ03XtyoKUcsjKyuK7du2KYcOGwcDgmdHKJ09Y0uTmzdqtpYh3p04l2UuWwCs1lbseE4PeEglMv/76aat/XRIQwOa0y5s1P3SIVeurK55VHoaGrJOjoIAFgIcOAZGREFu2hFqtRnU/8/369UNMTAwCAgLEfv36caCUdWqMHl1azb8uMDSEplUrJL3/vkgMDbnwt94SuaNHObv9+2mflSvJ4GHDKvxsZGRkiHl5eXxBQYH2nSFXr7LPb7Nm7DuiXz/W/dK/f9nZ62dISEiAIAhobGPDZuV37y4VbIeEhODKlSuYM2cOTGti0VdYyEYCKgj2i9agBhCoze40Gs1vAJYBqH8LjAaOnp7eQgcHh6dzFKdOsS6k0aNrtd+TJ08q8vPzr1BK99R2jTreHHTBtg4dLw5fnue/VKvVMZTSizExMRn37t2DhYUFjh07lt+qVSu9IUOG6ETUXhMePHhAnJ2d4eDgUFxV1mpQmuM4uLm5wc3NrfhHvEajAcdx4KrpRTV48GASEREBRZEllkqlgr6+PhrSNda3b1/Y2dkhOzubuLm5QU9Pr0Q5HQC6s+om98svv4hbt24lnTp1woMHD8TExESudevWwsiRI3nL5wWjHByAjRvRfv16qFq25PLPn4fxyZOllaBFEXj8mNmAtWvHgqPCQiaaBLAqdnEwv2BBnbzW6OhopKSkkBUrVpQRrnrpNGnCqtt1Ac+zAILj2Fxu27as2vtMlTsyMhL6+voYMWJE2aTJsWPMyq26CuLPc/IksHs39HfuhG1KCgZ//DF+u3EDtuPGoUtd2ro9S1ZWxUJzx4+zSmtdYmTELLYA4D//AV2+HGbjx8MyI6NaXRdNmjTBzJkzsXv3bk4URdFDKuVw/DhrW68HQkJDcXbECM7O0FActGMH4T/7DM5qNcGqVWw+vDxvZAC9evXibt68iXXr1mHx4sUw0+b9nDjxqf85IUxVnVJm5VaJgGV4eDhcXFwEREbymtBQ5BKC9OhoiKKIlJQU+Pr6wsLCggX99++zmfx//tHuDVAqmUr7tm1sRKAC8vLyJAC0srSQyWSxcjbS8kZbf8nlciKRSGy7devGPuTFVm1ffVWpIF9VxMbGIjw8XKlWqydV1tavQ8fz6IJtHTpeEEVfzmuK/y+Xy+efPXt2g1KpJCqV6ouMjIyf2rRpI2lWSaZdx6vBtSKbntmzZ9fJ/mpqQ2VjYwOJRAI/Pz+kpqbSyMhI4uDgQN977z3SkALuKsXIAHz44YdccHAwwsPDRRsbG2706NE4ePAgt379enh6eoLjOLi7u7PRjGPHWOXP2RnODx5A4Hl2Q6tSsRvtn35iN8YBAay6+emnTITKwYEJmgF10078HMWWa5mZmdWuPNY7Uilrs1cq2b/rgkGDWHVaLgciIoBffimZeU1MTISVlZWgp6dX9u43Lo51FdSE3FwWxLz9NgvW27YFJBLQU6fw98aN1NXVlXTp0qU2r6piwsKAXr2YSnt5TJ7MVL3HjKmf4y9fjlv9+1O7zZsJN3MmsyobMEDryrSzszOmT5+Ovw8c4HqdOAGDrVtLHqOUws/PT0hKSkJmZiYniiLt168f7dKlS7WjF0opgoODxfaurtykSZM45OcD9+4B33/PZqwHDWKdDeWMWdja2uKjjz7CoUOHsG7dOnz33XdVq8xbWrJ9Hz/O/j9yJBAayubn8/Iq9Fq2t7dH3B9/8AUff4wNixZByXEwMDCgPM9DrVYTW1tbKooiduzYgeZSqTg4L483UqlKd2lURGgoa22vJFkgiiLUarUEQHVFLOpm/uIVhRDykYmJia1jcbdBaCj7Pin2V68BBQUFOHjwoEKtVk+UyWR5dbRUHW8IOoE0HTpeHjtzcnLmqFSq8QD+EgTBvEyFTscribe3N9q3b6+d1VA9M3ToUABAcnIyPDw8kJSURA4ePEgvXbpUMjf+KiCVStG3b18sWLCAmzRpEuzt7TFv3jxia2sr3rp1i166dAk///wzfH19Kfr2hfDjj8hNSqIH5s8XTXr2BD76iFU1zp9n85rr17PgCGDCVS8g+O3QoQPc3d0127ZtK0nINCiWLmVBcR2QlJSES5cusfdcJmOBU2Rkifpz48aNkZmZWTZQe/KEzTY3bar9wShl/s0dO7KkSsuWbN570iTmD83zUCgUyMzMJL17966T11cun39erlJ1CR07Mq/teoJSijNeXoQOHy7i/HmgZ0+gSxcW4GspzNm6dWt4xsbSYDc3kT4zvx0SEkL9/Px4QRD4Zs2aEX19fS4oKIj89ttvdPfu3UJBNWbRU1JSkJqayo0qHi+QydioRocObAzk1Ck2srFlS1mRObCAu1jBXiuaNmWCe8UdB3//zar+N29WmlTr1b07lC4uOD5njjhp1ix89913WL58ObG0tKSNGjUSPvroI/LRRx+Rrl27Etq4Mb9j7Fjhf//7Hx4/flz5ehQK5ruVOXkAACAASURBVFxw9Wql4yiEEOjr6xcC0NLnDAATR6vdYPIrjFwu70Yp3fjWW28ZcxzHvku++qpEz6CmnDx5UkEp3SmTyS7V0VJ1vEHoKts6dLwkZDKZCOAwAMjlck5PTy/n4MGD+kZGRpyNjQ03ePBg/YYQrOmoPm3btkVCQkKF3tcvkq5du6Jr165AkRerg4MDDhw4QO7duwdfX1+89dZbaNasGUxNTUEpBaW0QSQJtMHExAQfffRRyWLj4uLw119/kbt374pTLl/mbNLSyKyFCwl35w4L+ngeuFOZXW39M3bsWL2YmBhaUFBQ6i77zJkzSExMREZGBh06dChxd3d/8Ys7eLDKeWKNRoM7d+7g0aNHEAQBAwcORHZ2Nry8vGBlZYU+ffogPDwcAQEBJddS//792cxrYCDU336Lf86fF+/Y2HB9BwzQ4Pn7kIQEFiw/q0xe/kJYINa/PzBtGms7//ZbFmz//HOZzYu9zfft20eXL19e920dlALnzlWuwj57NtCiRZ0fupjCwkKIoghXV1euxIv72jWW5Ci2xfv3v5/60JdHVha6KxRkp7U1ko4eLdGIOHHiBHF0dMSsWbMAAP/6179KxloKCwu5//znP/jyyy9LPL4rIywsTLSysoJUKn36RSORAGvWsEBUo2FWWCtXskTYunVl1nzmzBlYWFiIWo3W2NgA+/ezFn9raxbMm5iwmfQKVMABgPvqK8xPTwd27uQAlsw4fPiwkJ+fTz755BMeYGM/AwcOZE+wsOBPLViAEydO0NmzZ5MK34t//xsIDHzaRVMBhBAYGhqq1Wq1DSoQPZPL5bYAlDKZLFcul3M8z2cIgtBYLpfzMplMO0uA1wie5z8v0kJhP7h/n2lG1OJzFxYWhtjY2DSVSrWsjpap4w2D//7771/2GnToeOPx9PSkFy9e9M7JyYnIzs6OSUhI6JOdnU3NzMyIVjNpOhoMGRkZOHXqFIyNjWnPnj0bTq92ETY2NhgwYEBJMPTo0SMhICCAe/z4MU6dOgU/Pz9kZGQIzZs3L9e7uyFjaWmJzp07Q6FQEO82bcQ2v/9OLJycWADZuvXLXl4JN2/epI0aNSLNi+yUsrKycOTIETg6OgqWlpbc5cuX8eTJE9jZ2ZUEiS+EjRtZpa+CG9M//vgDJ0+eRGRkJJKTk5GSkoJr164hJCQEOTk5SE1NRVBQEBISEjBjxgx06tQJZ86cQVBQkBgfH08uxcQIVxo14hqp1Xg3OJi0njPnaVBYzNq1zGaqvFZvSpkg2M6drBV46VLWIjxzJltzhw4VVgoJIUhJSUFKSgpp3bq1drO+2kIpsw1r1YrN/1fEvHks8HtO0bquuHr1Kh4+fIjevXs/fX0mJkwErGtXVslt3Ji9x25u7LHnOXECfOvWcJ47l3h5eaFRo0YkKysL4eHh+PTTT0v0HoKCgkRzc3O6YMECEhoaKjo5OXGdO3euUg8iIyMDR44cIUZGRqRHjx6lH2zbliVaevcG0tKYRRilwLJlrEpvY4OUlBTs3btXzMrKIosXLyb62s71f/89u7ZdXdl5aN8eOHyY/bsioqNZy39Rl4WXl5cYGRlJFi5cyJXbKj5kCBqPGIGbYWFiQEAA17x589J2dgAb0+jene1Xi2vw6tWrKpVK9benp+fD8h738/PbBOCAn5/fYgMDg+GNGjVqwfO8SqlU+nl6eiZUeYDXCLlc3lJPT++/06ZNMzAxMXnaPv7HHzW28cvOzsa+ffsUKpVquEwme6PeTx11x6t1J6VDx2uMTCYLAhAEAHK5/FRoaOgnMTExw5YvX97AlJR0VMahQ4dEJycnbvr06Q26PPzFF18AAAwMDHgfHx8aFhYmjhw5khdFEefOneMkEgkdPnw4eVWq3MWYmZlh6NChGDp0aINduJOTE/X390d2drY4cuRIbs+ePUKnTp3IxIkTeZVKBWNjY4SFheHu3bt0+fLlVVue1RUxMRUKRl27dg0JCQnw8PBA3759QSkFz/OIiIhA27ZtS3QFBEGAWq0uEYBbtGgR7t27Rx48eCB06tSJc3JyQlNHR8Jv3sxuhqOjmZUVwFTkjx1jgdGzJCayILVlS2D+fGDuXNaWbmhYLVE3d3d3REZGIigoCE2aNKn221MhxZZzI0ZUvt0nn7CZ5HoiNzdXbNy4MRwdHcte+40bM3X41FS2Xi8vJgg4dOhTRe64OOD0aWDtWlhbW6NFixb0wIEDxMnJSWzWrFmpIvLnn39e8h8zMzPO0tKSViUEQSnFrl27qLm5OebNm1f+toaGgK8vsH07MH48UwBv2xaYORM5Mhl23rkDRycnzJ07t3o+9QMHPhUiS0xkf7/3XsXbv/8+cyJwdQUAXLt2jQYHB5P33nuPVHjcJ09gxnFYtGgRf/78eezYsQM2NjbitGnTuJIRsfffZ9fyunVaLdvZ2VkvLCysG4Ar5T1OKZ0HIIlS+pVKpRrI83yBmZmZUV5e3ngA/lod5DVALpcbGRgYnBs0aJCRnV1R1/2mTayjpoaBtiiKOHjwYL4oiqtkMlndWCPoeCPRVbZ16GiAeHp6xl26dMmB47jhDg4OnG6W+9WAUoozZ86QTp06oXUDqqSWB8/z4IuUWVu0aEF69erF2dnZoXHjxmjSpAk5d+4c8fX1haOjY2n/Yx21xsXFhWvRogUuXbpEfH19oVAouOHDhxNLS0vwPI82bdqgd+/eiI2Npd7e3nB1dSUvpMI9cSKr+D1TLRRFEbt27UJwMLP6nTVrFvT19aGnpweO49CoUaNSYwccx5US9JNKpXB0dCQdOnTgmjVrRiwsLNj2PXuy1uGvvmJzlf36AUFBrDrcpw8LCrOyWLD19tvA4sUs+Jo8mVWzy/Fgroq4uDhER0dj9uzZ0LoiWhUqFVvTsmUsUKyMY8eYNkDjxnVz7Oc4d+4czcrK4tq2bYsKfbZNTFhSwNWV+Ytv3syEo0SR+V5bWTGBMgDNmzcn165dQ3Z2NunRoweaVjBHf+fOHQJAbNeuXaUJrujoaNy+fZssXbq04hZrgFV8BwwA+vZlazU1BX75BdkffwzTvDw6ZskSzry4TVhbDA1Z+/jgwSxpc+MG84FnThGlycxkVfXPPgOkUly9epX6+vpi+vTppNIkzSefAOnpwJAhaNmyJXr16oWYmBjq7e1NTE1NxcaNGxM8fMg6MbT8TqWU6t2/f9+yX79+v5f3uKenJ/X09PTx9PSUX7p0aUtOTk7UkydPJoii2MfT01Ou1UFeceRyOTEwMNjRqlWrXkOHDtUnhDBVeFtb5kFfw4RxYGCgGB4efletVr/j6empUx/XUWMabOZfhw4d2FhYWPjnyZMnFS97ITq0gxACMzOzhil+VQ2cnZ2xsEgN+vLly2JoaGiJfZiOuqFp06b45JNPsGLFCixbtgzFLeXF8DyPd999l7OxsaHnzp2jXl5eCAkJqd9FLVlSxuYsPDwcDx48wKRJk/Dpp5/WWBm/XJo3Z/7QI0awP8ePs0q3Ws2CwT//ZMriiYks4GrfvsY3ziqVCv7+/pBIJLRaFdGqePyYibpps89//gHu3q27Yz/HmDFjOJVKBV9f36o31tNjwbafHwtCu3Zl89GEsLlzSmFkZITFixdj/vz5qExYztbWFtHR0bxQ2bw6gDt37ohSqVTU6hoihF0fV66wpMt//4uCxYuhTk8n4QsX0hJxQ20xMWHe75Sy5M348cDUqWW3UyjYeQoNhWhmhkuXLom+vr6YOXMmcXZ2rvwYJ08Cq1aV/NfAwAAzZ87khg4dirNnz3JYsoQlEbRwXyimVatWUKlUXeVyeZUXmEwmS8EbVM0GWKBNCFnOcdyUsWPHSgkhLAH2f//HRjtqaPWVm5sLHx+fQpVKNfNNnH3XUbfogm0dOhooMplMpaenp87Pz5dkZWW97OXo0JL27duLNjY2FRjtvjpYW1tj+fLlkEgk5NSpU/TChQu6G446RiqVQiqVVliFJIRg5MiRXGRkJLly5Qpu3LhRv9fVjBlMbOwZjhw5AoAlByy0tJCqFubmzIJp7Fh2g3zgALNjeviQ+Uebm5f2R68hWVlZyMnJgYmJSd1VqHJzWSXzwgXtkgBnzwJTptTZ4Z/H2dkZ7733Hu7evYv09HTtnqSnB7zzDpCfzxIGmzczxf7OnYHt22Hh5wfHK1dYy3kFDBs2DIIgIDOzcoeq+Ph4zsnJqXr3naamrMrcuzeab96M9vPmIUIQiPo//2GCdFqqrMPBgYmhKZXAuHEskO/Tp+x2GzaAbt+O8Lt38csvv9AbN25g1qxZxMnJqepj7NkDTJ9e5sfW1tYQcnOhOXas2mr0BgYG4HleAFBBq8JT5HK5FEAMAOjr639YrQO9gsjl8k4GBgZ/Gxsby6ZNmyYpHl1BQAATS/T0rNF+KaU4dOhQAYB1MpnsXp0tWMcbiy7Y1qGjAaPRaFZqNJq/Ll68+MqWFZVKJai2N0SvAe3atePS09Nfi+9WIyMjvP3226Rjx44kNDSUf5Wswl4XHBwcsLJIMbnevdEdHcsEL8V+4MnJyfV3XEKYSrSREas+WlpW3ZJdTezs7NCzZ09kZGRwt2/frpud7tgBvPWW9tuPGMFUseuRxkUt6n5+ftp96aaksMpxcDCQlAT4+zOhvKFDmYpzYiILwB89AlxcmJJ2WBjg7c2qwEWIoojCSgJytVqN3NxcWFtb1+yFjRwJnDqF/Js34Rwfjyw3N1aRX7+eJQq0YdMm4MwZllyYMoVV9p+BpqYidsgQbB8zhp46fVrs0aMHWbZsGVdR+3wZmjYtdya/RYsW6FVYKP6zerWAGmgFmJubqwBUorzHkMlkSgCdADT9+uuvt1T7QA0cuVyu/8MPP8xfs2bNoTVr1sQYGhpedXV1Hffhhx8alXQdpKY+rWrXkGvXrokpKSmxarVaVjcr1/Gmo5vZ1qGjAePp6Znv6+ubkZeXN6dPnz569X6zXUuUSiUKCgogkUig0Whw+PBhzbFjx7imTZu+MXO/sbGxePjwodC7d+/XIuAGWJAXEhKCuLg46ubm9sqJpr3qEELg7u4OX19fcv/+fdHU1JTExcWhcePGdRuAX7jAPI8/ZEWxrKwsPHjwAJmZmRg6dGiJ6Fm90KoV8O67QKNGpWbG65JmzZrB398fUqkUbdu2rd3OKAV69WJqx9q2qj54wJ7j6Fi7Y1cCx3HQ19fHtWvXSMeOHasWERs4kAXZb7/Nkh6GhkwwLT2dnYsuXYBPPwUsLJgoXevWwL17wC+/sLb+OXOAoCAEAnBWKGDj6lpulT8iIgJ3795Fhw4dYGhoqJXKPqUUCoUClFKoVCoUiiJsx4zBhaAg6D95giaiyAL+O3fYWqsK5OPj2Wz6558zK7RBg0qutbS0NDzp358mXr0KoylTyKxZs0izYuE4bXF2ZnPmz38m/f3R9N//JscaN+aaNGtW7d+F2dnZfHJycrKHh8fFqrb19PR87OnpmVOtAzRw5HJ5h4CAgI/19PQOOTg4jOrbt69bjx49rEaOHKnftm1bvpQyfFQUYGxctVhhBaSkpODo0aMFarV6gEwmy6ijl6DjDYe8SRUnHTpeReRyubmBgcE1Kysrp7lz5xqVaznykgkPD0dgYGBuSkqKoUql0mvbti0ePnxYqFQqMwRBcACA2bNno0U9esw2FP766y9ERUVBJnt9kuIFBQU4dOgQjYuLI6NGjRK7d++ui7ZfMKIoIisrCxs3biwRtps2bVrdCvEpFGwGuSjI2Lp1K01OTiYA8Pnnn8OkPKuouiAkhFVR27Vjx96xo54OE4Ljx4/jk08+Qa1FJ8eOZa3JW6pRQPT3Z+3L9RhsA6yKvGbNGlhaWmLRokXlbyQIzAqsUSNWBSwvafPzz8Cvv7JgtrxRB0pZgiY7Gzfu30ejDRtg9f77MFWrmcjYTz8BmZk4e++eEBQczAuCAAsLCyE3N5fv0qULRowYUXItl901xc8//1yiFVHs2d6qVSsaFRVF2jo5YZpSCVy/zt5PlYqJ7I0bV/Ebk5QE+PgAERHsmtuypeRcHPjrL8Hk0iV++M8/Q6+m1/mDB8yC7tnZdUrZuEFyMs7FxyM4OBijRo2ibm5uWmfJEhISsHfv3kSVSuUkk8le+RGl6iCXy50BxLm5uSl79eolLVEaL487d9gcfmgoG4+oJrm5ufjtt98UCoVi7sqVKw/UdM06dDyPzvpLh44GjkwmeyKXyzumpaWlJSQkGLWqhrjKiyA+Ph5HjhxRiqL4HYBMAOGxsbG/qNXq/QA2AyAAdhw5cmTmsmXLXvvvnH79+iEqKgrR0dENXpFcW4yMjDBnzhyya9cuXL9+Hd27d3/ZS3pjUCqV+PnnnyEIQkmV0tTUVKSUiiqVqtTnKSQkRFAqlVzPnj2rcmEqH7WaVTivXgUAaDQaAMCECRPqL9AGWHXxm2+A0aPrZD77WU6ePClkZ2eTXr16ccePH0f//v1rH2gDwA8/VP85a9cy5fJ33qn98StBX18fH374IbZu3YqgoCB069at7EbffstmnoODK7ZGWraMdRscOsRatrduZRXuYghh6t4AugPYbWdHRUGgc5ydOc7Hh3lljxkDW2NjvrOrK/pZWsJywQI+LjMTuw8dQlBQEL755hvo6ekhNTUV165dEzIyMkjz5s25wMBAKJVKLFmyBAqFAgkJCXB0dMS5c+eIi4sLJk6axKy8Jk1i9k4KBVP4Dg9n6y6vO6KwkInuqVSsLb642JSXh7HLlvG75s0TRQODmicSmzZlHQHPsn07e99u3MBwFxc4OzvjyJEjRCKRoF1lnuyldtsUxsbG5iqVagiA8zVe3yuEXC5353l+JoClzZs3zx8/fnzlM+saDetY+OSTGgXaKpUKu3fvLlCpVKt1gbaOuua1v/HVoeN1QCaTaVatWuWdmZk5+WWv5VmuXLmi8vLyMpBIJHu//PLL/z3zkMcz/6ZyufxCfn5+/d5hNhDCw8MBAPbVtaZp4Gg0GiQlJVGJRMLdvXsXjx49Eps3b86Vl1Aobv+sU9XnNwRBEHD06FGxb9++nKmpKS5evCgKgsA5OjqK7du358zMzKCvr88dOnSI5OTk4P79+0hLS0NgYCDNysriKaVwdXWFqalp9Q9uZMSUtUUR4DjY2dmRtLS0+r2WFQo2x/z998D9+ywA/OCDOtm1RqNBcHAwDwAPHz6kenp6pEePHrXf8eLFzO/bza16z1u2jFU+XwBWVlYwNTWlSUlJZSPpGzeAFSuA5cur9iC2sWEJgqAgdm0EB5cE2M8zefJksmnTJrpNpRIde/dGHysrzvLuXdzasAFmsbHUklICpRLNPT0x19oapwYNAr9+PUJbtsQ/YWFwaNKEk0qlCAsLEzw8PPiePXuC4ziYmZmhuKL57rvvlj6onR0TJrtwgQmptWvH2t5lMvbYszg7A0OGAEuXlg7I0tJgOHkyDFu2xN69e+ncuXNrNpvBcaxaPn36U+9yJye2liJcXFzg7u4OPz8/0cXFhdNmJIcQAg8PD5MzZ86sk8vlXWQymapG63sFkMvlphKJZLuhoeEYNzc3/S5dusDKyqpKcTikpLDvr/nzq31MSimOHj2qyMnJOaHRaP5dk3Xr0FEZumBbh45XALlc7qGvrz+q2jNk9Uh6ejq8vLwMAPxZWFj4bRWbXwaAgwcPKiZPnmzY0GfPa0NISAjc3d3rtxL4khBFkeTm5uLMmTOimZkZFxwcjIULF8LY2Bg8z0OhUCAyMhK3b99GQkICrKysMHv27PpRsX7NEEURd+7cQUBAAE1LS+Pu378PpVIJGxsb+vHHH8Pa2rrkrnzz5s2iWq3mvL29YWhoKEgkEjRr1ox3cnJCZGRkzQJtgAUg58+zKpGBAezt7XHnzh3Y1MDTWmu8vYETJ1igFB4O/PZbnQXbMTExAJhA1ezZs+vmS4dS1oZcE0uhK1dYxVVbwa1aUGTXR4cMGVL6dQcGMturW7e09/s2NgY2bGDn57PPWHv4mDFlAnUjIyN8/PHHnL+/PyIiIhAaGoqpU6fCyMYGEdnZBEVCf3j0CCQ4GIb799OwgwdJWMuW+PjePZhzHMHp08CxYzwcHLS3eZNImICaiwurcnfoAMydyzzc+/d/uh0hQGws0wd4/BgoKGDn5Px5kP/9D2MzMrhNmzYhMTERlfppV8aRI0CPHizY3rSJdQLMmFFqkwEDBuDGjRvc6tWr8eWXX8LLy0sIDg7mOY6DKIqqDh06EHt7e31jY2PY2dlBIpGgY8eOuHTpUhtBEG7K5fJOr2M7uVwutzQwMDjTsmVLt/Hjx0u0Hpn7+Wf2uTp6tEbHvXnzJr1//36ySqWaJ5PJdLO1OuocXbCtQ8crgFQq/deQIUOMKp1XesGYmprCwsJCXVBQIP3qq69SKttWJpPFyuVy87t37z7JyMio35v3l4RSqYS/vz+llGL06NGvXTZBT08P33zzDTIyMkoCv7///lvcsGEDJ4oi2rdvL2ZnZ3OpqanF9kokMzMToihCo9FApVIhNzcXdnZ2ePz4MbZu3YpJkyahffv2L/mVvXwKCgpw9uxZMSoqirRr1w7m5uaCQqHgmjdvTgYPHlwmqps+fToXHh6OLl26wMjIqORxpVKJ27dvIzs7u+YJDk9P4I8/kNa2LXx8fEr2W29dCn37lrStY8IE9qcOEEURJ0+ehIODA6bUpd1WcDDg5VWz554/zyrF5VlO1TEajQZSqbS0p/i9e0Dbtuz9LifQ1mg0pXzUb9++jZCQEMpxHHieJ2lpaUKPtWv53m5uzJf711+B5/y3pVIphg4disGDB+Po0aPYs2cPAJT2Z5dI0LRPH4x1cSGXL1/GqP79Yc5xbOa2oIAlYNLSWNdDSAjwv/+xBIebG5uTr4gWLYDTp1nC5vZtYN06llRYvPhpYsDamnm4F4kA4uhR1lYOZtHVsWNH8eDBg9y0adNq1tERGPj030ePlltplUql+OCDD7Bp0yb8+uuvNDc3l1er1QBwAMC627dvD7t7924rQkhbURRbCoJgKIqihOf5fAC3ALx2AWFRoH29c+fOzUaMGGFQLRHO69eB2bNrdNzU1FScO3dOoVarR8tkslfW9UVHw0YnkKZDRwPnhx9+GGtoaHjgs88+M9SvJ5XemhIQEAAfHx9BJpNplbhbtWrVRhsbm7mTJk0yqrEFTANCEARERUUhPT0dFy5cgFQqpdOmTSMlNiRvAAUFBYiNjcXRo0dhaGhIp0+fThwdHXHo0CExPDy8zB3T0KFDERoaSlNTUwnAPHrDw8PpvHnz3jiV87S0NBw+fFhMT0/nBEHAlClTapV8uH37No4fP47JkyejXbt2NVMq/+svYOBAhKSk4Pjx4+jdu7c4bNiw+jkxt28Dw4Yxe6niYKxZMybcVYvvh8TERJw5c0ZMTEzkvvrqK9SZqOTDh6x6mpzM/L+foXh0gud5qNVqGBkZgRBS+hwUFLAKXD1/jysUChw/flxQq9VcSUVfoQBatmQV6ufsykRRxMGDB8WIiAjO1tZWmDdvHi+VSrF69WraunVrGBsb0xs3bnDdu3fHzZs34eDgAI+ICDh36QLO1pYlDypQqt+8eTN9/PgxWblyZfWvx8ePAV9f1rY+aRLz3H7/feDgQRZAW1gwgbfyZvBjYoC//2aVZkdH4PBh1o2QmAjs28fOo5UVE6yzty+poj958gQ+Pj7CvXv3eD09PWpqaiqq1WpwHEeNjY31jIyMMGHChIqV+efPZ9fu2LEsqK9EeTw+Ph67du2Cvr7+ZbVaPV0mkz0sbzu5XE4AGMpksoLqvYEvn6K1G8tksrxKtrHiOO6Oq6urzcSJE/W1vk7u32dWdFu31nhOe9OmTQW5ubkLv/vuu93V3oEOHVqiq2zr0NHAIYSMdHNzkza0QBsAWrVqBR8fH14ul3eUyWRhVW2vUqk+e/z4cdbGjRu/lUgkahMTE6WHh4dJp06dXrlKcF5eHg4fPoz4+HgAQPv27TFlypRX7nXUFiMjI3Ts2BHt2rWDnp5eyeufPHky16xZM9ja2uL+/fvIysqCIAjwYlVB0qhRIzx+/Bjnz58HABIWFgZXV9fSFbDXCEopCgsLkZ+fD41GAzs7O2RnZyM1NZWbNWsWJBIJHGupUn3s2DEAwMGDBzFt2rSa2VsZGgKPH8PMzAwAUK+e8WZmzELq2XM+bVrVc8RVsGPHDnAcx73zzjt1EmhTSlm3QJMmQGYm1BwHqFRISUlBUlIS0tPThYiICE6hUBCA2W8RQmBnZyfOmjWLkxSLvk2cyILGOmqTL4/Y2Fjs3bsXlFLeyspKBEDyEhNhlJeH5L//hl2vXtADcObMGdy+fZuamZnRvLw8YmRkRD788EN4eXmR3377TZg7dy4PAN26dSPNmjUj4eHhorW1NTdnzhzcuXOHHk5LI6319TF85UqkFxbi8W+/wcXFBbGxsXB2dsbp06dpamqq2LVrV/7ChQsIDAxEjx49cObMGZiamqL/s+3dFdGoEVOXBoBLl9jfSUksCDczY3PnAQGsFXzNGjYr7e7OHmvVCvjySzYz7ePDqt6XLwN5ecDKlSxQ19NjgdozLePm5uaYNGkSL4oiEhISSHJyMm9sbAxRFJGdnY3Y2Fhx8+bNWLRoEVfutTVmDEumzJgBHDtWYbCtVCpx4sSJAj09vR+//vrrnyp7G4pam1+5QLuIkQBOrVmz5pxSqTwKIBjAQwBpAGw5jpuur6//vb29vfG4ceOqZ2966RJLItXgd0ZRgkmhUChO6AJtHfWNrrKtQ0cDZ/Xq1ReHDRvm6e7u/rKXUi7r168XsrKyCAA9beedfvjhh3copWoATXieX/Xtt9/WYADy5aBQKLBlyxY8efIEADB8+HD06tXrJa/q1eH8+fO4efMmnTNnDrGwsEBhYSHWr18PAGjTpg2mTp1aoR3Qq4BKpUJQUBDNzMzEvXv3hyAT+wAAIABJREFUyLBhw6DRaHDlyhWamZlJANZS26hRIzEtLY1r166dMHHixDp5wTExMfDx8aEpKSlk9OjRuHPnjjhhwgSuWi3l48ezdl25HJGRkfj777/x9ttv172yfn4+m//dtKl0pTcpiQX8NVQMz8jIwMaNG9GjRw+MHDmy1suklOLYsWMi2bmT8wgMxLn//leMioriOI6DVCoVTUxMqIWFBd++fXu4urpCo9EgMzMTiYmJ8PX1FZVKJSeRSMBxHO119Sq6ffwxkQ4cWOt1FaNSqXD9+nW0bdsWUVFR9OLFi2TgwIHw9vYGAAwcOBCO776LfFNTnJo+HaIowsjISFCr1fy4ceOQmZkJa2trtG7dGoQQCIKA9evX07y8PNKpUydh3LhxPCEEf/zxBxwdHenQoUMJwK61v/76CzzHoaWxMW3z558k18wMwWPG0Jy8PNKqVStRKpVyiYmJQocOHXh/f3/wPA+e5yGVSqlUKhU/+OADvtbdLBoNkJkJYedOPDQygnNUFHDyJGvZ37CBdU506sQ0AQ4cYGJq27axiqiZGRNNqwaCIGDv3r1iVlYWXbRoEV8mOajRAAkJ7Pru2LHC/Rw9elR57969v9Vq9buv85ywXC4fYG5ufnrAgAFGsbGxBcnJyZq8vDwDlUol1dfXL2zRooXGw8PD2KGy8YDydwzMnMm6NWqQnPPx8VEHBgYGq1SqAa+z4JyOhoEu2Naho4GzevXqgD59+vTy8PBokBHIjRs3cPr0aQDQl8lkmuo8Vy6XOxFC7q9YsYKX1LHlT33h5+cHX19fLF26FEZGRnjTWp/rg6CgIOTk5ODGjRuUUkratGkjjBw5ks/Pz4eVldUr9R7/8ccfYkJCQsmCpVIpVSqVxNHRUZg2bRqfnJwMOzs7XLlyBR06dKh1NftZVCoVVq1ahUGDBiE6OlpMTU3lpFIpXbx4MdG6YyAnhwlOSSTIycnBunXrAAA1agOujAsXmDr3zZulf967N/vz3//WaLfBwcE4efIkBg0ahHbt2mmlD5GdnQ0zMzNwHIf4+HgUFhYiKyuLJiYmijExMTzHceL748dz4du20eCmTcV3332XNzIy0qoLQxRFxMXFQRRFRPz6q5hmbExse/UShw4dylfYiqwFGRkZMDIywoEDB8SHDx9yoijC0NBQnDp1Kufs7Iw1a9ZQlVJJHB4/xuCpU2Hr5gZjc3MkJSXh0aNH6NChQ4Vz+GlpaYiPj0e3bt1KznlAQADCwsLEhQsXllzbT548gaGhIVQqFS7/3/8J7jExvO0330CQSMA3b46UlBTs2bOHajQa2Nvbk9zcXLpo0SKiUqmwdu1aTJgwAR07dkRkZCROnz4tiKIItVrNDR48mDg5OUEikaCgoAD6+vqwtbWt8P318fFBcHAwLSwsJFOmTEH7xo2ZLdiPP7J2f0NDZvn13nsswVNYyBI8AQGshTwzk7WRKxTM/s7WlgXMOTmsQp6UxNrk09IAABpHR1zZsYMiPZ32XbiQ45OSWKU8MpJV0b29mbd2ed7kADIzM7F58+Z8jUbTVCaTZdX4IngFkMvlRjzPZyxZskRq/Mz7IYpizb/XU1KY1sOVK2UV57Xg4cOH+PPPP3PUanVbmUyWXLNF6NChPbpgW4eOBs6qVatOurm5DR45cmTN78zqAUopLly4IAQEBPAA5stksh012c/q1asvchzXGwCdO3eutKKbqobCyZMnxfj4ePrxxx83yOTHq07RjbeYn5/PCYIAABg/fjzcimyWRFFEVFQUnJycGqS1mL+/Py5cuAAAWLJkSUk79otAFEVs2bJFSEtL442MjMTZs2dzv/32Gxo1akQFQcD48eNJ06qUsDdsYGJUv/4KjUaD//3vf2JeXh43e/ZstKhL26q4ONbi+3wXQ3o6s/CpwbkVBAH//ve/UaTqDI7j0K5dO2ptbU2cnZ1hbm6O6OhoxMTEwMTEBJGRkWKLFi248PBwWFpaig4ODlxUVBQ4jkNhYSHMzMwwcuRItPXzYwmIWvpji2+9hRhnZ5xu2pS2adNGHDVqVKXfIXFxcTh9+jQ4jhOHDBnCSSQSGBoa4urVq8KtW7d4ADAyMhIXL17M3blzB25ubiUJgOTkZKSuWEHbBwQQg+jomqmnP8OFCxdw+/ZtumTJksozLlu3AqtWMXsxGxtQShEUFERPnz5NevXqheHDhwMAzp8/LwQGBvI8z1NKKenbty+1trYmWVlZop+fH8dxHARBgCAI4HkeEydOhKura6lDXblyBQEBAaKhoSEZOXIkiYyMFFJSUsj8+fNLR3GUMiV1ngfGjWPz3CYmQLduwKxZTJiN4wClkgXI7u4sGfTkCZtvj4lh8+KPH7Pnde4MITgYdwICaIKzMx3t7s5xNjbMu9vEhM1qV2IxFxwcDG9v76MrVqyYVMPT8UqxZs2aE0OHDh1bJ915ly+z74gxY2p0TatUKmzYsKEgPz9/9sqVK4/UfkE6dFTN6zkcp0PHa4JcLuf09PQ8evbs+dICbVEUywr9gIm7FAXanbSZ166IwsLCYQB6EUK8CgsLa7na+iMnJwf79+8XU1NTucmTG5Td+WuFi4sLWrduzd26dQtmZmYICAjA8ePHcerUKVhZWdHHjx8TQgg4jsPkyZNrNpdch6SkpODmzZtCkec4uXDhAszMzISuXbvyLzLQBtis8MKFC3mVSgUDAwMuJycHAPD48WMCAJcvX8agQYOwb98+OnDgQGJtbV22sm5vD2RkAGDt7rNnz+Y2b95cYWWxRoSEAKNGAfHxZW+YIyKYKNa3VbkJliWtqPJoY2MjPn78mBs2bBhiYmLE+/fvIzAwkFer1TA3NxcdHR0RHx9PeJ7nHj16BIApUatUKuHdd9/l09LScPz4cUycOBHOzs7Arl0siKol3FdfoU3jxuCUSnLo0CF+xIgR5Vb38vPzIQgCrl27JqSnp/NGRkbc/v37oaenR9VqNTEzMyM9e/aEjY0N2rdvz0mlUnTr1q3UPuxTU2H/668E+fm1CrSTkpJw+fJlREVFYdy4cVU/YcECYPRo5su9bRvI1q3o1q0bMTIyQqtWrUo2GzZsGO/h4YG0tDRiZ2cHAwOD4l8wXPE8tyiKyMrKQnh4uHjo0CEuICCADho0iBQUFMDb21sEQEaNGsW5urqCEAJra2v+119/fVo11WhYIB0UxITSunRhAmtDhrCAujLefrvSh/kRI9BOpSLXd+6kWzQa4YPx47VuiU9NTVUrlcrAqrd8PVAqlceio6MHubu7V+2XXRUrVrCEyfjx1X4qpRT//POPUqVS/aMLtHW8SHTBtg4dDZuJGo3GtM7UdGvAv/71L+jr64tLlizh9u3bp7S1taXjxo0zfMZHWlmb/ctkMjUA/59++ikzNzfXHgAKCwvRkNrKRVHEunXroK+vzy1fvrxiJVoddQLHcejatSsAoGXLlkhPT0dSUhIiIyOJi4sLbG1tcePGDRw4cAAcx2H8+PFUIpGQZs2avdBzo1QqsWXLFlhaWpKbN28SjuNgbGwsLlmy5KV2PRR/X5iZmaFXr164du0aANY1EBkZCQCkWExNJpMBYEmDixcvCiaEYMzUqXx2VhaMjY3h4+MjGhkZcXXqG9+4MZubLe97LSmJ2WvVAHNzc/A8j/Hjx3ONGzcGx3Ho2bNnybmglIIQUhIRJSUlYd++fbRFixbi9OnTeY7jQCnF2bNnRVdXV87Z2RkIC2PzvnUh3HfqFNCzJ1qNGAFCCI2NjSVxcXG0Q4cOpHhm9cGDB/jzzz9BCEGLFi0gkUjQv39/uLm5lQSkXFVRXWQkMGIEqwK2bFnj5Xp5eeH69etwdHQU58yZwzVt2lS7OYImTZgw2IkTQHo6SHg4XD08ymwmlUpRWacFx3GwtraGh4cH1759e3h5eYkHDx7keZ7HoEGDiLu7O3lW38HS0hLmZmY0cNs20qt3byaYZmMDbN8ODB/ObO2WL6860NYSAwMDvPPOO9yWLVvo/v376YwZM7R6fwoKCkQADcfHs/65GBcXxxV9/mq2B5WKJb3On69R1wsABAUFiVFRUckqlaqsH5sOHfWILtjWoaNhcw1gwWed3uxqiUbDRrDVarV67dq1EkJI/qNHj6wVCoUqIiLCgBCSTCm9X0eH+/rvv//+w8zMTJGTk2Po7OxcMGbMGCMrK6u6nRWtAcnJbKxr6dKlukD7BcNxHBo1aoRGjRqVtJIDQLt27fDkyRPs378fR48eLQ50acuWLfHo0SPMmjWLmD9nz1QMpRTbt2+nTk5OZPDgwTVWQL9z5w4AoFWrVtyQIUPg7e2Nfv36NagB8+HDh2P48OH46aefUOTli5EjRyI/Px9Xr15FZmYm7t69W+ypzTePjYXm+++xfvp06OnpQaPRcB4eHnX3GczNZdXFQ4fKf3zq1KcK1NXE0NAQLi4uor+/Pzdt2rQyjz//GhwcHLBs2TICoCRiy8zMxMOHD7mxY8eyHwweDPzf/9XYx7cUt28zhW0AEolEvHTpEp+UlEQCAwMhkUhgbm4upqWlcf369UOPHj1w4MABYmdnJ3br1o3T+hqNi2PHCAioVaAtiiKuXLmCYcOGoWvXrtW/pg0NmfhdXBywaBHwxRe1eg9tbGwwffp0vrCwEBzHQV9fv/TJfPAA8PLC2w8ekMzz5yns7AjOnGGjCn/8AQgCS5zU8eiJRCLBnDlzyNatWxEUFFSmw6A8zMzM9ABk1ulCGjAymSxu9erVKfHx8c2bN29es53s2MH+zJ1bo6cnJibCy8urQK1WD5fJZPk1W4QOHTVDF2zr0NGwSeI4rlBfX/+llHkVCkXxP9sCGEYp3Q/ANioqagohRKSUbpfJZEJdHOvrr7/eKZfLr+fk5LQEEP7w4cMrGzduNBo9erRWNzD1hUqlwq5du9CoUSNRKpU2qEDqTUZPTw/W1taYP38+Ll26hJ49e8LHxweJiYliXl4ed+TIEXHq1Kmc8XMiRQUFBbh+/TqSkpJIUlISrl27Bn19fVhYWFBRFGFvby+OGjWKNzQ0rPT4WVlZOHXqFAAmEujg4IBRo0bV2+utLXPnzkVcXBwkEgm6dOkCAAgLCxM2bNhQEmgaGRnRpCZNyOm+fQE8TbaFhoZiYF0paN+9C2RlsRno8igsZFXRrKzyK98oqVCX+1hmZibatWtXo6Wp1Wrs3r2bEkKIoaEhm/WNj6+7AO2PP0pek6OjIx8bGwuO4/DJJ58gMzMT0dHR3Pjx42FXJPo0d+7c6n3faDTAoEEssF24sFZL5TgO3bt3pxcvXiReXl6glGLy5Mll5qarpHlzwN+fndd+/YAffmBrrCGlOp4yM5nyuJ0dC+hHj4b+0qU4bGVFvp4wgW1DKbB3LzBvXp0H2sVYWFigZcuWQkJCAq/N7yq1Wi0CeKMUsCmlXikpKQtqFGz7+ABTpjD18RokRpVKJfbv31+g0Wjelclk0dVfgA4dtUMXbOvQ0YCRyWT0p59+yoyLi2vUuXPnF96a6u3treR5PuHbb7+NB7C16Mc5AFbXx/FkMtk9APcAQC6XNwEw9dSpU381b94c1tbW9XHIKomIiKCUUvLBBx/oAu0GiFQqLRFdeuuttwgAXqVS4c8//xQ3btyIKVOmlAh7PXr0CHv37oWenp7w1ltv8R06dMDdu3dx48YNUEqJk5MTwsLCyNq1a9GiRQvMmDGjjA1ZkWJyqVlbGxsboW3btg1aMM/e3h729valfvbRRx/xT548wb59+wS1Wo3PPvuM/33LFk2jS5f00LQpJFIpTExMqKWlJcnKyoJlDe24SsFxgJ9fxY9LJMDatSxIeg61Wo2bN2/C29sbenp6EAQBY8aMgSAIcHZ2hqWlJczMzGh6enqNlqZWq5GTk0MWLFgAk8JCZgsVFVV3QdrcuYCHB/DZZ5gwYQJOnTqFpk2bwszMDGZmZmw+vKYoFExB+/x5oI5s2kaNGkVGjBgBURTx66+/CnFxcZyrq2v1WxyKrefeeQe4d4/Nv7u5VZhMqRSNhrXjnzwJdOjAKtpTp7LzxHEw0WigEQSoVCoY/PQTUxAvskGrT2xsbEhoaKgIoMrfExKJhCeE1H5++RWC53m7GglaZmQwEbsTJ4Du3av9dEopTpw4oVCpVAdXrlx5uPoL0KGj9uiCbR06GjiiKIopKSlc586dX9gxb926JZw4cYIHIAWw6YUd+BlkMpkol8uP8jx/Ys+ePSMWLVpkUNN239rg7+9Pe/ToQV4l+6k3HQMDA8yfP58/d+4c/euv/2fvvMOiuNY//p2ZXXZp0kGpoiCoYA9KLGgUjRq7sWuKMcZocm/yy71JNLrZ3CQmuYkmJia5thij2LHHLkUpYkGlSBFUQFF6WZZtM/P74wA20F3YBdT5PI+PujNzzpndZdnved/3+26lLC0teUtLS66wsJBp3749ZsyYUSeMu3Tpgi5dutRdO3jwYPr333/ns7OzqS+//BKhoaHo0aMH4uPj+atXr1K1Qk4kEsHNzY2bOXMmbW5u3qqFdkPUZge89957det/KTRU5PXeezg1eDBefOkl1sbGhjl+/Di3Zs0a+s0334REIkFcXByXnp6ONm3aYNasWbRIJALP82BZ9vEp+Zcv33N3fpzQCg4Gysrq2vrcvn0bGRkZtVkI7NixYxkzMzOcO3eO27t3L01RFKysrPg333yT4jgO4vv7dhtAZWUlACAuLo6b+MorNL75hkTZjcUrrwA1hn4ikQjjGmHy1CBz5gBKJRGiRoSmadA0jYEDBzIHDhyAUqmEra0t+vXrZ7jT/rx55O+xYwGFgjh+68vFi8Du3SRSfvQoMciaOvXBHu0gzytN01AUFsJepwMmNo/hd1BQEB0fH4/U1NQHPk/qw8XFhZZKpf2bZWGtB8bgUpTiYiA/H0hMJD4PjSA5ORlZWVkFGo3m3UYNICBgBASxLSDQipHL5fYAXDw9PZu1aDkxMZGlKGorz/NhACKbc+6H0LAse7asrGxsZWWlcSJrBuLt7c2dP3+eUqlUGDNmTMsWjwsYxIgRI6iAgACUlJRQJSUlTO/evR+o+64Pmqbx7rvvUhzH4eDBgzh+/DiOHz8OABQABAYGoqioCPn5+SgsLKRWr17NffTRR8/ETgzHcSgtK8OWxYvBMwz8/PwYFxcXdO/enQ4PD+fXrFlD8TwPZ2dnfsCAAcyxY8f4r776Ch9//DEiIyPZs2fPMtOmTYOfnx8AkklgYWEB+1rB6uUFhIWhUq3GuTNnEBQUVL8XxZw5wIwZwOLFiIiIYOPi4hh7e3tu9OjRdGBgYN3GgJ+fH61SqSASibBt2zbu559/ZliWZSY2QmBVVFRg3bp1AADFhQs8Tp8GanqMGw03N8AUDvWXL5O+5Hr0FG8MJ0+eRHx8fJ1j+61bt/Dzzz8zffr0QVBQkOGfy/v2kSj8kiUk00EuJ38/TFUV8O23wN695BwPD+Ji/9Zbjx1+0smTHBceTj/Sw92ESKVSmJmZ8VVVVU/8HdGuXTuwLBvYHOtqLXAcF2hv6MbV1Kmk5n5Do7qKQqlU4tChQ9UajWaKTCZTNmoQAQEjIIhtAYHWTYijo6Oqc+fOJndHO3fuHPv3338zdnZ26tLSUgmAf8hkspY2cbEH8NWkSZNaRGgDwKhRo0RdunTB1q1b4e/vD18jpWgKNA9ubm5wc3Mz+DqapjF27FiMGjUKeXl58PT0rEsdz8rKwubNm6HRaCipVMoZe80tRV5eHg4dOoS3167Frfff5x0dHeuEw8SJEymdToeKigrY29szABAQEED98ssv7Pfff8+wLMt4eXkhPDwc3bp147y8vOjdu3fDz8+Pmzp1Kn05Ohoec+fy6qNHqcM7dnAFBQVUSkoKFi5c+GjWSGJiXcQyLS2NcnJy4ubNm1fvhkatYeGsWbMYpVKJ6upqg0pOFAoFEhMTERsbCzs7O3bKlCmM+cmTDMLCDHz29ODPP0lv54AA4425eTMRrenpgInMG+Pj4zF+/Pjaem0GAK5evYqIiAju3LlztEgk4iUSCefq6sp4e3vDzc0NVlZWuHjxIpKSkjitVsvXlGNQvXv3Jq29vLxIHe6KFUR4UxR5rLgYiIsjddbdupHNie3bAX3q8DkOuH4dkgkT6H35+ezc+4zvTE1ubi7UanVdF4XH4eDgAI7jbORyuYtMJrvbDMtrUeRyuQSAV60XgV4kJZGOBY9xq38cPM9j7969Sp7n/5DJZM9NmzWB1okgtgUEWjFmZmazAgMDm8WG3MnJiQGA0tLSrwBsbwVCGwDUAHD37l2+S5cuLZbK3b59e/Tq1YvdvXs3PXr0aCow8LkKSjzXiESiR2pp76897Nq16zMR1QaA8vJyAEBp377oM3o09XB/ZpFIhPujU2ZmZnj33XeZgoIC2Nvbw8rKCgUFBdi1axeflpbGMgzDXLt2jd6wYQN0ly7Bwdqa2rB5M0QiEf3xxx9j5cqV3P/+9z+4uLhwoaGhjLW1NRl4927S/uu//8XUqVPpn3/+GUqlEk+q+bSwsHjiOQ9z9+5dnDp1CoGBgfzEiRMZ5OaStln1uJk3maVLgQYc8htFSgowYQKpAzeR0K6oqIBOp3ugRzZAugF07tyZ1ul0uH37NpWdnc2kpKTwd+7cQVVVFVXrfD9w4EC6rKwMSUlJAIDY2Fh+4MCBZBOnRw9g0yZg2zaSYt6jB5CXB+zYQQzPXnyx/oh3Q8ydC6SnwzM6GqU//siEhYVxkydPppujdeatW7dgY2PD0TT9RIFPURS8vb01mZmZIwFsNPniWh4pTdNarVYr1qvEY+dO0qItNbXRLfcuXrzI37x587ZGo/m/Rg0gIGBEBLEtINC60QLgUZPCakx+/fXXaq1WywIAz/NMeXm5uZmZWZpGo/ldJpMVGnu+xiCTyRRyubznmTNnEs+cOQN/f3/NK6+8YqbT6cDzPIqKih75EmgqQkNDmYKCApw4cYILDAx8ZgSWgGHcuXMHOTk5mDx5Mnbt2oWEhARq+PDhLb2sJpOXl4fw8HAAQIS7O9qbmUEf2SqVSuHp6Vn3f2dnZ7z77rsMQNLS09LScPbsWb6nkxPvkZBA94+Kgq2tLUQiEV5//XU6NjYWBQUF1KpVq+Dv788OGTKEsadpgOPAsizOnTsHOzs71sLCwiRRyo417bGSkpKogQMHwmnBAhJlPXDA+JNt2QIEBhpHyN+6RdqSHT4M1LjLm4LffvuNd3BwqOvx/TAikQienp7w9PTE4MGD685RqVSgaRrl5eVYu3YtRowYgaCgINA0Tc7heeDIEWDZMhLJ/vBDwMGBmJk15FTfEBUVQEQEifC3bQuRSIR58+Zh586d+OGHH3hfX18MHz6cMrjG3ADS0tLYjh076v0e9ff3t8rNzZ2IZ1xsy+VyGzMzs/PdunVjLSwsnqy08/KAYcNIXX4jjQlLS0tx9OhRlVarHSeTydSNGkRAwIgIYltAoBWj0Wgyb9++rQYxKjMaNfWm5gCmA7gL8lnAajSaCJlM9qgNcAsik8kuyeXyfgDs0tLSwrOysgBArdVqJQDw0Ucf4eH2TqaApmmEhoZizZo1tE6na3RvZoGnm+3bt/NlZWWUo6MjAgICcOvWLZNshjUnO3fu5FNTU+vuYfbNm7D44w9SL9sEaJomBnQ6HYXPP6fw6acYNmxY3XEnJ6dakzC6qKgI+/fvp1avXg1nZ2d+xDvvUMc3bOCKioqoUaNGmSwduDYC27FjRzg5OZF6Yo2JujLduQO4ujZ9nNu3icFcVBRQUx9vCnJzc6HRaKjZs2cb3Gc9JSWFPX/+PFVYWEh36tSJ79evH4W7d4mg7tIFeP11Yhg3ezapzc7NJZscjcle+uQTIC2NtIiqWaeNjQ3eeustOjc3F5GRkeyqVauYbt268WPHjjXJz2p5eTndt29fvc/39fXF4cOHh8nl8jYymazCFGtqDTAM84Gvr6/7qFGjnvwdpqICCAkBfvwRqO1zbyA17uNKnue/lslkqY0aREDAyAjfFgUEWjESiSTAw8PDqEK7qqoKmzZtUlMU9c6yZcu2GXNsUyGTyc4CgFwu76/T6d7heX4DgItisTjn+PHj9t27dzdzcHAw3B3XQFxcXODg4MDv37+faowJk8DTT0VFBeXl5YXi4mIkJycjODj4qRbbBw8e5FJTU2mApGFPnz4dbaZObVxbpobo1IlEih+TQuro6AiNRgMPDw/OuqIC7p07U8yaNfzHH39Mm7J8JCMjAwDg7+9Pos5LlgDTpplmsq+/Njxq+zA8D4SGknZXMplx1tUA0dHR6Nq1K+vq6qr3ZgfHcTh16hR79uxZpnPnzni9UydIOnak8N13wDffAAUFwOrVQP/+JHLZrRsweTJgbU36kBtCdjZ0q1djW9euXHW3brAIC6PHjRv3gOmeh4cHZs+ezaSlpSE8PJwaO3asYXPoiVqtpuo1+2sAa2tr+Pn5IT09/V8AlppkUS2MXC7vTtP04qCgIPETN2tYlrR1++03oAmZQqmpqbh9+3aBTqf7rtGDCAgYGUFsCwi0Ynie97UxQo1feno6f/LkyWqlUklVVVWZi0Siw8uWLdvY9BU2LzKZLBHA/Nr/y+XyvqmpqX9dvnx5UJcuXdSvvvpqE7/JPh6KomBtbc2JRKKnstWTQOPZvn07m52dzXAch7KyMu6DDz6gdTodzMzMnuqSguzsbAoAZs6cea8kIyICuHIF+Mc/mj5BRQXQqxdw6dJjT9NoNCgsLKRff/11eLi5AZ064c0RIxgY2i7IADiOw65du+Dm5qbr06ePCB980KQv+k/kww+JOdonnzTueq0WyMoiNe0mjGgDJA382rVrmDt3rkGfdVlZWcjevZt5pawMzjNnQtK3L/DTT8CCBcA//0lqcENDH7zoww8BZ2eD1rd27VrWZ/du2iU/H1kTJtBDhw3DyZMnsXHjRm7RokWP/EzLf9k3AAAgAElEQVSmpaWxbm5uFPTog20oOp0OKpUKrgZmLQwZMsQ8PT39A7lcvrKVeKQ0CblcTgFwAdBRLBZPAvBBSEgId3+ZSYPMn0/afDWhdZ1CocCBAweqNRrNLJlMpm30QAICRkYQ2wICrRiWZSuTkpLYgICARou7yspK7Ny5U8ey7BIA5wBY6nS6COOtsuWQyWQ5AEKWL1++v23btqObY057e3sqKyuLRTM63Qq0DJWVlYiPj+fFYjGVlpbGzJgxA+3atYOVlRUNEIOwp51hw4ZRO3fuxIULF3gfHx+ibNPSgGPHjCO2CwqAgQOBx0T9cnJysHHjRvA8D49a9+HycuJS7eXV9DU0AEVREIlEGDN6tAjz5wPffWdcA7OHGTeOtP9qLAsXElO0mBjjrakBpFIpxGIxeF7PqqKqKuCtt9Dx7bdRrNFw0osX6XWbNmH6mTPweVwHhw0bAEtLYoamJ6d+/JF/edUqJuWHH0D5+eG9tm1hb2+PK1eu8IWFhfTVq1fR+SH38prWkSbZGIuPj+esra15QzdhHRwcEBAQIEpOTv4YwMemWFtzIJfLX5BIJEsZhhnGMAxlY2OjdnJyEo8aNQqWlpZPfs6rqkg2iT6O8w3A8zzCw8OVHMf9LJPJTP8DIiBgAILYFhBoxbAs+0NGRsZOnuf1rpnTarXgeR5mZmbgOA5btmxR0zT962efffajiZfbIsjl8p4URY1sLldob29v+vLly80xlUALoFarUVpaigsXLnDnz5+n27Rpw0ulUt7Ly4v39fV95jZYUlNJWWN6ejpV9zmzYAGJNBmD+Hjg118bPHzhwgUcPHgQDMPU1m8TvvwS+Phjo4ttnudx9epVeHh4IC4ujtPpdLT27l2yzqameD8JC4vHptI/lpQU4PPPG20a1RicnJz47OxsyqO+9ks8T9J+V68m7ccSEgCpFLSzM/qtX0/zPI+XYmPZbdu3M2+88UbD7fdiYkiZgb5oNChJTIRoyBC8PGHCA4dCQ0OpsLAw7N+/n+/cufMDvzB79erFHDlyxOibpBUVFTh16hQ9a9asRl0/cOBASXJy8iK5XP6TTCa7bcy1GcKXX345gabp9osXL9a7ufwXX3zxilgs/s3c3NxhwIAB0u7du1M1/in6l76dPw+MHUs2+JpQBpacnIxbt27d0Wq1z2RKvsDTjSC2BQRaN+EURalSUlKkNWZMKCsrg4uLCxwdHetO4nke169fh0KhwMGDB7VarVb8z3/+E/v37+cLCgrA8/ySFrwHk0JR1BCe50XR0dH8+PHjTV476+LiAp1OZ+ppBFqA69evIzw8HAqFAgBoLy8vzJkzx6Q1wy1NbU/q0NDQext6CQnAxInEGbgpJCcDixc/1n07NjaWd3V1pSZNmvRAWzHUtIoyNkqlEjt37gRAatRfmzkT7gDQHBtoO3cSYfnCC4Zdd/Qo8MYbwNWrpo28P4RCoeBFItG9z1SdDrh2DXByIlHIVauAAQMAb29iTHZfzTVFUejfvz9TXl7Obt26lXrnnXfoR2qai4rIGHoaXHKnT6N6/HjkLFpEvfyvfz1y3MfHBzNnzkRYWBh17tw5vHDf8+zn54d9+/YxeXl5cHd3N/CZaJiqqiqIRCJs376dd3Jy4nv16kX36NED+n5m2Nvbo2fPnqLLly9/BeANoy3MAORyuTWAcJZlAeCJYlsul9tLJJLfzM3NX5kwYYJFx44dDTbQA0DKIuztgZUrmyS0lUolDh06VK3RaGYI6eMCrRHm888/b+k1CAgINMDgwYP5qKiof5aVlVlwHIfw8PCKa9euJSQkJDgnJCToqqqqaIZh6MTERP7IkSP5WVlZeVqtdp5IJGofGxvrUVlZGcVx3PSadOtnkpCQkLioqKiEoqKiSW5ubmI7O7vG/eLXE3Nzc8TExMDHxwd1fYEFnnqKi4uxdu1a0DSNDh06cCUlJdSECRNga2vb0kszKcePH+cUCgU1ePDgewaDUilQXU1aSzUFe3tifnW/iH6I69ev48aNG1RAQAAe8Kf49ltg61ZgtHGrQ8zMzKBWq7lbt25RM2bMoNpHRACzZgEffWTUeeqlZ0+gb1+9xSUAICOD1HlPnmwcJ3M9yczMxKVLl6gRQ4fCYu9eIrDfe4/UX3/0EWnPNHQoSYv390dDtfXt27eno6KiKHt7e7Rr1+7Bg6++ShzVx49/8oJyc/H3iRO4JpVi0tdf1/vZS1EUjh07xhUVFVFdu3ZF27Zt647RNI3i4mI2IyOD6tatm9F+QVhbW2PAgAHw8fGhtFotzp49i+joaNja2lLOetahu7u7M+fOnfOLiIgoGDRo0EVjrU1fYmJiPvb29g6uqqriIiMji0JCQs43dK5cLn9BLBZHBwYG9poxY4bU2dm5cb9vWZb0h/f0bHIrvAMHDqiKioo2ffbZZ/9r0kACAiZCiGwLCLRyKIr6sri4ePjJkye7aLXauYsXLz4ll8vFVVVVA+Li4gadO3fuPa1W6wBg2OLFi68CgFwuPwgAS5YsaVVtvEyFTCY7/MUXX0zZsmXLbrFYzHz88ceMqaKRFEXBwcGB37ZtG/Xhhx+aZA6B5uHSpUtgWRZVVVWIjo6Gs7MzN3nyZNrJyenZDWU/hJOTE52fn4/169dj2bJl5IuzgwNx5ua4xrViAoDKShLFTUt77GmDBg2iMjMzUVZWhgfSlTt1alK0qyEUCgXi4+NpAMjOzkb7uXOJ6GsOfv8daN9e/xT90lLSCmnLFuCll0y6NKDOMI7LzMykfS9fxhw7O96Roih8/jng4wOsW3fPpV7P3t48z4Nl2frTyL///rEbMXVERoKfPh3XXn+df/nzzx/bL7usrIwCSLTzYXr37s1s2bKF5zhO78izPlAUhXbt2qFdu3bU0KFDkZSUhP379yMzM5MfN24c9aS5zM3N8eqrr5pv2rRpzRdffLGS53kXmUxWZbQFPgGxWDw6KChIOnLkSPz1118/LF++fKRGo1ksk8lSas+Ry+WUSCR6z8zM7JsxY8aYBwQENG1SjYa8p195pUnDpKenIy0tTaHVah9NdRAQaCVQeptfCAgItErkcrkZAIlMJqts6bW0NP/5z3+WcBz3ZZ1oMBF3797F77//juHDhyM4ONhk8wiYBoVCgR07dnC5ubm0ra0tS9M0Bg0axHTv3r2ll9bsnDhxAjExMRgxYgTphVyLmxtw9izQ2JTb3Fzgl1+e2Kt7xYoVrJ+fHz1y5MgHRYlOB9y92zRDsXrQ6XQ4fvw4f/78eWrS4cN8l86dKaxfb9Q5GuTf/yY16AsXPvnc0lJArSap1k0VNk8gPj4eN2/eRHFyMjd62za68N//Rqe8PLSprARWrGj0uDzP48cff+TVajXmzJlDPeDWvXw5YGcHvPPOI9cVFhbi/PnzKCkpQZ+SEriMGQNFcjI2XLwIX19fdtCgQYyrq2u9n/GRkZHs+fPnmaqqKrRp04a1s7PDnDlzGJqmwfM8VqxYwQ8ZMoTq1atXo+9LHwoKCrBjxw5erVbzs2bNol1cXOqOcRwHhUKB/Px8FBQU8Ddv3lTk5OSIaJo+ptFoonmeXymTyZrty/ny5cvvzJs3z6W2/V5cXJwuPj5eC+AGy7IRWq02XyKRTLewsGg/e/ZsCzs7u6ZN+MMPpFY/PLxJwxQVFWHt2rXVGo1mqEwmi2vaogQETIcQ2RYQeMqRyWQaAJqWXkdrgKbpDp6enjqKokz62Vb7xen+NEWBp4Oqqir8+uuvsLGxwccffwypVPrMmZ7pS1RUFGJqnK179uz5oHI5eNDgdkwPsHs38NlnDR7et28fn56ezgNgBg4c+GikMTGRpCqXlzd+DfUgEokwcuRIqkOHDjh7+zZ8xo5Fs3nKv/++/v3LR44E+vQhGxYm4OrVqzgaHs5VqNX06L//xpDKSr4kLIx2r6qC1/jxJG28iZSWlqKiooIKCQlBXl7eg62xiouB+wRoLSdPnkRcXBxcXFy4rhUVaPfll/SfN2+i3NYWFhYWbEZGBpORkYGRI0ciKCjokesHDx7M9O7dGytWrEDbtm2ZjIwM/Oc//0FwcDCGDx+OoKAgxMbGsr169TLpz72zszPeffdd6sCBA1i7di2mTJmCnJwcbVpaWnVZWZmUoiitWCy+rNVqL+h0ulgAZ2QyWRNNEhqHTqezra2nNzMzQ0hIiGjgwIGi69evd757925npVLJubm50X5+fsbJCJBIgLlzmzSEWq3G5s2blSzLfiAIbYHWjiC2BQQEnhl0Oh13+7bpDV05jgNFUXAywhdSgeYlNzcXFEVx8+bNe6aNz/TBx8cHp0+fBsuyKCgoeDCNe/16Usvcr5/hA6enkzZaixbVe5jjOFy6dIkKCgqihg4dWn8LtZ49SWTdRHTasQPRYjGV26kTOppsloeQy0mk/nFeOTxP6rQ3bDDMpVtf8vOB/HxcDg9nF/70E1O+bRukgwfDysWFcu7aFejd22hT2dnZYfjw4fzly5f50tJSWqvVon///qSl20cfAfVsVsbExGDKq6/Cf/duGnPnAq+9hvccHVFZWYn8/HxGpVJhz549UKlUDc5rbW2NZcuWQafT4dSpU4iPj8e5c+cwaNAg9OrVi4qOjmaKi4vrzAFNAc/zOHDgQHVycjLP87zF1q1btWZmZhs1Gs0fANJbU19tjuPE4odc8mmaRseOHdGxY0fAWL3JCwqAUaNIW0F9ygcagOd57Nq1q7q6unrHZ599tsYoaxMQMCGC2BYQEHgmkMvlvgDemjhxosnn4nkeEokEFy9exKBBg0w+n4DxkEgkUCqVdGFhIVzqiaw9T7i5uWHu3LlYs2bNow77eXnAnTuNG9jdnbSqEtX/FWPfvn0wNzdHaGgoRA2cA5EICAsjETAT9Nrmjh+Hubc36m1rZSomTnyym/jSpcD+/cQd3VilMJWVxPV70SLw06cjo6gI1159lSmLi4OTCVPUKYpCcHAwFRwcTCUnJ+PQoUNccHAwTb/xBuDn90hLOKVSCZqm4VZZee+1r+m6YW1tXWeK1q1bN73mFovFGDFiBIYOHYr//e9//A8//EBJJBKO53k6NjYWY8aMMer9siyLoqIicByHK1euaFNTU7N1Ol1fAMrmTAs3BLlcLgJA0zSNW7du4cqVK7hx4wZbWVlJMQyD+fPnP+oi31hyc4kTfxOENgBERkZqc3Jy0jUajZH6EwoImBZBbAsICDwr+ANAenq6TqfTibp27WqyiRiGwdixYxEeHo4+ffrAohl73wo0nvLyciQkJLCWlpaUjY3N8x3WBrBhwwYuNzeX9vLy4ry8vB58PrZtIwZphlJZCXToQNpUAbhx4wb+/PNP2Nvbc/3796d79OiBK1euYMaMGQ0L7VqOHCEmSsYW29nZyF6/Hrf37OFEIlHzvQ90OtLuqCHS00mq+aJFxhHay5cDDAOMHg1u/35s1unY2yNGMGqNBlOnToWTv3/T59CTrl27IioqitqxYwc3LSyMhvTRVsxSkQiTtm9Hda9esE5Obrw530OIRCIsXLiQysnJgVqtpsPCwh51Rm8kOp0OFy9e5E+fPq2sqqqSikSiUpqmVRRFXdNoNFOb0+iskbAikYj/5ptvAIByc3Nju3fvznh6emLXrl18bGwshg8f3vRZ3nmHmKH99luThklNTUVcXFylVqsdWVNCJyDQ6hHEtoCAwLPCIQDjU1JS5iYmJo65cOECS9N0tVgslowdO1Zsbm5u1Mn8/f3h7u7ObdmyhZo3b57J+3sLNAzHcbh58yauXbvGFxcXs66urtSgQYPqajIrKiqwefNmFBYWAgDz9ttvQ1rPl/3nDalUSgOov5f4228TN3BDa4aVSuCTT+oikrXjlpSU0EeOHIFCoeABUPb6RLcSEgybWx9KSoAuXeBx9SpsbGzw7bff8n369OFDQ0NNL7pr6+BDQh49du4cMGYMiWg31guCZckmx8yZwIEDRNg7OCDf3h7H3n0XeXl5TP/gYL6kpATt2rVr1s8siqIwffp0KmPUKIrNygKzZMkja8+Oj4dYowHfqZPRhPb9MAyD69evcxRF0e3bt2/yeBqNBmvXrlVWVlaeU6vVnwA4t3jxYrbJAzcjMpmM//rrrxVTpkyx7tChAyiKqvvcdHV15fLy8mgATXuvqNWkP7ufX5OGycrKwt69exVarTZUJpM1Mu1GQKD5EdzIBQQEnjm+/vrr33ie99fpdIcBfDt+/HiYwmm6qKgI69atQ9euXY2ekigAqFQqcBwHiUQChiHfAVmWRU5ODvLy8viUlBS+qKiI5jgOUqmUc3JyoqRSKZWXl8f/61//oliWxeXLl/H3338DAHr37o0ePXoYLar1NMNxHM6ePYtjx45h2rRp8Hv4i3BUFIlsDxli2MCLFwMffYQymkZYWBhbVlbG2NraQqPR8Gq1GiqVivLy8sJrr7325I4BCxaQNfzPyO1zy8oAW1scPHhQd+HCBZGDgwO7aNEi0xvl3b1L0uMfrhW+eZNsTty4ARiakXP9OmknNmgQGeP334Ht28lmiVSKiIgIREdHw9HRkevVqxcXHBzcYkEWjuNwbuJEPq9NG2DcOGrMmDFQKpW4EB2NzosWIfrFF0FPnIgpU6YYfe6zZ89yJ0+epJ2dnblhw4YZRWwfOnRIfeXKlaMajWZ8a00T14fvvvvu4qRJk3rW1GfXUVZWhp9++gn29vastbU1Y29vj8DAQHh7e+s/+PHjwNGjpM1bE7h58ya2bNlSpdVqR8hkspgmDSYg0MwIkW0BAYFnjsWLFy+o/fcXX3yxODIy0rp79+5GD5U4Ojpi6NChOH78uCC2jYRWq8WePXu4srIyFBQU0BRFgWVZuLi4cDRN84WFhYxYLOZsbGzg7+9P9+zZE+bm5jAzM6MBItC//fZbasWKFbylpSXu3LlDDRw4EC81Q5/ipwWVSoWoqCjEx8fDx8eHc3BwePRnw82NGHUZAJedDXb9emzy9OTvFBdT9vb2jE6nw+jRo+Ho6EhlZGRg//79GDJkiH6t+SZMaFwqe0McPkyMuVJI++D8/Hza0tISs2fPbh5H+h9+IPWqn3xy77HqamDAANJiS99+33FxxNH57l0Sxb5yhdRkd+xIshHef7/u1KtXr3IODg70woULaRjL6KqR0CkpCPrmG8qeYRATE8MtX76cllRXw8raGo69eyPT1xd2BQU8mhpJfQilUokTJ07Qs2fPhqenp1Geg6qqKiQmJvIsy77+NAttANBqtSezsrICOnbs+IBLmq2tLebNm4eCggKmpKQEp0+fRmJiItzd3Xlzc3PKzs4OAwcOxGNruo8eBZpY833r1i2EhYUpdTrdOEFoCzyNCGJbQEDgmUYkEkWVlZWNDQ8P140ZM0b0sOtqU2EYBmZmZhxa+Ivss0JOTg6uXr1Kh4SEYMaMGbCysoJGo0FUVBQtkUjwyiuvoF27dg0+11KpFO+99x7y8/Op69evY+zYsUIk+yFWr17NKxQKSiwWY+bMmfU/l9HRwLp1xD34CdQ6Q8fExyPu7bfh7+jIj500iXrYrb9nz57o2bOn/gt98UUgO1v/859Et24PCFEfHx86MzOTt7GxaZ6Uant7IoZrUSpJWvvBg8CTMm9yc0nP8pUrSU33yJHAsmXExM7MrN5+6Ldv30ZRURE9So/XsFlYuBBUUBB8v/8evr6+dHJ8PN9h6lTKYtkyXJHLwe3ZgzFjxhj9tVCr1QCAsLAwXqvVUt7e3uysWbOatMFy+fJlXiQSHfjss89KjbLIFkSn022+cuXKgtDQUPHDm2Curq51Ldu6d++OnJwcKBQKSqFQcHfu3OFXrVrF9OzZEyNGjHiwLZhOB3zwAXHeb4Lre2FhIf76669qrVY7ddmyZScbPZCAQAsiiG0BAYFnmsWLF4+Ty+UfJSUl/bdbt27w8fEx6vhJSUlsx44dn9tezcbmwoULnKenJwYPHlz3zc3MzAyhoaF6j2Fvbw97e3uY0iTvaaX2yzIAODo6NrxJNHUqEXRPoKKiAitXroRYrcY/fvoJRV9/zU+ePNk4G0+nTwOzZwNFRU0fa98+QKUC5t8zMNZqtZxSqWy+2uWpU4lhWS0TJwK2tsSMriFefx3o2xcIDCRp5lVVwIULT5wqJycHf/zxB1xcXPjevXu3vKcEzxPDu1oxl5WFADc3CmvXAsOGwa2UaNaSkhJ4GdkQz87ODoMGDWKVSiX69evH/PTTT0xSUhICAwMbNR7P80hISKhSq9U/G3WhLccVnU5Xdvv2bUs3N7cGT3JwcLi/XRoNkPfZxo0bcfnyZX7BggWUTa3b/rlzQHw80KYNcnJyUF1djXbt2qHN/ZtNT6CqqgqbNm1SarXahcuWLTvY2JsTEGhpBLEtICDwTCOXywMB/Hf8+PHo0KGDUcfmeR537txhXnjhBaOO+7xy9+5dZGZm0jNmzGjppTyzuLu7o2vXrkhJScELL7zQsAgrLiZCNyqqwVP27t3LXb58mXZxceHbSaVU7Pjx/KApU4wn7EJDSU2yMYiPBxQKInhrYFmWLi8vR3l5OWye1JLLGKxcCVhaEpfwa9fI/++vf+V5siEQFQXMmwekppJ6bD8/kmp+UH+9cebMGQDAtGnTKL1S9k3N7NnkXr78EtBoiMv8J5+QunyQDbKRI0ciwEStyAYOHMgAQEFBAXieb9LrXVpaCqVSqQVwxljra0lqTNL2Z2dnv+Pm5mbQm8XT0xPz589HXFwc/+uvv1JBQUEYevcu6Uhw9iwuXrqEQ4cOwcLCglcqlRRFUTAzM+PFYjEnkUhgZWXF2NnZwdHRES4uLnB1dYVUKoVCocCmTZuUarX616VLl2400a0LCDQLgtgWEBB41kkDgL179+Lo0aOq3r1700OHDjUzxsAFBQXQaDRGF/HPAzzP4+LFiygrK0NxcTF769YtuqqqigoICOC9vb1bgTp4NqFpGkqlEgEBAXyPHj0afp4tLIjwewxFNRHnF198keq2ahWwYgUFY/YuF4mAt94CfvwRaEopQG4u8NVXjzhcd+nSBQkJCdizZw9ef/31pq1VHyZPJinfq1YBP/1EauJ5nmwE9O0LeHgA06cD770HrF5Nal0//9zgaW7duoXr16/Dy8vLoEiiSRkyBPD3J4ZZYjEQG0t8AWqgKApBQUEmX4aTkxP8/f3506dPUzNnzmzUGJWVlRCJRLcWL178VNdq349Wqz2RlZU1c+DAgQa/YVxcXDB+/Hi6e/fu2Ld7N99n+XJK9eOPyOZ5REREYNq0afD19aV4nkd1dTUqKiqo8vJypqKiAmVlZXxJSQl35coVqqKigqqurqZ4nodYLOYA/KDVamUmuF0BgWZFENsCAgLPNDKZTCuXy0UAvKqrq91jYmKOWVlZ6fr27dvkz78bN26gTZs2rFQqFdLIDSQ1NRXHjh3j3dzcKCsrK2b48OHw8vKClZWVILRNyN69e7m8vDx63Lhxj494OjoCW7eSdlJM/W/vl19+mV6/fj0S9u5Ft5MniRO2sSkqIu7hTRHbwcHAv/4F/OMfDzzs5eWFwYMHIyEhoXk8F0pLyf3MmEFqWlNSSBT7m29IpDsqikS6aRrw9GzUFEePHsXZs2cRHBzMhoaGto7PpYgIUpPeqxfQpQt5LQYPbpGlUBSFLl26UIcPH270a15cXAye51ONvLSW5sytW7ekHMfhkTaAeuItkeA9BwfqzLZt3OmzZ2nu+nXMmTMHtc7vFEXBwsICFhYWaHuvvR0FoO59WlZWhl9++YVjWfbnpUuXLmvaLQkItA4EsS0gIPDMI5PJWADZALK//PLLcydPnhzQt2/fJo9rbm4OtVpNNeULyvNIYWEhDh48iKFDh1LNEc1qKTQaDczMjJJEYTSuXbsGnU6nXz17SAiJRPr713vY3d0dNE1DolIRsdiAKG8SJ0+S6G9TSEoCGkgbDgoKwunTp5vnh/eHH0gdert2pH+5SkXSqffvB8rLifN6Tg7Z6NDpAHNzEgnXIw08OjoaERERAIAxY8bwvXr1ah1CGwC++IK4p48YQV4LI5tUGkppaSlfXV1NX79+3bA2VjWoVCqwLGsEI4HWg0wmK1i+fHl5aWmpk0NjDc3+8x8wRUUI2bmT7hEUhKqqqjpzNX2oqKjAhg0blBRFLfvss89+aNwiBARaH4LYFhAQeK5gWfYzlmUjjTFWQEAAoqKiqCNHjqDVOP62YjQaDc6dO8dFRUXR/v7+XFBQ0DOzQ5Gbm4ucnBxYWFiguLgYycnJbHl5OSORSPiuXbtSI0aMaDHhzXEcdDodzMzMIJVKKWtra/3aKy1fjielhYuUSkz49Vdw8+eDbmQ09rGMGkXSjdeuNfza6mqyUXDmDGBnV+8pJSUlYFm2iYt8AioVUFFBhDZABPWMGURI/+9/REyHhgKbNwO3bpEWYFeuEFG+dy/g6gq88QYxUlMogFdeAfLygIAA4OhR3OF55LVpg/ElJfD184PFlSsUIiOJqVpMDBHv/fqRtHVLS+KKrlKRGurcXJKu7ulJ1mhpCUilZE2WliSVvymbKBoNaf80bRrg5dXiQhsA2rVrRwHEgKsxSKVSMAzjaNRFtQIYhskpKytrnNjevZtkaFhYAABsbGwMqouvrKzE+vXrldXV1V8uWbJEENoCzxSC2BYQEHjeyACIAGlqNJqmaYwfP57666+/MGDAgNZTH9kKycjIwI4dO2Bubs7PmDED7du3fyaEtkKhwK5du7jbt2/TDg4OnEajgaWlJd+/f3+me/fuyM3NpSIiIrhVq1bh/fffp2sFt0qlQmJiIi5fvswpFAoAgJmZGWdlZSXy8vLC0KFDjbI+juPw1VdfQSQS8Z9++iml0Wj4fv366ffcUxRQUNCgUAUAnqZxYNQojHVwgKVRVvwQn3/+YLssQ6BpUvPt4dHgKfHx8Zy5uTkFI/d2ruPf/yaR67Q0UnseHchH5FoAACAASURBVE0cxlUq4kR+P9OnP3r9ypVATesqjB9PxCvDkJR0a2ugVy/E7NjBOfn7U929vCiwLBE8ZmbkeaNpoLKSiPSbN8k4YjFpOda7N7BhAykVmDkTOHWKHK+sJJH14cNJrXtJCWk7VrtpUVRE5hg9moisqipgzhwgOZmI9txccrx/f1Kn7uhIzN5aCbUpzI3dZLG1tQVFUfWnezzF8DyfXVFR0dvgCy9cAD78kDiQN8J4TqFQYMOGDcrq6ur/LlmyZLnBAwgItHIEsS0gIPC8IRaJRBqKoowSZvTw8IC/vz+7bds2vP32260ndbOVkZKSwvn4+NDTpk17Jp4jjuOQnp6OPXv2wN3dnX/vvfdgbW39iIjt2LEjvL296b/++ov7+eefOSsrK1RUVEClUtF2dnZcYGAg5eXlRVEUhbKyMvrWrVv8mTNnKF9fX3gaIVL8008/cRzH0RqNhpLL5QBAd+7cWb+L168nYtvPr97DOTk5mLhrFzwPHICFpUmkNhFvly83mMreIEVFxIiM3HO9VFVVISUlhTaJOVqvXqRG/JNPiOBOTiaC9e+/gT/+IMI7JYVEjh8HRZFIM3DvbwCorXl1d8e1M2fojk5OfL090e8vl6mvTnrSpHv/nj370ePvvgtotUR8z5xJ1lNZSTYLbGxIjXlVFYnC29mRx2xs7m0KFBWRqHYrIjMzExRFwb2e3uT64OrqCrVa7S+Xy81kMpnGyMtrMTiOK6ntSa43aWkk++X8ecDJyeA5y8vLa4X2D4sXL/7c4AEEBJ4CBLEtICDwvMHrdDqzvLw8eDwm4mUII0aMYFatWoXU1FR06dLFKGM+a2RmZtL9+vVr6WU0Go7jkJSUhNjYWFalUkGn01FKpZIePXo036dPn8duINA0jZkzZ9KJiYnQaDRwc3ODq6srzMzMHhDnXl5eKC0t5a2srDhPT0+jbEoolUq6V69eXOfOnektW7YAACz1Fcb79pG64Qa4fPw4Xigvh8QU6eO1HD8OyGRAdrZh150/T6794osGT7l69SpEIpFBdaWP5fp1Ik7//hv44AOSGm5vT47dvg0MHAh89BFw7Bjg40PStq2tm5xabWFhwWZnZzNqtRoSicQIN/IQYjH5U/teqL0n4J7oB4DaTZx+/Uj9+dmzJCpvilr+RlJYWIgDBw4AABpbmyyVSuHs7Ky6c+fOcADPTP9nrVZbbJDY5jhgzBjinv/++wbPV1hYiI0bNyo1Gs3SJUuWrDB4AAGBpwRBbAsICDxXyGSyXLlc/tOGDRv+0aFDh0pPT09rS0tL6HQ6uLm5wcXFxeDaWktLSwwbNow/dOgQ7+/vTwtmaY9CURTv6ur6VDqNR0dHIzY2lheJRPDz80P79u0ZjuMQEBAAhmH0uieRSIQn9WOvrKxETEyM0SKt8fHxYBgGw4cPpyUSCWbNmmVYf+GVK0kU87//rffwCw4OWPfWW1hYXQ27+6OuxmTWrPojro+jtBQYNAiIi3vsae3bt4dWq0VWVhb8Goje60VMDJCfTwzAJBIS1X14zbm5xIU7KYmkdoeGkqiyWm1Q/+z6WLhwIfPDDz/w27Zt41577bXWoWzXrAG++45ExXNzW3o1dWzcuBEAEBIS8tjzdDodaJpusNSoT58+bY4fP/5vuVx+SCaTPRMtwHier1Sr1Troow04jryXjx17sFe8nty+fRubNm2q1mq17y5duvTPRixXQOCpQRDbAgICzyOLAZRlZ2dfu3nzZg+xWOzFcZybRqMJBgArKyvd8OHD6cDAQL1Vc+/evamEhAS+Jmqiys3N5YqLiy0cHR1Vb775ptT8MRHC54E2bdrw2dnZlI+PT0svxSBqhDYmTZpE+fj4gKIok4mZgoICSKVS1s3NrUlzKJVKXLp0CcePH4e7uzsvkUgogKS0G0T79qRetz7Ky2H9xhvo+c03nJ2dnWl3l3r1AiIj9a/dnj+fpL9HRj72NPuaCK1TI9JfAZD09q5dgT17SLr05MnE0Kw+/v1v0lv78uV7j/3xB4mG5+UBjUxpBkjmxIsvvkjFxcUxKSkp6NKlCx7b1s3UVFUBr71GasJrxG1rQKfTAQBCQ0PRvXt38Dz/yPNUUlKCgwcPVt24cUNK0zRnb2+vdHd3l9ja2kpFNSn/HMdBo9FArVYPBMDJ5fJpMplse3PfjwkwE4meVNdQw6efkpZuZ88aPElqair27t2r1Ol005ctW7bf4AEEBJ4yBLEtICDw3CGTyZQAPq/57+b7j8nl8sEKhWJ0eHj4R87OznB5ghtzLTVmafTGjRuh0+mkAF4HYFFcXPz9tWvXEBgYaMQ7eLqoqKhAQUEBPXPmzJZeisGcOXMG06ZNQ4cOHUw+V3l5OUQiUaOjZBzH4dSpUzh37hw0Gg1omkZwcHDjVde4cST9uR72HTvGV8+ciRFTpphWaFMU0LEjqRHWV2xv2UIi8k+ApmmYmZkhNTUVAwYM0H9NWi2ptR4yBPjzT+D77x9/Ps8TN/Vu3YgL+cqV5L7atCGP+foSI7dPPtF/DQ/RuXNnXLhwgd29ezeTlpbGTZo0qeXSa8aMIeZob79N0ulbCX///Ten1WrpyMjI0lOnTkkkEgkGDBggbdOmDb1r1y6EhITw586dU6lUqu95nv+GZVlJYWFht8LCwp40TbdjGMYaAMdxnJbjuGoAxSDGekda9s6Mg0gksterDCE7G/jnP4kpmgGbOjWfT9qEhIRyrVY7QiaTXWzCcgUEnhoEsS0gICBwHzKZLFIul0cB+Oj333/HggUL4OzsrNe1bm5u8Pb25q9fv35zyZIlfwLAt99+6xceHv4PLy+v59KtPCMjA9u2bYODgwNrZWXVOlJcDUCn08HKysrk83Ach9jYWL5r166N/r0cFhaGrKwsAEBgYCA/YcIEqkkRzsOHiTB8OHrF8+j9f/9H6f74A3aPcSo3Gn/9pX+v7SFDSJusOXP0Ot3GxoY/e/YsP2DAAP3E6bFjJIJdVkai5/oEAtesIW23XnyR1JLz/D2RQlGkl7ilJZCVRTYWGoG9vT3ef/99Ji8vD+vXr6dHjhwJi5o2TM3OvHnEyfyzz0j/8LCwllnHfeTm5iIpKYnmOG4Fx3H/BsAplcoRx44dO1x7Tmxs7DmtVvsfmUxWm9evAnC65s8zj1gsDnhimUlkJMlaOHGCbBLpSXV1NXbs2KHMz89P0Wq1o2UyWWHTVisg8PQgiG0BAQGBh5DJZLxcLncE8OHvv//+6dChQ9G3b19Knwy7kpISLYBbtf9XqVQfMAwTvHLlyqDp06ejU6dOJlx560ChUEClUsHW1hb5+fl827Zt+afRqT0nJwdA442UDOHKlSuorq7mX3rppUar46qqKgQGBnITJkygm6ayaxg2DKjn3uOPHoWLmRlcnlCDbjQGDiRO2g3Ujj/AuHGAAVHqF154gTp27NiTn6u5c0k7rdWrSS04TZM/+lBZec+pedAgUqMdEHDvuJcXSUPv148cu99B3EDc3d0hlUr5o0ePYsKECc2bS15eTl6nkyeJidqnn5La3maiuroa3333Hfr3768bNmxY3Yd1dnY2tm3bptTpdPNkMtn9yv+IXC6nAXSQyWRZzbbQVohcLqdEIlHQY01Dt28nYnv9eoOEdkFBATZv3qxUq9WbNBrN+zKZTNv0FQsIPD0IYltAQECgHmQyWbFcLl/G83zi6dOnPz1x4kSvnj17Kvv06WNhbW0Na2vrR66Ji4tDcXGxGYDJ943Dy+XyYAAfJycnL+3UqdMzU7ytUCiQnZ2NO3fuoKysjJVIJFRubi7Ky8tpmqZ5lmUplmUpb2/v5vvGbSROnTqF06dPo3PnzjqGYUz6u1KhUODQoUMYMWJEk8z1eJ7nsrKyaKPV60qlwNGjxMyrhqSkJNzYtg3OO3fCorkyNbZu1S+F/PPPgf/7P+LwrSfm5uYwMzPjOI579LnXaIAJE0hkfcIEsvFA06RO2xCCgkhaNUDEdn0GjI6OwOnTpE4+M9MgMfMw/fv3p06ePAk/P7/m7Y5QUAD06HHPrXzFCuLObiJqSyVqN0EzMjIAAGVlZXU/r2lpafyuXbt0LMtOkMlkxx4eo8bc7LkW2jX4iMViut7ItkpFXP3d3YmbvgHZF7X12SzLLli6dOkmI65XQOCpQRDbAgICAg0gk8lYALsA7JLL5Z0SExPTExMTQVEUHxoaSvXt2xc0TUOlUmHNmjVsaWkpI5FI/u+TTz6589A43JdffmmXl5dnVlFR8dSnk/M8j9jYWD4iIoKytLRkLSwsaHt7e6aqqgovvPACunfvDqlUSpWXl4PnebRp0+api2rHxsbC3d0dEydONOnvyerqahw5coQXiURURUUFOI5r0AG5IdLT07F7925eq9XSffv2ZQEY7/letYpElCkKxcXFOBgWhv87dAhm//mP0aZ4Ikolcfx+7bWGz6msBDZtAhYtMkhsd+rUCbt376ZLS0vvZTDcvk3ad9VGs0tKgFdeadzab94EXn+dCGiAiM+G0rv9/UlUePp04No1/WvUH+LFF1/EyZMnsXv37uYT25GRxOztjz/uPXbiBPDmm0afiuM4REdHs6dPn+bMzMx0Hh4euvbt21vFx8ezDMOkZ2RkOMTExDj26NFDtGfPHhXLsqNkMlmk0RfybPGil5fXo7Ua+fnAb78Rl/05cwADSmoSEhK4EydOlGq12uFCfbbA84wgtgUEBAT0QCaTZcjlcn8AN3ie/9fx48c/PXbsmMX8+fNBURRKS0sZAL6ffPLJtfquZ1n2F6VS2eunn34a6Ovrq5s4caKFoS3GWgOZmZnYv38/r9PpMHnyZPj7+zco7AxqM9XKCA0NRXR0NPf999/TQUFBXP/+/WlT9DC+fPkyMjMz0a9fP1y8eBFJSUn8nDlzqLy8PNA0DVtbW7i4uOBxJQwnT57ktFot/eGHH8KodfFWViSqVRMpNzc3h8bMDKeXLuWGeng0nwHX2bMkuvw4sa1UGt6LG6SWVywWk97jBQWknjouDvjlF2JatmdPExYOIvxXrLjXa/rHH4GQEGDBgvrPHzoUiI0ljt4KBdBAD3ClUonk5GScP3+eKy0tpX18fPjBgwdTTk5OoGka7u7uyM/Pb9raDWHjRhKdr4XjiPO6CXpsnz9/HjExMTc4jntFpVJJMjMzu964ceMdrVY7EMAklmUHxsfH/5Kdna3jeX6tILSfjEQiGda+ffsHlXRMDNlsmzMHGDVKbzM0rVaLw4cPq1NSUgq1Wm2ITCYz/AdTQOAZguL1NR0REBAQEKhDLpfTFEX9yfP8rPseFstkMt0TrmtjZma2Lzg4uP/gwYPFJl6mUblx4wbCwsIQEhKC4OBggyOwTyOZmZk4cuQIq1QqmUmTJsHYrcsOHjzIKRQKetq0aVAoFNiyZQt39+5d2srKitfpdFRtqmzXrl35srIy/u7du7C1teU7d+7MaLVaxMbGgmVZAMBHH31ERKMx8fEBtm0D+vQBeB6l7u44s2gRO+bTT1tPtsLu3UQYl5QY5I7Msix++eUX3tvDgxo7cSLQvTsxWPvxR+Ot7euvSQ35oEHk/5GRQNu2JIr9OD79FDhwgPQyfuieFAoFVq1aBXNzc97e3h5isRg0TXMZGRmMSCSCra0tx/M8XVRUBJlMZrx7aYiYGJI+bm5+r449IoL0Gs/LM+pUKpUKhw8fxpUrV0DT9LqlS5fOAwC5XC4C8DWAHwGsBjBeIpHsV6vVM2UymcKoi3gG+eabb3Jee+01j3bt2pEHNm4km099+gAvvaT3OHfv3sX27duVSqXyhFqtniOTycpNs2IBgacHIbItICAg0AhkMhkHYLZcLl8FwA6AGACrx6UqrVbbOzc3V1dzTauHZVmEh4ezGRkZTN++fdG/tv70OcDX1xe+vr5MXFwcduzYAT8/P3bkyJFMU52eOY7D+fPnkZycTIfW1ERbWVnh7bffpgGAoqi6zfD8/HwcOHCAt7Cw4KdMmcJkZWXx8fHxvFKppPr164c2bdrAw8PD+EIbILXKNTW4SXFx4O3t0Wns2OYV2ioVqRPNza3flGziRCA42CChDZCWdMo7d6gxn34KpKcDCQkkXdaY7NhB+k3XUlIC5OQ8WWx//TVJOU9MBPz8iFt5DVu3bmV9fHwwZcqU+18Hhud55Ofn4+bNm/TVq1dZAMy6dev4KVOmUCYrXSkvB8aPJynj3bvfe7xjR1Lna0RiY2N1ERERrEgkuiQSiSJ0Ol3drkjNJue/AUAuly+jKMpTrVaPr6nJFngMcrncjmEYFxcXF5LZsWQJ+ZlbtAjQs+Uhz/NISEjgTp48qWJZdiHHcX8Kz72AAEEQ2wICAgJNQCaTnTPwkk48z1vb29sjLy8P7dq1A2OCVEtjUlpaitTUVOadd97Ru+/4s0bfvn2h0WgQGRnJMAzDjR8/vklh/ZSUFBw+fBhdunThe/fuXacS7zc3q/23q6sr5s+fXzdf+/btqZCQEKxbtw4lJSXsiBEjTPcGmjGjToA6JiQgfMIEvNucplsAMWqbPJkYlkmlDx5buhS4dQvYsMGwMdesgeTPPyEaP56jIiNpPM6FubFUV99z5q7l6lUgNfXJrckoCvDwIOe1b19XC52UlISioiJmxowZ9VxCwdXVFa6urggODmYKCgrw22+/UUeOHMHEiRORlJQEZ2dnMAwDGxsbmJsbwauR44CLF/HI81cbFTUS2dnZiIyMrNTpdC8uWbIk7XHnymSyJAC9H3eOwAP0b9u2rYouKzPDm2+SjIThw/X2PtBoNNi5c6cyJyfnhlarHSeTyeotpRIQeF4RxLaAgIBA83KVpunE8+fP9zx//jy6deummTBhQosVb3Mch23btrEqlQodOnRgOnToAHt7e0il0ro64cTERK5NmzaUk5NT87YSakWsXr2aLykpoTw8PLjg4OAm589nZ2dz1tbW1Kuvvtqo51QkEmHcuHH4448/mP3797NjxoxhjOZCfj/LlpH+0O+/D5evvoJ69mxcvXq1eV2uAeIyXp/YDgkBCg1o2fv++8CkScCLLyIzORkcx1EICjLuWmvZtIn0mI6KuvfYhx+S+9CXw4dJlPH4cehCQvD3339zI0eOpPXJYnB2dkb//v2RkJCAr7/+GhKJhFepVJRUKuVVKhVlaWnJOzo6clKptM57wdfXF+bm5vqViPz2G0m5T6tH+37xBYnI69OuTQ+OHj1aqdVq35HJZI8V2gKGI5FIpveytbXG3LnA1Kkkm0XPEiGlUolNmzYpS0tL92s0mjlCWy8BgUcRxLaAgIBAM1LjcN4LAORy+ar09HTT9cbRgzNnznA3btxgevfujUuXLiEuLg5cTW/cvn37wsbGBomJifSQIUOeixrt+jh16hRfUlJCde3alZ08eXKTo8g6nQ4ZGRl0QEBAk9Is27Vrh/nz5+OXX35hBg8ebBqX+2+/BWxsALEY59etQ+WlS9BoNI1yTW8SI0cCs2aRWuZa1q4ltdDDhj3+Wo2G9AZesIAYqZWX46qzM/Y6OGDOlCmm20Dq2pW0SrqfI0eIAI2N1W+M2s2F+fORMGoU79CjB7rfn679BIYNG4ZBgwZBp9PBwsKCqnndqIiICPbu3buMra0to1AoEBERwSqVSobjOJibm/OzZ8+mnpjFMmwYqdWub5Pnr78MTut/HAUFBVYAThhtQAEAgFwut+6WkjKp2759FDZtMqjlXHl5Of744w+lUqlco9VqPxTSxgUE6kcQ2wICAgItx4IuXbowGRkZqKiogIWFBQ4ePKgSi8Xid999lzGF+/X9pKenIyYmhpo1axY8PT0xYsSIumPHjx/nsrOzoVarOR8fH1Hv3s9fVmbNl0muqqqKHjp0KAYMGGCUdO2bN29CqVRixIgRTVYjlpaWYBgGRUVFphHbmZmkFdaKFei1eTNibWzYffv2MXfu3OFefvnl5lPbERGPtsLatAkQi0kEtT50OmLQxTAk0jprFrBuHQDgbmQkb25uznt7e5vuHqKigIULH3wsIIBkChiCVIrcffsQvWsXtcDKitI3gyEyMpIVi8Xo378/U9v5gKZpZGRkIDo6mgGAIUOG4OWXXwZq2sVxHIcff/yRz83NbVBs5+TkQDJjBlL8/LiSkSPpfnl5aNu27YOO+WPHkqh+E9+T1dXVSE5OBgAKQPEXX3zx67JlyxY+4TIBfaAo0aTAwC20tzctCgsDvL31vvTWrVvYsmWLUqvVfrFkyZJvTbhKAYGnHkFsCwgICLQQDMNcS0xM9L9y5UoFTdN5Wq22C8MwF6urq1/Mzs5G586dTTp/TEwMGxgYyHh6ej5yLDQ0tFaEPJ/hbBDX5/LyctrKygr9+vUz2rgdOnSApaUlDh06hDFjxjRpLKlUitDQUGzduhUuLi6stbU1srOzmfbt2/P9+/enPDw80KT08qtXgUuXgDFjIHrhBfyzb18mMTERhw4dojt16gRv7/9n77zDorq2KL7OvTN0pAkoCIoFBEUQCyooYI3YjT0qplgSE5O8NH0mTMb0aoyal5hoNJbEit0oiigiogh2ICogKiC9lyn3vD+OGlE6g2Jyft83n3DLuedOwVln7722U+PGrytnz7K5/Oc/7PecHCAioupj73VZmTOHuXmfOcP6BT9AZGQkadeuXdNNPCeHtU16553K29u0Abp1q9dQkiRha2ioFODsDLMFCwT06wdU8Zl9mGPHjokAIJfL4ejoCCMjI2RkZGDbtm3w9PSESqVCbGws7d+//30BLwgCXF1dhQMHDiA1NVXy9/cXRFFESkoK0tLSYGxsjKNhYRiv1cIwIEBQq9XaNWvWiPr6+vTNN98kenp67PkvLwfMzet1nw9TWlqKH374oUyj0USKonhJq9WeppQebdSgHAYhgkTIlkIzsyFOX30lr4/QvnbtGrZs2VKq0WieCw4O3tmEs+Rw/hFwsc3hcDhPCK1W2xWAm1arvfb++++XKZVK/ffff7/ik08++SguLu4tZ2dnw6YyTystLcXNmzfFx157+xRhb2+PefPm4ddff6UHDhyggwYNEhrrQg4wI6v+/fsjMjJSi7sRxcbg7e0NOzs7pKSkiLm5uejZsycuX74sbdiwQVSr1Zg4cWLDa6wXLmQ9p0ePvl/H2b17d4SGhtL169eTcePGoVs9xWODuHGDiX6ApYLb2zMhXVXaa5s2zM37hx+AanrZ9+nTBydOnEBsbCy8vLx0P18zM9Zn+uHrq9XAxx8zE6o6LlIcOnQIoiiSnlOmEIwcCRQWsqi5n1+Vx6ekpODAgQOSTCYTHB0d8eeff0JPT4+q1WoiSRL69++PgQMHIj09HatWrSKU0koLJsOHD0dqaiq9cuWKEB8fD0opjI2NqY2NjTb2xAnZ1NOn0fbAAeibm6PvXRf09evXSytXrsSLL74otpDJgN27KzmoN4QTJ06o1Gr15kWLFj3fqIE4lSGkLYDfQ4cPP5c1ebLUz9m5zqdev34dW7ZsKVGr1cMUCkVk002Sw/nnwMU2h8PhPCHu1m9ffOD3CgDQaDSfpaamDvzkk0/6Dh48WOrTp4+oy/rY7OxsrFu3jpqbm9P27dv/ayPXdcHW1hZz584lmzZtkr799lv4+/tLvr6+jX7ObGxsoNFodBZZdXBwgMMDjtBDhgwR76UE5+XlNfw6777Laoy7dWPRYUKAXr0w/bnnyNZt26SQkBAhMzNT8vHxEXTibl0d8+axBwAYGbH09gcdsOPigFmz2L+bNwN9+gCy6r/ieHp64sSJEwgNDaVeXl66j3AHBbGU8QdrzAHm8Pzppyz6WwexnZeXh9jYWMyYMYOIoshE/IEDLGKenPzIPVJKERISQh0dHYUJEybA2tr63q5HLlZQwFogJyQkPLIYU1BQgNatW2PWrFkghEAQBAJARsPDgdBQEDOz+8cSQvDcc8+Ja9eupcuXL8fiVq2AlSuZS3kDoZTi/PnzapVKpRuHNQ6DEFcAm3LNzV+P6ddvz0vDhtV59TApKQmbN28uVavVz3ChzeHUHf4li8PhcJoZCoWidOHChT6UUt/Q0FAxJydHZ2PHx8fj559/RseOHfH6668LNjY2Ohv7n4qFhQXmz58vTp06FRERETr5f7OiogJlZWVCeXm5LoarEo1Gg4qKivq3a5MkYPlyoKICyMtj5mRWVizCPWcOcOEC7Pr3x+s5OcICU1O0WbgQqxcvxq4xY/D71KnYsnYtVn34IT1x/Di9Z7bXaG7eBCwsmIDz8GDRa4C1/PrxR1a3PXw42+brW6PQBphwEAQBL774YtOkkru4VB15JoQtBty+Xadhfv/9d23Xrl21Dy6kYMoU5gAeEQFcvnx/syRJ2Lt3Ly0tLSXjxo17UGg/gkqlQmRkJAWA+Pj4R14kV1dXkp2dDVEU/zbCu34dpGVLkOjoRxYKRFGEgYEB1Wg0uGhry1zKG8HNmzeh0WjyAcQ3aiAOgxAZCHkVwC8AfH54663BHTp0kNX1b0NSUhL++OOPe0L7RJPOlcP5h8Ej2xwOh9N8SQCACxcuYODAgTXWxubn5yMjIwPl5eWwsrJCy5YtH+mje+DAAc25c+fEIUOGkJ49e/5r23g1FCcnJ2g0GmRlZdUoZOpCp7vpzxERERgyZIgupvcIiYmJMDAwQMeOHet2Qm4uS9X28mLR7GHDmOP3Pdav//vnmBiAUlikp8NCT0+wDwyE+u23kXbzJv6Ki8PU3btJXFQUvWVuTh3T0wk2b2YmZT4+wMCBTCx6ebFIbV3Sqe3sAKWS9ax+9llgwwZg0iRm3iZJLNr9+ed1fm4SEhKkDh06kJYtW+r+c1BYCHTuXL0R2qVLbN619PY+ffo0iouLxaFDhz6609gY2LoV0rVrKN2xAzk5OTh69Kh048YNwcfHp1an+GvXruHWrVtkzpw5aNWq1SMHX79+XerYsWPl7S+9BLi7s1r0KhgyGl7uswAAIABJREFUZIjQqlUrXF+zBont2mm9nZzE1q1bVzZOqyMJCQmSRqP5jTtc6wBCLAG8CMAawNAlSuVIfbn87eHDh9cpFeX8+fN03759pWq1eoRCoajGKIHD4VQHF9scDofTTFEoFLlKpdItOjo63MzMzKpHjx5icXExLl++TMPCwiQLCwutk5OT3pUrV8qLior0cTdVVC6XZ6rVamsrK6vSoKAgYwMDA0RGRuLs2bOy+fPnw8LC4gnf2eMnIyMD+/btkzw9PYVu3bpBLpfXewxBENCtWzf6yy+/kJEjR6Jr164NNgcTBAEGBgb466+/mkxsX7lyBQ4ODhJqqwv/6y+gdWuW3hwZCURFAampNQ9uacn+tbICunaFKQDs2AFLAF0BYNky4Ngxcig8nL40axZLn7a0BIqLWa31l18Cr7zCotKXLrGI9ezZrDa8Vy9majZ6NKDVsnNbtGBtsHbtAt5/nxmEtWvHfq4nKSkpSEpKEl5//fV6n1sn9uxhixSTJlW9PyICqCXlvry8HGFhYXT06NHE4OHe4vdYuRJ/rFmjNZk6VUzs2hWmbdvivffeQ7XHP8DlByLiD3L16lXs2bNHW1RUJFL6gM7NzAS2bavRXdzGxgaDBg2CdtEixMlkZP369dBqtXj22Wfr7Rlw7dq1EkmSjtV+JKdGCLECsAlAKICFyg8/bC+XyX4NCgoyNHugFKAqJEnCoUOHVLGxsTlqtXqoQqG49DimzOH80yCV/phyOBwOp9mhVCq7y2Sy46IoGmo0GpUoitkqlWobAD25XO6iVquXAzigUCjUD5zTUS6XL1Wr1SOB+0IRgYGBDRKaTzs///yzVFFRIZSWlkplZWXCyy+/jIam0MfFxeHgwYO0ZcuWdPr06UJdxE1VHD9+HCdPnqQLFy7UeXRVkiR888030pgxYwTn6gyQ0tMBW1vA2pqljU+dqrPeyKWlpVi2bBkdMmQIasyiUKtZlNfaGtiyhUV71WrW1uutt4A33mCLAUeOsPRxSpkAb8A8NRoN9u7dq01PTxfz8/PpokWLmia7IycHyMhgfbarYswYIDAQmDu32iHWrl2rFUUR06dPF6tb0CkoKMCK77/HGzt3wnjSJOC996qfU2wsyyS4y8WLF7F//35aXl5OvL29pWeeeUa4ePEiduzYgYCAAKlfv36CKIpsMSknB3B1hSosDKKrK2o1baSUPQQBe/bsoWlpadLcuXPrbARYWlqKb775RiVJkrlCoSir63mchyCkP4D/AvgAlMYolUpBX1//jJ+fn2ffvn1rTH3Iz8/Hli1bSnJzc89VVFSMVigUuY9n0hzOPw8e2eZwOJxmjkKhiFMqlQO0Wm0gpfTL999/X12Hc64plcpxALoBsJLJZEPPnTv39uXLlysCAgL0PTw8IJPJIJPJak05fdrJy8tDWlqa8Pzzz8PR0VH4+OOPERUVJfXt27dBNevdu3eHu7s7+fnnn+nGjRul559/Xrj/HK5cyVKIBw2qcYzi4mIcPXoUuu5frtFoEB0djZiYGMnY2Ji0b9++8gGSxGqx9+5lacG5uUx0V+Pa3VAiIiJgbW1Ne/bsWfObSy4H2rZlP8+a9fd21vuZRYEpZXOeNw8ICwMOHvx7fz3YuHGjlJ6eLtja2mLMmDFNV0YxaRJbvKiOsWOBDh2q3Z2YmIi0tDTx1VdfrTFz4sSJE9BSCnL0KM6eOweDmTMRExBA7dq0IZWyJWJjAX9/ID//vqN8SkqKVF5eLtjZ2Ulubm4CAKjVaujr62PAgAGVXrMyQcCV+fOlvdu3C6amprCzs9OOHTtWrHKRSaViCyY3bwJ6evDw8CAXLlwQ9+3bhxEjRlT/nDxASkoK9PX1T7377rtcaDcEQkQAPgC+BDANlCYBgEwmU1pZWbn06dOnxs/kpUuXsGfPnjJJkj7WaDRfKhQKHRkvcDj/TrjY5nA4nKcAhUIRByCunudoANyzBA5VKpXvajSagWFhYZuOHDliRikVJEmS3XUb1gqCoBFFURJFUSopKTEZOHAg+vfvr/N7eZyo1Wr88ccftEWLFrCzsyMAMH36dISFheHnn39Gt27dNKNGjar3/4UymQyzZ88Wvv76a5qamop27dqxHfHxLFLr51etSdelS5ewa9cutGrVShsYGKiz3m6SJGHp0qUSpVTo2bMn8fX1JffrZSWJCS0vL5amvXIli66KInvomLKyMpiYmOgmdY4QlkL+/fdAx45AdjZLP7/nTl5HUlJSBBsbG/r8803YSUqjYSnX9wzcqqJzZ9aHugokScLu3bulQYMGkRYtWtS4IJCZmSlRSoWvv/sOpgCeP3gQBT17IvTkyXuimR3o5QUUFFTKBrC0tBQAwM3NjTje7dltb2+PiooK3L59G/b29qCU4vZHH0G1fj2i33yTjvXxwdWrV5Genk6WL1+O0aNHw8XFpfKkysuBESPuL944Ojpi8uTJ2LhxI3r37l0nr4PMzExaUVHB3a4bAqvPng/ABYAPKNUCgFKpfEsUxf9OnDhRqG4Bp6KiAvv27StPTEzMUalUYxQKxdnHN3EO558LF9scDofzL+Gu2dARAPctaJVKJaGUyrRarYFWq9VXq9X6AAwIIbvCwsK61MVsqTkTHx+PzMxM8tZbb903amrXrh1eeOEFIS4uDsePH2/QzUmShGXLlmkrKipEU1PTv3esWMH+DQoCsrKA/fsBADdu3MDZs2e1qampQnFxMQkMDISXl5dOVW50dDTkcjmZP38+5HL539+ok5IAT0/WLmv7dhZJlsl0Hs1+kIyMDMnV1VW3bxxRBBYvZtHuq1cBNzfgnqCshcjISAmAMH78+KY1BkxLYzXbNdQ24+hRICUFCAh4ZNfOnTupiYkJevXqVes8R4wYIZSVlcHe3p69txcvRr8bNwhZtIies7HBgAED/h4jJgaYOZMtBgHw8fHBpUuXtGlpaQR3vR6ioqIgk8lgY2ODgoIC7Ny5UzK+epX0nDaNvPLKKyIAeHh4AIDw6aefIikpSXJxcan8GpeWAm+/XWlTh7tR/NjYWAwbNqy220JOTk6pJElJtR7IqQwhbgCGgL2eM3C3TvSjjz6apa+v/7GlpSVWrVolPfvss0KHhzIrkpOTERISUlpRURGiUqnmKRSK4sd/AxzOPxMutjkcDudfzF0Brr77KLq3XalUeurp6d1MT09vZW9v/8Tm1xgopThx4gTatGkDExOTR/a3a9cO+/btExISEtC5c+d6jX3lyhVoNBpx/vz5sLKyevSAzz5jgjApCUhKQsilS7S0tFTs168fBgwY0CQLGFlZWZDL5VCr1awu//XXmev3gQPA7t2sPru+bcAaiLm5uZCdna1FbeZs9WXCBNbuavVqtpBx7BgzSaulhvvKlSukdevW9W+DVl8++wzQ16+59VVQEDOKe4j09HTEx8eTl156idTl/fFICYQoAqWl6BEZSSJcXFBcXPz3+75bN9Yy7F6GA4DCwkLi5+d3/0LdunXD+fPnsW7dOnrnzh0yMjqauC1cSORVuKrLZDKpTZs2lSdJKcs20NNj9fd3IYRg8uTJ2LFjB/T09BBQxSLDg+Tl5WkA3Kj1CfiHolQqW8vl8iOCIGQuXLjQv04nEdITwLsAdoDSZXfHEeVy+VeGhoZzg4KCDFq2bIlTp07RzZs3o1OnTvTZZ58lhBAcOXJEffr06QKNRvNicHDw7qa7Mw7n38nTG67gcDgcTpNxNwV946+//qo9dOgQSkpKnvSUaoRSiiNHjkg7d+7Upqen48yZM/jqq6+Qn59PR44cWeU5FhYWGDVqFLZv347o6Ghotdo6XWv9+vXS7t274efnJ7Vs2bLqg+zsWCp5aCgwfz7cXF1haWlJ/f39myxTIDAwEOqiIqg7dwbOngWmTQM++YSJK3//JrlmdXTq1AmXLl0Ss7KyoNFodDewuTlL0T55ktVGh4ezmuRq+nlLkoTvvvsOaWlpZMKECbqbR3VMnQq8/HLNxyQnszZmD7FlyxZtr169pEYtCHTtCtWVK3BOT6dhL71Ec3Jy2HZ9fRZx/uOPB48mmZmZ939p3749CCG4ffs2GeTnB4/kZCJ/MGvjAUxMTKQdO3Zg2bJldMX339NrK1dKmDIFGDIE+OGHR47v3LkzpkyZgpiYGHz22Wd0586d1fZgLygoEPEvFdtKpdJOLpfHurq6OlNK3Ws9gRARhLwIYAYAJSj9Q6lUGiuVypn6+vqJrVu3nvPKK68YWVtbgxCCvn37kjlz5iAjIwNr166VLly4gDNnztxSq9VuXGhzOE0Dj2xzOBwOp0oWLVr09pIlSw5FRUXtiYqK0hs9ejQ8PT0b3O6qqSgrK8P+/ftx5coVQZIknD9/HmZmZlo/Pz+xS5cupKqo9j3uGcXt2rUL+fn50rBhw6pVwtnZ2di4cSPKy8uF6dOnw9HRsXbVPHcuMHs2Wn7zDXVbtkyQgoIg1NL2qUGEhEC2Zg0GKJXkzOHD6ADAydtb99epI5Z3W4P9cFd49e/fH+7u7o3uTw6ACbqwMCa8Q0OB//6XicjPP3+k/pwQAgMDAxQVFd2fU5ORn89qyTdurPk4Qpgp3QMcPXoUGo1GCAgIaPSHy6RFCwx1dyeZ336LFStWwMbGRvLw8BD6yOUQ3noLmDoVdzIzUVpaSu71e79Hq1attDl37gi9b90iOHeu2nr+V155RVZeXo74devIneho4MQJkvzpp3CqYUGjffv2eOutt5Cenk5++eUXlJaWYtq0aY8cV1JSYgjgVqOehKcQpVLZQk9PL9LX17dlx44dxcTExNIaTyDEHMAIAAMAvK388MNs+aefLpTJZO87ODhQb29vE2dn50f+Xrds2RIvvPAC+emnn7B7926tJEmTFApFVpPdGIfzL0f88MMPn/QcOBwOh9NM8fPzu37s2LHfAJQkJiYOOHXqVFl+fr7c3t4eek1Y81sXNBoN1q9fj3379iEzMxNDhgzB+PHj0bt3b/j7+wtt2rSp0xxtbGzg4uKC3bt3k4SEBMnBweERgZ6fn4///e9/aNGiBV588cX6iUZC0LJDB3Lh8GEYjx4N45QUoIFtxx5h9mxmHtaqFVBYiNbTpmF/YSHVMzMjTk5OurlGA7CwsIC/vz/8/f2Rn5+P2NhYREdHIyEhgUZHR8PFxYXo6+s3bOHG1hb44gvWa7ttW8DbG9i8mf1ubV1JIN6N1EoGBgbkbr1x0xEVxYR2bcZtdnbMpO5uBLugoADbtm3DhAkTiE4WIwDIvb1xc+BAtPzxRxSWlZFrFRX0zK1bVHzvPZKdnY3s7Gxcu3YNAwcOrNQKsEePHkL/1FRCPv6Y9UGvLgsjLQ2yrVvR+sQJdJwwAWH+/jh8+TJ69uxZ42eOEIIWLVpAEAR69uxZYmtrC2tra1y8eBG7d++WwsPDKaVUlCTpY39/fx2mRDR/IiMj/9uxY8ehgYGB+iqVCjExMdqwsLCv/P39HzUaJMQVwFsAJLD+2ZKent7vFhYWLwYFBRn37dtXr2XLltV+vuRyOW7cuFFRUFAQ/sEHH3zZpDfG4fzL4WKbw+FwODXi7+9f4O/vf/TYsWNLtFrtsfT09BdOnjwJR0dHWFhYNOm1tVotfvzxRxofHy+VlpYKMpkMhYWFyMvLw/Lly5Gfn48RI0ZgypQpcHR0hFwuR0P6XhsbG6Nz584IDw8nHTt2xIPp4SkpKVi7di3UajVmzJjRoHsWTUywJSsL7UpKYDVqFPD880ANEfcauXmTpQSPGgX8+Sfg6gr073/fcOvkyZPUzMwMnTp1ahYpCJ07d8aAAQMgSRIKCwtJRkYGOX36NO7cuSM5ODgQfX19UErrJ7xbtmTpyhMnshTp8eOBTz9lLc0GDwbkckiShOvXryMiIoL06dMHdnZ2TXeTAGBsDCxYULu7e0EBS+t/4w0ArKd2eXm5cPv2beru7v63g3wjsbW1hdG+ffBu1Qre//0vKSsrozc3bSJ9/vMf7OrQgTo4OFAvLy9S6XnPzQXc3VldubFx1QN/+SXw9dfsOZ89G3B3x759+yRbW1vq7e1N6vI6Ojo6ktu3byMiIgJ37tzBmTNnqKWlJbGwsBDy8vISP/jggxqK3v95KJXKFoIgbJ80aZKRkZERDA0NcfHiRW1ZWVlBeHh4jP+DZSCEjADQHUCy8sMP1xzz9x+rp6e3p2PHjp7Tpk0zqimT5x5Hjx5VX758OVmtVgf82xY1OJzHDRfbHA6Hw6kTdyOVqceOHfsegJSWltazS5cu8qaMcH/00UdQqVSkY8eOQnx8vPbMmTMkJiaGXLhwAZRSLF68GG3atNFJavsvv/xCtVotGTduHACgtLQUt27dwoYNG2BgYIB3330XptXUsNYGpRQxMTGAjQ2cly4FDA2ZUBw0qHpR8zA7dzLTNUtL4NdfmeFVFT2bz549S9VqNfH09GwWYvseTk5O8PLygoeHB3x8fHDy5EkaGRlJLl++LO3bt4/4+vrWvZ69XTsWSb5Xww0AQ4cyt22NBrCxwbWbN7Fp0ybY2NhoAwMDq215pDMCAljGgqtrzccZGDDX8kGDcO78eVy6dElYsGABLl++LMXFxcHT07NOBml1wWTSJMj694c4bx7aT59O3MePh76jI/rOmUO6dev2qDAODGQGdHc/A/ehFDhyBHjhBWDgQGa+163bfUf7s2fP0szMTCEvL09ydXWt9YkmhMDd3R3Hjh1DdnY2NBoNGTNmDMnJySlPS0v72s/PL0onT8BTwokTJ95ydnYe0KtXLznAnp927drpXbt2zY9SOuvIkSN5KWvXJnqOGzcNwOD4zp1jV73xRi9RFDfb2tqOGzZsmM2AAQPkYh3a+MXHx+Pw4cM5arW6t0KhKGjqe+Nw/u3wmm0Oh8Ph1AuFQpGnVCqD8/Ly2mzdunXirFmz6h9KrgVJknD48GEJgPDcc8/d62Ot+4bQDyCTySSNRiOeOnWK6unpkT179twXf5RS1OWLbHVkZWWhoKAA7u7uTCBWVLAdZWVAYWH1raIkCfj5ZyZydu4E7O1ZRDs8vKb7ELKzs1FeXt6gKH9Tcy8zYP78+UJ4eDiKi4uFjIwMfPLJJ3jmmWeot7d37apYEJi43b0b6NOHbZPLgUWLgLfeApYvh9OGDSCEYOrUqeJjaV8XGMgEf20QApibQ5WZiYMHD9LAwEBibGyMl156Sfz++++1a9eulcaNGydU6XLfEAwMgDt3gAsXWNR/8GDg22/Z8/QgkgR89BHQvXvl7XFxTIBv2gQsWwZUkY4/b948Yd26dUhNTSXZ2dmo1jjwAQghWLBgAW7cuAFLS0u0adMGISEhakppeCPu9qlDqVTKCSFLrl69KqSlpd3PwLCxscFrr71mfPXq1U5RBw/+r/Off/4aMXRo6oUePWihqWlQdw8PoVevXnr1KT0oKyvD7t27y9Rq9ViFQpFZ+xkcDqexcDdyDofD4dQbhUKh0Wq1X964ccMgK0v33jr5+fmIiooShg0bdk9oNzmvvvqqOHHiRJw8eVLas2cPvL29af/+/SFJEsaOHduosUNDQ7XA38Zh0NcHdu1i9btOTsDWrZVPyM9n/aTz84ElS4DUVGDtWuYuXgtlZWVSSUkJDhw48GitZzPD398fhYWFEgDIZDL8+eefJDc3t24nBwSwKP/t25W3f/01MGcOcr7+GkaFhbqectWcOwe4uNS9NGDHDoT9+KNkY2ND3d2Z6bQgCHjllVdEExMT8tNPP+HChQu6ef0IYe3fOnQApk9nwnvVKhatvkdBAdC+PdCx49+ZFrdvs1r4jz9mCxn791cptAFAT08PQUFB0Gg0dOXKlfj1119RWIfn3sLCAp6ennB0dASlFEVFRYYALuvgrp8mAiilokajeWSRiRACZ0IQlJdn4jF8uMzm66/bj5w7t8O7775rEBgYWC+hrdVqsX379jJJktYrFIp/VeYAh/Mk4WKbw+FwOA1CoVBcAvDRtm3bSijVna7Lz8/H2bNnKQB4eXnpbNy64Obmhv/85z/ivHnz8Mwzz5CioiJYWFjQDg+lateH4uJiZGdni3K5nD5STymXA5GRwIgRwPffA4cPsx7MwcHAu+/+LSbrcf3JkycLAGBlZdWs0sjvodFosH37drpy5UqqVCqRkpIiDBkyBI6OjtpBgwZJdXYNNzVl0dhDhypvJwQYORI2RkaY/McfMNBRDXSNrF5dY7bBw9z64gtcIEQYO3ZspfR2PT09TJkyhYwdOxZ79+4lcXFxuvtgtWwJ3DPnS0ysvK+kBJgxgxntUQqsWMFSxU1N2SLP5Mm1Dq+np4e33npL6NChA01NTcXSpUtx7++CJEm4desWzpw5g/j4eBRX0We8vLwcgiCoFApFuQ7u9qlBEIRvAMDZ2bm8devWlXfu388WO7y9YRAcDBd3d7Rt27beWTaSJGHLli1lN2/ePK5SqV7T2eQ5HE6tEF1+QeJwOBzOvwulUtkRwNX33ntPJynLly5dwq5du2BpaakdMGCA2KVLl8ZPshEkJiZi27Zt8Pb21g4ePLhBeeR79uyR4uLihHHjxuFeFLNKRo4EoqOZ0Jk0iYnGenLq1CkcPnwYRkZGmD9/PvT19Rsy5Sbll19+0RYVFQmurq4wNTUlzs7ODW8JlprK+lrv3v2IMdmdO3ew7fPP8UpeHsiiRSzy3FSUlLDSgDosFEiShISePakYGEhdPv642qDH1atXsXnzZri5uUnjx4/XXXBkzx5gzRrg2DFmiLZrF4vMBwezhYvFi9nP3bqx2vgGEBkZicOHD8PNzQ3l5eVISkqCnp4eNTQ0lCilKCkpEW1sbLSOjo6CmZkZ6dKlC4yMjPDpp59qKaX6CoWibk3vn2KUSqUAoD+AcABYtGjR307ulALffccW43r1Yo77DYRSin379lVcvHjxvEqlGqBQKCoaP3sOh1NXeM02h8PhcBpDllwuzwwNDTXz9vbWt2lkS6u4uDitu7u7OHr06Catz64rLi4u6Nq1Ky5duiQMHjy4QWNoNBq0a9eOuru716ye9+5lkdpG1BeHh4fT/v37Ex8fH+jK1VqXqFQqZGRkiK+++irMzc0bP6CjI9C7N6trf6jllpGREXItLRFVVkb7BQURREbW7hTeEAoLWSnAw+ns1bBv3z7YWViQ7l261Ph+sLa2hiAIuHjxojBmzJhGeQZUonVrtjAQEsJ+P30ayMoC/vc/Fp1fs4YJ7UZwb+HtypUr97eNGjWKdO3aVQSY+WB0dLQYGRkJrVaLhIQE6fnnnxf09PRUFRUVNgDSqxz4H4JSqWyrr6+/vaKiogcAdOnS5W+hrdGwbgPGxsD8+azUpIFIkoSwsDDNxYsXb6tUqmFcaHM4jx+eRs7hcDicBqNQKArUarXX5cuXI/73v/+hpKSkQeMUFBRAqVQiNTVV9PX11fEsG4eRkREKCwtJampqg87Pzs6mbdu2rVuYupFGXhqNhuTm5kpN7rzdQHbv3g0rKytJJ0L7HlOnAjt2ANrKwVBTU1MEBQUh3NGRhL37LjNSi47W3XXvUVAAPPssMyKrhezsbFy8eBFtPv8cQs+e1R4XERGBZcuWoWPHjlJwcLDuhDYA9OzJ0pM3bWLO6a6uQFISE3dbtjRaaANAjx49EBQUhJkzZ+Lll1/GggUL4Obmdn+/kZERAgIC0K9fPwBAamqqAACmpqYqAE+uQfxjQKlUdpbL5bG+vr6ezzzzDACgRYsW7M174wYrKRkyhGUXNEJoFxUVYfXq1SUxMTFnVSqVr0KhyNfJDXA4nHrBW39xOBwOp1H4+/sX+fr6rj916lR3Smnn9u3b1+k8SZIQHx+PzMxMVFRU4OLFi3j22Wfh6OjYxDOuHx06dMC1a9ek6Oho4uPjU+82Y1FRUUStVpNuOhAxteHi4oIDBw4QU1PTpu8rXU8kScLOnTsxcOBAtGrVSnerAVZWgErFat0fSns2MzND+/btcfDYMahtbGjbQ4cIGTy4TsK4zpw/DzzzTI0p5KGhodiyZQs9c+YM8fDwkLxOnCA4dIiVDjxEdnY2QkJCYGRkhKlTpxKdlgIcPQqcOMEi/AsXsjR8b2/gm29YhoAOMTc3h4WFBYyNjWFoaFjl58bBwQFpaWkwNjaW7OzsSH5+Ps3Ozk7y8/OL1OlkmglKpbKrXC6PDAwMNO/du7cAAHFxcbh165bQT08P4hdfALNmsfdFIzJTUlJSsHbt2rKioqJv1Gr1DIVCUaSre+BwOPWj+eWYcTgcDuepRK1WF5w4cQLW1tZSt27dqg3RFhYW4tChQ9rk5GQRgCSKIi0tLRXt7Oy0zs7OzSJ9/GGCgoKEzz77DCdPnqQ+Pj71Eopt27Ylt2/fltCIbLLExETs379fq9FoiCAICAwMFFwf6ue8adMmKSkpSZAkCWZmZg29VJNx4sQJyOVyeHh46D7sbmfH+kD7+T2yy97eHrNnz8Zvv/2GGAMDvODsDKMff4TB+PHVDpeXl4cLFy7A29sbenp6Nff//uADYPZs5uT9EIWFhdi/fz+Sk5MxePBg0rJlSzg6Ogqwt2eu4FWwevVq6uLiQkePHi3I5fLa770q1GoW7TczY4sQX30FKJXAunWsDnjMGFbrfvAg8N57DbuGDpDJZDAwMMD169eFn376CTY2NoZ6enoBAL58YpNqIpRKZUu5XH581KhR5ve8G+4tpPQ8fRqFf/5JW27cSFDHxcqqoJTi5MmT2mPHjpVoNJpJwcHBB3UyeQ6H02C42OZwOByOTpAkaRGAdiEhIQNMTU3h5FR1NuiWLVtobm6uOGzYMLi7uwsPCJlmKbQBJgrs7e1pXl4eBVAvsXj16lXas2fPRuWHx8TEoLCwUAwKCkJsbKx2y5YtMDAwoG3btiUajYaWlJSQ3NxcYeLEicjKykLbtm0bczmdc+rUKRw/fhxjx46td2ZAnRgyhLVPy8hgjtoPYWFhgdf0L28WAAAgAElEQVRee40UFhZiX34+HXDkCHHo0OGRVlYqlQqCIGDjxo3IyclB+F2HcRMTEzp06FDSoUMHCIIAPT09JCQkwMbGBvnz5iGBENz+6SdtWVkZWrVqJQ4dOhTm5uZYtWqVZGJiQl544QVia2v794X09YGLF1lE/AESExNRUVFBBg4cSOoktCkF8vJYD3Z3d5Yevno1c7hfvpwZ7Y0bx3728mLXkyTWt332bNYS7AnTr18/lJWVwcTEREpISBAkSfJ80nNqCvT19X/w9PQ0ftAk0drcHK/euIEzWi1+69ePjKEUDe17UFRUhB07dpSmpaUlq9XqEQqF4oZuZs7hcBoDF9scDofD0SUDAKBVFYIHAHbu3KnNzMwUZ8yYAQcHh8c6scbi6elJDhw4QPz8/GBqalqncwoLC6FSqeomnGqgqKhIGxAQILRr1460a9dO9PPzQ3R0NL1y5QoxMjJCVlYWBg4cCBcXF7g0pet2AygtLcXRo0fp+PHjyYN1uzpFJmM12UuXAl98UeUhgiDA3Nwc1qNGaTcfOiQLevZZav3++wSzZgEAbt26hbVr1wJgPYkHDRpEu3fvTo4ePUpzc3NpaGgoduzYcX+lQBRFtP/rL3S/cgUl77yj7datm6ivr4+EhARp+fLlgkwmg0ajEaZMmYJKQhsA0tNZffQ771TaHB0dTV1cXGBubv7oigSlQHIyc14fPx6YM4f9vnUrcxhv3RqYMoU92rRh6eL3ePCzlpcHJCQA2dmNcrnWFXZ2dpgxYwYACFevXkVISMg/TiQqlcp2crl8lL+/v979jSoVMGIErIYPR99PP0X0Tz9hw4YNWLhwYb27CCQkJCAkJKSMUvqdWq3+UKFQqHV9DxwOp2Fwsc3hcDgcXSEBwEsvvQRDQ8NHdubl5eH8+fPiggULYGFh8dgn11g6d+6M/fv3Iz8/v85iOyIiApIkoVevXg26piRJCA8PR25urvCgALOyskJgYKAQGBgIAOSPP/7A2bNnaf/+/ZuFM5pGo8GGDRukvLw8qlKpBAcHB+rq6tq0cwsKAjw9WX9yK6tqDxs6dKgsIyNDG+PgIA43Nwe2boVm3DisXr0abm5u9JlnniEGBgaQy+UEAEaOHElwN5tBrVYjPT0dVlZW0NfXh2zTJqBFC7hOnnw/K8PLy0v4/fff8ddff2Hw4MGwt7d/dBK+vsx9/iEGDRpE1q1bhyUffog3fHxgdvIk8NprLD2+a1dgwgQgNhYYOhT4/HMWxW/V6m9n8dpYt45FwE+dYi7kw4bV7bzHRGZmppZSmvWk56Fr9PX1f/T29pbdb4944QIwfTp7PTw9YUYIZs6cid9++w0//PADffPNN+v0WZEkCUeOHFGfOXOmQK1Wj1QoFE3gAMjhcBoDdyPncDgcjk5QKBQZgiBEbdy4USovL6+0LzU1FT/++COcnZ3p0yi0ASA8PBy2trZSmzZtaj32bssdKS4uDn369GlwG65Vq1ZpYmNj4e3tTR+u0X6Q/v37o7CwkBQVMR+ksrKyBjvDN5b169fTTz75BCqVCgMHDhSHDBlCpk2bJjS5Q7q+PutN/McftR6alZUlOAwaxJy5f/sNwv/+BwsLCykxMZEIgoDqMhHkcjkcHR1hbGzMXlNXV2Yu9hDjxo0DAJw7d67qtPnSUtb3m1Lmor5xI7ByJexv3sRLP/xAh128SI1jYoCbN1nUfvVqYO1aJrZ/+w1wc2MLC9VkkFTLjh1AWBj7+coVFmFvRiQkJBSXl5f/+KTnoUuWLFkySl9fv3///v1loBQ4fhxYsAD4/Xege3fg7vvDyckJQ4YMQbt27eoUlS4tLcXatWtLz549e1atVrtxoc3hNE94ZJvD4XA4OkOSpBFlZWW5iYmJ8LhbDxsfH48tW7bA2tpamjp16lO7yJuenk7bt29P6iIaL1y4gIiICGHAgAEICAho8DUlSSIuLi7SoEGDanze7O3tYWlpKX377beCvb299vbt2yIhBNbW1tTT0xM9evQg9/v4NiERERFITk4m8+bNg42NTdML7IdxcQG2bwdKSlgrqyo4f/48VCoVOnbsyFzJV62CkJiI0Zs2CRscHKBSqWBczbmVUKuBiROBs2eZ0H8AAwMDTJ48GVu2bEF2djZatmxZ+dwzZ5jQ7tSJ9QgPDwdatgRmzsSeyZPR7plnqGzIkL+fvMamexcXs/TzXbv+3paVxdLNmwmUUty5c8cAwNknPRddoVQqLeRy+eoxY8YYybRaZlJ37hzw559VOuLfbYVW6wc1LS0NmzZtKlWpVD+p1ep3FQqFpgmmz+FwdAAX2xwOh8PRGQqFIk+pVOLMmTPQ09NDeHi4lJmZKXTq1IlOmzbtqRXaAJCfn0/Nzc1rvYfLly9jz5496N27d52E9pYtW6SrV68KRkZGaNOmDYyNjXH79m2akZFBCCFiVlYWhg8fXmt0fN68ecLZs2eRm5srOjs7w83NDQcOHMDJkyfpoUOHiJ6eHrp27Sr5+voKTZVdcP36dbi4uGhtbW2fjNldu3Ys3frCBaBv3yoPycrKooaGhri/+NC6NWIuXIBRVBTmtGlT9xIHtRr46KNqU9bvRb8rCfe0NKCsjEU227dn4isggD3u4jZhAjl16hQGDRlSt3nUhX37gCVLWE/yewsg2dlVurc/KfLz8wGgVKFQZDzpuegKPT29b7p06WLW3sQE+O9/mWv+li0Nbj2n0Whw/PhxTVRUVIVWq50ZHBy8Q8dT5nA4OoaLbQ6Hw+HoDKVSqQcAd+7cwZYtW9CpUyfBz88Pbm5uzaKWuDGUl5cLtdVqU0qxbds2ODg4YPjw4bWOWVhYiPj4eMHPzw9paWnS7du3iSRJxMvLi7i5uSE1NZXq6+tLgiDUKl5lMhm8H4qAzpgxgwAgV69eRWlpKU6fPo3vv/8e8+fPfzTa2khu3ryJtLQ0zJ0798m6ynt5AT/9xKLBVbTs6tu3L7ly5Qr98ssvqaurKxk1ahQirlzRBqxcKdpUVLCWWMuX197neNMmFo2uhqysLJiZmUmGhoYCKGVO4cHBwNdfA5cusfHPnwdycyv16Pbw8EBYWBjJyMio1miwXoSFsQj8pEl/C20AKC8HjIwaP76OuHPnDmQy2eUnPQ9doVQqe+np6U0Z1K2bHkaOBObPB2bOrPwa1IPMzExs2rSptLy8/LhGo3lJoVDc1vGUORxOE8DFNofD4XB0hkKhUCmVSidCyIFWrVo5jR8/Xt+ggVGc5oabmxsNCQkhr732GoyqEClarRb79u2T5HI5mTVrVp2+UZeUlEAQBPj4+EAulz+iDO/29G60eO3UqRMAwMPDQ/j++++lCxcukIEDB+p0ASQqKoq2a9dOsrKyerJi29eXRYwvXnyktRfAIs6vvfYaSUpKwoYNG6DRaFBWViZaOTmxKPW6dSwVffx41pO6OrZuBcaOrXb33r17YWhoKCAkBPj0UybON2+u3I/75ZeZi/q3397fZGRkBHt7e7p3717MmjWLNLTeHwCLvo8fz/ppP5yK7uTEIq3NhOzsbKrVav8RYlupVJrIZbKd0ywtDY2nT2evezWtEOvChQsX6N69e8u0Wu0rH3zwwTodTpXD4TQxT3VKH4fD4XCaHwqFIkWtVnvm5ub+tnLlytK0tLQnPSWd4ObmRsrLy1FQUFDl/qKiIsTFxQmzZs0iQhUR1apo3bo15HI5TU5O1uVUa2TYsGHCiRMnyOrVq6V7hmqNRZIkpKSkUA8Pj+bRK33pUuDLL6vdTQhBhw4dMHbsWCQlJUEQBGRnZ7NI79q1TKQ+/zwzMqsKrZaJ5zlzqr1GH0ND2iEqCtKNGyyFuFOnykIbYH2uv/qK9b5+gIEDB5L8/Hz6ySef4OLFi3W968qkpbFa7ZycR4U2pew5MjFp2NiNJDMzE0VFRaCU3t926dKlEpVK9eQbf+sAY0pX+5eUWLXdupU5xTdQaJeWlmLz5s1l+/btu61Wq/twoc3hPH3wyDaHw+FwdI5CoagAMGfJkiVH1q5du3rQoEGGvXv3fvyGWTokPDycuri4kNatW1e5/9atWzAxMdHa2dnVS3BKkkR0ndJdEy4uLhg3bhx27dolXLp0CX2rqW2uDyEhISgrKxOarI92fXF2Blq0YGnaVUS37+Hh4QE3Nzfs3bsXu3fvRpcuXVgt95QpQFQUcPIk0KsXYGZW+cSwMNaSKyHh0UELC4HiYvRbupRc9vGhwhtvVP+mNzMD/vMfIDUV2LYNWq0WmzZtkpKSkgSZTCYAQIsWLaDRaCCKYtXO5tVxbyGgihZjyMxkBnKPwTSvsLAQ169fR0lJCTIzM8szMjJUWVlZLQCgR48e0pAhQ4Ti4mLk5ORQAIeafEJNzKo331wxKC5uXDcXFzlCQxucNp6amorNmzeXqdXqNXdN0KpZ+eFwOM0ZLrY5HA6H02QEBwdvViqVZ8PCwvZev37dYfz48UZPa1p5r169yJ9//lntfnNzc6jV6npljOXl5UGj0aCkpASWD9TtNjXu7u7YuXMn8vLyKO72kG4MosjWF8rLy6vssf7Y0dMDxoxhtdE1iG2AtfNKT0+XunbtKtw3TZPJgJUr2ePnn9m/Dy6I2NoC77336GBxccDcucDLL+PQ0qUo02gk79rKAGbMwO2oKBTGxyMsLIyWlZXBzMzsfgZFSEgILSgoIKamppg/fz70H3I+r5KsLBZR1Wqr3l9RwUzamgBJknDjxg3Ex8erLl26pFGr1VQmk4Wr1eq/tFptCoCLAC4BcLp06VLw1atXA5ycnIxEUdy9ePHisiaZ1GPiQGDg211Vqjldxo2TiwsWNEhoU0oRERGhiYiIKNNqtVODg4P3NcFUORzOY4KLbQ6Hw+E0KQqF4ppSqfS4cePG8pUrVz43ZcoUI3t7+yc9rXqTn58PU1NTCdWUYCUlJUl362vr/A07JCREsrW1JXZ2do895C9JEiwsLHRy3fPnzwNA3YTg46J3b+DVV4GhQwFr6xoPbd++PVJTUx99bV95BSgqYqLd2fnvGufISGDkyL+PO30aePddYMUKYMUK7M/OxsUzZ+pkkkc9PbF71Sq47tgB+aRJ0ty5c8V7ddrFxcW4du0asba2xm+//UZ///13YmtrK3l5eQkWFhaosp3byZPsnvPyqne9vnWLPXRMSkoKtm/fXqpWq9M0Gs1mrVa7DkDS4sWLq1L9WQBGLlmyZFpiYuIrFRUV31ZxzFPDcT+/V13S0j43W7JE1Js6tUFjFBUVYdu2baV37txJ0Gg0YxQKhe5fJA6H81jhYpvD4XA4Tc4DaeUH161btzYgIMCoT58+T1Va+dmzZyV3d3da3f6MjAzq5ORUrxRyJycnISIiAhEREVp/f//HXu9sooOa3czMTADA66+/jrrWqj8WLC1ZrWxsLDBsWI2HiqKI9PR0QZKkyvdACLBwIRPRX30FrFoFtGrF2mg98wyQnAwcPsxqvadNA9zcmAP6/v2ws7PT9u7du06vaSsjI8kzKUnwnz1bfDAaamJiAk9PTwBA//79SUxMjFar1QoxMTEQBAFmZmZSTk6O8Oqrr8LKyoo5jPfrB8TH12zuVlHB0ux1REFBAcLDw8svX75codFopgUHB++v67nBwcGbAGzS2WQeN4ToZ7Vs+b5p27YL9davF6369Kn3EFqtFtHR0VJ4eHgFgO/UarWC987mcP4ZcLHN4XA4nMdGcHDwdqVSGRceHr43KSmp7fjx442aRdpxLdy5cwcqlUoYPHhwlfuzs7ORmJgovvTSS/UaNyAgALa2tti6davo7++vg5nWHVEUUVFR0ehxSu+aiKlUqkaPpXPeegvw8WHO5NW4eqtUKsTGxgrdu3evfrHg1VeBNm2AU6eAzp1ZZNvAABg9monbpUvvtxnbv38/jY2NJYGBgXVaSaKUotTLi/zeoYP25atXRTg7V3mcr68vfH1974v31NRUJCUlCceOHcOKFSvQ3dNTGv7iiwL5+muUjh+PGqX05ctALW3s6kJRURHCw8MrLly4IBFCflCr1Z8pFIqcRg/8tEBI6xRHxxcKWrb8D/3mG6FNA4R2VlYW/vjjj5KSkpJzarX6BYVC8VcTzJTD4TwhuNjmcDgczmNFoVAkKZXK7qmpqctWrlw5c8qUKYZt2rR50tOqkcuXL8PW1lYrk8mqjFRGRUVBEARUZ55WE4cPH9ZaWVkJ0EHtdH3QarXQhVP8PYEqrymS+qSwtGT9pdevZ+7iVVBUVARJkjB69Oiaxxo7FvjtN8DPD9BoWIp5ZGQlk7GCggKcP38eAwYMgJeXV5XKvbi4GDdu3EBJSQny8/Ol5ORkkpubi1dGjBDRsyeQklKp73Z1ODo6wtHRER4eHjhz5gySr1+nG6ZNo2k3bxLN0qWYMmUKXFxcqj65rAzo0KHWa9TEjRs38Pvvv5dJkrRao9F8pFAoMhs14NMGIT1yzc3f+atr17GtP/9c38PdvV6nazQaxMTE0LCwsDJJkt7UarW/KBSKajNnOBzO0wkX2xwOh8N57NxNK5+3ZMmSg7/99ttv/v7+hn379hWba1p5Xl5ejfstLCxgamqqRQN6YstkMqKnp6cTo7K6kp+fDwDQhQt6cXExACZaLSwsGj2eznnuOWDjRtbuqor3l4WFBQwNDemaNWvorFmzhBpT4WfOBD75BMjNZW214uMBc3OgbVsAwHfffQdRFImVlRUuXrwIjUZT6ZGcnKxNTU0VTUxMNPr6+sTY2Fiws7Mjw4cPh5mjI0t5r6dRnoWFBYYeOgScOiVKx48jISEBJ0+epJGRkXBxcan6PeXoyFqRNZDLly9j586dJVqtdmxwcPDhBg/0tELI5CQnJ7+z/fqNdX//ff3OnTvX6/Tk5GTs2rWrpLy8/LRarV6gUCguNdFMORzOE4aLbQ6Hw+E8MYKDg0OUSmW3Y8eO7bl+/brThAkTmmVa+dWrV+mwYcOqFNJFRUU4fvw42t4VXHVFpVIhOTkZ2dnZQqdOnaTaz9Ad94y1zM3NGz3WvXZfhYWFjR6rSejUibXjiopiKd8PIQgCZs+eTZYuXUpOnTqFflUccx9JYmZplLLo9rJlwPLlzIU8Lg76cjmIKNLQ0FCtIAgQBAGiKEIURSKKomBtbS2OHz8eJiYmVX//cnICXFyAHTuALl3qfo9vvw1cuwZBEODm5oY2bdqQFStW0P3792sDAwMffd8eONBgsX369Gnt4cOHizUaTYBCoYhr0CBPK4TIAcy45eAw+8jYsZ5DX39dvz6f+7S0NBw8eLAkIyOjWK1Wzw8ODt7edJPlcDjNAS62ORwOh/NEUSgUyUql0uvWrVtLV65cOWvKlClGzSmtPDMzExUVFaSqHtJ37tzBrl27AADPPfdcnaPaR48eRUREBARBQL9+/ai/v/9jdRYzMjKCiYmJtGfPHsHQ0BCWlpYwe7iXdD2QyWTYvn073NzcmpdJGsCi2X5+wLVrVYptADA2Noa9vb0UGhoqnDhxQho3bpzQqSox+t57QHo6sGEDSx9ftAh44w0gLQ1QKjHB2ZnGOzhg1LRpMjg41H+uosiM1uraHi8tjfUBv3AB8PW9v7lFixaYOXMmWbdunaivry8NGjSo8osSEcFM3upJZmYmQkNDSzUajadCoUip9wBPM4TYSsAHMX37usWMGtXtuVdeMajrZyYnJwehoaGlSUlJKq1W+4EkSasUCkUzNDngcDi6Rvzwww+f9Bw4HA6H8y/H399f279///2HDx++fPHixRGCIMgcHByahVs5pRSnT5+GpaUlBEGAkZERCCEoLCzEihUrUFxcjIkTJ9Y5JTsvLw/bt2/HzJkzMXr0aLRv3548CYHarVs3Ehsbi5iYGKSnp0uenp4NfrJFUURKSgoet8lbnenUCZgxg9VdV2MM1r17d+Lj44Nr167R4uJiUmVqcHk569v9oBCXy1nq94svYsft29Tr5Emh5UcfAdOns5ruDh3q12/Z3x/YswfQ16+1ZRkMDdlxAQGP7GrRogVcXFywe/duYmhoSO3t7dkkJAlITQUmTKh3H+hr164hOTn5yOLFi3+o14n/AEq++mpelL//rL9mzOg4/aWXjE3rYDBXWFiIP//8s3z//v0VeXl5X2g0monBwcGR/v7+1TRA53A4/zR4ZJvD4XA4zYbg4OBdSqXS/fjx43uuX7/eYcKECUZGRkZPdE4mJiYwNTXV7tq1SxRFEZRSvPPOOxBFEYIgYNGiRZBV43RdFdeuXYOBgQFt27btE11JMDExwauvvoqlS5fSGzduCFlZWbCuTdxVg4eHBw4fPoyysjI0xzIAiCLw+uvAt98CX39d7WFyuRxmZma0Smf1jAwmtidNqvLcA3/+qc0uLhY67NgBaLVAQgLw4YdAUhLg6gp07MgczevC77+zPtiLF1d/zLhxwPDhwIIF1R5ia2uLCRMmYMeOHaRbt26sD3p+Pns8tMBTXFyM/fv3o7S0FMbGxjA1NYWVlRU8PDzulx1YWVlBkqRuSqWS/FvMvJRKZVu5XP42/e9/Z3bv3t1g1vDherUtApaWliIiIkIdExOjIYT8qNFoPlYoFLmPacocDqcZQSj9V/yt5HA4HM5ThFKplMvl8i9lMtncyZMnG9a3HlrXaDQalJeXw8DAAMuWLZOMjY2Jvr6+lJqaKlpZWdF58+aRugruHTt2oLy8XJo2bVqzybdetmyZRCkVXnzxRdQlYvcwkiRh6dKlkkajEd5888374qxZUVLCUr4/+QSwsXlkd1FRESIjI2lsbCyZOHEiHkkj//JLYNcuFq2ugqVLl9JOnTqRkSNH/r2RUkCtBubMYeeFhwOJiSwSXZNgu3deWRlQXaryN98AgwezSHstfPvtt1JRUZFgZ2eH8f36wWr9euDzz3HlyhXExcWBUopbt25RR0dH2rp1a6GoqEhbWFiI/Px8kp+fL5ibm2uHDx8utm/fHl999ZWqvLx8anBw8I5aL9zMUCqVAgDjuw8TMFPCQgBZAAQAvgBMAZQB8NLX1x8gSdIgLy8v0cvLS25tbY2ahLZWq8WZM2eko0ePVgDYolKpFisUittNfFscDqcZw8U2h8PhcJotS5YsCZTJZL/7+PgYDRgwQNYc0spv376N06dPw9jYGNHR0ZAkCa1atcLcuXPrdP7WrVuRk5MjzZs3r9mI7fLycnzxxRfo0aMHKonFenDlyhXs2LED77zzDougNkdWrGBp17NnP7IrLCyMnjlzhvj6+sLHx+fRcyWJOZC3qLqD9dq1a7VqtVoMCgqqerFBrQaio1nv73ffZSngnp6AnV3Vcw0KYtH0gwcrbz92jJmybdtW293e586dOwgNDUV2dja1OXeOTCwuxoYRI7SZmZmiu7u7RAhB+/bthapahRUXF+P06dNSdHS0oNFoQAiBJEkvBwcH/1iXayuVSgcACYSQFZTSFQqF4madJ95IlEolAeBMCBmpr68/RaVSeRBCIJPJNDKZTEsIgUqlkqnVahkhBJaWlqXGxsa0oqICDg4ORra2tvIuXbrAoA419NevX8eePXtKysvLz1dUVMxWKBRXmv4OORxOc4enkXM4HA6n2RIcHLxfqVR2OXny5K6kpKTOEydONDIxMXmic7K3t8e4ceMgSRJcXV2xZs0aZGRkIC8vr9bWV1evXkVCQgKCgoKajdAGAAMDA/Tt2xexsbHo27cvrKysGjzWmTNntL6+vvVugfZYGDKEOXFXVDDRfZe8vDycOnWKdOrUqepe6Vevslrqm9XrxKFDh4o///wzQkJCMHny5EcPkMuZidmpU8zJfNIkJqbXrWNGZ35+laPdX37JXNSrGsfevh43/Xc6+aZNm4isogLRJSU0KytLfO2112BkZFTje9HExAQDBw4UAgICUFFRgYiICOn06dMKpVL5Ux1TyZ0BGFFK3wVwFcAv9Zp8PVAqlZaiKO4mhFyQy+XtZTKZt1wu13N2dhY6d+5s4OTkBEII9PT0KjWFV6vVAAC5XF71SkoN3L59G4cPHy5JS0srVKvV8yile/4tKfYcDqd2mtV/9hwOh8PhPIxCobilUqm809PTV6xcubIsOTn5SU8JAHD48GGsWbPm/u9FRUU1Hh8bG4tNmzbBzMyMOjo6NvX06s3QoUNhaGhI4+PjG3S+m5sbxowZg7CwMPHKlWYa1HNxAc6ffyQVvLi4GGq1Gjdv3qSb/8/efcdVcWb/A//MzL2XIoqKNMWCLSIqoogNFUvsonHTXLMm2bimbJLvJtlfEmPC7CSxZFvWNNNMNjGWGDVR0VgRRUEsCCgiIooI0jvcMu35/XHV1QQVkJ7zfr18veTemWfOgL4uZ57nOef77/HZZ5/dWsBKEOxLwe9QyK6oqAgAEHJTVfBqcZw9Yf7xR3tV8PR04KWX7H//4QegsNB+nKen/b2HHrJ/rev2Pt+9etlbjtWCruv4+OOPdYPBoA8YOxZes2dzL774ImpTDyEnJwfvvfceYmJieFVVvQAE1eQ8URT38zx/4NqXVTe/J0mSiyRJ7SVJMlZzal0ouq4PUFX1WYvFMkVV1fYAYDAYTAkJCfKOHTuwfPlyHD58+JZWe0ajEUZj7UIoKirC2rVrzd98801RZmbmq7Is+4aHh2+jRJsQcjNaRk4IIaTFePvtt+83GAwbR4wY4RIaGmpoyjZTJSUl+OCDDzBx4kQ4OTlh6NChtz02IyMD33zzDdzd3dmzzz7LNYfl8NVZvXo1MxgMePzxx+scoCRJN4qvNcvl5JGRwNdfA2vW3PKy2WyGk5MTZFnGP//5TwwZMgTTpk2zv7lxo70Y2R32s58/fx7r16+H0WhkEyZM4EaMGFHzmHQdkGXgd78DDAZAkuxL1j097S26vv3WXpzt/vvty8e9vGp1y5s3b2YFBQVs0aJFPP+f/wDe3sC8ebUaAwD++9//ssuXL3MAEgGMEkXRXNNz33777UOMsTEABqjd0twAACAASURBVAmCEGowGF5VFMWL53ld0zSD0Wgs5nm+DMApm8224doMcZ3aY0mS5Ar7hFIpgMEA4m9+f9GiRdWvYKiBq1evYu/evVVZWVk6gJXXip/Z6jQYIaTVo2SbEEJIiyJJkpeDg8NPnTp1GvjII48416WgV31ZtmwZjEYjXnnllWr7S0dGRuLIkSPgeR5+fn56WFgYX5vK5Y0tPT0da9euxauvvlqjfarViYyMRFJSkq4oCm80Gln//v31yZMnN59l5YwBzz4LPPJItS2zAODy5cv49ttv8cADD2CAjw/Qvbt9Cflt9mtfpygKtm7dypKTk7lJkyZVv/f7bjQN2LIFEEV7Yn3woL2P9u9+Zy+IVgfvv/++Nm3aNKFfv37AM8/YHxzMnl2nsVauXFlRWlo6RRTF2Nqcd23/tA4A3t7eVdOnT2/TuXNn8DwPXddRWloKs9mM3NxcHD9+vKK4uJjpuv6arutfiKJ4T62yJEnyAXBlypQpCA4OrnUveF3Xcf78eZw8ebLq8uXLsqZp4dfioiSbEHJH1GebEEJIixIaGlq5f//+ry0Wi8OJEyeGeXl5GTt27NgksQQEBCAuLo6ZzWbWu3fvG7PBP/30E/vxxx9x+fJlLjAwEIMGDcKECRM4QWg+OecvMcbw888/62VlZVxpaSkyMzP1AwcOsI4dO3LOzs44deoUKy8v5zp06IDMzExkZ2dDEAQ4OztD07QbCYyvry+Cg4M5TdMAgEtISOADAgKaT0uw68u4t24Fpk+v9pD27dtD0zScPHlSGzZmDI9Fi4C77McH7P3G/fz8uKKiInbixAmuT58+ta/uzvOAv7/9gUBurr2Y2q5dgKMjMGtW7ca65tixY6xr1668l5cXEBNjv+8a3M91BQUFuHDhAhwcHJCWlmarqKjYFhoaml7T8yVJ4gRBuOTi4mIaNWqU8YEHHjC5urreqOzNcRycnJzQrl07dO7cGcOGDXPo27evQ3Z29nhFUcL279+/LzQ0tLT2d24XGhpaHhcXN9zPz69PbWa0LRYL4uLi9I0bN1rOnTt3trCw8B+apj0WHh4eQ72yCSE10XwfrxNCCCG3cW2m6y1JkvZv3Lhx87Bhw9pOmDDB2NjJrIuLCxRF4U6ePMmNHTsWuq4jNjYWiYmJ3IQJExAYGIimLuhWU8ePH2cXLlzgeZ5HWloac3JyYm5ubsLatWuh6/r1mW7dZrPxPM/D2dlZq6qqEjw8PJCTk4NZs2axIUOGcADA8zzGjRsHXdexatUqbdWqVcJrr72GZvOwYexYIDnZ3gO7Z89qD+nZsycOHz4slPv7o93KlTWeVeY4DjNnzuTatWunf/755/zcuXMxcODAmsdWUQEUFNjblJ0/DwwcaN+n/fLLNR/jFzp16iRcvXpVDwgI4FFcDNSiNVtaWhp++OGHSkEQDimKMknTtHYAsmoZAq9pWvcJEyZg8ODBNTrBy8sLCxcubBMdHT3kyJEjKStWrIiw2Wxibat8S5LEcRz3hMFgGF/TWglWqxVHjhxR4+LiVJ7nd9hstuWiKJ6szXUJIQSgmW1CCCEtWGhoaEZkZOTX+fn5I1NSUtz79Oljquvy57pQVRUxMTHgeR7R0dGIjY1FdnY2ZsyYgREjRjTPftPVUFUVGzZs4MaPHw8fHx/Mnz+fGz58OD9o0CAMGDAAgYGBmDJlCjd69GguMDAQo0ePxtixY/lz585pOTk5vL+/P+Li4rhTp04xV1dXzs3NDRzHgeM49OnThz927BjGjRt3xx7FjcpoBOLjgYwMIKj6Ol/t27eHk6OjXrx7N7fRaGT9hgzheJ6/cV93YjAY0KtXL85kMmHv3r0sMDCQu+O/BU0DDh+2J9d//rM94Z42DcjLA55+GnjxRWDDBmDUqFrfamVlJZKSksDzvN7fz49HXBwwdap9b3gNHD16VM7Kynp7yZIlzx04cCDSaDQW67q+PjQ0tMYxhIaGsoMHD1aUlpaOCQoKqnElMo7j0KNHDz4oKMggCMJ9OTk5T0VHR3eNjIyMDA0NVe52viRJPRwcHLa2a9fuqT/84Q/OnTp1uuPxiqLg6NGj+vfff2+9evXqVlmW57z55pufh4aG5tQ0ZkIIuRnt2SaEENLiSZLEGwyG13mef3Pu3LlO1fULbggHDhzAoUOHMHv2bPTo0QMrr1WJXrBgAXx9fRslhvpw6NAhPT4+nr344otCbfaz6roOq9UKZ2dnWK1WHDhwAImJicxms3HDhg3THB0dubS0NC43N5f761//ijZt2jTgXdxZVVUVysvLUVlZCbPZjEEeHuBeeslefOwXibCmaaioqEDcRx9paQUFQpmHBzRNA2MMBoMBHTt21EJCQoSbZ6x1XUdJScktbdMYY1i/fr2WkZEhzJo169cz3BkZ9oR6yRL7A4D33wc6dgSKioDnn7e3/xo61N6ju1s3+xLwWvy7iouLw549e+Du7q7Pnj2b9zaZ7EvUc3NrPMaxY8cQGRn57euvv/54jU+qhiRJYR4eHmuffvppl7oWNrRarfjxxx/Nly5dsgH4WlGU90VR/NUsuyRJniaT6W+MsSdGjx5tCAkJMdxpVYWmaTh16hTbv3+/lTEWbbPZXqI+2YSQ+kDJNiGEkFZDkqSRRqNx2+DBg9tNmTLF1JDLluPj47F7924WGBioT506VQDss4iCIDSf/cl3wRhDcnIyIiIiEBoailpV0L6N9PR0bN++nWmaxhwcHFhRUZEAAIMHD9YrKyuZj48Pxo0bV6sfTHl5OTZs2KC7ubkhKCiI9/T0BGMMuq7fSOB1XceBAwf0iooK5u7uzhcXF+tZWVmcg4MD69u3rxAVFQWDwcAMBgOzWCz8iBEj9PsPHODh4wM89xwAXN+njbi4OFZcXMw988UXaPv003B+6y0UFBTAYrHAbDbj0qVLemJiIm80GnUvLy/eZDIhMzNTr6ys5E0mEzOZTLqqqny/fv0we/Zs7tSpU2zXrl1c37592e+mTePw00/2pPrdd4E5c+wtvdzd7fvJk5KAhQvtM9k3L3EvKgJcXG7pD34327ZtQ3Fxsf7EE0/Ys9uUFODNN4HNm2s8RmZmJtatW3fFZrP5AnjMZDKNlWX5Q1EUE2o8CABJkhwcHBz2enl5DX344Yeda9N27JdycnKQmJionDx5UhcEIZ/n+VTGWC7HcR0ZY71UVfUNCAhgoaGhDnfaxsEYw5kzZ7Bnz54qRVFO22y2F0VRPF7nwAgh5Bco2SaEENKqSJLkZjQaf3Z0dBw4Z84cx5632ZN7r/7xj3/oI0aM4MeMGdMg4zc0i8WC/fv366dPn+ZGjRrFjRkzptZVmmsiKysLJ0+ehMViwcWLF6EoCp555hkA9v7GHTp0QHx8PLPZbCwoKIgvKytDQkICS01NZa6urqxLly7C0aNH4e3trefn5/NWqxUAbuz/9vf3169evcqVlpZyDg4OutFoZKqqcj4+PryPjw9SU1P1/Px8LiwsjOvfvz8AoLCwEJ999hnmBgXB7623kLNlCyAIyM3NxY4dOzBgwABMnToVpqoq8G3a2IuT/YLNZkNsbCzKy8t1VVUZz/OYMmWKUFlZifLycpjNZuzcuRMAmFvHjhjj6Mgl7dqFyRcvwrV/f2DxYsDH59axjx+39/PevRvw8Lj1gidOAI8+Cly4UOPvvdlsxsqVK1lYWBjn7+8PpKbax5k/v8ZjMMbw6aefVuXn5wsAHIOCgpCQkFChquowURRTazwQAEmSDEaj8UMHB4cF48ePdw4MDLynrQWKoqCoqAhFRUWwWCxwcHCAq6srvL2979o3Oy0tDbt27aqsqqq6fC3JjqxzIIQQchuUbBNCCGl1JEkyAfjIxcXl8VdeeaXGG6cZYzX+5f+9995jTz75JOfxy6SoBTh48KB2+PBhwdnZWXv00UeFuvYcrq1ly5ZBURQYDAYYDAamKArn6OiIqqoqAPa9zrquw8nJCWPHjkVhYSGysrL04cOH8wEBAYiNjUV0dLQ+YsQI3tvbG56envjmm280FxcXBAUFCX5+frhTazVVVbFx40Z25coV2Gw2juM4TMzO1i9VVfEXevcGAEybNg3BwcHA3/4GFBcDH3xQ5/tVr1xB+eef46KDA+u0ejV3xt8f7q+/juEhIb8+eN8++6zzvn32GexfBw+88grw3nvVJv+3k5iYiB07dmD27Nnwv3wZOHXKvmy9FsxmM/7xj38AAMaMGcM6dOiAn3/+uUBRlFBRFFNqM9a1FmATTSbTyn79+vWaNWuWQ2O2wysuLkZERIQ5Ozu7WFGU5xlj20RRpF+GCSENgpJtQgghrZIkSd0AXAaA0aNH66GhobftcV1UVIT169fbioqKHEwmkx4WFsb7+/vfcfzly5ez+fPnczWtcNzUrFYroqOjWWpqKoqKiriFCxeiS5cujRqDruuQZRkmkwk8z0NVVZw8eRLdunVDcXEx2rZti5iYGEyfPh3t7tLTuqbXS05Ohq+vL7KysrBt2zbdzc0N999/P+/p6YlDhw7BGBOD4KIilLz6KixWK3pfS7rx1Vf2vdyPPVa7i8qyvVVXZiZw7BjQpQvw7LM4U1aGrdu2wd3dHaGhoejbt6/9eMaAH36wX2/LFuBOy6vPngXOnAEefrhWISUnJ2Pr1q1Y5OyMTppmT9prKT8/H59++imbMmUKhg8fziUkJLCdO3eaNU17Xtf1b2qbsEqS1NZkMm339/cfHhYW1uBVDRVFweHDh9WYmBgZwDJVVf8hiqLc0NclhPy2UbJNCCGk1ZIkqQOAGYIgrOA4zuvhhx8W+vTpc8sxR44c0fft28dzHJfJGBMBfA0AgwYN0ubMmSNUN9NdUlKCVatW4Q9/+AO6du3aGLdSI1euXEF+fj4CAwNvWRKuaRp27tzJkpOTMXjwYK5Xr1745fehJZNlGSkpKSgsLATP8zh9+rRmNpt5xhh4nudsNhsMBgMmT57Mhg4dyt3yM9V14P/9P+CFF4AePeyvlZYCCQlALSpuIykJWLcOGDcOWLXKvlT7kUduvF1SUoIPPvgARqORKYrCDRkyRB8/dizvsmaNPSn/9NM7J9oAsHevfZn5pUs1j+uaDRs2wH/3bn3ggw/ymDGj1udXJzc3F5s2baqqqKgo1TTtM03TNgI4X9PEW5KkfgBSBg8ebJkxY4ZTQ81wnz9/Htu3bzcrihJls9meEUXxSoNciBBCfoGSbUIIIa2eJEkCgDUA5omiCAC4fPkycnJysHv3bgCYJYpixLVjTQC+BXAjU/L19bU5Ozs7TJs2Dd999x1yc3PRvXt39vjjj3PNpZ0VYwwrV65EWVkZunXrxiZOnMh17doVu3fvZseOHeNMJhN75JFHuJZUJb0mUlNTsWXLFubg4AA3NzfdbDZzgYGBXK9evTjGGNzd3W9sD7jtz+rLL+09t5cts3+9bBmwYwdw5MidL15RAXz/vb3wmIsL0K6dPcn28rrlMF3X8fnnn+tt27bF/Pnz+fz8fGxYs0YbFBEh9PTwgPX119E3MPDuN8sYUFhov04tCqUBwLp16xC4fbvu96c/8ZgwoVbn3jkkhqysLMTHx1vPnz+vybIMg8EQZbVa3xFFMe5u50uSNMhkMv29Q4cOYxYtWuRcn3UDzGYzIiIiLOnp6aWyLD8uiuLeehucEEJqgJJtQgghvwmSJN0H4NzIkSPh5uaGiIgIAGCCILzx5ptvrqjmeHcAAQDCABQB+Nv19x588EHcbZl5Y9N1He+88w44jgNjDIIgQNM0AIC/vz8mT55cL0uzm5Pi4mJ8/vnnbPz48Rg+fHjdn3qoqr0l1pEjQKdOgM1m3699u73sUVHA+vXAzJnAjz/al5rfIYHdt2+fnpiYiJdeeonned5+vb/8BdmMYZefn55VVMQ/9dRT8PHxuXusomgvdLZhQ61u8Z///Kf+mCzzXo88AvTqVatza4oxhvj4eGRlZSE5OdmiquqM8PDwA3c7T5IkzsHB4ciQIUOGTJ48uXZPEW7jwoUL2Lx5s0XTtG8URXlFFEVzfYxLCCG1Qck2IYSQ34x33nnnYV3XvwcAk8n09uLFi8WanCdJUlcAmde/fv311+FQy5nFxvD111+z3NxcLF68mNN1HdnZ2XB0dIS7u3tTh1avdF3Htm3bWHJyMjdw4EB95syZ/D3PiO7da68G/vvfA7NmAYmJwM1jlpQAH39sPyYsDDAY7G27XF3vOOylS5ewfv16PPXUU/D09LQn2n/4AzBxIvD448grLsann36KkSNHose1Zew39nNXJykJ2LMH+Otfa3xrxcXF+OSTT7Bk+3ZwGzbUqld3bVy8eBFr1qyBo6OjbebMmQ6bNm0Cx3Fh4eHh2+92riRJvkajMfn//u//nO6lH7uiKNizZ48tMTGxUlGUR0RR3F/nwQgh5B7Vf48PQgghpJl66623NgLwAhBW00T7mgAAePLJJ8HzPE6ePNkg8d2rRx99lNM0jTtz5gx4nkfXrl1bXaKdlpaGlStX6hkZGXjiiScQFhZ274k2AAwYAKSlATk5QEiIPdHWNGDrVnvLrV27AIsFWL4ceOop4PHH75poV1VVYePGjRg7dqw90VYU+2z4nDnAH/8IGI1wd3dHt27d9FOnTrFNmzZh/fr1iIiIQGRkJNatW8csFsutgw4aBPTrZ68qXkPx8fHw8vTUuKwsoHPnunx37ioxMVFPSEhgAGC1Wh28vLwwePBgMMa2SZJUTfn1W4mieInn+R3Jycl1jiE3NxeffPJJVVJS0h5FUfpSok0IaWqN12uBEEIIaQZEUcwDcNeZtl/4WRCE+K1btw7Qdd0UHR2N4cOH3+j13NQYYzh27BgrLS3lGGM3ZkhbmyNHjiAqKgpjxozhRo4cyd2tl3KteHsDY8YAMTHAG28Azz1nX1a+YgXwxBPApEnAvHk1Ho4xhh9++EHv1KkTQkJCeFRU2GfMX38dmDIFuLZ/nOd5PPnkkzeeFpw8eRJ79+5lNpuNA8D9/e9/R4cOHdC5c2cmCALr2bMnF7B/P4ecnBotJa+srMSJEyfYzLFjBbz4Yq33et/N1q1brampqbzFYjEYDIZMAN0B4KOPPoLBYLgIoCfHcW8CmHq3sWw2W0x+fv4sALUKkjGGuLg4ff/+/RZN055ljH1H7bwIIc0BJduEEELIXYiiqEmSNLysrGwbz/MDrVarz7vvvovu3btrAQEBwqBBg5ok8d6zZ4/G8zx8fHyEXbt2cR06dNCmT58uuFTXp7mFi4yMxLFjx/Dggw/ivvvua5iqdD17ApMnA05OwODBgCQBdVwZEBMTo+fn5+Mvf/kLj9xc+/L08PA77u0GgKFDh2Lo0KEcAOTk5GDLli2srKyMS05O5jiO486ePQvv55+Hh6enfeb9Nv/udF1HbGwsDh8+zPr166f7e3gIuHy5Tvdys5SUFBw8eLBiwIABbTVNQ0JCgiOAJwHEqKqaBmAvgIkAYDAYjjPGRE3T7lr9W5Ik3mQyzfT09KxVom2z2fDjjz9aLl26dEVV1emiKKbX5b4IIaQhULJNCCGE1IAoiiqA6YC9oBOA5zMzM4MuX768ICEhQb95drIxREVFabGxsTcyrQEDBuB3v/td85hqbwCxsbEYN24c7rvvvoa7SJs29tnr5567p2Gys7Nx8OBB/rHHHoPp0iXg5ZeBt9+2L0+vBW9vb/z5z3++8WDhyJEj2LdvH87n5DCPxx/n8Mc/2pejV2PTpk3sypUrmD59OjdgwACBO3PG/hDhHsiyjAMHDlQWFBT8VFpa2l/TtBNGo9GmKMp31/5/QJKk+zmOO88Y6221Wh8xGAxWURSfqG48SZLaApjh4OAw02QyDXFycvINCAiocTzl5eX45ptvqiorK3+UZflPoiha7+kGCSGknlGyTQghhNTStSWqHwKAJEn/zszMTPjkk0/kZ555xlSfrYsYY0hJSUG3bt3g4uJyo4UVAJhMJgEAlixZguLiYnTq1KnertvcFBYWQtM0FBYWNuyFsrOBe+w/brVasWHDBhYUFMR1y88H/vMfYPHiWifa1bleOKysrEzDM88Y7jTrXlJSoo8aNUoYOHCg/YW0NHt7sjqy2Wz47rvv5NLS0hMAFr7++usyAEiS9DqAs8uXL0+XZTmK5/n2uq5vBfAKAKiq+vjSpUtjlyxZ8tnN40mSZDQajWc6d+7c0c/Pz8XV1RW9evVCTbcG5OTkYM2aNWZFUZaqqrqClo0TQpojSrYJIYSQeyCKYqIkST4FBQVZe/bs0aZOnSrIsgxFUXAvVZUBIDExEVu3boXRaERQUBDLyMhAUVER17FjR72goID39vZWeZ43eHh41NPdNE9ffvklY4xxwcHBDXuhY8eA2bPrfDpjDD/99JPm7OyMyTwv4KuvgOefB0aMqJfwBg8ejK5du+Ljjz82DFiwALb33mMd+/fnOnXt+qtjFUW59YWKinsqjhYREWHLyclJ1DQtTBRFGQDeeeedJwAs79q1K+vevXufkpKSse7u7s7FxcXWsrKy8l69erXz8PDAli1b/vP222+XhoeHf3/TkIKu6+4zZ850qu2DorS0NPzwww8WVVWfCA8P/6HON0UIIQ2MWn8RQggh9UCSpMUAlvE8r+m6LgCAt7e3/vjjj/N1aROWl5eHTz/9FJ07d8bEiROxd+9ejTGGkJAQISsrCyEhIWiNe7N/acWKFcxms3ELFy687cOLNm3a1HhG9I7mzwfeece+d7sO4uPj2Z49e/BSt26cw+nTwNy5wLBh9x7XL3zxxRdqbm6u4U+rV+PYsGEonDaNOTs767Nnzxacri0VX758ORYtWgQ3Nzf7ST//bJ/ZHjOmTtc8cuQIDh06tHfx4sWTr7+2dOnS/HHjxrmH3GXWPi8vD6tXr7YqijJIFMW066+/++67ywICAl6eNWtWjf+DHDt2TN+3b1+FoijTRFGMrdPNEEJII6GZbUIIIaR+vAfgS13XO8FeeVnPycn5T1FRETrXYUYxKipKd3R05J966inwPI+nn376lv3ZvwWlpaWw2WycwWDAt99+W+0xjDE4OjqyhQsXcu3atav7xSwWICgIqGMl9/z8fOzatYt7EoBDaqp97/egQXWP5w7+9Kc/2X9/e/ppdElPR+7p06y4uJhbtWoVCw0N5QYOHAiO45imaf8rJBcVVedEGwBMJhM4jtOvf/3OO+88qOu6+/VtDdVhjCE/Px8HDhwwK4riDMAXwI1kW9O0TfHx8YsnTZoEpxrsJ9+3b598/PjxPEVRxlMhNEJIS0DJNiGEEFIPRFHUARRc+5MiSZI3gP907NixTuN1796dv3Llil4/TaRbFsYYzpw5g23btqF37976/Pnz7/g9WLduHfvyyy/x9NNPc3Veup+YCERHAy+9VOtTFUXB+vXr2YyMDHh3787hD38AeveuWxy10bYthoaFYejZs7zu5obY2FhERUVpu3btEjiO4woKCnBji0FcnL31WB15e3uD47h+N720ZurUqRhWzcx9Xl4e4uLirGfPnmW6rpsZYx8COAAg5heHJgCAxWK5a7J94sQJ/fjx4/myLA8RRbGBN+8TQkj9+M19gBNCCCGNxAIAVVVVdTo5Pz+fWSyW3+Tn9JEjR9iWLVvQtm3buybaAPD73/+e79Spk/7BBx/g0KFDenFxMS5fvoyrV6+ixtvljh4F+vW7+3HV2BERoQ2OimIDO3fm8PjjjZNoA/bq4k8/DVRVged5jB49Gi+//LLw+9//HhzHoaioCLp+bTJ6/HjA379Ol1FVFVFRUVbG2KXrrxmNxh1Hjx5lhYWFsFgsuHDhAlJSUrB27Vrz6tWri5OTkz+22Wz9FUV5QlXVJQCcAXhIkjRckqT2gP0Blclkirty5c6dwU6dOsX27NlTLsvyeEq0CSEtCe3ZJoQQQhqIJEkMAO6//35t1KhRNW7LVVlZiX/9618YOXIkJk+efPcTWoFrPZtRXl6O2NhYzJo1CzcqadfQuXPnsHfvXq28vFwwGAxM13Vomsb5+fnpLi4uMBqNPM/zSElJ0VVVRd++feHh4cEPHDgQhi+/tPfA7tu3VtdMTkpC3quvslGBgZzjK68AjV0VvrAQ+OknYOHCW16OjIzU4+LiuBEjRrDxoaE8FiwAPvsMcHau9SWKi4vx4YcfMgBBAIIBMADzAIwzmUy5qqp2dHBwSAFQKstyhKZpH4uiaJEkaSCAJADw8PAoLy0tNcmy7Hht2NGiKMYsW7Zs1bhx454ZPXp0tdc+fPiwdujQoWJFUUJEUTxf6+AJIaQJ0TJyQgghpIGIosi98847+Xv37nUPDg6GwVCzj93rLa5+K4k2AKxdu1bLzc3ljEYjRowYwdc20QaAfv36oV+/ftcfanC6ruPixYs4fvw4X1hYCJvNBl3Xmb+/P+/o6Ihz586xhIQEFhMTgwd37kRB165c3pUrDADn5+d31732Jfn5yHvtNfT38eEcFy8G7mXPeF0ZDMAbbwAPPgi0bw/A3n4MAM/zPHN2duYgy4CDQ50SbQC4ePEiAHBGozGiV69eHUwmE0tKSnICULJ48WLvm4+VJMkRwKDly5cvMhqN8++//37Wv39/7uzZs+2GDBmCHTt26KdOneJ5nn8TwHRBEIKrq0bOGMP+/fuV48ePX72WaGfVKXhCCGlClGwTQgghDUjX9RAAqeXl5ajp/m1XV1cA9uW7NU3QW7KCggJcunRJWLBgAXx9fettXJ7n0bt3b/S+dVn3jYpewcHBXGlpKWKiopBXVcX2nTunte/QQSgtLcXhw4cxY8YMODs7o2vXrmjbtu0tY2sVFTi3aBHzNJng9eGHHGpQ4Ks+FRcXQ1EUaJoG15gYtLlWmT4tLQ0bN25Ep06d9EmTJvFDhgwBUlPtf+ooKipKAyBMnDjRMzg4mOc4DkOHDsXatWsrJUkSAAgAhhiNxgcEQXje1dVV7dq1em3qJwAAIABJREFUq4O3t7fDpUuXzDt37nQGgJ07dwLXtjDquj5ZkqQgR0dHv169elV3TeX48ePZsiwPo6XjhJCWqvV/ghNCCCFNK81oNEZ+/PHHoSaTSZs/f77Rx8fnjidc32ebl5eHLl26NEaMTaayshK7d++Gp6en7uvr2+h71Nu3b4/pJhPg5cUNeuWVG0v9t2zZosXGxjJN01BVVWUYNmyYfv/99/McxwFlZUj761+ZUF4Ov59/5lCH1m73IjU1FRs3bgTHcRAEAd1TUzE5KgoZmzYhOjpaHzNmDDd27Nj/fS9LSoAhQ+p8vSeffFJwcXGBg4MDDwAZGRnYuXNnhSzLXQG8ajAYXnBxcXHp0qWLMGnSJOfc3Fy2efNmJTU1NdZqtf4XQCLHcT6MsU0AogCIAOJ5nn8tKCjI9MsHStHR0erRo0dzZVkeQYk2IaQlo2SbEEIIaUCiKDJJku4HMFRV1T+tXr36Tz179rRdvHjRITg4WO/Rowfft29fCML/tnRfL0BeXFzcapNtm82GTz75BOXl5ejUqZP24IMP1nhPe71LSQFGjbrlpblz596IJysrC2vXruUMBgNC/f3B/fe/yEtL43y/+QZ8IyfaO3fuZAkJCdyUKVNYcHAwBwAlmZmoWLSIHY2JYS4uLggKCrq1H5ejIzB2bJ2veb1X94YNG9S8vDxbaWlpGwBtOY5LNhgM4qRJk4zBwcE8AGRmZmLz5s1WVVUnLlmyJBYAli1b9r6Tk9Oi8vJyAPheFMVDAPD3v/99mIeHxy0/95iYGC06OrpAUZSRoijm1TloQghpBijZJoQQQhrYtbZgxwEclyTp5MWLF9twHDfyxIkTHePj4wcIguBmMBg0Pz8/bcaMGU7t27fH5MmT2ZYtW7ikpKQaVeRuSRhjOHz4MMrLyzFp0iSMHj266RJtAPDxAQIC7vC2Dx555BFu+yefMP+ICK69qysOTZyIkd7etz2nIXz11VfalStXhEWLFsHb2/tGQt2hWzd0eO897vncXA5Tpvz6xLNngfz8e7r2rl275NTUVBOAcADLAKB79+69H3roIQfnm/aCb926tVLTtCdEUYwFAEmSpjo7Oz/t4eEhWK3W/bIsfwEAy5Yte1bX9dCb98VHR0er1xLtEaIoZt9TwIQQ0gxQsk0IIYQ0IlEUP7v5a0mSvFRVnWGz2SYlJiY+GBISgnbt2mHkyJHc2bNndZPJ1KoSbVmWsXz5cgBA37592ejRo7m7nNKwGLNX8/7FzPYv9VBVhCQnszwfH1bx3HO8afNmZjKZGi32gwcPorCwUHj++edvzDTfIikJ+Ne/UG2yffEiUMd+79d5enpe/51xmZOTk/XZZ591bNu27S3T+iUlJSgvLwdjbAsASJLUxWg0fj106FCn2NjYclVV54iiqEmS1EYQhPefeuopBzc3NzDGEBUVpRw9ejTn2oz21XsKlhBCmglKtgkhhJAmJIpiLoDVkiT9yPO8/0cffdRLVVXnadOmITc3l59SXfLUgiUnJwMAOnXqpM+bN6/pHyRUVNjbZ91pH/3Zs8AXX6DHjBn8JyUlmKsosFqtXGpqKu67774GCSsvLw/nz58Hz/OIj4/XKisrhXnz5lWfaAPAo48CkycDmgYIv1go4OICjBhxT/EEBgbygYGBkGUZBoPB8fpWh5tlZWXBYDAkqqrKvfvuu38xGo1vBQcHO7dp04YZDIbIJUuWVF47VOrVq5fmfW1lQExMjHb06NGrsiwPp6XjhJDWhJJtQgghpBkQRbH47bffjmCMLeY4jkVGRsLb21vz8fFpNZ/VjDFs27YNJpMJTz31VNMn2gAQFweMGwdwt5mkTk4GVqwA5s9Hh6lTEXrkCDZu3AgnJyfdxcWlQe6hrKwMq1evhpubm84YQ0BAAD9s2DA43aniudFoj1OWgY8/vvW9e1xCfjOTyXTb964VOnMxmUxfdujQ4ZGwsDDnzp07Y926dRVWq/X6bPckBweHP48fP94RAJKSktjBgwdLrrX3okSbENKqtJoPcEIIIaSlMxgME318fNSwsDBDe3vP5Fb1OX3mzBlwHIfp06fD0dGxqcOxO3cO8PKq/r2kJHsP67feAoYPBwCMHDkSxcXFmDZtGl+fbdl0XUdmZiZ+/PFHrbKyUvD399duLtJWI7Nm2R8O/JKbG9AI+8tzc3OZ1WoN6NixY58nn3zS2eFa8bhr1fVtkiRxDg4OK6ZNm+bo5eWF9PR0REREVCqKEkp9tAkhrVGr+hAnhBBCWjKe56vatWuntW/fvtV9PiuKgi1btsDb2xsBdyhG1ui6dAH69v3160lJwDPPAF9/Ddy0VJznecyaNaveLq+qKg4fPozY2FjGcRw3ZMgQbvjw4WjXrl3ti8ZNmACUlwPp6cDNvauXLrXfSwMLDg7mjEYjBgwYcCPRvoYBMAL4J4BB/v7+uHz5Mr7//nuzoigzRFGs5gkBIYS0fK3uw5wQQghpqWw224PJyckX77vvPgc/P7+mDqdemc1mAMDgwYObOJKbMGYvKrZp062vHzsGPPccsGMH4OnZYJfXdR0rV67UTCYTP2fOHK5fv37gOO7elqZv2QLs3fu/peTl5YCfn33fdgNr06YNQkJCfvW6wWDgAQwF8JKrq6uelJSEXbt2WVRVnS2KYnSDB0YIIU2keeyXIoQQQghEUSxWVfX+zZs3y1artanDqVcZGRkMAKqqqpo6lP/JybHvZ755iXVUFPDCC0BkZIMm2gBw9uxZ6LouPP/885yfnx+42+0br4333weWL7c/SAAAiwVYsODex70Hbdq0MfI8XwwgKD8/n9++fTtTVXV2eHj4viYNjBBCGhgl24QQQkgzYjQaP9U0zXT06FG9rmNIkoTly5eztWvXsuzs5tGuePv27dzEiRMxfvz4pg7lfy5dAt591/53xuyzwu++Cxw8CLRrV++XUxQF58+fR1RUlL5q1aqKrVu3sh49eij1kmRf5+YGjB0L/Pyz/eusLPu+9Cbk6+vr4ODgME4UxZMAxgJoGx4evrdJgyKEkEZAy8gJIYSQZkRV1dU8zx88ePDgSyEhIahJEa6LFy8iKysLSUlJWnl5uQAAkyZN4rKzs/Wvv/6a8/DwUBcuXGiorl1TYygoKICmaXB2dm6S699WYiLg5AToOrB6tX02OyICqKfibVlZWThz5owyYMAAY1lZmb5t2zaZ5/lLqqpGqqqaAOCLmTNnGuvlYjd74gmgTRv734uLf90KrBFZrVaUlpZC07TBAEDLxgkhvyWUbBNCCCHNSHh4+CdLly59wdPTs8pgMLS507GyLGP16tVqcXGxwcPDQxswYAAXGBgIFxcXCIKAYcOG8RMmTMAXX3whfPvtt+jSpQv8/f3RuXPnRrkXTdMQExOD3Nxc8DyPAQMGNMp1a8zZGejXz77sOjfXnnDXMdFOS0vDunXr0L17d3P37t2dr169ak1PT3cEkBofH++pKIo7gKmiKB4EAEmSHuJ5XjeZTPX/BOSFF4BPPwXGjAEKCoAm+L5brVbs2bPHevr0ac5oNCYxxjY0ehCEENLEKNkmhBBCmhlBEAbk5OS0OXPmTLUJqq7r2L9/P06ePMm8vb35+fPn37Z6dbt27fDwww9zhw8f1tLT07mYmBi+f//+eOihhxr0Hs6cOaOfOnWKy8zM5BwdHbXx48cLd+rR3OgYA5YsAebMsbf++vvf7bPcdZCVlYV169YBAK5evfrN5cuXnwXwI4AoABvfeOONUkmSjKIoKgAgSZKHwWD4csGCBbzQELPOggB88gnQuzdQWmpfWt6I0tPTsXnzZoumad+rqvrqkiVLCho1AEIIaSYo2SaEEEKaGZvN9ozJZBp49OjR4Y6Ojnzv3r1veX/t2rV6dnY2P3fuXK5Pnz7c3fb8du3aFfPmzRMAYNeuXXpcXBy/c+dOeHl5QZZlWK1WyLIMm80GWZahKApkWYaqqlBVVVNVlWmaBk3TwBjjdF3nVFXlBEFgzz33HH99ebjFYsGJEyeQnp6uZWZmCu3bt8e8efPQs2fPplvHfDspKfbiYbIMvPIKcPYs0LOnfa82zwO12Eft7e2Nnj174uLFi9B1vTsAR1EUbTcfc1OizTk4OKwZMmSIY9euXev3nm62a5f9IUJFBeDr23DXuYksy9i9e7ft9OnTVYqiPCyK4v5GuTAhhDRTlGwTQgghzYwoikySpP9kZ2d/n5aWZuvdu/eNpsWFhYW4cuUK/8ADD6Bvdf2h72LKlCm8LMt6eno6d/HiRWY0GmE0GpnRaITJZILJZGLt2rXjTCYTbzKZOKPRKFw75ld/9u3bh6+++kp7/vnnBQBISUnBwYMHERgYKEyfPh0eHh71+F2pZ717A8OGAVev2vc1P/YYMH++fVb4ww/tyeoLL9iXla9aBfz5z8CiRYDJZH9PkoAtW1BkNCJSlqvYkSNOTp6evCoI00fExbkCyL/Nle93dHQcPWHChIad5nd0BLp3B0aMAP7v/xr0UgBw9epVbNiwwWyz2SIURXlGFMWSBr8oIYQ0c5RsE0IIIc1TMgBkZ2drR48elUeMGGECgK1bt+oDBgyAn59fnfb6chyHsLCw6+feUxnshx9+mPvnP/8pbN++XZ81axafkZGh+fr6CjNmzLiXYRuHyQTs3v2/r1NS/vf3l14CjEbgs88Amw3o2BF48EGgb18gLw/gOGiM4cyHH6LSxQWl/v7cw1u2XNk7eXL3Xunp+YEJCRfAcd0AnAOwC8BXAETZaFwWMnHi14M5ro3h+eeBN98EJkywj3v8ODBuHGC12gu2+fjc2/25uwOzZwNxcUBDzqDDXqBvw4YNZlVV/xgeHv59g16MEEJaEGr9RQghhDRDoigmC4LwYHZ29vG4uDhdVVXouo68vDyuR48ezeLz28nJCU888QQSExN5XdfRpUsXIT8/X2vquO6Zo6N9hrtfPyAgAGjfHnjqKcDf354cf/ABsior8dPcudg3eTKuduni/J9XXumePHAgtj/wQFsw1g5AGYARABYDSAGwatNDD3mbu3fv0CEw0J5QZ2QAFy8CycnAypVAairw4ovA8OH2pN7NDXjtNWDNGmDkSOD0aeAvf7HPsBcV2Ze/R0fbX//vf+1LxhMTgQsXAE0D3njDnsh36dIg3ybGGE6dOoUNGzZUKYoylRJtQgi5Fc1sE0IIIc3Um2++uVmSpD1ms3nn5s2bh/Tq1cuZMcb16dOnqUO7oUuXLnBzc2NLly7lBEGAoihCcnIy/P39mzq0BtWlSxc888wz+PrrrzVVVb8HMFXTtI6MMfuabcYYgIybTtmUuWJFxIQJE5z44GD7K9999793p0y5dtQmXDsfSE+3J/0WC+DhYV8WPmYMUFZmT9ZtNqCqyr4Uft06YOJE+3J3Jydg6VJg5kz7WA1QmE5VVWzYsMFy+fLlSk3THqWWXoQQ8muc/bOAEEIIIc2VJEltAFQCQGBgoBoWFtasHpYrioIzZ87Ax8cHubm52LZtGx5++GE0p4cC9c1iseDTTz+12Gy2rTab7fcA3GEvjJZZ3fGSJHUSBCH75ZdfNjVav3Fdt/+pQa/22pBlGWvXrjXn5ubul2X5d9eLvxFCCLlVs/qwJoQQQsiviaJY9e677yYMGjQooLkl2gBgNBoRGBgIAHB3d8eVK1cQGRmp9+nTp1ksd28IR48e1axW6z5Zln8viiLD7QuiAQA4jvtjv379tEZLtAF7VXW+fn8EVqsV3377rbmoqGibLMuPiaLY8rcNEEJIA2m1H4KEEEJIa2I0GjO9vLzuqaBZY3F0dISDg0Or/h1D13WOMXb1WqJ9R5IkGYxG48vBwcF1a+TdTJjNZnz11VfmoqKi9bIsz6dEmxBC7qxVfxASQgghrYWiKBfz8/P1po6jJnieR2vepsYYQ1pamkVV1bganvJg+/bt2zRoX+0GZrVa8dVXX5nLysq+kGX5T6Iotoh/i4QQ0pQo2SaEEEJaAE3TvklKSrJlZ2c3dSh3deXKFa19+/ZNHUaDKCkpwdq1a5GXl9eGMbbmbsdLksQbjcYPp06d6sJxLWJhwq9omob169ebKyoq1suy/FJNZvMJIYRQsk0IIYS0CKIoJiiK8sLXX3+tHDlyRG7qeO6E53lYrdZWmZAdOHDAmp6eDkEQVoqiqNbglFHOzs6Ovr6+DR5bQ9m2bZs1Nzc3VpblpynRJoSQmqNkmxBCCGkhRFFcrWnag3Fxcc062Z4wYYJw8eJFrrKysqlDqXc9e/Z0BABN02rUU9poND42dOjQNg0bVcNJTExk586dy5dleTbt0SaEkNqhZJsQQghpWc6azWZ+3bp1VRUVFU0dS7W8vb3h7++vfvjhhyw+Pr6pw6lX6enpVo7j3hJFMbYmxwuCMKl79+4tcv14cXExduzYYZVlOUwUxaqmjocQQloaSrYJIYSQFkQUxQuapnW9dOmSOT//jt2mmtScOXMMc+bM4X7++Wd8/PHHmq63/Hpa5eXlOHfuHGOMrarJ8ZIkdVAUpWuXLl0aOrR6p2kaNmzYUKXr+mJRFBObOh5CCGmJKNkmhBBCWhBJkrxMJtMhjuPad+/evanDuSM/Pz+88sorMJvNwpEjR5o6nHvCGMO6detkjuM2iaJYVMPT+ri6uloFQWjQ2BrCvn375PLy8qOapn3Q1LEQQkhLZWjqAAghhBBSK56yLPt369ZNbQnttYxGI9q2bcuuXr3aIpdSX7dz507k5eWZAHxei9PcHB0dGyqkBpOeno6TJ09WKoryKBVEI4SQuqOZbUIIIaQFubakd/CVK1f0nJycpg7nrqqqqpCXl8d169atqUOps5KSEpw4ceL6l9GSJNX0wcGR/Px87ezZsw0UWf2zWq3YtGmTRVGUh0RRLGzqeAghpCWjZJsQQghpYURRTDSZTKfz8vKa/Ubodu3a4aGHHsL+/fsRGRkJWW7WhdSrVVpaCkdHx7MA+vE8vwvAUEmS7ro6UBTFclVVJ/30009VV65cafhA68G+fftsuq7/IIpiZFPHQgghLR0l24QQQkgLZLPZ/rh3715rS5jd7t+/P8LCwhAdHY1///vfLCcnp0Ul3T4+PjAajT14np/MGMsGcBzABEmSekiS1OFO54qiGK+q6mM//PCDWVVr0pa76WRnZyMpKckqy/JLTR0LIYS0BlxL2O9FCCGEkFtJkuRgMpmSZs6c2XfgwIFNHU6NWCwWHDt2TD948CDPcRzc3d1ZWFgY17lz56YO7a4KCwuxZs0aW3l5uQPHcVmMsW6CIERqmhZ67ZBAURQTbnf+ihUr9oSEhEwICQlpltXSdF3HqlWrqoqKip4LDw//tqnjIYSQ1oCSbUIIIaQFWr58+d+9vLz+vGDBAueWVu1a0zSUl5fjgw/sha5Hjx4NV1dXuLu7IyUlBYwxnDt3TnN1dRWCgoIQEBDQxBHblZSU4OOPP7ZpmhYkiuIZSZK8ANyytMBgMPxDVdV/iKJYcPPrkiT1MRqNiS+88IJT27ZtGzXumjhx4gTbt2/fKZvNFkRF0QghpH5Qsk0IIYS0QO+9997F+fPn+/r4+DR1KHVWVFSElJQUHD9+nFmtVo4xhi5dumiMMXTv3l0wm83s9OnTHGOMeXh4cMHBwWjqWfyEhAS2detWDgB4no/WdX1MUFAQevfuDUdHR5w8eVJJS0s78tprr43/5bnLli17z9fX94V58+Y5NX7kt2ez2fD+++9bbDZbiCiK8U0dDyGEtBbU+osQQghpgWw2m09qaiqMRiM8PT2bOpw6cXNzQ0hICEJCQm6u7n3zND03atQoxMXFcWlpaWzr1q2ct7c3ioqK4O7uDoPBAMYYXF1dGy3mgIAALjk5WRUEweDl5TWmf//+8PDwuPG+oijGtLS0ap+AKIryt4yMjMdSUlKc/Pz8Gi3muzl8+LACYAcl2oQQUr9oZpsQQghpgSRJmmIwGGZxHDevZ8+ejnPnznU2mUxNHVaD+uGHH7Rz584JJpMJiqJA0zRwHIfw8PCmDg0AUFZWhs8++8xitVrnhYeHb63uGEmSRphMpsjnnnvOqTEfEtxOWVkZPvroI4uqqveJotgySqYTQkgLQck2IYQQ0oJJkuRoNBo3+Pv7T5k9e7ZjU8fTkBRFQVZWFnr06AGr1YrvvvuOqaqqP/vss02+ab2iogJffvml2WKxvP3GG2+8d6djly5d+m6XLl1eWrBggTPPN21jmC1btljOnTv30RtvvPFqkwZCCCGtELX+IoQQQlowURStmqYlGQyGVv+ZbjQa4evrC47j4OTkhNLSUq6srIz/5ptvkJGR0WRxFRYWYvXq1WaLxfKPuyXaAKCqqpSbm5t64sSJJp3xKCwsREpKiq4oyrKmjIMQQlqrVv/BTAghhLR2RqOx7aVLl7Ty8vKmDqVRvfDCC/Dz82NWqxW7du3SVVVFSkoKzpw502gxXL58GV988YWloqLir2+88cbfanKOKIqKzWb7w/79+61VVVUNHOHt7du3z8wYWy6KYmmTBUEIIa2Y8Le//a2pYyCEEELIPdi/f/8eWZad0tLSgnx8fIwuLi7gOO7uJ7ZwBoMB/fr143r27Ino6GjuyJEjOH/+PE6fPg1/f3+0adOmQa9/5swZbNq0qUpV1dnh4eEba3NuaGhoweHDh7uZzWb/vn37NnrB2oKCAuzfv9+iqupDoaGhSmNfnxBCfgso2SaEEEJauNDQUBw4cCBKURTnU6dOBXTs2NHh5grZrZ2TkxP8/PzQr18/zJgxA7Isa7t27UJVVRXXtm3bek+6zWYzdu7caT18+HCJoijjRFGMrcs4kZGRsQUFBf/n5+dnaugHA7+0b98+a35+/vtvvfXW7ka9MCGE/IZQsk0IIYS0AqGhoWzMmDGRBw4csAqCML5///6/qfaezs7OaN++PTiOQ8+ePXmO49ihQ4e4pKQkjB49+p5n+m02Gy5cuIADBw6YIyIi9KKiorWKoswURTGzrmOGhoZaDh48qJWXl48aMGCA8Z4CrAWz2Yxt27apqqr+PjQ0tOnWsRNCSCv3m/ogJoQQQn4DfkhNTX3tk08+aTN+/Pi2zamfc2PhOA6jR4/mhw0bhi+++EKPiIjgw8LC7ngOYwxlZWUoKSlBZWUlzGYzNE1DQUGB9dKlS0pFRYWjg4NDgtVqXcsYW/vmm28W1kesuq5/duHChfDi4mJ07NixPoa8qxMnTmiCIGxbsmRJXqNckBBCfqOo9RchhBDSykiSJACYZTQa1y5cuND5t7Sk/Jfi4+MRGRmp//Wvf72lKKymabh8+TIuXryoXbhwoaqoqMiR4zizwWC4DCBb1/UcXddtiqKkAYgGkCSKYoPsbV66dKnUv3////fAAw84NcT4N1MUBf/6178sNpttmCiKyQ19PUII+S2jmW1CCCGklRFFUQPw0zvvvPPnL7/88lOe5xEUFMQmTZrUqvtwV8fT0xOqqt5YQ56Tk4O4uDjr2bNnOUEQLimK8qOmafsBJIqiWC+z1bWlqurnKSkpr06bNg2Ojg37I4qPj2cADlOiTQghDY9mtgkhhJBWTJKkATzPL9V1PUwQBKZpGtehQwfdbDbbDAaD5u3tzfLy8nhPT09+7ty5Tk5ODT652qhiY2OxZ88evPTSS4iIiDBnZGSYdV3/UNO0r0RRzGrq+K5bsWLFT2PGjJk1evToBmvLqmka/v3vf5vNZvN4URSPNdR1CCGE2FGyTQghhPwGSJLkznFcJmPMkef5HF3XRwNwADAYQAWAiAULFsDX17dpA61nVVVVWLVqFaxWKwRB+FmW5QdEUbQ1dVy/JEnSUGdn50Mvv/yysyAIDXKNpKQk7Ny58/jrr78e3CAXIIQQcgtaRk4IIYT8BoiiWACgumnrc5IkcUajMbO8vLxbY8fV0IqLi2Gz2aBpGjRNe6w5JtoAIIriyffeey/9woULA++7774GucbRo0crbDbbigYZnBBCyK802FIlQgghhLQMoigyjuMOFhYWtqrlbvn5+VizZo1ZVdUZoihyoigWN3VMd2Kz2bZnZmbqDTF2YWEhCgsLdQDbG2J8Qgghv0bJNiGEEEIgy/LKmJgY1pq2l504cULWdf3foijubOpYaoIxllxUVNQgfa9PnDihAFjdUBXVCSGE/Bol24QQQggBgBSDwZARERFhaepA6ktaWppV07SfmjqOWsivqKio95ltVVVx6tQpTVGUVfU9NiGEkNujZJsQQgghEEXRLMtywJkzZ4rOnj3b1OHcM8YYKisrHQFcbupYaqGXq6trvdfTOXfuHHiePy2K4oX6HpsQQsjtUbJNCCGEEACAKIqVsiw/vH37dovVam3qcO5JRkYGBEG4AqCoqWOpKScnp9/dd999bep73Li4uAqr1fqv+h6XEELInVGyTQghhJAbRFGMZYztio2NRVpaGlrqHu6SkhJwHHdMFMUWcQOSJBllWQ7p1atXvY5bVlaG3NxcDkBLWk5PCCGtAiXbhBBCCLmFzWaLOHToENatW4dTp07d8p6iKFBVtYkiqzmz2QxFUXKaOo5amODm5qa4uLjU66ApKSlMEITdzbXlGSGEtGbUZ5sQQgj5/+3deXxV1b338d/e5+x9MpGQF7OATN4CRSgIIloea0GtV21qUR7Hii0tWoc+7avtvdZi1l1Ba+3tvVevt6BFSikyVKwTFkRFKo8IyDwFEJAkDIYxAxnOOXufvZ8/THxAQQick31CPu/Xi1eSzcla3/yVfM/aey183iuGYXQ3DMNbunTpw7169crKz8+XXbt2yaxZs7x27dpFJ0yYkGVZVtA5T6m2ttZNJBIHgs5xpiKRyLjBgwe3Sfa4a9asqYnFYn9M9rgAgNOjbAMAgBMopSpERIuIPPbYY8eeffbZ34wYMcIqLS11ROTX1dXVV77xxhvfuummmzI3btwoubm50qtXr2BDf86hQ4fqRaQs6BxnQmvAdmADAAAgAElEQVRthcPhgq9+9atGMsc9fPiwVFVVJURkcTLHBQCcGco2AAA4pYkTJz6ltX5r5cqVvzYMo63v+5Pj8fj04uLiPdXV1XX79u076Pt+u69//esZV155pWWawT+h5nme7N27Nywiq4LOcoZG5ufnJ/Ly8pI66Nq1ax0RmaGUSiR1YADAGaFsAwCAL6WUKhaRO4+7FNNaX1pSUnKFiLwiItkrVqyYt379+oFjx47N7tq1q4h8er5zaWmplJeXS05OjgwaNEgMI6mLtyf1wQcfJERkq4h8nPLJksAwjOG9evXKSOaYiURC1q5d6zqOMzmZ4wIAzhxlGwAANJlSapuIbGv4skJrfUUsFrtlxowZM8aPH5/Zvn17mTZtWl1lZWVpIpFYahjGVbFYrO/w4cOTmiMajUpFRYWEQiGJx+OydetWd9WqVdWO49zUUnYiz8jI+EbXrl3tZI750UcfiWEYW5VSHyVzXADAmaNsAwCAc9ZQbOdNmjSpzQsvvPDMkCFDso4cOVLnOM4ApZSvtf7R3r17nxo+fHjWuc7l+75s2bJFlixZcqyqqsq2LOsT3/fDhmFEPc9b6jhOoVJqXxJ+rJTTWofC4fDXu3fvntRxN23aVBuNRqcmdVAAQJNQtgEAQNI8+uijfyoqKqpatWrVHa7rTjtudXnLrl27ZN++fdJ4m/nZWrRoUXTdunUH4/H4D0VkycSJE9P/LLJTu71Dhw5mfn5+0gb0PE927twZFpHXkzYoAKDJDN9vEXdYAQCAFu6xxx77vmmav2vbtm1k6NChbdq3by95eXnSrl27E57lrq2tlfLycqmqqhLTNOWCCy6QDh06iGEYUl1dLc8880yd67oXKKWqAvxxzpnW2haRmGVZcvHFF8vQoUPP6Y0Iz/PEdV0pLy+XWbNm7f/Vr351bu9qAADOCSvbAACgWUycOHG61vovhw4dum7JkiV3mab5T4lEokdOTk7m3XffnV1dXS3vv/9+3a5du0zbtjf7vv+xiEQSicTI7OzsjOuvvz7bMAwJhUKHf/3rX7fooi0iYprmg/n5+YmBAweGysrKEjNmzAiJiIRCIV/k09vlGz4ax33+2cfGf8dfNwxDfN+XUCi0v5l/HADA57CyDQAAAqO1NkKh0B86dux47+HDh+tc133Y9/0Xjl+11lobhmHcaFnWlHg83tUwjNmFhYV3ftm46U5r3SEcDu+eMGFCdocOHUTk08J8+PBh8X1fDMMQ0zRP+fHznzd+LSIye/bsYzt27LhfKfVCkD8jALR2rGwDAIDANGyeVnj48OFcx3H+Sym15mSvEZH5WutFtm3/Lh6PvxxA1KSybfs/Bg8ebDUWbZFPV6WP//ps+L4vZWVlYRFZeo4RAQDniJVtAACAZqS1viQSibz/05/+NDMjI6nHa8vhw4dl6tSph3/1q1+dW2sHAJwzM+gAAAAArYXW2ohEItOuueaajGQXbRGRnTt3imEY7yR9YABAk1G2AQAAms/1WVlZFw0ZMsQ4/Uubbtu2bdWxWOylVIwNAGgayjYAAEAzaFjVfnL06NE5ppn8P8F835cDBw5YIrI26YMDAJqMsg0AANA8RmdkZPTs379/SgY/fPiweJ5XIyIlKZkAANAklG0AAIAU01qHIpHI06NGjcpOxaq2iMjHH38shmG83bB7OwAgYJRtAACAFDNN8/527dr1GDhwYMrmKC0trYnFYmyOBgBpgrINAACQQlrrPNM0Hy8oKMg2jJTsiyYiImVlZSIiK1M2AQCgScJBBwAAAEg2rXV2OBye5rruA0qpI0FmsSxrYr9+/cKdOnVK2Ry1tbUSjUZDIrItZZMAAJqElW0AAHA+utl13VtF5IogQ2it+4rIA1dffXVmKufZtm2bWJa1VCnlpXIeAMCZY2UbAACcV4qKisaKyIyGL98OKkfDUV8vjh49OiM3Nzelc61atepYNBp9JqWTAACahJVtAABw3pg0adLdvu+/2PBlO6VUNMA4/8u27T5Dhw5N3YPaIhKLxeTQoUMREWFzNABII5RtAABwXigqKvp5Zmbms0OHDpVIJPKiUupokHkyMjKKrrzyypQd9dVo586dEolE1iqlYimdCADQJNxGDgAA0pLWOltEcpVSn5zmdYZhGOMty3rszjvvzFizZk0sFosFuiu31vriSCQy/Gtf+1rK51q/fn1NfX39H1M+EQCgSVjZBgAAaUdr3TMcDu8Jh8Mljz/++H9qrU/6N4vW2rBt+09t27Z9avz48RldunSRnj17RmzbnqC1tpo7d0Mm27btuVdddZVtWamNEI1GZffu3ZaIvJLSiQAATUbZBgAAaUVrnRcOh1dfffXVbcaPH2+7rvszwzBOeqSVYRjfy8nJGXvvvfdmd+zYUUREBgwYIF27du1uWdakZg3ewLbtp7t37977sssuC6V6rrVr13rhcHihUqoy1XMBAJqGsg0AANKKZVn/2r9//6zLLrss3KlTJ8nMzBTf9/9Ja33C8Vla6+6hUOgPt9xyS3YkEvnsumEYMmbMmCzTNH+itb6mObNrra8Mh8N333zzzZmGkdJ90cTzPFm2bFk0Fos9ntKJAABnhbINAADSiud5/+eqq67KFPm0OP/iF7+Qiy++OGrb9mat9UgREa31AMuyVo8aNSqjS5cuXxgjJydHbr/99kzbtl+bNGnSd5sjd8NRX/997bXXZmVmpvRYbRERKSkpEc/z9iilVqd8MgBAk1G2AQBA2tBa9zQMI5yfn//ZNdM0ZcyYMRkFBQW9MzMz3/rtb39bYlnWqhtuuKHD5ZdffsrNXnv06CH33HNPZjgcfqGoqOhbqc5uGEZBZmbmRQMHDkz1VCIismnTpmg8Hv9zs0wGAGgydiMHAABpw7Ksf7300ktDn78F2zAMGTBggPTr1y/zk08+6dG2bVvJyck57XhdunSRu+66K2vmzJkvFxUV3V5YWPh6KnJrrfMty5peUFCQ8qO+REQSiYQUFxeL53kvnv7VAIAgsLINAADSRigU6tK+fftTbiwWCoWkW7duZ1S0G3Xv3l3GjRuXFYlE5j7++OMPa62T/jB1JBL546BBg7J69eqV7KFPaseOHWKa5kdKqY+bZUIAQJNRtgEAQFrQWhue513WuXPnpI/dtWtXue+++zLz8vIm2rY9S2s9IFlja63H2rZ9/bXXXhs5/auTY/Xq1TXRaPS/m2s+AEDTUbYBAEC6GBQKhXJTUbZFRPLy8mTChAnZAwYM+G5GRsaqJ5544vfnOqbWup9lWX++7bbbsmzbTkbM06qsrJTS0lJTRLiFHADSGGUbAACkhVAo9M+9evWSVB6ZZdu2FBQUZDz00EOZGRkZP37sscfO+rZyrXUf27bfuuaaazIuuOCCZEc9peXLl8cNw5imlDrWbJMCAJqMsg0AANKCZVlDevfundUcc2VlZckPfvCDrNzc3Edt2/6z1jrjTL9Xa21MmjTph5ZlrR89enTXYcOGNdvfU/X19bJ27VrPcZx/b645AQBnh7INAADSguM42/bt2xdvrvny8vLk3nvvzerVq9cttm3vaDzD+8torTtFIpH327Vr99T48eNzhg8fbqZyJf7zli5d6pim+aJSak+zTQoAOCsc/QUAANKC7/uXrVu3zi4oKGi2OSORiNx2221ZW7ZsyVqwYMGiJ598cms0Gv2TiKwRka1KqWqtdUhELgmHw2PD4fADw4YNC48aNcpujiO+jldRUSGrV692Xdd9pFknBgCcFco2AABIF7179Ojhi0jzLRU3GDBggPTt2zdrx44dQ4uLi/vv37/fraqqyvzNb35TGw6H7ezs7ETfvn0jI0aMsPPz85s7nvi+L/Pnz68Tkd8qpfY1ewAAQJNRtgEAQFrwPO9x27b/R0TO/BDtJAqHw9K/f3/p379/lsinBbeqqqqtZVmSnZ0dRKTPbN++Xfbt23fEdd0nAw0CADhjlG0AAJAuFpeWloZ930/pjuRnyjAMadu2bdAxJB6Py/z58+vi8fg4pVSzPdMOADg3bJAGAADSglJqr+d5bk1NTdBR0sqSJUucRCKxUCm1JOgsAIAzR9kGAABpIxQKVUWj0aBjpI2DBw/K6tWr47FY7IGgswAAmoayDQAA0orv+0FHSBsLFiyo9TxvolLqQNBZAABNwzPbAAAgLWitM03T7JiXlxd0lLRQUlIin3zySY3neZODzgIAaDrKNgAASAuWZf22d+/ebiQSsYLOEjTf92XhwoU18Xj852yKBgAtE7eRAwCAwGmt+xqG8aNvf/vbmUFnSQfbt2+XqqqqAyIyJ+gsAICzw8o2AAAIlNbaiEQiz11++eVW0OdZpwPP82TRokW1sVjsJ0opL+g8AICzw8o2AAAI2o2ZmZnDRo4cySKAiBQXF0t9ff3HIrIw6CwAgLNH2QYAAIHRWufZtv3sddddlx0KhYKOEzjP8+Sdd96pjcViv1BKsS07ALRgvIMMAAACE4lEZgwYMKBd3759g46SFrZs2SLRaPRjEXk76CwAgHPDyjYAAAhEUVHR9ZZlXXPddddFgs6SDjzPk8WLF7OqDQDnCco2AABodlrrr4bD4dnf/e53syyr1Z/0JSKsagPA+YayDQAAzpnWur3W2j7D146wLGvZjTfemNu7d+9UR2sRfN9vXNX+JavaAHB+4JltAABwTrTWl4nICsuypojI/V/yOiMSiTxjWdYPx4wZE+nXr1/zhUxz27dvl2g0uk9E3go6CwAgOSjbAADgrGmtu4vIChERx3G6fdlrw+HwL3Nzc+/5/ve/H8nMzGyWfC2B7/vyj3/8oyYWiz3KqjYAnD+4jRwAAJw127Yfb/j0GRG56VSv01r3Mgzj326//fZsivaJdu7cKRUVFZUi8regswAAkoeyDQAAzorWuofv+2Ovv/56sW37ehHJPdVrI5HIlJEjR9r5+fnNmDD9JRIJWbBgQa3jOA8qpRJB5wEAJA9lGwAAnBXbtv/z0ksvDQ0bNkwGDx7czbbtrVrru7TWJ2wvrrXulUgkrhoxYkQoqKzp6oMPPnDr6+s/9H3/9aCzAACSy/B9Hg0CAAAnp7UeJCL7lFJHjr8+adKkH7Rp0+aZ+++/P8u2P92EfNeuXfLuu+/WHDx40DBNc148Hp8sIiW2bf9lxIgRV3/zm99kr5jjVFRUyJQpU+ocx7lYKbU76DwAgOTilx4AADgprfXXRGS9YRg/E5GnGq9PmjTpe5FI5H/uuOOOzMaiLSLSp08f6dOnT05VVZWsWbPmrvXr199SX19vd+nSxRk5ciR/cxzH932ZP39+ne/7T1C0AeD8xC8+AABwKusbPn72LLbWuo9lWZPvvvvuzI4dO570m/Ly8mTUqFHhUaNG5TRcOqPzt1uTDRs2+Pv27St3Xfd3QWcBAKQGz2wDAIAv0FoPafh0fTgc9kREioqKrrcsa/W1116b1blz5wDTtWyVlZWyYMGCaDweH6OUigedBwCQGqxsAwCAk1nR8HHoI4884mmtLwmHw6/ccccdds+ePYPM1aIlEgmZN29ebcPt4xuCzgMASB1WtgEAwMnYIiJKKU9rbViWdX+/fv1civa5eeutt+JHjhxZ7bruE0FnAQCkFruRAwCAE2itLxKRHQ1fjrAs62f5+fnfvueee7IyMzODjNaibd68WV5//fUDjuN8VSl1NOg8AIDU4jZyAABwglAo9L3c3FyvoqLCFJEV/fr1q7/hhhsyI5FI0NFarP3798vrr79e5zjOdRRtAGgdKNsAAOAE4XD4nptuusm88MILGy+xnH0Oqqur5YUXXqh3Xfd7Sqn1p/8OAMD5gGe2AQDAZ7TWg03TbN+9e/ego5wXHMeRmTNn1jmO80RhYeHLQecBADQfyjYAAPhMJBL5+YgRIyKGYQQdpcXzfV9eeuml+urq6r+7rvtY0HkAAM2Lsg0AAERERGtteJ737YsvvjgUdJbzwbvvvuuUlpZuj8fj31NKsSMtALQyPLMNAAAafc227XB+fn7QOVq8jRs3+itXrqxwHOdapVQs6DwAgObHyjYAABAREdu2f3bppZdmcAv5udm+fbu88cYbNY7jjFZKHQo6DwAgGJRtAAAgWusLPc/730OHDuUW8nNQUlIif/vb32obivbmoPMAAILDbeQAAEAikcjzl19+eTgnJyfoKC3WgQMHZM6cOfWu696klFoVdB4AQLBY2QYAoJXTWvcXkZFXXHEFb8KfpWg02njE148KCwvfCToPACB4/FIFAAA3Dhw4MGRZVtA5WqT6+nqZPn16neM4MwoLC2cFnQcAkB4o2wAAtHKhUKhddnY2Tfss1NbWyvTp02urq6unO47zk6DzAADSB7eRAwDQyiUSiU2ffPJJTdA5WpqamhqZNm1aXXV19RTHcX7CWdoAgOOxsg0AADaVl5cHnaFFOXr0qMyYMaOuvr7+94888ogKOg8AIP1QtgEAwLba2trwsWPHpE2bNkFnSXslJSUyd+7cetd1/2XixIl/CDoPACA9cRs5AACtnFIqHg6HF2zdujXoKGlv9erV/uzZs4/F4/ECijYA4MtQtgEAgMRisVe3bdvGc9un4LquvPrqq7G33367zHGcYRzvBQA4Hco2AAAQEXmttLQ0w3XdoHOkncrKSpk6dWrd1q1bl8Tj8YFKqY+CzgQASH+UbQAAIEqpY7Ztl7JR2om2bt0qU6ZMqT969GhRPB6/Xil1LOhMAICWgQ3SAACAiIj4vv/Bvn37+nTr1i3oKIFzXVcWLlwY27RpU4XjON9RSn0YdCYAQMvCyjYAABARkVgs9l5ZWVlt0DmCVllZKc8991zt5s2b33Icpx9FGwBwNljZBgAAjVbt2bPHCzpEkBqP9UokEv/muu5/KKX8oDMBAFomyjYAAGi0pa6uLtQaz9v2fV8+/PBDb/HixTWu697MbuMAgHPFbeQAAEBERJRSCdu239+9e3fQUZqV67ryyiuvRN99990Sx3GGULQBAMlA2QYAAJ+JRqNL9+7d6wSdo7lUV1fL1KlTa7dv3/5OPB4fpJT6OOhMAIDzA2UbAAB8xvf9eRs3bnQTiUTQUVJuz549jcd6PRmPxwuUUq1+czgAQPIYvs++HwAA4P978sknN950000D+/btG3SUlFmzZo2/aNGiWtd1by0sLFwQdB4AwPmHlW0AAHCCaDT6zJo1a87LVd5EIiHz58+PvfXWW3scxxlK0QYApAplGwAAfN4ru3fvtlzXDTpHUkWjUZkxY0bdli1blsXj8YFKqY+CzgQAOH9RtgEAwAmUUodDodDBo0ePBh0laSoqKuS5556rO3DgwF9isdi1SqnqoDMBAM5vnLMNAAC+wDTNfVVVVd06duwYdJRztmfPHpk9e3a94ziPTJw48emg8wAAWgfKNgAA+ALDMGItfUfyRCIh7733nrt8+fL6RCJxG89nAwCaE2UbAAB8ge/7HbOysoKOcdai0ajMmjWr7tChQ2tc171VKfVJ0JkAAK0LZRsAAJxAa22bptm7U6dOQUc5KxUVFTJz5sza2traF+Lx+ANKqZa9RA8AaJEo2wAA4PMuadu2bTQSidhBB2kK3/dl1apV3jvvvBPzff9R13WfUkr5QecCALROlG0AAPB5X+vWrVuL+hvBdV1ZtGhRfOPGjXsdx/lnjvUCAAStRf0iBQAAzaJtTk5OJOgQZ6qmpkbmzJlTd+TIkWXxePxWpVRF0JkAAKBsAwCAz2ite5im+XXLskJBZzkThw4dkueffz7u+/6zjuP8UinlBZ0JAAARyjYAAGigtW4vIiWe50mXLl2CjnNamzZtkvnz59d7nveTiRMnPh90HgAAjkfZBgAAjR5v/KRHjx5B5vhSjuPIggULYsXFxYcdx7lRKbU+6EwAAHweZRsAgFZm0qRJ4z3P26iUWnX89Ugk0vaiiy6SwYMHS0ZGRlDxvtSRI0dk1qxZdXV1dW/F4/G7lVLHgs4EAMDJULYBAGhFtNZ5IvJ8KBRaKyJDj7tu2LZ9yaBBg+Siiy4KLuCXKCsrk9mzZ9c7jvMvnudN5lgvAEA6o2wDANC69LRt2wmHw/1/97vfbXAcx3Bdd4FhGDsyMzO79u7dO+h8J7VlyxZ57bXXal3XvaWwsPDNoPMAAHA6lG0AAFqXK3r37u0UFBRk7d69e9C8efNERAb6vi9VVVXiuq6Ew+n158HKlSsTixcvrnIcZzTPZwMAWgoz6AAAAKBZHa2rq0tkZmbK2rVr6xuuXWqapg6HwwvffPPNxmuyatUq/+mnn/Z37doVSNBEIiFvvvlmfPHixYcdxxlK0QYAtCSUbQAAWpf3ysvLLRGR4cOHZ4qImKZ5m+d520Tk2NGjRxMiIsuWLfPeeecd6datm/HXv/5VXn755cSGDRuktra2WULW1NTI1KlTa9etW/d/Hcf5qlKqpFkmBgAgSdLrPjEAAJBqF2dnZzsikvGVr3xFJkyYIMXFxT8rLy+v7dChQ8YVV1xhLV682Fu5cqU5btw46dq1q1RXV8uMGTNk06ZN0qdPH++uu+5K6Zv1Bw8elBkzZtTF4/H/cl23kI3QAAAtEWUbAIBWxDTN4d26dYs0ft2lSxfp0qWLKSJtjh07JnPnzvUqKytl/Pjx0qlTJxERyc3NlYceeij0+9//3quvrzej0WjKjgZr3HE8Ho/fV1hYODMlkwAA0AwM3+fNYgAAznda614i0kdEwl27dp37wx/+MO/4/z969KhMmzZNOnbs6N15553myTZJO3TokMydOzcRDoeNH//4x0ld3fZ9X5YvX55YsmRJXSKRuLWwsHBhMscHAKC58cw2AACtgGEY/y4ib1uW9b0LL7ww6/j/q6yslOnTp/u9e/f2x40bd9KiLSLSoUMHeeCBB0KVlZXGokWLvGS9YR+NRmXOnDl177333nbXdQdStAEA5wPKNgAArYBpmpeIiFiWNeYb3/iG1Xi9rKxMJk+eLJ07d/Zuvvlm4wzGkXHjxhkrVqwwq6urzzlXw/x1paWlc+Lx+CVKqdJzHhQAgDTAM9sAALQCiUTiFhFZc8stt2REIp89si3r1q3zunXrZtx5552hMx2rc+fO0qlTp8TUqVPNW2+91ejevXuT88TjcXnjjTei27Ztq3Uc58dKqXlNHgQAgDTGyjYAAK3DVhGRnJwcERHxPE/+/ve/J4qLi41vfetbp13RPp5pmnLfffeFhgwZYsycOVNWrFjhN+WW8vLycpk8eXLd9u3bX3UcpwdFGwBwPmJlGwCA1mGciEi7du3E93156aWXEmVlZcZ9991n5Ofnn9WAo0ePlj59+sjcuXNl7969ie985zshy7JO+Xrf92XlypX+u+++W++6LruNAwDOa6xsAwDQOjwq8umq9IcffuiXlJQY999/v3m2RbtRz5495cEHHzT2798vzz33nF9ZWXnS18ViMXnppZfqFy9efMhxnMso2gCA8x1lGwCA1mGnyKery++//76MHj3azMrKOt33nJGcnBx58MEHQ23btvWnTJkiR48ePeH/G28b37lz58uu6/ZSSm1OysQAAKQxbiMHAKB1eFpErty4caPEYjFjyJAhSR18/fr1snfvXqNnz56JnJyckMinz4UvW7bMXbp0acz3/Z9MnDjxT0mdFACANEbZBgCgdfhIROTVV1+V/v37+6ZpNmlTtFOJRqMya9Ys7+DBg2ZBQYExYMCAkMinq9kvvvhiXV1dXbHrujcrpcqSMR8AAC0FZRsAgNZhoIiIZVli23bs7bfftiKRSCgSiYht29L40bIsyc7Olvbt2592wA0bNsjChQv9bt26yUMPPSQ5OTni+74sX748sWTJkmgikfi57/tTlVJeyn86AADSDGUbAIDW4e8i8jPHcSIbNmyoFZE2pmnmhcPh9qZptjVNM9f3/dz6+vrLREQefvhhOf487uPF43GZNWuWV15ebt5www3GwIEDDcMw5ODBg/Lqq6/WHj16dIfrumOUUrub8ecDACCtGE05FxMAAJzftNZ9RWTbuHHjpGfPnl/4/+LiYpk/f77fqVMnf8yYMWZubq64rivvvfees2LFirjneQ97njeZ1WwAQGtH2QYAACcoKiqqHzt2bEb//v0/u+a6rsyZM8fbs2ePed111/lDhgwxDMOQQ4cOyV//+tfampqaZbFY7PtKqf0BRgcAIG1wGzkAADiBaZqvbN68+db+/fubIiLbt2+X1157zWvfvr088MADkpeXZ/i+L2vWrPEXLVpUn0gkfu553h+VUryDDwBAA8o2AAA4QSKRWFRSUjLGcZzIvHnzvJKSEvOaa64xhg0bZhiGITU1NTJz5sz6ysrK/Y7jfFsptTXozAAApBtuIwcAACfQWl8oIqUiIh06dPDGjh1r5ubmyt69e6WsrMxZvny57/v+867r/lwpFQ04LgAAaYmyDQAAvkBrnWea5jbP8zqLiFiW5YjIQdM0V8disd8rpd4POCIAAGmNsg0AAE5Jax0RkTYi0kNE1rHLOAAAZ4ayDQAAAABAkplBBwAAAAAA4HxD2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAJyj9QoAAAAlSURBVAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMn+H9ifxVrebqluAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.rcParams[\"figure.figsize\"] = (20,15)\n", - "ax = rs_df.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = wq.plot(rs_df, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAANNCAYAAACHtm2CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3gU1foH8O87O1vSE0IKIQHSCCV0AhICiUiVItUGIggqKiJWFL3sHRCJoj/LvYgFFZEuIigCIlVCDaACIjUklJBCSYEkm92d8/vjbGAJod0bL5b38zw8JDOzZ87MzvPAd04jIQQYY4wxxhhjjDFWfZRbXQHGGGOMMcYYY+yvhsM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhgDEX1ARP+41fX4TxHRP4lodjWVNZOIXq2Osm7yvIKIYv7X571ZRDSMiNJudT2qGxF1IKIDN3hsChGd+L3rxBhj7M+NwzZjjP0NEFEmEZUS0XkiynEFSu+K/UKIUUKISf9h2SYimkBEB4joAhGdJKIVRNS1+q7gz4GIRhDRfiIqJqJcIvqOiHx+h/OsJ6IyIopw29aZiDKr+1x/VERUy/WCIsRt28tX2bbyeuUJITYKIeKqqW635IUNY4yxPxYO24wx9vfRWwjhDaA5gBYAXqqmchcBuAvAUAABACIBvAugZ1UHE5FaTef9QyGiZACvAbhPCOEDoCGAhb/jKS8A+NP2RrhZlZ8bIcQpAIcBdHTb3BHA/iq2/fi7V5AxxhirhMM2Y4z9zQghcgB8Dxm6AVzZEkdEDxPRYSI6S0TfEFFYVWURUWcAXQDcJYTYJoQod/1ZKYR4yu24TCIaR0S7AVwgIpWIXiSiI65W4H1E1M/t+GFElEZEbxLROSI6SkQ93PZHEtEG12d/AFCzUr1uI6LNRFRARL8QUcrV7gcRtSCiXa6yFgCwVNp/Q/cCQAKALUKIn1z3+awQ4nMhRLGrnPVENLLyNV6tXjfgPQD3Xa3rORE1dJ2zgIh+JaI+bvtmEtE0V8t7MRFtI6Jot/2CiMYQUQYRnSaiqURU5f8ZiOhdIjpOREVEtJOIOrjt+ycRLSSiWa7z/EpErd32X+8Z2EREbxPRWQD/rOL0P8IVrInIAPkS6d1K29q5jgMRmV3P1DFXz4MPiMjDte+yruFE1JKIfnLV7UsiWlC5tZqIniWiPCI6RUTDXdseATAYwAske5J869o+jmSvj2KSvUDuqOp+MsYY++vgsM0YY38zRBQOoAdkq2BV+zsBmALgbgC1AGQBmH+V4joD2CaEuJHxq/dBtnb7CyEcAI4A6ADAD4AGYDYR1XI7vi2AA5BB+g0AnxARufbNBbDTtW8SgAfd6l8bwHcAXgVQA8BzAL4ioqAqrtUEYAmAL1zHfglgwH94L7YB6EZEGhG1JyLzDdyTKhHR/a4XE9dyEsDHqCKEEpERwLcAVgEIBvAkgDlE5N5N+j7I+x4A+SxMrlRMPwCtAbSE7Lnw0FXqkQ754qYG5PfyJRG5v7DoA3nP/AF8A+Dfbvtu5BnIcF1D5foBbmEbMmjvB7Cm0jYjgO2u318HUN9V3xgAtQFMqFyo67n4GsBM13XNg7wf7kJd9a4NYASAaUQUIIT4CMAcAG8IIbyFEL1d9300gARXr4duADKruB7GGGN/IRy2GWPs72MJERUDOA4gD4D1KscNBvCpEGKXEMIG2d28HRHVq+LYmgByKn4hohqultRCIiqrdOx7QojjQohSABBCfCmEyBZC6EKIBQAOAWjjdnyWEOJjIYQTwOeQYTeEiOpAtiL/QwhhE0L8CBksKwwBsFwIsdxV9g8AdgC4s4r63wYZxt4RQtiFEIsgw+NN3wshxEYA/SHD6XcAzhDR/7laV2+KEGKuEKLpDRw6BUBvImpcxXV5A0h19TRYC2AZZMCusFgIsd314mMO3Ho6uLzuap0/BuCdSp91r+tsIcQZIYRDCPEWADMA91Cf5vounJAvNZq5ffZ6z0C2EOJfrrJLqzj9BgDxRBQAGdo3CiEOAajptm2rEKLc9aLmYQBPu66rGLLb/71VlHsbABXymbULIRbjUmCvYAcw0bV/OYDzla7bndN1XxoRkVEIkSmEOHKVYxljjP1FcNhmjLG/j76uVrUUAA1Qqeu1mzDIFlwAgBDiPIAzkC14lZ2BDMEVx54VQvgDaAUZLtwdd/+FiIYS0c+ucF4AIL5SnS6GeCFEietHb1f9zgkhLrgdm+X2c10AgyrKdZWd5F7PStd6UgghrlLWzdwLCCFWCCF6Q7aG3gVgGICRVR1bHYQQ+ZAtxRMr7QoDcFwIobtty8Ll9c5x+7kE8t66c/++slxlXsHVlfo31wuWAsjW3iq/R9d5LOQaf30Dz8Blz0xlQohMACcgv9+OADa6dm1x21YxXjsIgCeAnW7nW+naXllVz0Xlupxxvahwv7bK97CinocBjIXshZBHRPOvMRyBMcbYXwSHbcYY+5sRQmyA7B775lUOyYYMrAAAIvICEAjZbbmyNQASXF3Tr3tqtzLrQnaBHg0g0BXQ9wKgq3zW3SkAAa56Vajj9vNxAF8IIfzd/ngJIVKvUlZtt+7plcu6mXtxkauldg2AtZABEpATmnm6HRZ6rTJuwlQAt0O+4KiQDSCi0jjrOrhOvSuJcPu5jqvMy7jGZ4+D7GYf4PoeC3ED3+MNPgOiqs9WshEyVLcDsLnStiRcCtunAZQCaOz2XPi5Jg2srKrnIqKK467minq7eiskQT5PArJLO2OMsb8wDtuMMfb39A6ALkRUueswIMfdDiei5q5xx69BjsvOrHygEGIVgHWQXdTbklwGzAjZDfdavCADRz4AuCaXir/mJy6dMwuyW7jmOl8SgN5uh8yG7FrdjYgMRGRxTX5V1QuBLQAcAMaQnLStPy7vxnzD94KI7iKie4kogKQ2AJIBbHUd8jOA/kTkSXJSsxE3cr3XI4QoAPAWgBfcNm+DDPcvEJGR5ARxvXH18eZVed51LREAngKwoIpjfCDvXz4AlYgmAPC9wfL/42egkh8hZ8LPFkIUubalubb5QX7HcLXyfwzgbSIKdp2zNhF1q6LMLZBdv0e7nou7cPlzcT25AKIqfiGiOCLq5HqGyiBDv/MmymOMMfYnxGGbMcb+hlzdj2ehiqWjXC2y/wDwFWQLXzSqHtdaoT/keODZAAoAHIUc69z9GuffBxkQt0AGkyYANt3EJdwPOXnWWcix57Pcyj4O2YV7PGSQOw7geVTxb54QotxV/2EAzgG4B8Bit/03cy/OQY4JPgSgCPJ+TBVCzHHtfxtAuet6P4ccJ10lIhpMRL9e/fKv8C7cwpvruvpAToR3GsD7AIYKIfbfRJlLISeh+xlyDPonVRzzPYAVAA5CdjUvw3W6frvV8b99BipsgJxAzX1m958BeADY6TYEAZCt8IcBbCWiIgCrUcU4a7fnYgTkMz0E8hm33WCdPoEcn11AREsgh1SkQn4XOa76jr/RC2SMMfbnRJcPR2KMMcbY3x0RCQCxrrHGDAARbQPwgRDis1tdF8YYY38O3LLNGGOMMVYJESUTUairG/mDAJpCTqjGGGOM3RD1VleAMcYYY+wPKA7AQsgZxo8AGCiEOHVrq8QYY+zPhLuRM8YYY4wxxhhj1Yy7kTPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHG/vQ0TTNrmka3uh6MMcZYBRJC3Oo6MMYYY+xPQtM0MwCn1Wp13Oq6TJw4sb/ZbH61vLw8SghhNBqNp8rLy++yWq07b3XdGGOMMQ7bjDHGGLshU6ZMedXhcIxTFKXQ4XDcZrVaD9+qukyePHmip6fnMz179vSqU6cOzGYzdu3ahdWrV+8YN25cwq2qF2OMMVaBu5Ezxhhj7LomTZo0wsPD4+lnnnlG7dSpU4DZbJ51q+oyceLEeywWy7MPP/ywV/369WGxWEBEMBqNAGC4VfVijDHG3HHYZowxxtg1aZoWoijKe/fff7+nl5cX2rRpoxiNxqaapiW7HWP4X4yZ1jSNVFX999133+3p7e19cfvu3bvFsmXLLpSVlY36vevAGGOM3Qj1VleAMcYY+yvRNC0AQDyAfVar9cytrk81GRgXF4fg4GAAgMFgwJ133un19ddfL3vjjTd+EkLUBhBpNBoLX3311QlOp/PfVqv19xqnZnA4HAEhISEXN+zYsUNftWrVabvd3tlqte75nc7LGGOM3RQes80YY4xVE03TElRVXRsQEKCfO3cODocj3mq1Hr/V9apM0zQFQDcAjQHsBbDKarXqVzlWNZvNe/v27RvXoEGDy/adPn0ap0+fhpeXF8LCwnDmzBksXLjwwvnz5z978cUXn/y96p+amrq6Y8eOtycmJirl5eWYOnWqzXWvD7vq7AEgwGq1Zv9edWCMMcauh7uRM8YYY9XEYrGM79Kli/fjjz/u27p1aw+j0fj8ra5TVVRVfdHf3//LhISE1wIDA780m81rNU0zuh+jaZqqaVo9k8k0PzQ0NCIuLu6KcmrWrIkGDRogIiICBoMBwcHBGDFihJcQYqSmaXVutl6apnWZMmXKzEmTJg291nE2m+2lbdu2XQCAvLw8qKp63C1o1zIajUdUVc2YPHny0zdbB8YYY6y6cDdyxhhj7Aa5xiR3AGACsMFqtdrd9wshWtWpIzNmmzZtjDt27HhI07RXrFZrURVleZjN5ulEFFtWVjbaarX+9L+4BgAwGo09u3fv7hUXFwdd141ffPFFwokTJ6wAXtE0LcpsNr+lKEpPk8lkb9CggdKjRw8L0Y0NxzabzRU/3lTXOU3Tunt4eCzq0KGDV1pa2iBN0zKtVuuPVzl8b3FxsacQAj4+PnA4HKGaphkAkNls/jIhISGoZcuW6vvvvz9Z07QF3MLNGGPsVuCwzRhjjN0gk8n0rtlsfshisegFBQW2iRMn9p8wYcJGANA0ra6qqsF+fn4AgICAANSvX185ePDgywDGuZejaVqYyWRaHhUVVT8mJsZjxYoV6zRNC7dareerOq8r5McDiACw2Wq1Fvw316HrenZRkcz/iqKgb9++nh988MGzr7/++gCj0VivXbt2xrZt2xosFovxOkVdYc+ePSCifTfbfV5V1e6JiYle7dq1AxF5rl+//nEAVwvbEQaDwQnA4Ofnh6CgIOTl5X1mMBhiw8LCmt5+++2qoiho0aKF4aeffnoawPOuexgA4NzvOJ6cMcYYu4jDNmOMMXYDNE0jInrsiSeeUH19fXHo0CGfhQsXLtc0rZHVaj1uNpun3XbbbaqHh8fFz3Tv3t3j0KFDT02cODFTCPGh1WrVNU1LMRqNXycmJnp37NhRJSLs2bNHyczM7A1gXqVzGolouNlsHq+qak1/f39nXl6e0DStl9VqTbuBOisAyGq1Ot2322y2WZs3b+4RHx/v5eHhAT8/Pzz11FOWnJycBrVq1XJvnb5ECMDpBNSr/9dBCIE1a9ZcsNlsz16lPvUAmKxW68HK+wwGg7/JZAIAREdHY926dZ3cPucDoLvJZOphMBgSVFWN6d69u6Gitf2+++7z3rVr12Bvb2+lefPmUBQ5Si48PNy0d+/eJgBgNpsXOxyOngaDIVfTtG5Wq3XfNe5bHID6ADb+ty82GGOM/X3xBGmMMcbYDUpNTV3buXPnlNatWxMA/Pjjj45NmzblKIqS5eHh0WLUqFGeFYGxQlZWFpYtW1ZSWFhYpuu6yel0erdq1Qq9evW6eMzmzZuxYcOGL1566aWLY5U1TQs3mUyrQ0NDw5OTk70iIyNBRDhy5AgWLFhwwW63t7vazNuaptUwmUyvOp3OYUII1Wg0zrLZbKOtVmuZaz+ZTKZ/eXl5Da+qzlcoLQUCAwGHA9i6FYiOBlwt+JWvdd68ecdsNls999ZjTdNqmM3mLwDc7tq0zmazPWq1Wk9UHPPGG2/s6NevX6vY2Fjouo7U1FSb3W7vr6pqIoBnwsLCHA0aNPCpVasWQkJC4P5SoyqnTp3C7NmzS0pLS4cJIQ55enpuevrppz137dol1q1bt3PcuHEJVdy3rmaz+W0iqhcUFOTIyckps9vt0VfrccAYY4xdC7dsM8YYYzfIZrOtzMvLaw85ZhsdOnRQw8LCwsvKysLr16+PqkJr3bp18fjjj3seP37cc8uWLWL//v3Yv3+/3qtXr4uTlMbHx2PdunUDNU17DIAgohEA3gsNDRXDhg0j9/HS0dHRSE5O9ty4ceM4AENc3aMHAwgHsImImhiNxsnx8fEeHTt2NBuNRixZsmRwVlZWmKtFXLdarULTtCeJqNG+fftub968+dUvurQUKCoCevcG7rwTSEsDpk4FBg8GunYFXNcshEBaWlqp3W6fVhG0NU3zURRluNFo1Jo0aeLRrVs3sxACGzdu7Lply5b9kyZNelrX9RkAahoMhviIiAgAsmv7gAEDzKtWrZpfq1Ytwx133OEREBBww9/TmTNnMHPmzFK73T58woQJX06aNMnatGlTk6qqiIyMpLVr19au/JkpU6a87eXl9cidd97p2aBBAyiKgrffflux2+2xAP5n4+kZY4z9dXDYZowxxipxBdgkABVTcO8HkGE2mx+OjY29mKiJCDExMdctj4hQp04dRERE0KRJk9CoUSOlqKgIvr6+AABfX1/ExMSIjIyMw06nM6Bu3bp2h8OBY8eOUVpamrNDhw4G9/JCQkJIUZT6rl/v8Pb2/qBRo0bm7du3q0IIxMfHo3fv3hePv/vuuy2fffZZcn5+/seapj1itVqdVqtVTJw48dTSpUuxb98+vV69ekpsbCyCgoIunaikBGjUCDh7Vv6ZMAF4+WWgc2fg2DHg9tuBRx8Fhg7Fpk2bHMeOHcvUdf1fmqYlWyyWCQaDoX1kZKTj9ttv9woLC7tYbKdOndRGjRqpixcvfruoqOhFXdejPD09dYvFcvGYuLg4xMXF+dzYN3a53377DbqufzZhwoSFAGAymZqHhISoAHD+/HkoinK24lhN0wyqqr7s6en5yKhRozwrWsyLiopQUlKiQC6NxhhjjN00DtuMMcZYJWaz+SOz2Xxf3bp1CYA4deqUs6ioyBQdHa1HR0f/V2ULIZCeno6cnBwxdOhQUjMzgR07MCgoyDMvOdnT398f2dnZ5i+++AIAUFhYeEUZBQUFEEJkuOr6ULt27TwTExMpIiJCHDlyhPbt2ycAUK9evaAoClRVxQMPPOA5b968e3NycrpNnjz5K4fDkW80GtsGBgbCbDYrv/zyi7569WrFYDBg4MCBiAsKkuO0x48HoqLkWO3Zs4GBA4GWLWUIDw0F1q8HHnwQx1VVd4aF3UVGYx+z2fxp165dPRs0aAAPD48qBoADoaGhGDVqlNf69eujNm7c+F/d08qICERkcPvdy2iUc73puo7y8vI6kyZNet1kMjUyGo1JwcHBxkGDBnm6d00vLS2FqqpnXn75ZbumaS0sFss/iKim3W4XDodjLoB9APZZrdYz1Vp5xhhjfxk8Zpsxxhhzo2laDVVVs5999lmze0trdcnIyED+e++heO9eHI+IwODVq2HKzgZiY4F9+wBPT3z9wAN6vSZNyO+dd2j+yJEict8+qtO6Ndo/9RQAYMXKlfb09PR/CCGWGI3Gn8aMGePh7e0NACgvL8ebb74Ju92OymPDhRA4duwYjh8/jrKyMt3f319p2bLlxQnFHA4Hli9fLn7euZPGf/EF1IICYMECoEuXigKAykuACYGzixahcNw4BObn37/0nns+6qRp3rVrX9FTu0olJSWYOnUqAMBqtd74jRRCjiE3Xjlhel5eHmbMmFFst9vjrFbrqTfeeGNDQkJCx8TERJhMJvz22284ffo0fH19ERERgcDAwCvKKC0txTvvvGMzGAw7nU5ni06dOnkQEVasWIGQkBC7rusl586d8zAYDL/abLYh15pw7X/FtVZ6HQAnrFar7VbXhzHG/u4M//znP291HRhjjLE/jA0bNjT29/cf3L59+ypbZG9aaSmQnQ388gswdCgC4uMReuAAsk+exO7mzeE1dizCO3QAmjYFgoNxqFcvrMvPp7u6dKEz+/eL4MGDqd6HHyLQZoP/HXcAAQE4360bvNasue3uuXPHxoeEGAO7dyccOQIEBMBgNKJ169bw9fXFzp079aZNm1LFWHIigr+/P+rUqYOoqCgKCwuD+3hwRVEQZzTS6V9/de6pX598WrdGXocOFFjRtfzFF4EvvgD69bv4mbPnzmH+9u3YEhuLs8HBfZIzMkzhFosCkwkICbnu7TEajbDZbDhx4gQSExNhMBiuPOj8eRmqrVYgL0/ez/h4YNIkYO9e4MIFOXGbEEDNmvDy84MQQsnOzn4wLS2ttc1m65mVlQV/f3+EhYUhKCgIdevWRWhoKDw9Pa9ar6ZNm6q1a9eO6NatmzEyMhK1a9fGhg0bEBUVZRg6dKilffv2BiFErZycnPpJSUlf3MRTUe00TbvdaDRutVgsTwJ4bO3atdNSUlIct7JOjDH2d8fdyBljjLHLnSsrK6si8d2EjAzZ5frxx2Uo7NgReP114OmngY4doXbtip/efRdUVATH6dMQ06eD0tNRmpCAAiJEPf20sLRuTQ2WLiWHw4HZ48bp2dnZym2//IJOR46geXCwoW5mpq/fkiXw/+YboEkTYNYsYNQoICMDHrt2ocm8eSiyWpUfCgvRb8IE2Q28cqt0ZUIAffqgr9lsOOHlhS/79NEvLFxIw4YNQ82aNeHZuTNETg5yT51CUFAQVFXFwYMHkZ+fD0VRcDAmxng0OhqjGzaE77hxQGQk8PbbQFVLibmJjY3F1q1bcSIzE1E+PjJY/+MfwL33Ahs2yAnZcnKA48dlD4DWrYEPPwR27gS2bAEsFiA/X74MaNwYUFV0rFnT2MhuD8mJirpna34+ThYXo379+tesR2V+fn7wqzTrekJCgmPHjh0qAL1///6Kqqq6ECKvYr+maQbI5c1Kb+pk/wHX3AI9VFXtbjabRw4aNMgjKCgI7733ngGAEUDZ710HxhhjV8dhmzHGGLtcjI+Pj/P6h7kRAnjnHeBf/5KzdHt5Afv3A2VlwJEj8ndAhk8XRVGEruu0OT0d8QYD/IjwcZ8+ekdvb7o3IIDgcACqClVV8eCDDyqzZ8/Grl279E4HDyr06quocfQo8OSTMsxHRsqg/cgjwOHDwNat8LBY0NrhwK6tW7FywAB0278f9NFHwA8/ADYbMHEisH27HH/t6wts2gScOgVs3AjDjz+irq8vnrv9dmXdunWYOXMmAMDbZEL4oUM4mJkJIkJcXJzYt28fAUBQUBByc3Nh9vGB0rIlsGgR8NNPQFISMGCAnEjNfUbx7Gz5d24uoiZPRkh0NIx33AHUrAmsXSu7iPv5yRcUL74oZz3/7DNg6VJ5zSNHyiXI3n0XGDZMXtOiRfJajh8Hzp5FzfnzUXPzZniWlaFo1y7Y0tPhM2wYUKcOUK8eEBR0/RcQlfTo0UP19vbGunXrlP79+2PXrl0XbDbbxwCgaVqCqqqrdF33Tk1Nnfjiiy9Oqvjcq6++OtxoNL6k6/qy8vLy56xWq369c02aNKmf0Wh8wGazvWC1Wg9X3m8wGJ728fGZ2KRJE0urVq0Mfn5+mDt37gUiettqtRbf1IUxxhirdtyNnDHGGHPRNI3MZvOn7du3r3+jY46xbx/w1VfAmDFAcTHw1FNy1u5WrQB/f2D4cKBDB2DVKmDzZhluT55Eq5QUAoDsY8fQpn59UPv2+GHjRuoyYgR5Pf+87BbtGm9NRIg5dAhnNmygtd7eosmaNWSoVQt0221ykrJjx+TxJ0/K5bmaN0dhWRk+KSrC4dBQnAwLw7nu3Z0N77xTQX4+YLcD4eHAE0/IZb2mTQNeeUUGz9RU2QofGwsAiIyMROvWrREYGIjI8HB0Gj8eHRcvhl9gINLS0shisWDcuHFIS0tzlpeXKx07dnTGxMTIbuR16sjW6R9/BHbskPflk0+AoUOBunUBXQeaNwdycpDfoIFYXqcOJS9YAHh4AH36yGszm4GKruXl5bLebdrIFu8mTYBmzeSxDocM9zk5QNu2QK1acqx5r17Y4++PrUQ4puuI0XWY9u8Hdu8GXnhBluPpeSn8+/tf8+vOyMjAN998gzZt2iA2NharVq0yCCGe3rBhQ7nJZNrYp0+fWt26dVO2bt3abt26df9KSUmxaZrW1mKxLBg0aFDoyZMnm5aUlOQlJyfvqvTsGTZv3vzPLVu2vJOWltZ13bp1rVRVfb1Zs2bxZ8+ebZqUlPR55bps3rx5TMeOHVsmJSUpFosFpaWlWL58uXA6nf1SUlJsbmU33LBhgyElJeXCjT3UjDHGqgO3bDPGGPtL0DQt1Gw2L7bb7a1UVZ340ksvTb6Jz7ZTFKWHxWLp7u3t3bhly5bX/1BOjgxqTzwhw93nnwMFBXL88IYNMqyeOydbZmvVAjIz5Z9+/YAWLaA+/1p7F7sAACAASURBVDwS/PxQ/7PPUODvL0JCQqj+4cM4cewYAufNAwoLZegdORKoUQNeGzYgqaAA83Nz6eOJE0VhdjZFzZkj7mvalJStW2Vg/vlnYMAAHHrhBSxatw5CzoJKoaGh2JeXZ6j722/wSkhA3JAh8hqWLpV1/eUXGWJbtJDhttLEcN7e3mjVqpX8Zft2wGzG1q1bAQD9+/eHqqoYO3asYf369Vi9erWhZcuWuDizt68voGnAM8/I0B0RIbt/nzx5qcX/1VfRKCuLtmdmIjc3FyFVjfU+cwaIi5MvLLp0kUG9ok4GA3D//XJfxf1u0uRi9/XYuDhs3rpVFHh40G/duiEhIUH2Rnj0UWDjRvkiIDNT3o8tW4BrLOdW0a28YcOGAIC6devajh07NlXX9eOenp7BjRs3BhEhPDzcnpmZeSeA+QAaR0VFiaioKHTr1s1r4cKFz2uaNsNtPXKzyWT6Mjg4+I7bb7/ds6CgoFlhYSEaN24MHx8f7Ny5s52maWFWqzXbvS42m21uenp6zzZt2vgAwOnTp2EymTJfeOGFoopjJk6cONBkMs3SdV1omtbVarVuutq1aZrW3Gw2j9N1PdNuty8E0MhisdwrhDhjs9nmAFhzIy3yjDHGJA7bjDHG/vRcM4jvbdOmjV+LFi3U6dOnv6Jp2myr1Zp1nc+R0Wj8TlXVHm3btnX6+PgYmjRpAoPBgFmzZjmPHj1qSExMFF26dLnU11jXgU8/BebNk63I48bJLtzffitbt1evloFv6lS5PNa998rPjR9/6cT5+YCuY+Xbbzu9mzQxwGAg59dfI1bXRUxpKaFRI9k9euZMua71o48C06Yh8N57MXzHDqR16ybS09Pp8OHDdKFPH/jUqCHDYseOyFu6FMdefhmdR4+GKSqKlixZggEDBmDGjBn49ttv4eXlpcfFxSlwOIDHHpMtwi1byknIiork2to7dshx0VXQFy7E7vPnkevlheTkZMS6WsA/+eQTR15entq2bVunxWK5NObdagUOHJD3KzUVOHpUdvPu0UOOaXfdn7p16wIA5syZg7Fjx16cIR0AyoqKkF9cjNDp01FYowb2rFuH9qmpMH1eqbE3MVG+PJgxA3jzTeC114CoKGzatAlERCNGjMDF9b7Pn5eTrc2eLYP8Rx/JdcOv0a1cCIFZs2bBbDaL8PBwAoD+/ft7/fDDDw84nU6RnJzsWTHhXFBQkDkzM7NicXEPVVWViuv08/OrXVhYePz1119PJyKD0WhsHxUVZRkwYICnql75XzNd180ATk6cONGpqmqRqqqHy8vLNwCwnz9//uJ07DVq1IDD4airaVprq9W6AwCIqEWbNm3MqqoqGzduHAigyrCtaZqnqqo/duzY0efs2bNlhw8ffiIwMBDx8fE+paWlYseOHQNKS0s3ArjzKp/3AFBW8QKBMcYYh23GGGN/DXdHRUV5dOrUSQWAiIiI8oyMjNYArhm2iWiI3W7vQUQ4cOAATp8+jbS0NKiq6iwoKDAAwObNmyk3N1cMuf9+wjffyBmwH3tMjsVu1gzo3Fm2qI4bJ1tXO3eW4S0rS05KdpVJucrKy7Hv/HmDT+PGGLh4MT4bPhx33XUXvJo3l2OndV2G0smTZYvuypVQNQ2+MTFILC5W9u7di7KyMuzfvx8tGzeGPmcOVp44IX6pWZOi27Z1Jr/+ukGZMAErLRYxY8YMeu6553Dw4EEsWrBA+bVFCxEVFUUec+bIwBsdLQPx8OHy3OvXy/A+cOAV9T768884a7cjctAg0bx584vJNCcnR9V1HSdPnqSMjAxE1awJstmAdu1kV3Ei2QLdubNs4f6//5M9Ae64AxgxArj3XvTv3x+LFy9GVlYWQkJCsHfvXpzOz0frESPwW9OmmJWcDH3/ftSsUUMPzctTVi1apCclJysXW90B2Sr/xBOuyh4F0tPh4e2NsrIyLFmyBKM7d5a9Dx5/HEhOli81atUCFAX47jsZul9//WrPCwwGAwwGAypCsbe3N/r16+dR+djCwsJyAOdcQxMGR0ZGegCAwWDAqFGjPE+dOuWZl5dXW1EUhISEVN2aX8kTTzxhMBgMAXl5eQmnTp1q7XA40KBBg4vfgZeXFwYMGGD56quv1k+cOHHAhAkTvtd1fe2BAwdGh4WFGZ1O58FrFO8FwNyuXTsQkQWABQDy8/Nx+vRpioqKsuzZs+eKJn9N08xms3kuEfU1mUw/aprW2Wq13tycB4wx9hfFYZsxxtifnsViubNhw4aeAOB0OpGbm2sAkH2tz2ia5mk0Gt8dPHgwjhw5IlRVVU6cOKGfOHFCadOmjdK8eXNkZWXhq6++QumWLaRnZUE5cADw8ZHjjX/++dL43ttuk63BFe65R7bkvvCCDJVRUVecf8+ePQCAzsnJUOfNAwA0atRIBieDATh4ELj7blnG0qXAoEEQNWrgy6lT9QP79ysCQM+ePbFu3Tp9VVmZMnLuXOR4eop7hw6lmJgYAzZtAo4dwxO+vvRWbi6OHDmCmEOH0MhmE0fDwmhdVJRotWIF3bZxIyg0VNYXkBOH+foCzz8PBAYCKSkXW3vLy8sxr0ULdGvbFkO7dr2sCbh27drOmjVrKgCUOXPm4Kkvv4RfkybA3LmXDjIYgLFjZfmuyeKOHDsG9dNPYc/IwJGsLN0cFaUsWLBA2O12qhEQoHuZTGL/8OFo8+SThji7XbaAZ2YqF/bsQXjduli2bBm2bNniHD169KXWdCJg9Ghgzx7gX/9C40aNcLSwED137wa+/FLOkP7ll3JMubvmzYHly6/12KCgoAAArjurWuvWrb2PHj36HoCxHh4eMY0bN3arHiEsLOxSK/t1BAcHi7y8PNq8eTN69+4Nf39/1K9fv8o6xMXFYciQIV6fffbZyokTJ04FoJ09e9ZksVh0AGcrjtM0rR6AMxUTqVmt1vzU1NTc48ePR9SpUwd2ux1ffvnlhczMzHJVVXfb7fZ0h8PxbuXzmUymj8LDw3vcfffdyrvvvtsGQDyAX27owhhj7C+OwzZjjLE/PafT2T48PBwAcPbsWdhsNgeA3652vKZpZDAYJtWpU8dUt25d1K1btyK4XPZ3Y4sFterWRekXXyCtYUNRf8wYClq8GIdDQ1F8+DBatmwpuzuPGyfH+T766KWT3HefbGX9+WfZalqv3mV1KCqSw2pDmzSB1wcfwOPAAfHvf/+bHnjgAQQFBQEPPSS7RffrB9x1F1BQAOFwwPbhh3hh8mS8/9RTaNGiBVq1aqWkp6fjuNGIkSdPKlQx3rh9eyAyEsbRo9EpPx/+/frBNHYsBn7wAZ1/5RXs2L6dvMaOxY+1a8N7zx5RsnEj+fr6olmzZnL5rNmzZQvvtm3Ac88Bqor3339fb1pYSK0feohw4sRl1/PQQw/JsJuaipKsLPFp3750/+OP44r22qefBqZNg+PhhzH944+d586dM/j07Im6+/eLDjt2KG0SE2H29SW/u+6C+uSTCg4ckLOTA7g4ddmhQ/AqL8eAAQOU3Nxc5OfnG0pKSq5cM7tmTWDCBNS57z4MP3ECiwYOBF57DZFxcVU/GImJ8l7ruvzOKsnJyQGAqtcCryQ2NhYjRozw/uCDD5rqui6Ki4sR4D4b+w06d+4c8vLyCACSkpJu6DMhISEwGAzw9/d/sri4+EGn02nx8vIqB1ALAFJTU98zmUwP67pu0zQtyWq17gUAu90+9fvvv58ycuRIr6+//ro0Kytrjd1uv3v8+PG2qs6jaVp7Ly+vgYMGDfIoKyuDzWZTAFyr9Zwxxv5WOGwzxhj701MUpcRut9cAgMDAQDRo0MD422+/5aWmpuYrinJQCOGw2WwthRCzjEajh9ls7uHn5xfYp08fryoLLCkB5swBpaUhsFcvlLz6KvzGjaN5336L/PBw0Lffwm63o06dOggODpbdxSutxwxABuXp0+WSXHPnQq9RA+Xl5UhLS8O2bdsQGxsrgp1Owjvv4PFvv6W33noL77//Pob07YuwxYvh4ekJUbs26KefgNhYKAYD6rVoIZYMGYJib29ZbpcuSLjnHtld/bnnZDfwWrXk+cPCcGbIEDQaMQLGkSNld/dateANoGNmJs6ePIllvXqheVISft26FXa7HevXr3c+8cQTBrVGDTlD+WOPAcuX45vz552FhYWG+kOGgOLjr7xWp1MG1J07EVW7Ng6oKkptV2a04vPn4fH669CbNcPZs2cNAPDUU09BURSCrsvW6JdfliH/wQcvTaLmLjpaThwHYPjw4ViwYIE+Y8YM5aGHHoK3l5dc53zZMuDrr+VY+cWLUb56NeqtXi02Tp5MRc8+K5o1a3Zly7DJJJdG69Hjit4Iu3fvFl9//TUpioIhFRPMXcPSpUudu3fvNgCAzWajadOmYfDgwYh0W/7tRgQEBCAlJQXr16+/Ys3vyhwOB44ePYoVK1YIDw8P8cQTT1gOHz5smTt3LurUqWPKyMi4Z9KkSYrZbB45ZswYy6FDh8zffvvtRk3TngcwF8D7Z86ceerQoUPRBw4cMOm6/j2Ap6ZMmVLfbrfvFkJ8aLVaL36pZrP5uaSkJA+z2Ywff/zRrijKzFdeeaVU07QYyPW/Yx0Ox24Ac/4X644zxtgfDS/9xRhj7E9N0zSzoigvJSQkeHh5eYGI0KhRI2P79u0NcXFxPnXq1KlXq1atqMOHD3sQ0W3+/v6tBw0a5NepUyeTpdKs2xAC+Phj2QX57ruBnj2BOXNgvPdemAYPhqlpUxQUFIjCwkICZDduALJbeceOVU+ulZAAhIcjf84czFyzRqzevp3Onz8vEhISqEOHDmQRAti0CabBg5GYmAi9sFA06tWLVmRmYmtBgf5t06a0+eBBBAYGwtPTE4sWLVIS7r0X3bp1g+fPPwNNm8pJztLT5VJZeXlAw4ZysrPXX4dP795YsW8fbH5+CN++XdZT14FVq1C8YwfS27TBHV26UM+ePdGqVSscPnwYmzdvFl5eXhQcEQH06wfbzJkoXrBAiRk0CM1TUuRyZz4+l7rRCwE0aCCX7EpNRXpZmZ6bm6vk5ubqYWFh5OPjc/F2fP/99/rCWrXo17NnhS4ExcTEID4+HkQk719oqCz3lVeAdevk2PE775QvNCr83/8BJ04AHTvCaDQiLCyMftu2DUe2bRPNxo0jWrwY+ssvY1NsLObt3i3W7t5N6eXlyPP3p87ff4+itWsp4L77UFRUhN27d0NVVXh7e8uys7LkTPI1a148XWFhIWbOnEnBwcH6s88+S/7XWR6suLgYy5YtU3r16oU+ffogOTkZhw4dEmlpaRQUFCRf0NyEWbNmAQCCg4Ov+dkVK1Y4V61apcTHx9PgwYPJYDBAURRs27YNp06dElFRUYE+Pj4pgwYN8vL19UVISAiFh4dbiouL7yguLh6r6/p3TqfzvJeXV/Jtt91m0HU9OTo6umvDhg1bOxyOlNLS0jZJSUlzATkpIRF90K9fP9VoNGLZsmUlJSUl32/btm2iwWB4NT4+vmvjxo3bCyHuKCkpGbx27dqPU1JSeCw3Y+xvhVu2GWOM/ampqvpK3bp1zUFBQZdtNxgMl0081bhxY2zbtg1paWn4/PPPERQU5Hj00Uflv4NCyCWfZsyQQWvePCAsTAZvmw0IDQV5eCDg+HFkZ2dfTNQbN25EoNOJhv36gc6cwamcHPj5+eHo0aMoKCiAzWbDgQMH4OHhgfA9e8QDWVnku2MHyGS6lMrLy2VgBmAymdClVy/CrFno+fzzOGowKPd+9BE++ugj59KlSw3l5eUAgK1btzrj4uIMmDJFlvHee8CCBXIN6zfflOt6f/aZDOBjxyKva1dBISE6EhIMSEwEfHxA9epB/PwzxEcfobCwEADg6emJwYMHK6tWrXIuXrwYixcvhq+vr7PEx0dJCQujtgUFciK1d94Bzp6VLyVWrpQTjb31llySC0Dfvn0N3bt3x9SpU5V9+/aJsLAwys7ORkZGBnJycigyMhIDH3+c5t9zDw6Ul2P//v0Xl9KCzSZfCCxYICdXW74cePVVeZ/GjAFq15YvFDp2lMefOIHgzZvx6MqVWBsejllt24qyBg3ozNy58PDwEH379qXY2Fg4HA6kp6djicWCesXFwr91a9rYqROKo6P1NWvWKLGxsc6kpCRDWFiYbBVv0ODiV7R8+XIdgPLAAw9c2bfcJSMjA999953ueiYpICBANG/e/OLxI0eOJE3TsGPHDriP374RPj4+zlq1ahnirtb93SUmJsawZ88e0blzZ6qYwM1ut8NkMqGkpIQSEhI861UazhAZGYnIyEivPXv2iG+//TYNgIiIiFAbN26Mxo0be1cc17p1a4+33377dk3Tmlmt1l+I6P6YmBhnxRJvSUlJHrt3736uadOmvk2bNoXRKCdJT0xM9HrvvfdqlZeXNwGwA4wx9jdCcglOxhhj7M9H07TaqqoeGj16tMf1uthW2L9/PxYsWAAAMJlM4pnOncl8/LgMkBMmyHG7w4bJ9ZcPHQK8L+YNOJ1ObNu2DbVr18aaNWv0kydPKoayMjQ8c0Ycioqi0lLZU9bDwwNeXl56aWmpUrt2beHr6yuCgoKU1iYTlA8/BCZOBCpeDhw4IMd8L1kig+ubb8rwHBcnJxQDkJ6ejqysLJSWliImJgZZWVn6gQMHlMaNG+sDBw5UIIRsrZ4+HXjySVlueTnQtStQpw7mtmql3/3cc4q6Zo0ci/3RR0BgII7/9BO8mzbFiiFD9HsffFBRpk2TIX3jRmSXl+OX8nIRERFBNpsNTZo0gWn+fDlj97hxcrkwm02uz71okQzcbjZv3owffvgBDRs21FNSUpTp06fDYDAgKCjImZiYaNg9ZQqO1asHu8UCIQSGDRuGuv7+cuz7mjUXX0AAkOuVv/MOkJQkl1arVw/o1Emu3X3kiKyT2YzSwEBs2bJF5OXl6cnJyYbQ0FCQW2+DH374Qd+zZ4945plnDAUffwzfuXOhfPIJcj098cPq1SIrK4vanD2rdzl9WoFrWbFz585h+vTpuP/++1E5qLpbt26dvmXLFiUlJQW5ubno1KnTFd2+NU0DAPzjH/+4bGmz61m9ejU2bdqEhx56CBEREVc9TgiBTz/9VA8KClL69Olz2b6PP/5Y+Pr60j333HPVz+fn50MIcdXW8+XLl5fv3Llzk67rbxmNxs/uv//+oGvdEwAoKSnB22+/XeZwOOpZrdbcqx2naZo3gL4A9lqt1p+vWShjjP1JcNhmjDH2p/Xaa6/9q0WLFo/06NHDdDOfczgc+GnFCmTPmIGuJhM8unSR4bZi3eYFC+QY6I8/vup606mpqSIoKIj6EmHtjz9iX2Qk6tevj9OnTzu7d+9uqFh/+gpvvSXHBa9cKX8/d0623g4eDHz/vQz8Tufls5u7sdlsSE1NRVBuLqI8PfXuAwcqeOQROcu33S7rvG+fXMs7IwPw9sZRXcfSTz5B7+HDER0TIwOyqgKZmbC9/z6m5+aiqdmMlD17oMyfL7vPx8TI7tpmsyxn7Vp5X8aPlxPBHTok69iggTymkvPnz+P7779HQUEBTp8+DbvdjrFjx17srq07nVCefx546SVo778PT1XF4AcfRNjOnXKSsspOngS++gqYMwfYvl2Okf/hB/ly4LHH5PdXXn7Zy5HKPv30U2dERIShi6sFHroOdO8uw/t77+HoqVOY/9FH6GU04nyPHjh9+rTz119/NURHR4tBgwZdcwby8vJyLFiwwHnq1Cl64YUXqkzSJ0+exJIlS0RBQQF5eXnpY8aMUW4kdOu6jtdeew1OpxMvv/wyqlqLu8Ls2bP17Oxs5YUXXrisbm+88QYeffRRVO4BcjPWrFmDtLQ0hIWFFbVq1cqnZcuWl+6Jw3F5V3+XXbt2YdWqVWtffPHFOzRN81MUZbSiKMEOh2M9gKVWq1XXNK2jyWSaFxYW5nvs2DGTruuhVqv13H9cUcYY+4O48deqjDHG2B+IpmkE4IE2bdrcVNAGAPXtt9Fy6lQoRiOO/fIL9GnTZFDo108ueXXiBPDPfwK7dgHFxVd8vqioCDabjVq1aoXADRvQ08MDRITjx48jKirKsHjxYuFwOKo++TPPyMDdt68M2vn5wPvvyyCbnS0nBtu69crP2WzAjh0wDR+O24OD0WvZMoSvWaOIhg3lS4Lhw2UI3rEDOH8eyMmRE315eiIyOhqRbdtizrx52LFpk4CfnzzPQw/B3LUrej/4ILYbDJjbq5c813ffyfWnFUWuVR0eDsTHA926yTWqMzJkuNq7V25v2lRue/hhOc76yBF4Z2VhQL9+CAgIcJSVlQEA3MfIKwaDDM179yIpKQlD/v1v5I0Zg5MVLzeKioBNm4ApU+T9SUgA5s8HQkJk0E5NlS3/P/0kXzIsWyb3ATJ8p6bKn2fPBkpLcerUKZw6dcrQtm3bS/dUUYBvvgHatgVmzEBkXh6imjXTQ2fNwsGNG51nzpyhfv364XpBG5BDAOLj4w0mk+mqrRi1a9fGww8/TI0aNdILCwuVKVOm4JNPPrk0jvn8eWD3buDXX+XvrgYRRVHQv39/AHKitmvVIzIyUiktLUVJScnFbWVlZSAiBAYGXu8yrikrK0sHgAceeMC3ZcuWhNxcubTb55/LcfYTJlzxmYCAANhstk6TJk2aajQa9zdq1OgfycnJY4KDg2cBcKampu7y8PBY2a9fv7CkpCRvInIAKP+vKsoYY38QHLYZY4z9WYUpimK64QCh6zJENmkCnDgBg8GAdiEh+DElBXNGjxZo316GOqsVCAiQrauHD8uu2W7279+PadOmwdfXF02aNAFmzoTn++8jMTERpaWl2Lt3L8rKyqhiaa8rEAGNGsnw+PLLsjW2tFSG+8cfv9RCmJcnu3tfuCBbme+/H9B1HPfx0bdlZGDmyJHYNno05i9frovmzS+fnK1PH/nSYNw4IDgY2LcPd911F/r164eNy5aR0+GQAVlRgPnzER0djcTERBw9ehQLFy4Ul9U1IkKGvtq1ZSvy+PHAgAEyyBcWyjXGv/oK8PSUa2cLIV8c9OsHZGWh+zPPqEN++knUyM1FwaRJwLFj8pqEANLSgNatYbDbsTYlBb+azVgxYQIOx8SgKDwcq+bORemFC0CLFnLm9ZgYeU/uuUcubTZvnmxVb9FCns819hytW8t7rOtyXHlpKSg1FSM+/BC+vr6Apskgr+uyHiNGyBncH3oI9yQkKEFJSXiwc2fDsGHDlOuNk3Z35NAhZ21PTwN0Xb50OHhQvqx44w3g+HHg/fdhGj0a/e64Q3l+6VK02rwZgcuWGURoKDB0qLymZs3kCwxAPiN9+wIAGrVti5q5uch47TU6FRYmx9kPHSrvRbZcUr60tBTp6ekgostebPj4+EBVVZyotFzbzfL19YWlpAS5n3wCvPQSMGSIfDHVtCkwahRw5swVL4pmz54NAGjfvv2zAwcODB0wYIA5KSkJo0aN8m7cuLFQVbX52LFjPfLy8uwLFizI13X9LqvVeuG/qihjjP1B8ARpjDHG/qwCLBaLHYDHdY+cO1dOgDZrlpw8bNQoICQENWvUQMudO7Fy5Ur6YsIEfdCHHyqW0NBLn5s0Sc6Eff/9QHg4ysvLsXjxYsTHx+vt2rVTDIAM5llZiImJwaZNmwBAdO3alWrUqHH1+hDJ0FqxhvUdd8jfbTa5vnZSkmz1XrdOhv5vvgHq14eTCJ+tWKEAgFFVkZOTA4fDoZw5cwbe3t4wGAxyYqp335Xht1Yt2TKfkACkp6NJkybY4unpzEpOVqI8PQnPPguUl8M5ejR2RUejdu3aOHDgAC1atEiOBQdk6/6UKTJQDRkiX0CMHy+7dbdsKVtiL1yQM5GPHy+vr1Mn+bOuwzF9OvalpQnvwkL4HjxIOHJEBuft24H9+4GQECSrKs6npMB06hRK7rwT5++4A0ePHsVekwm3v/EGyo4dg+WBB+RY9t69ZRf2adPkxGnz58t7+M038pxJSTKUZ2fLa585E+f37MGJ+vVR0qyZIzQ3V8XGjbJV3GSSLwuOHpWTybVqBXzwAfDLL8CHH8owW7++PEfXrnJ8+FdfyZcy/fsDzZvL7Y8/DkyejK6zZxssK1dijtks7tM0UoYOlZPGpafL58jPTz4v+/bBs29f3D5/PlZFReFk164I9/WVvRJatbo0Xn3rVjmkAAC++w53R0YifelSbNZ1RGVkoIXBACxcCJSVAUuWIC8vD4WFhahXr57u3j+diBAcHKx/9dVX9PTTT1+3lf4KDgcwZw4Gbt2q7HE4cDwtDX6PPAL/116Tz7Kuy+77OTlyGENk5MVeBkFBQaJRo0bUsWPHy85LRGjQoAGdPHnSYTKZ1Ly8PLuu6wuEEGtvun6MMfYHxWGbMcbYn1VBWVmZ8YaOHD9edtdet04u6VSvnmzVBdCqVSvEZ2XBOWyY8nmNGvrDY8ZcSilms5z8KykJ577+Gp9++y1CQkL03r17K0Qk1+N+5BHAzw9BqgpFUVBWVka7du3S27Vrd+3eY0QyWO3fL8dq//vfQG7upWXEGjSQLdPAxeCSc/LkZUW8/PLLSE1NFbm5uTTd1QL/7LPPwjM6Gpg6FWjcWIa83FzAywu2Bx9ErVq1DAWZmQLvvQds2QLRsycKly+HV9euuPvNN7Fv3z6xYsUKpXlZGWIWLACefhp44AF5wk8/lcFz/Xr54mLuXBlOFy0CnnhCtjq7z7StKPjs4EEUmEwKBQfjnTp1xJh27ciycqWczXz1akBVQfXrw2faNODrr2Fu1w4B27Yh4osv0OT113Hg11+RX1Ag2p87R4Z+/YCAAByrWVMEZGeTT2kpsG0bRL16+KluXeEzYwZo4UKEN2xIlgMHgNtug/jwQxwQQmT9P3vvHVXVubV9X/dau8KmN+lNqjTpIsi2YS8xajRqLDGaGI2mnyTmkB1NNMmJ0WhiNLGbxB5bSgJETAAAIABJREFU1FhAECmCgAqCSkcpSu+w91rr++MGATUn5/nG837fOe9ZvzEYDPdmr3ov5JrzmnPq6xP/4mIWWVk0CHHkCDBjBg1EbNpEM+4ZGTQrnpNDv44epaL+nXeAlSupKD91itayZ2UBUikV0wwD6Oujy88PLYWFKCgpIcXGxoKriwuBsTFgakpLBz76CPjiCyAvD9i9G9LgYJTk5SGf5/l3f/6ZQUAA7SgfEgKo1TR7PGYMvZbDhkFXWYn02loowsIwzc+Pity6OkChAFavhn1GBqynTeOFZzTkGTt2LLN9+3ZUV1c/7tD/T6mtpc37zp2j93v8eGD2bFg5OODYnj1ot7ERRnd3nzv6/ff8c2+8wWzdvFnnynHE8sUXScrkyTzPMGhpaWH/rD/Qw4cPIZVKSffx6dXU1CxsaGgI1Wg0HwFol8vlyxmG8ed5PrOzs/Oz2NjYvL8+cBEREZF/H0SxLSIiIiLyn8oolmX/uhxKEGhTLRsbaonuqTHesoWKZaUS8gkTUHfhAqrOnWNyc3OpPRy01rWF4yDMno3iRYugmzQJ4eHhzOMO15WVwOzZqKurww8//AArKyvupZdeYmUy2T8/rtRUmh3du5cKq5oaWjccF0fHW/1JEytbW1ssX74cW7Zsgb6+vgCAyOVyPjk5mTUwMOBbW1uZo0eP8gCEuQUFLJF1l7OrVKipqkJbYiJITIzgbGND2srLIV+zBjfc3PDHwoXCcicnojp5EqGBgcSwvByVaWnCwBdfJIiOpq6ADz+kDcnkcjpj28am98CmT6c1uy0t4HfuhDB/PvLy8lBXV4eGhgYAgIuLi6DT6YTTp08TQ0NDKB89QlRQEO36HhZGgw+OjrTGetMmICgIzODBUO3Ygc5Jkwh++QU4fhy3bt1Ca1kZuWFhgVv79sE+Jkaora0ljVFRxLypCfN+/BGbfXxgP3euYJiXh/KpU4X6+nqyatUqACBQKGhTNADIz0f9qFEos7GB2+nT0Js9m57X3btAaCi9R97e1BY/eTLNID98CBga0hpxY2OaqY6NBfz9kZmczGkdHVljY2PoBwcTWFnR87p0iQr1Tz+lWfOe9TN2LOrS00EApu7992H63XdAQgJ1Xjz3HODq2u/+19TUPF6Xjw4dgqVEQo/x4kVg7150HDuGpnv3GOeSEujmzu3XSM3a2hq+vr7c+fPnyTNHmPE8nTH+6BHwzTe0fnzuXHod3n8f0NcHAMgaGsAwDOTdTfGampqQU1vL3F+/HlFDhkhIWBgs9+zB1LIy5tG8eSCEwNnZ+and5eXlITU1FS+88AJLl6gKS5Ys0c/MzAy5du3aUZ1ORwIDA/UdHByY0tJSjytXrkz79NNPp//9738/86fPlYiIiMi/GaLYFhERERH5t0ej0TAAhgIIAqCUSqVOAJa0tbVBq9Xi/v37qK+vh6GhISoqKnhfX18GoM2ZUFBAO32XlNCN3b4NNDRQUbNsGX3t1Vdh+s47GJCdzZeUlDBSqRRnz54VmpqaCAAQjsPcoCDhPT09Qvpmbr/4AmhuBrN1KwRBQHV1Nbtp0ybh3XfffbZV9+23qcXaxASPx3UdPkwzp2fPUpF38iTNas6b178OuxsDAwMAgKmpKQ+Atba2Zu7cuQNzc3NGp9OhpKSE4XkeGz09BWOW5Vu/+YbREYLW1lboFiwgE6RSweDTT8mx9nbURUbi4fHjcPf2JgYMQ+u85XLUDxok5E2ZIkTNnUuQmUmz24mJvV3HDQx664p7GDUK1/ftg0VsLK6kpKDA1hYgBHp6ekJUVBTx9PQkJ0+e5PPz82Gs02HGjz8i/oUX+OGffsrAwIAKeq2WNmNTKul1AnBq925YjhyJgI8/RnV1NU6dOoVF4eGoLSiAVqtFUVER6b7XwuwVK8gBd3de1tDATFyyhJybP19wnDiRWbhwIWQyGb3eBQXQbt8OiYcHqvbtEx50dJDrEyYI56ZOJe9t2QLi7k7Pbc0a6g7Qamm2/scfqQB9+216voGBvec+fToAwHHWLPYAALa5GemTJgmTxoyhN/DePSrwy8powKcbhmHwTkUFas6dQ+bUqRj1+++0fMDVlW7z7l36/cgRAICvry/09PSwf/9+1FZXw7LbVQE3N8DeHmTJEozeuxdO27fj5K5dwrSFC0nfDuFBQUHswYMH+cf16pGRNPB04gQNKKxeTWvz9+2jQSA9vX63+MKFC0hOTgYhBEZGRqSiogL79u0Thunp8dHV1SzTc02cnYHvvoNteTm1/T+BTqfDsWPHMHnyZLj2CSgwDAMzMzOiUChIVVWVLD4+XrCysmr29fU1CAgIUN68eXMeAFFsi4iI/Mcgim0RERERkf+jdHcNN/6zUT4ajUYBYBqAjNjY2LvP+rxcLj+uUCiGDxw4UCqXyyVKpZK5ffs2qqqq8P333wsNDQ0EAAYNGiTk5uYy8fHxAIC5c+fCtbmZ2rV7YBhq650yhc7UzsujAqq4GOGTJjHZJ0/ixMCBGDx4sBAaGkqMjY3B8zyYBw8Inn+efs7BgW7ryy8BrRbGxsYYP368cP78edLR0UGOHTsmTJ8+nQqtoiLg44+pgGlspOItIoJ+9fDoEa0d1mppFjE7m86tXruWWsr7IJVKuzdbxBYXF2PmzJnk+vXrCAoKwq1bt3D37l1MmjQJFy5cIJELF7KZgwcje+xYqNVqmJqa4u733wv6/v6C/SuvkOe3bYOgVEJiaQl89hkV23V1uN3eDq1Ox9w+dAjeX39Nbe7KPqXxBQW0lnvBgscvnT59mrteVMQO0mjAx8VhxuHDKF69mpswezbb8zMymQymKpVgodUKSeHhzB2lkolWKkGkUuRt2gThzTchHzIEmYcOCe3t7aTlzh1hzvffk9qjR9Eul2P/jh1CQEAAGWBlBYfLl+E9bRpu3LghdHR0CLNmzWIAYMnSpTRr6+aG6aNHE+zZA5iZof2bb8CdO4e45cuhyshAgVaLhvHjhYULF5Lg1FTyXVYWV/Hee6ythQVtBDdgAC0RCAujNeBxcVQsNzZSW/UzxpMVFBTwABiO49DY2MgDYJGURJ0Vn3xCnRB94XnoVq1CYksLntuxA/z774Oxsemt01apaB0/zz8ue3B2doZhczNM9u2j3d/19YGiIgh37mD7uXNCR0cHzL/+WlC7uzNwdKTr6t13AYaBw+jR6Hr3Xabj22+hMDCg/QsmTKA2dA8P6qooKqIBKT+/p8R2dzdyZubMmdDX18fu3bsxdOhQYVhbG0tovwKKmRkV2YcP08CBt/fjtxobG5GYmAiJRCL4+vr2iyZxHIdffvlFq9PplgK4BKC1srJyVG1t7RSWZX27urp+euqii4iIiPwbI87ZFhERERH5P4ZGo7GSy+Xnurq6/GUy2cXOzs55sbGx1U/8zOtGRkZft7W1cTzPv7l69ertT7zvpVQqM95++209ln2s2xAfH4+UlBTB19eXZGZmwtDQEGFhYbhw4UK/Y3h92DCYq1Q0U9eXxYupbbbn57VacCdOoHXxYlz87DN+ilzOsBMnUtHVw717NNu5aRMVn2PH0oxnd7Zyy5YtQm1tLRkwYIDg8fvvQqu+PqLeeosx1GhoI6snxMtjEhJoRjcri1rb582j9cNff02bcM2eTS3W3Wzbtk2oqqoiEydORFDfQEIfNm3axLP37jETli6FnafnY5GO5GTa3GzGDJqhbm+n1u0hQ+g+Vq1CfXExzvr4IPrIEcH2wgXyOLjQ9zoUFUE3ciSuXLmC3Nxcvra2ljE3N8fcuXOxb+dOfnpyMjNg2TIqVHuyuYIAzJ+P2tpa4YC7O1m0bRsuffKJUP7gASGdnahzcAAhBBzHgdNqMX3IEHhXVkKYPx979+7lu7q6hCVLlrDYv5+Ox1q37ukTFwTg1i3auI1hwC9bhlJnZyHZ25s02tuj1cxMCA0NJWZmZvD09IREqwUcHVHk6io0CwIZNHMmJEolHR/WQ2QkFa3/+AdtajdlCq3pZlnqUuimsrISu3fvxogRI/B4xNjZs8CxY8CKFbT++4cfqGPhyhXaZK2yEmfPnMGd+Hi8um4dFAxDbepNTbSBG0ADNSYmuB8QgPj4eDB//IFIqRSOu3bR90eNQp27OzZbWWHKlCkICAigr69aRffZ45a4dg27Cgs5Wzs7NiYmpvf8cnNph/ZJk3ob333zDa1N9/ICAFRUVOCnn36CIAiQy+UCIQQ6nY7odDrExsY+e10fPEjt88uW0XMCtY8fOnQINjY2nCAIcHNzY4cPH9596wRs3bq1rbm5OYPn+XwABIDQ1dV1E8CRJ393iIiIiPy7w37yySf/fx+DiIiIiMj/JWg0GueEhASPhISE2oSEBDepVJoUFhbmMmfOHLazs9Px4cOHL8TFxe1Vq9XtPZ9JSEgYOmjQoFFTp05V5uXljYyPjzePi4s7r1are96PsbGxmRAYGCjvuy9nZ2dERUURDw8PuLi4oKioiKuqqhL8/f3h5+dH7t27BwCwO32ab7x+XbimVHJubm40PdjZSYXlzJm9YollwXh7g1uxAifOnSM++/ZBr6aG2nQvX6ZWYjMzWnN76RIwfDgVJMuWPRZFLiYmxHrNGtywsiIRlZXokEiYi1IpH7pxI4H0n/RyO3ECOH+eZrFXrqSjqJyc6IitnByaGXdyoseqVMLMzIzcuHEDTU1NfHBw8DMt6z4+PuRyTg7s163DpaoqIefBA8HJyYnI09Npp+4hQ+gotLo62m09OJiKwDFjoLS3h+MnnwhJs2cLzuPGkVu3buH06dP8xYsXcfXqVdQfOoS2U6ew99Ej1NXVwdfXl4wbN46o1WpwHIe4y5eJw6uvwkqno93Vvb2pG6CqCrh2DXqVlWTwzp04JwhCgZ4ephYWEtf4eEw4fBiRkZEYOnQorL/6Sui6fBnWmzaRS5cu8YWFhXj11VdZlmWpoJZKe5uxCQIV199+S89h+XKA46BdsgQ7TE2Fm35+ePHOHRJZU4OhW7YQJycnWFpYgFm0iI4NW7AARZmZ5FxQEIK1WsjGjOmd2Q1Qm/aECTTTbGdHZ6XLZPSczM0fW8oVCgUKCwtRVVUlBAUFEfA8rQGfPp2OYDt9mq4biaR3drmFBawjI3F9xAhEjRpFBfzy5TQw01NGsHUr0NqKU01NKL5zB+PPnIH1kSOQ9ARvZs1ChokJ6uvrhcmTJ5PHPQUMDOh27tyhAQInJ+Tm5jIPHjwQQkND6Q9xHA3AeHjQ8/jkExpQAqjjoqEBcHDA9evXUVJSAl9fX37KlCmMv78/SU9Ph7OzM/y3bqWztmfOfHIR0tpzjYaWSnAcOjkOWVlZaGtrYwwMDEhOTg5JTk4WPD09ib6+Pvz9/aUmJiaOdnZ2Qc7OzkHOzs5BSqVyeF1d3arExMSO+Pj4NLVaLWaKRERE/iMQbeQiIiIiIv8rrF+/fpNMJluiUqm6Ghoa9FiW5ceOHSsNDAwkABATEyPhOM76xo0bBwGM7vPR6ubm5i5zc3P50qVL9Xbu3Lm0sbGxCsCX3e+rVCoV++T++uLg4IBly5Y9/pmOjg4UFhYCAG7eu8e0K5Voun2bMTQ0RJhSCcm4cdQK3V3/3Jfqhw8h0dODMjmZWnRPnqS12RMm0O/PPUdrac+epd3NVSqata6pgdn06RA6OwV9QSAme/aQE7t3C8P/qis5ALi40Jro4GBq2T5wgIpUQmiGdfZsYM8ecIcOIc3EhL+sUjEAMGfOnD/dtkqlwpQpU2B24gRulZaSQpYlZWVlGHjjBqT19WAnTqTNtQwNaY1tUBAwbhwapk5Fy9q1gqy1lehKSshXX30FlUolWFtbC1FRUYyxsTHY3bvBdnZi6tSp8PT0RI+4KysrQ1ZWFieXy9lTp04Jvh9+SLB+PRV848ZRQbxnD2BnB6lCgVy5HNrmZrLfyQme48ZxTgydpsYwDNwHDSI/A8KtfftQXl7OLF68mNZdAxC0WpBjx2hd94oV1KHw4Yf0frq4ANevg+d5HPr1V76LZYVVb7zBMjNnUht4QQG9xi+/TIMO9+4BH38Mux9+gPLiRS7v9Gl20LJl/efJRUVRi7+lJV0PQ4ZQW3d+PhX9r74KXUMDct5/Hw8ePMDixYvpBfnjD2DGDHTV1eHUqVOcf1cX27V8Oe969CiT8ve/c/bTprFcdjbKw8OxYOXK3v0tX06dF90BJ/zwAwBg4Esv8bK2NsZm+HAo+s6XZ1mETpuG8r/9DX0mftHzc3OjQY64OGDECCiVSo7n+d7n6ehRanM/cYIKb19f6naYO5e6Kz79FKishLS7IZ6NjQ0sLS0BAM7OznxNTQ2wZAmD1j8Zjb1yJbXey+WArS3sVq7E31atAk8IlIaGpKWlBZs3byaXLl3C+PHjYWhoCL+e0We9KOvq6nDo0CFNQ0PDJI1GExMbG9v1Z2tfRERE5N8FMbMtIiIiIvK/QlJS0raZM2eajR07Vj506FAmKiqKtbGx6Zd1dXFxYdPT060uXLiQplariwEgISGB6+joWDp06FCZVCqFu7u79Pr165FxcXG/qdXqRwkJCUY6nW5mWFiY/Nl7fhqJRAIfHx94enrCfNcu5Jqbo1EqRXFBAaxsbWERGQkEBYHjuP7iBMCxY8d4Nzc3wdvbmx67hwcVvDwP7N5NxdXDh3Qs03ffAfPn0wxxbS3I1KnQf/11Ej5yJPT09JCTkyNUVVWRzMxMoaKiglhYWKCmpgY1NTXQ6XQghFB7t709FdY9dbIffwywLBrs7SGXy0GUSrT4+OCXK1fAVlQIs/PySKNSKZR2zyr+s+tgZWUFdu5cxGVmQmJggFu3bqHh3j2UPHoEw/p6QZWVRbB0KXQ6HQpNTJD04AGPjRtJjbW1QLZtI17u7hipVCLylVeIj48PY25uDpVKBX0bGyhDQ2Hh6/tYaANAVlYWn5WVxUZFRSEmJobo6+tTIb9qFRVzXV1UOA4ZAkgkyMnJEYKDg/HiggVk0PLlDKKiaJZ6zBhwmzdD5uZGrl27htGjR8PdzQ15hw/ziZs2keYdOzDg6lWkKZWCnqsrkb7/PtjwcCqKu50K586d4woLC8lrr73GSqVSGlSwt6dlA6+9Rn/2zTep2A4MhGrcOIRaWDANR48KP2u1ZODAgWhvb0d5eTnMzc1pxtnTkwpgQuiXvj6gUECwtcXxxETcuX8f0WfP4kh9Pe4WFQkKX19i/v77SLx+HZmZmYxULodjaiopmDsXJU5OJOvqVcHsp5/ItbFjMXJ0n/jT2bPUDeDi0vtaSwssly8n983Nobd4MYwHDux9j2FQkZOD6wxDwvtuJzWVrtehQ4E9eyDExODwb78x9vb28PLyogGETz+lQSQzMxpAyM6m98zMjGblBw8GWlpQuG4dSu3t4eXtzdvY2DAAIAgCKSsr48JdXRk4OT3uWA6APhcXLtBtjx5N7/l77wGzZ0Ny+DCkkycDb78NWXs7qhsbcefOHVy7dg0dHR39mqb1oFQqMXjwYFlubq55a2vrDbVa/VR/BxEREZF/N0SxLSIiIiLyv0J8fHz1vXv3xnt7e0v19fX7ibAeGIaBkZGRrKCgIDIuLm6bWq3mEhISagGscnV11TcwMIBCoQAhhCkvLx8XHx8/XCKRfODi4mKQmpqK0tJSYmJiApVK9S8dE8MwMNBoUDtxolDZ2kqW/fwzsisqkOnuzqWlpeH3338nbm5u0Gq14DgOWq0Wf/zxB5k2bRpR9m0IJgg0e+rkRGtpMzOpkGltpYJl4EBa72pu3q+DuEKhQFpaGmlubiaPHj1CSkoKsrKycOvWLaSnpyM5ORk3btwQWlpbYbF2LWkYMwYqc3M0u7oiv6JCOHTiBMnKz0dTUxOflpYm6MzMhFmffcZInZ3hdP06aT19mqS0tQlewcHkWde7rq4O4HkMnzULQz78EO1yOUZ9/z3yXFwgDwwkeg0NuKinx/3222/M/UeP+NDycsarthaOKhUxf/NN6NfUgF2yhDZC63s9Dh8GkpKAUaP67U8qlZL09HRMmDAB5mZmdLwax9HrplZTy/3AgdSibWKCi1VVRD1iBDE2MaGZ/ZAQWgteUIDPi4uRl5cH69JSmO3di7u1tbz3mjVMI8fhWkgIymxtcc3MjFzr6MCVmzcRFRX1OHBy7do1ISUlhbzyyiuMQV/3QnU13YehIRWTQUHUCv7WWwAA8u23sAwLIw/s7PhLly6RjIwM5OfnCzk5OYJEIiHmQ4eCzcqiAnTVKoBl0dHRgfM3b/LZOh3xs7eH3aVLKAoKEhxv3SKW69bh+44OVFRXY9iwYRj9ww8wtLSE7RdfwG/IEBLe2EiYvXshe+ON/uOxRo+ms8DlvfGlxvZ27KqqQnhGBhynTQNxcup37XW+vig+dw7+kyf3PntnzlC7+pgxwIMHIMXFyNLp0NLSwoWFhjJ4+WVaQjBkSO+Gbt6kDQTt7Oi/zc3BGxmhcft2DHN0hMe8eUzPGr99+7Zw9+5d1nvlSii1WpDuDvIAaPmFvz8t1yCEPid+fjR4FRxMLefGxoCtLThDQ/CurtzwqCgmMSWFHzJkyDPXc1VVFVJTU3U8z3+iVqsbnvoBERERkX8zRLEtIiIiIvIUa9asmZmWlvZrUlLSjEuXLmWq1eqHf/WZ6OjonMuXLzdlZGSoWZZl7OzsmGf9wWxhYYHy8nJ5S0uLc1xc3MnY2FghOTl5ooODg2OPPdXOzo5hGMa4uLjYy8TERFZaWkqamppIdXU1MjIy4Ofnh35i+M/Q6UAiIuA2eTKJjoqCXlsbioYMgZZhGLlcjpqaGpKfn4+rV68iJSUFKSkpsLCwEIaFhxMkJ1NBmZ5Ouznv20fFgrk5FZlhYVS8yWRAczMVlT0WcycnoK0Nlu7u5MqVK5DJZBg3bhxMTU0xb948REREYNiwYaivr4ezszO5lZvLy0tLydlHj0hWfr6QkJdHnE+dQmBVFUmzsEBzczMACPPmzWOlMhng6AjpuHEwbm6G/WefkWyeh4Of32NxxvM8kpOTceDAAaSmpcHrgw9gGBkJdzs7SE6eRLG/PwpraxHn4YEHFRWMHsfh+aYmwcXOjjD79gEvvECbYx07RrP2f/xB7fLGxvS6lpfTLOgTTecMDAzQ2trKJe3fT8zMzYmpRgPExFALeVYWvU7BwcDs2aixsYFsyxb4fPklmLfeok3IDh6kwmzRIhh9+ik87twBEQQYW1ggRSolCeHhqPL25letWkV8//EPeG7cCLlcjvLycmRmZgoFBQXkxo0byM7OJrNnzyY2fWeBd3TQ+9K9f7z5JrWVh4b2Bg1+/RWYNw+DoqNJSEgIgoODoVarSWtrK0lOTuYLCwuFgHHjCDw80GRvjwO//CKYmpmRc+fOETs7O6js7fkzFhZEplCQeUePwlQmg8e6dRg7aRKcHB1pjXlFBV0zbm6AUomNhKC2oQFeXl5QKBSoqKiA8p13wBw4QO9DN83Nzbh/8iQGtbYKqtOnSb8GbgAazp9H8Oef4/7s2TAxNaUvpqTQbuAuLrTR35EjcBs3Dmn37pEImYyQ48epi6LPeDAkJtI1HB39+CVBTw/7qqvhamsLs88/B0aOBPT1YWdnR1QqFX41NkaWsTHP8zxxuHyZZrW/+KJfUz+EhFA7+fz5SLCzw7H4eC712jXheng4f0+hIIEpKfD57DOSFhWFmydPQjFgALHqrpvnOA7Z2dk4cuRIO8dxcwVBSEtISAhPSEjwSkhIqFSr1bq//mUgIiIi8v89Ys22iIiIiEg/NBqNAcuye6dOnSpvbGwULly4kKLRaEbGxsam/dVnP/roo80ajeb3hISEREtLS9uBfa2u3RBCMG3aNL2dO3fObGhokGs0mjNSqTT0yXm7oaGhTE5ODi+Xy+Hj40MSEhIwoLszuETyL/73dfs2HY80fz7t+H38OMZ3v9XR0UEKCwsFF2dnqB0cSOb+/WioqIBjbS3Bpk20oZSvL23y9PPP/buSnzhBRUlqKm3+tH8/bbqWkUGFaU4Ore01MsIKQ0OcqKjAVYBf/re/9fOsT++ezzx8+HAWzc0I8PPDZbmc+Pv7w/rNNwm++gq+zs5CsyDw8+fP71+3LpVC9eabqFSrgbffBl9cDGbmTFyVyXDl6lWhs7PzcaSDODrSTOnu3WBcXTGQZTH0+HFse+stgenqIp4ZGejQ1yf4+uuem0Rt1lIptbVfuQJs307rfgGa5e4OjDx5byeoVGznrl3YpdXCLD4exj0CvaqKitvFiwEHBxzbvh2V0dFwfPdduHR0UMuyTgfY2IA5exb2zz+POJVKKOvqIp0DB2KStzdyc3OF8ePHMxKZDJDJYG1lBWtra9y9e5eTSqVsQ0MD6uvrYW5uDse+Qu/AAVpzn5kJrF9PgwgHDgA1NShtbARfXAxnExOace/OMCsUCigUCgDAiBEj4OXlxezatQtgGOgmTkTptGnCyMxMsuOVVyCVSjFjxgx0dnYyDMPwqampzNdz5sArJESY+PHHNHAzYABdH3V1VHDv2gVs2IDlSUn47rvv8N1338HCwgIPHz6EmbEx/AIDhaG0GzcA4PjPP3NT/viDbbtyhcDNjc6Nd3B4PBJMGRODLcuXwzU7Gy49z9KAAb2N3uztAR8fmN68CSuZTLj7+usYeO4ckcifqM4YMYJ22O/Do0eP0EEImoKDBTQ1ERw4AEyeDKmjI0JDQxG0fj2OBAWRixcvImTxYshApwXY2dnBzc2td0P29oBUivK8PDg5ObE+Pj7geR48z8Ns6VLCyGRYynFEYmeHCxUVvO9XXzE6AN8dPNje3t6eo9VqlwDQk8lkhUql0lyhUPD19fX3NRqNT2xsrNg0TURE5N8OUWyLiIiIiDyJm6GhYae7u7scADE0NNQ/evToWY1G4xsbG/vgX/i80P31pygUCrz88st6cXFx06qrqydERkYqeoRND3K5HK+99hoDAE027JMAAAAgAElEQVRNTUhMTERnZycvCAI2b97MvPvuu48bZv0pPE/ty9bW1C4LUDtrSgoUdXX4UC4nOHsWyMrC6BdfxJ7GRuQ7OcFg40ZU1dXxw4cPf3YDsvR0msUGqKB5/nlq1f3b32hzq4AAapNtaoLRrl0IvngRRY2NDObPpxbkKVMAW9ve0U4AQAgUd+5g7Hvv9b62YAGmjB1LNjz3HKvVanvHd/XB1d8fB0eMQCPPQ/Ldd7x1WRnzwsqV5JpMJuTn5xO5XC5Y2NkRSCQ0K29rC68JE4DRo/HByJEk/eWXwdXX4+ewMDL45Elu8uTJVNSHhtKv7duBI0doZnr7dtq47c4dmqXuy8GDtBv4xYsoO3wY1YmJ2LRpE959913o6enR+eEPH6Krqwtbt27lGhoa2GFqNRyiomjTstBQICMDOmdnbPn9dzTqdGCbm4lUKhUiIiKIlZUVPDw8eq0SU6cCLS3Ye/y4rqamRjJv3jy4uLggNzcXR44cwf379+Hg4EAz2m++ibaGBjR6ecHC3h4Pw8ORl5qKggsXeL+EBOb82LHwbGrS2WVlsYkbNhAzMzPd4sWLJT229K6uLvz222/8wIEDhYaGBvbGjRvCNQ8PYmllhWlTp8LX3//xYRkaGoJwHN76/HP8sHIlwd69tIN9Zia992fP0mz/r78CO3fCxMQEq1evRk5ODn777TfwPI/w0aNRtWsX+dXMjJ89ezYDAL43b7KFLi5wUKmowA4NpdnjhQsBACamphhRXCzo37lD58ED4M+fB/H2fqzYhUWLUOThgUCFgim1tkZLSQmCzc3730dn56cCKY8ePaJLlGUJ/vY3mjF/+WVg9WpArQbb1YUZkZGkbcIEfCcIvMrWljRev46rV68Snufh6OiI+fPnU2v5yZNwnT0bBl5ecJ827an1rAKw5fPPaV34hg1gDx9Gy+LFrG9aWvztiIhYAGMmT56s9OoeSbZ27VoPAEoAbRqNxgi0+SIP4GJsbGzTUzv4H6DRaCSxsbFi1lxEROT/NaKNXERERESkHwkJCQGmpqbTg4KC5ABgbm4OnuellZWVoy5durRDrVbzGo2GJCUlvZaSkrI3KSnpb8nJyfMSExM/v3Llytssy74dGRlpEBAQwD7LRt6DpKsLbjY2koCQELmpTEbrogE6Z5phaJazowOQSCDneURHR8PV1ZVkpqSQTq0WYcHBkLEszcJyXO+Ge7ZDCM0kfvsttb02NNAM7YIFQGUlzVg7O9OxTO++C0REoIDj+MKWFnKvqEgoKipiWJblHR0d+59EURHNWn/wAf13cDBtQPXll9QK/eGHwMSJtDO2QgESHo7zenpck709PEaNIjqtFtJt22g2XC6nVnU9PSrQBwygIrwHY2MwhYV40NTE6w0aREx77MF9IITAwcEB1ysrec85cxjvkBCY3b4N2bFjKLCwIOo//iAmubmQXbxIM9UPHgB799Ju0wcOwLqhAS0aDXLz81FVVcUEBwf3D2IEBVGB3dYGzJkDKBQ0++niQoMYaWm0KzdAG4iFhsLM2Rn29va4efMmysrKBFdXV6IoKYF24kRs7OzkLSwsMGfOHMbDwwOSoiJg82badO7kSXSEhUGxbRu0hEDu6cmtWLGif911D998AwwZgjs1NaivryeNjY1ca2srCQwMJHV1dfyFP/4g5q+/jvNVVcgYPpz3/PhjktjYiCPm5rhRUYHm5mZhqIcHGXz+PGGXLxf88/LYAQMHEt/Fi5Gbm0uys7P54OBgBgB2797N8TzPTJ8+namoqMDvv/9OtDIZFO7u/PjYWIIHD+hILwCNjY24nZ9P0oODYdTVBd85c8Bs2EBLEBobqdBet466Ilavfnw6lpaWiI6ORmtrq1B24gSZcu4cLgcF4datW7yXpydze/duZAUGorqtDX5+fuBfeQVdgwdD0tUFSKXo6upC2tGjRNBqIR8+HFu3boXLgQP4meOQUVIiODg4EJWBASpra2F1+TI6PvsMod3H3A+lkjo5Rox4XJZgaWmJlJQU2Nra0gCGvT2t6a6rozO6164FcXCA1NISiIhARUUFFi1aREaMGAFTU1Okpqbieno6l5yUhLzjxwWr3FwyoK4OBgCtDz97lu4zJARYsABN5eXwUiqJyaVLIFu2IOyzz1jv5OShnh0dntHffiu1trUFIQRarRZJSUk8AE1CQsJgiURyw8HBYaqRkdHU1tbWlfHx8b+q1erGp0+SotFoJAkJCUZqtbrjidfdU1JS0jiO25CcnLwiISGhftiwYZl/th0RERGRP0MU2yIiIiIi/UhJSfl88ODBAX1FpqOjI3P37l2DlpaW+ujo6PTExMTnVSrV1ueff94mNDTU0MzMzDo/P185ffp0/alTp0qcnJyeLbSbm3tnXMfGAj/9RMWumxsVwixLxbBcTu3Zq1bRulVPTyA1FbqaGvhs3IgOpRL+P/5Iu0rPm0c7N2dm0s7SixdTMdAz2qq+nr7v7k7/mP/oo95tOjnRZlndeHt7k2HDhiEyMpIwDIPLly+TgIAA9Mu6//QTFcUREb2vSSQ0yzh3Lj2v+fOpiFarAZkM2dnZqHr0iLlSXIz01lZEbdpERZeeHg0IbNsGnDpFBXtFBTB2LK2ZtrUFJk2CZPNm0tTczNuo1c+MXhgbGyM4OJgMGDAAjJsbEBqKzPh4TDt9mhiEhMBk3DjaKdrVlYrl69dp9rKgAGTdOpjZ2iIpKQmCICAjIwM8z/NOTk69+9LTo8eVkkI7Sn/6KRVaYWHAtGlUoC1dSjO33ZSWluLOnTswMTER4uPjYezoSKovXxa0o0cTO3t75vDhw8g5cQJGhw/zhllZhH3xReDNN9ESGwudVIqAXbuQYWXFxF+/Dm9vb5od70tnJ+Dnh0GhocTOzg5tbW1MUlISCQkJgZ+PD3Gxt4f1+fNwTEsT2tzcBMc9exj/hQsRGRkJtVqNsLAwMsDbmzDLlsHRwYEYbtgAvTVrYGBrCx8fH5KUlMQkJCSgoaFBaGpqgpOTE/H29iYpKSlcdXU14+Pjg4iICGI6dCi1qCsUACGwtLQkoVu3Ih9AhYUF+EGDOJcJE2hTMQcHOgorI4Nez2nTAAuLfqfl7u5OzubmCo6bNpFh0dEkOzsbt3/6ifgXFMD4jTeQlZ2N5ORkJKal4f7PP8N77lykDBuGtGvXuCYHB6a6qwt37t9Hc0cHQm1toZwyBe08j0uXLpG2ujrO5sAB8sjICIESCSEjRz69mAgBfvmFBn8sLdHR0YEvvvgCWq0Wpqamgru7O10Xzs503X/+OfDSS0BKCsjatbB/7z0SIpcTuVIJZs4cDHB3R8jFi4javp2x//JLMnTlSlJtbAzdmDGw3LSJzpYvLqYlBuPHA+XlyFEqheSmJmI7diyMXF0hiYgAuXkT+g4OkDQ20ueYEFRXVyM3N7f0o48+2piWlnYgJibGfdy4cfKAgAB5cXGxtqGhIV2tVuf1nNq6devWp6SkfJiYmBidnJz8Oc/zGxiGeTc5OTny0qVLR9RqtU6j0RCZTHZt5MiRLi+++CJxc3PTy83NHXnx4sULarW6QqPR+KalpV1MSkp6Oy4uriw6Ojr/Wc+kiIiICCDayEVERET+69BoNMrY2Nj2P3lvhoGBwYTQ0NB+9mlCCKKiovSPHz++UKPR7JLJZN9OmjRJr6eDcl1dHQA6nufJUVrIz6fi9NNPqR25rIwKap6nrykU/S3J8+bR70uWAAB0Oh02ffQRr9Vqia2tLa/94gu2vr6ew9tv99YwV1fT74JAGzt99BG1aKvV9L133qEjp8zN6f7+BSIjIxEfH4/KykoYGRnRF3me1hZHRvb/YUKAq1fB5+ejY+tW5Lz5pqDYsUNoW70aWkdHcr+tjbGysuIZhmHa29uF1tZWom9uTo9HJqM13np6NNuZm0st2wcOAF5eQE0N3K5cQUVxMcOnpICxtaVC/JVXaEBCKqXibdYsOlpLJgOUSjR2dhKdsTEsVCqaibe1pXbm4cOp1b2khDbHUqnAAJg1axYOHDgArVaLy5cvM+Xl5cKkCROIkUJBrff379Na5x9/pBZolu2tQ37yngPIzc0FACxYsIBJT08Xjp85g0BTU1KZlYWy8nLBS6HAKI4j95qbmbMjRghTliwhnTodvv32WwCAasUKTDh2TGiQydD03HPE/Em788WLNKgyYgRcXFzAMAzS09MhtLeD+PrC/pVXgF9/hf6mTSQmNpZFtwX/qXr/iAjqTBg0iN5bAHp6enj77beRnZ2NM2fOEI7jCABh/fr1QmdnJ2ttbQ2GYWgHcVdXKvzNzYFLl4DBg6HX0oKXz57F/mnTcM/Ojhi99x6CamrovZs+ndZrX7pEP/vHH7QEoQ/GJia8YXg4q7h2DYsWLWLudXTAZfRosN3HZ25ujkmTJsHCwgJJ4eG4k5fHqfT0mJaWFm7uwYPszaFD+Rd27GBM3noLFkOHIlRPjzx69AhnVq9mBT095AwfLhgePAiXmTOpqH6SoCDg2jXwXl7YsWMHr9PpGAsLC+Tm5pLhw4f3Bj7c3WkJxR9/ALdu0evg6kqfQT8/Gjzy9YX+hAmARAI7iQRrV61CYGAgwgMC6FrS1wdef7133++9h8kAs2HDBuH+3r0wX72aKL77DkxGBn0/OZmWcOzdC0IIBEGQaTQaolQqWXl3Jl6n0+HBgwdSANd6NqvRaAZIpdJVEydOlDc3N8PS0hK2trZgWRaHDh2KKikp2QJgMYBwhUJhGRISQgghMOudZ64FAIVCsT0qKsrXysoKBw8e/KW7Xrzo6YsoIiIiAjy7Fk1ERERE5P9K1q9f/w2AtnXr1hVqNBqPvu9pNBqFVCr9YcaMGXpP1k8DgKOjIxiGGcQwTL2Xl5dJ34Zm7u7uAICff/6ZvnDvHhXWDQ00+5maSu3V+flAbS0VaB99REdB9TTlegY8zcihpaWFUalUKC8vZ8vLy9HS0sKeOXOmf114YiIVnHv3UlEcF0fn/ObmUkv3zZs0M9vTqOsvYBgGgwYNwrFjx3Dq1CmO53l6HocP9++y3IekPXuENo0GV9LTheLp0xkwDOP19ddkirc3GhsaUFZWhqamJvLNN99gx9q1QsWqVeDnzqXi95NPgMBAYMUKYM8emkEeO5ZmDTs7cf755/kGa2vg1VdpUMHQkIr8K1eAtWvpATg50ax6Xh5GxMejNTiYWug5jl6PV1+l53/iBBU4R45Q+25REdw+/hgfRURg1v37WLFpE0rz8oi+rS21jmdlUctzTs7jOdbgOJrJXr8eCA+nr504QS36AFpaWh7fn5CQEDJp0iT4FhcLLzo64r05c8jMe/eIaXAwBlRVCVY2NuT3uDih6OpVITo6GiNHjoSRuTl/YswYYmZmBpfyctoBvS8sS63n3djY2MABEH7YuRPCiBF0JjrDAF99BTyj1v0xn3xCz8PDo1/QgGEYBAYGYsGCBTDpPmcvLy8hODgYJiYm3IMHD4QNGzbgwoULeNjYSLvV+/vTjP/Jk5Bu3oz57e14bs8eJre6GklhYdDFxtJac6mU3tvu7txI6997cObMmWyRrS2uZ2fz0oYGeH/7LVLMzbnjx48L9DY7wdraGhKJBOolS7D0+HF2zqVLZNWqVax5aipG7NvHmBga0metu2u/RW0tZmVnQzZ/PkKHDyd/qNXIX7RI+GnrVn7Hjh3Crl27sHfvXuzfvx9xtbW4fuUKfvzxR9TU1DAsy8LLywtarRbJycm9B9rZSa/dw4d0jZSWUpeGry8Ncg0ZAhgb4+fffuO27tjBf/nllxAEAQqFAuZ2dvT3hKnpU+ePw4exqKqK6H3wAdk4bx46Z89G4enTNJAUFUWz6mfPYoBCAYlEYgwgpL29fXNqamozAKSnp/MMw6TGxsaWazQaZ41GYw+gked5juM4+Pv7w9HRETKZDCzL4rnnnlNKpdIX16xZs5IQMtHDw0PW48ypr69HV1eXAKA7oocBzs7OcHBwgCAIDIDWP19cIiIi/+2ImW0RERGR/yI4jntl1apVuHHjhnNKSsoGABP6vD3GwsJCam9v/8zPyuVyvPXWW4rOzs6nxm6xLAsnKyvO89Ah9l5gIKxOnIBhYSHN4tXW9h8tdPYszXoZGdHMs/B0L7XExETcvXsXjY2NfHt7O+Pq6srNmTOHJYTg119/Fe7evUssLCzoX8OlpTRz3dlJs7U//kgFPkCt3G+/Tf+Y37ePvvbll7SOu7ycinKWfWr/PUybNg0PHjzAzp07WVtbWwTm5aEzJgYVxcVoamrC/fv3+ejoaEalUqGkpATxCgVp3r1beJsQBsHBtBHaBx/AfOdO6E6eJGcjI2EnlwszbGxIw44d5La5Of/r88+TZUFBRAlQG+3UqVTAbNhAs8kvvgjGygr6AwcSsmmTgBUrCIyNqZ0doHb47iZZuH8fuHsX7cOHIyU0FLesrLCqvh4KfX0q3j/5hJ7z/fs0w5+RQWtvR44EfHzA2NnB7f33sZvjwEkkeHj7Nmx65jmnp9O6bbmcNkjbupUGT2bP7s2OfvghtUkHB2Pm+vVky/z5aLl1CypXVwQEBACHDxOwLPD3v1Obv7s7rg0aRG53dsK4sBAjz58nGVOnCiFDhpDQ0FDmj/p6nI+J4d0KClh88QWwc+fjbuF44w06jgw0KFN4+zbmfPYZaTMzo8clkdCs6V8REkJr9p+YGd6DnZ0d3njjDQAg0GoJ7t8HHB3Z6gsXcCMtjUtJSmIVX38tWH7/PcGPP9KAhoEBMGcO+Dlz8JObGzipFKVVVbizaxf/yiuv9Cp6CwtqoRYEGij69lvA0hIsy+LqiBEI4HkBhw4Bzz+PqtpawdbWlkRHR8O2b10/AKxZ01vrb2JCs8179lCrek9PgytXIF+6FCNnzQIAlBQX42FVFdTFxUzlpEngOK7nS5A4OwuyujpYWVkJXV1d7IwZMzBgwACUlpYiLy9PGDVqFH32NmwALl+mme3ISLoOup/35qFDhfvW1rg8darQUlXFDpsxA+fOnQMAPOwJkjAMcPQobbyXn0/XZlsbkJICY3NzBMTEwG/kSCSNGyekpqUJ7wEMWJbW658+DTJrFoYsXKiILyh4n+O4k7W1tRIAiI+P12m12tfXrFnzukwm+0oQBCIIwns6nW7SqVOntmu1WlczMzPd8uXLJQBt2Lho0SLlkSNH1ra0tJDBgwc/blpgZWWFqKgo+dWrV29qNJovpVKpEcMwuHXrFiQSSfpHH31UDQAajUYKwAZAeWxsLP/XC09EROS/AVFsi4iIiPyH0d1x1wdAVmxsbNv/5LMcxyn09fUREBBArly5Eq3RaJiePwylUulYT09P1T/7PMMwT8+33rULSE3FAwsLdnhBAU6fPIkaGxv8/Ycf6Pt9hbZWSwXFiRP03y+9RLPMq1YBGzdCp9MhLi4OKSkpAIAxY8aQkJAQsGyvIvby8iJlZWVCkKEhwQ8/0GZTgkCz2NbW/WqwYWfXr44YABWdK1ZQkdOTde+Tpe+hq6sLmzdv5ltaWhgAOH/4MCyOHsX+l14Cc+iQwLKs0NXVxWRkZMDHxwf5+fkIDQ3FuHHjCKKjabb3iy+ovXjlSngVFZGOS5cg7+oiktdeg2TPHkS7uDA3N2/m4uPjSczQoYzk4kXa0dzRkWb8d++mwYHx4+EzbBg5UlSEBeXlkHp7P9sOTwiEAQOQ6uWFjLAwOr7q5ZeBLVtowOHOHSpUyspoo7S+I566m3UxAPyWLUP577+DffJe/+MfNBt+/jwVqampQEsLHs987raO3zh9mqt3cmJZmUxomzEDKi8vgl9+oTXKNTXU0h8RAW7CBFQOG0ZvlYMDab56Fa1pafzx48dZQRDg6OgINzc39nBJCUKXLYPjqVNUYC9aBJw5A6hUyOM4lH3wgVBtYkL4RYsE94AAQnps/38Gx9FgS0UFHQ+3YwfNAPv60kzz6dPULXDzJnVMqFS05MHdnXa1LymB1f79iGlpYR9Nm8Z57NzJPg5gMAy1t48dC8myZXjr6FEUnDyJe/n5sB837mlHoVJJn4uWFqCiAjojI3z//ffC/N9/xwCWZcGywOrV4H//ndTV1SE+Ph4xMTGw7NsxPDgYaGqi+01MpI6SigrqlABop/jUVHqe3dTV10MVEcEP02rZgXZ2vUEMgKC2luDECfhOmULFejdubm5ITU0lDQ0NMDY0pNn5KVMAAF07d6KwtBTlly7xMWPGMAfee48XurrYUR0dxPWHH8B8/jkKrl7lCpqbWT09PQE9Y83eeovW+2dn0+/+/lR8A0BTExhHR9SsXy/odLr+127iRKCwEIEGBmyrkdH4CgODUaGhoQqdTgdBECRSqfQMx3GOYWFhCAwMxLZt274A8LVWq/0EwL7a2lrJl19+yevr6/MymYwJDQ1llixZ8szff9HR0RIHBwfzvLy8tRYWFhJLS0vs37+/taOjYzUAaDSacKlUeooQomIY5jyAKf98AYqIiPy3IDZIExEREfkPQqPR2Eul0luGhoYLdTrdG/Hx8Qf/WbfdJ0lNTV3o7OxsbGlpiczMzK7Ozs4rarW6TKPRWLEsuz0mJkah/1fZQEGg2auoKFrn2tEB8DyMnntO+FWpJG3d2cb09HTe3t6eGPUVPqdPUzEyoU9CXauF9v338X1TE5+YloaSkhJiY2PDDx48mI+KimKerAEvPXtWsL5yBY4XL5K2O3cgW7qUZnaDgx93T36MsTEVu9bW/euKpVKaAfT2pqLxpZfo+56eAGjN5zfffCMYGxuThQsXEpZlMbSsDBJ9ffi+9RYmTJhAIiIiSEhICHieR35+PrRaLebMmUNrgufMAUaPpgJnwABgzx5oT55Eib4+BlRX4zzH4WxlJSQSiaBWq5mLFy8Kl5OSiPTBA+G+qyspKytDaXk57/jcc6Snltvy7l2kmJnxqo0biXllJZgnm1tptVQsBgdjLwCj+noMO38e1i+/DNLURGuTHR1p/fbo0VTMDxkC9NakPsbc3BzZ2dm4du0a7t+/z9nY2DB6lZXA5Mn0WmVmAm++SS3oq1YBM2bQmvNuruXnk1SFggwaNIgkuLggYuNGgvZ2GhhpaQE2bgR++QWCoyPKAgJQU1ODhw8fInzFCkRt2sSEjx6NgoICvqSkhNy7dw9tbW3Ia2riIyZOJFizhtaya7WAVIo96enC7O3biY9MBuvjxwkbHEzXaE+n7IYGGty5dYuKuK1bqdh+/316HgoFteKXllLhd/YsrQn29aW1x3Z2tMfA8OF0vx98QAXytGnArFmwsbVlftZqYafRCIZr1xL8/e9AYSG9TjNmQOrhAUX3eLmrbW3wmT0bl4qK+KzkZHBxcYT18cGxkydxztSUv373Lu87eTJT4+KCkH/8gzA6HXD3LvD882hvbxcqKirw4MEDkp+fz0dERPRvlieXU2EcE0ODEZWV9DwDAuh63LaNPg/dXLhwAZGTJjFW9fXUAj5kSK+w1tOjwYapU6kD5fEu5EhNTUVdXR3n+8svDPLz0TZ5Mnbs2MFfSE8nXefPI2jzZmL01lu4lZMDU0tLMvTll0FWrAAUCvhNmsRwMpmQpdUSPX19zsbOjj6U+/fTxobjx9PgUo/tXyLBI319/F5TQ+bPnw+jJ4Mo4eGQ3rkD1717JQELFsgtfHzIpk2buPb2dpbneWNCCEpLSxETEwM/Pz9pY2NjcGdn5/jQ0FAJz/NgWZapqalhtFotycnJQXh4+NM1/d2YmJjAzc2NtbW1JbW1tUhPT29cvXr1co1GYySRSK5Pnz7dNCwsTHLjxg1lZGTkxmduRERE5L8OUWyLiIiI/AeRkpLyXXBwcPCcOXOUtbW1zMOHDyuio6NT/9XPJyQk2Ovp6YU5OzszSqVSWlhYODE+Pj5MKpV+GRkZqfL29v5zT/XGjfSP+M2bqW27oYGK5qAgICoKVlZWZNiwYXB3d4e1tTWMjIxw6tQp0tzcDA+P7vLwK1fAq9VILimBsbEx5HI5oKeH/JEj0XD8OBn7/PMkdMQIqNVq4uzs3F9l19UBH3wAi9JSktPaSsyvXMENlQq/u7tzwTNmMH86Ziw0lGbfniEq4e7eOyLM2ZkGDm7exD9++01ob28nb7zxBtHX14erqytMHz2C0cyZMOqTBZdIJHB1dcWQIUOQlZUlEEKIg4MDtab/+uvjRk4wMoLkxx9R7O2NfEtLXtfcTNRxcbCbM4cMcHZGREQE8fP3h9WaNeSCvT13Ky+PaWlpIaampijmONwlBMrycqhzc8lJDw/YuLjA0M6O2pUBKi4JAVpaQEJDcef8eWhlMkRkZMBw1SoaGOkRKgkJVMy88QYVhD1jyvrAsiwiIiKgUqmQkpLClN64IQTPm0cwYQLtqO3qSkW2nh61kY8aRYVZd6BFEASSm5uL0aNHIysri0RHR1MxuGgRDYxUVAAvvYRUlUrI02qJIJOBB+BZWAiTRYvAGBoiICCAJCYmAgC0Wi3s7e3hN3w4wbx5tG7+yBFg1y4YPHiAzIAAUqivD+byZd7o4EHCNDRQK3VmJl2fJSU069tznEOH0izqiy8CW7dC+Pxz1C9bBoWBAciWLRBmzEDJiRPC3WvXBNOoKCI1Nf3TcoOK4mIUpaXBrLKSWK1aBaKnR/cTFkYbnzk5gYuKwq76enRIpXjg5ASL4cOJyZ07sPvlF/IDz2P2unVws7OD/ahRDN/RAZ933iHKlBRq3X/hBcDJCba2tkxoaCiJiIhAQkICyc7O1qWnp/OlpaVk0KBBdPEPGULt40uX0nVnbEy73H/+OQ0U9OHq1auIiYmBPDiYfsbBgQaleuB5umbs7AAA586dE86cOUMAwMjICH537xJMm4YDKSlce3s7Wbx4Mbmv1QpCWRlJNzDg7967x3h6esLJyak3ELBiBQyioojl3r0YuHYt87OpqRDo5kawaBEV9ytX0jp2lQro6kLXsnP/ADwAACAASURBVGXYyLIY6O4uREVFPfsB9/CgdvyuLqC0FFpbW6aiokLgOI4IggBfX1/Oy8uLUSgU8Pb2lg4ZMkTu7OzM2NjYPF5fOp0OFhYWXFBQEMP+k7KSHjiOQ2pqKhsfHy+XyWTf+Pn5mUdEREgKCgpQWFiYEBkZeeAvNyIiIvJfgdggTUREROQ/BI1G4ywIwvSoqCgpANjb2yvkcnnI/2QbOp3uzN27d1sBwN/fn7zwwguWgiBMt7CwMLexsXm6i9TDh1RMCQK1ed67B1hZAefOUbvzE5kmhmFga2uL4OBgEEIIy7LIzMzEjRs3gIIC4MIFpPw/7H13VFTn2v1+zxR6G3pHepUmotiwoCKxYo29RI2JLdFYcr2IscQ0NSZqjLkmUWNvsUZsoCKIoBQBpStNpEsZZphzfn88gKAm97vfWt9aub81ey2WijNnzpzznrPOfvZ+9tPUhKtXr2Lbtm3YsWOHqq6uDvHx8ar+9+8L3Y4ff7MftaqKCH5ICNCrFzSKijDAwACFJ08i6NIl8ILAnTt3DmVlZcjJyQFAoUZHjx4VeJ5H0/79qNfXB8/zSElJwQ8//KDaunWrsHnzZnz11Vf884oKUlwjIsBfvozq+fMhb25mc0aNeqVy5eSQXd7Z+a3HlUtMhHV+Piv//XdSEn//nUgtADQ3k5U+JgbeMTEobGzkiqytUW1oiKrNmwW07bOhoSH09fTw/syZIgMDA9WLFy9w6tQp/tq1a3zKs2f8HpEIv0gkCI+JgUVJCamtSiV9xogR1C+9ejWwZg363LmDekNDNF279mZS+PjxRGbc3akHuj2o6y0ICAiAJmPo3qMHQ2oqWXzb4etL68PAgILu2ueOAzh58iQA6qWmZVRB88n37wdcXCDfswdpM2bw13182LzcXKw9fBhR69ah26+/dhB/rqAAy6ZPh2ZjI0afOQN/f3+GlStJpV22jALf6uvhpa/PvCsqeE25HDFiMbdXXx/CxIkUBBcbS/3oK1YAI0dSVkC3bq+U082bIR8xAvurqvgTu3ejzssL386eLWw5ehTlly+Di43lcjMyyCZfX//G8SmLi4N5r15oValwftw4nDl3jgIINDSoLz0uDuB56OjoQFtbm+/m5CRM27kToZMnI2T3bmZaWooVq1ZB9tNPcJg7l3lyHGzv3YO+XE5p87t2Ud/5vn1km3/+HNLycsybMQMDBw4UV1VViTMzM7uSUE9PWg9z5tA1K5fTTPm3QBAECh177z1SlBsaXv2noWFH2B0AFBYWQqlUwsbGRnhXqeSwYAHQrx9evHjBDRo0iDM0NMTY2bOZ8Nln8N2xg9NsaoL365+rrQ1TBwd0P3kSVxYtwoSoKAYLC2pzmDiREtp9fWmf8/KAu3chMIawsLA/qaS1ITyc1vk//gF3uRwKhYL5+fnx8+fPx7hx494+hvA1jBkzRtRlvvxfQE9PDzNmzNDs16/fP0aOHOkeERGhCQDp6ekNcrn8TPvroqOjJdHR0azt73rR0dEjo6OjZ0RHR/eOjo7+96xeDTXU+K+HumdbDTXUUOO/BCKRaIavry/X3jPdNgqpS0NydHS0o6am5n4AFq2trS9aW1sPATgcFRVV2/aStKqqqg6vtaOjI/r27cunpaWxQ4cOsZUrV9JYn+3biSDOmUP22uZm6mWtqCDC+c9/Ajdu0Ezp11RRnuexb98+VX19PTd79mx279494cqVK8xCSwvmvXohp7AQrq6ugpGRERITE0W7d+8WtLS0OLOEBMZ0dUmFdHAgsnTpEll8bW1JqTQ1BaZMgeHUqeghEoHneejr67OHDx8iIyMDHMeBMSY4OTmx7Oxs9tlnn6FHYiIqzMxQ7uYGDQ0NwcXFBWPGjGFyuRwXL17kfv75Z2HVqlWM53n8ZGQktHz0EZYEBjLDAQPIhmxrS0RxyBA6JqWlVHzIyCA17vBh4OOP4aenh/NBQdTXnJFBZKG+/lVv9fXrMDl1CsHDh8Np0ybcDwiA+5IlDO++Swrz4sWU7K2hgfnz54uePXsGNze3Dqa8adMmhKxZAxuxGOyLL2jbT58Cjo50bubOxcvgYOwMDISye3cAeNN2CxApKSigv3t5kRV80CAKunrtXMbHx2PMoUPQOHeOVNbOaA+hA0itNjAA1q2Dav166Ovrw8DAQHB1dWVSqVSoqKhgZnl5wLlzyJfJkNTcjKaQELw3ejT0TU3pe1y4QKqzhQVQUgIhLAzlgwfzWra2cG1p4RRWVvT/cXFE2nv2BJ48AefsDHtPT846Px/+d+7glpMTftu2TXh3zRrG/iSFPCkpia/IzBRC9+8XHZwyBWJ7e8z5/ntUGhpiSGgoE+nrw23tWrZ161ZhloYGQ3IyKb07dtAafPddID0dJt27o2jtWviHhAiMMaSkpPAAiERNmULf6d13gcOHwRhjxcXFrKioCI6OjsjMzISHhwe0dXS6tlVkZwP37pHlv76eUr2fPCH3RX4+cO0aLPz8YPL775hWW4vMUaMELFvG4OBALRFVVcDcuXRODQzoGn0LiVQqlbh69SofGRnJITiYxp6dOkVrEaA57MXFHa/X1tZmISEhCO3dm3EeHsC5cxAEARoaGkJjY2MHm+3dvz8gkWBVeDi1cLwF4hMn8FRHh2/54AMOU6ZQuNuUKdTPf/Ys0NoKWFlBmpGBbr/+ysfGxrIJEyb8JWM+XFamau7Th1n98gt8mpu5l05OgmVnpf416OrqwtzcnH/58iV8fX05CwuLv9r8G7C1tYWtrW3HPtXW1uIZJeYfBYCNGzdO4DjuoFgsfvHFF1/ki8XiHhYWFko9PT1ReXk539jY+DI6OjoiKirq4X/0wWqoocZ/FdRkWw011FDjvwQSieRdLy+vjqdma2trKJVKp+joaIOoqKi66OhopqGh8XtwcLCHsbExd/r0aVdtbe3eLS0t27Zu3Rovl8svMMYMtLW1Ve3bYIyhsbFRqK+v5zQUCmDwYPwydy5CnzyBvYsL2YTbR/3o6dHs6zFjKODqxg3q2501q8vc6fr6ejx//ly0YMECmJmZITQ0lGUmJ0O0dSu+W7VKaCgvR3BwMBs4cCAMDQ0FqVTKvLy8yFJ+9So9dC9dSv2mxsakZNbVUWqxuzsplW3YvXu3UFlZyQBg3rx5kMlk2L59O8vMzARAI5JCExMhODigae5cmJqaMsaYCADkcjnq6+sRHBzMAODhw4coLS1lS5YsgaGREYVjWVoCLi5UZBgyhMiPpycpyCNG0Hc3MgLi4/Hizh1BKyWFR36+COXlZHNWKEhVfPIEPxUUtBb7+Ii5oiJUBwRAQ1cXxkePdszFxqJFpER6ekLb0fGV9V4QgOJiyACh6tEjxlpbKcxs5UoqfIhEpHD37g2lnh4kublQtine9+/fR3h4eNeFZGtLx7Yd3t7kHBg5khT5TgFzMj09xISFoVlLC3OrqyGTyV69b9u2V6o5xxG527cPrXFxqK6uRlBQEAMozTszM1PlPXGiCBERsAoLg8rSEgOHDuXMzc3p/enppKqamZHSnpyM8pgYHDl4kIMg4PvZs9H07beQSCTCmq+/ZszVlQoM8+eT4rtkCcSffgrj+fMRdu4cbt+5w16OHw+JrS20Jk8G/PxQrVDg5s2bSE9PBwBuaGGhcHnSJN7Uz48bNWoUJxaLYfHll7CYMYO+i5sbTExM+BO3b3NzYmOZlpYWrYPGRuDOHWDQIEiSkuC8Zg2Ma2rY7t27MXbs2K5qZVgY8O23iNmxA01NTUwQBNy6dUs4c+YMa2xshI+PDz927NiuLRC7dpE74sQJUubLykh1bseHHwIAxIsWoebcOVSVlvJwdhZBpSIynpJChYH8ttHPnXrpOyMoKAgVFRWvRgF88QWF+g0YQETfyoqKavPmtW1GGwkJCcg7fx6N776LhrNngbNnwRjjVJ3XE0Cug4wMKhy05SB0ICkJyo8/hub06Zzx5s2v1tD+/RTgZ2TUUfRpPXoURbm5nNefKPPtSElJQUFBgWj83LlQpafD7tNPUTpr1l8qx7q6upg/fz6XnJyMuLg4JCQkYMGCBehYk/8h2s6hCIAtgMdSqXR+eHi41MDAwLqxsdHa1tYWurq6HYmDqampehcvXjwXHR1tFxUV9eZIBjXUUOP/C6jJthpqqKHGfwGio6ONRCJRt85juSQSCRwdHRUFBQW7oqOjN4vF4kWGhoYOXl5e3K5du+Dp6SlERkZyCoVC4/HjxwNLSkr6tLS08H379u2IsW5uboZ01y7RoIYGXB8yBOUNDcLzJ0/Yz+bmWLd0addeo+xs4OVL+vvChaRGffkljf+5fh1Ytw6tKhUePnwIkUiE6upqmJmZwcjICGPq6/m07t256uZm1qNHD1VISIgIAHr16vWKZTQ2UkK2lRX9hIdTGvfq1UQ8xo1747iMHz+e/fDDD1i9ejXaLaCRkZFISEjgx44dSy6AmTMBQYBuJ0Jz4sQJPjs7m2OM4eHt20LlyZPCY1NTburDh7zRjz9yGDiQ+q2//poU9oYGKjpoaZFy2N7X2aYgA0BRQYEq/NIlMZycKIW8neQMGAA0N0NPT48DAF4sxqO293UbORLeAwZQuNuyZXQMRo+mEK89e0jZLy5Gq5cXugcEMC97ewq68vSkAK9jx4hYKZWAnR1kjGHFihXYsmULlEolKisrX6U+t8PMjOzja9e+UrJDQsgGPnMm/Z+REfDgAdyHDoUsKQm7f/kFO3fuxNy5c2HT1sOLkBAK4/ryS/q3TEbna/16GEmlyMnJQa9evTB8+HC299tvRSo9PRTt2IG7VlYo8/MT9PX1GV6+pNC8kyfJ6j14MBVXPvsMFnV18P7wQ2RkZEDZ0oKpv/2GzJAQHm5uInh5UZq4SETHeuJEUulra6FasgRJHIfUujqYVlUhbM0atNTUIMPREUwkgszGBpPDw2Galsawcydr7zPvQI8eHfb82bNni/bs2cPHxMTwo0aNEmHjRnJ9GBlBGRiIMm1tNI0axZeYmHBid3few8ODa7+uGhoa0NLSghdbtsDi/ffh4OaGAicnPH36lAGAh4cH0tPTufT0dAQGBsJAXx8+NTUwPHSIer2dnChJf8wYUqw7W/gBUti7d0dDUxONDWvHmDFUFDp4kK4nS0sKtvP1pRFhbdDQ0ABj7BXJE4loUsCCBdQm4ulJ66AtiG7cuHGofvwYRuHhUFy5AomjIziOw86dO1v19fXffJ7cswfIyiJrOEBp+PPnA7dv43B0tGBvYcFzCoUImzZR0er0adq/ykoi4DwPxQ8/wE0mw7AdO/BcpULOpUsq6bNnjN+yhetlbQ1YW+P73btV9fX1ouHDh8PV1ZVyGIYPh8vWrUT416zpkqjeGTdu3Gi9ffu2WCQSQUdHh2+/Rv83MDAwgJGRkeaLFy+yo6OjJ0okkgBzc/OuqfGd4Ovri/Pnz5sCMAZQ+b/9XDXUUOPvDXVAmhpqqKHGfwFiY2PDrK2tRwYGBnaZ9+Tk5CStra11bG5unuvi4hI4duxYbZ7nkZSUBIVCAXd3dyYSiWBgYABvb2+Rh4eHWEdHh5TEsDBIpk2DuUqFZyUlKLO3xwN3d9YqlcLZ2RlxcXG8oaEhM2m3gj58SLbQdqXKzY1GC1VUoLGsDFWffIKDT5/ihVLJh4aGMi8vL3AcBwgC9BIT2SUDA8i1tDBq1Ciui725oYGswcuXE3Hcv5/IwbZtROQ0NYk0+PvTg7OHB4WlHTuGSnt71F26JIgbGpi5tzeQlAQjFxf4uLsziVxO5Pibb4hYTpsGnD+PupMncS0vjy08dAj9BgyAYXY2el64wHlv2gS7+nqWo1DgslyOVI5DhYkJnnfvLjwJD2cOI0eC5ecD33yDhuBgPCkqgpmZGWpqahAXEwPbrVu5xoAAFI4ejcLycjDGcO/ePVS6uODiiROqgspKka2tLT9r1ixWU1Ojqqqq4noEB8Ood2+ypicnk4I/fTp9/2HDSMU0MMDd/v0Rr6WFAfPng5s7lwhz//5ErLS16Xy2keXHT54gLS0NPXv2xLBhw9gbfaiMEQny8KD++3Y4OxOx+vlncirIZIC7O3T69IFKpcLTp0/x4MED2Nvbw8jIiIoCQ4d2SYDPevYM8RcvYlB8vOC1eTPTpl5l5OXlqZ4pFJz5iRPI6d4dNkFBzKe+HtxHHyHL0FA4YmnJ0hsb+daaGqHV2JgZbtwINmwYHM6ehfTGDVT6+AgDnz1j3ioVx/71Lyq8hIfTd+nXj5LCbW2BqVOhUVGBnqtXwz0wECJHR5wQBGS5uECQSmFUU4O+9+/DODUVzM0NnKMjEcrOoVjBweSo2LQJbNgwmJubs5iYGC4gIABNqamQfvIJUoKC8JOuLjKysmCSlcVeisVolUiY/uLF2FtZiTuJiXj48CEyMzP5svJyFc/zXPCNG0j184OTszOGDBmC0NBQ9OzZE/Hx8agpLYXPtm14UF+P8vnzYeThAYlEQtePWEzEdcKEN+4LcrkcDx48YH379n3FJgcPJsv5woV0/cyYQeeye3daX5GRwOzZKKBZ8YKfn98rgmljQwWflBQi+KWlpHIbGoIxBm1BAOfoCEloaHvLBpKSkngbG5s3bdhhYbTPdXWvZmhnZgITJ4L78ENme+wYF+vgoLL+4QdOY/hwev3y5TRnu7oamDULEqUSTs+f48F776nOlpRwhlVVzE1fn7tcXQ2/qVPR2tCAwowMLvTGDdwWi/kgY2MGiYTcGR4eVCwLCqLz+XbCzaWlpSFixAhEhoUxSVkZFQXkcmrp+PVX2pfgYCoKvffe27bRgVu3bgl6enrM2Nh4mK+vr7aXl9efquuCICA2NpYJghAdGhra+pcbVkMNNf5roVa21VBDDTX+CyCVSke7u7vrv/57bW1tREZGdpnVpauri0mTJuHIkSPs22+/BUDp0v/4xz/o4Tkqih56MzOBkhLoLVwI/0mToJuTg6KiImRmZqKoqAhKpZK7desWWltb4eXlBdy+Tf2nneHrixaRCC9GjUK2tzfeu3kT0sGDOfj6viIw9+5BXFICo379UFtYiMTERIwaNYoeaM+coQd7HR16kM3LI2JsZkZp515elDzd3EwP6zExHXOOFd98g1/KyvDutWusNjmZUrXDwkhJu3aNFM/qamDdOqClhchsQgK0ysogt7VF2YwZcJ0wAT5LljAA0AEAb2+c/eorvrmggFt54QLucRz/KCQEXEICe3nxIgyOHQMuXMCBH37gTTMyuOSICJSUlGDGkSNChr09SzU1FfQfPxYUCgW7desWs7KyUvXdtYsboVJx2levQiaTcS0tLXjy5IkIABR1daSUHjxI37mykooCUik6K66WlpbgeV749ttvMXfuXKbfbvV+/Jjs5CNHEiGQy2H34gUACrR63UIuCALKysqgFRwMI4XizYU2bRod9+7d6TwsXAgAGDx4MFpaWpCUlITm5ma0fQCRqDlzAAAFBQU4duwYhi5fDju5nOGnn8iVAGCWkZEIS5eCT0iAW0gI+C+/FK5oaTHBwUG4L5czY2NjWFlZcUJMDBJPnYLV+PE4GRsLeXExpsfHo8LWlmlUVJCq/8EH1It86BDth6srFShsbanvvLYWmtHR0Fy8GOa9eyMwMBBSqRQvXrzAnj17UGtggAE3byJVXx/DYmMhXr6cXBrLl3cQS+jqkqV+zRrY2dnBzsSELwsI4K5ERKBqxgzo5uWpJk+eLHJ1dcXjyEjEnTgBvYoKNGpqIqB3b4T98gu4d94Bpk7lAHClpaWIsbXlF6emcrJPP+0IaNPW1kbU4sVAVhb4/HyUjBqF2w8fIjY5GQCwbNky6I8cCaZQAHfvUtp4JxgZGVHIGUAOjNxcmqltYUHXy/37dJ0NG0avyc4m8skYXHfuREP7HO52MEbtEl9/TQWu1lbq27a3p/dOm0ZktBNEIlFH20IXSCSvktFlMprNnp0NvHgB8y1bcO/hQ9Q0Noq+GT8eUw0M4GxgQGtq5EhS2PPygMOHodmzJ/o8fSoKNjWF4ptvmLaZGT5UKnHRz0+V/uCByMjQEM1GRpAzRvcQXV26ppYupRT2DRuobeLzz+n7PHpE5PvcOTiWl2N2QAC4ceOgsLCAdMIE4MULKt64uHS0E4AxcpIolcD69bTNt6SWW1lZcUqlkp8+ffob9+rXwfN8+7mziI6OLlRbydVQ4/9PsI6btBpqqKGGGn9bbN26NTUyMrK785+kYb8N9fX14DgOP+7dy/splRjI8xwSE8mmO2YMPdg6O5Mtuk29ViqV+OKLL2BpaSm4uroiPj6eNTc3Y926deBnz0b5u+/i5osXMDAwwOPHj/mWlhZOEAS4WFqqJqSliTiZjB6odXTo4dbEhB7+AeQHBeHAgQPw9fERxrx8yXD4MBHkR4+IFHz4IanYQ4aQvfnhQwrBeg2lpaU4d+6cUFFRwXx8fFSpqakiAPj444+hra2NqqoqmJqa0oufPyfVfNEiIg0aGhAEAXv27BEqKioYAHzwwQcw6RTk9Gz6dNzlOCHP2pq9u2AB7O3t8d3OnULQ6dPsQXh4a70gcNLycm7W2bPI6t1b8MvMZFq7duGL2Fg4OTsjMjKy6w5XV9ODeSc1Pz09Hbd37YJlWRkcnz6Fgakp7A8douO1YAEVGZYs6bKZ58+fY8+ePZg0aRLc290FDg5kOS8sJCLg4QFMnoxzO3ciJScH/fv3V927d09kbGzMm5ubC8+fP2cVFRWcT3w8WjU1oTVvnmr48OFdWYNKRUWLfv1ILW8LeIuOjgYALF26FIaGhkSIrl9Hy9GjSExMFG7dusVUKhXWrVsH1thIZGfAAFJWvbzoOGRnU3iXgwNShg7Fubt30X7udHV1gfPncTImRpUhk4l8UlPhtmEDPNLS0Lh4MVQqFcouXoSHtTXtU2dVPj6eAtyWLgVaW6GaNg31pqYw+vbbLormlT/+EMy3bWMvAgNxp03xD+/VC4HNzRDduUPFDl9fsjGPHElr08sLvESC+pkzIT5yBNrGxmif/V5bW4udO3dCLBajtbUVPM9jyZIlMNq5k9wBEgn111+/TjswZQr1pLcVKJCbSz3Ry5bRNQkiYQ0NDdi2bVvHfg9tbIRFaqpgdvIk40QipKWlged5FBYWCgUFBWzAgAHo/d134BoaaNRXOzIySK3uNF+7HVU9eiBuzBjV2CFDRCgpIcW7HUePEnmXy4m8fvABFcZiYoDvv++ynb179/Le3t5cSEgIFcU0NF4Va5ycKP1+40ZqUXgLtm/f3jp06FCxp6cnuVoyMijAz8yM1qFSSfkImzfT9nx8qLccVDz6+uuvoVAoMH/+fLqOBYEKRgcP0v3lu+/I3WJoSP3wmZnkkgFQLxYjSyJBfHIynLp3pyJgZ0yeTMWJjz+miQWFhdRHn5ZG6/k1Nf/HH39EaWkpevbs2RoeHv5vBa24uDjFnTt3eEEQ6pRKZXhUVNSDf/ceNdRQ478Lahu5GmqoocbfHNHR0QFisXjliBEjJNzrY5z+AhoaGri1bBnvcekSV//8OTMICsJpT09Vnra24OHlxcHYGNi7l+b4fvwxwBgYY7h16xZmz57NmpubkZWVxSQSiaBSqVjWtWu4LpdDwXFoaGjg+/XrxyIiIlifPn3g17Mnx/r1I9vltGlEhHbsICXpH/8Avv8eRoaGcKuuhuyTTxhfUABtBwdKofb1BaKjyRbt7f2q1zksjAhIp8Cumpoa7N+/X7C0tMTkyZOZv78/Z2Njg4aGBv7GjRvCnTt3kJCQwB49eqRy+flnTrR2LUR79gCffEIbaLO+BgUFMX19ff7Jkyfs/v37AAAHW1ugpQUGe/bA4sMP2d3SUgQHB0NXVxeWVlbsZU0N3zcpSWQ2bx7rGxEB2dy5sP3lFybJz4dKWxs3OQ7vvvsuBb11hlhMx2T8eCJxggDza9fQPT0ddlpaMCwsxJ7hw6Ftakpjz/z8iDB069YRHnX79m2cOXMGvXv3VgUFBb0K1Fq2jBS4oCBS7//4Azh9GvX5+eixbRtitLU5XZlMMDc351paWjhjY2M2bdo0OPI8TMrL8XtDA2dlZQXjthnkz/ftg9aGDeAuXqRU6OJivLC2xlfffAPGGCQSCRISElBVVcXXuLqy5wMH4ty5c0JxcbHg5OTEKioqIAgCdGUy6AQEULFDEIiASSREWH7+GZg4EfcePVJVV1eztWvXso5jdukSPJVKrteiRfBevRpmc+dCvn49UqZORZyrqxB05QrTOnSIChKdlcW2c4fTp1FobY1/1dQI9wAWtHw5xN7epMwCqImKErSNjVnPHTuQnJwsKBQKlltcjHSFAnbz5kGvPfE+L48cA8ePAxs3gnl5QbN/f0h//x1swAAihWIxWlQqPL9xAw1iMXw9PeHQrRs8vLzAQkPp/CmVRODDwkglnTSJii4FBVTkUqnoWpkypeOrMMagoaEBT09PJCcno1+/frhRUgKdp0/ZH2lpuJGaiqqqKlVlZaXQ3NwsmDY1QXzkCFOsXQuztuu4A4sX0/rz8Xnj/pDg7IznPC/4p6dzuHyZiOWlS7SenJyA336jpPvMTOrfzs3tMt6tHaWnTzNNmQx2J07QNj75hAh6WBipwv7+1JP/lswFAEhISOBdXFw4k/R0OlarV5P9PDycLP5Tp9Losx9+oPvJr79SISAgAIwxmJubIzMzUxg8eDDjOI6+v5YWOT14nu4hCgXw6adUQBk0iIpSHh44mpjI33/0iKlEIsycORNvzNhOT6eWjvBwSoxPTSX3BMfRXHJnZzo2bfD390diYiKePn3K9enT583tvQZ7e3tRv379xMbGxro5OTlTr1+/fjs0NPTpX75JDTXU+K+C2kauhhpqqPE3QnR0dG+xWDxeJBIZKhSKXEEQ8iQSybfDhw/X7Jj5/O+gUAAJCcCmTbDR1WWxAQF4YWeHhJISABCZmJi8sjS9tBcSMQAAIABJREFU9x4pbQ0NaG1txb2sLGhoaEBPTw+nT59mEokEUqkUsdevY356OgYfPQpNHR0AeJP16+qSmrR2LQU0LV9OI6GCgoADB4DsbMh++QUCx0HjvfeIjAQHvzkHGiAi9f77RNQA1NXV4ejRo6rKykqRi4sLP27cOFH7g6yzszO6devGnTlzBhkZGfD29ORr/vhDtF9fHxg3DuOLi2EbE0P9q1lZaGpqQk5ODjw9PbmAgADcvXsX9+PiVANWrRKlBAQI18LDhZaEBM7V1VVlYWEhAtrG/CxaxKFHD5i4uJB9e/58+r4iEUqTkuD/22+o37IF+ps3dyU8EgmNT6usJHK1ahUwYgQ05s2Dxv37wLp1CC0t5RMSEoSePXuKYGND9u3mZpQFB+PUqVOqpqYm0cSJE+Hs7Nz16T0ggFRTQ0MiSadPA598AkMnJ4j09CBSKhHi5sYCwsK6Ht9+/WB59y569eqF48ePIzIyEiqVCg9u3oS7IAjmJSXMdvt2VI8Zg9vXroF5eUHgOCiVSowYMQK5ublcwfXr/MhvvuGe7tuHMWPGcHfv3sXjx4+F27dvs/r6en706NEcUlNpfbW2EtFsax9Q1tVB2L9f5DBiBLjUVCJ0U6eSw+HSJWiuXEm2/7FjsX/QIOEFzzPv/v2Z0Y0bdOzz88kF0FYkAACFWAzl1q043NiIXn36MMYYbj16JIRmZbF6MzM8Li4WXP74g3vx88+4dOkSeJ5nH330EXiex549e4S9e/eydevWgXN1pf14/30qOJSW0vmMj6dkcIWCzntVFQycnDDlxg0c69UL7gcOwKasDFxBAa3rOXPonCQmkkIOUPCYhQUVouzt6c/Zs996GYvFYohEIgwaNAiDBg2C6tIl9PvxR8ijomBobPxqHWzZgoKCAqFeLGa8IIDrvPaGDycL91vQUbBZu5b+fPGCguYKC0mhHjOG2jF4nlpPdHWpaARQGntyMrBwIYZu24b0tWt5LFrEtSeld4wPA+j6//FHoKaGyPNrEASB9uSTT4CPPqJj/d57r8Lyhgyha6i+nn7n4UHnYtw44Kuv4OjoCFNTU+HLL7+EUqlkgwcPRp8+faj33NqaVOjNm6mg5+REhZk2TJw4kfv+++/R2NiIw4cPq2bOnEnHNTaWCkOXLtH+eHuTS6NvX7KRr19PBRkjI7oPSKXAd9+B4zgEBwcjLi4OdXV1XRwzfwVPT09oaGjoHjly5GJ0dHT3qKioAgCIjo62lEqlGwC8A+CgQqH4RG03V0ON/y6olW011FBDjb8JNm3a9IFUKj0QEhLSz8XFJUAmk/UXiUThgwYNknXv3v0vZ8wCoIfL33+nUUgXLgDr1sFk6VLmMWQIBg8ZgpKSElRXV2PChAnMwMCAHrYZAwwNwUdGouiLL3BaRwdjx46FqakpbG1toVAo+JKSEk6voQEBSUnYIQi4efMmmpqaBBcXl7fv06BBRIjq66kfu7CQrK1yOV5GR2OvlRXKZTL4RkT8aUowAFIq794FevTAnj17VCYmJmzkyJGsd+/e3OsKP8dx0NPTw4MHD9Dt99/Z4GvXEN+/P+RSKR4+fIjclhZeLyiINVhZ4ccff0Rubq6QmJjIAAgm9fUs9fFjTsSYcMXamg0ZPpyNGDECgYGBXUcy6ejQw/6FC/TzySek2slk0PPyQmNuLkRHjiDL1hZ2HNd1xvCCBUS6vv+eFHyZjEj3118DdnawtLRk165d47p37w4tLS1AJsPj1FT8cv8+XF1dhalTp3JvTTWOiSESKxaT9X7hQvDff499yclI8faGtKUFoz7+GKIhQ8hO3A7GgHPn4Pzxx6ipqVHdjotj7hs3gk2Zwl6EhLBr167hSU6OcFVbm41/8gSKpiaUm5hg5qxZ8PLygo+PD7oHBTGNlhZ4fPABY4zBzs4O/fr1Y/n5+TA0NISzszODvj4lTDc1UQFo8WKgoQENNjaw2bABgevXg7t+nWaVz5pFVuO6OlovJSWAnx/sli5lzc3NqIqPF2p79OC77d7NsZcvoerRA1kaGiiVSpGamiqcvHuX5fTtq5rr58e5h4XBwcEBMbW1/P2GBtZ9+nSGe/eQMW8e0w0Kwo0bNzB16lSYmZlBU1MT1tbWLD0lBeYXLvCmTk4MK1bQOb5xgxTas2eJMI8eTa0Ns2YBffoAnp7IGzIEcU+fojwsjI/x92cZ+fl8bb9+vMX48ZzU0ZEIn68vnR9LS+oH/uknUl9zcui4FBQQwaupoXWjqYnaujqkpaWhb9tYPc7ZGeLDh6EZHEwW69xcss1//jlO6+gI95KSWFxcHGpra1+1GXAcqbM9eryxdAoLC1FTUyP4+/tzHet7zRpylvTvT5MHWlpoxvdXXwGhoaQ49+gB3LpFhHfyZJxydobcxoZ38/XlOmbKd4ZUSrZuuZwKbK8hISFB8Kmo4AyWLEG9vz+OHj0qWBYWgvP0ZGIPD7Dhw4kw19TQvS0igkIapVJg/34wjkNKQ4NQW1vLAYBIJBJ8MjIY/P2pkNH+mWvXkmvhtVT3+/fvw9zcXCgqKuL69u1LLQLZ2VRUGTKEXuTnR+dOKqWWlCFDSNlmjIoQDg50TX/+OVr79kV6Rgays7MRGBj4b9XtdshkMqhUKnFZWZmsX79+Z6Kjo23FYvGjwMDAoGHDhhkUFRX5tba2uvft2/f0/2iDaqihxt8CarKthhpqqPE3QHR0tBXHcRcWLlyo5e7uzmxsbODi4iLy9/fXMDMz+2ui3dJCPYknTtDDX1gY9T9bWQFt1l8A8Pb2xsOHD1X37t3jYmNjO1KleZ7HnpISVXK3btyciAg4+voCjEEmk8HT05PJZDIEWFjAzMMDRRYWQm1tLSsvL2eZmZkqAJxSqaQe3nYwRg/5Y8eSEvjBB6TU2thAKzMTrFcvpOflCYGBgax9396KzExgxw6UhIcjKSmJmz59OvsrpSgrPR2Gx45BtnIlThkaQimRQFtbm1+xYgV7qVKxx7GxwtNLl5jHqFGYMWMGMzY2RtyFCwhbtYrVmprivo8PWgE2ePBgGBsbv1L+ampIMfbxoaCpX38lsrNiBYV0OTmBaWjAMjQUub164dmRI4LXhg0MYWH0cA/QA/6vvxKpNDOjec2RkR0W1JMnT6KyshIPHjyg4+LpiZfLlsGsZ08hbNYs7q2uBp4nW6yW1qvfiUSo2LABBo8fI8/FBUqpFPmenkLgzJkM0dH0HbS1ydadlgYEBcHdx4fr6+3NTI8fZ90++wzufn7w8vJCcXEx8/P3h9uqVVBt3AgHBwfBa/x41lEgkUiIcGhrE9lvQ2xsLG9qaso56+vTOqispP7zuDhqWxg0CJfv3lVdcXNj/ceOZejVi8hre3iVnR0RGA8PNJ46hZTMTJ7LykLExYusIj+fk4eEwMjREUfLypD88iXM9u5Fga4uHzFxIjc0IIDTiIwky76+PgICAriikhKUSaV8iFzOuQwdilorKxQWFakePHjAtba2wogxWObmQpqUBOMbN5jBoEFUMPL0JNJpaEg9zN99R7bh9uRzV1cAgKGhIdLT0wV9fX1hxsyZnK6eHntUXi7cTEriWjQ0BKvBg5lYV5f6mHv0oIKLgQH1ne/YQQTezIzI6NGjwL17wOXLaI2Ph+7du7B1cqLX6ujQtT1zJinM9++TujxpEvwDAlhoaCiam5v5ly9fMp922/iTJ3TMp09/Y/kUFRV1Jdvt1y5AfeRhYVQs++UXUqY3b6ZzOHQo/bSlo+fQXHfe09Pzz3tcqqqop75fv9eWMI8HZ89yHjt24IK2Np9bXY28vDz2mONYXGUlLG1tYWxqSkUFMzNas5Mm0X56egIhIVBs2QLd2Fj2xNUVs+fMQW9fX8aGDycXhaPjqw+bOZNs7Z3uORzHwdvbGxUVFUJZWRnz8vSE7ty59N06p787OtLnmptT5sCTJ0S+xWIi866uVBj88UeoZs1C9rVrUGlrC3fv3mUeHh7Q/pNZ568jPz+ff/bs2ZX+/ftfvXPnzprAwMDQ4cOHS/T09ODi4iJJSEhw6d+//6b/0cbUUEONvwXUZFsNNdRQ42+A2NhYO21t7TmDBg2S/vtXd8KiRfRQaGtLttXISCLZb0F7P3ZraysDgNTUVNja2uLAgQMqTX199sFHHzGD3r3pwb4tmKy9J9IgPx/5MTH8LcY4gIKJGhsbuZycHKSmpuLp06cwNTWFXlYWKWD37pH1cvFiImNXr1KokVQKuzt30CQIwtm0NEgkEmbTWXHtDHt7ICwMxy5e5D28vARPT8+/LDpY3b8P15MncdvdHRVtidlSqZT169cP3bp1g/vly8z62TN4//OfAADTQ4fQrKPDrrm7I49UYyYIAgZ4eUFqaEiEQl+fRpMtWEC2eC0tsjBv3EjkZ+ZMIDAQuHgRwqpViLW357WamgT37ds5GBgQuT18mF63ZMkre/yoUWRJbYOZmRmsra1RVFTElEolHB0dkfz774J7aSnTnTTp7V84I4Me8j/9tMuvb2lo8A8Fgc3t3x/WPXvCPiiImRkZUYKytTURDo4jm2xAAJ2r/HxSL9uUSS0tLXh7e8POzg5MJMJNLS3e6tAhzszQsGv/r6srba9T32pdXR0rffSI9x85ksHKis7/hAnAkSNEoh0dcevWLdba2iqEhITQOeV5yg347DOA46AqKMDld97BSQMDiLy8mMuVK0xSW4vEXr2ge/kyfyw5mT3X04PAGAJTUjAsMJCThYWRutijBymNUikYY/Dy9GRuUimHkBDg889h0tSE3p9+yukoFEi9fp3vtnw508vPR9O6dYgrLob3pk0QrVr1StXU0iJVuqqK7OG2tkS2SkoAMzNwurowMjJit27d4oYOHQorKyv06NGDMzExQWJionD79m3Ws2dPUjgzM8lK/s471Ju8dCmtDSsrOq4TJlAYWHAwyjQ1UZOWJjiUlDBkZlKv+8WLpIZHR9P5mj69izvk4sWLTCKRwM/Pj35hYkLnyNb2DRfJG8p2Z/zxB5F/Q0Pq3XZ3p6JTbi4VIvT0OnrmCwoK0NjYyBsZGXFSqRRvLQzZ2JATZOrUDrIrl8tx6tQpvMzLg9LDA4ZDh7JHjx5BpVKxlceOoVxTE76TJkFTS4ve5+tLkwg2boTQqxeq6+tx/vp1/qxKxZoZQ8SZM+AOHBD05sxhLCqqq7MEIHXdzo5yDjrt45kzZ/i0tDSOMYaStDSV6+3bnMYHH3QZadfuYoBIROr24sXkGBg69NVrHB2BefNw+OefVe9v2MD1++orllVVhZKSEt7b2/vfO5MAZGVltZaUlGTfvHlTUyQSRYeFhem0Tx5ISEhQlZaWnu7bt++J/8m21FBDjb8H1D3baqihhhp/D2Q1NjZqtba2vv1h9W0QBODZM1LJCgspzOnbb+n3EyZQb2O3bvRw2AZdXV2uY3QTgIMHD8Ld3Z0bO3YsE4vFFABkbEwP9C4urz5LSwu6vr6csUQiVFVVMQcHB8HS0hKmpqbs999/R2N8PAr37RO06uuZgb4+uLNnSQmMiCDik5BAaeBnz4JNn45hly9zviUlwr9aW5GYmKjy9PQUhYSEdFWApFLwkyZB38uLeY0c+ecPqy0twJIl4D7/HKWXLiH311+hq6vLq1QqFhkZ2fE+6fffw6z9uNXVAbt3w2vHDpTp6iLsX//C+QED0C8pSdD+8Uf2MisLNc7OeFpcDE1ra/gVFoLxPETvvEPkq12he/KE/pTJ0CSXIzc3l1u+Zw89zDs5UZDTkiXUA3vwIJGGxYuBkJAuX8HMzAwJCQmCXC5nd+/eRVJSElT+/qyPpycdt7cVJNzcSC18DbqWloJxdTX42bPhm539qk/21i367p6etE/e3qQU/vEH7eufBFgBgI2bG3clIgLeN24QWRo/nv4jP7/LiDIA0I+PR4Wjo4CcHCKEkycTyV+6lOzh3bqhtLSUAWC//fab4OzszPzlcjSePInMe/cg4nn4pKejfNgwfuLkyZyrqyvqfv0Vd3v2BK+pCa3kZM5aIsFIiQStLi64/fnn8HznHfo+48dTf7GLC5H7nj2pp/2bb6j/duBAulamTUNAQgICVq7kNk+bBmtXV2GmQsFy/fwQo6UlDLe2Zl0YqIcHEdzQUCLKgkCOjc8+AxITER8fzxsaGjKO49irt3jAw8OD++KLL/h79+6xkN69GXfsGLUiREURyR42DPjmG7R+8gk2bdoEXV1djBgxAh4eHmi0tUXqkCHCgLbRdMjKIqfIkSP0AY2N1Dfs79+Re8AYE6qrq9n+/fshEonQ3NyMKWvWYP+sWeC6dROkUinfNnJKaGpq4uRyuWjv3r0qPT09bsqUKQzJyVQ8+uorKgwcPkykW0ODWgGOH6eCjL09Ef21a6EpFiMnJ0eck5MDe3t73tDQUMjOzhYNHToUAW2jxQSpFJgwAWzvXmDZMhQWFuLIkSNwePgQE2JjcWHDBn7eoEFc3759WWtrK7g+fVB09SoM2hP89fQg9OmD55GR0DxwQLj27BkeOzszPT09wc3HB1liMZr09DBj/35WuGcPHJcupWJYZ8hkVJiSy9HZ7i6VSjkA8H74EAIg+mPNGmG8vn7X+01MDB2X9nvpDz8Azc14lp6Of506BV1dXZWenh7jeZ49r6oSvczJgaGDAyYsWIAkbW3uprm5KjQ09N/6yXv37i2tq6ubqlAopvTs2VO/cyEyKSlJ3tLS8sW/24Yaaqjx94J69Jcaaqihxt8EGzdubPr444+1tDrbgv8MEyaQ2vTZZ6SUchz1BO/fTwrOtWukyEoklAjt5QXF8OH46rffoGx7YBwwYADMzMzg6OgIzc69ljU1RI7S04mEAZTM7OgIYeFC8Dzf0YcoLylB/IIF8Lp3DyLGsG/OHLTq6MBTKhVGHT/OxJ3JoCDQQ+uJE0QeTUygOnQIcTNmqB4LAqupqWHdunVj3bt3h76+PqysrJC1YAGeiETC6F272J8msaemkk39+nXs/vlnoaKigi1cuBDmnUdDtSMwkBLQDx3qCLnC+fPAgAF4vnkz9l6+DF4k6kxeIBaLBaVSyUxMTDB/4EBItm4la+1rEAQBGzZsgFFLC5Y0NRERsrEBvviCCg7V1USMUlK6vI/neRw4cEBVUVEhGjZsGG7fvo0XbbOyh8bFCTr6+gLbsIHz9vZGlx7y3FxKRp4374192b59O4zS0jDzn/+kz+6MK1fIAnvzJu3Lvn1vnRncGQ8ePMDly5eFNdOnM2zeTKR1wgRgzx4iNe02ZbkccpkMv86cifkzZ1Io3cmTrzZ06BDkp0/ja3d3dA8ORkNDg6q6uJjTzc1lvFyOgYWFONC/P7zMzflxixZx7eeB37gRpxQK/pFIxLUdbAwvLuaDDQw49OtHa2rMGCosNDWR3fmdd8g9sHs3eAcHpFpYwOPKFWju2QP06oVWKytcHDgQ2Y8fw7Omho84fpy7/MEHSGlqQmBgIOzs7MBxHI0cKytD8IkT0FuwoGNsFADgxQsIUVF4lJoqFC9dyoZPnPjGsSsoKMCJEyd4iydPuJEiEQy3biVXQp8+RJ4PHwYiIhB95AgsLCxQXl6OZcuWIScnB/fu3eMXvf8+h6IisrBHRlIWQlQUrWVXV7I1L1+O5y9f4uSpU4Kenh6ztbVFa2srVCqVEBQdzcrffx+1Tk7gOK7jp6WlBXK5HBKJBPFXr2L10qW0XnNyyLK9Zg1Z1Xv3pnvL0KGv0sifPqVC0rVrUB46hCPh4byKMe6ptjaEt+QwaGlpQaeoCEPT0/Hoo4+QmpoKCAL8U1KgtLDA6F27uhQZH06bxl+yteVWfvYZUlNT8eTJE1XL9esiuVgM/d69hSBLS+ZkZASuRw/KgjA3R+n+/agwMUHIsWPg5HI0LV4MVbduKCkpwfPnz1FZWQnh8WNBNyeHf+TtzZRKJadSqaBSqQAA448dQ52PDx9y5MibNxojI7qeZTIoFAqIxWI8WrYMuufOIX37dt7F1ZWrqqpCQ0OD4OTkxFzaC5UnTyKlrg6JSUmI1NeHyZYt+E8mSnTG0aNHm/Ly8k4rlcrZUVFRyujoaC+xWDyPMcYplcoTUVFRt/5XG1ZDDTX+T6Em22qooYYafxNs2bKlatGiRTKDTvOY34AgUHDPb79Ryq+3N5HjkBAije0P4YsWkRrV0EAPz2fOAE1NeFFaiuynNFmm15dfQuLt/YYyCYAIu74+BQV5epKFOjz8lW1SqSRb69KlUI0ejZtDh/LuQ4dy+/btAwD0i42FQiLBoHPnIJW+5owXBGDnTuoDXbYM2LEDwtatyLOzQ9rjx6qcnByRXC4HAOi+fIlJenqCTVTUm0/wzc1EqHbv7uifzcjIwMmTJ+Ht7Y2xY8fSg21DAymw3t6kOAsC9c36+5NN1sMDANlav/vuO0EmkwkSiYRNmjSJSaVSFBcXIzMzE3fv3oXVs2eYd/8+2MOHb+xOdVUVLn/4IYJEIrgMGEAkaO9eSmJfsoSKIuvXk01YIukYR3X69Gnh6dOnmDt3LtPtdC5aW1tRFBeH6itXEKunJzi4uQmjR4/mOvrcjx0jMvuauq1UKnHq1CkUFRYKKw4dYtySJW8ScpWKVDqepzTl9etpLvrq1WQR1tbukhL/22+/qZRKJZs5cyaHnBw69z17Up+qvj6FT61di/xx43Dg3DnYd+smzMrKYggMpITrNihaWnBx+nRYS6V80IEDHBgDli+H8vx5yB0doXXhAgoKChC/dStmJCaCpadTUJmnJ26XlPCxsbGckZGRqra2VgQAa9eupfV/+DCRwtmzqfdbU5PGaVVVAbW1KE5ORt3Ll4gdOBBaVlZCva4u41++5Gfu2sXVhIbCPCoKdy5eFHIkEtja2rLy8nJVc3OzAIA1NzdzCoWCGdbUYOrp07iwfj3EUqlKV1cX3t7eIgcjI9wZMwY9oqOhXVPzdoeAQoH4SZMEnb59mXe3bmCPH4OtXo3y8nKo9u+H8tEj/OriAj9/f6Snp3cQwL7PnvGDjx3jEBODysREcIMGQZaYSGnfEglUSiWKc3Mh27QJTTEx+Hn5cuGdkSOZl5fXq8/OyKA1/5bxXwCgXLwYtUePwrSigtRyNzcqwAwfTqnjLi70p48PEf7XkZUFmJpC6NMHhTIZ7gwapAoZMEBUZ2qKtLQ0iEQimJqa4nFmJu91/jyX7u2NOpkMA69dg8eIETBdvfqNTbZoaSH7t99g0rMnfvnlF3h5ecHb2xvd9u8H5+JC1/S2bUBCAorlcjx4/32kBARAqqkp8DzPnB49gkVJCeoNDZHXt6+gL5PxMpkMTnl5IrdvvkH53bswMDCARCJBRX4+TA4cQMXcuTh45AhsbGwwYsQIWFpaduxPXFwcUlJSVAqFgsnlcg4A9CUSYV51NdPdtKmLe+h1PH36FGkrVgguqaksf/t2PtzTk2u/9v8TtLS04OjRo00lJSVVjLEHgiCEBQcHS8ViMXf79m25UqnsERUVlfkfb1gNNdT4P4XaRq6GGmqo8feBwPM8AODZs2eora1FWVkZTE1NYWxsDC0tLZjOm0eEsbNaaGREltZz54hErlhBf/fzo4djf/8ONe7XjRsFsbExm2lpCcn331PgD8cRwerViwi8oSH9nDtHVtfKSnq/mxuRtBs3iFDMng0cPgzRyJEY3CbXdO/evTUnJ0fM8TxyvLww9C2WeF4QUDd9Osp794b9jRvQ9vFB69atsLazg3T+fFF1dTVfVlbGaWhoCK7m5rD57juGdeu6jgjjebKCm5qi84Orubk5qU7p6dDZtw+Ga9ei18GDQHo6qk6dgtGkSeBCQogAfvstEf7SUiAvD4klJWhsbGTjx49nDp3UYBsbG9jY2MDV1RXHf/lF2KmtzWqio6GpqYmIiAi0trZC2tSEvL17EZiWBuvt24EHD8guvHQp9UpraNBxfPKEEshTUkgtBJCbmytERkZyuq8VPcRiMZwGDYLTsWPwlMnYnqIi4dChQ8KECROYjo4OfYdORLa2thZxcXHCkydPmFwuh0qlYvlr1sDZxIQKNO2EIC+PCPqwYTSGasUK+v+iIiJbq1eTM+LZMzSGhqJk4kQUP30qMqipweOePeHm4UFhUUeOUIDYiBG0Lv74A7k6OrCysRFmREYy7N1Lx6AT/rhyBY9cXBBRWclh3z6y1Q8dCsmzZ5D89BMgFsPJyQlHzc2h6tMHYqWSjuH69chsamKtra2YMmWKSC6XY+/evXj69Cns7OyouCQI5Dj44w8iYytW0IdGRkI0ciS6bdqESyNGwPnmTTbu/n1kXbrEGW3bBtmRI2jR00OyvT2bPXlyO8nqIvXzPI+8vDzUpqTANDFRKAsKEqlUKhw8eBADBw5E3NChaIyNRfjVq1S8CgnpWsSKi4NFdTU71NSEit27IauuRoqJCZ4/fw49La3WvpWVIk87OzZw4EAEBwfj0dSpECuVUAQHc6U6Ojh+/Dhq9fQQtG0b+mhpoTkiAubm5ih69gy/nTwJDS8v3sLUFKveeYfDhAlUXGsrQOHSJQrk+/LLrheiszOwfj2Uq1bhZwMDrCwupvvBrl1UVGubs44+fSjs8MgRWsedRmcB6ChWsexsVF2+DLuDB5njiRPAsWPwb22lgpixMYYNG8ZBLMYAExPUDRgA3QMHoBEZ+frtAcXFxfhp9WpM9fFBeXk59PX1VaNHj6bzYWBA5P7zzylYztoalvHxODdiBFBRAZlMhmnTpkFTUxNcaSnw2WdghoYMAweK4OhIa2ThQth3KiZ1e/wYuHkTep9/joiICOHChQts7969AICpU6fiwYMHGD5nDmr27eOcvb2Zs7MzGhoaYGBgwMRyOV0DZ8/SsXsL7OzsoNq6lV26dAl6Dx+SA+P5c7rH/gfQ0NDA9OnTtYuKirSrqqps3d3dodNmlc/JyVEUFxfbAFCTbTXU+JtBHZCmhhpqqPE3QVxc3Cf6NZnTAAAgAElEQVRVVVXaV65cUSUlJXGZmZmoqalBUVGRkJKQwB7HxcFs1CgYzZlDamJnWFqSPXjQIOpbTU6mvkJT0w4bcVNTE27evs2UenpIAuC7fj00w8PJKq6pSWrluXOkhN++TdbirVuJ2H72GamdW7YQSXR0JEXZ27tL8JKHhwdX/fixYHznDsv29YVYKhXEYjGrqKhAQkKCcOvWLVy5coXdv38f+cXF/G2FgmUKAgpFIlhcvYrmy5dhZGzMBrz/PoaHhzO3Hj0YXF2JULeT7cZGUlUDAih0qROhbzpyBKKYGDyztMSE48fxB2N44OfHJ/v5sYwjRyCurxcsKysZDA0p9GzyZFKZPTxg4OGBrLIy2OnowMzN7Y3zY2hoiGCxmPl89x0qR4+Gvb094uLi0Hz1KmQ//ghVayv8+/eHhpYW9QVv2kQFjOPHyUo+eTIRoMuXaY7wqVNQ/uMfuC6TsWHDhuFPk9kNDCA9eRLeGzaw5ORk/ubNm9zLly9VtseOcZL9+8GPGoWbN2/yx44dY42NjczT0xPFxcXo378/fIYNgygjg4jn1KlEiq2tqVBx6RIpv7//Tirw5MnU1zp2LLBwIU6ePi28TExkeTo6vG5JCRt//DgaJk6E8Ucf0Wi3UaMo1GzZMiJg27fDTFsbyQkJ0Hv4EKZ5eQwREXS+amtxJyUFKTdvokevXiqX0aM5ZGVRMef8ebK06+iA53mcPHkSFdXVGPThhxQItns34OcHhVLJXpSV8YqsLGbV2AhldrYg379feHTnjmC5YQPT+OILWhfnz9M5bVf8Fy6E3sqVeFhYiHo3N+GdNWuY7pw5sOneHWzlSqCwENdVKuEFx7H84mL+QWoqn52dLSgUClhZWTGA2gmMjY0h69sXLoWFLGDZMnh4euLu3bsoLCwEz/MoE4kwYPduKly88w5ddy4u9O9Zs2B06BAGjBoFp9GjoYiIQE5uLm9nZ8fPmTdPbOXiwryuXoVGUxN0vb3hcOYMzBMScLlnT8SHhEAkk0EikcA0IwNpAGIKC9Hc3KwyMDDgioqKVB+vXCnyHT6cdYSChYSQk6K5mULddHTIoXL/Pp239jn3ERFQaGoiPikJvWfNwpPGRpi8/z5d07/+SoWoESNom9On033mtdFZHWAMRZWVSGFMCP7pJwYdHbp/XPt/7H1nVFVX1/Xc514uHS5FlCIgKKBSFBBUVLCggCXGHokmYEuMJkZjTYxBE3uLLbEn9hI1UbEiCKggYpciXUAEpHduOef7sbgUS568z/e83/uO8d05hkNzyzn37L3PyZ5rzTXXDXpeJSQALi7gDhyATl4exL/8QoZlb+CXn38W5m7cyIxXrcKjx495DQ0NkbOzM73p40NS9337KJCzdy8ULi64V1+v5HmeaWtrC3369GEcx4EZGoINH05Gdr/+SoqH7t0peHPtGl3X6dPUP/vLLwGOg4WFBfPz80NtbS0KCgqQnJyM4uJi9NHTg+uKFcysKZino6NDqhmJhFq2mZu3dT5vhadPn+LEiROor69H9z59eLuffybzxJ490Wyi+A/BGINUKoWFhUUbxVB2djZfVlYmiYqKivTz82v8xwdUQw01/tuhzmyroYYaavwvAcdxVWlpaSa2trZccHAw5HI5muq3GaZMQdWjR9imrw8vbW0MfdMwq2NHylJeuQKMG4fMvn2Rnp8Pr7g4GEdE4MmIEbh444Zga2uLiooKVFRUsK1bt8LZ2Vk5duxYEbp0IZk4z5PpWloaZQj/+INqt/PySFpeW0tZ27/pj83n5vK1pqYimSDg1q1biIiIgEgkgrm5OWtsbBQcHBwwhqS2nEwmQ21tLQwNDcHdu0cZuXPniNhPnUrZt+vX6ZwLF1LGUiSijK7KpEwupw3zpUsQXryASUkJRBoa2Dp/Pr1fVMS5ubkpDZ4/F0m8vBgvlwMZGeCAZuOxB5cv43J4OAakpMDpjz+ILB0/TsSzVQ29uH176A0ciMmTJwMyGQbFxSG3ro4Xams509GjIdbWJvntJ5/QFxQK6qe9aBGN2fPnRDwYAxwcUGNsDCYIkOfktHH0boP+/YGiIhjcvYvZs2eLXr16hYsXL7Jz6elw0NLik48cQXFxMYYMGQIPDw/k5OQgISEBRUVFSolEIsKwYTSu8+ZRPfOxY3RdABl+bdpE895KOZDw7Bmepaay3idOoJ+lJXf+/Hlhk6MjW9GnD9XH8zzNTUkJkclly4ABA6A/eTLGmpuzsro61L5+jdcWFrB59Aj1MTF4EByMuceOQSspSYRBg+g7dXXA/PlEgK5fx7rJk/HRoUNwDgjgER7OYc4cUnGYmaHnkyfItbbmusfFodzMTBj100+sxMiIJenpCYdEIvQbOxZujo4UbJoyhQJOPXtSFjErC69GjQJevxa0LCxa2pdxHDBlCh5ev85GXriADmIxl7xzJ+7fv4/CwkLB883+1HZ2VGedkACJtze+++47VFRUIDExEbdv30alXA5DV1dSTfA88N13VGM9eXILsQwMhO3Mmfjss89aBtzGhtbZvHnAwYPgzp3DnYgIGMlkyi+nTBFxHIf4a9dgu3kz9sycCQDo0aOHqKysDBzHtdQDchy1/RMEmp/GRqqtnjeP5io4mDKxgkCkGwC7dAmSykr8/OmnkOvpYQlAQZmFC1vM9QC6B/8FjIyMUF5ezlXU11M7wL/+onOFh1NJxY4dZFj39CnN/xv4448/eHljI5ffqRNe373Lv3z5Ei5vktGQEDJcZAxYvx51+/ahuk8fUT9NTfTp06ftg4njKANubw88ekQlE0OH0rjU19NYXbhANeqtUFtbq9TR0RHV1dVBUyLB08GDhT4c9+6n3uHD5AFx7x4pg96AWdOxBw4ciB49eoiqBAEGAJ170CAKdpWW0nX9mwgICNBJSUkJBpAAYPu/fSA11FDjPw412VZDDTXU+F8CkUj0cty4cZ26du3KOI4jw6CKCiIN27cjLipKUD55wt7bszUgAMW//IJTWVl8Dc9zVh078vufP+cGxMYKFffusUHBwULvKVOaN/hbtmwRnj17JnJycuK7d+9Or3McbfxtbGjjKBYTOdTXJ4nuu2o2W0GpVMLmzz9F2U01o3369GGRkZEYO3YsnJycAKDNflUikbRkaLy96Zw9exI5vX+fpM7W1pRhk8moHn3BAnIV/uEHckw+dQro0gWy8nIcNzERKgIDGZRK9OrVi09PT+cqKiowxNtbJEpNxRY/P5wD0Cc/XxjQ2MhSUlPh5uaGm7dvKwf4+4v6r1xJRKOmhtynJRLKBL98SSROT49+X2EhMHs2tDQ04JCfzz0cMEC4pqWFL775pq2Rm6cnbe7XN5kIp6fTv3fsAHr0QNHChbBdvRqa7u64df4832/o0Pe7J+3YAfj7w9zcHDNmzOAq/P1x+fp1KBQKzJ49m1Oti5MnTwIAcnJyRNXV1dBXKRKsrVvaw6lgZ0dk4dIlCjA0v2wHbW1t/unTp4KlpaVIKpW2zFtrafjDhzT+n3xC9dvR0WinUEB30CCcXrkSxa9f8zJPT453d8enn34K7e2teMCLFxQc6tgRGDUKkZaWkMtkMJgzB7a9e3PYto0+l5iI+O+/55Pkcq7Q1hap3buD4zi2PCAAZgEBMANY6a5dSr2ffhJh61Zar8HBpHwAiDQWFGBoeDg2bdrEXbp0CcOHD2/5HTNnYkFYGO4GBOD5o0do/O03wbyykvX46ae3uZVIRBnRwsLml6RSKSQSCQ+AO3v2rCIkJEQMX18idKqxjYtrOcbHHxPJAoiI/vorrefz54n4jR4NtGuHEsYgkUiaDbV619UBH32EDpaWePXqFfbs2aPKsL69ZhgjMltURCUf+fkkv9bTI2d2FQQB2nPmwHvAAMR06YKlixbR68eP0/2VkdH2uLa2RJpbt7xqBScnJ3Ac19angTFaWyNG0O8pLSWi+4aSQ6FQIDk5mRs7Zgykfn44d+sWp1AoME7lfK8ar2nTKOgHAJ07ozIzE588f456XV2UZmSgw6+/kkJDZSB45QqR4YQEarF24gSVxJibk9Fb6xZfTRg4cKBo79696N+/PxLv3IHnvHls5evXGD58ON4KwAA0vgcOUBb/DbRv3x5SqVR58+ZNUWRkJEQiEb799luwadPoA8+eUTDz00/JW0JlSvlfQGZmJkQiUZpSqTz4X/6yGmqo8d8KNdlWQw011PhfgLCwME4sFrtaWFi0davdsAG4fh310dGIf/KEMcbQu3fvdx5jb3y8wjshQTygUyfWdcECaGhocJWVlcj44APWt7gY+nv3ctDQILkwABMTE1RVVUGhULx9sKtXgZEjiUg9eUJZt5iYf0m2RQoFuvI87DduxJM9e5CTkwMAkMlkQmNjI9N8x8a2DTiOstbjxlGt86FDRPQDAymjuHEjSZ4HDiTS19RP+MFXXwmXjh5l+vr6/PLly0W1tbXQ19fnqqur8fr1a+iePw+sW4dPBg/G9WvXeNfvvuOONzQIOaamLDk5GdXV1aLm3sQiEZ3z+XP6761bgbNniQTNmEEEc80a2tDPnQsEB6NzdTW7e/Qov3btWiYWi3mpVAotLS1Of8oUOHl4oKvq+iQSoMlpHCByEtu/v3JHu3YiRVQU1+/334H9+9u0JgJA59bVpTFoMm6ShobiIwsLDkeOtPloYGAg0tPTkZGRgca6OuiravbnzaO2bm9CZTYVFNSc3TY1NYWpqSmrqKgQAEDV6/fx48dway0j/u03OraBAa3VHj0gNjGBwTff4NOQEPA8z+3ZswdFRUUtbZxkMsqs//orsGkTyj77DM/PnEHs4MHwGzxYaXzwoAi//kqBCYkE2LwZnUpKOM85c3Bw/ny+QiplSlDbukmTJjFxbS3scnKY3Y0byPzhB9gXF7cpLcCBA4BCAS2ZDK6urnxiYiJXXl7OjxgxgpNKpcDDhzh65oyQEx3NvLy8eK/CQmaemUlGXO9CQAAFUdzdm+uXVbWzVlZWLSeWSGhcjh8ng7r27Wm85HJSVIwbR++vW0cBmPBwCmjt3g2ACFRwcHBbm/gpUzChUyekp6fj0qVLqKurA2OM43m+5bkhCJRVHzCAFCKnT9Of0tK2ba+2b6cykOfP8ejXX4W+zs4tgaL+/WkdvokNG0iq/x5UVFSA53nI5fK33xQEyiBfu0Z13qtWUSArNBQAcPToUV4qlbLONTVMMyQE1qtX87m5udzr168hlUoh/uorIqOXLxPhrqoCJk1C2ZYteHHoEB67uaGnpydG6ejQPWphQcdXmcX99hupZXx9Kdixdi11CEhOprlqZSrXrl07BAYGCpcuXWIG+vrK+xs3ilhFBcLDw2FrawvTN3t4L1xIAaf3ZLe/+uorEUCu/ufPn8fTp0/h6upKb6oy/KtXU9Cld28KEvyrZ2Ur6FIJhqNEIrmyfv16Bc/zneRy+dzly5ef/8cHUUMNNf5b8O/1H1BDDTXUUOM/CrFY/J1UKhUZqWSbeXm0GV21CoiLg0KhgJ6eHiQSyTtbSMTExKCiokLscPQoXI8dYxpNZMPQ0BAenp7QDwqiYymV5Cze0AAvLy8GAPX19S0ZvCNHKOvj5katnQICWly8d+6kjNTfITkZml98AVmr9mIAcO7cObZ27VrU1NT8swHhOMqsnT1LxGTxYsqqHTlCGbInT6hWMjERFceOIWvNGjbZygpzO3QQcTEx0H/9Gnj6FPqFhbCTSsHi4sC6dYNlQwP86+u5B2PH8jZPnrBOWVkovXMHM+PiBI3sbCI+Q4cSWbG1pTGzsKCs4PXrlCUrKCDieusWZVAB6OvrY9asWdwXX3yB4OBgztrKCkEbNsBQT48/FR2NoqIiuq7+/YlQVVc3X2pBQYGo1sAAc2fPpgx6VdXb4ywWE/lftarltTNnKNv9Bry8vJCTk4P2BQW49M034OVyRNjZCVutrHCytJS/N3MmHj58iLq6OlRWVkLm7U0GY+Xlzce4fPkyXr9+zYYNGyYCAFdXV5iZmeHPP/9se7KICMpWqv69di1lZxMTm6aRg0wmUwLAkSNHyP2vqopkxCNG4MzZs9hrbg7BxkZYWlMD3y5dRBg4kAihQkGBF11dtO/WDYVPnqBAW5v7ZOdO5nfuHMvMzGQNwcGApSUchg/nMkePFo52746GN4NHGhokV7e0xEgXF27u3LkoLy/Hzz//jLS0NMh/+QUTXr5kYrEY2traguXatYyLiiJ5/dChRBJbQyIhmfrRo80vyWQyJpVKlf7+/gAoS/twwwbwhoY053/9RbLtZcto7aSmUg/6lBSqMX/0iAI4Q4YAgwahYP16MMZgozL/k8ko8NShA6RSKXr16oVhw4bB0tISgiBg1apV2LRpE3/h55/R4O4O5ZEjVNfcvz9l1efNa+kCoMKVK0BeHtKyslBXV4f+qrIMhYLugz593lpbGDu2pf75HahvWrc3b958+82PPyZjvUGDqEVh+/ZAXBzqamtx4sQJ5Ofnc8HBwUzTwwM4dQpjx47l7O3tlZcuXRLWf/891aCHhdGxGKNAhbk50i9f5vMGDhQWHD+OyrNnka0qyRCJ0FyuAFCwcPp0uvd8fChosHUr8PPPZArI86SuSU0FamvRs3t3Nn/+fNh37CgSHz6M/v37Q0tLS7h9+zZf3upeAUDPq6Iieh4UF79zbHiex/nzxH2lKnM0nqfnbFQUBQYYo4z89u0twb5/AIVCAYVCAXt7e5+goCBff39/a01Nze/+8QHUUEON/zaoybYaaqihxv8wVq1a9ZmOjs7iKVOm6Da/eOsWbcAYA0Qi6OvrQ1NTUymXy9lPP/2ES5cuNX+0rKwMt27dwrhx46Dl6EgZlqbsWBs4O1OG1MwMCA6GblP2iTHG5HfvUq30zZtEyM3MiEyosmA2NkQGmlpyvRcPHwJaWsjPz4euri5vbW0NExMTpertioqKfz4wsbHAyZO08WeMiIOfH3DnDhEHJyfA3BwGmpqw0tHhk27cEKqOH6fruH0bj2fMEPJGjRIU8+eTnDchATh9GpY7dyJg3jzOJyUFxiUlEBhDbmUl233gALLNzXHN1FS4deeOEocOUSb7ww8pY9W3L7m+h4VRxvDw4TY/lzEGQ0NDWFpaIsDfnzN1dsagKVM4X19f5YEDBwRV72yMHk3EoQkqWapgZNRsFAYLCyIHrRESQtnJprZQOHSInMXfAWc7O+W0/fvROT0da2fNwh1dXSbW0IBpp06s29mziDh9Gps2bcK2bduwcdMmXL12jVd88gkUCgWuXr2Khw8fIjg4GKrgD8dx8PDwEACgqqqq5UQnTxKJUuH+fcDYGAp/f5zavx9lTaqBWbNmoaSkhHs4dy6e/fUX/tq0CQ/XrcOzZ8/QwBgynJwEjb17m4M85bGxuBwRAf7bb4GXLyGXy3H43Dm0a9eOD58+XWFhYoJvS0qgFx0N8Dz0yspgf/YsEzgOT548eXtATEyoVtjGBsZGRvjiiy84CwsL5R9//IHo6GgoZTJIJBK+ViVPBojojxhBkuW8vLbHmzePAgZNxMrR0ZFVVFSI9u7di927d2PTmjUovXYNMh+fFiKmoYFmafzcuSSjHzyYlBqqrH8TQaw+dkwY4u4uNPdVz8+nddGqHVXv3r0xffp0uLm5wTYzEx/u2MGlFxXhaseOWJebiypLS6rTVgV25syh80ydSvdyeDgwdSoeP36s7NKlCxOJRCgqKoLs6VMKLL2rnRXHkYw8Kan5pYqKCuTk5KCoqAjHjh0TdHR0kJSUhKioqLbf/f57ygCLRHSMwEBg71689PYW7PfvFyZOnAgTExMyF4yLg46ODiZNmiSaX17OZu7ZA4WTU9usOmPAgQMoMTVl07ZvZ3pTpsDDy0s4fvw4Mt9zX+DZM5L1V1eTnL57dzrO8eMUQPDyorWybh0EW1v8/vvvvPGmTXBOToa3tzemTJnCXr16JezatQu//PJLc/cIALR2d+9+Sx6vgmpdBgcHw/rFC1IOMUYmlvr6LcaWr1/Tuho5kqTl/6JFb1FREU6cOAEAqKmp4Z2dnSEIAniez/7bL6qhhhr/T6CWkauhhhpq/A8iLCysp4aGxuapU6dqGxgYkHR2+nTKOn30UZvPVlRUiCZMmICKigo+MjKSNRmoCc+fPxfc3NzQqVMnkpyOGEFZ4U8/fVuOrKsLLF0K5OTAPCAA7i4uwnWZjLmvW4ciExMIjx+jQ4cO7/6xVVVE5M+/R5koCLSZ/fRTpKelKW1sbEQAMHXqVFFkZCQeP36M/fv3Y9myZe933gZos6lQkJS9qIiM327fJpJw5gxtZkeMAH78EcjKAnfsGNyCgri9e/fiQXk5VqxYAQC4mJvLFAoFOnfuDKmWlpKzshL59u0LnSVLAJkMYokEjWPGoCw/HxanTqHiwAH8VVaGSkdH1jEtDXru7uhqZATN8nIi+aosmFxO2aisLKBfP5LWt7ZOamggEnrsGMAY/Pz8RJWVlfyZM2eEzz77jMOePc0b8j/++APFTYQtJSUFvXr1ojmKiCCX4s2bifRZWRFR+vRTyh5/+y3JaU1MqI699RzMnw93QPTA3R1xffuiV69ewqBBg5hIJAIAho8/xsIrV1A+aBDE2tpoaGjAtXPn8DIiAn+uW8fXi0RccHAwrN4w4YuOjmaMMTS3KHvxgs7dShaPnBwox4/HT2lpGHztGpRLlkAxZ05zDa84KgoaN2+iq4UFHx4QwEykUmHmqlXc5ZkzcXLsWKF3dDTClyxhJU1y9+pu3VB2/jyMra2hoaHBzx48mEOnThxGjyalBUAZzqgo8IGBAIDs7GxBpdpog169KHiiVII7cAADBgwQnThxAlXTpil3PHwoYjzPhraumbe2Jpfq334jZUV+fguR0tCg4x07BsybB21tbUilUqGgoIABgH1aGjo0NkKrZ09Sh6h6Xask/6tW0XqysqJsqIlJi0lXt25I6taN+ael0XcBygRPnPj2vXLyJALq6hDJGNIdHPDVDz9AplTi0fr1iP3xRwRu2QJO1KRE79ABVTIZqqOj8URfX6g4fpxlZWVBoVCIGGN49uwZBEGApLER3r/+Cr/W0vTWyMoCADx69AiXLl1qIxm3tbXFhx9+iKqqKhw9ehQFBQX8R0OGcJyvL5maqVz+m4IXWVlZuOPtzT7y9oZEKqUxevKEZO9NCgC2dCmOVlejfuNGQSwWCyKRSJDJZJy5uTnT0tJCnYkJNMaOBSZPRrecHGa8fbuwWy5nBgYGSl1dXebr68s5OjqSuuHGDbqXs7MpWOfpSZnstWvJqE+V+V+5EidtbJR1lZXMy8wM3KlTwN270JkwAZ8VFor4Gzew96+/2JMnT+Dm5obmoIifH0nk166loForuLq6QnPGDD43Px/2n3/OsU6dKLO9axdlsbt0oWdHaSmNz/LllKGfNo3KFZYubfM8l8vluHz5srK0tJRDkxdGQUEBx/M8lEollEqlU1hY2DcALqn7b6uhxv8c1K2/1FBDDTX+hxAWFiaWSCQxw4cPN+vUqRO9+NlnJPv8/XfKuly+DGhooIgx3Lt3Dy4uLnB1dWX5+fl8UlISl5+fzwRB4IKDgzmRalNtbEwktayspdfum5BKwXXpAofvvmMdCgoQPX8+ZN98AwdHx3dusHmex75Ll4QOly+zW506KQsKCzktLS3o6uq2bDSzsoAtW1A2ezauXr3KjRo1SpWRR2ZmJgoKCiCRSDBgwICW77SGqtbUwYFqxL//nqS3Dx+SJDYwkLJAhw4RCU1LI6fhLl2g0bkztKdORebr10JxcTGztrbG/fv3BYVCwcrLy1Ggp8fp3LwJhy+/hGT+fEAiAZs6FV0MDXErNRVBQUEoLy+HiYkJKisrhdLSUu758+dwffAAYjs7iEeObDEGE4koQ7lnDwUezpwB/P1b3LwjIiCbNw+P/fxgbGKChoYG6OjosLi4OCYWi3E1Pp4Xli7FxexsPqu0lGtsbIQgCHB3d+dNTU1pYCws6HhLlxKZ7NGDCD3HUXZw+nTKdKvqPgHKwL5+DUydCi4gAMccHdFIBnSsuR4doFrQJUugnZsLzcBA6OrqwsXdnWXo6fFdHj/Gh+vWMaPWLtRNePLkCe/u7s7sVC2O6uspAODj0/Lfo0fjtJ8fymtq4Pz11zijrQ1pSQm8zp2DiZYWL6xYwbo6OaGdnh7ro6/PvObOZSJNTTisW8euDR7MOE1N5p6TI0hHjoTv0KHMKTwcSSYmeFFSAs36euY5ZQoaT52ChkxGNdN37xI56dwZ3BdfoFQmQx5jeFFUJDg7O7OHDx/i4sWLiIyMFLy9vRlnYoJCQ0M8qKrC1atXMWDAAGVgdbXIe/16JPTpw54+fars1atX2xugRw8K9BQVUc3y4ME0Fx06UBa2Wzdo6Oigd+/ezNnZGT1FInQ6eFAwKyhgmhYWpCipqiIp+PnzFCSYM4ek+0OG0PG2bCFpemUl7mdkILGgAD6pqRB36kTn2bCBAi2qebl6FTAwQMX06bhRVISknj3Rc/ZsmFtaQiwW4/G9e5iwZg1umZigU1M2WPHRR8i+fBmvjY3x3NycFTOGnj178k5OTiwrKwuhoaHw8/VF74kTEa2pCYm1Ndq/q3d0bS14ExOcMjAQHHv2ZCEhIXBxcYGLiwt8fX2ZpqYmDAwM4OrqioSEBNxLSOA9raw41uR+DgA1334L2fr1OFBbK3iNHw/rUaMYBg+m+Vy2jNb3wYMU3FuyBN18fNClSxfm6OjILCwsuKSkJAYA5eXlwhB/f1hOmcKQmQlMngw9xpjt8uWwtLbmxGIxu3btGu7evctX7dolVMfH47ilJc+lpeGmlhbv3KMHxwYMIJK7ciXg7g7B2BgPHjxAXGIi9/XXXzONgQNJ8r9xIwWXunQBW7QIHWtrcb6yUnCZOpVpTppEx2CMgjTa2kSeAVJATJwI9vHHkGZmslvV1ZwZf2MAACAASURBVKzYzo7vPHcua35m5ORQkO2DDyiIM24cEe0ffqC2fRERpGq4e5fIPGOQyWQ4c+YMx/M8EwQBGhoagq2tLe/q6sq1b98eOjo67aVSqV9paemM27dv6/br1+9t9zY11FDjvx1qsq2GGmqo8X+BsLAwi9u3b38THx+/PTY2dsiNGzdi/fz8at74jFF0dPTn0dHR/aKjo9P9/PzqACAmJmZh+/bthwcGBkoYY1R/6+pK2a/gYNq4JSUB6enQW7cOBk+fot7QEJY1NXAZPJjrP2gQJBKJ4OPjw4yNjdv+MMYoO96/f1uzKICyO4MHA99+C1ZejiKJRLC9fJnl9O4NR2fndxLhp0+f4klaGtr168fY06fc44YGPiEhASkpKXBycmISiYTk2y4uOJyayltYWKB3797NB9LV1UVxcTHKy8tRV1cHCwsL1NfXo6amBjo6OiSH7tWLyMfSpfS3Cg8ekKR+40b67d26EckrLqbNeF0doKODdlOmwP7HHyG5fJkdq62Fg4MD7+LiwlVWVgr19fWszNgYxr6+vEXfvgwKBRRnzqBmxQrc7dwZXl5e6NGjB5ycnFBQUMBev34N49pa9Pz5ZxxvaECPkBAUFRVBJBJBEAQc19ERSoqKWIapKXQuXUJ9x47Q7dABvFKJQ/HxysuOjlzq8+eIi4vD3bt3kZKSAqVSiezsbNjb2wt9b9/mzPz8OK9Jk5CYmAgtLS1UVlYiPz+fd3Bw4JrnMCSEDMgGDCDVw/jxNKcvX9IYeXlRrWdZGRkrSSTAkiXQnDwZA3x9kZ2dzefk5DBjY+MW4sQYzb+LC9VpGxmBMQYLMzPWfuNGxiZPflsRASAzM1N48OABS05OVpaXl3PW5eUQ2dq2tLT6/Xck19Qg3sAAGhoaQm1tLZx69ODNKyuFzvfvc+YxMazD7NngbG3p3CEhJNEPCECRkRHuKRQI3b4dpkVFzM7EhBn37g3dBQvgOWsWvDZuhK2XF4TiYuglJaFu2TJItmyh3xkURNlBDw9oFhcLmllZjOXkwHH4cLbv999RVVUFuVzO0tPThejsbOFRVhbrvWYNLObP5/v27y+ClRVEHh5wGzMGERER3MuXL5GUlIQOHTo0G59BT49q9bdupTZeYjER34NN5s/W1kBJCXSWLoX+6tWoDQzEbx4ezOXSJWgePEgkaulSyqy3b09zoKVF//7gAyJa9+9D+PxzPE5ORp85c2i+srPpPHp6ZAqYlwckJkL46ivszcxEhLc3PGfMwLhx42DeJDFnjKFrt27YKBajSBCEqvJyxlVVITYzk89ydGSBv/wCr5Ur0W/1ath7eLC6ujqkpqYiMDAQ2hoakJib446BgVJPX59rDgK2wrE//uCTeZ61GzKEHzV6NCcWi6Grq9tigNcETU1NuF+4wAoePOAeDBoE56Zny61btxATG4sXjMGkf382dOhQek6MGkXZ5pUriWTu2kWturS0oKmpCUNDQxgZGSE5ORm5ubloaGjAhAkTWLdu3ej7lpaAVAqsXg3prl1o37cv7D084O7uDmdtbeZ09ixTHjjAHDt25Exv3mQRenpcfHw87ty5IxTq66OboyPD/ft4UVCAc3fvYtiwYS018zU1pDJQGUROnAi9CRPw+tUrKPLyYB4ayrB4MQUKdu4kFcKGDaTQcXOj59vQocjr2hXRL17Ax8eHNZusvXxJRpTTplG5jupZLpORcV5wMJVq5OUBP/1Ea0ZHBxlFRUhKSkJQUBDGjx+Pfv36MRcXFw4ARCIRLC0t4eDgILKystJISkoyu3Hjxp7bt2//EBsb6xkVFRXv5+f39/p0NdRQ4z8CJvyLWhA11FBDDTXejZUrVw4XiUSnXF1dRd27d9fMyspSJCQkvJbL5e4rVqwoBICwsDAmkUiSO3fu3EksFiM5OVkQi8UxPM9raWtre06ZMkXHxMSEpJNr11ItZdMGTxAElJWVYceOHfjAzw9JBw6gu48Pety+TcRL1RInIIA2mm9sdjFzJm3uVe646elkKlZRQcQ+KYk2+QAit22D9bZtMFmyBEbTpr3VRzs3NxcHDx7Ep+3awebPP4Fr16BQKLBz505lRUWFyNvbWxiSns5qe/TA1shIfPvtt9S67A1s375dWVZW1uyw3LGwEKESCV330aOU0XqT7NfUEImUSIBffiE5708/0Xu7dtG/MzMBLS0I9+8j69EjaLq7w2LQIKybNQsybW0wxiAIAqytrYUPrl5l0txcXJ0/n9c4fJjpLF7Mevfu3ZzR56uqwI8Zg5ezZuFWbS0yc3Px5v8rzc3NhcmLF7OYPn2QNnSo4HL+PLN8+RJiABocB+7aNZw8eVLo3bs369evX/P32rhGNzaiEcDhw4d5nueZrq4uMjIy2MCBAzFgwIC2YxAfT9fPcTRvx46RhD00lDL/VlZUU/777y09tJtw69YtREZGYtKkSdDU1GwhEKdOUQAjOrqll3hiImXS36GIePXqFdLS0gSRSIT79+8j4OBBOH7wAVOZVlUvX47DNTUImDsX+vr62LVrF0aNGoWeHEfkOj6esuCMUTa6vJyydGlp2B8RwYvFYvbJJ58wCAI55nt50XV1707BgcpKYNo0XB0+XHk3MVEkCAL09fX5+fPnc8jIANasQf7Spfhr2zZ8IJPBysgIuZqaOAhAR1cXNjY2vI6OjtDZ1lbksHQpuIMHARXh2b4d/KxZWLVmTfP1mpmZ4fNWtfVt5iI4mDwAIiOp9jk+nrLfgwYBX3wBITwc+cOHCzn6+uhTU8PEU6ZQL/G/Q2QkaufPx19OThiVlAQ9ExMijx07EsHKz6da6pQUgDH8sm8fSkpKsHz58rbHOXEC+PprVD1/jvDwcGX3NWtEhpWVuLBwoRASEsJ0dXWB/fuhzM7GOTc3Pj0jgw0aNIh5e3sDe/cCvXrh98ePwfO84Ofnx4yMjCCVSsHzPA4cOKCsqanhJgYGMvPTp6mP+N9h0SKUWVpie5NXw2effYbTp08rzc3NRT0lEpj17UvXCZAXgVJJzySFgq7z++9pTD/4gHwTfH1x7sYNPG2SvNvb2/Mff/xxWyXCuXM0PwsWkFy/vJyekadO0bM1OxuYPh1CRASKiopQVFSEP//8E5988gls8/KQt3y5kOHpyQZu3EjHa2wkAztv7zanqaysxM6dO4XRo0ezbt26UdBvyxYKhjUZQ+LChTYt9U6ePInU1FTMnTsXzQHSH39suYfv3KHrbI2sLJqXNWuIgL98CYwYAXloKFbX1GD8+PHo1q3be6egvr4eW7ZsaQBwz9zcvJdMJuPLy8sLAEgEQRDL5fLg77///ubfT6Qaaqjx70JNttVQQw01/k2sXbv2xfjx463tW/VFjYqKUsTHx6fKZDKfFStWVIWFhQ3V1dX9MygoSKu6ulqwtrbmEhMTYWFhARcXF6plraujLIi/P9C3L2pqarB582YIgtBMEjmOA8/z+OKLL6jtDM+TmU5cHBGW6dNJerxpE2U5vbzIHGnGDCJTjY200RSLqX3UG4Q2JSUFV/bswcjz51EwcaLQ8/PPmX7HjhAEAenp6YiKihLKy8vx5ezZTCc+nohdU+1ueno6rvzxBz/41Cnuz6AgaBob8wsWLHivAWdmZib+3LULEpkMs5ydIYmPpzZD76oPBSirI5VSgKCsjKS4/v4UYABo81xTQxmlHTvoGhUK4MQJZPbpA+bvj1ITE2R98w1SU1KgKZNBWlaGOjMzYaa+PtOztaWMMUBj1thINdG//gpoaeHZs2c4c+ZM889ZunQpzdvr10TWGENWRgZyvvsO7Xr1EhSAEF5fz7Vv314xY8aMd3uj5OSQvLiykmTpAGJiYpRRUVEiMzMzeHp6Uv32m5gzh2SpgwdTZtvSktQQu3dTjeg7MtIAcPToUWVGRobI2NhYmDt3Lk2+qoY4MLCFdCYkkGw1Kqr5d70LMTEx/N0LF7ivFiyApEMHICMDaSEhwvMFC4SRo0dzALBnzx6lmZkZG/355xzWrqXgkK0tje+uXbQuIyJQcu8eGnr0wIOAAGHUjz8ynDhB8zFyJJEcPT0qr1AqaX2D6lXT09Nx9uxZhIaGwszMDKirA9erF65OmaJMUCpFhmVl6PnwIexycpD69ddK/6++ErVZY3/+SUGGYcPIoOrpU5QZGEAsFiMtLQ3h4eHN9f9t0NhIv6OmhkzyBgygWt0ZM0gKHhJCZC43FzHDh6MiNBQffPDBe8dShZe5uTh08CDGA7A7cgTc6NE0RvfuUZDi6FGSlDe1hNq4cSPv5+fHPD09297MCgU9F9zcgJQUNJiZobCyEh1dXCASiVBdXQ2xSISi0FAhGUC/PXuYqrUbXFyAsDDUDB2KgwcPKisqKkQ8z0MsFkOhUEBbWxtz5syBjkxGx09NbQnUtEZDA7Wy+uEHgONQW1uLjRs3wtnZGfn5+byNjQ1GT53K4fx5IqcJCWQa9+WXFFB4+ZJKaLZupWxyu3YonzMHj0eORKeLF2GUn4+IrVuVfXbv5swXLWJwdaVgYr9+9Htu3qSSk7t3qV5epaQAKKB09CiwZQvi4+OFq1evMqlUKsydO5dxHIf4n38W+KQk1rdPH/rOs2c0vyUlbS7x3r17uHTpEkbV1QlITYVtWBgzmjiRDBR37SJFTlVVm+daQ0MDNmzYgAEDBlCnhpoa+oyhIQUZBOHtYGNsLD2PoqOb5eO3T57kHQwNuepFiyCZMAF2YWFvf68V8vLyUFBQgJ49e0IkEiEvLw8SiQR1dXU4ffp0nVwuD/3+++9P/stFqoYaavyXoTZIU0MNNdT4NyEIgriurq6ZFAOAn5+fuKampsuTJ09erFu3LprjuGENDQ1a169fR0VFBdPU1ATP8yguLuZ79uxJu7CtW8HzPJ7q6uLunj0oLi6GtrY2/9FHH3EPHjxAbW2tctSoUaKGhgZy6wVoA9erV0vWOiODNr4FBZRtS0mhDE9uLmVEAwJoM/qOWlwA6Nq1K7ps2IDSJUvAffQRe3HlCrKDgxUpSqUYgGBlZYWQkBCSi0dFkZx73ToAQJcuXWA7aBCXdeGCEDB2LHN3d38v0eblchw5fBizDx2CaXAw2KxZwKxZfz/QH39MG2eAJJavXhFJXLyYXuvUibJ+z58DpaUor6vD2chIFBYWgsvLg15QELRFImG6szPjp03Dy8eP8SQlBYFLljCuXTsiMOPH0/gNHUok7Lffmk+vVDabqUNXVxfNtfHt2lEdrYMD7JYtg115OfDyJSs5c4YZTpokTFu27P3/j1W1MWsV8JZKpRwAFBcX4/Lly+8m2zt2tLRv8/GhYzg4UFbsPUQbAIKDg0Xr168XysrKWE5ODmxtbWlzHhxMpH/dOiK3Xl5EokpKKJv6DtTU1CA6KopbcOIEymbOxOnTp5Wd8/I4wdiY9fbxad7xu7m4iOKvXycjtchIMvwrKqLabiMjYPNmxAQHI2rnTng7O6P3p58y5OZStjQqijJ6gkDXu2BBm9+joaGBLl26QEdHB3v37m1+PWTSJAzR0xNlAEIFx7GnEyagXkODH3zypAi5uaT26NrU9fz6dQpaDRtGhIcxqIoxmlsztUZeHo1xnz50P02aREqL4cPJEM/cnIJBw4cDe/bgYU2NcLO4mHUoLMS2bdsU1lIpGz1mjAilpRRc+vZbui65HFi5Eh0cHeE+ebJg4ePDoKdHqoXffqMgmrMztQibPRuqNdLQ0MA5OTm1/Y3ffUfEbeFCyqQnJEArLg62rT6yefNmusb27dmMCxegoyJpjY3A48cAY9BjDHPnzhXxPI+ioiKkpaXh0aNHgqWlJa+joyOCjg7N6/vw9Cl5GTQFK3R1deHh4YHk5GSB4zju8ePHGF1RASxaRPLp27cpgNHQQAGkw4cpiLZmDQWmpFL8HhqqrKysFN0eMQIh/v7oY2Ulkjx4QM+3e/dIcn3gACkM9PSoZvrgQZrvcePoWVhZSX+aSh8qKythYGAg1NbWsps3b8LX1xdyd3f2qrZWQHw8g0xG8xAf3/b6iorgunIlkmxsBMWrV2goK2PKuDgyutuxg9QOn39OzyTVegOgpaUFNzc34ebNm8zHxwfiVavoufPXXzS3Y8a0LaEBKBgREwOcPg25Uok9JSUoLS3lYgC4+foqR+TliRATQ/Pe2puhFTp27IiOTT3hATKyUyEkJETn8OHDB3/66SdnhULx/YoVK9RZODXU+A9CXbOthhpqqPFvIioq6klmZubgnJwcsZOTk4ZYLAZjDI6OjmJHR0ctMzMzp759+4rr6uqE/Px8ZmxsDDs7O/j6+uLOnTusqKgI5eHhvG5NDYvt3p2/ff8+NDU1MWzYMDZ69GhmYGCAmzdvKrt06SKyt7en2ub3obiYyICDA204nZwowxsdTe+fP0/txA4dIkL5DnAcB21tbfyemwupmRk0EhI4y6oqPnjDBs7VzY01k0yplDZ/rbJ1ovXrYRoayszflD+3RmEhWM+e6OjvjxMuLkK6oyPr0KFDi7t1K8hkMty5cwc8z8MoLY3qllX1s927E8kZMwYQiZCeno4dhw6hy48/4kV8PEyHDsVjU1PIjI3R2NgIuaEh6vT0WP8PPwTr3RuGHh5wGDcOzMeH3MUdHIjceXoSkXqjv7CZmRlu3boFIyMjjB07FlKptKWuvbycHJY7d6ZSgC+/hOaYMai9eBE1jx+zDoMGvX88ZDIyumraILdv3549f/5cqKmpYQCQnZ2tbA7ItAbPE9GTyYikpKYSIfubTDQAeHh4sNu3b0OhULTIThkjkiiXUy08Y4C9PZGkN9yUVVizZg006uvhmJaG37W0BPtOnZjvxo2setEihWMrc7F2O3bA6ZdfwObNg8YPP1DWd98+oG9fKPX1kZ2WJpwvLWVdu3XDyJ9+gt6pU/RbKispK7hmDa1fc3Pq71xe3lLPCiKcDx8+FDp16sRsbW2FV69esUeM4WV6OgLCw+G3axfr7+uLzp6eTKSq7b98meZaKiU1SFAQneO77yjL2DQX25tcqRPi44WKZ89Y4549MA4Lg2jECMp2fvwxEbbPP6e537aNPBKys8mp3NgY3JgxzObYMd47MhIvfHxE42bM4DhTU2ob9/vvtH45jsa9Rw88DwzE1aIidqeqCjFOTvAYNgya48fT+nzwgAh6Xh4wbBgiIiPx6tUrDH3zXk5KovWRkEBkftq0NpnV+vp6PHr0CAYGBqiVSOA9bx4ku3ZRwOHTT2l8Wt3XjDHcvHlTiIuLYw0NDWzChAlc83Po7l3KGC9a1DarGhVFr8+f33zuxMRE4c6dO6yxsZEZVVUJn1y7Bt24OIa8PAoo2NrSPE+fThlxqZQCMs7OpNzIzkbnXr24Bw8eQMfQkC8RBOHOvXvstkgEZadOsBo6FKLgYLoP7t0js8AffmgJmhkaUrBx+XL6bd9+C8TE4HZZGev9119MoasrlD18yOQ3bvCpgsDktbV8z6+/5vDiBa3Z27cpGLVqFamQJkyA+O5d9Fi+nFkGBTH5zp0wmjkTEi8vmoOQEBr7Dh1aDASb4OjoyGJiYmBkZIQOHTvSOjA1peCoszOgMiB8EwcOoCwpCTFNzv7jxo3DgNBQjhs9mrLfX31Fz3YNjWb1wz+Bnp4eXF1dNTIyMjzlcvmXsbGxy2JjY7+KjIwM9/PzK/nXR1BDDTX+DmqyrYYaaqjxb8LX1zcrMjJye21trV1iYqKDnp6ehomJCTiOg56eHszNzWFoaIhu3boxjuPg5+cHT09P7N69GzzPQygsFDr99RcXq6ODTLEYoaGhzNfXl5mpWgABuHnzJry9vdu6Q1dVAYWFVKc8bx5tUhcupGzKzJm08R09mjIkKSlk6DR2LJCcTBnLwYMp6+PhQd9lrHmz3FRPrLxVXMxV6+mh+9277FZkJKLT03mPfv0YY4w2tHV1lAmzsKDN/cGDtLl8B3FGUhLJn4ODAUtLXGRMUVxRIaqsrMTLly+Ft2SwADIyMnDhwgU8fvwY/VavRqaTE56VlqK2thaGHTpALBJBuW8fWGAgduzYAQB48OABsioqBN1hw9jIxYvRPyoKHUeNwqPUVEgkEqFf//6seSMbFETy39hYqqm8cIHGbuVKkhTzPNXQ9+oFducObKqrEV9aivJz51ApCIKtnR1DTQ2ZktXV0SZ+yxYiWe3bIyczk7ffsYOL0teHSadO4Hke5eXlUCgU0FJloC9coHELDW2+7u7du7OsrCzU1NTAzMyMubi4tIwNz9N8x8SQvNbIiLJoz59TjeioUW3I6JsQi8UoKiriU1JSWGNjI9+5c2c6dteuUNU848MPqWZ7xQrauL/jeO3bt4e5lhaq+vVD78BA1ruigmlVV6Pjd9+1sDqeh3jIEPyRkyO4rFjBxGfOEJFYsQLF3bpha14enmhrs1m//grbPn2g7+RE6yM3l4IIPXqQodiyZSQvLioCRo6E0twcNVZWuHDhgnDt2jUmkUiYv78/PD09WWxsLACg0sAAIxhjmi4uRHZU6NqVxqm6mgIjBw7Q+g8MpGvt3r3ZAMtWVxc9u3fH4EWLmF5KinDe0ZFVT5mCLv37kwt+eTllgdeupXtp1Sq6tzQ0aBz374eejg7M3N2ZjpUVsxs+HDsMDNDx449h6OpKxFZbm36TgwPAGNpZWKBdu3ZITU2Fu7s77+zszJipKY2FoSFltocOhWL6dNwXBMHax0dwcnJqWR+HD1MQ4OlT+uwnn7QJwJSWlmL79u3Q09NThoaGcoMGDaISgMuX6Zni7U0mbK16eVdVVeH8+fNs8uTJ+PDDD1sM4wC69z08WkzDVBgxgtZq374AgNjYWP7mzZssVEeHDdy3D/GdO7PGujqmPXgwKtLTYTBnDgRBQPaiRdC2s4N43DiUlZVBLpdDaW+PVzEx0PX2xjaOg4Lj0L59e+Hly5esoaGBfWxlhceXLqHgzh04fPopWFAQ1bgPHUqqH09PCjqmpNC8X7tG90/37sCyZXD18UFZZiafzhjXta5OsImP51IcHJRTNm4UiR8+JJXH5s0UqLS3JxWNqysF/0aOBAoL0XD+PJILCtClTx8whYJIPkDKl169SHXyBmprayFfsQJ1hYVCkbs7a9euHdioUXSO92HYMDwyNUXnQ4cEpZOT4DFgANNWSfjd3Cijn5xMRN/a+u+P9QY0NTXh4eGh4eTkpNu7d2/t2tparaKiojw/P787//ggaqihxjuhrtlWQw011PgPICwsbLCWltYaAM5BQUFabUjSG1i1ahU4xrDAzg7FCQk4aWnJDx06lHNzc2vzOZ7nsXrVKnwREgLd1FRIDh+mjZ+TE20mf/iBNsoTJ7bZIAMgSWZ0NJFHI6Nm07Vm/Pwz1ZiqjMmysqjOsXdvQEsL+fn5kMlkSH3yRFl/+LDIMT0d3X75BZwqS7NhAxG03buJ9J8/T9Lm1sjPpz81NWTatGsXIJHgxx9/bJZmL1++HM/JyAk6OjoYM2YM2rVrh8OHDwsSiYQVFhbywsuXnNjSUqmtp8dqamqEmpoakbZcjil79+L09Oko09DAxIkT0blz5xZTttpaNPj7I9zSElnu7vyoMWOo125ryOVEktetI5JUW0tZurFjKYseFkbtvdasAQoKsKFrV8zYuhUNixejg7k5kcCMDNqA19dT9rFnTwBAYWEh4qOjYXPwIKrr6hAzZAhEGhqQyWRwcnISJk6c2LI+3qjTLCsrw/bt2zFkyBD4qMa7tJQ+5+1N8t0jRyi7rUJ4OAVXRo2i39XKlKk1UlJScOrUKQBoW49cXEzXffEiEbucHFoT78vML1tGc6tqwzZ4MG34AZICt2sHxMXh5tKlvJOdHdfhyRPULFuG2zzPx8fHc127dsWYMWMQP2yY4BUdzeR9+kA7JQV1fn7Y4uaGoKAg2NjYwOTwYeDhQ7BDh3B840bh5atXbOyZM0jw9kZqK1MoiUQCGxsbPj09nQMALy8vBEZGEtF5lzFZXR0Rr3XriKAOGEBzLhbTfbB6Na2N+/eBSZOQ+OWX6JKSgporV2AaGopcHx/UuLvDraoK3MCBFPS4eJH+XrWK5qJvX1r7iYnAyJGonzQJGhIJxEePUhazRw8KBsjlQP/+4Kursf74cdh27YqJEye+syuAMiQEspMnhSp7e5gtW8bYhAlEqHmeZPbdulFm+R3+B69evcKePXtgamrKf/7551yzUV9yMsngzcyAL75o/jzP81i1atXba6U1MjKoJ/bSpfQbXrygZw3HQRAE3PjrL95k9WrW2dub6QcGorqiApvT0lrWuyAAggBduRwfnjiB0+PHQ9K+Perr66FQKMBxHDiOg6SuDvViMTwSE2H50UdwOnoUJVu2wGrWLBTY2uKwvb2grK9nQ8eO5T09PVsuvqCAFAGLFlFgbc8eUhaoygAA7Nu3j3/9+jWbNGkSa+O+zvN0H/z0EwVmfH1pbaiwaxfwyy9I37ULF+7dE+afOMEwdSoFFgEqJ6isJKL+DlSPGIGb5ub8Aysrzs3SUvhg9mzGGhvfW3t94MABPi83l1tw9iz0Nm9+W26uwp07lNn+8UdgyZK3jN3+CRITE3Hjxo0/Fy9e/GFYWJgVAAsAz1esWFH5Xz6YGmr8fw412VZDDTXU+A8iLCzMS0ND41xAQIC5u7v7O3dNMpkM4itXwO3eTRv0NzaeCA8H4uKQExgIo+HD8cTDA0W2thjRoQNEX38NDSMjIod/h7Vrqf722DH6e+bMd3+O58mMqGNHIiYbNhAJOHECKpfpY8eO8ZKICIzq14+TVFWRiVFZGZGxHj2oNrOoiLKuANXY8jxtaM3MgOPH25wyJycHx44dg1wuR9euXfmUlBROtanmeR4GBgZCQ0ODMG3aNM64ogL4+GNwrWomeZ5HVlYWbEtKUHb1Kp717w8/P7+3+oPHx8UJVy9fZkt+/x2aCxe2bIIB2nR/+SVtpquqiGgeO0aEjIEmWwAAIABJREFU6w0ZZ1FRETIyMhAVFQWlUglDQ0N89dVXYNeu0XeLi2kMLl8mouXqCuXYsXjw4AFKkpOVngcPimIHD1am8bxIxhgCAwNb6rFHjaLMpsr5GEB2djYOHToEDw8PjBgxgpQBQ4bQ5y5fJtm4u/vbcykINO89ehBpVF1X6zGJj8fVq1cxbtw4dO/e/e21MHs2ESctLVJHXLjQYp7WGg8f0t+WlvT5rVtJEaDCtWvApk04ZGcn6A0ZwjyPHRPO2dszLXt73s7OjvPX1SUHcG1tyI4eBQCc+/BDpDXVt+rr6ytra2tFnXNyoFdcDHlIiJIxhidPnohcHj2CrVQK+5EjcSQ+Xqg1NWX19fX47LPP0L59eyQkJODatWtwZQx9jx+H8f374N4nq+V5mrNVq2jdurpS8MjHh4JZR44AISGQi8XYvW8fSk1NoaWtDalUypeWlnILN2+GBtBinpWSQkSX40hR0rUrSZk5Drt//ZWXNDRwXm5u6C6XE+lLTkbjo0doDAxE/ezZ0Kqqgt66dRDFxlIAoLaW7vURI5AZG4vYe/f4vvfvM5sVK5jmxIkU6Ll3jwIcjx5R8GPPnpZrUyiIjO/fjwgLC77g1CmuS1oadHbvhtuiRZTV/+gjIv0cR/JqJycia0ZGOJ6ZiczCQixZuvSd3QVw+zYFMxITKbM+fz5QXAw+MRFFs2cLF/38ENzYyHTmzGl2uBcEAefOneOfPn3Kzd+wAfmhoZCIxShRKgXtadNw7tw5ZmFhIYwcOZKlpaby/Tp04P5KTlb6fPaZyLCiAvFhYUL//HzGrV7dpgPDzp07UVJSAgMDA8HHx0fw8vLioFSSNP3nn0mxcfMmZYDXr4dy9GiUN7UevH79OgoKCpSff/55ixRAJqN1oalJQRcvL7rX7e1JWRQYCFhZISorCw3h4Xzg999zUBnNAfT8jIggkv8mYmNJGWBvj/LychzYvVvoLQiCz9Kl7/W72LZtm6Cnp8dCQ0NJVRQWRkGh963rX38lFcbIkbSuVb4X/wAxMTFCbGxsrkgkUgqCYKGnpyerqqqScBy3QyaTLV6xYgX/jw+mhhr/n0NNttVQQw01/osICwuzBjAEgBRAAoCnrSP+YWFho6ysrA5NmzbN8J0HqKwkieeWLbRR5jgy1pk7lzIR+flAQQGKlyzBb1u3wtzFRVAqlfzLly9FCoUCLi4uyjFjxogUCgWuXLmiZIwhKChIxBijzfnQoURwra2JQKrqHv8pLlwAdu2CcOkS6oOCcMPSEg86dsTEvn3hdOkSEblVq6jWcNIkCg7MmUNGPrW1VBO5dClJZd8TFNi/fz+fn5/fZmO5aNEilJSUID09HQMGDKDNfVIS1dOeO/f2QUpL6bxr1lDN5xuIi4vDtWvXYJWbi0FBQeikq0sb6FevKLN5/TpdK8cRSVBl3C5eJIf1K1d4Y2NjLiMjAyKRCBMmTEBhYSGiIyKwfPFiynRNmUJS1Z07aawXLwYcHBCuVCrr795lyqFDufLyct4/MpKzrK+H+OBBiFuT12vXiMy2Is+qDKRGYyNmFxdDunEjqQ/mz6f2Rf/A2RrbttFnb9ygoEgrk6Y1a9YI/v7+zNPT8+3vzZhBKomVK0m1EBDwtioCoOucO5dIh4pwAURkJBKa+wMHUBkejsg+fZDj66sMCgoSOVpZUXBn3z76jWvX0vdsbKBwc0NJWRn0nJygp6eHyspKPHr4EBXPn+NJcTF4vmV/P3fuXGROnMjbPXjARf38s9DXz49ZNMl1BUHA06dPce7cOXAKBRZGREBr3z6SDr8PHTrQelqyhNpNvWPd1tfXQyaTUT/pK1eQ8McffKO5Odd//Hi6v6qqaOyePSMSnJtLruC1tcCVK7gTECBcz8tjYrEYCxYsQHp6Om7evKksLy8XqfZiy5YuhUZdHRF+fX3KUmZkIN/NDTVhYdATiWDh7w/uyBFSEqjk7DIZKStevKBrSE2l9x0dUbpzJ4y6dcO2Tz5BiIcH9CMiwO3fT88IBwcioK9f0zEmT6bryM4GLl7Ei+xslEilcPf3BysvpyBEt25E3FqXGNTXEyldtQp8bS2iOY5nT5/Cfd8+zuBN1U3THBUVFcG4tBQSqZSI4cyZQMeOEORysAMHiNxGRgJr10LIyUF9eDgKra1x7vRpjLxwAVpXrsD6jcBYVVUVoqKikJSUhKVLl5I6IDSUAoGqZ+APPwCPH+O1UolDDg7Qd3BASUkJ5HI5Fi5cSN4YgkA1+OfPUwZ7504KZEycSL916FB6fkskiFi9Gn22boVuSgo9x1XIy6Pf/8knbS+e52ktrl7d3KavJCoKV377DRP37YPGO9aeXC5HbGwsEhIShCVLljC8eEH35r177yzdSU5Oho2NDcn+Fyyg60hIoIDDv/B2UJ0vJSUFBgYGsLGxAWMM1dXVOHr0aN3r16+/Wb58+S//8iBqqKEGADXZVkMNNdRoRlhYmCGAmhUrVijf9f7KlSuDNTQ0tgDQt7OzU+rq6mq8ePGioby8XEtDQyOroaHhFIBVHMctcHJy+n78+PFvO5odOPB/2HvPqKqu7nt47nMbvfcuYAGkKCJdUawotlgTNUVjiy0meUxiEoMaE02MSTR2o8beu2JBpClFEERAEWlSBUSudLjn/D8sqqJJfu+HdzxP7hzDoXLvPfecffbZ7LnmXGuRoiqT0UZsxQqyHn/yCVBcDKFnT9TV10Mmk0EkEqG6uhoqKioQi8W4dOmSkJSUxEQiETQ1NYWKigrGcRwkEgn+85//AAC4pCSykB86RMTxq6+IAHXRN/l1qKmpQXJyshAfH4/+58+javBgBDg4MLVWJfjaNdqwjhxJ35GWRqRp3jyylN65Q/bj17XyArBu3TrY2tpCX18ft27dgkKhwJw5c2BgYNB5s1leTupcx9zbjjh6lOyzAQGvvCSXy5GZmYmCggI8fPhQ+DQxkYmSktqLyWlptbsK9u8HNDUh9/FB9PffK5L19UXOrq7geV5hZ2cn6t27NwDgwr596Ld8OTBrFkzWrKHPR0fT57dvB9BiIV+8GMEJCRBlZxMh0tKi152ciIh1JLD79gGTJ3dqobRnyxao37yJifn54B4/JiXMzu6vHQ0v484dyk9v+XzkrVuIiYnBkiVLui6419hIQYeCApqXI0e29/huhSBQAau0NFINQ0LarapxcUQiPDwo4HLxIvjAQHCtub7u7uSKMDMjVXzPnvbCd3l5lMZw4QK9D4BQVwdoaGDt8uVolsnAcRzMzMwU48aNE23evBmShga4pqTAv6gIWufPd8qP3bx5MyoqKrBSTY3mUUv1/DY0NNA53LxJSn5+PhG82bMpkPBSYatOMDeHvKYG6aGh8PLyav95WdmrCmJdHbBzJxr8/ICPP8ZZExPke3igrq4OgYGBsLGxgWkLIe3KOp6QkIBr167B19dX8PDwYGoSCY1RfDyR+6++onzk336jQFdeHhG8xkY8ff4cW7cSL+I47tWe3J99RvPz11/pvjY1depYsCokBNYaGnh31ChyM6SkkJpcWkr2c2Njur6TJ4n8mZvjhViMo01N6D1pErwMDckp0mp119bubJPOyqLAjosLzYmDB6kbgJcX1Q0YPpzmXstneJ7HL59+ihGhoYhcuFCYt2DBKwPG8zw2bNjAm5mZwdXVlXOKjgaTy8lKDgDvvIOGzz/Hs3PnkHjrFmo1NVHs7S1oampi+vTp1HHhwAFy95w/T989ejTNj2fPUJ+cjOKAAGhaW8Pg+HEc2LED4qoqYco337BO9y8igtal+vrOBcvq6igA1lqQEEDzN98g/8ABqN++DeMuugC0Bo80NDSEZcuWtX/Jgwf0PR06OsjlcmzcuBFGRkbC/Pnz6b1Pn1Jw5cqV9lSk/wOuX7+uiI2NXf/VV199+X86gBJK/AuhbP2lhBJK/OsREhIyWCqV7hOJRCaCIOCHH34Ib2ho+GjlypWPWt+zZs2a6WpqatunTp2qZm5u3nFTLG1ubsaRI0d6ZWdnfwPgC6lUqhg0aFB7H6amJtrof/45kdGaGlKFOI5UzcBAIi86Orh+7Rp/69YtDgA8PT2FQYMGsVb75siRI9mTJ094uVzOKioqWL9+/SAWixEbG4sff/wRo5884a3s7TmNQ4fAWvqxSsPCXltVuiN4nkdWVhbi4+MVubm5Ih0dHd7X11fUb8kSsmdXV5MaKZFQsMDDgxSwkyeJlDQ1EYlUUXl9LmEL6uvr0djYiPHjx6O5uRlJSUlCTU0N27FjBwIDA9vylBljROILCmjj2xVGjiSF+SWiBQBaWlro168f+vbti1xnZ/ZEJhNs1q9n2LyZlNg9e9qv38oKD/bvx9n797H4wAHR4O++g0pwMACQDNTcDP7rr9FoYoKIgQPxQCzG9Oxs2NnZEWHrUBX68uXLvPrEiUx09CiDXE7ndfs25cP+/jv1sQ4Nbbdnr1hB7wkMpP9v3Yop33yDDfPn44i/P6b9+CPY8+f/nGgDpLpnZpJKam0N3tubH7B0KffayvZSKfD8OZ3r3btEvBITO1doVyho856VRSSvf39Sq8eMofkNkJWZMWDFCnAKBRXeMjAgV4G5OanhL8PamhS47t1JsfPwwN4jR4Snn37KBFVVgOfh6uqKMWPGiPbv3y+IRCLWJJPhnrc3AtTV21uirVkDqKujW7duqKioQOmMGTAuKqLc7D//pO86fJgKsm3ZQqTnzh0iQRoaRA6TkynY8PI4LVhApOvePdxLTeWjb95kPXr0YHqtKq+BAQVU9u2jsQcoiLJ4MWQKBYRZs2B8+rSgFhHBjDU14TBvHtT09bsk2Y2Njdi5cyeeP3+Ot956C52KoY0fTznhjo4UHAgOpoDa5MmApSXKR41C6cOHOB0eDsYYNDU14ezs3H5wQWgns15eFPBwc6OgSUvQCADc+vQR7t69y+RmZtDq1Yss562fl8uJ6E2cSPc6MRHYsQOaM2ZgnI4OLh06BMeUFGgtXEj3OzSUlHpXV5oPM2dS0K61gKKzMz3LIhEdqwtwHAcVe3v++JQp3EwdHQZLS1LhO1jcOY7Dhx9+yF2+fBmXLl3iE3JyOP9nz2Akl0NdXR01d+9ix/Hj4DU0eJMePZj/5cssQVUVk3/7jUEqpeJ558/TPWSMyPLCheTgkcmQmJ6O+KFDYVlRAW9fX2GSlRXb4OmJlJQUuHVsveXvD3h7ozQjA8eiovjAwEDO0cGB5kXr89GCZwsX4oiKCr58Q7s9QRDw4sULFhISgsmTJ8PBwYGKvZ040Ua2eZ7H4cOHBZlMhvLyclZQUAALCwtK51m0iNYfNzd6bv8P60lOTk61QqFICwkJYcoWYUoo8fegrEauhBJK/KuxatWqYRKJ5NykSZP0x40bx3l5eXESicT2yZMnM27cuLEzICCgDgBu3769esiQIb179uz5ysaY4ziIxWI+LS2NWVpacvPnz5doaGiQwhQTQ/nQc+bQ5njwYKoevWULbdxNTIgI3b0L/PwzcqysBJmODvP09ERcXJzw4MEDwdLSkt24cYN/8uQJy8zMZOPGjWMTJ05Ejx49YGZmhvv37/N2trbM9uef2RU1NZy5dw+RkZGIiopCmpYWIp8+RYNC0dytW7dXpOZnz54hOjqaP3nyJMvMzOSNjY1F06ZNg7+/P9cpqCCVEgkCaEPv6kqE5e5d2uyuXk35wV3ldb6EuLg4oby8nPfx8eEqKytx69YtBhC5lkgkiI2NFSIjI6Gtrc0Me/cmomdm1vXBZDJSE8vL24qTdcLu3YCJCeJv3ECPe/eY7LffiFBUVxOpKisDdHWx5+LFZvfdu7leGzfC8KuvIPbwIGJgZQVUVOBFbCwq1q9Hkq0t32PGDFZWXi7cuXOHFRYWCtKMDN4gOppDcDCys7MRFxeHDz74gInEYgo+zJxJYzd8OAVZWhRflJURQVq6lFTr9HSylfftC8HLC4OWLkWegYFwYexYlMlkrEePHl2Ssr+EigrAcXjSowdinj5lgYWFUDl5st2Z8DKsrEjJy8khkhEe3qY0A6AgxdKlNG9nzKD3KxQUeDl7lgjt+++Ton76NF3roUP0vpMnSU19HczNaRxGj0Zit26KxxUVXK+YGFirqQlvffEFc3Z2BmMM+vr6LDs7W9G7d2+urqFBuF5ZyXz69YPo+HEigqqq0LS2RmJiIu6npaFeXR0aR4+iTE0NcbduwW75crAFC2jOMEZukPBwsgkHBlIwyc2N7lGra0KhIBWW44D582Fpbc2qq6uF0NBQwdXVlRRRxihNxMPj1Z72HAfm6gqbqVPZvbt3hd4pKezwo0fgN2zAlaIiRaNEwll0CBidPn0aeXl5mDZtGnq87ExpaKCggokJFeLy86NUitpa4NAhXFi1SvBbupQ9nz8fjr16CU8KClhJSQlfVVXF9PT0oLZ1K1nVZ89uz7WfMYNIfMucKCgoQFhYGNzc3HgnJyeu09xrbKQ54ONDz/zVqxRMvHED/O7d+Hn0aFQaGCB74EDBY+5chnHjKMiko0NzasIEmvP+/pTnvmgR/VxXl+bNa+Y5z/O4cuUKEwQB9v7+MHJwaHdLdHCGqKiowNnZGb6+vkyQyfA8IoI/WljIkuLiBKPMTDitWsWCx4xhriNGsNOM8WaFhazbyZMMdXVUEG3XLiKoCgUQGIjaK1fw9OFDobiykqWWlkJwchJGL13KarZvZ9LiYmh+9hm7cuUK+vbtC2mrC4QxKPbswflHj4RaExPu3r17gnvPnkxSXEydGzpc4/PAQEFFVVWwHT26ywvft28fpFJpW2HJ9PR0qKqqQubjA9W5c1G0bh3Cb9zgryQn48WLF3jvvfdYRkYGr6enx8zNzekgcjkFMUaPpnvfVRrJX4DjOEleXt6o5ubmNbdv355+48aNfQEBAQ3/+EBKKPEvgpJsK6GEEv9afPfdd59KpdLtb7/9tqqtrS0YYxCLxbCysmLPnj1jz549c71x48aJgIAAPjw8vKeBgYG/ra1tl97ooqIilpWVhREjRjCjjAyykv70E5GNWbNISR0/nmyYb79NSpSGBm0s9fVJDcvIQJ6NDQIWLWK23bvDYMgQFhsfz5Lu3oVEImGZmZkwMDAQRowY0bYhk0gk8HZ0ZA7Hj0N68CCkzs5obGzkg4ODmYGBAcZ+/DESfH3xKC+P43keBgYGYIzh/v37OHv2LB8ZGckaGxv5YcOGcWPHjmUODg6QdVVMKjeX7NKtuYt2dkQ6mpuJWB06RAr3m3qBg/Je9+/fz4YPH86ZmppCXV0dXl5e8PDwQHx8PMrLy/HixQvW0NDASkpKBM+nTxns7bsu0tUKf3+yMnt702a+Iz76CFVpaYiysBCkU6eyU8nJzdFZWcLNxkauZu9e3vTTT9k5S0sht7RU5G9mBgNVVSJZDx60Ow6mTsUld3fFfX9/NueTTzhLS0t4eHiwqqoqZGRkMK3ycmZXVsaECRNw+PBh3sHBgevV0abZap01Nib1TqEgwnr4MOW85+bSNaSlkfI7ciRE3t5gWVkwWb2axd+7xwoKCuDh4dG+kf+HqK+vx67z5wWv0aPR3cKCIT+f8sS3biVl82Vyo61N59bQQHPYyak94FFTQ/blpCTKH28t0lRU1K52jxlD+eKt7YxGjSL76pvuYytMTaGYOBHHTpzgDDMyYJ2fDydXV6YzYkRbsEFLSwuenp7c1atXFRUVFRxjDH7Dh0M0dSpZZAcOhGZBASo8PfmioiL2pKgIzzgOfX75BQ95HsU//oi84mJYWlqC4zjk2ttDZfp0PM7NhVQqRXVNDSLEYnQbMABcdja5Q9auJWL43nsAKDhkb2/PCgsLhbt37/J9+/altcHfnwrZqau/SrhBz8CZhASW6uQEoakJdg8fQqW4mCu9exdqUin2X70qhIaGsrKyMtja2vKDBg3qfHN4no5//z4Fk3ie3CSbNoF/9108ksuRmpvL+h87Bsf+/WHt48O8J0yAfkAAS7t/nxe+/po9kMkElcWLmVZHN0hLITaMHIn7jx/j6NGjcHNzQ1BQENep+GBREVnP168nO/vFi0R0RSLA0RHn6+sVjdra7IMNG1hjr17MrmNFe8YoQNb6x8yM1sO1a9GwejVq1dUhi4ykSvBubrSOdpibjDFkZ2fzNTU1rKikRPCcN4/h+nV69v/zny5TV0zt7GB18iTrNW8ezMzMWE/GmMHEiW2vN/A8blRUMO8ePSAODaUA2MSJFBg6cABpY8fifEMDLNTUmMLbG6ZVVbzN6NGc9ejRaDpwAH9yHNwzM8FnZEDk6gojIyNUV1cjIiICetu2QSSVYtyWLSw8LIw5HzwIjbVrX8mzvn/8uGA+Zgyn10VtjebmZsTGxgoNDQ0MAAwMDMBxHF9cXMxHRkZy0dHR6LF3L5hCAbNJk9iECRNYfX09YmNjmaOjI6UoXL5MY3riBOWcR0e3r2//AKamppyfn5/E398fMTExagqFYm9AQEDlPzqIEkr8y6C0kSuhhBL/SqxevXquhoZGyAcffKCq3aGibSuCgoJU5HL54IKCgrCQkJDRAEqqqqoaAHTJJs1MTKBXUABrKyvabO/e3TlHVBBIObt0ifIdAdpkxsUREV+/HvjpJ3A3b7Lod99FUN++6H72LL44eBA1Z89CV1sbUdnZSE1NFQB03nzv2wckJ0NFRwe9dXXRu3dvDgBsLCwABwfM++QTxMbHIyYmBlFRUZBIJFBRUVE4OzuL3n//fUil0q4r5iQlUX62vT0FDvz8qEiXkREV0hoxgnKfV6yg65gyhVShjjmsL4HjODDGUFXV3kFGRUUFKioqWLJkCW7duiXExcUxJycnQSKR0AbawODNOYYcR0GLX3+lokXNzaSQXrgAzJoFzV9+AaZOxeWnTwFA3KNHD2HIkCGoqqrisubPR/O5c5gSHg7J6tXAo5bMgfJyIlUeHsCePchJS+MCAwPbxl0sFmP8+PFQKBR8Vng4x794Ae3YWNTU1GD48OFdn2er1fzmTSInyclEVvPyiKgcPkwWbmNjaiG1fz/UmppQX18PANDoqof5XyA+Ph7Jycm8mpoazM3N4eXlxYGxdofFnj0U+FEogJ4928mKSESvNTdTekDHZ0QuJ6X+xQtybSQnAzt3Up7r3r0UeNHSonkyaBC5Hv4OyW5BVlYWDh48CMvKSgRfuIC4PXug24EcdUTv3r1F0dHRYIxh3bp14HkeVlZW/PTYWE5SWoq3fvmFG6elhfz+/WG5cCEKXryAf0wMdrm6opHjEBUVBUEQMOj6deQDCH8pBeLO5ctYcPYsZJWVSPP1hW15OQw75GQzxqCrqwu5XN75xLZtI6t9a4X+DlBVVcWMGTOQkZHB+/j4cJJvv0ViYqLC6JtvRJqzZkE2ezazevoUdR4emDhx4qvscf9+sjmfOEH/d3QE3n8fvJMT7n/6qaD66BHelcsZt2YNvX7mDDhnZzj89BMcTp7kStTVhX3q6qzh8WNAWxtmZmaUKsIYIJEg6coVhObkwMbGBikpKaxHjx6wb+2lfekSqeGRkZRO4ur6SqDmkYYGFzBgANOTSBA4YQIF6BoaaO3ogKNHj/L5+fkcAEwKD8ed6mo8dHGBq5MTb+jsjNyrV4VRgweL0t3dhZghQ8AzBp7nWUNDA6dQKDBw4ED64iFDKPCgUNAz31UBQTU1GD1+DCNXVwpqdYC+vr5gIZUKD//8kxN8feFcVwdu4ULKif/xR1xLSVHIXF1F1rq6kE2ZAnh7c2hoAMaMgVH//pDExwv3rl9n/R48QGVjIzZs2CDU1dUxPT09wWjlStbD2poxxuBnaChINm9mP+/dy9t2784NGzYMampqOHnypFA6cCB796XzjoyMRHR0NGQyGZqampitrS2fnZ3NlZeXY8WKFZxYLIZcLsezZ89g9eWX6MEYw/r1gKcndHV1IRaLce/ePcHNzY2x8PD29J6gIEqbePy4y8KSf4UtW7YIFRUVDABbuXJl9j8+gBJK/MugLJCmhBJK/OsQEhKiJRaLi+bMmaNu+IZ2KDzP48KFCw1paWlPAUiCg4NNWgtltUEuJyJ96hRqFi2CUFxMpKjjBrSykgjrvXuU48jzlD/aitRUygtMTESMszPS09P5Dz/8kAPPkwLh4QHY2aHAxwdXHRyED6ZPZ2jtGR0aSnZoS8tONkoAZJUODSWVBsDhw4eRmZkJFRUVfPrppxC9XJW2sZHyUY8dozxfAwM67pgxbb1zAVDV5okTyQoaFkYFjQCyzJ87R9bSN1TM3rdvX7OFhYU4sDVH+SWEtLQcAwDG8zA0NMS8jz56s4W6spLOo6yMCPq+fRQs+PxzUtD09LBz504UFRVh5MiRQv/+/dsPVlEBzJ9PVai3bKGCU+vX03hKJGg4cAAb58wRli5dylRUVF756sbr13F//XrhvK8vCwgIwMCBA19/nh0RFgZMmkSk9PPPaX6EhNAmv2VsBEFATEwMHxYWxmlra/NLly59fdW5l1BWVoYdO3aA4zg0NjZi7ty5MOmq0JxCQfNz+nTKoe04L/bsIQKdk0MBFVNTUhwtLekeFxfT+LYqglIpKZ2VlUQ2/0ZaQUfU1tbizz//pErVenqCkYYGm5iWBtH27cCTJ6iTySCVStHQ0IDKykpoampi48aNAIDZs2ejvLwcZ86cgUgkgouLi6JPXZ3I4scfwaqqyJHh7U1W68WLkfP228gBEBUVhSkvXkAqk8FkxQowxsAYQ01NDdR69QKrrsbGpUvhHxWFZ2ZmQlVwMD9t2jSRWCxGVVUVNm/ejBkzZsDKyqr9QgShvfXW69qOvYQdO3YIxYWFzL64GO+kplLRRCsrciC0jmNqKs3vU6deed6frl4NtmkTdFauhCQggHLQra1JHRYEIrtyOepWrUKlhwcOv/MOqjU0IBaLIZFIeJFIBFdXVy725k28M2sWunXr1lacbVw3zJDQAAAgAElEQVS3boJjWBjDjz9ScGXOHAoevlQnAQCOHTumyMzMFDk4OAjjx49n3JYtNBc+/ZRqL3z4IQqLirBr1y4AgL29PUYOHAjNnBy8sLXFodOnFZqamszIyIhTy82FtKwM1nl50M7MRNHXX+NwTAwEjoOPjw8/ZMiQdnt7aChVHi8sfNWpceMGjV3v3hTI6tjdoK4OisOHEXHoEBL69cNbFy8KTFubWT9/jox338XZhgYsWbIEmn36UPBx/XpyKN26BQA4cOCAUFFRAV9fX6ZYuBCa9fXI++47PnDoUE46diyR2sxM8HfvolhLC2mPH/NPnjxBQUEBp6+vr6gvKhJ9sm4dWGNjp2dv27ZtQmlpKfPw8ODt7e05Ozs7fPfdd3B3d8eoUaNenUANDeRAOXUKcHHB5cuXER8Xh0WpqdD74Yf2NKDKyvbaAz///I/7cIeEhEAqlUIQhEdffvnl36+8qYQS/1IolW0llFDiXwepVLqxZ8+e3JuINkAqbHBwsMzBwcFSEAR0b92sAERkNTQo53PyZOC777AxPx+LBaFto1dfX487d+5A0dgIYcIEQaesjLlFRxN57QhnZwiPH0P4809oT5sGXioVWk6Aeu0CQH4+Hp0+DdMTJ5hi4ECI7tyhTdUPPxA57qraeE4ObSxbyPaUKVMQGhqKu3fv4sCBA0JAQACz1tWlAmTbt5Pa8dlnlMP5xRdoI/Qd8dNPdF7h4aQCz5rV/pqvLynKq1YRcXy58nELRCIRa25ufu24z5w5EzKZDGoA1B0dsf6TT3D69Gk4OzvD1NS0a4VXV5eIYn4+Kew7d9KG+IcfiLB8+y0GGRnBZsECrOc45rB6NTRramgT7uhI6tv27WSrvnKFNsgg8redMYzu1o29SrMJUnNzdA8KYqiqQlFRkQKtRdVeB0EgwjdjBn3vtGk0poJAhdQ2baJxtrAA8/WFn44OV2Zjw+dWVPxtos3zPI4dO6awtbVFr169WEFBgWBiYtL1eYlEFFypraW82fR0Ut8ZoyJi+flEYFJSiGz/+iuRmuBgCg7Mnk3uhtac/bNnKeDyD/LLX8jluJucDPGmTWg2MoKxQoG5u3czlpdH96e6GoKvL/b6+OCDP//ExmXLoNXcLDQAjGlqQhAENDQ0wNXVFc7OzsjNzcWLTz/l8quqhIglS4R3tLU5Nn063VtLS8DUFN3270e3PXswePBgukaZrD0NIioKKnfuAMePQ+jWDZ9bWQFbt+J5bCw7UVnJHT58mJ8xYwZ3/fp1hbm5ObOysup8bxij51xbm5T+v4GpU6eyjRs3IsvcHD9268bP9/PjNMaNI6vvvn2k3v7nP1RZvgPRFgQBmZmZONXcjAmBgYLhkCEMoaFk6b9zh+ZUUhKR5GPHoKKqimYnJ6FaVZV9qlCgXl8fVUFB3OHDh1G4fz8+P3oU4hZV3KNfPxgqFHi0Zg1EDQ2CUXU101VVpRzrLog2AIwePVpUWFiIq1ev4vfff1e8/fbbotTUVKgdPgzHFStw18IC2TExAqRSBpBLRM/CApg/H3oeHlj4zTevztPGRuDYMRSXlWHxr7/itrc3bvM8N2jQoPb+3yNG0DzNyQF+/JGe5VYYGRHhV1WledsKngc2b0ZtRgbyLC0x28MDlU1N7LaTE3/j9m2ux4ULmOjhIWhKJAw7dlDgoraWApFyOaClhalTp7JLly7h0qVLcJs6VfDkeebo6sqhro4KDS5aBEREgJs1C+bp6TC3s+MA4Pnz53jw4IEoPzcXu7/5RpgtErU9MLW1tSgrK2M2NjZ8UFAQBwANDQ3gOA5dObEA0PzNyqLfTZs3Y+TChcg/cwa1cXHQsbBA2wTV0aFznzqV5oaHxxs7R7TOsaysLMTFxfEAODc3NyQnJ3MhISEWK1euLHjjh5VQ4l8OJdlWQgkl/lUICQnxlMlk04KCglT/+t1kE+1EspubKZ+3Xz8qypOc3F5gqIMqIZfLcfjwYehdv46eJSVCwRdfIOLsWZiWl8O4pWDNrl27+NLSUk6hUEAQBKgEBMAqPh4BBQUcZs3qrAqKxfAfPx6bCgqEVBcXNqaoCL0OHCBLYHMzFXiaP79zzrSREeVTt4DjOAQFBcG4uRkVBw6w5Bs3BL1Hj5imtzcRpRUr6DNvQkICETCAPnPwIOUht8LGhja6ly6R+vX774BEgqdPn6K+vh4KhQIVFRUi3S5yWVvRrVs3+kdlJTB2LIYOH46IiAghNTWVAUDv3r2F4OBg9kr+8rvvkvI0ahTlW+rp0eb6zh3AwAD2EgmQlASP4mLsr6tD8PDhsATIXqmrS5v106eBRYsgxMYitbAQiXK5oG5uzvdet06E+Hga55eRlwfNuDgs+v13bNmyRVRSUgJjY+Oulfjycgp+fP01zaPffyeSvXAhBUZ69KAgTk0NEaTaWihCQ6FRWcm9fe8eWYdXrSKF0NaWLPulpTQfm5pQxvM4HhGBKrlc0NPTY+PHj+dUVFTQp6vicR0hkRAxXL2aFOzMTAq87N5NSn/fvrRB19entIcJEyiIERRE77l9m1IL/vOfV1tfdURWFj0neno0f06ehOKbb9C0fz/ClyzBuwkJKPbxwfD168Hc3GhsWgJLzMQEY+fMQa2qKpplMsz65RcGxvDLxx/jkz/+gKx/f8DICFxqKmz79gWCg1lZeTmuZ2ezX7S0hAnnzjHrhgayPm/b1u4oWLuWVORu3Ui1BCjFQxCAgoL2nI0FC6C7YAHGDRzInpaXs3VFRUJzc7NobBcujubmZmTNmYOYpCRheEEBs3gNMe0ILS0tvPvuu9i3bx9qGxu5BokEGrdvE0n8+WeqYL1/PzkRAOTn5yMiIoLPzs7mxGIxLGxtm3uGhIgxYgSprhUV1Ad91iy6lqtXAYkEV69caX48fjwnk8uh/uwZUxeLoW9ggKVyOarWrIF45cr2k5o0CTalpdA4fZrt2blTGDd4MFL8/GCyfLnQ6+V0lhaoqamhe/fu6NatG9uzZw/7/fffYWRkxCsUCtz49FNOuHsXi379laWOH48kDw+Fv78/LZwbNhBRbG5+1REhlQLTp8MmPx+Hp02DrKEB81JTIQ4OpkCEnh59hjEar9xcuubWZ9DOjpT+0lL6eStiYoDERGh+9RXGjBiBeC0tfuSvv3L2AFc5fjwa5XIYr1/PMGoU5bPv308BvG3baK156y2IxWJ4enoiPT1d6BUUxNCjBz0zp04B169TYKpbNyq61mHN0tHRgZeXF/rV1SH00CHW1NSE2tpaHDx4kOc4juN5HgMGDOjEghUKBUpKSt48ke7epYBY794YbmGBP2bNwtcdHTmMkcvBwoLWnKNH26vMd4FTp04pUlNTW3+5cUFBQejXrx+kUqllbGxs1vfff3+wsbFxpZJ0K6FE11CSbSWUUOJ/CiEhIZ4qKirfMsb4urq6EwAOrly5srHltX4SieTquHHjVLuyA78WrZu2ceNow9aqGr1UDIwxhr179zZLpVKutLSUE4vFGODiwjs4OHA9AwORlJSEu3I51LOz4e/sjMrKSm78+PGwtbWFVCptb7E1fTrDnTtECjooWGKxGG+99Ra7cOGC8GLhQlbU1CSY7drFEBlJBXBmzCDCOX06WXyzs9sUWuTl0Wa7rg7uR4+C9/PDcU1NtsncHIOCgwU3Nzem+rINvSNiYqiP75EjNBaNjURqX7bVA0TIpkwB5HJUDxuGc9OnKx4VFIjU1dV5xhgEQcArSmBXaGoCli1Df1dX9O/fn/E8j/j4eFy5coWJRCJh6NChTF1dnci/oSEp2xoaFADp0aN9o92xp7WzM4Y6O6Po4UOkr10LvX79oF5fT/d19Gjg+HFUW1sje/ZswSQxkck//5yf9eGHIkybRsrRvXvUE7gjxGJATw96enowNzdv3r59uxgAFi9ejE5BhchIGq++fdvPads2Coj89htteHv1IlfBjz+2BXEU06fj1vffg1u6FMYODridmgpbT08YGxhQwCclBdDRQd3y5ZA8eQKDoUPxdl4e0+rfn3Fbt9J7xo8n0mpmRrn3tbVENl8mNQYGdF8rK9uLe+3YQfMpNJQIREUFKe+//kqE286OLNqurvT+VjLz7bfUez0ujgI5aWl0jT4+VM9AXx/gecQOGYJINTUMHDgQNitXwqb1XObNaz8vLS0gMBAmS5eiTCpFv6QkIfncOURfu8ZkDQ3ga2tpDowaReM8cSLA8zDU18fXmzfjwpo1LPbePYX1tGkibNhA1759O/UQv3QJ+PJLGu+PP6YgR1paexDtJWjt3Yvay5cxw8aGXUlIEAoLC1lreklBQQHi4+MVqampIrFYDKeHD9mLjz8WcPz4X8r8lZWVSEhIaKvJoK+vTy9UV5MFevt2ZIrFMLCyQry3N+54esLM0pKbM2cOjI2NwXEc3cydOymlIj2d1o8zZ6jyvESC5uZmJCYmij08PCiI2Jqze/Mm1K9ehfq6dRQIeviQFOBvvwVsbWGgqoo5Y8eyB2fPIsrcHAFlZazXX/RqFovFmD17NsfzPEQiEScIAsLDwxEVFYWtX3yBqVOmwHvdOhGOHqX1pZWk7t9PtRe6gJWVFeZv3YqffvpJCNXUxEw1NYaKCnIAffklBUm8vGg9PH+e2pslJtI4JCZS9fbWQn8XL1JF95YUnz/eeQfM0JBzyM2FjY0NPbu6usAvv9CaMnAgpft8+y2tFydOACNHQnHkCC6WlAj2RkborlDQ/F+1is7lwgVKT7l0iQJSXY1Taipss7Nx/vx5pKenQ1dXl5mYmAg2NjZCxw4SUqkUGhoaSEtLg7OzM+zs7NpV/Y7w96dgmYMDJH36gHNyQss9aH9PUREFJOfNo98XU6a8Vt1uJdpBQUHo06dP23cGBgZKfXx8cOPGjXdSUlLe/uGHH840NDS8v3Llyvo3TgwllPiXQUm2lVBCif8ZhISE2IvF4huDBw9Wk0qlSEpKGlhSUrJuzZo1lwBoSySSYRMmTFD7q01iJxw4QGToxg0iQMbGROK6UKoEQYCXl5f42bNnvFgsxvDiYt5y7lwORkaQAVixfDme7NyJdJEIV69eRWNjI54/f45OxF9Dg9TVQ4doI7hvH5GSFlhZWWHe4MEsWV8f++/eZe8/fQqjAQNIQWlqIlu7XE4b7rVraeMXGkr5kiUllAu8aBE4xjCJ5xEbG4vY2Fj+2rVrorfeegsODg7gutp03b1LBLGVwEZGUu7u66zCUikKxoxBaHo6Jq5dK6rZvBnmI0f+bRt029iHhlKQAKTMe3l5QV9fH5cuXeJ///130bJlyyCePp2CCa6ulBN/9iwpey39ujuhoAAoL0fjw4fwSk6GjOdp09mC5g8/xEVfXzwLDhbeP3SILTl6VISJE+me1NbSpj48vHObMSsrausF4P333xfL5XJs3boVO3fuxJIlS6i6+7VrpPTfuEEq3JAhpL7l5bUfp6KCFKfsbBrvlhQCqVQKIyMj4fbduyz6zp22txs1N8PNzQ3eEyfi+fPn2DJ1Knx9fYXJPj4MRUWkgBYX08ZbIqFjXrlC1/Hnn0Q6nj2jObJoEY2DhQUR1vx8IioKBfXOHjSICGxoKF1vXV076XZ3p2Jy165RDnpBARHsc+eI5Lm7t7f7Skhov96jRyEIAhIeP4aqsTECWltsvYSa9HTIpk3DxpAQGBsb8+UpKVxweDgrfvgQdYMHA4whKzqa+ki7u9Pc7NuXyNXly+DkcgSvXo04f39RfUICVCIi6H6WlAAODkQ8wsKIcMTHEzHT0nrttJR16wbrBQuAzz/HtOPH2S9SqWBnZ8dMTEywe/duWFtbc5MnT6Y+31u3ouDwYfbbb78JY8aMYTavKUgll8uRlJSE9PR0BgBerUUGy8uBEyfQ3FIj4fB330Hr3Xcx0tsbg/buhez+fbIDd3xmLS0pqNHqMGhoAJYvB5yd8ejAAcz5+WdIv/sOWoaG5GaoqqJaBa3BlTVrqF3c22+3B9NWrYJ2aio8Y2NReu6ccO/ePcHf3/8vn2fGWBvJS0pKQlRUFACgtrkZ9x89guWGDRQUyMujYOb69e2F316D1NRU1NTUsJyaGtweNoz3dnDgcOAArUWTJ9P8PnGC+r/PnNneK3vUKCLhc+ZQCszmzTQvr18HJkyABWPIzMzE6ePH8bGfHwUcmpooTWfMGBqf0lIK1HAccPs2miMi8OzrryEdNIgNAcC8vOi56N6d1qPWuhSWlq+/oMWLcbamBrLcXAwfPpz38PBoHddOiytjDHPmzMHevXuFU6dOMZ7noampqZg9e7ZIrWPgV6EAduwA7+uL53Fx8Js7VxB1sKgDoPPasoUCh5s20b8XLgQAVFVV4cGDBzAyMsKzZ88AAO+//37nmgQtUFVVxahRo2SBgYHYtWtXcENDwyAAl994A5VQ4l8GJdlWQgkl/mcgFovneXh4SDw8PAAArq6u6oWFheqXLl16t7KyUpg9ezbT09P7+wcUBFK6ANo8nTlDxOXnnwEARUVFCA8PhyAIEAQBPM/DxcUFKioqHAQB6NGDQ79+RDgACIWF0K6vR0paGrS0tPjm5mYuMjISFhYWnTcyjNFG99EjqvZdU0MEBwByc8GNHg2XkycRlp/Pb9u2jfv444+hqaZG5MLdnYhDfj59VhCIfLq4vEKMOSoyBB8fH9Gff/7ZfOLECbGKiorg7OzMPD09SVmrr6cN7LZtnXtd79vXdZ54C0pKSrD/wAE4Dhum0Jk5U6SzYQMRmK4I8OswdSowdOgrP+7evTusrKw41W3bIBw+TJvF4cMpGGBjQ/csJaVz3nBhIZ3/rFmAgQF6zp2LzaamMDpyRKGiogJra2tOX19feD5pEqvV0sL8+fNpwzthAhHWpiYa38xM2nQ/fkyKLkBEISKiLRdfS0sLy5cvx7p164QLISEYFxnJRBcvUr7znj2kHH7yyavXa2RE5Dcigo45ciSRQhUVTJw4kUVHR/OmpqachYUFbty4gZycHFy9ehU9e/bEtm3bBG1tbfj5+TGIRO3Kua1t+5h3zGGdPJnmRmkpkWNjYyKo1dXk2ggLozHbu5dsuc7ONHYtm29s20bEKCuLjm9kRGO0bRu1vAKI3LeipV1WV6iqqoKurm6boltZWYnz588jJycHYrEYjDE0LV8OVVLMOS0HB8H6m29Y6FdfYe7+/bji5wcnJycilT//TCq6ri7de8YAQUBTQgLu7NuHZxkZCBIEIpinT1P+6t275Fj49VfK4f27+OEHyJYvx1vr1uHJRx/h8ujRUFdX59977702Emr+8ccwnj0b9Xv3soMHD8LX11cwMDBgTk5OyM/Px+3bt4Xnz58LpaWlnFQqhbm5uTBp0iSmoaGBpOho4OuvBX13d7a3vp4q/QPQcnYGc3OD7M8/KaBx8yaRpdbgSEYGuVxcXChwU1ND8/jyZdjfvo3bH3wgJOfmItjPj1mfOkW5vL/91n7t48ZR0GXcOPp/QwPNi5YaDJaWliw3N/eV6rqxsbFwcXHBvXv30K9fv06qa0snBAEA09fXV4jFYnh5eYmgpUVKdE0NEcCAAAo0vv8+BXI6BBpboaurC319fUVFRYWoqKiIHvDWntF79lBAKSWFyOPKlTTv16yh+x0VRfO+df4bGdGcKS6G2unTGPfwIcTTpgnCsmWMtXZfGDeO1v5Hj8gJIpWSldzXF/Xbt2PrnDlYvnw5BU2//JLOIz293Q7/5ZcU7HodAgLgoq2NQYcPQ01N7Y0BDE1NTSxatIgJgoC4uDhcuXJFlJKSAm9v7/Y37doFHD6MskOHcGL3bnyWmcng5ta5zZeZGQUi0tJI2f/5Z2DUKJy9d0+RnJwsAtDWClNXV1dhZWX15joUAF68eMEByAKAVatWTZdIJEMbGxuXrFy58vlffVYJJf6XoSTbSiihxP8MJBLJIFtb2067GnNzc7i4uODKlSssLCwMTU1NcHNzg6OjI+rr61FZWQme52HekkfdhqYmyke9cIFU4fJy2vgZGdGGtkcPZP3nP3haUwOn3r0Fxhisra0hk8lo8/fkCRGzDgSXe/EC2itWYPnixQDAhYSEoKGhAadPnxZUVVWZubm5MGrUKPoAY2RXPHaMSMC+fUS4ZTJg0yaIXVzwmUzGnVu5UsCJE6ytL+1nn1Hucb9+wPffk0pnZNQ5f7ELzJw5UxwSEgJfX1+EhYUhISEB7u7uwmhzc4bmZiJjHfHjj69WP2/BgQMH+JycHK5///7C8OHDaZO2eTMV0vLzo3P8O8Wzjh3rnA/eAb169mTX+/UTVKOimMe0aVCLiWkLamDiRCpMdPIkEeDGRtpQRkWRMssYBoBcAnl5eaLs7Gw+MjKSGRgYCIMSE5HcuzcqKioo2NBqT09Kos3pzZuknC5YQIqoWExj29DQ+QR5HvMGDGBXN25EZXo6DKTS9txniaTrzXf//mRZLSoiYi6TERm2soKhoSHGjx/fthGfOXMmNmzYgOrqamzatAkcx7E5c+a8WmH+TWCMbLWtFco75Pe3Ea333qO5Z2pK4wiQvXrXLlLHW4n84cP0918UHXwZjS3H1NHRUQAQNzQ0YPfu3WhqaoKJiQlcXFygLpfD+YcfwMLD2868ubkZKi4uQkRFBXNMT8exjz9WjD17VqQ6YwbqV6yAvF8/5Jqb82E+PkxVVRVVVVUMBgaYtX49BBUVyqevr6diWomJpGqLxXQf162j1mh+fn89hLq66D5kCLNMSkJceTlMra1fIUvis2cxcO1a6F29itjYWCEiIoKdO3euZSg10bNnT660tBSNjY0oLCxkv/zyCxjPo3d2Nszq6tjeloKAPXv2xMOHD1FQUIAjR45AW1tbWLp0KUNjIym2dXVUt0FFhe5lSgqdQEUFzd2LFyHR1saAP/5g3MCB/KEzZ1hzczPep+AVvVcQ0HzkCMQtSnlzdDTEH3xAx2p53luqwHci23/88Qf/5MkT7sqVKwCAmJgYvoWocUVFRUJjYyOTSCQMAKZOnSoyaG0Fx/M0DxMSaH5JJDSXGhooCHTtGv0sI6MtqGCRlISFCQmimw0NijoPD4Zx4xiOHCHimJlJqn5KCq1/1tYUFLK3p3HJzaW1y9ubvlehoH/37g2XwYPxwt0dV+vrcW7MGHz++ec0T2JjKdDxzjv0fiMjOt+hQ6GRlASdykocO3aMnzFjRntl9I5r4/Tpbd0neJ5HXFwcGGNQVVVFXV0dxG5uyG9uxhvTeF6ed4zh4cOHANC5HkNSErUYHD8e2lpa0NDQ4BtWr+ZUVVTAZs7sfJDKSnLpLFwILFyItCNHkNzYKDI1NcWcOXPA83yry+kvF5Xc3FyIRKKUlStXPlq1alWwmpradgMDA3F+fv4DAN//7QtTQon/QYi+/fbb/7/PQQkllFDi/zNCQkJEgiBsHDp0qPjlwlkaGhpQVVVFTU2NQi6Xs7i4OBYfH89HRUWxlJQU3LlzB1KpFJYdrX7nzlF+cn4+qRh795Ji6udH5Kq+HiV9+sBhyxbBOyKC2X33HbPW0mJMVZWUlcGDybrZkVQmJ5N11ccHAODq6gp3d3dERUWx6upqNDU1CU5OTkzSkYg5OZHK1NREm72wMFLlPvoI0NdHQUYGTAcNYio//ECFeGxsaEM5fDiRRE1N+r7kZLJRvgERERGYPn06q6qqUqioqHCWGzeyQkGAxY4dnW2q+flko16xokvSfO7cOWZvb49x48a1v6iuTtbpjAxSifz9/7ot1Jo1lEPcqlq14vZtGA4bBs/+/VnDBx/giFgM9V69YGho2F6UTFeXyP1vv1ERrEWLSOXtcL46OjqwsbFBnz59mFgsRlZWFht99izLdXJCMWOsZ8dq7Kam7TnEH35IRcFaq6JXVxNx69hCZ+ZMqGzciMylS6EZG4v7Zma81dixjL0mD7gNy5ZRUGDcOFL2U1KIPMyY8cp41dfXK1r7FAuCgOjo6L/fduyvkJNDwQ6ep3mcmEj3zdOTzqukhMbVyYkI9kv1C/4OBEHAiRMnhNraWixYsECUnJws7N69m2lrayuWLl3KeXh4wNLSEsYaGmDXrnUq4sRxHNzd3VnU06eKZDMzbsjly1xjXR1O+vryYbdvQ6StLegGBHByLS2UlZUxAwMDYcaMGezQoUN8VVUVVFRUmNaxY0RM1q2judFa5Tk8nFwLjNG8eU2P71Y809HBn01NvHtYGEZGRjLRe+91bp/m7AzMmQNjKyu4u7uzvn37wsbGBsHBwfDy8mJ2dnYwMjJCU1MTPD09MSggAMLOnbB78AAXxo6FtY0Nqqqq8Pbbb2Po0KHw8fFBTU0N8vLyWM61a0La06eC85YtjA0YQHnFOjpEsM+cISuztjYR2aAgmk/r18Nq2jTmP2kSkpKSBJlMxrp164asrCxELlsGg/nzsQkQ4qKjhaenTrEiS0ue8/JiOjo64HkeZ86cUfTu3Zvp6+uzEydOIDQ0lJfL5dzkyZPh5OQEPz8/5OTkCE1NTZyamprC3d2dGzRoUNv6O6yqiuH2bQoOqqvT+qRQEKmdMIFSFl68oGf3ww8pqNOzJ60FvXoBvXpBkZ2NJltbLiovj/kmJpLr4uRJso9Pn07jYGZGa8eyZRSwnD6dnBg1NfTdpqa0Ts+bB0ybBt1+/WDs5wfvgAAWHh4OHx8fiIqKaC355BOa4xIJpYH4+lIw7MEDGD57hsi6Oubk5AT1VldHRzBGqRijR2PPnj18VlYWKioqhJycHKGsrEwQi8V8//fe4/T/QS96AEhLS0NTUxP8/f3pB3I5rfGOjkCLs8DFxYVtVihgERQE3dOnKdgHoLq6GrEZGXxWURF/LjWVRT1+zHrv2wcVJydh8rJlrLX93d9FSy0ArRs3boSqqKhsGzNmjJmTk5MoLS3NNyYmZnxYWFhNREREWkBAgLLfsBL/OiiVbSWUUOK/HiEhITLG2BcKhUIlLy8P3bt3R0fCqoQiSe0AACAASURBVKOjgwGU/yoCgLy8PFRUVHAGBgawsrJCTk4Ojh49imfPnmH06NFkN8zMpJxhY2PalFVWtluHRSLg88+h9+gRQocNg9PIkWQZNDWljXqPHqQ0vZz7LBJ1yvVuLZ4VFBSkuHTpkqiyspLbsGEDvl68mMixpSWpMDo6ZJWuqaEcymnTiPhbWOBOfT2c+/VrJwoAEaLVq9uJ5dat7ZbnvwGO46AlFsO5thaHXrxA+h9/NH/wwQftvy+oiBvAcUhNTUVYWBg/ZcoUztTUFBkZGWCMdU36DA1pY/vbb6Q4X7rUmZS8jDNnXiXkzc10fQsWANeuoefSpYjNzxdOnz7NeJ6Hq6srmIcHjdGvv5I6BnQeny6gqamJ2tpayFNTIYSG8oIgvHpi6uq04Z4yhe71+PFkjV+2jPp7A2TnLSggUpCcjPGTJiHf0xPR+/dzN1evxqJFi/DGVIaVK2l8W+HhQdfb1ETzqcO8Hjx4sMjPzw+7du0SysrKmH4Xltt/jLAwmm+//EJKqZ8fVVIeM4aKpCUlEfHYv5/mpI8P3ZPffqMAzz9Q1k+cOMFnZmZyH330EUpKSnDx4kXWp08fDBkyRNSpboCxcee+yB3g5uYmunr5MvSfP8d1b28EJidzOt7e0N60ibFr1+BcUcFuDhiAhIQEtnv3bohEIq7wwAF0i4qCIj4eoqoqur6sLCpMN28ePS/OzlTQqvU8WgMeQUGvnENOTg7q6+vhefgwk166RLb7Z8/aC+kxRgGwlp7LWlpa0HopJ9zR0RGOjo4AAD4uDnaPH+PUhAkAAHV1dXz11VdtrgUxx2FUYCCMExPh/ssvbO1nn7HL27YhqPXcJk2igmonT9L3HjhA6iVjVAF+zx6grg5s7Vr4DhnC7ty5o6irqxMlJCTAREMDL+bOxbSxY5nx9OlM+OknXK6sFA4ePAgtLS2FhYWFqKamRvTixQv8/PPP0NPTEzw8PDBgwIBOtR7mzp1L/9mzh066rg4T331XtO6zz1CblAS11vmckdFepG3IEPrbyoqeMXNzUpEfPqQ5YGPT9t61tbXgW56TxshISCUSqpK/ZAkdo0X1RVMTkfXSUnJwFBS0F5DsIkUFILeFIAg4evQoP/ybbzjd4GBIfvsNALVzjLO3h2zkSP6Ru7vAq6rCJC1N5DV/Pm9oaNi1BXzjRiA1FRlLlqCkpISbP38+dHV1aXGWy4nMt9Y0+Jto6TMvmJub03F4nu713r20ZrRAQ0MD+vr6zVcPHBDN3bKFsTFjAENDpKWlIaqkhFu2dSu0z51DWXU19MzNESSVsk7V2v8mTExMMGbMGK2TJ0/era+vh7a2NkxNTfHJJ5+oPHr0yP3mzZvbq6qqPl27dm0cY4w1NjZ+u3LlyuJ//EVKKPFfCKWyrYQSSvzXISQkhEVFRS2Ki4v7PSIiYr0gCCG6urr97e3tpXFxcfzNmzeZgYEBjIyM0Nzc/ErBLx0dHZiamrb1K9XV1YW9vT2uXbuGB8nJcPv+ezBnZ1KHWqr4ojXPs0MbMIlEgsj4eDagtUDR4sX0Z98+qoQ7bx7lwtnakgq6fj1t+Nzc6AA8D2RkwLy8nOutrQ2j7duhIZfDbs8ecDdvkkKxbBkpb2PHkuK5fz8dz9kZmD8fsfHxgnOfPkxdXR15eXmQLFiA2qoqiGbObLcUm5jQRszDA5g797X5gxERERgwYADqd+4UDOPjOcsbN9Dd0xPh4eFcdXU1ampqUFJSAklSEuoGDkRofDxiYmKgpqbGoqOj8fjxYz4+Pp4FBwd3bpfWEWIxETQHB7qmwEBSirqCnh5tjFuJSXU1qVuXLlGF32XLAA0N9O7dm2VdvCj0Xb6c5QQEwNjFhSopq6gQ+R09mv79Bpw7dw4vXrxA4Dvv4JaeHuczZgy6bE/GGKnyOjpE5j09SXVTVSUlbfx4Uul27aKAAABtbW306tUL2dnZioiICE4kEsHIyKhTQKgNOjq08bazI4IhkVBawI4dwNKlZA/uMJ9FIhEMDQ1ZSkpKW3Xif0y6a2vJuqutTap1v35Ezo4do9zTI0eIRKurkxK4eDGRTgsLusbCQlIlv/+eggwdq7+/AXl5eYJIJGKenp74448/hG7durEJEya8Oi6PH9PYdtG33dLSEo/T0hTmZWXM79QppmtvD5WNG8H696dq07GxsFq2DE+ePBFGDB3KBjg4wOHcOWjfuwdpSAhYq1U8PJzIV1AQEb3Zs+k63nqLXo+OpnmblkYq6nvvoaCgAOHh4XxsbCxzdnaGg4sLg4sLBdqmTydLd6vLxtCQ5q+Pz5sDEteugX3xBS7PmQNTW1s8f/4cpaWlGDRoUPt7vL3B3b4Ni02bIPr0U0TExKCoqAgRERFtY2rs7EyKvIoKcPUqam/eBMdxiO/VC+dqa+G2bx9w4QLO6OigqqGBKygowIQJExAEQG/uXOhUVUFcXAzJggVwcHTkvLy8UFxcjNTUVCYIAiorK+Hs7Izp06ezbt26UVhv505am06dIsK/aBE9pxoaQGAgIjkOOQBUR4yA1ezZdC0d84hbceIEpWqMG0dKrY0N+H79wDiuzT2Sm5uL58+fw8/PT9G9e/dXSW5TE1m9ly8nF8b16xQ4WreOnqvoaFLPHRxe+ShjDFVVVRCePmWxRkbov349wsLDcerUKSEyMpLl5OQg6PFjZuruzskGD+ZMT51CVlkZu5aTw0dGRsLR0bFzZ4fhw8G/8w4OXrrEOzk58S4uLu3nK5NRTvdfuXw64NSpU4pTp05xdXV1bNiwYfS8f/UVVdf/8stX3EaOjo7c1Vu3mPDJJyjKyxPK//wT4cXFzNPXFz2ys2E2aBC6Dx4M1b596RkWieh3zz+EkZERXFxcEB8fDz8/P6ioqIDjOBgaGqJv375SPT09EzMzs35isbjP8+fP1f39/S/+4y9RQon/QijJthJKKPFfh6ioqJna2tq/BAcHWw8aNEhl6NChnJeXl9TBwQG+vr5MJpMhPDxc0NPTY1u3bkVCQgLS0tJ4CwsLpq6u3qU9TkNDA052dtD87jskzZmD7qWltBlrVVvU1EgtHjOmbQMtkUgQGRkJb29vIrYyGW3Qp0yhTaYgUM7rqFFkw92+nUhyUhIdy9CQWnWVlOCJi4tQkp7O1GfMgHlUFJiVFdgXXxCZsbIixXPBAlJuBg2ijayNDeymToWQkMD+ePpUSE1IgGpKCuIaG3ExLY1lZ2crampqBCsrKw56emQlHTjwtfnSkZGRGDBgABQbNrBKU1NmPmYMZDIZzM3NkZCQwOfl5Qn5+fmC3dq17GZFBV4YGysmT57MBQYG4vbt25DL5czT0xM+LTb514IxIk99+5JN1Nf31VxfQWhvWcVxpLICpHQ1NtK4icXA5s3goqLg/sknLDcigo9RU4P9uHFM1cCA3qupSZ99QzXg9PR0JCUlYdiwYSiMj4f+jBlw61hwqCtwHAUufHzonp48ScGYQ4fI4v/SGKurq8PT05MrLS0VEhISWGJiIp49e8YXFhby1tbWXGtLNJ7n8WLbNly/f1+4nJeH58+fC+Xl5Uyjf3+oaGgQOWCsE2HT0tJCZGQknj59itTUVKSkpKB///5/bQN9+JDs4ps2EUGcOZOIfk4OcP8+3Z/PPqP3xce3q4Zvv01BD4mEzmXoUHJzhIVRYbdz5yiw8xeW+aamJpaSksJLpVJkZWXhvffeY13mnGto0HPYRTVklJejZ2Iit83MjGloaQmm7u6MffABBQrCwoDvvwdTKODs48N03d2hsm0bGm/exM8iEZoUCt7W1pYxxuieffQRBabs7Oj5bFGWAVDAw8wM9ZWVeJCayu/LyWGus2ahUiIRPN99l3l7e7cPdu/eRMhTUijYNmIEzRdPT0pJGTCg62fwwQMKqqxfD9cRI+Do6Ag7OzskJSXBUlsbej170noyYQKp7BwHiMVwc3ODlpYW5HI5ioqKWEZGBiIiIhAREYEyuRw3ZDI+TCxmtefOwfXIEdy1sIBRTAzODxgAq4wMDNXRwaDPP4elSEQBsJISuo/r17edp0gkgqOjI/Pz88MgX1/4VVai59ixtEbt2EEFxyZOJELbty8FFLt3p7ni4YHs3FxcuHcPmlpaePz4sVBYWAh7e3vWZeuqq1dp7rRU44+9exfHeR61Ghq8bVgYg4EBpObmSE9PR35+Pufj49MeWKyvJ1fS228T2f7pp/Ye8Vu3tre0GzeO8sELCtpb1rWAMYZez5+jx6xZyJo0SZFbXMwnJiZyTU1NLDg4GMOGDYPeggX/j73vDovq3L5e75lC700BkSoKSFXEhlhiN7FrNPZertGoid4k10ua0Zho1BiNGo2JGo0xFhQ7RZqACtgAKdKl9zbMOef7YzMUBWPu9/ue3833zHoen3szzJw55T1n9tpr7b1h6O0Na6kUpn5+cLl2DUYrV7KSkhJER0eLycnJLC4ujk9PT+f4khJYDBiApGHDMH3OHK5d8vfSJUqgqrqWvwYiIyNRXV3NACAlJUUc7OjIYGZGa66DLvoymQwVFRXi06dPBfMrV0SH06e5pEGDxNmzZzN4e1OPCFXJjLMzlYcsWvR6fTVegIaGBu7fvy/IZDLY2Ni0bIDjOJibm6Nbt2549uxZ0/Pnz0P8/f1v/uUvUEONvyHUNnI11FDjbweO43r36tVLozP1tE+fPrh69SpLTEyEiYmJMGLECC4pKYkdPnwYPM9j8uTJoqur60uRhNF336FOT0+8+uwZKzI0VM7/4IPWZ6SNDRHCe/dI2aT9gEwmE6urq5mJkRGpYocPk/0RoGAlNZX+/4QJVOv84Ydkie3dm4LA69eBsjI8e/BAGH7zpmS7tzfCR4+GRffumFxaioqqKjjk5JDNddUq4OuvyU7ePCbpt9WrRUVFBRuiVDLvTz8Fq6xEP6USBbW1CA4OlsTHxwsDBw6kwPyDD0gB6dKlZcxLu+MvLQV7+208WrNGLKupYb7Nr9vb22PVqlWtEaK7O2b6+QEaGi3MaOPGjXjw4AEuX74Md3d3WLzYUK0j9O1Lxz9qFBG9ZctaA7yyMkoMqIJoW1si4Ldu0eiejz6i42lspM/o68P1yhXu9v79wuHDh9n69euJbPr6UvLj+PEWwv38+XNERUWJkyZNYllZWTh//rw4atQolJWVieVOTlx9UREGi+Kfk1WJhNRgS0sK2n19Sb1MTGw/GqwNZsyYwQDgypUrKCkp4VJTU4W4uDiYmZnxNTU1kvLycsiHDBFHOzqybj17Ii4uTnjy5IkQwxhbvXo1k65ZQ52zIyJatslxHDZs2ABtbW2kpKTgjz/+wKeffgo7OzvxnXfeYe2Ce1Eklc/Hh5I2a9YQqZJISJFPS6PzundvyxrDkSNEwBctov8+dIhsyidOtG7X1ZW2e+kSJYYGDqR13rNnh64Cnueho6ODuro6Ljg4GC4uLnix10KbN5PduKOGZSEh0PnlF0w/eRJnz55l5ubm1Oxr9WoiewcOEMn65hsiXvr60NXTg72DgxgfH8+6d++OHg4OVBagqrcdOpTO7/797WZ919TU4FhsrNjQty8zMzaGOH8+Rv7jHxwuXCCbeUJC634ZGZHyn5hIa1lXl5JDR44QUba3b38cT54Qyfnkk1biA8Dy118x78wZ/ASgx7hxGKupCYOuXdt91NDQUDVVALm5uThz5gzq6+vBcRyePXuGuro6bvXq1dDU1ISmXI7FcXFQhoVhes+e0L5xA+zxY1J89fTIybB+PfD++7RxhYL2zcMDmDkT0v79SbWeP5+eZ2PH0vMIoDXSsuOtkwsaGhqgr68PmUwm8jzPxo8fz+Lj44Vdu3aB4zhRQ0NDHDx4sMS7uZ4Y/ftTMgfA06dPcf36dQyaMAHRkZGcQ3w8Gs6cEc+OH8+0DQxQV1cHnudpPy9fpiRLnz70nHRzo8SErS0llP7xD9pnY2NKDi1ZQmtCoaB+F6r7RKkEevZE+f79yMvIkDSVlMDDwwOJiYm4cOECOI7DkiVL0GXpUiL3V65A6uMD14oK9FiwgEVFRYkAIJFIJFlZWUJMeDjnrKeHOfPnv5xcqKxs7fD/mpg5cyYXExOD2NhY+NnZ0Xo9fbr1d6cDNPfPkABAUWEh1qSkMKSm0rX77beWSQro3RsIDKT1sGnTX9ovgBrA8TzP3bx5E+7u7i+VSwBAcnJyk1KpvPuXN66GGn9TMPE/qM1QQw011PjfRGBgYA+ZTJawbNkyrc4ss6dOneJLS0sxZMgQiaura8vrsbGxuHnzJmxtbZUKhYLV1dUxPz8/0Ss/XwItLfAeHihfvx41UVGwVRFlFfLyyB5661YLKdyxY4fQv39/rigtjff5+muu6eRJ5qD6PlGkoFVHhwLowkIiI0eOUE3sjh2kJOnoACdOIP3pU5iYmSE3N1c4f/48p1QqAQBb5s6lQEpbmwLB77+nYH7mzNZ9i4+nfXv8GKK9PRonTULGvHm4deWKuHrTplbWqBqn07bzdDPOTpmCiTo6uD57tlBcXMy909xBtx1++40s8seOdXjeL1y4wOfl5WHFihWvX7xbWkrBnaoJmZYWcOoU1auHhpLiV15OCqulJdnCfX1JEXqhW7lSqcTWrVvh7u7Ojxw5UqKlpUXH7OHRUqMZGxuL4OBgWFlZCYWFhdzQoUNFDw8Ptnv3bqz79lt8P2cOYGmJNWvW/Hl379RUIiknThCxsrCgGd+RkWT7VzUv6gSCIODZs2eIjIxEXl4eFi1aBBO5HFyPHnTcRkYQBAHffvutYGFhwYb6+rKuhYV0HiwtyU3xAhQKBRISEhAcHIxu3boJCxcu5FBRQaUEt29TXefJk1SrrLJsFxYS8fb3J+KhssGWl5OTQy5vfe/du7QGOnPGpafTe957j7pA//gjYGcHQRRx48YNPjk5mVVVVXEymUzU09MTdHV1JW+++SYMO7IUA5TIcHMDKl6YIFRRQUpeM0nauXMnb2Jiwk2YMIEZGRmRo+GXXyg54+ND90gbXL9+HY8fPxZXzp/PZD/9RMff9ju/+YaIsZcXeJ7HZ599BgDYvHlz+8RAURHVd7/1Fl3/gweJhHIc/QsOJgIbGkpui4qK9vbp/HxaPzY2pBADlJz7978BQUBdQgK+KSwEz/NYvnz56yWy2kDsKHEkCEQUx4yhfgMWFrR+TU3pPhsxggjr3buUIHz+nBIXvXq1KM6viyNHjiA7OxtyuVw0MDDAkiVLGMdxSE9PhyiKqKqqwvXr19G1a1doa2vD9ehRdJs1CwZz5uDixYu4d+8eFixYgNu3b/NpaWkSJgiY/csvqDIzw4VRozA2JUV0i4tjdV98AS0bG2j3709JuJgYOjZPT7o2SUl0LTIziXgDRHS/+IISI6tW0Rp/6y1KBH70EUpKSvD06VP0798f27dvF+vr65lUKsXw4cPh5+FB9x/HkXU+Pp621RGuXSPHxF/ondERGhsbceTIERQWFoIJAv61cCH9HnXwPH8lRo6ka7ljByXHPv20NbGZn0/r/vDh1nr610Bubi6OHz8uNjQ0MG9vb37cuHGSF0u4AKieTbmbN29+xfBxNdT4/wdqG7kaaqjxt0NAQEBpWFhYeUpKylBvb29ZR4TIzc2N69u3L2dubt7udSsrK3Ach4KCAi4vL4+rqalhdoBgvHUrd7apSUisqRGsBg/mgkQRYQ8eiCYmJqxlTI2eHgWfUimCU1Nx+vRpCILASmJj4VBUxPKWLWPB16/D1NQUZmVlYFpapAZWVFCTHFUTtcOHKSAPCCD1oLku1NjEBJqamjA3N2cymQzp6ekwrKsTvRcuZPWLFkHevz8phcnJpC6qZhffvUtKzfr1AGO4aGGBCyUl4C9cwKz9+9lRCwvx4a1bYszDh0KcTCbEV1eLko8+wm+VlfydO3eEmKgoQf8f/2AJrq6sz759yMrKwuPHj5mZmRnMXrR3375Nx9FJcyEzMzMuPDyc8/8rAbm2NqnYV66QmjhpEgWlY8eSBX/7dgomCwuJAKxeTaS8A9LBcRwcHR1x+/ZtMSQkhJNKpaLeyJGMmz8fiVpaiExN5WNjY7lBgwbh0aNHTEdHB35+fuzixYuCpqam2G/pUlZqZoZn2dlwdnaG3qus0JmZpGD370/7Pnw4kbTTp0nh9vQkxb6khNTdDmq0GWMwMjJCdnY2tLW1+X79+nFMU5OO39ER0NAAYwy2trYsLCyMZeTmir5TpjC88w7Vtrbp0K2CRCKBlZUVtLS0UBUXJ7h7eXEtdtF//5tqiU1NW4Pr8HBSuCoqaA21JZKzZhFJnDSp9TVLS5o57Ozc/r0qGBtTIO/kRDPDU1KAoCAkAwhNSmIjRozgRo8ejeHDh7O+fftyHh4eNKO4M+jrd6yyvfEGqenN3cK1tLS4xMREGBsbs64pKZRgCQggQtFB53w7OzvcuXNHrE5PFxyDg7l251Jfn5To/fuBkSPxKDUVGRkZ4qZNm9hLNeU6OnRfArQWBg2iTvrLlxOBNzWl5JiHB9nxBw6k9zs7k735s8/onA4YQKRn9Ggiiu7uQN++kPn4wNvbG/Hx8WCMwdLSsuN6/47Q1ARWVUUJkKoqun8jIohsHzxIpL9fv9YyiLo6+t/CQrp+AQFExhgjxfg16/EBICUlBT/++KNYU1MDnueZIAhs7dq1TCaTgeM4mJiYwNTUFFZWVnByckJ9fb1YX18vSKOiuNtNTUiurERZWZlQU1PDevfujSFDhnCGhoZCcmoqK+3aFX3q6tA7MlKsBNilgADcUSrFiKdPWUREBMxWr0Z9VBTKV6+GIWO0tkeNovv0+nVa17Ro6HqdOUMzyd3c6NjffhswNIS2tja6deuGuro6REdHM57noa+vj3HjxkGmpUXn7Z13yJGQmkqOhY46kru7U7L2xc72Hh5UrqQaofcKPHjwACdOnEB5eTm6deuGfqdPQyc6Glpb/4PJWu+8Q4mW8+fp/qyupmMH6HeuRw9KTqia/L0GfvzxR16hUHALFy5Enz59uM6cQc+ePUNaWlpNaGgowsLCygICAkr/+gGoocbfB2qyrYYaavwtERISEi+K4gh9fX3bri/YKv8M165dE/Ly8hhjDK4ODkLD1atcvI0NU3p7M+mVK1y/rCzctrZGXV0ds7e3R8v2GcOjoiI8/uMPMUkqZT179hTeeOMN5h4TA7d795jTF1+gurpaTDp1inkvXw4uK4vGgKmUol27qBY2IoLUTx0dasQ0duxLVtukpCQhPz+f8aLIsqytcS0rC06ff44fBYGPUypFYdgwrltBAQV3kyaR/Xf0aADAw9RU6JiYCGM3bmSJvr4wsbFho1euZOZWVpzxkCFcd01NrtepU8xw+XLOzsWF6yWXczY3bjCbbdtgZG4OqVTKMjIy8OzZM97X17e9NFFd3eEYKoAUtMLCQqSkpAgDBw78awV/EgnZIc3NiaCkppIiuncvqenm5jTvfMWKP92Uvr4++vfvz5mbmyMoKIjdvXcP9QqFYH7zJvL79mUzZsxgrq6usLOza2ksJZVKhaVLl0q4jRvRY9MmZObkiA8ePEDfvn1Zh0GjQkFEZd48IpdpadTA7MQJsgy7ulKzIgMDCtzPnycnQn7+S3WVSqUSV65cEZ2cnJitrS19WVMTJWWaG2Pp6ekhOzsbGhoacHNzY2zaNEpQ3LtH5Q1tSa9SCaSkoPrGDXju3s1p+fsTiVPNkm57PJcvk210+PDWOuC2sLEhgqAac6bC+vVUjtB2PFpbMEZ/mzuXCMndu2DdukHz8mXms3QptDpTsTtCSQkRomXL2r8+cyat+WYVvkuXLkhOSoLL6dPMyN2drtG771Li4pNP6Bo03yMAkJOTg8TERFgoFKJjUhL3kjpob0/EMzwcwZWVkMvl6Nu376vXtY0NJVUCAojMmJgQ2V66lBTwGTPouo4eTfb4oCBSRMeNI5Kzdy85C8aObWcLlsvlEEURd8PDkX77tujt5sYQGUnPEqUSLXOmT54kxwfP03X7978pKfXbb+BLS3H3+HGgsRGZcjkMdXUh9fIiEjp0KNnFLS2JAOrq0vkLDaUE17FjRFiLiiih1NhIx/aKUovCwkIkJSUxnueZjY2N6OfnJ9jY2HTYsVtXVxcODg7Mzc2NswoJgWTKFNQyJlhaWrKAgABm32y7r0tLYwZHjoDjeQjV1aKemxtzTUqC79mzGBQQwNx79kTflBTUjxqFiN69xcjQUCaLiBCzJk1iWlpa0Bk0iM512wZmMhkpvceO0T28a1e7/gCCIGDPnj1CfX09A8gW7+joSE4Mc3N6dg8aRPdSWdlLNeAA6NouXUrnrC28vAA/v44bxbVBRUUFjh49CmdnZyxbtgxuvXoh58QJ3PXz490DAjrugv4qqGaMDx9OSZSUFHIMqWBqSkkga+uOeyW0wd27d3H8+HGhpqZGMn/+fFi3mbjREUxMTKCrq6unr68fUFZWtiwiIuLNmzdvhgQEBJT/5eNQQ42/AdQ122qoocbfFTqCIHTrsMHOn6B///7ctWvX+KqqKonl3r1cTysrSHbvxs5duzDNxAQSqRRDhw4VQ0JCREdHRy48PByMMVRXV+NhdjbGJCUxmakpdDw8mK1cTsEZANy+jQkffcT+WLhQfNqtG+spimDa2qS+5eS0vo/nKUju04eCrLQ0Cqy7dGnZx3HjxnElRUVK/927pdzBgzh66RKKjIxQVVUlESQSFBQV8Th9WoIbN8jC2gaiKEJXV1fU19fHAFUtXn4+bBmD7cGDRDyKi+EaGkrdukeMAO7ehU12NlBSgu6CgEnFxbiiry9i2zZSaRcvJotrQgJZJX/7jQLHefOAK1dQXFYmplVUMGltLXx9fCiI09QkRTo0lNTr5vnkGDaMaqhra2m7UVFEWEtLSXFzcSFbOUAB37NnHdql/wwuLi4YOHAgHxkZKUnt21fs7enJTbOwgLTZqWBjY4P5yiMmQQAAIABJREFU8+cjJCQEQ4cOJctjWBggCJgzZw7btm0bTp06JY4fP57pvkg2Z86kfTp5kpSwxkYivEeOkA21S5fWuu2rV4k8JyZSYF1dTRbnZtJ99OhRXk9Pj7VLbPA8kaZ//7uF0Li7u+PcuXPs008/xeLFiyHT0IDJ5s2oc3VFxNSpgolUyrzd3Zl01izU5OfjwowZeOP332HcUa1zWRklLtatowRBRw3kFiwg10VHDe927243xq5TyGREYsLDYbxzJyzz85E3bBikX3wBK1XjsD+DXE5KmwqiSOUDBw+Sktzmdd+ffhK7x8WxQxoaGL11KzgAhnV1gJ0dWH09NAQBHMfh3r17uHLlCvz8/MQAc3NJp6RxyhSUvPsuNOrr0XX+fCaKIvLz86Gvr4/MzEwkJyfzEydOlLxUb85xrfusqhP+5z8pwebuThZ+1Yzy6mo6liVLaL0fPEj3wOHDdO/NmAH88gv8m5rgKggoys1lNXZ20Dl7FszCgpIaOjp0DXv3psSVvT3d14aGtH5WrEBDbS0u19W17hMAVlgIu/JywbC0FCOnT+c01q2jpERUFDURGzKE1m5CAt2fDQ2U4FF1zO/ZkxJKlZVE2O3sAFNTRD98iJiYGAEA16VLF2RnZzMLC4vXIoXS58/hNWAAvAwMWt+flwf8/DPs8/NhMWIEnvn64k5ODgvOycEHX34JzUOHgHv3YCSTASUlMDp1Cj1kMlZ28CBk//wnO2htLYSGhXErfHygu2YNfg8M5CsrK9myZctIgZVISO2Ni6PExdSpLSq+IAhoaGjgJBIJ1YcDrR3/TU3pcxs30rNs40ZKML2I5nGR+P339q+npdHvQCcQRRFxcXEIDg6GqakpP2XKFAnS08GNHYuIyZOxbtOm1y/X6WifCgqoVOTzz+m+Ut0HWlp0PEVF9CzqpJxGZfM3MDDgJk2aBKtX1I2roKWlhX7UVV5jzJgxuHPnTt/w8PCQwMBAjy1btqgJtxr/30GtbKuhhhp/OwQGBjrK5fKIpqYmh+TkZOTn54uurq4dK5AdwNzcHP379+cKLlzgqziO8zxwABoGBnielsanlZRwjdOmie7u7iwsLIzFxMSgoaFBKCkpEQRBEDR1dcV+XbtyQwYPhv3o0Qw9elAwWlpKatDOnehpbs4StLQEvqIC2b17sy6ffALWdowUYxRAl5WRvVwQiIT16kXW4WYkh4cLHrdvc+afforS8nLeJDycs1u1Snz67BnTtLXlZObmMJs1CzkzZyI0MlJ8+PAha2pqQnFxMeRyuejs7NwarMpkpGqqZlRLpfRd8fFEMOfPp7pWmYysp8ePI83GRvDQ1uagpUW1x42NpDi7u5P6PGwY4OKCOltbnMrJYc5vv40uI0bA8c03mbRPHwrUe/Wiuj9vbyICzs5EQnr0oH1xcSFrvasrBexNTaTUHzlC+1hfT8qchcVfGo+jgr29PdevXz9UVlfjWVgYkx0+jMeurjAxNYVcLgdjDPb29q01rWvXApqa4CQSSCQSxMXFsefPn4seHh7tF5ezM6mPRkak+P3wQ2uHdC8vUokXLWoNUiUSIuBr11Ig27MnUF6OG01NSEtJ4eYtWMDaWda7diUlt7a2xfVgYWGBIUOGIDc3lw8NDeXuJyQgwtYWaRKJ6BIUxOx37WI3k5Nx08cHN9zcYG1nh17u7i/XQmdmkqIqCMDs2R2PXhNFugZTppB69yJSUqiRWgc29pfAGGBrCzZsGLRTUpBkZiYYf/stKz5yRPy5spKlZ2ejR48e6DRxJpeT8tjW/VFcTI26VJ/ZvRsYMQJ/TJ3KQt94A2UGBrh//z7u3buHqKgoRFVU4G5REXDypFhua8suXLiAKVOmwNfXl7EnT+h4VA3h2kJDA9HJyaLOo0fMys8P4YmJ4rVr11h0dDTS0tJQVlbGJSQkiJGRkczc3LzjGera2nQORowg1frcOUrSZGTQ2lmzhghsTg5di4oKSmSYmdE91K8fWebnz4d09mwcra3F7bIyhFlZQW/2bFj6+hJhc3Skz1la0hrT0mqnPFdVVSEhIQGbN2+GlZUV0tPTYWxsDB0dHaZz8SKrrq0VrSZPZnBxoW00NgLffUc12nZ2tP2ePcnyvGwZkXFHR1rX5eVEVNPSgD/+gGTnTnTJyWETBgyAn4MDChIT8TQ/n0XExYmeXl6s02Z4SiX98/NrbTCZmEjX2sMDCAyEPCAA5UoloqKiAAADhg2DzNGRnqVr19J92dygTcvLCxrr1qH/oEEsPT1duB0fz3RLSlDevz97/vw569atGzNUjfEzMaHRV0lJVAdtYQGYm4PjOPj7+8Pf3x/Z2dl8VVUV9+jRI7Ffv370m9PURK6bd9+le6uoqNWSrUJgIHD/PiW3VKitpXO7eXOnSaerV6+KoaGhbNSoUZg8eTK9KToaCg0NhGtr4+nTp4Krq+vLpQ2vC8aoxGLnTnqW+fm1/s3Jie5xTc1OR4HJ5XI0l25gzJgxL43Z/DNwHIdu3bqx6upqrdLS0kGDBg06+p8diBpq/PdCrWyroYYafwsEBgYyAD5yuXyNVCqdNnToUDljjH/8+LGksLAQ3377rTB+/HjOwcEBSqWy887GKiQnY3psrKRq2zZImwPkt4uLJc/Pnxfjhg9nhw8fFjmOY3369BHGjBnTPoKoraXAb+hQUoCmTiV78NWrQN++YOvXw83IiIuMjERqcLCYlZUljhs3jmsJiBgjhUNPj7ZlbY3iw4dx4sYNuO3ciXhfXzRpaMCkqEgasn073pLJMGXKFAl27UKDkxO7HBKCgoICnJdI0F0qxaVvvoHYu7cok8lw7tw5ZmBgAMc2pB0ghUQURQqGdHVJrejRg4jUoUMU2D9/3vL+NFtbVEdHU9MgFTw96Xj/+c/Wuj4AT4uLUWtnx/eaNKlV/mjbCKgjG2LbxjvJyUTmd+wgxfzjj2n/6uroPI0aRaRw9+7WhkR/AVpaWhg/fjyHceOQ/PnnYvoff7DbkZHo06cPRo0a1fpGQSBi1KxeDRw4ELGxsXzXrl1bj6uigpIS0dGtJNTMrHUsFkCB9qFDlFD5/ff2+6uri9LSUoR+8gmynz0Tev3wA7cxNBSSjz6i72/73nXrSPX85Zd2x/POO+9IwPNAVRXEf/0L7Nw5BgsL1K9dizIbGxRnZcHExASiKOLEiRNYuXJlK+E+fJiIRVDQq+2hQUE0L74ze6u1NSn6fwXm5tA8cgTDrl3jGhUKlDDGhly5ggrG8HNWFpb8858df66oiPa1sZHWxJYt5HzgOLI6nzsHZGSAHzwYhc32YI7j8M4777Q0n+N5HvZlZaJrUBDb07z2amtrBQBcnVQKuY1NhwFRSUkJYpRK5imToWDHDlRMmyasWLFCYmBgAKlUCqVSicTERJaamorjx49jxYoVeLFPBGpriYjevk1W7aIiIjK1tXQ9cnPJ6VJWRv0JBg8mxb4DR4FMFOHv7y9ev36dAUBQUBB8fHxe6/QbGxuD4zikpqbCxcUF76s6jgMoPX8eoZWVrGtuLtmAhw6l5FdICJHBjRtfXi9yOZFwOzu6J5pxLz4eN3V0MEhPT9A2NeXw/Dmm8zxq9u/H4549mbShgdaVXE7E3dKSFGKOIwV71y5qUJaQQI34xo+n8ps2z/TS0tYy3++++07YKJFwLQmCGTOoweKTJ7RWUlIAALNnz+bS0tLQ09oaPpMns8PHjiErKwu23buTi+TTT2mDy5fTffvzz5Rs8vVt+a65c+dKRFHEF198wY4dOyYMHTqUs7GxoWfY8+f0rNq3r33zSoDU8mY3gQoKmQyS6upOmzDm5eXh3r17bPr06eilmge+bh0waBA0v/oK0x4/xs2bN7ldu3Zh9OjRaOnm/rrYsoUaOc6ZQ84I1XjFtggMJCeUat78C7Czs4O1tTWfl5cn4Xm+84TZK8AYw4gRI+R37979k5mRaqjx94Ra2VZDDTX+6xEYGKijoaERrKmp+ZGfn5/XpEmT5Pb29sza2prz8vKCl5cXUyqVuHr1Krtz547w8OFDvm/fvp0zsro6IDUVnJsbtMaMaX29Z0+k2NmxqEePYCMIgpOnJ1fz8KHgIopcNoD8zz8H09CAloYG2P79FISWlJDKc+4cBZw7dwJmZtDT04OLiwvc3d3ZzZs3xZs3b7KkpCQxLi5OjI2NFWOTk0Vx61Y0ffkljiqVYlJRkcBJpWxaWhrr7+yM/itXwnPePFQOHw4bT0/aP3NzcC4ueJKaign79qFreTlSvbwQMH06hs2ezfLz84Wqqiro6uqy1NRUThRFIT8/HwqFAhcuXBCvXr3KXF1dkblhg8iSk5n28eNkldy7l1SqNsjPz0dOTo7YYm0uKCAle+NGUoB27ULtwIGIjItDWFgY3NzcmJOT01+r087NJeLv60tW8SNHSNW2sqL9ycqirsETJ1IAHhlJRP8f//iPZsCCMZhyHPO6cgWaM2aIoRERjOd5qOpBIQhEMNrU9TLGuNDQUDDGRBsbG1aQno66wkKI48dDEASIokjBsodH+yZcXbuSynXrFhAQgIaGBoSEhODMmTNCVFQUq2lsxMTp01mfxYshmTSptbbXza3VfuzkRNtpWxddWUn/+vQBamvBVq2ic7J0KQotLKDz8cfosWwZJk6bBk9PT2RlZQl37tyBRk0NM9q/H1I/P7Ir29l1fp6qqkjlnTevc7JtZESESCLpuCHUq+DgAOmIEdA3NESXuDjoSKXIr6+H2/PnlNB5kXxoaRHh6tqVFODvvqN7judJcWu2qXNz5mBIQADs7e1x//59PH78GO7u7pg6dSqys7N503794HbgAIu8fh2CRIKnT58ypVKJ9O3bURIdjSO5ubCxsYGRkRHy8/Nx4MABREZG0tzl2bPhX1AAn/79OR13d0gkEjDGWprRubu7o6CgQAgLC2NyuRyG2tqQFxS0jvPy9KQE0+efE5H98UciO1VVpGj/+iutnR07SFFljO63pUspodCcqFMoFDh27BgDqM5ZoVDAysoKnU1laIva2lpERkZi/PjxL5EiTV1dPDY0REhsLLp37w4DAwNSNEeMIGV91Ch6BjT3EOgMhw4d4uPv3uWa5HJM2biRydzdAXd3cGPH4my3buJDTU2mMDWFg7c3cOcOqdaJiXQ+9uyhJM/9+3SvL15M7hBf35fWRGhoqFBeXs4kjGHOgwdMf8ECWteurrSvHEfPjOXLW2qoJRIJzMzMwBYtAiZMwJOCAkiVSsEpKorhu+/alyq4uBC5/+EHSqo1JxoqKytV9cnQ0dHhoqKi4OjoSI0UbWyodtvcnO6Jts0ls7IAd3dE+PsLkdHRLCYmRszevp01bduG4zU14pMnT8Ta2lrGcRz09fXR0NCAM2fOiBoaGq3J3poaSgi8+y5gaAgzMzP4+vpCFEVcu3YNFRUVePz4Maqrq6GnpweNzkpvLlyg83viBO3jkiV0Db7/nsh12znwqn4lZ8506PxQKBS4ceMGx/M8hg4d+ufjEjtBdXU14uPja/39/f+Dbm9qqPHfDbWyrYYaavzXQy6X77O3tx84ZcoUjY5UAA0NDQQEBDATExMxMzMTSUlJUqVS2XGWvbSULM3Pn5Oa9K9/Eck7fhwYMQI+c+fCZ9Ei4M03Jcl79qAuOJhrOnECx2fMwOITJ1B68SJ+HzwYS/Pz0TwwmYLRjRtf7jQLwMDAAO+++y5XXl6OvLw8BqAlGuFcXJC2d69obWXFOfXoAUNDQ0g3bQIaGiDz9cW9N94Q6q2tW5MGS5eCi4vD22+/jYsJCeLc1asZ3N2pWVVjI/RNTBjP86yoqAhWVlYIDw/nAEBTUxMNDQ0MAPbs2YPJ4eGs3NBQMGWMQ9++FJAWFbWzC4uiCEEQWmdDdulCHZJ1dSngPnsWD3fsEO6YmHA9evTAmDFj2kVZSqUS2dnZ4Hke7eahC0KrRfmf/6TrcOQIqdaMtY7ymjmzVUlzdSVlcP58stPeu0d1kefPt7PdvxYGDQL++APWSiWTy+VobGxs/Zso0tpoAz8/P8THxyM0NJTVbtsGjjE8GjZMqPnmG04ikUAmk2HChAlw0dIiUqSyOnMc2fUPHkTpgQPYX1ICMzMzfuDAgZLMzEzk5ORAR0cHnFTaSqavXaPjX7eO7P23b9OooidPKCly9CjVy8fEkHKnSsI043p4uDChooIzbXOPzJw5k7tx+TI0N2wQE+RydkNDA2s3bcIr6bFMRmrgi53oX8Tnn5MC29Ya+woolUqIokidtI2M0DhyJMLi40UuMpJ5FxaSkvnhh3Sd29pWlUq6z6ysqCwhPp7s2I8fkx27Z88WRwBjDDrN5L+pqQmXL1+GoaEh5s2bRyelthb//OorFIaHIzIvT8zJyWHmHIeK5qTCzz///NJ+Ozs7Kwf5+0vh5kbr0srqZZswgLfffptL2rcPed98I2bl56OXjw9jqm7o+/aRUu3pSWRJVdtaWUl/V815/uMPev35c3JzyGSU1OjdGzhyBOy778AplRCkUtTU1AAATpw4geXLl8Pc3Bz19fUoKSmBlpYWtLW1W84FQAk0mUwmampqtmdEogju448x7epVhCYl4eTJk/jggw9QVVWF5ORkmJmZ4fLEiRgqioLLhg1c6bhx+CEmBqIowsbGhm92ErHa2lrk5+dLAGDTpk0vkb0333qLfZ2WhntNTeIbAQGsHXmLjKSkyttvky3bx4fuJScnInoKBV3vZqfN9OnTue3bt8M+ORkGGRl0f6iO1cmJur7n5lICq6CglTQClKwxN0e/fv2Q8v77XFNqKmQdjc4aMoTugU8+AWprUTNgAA4fPiyamJjggw8+YFKpFDt27MDFixfFpUuXMqSlURnAoUPkcmq7ho2MAAcHhNy6xcm0tWFtbc0cfX1hoKuLIUOGsJycHJaYmMjfvn1b0tTUBF1dXWhoaIhz586ldfvgAY1eu3OnnfuFMYYhQ4ZAJpPh+vXrMDAwwIMHDxAcHAx/f38MbZscqa8n58DEidSNPTqa1tfVq0Ska2vJRbNwYXsXQ0AAjWFcvrxdXxEAOHbsmKBQKDhvb2+eMfYf14/fvn1bwXHcqf/082qo8d8MNdlWQw01/tcRGBg4nDE2VBTF81u2bIl74W8DNDQ0pk2YMKFDot0WvXv3Zr1792aJiYlIT0+Hc1tFsKSELMrz51PgZmVFtcqrVlEAnZZGSsrevRTMFBejPDoa96dNE+sjI8UeGRlc6nvvib22bmXTLlyAIioKGjo6pAZcudKqwq5dS8pAm1pWqVSKDsdoATh+7x7Gbd0Kw9jY1tFQWlqAjg6UMpmom55O5FYiIet2ZSX0pkzB85EjWctYFhsb4MoV+B84wDHGeJ7n2ZAhQzilUom8vDxcvHiR53leMjQlBbJHj3B26lQwxjjZ1q1wc3PjJwQFSRASQvbLZkiaa5Zb0L8/qU8gIr7HwQGTd+zglv/+Owyp2Q0UCgWCgoKQm5urrKmpkUqlUjQ2NmLYsGEYqBpt4+ND52fnTiJN/v6U9Gg7WgqgBIa2dut/a2oSsdq3j8iJvz8Fwh9/TPs2duwr10Y7bNkCEy8vsKlTMbqNio3KSlIi58xp9/bVq1cjIyMDLDkZVn36YPT69VxFRQV4nkdGRgbOnTsH6aZNYg9RbCExKSkpuHPnjqhRVSV4Hj0qGbZpk9B/zhwJAAwaNAj79+8Xnjx5wrp06dJKfFSNkj78kAh2XR3Vgm7ZQg3nduygQNnS8qXmZLm5ucgvLeV0ExIooJ4wAfj9d0h/+gmj9+wBbt9mu3/6SdBSKrnOFK+CggI8CwsTfZYuZclXr8Kwvh42r7Kar13bYeM6nudRUFCA6upqyGQy6OnpoaCgABcvXoQgCHBxcRElEgkePHjAwHHMe8kS2GVkUALhyBEK9nv1Ios1x1FTrq+/pm7b6emkNkZEEAnooLmUkZERunXrhpycnBbCvXLlSvqjjg7Ykyfo4uCAKc2Jryo9PYTExQmOjo4sNzcXMpmM1dTUYMOGDdCmNUixkrExrY+9e8nura9PCZrUVFKn33sP7i4ucFmxgh24fFk0WruWJhkIAo0Qe/SIknptx2cFBJAF+fhxUnBVz6wuXSgZBRBxrK4GCgsh/+YbfPzoEYo++QTJcXGQfvklrl+/jv3793d4iYyMjERjY2Nx8uTJ3LNnzwQTE5OXpceKCkqiGRtDqVSioaEBhw8fFgoKCjg9PT2+vr6eM7S0FH97/pybyHGi5cyZzG3zZrH3hAnsXmKiRBAE1NXVobC5rMDIyKhDVfXSpUsCAG7w4MGt+9DYSCRw3Djg0iVa5x9+SMm3vDzq8O3oSCrslSvU1M/CAhr//jfWPniAlLQ0ZO/ZA9cXR/TFx1Py0MeHniWffUbJC4B+B5qa4NitG1KnTRN3p6aymQUFHTf3cnEBduxA3Zw5uNajh2js5yfMmzdPolQqceDAAdTV1WHBggWsZX0sXEjrorCQkgaqZ7qZGcT169H14UOMXLyY7quGBkBDA3aMoW/fvgAgUSqVOHr0KKRSKWbNmsW1lEMdOEC/C52U0AwYMADm5uawtLSEVCpFWFiYEB4ezhUVFYnTpk1j3IcfktK/eDGVK7R1rOTk0DNFT49+B4uLaRyganxjly707D99uv0serrWXEVFBcaPH/8fEe3Y2FhldHR0fV1dXbFCoehgvp8aavz9oSbbaqihxv8qAgMDLSQSSZCvr69mQkLCuq1bt55TKBQrtmzZUhUYGGgHIHLChAlQKBRoaGiAUdtGY51g4MCBwsWLF+Hk5MRxokgk6tw5UgaXLAEmTya16IMPqFP4xYsUYOzb17qR58/h8/33uOngwOknJaHW3h73NTSY3NsbXosXQzpmDCkpCgUpr0eOUDBkYkIB+K1bFCxfvEivdRIkNRgYQJDLqZ5PVefc1AQwhvSBA8U3du4EHxoKycmT1LxHSwuwtUVT24Y4a9YAjx+DXb8O/5EjW4IeuVwOOzs7rFmzRrJ92zbBxcGBewSIAJimpibq6+tJZdTXJzVm2LCO1cyGBrK2Ntut6+vrUV5ZCcXOnTBcvx7KkBBcDg5GcnKyYGJiAn9/f6mVlRXMzMzwzTffiBrl5QwWFhTI/fwzHev9+0Qk2yrLbbFgAal5e/a0vsYYJUcGDiSF9/x5SqKkpREJy8trDRBfBX19yCdNQp+UFKSnp7cq7wYGtE46gP3Zs0T+mhMAqhpoExMTmJmZgX/jDVY+ZgyMPD3x+PFjnDt3Dl5eXqKhk5NEx90dPSIjOUya1DJCq3v37lxWVhYP4OUg1dSU6nZ5ntZOQwM1LmpooHXa3PxJBUEQEBQUJPbo0QOampoMVlakBv/+O6l7P/2EzLIylJeXc++8885Ljg+VDTUmJgZmSqVYOWYM7ly7xgAiTu7u7kJAR+OFHB2plOLw4XYvnzhxQsjIyOB0dXV5AKympoaTSqUYO3Ys9PX1ERQUJDLG4ODgwMaOHdvaVGzxYnKHjBhBTeZmzqTzsHgxOVKys+leW7iQCG4HEEUR9+7dQ05OTstrlpaWAoDW/XdwoGTE/PnAlCnQT0vDW/36cZg8GQDw66+/AgAvlUpfvjbDhhH53bqVyJVSSY3OvLzInmtrCykA/exs4dC+fZLNp09DevgwXfdFizqeU81x5GoID6dO5C9CLm8dGZWbCwCIzc0Fp6uLsV5e6DtsGM6//76YU1XFZE1N8Jg5E1lZWRg4cCDS0tJYbGwsCwkJEbOzs5m5ufnLZPvZsxYi6u/vD9Vc7ClTpsDQ0FACACkpKezXX39FXI8eYr/gYDbh4EGGu3dhu20byjQ1cerUKfA8jyFDhojNz+h231NbW4vk5GQOQOvs+l9+IZW/sJCcNRIJKdyzZ1MS5b33KMGmp0dlA8uW0bP1xg2gogLijh2wqq+H0tiYngn29vQM37OHOoSrEizBwfS5wEB6rhQX03lcvBhjP/6YNXl64tSpU+KKFSuYVtuRYCA3xu+RkXy2v79kztWrzHzwYAl4HtXV1Xje3OOinYV/1CgipyEhlIhtS05Xr0ZfNzfUqcYXenrSb9EXX7S8RSqVYvHixe2vz86d5B55VekH0K5Px7Bhw7j6+nrB/R//4Eo2bYL51q10XlQOirYwMGjfQ2P7dlK9IyJaX+vRg/okeHiQ4t+McePGYdu2baioqHit3+a2qKiowLVr13ie51cACN6yZUvZX9qAGmr8TcBEUfzzd6mhhhpq/D/CJ598stLJyWn722+/raNQKHD58uWGR48eNQmC8D5jbByA8V27dhVyc3M5AJg8eTLc3NxeWRsmCAIOHjwolJWVsaU//8wEExOUHTrUqnRv305BzvPnpJzcuEG1k8nJZJczMgKGDYO4eDGuLFuGe2lp8I6Jgde9e6jy8BB0t27lulZUgB09SmrwoEEUTDs7k/Kydi115z1wgAhl795kf962jchlG1Xhxx9/hKOjI/zT0kjV6d6dLIP29rgaEcHfu3NH4mlqijFlZZQs+PBDNM6ahe3bt+Pjjz9uPegbNyi4fKGREADg5EkUvP8+xJgYWDarN59++ikEQYCJiYno7e0N8ZdfxCoXF6G22SZYXl4uKS8vx/DhwwUfhUKCHj0AExM0NDTg0KFDfHV1tcTX1xd90tKQGhQkxI8dy/z8/Jinp2fLtRF37cL9Eyeg2L0bfomJlOjgOJo/7ONDalNnKC8nVejFkVsq1NQAX35JyYdx46jm8OOPqU66pISSA69CQwMSZ80SSidM4IapLKSlpaRqX77c/r2ZmUT6kpM73Z87w4aJVl99xax9fPD999/zLi4u3JAhQ1oX6ddfU4C/cycA4Pjx42CM8bNmzepYEWpqIuKZlkaKr5sbKVPffkuvXb5Mx81xePr0Kc6ePSuuW7eOujzzPCUdDAxIEb11Cw08jwMHDggVFRXcxo0bVYotRFFEcnIyTp8+jS7GtFuIAAAgAElEQVTV1VhWW0uEhTFcu3YNmZmZeP78OT766KOXGzkpFEQssrKIEDUjIiICMTExwoYNGziA7sfXalqoOu7t22kNGxlR0D9qFN1ns2aRy6MjwtCMqqoq7Gw+xwsWLOhcmd+6lUh93750v44c2eKOuHTpEuLj4wEAOjo66N+/v+js7MxMRZEISFYWJdKWLCESZGPz0v4IJSX48ocfMO76dbG3ri7jDhx4KUnS/gMCJVNOniRC+CdNAAMDAwEAH374IaSxsXQ/ffEFhN9+A/f4MVl+V6wAPDyQkJCAS5cuQS6XC+vWreNeKq85dIgSVVu2vPI7FQpF6zXkeUow6uri4q+/4p6nJ+wdHIQ5c+Z0uOM8z2P//v0oKSnBvNu3YevjQ8nOkpLWWum7d+m6nDlD/11cTNf7xAm0uHgAcheYmOB7HR1BKpOxRYsWMS4jgxRyQ0NSso2M6Dlz8yYl9nbtorIMMzM6zooKIvc9ekAQBBw4cIA3MjLCjBkzJC3PL1HE0aNHhaqqKnHJkiUSbbmcng+jRwMzZmDn998LVVVVHAD4+fnxo0aNohvk8WNK2p0/T+tXdS1v3cKlZ8/4MpmMmzNnDkNBAT2/XjVj++FDeg5ERr48o7szVFRQImngQKTfvInCqioMuHWrfTf/thgzhp5PbW3vogg8fdq+jj0khH4nx49vqaEPDQ1FWFgYNm/e/Hr3dxtUVVXh0KFDdTzPi42NjTKJRLJt8+bN//pLG1FDjb8B/lpLVzXUUEON/2FoaGj8o2/fvjoAKbETJ07UXLRokZ6FhcXXjo6Ow+bOnYvc3NyWAPHs2bNoamp65Ta5+nos/eknbn63buzWwoX86alTxdOnT0OhUNAbkpNJ7R40iGy5lZUUbNbUEOFSKAB7eyR+8w1inzyB75MnguuQIaj5/HPo37vHnfzpJ+TZ2NA85dGjibhfuULB59y5NFe6oYGCQqmUlJVVqyjwsrUlhS48nDqYg4I6XL1KAY8oUjATHo5Ro0ZJ3H18+CZBoAAuPR3YtQuS8nJwqmNRYcQIUtFf7BDd1ATY2CDBz08Q2iRXra2tlfb29rxEIuHv3LkjVHh7c4O+/FKqqVRKZTKZ1NjYmOnq6rLr165J6saPR01YGADg1q1b4Hme8/X1FSMiIvBDejp0y8rYAjc35uXlRUR73jwgJwfMyQld3ngD4eHh2Flby8PLizpcBwe/mmgDZKu9erXzv+vq0jZ69WqdXZuRQQqZszN1TX9VMllTE0b29pzxjz+2vqm+nrbRFllZFFjm5HRKtAVBAGtsZPX5+fj+++/58vJyiaenZ/ts0MqVtK8nTiA0NBRpaWkoLy/niouLO96/c+foe1esaA2C166l/SspIcXs/Hng8WPUpqdDU1OTl8vlREzef5+s1idPkuLa1ARNqRSrVq3iTExM+O+++67la1RE29bWVlzm5UX1rc1kY+TIkXhTNae9I8jltD/N3dtV8PT0RGNjI6dSlzmOe/1AXCYjG3FAACWQhg2jIB+getXbt+l++/JLIiChoaTMNuPp06ci7Zoc+s1zzDvE5s1kgQ8KImdHG8V5zJgxGNPcOJFvaEDOnj3s+bBhqNi1i+5DDw9K1IWE0Jp4kRjX1IDr1g2b3nwTppmZLFPVcftV4Dgi3J9/3l5R7AQDmjuVJyUlUS24hgYQGEhEWxRpvfI8cOIEPOfOxYcffoiNs2dz0o5IvJtbu6aAnaHdNZRIyHHg4YGB5eVwfvIEFoLQ6WclPI83b90Sdaqr8VBXl55xxsbtyZy2No34UsHMDNi+HQ2HDkEoKqLXioqIPM+cie62tmJ5eTkEQSCXRe/eNGv8/n3g7FlKdH79NZ2H336j7xw6lK5F794tddwcx2HevHmSZ8+ecVFRUS0HkZmZiaKiIrZq1SqJtrY2PctPniRnw7ffYt7EiZzKlREbG9uaiYqMJJK/ejU951W4cgXDDx6U5Obm0j7v20dkuzNkZtJvRHT06xHtoiJaz0VFdF8kJ+O0tzdujhnTOdFuaCDLfduSKxV8fWl7KgwdSgnfNu4f3eZnolKp/PP9ewH6+vp47733tDdu3Kizbt06OWNsQ2BgoMdf3pAaavyXQ20jV0MNNf7HERgY2B2ALoAnW7ZseSkCCwwMNATgCaCrtra2jd0L9rguXbpg6dKlLQW7q1atgq6uLi5fvoyysjKhvLyck0ql0NTUhEwmaw0CKypIOdyyBWzYMHQdMwbTTEwkALBnzx7x1q1bbPTo0RQ0WFtTYJudTcGpanzNV18BzQRDoVBg/O3boo9MxmH3biAiAnl376L+yBEY6ukB69ahdsQIZBsbC/UxMXDZtInT1NRsJYEqC7TKoufsTMTAwIBUMQMDaPfvj27HjlHTHg0NCrDOniWL4bFj8Dp0iMtzcGhtyLRmDSQ//oiVe/dCmD8f3LNnpLrK5a2qzu3bFHSGhJAamJGBR/36wbVNMLxgwYKXn/9hYRjftWuLTbCurg4RERE4tnChaAEw47AwJCQkoG/fvuLw4cM5iUQCR0dHWE+axHDqFDUxe+89Sl7k5ADjxsFy3DjM3LcPv5SWSrBhAwW8r4PkZAoE/wyTJ9O5On2alLIPPiBCZG5O6u6AAcC2bcjLy0NhYSHKy8vF+vp6oampCVW2tpx2Xh7zTEujYL1rVwps22LZMiIFJ050+PVVVVW4dOkSeldWIubcOXSfMgVz5sxpCUJboKUFjBiBxs8/RwbHwd7fH0VFRSwoKEhYsGBBewZ0/DgR6nnziHi1JUiMkWqfkUHrdvFi2IaEiPfXreNw+XJrTburK71/924iHGfPQhoejoULF0q++uorCIIAjuNQVVUFAJg3YQJDaWlrXWszzp49y/v5+XESiaRjK8nHH9M+7d7d8pKuri4GDBgg/PTTT5yWlpYwa9YsrmvbBlWvg759qcv45ct0TRYsAKZPB775hsYQGRiQyhYaSuSneS61hoaGOPLRI/bU0BAHt27Fxs8+a62bfRFHjlCSrWvXdokZjufhKwjw1dICMjLQCOCktzfOM4Z333239dru2UPnS5UUEgQ61+vXA3Fx4NavR/H27Tj/5Alcz5yBRCIRRowYwem9WF/ceuKorruysn3N7AtISUlpmTHd4Vxvxqj+GaD7QHVs/fqR4vnuu1R3/vHHRJo/+ogs1v8BFA4O+G7IEFhnZ8Nv714GI6OW5ye9QQGEhUHh5QWdhw+Z3NISNarygBexeTOduzbI7NULoWfOYNCAAai2thbkVVXc72+9BZAjSFJfX4/MzExoaGigS5cukB8/TgT1ww9pA6qGXpGRdB4+/piud3Ex9UX49ltg0yZo9+6NKVOmsDNnzjBvb29oaWlBEATIZDLhpXKCvXtRsX49ijdvRlO3bjC0tsa7bUf/LVlC/377jcoDVI3gMjKgUV4OhULB0h8/htPBg692E8yZQ46okSNffRFqauj5//XX1Btg7FigoABNUikUX3wBmxf6O7RDXh41CX3RtcIYnUdtbWqcpmo+99FHRLgnTQI4DjKZDBzH/Ucjv9pCR0cHgwYN0oyIiFgPYO7/1cbUUOO/DOrRX2qoocb/KLZu3bpbIpEc1dTUXAhgza1bty4HBAS0yHeBgYF+Uqn0vpmZ2QwdHZ0J48eP1/2zsTXa2tqQSqUQRRHx8fEsNjYWsbGxiIqKQmpqKoSmJsFaFBkePSLr9qxZpNS0abBVXFwsJiUlYZCzM8OIEWTBraykmktbWwrCIiKoFnTAAIDjYLBlCx4ALHn8eL5n//4c3ngDZWVlSEpKQncHB8DYGD9ER6PQxUWsz8hAcnAwcxs/ntTtMWMo4Lt5k+zhKmhqUiAzZw4wdSqehoTANSgImrNn02sbNrTaSRsb8dDbW8x0c2Nuq1ZRzWdAANjgwdhfVATv4cMhXbCAulNbWlIHaV9fUulEkUiiuzvQuzeio6PFXr16McNXWRZHjSIyM3p0SyDlsHkztMzNWUhpKbKyssDzPEaPHs3u378vhoaGsuLYWNG2Z0+mFRVFQdiGDVRr260bbbOhAbpjxyLdzg65bm6is4fH682GGTu2wznDHcLIiIhETQ3ZRa2tITo4QOzVCzVWVriycydkX36JaGNjZYNCwfE8zzHGOImWFnvTyAjSoCBaD48e0XeqAv6yMlpLU6a8HIwCOHjwIH/r1i1OoVBAy8FB6PfOO8xnyBCuUxXXyAgpmZmQPnkiTFy7lj3MzBScnZ257m3reKuricC99x65Eiwtqdv2i2CM/r31Fm5pa8Pvq684/SNHwM6coeuur99K0t3ciHD26AGJTIaY2FjR1taWGRgYICgoCEqlEoNOnCClvE1jPwB4/PixmJOTw6ytrZmBgcHL+2FsTOfGy6vdy7a2tszJyQlKpRJRUVFCywi5vwKJhMjK+PGUDDt+nIictjbduzNmEBGZP5+cHba2MHd1ZbKsLOhHRUG7thb8rl3QCw9HfUgINFSqfWkp2d7Hjycl9dEjarJXWUmk88MPW2fQL1wI6dy5sB82DFGxsYiOjoanpyc0NTXpPlMqqYP40KG03UWLKCmwcyfg7Y0uS5YgOTlZyMzMZEVFRezhw4fo3r07OiXcMhlw4waEefOgXLkSkg4SBbq6uoiMjAQAPHr0CLa2tujw2gC0DlQW7LVryc3z9Ck5A1aupCTGpUtESnNz6RmioUFqZ2EhPYtycmgtFRaS+0Mmo3IYiQQSmQy8KOJRTQ2cJ01ihpqadA+qZlP/8APwr38hbvBgnNDRQYO2NsrLy9HQ0CBER0cLoaGh7NatW6y7pSUMPv+cyGez2isIAvbt24dKAwMYlJWhZ2UlkwUGos+bb8LCwgJJSUmiKIosKSkJCQkJuHv3rtinpoZJeb5dXTEAeg7PmEGjsz76iOz/ZmbkXNHSAvbtg0l9PZI1Nfm79+6xHj16MKlUirt377JBgwa1f2Yxhhi5HAXh4fB58ADOs2eLpvb27d/z4AE9R93cWps9vvkmmK8vCuVy4VluLjx+/pl1Wi5w6xat64kT/3zMoZ0dEfuhQ8kJs2EDIJejqakJkZGRMDAwEL28vDreSFwcJZwHDXr5bzIZ3XOjR5NbBqDnUWYmObkCAsAYQ1xcHIYMGQLuT0of/gwZGRlCTk7OvcGDB18IDAzUjomJCQoLC9sbEhJyLSAgoOD/auNqqPG/CLWyrYYaavyP4ZNPPhmro6OzaOXKlRpaWloaFy9e1E5MTFwIYAMABAYGSuRy+Yk333xT11WlvP0FuLi4ICYmRszJyWGDBw9GcXExnj59CoPlyzno6JACdudOh58dHRfHWZ87h4y33oKVRILiqipYL19OlriJEymYPHCAFMw33gC0taFra4sxUVHY6+7O4ZNPAAC2trYYMWIEzpw5I47+/XfWZ+NGGDk7c+Vnz4q9s7JEqBoDMUZ207o6ClBFsX137eb3VFtb4+YXX4iTrawYhg8nlSwri+bumpmh6upV8CUlFMBu20bHaGcHhYUFtu/fj1m//gpHGxuy+33+OdX39u9PKn9CQtsu36LwCpsnAFIvqqtJWZ8+nV4zN4fr1Klw9fLCzz//LGRkZHAHDx6Edk0Nmzx3LozGjWNPr19Hvz/+oMZTT56Qqp+dTUTozh1IysowoaQE+/btYwqFQpwyZcqfE+6pU6lj/Lff/ulbAVBgOG0axJ49UfTZZ0j57DOEDh0KxnFwNTYWnBwdOc/Vq6X4+muy9KuUmqYmsntWVND3qYj2s2dEUtLS2o1EawttbW2uW7duwty5czn29tscevUid8Qr8HtVFeZ06cLh22+hMDcXo6OjkZmZyc+ePVtSnp4O0507SYUzNSXCQs26OgTP86j6+WcMs7RkwZ6e0PzmG5jb2pIqbGNDzeiamsjxsGQJsGgRuMxMdJkzR4yPjxcyMzMlhYWFGDF8ONVBd2C7nzt3ruTXX39FcHCwsHTpUo7neRQVFSEqKgoPHz7ElMmTRbfsbAaeb5eQYIzB0tIS2traLCEhQZKSktJ+OsDroLaW6rdv3KBxTozRMc2dS2Tw/n1S8qXSdqTSaNs21ObmQkhNxW+RkdBqaIBVbi5mNjURUfjjD+D6dSImT58SofjjD0pqJCZSqUN+Pt2LU6cC//oX9P38sHTqVGQvWIDKt96CYUkJEap58+h5ceAAEdW0NCKw8+ZRAoAxLF++nAPIavvFF1/gyZMngqWlZafMpKBfP/y0YAGM165FpZkZ6uRyODk58dOnT5cIgoCcnBz4+fkhJiYGSqUSR44cwZY/qbcGQM84DQ1ao0lJ9JqJCSnyhw/TPX/hAj1nQkNpPajI1eDBRNDlckoE/fIL2bPNzeFXVIQqPT2Yfv893Sv6+kTeBw0i0rhmDfwYQ0V1tXjnzh1mamqK4uJizsLCAp6ennj69Kl46fvvmduyZbxuVpakISUF9fX1uH37NgDgA6kUmrW1rf0U/g973x0W1dl9u94zhTZUKdK7AoKAAmIEscSOPZZYY0uwxJIYTdWg0WCiiSXGllhQoyYqdlGDAhZERCliA0QsSBkpAtJmzrl/bIaOJb989/fd5856Hh9kmHLKe87stdfae7/7LszNzeHr68uKi4tRUFAAuVyOzNhYHNXV5UfPnl1/bKur6Z555gwlVFXNEA8epMc3baLf8/KAK1cw7f33RcmbNwvhz58jcPBgNO1rlJeXh9zcXJS/fIkbPj6QFBYK/TduZLC1bTyG0MOD3Cd795LarJow0L07+PBwwf3qVa6uw3pTHDxI48YuXWqdaD95Qt8vH31E3w0ZGUTOG9jSVR3hra2tW7/fVlY2HvPVFO+/T8kCQajflvfeI9fF3Ll4+vQpAODp06ewban53xuC53lcuXJFUVNTsyo0NFRXKpWednR07GxmZqZ55cqVuQA++MdvroYa/8tQk2011FDjX4OGhsbMXr16aas6umZmZr5UKpUNir7wnpGRkYlbw0Ysb4nAwEB269Yt9AgMBBcUhAdBQTg0aBBcli9v/uTiYgr49u9HlYsLMpydcT8iAt0nT+ZjLl3iXCMilEPOnBGJVYTUzY26Pv/0E6kFQ4fixdKlKDtxgp0+fRr9+vUDx3Hw9/eHn58fY1u2gDk6IiwyUuixZAm7mJWlzP/yS86ia1c+ODhYVPjuu7h79y66fvIJuLg4Ir9NYGJigmwVSV+4kIiRmxuRLQCMMWpkKZUSGawlifPmzcOmTZuEoqIiBicnslOPGEGBcW4uBdanTlGDnf37IenUiYj06/DVV1S3Kwhkx543ry5AnThxInfvzh3kZmYicPhwcPPn43liIiJ//RVdLCxI6du9m5IX3t5Qdd9+UVqKX2s7vYvF4jdTtj/6qFHTrZaQl5eH9PR02NvbIzExEbm5ufzz5885bVdXfoyLC/dOTAwUe/dC09ycgu+iIkqmdO5MAaa1NTkNQkJoW//8k8gCz9PfoqJaJdoAMGrUKPbDDz+wgoICmJqYvFaBqqyshCAIuOLvD/uMDAxgTHTfwwPXrl0THTx4EE4//ICy9u35tjIZp1lbz9+wS3BFRQVu3boFZ2dnGMhkuLRundLpp59EF8aN41O9vLhBlpa0DdeukcofFUWk7/59Wg8//wzcuoWAsjJu36VLEEQiaGlpodumTUQOPm8+eYfjOAwYMAAbNmzgVq5cWdcvQdUsLSU1VXA/epShf3+6dprAwMAAwcHBwsGDB5mPjw/69ev3ymNUB0GgpEN6ej2BGDOG1taECfT3L7+kdbZqVaPRbxoaGnB0dISFhQU0NTURGxuLe66udJ4Buk54nhTbzExSBa2tyYY7fTqp9RkZZFMHyGpbVIQCjoOZXI62RkbkJklIoNr5O3co0ZCdTeUgOjpUa95E6SsqKoIgCMjJyUFlZSWp401QWlqK8PBwuHXtyg/89VeuMjcXpyZMwJMnT9iWLVuEFy9eMMaYYGBgIPTq1Ys7f/48/kniEgD1eJDL6TjExlJy5+ZNOsZJSXS9qOzYAK2lpv+vrsaT5GSkHTmC3hIJkXKZDLhxg5JaHAcwhhcvXiAxMZEFBwejc5OElIeHB3sYHY2ilBTukqGhQiqVMk1NTRFjDHqFhXhUXc23272bg7MzJcOuXCHlWiKBgYEBDAwM4OzsDJuQEFakVLKNAD9z5kyaRNG/P91LDxxofH2amTVuTDZlCjBlCrjbt+GtqcmevnihLJk3T9S+Z0+2evVqvry8nJNIJBAEAXp6enxhYSGnp6cHrR49eGhqijBhAiUgGhLutm0pcVNaSmpzu3ZA9+5wdXHh4mNi4BYcjGYr4MkTOg/79lHSoin27KFGclOmUHKorIzWWsNa91owxqCnpyfEx8czf3//5qUtAN2v58xp/rgKHEf75O1N180339CxO3wYWLcOFw0NlV26dBFZvcqq/oaQSCS8QqF4XyKRTHJzc7MYPHiwZlZWFgRBCAwNDR0tkUi6cRxnXF1dvWvJkiVn/8cfqIYa/5egJttqqKHGvwbGGFNZyQRBQFVVlZgx1tAj7uzo6Kj9qk7ir4OzuTmc160D+vdH8aBBOFlZKXgGBvJoWFf33XdENM6fp8y8tTV03N3RtXt39JHJoD9yJOe7ezeOxcSwrSYmvNXx45yxsTFK7t1Dz/v3oTlmDKlphw7BaMcOTNy1CxFHjghlZWVsVG1Qw3Ec2U81NMCfPctuJCUJbVJT2aRDh9hPYrFo4MCBiIiI4J8+fcpdtrHhZ82bx8nS08myOX8+AFIDUlNT4erqWr+D7dsT0awlEBzHkboSFETjimpJuKamJjQ0NASlUskePnwIOzs7IhBaWhRgentToNSuHWBtDaVEAptevUiVWLSICEZISPNOuKrP5ziydAYEkGIOAEuXov3Bg2iflkZKkJERtF6+RMeUFCJ4XbuS+rR6NSn6338PAI0a2qnGbD1+/BjWKqt5S7Cza7XWNiEhAVeuXBGKi4uZTCYToqKimLW1NW9gYICCggLM+uorTiIWA/HxEPfuTapjQADZzVUJj1696FgdO0aKqLY2HZMNG+jci0TNRlo1hVQqhZWVlfD3338L48aO5erU8hZQXV2NzMxMAEDnLl2A4GA4zpgBR09PZJuZ8Tq7d3O3OnfGcwcHlK5ahamdO4OFhMCK4yCXy3HixAlkZ2fToZFIMDwqCnIzM5HHlSvIP32aQ15efd0kx1GgPmQIqa1t2pBCGRICLFoEy3ffxcjiYhwcMwYLFy6k0UOvIMGGhoaYOXMmUlJS4ODgAFtbW3Ach9jYWNy/f1/AgQP1ZQMtwNPTk+nr62PXrl3w9vZGYWEhzp49q+zWrZuoKfGqw5491D8hMbHx4xoaRJzOnSOldcQICvyVSlKSGyh7Wlpa6NmzJ2JjY9GuYSMu1TGytaV/aWmUfJFK6zthDx9e7wr5/XfwPI+/167l/ffs4exsbOhYhoSQc2DZMiIsCxYQERwzhu49nTrVXa8AJdYmTZqEAwcOsOzs7EZKf0VFBa5evYrLly/DwsJCMWTIEDH69YPs5UuMfvAAlUOGcBcuXICNjQ06dOjAADClUonMzEz+6dOnqK6ubr18oSWUl1N/g4gIIoXDhhF5W7mSnALduhHZrqmh9ZOcTLZrbe1GSYSynBxUzZ4tKAYMYOlFRehkZ0dJwW3biAB26AB8+SVOSyRQKBTwblJuoIKdqyvsxo1j3v7+dXFp8apVUO7fj83Tp3OzTE1hqEoYffABqb5LlzYi0GU7dghXo6MhLyjgoseN4y0KCzn5iBG4p6mJ9ysq6jrwA6D17utLiUlVXTdAic7wcPQvKxM9mTwZ+hER8JwzhzO3sYHc3x+GRkaQyWScIAiqqQv0vfPnn3QMt22rd7eIRNREU2XznjABOQYGfMGpU6zS0FCQTp7c+IuwspLcBZMm1SeGVPj9dypNEoupIeT9++Q+aK0fQS1CQkLY5s2bsXv3bn7mzJnN3RQ1NY2b1LWGn35q7NpxcADS02FnaspJ3N2bTyp4S9Q2qdOKj4//wsrKSurl5cUYY7C3t4eXl5fl8+fPf7OxsZGJRCIWFRU1KjQ0VLOlfjBqqPHfCDXZVkMNNf41VFVV3SooKBgAgGOMYdy4cZoHDhwIDwsLG1dVVTVRKpW6ymSyf1bYpVRS0yyJhNSX8nJc7NgRkqdP0SMoSISKCgqUtm6lQKpzZwrEGigzlrVjryAWQ6OiAu8tXswl7N0rpGdnK1+eOCEadPAgahQKPLt5E/aLFhEx3bkTtsuWoYuTE3+vvJyh4RSHvn2B2bMxbNgwpKens8CxY9lJhYLvM2AAE4lEzNvbm8vPzwcnkXC7oqLgeecO/G/ehLiWbB8+fFhpYWHBBQUF1b/n6NGkWtQHUUypUBCRKCkhxa12PxhjwsWLF4WXL18yMzMzZciZMyI8eEBWekGoV6V/+gn4+WdkREfDxcqKFLhz5+o/S1ubmkWpCPOsWaRuHzpEyq+3N9U5fvQRvbaggGzry5aBT01Fh9RUqtf+5ReyHE6eTO91+zYwfTpEIhGkUilsbW1x6NAh3LhxA5mZmdDW1hYcHByYXC5XmpubcwYGBuzZs2do164dLD78EDo2NlBu3w59fX3wPI9Hjx7h5MmTSrlcLurYsSMGDhwoODs7s6qqKmhoaHA1NTVYuXIlfvzxR1hbW8PKygo94+Ko7rp3b9pX1SzYv/8mxemPP0itSUggpfTgQbLAv+GYnSFDhrANGzawF8nJ0LO0pGZtLeDw4cO4d+8eLCws4KKqwf7sM+DMGYR4enJ8aSm4pUvx0tCQW7t2LR5u3MgXSqWc3nvv4ezZs0J2djYzNTXFAB0dXLp0SbguCMxx4UIY2dpCR0dHcHBw4DmOax7xqpT5jAwqZ1i/HlpZWSj58Uf0f/AA3ObNtA5eE3CbmJigd8PeAwDMzMxw8eJFUdHff8Pw7NlWZ5QDQHJyslJDQ4O7desWi34m5XEAACAASURBVIuLg7u7uygqKgrnz5/nu3TpwnVv2Azs5UsiFl26tEwmOI6u8Q4dqKnWgAHA9u1ExE6ebNbh2djYGKWlpY1nbTdEmzakwrY047oWZ86cgUQiYT4+PvUPHjhAn3vmDCm5GRmkxuvokC1/5kwi3TxfNyPZ3t4ejLG6Oe21Y6eQn58PsVgMZ2dn5ZgxYyg209AgAhYcDM29e+s6pKsgEokwatQobvXq1QgLC8OSJW84NamwkBIxMTFEoAFKNOzeTZ/5/DkdU9pASnzY2VEi7e5dsvD/8ANgY4OaTp2g/+wZ83Z2hvG0aZRc6NmT9psxYOlS3BSJ+Ac3bnDahoYCx3HNM61lZXTdNSSY16/DoFMnZO/aBcXVq43t3Js2kVIcH1/vppg2De2dnFj7GTNQmZmJ4iNHuMNdu6Lg+XMAwJo1a2BmZoapU6fWJ6WmTSObuaqZXAPklZTgSGCgUObtzfpmZfF2Z85w1qpJChMngjUtCbKxoXtq//50v1U1gFu5kn4/cwbC++/D+PhxTu/xY4zLykJNZSU01q6tf4/iYuDjjylZo0JJCb3nzZt0PXTvTsTdz+/1tdyghJOdnZ1w69YtLjo6Gj1UzdoASrgEBjZONrSGnj3p3HfqROUTWlqUYPrlF0FTIvnn2fMGMDU1xeDBgzUaPlbrrNEAoAEA4eHh5VKp9Mjnn3+uJtpq/D8DNdlWQw01/hXU1mOPd3R0rAtora2tMXfuXO1jx44NvH///iOxWKz9jyyPgkDE5PRpInC1nWXLS0vhcOgQe/HVVzAqKAC3fDkpMk0DoabvZWQE8DzY6NHwCwhgfgUFIpiYAOvXI62mRjh64ADr1asX/OPjge7dUTVoECx37hS9/PHHxu81YgTg6Ag3Nze4ubkhJycH6RYW3IgpU6A4dQqPHz8WGGOsvLwcFhYWfKavL0txc+NnnT4t4j/+GMUTJ4rGjx9fN6IoPT0d13/6STl8+HCR5pw54HV1cfnyZTClEonTp/OdBg7kWIP50YwxJpVKmZ2dHX/nzh1RtaUlpA8e1I95WbSIiFTXrjA2NhZOnTsnaL/3HrPx8iLlHyCiWVBAVtIPPiBXQE0NEevqamqEJBaTynj1KgVcT59Scyk3N/A8jyQfH7SLiKD62atX6X2vXqVawv79IaqpgSAI6E4duIXMzEwGAKampkJeXh60tbW5x48fC8nJyYznedy9exfGY8cKRcXFTLl2LRhjDYNtUe385LoAT1WbKBaLMWfOHOTl5SEjI4OPi4vjXrx4IQw9fpzh++9pDc2fT02LOI46Wo8bRwRBJqOAf9cu2j8VCXkNjIyMIJFIUO3u3upsb4VCgXv37sHJyQnjG3b77tqVCM/vv4PbsAGwtIQ2gC+//BJYsIDbrFCoZkazGTNmwOLCBWDrVtisW8fyzMyg6vBdUVEBc3PzVwe8Mhn9W7QIrFs3vNOxY33iITb2zdStJnB2doZEIsGB5GRMEovR8KrjeR4xMTHIzMxEYWEhX1lZKaptcIjx48fDzs4OSqUSGzdu5KKjo9GIbIeE0LbWlh60CisrIohHj9LzO3em1/bpQ03mGENeXh6Ki4thZ2fXepJPR4cU6YqKVkcx5eTkCJ6enqyResxxdB3s2UOW7MjI+rr18HAiM5GRpMCHhgLOzlA6OEChULDz589DJpMhOztbeP78ORs4cCA6d+6MZgkTfX26lkxNKdHVpC5WR0cHvr6+SEhIQFRUFHr27Pn6RlULFpB62nSNd+tGCra/P6mmlpa0j6ru4rt2UUKirIySbyNGQMfEBNE+PvDt0QNWVlaUeDA0rO+JMGYMji9Zwn26di3OjBjR8vbExhLhU5HHw4fJLXDyJCzNzKCVnMyfO3cOo0aN4jiOo3O0bh0lO8eMoXuVtzfd90aOhObYsWiblIRZQF3X/bS0NBw8eBBhYWF499134e/vTwnCVkZiVVdXo6SkhE2cOBHHjx8XLo0bJ4wsK2M2p0+DpaWRam9lVZdEAUBJm4sXqdni9Om0bRxHiUktLbCMDJz49lulwthY9ERfH8OHDat/7ZYtVIKQnFx/HM6do7X99Cmt53v3KCH4qnFhTVBRUYF79+4xHR0dxMTEwMDAAF6qhOCDB3Q/f9PGZu3a0XdE7TG7a2AAx+RkzrnWcfN/AyUlJcqqqqrWs2JqqPFfCHU3cjXUUON/jNDQUF2xWLy0TZs2Qb1795Y2tImLRCK4urqK27Vrpx0YGChpsW7sVQgKooAgNJTqI3m+rqa2fffuuGZkhBQLC2RVVyudRozgXtbU4MaNG4iLi1MePHiQ8/T0hFbD4KSmhtRvIyNSEXbtIlIqlwMbNsDU25tZWlrixIkTeF5aKrSfNYsVffUVzowfzw/bs4exx49pmxijIEVHp45kHT9+HNp6eoJtTQ3bc+MGXspkgrm5OS+Xy7nBgwczQ0ND9vDhQ9536FDuzrNnSJNKEaStjSpjYyQnJ+PEiRPotnUry3z5kreVSjmWnIwkU1Ohr0TCniUlQef2bXZZLOYrqqpYUVERHjx4wIqLi+FUWCgM2riR6YaFgX37LW7fvYu8vDyYuriQArJ4MTxDQ7myly9ZZGQkysvLlXZ2dhS4mptTTZ6RER3fDh1I6TlzhhITUikpK6ampKyEhFBgrKMDrFkDbtMmHPfxQfeIiMZKi5UVKXtZWZAMGoSHBgYInDAB/v7+LCgoCN27d4e3tzfz9fVlXl5ezM/PjwUFBaFHjx7o0aMH/BITWRdtbbhOnAhHR0f4+Pigd+/e6N69O1rrXs8Yg7a2NkxMTNC+fXvm7OyMM2fOMJmuLszHjCHLfFgYESJnZ/qZkkJKn1hMNbs8T/v5hn0Fnj17hps3b6K3oSFEjx61WLeclZWFlJQUTJgwofFaVCjIol9aSs2OVM2bnj4F9u1Duw0b8PTpU8HFyAidNmxgGD4c+OADMGfnRt2snzx5wjIzM9G1a9fGhLu8nBwKBgak7HfpQm6FGTPIgpuWRgF8cHDLHc9fA8YY0tLSlLmMcfnl5cgqKVEaWVhwOjo6+PXXX/k7d+4wqVQKNzc3JpVKhZCQEBYYGAjDWpLPcRxsbW1x69YtVFVVwcHBQXVQaRtfNSe7IVxcqIt8RQUlkS5epMd0dFBcXY3ExEQUFRXh0qVLQkJCAuRyOd++fXsOAIqLi3E1IQFtly+HWCJplXgkJydDR0dHcHR0pGM8aRI5X3x8qGHYb781L8mQSmkdjR0LmJmhsmdP3PvtNzy0t0deURGe5eaioqKCLV68GLa2tmi1vMbAgBJB779PCnyTMUvOzs4QiUTKmJgYLjY2FikpKcqkpCQhPj5eiI+PF4yMjLg2bdrQ9fzJJ3S+x4xpWRlt25YIvoMDXR9SKSXdrl0DTE1R3q8f9hYUCKeCg9kVCwvU7NsHx0ePYL9oEdjIkXQf+eqrOrJdVlaGwuJiXNXXB/P3h6dYzJopqSUlNB7LzIzOn60tWfidnFTj6VhycjLr0qULJCqnA8eR2+fCBSKoKSl0rwsOpiRoLVTH1NTUFD169FB1xxfeeecdxlTqbGkp9SxoAENDQ8jlcmV8fDzmzZsnellRwc5euSIku7jA49NPmWTPHvr+GD2avp8auKYwZgy5LJ49oyTA1Kl0Xzl9GhqRkczh2DHW8cULSIcOpeNbVUUN+SZMoPumIJDTaM4csrn37EnHVCqlREfDuvBWUFvGhaSkJGRmZmLBggWIj4/H7du3kZycDJFIBNP0dIhyc+tcDDzPIzIyEoaGho0t9/UHk5T15cuR8NNP/JHCQibz8BBcSksZ8/Vtti7/E5BKpdKsrKze58+f39GjR4+q//gHqqHGvwA12VZDDTX+MUJDQ3tevXo1ShCEFVZWVp1Hjx4ta6npD2MMMpmsPlB6HV6+BD78kIiLuTkFtTIZqSrBwVRr6OcHUXAwbLy9kcMYnjx5guzsbNy9exfXr19ncrmcMzExEQICAlijIJbnySa8ciWpWRkZpEwtXlwXfBoaGsLV1RXR0dG4mJbGUtu3Fz46dIgTzZ9PdYwaGkQ+V6+m19faay0tLXH+/HmWaGwsONy+zfoOHMj8Bg/mAgICYGRkhPz8fDx8+JC/n5WFKxUVzCw3F36LF+Oko6MyLjGR6927N4yvXEECz3OaH3wAE3t75D1/zreNieFMcnLQ9swZdsHXl2VmZSlTU1NZaWkps7GxQZCrK6s8dQr6qan4S0tLiIuLY7du3UJAQAA4Cwva38hIOM6YARcXF1y4cAHXrl2DtbU102tIaBQKqhX/4AOyLUZHU+Opx4+pK/aYMURqLl+mgM/VFWWdOuHa06fo3nTUDp14oG1bVPv5IfbRI3TdsQNo3x7MzKx1YqHCmTMQ8zx0BwyAiYkJDAwMoKGh8VbzXGUyGdq0aYOTJ0+iTZs2MPHxoQB9yxY6/87OZElNSqJANy+vfma5p+cbBY/p6el48uSJECASMaSnU2KiCQoKCnDr1i307du3fr8FgRS8Pn0okTR9Oll17e1p3FVFBTSCg+FtZsaco6IY2rShwL6FEU+Ghoa4c+QI8/XwAHv5kvYhJITI2b59dD7j4uh6evfd+rVuZ0e13B99RLbcgIDX1oA2RefOnbnu3bvD+ocfkFtUxF0uLeWjoqJYaWkp+/TTTxEQEAAnJyd4enoykUjU7LzLZDIYGBjg3LlzcG3XDjpDhlD5Q0PF8E0gkxGxNTenxnr79wMnTkDRvj1eaGlBLpeD53nG8zzLycnhkpKSEB8fz8fExLDs7GyYHDiAtgsXUsKpBaSlpTFNTU3B2dmZ5pGvX08OialT6diqXAItQUMDNVIpVhUVIc/cHCNycjA0KQmZFhbKd959l7N7A/IEDw9aKxxHymKTpICtrS0XFBQEd3d36OrqcqamppylpSWno6PDRUVFCRoaGqxg+3YoYmPBz50LzdZGhQFUCrFuHblchg0D1q0Dv3QpfpFI+CgvL9Z97Fjm6OiIO3fu4LGVFbqvXw+Zjg74rVtR/vffyLh3T2CrVrFIQ0NlZGQkV15eLvgPHcoG9u7N4OVFpLjh+Z0zh1wJjx9TA7ShQ+vIb05ODo4fP44+ffoIDqrxWtXVRMrd3elaXruWmtT99NNrHRpWVlaIiYlhGhoa1DMiIYHWjJsbampqcPfuXZiYmIAxhvbt23OxsbHM1NQUfn5+sLGxYXFxcay4pIR3mz2bYdYsUoc//piSuJqapG5LpXTfPHSI7qHdulEyZutW6PXqxaoKClCVno7M/v3R1tCQ7qnjx9NxOXyYVPOzZ8mhFRND7hvV+jp4kKzcr0ha19TU4OjRo8qIiAguMzMTJiYmCn9/fy4wMBCOjo6Ii4tDeno6+MhIocrPj1VbWuLAgQPK6OhoPHz4kN28eRPV1dX1ya+muHcPyZmZcBo9mvWZNImx8+eptKCl8WH/MoyMjFhcXJymUqncGxMTU9GjR4+a179KDTX+d6G2kauhhhr/CMuXLx+poaGxe/jw4VqOjo4Qi8VvF6W3BJ4nItehA1kmnz+nGcdmZlSbOXkyWfRUGXZQt+NRo0bh0qVLXJTKGg3A19dX2b9/f1EzS2VJCQXKM2eSgjtxYosBmrGxMWbOnMl27dolCHp6gmj/foY1a4gIrF4N5OeTEtrAVmpkZIQvvvgCANjdLl0E5aZNDL161RFEa2trlJSUiIuKimBpaSnkikTs2qlTvL1IJPL47ju0mzsXoUFBDACORUZCMy6ON5PLRfr798OkbVuWX1CAWRYWACB6+PAhwsPD0XP9esFw/Xp2ZsYMvqS0lJVnZ7M+ffrgwoULvFgspp2fNo1G0Bw/DpPBgzF37lxu9+7d2LFjB/z9/fmePXtyIpGImoV9+y0FoHv2ECHs0IHIaHAwJUE++YT2PywMiI2FcPIknO7epS66tR1p8/PzkZ6eDqVSiZqaGlRUVPClGhocLC1JMReLiay/isy+af3pa9ChQwecPHoUqSkpcPvlF1KGVqygdRURQRbZc+eIkA4ZQg6H0aOJuJ04QWPMXgETExOUl5czxbBhELfS/CkiIgKMscb23m3byCJ64AARpz/+IHJ84gSpg6NHE4nYsoWSQg3J3PHjRLxOnAA2b0bkxIkY8+efYMbGZO/19qZr6dCh+tds3tx8w0pKSD2uqqJjMGMGNch7S3AcB6Off4YsPR3yrCwOACZOnNhy9+MW4O7ujujoaOF+VBQzlUpphNw/Rd++lFRQKlG1cyeurFkDk8pKlAwbhpKXL3lfX19OLBYjKioKJiYmzMjICObm5kJUZSUz/eknmLfytk+ePBHatm3LJW7eDG+xGFxkJCUpfv/9lQkKlZ0+NjYWnESCyd99Bz1dXeDSJVTv3y/qMGkSqZbTp7c4y70RPDwoWWJuTvb5JmCMwdjYGMYNmrIJggBdXV2kb9kCt5wc4eL77wsPw8OZjo4Ob2dnJ+rVqxcAcl/k5ubi9u3b/Mj+/Tkr1XW+YQOqP/sMYQoFhMJCbubMmdDU1FSVN2Ds2LEwre0LcGzwYCV34YLomVjMXNu3B8/zogUrVgB//smkbm50387IoGTI5s2UUFUoyIFRVET7FR7eyFXy9PFj6JaUwMbammHECLoP6etTwujCBerDkJND6zYnh0j7uXOvVH81NDRQUVFBv4SGEmGuqcHt27dx5MgR2Nra8r179+YqKytRXV1dN8N8x44dAAA9PT2qadHUJGfDxYtUWz98OH0vXLhA97awMLKGz51L5zgoCKLUVBiuWIGVaWkQR0bCXKGAaY8epIzv3k2kHKDmbTt2NHZ3dOlCvQFUjT9bSFgeP35ccePGDbGBgQE++eQTSKVSSKXSuhuttbU1PvvsM4jFYjwYNUq4du8ey/rtN9jY2LAhQ4ZwNjY2KCoqwq5du1BWVobS0lJBLpfzPj4+okBVHfqHH0IwNWVGn32G/EOHYDZ7NiX45s59dQnXv4D4+HheEIQTAKwB3Pnuu+8+/Prrr9W2cjX+q6Em22qoocZbY9myZWMkEsmOyZMna6nqRv/HUCqpE/TatZQlnzKFalqLikg5UgXgRkYtvjw1NVVpbm4uKi4uRkBAALy9veuJdlUV2SC7daP3LywkYrl4Mam+xcUU2Hh4ELGPiwP69YNWWhomCgLbnJvLsk+cgO3IkdQ8LCiIgp2FC6kLc4PGShzH4cCBA0LWkCFs2sSJpNbUdmo2NDTEuHHjUFRUhNOnT7O+ffvi7NmznGZVFSbq6gIiEeatX4+L77yDGz4+ONexI8Z5eUHXxwc4dQoWI0ZQEgI073vJZ58B168zrF+PsR06cE9mzYKJiQl+++03wd3dnQPI5mxmZoZjz54p3P74g3Nyd+dOpKYKT548YQBw/fp1Lv3gQYTcvg22YQNZmF1dyZJrb08ElDEKJtu0IcX7xg3a2YwMKHR14X/pEiVD5s0DwsOR5u8vXHv8mJmYmEAkEkEsFnOdu3ShRAlA6m9VFQWlrWHcOCL7+/b9s/WUn09k8vlzzA0Lw7H583n07s2hTRs6H9eukfX0r7/I7vn119Q0zcSEXAuffkrJnvJyvKrLeGFhIQRBALt5kxqE7dnT7DkWFhaQy+X1M9hTU0lV//nneoXKyoqSQMOHE+ny9KSAe9o0ItoLFpDd9bff6No4fZqs0gMGQENDA5tmz8bEiRPhIBbTWn4TSCREcDQ0yIqrasZ08OArlbMWYWQEn2PHcN7DAyNGjGhdFWsFBmVlvPGNGyKcOfN2n9sCqjQ0EOXjI6SXlbEPT5yAlkyGXoIAjBnDqWYKB5AKxwBAqVSyszo6wtU//0SwSMQkqnVaC7lcDoVCwa5cuYIhhw/jpa0tZL/8Qsk6lX24CV68eIHLly/j2rVrAMj1Mn369PonBAbCVanEHokEdnl5vLObG2fr6wvxli2vXG84cIASQnJ5o07nrYExhnfc3dk7168DW7Ywb39/lpWVhaKiIlFqaqpy7dq1olrnES/T1hassrNFZh4eOLl/Pz8oJ4dT9u6N+NhYwXDIEEyePJnp6emB53lIpVIolcr68WWCAL9ff+WerViB4Pfeq08stW1Liu3331Ni4tEjuqaXLyeClpNDNulFi2hte3nR/fiLL4AZM2D322/osHcvDnTowH/QsSPHVOMZR46sf/8vvyR30erVdN+wtye1WalsVvcfGRmprKmpEaWnp/NmZmacs7MzpAEBwMqVOJKdDdU9648//hBEIhHv5eXFmZubs7S0NACURHJwcGicFZFI6N/ff9P+REZSj4t162h7zp6lxMKHHwK//gpJSQmWeHvjert2fPHFi5zpvn10z+3cma79QYPIVdBSd/kPP6R9NzamxFIDZGdnIyUlRTxt2jRYWVm1mrnR1tYGBAEu3bpxLlOnQmjTBoyxukygubk5pkyZgi1btsDY2BhOTk6i5ORkRWBgYB1nGDRwIJ4vWoQ/1q3DyIULcX/WLL7dpElc5Q8/vPW1/zbgOA6MsS4SiaRfu3bt8ODBgyEA1GRbjf9q/LOuwGqoocb/t1ixYsUCLS2t7VOmTPn3iHZwMNnuZs8mO97GjRRQPHlCwUdrSldNDZGh0lK8m5LClTx9ig5Xr0Jr9mzI5XLAzg6Zs2YJ577/Xolhw2hu7pYt9FoDA7IN37tHxC85mf7/6BEpiXl5QFQUdE6fRveOHVEVHi7g/n3qgnzkCJHerCxSFysr6zYpMTER2dnZ7MPZs2Hy559kiWzQSdfR0RGdO3cGz/Pw8vJCQEAAJsyejbaJiYBIBP2XL2Ho54fAwEDMCA3ldG/coPrJ9u1J1VLh8GEia8eOAfb2EI0cCVtbW4SHhwvl5eWspKQEa9asUW7duhV//fWXkKqpKU51cuIehIVBLAisTZs2/KJFi/DuO+9Ai+dR9egRKufNw+4jR/DwzBk65hxHbgJ/fyLhCQmNa3udnCBwHP748ENSZWQy4MULiBQKTN61C1MvX8bk0aMxvm9fDGpIYE6dosD6xx8pKK6ubn5uP/2Ukhlvg8JCClKrqiiAX7EC8PAAHx2NexIJl+zkRLWhKsTFkaI8bBgR3cePSakCKKlSU0MOiqKiVj9SX18fEokEIlNTIq1NUFBQgKysLNTU1BDRzs+nRm3l5c0dFd7elOz5+29agz4+pI4BVFf53nv0f7mciLi7O56NG4f79+8DwFtZ7AGQiyQrq/53xijA/ydjfAwNIZw9C8bzcPwHynSftDSu+vp1hIaGIkc1Y/wfIC8vD2vWrMHt27eFHuPHQ+vGDXIB3LtH51k12qsBRCIRunXrxlzT03Ft5UocbPKco0ePKl1cXPgl7u64P26c8MzQUMA337RKtBMTE/Hzzz/j2rVrcHFxEb755pvGRLsWPXr0wITvvsMza2t2dOhQPLGyonM/fDglg1qCaoybmxuNv3odSkvJpn3wYF0/AXt7e3Tq1AmTJ08WzZs3D7Nnz8a8s2e5aadPi0b88AMenDqF5Lt3OejoYF/v3kqRm5swZ9KkupITjuOwePFimJiYCDt37oRCoQAyM6FTWcnOZWQIsbGx9Z8fEEBraulSsnoDRKx//ZXW8ciRlEA4cIDWeqdOpArL5YBUCpNffkHMwYN49OQJ92jKlGY9EbKvXkUOgON6eoLSy4uuGaWS7rv9+tG16+RExwFASUkJ3NzcwBgTTp06xa9ZswYX168X4pydYWRkhIKCAgQHB3OLFy9mCxcuFA0dOpQBQHl5OQAgIiJCeOX6tLAgS/jx43SOfH2pAdyiRVS64uIC9O4NtmIFbAoKOL2kJFQPGUJJriFDKAnXGtEG6NpcuZKcSg3uS/Hx8fzevXsRFBSEN5p5XVxM34VEtJv92czMDIsXL0ZISAgzo7Kfxk+SStHm/n3YOTgIV+bOxaX8fK7ozh3ELlvWuHP8v4xu3bpxY8eOtfroo49kfn5+4HneMzQ0VM1l1PivhlrZVkMNNd4IoaGhtmKx+AtNTc2J06ZN0zZo2gzobVFZSepwSAgFZCtXUpB05069dS45mX46O5Pte9kyUkN//pn+5uhIQcqSJXCOjWXdQ0Px6NEjPG/TBg+uXVMmjhsnuqtUMpGOjqhPWhqRq2fPyA6toUH1umlppGTu3Fm/bSpiSF/myPzzT6F0/nyh3YwZFHAMH061zT/8QNswahTViOro4NatW4KjoyOMjIwYPvmE6vGagDEGkUiEmpoa9OzZs/4PWlpgYWEIGDqUrIKVlUTA4uKoAy1Z1AkJCaSmhIVR3Wj79qiurkZ+fj7z8fFRVlRUoH///iKFQoHo6GheV1cX5b16ieTbtws6BQWCNDgY0j174PP11zBZtEj4ycaGaWpo4IPFixE5bhxvbG/PyQoLybL5+DFtw4QJzfaF5xtMYHFxAXbuRNW5c0gYNw6D/f1JCR8zpj7JAVBixdGRyE9YGAXWDx40rvmTyWg9vAnmzSO7u7MzqUrTp9P6qCWf2p06oUd5uXDmzBnB09OTArOiIlKS9uwhB4W7O1nJtbVJVWaMHAyjRlFgqqFRZ5FUdTgGgMjISEFbWxtwcmJ1434aQBWkW1pakmU2M5PWfXBw4ydWVxN5srWlRJCDQ33zJ6CZigVQl/Nt27ZBEAQMHDiQt7GxeW3QWVlZif3790NDQwPv3LuHtgMGoC5FoKdHyZsbN+rr9t+QeEdcvozMGTMwcfDglpsrvQp37sBs9WpmpKWFmxERQnh4OKZNm8ZM3rAjvApKpRKnTp1S2tjYsAkTJtQfixUrqPb11i0isefOkQraoMmcnp4eNM+fZwe+/x6S+/frXAg8z6OgoIB719qaYcIE9HN0ZOe9vASnESPQlKIUFxcjKSlJiImJYRzHYezYsXB2dn5lcwKZTIYpU6awffv24ZJSqbQbMECE588p0TN4MBHG2bMbW4Z1dalEwMODyiJe5UKYM4fWtqr5XkMUFUHX1ZWSLitXAtbWJduD8AAAIABJREFUYGIxHHv0QM3ly6iurka2trYoePp0MA8P+kxfXwBEuEeOHMk2btyIlJQUdMrLg+6lSxhSXs6OHDkCPz+/5utApdhnZ9M1P2AAkeDMTNqHX34h55JMRo6TWiQlJwt9+/ZlNrWuhIY4GBEBCxcX3L9xg9V4ePAjTpzgkJZGtm3G6P3HjkW1hgZyAgIEC5mMs/v11zp1Oj09HaeOHeNHLVokip86lXd1dWX6+vrNzpmfnx/8/Pxw5MgRdvDgQeHjjz9uxj8bQTV3PjWVElp791Ly8ulTSgrOmAFTe3uUAsKOjh1Zl+xsvuP9+xzX8D7ZGtzcKGn47bcoW74cO8PDhbKyMjZy5MhGs9tfiRs3Xjs+TDXlwd7eHn///bfo0KFD6Nq1KyyolAkAMLiqipU/eoTsrl35mKAgbrStLRjP/7OE3RtANXsbqJsEYVRVVeUG4NZ/5APVUONfgJpsq6GGGs0QGhqqD6C3RCLpIxaLfRUKhbNEItHw9vZmgYGB0rfuKN4QCgXV/f7wAxGjoqL6ESfXr1MQNm4cBZGff042102b6HGFgqzgKuvigwd1hEqRnIzoNWv4AQsWcFevXlUUZWSIKjU0oKOjA2trayW2bhVh5cp6NRUg8mhqSpbpL76gvzVRFO7cuYPs7Gx89NFH9cG7hwftQ1JS/fifqVOBAwfQu3dvtmvXLly+fBmdO3eGprk5WQRTUxvVdopEIsTExDRWfAEi/RxHSquZGR2TmhqyBn/yCQVq33xDwaQgkOJdS4JfvHgBqVQqDBw4sC7Syc/Px8uXL7mAgACWnJzM3x08GLYnTnCTCgvpdY8ewfbXX9nk8+dxITJSWT54MFfo5IT7/frBuawMunfu1B/7hw+pqVYD8DwPxhgUCgWys7ORmJiofPTokcjc3r5eiU9Pp5/ffUek3dub6l2XLCELfnw8WaP37SNli+OodvzlS1oXjT+Qztfly/QeN2/SemjbltTsVtS+bt26satXr7KLFy8iUEODlK+UlPrxR76+1DVaqSSCHR5O5Przz4msXboEHDuGjOxs7N27F7q6uvz06dO5vLw8Nm7cOFKsT54kktoAdrXHq6CggN4nJaVxLbUKw4fT+dy0iY5FmzZU375iBW3jF180G1MUFhYGQRAwc+ZMmJqavpJoJyQk4NSpU40e0yopwbOYGNTk56O0tBSjR4+Gs7MzKe5Dh75RwFxZWYmYmBikpKRg6o0bsNbXr3cHvAkUCjruc+dCMm0aJkyYwMLDw/mDBw8KM2fOfGPF6tGjR6qaWlFIw3nNKgQF0fn56y/qtdC3LzksGtTCl5aWYu7ataj+8cc6BnL9+nXoVVXB0sIC+PFHyHJycI8xrF27FmVlZejZsyfv7+/PnT59Gjdu3IBIJGKDBg1Cp06dXj+CqxZlZWV48OABFAqFCFIp3UsEgWroExLIfZGRQcRZ1Yk/MJDU4KVLKSHTgqsCYWG0lvv1a/z4unVkbT5xguzdtraN+ieo6pnXrVvHM8Y4fTs7ujdqahJ5rU1SGBsbw8PDQzh99CizPXQIbY4ehZubG27evKncsGEDN2/ePNaoYaYg0GeuW0f78tlnlOC5fJmcMV9+2WIfB6VSyVxdXZspsMXFxbDMyUG3ykqYdOuGy5cvc4/s7THi7l3oR0ZCr39/CDo6uBYcjNi1a9HZ3p7vNmaMSFOppHtQYiKcnZ0x79NPRbh6FfPHj+de15gvODgYq1atYunp6WjXWjM2pZLuB9XV9LO4mKzt77xD52nNGuDlS7BNm6DXtSsb99dfuJ2ezsUGB6PHKz+dwPM8yocPh+zYMTw/dgzl5eVYuHAhe2tny8SJb/Q0ExMT9OzZU5GSksLt3LmTmzVrFm7evAkDAwNck8mU8qFDRYMkEub6ww/Q+PhjSjw3HHH4HwJjDObm5nx6eroX1GRbjf9iqMm2GmqoAQAIDQ0VAxikqan5kUgk6mVpaVnVrl07PTMzM5iYmEBPT+/1HaTfBPPnk018xgyqQ5XLiYT27k3E19ubFCjGqC5VhZMn6/+vUmkaBBcRERGCgYEBPDw80LFjR7FK9XuZkYEBhYVEtPv0aTzixdiYiH1ODjW5KS4mYtvAHlpdXY2amhpWVdVkykinTvRzwwayQk6aBMycCauNGxEcHIzo6GhlTEyMaMyoUXDs2ZPeu4FSN3nyZOzcuROurq6Na9xu3qSfqoRAWBht8+bNZC1OSSH1MTS0XjWpDbTv3LkjyGQyHkAdS1J18o6JiYGLi4swaNAgEXfzJsRhYWS3XroUWLoUloxhQkmJCE+fYk7nziwzPBwbDx2CePVqnud5jLtyhbN6+JASDA0gCAIEQcDmzZuF0tJSODg4cEFBQfD09Kx/kirg/u47+llcTKqyUllPKK5cISI+fjyNZtu7t151qawklbd/fzo3EyaQ2rd6NQXrq1bhdeA4Du7u7kg9e5YPnDuXw44djecMKxREKORyUkH9/GgbPD1pnWpqQvH0KY4dOcK3a9dOUCqVbN26dQAAJycnel1LHdkBjBgxAue2b0cBAJOGypUgUOB97x7Zam1sqJY1N5d+Hz+e1uyFC7Qdy5aRK6CW7GhpaaGsrKxOgQKApKQkREdH8z179uRqamrg5uaGiIgIZGRk1D2nU6dOcHJygmluLv4UBBTV2lH/+OMPANSxWd/TE6Yffgjv48dxeccO2NnZwdraGqdPn8a9e/fQtm1bQaFQsNzc3Lr3Nf/mG1pTb4PKSlI0a10NIpEIQ4cO5TZs2IAjR45gWMNZxE0gCALkcjlkMhnOnz8vmJmZoV+/fsyslXnn0Namsgg3N1L27OyoXOGbbwDGwBjD+f79MVI1VxrAkydPMHLvXogPHAAmT4boiy8wp6yMbdy4UeB5nkVFRdU1ZtTT0+MXLFjwVpbWy5cv4++//wYABDZ0RjBGtuIhQ2h9xMSQArxkCZU4dOhARFqhoHUkCI1VyqNH6V4xYwbdXwWBlORvviErtqEhPX/KlBa3y8PDQ+B5nktPTxeqqqqY5pgx9cmk2Ng6lXrEiBEs3doaV69fx/U9e2Bubi64uLhwcrkc27ZtE/T09DB5/HiGzz+nDuK//kqJwh496PMjI+m6PnWK+mnMn9/ovr5lyxZBqVSyygalOkqlEmVlZdi5cyccKipg5ukJy169oFQqkZ2djZNKJd9vzhwubvhwXu7lhezsbK5Pnz7wmj9fJJVKqVSoXz9K6o0YQc6bP/9sXFLRFJWVQHExxNXV8JHLlclLlogsRo+G7Plz4P59WvdiMd2Ptm+n+9SYMXSv43lKkvToQTPTASLeRkbAqFHQDQpCycKF/NWLF7mOnp4waqEviVwuR2FhIZ49eybExcUxpVIJbV9fYeznnzPnr7/mxWLx20nJt24BLTgFWkPXrl3FXbt2RWhoKNatWwfGGCQSCby9vdmQIUNg3rkzg5kZNUm7ceP1jot/CVZWVroPHjzwAtC8WYYaavyXgP0nayvUUEON/zcQGhoqkUqlZ/X19X38/Pxk7u7uaGmE1/8YCgUFgTExpGI0nbda9zQFOI5DXFwcfH19IW2tfq0Wly5dQmxsLCZPnozHjx/j9u3bgoeHB+vQoQNOzJwpDExIYDINDSJzr9ovnqdtWr6cVNNa/Pzzz0Lfvn1Zhw4dmr8mKYkCKGNjIuxOTnVEOTY2FpcvX4Znx458/8uXOW7BgkYE79SpU8qMjAw2a9Ysrk6VmDGDFOExY+j39u3JNl9SQuRvzRpSHq9fp2A7KYkUYAsLRHzyiWBkZcWCZs0i1ejrr4Fr16DcsQNFW7eijWr01P799B4cRwG8nR3VUC9aREpu376Alxeqq6vx9OlTXLlyBcV5ecrZH38satp5OT8/H5s2bYKWlpYwd+5c9tbrpqyMyHbHjtRt19MT6NWLFF59fdrfuDgK0lNSgIICaib2hqqhCo8ePcKBDRsQsn07dA8daly7TU+gxItKGc/LoxrpSZPI9i2T4UWPHsh4+RIu0dHQ0tJCeno6MjMzlf379xex58/p+dHRjd5WEAT89sknGLxvH3Sjo6GjqnnPzaVAPCyMSilUtaiXLtE6rO22X4fSUlK3BYHOz7vvYtmaNRAEAZ999hm0tbVbVK8bYtasWTAyMoJIpVgPHw78+CMER0fU1NTg+++/b/R8cXU1HDIzcd/FBWKeh6KB0t2+fXvh3r17DKDEkZ2dHa3Dr7+mEUxvgowM2s+7d5vN1I6PjxciIyMZAMycOZNs3k3WVlJSEo7WOh80NDSEWbNmNR5l9ypUVRHJ37aNSOjChXihq4uNP/6I90UiROjr8zzPc8KzZxhtYACb589pLTZYd9XV1bhy5QpiY2PRt29f+LcwY/1VqKysxOrVqxEUFIR27dqh1SSBCqWllBAqK6NrRU+PiOrgwaScbthAz0tIILt8v3703J9+IqfGggWkmjeZKf0qrFq1Cp06dUKfPn1oXf74IyUsTEzqnQ+jRiHJ3x+3zMz4qqoq5Ofns+rqatZWLofP5cvwnDwZYo6j7WmqBg8eTOUny5cTCbexoWRC7X0mNDQUAPDll1+ivLwc27dvJ2W3tjzD69YteIwcCYexYxu9beaePUjfswdPvLx4p/79uZSUFGVxcbFo/vz5aLRGli2jsqG7d0np3b6dnAK6ukSYr18n51X37pSgMDGBcPUqoioq4Dd9OvTE4vrpCjIZEWhd3ZbvT8uW0XO6dyfH1jffUALj/n0IFRX4fvt2DB8+HK5NJiDwPI/ly5dDJpMpZTIZunXrJnJzc8Pdu3ehf+UKLI8fb+4Aeh2+/JLuV6qk8RsiNTUVx44dw+TJk2FpaVmfgOd52ufHjylpYmlJTqz/MCIjIxXXrl2LFQRh7tKlS9P+4x+ohhr/AGqyrYYaaiA0NHR827Ztt0yfPl1H9B+qtQJAKpKREX0pu7hQsN8EeXl52LFjh1BdXc0EQYCTk5Mwfvz4ViV1nuexdu1avlu3blyXLl2wbNkyeHl54fGVKxh09qxwdOJE5iCTKQcnJ4vwyy+v38YXLyjQ++wzCqLWrsWqVasgFot5b29vrnv37s0bUd24QXbMqVOB27cpCJ4xAwApEtu2bRM+PnyYyWbNaqQkVVVVYe/evXxhYSEWLlxI0dk335BVvn9/IlYBAaRku7mRJbFTJwqm9fRIKdbTIzWhrAzpLi4oMjDA/WnT+Pd//53LWLIE5Q8ewPDSJfzdvTumpqVB9PAh1SkvW0aKvqkpfcbcuWRvblA3XVNTg1OnTvFpaWncuHHjYFdTQ9v28CGgrY0XL15gx44dSsYYN3LkSGbZSsOoN4IgEFFTKoHERGoUBVDgNnfuK2sL3wT3r17F4YgIOD1/zg/bvJlrdg6zssjO2rAuXamkjvVVVcC8ebiRmQn5H38IfUNDWVM7PYqLiTDfvdvo4buJibi5ejW0Kiow7MgRevDZM0oozJlDCn1DrF9PqlcrVmw+LQ3c0aNAeTlO3r8vJLq6Ms/OnVFeXq5MT08XAYCDg4MglUoFjuO427dvw8bGRujXrx8zNzdv7E7p04fGn9UqUPn5+TA2NoZcLq8bI1VRUYHK2bPBnz2Lw0uXYtiwYdDQ0IC+vj4qKiqgpaVV/36CQKQvOrpZuUGLuHOHnjtzZot/fvz4MbZv3173u6enJ/z8/GBmZgZBELB+/XrBw8ODOTs7Q09Pr0VF8LUoLSUXw7Nn4FNT8depU/zQefO4HxcuhENpKcZu2QLRiBFk5f4XERkZiYSEBMhkMsyZMweSt5xvjn37iPiGh1OzRC8vIo3FxZQccnKiUgBLS1LDDx586wSVIAhYvnw5fH19MWDAgPo/fPQRXRM7d1KCxdWVCKqqj0d4OCp+/RWn33kHullZQp/du9kbqZzV1ZSo9PWlJJdUitOnT+P+/ftCQEAAzpw5wwwNDXkXFxfOysoKenp6KJs5E9fbtBFsp01jVlZWuHHjBh4/fqyUy+Wi9nfuwO3OHcQOH46OvXohNjYW77//fuMGfoJA17mzM93Xhg+n4+joSM3OJBLaryZz1MPCwgRzc3M2YcIEvNF3ZmUlkXCplBwwBQXUWXz6dLoPe3ri0KhRgu7w4axvk/4MSqUSK1euxIIFC5qP0+N5YNcuWsetzIhvBp6npOa1a9QL5C1x9uxZJCQkYM6cOXVj0QDQ99SkSVQ2NGQIOSDedl2/JZ48eYLff/8dYrG4ijG2u6amJmzp0qWZ/9EPVUONt4TaRq6GGmoAgJauri77jxJtQSAVddIksnOGhFAwWBsA8jyPI0eOCHfu3GH+/v58YGCgqKSkBL/99htLTU2FRwtqzKNHjxAeHg5jY2N4eXkBALS1tflnz56xwG7dmFZ0NHzkcqWbkdGbEW2gXmEbPJiswc+e4WMDA9zy9uYSEhL469evs5CQkMYKWqdORHzDw+uahMHHBwoPD9y8eROCILBH27fDzciIgqxadVtDQwOjR4/m1qxZg7KyMgqkli+vf98XL6gus00bUrfnzKHjNns2qb4hIaTUT50KADg6fbrg4eHBMq9e5cIGD4Y4NVVo06YN/EpL2cDvvkPqiRPwCg4GTp8GP2gQ2I4dYLt2EekRBKqFboA7d+7g3r17CAkJqScyYWHIzMnB2XPnlIWFhSJHR0eMHDmSvTVZOHeOFOqYGFJA+vQhtdfAgIjv/Pl0LiIiaB9HjGhs+34bKJVo99FHGN2pE3bb2XHBCkXzhElGBtl1G0IkIqv68ePA4sXIs7TE8+7deQwYIMLMmY2DWz09Uj4b2nkFAUYrVqBNWRniunXDo5Ur+fHXr3NntLTQ8bvv4K4aX9QQf/1F6l4Dss3zPORyOWpqarD98GFYWlpCnJHBtykv5ybv2oXYrCxk2duLho4YAUdHR0ilUqahocEAUk81NTWbZypqaohMNGhipZqXrPoJ0Jgg7Y0bEb1nD/QFQWkqlYpQG2BrNQ3UGaNyAFVd8avw++90P1i5stWnWFtbw9bWVsjOzmaMMeTm5vLbtm2rY4y6urpCnz59/mdZGF1dKsfYswdcQABG+/tzx7Zvh+zJE4zv2pUcDg1G+/1TVFZWYu3atUJNTQ1TNRV8//33W6/7fR1GjSL3S3Iy9TyoqCBl1saG+h0cOULXdb9+RMbfEvn5+Th37hwvlUpZs2P8zTfkjikvJ1fPqVNEWFeupASlQgGtr75CoJ8ftv72G3MpKoJ1a2R77VpqUrltGxHRTZuIzPM88MEH6NevH1JTU4UTJ05wXbp0Qf/+/RtlDAzefRdPZDIhMTFROH/+PGdra6u0tbVFx44dcR7AcBcXdPTyQnRlJc8Y4xoR7cePSd39+GNKBOfmkrPn/PnmzpcmsLe3Z5mZmYiNjeV79uz56ixGWhqVB127Rtfd+PHU1LE2IatS0B/s3MkmffEF9SJp0HcgJycHEolEkMlkzdc6x1EJ1pIlZA13d3/lpgCgKR/e3v+IaANA3759kZiYKFRUVLBGZHvIEEpY6OjQvfDDD998DOE/wM2bN3Hs2DEAwMyZMzXi4+MnJSUlTQgLC4upqqo6AOD20qVL4/9jG6CGGm8I0bfffvu/vQ1qqKHG/zJiYmKySktLQ3ie19bX128eRP8b+P13Uly8vOrnNRcX11ka//jjD2Vubi774IMPmLu7OycSiaCjowMDAwMcP34cgiDA1ta20Vvu2rVL6e7ujjFjxnAqsvcsKYn1W7qUVU+dCpulS5l2eDgnvnsXmqNGvd32OjmRtfniRUi++QaWK1bA18ODFZWV8SdOnOCabY+xMZHBb78FVq2CcvVq7IuP5x8rFBgyZAhzcXMjknzwIDWEqoVUKoVcLuejo6N5e3t7Tuedd3A7IkI4VFbGe8XEcKKffybbpqMjKb+dO5NlkOOA0aPJehkQAEgkSE9P53me58rKyngfHx82acgQ1klLi5kFBEA4cQKRL1/iSUiIUPjoEfI3bGAF5eV4NGGCsnzuXE4rPR3szh1wVlZEggEkJycLFRUVXFVVFa5duyYcO3aMpYhESuOvvuKkrq5My8aG9e3bl3ttw7yKCiKu+/eTFTonh8h0WhoFn506UTLB0JBcAkeOUDdf1T5HRpKSZ2JCj7+Nyl1dDeHhQxS6uyPawkIoLCpinTp1ar7GU1JQKpfjSG6uajRQ/d/atwe6dcOLVavgY2rKac+fT9tRVlafAFDV2E6bVq/mPHkCnagoOOzbh/zoaLCCAqadnIzrPj4o09ODu7t7XROtwsJCXLt2DXazZ1M9bm0ygOd5JCYmYt++fXjw4AEqKirw8uVLFHIcy7GyQqaDAwIuX0ZfQYDdO+9Aw9YW4gaJj1abJpWXU3KhYTf81iCRoEomg9X8+czowgX2yuZH69dTgN2Ca6URtm4lt0bnzq98WlJSEkpKStiUKVPQs2dPZmVlBYVCgaqqKuHDDz/kXldi8kbgOLov9egB9tNPcMnNRdfNm4lIHj1KCQQnJ3KUZGZSQ7H164kkFRWRTbtnTyrFSEsjwjNhAq3r27dR+tFH2Pz8Od/j8GHOTC6HyNsb07ZtQ9tx48BOnSJiNX06uR0yMihh5+BAx3DtWiItc+fSdZmTQ0kSGxuqn16zhu6lf/5JJDg/n0jdqlXkzsnJIZfI/PlkXw4OpuSRasKDKkGiclR88QX4Bw+w4/BheCQkCL2HDuV0c3MpKebsTHXX2trUoM3Tk/pqJCTQffzyZSL8I0YA7dtDRyaDRCLhjx49ylRJhWbnSy6ne0PXrvQ7Y5To3LoVKCgA8/DAxbg4KJVKNnXq1GZ9Q8TvvQe7tWuZX/fuLDAwEB07duTatWvH2dra4urVq4LQrZvwf9h776iqru0LeO5zuZfeUaqgVFFBUUABC4ho7L0mxtiiMZaYaExe8gtBExNbjMaoJM/YW2wxKlERpAjYKAKK0ou0S+/t3nO+PxaXjjF5ed83xvuYYzBMbjn3nH323mfNteZaq9+lSyw7MJAZTJ9OBQDj44nQz51LhNPVlRwuvr5ULXz6dNpbX9FxIy8vD9nZ2cjKymLW1tZ4ZfqCjw/tfVevUvR3375OBcRkGhoIDg/H6JEjody7N6UNJSZCbmmJQ4cOwdLSUhg0aFDXG5+2Np3rzZt0D//Maf7yZWvXhb8BnucRGhrKRo8e3a5eBAByjDo7k6M4J4fmsaIy+z8MPT093GtO+yktLRVmzZql5O7uriSXyy1UVFQmVFRULL579+4OT0/PHglvD/4/RU9kuwc96AF8fX3L/Pz8vKKioj67d+/eZIlEwhkaGgru7u4a1tbW//kPVFWRzLptPumKFfTaggUAY8jPz2fTpk3r1O7HwcEBqqqquHjxItTU1ODcHPG7ceMG5HI55+3tzdpW/U2rqOCNra2558+eyV8+fix6YGsLmVyOLwTh7xV4mzSJ/oqLwfr1w9TISJGDgwPOnTuHvLw8ft68eVzL7zs6ElFctQqPdXWFyefPc2rx8VBRRPr27yfjUpHf1oxp06ZxZ8+e5Y8cOQLHd98VcioqIJfLuWsiET/rm284JCWRQVheThWqp04lYpeTQ0ZwRQVw9Sqs6+q4dI7Dxx9/TAefO5ci6UFB0PbywpQFC3Dr8WNBJymJs+d5FFpZIdrMjA1dv1445eYmaBYWcq5//MFbBQVx8g8/RGpqqlBRUaEogsUWL16MCxcuiCSNjShJTGQlSko4c+aMfN26dZ2tu8uX6b5PmUJV1T/5hMhdYiKde0gIGe8qKiRF9fMj8nrlCkWJ/f0pQuLuToQ7Pp5IXFgY5Va/jkwZABYuRHlBAQ6MHw8lJSXGGINUKu0kOeYzMhCYmio8FwR26NAhuZubm2jIkCG4e/cuL5VK2dChQ9mNqVPxiY4OEQ5ra5Li//xza2E0MzNyHgD0mU8+AR4+BDt3DuNPnRLOTp/Ors6aBQDIzMxEQEAAHBwcEBQUxOfm5nIAMGrKFHA5OSisqEBsbCzi4+OFuro6BlD1ZX19fZSUlMDIyEjw8PBgvXr1QumKFdDMz6d804AAcr54eb3aKSGVvl6f5mZYWVlhx9y5bNOHH0L54UO6/q5k215eXfdNb4tjx2hs/uQeCoKArKwsBgAmJibYvn075M3t4AwMDFBbW9tZVvt30NREpPn33yniuGULKRRkMpqzb71FpPXnn2mtjR5NBQsHDSKyFhBAcyElhUgMY0BFBUqlUvxx6ZJ8QHGxaPDgwRjQ1IRSiQTRpaV4amEhDNfTY3B2bo1wfvIJEWkDA0r16NOHSLaianRcHK0JFRWSJTNGsv3gYOpSYGhIeei3b9Pr6em019TXE7E2MaHzVlIiR8GSJXQNRUXkfFFVBTQ0EBMfz6soKXEu+vq0S0VF0W/4+BAhdXamOS8IFMn08SHHyY8/dhpaNzc37sGDB8Lhw4cZAMydOxcDBgxo/YC3d2fSxxit/7VrgepqSHhe4MVi1qm6u6IyetvoahssWbKEHT16lNls2QLtOXMwuKiInANVVZQ7rq4OfvlycO+8Q/MZoHF78YLGMy2NHH5dwNLSElFRUbC2tsbx48excuXKdooQADT2R4/SnpaeTqqu0FBKxfm//yMnCihd4vbt27y6ujrUV6/mwHE0177/HkJ0NDQaGqCkpPTqh9eYMaQW+ve/u03LaEFcHCk2/iaysrLA83z3tVROn6Zxy8mh1CRX1/9KK7Dy8nIA1FbRy8uLAVRg0cvLS9zY2CjesWOHDIAKgNp//Md70IO/gJ6c7R70oAft4OfnJwLQD4CHRCL52sbGRm/69Omqf1km3BbPnpGB2LbqNs9T+69x4wBnZ3z11Vd4//33odshN06B8PBwxMTE8OvWreM4jsM333yDxYsXw6w5CouGBsDcHLKAAKSqqyM9JQXj5s5F6v79uFJUhA0bNnQyzBsaGhAXFwdXV9fXI+JxcUSolyxB9YQJ+KW0VNDW1uaXLFnSYkkHowfUAAAgAElEQVTk5+ejIDwcpuvX4+WXXwpDz51juHq11SC8do2cDJGR7Q4tl8uxc+dOmD97hjcWL0Zpv354uXat4PXTTwx6emTwjh9PEaUFCzrn+s6ejQKJBDccHeXLy8tFMDKivO9hw4gEmJqSkezkRIZcYiKRrbffpkhabCxCExMRc/MmhoeEoF5FBUnDhwslamotzwkzMzMUFhbCwcEBBc+e8f0AoaRvX5EkPV2WX1YmkotEWHHgAOOCgqC8axcZq5WVlKfu7k4GWMcKuMXFFKGbNKm1cjJAxqihIRncCshk1CIoN5cK2S1b1n0eKs9TlFxdHf8ODORL6+u5KVOmtDf0Wz7KI3bqVKSbmmLy998jKChIHhMTIxozZgyioqJga2srT05OFjU2NmLdunXQe/6cCI1USuSM5ylvddcuOiddXXImDR9OBZC++w4yiQQ7Tp6ETCYDAIjFYjQ1NbX8CwBqSkp4+/x5FBw/jqvNao62UFFRwaJFi6CnpwfGWOc+xoJAlcujoylS9957rRHDjggLI3J0/nzX73eBXbt28fPnz+fMZ8+mdduhoFoLfvmFVCxdKWRKSigKGhn5p2S7uroae/bsaffa+vXrIZVKcfPmTaipqQkmJiZs4sSJr91mq+UcAgIoN9jXlyK/27ZRKsi335JaRFeXXjt3jhxoil7rfwHbt2+HlZUVP2vWLK7t/llbW4tdu3Zh2LBh8PT0hIaGBnJycmBqavrn16FIUzAxofGfPJlSHY4fJ+KrrExR4VOniNj9RQdjRUUFfvjhh5Zieq9EdDRJ1e3tacwOHUJXrbOqqqpQVlaGixcvCp6enmxo26Jcv/5Kzo02lcCrq6vx22+/8YX5+cLI69dFNRIJBh89Cn3FXq9AURE57V6hWjpw4IDQV0eHpSYkYP3+/SgbPhxhGzagpKREaGho4BtTU0XKDQ3QHzaMn798eevgf/EF3ff4+E7H5HkeO3bsENzd3TFq1Ch29uxZoaamBitWrGjvELhwgaT+Dx7QfTp9mhwT8fHkSGl+1u3evRtisRhLly5tFyHPzsqCYVYWlGbPxqEFC7Bm375Xz4+8PCL306e/Wk6+di3tTa/Z+qsjDh06JJdIJGx52/HqiKwsUnZMn04OuL/5W6/CiRMn+IyMDG7YsGHo378/2gYGKisr8cMPPzTK5fIVgiCc8vX17SE7Pfj/DD0y8h70oAft4OnpKXh6epZ6eno+CQ4OPlxRUTEkNTXVfNCgQeK/ldNdXExEavHi9rI8xsi7npwMuLggKipKcHBwYN1FqgwMDBAXF4ewsDAhOzsbUqmUTZ48mYyPhgYyMo2NwY0fD4NevZCfl4cLxsZIaiYyhoaGLdEwhUc+MzMTV65cgZ6e3p9XAgaI4DEGPHwIib09LCws2POwMAwdP54BQHR0NC5cuIBiQeD5xYt5t927OTZuHEVp5s+n7xoZ0TX7+LQjihzHYdiwYXA8fhwajY3QnD4dRmvXsjwvL+goyEt2NkVDRo7sbETPnw9+/HhknDzJDfzlFzCplCJwn3xCkbmRI4n0NisJkJpKPW8dHUn6rqGBvn37wtjaGkVOTkjPz8eE69cZzxga7ez4+vp6VllZCU11dQzo3x/9v/ySOQQEcIkTJ2LM1q3ccG1t5lRbyxqzspAqlQpGEyeS3HjnToq69OvXOQKVmEhS2a+/ptzJtvNLJKLoU9uK9RxHzgITEyLS/v5EmLqKbO3aRdf12Wd4kZnJ19fXY+rUqZ2Yx5EjR2Q3b97kdGpqBJeVK5mepSV0dXW5hIQEITMzk02bNg2enp6ch4cHbGxsoK+vD87CgmTHUinJ33/8EZgxg6JKQ4aQ8+Ctt2iMLS2BqVPB6eigqKhILpVKOQDo06cPL5PJ2KZNmzBs2DA4OTlBUlcnS6qq4h5XVkJLS6ul37EC6urqqK+vF3R0dJiBgUHna1ZEOkeMIGN+zx4iI4MGdZbESqUUmf4LUtInT57wWlpanKmvL81ff38izB1J//r15FTpqIoRBIoafvYZVWP+E0gkEowcORLh4eEAqOq5sbExDAwMMGDAAAQGBrK8vDw8ePBAGDRoUNeV8GUykjlra9MavHCBigKeOUPR2MpKchwoK5MKo64O2LSJ1sXQofReXR0RBh0dul5Hx9car4iICGHOnDmcZnOrNgXEYjGsrKwQEBCAqKgoPH/+HPfu3UNcXByvpKTUfaHBS5dIar5pE63nCRMo0n3pEkWrm2s3YNgwIlNvv017719ICzp//rxcS0sLbm5ur2bpVVV07G3baI7n5dFYFhbSHGyzPykK6qWlpQm5ubmCk5MTq6mpQV5eHjIFAQ1eXtCysUFtbS1Onjwp3Llzh+nr6/Pe48aJes2bh74ZGdCJjqaIcFun76NHJM2eOrXLU6yvq8OjCxfYgr17kaepicdublAvKxOq+vXjTe3smLGxMfP87Tc4mZiwGw0NbOTIka1k1tOT9qaUFHL6NV9PfX09Tp8+zXMcx2bNmsVEIhEsLS1ZSEgI0tPTBbFYzGQyGWovXULj8OFQ7dePUmfEYko34DhydBkZAVpaSEtLQ3R0dEvFfQXu3LmD369dw/2XL5HYpw8q9PTguG4dmoyMoNyFwxAARfkLCih6P2pUlz3LAZDqZvHiv9Wa6+DBg/KamhrR8uXLX12nQ0eHlD4zZpBqxMzs1Z1A/gZsbW2Znp4eXrx4IURGRrL09HSZk5MTB9Ccs7a2FqWnp48XBMEnKCjokqen559IbnrQg/8Oesh2D3rQg27h6enZFBwc/GtDQ4NdbGysjampqVi7G8letyguphxtb+/O75mbA3v2IFRVFbklJczb27tbz71EIoGLiwvr1asXy87O5nv37i04OjrSh42NKY9y0SKAMZQePAijlSvxwNMTEokEDQ0NsLKywsWLF4WwsDD24MEDIT4+XoiJiWEikQjPnz+HkpKSvE+fPlxNTQ1EItGrIwjjxgE2NuB27oT5xYtMed06lJeW4tz585g5cyYmTZrE+tnacszHh/Lz3nqLok9TpxIx8fCgNlvjx7cj3GKxGKI33wTGjoWIMVyzsRGeZ2TA6ZdfGNauJUN74MDWPuMdoLx0KSRJSYj74ANYKXo3GxqSTNbJib6nMIJzciii9+23dD3NpFZHRwf9LC0xaMIEZPfqBVOZDKMfPWL1OTkoMDXFxq+/RnxeHjLMzWH08iUkWVlCpZ4e1CwtWb6hofBg3jz21NCQH75qFQdz83ZGt6Jlj4TjKMK/eTNFfjsYj7W1tajy90d1WRnUhg/vrDrQ06OIrZkZOR8aG4nkKsYyNJTaOS1ejJjUVCEqKoqTy+VsdId2Wk+fPsX9+/e5mTNnwu3ECaa5bBmgrY3S0lI8fvyYCYKAyZMnQyKRgDEGLS2t1nmhyE00M6PoXlkZKQQqK4nQPX1K0cY2jpH09HSB53luzpw58PT0ZO7u7uA4DsrKylBXV0ffjAxu4K1b4N96i3/27FnLRS9ZsgR6enooKyvj09LSuNjYWDg4OHSObCvAcaRkmD2biKKvL42RqmprjnlMDK1NF5euj9EFsrOzucrKSvmAgQNpEN59lxwfHaNojo50Tzue308/UcuhDz547Ygrx3EIDQ0FANja2qJXm+KCI0aMwMCBA5GYmMgiIiJQUlIi2JmYMFZXR8qI1FSaZ4cOkeOpVy+Kgg4ZQvN/xAi6R3PnkrOnqIiKHC5fTk6K8HAaw8mTyfkTGEhredUqksK/Ilonk8lw79495uLi0mUNDG1tbZiamsLQ0FCQyWT8pEmTOC0tLdy+fZuZmpq2jyq7ulLUetkyug5zc5p3hYVE/r/9lop8tSUzvXoRIT54kHKoX3O8MzIyhJycHM7a2rpbxycAaolVUEDjwXE0z/v2pbZd9++T46LDb+rq6rLQ0FAWFhaGyMhIJCQkoLSwkNc4fpwdz83F/fv30dDQwJSUlITVq1dzenp60NDSgrK3N62nX3+l54iCRD5/Tuutq2JmAQFQmj4d0cOHy/VWruTcPvkEw6ZPh5GFBbM7cYKzWLGCmdvaMo3cXCZbswZR0dF49uwZ/+zZM5aYmIjEp0+RWVQEy1WrwGpqwEaNQmNjI3bu3Imqqiq2fPlyplh/EokEw4cPZy9evEB8fDwfFxMD7w0bWO716+DLyyF+/32IDh9udRTMnk11IAYMQF1dHWJiYmBhYQGFA43neZw6dQqjRo3C2LFjYTJkCBydnJCdkMBH5eSwxidPYKqs3FJbox0GDiQnqrp6lyoDNDWRWmPu3O7JeDf47bffhPT0dG7VqlWvzlFXwNGRUqd++onmyF9sjfdnEIvFMDY2hpWVFXvw4AFqamq4tnu8pqYmnJ2dJSUlJUZlZWWTg4ODT3t6ejb9oyfRgx68Bnpk5D3oQQ9eC1u3bl2gpKR0wNTUVMXHx0fdxMTkz7+UnU1GbERE9y1A/Pxw59Ejod++fcyqm/y4bvHyJRHt+HiK0CmIUHU1Xp4/jxRLS7x48UJeXFwsUlZW5k1MTISFCxeKUlJSUFFRASMjIygrK8Pf3x/jxo2Ta2hoiK5cuQI1NTWoqKhAVVVVWL58OetOYi4IAs6dPi3H3bvc5IsXWfDBg/IZb77ZPvxfWUkGso0NGRsffkgRvkGDSOrZsc/phg1EYHR0ULxvn3Bk3jy2euNGaKupUb72lCmdT6S4GKitRemXX0Ly66/IffwYdhxHx87Lo+jyiRN0PyoqKMqXnEw5qv37tz9meTn9mZqSsRYZidSJEwWTtDRW8vnn6FNXh6LcXFRFRCDbxATuUVHY8fHH0NDXR2VlJQBAT09Pvm7dOlFERATkcjlGjx6N2tpa7N+/XxCVlbF5DQ2wKC4mwqKkhLq6OkRGRvK1tbXCmDFjRPv374f7o0dCvoYGG7F1a0urHplMhszMTPTt27c1Z7C0lCJG2dkUZcvJIafL/fuAiQlOnjyJ9PR0rF27FvodqmTv2bNHqK6uZm8uWABrFxegtBT5RUXIyMiAq6srRCLR66UXZGdTNDskhCLKv/5KhK6D7Pj27duCVCplb7VtL9YWL18CT58i3thYuHHjBvP09BRcXV3bdQlQtLoRi8XYtGnTn/agB0DKjwsXSEmgpUXFnx4+pFz5FSv+/PvNiImJQUREBL9u3bpWD5EgkPx/+3aKGAPk7Dh0iIz6tudQWEjz7y/0eQZae7kvWrSICly1RXExcOECCoyNke/nB9vkZMSeOIGR4eG097i7t+4L2dmUCpKeTlHR7dvJSQdQznJUFJEUNzfas774gqKAHbFiBa2f06fJqfPwYSfHwp07dxAfHy9s3Lix2/2jI/Ly8nD06FGsWbMGOjk5kI8ejYRbt+BUV0fzqaM6obyc9r0ffqA6CB0hCORU+fhjmpOvUSVeEAQEBwfzDx48YLNnz2Z2dnZdf3DdOqql0FER1NREa3DNGmD2bDQsXozH0dGorq4WYmNjmbOzMzw8PHDs2DFUVFQIH7//PmN9+6IuOxsyuRzq6urYvXs3+vbtK8ycOZO1zG+5nEhbZCTtGyIROUp0ddtf+7Fj5ATw9gZycnCkrEyurq7O5s+fz7Xch23bSHVx8SI5TsaPR25uLjIzM9HY2IimpibhxYsXrKamBuqVlahlDL05Tt5gaipSVlbm3377ba5blVdWFiAI4HfsQOn9+wh2deUn//Ybp56R0dn5BKCkpAQHDhzA5s2bW5xnL168wLlz5/Dee+91ygMvKChA9rx5MMrPF2K2bmXjfXyg1lHl0tBA8/7UKZL4t0VxMeX1/41A2+XLl5GQkAAAsLCw4BctWvTnBQoDAuh+XL9Oc/AvEvzXxeHDh3krKyvOx8en03s8z+PixYv1aWlpJz/99NN3/ysn0IMevAJ/reliD3rQg//f4osvvjjX1NRkmp2d/fGxY8dq0tPT//xLUVFEKl8hN/vd0pJ3jItjFh2Ly7wOvLyosJaTU6tBvWYNcOECzJYvh5eXF1avXi36/PPPsXnzZu7NN98UcRwHOzs7uLq6wtzcHOrq6gAAxpjoypUrsLCwQG1tLUQikZCbm8tOnTrFd+WUrKiogCAImDF7tmjwxo3sjwkTYNG/vwjLl5OxqYCWFlXSVlcnY3/fPjrXxESK/DQ0tD/wgAFEzB0coL9pE1u/bx+CN27k5fb2FBHvCp6ekL/7Lk706YPKGTNgt3gxSbArK1v7cScmUuTOzIzuS10dyZ4V/WUVbahmz6aIs1xOEbGQEPR1d2cNKirQ3rULqKmBwddfQ3bjBqxOnYJw+zZWvP8+KisrwRiDrq4ujIyMRAAQFRXF3717F5WVlfjxxx95i9paNiYiAsqCQLnXzYbXnTt35LGxsSwmJkZUV1cHuVwOoaEB6jo6giLCFxkZKd+7dy9Onz6Nb775Bnv37qX8Zz09Mp7ffBNyHx9UPHuGkl9/Ra4gQCqVQjFPu6oFMGrUKAYALxMTga1bUVlbi2PHjiEwMBA5OTmvR7QFga5DRYX+OzeXHEDDhxMxyMtrKUYkkUiYIj+7S9y7B+TlwdHRkX366adwc3Pr1I5PUaOgqakJFy5cEBRtpF4JZWWKQH74Ic2LTZvoHj94QIT7NWFra4vy8nJOUaQMAOWrp6RQHrQCvXsToW2LpUspn/QvEm25XI5zzaRdSyIhNYZUSkR66FAiN6GhMNLWhr6/Pw7961+o1dSkKt4jR9Jay8oiR8Ybb7QWQTt9upVoA6Q8uXChNcd9xAiSwHZcnwCtm7AwWs8ZGXR/V62iSHgznj59Kvfw8Hhtog0ACQkJwoIrV1A1bx6/PyhI+G3CBPx+8yZeWlt3Jtru7iTj//HHrok2QPvL0KF03fv2vda9ZozB29ubmzRpEi5evIh9+/bJz5w5g4CAAFRXV9OH4uLo2rtKZRCLSVb+ySeQP3qE85s24dGNG0JGRgYaGhrAGIOqqirc3d3R0NDAZMrKYCUlUFNXh5aWFkQiEZYtW4aamhph165d2LFjh3D48GE+LiGBlBRvvEGpMDxPygXFegoLo3sRFkbyaBcXYNYszJ49W5SWlsYlx8TQ2gwKojH55htyXhYVAaAiWx4eHvDy8sL48ePZlClTIBKJ+HXbt2PDjBlY9OOPosaMDEyaNKl7og1QxNjeHlyfPjA4dw4jVq7kLk+YgNBHj1oXzRtv0B4MdK7mDbREjZOSkuQdnz1GRkYYEBCAikuXmFZgoCC3tERjx2JnysqU3uLr2zo+CkRGkiLgb2DGjBl4++23sXTpUhQXF+P333/vdH6doEghy84mJ+h/CYwxpKWlwd/fn1e0A1OA4zh4eXmpNDU1LfPz8+spDN2D/9fRIyPvQQ968Nrw9PSUjxkz5lFwcPDDtLS0OW5ubuJujcmiItQ9eoTcFStQUloKHR2dduSlvr4e586dE56lp3MuHh7QLCkhCdzr4OlTMoLXrqW8xbbnoCD4r1lFXSKR4MWLF/yTJ0+YioqKsHbtWubp6QkXFxemr6+PyMhIFhoaivDwcISEhCAyMhJPnjzB3bt3ERYWhoiICDxLSkKJoSGc7O1hcPEiyRrLyymCzHEk6XRyoshMRESr/HjOHDIQx41rPSFnZ4pGPH8ONmoUioyM8LCsjGnV1Ai93n+//WD7+wNFRUiIjRWExERWaWkpH/7llxz69KExaB6XwsJCBIaFQb9PH6ivWUMRazs7ijiUlVEU6OxZOg87OzKM9u6lczYyAjd+PG57eeGWoSHc5XKw8nLo29tDu08fKPXtC/UZM6A2YgTmrl2Le/fuob6+HrW1tcjOzmZyuRyPHz/G4NJSYWhYGPJdXVnamDFCYGAgb2VlxampqSEiIkKwtbXlSkpK+KioKCaRSATLFy+Yy9SpTLdZenjp0iXWv39/pqmpicrKSjQ0NMDc3Bw8zyO/oAB1ysoQ7duHnORkZEdGIiohAbFSKWQyGSwsLGBra4szZ87IEhISBHt7e+7mzZuIiooCz/OYPmAAVCMiEGtsjOTkZADAmDFjcOfOHXlERIRgZmbGKZwy7RAVRXLl4mKau9u3U/7506dEap2cKMK7bBmwaRNU16xBqUjE240bx7qU9e7fT4So7XzogOPHj6O8vBxjxoxBYmIiq6yshK21Nd3rkBA6Fz09yjf18aHo36pV9GdvT5HAqVOJMMbHE/G4epUcFosXUyRKT6/LKJxEIkFUVJRgZ2fXKjHmOCLSEgk5v6ZNIzmxmxs5IVRVyQkRHU0R4Ve0U2oLQRDwPDgYwXfvYvCRIzDLy8NAsZjW0NChNLZLlxJ5nzMH6NcPYl1dhEdFYcmSJbTX5OUBT55AvnAh7kul+NXdnY80NBR09fTadz0oLydHx+eft143x1HE2Nq6+/xyc/PWYmpLllA6wdChqLt0CXfLyzlvb+/Xq5ZeXg7BwgKXtLVZibo6UiwtYe3mxrzXr0dNTQ3CwsIEqVTKNzU1cb169aJri46myOz333dfJBCgeeHuTpX+fX1pv3xF7mx+fj6KiooglUohFosxdOhQrqGhQZ6Tk8PCw8Ohp6fHetXWAh4eyBWJ8OTJE0gkEqipqaG+vh5PnjxBfHw8shjDqfJyDI2LE+Y9fMhcdu9myTk58qSkJM7Ozg6nT5+GkpISvLy8aK2MGdMSJVdXV4eTkxNzcnKCvb09CwsLYykpKRjj6Un7miCQ6mDSJFKSNDXRnFY4FlRVSdny229QKS2F89atUPnlF0hsbcHdv09EXVeX8vklEnIO+fmRg6x5nVdWVuLRo0fM09MTSqamUPL2xvCZM6GhrEzf6QoJCeQIkkhoXwCgvXQp8t5/HxFRUZyrqyvEYjEpIUaOBHr1gkQiQV5envz27dusf//+DADu37+PyspKJCcncwMHDkTHvUcikaB3797I0dVlwYwhLjWVd96yhcHDozVNxMKCzuWPP9q397t6lfaBP2m51/VUImeqtrY2Bg0axG7dusWUlZVhamr6ao8SY3QeWVm0L7xOfZS/CEtLS1ZaWsqnpqZyBQUFcHd3R1unyK1bt+qKi4tvCYJwxvNPeqj3oAf/NHrIdg960IO/jNDQ0EK5XP6Zu7t7917+L75A0h9/4Fx1NeLj4/Ho0SPBw8Oj5aG8Y8cO1NfXs6VLl8LIwICIwtixr5db+NZblDOoKPalwJ49FLHrTvrYDfLz81lhYSF69eoFQ0NDpogsGBoawtnZGSoqKnj58iU0NDSgpaWFoqIieHl5wdvbGzY2NkhPTxdmzpzJ+js4UFGi3r3JqH34kKqxAkQyhgwhAnLwIJ3j8uVkCInFrQbzmDFU8OjYMRTExwtBUikbVFQkyL7+un3hJEEgkpGQgCsLFgiWOTnMpW9fjps7t10ObU5ODo4dOyZUVVWxuoMHYXzkCJRnzaIIYXk5GeAff0zGqaoqFY4aPJiIvKcnRdqNjWFpaYnw6Gj0WbkSuklJZOx6eQF6emBxcTCbNg0iExMYUe43n5GRwQ8ePBgTvLxY38hIwTU9nUtfsgR36+pYSUkJq6mp4erq6tC/f3+EhISwIUOGsJkzZ7KRI0dizJgx7GlMjPxxZSUzdXBg6urqSEhIEHJyclhpaSksLS354uJi9uzZM0RHR6MyLEyeGh2N+DfekI87eZIz79ULLCyM137xguXr6aG4uhqZmZnIycnhJBIJCwwMZLm5uTA0NOSrq6tZQ0YGbwgw/enT8fDhQ6ipqfH37t1j+fn5XENDA5eamioMGjSotSBQUBA5ehwcqMK6opK6pydF7L/6ilIHvLzIkfHRR4BcjqqLFyFVU4NNVhbDnDlE0G7dIuO/Vy9SLowb114JUltLsmxLS+DYMZTfugXxiBH8tC1bmJa3N1984QKzWbIE3P/9H0l78/OJcJw7R+kB5uZ0P21sKFfawoLIV1gYcOQInaudHb02eDBdi4YGyarnzaNo1JMnREx0dBATEyM3MDDgjNoWrgNoXkdEtOaCrlpF6okhQ2ie+vm9ut+uIFBKwMGDQFkZZN9/D7GvLyKMjKBXVgbzlSuhu3w5jZmZGTmMOkRW5XI5wsPDMdDKCupbtwKbNyN5zhycVFJCo6Oj3H3UKJFUKmVpaWmCq6urouIVjdOaNUT62kIqpZSOP0mZiYyMxDkLCz5z5EiY+Pszze++Q9jIkZjEGJjCEdIVPvsM/IEDuKypKaRLpazYykqYtXkz85g+ndnY2EAsFqO5PzUrLy/nHj9+zOscOSIY/PILY4sWkWOjm/oN7cAYXVtiIo2xhUWXhDs9PR1Hjx7Fs2fPkJeXJxQXF3N1dXX8/PnzRc7Ozowxxu5euyYM/PprFu3kJL969y5XVVUl3Lt3j0VGRiI8PBwpKSkoKioSysrKBAcHBzb2yy8ZN3Ei5FevwvbuXS5eWxv34+IAAG+++SYpToqKqKBXhzxgZWVlFBUVISEhAWvXrqXcd8ZoT0pMpI4MJ07Q3qWmRvP47FlSFg0YQKRuyBBc1NdHgJMT3N57D0oTJ9L+GBREsubx42mNBQTQ8+eDD4C8POSZmCApKQljFG39TExIGbJvH6WMdMTvv9P6nziR2sBZWJBDRCrFS2dnlJeXCyNHjiSlw4QJtN6b54W5uTkXERHBHj16hEePHgk5OTnM3NxccHJygp2dXZfqiKamJpw6dQo1mpqokcmYu6kpREOG0L6upkYOM3t7SiEaMqS10GRaGtUA+DtKsg73pqmpiT158qR1LXUHxuhZbWVFz+e33361g+hvQFVVFZaWluzevXvw8vKCZdvOJwAaGhq47OzsPoyxRcHBwdc9PT0r/tET6EEPXoEeOUUPevA/DD8/v94AZonF4sFyubyI5/lwAOG+vr71/+Ghp/fp06dOLBZrdvluZSUS3dwQoqyMdevWIT4+HqGhoe0eyPb29nj58qWgp6fHYGREJC8pqVOxrHZQyBdv3uz8sC4ooNzdlSv/coueSZMmIT09XV5QUCA6cnLKheMAACAASURBVOQIHBwc5LNmzRIBgIaGBkaPHo22hVeSkpJgZ2fXUizL3t6+s7Hx4AEZ8nv2kCEXFERkRkmJSPj8+STn272bIqEXLtD3rl2jfMScHCjNmIGROjro27s3aylkJQhEyMeMAfbsgfydd9DbxITL27MHugMHoq25eisggI+JjuY2HjzIVA4exEWpVJBWVzOtYcMoiqmItr/7LrUDs7EhsjRgABmwixaRcZaYCImxMQRBQEZGBt9v3ToOU6bQtRkZkXGZkQHcugWrCRNgZWVFA5OXB5w7B+OaGoajR2HV1MT0z54VioqKGAAkJiYiMTERKioq6N+/PwBAqVla/kZJiShCTU04c+aM0NyajTU1NQlyuZyJm3vuvvfee9DX0wP69xdh9Wpg40b63alTUS6TCU0nTggzHj1iMUZGyGwmsObm5kJhYSEDgHfeeYerqalBypYtLDY7G2mXLsHQ0JBfvXo1FxkZicDAQJiZmQkFBQVCWloac6isBGJj6X4pJK0iEUWTv/2WomJRUdTqTlWVyKeHB31GJELWZ58hOy6Ox4oVIjg6UnTN358Mc0WbroEDKZ/YxISipq6uRFZLS1Hx7Bm4vDyMGjWKw8qVGDxlCnctJwdJ/fuj7+nTQv8vv2TDFBGra9daJ4KiFkJJCRGNoUOJSLu5ESk/cIDmVVMTSXMBIu2zZtE1ffEFEfADB7Do+++Vnikr89DW5lBX15oTqqREUfTERCKvP/1EBn9SEpHWjuS8srJ1TXz5JbVSi4gA4uPx0sBAOKmtzRrXrcNQZ2e479r157npgoDs2FjhzZMnmUpCAq4PH46ERYuA0FCMnzlTGDZsmAgA7t27x/fp06d184iOJkdGV8Wb+vUj6fsrooCVlZUICwsT7OzsOLFYzJ8cORJNlpZs/rRpYC4utEZmzybip6JC6Rl2dsD165BPmIAz2dnIfPaMzd65E5P69+/US5rjOHg0p4/k5ORwN7duhcHTp4JRXh77K/n2YIzUCwcOUBrBnj2dyG1eXh4AYPXq1dDX1+fq6+uxe/duLisrCxYWFvDw8IBRQQHLCAzE3ZQU0fjx4+Hq6spkMhkCAgJgbGyMpqYmuLu7MwCte6KVFe4YGkI3IwNaOjror6qKyd9911ps8K23uq2YrqGhAZFIRNJquZxI+a1blPsPkOPl0CFy5OjotPSubq5sjrKkJKGhoYHNmjNHUFFRoXM6e5YcjQoSa2lJrwE0H8ViWDx/jgWnTuF2nz4Yv3QpvbdrF80XRd0LBTIyyPk7YACpN0xNydEklQK//IIn338vHz16tKiFNGtr07qbPLn5f7Uxa9YsqKmp4dSpU4zjOEybNo11rGLfFhKJBGPHjkVwcDAEkQjVn35KjovPP6dCft9/T6T76FFySpw5Q9XK798nx9o/gPz8/BZFQ5edADqiqIie3ydOtFbO/wchkUgwdepU3Llzhx89enS7hTRkyBDR4MGD1cPDw/tHRESE+/n5ufj6+kr/8ZPoQQ+6QE+BtB704H8Ufn5+A5SUlB7Y2tqKTE1NVWtra+Wpqak1xcXFEolEElFfXx8kCMJzAHkA5ACaAJQBKPD19X1li4wdO3Y8nDx5ssug5ghqY2Mjbt68iWHDhsHU1BQVy5bheWIi8j79FDNnzkR6ejpOnjwJd3d3KAqY8DwPf39/eWNjIzdu3Dg2MDqajBZf3+5/+F//IuP9ypX2r1dVEbFtKw39G8jPz8dPP/2EmTNn8i2Vzv9TpKcTqVi0iAzczz+nSOHdu2QkHj9OJGPzZvr8zZtk0D1/jhve3vyLFy84a0dHPkMqFfRlMsxYtEikZGeHWpEIRz/9VK6VmSkqNDKCpra2UF1dzYZaW6NOLofhmTP8oLAwriwiAn2vXIFMTw8JP/8My/x8aM+cSUZpeTmRa6m0c+Ga6mo0XLmCY7W18nF79ojqlJXx+9SpWBMcDJ3ff6exrqkhIjZ8OPVrVlOjojwAkc7AQDKA161rMWxDQkIEheNFXV2dnzhxIqenpwfjjlLdqVPBr16NX/LzZbW1tczY2Fg0btw41DbnVctkMmiVlcFTVVVw2rKFdZQnnzx5Uq6joyPSyMqCyunTUJbJ8MekSZC1ITNbtmwhI3HPHjwtKsJFVVW4uLhg0qRJACjVQSKR4PLGjXKngQNFVkePUlurhQtbfygxke5tbGz71mXZ2URsX7xokSHHxsYiIiJCtnbt2s6O7qIikl/b25MEfMoUkjC3kZAeOXJE0NPTw8yZM1uITFNTE7Zv397yGd/u1s/NmxRpT08nZ8DRo1S0CKDI3s6dRBguX+5eJltVhfQPP0SEnZ18cXm5COfOETkfMwbYuJEie1lZrfN9yxaK4i1YQONgbk7zTiKhqOxPP9FndHWpeJeZGSorK7F3715YWFhg0aJFr1cALiwM8n/9CycGDICZXI5Ru3dj5w8/QBAEfPTRR+2k3Ldu3eIfP37MffbZZ7TOtm2jfspd4flzitA3V0NXID09HRoaGtDR0cFPP/0kNzU1xcyZMztLfGJi6B46OpIz0MWF7sPBg8DSpYjPy8OV5r2s2/umQHY2MHUqHu/YAZ0NG2AVGgrW0YHxOhAEakU1ejQR1zaELjQ0FCEhIViyZAn6NvdAP3/+PNLT07F69Wr8/vvvwuC9e9nDKVOQLxZj2rRpcHJyeq2fvX//Pm7duoXV7u4w/PJLYPVqItmMkTNj3jyaC23B8wDH4eG4cYI1zzO94GD6ztat5AhpaKDvmZmRA/PxYwBUSPH06dPIzMyEqqoq6urq4OrqKvj4+DAlJSVaq5qaXaYa8TyPp0+fIujcOQwLD0f9+vWCz+7dDNOnUxtFQaDf3rqVVBaKKv+jRtHaUVSR37WLHEiBgfj6668xd+5chUqB1oiRUZdO4YaGhpbuB6++jQK2bt0KZWVlLFq0CObm5m3fJEfdxYv0vDx6lCTu331HypnAwH+kUFlcXByuXr0KANiwYQN0XidFJCmJ1v3GjbQf/MPgeR779u0TnJycWHdy8ZCQkKbIyMjKpqYmd19f3+R//CR60IMO6Ils96AH/6NQVlb+0t3dXXX06NEKI1A0btw4rdraWqSmpnrn5+ePLiwsrKusrBQEQQDP86y+vl6poaFBZceOHYkNDQ1bBUG47Ovr284j5+fnN0BZWXmQfZsqp1lZWYiNjcWTJ0/AGMOYlBTkzZkjTJ84kQGApaUlfHx8hMDAQFZdXY2ZM2eC4zisWrVKdPnyZdy8eVMYuHEjw8CBZNx2NCIfPybD4dtvu77YTz8lwhob+7fHKyEhAZcvX8bo0aPljo6Of6OheDewtKS/tDQqyrRmDZGqsWOJ7GzYQFGVjz5qjYInJwNPn8ItIIAztrDANRUVboK3N5y9vRF/+jRC3n8fq+/exTQvL5G0sRFvDRgA1eRklqisDDtXV0TPn89ruboyJZkMfZcuBZYtA5PLYVxYSAWV5s5tPb/IyK4NLw0NBOnrQ15VxamHheGUvz/c7O2hk55OETpFH+kHD0hSLQgkmS8rI0KRkEAG/RtvtDvsmDFjmKqqKm7evImxY8dyA7vL03/nHXAODlgxeXK7k9PV1cW6detw48YNYdjOndAzM+tEtAHA3t6eCwgIgL6+Pu/5ww/M6Nkz9u7mzQhdtEjItbDAipUrW/sy29hgoI8P7AcNatfyTSUnB7hwAUPCwji5gwPNsY6KirQ0kqIqiLatLRniCxZQdJjngdhYFBgbIzg4GJqaml1b0RxHhbbq6+l3li8nyWqbonj19fW8ubl5u7kpFouxceNG7N27t+txBIDGRtTMmIEmbW0U+PvDgDG0E2CrqZGTKzKSfu/Eic5VjAFAUxPqX32FnCNHRMK2bWBffUX3/Y03aE5HRpIjIieHiH1MDEXS/viD3jtyhMbH2Znk6jNndvqJxMREaGpq8m+//Tb3yvZ7gkA57o8eAe+9hwgHB2T37o2aXr3kD378UcQYgyAIOHLkCL9hw4aWAw0cOJC7f/8+kpOTobp8OXK9vGCSnQ0zM7PO7f5sbUlxUFXVQkoPHz4sk0qlSkpKSuB5HnK5XLSou8JPQ4fS/dy1i8aloADQ0UFVUBC+P3AAfDOhEolE4Hn+1e0GtbQAFxc4+/vj24ULMbuqCjZ/g2zLeR7CV19B6YsvaK/ZsaPFoePi4oKQkBAcP34cb7/9Nvr164eioiKhsbGR7d+/HyZSKdOqrUW9vj6G2di8NtEGAGdnZ9y6dQs38/Kw5MYNUoM4OxMBvHq1NVLc2EjOv969acyTk1EyfLggU1Ji7gA583x8iNR+/jntlUZGwA8/gC8uRtVnn+HfNjZCdU0NA4CPP/4YGRkZuHTpkpCcnIxxvXqx/tu2QfT0KXieR0FBAdLT04XExEShtLSUA8iBJVJVhUdICDiOY9DQoNSO48dpzn3/PTnSMjMp5cfOjvZABdHmeYrczp8PAJBIJPyTJ0+Yra0t3fCrV2l/6ELK3VXBtK7w4MEDHgDX1NTUnmgD5MD46iva558/pzF74w1y8vTt+58T7cZGoKEBQ0xMoD1yJAJ//RVqycn0u1IpzXN9ffpcQQE52vr1ozFMSaFn0JEjpHxSV3/ttnSvA47j4ODgwDIyMtAd2R4zZow4ISFBtbS0dCCAHrLdg/86esh2D3rwP4ht27bNUVFRmeLi4tKJNKqpqcHR0RGOjo5iAJ3KhMvlcqSkpDjeunXreF1d3RwAC9u+r6ys/IWbm5ukqakJ9+7dQ2hoKBQKmc8++wxVH30EYe1ajJo/v90T1N3dnZmamuLYsWMwMDDAqFGjwHEczMzMUFRUJIDjGHbuBA4f7tyWJC+PSE1XEAQiJc1tp/4uGhsbFQV7/jmi3RZWVmR0yGRkZB04QEbb0aNkeJWUUJR4/34iK5mZeHn1Kv9YT4/7GICqgQFgZ4fBGRmw2LQJatu3w+bMGdiMG0eFuX79FYMmTwYWLMAIMzMOenoUhR0/Hnj5EqKKCiQ8e8Y3qatzk9qeV20tRVEVUc5m8DyP5ORk3t3dnTMyMoKWlpYQlZTEvE6epCI/+/eTc6OggCKD06dTxGLePCpWtHdvq3y5DRhjcHFxwc2bN1FXV9f9eN29S1LqLqIfWgAWZmUxhIa2i8y1hbOzM3N2dgYUXTecnRGurAxXPz+Yr1rFUFHRGjW+dg1YvryV7NTVkcw+MxO4fBl3NDV55yFDRJ2I9osXlAO7e3frazt2UKQfoOMfPgx8/TXCdu9GdXU11q1b1/X8+ugjipAdOkRjaWVFZOLxY+DNNwEDAygrK4uKiooEtJXogqoXL1q0CGfOnMGBAwfkADBixAiRs7MzcPgwUq2tcfajjzD+zh3cjo6GVVoazG1tMbLtQRgjon38OEWlDx2i6+hgCBsaGkIQBFRWVkJbW5ve37KFCKmDAykZGhtbi4qpqlIEUSwmmfq1a+R0Sk2lHuuurjTfZTLgvffAffQRXPT0OM7NjT7j4ECEVSKhNIeqKiIPgwdTdemZMwF3d2SmpQnIyGD6+vqYP38+4uLi+IcPH3LW1tbtbpqZmRlEIhFSPvwQFcOHg3N1lQefOiVqamqCWCyGRCLhJRIJr6GhIdLT02Mjjh5FakoKMvv1Q3p6OjiOU9q4cSOkUimKi4vx+PFjISoqSpg8eXJnpvzLLxRhzM6m6zh+HMjLg8rmzfg4NhZJXl4YcPEiJK+QCwMgx8TmzXSM+HiI1NWFkpISpmiDVlpaiuTkZCEzM5OfMWOGqCtJb11dHW7duiU8efKEAYCFtTW/MC2NUw4KominmhrU1NTw4Ycf4rvvvkNQUBDefvttlJSUMB8fHwQGBmK6tzd6L1uG9X+zuBbQTCZ1dOjv44+pSN+lS7R/HzvW2hv+zh1Sx1hY4KFEwtna2qJF/Hz2LBV809Ag0uvpCaiqIvinn2B//Tpqli9n82fNgllz5Lpfv3748MMPubt37yL1/Hk+39KSyzt1Sv7y5UsRx3GCjo4Ob2dnJzIxMYFMJoNcLseVK1dw+fJl+Zw5c0QtDsPGZsGXosBYVRVdR0ZG+8J/R47QHG1WREydOpU7f/48/v3vf2PZsmVg+/eDeXj8R3nTenp6HABMmDCh6w9wHKUJ1dZSasqQIbTHuLkRAZfJaJwzM2ltiUS0zp48IWeqgQFd34MHRM779qX1+8cftJbHjUNeQQEaY2Lgra4uSKytGdTU6HkgEpFzSFmZHCHGxiTzV1OjdA1/f3pu375N+4yvLxWM+wcQHR0tPHjwgHU7LgDKy8tRUVHBAFwDgG3btk2WSCTvNjQ0+H/xxRcB/8iJ9KAHbdBDtnvQg/8x+Pn56YnF4iOLFi1SVe0mD+5VEIlE6N+/P6ysrNT3798/zc/Pz8vX1/du87F7KykpTXd1dRXt3r0bcrkcOjo6UFNTg6WlJbjGRmhfvkw5Yl3AwsICEydOxB9//IHQ0FD069ePl0gkXO/evYmtu7pSVFSRE/foERnyd+5030fW1pbIZtto7V9EcHAw4uLiYGxsLAfw3yHbCigpkfRYV5euraGBjBofH5K1BgVRFWQDAzgeOMA5urvTZ2/eBJ48gSg0FPo//0zjsWEDRSx69aJI4siRRK7bFo4qKiLytGwZbD/5hDt16hRUVFTg6OgIAwODVjJbU9PaTkcuR/Dvv/ODkpLYgCFDgOXLsSwtjd0wMYF0+HDB1M6OgePovFeupAhVYyNFchRGslxO90+Ra94GHMeBMYZue/gCdM3dyRJPnKDx2LTpL0VFpEpKQvS77+IDnqfvLltGCoOYGFJHpKaSE6G6miJVbm6AsjKE5ihmJ/j6di76NWIEOYYURbVWr0bCkCEoPHUKjoMGdS+Lnju3vXNi0CBKl9ixA/JZs1D40UcozM/HpEmTurxgS0tLzJo1C01NTaLc3FzcuHEDqSkpmHf4MCp79+ZnmZhwaufOYVJpKa/k78+9ePkScXFxiIyMFEQiEZYsWUKR/gEDWgv7eXjQHGuWYfM8j1u3bkEmk6E2NxfaO3dS9fVJk8h4v3OHIvI3bpCs9sgRIhRt75GiD64gUKEpQWhtj9anDwqMjcHxPFIfP4a1VEoG+uXLNI83bKBx0tEh59DOneB5HpEREfzLly85kUiE4uJidvjwYaiqqmLlypWd+hQDgC2AgYmJMPruO6jY2ooU11ZdXY2ysjKuvLycKysrE4qKiuQZWlpc6fPnTGJnJ3dychL5+PhARUUFmpqasLKygoaGBrt27Rrz9PRsrRp94wYRsKlTaf6LxTRXLC0BR0eIfHwQu3o1X52SwpU5OQmGcjlDXFz7PGAFBIFy+l++JLK9Zg1qt29nRc0tq9LS0nCKUjeYqqoqd+HCBX7evHlc2wjpuXPn+BcvXnAAmImJCYYNG4br169z30okmLNvH/qdP4+iL75Ak0iE2NhYHgA3ceJEVDTnRYeEhEDc2Aj9ffta00T+AgoLC3H48GEAwDhFpf2KCro2b2+SFAsCOa0uX24tEDh0aEt3gCFDhtAcGzqUyLZCEXPuHIp270bW3r2ImDwZEe++i80rVkDN1paIYzPh5jgO3h4ewLFj3PMdO9CYnS0aN24cTExMGDrs+YmJiRCLxcjLzBTh0SNKuzAzI4XC48f077RpVBRt7NjO+5SuLjk6m9G/f3+4u7sjMjIS27Ztg2T5ciwyMIAF/iMIYrGYZWRkwNXVtftPqalRJDkpia7j2TNyUFpYELlOSaExNTCgZ5OxMRFrfX36/5Ej6T0NDSLh27YBqqqora3Fz7t2QTJwILZs2cL+tOCZXE4Oih076L58+CE52VatIqfkmDHk9FWkU/0N8DyPmzdvshkzZqBbxRQAHR0d9OrViy8sLNzm5+eXIBaL/UeNGqVx7949n+3bt+9qamr6sqOirwc9+E/QQ7Z70IP/MYjF4s8HDRokaVe5+u8dB15eXmqBgYGfALjb/PJQQ0PDhvz8fBVFr93169e35pf98Qd5wl8hb3RxcYGGhgaamppw9+5dVlVVBRcXF3pSGxqSsR8VRSTS2JiiCN09yBmjKHhzoZm/i+joaL62tpbz8PDgYmNj+cDAQK6pqQnLly9Hp6rL/wQURGz4cDIgFy4k4+zsWXJU2NiQBPmtt0j69+23FD329ydj7/Ztigb98AONj51d5wJDMhkZVikpFG3W1oZFbS2WFhYKuXv3IkosZn0yM9F72jSYJCeT0+LQISJIFhaoLyhgIy0tmYaaGjB2LLRnzwafkoLQgQPZoo0b27eGmjqV/hUEqsabl0ekKyGBcrmHD6dIR/N9zM/PhyAIKCkpIcLfFZqLNbUDzxNpWbeOcn//ohzSyMgIubm5PNavFyE5ma41LIycFVu3Ul9le3si4W3ICsdxncl2Xh5JYDsSpBMnKHIbH9/yUt+BAzEjJAQVoaHwZ4z39PTk2jkaMjKI8HeYx7wgINbHBw9LSoShX3/NZvfpw5uUl3NdVccWiURwaO5h7eTkBLc7dxAXHs7vXrQIQ+/f5zRfvICpri769evHNTk7435MDK5evYphw4YhOjqapaamQlGDAWIxSV2/+YYI0DvvIL+hASd++02YefYsPKZOZVqmpjRf/fwoxUMxHz77jIzqb76h9fzttzQPT5xof8KMtY6djg4wYAAEQcBTFxfIZDIYurrCWqEQUPSAFwSqZPzyJX23shJXAgORmJjIzZ07FwYGBsjKyuLs7e2hoaHR9aYhl2O2hQV+njABWo8fY1FzHi3HcdDS0oKWlhYsqP82kTBHRzr3efO6dMLZ29vjzp078u+//1707tKl6KWhQWRbW7t9H+9Dh4h4a2iAE4ng7O/Pbdu2DeA4pl1WBpURI0jd8ttvrQWsfviBnBD79hHR/v77FiJaWVmJf//733xubi5nbm4uvPnmm4znebZ79272bXO6zZQpUxAUFIS6ujpu9OjRKCwsxIIFCwAAQ4cOxZMnT3CJ5+EUEwN+82YkODpCLhZzU6ZMgbGxMTiOa8kl55OSwDU2vrqifDf45ZdfAADLFi6EwfHjdE0mJq3F6YKCaC11sRcUFxdDJBLB3t6e9jRv7/YV2GfPhjwlBWWmppjWv79gOXEiU9PWprQFa2si8u+8Q0qIX38FmprQf9Ag9G/TsQGCQE7PO3eAFy/w/MkTYVp0NNOsribHm7o6PZe++oruw8OH1D3j3j3Kx2+L+/fJkbB8ebuXR40ahfT0dKirq8N70yYE1dfDws/vL48lAKSmpuLSpUusqamp1XnxKkREEKFevJhIbYdz+6vgeR7XmgswLl269NXpDwDdN5GIyPTKlXS/R40iR520uUbZ55/T8+LoUXpmbdz4l2uwMMYgk8kQHx//SrLNGMOcOXPUb9++va6xsVHu7u6uYWNjAwcHB9Vjx45tqqysrAfwjeLzfn5+ygDsAeT7+voWdnvgHvSgG/SQ7R704H8MHMfNd3FxeY3SoH+OAQMGICAgYIyfn5+Wr69vJQBJcXGxxtmzZ2FkZIQJEya0Eu2CAooOdpAjdwRjDAOaDevi4mLcu3evfTVvZ2cile++S3K3H3/s+kC5uVT59fr19oWp/gbWrVvHXblyRbh79y5rbGxkOjo6UFJS4v39/bkPPviA5LL/Dbz5Jv177hwZHYJAhp22NkmynZ0pAuDjQwZIcjJFGydOJOMxKoqIx927FE2dOZPIaFERGTVffUXEx9aWvt+3L0zMzJiJqyvqHBxw+ocfMHzkSJg4O1Oxn6lTgWnTkJOTg7jjx9no9esRkZAAeZ8+ePDgAV9bW8uJxWIU1dSgVxd9mHHsGJHq2bOp4JZUSkTy22/JGXDjBgCgV69eMDU1xePHj7uPbtfXUzSkLeLiKNq7eXP3RbxegaFDh7KQkBBRxp076BceToRQR4ci9J9+CunQocgqLISzRNJOp81xHJN3PJd336WozyeftH/94487FXrS1NRE+bVreHL3rlz1/n1RQHU1b2dn12qh3r5Nxntzb16AKt5fvXpV4HmeGQ8YINhs2cJ0//iDQ2AgObXWrOm2gjNjDAbV1Rg7diw3KCMDYXPm8BEpKRyflAQ3NzeI9+zBO7//DnmfPlBTU2Pp6elCVlYWG9SWgIjFgLo6pIWFUPb0hEFeHobfvs3bGBmJmLU1zdH0dPqsogBZZiZFvqKiWs/N2bn7PtUdUFVVBZlMBsYYhiuIdluEhhIpU1OjOT99OlRWrQJAexWALiPZ7XDwIERRUSi0sUFhSsqfn5SODpHC5mJdHcFxHDZs2CC6cumSIHJ0ZA0rVkD54MGuj9PFmgnneYRra0Nv4UJ+6e3bnMYPP1A6iY0NESR9fbrWP/4gYgpARUVFSE1NZRKJhNu8eTPU1NQYAJSUlEAxT8VisXD9+nWmq6vLz5o1i7PuohjY4MGDYWVlBSXGwG3ejKkZGeBOnepSLcL961/d18zoDnI5kJ+PxYIA+YkT6DN8OO1hEyeSY0sBQaB9oqamXUFAAAgMDKSodmoqOXc61CYIf/ddRERHY7mTE3r5+7OWVouDB9NxU1KoEGR5OY3p119TvnhEBDm4DA3J4WZiQvUmHB1h4OHBgrW1scTPrzUPuy02bqS53lVRu/37u0x9kclk0NTUFFJSUphVv34Y+R84iIODg/nGxkYOAH7++Wfhk08+6V7ec/06kevkZHIkOjiQQ6ft+P8J7t+/j5CQEMHb25sFBLRXWYeFhQnz5s3r/vcVyoydO8lJKhLRfVi4kBzJ4eFEvH186C8tjZwZ+flUEPWDD1pVDH8Cxhh69+7NS6VSrrq6+pU97vX19bFw4cJ2k01TUxNvvfWW2oEDB/z8/Py+8/X1bQAAZWXlUIlEMqiurk7p22+/DWpoaPiw+SvNGyC8AGT2FFvrQXfoIds96MH/GBhj1U1NTf/IsVRUVGBqatqYnZ09BcAZxtgEmUwmmj17Nuw7FlBijIwxM7PXOvaprv2GcwAAIABJREFUU6fkeXl5bMmSJcyibQTIxYVIx/z5XRqnLSgrIwP2PyTaAF3nwoULWWJiIlJTU2Fvbw9VVVXu1KlTr12w5j/CtGkU1Tx3rqV1DSZPJuOovp7yggcOpBy8b76hCNDWrZQzPGAAkWlFJetDhyjiGx5OBG7IkPa/1SzrVgVQ3r+/UK6szDBuHEnbm43s4uJiaGlp8dHR0VxUVBT09PR4Ly8v5vT/sHfdUVGd23d/984MVboC0lGw0xVRQQR7L7FFfcaWaKIxiTE9jzdRY2JMYkxiEktiSezGFjtgQWwoCEiVoiAKCEiHaff+/jgMvfney/vlvcVey2WCw8yde7/v3rPP2WcfT0/s3r0bBw4cEBctWsSatCnExpKEcto0kmBnZxP5HDGCEgvnzgFLl0ISHY2ysjKx1jCopXNSX1Xw6af0PrGxz3fN8/Io4B4yBHpeXpg8Y4YQeeqU6HT1Ko9p06g6tXEj0KcPLu7dKyQrFNzp06cxYsQIzaBBg3iAyHaDyra2gt/c+BrGKHj89dcGlU07JyfMsbfnq995B6eGD+dOnjwJKysr9O/fnxQML72Ep0+fQhAExMfH49q1axg9ejSrkYgSy5s3j4LQ334jmfvixXSe6+Pjj6lPc8cOcFVVsHJywoyICC7ZywudO3em9WRoCJ3u3WvPo7+/Pws7dkwcN3Ysw86dVAE8cwY4cQI3nJ2FrLFjuVmxsWLg48c85s1rWWmyaRNd//rrYvhwSv7s2NFmRU1737K1tW3Slw6AvA1++IGSSsOGAe+/D5kgwOHOnbYNxgBSI1hZAWvWYFhODiIjIyGKYuvOz5aWRAzKypqXeSsUwMsvY8q777LdL70kSPr2xWxR5Jq8p4FBE7WEg4MDHj58CHd3dxgYGGATx+Gt5cuhv2IF9bbfv0+kTk+PEhg16N69u5iTkyO+/PLLXP3+bK3se9y4cfDx8dEeQKsnpZaQbN5M1zwkhKqM9ZNZCQl0DZvxYGiC0lIyXvP0pD3s5QWzpUuxLz0d493dYdnIMBEA7Znr16kneMmS2h/n5uYCAM26vnCB9mojRMTGitNCQ9H5b39jsLYmAq01FWSMyGZxMd0/nzyhyu6cOUS2e/emBKN2NBtAPiRhYdC1tYVxc0T7++/JNG/hwqZJiYICCJs2IS4jA4VhYWCMQV9fH9evX9eUl5fzPM+zCRMmoO/y5ZCZmrZ9LlvAqFGjuLNnzyI3NxcKhaL5xRsZSdd0715aQ8nJ9P+lpUS8n4NsV1ZWQqFQ1BJta2trTJ48Gfr6+uB5vuXNk5lJ8cDevZQ4WraMRkwClDhavpySZ/7+db/TrRvt8bIy2qv799N1MjOjFqk22oa6devGXb9+HWlpaZSkeU6YmprC1dVVnZmZeVMul28EsFdXV7dqxIgRBr169cL58+eDExIS7jDGxKqqKl0AgomJiaqsrKxSLpc7hoSEVLb03nK53BHAEADhISEhzUi3OvC/ig6y3YEO/I9BrVYfun379lv29vbP37DdDAICAjrt379/6/r168fzPD951qxZ6NY46MrMJJOapKR2v29RURE3YsQIph0xA4ACARsbqpD+9lvLv3zpEj18tbNR/03o27cv+vbtC1EU8fXXX4u+vr6irq7uv2cEmCiSUVJkJEnkV60i0jJjBknIV6ygwN3cnOSkQ4YQOXFyosqgri4F6/Pm1b1nc26rXbsSKXV3bxC4NofAwECcO3cOpqam6P3kCbgXXwQuXkRcXJzg6OgoGhgYwMTERFi6dGntOZgzZw62bdsm7t69Wxw2bBjn4uJSR1Y2bWr4AXZ2VKGPjaVq0A8/UIXD2Bgzv/mG5c+fT47lzaBq40YIvXrBQGvUs2cPzX1ui2hXVRFRGDAAuHgR4nffQThzBk+OHYPm5ZfxzM6OS09IwDMfH5jOnk1EYvFi4PPPMeLuXa74rbdQpFSKFy5c4JOSkoRhw4ZxjLGGZHvMmLpqfXNwcWlalQcAnocsMxPSsDDkHzuGaHt7XA0LE1Z+9hmnTEzEFm0gCiA4OFgcMGBA08jS2pr6zVNTqYJua0vnnefrxhIZGNQpJWoIS0/t7z9+TOuC50nOWVCAuxUVwpvr1nEYN46SM1rjusuXUbx7N1eZmwuLNWsYli6l3xs5kki1FqJICoxXXqGWhsa4fZsSGm2QbYVCAQBQKpUCmvNOePKkYbA9Zw58Ll+G14kTiNqyBb7Ll7f85oJAyptBgyA4OeHaoUNQKpWorq5Gm94WoaF0rWfMaPjztDS6D+XnA8bGmPDhh9wPP/yAo0ePwtTUFB4eHjT7GKBxT/XW0NGjR/Hw4UMAwGQiPty9e/fEL775hk2fPBm9y8qo/eKDD2jv79tHRGXlSkxLS+OQm0sS599/R4WrK3ZGRKCgpARgDG6Npc3tgURC96WICFJNbN9e92+PH9cl8ZrDs2cktZdKaa+XlpKiISwMsLWFPoDKuDgx6s4dNn78+ObfIziYznO9e9adO3cEQ0NDZpKdzTBxYhNfjsePH0OlUjELlYrWxpYtJME/fZoSkqmp1Maybx/5Chw8SMqLIUPQ0ozy8PBw6Onp1crtG+CPPyh5uGBB86Rv9WrcTUwUz02ezCwtLTWiKKKiooLz8/Pj3NzcoK9NHstkpNKpUWM8D0RRxM6dOyGTyWBjYyN06dKl4UxzgO6XKhWtTY6jtevpSWowbUKqBaVGcwgICKhttXrzzTdp5nl7MGQI7bnlyynRqk0caWFmRgnZ4uKmfe+dOtG1AshY8J13KKF8+zYl3Vp4DlRXVwuGhoZc73/i3Goxffp0vXv37rlfuXLlp2fPng1UKBT5hYWFkEgkGDt2rM7YsWN1AEoOajQa6Orqyg4ePMgyMjLOyeXyOSEhIVmN31Mul5vzPB/n4ODAsrKymFwuHxwSEhLb1rHI5XJLAH4hISEtzCds9nckAMYBCA0JCal4jq/egT8JHWS7Ax34H4Nard6YlJT0Vmlpafsfiq2gW7dueOmllwyysrJmu7q6wtzcvOmLMjOJBLZWiW4EGxsbITMzk/fy8qIfFBXRw/f4cXpIh4dTD1dNH2oDfP89Bftbt/6T36plPH36FGFhYaJCoWBZWVnIz89vW5qqRWUlHbOzMwV5MTFEiKZOJVLZsyd9Lx8f+o7W1mSwk5BAgawoUpIhMpKqOHv3EhHv2bPtzwZIHql1dHd2brEKUF5eDrVaDR8fH6ajoyMeP36cnS8txSilUswNDWUPHjzg/P39oaOjg7CwsAYRmUwmw4IFC7jNmzeL+2qSHa+99hosRJGqEs+eNQyEOnWi6qu3N/Dtt6heuhQ5mZlI6d0bljY2dJ6iosh0qOZ4U1JSYJGRgT0//wy33FzBztGRs4uOhm5zpOjJEyK+33xDVVSOI1m2hwf2//KLkCKRcJIpUyDbt0+QyWSCdVISN+nhQ0765Zd1gZ+/P6rfew8XBg2CXna2EDhhAnf+6lU8evSIO3/+vFheXl6XFMrLo2C2tWuybRuthWbAdeqE0d26gT9wAPEnT+Lc2bPcFW9vpJ85AxsbGyEoKIizt7eHRCJpvYTj6krV81On6tbW/fskiQWo8paUVFcRFQQi0XfvkvR98WKSJ+fm4rGTE5cZFYXu2lFO9UY6+fr6Yv/+/SiTydBJS1Zu3iRSpFW3hIWR1NrBofkAfswY+qNQNDtbWIuuXbuixvmaT09Pb5jUCwigylj9GecA9AcOxLcLF8KhtBS+L79M9watwVZ9PHlCJGfRIqjVaigUCrzwwgttE22A1CAxMQ3J9rlzpEhITKSKMABTADNmzMDZs2fFhIQExhirGz/00ksNiEZGjQTfx8entoq/YsUKljVqlJhgasp679pFKoU33qB7RkICfTcXFzr/t26RSuHwYSSXl4sD9fXRJzmZyb76CtyyZXS9P/uM1oefHyVl9PRa9zmQSqn1REu4N28m48OvvqLWHi00GupL3rWL7lFbtpBHwaxZdI0a3XdKS0tRVFTE/BqrMOpj2jR6jlRXQy2R4MqVK7h9+zZnbGwsYsYMItqffNLgV7TTDAwuXqRry3H0unnzyKgwL496quPiKDGxbRudFzc3ukdqe+NrcOXKFYiiCHt7e8He3r7hQs7JoWTp3bvNzucuKSlBhCAIqYMHc8uWLYOJiUnLWcHs7Gb709uDmjUlXrp0ifXv359zd3dv+IJ33qGkQGJiw2Ts5MmU0FixgvZ+bm6bLV9aSCQSrFq1ilu/fj3y8/PbjitOnqSkXUICkWi1uq71oz5mz6b71dq1DSc6NMb8+eTVkJhI6+3JE3qeeHo2IeklJSWsvLwcmZmZrRtwtgKO4+Dm5gYHBwf98PDwhZWVlZp+zcQhUqmUJnMAmDZtmn5ERMTAyMjI1M8++6xYo9EYSiSSRxqNxlwUxfdkMpl3v379dMePHy+9dOmSGBkZ+cGnn35ayPP8GI1G84dKpYoDcDEkJCRN+/5yudxOJpNdVKvVTnK5fExISMj5dn6FvgCOSaXSR3K5PCAkJCTzec9BTZ+6O4D4kJCQFseGyOVyIwDlISEhzTiIdkAL/h+NR+x0oAMd+K9GYGBgdWRkpBPHcW5OTk7/lqqskZER7Ki/s+k/ZmcTQXzOfr6YmBjR2NiYegkFgWR8vr4UEPA8/Sw5mR6q9ZGXR5WF8eP/rfM5ATKe2blzJ/T19TF69Gh29+5dlpKSIlpYWDBdXV16sBYWEmm4fp3IvocHSVqvXqWeww0biPgUF1OFcdQoIhpz5lDQO2sWVa+9vChw5vk6ghIVRRVpf3/6dysrItvOznR+2upTXrWKguO5c1s9N99++60QERHBjIyM4OHhwQICAuA2aBDu6uoKymvXRP3evZmPjw8zNTXFlStX0L9//9qgAqAgY8iQISwgIAARERGwsLBA165dwbp1aypbB+j7BQTgMWOoHjcON/LzhfLx44XRCxZwyMwkCfuIEWR2N3Ag9h85IlRVVbFsOzsMunCB3TMwwO8pKbh74QKyf/tNOBofz1zmzoUiJwf3jYzA1qzBlZ494fL221Q9ZQyYNAm/nz/PJk6ciBkzZmDw4MFs4MCBXJ+4OGYVGwvZokV1xIMxlEskYGfPYhjPM6cbN+C+fj369OmDq1evMpVKhZKSEvj27w+2YweRkNZI2uLF9JrmZOYAeEtLcCtXwtLCAtU//YTk7t3xFICnpyfz9PRsWw6thUxG8thBg8hYyMeHiICBASV4goKIVPj7U6X/6lVaS1lZFOiOGgXVmDG4ceMG7Lp3h3Wj3urs7GyEhoZCoVAgODiYFAxDh1JCJSqKEmTR0bRX//GP1pNtubm0hlesoEptC9i3bx/UajWGDh3akAiXlhJ5aCTtjYuLw70HD9B/0CDYnDpFlXUrq4YJnwcPaB/+/jugq4sDBw4IRUVFLDg4uH1k28WF3sPXl95D25e/aFGT8U1mZmYYMGAAy8jIQHp6OgRB0Njb2XHw8AD+8Q88yc3Fpk2boFAoMHz4cDE4OLhuo2o0KF+zhpm5uMDs9deJ3N+6RWRk9266p0yaRNd46FDAyAjJ7u44VV3NJn75JdNdsACse3daF6amdGx79lCV89AhcnMfMoTuQXFxpII4dIh8FrRVdz09UhdFRFCPfJ8+lMQbOpSSCmVlRGhzcugeNWkSnZfJkynZ1sJ9p6SkRHPz5k2uS5cuzZsichw0P/6ItGfPsPXCBVRUVAgajYapFApWPX++0G3xYtb4vZ8+fYp79+4hkDFwnp50frS97QMGUFKpf39SFbi60nXjeVIiTJ0KiCJKKyuxfft2TWRkJJeWlgZ3d3ehR48ezNLSsu7DRJGI3dmz1E9f7z6sVqtx48YNPFm2TOxkb8/83n6btZmcXbOG9uw/4TsBAHl5eSwtLQ3FxcWoGW9Iz6PoaOCFFyjZ0JgQ5+XRubCzowrx8OG10vn2gDGGrKws8fLly2zw4MHgW1MYzZlDiRst2f/uO/rTWE2go0Nk+8ABes619p6M0XqeM4e+x3vvUUvV1KmU2DQ0RHp6Oi5fvsyMjIzQooLiOaCrq4tevXpJ3dzcZM3GPvXAcRwcHR05X19fSd++fQ0HDRok6969u4WNjY1+RkbGQEEQTL28vLpaW1sjKiqqKi8vr4+Dg4P3xIkTzWQymYexsfHIZ8+eLbl48eLuwMDAMrlcbgHgiSAIZv369VMXFRUV+/v7nwWAdevWvXDt2rVPw8LCrgYGBjaYebpmzZr5Uql0D2NM18vLy6igoCBgyJAhz1WV+OSTT4ZKpdJbUql0KQDu4sWLcZcvX1YEBgY2cGiXy+VjANyTSqWjIiMj3758+fL6yMjIV8LDw68FBgbmPM9n/q+jo7LdgQ78D0KpVH4fHR09a9iwYZJW+xH/Hfj6awrmngMqlQo5OTm8m5sbVQr69aOsdX2nW19fMrPRVrwBqsw5OZGU7F+QibWEiooKGBkZaRbMncvj4UO82akT9lVWCuWTJ/PF5uai3rvvMrzxBgWtokjVEp4nR2Y3N5JwL1hAb1bfJba+e25rOHyYvp8WgwZRlTskhExtlixp6n4LULCxdClVwloJeLVQKpVcUFAQzp49i9LSUgwcOBAGBgYYZ2rK47ffGlQZZDKZUFBQwNk140LMcRx69+6tOX36NB/7009Y+M47LTaIiqKI48nJouuiRWyGgwNXa6o1YQL9efKEAuXZs7HYxYUriItD14cP8dvcuXjr998xdPly5Bw+LPa4fJmr+PJLZOvqChdzc7nyW7fQ/ZtvkB4XB3AcpFIp/Pz8wHEcXFxcNNevX+c9PT0poNuzh6o5K1Y0OT7jqVOh/8UXKPngA+gKAkzj42Hq74/evXuLnTp1Yjdv3kT299+L9r/9xuqP9WkWGzZQNac1GBhAs3kzhp09C/dt27D72TPh0qVLXEFBAaZp3bfbg+3baf1lZdF/r1hBVdcvvqCE1M6dJOUMDSWVwbp1tE5qgsdbt25BKpVqPD09G0S66enp2LdvH2xsbDSzZs3iG9xHZs2ifbtxI/XSHjnStqrFyoqqwy2Nc6uBr68vLl26hC1btsDa2lrw9PTkvIqLycOh0WSA/Px8nDx5Enp6emL/4GCGoCCq5ru7k5GetrK1dy8lPmrMt7Kzs1n37t3rJN5tQV+fxjwNGlTXky+TtTonecqUKTh27BjCwsJ4F0dHdNHVxYkTJ3D37l0AwKJFi2Bra1t7UtU7diA+IwM3p04VX3Z0ZNi8mcyixo6le52tLZ33ESMokdOrF6qrq3HmzBlNQEAAp6ury2qTGNrpAEBDF/gvvqC/V6+m71FWRtfEyoqu4fnzRLAXLKBEDc8TMZs/n47D1JTW2P799PN2QkdHB1OnTuVjYmLEI0eOsLfeegv1e81TUlIQEREhGogiK4mOxrhly+Dh4cEpUlMhcXfH52+8wcUmJgoLFizg6iur0qKixJ4JCUxdVQVJ//4ot7KC/qVLKN2zB5Lff4ehVgVhZUVEWZtcCwkBBAGiqSlOzpwpFtjY8ACpdiZMmMA1SXZFRlKrxuDBTQzcDh8+jJSUFMx/8IA5rF4N1h7PkkOHKDHaioFXS3j8+DESEhIAoG56gChSUk1PD7UGcfWhUFASVKsscHOj/ZGR0fzrm4EgCJg1axb79ttvhRs3bjB/f/+mD5l16+hZHhVV9wwSBFo7QUHNv/GQIZT4+eWXOr+StiCV0jksLaX7+RdfAF9/jZi4OA0AfmELSc7/BHR0dGp9XoyMjGBvbw+O47pkZWUZa31uMjMzAeBDtVr9kZ2dnZGdnZ0MgOz8+fOKO3fu3F67du2vANIBem5aWlpKU1JSZgB4Qy6XW0il0u9dXV0tkpOTh37++edJarV6l1qt3g6gL8/z2+bNmye1sbFBVFSUyBirbuuY5XJ5J5lMdpsxxisUimUcx73p7Oxs4OrqKjt58uRHAD7ieT5ELpeflslkPzPGbisUisUAHnMcp9LR0elfXl6ufX50AqD8957V/350kO0OdOB/E3dVKlXJ48ePDf7VEWCtIi+Pgthm3FfrQxRFpKamIjIyUsPzPB4/fswbGxtr+vXrx8PenrLUr77a8Je6dKEKWHR0HXHV06M+vHaasLWKkhKSvvbuTcF4VBRMFy/GvDVreKSkAO7u4MLDMWftWj61rAxXHj3CJH9/5J87hye5ubC3t4e19pibM/15Xmg0lGAYOLDhz6VSMgc7epR61cPD6VzVr4r88gv97ezcZh+eWq2GSqXCgAEDoKOjI0ZGRiIiIoKZmZlpZs+axZulplLwxhiKi4uhUqm41kjJ1KlT+YSEBAy9dAkKQYBezZgfLUpKShAWFqbJzs7mKioqmP+HH1KlbNky6u/UOvpaW9P1AKCcMwddc3Jg+eQJnikUotLVFeZdujCzr79m+PpryACYvv02p3f/PsrKykQvLy+WkZGBM2fOCGq1mt25c0drHMQzxpAUG4tednYNjXhAI8iOHTsmDBkyhHNwcEBSjx6YkJZWN2N65kxMX72aAUBCfLx4ODOTebz2mmAeHw93d/eWT7SxMVXRvvyy1evBrV6Nb/LysMTFBW/27Mmt2bIF9+7dQ79+/dCtW7fWq0cAVRdnz6ZAmjFKxuzdS/82bBiRzZSUumMCqPpXcz1FUURYWBheeOGFBh8kCAKOHz8u+Pv7Y+jQoc0fhKEh7cPlyykR5OraKvkEQLLz4GBg61Y81tNDTk4OioqKEBcXh8mTJ6N79+4ICAiAs7Mznj17hqSkJJw6dQpef/xB6pBGSrzjx48DAN555x2K7Bmj/fzqq0SsYmJINWFiQsmoGujq6opFRUWMFRdTldPUlCrIjBHBvHOHiMlPP1FF/p13iHBpZePtSGCamJjU9mT/8vPP6D52LB7UuJ+//fbbdTO5a5D066+i+OwZm1NZybilSylp9t57tD/09amCV1REFdvLl3ExOxtXqEWAb9a5vREEQQCnvWfUr/ppK6NTphAxUijoGt29S5MORJESNq6ulBDLzSUVU0AAkaiCApoJ3w6FgIeHBztx4gSuXbuGgQMH4sGDBwgLC0NRURH69+8vDFm5kjd89VVwNeoYHRcX4MwZTLG0xMGDB7ns7GyYm5nRcW3YgDEZGeykRILdRUXQsbGB5PZtpG3YAAgCPJVKPFm6FMXOzuLs+Hhmv3YtiouLkZycDI1GA0dHR5ycMwd5lpZsRpcuMJ8yBUePHxe++OILNnz4cOZdo6hS7dsHfu5c3Fq2DJylZS3BTU5OhrOzM1JTU+EnlcI+PBysjedgLbQu/s8JlUqF7du3QxRFjB07lswVp02jxMeuXS3/4oULlITLrKcmvniR1norZFutVuPKlStISUkR8vPzOcYYpFIpFx4eDnNzczTpi87KontC/f3x9de0B7XPqMZ44QXag7t3U6vF81T7jYyAF1+k+EAUMflvf+Ptra3BXn65eTPD/wcwxuDh4QEPD4/a/hl9fX1RqVS+wPN8g4fDiBEjdHr16mWdkpLyVnZ2dpWfnx969OgBURQRHR1t/NlnnyXLZDKJl5eX6ciRI7msrCyToqIiv7Nnz3pwHDdPEITBgiCItra2CA8PV9y4caNKpVK1btxCmOPo6Gjbr18//QsXLvyuo6MjODo6MhcXF3h7e6s7deokuX79ugOA4xKJxNrExKRbYWHhSKVSuQNAjIuLi3dycrJSpVIVq9XqcSEhIXfrv7lcLufqy8zlcrkXx3FXBEF4MSQk5MS/eIr/K8BEsWNuewc68L+Izz77bGdQUND8GjfjPwfLlxOZ2Ly5xZdoNBocPXpUk56ezrm5uTGO49CjRw84pqWRHLJr15YfsJmZFEzcuUNuxj/+SFXt9kAUSeKup0eE/exZMhsaPpxIyKRJwM8/01zgrCygtBQnrK01VTk5bObKlVzjgHrjxo2CiYkJl5OTAwsLC01JSQlvaWmp6datG9e3b1/W4rzo9iIsjEh1WFjLr8nNpd5kAwM6L927U9Xp9dcpaG7H3OlHjx5hx44d+Pvf/15rbKZUKnHw4EHNw4cP+fGVleh57hz4GzewadMmwcXFRZw0aVKrrO/p06fYtm2bOGjQIFbbowrqqdy7d6+gUCiYt7c38/T0hEx7rYuLiWzv2kUBmTY4evAAePddKK9dQ4KTk+ahmxs3LiKCSTmOekNTUqga0kzfJECkIj09Hbq6utDV1UXM3LnwT0iA3qNH2LVrl1BcXMzc3NzQtWtXdvToUUilUigUCqhUKvSsrBRm8jyHtWuJWCiVRGiHDEHUSy9pLMPD+V9qTL5mzpyJni31bQsCJT7u3KGWgZYglyP51Cmxq1LJjPr3B7Ztw88//yxkZ2dzJiYmWLFiRcuS8tBQWgNPn9L+eestqlx/8AH1TL7wQvO/t2kTyUzNzaFSqbB+/Xq8/fbbDVpELl++jMjISKxevbpB+0ADjB9PxO/DD0kiqlSSbLTG7b4lqJcswaW+fTU3y8t5mUwmVFVVcfXjkPrrMiYmBqdPn8aHH35YmwDSIicnB9u3b4eTkxP+9re/Nf2gjAxaJ8XF1O4RHk7HOHgwMjZvFrOsrNhQhQKM56kXeOdO6jkfPJgqyoMGEbk1MCApdXAwJYi2b6cK3tChrX5PAMjKysIvv/wCWVUVZh48COfmSFZ+Pqq++AJ7i4pgYmKCaRMn0nunpJCC5swZ+t5qNR3TTz/h8M2bYvBHH7Hin35C1/HjIZVKqWc4IgJFRUUICgqCvb097t+/j8TExNpqeufOnTWvvvpq83v53j3aiz17UmLh0SMi1Hp6lOhTqUg1sH49KXpsbOi4fv2VkhA7dtD/b98O9bFjqPDwgI6bG3TNzGqvmyAI+PTTT2vHk2nn17/00ks021yjoXvz1atkapaWVjv6MeKPP8TsvXuZbVGR6FFczGSLFyPXzw+7Dh8GAEy9eBGuTk54+P77kEgksEhOhvjIQZZNAAAgAElEQVTtt8j48EPYTZ6MgwsWiAWdOjFzc3NBFEWUlJRwarUa0Gjw8TffgDt1CuLgwTh58iSSkpLE1atXs8InT3D5/fdFfVFExcSJQn5+PisqKuIEQYBMJgNjTFRUV7PV+/dD/5NPmhrotQRbWzqXnTq17/WgvvetW7eiooL8rj6cNQsSCwt6rnl6tq70Uirp2dE4GSCKtK5q9rhSqcS9e/dQUlKCqKgoUalUMgsLC8HZ2RkDBgzgRFFESkoKkpKSMG7cuDovk4ULaSb25583/ez16+le3cjcrgFWraLj++CDdo/5aowTJ05o4m/c4K2qq8WXSksZ//AhrWcrq3Ybwf2nUFJSgqSkJPTr169J0q0laAsWKpUKffr0aTBBISYmBidOnADP86rx48dLPTw8sHHjxvKKiooQACKAgwBsAAwGsB3kEdEFQA4ANWPsO39//yXDhg1rNouYnJyMY8eOJSoUiqkcx8W+8sorOtXV1bhz506Vubm5jo+PD6ejo4MjR46okpKS3g0JCamdzyeXyycDOCqRSN788MMPN8nlcl+e589rNBojAGNCQkLO/lMn8b8MHZXtDnTgfwByuZwD0B2AL8/z/aRSqZ0gCMPb1Y/4z0IQqBI7cmSLLykvL8e2bdtEtVrNli1bxhoYqyxYQMHjunUtf4aTEwW5R44QSW4sVdWaPmVlEfmYMYOqWmo1/f3225TRl0gooJBKiRj07k0kSDvnugbVBw9Cam/fhGjToTixhIQEuLu7i5MnT+ZLS0tx+/ZtPiUlRXPt2jXe0NBQcHd3Z87Ozqy0tBSxsbEaURQRFBTEN+6FbRaRkVS9aw1WVkTIr10jKbCtLZkkeXq2i2gDJHOTSCQNHtYymQxz587lExISxPizZ4VnJib8tQ0bRDMzM0yYMKHNOVudGcObe/awr0URdnZ2MDIyQmRkpCYhIYE3MTERlyxZwskaJ1RMTIjYXLxITuVbttB13LgRWLoUsv374eHuzicWF+PTqVOxevp06Gs0REISEqgaYmFBgZ5EQpU3xrTycVoD8fF4EBgoWsyYwYzT0/HgwQPOy8sLaWlpwp07d0QnJydx5syZvCAIiI2Nha2NDYc33ySy5eJChmNLlgC7dqH/rFl8amAg8PAh7OzsxMzMTHbgwAE0687LcZQ0aARBEPD48WPY2NiAMQbB0RFJTk7McP16GNnZAREReOmll7jk5GQcOnQIa9asgaenpyCRSDhvb29YanssL1+mfZGYSJ+lUNDx2thQH6RSSeencaW5qopcpWtk8NpRUYmJibW9nyUlJbhx44Y4bNgw1izRViqp5/T77yl4Z4xIYVgYVa/u36dqUzPIzc3FVjs7uDx+jFemTYPFgAG1UfC2bdvw+PFjfPLJJ3jjjTegUqkQGhqKaXv3ojgvD6qPP6bRZTXIzs4GAEydOrXpBwkC7W9bW0qa/Por3RtcXCD06oVj6enMb+JEsPpO+MOGNXvMtVi1ihIM9vaUXCwvp/tXK6oPe3t7WFlZiUUPH7KSlipt0dHgjh3DiOpqmOzZU0fi9fUpgaLdpxIJ8OabqNy7FwkGBkzX3x/qiAjNmbt3WYFUyjHG4OjoqDEzM+P27NnDXFxckFQzHcLBwUEMDAxke/fu5eVyOQYMGIAxY8bQHvnkE5LibthA62fMmDoDx5AQkupu2EBVUMYgVFYCly8jw8cHXQYMgNHp03SMvr44vXkz0r7+GgNu3kTx+fOwKCiAl0oFbssW4LvvwHl4YJCzszr18mVJlYMDSlUqfPzxx3UJJZ6vG1XVrRt950ePgM8/x+Bnz9jTnj2RLJXia4UCyMmB0fnzteZyetu3Q+LkBFetGsTZGQgNhadEgoqHDxGUnc2cnZ0hk8k4jUaDtWvXgjEGTiZDVkwMHJ2dwVauxNgPP0RMTAxbt3YtXt+4EaNNTJjBw4dgjPEAVXsrKiqgp6eH8PBwIToqis9ZvRourZHJxpg7t4lvgSiKUKvVLSa3OI6rJdoSngcXFESKi5Ur2/68VasoudyYbI8aRX3be/YAAHbv3i3k5ORw+vr66N+/P3x8fNCpU6cGTHXgwIEYqFVfiSIlSIYPb9gCpsXZs6TUamtvLVlC6pi1a+n6/xOtb/b29lxMTAy6+PkxfswYavt4/JjGz3300XONOvuzYWxsXHcO2wnGWIuGb+7u7jh37lyVQqF4/fTp05udnZ31unXrxrKzs/9hamqqm5WVNRdAT2dnZy4tLe1jQRBMDQwMyhUKBcdxXIGxsbFZ3759Wzzprq6u4DjOkTEW7erqqjEzM4NEIkH9iTc1pnRqALdq3ND1JBLJiwB+rHnJx3K5fDOAERKJRF8ikVQrFIq85zoJ/8XoINsd6MB/IeRyOQONSjZjjE2VSqUhUqlUx8bGRrS1tTU0MDCAubk5Gsyv/nfj5ZdJlltDAPLy8nDu3DlNQUEBJ5FIRH19fTE/P5+3sbER5s+fX0fYTpwgctDYmbQlvPgiEfMpU8iQ6PPPiZh++SU95CdOpODw9m0KFOfPpyz7wIHkDN4YjaTE9VFUVMQ167YOYMqUKSwgIACdO3dmAPVjBQUFISgoiFer1bh9+zYXGxuruXbtGieTyQQnJydepVKJv/zyC2QymWhqairUjAphBgYGop2dHWdtbc0cHBxgoKNDgeUbb7R9Phgjies335Ahm0RCvZftnAdubm4Oxhiys7PRuA+7T58+rE+fPrxi3Dh0PXWKdZ45k7XLrEuhgJ6/P/r07YvDhw9DrVaja9eubPHixbC0tGyZrEskJA3OyiIpNM8TkakJzlhxMSYlJ+MrV1dsOnYMPj4+wohPP6UZxpmZZOJUUkLVVY2GAs/qavr9X34Bdu0C/+67YmhhIVT797NRo0Zpg5wGX4rjOHhqHbhfeIESQDt3EoE9eJAMABlD93XrgDVrkJOTw7Rk79SpU+LYsWOZcWMytWABEaaayhxA1ZfY2Fi+W7duGh8PD748OlqM792bTXF2JhI7bRq4PXvQe9QomJmZiUVFRSw2NpZjjCEqKgr29vbiPD8/Jpk4kRICNjZE+Hr2JJWGFh9+SJ/dOMBMSqK9UXNNLSwsMHbsWOH8+fNcWFiYyBgTFQoF5+npKQwcOLD567ZzJ+21jz9uGBQHB9PxXL5MPeJyeRPFyqVLlzTm5ub8rJMneaYdz1YDMzMzPH78uOYjdqK6uhrGxsZIGjhQc0ul4h788ANjjMHGxkaYPn069/DhQxgbGwuGhoYNF6gg0DlxdyfTKEGgoP/aNaCoCJWurijr1AlGrSkOGkOhIOn09OnUe6olOuvWUe9oM606giDgxx9/FJ4+fcrpaTRgzakI169HhYMD9gYGAoxhUX3y/9ZbTZMWs2ej4MgR+HXpIvT57jsu79Ytftzrr4Pt2gUJ9cTyAGBpaSmcPXuW69Wrlzh58mQmk8lqL5RUqYRzTg71f/ftSwmZbdvI7CwwkOTqy5ZRVdvXl/aVkRHtgx9/RMH27TDOyMBVS0v0OH8eJnK5aL92LdsaFyeUmptzCxYsAMdxELOzcSY0FH0XL0ZpVRW6BAYCSiWGGhhI+icm4npmJrrm5YG7c4fuZadO0XpITaXE2xtvkLJg4kTg/ffBeXvDUqWCZY8ezPW337Dvzh1UV1cz37g4JAQECNflcq7r8eMo+PFH2EdFEaFdvBjo2xcGw4ej58aN1Ibj5oabt25pmFrNixIJXn/9dUqWqdXA9euQFBbitddeA5eWBllKCvTWrm2wziUSCbR7ffTo0XzfZcvEynffbWLe1iq0CeB6OH/+vObGjRv80KFDhcDAwCY3XUNDQ9jZ2Ag+mzdz3X/4AdzKle2vjD950nx19+uvG7iiOzg4cEVFRRgxYgTMzc1Zm8n66dPpvnWiBSXwe+8R0W8LPXuSz4QgkAHpP6ESc3d3Z3/88Qeqq6vp3NYY4NWOaJw8mVQT69a1OzH93wKO42BgYKBSKBR3eZ6/dP/+/TFTpkwxAIDi4mJ8++23nmPGjBF8fHz4Q4cO6ebn54uvvfaaYVFREYqLi+2dnJzQmrcPx3EYPny4jiiK8Pb2bva5oFaroVQqJXp6el9WVVX5AoAoitU2Njaa/Px8JgiCqY6Ozi21Wu0SEBAgCQsLYwD05HK5KYCKkJCQ/+k+7/+tFdeBDvyPQi6XD5RIJJOlUukQURSteJ63FkVRJpFI1E5OThp/f/8/tze7HtRqNU78/rvGLyyMP2drK+ru3y+UlZUhPz+fd3V15caNG8cqKytZWVkZ/P390aNHj4Y358hIqrC1pxKgVpPUOD6egrChQ0nWOWkSST7j4+tcV+fPp79bkBe3B0+fPmUtye45jmtQWasPiUSizfhrv6v2b6ZWq5GamsoKCgp4mUwGmUyGwsJCZGdni3FxcZqKigq+d36+0OfaNVY2cqTg4+PTeiVZFKl6qFLVGVSNHk0yTje3NqsCgiBAFEVIWgk4dGJi4Prjj+0LlAC6Jlu2YALJQoX79+9zhYWF7XN6Bihgk0jqrm8N1ImJSP/sM0zp0gWnS0rE69evcwEBAWSu5ORUZyYXHk4O2Tdu0Izdc+doPNKAAVgQGMidPHFCLLG0bF81YezYuiq7vT0Z/pw9CxQUgHv/fUyfPh2VlZUIDQ0VFQoFS01NZSYmJujcuTO8vLzqqnSzZjWoXimVSiQmJvLBwcHIzs7mkjZt0gScO8fPuXSJXiCTUQJBVxe4dg0rVqxgAEn4Dhw4ACcnJ5gdPMg+S0/H327fhnViIqR2dnTdG1eV0tObD65VKjQ2d/Px8eF69eqF8vJyduPGDZaYmIiRI0fyzQZfe/aQimLmzOZbP3r2pLYQLVn65JPawFmj0SA9PZ1fuHAh2Kuv0jqtJw0PCgqCmZkZiouLodFoYG5ujqE8D87Pj4e7O9RqNWJiYnD58mV89dVX4HkeJiYmdV9SFEn1MWwYJeT8/KifeM4cUr0MGAD84x+oOHYM3e7fr60StgtPn1KVrP452bCBlAVbttD6ffvtBu7Oa2hGMAcAMoUCxo1NJKuqgO+/h7RTJ7AhQzD8gw/q1o4o0r2tZr2eOHFCk5mZKRoYGPDSzp3xwrVrnIG1NWymTCGFiJMTJRNqRln5+vpyNX3cdMAKBVBaioVhYdC/fRv8mTOUIBgxoo54iCLtoadPaT+dOkU/l0jou929i7tLl8LyyhU8MzPDqNWrIfvqK+zW12fjV67ERMY4mx07oGthAejrQyaT4fz58/i8ZjyjkZERqqqqoLp7Fxg+HLa2tqJHnz4Mjx9Tki0hgUihtrL98CGRtfh4+l5ffEHHFRcH608/xeTRo/FHZSWG3b2L0QcOcA9XrcIzc3PcLCjQ2Gdm8njyhK6/KNI9JSaGErzV1ei3bBnvXVCAI3PninrTpjEMHEjncOxYQKmEhbMzJe1SUhoaVjZGdTUqjYzYTUEQXRvPum4NdnZ19zwA8fHxiI6O5vv27YvIyEiuuroajo6O2ooi/U5lJXp07y7KlEooGYN+e4m2Ukn3iOaUFX36UHLTxQUYMwbBwcEQRRGhoaGCSqViTk5OwqxZs5o+jyoriRSvW9fyZIFHj+i+2V7H80GDaE988ME/NdJTFEVoNJqGsmzG6vxedHXp2XDmDB3X6tXPZfL3V4dMJuOlUunv1dXVdqmpqdXe3t66AHlHfPTRR0yrzCgtLYWenp4IgJmZmcGs0XSHluDl5dVqXGJiYoJ58+ZJVSqVb1JSkhATE8MFBgZKhgwZwgMUd2zbtq1nbm6uQWpqKjiOK+U4brooissAVMvlcueQkJCif+kk/IXRQbY70IG/MORyeScdHZ2ThoaGPh4eHro2NjZ8p06dYGJiAn19fTDG/uN7OCYmRjQ8cIAr3LwZPTt3ZgUFBXzXrl0xadIkdOnSpeWA4/ffKdj59tv2fVBKCvW8hobSw/fmTSI+I0dS4Hv//nONLmkLCoUCoijCo7nRVf8CJBJJUyMZAgPAK5VKpBw8yMVVViLvxg3O29u75SyzKBJZksmojxKgSuyYMZS59/QkyVwrc1CfPn0KAE3GPDXArFn0vhpN6+NYtBg2DBg4ENwPP2DKlCmcUqnEr7/+im+//RYvvPBC6/NOCwvp2H/7jcjt1KkQAgLwe79+4v379/G3X39lxgUF6LNvH4YGBjZwMa4FY+RYP3Ysmfbt20d9y7Gx4G7ehO/+/Siwt6eETe/eVC0zNGw+MaGjQy0I4eFk2HPqFK3d0lLg3j26liYmcHNzY8+ePUNcXByuXbsGAIiIiMCKFSsokREYSCZTIJf7L7/8EgYGBsKgQYM4juMYJk/mkZ0N8/qzpA0MaM2PGUO94oaG0M73DvLxgcmKFch0dMQve/di8datkE2eDP0NG5r2/X36aZ38tz5SU4l4NYKBgQEMDAwwadIkpKamCrGxsax///4NT86DByTzPH68dfMhIyMai3XpEhHdv/8dGDwYmZmZkMlkgrW1NbGHlSvpu169CgAwNTXFsMZyU20v9u7dkEgk6N+/P/r378/FxMSgsLBQjIyMZEePHsWkQYPA8TxV2CZMqHPs19WlNQzQveKHH9D55k14ff89cj78EEfmzdMMnzSJb6JKaAwTE/o+jdG7N+23zz+nRE9pKTB3Lvb8+qsGAO/u7o7Y2FhU6enhRr9+qKVtx49TMmfzZlTY2iLnzBno6emhtLSUqqzJyUQua/ZocnIy8/Hx4SUSCboGBsIgJYXeY8oU2nvJyaSk2LGD5N8AVQnj4+le+eWXwOjR6Pz++9gQGgqT2FgMGDAA3lqirVLRev3gA2pVaZy4ZQzi4sW4tWgRcqdPx5CrV+E3YQL0CgrwUkIC0ufNg2tZGXSvXCHlQ2AguowbBycnJzE3N5ctWLAAp0+f1pibm/N37tzBG2+8AWNj47r1FRtLjtTnztG53rKF1s3Tp7RPO3em63fkCL0+IQEmRUUo+f57XP/tNwQaGsLhp59w6dQpKI8c4Xd7eoqTQkIYZs2CcX4+EfhZs2oTsoVubtj9888Y5OPDpPb21F6Un0/XTyYjxZAg0LNKLm/xXqHesQM3Zs1CxfPKnktLa4l2Tk4OTp48iUGDBiEwMBDx8fE4fvw4bt26hfHjx8PLy4sq/N27w+/cOf6rxYuhuHgRboWFwoQJE9qWHR08SOqhtLTm//3ePdojY8aA4ziMHDkSw4cP50JDQ3H9+nX+wYMHtfegWrz8Mt0PavZuE4gi3dM/+IAqzO3BmjVE/Pfto/d+TiJ87949kTHW8tg1b2/6k5dHe/XRI+onnzGDVDn/5Zg7d65Bbm6uQZcuXaCvr9/gIVk/nsjLy4OXl9ef0sSuXSfdu3fnAgICYGxsXBufchyHBQsWGBQWFsLCwgKRkZH6SqXytaKiIj4lJUUHgB2ADrLdgQ504D8LuVzOdHR0jvbs2XPghAkTdNp0Jv4PICsrC7eOHmULoqOh/8MPbbsP14dM1j6nUVEkcqN1IN6zhyrcz57Rg1IrmX7lFSIOJ08SUZs9u33EsAVIJBL8fxhGyjgO/T75BA5//IFN+/czURSbJ9uiSARMoSCZcH0YGFDWfutWClKnTGnRwCkmJgbGxsa1vY7NgjGSlu7eTYFJW7hyhY5P+51kMixcuJC7fv26eOTIEfbKK6+gWXl+XBxdt4sXa9eScOAAzv/jH4L91q2c7zffwGroUPCpqRjv4sJalU0ePUpB+vnzdePXXF0BAHeMjISKoiK+r0JB/84YrauhQ+mPtXXD4K5vXzqXz54RKdy/n1oVXnmFqs/nz0Mmk8HS0hIjRoyAlZUV4uLikJaWhrt371L/85MnEPz9sf3bb4UnubkcAKxYsaJurFBQUPMOvd7eRJBqvAh0e/fG2LAw8ZGLC2yLi5n/4MFIsbPDrmXLoNJogI0bERwcjP79+0MikYDjODBnZzr2xlAo2nTy79mzJxcRESH2r290lpxM43wiItq35xkjEqinRwTp/n3kduvW0OzttdcarJlmUX9sVT3USP6ZiYkJorduhfqVVyALDaWEXH0YG1MVq14FnfP1BfvlFxT+/rsQtGoVH33uHIb99hsAqo6VlZWhU6dOtXtQEATg4kVwP/xAewxkMqivr09VIT09IjMJCcDnn0OZloYchYKHnh4qKyuFJUuWcLkXL6LboUN1x/XVV0BCAkr37kVOjQ/FTz/9BFEUYWxsLA69dYtZm5rCasIEJCUlQa1WM0tLS/TRmkdVVBDBDw6m5EbPnnS/lErp5xMmkIRaEGjtbt8OODqCE0U45OeLeXl57PTp09DT00Pv7t3pdUOGUDJm06Ymvb2VkyZh/7VryLOywvxFi+AQEkJJv9RUmJaWwmfkSHJzDwqiJGl6OjBsGOaOHMmEjz6CxNAQ8+fP5zfWjBQsLy8nKfbf/073rsmTaR9KpVRxXL2a7vOGhuTnoNFAc/EiKqRSCBYW0PnjDxwLCBA4juMuX74MDw8PmJiYYJCuLvj9+3Fk5UpRmZXFsvbvR5yFhfBiZCQnMzUFq0neVNS031h361ZnyNWnD63ZxETaf7Gx0PzxBxSvvw4WE4Pi3buRW10NJ1dXREVFCQlXrnCLNm1C7tKlGDthQu29VKlUQqVSQU9PD4yxpvdyrbqkpu0jJydHBIDAwEAGAP369UO/fv3wxRdfCNG3b3PKzz4TTUNCWI/Tp3Hy8WOxoqKCAUBqamqze6MJgoJIBdYStm6l6rdSCchkEAQBmzZtEiQSCRs8eHDDBHpWFt2zt29v/TOVSkqUPU+fNMfRc2DWLLrfPCfZjoqKgqmpad3c8ZZgaUkVeZWKVHa//06V+ooKIt5/MTO19sLAwADd6iduW4CXlxdu374NLy8vtDkP/p8EYwwmzYx4lMlktUn+wMBAHQAoLCyERCLRJCcnX167du2Cjz766OifclD/z+gg2x3owF8X/jo6On8Zog0A+/fvh7ejI/RPn24/0T55kipt1683HDnTHB48oABs5EjKimvnU0ulRIiOHKFeUYD+WxRJerhyJT3YQ0PJGKmVvuyWEBUVJejq6jKO457fneVfQUIC0KULUkpK0CLRBuh737lDMrjmIJUSgblxg15bXk4BdL2qXXV1NaKjozFjxoy2v+OECW3PTgao6vLBB+QU3wgDBw5kWVlZmi1btvCrVq1q4HiNtDS6br//Xke0BQG7Tp0Sypyd2Su6utB5912q4EVGAuPGURDWnIGQQkHBWU3va2NwPM80UikFgEuW0Lrx9qYK08GDJMF95x2S5Pv701oSRapMHz9eF5Bv2ULHoE0E1ezLfv36oUePHti2bZt48eJFFh0djUmTJmF3SAi48nJu/PjxcHFxqXNiVygoYdRMQCkIArKePkXZ66+LfTMymBgTA6sHD5hhTbLCzdsbXQcNwszZs/HgwQOcOnUK4eHhCKvnYu/euzeyMjJQtm4dhg0bJg4aNIhOypEjTavd9RAeHo74+HhMnjy57iSKIvW/zpv3fMk1gGTQdnbAhg3ofeEConx86ti1qyv1fi9bRqZtjbF8OSXX6pPU+sjMhPd33+GClRX2vfgi5jc3fx4gxcOdO0RIa6BjaooUmYx7OnMmBpeUiOIHHzA2dy52R0UJNSZ64vDhw5lMJsPPP/8s6MbFcXOCglBdWYmrV6/iOo3cwoABA4RRo0ZRAqVPH2DHDjwODcXC+fNx09cXw1at4gwNDdHVzY0qtsXFRMyDg/Ho+++x89ixWmduDw8PsUePHiwjI0OsyssTT5aVcWZHjiA5ORk6Ojqsa9eudd/J3Z2IYUICyeU1GvIu+OGHWrMrHDxY5xheA8YYXnzxRQYAYWFhCA8NFXvPn88wfTqRnDlzqPrbaA8l5+QgKCwMBlVVEObPr/NW2L2b9mXXrmRodugQtfj06EFKl8OHwc2aRfty4kTo6ekJ/aytOZt336XKvURC66NHD+DTT6FSqZBy7x45Lo8YgQfLlyMvOBgqlQrXAgKgqaiAbU6O6JmdjYKyMrZy0yZc8/CAet48gDHIGAPc3DBjxgyueu5cqBMTkZWYyO0yNUWvp0/Brl6FKIoIDw+HRCKpS16AEi3lu3aBrVqFmAMHYGFkBJ1r18TbvXsz1r+/ULpjB5uwdy87HxSEHF9fTJk0CZUvvADVH3/g9OnT6Nq1K86dO1dLgmU1xNXBwUEzdepUvvbep9FAvHoVUbdu4erVq2JZWRkDakaz1SN6FhYWYll0NHpcuMAeL12K8gED8OTuXUgkEgQHB8PGxqZ9rPD48bZHU/r40DN340ZkZWWhrKyMa2Bcp8XWrXSvbO05Lgi0Bn766fmJ69tvEwn+8kuSlbei0KoPURTx6NEjNrQdEwJqIZWSAgeghNz339NowshIUjS159n3X4jRo0cjNzdXvHjxojBz5sz/98DS3Nwczs7OfEJCgrFUKv1rzGv7E8D/o9Hcyg50oAN/DVy5cmWup6fncBcXl79EqjU7Oxvp589j5i+/gK1a1XKvVmMYGRG50Mobm4O2mn3oEL3uxRebmqT07k1EYeTIur5exsgk5t13qWq+YQNVHoODKViv35PYBo4fPy56e3tzf6qpXHO4cgWHLSw00Q8ecMOGDRPt7e2bssX0dKoYffxx2wGIrS311J4+TQG3uXltT294eDiUSqUwatSotsm2sTGd3/Bwku+3hLQ0qnQsXtzknxhj6Nu3LxcfHy/IZDJW6ysQHk4mQYcONSCcFy5cQEZGBluweDEznDSJiMSoUeQsnJxMVfDGkukffqDvq5392wzS09PFyspK5qYlZIzR+rKxofW0cCGdp8JCqq7s20eJm++/p95jbV8bxxFpevllkiHWG3PG8zx8fHzYlStXxLKyMhYVFYWhZ89iSmAg7EaPhk59A7vUVDrmetX+W7du4eDBg8KFCxdYfHw8Eq2tmVVamnjv9GkxZt480W/tWgaFAmzNGhjUXA8TE8OYzhcAACAASURBVBMMGDAAQ4cOhbm5OUpKSlBeXg7J3buY98sviPTzQ0ZGBvPz84OE5yH+9hvShw5F5pMnaEDeanDkyBFhwoQJrLbtQaEg9/6QELoO/wyMjIChQ6FSKGD/1Vec6Ysv1gWyhYW075tzL7e1JYLcuFojilR5DA8Hy8qC8fz5uJGdjfj4eMHT05M1SUz270/rt16SRk9PD5GRkVAaGUFn6FCWEhoKx6+/RpSuLgsYOxb3UlKEsLAwLjY2VlQoFDB7+lSMy8pip2muuxAUFMT8/PwQFhYGpVLJag2GeB6no6IQZWSEQVZWotXVqwyOjrR+HB3JPO7zz6GSy/HThQvo06cPnJ2d4eDggDFjxjALCwu4WFgwu1WrWKevv0b2o0fqgoICztnZWUhLSxPOnTvH9ejRg5JW1tZkGPngASldPD2pv1hfn6rBjYh2Y5jo6OBmeDjzGD0assmTSQmxfHmzrTnW1taoKC5GZVISHnt5wbZnT9oL7u503338mKqnCxdS0sHVlSr+3t5EzO7fBw4fhvOBAyy1pASGqaniWYkELm+8wSQ1xoQPHjxAbGwsQkNDkZ+fr852cRHSunQRC8vKWHl5ObOwsMDs2bMxZOpUZr1kCSurrGRXAbjPng37+Hjai+PHkyR93TpIPvkEtp6eCAwMRKFMJri99x6LqKhAXBEpVa2srKCdpQ0AZ/fvF48nJrIkV1c8EQQxKSNDLLKxEWf06cP1W7KEec2cyXT8/CCxscG4/fuZ6Zo1MHz3XRhYWyMxMRG3bt1CYWEh/Pz8MG3atNqe66SkJJaTkyP06dOHA4CcvDwc6dpVSEhIQI8ePaCnp4cRI0Y0lD/fuQOXJUu4CF9fmK1bh/jMTOH06dOsoqKCSSQScfbs2U0NGVvC9Ol0blrrPR85kgiyVAqO43Djxg34+vrWOaNHRpKkfv36ZpMxDaAdufXWW89Ptrt0oWMZN472fTv7iRljiI6OhrGxMU2ieF50705rV6OhpHFUFD1nZLLnGs/23wKFQsEyMjLQpFXo/wEJCQniqVOnSgRB8P74448v/H8fz5+Fjsp2Bzrw18V/vsraDKqqqnDixAlNWloaP6x3b7A+fYhwtIWbN6k39tGjugxyc9Bo6EHHcVQBb6mXWCKh6uNrr7Vc7dI6MmdlUYVXIiESZmNDlbl6KCwsxNOnTyGRSJCUlITS0tI6MvafgkYDcedOFPTqxQ2dPh0DBw5ser0//xw4cIBkmu11UdXRIXOzs2epbzMsDHj7bTx48ACGhobtX1NRUSQnb2GUEwAiMjWVvpbg5OQk3rx5U+Pt7c1zV65QhXX7duoPrcG+ffs0mZmZ/KxZs2CqHafk5EQ9k7t3U9/l4MF0Xc3MaN1ER9OxDRjQagDIcRwTRZHkjTExVJl79oxUF3PmEMm4f58k5qdP11XRu3QhQnP4MPWNAhSAHTtGMtczZ4AxY1BUVISIiAhUVVVBrVaz5cuXY+vWrSIvkUDS3B5etYoqk++8g/j4ePzxxx8ix3HM39+fubu7QyKRICEhQYPISOYXHc0FODgQ8a8xwGr+MpD8FABVhxYtQoivL7766ivhxIkTzNvVlT3S08PFkycBxhoQDS14nheLi4vrWgxCQui8rFjR6vVtE/r66DRvHo5fuACn0aPBDhygBEq/fqQSiI0l4qZFbCwF7RMnNn2vhQvpGsbEAC+9hN5qNeKSk8X09HTu0qVLGNl4FGFlJfX+1kui6erqwsvLC9HR0UhITIRRcDC+6NcPw65fx4Aff8SADz7gy7t1w5UrV9iQIUOYwfr1UJiYoOill2Bra1vLIAIDA1loaChu3boFtVoNoEZ23rkzKiZNoj07fjz1un/0EbUnlJbiwYMHUCgUsLGxaSp7vXEDcHWFa8+ecO3ZUxIVFYXQ0FCOMSba2tqKx48dExYOGsTj11+pmp2XVzcfGyBy1Y52GL2xYxEklUJv3bq6xE8z6hQtOi1ejEfnz+NWaCh8tfJgjiN/AwcHUo306UPfd/hw2pfz5pEaZOpUIDcXTxmDZV4eBI5jVTExuHDmDJxcXCCKIo4ePQojIyNNz549MW3aNLrRLVpEya5mkn3V1dWaJzY2fPrDh0KPHj04vPoqtV5cu0brv979YOSoURzeeAN2V6/iqbMzzMzMhHnz5tUxQY0GgXI543r0EEcdP85A65/e4Ntvyaht1y5I/P3RC6gzAYyOhtevv+KBm5smURR5iURSu/60MlqpVMoOHDjA79y5U5RKpUJuYiL/2nffccKTJw2VPgBVhRMSAAcH8EuXolffvjh/4QJUKhVnYGAgBgQEMA8Pj+eLCTIz235Nt25EjidPxuG0NNHKygq6urp1n/PkCa2ztnrTRZGIeWTkP9fSpadHrvi9etE6jopq9zPP0tJSU15e/q9Vam1sKLbQaCjWOHSInm1VVf+S8epfDd26dcO5c+e4ioqKds/5/rMQGhparlKpVgJI+X89kD8ZHZXtDnTgL4pLly5Jy8rKXhgwYICstbEMfyZu374t7ty5k1VXV+P1oCDm/NNP5IDd1vFUVVHfn5NT61XRS5eoT+q990hO2haJt7Ul4uno2HrvqbExsHQpBYNnzlAV3sWFKt5z50LgOGwkyZwmOTlZ1Gg0bNSoUcy2jX7WfzvKy/EoMRFXjYzYqFGjmj74tAR71apW5/m2iO7d6Vzdvg2cOAG+WzckPX3aPKlvDp6eVLFWKFoOevz8yFyoFem+o6Mjd+vWLVaxYwdsr1xh/N//TtLRGpw+fVq8d+8et2zZMjRx1XdxoQA+IICqeAMHErH45hvq7XznHQp+AQpWU1Io2ZKbC+WmTQg7f16w27GD8927FwgOBrdyJZjq/9j77qioru7t59wZht6liQIiXXq1IQRF7BobxJ4YY0kxiSaaLKMxplli3hTjaywxlmhijb3TxEIRBATpRXrvdebe74/NUAQR86b9vuWzFksZZubee+655+xn72fv3UpjI5ORcffSS5S+YGZG/7e3pwJx779PY3DwIEnKPT1pTqmoENFZsABwdMTJmBgkJSVBT09P5ufnx5mYmGDkyJFswMsvM2Zj093wtLICxozBheBgXL9+HZaWlmzhwoUYNGgQk0gkEM+bB6NHj7h+P//MxNu3g5s3j8h+H3LyANDx9u4FzM1hYGXFwsPDURwWBpfsbJbp6CgMHz6cPV706OHDh0hPT+eSk5OZlZUV1M+eJfnpggV9UrFIpVIwxiAIApqbm7tVuy8sLMTNwkLBe/t2hmnTaD45OQFFRTTeb77ZcZyffqLnXF4gDaA2RVFRlI//zjvt9R84joOamhqLj49HXl4eBEHAoM5RvBkzKFrr6trlfPT09BAZGQme5zFjxgxUVFdj4tat4HR0gJwcSPbuhWVgIBT79QM3YAAU3N2h8diYDRgwAM7Ozrh9+zZV+ed56JaVoVlREQYZGYLZo0cMhw9TC63SUpJq29pCe+BA9OvXD2fOnIG9vX1X0pWfT3Ow7XnX0tJCZGQkBhobs/H5+cxwxw5Ox84OSbm5sj12dpxHdDS4adPA2pRAgqEhSisq8PWdOygvLxfMzc1Zl3tRVYVru3YJ11VUWM7IkbKhAwZwcHAg6ewTejwDQLMgQPLFF/ALCcF3zc2IefhQMDQ0ZKpqauCsrclxlpxMTpLCwo7Un02bgDFjIAsKws7KStguX44hPj7o/9tvqMzKkpVHRgr3a2p4VS0tYcWKFSJ5BBgA5ZubmXWkE3WCjY0NV7N/vzDi2DFO2deXnnlBIMfGBx/Q/Pr0U8pZZgyPTExQf+QIVIcOFbKKi7nMzExBUVGRqaurQ4ExRCQn8zE2Npyrh0fXXtceHuSkKyykNaOpiRwne/cCgwaB5ecjuqwMY06eZOP9/KDwmBNLV1cXzs7OuHHjBlRVVYXAoCBOXVsbCp1UMe3473+pLsSHH0LB1xfm5uYICwuDqakpVqxYwYyNjfFMKWW7dpGjW96pozf89hvQvz9CSkp4DQ0Nzt7eHsKJE5AuWgRu+3awvhQ6O3+e8qHle+8fwdix5CDOzYW0f39El5W1dyhQVFTs8frbnDWcpqYm/hSHOceRkmfJEjqXpUsp0q2t3XtxyP8jUFFRQUxMjExDQ4PrtVDq34CEhARpbW3tbAUFhfk3btw47uvrW/uPntBfhOdk+zme41+K0NDQbEEQAmpra40sLCx6bsXzFyMiIkLQ0tJiS5cuZQpHjpABM3587x8qLCTys3w5GSo9obycoq5ffUWGtatr3zzhIhGRtLNn23sxPxWjR9N5lJVRJHTWLLCFC8Hl5AgW8+dzM2fO5FxdXVm/P9Db83/GBx8gq6kJKaqqqKqqkpmZmXHtcuN9+4CPPwa/bh1qVVVRV1fXPRLSF6ioAN7ekBoYQPb229BoaMCAvuRsA+RU+eQTinAuXtzzewYPJjLRw/iVlpbi7t27QlpaGgbdvg2uqIjdsrPjHWfO7HL8yMhIoampiY0ePbrnnHWxmCIdWlok8b56lSJq8gj1kSNkVDo7kxwyLw9xCgpIvnoVmWpqLM3MDHfd3HAjNxehlpZ4aGQEUx8fqL7wAn2npmYH0airo2sKCqJ5bGxM5HjXLop0i8X0fi0tIqNqarBVUMDt3FxMmzaN60L0zp0jJ8T773e8dukSRfanT0dhYSGys7NRVlYGKysrKhollZLTICKCyOjGjZRC4eVFRaT66hB65x3A3R3abm7w9vZmbk1NTLuqCsKkSSwmJkbw8vJiTU1NKCwsREpKCn/mzBkmEol4RUVFVnTqFEx27RJagoKY0uNtxTpBKpVi//79OHPmDMLDwxEaGoqwsDBERESgvLxcuH79OjMxMYGSkhIOHTokDBw4EEM8PBhmziQynZhIaoX167vmSHp7dxDt8nIiO//9L7135MhupFBbWxs2NjaIiYlBTk4O8vPzBUdHR5pIr7/ejWgDZKDLq8iPHz8eHh4elKM6eDCRqowMKgaVnU33fsAAIn1SKTlp8vOBrVuhEBAArXffhV1uLjQCA4U5a9awZEtLDDE2hl5UFENlJRXdqqujyO/t22AXL0JfXx/hubkY4uiILpLgN98kBYOhISAIKIqKgv6RI3A5cwaP9PURYWyMga+8gkslJahpbmZV9fWQ7tqFi0pKKCwsxBl1dUQpK8PcygpJSUksJiYGNTU1vIGBAROJRJBNnQqEhbGsSZPwxrRpHMaOJTLxlHz88xcu8AkSCbPatw/q1tZ49OgRu3XrFiorKwWRSMRSFRSEAY6OjH34IakOEhIoMqitDQQFgVNSQnhkJCZPmQKJtTVUX30VgywtOcvSUs6jqorz4DiOubp2LaI5cyY5YJSVu+4PjY3Axx/jQV2dUGZoyAwPH0apvz80Vq2i51VLiyKx69cDs2Yht6wMGRkZULp0CV79+jG7JUuQl5eH+Ph4oXTHDma0ahV+GzWKmZib82FhYfywYcM6mCJj5Ohat47ScQoLyQnw+ut0riNG4EZiomDVvz8zktcQOXOGnHRt16KoqAhvb2/m7OzMKSsr01h3Xi+vXKF0jbVriai27QHp6el48OABfH19YdhJBdRnyGQ0j9qk+r1i6lSgf39cvXGDq6ypQUVJCX8vORmlZWWsesiQHtNOukAQSB0xYcKz13Z4/KvefBMJCxciee9eRIrFfGZmJn/37l3u5s2bSEtL469fv87c3NzaHXqMMURFRUFPT+9JnT/+GCQSChjMmUNKnDFjSPk0dSrtA/9QEOTPQGlpKZecnMwbGRmxxsZGqKmp/SPn4ezsLHFzc0NhYaFyZWVlga+v792nf+r/Hp6T7ed4jn8pfH19cf369d/LysqCJBKJRmf54t+B+vp6XLlyhVlZWWGQ3Ev9+uu9e6wzMymiPW3ak6uJPnhAhVB4noh2T1Wqe4OeHhkz2tp9Jx4A5Y7KvfMVFchVVORrqqo4i1mzyMD9J6qQvvsu+m3eDF1ra0RGRnI6OjooLy+HVmQkRObmKA0IwPenTuHmzZuIi4uD9x8o/AYAYAxf//IL/8DAgE1wcGCSb78l4tKXDdbSksheT1HV2lqKZvWQjy8IAnbv3i2UlpbC5PJlaGdk4LaVFSvS1OxWyMbOzo6Fh4fDwcGh597cPN+RG7p9OxnyS5ZQpNPGho4/ZQpFSFetAmbMQHZrK4KlUtSpq6NRRQW2Hh6CtY0Ny8nJQX19PaKiohAbG8s7ODgwSWcDXyqlOdY5R1lDg6S20dEULTM2RnsubkQEREuX4r6TE38nLo6Zmpp2VGKV54R3jtZfvUrR3IkTMXDgQBgaGuLBgweIi4vDgA0bBG7XLtb6ySdQPHKEVAOmpkQu33yT5ntkZPe+2j1h2TIyEOWIjAQ8PGDs44Pw8HAhLi4OoaGhLC4uDmlpaSwwMBBTpkxhw1VUYGVigismJsKVlBRmZ2cHZWVlVFdX49atWyguLsa1a9egrq6OHTt2oKampv0Q8grtWlpaQnl5OSorK1lMTAzCw8MhCAJeffVVxhgj8uTvT9XNv/qK7p2tLZHiU6fo3Jcto+J7zs503Z9+Su95AtTU1GBlZYV79+6hoqKC+cojh6tXA/Hx4IcO7VKAMDw8HLm5uQAAT0/Prjn1CgpEeC0sSEFx+jTds/nzicjp6dHP1q24MGAAcoqL4b5kCRynTGHso4/gPnky9E6cYEhOpnzqjRtpDr/6Kq2Npqao/fJLDA4OhqmVFVhLC5Gi1lYq5jZ/PnDiBKSbNiEsJAQtra1o/OADKPj4ILm6Grdv30Z9fT1TU1MTgj76iNWWlKCxvBxJNTWCY2GhMH30aOY+fTpGjRoFnufx8OFD/t65c9yjvXtxyc4OcY6OmDljBrQEgZ7vJ9Q66AwlJSVWevYstL75BkPOnYPn7t1ISUsTMjMzWWJiIvKSkpjhzp3QamgAx/OkBpkyhQjJsWPAN9/AMCEBajExUJRISC1jakoOKxcXUo4sWUJzVlm5I4IoJ4rDhtG/UikR3zt3YFBezkp1dYWLkyfzd+rqOF1dXejr66OxsRHlMhnU1qxB46NHELm746KKCrTGjhXsvL2ZhrU1nJyd2fDhw5mBWIzcfv1gPWMG/Pz8WEhICKejo9O1UrOaGpHjykq6ns8+67JfNDU3s6tlZRi+Zg04qZTI+NCh9D4bm66KrcxMcrqsX9/24SaSKhcWUvpKp7UoLCxMKCkpYVlZWYK3t/ezM7vMTIrsd57bPUAQBJSVlUHF0RFNMhkGKypi1CefsJhp0/ghS5Zw8gJwvfZkPn6c7t+6dc98mp1RVF6OyJwcPqqyko3Nzobf0qVs2PTp3MiRI+Ho6IiKigpWWloqqKmpdSkaqKuri4iICGHEiBHsTw9MSCQ0J5csofXo4EG6f+7uZL/8H6xgXlxcjAcPHrDk5GQhOjqaPXHv/YvBcRwUFRXB87w4KytL58aNG7WhoaHZvr6+rX/7yfyFeE62n+M5/sXw9fVtunHjxtXc3Nwlw4cPF3erDvonQiqVIiMjA3l5eYiOjhZOnz7NtLW1pTNmzODY6tUUYfL3f/IXyI2nCRO65l/KUVNDRCk6mqSgj+VQ9xkcR170vLyej9MXuLqiRF2dS0pNlbmPGsVh2DAyjh496ih69Vd7rZOSAE9PcCNGoLq6GvHx8SgsLETt8eOw/uUXKCxciLMPH/IVFRVMQUEBc+bM6bGdRm/Iz8/HxYsXcfbsWQBgK9etg/KwYTSGCxeSka2v3/u1amhQdO/qVTIuOuPmTYp4r17d5WWe57Fnzx6htrYW70gkzMzMjOmvXs1cZsyAr69vt+g1x3GIjIyUNTQ0cAUFBQIApqGhAVZdTZEtDw/KZZXJSKZ6/DjdL39/cgL060fX0Sn6FRkZiZKSEqxbtw4vvPACbG1tmUQiwb1799rf09zczHJzc+Hs7EzndPw4FQH6/POex2LIECIntbWUQ+3tTQR/4kRYtLay+IwMVLa2dkRVJRKKWmlodBT7UVZuLzLEGIOenh5GjRyJ/IQElPfvzwafOYMzWVlwPHGiqzNJQYHGe/Jkilo/LZdx5UqKoMvzns+dA0xNwQYPhrW1NauoqGDjxo3DxIkTMXLkSCIXjY3A+PFQcHSE3YoVLD09XSgtLRV4nmd79+5Fbm4uMjIy2ucrALz11lsYN24cRo0ahVGjRsHNzQ0uLi7My8uLubq6oqamBvPmzcMLL7zAuqxfHEfjZ2FBRuzEieQMs7WldeTjj4lgzZ/f5z64BQUFSExMhJGRUUdOekoKMuvrsTcykr9+/Tq7e/euUFJSQlW/GxuZuro6fHx8elZUKCvTPdi7l5QUw4Z1RJ4NDIClS3H//n2k8jzcZ8yAqooKzaEPPuh4Ll58kRwdUVFUzM/QEAgIQLqzM843NMDD2Bii0FDKuz56FEhPh+zrrxGtqChck0pZio0Npm3eDGsXFxgZGcHe3h4JCQm8sbGxMHXqVE7XwAD69fWwiYvDyM2bmcWhQ0yprW82Ywympqbw9PTkBvzwA/Ti4xHv6QkTU1PBbN8+KF2/zsqXL+81qiUIApqamtDU1ISw9HQElJdD7OwM+PvD2cODPXjwgB/Vvz8bc+oUJDk5YCEhkAwfTg6KHTtIFWNiAqio4IyzM2+kpsa0ZDKqBbB/P5EWxkixNHcuzfFffqFce6mU2mSNHk3z5coVWrPq6oCPPoLym29i0Pz5bOiwYVxcXJwsNjaWq6iokJ06dYqLjY2FpaUlvtu/H0wQ4LF6NbxMTRlWraL1wsoKCAiAyuTJMFy0CEZGRhCJRLh3755QUFAgODs703y9d48k6m5ulEZy6FBH+klbmomxhgbir1yBg48PJKam5JjjOFoz09I62lbKHXRyoj1/Ps2J//ynR8VYdXU1MjIyGGOMjXqCQyQ/Px8pKSlQVVVFbW0tkpKSoKKigrt37sBg4kTsr6xEdmMjb2dnxxobG5GVlQUdHZ0u8/3hw4fYv38/oi0tUaWpCVVfX8Fkzhw2PCiIMzQ0hLKycnvKwxMJWXY2jY+9/RPnUl+we/duyOrr2SvBwVD98ENa/wcMAGMMysrKsLa2hoKCAgsJCYGHh0e7rFxHRwfBwcHMwcHhjynA+gKRiJ77kSPJgaqvT4ojBYUnq/j+pTA1NcXQoUNhaGjIHjx4AGdn538sug2Qs+TevXt6LS0tgRzHiX18fK79YyfzF+B5gbTneI5/OTZs2JD8+eefN9bW1io9K9l6FiQnJ+PkyZNQU1OTqampcfPmzYOZmZkYNTUkM+ytQMilS2QQFRX1XC07OJgKTjU0kCH6v1b4DAigH2fn3nPCe0F5eTnPaWtTZWmACuFoaFDP6MmTqU1PU9Nf1wLk2DHKA5swoT1X2yA6GnWamrj3xhtQrqlBSkpKOzu5deuWzNTU9Klae0EQIAgCTpw4wSclJbV/fsWKFR2tp6ZPp4hSYCAZR++807v0LyUFuHyZ5kFnjB5NEZnH0NzcjKKiIuYaE4N7ZWWC7J13mJeZGXrrsu7t7S2KjIyUqSoocFHnz8Pb1hZDV6ygfPATJ0hW7+REBu7atRQNkreBewx1dXVISEiAg4NDlxw/Y2NjLF68GHv37gUATJ48GWfPnsWmTZvAcRzGVVbCyda21/OEpyc5jq5dIyN57lzUGRoi64cf+NmZmZxs+fKurO2HH8gYGzyYDNKAAPq3E/HkPvkE837+GcjORqYgIP9JTjUfH5Ivl5cT4WjrI94jJkwg8iyHllZ7ReJ+/fpheqccTI7j6L1nzhBZbCu2NXLkSHb48GEWGxsLIyMjWWBgoEgueT5+/Di8vb3bi9n15AjU0NDArFmznnyOADlN9uyhPOXiYup3+9FHdB5GRs+0Vsg7CRQXF+P777+XCYLAWqqrGZqbmf+kSZy1tTVSUlJYQkKCrKWlRQSQkdcj0f78c4pg/fgjFQmU925/zCAdOXIkkpKSEPXbb7yDpiY38NgxSmkYMYLe8Pvv5BwsK6Mq9G3jZWxsjFpNTeR5eWFQYCDdV1NTQCxGnY4OcpqamJuNDWa89BI0OkmONTU1sXr16q6DPXkyOaESEyn3tjOys4GdOzHg6FFU1tfD6NQpoaysTCjJy2MXbGzAnTolLFu2rH0AysrKsGfPHqipqQk6OjpCTk4O19LSQn9UUoLie+8RYYyNhXjkSLzZ3Mzho49Qa22NH5Yuxfu7d5PUdtUqUibo69M9njULNvPnw/DCBRoLxijan5tL511RQZHY33+n74+LIwcEx1HE39qaip/NmdNR9bwTVq5cKUpPT0dkZKRIQUEBra2tOHPmjACOY7qffw4rExNylL39Nu1TNTW03nf+np9/xmsvvMCu/PabUN+vH6SpqdD99FN6dsaOJeeLigoR46YmWhfr69G6YwfmHzqElEWL4BYURHvK9Ok0nz/5hLpkHD1Ke8ulS1SB/5NPKArcC8GxsrJily9fxugenE2JiYlITk5GUlISAOqGIAgCFegDAEFA7GuvoUZTE6UpKdyePXv4goICjjEGBQUFaGlpCQ0NDWz06NG4desWVFRUoJ+RgbmHD0O0aBFDp9xzd3d3JCYm8sHBwcL06dO770HXrtG9+x8LKdbW1qKmpgaTXn4Z4qtXaW/y8yMHTKfcYk9PT0RFRcn27dvHhg4dyjk6OrY/w/Hx8fDz8/ufzuOpYIzmA0D3tbKSHIYSCTlr+9iy7J+GkpISwsPD4ezszBsYGPyj4XmJRILXX39dcuLECVl2dvY/m0j+F+A52X6O5/iXY+PGjRocx6n9Zd7aNvTv3x9isRhisViwt7fvKKD05ptkfHt6PvnDr75KxGPmzK6vy2RU2Cg1lYzV5cv/nJMVieiYP/1E0fJnhCAIuH//PjdjxoyOF+WeaUtLqt7NcUTkZ8+mIj+lpU+ulP7sJ0CGdZv8mud5GJaWYsKtW6jYsgXXq6r4utBQwcPDg8vPqwCwEwAAIABJREFUzxc4juMyMzNFMTExMDc376jW3QOuXr3K3759m2OMcQCwfv36nsmEigoZtt99R9EVT88n5+OvWEFEu6qqqyTypZcocvrSS13erqykhA+VldHs4YGcYcPY75GRggfPs96UGZ6amvB84w1Rk7s7shobMfjTT4lEaGiQVD00lOaiigpw+DBFlp5Ats+cOQMAqK2t7ais3YYBAwZg/fr1aGhogFgsBsdxSE9PF1T27WOR5ua4AGBCVBQ8eotUaGhQocDMTMhmzMAdU1OhbOlSOLu5QSyXecsdG1FRHZ9TV6donzznmOeJVLzzDs3jmzehtnw5Wn/8sVvf3XaoqBCZi4ykiv9PwogRpJ4AaL59/HEHYewJy5bR8zp7dvtL5ubmEIlEmDlzJmxsbLoY2TMff9b/KHieHAfffUeRY0GgCODRo8+sLlFSUsKcOXPwyy+/wNraWqSkpASnQ4eglpgIbtMmAICzszOcnZ1FAPDrr78iLS0NW7duFRQUFASpVArnnBxOWUMD2Xp6sF+7FvbXr0PUS9skIz09LB06FK2LF3P3nZ0x8Ny5jj+++SY5pKZNozoTCQn03GdnI9nGBhzHUUFAxiiCfuoU4OCAi8ePC0opKRiSl8dEv/5Kc9/fnyK/OjrdZascR45HudQ+P58cBACtZQ8fAhIJtBUVsfillxgCAhh/+DCuHDiAmb6+7YPM8zyOHDkiqKqqMkNDQ9bU1MQCAwNhYmKC6OhoWkfu3iVCf+IEEd/SUmD6dFwaOhRaFRU8P28ex61cCWZqSuv0pk107bm5KJg6la8fPpzzr60laf22bXSvO6ccvf02tRMsKKBo8qlTdKzQUPp95Ej6KSqidamlhboVuLvDYscOREZF8TPPn+eOzpsHp5AQ2Hp5QcvJicjtzZv07A0dSn3CIyLo35MnKYL93XdQefttTFu1irtVXMw/unaNCzxyhJ7P3Fwax08/pfM0NAQuX0ZeXh72amrCaPNm/lUXFw4HDlCtB8bImaqgQMTcxoaKKi5bRp83Nu7onvEEqKqqQl1dHQ0NDd3+FhYWxpeWlrZPBHm/9nnz5kFVVRX8gQPIuHYNN/z90draiqKiIm7cuHFwd3dHSEgISkpKmJqaGkJCQmQtTU3sFZGI0z1wgJ6/5uZuxxs7diy3f/9+FBUVdc8f3737j6vMOiEpKQkSiUSwtLNjOHaMcv+nTqV0k07rEgAsX75cdPbsWVy7do0PCQlhrlSXgaWlpcHX17fntfOvgFztZW1NTsMffqB6FLa2pNCIiSEHW+eUnn8J8vLyUFJSghkzZvwrdPCKiorIzs5mUqm05Z8+lz8bz8n2czzHvxgbN25UlEgkJ+3s7GQSieTJpWL/BOjq6uK1115Dbm6u+PLly1BUVIS7mxvJVZ9UHGvfPoq25eZ2NwBjYqidyNq19Pk/Uk27NwQGUpQgPLzXStg9ITk5GQAEc3Pz7tY8x3UQ7/v3Scp4/TpFKurqyCizt39qHlyvuH2bDNZFiwAAJsnJWBoQALz7LrTNzTEY6DyYDAB27NghO3funMjPzw8ODg7Q1NSU52PC0tIS5eXl0NDQQEZGBtoieJg9e3bPRLvzta5cSffqyy/JGPT37zmPfuVKIm83bnS8Zm3dPX9YEIDDhyF++BDiL7+Eja4ujkdEsOLiYnSrfFpVRUa1hgaRhcxM/BQYCI3+/WW2iooi6OnR8a5cIceAPI+zvJwiUxkZPeaSBwUF4YsvvkB2djZrbm7umo8LKqgjVxM4OzvD2d6eCe+9hz1tudUXLlyAi4tLt4rajyNPIsEFf3/errkZsyIjOZG3NzmA4uKoZRtABtdPP5Gk9JtvqNCbHAcPEmHIz28fB30AYrFYyM7OZuZPMtC+/ZYi0XfvkkOoJ0dcQgI5QkpL6fvt7bv3KJfj1Cmq7G5h0YXgchyHYcOG4cSJE1BSUhIYY1BXV+c1NDQgk8mEpqYmVl9fz1paWpi1tTXv5eUl0pO3SOsNra0Uub52jQhUaCgVHwoMpHvNGBVEi4kh8vUM0tSMjAwAgJ+fH6karKxoXveAxsZGyGQy2NnZQUUigZauLmewbh2qJBK+fsUKFpqUhNzERGY5bBhsevqCuDjg44+RZmzMxwUFcT4LFvDo/OxKpR1jrq0NobERDx894o1v3OCueHpi6tSppDbJyyOH1cWLJPXftg33GxrYfQCaHCe8vXo1w8WLNGaXLhHZdHYGHB07FCmjRnXUwLCwoIj2smVEVDuv3/fuAQYGSKiogEwmw/Xr1wVlZWVmamoKmUyGiooKNmPGDNg/NuZDhw6l/5iaEnFMTSVVy+zZwMsvI+3zz6GmpsZdWrQINebmwqi33mLGr7xC87SpCSgpgbqaGlfc1ETnFhxM80Asbt87eJ5HQ0MDalVV0aSgABOehygpieZ4fj4R9+BgcgoVFtI8MTGh85o4ETAywkArK64uNBR6enqw1dNjWlIpHefiRXr2rl2jKHpFBalmAgMpegpQihOAqqoqBA8axFnU1ws4dIihoYGcA4GBtOaFhrYrF/r16weO49CvXz+BMdaRWw5QZB6g516O33+nOb1qFd3zTZueqBoTBAG1tbVdq+sDiIqKgqmpKVdaWorZs2dDKpXCzMwMampqHeu9lhb6+/rC/f33UV1djbNnz/IXL17kgoODBScnJwQFBckfdBFiYmiteP11WpOyssgJ1mlP79+/P2xsbPhdu3Zx8+bNw2D5upuRQQ71/6EoWk1NDQoKChAcHAyZTEbnVVtL9RyuXaN5PHkyKQvawHEcpk6dCp7nuYiICDx8+JBXV1cXKioquG3btgkrVqxgf7ksmudpbsfHk61z+jQFAeLiaG8DqGaDkRE5Ew0MaO9PTaV94eRJSqUYMoScxw0Nf2tf78zMTOjr68t0dHT+t5Zpz4DKykqoqqqiS52UTrC2thYSExMXf/rpp6J169b14h3+v4XnOdvP8Rz/QmzcuFEUGho6WSKRnDQzM7OfNm2a8t/hqVVVVUX//v1hZGSEM2fOYPC+fUh0c8PAJ1X+XrWKSGfnqHdLC20kR4+SUeHv32WT/NPAGJG0Xbu6R9Sfgl9//ZV3c3PjHjdiukEioZwxCwvaTBUUiBSUlZFH+9Kljv62z4L//pdI4qhRZPRNn065nT30PpbD09OTq62txa1bt3D37l00NTXJrl69ykVHR+PmzZuIiYmRV1cWFixYwOLj42UaGhowMzNjMpkMjY2NT9zg0L8/GVv37pEDRVW1uyfe1ZUMTHlUo7WVzrezlJnniQimp1MESFcXhw8fltXW1jI/P7+OFkRXrlA0a9YsItNLl6Jm2TLsPXGCr2poYHPmzKGqvY2NFNlYtarrcRijc/7pJyKJnZCUlITTp0+jtbUVtra2wpAhQ3ovmMPzwK1bYNu2wWniRNjb2yMrK0u4evUqy87Oljo7Oz/xwdu9e7dssLs757d0KcclJNA1HzhAz8OFC0QSBIEIxdChlKs9bx7ljB44QPf81CkyJDsV+6mvr2ehoaEYNmxYz84Sxmgujh9PEsae2gj170+RUA0NIvIGBj1Hn06eJMfAa6/12NbG3Nwc7u7uMDQ0ZJaWlkxZWZmTyWSciooKp6+vz1lZWTEbGxuWkpKCsLAwJhKJ+IEDB3Y96ZYWIv+hocDWrWRsRkeTo27OHPqxtqbxCAig5+2ll6jjgJUVjU9REb2/l3tZXV2NEydOwNzcHM7OzvRiaSmlQDymzMnKykJYWBhEIhFeffVVNmjMGGY0cCDUv/kGekFBbPDgwcxLTY0N3LkTe3V0EB0dLUtLS2MNDQ1MW0EBkq1bAQ0NNBsb46BUyibOnQsHB4eOk0tMpJxcedsqKyvkNzTgUH09S1ZVhR3HyXzmzqW5VV5OjqyZM4HYWFjOn88Gu7tDWVkZGZmZrEhJibdbuZIxDw9yLJqYkBplyxYy5E+f7qjD8MYbFMV99IgisbNmdYzZuXP0bG7ZAn19fQwcOBDp6eksPj4eXl5eEIvFKCsrE6KiogQHBwf2uJMKMhlFo5cvJ/lzURGRBZCzNjU1VRZw9SonMTBgZwsKEBISAtNZs6ApkwGbN8N471521cZGiC0okF01N2d3L1xgbtOmYWddHa7euYOQkBDcCwtDyeXLsNy0CQpXrkDh+HFSsJib03zfto3UArNnk7NJQ4Oub8sWYPx4PCotRbiqKqqkUtS6u8uGLFnCta/be/bQdxkZ0Rp+8yY5cjo5a5ubm/HDDz9Aq6QEo/btY7UjRgBvvQWlTZvIYWxkRPO5rVifWCxGVVUV4uPjORcXFyj11ibv229pv5TJaG4XFNA8Aajg3mPrc3NzM27duoXU1FR4eXmB4zg0NDTg559/RkFBAcRiMV544QWYmppCUVGx61rRtqYrKChATU0Nbm5uzNPTExoaGiw0NJR5e3uD1dWRJH/JElpH5Yobc3MigJ3aMwKAra0tu3PnjjBgwABmaGiIiooKiObOhay6GuKe1qA+oLCwEDt27EBycjJUVFRkEyZM4AwMDGicVVXp+Q8L6yiW+BjkdQnc3NzYsGHD2PDhw1FSUsKfO3eOs7Gx+fP7SOfnk33j5kbqhMJCmj9iMdVycHenZ7mhgVK1Vq5Ee6vDSZNoTOvq6O8+PkTGJRLaE0xN6X5s20Y/c+fS57W1SVF28ya950+qJ1NeXo7MzEx4eXn95WXVW1tbsWPHDmloaCgnkUigpqaG69ev80ZGRl3WmcGDB3OMMWRnZzuHhoZe8/X1ffRXn9vfASYIwj99Ds/xHM/Rho0bN9opKSl9JpPJXtDS0uJ8fHzU7ezseo9O/kWIDw4WBr74Itu9ZAm0raz4lpYWwd3dXeTl5UWScX19MpI7o66ODMbBg2mz+KurW0qlZEC5uFChkj6A53ls3rwZ8+fPxx/uqy0IRKaWLaOo/v79HcWe+vLZffs6qlvfukUS7T5UZa+oqMCePXv4xsZGTldXF+Xl5XBxcZFVVFSgoKBA5Ofn1x6BysrKwpEjR/Daa6/h+PHjfHFxMRcQECB4eXn1Tj5DQ6moT3o6GaadjZVffiHysnIlOVNWrCAjCCDSevYsSbz37AE0NCCVSrFt2zZ4eHhgtIUF5fW5uJDBEBUFWFigoKgIFy5c4AsKCjhzc3PZlClTRBoaGmTIv/kmtcQxMOh+niEhdG6d5N5SqRRffvklBg4cyI8dO7ZvPUQPHKCoVWpqe4E1QRAQFRWFS5cuwdHRkZ82bVo3wi0n9e+9915HX966OiICI0cSwfvmG/o9LY2MJTU1eiZu3KCcv3v3KDr5GHiex5dffomXX365uxqgMxobyXi/ebPnitILF9I9fPCAiNeaNV3/Hh1NYygW99jL+FmRn5+P/fv3Y9GiRTBubqa5NGgQRVYHDiSpfEsLGaSPqwZef51UKuPHk3x03z6SVn/2GTl68vNprkVHk4Fqb9+tXeB//vMfobq6mi1durRD6nrpEjnK5JJ6UCTt66+/BmQyvPXoEbR37qRjenh0Pa/t24GqKtSvWYNHjx4hOzubL4mOhutvv3GNmppC/JQpvLOfn+jcuXOYO3cuLDo//4aGEDZvRtPs2VBWVkZLYyNgbY3/zJsHs/R0jIuMRFVICESxsehvaAgmj4gmJBD5biMvaWlpOHHiBIYOHQrfxwmNVErrz8WLRB4jIymqVlBA0fLOVfAFgRwO777bJe2D53ls376d9/HxYR4eHozneZw+fVqWmZnJ3n77ba7dQZaZSeT2wQNa/9sKjD1emVv+nceOHcPDhw/RHiXfuRPlly7htI2N4Dl3LssvKEB0dDQGP3iAgO+/h9qpUxDp6EB08iTg5IQ76eky/bIykfmxY/T9mzeTY+nLL+la3n2X1s67dzsi197e4N98E03h4fjv4sVYmZUF0Zo1RB4TE2ndCgsjshIfT/Uf5DnjHAdBEHDkyBFe8d49YYqnpyj73j2hKjSUDczOxv6VK/nZs2dz5iYmdG9OngT09SGVSrFlyxZh8uTJzOFp9UPGjSMyde4cpXTIndhz59I53LlDzt229bm8vBzff/89AGDhwoUoLy/HubY0hQEDBvDz58/nenSg8jylGyQkdFMe8TyPL774AlKpFKo1NVh08SIebN8OUxsbmJiYkPy6svKJSrSTJ08iISEBEokEMqkUFklJSLewwIDBg/kZM2Zw6s8YmT127BiflJTEffDBB92dwT/9RGvC++9TBH3ChD4TzX379vF5eXmcgYEBP3/+fO4Pp+G1tlL0+pVXyHmWl0dF8q5fp2fO2Ljr/L98mVRMMhndU7lSpy+Qyei7YmNpXk6bRs4yuXNr7Fg65vTp9N7z54mwf/MNOUrPnaM9s66O1E5PCdC0tLRg+/btgqWlJT9t2jTRM/VwfwbIZDIEBwcjIiICAODm5oZ79+5Bzj+NjY2biouLFe3t7fmSkhJ4enqKTp8+DQAtGzZs+B8khP8ePJeRP8dz/EuwadOmhQoKCjtHjhypaGtry/XaZuNvgKNUyqqjo+FXVSXU1tayiIgILjExUebl5SVCcTFt6HJIpSSL3rePCgt5ePw9PSjFYoq0nj1LhmQfjhkcHMyLRCLWv3//P36CjJFs8VGb03XvXnpNLKb8tc8+e/Jno6PpfBcupI1xw4Y+tz/T0dHB+++/z3333Xey8vJykbq6Oj9lypQed0g9PT25NxlGRkbC6NGjERYWJsTFxQmBgYHcE/O+fXwogrBnD0U8Nm7sIGKVlZQ/DVBkSW4symQUaYuOJkLeZqDHx8XBMTJS8Fi0iGH9eiJM58+TxI4xPHz4ECdOnIC9vT3z8fGBpaVlx7W89VZH1eee4OtLY3jvHhmVoMJoPM9j4cKFfZOB1NVRP21//y7EjTEGFxcXXLx4EQkJCdygQYNga2sLsViMpKQkhIaGyqqrq0Xjxo3jFRQUOo6lpkZOmG+/JQdKYyMZZTNnUmTbyIiiGF99RTnUT+gJy3EcTE1N+WvXrgnz589/sgWkrExjKc9rfFxuXVhIxK24mCJnnVFURPf3s8/IiP1fUVMD46YmjLtzR+AuXmTt0lwXF5oXT0sj+e47ml9KSmQkKinRGvPrryTzlRelOn6cHAzm5h31FBQVAcYwaNAgFhcXB93Oz9O4cfTTCRKJBEwmw5KXX4b2tGlk2HaW/8rR1AS8+SZUVVVhY2EBm82bOSQlQXrzJgqqqphxUhK7cuUKAEBFRaVLazFpaiq++fFH1G3ZAgcHB1laWprIzskJPM9j+Fdf4dK338ryDh1iw86f59SVlCA7eRLl5eUYHBcHdvp0O9m2tLSErq4uX1JS0n1Oi8U0Dq+/Tr+Xl5MD7OpVKjT34EFHAbBdu2huPjYPOI5DQEAAd/78eTg6OkJRUREDBw7kEhISWHl5OQwMDOh7x4yheZSVRdW0xWIiIhcuUMSubbx4Cwsc37YNhUVFvI6ODrOysmIAUBkUhNBr1zB91y6mEReH4vfeg0wmQ56rK6QXLkDyxhvAhg0Qpk4Ftm1D4+TJiB8/HuZywuDlRXJlgNbajRspzSA/n/7fVguBO3QIR/fsEZSKihgnCBTlv3qVIr337gEREWh2cECrnx8ejR3LD0xP52Tu7sgbOpS/bGHBBsXFYUpRkUgUFATL2bMZWlogZGWh/9277ODBg3BxcRGmODszpKcD+vqIjY1Fa2srs3yas+rXX2nuqqkRQevsRDt8mJ7VL7+k1KWdOwEjo/b+6z4+PpBKpUhLSwMALF++HPr6+k9e43ieCGEPLQI5jsOKWbOgPnEifn/7bf7HefM47awsPuTuXW7AgAH84sWLOWhp0Xp1/Hi39ppjx46FlZUVVFRUMGjpUuS+9BL8Jk3CoUOHWGhoKD9p0qRnkuDZ2dlxSUlJiIiIwAuPK+i8vWk/tbKi/UBNjfanPmD+/PlcaWkpzp49y/bv3y9bsWJF35ikVEpz2sODHDxHj3Y4rqysSAG2YgW9t6cWjI8e0ftqakj9sGtXR57+0yDfg1xd6QegQqpyyKXpO3dSZJznac3X1iZiv28f2RTDhlEE/aefAEdHVJ04gdLISKhHRSFu1iyYlZaCHzgQ2Q0N8PT0ZOHh4SIlJSVh4sSJf7rRxvM89u7di0IqpOoMwC42NnYXx3H/FYlEfEtLy5r8/PwtAJrj4+PVeJ7/4PTp01BUVLzQ3Nz8/42M/DnZfo7n+Bfg008/Xa6kpLRt0aJFyn3KefyrkZoKvPceNENC4G5hwRITEyEWi4X5paUiLFnSUXxH/t6YGKpkfOhQh8z478KkSZTXlZXVRfosCAIqKyuhra0NxhiSkpL427dvC0VFRaLp06f/uQVUbt6kf69coZwsgCT0M2Z0zydnjAjI/PkUifoD0f8lS5aItm3bhs59Rh+HRCKBqqoqL5PJ2Jw5c0Rqamrw9PTktm/fjtjYWMHPz+/JG6umJkm3s7JI9jx5MkUXXn+dCGppKW34AQEUQblwga57/34ywhMSUBsRgUsFBVh98yaTFBdTVedOY3D//n2cPn0aw4cP58eMGcO1R9t5no7zzjtk8D0GnufR0tJCck1lZYrM8jwepqbi6tWrgr6+voCuOe9PxuTJ5KSR51d3gkgkgr29PRITE3H58mXcvHmTb2hoQENDA9evXz/urbfegpqaWvfj6OqS8b97N0XSmpuJbCYkUFQ3KIiI+FP60b744ovcV199haampt6lqVpaRDg4jqJ8nRUeV66QI+TQoa6t9mpqKNq+c2ePY9wn8DxFB0tLySB8+BBYuxYmTk7sZFUVqlRVYWxsLHvJweHpEZN794hIHTxIv8+cScbumjV0DIAcQO+9R/MRICdGWho5CyIjUbx6NZLv3gUUFTuUBgAReBcXyhNug9KDB1izeTO28jzW3b/f8znl5VGUWFOTcm+zsoi0f/89xKqqMNHQgImJCTd06FB888032L17N+bMmQNLS0vA3h7cjz9ioIkJn5GRwcrKymBsbCxzcHMT2RkaYsDAgZi9cKEI06bh2xUrZFdqa0X49lsAwMLJk8HX10O7be1qaWlBeXk5116wsjdoaxNZu3+fiPCkSaRs0NQk59mCBT1+zMHBASEhIbLw8HA2ZswYrra2lonFYsFAXZ3h9ddpnG/cIPIuz80NDqa5LAiU+wwAUimS3dyQnpkJX19f5uTk1N7DPjMzE0kuLrAzMYF2WRlkiYnQKi+HY1gYsuvrkf3xxxjk6gq2aBEy+/dHvLq6qH9rp1a7Pj50L3NzSUavoUHOvvR0mnstLVSR3cICnFjMG8XEiNK8vWH58stgOTn0jMhk4BcswN0BA1A4axZvl5rKjrz8Mj/hxx85LjGRm1VTg4Evv8xgZEREydER2L4dbMwY6GVmsqysLMTGxjI1U1Pe7/JlDsOHtxcm27lzJ955552e78vDh7SeBQTQ7/ICnJ3XACMjUmz88ANFL7dtQ8WKFWCMITQ0FABJ1seMGSPo6en1ToquX6fnvidIpdAeNAiYMQMzli/n2qKf3MWLFxEZGcm1tLRQhNnZuWs3gzaoqamRUqGxERCJYDp9OqClhdGjR7PTp08zRUVFqb+/f5+4RVlZGU6cOAFFRUVhxIgR3a/JwoIcEHfukGM1Pb3PZFtBQQH9+/fHhAkT2IEDB0RSqbTnGhxyde9XX9Fa9sortM7s2UOt+9atoz3tP//p03Fx9SrVqRk7lgrwffMNEfCeiPkfRWfFyo4d9K+pKQUAANprWlsBnsc9Pz/h+unTbEheHj8oIYGV+PjwHmvWiFKdnAR+9GjZiPXrxcVbtvBOoaEMly51FEwNCKDnTBA60gv+AEJCQmSFhYUiAC9t2LDhPoD7AI50esvaxz7y4caNGxXWrl37/1Wf7edk+zme4x/Gpk2b5kskkq8WL16s/E9Hs9uhpEQRai0t5Ofn4+zZsxgzZgwrTUiAkaoqMRmeJ5K7fz9FBo8e/dNPo6KiAnv37oVEIhFaWlqYiooKDwATJkzgBg0ahIqKClRWViK2ogJOr7wiWAYHM6lMhvr6euTl5eH48ePQ0NAQDA0NkZmZyTk6OuLFF1/EXzbOY8d2tAQpKCCD59YtkqMeP05jtnw5RZdmzPjDMnslJSWsI0PtiaRSIpF0axF0//59CIIAW1vbvnmwBw2igj6HD1NO77p1FIkvKSEvvL09Gd1JSSTH/vRT8uKfOwfZhQvA+PHgc3ORXVSE5pQUWLflABYWFuL8+fMYO3Yshg0b1vUafvqJCL2razelAs/zOHjwILKzsyGRSATbcePgMXcu09mxA+eam/lBgwYxf3//vntRVq9+ItnkOA4vvvgixowZg8OHD6O0tJTjOA5Dhw6Fv79/r5XVAVDUePJkyiWdOpVkkPHxROJ6cZJUVlYiKysLjo6OEIvFQk1NDeuVbAMkGTx/ngzSoqIOKfScOWQsqah0RDQFgQirsTEZVc8CmYwidMHBFG3+5ReSr69eTd+nqgq9CRMQWFWF0tJSnD59mjt27JgsKCiod7ZdW9tVvj11avf88ZUriew+fEhpKhYW9BMQANy4gbLGRizbsQOZDg7krNHSou9UVycpvyDQ+J87B3z4IULWr4dMKkVxcTFFbx9HXR3N78hIus4tW7rlvNfW1uLbNpLs5+dHhax4HnjxRXCurlAuL0dLSwsbM2aMyNzcnMZJTu7t7YG8PKwQiUQHTUzQ0NDAGxgY4OezZ7mgI0dwLCYGhQMGQEVFBTzPw8XF5en359Qpaj0kN+zv3CFDf8ECUgH0IqX19fUVnTx5sl3qqV9UxA6++64wJTKSaYpEFOHsTPhHjAC+/BIlEydCpa6OevRKpQgbORJOdnbC8OHD2x/euro6BAcHw9XVFTYTJgC//IKxixbBV10dzWvW4LiuLoTbt2G0Ywcq7ez4lkWLmOj2bVbemTAyRuqNzExyBMphYUHS8IYGctD8/DMWLFjVGJj1AAAgAElEQVQgSti9W8i/eJHdUFER5syZwy6mpMhqDxwQ6X71FdJSU/nVbm4cN3s2HE6eZPjuOxhHRJBzRSLpqBI+b177+qCoqAgTExPZlClTRAc3b+ZsLl2CyltvYejQoQgPDweALsqGdrS20lxOSOjo5GBhAemdO4iNikJ4eDhqa2sRFBRE6+PbbwPFxZCVlyNm7VrBesAAVj9kCB7l50NfX58fMWLE09e333+nCO3UqV1fr64mAhUZSSS2E0aNGoXIyEh88cUXcHJywrSdO8mJ/iTs3UtOvLZrcnJyQkhIiHD//n2xv7//U08RAHJycqCgoCCsXbv2yftRaiqloxw8SHvmiBHPVCelsrKSl0qlXFZWFtrVB8nJtJZVV1NKxcmTdN9NTSkinJLS5+/vguLijlQpHx9aC7y96X688cYf+84/ijaCfM7UlE2ZMgXy2iO2gAgLFmAYwNDaKsbw4Xhp6FAOv//e4ZD88Udaz5OTyWH366/dqsH3BYIgIDw8XL7299I6oys2bNjw/xXRBp4XSHuO5/jHsHHjRvHt27e/V1RUXLdo0SKVfp16qf6jiI2lXKGvvwYYQ2pqqqBy+DCz/c9/sNvCAvn9+ws2yspMtH59RwuuHvqAPitSUlLQ2toKqVSK6urq9sImoaGhaGpqYoIgQF1dnTU0NLD09HRBU1OT7du3D/Hx8SjV0YFbcDBTHzMGF6KihNOnT7OkpCQ4OzvDwsKCPXr0SJgyZQobNmwYlP/qPHI5Zs0iozchgaJijJGhkJFBBrGRERn/ycm06RcWUtQmJ4cM/epqkm+Wl5Ph1NREUdKWlo5crGeMzl+8eBFVVVXw8vLqe+EYFRWKlvI83esPPqAo6SuvkNF25w4ZKKNGUR7lsGHAnDlonTULERERiIiIwP3795GYmIiYmBi+vLycXblyBSoqKgLP8+zEiRNobW2l6rZ796KptRVVixcjv6oK9fX1iI6OhqGhoTwfWNbQ0MACAwOZi4sLu3PnDkw//pjpHTqEEA8PtujVV1mfrqu6msj8+vW9SvgZY1BSUsLDhw9lFhYWXH5+PvLy8mBtbY0+5Samp9PYbdxIRve5cxQN/PpruneamvQMdYr8njlzBrdu3cLt27fR2trK7Ozsem311g4rKzLoioo6ci7NzIiA1NeTQ0wsJqI8ahQ5T542f1payFmUkkJy7atXidTI28S98grNaV3dLsWdlJSUoKurCzMzM3b16lUuJycHdnZ2eGKEW1OTxkUOJyeSRRobk+MPIANWRaWj1/iYMfQ6Y4C5OcR6etjV3IwKDQ24x8dTRNfLiyJwQ4eSYysyEjh7FnFDhuBGcjIUWlow3M4OShUVJNEMCyPjvriYjMuEBHIqfPJJj4qdb7/9FlKpFAAwZcoUqKiokGz0jTcAZWUcPXqUAUBhYSHv4eHBMHw4nbe8INCsWeCOHYNuUBBiExPZkiVL2KhRo6B2/ToEXV3kampCKpVCKpWisbERNjY2kMlkPatyeJ6Kz/n6dpBtJSV6Vk1NqVhfcTFF73qIsh0/fhwNDQ3Q1tbGMmtrDP/2WxjHx7Nf3n4b99zdhYjbt1l0dLTg6upKjiaRCHBwQJGjI7itW/Edzwuq69dj6Nmz7KK5OfPw8GiPJBYVFSEyMhKtNTUyj6IiDqdPgzk5QSyRQHHNGjgWF8Pa2xsYOxbmn37KUktK2IgtW9AvO1swfO21DiJmaEhzra2fepfLF4lQO28eRNOmofLrr5FubMyKFy1CQUEBu3XrFhoaGhjP82iprhYCVVU51UmTwLZuJTXIhg1Utd3bm+oL3LpFz+i2bch49AhHjhxBZmamIJFImLe3NzOwsEBScrJw6d49FhEfzzc3NzOpVIrS0lLe2tq6qyNu1SqKPsqlxwBgYIDYGzf4axUV0NHRYTU1NUhLS6Ne1/r64NTVcVlREQWamsK8CxeYa3U1XDduhH1PRet6woQJJHfujIwMGj9Pzy51LuSQSCRwc3ODRCLB3bt3MWr4cDAbG/qex51RaWnkNF65sstzf//+fb6yspLjOI43NTXt1aHb0tKC33//XdDW1uZdXFyevBANHkzrg5kZrW3BwR0KgT4gISFBqKysFCaZmDC8/TaRx9GjaQ8IDKR10c2N1oje2j32BTExpPQaPpzWe7ns/cABev3PjG73ETk5ObIHDx5w7u7u3ddfkYicLxxHSg55Ks2yZVQfY/NmGvsFC3p1EPcEnudRU1ODux3tKbf6+vrW/s8X9H8UzwukPcdz/APYuHGjoaKi4u+Ghob2gYGBKn8bAewLjh6lzbSth7EglaIgPh6N585BfelSJKxdK4iKiqBsbMzyx45FTX290NDQwLu6uoqG9ZT32AdkZ2fj559/BmMMIpEIjDEwxuDm5sbfvXuXe+ONN9oJh1Qqxb59+2SFhYUiFRUV3snJiRs0aBAuf/MNRoWF4fSMGbCxtUVqaiqUlZX5uro6TldXVzZ8+HCRs7Nzu6GalpaGI0eOwMrK6umRt8chCLRZ19cTkVZSIslYVRVt3L/+Sh5uJyd6n6kpyQNrauizixaREZ+TQwaEjQ0Zy3l5ZBTJ2zmlpZHE1seHjpGTQxLB0aPJcEpPp99nzyZ5Z00NqQ38/WkTraqiz3t4oFFDA2EhIRhQVobBEyZAydycDILcXNpI9fRo8y0oIKJmYEDnWltL56KtTaR/wwYiJLm5FDkdN46i9qdOdRsmmUyGtLQ0REdHCxkZGe3Gl7u7O6Kjo2Fqasrn5ORwqqqqeM3fH61Tp+Lo1Kko09FpN9SlUmn7vHB1deXHjBnDdZEJNzSgtqQEtRyH/vI2QE9Dbi4ZEnIJ3lMgL1SkrKwsTJ48mdm2VSLuEUlJJKkfMAD48ENyTvz0E0U19fRoHHftovvz8CEV8PrxR5Lvubjgto0NUm7dEiwnTICmjg6ztbV9MkntCQsXUjTzxg1y1Jw5Q+qT0FAqNnf4MM2RJzklcnLIoDUwIEJuZ0dRXXnk8Cnt0B7H3r17kZeXh379+mH27NnoliYTF0eGbn1914JnXl40v1au7Pr+5maK2nz9NTmsOhVp3LRpE3iex0cffQQuOZnmbUAAPSd6evQ8GhjgWmkpBqWlway2FqIFC4iw6+kRGXd2pp+FC8nZUFVFjq4exuvo0aMyBQUFUU5OjlBbW8uUBQErv/4aN3fuFCLS09vtK21tbf6tt97ikJhI5CUsjJ7/hARgzBi0vPMONj94gDVr1pCEt6aG5oanJwRBwLFjx/jk5OR2QqKvr8/7+/tzZmZmqK6uphz1tDRSN6xc2aEIkVe79vOj+/bf/1Lhyuho+r1Ta6Svv/5acDYxwQt79zJMmgTo6SGtqQm/ZGZ2uWaO48DzPFRVVQVzMzPm+fbbqPT0FESffsrEYjH0dHRw5LffZIqKimzkyJFcSkoKz3Ec1/LTT3CJiYHSRx9Bd+RISKytad2YNYvm2uXLJNtmDNHR0Th/9iwUGMPkvDxw5eWInjYNzU1N/MwNG7hTS5dKqzQ0mEwmYzKZjPFSKfO7cAHBAQHoX14OzYIC1KmooEZdHUvGj0ehlRVqVqzgC4yNmXJjIyxv32ZHAwOh1doqqJmZMXt/f9jq69N5fP45sH07ZCIRwn/9FTdv3oRIJIKdnR0ePXrEv/HGG3Qf1q1Di44OEn19cfbs2fbxWbVqFdpbTvE8hKQkJOfkIDg7mzc2NkZubi7Ta2jg3fbvF2mHh0NPTw88z+PAgQOyR48eiQYNGiQYGBiw27dvIygoCFaDB9PzvHYtrR3bt/euiGpqor2hoKBDydDURNWur19/aiFRQRCwZcsWTJs2DdYmJj0fS5620kPxxu3btwu1tbVs7dq13VoudkZBQQF++uknrFy5Ek9t0bVsGZHBBQtongQE9F4DormZ1hU3NzRYWSFy4ED4btpEa9/WraR2+Stqypw4QWvTlCm05isokDri2jVy4Kxa9eR19y8Cz/PYtGkTZs+ejV73LTkEgfYwDw9aB11dad94Rnz33XfNFRUVimKxOEUqlY7csGFD2R84/f9v8FxG/hzP8Tfjk08+maugoPCDp6eniq+vr/jvaOnVZzx8SJt0G9HG+fNgCxfCuKSECODrr8NATY3FL10qZAJ8a1OTYGJiwikrK4tu3LgBqVSKxMREfuLEiZxJG/G5du0aYmNj+cDAwPbXHkdCQoKgoKDA/Pz8ICfEoaGhuHXrFmdubi7T1tZut8LFYjFee+010Z07d+Do6NheZdRg0yaobtwIKw8PKI4fj9u3b/Otra0QBAGhoaGis2fP4urVq8KIESMYz/MIDQ2FgYEBSkpKunocpVIybh49og09Lo5ef/CAvL0jRxL5KC2liFdqKhUQEwSSNFpakhTQwICMkrfeIhnZ5s0UZVq+nAjClSvkWXd3/2P3ShBICtfcTES9LUcL775LhrQgEFmYNAlQUsL18+dRYGyMKnV1QE2NH2JiwqGpib5DHj1saaFrrKmh/zc1kREvk5FXnjEysNqKQqGxkZwJixZR1OyxCIhIJIKNjQ2sra1ZRUUFVFVVIZPJoKqqigkTJiAvL487ePAgZlhbI3npUtwMCsLM5cthZGQEsVgMjuNw9OhRPjU1lVuzZg3EYnH3h0VFBerHjkH9ww/pvJ/muLpwge5tH4k2AGhoaMDIyIivrq6Gjo5OdyutrIzyeuVFdXR0SGYZFUXjN3s2RRzlBt4nn3R8dtMmulcvvAA0N8O5qQmGv/7K9CQSqJWVkcrhiy8oAufh8fToyP79dF8iIugerlxJ3y132kyY0NXgq6mhe7hjB5HsV18lZ4SlJa0H/6NxuHjxYqSnp+O3337DDz/8AA8PD37cuHFc+7rn7EzyxccdCufP92xQyw340lKKqnXqB8y3FW3kOI6cBFeuUAT+hx/ICfbZZ4CODmqCg2W/ZGSILIcM4YOCgnpegDdtojWvshIwN0ft6dO4Vl0tU1dX53x8fJhIJEJGRoZIJpNh4cKFLCIiAnVVVfjy3XeBtDQmkUiEgIAAZm5u3pHbb2VFEXo1NYrkKyoCN25AEhUFnaws2cmTJ9m4ceM4rYICksJHRoIxhokTJ3Le3t4oKyuDuro6EhMTcfToUTDGIJPJYGZmxs+PieGYl1fHHIuNparF9+51OEiWLaP7e+4cpYQcPQrY24PneSimpTEPgGTutrbAihUYJJXihVu3oK6ujvPnz2Px4sW4dOkSRCKRoK+vj6KiIln41q0Y3a+fSD8ighw148fj1VdfFZ06dUo4f/68TCstTTQsMlJodnLC5YAAVpyXh3mLFwuDJ09m7fdcWZnm9xtvoGXVKtw/dw4qWloQ9PXRoKQk09DUZCZGRpwyx3FwcsJYHR3x/2PvvcOiOtfu4fXsPQND71UEpSkoIBhBsYG9a4wlGnuPJXqMHhNjwsEkR0+SY4yJURNLjLHEaGyxYwMVaSLSm1TpUpU6s/f3x80wdNGTvN95fy/ruuYyGWbP7PKUe6271U2cCJlMBplUCpmaGjR++w0D3n4b6NkTP23YgBJBwOhLl8Dv24ejH3yAt2trGSwthVJvb07x9ddYZmCA6g8+YLJ//Qu/JCbC4tdf8cPmzcLEggKuaMQIRbiZGT/oo48wddUqhfPs2XxiYiIaC4bw9YXawYPwWL8eV65cEevq6pijo6OopaVFnxFF1LzxBh5OnCjelsng5ubGlZSUUL6zQsFb5udDuz6ajeM4zJs3j9+xYweysrJYbm4ubGxsBEdHRxo33boRSTx8mISSmBiq+9Ca7VBXR/uPkmgfO0Yt9ZT72Uvw/PlzVFdXQ18Z8t6zJ4lQurr0/+HhNK5SUloce+7cOVRUVDCe59sl2gBgYWEBU1NT8bvvvsOMGTOYbfNWk40xYgSJhQYGdC6lpS2Ljj1/TmlMU6cS6T15EkhOxqPZs/Ggrg4+Q4a03rHhz8TDh6q8aXNzWoOV53/6NK1prxGO/boQBAHBwcHgeb5Fr/ZWUVJC4nBEBJ37xx+TjfKKqK2tRXFxsTqADXK5fKefn18bBQT+76DTs92JTvwP4vPPP39fQ0Nj68yZMzW7NC5y8d+COXOoyNjWrWTMGhmRIltZSQVeDhwgpbOVdiMXL15URERE8K6urmJsbCyTyWQKiUTCqqqquJqaGmhrawvvv/8+BwD37t1TSCQS5uXlxQFAYmKieOrUKTZp0iQ0bp8iCMKrFTK7d4+MxXffbTA6nz59inPnzolvTpjAnj95gvMXL6JrVhbUq6qg5eYmmsTEwM3GhqG6mgjjoEF0nba29D0JCeSlNDUlA8bWVlWYqy389huRLh0dqgb8+eeqHNQbN+g7IyPpb6tWtXo//2xkZWUhLCwMMTExEEURn3zyyeu3lLt3j8LeDQyo+uk771Ce4/DhZNCYmdG1tRN6lpKSghMnTmDwwIEYumEDIkeNEv/Q1GSCIMDW1laYNWsWJ5FIUFNTA47jmha9ao7kZPL8HD7cxFvXKt59lwzHVoqitYeQkBDhypUrXO/evfHWW2/Rm/v2kZdy1SryGq5d27JX+pIlRPiUx3QA+/btE9SkUiz08OAQHEyenPffp/tqaUkk/sMPSQAyNycCzXEqoiWKFNq/fDk9h4wMOtd9++j8oqNpDMbEkGE1bx6N/VGjyLj+izoJHD9+HElJSdDR0RHWr19PE3vyZCpG1NzjrVDQXLt9m2oHtIFno0ZBXlqK4M2bERUVhV69eonT3NwYjhwhIj59OlV+P36cyPekSUhOTsavv/6K9957D7pKEtEcaWl0j8aOBaKjcb+kBIYrVyLTygoaH30EnufF69evM6lUig8++ABcXh7qunXDlxs2oK6eaHAch3fffRdNUoS2bSOSvX696r3Ro1Hj6YmvtbRQU1ODTz7+GOzzz2lMtzHuy8vLUVtbCwA48OWXmP/LL7jo5wc9Q0NMGT8ekuRkIDkZD+vvnYeyurESd+4A9vYQly9HWFWV0OfuXU7yySfgPvywCYkrLi7Gt99+C5lMhk3NW8cp0aULCTvKDgETJtC9S06mFIoNGwBbWwgjRuDTv/0NEy5cQE8AWg8ekFCloUG5v48eAWZmyJgyRTRISGC/zJmDJVpaUJs/nwTL/fuJ0Ny+TQQyJoZCXwsLSUAIDQXefReKgQNxdsAA5FhaQsZx6Nuzp+Dx8ccckpJICFOiqgoQBNQVFuLFiRPInTwZBmPGINvFRXB94w1ObedOmhO//orcvDwcPnwYH3xQX89JFClyZeNGRGVlISYmRkxJSWHm5ubo3bu36OLgwOInTsTD6dOF8TNmtBSax4+nrgV2dgCA/Px87N27F9ra2hgxYoTg6urKtbo+R0XRXuzvT9eirDavRGwsiSs9etAcsrGhfOfmlb7bwJEjRxQVFRVoqN79t7+RMKNMt4mPp/s+fXqT4zIzM3Ho0CEAJLB1pK1mZWUlvvzyS+jp6Ynr1q1rf9H55RfaW0pKKHJo1Cjakz//nKJ4bt6kc/L3pzWufgz/8ccfSExMFN9///2/tj2KXE52Qloajef8fLKnrl+nv794QVEF9++rhIu/EGFhYbhz544AgI0cORJubm7tX39YGM2/zz6jPPapU0ng+fXXV05XE0URW+sFZZ7n73Icl7V58+bZLzns/2l0erY70Yn/IWzdunWMurr6p4sXL9bQa178578BT5+SktmlCxlK7u6kXicl0YZx+nS7hUnGjRvHjx49GhKJhI0cORKxsbFcenq6MGrUKHzzzTcAwPLz88EYQ0BAAA8AZmZmOHv2rGhtbQ3GWIsNukNEWxDIG1tZSV7eCxcox1RPD3jjDXQ5cQIrk5MZ4uOB0lJM1tcXZLm57LmlJQvKzWUOgweTd9nenjZJPb2mhvCrtEUKCCBy1bs3GYGffqoqiqOEszMZht98Q4R9wADyWNYXWvqr0LVrV1hYWCC6vk3Wa0GhoFDcSZNorEildH/mzqV7aGVFHpTERArH1NOjTdvBgYxKU1PU1NTgzJkzYkpKChs7ZAj6HjoEHD8Od0dHZltWhpCQEAQHB3O1tbWQSCQv9ZAAoO//8ksibtevt20cBATQ517DW5uWlgYmCBhpYUFq/9ixFKbt60tGlLd3y4OKilT9Ul8BkyZN4g4cOIC8ceNg/u679KYyTL+sjIwiOzsyQIuKaA58+ilFTBgYkOfn5k3yFvftS+9PmUKfz8ykkPVBg0h4MDBot3DWn4WYmBikpaVhxowZOHnyJOfv748R3t4YWFrawuMml8uRmpoKhZsbHh46JHA9ezI1NTVWUlIi2NjYcPn5+WJOTg7kcjnT69cPttra8qrUVGaVkcHrBAez2p49oTZ4MF1zTQ0JhIJARDA4GKEREaKxsTF0dXXbNkCjo4kYjx0LuLigV1kZAp2cUC6T4cWJE7BNT4fVm2+irLxcwXEcDzMzlPz0E7qBKm9z9X2bm6QAVFfTvNfVbbrGfPst4h89gpiUhLfffhuM44hIXL2qaqvVDI1FgpXl5Tg3cSKe5uUhOzcX9l99BT1nZ5xzdRXLYmKYlpaWGBAQINrZ2YlDhw7la2trobC1RZeKCtQ8fIhqW1tOMmsWuLffbpg79eHrisTERF5fX1+sqKhgWVlZ6NpaZEVamkowLCgg4W33borqKS6m8TptGuqOH4duQABS7ewgMTCAm5oaiUdr1pBgVV8EziY0lGVnZKDu669RVFgIy9hYItn29rQfLVxIURiLF9N+deWKqriTjQ0qExIQu3MnZs2apSyKxcHZmdaj2bNV7Qw1NIDPPoNUQwP67u7Qt7AAMjJgriw8uXo1kaTu3WGyfTtqa2vRUNWaMfIi370Lt0mT4ObmxqKjoxESEiKGnznDtK9dQ8C0aZg3cybX6j3T0aFUo3qybWZmhlWrVuH06dMIDQ0V3ZoV42uAmxsJthkZtA4vWECEWEnM339fRbRXr6b1uA3xrKqqCsnJyXB2dkZVVRVKS0uRlZXFb9iwQfWhL7+k3xs9mupz7N6t6hrQCNbW1jA3Nxfy8/O5u3fvdig1SykmdO/e/eVE+OJFErGnTqU9ftMmSpGZPJnmqJYWRS01giiKiIiIQO/evf/6PqSPH1MNC2VklbExje3ycprvWlp07xYupPSJv7A16h9//IHIyEh4e3vD19e3/WKeokiFB99/nwSVuDg61+3bqc5AB4m2svuLjo5OE2FcoVAMAtBOL9T/G+gk253oxP8A/P39e0il0hMzZ8787yTaAHnKbG1p4/LyIu/B3LlUAOnYsZduDoyxhjxbLS0teHp6Mk9PTx4Ali1bhsjISHH//v0MAExMTBTV1dU4fPgwb2ZmxoqKioS5c+eyJoWgRJGMmYwMMhgMDckbDNCGUFJCBW22baO8Yn9/MsRsbOjzAwYQsd20iQzX+vwy+3pDqqioCAX79iG2Rw+Y9O0Lzf+EcJw7R2LEpUtExD7/vCXJVsLCgjwPSUlkXB48SATqwQO6RkfH1z+Pl6DxpiuXy9v3FreGujrK/9y9m8i2REI5oMrIh8WLiUSMGUOGXmQkebeioiB++y0qY2Jwp3dvsVJXl0n19cG2bEG8vj6eZmRghKMj9PT0UFFRAUdHR4Wmpuar5dGXlpK3LiGh9f7V5eX0bAIDW3qD2kNtLVBbi0E//8yNDg6GbOZMIthTprT9jJXYvJk8Ba+Scw3AyMgIPM+LT58+ZebNC3Pp6ana33z/vep9T0/69+5dCsktL6dnlZ9PbW369aP5UllJ/6+h8T9GtPPz83H+/HlMnjwZTk5OWLx4MQ4cOIDAGzcQMGwY8Pnnysr0kMvl2L59OxQKBd6YM0fom5TExamrKxhjcHR05B89eiRaW1sLs2fP5vX19aGpqQme5yVYuxaKkydxbfBgHNLWxnJlJEFuLpGFjz8m4icIUDt6VMiXSPjTp08rJk2axDeeB7m5uXjy5AmcPTxg0ChXUSKRoGTiRKSlpWG6VAqb+/dZRGGh6K2ry+H5c2DZMpgeOYLZPI9bt27h4cOHTb1pNTXUDm71avLUx8WpxqmjI6oXLsSsLl3QTdkOqriYPHhtkO0G5OVBJysLc+qLMIXcvy9oXLvGXTczg7a2NkaNGgUHBweWnp7OTp48ibi4OACAXk0Nxp88ia6FhTD87DORO3+eYfFiEqvq70d8fDw/f/58dOvWjR08eBDR0dFC165dW1rfamok3ty7R+NsxgwSoubNIy9ZPREvWr9eHMcYOz1vHjxnz25o44fERBQ/eIDCmhrUt9dDZWUlKoyNET5sGCZNmkTnVFhI5K+srKHGAUaPplzc48dp/U1Ph46tLVxdXcVjx44xAwMDhb29PT9o0CDoKtNuKirIQ2tnR2JVXByd++TJtK80JkwhIYBMBklCAvQUCrG0tJQ1RCpMmNBkbru4uMDFxYXdWLlSUK+p4eSiiDb3+/ffb7F+GBsbw8fHB2fPnm1/wWCMQssDA+l8hw6lc9m4kSpry+W01pWUtLlv5+Tk4NSpU2JpaSk7c+YMpFIpBEGAvb29Qk1NTfX7VVVEcNPTySvbTij622+/zZ07dw6JiYl8TU1N20KpIACMQaOgAMOqqoSbjx5xvjdvQnf0aLqWnj1JFFy3jkTD6Ggi2JWVtHavWEHX9ZI2YMpaH22lr/2pyMoikUMJpdD57JnKkz1oEF3H8eNNak38WRAEAYGBgXj06BGWLl0Kc3Pz9plycTGJ4oaGZDcNH05EOz+f5kWfPm0eWllZiWfPnjWIbw8fPsQff/zR5DOMsWmiKF7YsmVL7X9+df+70Um2O9GJvxj+/v6aUqn0xpgxY3Q71Cv1/w8IAi2sM2cS2Vu3jop17dpFXtr/EBYWFrCwsOCMjY3FxMRE9jQ1lV81fToCbt/GaJkMmrW1HFJTyRgtKSGCk59PYWOHD5MIsHw5EYguXUjR19Qko1WZ+9gYw4erWgO1AWNjY7i6uirCwrxdOLAAACAASURBVML4sLAwuLm5iVOmTHk1ufnECSI3x4+T0Zef3zFi5etLJPXoUcqPBEhFfvxY1bP7LwDHcVi1ahV2796NkJAQDBo0qOMHp6SQMLBrV0svvKYmhTfK5US0fXxIvHF3b/BWZYwcievffgtfmYyN0dOD4uxZlBcVidk2NuKTCxe4w4mJmL96NTIzM4WBAwe+GjsFyHtZW0sF5ppDFMmrmJTUbvXxBsjlRNqLikhEWLMGWosW4bCjI2xTUjCpeb5ga0hJoXN5FWKPhnZ3Ym1tLaurqxMBdGxMKosVTZ9Or6wsulYHB5rL8+eTl6KsjESQ774jw2rKFDpXQaBCZXp6NK9EkeadgcF/7IW5cOGCqK+vz3rV3wsrKyv4+flB0NbG/bVrcUNNDdeuXYOXlxckEgkYY/D29hZHentzWLECTgkJvLK/89ChQxkA1fh48YLEwKAg8HfvouLbbzH0t99QtnEjER1jY1WrKMaAnTsx/Zdf+IMff4yYmBh+4MCBUAoaNTU1OHToEPT09ISAgABuzfnzqNm5E2YDB+Ly5ctCRkYGp6GhAeuVK6G1eTM25eYyODlRCHxuLsDziI6Oxt27d9GjRw+h4TxFkby32tpU7yE1lYTMvXsBDw88f/4csT16oF/jsblmjap/dXt4/JjWDkNDIDcXXps3c7hyBT2oWn7Dg3NwcMDGjRvBA+BXrIB4/DieBQejpmtX9DYyYli0iASrzZuBmBiwkyfB8zyMjY2RnJyMvLw8tGirV1VFnvpNm2iuAEQg7ezIE80YEe2tWwEHByT94x9CYHw8LwVw9OjRhh7VUl9fqOfni5I7d0R1dXXIZDJRJpPBLjmZ7xoSQuv9e++p0pv69SMxdfp0WuP/+IPW3a1bae339sawFStY4aRJsAwN5XVOnsSllSvxtpWVKtXE25vGtzI6RBSJiDev+TB+PL1u38aq4cNZWVmZav1TitMxMao5Eh4O36VLuU/rx6sy1L8F7tyh9Wrz5iZvBwcHKwRB4FttI9Yc+vr02r6dRJKdO4lwb9sGXL5MKSJyeavdK3755RfI5XK2ZcsWCILQuAd107VXR4fWjKdPaX1oq5d4ZSX05HJ069YNpseOoS43F+p5eXSvjh0jwm5nR2KJRAI8eYLMPXtgd+QId3P5ctQ+fUr7u6YmhV8rFCSQbd5MzyYlhfKw16yhter5c1rHXtISr1evXmJwcDD69ev313q3CwoaohQakJdHQo4yDYbnSWzbupXshY7sRR3E+fPnxcjISAYAs2fPRguRtjkePKA9LiWF6vSEhKjG8KNH5JVvRVipq6trqMEBAH5+fsjPz0dSUhIA1AJ4D8BeABBFsczPz+//PNEGOsl2Jzrxl0MqlX5kZ2dn6OHh8deHMr0u3nmHFtf4eNocExLIGO9Ie6PGUCjIGKquJoNSQ4NClMrKAC8veB47xjxiY/FQVxeKqCh49ugBzbw8IgTu7kSYzMxo09LUJKOocbjlmDEdO4+tW2mjvny53Y+NGzeO79+/P6qrq3HkyBHGGMPEiRNfHr4eHk4GbkEB9VNOT3+1ezVqFBlIGRmqNjbff0/G3ldfkTd4796/JNQsJCQEjDEEBQXBwcGh9R7DrSE8nDbhtnKepVJ6rV1LRlNEBD1DJyeIoogLly6JL8zNmfnq1eCCgsAFBcFo1y5mdPMms8nPR8KJE4g+dQp9OY5zGTyYDPlXrdKfk0Ni0cWLTcP/v/qKhIL4+LaPFUXybikrXCsUqvQJW1voCQLKYmMRGRkJLy+vl9+32FjyGrxiyHp0dDQqKyvZhg0b0FBs6VVQXk6VuuPjyfNlZEQi2rZt5MlITaVrXLKErvn5cyKKyldhIZGAo0cpPHjWLHpfXZ2Ia/fudI8VCvoeK6tWQw3T09ORlJSEN954Ax4eHuzmzZsthAMuKQmDzM3Rp7ISu3fvxvbt26GnpwdRFOHs7MygpUXGaj1xaYFHj2je6OkBwcFIzsxEpba2WGhiwmQlJdDjecrjPXWKep4DRLzXrEGva9eQlZGBmpqahq/LysoCAKxatYrbt2+fWFRezu4dPoyC+/ehUCi4ZcuWNX3uFhYkapSXUwSDnx+S3dxgb2+vmDFjBpEWhYLWoxEjSNhQ5tNu2UJjPCcH10NCkG1jA37cOBqnixZR0cJBg2getVL1GQAdf/CgquBeUBB5PNtYi9QSE+m59uoFtnIljN3cmq4x+vrUDu/IESA7G743bqBi7lxcunRJMWDAANbg1T56lEjcpEnUq33xYhJKLSxI/EhMJBHUwYG6F8TGAh4e8J0wgS8+fVqMjY1la9asgY6ODpG8jAzAyYkhK4vBwIDWxIAA3LxzR2GQk8M3tB3ct4+8qzxPY5cxitYYPJjOPzyc/q2rQ87OnWJpfDwbbGQE7awsDBgxgu7nkiU0J168oFz+CRNovejRg/a9tuDpibAxYxRGdna80eHDtGdaW5OYkJysikhauhTcrFmwtrFBZmYm9uzZg82bN7fsKNCjh6r4ZiOUlpbC09NTZEqmLZeTiJuXR2MpNZWe0+nT9LchQ4iEPn1KooFCQQKMQkHkOC+P1uqjR+kzTk7AzJnQVFcXl//zn4zbuBHcd98R+fr1V1r75s6l6LaVK0lQPnGCwtV9fCgVZ9w4ElhkMppXBQUUFcBxuOXtjVXh4RDT0mheKoXwFStU5LKiAtDSQqyPj/hQV5e9NXkyjP38VDdh2zb6VxlB8PbbJI6sXElzY88eWrd+/rkjZJs9fvy43c/8KTh0iO5xY1hb0/1SFk0DaH4OHkxjuZnQ8rooLi5GTEwMpk2bhq5du7Zdh0KJn3+m+hVTp1L0U+M6HQoF2YCt1DQpKyvDgQMHql68eCEHoAMA/v7+jT+i5ufnt8/f3/8MgF5+fn63/pQL/H8AnWS7E534C+Hv768tlUpXDx8+/L+ot1czVFSQQnz1KhnoGzaQ8dQYStU/LY2MSxMT8lyIIh1TXEyb/rZtRLSVId329mQY2NuTh/zjj1GtpYXLP/+MW/UVsDkjI0EQBMyzsuIs/tM+l0oMGEAeB2WbrDbA83xDK6I333wTJ0+exNChQxsqsZaVlUFDQ4Pa8QBkRM6dS17cQ4deX52WSMhDEBTUtGesujptxAUFZEwoFC8PVX5F5OXlwdnZWUhOTub++OMPwdHRkXN1dW073BEgz82YMWT0/PZb+yRYSXI/+4y8SImJyMnJQXFxMQOA9B9+QG+plO6fmRng5QV9ALaZmQg6dkzhXVDAaezezWBuTka1vr6qcNfLCslZWZHRrzS+ARqjs2e33Zs1LIyM9C5daPwqRRplIaV6dZ/jOEybNg2nTp1CXl5e+2S7sJCK7P34Y/vn2wqUoZeSV2yxBYC8E+npNHYOHoSooYE7t2+LLhs3MqOHD8lA19Ym4rdtG3kIdXTo5eiIJt40ZZhjZSWNx7IyCucsL6ffuH6d5tf48WT0m5jQ59zdkWdqisDLl8UqTU324N49iBwHxhh7/PgxevXqRcRj40Y6D0tLaGtrY/ny5bh7965QW1uLoUOHcg0FJNPS6DciIlTXmZ9P3syrVynXtz6c9NixY4ChIevi54cuERG0jn3zDd2PegiCAIHj4LRgAV64uuIPU1PIZDKhvoIu5+joKADgli5dyu6YmOBNBwdcePRI9PDwYK0+8wsXyOsaEADIZND46iuhZ2wsnz1oEKy6diVyr6ZGxLTx+J00iQS1bdswcNcuxMbG4unTp+ji50fh1xIJEZxG594Cqal03x0dyXuorU3zqjlEkYjYiBEq8tbW+NLRAVauhJieDvOcHHChodB/+hQ6zs6cOGYM2LlztB7wPM2NjAw6x02bgLNnaa13c6P9oFcvGiNz59JcVyigoaHBRFFEQUEBDDQ1KaXh73+nNIjRo2kufvghnmtq4r6lJe++YQOl6airU44uz1Ous5cXzbPWIJVC1r8/EzMzhZ7+/ioliLxvFD1lZkaV/ZXCRF0d/TtoEIlknp7kQVWmWWhq4uG4cfDR16fnc/s23evvv1eR7cxMGgeGhvCMi0NmZiYEQcCBAwfEZY37hQMUSRYURGQ4NpY8jLa2eDszk4+/fh3Cjh3gRJH2sfPn6VwWLaJr1tWl9y0tSfzatYvaPS5cSOvzvXskgCmv6YsvKLUJoGdkaAjTa9fEK8OHs4kSCdXbUO4zlpb0/TU1RM4BCs9XKGgtAKhKv54ePeuDB+m9+kJgGysr8bVEgknGxlTsVDkeR41SXbuWFmpraxEaGsoAUIX29mBvT3NcIqE9ODWVBMRTp2hdamfvUkYTVlZW/mepYu0hLU0VadcYI0e2PkbfeovWpYiIlgU1XxGVlZU4ePCg4ObmBmdnZ9ZuNERxMa1H48dTYc2PPlLNZSUCAmgdaeWZxMbGoqKiQgOAEYDpAMIYY1+JoqisvncVAPz8/AoAdCAs5/8OOsl2JzrxF0IqlW5zdHSUNqlG+9+GkSNpo1AqmUp1PyCAjBKlcebrSx4POzvy5lZWErmZNo2Ot7Eho+olJEEbwIcffgipVIrKykqcO3eOS05ORkpKCiza8uC8KpStf86eJeW2Ax7iHj16QEdHR4yKimJDhw5Famoqjh49Cp7n0Ts7W+EdGMjLSkuR6+oK29xcSBpXtX0d2NvT/VR6aJTw8qLX7t3k/U5N/VOrlZeXlwsODg5cWVmZIjs7m8/OzkZ5eTmioqJgbGwszJo1i9Np7hl7+20yEPz96bzbyeVqwJYtJNwcPw7TXbvgvGQJ8nJyYPPttxS62Yy4mFpb460PPmgaHpyaSt6fjRtprLm4qAyBxm2OGmPBAvKwnT5NBv/w4eTNapwjl5tLlY2HDKG+tRYWNKYnTmz1O2tqahAUFCTeu3ePqampiZaWlu0PqOxsMg47GjVQj+LiYly/fh1vvfVWxwrDKaH0wu/ZQ9fx5Zf0PrW9Y3cAjPvHP4R+69dzGDSInqGxMRn5Dg6AmhoCAwPFW7duMQBYsWIFRFGkUERNTfLGAESilJg2jf6tqyOSXVsL3L2LisJC3L5xA27l5cy1uhpyXV2IhoaIra0VpXPnskgnJ9Fp8WKmFR2N6i5dIPbtC3UDA+jr62PChAktXeQuLvS8FQqa16dPk9BnaUliTiPhh+d5KBQKjBw5UnW+jAGxsRBFETExMTh//jwUCgWMVq8WzHv35tRyc0VjY2POzMwMtra2MDU15QASV3yTk4ETJzD35Mm2n/esWURi673vfUaO5LKio3Hqxx+x/sYNSFatAsaMgUzZXq8xli0DampgWlaGAZ6e+CksDFOOHxd7JSYy9OpFYdIPH9Izag5RpON//pnW6E8+oX7tzcdvWRkR+/x8ihLQ0Wl3jRZFEWlpabh8+bJYsXAhNgYHs1k//MDfDQ1FqVwOg8rKBs9jbW0tbt26JZpVVjIzZ2eYm5iAiSLg54eyefOQvm0bsoyNBe3AQOh+9x2s8vM5WwcHaEdGQpqbS2HPu3YRidy6VZUCsnIl5KWlYLW1MHjnHfJq/vvfqpPs1o3SihSKNtN26urqIJfLuatXr4qjR49uelMMDIj8KXsvf/ghjTNRpHnbtSutUevXk7j0xRdAv36oq6sTmbs7CRcFBbQOrltHAkHv3kTQIyMBxtCrVy84OTlh165ditzsbP7u2bNifw8PJvn4YxJnPv6YxKLcXCLSxsZA794wHzQIAXV14nEjI7yzZg1r6PjQHPn5tK59/TXtE0OGECmuq1OFKjf2FivrEtTnFY8YO5b7NiUFI2tqIGscHfDVV6pjNm6kNfHcOar+rqwL0djr2aymgKamJvT09BT379/nk5OTFd27d+fd3NyaRIsdPXpULCgoaHgmmZmZbedVf/EFebSVnS3u36drl8lI5Nizh6r2t4H8/HwAVIvBrnmY95+F9HTaI5vDwICirZrv8bq61FP+wgX691VrpzTCgQMHFFZWVmzs2LGtV69XIimJ9jpXV1oDJk2icdJ8/pw6RSS8FTg4OOA6iSrv+vn5fe7v72/SiGgDwPhWD+xEJ9nuRCf+KmzdunWWTCZbPG7cuP9er/aePeQN09QkBXbbNlI+ZTIy0hYuJA+fhQWFwzbO12qsVL8ilJ5iLS0tZGZmwsLCAv3+LK+2EsOGkdcyOpo2mJeA4zgMHjwYly5dgrq6Ou7evStM1NCA648/cs9sbLhSPT0xdOlSoVxdnTt/8KBoYGDAWVhYYNyrVCtvjN69SbBIT2+9tdGqVUQUMzMpjE9ZOOk/wIMHD/DixQvO3d0d/fv35+Pi4pCXlyeEh4dzCoUCubm53Pnz58V33nlHtWtXV1OIoZYWbdgDBxIR7ghkMuDNNyHNzMRoDw8U/fOf+Hn6dHHVwIEvVz+0tOi5ubqSJ6m8nIzxhAQyItXVSQDq1o2M4759yaCRSIiQp6aSl6pfPxoLABnsDx6QgazMaT537qWnUllZiXv37jEAcHZ2ZibN21Q1RnU1GV7KHquvgJKSEkil0pd7ehojK4vux+DBJNA0qugviiI4joOXlxeuBQdz7ubmkJSXk+eue3e6Z15eyNi0Cbdu3WKGhoYoLi7G3r17AQATJ05EYWGhoK6uzrm5ucGgteJIUinQpQuePn2KCy9e4FlVFazHjxdd58xhjDFIBQF49gzu1dWsKjgYd44eZQEHDqBP164oPnwYht98g1IdHeR37QqLggJIzczEritXsqcZGbD39gZnaQn5Rx9B8vvvJAA6OpJXq5VqzTzPi2ZmZkx57SWGhih++22h6/37XMnq1fj9998BADKZTCiqrubm2NlBb+5choKC1kOv33qrZR5mY/z+O/U1P3++4S2jN9/EgeRk+F65Akl4OH66fRvlkZGo1dODQqEAz/Po168fDA0NERQUJLq4uLBh/v5wMTBASv/+CDx7ljmfPg0WEUFez337Wu91GxBAAme3bnQOYWEtcyyvX1d5/qZN61AUTkREBG6cPInV+/cz9fh48DdugO/dGwUlJag4cQIGO3YAW7eiqroahw4dEgsLC9nEc+dwztMTfR88QEl8PPrs24dfnz9HnZWVaFNZySS9e7OaFy/Qe+NGhEql8Hn0CCmVlciOjoaV0nt64gSFcy9cCAAQzp3DyCtXkP3pp7BqHpXCcUQCMzIob7oRRFFEYmIifv31V+jq6uLx48ctyTZAx/72GxWw0tNT7RFKD/CSJSoC9fgxYGQE7YwM3sHHh9aWzEx63bhBz8DQkGp3mJhQtFhqKrgvvoClj484a9s2vNDSYg937oSnlhaRLUNDWofWr6d1y9wc4DhER0cjPS6OOTo6KmBk1FJJyM8nUj1qFP2WiYmqNklOjqqA4rVr9GpjnzasF4ujo6Nb7r21tSQm6OqS15vjSBSprGwaYdIGpk+fzp88eVIRHx/PR0dHo3v37g3RYtXV1UhJSWFqamrQ0NAQZ8yYwdok2sqUmPnzm77v7k4Ee9kyGi+bNrUqkhYUFODIkSOQSqUd6zP9usjMVIW8N4ahoSq/vPn6MmkSiS3377+00FtbCA8Px4sXL/glS5a0n/q2ezfNr8OHSZA7eZJqBjQX8ePiaI1Q1pGph1wuR2RkZGNnyGcAPvfz8yv09/f/O4AvAFQD0AVQ8loX8/84Osl2JzrxF8Df37+3VCrdP3/+fI2/LHTpP4VCQR4ZOzsKafrqKzJgt2yh8Nf8fFKyLSyI+M2bR0QrK4tyu8rLyYuWmEiG+2t6X/X19QUnJyeuVc/PfwKOo9DjX34hJb4D3m2lZy9+zx4siIpihs+eMW7KFJh+/DEzNTWFA8DL5XIEBQUJxcXFYlhYGEtPT1e88847vJ6eHvLz8yEIQsc89IyRl+HwYcodbA09e5JY8Ouv9Ax0dV+5srUScrkcN27cwIQJE6D0XPchDzU3YsQIREVF4Y8//sCECRNUN0qZ4/fkCRFYR0ciAK+SS66pCXz4IbSHDIH02TNoPHvGcrOzYdGBPqxNoKurKrg2axaFxMXFkWdo1y4VibayohDjgADKkf3oI8oXnDKFDJ+pUynNYODADv+00pAZPnz4y4vKnTtH3/0a0SzPnz9HXV1dx/vLX7hAXnQPD5qfjcZGbW0tLl++LEilUjZkyBCWlJSkuLl8OUYVFvKYOhVYvx5iSAgO798vdF20iJsHiN1v3GCXL19GaGho/ddfgFQq5erq6pCamorFzdNLGiEiIgL5+fnw9fXF4MGDVeGMHNfQQ1uja1dY9OgB4ylTxEojI5Tu2MHcfX3RtaQE1nl5KAkLQ+Jvv7HoI0egX1SE/N9+g2N8PNSqqmBQXk4pCitXtkq066+ZMcbElJQUdurUKQiCgDcsLJCxYgUSfvwRHxw8iJ3vvINl773H7d27F1UWFtALCyNDWBBa5p53706G6tSprbfAqU+DaIyS4mIMDAiAx5w5kJ84gQkAugwejLLx4xE9cyZycnKQkpIi1NXVsYqKChYcHIxHzs5wi4iATn6+kKyjw2WsWYNuHEdikrFx6+cWH09r9d695I1asED1N1GkMOepU8krfPVqm88NAHlDpVJgwQK4PX2KiwMHonTBAnTR1W2ICOmbnIzbiYmiRUgIy1+9GlqCIL6wtcXyt96Cxr59iGNMdBo1ih187z1RvmkTW5iaCu316xl69yZi/PnngLMzJowYgYP//rfc7sYNSa9Tp2i++PiQ91ZZ/CozE4a7dqFozBgxOCEBrmpq7Pnz5zA2NkZ1dTUqKysVbv7+3HMdHfHOjBliTU0Nq6mpYXV1dUwul0MURQAkksnlci4iIkLs27cvDcgnT+i+3LtHwt0XX7Td0lJbm/795RcAQPE//sESFy9Gbx0diozx9qb1xcmJ1qDCQhI83n+fxqqxMWZMny5J6d8fR8+cwXR7ewo7j4ykvXfuXJqz9vaUA+7vj/LychgZGQkNOf+Nn1FZGe3VDx7QfFeGcDc+3/79ieQtX07rYJ8+bdY86NWrlxgSEoK+ffs2bQ81ezZ572/fpmcDkHDZweKdZmZmWLNmDf/999+LhYWFTEm0CwsLG4Q8fX194d13321/kcvLo/Wt+Z4XH68KHV+1ilIo3nmnxeFHjhxBXV0deJ7v2Hr6unj8uNXfB0D704MHFEHYGIyRSDp5MolMr5GOdvPmTdHd3Z1ptJXWpezS4uBA4+74cdoLt2xp3V6LiqLx0szTfu3aNSEsLIwDIIC6uTQswH5+fl8C+PKVT/7/GDrJdic68SfD39+/m1QqvTZ+/HiNDhef+p9GeTnl0125QrliAJGYqCgyHufNU+VaKcPcyspUxcqePCGPAECfP3yYPI2rVpHq/9VXtMHPm0f9UL29W1YMr4ednZ148+ZN5OTkiDNnzvxzK4JNmULe+7a8x80wT18f5cHBgv2NGxzn68sQHt4i5FIikcDX15cHAFdXVxw7doxPSkrC3bt3FeXl5byOjo6wfv36ju3sixaR52DTprbzoF1ciHBHRpJ3KjCQ8otfEV9//bWgra3NtdW/Vdm2o0k7MDMzUsGVxHHLFvIAzZjR8R8WBGDDBnD//jdkbm7I//RTGHt6UuseZXum14GhIRmAAIXbFhWR0ZOZSUbFiRP0t6+/pt95663XbnN17949EQB78OCB4ODgwLU5rxUKmkNfvrrtcfnyZfHhw4dsyJAhAvcyy1AUSaBJTaVn0gpZuH37thATE8PNmjULMpkMs2bN4vfs2QO9W7dEBwsLVnT3rngtNZWVSKXcsPnzYV1WxvDiBcYaGWGsnx8EQUB8fDx69eqFzz77DIIgtFsZvbq6WgTA+vbt224VZTc3NyA6mqGqCg71JJwzMICBgQEMnJxgPXs2ysrKoK6ujn9/9RVKdHTgxXEiIiIYiotVvYPXrSOxr74AXUxMDADg6dOn7Gh9oSIjIyPFCE9PnvP2Rs6jR/IwFxfOedAgZlBSwtTV1RUFBQW8uasrkbzHj8nb0xg8T2Hry5e3vMfJyTRnG4dciiK433+HUXExYmxs4GVlBW0AiI6Gfm0tBu/dS+vh9esNz7esrAy5ublw+PvfwQ8Zwin8/cGNH0/rwtmzFOL83nvkCVMiLo4Kv40cSfmXb76pWqdyckhMWriQvGYuLq0/CEEgcqimRoJqcjKwbh1CoqJEpKczg88+a7ImOTg4oMvOnSw9PR0v/v1vcfTly0w9PBzc48fAkiWYs2EDw+3beM/dncHeXtUXPjpaJc4NHw6IIqokEhbn5YX+69cTIbx/n4pF5efTvO7TBwgLg0NqKnty9aqQlpYmZGVl8erq6qK5uTmTyWT847Vroa6vz1wMDKCjo9Pw0tPTg0QiQXh4OGJjY5Geno6EhATWt29fijoxNSVPooYGpUk5O7fbXk0QhIb/NrSyEkt69GCoqSHBr2tX1RqmpkbPIDdX5cWsF2LsDQygceWK+Ntvv7FNGzZAtmcPCRBKEhkSQjnTx4/DvU8f3Hr2jGuSYyyKtO76+BBpamt+JSaqIjGUOeFffEHrUSvH9O/fnx04cAA//fQTFi1aRMTM1pa8n809sWvWqNLKOlhPQl9fXywsLGz44XPnzkEQBGzatAkSiaT9Ne78eSKG9UULm0BPD1i6FIKpKZ66usLq55/BZs1qIkgpFIqGdUhdXV1JEv98vHhBe80XX7T+9/HjKYqiNZiZkQ3w1VcUbfQKInZqaipqa2uZVzOxrwEVFTTfZs6ktWD7dopK2LChdVvs+XMS7Xbvbvb2c4SFhXE8z4cqFIqhAGr8/PzEDp9oJwB0ku1OdOKV4O/vbwpgDMdxPSUSiSnHcZqMMX0A3evq6qxFUeQlEok4bNgwqZub239n9XFRpMV2wwZS5I2NqSBUv36UF+XuTuG2hw/Txjp3LqmuBgaqMPIPP1R9X2kp/VtQoKoiWlJCIcSiSJtNQgIt5IcOkfG1Zg2F9k6ejJEFBbz1jBk4feYMnj17BqM/sR0GGKONSDfqWwAAIABJREFUbMWK9r07168D330H86gomE+cyCE3t0NVpLt27QpDQ0Px+vXrzNjYmJswYQJOnjzJJSQkoGfPnqiursaePXsUJiYmmD17Nt+CQ2lpUV7cjRsv76fr5kbPzNCw3fDA1nD+/HmxsrKSW7JkSZtEyNjYGEVFRfjyyy+xbNkyWFy8SMba4cOqD5WX05h4FezYQce5uYGpqcHe1VXxYNEifrCjI3mMPDxa74v9qjA0JKMmPZ08Msr8bju79kOBOwBLS0tmbGwsFhUVcXv37oWvry+GDBnS8oOXL5MI9Yr5/NXV1Xj48CGbO3curK2t2zcKY2NpPH/2GXnQ2qg8GxMTw7m4uMC2PszWyMgI7733HiJdXdnVM2dEJpdj/rFjwKlT0FHm4P/+OxHLvDxwPA9lqy5ra2ukpaWxc+fOwdHREYIg4NSpUwAAd3d30dfXl8XHxzOAUkPaxa+/kljXeA1pBIlEAiMjIwg1NfC5eRNmrq6i2UcfMcTE0HM0MKDic2fO0Hrj6QksWwb1+rxmFxcXmJub4+bNm3j27BmviIwE17075i5cKMHChRQKa2QEsw0bWEhIiOjq6sqwYQON0dYQGdl6b+EffiCPVVCQ6r09e2CSn49LixcL6aGhnJmTExVoUnpIZ82icOGyMlpLd+2Cnp6eqjjh3r3gc3PJozdwIBVeGjCgZZG03Fwi2kuWUJukd9+l98+epeswNqZ1tzWiff8+feeUKfTZ27dJIOraFXXm5rhx7hwbMGBAq8WkNDU14WxjA+dp0xj27CGv3JUr9MctW+i8EhOpCnNYGL0/cSJFody/TwT3p5+wrGtXHhs34umCBeh2+DAR1b//nUSzigqKSuE4ODg4wMHBgaPTvo+YmBhxwYIFtIBlZJA3/1brBY/79OmDixcvAiBi8rufnzDhX//ijn71laBwcQEOHoTzjRvoEhHByfr1a1LwMCoqCmfPnm36haIIh6Qk5hAURILGiRPkAZbJyPu6fDmdUxui7oIFC9iePXsQevq0YgjP803W+/o9r3b3bkQYGQmaQ4cynucZsrPJC//11xTFYmvbPiFTphUosWIFedyvXKGCas2gLEJorq1NnvPcXBKVWlu/ysvpmhcvJluhA6iqqmJWVla4e/eumJycLD59+pSztrYWZDLZy8XEkSNpX24rksvHB0Hx8eLt+HjmamEhjIuJ4XhnZ1RWVkJXVxeMMVRUVAAAFi1a1CGiXVlZidOnT8PY2Bi9evXqWH/ux49J9GvrPD08aE60hUWLVONYme7UAQQEBMDR0VHQ19dvem2iSJ7+L76g565Q0Bg6cIDWhbbO8/p1eu7NWoZdu3YNAKBQKKb6+flVd/gEO9EEnWS7E53oAPz9/dUkEsmHEolkU/fu3RVdunTRkslkTCKRQF1dHTo6OjA2Nm5o7/Gnh0T/mZgxg0i2sl3MTz81FE0BQIvtl1+S4XDoEG2wpaXkUWqvYrWpqcrjqcx7A1QVTGfPVhVYUVOjV3Ex8O67sC8uxozr11Hz449kYE6eTJ4rd3cyzpcvf/3r7d2bjJBLl5q2gwKImM2aRQRmxw4KyXyFIm0ymQxLly5lqampsLW1ZTKZDCNHjsT58+eFtLQ0ztTUFOXl5TwAcffu3cK8efO4FlW/7ezIW/0yss1xZFTn5Kiqznp7v/QcY2JiEB0dzRYvXtx6zi2I4CxevBg7duxAXV0dfvjhB3jl5gpeNjZcwxGCQMLFq6QL7N9PoeeLFwNqaggJCRHj4uL4VG1tZERFiR47d0KD58XugYFcW5EPL8WLF2RISCTkHejfn8iDMnQyPr5FDtqrIj4+XlFUVMSbmJiICoVC7NOnT0vjrT50FfPmvZKHQi6X4/vvvxcsLCzaJ9qCQGGcu3YRUW0nzy87OxsVFRUY1sx409XVxdBJk4C6OoaffybCV1BABEdHh4yyiRPJw+jjQ0TSzAzDhw/HTz/9hKioKDxq1q4oMjKSRUZGAgBmdCTiobiYXu2hvBwF//gHpIzBZONGBgsLIqyurlQwb8MGej18CPzwA2q//RZd7t3DPB8f2MycCa5nT/Tv3x8AwIWFNS0wpqmJpKAgpFy8yI3Zv5+q7NvY0POztyfPTuMc4a1bae59/bXqPVGkNbKR1xNhYeQFP3YMI+Rybv/+/bh165awcOFC1TPt3p1eeXkUUVRVRd4mLy8ibd7e5F2fM4fW3UuXaN1UVtFW3r/ly0k81NOjtVJ5nlu3kqHdPK82NpZ+8403KHw5Lo6iP5Se6/r1PzQ0VATARowYQe+npVH0hJcXrU+LF9N6/vXXFIY9YwZ974wZtC5cv073UFOTRApAFWEC0PVyHG5fv46obdvwvo0NfdePP1Kht7w8qoL93nu0bisruYPqfMjlcpWH0sSEhL/WQuxBKRBKjOI4yH19uTgrKzg4OTV8uFxDAxEmJtC7ehVz5sxBYmIiHj9+jIyMDFEikTAnJydxipMT4/bvp3UlLY3u1VtvkTCwbh3dky5daJ+aM4eKXirFlUYwNTWFjDHRftMm/ufly8V3BIE1bgd26dIlRI4di759+4prd+/m+KtXaTxNnEjktiPr7vbtTQt1SaUUEfH55ySA1ItnSrx48QJMEDB85UoSgOpDvFuFnR2FSnft+vLzqIeRkRGioqKQnZ3NUB8VY2dn93Li+9lnRFDrw/ebQxAEJHp4IDkykr2pq4sCgGX87W/4bdgwyOVy9OnTB0qP76uEkD979gxPnjxBcXExQkNDMWTIEPj6+rZ/UGEh4OKCyspK3Lp1CzY2Nk1rbmho0FyYM6f14yUSKpa3dCkJbB3YB2/duoW8vDz4+Pg0vbDiYhLir16ll7Exzatu3Wg/bGtfEkUqVnjsWIs/mZmZidHR0QxAzktPrBNtopNsd6ITL4G/v7+WmppakKWlZY9JkyZptEVY/tdg2LCmrZEMDIhMN/eQ2dhQqGphIRXpGTOGNm0Pj9drR2VurlJNG1eWLS8HD8DkwAF2dNcuDI6Ohku3bqT2JyVRvvXy5WT86+iQwv/GG2TU8DxtLqtXk5HW2kbFceRJP32a1H3GyCP10UdklK5dS9/5mhXjZTJZgwcQALp3747Lly9zyrxXOzs7xdSpU/mTJ0/i8OHD4sqVK1mTtk79+5Oh9uxZx/K2LC3pvogiebe/+07V47UV3L59WzF48GDOysqqXQYok8nw9ttvIzExEbrHjiHM0JCL1NDARrmc2lAFBJAh9zKipERkJD2jgwcbPIMODg7s1q1bcHR0VERHR/NpkydDpqYmbly3joyreo9Wh5CZSWLJ7t0UUjt7NuV/Nm6lUllJgk1s7H/k3R49ejSflJSEoqIiBoBdu3ZNnDZtWtP7GRFB1Y0fPGh4q7a2FiEhIXB0dGzwnMnlcty8eRN9+/bFqVOnhBcvXnA8z7PZs2e3/Xxqa8moLy+nsP6XGGTl9V7aNtuHTZ1KESbKSsOHD9NLIiED3dSURKj6AnJdxo/HRx99hNraWmzbtg16enriwoULmZ6eHqKioiCRSHDq1KmGHtlthpHX1ZEnp73zz8qC+OmnCCsogM7HH8NI2RpPR4dIR3R0Q/qAws0NSWvX4uyZM/D08JAPz82VwMsLsLcHt2ABhVfPnk0EtpG37gXPA4IAi9xcEhqU1YI//FCVmqDE4MGUotAY8+bRMUoycPIkvS5eBGQydAGwevVqfPfdd1xtba2qdaAS5uYksIki5aBPm0brkVRKIsqsWRQ+e/s2eYTDw8lTLZHQWuHuTnM/Pp5CkKdOpXN5+FBV6KumhnJCt24lQqsMK33xolWjO/XgQTEhNJR5OziA8/am3OD9+ykqKTCQSP3QobQvrFhBBykjBZSezsYeT6XA1Zh41s9tLy8vpF+8KIZPnsxcu3WDuq9vUzFjxw56FkFBdK969YKamhoUCoXqM5qaFN1QXt5kP0pPT8fZs2eFiooKbtq0adB/8gSW8+aBvf9+032vuhriihWInTEDaWlp2LZtG9TV1UU7W1th/IgRvNa2bVD77jt2aOxYeFZVwcXTkwg2QCR//nx6TkqPsZYWzZeDB0ksaAXj6+qQZ2mJNMZYeHi46OXlxehUqhEWFgbtmhpkBwTwefn5YhdtbSYyBvbxx61+VwtUVdEYb743OziQl/jBA1oDZTKUlpai5NkzlCxZAlm/fpDevPnyIqJSKa2z//wnCX4dwJQpU5i9vT3OnDkDnudhbm6OHo2F/bbg4NCqQFpeXo5Tp04Jubm5nEwmE8elp4t2ZWVc/Ny5gsW//sWLVVWQamqioKAA+/fvB8/z2LJlC548eYKQkBAIggAfH582W4BZWFhAJpOJpaWlDEBDW1BBEFBaWtpQVK4JkpIQr62NP3bvFvT09PDo0SNOXV0dDkqBz9YWuHmzTVEIAAk4q1fTnPv73196e3r27InAwMAmKQ54+pQKxnl4EMGOiaH5evs2rbnt4dYtWhuUFd8bwcTERLlYaAFopw9hJ9oD/4+2CvN0ohOdAAAEBwcfsLe3Hzpr1iyNNgtR/G/A5ctkIOzZ07Ql0cSJZMS15SXV0qK2InPnUr7YN9/QRqijQ96YPwkyAwNUamjIr127xlksWgQjZ2fyGKxdSx+YMYM801paRJ7GjydD88cfiYj06kUhXRMmkIq/dCkQHEw5gePHk2obG6vyiBkZEQGfMuW1c3lbQ3V1NTIzM4X+/fsLrq6unJOTE2dsbAxbW1uWkJAg3rlzR9TS0mLGxsakuEsktCHWh1p3CMr8wPv3aaPW0GjzGm7evMm8vb1ZR0QiAwMDONjbw2DdOqSbm+OZnh50dXVhaWlJY2b06I7liz9+TCLIli1NqgVraGhg0KBBcHJy4vr27QsrKys8iopigzZuBGdpSQbJqVPthynGxlJonKcnhd87O5MINGdOS2NBKqXnbWrasv3KK0AmkyE8PBxaWlqoqqpCYWEhMzExQXV1dcPfhZ9+wvM+fbD9+nUEBweL3bp1Y99++y3S0tIQHh6OtLQ0xMfH4/Lly0hPT0dkZCTKy8uZoaGhOG7cuLYrnAcGEol/6622C9s0g7GxMe7cuYOqqqrWjVvGyFs5YADlyj5+TIKNUnBSFucSBCITNjaAszN4noePjw/69+/PlNE75ubmkEgkCA0NxcOHD3Hnzh2YmZmh1ev55hsiKMraD80RFQVcuADB2hqXLC2FrJwcpqWlhcuXLwvZ2dlCj7VrOfzxB503gJycHPzyyy8Y4O2N4cuWcXjzTSKvgkAE9f33yVtqYkLXW+9JtLCwQPCDByK/dClz8PYmb6yREYVzhoYSeV2yhO6TjQ0Jjo1ztu3saK5aW5Pnd8MGEpYaER2ZTIbAwED4+Pi07VljjM538GCKMtiyhYhsv35U06CsjMJBlZX55XIiwO+8Q8/lxQvyAtbUkDDatSu1sgoIoPmxbh2tb/PmqYhiXR2RVImE5s+bb6Ju7lzUzJzJtBmD9dKlKOc4yEaMADdzJoomTYKmpiaYt3fD9dXV1aG2tpbqO2RmNnj3GiM9PR3nzp0TtbS0mCAIEAQBz58/R0VWFl5s3AiD8nKWxnEw//RTaDXPO9XWJnIfFkZj38EBJVpaSE5OFvr376+6mVOnkvDYqPjU77//LhYUFHCzR42C7Y4dMNi0Cezvf285b7KzwQID0WP7dnTr1g0jnJ3hq6nJnHbu5Ey1tKDfqxd01q1DaY8euFpZif6jR5N4JYqUTxwfT+O4cVjuwIGUQqWv3zLnuawMpmfOMHHHDsRSq0umTEU58tNP8qqqKrbswAGmU1GBo2PHsqxhwxQmkyZxiRcuQHPKlJdHy5WX0xh2d2/5N1dXEsyLi1Hn4oId27cjISwMg27cgO7cubBuXryrLezbR/d71aqOfR5AYGCgWFlZCalUKpSWlnJ1dXWKqqoq7sqVK4o7d+4whULBCgsLYWhoSPd33z4aS8roika4cuUKkpKS2OLFizF69GhmMmMG4+fNg7GhIZdVWio4BwWxxO7dYWRkJPTq1YsVFBQgMDAQsbGxkEgkitjYWK6goACu9cLCgwcPEBQUJHbv3p0BwK5duwQdHR1MmjSJ1dXVKYKCgrjY2FhFSkoKu3LlCjMwMIBEIsGVK1eImKurA8uX47CxMSoZY2vXrmWlpaVCeno6y87ORlhYGGzs7aEeFUXrRzNBv7S0FHK5nMQ4ExOKDDE3f2nLyPT0dMTHx8PX1xeaGhoktB0/ToR93jwi3nl5FEXTkdD0CxdozWklBSIoKKg6Pz9fwvO8w5AhQ357+Zd1ojV0ku1OdKId+Pv76wH4eeHCherS/6AX4n8Fnj0jo615FeZ33+1QODIkEvJuDxlCxvm//kVqeq9er10huzm6devGVVZWCrdv38bjx4+FoqIi5uDgQAxJKlXlUY8dSwTT2ZmINkAGwJgxqmsdO5ZCqYKCKKdu2zZSmD08SHBYuLD9sPjXhKamJt544w1mbW3NmZubN+Rjqquro6ioiGVnZ7O4uDiEhYWJJSUlzM7ODlzPnsDf/ob8yZMRHBwMGxubl4e+MUbCgrk5EW41tRaVkQEgODhYtLGxYaZtVKRtgcRE3B8+HFH1+W79+vWjPPojR8jj8LIIgOpqMpQnTmx3XKmrq6OiogLx8fEYOmYMGSPp6dTSZdYsMmqVBrIoUgjn5ctESiorKe93+3YiK9bWbRNpiYS8gMHBLw/VbwOMMQwYMAD9+/eHl5cXQkNDERMTg0ePHiEiIkKMOnmSSa5fx2EbG4AxKBQKlpGRgaqqKtja2opdunRBcnIyKy4uBsdxWLlyJYyNjZGUlITBgwezVlt9VVeTKLRmDZGwESM67PVnjOHp06dibGws69OnT+uGulRK8zcvj4janDkU4aJM9QDo99aupTk+bBillrQSvq6hoQEPDw/U1dUJubm5TEdHB/bKdkSN4elJXtzWImOuX6cxNnAguNmzMcDbm2VnZytiY2NFmUzGJyUlcf28vCD95BMq/mRhAW1tbQQHB0NHR0d0cnKiASCTUbTI1Kk0L65eBQoKkBMYiJrVq8VLz56xq9HRQnV1NZednQ0PDw+oOzuTIBcWRgbns2cqY7+qikJx33uP7sfhw7Te+fhQmPeqVTS2mkUG1dTU4P79+y8PQ2WMvnfYMJq/tbV0Lv/+N43xU6eIPDNGc+DoUbr+3bupt3ZkJAkDY8cSsb53j1IDxowhUn7+PAkGmzfTc541i953cSHBoE8f3MzNFc+ZmbEkGxvEPHmCZC0txd3wcC4qKkq4e/cuKy4uFnr06MFqa2tx6tQpxYULF7j79+8jKytLcCkpYSw2Fhg9Gk+ePMHvv/8u3Lp1i4WFhaG0tJRFR0cjLCwMEXfvovzoUVh99hnCLS3xqGdPMdvcnA0bORJt7q29e1OkQXIy1HfuRIK+vvhG49BZd3dV9e166OnpsbS0NCErNBTmV6+yOHd30ap7d9Yi2iI5GRg2DJpqajCZNw/qSo+0pyfw5puQu7ggNDsbtbW1yMzMhLu7O3lEf/iBoiu++aZlf2RNTSI9N260zJH+5htAXx86U6YgPj5esLa2FpydnTnk5MBu+nSuQFubPZg4UUxxdRVramqYmZkZ6zZnDgvR0xMTL15EHc8zi+7d244aiYsjEaVxIb16VFRUQH30aAh+fpBYWsJ7/Xo86NsXId7eyCgvR0JCgtijRw/WIgKjOXx9aYx2797uWlRUVIQHDx4gISEBsbGxbPHixWz48OGcra0t4uLikJiYqLCwsJB0796dxcXFKRISEpCTkyO49O7NYf58CP3740BgoCI+Ph49e/ZkPM83eHHj4+NRXV2tcHZ2phP49VdoT56MbkePMvM9e+C6bRsG+PoyW1tbeHp6wtXVFb6+vigqKhKzsrI4uVwuhIaGKkpKSrjHjx+LT58+ZSEhIXjw4AHMzMzExYsXc8bGxrCxseGCg4Ohra3NCgsLmbu7O27duoWIiAgUFxcjKSkJBnl5UMvKQkLfvoJCoWADBw5ERESEkJqayikUCkEmk4kBAQFw5HmmZWTUEF0VEhKCa9eu4dq1a0hISKCQdy0tWvPDw+keMwZBEFBVVdVkfsTFxeH06dPw8vJSuFpZcbh1izzZn39O8yUwkNaBVas6VtclJ4fWlOXLW+33HRQUVF1RUfGuKIrbfXx8al7+hZ1oDZ1h5J3oRPswVFNTq5PJZP97mXZdHRmGP/9MHpjm2L6djMeNGzv2fba29PL0JAXVxYW8MWvW/Cmke8SIEZyxsTFyc3P5yMhIqKurt8g9bRUcpwpP3baNvFuJiWQIX72q6heanEzqvL5+q7l1fzYSExNx8+ZNRVlZGaempoaJEycyc3NznD17VkxISGCRkZGws7UVe9rbs/itW8VUMzOWkpKCKVOmdKyFmNLDra5OOXc+Pk28cDKZTFR6YF+K27eBKVMwND8fIaGhoiAI7M6dO6KDgwPDDz+QwNFWmxyACjn94x801jpQ9ExPTw+s3qjgOI7GVHw8Pbfhw8l47NmTCFpeHo3RYcNoTIeHt13BvTk++aRp3u5rQGnkamhoYP78+UhMTES/fv3w3XffMY+ICOSYmwOMYcOGDSgqKkJoaKjC2tqaHzRoEDMwMECfPn3QrVu3hroORkZGKCgoEOLi4pinp+f/x957h0Vxtm3j5z2zsJSFRXqRolhQQUQUCzbsNbEbe0vUJzHGxDwxxhiDMfHRdGONJUZN7LFhJSqKAgIKKGJBQEBFQJC+y+7OzO+Pi6W5CJjn/d7fd3ycx7EHCrs7M/fcc99XOa/zqmlBp6bSHFYqKdP6Gs/VxIkT2ffff4/Nmzdj6dKlhoM3n3xClN2DB4ka+sMPVfXbeug/t3QpBVoSEijjWksgztLSEiNHjuRu3LiBqKgoDKndG/nFCwrs7dv38nns2kVzZ9q0GsHASZMm8QBlsLdv345ilQpma9ZUOlccx8HNzU1UqVQveyCRkfSdeXkAY7i/dKnUQi5nXZ48wRsbN3J5I0ag6MMPYWlpWRWEmT+fMsDffEM0ZmdnWte2bKH1hOfJkfLyojrITZtIVM4AXV+lUoFvzH0zMaHsUlEROZG2tlR+8ddf5MRdvkwZXFEkh3/WLHKW58+n8VMq6f6tWkUOqL4H8e+/k8M6dSqVgVhakmOmR+vWeLRtGwOAuXPnwtbWFiYmJvydO3eQnZ3NdezYEdu3b2dXrlyRBEFAVlYWe//998HzPL7//ntuo0qFls2aCVk7drDHjx9zfn5+XJs2bSBJErXJEwRoK+jHchcX4P59jDYzw549e1hRaipycnLgri8VAJCfn4+nT5+C53moVCqoVCqUmZlJtjyP5vfvczXEIe3siAHw1VeVn29ZWIiPfv6Zw/37uDNrFkIPH2at2reHvb09MQBkMqojnzOHxnXHDho/T0+6vy1aQJIkREZG4sqVK7CzsxPd3NyYUqlkyMqiuRASYtAxAUBsijNnKOChD3A+e0ZzKSgIOp0OGo1G0kRG8rpt2yA7ehTqVauQnJWFRQsWsGbNmunnMgOAGQMGsPx27ZBy5QourFkjDhgwgDPocBcVvRTwSU9PR1RUlHjv3j3OpLwc3dRq+PzrX5Bv2oSPp0yBTqejvuoXLrCNGzdKH3744asd7tOnyak7c4b2UwPIzs7Gjh074OjoKPA8jzfeeIOztbVlAAmyzZw5k0M1ZfA+ffrwGRkZ2L9/P5Us3LqF69HRKLx/n5PJZNJPP/0k2traIj8/H5IkMXd3d7EysAYQ46ddO8DODtyuXbBOSal0ao2MjCp1Sjw9PfnS0lLBycmJl8vl3PXr10WO4zB58mS2f/9+aLVajBgxonJszc3NoVAoJKVSyQRBEIcNG8b169cPxsbGSEtLw/nz58U7p04hGeDy8/O5Dz/8EDzPo7CwkAHApEmTOCsrK2zevFm6lpyM4SoVYq5eRVpaGjIyMtC9e3eYm5sjJSVFKigooPZoI0eieNYsxK9cicDgYGzZskXIzc3l5XI5dDodeJ6XBEFgCoUC/ZRK/vns2VC3bQvno0cRn5AgPli9mms9bJhkFxzMLly+LNglJcHd3Z339vauO0hz+TKtZQb2UkmS8PTpUwWAv1auXFmHgmQTGoImZ7sJTXg10jUaDa9SqfB/LYW8uJgW07qETRSKhtfJVkfr1vQ6c4ZoTJ98QpHVCRP+kRMrk8nQpWIjd3Z2RkhICDQaDYbqs9b14flzCiroVTk7dybnWi/go1CQsXTkCGWEDNHuXhOiKCIqKgrNmzdHdnY2IiMjhZKSEj4wMJBr27Ytc3BwqNz03nnnHa6wsBAhISGiWq1mZa6ukk1SEpMHBSE1NRUnT54Ug4KCuKioKLi7u1fWmxmEXuDp4kUKJnz3XWWm18vLi4+NjRW7dOny6pssCJS1vH8fnFyOTz/9lMXExODixYtMkiSw69frH4APPiADs4GCZAqFAlqttopKB9B5t2hBbWgWLCAnon9/Ml6zsshha0jdX3Xoe8QuXmzY2WskXFxc4OLiAlEU0VqplJ63aCFl+/iw6RMnMnNzc5ibm8Pd3b2Gp+VpoGbczc2Nu3nzJjIyMkj5VpIoUKHTEbV4+vTXpr4bGRlhwYIF+Pnnn3Hu3DkMM6BGDMbIaF64kITH1qyh/x88+HJJg955XrmS5ll4+Cup+fn5+TVrHDMzqd6/+vsliWijd+5QVrGOgEhUVBQkSaK6d56nc7x9G+XGxsjIyOCGDx+Ol2qjP/6YSk8qjtd1xQr2i5WVZGJkxN5Sq0UnUeScfvyRrmXHDspEJiTQWrh0KQmY6bUYYmLonvTtS87ruXPUUufixTrZMY12tvWwtKSstSTROjV5MgWg4uLouDxP1PXBg4lOv3gxZVvHj6dzU6noPrZuTWv+tWv1HvLNN9/E7t27sWPHDvj7+2PkyJHo0KFDpRbFuHHj2LFjx8Ty8nLurbfOxob5AAAgAElEQVTeYnq2zty5c1F47hwc167lw9asgYODA0ZWZ49ERAAhIZCXl1MQoJqeQo8ePfD06VNp7969bNasWWCMwd7eHr/88gsAQKlU6ioESDlTU1OueMoUeMlklCGOjKQAGkABj+Bgum85OUC7drjctasYs2EDysvLufaAZBcZyfDGGxS8OHyY9gR9UMfVFZonT1Bmbw9JkiCKIkpLSxEWFgY3Nzdp8ODBnCiKyD1/HorPP8edn36CLi0NwsOHEASh8iWKYuVPHDkCrzVrpJDp00VBFFmXsDAmKy9nlx89gt2TJ7BSq3mtKCK6uBidNBocEgShddu2/EvimRWwTkxE5q1bED7/nIu+fFl0eucdTq1W48SJE2jbtq0watQoHnl5eNGyJfZv3izl5uYyjuMgCAI8PDzYgP790fb2bTQrKMDVdu0kcedO5tatG1q1bo0ePXqga9eu+Prrr9mZM2fwpl5wzxC6dqVxq9Zx4Pnz5wgLC0Pr1q3h7u6O3377TerevbvYv3//Bk9+uVwOk/x8IDAQRVevIjMzE1qtljk6OooeHh58bm6u4OLigkGDBnEcx9X8XpmM6PNDhxLbbvNmCjjXChq0bNkSLVu2rPysXuQyLy8PkiShe/fuNUpfOI5D165dxUuXLvH29vZgjFXWeleq5O/ZA9HODoMGDKjMPvft25ddu3ZNNDc35xhj6N+/P9Lu3BET1q7lLgweDDc3N0yaNKmS+RMSEiLu3LkTixcv5s+cOYNnzZpJHc+cYY/Hj0d+fj4/ePBg3L9/X+zatStnaWnJLl64ANtDhxCRkCDmK5Xsjrk58zt1Sio/fZobcPw49puasnwbG3h4eHDFxcUsJCREOnr0KPPx8ZE6duzIauxDWi09R7GxBu9LxTVr1Gp1GoD/y8WK/nfBJL2CahOa0ASDWLt2bcq0adNaurxGb+P/dXz6KTkms2f/zx8rKYmMxMBAMqpnz25Q+6z6cPr0aTE5OZkbM2bMq1txxMcT9TIjgzaPadMoy1o9O1xcTIZWRATVe6ekkHG6aNE/rtvW6XTYtWuX+OzZM04QBBgZGWHgwIHw9vauU5ClBrKzofrPfyD/6iv8uHWrVFZWxiRJgpWVFV68eAEAePvtt1HvPJQkEoZq2RKPFi3CiRMnRJ1Ox31UV52sHlOnksG6Z0/lr3bs2IHHjx+jR3q61Cc+nuUcOwZXV1fDUfL//Icyaj17NlixvCKjIX7yySdc5bn/+CMpo0ZEkFG9aBEZeR9//FI2tVFITiajvA6F29dBRkYGEhcsQGtzc7HFvn1cnYJkdUAQBGzcuBEODg6YNGgQ1c6dP0/qtK9iEDQCV69eFcPDw9mHH37I6qz7TEoiAaU5c8hhKy8nR7+uAKMkEevg3/8mFkK16z59+rQUExPDAGDRokVVCvgqVc3vKy8nQ695c3Io6yhPKCsrw3fffQeZTIbPPvuMfjlrFrB4MY49eiQkJibyeuEsuVwu8TwvDVCrWef58xns7Go493l5eTh58iTS09Px8ccfwzw7m5w3X1/KBI8ZQzXS+/YRe2fkSNJ+MDGhdXTnTqLSmpvTWBmi/1fg4cOHOH78uLRkyZKGRUtKSoidkpxMGb6xYymrPnIkOaoREfS+d9+lwJGJCQUJjhwhpzsggGq4ra0bzvioBkmSsGHDBkmj0bAlS5a89Hd93fVLc/zJE6IuV1dAv3+fsuzt2pEWgF6Y0gAOHz6MsrIyIS0trdIRUiqV0uLFiw1/oKiIAiGLFtF6360bzceICAoI5eXh23XrpAk7drB9b72FnhER6MpxMAsLI5X96vWwx48D+/ZBdfw41n36KYyNjaVqaxvjOE4CIDFRxOStW7nQvn2R0aIFHB0dRSMjI4njOHAcJ/E8zyp+guM4FD1/Lht34gQKVq+GkVIJ688/h/bzzyF3cYHRmDFgHTqg/PvvsXv3btHR0ZFr2bIlTp06JWo0Gi4oKEgIDAw06KiWzZmDmwUFYkT37uA4TnJ2duZTU1MxadIkPFu6VMoF2JOgIIwdOxbZ2dkwMTFB+5MnaY5ERwOSBFGrxa2hQ5FiZYUeGzaQHgeq1vopU6ZUiXtVQKPR4OzZs9A9f443LlyAbMgQYMYMiKKIb7/9VnJ1dZUePXrE8TwvtWzZUpowYUKjovfZ2dnYsmkT2gmCmGxqypmbmwtGRkZcSUmJJAgCJ0kS5s+fD9u6Spg0GnpeDhygvWPWrIZpi4Dm9cWLF8WYmBjO1NRU6Nu3L+9XLQBfWFgIY2Njw8mWyZOpxKeWyvtLePwY5UFB2LJwoTRw4EBWXVBVEASsX79ekslkyM/PZ15eXmh/6JD0pKSEJQ0ejEWLFlU9c4WFuDB9uqR8+pSlTpyIR4CktLQUOpw+zd/w8GB2zs5i20GDuPj4eHHu3LkcQOtnamoqjh07hmbNmkm2trbikydPeB8fHyEwOZmXFRbCuI42jAAQGxurb6HHNfXXfn00Zbab0IR6wBgr0mg0/7XvEwQBBw8eFJVKpRQYGMibmZnVXbP2T1FQQFS7VyE4mIzLe/f+2bHatydnOyWFWoYtXEh1u/r66teEg4MDYmJisHfv3ipjWw9JIgXgkhIyQvXtS3btMtzv1MKCMkIxMWTE5uWRmve6dSS+Vr1etZE4duwYnjx5wi1ZsgSMMXAc1zg2hIMDTPPygNhYDBkyRHr27Jnk4+PDWVpa4urVq4iIiMCBAweE0aNH8y2riY7VRlFxMbh//Qs3zpxB0i+/oH2XLuhhoI7vJSxa9BIddtKkSXjw4AEidu5k6ubNEffbb+jcubM4atSomsbUvn0U4Jg/v1Gtwezt7aFWqzn1s2cw+egjmidz5lAN2fHjJAZ19Cg52wEBJPTz228N/v4aaN2aHO2dO8kYex02Ry0c2LdPnGBuzjy++YYzRCWuDxU0S4R/9RXUO3fCZOFCOr/XbYNmAD179uQuXLiA8PBwDKpLCMnBgVggPj4kohgSQgyVw4cNiyAyRnXF5eX073XriD7L84iLi6v0Viqd+4ICYjzk5FD5Rn4+ZWNlMmKXGHhOysvLceTIESE1NZWXyWQYPXp05d+EdeuQ9dlnSGrZkn///fdhYWGB0tJSPHz4kMnj45n9J59gg04ntu3VixswYAA0Gg12794t5uTkcMuWLcNPP/0k3bx5k/Xu3ZucbYC0DyIjqdYxLIzWhdGjqW4+OpqCce7udH82baq3LEGtVsOqsFBCaiqDrS2tSxMnkt7F9u1US60XqZs0idafkyeJph4aSs5DcTEFD6ujXTvK3CUn098TE+l833uPAiV2diRYptGQs755M4353Ll0HR07UkYLoOcqJwewsQFzckJ+Xh4DY1i9ejU+++yzGqUHFY7lyxfq4kLH1mqp5nTz5qrAzaBB9c7lwYMHY8uWLUx/DKVSKc2cObPuAIWlJQVM//1vug8ffUTPcng4re3jx2Pk2rWMP3NGmjtlCgtp00YSPDxYf+Bl4amKLO7dx48x0NoagatXM0RGVhd1ZHjxgmHECODCBfRjDLt374YgCGz+/PmvXkDGjYNy/HiiNAcFwWTAAJprFy4AHAc5AG9vb3bp0iXpyZMn4vjx4/lLly4hJiaGC6ytq1IBs5070Qvgeo0bR/vbxx/j3Llz+PPPP9HaxIQNmTcPNhXsJ5fSUtoPhw6tEpxkDJyxMTrt3QtHPz/s37gRPv37o2vXrnByctI9fvxYdvbs2RrO9sOHD3Ho0CHJwcFBUhUUMPWFC0zx+DEwYwbu3r0LmUyGyZMnc/n5+UhKSmL+/v6NpuLYxcfjg99+Q9yuXdzoXr1gbGysDzawkpIS/PLLL1JZWVnd32tsTGtWeDhd77RpxDppACuI4zgMHDiQ69OnDw4fPsyfOXMGBQUFcHJygpeXF+piGyAvj+yIBpRLwdkZ8gkT8MHs2aw21Z/neUyYMIHdunVLMjMzE729veE1ZgznFRCAoWPHVu3JUVHAV1+h26xZ7MdbtyCqVADA3J884Xo9ecKUCxeiw8CBHMdx8Pf3r5ybZmZm8Pb2RmhoqPj8+XNOo9EwFxcX3IiN5eRnziDR2xvz9B1HDODhw4fgOO7WihUrmhztf4AmZ7sJTagffEP7NNZGeXk5CgsLUVxcjOjoaMnS0lKKjY2trFmKiYkBQL0MFyxY8Hp8UUOIiyPHd9u2+jecd9+lCO1/C56epJCrUpER9uWXFHGuoy6oPigUCk4mk8Hb21tCRR0b1GrKwFpaUkaK56nFz0cf1VC/NohvvyUjdMgQop+tXEkG9bp1tHHq6YmNhJGREdq1a6dTKBSvv66+/Tbw7bfwPnmSqy6a1atXL+h0OtHIyIjbt29fDRqaHs+fP8fevXuFwsJCHgBaBwSIM0JDOfP//Ier9/6++SZlpmvRvxUKBTp37ox2ZWVIk8sRd/o0bt68yRUWFkqTJ0+mPrGnT1f1IW5kW7znJ09iyp49kPr1I4Nw9GhiHJw9S5ndGzeqnOLQUMqi7dlD2a1GKOJWQhAoa9yhg0Exucbg9OnTaHv1KufQps3r14NrtfD4808UKJXiOXNzvDlqFJednQ2O42BhYVG/AnEDoF+7oqKi6na2bWyo7lWtJrr08OHkDN6+TZRtQ2uIXE7rRlYWOVhTpgBOTliyZAm+/fZbiKKIZ8+eoUWLFuTsJSbST72wXc+eVHpScX6pqamIiooSOnXqxDs5OaG4uBiPHj3i3nvvPWzevBmO+raBABIzM2F97hwm/vJLpTFsYWEBv9atARsb5P31F/ooldy5c+cQGRmJCgYfBwA5OTkwN8S4GT6cXoJAAR4LC3KM/Pxobm/dSmUNS5YQi0av/F1YSNnvoUOpfVduLrBoETQnT2Lk779zuHuX6uFDQshJtrGh50ySiPbq6kqOk55i36sXrUkA1VjrBdGaNydmR2goBS8uXaL3H6omEDx+PP1UqcgZMDOjNbKkhMZeL0wXF0f3TaGgkpPSUqB/f3xy4QKuyeVokZ4OFhtLFPUTJ6jeuFMnElPy96dSHYWCstaCQEEsMzNaW0eNous1M6N7LUm07j9/TsKGMhn9VCqBuDhY8jw+6dKFu7hjh8RKSlif3r0Zv307jcvZszQn+/enYHBhIY2TUlnVfULf933VKhJKbNsW7XQ6ICSEwdoa9hkZLCYmBl27doVFbYVwACne3rjr7o7uJ07Q9bZsSU7xwIF0n77/ntbHli3RApUt3ZhWqzUcJBdFCpAYGVEg4+pVejZWraI1raiIxsbYGAEBAczY2Bg3btzg9uzZAwcHB3HixIn1Gxv/+hfNzxcvMCQoCObm5vA6eRI21csW3n+fAiE7d778eWdnWIeG4q358/GbiYkUGRnJUOEPtKgVpD5z5ozQqVMnftiwYSwxMRFnb96UPAYNYp0rKPM8z4MxBhsbG/Su3lqtEeBsbGD18ccIMqDN8ttvvwnOzs6ca339vQWBAoChoTT/791rcDkTQH3cTUxMBK1Wy1+5cgUuLi5iq1at6mYr3b1LAeqGlPno97D09JdU+wGgefPmqGjNWfll/MGDxC66fJkYLGVlwPvvQzF0KGZ1746U+/fRddMmHLG35xARAZ96glrTp0/nJEmCnZ0dncytW+zprVu4ZG+Pw4cPS6NGjWKG1kUPDw/x/v37HYODg5UrV64srP9im2AITc52E5pQDyRJsqhXpdMA7t69i4MHD1b/FQPAnJ2d0b17dzRv3hw3b97E1atXkZ2dzdRq9X/FuAZAWQ+druH1nhERr+zV/FowNaWNPjOTMs137xK1vE+fRmXucnJyRJ1Ox8XHx7Os2FhhmKcn73b6NCn09u9Pxt/27fU72XqYmdHYnD5NhiFAmZJffiElz/79KQvVyPEwNTWtFEd5bfToQUGJ1NSXWmYNGzaMA4Di4mLh8OHDvJ2dndivXz/O09MTRUVF2LRpE3x9fVn//v1hbGwMuVzOYcoUMk4PHiSj9JtvXj5meTllwV4hxmb6xhtov28fBg8ejPDwcKSkpLCIiAi4A1AsWYK7c+aIPSZMaFhIShTJmL13D7lt2iC/c2epVUAAQ0YGjbu9PYnw1KYBWlvT6949yqTPmkX3sTGK8jxPDrsgGBQUagwS4uOlBXfvMtNVq17vC8rKiAng5IS2ixdz5/btQ+qPP4qlpaWVZQiffvpp/ar0DUSNnqwv/5Hm3Pz5RJH+4QfKrH77LQXPvvmmxlpSUFCAP/74QwTA5eXlQfH++yjZtg2f/PwzLk6aBNHZGXZ2dpUtdbBgAZUBXL9Oa03PnnT/qiElJUVKTk7ms7OzBZVKxWu1WpiYmODQoUOCs7MzU6lU3Pfffy8FBgbC0tKShY4ZI83x9a35vL33HiBJsNm9GzYA2rdvj4SEBIiiCE9PT2zYsAEAUUPrLMfgecrIPnhA8/HsWQomSBJll0aOJGc4MJBoySoVZf9Hj6ZgXbNmQO/eUD19ihOffy6888475AFduVJ1DH3msi4NBpWKGDt791LGXaWic/L0pHHUasmZVioNC3WZmpJzDtQsvejcmX4OH171uwEDoNVq8eLFC7wYOxbXDxzAPS8vvD16NExatKAgGGP0vKSk0Dqxfj05/B9+SEHK69fJKbC3pzFZtYoc9CNHiKLfvz8FWwoKyOHUt1S7e5eec1FE15492dXwcOnorVvMRKGQBvTowUzHjqX56OpKzBYTE9o7jIzI2Z8+HTh2jI53/Dg5xebmxNYqKAAmTcKQ8HBYpaUh190dJ6KjJYtOncQ3ZszgAaLO7927F2jTBsPfeIOCwk+fEsPAxoaCLEFBNYLRNjY24Hke+fn5sNNowO7cAWvRgpgQWVm0H0VEELXe0pLuBcfRfEpIoMDGs2fAmDHgd+6Ev4sLWs2YwWJCQsTnFhackbMzBQ1atKC9ytD91SvlBwUBNjbodfgwreNubrSnDRpE+9srNAOMfXzgOG4clr14weLGj8eJEyfQsWNHcfjw4TUWnA4dOvDR0dEYNmwYvL294fH0KZMWLcLOqChkOTujQ4cOIoDXV0Y9ebKqlMsAPDw8+NTUVOnatWuwsLBAx44dDZcx8Tzdc46j/eHYsUY52wAwZswY3s3NDadOncKTJ0+4r7/+GkuWLIHCkAZNZqbBvtR1wtaWgkUNRevWNJ8DA+m5Xb688niuDg5wLSqCpNEg29ERDzMzDXd/qHH4WhT82Fg4DxsGPysrKSEhgX333XdYsGAB6WJUoLy8HImJiWoAZgDsg4ODBQDiypUryxp+IU0Ammq2m9CEerFmzZrc+fPn29YQ+2kAgoODAQAffPABMjMz4eLigpKSkhp1x1lZWdixYwcAwM/PDyNGjPhnJyuKtGmtWFFvr8ZKXL9O9Mb09H927Pqgz6b85z9kJL3zToM/qo6JAWdtDbFLF6gkCRoLCzxXKHBj/Hix3zvvcK+s5TaEhAQyVmtH0iWJqGiffEKZvkYEBg4dOoSioqLKWqnXxm+/kTFayxnR48WLF9i1axeKiooqBZgEQYC1tbW0cOHCl1vcAGQIr19PRoggVDEMCgrISJ0x49WBmfJyMvo4DhqNBr/++qukTU9nHW/exD0vLzyvUN319/cHYwyurq6VvUwrkZ9PTnbfvpQt690bj/z9Efbdd9Kshw8Zhg8nBfL66t/0OHCAHI+4uPrbkdXGkCFEPTx5snGfA3Djxg2EhITAIy0NHTw8pC5fftm4AIskkROyYgWNfevWAGMoKSnB/fv34erqClNTU6xfvx7NmjUT3n333X8s8f/o0SP8/vvvWLZsGYmIlZRUiQbOnElzzdqanMgWLSgTV14OZGVBXLcOjxwdcb99e8iNjKCWJDy1s0OhUolSc3NIFXWqoijCLS0Nuo4dpYkAU/bsSTX8kkTO9fz5tNaMHVujL7IehYWFWL9+PSwtLQWe5yWNRsNNnTqV+/XXXzFu3DicO3dO4nkearVa0mg0XFDr1gjUt74yM6MM6KlT9EwbYFiEhoYioqLuWS6XY8mSJTASRXKu7t2j4Me+fXTd/ftTcOrOHQp6XblCzt1XXzWYBXTx4kVkZGQIs2bNatz9S02lNUAUyZkdPZocTYWCWELr19M5LVtG9zE1tV61eq1WC309sVqtRkxMjJSbmysqlUq+tLQUSUlJKC+nrj7GxsbQarUYMmQItSSqC3p9hR49yOGOiKAg2bVrxAKoFaDOyMhAdHQ09PX1zs7OkCSpUpSs4iU9fvwYmZmZbPny5a8WmLtyhXQmHj6kDLexMWXp8/IoSNGsGVBUBF1CAkJ//VWUXrzgHAsKpOcKBQu6dw9cnz642qqVkH3nDq9ycRFnrl3LITKSrmHfPppXs2dT0OLyZWISJCWhrEMHPPz4Y2iNjcEkCZwowmv9epjcu0c1/N26ARwHSZLw5MkTFFe0ULSxsUFl+0VRpHn28GGl05a8dy/upaUhyMYGirIyKr8KDqaA4vLlpKvg7U3OerNm9GxlZdHa9+QJBba3bKHyjBEjGqb58OJFpT7Bs06dsHXrVgBA586dpdatW7MTJ05IeqX/gQMHwtLSEt5btoDduwfVsmVgvXr98wTBtGm05lRTlK8OURRx8OBBqaSkBE+ePGGurq7SnDlz6l5zO3WiEoa//6b9xlA5WT1QqVRYt24dZDIZli1bZjjguXYt7WXduzfsS3ftIgbd+vUNe39CAq3NHTpQXbg+cFBYSE744sXA6NH44YcfEBAQQMr/DUVJCTF2EhMBuRx5eXnYsGEDWrRoIc2YMaNybG/fvo2//vqrxkc5jvt7xYoVDWzM3gQ9mjLbTWhCPWCMCa/MChlAdHQ0AGD06NGwsrKCVQV9r7bDnpycDAcHB8HX15c/c+YM3NzcJB8fn9fPjubkkBHSmA2wW7f/eUcboMXdz4+yFFFRtGFMnUo/DTm0kkRG8PXrMPn+e6BvX0glJXjh7S39/fbbUrdBg7i0ffs46dKlV9f4GYKXF9E1//ijZgabMXKwIyKoxnH3btpUGxDB7tWrF3bu3Mnl5ubWUDVtNLp1IydQFA3WFTdr1gzTp0/Hrl27UFpaioEDB6JTp04wNzevewz69qXXrl1k1Ny+TQ7K8eNEk5w5s+7zOXCAall/+gkAGeML332XSYMHo7hfP/ReuhSbNm1CYWEhblSIJMXGxsLFxQXW1tZgiYn0HcOGEb2yeXP6rqwsOH/7LXqfO8dw7BhlBRujvD1pEolWaTREt9261WCW++DBg2JqaiqzsbFBQEAA8/X1pfvaSMq7HpcuXRLNTE25sSoV5H5+jZt3hYVUB52YSFTlanNPoVDAv5pa87Rp07B3717+9OnTGDx4cJ01dQ2BXC6HWUkJSleuhPGMGVR6odGQQfrDD6R8npZGjBjGKBjh5oayn3/GL0ZG0rzNm1nzjh2Rz/OSXWYmG6BWw9jICC9KS9EsJwesWTNg7FhIffqAOTszBAfTtXbuTM7CrFlk4L39dg1F6upQKpUYO3asVFZWxvM8j9OnT+Pp06fw8fERjxw5wllZWYnvvfcez3Fc1ZiHhwOPH1OdcpcuVKdp6L5KErTZ2XB79AitjY3RrmtXGI0YQc/BF1+Q0+HuThRxmYwM3agoMnTlcspa5uXRPOvVi5xefXaxDpSXl8PY2Lhx2Yxz58jBd3OjANiIEfTslJdXZUjfe48ccFNTuvbiYsqUGnCuSktL8dtvv0l5eXkMoHZGGo0Gcrlcsra25pOTk6FWq9GpUycMGDAA58+fR3Z2tqhWq7mzZ88iOzsbbxjSe1CpaE04cYLW79Wrgb17kXPlCkofPIDZ48ewOnQIt/r0QUR0tFhWVsY0Gg2Ty+Xw9vYW4uPj+ZSUFDg4OEiMoK8JZ/o2hdevX4ejoyMM6lOIIj3ra9fS/WnblgI6hw7RWKxbR/Ng0SLI+vTBsD599Asp+/GHH5Do7Q37nBzoHj/m3/Lygkl5OYcBA2ht0rOLmjcnuvaZM3R9W7YA06bB7M038WTkSN0tQZDJnZyk0tJS9qy0FMaenoBKBe7KFXTr1g06nQ4XVqyAW06OGN6tG2dsbIwBAwZUXkJlUNTeHkwQcMrSEiOXL4dCzz4AaL7l59N4t2hB1PHwcJoj1tZUo//0KQWxNBp65tasofNvCJo1A/z8IG3ciBtPnwrm5uZs7Nix3J49e1hSUhJMTEyYIAiwsbGRrl+/juLiYhauUEg9e/ZknWSyxtkZhvDgAZW6veJ7OI7DyJEj2d69ewUAvFKpfPWau2IF7eEtWlAw+TWgDwgZGRlJKSkpLCsrCz179qxagwWBAk0LFzb8S/386D7VB0mi0oN16yhYkJ1NwaPVq6lERaWibPeoUZAkCcXFxcjOzsbevXvFadOmNSzQ/+OP5KxX2F02NjaYN28efv31VxYWFoZevXpBJpPBw8MD48ePR3Jysi4hIUEGAKIovt3wi26CHk3OdhOa8AoEBwfLOI6zNlTrZQgajQZarRapqakAAN/a7XNqoSLjzQICAlBaWoq//vqLOTs7w8bGpvEnu2cPGWm3bjXuc5JEjk5CQqPErV4bPj706tKFjCW9WM+ECXT88nIyzMeMIUMjKIg2mWfPwHJy4NSsGZsOsNLSUgDA0KFDGx+ckMspm5+cbJguznGUKTh1iiiKAQGUja9F6UtOTsbp06cFnU7H7OzsmEwmY5s2bYKVlRVmzpxZGWRpFNq3J/GfN9+sMztha2uLIUOG4K+//kJJSYnhGlRDmDGDjEiViqj3//oXXVd9qK6mLgjA6tVgq1fDsls3gDEsXrwYT58+hUKhAMdx2LJlixjy4YecnYMDhubmgrOyIidLT7394w9g/36Iw4bhj6lT0SklBW80NKNdHZ06ARV0umt79yIlJ0fgWrXibWxsUFpaitzcXLG0tJQbM2YMsrKycOrUKZSUlCAwMJAMmrffpoxRraDG5cuXkZ2dXVk/qdPpUFhYCBsbG+h0OjrewDYAACAASURBVDbMzw8WklRVhtAQFBdTwKF3bwpw1EMPd3d3x5gxY3DhwgXpxx9/ZCNHjkS7xtAiy8sBnkf5vHnQpKbCxtMT8pwcet4uXqyay337kvPSsSM53z16UI1gQgL2r14NY1tbZvLtt/CJjQXWrWPVheCs1WrKrl2/DpSUgD18SDWTZ8+SMzhwIDkHzs7kNJ47R4ybZ8/IUXzzTcr2eHgASiU6tGnDYGSE5ORk8Dwv+fr6Mj8/P65CHO3lNOeyZRQsmD+f5ra7O2X+CguJRpudTTTl06cxJC0NCR4eeC5J0tGoKDbwvffgMWJElQBRdDRdR3w8UZ8vXyaDd/JkyjBv3UqBiMGD6Tj1Dn85Glx+pNOR4xQfT6yCHj0oQ+npSWPXogWJoAF034yNaQ4xRgEBtRrIzobE87h//z4uXryIgoICaGltZW+//TYEQcDTp0/h7u4OJyenyslXvWXa2LFjAYCLjIwUz58/z8XFxb3sbMfFUbBm40a610ZGQFoaNDt3Is3TEwqVCic3b8bEPXtw5+5ddBk6lLn36sVSUlLQrl072Nvb81ZWVlJ4eDibO3euwbU7PDwcoaGhFbd4Wc1xFEV6hlasoLECiK69cCEFTYKCaEyWL6d5rlDQHAeQmJgoFRUXM6+AAOj3XBO9NoYoUpb5+HGaQ0+e0O9+/JGo6Xl5wA8/QHf2LKLlcllAQAAGDhzIjh49iuzs7MrTe/ToEe7evQutViu5FxayIKWS81u0CAcPHhRiY2MlAKjOKNVqtUylUvH6LH8N8HyVwKmeveXrS471zZs0x2/epMzn8ePknL/9Nu2XoaGkeTFq1Ku1Unr0QMndu+CPHuUX/PknFBYWeP/992FlZVU9o8sqzhVPN21i4k8/oSw8nBTeXxeCQEymH3+s0hqoA1u2bBFLS0v5Tp06oS7xuEqMG0fBVFGk9SEiotHlQvpAiEqlYocOHYJCoZCuX78uBQUFcV26dCFbSV/i0FC0aEGJhle0S0R5OTETs7IoKCuX03qdlES0+C+/pLaEX39N5wmga9euupiYGBkALjw8vP66+fJySq7Mm1fj105OTrCxsRGuXr3KR0VFoU+fPvDx8YEkSbh3755+0TdbuXKlquEX3QQ9mpztJjThFWCMzba3ty+Xy+UNkgtfs2ZN5b+trKxEVIjy1IX8/Hyhffv2PFAlllan+mV92LGDjI8Kw6LBYIycSZ3u/4yzrYefH7B/PxkLv/9OlDq9uviECbQpZGTQJvX33y+12cnOzoapqano4ODwerTtxYspc9S3r+G+4IxRfaafH21yHEcOo48P1q9fL/E8LxUWFnKBgYGcvb09S0tLEwGIPM9zDx8+ZHFxcVJQUNDrsRTGj6dMSkU22RDatGmDzp07S9HR0SwhIUEcM2YMV7tly0vgOHKAEhKIgp2URMd5FUaMoCyyHsHBVbWJ1YwGZ2dnMqAOH8aioUO5sp9+QmiPHoj44AOpV69eDGo10WNTU6kecvdumDRrhtmZmfjjjz+g1WqlcePGNX68LC1xePJk6VlaGuZt2cKnjhsn3ejZUzQ1NYWvry/fsWNHWFhYoG3btmjRogX++OMPxMXFCR6OjnzHQYPw9Pp15L94AX9/fyiVSiQlJeHy5cuQJIn7+eefBVEUWVFREUfDx0EURab8/nsJ06ezBimaCwIxCk6dome0EQ5z+/bt0bx5cxYWFobDhw9DqVQKixYtqptbm5hIgZS0NGr798cfSLO2lq7rdCzTzQ1mFSUrL4Hj6J7qjdLmzQEXFwyZNw+aTp1geuoUBciCgsjA1wcfTUzo+axN1fzqK+DRI7rm8HAyGM3NiWI8ciQZjhcv0tx64w2ifbZtCyxZgtI//oDp0qX4V24u4959lxyrRYvIad68mRSo//iDxnXBAsqMRUSQAxwcTHXFjo7094AAyq4PHw7e3h6dAYiiyI4cOYI9t25hsIOD2M3CgsPXX5Mh3L8/OSvz51Ng4NQpclzs7at6u3/xBQUD3dzoGuqoldRoNDA1Na1/PufkkPHs6UkOpL09ZfxKS8nZV6nI4a5eKnP0KHDlCkotLVEsipArldLtrVtZ+bFjiOjVC3K5HDKZDK1bt0avXr3gVKHHYKjcxlBAoHPnztz58+cBGi9yukSRAibu7rR2VuvckFBUhPBp0zDgrbfQzs0NrbdtQ/m9e5ilVAJt2jAMGoTmGzdWrhe+vr7swoULyMvLMxhYzsrKAkBsj40bN2L+/PkoKyuDpaUltPn5MO/c+eU2gPPnUy36unU0V7dto/n2/ffAvXs4bGkp3HnwgPfy8sKYMWNevu4DByhT/+efFBCKiKDrHDmS7kVYGFBUBNnEiXB9913B09OTNzIywsSJE2t8TXR0NKKiosR27dpxATNnAkolrADMmzfP4HOrp+rOnDmz7taWOh0xLXr1ovVj7FjKdP71F9GSAwPJgerTh+bQoEEkSPfnn5Td1bc8mzvXYMlBXu/ecNy2TVIcP84wbdpLDDw9jIyM4D5mDJITEsRTKhU3ID+/zvfWC46joFwDgqxmZmZSaWkpbG1tJVtb2/qfqehoClJ0705dMgwIr70K5ubmWL58OR4/fgxra2uYmZmxo0ePslOnTqF9+/Ywe/as8W0oLS1p333+3HCHmFu3aG3r25f2f/38NDKiYOTJkxRAqjXfhg8fLhs+fDhCQ0Px4MGD+p3tK1eodMlAmeHChQv5srIy7N+/H2FhYQgNDQXP8xAEATKZ7M7y5cubHO3XRJOz3YQm1IHg4OA+xsbGP48ePbpBEto//PADAMDT0xPdu3eHh4fHKy3xoqIiFBUV8R4eHigrK4NKpcKgQYNq1KlVzzrUiWfPaNO9ePH12xlt3/5faYX0WvDxIUrg1q1Eob5/n2pHP/mEftepk8GPKRQKaDSa1z9pIyPKav/550tR3hpwcaEs06lTROvq3RtFBQVMkCQGAB06dGC2trZo165d5bkIggCe51+/HGDyZNpcXyHiJZfLMWrUKNa/f39s3LiRu3TpktS6deuGHbNjR8rqFxbS+J4+bZgqL0lk/MfFkbOxaxcZfAEBNbP8evGkAweAGzdgvGMHjDMz4ZWYiOPHjjGftDQojxyhzO7MmTUcFFdXV7zzzjvYsmULS0tLe0kNF6BAVHh4uODk5MSNGjWKVResOXPmjPTw4UM2d+5cyOfNQzudjrVbsYJHt26U5agGd3d3LF68GPHx8Xx6erpw0suL9VqyhBWMHy/9euMGJ4oizMzM0KdPH8nDw4O9ePGCLy4uhre3N27cuCHZ2Niw1ra2sDh0iNU2egwiI4OMqLNnyZCqpqjdUFhaWuKNN95Aq1atcOjQIb6srKxm3/a4OHJCv/mGnNcpU4gOfe0a4OQEzy5d2IFvvoGFhUWVmn91FBSQQxoXV/P3jCFu7VoxMzaWm3roECxHj6as2qVL5IC8ar0QRRLlu3+fnF6OI7rr339TwGX16qr3PnlS+U/NhAn47ptvYBYUBAczM2mGqSnDV19RoE2no7mnUFDGR8/OUKnIGZo8GQgMhGhpiVPnzgEAMjMzxS4vXnCZt27B29sbbdu2BcdxmDBuHB789RfylyzhCouLody1i9YhQSBq+ejRVcZ0WhoFBKrT+BUKcsSaN6+z3EOj0aBeyuv16+Q4e3tTwIHn6Zn74gtyEJRKGsPg4JeOIe7cifL0dGx7+220ychgIz/5BDpbW3Q7cACWr+sAVUAul2Pq1Kk4ePCgVFZWRs/b2rV0//buJcp2BXQ6HU6dOiXNjIpiLs2bA/Pnw/j4cRh7e9M43r5NDKUvvyQnKCSkcv5eunQJ4w1kNfv37w9TU1OYmZnh6tWrOHbsGJKTk9H1+nU4ZWWhZVgYlNWfAYAc+W7dqAZZr/gcGEhMoQcPMGzWLF7t74+HMhmOHDkiWVlZMV9fXzhbW9MzYGtLjh9jFFzMz6c17uJFICUFSatWwebPP3Ht3Xelx3I57z56NAV7agl7BVDWnG7W5s20v4SH1znWGo0GRkZGsLW1fbk2+OBBcq6zsmh+5+ZSttrKioLRCQl0fePHkw7E5s0U+NqwgZhZw4bR3vbrr3QOrVuTEOjChRTEqljDbRwdcbpHD9YxIwPcgwevFgdt3hytsrM5bWYmLm3ahHGff173e+tCXh6tJbdvN+jtCxYs4NeuXSsVFBQYXsNqY8MGeo4ePaLgQ9++9eoa1IaeRq3HiBEjkJSUhEuXLmHEo0evJygrihRIq+5sSxIJBU6ZQoGhIUNqfiYvj57/jh0NMhQkSUJ6ejri4+PhXSshYRD37r2yxamZmRnmzJkDAEhJScHjx4+liIiI2xqNpmuDrrEJBsF/+eWX/9vn0IQm/P8OwcHBPXmeD500aZJpQ8S38vLycPXqVchkMixcuBDW1tavVBEWRRF79+4V7e3txYCAAI7neTx+/FhMTExEeHg4CwsLQ1hYGK5evQqO4wR3d/e6v2z7dqIczZ7duJrX6rC1pYyFgbYU/yOQJMroTJ9OdLeAADIoJIkiup07EyWwTx86NwNjaWRkhCtXrqBZs2Y12gI1Ct7eZFS1a/fqsWOMNtdOnYDsbPT5+2+0nzwZDwsKxOjoaNauXbsaDtA/VpCWyWg8ioqqMmp1wNjYGI8ePRKeP3/O+fv711/bW1REWbR336WIeWYmGSNpaYYj7kOH0jhduUJG2/TpVcrlT5+S0depExms69bRPFQqAcbgUF6O5l9/jdzYWDyZNw8O06eDGchkVfSal06fPo1evXpV3ghRFHH06FEpJiaG9e/fn8vLyxPPnj3LJSYmChqNhrt06ZKUnJzM5syZQyqqJiZEeU9PpwyCmxvNnWqaAEZGRnB1dYWPjw8XEBDAHA8cYD5TpjCPPn3QpUsXDB06FB4eHszKygpOTk5wd3eHqakpPD09mZOTE+Tr1xPNv751ITqanCY7O3JUDLEnGgE7Ozs8fPhQTLt2jXm3b08OYGIiXe+zZ3QPly0j5oKZWWX2+f79+0hKSsLYsWPZS4q0AGWdS0rIMK+FNh07svtZWaLrsmXscUyMmPqvfzGb6GjIQkIMipwBIIrruXPkSG7dSkGGiAiiX8+bRxmVrl1p3tQS4NIJAmJv3ICK51HAcSwqJkYy69yZOXXoQOtAYCDdY39/MkJNTMjRuH6d6ORmZki6dw8XLlxAVlYWysvL2YMHD9CsWTMhIiKCe5GXJ7ZNSWHYvRs2jx7hllIpZX/0EVoGBjLwPNHao6LIMdQ/zyEhlJWvvTb26EHOgp8fPUu1gqI3btyAra0tq26w18DWrVQPPGkSHVe/ZkRE0PM5aVJVOUtCwktG+H13d+wuLoaVkRHmrFkD4z/+gMmQIZDzPNV1T536jwKoCoUCWVlZYsK2bZzXl1/C6KuvKHtcrSZerVZjw4YNoo2NDXr17cs4IyMqD3rrLXJuYmNpbbWwoACbIAAtWoBbtgy3mjWDwtoaHQxkNs3MzNC2bVu0bNkSxcXF0p07dxgAtHr4EE9cXGAXFIS8vDzEx8eL7u7uVaKQPXoAajW0koTNBw5I165dg4O7O2vm4wNjb2/4qFToDCCupES6l57OCgoK4Lt8OQU29bW+eugV1T098duJE7oYjYZzGDgQXIsWmLJ2LTMKCgJbuJDu19WrhoPCCgU5v6/I3sbHxyM/Px/u7u7IysrCk0uXoPn8c1w2M0Oz5ctxOyUFpywthag+fcSIqCjx2o0buHjhArPasEFyMDNj+Pe/aazlcgqyzZwJKScH2itXwEpLwXr3pjk6blyVkKS9PQU9f/8deOMNGBcUIPLZM6kkMVFyjotjRv37G1ZBBwDGwNavhznPI1mrRUhamnjr1i2mUCgarlVSWEh76tChDXo7YwzR0dGir68v3+C9/oMPiDGi3wMaIhj3ChgZGUGhUODatWvodvYsyseNg3FDRWj10OloX9LPlfx8qrE/eZJetc/x0CFiJXzyCTB7NqS33sIRjUYUzM2Zg4MDysrKsGnTJikuLg6+vr5smIE1vAYePybW0cqVDVobjIyMsG/fPiYIwkYAEf369RMad8FN0KPJ2W5CE2ph1apVoxljp0VRNL59+zYqhEJgb2+PtLQ0KJVKMMagVqvBcRx+//13KTQ0lAHAlClT6qVViaKInTt3CmVlZdxbb73FGRsbgzEGX19f1rNnT+bm5oYePXogICAArVu3xrlz55idnZ1hQ3nPHqpVnDv3n2WmZ8wgI6mR0d/XwqlT5JAFBJDBfesWUcjVatp4goMpiu/oSEIwa9eSIVtrI+J5HmZmZggJCcHt27fBGKu7nU9dsLSkGih39/qdJ4CcyPbtATMzmB85gu5eXiwsNxfOLi41Wmb8V6DT0bh0rT+grFQquTt37iAsLAypqak6Pz+/uieDTkdzZciQKlp5aSkdp1MnMvT1OHOGjAOtliLys2dTduT5c8rWvvMOZSiCg4nepnf009OJbbFiBcyXLcPJFi2km+nprEePHgaDAdeuXUNERISkVqu5uLg4ISIiAuHh4dKVK1eYKIrSlClTWJs2beDj48P5+flBEAQWGxsLS0tLafz48eylsQ8IoMzNmjVkdL3/ft3BlOnTAYUCVs+fw7Ke9il49oycx1mz6q7XKy2l8VCpaEwMCUw1BhoN0VtVKrQ9eZK1Wr8e13x94eLmhlhvbzi/8QbYsGHkHNa6xnPnzknnz59nADBo0CDIawsRlpURtf3TT+scH68OHVhMq1Z47OjIuM2bpUtOTvC/fJnU42sHENRqojomJBCNl+Mow67TkaOsf7+jI/0/KoqyUBVGokwmQ0BAADw8PDBq1ChotVp2+/ZtoUuXLjXn89SpVH7y5ZeU8fHwoGM1awZ7e3sUFRVBrVZL//73v1lAQAD8fHw4t5gYOHz1Fbv+5IkUp1CId3v04JIkiQ0ZMoQpcnIoi7hgATmU1dfSNWvI8dUrSVeHgwPRzzt3prWs2tyOjY0VHR0d2UvBWq2WsqF2duTwVFftf/6c1qNRo6padxkZ0XNZqzWfjaMjirZvx/CDB2G6dCllxtPTafwHD6ZgSElJo9osVgfPcbDNzubEv/7C0zZt4DFrVo3re/jwITZv3gxra2vMnTuX41u2pMBp7950zPDwKpX7jh3JSe/WjYJ927Yh3cVFaMdxnIOv7yv3nbZt27IXjx5hwIYN+HvQIGS7uSEhIQGJiYl49OgRMzY2llxdXVl6ejrSMjKQvWULcn/7DXHNmzNTU1PJ1taWubi4AB4eYD16wDg0FC22bWNWWVno1b07TJYtgzh9OlTl5SguLsaLFy+Qk5ODImNjZMhk2Hn0KPLz8zlnZ2ep0MJCyFGp8LB5czwoL0fB5s3M9uRJGJWWErX7xYua2Ue5nLLQrxBj9PT0RGRkpOTy2WcsPS1NeqJWS63CwvCwVy8xd+RIiXXvzrk0b855enpyXl5eXMeOHZnlsWPgtFrm8tNPdIziYuCjj4C5cyEWFEBydsZGX19E2dlJnfbuZUZffknzWi6n9drVFamdO+OuRiM+z8gQnf79b66LpyfLtbaWSs+cYaZubpC/yjnt0gVG06ejTb9+aNayJYuNjcWdO3dw584d0dzcnHEcV5N9Ux1JSeTkN9L3uHz5MnNxcWHW1tYN00Lo04eCe15etCbXV2LVADg5OUFMSxNkR45wm01M4ObmhmaNEdrMzqYyqp49KRgbEUFB6h9+ePk5LS6GOG4cQhUKobBlSwaZjGUaG0u227Zxx2Qy5OTmSqdOnWIKhUL64IMP6i8hA2hfGjy4TpHK2tDpdIiPj9dqtdqBAD7r16/fa/a5bEJT668mNAFAcHCwA4CexsbG0+Ry+dAJEyaY7du3DyqVCnK5XCovL6+0RO3s7JCbm1vj887OzujTpw/a1pOFFEUR27ZtE3Q6HTd79mxW54ZUDWFhYYiMjMSMGTNgYWGBsrIylJWV4UVSEvxmzwZu3gTn6vp6F67Hn3+Sw1mf+MjrQqulLN/9+2RoJidTlPX77ykbsXVr3X2yr10jJ+fHH6nOeNSoGsZZbm4uYmNjERMTg7Zt2yIvL0/w9/fnX9m2pjoOHKDMS0XvWY1Gg6Kiopf7UtbGixd4PG0aSlJSkLZmDYaNGdOw4zUUWi1F/vftM2zo10JoaKjw+PFjPiMjAwEBARgyZAhyc3NrBgH+/ptokYb6bT97Rkbhe++R4I6HB0XUc3LI6dfXL06fTs5URAQ5aNUz1YWF5LSkpVFWaN48wNgY9+/fx/79+zFp0iR41TLiRFHEt99+K3Xv3p1xHAeFQgGdTgdnZ2eYmJiQovnrMjYAyr7HxxN9+fffa4q96aHvR3727Ku/KzycHNTaVD89bt2i92Rk0Bg2UFjxJUgSifyEhFCv6/HjyYnq1w9Hzp8XE+/d48zMzFBWRu1Ovby8YGpqitTUVKG8vJyXy+WSi4sLS0pKAgD07dsX/Qz1dA4Npefx7t36z0mlQnnv3jjTvDl8vvsOnosX01zRZ1NKSyn4V1hIhn/1zFhdokDHj9OcXL+eShRmzqzh6MbHx+Ps2bPS1KlTmaura1XrnKVLyXjWO3+rVtHxli0DAGzfvl1QqVTc+7NnM4SHA3v2QDQ3R2z//pKVvz9LT08X79y5wwYNGoQOHTowvPkmObcbNtQ8z0ePaHxOnHj12GzdSs/Uo0eVn9+8ebPg7+/PB1SnbD5/Ttf45pv0HNWmhV6/DsTE1FQ5HjGCxMhqZcjLyspw/MgRyfjkSTZu/34at7w8csy/+aZqzU1NfT0tjtmzob19G2tGjIDEcVi5cmWNP69evRrm5uZYtGgRlT6JItC2LcQZM8CZm1Mg5eJFosOXldH6PmoUrTH+/vjphx8wd+NGWIwZQwGNV51jZCRUX32FhBUrENCtGwoLCxEVFYX4+HhMmDABrVq1wvr16yWdTieZarVS+7w8PtPVFeVmZmJWVhbHVbTiAgCZSgVWXo63t29HrqMjTo0Zg2K5HDzPg+d5ied5SSaTSY5ZWeh5+jR3aNYsKBQKZmdnBzMzMygUCigUClhYWODUr79idmkplIsW0Vp34wY5vvo5/O23NKfq6vZx8SKwaBGCJ0xAv4sXUejrK/JDhkgjRoyoO/qwfz9yjx7F0Q4dhHlffEHvKyigEovERNy4cQPXTpwQ5y1bxu3evRvNra3F4Z6eXKGVFdI3bpSEqVMZYwwhISFwc3NDWloafLy8xILMTEwrKOBUmzdDplTCvHdvWv8NZeXnzyeWQkYGcP48RFFEcnIy4uPjxXv37nEA0KVLFwwaNOhlx/iXX+i6jx6t+34bwPnz55GQkCCq1Wpu+PDhor+/f/3ZhQsXqvRW1q+nQMM/xd9/Q5OQgEve3kJUVBQ/ePBg9OjRo2GfTUmhNb1DB5oXc+caFtlctQoqAN9ptZCMjGBmZiYKgsAgSZibmcmKra1xrW1b2Nvbo1+/fg0LPjx/TsHxP/98tWBeLaSnp2PXrl1gjD394osvGpnNaIIeTc52E/6fRXBwsLVcLl8nSdJIURStXFxcylu1amUREBDAai9e165dQ2RkpOTj48OioqLA8zwGDBiANm3awMjICJYNVLvcuXOnqFar2Zw5c1hD+1OKoojt27dXKp7KZDLJ5dkzqcTEhOWbmDCR5+Hq6iq6uroyrVYreXh4cC4uLg0+JwBkzHftSkbsfxMpKeRQDx9ORmTHjuT8fP45bXynTjXMIZEkMkQ3baKorKcnGfnVnO4jR44IGo0G1tbWfFxcnPTpp582zEMTRbr2EyfwlDHs3btXUqlUTKlUCoIgMLVazTHGJLlcLnXt2pVzcnKCq6srzp07h6TERPhptfDZuRMOP/wA2dix/93a9+XLyWl9770GXoqII0eOSElJSZXX3rx5c0yePJkyDdu2kUFYlyiaTkesgilT6J5ptWQctWxJ9YBDh1Jk3MvrZad1+3aimvftS5+tlYm7du0awsLC8OGHH9bIeoSFheHWrVvS+++/b7hH+H8DOTkUqNmwgRzL2oEYQaC5pP9pCCUlJNz3yy+GRbG2baPa96VLG957VY/SUnKKBIEEuubNI0eysJCcvWrnpNVqERcXh+fPn4tWVlacXrUZAHr06IHIyMjK/+v7X7/11lsvBwIFgZ6rRrQUe/HsGXZ89x0mxMVJ7h9+yLB5M9Ef9e293NzI0av+DISGEq04L6/uL372jNaGxEQ6nwp2UEWPXajVasyaOJHGf+RIUtGvjjt3aF5Pn47Mx4+xb9Mm+Dx8CEdRhFRaKt319hbdR4/mX+pFe/Ei0bR//dVwEOb4cQocLV786oHR6Wh98ven9cTMDBs2bNAFBgbK/Pz86D3nz9PzvGMH0LEj1Gp1zR7FV68SA+PGjarxKy+n7HlWVg0DWRAEfPPNNxBFEZ729uK0HTs4nD9P41ZaSlluvfBk27YUbKrWduqViIykMoDBg4FOnbD599/FFy9ecB9//HGlUX/8+HEkJCTgw4ULYfH4MRAbi9RNmySWl8du+fig/5dfwsLXt6plmVZL679WS2v4rVs40LEjAocMQfNhw8ghSkykwGrtNeDrr+l5qnX+Bw4cwL179yCTyWBiYiKVlpaySZMm0Tz/6Sfg1i3ofv0VBQUF4DgOjDEwQYBlmzZQ//wzHnXogJLgYGQrFOKI4cM5bsqUmscuKqKATmZmnYGAVatWYeDAgVJPHx+Gn34ixsbz5xQ4Cgl5OZtaWlpVkjBxIs3j33/HRrlcLCkt5TiOg1arxWeffWb43ly5AsTGoqhnT/x47hzGjRtHdboqFfD117g0YIAQGRnJjxo1Cj6rViEpLU1S//orc3Fxwa1ly0S/M2e4fZ99pisvL+c8PT2lMWPG8GvXroVGowHHcdDpdDA1MREXtGrFWX7yCc3H7Gz6/i++oCw9x9EczsurYvFUg06nQ3R0tBQVFcWKi4thb28vzJ07JO/Q7wAAIABJREFUlzc2Nibn3MSEWB2NWOvVajXu37+P0NBQsbS0lBs4cKAQGBhYPw0vJ4dKm1q3pnvz5psNPmadOHCAGDojRuDKlSvipUuXuKVLlzas33heHq2RU6ZQ2UJt1oskUbBm8mSUr1yJK4WFuHnzJoKCglAZtMvMpGDHrl0NCsJXYu9eeh7nzm34ZwAUFBRgw4YNKkEQnFauXFnYqA83oRJNznYT/p9EcHBwOyMjo3BfX19F165d5XZ2dv8se9YAHDhwQHr69CnmzZvHGtyqqS54e5NTtHw5ioqKEBISIul0OiaKIrKzsyWNRsP8/f3h5+dXqUT7fxQnThCNeM4cii5PnkxG04ULZGRMnvyyw9NQXLxIjs2IEbRx13JwHzx4gH379kEul0scx0k9e/bkXjKya2PZMuQJArZaWSEwMFDs0KEDl52dDTMzM8hkMgiCgNzcXOnmzZtSUVERKysrY7a2tuLIkSM5Nzc37Fm37v9j773Dojq3qPH1njND7x0EKSIIYgcrCmJQI4q9m9hbNPHGaEyuscVyNdFEjS2xRWMLKlZExYqCKCKI9KKioDTpdZg55/fHZigKiuXe7/d9cT0PDzrMnDnlLXvttYvQef9+znT2bOgPGNC4Sv+2UCphZ868FYnPz89HVlYWEhIS8OjRI2hoaChmOjjwaN++af2lBaE2n1tTk3JTb94EJkyobySJIkUrzJpF4egTJry2x+uGDRuEAQMGcHVbWP38889C//79uTb/i3oBKSlUUfvgwVerycbEkFGfl9ewcR0ZSeTl5QrxOTlExkaNIsLYQIG3BpGdTccbOpSML6mUyHpExFsV9MnLy4OWlpZSmQNAxiljDJs3b4ZMJkO3bt3Qtm3b+tEa//43kcnY2CZ9T2xsLE6ePIk2Dg6Kfps386pr1lAdg8GDiTwMGFA/91iJkhLIIyIQVFaGwsJCCIKAnJwcRbVnRXylurqdHZ56eAgXevTA0KFDuT9+/x2j09Nhp2zNVX2N2dnZiImJgaenJ9VI8PFB8dy5eLBzJ4xiYiAMHoxHzZsrtNq35+RyObtx4wakUil4nhd8fX25Vvb2lHtvaUm5rg3h0CH6e1MrD0+cSFE7oaHYtGmTvE+fPhIXR0ci8/fuAYsXI1dHB6dOnRLS09O5Fi1aiNbW1ujRvTvDokVgvXqB1U07yM2lceLsXO9rBEHA6tWr4eDggJEjR4KbNIlUfeW8Skqicz53jubwjBlEdF4XUq409Pv0IQWsumjkixcvsGXLFnTv3h19+vTBjQsXEHP2LMZlZ0O/vBy39fWFnPJy9tTcnA02MEDOuXMwOnkSzcrKaD415GTJzcXROXMwzNISfPPmtL45OVG4/vr1ROYMDYmcu7qSI++ldJqdO3cqnj17xgOAr68vdHV1YWNjQ2OhoIBIxZEjNK/kcpqj69bRfai+TwEBAcgICECfsDDRfO5cpuHtTWkBSkRH0/pXN7WmDo4fP46YmBgsXbq01n7YsIHWCH9/cu4p24ddv04OqaIiciq0bw9oaSErKws7d+5E165dxdTUVNHX15drcM+OjyeH55AhgJcX7t69iwsXLsDMzExhrKIC161buX2DB2Pq1KnMxMQERYGB+PPiRfSaOBHnzp2DlZWVMHbsWE4SGUlpGHFxgESinI84ePCgWFZWxhYtWgSpVEr5whcukLPvyBFao4YPp/oEPXrQnpCVRa83kIIlCAIKCwtx9OhRobCwEAMHDuScZsyglItNmxofhw1g//79ePToEbS0tPDFF19A/S2UWchkFCW0fz9FXb1rfRclvvmG7BdXV4iiiFWrVqF///5wa0K6F7ZsoZxpDQ26/ykptbUgBIHsJQ0NckhVIzQ0VIyIiBC+/PLL2nXy7FnaJ16KNmkUcjk5HQYPblL197oQRRFr1qyRy+XyvsuWLbv6Vh/+iBp8rEb+Ef84rFixwk4qld708fHRb9eu3X+XYVcjICBATEtLYzNmzGh6T+SGUFFBKsWdOzVKjI6ODsaNG1f3OlhISAjCw8OF8PBwrkOHDoKhoSEXGxsrenl5MfuGVLnly8kI2bPn3c+tspLIg7ExVSx2dSWDYvVqWuhXriQj7m1bZrwMLy8iTDExZHycPUse+A4dgGplgE6nkuno6LDLly8jJCREdHFxYR4eHggICICPjw/qVrTGd98h7ZtvYOXoqPDw8OABvBJGbmNjw9zc3BgApSpVwyrGL1jAHbOxUegcOsT3OHcOOt9+S9f5viq3kRHdx1u33irEX19fH/r6+mjVqhUyMjKwZ/duHqtXU7jm+PFvPgDHkTL99CkZRzY2pOZ27Ejhodu3kwE2axZFKhw+TM9DmWfaCCQSifj06dOaftFFRUUoKyvj7D6Uc+JNsLcnA1pVlfK6//OfWsXMxYXUx4aItkJB0QUnT9Z/PTWVejD7+NDP61RimYzu6+zZ9Hv0aJrHn35KoedKIvSWbWoaqhGhpqaGoqIiGBgYID09HTdu3MDNmzfx3Xff4cSJE+jXrx/0lixp2lioRkREBJydnUXfoUN5jBhBxvaECaS6KlWjhqpyq6ggeO9eMb55c6aoToPp2LEjX15ejpSUlFe/KCoKN/38xOZ+fnzpjz/CrE8fGJuaAgcPoqS8HGfPnkViYmLN22NiYgQPOzvORUMDGD0a5a6ueP7LL4LHwIFcqzq9uXv06IHi4mI8fvyYJS5dCqt796CZmNi4U0MU6Xn/9FOT7xG2b6e83adPAZmMqQgChYs3bw5s2oTcigrs2rULtra2bPr06Thy5IiYlpbGiatWoVBVFckWFvBNSYG2tjYyMzOhf/iwaJWVxdjevfW+huM46Orqijo6OozjOCISf/1F469lS3KCPH1KY1pTk8LbY2LISbl9+6uqYnk5zWVRpPld557o6OjAxsBALPz9d3Zu40ZYZGejO4BrrVqJaa1aoVhFhfPx8YFHy5bQunMH+adPo6SkBKWiCDZ3LuRFRa9GWRkZIb51ayi++44ekKtrrYM2JoauJSKCziMqiki3XF5vfsnl8pp/m5ub1y+SqadH0VMLF1Iod3Expb0UFtYQ7dTUVNy9excwNcWhgQPZJA0NaEyaRA6Tzz+n4/j7075Wp6VnXTg5OSEmJqb+i1OnkpPh6FG6DlEkJdTGhqI+5HJyNFenWTx48AAGBgZiz5492SeffNKwPZKVRSkuPXvWrA/29vYICAgAz/N8qVwu5pqZsQkTJsCkWu2MNzAQJKLI6QwfDp9jx9BOWcfDyak2cubBA3Bt2sDU1BTz589nmzdvVpw8eRIjRozg2ZAhVOE8Pb027ejYMUoJmDSJyKKLC839SZNeOWWO46Cvr49JkyZxN2/ehP+xY5i/cyfUm9Cj/mVUVFQIADiJRCKGh4eLPXv25JosjuTlkSNq6lRy2rxL9fTaE6FnunYtAChr7YjXr18X3dzcXr/ZR0dTeohy/X/6lCLFtm8ne+bFC5q7yrFXDVEURZlMVv9ivbzI+X3tGtBQelBD3/3w4VsTbYAiqeRyuYTn+QsrVqyQMsZSly5d+obiJh/xMj6S7Y/4R2HFihVqUqk02NvbW+9/RbQDAwMRExPDJk+eDD09vfc72E8/0SYeHf3at/Xo0QM9evTg7t69i5s3byItLU3BcRx/8OBBDBw4EO3bt6/XYgzdu0N0dARE8e0V/uxs2jAGDiSFYtEiytlcsoRCbm1tSdGu0y7mfZGXn48/g4JQ0awZXK2tFb0XLuSlqqrA77+jtZMTrL/5BvHx8QgKCkKzZs3EXr16sRMnTiAiIgKiKCIhIQEtWrSAo6MjOnXqhEJBgHpcHNpYWDRJTnw5ZIzneYwePZqPsLcXDx04gKm3bjHpyZOkprxG6W0SunShjfId8+kfP34s6nKciJQUrkm5m5s2UYh/UBAZFyYm1J6pqoqM9OJicmxs2lTbpsjOjgzBESPI8RESQmO0b18y4r28gOXL0XfmTP78nj3oZm8PbTs7aGlpQSqVIjw8XPT09PyfzMcaZV9JNENCSDnU16cx2q8fGWd1jZgTJygcVxm2p1BQ+OS5cxRp0VjKRmwskey4ODLyjh0jB5SzMxlYb0ms3wZRUVFieno609XVFQsLC5koiti4caNYXl7OHM6cQYd27YiMVKOiogJyubzGCZWcnIyAgADR0dGRJSUlKQoKCnhl9MG169eRGBKimP7gAc9t2UKkaM4cUmTqrB+JiYn4+++/Mf/0adb5wAHIOndGZGSk2KtXL1ZcXIzU1NRXW/no6KBn//58aH6+QiU6mveIjYX2ixeIf/ECfkeO1LzNzc0NvS0s8HTXLlbs7y9eU1Njpb16Ia5HDyzo3/8Vw1dFRQWGhoYwrKhgVm5uOKuhAf3Ll9G3b9+Gb+Djx6QQv8381dCgn06d4K1QsOZ//03ORm9viIxh3++/w8HBQRw2bBgDgPnz53Py7Gwodu0Cf+0aikNChGPHjrGqqiomCAIc09KYpoYGBjawLhcVFbHY2FjUVCAOCKBQ7c2b6f9SKSnEn31G1yKVknNIJqN/Kx0jUVE0p11cKIVBuS88fQpERkKalISJv/3G8kaNwvGCAsS2aQNVMzOMGzeOeUgkkEgk0NbWpvPr0weP3dzE+/v2MfPcXAgSCdJ//RX9+/eHhoYGFApFTYFRgNRPqKnR2tajB6l7n35K13LgAJ3Hli20n1y9SlEDlpbAggVwMTDgXNeuxU/ffQfJihV0DQcOEIH57jtSxnfsoDGZmkqOtDqRnHU7RvBqakg0MhKttmxhePiQHGGrV1PU1Gv22lYODtDNy0PCvn1wun2bIhG6dqV7p6FBdVCeP6c5UVJC/751ixTMhQsBdXV0f/AAsXp64qYlS5hzr17ygQMH1rfLy8rIYWBhAYwcibS0NBw9elTU1dUVOI7j+/fvDzMtLYY1a+qp8rm5uaJK8+Ywc3aGXd2WUFpalFKTnk4Ox4yMmrSNadOm8b/88gt+/PFHDB48GO137iQV196e1r6xY8nB5u9P69msWRTZ88knVHuhAaioqKC3pyfajRuHCIkE7tV1Fd4G+vr6QnFxMdq1a8ddv36dGRsbo2501GthZkbnmJNDDp2KChpz74L794kw16lHYW1tzZKSkl4fIlxSQuNC2UITIAdccjLNQ1NTegaPHtX7WFVVFW7evMl98skn9Y+noUF7a0QEHfdN1/Pnn43XGXkDVFRUsGzZMigUCmlwcDCCg4NbrFq1aoFCodiwbNmyj6HRTcRHsv0R/yjwPP+FlZWV/hu9kB8IgYGBuH//PqZMmVLjcX5nREcTCfjXv5qc7+Tq6oq6lXz9/f1x8eJF8c6dO5gxYwbjeR4xMTFIzs9XPI2P54VNm0Q3NzdWUVEBmUwmPH36FNra2uLo0aP5V9pZRUaSqnnuHHnrra2pkM+8eWToxMZS4aCmeF7fEjzPo7i4GLq6umJaeTn7ycsL7oCi7dq1vE5lJbSmToVbt27Q1NTEyZMnmb29PRYuXIi8vDxoamoiODhY8eTJEwQGBvKBgYHgeR727duLXSws3ovwderUiSUmJgqHKyrEz42NOfj70yY6ceK7t2Xr3JkiAoYPbziv9A2QREaymatWsbrE6rWIiCBjwtOTSOSDB0T4s7MpHDYtjQzjIUNIQVKiqIh+r19PagJARpi9PRmh167BaeNGcBcviuzaNYbwcFQYGKDV+PFiZxUVhqFDidReuEDEt3Pn1+dQvy/mzaPfPj70HadO0TNyda1/Xco2dUuW0P+Tk6nYmoUFGZgvE+1798jIX7uWDKKpU8lA8/Sknu1NrAT7rqioqEBgYCCio6PZuHHj0LJlSyaXy5GSkgKe51lMTIyQGx7OvRxSvGvXLsWLFy94NTU10d7eniUmJsLCwoJFRkaiY8eOrHXr1jA1NWXHjx8Xk+Pi2Ij9+/kTPXpAceaM2Pv6dWZsZUVjpW1byOVy3Lx5E2FhYRBFEeo5OTXOPW9vbwaQEaempoZ169aJenp6wsSJE3mlE8vy2TOMKi3l43/6CeeTk4UJAQHcmUuXxKESCbuvpobnWVkw/+EHsObN4TBzJsPKlcgTBIgDBqAwKwvFxcUNVwnesAHYsQMmsbHwyMvDvn37UFBQII4aNerVyXnr1rvVsBAEYO1aGH/2GVeyeDHUvL0BjkNZaSnKy8sxZMgQVve9kl9+geTqVcDaGuPqtHgsKChA4pgxCDE3x+nTpzH4pXxTNzc3hIWF1b6wbx99d0YGjTOAimYlJlKEjJsbOT1PniSidPcuzctRo6jA3IIFREh++426ELi7U751+/bAw4cw4Hl8mp6OgwcPonPnzo3uZz5PnzKfQYPIwG/XDn/Z2gohISFMIpGI+fn5XHVFfFFHR0eQSCQ0KJREKCaGvlPZx9zNjQpoLltWG1p74wZgaIiEvXsVz3x9JQYGBtDu0YPINkCpHEZGpAZXVlLEyKNHdN0nTtC/27SB7bx5WDRuHFT+8x+c9PISM4KDBUydyqN/fzqfOXOoH/yxY+QAMDQk4pudTcT98mVwjo7wvH1bNBBFBm9vckJaW5OCfvw4VZm+epVCwFu1ougugPZOQQCCg1GRmAitXr3EaVu3ovT+fR4qKuS0njeP1qPjxynK6OuvUVxcjMOHD6Njx45MKpXynTp1IkW/pOSVdYjjOKZhZgaNM2coYq137/opLpaWFIWhokJRKZs3Q8PaGvPnz0dISAgCAgIQAGCapSVMXVzIUbBuHa1pUinVTzh3jtbA0aPpmMOHk5PipSKYrKoKMh8f4WpZGSe9fRtNLl5ajZEjR9ZwlaioKIWfnx+/YMGCpkcJKhSUCuDlRcT0LSJ66uHp01fqdRgYGEChUDS+uefk0H6Sm/vq/l1WRgT+jz/o2Rw+THvL0aNAHacU39Ae6OVF4+TsWXJyN4akJBp/bxm6/+phkhAcHAwAUCgUPwPYAqDivQ76D8JHsv0R/yhIJJKvPT09356xvAOqq2di8uTJ70+009MpLDkysuk5oQ1g2LBhEASBrV69GqtWrYK1tbWYkZHB+iYnc4POnsW5PXsQFxcnSCQSjjHG2djY4N69e+LTp09hbW1NxCMwkMIUlSrmli1ErpYsIaJkZUXKwrvmZDcBampqaNWqlZCeno7p06dzeXl5CAgIYHdUVIRmMTGcwZ9/Cs7Tp3Mp7u5ilYUFy8vLg5GRUU1oeL9+/XiAPMeMMWpHJYoMHTqQulm3Hc9bwsvLi9u5cydihw1Da1VVIl4zZ1Ie3zuQZRgZUShocHCT+5LWhWn//jgUFydOVlV9Pdtv145I/f799V9v3ZoMzl69yEhR5rk2Bk3N2rZY335b+3pUFAAg8vvvcauiQjA5d44rHz5c7P/vfzON3Nzaqua7d9Px3dzIqEtIIOKzdy+Fza1eTYS4b19SlXv3fr9w/YAAMla//54cCQcPkhJ98CBdb0gIGfgzZ1KEweDBRFbGjiVjODOTznP8eFIZHB2JMDBG8/a/XAuiLuRyOfbu3Yvs7Gzo6uoKLVu25ABqqdWqVStkZmYi9+JFLrljR3h/9VW9z1ZUVLBx48ZBFEV25coVwc3NTfT29lZaeRxAxeyy791jCy5cAHfsGB5lZyvCgoN5E2treB49SqTNwwObnjxBSUkJPDw80KlTJ/D//jeN/To5howxzJkzh+Xl5eH8+fPs77//VkycOJFHeTkwYwbKZ89GBMcJRRIJt23wYAz49FO0nT4dbc3MIM/MRPbkyVCbMaOmcJgBAMydi8+UUQp1IQgUhtu7N6mVKiowMzPDzJkzsXfvXuzatUsxZcqU+g7FR4+IcL4NCgrIcA4Jwb4vvxS/XrOGQVcX+PxzPHv2DKqqqgJX90v27ydS2EA3CT0dHXRJS8PDAQMQFRUFW1tbsU2bNjVFBB0dHREWFoaYmBgqkqWqSuRu3z6aa8pxp6JCY3nrVhrL/fqR0jt7NqnZv/xCRGDhQiKJJibklKhb7b0alpaWEARBDAoKYt0bi1SaP58I5+bNgLo6PjMwUF4vS0tLw7Fjx8SSkhI2bMAAnouOpnsQGEihytOmUdTH5s30DBMTac7PnUvOvAEDAFtbGoclJZLc9u0hy8tDhp0dalJRfvyR6hGsX0/tzz7/nBT/adPoWgEIy5eDa98eagBK4+OR0Lw5GxkYyOedPAmD+/dp3dq/n9aEa9dIzXVyInLaqhXtd7NnA66uuGZgIPTu3Zs3rVvpetYs2qc7dKCx17UrEe1Bg+h1ZVHQQYPgl5GhyMrK4s/u3i0O69eP4dmzWuLs7EyRCHPmQHRzQ76Kitjd3l7s1aEDBzMzmlMKBT3jL7+s9xh4nqfIAYAcHwoFre91oaZGDgm5nNbsykpoaGjAu08f9PrpJ6TI5UgYNUowXbaMw5Yt9XOEKyooNN/Kiu6TIFA6gpEROQgqKymfu6ICmDcP5lu3ct5RUcL169fh5ubGveK8byL+9a9/8WvWrEFZWVnTyTbPk22iUJAzqrHuCG9CdnZtjnU1tLS0UFFRwR4/fgybhqJgBg2isfNSKghEkdpCduhAcxMgh0BsLKCiguKhQ3GmY0dBznGcsuvEK1i4kHLoPTwofa8hHD9OY/U99yE/Pz8AAGOssyiKj5ctW/aRaL8FPpLtj/hHQaFQ6L9VcY13RFhYGCIiIjB58uT377+cnU2GR1wcqWnvCY7jMGvWLFy/fh2CIDBfX1+0adWKQS6Hr7o6w0thnXl5eeKhXbuYY0WF0DIrC62ePOGkGzeSxzQri6pzTpxIhltY2CuLfnl5OTIyMpCTkwNVVVWUlZUJT548EaytrfmcnBwhKyuLdevWjbVt27ZJu0FmZib++OMP6OrqitOmTeMB8i5/9tlnHACUlJQgJjqaK3FxgVt0NLMNDUVQZqY4cvNmJqnbjgigQjBKMEbGwcmT70W2zczM4OPjg/Pnzytaf/MNj//8h7zXbm6klAwZ8vYb3+LFZOi8Ldn+9ltYFhXhefPmrMYofxlhYUReq4lSPSQkkNEZHU3v2b278WJSTYSvry/75ZdfWEZGBiavXMk0LSxIidu1i95QvakDIONfU5MMTmWOZmoqheAVFlLqQmEhGR23b9O1DBlCxLh7d/LmL11KhrqGRuM51VpaFNp54kRtm7mcHCLQxcWkfv/wAxlqwcFEWmJiiFgdPUpq99Ch9KMMt/w/gEuXLikKCgq4yZMns+bNm9ezZs+dOyeEh4dzs/39oftSjmVWVhYqKys5W1tbSCQSODg41PtsYGCgGBcXJ7DsbH7qo0eQLFoEtGsHb4APDQ3FdS8vdN67FxoXL0IMDoYwZow4bNgwVlP0ztGxwVBHlWrS26dPH+7woUMCVq6sqUmxd9cuBYqKuFmzZsE4Kgrc0aMMvr6AgwMkiYmw2LixNjpBiT59yAl482Z9B8zq1aQAXbtWr6q3np4eZs6cyfbv38+2bNmimDVrFlVNlsspbeJtchwTEqiOAWPAyZOQr1uHwrt3YWBhARw9imRNTcHExKR24ivX9e+/bzh6Qy4H9u7F6M6dERoaihMnTrBTp05h+vTpMDMzqwnHbqZUsQEqZtVQoaZBg6jegr09OamGDiVl+6+/aA7NnUvO0VatEHTpEmylUtg3MleUJCk3N7fh9ohmZhTVcfcu1SSoA+vmzfFNnz7s1tq1Yv758yzOygouI0YQuVfeg8JCmsvLl1MUyPLlpPitW0ckdvVqiKIIuVyOTp06wcrKCrZ1HdC5uZQCk5pKzpUJE8jR8tNPwFdfId/WFlvi4iBJShI9PDxYxvz5qIqLw51//QspKSlYIgjgtm8nNTIjgwja+fNE3u3sXmmbVFlZydVLD/P3JwLUvTvdA44joq2lRWvRzp315sKUKVP4O3fu4Pr16yw0Olrw8PDgsGQJOQB79yayOmcOsnNyUJCaiu5Pn3KYM4eeYUAAOfTmzaN7mJtLa5a5OTiOYzVkOziYyF18fG0RPSVUVek4okjj0dgYOHsW/MiRuJacDGsrK1rPliyh9/n40OdGj6bUoYgIGssmJqR0A7TfFRTQ55YuJWeHqiq6dOnCBQUFYd26dWLHjh1Zv3cIbc7Ly6txkr8VunWjfSEigiIF3qV2zO+/E2lvAMpaMfVQWkrvfzl9KzycokyOHq1v0xkako1QWoqs7GxRJyOD62Vqiq4v2S01sLAg5+GaNeRIevmeFBXR+HnPFL7w8PCafy9dujT8NW/9iEbwPwml/YiP+P8LOI5bvnPnzvKkpKT/2nckJCTgypUrGDNmTP2iLe+K3r1pMf0ARFsJY2NjjBgxAqNGjUKbNm2IUDQUZpydjTEeHty3f/8Nj9u3ubBOndjWwYPFLDU1KJYuRXn79uKLX39F3L59uLRunbh2925s2bJF8Pf3VwQEBAjBwcHi6dOnxYMHDyIqKkoRHBysuH37NrS1tSWRkZFCcXEx43meu3PnjtDUcz98+LDo5OQkzps3j9fV1X3l71paWujavTucv/oK5jt3os2sWehx8SJL37aNQt5e14Fh/nzasPLzm3o6DcLU1BSlpaV8QEAAtv7xh+KxkRGFfJ0/T5viS33a3wh7ezIQkpPf7nNubpB4e6Nbt27i+fPnxZKSkvp/F0VSak+coN9KozElhSIW1q2jMNKzZymM8/p1KuQiNPlxvYKgoCCRMYa+ffsKFm8a09raZKy6uNS2LNmzh/JQ9fRISVFRISVLSdadnGrzzA8epNfGjat1JNjZERm7f7+2sE9ICBnVixYRaTp3jo537RoZaAApDgoFqVqrV5PyuWwZGbva2vS+941geQ/cvXtXvH37Nj9q1CjWvIHqwJGRkRwA7Jg1CwplSHw1QkJCYGJiIkgaIFjJycm4c+cO87Gx4b8KD4fuwoUUQlqNiRMnAgB+LivD6S5dcGDwYAzbtYs51yUlkyc33E+2Ghb6+jBIT+cKExKIFKmooKSoiA1NUIT0AAAgAElEQVS3tmamEyaACwsjVXPpUiJPK1fSM8vNpXXx+XM6kLk5PSNl0arCQhobkyfT3G/A0aqhoYGpU6dyBgYGbPPmzUJRURGN/2vXSKVrCpQh523bQr54MU6dPg2ZTMZU9fTI4J09G7khIczZ2bnWGl6/nlIOHBwaPuahQ8DateA4Du7u7vj+++8hCAL27dsHuVyOgoICiKKIeqqXREJrRcuWFKJaFyoqZJifPk1K1/jxFIpqYQGEh6PwxAnc2LoVcWfP4uLGjQgPDW1wrfz666+Zmpoatm7diga72RgZkcNSQ6OWVObkUHTI4MHAwoXoNn06w8KFwvHWrbEyMREVdYnK+vVEjBwc6PkpsWgRzbcdO+ARGQkDNTWRMYa2bdsS8Xr8mJRgZerLixe0PgBA//7I7NIFt//4A+eWLxfMzc0FFxcXMSgoCHFxcfD09BRtbW3RUqEQuCNH6N6vWkXjKi6OxtO4cUBcHHJzc3Hq1CmcPn0aV69eRUVFBavZ50+fpnWyVStAKkWxtjayHR1JYZ4/n1JVqotrAYBMJsPGjRvFy5cvQ0tLS7SzsyObvF8/Csnu3p3C0B0dETdrlnBm6FB2cOJE4dnvv5P63q0bOUnU1enZp6bSfdPUhObTp8wgKal2rd65s/EaEUuXkup98CA5Cq5fR0GHDnihrY3u3btz0NMjZ2RsLDkjleNp+nQqHnf+fP3j/fgjsHkz5HfvomrnTpz89luknz4NoaICCxcuhJWVFUtISFA0fDKNIz8/H9u2bQNjrGFHz5vAGO0DynoAb4OEBKrf8JJNp6+vDwsLCyH55b3Zz4+cwjo6r647S5eSM61ZswYd7+Uch4N9+zLO1xc9i4uRO368+NPSpcgKb4Dnjh9PEVc3b776t1u3aFy8hx1aVFSEc+REGQ/gAxi0/0zwy5cv/z99Dh/xEf8z9OzZM/TKlSuRjx49GtK9e/cmVIt6OyQnJ+P48eMYOHCg2KpVq/eL2xFFMlKGDycv9ofs3/wyiotJQVD2c372rLaQi4UFuP/8Bxpz5qCDqytrNm8eM1ixAiEAYrp0EcMGDBCTCguF0tJSeHp6MnNzc/bkyRP27NkzpKSkcDk5OczNzQ3jxo3junbtynXv3p05Ojqic+fOXLt27ZipqSlCQ0M5d3f3N3qr5XI5Ll26xGbNmtW0nsyMAU5O2AcobNXUOMPAQNo0AQp/e/kYHFerFjSllUcjUFdXR0VFhSInJ0c0NzfngoODxR4DBzL4+NB9/eEHyuE1MGiays3zZHgWFLySD9coFi8mlbdrVzRr1ozFxMQgPj6etW/fHkyhoBA2Ly9SLJQKZGkpKSTh4XR/Fiwgsg3QvdHUJIUsI4Pysd8CMpkMfn5+YkpKCpsxYwZatmz54eKrtbRqie4nnxCBMDauDa0cN44IF2Nk/Li7U1TGzZukhM6eTZEaXl5E1m/dIvK8dCmRlhYtyKg1NCRlZ8YMUms1NP6787KJKCsrw9GjR9GnTx/WWAu1Fi1aoN+cOZA7OCjuFRWhTZs2TC6XY+3ateLz58+Zs7OzYG9v/8rF6OvrI/7YMXTLz4fG0KGv9DvW09ODjo4OkpKTkWlggA5XrsAhLQ2qhYW1BNvPj55LQznQpaXghg6FSXm5+HevXkKXPn044coVyPbtY8537oBbu5ZUNFvb+vdaW5tUOTU1em6LFpEaPW0arZs2NpTCcfs2PfvXpHDwPA8XFxeWm5srnD9/nrW9c4eptmvXoCKUnZ2NrVu3QkdHB9pSKUInThR0Q0LYg1GjcCYvT7xy5QoyMzNZz5494eDgQOe3YAHuxsWJzjdvMv1+/YjExcbS/GqsaOHduzSGqwsj8jwPc3NzJCYmimFhYUyhUCAzMxPGxsawrJvWoa1NpMvNjf4tk5FzaNcuIrs3b5La9fQp0LUrBB0dlKxfj+SsLKQXFcGzqEh0v3WLBZSWosOIEZBfvQqJsTGtWZqauLNhg2h89y5zGTMGFnFxtGZratJ+xfP0nV5etPaEh5MjLyCA1q8JE0jJt7ODpZMTKywsxPPnzxEWFoaioiLRQU+P4bvv6LlJpUQm1dQoxQUgZ0qPHmBnz8KS51l4RARup6UhNiJCvBUXp5A9fsztzcxE8I0bKD5yBDlZWbhcUSEGBQXhTnExk+bmom9mJnP19WVOn3zCevbsiV5du8KG55nx11/D+OpVFmxtLdh36sS48+dJ9V+5ktK3Zs6E4uhRHAoLA2dqqigrK0N8fDzT1NSEu7s7rR+CQOuDvT3y8vJwevVqUe/0afb7ixdQiKJoO306U2zYAFhagjk4oLS0FGFhYUwQBEilUqFv27Yce/aM9vuICFLy3dwAjoPNmDHM2toaJaWlwvm7dzktExOYz5pFYfLJybSGjx9PToaHDyEpKED7P/8Ed/EipcfY2JADledpHczKojXO3JxU9A4daHx06wYsXAgNPT1ESaWCRCKBtbU1g7k5RZ2cP09rgHIttbCA4OUFGBoiNDRU/Ouvv1hlZSUqKiqQ9eWXYpVMxoKsrdF1yRJEXryIRxYWkOfnI7uoiHXt2pU1NZxcEARcvnwZz549w8yZM+t3E2kqBg6ksZSURERXmbrUFNy7R3uicj+sg2vXrsHZ2ZnVRJkoFOQg9vWtH+l37Bjty/7+JKI0AqlUihcvXsijoqK4+ObNhTAnJ848JQWdFi+GZMwYmm/KSBCOo+cxbRpFEihVcFGkdAwfH0rreEds375dUVlZyQFw5jgu1cPDI/6dD/YPxscw8o/4J8LAyMjog1dRTE5OxtGjRzFgwACxqSHRr8WaNZRr9bZq5rvAxIS898XFFIqoDJU9d47+lpsLzJwJ7vhxNB80CBWLF0PL0hIenTo1mHtV3SKLZWdnIyUlBY3m94HatlS3l6gf1t0A4uPjoaWlpeA47q2qZlXJ5ajs3p02pLQ0ukaA7q+hYX3CO3EivUcQ3plISaVSDBgwgAfIQRAVFcVkMhlUVFTIwB4xgoicoyOdU1NSDVxcaqu+v6loWFUVGbmTJwOgcN1Ro0axLVu2IODUKQwaMoSM/LIy8nzL5fT+DRuoMFHv3o2f07VrZEDk5dVUsX0dIiMjoaqqiuvXryt4nmczZsxgDbWr+q+D48gA8fIiYyUnh+6pQkHKwIABpDyZmJASUVBAn2vZkgzVGTP+p/nXb4IoivD391cUFxcjLS2N5ziOva7wUDMLC2DJElh37szfOnkSBw4cEMzNzTmJRMI+++wzWFpaNjionh49Cs+bN6H9yy+vEG0lOnbsiI4dO+LRo0dQnToVGi9eENEaM4ZUwiFDGg7bDAkhFXnBAhj36MFaTp3KR1+8KOro67MnzZtjla0tBjGGjo3NQ56vdagUFxOxfPSIakbo6VH48ZdfNqnIHsdx8PX15XV1dYV7a9bAZv581lwQkJubiwcPHqCyshIKhQL37t0DAFzZvRtpKSkwys3ltnt5QZ6cjGbNmmHChAmsWbNm9RyHpeXlUCQnc9YnTpCx/fnnpP69LufUwIDITx04OjpiwYIFbOXKlYiPJ5u3wQ4XmzaR86F5cwp9nTmTyLaBARGyv/6i/6eloVIux5+ff44eLi4YfOIEpOfOMUgk6B4ZKf7t7Czkpqfz0pAQ0dHAQDQqKeHadezIkmNixKvnzzPXBw/I+WdnRxEnP/xARPnaNZorw4aRAuvkVJunXAfe3t5ISkqCQqHA/fv32YB798Bt21arBE6YUFu9WQldXWDDBhifOAG306ehWlUlOh04wKIvXpRo9O+Pmbq6KCkpgfT2bVxo1gzWFhail5cXZ2BggE2bNmGIqyukkZFATg54bW1SfC0soL5uHXg9PVgPH87Ji4rABwTQtfn60vnY2SFGXR39Fi+Gdb9+vLxvX6xevRpz5syh6IWvvybH+JQpAAB/f3+Fc7NmrJWhIdPS0hILCwvxR0qKwlFbm3cbORInNm0StExMOI7j8N133+G3337jCiZOhIFEQpE7+vqk1J87B9jagjEGa2trWFtb8zzPiw8ePGAdO3ake3L9On13u3ak2goCHgcGIprnRW3GhDabN/NahYVgy5eTU71DB8qTV1ente3l/fnKFQDAcDc3LvfkSfH5oUMwNzcHZsyAuH49io8dg3TQICRbWsLst9+QcfAgTg8ZAlSnoN26dQsqPC9q9O8vzp06lS0xMwOWLEFqaCjkP/8s9L90iduwYAHLz82FcRNU13v37uHMmTMAAB8fH9HMzOzdF+KxY+l5yeW1BeuagqdPG1WIzczMhCdPnvBubm50XBMT2kt69qx9U3k5Of6GDatXzbwxDB8+XNK3b19cvHhR5HleIff05PfY2Sm+sLDg0bw5RXnMnk1vNjEhx8zKlbVt6sLDSVioew7vABMTExnHcar5+flOEomkD4Dj73XAfyg+ku2P+EdhxYoVllKpdIunp+c7uEUbR2JiIo4fP44BAwaI7du3f3+LvKiIwrnGjPkAZ/cGyGSk5Do5kSE2fz6Fwqmrk5d88mQiJCEhZDj37Qs1AE3RfU1MTN5YHI7jOEgkEmRlZdVXaF6CKIq4ceOG0KZNm7cuT92tWzc+ICAAFhYWMLSzo40wOpoIlIUFkW9lOGfr1qTwq6i8tXrbECQSCbS0tMTExMRa1dHGhoy89esp9NDE5BXD+hW4uJBHPinp1by7upDLSRWJi6v3skKhgLSiAp9Wh0PuHzJEXnHpEjf6+XNOd8cOet5nzjReaEUJMzNSwJs1I2//a86lsLAQgYGBAADGGP/VV1+9X5/5pqCykn4nJNC9XbKEwjLd3ChfdeRIus4nT+iH50n569aNVJ7Bgyk3vV8/MjoLC0mF7NuXSIyz83/3/JuIGzduCKmpqczW1pYDgAkTJrz+AwsXAkuWoKW2NkapqMDPz49LTU2FkZERrBoo0AUAlZcvI+b4ceh8+qnA9+nzRs9TTe6spSXls58/T6rmoEFU5XrhwtriZfn5FMa/bBlQVQVVd3f0HDEC1zQ0hIdSKbO1tRXTIiL4wMBAtG/fHg0qYJmZNNZ9fGgdq656j6goUnNMTd/KQcIYg2fnzlyaRIKDwcGQREejXBmKXOc9Ts+f49OqKtw1NBSbbd/OZmlqQltbG1KptMEvi42NFUvt7AQ+PZ3H4cO0vnfr9vqT2bCBake8NB85jsPEiRNx6tQpsaqqijm8HIaelUVpH/7+FA1w9Wp9BW/3bpoTGzYA06YhzssLw0+cgIGTE6QaGrR+KBTo0KED69ChAy8IAjIyMlhycjJuxsUJp1684HgfH6ahoSGyX35hePKEnveePbSPzJpFIeOamvQMHj2i/NQ5c16pmK2hoQFPT0+Eh4fLkZYmibx2DbHa2qL4+DFTUVGBrlQKneBglBcWokuXLvX6dUsGD0b6gQPwbN+e8bm56ODoWEuGRBGwtMSMVasAY+OagaOroyNEy+Vcp4sXqbjXTz/R+HN2BtLTYbFhAx5qayNXoYCoqgrL4mJyjnp6AmVlCImKUnRdsICzTkhgD5OSRBUVFURGRLDuHAfp6NH1eiTn5+czi169uJCsLJHjOKFfv378+vXr+YnHjkH+9df4ZNs2dmbKFGH8+PGc6sOHGFFVhV2enuJXM2cyNQ8POj+A1uX9++m+groNREVFsZqWb4JAdkL1eCouLkZ+fj5EfX08HDiQZWdn80FubjCrqlLMVFGhvTM1la55zZraKu4NwGzdOlw7eRKX16+HBs+j2MgIeoWF6LpqFW5eu4YcU1PMevAALUtKYG9vj+HDh9fs59yAAQxeXqwuQe3avTtw4gSHvDws09Oj8XDpEhWQew2URHv+/PnQ1tZ+P/vq4kVaJ4KDSdFvqkIeEUE2WQMwMzPj79y5I0IUGSQSKkpWt7jib7+R0ys6+q0c+Nra2hg+fDgPUC2aX3/9lZcxBpUrV8g+WbyY9rD9+2mNTU+nOgmdO9P6u3hxk7+rMYwdO1Z9w4YNco7jCmUy2dv3bfsIAB/J9kf8w8AYG+Xs7KzaYNXId8QHJ9rp6RQSFhVF4av/LYgiVcj8+Wcq1DFlCpEOAwMyBufNI1W9pIRU2JerVH9AGBgYKBITEzlLS8tG719iYiKKioqY1zv0Ju7evTuysrKEP/74gxs+fDhatmwJ1qEDXffff5NxuHYt3QN3dyIBoaEfhGwDgIuLixgWFia2adOmdqdVVaXNMDycDODHj0nReJ3qu2gREb4dOxp/z8GDZEynpdUSDUGAyYUL8Bw0SDyYn4/KoCCmkpgocUlPF3N27hR1f/6ZwdOz6cREU5PIrLLNTQO58w8fPoSfn5/Ytm1boU+fPjxA4fUfBAoFkQo/P/Luf/MNvfb99+SU2LWLxveNG/T65MmkkLVvT58DyCBRYtgw+i2TkQPG3JycCJs3U86vhQUZpT/9RK2S+vZtvNja/wBFRUUICQnhBg8eDOemkP+CAnIwLF8OjuPg5OSkTHWAr6/vK8feu3evwiQujmt95w6T9usntPrmm7cP8di6lZ7HokXklDl9msL5dXWJ4BQU0Hpz+jQRiitXoGlgAB+gxpnWs0sXnPjxR6xavhzuERGik4sLM582jcj1ypWkih84QI4RU1NyAI0eTU5BY2N63xdfUDTIa29PAYKDg5GQkCCqZmQw18JCVKmqQoXj0LlzZ1hZWcHOzg4x9+8LL378kZOKIrSWLIFnjx5NmjDR0dFC69atecTHk/Kkq/v6isiCQPeqkfXfxsYG48aNY9u2bYOy0wLKy+l+ZmaSmnXlCq0xxcX1yfawYUTMqqu2W0yejMw+fUQLxhg4jgjYrl1UCVxbGxzHwcrKClZWVszLy4ulpabiwbx5SG3RghUuWADdffuoQNayZRS9wHEUJbVuHZH+li3p+efm0vo2Zw7Nn2qoq6ujqqqKzerQAem6urB1dWUymQyVlZWC2Y0botWlS9y28eNZXFycMG/evJpxyD18iP4BAYieNQtuWlq05n3+OV17YSHljivzeouLgaQkDD95klPk55MzWRCIFDk4UITPwIGAszNMR4wQw0xMxJgDB7hFTk5Q27gR+PVXCF5eKFi8mLefOxd49gzaX30FJ01Nxm7eRFZaGo5OmaKoXLuWU1dXF6RSKSorK/nLBw6g4+PH4uyNG3mO48DzPC6HhwttV67kLLt2ZdOyshisrIAVK2AdHs4Mhw4VUhcsYK0XL65dUxMSiKhVk+1CymMX27VrR4MnKgrC99/j8MKFQk5ODissLGTq6upCeXk5p6WlJWhpaXElJSUo09amAoN6ejS2duwgErh9O63jLi60jtbZfyReXrAAmNOiRbAqKECWvz9kMhlau7hALTIS2hMmwHTqVCAzE+NfLoL46acUFdAQlN9x/TqlJU2aRNFYyhobdVBU3VJyzJgx0G4gOuKtIZWSLbNxI61Bypocr0N+PkUCKKuGv4T27dvj5s2bLLVzZ6GFoyNXLydc2Xpvz573SjlSU1ODIAjw9/dHp06d0NLeniLkgoLIZlyzhiKPjh+n+9usGRU1fQ+IoogLFy6gtLRUAsB+2bJlhW/80Ec0iI9k+yP+UVBRUWlrYWHxalncd4SSaPv4+NRufu+Dykoy9I8ff688m9eitJSU3NxcMoQPHaKN9ttvySgJDKTCJ46O9LfXqagfCA4ODnxkZKRobW0N+5f6WIqiiOjoaAQEBMDb25s1VMSpKSgsLBRkMhl3+PBhAMDixYup5de4caTmGBiQkbhtGxkdsbEUXqxsKfOOyM/PR2xsLFdeXt5w6oKbG93/q1cpbHLmzMZVbjc3au3TCMFFZSUZnMOG1Tfk09KA+fPRLSmJCX36CNp+fmJLGxuu2N2d/dm2rbjoNfljjcLamtSzadMoAqLO91XnEIvu7u7o0aMH/9aVYwFy+Jw9S+HdBw5QCN6ePfScFi2ie+HnR9EYvXoRYbO0pPBwZQ9pZf/XpkSIFBRQVMeQIZQzuXNnbZEpxihMc+BASjPYto2uvbF82/8iRFHEkSNHBCsrKzg7OzfNelMoyOirA0EQIIriK6p2WFgYrB484N3t7KA1YgTaenu/u4VoaUmkZv16GoMqKlQx/vRpcnbk5tJa1K4dVe1NSqLx37MnMGsWdBnDxDNnUHH5MnKfPkVsTIxobmXFsHs3GZLq6rXqzY8/0tjfuJGIbF4epUR8/TUpvM2bo0gUwXFcTb5nYGCg+ODBA7GqqoqTU7V71js5GYZt2wrLli2rf925ueh88SKXpKUlxnh5MWUu9etQXl6Oq1evKrKysvihQ4cS8V+wgM5z3z46x6+/fvWD16+T+viaeZNTXWTx1unTikFaWjx++IHuxb/+VUsyf/iBlLy6VcH19Un9z8gA+vfHHS8vceCRIwzLltF8uXaN1rzduym8uHNnup979gDXr8N61y7o37+PXCMj/OnkJMzLyuLAGBn+p07R/EhOprzwtWup/seePeSc8vQkJW7dOuDxY8SNG4eIhw8hZmVxKpcvo8Xu3WhRq+Rz6NED+PJLjGYM/v7+TBAEcCUl5AjevRs/f/89/tWtG6mTvXvTvQ0IoPUvPZ3m9O+/1xQ6TO3eXchq04azkkjo76NGkUPVzo5C60eNQssVK1hQUBAMDAwUKj168DAzQ6KODm5OmoT+/fqJKioqLM/EBKabN7OBp0+jIjQUf/Tvj/Lycn7mzJnIyMjgy8vLYW9vj6BffhFLnz/H77//rujVqxf/+eefIygoCPfv3xdH9eoltrh0icPdu8D582AAPG7d4vL37hXlK1awjLQ0vHjxAhkKhWC5Zw/XVqEAz/MwNjYGx3HMz88PrVq1gktSEjKsrZGSksJ5eHjAxcUFRkZGnFwuh0Qi4QBAXlUFbvRoDqqqND4AWkMXLaIK5ceOkXJrZkZ7z6hRRJa1tKCvr4+QiRPlnWbNkphcvkxE9eBBOISGkiqtDLXfsoWcKQDN6YULG2xpVw+dOtHvhQtp3c7OpgJmkZGAmhri4uIQHR0NU1NT4eUOCe+FgQNpj7h6tWlk+8GD16YRGRoaYu7cuTianc0ZDhmCmsSOZcvIlouMbFLo+OsgkUgwduxYHD16FImJiWjZsiXc3d3R/NtvaS4/eUKRMH//TUVYO3Z8fZrKG5CXlwd/f395RkaGRCKRzFcoFDtWrFixcdmyZaHvdSH/UHwk2x/xjwJjzEqtgRY074IPTrQB2mj69QNWrPggh6uHu3dJVZk6lZTz4cNrN8PCQiJ8lZWkgmzaRAt1RASFghoZkXKUkUHGU4cOpHhLpWREm5rST1YW/Tg6krGlqUmbuYUF/T03F8jPh8LUFHKZDKoGBkBSEnrr60OqULCIlSth0LUrDGxsIAIIT0wUMkJDOVFVVRzVvz+zLyggAiaR0Hfr6tL5VIcNoqSEjHuZjAxxXV36zrIyyO/d48e6ukJdQwOyFy/A37lDeYQlJWSUOTjUhkhPmkSe4S++IEPxLSvBx8fHIyUlRfHw4UOupKSENWvWTPDx8WncWFBXJ1JpakoGwDffUDXcl5VgXV0aIxERDVeW9fYmA+bXX+n/Dx4QGQ4JATIzwX77De6XLnGYMgX45BOUyWSo2LqVlZSUvFvBmWHDSC2uqiJCp66OhIQEHD16FC1bthReS7SrqiiUr21bGpt79xJ5dnCgolBz5pBR3q4d5Z4qFPTMk5LoPnEczRWAjEMllET7bVBVRfd/xoxaR0VDxpWqKjmgbt2i3L+hQ8lZ8z8skiaTyZCZmcn9+9//btoHQkJISSwurneeHTp0EMPCwtiOHTvks2bNqrEF1CMi4BAZKZpMn87wmhzwJuPwYXLGWFrSvDQ0pPlkZEQOG19fImlxceTc0tIiEtC7N2BmBjZzJtQBqP30EwvZtg1VV6+ie/fu0H15buTlkcH555/0fE6cIKfI9Omk+ty/jz9HjBDzGWOdOnWCKIq4f/8+69+/P4uMjBQGDhzIGRkZQTpuHPDVV/Uf6O3bRCYGDcINMzPBvlWrN6aylJeXY/v27aKqqiqmTZsGw8BAcgwpVfbSUsoDbQihobR+vgbO+vro9fCh0CIigkfbtqQevzyHly0jYl9VVd/YP3WKnoe3N/RnzmR/amhggpcXVJUkqVMnem7dutGa4+dHz8vFBVBRQaK/P9LOnYOhpqZYb+wPHkzrvZERzdv+/UmZ7dOHIiuqHQv3/PxQceYM7hw7htF+fnhiackqPDyg/nIKi44OMHw4HPz9YWBgIG7fvl2YM2wYj4QEXDhxQhTqLi7K1Jxjx+geiyJFh1VV0V6npYXOGzZwpxYsEBEWxpCaSvdBJqPxefIkdShQU0Pl2bPo1q0bzwUGAoaGiM7Kgnp+PtLWrmUBbduC53lYlpeLn50+zTQdHNAlJ0e8pK3NNDU10a5Ov+1h3t6sNCmJie3bIzAwUPz222/ZlClTuDNnzuCWlZXQIjKS1NKiIkBHBy0ePsQNGxusO3AAcrkc2traCjMzM95o2DBc79NHMJ43jxNFEVVVVUhLSxMePXrEMu7fZ/EtWsDb27tebZS6TmmJTEZrqJIM14WTE0UFiCLNwV9/JSfJ+vWAnh6M+vWDgjHac9XVSQwAKPd7zBiKgmjThvZLgGyJCxcazYeuqKhAXRvs9u3buHHjhiAIAtO+eVPhambGXfvtN6738eNItrFBkpMTpk+fzr2Tw7YxtG5NtsnVq+T4a0yBVyI39/XpQ/fuwXDUKOgsXao4l5PDjZPJGI4fp3H3xRfvTbSVcHBwgIeHh3D58mWuoqJC2Lt3L9e6dWuMGDGC7KLc3NqOIYcOvdN3ZGRkYPfu3cpOAxIACrlc/gsAcBxnBuAdeqZ9xEey/RH/CKxYsUICYJKamlq3V3Lc3gH/FaItl1O49nv2RKwHUSSD8+pVUgP69iWSNmBAbf/Q8HBS8MzNyVj95hsiM6WltWRDFOn9VVVkBMpk9KNQ0OaqoUHEtSp5Sv8AACAASURBVLCQwhhNTIi4y2R0TMYAqRTis2fIf/AAIc+eQVtLS/T09WV48ABcs2bo1aIFIhMSEH/kCDp4eyMhNVXIKC3lvNTVoWthwWrCE1+8oDxbPT0y6u7epfPq0oU848XF9GNiQkZ9VBSQnQ2r8nIYq6tDX0ODQrafPydjPyaGDMT+/Yl4iyK1z8nNJVK7axcVWWrZkhwJly8TOa9L8F5CUFCQoKGhwXfp0gWdO3dGg1XkGkKnTmT87NlD4eynT9caMUrY2lJF4YbI9s8/kxENUOibjQ0pgBER9Fw//ZQUteqw0uRbt8BxHBVue1fY2ZEaXFEBnD+P2NhY6OjoYMTw4TyLi6Nw3qwsyhHdto1ypkWRFKdp0+i3qipdpyDQNVtaEnG4f5++o26/Y6Wx96Hw9CkR7L17iUwAdC06OjSeXi5AxXHkDDA3JyVcX5+e2XtGQDQVYrU62+QIjx49iPC8NARdXV2ZtrY2goKCJOvWrRN1dHTQ9tEjppWYiIhhw0SbLl0+3LoWH1/bhun0acpd7NiRHDXPn9P6UJfYN9Cn3MjICJ6enmJ8fLx4584dzsbGRhg9ejSnVl3tG4MG0by4erX2mWlpkdG5aRNQUoKOT58yjchIpJqZKeKzsnhRFOHq6gpXV1e6Ofn5dE51w7d376YxMnkyZO7uyPnlF967bl/nBpCTk4M///wThoaGwpQpU3hkZdE68ttvtc9Bmf85YwYpvuPG1R5g2LDGCxQWFwPr1qEoIwNFxcXc86lTxeaDBzf8rKRSWhtbtiQnlXKe//lnzVt69eqF7OxsXHj+HIOWLQMbN47WmH//m8L0790jx0edInPKvrv5+fl8Tk4OjI2NaW/p0qWWZIWE0D7ToQOtD8nJuJ+aiodZWYhJTET/X3/FnLZtUeniAodvv0WSRALHvn2hdugQEXyptKYNI5eVhc969OBkPXtic0GBIP38c7EgKYn/bPhwaN27R6poVBTtZWPH0r179IgU/VOnyKFnb49z+/cjJztbwJw5fM19aN+eVO7yckBNDSUlJXBwcGC3b99WdA0N5dGuHUrMzYUW6emcrkwmev7xB9NXUcHRb78VUgcM4Oy/+op1Cwxk7VJSoP6SI19VIoGquTnc3d0RExMj/vXXX+Jnn33GKc6eVQwNDuZx6BCd34QJwI4dYNevo9uqVQxPnuDq1asYO3Ysb25ujqqCAiRUVXGXL19WlJeX8+7u7vDw8OBKiotR7O4OlT590LWxvOdDhyhUPDj49WlCjNE6u2sXrcPXrwPBwbBYuhQTVVUlyMqi57l+PZ3zpEk0j4cMIXX48GEaxw8e0HrTwHetW7cOFRUV0NHRESQSiSgIAioqKngfHx9OT08PRUVFkgIvL9g9fy46OjuzjqNHI1MigcX27W9XzKwpyMmhc92z581kOz6+8bZpAM2v2bPRz8eH37FjB8q++w4akZEUJfiBxB0l3N3dOXd3d+Tn53NbNmzA89hYEampDJs3k4I+dSqd79WrFG3ShOKQSuTm5mKXsoUmAFNTU0VWVpbyAAWCIAz4oBfzD8JHsv0R/09gxYoVHKgHoBUAfQA2EomktVQqdRJFsQXHcc1MTU0rBw0apP6+yvZ/hWhv2UIFLaKjP8jh8OIFecydnMiQGDuWyJu7OynRx47RBvzttxQm2KNHrQoyahR9Lj6eyNr7ojqU99GjR7iQmSkU2Noy/Y4dWVVVleg5diyra1h3GDkSGzduVFwqLOQt3d0xfPhw6DZUbbcuGvLW18XEiaioqEDYunWsz+LFTc+1LS6m+zR5MjkeVq+mjSs0lO7hqFFkFB44QMbpTz8B+/cj5tIlsSQ/n5s0aVK9gj5NhoYGMHcu3bdBg0g9/eKL2mq+Hh5kCH/5ZW2xKZmMQm+PHyfS6udHOX4XL9Iz/PlnMqJeahsmkUhExhh7Z7Kdn08Ol+XLSVV6+BCDbtxAzsmT2FJZKc5dtYpJ1q+vbd1TVUWKva4uRVU8elR7LKUx09TWZh8COTmkzmzYUEu0ASL/oaGvEu26sLMjNWzPHrq38+bRs/kvVyxvsLdxYzh7lnIzz5595U+Ghobo1q0bdHV1kZCQwHKCgtAsMBBhkyYhUS7nfKuq3tgd4I0YOZIU5+PHab3JzKQ51K8fKW1vAcYYPDw8WK9evdj9+/dx8eJF7siRI+KkiRMZEhNrDWYDg/rElTEKay0qgp2BAXLu3cMAJyfeS00NOS8r97Gx5GhRUSHC8fXXpIBNnw7Y2uLvv/5SSKVSZmlp2ajzTBRFHDt2TLC1tWUjRowgQ/XGDSILDbVls7R8tS3Z9OnkIKhbv0Gpvq5bB6xZg2u2tohKT0dXNTWWkpKCFi1aNNw60cmJDHDldSnRrBk5Pjp1wogRI7AiNhZ5JiaY2KsX2MyZtDfs2aO8qHqHdHV1FQMDA5kgCLV5tIsWQTQ2hkIux5MnT6ClooLHO3bgooUFpFKp2GndOpg9esTiRozAyDFj0Kp6nkvT0lC5Zg3uyWRi+vXr6PfiBZO4udH3T5hA9+7FC2ja2ICNHw+fNm04dT8/lIeFwbxZMwob79SJnvkXX5ATbPx4WmcUinpO0aKyMkEul3NZWVkwffiQnq+zM6m5AQGQy+XYtm2bsigeX/bbb9AwMkLO+vXotXcvEhMThXPbtnFT7t1jdhUVfOpXXwn25uaM8/WF1sKF5Mj8/PNah0qzZoCXFxhjGD9+PPfXX38Ja1evhqqWFm/dsSNatWoF9YQEcq5MnAh06QKpjQ208/MhkUhQWVkJQRAgnToV3o8ewbtVK37z5s2isu+llooKtCZOhPnUqQCAqqoqyGQyCIIAhUIBQaGASnIyqiZPRkVmJhhjUFFRQU5OTs1YkUqlUOaTK33Cf/75JxQKBUTGgPnz0fbRI2FISgqHb76hNd/VlfYWU1Ny3O7bR84OZXu/1NQGSV6LFi0QGxuLoqKimvkze/bshoqoMgwfDgCwOHGCSCRAe8zYsU0vavY6uLlRusORI69PF1PWtpk7t+G/eXlRusY330CIj0ffM2cg270bGi1afHCiDYDskps3kVpQgC+3bYPO998zeHlRfQoTE4pelMvpGc2eTXZlE2FoaIgvvvgCurq6kMlkYIzxR44cKU9PT1cH0H/ZsmUlH/6C/hn4SLY/4v9qrFixwlhFReVHiUQyjud5qZaWlkxdXR0GBgZSExMTDX19fejp6cHIyAgqKirvHcuTnJwMPz8/+Pr6fjiiLYq0Sb2Uq/xOiI4mpfDzz2tz0kaOpFBr5Yaork4b5N27tWRNiR07aNG+dIlI2uTJ5M0eOfKNX52fn4979+6JZWVlgoGBAa+jo4OKigpwHIesrCwxKiqKtW/fnps2bRrKysqwdetWdvbsWaF3795c3QrVc+fO5dPT02FjY/PBYnOfPn0KiUTSdDUQIGVl507y4Gtq1uZ2LV9e+56ICFLPY2KAqioIggD9iRPZzDZtoLN0KRHH0FAidc+fk+e/qTA2JnVh9Woq1NW7N0U9SCS1xrjyXMrKyLteWUlOlk8++f/Ye++wKM7uffx+ZpZdOgiigDRFQRBEQVBRiRV7r4nGrrFGTXtjNFFM7LGjiRq7scRYgx0L9kJRQVAEAZHekbbLzszvj8NSFBSNeX95vx/v6+ISWZidnXnmPOc+5T507w4fJqXXr76qlgQ6OzuzU6dOISwsDC1btnz1HESRAg2SRMcdNowyJOvWkQPk6EhBgWnTqMXA0xPyL76Axc6daCWTsSVffQWtrCwMq1sX9ppsWnXvUw1yc3OxefNmDB48+JU+/veC69fpvE+ffrVN4K+/qu+Jrw7jx1O57d27lKlfuPDNvYp/A9HR0eB5XkLZmJ3XwtS0qhDcS2CMoVmzZmgWGQkhLw+bxo9HNqgEdd26dRg6dChsbGyqJ3E1IT+fHNnt2+la1K9PIj6hoUSepk+nCph9+yi7/ZZgjKFFixYIDQ0VLYKCOKSk0P3SoFcvco4riXCp1Grc7dIFFmfOQLe0VEp7/Jg12rULpllZ9NxoiEFUFAUBkpOJsM2eTccpK1k3MzNjSUlJ1DtcQ7FKYmIi8vLy2GeffUYX7exZsr1//FH9B/rhB3rOPD0p6NOhA52ThpgnJlKW6uJFWlcPHgDa2uiYn4+U/fuFhw8f4tatW/yXX35ZfSsIxxEZGDeO3ktDKpYvr0Iw+vXrhxMnTiClY0dYbtpEz7qdHdmQGTPIfpWhVatWLCYmBjExMUhLSoLN7Nlgu3bhzO3b6jtHj8q0tLTQwMQEerm5aDd0qOTi4sKE4cOhNW8evhg8GDqacV6pqYBcDsXQoRhjYsI2ANKjgADxy5MnOajVZHMPHqTrs2QJdFNTYR8Xh9xu3XDK2BgTP/64igK4BiLHoWjWLGh3745if38onJwgl8vRp08f7urVq8LujRt5HblcnNi4Madtbk5kV6lE8b17UKvVsLGxEZ89e8bJXFyQdfQoSktLub179+KrDRt4ea9eeB4Xhwt9+6KvjQ0tgrp1ySZu2UItYD/8QGvq2TMKdA0cCENDQ0xr1oyTBg3Cbz/9hBOGhjBJT4etjQ2R09hYWnMArK2toaurK+3atYsNHz4cTe/epSqajAy0b99eunDhguTj48Ph99+p+gY0bWLJkiUA6PlVKJX4ZPt2HBw5UnqRmQlp926UlJQwmUwGSZKgp6cnKJVKThAExhiTtLS0JEmSIIoi4zgOs2fPZpo9s7wyq7iY1uKPPxLJ9PSk7HC/fmTXe/emwH0N2dRBgwahY8eO0NXVhVwux86dO8VDhw6x6dOn12xgBg6kL1EkXYbWrSloZGxc4yiuWiMtjdbPzJmk9VAd7t+n/bSm/cDdvbzEPHPVKslUkpixo+P7FdAsLKSgvqsr1KtWQZaairjJk3F7yhRp+tdfv3rtZDIKesydS7aslm1wjDGqUgGNC83Pz8fz5891GGPfS5L0njJB/zfxgWx/wP8sFi1a1EdLS+t3Nzc37TZt2sjLZve+J7nj6hEXFwdRFGFoaPh+iHZ2NpWxXb9OZczvAkmiDV2ppCxAnTpUDvbzzxS5HT+eyumWLSOS5uxcc/bNxIQyfFFRtGnWrUuGOiaGnOgy51iSpCoOeHh4OP766y+YmZnB0NCQT0lJEYuLi0W5XA5RFJm2tjY3duxYWJYZfUNDQ0yYMIEdOnRI3LVrlzht2rRyz1Umk+F9qsWrVCocO3ZMbE+jOGpP4LW1KZtUUvJq77QGGhLo5QXs34/szEzsmj4d3337LUWXu3Qhp2DTJiJ116/TvfnmG3JQfvyRxExqmumtUJCDERhIfaeTJpGT0707OV+CQPf46lXajHfsICf63j06frdur42u6+npQUcux9VLl9AyOJgc/dRU2qTPnqVKCFNTKhE8e5acDk9PIu8AOSuadXDsGK0bR0dwSiWeHDggGhsbs/r167NLly4J9vb2bzWyLTY2VjPmRmjcuPFbj3t7La5fp/LgvXtfcUSKi4uh3rsXBlZWlKmuDZyciCDl5xM5sbSkANV7znKr1WqcOnUKrVq1evOBy/pP8cMPr/+9iAjg55/BHzmCmQ0a4OnTp3jx4gWOHTuGnTt3omnTpmL//v25N1YEabLof/1F5Kxly4qMbV4eOcxNm1JJ77BhZGtu3HjnthltbW1OKyEBorV11Yf62rWKVgqQbTpx4gT1wNapI5m7ubEOubnUp9qiBVVdzJxJxG737oqM6vffU4Cr0j3s3r07FxoaCn9/f2n27NnV3oP4+HjJ1NRU4jiOoaiICMqXX9ZsQwB69vv0obaWqCi6dnl5VPFUWkqkeMUKylyVwdDQEJ999hkviiJ+/PFHHDhwABMnTqz++IzR8UJCKgh2v37UEjNwIACgZcuWuHnzprhDJuPGu7vDwseHnvMpU4C6dfHs2TM8evRISkpKEjMzM3lBECRJktiBzZvxZVERZPr6ePLkCd+9e3dcvXpV9HRz45yzs4FOneg6mZmR2vSgQRRI8POjcuSydiAOQJtmzdijPXtYuiCgnka/oU4dssMODrTGDA0hc3VFRkwM1m7cKDVp0kTs1asXTx+T3urIkSNCZGQk37+oCI+WL4eyRw9h9OjRvKmpKQYMGMBnrloFRERwiWZmuNq5s9g5KYmzUyqhe+QItOvWlUxNTZlVgwZC5Llz/JkLF2BlayvY2NjwUXfviu7nz3P+kyfDwNhYsrS0rFgDhoaUSZw6lfQC+vWje5edTa8nJ4O1bw928CDEmBjR1dgYths3cpAkuiYrV1KWtU0b1G3aFHPmzGEbN24UCwsLOYwcWU7E3dzcuL/++gt79+4VR12/zmnaL3ieR9euXYWQkBBOpVJJ07y9Od2kJExdtozVYIcq21SG2gTvNNoivXpRy9X69XT/jh+ne7RzJwUNBKFaws1xHCnnl8He3p67ffv2G9+27I8rNA5Gj6bg7oULtF+9K+m2tKRqliVLat6DExKqH022bRuVy69aRW1pbdsieeZMJPv4oFENRDs+Ph4GBgYwrTwd4HXYtQs4fRoZ06ZB+uUX6WbHjtI9FxdOt00bFMXHo8/gwTXfs48/rgiE3Lr1TuQ/rWxyhyRJpxYsWFD8hl//gNeAX1g5S/MBH/AvhZ+fn35QUFCToKAg3aCgoIKgoCBfuVx++NNPP9Vv1aoV/95GCr0B9vb2CA4OFrOzs2Fpacn+9szg0lJyhHq9QyuMUknZIx0dKofz9ianDiCn5M8/qe/4o4+I0Dk6krP2JgLQrRs5ZYaGZLBtbCCsWIGSVauwRy4XTp88yV26fBnXrl3DtWvXcP36dURHR0t9+/ZlPXv2ZC4uLvDw8GBt2rThPD09OS8vL87d3Z29PLZDT08P7u7u3NmzZ5m3tzf4t+gtehvExMQgLCyMeXt7s1pvchpkZJBDXov7LAgCtm3bJjVo0EBybd6cgecp0s8YqWWXlfqhYUPavDMyKJr+2WdEoA8fplLIPn0qZvBmZlJEvVGjip7UXbvIKdfSogj/+fN0nN27KRM+fz6RBze3qhvsyZPk+OfkUMmitzcwdSpc9+xB0uDBcF27lpzghg3puK1bUz/pxIlUtqcRjatXjwgTY6+uJTMzIC4Ogo0NAp2d2eSZM5mFhQWuXbvG+fi8na6KtrY27ty5g9zcXM7b27vGTOJbY9s2em5Wraq2muTu3bv4/cUL1Pv00/Iof63AcRR0sbCgDNfZs9Qj/57OOyYmBhs3boQoihg9evSbr8eiReT0lznpr0CSKNiwbBmpNZdlburUqQNzc3N07NgRrVq1wtWrV8Vbt25xbm5ur/T2FxYWIvfzz6EnlxMpevGCCGrr1hWiQM+fU0nvokW0jrp1o6oIHR1ah+3bv72znJAA+Rdf4MagQWhbeZbs3btU2VNp1NfOnTsltVrNJEnC3LlzmVP//qijVlOgy8eHzictjUTQrl8nsquZ0PDS+maMwdzcHMHBwYznedi+NDFCqVTi2LFjaN68OWdra0vPZWgoZfPfhI4d6Z64ulJ/9f79VDUyfDgFwWqwQbGxsQgPD4eJiQmcnJxqrt7RKPLn51OgIziYnmnNngHA09OT5efnIyA2Fi309KAdHAy0bw+xQQOk9OyJkIYNmZ2dHefh4YFBgwaxiEOHYAcguEcP8fzFi0ylUqFfv34sJCREysrIYM1LS8G9PD6xXTuyYw0bUpCwTRvSDsnJgeXYsbBOTMQ1lQoNS0sh++EHuoatWlH1jp0d4OMD+dq1aHf4MPLatWM4dIj7KzQUCdnZgma0YmhoqNSgQQOu09q1KHn4EEVPn7LGnTszAEiMj8e9y5fhmJuLup06IbVtWxYYGAj7Pn1gdPgw7GfNYmcvXGDmMhlr6uDAHjAmTps2jW9oZQXLkBCm4+UFh+nTcffuXRYdHS1ZW1tX7G1yOZGbffvIFnt50T6qpUX3dfp05B4/jsZr1rBnVlaSs4kJw8SJFPCYN48qF7Zto7UglyMsLEwyMzNjVtbWROL19cE1aoSioiIxIiKCS0tKgti3LzLy85GUlATGGGdubs6s1q1jT2JipMZ79tREtP8+1Gran+7do3MLCCB/5t49Cu5HRVGQWKmk9aatXeV5ys7OxtGjR9GvX7/qyshfj4EDqX3syRMKcn79NR37XWytiQk9A3FxZK9fxs2btN++rNPw6BEF4j08gGvXICoUOKxSsTZt2sCikq5IQUEBAgMDERAQINy5c4eLjIxE69atERoaitDQUNHW1pbxPE+BosJCClaMHk3HLi5Gab162PzsGRI6dmS2H33EevTsCZ7noaenJ3br1u31N7djR2o509PDu4hdJiYm4smTJ0mSJH3fsWNH9Vsf4APK8SGz/QH/avj5+dVRKBS7eJ7vrqurq1Sr1bxSqZQrFIrSoUOH6rw8tua/gcGDB3MXLlwQt27dyvT09CR7e3vRzs6Ob9y4Md6qH3zAAHL0/vOftzuBpCSKxgYFkVPWtStlDOLiKOtob09Zz3Hjqs5XrSUkbW0ISiWkb75BztatePDggRhSpw7Hjxoltnnxgh+7YgXE9HSUqNVQKpVQKpUwMTFh79ILL5PJIJfLpby8PFY54v0+4ejoiE6dOuHQoUOYMGEC6tckPFQd0tPp6w3OgCRJOHPmjCiKovTJJ5+8PmqgCaxYW1NQA6Csd9k8UXAc9Wfv2UNZ6qQkUvnt2ZOyTLNm0UZ/+TKVKbZpQwQnNJQEmFxcKLP49dfAqVOUMcnOpgzn0KFE6N3difhs2oSTx45JhUol04iRqdVqxPTsCSk+Ho6Ojm9RClCGRo1wafFiGOnri/pyOadbvz44jpNCQkLg4eFRa8/v2bNnMDIyEvLy8viUlBRYVcpWvhMkifqGS0ooI/Oy8FwZciIihDlr1vD+MhmysrIka2tr1qBBg9r3L9vaUvvBw4d0nRcvfuOc5zchLS0Nv//+Oxo1aiR16tTpzePvRJGqKWrq75YkciIPH6YRZjUEuvT19TFr1ix+3bp14vr16zl7e3uhTZs2fF5aGswPHsRvdeqg940bKLa3h81XX4FVlwEqy9aVO9oFBbSOExIoC65SEekfNar2FyQxESgshNnLYnmpqVQ2CWpr2blzp1hSUsJ9WYlQymQyel4aNiRSVK8ekQVLSwqAnTxZ7fMuiiKCgoLE4uJiDgAuXryIe/fuSUOHDmXmZcGCR48egTEm+vj48OVq+9u21e4zCQKRz4ICIir5+URcXm71eQmNGzfGqFGjsHfvXmzfvl2aOnVqzc/Yli2U7bp4kUhv2bWqjD59+iA8PBy/t2uHwTk5MG7ZEsGjRok2eXncdE1LTRnaP3smGYeHs+MNG3IDBw6EjY0Nk8vlmDlzJrd65UpJ+uUXBj+/qr3iVlYUeNHsTUZG9Ew2aACue3cYpKcj3t4ey93d8b2nJwWVnJyomqdTJyrt37EDXG4uMtavFzxzcni39HREbdvGB23diuDWrVGgUPBDy3q1HbS0YH7oEFtuagq+pASzV6+G5ciRorarK4cvv0RvZ2cUFhYK2/bv57uam0ueS5eyeq1aSYWnT8PgyROqwigupsDpxInAzJmwWLwYffv2xdmzZ5GYmFiFXIHn6fPNnk3r++ZNCmx26gTMnIlLcrmY1b07p+vuzj3r0AE2Gu0Cxshm7N9P9n/5cshkMkmlUtHroliuUN+rVy/O1cQE4vbtOOzlJfEymaTpuVbl53MDkpNxy9dXwPv08SWJ9hhDQwrC6uvTPsMYBXy/+ILWrJ0dBY+NjSmgs20b7W+CQH9bpw7QqRNuRUdDrVbjypUr0uHDh5mdnZ1YUFAAb29vrrS0FCYmJq9vH+I4qnbIyCAi37gx+TyVg2+1AcfR+Z48SdWAL+uXHDtGgVkNiopoHWzfTlVBzZsDly8joWVLFO/eDXd3d4iiiKNHj4rPnz+XXrx4wVtZWQmdO3fmAUhnzpxhK1asQNl95WLPn4dKLkf/8+dhnZwM5bVrMB4xgsTN9PRw9eJFEaGhGD9+fHk1f2fSN3nz1szzdM/at6fPWFmXpBpER0dDEAQEBgaWZmdnaza8BgC8AVys1fX8gGrB3kps5QM+4L+MZcuWHWzatOnAHj16aGnInEqlgpaW1tv1Ef4DUKvVCAsLQ3R0NNLT04XCwkLe0tJScHNz4xs1aoQ6b3CS8OOPtJFr+tfehIgI2oR9fCh6vngxZTlTUymj5OpKZcuvUUUWRREZGRlITk7Gs2fPhKysLJSUlDCVSsVKS0tZaWkp1Go1eFGEbWIiSnV1JZWLi9ixY0fe0dGRNvwrVyhi+vHHtLG9wYC/CatXrxY8PT359u3b/6P3dOPGjaKzszPX6W1mSm/eTE7eG8rag4KCxNu3b7Px48f/M0GDrVtpU7ezo+v9+DERmCdP6PU9e0iky8aGMkHz5pHzY2xM0XJb22orGjQlqPXr10e9evUQHx8vFBcX83K5XCoqKmI+Pj54q+sF4OnTpzh48KA0ITWV1TtzBnj8GMePH0dkZCS+/fbbN95jURRx6tQpISQkhDcwMJBatGjBbt26hU8++eTvtRd89x05St99V2PwRKVSYeOiRRhaWIjMMWNw6dIlIT8/n2/QoIHk5OSEdu3avd0CjYggwZoBA+iZeZtMeRlEUcTu3bsllUolTp48uXblH23bkp1YvvzV1ySJnMcLFygbVYuKkvj4eERGRiLz8WNBjI3leAMDoedvv8m2jxsHqxYt8OzZM8nCwkKytrbmVCoVkpOTpczMTObesiWaR0ai3pAhVYMbgkC2REsLePAAwoABuLdsGeq2bg1zc3NwHIe4uDio1Wo4OTlVrBlRJFK+ciV2BQaKSUlJnJ6enqCtrc23atUKHq6u5c7ymTNnoClRnTt3bvWK+3FxlDm2sKAKoPv3yXk/deqVXw0ICBDCwsJ4S0tL2NjYQEdHBxkZGYiKisLEiRNRr149mHnDQQAAIABJREFUnDhxQigqKuJHDB1KAZbly+m5fRNiY8mWP31KAbHoaCr9vH2bgmQ9e1aUk9eArKws+Pv7Y/jw4eXiY69AqSQyr1AQWfr+e8pO/vJLlV/7888/8fDhQwDAyAsXwPM8csaPh7uHR8UIpMxM3IqJwdmzZ2FoaCjOmTOnivO/atUqceyFC5zp+vVVK0hKS+nL3p7OJyaGAsbW1hR00dfH+cBA3Lp1C19//TUFsIuLqXc+IKBifGWTJkhMTMT27dvx9ddfQ7p5E7IjR1D68cfQnTAB3KefUuWEkVHFVAwjI8o279lTIVpXFrjKyMjA3o0bpZGbNrE/pk8XR4wcyZUmJOD30FDxK3d3Dvv3kx2uZL/27NkjPX36lLm4uAiDPTx4mJhQT/2qVZSNX7CA1vr06RRY79UL+w4dEtLT0yFJEoqLi3lnZ2ehT58+fHkALS8P2LgR19LTxQt16nAdOnTQkKuqpc6PHlGgrPIIwKtXkbp4MU4OGSJNmDjx72+mgkD7fVERvVdsLAV0c3IogJCSQuthxAha72FhFCgC6Lw0wpiSVBG4/uMPIDsb+XI5CqKjIUgSklq0QEmDBsjQ08PTtDRJLpeL+fn5vI+Pj9CpU6fa2byEBAoEHT1K/fMREW/3WdesIRtVecpIUhI9e5WFa+PjKfOsmSwQEQF8/DFSUlKwdetWfPTRR4iLi0Nubq7Url075uTkVK6lUFxcjJ07d0L24AGGNG8OWf364GbPRtY33+B8QoKYravLqeRyuLu7iz169OAYYzh79qwUGhqKuXPnvvv9nDCBggmayQ/VID09Hb+8ZAcALAaQD2DdggULlO/8/h/wIbP9Af9e+Pn5MYVC0dbT01Orctb0b40peo+QyWTw9PSEp6cnAPD5+fm4efMmHxQUJAYEBHBjx459pcwQAHDoEDlW1SgEvwJRpNmXERFEor7/nghgSgptZOPH01fDhtWWUEmShNTUVISHh4sxMTHIzs7mtLS0JF1dXaFevXqyRo0aQU9PD3p6etDX14eenh4MDAzoGl+5AixezLB0KV+u/slxFeWOL14QmXvwgBylNwUXakCXLl34U6dOSYaGhqzyjNL3DWNjYy4/P1/E2/Rt37pFZWavIXmlpaW4ffs217t3b/xT2XlMmlTxfVQUOaXduhHZnjSJ+jktLcnByc6u6jy/huCVlcVKqampTF9fX+jZsydvaWkJIyMjdvr0aTE2NpZ10vRcvgFqtRrbtm0TsrKy+A4dOkhmrVoxTJgAlJaib+/eiIiIQGJiYkUm5yUUFBSA4zgEBASIUVFRPAC8ePGC+fj4QCaT4ffff0fXrl0lLy8v9lZBGUGgaoD27amq4DUK8RcvXpQUubnMatkyWOnro0WLFnxiYiKuXLnCAgMD4enp+Xb2x8UFwu7dYAsWgFu7lrJWtVThLi0tRXR0NCIjI8Xk5GQ2Y8aM2vdZbN5coV5fGaJImeasLPq3lq0bdgYGsOvSBdixg0dBAXD6tCz+s89gfuUK+vTpA7lczgICAlh8fDxycnLEOnXqcCqVCk+OHEHDy5eR17MnUq9eFWJjY2Fubs7srKw4+zZtEPDVV6Lo6orHI0ZwjY4eRfHWrdLejh2ZXC6HIAgSAERFRYmDBg3iGWNQZ2VBGR0NbYUCo0eP5hISEpCSksKnpaWJp06d4lw++QSKmTORM3IkBEGQGGOsd+/eNd8zW1sKUoaHk7O+ZQupLE+aRN8zhsLCQty4cQMhISH8p59+ikYvEV65XC799ttv7OOPP0ZkZCTfv39/aiHQ0XlzILKwkLKC27cT6V+0iOypjw8RYltbIowrVlCGMD6e+tzbtHnF3puamqJx48biwYMHuf/85z/VV1kpFFQqP3Ei8OQJVO7uyE5KwstF/HFxcSIArlu3bmi8YAGwYgUazphBmdWgICpJbdIEHr/+imRXV4SHh3O5ubkwrqTe7+TkxF0PCUH7lBSYaMj2ixfUj75uHfX3Ll1KwosPH1K2vWzNdujQAc+fP5dWr17NjIyMxGHDhnFmgYH03pGREO/cQUH9+rC2toa+vr4QGRnJt+rSBejSBQoAOHoUoRcuoGTSJLHR/ftceL9+Qrfdu3lYWFBVRGAgBQDKCO7u3buF7Oxs5DPGn+jXD6OMjDjjffuQrVCgxa1bDJmZFMwEyJbcvg1cvIiR9+6xjJs3cTs/n4LP/fqRvXn0iKpa5s0je+3tTZ9t9mx8snIlr9EyyM3Nxbp163gbGxu4a8QCyyZcOKanc4oVK+Cq0TQ4cIBU9csE0XD4MFWyVcbhwyi2sfn7WhGBgfR+48eTyOHIkURGDQzo2JJEBO7pUwr2r1tHa/iXXyiTmp9P1wAgP4UxEkqsX79c+M9QFGGYnAxERsL61i0KhmhpAeHhDA4O/FUzM4SfOMF3at++dnOqNb7W4MGkNSNJtNZ27KidKKe/P137IUMqnq3o6IoRfQBlvvv0Ib2BoUPJhyubplK3bl20bNlSCA8P53iel0aNGsVV8QcSE5H93XfgdXXR9fJlGLx4AdmOHUDfvtDT0sKEMr8kLi4O+/fvZ5GRkdDW1kZmZiarX7++Gn+Hr23cSAGuhQvp3KtBdTZSS0vL7Lvvvpv/zu/7AeX4QLY/4F8LjuMmGBoamli877m6/xAMDQ3RvXt3WFpackeOHKmRVEBPr1yVWpIkCIIApVIJlUpVPrZDLklQKJXQnTABLD8fbP162liDgsiJa9WKspvVGEhJkpCWlobw8HDxwYMHTKVSoV69enB3d+ecnZ014m5vfvZ9fKjMOTX11d5WxiqCBePHV4jfvAPc3NyQlJTEQkNDBTc3t3+kcVsURaSlpUlv3RtmY1MxH7gMarUap0+fFlJSUqCvry89f/5cpqurKzRr1uyfaTrXQJJovvfnn1MgJDKSxNY8PckRCg0lR3LtWvp5mzbl82VrAmMMkydPZmWzm6ucf9u2bblff/0Vly5demN2u6CgADt27BB1dXXZ7NmzoaurS95K8+aApye4du3A6tWrsc0iJCREOnnyJAOAunXrSjNnzqTRM5IEmUwGHx8fWFlZ4Y8//kBhYaHYuXPn2gVMBIH6162sKLv8mlYHQRBw+/Zt9rWGKK1cCYCUgUeOHAk/Pz8EBQWhW7dub3xblUqFo0ePCnK5nD179ozlKxTM0ddX/OjbbzkDKys87tkT+lZWaNiw4Ss9toIgIDw8HEFBQZJKpZL09PSkadOmcbUeIzdrFvUzvtxjKEkk/qXJZNZG50Ktpi87OwoUVCLodnZ2VSoNhgwZovmWA+iZe+jvj8jnzxF24AAA8G3atEFMTIzw8OFDofmkSZzK2prLyciQ2nTtis52dsDQoczG1xcpggBPLy9WVFQEf39/bunSpehz7ZoUZWHBHvXti06RkfDx8al8Dpy2trb6aEyMrImtLYofPkRwcDADgICAANjZ2b0qShQaSrbr3DmyyUZGtF4HDKCe4rVrIc6ahR07dkg5OTnMx8fnFaINAL1792YmJib4/fffoaWlJTnq6zNcuEDZ09f1kF68SL3KxsZEVDSOed++1Fo0ZQppbaxYQToMc+fS89+/PwXbGjcm8lPJpo0cOZLz9/cXDhw4wJmamrKioiL07du3XGwwISEB+bm5klmzZix7+3Ypv6QEQmwss9m9W8xVq0V9fX0MGzZM5uHhwV29erViQsE331AGWpKIoDIGREZCy8ICpkFBEgCWnJxchWz7+voifN8+6drGjczJ3ByW2dnQc3MjsrJsGX02U1OyVampFAT76CNg5Upoe3nBx8eH7d27F9nZ2dzWrVvRv1MnNB46FMlHj+LE9euiz0cfcQG9e0PbyIidPXsWurq6cC7LugcmJ+NWXh5azpzJ7bx2DTaMSSgpIUJ37x4RfUEAJkyAWFyMhIQEvmPHjsjOzkbnYcNg4OdHmX9ra7jcucOwdCkFuA8coGC5QgEsWQIuIQG8tjbsz5/ngz/9VGw1fz4Hc/OKZ2vYMAoo2NtTECUlhdbE7NnAtGlIKNtbXtYzQUgILo8di36ZmVCUlpLd6tWravDm4sUKxX2NcvvChXgeH08k8W3w4gXdg5Ur6XObmxMpdnYmn6MyVCoKQsfEULBIT48y96NHU8B30SLqo27YkD7799/TPX4ZHEd22cqq4nOoVLSHnT8Pr8JCICQE0oQJYElJlD1v0YJ8jRoqtQBQcFyjXu7rS6KMa9dSRcf81/DGmBjSlsjKqghQP39eVU8iIIBaL2bPpgy9g0P5S1paWujbt69mD2WQJFpjX3xB13bOHNSTy9HUywu7LS3xn//8B7JqgggNGzbEt99+y06cOIH4+HhxxIgRnKOj49/jatraKNcG6NKFfLuXoFmDHMddFUXxWwBrSktLd/2t9/2Acnwg2x/wr4Sfn5+tTCZbO3jwYL33Joz0X4K2tja0tbVJ1VitRk5ODnJycpCbkgKnr76STo8aJaXzPFe6eDEEQQAAzYxLSUephFFurtT9zz+5R/b2yNfTg7YgoPGIEbjTti3iGjdGqbY25NHRkiIhQVIoFJK2tjZ0dXWho6PDGGMsKioKSqUSZmZm6Nq1K3N1dQXHce8W6p4+nTb4I0dqztKcO0cb2+bNRPo0Ee23gI+PD9auXcsXFRVB9+WZs+8B9+/fh1qtZm9dBuzr+4rDfP/+fURFRTFvb28uPz8fzZs3h4uLyz9PtLt3J0d3/vwKdeHMTCIM48bRpg5Qb1ZuLpWwfv899Sdr1MmbNHnl0Iyxaku7jY2NMXLkSOzatQslJSXo0qVLleh3QUEBzpw5g4SEBKGoqIi3trbG8OHDuVfECrdvB2xtwa1fL+3atYv17NlTcnFxKX/DzMxMBAQEsA4dOqBjx46vkH4NGjVqhHHjxrHt27fj7t27aNKkidClSxfeqKaRLNnZlKEcN46U/mupxpp+/jzsqqlI8fDwwI0bN2Bvb18t6dJAkiSsXr0apaWlvKmpqVi/fn2pf//+LCwsjNspCGh/8SKyUlNFpVyOg3Z2nImJieji4gIvLy8uPz8ff/zxh1RSUiK1aNGC69y5M3tr+/f48auOqFpNirsuLkQAakO0f/+diHtaGpVbv2XVBieKcNmzB+LPP6Nzq1ZYvXo12rRpA19f34r7O20aMHkyQ4sW9P/gYNisXAmbmBigdWvo6+tj2rRp7NSpU9A7dIi1HTQIxTIZLl26BBcXFygUCty5cwf6+vpo5egou5aXh4DQUGiEK3v16oVz587h+vXrMDQ0hFKpFHx9fXmWnk5Ed84cIquSRARl82b62fz5wKFDiF28WCrW1pbmzZv32vvQtm1bxMfHC1paWjz3ww+UzatJVDEjg8impSURqJfHASYkVHw/cyY59vv2UXbR2JjuB0B9syEh9HXvXvmkiLFjx/IHDx6UQkNDAVAfOQAYGBhIpqamUmJSEpfXoQNG+/uzcyNHisP27GEBz55xiW5uHMdxWL58uVTWXshycnJQ/jxv2UL2pHVrIpv5+YAgoEWLFiwqKkoKDw9nGrILUOVXy65dmfaJE9KZAwfEyT/9xN91d4fM2lp0/fxzjvfwAGvYkD5PnTp0D1xcKLBz9y6MywiPKIoYMGAA/jxyBEbjxiHv8mVY1qvHmjGG9AYNUMfDg7t48SKyNarfABo0aABRFKEXFyf2vniRud6+LYOpKRF9Q0PqJR41CpAkcPXqoWPv3iJna4v+UVEcevemsna1Grq//YZDQ4dK49q1Y6UmJijo1An13NzAjI2pB/vTT2Fsa4vo0FBcuHCBM1KrUU+lgpGODpVaR0RUKOM3b077aHExEbbgYNgbGsItLg4nTpzAzJkzK+yrjg6iGzeG1ty5SLh5U3o8ZQrqmJjA8+FDBpmMgsDffFORsb1+naqczM2RdP26JIrim/e558+pPHz58oqWEk9PCja9rt1l+HCqcLh0qbyHvFzgE6D9aP36CgX+mzeJdNamnUIup8CEvT2uXbiACJlM6jBtGkNwMF3Le/eoCuLGDSKMnp4UdGrQ4FWRRY6jQFXZ9YQoUnZ36lTK9CoUVX+fMbIJv/5K5eMAVZL06kX2784dygpPn05fGptVGYJAAZXISLo/S5ZQwKJPH6BNG8hat8alRYugr68vaWtr13iPOI7DgAEDgLepwnsNCgoKAHd3pPv6SrmzZrGAPn0wfNQoOJa1MKpUKixduhQAIIri5QULFtwA8PaKah9QIz6Q7Q/4V0KhUOzw9vbWfisxq38J7O3toaenJ6xevZrnOA5yuVxUKBSimVotczA0ZE07dGAdraxgaGgIfX192mBVKmDlSoadO4GvvmJo2hSW3boBenoQ27ZFkaMjugoCRFFESUkJCgoKWEFBASssLERRURGKioqQl5cHtVqNTp06wc3N7d0JdmXI5SSCcunS60siOY6cQSsr2nBGj6YNrVKm43XQ19eHkZGRcO7cOfTv359/373bRUVFKC4ufnsiHx1NpE2jDg6KAHMch7JRYv8sVCoqRfTyoqj0+vX0vbc3cOIEfZ05U9U54nnKGK1YQU7906fkjO3bR45A06aU+ayFeJ61tTWGDh2KK1euiD///DPn6+uLVq1aIS0tDTt27JAsLCwkb29vztPTEzKZrHrHwNUVUKnwnxUr2NYRI3Dd0JC5VFpLhoaGsLOzE69fv86JooiuL6sXV0L9+vXx5ZdfstTUVJw9exb+/v7geR5yuVyyt7cXO3TowJuYmFCp5fLl5BBrFOHfAFEUUT8lBTqffkr9nC+hT58+ePz4sRQYGIjJkydXe8AXL14gJiYGSqUSZb2W5dfEzs4Oqt698WLWLJhGR3PYsAEvFAo8aNqUC71/X7hy5QoAwNnZGQMGDODeKcj4+DGJEb38eadOJbI8YsRrs/sAyLls3pwE9oKCaD3Vgmi/Mns6MBCsYUO4lY1PY4whIiICVlZWFVU/ubnk0GocV8ZIwO+774iEmZnBMDAQIx4+pH5QAGMB+Pv7Y8uWLXBwcEB4eDgAoGFcHAZcuoT4jh0FmUzGunfvzrm6uiIhIUF49OgREwSBqVQq3uXJEzTw96d7rHluLl6ka7dsGRHusDC8aN4c7Msv2bC1a2sV8Hjx4gXTDQvDJVNTFFlbwzIsDK6urhWVC6JII5K2bSOi169fxWi0yhg0iMTtzM2JsK9eTSW7xsa0ljXn8ttvRB4SEihbde0awPPQt7LChAkTmJ+fH1xcXNCiRQsIgiA5ODgwlOn0MMaAsDB83L49h6++gmdqKhplZSE5OVmIj4/nMzIyoK+vj1eqypo1o89RXEwZwClTYJSYCOWnn6LzrFkIfvJEbPXxxxwWLKDsu44OnEJDmdOkSbzk6opGkyZha3o6M27VCrt//BEwMIBZdDQy/fxgbmEhshYtULhvHzd83TokmpmB79cPAwYMgIuLCywsLJCZlITG3btDfeUKk8+Yge6RkcCGDZBNmoQzZ87AxMQEDg4OCAsLkwxEkbVo1YrLWr8ejx89guOjR0Qk9+6lXmrNdIjkZNR78oS79dtvaBsWBo7nKWgcGQk5z2NAbi574uwsPXV1lZ5oa3NDfvkFNpUqOvKysqBUKiFJEvbt2wcnJydh2LBhPPLyKND4MqnT0Smfua6/fj0GREXhRysrBH32GZwXLcKLwkLk5+dDLZdj/4oV8Dx5khWdO4dbRkbwPHeOjhETQ+uoe3eqoDAxoT2a51FSUiKam5tXH/yNjKT9olkz0gL45BMKqK1eTZUdr9vjU1OpuqVXLwpISRKtT6WSbIpmhKKXF1VnnDhBa/zwYSKemzdXlHrXAvHx8VJhYSGDlhbtv5X2YLx4QYQ7OZnsgp8fXZMvvqBrYWtLWjia9rfPPqN/nz4lXQYtLapSaN26agXQmjX0bGoCQP7+VGWyYQNlx0+fJmHSyvZQraZr2rYtHc/enu775s10LSrZ4rI51tJbT0X5G1Cr1VhVJvDGN27MJgUGov+xYzggk2HBggUAgGvXrqkAyBljJyVJWv1fO7n/Q/hAtj/gX4dFixaN1NfXb+3t7f3PZgv/IXAch5f6Kzl88w2HDh2AmzdRPtVXkojIjR9PJU5ubhSpvXePyq/c3AC5HBwA/f/+x6jA55+T4MvBgxTVrgn6+uQMZmVRJFhHh6LQTk61GskxZswYfuPGjZKDgwMqZ0jeB8LCwoSyfvC3W1PGxlR6CMrAymQy3L9/X9LW1v7nlSWDgigT/egRZWjr1aP1onHee/emrJihIX0/cCCVilUGx1HkXzNr+fp1EpC5coWc9QEDqPfsNUERR0dHODo6co8fP8aRI0cQEREhamtrc7a2ttKIESO4WgVG5HKwgABoxcQgMSEBp0+flrp06cKePn0Ke3t79O/fn1u3bh3yNYrsrz2UHDY2Npg0aRKvVquRkZGBnJwcdvv2bfbLL7/A09BQ6BgYyMunTKl+lEsNCA8PByeK0H2N6rmzszO7c+cOoqKiRCcnp1cW9f79+6WUlBTWqFGjaoMxcrmcypnbtgWaNYNBWBjazZ+Pdj/9xMfb2oLjONjY2LxbpEmpJJtx/36F6GJpKWVAhw6lbF1NvcspKdSreOIE9Qi7u1MwphZO4dOnT3H48GEUFRWhXr16UsuWLZmXlxc4lYpKSstgZWUlnj9/njMwMBC++OILeg737SMnPiOjgvhaWdEYu1mzKPvm7U0ObSVMmzYNx44dKyfa3bt3h1wuh/7WrZitpVXlGR8yZEj5/0NWrMC127fh/dNPqG9khPKrER5OGeJp04ApUyBt3ozCBQuk6CFDpF5793JwcXljr33XNm04fssW6V67dihSqcTgEyf4U6dOYd68eVSFMm0akett26h3tSbk5latwjAwIMe9Rw8iEZUJkZYWkYX0dPqbHj0AxiAeOQKTzEw4OjrC3t4eqDRDufx53b+fqpIuX4blTz/B8uJFuLq68iUlJdizZw8kSRLT09M5MzMzcBphwaNHqeLh2TMiert2AY0aYWBODst4+hTXcnI46+Bg1C+7Lxgzhtblhg1gwcEwBaC3YYO4e/duXiaToXOnTnAfOBCh06fjvihy6enp4HkeOyZOhKhWo9edOzD+80+U3LqFunXrkibG9OmQabQGysrZrc3NwRjDiRMnIEkS+gQGYlhKCmQLF+Lhjh1S8JkzouOtW3xYSgoMrl9HoxUrKlKGBgZwdHfHlZYthfUODtzkoiKmO2kSMGcOuK++Qv25c1E/N5c1s7Vlfn5+EF+6XadOnUJ6ejrMzc2F7OxsvnxCym+/kV2tTqFfg88/Bz7/HJ6bNkktN29m5xiDWKeOUGxpCQcHB3748OHgeB5NvvoKzz/7jAIqABHszp3p2i5cSH3JZddEEASmrvy8xMXR7zdpQgTT2ppGvl29WrM9qA4TJ5I92LGD/ADNGk1LowBG5WPp6FBguG9f6qG2tqaM8ahR1ZeUVwMLCwv2/PlzlJaWvjoJwsCA1p8GEybQmnzyhMrQg4Iom9y1KwUHdHTo+W3RgsYDAtRKk5pKlU9PnlBrnpcXBRLGjKGAzKhRpCj/0Uc0StXCgq6BKNJzoFGI37OHkgs3blS0ddQw7aK0tBQWFhb/NXXfyiNVBZkMumvXwnHTJkzr1w8AkJqaiqtXr8oBQJKkUQsWLMj9b53b/yV8INsf8K/CokWL+svl8q0jR47UeeN4m/8VSBJFVCtvDmfP0ibp4EBkavp0Ms4dO77TuK5/HJ6edI5DhrxZVMnUlDYdgMjOF19QKeQbYGhoqKkCeK9Blvz8fGRlZfHdK1//2qJRIyAyEjk5Odi4cSM4joOBgYH4xvFefweCQBmwefNo7Mjy5eQEJCZWHWvi50eR/d9+I8eiNsJb7drRlyiS45CbS46Tlhb1q8lk5AxVQ6AdHR0xdepUrFu3juM4DuPHj68d0dbAxwdjSkqgnjMHS2fPZk+fPkVmZiYYY9BMxYiKikJBQUG5euubIJPJYGFhAQsLCzg7O3P5QUF45O/PHZfL4evtjRoKzF/BixcvEBAQgPotW6oNpk6t0fD07NkTERERuHPnDpycnF553dXVlaWkpKB9+/ZvFlLT9Kj6+QFXr8Lu3r2KDMy7QKEg0qrp/xRFIngODtQOUZ09PX6ciObs2XTf5XJg+HCkp6fj5I4d4DgOzs7O8PDwwOXLl3H9+nXo6OhAqVSC53lJEATGGENpaSkaNmwIxph09uxZdvXkSUy5dAkGx46Vv1VqairH8zyaNm1addF88gnZvj17qp7bZ5/Ra4sWUbaoEjiOQ5MmTcrJNsdxcN+0iZzpGTOqvz7+/vD46y9kTpwo7YuNhXLZMubg4CB5e3szm5fsU1SHDrgdEYHRABHtMWNIyOw1e1IjUQQmTGC2U6cCAH/z5k1cOHkSD3/6CU2OH8cRZ2dJ2bat9KmZ2etDjxermbBTpw4R4w4dyOmv1CsKoEJA6uxZQKVC4MqV0uQtWxg/dy4JdDVpUv25//EH2QB9fQpoyGTQ1tZGnz59sGXLFu7XX3+Fq709Bq1fT6Tq2jUi/JJEIlrTpgGLF8OmY0eUpqXhjo4O8vLzUV+jcxEdTSRk8mQiLcePY5K/Pw+gQr/hxAnkx8UhMyYG3bp1g6urK3iex40bN1Bia4ubAQFo9/w5LIOCiFTNn0/B6BkzKJAbFITYadPQPiEBTRwcoO3gAKNjxxhTkniyp6cnCzt3jn+kq4sbx47BKz9f2h4UJDWIjeVSUlIkpVIpOTo6cp06deKfz5ghqTdvpv7q0aMpS7p8OVUaJCRAoVBAoVBArVZDpVKhtLQUpaWlaN68udStWzfNnkD/lpYS2asFekybxjB1Kj4BgB49eDx4QCXnWVnA7Nm49/gxWj55Qvd++XIKrvbrV6G6XaktRM5x4IuK6JkODKRzLy2lCqMyMa+3wv37VA79669UFTV9Ou1HGixeTOvP37/iZ336VASqbW0D7J+KAAAgAElEQVTp99PSqKLq8uXXilSWX5MePRAaGoq7d+/CWyMSVxMYo/epnDmfPZuC/ZmZlPX+6y8KqPXtS6Xds2dT4OrAAfp8CQm0n8rl9HcxMRS0HDGCbNP160TUp06lvXL/fvJvZsx4K7ttbm4uPaMA/n+FcL+8R6+OiUE3SYJDly74cfp0iFXtQgaAWs64/IC3wf8jbOYD/l/AokWLhmtpae0YPXq0zv9i+Xi1uHWLsgF//kkk6vPPyWFxcSHS6u5OpYv/dhE4Hx/aXPbtow2ztoiJoY14xgyKIv/5JwAq6y4oKICJiQlkMhmePHmCBg0aQKlU8u9T0Ts+Ph6HDh2SzM3NUadOHQaQANXly5elkJAQ5uHhAZ7npbi4OLFDhw5848aNUVxcjNu3b0utW7dmXHExtJ4/R1ZWFgBg2LBhcHR0/OeI9qZNVMoWEkIEqbCQIuUHD76qLu3oWOFcTJ1KzvjDh7XLHHBcRcbF15fUdUtKiNiYmVFfr63tK8Tb2NgY48ePh4GBQRUxpNqC69oV8iNH4FFUhLDQUPA8jwkTJuDOnTuIiYkRCwoKuJSUFDSpprf8jbh0CYZ79sCka1d2PjMTlmWjX9LS0kSVSiUVFBRALpdLcrmcMcYkQRBgZmbGeXt7c48fP4YkSZg8f74MurpErmqAs7OzFBwczK1bt06aNm0a09LSQnx8POLi4nDt2jU4ODig4cviZK9D585UfrhwIX1//nzN/b414flzUlt//Jj+n59P2avPPiOHv3KATJJohFGPHuQMZ2QQ2dqypfxXdu3aJZaUlHCaz3bu3Dno6OhIABjP8+jZs6ekVqvZ6dOnAQBeXl7oSVUE3P379xG0bRuCtbTAR0YiLy8Pjx49kkpLS1mjRo3g4eFRlWsePVp9OXVxMQWQVq6kz3fuHMBxEAQBpaWlOHLkCADAxsZGcnd3Z2jS5BVSDoBI5LJl5BgPHozuFhasO8g27Nmzhz1+/BhzVq1C+ubNaPzxx4iLi8OpU6fgPnAg4+VyEir74QfK7O3YUX1Lwr17tGZu3iz/UVvGYJSaKhbfu8et6dIFcnNzJissxLJly6Tp06ezarUGoqKo6iG3muSSkRH11fbtS2ukJrFHuRx3AcYOH0Y3S0t6vtu1o+uYl0dZRg02bqT1kJdHLStljreFhQXMzc0lmyNHWIeVK1HQpw90r11DbkEBUiMj0UhXF9pmZnQO/foBa9YgVamEqKMDWZcuFdMTNGv5m2/o+hkbQ1uhAM6dQ0G7dnj06BGCz58XvP/4gx+wbx8qt5d06dIFkiRhUUICml24AMslS+gacxyVJjdqREQIgJOdHRIfPBDjQkI4eX6+4D5lCq+xl3K5HCO7dcOL6Gh84uoKnbp1WYRMJmZmZgqNGjXiiouLudvnziFeECSFj4/UqmlThosXqV8+OprKiGfNAp49w9SlS/FLTg6UurrgOK68baLZyzY3LY36oavr660JmnV19izZ4sBAeobv30dqx47o8OefEubPZxg1ip6Fp0+pfFtHh8qqHzwAMjLQY+VKFu7sTO0I48ZRS0g1gli1giAQoW/ShO51UhKtw8qYNOnVyiiOo71o9+4KFfe+fYnwjxpFqt4vB4xeQlpaGgRBqH6iS23AceXK5+jUic6zqIhsZHY2CSQuXEjP2+TJVKWhCQqtWUMiemU2A7/9Rs/ehAmUATczq3Y8YG1gYmLCIiMjoVKp/pHJOrm5uUhISECzZs3KW1jmzJmDNWvWlP9OYNeucHnwAM0fPEi55+4+EEAigMOMMeG9n9AHAPgwZ/sD/iVYtGhRD4VCcXjMmDG65i8LXfwvY+NGEh/R0iLHNjOTNsBOncjB/l8Sf0tLo8i4v3/FrNXaIioKOffvI93eHrkzZuBMjx4Ax5VvBqIoQiaTSYwxZmBgIKnVanHcuHG8vr4+Xu6XfP78OSwtLav8/OV+UUEQcP78edy5cweOjo5i//79OY1o3a+//ioJgiAZGhpyKSkpUCgUklKpZAAwdepU3L17VwgODuYBQLegAE6xsQhxc4NCoQDHcZKvry9r8TZOVG1w5gyRHlNTItUdOtD1trOjgEV1JWm3bpHjrHlt+HByhCqRpreGKJIjsm0blRTPn0/R/AEDaidw8wYkJCQgKSkJFt9/DzEuDvUfPKiSxX6brHYVHDtGpbQODkh3dkZAQAAEQRDL1gVXr1491KlTB0qlsry/kud53Lt3D6WlpWCMoXPnzmhvb09ZlzeQ3czMTGzcuBEAMG/ePKxZswZFRUXw9PSEr6/vKwrjtUZCAmVzhw0jovym/moNcnMpUPPdd+R4L11Ka+HrrytsjChSX+dHH5ETumYNEe6XsHfvXik2Npb5+vqiTZs2CA8PR0REhNilSxeuchBUEARERUWhpKQELVq0KP/MSqUSyp49EdKrl3ilsJADAIVCAaVSCZlMBj09PWH27NlVA1aLFxNhPXSIznPkSPoMdnZElm/coFab1q2x9/RpKTY2lgFECidPnkzHePiQ7NLLZHjlSnpWtm+vQhSePXuG3bt3w9TUFFanTsFo+nSI2toaETxp6NCh1KtdWEg2W60mgrBsWdXjiyKVpBoaUiAyK4uCkjExkHx98WdRkVhcXMw+/fRTdv36denChQvsk08+qT6gVFRELR7V3JdyPHlC1+f48RqDtEuXLoWHhwd8fX2JTKtUNGd37Fh6ThISiEBxHJUAz5xJBEKjYv3iBTK3bQO/ZAnue3khqFUrmCcnwywzE0+9vcXP583jEpcvh6CvD+XJk2JjW1tOXqcONhkZSW7u7sxHQ+569KCg3oUL9LkYA2JiUNq8OVbOmgWFqank7eUFz3HjmCwkpNp2lk2bNokAOBMTE7g1agQnX186VoMGlPHnOCrLX7IE6ps3cVgQJO9Fi5h15aBCRAQJXG3bRvaxEjkWRREPPTykRnI50yuby45nz+g9Ro0CAOTl5eHIH38IDY4e5W96eaHDjRtI+ugj4UWdOkwo01IRRZGJoghJkuAQFsasY2JwduBASJIEURShVqup1UFfX8zNzS3frBQKhShJEqv89wAJLeoWFKBYRwezf/4ZyZ07iw4vXnCYMoX2iy+/JNvcvDkRaycnYMcOPA4PFw/cvMlp+nHfGZcu0bq4c4eCNd7e5M9URkkJrfnqxggWFVFyYfPmqq+dPQt8+y0FeF9DNn/77TchJyeH//rrr//e53gTsrJofnh2NmWwnz4lW6QRf3v4kPq1Bw8mbQRBeLUP/y1QUFCAQ4cOiRkZGeyLL75g76uCMzMzE1u2bEFpaWmVn3/33XeIj4/Hvn37ND/yYoxt/mHBgjEAjgGYBkk6W90x/fz8zOVyub+WllZhcXFxqiiKmxcsWPD0vZzw/zF8yGx/wL8CCoViad++ff/fIdqiSJkmpZIyhDExtMH07Vt7B/rfhvr1qY8pN5ccuFqUEIeEhKBly5bgnJyw+fhxyezSJeabnAw9fX18OXw48o2MwPM89PT0kJSUxAoLC5GWlsauXbvGb9iwAXK5XGrVqhWLiooSzc3NudjYWE1vqHpqWbnvhg0bhOzsbJ7neYwZMwbW1tZYsmQJRJG667p06cKdP38eT548kYqLi5m+vr44Z86cyp4B27Nnj/D06VN+27ZtkMvlfPv27REWFibqAuh+9SrXbts2REdH49GjR+z48eMoKCiAg4MDDh8+LDg6OvKdO3d+t2ual0drRdMfpqkauHCBAjKxsRXCMy9j4UIiZqNH0/9376bMlFL57s4Ax5H4y3/+Q9kojQDN9u20bk1N6T0tLd9plmtQUJAYFxfH1XFzQwMfH2Gwnl4VD+2diPaff1KmZ8oUwN0d9QCMHz8eqIWSq66uLoKCgtClSxe0k8spy1p5rmoNqFu3Lnr16oVTp07h6tWrcHZ2RnBwMARBeHeiDZCt+OsvUn0+fJgcaM383ZqQkUHO7nffEZH6/HMi6wMH0j1SqSjTHRhIDnpcHGVQq0FAQIAUGxvL9PX14eHhAcYYmjdvjubNm79yLXmer5KJ1ECRmQlFVhY6zZjBJRw4IDo5OaF169acJEk4evSokJyc/Oobd+5ckXEtLKQeck3AQyajzNzUqSheuBDJQ4YwALCyspKaN29Oi/D5c8pQ5eVVHDMvj8jlwoVEGsrsrkqlQkREBP766y+4u7uLvV1cuD+fPRNDb9/mAMDAwEAcPnx4xefViJSNHUvkwN+/aqn6li30nEyfTtU/J09Sn+jYsWAGBhhaaR2WlJQwAEhMTKyWbKvT08Fpab1+4TZpQoGImTOJyFTTdiRJEjIyMug/jJE9GDSIMnUKBdmWzz+nTJ6vL5UIk/oxXX8vL9TNzASOHUO7WbOQWrcuTG/dglt+PgZ88QW3oqhIEouK0PnAAWaSnc35u7piZGYm2h07xk4XFCA+Ph5ZWVlCBz8/vpWXF7VQ3bkD0dMTYXl5OPmf/2Dw4MFo5uvLsG4dBRA05/sSOnTowJKSksSkpCTu6r17otP+/RwaNyYbVK8eEaM7dwBbW7AHD6BITX01Y3jzJvUo29tXDRT//DM4XV08mD0bR+Pi4Pznn4KLiwtvEB0NXiZDaWIiOI5DQkICUjMzucZz58K7uBit/vgDFgYGfLGjIzhjY8gUCshkMvA8D57noXBxgUwmw5iy7CLP8yguLsbz58+hra3NyeVynD9/XrCwsOC9vLw4bW1tKBQKyOXy8ukQmvJfjuOAjz9Gk6QkDkeOlGfz0aIFZbOdnChbW7a+HS0sONy8+apg4dsgNZUyv/PnEwkNCqq++uTJEzqH6lrLdHVpzc2dW6EKDtBacHOjIMzBg9VOyIiLi0NycjI/uxbtZ38blbUpjIwoUHbrVsXrU6ZQEKpxY2or6NiRKs/27qUWnOPHga++okSEgwPZVxeXGhMp+vr6GDt2LLdhwwbpjz/+kEaMGPH2EyeqQWRkpFRaWlp5Uy4GoLNkyRK0LROX43n+mSAIoZIkjfFbuFB/np9fqEySVgGolmwzxmaLojjIw8ODJSYmivHx8XOWLFmSK4qirkwmu6dUKr8EELJgwQJ1dX//ARX4kNn+gP/f4efn10ShUNz/+uuvdfg39QP/r2DePOoDMjOj0jdzc8o8mpvXegTRvxKSRI7alCkVm34l5OfnY8OGDbC1tUVBQYGUlpbG7O3twXEcnjx5gu+++47ETgSBMrhBQdQP/hK2bt0qJScns8aNG4tZWVkQRZEzMzMT9PT0+Pv378PJyUkaNmwYO3fuHEJCQjB58mT4+/vD2dkZkZGRAKifV61WQ0tLCzzPS87OzszGxgb29vbVkjpRFHH27Fnk5+ejf//+1FOoVhMBSkwEOK5KRpMxBhcXFykiIoKNHDlSI0RUe8THA926EdEeObKCvBYXU8bq8uXXlyFevEgZmsotFyNHEiHYsePtzqU2CAsjMtqmDa3tfv0qSghrSbyTk5OxdetWdOrUCT4+PuTAfPvtq8JutYEkUUZRFMmBe8vSc1EU8eOPP0KhUGDixImoe/w4Zcj/+qvWf79582akp6eX/2zy5MmvKji/Kw4dIjL1/fdEJGvKAh0+TJnhkyfp/AsLiVQLAtmali0pk71zJ92n19yr1atXi82bN+depwj/Rly6RGXp1TzXP/30E8aPHw/L6gJIcXFEWCdOJCf9JSQ9f46Dq1fD/f595HTsKPSfN48vd1JVKtK+0FRfFBdT8OnhQ8rgV9pXfv/9d8TExMDW1lYcM2YMx/z8gOPHsWH8eKmoqAhDhw5lNY5269OHnttVq2jNKZX0jP7+O2XQW7So6Al9Cenp6di2bRvUajW+/PLLVyYj3L9/H4nffw+vW7dwZdMmcciQIVxSUhIiIiLQrl07aGtr4+LFi2jYsCER9cOHqZT1558pw1sJS5YskXieZzNmzCgfg1YFgkB9vL/+Sv2nT5+S0FrbtkQSQkKIOFy6BEyYgFOtW4t3U1K44cOHo2nTphAEAXl5efhl0yYYGBgI6vR0vpDn4RwVBdcHD3BoxAgY5Odj8i+/YM0PP0jDMjOZfWoqLk+ejKCgIBgZGWH06NEwuXeP7MnUqRXr19iYRnPl5NAaOnYMyMtDcGamVDclBXaDBzOsXk2EECAS3bYtwPMIDg7GzQsXpBkXLzK2Y0dFoHL+fArg9OtHc8rLArFYsgQwMsL+uv8fe98dFtXZvH0/5yxLRzqCIKAiIKJSBLFgQY29ayyxG2uiiRqNiZFgNDFRoyaxxZLYiBolQY3R2BFsWBCliEiTDgLSy+55vj+GZUEBNW/yS973c65rLwV2z57zlHlm7rlnxpTHxcUxBwcHnpWVJfU6fJgJCgU7/eabnHOOqqoqwcDAQHrnnXfqekX9+tHa+u23uuPr5UUAZSPVvbdv365s166dqHKEUFlJDLht28iBFkUCPFWMlcxMirD26EF2RVZWvXuZc46VK1fik08++XPO9k8/UdpEeDjtncBAcqrrk/x8OscbsmlU6S3R0c8766dPU6T8wIHnUqS+/vprZZs2bYR+/fr93xQSy8+n8XRzo4i2tzc51h070jymp9OYcE4sFxsbGp+UFKpjM3gwgVeMUTHKlBQCzkWRAIWRI2vWGq5fB0aORE5ODrZs3Qo9PT0sWLDgPwNpq6Wqqgrr1q3jlZWVDIArgGJBED6QJKleBFmoqsLy1asvM+AyOK8pCBMQEMAAzAPwbb9+/aq8vb01ACAnJwcFBQUwMjLCw4cP+dmzZyFJEmOMreCcB/n7+0f9xw/xPyqvne3X8o9LQEDAQjc3t8+HDBny57k5/yY5d44O+dBQKihy8yYdmn370mHq6UkHj7s7GRr/bZHuq1cpmvD2288dskeOHEFUFOlbfX19vPHGGzh16hSKi4vVDpZKCguJejlsGBknH31U86fS0lLs3btXys/PFwYOHCipImuZmZnYvn07AKBr165IT0+HmZmZ1K9fP+Ho0aOK+Ph4mZ6eHsaMGQNTU9N6+0e/smzfTlHnWkarUqlEZWUltLW1cfLkSWV4eLhYHU3hvr6+rEuXLg1fLy6OjMsdO2gMajvUa9eSs9GYAaOSKVPIGKptaN+5Q8yDnj3/zJO+nHBO85+cTIZwXh5FLzQ0AA+PBp25goIC/Pjjj9zKyoqPGTOGrEBV0SctrVeLlHNORuCZM+RoNlD5tSFRKBRYvXo1AKgBoD8hnHNs3boVeXl5mDBhwqvlar+MZGVR5CQ0lCjhqhxElVRV0bilpxNo06sXGXlpaWToX7lChrmx8UulrAQEBKB169YY92cKKQE0LxMmUNS1QwdyRnNzyehu0gQ/f/MNfH18YKGqnt28OT3blSt0z7m59Lk7d4DoaJTZ2yM0NJRbWlqy4OBgKJVKjImI4E4AQ3XONgAy2KsjgHj0iIDAHTsoglZrXQUFBUn37t0ThgwZwt3c3Gr+oKisxOdr1mDBggVosG87QIb4okU03h98QAXG2rUjh3ftWnLAG9i3v//+O79x4wYzNTXlMpmMWVlZQVNTU4qMjBQsLS0RHx8PHx8fREREoKysDIIg1LBzahcRlMvlfOzYsczezo6c/vJyKkJZ7cyo1raOjg4vLS1lxsbGfPbs2azBNV5SQo6esTH93LUrRe91dOoAWF9//TWcnZ3RvXt37Ny5U8rPzxcA4JMJE4C2bbH3q6+QXlQEu/v30e3aNRgdPQpFUBAO2dhAfPoUg62tsT8tTVJyLixYsACatdk3Rkakt7p3p/WTkUGATe/e5OiZmmL35cuSt6en4OLrSwBBXBxVrl+3jiLWEycife5c7NyxA2N++YVfGTAAfrNmMVtbW3KYrl2jOXNwIGeqUyfKRwate1EUsXz5crqf4mICWqtp7WvWrOG9evViXrULgwE0bk+fEk3d35/A46dPCUS9dq3+iO/t20BVFQ5dvMh7nT7NzD79lFJ2Nm+mFJB+/cg5GzKEgIQBA9Q6dv9+2lP9+1OKxe7dz32Hytn+UzTyixfpmUxMiDVgbU3z8gyYUyNvvEF2zaJFDV8zKoqAAj+/5/+WmEjPun9/DUB1584dHDt2DKNGjXo+F/6vFlVHGBsbWv8WFjQ/jo6km0SR5tTamnLjHz4kvbpgAa2fxgD22FgC/ZycSB8uWkQsgI8+Ih3l4ID7+vo43asX5l+6BI0DB4jdERFBoGNmJunuVwhA/fDDD6guvva2v7//zoCAAF8Al555Wz8AFwAoAHT56LPP8kWlMvzwuHE/Jrq69pIkSQOAppGRUZNhw4bp1guMVsvevXt5YmIis7e3r0xMTJTL5fL4ysrKkf7+/pEvfdP/n8h/cYjttfwPiYL/r6A+ly+T4RMURC29WrcmmmFhISnrTp0I5e3enaLDnTqRY960KTlYfftSVPPfnMvt40O0vY8+qqGHSZKE1NTUGkd7xYoVNY6ui4tL/cVAVBVJJ06kw+zBA4qkzJ4NHR0dzJ49W9i8eTMiIiJ4u+qIVe2WJtevX4coitzS0pIDwMiRI/8efXbxIhkVtZxtURShXV0BdsCAAWK/fv2Qn5+P3377jd24cUNKT08XBg8erK64C9ChfuECGTJdu9JhXtswlySKPnp7v7igDeeEmH/7bd3fu7lRZHbXLnUf2b9aGKPvcXOjKFFEBK1XVW7dhx/S3Hp4oKS0FDdv3gTnnIeFhbGWLVuqHW2A1nt6OkXoHzxouOhTbVEoiEYLUKTnFQq13bp1C/fu3YOKyjxhwgS1o21jQ2P3Cvn4OTk5NXTdZq/o8L+UWFgQqKWrS4ba2bNkuKnWzbvvEvi1eDGBeNnZtD+vXKGCPvVUTG9IKisrAQDdq/ti10hVFUV+FAq6/tOn5BSUlFCk5vx5dRTy7l3SDe+/T86AhwftHwCKUaOgn5EBjadPScdZWJDeW76cwKFly8hh6dGDnHMvLyiCgpB24ABTZGfDYuRI5YwZM0QADGVl5Ix88AGBNeHhpF89PChKO2VKvfNYUFCANm3aSG5ubuo1OGgQsGIFOOf47rvvsGzZsoYjglpa5BSp8jcNDAgQuX37haCpo6Mju3PnDnJzcxlAwCGqKebx8fGwsrKC37176Jmfj6g334RCoYCLiwu0tbVr8n4551i9ejULCQkhYGfhQmTPnInsefMQ2bMnNHV1ERcXxy0sLPD222+zCxcuICwsjDUKOiYmknPdrBnpqEmTKGoeF0dRVkNDKBQKFBcXQxRFrF27FmZmZqxLly4ICwtDpo4OrGJj0T4/Hzlnz0rN580TThsaYur48RC//hot5XIpLCxMyFi3Dg7W1kLfw4fJ0a6oIKdiyRIqThUVRetGUxOo7sl+7NgxyGQyaKen8zylUujYrBkxFp4+JR3g4EBgTX4+MHUqrM6dw5LAQCT+8gur2r6dG48dS1Wkr1yheUpIIKdq8+Y6BbpMTEwkb29v9aTPmEHjMGAAAEBfX5/n5eUBz1aQlsvJIbKxoTXMmDptobycgECVjlu+nPbCwoWk+z09WbGVFcyaNaOo6erVtK/PnlVff+xYOhfS0+mZOScQZPRoeoazZ+t2OQHwp02pbduIEXXsGDnYrVsT+NWQow3QPnhRl4+qKqpz0K3b8+wce3va8/v2EQDdvDkqqqvIvzJT7FXl0iXSE4MHE7CTm0ssRA8PskcMDUmf+ftT1PqddwiIMDKitRcXp67OX19BXycn9f9VReKcndXtU2/fRtX161wrPFzSGDRIhKEh3dNvv9G+6NCBgKfx4+l14QKB01lZlOZ14QIFbGqBg56enjwlJYUJgvAhgJ0Akmrfkkwmm//xxx+fDggIEAFYAZB9FRCwy/PqVVmvhw9npsydKzytqEDTpk3h7Oz8QmbEW2+9xb744gsMGjRIrqGhgbi4uBYnTpy4GxAQYOnv75/5qlPyvyyvne3X8m+QC/Hx8f/9OR9379LBe+CAGvH096cDVNWaQ5ULFBFBB+e2bWRklpUR2nn4sLpKtJERFSZxdq4/X+qflDFjCIH/9FNARwebN29W5uXlie3atZOGDh36XEuoRqtujhxJ/+7aRfm3s2fTYW9oCC8vL1y+fFngnIMxhmbNmmHChAmQy+UQBAHZ2dmsQ4cOf2/ugYEBGQyNiCAI1D8ZUBYWForR0dGIjo5Wo/Pl5XSA5ufTYdqjR90LTJ9O4EzUS7KwJIkKu9S3Lh49IgPz73K2a4vK8QaIFpibS1TzX34Bpk+H4tw5PFQokGZtzTw9PTFw4MDnT28rKzJGzMxeXAugrIyi6UlJ1Mf1Fat2nzhxAgBgbGwMBwcHRatWrdRn4Icf1jWQXiD37t3DrVu3OKoN8PT0dNjZ2b3S/byUMEZGV2oqRfHmzaP2P4aGZKBmZ1NO8apVNJZOTvSZZ9kVSiVF7LKzaZxzc0k3Xb8OyGQQLCzQ7eJFGN25Q4Z2SQl9x4YNdK1hw6j2hCpao6tLjouTEzlqrVrRtRYsoFxguZzuoxqEESQJWYIgbUtLE1xv3ZIGHz8u4O5dMhgvX6b9X1VFoMu6dUB+PvRFEd3On0flnTvwHj5chLs7RZC7dSPA8vffCVzYsIEM37feotSCBgqMKZVK4ble7oaGkJmbY8yYMTh8+PCL50NZXbC3vJzud8YM0ofLlpGBXKsNU20pKSmBJEmYPn06rK2tUVZWBoVCAf3aFNoff4QoCHi2ACNjrKZfrre3N65fv45Vq1ZBV1dXWdSsmTgkOBg2eno80tGRDx8+XHB0dARjDK1atUJ4eDj/8ccfuapVXx3dXFpKkXknJ3KwPT0JPJHLCTwoLAS6dIHM3x8ubdoor169KrZv3x6DBw9mWVlZCAsLw6+//irNnTtXcHvrLbi99Zbww8OHklaXLhDu3BGwYAF679kj5Do6KoVOncQh5uZ03WvXgDZtwGNiAA8PsLQ0Ak9SU4G2bVEZHY2jR4/C0NAQfn5+uHnzJisoKAALDEQO5zAzM6P3x+igGykAACAASURBVMQQcJmTQ2fGvXvQWrYMt2/elIb9+qug5+BA83TlCjk5779P+2fevOfmp07kX0urjhNjaGjIbt++zUxNTSGKIlq0aIEmgqAGWp48If21aBFFyzU1iV784AGBMj16ED3byqoGfFIGBiJ2wgTJvmXLhj2a4GDa46mpdatf+/rSXi4rI3ZPnz7PfXTr1q1KQRDg6ekpenh4NPgVkCQCLfv0IcdToaDIbmpq4/o1O5v2wouqhXfoQKDs06c0Rs/K0KEEus2cCaxbh7i4OBgaGtYFqv9KOXSI9Ji+PrFpYmJIdzg7E4CxeTPp2169aC5zcmh8QkLoTDUxIfDgp58InPj+e0ob/OCD5zuGNCb6+kgsLJQEQ0MGahdIwKqqkn9mJunpoiK6vrEx6eTcXHURya++QoUggM2Zg13+/grXoCBZN01NxS0fnw/B2Nw2o0ffjnN2PilJ0nauoVGhUCjCAgICeoAi25DJZAo7OztFj3nzZJo9esB87Vpacy8pgiDAzMxMunLlCgYNGiS4ubkJJ06cAGPsckBAQGt/f///jSDaXyCvne3X8m+Q6LKyMo3y8vK/T8H+3fLkCSm/Tz+lQ1YlkyaRQr50idBrlXTooG7To6LwjR5NDteMGXQIxMWRAa2jQw5NZSUh6AMG0Pv/Cor0nxVLS3IaFy1C3mefIS8vT3z33XdhbGz850Py06fTKzm5BlX38PDAuXPnkJCQgJYtW9YYkCqxtrb+K56mcTE3pwPuJXKCx44dK8bGxuL06dMoLS1F2KVLsJk5EwatWhHlrwFDHBUVrzafN2+S8ZiU9Pzf3nuPDLT09IaLq/0dwhgZUzNnksHw5Al4RAQ8T5yAXWIizKKiyKhv0eL5Zx05koyWTZsaBhyePiUnUxSJIvwK7I/S0lJs3LgRAODj4yP16dNHYIypz7/YWIpAvaT+qaysVLWeYgMHDqxTjftvE2trcqoTEwmQUyhoTObOpbHIzaXaAqrWNomJ5EyFhdG8eHpSNCQtjXRMaSkZjpmZgIMDSnR0kNasGeI8POA6fDgEDQ1ytleterm1KUn0XcuX11ugTxAETP7lFyGxpIQfc3ER7s+YgbbXr1NUs7iY3rRsGTnQFy4AP/2Ehz4+CNTWppZdDx6g09ix5NRv3Uo5kGlpFCXMziZ9tHYtRaaeuzUqFuXh4YFTp04hKiqKQLCKCnLyNTVhU1wMfX19HDp0iI8bN+75B05Pp/x5ExMavy+/VEe22rWjvT1pEuU7R0URcDp0aA3z4vr161ypVDKVztKuTxdMmdLoED9+/Bjh4eFo0qQJSkpK4O3tLWpra6PFwoUwmDiRdevZk9UGjOzs7LBo0SL25Zdfss8++wxGRkaYNm0a1axYtoyimH5+xKhRMTMyMgjsiKxmgq5bBxgaYuTOneKI5GSwxYsBzmFlZYU+ffrwM2fO0EacPRvw9kbZmTOwtLQUigMDoV9cDKxejZZWVuyhnx/alZTQefjxx5BiYvDtmDFKM1tb8dGmTRg1ahScnZ2R8eWX2LN3L7S1tPj06dOZnp4e7OzscGbNGkk7OFj4ddAgvL1wYU2lcAC03pKTgVOnkDJrFlICAwXDQYPAPv6YcmxjYmiuo6IoReHJE1Tp6uJAYCD39vGBJEmoUy9myRJyODkH4uMxxNychVy9KpWsWwfbmzeFFAMDOPXoAQ0VDXnIENK1hYUEHAYGko4+elR9zWd0sYaGBioqKnhSUhJiYmIkhULBBw4cSHUIFApirPTuTXPzrK5zdSVWmYEBOYL379dEjQVBwMiRI1FaWirevXsXt27dUnp4eDQMSH//PQGlU6YQwG9sTGfV8OGNrkX8+isVZlQ5io1Jt250vcuX69cl3t7AtGmovHwZRVFRKDAzQ35+fg1Ir9Ktmv9BFXDcvk179+JFGlsbG9JtK1eS8z19Ojmze/eSLVdaSmBkQAC9PviA1tidO3ROBAaSnfLzz3T9li1JByQkvDT1u2fPnuI333yDixcvosezADxAY2VgoC6CWhskqmZnJUVE4PLo0cguKpIVGBpCIYoyXaWyF4BuvpcuLWyRmGjuGhHxy9pPP80cvWePVbKdHb/v7S3NLSwU5MuXy5gkyVBaSvps2zba9w10HqmsrMTu3bsVlZWVYIxBLpczfX19MTIyEoMGDYIgCNDW1kZZWVkrAJoAyl9qIP4/kNfO9mv5NwjnnP95+tM/LXl5FNXet08d5astzZtTTlJDUTtVO42UFHLorKzIWenalejoCgWhzLGxRHM9fZoqRtvYkIHbty8ZBv/XQIWlJZCRgeK9ewFQSy5jVd7ffyK2tuQo6OtD6NkT3Tp35ocPH2azZs36a67/qiKK5Mi8hMjlcqre3KYNUmbMkB4C/Iy1tdj/88+hU59xPWgQGVT797/aPZmYEDDTkKxZQ2vl5s1Xu+5fJYwBpqbInjQJwRoa6GNjA+f0dDJEhg6l5162jCIBKkNy7FiKcNS3T7KyiELHGBk+r5hmsW3bNqmqqkpo3749r3a0675hwwbKxzt//qWu9+jRI2hqavIPP/zw70G8ysuJoeDiQg5kq1ZksHboQNFjpZL+DlDk5fJlGrfOnckIfvNN0hvFxWQU6uiQIV2rLsKz0gSAVlERfnv4EDfOnOETJ05krwR+RkZSWsOzeesxMeQYHTgAjB6NkOhoViCXo/DKFZ6xaxcTwsNR01LszBkCY6ytIc2fD1liIgBAR0dH6tS5s4DOnel9CxYQOKkqYqhU1rRCys7ORmVlJa5fv84TExN5RUWFoCqUKAgCr6qqYqdPnyZne906cv7i41FZWQmZTFZTMbxGkpLIKJ89m+Zh/nx6Hh8fcsp+/52ebe5cinbFx1OU9ccfgYwMZDKGx0FByO3Vi3l16VLDhKhX2rUjfb5uXb1/Pn78OBdFkdVbpfnIEQJiLSzqsBrkcjlmzZqFyMhIxMTESBs3bhQcsrL46O++Y+nu7tw0KIhp1Y7ITZpEe3HLFgLBqH864OQE9ttvdBYNHAh89hna9e7Nzpw5g3379kkTJ04UEBKCnmfOsBOurmg3bRoyzp9H67VrYfT++7Bdvpz06BdfIOHcORjb2sJ+8GBxwN692LZtGz927BiLi4tTRmRmij3v3kW3hATGli4FAOg9eoTh6elC6vbtKLhyhWPaNIZ9++o+v5cXEBmJrI0bMenQIa4ZGckgCOQcAcDRo+CrV6O4Rw/cdndHVtOmeDM4mO2dPBk9w8KYw44d5JC1b09nbbduxFwQReiPHImBnToJ0NJCzrhxCLp1ixtMm8ZsazNZtmyhtT5/PjmuQUG0TjdurPfcLykpQXJyshgTE8Otra2FxMRE9OnThwIOW7fS5+LjaT08K4zR+isspL2/ezedB9XOqapLQGVlJWJjY+tXlhUVBIwuXkzrubKSfhcXV38E+lmZNq3eQob1iqsr7dP4+AZB66rhw3F+0SLuFxqKq35+/ODBg0Lt4pP6+vp87NixrLEc4nqluJh0Y//+FAwJC6P9OW8ePfdXXxEzpVs30p1lZfS5NWvIFps3j5xumYzW/ejR9L6UFLXt1qIF7b/Hj2kPp6WRnebt3eit6ejowMzMjIeGhjI7O7s/xYxy7NABjjt34tGjRygdMQJBQUEQBMEGnLvuXL16s0Kh8EyYMweDPT2tmhobw6FtW9bH1pZh8mQCFDZupGh2QgI924kTNK+HDtX5nvLycmzdulXS1tYWe/bsyZRKJUpKShARESGhVseF7t27V506dUpDLpefB9D5lR/of1ReO9uv5d8gfQwNDSu1tbX/+wqkcU6R7PbtyWCvT/z8yAnfsqVe+lqNNG9OETuADkELC0JgBw8mJW5urjZ8srMpAnH+PBnQTk6E7hsaUqERLy86MP/O6LcoAt99B9Pz56GZk/Oni0zVK6oDtUsXdJkzR8j86ivpzpYt8Fu+/P8+mb1rV3XxoJeRyEhAWxvNHz8WrD/8EFvPnePrd+9mPj4+6NGjB6H0nNNr8OAX52fXJ1VVRKNtSD74gK79DwrnHBcuXJAsLS2FTlOmqPO/fv6Z0ii++ILqF8ybR+u2Y0eKEA0YQAZZdfEiJCWRw2lvT3mNryhJSUkoKioSmjZtyocNG1b/hqguuveycv/+faWxsfGfT1+oqCCAzsuLvptz2vPW1mTI3bxJEZfMTDKCDAxojIYMIRBl9mwqjlVYSKyZykqifI4fT86jKoodEkL5oyYmREUcOpT0UVISgYNFReQkhoQAbm4YPXo0srKysG3bNpaZmflqxt9PP9Wl4X/6KQECX31F99WiBZQODpCmT0f/+Hj++L33cCE2Fo6XL2OUig20di0Z8V264HqfPvzJwYOsla2tJHTr9vy8WVkR2HjvHn3m9m38unq10vOHH8QzfftC2aULHzBggCCXy2FlZQVJklBeXs7KysrUlcAXLKiJkF66dAkFBQUYPXo0/S05mcbw6VOaFwcHGleA9L0qTaN/fzK0KypIX3frRr+/cAEAEO7vLzWVJKFVq1bK/pMni5g9m+Y6K4vWfG0dffx4w+wXAAYGBqygoKD+P8rltHYGDiRwQHUfAMzNzdG7d2/07tlTKG/eHKykhEW/9x6CjIwY//prtG3bVho0aJBQEznU0CBwKzlZ3bbJyEgdTT5yBNDWhtbbb2NGeDj2Tp8uoKgIKCuDM2PMeepUpAcH435UlNIyMlJ82qEDipKSUGJoyM/GxPD0tDSh1YAB6ObvD5lMBl9fX3b8+HGkpKRg9uzZsBBFApUAWqPTpgHffANFs2bQzM9nyocPITYwTlKzZigwMUGzAweIefD55+Tkz54NBmDzRx9h/Pjx8DY3h6BUYiLnqEpKgpYk0VyMGkVRPmdn+tfKihyP6lximaEhiiIiWFl5raBdSAgB4KtWUf4vQDTk774DUlIQU1qK4uJiMMagoaEBDQ0NlJaWom3btsqRI0eKABVpO7VoEXeIiYHD778z+ezZjZ/fs2YRuDZjBjl2KSn0rLVEoVBAFMXnL6JU0lqprKTorKYmgb4GBqhTeLAx6diRQAFT0xe/VxDo+w4caLCY2sGDB5W59vasl7e3oIyLY9fi4ni/sWNZQkKC0t7eXkxLS8MPP/yA2bNnw8jICKmpqTAyMoKenl7DhVDPniXdc/UqAVArVhBYO2ECgfoKBenRuDhaZ6NHE9sDoLlftYoi8n36UGrU7dsEXKrqjKiKkV66RA52v34UGd+xgyLoM2fSPvzuu3pvT1NTE3PnzmV79uyR9uzZI/j6+qLnM8VNMzIyYGJi0ngqHtQ57kFBQeCcawKAQqF4rKmpqRg1daqMMVY3Yl2tn7BhA72qqgjsfviQnO+iIloTmzYBnTrh9OnT0NLSwttvv81qs0CioqK4k5OTEoAIAN7e3hrXrl2TCgoKfAICAjwB3PH391c2evP/H8hrZ/u1/OOiqan5YefOnV8h2eVfIgoFHUybNpHibUy0tEih+fi8uG8uoO55qlCoI1MuLnRgfPcd0dbbt6fX+++TIZCQQAr/hx8oqtK+vbqi6pAhRBP8D6PfpaWlqKqqQn5+Pvbs2QMLCwve8cABvKGrC6fPP//rPftVqwAAnZKThZKwMI7lyynq938Zxb95k1DtF80b50SJXbWKDrJz5yAAmOfkxFJSUnDw4EFcvXoV3bt3h++qVTQff7ZF16FDZAg35HDr6JAxP2kSHf7/gKSmpiIzM1NYtGhR3UIrzs70GjeOIkGMERUxL4+MtzfeUOfc3r9P0U5vbzWV7iUlJiYGwcHBvKKigmlqamLy5Mn1r09JIqf34kW1odyIpKSkID4+XhxQXTypXlEoyNDv1o2opFFRZOQ5OpLTa29PoEJBgbq/sCBQRNPBge5H1e9761aKJiYlUaeDHTvoun5+RFVWpRLs2kXfU13oDGVlVPAHoLWgVBJN8t136XcZGeq+1KNGEbuiqAgWc+ZA54MPuHL+fKBrV4YlS8hxXrBATQ9/tlYA57RHunShqMiiRUSrdHEhBozKwFYqYcY5N5PLWWRBAbe1s+MDBgxQz0tBQc09mXh7s8TQUD6hokKojxpeE8lfuJBAGMbQYfhwMcfVlY+ZMYPpfP+9wKKiiHpfbYw/1/Jv8+aa6JyFhQWPi4uDflUVQ2KimnXybGTy++/pOWv3t/bwoAj3jBk0B7WK9hn37Suc1tDA8unTRfTuTbo6PJzo9j/9RPrdxYWioRcu1B/JrBYjIyOeSyyb+teynh7poEWLiDVSO/e7tBT45BNolZQAa9ei7dtvo40koVo3sTVr1qBt27a8oKCAN23aVBp45IgMxcXqqGltqb5u5JIliNi5E5O9vAhQ/uwzGtMzZ1C8bBnu370ruu/dC9nIkdzs0CE0efddNuPrr1mVnR0qIiKgv2oV0LMnmhkbY1RgIHfcv1/EoUMELg8cSOOor09Ok6MjmksSDKyslF+NHSuOjItD6+oiZ2lpaQgKClJqamqiqrJSNB4/XnI5dUrE6dM0Jm++SSyEsjLoOTpKubm5QvPmzQEAckDdouvMGQJXV64k0FShICfLyorO2bAwxH37LQYePw7rQYPoMw8eEKNj/vy6+cvVlOX7Q4bwvKdPWdS4cRLnHEqlEkqlklVUVLDaFfFHjxgB2e+/s6KbN1FeUQG5qoBoQyKTEUVeVRAzN5ecvlpngkKh4M8520+e0H7//HN1Ff/MzFfK1QXntL8dHV/+M4aGqAwOxn0LC7QZNaomZbCwsBAKhQJpaWmiu7s75H37wuXwYbgcPcrQpAm8x41TeXbsxx9/VGzZskUmCEINS8XOzk45adKkusDnhg2Up//991Q358MPaS3t3Uushfx8AslWrKCzaMIE0snVgAoAAti0tAh4MjUFTp2iMys3lyLZiYmkj0+eJHbBvHk0nubmFFhJS6P9bGVFnysuJoCznoKeEydOFI4ePYqQkBB4eHjAwMAACoUCGzZs4KWlpUwul/OWLVsyHx8f2NjYPPf5pKQkXL58uaaArCAI4atXr/6aMRZcVVVVef78edHPz69x+0yVEjNnDj3TypV0NmlrI2X8eHiEhaHDpUuCqFTW0OQfPnyIJ0+eiBMmTKhzKUdHR+E6gWXhoijGBwQEzAdwBoAGAKW/v39lo/fyPyivne3X8o9KQECAq6ampne7BnJE/tXyySeUn3fixItprTo6hNTn5LzQWZQkCTWFbGQydbXPW7fIWL53j4zt3FxS8q1a0cGncmJ696bDMDtbXSxrxQqKfLVsSUa4tzc5/k2avFL0e/369TXtaLS0tNC6dWtW/N57UqeSEoFlZREy+jdI8pIlCA8PR+ugIDJoqTLs/40YGlIEtjHZtIkcn2PHCAl/pn1Q8+bNsWTJEsTcuYPff/mF+65Zw/6jsZo2ra5hUJ/Y2Kgpcf+AWFtbw8LCgq9fv57NmzcPpvVFQFTVsi9coPV8/jwd+lpaRD20siIn+803CUwyMaHoywvWrCRJOHz4MHR1ddmkSZNgZGTUcD2IsjJycBtxtFWt3mQyGQ4cOADvjh3RPjubHJirVynSt3Ur7as+fSiiMXQoRQlKStQ5yRs2EGjTtClFDgByulQyfvzzX/7bb/SeoUMJnCgooAiyrS1FI1q1oj1hYUEOtarwWVkZvZKSCGy7epUYGirHd8kS9Xeo6JolJYjbtAlViYlMr2NH0hecE3g3ezbl9G3aRMZ59+7kkL73nrqv9LJlxKhp0eL5Am3btqFw3Tp+f8YMuHz6KWbY2z8/iXv21MytiYkJku3sGOzsyHA2Na3LMJEkMpj79SNj2dQUOhs3gr33HpM7O4NNnUqRqMuX1Tnez1LcVQUpHRzQsW1bFn/oECp79SIH/s6d+nubb9hAxfmelf79gXv3UBUaiuSrV3HDxQWPHz8GYwxKpRLl5eXQUjljrVurC0MeP07AR3AwpQ/170/j7uNDjqaxMTl9dnYoyspiFeXljedb2dkROLJ6Nc1H+/YE1tjZEXvq/n1yJED5vXZ2dli8eDHbsWMHoqKimJaWFktNTRUiIiLgYGQkjf7qK4F5eNB1npE27u4I7dABO27dwuBNmyR3Dw8BEycCZ8+iNYBlXbui1NQUzTdsEEuDgqCTlgYGQJ6VBbmPDzl+UVHQatkSto8esZoUkcxMWsNPn9IarnbqBEHAlA0bxMSZMxH4889wdXXlLVu2ZMePH+cdOnQQtLW1Yfvuu9zSwkKs6du9fz/tjeoe4k0KC1WARfUyktRg4KefomrIEKS1bg3rOXMg69AB2LwZkiSh6NNPIUkSKu7dg31BAcoUChQtWwajAweQtmABioqLUXH9OiRJUjnUkCQJj9q0wfBr1+A7frzw7LkAFf128WK0CQkBbtxAQFkZPEJC6hbOq0eaNWuGVr6+tH6MjMj5mz+fwIEWLVBZWYmysrK6aQs5OQQOdOxI654xyjH/+GMC5F4gQUFBKC4uhlFhIdzfegvNqiuVFxcXo6SkRJ0OUo8kZWbiQsuWkO7cwamUFD558mQWGBgolZaWCjKZDJxzddu9MWNIH4eE0NqvBkOmTJkikyQJmZmZMDc3Z+Xl5Vi/fr1YUVFB+dx795JuNDYm3XT1KjGoXFzoObW0SF8VFlLk+p13SBc7ONBaq52n7u6uBhe//15d3NbUlPaTqSldZ8AA0vMuLmRjlZaSfbZjBznoBQWkc6OiSJdfukTnt6oQLmhd29jYIDo6GmfPnsXjx4+VBQUFop6eHps9ezYKCgrYyZMnsXv3bhgYGEhvvPGGUFlZifz8fOjp6eHcuXPc0tISRUVFDACUSuVH1dedIknSwNDQ0PMWFhY16QXPyc6dNB5jx9aASvz335EydCiOBwVJzRQKoevHH8PM2Jie+4cfgG7dkJuQAENDQ0lXV7eOAdyvXz/4+vpCJpMhKCjI5sGDBycZY1Wccw2ZTJa3evXqDz7++OPdL1xw/0Pyus/2a/nHJCAggGlqal7w9fXt1rlz539xr6t6JCiIDgAzs8ZbYzwrAweSIVWfsQbgyZMn2L59O5RKJdzc3JQDBw4U66VIqdDFAQPI2F65knKMVq6s30AEyGhJSyMD9MgRUppaWvSvoSE5Cba2DX5eoVDgiy++wJIlS6BQKKBQKNSH44EDdMj//PPfQl0vLS3F+vXrsXjxYmgnJ9Ph6OtLSHGLFn/599WRmBhCw+srGBMaSuP6+DFF8FQ0/wakatgwPI6MRNqePehWi+b5yrJsGTkzquhKQ1JQQId8Y32//2KRJAkhISHc2dmZxcbG4uLFiy/fM1WhIHq1ri454ozRXI8eTTRJSSLn0cyM2B/BweQMvv02AUvNmwOSBElHBxtPnYK7s7PUY+hQAebmDa/LsrL6+3yfOkW04fR0PJo0iR8YMYJN+OknKHV0eOtr1xhMTcmRy8oipsHOnfSzrS3dx38qp07Rft63j5ySamcOpaXkZDs7k+G2cCFF4+7cobHYvJlojip2QG4uUSU//5wc5HbtKBJXWFgHFJIkCcHBwTwmJoYNHjyYu7q6NswEEAQyHO3siKFhbU3G8bZtBAo8O5Z5eUBeHq58+63yhr09mzFjhvBclBmgKHPr1sCaNUhNTUVgYKC0ZMkSAQEBBFh8/jlFms6epWf49Vf6rvLympZRG9esUc7esUPU2raNdFpurpqe/sUXBEbWLq4F0Bh/+SX2DRiAMgAzVdTpZyU5mWjejbSoKzp+HOXTpmH7rFlQamjAyspKOWHCBFHnRR0lFApa6127UnRbqaR55pzWOWN4qK0NRXIyd9bVZTWRRQsLck6bNqU1oaFBcxEVRfrJxIQiVaJI51Yj51V4eDhOnjyJtm3b8srKShYXFwfrJk14X1dXZqOtDXTujLy8vBrgKTo6moeGhjIjQ0OIkZEYZ2UF/bAwihBzThXHjY1R/PgxyktLoRwxAvoxMdA9fVq9Tn7/HVnZ2fjxxx/50qVLGRQKYNgw8F278PDRI1TExMBi8GCYV485P3MGJe3b496jRzhPNRY455y907YtDE1NCYyzsaHn3LuXXtHRdPbl5CB+7lzpaMeOTENDgysUCl5RUSFqampKI8zMhD/y8pQ5xcUiAGiVlWH4W2/h4OHDgEwGmUwGxhhXKpVMFEUwpZL3//lnpiNJ/PSsWXzqRx8JEX36SPGdOnHXixfZnREjuCAIEEURfn5+YrMZM4harmqRCBDIkpVF+7CoCGjXDr/++ivy8vKeo0bXttWfPn0KAwMD5fRp00TMmkWsExcXcgi1tMBbtcJnX39d05996NChaK+nR6DUypVq9kR2NunS7Oz621fVkqSkJBw4cABeXl68+ebNqEpKYlHLlvE33niDbd++nVdUVDBLS0upR48eQrNmzaCjo4PHjx8jKChIaWdnh44dO4p7v/kGS48exaXPPpNi8vN5Xl6e+NZbb0FLSwuRkZHSjRs3BE9PT/Tp04cAkEOHKGq/e3cNQFRbQkJCcOPGDSweNIh0rpcX7XFbW/V5HRREQNHMmfS74mJysvv1I515/TpFpeVy0l8qmTqV9ISfnzpta8cONYtx1Sq6r4QE+vn2bTqHvviCbKqFC0nnjBqlZgIFBJAuXrqU9rpCUQOw5ufn48iRIzwnJ4d5enrC1NQUtra2qi4n4JyjsrISJ0+elKKiogSlUgkDAwMuiiIvKSkRJk6cCGtra+zatUuRmppaE0gVRTFVqVR+A+CrQYMGwd3dve7aio2lcfjkExQfPYp7paXITU9H74kTcXzCBN7B15c5LF0KduMGzUFKCoGA69eD79iB1e+8gw8cHKA5dGiDKTCcc5SWlqKgoABlZWU4dOhQpSAI+wBIgiB0USgUxQqFop+/v39+o4vwv1heO9uv5R+TgICAN42MjHbNmzdPV3zJ6o3/Cjl7lg7M48frPQAAMlxTUlKgVCrRtGlT6KpaaFQf+HB2rrdi78WLF/mDIwWPOAAAIABJREFUBw/4mDFjhB07dkg+Pj7o1q3bi4GIBw8IDQ4Pp8PU0ZH6VzcmnNP9ZGaqaclOThQx1denQ8bJCTAywtOnT2uqOfv7+z9/LYWComtr1vxt0e1Vq1Zh7ty5VCStooIOth071P0mX6ZH85+RS5eIvbB2rfp3qqIrbm4UIZw5s/FrFBTQHDk748y5c4hKTla+9957dRZ9ZWUlqqqq1GulMRk+nOZ73LjG33fxIjmqWVkNsi+Sk5ORl5eH5s2b1xzs9UlmZibS0tJgY2NTY/jWJ0+ePMF3tXLUtLW1yWFqTCoqyLnYtImiCLdvk7FjakqA0smTFD01NSWAQakkQz0hgZ7NwoJAEX194Pp1lObl4fjTp+ieksKblpQw+PnROndxIaaHnZ26R/iGDbR+s7LI6IqKovdYW1PKRps2iB0zhj9cuZK1Ki2FY8eOEP7OHrCPHhHgkJxMhvC5c+RAqww2B4eaKsnw9CSnWZIIgDExIRpgTg453M/OU2wsPatMRgaoqvewpSViCgpw+PBhTJ06Fc1fBSzYs4dYN8uWEYPGwoJYPyr99sUXZMQmJ6OiogLBwcFSQkICe++9954vwHb+PDmKXl7IyMjA999/j2XLlkEuihSpdXEhhzw4mPp5q3JUExOJMh8Sgv3790M/OloaWlgoYMkSNfAhSbS+FAq6zrZtZGT6+ABz5kCpr48NFy9CQ0NDuWDBgvoPpAEDyEifP7/RIXmcnIzYWbOgWVaGC716wcDAQNmuXTvhhVTOY8doPJcuJcfhGdm4cSN3adWK9fH0pLkrK6O9EB1NIFTz5gQuxMfTnJSXU9RNLqd1smAB3X+XLrQWPD3rGMgpKSn44YcfsGDBAhgaGiIjIwNHjhxBswsX0C80FGmXLuHQ0aNgjFHbMh0dqU9pqeB44QLuVVXxMpmMdQkJAbtzh6KS6en0TKtXI27fPsnu+HEheOhQDD94ELLKShr/lBQURUZii4EBX7pwIYNcjrIBA3CoY0eeraeHVrGxgJERH7F+vYCjRxH8+++IsLGBhoYG9PX1le+++664Y8cO/ub69cxg8mRahypZtIgAFzc3cpj++AOKdesQ+cMPuP/gAS8sLGRTp07FoY8+wujdu7F1zhzYuLlxV1dXdvToUXQNCUGrx4+he+XKc8ycmE2bkH/5Mu988CCDTEbrS6kk523hQlqf48cT22XBApqPw4eJ0qwCPN58k5gv1S0JX1YuXLiAxMRE5bRp00Rs3Ur6QJV2MmUKIEnY27u3MjExURQEAaYZGejRqxecS0rUqSW5uaTjHj1SV6J/RlJTUxEcHKxs166dWFxcjEePHvF33nmHITER+U+eYN+VK7ywsJC5ubkpvby8xDt37vCrV68yADA0NERRURFcXFykmJgYoaqqCqamppj3+DGyPT2xNSoKGhoamDx5MppVf398fDyCg4N5cXExGzFiBFxdXWkcjxwhx/WZ1oz79uzh1nFx6Ll7N0NYGDGhVq0iUNLVlWwSW1t1qyx3d3K0VT2zbWwoqi+X0/lYu6NEcDCtG5X+CAykn1VsLIWC7CdLS3WAIiGB5nP7dooUL19O7/nySzWrRpLoXJ46lebt4kXS94MH1/3+RqSkpATVzna9f9++fTvPyclhfn5++OOPPyAIwiVJks7IZLJZNjY2Zh07dtRydHSEkJ4OTJ0KZadOuMw5v6Kjw7S0tHiTJk24p5kZazd+PGN379L6SEsj4ODoUXWAo7gY3377rXLC+vVi+fvvQ+HgAKu8PMhmzWo06JKbm4uHDx/W/P/27dsAMNbf3/9Qgx/6L5fXzvZr+UckICDASENDI2HixImG9eWg/GslNJSiwDo6jUZUT5w4obx//76goaEhlZWViaamptLw4cMFCwsLMj6++IKokc8opH379inNzMzEfv364fHjx9i7dy/GjBkDh5doO1Ujn3xCir1XL1KOL5mLCoCcyMREMt5+/x1ZWVkosrBA/uPHvMjUlLVZsgRN27Wj6MmzUlRE/URV1dL/Q8nKysLFixeRn58vmZmZCbGxsRg/fjzsn6WCdulC0aoVK2g8X7FS9QvlwQOKfFXnjyM6msZ1zRpiKrwMULRoEa2d69fx8OFDBAYGQiaToVOnTmjZsiUkScLRo0dRWloKAwMDPn78eGZubo7S0lJUVFSgvLwcUVFRMDIygoeHB1hqKh3yL3M4Z2UB5ubgoOhESUkJHB0dwTnH+fPnlTdv3hT19fWVBQUF4ooVK56LqJSXl2PHjh28qKiIGRgYKAsKCkRDQ0Our6/PfX19BdV8pKam4u7du7h79y4sLCwUI0eOlOXl5UFfX5/64tYnqiiprS0ZiZ98QgWZVJTImzfJKAHU+dtnzxIQNHly3bzZWvLHH3/g6tWrMDY2xrvvvkvfU1hIxs3Dh7RW5XJqXbNlC9EOHz8mh1ySiC1SLbGxsfzIkSNs5syZjYIM/7FUVdF9eXuTEb5qFTlTfn50nyqjb/9+0kGDBpERGh5OxlpqKhmIH32kzgffuZM+Wx+r4MkTGr+hQwFRROW+fbgzfDiPGTaMT5o9WxBeZh/l5BAt89tvaQzLyggAO3mSqNvR0XT/KsMe5ND9+OOPWLx4MZ6L9kZEoCw1FRVdu2LTpk0QBAFLly6l4kClpTTn5eWU2147X7SkBBg5Eo+++w77DxyAk5OT9GavXgL69CEnfeDAut9z/TpF9zQ0gCNHwLt3x+effw6FQoHWrVtze3t7lpeXh6KiIgwePBg6OjqIjY1FxscfS8rJk4XeQ4Y0Oixbt26Fxq1bGJeeDnbgAK7evo3Q0FDo6upK7u7ugouLS/2U2wcPyGmyssKz1bazs7OxdetWLFq06Pnc8/rk5ElaR5zTWDFG8z1lCunnRYtojr76ioCdsDBUvvUWDunpof/8+TDNzAR690axQoFjx48j/f59mKemosW4cejq5QXpxAkIn3xC45iaCkkQcKO4GDrdu6Pdrl00J92709oMDkbJ3bsQZ85E+A8/SN2+/VbA9u3EsoiIQMU772Cfl5c0/bvvhMA1axBfVAR3d3cMHDgQyuHDca2wELZ79sBi+XLcjI9Hi6NHYWlpSXt1xAhc19XlmaNG8aHDh6sXrUJB4MqUKfTcW7cSaHX/PhAZics5OXiQmMhnTJzIygsLkXLzJiqsrREREaFMSEgQAaCPoyM6lZdDeLYl2/79eLJlC359803l9IaAGYD2goMDgXsODnS+OjiQvhsxguoniOIrs8HOnz+PlJQU5ZQpU0RUVhLL7tYt5CsUuHHxomQZFSUk6Ogo7xYViWbZ2Rh36hRO+frCZNw49O3bl/atqSnpO0vLer9DoVBgzZo1aN++PY+OjmYVFRUYOnQob+/qytCnDxAUhFINDRQXF6tZB5wjLi4OBw8eBAC0aNFCOXHiRLG4uBiHDx/mOjo60tgRI0Q+aRIeLV8OGweH59p5cc6xcuVKdOnSBb1796ZfBgdTakRoqLr3t78/Kg4dwtrRo+Hn48M9u3dnGkuXEttl0iSqHyCKlELTqROB846OZCuo9v6kSRSU4JzYebVl6lQCtFVstYIC+qwqzUklbdpQSshnn9HPRUX02ZEjaY5v3CAm4xtv0H5UpQeUltIadXMjZsH27VSDwtiY2Bl/gXDOkZKSgpCQkJKEhARdABBF8YgkSf2cbG3lo+zs5PzuXTz64QceMXgw9507V2haO1gyciSdxbdv0xj5+9M4JiYSA0cQcPr0aVy7dg3gHO0iIuB+5w7+WLZMGnX8uKAXEAANVVHJBuTx48fYvbuGUd7M398//S95+H+ZvM7Zfi3/iMjl8k1t27bV/q9ytHNyCF399lt1HnUDEh0dLY4ZMwYtWrQQFQoFTpw4wXbt2kUobt++FMEpLa05OJ48eYLw8HApJSVF7F5d4MTGxgb9+vXDzz//jOHDh8NZhai+SFRKPzubcod0delwcXMjB5HzBh3S23FxiI6Ohp+fHyxGj8a2lSuhW1SEdk2bSn5lZaK4YwcdUubmhAwPGkSHjb4+vbp2pSh5Y1XXX0JOnjyJ8PBwuLi4SI6OjkJSUpLEORfqzfsNC6N/Fy2icVW1evmrRF+frhkfT21Stm6liGevXi/+bEoKgSvr1pFhCMDBwQHLli1DcnIyAgMDERoaCsYYOnXqhB49euDgwYN827Zt9VpfWlpavKSkROo+daqIU6eIcvsiycgAunZF5b172Lt3bw21UBRF6OnpYfLkycjMzBRDQ0M5q+Vpp6WlITc3F2FhYZIgCPzDDz8UBUEQ8/LyEBERwWJjY9nevXvRvHlznpmZyTjnqKqqAgBMnTpVJggCDOspBlMjqtoDSUkEPKmiK3I5OYvTppFj3KsXGadt29Jr1iyi4r3xBrEKHBzqtNxTKBR0+ANkWAK03lX34uVF8/nll5TSsWsXGeSqVi/PGNY5OTlcLpfD3Nz87yvtr+rzOnw4OScaGhR5PnCAxkYlW7dSUa2QEPq5Vy9yJhcvJmBi1iyin3/zDX02K4uMaVX0v7aogIpqKr48IwNeycksLDsbWR98AEtra8rfa0y2bCGHSpVLra1NIEnHjqQLtLTo2WoxgDQ1NcEYw/379+FVHb29e/cuDw8Pl7xOnRK0IiPZTxMmoEmTJnXZHzo6pNu6dSMWQ21nW1cXOHQIofv3cwBszJgxAhgjlsStW2TwqiLFlZW0pwcOJFDS1BSMMfTq1YunpKTw/Px8nD59mlX3i0VcXBz09fUl9+BgQezYUQi5cweR8fF82LBhrEU9gGtKSgqys7Nh5u7OdXfuZJg2Db0Yg9WiRUhLT8eVK1dw+fJlmJiYoFevXmjVqpW60rCmJlVGXr2a5rOWofrHH39wURRZXFwc3Bsr1sg5ATW7dtF6GTeO9tiGDVTYLD+fnLu7d9U5uxkZAOdI09ODJIpI/PlnyfTsWQGurtDr3x/jzc2h2L0bYufOYIcPA+7uEPr0oT21cSOQnAwhIACJrVpJJi4uQjtvb3JKNm4kYCM2FoWPHuFW797IKixkbVu3hiSXQz8gAPL4eFR07w4hO1uoaNIE5dHRcOnXD4OruykIwcGI27VLurx3r6Dn7g7J3V3qYmkpID0dkr4+YuVyfqtpUza6a9e6+zMmhhxr1TqfM4fqDlSDELbvvYe7FhZKzJol0yoqQuvqnthBQUEiADDGcObBA7QeNAimKhYVQHqrqAgPZ82CUK3TG5RBgwgE09OjCPtvv9EeCQ2lNTluHI3RgAG0rl/S6VbVdQGACs6RPXw4kubO5edbtWJNmzYVcvX1+ZA1a8Q35s7FcS0tfuWtt9Bj9my2b98+ZGdnSxOWLhXY0qXA/PkqMFXJGMPw4cNFS0tLCIKApKQkCIKAwYMHs+7duyM5ORlt27ZlNawZfX3oCEIdwIwxBkdHRwwbNgwpKSn83r174q1bt+Dh4YFp06YxVFesZhoaaHX9urow3TPCGKOotkqGDiV9OGYMnRO9ewN9+kBz0CCM0NVF5oIF4KNHo8jODul//AEHJyfExcbiSGAgBpmbS+1sbAShqIh0Z0AAsdS2b6fxnjWrfjZeRQUBtCpRFeu7eZN0m0oOHaJzWAUc6+sTgyE+ngon7t1Le2zNGvrX3Z10pmrcoqLIed2+nRgRZmbEuCosBIyMoGqLKwgCioqKcPv2bXh5eUG7ka4FANUZ2b17N09PT2e9e/fWNjExUYaHh4tKpXIUOEeLzZsLM62sNCK9vLjg4CCMWLGCyZ4F73fupPPw00/ptXKlujvAokXAnDlwcnLCtWvXsPiDD1BYWAhlcTHs7t4VcpKT+a0VK5ibjw9MfvqJ9mI9dmdsbGwVqHAaZDLZ559//rlJVVXVFH9//yeNPuB/mYiffvrpP30Pr+X/MwkICOgkl8vXjB8/Xvu5zf1vlbQ0Mtrmz6+X3ves3L9/X6qqqmIODg4QBAFOTk4sKysLCQkJSlc3NwF+fkTv7dwZtx494gcPHmSSJPFhw4Yx21oVTa2srGBoaIhgqhTKDQ0NmcpYfaHo6hJlkDEyKtu1Iwfc0ZFoVE+f0sFffa0bN27gt99+Q35+PiIiIpCSkoL8ggLMXbIELoMGCUL//mQ8dO1KUbacHIqs3b5NlXjDwuggycig737Vfpi1JCQkBPb29nzEiBGCvb093NzcmK+v73MoeB3p3p2i3Do6ZEiPHfvStKxGpahInTNWVUVjUCvy2aioCvRMm1bnoBFFESYmJnByckK7du0QFRUFKysrNG3aFF5eXszX1xcdOnRA27ZtYW1tDUNDQ2hrayM3N5fp6+tzZxMTAUOHvtzzmZoC6emQ9eyJR8nJyg4dOghDhgxBly5d4OvrKzRp0gRpaWmIiopimpqa3MbGhgHAt99+i+joaDg6OrIJEybURDq1tbVhb28PDw8PpKamIikpiSmVSsyZMweurq7Q0tJCq8bGZ9EiGs9Zsyji4OxMSL4k0cH+3nu0x95+myKyz/aQ19CguZ4wgSiQJ04Qe6O4uCaCd+nSJQwfPhxt2rSpu1cKC8lhy88nA+vBA/qZMTKikpLIkKv+jFKpxMWLF3lZWRk6d+781zvbGRnkBHh5EWgwdaq6p2tSEhmZtWsorF1Lxv7ChfSzTEbj2aIF7UdLS6Iyzp1L1ZS//pqeb+ZMet6GnDTGAH19sHffhaijwx4fOQJ9PT3oenkRHXPkSHIYns31S0+nfVbb8AsPp6jszz8TC0GpJFBDUxNVVVXYs2cPLy8vZx4eHjXU3BMnTvDMzEzxoYEBe+DkBCMrKz506FChSe2CUsnJ5CDOm0eOpJNTXZp8r15oWlHBbhkZoVOnTtRir1kzyod9/33619KS5rdtW2IAPHlC4+XuDhsbG9a2bVvm6enJevTogS5duqBHjx6oqKhQaGtpsQ4//siyevZEh4EDce/ePRYZGQm5XF6nOnBCQgL27NkDAFi8eDFhV87OYE+fwszLCy3atmXdfH1hZGSEhIQEHhMTw65fvy61b9+eyeVyMuiHDqUx/O47WuPVY/7LL78wzjkePXqETp06od7UK6WSgJaVK0kft21LzqaKMdK/P83j11+Tc3f7Np0LFhaAXI4rmpo8uqyM6Xp5McevvwYzMqI9OXgwBH19sCdPCPwZP5725/vv0xieOQO4uyOhSROmGRiICltbbrx0KROqqsiRPHYM+gEB0Pf1xQVRZDdNTXErJgbpyclo06wZNH/6CdZ37+LkqFHKQgsLNm7fPiZzd6czpKoK7QcOZGWamtLA/ftZ559+YmJlJeDkhD/i4qSIbt0w6u232XOsk3PnaH/Uro3BGDk3SiWyFyxAzP373Kd/fwETJtTUL4iOjoZcLucymYxVVlaia+fO0Fy3jiKgGRnAsmX4ubRUeZNzwcTEhLdr104A57TWnz6ldTphAgEb779PZ8CMGaSr/PyIgfXgAdkSixZRmpKXFwGLfn7kgB87RuvyGdq0ShITExEVFSXcuHGDX758mT2pqlK2KSwU+q5ahc6dO6Ndp05M09AQGt98A92RI9lFhYL17dsXLi1b4uxvv7Eod3fecelSBsawZcsWpb6+vqBUKlloaCi7ffu2BICdOnWK9+jRg9vY2DBNTU1YWFiQLlW1C2ykyGvTpk3h6OjIdHR0cOLECVRUVNQ9Ezp2JNCrRYvnAAbGGBITE6U7d+7wjh070h7inBhzHTtS6siUKcSie/oUZj/9BKPcXBbZpg0/P3SoFBEbi+vXr8Nl4ULmkJbG/+jeHa4rVzIxJwdChw70nStW0Pxs2ULR5fq6etjZkRNdGzAePJj0Xu15sbCg88TSkvS3vr6aRWJgQOdVbi7ZAOXllH6oorlratIaNTMj4NTamq4xaBDd45gx2HHwIP/t1ClWWlrKf/31V5aYmIiwsDCUlZXB1ta2Rg9UVFTg0aNHKC8vx82bN6UbN25ISUlJAgAkJCSw9PR0wdrampeWljK9vDxYZWRonuvUqbx7YKD8aocO8H6W/QOQXi8vp4h2URHp061byX5MTIRy2DCERUVh9LFj0L97F/oKBQwWLEBLHx+YlJczs8hI3MvIQPPbt8G6d3++QCUAURRFpVJZbm5uXlVeXu5RWlrqCOCzHj16/E9VLH/tbL+W/3O5du1aYO/evVu9Ul7gPymcUxRNLif68EuIlpYWu3HjhtLHx6fGwzI3N8fZs2cFLy8vyDQ1Sek2aYJLOTmStbW1MG7cOFZfJNDCwgKWlpa4fPmyFBoaKjx8+FBydXWt0+tQkiSUlpZCFEXUS/9s3pwUpaUlPYu9PdC9O0pOnsS3yclSSmCgdC0jQ9DU1MTMmTNx48YNSJLEBw4cCFtb27qnoaYmOXBeXmSE9+5NDpOpKTk+oaFUvTgpiQq2mJnRwdyYo/yMnDp1ijs5OT3/3Y2JTEbPl51NharGjqVIt63tn6eWK5X0jE+eEAWxX7+Xo43fv08Uwc8+e75tTi3R09NDkyZN0LJlS5w5cwaXL19GWloa2rdvD21t7ZqcrGPHjqGkpAQjR45EO3t7QYqJQZaDA6KiopCXl4fHjx/DxMQE9YJXgkBGyq5duEv5WEKbNm3q9O1s1qwZ7t27h/v377PmzZtDQ0MDYWFhaNKkiTR58mRWH7jDGMONGzcURUVFgoGBAbp16wZjY+Oafp91pLycxs7bm9aDpycBFrUP34QEGuP582mMly4lxD8zs06Er0bkcmJV9OlDa/vAAWDlSuRYWuJeUhLcfHwov18lISEU9S0rI2MxLo4MrT596O8+PvT/4cPJoOrRA8nJyQgJCWFz5sxhL4okvJJUVCD/yBFc/uYb5GVk8N+1tJBnY4MW9vZUpb59e4rC1Xa0FQraY998ozZQRZHWeYsWNK729gR8ubmRQbp+PdHje/QgI/677+g6jaTAWFpaIlJHB6cLC/EkJ0dpY2AgyIcMId0XGEjXyc6m3GIzM6I+1pbISNr3b71FNM1Dh8jxa9YMMDXFxYsXmSiKfMCAATU6zNLSksXGxnLzhATW+/x5ZPj6sq5du9bVZf7+VJ9h8WIy1JOS6JoqWqmvL0o8PXEzNhbh4eE8MzOTPX36FMfCwmDWsyeMKisp2mliQiwCQaCczS++oHlvoIBZy5YtBWelkuWNHImTiYl8yJAhzM/PD7q6uvz06dPMwMCAKM0gRk5eXh40NDTg6+tLFzAxobU1Zgxw/DjY6NFo2rQpOnXqxDp37ozo6Gikp6ezNqqK7uPHE8jUrRt9tvr5wsLCwBiDrq4uQkJCcO3aNSkiIgLFxcXM3t6e1vWbb6Lq3Dn8Ons2fo6MxM3ISEm7Vy9mqaLOammRU7l8OTl/y5aR892kCdCkCVq3bs0yMzMVUVFRQkZGBhXJk8vJgdDWptfNm5TvPmMGrYFHj2gdTJgA0/Hj0SwuDiWFhYhPSOBN/x977x0W1Z2Fj7+fO0Nn6L1LF5QOAoIIdrFj75pY10SjSTa7KcZsuppidBONpqgxUaNGwS5SBaSDdATpINI7M8y9vz+OgAWM2d3f9/vdfXKeh2eUGebe+2nnvKe858gRlunnB+Px48GOH4dkwQKYhYYiZPJkaN24wXv+8gtTDg9H18qVyLl5E47vvstNjY1l4ro6chQ8zMjgxGLYbtjAlAMDIepnnN64EadqatiyZcuYgYEBmpqaUFRUhJycHBQVFfFqu3cjwdeXz7h3D9nZ2fKsrCw+PT1dSO3oEFIsLOCydi0mnj3LsUmT6Hzctw/w9kbcL7/A19KSGTo7w8HODjajR9NejIwkp7uODsrv3GGTZ89mvtXVHLdoETkOw8IIWAUG0nj5+9PZ/8IL9PuQENq//evOwYHA9vTpBNAPHCB94eU1OK5OTjQOXl6kg6KigNGj0d3djfLycnlYWBg3btw4+IaGcjrR0VC0tibw98UXBPRsbKARGYkkCwu+prYWii++yLxTU1E4dSq8vL3ZyZMnhfr6em7jxo3M19eXBQYGUkT/+nVmbGwszJw5k3vq7F+3jvRbf4r3M8TExATFxcW4d++eEPBo5oGGBjkZDQyGdFzb29uzyMhIpqSkBHN1dVpz27bReG3bRmeblxeRZCYmQvntt2H+zjvM08+P83NzYxqdnUxj4kTYrFjBXDmOHbSwELxPnmRidXWyUdato7N13z7aY0MFUD75hJzrj7Lwy+U016Ghg+ngAO1RH5+nGftdXMjuWb2a/nbBAjoLGhooUqynR45IgM5yFxeyYdTUSA+dOQPHTz9lyl1dSFZXZyqqqpBKpVBSUhIqKipYfHw8xo8fj8LCQhw/fly4c+cO7ty5g9raWrS1tYmUlZV5QRCYWCwGx3FoaWlhC7S1MWb/fpyZPx+GdXWcWmMjl+XpiZqaGujq6j7Ngn/qFNlRSUk0bl9+SfrDzQ33MjNRr6gIt3feAVu9mkhrt2yhcZg1C0qtrdC4fBmdurpQ/fLLITM3tLS04OTkJNbW1lZITEzsEwTBc+fOnZXPXFj/hfIn2P5T/o/Krl27vBQVFf8+d+5cheeqCfy/LT09lAb0yiukTJ8zzau9vR35+fnCoyzrqqqqyMjIkCsoKDAzMzOGsDCgoQF91dWsqLOT9/T0HHZAdHR0MGbMGC4gIADx8fH8/fv3hZEjR3LNzc24ePGi/LfffuOSkpKQmpoKDw+PoUFXv/RHnF98EZfkcui3tQlz9u8X2X/xBSbJ5dAAELRkCfz8/JihoeHvPzBj5P21tCSP7Jo1g62UOI6M/6tXKTPg/HkyCrW1ybgdYjxzc3ORk5PDli5dyv6lNaKpSYYtQIrN0ZE81H+kLq6rixRjRgYpl9Onaf5/j1G4X2pqCGDMn/9c15VIJBg7dixUVVWF5ORk5uLiMpAmJpFIoKamhoqKCj43N5eVR0RgxA8/4AdVVeHu3bssPz8fVVVVQmVlJe/i4jL0gMlkwLx5yPf3F9QNDAbqrB+V9vZ2VFaz3VUeAAAgAElEQVRWIjs7Gx0dHaivr8fSpUuZ5tPtagYkMTFR6O7u5tavXz90HWl6OqXQT59ODpDgYEqtexLsZWYS+P3880FnxoULg8Ry/fM5lHAcYGCAag8PZOvooPWbb+BdXy+YSSRMrKVFa/ODD8jIWr6cwGJiIhk5Q5EISiSAgQHkxsZIzc5GT0+PMG7cuH8rql1cXIy2tjYkJiZihKkp5PPm4cG5c7gUGIjq0aOZkkTCKhMS2OjAQCj6+DwWXR+Qzz+nmuV+boJ+efttAqCffUZ7b+NGMtZnzSIDv7qa/n3wIGUUeHhQVOfh3urp6UFNTQ2OHz/OX7t2jd26dQv19fWQy+VQ09JiV3t7WXFpKZ+jpye0Ozqy7MJCue24cVwHx4FbvBiilhYymn/+mcZzz57Bdc8YAdn2duDYMXAiEXxXrEBiUhK7deuWUFJSAi0tLZaUlMS3tLQwe21t3qi8nIs1MEBWVpagp6fHdHV1ydhesYJqHkUiigpdvUrgIzAQja2tuHXtGvD99yizsMC4ceNQWVkpZGVlsa6uLtytqoLXvn0QpaTQGPanoCspkZOnsPCxVjxPyaJFkJiaolhNTSguLmYuLi4wNTVlMTExKCoqwqhRo6CqqorY2Fh0d3djwYIFT7e662dMrq0lcErs1mhpaUFtba2gpqbG7t+/DwNNTVqz5uYUIV2zBhCJEBUVBRMTE2Hz5s3MysoKampqTEVFBUlJSayzqgr2n38OPjERe+bNg8zICKGhoVBRVWVNFy7AeNo03KmsRPZXX/HGe/YwxTVraA+uXEn3FBgI3LmDRl9f3EpI4Hp7e8HzPCsqKkJ2dvYAF0N9bCw6GEO5WIz6WbMgVlKCSmEh5EeOoPb8eZwMCxNifXxY8GefsWwNDZw1MmJFxcXwfO01KE2ZArS0QCc2FkpWVkgTi4Xyzk5Wo68vFJeWIl1LC7PDwhhUVQlI+fmRc+7WLYrKf/UVgasPPqCz2NoaZWVl8tjYWC4uLg7p6emoqanpk8lkHKurY/q5uSzG0pJrbm2FmZmZSENDg9PW1uZMOI4ztLFh5ufOMcXWVrAJEwjwrVoFbN0KhQ8+gEdCAqw//BBmo0eTg6K7m5zUD1OGJdeuMTUnJ6gGB1M02saGQEZQEOkfDw9AWRltbW2oqKjAvXv3EB4ezickJAiJiYmoioqC2gcfsB8AIenePdyWyYT7jAmxUqkwYtEilqinJ4S7uQnJ+flCpaEh4ltb0X7qFJSPHWNHFRR4vzVrWC9jnNv06VC7fZvuv66OnGB6ekTCtm0b+EmTkPr990KVoSF7UFXFVFeuxB1ra0GqoIDKykpWWlrKli9fDu2HhG0PW1Axb29veHt7D61/lZXJcfOoI/MZoqSkhIKCAhb4ZIZBf2BhiFIoBQUFZGdnC26//MJ0du4kp+GWLWQ3SKXkmNi7lwB7RMRjnBQsLAyGSUnUw/3ttyGKiUFDUxMzOXwYKg4OpIvMzckJOXfu45kPj0pREX3uUb4cJSVyOFlaPl1XbW1NZ/TmzXQG94tEQuvW0JAchkFBtL4dHYkp/eZNAqn9NhtjdD6PGgU0NaG7sxOZ2toIiInBrKws+H/7LcYGBbGcnBz09vZCT08Pp06dgqenJ9PQ0GAtLS1Cd3c3N2LECLmnp6dowoQJmDx5Mtrb24Xme/eYJD4exm+9BdMxYzD6yy+507NnQ85xMDU15a9fv84qKirkLi4uHFJS6Iy1siKn9549pE8uXqQzXUkJyidP4rfp0xF4/jyVl6xZM6ibPv4Y8vfeQ5qXF8yPHoXi7xDnHj58WNrb2/vOzp07zzzzg/+l8l+Sw/un/C/Irl27vBQUFK5MmTLlvyd9/I03yOu8evUfAmvd3d0Qi8VPsQ8GBASIrl69iurqavmoUaNEdpmZsNm/nyVs2/Zc38txHNasWSM6cOCAcPjwYf7+/fucqakpW79+PTo6OvDTTz+htbV1+J7CANra2nDmzBleKpUKPT09ohHOzhC1t8OUMfKsGxmBOTgQ4/rnnz8/wBy8SUpZ/ewz8or294mtrSXwFR5OqYjd3aSI9PUJXNjYIOnOHURGRmLGjBmCWCxmPT09SElJ4XV0dODs7PzHkDdjdE2Oo6iqsTH1h3yWyOWkVMLCSAGuXEmeb5mMUsV+j/gtK4uAYXY2EVP9QfH29maXL19GTk7OYGSMfg9PT08uPz8fI4yNofrKK/ibvT2TSqXgeR59fX1s7969ou+//55fuXIl91SKqURCxtjhwwN90p+UiRMnYuLEiYiPj0d0dDQA4MaNG8R4O4y4uLiICgoK5Do6Oo9/5swZMgAbGig9EqD6r+HknXfIYJ0zZ/B3X31F8/Ec/V8BYlWPrKgAgoPx1qpVTHTnDkUhsrLIYbJp02D95ubNFCVxc3v6i0JD0dvbi2ZLS6jb2MB3375/CWi3tbVBLpdDSUkJJ06cgIJUitCICJQqKgqF69ez9OpqgDHMmTMHNjY26FZTQ75IBM89e4b+wgkTKCL55Dk0Zw5FeeVyAmc1NfRcp08TOH3jDUojb2qilNa2NiAgALyJCT7y8EBfXx8AgOM4bsWKFVBRUYGenl5/eiIrKytDUVER16GtjfzGRqGvuVlUamuLWHNzjH37bTj09FDbv7i4x42tR2XuXIra7NkD8b17UJVKoWlpyXR0dOQnTpwQyWQybuXKlRhhbi4S5s9HSF0d0tPTceLECah0duLl/fuR/+23yJRKeSMjIzZt2jSGv/4VLevWIf6VV+R3zMw4654eeEVGsh5nZ1y/fp1t376dSSQS3IuNRVxkpHDOy4t5LlgAW0GgsVmwgO7t1VcJaK9cOXRbLEHAbU9PPra2ltPQ1X2srnHt2rVISUmRf/PNNyJdXV20tbUJU6dOZY5Dpf9qatKZEhpKBvuvvwIAHBwcWHx8PPvtt9/Q09ODNFVVBFdUwHj2bIh9fICqKrQ9XLcODg6MMQYLC4t+xnjmqqUFlblzUWJmJlx44QWo6uiwVatWQV1dHU5OTuibOROffv45+hiD84wZ3ElVVUw9fx4mixZRxFVLi5xdd++iasYMhPT0oOaNNwSRru5ACcbDV2ackwO9ujqh8swZoVcqZXX19Sxi9GgEamkhLTSUnxcTw4xFIog3b8b8xYtZ6OTJaJw7Fz0PHiALkBc4OCDk8GFmOXs2N76ggPvy3j1Y1dUxxhg8PT1pnIKD6bWri+bG2XlwXlxdSYc8lGXLlokOHz6M2tpa+Pn58RMnThRzHIdrH34opBsaMmV1dd7Pz0/w8PAQQRBID6mr03eUlgI3bkB++DDuTpyI63/7mxyHDgntM2eKNcLCYA/Q+SWXU8aIqipd39AQBS4ugnd6OkNuLmXBpKURaFNQIPAokSAnJwdnzpyBRCKR8zwPQ0NDztfXlykoKICNHQujixcxOSSECQ/3mTBxImwANJuZwbq7mznn5jKuuRl3165FbkICvP/+d9QIAsbwPFe9dStK6+qIgPDll8kxcfYs1aOPHAnk5ED+4ouIFIvld2fO5La+8QaDXI7Ow4fBnJzYpatXIU1NxfKlS2HG8wTSlZUHUqCH7YjR2kqZa7/XcvIRcXJywsWLF1FcXPw40eusWQR8TUwe49yAXA4sWYJgjkOyuztvu2MHh5gY2jtKSlSWNXUqOWNXrx4EqbW1VCLw3XcUGf7hB+Cf/0Th0qWC1507TPvgQQLqBw/S55cupTnr72jwpBgZDU0E6+tLxGdJSU+fdcuXD536b2BA+0wup6yDd96hZ7a3J8eor+/jLN/9smwZJEuWoGXTJqh1dIAtXgzFU6dQ/9ZbUJ86Fc1WVvj111/h6emJxsZGvri4mJs9ezZnZ2cHVVXVx3Ry6LhxbNwHH+CcnR3uVFfzjj/8wPF2dnzIjBkYM2YMV1hYyCoqKoTK8nIOzc3k3HzpJcrOMDCgZ3N3p7MeAO7dg2jZMgiCgN6sLCjPm0e8BtevE1eNqSnOrV8vH5+dLVL/ne4dly5dkra1tSkC+PWZH/wvlv8SxPOn/DfJrl27rJSVlb/ged6f53kVxlifXC5XVVBQwJw5cxQH0uX+X5fvvydvqonJ86UOPyL9JFRPiqenJ9TV1ZGdnS06e/asAEFgKvPnC4tHjnzuC2hoaGDDhg0sKSmJzZkzB3p6ehwA/PTTT3J/f3/RkCy3j0hhYSEqKio4NTU1SCQS3t/fnxtQGj//TK/l5QQY+9N5zc1pLJ5XPDwGW07p6JBCNDenn9mz6TNNTQQMTp4EvvoKbWpqECUlYdOoUVBvbGSZFy8K51NSmEgs5sRi8fP1aX5S+j3zX39N7Lj5+VT3Osh+OSiVlRQFDA8nZdpfFwuQ0vm9KLtcTspyxYo/lDL/qDwkSuOjoqI4BweHxxiLOY6jMTh6lCKzX3/9WCr48uXLcfLkSRYbG8sHBwc/fbNdXZi/fbsocahnf0QCAgJgZWWFkydPCnZ2ds9cl3K5HB0dHVxDQwNF8m7eJO/3vn0EsLZtG+zpOpwkJFB68pNOnVGjBiOlBQXDMo/3i5eXF6Kjo4XAwEBBZGzMoaCAUgV37CDgnp1NwFRfn675jIi9oqIirv/lL2huaID+qVNyT1dX0R+t/z969KjQ2NjIlMRiYXxGBivV1katkRGyXV1Zd00NwBhUVFRgm5cHGBjg7KefClUdHVDNz2dPkSG2tw8aeE/KhAkUbTh7lhxkK1ZQut/162RMmphQbeJvv9F+6+0FX12Nb11dIamrwyJ3d2gsWQJlZeUhuSCsrKxgZWXV/1+GS5cALy9UrViBX2JjsUMigbqTExlkf/0r1VMXFDzeKg8gZ8oXXwD792N1YyPO1NXBcuNG0dixY5GamipYWFgw1NWBBQYisK4OAQEBLPnWLURHROCfmzah/e5d2NraIjk5mSUnJ9N3mprixQsXRE5z58Lq3Xchf/ttrHvwAHfv3qW90dODEevXw3jNGvaJkxNUFBVha2ZGa8LEhDgelJQI1P34I63XR0Qul6Ni4kShzNCQ03V2FiorK9kAKASRWJqbm4ssLCyEixcvMgBsqKyRx+T8eXJ8HTwIhIbCzMwMW7duhaamJrKysnDj+HEoHjuGDwCoGBkJC2fOZNEPS1FcXFwe/678fJhv3Youd3d8PWYM4xnDtodAu196m5uh+PXXMNTWFubMmcMuKyoKba+9xpqOHMH1WbP4NWvWcFpaWoCLC+p37AAOHYK7RMKMzp4lUPAo98bRo8CqVcywq4uhuBiorASvo4PTL76IVfPmcSaxsQR6SkoADQ2o+PrCrLcXDfPnQ7+jQ2SRkoLM7duFti++gMmuXZBYWAh9PT3CwjFjODUlJYpYpqWR/rh1i0iqwsMJPHV2EiBcsIAcRlevghMErF+/HvX19Th69CiamprkCxcuFBlmZKCV49Db28sMDQ05HDpEacElJQQsNTWB4mLc270bFVIpyj78EL0uLqKQkBBcuHAB586d4xUUFISRmZnwvXxZJP/yS+iFhhKpWXo6PBIT2fXvvxckqqpMo6gIyhUVcCovB5ecDNy+DWZjA3VlZTjJ5fyCsDARXF3J2fvo/tq3D06MPd0poJ80rKiIzi0NDahduACX5csHUo7TOQ64ckWuaGMjwqxZdK71l9pUVKCtowO59+4JnJcXVq9dy7i//x3Q0IBEKkVXbS18VVTQGhsLM1VVciD39NC61NQkZ4dMRtkexsZ0f2pqpBuvXKExnDqV5kIkIhCpp0fn9xB6j+M4uLi4yC9fvoyn9ElAwGBLrd5eSq3evh291tbQ+uknFvjRRwy7d9O1e3rI2eHsTKUzBw48fqF33yWn49WrdNZ9+CFgZ4fymTOFAktLNqenR1B55RXWUlAAe3t7cF9/TVHb4aSwkHTOk+ny1tYE2ktKnk6B19cnXoRx48hhv3Xr4HuKirTnW1pojvfuJafF5s1UC75oETkAli59LGugra0NtSYmuP7GG8L6xYsZFi0Cp6wMpd5ezMjJESwkEpY1dizS0tK4DRs2wGioCDLPAxkZkPj5YdZbbyEzIQG2dXWC2V/+wvWTV0ZGRgomYjE3MyqK5j87e7CMads2cuS2tAx+54gREF59FTpHjvDX3n2XmzV7NumZ06fJzvvlF9hERoqS29qEaaqqw4aqUlNThczMzAcAXP/XSNEelT/B9p/yH5Vdu3ZZicXibD8/P1UnJyeRiooK+vr6oKysDEVFxecj9vp/QSIi6OCYMeO5I7tNTU24fv26vKOjA62trdxwNZ4ODg5wcHCAVCplFRUVsOY4xoWEUE3pc9ax6+joYPr06Y/9TktLi9XX18vxkPFzOPH29salS5cgEomwYcOGoRGkpSUBOoDSnyQS8lZOnkwG/7NYpvvlhRcomvXDD0PXROno0M9D46KhoACJPI+qlhaYvvsuFHkeUyQSwVRFhZWIRAJKSqie9Xn6UD8p/QZwVBRF1AGKbvQTRn31FYGDrCyK0D25TouLSTEP56EtLSWD4d49ij7+GzJlyhTu/v37/IkTJ9iGDRvYU+2ReH7I1iA2NjaYOnUqCw8PZ0FBQU/X7mto4Na6dXJBReV3HTtmZmbYsWPHMzdrW1sbamtr0dXRwX74+GOMGTlSCNixg7HiYiL9eR4pLiYQmZr6dHu6gwdpHcpk9PM7Ul1dDZlMxsaOGsUwfz4ZShcukJPktdco6nPtGqWhvvUW/e7RmuhHpLa2FqU8DwUDA6z69lsar08+eeb1eZ5Hfn4+7OzsUFhYCCUlJWbS2IhQf39mHBcH/1degYKLC7wbG9HV1YWSkhJeWVkZWLuWw/btWLxxI4uOjsapU6cQHBz8WGYDsrPJGTRUxgrHEdi+coUMt7FjyZlgYUElHC+8QM6usDBg40bIKirw8cqVGJOcjAlNTRBlZDyTV+AxaWmhjJVz5+Arl6Pz5En+874+bsuVK9DuzxJQV6efvj6Ksp06RZF2xsgY37ED7YcPw/rnn6F//jy033wTkyZNorVmZETzA3I8jTl0CJ41Nbj08suCr68vMzAw4EpKSnD8+HHo6OjA2tqaN1q3jhO99x6Qmwtu82aYLF0Kk02baMzq6oBz56Bgbw+8/z5KSkooovbttzRelZVkuAcGUh1ye/tjtZjhFy7IPcrLRVM/+ACa/v6M5/khOTH6meoXLlz4++3h+onbIiOpTOWbbwZY+93c3ODm5oZuf38Y1dYKhqamYDduCEaxsYzNnctraGgMXjwjg1JSX30Vqm+/DZPvvkNdXR1+/PFHNDc3AwC0tbWFsD17mGj1aqFeJmPvv/8+Fi5cyFq//BKiu3dhUV3Njh8/jo0bN6K4uBiZ5eV8V2AgZ2tkRHovOZkcptOm0XpqaSFypx9/JP3497/D0dAQOb/+Kvx04YLw2pUrHDiO6pUdHIgNfsQI6NnZQW/VKqCiAha6uuzukiWoP3oUa7q7WbWCAiuSSGAaFgb9lhawmTPpnLW3p0wJQ0MCfTExxJ+yd+8gw76tLXDsGAz8/bFlxgxuf0QEf+XyZfm0ggKR5a+/on3VKuQlJAiyt95iFj/+CA4YcLL1NTUBpaV4MGMG5ovF6F29Gjq6urC1tUXL/fuckJUF3Z9+QruSEqpUVKCnqUkO2G3bcOfAAciqq5lmbCwuOjsD6uqIrK0VZEZGkIeGsnEmJqiIjoa2rq6AS5fIWbt8OZ1jVlYUqb91ixwLlpa0V3p66JUxctxKpcALL0BWWgoGCPjlF4a6OkAuh6OHB9SPHRMVJScL9uvXM7z2GkW5Fy0CcnLQkZKC+IAAtmPXLhHX3EyO7YdlW0e/+YZ/oKHB6W/e3Dd648ZBDPDpp3Td7m7KKmhtpflubycAJZXSOd3P8u/vT061vDyqLVdSogyJBw/I0aqhgb72drSVlWHkyJGihjt3IL98GSKep7lVUaH5jYykvTd2LH1vURFurl3LO0VEMEsdHYbZsyl67+BAY9Z/BtrYkN62tKSo8P79tLdOnCDwev06EByMad99x4Xs2YNT06fzNefPc3K5nK29dUswWraMDceGDoAyUIY6bxmj8zYhYXii1I0bH2csf1T6Gfxra4mp38eHwGlsLDGl79tH+/phhkdpaSkAoLa2lt0pL8foy5ehJ5ViyVtvgfvhByZdtAj5ly5hW20tNIfLaNy9mxwRX38NLQDj6+s5SKUDXSI6OzpgfuUKN2bLFijPmUMZYY9G9bW1aQ3/85+Ajw94nselS5eQlZWFvr4+zsDJifStigrpo9OnAT09uO3ejbiFC5GVlQW3IbLIysrKcO3atQ6ZTBb8vwy0gT/B9p/yHxYlJaV3vb29VcaNG/fHQsFPiFwuR1FREQwMDKCrqwue55GXlwfGGBwdHQcYGHmeR0pKipCRkSEIggBDQ0MhICBA9G/1w710iQ6h8+fJU/kc0tnZiW+//RampqacnZ0dU1dXh4uLyzP3l6Ki4iBD57ffPn8v7GFk/vz53FdffSVcv36dDw4O5oZL1e/o6ICOjk5/mvvvez/6I7ytrVTvqqlJ0TR7ezp8pdKhI7liMUWM4uOfi8HdwtYWPkuXQldXFxoaGjA0NGR8QwNO/eMf/Jj79xkOHiSDRE2NXufMISWvp/f8Kf7BwfTT2krK/fXXCfB9/DE921BppAAp9ieJQ/qltpbAfH/K/H9AwsLCuL179+Kzzz7DW0+C96Cgp/sGPxSzh8pz//79mDt3LsRiMUQiEW7duiXX0tJi5aNGYerevTQG/2Yvz5ibN1FcWIh5Z85Au6UFR9atY3Z5eTB6zj2Dnh6au/j4x1pDDUhvLynugAAy6J5R81VRUYGTP/0kzKyvF7jt2zns2EHj1L8uGKMxCw4mo0BTk4Dg9u0Eth6JmguCgOTkZLlIJBIJAAp//BE+Xl6UHTF//rBnwoEDB+RNTU0iZWVloae7m03MzhZ8CgqYwo4dwKJFUHh4L7q6utDV1YX54cMcpk+nZwMp44kTJyI9PR1RUVFISUnhQ0NDOUdHR7r/1tbhHX8//EDrs7ubQHVEBDkKX3qJgK6nJ33HP/+J1H/+EwFnzyLP2RmTOzsJ3J44QQZZevqz99LevTQGEgmUjxxB6M2bXOrSpbhZUoKwfmNq0SJ6lcvJ6LS2pqyYpCQCF5WVKHV0RGVQkHycoqII27eTkamhQZGy+noy9hUUgDffhFhdHbNMTQduysbGBgYGBn2enp5iHx8fAp+vvUbPOm0a7Wuep3KODRuAyZMHvI/t7e30jxEjIAQEQFi1Cm02Nmg3MoJSTw9av/sOdR4eaGtrk7e3twvdV6+K83bswNSHJHDDcUjExsYKbm5uwsiRI5+Z/sLzPJqamlBdXQ2DL76AsURC6euvv/5YGySVmBhscHVlmDMHmDQJlteuAY9mIJ06ReUB7703EI13cXFBVVUV2h62K3rYHoip2tnhle3bGbS0sGfPHpw6dQo7d+4E7O3hNmMGOx4UhM8//1xQV1dnXV1d3NatWwn8e3kROFy/nlLe9+2jtGpFRZpbd3dALIZSZiYkpaWwuXePYcECWs8bNhAYnjKFsilkMgIWublAdzdsJ09Go1yOxiNHhAJvb9Y8bpz8QlWVaJy/P4IlEiJuGzuWQMmXX9L6KC6mFOL+EiQ/P9JDISHA4cNQ/vRTTL95k+tdtAhMJoOWnR00li1j+Y2Nwqlr13ipVMrJIyOhrKzMi0QiSKVSTrZyJSYEB/Nqly5xanl5QGAgJIIAyeuv0zX27MGF+HjeysiI5jUiAjAywlglJXLcHjqErk2bEB0XhwkTJjAFBQXIZDLEx8fzruvWcf7+/oN2UGMjRUM7OyljICWFzrj8fMoeSE6m7BAXl8HWbOrqUDAyQouxsYCKCoboaKCsDCrOztC9cgXfHD/ONo4ZA91btyirZN8+ICcHJqdPY0Z9ParWrYPF1q3k3OnoQKOKCtpGjOBsbGywdOnSpw0EkWjQWXb3Ls27uzu9nj1Le3PLFtrTiYk0P/12hiDQ89TXo7u1FScOHxYkjEG1sZH1pqUh0NMTort3ibXd0ZGAWXk5nV0A/TsiAtDXR0dGhvDbrFls88GDUBgzhkD1kynW771H93bmDDnWxGJyKmzbRpwO6uoDpRpKY8dixSefiADg22+/lUulUm5Yx3m/XL1KzzRcRt3evRThH8puW7p0sPPLrVtPl59Nm0b6LziYbKMvv6T7/8c/6PPff0/rfe5cuLi4oKKiAllZWYiJiUFeXh78/f1h/umn4F96Cac//lhY8uOPTMPMjErdzp6lDID+DJy2Nso4689o6+mhNdjf4rKzEzU//ADX7Gyci4jAxq++evxee3pIlxoaAhcuoCUsDD/GxckFQeDmzZvHTp8+DUt9fdJNf/kLrXErK+DiRbAxYxC8YAGLiIgQqqqqhNDQ0AHCvdbWVvzyyy89fX19K3fu3Fn87Mn475c/CdL+lP+Y7Nq1i3EcdyQ0NFTtyWicVCpFQUEBkpOTUVJSAk1NzeHrggBcvHhRHhcXx9LS0pivry8SExOFyMhIlJaWCtHR0ez27dtCbGwsi4uLQ01NjeDu7s6ZmZmxiooKLjs7m/fx8XnuEPqDBw9w7do1eWtrK8fV10N9zRqwGTOGPWQbGhqQmZmJu3fvorW1FTKZDOfPn+dVVFT41atXc5aWlujvVfncYmNDB7dUOjTz8nOIoqIibGxsWHR0NJ+YmMgsLCyYxiOA6tixY/KLFy9y8fHx6O7uxujRowVbW9vnTzVQViZWY8aIvdXNjQDAiBEUUbt/nw7cR1Pu3d3JiMjJGb7t0EPhOA5mZmbQ1dUdSINMvnMHt6urmedf/8qEiRMhDwqC4ujRpCyuXycle+YM/buxkQx0ieT3W2IVFBAhzt27pOD19OjZhpOrV0mRPTk3zc0U8Vm8+LkcCs8rioqKUFVVRVFREfT09B6Plq1bR8/6JAs0qF97Tk4Ourq6kDXDOo8AACAASURBVJGRgZycHCE9PZ0xxlBZWSk0trSIAjIzoeTvP9jX+l8RmQy2gYHoMDHhb3l4sJpZs4RXduxgkj8C4NesIWNo06ah3586lealqAh94eHgnkGS9st778GwpIRN7Ohg7OOPydh4EjTeuEEMygcOkEG7Zg0ZIVeukGGrqIhajkNFRQWioqI4QRDA8zxaOzt5b39/hh070Nnaim5XV1RWViIlJQWnTp1CXFwcoqKi0N3dzTk7OcHyzBk2KyEBjseOMdGWLWSkDAVgDx2i956Irri6usLDwwO3bt1iubm5GO/tTcapre3QNeYAAdk1a8jwCw6mcW1uJsB98CClQioqouTePZxLTMTou3cxSSaDwi+/UJuuvXvJQAwIoIjpQ3btx6SwkBxLrq7E4P3WW8CWLSivqEBRURECAwMfP/P6I5zKynRPAQE0n2ZmqNDXl0NbW2Tv5kYOqo8+IiIiY2MC80FBBKb+8pchHTEJCQm8g4MDN7AvdHVp39fW0t5OTqZo2SN72s7ODunp6UhMTBRu3rzJbhUX47alJbS++QZFaWl8gUTC69y4wXKNjSEHOIm6Ojf9yBGMmDoVCo/2/H1Curq6cPnyZWZkZMTq6uoQFRUlFBUVsTNnzuDBgwd8a2srKy8vx+3bt/kzZ86wlJQUFBYWIjMzEypaWrxpURH1LvbzG1wnt2+TkRsYSOD2yBECd9OnU9nNypUEPJcvH7gPU1NTGBgYwNDQEOXl5XjhhRdgZWUFlZUraQ4Yg0QiQX5+PszNzaFjbQ3O2Rk2vr7obm9HcU0NA4Ds7Gzo6OhAX1+fzvI5c2htbN5M56yVFYGQkycBMzP0XbyIqowMZi6VMiN7e1pzMhk5LpOTaU5mzyZAIZeTk8DaGqoBAVAcO5ZVRkUJTjo6nCgjA17nz0Pdy4vm8scfiZi0qIj2bXs7ZR2FheF+UxNOi0Tyasagn5LCVDo6cMXQUP4gIoILio8Ha2oCNm4EmzABNuPHs7FjxzINDQ0UFhair6+PLVu2jPX9/DNWX7gA6y++YGCMxrevj5zt7u70rOPHI6GvTzAyMmJmZmbglZTQZm+P8+rqyOd53J00Ccr5+Zj56acw3bkThmZmMDQ0hLOzM1NTU0NrayskEgll9FVUkDPr669pDyUno09bG3fWrIG6vj4U33yTHBv9DuHFi4F581BiZITbYrF8zD/+wcHFBS1XryK3uBitAEQ2NvKC/Hy4TJ7MEBpKeyg/H9i/H1cZE5TT0gTjmTNZiasrKu7f5+MbG9kDiQQuLi6ClZXV04dSby+ttdpayM+exd3btwW5mxtTGzWKosXV1ZROrKZGoLapaTCCyxjpXU1NZFZUIKOmhvXo67N2Bwd56Ouvc6aTJxPh3ZIlRLA1dixdSxDIcT9rFkV9ra3hZGXFGe3cifsFBdB/5x02FIkaMjOJcGzfPhqr/lZv779Payw8HL3OzuAOHQI7cmTgz+ovXGB3nZ35UQsWPNtAi4mhdpJDsa5LJHTWWloO7wBVUaG1P23a0GWIYjGNhaUl7Q1LSzrHLCxofAoLiVSyrw/dVlb92VJCVVUVy8jIwPjx49HOGC7ducMmfPIJxGvX0hhGR5Md6exMZYGbNpGe6w8E/PQTOXpefJHsmnnzoPvmm+jbvBlRBQXw9/eHIAj45Zdf+OLiYmbMGHr37kWivT3yDQ2FyLQ0ZuvqKixZsoQTiUTIjI2F68WLgr6PD4NMRs6C0FDi+/n8cxhaWKC5uZmlp6ez/paMMpkM3333XVd3d/f7b7/99rfPnIf/EfkTbP8p/zGJiYmxUlBQeGXSpEliQRBQWVmJqKgohIeH8zExMayyslJQUFDgOzs7haioKK6zs1Ows7MbEuzl5eUJHMdBJpPxCQkJXHl5ORYvXsxCQ0OZq6srrKys+hkzMXHiRGZpaQkzMzM4Ojri5s2bzM/Pb+g+pE9IQ0MDTpw4IfT09HBdmZnyBxcv4oqPD0vv7eWbm5sFLS2tgTTerq4uXL9+XR4REcG1tbXxHR0drKioSJ6VlQUlJSVhzZo1on+LYV1XlyIyT7aP+AMikUjg6+vLdXR0sGvXrsHV1RVKSkq4efMmsrKyOA8PDyxZsgQTJkzAcGP/XKKvT4axnh4ZYiYmlDp2/jzV1J09S5FDxggAv/oqRTv+YO27iYkJ8vLy5Onp6UhOTmZxiYkY6ecH9cDAwUiljw8Z5NHRFPVITyclExtLkQKOG0w97+khBRoQQIBr61YyUEJCKMJ6+TIZBE9KXh4B/EcBbr+H/oUXSFH+J0UQYMwYGn/8EU0qKhh5/Dg9k5UVefSzssh5oaY2YEgDwLlz5+RWVlbcunXrEBgYiHHjxrHAwEB4eHgwX19fbty4cVDauJGAmL7+H2NoB2h+Z84EXn4Z3PjxcNi0iZnZ2SEpOZk1NTXx5ubmTHGY1OzHRC5Hi6IipIsWQWk40rmXXgI8PdFjY4Ov8vJQWFMjiMVipqSkhNraWty5cwccY5DExEDl0CGou7vD/PDh4Wux8/LISOpPz1ZSIjA2bhzQ0oL66Gi0v/oq0ktL0aylBWtbW3h5eaGnp4dF3rwpj7Oxwa3eXmb86quIqq1FTV8fFi9ejKCgIGhpafG2NTXCOF1dZq+iAvWXXqJ9PFRa38KFlL68d+9TQBsYdLSYmJggJycHJfn5cr2+Pk7l9dchGs5BWVtLkaagIFrXFhaD/X1TUqi8wdsb9+/fR25eHopGjIDT4sXQeOcdigqPHk2RkOPHKeKxY8fTDqsDByi7QCKhtb94McBxsLW1RWJiIhoaGgRnZ+ehF5SCAv0tx6F7yxZcKy1lHtnZTP+HHyj9MyKCDL+ODsry0dOj83DChMe/h+eB9nZkRkYK7jzPSerr6dni4sigvHCBzh6ZjEBiYyNFzB8CTUVFRVRWVjK5XA6JRCLf8eabnIm/Pxy++YaN/vprzjA6mrlPncpGz5oFexsbKHl4QCE09Jn7pK+vDwkJCaitrUVNTY3Q0tLCZDKZoKyszBQUFFBaWso/ePBAUFVVFZmammLt2rUICAiAmZkZLly4wExffBE6wcHkyPP2prN0zBg6t/prSj08CLx+8glFqMLDh3QOXrlyRZ6dnc2ZmZnxbm5udNOqqmTwm5jA0NAQRUVFSE5ORmBgINiIEVA6ehR2Fy+yoAMHYGhigqysLOTm5sLQ0JAAN0D3cvAgzcmpU+TI8PIC3n8fXGgo2kaPRkRXF6R1dXwUx/Gqc+ZwetOnE+CoqyMAW15OYPLFF9Fw/Tqgqws1a2toZmczkw8/RJWJCZIdHZErEvEFvb2sRE2NVykqYoKnJ5R8fMDMzIA5c1BZWIgff/5ZsB45EqI7d7gHggDdn3+GTXIy5+DqCtGrr5K++fRT2n+2tuB5Hrdv3xaam5vZ4sWLYW1tjZjMTH7ElClM3ceHoqavvUaZWuPH031v2wb4+SE1NXUAbEdcuQJRUhKYvz/fp67Oy2QyvlUs5tva27nGkSPRlpiI5LIy4ezZsyw7O1tIuX2b+RcWQnToEKpTU1HX3o4HK1eiMycHt9au5c+5uaElL4/Z/POfKGlokKuNH889eX6Wl5ejrq5O0NDQ4PKamoRomYxlubvD5cQJ2N+7x3VmZDCrX38Ft307HnR0oHfHDpyqqpKXSaVc2N69rKmmBscAtJqZCS6GhszJzQ3RKSkoKSkRuru7Gc/z0GpsHKhxxu7dwMSJqPv5Zwi1teyItTWKjIz41pgYZtzUBPH06eQAWraMdPyWLUTw9UiENzY2VlBVVeVfeOEFLiEhgYlEose5DBITSXeHhVHWwrRppL9XrKD2eCdPQjkigh3t7GTpWVnyMWPGPG5YCQLpIU1NKoERBMhDQ3GnthY/3b6Nku5u3LCxge5nnyFFQ0OwmD17gNjQdMkS1mFoKFjOmPFsY83YmJ5vOA6c9nYCsqtWDf0+YwTUT54knT2Us1hRkWyUmzfpc/Pn015TUCDHqokJ5Dk50P/tN/j+9a/oBVhlZSU4jkNWVhbv6+vLkpKS0K2q2mfn5cVh/Hg6y1VUaP0fOkTj2/88AOmEt94i0G1rC0yahK5Ro5BXWCiUlpYyGxsbfPfddzwAxnEcHxMdzXUBqNLWluvX1grzrl7lnPbs4UQiEVQVFBAwcyYq1NRY7auvwkhLC8zLi4IYubnA/Pm4fOUKcnNzsXr1aujo6EAQBJw5c6a7rq7ukkwm2zr+WUGO/yH5E2z/Kf8xiYmJmcUYCyssLBSuX7+O3NxcpqioKJ80aZIoNDQUAQEBbPTo0ZyrqytnZ2eHS5cuMR8fHzDGUFBQgJycHNTV1UFXVxfW1tbcjRs32IoVKzhjY2PMnj2b9bdSUVZWhra29kBLpEdFQUEBmZmZ8qKiIujo6DANDY2n6sRbWlqQkJAgXLhwAYmJiczU1FRYtXIlc9mxg3OcMoWN2rEDIpGIFRcXCzExMay4uJgvLy8XIiIiWG9vr7BixQouKCiIubu7w9fXlxs7dizz9PTk/u1WZg4OBIL27/99UqnfERsbG9y9e1eekZEBJycnVl1djZqaGrS0tPDFxcWCl5fXY4MilUrR0dEBJSWlP15X3596vXo1Kc+KCjJ0X3yRjF/GKJ303Lk/HLVnjMHHx4cbO3YsCwwMRGxsLJqbmweJghgjwGlmRt7g6dPJUHVwIHAcF0cRipgYAgtvvEFZBHv3Drb6ecgeiytXSEHMnEk12I+mlD/02A+ksvX20t+PH0+p7P+K9PXR9RQUCMTu20eRLGdnoKgITC6H8okTMF+2DJoaGnSdoCCK9ri40P/XrydimHXrgCtXUCCTCWUVFSwvLw8jRox4ut4bIEPF25vG7HlJ59auJWN58mQCAC4u9PeMQUtLC7a2toiPj+djY2O5W7duQRAESKVS6OjoPL2eWloAJycc0dAQooqKWHV1NSQSyUDdakdHBz7//HPB4KWXkFJVxcstLbngLVtQMmmSkJGTw+Lj41FcXCwIZWWC5M03WTnHIdnWFmZLlsDkUTKnRyU8nAzv/tS5R0VREc1GRvg6NRWW06fzDjExMC4sZO0PHiD7/n3Ut7cjNDSU8/TyYkHjx0M/NRU+8+fDf8UKaGlrQ6mjA6ZKSsxs61YmHj8ebPPmoZ0v/Szwzc2DDqJniI6ODkxMTOD5zjtclq2tEPOs9oDW1uT4SU4mI1ZPj5xNZWXkUNqyBZg6Ffq2thAEAeUVFWA6OrxtfT1jiYm0P4uKKH03KYn21NSptJ/U1CjKcvw4rdPduyki83BeFRUVkZ+fj7KyMmZnZweNIbIbZDIZCgoKcO3aNf7ytWtMJBbzU955hxNt2EB76b33COAfOUJr+upV2pdpaeRY2r+f9m5+PhAVBYWYGM6spARiZWWaV7mcAHZ/qcHEieTICAmhiKWuLtoOH8bFrCxIjIzARCLe1NRUcHZ25qCvT/tn3jwau4MHaZ3MmUPz+IyoNkCR4MLCQowePRrr169nQUFB8PX1Zb6+vnB1dWVjxozhvL29OWdn54ESKJFIBF1dXdTX1yMyMhIBwcHgensJGBsbk1Nw/nyaF44jx9DKleQMjIp6nL35EcnLyxOkUik2btw4uE5mzaJ9/tDROXLkSKSkpAiNjY28o6MjBz8/oKcHzMgI+ra2MDY2Rk5ODnJzc1FUVITRo0dDdO0ajX92NiCXQwDAjI2BsWPR/uabuGtsDEUlJQR89hmr1NDgijiO92xtZdiyhdaUiwsB9e3bcTo8HOabNqHs3DmkXLkCzZgYJPr6QrO1FYZ9fZh67Bhr2rYNvFgMnDvHTmlqYoSjIxQUFFAbGAjh669h0duLUS+/zBlu2YJuqVRQbW9noldfhcr58wQYp0+ncXzzTaRYWODEuXN8V1cXW7FiBTM3NwcAJMfFCQ5OTkzyMGoqv30b1c3NQl9UFKvOyxNKEhOFiy0tfENzs6isrEy4ffu2UFVVxfz/8Q/YMcaSa2tRX1+PhuZmcYWJCdpyc4VJr73GIgwMmK26OtYbGTHnzz5DSWenUDhmDM4xxu5pa/OK588LbsePs/t2dixk0yYWJJVCKTsb4XPnCprr1nHy06cF1ZUrWf+5WVpairy8PC4nJwddHR3Cyu++YyMPHMDPvb1o6+yEc2EhygMDkdLTg0uXLsG0uVnQ09LiCtXUYN3ailxFRUx0dkbw5s3MZOVKaJmbo8XenhUVFDDl8HBUX7sGh8pKcG1tlJWQkQGUleEXd3chftQotnTZMqiqqrK28+ehoqsL7UmTaF2JxQTqzp8nJ9nDUpWysjLExcWx5cuXcxKJBKampuzy5cuwt7enjLWcHALWTU2ks8eNozNn507KcLGyAvr6INbTg763N1JTU7mYmBiMHDmS/j4hAQgMRPhHHwm/SCTs7vXrfNnRo8JvgYGsqa8PG44fh+Px4/CprIT+li1I1dfno6KjWXV1NbtfV4dIfX1eNSQEdnZ2zzbYTp8mp0BIyNDvGxgQf8WSJTQOw0l/J5PhQGU/KJ87l4IAPD9oJxkbI00mQ2JcHLR37UKNqipqxWIIAEQiEcaOHctMTExw48YNbuTIkVC1sABzdiaH3WefkZ0TGUnRflVVGrvgYOqU0twMvPgimg0M8Pnnn6OiooK5uroiMjJScHV1FRYuXMi5urpyXiIRHBIT4fnxx9yIwEBOHBVFNtKdO8AXX4D5+aFy48a+qKQkrvnmTdzz8IBhZyeUQkJwPDpaXlRUxK1evXpAN6elpQmpqamVUql00s6dO3+fjOV/RP4E23/Kf0xiYmLCeJ4f7+rqismTJ7MpU6bAzc2N09XVfSrKLJFIUFpaKr958yZLSEhgubm5KCsrw71795CUlIS6ujp5a2srFxQUBAsLi+eKUveLm5sbV1JSglu3biE2NpYVFRXJW1tbWX19Pbtx44Y8MjKS6+np4X18fLj58+fDdcQIxr75hg6kqVOhqKgIMzMzeHh4MB8fHzQ2NrKOjg42e/ZshISEcM9Kf/+3pa+P6nb6SY3+DXFxceGys7P569evc5WVlZg2bRpmz57NLl++zEaOHInS0lKcPXuWv3HjBouLi8Pt27fR19fHW1tb/+sRb5GI0pVef50O9/37CXyPG0eRMBUVAgJdXWRky+UENp8T4BcXF+P+/ftwc3PDsBFUBQWK2np6khKzs6PI2dy5VHMoFtP/r1whw0JJiQBFUBApkaQkAtJvvDHIQJ6aStG8yZNJiTk6knHwe4R2/cQ3eXkEJLy8yMCIi6P72LyZQHNrKzkHpk0jpfywzcYZNTW+urdXcFm+nMHJie5HLCaHgbo6ecsXLqQI3vr1sHN35zpzc5lyejpT8PbGkMz0/fXLPj7PXmPNzeS1nzGDgLaLC/0MAT4kEgn8/Pw4ZWXl/r7BfWlpaVxycjJ4npdbWlpyj35vT08PbqqpsalTp0IqlfKRkZHMyMgIEomkv+aRjevuZqW6uogrL2cjSkrg//bbbOy0afAdMwZBTU3MpaqKNZubI1wiQYeyMry9vaE7HGP52rWUNu/t/diveZ6HTCZDREQEGhobsfDll5n2Cy8wkbk5pJGRMKirg9W9e/CaNQvaNjZQUlaGOCwMnIUFWL+T5dVXaVz27qXX4WTyZAJK//jH7wJtgBxNulpaUNm+HWp2dizTwEDw9fUd3kBcuZKMw3HjCHRaWtI+3LyZMjJefhlYvhyWlpZob29HekYGi1VSgs/s2VBYu5ZStl96iQD7rl20j5YsoQjOm28SaPPwGDQEOzpozYrFcC4uRlpNDWR37sA2Jgbc+PGQb9uG+2lpuJmXJ+jOmcMiBUGwuHiRmxkejqDTpzmxickg38HBg9Qv/IcfKBLa2Ulg186Ooi/+/hRFWrAA0kmT8N2DBxi3fz9EgYG0f+RyIi3y9KRnDgujlNSXXwZCQyFvaUHL1auoU1fn137/PfMrK2POW7dy/UQ+0NamPf/117Qv+voI5G/c+LvcBvn5+fKKigrOy8sLpn+wNMPKygoJCQmIi4uD1rRpgpGTE4OzM82hgcEgS3NQEN3TmDHkGBhGHzY0NKCmpgb+/v6DB2p4OK2Fh3pLQUEBjo6OLDw8nLO1tYWGlhbNa0gIIJNBb/p0BAUFIT8/H/fv30dNZCRc339/oN+3cOUKjojFqGxpQX5hIW9y6BD7TV8fSnfvIjokBC3GxggNDWXiAwfA0tORVlUlHKmsZPHx8UhJSeE779xhLSNGIKS7Gzb6+tDNyoJmRARGt7TAIjUVot9+wwh/f9gVFDCRoSGSxWLk5eUJbNcuVmpsjHIbG9ikprLEtDRI2ttRbGvL0leu5HPV1QWDtDSkKivzelu2cJn37vHHpkzBmA8/ZO76+mzCzp3sUZb29s8+E0Z+9x0TvfIKcOgQusePR0ZBAVP4+9/B2doy0zt3mFJYGOf+2WeQ29nBKzSUc3BwEOyUlZk8OBjpAQGYOHUqFxQUhClTpsA7OJiJjIygduUKnCMiUC+RQPejj5DA84JOYiIma2oy7+RkZpeUxEQARuzbB4mlJeDpCW7dOrg3N3PSmTNxtaEBGmpqTOfmTcDdHdnZ2UJtbS1bt24dQiZOZArZ2dCYNw++ISGwyc1FW1cXb3j9OrtuYoIZc+cKo6dOZTq6uqhtb0edhwcvdnfnvXbu5JJ0dfGTra2Q1trK3G7c4I39/IRJV6+yu7q6uGBhgYCwMDAlJXK6LVyI2MpKwdfPD56enszc3Bwqr78Ozffeg8qjDk2Oo31qbQ14eaFx5Egcv3EDVlZWcm9vbw4AtLS00N3dzV+5cgWyPXsg+fRTiMeNY6LRo+nM6u0lm+H77ym1fONGAuPt7dALCoK1oyMyMzPBGINdP1mrsTHqvvuOqXZ1YXpLC3NqamJO77wDf3d3KHp6QsHICApvvAHR+vWw8fDg2traWFNTk3zMyy9zqk5OQuD69b+fhdjQQM83XPmbWEz2RVLSsx3uxsak09eupTP10fZnj4pIRA7CrCw6j/T1AY6DnqEhfisqQoG9PUKuXIG/ggJcN23C1NmzGWMMurq6KCsrk0dHR3MdHR1yOzs7DsnJlD316qvkIJswgaLof/0rOUcSEoAZM9DDGA4dOgSZTAa5XI7a2lrMmTOH+fv7D9RWizMywGVkkP0mEtHzxMcTN4eaGvDNNzCzteX8eR6W33yDdD093uijj9iXqqpoaW/nNmzYMFAGV1ZWht9++61DJpMF7dy58/l6ev6PCBuqPdGf8qf8K7Jr1y4/LS2tq1u3bh2GSepxaWtrQ1FREdVFtrYKioqKLDc3Fw8ePICnpye8hwMLf0AaGhqQnZ2Ne/fu8VKpVDA3NxeFhITgsYjfpk1EInH8+B9Pq/3/Q3p7SfG8+OK/DbgBihRyHDfwzIcOHeprbGwUKygoyD09PUVOTk7Q19fH1atXUVZWJgQFBTFNTc0/bDg+U+rqyOCztiajXU2Nosfh4aSwTE1JucXH0/smJgTIc3KolvFhVkNfWRnOFxSA19DAgsWLCQgYG5MCVlSk+dPUHGTFLC0l5VJZSSC5n8its5MM/dOniT1VIgGqqmi8582j+7G3p4jQjz+SoXvoENW3urlRdO/R7IOGBookjh9P79XWkqKbMoUi0bq6FGH/6it6Rlvb54oq19XV4fDhw9i+fTuGjFI/IZ0dHYhZvBj+TU3QCg8nY+bdd58CmQBo3N944+matORkiiDOmUOg5eTJ3227NZQ0NTXh9OnTqK+vR0BAAFxdXaFz7BgqMzNx0tmZNzU1FZYsWSICgJs3b/alpqaKZTLZQN/nVStWwGrECPCCgL78fCgqKNC4vfACRQt27waMjXHr1i2kpaUJMplM2LFjx9MWVE4OrTsVlaf296FDh/pqa2vFIpEIPj4+8smTJw+gmN7eXogbGyGKiSECMWdnSnN0cqLU7FWrBhlwg4KGH4i2Nlo/lZVkQA0XfR9KCgoAbW2UtrXh1JkzwhtvvDH8ARUeTuMyceIgQDx3jvbBrFm09gRhoB3NJ598ImhoaLCNGzaAvf46ZYOsWkXOoXXriDSwp4cMQJ6n9dvUROPf1kbA1syM9oSzM+JeeYWvSU3lxmZlIfn99+V6+/eLmgwNkWdtDa+UFNwNChIkIhEWjR/PFH19aUz6z7eamkGivM5OGs9btyi19/btx8BlYWEhIiIihAG2/MxMmmMtrcH9+be/AaDSn2vXrsnz8/NFYrGY9/Pz4wLc3cl5JJfTmRAQQE6QpiYC/T4+5Kw4dGjoffOIyGQy7N27F7NmzYKRkRFSUlLQ2NiI8vJywd7eXggLC/vddKempiYcPHgQUqkUW7duhVZ8PKWv/vQTzcmBA7Ruz52jc+bdd+m9IXRVX18fdu/eDRcXFyE0NJQ+YGNDTozAwMc+98EHH8DGxgbL++u+c3PJ0J8+faDbRH1VFY5+8QVUGBM2fPQRE/f0oOurr3AtLQ2TWluR/Pe/o7u7GybGxhg1fjzkGho48+GH8vLKSpF5ZaXQKZczRZkM1TY2EPM8PFNSYF5SgswxY6AYEsLPW7GCQ0sLjf+8eTTmcXE078uXA8eOoe+119B05Aj0//Y3lDo6CuKffoJKQwO7FhYGq8mTIejpgeM4cD09gKoqOI6DcnMz1O7fR+ORI7BwdISxmhplCnh7D3Qg2LN7N78gLIyzNDICHBzQGxKCkowMOKWlDTIxt7cje+ZMQSksjDkIAq2b3bsRe/Agou7fx4SJE6FYWwvt1FSYHj2KjBEj4GxjA0RHC729vYxjDOEzZ2JEaSlqLCwwLjZW6OY4dmX6dDhyHO8dH8817dyJiPx8YeVHH7FrkyahaPRouGdmwj0tDT9v2cJLe3s5L+//j73vjorqXL/e7znD0AWkCQiCNFFAERARe0PsvXejxm40sV1LTIwmllhjbMnVWKNiQ0WBgCIqVVHABigIUqR3mHLO98fDgAWjKff+Es8qUAAAIABJREFU7r2fey0WiTPMnHPe9uz9NE/0Vp03u3fTudK8OZStW+N4u3awHzYMHl99BX7RIhrvHTto7WppAT//jCvnzqHk2DF4VVXBKioKXIcOtHc1bYrAy5eReP06Zu/ZA27/fmiOHImoqChcuXIFEydOhI2NDQoTE/FiwgS4xMa+U+hRbt+OM0lJAt+mDesxbhzTeyWdR1lejqyVK1Fob4+ia9dEs7Q0Znb5MhoVFVEky4wZdG5Pn077pOo7aguBPt25E6GbN2PCwYNIvnoVLby9kdSrlygWFbE2MTH0/mHDyFZYvJiEdHt7qHK9KysrcfvWLUFr7VrO/dQpSH+n2GYdrl2j/ffTT9/9nsRESo+7fv39tprKHlBFBtRCLpcjKChIbNOmDbOwsKgPkafIDoAxPH36FIcPHwanVGICAOv79ynN4ZUioPn5+di7dy/6FhYKdlVVnO6uXbT3l5VRPR1HR9rHp0wB5s+H0KULDk+digo7O2VzW1s+KioKDbYOy8igaDSVyL5uHe1Jn35KIqzqvmtqgMxMFAUFITEwUIzw9oaWlpZQXl7O9+3bV7S1tWU//vhjVU1NzZDVq1dfff8A/G/hI9n+iL8Fa9eu7SSVSo97e3sbde3a9c81GQYQGxuLkJAQkTEGFxcXWFpasps3b6KsrEzo06cPZ2tr+0Gk44MgCFRNc9Agar3wIbmm/w4IAnkw5s0jsvRvQmlpKY4cOaKUyWRiVVWVpFevXm+Fm/8pCAJVds3JIS/Wm4qyKFJBj5oaMnhFkUhDdTVt9OrqdKDUeohv3rsn5FZWcmoyGTpraUFqYADBxATaHEdGm1RKxOjECfobNzfyjEmlVOFTXZ3UaqmUjFfG6GCuqKDXVf2ZNTTI0FfljZ4+TfOFepySJ9PTs77Yy759RGji4+kzR4+m+/qL8/XQoUNCbm4ulixZ8l7Dvbq6Glu3bkXv3r3h7uBAPap9fUlUiIuj3LCqKhIXVq0ib1ZtixH89hs9l23bKGz4xInf/a6kpCQ8ePAA3t7edVXQ34QgCDhw4ICQm5vLSaVSLHrxApcyM2G9ejWFp75huJWVlSE5ORk2NjbQt7cHO3CASP/KlZSLn5dHz1g1fgAuXryofPHiBV9UVPQ2GS0sJLJ45cprXueUlBQ8ePAADx48gEwmQ6tWrZRDhgx5t7dDEEh0URGgigoidVOn0pz29393mGC/fjSnL1/+3efZIJo1A4yNURYWhu3bt2PFihXvLryYmEiVxfPziRgDNH/37cPVYcOUQkYG+qSl8eyTTwBbW2zevFmsqKhgn376KUxNTEgs+vprysmtrqbxX7aMDFmeJ2Px888pUkVVj+GtS0hEQECAaG1tDTc3N3by5En06tULsbGxMDQ0xOjRoxu+/v79ieC5udGa6tyZDMT9+8mgCw6uE7eCgoKQk5OjnDhxIo/Hj2ke1xaTQnQ0iRlNm6KwsBCHDh0StbS0RD8/P87q96JQcnPJuHZxoXHMy6N/37+fxDLVXmRmRjUpRBE4fx4v9+9HoxkzIPA89k+fjnk7duBGp06wl8vR+M4dXF60SDl4zx6es7SkHtVt21JEytGj9cayqSnEEycQOGSIYBMSwjmZmJABP2oUfc+IEVSvgedJoGjfHjhw4J3F8q5duybGxMSIX3zxxTv3CxXZ7tOnj+jl5VU/kA8fEmn57Te617lzIX/4EHuHDBFFUcScOXNY1ZAhOG5igp5Dh8Laz6/+QxMSSJTKyiLPWWoqhM8+Q7m1NTRlMuCHH5C3ZQsatW6NuIwMXLt2DSaMKdrfusWnT5rE+sbGQjp3LolFT5/SmC5fTtEGmzbR2P74I5CdjaLu3XHCzEzU1tYWJ06cSPdpaEgkc9y4uks6Pnu2MCAzk9PZsIHGUUeHxEM1NZydPFnorq7O6U2fDty4gVI3N+wPC8NiVY5rLXbv3i20a9eO88jPpzD+pUsh69YNsqwsVBkYiMXm5jBPSGCVmpq46ucHD3V10XHmTKY0MwNzdUXZgQPQ6t8fpUlJMBo3DtVr10Lh54cb4eHQOnRIeKqryxnm5qLxxIkwdXSEtKYGOs2bQyaTQYiJgcGoUci+exe2LVrQBY0bR1FajRvjhbk5jpw/j6VLl9Iz++wzWqPffkupGfr6wNWruGtkhKZz50K3uBjcggWQLlhAwlZKCjBiBBQ//4xt58+jgjHwPA+lUgkrKyth9OjRnKamJnLPncPNX35BSvv2QseOHbkOtbVLBEHA1q1bhfLyck5HR0cp5ObyC48cgdrevUQYVZg/n/alzz9H9cmTOMFxolVMDJOOGYOOABFAUaTzu1u3ehuhpIRSYaKiEBkbKyaIIitv2VKsrKxkzR8+RJ/gYBg8f07vX7WKukscOkSCzfnzAGNISkrC2bNn4ZGYKLgsWMBZeHu/cxt4DcePk9d6+/bff9+ZM2QjvKtWyKsoK6Mz4+jRuvPr66+/hqBKMQLQtm1b9OvdG1xcHIm6nTsDbm64d++eeO7cOQYAzWtqxPFJSYwNHUpneG1qRGZyMjS7dMHZoUNh0qWLYmBoqATBwRSVFxFB39m/P5SBgVCOHYvz+/eLIzZuZMoOHSD88APUXm33pcIPP9Ce/913FEHn6Un2Q0TEax1axIEDkeDuLmgfOcI93LIFffv3B8dxuHHjBm7evCnW1NQwnuc3rFy5csX7H9T/Hj62/vqIv4x169ZN1dDQ2Dlw4EAtJyenv/RZzs7OSEtLE5KSkviYmBjExMQAAHR0dLgzZ84AANTV1UUA6N27N2v7ngrXv4tz54hAffLJfw7RBujguHiRDp+Cgj/lVfwzUFWJFASBqaur4/r16/D4k5XRX8Nnn9Hhd+dOw6+r+u+qq78dsvlmWG6/fvABuDt37iAgIACqTzQxMcGsWbNI1Z4+nfK+IiMpFLOykoxUmYwO76Ii+i65nAyA7GwiUxoaFL5laEjkW6EgAeDMGaj6m2LXLgoh//nn+rYn9+5RrtmsWeT5EEUyeMaPJ6Jla0thuV26kOftyRMyGsPDSUzx8CDD+pNPiEjev0+H444dwOrV6OvgwB3MzyfS8fnn5IF69oy8rCdO0N/XkiWN3r1hUlUlqqWmMri7U+5pkyZkWIWGEvls2ZLU6cmT6cCMjKQDdNy41wuqvAdnzpyBIAh48uQJ7OzsxB49erCamhqYmppCVYyG4zjMmDGDqywvx50+fZCwejUSo6Mx+B1EQVdXF3Vr+soVIrYFBWRM/PYbeejeiAhITEzka2pq4Ofn9zb709Wl8XtjHl26dEkpCAKvqakpmpqaisOGDXt/nsrw4VR0RleXvLp375Jhd/YseUNv3ybPigqpqfXRE3+2nsMnnwAODqioqIBSqURmZibeSRo5jsbYyYnmIGMQPT1xZ+tWMfnSJb6oSRMYymSCxy+/cNyXX8LBwQF3796lsWKMjDp7e5qbYWGU0nDsGL0WHU0CzLZtNA/fEQHk7OwMZ2dnBgAHDhwQRFHkgoKCAJAHd8uWLVi4cGG9UbdtG4lTv/5K0S4jR1IUS+fOVJho5UqKOBkxgkQwMzNkZWXBxMSEExISwF29CsyciWQrK7E4KgqeX3/N4O+PZ8+e4dixY2jRogXe612urKS5pSo+tmIFee6Dg2neJCfTOjcwoLVubk57wezZCLh3T8HGjpX08PLCp6NHg7O1RZdevYCyMrw4cQISW1v2m7e3qNmokWjL85yZpiYR7iZNiDT7+gLp6WA2NnDr0oUrvHIF6Tk5aJKXB3WVIyQpiZ7B3btEYEJDaU65uLzlZZTJZIiIiGBDhw6tH6DevYm0qkQ1oG59hoaGMq9XC0I6OZGXMTeXiNrYsVCzsMB4PT22e/durFu3DsPNzGBkYACTESOovZFKTDQ2prkhCPQ8U1LArV6NRubmtM/p6MCc54HkZHQeNQp2kZHQHzpUopGaiqDWreHr70/XWtu6DMHBtF/OnUt75ebNwPLlKHJ3x8H9+yEvK2PFxcX113737ltRI8+aNuWUGzaQ0JiTQ9exeTMwejR4hQJiQQGEQYPAWVoix80NNW+2sJTJYJKWhkaMkY2grg507gypVAppeTl0DA2Z8YEDgJsbtOPi0C80FAW7duGXTp2EMdHRnHTtWuj7+QFHjsBo5Upg82ZojBgBAPDr2xfo25dzefgQ+UOHipU//QQbLy8mOXeuXrDt3x9hc+Yoo8+f5xb++itTX7qURBrGgCFD0OjqVchkMrrW5s2JYI4cSVEhU6bQWF66hMcuLsrQpUv5ipISLO/Zk8Sa5s2JJI4eDUmbNhCCg8Xp48czAwMDiKIILS2tunVjmp6OAcOG4Z8VFVxwcDAePXqEwsJCQS6XMw0NDfbJJ58gLy+Pj4+PFw8OGMDGWltDOyCAPMtz5tS3Nl2+HBp9+mBybi6riI7GgceP0WbVKugwRvfk6EhzICiI9jM9PdpvFy5E62bN2NURI/D51KmMO3wYyM6GtEcPOsNUtSYKClDh5IRbOjoiHxbGcnNzlcnJybxts2bos2MHh3/843e3gtfQsSPe2x4MoPk+dSoJru8Dz5PNUVZWZ9c1bdpUeP78ed2zvnPnDkpLS8XBgwcz8do16EyZAsTGwsXFhZ07dw4A8FRdnWXt2gWLS5doPnfvDri7o+n8+UBkJKZ6eOB8drakbN066G7cSF7oVq0AKyvIGMMljhPS160T548fz2P1avBqauB//ZXE1ujo14UDY2Mau1OnqAbP9Om0H23cSO+vRW52tlgZFsas+/aF7cCBdf/eqVMnaGpq4tKlS1Aqld+8/yH9b+Ij2f6Iv4S1a9dqSySSHVOmTNH6S72ta6GhoYHhw4fzL1++RF5eHqytrYWJEydyBQUFiImJEWv7brNDhw4hICAA9+/fx+jRo6GhoYHq6mpoaGhAEIT3t906frw+l/cv9hv+l8DUlMhbbi6RhX8DHj16hIqKCt7Pzw85OTmCo6Mj9/jxY8TGxirbtGnDvbPS8O+hpoaI3cuXf+u1tm3bFs7Ozjh27BjS09PxMieHFNihQ4mYTZxYL1L82Rz7/HwKW376lLw15eXkeduyhYQDHR0y4gSBQpRjYui7q6rqC6mtXk3fr6tLokOzZmS0DRtGr7u70zyUSMhQlErp85RKej09HRJTU6jX1KDit9+gPWsWGVI3bxLZ/u47ysl1dQVmz0bB5ctof/kyszxzhowuV1c6FM3MyFuWk0MGzb59ZNQuXUrfs2wZGURr1pCBceAAefIOHqS83enTUa2jg5RVq8Sw7t3h8OAB2srlzPGrr9Dk8mVcfPhQPHr7Nmuan48ndnZowZjYvFUrVmFigsfh4UpZVhY//NEj7Lt5E919fQUA72efDx4QaVyzhrx4TZoQGXgDM2fOxI4dO3DlyhW0a9cOMTExCAoKQl9dXbjt2EGtwxQKBAUFoaqqChUVFSgpKeFHjBgBJycnhvf1ms/MJAOjQwci1LUhtsjLI0FkxgzyqsybR95rVeG9778nr8ylS++91Qaxfj1996pV4Gs9rfn5+e8k25XNmuHJL7+gJjYWhoGBsPXzQ1p6Oh5KJGx4Sgq01q/H/j17oBkRIcq2bEEqzwsAeKbq4b1+PV2vqm/9pEn07B0cyNCqqKD0isWL6d7eg5qaGhgZGUFDQ0N0dHRkbm5u2LFjh7hp0yY2evhwmADQycyEYuhQCGpqkIoiedXfRNOmJBIBEJ2dwTw98cDIiLXy90fagAGCrHVrduvYMaZdVoYW4eEIvnRJLCoqYjzPi8OGDWt4bAsLyfDt04eMya+/pjXh7k4/WVn0OzOTcsD37qXn8qpoY2qKwthYbsSaNWimqho+f37dyxbt2sFcFLlHPj6IiIjA87AwjF2xgtZT8+bk3VJhyRKYAQgtL0d2QgJ6nD4tOnfowPjVq8F9/z0JN5s20TVnZpKXHKCQ/lcgkUhgZmYm+Pv7c40aNaKIk7Zt3+7zC6oJ0GBk48KFNO47d9J8btYM+gBWrFiByMhIMXLfPuZ58SLyjIxw4csvUaavL/r4+LDOX3wB1rEjeVQ//ZTI8tKl5BVbsYL2wBYtAHNzsMBAWCxdCoSHQ2zcGIr16yFRU6N1dOECCYhPnpBXcds2OkNCQyGKIk7++KMwb+VKLmDdOqWM9lkegwfT976yNqqrq6FQKKCrq0tk5PZtEu7c3IBdu/Bw1ixWFR8PIwcHlA4YICRfucI5VFaKOHiQobCQxNk9e9DG0JBh6FASKYcNozB+TU169rm5tH8/eQJYWsKgpASaY8awjIwMlnfuHCw++YQEN9U4RUbSXnb4MJ3vGhpo3KwZGsXHs73ffCO0PHKEvksup7OA49B10yY+++efBfny5Ux9wgQilzk5wKVLCImOFt1ragQAPAYNogiRjRtpvSYkAHFxqG7SBE1v3uRHJiaC8/Ki+iOBgRQqX1hIUQjLloFXU2NNuncHd/YsnWX//CeJbj16AJGRUPvHPzDZ3BwvzM2RoqmJdu3bc8Z2dtDT14eGhgYsLCzQokULtvH5c2gaG5OAbGNDAlGzZmTHZGfTeoqLg/asWajauBFlZWV1rT7rChwWF1Me96FDwPDhCNq/H7Hp6ZjMGLQ9PWm/2rOH9qY7d6gjCgBMn45KLy/ckskYX1AAFxcX3tPTEz6urrRu/ohTJTKyvijk76FbN1qbcnl9+sG7oKVFzzQmBti3Dxnjx+P58+ecRCLB8uXLsXHjRrGmpoalpKSwzZs3AwDWREUBkyeDs7PDjBkz8PTZM4SEhODIsWMU0ZCYCNmlS+BHjAAvioC5ObiBA1GspSVmVVQwx19+obNr6FCIDg44l5srpimVbNq0aVTUNy2NztlDh+hM09IiYr5sGdkYCgU5Inbtogifw4dpDtaKqACQFBoq3vb2xrhWrZhmbei/CllZWQgKCqoC0H7NmjUVHz4A/1v4SLY/4q+iq5GRkfLvINqvYvbs2ZDJZFBTU+MYYzAyMnrNc7VmzRqkp6fj4MGD2LZtG0RRFGUyGZNIJFAoFOA4DkuXLm24iNaLF3SonzlT33vwPxEbN5JH+NXcxn8hXF1dERkZqQwODubnzJnDaWtr4+jRo4qXL19Kzp07Bzs7O6i/qfz/HlT51jk5H6YQ/0FIpVLY29sj99EjDDM1RfmePZB27w5p7SH1p7F6NRkqZ88S6dTXf32e3LlDXi4np9erkKp6gWpq1vce9fGpf336dPptZFSf/1SbPwuADHqAwqYHD6b/PnQIWUlJKMrPx8m5czGladN6ggyQNweUl39z/34h9vx5znL+fMFx7Fgis2Vl9e+tqaHfISE0p3R0yHPJcSQE2NnRPVhZkdFWUEDGfbt2qDEwwOlTpwQvbW02bMQIpr5vH/SkUkjMzICwMIyeO5cTSkrAbd2Kl8uXQzJqFCv49VfE9+8vjtq7l7/Tpg2SW7bE0k2bgEWLONHeHkxVzGryZDJWHj0i4yY6mp5bXByJJ199Rca3uTkZTG+QTQMDA/Ts2RMhISEAgPj4eEFHR4eLf/gQBsOHIyc6GmFhYaKuri6USmWdN+zkyZMYMGAA3hkdU1JCntUZM8jInjz59XWoImmLF5NndvBgCkX+8kuKYvjhh4Y/90Nx8SIZQnv3IikpSQTAlCoR5g08ePAAp06dwoSjRyEqFMg2N0eegQFMTEyQameHYamp0MzJwbzPPuP8X75U2p45w7eaO5f3GTwY2mvWkPF04AB5JnV1yVvy9CkRpTFjaM7fvUv75qxZ5DXbs6e+BkIDcHd3Z+Hh4cKECRM4VYXy5cuXs6OHDwtcr15cioEBIj/9VMi9e5fD3bsYeeoUjHV1Rf0bN+ra9NSB5yEIAmIcHYVqiYQbePYsXsyciReWllxNZqbYunVr0d3RkT0ZMAC5Dx6IxcXFTCaTsdLS0vrq6DU1JCCpokYOHaKIFG/vt+8jMZHG/cULEqUqK8noHjSo7i1paWmQy+Xc79UVYYzByckJGrm5zLJnTzy3tITVmDENvre4uBju9vZo/t13yCkpYesnTcKoDRvEFnPmMBw+THmhPE97hp4eEYclS2jt1rb14TgOU6ZM4Q4ePCjcvn2bGzFiBBHnBkiAKIqQy99RDHjMGIr6ekPcat++PWvv6AixZ0+U/PwzxujqIjI3F7GxseKTIUOEjt278zZXrkCjupr2z/nzSbTJzyeirdojrayIzOrqonDQIFg1aQK5RALZN99Ae9062nNfviRj394eVb6+SAkPR2xqqlBaUQHcuoUhbm48JJK6KI43vdrBwcEwNDQUOY4ju0Fbm34iIoCsLHzeuzfjBAFPnJ3FmshI5p6eDkNtbQYfHxIorKyAxYsRdvCgUF5ezmnn5YluTZtynipPvq0tEUoPD1QdPYqa8nLczM9HgpqaaNusmWBw7BiPrVtp3bRpQ/MoL49ExKws2psXLwbCw8E9foyBR45wWX5+sOZ5EopXrAB69gRr3hyeT55wJ0eOFIdERzODL74gMXbKFOgHBIhekZG8+PXXYH36kBikq0s9jm/fhrB/P7Ld3cXkbt2YT3AwfefevUQkZ8ygM2DGDNTo6qI6OBhsxgwS+lu3JtFw5EgivgCQnw9pQQEQGSkWWlgwu5gYyDgOqW3bwkRdHfqjRqH8xg20zs4WOX9/hrIyEoP376f95JdfaJ+3tKzr9CGK4uuOEYmEOhGEhOBFkyZo8sUXOJWWpnyho8NNmzaNmUZGkhd55kxaw3v2UOqMhwcJB1ZWMP78c0zOysLZs2fFJ0+eiBPGjePUXV1RdvIkdN9VWbwhaGt/WKtSQ0MSpgIC6Lz6EKSkAFFRiG3RQgTAXF1dwXEcevTowS6/km6kq6tLe9OKFcDOnTArLYVBy5YICQlBo0aNRAAMzs6Iu3oV7eRypHXsCHNBgDQ7G/pWVkLR7dsMn33G4f59YNYsyJyc8LC8nC3btInOeyMj2s+TkuisWbWK1lJ6OkXxPH1KY2ZiQnUUZs2iC+vYkWyklBS8bNQIRV9/zcYUFUGzuJjGphaVlZU4cuRIlUKhGLdmzZqED372/4P4mLP9EX8aa9eu1ZJKpYn9+/e3cXlPe5R/FW7cuIHQ0FBYW1vDy8sLJSUlkMlkCA0NhZ+fH9q1a/f6H8TF0cbSr9+/LTz7L+HhQ8rPunfvdw3bvwv37t1DQEAAZs6cCWNjY1y7dk1MTU1FcXGx0K9fP76FKm/sfVAo6KC6ffv13tR/N779FiXr12PXvHlQSiTQ1dfHZ5999sc/RxTJwDpxgkhmSQmF0f4e+vUjg/fs2T937X8A3333Hdq3b48uDRTiKioqwt69e6Grq6scPnw4/8FFBauq6sUCUaTDtEsXMgZXrCCCAUBQU8PPP/+M8vJyzJo1648JLgDQsycqra3xg4ODICsp4RRqauhoZSX28PNj0NWlvOI2beiA37KFDBd3dzJOBw4kDwtAnlWl8q1IFFEUkZ6ejkOHDkFNTQ2ampqwuXULTnZ2uNC4sVhZWcn69++PNm3a4MGDB2JERARGjBjB9u7dC4VCgcWLF+PVKsUQBDJGk5MpgmD9+gY9g69BEMio3r2bQpFNTcl4aajP9oegoIAMcxsbZBcW4uzZsygsLMS4cePwWr/aWgQHB4u3bt1i84yNoV5djWMPHyKrNo9eU1NTXDJkCFMV1goICIDF6tVoqasLjf79SUiaMOHt/WXFClq/J0+SsJCdTeRr+3Yaq5cvyYh+xz1WVFRgx44daNKkiThlyhQiPCEhgFwOQVsbj/T08OLlS1hYWMDCwgKFyckIP3lS+dLYmPf19YWLi0td2ziZTIZdu3YJrKaGm3v0KDiZDPyAATRfVFi5kozYEydQWVmJHTt2AKKI6a1bw9DDgwzyjh3pmjU1X2/t9yaUSpr/qpzEhASKIFm0CBgyBIIg4Pvvvxc8PDzQtWvXD8oROLVtG5SRkRh5+DC4N8ivQqHA9g0bxBaRkcz97l34z5wpwsgIUzZsYFr375Pg5OxMaQUq9OtHY7B7N/24uhLxBrBnzx6xuLgYy5YtY7C0JFK3cOFr3/n999+jrKwMa9asef1Cb92iOawqELdhw9utKP39iVw0bw6sXo2aqio8at8el4cPR5OUFHC2tqLn1ausUX6+GDN9umCYmQmv48d59aQkoGNHVBw7hvSSEhjJZNAdNAg3O3TAzc6d4fD0KXwvXoSwYAGMRo8GHB1RWlqKcytWYOjhw7i9cSO8x42DTmEhXd+6dfVk9o3Uho0bNwpDhgzh7O3tKSqpuprmc61HHRYWRPhPnyZRe8mSBosXPnv2TNVDHRkZGWKHDh2YIAho6u8PzsAAXE0NkiIjEenlBaVEAk4uh6OGhrJdx4689dChRGAyMoiYHz9OHsHaiAEwhrzsbBw/dEhwiotj7tOns8bl5fX5+l27Aj/+COWSJTijpob2XbvC8ptv6H6SkvDP4GDl8+fPeX19fXHw4MGsWbNm9H2VlcCMGTh26pTSIyCAs9y7l2nyPGBujoKMDFQVFMC0USOoJScDY8fi+fPnOHHiBJYsWUJCU2wsReSoqQEtW+K8i4siMzOT8w4PR0jr1pyntzduhIfDSEcHtpqayoqEBC5HImEu9+6heW6uaOHry5CURKJQQADZA/36UdrE7t1k17Rvj5vq6nDauBGNR42CEBCAOytXCk2jojjDggJUamsjztMTlV26KPvu2cNzN25Quo6ODkVN2NuTUJybS2fFoEHkMa7dj0RRxNGjR8WM1FTWMi4OxkuWoINKBP8Q5OTQs3izgGhDUHWZ+O23Dy6ym5qaiofz5+OZjQ16zZ2LFi1aQBAEJCcn40RtvZQ+ffrg1TQPxZw5eHHxIo6MHw9eV1ccNmwYCwgIUJaXlPCNSkqgV1ICp2bN0P7LL5GdnY0La9eiQ2Ii9I4do4ioadOQ2aIF4qqrhScKBXM0NWWmUVEoGTcOPnFx0DZ+bomMAAAgAElEQVQ2pj2mdWtyRk2dSmtFTY2ex6tOhwULoNDSwk4TE9FVXR09iosZ3Nzq7Kba51/5/PnzAytWrFiA/8/xsfXXR/wprF271kAqlZ6zt7d36tq1q9of7s38N8HKygrm5ubo3LkzTE1N6wo1xcfHIyUlBa/1fRUEChtUGV3/DTA0JAPSze3fEu5+6NAhsWfPnszKygpyuRx37txBZWWlwPM89PX16zxUb3meXoUoUs60ufn7CeufgShSXun588DgwXg5ciSSCwtRI5ejV69e7+613BCCg8mTPWwYGUReXuR1fld7jlfh60uHf3o6Xct7Khf/FZibm+PChQu4f/++4O7uzhhjyMnJURWBgoGBgTBr1iz+NdL4PlhYEIlSGaq9e1OIuSocrn9/wNgYmZcuIdrKCuN694b+H61Q/+gRMHky1IYPh7ePD2vh4oL8ggIUKJVi2y5dWF2Runv3aH2eO0fP9auv6vu2q+ba4sWUr9q3L/z9/ZW//fYbs7OzYxcuXFD+9ttvnLq6OnR1dWFkZKTsEBzMTFxd2RMDA9HLy0ts37494zgOpqamzNPTk2lpacHHxwc3b95EdHS02Lp1a6aurk7XMHkyiS4bN5Kn4vcK3FVXkzjw/fdE4GxtyagUBJqnpqZ/OI1BEASULVwIyezZOGVvr7waHMzp6OhALpeL1tbW7FUxRaFQICUlBdevX2dyuRwuvXvDKCMDTmfPotm8ecitqBCGDRvG6VlaUuhoaiqaHzuGyKZNYR0dDfUNG+h5N7Sev/6ajCtrayilUmQqFEjR1RVzqquZ/g8/4HmLFhC3bsVDExO8KC5Gbm4uoqOjcerUKURGRiIiIgL6+vrKAQMGcLq6uuRZ7tcP8PQEGzgQxk2awNbWFsbGxtB4/hwGQUFos2YNp6amhpCQECE+Ph7Gxsbs+PHjwtWrV5mNVCp+cukS40+eBLdqFRUm/Pxz8lAPG0bEyd0dsLWFWno6mhcXw+DGDVHrxx9ZnKYmrHfuBJs0iQj07/XFBciInzaNPIFt2tA4qgo+zZuHUIkEL0tLMWrUKO69Z9++fcDSpQgXRQwMCYH2F1+89Za8zEyYLVvG2j96hEY5OWjXrRtr164dU1u0iK61UycK49TWJo8UQOS6spKEkqIiImAvXwLLluGeKLKOgwczM3NzIm4dO77l3RYEAU+fPoWXl9frhZFOn6bP7duXyNKDB/T3r97n+fM0Z3r1AqytISkuhumBA+i4fTvaTJyIYoC9aNwYGuXlTDZgAJdmYMCFNm+OvMBAQf/BAxyuqGD95s7FWW1t4VGrVvBbsYJ1kcvhfPcuoh0chDNNmrCYp0/h7e2NiIgIIYfnRZ8FC5itry+kW7fSPrV2LREDe3vK6X9FELt37x7KIyLQLTWVMS8v8vxraNB9tGpFz87BgUhF165EtktLKVc6O5s+s/Z+09LSlE+ePBEzMjK4mpoaVlJSokxNTUV+QYFoHBiI056eoom2tjjp/n1W3LUruh4/LrrGxHAyf39krV4tGs6axdjy5SSEzJkDnDqF4rlzcfvwYTxu1Aha+vq4k5DAOsybxyy9vMgh0K4drctp0wBnZwQbGCgTlUrWLzqasU2byHtoZQU3T0+uc+fOiIyMZE+ePKFid1evAtOmoXLtWkivX+esIyKYpqUlzYOdO5EaEiKe1tVl+adOwXj/fjHQ2ppFRUWJRtnZaKOtzfDJJ3R+V1YCzs4Qli6Fv78/5+Puzpy3bGGVPj5o07s3EpOSRB0DA/QdN46z7NqVefXvD8Pbt9FIJmOSnTuJUHfqRPt7RgbZL6mpNFYdOwL29rhYXAyXvn0hOjjg57t3lWXGxsxp/HgmSUqCdM0a2C1YAIcePThmaEhRJqtX0x7i6kqeckNDEkm+/prG8pVK39HR0cqYmBiuf1AQnnXtKmqamjLbPxJhFxdHotOHeKutrcn7a2LywQJrQECA6O7vzzy7dYNVbSTb/fv3cfr06br3eHt7IzU1VTx79ixsbGxYcvPmiMnJgbtUCtnz5+xGZiZkMhnXJzAQbcaORXs9PdgcPAg2ezZ009LgfOECrk2aJISGhrK2bdtC/cEDNGrbFg5TpjBNPT1WqFAoFW5uLC0tTYxmTGg/ezYJh+7uJDI3bkw1E4YOJfvmq6/qKvqLzs64kpamLFNTE0edO8chOZmiDGoRGRmpvH///nO5XD60a9euDYdk/X+Ej2T7I/4Q1q5d63n79u2NjLH9rVq1sho0aJDme/Oj/4VQ9Rl8taqxvr4+2rVrh1u3bkFPTw/NmjUjVW7LFlJVX2mB8h8PxoiwLl1KG/nf2Y6rAaSmpirj4uK4W7du4datW1AoFMLYsWP5hIQEMSEhgYuOjkZsbCw8PT0bJtyiSD+tW5Ox9nfPjeRkMoCPHqVx7N4depaWsLOzQ0xMDIYPH/5hPdmXLCHj08iIiN6AAZSbpsrH/RBoadGYXLtGeUyTJtV79P9mGBgYIDU1FS9fvmRWVlY4e/ascOvWLfbgwQPBxsYGEyZMeL/R/yaGDaOogzfHUZVnV10NxMUhqFMndHvwAM3mzydvZ3IyGU7vu8+HDymfbepUQE8PjDHo6OjA2NgY4aGhzD0hAVJzc8oNy8uj8Nhp0+ojTnR0KKz55k0yiPX0kF9ZiXJbW1y9epUzMTERQ0NDWVlZGWvfvj3Lzs4WevXqxXpqaHCNFi1i0p494eHhwaysrBp8MBzHoVOnTnj8+DEexseztr/8Uh9avHDhu/P75HLyePz4I63LHj2I8Pj6EjFr3pxEDFWefsuWf6jdV3h4uBAVHc0glYpJtrbilClTuPj4eMHY2BidO3euC7EuKSnBvn37xNjYWCaXy/HJJ5+gqakpMGkS1KysYNipEzxHjmR6OjoUmpmZCYSGgv/8czxv3Rr3GjcWXfbuZZg8uWFvjJcXMGkS8vbtQ8ny5ThcVYXHHMc67t6N9LZtkdiypaiRkgLhzh08VCiUqfn5YklJidCqVStOX18fOTk5WLx4MddIXZ2eT1YWPV83t7e/KzSU1vTkybCwsIC3tzcrLCxkQUFBYnl5OWekp4fJZ84wbulSui5VQSVjY8rzNDenkFKlktZk9+7Q1dND01272PM+fXDl/n0UKxTKFi1afPiG9OgRhRKronm0ten7YmPxICIC+RIJi3v8WLh//75obW3N3tklQ0MD0NfHo5QUmJSW4rREIj58+JDduHFDCA0NRcS1a6j5+WfmlJ0tapw8yfhmzer/tmtXiujw8SECNmUKGb46OiQAVFRQKsiiRfQeCwvIi4pwVyYTu3/5JVNLTCTSxPMNnh3x8fHgeV6wsbGhCeDvT5+jagfm7Ex74ujRFFqu2itUfcifPCEBW1sbzwcMQFF2NrKqqyGtrhabLVvGZJcuIdjQEKy8XJi1ZQszadKEGT56xCx9fKChpwf3f/yDuTo4MMnixeDatgWnpgabxETWfN06REdHIyoqCs+ePWMVFRXMuV8/aCkUtCd07EgVtyUS2j9MTIjUlZQAQ4Yg8elToRXAjJKTGUaOpPXcowft9y1b1hek9PWl13btovu+dg346SdKLThxAnBxQVBYmJifn88bGhqiefPmGD16NOfj48Na+/gwo7t3WYeNG5ltr16MzZ8PrZoaRHTqJHrJ5axq8mScLisT71y5whwFAec0NATTTZvYqevXlaGampzz8+d4mZ6OuIcPUaWujsePH8O2tBS6Fy+SIHDqFHD+PIpSU+Gfm8t9Ym/PdOPiSHQcNYo843Z2KCsrw/Xr1+Hj4yNYJSRwEASgb1+8sLTEVYUCLj4+OHTokPKuqysaKZWsuKSEjXj8GA4BAYhs3ZqVnDgBq8RE5hwdzWJkMkR6eCj50FBmMnw4w8yZKCoqwp07dzBmwgSoff457N3coL1vH1rPns2Cg4PZrVu3kBQSAoPNmyH064fGcjlYjx40PvfukXNjxoz61CAvLxKgTE1xpbwcxZWVuPrsmWhiYYHRly9zWh07QrJ1K/jhwynSysGBiHVMDEWXqDpfNG9ORSsvXKBQ5507XxNcIiMjoSmTMb/QUMjnzEF4ZCRzdXWFxodGG6kKqH6IvcgYpf2cOPF6FfY38PjxY6SkpODKlSvIyclhbbduRZO+fWn+eXkhMTERGRkZde+/f/8+kpOTWWVlJbt375747Nkz5DdqxCTPnqFvYCA0ZsxAem4u+iQkoOnUqZAOGAA2ZQp5ow8ehMTFBa6zZ7OYmBjBxsaGGQweDFhbg0kkMDc3R8uWLTl7e3tmb2/PIiIiOF01NZgpFLS+9+whYePTT2nPLi+ntebuDhgZIerJE7HN7NlcuzFjOLUffiDh090dAJCRkYHz589XyOXyDmvWrCn4sAf+v42POdsf8UFYu3atu4aGxg4tLa023t7eGq6urnVezv9EhIWFKQHw9ioP5erVtCH+N4SONwR1dfJMvRkW/zdj0qRJktLSUujo6KhyqXgAmD59Ol9QUABjY2N8//33Qn5+PtdgH+4pUygENiDg770wpZIEk+7dKQz04MHXXjY2NkajRo2U586dY4MHD+YabGGRm0u5bN9+S/ld+flkzKpypf8sxo2jn6AgKsz29OlfbvfVEFTr7cSJE7C1tWUTJ06EVCr9c2rGtGnkHVEVcmsI2trA+fOoOHgQpXFxIhYtYqiqomfm50e5eMHBZGy/CbmciMrFi68b+Y8fwyIyEiZ5eSjdvx9o0wY6Fy68+xpatgQEAYIgIFouF8sCA9mt0lKYmZkpJk2aJAEAQRBYbb4bh/Jy8koFBJCR9x4wAK3v3kViVRWKGzeG/nffkRHbEPLzydMRF0fzsGVLMj7e9JLev0/EpLCwPk/zzJn3ekiqq6tx4MABSB484MY9fgzd0FDWWkuLP3LkiMBxHBs7dix7dV6fOHFC0NfXZwvfCA/G6dN0D0+eUA68hgaFr06aRITbxgZmcjmSTE3JWN2wgUSUV7FqFaCjgwtOTsq7enp8y379MFVTE0Lv3ohPTBT7duvG2g4cyPDrr4CXF9o+eCDBsmV1tQgKCgqQkJAARVoapJqaRIbGjXt3AaERI+inFhzHwc/PD127dmXHN26E78aNuPjFF0ofb2/+tR28bVsihGvWkJBqa0thn8+e1Ql9zq6uCL12Tbx37x7fr1+/htvb1KKiogJyuRxaWlqomTkTGmlpSE9JQU5ODvLz85WFhYUotrDgpACbffYscufP5y7L5crdu3dDXV0dXl5eyi5dutSrUPv3E3H65BNUxcTgio8P9LS0YGhoKFhbW3M2VlZovH49NMLCwO7dY2/NvU8/ra/v0LQppawMHUrh+JqadO8LFtA81NKCqKuLnzQ1hRpTU0jPnWPIziZyVlhI88LSkoQJjoOVlRV4nkd4eDjXrVs3ijyYN49InqNj/TW0akXEPj6eiBJAe8A335DotHUrlNOno/z2bVi8eIFcNzfByMKCs3F3h1JXF+rt2oHnOC6kWzf4urpCGhoKKz09Eu2WLaO96OpVEqeUSqC0FJYGBli1ahXS09Nx+fJlFBQUkIhqYEDrr7KSRICyMlpvq1ZRelhCAoTevZFUXMyc589ndQW3Xh3zwkJaB8bGtDaysylsunt3yOfNQ1yHDtC8exeW/v4oKi+Hxb17vGhqKlaoq4t3797lWrRoATs7O/L6m5nRGjp1CvjpJzQ9fRqDtmzhUn/6CXbDh2MJwIXs2iXeuHePPX78mEtJScHUH37gs8zNcWXYMLjeugW/S5dwZ8wYMaOqij3asQNs6lSYWVuTkHL8ONSzstBx+3Y8DguDaVAQpSDMnl2Xp//s2TMAgJeXF4+hQ+l6ACgMDdE5KAhXU1Oh7N6d6xkejoe2tspyV1fW3tCQe/7gAVpNmYKeubl4vGIFDH74AS/u3xf7fvUVf83aGndkMtE4MJAplUpIpVIlam0BJCUBP/0EncWLsWDBAmS/eAGLuXPx/OVLMT4ggBkKAnQVClqPGRlEhvv1o+tSKCgtZfZs4PBhWGtrwyI7W7CfOJG18fDguJs3aU4zRnPDyIjO+82bXxd3z52jaCINDUrXOX+ezrLa1pX5LVsiOTmZ69GsGZCSgnaMsWd5ecodO3bwoihi1apV7y+iy3EkEH4ohg0jL7CqhsArKC8vx/3798Xg4GCmra0tVlRUsBkzZsDMzIyiUb79Fhg1Coav2KczZsxATU0NLl68KHbp0oW5uLiw0tJSHDp0CE+cnJDt7Ay/06fFvsnJzDA29vU5PnEi1UtYvBgAoKWlJYaFhQk28fEcrl8nEeQV6OnpwdLSEtqzZonQ1ycBdupUsudUz71RI0rZEEUomjVDtaMjw8SJ0CwooOuvFeiqq6vx66+/VioUivFr1qxJ+/AH+L+Nj2T7I34Xa9eulUql0q3q6upTevbsqdmmTZsP8xz+HyM9PZ1v3LixaGZszLBqFbWGsLL64Hya/zhs3UrGc0jIh+UQ/QU0JKJIpVKYmZlBEATI5XLu8ePHor+/P0aMGMHMag99iCIZ7eXlf+8FxcbWh/bevfvO/NkpU6bwe/bsEW/evImur/Y8vnGDQkydneng//prKgb1d6NnT/Jwq6mR8b9y5furk34gVC22AGDhwoXQ0dH5axO5oOCDw5sHDhyInenprO3q1WBPntDz37GDjO0tW6iATkAAGeWqML3p08mwOnKE5sXJkxTtsHkzUFQEswkTsL9JEyAsDH01NeH5rhD8SZNQnZSEsPXrxfsSCRYkJqJ82DD0mzy57ux6y2iKiPiwgnxPnwJ5efC4e5fdc3HBERsbYa6NzesfVlFB6+6f/6R8vE2bqGiQqvp0Q+jUqb76/pAh1DLriy+IrM+Y0eCfFBUVISwsDKWlpRhvagrdO3eQ8+gRDoaEiNra2mzKlCmvEW1BEJCTk8P9o6FWNv7+REh++60u/Fh27BguBAQIplpaTP/UKdF4+nSuurqaRdjZwWH7dqh37YrgrCzBwcGBe/TokdImJoZL19FhSdXVfIcOHdClSxdIt25FzYwZeDhunNhXT4/h1i3yBFZWkqEZEACUlyPHxgYHDx6Ek56eQtqrlwQbNvx+r9rnz4lQFhS8FWWhKZNhaloaKr/9FqUcx/bs2QN3d3elr68vVVG/coWITtu2JK6kpREhe2Ofd3d3ZyEhIVi/fj0GDx4MOzs7pKWlIS8vT6iuruY0NTWRnp4uZmRkMKFW3NEtLsane/fCf9UqsbGRkaivr8/b2NjAzMwMVlZW0BwzBtYVFZidlMQrFi9G2M2buHnzJv9aXYWQEKCsDKK3N1olJkLZrJnYedw4qoAviuQ9KimhtdSQyOPrW1eJHQARioULSTg5eZL+PyKCyMfYsSgvL0dubi43dOhQSFxc6LkmJNC+aWNDkSwWFrQuS0vRu3dvBAYG4qcDB4Spbdpw7NGjt9OVOI723s2baS/9/PP6Nk2TJwMKBfhZs1DVtCm0161DuxcvOO7sWYDnwc+bB8eJE6E0M4NWQQE05s8nUv3zz5S2MmsWncs6OrRHe3pSvQTQujY1NUV+fj6mTJkCA5mMBOdjx4icq8ZYlWOurw9wHG56e0MRHY2GalcUFRSABQUhY+9elNy5A4lEAoN9++Dw8iVYdTVe5OTg6tWraNKkifLWqFEQBQEds7K4jllZTGPqVHZx2zaxpqqKQaEgkl9VRftDSQlgYgJeVxdl+vpILioS7Go7LvS0tGRFLVrAccwYHD9+HBcmT0aPiRMxrXFjXLO1FRjA9Y2NZQWnTqGsSxf8lJyMPkZGMBg5Evl5eWjy9Cm6nD2Li9OmgVNF27i6Ivunn3DCykpZXV3NOzs7Q624mEQHV1cUFhbi5MmTGNOqldi3UyemPW4cw8aNsF6/ns/IzMTDjRsF9t13nHF5ObjoaDjZ2wMlJTDds4cpd+6ErbY28vLykJubq0xNTeUNDQ3rF5SnJ+1p8fFotHs3Gt28CUgkaNmlC7vYrJnQODERHq6uXJy/PzT09WGtUEAUBJiEh9OYxccTCTx2DDWrVsH56VNObfhwpFtYiKETJoiDtLU5I4D2ytmzaaznzXv9LM3MpPoRBgYkaKnWzogRyOV5XP7HP9DKxUXRbt48Cbp1A8zMMGjQIP7+/fu4evUq7ty58/62phUVdEZ8KKysSMC+fBlV3bujsrISWVlZiIiIEAsKCphEIkHv3r0hlUpZRESE0szMjAxpExMKkS8oQKuMDGS2bQtdXV2o7Kq5c+fWPfsbN26gsHY/6NCzJ57b2LB2c+dC7NkT7OzZ+pxqU1OKyCkrAxo3xoQJE/ht27ZBWL0aXANFEat8faGvoQFdf3+GnBzaW+bMabB3eGVVFY6MHQun1q3RuKSExtLbG5gzB6Io4tKlS9VyufzU6tWrf0dF//8PH8n2R7wTa9eutZVKpeesrKxshw4dqqn5vjy3/yDkUascJpw8Ce7mTSKB/wUiwTvBGG38s2aRR+BvInF/FPn5+VAoFIiJiUF1dTWrrC2ihRs3KLTt+fO/r3J6SgoZViNHksrt7Py7b9fX10eXLl3YjRs3iGz7+xMJOHCAjLkePSj/8F8FjqOcsfx8IgATJ5IR8BefR3l5OY4ePQqFQgEnJyf8obzshpCeTh6y9whPMpkMEokEJSUl0NDQoGJVjo5kvANEtJYvJ2K5Zg0Ry0WLyCjv25c8aPv2Ue63yvNYK3IMAjBo8GB8++23YlBQEHNzc2swLSEzMxO506ejVV4evKKimMaAARji4NDw/I+KoiI5r4ThvRMHDlBLoTNnwN28icZnzyIxMZF7+fIlTIyNKbfw9Gny3HXuTELKtm0flhbBWH2I6pgx9Mx++onm3oQJVKW8ltBkZGSgoKAA58+fB2MMI0eOhFVpKbBoEdIfPEBNTQ2bOnUqVaV9AxzHobS0FI3f7KhgZ0eeXQMDYPlylFVXQ7CwQNaqVeAGDWJOs2ezU0olRKkU0ampwpNmzbhWn32GB336cJmZmYpmjPGakyczW0dH9La1rRffli7Fyw4d0H35coYJE2g8hw8n8uTiUlfpOFZHRxhUVMQ5LVsmQffu9Z7Zd6FJEwoTfXP809PJu7JhA7TatcN4gMvLy8Pu3bt5Jz09mHz7LTQ6dwabOpVCVKdNo9SHHTvob3/8sS4VwNvbGyEhIWCM4fLly6JMJlNNfk5HR0fQ0dFhEomEDRkyBA4ODigrK4OBgQGE4cOxtH17Bp5/e7F4eJDQtH07JE+fotuGDYiMjERNTQ0VEUxLoyr1ACCKyDcyAmvRgikUCgQHBYmamzcztzt3kDd7NkLV1IS+mZmcquZIHVauJPIZF1f/b0OHksCxciUVCNPWpnt2dYWuszOaNm2KM2fOoFWrViREjRlDEVFubrR2s7Op4v8XX6Ddjz9CR1MTGSdOcNi8mbyW70L37nT+LFhA66+2JSCMjQGOQwtnZyR06AD9Tp3QXF+f1vxXXwELF0K4fx+FgoCS48dhr6cHyf79ZKB/8w1FKT15Qnnndnb1kSLFxdC4fRt9Q0NF0wMHGBijsOLSUrrvvn0p9eCXX6iQYu3avH37tuDn5/daWo0oioiNjUXy9u3of/EiglasEHT09FhlZSVKS0vZxEOHkN28uRjdvz/09fWFmTNn1hsLc+bQ77AwtL1+HZUdO1KkXHw8eTIHDaKopoAAxPbqhd+srbHo4EEOOjr0jK5fh4GdHQwcHDBhwgQcPnwY6ufOwTQ8HKMCAzkAKElLg0ZNDawGDEC2XC7cvnKF9bl4kd0uKhK7BQSw+76+EFu0qO9MIgjQOXYMpbNn8xKJBMnJybj244/QqqhAYJ8+4HkeHh4eSpsVK3iEhwNXr0Lw90fixIl4YGEBw5oazn7LFui2bFmX5gCeB7ZsAX/0KNoAgKcnQ1QUf19NTTA6e5arqy6/dStFIGRk0DpbuLDO8zwyKop7ZmuLW3Z2SHvyRFR/9kyozMvjru3fz9asWUMpQX36ADt3Qpw9GwWOjjjcvLnSqVEj5pCRwfnu3cvOP30K+169YHLlCoyiolDQvbv4PDwcpqamzMnJiSJT2raluhhbt9JY1CJp4EBcuHABEwIDYVBeLkFAQF0EgIaGBtq1a4fq6moxJiZG8PDw+H2D0Nq6ruDgB6OyEuLBg/g5LU3Mz89nGhoaop2dHRs1ahQaN27MAKonUFZWxoeFhaFbt271f3vgAKQnT2LAq2v9DfTr1w8dOnRARESEcPXqVQ4AkqdORau4OLTv0QOaAQEkWu7aRVFl27YBYWGQSCTgeR7JKSlwDA+nNDqAxMqePVHl5oas4mLcDAhQDs/I4DFyZH3ngFcgCAJ+/fVXgbOzEzv5+vL47DMSJWo96PHx8eKTJ0+yZTLZ3D/24P738ZFsf8RbWLt2rZpUKt2lpqY2sUuXLmre3t78/1UBtD8LqVQK14gI/JyRge7btsFKTe2/f7L7+ZEXIz29vkjOvxkmJiaYOHEiLCwsmL+/v9Lf359fuHAhpO7u5PX7O4i2KmR82zYyKm1t6/Mm34HHjx/j0qVLyqqSEt5WLhdRU0OFXlxdKU/03wkjIyJWCgWFfv74IxHRP4GKigps2bIF6urq4ogRI1jLli3/+vWpisu80sboTZSWlmLnzp2QSCSiKIqwsbGhXq6vIjSUfh8/TgLDqlWUN/fNN3TQr1xJUQ6TJ1P+awPo168fO3PmDMrLy6H/Sr68KIr45z//KWRlZXFO8+fDfeRIMra3bydP+Vdfvf1hhob0+u8JUQcP0r3v3UuhjbWGmImJiaBZWcmdW7kSM0pLSejZvp08iKrIjT8CG5vXPYTGxkQuAgNpXs+bh6dFRTh8+DDU1NREExMTcdq0aZw0IYFCdA8fhtewYUhLSxOvXLkiTJw48bVnz3EcLCwslFFRUbzfq0UIVdWpFy0CvLygdHPDyZ9/Fq29vDB33jyO8/HBC0tLsU1ICAhPpyYAACAASURBVLvWvz8WLVrE+Z86BVZcLI5ijDkuXCjB+PFkeI8e/dZtyS0sUKSvL9YcOcLUL1wg47ljR/IuFRcDjo5wsLKC1YsXRIgaqJz+FvbtI1LyKrKyiKiOH/9a6owxz6P98+dKjcGD+fO+vjBwdBR6d+jAMQBKNTXIW7TAPT8/pVVhIW+WkkKCj74+qqurAQDjx4+HtbU1EwQBiYmJsLa2hr6+/lsKikFtpXLu4UMSOSdMaPja9fXJC/TiBSRdu8KmbVshPT2dc7CxIc9bZCTQujUYY3DLycGJigrc/eYbtLtzh7Vp0QLpcjkCdXSgyMvjoqKi8BbZ3rnzbYGH52ntrlpVLyhu2lQ379u3b4/Tp08jNzeXvGM9etSfFzxPe1LTpiQGAbBeuxZaz56h/NtvofvLLzQWDeW1tm1L4z1uHLW343n6Ti0twM8POpWVaG5iIiYtW8aaCwK1fZJKgcBAqC1ahFYzZ+KcvT2Knz8XvTU1Gby9KRrm4EEibjdvkng3ZgztF82bg7t7Fzaamix26FClz+ef87C0rL+e0lLaVxcupDny1Vd1e5qRkREUCgWysrJQWFiI27dviy9zc1lTHx80+v57LDYxee2hVowYAbG0lHnJ5TCztGyYhHXrBoHnme6VKySoeXhQlMChQyRsrViBB7GxaOvuLqr5+TFs2kQigK5uXTX36upqSCQSNO7Vq35cr15FaVAQgmbPFqcVFTHf69c53zlzgNJSLCwrYy9cXHDO3h6DDx5EcXw8ajZuhKGTE3KPHgV3/TrcPD0FIyMj5qJUsnRHRyApCR4eHvD19aX7GDMGyMuDYtIkyCsqMDA0FJKMDEjbt6d7+O47ErxyciBGRSHexkaoYgyOTk6coZ0dUmJixFJnZ5h36kTzJieHxMq2bek5VFXRXAgMhPXYsbDOzaU5CTAcPMgXFhQgVkeH2lT5+NA4u7pC9PbGZ87OkA4fzkNVFKy8HD0mT4burFnQLC7Gb4sWodzCgiEtDQkJCcqLFy/ynrq6ys7ffsvnjhmDphyHKlFESVYWbt26pUxOTub8/PzYZS0tcejOnUzb2JiiHl6JZHN1dWU3btzgZTJZw61hVcjLI4/6w4fvfIuqm1NdV6cBAxD59KlYk5uL5StXQiqVvmU4W1lZwdnZWQgPD+c0NDTg7e1NLyxdSiQ4Kor2jnekaRoYGGDAgAGcr68vTv70EyzCwhDerRtkxcXwDQ8nx1J0NIldwcGAQgEtLS0YGxvj8q+/wu7kSfBLlpBtNXYsEBKCxt9+i4n5+Xjcvz9/y8MDsXFxKAoJwZgxY+DwCum+fv26UJCbi89ycnisW0dzv3t3oE8fFBcXIzAwsFoulw9cs2bN3xze+N+P/3r+8RF/L9auXctJpdJfzc3N+4wYMULjnUVf/sMxu18/aOzZgwudOomHz55lqvZMvXv3rt/c/hthYEC5oseOvd7D+d8ILS0tHDlyRHj58iUHhQKSFi1o0x037q9/uCBQf08HBwp1/ECR59qpU2J5TQ0/JTUVZnfvMqxfT56S/0tIJBR+2bo1PR8PDzIu/wDy8/MBAEuWLGF/WyHCjAzy9DeA7OxsBAYGCrm5uez/sffeYVGda/fwevYeytCGXqQKCCICIiKKBQR7j7130WOLJsbEmIRDosnRxB5bVFRsiF2xoyg2FFHBigKCghRpUgeY2fv742YAFdRz3vc9v+SL67q4TCh79n72U+617mZlZSWamJiIcXFxfFJSEr9+/XqhTZs23Dvt9EaOJGJWXk4Kt0JB5JvjyBB++ZIiE2ramdSHm5sbDh06hMePH1M/Yk1NKJVK7N69W8jLy2PffPMNebyXLSMCP2FCw57rzZvpc95uY6RCYiIZicnJ5K1Q1XIQBCAuDp2uXePcU1JwTaEQMXcug5/f/yzl5PvvqUZAfairA7/8gqh165ReXl78NT8/eA8dit69e1NYMUDksG9fmjMAunXrxtavX8/n5OS8ExbbuXNnft++fejSpUtd0Z/KSirS9tNPgKkpMszMkCGXM+vPPycv56+/wlJLixn++iva/vwzsHAhBvfrB7RsyXDgAIVnrljR6GPJZDLc69aNPSwsFGYNG8ahqIgIpYEBUFgIhZYWcgwMOBOOg2Zc3IfJtigSUezWra6exosXZHgOHVonUlVVUbjw+vXo0bQpL2RkwC8vD6GhoVxsfDzMzMwEDQ0NTtquHXhjY/60uTkmbtoEm/h44NAh3Hn6FBzHwcrKChzHgeM4tGrV6sPvMS2trj99Y5BIKIIlKAg+R45wCUePKp2++opHdnZdGKZcDpviYkyaOxfFv/wC67Q0qEml0L14EcY5Odi8eTMV8nwbOTnkSY6IePP7+vokqKxeTWPcoQOJaKtWodLQUATAioqKiGwPG9ZwVFcN0VCXSJDi4AB1iQS6u3fT3nv6NOVn9+377rM6OlJaxZIl5NXKz6ev4cOR2KSJ4PivfxF5OnCA7js7G9DWBispQeLy5XDnOAY7OyJp48eTt/rBAxI1ZDJamwMHEhGws8Ph7duVNjY27A2iDZDIFxJC637/fmDpUlRbW6OiooLbtWuXWFlZyTQ0NASpVCro6+tz/rdvM53Q0LpewfWg3aIF7GfOhD3PU5RAfVRVUdTWjh2I79NHsG3XjjOztCShoUcPIv25ucAPP6D38+fY36MHvHV1oT9jBhWMcnevnQdPnjyBvb29UqdNGx5ubuQpdnGB5pw5yLlxg101MBA69O3L4dQpSg04cACWPj4IVldHTLNmwt0dO9iVtWsZNDUxevt2DBk8WGjeqxfHTp5EZUkJ9j14AEtLS2VAQADPRJFSEEpLgepqqEulyBw1Ski5cYPTu3ABPWvyb8UZM3B7+XIhPS0NRcnJnG1iIrvv7c1uxsaK9vb2QopSyTdt27YuPUpfnwRDV1dAFPE0Lg78okWQTJ0K0+vXEXnsGIqKikQzMzPW+fhxnDMxqR9JQuPh7Q1h5EicDwhAgKEhNF68oHoCOjqwGzWKzhRdXfT78UcaX09PYMcOPjMzE9eOHOFe6uuLry5dYtvGjgW/ciXU1dUFfX19zJ49m+no6EC/uJgV8jw0e/WCzrNndB5lZgIeHtDX14exsbFw+fJlLjAw8N11UYMzly4pPYqK+E0hIY3+TkPoduYMG2Bn1yiRNzAwwIABA7iEhAScPXv2TXuUMTrjxo+nM/M9UFdXxygPD1QuXYprEgmeu7jQXFUq6XlNTEhos7cHTp9GYGAgdmVlISE4GK2trBC/b5+YtmmTUP7gAZQJCcwtMpLLMjbGXTMzKGtsJ3NVzQMA6TdvwmzOHG6Gmxv4uXPJCbJgARAbC0EQcODAgXJRFJcGBwff/7cG7G+CT2T7E96AmpraSmNj4x6jRo2Svq+QzJ8a589DlpICPHiAoTo6rLq6Gg8fPkRmZqYYExMDNzc39j8Oxf1/BW1tMnRsbYko/JcrwcfFxeHMmTMAwLVv3x5+nTuDk8mIIP9P8Po1GZW9epGny8Pjo8iOUF6OqCtXMPbnn9n1IUNE61272J8qL1+VO37kCOW5LV78b70zVaX9xYsXw8jISDlz5sz/WS6Evz95Mur17gSosvXmzZuFyspKrmXLlqK7uzvn6enJeJ6Hh4cHXr58ifLycu7s2bMwMTF5s9dzcTF5p06fJiVdJiMCEBxMKQ9VVWRIKxQUFjxkCHl8auDp6SmeOXOGnTlzBmpqahBFETzPs+nTp9dW3sbgwWQ09O9PnpG38fQp3jHGARIAVD1YFyyg8QfIQE9PJ4NGQwNYuhQ6kybhYVgYS7p7VznI3p63sbH5z8f56lX6zPr5tgCeJifjan4+rxwyROxlYcGM6hM5QSAjc8WKWk+koaEhRFHEzp07MWPGDNQXPx0dHWFtba0MDw9nw4YM4bT69SPysWULeTx5Hjbt22Osjw/27dsHCwsLuNW0PJS2bUvGGGMk3o0eTWR35kwizm8VIFTByMgI/fr1Yzt37mTP/fxgk5gIVFai7OxZ3MjOFkRXV65g8GCh08qVHLZuJbI4a1bja5kxeg8qZGZSSkr79nVEOyqKai1YWNDzubiAA2BhYYGFCxfi1atXuHPnDhcfHw9F8+YYdueO6LZwIdt25gzcHB1hsXWrMicvj9cwM3u/J6shLF5c22/+gxg/HlerqpT9v/mGF5csAasv9lVXA5s2wfj4cRjb2VHI/S+/gOd5KJXUFefEiRPv5pGqqxNZbQhNm1JIeXAwEBaG6oUL8SQ6GpEaGqxPnz5wcXGh3+vdm9ZOWNi71xBFvPb1xa3KSrTp3p0EDlGk/PvoaCJYkZEkfqi87osXEzleuJA8tosWETlwdYX2tGlMumcPxBs3wC5cQNHatSgzMoKlry8exsejeXIyyouKUHzqFPS2baM5n5tLotymTTQXf/yxNpJJoVAgLy+P7/s26QcoP3baNPpvJydg+XIUeHujrbe3aDBnDmvRogX09PQ41OROF5ma4qRcjn4lJQ2mZWDUKPIIqiAIdZEbNXn1VTKZaL94MeXZ/vOfNC9TU4ns//orjB89gvmLFyw1LAy2r17ByMqK9v6yMmDAAPRZsgQlZWV8hSBAunEjCUgcB5MrV9A3MhJ2mzZxyM+n3NvCQhQdO4b9Bw7AqkcPsZjnkdq6Nft882bI9+2Duro6ZA4OHBgDduyAJCAAyMnBpEmTeC43l8bG1ZVEzgMHIJ87F65jxnBaqam4PGgQcjIzcXjxYvQ/ehQx1tbwKSvjWpWXw8bYmHW6fRuxX3zBsrKyeOTno+zUKVRs3Yqy2bOhNWUKtL77jkSyI0eQvG6d2OP4cbZREPBKUxP6+vqijY2N+PLlS/FRbi6X5uDAqqqqsHbtWrGqqoqVlpZiVloaXm/bJt4cMoSl5eSgf2AgHowbh6pWrdB50SJUjBgBs+Bg2gcfPyZR4osvYPnrrxh67x5D797Q7dAB302fDjEjAxKJ5I1D1U4ux4rJkwVpaio3ffp0sF27qNZAZiYgkaBNmzbclStXlIGBgbxCocCxY8cgCAKaNGkCnudx7do1UVFaynX67jssUs0xvFkfpCHxW6lUYlNODiYpG+90VVJSgtDQUBEAa9mypaCan7W4f5/EscREEibeA87XF9K0NPhGRwvCjh0iSkp4PHpE5/DixcDmzaj+4gtcPn8eD9PT4fHsGSw2bcJ1Z2dEXbjAHBwceIlEAllEBORlZUho3x4TJk5Eeno6oqKi8PTpU3iVl0MREoJLTk7w7dkTWiEhtC/cv0/h6owh6ty5qry8vASFQrHkvTf8N8Ynsv0Jtfjxxx9H6+joTBkzZozWX5ZoK5UU+hMcXOu9U1NTg4eHB9zd3dnLly/FNWvW4Nu3q+/+laDKnZPJqArkfxHx8fFKa2tr/sWLFzD/6isxQSbDk6AgpSI8nOno6MDCwoJv06bN+/tw14cgULioypOoas/yMX93+jSEIUNw/euv4XDtGgJbtfoTsey3UBNZgfHjSXU+ceKj/kxHRwdffvklCgoKsGXLFv7QoUPioEGD/rPnFEXAyQlVtra4cfkyHj9+LLZp04Z5enri2rVrMDAwwIQJE8C/VQHR0tISlpaWyMvLw5UrV+pyhEWRnqusjDzGO3e+We0/OZlIxrFj9K9cTl5QT0+cDwlReu7bxxs+fIj+/fuz/Px8GBoaCq6urhzP87C2tmZvzCEHB/Iw/v47hdbeu1fnnY+MJJL4tmcwLo6MtPnziRxoaNC4P3xIBpy3N+VPu7oCjIEHMGPGDBw6dAhhYWEwMjISAgICOOf6lZk/Fr6+lNNeg/z8fJw+fVqZlpbG9+jRA+3ataNCNNOmAbdvkyc6M5OM/W3bKESzBjo6OiguLsb27duFGao+qDUYNGgQv3z5cixfuhSTdXVh3qIFigoKYKimBmzYAJaZCfuZM+Hg4KC8fv065+bmRnNn6FCq4Pv6NeWeiiJ59I4do9DYgQNJ8NLWJpGosrI2nNs+Lw8DL19GQfPmsAkIACwsoK6tjQdTp3IdfvwRga1bcxg+nPJwhw6ldz93bsMiU/v2FBXx+eckgISE0LPPng2kpiJv5kwkaGoKeWZmYoaaGoTISCYeP84YY6IoirCyshL9/Pz427dvQ0tLSywrK2PmDx8yg4wMjBo1Cjk5OSgOD+c6792L9MmT//33qFCQKPHsGRGs96C8vBwZOTm8JCoKbPt2mqeDB9N4RkcTiTQ1JWHo4cPasG9ra2uoqamhW70ewbUwMqI2PjXIyMiAtrY2OI6DIAhI09WFmp8ftEaPxn5fX3S+fVuYGBjIWdcn7SdPNpzek5MD9O4NZUQE5Lt2ISUlBa1VocGqcyU1ld5beTnVLejWjUQrOzu6Lz8/IuFJScD9+2g9YgRXaGcnXjQ3R6mXF1OEhsLq+XO81NAQ3W7dYk6iiMvt26OA52E5fjwcT5+ua7E3ezatWU9PKo61ejXu3LkDbW1t0cLC4t0978IFKp61dCkA4FFWFqJ698ZwLS1mmp//ZhjuH39A38AAQo8eytWrV/OTJk1Ck7fb8XXoQOO0cSN9/pEjlMYwbBgR6w0bIHFywp01a+DXvDmdwxs2kCdSJqP7mT0bnwHYpKWFZ8bGwuBlyzh8/jntQ02aQO2zz3AiLEypzRgGHTrEIyiIKkObmODEyJGira0ta5eaCvu5c4HVq5EeEIDekyej+OxZdmrMGGZoZycqZ8xgJnI5CZeRkSRWzJ4N0dMT7NdfoVy2DJyfH4kskyfj8qJFgqSigvFjxzKN0lI8nT0bRZcuQSsoCC28vXH822+FebNmcTh4kPL5t24FMjPReeZMlAYE4NmpU6h0dkborFmKsqoqrmL5cq6FQiGqt2sn2P7jHyze3Z3rHhSEGZ6eECnlhjHGGPLzgfv30W7pUmTn5CA+Pl58HhnJellZ4fW5c5DHx7Ox58/jZv/+yLWxgW1ioqCIi8O+uXPFl9nZ/NdyOTTt7UkoSkyk+eblReN19iyMPT1JIHl7bsfFAePGYdydO9y6P/7Aq1evYDp2LO1FT58Co0ejxfHjiCwq4kNCQqCurg49PT2RMYbk5GSmo6OjdHBw4Pp26MC4oUPrcvY/gJrK4XhlZga5jg40o6Op9eVbqKiowOvXr9lXX30FLS2tdzdFnieBzceHhMj37TuOjsCGDXBxc+Ny7t2D4qefINHRIafFiRPAkyfYmp8vtHj2jE1++pRp6umhZNw4oGVLLBo1ChzHIW3LFrxQKkXf7dtZKyMjaGtrw6pJE3R49Aj44w8I/fvjqrW1ILRuDccpUziIIu1rY8cC3t5ISEgQb926lV9dXT0gODj4b99PuzF8ItufgJCQEI7juOkSieS3UaNG/aUKob2BlBQ6/G7ebDBMljGGNm3asKNHj+KD+Tp/dowdS4bGfxm2trb8zZs3oaOjI7h89x334NUryGQyiUQiQUlJCa5duybcvXsX06ZN+3DfZ7mcQgHXrSNDZ9u2j7uJTp3I87FpEw4GB8PL1VXp0KrVX6P63ZIlREKfPSOvxkeE3kulUlhaWsLKykosKCjAgQMHxGbNmrGXL1/i0aNHgq+vL9fuIyILhIsXcSQwEPc2bYK+vr7YtGlTdvLkScTGxioLCwv5gIAArqFOA2lpabhy5YoyKyuLt7W1FWQyGVernickUHuixnJa1dSAwYMRZ2OD9OPH4R8QAENLS/CHD/MsK4vy4nr1QqvAQETq6HAaGhqKnj17NnwuPXtG6RNL6onnVVVUpEnV7gogw//bb0nZ/+c/ySC5cYOMJi8v8tLNnNlgezapVIrRo0fzxcXFiI2NxeHDh8EYg6ampiCKIlNTUxN79erF2b+vZRpABlNMDHm2/f0REREhVFZW8kFBQTAxMaHfMTcngeL+fZoHQUFEODU03rhUdXW1CIC9evWKKy8vf8O7raOjg3mPH+NWdjYiBgxAVWioIJfLudZPnwq97t3j+Jqigk2aNOGfPXsmQBWubmVFZPjQIfKmb9lCRbgkEhK8Fi4kksUYRQaUllLuaXU1UhMT8cTEBI6mplSBVyIBb2WFcnNzWIWGUoErFxci6927k5e9uJjeydt77vff0/vJygIuXaK/GTmS0gL27sWjdu2Q7eSE9p07820ZA2MMPM9DFEUGAAcPHhR37doFd3d3oW/fvmS4fv01UFKCZoaGaNasGdCxI0sZMwbNFi/G/dGjhZa7dnEfHf2iIl9vvZOGcP36dbRLS1Pq3bnDY+VKipoYNow89ZcuUcSAuzuN7VtitkKhgFtjheSsrVH60084qqamTE5O5hljUFNTA2NMrKqqYrra2qKvpibGpaczi6lTOaxeTQKTCqdP03O83Xru+XOgVSuYOjhAV1cX169fF1u3bv3mwNjb19VJmDmTPPJbtpBAumEDRR1cvUqChKUlWGIiDJydWauEBFHn4kWIbm7g7eyQ7eXFHowfL7qPH8+8qqqwe/duXExLw5gXL9C0adM6L6G3NwlPOjpAeDhuZmUJLjSH331hpaW1Vf+zsrIQEREBqaWleKKqChNDQxmeP68LGb9wAejUCWNmzuQ3bdokPHr0iDVp0qTummVlJCjs2UOi0+efE5FdsoTmZ+fOQOfOeL19O4xKS4G8PAg7d4JTdVHw9aW5HBsLtGunKioogjEqCHbhAq1vLS0MmDqVX7VqFbr07AmDggLg1i1kr14N19u32Z2qKuTGxaGbkxNcIiLg4e8P5bNniP7hB/Q8cUJs0bQpwy+/0OcEBZGImJ0NvHgBiYMDPDMyxNcPHjDjoUOBadNQUlKCjOfPOYesLJR89pnYxtCQeUyahJzsbKgdPw7D5s3R89dfOSQlkTg0cCAJa2lpwPPnYDt3IqFLF+WYVav4NjV8Qf7bb8gXBJbk4MA7LFkC2/nzwXfrBjRvDrZlC4kQAKWD8DzAGMzNzdGnTx/u/k8/wSIjAwaLFpHYU1EBe1VtiDFjONy6heZBQViclYXcPXtgM3gwpSIsX079q6OiaF9q04aEwIZS6by8gLg4GFtYQFtbWygoKOBMTU2pDkHTpkBgIKQmJphsb49Sb28YGxvDwMCAXbhwQXj06JEwa9YsOgQrKz+qfSQAJCUliQcOHGBqampCQEAAp//wIe0bDZBtU1NTaGpqIjc3F3aNdbUwN6caGBIJrdPGoqzmzQPatoX5unWI9fMT8jQ0uECAnnXLFpQeO4aJv/7KqbduDWZnB+zbB73SUrRXRUU+eQKbx49xxdoaFlVVcOQ4ErRdXck+6dkTl7W1hZstWmDehAm0SLOzKQWkZ0/k5ubixIkTFdXV1d2Dg4NffdRg/U3xiWz/zRESEmKqoaFxSCaTtRo8eLDU9APq/Z8aS5ZQ+NV7QsRdXV1x+fJlcdmyZaxz587o3Lnzf/EG/xfh60se4H/8g4ye/xJ69eoFz/x8mK5axXFxcXBjDPVNREEQuKVLl4rPnj2Dra1t423i/vlPysm+d4+I2oc84bm5ZMA/e0bGn6MjqhQKPJbLMcHN7a9BtIG64kT79xMZHDmSCM1HGP/9+/dnW7ZsQWZmJh7UVQ3mHj16JLZr1+79FxBFVPfujeqgIHHMnDnM3t6eMcbQvn17JCQksEePHolOTk7vXEMQBERERMDW1pbv1KkT2np7cwgOJkHrp5/IAP9Alf/S0lKcOnUKBgYGWGdhAWdBQJqvL0r19PB482Zh9r17nI62NtpIpfBZuVKCgoIGe5WiTx/62rCBCMSQIZQr+uABrfvSUvJqxMYSqblxg8hueDh5Zc+de7Pn93ugp6eH7t27c35+fli9ejVMTU05Dw8P3L17VwwPD4eOjo44bdo0pvE+EnbtGkXa+PujuLiYk8vlkL3dSkVPjzwY0dFETLt1IyO/Hqqrq5mPj4+Yk5Mjrl+/Hi4uLlyvXr1qCYqOhwfU3N2VUqmU6969O+fk5ITfV69moTIZZDyvzP39dy4/P59pamqyN0TGuXMpVHv7dhrDu3cp1LhXLyIfXl4NPtbJuDjYqauj1e+/kzgQGAjuyy/RQi5Xytet43dVV4vNPTxYm4ICEtJKSmjOZ2TQ2lW1nLt+nUiagQGRwxYtyFP62WeUlnL2LHKOHIGOmprYmLgxZ84ctmXLFuTUz49XVc2Pjq7tYGDv44Pjjo5wP3yYw7NntSLBR8Hdne61oX7yAK5evYq0tDQkJyejc0oKXyKRQHfSJKozUFREYciZmXRfa9e+U+xRqVRCFEXExcVBW1sb2traMDIyqi3ydX/ePCHq6VPOxMlJ5Q2rfdLaf6dMof20ooI+48yZ2gJouH6dRI76ZPvoUSKXW7cCoKJqiYmJIhoitaoxVYX1V1aSUGVtTd768nKaLzk5gJsbWKtWMGjdmmHQoNqKxpb0xQBATVMT06dPR2hoqLhr1y6mqamJcePG1bY6wvz5wIkTqB4yBAEtWnD21669czslJSWo7tgRUXI55GFhyoyMDN7FxUXIy8tjz1+9Ylixgtb/li20vkJD6Z4VCuiUlTH+/n0Rly4xdO9OZ9GdOyQa3L5NH+DhQR7FKVNIZKoBz3Fw+fFH3FFXFyN79WKDtbXRokULIkdjxgDx8VC4uCA9PV0cMGBA3ca4bRsQFARBELB//36FKIoSlpND1zY0RLKREXxv3ULPbduQ/tlnyL1xA2WJiVg/dy7UDA2Voqkpd7h7d+ZsYQH+yRMSBfLyyOYpLSXRsWtX6M6fL+5r1Yp9JpVCWlgIpVIJA2dnsfr5cyZ3cWGZrq6w9vSEmZcXcOoUKgoL8So/X2nbti2PNWtIIDIyoiiDn3/GXYkEfceO5WvXJQDN+/dhmZEBy0mTsHHZMmUrT08e6uqU/qKuXrd3HzpEYg1AbQgjI3G0b19MVwkgPXrQ18GD5LneuhX49ltwGzagpUwG8xUrKILi9Ws6Y0aNItGiVy/aIwcMAD7/HMJnn6G8vBzqMtXtnwAAIABJREFU6upQT0+nPTQ5GXK5HGVlZZx1/fQiTU0Kfy8uhtVXX9F+17w5EhMTxbi4OG7ixIl1vyuR0Bz6AO7cuSMeO3aMOTs7Y8SIEbQpt2pF+2dxcYOFzmxsbIRz586xqVOnNn5ua2hQkdGICBJG3/1g2i/lclT+8QfShw/nAlT2uyiievZsHDY1FeyHDkWHWbM43L5NIlJCAr3j7duBo0fBeXnBTlOTpc2fL1pPmsQ0YmJozwoNRXp6Oq7u3s2NHz+eohWfPCEx88QJKEURERERZUql8vNPedofxiey/TdGSEiIjrq6eoynp6dDt27dJP9rBZj+26ispMJM//xnw3mb9aCmpoYpU6awkydPitHR0Sw+Pl6cOnXqXzOHWxWemJFRl0/3X4B5x470mQ0QRI7j4O7uLu7bt48JggA7Ozuln58fX1tld/t2Mgw6d6bw0Q9FUXz/PXmC9+6lNh86OrUhtpxCAYDCMP9yGDqUyOLt22Q03LtHpOM9MDExwcKFCwFQWy5BELBt2zahSZMmbyzc8vJy3LlzB1paWvDw8EB8fDzu3r0rvA4J4b6YP/+NQmsmJibo2rUr17WR3u0KhQIVFRXQUFcX2hUUcOjYkd7JrFlElD4C1dXV4DgO06ZNw927d3Hq1Cl0699fcPn6ay5+zRpu+RdfwLNpU6VBQgLTvXGDQ3IyveP588kLyPN1IciRkfR9VQ53r14U6lpZSXPKzIxCs7/8ksjFpEnv9mj9N6ChoQErKyshJSWFGzlyJFq0aMEpFAqsWLECt2/fFtu3b9+4sbRnDyorK3Fs/35lZWUl37Zt24ajaXieogMOH6ZQ3XoQBAGMMdy4cYN98803LCkpCVeuXBFXr14tTNfQ4KWHD4M7dw6dAL4TqKDepk2blJUKBT/90CFUGxryV3/7TRw7diyOHj0qhoWFCVOmTOFRVkaGV2UlEdMjR5AllwPu7uLLHj1Yq40bwW/e/O69hoej7YEDoiQkhLElS8ggnDEDcHJCXxsbXt61K5olJrKs1asFVFXRS1u0iLw8qt6tv/1GQuH27eTR7tqVyG9eHo3B5s21fdJrq/w2Ap7nYW9vLyYnJ9d9UyIhwllP2GCMIXDyZGzT18c/fv8dpunp9PkN5e6+jTNn6L4aJ9uCpaUl62tvz1536ABJfW/bvXs0J2/dopzzBroqFBUVAQAeP36srKqqYpWVlaykpIRpamqKVVVVrEleHhvdtSss+vVr/ICWySgiYf16ItxbtpDBrK1N++bbWLPmjQ4JFhYWuHr16scZABIJ7QFVVUSAVJWevb2JWFy+TN6xmzeJ4DZwNjHGMHnyZJaSkoLw8HD88ccfmDlzJoxrUoiEXr1wZMAABPTuDY3582lN1wgnOTk52LJlC9qfP492T5/i1urV/Ny5c6GlpcUtXrwYHTp0EGFry8Bx1N9+9mwai/XrAR8fdDQ1hWLBAsqNlslIpDAyonV49iwRuh49qCjaixdEuGrOOpP0dJzv2BFP9PRY7169xEOHDjFHR0cqutepE7jTp5H6zTdQb9YMDjVzGN26Afb2yHr6FHuOHVOWlpZKACD34UPo13SXOF9YCPVDh9D2m2/QrEMHlHbtitKxYyEIAniCUFpayq66uKBzu3YUxaemRhExGhokJI4YAUO5nOUdPozN9dauWXY2c5FIcPv2bTx48EBYYGzMYds24NEjxHl5YeDlyzz69KE9tqKCzvaMDHpPmZnCk9GjubZpaSTIcRy12ho5EigpQXlFRe07w8CBFNJ/5Aitcbmcxh0AkpKgVCigFITaSv+oqiIxdMgQ+v8hQwAvLzBBgMvZs3hhbS1a/fgj09ixg4SMHj1ov5o2jbqy6OgA27YhLCxMTE9PZzzPw7qiQuHp5cVnnT/PVMW9CgsLoa0S+FTQ06MQbTU1iJ07I8PWFp2nTasTfAB61ry8unZrDSAmJgbR0dGsffv26F5TcR4A7Su//05C3RdfvPN3Xl5e3J49exASEgILCwsxKCio4XPkxx9pDhcW0lytb6MvWwYolVD06IH1w4YhYNQoqv9QWIhyNTW8On0ahkOHovXmzRyyskigyc+na/bvT/tCXh7QpQs6/vwznubkYMeTJ+KY7duZlpYWysvLERERgfbt28NSJVJv2kReb47DyePH5aWlpdcEQQht8N4/4Q18Itt/U4SEhDB1dfVtTk5Ott27d5f81Vp7vYH9+8ngtrD4KA+hVCrFoEGDGM/zSEhIYMuXL0dwY1WM/8zQ1qYDMDycDKf/68rxlZXkUQ8Pf2+lzD59+nB9+vRBbm4uLl++zIeFhaGlrq5Sz9yc896wgWl9+SWYKtSsIYgieSL37SMDUhXKNW7cG7/2/PlzSKXSBguV/CXAGOUnLl5MB+nGjeRJ+QiPm4q0NW/enIuJiUGzZs2g8v5FRESI6enpTEdHRzx16hTTUFMTpy9fzrGDB//tsVJXV8dnzs5I2buXEyoqwG3e/MF+529DV1cXEolETEtLY23btkXr1q1rC9rMnDkTjDEYGRmRF2jNGhqXDh3IMJg9m0Ktnzwho7J3bzKIXVwob3/tWjI45XISLVJTycN29+7HEamPwLBhw7h//etfOHbsGPr37w+JRAIXFxd269YtsW3btkhISICNjQ309fXfrFVw9y7QpQuSvvyS5zgOGRkZ7xbDUSEujoQFaplTizNnzqC6uhr+/v6ihoYGc3d3h6urKzsRGckOHj8OG3NzQXLtGtemTRtERUWJd+/eZR4eHujatSs0GIPm06fo2bMnA4AhQ4ZwG9avFy9OmaL0T0zkYWpKkQIJCYCWFiL37lUOYIy/YGWFnBs3UBgSIsDRkXl4eDBtpRJNLSyA7GxIjYzEe5mZYms/P3qWCxcAHR0wW1tIpVKkpqYqq3r04DB+PK3luDgKd5RKgYkTKcz/4EHyhPXrR0bgmDFE+rt2fWcP/9DZlJSUJPr4+Lw5rv36UW5xvdZZbm5uuH37tnBFTY0bpKNDobKGhh+OdvjiizfDst+CpaUl09bWFrymT+fxr3/VCYjp6ZSru2RJXbX16mryBNcTAgoKCqCjoyNOnTq11hOam5sLURTZzp07xc6xsYy7fx9XDAxgaGiIRtv/NW9Oa+DmTRJSCgrojPjyS/pvVZrOiRNEiOqtD0tLS1RUVEAQhHf3iNJSWns//kgEoqCAnkNVObm8nDyQTk4kYKSnE1nbt4/EMV9fEhtmzaJ3YW9f+/wODg5YtGgRduzYIa5bt4717dsXXjURFRk+PspLx47xvaKiRI3qasZt3AhBEHDkyBGhefPmzH/4cMZlZsLGzw8AhZIrlUrY29szUaEAKyig+66spD3BwABIT8fBzZvFFk2aiA6TJr35oKNGkTCwbx/Qvz/EpCSkbdsGm5UrwUdFAf7+8Nm6lV83diyaubgIbdq04aKiorB06VIIggAtLS1hzLhxXPHs2aJny5Z1wpqaGvKCgnDXwEA0GTyYCwoKQmxsrBAXFSU6tmzJcwBkMplSoqHBIysLuHoV7sHBeDZpEqxsbQU7FxehU6dOktUrV4pCWhrDmTO0P/7zn3XVp9u0AXge7gCTSqXYv38/tLS0RIVCIco1NblKbW0MGTIEhw8f5vDLL/ReZsyA+ZUr2GtrK345bhxDbi6R48ePKXKoXTu83rwZ/jXt67BmDUVofPYZRQ8xhsrjx3mj+nU6evUicU2hoLF//BiYNQtpu3fjlrGx0unoUf5qTAxaBgdD/fVriB06QAcgj/jRo8C4cZA/fIjUpk3hIZeLsQoFS7t4Uej6/Dkn7dIFhosW0TMnJtLesnYtXnl5YfTo0TDR0UHJ6tWS+LFjlSWvXuH+/fucRCJhBo2J2BoaKCsrQ7ylpZCnq8sCNTRonqi6PjBGhLYRPHz4ENHR0WjWrJnQvXv3d/f1oCASBRpAbm5ubRRJeXl54xElHEdrxd6e9s7vv6/72d69QFgYuF27UN6hA6KjowUxLY1ruX49/pg/H9ZLlyoHDRpEbXvt7ant5NOndJ2lS0nQPneORPP9++HAGLuyY4dy3bp1/PDhwxEdHS0YGBiIXbp0oX0pIoLevY8PUlNTce/evbLq6uohwcHB71dEPwHAJ7L9d0YfqVTaq1+/fpp/aaK9eDHlxRw+/G95rxhj6NGjBxISEmBkZNT4ZvdnB8+TsXrv3n+nWJqPz7uFqBqBqakpBg8ahKzoaOiNHMnfGDUKawYOFNubmor+DZGOqCh6ltBQCo/iuLpq3g0gJSUFpqamSrzd//mvBI4jg/X1a3p/Xl5kOH3kmuzUqROuX7+O6Oho2NvbQy6XIysrCyYmJuL06dNZVlYWTI2NmZpS+U4F8g/i9WsgNhZu27ah2MpK/NndnUnPnBH6qqn9W0XDJBIJpFIpkpKSlE5OTnx9Qmr8djE8VUj6qVP0b2oqGfMcR0ZQ9+5EfoyNKf9u7FgKk505kyIlHB3/1yv0SyQS+Pv74/z58+jfvz8SEhJw7949sbq6mi1WVTevgaOjo9Lc3JwzMTFhRnp6SA4MFB0dHJhHq1aIiIjgYmJiGk5dmTmTSM1bZPvFixdKXV1d3sbGpnZC8Kmp6D9/PvfyxAkkZWayq5cu4eLFi1BXV8fEiRNhYWFBg9inD3mdlUqA56FVVIRpKSlMsnMnnz9hAow2baIL7t8PxeXLyM/L4/moKIzX1UXS3bui3b17bD/AkpOTMWvNGqQHBKDou+8Qr6eH7LS0ukE2M3uDPDo6OrJz586xbdu2CYMGDeJk16/TD86dI2+hkRF5rlUk4auvqMXUWyH5paWlyMvLe7f3dD0olUoUFBS8Ox+1tIgwPHgA1MuFzsjI4AYPHlznkd24kYz89xFuiYTIxsaNVNDtLXTq1Int2rmT9756FZYqb2ZSEr3TvDyqSzBjBn3/iy9ILLpfF3X5+vVraGpqvnEGqdK5vL29hYsyGTiOg+LBA5aXl8c1SrYBEieTkihH/IcfKDS6Tx8K8waoZ/C0aZSfX49sq6urQ1V3QyaTkdB19y7l3xoZ0bXs7GqLCda239u7lwzwefOo+KO1NZ3Jd+/S7w0aRCKKTEYto8aPJzIeHk7G+5AhgIsLRo0YwdZv3Ij4+Hh4eXmB4zjMmzePL548GZHffSfol5ay9q6uXHK/figyMGDjx49nXHb2G9FAlZWV0NTUFHdu386+OXsWGnp6RJyNjemZz58HyspgZmbGlZeXv1vIKTCwrnf0ggVYL5MJeSdPcjpVVeI0MzOm4+cH2evX0DcxEVXpILNnz8azZ8/g4OCAM2fOsJ3Hj4t+vXoxsy1byPtbU0zykY8PKlJS2ODBg6GtrY0OHTpwpzdswI1790TrgADm7OzM371zR9nazIzHmjXgu3aF46tXcPzxRw6Ojhz69sWUmzfZqZkzBeTlcdi7l0STb7+ltTN6NHnoJRI0a9YMgwcPRmRkpDB//nweycnA5MkQmzeHIAionj8fkiFDoJw1C34bNuDhw4esesMGqH31Fd3zmjXA7duoTk/HTUdHzm/TJnpn8fEkeL98CQQEQFlZCQNPT8hWraK0j3btqG3b1q0UUaRUkuhlZoa8tWuFMk1Nfujx4zjq4SGmdusmtIiM5HDjBvOuqRCO3bvpvJfLUTJxomA9aRJnNnMm1OLjkRsTgyuBgQi6fRsan38OoXdv3D9/Ho4xMRCbN2fl5eWQ3bkD2bFjsPrllw/aA0VFRbh586bw4MEDpuXvj8mTJzPJiBG0TlRnD71gij7T13/nGgU1nSaePn3KvXjx4t0IO19f2vPi4ijqox7c3d3Z9evXUVZWBqlU+uEDKyaG9qiKChLzVHU+QkPB/fYb2uzfr7TavJk/PGIELqxfLwzv04erPQcA2of27aN7ysggweyLLyikvmYucwAmTpzIR0VFYRsJc5yWlpawevVqhY5cjkGrVklipk9H2fPnSE9Pr1IoFGOCg4OLP3jvnwDgE9n+20JTU/MfnTt31v5LFwl79owO+0mTPqqAzbt//gwcx2Hs2LF/TaKtwo4d9G9WFnn3/y8wdSp5m9ev//i/uXEDmD4dFseOATduIMDODkkbNohKpfLN8V64kMKaZLI6kvnbbw1esqioCI8fP4a2tjaSkpKQn5/PHz58WNm1a1e+wXYuNSgpKUFhYSH09fVRVFQEAwODhtu//L+CTEbzGSDjNDj4o4qnZWdnQ6lUori4WAgJCeF4nodUKmXTpk0Dx3EU/rVpExn+H5ujCpDna/duYPBgsN270cHIiLkWFeHUqVPswIED0NPTU/bt25dv2kAf5fDwcOHp06ecnp6e0sTEhM/KyhIEQeCaN2/+74si9vY0v5VK8pjk5FAemyhS4ZiSktp2Lv+X8PHxwfnz5yEIAoqKilBdXc0A8pb27dsXCoUCKSkpePHiBf/ixQs8ePBAIZfLOZmhIecvk8HZxQXe3t5icnIya5Bsh4bW9f6uh9atW/MnTpxAYmKi0LRpU6oEq60NTJgAYzs7HDp7VhAEgff19RV9fHxY/eJpeP2avJzJyRSG2KcPuAULEDZuHLLMzdElJgba2trQr6hAyW+/ic7NmsGoe3eGlBSYrl/PEBmJ73bvhvzbb5Hbsyd2nzsH7QsXlLa2tnyvXr3qPqek5I32WC1atOCqqqrw7NkzbN68WZg/fz4Zk0FB9AtyOQlLgkBVuTU1yQj09ibinpoKzJ6N+59/DkcdHVh98QWHo0cpmkEmI1HVwABgDBzHoUmTJsK+ffve8AyDMfLivNXr3MzMTJmZmck3b96cokhatCDD9dYt8go3hgEDGo2UsGEM8//1L6yurISoowNlcTEWhIWBX7SICFxNGzcAtK9lZdHcvXcP6NMHUqkUb/Qhrgc/Pz/eT0MDWLwYJXv3Yu3atY3fowrTp1NBqZwcIsWtW9OYV1XRuF29Wue9qwc1NTWBffklhyVLyBu/axcZ5V27ksgQEAC8XdE9JYWiTZYvpzSOyEgiZiNGUNhvYSER6u7dqVjclSu0ljMzSSyrqACmToVaQgJspkwRjQ4eZFEZGcquwcF8dEwM0tLSMHbFCj7xiy8gvHyJl0+fgnNyYrGxsfA/fJiI0OXLAAA7bW18/eABu56RIeYtWcIsVdFT/fqR1z02FggPx8vOnUUB4KP09BAQEECe/KlTyWtoZQUcOIAX5eUQysq4OeHhuDRnjiCPjORTHRxE91On2KAFC1jY5cusU6dO0NXVRcuaSJ/+/fuzPXv2KKPS03l/AwMc/PxzpHt6CoIgiNX6+tyAkhJoq6szANDS0kIfCws8qK7G1q1bYWNjA6vjx3l89x0JUd26USTB0qUkYISE4O7z5+Lr7GzyRH71FUUYlZfTHLawoHoIX34JANDU1ERpaSkvCAI4PT2gvByMMVjxvKB48IA7Nnmy4H7nDpd8/jwYgKpRo6CWmUm2lFQKTJ2KvOBgGDZpQjUCXFzo69Ej+qzJk/H00CEo7t9HQUEBNK9ehfatW2CRkUTi9u2j+TZ+PGBpCb3KSvGliYn4OimJjTQ3Z/j+e16Rno7bTZvSPrBqFRG/o0dx+vhxwSctjeHWLaiHhcF39GhOcHPDMV1dbLl/H152dkLV7dscUlLEmNBQcVDLlpxDs2a0fzbUIq4B7N27VxAEgfPx8UG7du0oterAAVonv/9OJPnIERKaGkll6dixI9zc3LBq1So8ePCgjmwXFdFZ7ulJ8/PMGbr2q1d0PSsraGtro6xGAHunjkdDsLKifcPenvYOdXXaN9etAxYuRLdBg/j7p0+LnTt3Rmdvbw6XLpHgOH483c/y5eTM8PCgqICNG0kkayCNr02bNrha016zvLycE5RKzquwECkrVkDP3Bx3Y2IgkUge/fDDD6c/arA/AcAnsv13hryysrLxsMY/O1RtKu7cebfC7UeiSZMmEAQB9+/fR4eGqlr+VWBsTIfVgQNkePxfRCo0aVKbR/lBpKaSZ8XRkQxsK6vae6qurhbv3r3L+djbQ2f7dmr18+IFGV9DhryjANdHQUEB1q5dC0NDQ0EURUGhULDWrVvzr169YuvWrcP48ePfzLmqvZ1UhIeHQyKRCFVVVZyGhoZQWVnJ+fv7Kzt27Pjn8Yqr3tuyZXRQnztHY95IcajExEQcOXIE2traQnl5OdevXz/o6urC0NCwrjCdQkHEvXv3jwurfvSIvCWjRlEhlJoQfgbAwMAAI0eOZDk5OXj06BG3a9cudOvWDW3btq0NPc3MzERSUhLn5eUlmpiY8C9evFB27tyZa926dePF8upDoSAD/OBBIlUFBWT0f/01iTepqeRlO3aMxkZfn0jTsGFkoP4ftCxU9bkGqCaBn58fOnXqBEEQasPG1dXV4ebmVr+iNP3A35/eY+/ecHZ2Znfu3MHGjRsVQUFBdTUyfvqJjCaV2FIP0dHRgoeHB9e7d28OlZUU+bBpE7BoEU4fO4b8/Hx+wYIFkEql7y56Hx8y2FU5u5aW0OzfH56lpXAqK0N0dDTU1NRQXVWFXgB7JZWias0aqAMUtn/3LviKCmi7usLaxATK06ehpaXF6+rq1q4zURRRlJUFSXY2dEHhz9u2bYNSqUR1dTVnbm6uwNtnzMuX5O1R9eGOjiby7e1NBmlKCuTGxijR0UGndu2gqa3NcPAgkbhbt8hYXLYMmDkTzNkZg4cP55LXrUORpib0RZHChvv1o/kyfjyFi9d4pnx8fLijR4/C29ubKkb7+hIBnDOH1lxjVX/nzqXrNAQLC6hv3Ih5w4fj3M6daLViBZiaGoki9Yk2TSDyUC1bRtFYffrAwcEBpaWlTKlUNrxGDAwAKyswxqBQKLBs2TKB4zhx2LBhDfeC5zjy5CYnUwFNGxsaOx8f+t7pt2zkXbuAixeh4e4uSI8c4eDqSh7Oly+JaDTWprCykt7HggXkwf3xRxJjQ0KIqISG0vNfvUrn0vjxRNSmTydiNHcuXad7dyA7G58xxgoyMxEfG8vHdugAu5wcpAQG4n58PJoNGACNadPguWoVOm7Zgke3bws4c4bmVXk58PPPwIgRUNjaItrKig21saH9VBRpLuTmAuPGIb9PH7iOHcs6P3iAXdraQkJCgvjlpEm8GBuLC7duIWHHDmHK+vVcmJYWmrRsKUq6dmUDBw/mkw0McDgnh7W8eRNNqqsxMygIWRUV0F21qt6wc7WdDLIGD4brqFFI9fLi9Pr3hyAIcLxwoa4QIgCNVq3g6ePDLp0/j5y0NAy/cgWFSiX0RREsN5ciCXx9aV5qacFs3TrmfOwYQ1ISrRU3NxKB7O0ppHzPHmDPHhT07Int27fDy8tL4DiOg55ebbE8KyMjbJwwAcWpqVxhnz5ovXIlPr93Dw+OHcNLe3tU3LgB56IimJiYINfKCt6XLtVGxgCgTiB//AGIItKdnPBaRwc7TU2VxcXF/KwZM2D09ddEnquraS+eNw8QBDhZWPDtS0pwbsECjDMwALS1kfL772iyYAF5y0+dAnx9EVVZiWdOTqyvgwPDb7/RZ9vZgUtJgbWGBvKaNYPOwoWc044dUC8sZJgzh+HYMYpOed8arYf4+HixoKCAmzdv3hudHQAQgQ0MpCgjuZz2b0Ggn0VEkOCUkwOsXo3KtWuRM3AgAqur0XLOHPrb69dpvv/6K625xESybzIySNCprgZCQlC6ZAk6GRrC28sLuhcv0js+fJhEIV9fqvhtb09ntsousLCgfdPEhGxfX1+KYpkwAdy5c2BKJWt19ixF8+zZQ4R69myyv5yd69qPAnTmnDhBa7VeTYLS0lJs2rQJHMfh+++/R1paGl4FB4sm169jr44Os6isFCQSSalCoQj84EB/whtgHypA8gn//0RISEhvS0vLvVOmTHm3VOKfHQoFVXtctoxU9f8QxcXFWLlyJfT19ZX/+Mc/+L+0l1+hoNC8ESP+d718UVGU67d794d/VxCo+ubEiWRo7tz5DvEXrl3DgT17hAw1Ne6LkyfJs/UxJAzAy5cvsXnzZnz//ffv5BWeO3cOt27dwrhx42BpaYmCggKcOXNGWVVVhczMTD4wMBA+9cKoVQS8bdu2YklJidCxY0fe5CMLfv3XMGgQHbbbt78xjjk5OcjNzcXx48dRXV0NfX19MTAwkLm6ur6b39pQVe+G8Po1vevQUPJuDBz4wffy6NEjREREQE1NDU5OThg0aBB2794tVlRUoNGCL/VRXU2GS2QkGd/h4RRie+QI8MsvZCD27EkE4dAhKjYjk9G4qEKuIyOJPGzZQkXniopItHm7h+5HQBRFKJVKPH78GK9evYK6ujocHBywbds2VFVVwd3dHZ/VKyr1UVAZnTV4/fo1du7cKRobG4u1lWvnzqXK5TdvvvPnYWFhUFNTU44cMYJHdTWF6H73HaCujszMTOzcuVNs37696KfKn1ahsJA8Xb/8Qh6mV6/oMzw8ACsrVFVV4cHjx3B1dcWTJ0+Qtn+/2DYsjKVOnYp2gYHkITp6lD7v5ElcunRJvHjxYu07NTMzEwwNDblXr14JRvHxrEBfn7kPGoS4uDjRysoKXbp0YYmJiQh4uzaDKNK1+/cnQi+VAtu2QTQ0xI5Jk5TlEokInkdhYaFEoVDghx9+aDhnWxDIiJXLAZ5H7Jo1QrZMhoHGxhweP6Yc8G+/pfDLpk3JA5uVBTRpgpUrV4pWVlZs6NChddcrLaXKxCkpZCi/nYpw4ABF4Dx9+ub3Y2JI+PntN6CiAuUuLnjYpAnaREV9XA2NI0eAEyew1NFRnDhxImu0G4hSCXAc8gsKUFlZidu3bwvPnz8XZ8yY0fgiTUoisdPGhgjSnTtE9C0saE5aWVEP7mvXgJUrseWrr8TeJ06wJtOnN1oM7g0cO0YezN27KbrB0ZHEMC0tWq8pKUSsVdWYVa219PUpIm3ixAY9kenp6Xj6+DEq4uLwsLgYPc6ehYZcjietWqHdlSuitLyXKlplAAAgAElEQVScFS9YAKuHD0lo9/YGLl/G2cBAMe7lS6ZQKDBv3jxV+y06Y5o3R1FxMbZt2yYayWTCOGNjvqRFC1ydMwfdZs7EvqIiMSs7G518fZl2aipMu3eHiYEBjYNSCTEsDL+Fh8PCwkI5ZswY/kZ4OOKuXsU0mQxqDg70LG/j6VMSLWNjaS998oTGoqZwF775BhgzBsU2NriwahVyRFGZLQj8lM2bcWvIEAQGB0Nnzx6gvBwVLi6IvHAB3ocPw6pFCxTv3g3tlBQULV+O8l9+QdOmTek5g4JQtXUrfjt4EEOHDqXWd4JAhHbHDuQOHIgkNTXBbvVqztLAAFxgIDB8OMSdO3Fv4kRcU1dXlpSUMFEUIS8r43xiY9Fj4kSyK1Tv0N8fkEoRMXOmQkNDQ9KnTx/88ssv+Oabb6AWFUX2h6rNnbo6kc8tW5D0/Llof/kyU7OwAJ4/x2t/fxy1ssIra2uRMzERnJ2deetvv0WTSZNgNGcOfdaYMRR5Eh6OuOnToeXkJLquX8/g7ExzWxAoRaO0lJ7/fdEpAF68eIHQ0FAMHDgQHh4eb/5QRapXrCByeu8eRVNpa9P56OBAxRtNTCB++y1+7tABjgkJ8AkMhN20afT7zZvX7feCQPffuzetjZr2nBfPn1fGnzrF9+7bFy5SKQncXbrQfq2uTpEoYWEkHkdEkE0VGkqCUqtWtMbCwkg8a9GCPOf37yNu7FjhSbNmTNqpkxAYGMh/0GNeUABs3Ajxm29w7PhxMSMjA3l5eaxGNKIaMDk5tWLlc6lUFV4eFBwc3ED1zE94Hz55tv9mCAkJkQBoAaAtx3F/vfDpxERSz2/f/o892iro6empirOwQ4cOYYTqQPkrQiIhBd/ZmbwI/wHZaBCiSC1QPgS5nPKsvb2pYN3bhP/UKaBXL3Br1qA7z3Mb3dzIGPw3EBMTo3R2duYamrfdunUDz/PYvn07HBwclGlpabyVlRVnZWXFvLy8akP9VLC3t4eDg4MyJSUFEomEDw8PF2fPnv3nWg+HDtH4L1xI8/7kSWRkZGDbtm0QBAH+/v5ix44dGcdxrEFCUlVFKvitWw2GKAOg6ycnU964tzdw/PhH5zy7uLjghx9+wIMHD3Dw4EE8evQIgiAwZ2fnd/Poq6qoWE6NlxcjR5K3af9+ejYHBzI+ly0jQy0igshRaiqFJU6aRAajypDR0yPP2vXrZGANGEDzaf9+Ikb37pEnwdu7UbHh1atXCA8PF+VyOdTU1Gq9iypoaGiI0dHRTKlUwsvLC30/MkTxDbx4QXnlNWF5MpkMw4cPZ3/88Qe7dOkSFMXFaKqhAfuaUFgVHj58iDt37iA/Px/m5ua0tlWe6hpYWlrCz8+PnT17lt2/f18YNWoUZ6CvTx6M69fJ2BNFqtprbAwsXAjlhAm4mpsr+Pz+O3dv3jxBMmsW03n9Gi8mTRJ7PX/O9IOD6T2kpxNpGjECJWvW4GJhIWvTpg1KSkpQUFAADQ0N9uTJEzDGuL4ZGWJ1ixaIvHVL2aJFC75bt27gOO5dog3U7RNTphD5CAsDEhMhnDuHwPnzeSOpFA937oSSMVjVeHMbBMe9UTviWfv2YnFxMXl0jx0jQWLBAhI7pk4lg9HDA7hyBQPbtGF7LlzAzZs30bZtW7qAjg6JNZMnE0mysXkzxLJfPyIPbyMnhwSe7Gxg6FCUCoKo2acP++hilVpagL4+NDU1hdycHL5Rsq2lBdy8CaMagiCTybhVq1Zhz5498PX1bbhfr7MzeRZ//ZXCxs+epbDkmBgiMI6OdFb07g3ExsJAT4/dGD9e+VnPnh+nft66VVe0UleXIjPy84mcDBpE3tZx42gf4zh6hilTSDjQ0qI5NmwYrd3Bg8kzCMDW1ha2trYQu3dHYEUFXgYFYffu3eji7Q2zSZMYpFLojR9Pn6emRjnG06YhOywMCoUCPM9j5cqVUFdXF3meF0fHxHAmv/+OTfv2iYaGhhg0bBgPHR3o3L8P/5gYlN69i9Rp09iM2bNhKJfTfBk1iubM9OnAqlVgsbEICgrCqlWr+C1btlD6jrExyqVSyG7cIGIkkdQRaYD23GXLyKO/cycJEkOHUkFCgAicqSn0AAzctw84coSvMjUF++03KNPTsWXnTswdNw5o2RJlTZuKeZ074+LkyayE54WCtWs554cPYZaTg7j9+4X58+dzO27cEEo8PbnB336LNoMGiWfPnhWaNWvGg+MoSqGqCko3NyQBYidra4p6sLMDGAM7fhzuVlZwr9m3ly1bJogch2QPD5isXSs+vnNHWergwNna2nKe7dqBb94ciuvXedsRI5CRkQENDQ2oqanRu750icRPlX3WoQPg64tif3+W7uYGx5r2aroTJmDAnDnglUqWGxLCl4WEwNjUVDDS16cD6Px5WuM//QSUlMCF55EdG8sqb92CxvPndC6Ym9P5deYMCYPvQU5ODnbv3g0PDw/Rw92d4fVrus+AAPr7f/2LPNAxMbRfzpxJ59Xz57SnXLhQG2XGTp6EIiQE+f7+RLSBN2pDQKmkObR8OYkte/bUkm19IyNWLpNB296e9hmVE2DFirq/HzaM/p0xg/YWPT0SdDQ1a3vLQyKh87p1ayApCV6TJnESnkdCYSG3fv16DBs2rK4ifkMwNETxrFnI7NZNNCstZa9nzsSIESNQW/BOEGj+BwYCs2Yh49o1QV1d/VZVVdWW9w70JzSIT2T7b4KQkBDG8/w8iUQSLJVKOVNTUzEwMPBPlLT6kVixgja8/yUvtEQiAcdx4kflzfzZIZPRYZ6d/T8n23I5FTPavp0MicZQWkp5YmPH0qHo719HtBUKOgjt7Ohad+8C4eE4tXcvLKqqBACcKIq1BrVcLse5c+eUjx494u3s7JS9e/fm67dkk8vlMDAwaJQQBwQEwNPTE1FRUXyXLl3g4+PzXvI8fPhwHgDu3buH8+fPf9y41OD58+cICwuDVCoVJk2axDVa8fR/CsZIwb9xAygsxOt9+2BqaipMmDCB09DQeL84oKZGRl5jRPvhQwo109KikN4G2hJ9+PYYWrZsCZlMhtDQUEAU0crFhcf588DFi2RwjBlDHrUhQ2huAuQRUxGat1M4SkspFO7rr6m4U1xcwwLAvn00v1RwdiaSJZcTWV+4kD5fW5vIUk37l4qKCkRERAjp6emcnp6eOGTIEK64uBimpqaQyWQN9TH+z2FuTmJVvQiDmnZr4sWLF1n75GTBbutW7qq1teAdFMTt3r1byMzM5Hieh6urq1BeXo727drxKCkho+cttG/fHl5eXggPD2c7Nm3C3MRE8pQoFCQ4qGof/PEHBFdX7DIxEYrU1UXja9fQmuM4bXNzyE6eRFeAKfX1IRob1xEjAHkmJigLCcH/x953h0V1bl+v95xhZuhIB7EAUkRRELCBomLB3tDYayxRY43RJN4YTVETTTQx8cYaazS2oCIqEgEFRLAgoiKiSJPepc6c8/2xGQYElJR7fzf5XM/jI2WYOec9b9l77bX3Nnz3XQwaNKhutXVWXV2N7du3o6KwEA6tW2Pp+PGvdtIqKsjgPHOGIn3t21MO47VrqBw8GM+++w6tqqrgLopEmmza1KwhrqioQEZGBu/+7JkIb28ymjdtohoTQ4eqX5iSAujpoe2AAZiYnIxQCwu4m5iAU9UdMDGha9u6ldQSBw+q29vJZNTf3ddX3b/61i363seHHFaZDKc++EC0trFh7SoqIJPJXltJHQMHItneHm4LF/Ktv/uu/nyui/v365EL2traGDlypHjnzh2cOHFCrM2LfxmjRlHth7IyIrymTiUFhUJB+3q7drV1EQyvXMGTJ0+aM+TqPNa6DsbRo3RehIXRXF+7lvaAZcvoedQ40+B5Gi9RJALj++/p9dnZtFfUFE1kjEFTUxPXrl0TbG1t0XvIEPU9rl5NkT49PXouK1Zg2rRpLDo6GufPn8fKlSsRHx/PcnJyRH7bNuzdvBnGrq7irFmzONUzKTE0ROGdOwjYsgXvfvcd9MeNozNUW5vm0IkTRCj4+UEoL8fzyEhwHIf8/HwMGzZMLCgoEHfGxGDZ9u2cZM8eIhcePSLiRvXcvbwo8n/iBBEQlpZUhEsioTn2ww9EUKxYAZw4ASnPA1ev4vGlSxhx+DCNye7dwLp1bNIPP+CndevEnp6eXOfOnZF9+jS0tbURdvMmt2HDBhgaGrICY2PEPn6MNl98wa6PH8+np6dT3Q6JBLh/H3x6OrLs7WmdqnLoV62i/XbnToDjIAgCqqqquCVLlkCpVEJ59CgzTU2VnC0tRXR0NKpKSpRtdu3iRj98yMrmzcPD9HRopaQgfuJEIWfuXM710SPoWFio2VaFAli9GkaAEL9qFdeuRw/AygqCUomCdetETRsbZtO3L1X8HzOGw8GDlJOup0f7l4kJ4OiIkh49EJORAes1a4hE3bOH5kqdVmVNTtf0dCQsWCBa+/iwUQcPMqxZQw52UBClSk2bRutER4f2ABW2bKHr/+orIooiIuicAdCpUydleno6Q2OpmNeuqe2wIUNoHtW0EOvcuTPn7++PjIwMyGQymDVSP6EWGhrqdrbDh5MKyt2diGV7e9rTUlMBhQJcVBRcBQGuCQksTSZDUFqaeJvnUeHkJGi0aCFqamoyLS0tTi6XM9XedPXqVVjb2mLwgAHoXlfpAxCJ6OQEzJ+PkpIShISEVFZXV097U338j+GNs/3/CTQ0ND7R09N7b/z48VpNsuf/yygtpajFl1++vlXL70RZWVm9iNbfGhs3EiGRnk6b8x+FKmepqT7YgkBMb6tWJFm1s1MX3cnPJ6Nl5UqSJsfFkRSqBrm5uaKRkRF369YtREREiPn5+UwqlaK6uhpGRkYYPXo0goODsX37dowdOxYcx4ExhoyMDF5QSb2aQIsWLTDu5UPjNWjTpg3Ky8sRFRUldu3atfEoMV03jh49qqyqqkJ1dTUHgDk6Oop79uwRmjR2m4n09HRoaGjA1NQUgiAgJycHRkZGkEgkiHvxApcyMoSJx49z9hs3ImDpUk7WnIKAy5fXbxWiQmEhGTHt2xMrPnVqs6X89aBUkgFx6BBa5eVhrpUVJBs3inFhYczG0xNShYKMocOHyTBoTsT8l1/IuFy8mAqjvaryvSonMDi4XjVsyOVkPE2bRpG748dpPiclAbNn46egILG8vJxNmjQJNjY23H+0dZyWFt1HSYlaTgugW7durFu3bkByMneWMdzKy+OCN26Eqakppk6dCmNjY2hra1OxqlmzKNezCUhEEQaXLolv+fszfP45Gf2VlfTLmrksduuG+wEBYmFODt6ZOZOXBgbS2hw5EujWDYZ+fjRfUlIgrFqFexMnIjwyUigoKOB6+fkJ73p7cy+rVbKzs1FWVoY2q1YxtG//+rGIiyNDte4ztbQEdu2Com9fhPj6wmvKFCJlGCNjtaqqyZoFKmT9+itswsMhzcxkZzt3ViZdv46i4mJ+CGPwmDuX7mvq1Nq8bRYUBGlCAoTt2yEsXQouMZGcUWtrckoWL6b/MzJIfq+q/l1Wpo4qART1cXGhuWVmBixbhj7m5tyZM2eE6OhoTi6Xi0OGDGGvrB4O4NixYxCcnaHr4yN0rqzkkJbWsD7G7duk9FD1LQbQsWNHZmdnhy+//LLhhpWeTtHi9etpPuzcSetES4scFaWSiKk6MDMzw+3bt5u3GFJTaWzq1shQVXNWgeNIxRASQoThgQP130PV4s/Tk5zUQ4foX3Y2nfVt2qCsrAxpaWnc+++/X/9v586lAk+DBqlltdOmwdXVFefPn4cgCPCg+h+cmJaGsbm5aNGiBVd3by/w9kaGsTGyfX2ROX069E1NKfr/8cc0Tm+9BdTkyT/w8hINsrOZyUcfCZMnT+Z0dXWZIAjs6dOnwoEDB4RZ8+ZxGDmSVBELFlAk08aG9qjPPyci2tWVxjw8nIhNb2/aiwcOJIJi+XLaq4YOhSkgZOjqcklGRmLR9euirVzOVXt7C0uWLq19PlZXrgDDhuHdd9+FhoYGdHR0WHV1NYTqamQdPIhup08jytkZY8aMoc8LDIQ8Oxu6pqYUTQ0JIcLz11/pWUycCHz8MRR2dhAEAXp6epSutXAhsGgR+nCcEGBoiKGbN/NcQADg6QnN1q3hYWMDo4sXoR8ZyT0NCsL3np6YZ2gII4CUJTUOq0V0NJdQVQW0aoWioiL89NNPgrh4MZsxYwZ9/tSplLLm6EhzwNeXnrGuLrB+PbTOnIHQtSuYvj45yUuW0HgtXUrniwqJiZRetHgxqVk8PSGMHQvzBw+Yx/r1RI61aEF7z8v1C+pCFClHvaCAUlIEgdQYy5cDP/4IDw8P/u7duwgICBCHDh2qnliZmfS6oCA1campSQqMOj23L168CKlUKmpoaIja2trCvHnzJE2eRaJIJOrdu2SX3b+v7j2fm0skgWpvSEmB1c2bmGxgwAq/+gqyS5f49B49oKisRKqDA3IlEjFfX1+pEARWUVHBF/bsKcj8/Hh4eJD96OND5MuYMaTCkEhw4cKFcgA71q5d+/vkiG9QC/6TTz75v76GN/gPY926dS4aGhp758yZo2VY04rib4djx2iDmTnzLy8AJpVK2ZUrV+Dl5fX37dlcFxERVPxCJUX6vVi9miJOH37YeP63Ukn5RRs30oY/YwZt9tXV5LS1bElO+PLlZHi89LyKi4tZbGws0tLSBEdHR27SpEmwt7dHnz594OnpyRkZGcHd3Z2Li4tTREdHc48fP1Y+fPhQBMC8vLxYY0XQ/gxkMhnMzc3ZhQsXxOzsbKF9+/aNToLg4GA8efKE8/Pz4wwNDWFjYyN4enryYWFhjVeYbibCwsLg7++PW7duISoqSggJCWF37txBeHg4MjIycPPmTbGqqoq7W1GBMDc3+Do6ihajRjFMmFAbrW2AsjKS0c6bp67ULwhkAGzdSkby+PFUZKU5c768nJyK/fvp0A8MJCPH1pa+1tOD7syZ+FUUxWcdOwrdV63i2IABdH3Gxq9es6JIxtG8eVT5eORIMkQbabdSD1padJ92dvUc2Xpo04Z6v7Zti6qHD5H70UcozctjEwYPZqbu7mB/hGT4vRg0iKKgL5NfCgXQvj3azJwJ+zFjMGDAAPTo0YMZGBhQj15BIAWPm1vT6oQ7d5C8bBnkDx8yrU6dILi7Q9qvX4Nq01UtWuD47dtsYUQE01izhsbOx4eUMP36Afr6KCwsRHhMjCDdtIndLSgQLHv14qZMmQLrykqGgwcpz7rOc5TL5YiMjITznTuoYgyck1Ntga/nz5+jrKwMtcoUVYTuxx/rzwV7e1zPysLNuDgUKBToNWIEOSnx8WRIDhtGpFBj95+YCKSmwmDZMsDLC2ccHMA7OnI9e/bkEhISkJKSInp5ejL07KmOUAMAY9AzMUFcbq4ya/x4zq57d4ryhoeT45OeTs/s6lUy2AcPprk4bBgZ6NraNGfHj6eoalwcyfatrWFsbAxPT0/VfsDOnz+Ptm3bvrLicGpqKrKLizFu1SrGvvyS9s0lS+q/6OOPaa7X9JSui7CwMISHh+PatWvQi42F+dat5CgmJxPxOmQIjbmPD0WDP/mkVj5cFzKZDKGhoSwmJgY9evR4ZVS+8OxZpMbEYFdyMtLT05GRkQFoaMCwpIQk6qq0HY4jh8XIiBz/wYMbJ/aMjChv1dmZxnPNGqBVK3AvXiAyORkWFhYN2wTu3w/x7l08LiwUH8bHi7djYsS7JSWssLAQnTt3hnbN3sicnaHdsiW4Ojm6ZWVlCLx7F10+/xzuvXvDauRIcIyRMuunn8gZ69kT5amp+HrPHvFB27asz7598PT2ZiqikzEGe3t7FhoaypRKJdp06EAqlsxMIjQOHSIn0MiI9s7vv6evDx2iZyGKRCbduUPKpSVL6O8mTcILCwuEderEZNnZ4oTt27msb79Ft8uXGfPyovcASLmzaBE0W7asVVHwPA+JVIpdp06hS3y82MPFhfEuLhQJ7dMHbOJERMbEwD0rC/z69UQC9O2L8hMnENGpEzS2bEFiaCieGBjArVs3da/wXr1g/O23LE5Xl7VwcoLhv/9NJFS/fuADAmC8ezd0334bduPHI8HGBj39/MAUCirAdeQIhIMHsUFDAx7e3tDT08OePXuUpqam3NSpU5mOjg4RpKNH03zx9SXFQ48etP/Z2ADJyZDHx8M0JQXacXFgSiWt1+xsUqBMnEj7GMdRutL580Tade6MslGjsDUoCPddXMReo0Yxzty8ecVCAVLGqOoctG9PUnUtLcDBAboyGcycnHD16lXGcZy6Gvm8ebRW63ZskMupUOXs2WCMQRRFhaamJlMoFGjXrp2YnZ3NV1ZWssa6ewCgNXvnDpFKycl0r507U7S9RQtywFUpVvr6QPv24K2toT15MuQLFsCkXTuYaWrCvnNndNy8mXn89hvXbfp0zqOgAI8ePWJJRUVwNDNj6NOH9rqzZ+l+vb3x7NkzhISEFFdXV4/s06dPdfMG7g1expvI9v8HkMlkn3p5ecn+p1od/R689x7J4X7++S/voZuZmYnQ0FBwNfKpfwSWL6dcwoCA+jLK5uLRo/oRirr44AOKaF+6BCxapJbznzlDkcTCQoogvkJWPWDAAPTt2xccAQAaVgUF8M4776j2p/+4R2RnZ4f58+dz27Ztw8iRIxtUBQ4PD8etW7fg7u4u2NnZcXZ2dgwAX15eDgAIDAzEoEGDfhdZk5SUhIsXLypzcnL4yZMnw8TEBMnJyZydnR20tLTw/PlzhIaGKq2trTFy5EheJWE0NjBgSEqiCsBnz9IzfvlzGSOnWIXycjLAJRKS371K9l5WRgbjmTNk/O7cSbK4CxdIgjpoEJFe8+bR+9QppvS4vJyztbQUmz0O0dF0ncHBZGD7+Pw+Mm3AAHL6jx9/5cueV1ZiZ1kZMHYs5ujrQ7ZnD83V3FySmqsM2P8EDh1qXCGSnAwoFJDb2aFBVenr18lYfPxYLb+ti8JCGrN9+9Dm4kX8tGKFMsTcHOVpabxnWJhob2/PzFX5o7/8Ao2jR2Gkp4enBgaw27ePpIjXrkEAkJSYiIiICCEtLY0zMTERrU+dgl9WFofWrWm+DB1KZEhxcT0FgVQqRb9+/YSoTZu4vMhIpKSlwdHRUfDz8+P27NkDURQxffp0urdNm8ggfPnZymQQzp1Dp5YtBatFixgAhgEDyOnp0YOipV27kqO7bBnNj4oKet779tF+dPs22lZXA19+CTc3N7i4uODu3btKAwMDHi1a1PY6bjj8ybypKmc7JobeNyKCjP70dIrCHzpE0aSgIJLA9+tHEW8TEyKGzM1pfTQyZ7t3747g4GB1oa4moDqXz5w5I/RdtIjTX7aMiITAQHL2AZIhNwKJRILVq1dDeeYMrt+9KxampTHcv0/5uDt3EtF2/z6N27Bh6oJkHTpQxFLV/7vmOnR0dFBaWoova8bS29ubcnHrICYmRinfuJGP7dMHmpqayMnJERMTE1lkZCQGPnyIHsXFtNeoL5Ki1wEB5KysW9f0GtfWJpJw5Urg4EFItm/HaC8v8cGWLaLDv//N1dvnbGxw28ZGeODgwMYdOMDl8rwY27atcsyYMfWLXa5cSXNIBaUSyq5dUTZkiGjaoQOTSCREbGlqkqw+OZmI47w8KP38MKusjGl88QV0V62iewgLq02B0dbWxvjx43HkyBHY2tqSZFtFjJw4QRLx5ctpLSsUdK6uWEHPNymJFCj/+hc5i1evkuMYFwfh4UPW5vRpceqXX3JYuRIeFhZEYIwcSTnRHEdro4mcXJ1WrYTCefM4Kc8T0XfzJrB1K6Q9eqC3iYnw7+HDxdnt2vF3IyPx9OlTdExNRY6pqZg+e7bQ7do1/h1/f8gmTUKtYkVXF2zTJgz080P+oEFEoCQlUd656pyRSHD/1CmUxcUJnELBYf9+Uj+0aoXg334DAFy5ckX89ddfGQC+qKgI169fR58+fepfvL29OlJdpwCu4tkz/Lx1K0aeOwdrKyt6BgcOEGFhbk5kTp8+RPy/+y4AoKJ7dxz46Sexurqa6ejoCDExMbyLiwukUunrz+rCQlpDqnannTqRwzxrFmBqCjZkCNpPmABx0iT4+/uLycnJbLi9PXQ//JBUMnXRrRvNgwcPgPbt0bdv31rfq7Kykk9PTxdevHjR+KLIzqZz98cfiaApKFDneZub0xqOiqJn3Bg4js5xVcrH3bv0XNLSIE9IwIhWrVj54sUod3WFprU13eeWLcDKlVAqlfD3939RXV39ztq1a5swCt+gOXjjbP/DsX79+vGampo+Xbt2/XuGbBMTyblrKsr6B1FWVoZff/1VePr0Kde6dWtx3rx57G9djbwuGKNDcP582oCbmzYQGkqb+qlTDX93/DgZ/Z07k+GgMrp79aLN+dtv1dWUm5G/LPkrK6b/Raiurgar6d37MgoLCwEAL0e9NTU14efnJ54+fZrl5OQop02b1ixioKKiAidPnhTs7e15fX19wdbWlmOM1auQamFhgQkTJtR7v1ojcvVqcqDfeYcihnWrBxcXkzPw7Bk9s337SDK8Zg0d0qr7E0UyCu/dI/LEz08dff3pJ5KKurvTwWtkRMbo3r1N3lN+fj4YY/Dw8Hi9t5yYSE7L6tVkGKl6xTcT1dXVkEgkYLa2EKOjUfr4MbRtbMBxHJ4/f474+HixpKQEI0aMYFlZWfj555+hoaGBDz/8kN5g6VIqsLR/P0lSBwwgGd5LhfT+EsjlZAhu21b/58+ekSH8slReqaRozuefN+5onz1L7xUbCzx6BE5HB7M0NGrrD0RGRgq3z5/n50skkJiaovT+fZR264Z+Eybg0LFj6G1iApfr14F338UPSUmiguNgb2/PjRs3DlpaWjTftm4lxyg8nCKREyfSfvLzz/UupXv37hw6dwZcXJDXqxf279/PtmzZokjmhq0AACAASURBVGSM8W5ubsKpU6ewaNgwTjJjhjr38CXcdXPDTGNjzrFnT/UPNTQoOnXwIN2vuzs5QcuWUZX0wECa8zXrITM1FVKpVHR2dmaFhYV4+vQpP23aNHL6Fi6kIlV1oCJWax1hldyzf38iYGQyWg8jRpDz/f77RD59+y05YtbW5Bw9f94kAfzw4UMIgvDaPrrDhg2DnZ0djh07xj19+hTz58+HZkQE3afK2T54kNIxXpa9RkdD1qkThPXr0ePxYxazezeRI9radA/r15Mz9/IZ8PXX5EhduUJru1MnxMXFobKyEv369UNcXBzCw8MRHh6OJUuWwKBGZVJZWYmLv/7KTzMxweQvv1Tl9jMAuHXrFs4pldD18UHHsrL61dg1NGg+BQaSc/Ddd68+zxkj8nbSJNjExbHqmTNZ5ahRkH3yCREFMhlKnZ1xo1Ur1mfiRCY1NoZlUhKzfPaMb3Cvzs5qdQ8AFBVBbNUKWXI5++KLL7BmzRpwnTpRtPP2bXrN5MmoOHIE22bNgkPr1ko/d3cepaV07s2fT8oLf3/g0CG07dsX/WxthZO7d2PBRx9xEomE7v2332gt+/jQ+G/eTJHkI0fIUczMpHPV35/IiPT02naG9qWlcN+xgymGDYNEVWiwVSsau48/JrIzJaVJ0kKpVELm7k65zF98QY5+q1ZAUhJcAwK4S6tW4bsHD8Sq2FjG8zxKu3dH/0ePmM2+fTzmzqUzYckSCnKMGkWKjs6dwfr1Ews2bGBXvLyEvpcvc/Dzo+tmDLC1Rdb778Pc0FDEpk3UCSEpCbCwgPLCBQEAV1RUxIYNG4aqqipcunTp9QGOxYsRYmUlZt++zUafOAHlZ5/BcPp0IkVu3FD3wp41i+ZUnRovANVWycrKYgsWLEBSUhIXFRUlXrp0iXEcBy0tLeXEiRP5JpVyBQV0btaFgwOwfz8Uo0bh1iefoJOXF9pv3w6ZRMKO3r+Povffx+OFC9F51ar6idyM0Tg9eoS6KTf79u0TUlJSOA0NDS4zMxPFxcVCXl4ec3NzY126dIF8505a84GB9Af37tF8+fhj9Xtv3Ehnft0Wba+DiQn9c3WFDoAwW1tl1a1bbJSFBYeqKrLzAFy5cgUlJSXpABpn+96g2fjfs3jf4C/BunXrpIyx+VKpdOPUqVM1/5aO5N695DRGR/+xnNImoGr5JZFIuHnz5sHY2Ph/qwr1XwEHB3KeKyqa/zeq4kp1kZVF0et168hQmDCBDExTU3JWvvqKcqx4vn7e1N8QaWlpkEgkuH37di3zXVZWhoSEBOXjx495AI1W/XV0dGQeHh5ieHg4//333ysWLlzY6L4aHR2NS5cuoU2bNkhNTRWtra3FkSNHgjH2x4gwTU1yQCQSchRnzqRqynp6JDkLDaXISVoaOZVaWuQwhITQ66ZMIefS15eiA1IpGRdWVur3/B0IDg4WGGOcQ00BmUZRWUnrOiCAHN4rVxp3KJtAREQErl+/jpKSEuoRXV0NvVGjoLdxI4o7dICDg4MYHR3NdHV1xZKSEu7u3bu1f9ulS5f6b2ZtTfI8UayV+OFf/6I1M3x4fQP9z0Amo3H/+uv6+9jYsSQRr1ucr6iInAN//wYOIjIyaP3Z2xP5mJPTgNhyfvYMzufO8aft7JSx16/zMZ0744WtrVBVVcUt1NeHm5sbQkNDcbm6GgYffqgcoqfHOxw+DLZ0af2ik0uWkJMQEkLy3u7dyfFLSWnYi7qmN7qRkREWLlzIkpKSeFNTU+jp6XEJCQli1syZaDl4MF3zS0hJSUFOixbgi4ooX79u6oupKTnXixbRPOnalaK0urq1RYpUiIqKUrZt25bjeR6Pa4qMRUZGiq3272echUVtWx8VkaaSSKenp4t4uRCe6rknJJBjffIk7YMXL5JsfOFCImdCQl6ptLp586bI8zx7/vw5LF9TsNLBwQHvvfcevvrqKxw4cADz5s2j53/0KJFlGzfWVymVlJDD178/4OyMm3v2IOeTT+A7ZkxDFYW9fcNnpiry9vHHNN9//hklJSUwNDQUevXqxan6yH/66afYtm0bFi9ejKioKMTHx6OtQqFsNXw4/3LF9S5duuD8+fPQmj0b1bNnQ+ODD+p/pkxGe83Zs+RwTp78+nNdIoHU1RXxq1YpE4uKuDGbNzOkpeHZ++/jyY4dwviEBK7Fl1/SGfTbb+QIv3gBbN+ufo4rVpAz+9ln5PCcOAG9wEDMSk1F2OrViA0NheuECWRnqLB1K5InT4aWkxOGr1zJQyYj2bQokmO3dy/tp+7ugFKJbjducO1OnkRwcbEwKDmZQ7duRBZUVVEK3KNHRHxXVJCTU1JC+82KFVQ3IzgYj0xMYM5xkERHIywqSij59FNxVr9+9Qdo2jRaRxcvNl4dvwZ6enri8+fPiSgSRVKW1BSe5F68gGLzZigUCubs7IzKykrlM6WST3n0COcWL4b37NlE+gYE0L64Zw+tt7Fj0Xb7diZ4ecFi82YO9va0f3bsSPc1diyeCYJoc+4cX6WpCem2bYCFBbKysiCRSGoXSllZGTp06IDMzEwhPDyci42NFbq7unItfvkFl8zNhdEpKVyrkBDg8WNUPn2KlIIC9szODo+io7G4QwdSWrz9NqUnbd1KEeNWrYhU2Ly5HgFhV5N+Ul1dje7du7PuNRXBS0pKEBUVxfbu3Qs9PT1lv379+A4dOtQfRBsbem51UFpaiqMhIcrqoUP5scuXY/vUqWj/9CnMiopE444dkdSjB7utqSkGf/212L9/f87FxUX9xyNH0pgqlRA5DqmpqUhJSeFWrFiBwsJCasGYnAxBEHD58mUIOTmiV3w8w5Yt6vewtqb2Y/UfNv2zsiKC9uVzoxlobWvLX0pKUqJNGyJILC3x4sULhFMXjSlviqL9ebzJ2f4HYt26de01NDRut2zZcshbb72l9cpqh/+rULVsmTWroSTnTyIjIwNxcXFYs2ZNo/LlfwwMDEiKqa1NxVmaQlUVRW5Wr6aiGCpER5OB5+FBhel+/plkW1Om0Obu4UFG3O9wlv6XYWxsjJSUFOHx48dCUlKS8OTJEyEjI0PU0tLiS0pKIAgCJBKJ0KZNmwbkTMuWLZmDgwNiY2O52NhYISEhgaWnp4MxBh0dHRw7dkyMiopigiDAxsZG6NGjB9e3b1/utdWKXweVsc8YPeOsLJKK1hjQUCpJfbBwIT3n9HR6Xv37U9Rvxgxisfv1I7mtgcEfStXIycnB+fPnmbW1dcP+pQAZfJs3k4GpKljl7NxstYooijhx4oQYFRXFtLS0MLOmr+2LFy8wztkZPQIDEW5tLT5//hzjx49nw4cPZz179oSenh58fHxgZmaGiIgIJCcnK01NTbl6KTWM0TqZPZsM0rNnKaqakUG5en82/UYmI2Kh7riKIj2HdevUefcKBUUAdXRo3anmhkJB6+6TTyiy1qYN7Y2qKHxuLjnyISH0dbduMJsyhct2c8PASZPQt29flpSUpLx06RKXmpoKU1NTcdq0aaxP376csYUF2M2b9HkvXqgdFMbI+Z4yhQxZJyfKFw4LI+egLnie9mhTU0gkEpiYmEBLSwuMMQQHBLCuTk7QXr680Wf9ww8/iF27doWdvj7DkSMUQa87RgoFRfEfPCAlR79+tXmg2L4dGDYM9x89wvXr19mECROYpqYmLC0t4eTkhOjoaOCzz1hQbCzO371LznerVszAwACMMZiamiIsLIz16NGjQdpI7RjwPI2zpyeNwfr1tLYmTCAH3tOT5s2SJeQYjx4N9O4NODrCRk+PmW/ZgiMlJXCJj4csJQUVVlao3rcPGtbWRDw9ekRS0OpqPM/Oxp07d9C1a1f1HqOhQa8bO5acNH19Ij3GjiWHY8IEYMQIpAMILS9Hrz59GipzvvqK9oCXc54BilqOHQt88QWMv/4aITY26NWrF6PbZ8jPz0d2djaioqKQnZ0Nc3NzYbKFBc8YI6LoJbRt2xYhSUlIKC5Gmz590KCQo0RCDveVKxSt69sXYAwFBQU4ePCgWFJSIpqYmLD4+Hjo6+vXStiNjI25y5GRLLZdOzzU00Pu1avolpLCWowaBc7Dg+atyk7Iz6c0DFVKyvDh9DlSKSl2fv0VKf364eDBg5h8+DAsr12D5PBhSiepwf4TJ4QIbW22xN8fckPD2kgfGCNnp1Mnmg+urkDHjmCDBkGYOROBt28zIzMzGOvrE8m5fj2tq7AwIrOTkuhag4PJ8fL3B4KDce+tt+B/5AjigoLQftUqaD1/LnqvXs1LKiuJRDA1JSXFjRskrZ46lUhvb2+qF7BiBV3/sGHA/fso1dNjPRYsYNJu3UiNERZG5Ny8eWCGhrC3t4erqyvCwsIET09PfuDgwdDOykJRYiLQsSP17eZ5mt8mJnQNQUFgZ84gztVVaXL/PifftImIqF27SHL9zjswPnKEdTx4EDuGDUNyq1bC9evXxZCQEJaSkgJ3d3dkZGRg8ltvQfv2bbT39WWe+/fDOi4OIRoa6P7jj+yetTWTeXujzapVgKEhDldXI5njMPedd2DTrh2t06+/pjk0bRqNoY8PEc0tWxKBM2xYLeF05swZZGZmwsfHp146hEwmg42NDevUqRM4jmOXLl1iRkZG0NfXV+8FQUG0Ly5aBIDOuJMnT0KpVLJchYIJAwYI00+fZobffINKMzM2YONG1ragAN0OHGByLS0EBgaysLAwdc0GAwNg82YUKhT4d3CweOPGDSaTycR+/foxPT09WFtbw9XVlXXv3p2V7tghdN+zh6s8fhyyGkWQUqkEFi0iZtDdveFa7taN8sQZ+911jYKDg5VtSkv5dvPn01klkyE4OLgqJydn75o1a378XW/2Bo3iTWT7H4Z169Y5amhoXB08eLChq6vr3zNiGxFBEYSYmL80oq2CRCKBVCoVBUFg/4iCaE2BMTIu5HIyDJu61ydP6GDZsIG+j4oi5/uXX0hSPmcOyd28vNRVxVW9Jf9BkEgkmDJlSpMTYt++feKLJnLZZTIZrKysMG/ePERFRbHq6mohNzdXvHPnDq9QKGBiYiLOmDGDtWjRAnp6eg0/o7KSjLC4OIpWmpmpWfvgYJIMr1xJRsXYsXTYenqS8bZsGUW5Zs4k41yhIGm0kxNFfAYOJOf6dQXH/gBEUURISIiQlZXFmZmZISUlpf4LlEqaR3fv0j1dvPja6tJ1ER0dLd64cUOUSqUsKyuLjRkzBs41uWe+vr7w9fUlpywhAauWLGF1o3pSqVRVkRhmZmZwdHREYGAgv3fvXnTs2FE5YsQIvh7ZwXHkQLi5qXMpe/emvD2JhByWP0qO+PmR0bpjB32/aBFJ6Zcto+9FkdbXqFFEeqlQYyAjIIBy9mbMUP/u8mVq3bZiBb1u7lyS2AIwBNCzTjR1+vTp/MaNGzFgwID6Mn8zM0pDuHaNPjsxUR0tb9GCrldHh3JPzc2JiBg8uH5rwcBAkka+FBligoAZ+/dD/8iRJgk5uVxOxu2YMeQMqiLnOTk0zwcNorxpfX2SdQYGkkO+fDkgk0FZVITYLVvQb+5cVrf9nqmpKd59910mnD8PN19fVAwYgMjISOHgwYO8lpaWMHjwYE5bWxuiKDae0iKKRF4kJZGzdPYs8NFH5OQolUREvvMOyVj19ennFRW0z3p5AcbG0C0thbOdHZ526SImfvklq5JKERYTgzm7d+N2fr6ym4EBL/n4YyJIHB3BDAyg36sXeo0ezeHsWfqMfftI2uzkRISDqSmdj6p5WnPtzuXlCAwMRFRUFDxfbqUXHv5qwogx5IwYgaiHDyFTKGivr+noMGbMGIwaNQrp6emqAlAcBg6kCFojaN26Nbq+/z5ezJ+PHz//HO26dxdGjhxZv+K/TEYR6ClTgGvX8KJLF+zZswdlZWWssLAQV69ehSAI8PLyEn18fBhAKTW9e/cWwsLCuBadOgk9ly7ljB49op7yXbqQw/XNN5SSsncvRbF1dOiZHT1Ka3vECGDmTMR6egotvLw452nTFAaRkRIsW4aysjKcOHVKSElJ4bS1tVFcXMwtWb4cmuPGUYpNXUVHQABJwB8+rNcuUUdfH2OmTcPPP/+MmWPHwsLCQj1fgoPpeS5cSOu0tJT+6NAhoKoKlnFxGHXyJFqnpSHj4kU4TJ/Oxb/3HvguXdDxyhWKWl64QKknKsXSvXs054yN1RXzp08HWreG7OlT9qRLF7HTjRsMlpa0z+joEFk1ejQs58+vvZ+aSubQmTgRnYODxeB791irVq1qo8JwciKiLywMmDwZlubm3GU/P/R8/30oRFF8Zm0tuq1ezT3etQtlOjrw/+AD5Esk4HJzYW1tzQ3t0wcVPI/Wa9bgRVUVxIgIWtvJyZCMGwdLLS22wNsbt/r3R1FgIHqOH4/isjLoCAIyMzPF8ePHq+tP+PvT/U+bRuTJ7Nm09zBG+4+7O503M2YgNScHd+7cQefOnZsMqhgYGMDLy4sVFBQoAwMDufLyciaVSoUuXbpw/Wxtcb93b/He0aOsvLwcWVlZoiiKbPLkyaymxgaHAQNgPGcOjP38SPk3ZAgQGYkuhw6xmM6dhaz8fO7gwYPw8PAQ+vfvz5UNGICi3buhMXYs1lA3gIYHSnIyXFu35n4xMRHTvvuOaWpqQl9fX5mfn8/73rwJh8GD0WiPGE9PshN8fIhUb6Yyq6ysDElJSfzg4cOJsNLTQ3FxMW7duqVUKBRrm/Umb/BavHG2/0H47LPPZmtoaHzn6+sr+9s62gAZf25u/xFHGwCsrKygoaGBgIAADB069J9RgbwpdOtGEaDNmynv72Vs3UrSzbt3KZIXF0dS1vbt6YDdsaNWKoeBA//rl/+/hOzsbAwcOFA9WZKTyVl58YIMgLFjoXP+PHzkcoYRIxjGjkXlV1+Be/gQGt9+y2H+fHJo2rcnyZumJhnzP/5I/7KyyIgYOpSMxC1byDhLSyNnGqDos6YmKQvGjSOnYM4ckiUCFJFNSyPHe+7c//iYKBQKhIWFcQAZbbWGviiSY8TzFGH/6CN1UZcmUJuHXePQ3rx5Uzx//jxzcHBgFRUVWLhwIRrtZ84YRclXraIoThPQ0dHBuHHjUFRUhB9//JEFBgYqhwwZ0vgmI5ORmuOzz8ipPXaMnBZLSxr336uIWbCgvsMTGVlfAl5dTQ6kao0VF9O9bNig7l+sp0dr8/vvaa44OtJc6dyZIvOvgFKpRHV1NbS1tSEIQsM9z8uLnAhNTcoNnjyZft61K0WS796lgk/jxpEjXNfZFkXaH15C3p07KNLVRdizZ+jv4ICXW05WVFSguroaurq6DFIpraEzZ6hWwNdfk6pp0iQyqrOy6ExIS6M1UlM7IHnZMnHYuXNMd+nSRglF7swZSHkeUo7DoEGD+P79++PWrVvM398fAMDzfP2xuHuXUi7GjiW57sCBVOtg8WJykLy96TOSk+nr3btpjvfqpX4PFWkJAMePYwTALmlpwdjYGDNbtkTVkiW4cfQou1FZKdrs2QObuDjWMjoaWY8eoTI4mBwze3siZ6ysaGx79KDPXLyY8npfKoylqakJlYS+nrMtihTZVTkrjaC6uhp7z5+HvqcnFtvbM0yeTJLXmrSCepWWMzKIXGgsslYDpxq5tYWhIfbdu8fdu3cPffv2hVwuR05OjpidnS2UlJSw1jNnwmvrVu6pXC4KnTujZ8+e4u3bt/Huu++yI0eOKEtLS7mMjAyY1igmPD09uSdPnggaGhrUkeLmTYqQ37pFZMiaNbSOVEqDuDiSQOflqSPcvXqBnzOHS7e0RNdDh/jiqVOhd/Ysju/fL2RlZXFubm549OiRyBhjurq6tK/o6pKjvnOnutDaggX0XGrmkQrW1tbo3r27cPjwYSxdupTytyUSIo1U0v3Ll4loiI+ntXTkCAy9vJDy7bdIt7LC8WvXwObOFW1tbfHgwQOm3LaN1EKPH9NcGzqUyPDsbHXRqxp5NDp0AL75BpqA+MLUlJQPqhou1tY0Xg8fAvv2IT4+XjS0tuZqUxzatYOlpiYzT0wUT5WXY9WqVWobsm9fIkhiY6H46iux/8mTrKRzZ5iHhjLJe+8xsVUrOB85AiQmoruJCYQVK8BNn87h+HHaSwoKqAJ+bq4QLZezHvn59N51Knbb2dnhwoULOHbsGB4/fqyq2s1q05LCw4lc2LpVrdLYsYMi2oaGdJ8bNhBJNnw4qj77DIwxjBo1qsm5CpCCY8SIEbwoikhISMCzZ8+4e/fuKcWcHD5dW5tpMqbU19fnU1NT2fLly9UdFgA6y728aM84epRyyeVy5MTGiuXm5uzDqVNR0KIFDhw4gBs3boBXKtHV0FDwcnRsvOVkYCDw3nuwvHIFs0xNWV5eHnJzc5GRkcFbmpjgdnw8Wvbq1bizDdB82LHjd6VAhYaGKrukpcFg/XoeJ0+qflbJGNu1du3a581+ozd4Jd7IyP8BWLduHQsPD/9ILpd/MXv2bC1bW9u/p6Odn0/G3LffUiTuPwTGGFq3bs2uXbsmPnr0SHBxcfkHe9sgo/7aNTKg6kbmRJGiZi4udGANHUoG98yZdGhHRZFzOGTIfyQq+l/FixcU9c3IoOidpSWRDxIJHUzz5pEE9N//Judw0CDUtgwqLwc6dkRkr15iry1bmHTnTnIEWrcmR6eggIyvZcvooMvOpvm7fz8kQ4aA19Sk19S0WIK7O423jw+1NOrXj6LWjJFB068fXet779H/rq70HAC6LlX/1v796W9URjlAxr+PT/3+t/9B8DyP4uJiMTMzk61cuRLt2rUjpcTu3RSJ6dOH7k11fTXIyspCTk4OZDIZoqOjERkZqTx9+jT34MEDMSsrC1KplB0/fpzp6+uLb7/9NnNxcYFmUz3fAXqOH31Eka3XkGdyuRw2Njbs7NmzXK9evV5NtvE8PaNRo8gBOnyYnourqzqq1BxYWFDUwcGB5qKrKzlzHEdR7m3bKK9SJqM5+P339Iz79CEyJTqa7s/CgtblrFnkPLi6qlu+vAI8z0MQBOXFixe5/Px8tG+sL7aVFT27iRPJQFaRAz17UmTP2Znm/MiR5PCqDLqqKvp53QJohYUonDtXPDJoEBM5DtevX8fVq1dRWloq1lTyx86dO5UmJibo378/45KS6DNKS2k+Dx1Kjo2KcFVF1z086Gt3d6B3b0Rcvy4alpczvfR0kj+6utYvOOfqSq+vkQFzHIeWLVsyFxcX3LlzB1Xl5fB2dycndu9e+tuSElI0LF9OTgbP0zobMYIM6smTaT/s0IH2CjOz+uRDI7C1tYWFhQV0dHSgq6sLV1dXlpWVxXJzc9nNmzcRFRUFSysrJD19ilbu7jA0NSUHwtGR5sPTp+RgtWvXZAXqK1euoLi4GPVk8aWl5BCOHt3ktSUnJ+P+/fvi0qVLGWdtrVZKODnReVy3wFtEBJE+dat7N4YJE6Dl5IR7SUlCZWUlKygoENLS0pRFRUW8lZUVZ29vz1JSUsTrcrno8ttvXI/Zs5lT374sLy9PvHz5sjhq1Cg+KipKuHHjBpeYmCjq6uqy4uJiWFtbs6tXr6Jnz56MOTiQukAmI1l3375EUlVVqatUHz9OpOO0aUSIzJ8P07ffBjd5Ml4EBOBwVRWepKayp0+fsilTpsDd3R1du3ZloaGh6Nq1K7W+MjAgsqK8nMgofX1SYkya1CjB06ZNG/bw4UMxLi5ObBD0qKggKfisWbSu3d3JIX72DEYHD0J/4UJI5XJBQ0ND9PPz42JjY5EZGyu4m5kxfPop3YePDxUFKyqiPWT4cCKqLl4EvvgCZcOG4aBCwTw/+IDptW5NCp29e+mMGzwY8PBAXl4e7j5+zEZYW0MnIICILG1tSNu3R8ujR9lVS0sml8thaWCAK1ev4tH16yjv3Rv6jo6wGDyYyQcOhP6+feDz8qB74gSkvr5g1tZgNWcj27iRzrHBg2n/l0gAHx9EZmVBU1OT2TYyh2UyGR4/fiw8ffqUAUDv3r3FNm3aCDY2NhxycohEGTiQ9gAVUlNprapScRgjp/7xY+gbG+PWkydwcHFpVrogYwzGxsYoLCxEXFwcZ3nuHIbdugWXHTu49u3bo3fv3g3TIgSBzv05cyiibm8PwdoaW54/Z2Pd3ZmJnx+0+/dH93HjmLOzM/r4+MDu7l1mrjrX6yIujtbr6NG1SgWtGpLO2toahUFBsN69GzuVSjx48EChra3NGRkZ1W/Rp4rwr1xJtsiECa+854qKCpw6dYobq6XFydu0Aby8kJmZiQsXLlQoFIoxffr0KXvtwL1Bs/Amsv03x7p162RSqXS3trb2mBkzZmi9rs3I/zTOnSPjtbnVs/8EWrZsiUmTJrEdO3bwx48fF8eNG/f3JCiaAzs7ihTNnUsbsERCOW3FxZQH5utLkbrLl0mGlpRE0e6X5Yj/bWRl0WFmYUGO8ciRFNn69VcyMtavJyN/+nTKqwwNpd/t3EkGTefOVMho3ToyuIuL6f4DAykqsns3GS9+fiTJE0UycFUVvydOJOfIygrYuxey5GTh6dq1XEdV0ROVpB4geR9AKgIVzp9Xf62KQNTtvfmaaOTvhihSBHb27L/2fV+DxMREBgCbN23CmKAg0SwlheXs3An7pUvBSaUQBAEZGRmIiooSU1NToVQqoWpzIopUd8Xa2ppNnz4dt27dYomJicLNmzcZx3FYsGBB89alrS3tH3FxRB69Bg8ePICFhYXA83zziDbGyKn64QcyiH7+mXJhx48n52Po0Fcrcaqq6LXFxSQT//FH+lllJRneEgk5VHv3EjFWXk5Rua1baY4OG0aOt4cHORV/AP369eOLioqE4uLipu/Z3p4kiFlZFLn19ydnY+lSMuKOHCGFQni4ugJ+fDw5I3Xn8/790NfWZnZOTsohQ4bwJSUlCAsLE3Nzc2ufJ2MMyqIiJmRkEElibk7OjKdn4/3jR42i/WrECPq+uzM4SgAAIABJREFURQtU9unDLrRpg9mOjhQVv3SJotMjR5Lzv3IlkQUvPQvd7Gz4Pn8Ow19+oc9r356uoWNHNbH1Ms6erb/mvb1pXY8dS+v6/fdfOf51IZfL4efnV/v9rl27EBoaCqlUisjISLRs2RJyuZyIleBgGneOI1Kgb98mCRZBEJCXl4faCsvV1a8lhPT19aFQKFh6ejq1rlLN9RUraO89eZLGUyKhedFUz/e6UCohODhAY9Uq9t5770Eul3NA/QLNHh4e9P3HH5MT9fAhhr/zDrdlyxZkZ2dj8eLFfHFxMY4fPy4eOXKEMcbw1ltvgTHGnj17Buu8PIoQP3xIbyiVEhGiauN14wZd74wZRIA+eULR4UmT0PKjj1Bx9Spzi4gQq6qqBH19fbRu3ZoDiJCRSqViQUEBU/XqxqhRtBbefpsceTMzmmtTp5KkvI7DU/P3ePLkCVdYWFhbyR0AzaFly+ic2bCB9o0PPgC++goaQUHA4sXoOWdO7ThpPn2KacHBHCwt6xdSBGgOXL1K5114ODBmDDKOHcOuXbvQsk0bwcrKit5n2zZ1oVQLC6C6GtIffgB69hS1Fi1iOHGC5u+aNUCPHtDt3h3Tu3XDkd9+g+OgQajs2RM3PD0hiYyENDQUIxwd4eDvT9evUuJMnEj7n4YGzdOrVxudFh4eHuzcuXMY2IRKbsKECVxhYSGMjY2hoaHBAPAoLqYx/+67hvUi4uIa7ruMAevXgz9yBGN+/RUXjI2FycuXNzug0rJlSzg7OwseM2dy8jpFIxutr7JnD9lN5ubAhQsQd+3CLRcXged5TsfdnZ6LkRE4Pz8YfvYZOdFjxpAdUxc3btDa3rGjyfo6d7Ky0HbaNHHRokUsPDycBQQEIDAwUBgzZgzXoD/3+PFExrwGt2/fFh2fPxcMxo3j4e0NURRx9uzZcqVSuWbt2rW5r32DN2g23jjbf2OsW7fOViqVnmrdurWdn5+fZgPW7e8ClRR2+nTKUfuzRaOaCVNTU8ydOxc7d+5kjUor/0kwMKAK1devk+xp3z6KPG7eTJu/Snr0mn7FTaKsjA5ZjlMXFomIoEiynx9FAydOpCj7rFkk9Xr/fYpW7dlDkd6dO2kujB9P76eKrp0+TRLhjh0p4nLpEjnb1dUk5WOMHBGJhAxglTz3l18oAqClRa/jOJIFf/YZ/T40VH39qh6Vdash1/TqBEAG/rffQqmr26C9yP8MVMW92rX7r3xcTk4OMjIyUJ2TA8+YGHjK5Xg6bhy7KJeLT2JimDIqqva1UqlU1NHRETp06MDr6enBzMwMOjo6CAgIgKenJ9q1a8cBtdXeubCwMISHhyM3N/e1lZxrER1NhXwaS5d4CYwxVFVV/bGNRkeH9qtp08hB3riRotJffUXOamPOjZ4ePR+JhJwzV1ciB95+mwyvXbtoPfTtS7l/e/eSEZedTakEfxExw3Ecy87OFvCS41MPPE/rplUrdW9gbW1ac8nJZPTOn08RNg0Ncr7qSuIzMgBXV2jPnIkJenp8eXk5YmNjlTk5OZyWlhZV/xYETPX15avd3ZEWHw+bgAB1yoG/PzlRL+PRIyIpVM42qBPAiXv3cNPCAm4JCfQctm+nXNijR4m41dQkYuPiRXKOa0iLvIEDxZBRo9jCgQNfnyJz9ixJ/7/4ov7PDQ3pmmuiilix4g9VsZ8zZw6KiooQEhKC+Ph4cdOmTWyipqZof/YsQ3CwulJ8XBzNcZUkuQbHjx8XATAPDw/Ua2X0+DHt+6+AsbExevbsKfz000/cBx98QOcgxxHBolBQhJ8xcjiPHyfVxWtQoaGBhyNHQk8qFeRy+avzwRijMVy1CunnzqGqqqq2xaGenh5mz57NCYKA3bt3ixkZGUwURSIiLCyIBHgZHEdz08eH1D+9e9PPP/yQ0jF69QKcnCCXy9GvXz+GOnmzgiBg586dSo7jeMOX+7OPHEmR1CdP1G3ifvqpgb2SnZ2NJ0+ecCtWrKgvORZFUgr4+hKBMXQozeeZM4kQCAqi1/n7A1VVqD54EFrGxkj55BM41CFmkJdH5+ePP1KRS2NjckYZAzIywBjDrFmzuNrX+viQ1F6F1q0hO34cWT/8wErOn4fu7Nlke61eTSoKNze0vXgREyZNwsPHjwXv0lLOd8kSoE0bJLq4ICklRXSIiGBgjM7myEiyJVaufOVjpo9uDYVCgeLi4kb7z2tqajZUML3zDu1FjTmh9+41msICgJQH169DePyY4fnzZqu9LCwsMGbMGA4nT9J+t2JF4y+8do2egaqoo68vijIzUbZ7Nzf5gw/U61CpJPvm/n3ai9zciBDv0IHI/NhYtW3SyD0mJiYiLCxMsLt0iZX36CEaGRmxESNG8EqlEhcuXOACAwOVCxYsqL/GPDxovrm5kY3XCEErCALCw8Ox4NIlHu7ugLc3kpOTkZubmyeK4g/NGqw3aDbeONt/Q6xbt47jeX6phobGp97e3vIePXr8+arG/5dISKB/rq7/NUdbBYlEAplMJnIc9zcewGaA4+hQ/O03cijffZeiwIcP0//u7mSUubnR7zZsoNefPEkH8KRJ6sq7LVtSJHfDBiqg9uABOXhz55Kcevx4kmJevkyHoZ8fGSgFBRQlVslNBwygCB5AOU81Ujakp9PP6va4zMhQf60yjD/9VP0zlQFoYKCOvNRtD/Qn51VoaChKS0slpqamUCqViI6OFmNiYkSpVIohQ4ZwVi/JpP9PcPQoERF/lDBpJl68eIGYmBhcDQpC97g40b11a9ZWSwuaO3fCydwcTgATBAEPHjyARCJBQUEB3N3dmUQiaWB0T2+iTUnv3r1RWlqKAwcO4L333mteX/Zx46gqbjNw//59QUdH589NCpmMZL4//URFrrZuJcnmypXkfHbtWn/erV1Lf7N7N0U8tLXJwDI2JoNy6lRyjoqLKXrcp089x/KvgKamplhZWcklJSWhMSlnvXs7dIicfSsrKo40ezY5RcuWEXlw4gQZmgkJdA99+tDf/utf5Kz37o2CggKcOXNGzM/P5xwcHFjv3r3p3t95BzpHjiBwzRo8kUrFBRxHIzV+PBmkT540LKTn50fS1DrS3Q4dOuDEiRN4+PAh3NzcaE9YtIgUHsOH07VNm0ZOcUICjXdkJGBhgQ55eexKRgYyMjJeT+iUlKiLWr0Mc3Oae//6F5EEf3D96evrY+TIkRg+fDj7ceFCvLh+ncHfv35LNlWxrzpQKpW4f/8+Gzp0KNxfzqUuL1dX0n4FeJ5nCoUCBQUFMDIyUv9CpbjgOIoqpqc3yP+Oi4tDRESE4O3tzSmVSsTExAipqamcuZWVODQzs3kMtrExKr/5BspOnTByxIgGLRY5joMoiuz58+eorKzEo0ePUGJkhDaDB+OV1IaLCzlFSqW6intFhbr7Qh15sSAI2LZtm6Cjo8MWL17ceNrKokXklH7/PRFiAwfSex05ApibIyEhAUePHoWlpaVCR0en/qY1fz6RuuXlpL54+pRUV6NHEyk0ZAiRG1OmANHRKBgwAOnGxqhWFWGLj6fxX7uW1Br+/ijOyoKWgwPy7Oxg1rkzCgoKoKmpKdQmBJeW0rn60pyRtm8PHZlMKX7wAS+6uoI5OpJT9uQJzeMjR2ATFwebadM4PHhAZNX8+bA4ehQxPj4MISHkwJ86RUTgiRNEBKkUXE0gIiKCPr+5rWh37aJ9p6nilN9+26D9IQBs2LABUqkUFWZmmF5ayjBrFgUYXlG7oAFSU0nl1xgqK2kPPHSolnx/+vQpjmVmoquDg9I6OpqHrS3ZIDxPBKUo0hpydaX94vRp+v+dd4gIGjaswcdkZGTg2LFj6N69O3NPSmKsjtKL53kYGBhAJbtvAMYokNJYyhCAq1evirq5uaJWSAiDhQVEUURQUNCL6urqj9euXVvd/IF6g+bgjbP9N8K6des4AM5SqXSnkZFRh7Fjx2rVOxj/jtiyhTahsLD/uqMNUDXK6upqlpeXh7/1WAoCsdhxcXT4/fQTRZ1696aNfNo0OhzXr6fxzswkQ3nfPmLUv/6aNmU3NyqiUlREz6NG5gsvL3IspFKK4KjaGb39Nv2+rjOsqtj98cfqn506pf5aFXkcMED9s7o5+v+DPeFTU1NFuVzOzp8/j5ycHEgkElEqlXLPnz/HvXv3hJiYGLGgoADDhg3jVVGZ/zq0tcmY/A8j/u5dPP/3vzFQoRDcraw4bvHiBtJSjuPQoG/p74Svry9u3ryJioqK+hGipqCjQ0b1li1NRyNqYGZmxiUmJuKbb74RW7VqJY4YMYJLT0+Hubk5ioqKkJiYKLq4uDDd5rb9MjYmRy4/nyKw33xDa2ThQsonlcuJZIqPVxc2Gj2a5JaGhiRL5XmScv6ZquevQe/evTme53Ho0CEsWLAAr52rpqYUgW/fnhztvn3JcNy8mSS6qv2husY2KyqiOVjTo/3EiROCQqFgc+bMYTohIZR3PmcO7UkdOsBaIsGd06fxWY3aRBAETEhIEB1u3mT1yDSAnPApU4jUq9MirG3btkIFyWTJozAzI8fKx4eih3p6pD54yeGQ11RIj46OxsjGIqQqKJUU1a3TGqoBtLRI2XDnDo3Rvn2UO/oHwF2/jv5BQTg/bBhcWrWqX664qoocvISEWvlsXl4egEb6yAO0JpqRDtStWzcWFhaG8+fPY+rUqS9dEEfPt7KSPj8zE3lFRbiZno579+8LZWVlnJ2dHTt27Bg0NTVhY2MjLlq0CAalpQwuLrQuXhPtF0URv/j7KytnzGCzNDQ4BAfT86uDoqIiITMzk9PT08OdO3cUj7Kz2aRt2/gz+/YpR48ezTcg5PLzae2Fh1Muvqp2RFkZ/e/kRITY7t2Apib27t+vVCqV/IwZM+q1iWqATz8laXZsLJ2XLVsSQWZuDktLS3Ach/Hjxze0rT/5hCLQKsJt2DBStajmpUJBRHdRERAVBWN/f8z78EOce/YMhenpsBIEse3y5QznzqFCWxuJiYm4fPmyWLliBRMDAjBeRwc3btygHGcVlEp1B4SX0GvZMv4wz4t9T5+Go5cXTbN9+2htpqWRvP3QIXI6334b+PJLPFMoxC6BgUBMDIOxMc1BMzPa/7Zsoft6BTHq5eWF2NhYZGVloU3d2gqNYf9+ZO/fL/42aZKgU1aG3r178zo6OoiNjUVOTo6yv48Pz0aMAHJyUF1VhfLycmRmZoIxBgMDA7GqqopNnToVVq1bE0kVF0dj3FxifOnSpn/36acUqT51ClVVVfj111+FBw8ecL169UK/1at5HDxI++XkyeqzkTEi+rKyKMgREEDO9+efN5kapFAooKGhgf7e3gxBQfXrYoCK/V67dq3pw+Kjjyjg8dZbyDh8GJcuX4aenh7y8/ORlZzM5u/ezY5WVSk1vb15uVyOvLy8bFEUDzRvgN7g9+CNs/0/gHXr1rVhjI3mOK6tUqlMApAAIBlADgAjAAM0NTUn8DzvoaWlpfTw8JB7enpK/vayZ1UBkx9++D9xtAGqoCyXyxEREYHhw4f/n1xDo6iqIsm0sTHJytq1I4PnwAGSZH/2GRUU+uEH2qinT6dc48OHKapz7x4Zyvr6JK1u356i1/fvkzRq5Upyam1s6G/MzclZ37SJHIETJ8joX7CAjJYFC9TXpmr7ZWKizm/+h2P8+PHs+++/R1paGnx9fdGhQwduy5YtsLW1hVKp5O7fvw9TU1MEBgYqp06dWttSSqFQICcnB4IgQEdHB/n5+cjIyIBUKoWzs3Otwf+X4MmT2p6gfzVEUcSjR4+Q//ixaLJsGWtpaCi2PHOG+0/WV+A4Dtra2sp79+7x3VXVdl8HJ6dmOdtjxozBw4cPUV1dzYKCgsQNGzbURs9FUYSOjg5CQ0OxePHiRuWOTcLQkCoDHz5MfXDff5/W6ddfk/TXyooiWHPm0Fq+cIEcpylT/itFCPPy8nDt2jUAgKpK9Gvh6UkOwKpVRJRdvUr7TWoq3a8qh1gUSdY6ezagp4ecnBzk5ORwU52doZOYSKoac3OST9b0CHd0dMSqVatYTk4OgoKCkJSUhKCWLRlvYIB2CkVDw33EiHrRyIKCAqSnp3PdGqt036ED7Zs9ezZaNK+6hiBwbSJHshZHjpDhXePUNglV9HfBAvp38CBF+H8PHjwArlyBuHo1CtPTa43tWtjYUH5tfn7t3qtytquqqhruJwkJRO68BjKZDBYWFmLNvtXwMC4oIBLlk0/w/Y4dynGffsq3cnISMmfMEMeNGwe5XM7u3r0LJycnaGhoEAtgYEBKjaqq1zrbxcXFSElJ4Vd++CG4ggKaQ8+eUcpRDebPn8/l5ubChhQPEigUSHV3x8N79/j8/PwG1e6hVNJz27+f5l5ISP3f37pFEeZDh1Cxbx+kHTvyC9asebWjDdBcX7GCiBwXF3rO0dHA7duQODpCEARER0fD0tISlpaWuHjxomi5d69o+uIFM50xg7WYMeP/sffdcVFc3fvPndmlFwEpothQUUCwoWDH3qPGGEuUmFiisbcUNYrlG5NoXl87mtgL9oqKYkFUjIqKgiJFEVSa9Lrs7tzfH4dlQWkaTXl/Pp8PH2B3Z2fmzr3nnvOcRh5PBwcy1CWJ9nNN321LS0CthtCxI3QtLNDp8mUIZmY41qcPn9ivH1Mqldi4YQOXJIlbWFhg5OTJTFGrFvbGxOB57drCV199hZycHMjlcsjbtEH4lCm4ZWcn9erVSyjKhQZAucm2bduy+9u3w37NGsgHDCA9oUkTbXeEOnVojS9bBjRsiIZXrjDFw4dIlSRYlPT8a+pRXLpUbnHbwsJC+Pn5AUDlKXtBQcgyMsIBNzdmV6uWmJCQIP3nP/+Bubk5Lygo4Jxz4cG9e3yEjg7b+OOPYIxBEAQYGBioFQqFYGZmhtzcXO16GDaMZPDixUQeliz6Vx5GjCCStKjzQTEUCiJxirp9nDp1SoqKihKGDRuG4srpo0bRvNi+neawJkpHT4/kl1xO9RgOH6bIwXJga2sLpVKJ3NOnYbh4MbXDLQFTU1Oo1eqKledatYAGDXDu7Fk8jY+Hk5OT2s7Ojn3co4egX6sWGrVuLd67d0/99OlTEcC0hQsXlhOX/wF/Bh+M7b8ZS5cuHSOXy9c3btyYW1lZ6aelpRUkJSUpsrKyhIKCAl25XK6qX78+mjRpYlC3bl0YllU45t8If39iQa9dq7R68PuGnZ2dlJqaWip3652DcwpfCwsjj0dkJHmQ584lwezuTpvvggXEmq5ZQ8qAxks2ejSFAxoakgI6ejQpE/Xr03eamhJhoWFjS+bVTZlCG/rWrZTHDNBmamlJzPXUqfRaXh4p1c7OpPRFRFCP1+hoCqNs3pyu8+VLqr7r4UE51f/WWgFvAB0dHYwcORK///47IiIi1G3atBEbNmyoTklJ4QUFBWLv3r2Zvb09Nm7cKKxbt07S09PjWVlZQm5uLtPV1eWMMa5UKgW5XC6ZmJggOzsbt27dYnp6epJSqYSnp6fYsCqFh8pDWhoRV9988+5uugRC/f2hnjcPFtnZTPXf/6Jmr17sryDIXFxcxKtXr3J3d/eqnaxXL/LmlRWGXAKCIFCLIgBNmzYV0tLSUL16ddy/fx+MMTg7O7P169er169fL1pbW0tDhgwRquzlBuj8nFM9gtmzyaO9Zg2tJ4DWfG4uEVua3sl9+pBHydLyna+pgoICxMTE4ODBgxAEAQMHDizuV14lmJrSPSmVdJ21a5Msio6muaevT+NtZVUc+n7z1Cm1LDNTrDZqFI516YL2mzeXGT0kCAKsra2RmZmp7tKli5CRkcEUCxbQd73qZZ0wgdJeQOHTFy9ehL6+fnE/5tewbl25BcI0hFilxtVnn71ZUbpPPiGDo0MH8maWzLctB5IkQfnoEVKmTkVq1654aGQEW1tbSS6Xv745jh1LIahFyn5eXh709PS4np7e62MQH19uj/NX0bZtW3b48GEUFBSUNtoPHyav/bVrAGNQqVTw8/aWOri7C6OuXgVzdwdCQ6k91avYtYuMmzNnyj2vWq2Gn58fNzMzk3R0dERYW1NKxvXr9KyLCtaZmJiUIr6SEhOR4e0NjxUrJEtLy9LjtHQp7Vk//khjUBahYm5OqQ+dO+O2jg6yY2Kg36MHrcmNG0mOlBdRwxjd2+HDVNxqyRKgdm3orV0LT09PKTw8HLdv3xby8/NhZWWFHubmgs6tW7i5dy/448eSZ3S0AMbo2MRE2tO3bqV1f+oUfW+tWjDYuhW1mzSBNGkS7AoLsWfGDCm1bl0hNy+PzZs3r/h5y7y90ap2bSTevo2NJYw3sy++gGRoqNZTKMQtW7ZArVbD0tJSGjVqlGBkZISnjx5h+OXLCK1bF9VVKtSNjaWolPbtyahctYr0grp1AZkMutev42xwsPqBr68wceJEVvw8GKNIhDlz6LNl1A3Ztm2bmnMuDBkyhNm94qEtCVVUFNiiRfijVStJaNSIDxgwQLx7965w4sQJNG7cmHl6ejIACDx7FsLMmRj/+efw9fWV8vLyBMYYWrRowf744w9IkoTff/8d3333HX3xzJlaIrRXrwr3BwAU9v8q2cc5RSRMn454xrDF2xsABHNzc7WDg0PpNKlRo+hcq1fTuW1sSJfbto3mtbU1rQ21utzims+ePSMiwcSkFPGkgampKXR1dfmFCxdYly5doFKpsGrVKkmlUjEdHR0pNzdXlCQJug0botmhQ2ispye1WbhQRGwsyenr19FCTw9yuVxMTEy8p1AoTlY8KB/wtvhgbP9N8Pb2ZjKZ7HtdXd3vx4wZo1ddqxDoFf1o8M+LqX0XOHCAGPp/gHc+MzMTb9UuLSuLWMrr18mQdnamzalXL8rH2rqV7tPdnRjspUsp33HePPI23L9PgtbFhQxpV1fa5J2caGw0xkxwsPacmsq6JTerqnjEoqPpvCNGkGIsl9NGb29PRsCQIVRAxMCAGPu+fek4TehkYiIpLQCFjG/fTteVkEDem/h4Ui41bTns7Cpth/Nvg5WVFTw8PHD16lWRc44RI0a8tkNOnz6d3bx5k6nValhbW6NmzZooyg3WzC8BKG65wc3MzERRFLF//35MmzatauHSZUFHhwpDVaEN1BshPh7SqlVIiouDVLcub+nry975OSpAx44dNa3BJA8Pj8qFhaZAn1r9ejGrcg8RoJG/JQ3QSZMmiRERETh97BhW//wz6tnYqBs/egSrGTNE06NHYaxUkoerRQsKq87MJMMsJ4eMQisrMrZv36b/W7cmY1sQKO9z5kxSaI8epWvu04dkwKRJZASMGEEes9WraX3t20frdMYMWlv79tHfkZH0/Bs1IlLtFcUtMTERPj4+xf/PmDHj7eaZTEbfbWtL16hQ0H1160byTVPgUlcX8PNDjx9+EG0XL8aaqVMBPT3eXV+/XBmblJSEjIwMsWXLlvD391cne3iITsHBrxvbMhn4ggW4rKuLP2JikJ+fj379+pUvu5cuJVlaRgi4aZF36+jRo5g4cWLZxxcUUMj6G+Zhq4yNETZ/PtiWLXjs5yfFubry+vb2YqNGjVCzZk1cvnyZR0VFSUqlEjo6OlA+fy7aR0RA1NfHbYWCPNKAkJKS8nqoP+cUvTF2LCAIuH//Pjc3Ny97DIyMaH+pAho1agQrKyu+bt06PmvWLO1ai4ggUrhoPxo9erR48eJFHDh1ivd2d2fNfviB1tuAAUSglyxENXgwkTEV4OTJk1JcXBwbP368duI2aED3qemd/cknrx33ODYWzaKj0bRrV+E14q+ggGRhzZqU51xByHJSUhIuJCZi+NixYN7etFfu30+RJ6tWEank6vq6rmJuTvfXty+th1GjwHJy0LFjR6Fjx44oLCzE48eP4aBSMaajA2zahHaffIJroaEswM8P3VxcSF4sXEiyYMECihpZtIj+LyGLhF270KegQFA4OeFRzZo40aULzp07h+6aVKyvvkKzjRvh0rMnchwcYGBgAJmPD8mDKVOKx1WlUmHz5s18508/wfPwYdRt0ABHBw1Cy7g4ZP/xBzKfPYO4fz+gUkEnLg46jNF69vKiPX/VKrT28BBvFxSgoKCgdNRP/fokw+7epb8FARkZGQgPD+chISE8IyNDFAQBx48f5wYGBtzY2JgbGxvD1NRUNDQ0hJGRERRJSYhevx55tWohw9YWX44aJWo84l27dkXbEp0FujZvDvz0E25164bMzEzhs88+Q3p6unj+/HkYGRnxrKwsplQqoVKptDU/2ralvPkhQ0j/qagWiJERPeOSePmScsS7dkVyeLgagEjTrUB4jaQCKIxcpaLowrp1Kf3Ay4sM70aN6DMVdNDIzMyEoaEh13/yhL2aVgEQYejh4YGLFy8iPDxcbWJiIuTm5grjxo1DXl6euHv3bgCAQqGAgYEBd2jUiCbx48e0H+npQZIkBAQE5CoUilkLFy7k5Q/IB/wZfDC2/wZ4e3vLdHR0fjMyMvrEy8vr392u603x4gWF9Bw58uYhdu8J2dnZrE6dOrQxPX6srV7r50d5lXv2kMKxdCkV3fn4Y1I81q+ndjO//ELeg19/JQNcFEkBNzCgfMErV+he9fS0ni1AG5o9b572tfcxJpmZQL16ZDCXRKNGpNDs3Uueq9Gjy/8OGxttcRE3N22lbqWSPAhXrxKB8OwZkQ83bhBzW6cOKXvPn9PvZs3oXP/SCI3CwkKoVCpwzstsBaKjo4N2VciR1NPTw4gRI4q/4N69e+pjx44JNjY26i5dusjS0tIgCALMyij+UiZ++IE8oh06VPpRTbstxhgyMzOhVqvxWuXdjAxg9Wq8NDLCndBQhLq7Y+aiRaxC5eQ9QEdHB8OGDWN79uxhBgYGkqura+UG95gxtM44Lz89JTOTDFhnZ6qC7+hIc3XcOPI8rF4NXLyIxsHBaNyqlZA7YwbuFRaK9fbswSZ9fbjevYuurVpBLoqV3EeOAAAgAElEQVRUSdjBgdZuZCSt/wsXtOfy9SUjZONGUqwNDOhzERFkiCxcSD+ANlRZoaBid5qKy8nJJJ9MTbX94o8coXW4YAEpdDt30hrdsYP+/+47IDYWsokT0V2hULfdu1fEt9+SwvjsGY3R8OGUVmJhoe2rXREYI4NaqaRrU6kotNHQkGTm9u1kmB4+DNn583CuWxfHli2DgVzOjx8/joEDB7KyUiceP34MCwsLycDAQJDJZOyZhwcZcJGRWqWUJgSSfv4ZV+7cgWBoyGvWrMkrnBOtWlVoaLVq1YrfunWLlVcdGYmJJNOrOO9jY2Nx9uxZKS0tjRkYGMBx/HjebdMmoSA4GMeNjNSPHj0ScnNzmaGhIfP09BQNDAxQkJwMh0ePwFq1gv6CBeheUIBjx44hIiIC69dTUeDRo0ejuL1Ps2YUbpyTgywA8fHxrNwUqLQ0bV59JRBFEcOHD2erVq2iRcM57XXffVeqt7GZmRkGDx6MK1euMP+rV1Hvq69gqmktZWpK3rqmTWncbW3Jq3zlSnEef0nk5+fj7t27wtSpU1+XdQ0bklx7+JA8vYMHl3rbtUULrPz2W0zNzgYAhIaGwqZ6dTRcsYKIturVKfqqEkI/NTUVjDEKT2eMZIGjI4VGc07GtJ0d8PPPZIDVrKk92Nycing9e0bFztavp5xckOxq7OBA68rYGHj+HPIzZ1B9715mNH06z507lxkePEhFSAcMoND5uXPLTc2S6elB9ugRItavlwZs2SJYhoQQ0aWRcWfOQMjPh4nmWaWlvVb/RCZJmJCbK4a6uMA4JAS1Y2ORYmOD5k2bImLWLGw4fx69vvkGYU5OsH3+HGZbt/L6kZEIHjeOiTt2oHlkJMyXLYNZ9+7QK2tcv/wSyt69ERMVxS+YmvL09HTBzMxMatmypdi6dWvk5ubi5cuXLC0tjWVkZCArKwuxsbEoKChQKQsK0GPHDrGZvT1LnTgRrVu3FhhjOHDggNrU1BRt27YtzSIaGgIffYRWrVrh6tWruH37NgYNGqQpEsiePXsGtVr9enHNKVNIpk6eTJGAmgJ0r2LaNKp5s2wZ/R8fT6/t2wfI5WjZsqXYsmVLpKamYvv27eznn38GYwxdunQhHeCPP2geenmR3hgXRyHdmr2WMe282rGjTBnTsGFDHD16lPGdO8HKKXTm7u7O5HI5VCqVGBYWxgEq/NugQQPMmjUL//3vf/Hxxx+j8cKFrDjVx8OD9j3QulEoFFEAzpd5gg94J/hgbP/F8Pb2bqurq7vBxsamwfDhww3+te263gacU6/IFi3+GkNbrSYFNTGR2NZevUj4NWxIzPmyZVBPmYLOvr6swdKlZBC2a0fCsVs3CvPu1IkUWE07nB9/JKOxenUK2WWMFB8N1pfomKAJqyu5Of8dGDeOFICSra40YIzCAwEKlfzoo4oLg7wKuZw2j5LKnqZIV0YGbVBqNRkRvr5kYISGkmJuaEhj2aIFKe21axMp8A+trK9SqXD79m3eq1cvvOvq9bq6uoiOjmbR0dGyGzduQJIkqFQqzJgxo2o5w7m5NFcrgFKpxPr165GRkQG5XA5BEKBQKAAAffv2RUpKCo8OD2d6MTH4KCiIm/TowR64uuJahw4QRbFqFcHfA+rVq4fevXvj2LFjQlFOaPkfVqtJoRk8mLzNwcFEItWtS15YFxciyAICyOscF0dtnZRKkgv16tGc/uwzbR/pjAwYymSI27dPHb58uVDw/Dlz/v13yDWFdmbM0J6/LBLpwQMiozgnA3XZMsoV3bqVPEBDh9J3lGzvpaurlR8lCZTff9f+rWmtVhRWDYAMQ0GgtWdqCggCIs3MJIWJiQilkmRhXh5dz7p1ZGx3705z5+uvqfiWvz+F/QYEEGkwahStaU0xqWnTyNhfuZKMqpEj6Rq++45Igh9+KCbmZABmzpyJxMRE4dq1a9Kvv/7KLC0tpT59+gg1S8jFyMhIycrKigOAjY2NEBMTI0lZWYKwdSvJ3BLIe/wYvU6fhsv162z16tX86tWrUqdOnQRASyTFxcXh0qVLapOrV0W9tDS1pa6uEB8fz/v37y+UnMd9+vRht27dgo+PD58zZ87ra9rK6vX+xhXg6dOnSEhIEDRh+oIgMPToAeOAAHx59qyIpUtRoKcHXV1dIusUCiI9bGzIiwsi4j799FO8fPkS69evB+ccQUFBWmMbIAI4ORnp330HSZIQFhbGmzVr9vr1W1pWueVRcHAwP3v2LCtqiwcdTYpAOV639u3bIzg4WNq9e7fQt29f1CnKx8Xq1VQ4zNubPMwhIXSPZRjbkZGR0NPT42ZmZmXLUycn2hu8vcmjWCKc38DAAHOXLcMOQeApjDEjIyOuFxnJbC9fhkH9+mCPH2sjtCpAo0aNoFKpXjfMNORySAiRXfv3k2G9eTP937MnGbPOznSf58+/3hYtO5siW3bsIDkwYwYajRiBaAcHHuvjAyeAoXZtMrKrQkDLZPh4wgThJiClnjvHbO/fZ4ImJPjoUZpPGRlE8s+YUToM/uVLYOdOCPv2ofmoUYCzM6LUau46YgTjHTqgiSCgSVGnj2YpKVDn5iJl9mymN3s2jJ2ceHRyshSSny9KQ4ei8+nTSO/QASYXLwI2NsjOzkZ4eDi/c+cOVzdpIgzcuhVNN20S2rRtCx0dnWIjuVq1aqX7jpe4Mxw8SLKjf380LHoOISEh/PHjx8LUqVNfnx9pacU5zH369MG+fftw5swZ9O3bF4wxVNghpHZtIoHGj6c887KIg9OnSxvA+/fTHHxl/7GwsMD48ePx5MkTpCQnS6nLlwtqpRLi/PkkNwcMoP3o9GmKsDl4UPtcPD0pHeHJkzL71584cYLbWFtz+PgI5a1DQRDgVkSwODo6slWrVmHnzp2YNWsWQkJCoFKptNX9o6KI3CmK6ikoKIC/v3++QqEY98Gr/X7xwdj+C7F06dKJenp6K3r06GHg6ur6v93X+VWo1cSoTZv2emjgmyAjg7xS5ubEdjdvTgqkry9VnPXyok1rxgxSJOfOJaF84gRt9rGxWi9t//4QGjfG3YEDeU69eqyzgUExKw1A22KqZG5jyQra/xbs3VtpKB8A8rQ3bEiC38rqz3ufq1XThriX3CgkiYyC27dJacnIoA3v7FkiO/T0KLw9OZlC8B0dSXl41fv6F+HRo0e4ceMGnj59CplMxiotqPQWGDNmjBgVFYWMjAxUr14dTk5O+O9//4tTp07xoUOHsgplhUpFDHyJisoqlQoZGRnQ1dWFvr4+RFHE5s2beX5+Pjp27Mjq1auHp0+fwsLCAtevX1f7nz4tmufm4qNDh5BmYIBNgwYx0cAAeo8fq5s0aSL26dPnnd/zm0Aul2t6Y5OxnZNDRmN+PuVLfvstEWmnThFpFh5OMqewkIgzW1uKtLhwgeZTu3Zab/KJE9oTaSr3liADQ0JDce/ePSQnJ4sFBQWwtLSUatWqVbnwfviQvCj+/hTKrEGPHtrCYmo1zfWHD0lxr1nzzdrTvAoNeWtpCfTrR4aag4PQuXNnIgiPHKH3HR2JhANIAQNoHl25QsSEKNJ1ab7LyIiKZAUE0HGrV1P447lzRKABdE+v9H8GAGNjYxgbG6Nhw4ZCcnIy7ty5g23btmH48OGaYldITk5G586dRYBC+W/evIn1eXncUS6He3o6MyjyenLOcfHhQ3QrKhw2cOBAwdfXF4mJiWpra2sWExPDXrx4wRhjcHBwELsaGCA8NpZdunSJ5+bmCp6enqWUfcYYZs2ahZUrV7L79++XzmMvLCT59egRkTBVgJubGy5duqQxtOlFAwPK84yOBgYNgt65c0QoalIdkpPLLBJavXp1/PDDD/jpp5/w5MmT0icaOhTYtQua3NeYmJiyjdW1a7Ut2SpBvXr1GADMnTsXOjdukPF48WKF5KeXl5cQEBDAd+7cyXr27Mnd3NwYzp6lN1eupJ+oKCKzyih4l5KSIkmSxCRJKl8fcnWlwlZXr5IxqSHBAAgzZ6J+06asrb09HLOz2XNDQ2yoXVuqHhUl5B06JDk4OLBmzZqxijqNaMa2zCJrAN2/tTWt5TFjaO9asIAiYGbNIq91q1YUoSaT0R4aFERrsUYNWs9nzpDBffMm5NOno+7HHwsH7t1DQE4Ob9WmDWspiqhaZj3N2XZTpgjLc3PR9N49WM+fT0Sdvj6lFrx8ScTZhAna4nhTp5JH9vhxImosLYGpU/FwwwYp+dIl0e/SJfzwww9EAC1fDnTtCvHGDdicOgXExqIdY6wdIHLOERcXh22FhfhEJsOjvXuRHhTELzRvzkzMzCRnZ2ex7ZdfQqdvX1Zr8+ZKCeBibNhAxuiuXcVzJDExEf7+/uyTTz6BQYmiiMVITaWIApAH+NNPP8WRI0ekqKgo1rFjR+bg4FBxusyECZSeoOmw8Gq6xTff0PudOxOx2aKFNqLvFRhxjqbnzoFbWQlBmZk4ZGcHZzMzOJaMFuzdm+Rqv36k62iiDpYtI1Lo+vVShnxhYSFiYmIw2thYYPPnV1j3QANTU1N88skniI+P5wCYo6MjLl26hMxNm6AXF6f1ohel1Vy7dk0F4MTChQtvVfjFH/Cn8cHY/ouwePHigTo6OivHjh2r/69uMfU24JwUsvx86h9bEpJEinNoKLHYV65Qwa+vv6aCED17kvH1009UFXLKFNpwT54kwaynRxtHzZokyGbPJqWvaVNSbjQCTdOGautW7bnHjgUD0Oajj5i/v7/UmbH/LfZDkshztmMHGWOVQZMX17UrjeH76tcsCKTEdumifU3TYzIvjzZQpZKe8YUL5H0MCqLfrVoRK+3sTMqwg0Nx8Zb3AU3f1JYtW0p16tQRHB0dq94j9A1gZGT0WlXkESNGYOPGjSwwMLDcqtF5eXkI9fGR7LdsYXEODiwhIUEdGRkp6uvrIyUlpdRn5XI5mz59erHiomG7nfPzRVy6BLi5MezeDZNGjdA0MBBOTk5o0KBB2ZVb/iqoVCi8dAmXL1zgn1pbw7B3b4YLF+i5d+tGBjPn9PyXL6ccS1EkAkcQSFH+8UfyJshkVeo5XBLnz5/HjRs34ODgoO7bt69YVFW+anLC2Ji87K8aK25uRGb98gsVFNJ4bsePJ4VLk9f9DiI8GGOwt7fnZ86cYdHR0eqRI0eW/zxlMm1vek0NCYDSYzS4fJl+a0iJ48dJ1k6ZQspqRaH7oLoHPXv2FERRVO/evVuUJAlNmzZFYWGhoAkj1tPTw6RJk4Rnz56Bf/QRD3j0iBtPnMg6deqExMREPKtTBzUnTQJevoS9vT0cHBzUCoVCePDggZSRkcHatGmD5s2bU65zw4bwqFZNaFq9OlauXImnT58iJSUFGRkZSEtL4+bm5kzjYb93715pY1tHh/atKhraALB//36pXr16XBCE0uMsCJSHO2QIyTAfH0pZYoyKJlUwZqampigoKMD169chk8nQtGlT6Do7A02aQAgLw7Bhw+Dr61t2v3Bj4yqTN9bW1pDJZMjMzITeokW0H1QyB4vqWLDExETu7+/P7OzsYKM536xZFCGiVBLR06ABjWdBQXHRNk9PT+Hq1atlV1IvCWdn0hPmzqXnUTRPZV26oIuHBxEa7dqhZkgIZh84IKR8/jmio6OFsLAw6caNG8zLy6vcXur29vaws7Pju3btYsOGDYONjU35hr+maNrZs6TPbNtG3uxdu6h6emEh3W9mJhF8vXpRdI2nJz3/2rWB6dOh37Qpmt65I92/f5/dvn1bunDhgiCXy7mJiYk0ZMgQsUyjH8DLly+xbt06Tb0BbjpkCMPw4ZRu0asXkTbu7jR3/f2J7AgLo+fo5kak9c2bRKgHBcGtWTNRb/x43GnWDKELFnCX1auZsHo13QdA5NzWrUQKffUVeLVqOHv2LGeiyA4zBruMDHWfhASxxdix0GnaVCyuJdOxI8mIc+e0TovycO0apRysWkXXB8ox3rNnD3d1dWXlFg5t0IDWThEaNmyI2bNnCydOnODnz5+X/P39hWHDhhUTemXC3JzSgFatojSfknt7RgaNgyRRyPnkya8XSkxMJEKrf3/g1i2wuXPRITAQhw8fxhl/f9SuU6e0wd+jBz2LHj20BreNDckEX99iR1ReXh5+//13tbm5Oatlbs7KLPBXDhwdHeHo6MgAIHvfPhhlZUFtakr7oiAUG9r5+fm4fv26SqlUvp+qqh9QCoxXMZ/nA94e3t7eTeRy+a3PP//coDyB/z+LvDzyhERE0EZw6RJ5WoODScj06EFhiD/+SKzbH39QuJWPD7GNnp4kiBMTKXfvPRg6mZmZWLduHQYNGoQm5eTF/Gvh40OkxZsUtVKrSSE6fJi8WZpq5X8nOKeQvIgIKsqmp0fG+OXLxApnZJBCp6dHilmTJuSZr1HjTxktWVlZ+M9//oMRI0bgT1ULf0tcv34dAQEBqFGjBh86dCgzMjJCQUEBRFHExYsXpTt37gg1Cwslq4QE4W7dulwURW5hYSGkpaWpmzdvLiYkJAAALC0t0bJly9LVoB88oDoEI0dSGPqQIX9vwcLkZJINXl7U6zU6GtizB/lOTrjQty/vM3EiY5cuUXSMKJZbwRVDh5IXYcwYUpQWLKAw1MBA8gCV5SUpB4sXL8bQoUPRuLy8vrIQE0NyKzy8/Dzo8HAimKKiShNFOTnkgdqwgTwZ5VTSfhPExMTgyJEj4JxLc+bMeTcPuLCQ1pmtLcl1R0eKHHJ1fT2UtgxwzpGTk4Pw8HB+9uxZVqtWLemLL754/dqOHEHq2bPY0agRt7S05AYGBvzp06fCjCtXGNq2rbTFG+bNA2xtIU2ciH379vHnz59zQRC4rq4ujIyMxOTkZKmgoECQJAkAsFAT7QAQgTB2bJUJmiNHjvCoqCg2ceJEVFi5/soViiKqW5eqFVeSK5+UlIR9+/ZxQRAklUqFwsJC0cHBQWp96BCrYWrKCleuxI9FhM2YMWNQu3ZtOlClolSKuXORlJKC6OhopKam4sWLF1J2draQn58PU1NTrlAomImJiSSKIl68eCF8r6cH+YgRr/X0Bahq+rVr1/D8+XPo6+sjOjparVAoRBcXF+nOnTtC+/bteefOnbUCNzOTxvDgQZLDkkRro8gYVPXogXWOjhgzaxZM9PUrn++PH2sLerZrRyT7sWOkH3TqRFEtr6zVs2fPIjQ0FNOmTSuXKC0sLMTatWul7OxsQRRFzC8K6a8SVCo6/5w55F22tCTZ6udHY9i3LxnZw4aV23s9Ly8PCQkJuHfvnvTw4UP29ddfs+fPn+PixYvqgoICqNVqpqOjwznnQm5uLgPn8PDwQFcNYc057YWNG5M8v3+fZOi8eTSmv/xSnLKS9ttvEH18UBgaytcPH876njiB+61bc9HREe5r17L60dFgcXEQHz6k1BFdXXKEnDuHp8eP49G5c1yYPp21b9+eCBLOiSAcP55SSTRpZKmp5B1eurR8wicigkiIefNK9YMPCgrid+7c4VOnTi1fXgUE0Pwux+N74cIFBAUFoXnz5uq+ffuKYnn7BUB7j6cnef01612pJNl8/z7do4uLVpcIDyfC4vRp2ocWLiwVDfXy5Uv4+flJiYmJbPjw4ax4TYJSXF7u3IkWV66QjqWvT9EIa9bQeBkYwNfXF9nZ2dzLy4vpXL5MEZxv4qTLzARMTaFo2BD+jRvjTqtWmDx5cqn9PzAwUB0cHHzw22+/HVb1L/6At8UHz/Z7hre3t6irq3ugW7du+v9fGdpqNW1CQ4dSXk1eHhlCPXqQISSXk1Jqbk4KflF7j1JhR7Nna/9+B0pneTA1NUW/fv34kSNH2MOHD+Hu7l4uC/6vwaNHFF67a9ebHyuKZKhmZtIzkiTaZP7OXGrGiPVu3Vr7miZkVakkJSs3l0If79+njf70aSrUNmYMGVgODjQPW7QgAqcK9RJMTExQs2ZN9d69e8X58+f/5akf7u7uMDY2xsGDB9mhQ4e4s7Mz8/Pzg1wuhyRJQv/+/eH6++8Chg1Dz06dSlY9L1+zePGCFLPTpym6oFu3v659m6aQkqatz3/+Q56qvn1JGT18mLwEw4fTM69eHb8vWKB2cnJizM2NlSzUVC5cXEg5BEi2aArcTJ5MoYNVrEkgSVJx/9YqQ6kkhXrGjIqNKCcnMhyePi2tgBsZUY4557QOx48nEvJP9OC2t7dHhw4dEBIS8m6YdU1RxObNSW4XtVDDoUOUplNJ2zWAPO7GxsZwd3dnzs7O0NXVLXuQBw2CRUwMvnB3ZxsCA5mmxgC+/bZqxGtBAZCTA0EQMHz48LLaOwqZmZnYtWsXXr58idDQUO7q6kqfefSoyjIvJycHYWFh7Ouvv67Y0AZIsR45kjxZPj5EGFRwHmtraxTlrIoAFTQ6evSoEGVtjdlffQUduRzt27dXX7lyRSw1V7OygLt3kZOXhx07dkBXV5crlUrJyMhIbNGiBTjnMDAwYLa2tnjy5ImQnZ0NvcuXITx8SJFlKPlVWThz5gzi4uIkURRZgwYNpJycHHh6eorOzs7w9/cXdHV10bhxY7qR1FQyXC5fJmN71SoyimNiSEbn5gKcQ2ZgAONataTH8+YJzQICSDZ9+ikRUSNHUmRT167a8alfn4y58eMprDwwkNbQoEFUYKyMnsU9evRAeHi4+v79+2LLli3LHGO5XA4vLy8hLi4Ox48fx9MnT1Cnbl16Vk+fkudx927aQ+rUIQ/7ihUU/RUURO89eEDX9fw5EcEamJrSfSxcqCUACwoofcXDA3Bzg0FICOyvXoV9nz5C02fPeNThw2h5+zZsnJ1FlYcHdKOjYXD/PrIbNkSBkREyJQn1ly0jOdKrF43rvXsUMRMXR9c9cyZFtc2fTz/79yPTzg5X165FvoWFVN3BAQ11dRHfqhUbVq0a0z90CNl79+LU4sXo5uCAp0FBcNi8GYKrKxAdDZVKhSeBgbyhWs3qdelCcnr9ehqPFi2oOGJeHpH7CxaQXG/Zku67RDeEYqSm0th+9VUpQxsAMjIyJGtr64qjqoyMysxz1qBLly5gjOHy5cuik5MT7DVpMWXByopkyvnzRNBbWVFU0i+/UFTlmTM0B4ODiUzp3x+YOLFcYrF69eoYNWqUJsUCderUkQYPHixkZ2dj165dXKlUsuTatdGyd28Y79+PqKQkFF67xqWpU1nTtWuRlpambtCgAdPR0WH49luKoKiqsR0bS6TL8+fQjYpC7bt3cefYMTx48EDq0KGDABC5FBwcXKhQKLyr9qUf8Gfxwdh+zxBFcaalpWXdli1b/jOrPr0PZGVRaOG8eeSpMjam0O+oKAr13LOnWJH+p8DFxYXp6enh7t276m3btokmJiZqOzs7sWvXrm/fjunvREoKER5/BpMn0+9582izCQn589f1PiCXaw0WjZEFkGKTm0sbelwcfe7IEVIK2rWj+airS8aCnR1tUPr69F1FSuu1a9fw4sULsVatWhL7m9IMnJycYGNjgy1btsDPzw+iKKJ3795wcnIiT42fnzb/tiJkZ1PBuo8/Js/Q9u3v76ILC2m+uLlpc6NHj6bWK5s2ERGXmkpG5ZEjFLViaKgt4ldkrEmShMzMTLFCRakkgoNpLKytX3/vwQOSO59/TnNh8+ZyvyYpKQlbt27l1apVQ/Xq1asmu9PTaR6FhZUumlYecnPJi3L9OhGQGsjlZKCkp9M6vn6dPHhOTm8cecA5h0qlgoWFBdLT0/98SgDndB3161MdhuHDte9ZWxMp0Lgxpe2MGVOlr6xUvioUMD14EJ2GDMGlS5f4tGnT6Hloig1VlELy9deVGsympqb4+uuv4e3tjaNHjzJXV1cyhjS5x1WAprBWpYb2sWMUev/99zQPd+0iA/GLL6pMeLm6usLPzw+5RkZUp2HtWly5ckWUy+WlikLlJSZCnZiIPbt3c3Nzc/7ll18KKIeEq1u3LvD4MXaePYtna9agTolnkpWVhY0bN0q2trbo0aOH4OTkhFfdhOHh4bxv377MxtKSquIrFFT/ZNMmKioVFUXk78WLZKBqxunoUfRNShI2btyIyD591EMBES1akAyOi6P704SPp6ZqixoePUpEvlxOzzg4WFsXhHMiig0M6NjLl9GpUycx/pdf0KRvX8g/+gh85EikzpwJvbg46KxYgS3jxvEBv/7KJEtLGLdvj5oNGyJh/37UePiQwqijo0le9u5NRlhKCskwe3sKJweoZVezZmSMaToD9OlD5NSuXWR0iyIZ24JQNonNGOwliYExMEFAqSoljMGcMXDOcXjdOp7w3XesS8lUrJIYPZquT9NerEsXoFYtxDZtKhkYGwv92rQRWGAgje/33wMHD0JKT0eugQG6r1yJuytW4PLZs3zg8eMwycpiNbp1Q0hICG61bcvbT5/OUFhI91KtGkUlPntGhqdSScb3smVkcI8ZQwRqQACRuhoUFmrD6pcsee3yc3JyuKY1X7l4NRWtDHh6eiIsLEx6/Pgx7O3tKxaeo0ZR7YxevWiebdxI8nzRIto716+nqKPly4mIqyRaUBAE9OjRg7m5ueHEiRP816J0nHbt2nFLS0skJSayoHXrULtPH5zv3h1NuneHwaNHfPX//R/LF0Wxe/fuNEfGjy+t15SH//yHSJ7z5ymtoMg4d3FxwbFjx3DhwgUhLCxMql+/PtLT0xmA8wsXLnxY+Rd/wLvAB2P7PcLb27uVXC73HjRokH5ZbYL+5xAURCzllStkUJdsu6GrS6ynKNLmUlj4XkLC/wwaNWqERo0aibm5uQgLCxMfPXqkXrNmjfD555+zGlWs6PqPwLlzRHbs3ftuvu+776gwXHo65XtVloP1T4KhobaVC4DiXpWSRKFjyclUqT4+nuanry/lkC1YABQUwCQjA61TU3mvQYME5ORUrT3Se4CFhQVmzZrFrly5And3d204ZGYmGavOzuUfLEmk7KxdSxIJg5IAACAASURBVMrf1avvtthceDj9DBxIoXiff05re9Eikgk2NqRoNmhAXh9Nbuann9LvcvLRsrKy8Ntvv0nm5uaoUkEygBSTESNozr4KjQz++msiBF++JOP+448hSRKePXuGwMBAtVqtFhISEtCyZUvevXt3oUqyOz6eFLPTp8sNFX0NRkZkJGjypF+FmRk9W85pjJo3p7oVlVwP5xwKhQK5ubk4ePCglJiYWDx2qampeOuaIVlZpGBOm0ZKqXcZThFdXSLmTExoTlRFSawMY8cCkZHIT0vjtra22mJJYWHkRS/ZGuxV7NhB41UyPLwc2NnZIT4+HocOHeKDv/uOsU8+0UZFVAI9qjAuJSUlCeVWQQ4KInnz9de0FgAiNGfP1kZ1VFFPUCqVlLc7ZgzJLWgrsQPkuTqyZQuvL0lMX1+fDxs2rOL1I0nAmDGoZ2zMo/PyWI3CQty6dQvZ2dkIDQ3ljRs3Rv/+/ctcC5IkoaCggJk+fkxGplpNMmDsWO2HZDKaxzY2ZJzq6xe/FRwcrJbJZGI1Ta/wb0qkkObm0u+ePWn+AeSB3L+fcpOXLKE1l51N6z4xkda0pSU9e1NTYNIktHj2DLoJCdKdTZuEi1FRGBwbi6unT0u8sJA1qlOHu7i4CHa+vrCzsEBhUhJWGBujs60tagwerG3NWZJ80Xiuu3fXFk0dNIii+C5fpho0mzaRgbl9O3mdU1OJIKikvgirKNwZQEJCArKzs9G5osJ3P/9MBmFgIF3TsmVAbi7+cHVlCQkJuHLvHpi5OfiBAzDq0IEPUCp5VkqKcGflSrjfvo1748dL6tRU4WCfPoAkodqqVXiZmQlHR0eq5i+TEWkE0N5jbk4ElYMDefHr1SNC296edMLNm8n7bW5O8+DqVXp+48eXefk5OTmswmriAIWuX75M414BqlevLiQnJ1fN89CkCc2vFy+IIMnIoPuSJJpn48a9WUoeqFXe6NGjxePHj/M7d+6wzp07C4wxODs7Q/L0hHLtWjSPjYU4fjzDN9+gdbVqCHZy4rVq1WLQRHtUJBfmzaNIEE9PSusBiMQogiAIGD16NCwtLREaGipERETwpKQkplQqv3+jG/mAP4UPOdvvCd7e3qJcLn82cOBAG0eNov+/ig0baMPv04eE+4QJFQuHP/6gDerly3+cwf0qfHx8pLp16wo9y6iy+49F584Ubv3zz+/2e/fsKe7d+09tz/VOUFAAVXw8zm/Zos58+VJwuHuXuTo5kcF+7RptvP36kUHRqBEZGA4O761IW4XYvp3CEQ8eLPv9o0cpDG75crret62krlSSkrFxIymy9vakOG7YQIb89evktVq3jsiYP5nfnp6eDh8fH+7g4CD1799frHLbMU00RyUKKwDg99+RuXgxts+apVIoFIJKpRKsrKwklUoFa2trPmDAALFKIeSFhaREnjtXun1XVdGpE4W2V6Q0atrn/fQTefZ8fUvdI+cc+fn5+OWXX4pfk8vlsLCwkMaNGycEBgbi6tWrnHPOOnXqBHd3dwiCgHPnzqk556xatWrMw8ODVUgsODsTiRcZSc+6opZ0jx/TfZ04UW7rqDeBNHAgzhkact1x41ixkZGbSwRgRUr5iRM0dpo0pQqgUqmwe/duxMbGQj83F9NmzIDuG5Csy5cv515eXmUTs/fuUQX3YcNKe/gAkifXr2urd1eBrFmyZAkkSYKoVMIjOBhXOnSAc9Om+LgoXzYwMFCdsGcP+8TWVhCrQDTg7l0gLw8xVlbYtXs3ZDIZqlWrJpmYmPD69euztm3blk86qdW44eEBJ0NDGK5bRwZLeZ/94guaRzNnFr+0bds2tZWV1Zt3PLhzhwy4sWPJ66gxSkoYGm+KsLAw+Pv7S7q6uuzLL79k+iVIgSph+nSak99+SyHUAwbQWg0PJ8KnRQsiWyrz2laAmzdv4ubNm+pJkyZVLOSmTye59MMP4BER4K6uWP7NN5g9fz5kMhlUKhUEQcDdu3cR9+ABnFq1QoM9e8CWL8cfx44hX18f165dw4TVqxFlb4+A3r3RvHlzqWvXrkKZ1cFVKiqmOGMGPef0dAq1vnuXPN+DBtHesGYNrcuTJ8vV/3x8fCQ9PT3m5eVVvkB6+JCi1kpUpy8La9euVdepVUvo360bQ1ISRV2oVBT1EB1Nc0YuJxIoOJjkaloaEToWFvTa2rX03OrUIXnyBnU/NEhMTMSOHTv43LlzS98T55SSkJ9P82XxYiLeACL909Pp/K/i/HlyHgwbRpFqQ4ZU6ToCAgKUN2/e3Pvdd995vfFNfMBb44Nn+/2ho7GxseH/tKHt60s9YCMjKaywSZPS4ZDloU0bYj/lcuC//6VCNP/QNmhKpRI5OTl/92VUHVlZVITufWDECBLsoaG0kZ8798Ys778CenpYc/KkJFWvLrr17g2rxYspj4tzYrrj4miTT0igAi8bNpDHdto0Ci+0sCCFuXZt+m1u/v7ICSsreiav4sYNClk1MyOvRlVbsOTn031ZWpLS9NlnFH49Zw69HhxMynKPHuStcHfXRgsAr+V6vg1UKhW2bdsmOTg48EGDBlU99LlrV1LoNOkPleHLL7EzP19t9PSpbNJvv0EVGws9U9M3E0QBASQDnzyhMXsbDBhQdth7SYgiPespU8jbHRcHHDkCxcSJiH78GH5+fsgvCmft3bs3CgoK0JE6EAgAhVN6enqyo0ePqq9duyYEBgYySZKgq6sr2NnZsZs3b+LKlSswNjbmY8aMYaUqQz9/ToTC7t1E6nzxRcWGNkD7gZ8fGcLvwMP9rFcv6J48qbknwv79RACeO1f+gTo6FP1RBchkMnh5eSH1p58QdOcOrjx4gK5vYGyrVCpWZkXtJ0+0HrhXDW2A9r62bWmchw4lJbqSCJqhQ4fi0KFDUHIOl8ePEWNvj5gSBsDz58+ZSY0agliVcffzI+Pw6lXYm5hg9uzZ4JxXXnVfqQSOHYPql1/w1MGB602cyFwq0nfs7LT9qUsY2y4uLsL58+elPn36VH3tHTtGxJ6ZGckouZwMobeESqXCunXr1AUFBWKnTp2Ym5sbq7CgVlnYtYsIbrmcCJSgIC3R5OREkWYvXlBqzZgxZUffVAHPnz9XGxoaVr6hzJxJ5A2ASwkJ6kdTpwo9P/qI6QwZAixcCJ2i/PVWrVqh1ZgxNI5jxwJz5sBDJgOWLUPHRYvwW3Y2Wn/8McbWqoXdu3fj4cOHGDx4MOzt7VGKgJHJKNwfoKJoL17QfQ8aROTsjRukKxob095R0tDWhNanpQGCgI8//lg48f332MsYhnftSsd5emqLzjk6Uh66KNK+XFhIRum1a+RV19enPfrYMfS0tBRzNAVVg4LIKVS/Ph0TF0cEtJkZ7du9e5MxHhlJhHHfvhQZcOcOfX7fPpLBmZkkB52cqObCxo0UzVFORf1Hjx7x0NDQsp8ZYxTd4u1NsqxnT4rY0IThv1pcTqmkdTRwIJEFvr7lTgGFQoFz585xtVrNZTIZ55yzO3fuCJIkVYGB+4B3Cs75h5/38LNo0aLvTp8+reT/i4iI4PzFC87r1OH82rW3/57nzzmvWZPz5OR3dmnvGgkJCXzZsmX83r17f/elVI6kJM51dN7/eD5/zvlXX3EuSZynpr7fc/0NyM/P50uWLOHp6elVP0ippHG5epXzkyc5/+YbzqdO5fzXXzlv25bzNm0437mT8+3bOQ8M5Dw0lPO8vD9/sXPmcJ6QoP0/IoLzK1c4b9aM8x076BmVh8BAzsPDOb9zh3NPT84fPeK8Z086VqHg3MuL85AQzjMz6ecvwvbt26W1a9dKKpXqtffUajXfs2ePFBwc/PqBW7fS/bwBFAoFX7p4MU/bsIFeWLGC89zcqh0sSZzb2nK+f/8bnbNMBARwfvZslT++Z948nmhjw9dNnco3zJunDg4O5mq1usrHq9VqHhYWxuPi4jjnnEdGRvIbN27wdevWKZcsWcIDAgK0g9+1K+fDhnH+xRc0f98Ex49zbmfH+ZuspTLg7++vvtenD+f372tfTE2l51URVqzgfNasNzvZ/Pk8bNgw7uPjU/UB5Zz//PPP6tf2iZQUzj/7jPPff6/al2Rlce7szPnhw1U+rzIkhP9nwQK+aNGi4tdOnjypvjFqFOclXisT6emc371LMuNNcOUK57/9xvnw4Xz38uWqHTt2SAqFouJjgoI4P3WK8y1bOD99uvjl/Px8vmjRIv7kyZOqn3/sWM5HjeJ88mTOo6Le7NrLwNmzZ/m6devUSuVbqmwPH3JuZcV5Wpr2tfbtSfYHBJT+7JMnnG/bxvm333J+4cIbn2rz5s3qtWvX8jJl4KvYtYvzH37gBw4cUB04cIBztZrW8osXtAdp5LqfH+cdOnA+YQL9Hx/PeePGnKek8KtXr0ohHTtK/Px5zjnn58+f50uXLuVHjhypfLAyMjhfuJDOK5NxDnDevTu9p6ND+uP69ZwbGdFrLVrQc+Wcq3V0+K/TpnH1mjWcOzrS+926cb50Ke1PcjnnTZrQWO7fz/m+fbTnBQeTnIiM5Dw2lu/w8ZEOHTjw+mZSFsLDOf/0U84PHqTjjx2j69m1S7uXaubI5s00j5VKzs3MaD//9lvOW7ak96dO5fzSJc6VSr5z0SL1ypUreWBgYPnnliQ63tubcycnWpuNGnEeG6v9zJIlnNvb09+VyHtJkvjWrVv5okWLuI+PD9+7dy9fsmQJX7JkyS3+D7CR/n/7+eDZfn/IUCgUSvwvRQ8olRTO8ssvFCb45Mmf89jZ2lJ4UUEB5bAdPVpx7unfABsbG/Tr1w+nTp3iTZs2/WfHTltZUSGat/WwVRW2tuTNDQ+ncPVnz4gZ/h9AYWEh1q9fL9WpU4dXq1at6q4NmYzGRZMz1bev9r0JE+i5pKdri7XNnk0ekE8+obD8oj6xMDcnZr569crD0nNyyMPj7U0hxpcvU57g6NHA7du0Njmnz/3+O13T+fMUihwVRSF+n35KjHzv3nTO06e1a3rbtjcZuncJ1qBBA16WZ2nPnj3SixcvhMjISKSkpKBv375ULfzwYRq/Nwxf19HRgXn16upt+fnCl2lpzEQTBl9ZMbKNG8lLGR//bqJyTp4kz6Ym/7MCHDt2DJFyOSInTEBdMzN4LV8uoH59ijKoIgRBgFMJr6emrZ2bm5usqDicYJ2RwZ11dBiOHaNQ0HXrqEL0m6B/f0q1ePGC5mFleZjlICMjQ6plbi5g0yYKxwZorRgb01xv0aLsA4cO1RawqgpUKsDbG6r795Fw9KhQXo475xzPnj2Dnp4eRFGEsbEx3NzchJMnT8LQ0BCFhYUwlCTYHTpEYzB0aNXOb2xMVd2XLSNPW4cOle+xooiRGzdi/aRJCAwMVHfq1ElUKpUcSUkc1KGgbEgSyYrOnUt5mivE06cUzXHxIs2FPXvwYsUK1qFRI1ZeW61imJmRR87Pj1IAisJ/4+LiIAgCKi2IBZAO4uVFaTEbNpBMTU+v2rVXgNzcXFSvXp1XOV2lJCIi6FnFx5f21urrkyx/tQBg3br0c/QoeUW3bKF9o5ze2q9i8ODBws2bN6WgoCDh1q1b6p49e4rltqV0dwd++AHVVq8W45OTSVZparkMH07Xt3UrjeFvv2n3r1q1isO03ceOZWE6OkiOjIRVly7o0qULLCwsEBAQIHLOtd7tpCSqo9C1K/XZHjWKIqp8fChv28iIPL+a3tjR0eS1bdOG9kigVBHWgBMnJOHhQy5MniwWRyuVjGLZs4fSt5o2LXesrl+/jmepqWzi0KGV7+WaDhlTptBeMneuttXcqVPaNmaaZ1yyJkFaGv2eMYP2dM1rSiVw7x6GLVkipD5/Dutly8gTvX49RR2MHKn1XDNGxebmzKF9YO9eWiO1a1NR0379aByL+mRXtO+kpaUhMDAQT58+RYcOHdClSxcUFBTg119/LVAqlZ9WOhYf8M7xv2MI/vMQmZCQoATwhkk//1B06kThOxs2UI/Qd9kqSE+PQnIaNSIB/w/rdd24cWOcPHmSXbhwAeVW//y7sWgRbVQnTvx153RyopByExMK6Vq48F8dVp6Tk4MdO3ZIZmZmGD58+J+v3KyBgcHrvXo/+4yU3fR0Iq3i40lpS08npWv1agpdnzSJiv/UqEFhknXq0Hhretbu30/KzM6dRIL98AMZyb17k4KfkUEG+YEDlEPo6UkKFmNElmgwZ847u90/i6SkJMnDw6OUJiFJEo4cOcJjY2OFSZMmISEhgZ87dw67du3iAwcOFIx/+gls+PAqt/UCgIyMDOzfv1/KysoSlEolW7V2LTx8fKRuzs4Cc3SkED5NWOSr8PUlGagpdPVnsXIlESNJSRWGlGdlZeHu3btwcXGBKIpSfHw8cO+eAM5JeXZxeevwVA2sra0xcOBAljNmDH8hSbyGkRFjS5eSkfU25KqDA8mHEyfIaH+L7zA2NhbC27WDY5MmVB9EEzIdEkLzuDxj28+PPlNB5flSmDEDCAqC69278PPzw9q1azF16lTk5OSgsLAQ9vb2SExMxO7du7lSqQTnnEmSBJVKBR0dHTDGpIMHDzIdUZQ89+wRU+vVk1znzRPe6I4bNSLD5+OPad2uWlVhDQLByQn5NWrA1sAAsbGxrFOnTjA0NGRxpqbMrbxxAUiuuLgQ6VYZOKeUrytXqEjU5s3FRc4YY9yksrQCgOpLhIQQ0bdzJ5FLNWsiIyMD1apVU5uZmVUucy9dolQdY2MtefMOdJFmzZphz549YkJCAt64GOrgwURavpobv2MHEaZPnpR93MCBVA1882Z6zosXk3FcyfowNzdHz549hY4dO+L69evs4MGDMDc3V02YMOF1fd7eHjhxAjaHD/MwIyMuSZJQXIfi0iXaQ1atonnfoQMVN9SEeteoAdSsCVWPHjhubIyB9vawKipuZ5yfD92nT5mqsBDyZs2IpD1yhAz3e/fIEHVzo7k8bhzJpj17yLFy4wbpDmX0cddAkiQEBwcLXl7lpBVfvkyh4BUY2pIkITAwkA8cOJBVq6x1YkwMER+//EIpHQARULm5NA7DhlEhss2byUAu7/usrLSkyc6dAID8/HysXLQI31taEuFdWEjv+/hQyPjhwxQ2npBA19CsGaVrLV5MslOSqBaIoyMR4hV08cnMzERCQgIOHToEtVoNDw+PYp31jz/+UAuCcHLhwoUxFQ/GB7wPfCiQ9p7g7e1tKIpi+jfffCOX/1sNkBcviEVbsYI2tmbN/lS/10rBOQmSzZtpA/sH4cGDBzhz5ox65syZ784Ie5d48IBY5ap6UN4l0tJog/L3/1N5c38HwsPDERAQoAYg5ObmMktLS2nEiBGCoaHh33thSiUZ34WFpJxmZVH1V0Egr0FYGHmpk5Mpj2zYMMq77N2bWPMVK0iZNjd/v2v2HePkyZPqkJAQcf78+dB4tvPy8uDr64u0tDR8/vnnqF6kbGRkZGD79u08Iy2NyXV1+bBPP2X1X2kRVqS0ITo6GoIg8Pbt2zNTU1Ps3r1bnZaWJjZu3FiytrYWZDIZHj16xJOTk1mHDh3QXleXvOSXL5OCqFlX8+cTGfimHt6qYMsWUrBeiRg6cOCAFB8fDw8PD+H8+fOwtbWVhg8fLty5c4ffvn1bmjx5Mg3U0aMUZdKuHa3Jkrn0b4K7d4F9+5Dz/fdYv2aN9NXOnYLx/v1gryi2pbxalYFzIpQePCDF8Q0LRPn7+/PExETmdeoU5VxqlPCsLPru8r5v505S7tesqdqJCgrICLS3hyRJWLJkCbp27YrAwECoVCq0atUK9+/fh6OjI/r161fcg12SJG0/dkkCFi9GYb16WPX8OW/dti3v3Lnzm4c/5OeTEfb4MTB1asUdBMLDEXfhArampWHIkCE4ePAgRsXEoP6ECa/1MAZAhUy//prI0opyk3lR5eg5c8gQaN36tQJkK1askOrUqYNPPvmk1D2qVCqIolj2HClqF6VevRq//vorWrRoAWdnZ1hXVLvg4EFaFwMHUmVwX9/iKuqVtYCqCk6fPo2IiAg+bdo0VqXCiJJEUUlmZiRjX73PwYOJzFixgpwIFRiXuH+fKqmvWgX83/+9Ts5WAIVCgTVr1vCGDRvio48+en2wo6Oh+vJLrPDwQKePPoLHq0UcX7wgo9zIiGrpTJtGc2LLFsDdHYGffSYp4+PRbe9eAWZmkFJS8KRpU5iYmXHLq1cZFiygufRqbjFAkSLu7jRnDh0iwm39ejLqK8GmTZu4hYUF0xT9K4Xhw4ns2bKlzGMlSYKPj4+6sLBQmDx5csX595cu0bivWVP6GSkUFJVy5gztu2o1eZv9/ck4rmLXifj4ePj6+kpz5swpe1IVFlLESMOGRJa7upZeZ8+fE5GTl0d1M4YOpXxuS0vSAUaOpGsTRVy6dIkHBgayxo0bqz/99NPim1YoFPj1118LCgsLXRcuXBhZpQv/gHeKD57t94SFCxfm/vjjj1k5OTkWZv+2ENubN8ljtmAB0KoVKZd/hfHBGClkBgbEtA4YQJ64fwDs7OyQm5srxsbGUk/SfxKmTCH2+O8wtAFSAiMiSFGtW5eUolat/p5reQNIkoSjR4+idevWokKh4C1atICtre0/o1KfXK5l7YsK2WD8eG1YeEwMrVG1mtZIRoa2OEubNvT7facTFCE1NRWGhoYoszhUJVCpVJDJZBpFV11QUCCKoohffvmFu7m5sRo1auDcuXOSIAjMy8uLVS/B6lerVg3Tpk1j6hYtEOvmht179sDY2FgtSRJkMhkkSWLZ2dmCkZERb9q0KcvKypJ8fX1FlUoFV1dXfPHFFzA0NCx+3u3atWOXL1/GtWvXJPeZM6nFzc2b1DVh6FBSipTKdzNoZcHLixStV5T2iIgIQZIknD17Fh07doSnp6cAADExMVxfX1+rRWoqbu/fT8ZReDgZBFXxOpZEaCjw+DGM5HJMOXVK2NGjB5SBgbzu06dIT0+X3NzcxNDQUCkiIkIwNjbmJiYmkqurq+Dm5sYA4OXLl9DT0yvdP1tTJXrqVCoktWvXG11SnTp12K1bt7C/WjXJ7NQppOrqCi4uLnBs0ICU/EePyp7vXbpUPVIqMpIMgVWrAEAT2szPnz/PHB0dpVatWgnHjh1TN2nSRBwwYECpQ0sZZ4sWAQoFdIYORfW9e5Gfn/926Uf6+hQBs2IFecSCgspPLUlIgNXWrcBHH+HEiRPc09OT1U9JKZ+EePiQPHcVGSFPnpAhsn8/jUs5nQx69eolHDp0CBEREcjMzOR37tzheXl5LCcnh4miiPr166tbt24t1jExgaxbN/J67t6NfDc3KIsiBq5fv47g4GAYGxurGjRoIOvdu3fpMVUqgW+/hXrdOjx48ACN9+6FfPhwIg3ekTOjZ8+eCAsL4w8fPmROVSkst3EjhbM/fVq2N3rqVHBjY8T37o3oyEieGBSkliSJ6ejocJlMxjp16iQWpyg0bUre3hcvSOZcvFi1QoQAdHV1MXr0aLZ161ZkZ2ejsLCQc865k5OTYGVlBWNTU+T06gW9pCQ8e/aMAyh9sba22g4mFy8SodilC6BSIebXX3E7PJyNGz+e4cwZIDsbd69cgd/w4fj+++/pe8rokw2AdLjTpyklYsAAGqMePcps/1YWGGNcJpOVvXb27qW9sBzcv38fubm5wpQpUyo2tGNiSCYdPvw6GaKrS4ZuSgpFG4kirce8PDJyXVzIe18JUlNToaenJ6GoWOVr0NHRpj8tXkx61PTplFJZvz49n3HjtOkwnNOcDwkhWTNyJOkI9vbo6OvLmg8ciFNz5zLluXOQnzsH/Pwzbty4oWaM+X8wtP8+fDC23y/+XWEDt26RgLl5kwSMoSFt9H8lNOGBqam0wapUf09LpVdgbGyMzp07q3fv3i327dsXzd5BO5t3hqioCjeevwx6ehR226QJVe90df3HVpkHgJCQEBgYGPDu3bszvKqA/FPBGG32NWpQiJtCQb+XLKEQuL+wJVtWVhYOHjwoPX/+XBBFEdbW1rx3797MVpP3VwbOnz+P9PR0ZGZm8tTUVF5QUCDI5XLOOWf9+vUTRVGEjY0NHj58iODgYDDGeM2aNfnAgQOF8trwiD/9BHsHB/a1kRGePXsmiqKIrKKevA0aNIClpaVmUESVSgWFQgFDQ8PXNDDGGNq3b4+bN28K165do8rXGkWya1fK6dP0/X0fEEVSrJo1I2+sjg5CQ0MhSRK6d+/O27ZtW+rh1q5dG7du3XpdiRs6lEKQ792jMNXDh6tGft26RSHoZ86Q4b9iBfTbtcO4//s/BJw/z+7evSupVCrx8ePHACD06dPn/7H33WFRXevXa58zDEOXIkoXQQVsiIrS7L23WKKxxRJNNFGjqVclub9UvSaxRI1eK4m9t9hQsWABFQVBkCoiSJMZYJiZc873xytNumJi7ud6Hp7RKafus/db1rteKBQKdufOHf7YsWNITU0V7OzsuGPHjjG5XA6FQoGOHTuiRYsWaFjsCO/eTUq+GzfSPmo5t7u5uWH27NlQKpWcZtIkPAgOxg2NRvTw8OAwYwYFoCpzts+fpzrPTZtq3klSEhnfZTBt2jSWl5dXEoT76KOPqmc2/fILlRYMGQIYGCA9Pb3mfsHVgeNoTh05kjQCfvyxcgO/Rw8o/vMfLPHzA/T0aJx8913llNPJk8lAr0ofQKUiVefly6lO9Pjxag+xVatWuHv3Lg4ePCjJZDLJ29ubs7S0hFwux5kzZ8S4uDg+KSkJdjY2wjtt2vAYPBixjOH2xYuwHDMGPosWSS1btmTGxsY4deqU7MaNG2jYsCG8vb0hiiLuXb8Obt06Mfnbb1FQUMDd2bMH0zUa2Pj60liqLuNfB3AcB2dnZy4yMlJo2bJl9fc5Nxd4913KfD6bc0VRhFKpRGZmJgoKClAUGyulXbiAHDMzqcuVK5z6669lAOmC5OXliWvXroW/+F8h1wAAIABJREFUv7/YoUMHYlJxHD0T+fn0HA4aRNlgK6sa53Vra2uMGTMGwcHBgrOzM69Wq/Hnn3+WnJctx4kTgoK4rWZmLKdXL1RIAAUGkhOckEDBlfR0YNw47E1KQudevZhxw4bkkE+YgFb9+yP2448lnucrPyhRJPtNkihj3qtXaUBEoSAHcerUGltVubq64tatWwKA8vfiiy9obqumZM7IyAjPAhtV7+DwYQoEXLtWpYo4wsJKad/FmDGDnO1ffqEMew0t6zIzMyVTU9PaMSLv3iUdhR07qLb9228p+Fe2PGr3bnp1cyvVhrlxAygqAscYuPnzoTUzw43VqwWfiAhe9803uHz5sqaoqOjLWh3DG7wS/P1ezP8wRFFUMMaQl5cHrVYLrVYLKysrvJAIx6vEo0cUuRs9mrKk8+ZRrejfia1b6dXHhyLqa9b8vccDICAggDc3N8ehQ4fg4OBQqXDOXwpRJMO4FpSsvwyzZ9Nx9e9PbVAmTvy7j6hKRERESK1atfpnONllsWABMUDOnycjITWVHAqVqsaWQS+LvLw83LhxA2FhYWJBQQFnbm7O5s2bh+zsbNy6dQtbt26VPvroo3ItkNRqNR4/foyoqCjcvn0bzs7OgqOjI9e5c2euWbNmyM3NZUZGRihL3ff392f+/v4ABUGqNlTWrqV6XUdHWIDqGauDTCardv7leR7W1taCUqks28Sa5sSEBDK83n2XSl1eIJNfIxo1ImdbpQIsLJCZmQkAeN7RBgB/f3/u/PnzSE9Pr0i/5XmaN3ftIudv+HAy2KpqAVecLWnRgn67bRsZ/0uXguN59OnTB3369OHy8vKQkZEBExOTkn22bt0a9+7dw4EDB7jbt28zuVwuDR48mIWFhSEsLEy4cOEC7+bmJgwfPpxnenpEV127loKp771X60tjbm4OAwMDXJHJMCQrC7YTJ1KQ4d13ifru7FzxRy1bVjSWq0L37hUcUGNj4/IZ+uqwYwdljP/1r5LSDa1W+0KMjwpwcSF68dy5dE+fz8JxHFGAjxwpDZAbGlacD1JT6RirEtM7epSYSZ07U411ZdTgSjCW2g+WBC2VSiVWr14NV1dXTl9fX0xJSeGSHz7kN3XpIir37GFmd++ynm3aoOHatVgfESHevn2bGz16NIuIiEDjxo2l4OBgycvLiztx4oTQ8PvvuUZaLfeke3epUK0WLbKyuEJRRFRqKhwuXEBWQQFuxcYKjRo14jw9PeveG7sM/Pz8sHHjRv7y5cswMTGBRqNBdna29OTJEzEnJ4cVFRUxhShKk7/6irv84YdCZsuWfG5uLpRKpVRYWMhkMhn09fUFmUwmeYWF8d3u3mVGBw4wbu5cNCnvlHGpqanYtWuXFBISAkdHR2Hs2LG8XC6nJMcvv1AgYdw4mhNWrKi2HEij0SA/Px8+Pj68Wq3G1atXJWNjY6l79+6cp6cnOI7jxJQUtFCrpSNHjkjvvPNO+QDdpk00X8yYQXXwx45B+PJLFDEGLy8vGgvvvAMMHQplixbw27+fnN7K6uU//pgCfMuW0bz5PLti9GgKEtd8L7gLFy7g3r17cC/LThk1qkYxSEeiYIs//vgj16NHD6lDhw7l58/i0pIjR6qfx2fOpM/XrSv/fs+edD8iI0k4cvbsKgMiaWlporW1dc3O9r17pK/y+edU6z5tGpXJ1KbkRiYrCVyafPEFus6ezaU/egTx3j1ERUUBQMSSJUvu1ryhN3hVeM28vv8dBAYGyhljhhEREQgODgbP85DJZBLP82z69OmoUbDhr4AoUkRs4EAy3GNjq6eV/R3Yvp3oRlevkkFYB8XdV4GWLVsiPj5eWLduHd++fXupb9++f5+zFhxMWYrHj1+vDDLHUZ2hgQEZhyNH1r7P818ElUqFjIwM+FVWz/g6IyeHHKGyxoqLC1F/IyJoPFy6VCNFr7ZQqVQIDg5Gfn4+Hj16BKVSCTMzMykgIADe3t7gONJ+MjY2hoODA3vw4IF05MgReHh44NKlS8IzA5WTy+WwtLQUhg0bxrm7u5ebZKxrqcJbKfbvJyfR2/vlTvQZVCoVEhISeKdi7YFFi4i+e+UK/T8pica2TEaGUF0p2jWB48jwXbcOQYzp4h4/lrVq1apidgcUGPD09BT37duHWbNmVT4BdO5M83zbtnTsV68SK6Js3e2dO5RFi4qibhOPHpFxv2NHhXFkamqKysSw3N3d0aJFC5aamgoAzMHBAa2oswRfUFCAlStXcn/88YfYvXt3LjU1FbZBQbA1N6cgah0Cu0qlEqEdOqCLvz8FJIyNSd0/MJACCs9DFGl+rAmRkUTFzM9/sTXw6FESOJo/v1TRGVTX3rRp07pvrzL4+pKGgJ8fZabnzi1v4AcEkK4DQIGMdu1KmWIAzRGbNxND43nHIDqa6MPDhlEApLgU5QXxjDUkjho1igPA5eXl4eLFi+gybRqn6tULZnl5MEhNBY4cwRy1mt8WEyPt3LkTkiRh/PjxbPny5ezAgQOCxeXLLG34cHSaMQNNjI0ZABaxbBkepqeL4SdPin2uXOHv5OQwdb9+fHJyshAcHMx7e3uLHh4eXE5ODmJiYoQHDx7wOp0OoiiC53no6elJZmZmkqurK5ednY2cnBzJ3d2dFRYWIjw8XDQxMSlmcUg8zzMTExPe0tKSb968OUyMjRF5+zZ2jhyJZJmMR0wMGjdujBEjRjA7O7viwAoNILWamHnGxlRr++hRubFhZ2eHefPm8RqNBr/99hs2bdokTpo0iSsJzpiZkdO6bRu95uVRbfSzLLEoikhISEBYWJgQGxvLKxQKQRAEHoDk7u7O9e/fv1xgkVu1Cl1HjWIbjI0r0uD69SthQeicnHCtWTNYXrqErhkZOLVlC/zv3kXDwYMBjkP8zz/D/MMPiWFx/nxJJxJ1Xh5SDxxArpUVWjZrBkWTJuU0XHQ6HTiOA1dcc/z229Vm7JVKJXieRzmmVEoKBT1r0PSRy+X4+OOPubNnz+LYsWOsffv2pB0gSSTyu3cvJSlqKkGYO5e0TypD+/bEpvnqK+oCMm1apXNHVlYWVyMTcs8eEiDctKlUdNPNja5fkyZU4tK8efXbAACtFjlHjkB58SKiZs1CR7kcISEhKrVa/e+af/wGrxJvnO1Xh6aSJHEhISHo0aMH/Pz8wHEc27Ztm3jgwAG88847XLW1JK8aixeToRoeTotwNdTPvxXFgkf/939kNO3d+7ceDmMMQ4YM4Zs3b46dO3cyPz+/2mc+6hOFhRRdTU//S6nDtUaxkZefX9oC4zUSCgwLC4OBgQHc3Nz+7kOpPR48oExdsRrv82jalLJzenq1qomrCXv37hXu3r3Ly2QyGBsbQ6fTYdSoUWjZsmWltHvGGDp37ixcv36dS05OZq6urhgwYABnbm4OQxoP9TvhFRSQWE09QqFQwNTUFOfOnUNhaqrUZ+5cxpUV6HFyomCGKJLTeuIEOTn1iKDffxd7L1nC6QcEyEZ//TWeD06URc+ePblly5YhJSUFDlUJMD3LUAMAPviA6nBv3iTDUKMhx3vBAsqoPX1KhvC+fbUWACrdDVfpMRgaGmLkyJFsx44dLDY2tuR9K0EQ3169mtsXHS2lWVszIyMjged5rqCgAIwxcBwnGRkZSQ0aNOCcnJyYn58fMjIyJI1CwaIXL0bLDz4gcaxu3SjzJkkV58KHDynAUBM8PCjb9SJrckQEqYd/+WWF1nP6+vpSZmYm7O3t62eS1tOjNkQ//EAG+uDBpZm53r0pAJGURM/+n39S9rEY339P80fZa5SXR/f6wAGi9g4cWC8B96SkJNHBwaEkAGRqaooBAwYAd+7A2MystHzg2DFg7VqM37+fHTx0CDY2NtBoNNDT04M8MRGd9u7ljk6ZIoIcbQBAm1OngMWLuS5+fhxMTODRtm1xmQSfmJiIo0ePSuHh4aJcLpesrKw4Hx8fPHnyBD4+Prh//z4uX76Mx48fcyqVCvb29oKTkxN/8+ZNUV9fX+rZsyfftm1b8FUZZ9Onwzo6mq3q0wejRoxAtbXdWVkUZI6Lo/tw4wbNHc9BLpdj1qxZ/Pr164Xt27eL7777LlciKqdQUL1ufDw9lydOAJaWyHF3x+bNmyWtVis5OTlx06ZNQ6NGjfjU1FRs2bKFyWQyVBB5k8lg0KgR2ly5wq1Zs0biOE4cNGgQ/+TJE5glJUF9/jxCY2Lw6NEjAIBxx46Sz+PH6Lx+PdI4jgXt2ydqNBpma2vLcvz82Ixt23B06lREtWyJlu3bSxYrV7LWd+7gjp8f7tjbo/D6dVF59izn5eUl3b59m6lUKlhaWuKD99+naxEVReOxCuTm5kKhUIhmZmalJ3L8OAXoaiGgGx8fj2vXrqFPnz4iY4yDKFKt94MH9OzUxh5p0YJYTN26Vf65oyOVWxw4QIGQZcvKtXp7VlrAnCtj3RQjKIgYAsUlKMXo358CGatXA0lJyFuzBvHx8VWXMKrVeDhtmpQRFcUOjx6NSYMGISUlBXl5eUoAx2o+2Td4lXijRv6KEBgYOB/A8jZt2ojDhw8vmSw0Gg1WrVolKJVKvm/fvmLnzp3/upSkRkPGSf/+pXTB6lqDvI74+WeizB458ncfCb755htMmDChmLL018LPjwIRxXT71x2dOtFfcY/cvxmrVq0SPDw8uB49eryGkYpKUKxdkJJSvaotQPWWgweT0f0CgaDc3FycPXsWkZGRaNOmDfr16wf9+mz1V19o1YooiYsX1+tmNRoN0j7+GA22bMHPCxZgcVXbT0oi5/vjj0kh/jnRrBdBVlYWVq1ahbdHj4YyKwue7dqBq0acMi4uDjt27MCnn35a+/KkwkLKWn//PdGKo6JKx9SUKWQAf/zxS5+LRqMBx3EICgpCcnIyvLy8BB8fHz4oKEhydnZmFhYWomPDhpzswQMYxsQguWdPpKenS4aGhpKLiwtXUFCA8+fPIzExEQBgaGgoFRQUMBMTE/iJotTJ2ZmhOBAyYwZpRcybV/4gcnMpo+jhUf3BzppF9fnVtNWpFNHRZAxPn06CSc/h+PHjuH//vjRp0qSa2w/VBaJIx5yVRS2VimtTZ8+m1kNDh1KGujjQ8OuvVDvr6lraNjAmhu53ly5UG1pPwX+NRoPly5dj6NCh8Hj+uoeFUTZ0/nwSBVu6lBh1H35YEhy8e/cuTu3ahQaZmSjS00Pr0aNLGUi5udTH+NgxcpZ++IEy+JXUn0dGRmLPnj0AAEtLSyknJ4fJ5XL4+vpKnTp1qrkv+POQJODKFUhGRrikVEpnzpxhb731VsVzLIZaTfPwyZMUxCospABdFdDpdFi2bJk0bNgwVlkQ+GluLjLOnIHZ//2fdMfamuVMniyOGju2gv2YlJSEffv2Sba2thgzZkz59S0tDemnTuGWiYmYq9EgOjqas7CwED0uXoTjo0cs/IMPJH19fda7d29WUtbTvz9UBgZ4HBCAnQUF0Ol0AACz7Gy8/ccfeGxtjVwHB8l26VLm+t13KOreHSEeHsjPz0diYiL09PSEgoICVlhYyHEcBy8vL/S3tKQ5p5rrER0djcOHD1dU8a4sqFYGRUVFiIuLw6lTp6TmzZtjwIABDJJE3TqePCH6eG0Ff4uKqId6enr1v9FqiV1jbU3j89l5hYSEiCEhIdznn39e+e+WLyemyX/+U3FdHzGC7LxJk6C7fx8/BgdLGp2Ode3aFf7+/uXne5UKOHkSl37+GcLixejSsycSEhJw8OBBXV5e3oLFixe/HobX/8d4k9l+BQgMDOT09PQ+GDRoENq0aVNuopDL5Zg/fz6/ceNGxMbGovNfQYvOyyND4quvqM7E05MM1X8ievakRVkQiD5YXcTwFcPOzk7cuXMn9PT04OrqygYMGFC7liH1gaNHS9Up/wnYto2Mo9BQcgD/5vFXVFQEOzu7f4ajDZBhOm5c7RxLX1+ikyoUlEmpA1U+JSUFmzZtgiRJaNasmdCvXz/+tXS0AXIY69oTtyaIIuQ3b8JpxQqE9+oF6eZNHDp0CObm5igsLIS9vT08PDwgiiKuP34MV2Nj6KWn4za1FxMdXF25x3l5UufOnZmrq2sJ1ZPjOKhUKrSuoi9sWFgYUlJScOfOHRgYGMDVzQ2sd29y5jdurPJwBUGAIAgVs1jVoVjl+uuvKXPy2WdkiF68SFTsfv3qetXKYdu2bWJaWhoKCws5IyMj5OfnY+DAgWKHDh14AJgzZ07xc0cHnZMD/Oc/aDV1Kp5pKLDCwkLcv38fDx8+hJubG3r16oXs7GxmampaXCvOMGwY1Zd26kRrmihWPJiwMKqBrC67XVRE516Wcl0bqFTkZH/+eaWONgB07doV4eHh7Oeff8a0adNgZ2cHQRDw0qw2jiMH+vRpqsWfP58c6fnzKajOGNWbAsRe+/VXqnVljDLxW7aQgxAUVMoeqydkZGRAo9FU7oTGxZHzOX8+sSnat6dSjIkTS4SfHj58KI46fJgzaN4c2p9+Kt/3+t49anNYnJW0sKhSp+LChQuCi4sL36VLFzg4OLCcnByYmpqiSoXr6pCUREGJO3fATE1hERVVUj5TJRQKYuQVFpLd9eOPlIGvrNwBpCfRs2dPtnfvXnTs2FFycnJijRo1KlZrF+/cucMZGRkJjWbO5Hq5u6PhrFkcCgupdKiM8+nk5ITJkyeztWvX4saNG+hQVhzRxgaNgoPRt317Tnr/fQiCAJlMxmH8eCAzE82aNy9/bWJjgfx8GH/3HVw3bED39HQpe+JE1q1bN2RmZsLa2RnW335LtKYrV4AJE6A/ciR6lT81PigoSFIoFELnzp35LVu2oIWREZouXUpBkyrg4OAASZK4Y8eOESvi2jUaw0lJ5b4niiLi4+Nx9uxZISsri9NqtYznebRo0ULs0qULD52OHGFXV1o/69JZR1+fgnU1/UZPj+bT/fuB+fORNWMGdkVHi9nZ2dyYMWMqfl+rpY4RgweTKF5lQb5nJSkFhoa4969/Sf0NDSH79lucPHlSCgkJYUZGRsK4ceN4GxMTiLNmocDQEKd79EDTR4+wfPlyUaVScSAfr/L+aG/wl+KNs/0KwPP8HAsLC+uqDCsAeOutt7By5UouMzMTVnWNptcWT57Q4lZYSLTB/HyKwv+T0aoV/f33v2QgZmT8bYfy9ttvc7GxscjKysLVq1cRGxsrNm7cmHvrrbdenQieWk3nf/Ik0Yb/KSiuN/r6a8rGHDz4tx3K8ePHJZVKxdckpvVa4Y8/6na//fwosDFwIBkLNTgSsbGxOHPmjJiVlcV5eXlJ3bt3Z5Updr82WLqUggr1HbQ5cIAygunpaDtwIB5xHOLj46WUlBTJ0NBQunLlSsk14XkeJ06cgH7LlrCxsRH7bt7MxIQEPPrqKykoKIgZGhqioKCg5LuCICAtLQ29evXC06dPSxSBV6xYIebl5XEAGZjvvPMO1Rf++muNVEdXV1dwHIfU1NSqaeSVITeXxCc3byZhre+/p/Eybx6tF3XM+omiiCdPnuD8+fOIj4/nxo0bBxMTE1y4cEFo1KgRih3tSuHtTevUH38AZmZ42L49du3aBVEURX9/f67rM72HCoKUHTsSBbpTJ3IsDxyomPUqzqBVB5mM6tbrAqWSssI//VTamq8SGBoaYs6cOdi3bx82bNgAX19f8fLly5ytra3YunVrrlWrVi9ehsRx1EopJ4dqrUNDyXFu1YoyxdnZlJF7+pScGkmiwIqzM1270aNfidaHqakpGGPQaDSokD0eM4b+AKrZPXgQ6NuXKLhPnwJmZsi/elXKnDoV7WbOrDgO794tLxQWFkZzWyVJC0mSYG5uLjo6OnJAzeKJ1UKhICaBqSlSU1Oxf/9+DBo0qHpWW3w8tdB6+22q6S0spDaC1aBt27Y4efIk7t69i8jISKGwsJBnjEnW1taYPn06ygltbdtGzt1//0vPQJm50NzcHCNGjMDevXvh4eFRXMZDmDcPCAsDe9YiEQCN/0WLKgalDh6k77dtC3z+OfI//ljqtHUrM+7VC8YAqXJ/9x3wySf0/JahyWdlZeHevXvIyclBQkICGz16NG9nZ4fBgwfj0O7d0pysLMaLYpVj0MjICOPHj8emTZvQqlUr2Ds4oGD+fMTdvo20tDRkZmYiNzdXUCqVvJ6eHtzc3DB8+HB2+/ZtKSIiQho1ahRdqylTKGj5zjsvJmq5aBEF9b6sQcybMWDECDxJT8fVVavQtk0brsNnn1V8BgSBmCQ6Hc3BVa3Nt2/jcW4utuzeLXVq107y1+k4WatWaNWqFSsqKsLFixfZzlWr0C4sTMoyMmL33d1hZWYGMzMzoV27dnxMTIw2Ojr65y+++EJV95N+g/rGGxp5PSMwMLCnQqE4NH36dMOaJvc9e/aIjx49YnPmzGGsPutuCwtpYR01iiay14By/UqgVJLzOX8+GY1/Yw28VqvF1atXpeDgYMYYQ7NmzYQxY8bU/wEJAjEUlix5vUTR6gJJIgGmO3dq15KnHvHgwQP88ccfmDp1KqprUfXaYPt2yo7cu/div1eryYhdtowyK1Vg/fr1olar5Tp27Ch5e3u//hn/sWOJrle2nvploNORcztnDmUGq3A2dTodCgsL8fTpU9jZ2ZW8z4qpuU+fAnFxSJ89G2sHDYKBgQH69euH1q1b48yZM7hUxhi1tbWFUqmUlEolmzNnTuXOwI4dFFj7b+XJifv372Pfvn3SokWLas+qyc0lZ2z9+tLMzbFjlL2Ry4ma27MnGZe1yPaGhoaWtBlycnISAwICOJcXyZZu2ABs2oSv+/aFwsAACxcurP77ajU52AMHElumTRsqqynbDzonhxyAQYOq3o6lJV3foUNrf6yDBxPNc8qUWn19z549iIyMhLGxsTh69GguKioKsbGxgkql4seNGwenMkJSL4ScHLoOn3xC46VxYxJvOnKEAp0dOlCtvqcnsRrqW9jvOSxbtkzq3r07a19ZIMLWlrKUVlb0l5BA7LvQUKpHnjwZD7ZvR4dez+VHJYky4F98QeJRAM2NLVuW9pgvg7CwMBw9ehT/+te/8FL21dtvA4MGIbtfP9y4cUO6du0ac3Nzw6jqWlfpdBREOH+eShgiIuj99HSiGldxPPv370dGRoY4c+bM2i/u69cTDfngQaitrLDvzz91rq6u8Pb2lgUFBQmSJLEJEyaU394nnwB2diQABtA9+Oij8kFwtZoywrNnlwSsNq9dK/hFRvLN8vJoHK1bBzRsCO22bXjs5IRjQ4aIOWZmTCaTSWq1mrO2thZkMhn8/Pz45s2bl9yHPXv2COzYMebg7c15TJhQZcDp1q1bOHr0KHieR6vQUNzx8oJRgwaihYWFZG1tzaysrDhnZ+dyrczS09OxceNGLProI8jefZeOs0+fF9eM2bCBnPQJE2r8alRUFA4cOICBVlZoe+kStQUrm9nOyCgdwz4+VbY+zM3NRZG3N254eMB0wQLR39+fY2fPEhOpuPRTo4HS1xepXl6iy6pVnF6ZNauoqAjLly9Xa7XaFkuWLEl+sRN/g/rEm8x2PSAwMJABaMnz/HCZTLZo1KhRNTraADBixAhu2bJl4pYtW6TBgwdzL91KSpJo0WrRgjIVBw7UOUPxj4KJCVHJHz+mxUsQ/jaHW09PD/7+/szPzw8PHz7E1q1b+dTU1HIG+Uvj+nUyngID62+bfwcYK+0Vq9FQcKg27S3qARcvXoSNjY1ka2v7+juUABn1L/MMKxRkSJ05Q4JilThPaWlpyM7OZj4+PoK3t/frm80uRkYG0V/r81m/c4fq52bMqLydzTPIZDKYmJjApDLqKseRMaSnB2WjRmjcuLE4MyCAK64X9vf3h7W1NRo2bIikpCQpJCSE2drassGDB1eddXN2rtJIVKlUOHjwILy9vetWvrJ/Pzln+vpEZ/ziC3JUp02jz3v0oPZSo0aR4F6/fpQ1q8RByMzMxKlTp9CwYUO88847MDExefEI4LRpOGBuruu5fLnM7N13a/6+QlHa8m7aNKrFfN5pTUyk96tztoODS523miAIJCQ2Z07VfaorwYABA+Du7g53d3euWEiub9++/KVLlxAUFISBAwdKbdu2ffE5ydycMp0ffEBBkpUrSeBuzhxqGZafTxnIv4jNw3EcMqpinX3yCQVHFAqyVziO1oCffwZWr0bw+PGiQ1lRrGLExJDgXdl71bp1laUkV65cEfz9/bmXymRIEmBujhi5HHvXroW1tTVGjRpVqbBmeno6jhw5Au+EBKn1jh0Mn3xCgl5yOQVNx48nx3vXLgpmPYfExERERkaiZ8+edXuGZswgR3DzZhQEBSHfw0N2JilJY25uDm9vb37Pnj0VM2ojRhCNv9jZdnCgtaYswsLIGXzmaCuVSjzOzeU13brR7yIjgQEDkPHoEYKmTUNnKytp6rp1nGrBAmQOHMgcHR2hr69f6SQ9YsQIPu3CBWTu2yf+lJnJGRgYCLa2tnyHDh3g4uKCc+fOITw8XJQkievevbvkzPOs8Q8/YODu3WB6etVeH0tLSwhFRRCnTiWHtl+/l1srxo+nUoxqoNVqcezYMSEqKoobPHgwa926Nc2doaHE5vviC+pWsHcvve/vX+l8KooiTp48ifDwcDT/6iuhR69evIWVFZ3vtWu0vYMHSbvl449hsm4d3Nq3r3A9rl+/LnIcd+KNo/364I2z/RIIDAxsI5fL5+rp6Y2Uy+V6LVq0kHl5eenX1sHiOA4fffQRt2LFCmzcuBHvvfcejIyMXqye6/RpMjhu3SJaYE2CMP8raNmSDK6kJDIIk5NLWlH8HWCMwcHBAQEBAcKWLVv4gQMHom3btvWz8bg4agHxv4CAAPr78UcyDJOSXrmqemRkJBITE9G7d28R9a2MXd8QBMrQ/fe/RPesJZ4JMEre3t5MFEX4+/uDc3cnY+HqVaJrXrpUzqHctWuXYG9vz3Xp0uV9aMHWAAAgAElEQVT1vibF6NKFrslXX738ttRqmjc3bCDHrB5wOCUF4R07Yri9PQcvL8pmmZlBoVCgzbPaXhsbG1YrvY5Onci52L2bMvnPIEkS9u3bJ5qZmaFHjx61N84fPaLaxZ076f9Hj9JzOHly6XfMzYmWPWECGXZnz1Igol8/iKNHo6CgACdOnMC9e/cgiiLatWsn9uvXj6uz4NRzyM7Oxu27d2XzWreGaW2ZHDNnUqYeoFr0BQvKs2Xs7at3tJcvJxp7bY998WIq5+jRo07zlaGhYTnlapVKBY1Gg06dOsHCwgIHDhxAQkKCMGTIEP6FdT9cXIihMHAgBdcAetbXrKkyWPKq4OHhweLi4iptWYcxY4iV1qABrd1Ll1IGuLAQCA7GYxcXOFV2DcLCKMtcFvfuURa5OHhbBoIgsJcq5woNBdatw8WpU8ULISFchw4d0KdPn0ovYnBwMEJCQiArLASOHGHZBgYwHjOGKMQhIURh7tGD7stzivXP2g3i8OHDkoeHR3G3h7rB0BCYPRsJT5+KjUNDd/qFhg4+8uSJPI+C2BW316kTBWH27iV2EM9TieGECaVU66NHy7VUTElJgahUwsDWljLFaWnAzZto8M47UEZHo5mvL9P77TeYx8XBXC6vNmjJcRzs5s+HXUIC5+bri4SEBD46OlrYv38/r1arYWlpKfbr14/z8PAoaS+JrKxajWE+JweT9+3Dro4d0apLF3i+bFD2yROae1NTq9z/tm3bxKdPn7LZs2czs+LEQbNmNJcuXUqCk+HhdM19fSvdxunTpxEWFiY9o88zp7FjefB86bz/wQf0b6WS6v4XLaqyhCUiIkJVVFT0RhTtNcIbZ/sFEBgYqJDL5Sv09fUnde7cWd66dWv+RbPScrkcw4YNw759+6QVK1YwCwsLady4cazWddzffkvZwfHjyXFp0KB8TdP/L3ByIlEoc3OiEk6Y8LfSrLt06cLr6+vj6NGjUKlUL9/P+eJFWhTHjaufA3xdsHAhGV9paSQE9a9/vbJd3b9/Hw0bNhR9fX3rxamstCaxvsBx5CTUsSb5wIEDUCqVLDQ0VCoqKmIxMTGwtLREVFQUGhkaYryPD1Li42EqlyNfkrB7925Jo9Hwjo6OAmPsn+Fsnz9fpShSnaFSkZNdVPRi9XzPQafT4ebNm+jdu7fUxteXITeXjE4/P6Ly+/jUfaPZ2ZS9GjCgRKgnIiICaWlpmDdvXt0muYULiV4cEAAcPkxCWRs3Vj5XGhmRcyOKKAwJwcPNm6H/2We44u2N7LZtpZ49ezJ3d3eYm5u/9ER7+/Zt6eDBg6xRo0aC8b/+xSM/nzLrK1dWL4Ln7U3nYmJClOTQ0PJ124JQfVbqyhWi9dbUvk2SKEPVpAmttS/oxGVkZGDdunUQy4i5yWQyyGQy3L59mzc1NZVeuEPCzZs0jn/6idhtAAWSBg6ksqNu3ajc6tNP6XwMDV/JGllUVITo6GjJxsam8vMYM4aCIEFBNL/17k0Bk759gT/+gDRlSgndWK1WIzQ0FLGxsdJ4lYoZ+vuX31ZODmXHAVy/fh2PHz9Gu3btYGtri/z8fM61bCulOkJKSkJqeroUcvEic3d3x40bN6BQKMQuXbpUuGiXLl2C37lz6BYWhosTJwqHTE35bnfu0LofEEDMArmcAgMffUTtpABcvnwZp06dgoGBAbp06SL5+vpyLyOyGuPkVPAwJye4/fXrGT3PnesS6ebWLr1dOwmVOdx6etQdpJg9NXUqjQuAkhZHjxJN/xncGMO8FSsQe/062VetWmHH6dOC2w8/8F2MjZE/aRKsoqJo/HXpQkGvHj2qPtgmTYAhQ6C/axfc3Nzg5ubGS5JUvK6Wtj8TRSo9CAmpEKiogMxMsP/7P9i//z54U1MhITGR9yxbVvIicHQkZkIVKugJCQlISUnhZsyYAbPnGXpWVtSl4uhR+n8Vx3/kyBEpMjKSjRgxgrm6utL47927/PdNTEhP5MwZCjxVkdRLS0tDTk4OAFx5gbN9g1eEN852HREYGGgtl8vPNmnSpOmwYcMMDF6yly0AtGjRAgsWLGBZWVm4fPky1q9fjz59+kjt27evnAElihSFHDyYMjMuLpSteImF5X8C3bsTVXbhQop0u7v/rYfTsWNHGBoaYv/+/XBzc6so8FMXTJpEi/ScOfV3gK8LHB3JgTpwgJR9Oa7eszA6nQ7Jycl1ugeiKJaoPGs0Gjx+/Bj29vbIzs7G5s2bxfz8fG7JkiX1epwAqP4uN5ei4HXEw4cPRU9PT27o0KEsISEBoaGhQmJiIqenp8ceKZX4ycZGcvrhBzZ81y5s/vhjdO3bV3Jzc2MNGjT4Zzjas2fTc14my/tCKCwkKt/u3RTIqgdoNBosW7YMhoaG8PHxoQGsUNB8XTwf3bhBrKO6KF87O1OpjFZb8ta9e/dgYmJSt2BPTg7RPz08qLQgJ4eetyqoxSqVCmFhYUhOTpaSk5OZSbt2Ut9hw9jos2fBOI4hNJSMyZdkEomiiGPHjjELCwu89957NA6NjcmhvXq10nrccujbl7LvX3xBvaUzMgBSLKf1oCpnWxCo325tcPAg0ZjnzKm7ankZ7Nu3T7KyssLIkSOZiYkJ1Go1MjMzIQgCCwkJkYyMjOo28WVnU7b9l1/Ioba1BdauJVErc3O6P+npVDrg6EgB6UWLqP2nVkuGe58+ROG2sKBrVaxa/oLQ6XRQKpVs6tSplW/k3LnS7dvZ0b3u1YtYeaNGwSQzE7du3UJISIigVCp5KysrMSc9ndOFhVWskffwQI5cjo3LlokAmIWFhbRx40auadOmkCSpvJJ5HSB9+inOeHgIYV27cu9OmcKsra3RsWNHbNq0iXNzc4O1tXXpl7OzMc7cHI80GohDh6LrN9/wT/78U7hy5QrTarWcv78/ZIaGEAwNkWdsLDGOY4fXr5eYoSGSkpLY2LFj0YKCIy8d+TA1NdUrMjH58reZM5vKtNqC4Xv3wuDKFba1QYOifJ1ON3HiRKOSll4+PvT8JyWRU3frFjnZLVpQwmLp0tL7FBkJztoasS1awMjYmAI4lpZ4cPw4b75wIXrl54NfvJjqxwMCiCn04AGNuersUk9PoqM/o+Uzxiq2mRQEGrM16UDEx5PtN306WL9+kO/di/j4eDEuLq4k6HLjxg0olUoEBASA5/na1/Jfv06BrP79K3xkaGgIxhhycnIqjrd9+4idtnQpXYvffwcGDkS2hQU2bdok6nQ6xhiTeJ5nU6ZMKT+uevasKO4YHg5p4EAk63SQVVGmGB4erhFF8T9LlixR1+7k3uCvwBtnuw4IDAy0kMvlVzp27OjYs2dPWX2KmsnlctjY2GDkyJEsNjYW+/btw9WrV0U/Pz/m6elJOxJFMj6cnEjMx8/vn1+/W98wNCTjQhRJFGbFipqzFq8IHMcVCyNJcXFxrLaOXmJiInieL1UX1mqpBcc/VRCtNujalaK116+TsRcVVbcWHTVg69atolqt5vz9/Wu8iLdv38axY8ckrVbLrK2t4eLigmvXroHjuJKMlE6n4+pV1LAsGjR4oXt99uxZaDQaLuDZeHd2doazszMPAL///ruYmJjI9ezZk7nOnAn9d9/Fx+3aQe/WLe6vquOsF8hkL193KkmUbe7cmYSk6gGJiYnYtWuXpNVq2ezZs8sbcRxH2R6AMhMBATQv1QUcR8ba8eOINDZGXFwcxowZU/tBIkkkAPbhh1Tn+t13RCV9Rr+9ffs2Tp06JTLGoNVqGWMMoijCxMQEtra24pgxY3gXFxcK/g4dSkyUU6coU5qcTNnSli3r7KQ9ffoUq1atgk6nK9+iiDESh4uOpv3t3Vt1Nvmzz2g9zMuj0gJLS9IsAciZ27y58t/17UtZ7d9/r/4gDx4kp/SXX14qsJCWlob09HQ2ceLEEqPawMCgRNzJzc2t9hfv88/p2CdMAC5fJobGoUP02c8/0zj75BNyUE6cIAbDiRNURmBgQPR7f38aV/360TN1+TLw73/T/Nu8OTEpFi6kfX37La2pokjjsBoUOzFiZa3YAFIU/+EHqjHX6SjIKpPRsaxejY4zZrBrLi5Cly5d+ObNm8PIyIjb8MEH0C8oqMjaKyjAtYsXBdcBA7jBgwcznufZpUuXhJiYGAwYMIAxxuo8kYpZWcjfulWKnjqVzfz445L+6Pb29jA1NdXFxsbKTE1NoVAooNPpED9jBqxPnYLmo48EvXnzeJiYYOjQoXxERARCQ0PFy5cvc1ZWVjAZORKNhw9nnKWlZJubixytVpw+fTpfzsF6SZiZmemLoujIGJsrKRQH9o8f722SkdGkz3/+I1eamSlXPXxo8P5nn3ElgmQNGhBr5uRJqgOOjyf7MienROFdTE6G5O2Np05OuNmxI1KaNkWfBw9gkpEBhUKBPI4T+YkTuZKxdOgQlbwNGULPzL59VWekf/oJuHCh+pPau7dmpmJMDDF1hg0raV04ePBgPjg4WAwKCsLYsWMREhIipKam8gAQEhICoJRVIpfLJblcLunr60v6+vpQKBSSgYEBUygUvL6+PlpcugTt48fIc3aGvr4+5HJ5yWuDBg1gZGSEixcvlra7KxaBdXcnxqm7O9mjf/4JfPklYtq1g3nDhhg4cCArLCxkDg4OJeWjkiThwoULovuUKZzZTz9Bf8iQktPMOn0aa9evB/f775JGo2GOjo6YPHlyyXqj0+lw+/ZtURTFbdVf1Df4q/HG2a4lAgMD5fr6+qc8PT3t69vRfh7NmjXDggULWEhICDt8+DDMGzSAlJ8P6927Ybh1K9UpRUW9sv3/T6B44m/ZkozBGgyEVwm5XI4bN25InTp1qnHQHD58GOHh4ZDJZPjss8/A3blDNT65uf/bznYx2rUjw93AgCih9dCHPj4+HqmpqdyUKVNgb29f4/fPnj0r+Pj4cB4eHjhy5Ih4+fJlztzcXJozZw5LTk5GYWEhLly4IOrr69fvDVGryUhev77OomhRUVEIDQ3FpEmTKhXb6tKlCxcbGwtPT0/KHPj7gz97lgzrtLRq6+teG8TGktH/MkEYUaRM8YYN9doGMSwsDIWFhezzzz+HXnWqt9eu0evixXQ+f/xRux3o6ZGwkrs7wg8eFOVyed0Uv1UqoEMH5HXpggcbNgAPH8Lqiy9QnDc5c+aM6ObmxllbW8PGxgYRERFis2bNuGbNmqHS8gIbG1LVLSoip3vmTGIbuLkR86AW40mSJNy4cQOmpqbipEmTONPKFLKdnSnYmJBQtcHO8+TA/fEH1TVmZZV+lpdH5RipqRV/FxRE9Y/VITGRHNBdu8iJf0GkpKRg+/btko+Pj+Ts7Fz3eUOSaLz07UsBCAuLUjXv5zP3QUHkLIeE0LXZs4fuyfXrdD6HD9Mcu3Il3a8GDcgpd3Gh2mKAHHOZjPar1dLrt9/SvY6JIXbE4sUUsNm5k1hXPA/I5dBqtRBFEQ2qKmfjeVLtVyopyLp5c2m5jJUV3HNzmXvbtjw8PZ+dugSXe/fAvfdehU2lAUjTavmubduWOCt+fn78i5Zt6S5cwLmTJ8Vb8+fjvffe455Xye7WrZvsxIkT0tmzZ1mH1FTRLTWVi+I4mPj4SO5z5/LFwQA9PT20b98e7du35xITE3HlyhWxzaefci2vXQPeeovB1RWIiXlpNpFarUZERATy8vIQHR0tZmVlcQAgSVI3QRCSATTJsbTE+R49Js9Ys8Y9ycXlfSkoyAQzZlBAq1MnspFSU6m2v0EDGieWloCNDe59+aWUEBODBh06sHQPDynFzo41btxYCg4OZoIgQF9fX2rVqhUHmYx0H7y9yV7ZsIHWsiVLyIE3MiLWxfMQBAqMDRhQ9Zq3cCFl2qsKSty8SWN5xIhy+gxyuRx9+/bloqKipB07drCmTZvC3NxcsrKyYg0aNICxsTE8PDygUqlQUFDA8vPzWWFhIQoKCqBWq6FUKpGZmQmNRiNG9O0rcSqVpD5xggmCAFEUmSAI7NkrRFGEKIqSJEnkGWzZQvbL2LHlz7tvX2glCcrt2yVPW1vWaOrUko8kSUJycjKCg4PFJ0+e4MmAAZIyLk6aLElcSmIirDt3xq4RI6Br3BgLP/yQbd++XUpOTmYxMTElgn1xcXHgeT7y888/j6/DMHqDvwBvWn/VAoGBgUwul293cHAYNn78eMNX6Wg/j31794q+H37IZVhZ4fiwYXBr21Y3ZNiwV+rs/8/BwYGMgQUL/vJdnz9/Xjh//jz/jNImTJ06la9MtEWj0eDXX38VJEnihg8fzvbv3y9ZW1sLb7/9tgy3bqHY8Kgr1Go1FPVQi/qXo1jwLiam8kW6ljh8+LB0584d1qdPH6lDhw41PjSxsbHYvXs3Fi5cWOI0qVQqCIJQrh4rPDwcJ0+elD744AP2wn1yQXTgM2fOSCNGjGC2RUVUD3ruXJ2d7V9//VVwc3Nj3bt3r9SQF0URP//8s6DRaPi5c+eipPylqIhotytXUrbpdYabG2kWvCh1v1iNfft2MoJeRjzpOVy9ehXBwcH49NNPa/eD69cp+zNyJGU7nlcCrgqzZqEgIAAbs7IkmUwmTp8+vdL5pByePgVGjULKTz/h6tdfwyc8HGE//ijdjYxkPM9LWq2WiaKIadOmvVw7vLNnyRmTy6m11IwZ1dbWHzlyRIiIiOD79++PdjXVVe7ZU1pjXhlu3ybnzdeXqMarVtG+8/PJQX2+VODMGRKbnDWr6n1GR9M5HDjw0myK7777TrKzs2MTJkyoPXX18WNiXnTpQvWt69ZRgOijj6oeu8935NDp6LX4+5JE2501i54Fb2+6rmfOkIjT1Kk1i6uKIgU2OnemvtFz59K979oVkokJNgwaJPVduxaOe/YwmJpScqB///KsB0mie/bbb3RO48ZRJnTcOAqc6HQla979+/eRO3EivLdupSBCGajnzsXl2FgpfuRIacyYMVylXQJqgczMTNy+fVty/PBDprKwkNxPnmTVrZsFSiXCFyxA47NnEefqCs8ff0Tj1q1r3pFKRQ7h0qVUQ/8SSExMxPbt22FkZCSZmZmJSqWSy83NZTKZ7KZOpyv7QH2xZMmSbwIDA/u55OTsfzs+XsFNmECZ1qZNSQBs7FgKbHl4UNC3bVvA1xfaxo2R3KIFmh4+DFbb9nTR0cSGmDqVEh6ursQwOXKkcmZIsTBbVR1JqqiVBkBsjKgoCg4MH17pVzQaDfLy8mBlZYXY2Fj8/ozJYmxsLCxYsKB2AY/QUBLlTK5c3FupVGL16tWSr5eX1GXXLg6DBlGA67lzUqlUWLdunWSdkSG2Pn2aR+fOkvjuu8zIyAgJCQlSeHg4a9KkiTRixAimv3AhfjU0FLNNTDieMalrRIR0pUMHrrCoCF9++SU0Gg2+++47jBkzBi1atIAoili9enVhTk7OR4sXL15fq/N6g78M/x+kyl4eenp6X5qZmQ0bPXr0X+doJycDHTpghL091/jQIbS5dg1Dx47F7Tt33rAR6oq7d6mG7ccfKWL/F+HmzZvSpUuX+G7dumHRokXgOI6tXLlSVKlU5b736NEj/PLLL6KBgQE3a9Ys5uTkhFGjRjGXNWtkedOmvZCjHRoaitWrV0vff/89bt26VV+n9JcgPj4eF5KSyAm0sCBqWFpayec6nQ5paWk4fPgwYmJiIIoiMjIyoNFoym3n3LlzuHfvHps8eTIqc7TVajViY2MRExNT8l5WVhZ0Ol257KSxsXEF4ZN27drB1dVVCgoKEl70PMPDw7Fr1y5wHMfC3n8fO3bsEDQv4GgDgEqlYk5OTlXO5xzHYd68ebxcLhfKni/09SkTGBxMjvfrjPBwMuJeFM2bE914woR6dbQB4MaNG4JWq0Wtg9cdO5JjcfQo1aHXFubmMBQEzJgxg8nlcrZq1SpRra6hNO/SJUChwJ9Hjgg+ubmS3dGjGDJ0KBs8eDC6d+/OPvzwQ3z++ecv33e+Rw/Kfk6bRmO4UyeiCicllfva06dPsXXrVjE8PJyfPHlyzY42QE5hXh45z5WhbVuiyF+9SvP9lWfaQFX1x42MJEO9KqjVJOS1YkW9tMsSRZHFx8dDW6buvlLcvEnOyrVr5GCr1RQIW7WK2D4ff1z92G3Rgr4P0DUwNi7fP5wxYiXs30/bvHiRHPSMDNqnVkvBnw8/rHofHEdBQRcXusdXr1Lm8to1PN20CU+yslijQYMYjI2pS8rcubRfd3ei/Ccn0/hYurSUXdK6NQn3ARRcnTgRSEtDbm4uDm/ejIaurpXW7CqaNUPXkSOZnp6etGbNGsTH1z6hl5+fj6tXr2L16tXi+rVrod23T1Jv24a2wcGVOtoPHz7EmjVrcHfQIEnesyeeGBkJImNI7tQJ1mWU5quFsTEFU6dMoUDOC0Kj0WDPnj1i27ZthXnz5rGpU6fyrVu3luRyeahOpxvHGPsUgHzJkiXsmaPNFArFkjZTpyq4ffsocDlhAo2Vhg0pOKZQ0N/27UQFHzoUaStWYOegQUgQ6rDMubmROFpQEAmeFgv3hoZSwPN5mJuTTkll8PGhObsyhISQuKOjY5WONkAZ7mLB4WbNmmHx4sWYOHEiNBoN97zNUCXataN5uor53cTEBJNHjGDZGzZw2SoVBZcqCR7cv38foihK73z/PW+3aROUkgS2YIF04tAhITIyUhw3bhzefvttplAowI4exWAfH659s2b4JDWV+e7YwS1YuBBffvklvvrqK3z77beQJAnNnwWg4uLikJ+fnypJ0obandQb/JV447jVgMDAwBZ6enqfTZgwweCVKQ+XxdmzFDX+z38o6+HlVdJn1dzcHDKZDKIoVtoerLCwECqVCg2LF61nkCQJjDEUFRVBpVLB3NwctVW8lCQJWq321aku/xUonvTi4sgoqC5SWg9Qq9W4d+8ejhw5woYMGVLS+mvKlCnc/v37xZUrV0oODg4sJydHKCwsZBqNhuvcuTO6du3Kip08e3t7PB0yRDx18ybT7tjBioqKxIEDB3LPq9TrdDpcunSpRIwtIyMD8fHxOH36NDw8PKTMzEz25MmTV3au9YmCggIcP34cd+/eBQA4OjqiiY1NKY1Ro8Gl69dx/vx5CIIAKysrKSoqimm1WgiCAMYYOI6DTCaTnmXsuLFjx8LW1hZ3797F6dOnhQYNGnA5OTmiVqtlWq2W0z3L/NjY2IDneSkjIwOtWrWqsTUYYwwBAQHcf//7X+h0OtS2xYxOp4NGo0FaWhqOHz+O3r17w9fXF7qgIFyPjcW3334LGxsbYcaMGbWmGObl5aGoqKjkXKqDm5sbd/z4cTRu3BiNi+uVPT0p03ruHAnRXLpUZW/nvw2jRpEoz/MCSbVBQgJlCE+ceCUtEUVRRF5eHj9z5szaZy2LMXw4/aWnk8N49y5Rg6vCN98ADx5A/84dTJ48mQsKChJ37NghTp48ufIJPS0NuqwsHBoyROr13Xe85ZYtJXTs1rXJxL0IHBxISGzmTHJW58+ne9e0KdC1K86dO4eEhATuvffeQ6NiIbOa4OhIDuJHH1HG+uuvK35nzBgSoLt4kTKIAM0b69YRpbUYkkTHV9W9ysykbPiBA5TtqwdMnz4dv/32m7RhwwbMnj27/I4fPSKH4uuv6Th79iTqenY2OT91aR25axcEe3vwAIR27XBnwAAppnt35hkTg/j4eNHFxYVr3rw5nbuFBdHjL12iftANGlAwQ60uzYj360djzsur5n1zHO6lpYE3M5P0v/mGztHFBZg+nT7fsYPu3apVtP3jx0t/+9lnpaVxFhbkzKen41hUlNBKEJiztTVXaa9kNzfwenqY1K0bf/nyZezYsQOdOnUSu3fvXq2q961bt6Rjx44xExMToW3btrxvYSFkU6dyWLasQk/mXbt26eLj43lBqWS2oohLLi4srbAQLW/e5PkdOzDB3b3W9hQA0gBITKSs/ujRNOc2a0aU+suXKct8+jQFPz/8kMZ98+aUHU5JATp3xoUtW6RmGg0Gdu/OIz0daNAAMTExOo1GE7FkyZIYAN+X3SXP8/9Wq9WdPTw8KFjTpg3d+6QkUr2eMYPmnuBgul9LlwKLF8Nx1ixov/oK27ZtQ53EQM3MiEq+dSvVg//6KwVU/Pzo/MuuL3Z2NE9Upj80Zw4FdJ7H8eNUVjF1Km2zDmCMwdnZGQYGBrh3717tWrPq69M9SEysfE54+BCNP/kEnr6+WKvRYEp2djmxNJ1Oh+3bt4uPHj3ibG1tGQA0bNMGDX/8kWHJErQTRR7vvVeeCRQTAweZDA7XrlFQ5Nl8FRUVBUmSoFAoMGPGjJI1JzQ0VFVUVPTdkiVLqhBLeIO/E2+c7RrAGBvcunXryuvJ6hN//kmLTHIyOYRGRrQAlUGjRo0gk8nEuLg4rkVxa49niI6Oxs5nvVOnTJkCR0dHSJKEXbt2FURHRxsyxiTGmE4mkz0FYDpz5kx52drO7OzsEke9mGJ669YtHDx4UALAHB0dNUqlUs0Yg52dnV7Tpk0N3N3dKypHvs5Yt45eR46kiau2SrTVICEhAffv3xfz8vKQkZEBpVLJPQtOSCNHjmQeZYx7nucxcuRILi4uDnfv3hUcHBx4KysrNGnSBEZGRuVX60WL0HL+fE4aMAC3bt0SDAwM2IYNG6T+/fuz+Ph4KTk5WdRqtUyn0zFJktilS5cAoMTxe+utt9CkSRPu7t27CPibBOLqgry8PKxZs0Zq2LChNHHiRO78+fPYsmULTE1NhUbjx/Pa48cxes4cPBo3DiMXLSpWb2WiKCIpKQk2NjbQ19dHUVERCgoKWE5ODtu5cyd2794tmZqaijk5OXy3bt343NxcsUmTJszFxYUzNDSEpaUlkpOTcfHiRcHKyor179+fa9y4ca0c3UaNGkEQBCiVyhKRo+rw4MED7N69WyoqKmKMMXh6egqdWrbkcfw4ZJcuwQfg7VNSsHXrVl6tVmU1GnoAACAASURBVCM6OhpmZmZwcnKq0pjLysrCpk2bRGdnZ9jb29do8fXv3589efJE+vPPP6WJEyeWF3lr04ZUgXm+lHL9usDLq85t0EowcCBRVL/7rn6PCWT4HDhwQFIoFOz5IGed0LAh0eOtrKiG9a23qq5N37gROHsWfGgoBg4cyK1duxYnTpwoqTX08vJC8+bNER8fD2H8eOkpwMxbt0bDoUOheL510quEXE4iXWo1so8eReaKFaL+woXsqbs76zJ+fO0d7bIYMYKMdVGsqGGxaBFdwz//JGfh1i1yLMaPLx9gLVYHTkmpuH2Nhuq+P/us3hxtAGjYsCEsLS1Z3rM2VQCIbeXjQ+P60CGqgb56tfTzap6/jIwMmJubIzU1Fbdu3RIaNmzIW23aJN4xMkKkhQXXtGlT4cmTJ5ypjQ1rtXOnFHv+PCK8vNi1a9ewcOFCGBZvm+NIsM/fn7Kuokhq5u+/T9esUSNyhn79lRIBu3dXe54qlQrGxsaVByvXrCEna/lyCirExVEgVU+P9tWpE3WlaN8emDMHBX37IrVXL37048f0DFeGpCSar7p1g6+vL1xcXLBt2zYkJiaKY8aMqVBzrVarcejQIeHBgwdcz5490alTJx7371OA6P59Yg+UgU6nQ1xcnMzX1xc+a9ZAPy0N2g0boB02DOzAARg8Z4dVCUGgevjwcLq+Dg50niEhpcJ2ggC4u+OJmRnu6nSwVygge/gQTlotuOIa96tXcToiQmj6+++8vb4+4wICSBSwWTP437wpN8vKmoGlS3cDWAHgMYD/E4Fxvr16tbP39JRk33zD8Pbb5Kza2BDDpnt3Ks+4c4fsz6tXKUD5zD5s3749Hj58KKKuTFgjI7rP27fTc7t8OZ3/7t0UUCh+fv39SSgtK6u8LsKZM+SgP89ouHiR5sBPPqm0v3ptYWdnJ8bHx/O1crYBsh8DAoAvvyz//r17NJYDAtBk3jx0OHUK27dvx3vvvQcTExPk5OTg4sWLSE9PZ4wxjBs3rnTRNTKimvWDBylw8OOPxGgBqD3e/v3ECClTBuPo6AhTU1MxPz+f2717t9iuXTvO3t4eKSkpHIAdL3xB3uCV4k3Ndg34/vvvTw8YMKDnK8sC3LtHUc3WrSlqP3NmtV8/f/48wsLCpLlz57LibFpiYiKCgoLydTrdDQBdmzdvXhAQEGCoUqmwb9++J1qt1hmABoCwZMkS8d///vdngiB8Y2lpmefs7Gzw+PHjwsePH3MymSxNo9E4tWnTRhoyZIj+5s2b85OTkxfq6+vbSJJkpNFotgOQA/BSKBSj9fX1vSdNmmSor69funj/E5CcTIJjpqbAw4c02dcBOp0O0dHRuHjxopiTk8PZ29tDFEU4OzujSZMmMDQ0RK37pFcGQSDnokxmRZIknD17Vrx9+zaztLQUvby8eCMjoxIV+5SUFPA8Dzs7uxLHTKVSYfny5ZgwYQLqJKZUC4iiiDt37kAul6NFixZ1i+xXgpUrV4rW1tYYPXo0xxiDJEnIzMzEzZs3xaKiIsnQ0JB3fvIEDoMHQ+/gQap7qyEAplarkZ2djd9++w329vbiu+++W+9lM6tXrxadnZ25AQMGVPu9+Ph47NixA926dZO8vLyYRqOBqakpZTeWLaPa9GfYsWOHEBsbyxsYGEiCILBnARTR0NAQnp6eXPPmzWFgYIAdO3aIGRkZnLu7uzB8+HC+tvdArVZjxYoVkqenp9SnTx+uAkvmwAHKdKSmvh4Z7suXyeCqq3NWTG9t0oQciXpGeHg4jh49Ci8vL3Tr1g1G9aGeL0lU47hmDWVXK4NOV5p5VChw6dIl4f79+zA1NYVcLmeRkZGcIAgwzM1F08aNxV4aDWeUmlouO/JX4tGjR9i2bRsEnQ7tra3R7o8/YK1QECW6VauqhY+qgiRRbfYHH5AjXRazZxONNSmJDFeOo0zxsWOlom2FhUBERMWMWX4+MSemTKm0xc/L4ocffhCHNGzIua1YQfXKixZR3fPIkbXeRm5uLvbs2SOmpqZy/v7+Uk5OjhQZGckBwORDh6AeOBCNFyzAuXPn0KhRI3Q+eJCcm/HjgcBA/Pzzz4KHhwfr3bt35ZOFKFLG88YNsklsbCjzefkyBS9mz6bxuXMn1fw+h7t370qHDh1iH3zwAUoSFL//Tvfg7FlyMovX24ICyuT98gs59zk5JTW9oigiwdMTqoED0TYhgZyryp6vX36h17lzS97S6XTYtm2bmJGRwY0ePRrOz9ZQQRCwceNGsaioCCWCfKJITs2//03OznOIiYnBrWXLMLpzZ7CxY+k6BAZS5rk2WiiPH5Nw2LhxNAbVaqJX6+uXtmu7fx+wtUVeXh52794tpqWlcXp6ejA3NxeePn3KazQaNGjQQMzPz4dOp+M4jsPs2bPxfAIoOS4OO9ev1y388UcTAG4A5PtGjLDTymT78kxNMdrXF2bp6cSk+flnCuZ07kzOcH4+ObeSRJniFSvI4fb3x4W4OMTExAjTp09/cUG3Bw9ov598Qg74W29R0KsYU6b8P/auO6yKa/uuM3MLHRERBEUUO2AvKIqoiBoNdkJsMbEk+iwx3eczeI15lvjUJEYTjabZjb0rFrCLSrOg0hRBQEA6l1vm/P7YXkE6iiW/ZH0fn4q3zJw5c+asvddem+bFhAlFv/P1JTWMoZMDQM7m587RZzxnq9tz584hIiJC/6TdYGXIyKD5WvyZeOlSkSKlWEDo119/lTIyMgQLCwspJSVFEEWRW1lZMSMjI/0777xT9vetX0+KnO7daf/38cdU3nH79tNBuMdQq9U4c+YMbty4oc/KyhJlMtn22bNn+1VvFP7By8I/ZLsCqFQqH6VSuXvGjBnGNU4mNRp6oA0dSq0PDNKuKmD58uX6Jk2aCI9bW2DJkiVSYWHhHgBzBUEYKUlSniAIC2QyWSaAr2bPnr2yxHkJAOoDaAigO4BrAIICAgKyVSrVKAAbjYyMuCRJ0RqNpnV5/foWLVoUWlhY2NbMzEz90UcfGf3lTNseZ0Gkc+eQnp6OWrVqlekkbKgJtrCwQGxsLI4dO8bVajUaNWrEhwwZItSoAZlaTQGYqtQxVoLCwkIsWrQIvr6+VauLrAZiYmKwYcMGAIC1tbU0ceLEZx6HK1eu4MiRI5g1axYq7VvPOcmep06tNDBlwK5du3QuLi5is2bNanyCXrt2DXv37uXvvvsuK6+na1JSEtavXw8PDw9dr169itRE4eEkES2jrCEzMxMWFhZgjCE7Oxv3799HUlISYmJipIyMDEGv16NRo0bSkCFDSmVvqoKUlBRs2LBBYowxIyMjrtfr4eHhgfbt29Mm/NIl2mxfvVptmV6Nw82NyEJVzccM8PUlsmBQtNQgDEY7zs7Okr+/v1DVMoJqoXt3GvvFi0v/39GjVBsdH18qwytJEmKio9Fw4kQohg6lTPmxY9UntTWA+Ph4/Pbbb2jVqhWGDx9eFJS7eZOymOHhtGkeMqTyPrrFsW0byWzffvvpGuaoKAqkGvweuncnghcZSTJpjYbcjZcte1ourNVSMCIjgzbPNfUsy8oiSW27djhtaQnMmIEeN29S5vwZApQXL17E4cOH4eDgAAsLC96gQQN29OhRiFotpn/6aSlvCUgSnYskAQUFSMnLw2Mpe+VqnD//pLm3ejVlVXv1orVq2TIix3Pm0PULDHyyhkVERPBdu3axMWPGwNnRkb67WTMa27Ky01OmUEbfzo5IxSefAPv2ISQkhF86cIBPsbQUhPR0IsNlYds2uqZl1OWfPXsWQUFBcHd3l7y8vITz589Lp06dEj7//HMq++Gc5okk0TpRBhISEpDo7w/39u3pfAcPJjl8ZaqHCxeobnncOJKKT55cZOzo718U1PjuO6BOHWiGDsXy777jzs7O3NvbWzA4uXPO8ejRI1y/fp3b2dkxGxsbmJiYlFnWt2/fPl1YWNjeuXPnPoneLFiw4Eu9Xq+aOnVqUXlhcjKpP8zM6BidnOjamJlRQDMri4j4ypVAaioe2tsjKjwcyrFj9Z379RPRoMGz3R+JiXS/du5M423IfAN0PIWFtGYXR/Fn46VLFKBat656a0U5iImJwe7du6tuknb2LNWgnzhB/969m4i3UkmKsGLIz8/Hr7/+KjVp0kTo3r07TExMsGLFCn2XLl3Erl27lv8dp0/T/fb22xQAGTKEki8VBHIlScKSJUvUhYWF3QMCAq5U6Vz+wUvHPzLyMqBSqYzkcvl8pVI57a233qp5ov3xx2SMc/06PWDKc2EsB6NGjRLXrVuH0NBQzjlnAASZTNZ8zpw51wFcf3wO/5s9e3aZtRuPazruPf45XeK/wxljV3Q6naVOp+tRHtEGgMLCQi8AdTQazaX09HSj58rmvmBwznH37l3o9XqcOXNG/+jRI0FtbMys33tPqvXee0Kn06exbtIk9OjRA1qtFmZmZkhOTpbCw8MFIyMjrtFooNPpmLGxsdS+fXuhe/fuUCgUNR9d2LCBJI737z/3RymVSpibmyM2NrbGyfafjyX4H3/8MX755Re2ePFi9OvXD+7P0KrLQFQqJdoAPXjDwujPwYMpA1VGS5jiGDp06Atb51xdXXH27FmcOnUKb7/9dpmvCQoKQsuWLfVPEW2tlojUyZNlSuGKt82xtLSEpaUlXFxc0LdvX0Gn0+HRo0eoU6fOM/f6trW1xZQpU4TQ0FCIoshOnTqFffv2ob2hNrNzZ3KPHT+ezOleZYbbcL2riiNH6P7Zs+eFZHIfPnyI3bt3AwD8/PxeDNEGKKNjaMUTG0s1yQZ4e5MZWRnBckEQ0LRhQ6oB3biRSG15bZheIDIyMrBx40Z07doVPj4+T/9ny5b08/AhEe+xY4l0z59PfX4ru25+fkQKmjal69y6Nf2+eXOS57ZtSxns7t3p/w2b1Tt36J4rTrQlicZSEGjtfd45ExFBZQGXLlGQKDsb+O472BkZYdPBg6jr74/mz6gEatasGQ4fPgwfHx/s2LFDSkpKQpcuXcTeH34IhVpNKpniMMjEMzMBR0fYHjgAY2NjfXR0tNipMgnuiBGUdb98mUj31auUkTR09Zg1i/YvOh3tYc6fR0RICJo1aQJnvZ5KIm7doqxmeWO6ejVlO1evpkyqToeC/HwEBgYy3+HDmTB2LLWFKg9aLZHtMuDh4QFRFHHkyBHB0dERoaGhrHPnzkX+Gv/+NzmxP/YIKYVPPoEsIgJHfHzQxsMDxn37Eokuj/hwTvs6S0siqjt3kuS4ZNu5uXMBIyPcv38fd9zc0NPbG2G9enErPz8+fPjwp9Z0xhhq166NHj16VDopQ0NDRc75IQBQqVRvAWgHwAEAsiMiYHP3LhG4336j9WPcODIwNDEhL4sdO552e39sTGZz6xbEPXuw4+JF0fW//4WJmRkFTxISyCm/qi7lDg5EVEeNovXs2DFSM8yeTc7sw4fTtZbJSKmQmkqBDc5pHdu7l67XMzrOl4StrS3y8vLEKnuuODgU+WkcP07lAF9/TetNCZiYmGDq1KlPbvL4+HhkZWWJCoWCAyj7WkoSrWcTJtCa+OGH9Pmff17hYcXExIAxFv8P0X698Q/ZLgGVStVToVBsbNiwodWbb75p/KytJEqhsJAeXr6+JJmZPp0e+NUk2gAtEg4ODrnx8fFaAGsUCsVAjUbz1E7/WU0SAgICrgMorQ8r+7VZALIWL168fdWqVRNr1aqV16dPHzMXF5fXyuWec461a9dKGRkZTBRF7uTkJHTo0IFZWlri9u3bgrOTExydnNCrVy9cCwzUw85OLCws1CuVSjZixAjk5eWxtm3bGrIyL+7c9HrKVj2LCVQ5sLa2RmpqavkL/DOCMcYBsNzcXLz11lvs6tWrOH78OHJycuDh4VGtsoKbN2/yx9nZqh2jYTMyYAD1CE1JoVqvF0V6KoBer0dycjIrK8gQFRWFhw8fIj4+HqNHjy7a3WdnUzQ8La1qUsQSkMlkpUwQnwUmJibw8PCAWq3GkSNHUGqtM/QnTkggufvChc/9ndVGr160CZs2rervuXiRjru4JLEGsWbNGuh0OowdO/bFGkcaZLqLFpF08q23imqVBYGeJUOGkEy4+DzKyyOS2bw5BaJeAdEGgM2bN3MTExPu4+NT/pppY0M/wcFEVL76iu5lb28iiRUF4CwtKdMlSaQIMjKiteHdd+nZ6vdYUenvT5v8+vWJVEREPP05J0+SC/jGjc++hsTHU6brww9JrTZtGmV/Hzx4QnidJQk4eBC3b99GSc+VquCxAzU3MTGBvb09mzVrVtGacuJE+QGxMWNIjuvpCY1Gg5ycHNHR0bFqX8oYBQP37SPC3rs3EYKtW2k869en1x07Bri5wWP4cGafnk5r2++/U8a6MjRtSnJma2tg3z5c2r1bsrS05C5ubiJq1yaSUx7s7SmoUgKSJGHVqlX6zMxMcdCgQVwul7OcnBz07NmTXpCfTwqHsgK1Oh3JeXv0wMmHDzHIzQ3G69dTILwsoq3RUG1t+/Y09xQKWn80mtKdJQ4fpgDFjBlYP38+zMzMIH35pdTywAHWZOjQZw6eAkDdunVzU1JSEgGA6fVbjNRqdDt3Do1iYxF640YhMzUVG0+YIMO0aU8HP3Jzad9hCFiVRPPmqP3ZZ0hbuJBfGj2aeTVvTjXKkZG0Z/n2WwpuzZlDn+XmVspk7glkMrrPvv2W1imFguTT771H7z13jgj86NE03zgnV/3160lpUVP7cQCmpqYQRRHx8fFoUhVJupMTBU8CAkjZsGYNGTfq9UUKlitXaI7UqkVBXw8P4Pp1pC1fzn3mzOEdFi4U0KkT7Vv+9z9av9aupXkRHU332rBhNH8kqUolJpcuXcpTq9Xl2Ln/g9cF/5Dtx1CpVGYKheJ7Y2Pjt3x9fY0NTeKfG8nJtAh99x0tSH37FhkgPCMKCgrQr18/s59IHnlv9uzZL6igvGr4/PPPP1CpVDMePXo09sSJE8tdXFxqbkUsAb1ej1OnTkkFBQV8wIABYlmu7AZoNBo8fPgQN2/eRFpaGvviiy+YIAhPPc0aNGhAf/HxQZfAQHRZtEhEVhYgCM9en/SscHOjDfWz9hEuAxYWFlJ8fLywbt06DBs2rEpGXlXBJ598wvbv348NGzbwGTNmsP79+6Np06bYu3cvv3LlCiZMmFBlw6jMzEw8k8TbsFHq1Ys2ajVgeFddiKKI3r1785MnT0p169YVT548ydPS0vSP3cGF2rVrS3379mWOjo5F5zdmDG3EXmIbuvJw584dbNmyBU2aNJH8/PxKkyKlkjIMp07RJvRlBzTeeadsN9qysH07EbZff32hh9SuXTuEhoaicePGL/R7nsAgnz9wgJQGqam0WTY1pQ3r/ftP1y9eu0bkc+TIClvivCgUFhYiODhYSktLEz7++OOq3dcyGSlVfH1JrhkfT4GEnj2JFJVHJKdMocxrmza0Ube2JqI7dSoFh/bvJxKhVNKY1K5NZMdAEnftoo387t3lE4SKMGUK3c/5+UQuZ86kTbOBzBQjW1FRUQBQtY19CWg0Gmzbtk3Ky8vD9OnTn1ZTLF1Km36/cso1332XyPCKFZApFLC3t9evXbtWbN68udSvX79S5q95eXmIjY1FTk4OLCws0LBhQwrE2djQWIeEEEnIyiIJuJMTjXFiIgonTpTifv1VkF2/jiYjR1KGTiYjIlJe0GfiRFI2PM60u96/L5gayP39+0RqvL0peFQSYWGkjiiR/Q4NDUVhYaHw+eefQy6Xs4SEBOh0OpacnAxHY2NSVZw//8SZ/ym8+SbNhf37gZMnecPZs4HDh1kp6fijR0SKfvmFnLcXLCACamjvVlYg7upVZF27hp/UakmpVAozZsyATCYTcO8eZZUfPSp7jKqA9IQE82axsQclQXjnS863ArgD4H567drnQ5s3N7siimcb3rmT59uypekTc9x160iBUYVSG845JM7B69UDs7cnUgxQAOb0aQrKrlxJXipNmhS17axT5+n7Vy4ndYS9PWW109IoKPPzz0Qwo6MpgD5oEHlXHD5MmeQaVikxxmBkZMRZ8QiHXk/Bm9xcCsC5utJ3h4ZSIK1rV7q+y5fTWjVuHClUjxyh+TRuHL1m0iQ6bkdHWqMFAXqAyHf79jSX//Mf+nuXLnRutWoVqSBWrKDAQiVrRU5ODuLj4/8xRvsL4B+yDUClUnWRy+U7mzVrVnvgwIFGNVKDGxtLi4aJCdWBabVltyupJgy1sjY2NmqZTFag0+m2Pf/BPj8CAgI0X331VT1HR8ca05sWFBQgIiIC9+/f1+v1etStW1e4efMm8vPzIUkSe/jwofTYPRoZGRnIysqCnZ0drl27xoODg5Gbm8uMjIy4paUlHzp0aIWtQADQAz02lq7VjBn04HiZ8tkdO4p6jdYQvL29hVatWuH06dN85cqVrHbt2no/Pz/xeTOjgiDA19cX3333nbR//34MGzZMdHZ2xsyZM9nOnTulNWvWMIVCIY0fP16QyWSwtLQsZaImSRICAwORlpbGBhfvBVtdHDxID0jDBm3s2Oc6t+qiXbt27NSpU+KaNWvQokUL7uXlJbOysoKdnR3kcvnTJ63VEiks0Wv9VeHatWuQJAmjRo0qP6vi7k4biUOHSOZ75syzEZPqYudO2pyUtSEuC9bWFWfBagjXr1+XHmcGX66CZ8AAIocArU8LF1JG8/TpohrIpCSSiTZqREGo5zQurA4ePHiA48ePSzExMYJcLhf8/PxQbT8Bxigr3707SUv376dN/ZgxRKjKqpXt2JECb5wXuegLAhmlaTSAjw/NV4WC1ggD0Y6NJXn0oUPVm88HDhDBPXmyaGPerx8F0itAixYt0LBhQ2zbtg3vv/9+Ueu9KiA4OFhKTU3F5MmTS3tj3L9fuQHg4xZTgokJJk2aJGZnZ2PLli348ccfMX36dJw/f1537do1IScnR5AkCaampnq5XM4yMzMFSSKRnL+/P2Xku3enMf/pJyIHc+aQXLxRI7TYvl041aWLdOXoUf5xWpoICwtaj2NjKYhy+DBdj5LzUpLoNUuW4I+4OAyqVavIRO7mTaoLL4tsW1mVmdlOS0uDtbW1JJfLRYCC6l5eXvo/fvtN9OzeHT1++aX0uhISQmRr7Vr63OvX0SAqCvvd3dkQKys8CRUkJtJ4t2pFhCg8nGqIBwyoMJMvFRbiiLMzrkgSPN3dmbu7e5F8ed48InQhIdVz2E5MBE6dQh6A6d9/j0dWVrcFzkMAHAfniQBgDWAuAJVKZZKQkPDxpk2bvpg2bRql6AsKqtwOceDAgWzv3r0wNjbmXbt2LXpYODoWGRX26lXUqz04mFQkn35K82XCBLpHO3YkFcqoUfT3IUOoft3ZmeZI3770jJQkCu5s3/58RNvQR75WLQo6KZV0nTZvhmN6OmovXkzXcP16Cu65u1PN9J9/UjAtM5Ous4UFBQASEohAe3qSg/qyZUUK1ccBNQBk4vgYp9PSeCO1WsKsWUUT//Fc4ZwjNTUVsowMWNeqRd/Rvz+tf5UgLCxMEkVx15w5c3KefYD+wcvA35psq1Sq5gqFYq5SqRzm6+tr3Kome7DOnEkP/a1bq+12XREuX76czxj78uHDh7kAzgYEBKTV2Ic/JxQKxXg3N7cacQu7f/8+Nm/eDIVCobe1tRUUCgWLjo7m9evXZwMHDmQ6nQ5bt26V1q9fD29vbwQGBkKhUEhqtVoQRRH9+/dn9vb2sLW1ZaiOhNrGhtzKr1yhh4ZM9uIdfDMzaZE/c6ZGZVIAYG5ujubNm6N58+YsLy8Pe/fuZatWrYKnpyd69er13J9vaWmJyMhIsX///jAxMYEgCBg+fLiQkJCAa9eu8R9//BGSJEGhUPDatWvzhg0bCp07d0ZmZiY2btwIU1NT7ufnV665WJVgbEw/16/TxsxglvOSDPvMzMzw8ccfIzMzE/b29uWzm8hIegCnpT3d4uQV4Pr16zh16hRPS0tjjo6OT0f3y0PHjrRRZowIxgtw+H4KS5aQBPjDDyt+3fbtlFUKD6csywuEJEnQ6XSsS5cuL98NUhDoWZKRQURPq6XypH/9i+b8Z59RHe2tW0Qgi7V2fNHIysrCmjVrYGVlBRsbG5iZmUktW7Z8PqZfvz6R6LfeIgnvtm20afbxKe3UPmsWSVO3biUVxqef0kb/3j2aH926UY2lwVfh0iXa/F+6VLFUHSBCYmxMmcfPP6dNtmHtrIaKQhAEmJqawsbGhtvZ2VV5/nDOkZCQwBwdHVmp4EV2NslRKwoWKBQkZ7ewoPs2ORkWdnaYPHmysHr1av2RI0dYeHi4rHfv3mjZsiUYY7h48aIYEhLy1LE/5cliZEQKgu7dKfs3YgQ9KyMi0K1bNyEoKAi5ggAzgOqC9XoyWRsxgurmo6PpMwzE0tiYMtR37+L99u35lbt3eRMPDwH16lFmftUqen/J52OzZmUGqGvXro3o6OinxrhHjx6i/cyZSD9wgGqvS2LePMrS//ADrSULFqDTJ5+woAsXkJubS2T7+HGaW1OnkhfC9OlECqdOLX/8AaxevVrXeN8+WZerV9EuLAylrn+DBhSIcHGh7yhP0s05EbwtW0iNMWAAkJuLEEFQh8yYseLTBQtml/1GICAgoEClUi1MT09X6XQ6yObMoeM3BJ8qQZs2bXDkyBEpLy+v4vtaLifCOGgQ/btjRyKoV6+SsaOvLxHbbt0oaLh/P/390SMi2lOm0H2+cyfdX2UFDCWJAouiSONx6RKtCcuW0Zo4ejRljnv3pvXQUCaydGmR3N/CAmq1Gnl9+sDqnXcoi5yUVKRIMAQQivtNLFhAaqvPPqMA9K+/kifBJ5/QOjxkyFP3IuccgYGByM7OFry8vJ46kcTERJw7d06flJQkZGZmMgD4YOhQ2HAOdu0aWMlOCyXAOcelS5cKCgsLv63whf/gtcDfkmyr5GSskQAAIABJREFUVKouSqVSpVAoPN3d3eVdunSR1bgJ2p49NZ5ViIiIQHR0tJZz/mtAQEB6jX54DYBzfjooKMjh3LlzuvT0dN6jRw9zFxeXavfizs7Oxm+//YYuXbrA29u7+C7iyQNKoVBg7NixQmRkJPbv388dHR2lMWPGiCVf90xwdKSIak4ObVhDQp67zUSFYIw2cDVMtEvC1NQUb7/9trBlyxYEBwfDzs4OLVu2BEBj/iy95JOTk8XHfz6R1TLG4OjoCEdHR9Hb2xsymQxJSUksJiaG3bhxQwoJCREUCgVv2LChNGbMmCq3rKoUBrntV1/RxuVx7/GXARMTk4rr1DmnMoHjx4taEL1CnD59WsrLyxO6d++OBg0aVO1+sbGhtjcbNtCG8/79F5fh1utpQ1xZtwytlohP8f7FxcA5h16vr5oBTiVQq9X46aefIJPJWMOqmgK9CNSuTYEbgCSa33xDG8CbN2lTO2tWue7KLwLJycn46aefULt2bf306dPFo0ePIi4urua+wMqKSIFGQwQnJISy+l98QUFKA1l+/336e04OEYjBg2kj/s03pHjYupUyRsbGpNDYsqV8on3jBn3G77/TnH/4kDbyHh50PF9++UynkpiYKHXs2LFaz6fw8HCekJDARo4cWfo/33yTHKS3VSJwO3mSFA+G2tKdOwEAQ4YMEdeuXQuAyJThGRAZGcldXV3ZgAEDwDl/uq2dJJH8eMIEUhu8+y6N76JFwOjREH/7Ddbp6bh58yaemLCJIj3fDIqeefPoWDZvpr9/8QVdizlzoNBomCYlhUkxMRC8vem9ERFEbKZPf/q8HjwobUAGwMrKCpmZmUJkZCRcXV3BGENkZCRuN2+OHiXrtOfMoWu6fz89i2/cIHm6vz9SmzYFO3MGVu+9R+3kTp6kOXfxIhGsI0cqHnc8MceSdV2+HBb5+eVnv+vWpeDBt9/S+Bqg0VAg+dw5yhZ37Uoy6wULyMhSEHBpyRKpQJJ+q+xYZDLZl8bGxoVieroxdu6sdoeHAQMGCHv27EH9+vVR5VJLa2v6aduWarO1WjrXyEhS6mzfTmO5di2Nr5UVEWV3d1KiKBSUZR4/npQoly/TtTK06GvWjMamc2cyazMzozKB//6X1AtWVkWB9+DgouNq0wYpS5eisFWrqrubN25Mr71/n66DQVY+fTol1/z9qVxl3TrAyAgFMhkuPA7sfPfdd5DJZBAEAZIkgXOOJk2aiJ07d0aXLl1w4fPPcWHuXNzo2BHj163DlUGD0L8C87a4uDhotdpUACFlvuAfvFb4f0e2VSqVLciFMQvAzYCAgMzHvzcHMNTIyGiWqalpsx49ehi3a9eOvTCDmxom2jqdDnv27NFLktT/dSTaAFBYWPh+QkLCNc55GoD7x44dm3fo0KFODRs21Pbu3dvM8CCvSFrIOcemTZukBg0awNvbu9JBdHNzg5ubGwNQ87t+c3Oqx3J2pkV/4MCal2WePEkbhu+/r9nPrQC+vr44efKktGPHDsHMzEwnSRLLyckRlUolLywsZJMnT0Zlmebw8HAcP36cA2BvvvlmuZJIw/1Vv3591K9fHz179hRSU1ORlJTEWrZsWXNEuzjef5+yLbm5FNUuwy30paNNG8rSVZIBeVmwtLQUdDod79OnT/UDU6NGkaTT0K+4mFyuxtClC9UcV+TEevw4ZcrS0kqZoWVmZiIsLAxXrlzharWaffTRR1Vzu68A69ev55mZmez999+vdgDxhSEoiDaW7dqRhHHECKob1GpfSglMeno6duzYwQGw6dOniwARnevXr9d85l+hoMyXtzdtsv/3P8pY2doSiba3pxZLI0fSOj1zJhGxXbsoUxgeTlnVESOoPrQkWYiNJXXR2LFkzrZyJW3oR42i/zdk6p4DBQUFpXxDKoJer8fx48eZo6Nj2UqBQ4fKlFGXgpMTjY/Bffox6tWrhzFjxiA0NPSpYKtcLpccHBzEUgFEnY7q6efNI6I/d27R/82eDXz+OcRt2zB4zx6k1qtHQZ+yMqeGGuH0dApofPEFkemBAyH+9BPYxImS7qefBMU339DrZs0iBZjBINAASSJJ75N/Srh48SKuXbvGTU1N2c7HQYU69+/Ddvx4iEePom6bNvRizimop1RSgJ0xmh/ffEPzy9UVDUaPhru1NY8eOZK1+eQT6E6dQuHKldDr9Xh09y50Oh2cq0DUTNLTYfbNNzTvKsLhw5R9nTGDZMTm5jSutWuTM7W3d6k2sZxzFBQUGANopVKpHjw2ri0TgiA0Vz54oGCRkeRdUE31l5ubG86dOyfFxsaiRYsWz/bwlsvpPAztssaOJQVKYSGRbIDuzZ07KQnRuTM9Yxo2pFpppbKonZ8BEyfSn66uRb+rgteHgfhWGaJIme74+KJ5LZcXeWN4eJBr+oMHgL8/TN59F7MGD8bvgYFcMDGRhg8fLup0OsjlclhYWDxlsNktKQno2hWDvbyQmJ6O61FRPCY+Hj4+PmjZsmWpCxUSEpKv0WhWBAQE/NO/+S+A/1dke+HChR/LZLIFtra2hWq1GpmZmSZff/11oSiKOaIo1nZ0dNR26NDBrGXLlqXqR19nqNVq7Nixo0AmkwVqNJrS3e1fEwQEBGgA/K/Yr46rVKq6sbGxQ+/evbtcr9cr5XK5fvbs2WXuArVaLW7fvo20tDTh3//+98s56MowZAg90CdNooxeiX6Kz41z5ygjZdjQvQSYmJhg4MCBgqenJxISEmQajQZNmjTBw4cP2enTp6Xz588Lw4YNq/Az0tPTkZOTwwDgwoULRS2jqoC6deui7ovs+Vu3Lj38fv+dyFpS0kuTlJeLr79+9f2qH2Pbtm1SXFycMHLkyGcbFEEg+ee2bbQpTEys+Qz3okVPt6EpiYQEymgfOFDmd584cQKRkZHw9vZmFy9e5N999x1zcHDQe3p6Vt2JuQQEQWDNmzeX7OzsXt3DQ6+n9cLZmTbhNjaUGTI4bB86RCTC2JgCEP360et++41klDduUFZoxAjKFDVsSL//4gsimgZjtYMHaZNrakpZ3caNi1zQnxyKHiEhIcjOzsa7jzsoZGdnIzAwkL9RUbum5wVjFFzYsIHkyIcPk0T84UNSXKxeTdlvNzci4WlpFCgdN47Gb9asIqLNOQXnPv2UAhfr19Pr0tKK1owKetxWFyYmJjwlJQWohvoqNzcX/fr1Kz3nli+nZ5OhFVdFaNOG1sLcXMrUm5k9yc43bty4lNlfz549xSNHjkChUBSt7WvX0nsTEiizV9aaKgjYZ2qquzV2rGz6oEFEWocPJ1Je1hphbU0tvwCam0ol0KoVvLZtE/KNjLgiOprB1JRI+dy5dG18fYvKcIyNnzIiW7FihV6r1YrNmjWDUqnUN23alCkUCmHfsWPweeMNtDIQbQDo04cynwbiHxdH0mC5nMbm5ElkduqEbqtXs4P+/jzt999ZRGwsz166lImiCIVCwQsLC9mHH35YupNDMWRlZcEqOZkIWGUwN6d1NS6Ozm3YMFrjbG3LfQtjDH369NEdP358h+FXJV+jUqmMAIxijMk8jx4lQ7Zn3MuYmJgIISEhyMjI0I8cOVLU6/VQKBTVVw9JEs3H4GDa/yQlkYQ8IYFI844d5EcxZcoLC5gLggCtwdCuqjA3p/WlrPJQM7OivVxQEJCdDbP//Q8fHD7MVvv5ieq9e9Fg/PjSrQdXrqRAjLExsG8fHPr2xadDhrDNmzfj1KlTUkmynZ+fj+joaIFz/kc1T/kfvCL8vyHbKpVKALDU3t5em5qaaiQIgmRvb18giqLC1dW1nouLC4yMjF6TdET1cOHCBcTFxYXp9fqRf7UoVkBAQCqAn1Qq1VEAwywtLecDkOv1enDOIZPJoFarsXbtWp6ZmcmUSqXk7OzMhVfhBl4eBIEelIzRpu2DDyiq/7y4do0kbK8I5ubmKO5TYGZmhtzcXCEwMFCPSpQCvXv3RkFBAb98+TKrMef+msa4cSTrunOHNtM7drx8N+1Nm4gIFJevvUKEh4cjLi5OmDJlyvM70/v5kVT39m0iPl9/XTMHuWoV1fmVR4qjoohsPXxYKquu0+kQGhqKu3fvQiaTwcPDA66uruzixYt49OiR+Ntvv8HU1JQ3bdqUv/nmm9Uizaamprh165YQFxeHRmUZddU04uJo4+ngQJnE3r1JWn/2LGVrg4Np7O3siFRHRdGfgkDSU72eMtxNmtCPXF7UisrTk7JDjFFGiXOSZ6alUfZ44ULa5BYW0t+Dg2lzbmkJbNgAadAgHHN35/qcHDbz7l1mMnUqMH48bmdnS027d0ebX34RMGECZR0vXqT63iNHyOCsYUPaWDdoQETpeQJhTZrQZ+fk0OcbgggdOtB5FBbS98ybR1ndIUOI/G3aVCRhTUqi8544sShD9oKCc7a2tsLDhw95Xl7e09LsciCKIlxdXfnOnTtZTEwM3nzzzaJEAefVU1pNmUIk1cvrqex2WejQoQOysrKwb98+tLl8GaIg0L3evn2lYxMVFSVz9fAAa94cOHUKujt3UOjpiRxHR9iuWQNWnJg+ekRy8vh4ug4zZz7pJ2+kVrOCGTNg3L07Xa9336VOHatWURa8Vy8i3snJwPffI3jxYoz4/nvRwcMDoq8vw8yZYuH06Uj38YGvuTnsQkIo4FC3LikXWrQgWXNYGAVsDGqHf/2LjmvxYlgtXoxLDg64fucOE0UR7u7urMvjjKmZmRn74Ycf9D///LPg7+9fpu9IRkYG9uzZg97DhumEoUMrfvgYSma6dyfTsuHDKeBVBXh4eMhPnz4t6XS6yHJe8gGA5dYpKTji56eJadJEZxUUZNKkSRM4VNNUcvTo0Xj06BE2bdqE77//Hvn5+VAoFOjWrZvUuXPn0gZ+JWEwMezQgc5z3TrKbBsUjwavCUP5RkIC3cuXL9eIT0h6ejoyMzNRr149CILA9Xo9y8jIgCAIqFWVNomdOpH6YNasil9Xty79rF4NITkZ7idPSrq5c4Wcs2dhPmIEeSh4eNCa/u23pMoBKOAzYAAEQYCHhwe2b99e6iYPDw/noigemDNnzrPb1/+Dlwpx3rx5r/oYagReXl78woULtfLz80O0Wu1IvV6/Ojs7+3xWVlZIfHx8+9jYWFhbWyuqdDO9Rrhy5Yp0/PhxHef8XwEBATdf9fE8K7y8vDKDgoKitVrteM65+caNG6XIyEjdvXv3Ck+cOCHTarV81qxZrGfPnszNze31kx0YNhjXrlFEHCjq6/os4Jwe7C4uZbusviJYWFggODhYaNmyZYWbwYsXLyI4OJiNGDECXaramulVQBRpM3fqFG3ECwtfrsO8iQkRitdgjHJzc7F161bu5OQkdezYsWbuMZmMMlK//kp1wzVBUubOpU1Ku3al/+/QIarlK6N/dE5ODpYtW4Zbt25BkiTu4uLCWrRoASMjIzg7O8PV1RWtWrVCfn4+Cw0NZUFBQbhz5w4aNWpUJYm5s7Mzzp8/j7i4OHTu3Lnm1FE6HbnkPnhA0sjp04kgzpxJJHf0aDJF8/CgetG9e6lG3d6eMiFKJbmS/+tfNL/Pn6eNrCjSXLe1pT/t7UktIJPRhr5+fSLygwZRtqZvXyJUZma08WvXjjaWs2bRWE+bBowfj4jEROzPz0duixZ8+LRpTNmoEdC2LTQJCbiYnMz6jBnDjC9epBrN69epVvqddyjj8+gRrZv+/rT+/ec/RHi++IKOLzubggTvvkvE7rffqJSnf386DhMTOsctWygrGRlJm/GGDWksZs6ketbduymb6+JCpTqpqZTpXrqUJOXW1pTF9/Sk4zK0gHzBcHR0xJUrV/iZM2eYi4tLleZd/fr1mampKS5fvgzOOZycnCjT27VrUfulqsDbm8ipuzsFTZKTqea/HGRGRSEmPh49Da3m+vWja1QB8vPzcebMGaSmpvLTp0+z82FhCI6ORrSjo16MimK3T53iNqtXM+Wff9Kxt2xJ8vBOnQCZDNzdHfffegt5oogrzs7c6eBBJvr7U1a9WzcKHn32GWU+Z80C7OwQXVCA3U2aSDFaLdq+9RazGDAAqF8fegC7YmKkhteuoZ63N8Mbb9D68csvNH6ZmXSf/PAD1ePn5NC9MmMG3VNNmwKurnDo1g03btyQ3NzcuLe3N1MoFE/kvx07dhQePnyIw4cPszZt2sBANOPj43HmzBmcOHGCd1QqJa8PP5Th008rDo688QbN5+++o3/n5lbZKTwjIwPnz58H59zBy8urVEImKCjoisO9e0kT1q3zylEo3r9qZHTq3r17UWFhYR0cHR1l1dkXM8ZgYmKCTp06CQqFAv3794eDgwPOnz8vBQYGCowxycnJqfSDQKulZ4WLC93/b79NgTG5nNaEkqhThwKunNO64ONDwTCttsrjUhycc+zbt0994MAB/c2bN+POnj1rWVBQIKakpOiDgoKEixcvonv37qXWdY1Gg4KCgiLJt4UFrbH29riZlQWlUomCggJs27YNeXl5Re1ki8PMDPZubiyqUydpc2oqkw4f5nV//JHx+vUhHjhA869ePTo3Q226XA4jIyMEBQXB09MTBg9Tzjl27NiRl5eXN8PLy+tetQfiH7wSMF6ZAc3/A6hUKjljbKxcLl9obW1t7O3tbf7SeqQ+Jw4dOqQPCQlZ/eWXX06v/NWvP1Qq1RsADgiC8AUAC0mS7oqi+Jler3f28vKSevbs+foR7bLg5kaRdcODsbqQJFpYX5faz2LYvXu3PjU1lU2ePLncaxEZGYmdO3eiXr16Uvfu3QUnJ6eKDcJeB9y4QRvNu3fJNOVFQpJoc7tmzYs116sGQkNDceDAAcyYMeOZzPAqxZ9/Un/Q4OBn9zbIzyfSVBZpT08nOXNk5FNZ7/T0dMTGxvKDBw8yQzagdyWu5CkpKdi9ezdPT09nOp0Ofn5+1NYIQEXG7Ddu3MD27duhVCrh4uICtVrNhw8fzqpEvCWJzmHXLiKy+/dTtjU4mJQy/v6UeY2KorXFcI00GpIMr1hB575vH8nsJ04kwswYvffWLfpcBwf6zBoySZMkCVFRURBFESYmJli/fj2aNWuGtw3O3o+xcuVKva2tLUaOHFl1VZJeT9fczKyo/loUqdXTgAF0HrGxlJWdMYOCAUZGtDn94Qci6w8fEoHq2pVeo9PReG3cSKTdYKDFOY23r29Rq55XgLy8PCxbtgyenp5PbaIrw/Lly7mLiwvz8fGh7G9yMklVqwND7+IJE2h+/P572a/T66G2tET42LFSl9Wrq3wza7Va/Pe//0Wb5s3h6ekJYd06GKWkwOjtt8HffRcxXbtCCgmBc5cuSJfLcaxxY32KQiE0btxYMjc3F0NDQ3m3gwcRPmCAngkC3vnmG5mxuzsFuKdPJxISGwv89BPi4uIQ+Z//8Prx8Uz44Qe4uLhAXiyQGrNmDZK3b+ddDh1iMpmMavzd3CirbWxM99kff5Ak/vr1otZ6/v4UtCmWgd+6dSvX6XTS6NGjy5zbK1eu1FtbWwvt2rVjgiBg+/btaNCggT4rK0sYP3IkM4+NLd/borCQAj+HDtEcbtiQ7glXVzquKgRkjh49qgsJCfl+zpw5H5X5AsZEAEoADcH5TQBQqVQyURTPd+vWrWPPnj0hPmcp0JUrV7B//34MHjwYbdu2pV8a6qFHj6bnbnAwlX48qxru88+JdFtb07X73/8qf89jpKWlYc2aNRlarbZRQEBAtkqlcgbwAWMsn3O+TaFQbO7Xr59byZK4hQsXcp1Ox8aOHQsnJydIkoS7X32F2zdvSheK+ShYWVkhOzsbMpnsyfm3a9cOVlZWuHr1KtLT03Hnzh19bm6u2KlTJ9yKiuJjVCqWZ2nJE9u145bm5oKdRgPLxo0hFFOJff3115g5c+YTr6N79+5h48aNiRqNpsFfTen6d8bfgmwboFKp5ACGymSyX99//33jOhVEdV8XBAcH4+TJkwAgBgQEVMPJ4fWFSqVSBgQEFALAwoULV2k0mikAMHHixGpLml4ZDBmaPXuIMBsMMqqCvXspc5Sc/OKO7zkQHx+PzZs389mzZ5e7C9RoNFCr1Th48KB0//595OXlCXPmzKkR1+cXipAQymasWkVmZS/Ku0GrJeOXtWtfuMt8VREXF4fNmzfj7bfffjEy6ORkkmL++99k2vQsta6uriRPL+n2/NVXVJtqZAQIArKysrB9+3YkJSXB8AxzdXXF4MGDqz0Hg4ODcebMGWi1WtjY2GBqGSZ2kiTh6tWriIiIQEJCAgRBgEKhAGMMcrlcmj59uvDke/V6kk/HxFAAYtIkOqfMTMryLlpEZMfBgQhgq1al56FWS4qMQYMooz1mDGXefvutyPV2/Hgy/Soe5EpMJPIdHExrUg0E80JCQhAYGMjlcjnXaDSCUqmUJk2aJJQM2CxatIj7+/szJyen5/7O54IkUSZMo6GN/YAB5HZc3MzrFeLnn3+WEhMTBQDw9vaWPDw8qrQIBQYG8tu3b0tTp04VnxiDVXdtGTKEAhTt2pVdQ52URON19Ci+W7VKch84UOhcmZTZULKwahVgZYVHaWnA8uU41LcvWubmSu26dhXw4Yd0XZRKrFixQq979EjsERjInfV6lj1jBsJycpAhiryzoyNzmzQJ7PZtmrtJSVQCtGsXSf0LC6l0onlz/LFvHxpcusR7ShJjP/xQ+lRmzsTD0FCpTXCwAM5J2TRkCGWQT52iQKi/Pyk9/v1vIoM6HSkdGKPa6ceBkIULF3IPDw/WsWPHMoPKKSkp2LNnjz4rK4sVFhYKDRo04O+88w6DJNG9u3p1+QGerl1J3Vayjdzs2WRs9/77pd4iSdKTDGxeXh6WLl0KANMCAgJKDwQAMPYDgCbg/EnPPJVKZQYgBwBMTEzUU6dONapKaUNJPHjwAEFBQYiNjcXw4cMpaMk5XS9XV1rz7O0pU11T7QgPHiT5+Y4d1CJywoRK22lGR0dj586dkZ999lmZfdVUKpW/jY3Nzx988IGpYWwlScJXX32FVq1a8YSEBK5QKHhmZqbYMDOTd2WMO379tcAYg0wmA2MMmZmZOHv2rJSZmcmjo6NFAJDJZLC0tJTMzc15mzZtRGdnZ6rxj4mBRqlEkk6HpKQk5B04oO+6YoV4tmdPJAwbJvXs2VNo2rQplixZIo0ZM0awf6wq+fPPPwtu3rw5b+7cuUtqZjD/wcvAa74zrlkEBARoAWxbsmTJtLS0tB5/BbJdbENTC0DGKzyUGoOBaD+GBwDIZLLsxMREMwcHh79GZtuQGb1yhTYaQ4ZUXUI7cCBlXV5jaLVaduvWLQBA06ZNERERgZycHOTk5CAqKkqvVqtFrVYLIyMjplAomJ2dHRdF8RW7kFUBnTrRJmDxYpKmvois87p1RJ62bKn5z34ONGrUCC1atOAbNmxgAwcO5O3bt6/Z62VnRxv5H3+k+u27d6sfzNi6tXRrHI0G2LgR2v798Vt4OE9KSnoSJO7QoQM6d+78XIZ7np6ecHd3x7Jly/Dw4UP88ccf+s6dO4tNmzZ94la7dOlSSS6XswYNGnBXV1cMHTpUEAQBmrg4bNu7FwdGj+YdHjxg9TdtojpLX18iLfn59CUbN9KG09SUzrE8aLVU/x4QQLXZs2dTJmf9eiLn7drR5vv2bfqz5Mb/zh0iETodZYoXL37mcTHgwoULvFu3bqxnz56G+VLqom7evJkDYPWr2LP3hUIQSFru4UEkzdubghY+PlSb+wrNUVNSUpCWlsZGjBiBsLAwREVFwaOKxokmJiZMbyC1t25RnWd1sWsXyexFkQhKrVqUHczNpczqoEE0XrVro9DMjJ07dw6dOnUqyr4b1BlbtlCWeP9+mtvnz1Mg09cXVh98AEybBtfoaBw7doy3K2HgNm3aNDE0NBRt5sxhCpkMdQIC0HjnTmD3bga5nNYNA+ztgY8+orKA33+n9XvdOuTUrYtYuRw9+vRhrLDwqc+HJAELFiBnzBicatxYatOnj4B+/SjwtXs31QI3bUqKiBMnKGhlZkbzQqGgOv6MDLp/vb2Bjz9Gr1692NGjR5GcnKz38/MrFaWwtbXF5MmTRYA8doKCgmjAHj4kNUpZQZHoaApK/vFH2Y7t778P/PgjMtLTodFqwTmHkZERoqOjcfDgQdStW1dq1KgRrl+/LigUinMajabs1l908X4H8FR/xICAgFyVSiUDIGq12tjU1FSH6gZhb9y4gV27dsHJyUkaN26cUN/BgVqS/fEHKQe2bKFygZq+5954g360Wnre9utH97yxcblleffu3eNqtfpEBZ+6LT09fc2ZM2f0np6eIoAnmeqBAweyZcuWsWbNmul79+4NE8YYfH0Z9PqnlAe1atXCwIEDBQA4fvy4lJeXx3r06MGsrKyeHoD164F586CIi4OTKMKJfivi+nV0NDMDrlzBpk2b4ODgICkUCh4fH4969eohLy8Pt27dYpIkVWJr/w9eN/ytyDYAqFQqplQqG78QGeULgJubG8LDwzVJSUknALR91cdT05g9e3YbAFCpVD1Pnz59oEmTJqa1ayr6+TJgaE3y8ce0uT1R0VoOqqts0aJ0v9DXCE5OTvD09NRv2bJFVCqV0Ov1MDIy4sbGxlwQBHTv3l08ffq0NGjQIIExxo4fP86HDh3KqiqHfOWoU6eo1YirK5GbtjV4a929+/KN2KqIN954g928eRN16tR5cRdr8mTaFGdn04bL3b1q7wsIIKmli0vR70aNonreqCicPnGCp6WlYdCgQYiKioKPjw9qKmCqUCgwbtw4HD58GJxztmvXLm5vb89HjRolAIA+K0uY0L49rPv1Y5g5k+S7vXpB8eWXGP3FF0KCiwtuZWZi+x9/SA0XLGBDxo8nafngwZV/uVZLATtvb5KQzplDDsQNGhSR74sXKdvv7U01x5s3U7a2JOrUKXK3TUwk8t206TONSVZWFgIDA/U2QgpxAAAgAElEQVSZmZlim+IuziWwY8cOnpCQwCZMmPDqlS35+SQhnz2bAqFr1pAE3dWViNS9e5QtfEU4fPgwb9KkCVq1agVBELBjxw7h/v37qEqQIjw8nNepU0eATFYUxKkuLl8ucmgfNIjItl5PionVqyn7+1iaO3nyZPbbggXIWbIEFiNGkEQ/LIwk/hcv0nPso49IMWBp+VRwsbCwEKdPn+ampqal1hmZTFbUfxsg1cqUKRSE+uQTIu9+fkUErUMHSBERkNq3R46FBbb6+qLFxYtoPXWq3tHMTMSNG09/wd27wC+/QOnlBVZQwDBqFJWdjBpFa9GGDaT8eOstul8SEqgnswGMUZZUpSKCfvky3Js2RWpqKhITEytdN1u3bo0jR44gLy8PppxTp4Cyno2TJlFXgfLagTk6QvPoEbZ9+SWyGzaUAECr1QqiKHJPT08GQAgLC9PnUu/ybgBy5s+fP5Jzvp0xduDLL78cBMYUAMIA+ILz6DK+pT6AeO1jMp+amgobG5sqlTZIkoR9+/bx/v37o0Pr1gJcXWmt9venshjGqBzmRUIup8ATQD4esbFklHjrVimpekpKSgHn/E55HxUQECCpVCr/kydPHmjRogXq1q2LzMxMKBQKbmJiwv5DbcmKAi1mZtRNxuDhUwJ9+vQpO8KQnU0dH3r0KFKXfPrpE/NIa8bQr18/IT4+Hg8ePBDc3d2l4OBgfubMGSaXy7kgCFsCAgL+XyTe/k54PXeELxa+JiYmtcrrC/y6ISQkRHf37l25KIp7X/WxvGAEq9XqeatXr57fv39/ow4dOvxFmNtjfPwx1QTn5hLp7tGj7Nc1aUIb6tccXl5eYs+ePQFQdNfc3PxJf9jExETY29tLu3fvFmxsbPjYsWOZdSUSrtcOjJEkedgwuh537z7/ddFqyblZpXr1rcbKQVpaGvR6PZ61/VWVIAgk1f/1V8p0JyRUbTzu3CFTKwMMfXA5h1qtxtmzZ9mAAQPQvn37arWaqyrs7e3x3nvvAdeuCRrGsDo8nD1YsQKihwc8rl2D1cmTFAho25buYx8fYMgQMMbgCMBBr4f97dvCkSNH+Pfff6/39PQU27Rp85Thzvnz5yFJEkxMTFDf1hY2ly8Dn36KmK+/xq3WrbnzhAmsucH854cfiFQbamw5p/XFz48Id1lwdaVMT2YmGa4tWAAcPVptF9+YmBhs27YNtra2bNq0aeW69Obn5+PatWts2LBhsLGxqdZ3vBBcvkykbdYs2rzev09jIpdTFnbBAjLlGj78lRxeQUEBZDIZZ4yxli1bomnTpti0aRMmTJiAytZQxhivo9cL6NmTNuvPgg4dqH8x51Rm0LcvBXGCgyk7uGYNEe433oClgwPqGxvzwshIoF8/hiVLqKa+Th0irOVAo9Fg1apVAMCnT59etZSmvT0FoBs3JgLq4gKMGwfps8/wIDkZgWfOwMbdHf2OHUOvTp2kZk5OAlOrRVhZUb2zAWfOUDu8mBjUd3RE+5YtBQwYAMyfT+e8cSOdQ/HSjcOHyzaw7NKFfr78Elnr1uHaO+/A8403Kl3IEhMTIZfLYSyX01wLDiYVgAF79lAZ2uHDFZd5CAJ0nTujVnAwPvjss+Lj+OQYevXqJep0OoSHh+PAgQMwNzf/Izs7G5zzNSqVSphRq5alVWbmEQAx5XyLFwCIonh627ZtjTnnShMTE9OpU6cay+VypKam4tGjR7h375508eJFJpfLCywsLHTt27c3S05OFlxv3UL71asZoqNJzTRgQI22yqsWfvyRrvGdO6QASkmh5465OTjniIuLEwH8WdFHBAQEHPzqq6+iVq9e3WLu3LlQq9XlBxBnzqSgUzlku0xoNNRpY8ECWsdv3SKi/csvT2TwsbGx2LVrF8/NzWVKpZL37dtX6NOnD27fvo2tW7cyAD9W/Qv/weuCvx3ZVigUy/r27Wv6svps6/V6CIJQZRMUAwoLC3Hs2LHCq1evyjnnG3Q6XcALOsTXAgEBAVylUt1hjB0+e/Zsvw4dOrzmblslYG9PP6tXk+NtTBnPtq+/psj9a2iKVhYMc9ayWK2ZwRhNoVDIOOfIyMhgrzyb9TyYP58ygc2a0XV7551n/6wbN4p6Fhfr/fq6QJIkHDx4kDdq1EhCJa3dagTjx1M2KSyM5Kvz55f/2pQUkh4aIv19+lDrtseS65S7d8EYKzLeeV4YiPzWrSTFNjam+3PaNODAAShSU+E0ZgyuxsYiTiZD888+0wkDBtBEL8fcRxRFPCZQ7OjRozhy5AgOHjyIxo0b8759+7LU1FQcPXwY9nZ2ep/vvhPyNBoWNHmyZPXuu8LF27ehtbVlsvR0NI+MpM3Yu+8SqXFyouPt25cyRipVxec2dy5t8C9fpux2Rka1yHZYWBg/cOAA69u3Lzp37lzhgzIkJAQKhQIuxdUIrwJHjwIffkhZREPP8du3KZNZPLBua0vz7BWR7fz8fKl169ZP7r233noL69at45cuXeIDBgyocKzNzc257e+/cyxZwp6cY3UhCBSwcXenzG5GBgVlFi0ipc/166TGWLAAmtatcfPnn1kbf3/YODs/+QhDBrROnTqlTLVSU1Px+++/Q6vV8k8//VSo8rMhJITm/J499O+tW4GgIES88w4epKfjfvv2cP3vf7n41Vesubu7gMmTqW533ryns/wffkhBlsWLkfXtt3CdOJGhYUO6tw8epPP393/6u5cvJ8O98taW+fOR07s32i5dimapqQxdulTY0eLUqVNS+/btIYiigD17nibaAJFsa2twhQI6rRZqtRqhoaE8KSlJ0mq1zN7eXqhbty70ej2a9+kDrzlziKSV80yRyWTo0KEDOlAvaqMtW7Zob926tcctPBx3mjWL7nzxYkXSli0AAv/zn/8kAoBKpbLXaDSJBQUFuHz5si4wMFCSyWRxGo2mOQDo9XoXtVrtbO/ndyDP2VnZbP58xgYPJiXXiBEVfM1LAmP0LM/MpH2WszPg5wftvHnQajTKgHnzUir7CEmSeoiieGn58uV2ubm5xgqFouzNu6NjUeCqqvt7QSAlx4gRtO/49VfqulAs0BYXF4e8vDwGAEZGRhwAEwQB5ubmUCgUDzQazaWqfdk/eJ3wF94lPxs454rY2Fhtw4YN5eW5J2s0Gmi1WmRnZ8PMzIzMDJ4BBQUFWLZsmc7Ozq5w/PjxpsUfTMUNLkriwYMH2L59e35ubm4w53wmgDt/B9dBhUKxRKPRNPP09MShQ4d0Pj4+sud1yHzpmDKFaq0iIijyefw4LbCZmWSWNWkStTX6i0Iul0Mul6NPnz5o27ZtUTuMvzIEgSLMlpZEZAYNogxQdbBvH/WvNUjaahgajQYAnmu8jxw5gpycHPj7+7+8m0qhoLZLZ89WvCnp2ZMi/QYi6etL7akeQ6lUQpIk6HS66kuVc3KoNvKXX2hDfeEC1cwFBtLv+vYlM7v//peyDm+9hQcPHiDi558htWkDPz8/tGzZsspfKpPJ8MYbb4j9+/dHYmIiTp8+La1dtUq0i4/HZ2fPwnjFChHffovsJk0ghIXxFLVaP9rDQ9y/c6dkn5wsPDFQ69evaLx0OsoajRpV+QHMn0/ECSDH8g4dKADk51fh23Q6HY4ePSpdvXpVGDFiBFpUwTG4U6dOOHv2LI+Li2POxQjZS4MkUWCzWTNae4vPjeDg0vNt0iRSs8ydS3PtJdZvHz58GPn5+WJJVYmtrS2LjIxkffv2rXBuN2/eXDzcp4/UesaM55PNLF1K5DYvj9quLVlCEtwPPiC/gdq1gZUrkbV0Kazv3YPVgQPg06cj8eRJRD16xOMyMpCSksI453B3d9d7e3uLhsBsaGgo8vLyMG3atOoFYfPzn26/1ro10Lo1wu7elXrGxAjGpqa8bVAQw9SpdB/s3UvP0/v3KZMqSSTpPXuW3vveezA3MUGitTVqdepEdcNltUmTJFKiVbKu1u3WDXfc3Hj3y5cpi2tkRKS+DBgZGfGLFy+K7X/5BVaffoontHzRIsq6rluHP/74Qx+/YIEoSRJkMhlq167NHRwcxOzsbFy9elXSaDSCTqdDnTp10M3ODnb799O8rQRqtRpxcXESADRITEx0iYz8o6LXP/bPMRBtHwD7AOrwcOLECUmSJJfZs2dHL1iw4HSd+/e7v//TT4cZ0OVRrVofR7i5rezZtWvZRnuvGoaERmgowDmEn3/GzBUr8JUktZ87f/7Vit4aEBCQplKpmuTm5noAcJQk6ee0tDSjUiVLjRpRoDYtjdQUleH776nU4uxZKq/y86NnUIn9YHh4ODjn8PHxgYmJyZMF6vLly2q9Xv/z34EL/H/E345sa7Va97CwsGUZGRlvjho1yrgkmYuLi8PGjRu1jDGNKIoZnHOb9957z8jU1BQajQbGxsalemNKkoSwsDCkpKRovby85EZGRoiLi0NERASXyWQXU1NTtRcuXPA0uI5GRETod+/ezdq1a6d58803SzUY3LVrV05mZuZ/OOff/51uLI1G01upVO46fPiwvU6nE2rXrm3bpUuXv4ZhWnEIArXtadmS/n7vHj3M4+Nf9ZE9N1q0aIFevXohMDAQarX6iZHIXx4Gn4DISHqItm9fPSn4559TcKUM59hnxdmzZxEUFASZTCZptVpBkiQYGRlJjDFIkgRTU1PesmVLsVmzZrC3t6+w73NKSgrCwsJ4//792Uv3q+jXj37++INI7okTpcc2KIhMhLy8iBCXMH+Sy+UQRRHBwcHw8fEp+3uys+knOZnMlN57jwjY3btFG5wOHYjITppESpTAwKL3F+shfPnyZUiShHHjxj2zc7vAGBrUq4dRhw+L0pUriP/pJxiPG0eBBcZgAWBY48Z0/6SnY8CaNYJxgwYUoCs+Ph99RFna/fur9sVmZtQmzNAbe9EiOvdKMjA7d+6UoqKihMGDB1eJaAOAiYkJLCwspIyMDPGVkO1Fi4h0xcaW9sHYtKlsEzFzczID69aNiNtLwPnz5xEWFoaJEyeiZAlb//79ceXKlUoDSWa7d/PBu3YJ/NNP8cxsOzKSSl2uXiVynZlJ/gCff06GU05OFNhRq2FTty5a5+byzBUr2NqCAkxcsgSW7u5M3bIl5nz3HeIuX0bC9Oli/uLFMA0MhN7PD7KmTeFoZcWtFy0i2fnNmzTvXFyI2Ja1RiUnk+HoypVP/TowMBAJlpZC6ooV8Kpbl2HBAvJ1+OgjuraDBlEWfsQIWldmzKDezUOGAN9+C11EBDZs3YrZEyaUv9Hdu5ey42FhFQ7b/v37kWlkxPL/+AMWEREUvPrhB3ISL4HRo0eLp06ehPbnn/HTr7/C/t49dGzdGnZ16qDA0hK/rFiB7OxsccKECUhJSYGDgwNsbW2LD4wgSRIyMzOxdu1afrpHD9bu/Pkqke2EhASIohg5V6XaKnC+HpxXubZXqVR2LywsVAiCcGzTpk2ddDod1Y4w9uOnCkXk+a5dpzKgN4DcHz/7rJEkSXzDhg15ycnJQtOmTYVevXoZWb3olprVxeNnnWzyZFxOTi4QOfcCYzsAjAbn58p72+POP6cBYPHixeOTkpK8S5FtxihgdfYszbnK0KoV9YjPyiI/ifHjy0y8NG3alCclJfGuXbs+mRM5OTm4du0a1+v131fhrP/Ba4i/HdkOCAhIVKlU4xMTEw8sXbrUvVOnTopu3bqJSqUSjDEcPHgwT6/XTwgICNgKAF9//fUHa9euXcYY0zPGNHq93sLW1lYzadIkE8YY9Ho9fv/997yUlJRber3eJC8vr8Xdu3fztVptkk6n26HX69cBsDp79uzJjh07miiVShw/fjyfcz4/LCxs8cCBA5/aJCckJODRo0cC5/ynvxPRBujaAOgMUBuG27dvr+nSpcvr0TepunByolrLqCiqGZTJyPioVy96sLdvT06lWi1t+u7cISmRnR1F+evUoffI5a9d/W/Xrl1x584dnDx5Ujx58iTatm0rDR48+K8XFCkLfz4u6fL0pCwPtVQpH2o1Xbvr12v8OgU+JoK+vr6CtbU1srKyoNVqBcYYTExMEBMTI926dUu6cOGCoNVqoVQquY2NDTMEQdzc3KDT6bBu3Tr9w4cPxdatW/M2bdq8usnUsydJViWJxs1Q2zdlCjlHDxlC5KkMcmttbY1x48Zhw4YNcLS3Rwu9njbop06R5PTnn0nePXIkya9r1yalwv799DpBoCx2FTFgwABERETgxIkTGD9+fPV60Op0RDImTKBzmzABwtdfo3HxzJ0BajX4ihW49H/sXXd4FOX6Pd/MbnohCaSRAgklIYQSegcFlN6kKogICIj9Cnop64ACYkG5eAFBQCkC0ov0YugBAoGQhASSkN572zIzvz/eLNn0AijcX87z8CRsZmdmZ7/55jvve97zXr6M8E6d4PvRR3AyHEcaDQUgapLRNoSpKZ0HQLXlAMmGd+2qcJxmZmbi0aNHXKtWrVCVGVpFsLGx4ePi4sROnTr9fYG3ixeBCxdINvz+++U/U3AwLW5bty7/XiMjynqHhlKG19Cs6xnh5s2bctu2beHo6Fju4mdmZgKgoH1FkGUZsiwj2cyM6dzdcWnzZmnSpEmciUm5OH3VCAqifsd791JHjDFjqLxj8WKS13t7l2x74gQAoPv27SwhIQGdwsKQc+MGOjVtik6SBEyfDo+WLXGtQwfxklrNehYUcI/S0+VIKyvWysOD4ddfyTx0xQpyLz96lMbkzp1030+fTkHoTz6huledjuTWgkC/37yJS3fuwN3aGn6+vpRB/OUXel6OH0/BJ0dHepbKMgXWzM1J1hsSAixfDrPi8r3w8HC00vsglIWTE80XVSA5ORkhISFwc3OTHR0dGRwdiSQplXSP//BDKbdxjuPwko8PEBWF7nfugP/0U5mFh7Pl06eD53nIsoxp06ahcePGlbY65TgOtra2mD9/PivKzSWSVgOzQ41GgwZpaTJHisgNVW5cBp999tliAIsBINHJqYlNZuZhjZGRCOCKsUYT2/f8+bsA7gKAdsmS07IsfxIfH39Cq9XOv3fv3owHDx58MGvWLJO/I5hba4WTUgnfuXNNAzZuXJro6LjCKSnpDhhbDMAesjy3srcJgmClUCj8lJWVDYwYAaxfXzXZ1uno2bdpE/3erRvddxW4pkuShIiICBgSbQC4du2aluO4HSqVKrVmH7gezxv+35FtAFCpVIUAXhIEofW1a9cWXLx4cawsy5yVlVVhQUGBFsBu/bYLFixYBwNDguXLl6/jeX6K/v+XLl0Sk5OTA9VqdT+lUjknPDx8gVarfV2lUp0xPOaKFSv279+/f4y3t7dJbm6uGYC7HMdpjx07xkRRFAGwrKwsXVRUlIWRkdFPZdpj/b+CIAiNlErla1qtVilJEkJCQhATE6Pt2rWr8oVyKgeIAPzwA7XgcXGhyTY3l6KbV66QxNbRkSRGpqa04LhwgTIu33xDctB168gh1sWFFo9hYUQqdu+mB/6779JixsODiEVKCpHFwEBagHTsSLWb9vZ0jGLTkLrKv06dOoWoqCgAgK2tLW7fvs3FxMSIs2fP5l/o+m1DfPcdLfDu3aNrVZmh2I8/UmbtQUVGr08GX19fOTw8HKIoMicnJzg5OZX6u4eHBzdgwIDHi/HY2FgWGRmJvLw8/s8//5Stra3ZwYMHRSMjI/bee+/B2tr6nw2IuLnRovHbbykQ9fAhjUUjI8pq7dhBdZWGSE2l+6FXL7guWoQZYWG4lJIiefn7c3j/fQpKjRpFxDo9vURGXMN2SpVBoVBg1qxZWLNmDY4cOVKzYJJOR4ZwO3aQfPGLL+g+riwIc/UqkJGBwqAgXGjRApyzM5p6eJT8/cABUks8fFh7d/tPPqE6+IICGsc9e1JNbGxsubGcl5eH1atXAwA8DI9fQ9jY2CAj4280x9VLhh88KN/6TI+AADJJquzam5lRqc+KFUTOnrEUtrCwUG7SpEmFY6hRo0awsLAQo6Oj+bKkMCkpCevXr4elVgvb7Gy52b//zVIuXmT37t3T1+jWDOnp9CxYtYoW+Wo19bBOS6NgzoED9P8KzJ6cnZ3hbKD6AMc99i0Y8eWX/Pr166W7a9eik0rFUi5cwIy33yYSCpDCRI+sLBrH2dn0TASI4HfqRF4E/fsDWi3yjh+HdulSYMYMjFu9GsrAQJovHB2pTGfwYNrHyJElLQYvXKDnpK0tjXmdDlAooFQqcerUqcrJdno6kfcqcP/+fYiiiNzcXFZYWEjKxnbtKKvJcRTAGjKEiLse/fsDkyfDb8wYYPVqJkkSPnB1hZWVFZYtW4agoKAaOdADgImlJd2/0dHVkm3L/HwoCwudADSFLOtqdABDMPYBAB8n4CMAp0zU6jTIcrmWYosXLz4uCIJCq9VKxUmhz5YuXdr31KlTHcaMGfNMFwHJyclYt24dGjdurO7atauxra0tnJycqvRF0vsMMI5T/DxrVrhKpcoDYzcAOIExc9CafzxkOa/MW50UCoWpt2EgyhA9etC9o1ZX7sWTmUlzriTRmJk/v9L2ZFlZWcjNzWWuBoFZjUaD69evixqNZnmlH7Aezz3+R1bGdYNKpQoGMFEQhGkAdDk5OX0BJFaVUeZ5voO7u7tpWFgYHBwccOHCBa1Op5uiUqlEAP8p/lcOarV6RnR0tNWDBw/6yrI8WKVSXRQEYcCNGzc6AlCDHCazAez//PPP85/2Z32RYGRktEuj0fSLjY3F8uXLtTzP39NoNOY2NjbNu1Ug23ruMXcu/btxgx7s9+/TosNQwmhQn4p58+jnnDkUyZekElmzVkt1ah4e9Ht2NslGbW2JeKemUgTcy4sW/Wo1HXvzZnpPTAw9tD/9lFo0WVkRKThwgDK58fEkxZ01i9rBNGpEC4fAwMfZeM/wcNzNzkYHS0t07tgRt5KScP38eV6Tng6FpSU9dJ7HOq7aQJ/tmjSJTISOHy+/TVISPTg/+uiZnMLo0aOZv78/jh49CltbW7hWlBkFGdkxxuDu7g53d3dIkoTY2Fhs3rwZnp6eGDt2LGf8PJnyffwxLerT06nW/fXXSR4aFERBjilTSDLZti0Flw4dIqObYcOQ368fIjMyZNy8+cxP087ODs2aNUNYWBiXkZEhv/XWW+VXczod3TMTJxJhGDGCsnZ2dkQKKoIkUZbjwAFI8+fj2GuvQRcRIX/28ccl+y8qoszs6tV1byP38ssksf3iCyKX58/TnPLhh6VM3gwXqefOnUOrVq1Qm6ypsbExsrOzuaKiolq9Lzs7G/v27ZMbNGggjxw5kquRiei775Jk/NixqrfTaEgxVBXeeovq9S9epOBkLZUpBQUFqMz3pfzpaLiy5WeGsLOz4+/cuSN7e3uXaqGol+W+ZWwMm2PHGP7zH0RFRcmPHj2SOnToULNJVqcD3niDMmqLF9NrxsYUsDh1ilqB7d1LNdO1cVYGlRF88MEH3MqVK2VJkphOVwW/03/+hg1LJNFXr5JR4YQJFHwGsN/MTI6cMYMNGzYMRgsW0PgXRZor7O1pXtDpyGfhxx/J8M3Ojp5bW7fS83HCBOD8eQwFoIiMROTOnbLHF18wHD9O5RV9+lBwYcECehb26kVqNMYoKMEY0tPTERoainPnzgGg8bpy5Up4enpKvXr14tzd3SnQmpFBz84PP6RnLUBBhvXr6f67fRscAL2fvyzLSEtLq9V1RqdOtO9+/aqcD5wEAV0ePXIUvviCVeaoW9xbeyzHceKiRYt2gzELANsAqAAkASiCLOcD+LiqUype8z6GJEkfxcfHHwfwTFPbQUFBWp7nN8bHx8/au3cvlEplOgArY2PjInt7e+bq6mpRVFQkpqWlFWq1WtHa2lqZmZkpJicn5+h0ulkAjgIAZJkiu4zZA5AAFIGxDwHcgCxfLD5cuiiKlQdaTU0pwXHvHq2PymLLFiLbn39Oa4mffqrShNXW1hZNmzaVNm/ezNna2ort27fnzczMwHHcTZVKVZmjfD1eAPy/Jtt6FGe6AeBUddvKsnz2xo0bNjdv3kxXq9UdjYyM7i9YsCC6hscYXua1CyiuC6lHCXQ63ToTExOToqKiOTqdLnXBggXxK1asOJuQkNCksLBQaWRkBK1WW6uF3XOBVq1osahQ1Lz/rV6+ZBgF1/eJHTWq5LUWLcq/d9++kt/L1ibKMi2yCguJGHfoQBnc5GTKjDs7k2Mtx5WQ/IIC4PZtuCUkoKmdHez27cP9gwfhN24cGp0+jXMPHqBrQABseB7czz9T1sjFhRZHoaFkCLJzJ33+994jia+HBwUKkpIowxIYSA+wrl0pKODoWLJIa9CA3vt3yup37KCF3S+/UCZMXwNaWEhy5xs3SveFfsroXWzqs3XrVgwZMqRGMnCO4zBr1iwmyzL4ujgMFhWVBEsiImjcPnxIUfk2bUhR0bMnbfPbb7RY3b2brtOkSUQ2P/uMFBwrVlDmZ948+p4/+4zUGwcP0u+//ELH+eEH2o7j6P3e3sC//00Z62nTKPvdti1YTAwKtm792yI5AwcOxG+//YaYmBgmimKJnFyno2z8N9/QuPjkE8q0VXe5//qLrsV//gN5xAhsOXxYSk1NZa+++mrJ9xoXR4vry5dr1qe7Mhw/TsRGD44jufA335RcdwDm5ub46KOPcO/ePZw8eRKXL1/GSy+9VOPD9OjRA9euXcOZM2ekIUOG1Fg9ERAQIMXHx3MxMTHMw8MDrVq1QqVyzYQEmn8mTSqZDypDWhq5uE+fXv1JODjQNZ4yhVQENcSuXbvksLAwNmvWLDg4OFS7PcdxcmFhYaX37qBBg7B+/Xp2586dUjJ+vVcBmzuX7gfaltuwYYN89epVqWvXrtVf76QkIrdl5dKSRN4FO3YQSQWI1NZyyuA4Dh4eHrh4kfjJqVOnpAEDBtRsHLz+ermX2rRpwyIjI+Hj41MiFeb5kp7NnTpREO7jj+hAT5AAACAASURBVGne8PenFnlz5lAGfPJkSEolAnv3xoWzZ+HQrRsK4+OZRpbh1a0bzWPZ2RS0mT2bnOwPHqTr89//AhoNpG7dEHv2LJKbN8c7qamwb9cOucOGIf7IEQSfOMFFJSXJ7j17Mnh60lxw9CgFD1Uqut4mJnSfVXAtlUql3KJFi9o9xFq0oDnw6tXSgXlDJCRAuWMHAnbsUCMlRfPll18GSJJ0kjE2B8AGSZJUjLFeSqVyu1artW8VGhoHxl4FMAOU6MmCLO+q1XmVhq25ufkzL328d++eWhTFzSDJu0ar1eYDaKXVajV5eXldoqOjvSVJUgOIApAO6iWeCOC8SqXKLrdDWU4BMAwAwFgnAIVgLBzAK8qvvmrn7u6uA1B5tNrTk9ZNFeHqVQreGBnRs7C6ACCAKVOmcLm5uQgKCuICAwOl9PR0DkA5dUE9XizUk+1aYv78+fMBzAcAQRAaq9XqrH/4lP7nsGjRot0wkPIDgFqtHhceHv5dVFTUuAYNGiAhIcH4o48+YnV1iv9HYGZGC4SoKCItycmPDTz+djBGi1b9wlXf3sswe2oYgdX3DX/1VSgAeAQF4YCVFdq3by+1HTyY85g/Hzu+/BI3OnfG3DlzYNegAfUolWUi6gkJJKXiOFroNGhAhN7cnEhZXBxFgPfupWy8iQll45s0ofdGRVEGeepUumbLltG2nTrR33NyaOG0aRMRjFdfJSLs50eLb42Gslf37tHfXVzoPBwdS3puV5b9VSgoo2JhQYvRggL6PSqqdFuhuiAnp6S+NjKSiPvdu3SdfHyAX35B7zFj0CgrC1Gffcbi33tPNzguTiHZ24PTmwNt3Eiy2Z076Zq9/Ta4zp2JQPj6khnLli1UJ3b+PAVWJkyg79fNjeSdH3xAUsyQEKBxYyLCQ4eSFFetpoXCo0e0MF20iByM3dzo2J9+SrWTWi2Robi4Eomlnjx5eJSM9eHDabx9/DGRdSsrCr6oVHRuGg2RpW+/pYzAkSN0bVq3RuPZs6HMzobs5wcWGEjZrvR0GheXL9M1M2hV96Ro1KgRevTogRMnTuC3TZvw1muv0fn7+dH1HTCAsmrVtZLKzaXr/+ABfc7OnQFZRkFBAeN5Xm7Tpg0tvgsK6N5YubJSt+Maw8WFznX16pIA3eLF9B3//jtl44thZWUF8+IaekmSZKDmHlwmJiZwdXVFVlbtHoWpqalo3rw58vLycODAARw4cABt2rSRR40aVf7Y48fTonbLlup3fOIEjfuaKAKUSvJpMDYm1U8N+8/ry2gKCwur2ZLQsGFD9vDhQ9Hb27tCJuvg4AB3d3dcvny5VEBNrVajaVgYLF9+GXo1R8OGDeHg4MCCg4PRtWvXqg/800+Ufb11q3yQUqkkcyf9HDZwIP1uKP2uIcaNG8dWrlwpFRYWcpcvX+batGlTfRBi61bqV19GrZaRkQEzM7PKAy86Hc11JiZEkP/4g4ImxfOOdtAgXHv5ZZwpzrIbN2okZiuV/L7AQPy7OGDxGEeOkKpLjwkTcD84GMd27pSdRozAqGnTmNHNm0BODqxtbGDduDHsLS0RfPQo0wYHQzl4MGXH4+MpEPvbbxQktrOj61nGzHH16tWiWq3mbW1tIcty7VrCLl9O83tFZDs2lubqGzcweeZM8+KsfMeioiI/pVKpCA4O/ig7O7ufkuNazwoONssaOBB3Q0PTAeQAkCDLT9DzksBxXC93d/ea9xisArIsQ6vVQqlUlrpGubm5KCgoYABuFpuY6XG3+OeTtQORZYr+MDZKrVQuVfC8/Wg7O9NKzf0ACvzMm1c6oSFJ1BXinXfoOTtoEJmE1hCWlpbo2bMna968OduwYUO+KIr1ZPsFRz3ZfgIUG3rV42+ASqVKA/Dm119/nZGent5UqVR2zs/Pd3qhyLYeTZsSQTAxoQX76tW0wH6BcPLkSalDhw6cvjdsXFwcAHIrt9O3wTBcbOlJ/NChJa9VlNnfbRBjqch1etgwyiozRtlvc3OSzqek0DH69aOHol7KrtORbD8piRbr27bRdW/ThjIiAwbQgjQri+rmly0jstmhAxHzsWMp48rzJBPs35+ykw0b0jFHjiQ5Y/fu9C8ykohqWBhlSzw8qFa2eXPK3Ofn0zXIzCxZ6P72GxHu11+n81i8mMj81q0kAfbzgzfPwzMlBd8FBSlcjh5FkpkZwmJi5HcSEpixRkOfSd9L2ceHSINSSedvbEzyUL064rvviHzZ2RH5NjKi1/QS0PT0kuutbyG1wcBrx7C9mf73ZctKXjOU3G/bRj9nzSp5bXlx6dnq1ZRhnTyZgjL67GVeXkmNG8fRdQOAhQshd+kCrF2LrKZNYQNQYCImhsj22LG04LWyokxeXh4tdoyM6LsdO5aCBgoFfe4336TPamlZZeufrh07ovG5c7CYNw+FvXrB9P33aRzWVFmTl0ey1e7dKRNXTAIZY5gzZw779ttv2S+//AJeFOVhKhW71LUr5KlTMaqa3dYIpqZ0f+jJNs/Ta19+SSRH/zqIxAElbeZqA0tLSyk4OJg/c+YMvLy8KjV+AsgEKD4+Hjk5OczR0RHjx4+HTqfDDz/8IEdFRZVmH4sXk+T9xInK67PLIjCwdqUdTZuWGIVduVJtT/KDBw/KarWaAUATg+tXFRwcHJCYmFgls/L29kaxh8tjBYWxsTEybG2hGT8ehvn8/Px8qWXLllUztawsKgPatq1yNZCbG80XX31FwS3D2uxawtnZmXv4kJSueXl51ZPt3bvp3jYg25IkITg4WPbz82MVdleQJJo3Hj2i+nOOIyLTqRP97fPPwYkilLm5mODigpZbtwIWFvzWrVvlyMhItmrVKmngwIGct7c3uMzMcmMqOTkZew8dQs+BA9GrVy+S9Bt+xx06IMTfH/ccHaU+c+ZwYIwUWwcPkmx8+nRSvHz3HQV7ly2jc3vlFcRlZCAnJYWHUomdO3fi9ddfR7NmzWp+gT08KGgXH0/PKMNr4uBAQYMmTcADsLe3h729PQeAA4CcK1eY2/79nTVr1qBBcDDSZBmhfn4pw3bu/LDmJ1AxBEFojWKy27KSWuSKkJSUhHPnzuXHxMQwnU6nsLKyKtJoNJxarVYCYDqdjm/QoIG6a9eupl5eXszKygrGxsbQ6XTmHMddW7JkyYrFixfvfYLzdgagUKlUMeX+KMv7Vy5d6utsY7PAZPJkCnJ06ULrjbLzkJ8ffQdJSSWBq+vXKfDfpw89x2tpOqnH3bt3dRzHbVi4cGHtJ+V6PFeoJ9v1eKEwf/78jwRBMOI47lZoaKiDo6Pji+mCbWZGWc2HD2miripy+hxCluVSi6mdO3cCAMLDw3Hp0iX0eEKDqkqhUJQ4v+rJuuEC0VCWqF/EGZJ2wyyKXjaqJ4I6HWW/JYmyq0lJtKixsKAseMOGJTJLnqdtANrGyorqIgEidcUOw9iwgbJsVlaUeQVK5NIAkUs99JnB/ftLXouNpZ/t28NoyBA4bNok7h8wgLe0tJQLcnJY0I8/orODAy22+vShbT82KLXTE9vWrUucmfXkFaCABVAtwXjqUKspSz59OklZMzMpw2hmRtc5LIy2Gz6c/lZQAEybBsWff8I+JQUpRkZEtg0zVfHFsU+tlkg4QKUW+mtdWEjj5+ZNWqi/+SYFW7y8gO3baVxFRFAwZc8eeq1VK8DdHa4//ICzV69KISdPsqnTpjGLmhDt7GzKUD94QIvxCmruOY7DgAEDxIf378t25ua8OG8egnNzYfzgQa2yy5Vi166SMaRHs2ZUYhIZSfdOcaAhJiZGNjIywuDBg2t93JEjR/IuLi4ICAgQr127xru4uIgDBw7kDdtcpaenIywsDNevX5fz8/OZg4ODPHDgQAaQMVB+fj7z9vYWAfDQ6YggJiSQGVVNiXZGBgU3amg+9RijRtG4UavL3Qt3797F/fv3kZSUJBUUFHBFRUWsS5cuuHPnjiRJEqfT6WBUTZ/muLg4qTLPBT3S09PB83yp7iRcYSHcsrPlBzNmMF+DbYuKitCsWbPKvye92dn+/aXq8yvEp5/SHNamDbB2LWK0WhQMHCh7eXnVahx069YNdnZ2uHv3Lo4dOybOnTu3cj16ZiZ5MZQJAnz99deyJEmsQkd8WaYAqb9/6Tm0QweaS5RKwNERXHIy7g0bJvfbsoXlt20L8+PHMX7cOBYbF4dt27Zxe4o7TjTXaiWTLl24oRoNdu3aJSYnJ7P8/HzOxsYGPXv2ZJVlnYuKipCWlsYxnY6UNfqgwUcfkfGVu3tJ94DPPydVQX4+bM6dw7v79yNpzBgUWFjI1377TfZcvJhjNfVkMDen44SHlybbc+fSuC9+BpfCt98CXl7wtLFh1oyJDb29efz+O0zi4iBv316DOrYaIR0ArKysdK6urjX6MJGRkdi5c2eBTqf7XJblgwAKMzIyPIr3lQPiJkmZmZmvnTt3bsqpU6f6NWnSBJ07dzYDAEmSOgLYIwhCs7rUMguC0ABAvFKpvACgggbsgCRJK5PT0l66duhQn65du1I505079PwwNETjOPrb/ftEtgMCaA2hVNJ6oY5EW5Zl3L59W63VaqvslV6PFwP1ZLseLxQEQeAVCkWshYWFmaen54vDTiuClRVlN3U6ykAcOvTELsp/FyRJYtYGct1p06YhLS0NsbGxOH36NAoKCjBgwIB/8AzrAIWipN82UELiBw4ksnfoEGUE27Qhovbnn/Rg9fIiae6CBbR47NixZB+GhkP6h66+5VUdMHXqVP7WrVswNTVlf/zxB86fPw9PT0/Y2dnVeZ//CG7douvl7k5ku7JAk2HtcG4uAKDx9u1Sg5gYekOzZiRrHzGClAjdu9MiRy/BfvXVkvfr+1S7u5cYNAUG0k9ZpgygnR2R0wsXaGHl5ERSfTc39Dt5krvQrh0yX3tNtkhIYLhzh7IdH39MgY5p02hM7NtHBl7DhhGB27ChynKR9u3b8+2XLKGM844dMP7mGxQUFDCNRlMtiasWBQVEACIiSi/QW7QgInD6NLBsGY4dO6YLDAxUjK5BL9/K0LFjR3Ts2JEvKirCwYMHuU2bNsHNzU2yt7dnJiYmuHjxIrO1tZV8fHy4l19+GZwBq0xJSQEAcBzHJSUmwvHll0mtsHFj7U7i0SO6P2tKzg0xbhzQvTsetmuHXS4usq2trWhhYYGHDx8qAKB58+Zo1KgRWrRoIXt4eLCAgABuxYoVEEURFhYW4jvvvMNXZJgWHByM1NRUrpe+FKcShIWFSUqlkrtz547Utm1bDgDk06fR9+BBllRG/mxubo7o6OiK3eM1GlJszJpVPdEG6Dpv2ICC9HSknziBsPx8XMnMZPPmzUNVpm5l4enpiSZNmiAgIAAWFhZVP5vbtycFkIHi5erVq5AkiX344YePSxpKYd8+YO1aItaG84VCQVnkfv2AhQvBOA7T3n2X5bm44M/WrTFmzhwY+frCc948LFy4EEVFRXjw4AGavfoqd/Ctt+RvoqKYTqfjR44cCVdXV1haWqLCrDqAs2fPIsDfH7737lEgY8cOCtr27Utz//Tp5Muih5ERzREAzF96CeZr18Lm8mVobtxgcX/9xSRvb/Ddu1MZTYMGpL6qSlresiVl9vv0KbkGAweWDuRlZlILtZUraZ61tYXvnDkKzJnzeBNHR0doNBoXQRAsVSpVbuUHrBqCIDQ2MjL6TqPRYOzYsTXiE6IoYs+ePYVarXaoSqU6Z/Cnitpa7QawWxAEs4cPH86Mi4ubqlAonAE80ul06wBEV3FuzQCkq1SqzAr+PBQAOI6LreBvAACVSlW0ZMmS449iYjp37dbNFJs30zMoJoa+h9hYel4wRqVLwcEUrB81ip5DV6/Suq6OiI+Ph06nywJwq847qcdzg3qyXY8XDTLHcTmtWrWycqthfd1zD4WCpEbdupEE9+WXS2pdn0M8ePAAarWaPXjwQNIHPBo1aoRGjRrBy8sLGo0GoaGh4oABA15wS3IDvPUWEbKdO2mR88knRLzj4+lhO20ayRkFgQjWM6rF5zjuccufRYsWYfPmzdJ///tfbvTo0fB5hkZtTx36bBBA9ct//UWkdMaMyt/D8wgMDJQvu7hw/MSJcABIHu7rS0GP8eNJMv3ZZ0Qy9O2HqquLlGXKQGzaRDLvX36he7FTJ3KqLsa5gwehuHQJFsuXM+zfT9mLhg2Bs2dJNXDqFGW6vv6azicxEfj+++rHQmYmLdiLiZG5uTkKCgoQFRVVK1lmhTAzowV3mbZxYIzKJ+7fR8qtW7h586bi7bffLtderi4wMTHB+PHjWV5eHg4dOsQiIiJkWZbl0aNH815eXhWymFatWmHQoEEIX7OGHXrwQJ65ejVD7woTTlVj925SI9QR0o8/4tY330DXqBFLTk5WJCcnw8TEBJMnT4azs7P+3BkATJkyBRYWFjAyMsLu3bvZwYMH5YkTJ5YabFu2bJEePXrEDRo0CJW2DyrGpEmTuC1btuDixYslmd3hw7Hv+++luN27OQsLC3nGjBnMwsICOp1OsrW1LX8tZZkIX/PmFISqIeTAQETv3CmfHDYMlmZmcoOMDOzfv1+eNGlSreZwvYx86NChVd90hw6Va38UEBAgde/enauQaN+5Q4GXvXvLB+bataOscseOFFw7fhyYOxdmDg540KIFNNu3w8TLC/j5Z/DOzjCfMgVtfX2BJUswafp0lpScDFEUqyx9AICM+HgUfP89Oup06NO4Mcm6Deu9NRoK6OnVRBVBqQT69EFS06a4nZeHtD59YHvrFqy++Ua2fviQSUolLE1M5Lx+/dBm1ixmbG9f+v0dO1JA6f59Cij26UPXxMWFjl1QUOLTkZND6pwKoFAo0KRJk6LIyMhxAH6pcCMDCIKgBMBUKpWm+P9ePM9/o1Aoujs4ONi88sor1V4/PUJCQiDL8r0yRLtKqFSqAgA/FP+rEkuXLh0C4AMAAziOyxQEwU+lUkWX2UxpY2Ojy8/P7y8IAl/WWV0PWZaD8/PzNUBxFYelJf0LDKS5v1MnGnNvv03fQ/v2NOfOmfNERBsAAgICCnU63dqquiPV48VBPdmuxwsFlUolCYLww+XLl9dERUVly7IMX19fs27duilrZTbyvEHfJmjGDJJ+VdP785/Ejh07YGdnBx8fn3KLPVEUERkZKTdp0uR/g2hHRFAm4ZtvaEGjX+j16kUE/LffKMt99y4Rtp9/pkVuair9/xn2Hec4Dm+//Tb366+/yufOnYOPj8+LcQMUFhLBNMw6BwZSJqAKsl1YWIjDhw+zdu3albhl601pXFxKpPvW1iTxCw+nxWlYGEmmtdrSmXJRJFI8dy4FSUaOpPo7c3MyXfL1pdrLoCDgwAH0HToUmldfRUyjRnKDQ4cYmz+fSgaUSiJ4t29TxnjIEMqyX7xIEvKdO4F//avibOuqVUR6IyIeBwXc3NyQmpoKq6cUsJEYQ9HIkYj/7js0N/RJcHKCePcutCNHotOqVU+FaBvCwsICkyZNYqihHL5z+/ZodeAAHrZoQd4ItYVWS+qE0NDav7cYt3keyfb2+GT7dvwwfjz6Dh4s9+jRo8LzN6zXHjVqFLdhwwZs3LgRoiiKsiwza2trLj4+nps4cSJaVNQtogwcHBwwdepUrFu3jh08eFAcbG/P60aMgOmPP3ItW7ZEaGgoi4qKgq+vL5o0acKfP39eLiwsZPrWf4wxcAUFcC0sRGLXrpACA8FxHFq2bFkuQ/3o0SNERkbiypUr1NXD01NmTk54d/RoZjRhAstzdMSPoojo6Oga16XLsoxbt27J7u7urMpA+PDhFKgsY0iZk5PDVVjnffYslYucOlVSQmQIExNSaaxfT6R78WIgLQ2RvXrJ761ezYxWryZSlJhI5RySRDLg4hZfjtWZXGZnA/fvg5s0Ca4uLvDcvBmmFZkXxseTUq0GJMvNzQ2NGzcWc/PyuM7z57O4uDjm2r490qKikLFlC0wPHmQ52dlolJ1N6p0+fSigZ2lJvhMbNlDAt2lTItSzZhHxt7EhhcaF6pvcdOnSxSIuLm6xIAi/F5PZxxAEwUahUHyoVCp7ybLswhhrJssyEwShn0qlOs8Y+7coikMBQJKkAmdn5xpLSQIDA3OLioq+r+n2tYEgCKY8z2/z9PS07NKlC+Li4qz8/f2DBEFwV6lUhg6Ot9Vqtcba2to8LS1tKioIOAiCYMTz/FvOzs7l5R36wNn69VR2EhZGppN795b48TwBCgoKEBoaykRRXP9EO6rHc4N6sl2PFxF/ANAkJiY+AmCenp7+Y2hoqO3kyZPNn1h2+U/j0SMidK+/TnKk1177p8+oHGRZxoQJEx4bKhmisLAQmZmZLDc3F7GxseLw4cP56moVn1vIMknxrK1JpmcYzGGMagW//prqfp2dqY579mxa7Gg0FPk+dKikZc0zQEhICLKyshjP8y9O9PvLLymbbXivfvQRXe+cnAozwaIoYtWqVbCxsam+vZRhRu/CBfpuvv+eCHefPrTwzsggkjxhAnUFGDKE5OVvvkmy2pAQCgr070/ZCsaA7Gxk7N8vXYuI4PL/+190NzenbfXw8SGH74YNSzLuSUnAmTPkVjtnTumsa1oa3eP9+z8eWzqdDjdv3oSLi0udyW9BQQHi4uIQExMjR0ZGSjnR0fy4W7fw+7ZtWCwIpbY9ptGIFq1aca907PjPBWrUapLcf/st1n7+udSjT5+6lQdduUKlCU/gP5CWloa0hg2R7+eHf73+OoxbtarRdbGzs8PkyZNx79492dLSks/KykJAQAD69OlTqzZPDg4OePfdd7Fu3To+TpLg0q0bYmJjYWdnJ/fv35/5+lLl9tChQ9mePXvku3fvirIsQ5ZluN+6Bb9jx7i98+eLcng4AyDn5OTw8fHx0pAhQ3iA6o0PHTokhoeH87a2tpJWq+WcnZ3Rvn175rt5M7hp04Bdu2Bhb49mBw7g119/ha2tLSZPnowG1Zh4ZmRkICIigs2oSp0iikR2K6ipVygUsomJSelrFRxMUu0tWyom2nr06EH38fDhwI4deHjmDP7s3Jm9d/MmWFYW3Ztjx1IQ29eXsv/GxmTOWJmKLC2NAnaLFkFs3x7rJkxAr0GDJIumTSsenytWkAx83rzKz9MA06dPfxyQ1n+vDo6OQLdubOXKldLrEydyKCgocTrPzKTzT0yk50paGilx+vWjQGEtSy6aN28OExOTRhqNZiCAxyl6QRB6KRSKQ97e3iZNmjQxsbGxgbu7O/z9/XHhwoUhAM7LsjwNwDQAVvHx8ek3b95ER8PyqUogyzISExMVAC7V6mRrCGNj41O2trYmEyZM4Blj8PDw4DMyMpShoaG7BEEYrVKp8gFApVLdWrZsmbZ///7We/bsWS0IwhWVShVSZndjRVEcXaX/jL63tkZD43PVqicm2gAQGBgo8Tx/aMGCBbVsyF6P5xX1ZLseLxxUKlUKgMf2yIIgHI2Pj8/Pz89/8hrHfxr6zKmLCy3+8/IoI/acmacFBwdLffv2LXdSlpaWWLx4MXJycrB9+3b+zJkzmDp1KtLS0pCSkgIzM7MaZ0r+UVy+TNLec+cqX7y3aEFE+/z5EkMcgOq49Pto0YIIXEEBZUufMg4dOiSr1Wq9sdTzP5/rdFTreOJE+b99+y31uS1uq1QWWq0WkyZN4hS1UQu0a0c/v/uOfmo0JP9MSqLSDVdX+g4Zo1o8PU6dop8GWS/O1BSTJk3irl27huPHj6NJkyZwLuvePHFiacM+R0c6dlYWZfK9vMjZ9tYtagUTElLK7VjvBF6ThWtZ3L59Wz5z5gwKCwuZqampaGtry7Vs2ZL3fe01xI8fD7u9pY17i4qKcPfuXX7oypVk7vf++39/cC87m2rVnZxQYGWFQq2We/Tokdi9e/faK2MCAys0oasNcnJyAMaQsWQJ7HfsoExhDZ3NGzdujMaNGz8mi71794a5uXmtgxgNGzaEU6NGumYnT3KtN27kRlCmtNR+OI7DuHHjGAC6TrJM6ptVqzBnzJjHN8j169dx8uRJXqvVyrGxscjOzma2trbsnXfeQXBwMJefny9NmTKFyucFgcilqyugUmG8pyfuvfYajh8/Lh8+fFiaPHlyld/J8ePHJUtLS9nBwaHy7S5epAxsBfewqampnJCQwB7Xod+8CSxdSv+qqz1/5x26l8zMEDt2LB599x36/fgj2KpVJKn//XcaH1otEdSvv6bnaseO1KJp+PCSYGpREbBuHcnRP/gA2LABtzMzoT5yBM7OzlxOTg5MTEzKrzVat6ag0RNCo9FAq9Vylvogb8uWpMiJiyPllCyTsWpcHCmr6qjkYIyhZ8+eJqdPn14qCMJpAK2MjY0/NjIyGjFq1CgTr+JrLssy9u7dW3Tv3j0TAFkAoFKpdAAgCEI3ADXqNQ9QIFCn08kAKq2VfhIwxmz69etnYqhyHDJkiKkkSb3DwsJCBUHoq1KpIpctWzZTq9VaN2vWDAMHDjQ9derUXkEQ2qhUKi0ACILAKZXKr1566SXR0tKy+rno9m0KvBq2S30C3L59O0+tVq99Kjurx3OB539xVo96VA+mUCiit2/f7jR16lTzhIQEXLhwITc1NdV4xowZRi+ceRRAiwGAFgN+fvSQfQ4gSRJsbW3x119/cZ06darQyIYxBkmSkJqaCp7n8fXXX0s6nY4zNTWVCwsLmYmJieTi4sJlZGSI1tbW8qRJk56veSg7m+SAM2dWnyUbPpzat3l6PjbCeYzibAUWLCAzlbg4kj1fuPDUWr3pFxX29vYKw5ZBzy0uXaIMUEWkaM4cUgVUgJCQEBgbG8sNGzZ8sgyskRFlnjiuxMiulsGfLl264Pr16/KVK1fkMWPGUMBJp6OF9ubNFfdeb9CAAjf+/vQZ+/al4EujRtDpdAgKCoK/vz/y8/MBAC61cNPWaDTYtm2bFB8fzw0ePBht27aFQYMEjQAAIABJREFUQqEoNRASVSpM2raNiAWIaP/nP/+BtbU19X7+9FOS1P+dZDspiYjE5cvAr79Ck5UFWZYxcuTI2g9iUaSAVh2CFIbo1asX7t27h9jYWMmra1euLj2n9aiw9riGeLtTJwW++opUEtUhP58CRps2lSOlnTp1QqNGjXDy5EnZx8eH8/DwgJubG8dxHAoLC6HT6UpabFlbU/nLyJE0d2k08PHxwe3bt1lMTEyV34kkSXjw4AE3x8CEqxzS06lcKioKKFuLDOop/lh+fv8+BbxmzSqZRytBbGwsEo8ele3++AN7IyOZNjsb/dRq+AJ0v8+ZQzL0yEgixCkplOV+8IAk2GvW0O/6+3fvXiKxY8c+NhX0X7VKBsB+Kx4Ppqam8rx580rmosBAGs91CCQXFRVhy5YtupycHE6r1XI6nQ4eHh5E8vLzqTSiQQMK6qakUEDE2pqeI7t2kWnX9Om1Pi4AdOjQgcXHxzcLDg5OUSgUrFu3bspOnTo9NvqTZRn+/v5iWFhYDsdxgZIkPXb+FgThDQBbAeDw4cM5SqVSbty4samnp6dRs2bNKnwWaTQa8DxfsHDhwmeixCoqKlp+8uTJdR4eHub64yuVSowePdrk2rVrzqdPn74rCML3ABYC5IreoUMHdu/ePbf4+PgvACwAAIVC8YmdnV3Dzp07Vz8XhYUB166R+uApID8/H1lZWUZ4Rtn/evwzeL4WufWoRx2gUqnUgiC0yM7OXr9ly5a3c3Jy8rVa7WyO49qeO3fu3ddee60O1rTPCY4cIVnSqVMkdzNs2/QMcODAATk6OlpUKBSws7Pj+/bty2JjY9G4cWMoFAps2bJFFkWRDRo0qEqnWhsbG8yePRvZ2dnIzMzknJ2d4eLiwnQ6Hc6ePYucnBzJ09OTCwgIYCEhIWj1BKZGTxV79hAZCwqqWraoh5kZRbT/+ouyqGXqEAFQdrtFCyLxgweTTHr2bMpWjB37RKc7Y8YMduHCBfmvv/5iLVq0KJ9pfd5w4EDl9bjm5nTd588v18YmPT0dT0y09Th2jGodn4CYjRo1im3cuJF5e3vT2M3MJHmsoZt9WZiakkvtlCkkDVWpkHjgALaEhqI4UCIPGjSIubq6PnaXP3PmjJidnY0RI0bwlQVSDhw4IObk5LD58+dXquzx/PJL/MJxSBMEvPHGG7h165ZsbGwszZkzh3Y6bBgRu6lTSbL7LCFJtDB97z3g/HkUNG2KbT//LGZnZzMAXJ0CRvfv0/daxrW7tjAxMQHHcXBycuLQujXJk998kwhZTeaDp4X27UsrLSqDLJNfhJdXOcMxPZo0aYKZM2eWUiHpdDpcv34dDg4OEvTZcYDk1kolZbkLCoCMDFhYWMDY2BiSJFXq0i3LxJ20Wm3l52prS2SxOAiRlZVFRDkxESkpKdDpdJyLiwuVUv34IxmFGvo6VIBr166Jx48f581EkXX09JSdnZ3RtEcPdG/blhzKfX1pPnn3XaqlfuMN2jfP033Ypg3VPs+dS8qA11+nubxMCUe7du2Yv78/3nzzTXAch+3bt+PQoUNgjIHnebTcvBm8KCLi1ClwHPf4n/7vHMfBx8ennA/DpUuXcOHCBdnZ2Znr06cPFxMTIyuVStYvL49nI0ZQGdOff1LAYOVKkox/+y11tnB0pIzqnj00Rnm+1go4juMwcuRIE33btrKqoZCQEFy+fDlRFMUeFfSjvsJxXI5CoQhMTU39EUB+YmKi3927dyfJsty8S5cuym7duilMDGTVoiiCMVahGdlTwvbc3NxpZ8+e7TFgwIBSk2GXLl14Z2dns02bNi3Uv3bs2DHMnTsXfn5+ZtHR0f8WBGGfSqW6qVAopvTs2dO8svFeCl98QWP1KakPHzx4ACMjo4vz5s2r4maqx4uGerJdj/8JqFQqWRCEJbm5ubwkSYdUKtVBQRACIyIi5iYlJVVvgvK8Qn/eBw7Q4ucZku3k5GQEBQWxUaNGKXQ6HW7duiX9/PPPzMjICJIkQRRF2Nvb46233oJxRaSyDOzt7WFfJoOhUCgwcODAx08lnuflgwcP4urVq8za2hqenp7w8PB4auZQtcKNG7Sg/u232i2shw6l72fPntJ9vsvC2rpEsWBlReQrOJgyF8uXV++aXQFsbW0xYsQIFh0dLYaFhfHPNdnOy6MFoWHf87JwcCACUQZNmzbF5cuXceXKFXQz7JVeF1hZPZFjNUCSYY7jkJGRQQGC6OiKpfGGyM2lDOwffwC9eyN582bkLV+OfiNHovOCBeCsrcsNgIsXL/IA3Us9e/asYJe5ePToEd+vX78qS2hMrK3xRqtWuP7HH9gGoEGDBvLEiRNLs9q2bWk8RkSU9LB/FggPJ9PB118H2rfHX8eOITExkR84cCBatGhRt1KgbdtK+tw/AWJiYmBhYSG3bt2avgsrK6qRPXOGMr5/Bx49ou8iNbX6rhSLF1OWeNOmWh1Cq9WC53kkJyfz8fHxJU7S7u5k+rRrF5U/tG2LQWvX4ptvvkFISAhat25d4f54noeRkRHCwsIqDvhFRUHs0gUbFi0ScwoLmUaj4QDA0tJSbtCggdSoUSPWpUsXjktLo3Z0bdoAY8ZU+RlCQkLkEydO8A4ODpg5cya4V15haN+eAgYaDfkw9OpFBmMWFkDXrhTEe+01KveIjqZM9uHD1LLpp5/oOn75JRk16ktQAAQFBYmenp68m5sbCgoK0LJlS6moqEiWZZlJkiSHdOiA/AYNmCYxUf8aZFmGJEmQJAnZ2dl8TEwMxhsYn0ZEROD06dMYOHAgurRvz3GpqfD+7TcGNzc658GD6fs4eJA8Jl55hc7xv/+lZ9WCBVRzPnkyBQp27yaVSA07mRQWFuLhw4fQaDRQKpXQ6XSwt7eH0uD9iYmJ0Ol05ysg2ijub21d5uVTAL4WBKHltWvXlly9enVYt27dlD179lQoFApYWFhAq9XaCILAnoXLdvE6cML169cjWrdubVTW98LV1RWzZ89GTEwMcnJyZEtLS/z000+F6enpZjzPZ4miqAMAURSDs7KyKh7shrh2jQIdhi0+nxDXrl3LKyws3FD9lvV4kVBPtuvxPwOVShUH4G2D/4cKgvDd9u3bP/nkk09q3jD0ecRPP9HPJUuo3nP//qey27t37yIiIgJ5eXlyXFwc8/Pz07Vp00YBAH5+fpxarYaxsTESExORkZGBVq1asafp+t6nTx9mb2+PuLg4KSUlBWfPnmVHjx5lCoVC4nkeSqUSgwcP5po/y8U/QDV6a9eS1Leq7GRlWLmSsmBjxtTMIEVPuo8fJ7LGGGXPJk8mUl5LdO3alT9+/Diio6Plhg0bSi+//DL/JDLWZ4LvviNiUNVi0NOTDJFu3CiVeXZ3d8eECROwszjj/USE+/x5us5PCKVSKdva2jJs3EgEacSIqt/Qvz+Zs61ZA1EUsT0zEy0WLcJQDw8qL/joo3JKB2NjY6jValy8eBFeXl7lTAn/+OMP0c7Ojvn5+VWbVrFWKNC/ZUt0/eSTivsgm5nR4nHJEnLaf9reCiEhZPB0+TJJeovnkY4dOyIgIABhYWFSt27dap8e0rduq+761wANGjRAbm4uW79+vTxlyhRmampKGfMrVyig9ncQbgcHcpuujjQVFdFYrkOJkampKcaNG4fff/+9fL2tWk2Z4Fu3ADc3GDGGxo0bS3/++Sfn4+ODyub/Vq1ayXFxceX+qNFocPjUKdmsSxfm6eXFWrVqxdnY2MDU1BTFDxMK+uTkAF99RXXyn31W7We4dOkSzMzMMEvfq9vBgeTcPj4kH582jebUH4q7RZ07R1nrvn2pjKVvXyLdJ09Sic+CBXT8vXvps+/ZA/zrX5CsrKDRaFiXLl3AcRwsLCwwevTokkBVZCQFPUJDK+0+sXXrVjkqKgonTpxg6enpyMzMFPMyMrjuzZrJXY8d49jYsSQL79qV/D8MS9+SkkhxsmIFlSqdO1e+3Obddykbn5lJnRCqMOXUaDS4ceMGLl68WAjgiizLmYwxS1mWm2m1WldnZ2f1mDFjLKytrXH37l0Nz/O17mGlUqnuAxgvCELzq1ev/icoKKjXuHHjzJycnGBlZaXOysrqBcC/tvut4bFTli5d+tmJEye+mTp1aqmHYE5ODnbv3l2Qk5OTJ4riFUmSRgBYBeD7hQsXZui302q1N9LS0kYCqPxhrtORIdqkSaXNPp8Aubm5SElJ4QHseyo7rMdzg3qyXY//WQiCYA9goaur64vj1FwdRo6EzsMDuampyLt/H+ejoiRZlvHqq69ykZGRSE5ORuvWrdG0adNKJX95eXl4+PAhgoOD5djYWObi4iJZWlpiypQpzMXFpdScoM9gOzk5PfXWQABlun19feHr6/v4ZNPS0pCYmMhZWVnh1q1b2L17N2xsbMRx48bxFTmgPxEkiUj2Sy9RhrouRBug923cSDWGtZHhvvoq/dNoyMG6TRtaaFlYUFajhujSpQsiIyPFnJwc3Llzh79//z4+/fTT2n+OZwVRpOzjuRq0Vg0MpMVidjZlwovh4eGBsWPHYvfu3XB3d6+bZL6oiDKGT1gzn5eXB47joL5zh2SdVQWgZJkkwevWAT4+EEURq1evlkVRlHsMHcrBxoYWbZGRVF7w8cdA8+b6fvYAADMzM3nt2rWsT58+crNmzZiTkxNyc3ORmJjIv/POO5Xe66Xw9tvAxImwEKtQcfI83RPz51N282khNpZk6qNG0dg2uF4ZGbTGHTx4cN10mA8fUt1yDU2aqkJubi5kWUZSUhIT9deJ50lV9OGHlG181iacX31VvRz+2jXKZvr710kRA5D029jYWFYoFKV34OREddU8T/LqVq3w2ptvcmvWrJG/++47DBkyhFXUM9zZ2ZmFhobKeXl5zKLY6+Lq1au4duSI3OvePbhv2QI7O7uKv+OiIiK31tY09qpBQUEBEhISWH/DkpSlSykDrMf48cC+fRQo0QfnevWin7GxRJC3bSMi26ULzd95efQ9Z2VRwGPRIhzneUnXqBFXaVeN/Hzy96jCuLGwsFAGwMVHRYmt0tKYRfPmfIvVq6GcMIGxESPo3nR3p9IKQ8TGAp9+SoG43r2J0JuaksmjIczMSNlx6hT9vH+/wjkuLi4OO3bsKJRl+VJRUdEKlUp1xvDvgiBYJiQkCBs3bpwzbdo045ycHCWAOru+qVSqCEEQBmk0mjc2b9783+7du5t4e3ubBQQEDMIzItsAIEnSpoSEhGVlVY2XLl3SZGVlbRVF8T2VSqUVBMFCpVLllX0/z/OudnZ2VUfNY2Jo3DwFUzw9rl+/ruN5/uDChQt1T22n9XguwOQKJHv1qMf/AgRBYADGKZXKjW3atDGWJEnOzMwUJ0yYYFoTGfTfjdTUVL1hR7naqeTkZJw/fx7p6elidnY21/H8edbp2jWc3bRJ5DgOQUFBvImJCdzc3MTIyEhep9PB1NRUsrS0lE1MTPjs7GxRq9UyURSZKIrM3NxctrCwkEeOHMk9dQL7lFFYWIg9e/ZI0dHR3Pvvvw/rOmR+K8WaNbQg27uXMipPArWaFksjRpCEsa6YOZMWVf7+9ECvBekGgM2bN0sxMTGcl5eXPH78+Oej9/bJk7QoHTWqZtsXFVWqEPjzzz/FR48eYfbs2bUv7s3MJMI/enSt36qHv78/Ll68iGZubuLYd9/l2ZEjJYv4ivDBB+TCfPMmcnNzcfnyZfn27duYP39+6e9Gp6MF/4YNwKZNSLC0xIatW+Hs7Iy3334bFy5cQFhYmJiZmcnJssx4noejo6NuypQpNQ+a9+9PnQ6qCgjpdCT1joykANSTYtcuyrwlJpbL1p45c0a+fv06PDw8pHHjxtXN3e/CBZK/z579RKcpSRKuXLmC06dPY/z48fAq64CdnU1KlFGjnh3hTkgghUxERJXkDR98QK73NSCmleHOnTvYv38/Jk+eDI+y5K2ggLK/s2dTi8Pi+/bEiRO4evUqPiF1RKm3SJKEffv2ibGxsZg0aRK/a9cusaioiJ9gagrXrVvBAgIqPhGdDlCpiOj+8EONggc6nQ5r166Vs7OzWc+ePdG7d29wp0/TuN6xo2TDS5dIFbZ9e8l+r1wh9UZiItW5jx5NKppu3SjI98svJR1AEhKQPGEC0nJz4XnhAkwqMswUBFLKlL2Geogijn/yiezUogVre/YsHXf/fprjqupHHh1NCqhXXilRVCxYQEZz69ZV/r7CQrp/582jAEZxSVRBQQE2btxYmJmZ+bFKpapiB8CSJUvUvr6+Rnfu3AEAe5VKlVrV9jWBIAiuxsbGW9VqdZ/ilyYAOKhSqYqedN8V4auvvvqhV69e7/fu3fvxgNq8eXNOTEzM2yqVak9V7125cmXAsGHDOlUUVAJAz5GXX6a1w1NSAImiiG+++aZQrVZ3rKANWT1ecNRntuvxP4vimqBdgiDcCQwMHKFQKLxEURweHh5u6luNw+nfCZ1Oh4MHD8phYWHM1NRUPnPmDDM1NRVNTU2Rl5cHtVrNS5IEHx8fsX379ry7uzucP/8ccm4uRmdm8li+HAO+/RYcx8HU1JSXZRlFRUVITU3lEhISUFhYCBsbG97W1vax0Y2TkxNDmXYyzytMTU3xxhtvcEuWLEFoaCi6du365DstKKB2MYsXk2S2FpJrSZJw/PhxJCQkSFqtFrm5uczY2Bj29vZs/Icfgtu+nRZtZqV9+XQ6He7duwcfH59ywZRS+Plnyi6Gh1PdYGwsZQNr2L9z4sSJ3Ndff42iomeyhqkbDh+mrGBNkZ5Oi98HD8oRm27duvG3b99GZmYmbGobIAkIIPJXB7IdGRmJP//8U87NzWUTJ05E08aNefTvX7H7uB76Re+iRZBlGZs3b0ZOTg57o6L6YoWClBEzZgDvvw/nqCh4du8u2bm4cBzHoU+fPujTpw8PkANzamoq/Pz8avcM37y5+nGkUFBWc9EiMt5q1qxWh3iMyEgiOZ99Rv3NyxBtjUaDy5cvs549e6Jv3751t9FfuvSxy/qTIDw8HKdPn4aXl5fk5eVVPgNraUmBkLt3qa73WcDBodLWdwBIITJ9OpGuun4vALKzs3HkyBFwHFexQsTMjAKR/fqR6iY2FnB1Rbdu3RAUFCStWbOGmzlzJhQKBbRaLURRhCRJMDEx4XJzc9m6devQtWtX1q9nTxjJcvmMrR6yTHXSFhZEuGuYpVcoFHjvvfdYWFgYdu3aBUtLS3To0IHqmw3RtSvd8/7+NAYB6lEdEUFE19iYSjgKC+k+/de/AEdHSKKIK/v2IXvjRjFkwADO7uFD1rRHD+Dzz6lUSD+W8/OphWBFn+/KFaoRnzwZ7Y8cYRlvvEGZ9JrM49HRVJvdu3fp0oW5c0upfSqEqSl5Ljg60ncXHw9No0bYuXNnUW5u7l4A66s/Acy/c+fOKo7jvly0aNETE20AUKlUsYIg9GOMDZFl+TCAnQAgCALwlAi9IXQ63bnw8PC3evfu/dgAplmzZlZxcXHzAVRJtkVRDMvOzu5U6QYBAVSG8BRLbcLCwsAYC6kn2v+bqCfb9fifh0qlCgUQCgCCIHQ+ePDg+cOHDxt99tlnfI3kl88AGo0GwcHBMDIywtGjR6UGDRpg5syZrGHDhiwjIwMpKSl8dnY2LCws4O7uDnNzc3AcV+opyywtH5szmZubE0EDtYMyNTWFm5tbSSuVFxyMMfj5+ckXL15E586d2RN9b5JEmWxRpIdlDQxlJEnCw4cPcefOHURERMhqtZr5+vrC3Nyc5eXlMRsbG9y+fRvfxsZKo+Ljuea//FJuAbZ69WopNzeXMzMzQ7U16BxHWZeUFFrkN2tG9bzLllW7IE1NpTVLdnY202g0/3zv+YwMkqZW5kJeERo3JlJRPKYNYWNjg9atW0vbt2+X58yZU7t7OCWlzguk4OBgpKenszFjxqDpiRNUgx4RUfkbjh4leeiDB4CFBe6HhSEzMxMffvhh1eoMngd++gmZ+/fDdsMGzvnMGQnt2nGGDsmurq6oVNZaFVxdyX15zBhyRq8MLVtS0Cc7mzKPteltDhCJ8venzKJCUWFA4tatW5AkCd7e3pXWAVeLuDgiPJ071+39BrAtLiF55ZVXKh5QHEeBGq0WuHOHSj6eJnJy6Do9ekTO2RXB35+I2BPM63fv3pX/+usvxhiTP//8c1Zp4G/CBKp7vnmTiMXq1bCyssK8efO433//XVyzZg0vyzJ4nn/sRm5vbw9zc3MpLy+Pa9GiBWe0YgVlcYODKz7GypX0eb79tk5qAS8vL/Ts2RMnTpyQO/z73wwKBQUrmjalDXie2n2dOUPElTHKLEsSGYr17Emu5Lt2EdEGgDt3cO6TT6TYPXu4N3bt4v3Cw2F94ABMW7Ykoq7R0D79/EjNdPhwSflRQgKVhLRoQedhbg54eeH4okWwsrKSmwKsWqodHU0Zem9vqinXIzGRxlxCQvUXxswM+PVXOocuXRC2YgUSExOzdDrdjJoYk8myHAMAkiR9X/3Bao7iYx8BwARBaAvgIwBvAngWztsXkpOTTWRZNmyRCUmSOgqC4KxSqSq9kBzHeVVq0hoRQYGQAwee6slevnw5t6ioaOVT3Wk9nhvUk+16/L+CSqUKWLZs2T5ZlseVJa/PEhqNBn/88YcUHR3NKRQKWaPRMDMzMxkAevTogR49enD6B4KdnR1q3Bu8Z08y8Ll+nSL0SUm1Xxi/IBgwYACLjIyU16xZI/Xv35+rU7uwhASSRG7aRLVtNVjk7927VwwPD+ckSWIuLi5Sx44d8fLLLzPGWKlFeb9+/XD//n3uz4wMDAwKgrfBou/s2bPQ6XScpaUlQkJC5ObNm9eMXehd0S9fpnPduJEWqOHhlZ67q6sr2rVrJ9++fZstX74czZo1k8aOHcv9Y6R740YibDV0yX2Mzz+n7NpHH5X70yuvvMKtW7dOXrNmjTh9+vTHfWGrhakpMHEiMjMzsXHjRgwfPhwtK2mZVBbDhw9HZmYm9u7di9azZpXraVwKoaHkA3Dx4uNe7QEBAaKnpydf0zKIrHbtcKt9eziGhXHw9yfp4owZ1We2qkNqKpHU6tCpE9Ujtm9fu8zxd9+R4/rVq1QPWwkKCgoAALt27RI/+OCDun2ou3cpePAUgqb6oE2VihA7OyK8b79NgYQK+kXXGRYWRNwqI9rbttE9dOpUned4WZZx9OhRplarMXPmzMqJNkDzS24u3YeGpA/AxIkTeZ1O9/iaZWRkwMjICFZWVgwAW7NmjXzgwAH24b/+BVaZS/zmzUQKv/qqVsqisp/H0tKypKdzQQE9C/VkGyC576FDNFbatKHjJiRQNjsoiDoTfP01sHAhjSN7ezzq149rc++epLCx4RwdHCigo/edsLen4M6bb1ImvU0bCqxt2ULjnjF6Ls+Y8fgUOnbsiD179rDc3FxMmTKl8g/06BGpQZycSHFliMxMup9qM482bQrdmTO4ePKkZsSOHXGtQ0KUqIFsmzH2b1mWoVKpMmt+sNpBpVIFAZha/O9Z7D9j2bJlhTk5OUb6Obdly5aws7Mrys7OXiwIwuyKAg+CILQA0KnSYObSpbTWeopGsQkJCUhNTdUBeLoMvh7PDfgvvvjinz6HetTjb8X58+e3tWnTxrh58+Z1z6hUA51Oh1WrVknnz59ngYGB4l9//cUZGRnJr7/+Omvbti3r168fevfuzbp3787c3Nye3OHbyYki4d7e1ILoCSSGzysUCgV8fHxY3v+xd+VxUZXv99x7YWRV2VREQUVQ3AAV3DJxDSnJvb6lmWlqpbmmaepIZmalWZmWS5jlkprijrjhLqioKCLmAiIi+w7DzNz7/v54GBbZZmDc+s35fOaDztz7zt3nfZ7nPOfk5rLQ0FDu0aNHcHV1hda+vMnJJBwjCFQl1uKYHz58GDdv3uTfeustbtCgQfDw8OBatGhR4fniOA62trZg5ubqR8HBfPbBg1Kjt97iDgUHs7CwMG7QoEHs3r17cHBw4JydnXXbeXNzerm5UdWxRQvykPX0pGrlE2jdujXXrFkzZGRk4P79+5yTk1Nx5e6ZgjGi669cqbtPsSTReRoypFw/vZGRETp16sTFx8ezkJAQrkWLFpylNuP/+ivQpAnWHD4s5eXlcXFxcTopm7du3RpNJk+GuZMTjCsTxklOpkC1f386R6AALjg4mB84cKDW56F+/fqIuH6d1Rs0iGvu7g5s3UqT+u7dy7Uo6IQhQ6iCqs0YvXpRJdfenhIVVSE3l6jjTZpQD2wV7I3ff/9dvH79Og8AKpWKt7CwqJkA47ZtVEUsHVzVEGZmZjh58iQsLS3RrCr2g5MTVTUtLeme1Bc7ato0EvWq6LwoFPTZqFE13tf8/Hz8+OOPUKvVmDBhgnZ2mCNH0nNy0iQ6t6W0CTQ+0hzHwczMrIwdpKWlJWeybh1L2rYNZqNHc+WSYRs3kuPAhAm1ErY7ffo0jhw5Ajc3N8nNzY1HixZ0rZbWIeE4euZv3EgaBG++Sc+Ba9cQJJPhmKOj5L1iBYfHj4HXXkNySgru3LmDh1ZWrNP69RwuX6bf1O+/p2eSKBLDaNw4qpgbGVFf9fDh1N8+YEC5hIlCoUB0dDQ++eSTynfmwQOipNva0vF+EgcP0vOwGnFHSZIQHx+P8PBwyGQynLp5syD53r2IN3bvZjxjcQgIuItFiyqtbgcEBJgA+AXAWR8fH9085V4wnD9/friTk1Pj0s/ctm3bGkVFRbVhjPU9duxYkI+PT2Hpdc6ePbuoXbt2nd3d3cv/yJ89S/ff8OF6K2owxrB9+/a87Ozs2QsXLqxE2MCAlx3/zRKYAQZUAUEQfr1y5cp0Ly+vp6KwDQDLly9noijyY8aMQXJystC0aVPY2to+Pc46zwP+/vSDPWIE/a2l4vKLCEtLS/j5+fGenp4ICgpiK1asgJeXF9e3Op/La9doohoYSIKOaC51AAAgAElEQVQ21UCSJKxdu1bKyMjgx44dq5NPe7du3YzSfv8dGf3786tmzECGtTX3yiuvoGHDhlx+fj4GVOUzXR3MzGjCKElU5XB1pUlgcjJVvEuhWbNmSEhIAAA8Nxuw/fupYlQT5XBjY6pAqSpmGBobG2PkyJHC6dOnpY0bN3K+vr7o2LFjlUOqWrbElvBwFAD8//73P+zevRshISFanxNFQQGy6tUDX5nmQ1wcYG4OdvYs7nAczv3xh2hjY8PFx8dzFhYWzNnZWetnAMdx6NKlC3flyhWxT58+AtatI+aKjw/1vy9dWrMqN2OUjNu9m8aqCg4OFLz4+pLNVFUB97hxQFISLVcFioIBYeTIkWjRogXu3LmDvXv3subNm3M69eCrVMTwmDFD+3W0QGZmZvULvfIKBVVt2xJtuLZQKEhEsKJe8IQEovRfu1bjJAtjDMHBwSw/P5+bPn06KqXIVoTPP6dESlUigE/Azc0NbgMGcFfCw6W1a9dygiBArVZj2rRpMAsJoarytGl0fdUCN27ckDp06MAPGTKEboR794i19CTFd8AAEko7fx6YMgXqnBwcvHpVunXrFl+oVPIpoaGo5+ODUw8fSmeLnDFcXFwomdK0KamT5+dT4D5/Po3522/U0+7oWK3tXJMmTaBWq1FQUADTiu6h+Hgaz8mJEhCg+6S4RUaSqPpegV5JYmIioqOjERcXxzIyMqSCggJBEATY2dmJ4eHhglqtNoWR0XAjSXoMwBjAHXDcZ2Dsn0o2d+YTf19aiKJ4OTk5uVPLUsUHc3NzfPLJJ2YHDhzoduPGjbsBAQFvyuXys6VWU8tkMiWetP0SRbrXR4+mXn894d9//0VKSkqaJEkb9DaoAS8cDJVtA/7foWfPnocvXLjQ586dO41atWplZGJiArWanBZqU2HOzMxEUFAQQkJCRLVazc+ZMwf16tWDvb09tKa51hYa6xRBoIlA37418m1+0WFpaYnOnTtzjRo14k6ePMkuX74seXl58RWev7AwqkK1a0fHQwvs2rULWVlZmDRpEleTirCZuTmsBg6E99KleGXtWji3bo3ly5fD2dmZdejQofZ0Co4j1WIzM5qoSRLRGcePp4pqEWW8Tp06uHPnDgDA1dW11l+rM1asoCpgTZkWkkTU3d69qWL6BDiOg5OTE9ewYUPs3bsXVlZWaFAZtVethmLIEBzy8MDEjz6Co6MjnJycEBwcDDs7u3Ie1uWQnQ1hwQL85eGB2Nxc0cjIiM/NzYVSqYSJiQkexsfDondv8ByHY+bm0tGjR2Fvb8/du3cPOTk5/IABA9CoUSOtz31oaKh0/vx5TiaTMS8vLx4cR9fx229T/+b+/dRT3aqVbpRGjiMapLu7dpRUR0fqO3dxqdgab/16ou5+8QVdf9VUejmOQ2RkpKhUKln79u15Ozs73L9/n12+fBmdO3fWnuUTFES2X094k9cGFy9eZDzPw8PDo/qN6NOHgrHGjWuvTi6KpDBe0SR+2jRqw6ihj7goili+fDkSEhK4jh07ooOuveZ9+xKNPDOTgm5t3Ctu3gQ6d4b96NGchYUFoqKiIEkSCkNCmMv16xw3ZAglKmoBxhhOnDjBOTs7o7mm2m9hQdXhDz4ouzDHESNk2jRk9+mDv48dkzxPneJelcu5i9evI5fjcM7EBP5BQZxjy5boP38+OnfuTNdA/fq0/+fP07EwNaU+72++ofth9Gj6zbWzq5BlRF/PITw8XHJycuLqP5kET0ggG7e2bYFx46BWq3H48GHs2LEDZ8+exbVr18SI8HA0GzmSy3d1xaVLl3Dy5El24sQJ6fjx4/zVq1ehUqlEJycnrlOnTny/fv3Qt29fdOzYkU9PT5dSU1MPLly4cC0WLQIWLRIREHAPwF0EBLgiICAJixYVewEGBAQYAQgFALlc/iFechw/ftzB3Ny8j5ubW5kHHc/zaNWqlVHDhg3NYmJi3jl16pTliRMnxJMnT7bief6rvn37WpQ7Tzdv0vNXw/bQAyRJwubNm/Py8vLGyeXyW3oZ1IAXEobKtgH/L1FYWDiisLAw6c8//2RDhgzhNmygpOKMGTOgFR21FCRJwvr168XU1FTB1taW9e/fX3BxcdGe3qxv8DwFKU2aUH9Zfn7taKcvKDiOg4uLC6ZOncr99NNP/Pnz59GjR4+yC124QJWC33/Xynbq8uXLOH36tJSXl8ePGTOG07UirFQqkZGRATMzM6gsLWE9dCiUP/+MfW5uIgDB29tb/30Lb71Ffx89InEdQaAKfqdOxQGkl1flwqpPDcnJRKPu06fmY/A8BZXVVKxdXV0xePBgBAUFISUlBb169SrnPX376FGYyGR4xceHNWjQgAOov7158+ZiVFSUUM7q6UlERMA4PBwzQkNx8NAh4fjx46IoilAqlTzLyeEaFRRI2YMH867u7rh84QI/ceJE2BGdlPv6669ZWFgY16FDB60SenFxcTh58iTfr18/eHl5lX2QWFsTNf/sWQpwrawo4KtOdK80mjenSvRff2lHg162jIK9994jcTWAKuSiSOJXTZro1Cbw2muvCdu2bYOvry/MzMzQrVs3fsuWLcWJC61w9CglHvQIU1NTVrduXQag+oe3gwNV19u1o4ReTfu31Wo6h2FhxW0Hxfj5ZzrHtVQ9zs/PR9u2bTGoJp7ADRuSMv3atZRMWbKk+nXGj6dWgp9+gqenJzw9PXF7yxbEBQZyp/r0EXt5etb6xzEqKgqFhYXo3bt3yZsODnSNJiWVp6c7OiLJ3R2F77/P+rZqhSY5OVzB3bvFVHh07CiZDBnCu06bRhXk0aPLru/jQ8nDnj0p8AIokX3xIt0HRRoElcHc3JwlJSWVaVGIu3gRDX74ARmdOuG0qSlSVq0Sc3NzeXNzc4waNYozNzfH3bt3BWnqVFw3NcW5fv1gZ2cnNmvWjOvUqZPg4OCAevXqgeO4csczPz8fUVFRSlEUp5b5gLF9RQ+hCwDCAZRW8hwIAIIgLK1yZ14e3ExMTFQXFhZW+KGTkxPGjBljcunSpRn379+fIggC69Spk2njxo2hVCpLFszKgtHkyRBXrACrhGlVGaqyV46MjGQFBQW3QKJxBvyHYQi2Dfh/CblcnhwQEDAoMzNz+4YNG0wBgOf5xOPHjzf08/Pjjaup+KSmpiIwMFCytbXlk5OTmSAIQv/+/dG2bdvy/WnPAyYm5DcqSTQh2LevesroSwojIyO4uLiw0NBQLjU1FT4+PrC0tAS/YQPZR23bRiI4FUCtVuPAgQO4c+eOqFQqeUEQOAcHB4wdO1ZnP++bN29Ku3bt4jmOK2ZKONnZSV5//cXnpacLY6dOfbrq8I0bk3gTgJS1a3HVwgJXPDzglJyMyMhI9O/f/+l9d0XYvJkElnQVRnsSPXvS5H3uXKCKXvc2bdrAxMQEe/bsYefPn+fatGkDPz8/yGQypKenI/jIEdT38cHbr7xSJtr19vYWduzYwVCVFV5kJFWQw8JgAmAoWYcJACXbxGHDYFxYyJ9fsAAhISGwsbFhdnZ2xeP17duXCw0NZTt37pRGjBhRZaCRnZ2NLVu2oF+/fuWTR6XRowd5hu/ZQy0E48ZRQKxNks/CgkTcUlO1DxJHj6beVU2w3acPVeNWrdJu/VLQqPHHx8ejVatWePjwIQPAaS3ip1DQ9d6li87fXRmuXLmCtLQ0vtqWlNJo1oxcB3JyqLJZk4qXkREJID4ZaB8/TorSo0bVShRPk3RKTU2t8Rh4/XWq8M7UglnMWPlWgthYuO7eDbsPPsBPt28LTe7eRUFBAURRrN4KsRIkJCRIAPhyjgsXLlCg7e9fZvnDISGIU6sxuHdvNFi2jIetLczy8tCxsFC6ePEi7+npyTBwICl4BwQQa6HIIlClUqFw40aYz50L7vx58leeMoVEy6KiKLlZWEj35B9/lGPyZGdnQxAEIT4+XuzSpYsAANt+/ZW5r1rF7e/QAbcVCrQ3NRW9vb0FBwcH2NvbF583W1tbpLRsCeNBg+AzcmSFgXVFOH/+vJrn+e1yufxuuQ9Jors7AFNw3EoAkWDsdwCpgiA8FkXxDy1Pw4uO2xkZGXW/++67Mm9WEAAbF71w7NgxHDt2rMyH9g8fwk0UcfzAAdLNqCVKJVw5URQnaaMQb8DLDUOwbcD/W8jl8v0BAQHmAOwBZEuSZHXz5s2Nt27demXq1Kmyqiosu3btEi0sLITExET069eP8/DweP4WSxWB58kT0s2NesKGDdOOBviSwdfXl2/YsCGLjo6WVq5cKTgmJ8N/zx48+vFHtBo0CJJCUa5iplAosHr1asnU1JR79dVXBUEQ0K5dO8hkshr11hcWFnIcx2H06NE4deoUevfujT179rDYjh3F/8XGCkY1sWqqAYKDgxHm6wtLS0u8rVbDYfNmqH79Fbh1q2oFbX2CMWDnTkp06APp6dQPXY2wXIsWLTB9+nQuPj4eu3fvZps2bZJGjRolrFu3jnmnp8O7Xr1yAd2///4rymSyqn3nx48n66Dvvy/7viSBP3UK/Nq1QL166CaTwcbGBnv37i0TvHfp0gXt27fnvv/+eyE1NRW2traQJAlZWVngeR4WFhbgOA7R0dE4ceIE7O3tpR49elR/HXIc+fB26kTH59VXKVCozmaN54ErV4garC2GDyeNgLfeot7FL74gH/gagOd52NjYSLdu3WKtWrUSJEniGjRowHie1y5avXqVtl2PLTIHDx6Ek5MTqmU4PIkZM6jym5dHlU9dMWECeTyXRng4JUwPHCgnDqgrcnJyAACFhYVVJ5SqQteulKBp144SOlVVt7t1o33SULkTEui+mTIFVq++Crft29lff/1VvB2hoaH44IMPdGaU9evXj4+KisKOHTvYu+++W7JfI0eW0YhQq9X4448/pPT0dH7U3LloMG4ch88/p777tWvhtW8ff/HiRfTs2ZOC2I8/JlbOL78A1tZIbd0aZ+bNY9ccHTmHyZPh8uiR2Ov+fQEpKcQMWbaMvsjYmJK6devi1q1bOHnypGRnZ8f8/f2F3bt3IzExEYmJicK9e/cg5eZi5JYtnOWCBXhj5Eio1WpYWlpWHESnpcFu8GC6/7SEUqlEWFiYWqVSLap0IcZEALnguBgADuC4+nIgDIw9HSGb54NkSZKkefPm8TVJ6AAgHYC33gIuXEAPPbIV9+/fXxgZGRk4f/78S3ob1IAXFoZg24D/1yjKKGr8FnMDAgLGAojLz8+HiYkJRFHE4cOHERsbW/jhhx/Wyc3NRXBwMFJSUoSpU6fCosjW54WGmxv9Xb2aqlha0KlfNhgbG8Pb25vz7txZYJ9+ivRXXkGUnx/O37iB3d98A57nIZPJmCAIkpOTkyCKIu7fv88aNGiA0aNHc9UxGbSBh4cHl5mZKW3ZsoWbOHEiZ2VlhY8//liAJNGkbO/eGvdd6oLk5GQAgJ+fHxxbtwY++wyCWk0T5j//pP5nMzP9qShXhH/+ITqnvhIMu3aRZZWWLRFNmjSBubk5s7CwEL799ls4ODiwHl5evOwJcSLGGO7cuSNobPgqRGYmVeoqSr5t2ECT7Zs3AZkMN2/eRFBQEBwcHCQAZQ6wmZkZ2rdvz9asWcOZmZmxgoKCYr94DRPCxMSEFRQUcIMGDdLt5DRtSq8FC4CICAqk33uvaqXns2fJ2istTfuKrLMz9Uo3a1YSZOiI69ev48iRI6IoinxmZiYDAJlMBoVCoX0wePt2pWyVmuDChQtQq9V49dVXa6bbMWQIsGYNJZl0WZ8xouGXvi4VCrKVksur9kLXAnl5ediwYQMzNTXF8OHDa9fCkpREQWhV1lUACTdqWDQKBQXd779PiSAAI0eO5DTVaKVSiY0bN7I//vgD7733HqeLcJsgCOA4Dqonab116lA/9ebNSE9PR2BgoFSvXj18/PHHJBTp6krJDLkcyM+HRpSvsLAQRW0hePC//8E+MhKyyZNxq107qf/hw3y36Ghs+vNPFhoaKvA8L/Xs3p1H06bA+PF4sH07CszM0PLXX3Fj/340GTcOzdas4W/cvy8tWbIEpqam0vDhw/mWLVsi6cEDWAwZglO+vtKb771Xsc5IaezcSS0TOgTbN27cgCAI5+bNm3e/2oUZWwMA4LgtABoBqEXfz4sFuVzOvv7665z8/Px6OokClsaPP9aaXfIkYmNjERkZWaBSqRbqbVADXmhwVfUTGGDA/zcEBAQIxsbGe1Qq1esNGzbMVSqVXFZWliRJkqWxsTFUKhXs7e0ld3d3pqGDvXTo25d+uD/66HlviX6hUpGQ0+TJ5HdqbU0UX1GEKIrIzMxEUlISgoKC0LRpU6lHjx68q6urXu3fGGNYsWIFioL4kg+uXaPJ+FdfPRNmwYYNG6SHDx/yCxcuLNk/pZImDO+8Q6Jq587pHhxoi/ffpwlKdRVWXeDsTOMuWFDtorGxsdiyZQvs7e3ZgwcPuIULF4L75hsKLtu1K14uNTUVv/zyC8aMGVOx3dPdu1S9jYsrLw527BgFQ/n5gI0N7ty5g+3bt2PQoEFoX5laOYDc3Fw8ePAADRo0KO6plyQJarUaaWlpWLt2Ld55551iqrXOUKup8vj330BwMPWxVjRRlCS6Bnr0qP4akCQ6nxMn0vHYvJkq6jqqzGdkZGD16tXw9vZG3bp14erqCisrK8TExGBbEQuiT58+6FmV8jVjRF8/dUpv99LSpUtZjx49uB49etRcayM/n5Jpv/+ufZIpK6tsdb6wkDQKPD3J3q+WWLFiBfLy8vDFF1+U0zCoEZTKYj0IdO5c/vPly6kK2KQJBdrjxtGrCt0GSZLw559/SklJSfzo0aPRqFEjrZ/JEREROHr0qDRr1iy+eP/u3gVeew039+7Fnj17mLu7u+Tr6ysUf15YSNv09ttAdjakrl2xYtcu5OXllRnbIisL7wcGIqVJE6lFUBAvc3ZGfn4+vvvuOwiCgE8++QRWlpYo8PCAdO8e9rz9Nu47OwNqNd6Pi4PDunWQANyKiUGLFi2IWaVQAP37I7h7d3B9+kivvfZa9Sfl3j0gO1snFsmaNWtykpOT35HL5dr3AnOcKQA3AKYArMHYPq3XfYGxbNmyuDFjxjjq4ihSjDNnaE7xv//pTYFckiT8/PPPeVlZWaMXLly4Wy+DGvDCw1DZNsCAUpDL5WJAQMBwAF2TkpKsAOSA1DlVADB27Fg4Ojo+xZLgM8A771CV4eFDqnS/iPR3XZGfT5OnIUOoClA0WeN5HjzPw9jYGI0aNUKjRo3g7u4OPFF11Bc0lRa7J3xW4e5OPZkXLpB111PGwIED+XXr1iEvL6+EfaE5z5s3k5r1nTvkBx0TU3Nxp4rw8CFRNHv10t+YAAkRaUmptbGxgUqlwoMHDzhfX1+avF+7RsF2KTx48AAA8Oeff8LCwkJq2LAhl5aWJpqbm/M9unfnW7m6UlD9ZKB99y5NwMLCwJo1w9UrV1hwcDDXsWPHKgNtALCwsECbJ6qyRcwLaIR8kpOTax5sGxlR1W7GDGDWLLJZ+vLL8iJbPE9BeEAAUJUrSX4+XTscR8rw9eoRNXjyZGIc6ABBEMDzPFMqlZK3t7egCaqaN2+OXr16sTNnznDHjx9HRESEOHXq1Iqj3vBw0p/QU6CdmJgIpVLJdenSpXailmZmFGSGh2sfbDs6EutFc11Om0bV46Je4dogMTEROTk5mDx5sn4CbYD6/D/9lBJeTwbbkkTsqf796TiMHUvPgdICZhWA53mMGTOGDw4Oxvr162FiYoKxY8dW7w4AwNnZGfv27eMPHDhQIv7WogXCx43DqW3b4DdsGNzd3cue1AULyEJvzhygSRPw9+7Bb+hQhISEiMOGDRPs7e1hZGQE6do1cBERsFEoeIwZAxw8CHXRENbW1mzjxo3o2rUrl+jqCushQ9jQqVO5zBUrYPv55zCqWxfYswf8Z5+hTUwM3Ts5OcDQobgyaBCuiCJGt21b/UkpLKTfi7CwahfVICkpCRkZGWoAwVqvBACMFQCIAMeNBTAdHHcAAKtS4evlgFqSJN3XEkVSiX//fb1afZ06dUpdUFBwhTEWVP3SBvxnwBgzvAwvw6ua15dffjn3xx9/LCgsLGQqlYr9J9CtG2Pvvfe8t6L2SEtj7PZtxqZNY6yw8Lluyo0bN9iiRYvY/fv3y3+Ym8uYjw9jkZFPfTtu3brFlixZUv2Chw/T3169GPv2W/18+Q8/MPb11/oZ60mMHUvja4HCwkKWlZXFJEliTJIY27iRsby8Msvk5eWxx48fs4KCArZ+/Xpx48aN4qVLl9jhw4fFsB492I3OnaXHjx+XHfj8ecYSExlLTWWMMRYaGqpeunSpFB4ezkRRrPUuHjp0iH355Ze1HocxxpgoMrZpE2N//cXY/PmMZWWV/fzgQcYGDKh8/dxcxuzsGAsOLvu+UsnYjRuMhYbqvEmpqals0aJFLD4+vtxnMTExbNGiRWzRokVsy5YtFR/M3bvLb08tEBQUxNauXSvpbcDjx7W+RtmDB3SOGGPs2DHGbt5kLDu7Vl+vUChYWloau3r1Klu0aBELrcE5qhL79jGmUJRstwaZmfRXFBmbOJGxXbsYU6t1Hn7Tpk3Sxo0btbqRAgMDxe+//1589OgRY4wxlUrF1q1bp77p7s5SN2+ueKXISDpHgYGMffVV+W0MD2fMzY0xze+8Ws3YK68wNnIky0pOZosWLWIZGRls586d7Oeff1bf7dZNEnftYiw/n7HOnWlcxuhZExhIz57kZMaGDmWKf/5hS5Ysqfj3oSLcukW/0zpg3759iq+++uprVps5D8AxYAwDTjDApFZjPefXsmXLbsbFxel0DBljjF28yFhQEJ0/PeHRo0dsyZIl2YsWLXLQZtsNr//Oy1DZNsAALSBJ0rcZGRlfL1++XJIkSZowYYJRuerly4bjx+nv1q1UvRo37vluT02QkkLUzdGjSbTpOWPPnj0AUDEl2dycqoF//0199DUVbNECTZs2hUqlglqtrlrpd8AA+jt9OlXjjh+nfsfDh2tOLw8NBVaurNm61aFzZ61tkGQyWYloYUICVXvHjCmzjJmZGTTuAePGjStdaeLFwkJEXL4srV+/XuA4DmZmZqIxgDFyuXBmyBApqXdvzsvLiztz5owwevRovSrN660SyfN0b6SmkqjYli10nv38Svy2X3uN/JOf1J/44w+iBAcFle8dNjamqviMGXQ96+CjHhsbi7p167LGjRuXu8BcXV0xe/ZsPHz4EDt37uTT09NRxueeMVJg1+OzqkePHvjll184URT1Y9doZUWWXRMnlu3FfhJjx5KQWNOmROefPp2OtY5CYaWRlJSE3377DYxRMdLR0ZF16tRJv30iGlbB++/TfgJUtXVwoP7zP/4gpoyfX436XF9//XVu1apVXHBwsDRgwAC+qnshKSmJ79q1K+zt7Yv7s+vXr885jxsHWWV6BTIZVeF79yZ19VatiOUDEE2+bVtif2mem4IAHDoEdO0Kk3ffBbp3h7m5OYaRKr8AFxd6JpmaUgVakkgkbsECOkaaZ/7q1ditVLImTZpIzZo10+7AZGQAu7VnGqtUKkRGRjK1Wv2b1itVBMYYOG4PgKYAeHBcGzB2s1ZjPj9kKBQK3dbIySG2j1yutzYrURSxZ8+ePFEUZ8nl8gS9DGrAS4OXmw5rgAHPDpKxsfG3oihOV6vVm0NCQvKqX+UFh4kJve7eJSrxy4aYGAqipk0DJk163luD/Px8WFhYwMbGpnLO2rBhJLilL5XuSmBiYgJjY2Ncu3ZNuxXefJO8rBs0KOkNHD2abG10wdatNNGspS9wpfj4Y/KIjojQbb1793QKCDFqFAR3d3gtWiTMmzcPEydOxMDWrYXelpbCiVWrpLDmzfmsrCxu165dcHR0lPQZaBcUFDBjY2P9UjdtbYkS6edHom4TJ1JgAdC/Bw8uu3xyMvD55+TbXplIV+vWZDmmVFKfuBZ48OABMjIykJ2dzWmE/J6EqakpXFxc0LZtW+m3335j6tJja6yWqqHq6wJbW1sYGxsjIUFP818PD1L+X7eOkhyVISeHAusHD+j8BAbStV0LJCUlgTGGuXPnYubMmRg7diyndxFPCwvqKX/nnbLvHT9O97+tLamr15B6a21tjTfffBMXL17kv/32Wzx69KjSZTt16sSuX78uRkRE4LfffmNt2rRhY8eO5WWvvEL9thVh505g8WLAyQnw9aUWEZUKuHSJ2iSMjYH588vv87FjyEtIwJtBQYiPjy/5LCeHWnMASm4ZGZX0+EZE0NiTJkHy80PsvXvo06eP9hmIOXOA69e1XvzBgwcwMjL6Vy6Xx2m9UmVgLBOMfQXAG8BJcJwee42eKVIKCgp0WyMujmwFvbz0sgGMMezZs0eRkZFxVpKk9XoZ1ICXCoZg2wADtIBcLmfz5s2bM3/+/J9kMllPc3Nz82XLlimWLFmiDA4OFsspor5MmD+fJs1z5lCP3cuA9HTyUY2MJKuXpyHypSPOnj2LjIwMvPXWW1U/V+fNA77+mqyCnhJ4nkfnzp2l/fv349atW9qv2K4dXQtqNYnycByJbG3dqt36u3frbYJSKRYs0N1iydKSepO1QW4uee0WBSkcx8HGxgatvv8ebcLDMWj0aP7zzz+HtbU1A1D9+dYBQUFBUmRkJOfk5FSDJkMt4OhIiZ4ZM+g8/fADXY+//EKfJycTe0AUKZFVnQ1W37703KjKCqoUtm7dys6fPw/Tqiq+RfDz8+OVSiW3Zs0asbjnMjCQ+pn1eL+npaVBpVKRUrW+YGxM1erFiyv+PCEB2L6dEkDvvgvs20fJrlpCk5hYvnw51qxZw2rUq6oNTp4kK8kjR+h+8fGhxExUFGln1DLAd3d3xxdffAFLS0vs2rWr0sRThw4duLS0NGH//v2wtrbGwIEDSQitTp3yXt8azJxJxxug69fZmaTHK9EAACAASURBVFwaOnemdSpzpmjYEP8MGMCaJCXB6euvS94XBOD8+bLLfvopVcj796dE3+LFyHnlFbz5zz9wcHDQ7iAwRgkNHx/tlgclW9Rq9VmtV9BuO0IBtAF5cm8Gx+mvgfkZQBTFFJ0q23FxlBR/0o6vFoiIiGAxMTEJSqVyqFwuf0o3pQEvMgzBtgEG6AhJkoyvXbsGhULxiVqtnh0WFiZER0c/782qPWbOJLXs/PzKqwIvAvbvJxG0Aweqt6F5hvD09AQArF69GqGVTfQAUnBeu7Z89UTP6Ny5Mw8A8fHxuv+4GxsDe/aQvVJEBB1rUSSKaGUT+NhYEvMpsvh5ati+nUSlmA7F36NHtauGP3xIy549WyKKlptLAWpQENiaNUhPT8e///6L2NhY7s0338STvt01AWMMISEhuHbtGj9ixAi89dZbT8/pQCajIHrvXhLKCw2l63HzZgpSunQB7Oy0t4b75ReqZmoxoeV5nrVp00acPXs2qlMHNjIywoQJE5CRkSFEaM5ddHSt7bCexLZt20QXFxfJ+kkRvNoiMBCYO5eupyfh5QWsWkX05TlzKPmhB7i4uMDPzw/vvPMOGGPc4sWLsXTpUqb33yeOo+dDYCBV75VKqmyvXEnVYT3g6tWryM7OZi1btqzwgaNSqXDmzBkRAJycnCBJUskDoVUrCpY07I3SOHwYmDqV/t28OQkvjhtHlPgOHap8rjgOHMjtHTiQ2GBz5tCbr71Gv5ulkZxMx2bGDGDjRqR88w0OtmsHYdUqjktK0u4AbNxI4oY6tBulp6cXqlQqHbKrWoKxFACZAGxBntx6zEw9XahUqsc6VbY3bya7Oj2JoqWmpuLw4cMFSqVykFwuf/kZkQbUCIZg2wADdIRarR4pCMIyAH/VqVNnHADts9UvMho0oCz6xo3Ua/YiIieHaOP16ulGC34GsLW1xaxZswDQ5K9KdOxI9MKKJuJ6QnAwidHa2dnx0dHRiIurIbNw3jwKbh8+pAlsSgopexcpZxdj92767Cn2ogOgIHDWLJrkaot69bSjHgcGkn1Rafz0EwURZmYIPXlSXL16Nfbs2YMhQ4ZUqzyuDRhjOHnypHT+/Hn06dOnnFL5U4OTE/Ul2toSU2DUKGIz/PKLbufQ0ZFaB159tdqA28fHh79x44aQkpKi1dD29vbw8/OTDhw4gNToaPJIbttW+22rBgcPHmS5ubnC8OHDq/c71hWmpsTA+fBDqpaVRkwM+ZtPnAi8/rreKvWWlpbw8vKCk5MTPvvsMwwcOJA1b94c27dvx7Jly3DkyBG9fA8A8jr/9VeqcosiPSf0pBCfn5+P4OBg5ubmhtdee61c4qmgoADr1q1jDx8+xPTp0zFw4EAkJyfzixcvhiiKVG3+9lvg9Onyg8tk1D6lwSefEJ3c1pY0DdzcKAA/caKkl7sIsbGxUma7duA//hg4eJCeDYJAWhCawD45mX5DBQH44gvAwQGJu3ez3llZcO3alWzTfvqp+oNw7JjO10VeXp4KQJpOK2kLxrLA2GsACgDcA8d1eSrfo2cwxtLz8/MryLpUgDNnSn5f9AC1Wo1t27bliaI4Uy6X/wcqMgbUFAaBNAMM0BFyufwCgAsAEBAQMEoQhOWnT5/u5eHhYRwbGyvl5uaqPDw86jRp0uQ5b2kN8fHH1AMdFUWZ+UOHtK9yPU189x1VGaOi9GrFoU9oBJaqFc8zM6MJ2qlTQM+eT2V/evXqhX///Rd79uwBx3FgjGHBggVIT09HQkICGjduDFtbW+19xp2cAE1VxteXAqwffqCkgbk5cPPmU6/WF2PMGAoMtUVoKFFGq0J8PE2O580reW/9ehKumjED2bm5uHDhgjB8+HC4urrqRcQsPT0dly9fxrlz5/hBgwahox6oxFVCY2czeTIJ4W3aRD3Dbm4UWIweTRVKXffN05Ned+6U8TF/El5eXjh48CA2bNiAzz//XMuhPfkDBw7g7rZtsBZF8JXRfKtATEwMQkJCREmSwBhjarWad3V15a9fv86NGzdOL+yECtGmDbVhKBTUNmJuTonMLl0oOTFu3FNrgeE4Dt7e3py3tzdu3ryJc+fOsXPnznHnzp2DsbExXn/9dY0NYsXQtJIIAiXaeJ72ISGBKschIZT4ZIyq23qqaANAYWEhVCoV9+jRIykqKgrt2rUrPkg5OTkIDAxkpqambNKkSQLP86hbty7at2+P+Ph4xvM8Ldu1KwW+T6J3bwp4NZg6le5xDby9KYH03nv0vFu3jpJt06fD08ODDz15EurBg2GclUXBeb161H6Vm0v314YNdKw0lW8A+/z9uamffkq08DfeoPvv+vXKE4BKJf32VnV+KkBRdV87AYWagrFEcNxIAFHguAkA/gBjhdWt9hyRUZSEqPomZ4zaPiZOrJGwX/nhGA4cOFCYm5t7RpKk2gnWGfDSwxBsG2BALSCXyyMDAgIm3rp161BMTAynVqv3qdXq1GvXrs3r1KmTSa9evYy06U984cDz9HJ0pL8KRdlqwLMEYySMdOwYsGzZCxtoA8CuXbsgCAK0EiXy8gJ27KB+6KfAJHBwcEDLli1FKysroU+fPli2bBk2bdqE5ORkKBQKyGQyJooiZ2dnJzZr1oxzc3PjGzZsWBx4xMTE4NSpU6xp06aM4zje1NQUPXr0QHJyMh7//jvatmoF2bZtNFH98UdSYa6uoq8vtG9PfsY//wxMmVL1sowRxb0qmrAk0QT8559JgRsgwaTFi4GhQ3EvMxM7d+5Eo0aNpNatW+st83Tu3Dnp8uXLvLW1tdixY0f9U8fVaqpSL15M3sKrVlECwc+PgoEhQ4B+/UhF+bPPSCivTx8KCj78UPtAkOOoh/fDD8kz2t+/0kWNjIxQWFiI48ePM1EUuW7dulV5v2j0MKSjR3HIzU3qr1TyugbHYWFhUCgUgq+vL4yMjJCdnY3Lly9L/v7+XKNGjZ6u4EOrViSYBdC9zvP0HDt8mJ6v+gRjRD2WJAo0s7IAOzu0iYtDm4YNuURLS9w9cAB3eB45Bw8iz9UV5u+8Q0GjJAGNGpG4W//+JJDXsCHpS+zcScynJk2oIm9pSfeUhnK9eTNViPWh5g7AysoKU6ZMwdatW/kTJ06wdkUJnMzMTPz+++/M1taWjRo1qoxSefv27XHjxg3uyy+/RPPmzcUB/v6C9e3b5SOsHTuA778ndg5AgnbvvEP7C1DiCQD++Yf+xsdTkiQrC52WLEHj69exycJCGufpyaNnT6KQDx1Kav+nTtGyn31W/HVJRQlKUzMzSmTHxlIfd7duVD2vSOMiJISSYS9qOxdjJ4uo5BMBFAL44zlvUVXIKSwsFKtd6vRpaqXr318vX3rhwgXx5s2bCUqlcoRcLn/ZvcoNqCUMwbYBBtQScrn8HoBWpd/76quvGoWFhX3aunXrim2gXga4uVFWPyKCqq8ZGUTBe5aQJKqyq1RUIXqBoVar8e+//6KlLvT2Tz6hSsjjxzTR1SNSU1Px4MEDwdvbGyZFiRINlXzmzJmwsLDg0tLSEBUVJdy8eROXL18GYwzu7u6Ii4uTUlJSeFNTUzDG+MTERADAiRMnAFDAFBERwfz8/Dj76GhIH3wA6cQJ3LS1ZYnu7iwzM5P16NFDSElJgYeHh/bVc10QHU3XRHXBdkEBLVO/fuXLMEbUUU2yYMsWuuZv3wbq1EHQxo2wsbHBmDFj9BZoP378GA4ODvzly5chSZL+qCNHjpBAlbMz2TElJVG1uWlTCopLU2Ozskqsj4KDKejesIGC8rZtKalRt6723923L1Foqwi2P/vsM/z44484ffo0B1D7hUbvoCKYmJhg4aefQgoNxXfOznzCxo0YP368TswCtVoNOzs7qX379sUrdenS5dnRddatIzHHo0epGjxwIB13DUSRWmQ4jirHxsZEQU9OJur8sWP0/H3lFQrQ7O2JSZKWBowYQcF7aipVY8+dowDyyhWisn/4IQWOlpaw9/GBvYcHXvH0xOm//pLOCwLfp0UL8GPGUGW6YUPalvr1KTDU3LcjR5bdn/x8Gn/ePGD8eDrfgYHEIKlXTy+HzNraGjzPSxYWFhxAz7PAwEA4OTmxkSNHljt3Li4umDVrFlJTU7Fjxw5u97lzGBYZyRqMGVP24dOvX1m6+5o1VSc9mjYtFmTk169H1PffM9O0NNrvUaOI0bFqFWmJTJpEVetSOHPmDJydnUVBEAT07EnPlfHjARcXEmULCSmxYNSgceMa9fHXqVOHB/Bs+qkZywPHeQMAOO4CgGVgTHufsmcHSxMTk6qzQLm5xNKaPVsvTJO7d+/ixIkTOSqVqrdcLs+p9YAGvPQwBNsGGKBnBAQEGAH4tFu3bi9voF0aHTtSFVEmo0nHtGnPhlauVFIFoGnTl8ID/ODBgwwAV+S/qh2cnKji+uuvevX0zMrKwtatW1nLli3h4uLCAcDbb7+Nbdu2geO44kqijY0NXn31VbxaJGp248YNXLx4ES1btuTHjx8PmUxWvEGZmZkIDw+Hu7s7TExMsHXrVrZ27VrO29paQr163IN33+VkZmbwXroUzVNShE3vvgvGGFJTU6VevXrpXI2sFmPGlNDJqwoINd6/b79d8ef79wMffUR0aoCosrNmAbt20bUHYMCAAdi/f38JRbWWuHz5Mvbv31/8f2dn55qPyxhRUidPpsraqlVEX166lIJoa2uqYJeGJFE1bulS6tEuKKB/Hz9O6/z+Ox2D2bNJHK+qREVpvP02MQQWLgS+/LLCRWQyGT777DOsWrVKTEtLE+7evSu6uLgIVVW3uXPnIAwYgPfGjMFff/2FvXv3wt/fX+uA29HREXfv3tVuH54GLCzoGTp9Ov171CiqWsbGEpvgo4/oPK1YQV7bTZtSq0leHlWR4+KI0VO/PgXfTk4lFOOWLSk5VLcusUsqeoYMHFjuLV4m484ePYroAwfEKVOm6FaSnjePEgjXr9M+2NrS9vbtS8JpetIw6devH//333/j0qVLOHbsGNzc3Ji/v3+lJ93MzAyOjo6YOXMmH7xvH24lJaEBY8XH5OzZs+Kt48d5H7UaTv37c0ZGRkSR79BBuw1q0ACXrawwaNAgHvPnE3PkwAGq/EdH0+/UiBF0HwwaBInncefOHTZs2LCyx3ftWuDRI0psTZlCydbSSYrVq+l+rABpaWl48OABsrOzUadOHTRp0gSaljUTExNjADpkx2oJxqhizHEbAOSA41oCuF/8/osBa3Nz86p7T+LjSa+mW7daf1lOTg527NhRoFKpBsvl8ge1HtCA/wQMwbYBBugZcrlc/fXXX08LCwv7WpIk3tfX9znxr/WItm1pcvDDD1Q90ZMQTqWQJPL+tbEhW5aXAA4ODlxkZCQePnyIZs2awUhbkalPP6Uf+jFjau2zC9CE8sSJE0KzZs3YsGHDiiemrVq1giAIEEURUVFRaFuB0FS7du3QrpKe2/r162NAqQrMpEmT+Fu3biF/8WLewsoKXb/6ClZWVhwGDODw77+Y5+0NlY8P1qvVLCIiAkOHDoWLi0ut968MNIrPjx9XvkxyctX0di8vosFzHAWbGtp5UXJAkiTExcVJjDG9lefNzMyK/92mTRv4+flpv/KjR1S9HD4caNGC7sePPyaFcUmiYEeDyvY7LY2qkxpdCVNTqrzOmkUaDYwR1TY8nGjnZmYUEGqTDLK3J/Go11+n3uRKMGnSJOHGjRvYs2ePcPfuXfj7+8NNQ+F9Ejk5QPfuaNy4Mf73v/9h06ZNuH79Orp27Yq+fftWG3QzxqBWq5+9P2BCAtGTFy0i5gRADBZHR0qIeHpSNXns2JJjq6Gcl0Zp+6eK+nhr8Dzu0aMHl5aWhitXrgiSJGnPFMjJoWtt3Tq6/jiOqrRr11KFtm1bomr361fr5KGLiwvc3Nxw4MABtG3bFv7+/loP6NW9OxLnzuXWjx8Pi/79mb+/P3fixAmhv0oF21Wr8IOFBfr16weP8ePBXbpUlmlQCYKDg6FUKrm0tCINMiMjOjeenpSErlOH2CAyGbBzJxQff4zGkyfD+dQpYiJoGB88T/eehQVVtxkjKv6779I1c/gwtWWUgiRJCAkJUV6+fLnQyMjoiFKpvG1kZGQH4I3WrVvXe/PNN03Mzc2NBUHQL0VKGzC2DgDAcRcBXAfwwTPfhkrA87ytmZlZ5Zne+Hiaa4SH1/q7JEnC9u3b80VRXCGXy0/WekAD/jN4AVSPDDDgv4d58+b9KEnS61evXn3+BtD6QuPG9MNkYUHVlZiYp/M9SUlUbZw+nSpsLwk6duyI1q1bi1u3bsUPP/wgZWsr4MXz1Ms5YgRVSmqBlJQUHDt2TPDz88OTPY0AMHHiRADAwYMHa/U9GrR2cUFHR0e4zpkDKysretPVlQItU1MYDxiAj774Qhh27hxuzJ+PzMxMvXxvMUaNIpuu6lCZRdyHHxLteuhQ+v/8+dSrXRRonzx5Uly5ciWLjo7G8OHD9XYvNy9KqhgbG7P+/ftXHegwRq8BA6hKf+RISdX40CHa5gYNKNjRJmBasoSqcSEhVDXV4LffaP1Ll4ALF+g9b2+qvO7YQbRhbc6fhQUFCw8flgjqVQAjIyN4eHigbdu2UCgU2LFjR8ULKpUlKtEAmjZtilmzZqFnz56IiIjAsmXL2N9//11lJS0yMhKpqanP7lm8eDG1iCgUFJCZmJAY3erVRAOfMoWE6qZMoaTHc0JzXZN76ekU2J8/T0JjNAjtV1gYORKsW0fX5Jo1uokYVoJ69erB3NycDR8+XKf1bGxs4NixI9opFIiJieFWrlwJExMTqcuiRaiXlAQfHx8cO3ZM+iEggN1QKsGqsRKMiYlBWFgYunTpwoodA9LTKVF34QLQqxf1rMvlgL8/ojt2xIbJkzFszhyOu3qV2jSuXqVkyZkz9Pvp7k69wrNmUVVcqaR7MCKiXP97eHg4u3LlSoxarW42Z86cYQsWLJg7d+7c8Uql0uXWrVuX9uzZk29jY8PJZDIPnQ6UftEDwDxw3BRwnA4Ur6cHY2PjhiZV6c0cPUrCkHpofzh58qQ6JSXlulqtXlTrwQz4T8EQbBtgwFOCkZHR0I4dOz7jJudnAJmMBGWcnctb2tQWjFH2PzSUhEpqoDz8vMBxHIYPHy5MnjwZ+fn5fHx8vPYrOzhQwPfddzX+/iNHjohr166Fi4uLWJmqtUYlvTqPY62xcydNOCvqebSwICaEkRFaurkBjCE1LIwUvyvz6tYVxsbUbzd4cOXLnDlD1eCKYGoKNGtG1OmffyYadpGKcFxcHM6cOSP07NmTmzFjBq/PqnxWVhYAYN68eVz9JynakgT8/Tf1zs6cSRNyjqP7DSAGRGQk/btVK92t1iIjiW78JB4/pgrlsGFlg2oXF6r4X7tG4nHXr1f/HTY2VCn66KNqFx0+fDhatmzJjCu71yMjSbOhQYPit+rUqQMfHx+NvRUXGxtb5VzGqyIRKn3j7l1SGA8Lo/3v1o3OWWAgBdru7rQfkkT3xunTFJDOn0+idI8e6eYdXwnWr1+PgIAA/Pbbb9JXX32F7777DpcuXWIKhaJcQKlhu9y+fbv6gUWRqO7ffUd0cXv7ks8OHSLRPXNzShp26EDCal9+Wc4+S1ekp6dLjRs3rlGipO5XX6Hrp5/C19cXTZs2xQcffMAjKgrw8YGXlxdmDBvGjwsM5A4eOiR99913UFRiXXfv3j3s2LEDPj4+oq+vL1fsNrFtG1mfhYQQU6EULl26xJp17SqZ1a1LVl+rV1PCKCCg5Lp47TWyUIyLoz7uEycoibFvX7ltOHnypEKpVL4vl8vTS78vl8tzlErlgocPH4o2NjZgjLWuybHSCxhTgrHHAMwA+IHj6jwdwQ7twfN8w9JMojK4cIEYJ198UevvuX//Ps6fP59bWFg4WC6Xv0g0egNeABho5AYY8JSgVquDrl+//oGPj4/5U7OWeR7geaJFShIJL+3apR8FzwsXgL17abyX2Lc8IiKCmZubo23btrpNMiZNoolsdHSJIq6WePjwIS5evChMmjQJNjY2lfZfKhQK1KtXD/fu3dNp/EqhoXFXh2++QWZgIDu7eTPX5PZtmHz1FdGTR4yofUVBM+kv1ZtZBm5u5am3ajUFAt99R9TPuXOBf/8tI7YWFBTEvL29uacRqGkqLenp6bDWqKQvW0b31pQpFKR6e5e1JVqzpnZfevEi9Yhu21Z5X+9HH1Hiws2NRLk0SRSOI6qzlRUF4itW0HZVNY9evJgC5YgI0n2oAkZGRlz9+vUlVFQAOHiwjI1SafA8D2dnZ4iiyP3+++9SnTp1uKSkJKl+/foCAEiSJPn7+/PR0dFS8+bNOQD6m/hrGAdTpxLjYOdOCjjbtClPn//4YxLGmjmTPnd0pGPXuDEFYocO0fX33nsUjPXoUePN6t69O3bs2IEOHTrwZmZmKCwsxMmTJ6UDBw4IvXv3LtZnAABjY2NorLOqxauvUmJKwzwqjUGDytpsrV1LLKh58+jcffQR0cp1wNmzZ6XLly9z2dnZvJGREUtKSuIaNmyo0xhITASWLkWXoCB00ZyTzEzaDwA8x6GeuzumTZvGL62kRxoAQkJCRHd3d/Tq1avk2RoXR/fKBx8QcyE3t/gjtVqNhw8fok+fPmWv5zp1ShKD33xDr4ICoHt3CrLHjSOdkieSh0UOEqYAKqOKtLCysuLMzMwgiqJ+FOpqA8aWAQA47lcALcBxr1VLHXh6aFCpI8yiRXT+apkPyM3Nxfbt2wvUavUIuVxeRU+TAf9fYahsG2DA08MJlUoV9Oeff+YnJSVBXUuK8AsHnqcJVf/+NKmKiqr5WIwBCxZQP+NLHGgDgEql4vLy8riTJ3Vs2bK2JnGpn37SucKVnZ0NIyMjyaYKr9sDBw5g2bJlyMrKQpcuXWqfeb91iyqdWgYGY8eO5Qq6d8eygQPxzZIlyJXLwc6epcpXbRgSDRpQgkbTE/skli0r39N6/ToFnSoVBdoLFgDbtxd/nJ2djdzcXK5vdd7cNUS9Bw9QPy0Nx3/7jajcGms9MzP6m55O9FxHx5K+6toiIoISZJVNLHv2pODPyIgC6y1byi8zeDCJd505Q4mWgoLKv08mo33TBBCVIDU1FXfu3IGtrW35+Ygk0bpVKPxbWlrio48+QoMGDZCVlYXu3bsL8fHxUCqVLDc3l1+7di0eP37Mm5mZ6SfQVihIpb5VK6LLDx5M15iNDfVnl6bmA5R02LGDlMT//rv8/SII5L3csydZACqV1N6wZ0+NKt1ubm6QyWSwt7eHu7s7vL29MXPmTMHf3x9nzpxBbGxs8bJ3796FSqVCg1KsgUrx228k0DZhQsU2kBculHisc1xJX3piIrUD/fUXVXG1AGMMR48e5QVB4KZPnw43Nzdp3bp12Lt3r26UmA4d6HyUPo5NmxLVG6Dfm99+Q1RUFMzNzVGnyFayyOcbAFUsk5KSBC8vr7JJzHfeoQSY5li89x7dtyDXhvr16zMHbX7LTE1JiPDhQ2JAjBtXzqbw/v37qFOnzl9yuTyhklFyCgoKJAsLC6jVaouAgIAXhRL2BYCfALgWK5c/Y4ii2Ny6ItvHI0co+aVje8KTYIxhx44d+aIo/rRw4cKjtRrMgP8sDMG2AQY8JcjlclZYWDgmOTk56Ndff8VPP/1U+PySu08JGgrs5ctVi1RVhb//Bnx9qYL16af627bnBB8fH/j6+uLUqVP44YcfWL4uPZmDB9OENTRUp+88dOgQ8/DwqPJ5fuPGDQYACxcuhK+vb+0Ncffto35THWjMkyZNwoQJEzBkxAgsnzABCR06UM+jRsG9Mrp3dYiNJaGiJ4O/zEwKZkpTtWNjaZIdEwOEhUE6fBjR//6L0rP4x48fw9TUVNTFXqpaREQU944r/vc/eFy9Cr5lS1KfrlOHKqSffKK/79NAraYJ/JAhVHGsDKNHl7AEZs6kICkjo/xyzZpRoqJTJwocT5+ufMxWrSiwUSqJhlwBDh48yNRqNTpUpAgdG0tV9moSDlZWVnjjjTf4jz/+mOvatSvmz5+PSZMmcdbW1kwURTRp0gRvvvlmlWNUibw8urbef59stRwdqUXC15co1d5VxBGFhSX9tx98QD3xFYHnSYOgVy8S7du9m54DR47otKkcx6F9+/ZSSEhImcDU09MTHh4e7I8//sCpU6cQFxdXzLBYv3595QMeOUJCaPfv0/0+YkTFy3l6kkVY6d+4efOoNSMvj5JZ33yjVWKN4zj4+fmxzMxMpKen48033xTefvttXLt2jZd0aUExNaWk1c2bJe/duUPHGAC+/Rbo0QMuLi6QJElasmQJVq5cyb799lssXboUf/31l3js2DEIglC29aaggNpONEE7QEmhoh71qKgosWvXrto/PL79llg2gYHE+HkCiYmJBYWFhZVcOLSn+fn5Mp7nYWpqqgCgpwxdLcFYGhjbD6A7gJ3guGfKpg0ICDBXq9X1y7Xq5OeTa4Opaa2dVU6dOqV+/PjxLZVKNb9WAxnwn4Yh2DbAgKcIuVwuKpXK5UZGRln29vb/3T6ew4dp0tm5MwkwaYvMTKqIfPLJS9WfXRVMTEzQpUsXDB06FNnZ2dz9+/e1X9nIiIKY7dvJA1kLpKWlITc3l+vTp0+Vy7Vv354DgJUrV0KsJPDRGkolVa+q8FOuDPb29mjVqhU8PT2lTZs2Ieurr6i/Ny6OehkTE2l8XdCiBQWGT9IFFQqa4Jeq5rIPP4Q4YwaU8+fjUno6vhk2DP/s24c//vhDevToEQ4ePCgGBQVpryZfEXJzS4Kqli1pEm1iQkEHgNTgYIT27YvWbdvSffM02xrv3KFKfnVU4W+/pRdAwb+1NSXCKoJMRtT8gABKkPz5Z6XBNAYPpqCrEpruyJEjOZ7nsW3bNpS7V0JDa1TdFYqCWycnJ1b0/8p7wiuDWk0V7Dt36Po6TtoUAQAAIABJREFUfpz6q8+do3P5+uvVn7fQULJBGzuW/m9nR8e2KvA8VY83biTl79mzSVhLI1qnBby8vPjExMRy8zs/Pz/O2dlZffr0aWzcuBEbNmwAABQWFlYewXbvTudv8WKq3Fe2z2Zm1FqwaVPZ942MKMnk4kLX1ObN1ONc/T5wbdq0EU+cOCEBgLOzM0xMTMpY5mmFnBwSdNOgefOSgHbSJGDrVlhYWGDWrFn8uHHj4OPjw82ZMwczZsxAUlISl5CQgLfeeqtk/aws2hcbm7KJxjNngGbNoFAokJubK7i6ula/batXk/Dh3LmUyKkkkfDo0SMlgCtVjLQrMzPTJC8vD3Xr1lUDaFb9lz9DMBYIwBVAP3BcEDiumptAb/C0trbOL5c0vXOHko+vvFKrwePi4nD27Nl8pVLpL5fL/2PURQP0CUOwbYABTx8dbGxsTN5++22z56wV8vTx/fdURbt6tWwPX0X47juiTi5fXqOg7UWHhtLtrBG20hZdu1KFsTJadBFu3bqFVatWSatXr4a5uXmlk+Xs7Gzs3LkTyqIAVmuV9Kpw4ACpUxf5UNcE/v7+vLGxsXT48GEGniebqsRE2ndPz5JeZW2hUFAFtHSSIjwcOHgQKSkpiI6OxsXQUKzq14/96OCAnF9/RWRUlPj6G29g9uzZqFOnDrdu3TrExMRwnTt3hp+fn27Vf1Ekf92UFLq2x4yh91evpoldmzbAP/8AADQ9hFV5S+sFy5cDqal0HKpS5AWomj11asn/33qL+umL6LQVYtAgChaCgqgvt7LA+NtvS8TBnoBarYamWlmO+bNhAwW1NYSlpSUPAMbGxpzWFVHNs+vdd0m00NmZWAmvv06Jk4ooqRWBMaKoHj9e8t7cuVpZTBXD35+SNubmZC21eHHFbIMnoKFDVyT4NWrUKKMvvvgCcrkcrVu3Bs/z6NSpU/m5IGMk8hYeTtf2Z59Vv+1xcdSj/WTiZdgw+m3YuJESGMePEwW7mqRfw4YNhcdFjCmO49CoUSNcuXIFSVWo3JfDhAn0TNVAkkqerWFhxdRvnudhb28PDw8PyGQyWFhYoEOHDnzDhg2lMuKIBQXAjBnlbfV69QIWLcKlS5dgZWUlmZubV75NBQXErDEzo5YBTTtWUfKjNBhjyMjIMAVwo4q95AA67zY2NkZ40YJtAGBMAUoYpALgwXGNn8G3dnR0dCwrmJOQQMmv116r1cAKhQJ///13gVqtfrsKer8BBgAwBNsGGPAscDs1NVXxzTffqB/VlCb7ssDHhyi6s2fT5KwiMEaTHQcH6mXUJ1X3BcL58+clU1NTVqXtSGWYPZuCn0p6XePi4rBr1y60adOGnzBhAmbNmsVXVIldv349++GHHxAVFYVr164BAKZOnVpc+asx1q+nSWItMWLECD46OprLK6r4FtO9jx0jO5y//6ZgR5tAqV49YkiU3rfCQtw3Nmbr1q3DiZ07xQ4DB8L31i1umo8P1FFR+GDRIsHd3R0ymQzvvPMON2fOHEydOpXv06cPWlbRJwyA1LkBClD9/Oh7MzPJwzogoETDYMCAMjT28PBwtmrVKgCA7dP0qxdFqiJqqxWRnV1W+Kp1axL9OlpNG6KVFZ2n2bMpeVZR1bJlS0pE9OhBSZFSsLCwQM+ePQGg7HUZE0PLV+L7rg06duwIf39/dufOHfz888+VL5iYSD3ScXFEDY+IoMDn+nWq5NZER4Ixaq3x9S15b+pU7azqSkMQqJJ66hQwcSIJ2fn7V3lejxw5ItrZ2amre/YMHDgQkiShTp06eFxRG1Dv3uQDfuUKsZaqQ7t2tM8VPdM5jiwOX3+d1NcVCkqopaaWW5QxhpSUFBQUFMDCwqI4AzNkyBAYGxtj48aN2tMdUlPLCB8iP7+EwfHnn5QoqgQqlQoymazkuw4eJOXqGTPKLSstWIBbnTvjzJkzrHv37lVn1QcMIJbE++8TLX/iRDo2FSTjk5KSwHFcPoCqsiyFRkZG98+ePauqX7++KYAXU/iEsSQwNh6AJ4Ar4LiaZ2u1gEwm62FjY1O2in71KiXRSqvp1wBHjhwpFEVxx8KFCw/VaiAD/l/AoEZugAFPGXK5/FxAQIC1JElLN2zYMGv+/Pn8f77CHRxMf3/8kSY7ixeXfDZrFlExT5/W3bboJUJeXh6nUCg4tVpdjpIsSRI4jkNCQgIePHiAq1evSo0aNUKrVq14R0dHWFpa0mRs+XLqLSu6XiRJwtmzZ9np06c5Ly8v1qdPnyovpKSkJA6gALtekep3ra+9qCgKIIoCpNqgWbNmMDU1ZceOHWP+/v58RkYG/vnnHzZ06FDO2tqaKqeaY+fpSSrYGn/fijB7NrByJU3ieR6FsbEIVSi4UaNGwbFJEwFdu8IlIAAoLETDCuzPqk2M/PQTBR+aPt1Hj6iCranQaa77KnDv3j0GgJs+fToqtaSpLcLC6HX5svYU9du3SWhu1qyS98aOpSrkwIFVr2tkRAH1F1+QsJqtLdHMSwfPrVtTv/e1a2XUui9evIjTp0+D53m67ks+oERLLa9XT09Pbu/eveU93kWRgq3u3YmJcPs20b4fPqz9c+n+fdr/x4/LjjVpEol21QQyGYkBHj1KAfuvvxK1/MsvieZeCgkJCXzXrl2rPXB169aFl5cXwsLCxCNHjghvvPEG69ChA4dNmygoWbGCWlp69CD6tTa4cYOUy1NSynlFw9WVEgevvkp/e/Wia+bDD4uD+Xv37uHo0aNITEwE8H/snXdYFPf2xt/vDOwubekqKMUKAiqW2DXYxd69dk03ahKTGDWJ7l2TGFN+MYkaW6561diw9wY2RCJYAFFBEFBpSpO2sGXm98cRLLQFl0hy9/M8PCK7Ozu7OzP7Pee85z1Aq1atSjdiaWmJUaNG4dChQyL0dZZv04a+g0qmFTg4PJ1t/owpYnl4eHggLCyMT0lJgbOzM/V+O5ctyB49elSMO38e1kVFrNeECfD19S1/3374gZJT27Y99SEoLCQvhQpUQrdv34YgCPsVCkWFCQaFQqFWKpVdQ0JCYlxcXCwBVCJHqQOIYggYex1AHhj7HsBCiKJB2+yUSqUpz/PDn/ssrlyh86ac0WrVITk5GVFRUUUajeajl91PI/8b/HNXukaM1CEUCoWgVCojbGxsNI8fP5ampqbC1dUVlUrN/s6UVDZsbGhRKwhU9du+nYyYFIp/dKANAAMGDGC//fYbvvnmG7i6ugoeHh6clZUVVCoVzpw5UyrxtLS0FNq1a8fdv39fPH78uK6wsJCXSCRwc3HRtU1L47BoERouWMAKCwuxefNmiKIoTpw4kbm7u1e52Bw5ciQCAgIQFBSEUaNGGeaFHTxIC8aXrY4/wcLCQrCzs+NFUcSNGzeQnJzMNm3aBGdnZ92DBw84Dw8PuFy/jlZjxjC+RQtaLMXFkSz1RRijgLh3b6BtW+RfvAgLV1eta0CACfbvJ6nmhQv6BXAZGXQcJyRQ3/G9e2TYpdPRgr2oiLZTiQN8eQwePJiLiYnB9evXnxvDZFC2bqX9rE6gOnEiMGHC838bMoQMsi5e1M913t+fEjGjRlHlde/ep14MJZXNL76ga8GAAVi1apUuIyODl0gkGD9+PJ5zDVapyCjMADg7O4spKSls69atwlAnJ8760iWqJv7wA8n81617+l4Z4rrk4kIB1YvJlNTUp4FeTbG0JAlsz560rfx8MlabPx9o1QoAoFKpmL7fLYMGDQIAfufOnTh+/Dhr3bo1tRzI5TSObNs2kn/ri5cXsH59xYolxkj9kJBAM6pHjADWroU6NBRRXbrg6NGjsLCwEGfNmsXKU35kZWXB1NRU/8q2XE7y/Xv3SPqt01HAnJ5OCUOFosKxZE5OTuB5HhzHUQW8ZLTbM5w9exaRkZFsVlYWLKOiwH7+uexJV1RE58P586S+KQmsRZGSPUuXVui4n5OTo9LpdFeqepkKhSLtm2++WXf37t1PAdR9CZ0o3gZjDgD8APiAsRsGDrgn29jY6J5LaC5dSu0hL4FOp8PevXsLtFrtHIVCUXVPhxEjMAbbRoz8laRmZ2dLV69erdbpdOmNGze2mzRp0j802n5CSd/qvHm0oG3XjqRz/9QkwzMcOXJEBMDefvtthIaGctevX9epVCrwPM86duzIWVlZoWHDhnBycipZlTIAvCAIiIyMRFJSEh/fuzfaf/89fmMMGpkM3t7ewogRI/TW3UdFRYkAmHM51ZgaoVJRcEkLdIPg6+vLnzt3DuHh4WJeXh4bNWoUYmNjRcYY//rrr+PmzZu4deuWEGRmhrflcmbl4AA8egRtfj5MPvyQKtklFVGOIynwkz7jtNatkWdlxaFVKwoaCwoqD0CvXiU5sVJJrtMzZ1Kv7KJFtDD+6aen961BxVWr1WLbtm2iVCqFp6en4eUtajXw9dckk61u+0J8PFXrMzOf/3vXrhRs6Tv7mTGSn585Q+Z07ds/f7x4e9Oid8AAZGdn8+3bt0f//v0hkTzTWvn4MSVNrl6t3muogOnjxrGcuXNxKj2d+zMuDl2kUli97LjCiggOpmTHmjVlb9u9m6r1+phnVUXJyKjCQgoAd+8GYmIgNG0KjUaD6p7z3bt3R9zt20gbPFhssGcPw9ixpKoZPPh5N/+q4DhqJ/rsM0pmVLDv2mbNkPL22wIzM+OiR48WuH37uPo7dohdFy9mffr3r/DcyMzMFPLz8/nCwkL9lSGXLtH56+ZG+9e9OyWAe/Qo23v9DPfu3YNOp0MDBwdg9mwyf3sm2L5+/TpCQkIwdepUWFXkmJ+XR+fVrFllK6rFxdQSUMkM8nv37mkAXNbnZWq12jUAPgXwkhmdvwhRzADQEYzZAUgEY2Mhivo7AVaCiYnJTGdn56cXwSNHaD3yEh4QAHD48GFVQUFBiCiKW192H43872AMto0Y+es4y/P8Ao1GEyeK4pm4uLjMW7duwcbGBvv37y9o1qyZSd++faX/SIn5N99QNcHSkhY4/v60eGnQoHadmF8hSUlJzN3dHc7OziVVZb1KwRzHwdfXF76+vvQHT0988uefYAsWgKvmLKo+ffqw27dvQ/VkJJZarYapqWnNpeQnTpCs+J13avb4cujWrRvq16+PnJwc5uvrCxMTk1LndAB4jaqb3M8//yysW7eOtW7dGklOTkK2UslNP39eNMnKYraHD1MQVyLRdXYGVq6E16+/Qt20KVdw8iQsDh9+3glaEMgIq0EDGi+1Zg0tfv/8k25PTHxa5TTQ671z5w7S0tLY/Pnzq5as14Tz50l5sGhR9c+rhg2puv0igwdTVe7+ff0N8XieAgiOI0m/pyc91tSUnqNLFzxcsACmtrYYOHBgWef3/fspYHvZCQWHDwObN8N00yY4pqWhz+zZWBMWBsdhw9C2trwisrMr9hg4cKBqV/jqYm5ObuEA8MMPEOfNg3z4cNhmZlZLddGwYUNMGTQIunXrWPDZs0J3OzsOBw5U3bNfHjxPx+FXX1WY9LkeGYnjAwdy9c3MhN4bNjB+7ly4q9UM335LkvIKjOg6d+7MXb16FcuXL8ecOXMg1+f9HDnyaUKOMXJVF0VK/FZiYBkdHQ0PDw8dYmJ4bWQk8hhDxp07EAQBaWlpOHv2LGxsbCjov3uXevKfDah/+43UIcuXU5/2sxQVkUv7+vXUIlAB+fn5UgB6jbRQKBTxSqUSqCujv/RFFLPA2GcA7oGxfgBOl3VL1B+lUsmkUqljhw4d6CQvGdW2cOFLKbLi4+MRHR1dpNFoRlUm6zdi5EWMwbYRI38RTy7O35X8X6lUvnn8+PEVRUVFTK1Wf5aZmbm0RYsWUrdKMu1/WySSp+7Sw4eTodLixRR8d+lCQZKn56vdRwMS+mRMz5QpU15+Y6+9Bn7PHurP7Nq1Wg91cHCAVCrF+fPnkZ6eLsbExDBnZ2fxrbfeYjUKuHfsILd5A1OlGRmA9957j7ty5Qqio6MFBwcHbvDHH2O7iwuyN23C+6dPQ+XuDvtly2Bx9y4Fa2ZmgLs73JOSoON5OgbValpoL11KC+PgYKpufvgh9ZA6Oz9dFNdCm0PJyLWsrKxqVx6r5PffKcC9erVmpoMyGcnsi4qeD5AsLUmCu3t39R3ie/em/VEqgdu3SYXg7Aw4OEB64AC8Bw3SmZiYlF39JiSQqqAm5OVREPOvf1Gw7ukJSKUQjxzBrpUrRW9vb9a2bduabbsqoqLI+Xro0PJvHzOGVD5DhtTO88+bh2s9eoj1V69m3KRJ5Pvw+uv6Vaa3bYNr27a4c/Yszu3cyXU8eBCSZ+ayi6KI8+fP61JSUpCVlcUJgiB2795dbNu2bdnPz8aGDO5enHv/zLauXLkieHl7c6NGjeJQUED90P/+N/VY9+5NyoZy2iwcHR3x/vvvY/fu3Vi+fDkWLVqEKnOQtra07QMH6P/+/kBkJH3v5OdXeL44OTkhYeNGvnD2bKyYNQtFHAeJRCLyPA+NRsMcHR1FQRCwYcMGNJbJhD75+by5Wg2JiQklp37+mV7DsyZ5JURG0nlVSbJAEARoNBopgKzKX2AZDNN/8VciitufjAT7FcBaAD/XdFOMsfctLS0dG5WoDSIj6XpSMl+9BhQWFiIgIECl0WhGKhSK/BpvyMj/JP9MG2AjRv4ebMrNzZ2qVquHA9iu0+msbW1tX/U+1T716pE77Lp1FLjJ5STV7dOH5H7lueL+zTh9+jS8vLyqXgTqg1xOPbA3bujvLP0M/fr1AwCkpqaiZ8+eSElJYQEBAeK5c+fKHQ1UIZGRVD3u06fa+2AIZDIZunXrhnfeeYcbNWoUnJyc8MYbbzBHR0fhj9Gjxc0eHjj4ySdQDxsGdO4M3YIFyEtJEXe++aZg2akT8P77VNU4eZL6NX/9lYIjgIyrDB38loOPjw/atWunXb9+fWlCxiAUFlJAm539cu7+H39MQfGLTJ78tF9dT1JSUnDu3Dl6zxUKCjpiYigRYmWF9BUr8Dg/n8ejR88/8PFj6m2uzlg5USTn9VatKKnStCn1e48aRQZiPA+VSoWsrCzWpUsX/bdbXT75pFyn6lJataJZ27WEKIo4duoUEwcMEHDyJBnRtW1LAX5VhcItW4CDB9G8eXP4xceLV3x9BfEZM7fr16+L58+f53U6He/m5sZMTU258PBwtmbNGnHz5s26whd70dPSKOjOyyvzVGlpaUhPT+cGlbQXKBSkxvDxoTaQI0eoZWPtWkqQvYCjo2Opg71euLiQ4V6J4mDXLqr6X71aaVKt82uvocjDAwemThVGTZ6MRYsWYd68eczW1lasV6+e7v3332fvv/8+a9++PRMbNOA3DB2q+++XX0Lr6UktK7dvl++mr1KRb8GlS5UqUBhjMDU1LQZQX/8XCw2Al2tMflWIYjGANgBWg7GdYKza/UpKpbKDKIorR48ebcFxHF1LFi4s9TOoKYcPH1aJorhJoVCce6kNGfmfxFjZNmLkFaFQKAQAewBAqVRyJiYmuQEBAabm5uacg4MD16dPH1ODBGt1FcZoIeLjQxW1a9eor/b33+lv9vbAuHHV7z2tA3h6euLevXsCDJXQ7NOH1AB2dlQdqwbt27dH+/btgSfuvc7Ozti5cye7desWzp49i9GjR8PNzQ1WVlYQRRGiKJafJNi/n8al1KFj0tLSEu+//37pDiUkJODHVq3gtmSJMOHUKc4KYJNnzmTcjRsU9PE8JS1eIUOHDjWJi4sTCwsLn1tlHzt2DMnJycjMzBT79evH2rVrp98Gw8IoyE5IePlqfEBA+f3ELi40Wm3NGmjffRc3btzAgwcPoNPp0KtXL+Tk5ODUqVOws7ND165dER0djeDg4NJjqUePHtQ2cvkyNF9+iUMnTwo3HBy4aZmZAmbN4p5zhb53j4LlZ53Jy0OrpUCsRw+aCe7nR5VciaRc87yS2ebbtm0T582bZ/jeFVGkNovKEhJTppRxDjckxcXFEAQB3t7eHEoSt6GhlOQoGYv39df0WZZQVERS8WNPJhhlZ+M1lYptsrdHyr59pR4RBw8eZI0aNcLkyZMBAF999VVpW0txcTH3ww8/YMGCBaUzvtGgATmal/M5RkVFCXZ2dpDJZE8vJlIp8N13FIhqtWSmt3gxJcKWL39+n0Hni42NjaBXa42DA6lysrPpe+XIEVJsHD9Oz1EB3MKFeDMjA9i0iQMombFnzx5dQUEB++CDD3iA2n56lUxIsLDgT02fjrC2bcV2TZowaUW79vXXNL/8RWn5CzDGYGZmptFoNA6owPRMqVQ6AihSKBR5SqWS43k+U6fTNVAqlbxCoTCow/dfgihSdoWxSAD1n5ioZeorK+d5/pMnXij0h7t3yTPiJc67qKgoxMfHP1Kr1Z9WfW8jRspiDLaNGKkDPHEr7/PgwYMuPM83jo2N/Sg/P1/o2LEj17AmM17/bvA89el16ECLvzt3KLj08Hg62qZjx+d7busomZmZiI6OhkFVCoxRdWr5ckpMvLDwrA4eHh5YvHgxvv76a+h0Opw8eVJXWFjIe3p64u7du9BqtfDy8tL5+/vzpQvnwkIyEnpSJa+rNBZFfOjmhojiYu5es2Zi/a5dmaW7O42cqkNIJBLxWR1/dnY2Ll++jJYtW+rkcjl/6NAh3L9/Hz179qz6OPriC5LDVrFw14vdu2m0WnmGTePHI3PQIKx89Oi5atz169dLf3/w4AEiIyMBABMnTgRjDLt27UJ4eLjQoEEDLjMzU1fcuzff4vFjtuDiRUhWruSQnEzu8iWtBJs2VTxbWxTpWPzjD+pTvn+fqslDh1JQ17FjhS+NMQYPDw/ExMSw5ORkGPS6KoqAqyuwahUZXlXEokXU/1/NhJm+hIWFwcTEBPbP9mrXr08/LVqQrPnOHTJwW7CAAuIDB8jJvETafvIkJEOHYvTAgWz9+vW4c+cOGGNgjGHGjBmlmzU3NxcsLCwwefJkbtOmTYKHhwcvebH32MmJtnvwYGmSLjMzE9cCAzkbBwcgOZlumzKFzNhyc8klvkULUgh88w31QI8aRe+tpyfS0tJw4MABobCwkJs1a5b+mb+NGynoGjuWAu+WLUnlUkmwjcaN6bmfcOrUKSEpKYnNnj27bIy/ZQvg4IDOs2djc1CQELxiBT9p0qSy7SJFRXTMViCxf5EnMaZlRbczxn4QRXHakiVLMiUSSaSDg4NVYWFhfk5OTlcAF/R6krqIKH4DAGAsBEAcgKlVPUSpVDY1NTUdUqqYiIykFqGwsBrvRk5ODg4fPqxSq9UjFQrF38N4zkidwxhsGzFSR1AoFOEAwgFAqVQeiYyM/CAuLq7/vHnz/n6l3ZdBJiPJV6tWVKk6fBg4epSqL7m5ZLDUvn2dqrA+y+7duwVXV1duwoQJht3BFi1ogfj997QIfUk+++wzAIBEIuEDAwPFqKgowd/fnxcEASdOnOCkUqk4YMAAxnEcKQ6Cgp66y9c1ioqoyrlkCSweP0bXffuAN99k0GrL9iDXAVxdXcULFy4gJydH8Pf357Zu3apr3bo1GzlyJK9Wq2FhYYGoqCjcvHlTnDdvHitjIAbQ69q2jYIRQyWh4uIqNIwKzctDQteuGGZlBe85cyCKIniex+3bt+Hp6VlqcqbT6aDRaEoN4GbNmoVbt26xpKQkXevWrTlXV1e4NGrE+NWrqeKanU1tJIcO0ezh/fupv/ZZkpOpOtm0KbWezJhBsnQzs/JN3SqgXbt2iImJQXh4uGGD7ZKRc+X15j7LBx9QT3ItkZeXJzRo0ACNGjUqe+1p0IDc4dPTaX9PnaLPe8YMUkUA9O/Ro8D338Pe3h5NmjQRd+7cyVxdXQU3N7fnAsxPPvmk9D9yuZyzl8lEducOQ4sWwOrVlACysqIKbng4sHkzxOBgbJ04Ufzkp5+YsGgRtXFs2/Y0WWJmRgH66tWUSBk+nBzAPT2BSZOQq1Bg040baOTqihkzZlRvTn2vXk+NyJKT6d+33qr4/m+/TceltzcAIDQ0VLxy5Qp766232HPPGxxMCeG9ewFbW1ipVJg1axZ/8uRJbNiwAQ4ODsL48eO50qTZ22/Tsbx8uV677e7ubhIVFdUBQEh5t4ui+AaAFFEUF6rV6l48zxfK5XLz/Pz84fg7B9tP8QfgBMaGA8iDKAaVdyelUmkukUhO9O7d27x+/Seq+99+I0VNDQ1BBUFAQEBAgSAI3yoUCsOMRjDyPwl7CcM/I0aM1CJKpfJjqVT63bhx40ya1KL08G9DVhYFfGvWULDt4UGGYXXIWE0URXz99dfo3r37U2mhISmRzW7fXqty1MTERGzduhU6nQ6TJk1Cs59+ogWxv3+tPWeN0Wqp6v7RR8Cnnz6/sGrfnsbNrV//6vavAu7fv4/t27eXOsVPnToVjRs3Lr1dp9Nh8+bNwsOHD9k777zDylS4166ln7Awg808h1ZLY9OeSK4BWnBu3rwZSUlJaBobi4mWluDWrjXM8yUkUKXXzo4Sa/n5FIC98w4FhWo1Bd9KJd33/n0632uYaAsPD8eRI0cwb9686gVqlaFWk4x9yxaSJlfG99+TAqFk0oCBWblypZCXl8e99dZbcKyqN7y4mALcZs2oumxjQ5XerCwKUAAU5uZiy4IFyLGywsBWrdDmzh3qr37rLbr+DB0KjBqFM6NGweXWLbFZeDhDaiopYEaOpOvF+vVUHba0RNKtW9h66xbmf/YZTKpymhdF8gkYNowSAm+8gfShQxHXoIHYbc0aVt359oiNJdXE0qWUtCnp3d9azgSnrCxK5gQHAzY2uHTpknj27FlMmDCBuZeoZEQRePAAuHCBpMpffklV/FatgG+/BUDTHwICAoSkpCRu0KBBgq+vL4dffiGHfz1MIQHg5s2bOHToUOj8+fOrNBtQKpUNAAwEsBEAFArFP2fUB2MKAN0B9H9RUq5UKplEItncrFmzMWPGjJExxih5l51Nc7VreH38889P4TxvAAAgAElEQVQ/haCgoAi1Wv3a31KSb6TOUDdLQ0aMGAGAlcXFxVsOHz6sn97sn05Jv/Lp0zSyRaulxWHfvlRVyn/1BqGMMcjlcsOaXz2LRALs2UPBSDXMqqqLu7s7Zj5xg765bZvwKDcXKj+/Wnu+GhEbSwvbBw9opvO8eWUrGIcOkTy1DuLi4oIPPvgA8+fPx6effvpcoA0APM9j+vTpnIODg3jixAnx1KlTTyXb+/ZRRTckxHCBNkBu4y+MOYuOjkZSUhJGjRqFIb/+Cs7FhUamGYLGjUm6/vnnVBVesIBkzhoNVRS3bCFn8eRkCgy9vGocaKvValy4cAFSqVQ0WKAN0Hvx+DGN4KqKQ4fIdbuWGDJkCKdWq3H27NnK75ifT9ePvDyS2h45QompyZPpNj8/oFs3mGdl4e0DB/CWuzvamJlRYqe4mEzXfH3JwX/7duhefx17e/ZkuuRkOgdPn6Ye8SZNKAjt3h2wtMQVQJDJZEKVgTZA22ncmI7x7Gzgp59QOGcONBkZLHrmTLHU3FBfLC3pOiGK5FQ/fDh5gryISkWfU2QkBLkc586dE86ePYtJkyY9DbQBqlAPGwZMmECvESAV1pNAGwAkEgkmTZrE9evXD8ePH+cwdy45YusZaAM0qUGtVrdXKpVVHmAKhSIN/4xqdllEUQmgP4AlYOwAGOMACrQZY/M4jhs7dOhQCrTVauD//o9aO2p4fczLy0NgYGCxWq2eZAy0jbwsxmDbiJE6ikKhUJuYmGgKCgqk2dnZr3p36hYtW1JQMGcOBVMZGVRtWbyYTIoyMl7Zrnl5eQkODg4VDNo1AI0akWGanjLEmmJvb4958+ahybVr7HJhoRgUFFQ3FhxhYbSgtbOjRbOLS/mmXgA5jM+c+UqPh8qQyWSQyWSwsLAo93bGGPz9/bmYmBgWEhKCsLAwAWlp1NealmZ4efzEiVSlfYa9e/cCoOSAjb099f8uXWq457S2JsmxtzfNCf/Pfyjgu3+fgnBra4PI5LOzs5GbmwtLS0vDyfny8ujYCgrSLwlw/Dj1DNcS7u7ueOutt3Dz5k1kVHbMv/02JTekUjLVmzaN3LMtLYH//pf+n5UFnD4NbvVq6gEfMoQk5mZmdN0dMoQSDB07ou+QIdDpdMjKKmdClYUFkJkJuLggMTGRc3V1rd6608qK5nV36YLGq1fD6403cFunY5offqBrvb7qTGdn+n4oKqIguXHj8kcprlgB8fffEX3zJn7++WcxLCwMkydPZq6urnT7wYOkrlqwgCrfzyb4tm6l4PsF7O3tocvLg3b//mq70UskEvA8rwNQ/kXiGZRKpQzU3wxTU9P3qvVEfweoov07gEAADqf69fOXSCS7LCwsFOPHj5eWtK4gOJgSIDVMEIuiiN27dxcCWK5QKG4ZZueN/C9jDLaNGKnDaLXaxVqtdvuZM2f+ttXtoqIifY1Eqw9jJCtdsoR6+3r3pgXw8OG06Ll5kxaRfyEtW7bkMjIyavfaOm0aVabu3q3VpzEXBPiMGMFMR45kkZGRfLVGhRmatDQKwE6eBG7dIlfhL76ounKRkEAO139TnJ2dsfiJiZPtgwd0fN+9S1VFQ9OoUZngpcTgKTU1lf4waRI5V5cz0qlGTJ9Ofb29e1Pwt2kTVVpr2GdZEfXr10enTp2QmZnJRUREGGajGzYAo0frf/+BA8mcqxZp0KABAOD8+fPlX3Q1GrpW7tlD/09Lo8rxlSs0jiokhNQGgwbRT3Iy9VA/eECtO19/TVL/06efM/kSBAHFxcXl75SpKYRWrVD88OHz5m3Vwd8fOHIEBVevwj0xEdm+vnSc/Pqr/tf4336jY3faNEp6PDNHHADE9HTE9+2L34cMEY8cPSp07NiRffrpp5yLiwudF8XFZLSWm0vV6ReTZC4u5fbkN2nSBJ2Li4VDy5bpUAOvAGtrazWAllXdT6FQFAFoDcDl888/N1CvR91BqVSaLlEq+363bFnP4yNGRHYNDT3SqnnzYe+99555qeogPf1pVbuGhIaGCmlpafEajUZhmD038r8O/+8XjUiMGDFSZ/Dz8ys4e/ZsZn5+/tSuXbuaMAMvQA1NUVERCgsLIZVKodVqsWfPHu3+/fs5FxcX2NnZ1e6T8zy5Tnt5UUBgbU0LykOHSOqZkUGyxlp+D+Pj43H//n1dly5dai/gtrIiue3Jk1Tlrq3XdOQIcOYMhHHjcP36dSQkJIi+vr7sLx1JVyKXb9kSMDWlisXIkfq/5unTabZ7HTXU0wfGGNq1bQuXqVPZ7bg4sbBLF5aQkIAGDRrAoNeEoCDqyX2PimLZ2dlISkpCVlYW+vXrR6ZnpqYkIT506Gnfa3XJzQV++QXo1o2OsRYtSNL71ltUcfz8czJPM7D7vZubGy5cuACZTAbPl/V6EEWgc2dSTugrVU1Kosc0avRyz10JHMfB1NQUoaGhrFWrVs/3psfF0TVy7lyUjgbr1QtISSGVCGNUuXZzo+tlvXokGf/wQ+rp7tmTkjy3bpGzuZcXyfzDw3EZgLtKBQdv77LnmokJsoKDEWFhAY927WBmZlY6iq0yRFGESqWCKIpQq9UoFgQ4DhmCoPBwmD5+jIaCQJXqqCja16oC+cREmrX9ySckc+/dm45nAI8ePcLjHj3E5EuXYD52LJs8eTJzc3Ojx+l01K4UFUXJoG7dyt++uzvd9uI5eeECXL7+mu1v0IBr6OZW7e/CnJwcPjU1NbVnz55nqrqvn5/fQz8/v9xqPUEdR6lU+gQHB882MTHZ7ezsPKhbt26+rqNGWdp/+inz4DhesmQJKS04jtqLLCyqNiusgLS0NOzbt69Qo9G8rlAoMg38Uoz8j2I0SDNipI6jVCqtJRJJqJ2dneuMGTPMy4xXqQNER0fj8uXLeWlpaWZqtdrE09MT9+/fLy4qKsrU6XTOADBlyhS8EqO39HQgPp4kfoGBNMu1eXNaKNZCkLp9+3bExsZCoajlpLhaDfzwA1V89J3JXF0WLwa6dUNhjx7YvXu3mJCQwAYNGiS89tprf03kGhdHC+JDhyhRUtXs5fKIiqKgMC+v1hMttUZhIYTQUOQ0bowVmzeDfxLcjR8/Hs0NWeFWqSgx9STIWLdunZiamsoA4JNPPoFliQHY/fvA++/TCC65XP/t5+RQpdTSkiSed+6QjPn6daqitmxJz71+/dPJA3PnGmasGWhM2YEDB/DBBx+8/Gi+oUNJmlwds7gLFyiZUIvBNgBoNBp89913sLW1xaxZs+iPokjHf1gY8NprFEBevUpBqqtr+efGjz/SyK0bN8pWcUu2GRQE5OQg7O5d1FuxAnZvvw0rjYZk6EuXAllZOH7rli48PJx3i4lBVvv2uryCAr5t27YYOHBg6bFcdtMifvzxx1IDwZKZ7c2aNRNjY2OZp6srxhcV0RxxFxe6HnbvXvnotZQU+g64fZuOubVrSz+Lndu36yzPneMH/PgjTJ41ugsKAho2BK5dowDOxqbi7Scl0XXqWT8NUaRrT2oqTiQm4sqVKxg0aJDo6+ur98Xo3r17+OOPP5LVarWrQqGovRalOohSqXQHkODr61vUuXNnWanTeAkPHtCEgh07KEH3xhvkQ1DeBIcqyMvLw5o1a1QqlWrG4sWLdxpi/40YAYyVbSNG6jx+fn7FQUFBa1Uq1ScuLi6yWq8QV5PExETs3LmzKCcn5wudTrcDwNePHz/2Kioq+j9RFCcCWALAPT4+3qdr165/fXnR0pIWY4MHUz9qWBj13UVGkmTS1fWl5la/iI2NDa5du4aGDRvWXDKpDzxPVZoNG6i6begkzLVrVHX87DOYmpqiTZs2LCkpCXfv3hU7duxYu1FrYCAF+pMnU7WoRGJcExwdycHdze1vGWwXFRXhcv/+YJs2YYulJTRaLaytrQWJRKJzd3fn6tWrV3rf69ev6xITE1nDhg1ZjSreKhUwYkTpSKQ///wThYWFbMSIEXB9VpZpbU3Hm0YDvWSxhYVUQZw4kfqW33+f3ONLKqCZmXQefvopBdZyOVVY8/IoIG/RomaJFgCHDx/WXb58Gebm5iwgIAA9evSAl5dXjbb1HC1bAh060KgqfZk9m15XLbmRl8DzPLy8vBASEgIzMzNqBWjXjnrhS3rGv/iCqtOffVbxedG1K52DBw5Q4Nyv3/M+AYxRcOnlhYbduuGgvb1408pKbN22LWOpqfS5DR6Mx8HBnAXHYXRAALp8+CHn0rEjjp0+jfPnz6N79+7gOA7p6ekIDAzUhYSEICcnh+3atQsqlQpz585FmzZtUK9ePfj5+SEmJoY1aNAAo8aPB9+5M+3jli1Aaiq9txcukHqgvCA+I4PGJiYmUnvJtGl0LOfno8mwYdz57t2Ftr17s9IEQF4eVbQ7d6Z2gao8EuRyUgE8W7X//Xf628KFaNasGerVq4dDhw4xBweHqh3jSzcrx7Vr17iioqJwPz+/eL0e9DdHqVS2Cw4O/lQUxZ2NGzcuGD9+vLlleW7/cjnNab9xg1QaixcDHTtW+/nUajU2btxYWFBQsGzRokW/GeAlGDFSijHYNmLkb4Cfn59w8eLFDk5OTl4GnQ/7koSEhKj37t3LSySS/3755Zdf+Pn5Rfr5+aX26NFjo5+fX5ifnx/8/PzEc+fOyTUazWi/V+1obWFBC+TBgymIS06myll2Ni3EbG2rHt9TBZcuXUJycjL69++PWlchuLtT76RcThUzQ7J8OVXAnlTNtVotTpw4ITLGOGtra1y7dk0QBIGVl1AokX+a6uM6/CxXrlAPaUoKVUH9/QEfn5d7HYzRNk+cqD0FgAHR6XTYu3evYGtryxhjuPrLL8IZJyeW5e8vtO3cmbVt2xYeHh4sIiKCOTs7M41Gg9jYWOzbt0+MiIjg4uLiWPv27SGtSXKC5ykAmzkTYAz37t1jDx8+RK9evcqauOXlUW/kqFGVS/QFgczsOnUC5s+n4O1ZVCrqCf70Uwq6jx+ncxSg469nT0q2hIdTNbkaaLVa7Ny5k8vOzmYxMTEiY4yNHj365c/LOXPoWGrbtnqPa9iQHmfA5F5FyGQyREREiDzPMw8PDwqKBwyga2BYGFWAp0yp2kXd3JyUQKGh5Fh+5UqFYwebN2/Ozp0/L97IzxfTvb1FxxYtmNknn+BocTH4oiLRp317hsGDYdutG5rExyOlXj10vHMHUQ8fYsexYzAxNWUymYwlJiYKXbt25SZOnAiZTAZLS0s0bNgQVlZW8PX1hY+Pz9OKuKUleXQ4OpIigudphniHDmWv5TY2dC1YvZqSPSWfQ3IyTHJzEe3lJUZGRqJt48YMgwbR6/7xx9JZ21XCGLVHuLg8rYBnZFCy74mJo4ODAwoLCxERESG0a9dOr6QYYwxSqVSSkJDQPigo6Hc/P7+6YVZZCyiVSqvQ0NAtEolkWfv27bsMGzaM79Spk6TK1iVRpID7+++r7UAuiiL27NmjSktLO6jRaD585esUI/84qq+zMGLEyF+OUqnsaWpqOqi0h6wOkJGRgVOnTkkAbCkuLv6yirtfBICAgADVmDFjzF557zljVEl75x1y5j1/nhaTcXEkLxw2jCoZNZCiXb9+He3atUO5Wfja4McfyZQnMJBkrYYgL4/MkIYPf+7PgiCwvLw8HDt2TJDL5dyVK1cwc+ZMWFhYgOd5qFQqxMTEICIiAvfu3YOdnR2mTJkCm8qklyXPZ2FB/dVjxlDfsCFdmy9fpgX4m28abpsGRhAE3LhxA8HBweKjR4+4u3fvQp6YiKlbtnBeoaGw8/YuXW2uXr1a0Gg03OnTp2FmZqaTSqVwc3PjXV1dERMTA6saVoFhYkI+AFotIJHAyckJN27cgIODQ9n7dupE51FCQvmjjA4fpopefDxJ+StKBp0+TUqTr74CoqPJ6fndd5/ezhjt040bwLZtFKzq2W8dFxcHgAyqpkyZYpiLjiiSDLkmI4VCQqjC7+JikF2pjMjISKhUKrH/48cMnTvT9Q2gc2H4cFKuPDFTqxILC2DFCvp8PvqIqtxDhpSpiJubm2P27NnchQsXcPv2bURGRmLcuHEwd3DA7ZwchkWLSGFy7BiYWg2zHTvEqIAAFtW0KWbfugVrjmM4ehTYv5+Hs7P+PgtSKSXmPDxIPeDjQ7O5Fy6kQLcExuh4bNaM2iUKC+kzOXkS7JdfMDQzk9u9eDFSOnaEs48PtZ9UN2m1dy9VVt3cyJDNxoYUHc/w+uuvIywsjFu2bBkWLFiAU6dO6a5cucJzHAdBENQ+Pj7MycnJ1MLCAvXr14dUKkWrVq1w7ty5Fjqd7qpSqWz9T5STK5VKW4lEcqxp06a+w4cPl+qdFPvxRzqvjhyp0fNevXpVvHv3bqparX5DoVAYe2uNGBxjsG3EyN8AmUz2Vd++fc3L9Cu9QqysrGBjY6MpLCyULVy4MK2y+yoUinilUml98+bNx5mZmeUv3l8VjNHs09dfpyrb1askSzxwgBb23btTBauKRVdRUREuXLggiqKIwYMH/3XZBImEpJELF9LYHkNw8iQQEfFccGpiYoIvvvgCmZmZsLe35wBg165dwooVKzhBEODl5SXk5ORw6enpJeOVWFZWFgRBgFarhVqtRl5eHurXr4+HDx9i3bp1GDVqFLwsLakKtXcvPWdtGJnNmUM/dZTCwkIcP35ciI2NZS1btoS1tbXO9O5drt6AAcx88WKYvxAUTZgwgYuOjkbbtm1hbm5eGvUVFRUhIiICOTk5VSc4KsLPD9i4EY88PREYGFi63XJnU//73yRDfjIeDADwwQdA06aUxFqyhP5WmeqiWzfg0iX6fcQI+nkRW1sKmhYuJPfpkJAqjxNBEHD48GE4OztjrCETN1euUOKmJpw8CTg4lD9yysBotVrIZDJR1qsX9b8DZGzm6UnvdzmBtlarhckzCcaIiAhcv35d5DgOPM+zR48e6Tp+/z3fxdeXqtyrVpUxyZPJZOjXrx/69OmDffv2YevWrQDo+gHG6DNs2hQutrYY6uHBLl68iEE9esCa4yihUlhICZhHj+h6fP06VYtv3yb5fWUJxSZNaDzZmjV0LVm+nJIKc+Y8TQzY21Mw3r07/X/fPur3BmAfG4upO3Zgl7U1+i9cCKeajNa7fPnp7/v2lZvgk8lkePfdd/Hbb79h1apVYl5eHq/RaABgJ4DlERER/W/evNmMMeYpCEJTnU5nJgiClOf5AgDXAPzjAsIngfafbdq0cRs4cGDVlexn+fNPUmnUgPT0dJw4cUKl0WgGKxSKv+3UFyN1G6NBmhEjdZwlS5YMNTMz2/nRRx+ZVVuWW8sEBwcjMDBQp1Ao9ErcffvttysdHBxmjBo1yrxW+5kNQVYWcPYs8Pgx9d116ECBhZNT6UJfp9MhNjYWGRkZCAoKgkwmE8ePH89Kx5D8Veh0T8ed/OtfL7+95ctp9nGfPlXetbCwEPHx8di3bx/MzMzECRMmsEaNGmH37t1CdHR0mRVTv379EBkZKVpeuMB6nT2L+9u2ISUoSByhUNSuy3n//kCrVvQ+1REePXqEPXv2CBkZGZxOp8PYsWOpn1irpQBVqSTDHz2JiIjAgQMHMGbMGLRs2bJmTuXbtwO9euF6WhoOHDiALl26CP379y//g9FqSYEwdy49btUqCobd3Mgxvuodps8lOfmpisTNjRJeFV0fVCqqrtrbU5KpnNeYnJyMY8eOCcnJydzChQsN185x/z5VT1NTy0jBS1oneJ6HRqOBubk5GGPPfwYlveu1fB1XqVQ4sG+frteSJXz9ffuov1yloiTIihVlxpUJgoCAgADh9u3bnKOjo+6NN97gZTIZli1bJjZv3hwWFhZiWFgY99prr+Hq1atwdnZGz9u34d62LThHR0oeVBCYrl69Wnz48CFbvHgxvReiSMHzO+9ULWF/+JCuwX36ULuClRUlcQICKIC2sSGDt/LM7uLigF27KBHk4kLjzHiejrVt2+hztLN7mgj66CNg7VrkPnyI0zdv6m7dusWbmJiIVlZWgkajAcdxooWFhYm5uTlGjBgBWUWB+Jtv0rE5dCjJzyvxWElMTMR///tfmJqaXtRoNBMUCsX98u6nVCoZADOFQlFY+RtW93iy7xYKhSK/kvvYcRx3w9vb22HkyJGmel+37t6lUXTr1tVIhaZWq/Hbb78V5uXlzVy0aNHmam/AiBE9MVa2jRip4zDG/H19fWV1LdAGgGbNmiEwMJBXKpWtFApFVFX3V6vVHz18+DB75cqVX0qlUo2lpWVRz549LVu3bl33nKvs7GiBB9DC6cgRGklkbQ10745CV1cExMQgMTERAODl5YWxY8e+mtfB8ySjXLCA/n2ZntCICOqbnTtXr7ubm5ujVatWaNmyJUxMTEpf/5gxYzg3Nzc4Ojri7t27yM7Ohk6nQ9Kvv8IaYBI3N0S0bo2wM2cAjmNNo6Lg7e39XGXNoCxc+JfIdytCFEUUFxejoKAAWq0W9evXR05ODtLT07nJkydDKpWiUaNGNMro3j2q3lZzf/fv3w8ACAgIwPjx42s23srMDHj4EPInLuOVzozPz6dAKDmZZMr371PQoi9yOfWIP/uZjx9fuZGdmRkFXJs30/vk6FgmaNuwYQM4juOmTZtmkEBbFEVSCzRsCGRlQcNxgFqNtLQ0pKSkICMjQ3f79m1OpVIxgMZvMcZQv359YfLkyVxp//zIkXRNeVYmb2Di4+Pxxx9/AFot30YuF+s3bMjyk5Nhnp+P1F27UL9zZ5gAOHbsGCIiIkS5XC7m5+czc3Nz9t577+HUqVNszZo1uhkzZvAA0KFDB+bm5saio6MFe3t7burUqbhx44a459Ej1tzUFAMWL0ZGcTEerlkDDw8PxMfHw93dHUePHhXT09OF9u3b80FBQbh8+TI6duyIY8eOwe+nn2DeujX14ldGvXo0Eg4Azp2jf1NSKAiXy8kDIDiYzpXvvgMmTCA1klxOUvEFCygBGRhIVe+LF+mYXbyYAnUTE+Cnn0gmb2YGWFlBbmeHUZ6evCAIuHfvHktNTeUtLCwgCAJycnIQHx8vrF69GrNmzeLKPbaGDHlqBrh/f4XBdlFREQ4ePFhoYmLyzeeff760srfhibT5bxdoP8EfwJHvvvvuRFFR0T4AVwDcB/AIgCPHcRNMTU3/7eTkZDFs2LDqjTc9d46SSDX4zniSYFKpVKqDxkDbSG1jrGwbMVLHWbZs2Zn+/fv7tauj5k6//vqrLjs7mwEw0bffacmSJdNEUdQAaMjz/LdffvllDRogXw1F167h6Nq1aB4cDOvcXOQtWADvkSOr50pcW+zfT4Y8T9yka8RHH1FVuxoVVb1ISgIcHPCwb1/csrISm2/axGxsbFBcXIxff/0VANCiRQuMGzeuwnFAL83ateRAXBN5qJ6o1WqEh4eLWVlZuHXrFuvfvz+0Wi1CQkLErKwsBpCktl69esKjR4+4li1b6kaOHPn0BU+YQJ9hDaTKcXFxCAwMFNPS0tjgwYNx48YNYcSIEVy1JOXDh5NcV6lETEwMdu3ahX/961/PjxjLyaH38OefaeSOuzuwcmX1RloVFNCx9ttvz1d6U1Io8NFnNNeCBSTNDgkp/UwzMzOxcuVKdOzYEf7+/vrvTwWIooj9+/cLbNMmruflyzjx009CbGwsx3EcZDKZYGlpKdrY2PBeXl7w9vaGVqtFVlYWkpOTcfbsWaGoqIiTSqXgOE7sfOkSOsyezWS9er30fpWgVqvx559/wtPTE7GxseKZM2fYv3JzERMdjfCOHdGrVy80mj4dBVZWODJhAgRBgLm5uU6j0fDDhg1DVlYW7O3t0bx5czDGoNPp8Ouvv4r5+fmsdevWumHDhvGMMWzcuBGNGjUS+/XrxwA61rZv3w6e49DUwkJssWULy5PLcWXIEDE3P581a9ZMkMlkXHJyss7Hx4e/cOECeJ4Hz/Mkb5dIhHdnzuRfWs2i1QJZWdBt2oT75uZwj40lv4CTJ6mK378/Xc+++grYuZNGQK5fTxXRffvo97t39Z7moNPp8McffwjZ2dnirFmz+DLJQa2WkkAFBaSkqYB9+/YV3bp1a5dGo5n+T+4TViqVr1tbWx99/fXXzePj4wtTU1O1+fn5ErVaLTM1NS1u0qSJtmfPnhbO1fUbUSqBSZNIrVEDBU9gYKDm8uXLV9Rq9esKhUJd7Q0YMVINjMG2ESN1nGXLlgV37dq1c8+ePetkQBoWFoajR48CgKlCodBW57FKpdKVMXZ3/vz5fI3ck18B58+fx9mzZ/HxRx/B/N49cPv2kWSxxGV41KjqzR42JJmZFIDMmlWz8UJ5eVQxnDSp8nmy1UEUKXj08KDArJyZyeHh4cjNzUVYWJgoiiJr0aKFzt/fny8oKICdnR0MJi93cyO5cy32zG7cuFG4d+9e6Q7LZDKxqKiINWrUSDd+/Hg+NTUV9evXR0hICHx8fKiaXUJMDB1DVlblzzWuArVajW+//Ra9e/fGnTt3hPT0dE4mk4lz5sxheisGcnPJn0AqRW5uLpYvXw4AWLx4MZgoUguFqytVZ7/4gh7z66/kHP5C/26lBAWRA/nVq8//vUsX+vnpp6q3IQjUI5uTQxMFJkzAlStXcPjwYfTu3RstW7bUyx8iJycHcrkcHMchMTERxcXFyM7OFpOTk4W4uDie4zjh7eHDuej168UrLi7C9OnTeXNzc71UGIIgICEhAYIg4PaqVcIjCwvm2Lmz0K9fP75CKbIeZGZmwtzcHDt37hTu37/PCYIAMzMzYdy4cZz7jh04HxQknuvWjTk/fIg+48bB0dcXFtbWSElJwYMHD+Dj41N+Hz6ovSExMREdOnQolcEHBwcjKipKmDlzZumx/fjxY5iZmUGtVuPi//2frl1cHO/4xRfQSaXgGzdGWloatm7dKmq1Wjg5ObG8vDxx1qxZTK1WQ+PggIyvvoL7Rx8hJiYGR48e1QmCAAs+/tkAACAASURBVI1Gw/Xp04e5urpCKpWisLAQpqamFY7JEgQBgYGBuHLlilhcXMzGjh0LrwYNnnpZWFtT8mbLFkpCfvQRUFxMx/HOnUD9+nS95jiqkmo0pJa4d4/OhWbNKAEkk1EfOQBto0YI2bBBREaG2G3mTI5PSaHrZUwMVdFPn35q+lgOWVlZWL16dYFWq3VRKBTZNT4I/gYolUpznucz586dK3t2ooEgCDW/rqelkddDSAh9ftXk/v372LJlS65Go/FUKBSpNdsJI0b0xxhsGzFSx/n2228P+/r69vH396+9clwNEEURQUFBuuDgYB7AmwqFYkNNtrNs2bIzHMd1ASDOmDFDpu/s0VfF4cOHhcTERHH27NlPkx9qNRAbCxw6BPznP8DHHwNeXuRKW1VfoqHZu5ekkpMnV99sLCCAgpcffjDMvhw7RpLfmBiSR+vRp/9k4S0UFBRwOh1NuBk+fDh8nyQPBEFAbGwsXF1dKwwWXiUXLlxAUFAQAGDu3LmlcuwqOXaMHJTj42sUaAP03qxdu1b36NEj3tzcXJgyZQq3Zs0a1KtXT9TpdBg+fDhzqUqavmIFmVGtWgWtVotffvlFyM/P52b07AnXoUNJwqtWP5+MyckhT4PISP2P94QECtpfVDFkZNA2qvPZnjkDvPcedBcu4OtVq8CZmJQu5lu2bCna29szd3d3WFtb486dO4iLi4OlpSViYmKEJk2acNHR0bC1tRWcnZ252NhYcByH4uJiyOVy+Pv7w/P8eUpATJum/z6VgzB6NOLc3XHUxUVs0aKFMGjQoEoTqAkJCTh69Cg4jhP69u3LSaVSmJmZ4dKlS7pr167xAGBubi7MmTOHu3HjBny9vGCyZAnw7bdITUtD+vz5oldwMJPcuVMz9/RnCAoKQkREhDh37tzKy4jr1gHffkvjxRwcIIoiwsPDxaNHj7LOnTtjwIABAICwH37Qnc7P5yGTiaIosm7duon29vYsOztbOH/+PMdxHHQ6HXQ6HXiex8iRI+H9wgiukJAQBAcHC2ZmZszf35/FxMTo0tLS2Jtvvvn8hU8UyUmd56klKD6efu/e/emMZo6ja5SFBSVOg4LIr2P0aEqmWlnRsW9pCbRpA92VK7gRHCzec3cXB7drx3EODsCDB3S7t3els56vXLmC06dP75s/f/6oGn4cfyu+++67g/369RtqEHXexYt0jRgypEbHtFqtxooVKwoLCgqmLF68eG/VjzBi5OUx9mwbMVKHUSqVnImJSc9OnTq9skBbEISyRj8gc5cngXZrffq1K6K4uLg/gM6MsVPFxcUvube1R25uLnbs2CGkp6dzY8aMef5GiYQcbn18gHnzSM597BgtDDIzaZRYz56147T9IiNH0vgsR0fq364OubnVnmVcLuvWUQA2bhw5A1tY6B1Aenh4oHnz5ty1a9cgl8sRHByMAwcO4MiRI7CzsxMfPnzIGGPgOA5jxoypXl9yVBS5XcfH1/CFlSUtLQ1Xr17VNW7cmGvevDkLCgqCXC7XtW/fntc70L53j1zAL1yocaANUK/wzJkzebVaDYlEwuU+caF++PAhA4CLFy+id+/e2LZtm9irVy9mb2//fGUdoHaIzEwAJHd/99EjLu7YMdh+/DHJbssLhG1saIZzQIB+Aen168CgQUBiYtkF8+3bZIr1ZVXTBJ+hVy/g5k3kr1iBCdu24cLMmcKDvDyuf//+iIuLE+7evYvLly/zGo0G1tbWQqNGjZCYmMh4nucePHgAALC3t4dardZNnz6df/ToEQ4cOICRI0fC3d2dXP4NMMqPW7gQLRo0AFdUxHbv3s0PHDiw3OpeQUEBdDodQkNDdRkZGby5uTm3Y8cOmJiYiBqNhsnlctapUyc4ODjAy8uLk8lk6NChAwWNhw4BS5bAKT0dTqtWMRQUvFSgnZKSgosXLyI2NhbDhg2r+gHvvAMMHkxz0devB1u3Dh06dGDm5uZo9syIuNfmzePbfvghHo4dyxw6doREIin5guF6PBnXJQgCsrOzER0dLezevZsLDg4We/fuzQoLC3H69GkBABs0aBDn7e0Nxhjs7e35VatWPa2aarX0noSHUxKybVvav759KaCujCqMJvmBA9FSrWZ/btokrtVqde8OH663JD49PV1TVFR0uep7/jMoKiraf+fOnd7t2rWr+cWthPnz6fv0hbGU+iCKIg4dOlSkVqsPGQNtI38lxmDbiJG6zUitVmtlMDfdGvDVV1/B1NRUmDt3Lrdt27YiR0dHcdiwYWbPzJEuepntKxQKDYALS5cuzcrLy3MCgOLiYtQlWbkgCFi+fDlMTU25efPmVexEC5BZy5gx9JOdTQHUihUkX37tNZK/eXrWqM9MLxijfsQvviDzKn2PnZs3qX+xZB5vTbh4kYyI7t4leZ+7O/1UE47j0L59ewBA06ZNkZGRgZSUFMTExDAPDw84OjoiLCwMO3fuBMdxGD58uCiVSpmbm1vln03LlhQMiqJB3v+ioiKsXbsWtra27OrVq4zjOFhYWAhz587VP7rJz6eZ1Rs3AgMHvvQ+ASg1BZPL5ejcuTNCn3ymMTExiImJAQBWYqamUCgAUNLgzJkzOkvGMGTcOF49dizY0qW4zJhQ4O3NtbG0BPr1q/hJ//1vcpnW6aoO7ho0oGOtvGMzJYXGa1UXnodk2jQ82rMHg19/nasnkYBr1QqdOnUq3RlRFMEYK42IUlJSsG3bNrFJkybChAkTeI7jIIoijh8/Lnh7e3Pu7u6UoPnqqxqZMJXhyBGgUyc0GzgQjDExPj6eJSQkiD4+PqykZzUpKQlbtmwBYwxNmjSBVCpFjx494OvrWxqQcuVFdQEBdL5HR5OSZOBAOh+bNq3x7p46dQp//vknGjVqJEydOpVzcXHR76Rp2JCMwQ4eBDIywKKj4d2zZ5m7mdy5A+e8vAqvURzHwd7eHj179uS8vLxw6tQpISAggOd5Hr1792bt2rVjz/o72NrawlouFy+vX886d+lC/gcODjRNYsAASmjNm1d1oK0nEokE06ZN49auXSvu2LFDnDhxol7vT2FhoQCg7szxrH3OJCQkcE/Ov5ptQa2mpNfJkzVWi4WHhwuxsbGparW67Dw2I0ZqEWOwbcRI3SYUoODT0gCVleqi1VILtkaj0Xz//fdSxljBgwcP7FUqlfr27dsSxliqKIp3DfR0n+/atWujXC5X5ebmmrm7uxcOGTLE3M7OruZf0AYiNZXauj7++OPKg7kXsbWlLPywYcCdOyR3DQwEPvmE5gbPmWOQilkZWrakqvaXXwLff6/fY9avL3cmrF4UFFD/7MiRFDQuW1az7ZQDx3GoV68e6tWrVyolB4CWLVvi8ePH2LFjB/bt21cS6IpNmzbFgwcPMHnyZGb9oiu7iQnw3nsQQ0Px+40boqurK+vTp0+NHdBv3LgBAGjWrBnXt29fnD59Gt27d9dfvqBS0SLyyBGDBQAvMmDAAAwYMABLly7Fk1m+8Pf3R0FBAS5duoSsrCzcvHkTgYGBkKhUvN+ZM9A+fox4xhD644+47+zM9Xz77arPQQcHqoifPFm5oiIvj1oLdu8u//Zx4546UFcTM1tbpHzwgaDev59rsGMHKUyekR6/+BqcnZ3x6aefMgClEVtWVhbu37/PDS1RePTpQ+PiajjH9zkiIshhG4BUKhXOnTvHp6SksMuXL0MqlcLa2lp49OgR1717d3Ts2BE7d+5k9evXFzp06MBVeYx+9RWpSfr2pecIDn6pQFsQBISEhKB///5o37599SU5ZmZkfpeQQB4Sn31W9j08epTGoWm1VSYzHBwcMGHCBL64uBgcx8HU1PT5DzMpCTh1Cv9KSmJZJ0+KqF+f4dgxalXYuJGSQFFRBm/rkUqlmDp1Klu3bh3Cw8NJYVAFcrncBECWQXekDqNQKBKWLVuWlpiY2Lhxyai16rJhA/3MmFGjhycnJ+PUqVOFGo1mgEKhKKjZThgxUjOMwbYRI3WbFI7jik1NTV9JmVelUpX86gmgvyiKOwA4xsbGjmWMCaIo/q5QKHSGeK7PP/98k1Kp/DM3N7cpgOj79++HrFy50nzw4MF6LWBqC7Vajf/+97+oV6+eIJPJaq4Db96cfkSRqiwHDpARmY8PSczbtKGKn6GYMIGqWzExZE5WGbm5JDufOLH6z3PqFEkuY2OpKllbo7tewMTEBPb29njzzTdx7tw5dOrUCYGBgUhOThby8/O5vXv3CuPGjeMsXpBla374AapDh5AyYQJLSUlBaGgoTE1NYWNjIwqCACcnJ2HQoEG8mZlZpc+fnZ2NI0eOACCTQGdnZwwaNKh6L2LECOpj37ateo+rATNmzEBCQgKkUinatm0LAIiKitKtWLGCl6hUkBcXw1GtFj1jYtjR0aNx3dW19LGRkZHoVZWDNmM0tisvr/L73bxJio+KlCvFxVQVzc6usOJZWYUsKysL9fv1o8BOpyNDrB9/1Ou41Gg02Lx5s8gYY2ZmZnSuJiYaLkDbuLH0NTVq1IiPj48Hx3H44IMPkJWVhTt37nDDhw9H/SemTzNmzKj6elNQANy6Rf3yWi1dYz77DJg586V2leM4vPbaa+KZM2fYqVOnIIoixowZU6ZvukoaNyZ1T3Ex9UgvWfL8yK+S/f3wQ70295ziKSuLnMfr16eAfvBgmH78MfbY2bHPR4yg+4gi8McfNF2hljwebGxs0LRpU929e/d4fb6rNBqNAOB/ygFbFMVTaWlp79Qo2A4MBMaOpe/LGny/FBUVYceOHYVarXa6QqG4U/0dMGLk5TAG20aM1GEUCoW4dOnSrISEhHpt2rT5y93IT58+XcTz/L0vv/wyEcC6J3/OBWC40uUzKBSKWwBuAYBSqWwIYNyRI0e2N27cGPZ6mGvVBrdv3xZFUWTvvvuuYRquGaMF5qefUiBw6RIZ70yfTovBxYupImVl9XLPY2kJbNpEI1I2bHh+vNKLHD1Kcubq9Av/8ANVilasoHmnr+jzkclkpaZLo0ePZgB4tVqNLVu2CCtXrsTYsWPRpEkTAMCDBw/wh709TN5+Wzd6wADex8cHN2/eRFhYGERRZK6uroiKimLff/89mjRpgokTJ5YZQ/bEMfm5XlsHBwedp6dn9c7Phw/pPXyyb7WNk5MTnF4YT/f+W2/xj1UqFHfsiBwbG9EzLIz9x8dH67NliwlcXCCVyWBpaSna2tqy7Oxs2FY1jqtnT6B9e3pNFQVlHAecP1/xNqRSUmOUY96q0Whw9epVnD59GiYmJtDpdBgyZAh0Oh3c3d1ha2sLuVwuZmRk0L5kZlJwHxpKBm5VqFI0Gg1yc3PZO++8A8viYmqBiI01XJA2Ywbt10cfYcSIEThy5AhcXFwgl8shl8upP7y6rF5NHgkREdT7f/IkXV8MwKBBg9jAgQMhCAJWrVqlS0hI4Ly9vasvMyox05s2jRIDlpY0LUEioetfdebJa7WkBDl8mBKVSUmkhIiNBTgOllottDod1Go1JEuXkoP46dPV3uXq4uDgwCIjIwUAVX5PSKVSnjH28v3LfyN4nq9fI0PLzEwy+zx4kNqwqokoijh48KBKrVYHLF68eE/1d8CIkZfHGGwbMVLHEQRBSEtL49q0afOXPee1a9d0Bw8e5AHIAPz2lz3xMygUCkGpVO7jef7g1q1bB86aNUtSU7nvy3DhwgWxY8eOzGDjp57FxITk5ACZCl2+TIFxXh4tyhs0oFFZNTU4atqURtf85z/Ae++Vfx9RpB99jdE2byajoXr1aN+sremnDiGRSPDmm2/yJ06cELdv384sLCxECwsL4dGjR7y7uzsmnjzJw8QE8PGBl5cXvLy8Sh/r5+fHrVmzRrx79y77+uuv0a9fP/j6+iI0NFS8desWy8jIAECV9YYNGwqTJk3izMzM/p+9M4+P4X7j+GdmN5tLEnKISIgjJEjcQtw3pe46WrRUHS3V+lWpK9stqtRR2mpLqSpp3LeWiMSZkLiTEEfIidznZq+Z+f3xJAQ5dpMNofN+vbxIdvY7M7s7az7P8XkMe4P++IOCKsUZhL0sNBpI7exgFx4OREejtlTKAEDPPn2krp9+ipPdu6Njz56cjY2NJCAggN+wYQP74YcfwtTUFCEhIXx0dDSsra0xbtw4ViqVQhAEcDwP6YQJdGNcnNi+du2pu3NpXgI+PlQSXZDhTUpKwu3btwurELjBgwdLZDIZwsLC+P3797MMw6BatWrChx9+yPA8D5PCwJKdHXDsGFV3tGhBvgmllOvnFGTlQ0JC+OFvv83iu+8oy24s3n6b/BpAn58h5TB5eobYWArazZpF1SVKJQlRI8KyLFiWRZcuXSSHDh2CUqlE9erV0aFDB/2d9guZPJn+HjyYgnsnT1KZ98SJVFVTmifA5cvAnj2UKT92jAyyRo9+IYgolUrBsixyU1Jgq9PRKMaXgLe3NxsaGoqoqKhnvk+Kw9HRkTUzM+v0Ug6s6iAxuB0sLQ14+BC4cqXcVV8RERG4d+9eskaj+aRcC4iIGAFRbIuIVGEUCoUtAMe6deu+1KblK1eucAzD/C0Igh+A4Je57+fQcBx3ITMzc3BOTk7ZmbVKoH79+nx4eDijUqkwaNCgynsfzMxIYBdm5G7fJgfdzz8H5PKnbueGiH6GoazA0aNAYiIZFz1PVBRlEp+fd/w8Dx6QU/WyZbR9BccgvQz69evHeHp6Ij09nUlPT5e0adOG+r4zM0vsZ2VZFp988gnD8zwOHz6MgIAABAQEAAADAF5eXkhNTcXDhw+RkpLC/Pzzz/zs2bP1f1MyMkh0tW79aoT2n3/SXOxLl8iluYgo5nkeGZmZ2D5/PgSJBO7u7hJHR0e0aNGC3bt3r7BhwwZGEATUrFlT6Ny5s+T48ePC0qVLMXfuXAQHB3MXLlyQjBk9Gu4rVwKJiUgQBFhYWMC2ULC6ugJ+fshRqxF29iy8vb2L96J4/30SX/PnIygoiAsJCZHY2tryAwcOZL28vJ68aO7u7qxKpYJUKoW/vz//448/SjiOkwwvKrAYhgSury9Vbhw+TK//c2RnZ+P3338HAOReuiTgzBmgYMa40XB2ppnOxiA/n87r8mXq+1+9mvrmK4HAwECEhoY+cWxPTEzEjz/+KGnbti28vb0N/14+cICy8AsW0PeZjU2xlQzIywOWL6fee4WCMuADBtC87FIYERjI83v3smV+pxkRMzMzyGQyIS8vr8z/I5ycnMBxnNfLOK6qAs/zXraGBq5Gj6ZgzOZyTRWFUqnEkSNH8jUazSi5XK4s1yIiIkZAFNsiIlWbbvb29qomTZpUujtaWFgYd/ToUUmNGjXUGRkZpgA+k8vlr9rExRbA0hEjRrwSoQ0AAwYMkDZt2hR///03PDw80MhIJZqlYmdH2T0fHzI58/MDfv6ZyloZhnp99R151bAh3cj++Scwf/6Ljxf2M5aUdRAE6rkcNowykzdvlvu0XgXOzs5wfj7I8Mkn5NrM8yUGL1iWxeDBgzFgwAAkJCSgbt26T0rH7927h23btkGj0TBmZma83gfz6BFlWAMD6e+XyUcfkXFZr15P+x6fyz4nJCTgyJEjmLJxIxJnzhTs7e2ffCiGDx/O6HQ6ZGdnw9bWVgIAnp6ezE8//cStXLlSwnGcxNXVFXv37cMQQeBtv/+e3VSjBtzd3fnRo0ez106fRp1JkwT1sWPMPzt38snJyUxkZCSmT5/+YtXIlStPMpa3bt1iHBwc+MmTJxf7RhUaFo4bN06iVCqRn59ffMvJ2LHA48fAokXkLTBlCgAgNzcXV65cwfnz51GjRg1u1KhREvPAQEml9NH/+SeVs3t6Vmyd/Hwqt3/0iEZ9LVhA2XtDzBsNIDQ0FEOHDi3s15YAwM2bNxEUFMSHhYWxUqlUMDU15WvXri2pX78+nJ2dUa1aNVy+fBk3btzgtVqtUNCOwbRp04ZGe7m6Uh/u6tXUx/34MfVgCwKVlm/fDjRvTsGJHTvI9LEseB64fx+mw4axBx4+5CYVMb6rbOLj46FWq59MUSgNOzs78Dxvo1AoHOVy+eOXcHivFIVCYQrAtdCLQC9u3CDTTkNaDIogCAL279+vFAThD7lc/p8ZsyZSNRHFtohIFUYmk43z8vJ6KTbkDg4OEgDIyMhYCmBHFRDaAKAGgMePHwtNmzatnFJuPahXrx5at27N7dmzhx04cCDj5fUSkxI2Nk/NjuLjqf9wyhSgY0e6ce/YESgYG1QikycDX31FjuhFgwXZ2WRcVCA8XmDpUioJPneO5h87OBjnnKoCHTpQxr+wjL8EpFLpC720RXsPmzVrpt+HMj+f3sstWyoutvQlO5vGwK1YQVUJ5uaAiwsJz2LIysoCAGS0b4+2Awcyz2fepVIpimanZDIZPvnkE0lycjJsbW1RrVo1JCcn45+NGwX7yEjOzNpacvfuXXbz5s3QXb0KOysrZvO2bZBKpezcuXOxZs0a/rfffoOjoyPfp08fiVWhT8GePZR5//57jB49mv3xxx+hVCpRVs+nhYVF6ds4OlK/eG4uBay+/x6PWRYnT56El5eXMHz4cAni48lYcPRoPV5gA1m0yDgtFwMH0rXo60tBsK5dK01oZ2dnQ6fTPTMjG6BpAE2aNGF1Oh2SkpKYmJgYSWRkpPDo0SPk5eUxhc73Xbp0YTMzM3Hjxg0AwPnz54UuXbpQEKdlS2pL8fcnQ0cXFwoE7dxJhmcdOxpWyTNpEhAdjbqnTyPjhx8kfn5+/DvvvMO+jNGZiYmJsLGx4VmWLVPgMwyD+vXra+7cufMWgC2VfnCvHjOWZbVardbEpDTvkEJ27aIRbVFR5TbcvHz5shAbG5uk0Wi+KNcCIiJGhBGKK90RERGpEixbtsy/U6dOo7p27Wr08uX169fna7VaDgAEQZBkZWWZy2SyWxqNpqtcLk8x9v7Ki0KhaAngCgB4eHho3n77bZlOp4MgCEhNTX3hJrCy4Hke27dvR2pqKj9r1qxXo/qLcvYsiWATE+DqVZoh+8EHJZcmBwZSOd6mTU9vzLdvJxG9ePHT7QSBfvb2prJbjYayoW8aanXJjtil8OjRI8TGxqJatWrYvXs3JBIJFi5cWPqTBIGcmLt1A779tpwHbADp6ZTp9PIiw7KwsDLLlxMSErBp0yYAgH1KCibOmAELfasnimPqVPA9e+KWlxcuXLggNIuPF7znzWNPnDqF6tWro23btkhJScH58+eRnJzMJycnsx4eHlyPHj0ktidOABcugFuxAidOnEB0dDQ3c+ZM42UpBYGCT87OwPjxUKxbBwD45JNP4DBxIlV5HDpktN09YeFCek8qIuQFgVoR4uIoKPDPP+ShUEksX75csLS0xPTp0xlDem5VKhVYlkVWVhY2btyInj17wtvb+6mxoCAA//5LAYOQEBLaHTpQFtvQ6zI7m8YqNmtGvb3VqiErKwu7du3iU1JSmEaNGqFv376MwT3mBvDHH39wzs7Okr59++q1/eXLlxEQEHBo7ty5gyvtoKoACoXCRiaThTdv3txl4MCBZUeEEhLo/53k5LKnaJRARkYGfvnll3ytVttWLpdHlWsREREjIma2RUSqMBqN5k5SUpIaZFRmNAr6Tc0BvAvgMei7gNNoNEFyubxKReDkcvlVhULRAUCNW7du7b137x4AqLVarSkAzJ49G8+Pd6oMWJZFnz59sGHDBlan05V7NrPR6NyZ/qjVVHa7fz+ZBnXpQpmuli0pk1lIr17Atm0k0nv3pptdmYwyfIWcPElrXrhAWfMysr6vNbGxwMyZdMNvADt27BAyMzMZe3t7eHp6IjExUUBBP3eJ5OcD8+bR+1KZZGaSqF60CIiIIJf46Ogyn7Zr1y4hKirqyTmMj42FxR9/UL9seRk/HuzRo2g6ahSa6nQMvv6awbx56N2795NNHBwcCk3C2NTUVBw8eJD5+eefUbNmTaHftGlMwObNfGpqKjNgwADjlgMzDJ2bRgPB3R3tGzdG6vjxcHBwoH5iTSVNZXr0qOwqlNI4e5au8atXKVBw6lS5BYk+xMfHQ6PRMOPHjy97zvpzREZGcuHh4UxKSgrbuHFjoUOHDgweP6YWmaZNafrC22/TiLa8PPKUYBjDMtmFfPUVBQ0DA5+0w9jY2OCjjz5i4+PjERwczK1bt07SvHlzYfDgwZXiu5GVlcW2b99e7+0bNWqEf/75p7dCobCWy+XZlXFMVQGJRDKrUaNGLgMGDCj7HiY7mwKSP/ygv2HncxS4jysFQfhWFNoiVQVRbIuIVGFMTU0969SpY1ShnZeXh61bt6oZhpnm6+vrb8y1Kwu5XH4BABQKRSedTjdNEITNAC6bmJjEBQQE2LZo0UJmZ2dnuDuugTg6OsLOzk44ePAgM/wludyWiakpZYQ6dACyskgwR0dTxsjNDZg7l/reJBIaEeTtTW6+yclUXnzxIgn2qCgqLz592uiOxlWSWrXotROEkvvViyE7O5txdXVFWloaIiIi4OPjU7rYXrEC+Osv6kGsbNzcgFWrqL9fTw4fPsxHRUWxAJVhv/vuu7AePbp0t3B96NyZvAaOHqVAz6FDpY6fs7e3h0ajQZ06dXir7Gy4NGnCSDZsEObOnctWWvuITIa7P/2Eh3v2oGtsLPUFy+Xk7F0ZfPttuaopntCpE1Wj9O9P467kcuMdWzGcPn0azZo142rXrq13sIPneZw8eZK7cOGCpEmTJpjQuDFMGzZksGIF8N139L3z8890LhYW1Jf9zjs06vCPPww7wJgY6H7+Gf7NmvH5zZvDws+PHTJkyDOme3Xq1MH48eMlt27dwt69e5nBgysnkaxWq5lizf5KwMrKCu7u7oiOjv4SwKJKOahXjEKhaMGy7Hxvb2+TMoM1HEdj3X75haZclJOoqCgkJSUl63S6FeVeRETEyIhiW0SkCiMIQiMbI/T4RUdHC4GBgflKpZLJy8szZrqzsgAAIABJREFUl0ql//j6+m6p+BG+XORy+RUAUwt/VigU7aOiov66du1a16ZNm6pHjhxZgTvZsmEYBlZWVrxUKn1F85rKwMaGejgBGq8THEwZ1erVSfA0aEBmSl98QX3DY8aQu/hvv5Hb+IMHFRMDrxPW1sC+fZQN1sN8b8eOHVxMTIyE53lkZmbys2bNYnU6HWQyWclKUK0mYdS9uxEP/DlCQigLlJxMAZOaNQ16ekxMDAMAY8eOfdqSERQEXL8OfPZZxY5t4EDg119pnatXS91Uo9EgJSWFnTBhAuo4OwONG+PDfv0khgRCDIXnefiFh8O5Qwddw4AAKSwtK3SjXyb/+x9dd199Zfhzmzena7lVK+ppr8SMNkBl4Hfv3sWkSZMM+q67d+8eYvbskbydmYmaY8fCtH17YO1a8p34/HPqwX1+xNf//mfw53bjxo2c2549rOPDh7g3bBjbq3dvBAYGYsuWLfyMGTNeuCZv3brFOTs7M9BjDrah6HQ6qFQq1DawaqFHjx7m0dHRsxQKxZoq4pFSIRQKBQPAEUBDExOTEQBmdevWja9bt27ZT546lcZ8VSDQm5ubi0OHDuVrNJpxcrlcW+6FRESMjCi2RUSqMBzH5dy4cYPz9PQst7jLycnBrl27dBzHLQAQBsBSp9MFGe8oXx1yuTwOQLdly5YdrFWr1sCXsU9bW1vm3r17HF6i0225sLWlGbPDh9MYsQcPgPXrqby4WTPKuPr6kigfNYqyu/8VoV3IF19Qlj+q+GrDnJwchIaGCiYmJsytW7ck7733HpycnFCtWjUWIIOwErl3j7J31649mRdtVObMob+/+4768FnWYMECAL1792Z27dqFS5cuCW5ubqRsb90Cjh+vuNju25eqLKRSoJSsX1xcHLZs2QJBEFCn0H04K4v6kl1dK3YMpcAwDKRSKQYNGiRFeDhVBUyfTm0WkyYZf4dDhhQ/fk8fPvuM+rN/+om8GioZMzMzmJiYQG9fn7w84KOP0HDKFKRpNLzZ5cvs71u34t2zZ+FW2gSHzZupR7djR72P7eQPPwj9162TRK5aBcbdHZ/WqgVbW1tcv35dSElJYW/evIkmz7mXF4yOrJQSidDQUN7KykowNAhrZ2cHT09PaURExFwAcyvj2F4GCoWinamp6SKJRNJbIpEwNjY2agcHB5MBAwbA0tKy7Nc8L48Cv/o4zpeAIAjYu3evkuf5H+VyeeVfICIiBiCKbRGRKgzHcatu3769SxAEvXvmtFotBEGATCYrNPVSsyy7fuHChT9U8uG+EhQKRSuGYd7S2xW6gtSvX5+9du3ay9iV8WjcmP706UOi++uvyURr61Yal2NpSSXI/zUWLya37iKo1WpkZGTg0qVLfHh4OGttbS2YmZkJrq6uQqNGjfS7mdZqKdixYoVxhTbPU4/rr79ShtPEhEQ29T2Xi6iCQEN0dDTz5Hvm448p01RRTEwoQ16K+/qlS5dw+PBhSCSSwv5tYskSaoEwstgWBAE3b95EnTp1EBISwut0Olb7+DH5FNSsSeOoTp+mHmInp/L1EJeEhUWppfTFsmkTiWyFgka3leHIbkwcHByEmJgYpk5x45cEgcp+f/6ZvCAuXgTMzMDWrIkOmzaxgiCg5/nznP+OHZKJEye+OH6vkHPn6LtJXzQapF+5AmmPHuhfWMVTQJ8+fRg/Pz8cPHhQaNKkyTP/YbZu3Vry77//Gj1Imp2djZMnT7Ljxo0r1/O7dOliGhERMUOhUKyVy+VJxjw2Q1iyZMkwlmXrzZ8/X+/h8t98883bJiYmv5ibm9t17tzZrEWLFkyBf4r+rW/h4RTwvXWrQjPoIyIikJiY+Eir1b6RJfkirzei2BYRqdrsZRhGFRkZaVZgxoTMzEw4OjrC3t7+yUaCIOD+/fvIzc3F4cOHtVqt1uTzzz/HwYMHheTkZAiCsOAVnkOlwjBMD0EQpKdPnxaGDh1aeTWnBTg6OkKn01X2bioHhgHq16d5v7a2lFFYs4YMvHr0oJuev/6i2dyWlhXv263qVKtGgtvTExg2DPfv38fevXuRm5sLAKyrqyvef/99w3qGOY4y2tOm0fxyY5CeTpnmMWOo1DI2lkYlGYHCmdR9+vR5GtC7eJEqIhISKrZ4RAQQEEBeAPn5zxr2FXD+/Hmhdu3azIgRI54ZK1ZZPe5KpRK7du0CQD3qH4wdCxeAKhCAp9Ugw4fTMR89alBPf6ns2kXCsl07/Z/j6UnvR58+NOPeGKPD9CQ3N1eQSqVPT16nA+7epbFjTZoA69ZRb379+vQaFem5ZhgGnTp1kmRlZXF///03M23aNPaFnubUVFpDT4NL/swZ5A8dirgZM5j+X375wuNubm4YO3Ys/Pz8mLCwMLQr8jq7u7vjwIEDkoSEBLi4uBj4SpRMXl4epFIpduzYITg4OAitW7dmW7ZsCX2/M2xtbdGqVSvptWvXlgKYaLQDMwCFQmEFYC/HcQBQpthWKBS2pqamv5ibm789bNgwi4YNGxpsoAfgaVByzZoKCW2lUokjR47kazSa98TycZGqyKsfXyMiIlIicrmcB5AbEhKCsLAw/Pnnn9mHDx8+8+uvv+avXLkyPyAggHvw4AGCgoIEf3//pH/++eemTqcbIZVKQ3744QfExcWdEgShs1wuz3/V51JZ+Pr6rgYwICIiQnXv3j39yx7LiZ2dHaRSKZKSXlkSwjisWQO8/z4ZEw0aRDe9KSl0Mz9/PgluQaDS2sTEV320lUdaGpCWhrS0NGzduhU6nQ6NGzfmGYZBz5499b5pfgLPA++9R6X5FSU9nQTJiROU2QTIAM+Ic7rv3LnDA8Az2cuGDWmMXEXx8ADOn6ds7E8/FbuJg4MDkpKSkJeX9+wDy5dTSbeRsbS0RIcOHXiGYTBy5Ei23qlTJBif5++/qVT/4EE6B2OgUAAffaTftjodMGAAfZ5Wrybn8ZcotO/cuQOlUsm6N2xImeuHDyl49M475Ch+7Bh9xtu2pcqKEsRWnz59JCqVir19+/aLD37wATBjhn4HFB+Pf8LDcaJvX3z0xRcozoyMYRiEh4fzhZVdRZFKpWjatCkXHBxs1P8gnJycMG/ePEyYMIGpV68eExwcLKxYsUKIiIjQe40ePXrIJBLJ6CVLlkw25rHpi1Qq/bxhw4YqmUymWbx48bTStlUoFO1MTExueHp6Dp05c6aFm5tb+YQ2x5HzeHh4hWfa//vvvypBELYWGqmKiFQ1RLEtIlLFYRhmSVpa2tHAwMAHWq122Ny5c7tyHGeTl5c3MCQkZLGfn1/amTNnGK1W23vu3LlNfX19D+l0uk4A2AULFvSQy+Xhr/ocKhu5XP4Pz/Ojtm/frvnuu+84nucrbV8Mw8DOzk7w938tjNxLp2VLGkf18880isfFhQS4pSWVmOfnUzYuNBTYvZvGhHEcCYA3gKtXr+LS+PE4U78+fvnlF9SsWZP/8MMP8e6777K+vr7Qy9inKPPnU0b0889L7VEuk8LXt2tXYOlSEjU3b5Z/vVJwcHBgAWDTpk1PA1V2djQPuiLvc04OueBXrw5MnEjl0MWs17VrV4ZlWWRmZj77QOPGRg0qFJKbm4vQ0FBWEATExMRQb3ZxQtDUlKo9Hj2ia8MY48B+/ZVM+fRBpaJrbehQKnEvre/ZSPA8j507d/JLly7FlQUL8H5cnGDPMNR2EhsL/P47VSsA1MagRyBKEARwHFd8GfnKleQ5UBbBwRC8vXE3OVnw+PrrUqdOZGZmMgBlO5+nTZs2koSEBBj7/weGYeDk5ITevXszs2bNYgYMGMAcPHgQ+/btE/TZl7m5OUaOHGnOcdyGb775JlehUFT+LMsimJiYDPT29jabMmWKzMrKatWyZcsOKBSKZkW3USgUzNKlS2fKZLJTgwcPrv3222/LTCvi8aHRAD170vi3ChAdHY1bt27lajSaF0sdRESqCExlZ4FEREQqF4VCIQNgKpfLc171sbxqFi9evIDn+SW+vr7li7bryePHj/Hrr7+ib9++8PHxqbT9vDQWFHQZLF1KplRt2tCIsDlzADMzoH17muW9Ywe5lzs4ALNnk4i6dYtEYSW+3sYmNzcXO3fu5OPj49nqNjbcJ3PnSu5v2IDGFcnm8jzNOndwqNh88sxM6hWOjaXSSjOjTv57gRMnTuDcuXPo168fzUIuxNmZRF55S27j4ymbXTir+/BhcmcfMeKZzVavXs25u7uzb731FvNMFYFOBzx+XH5DsRLQ6XQICAgQwsPDmRH//CM0bdKEwaZNpT9Jrab++9hYEszScnbgzZlDPehlZex/+YX6xzt1osqGSgg6FCU0NBSxsbFIi4jgB/r7sylz5qBxQgKsc3Ioq15OBEHADz/8IKjVarz//vvMM27dy5bRFIBpLyZSU1JSEB4ejvT0dLRNT4fjoEHIjYjA5suX0ahRI65r166S2rVrF/sdHxwczIWHh0vy8vJgbW3N1ahRA++//76EZVkIgoDVq1cLPXr0YFq3bl3u89KH5ORk7Ny5U1Cr1cK4ceNYxyLeDTzPIzc3Fw8fPkRycrIQGxubGxcXJ2VZ9rhGozktCMIauVz+0m7Oly1b9mjy5MmOheP3QkJCdKGhoVoADziOC9JqtQ9NTU3ftbCwqDd+/HiLGnpMbyiVVauoV3/v3gotk5qaio0bN+ZrNJpecrk8pGIHJSJSeYg92yIirzlyuVwDwAhpl9cflmUb1K1bV8cwTKV+txXeONWqVasyd/Py8PEhMQ0AdetSOfmuXcA331DvbGAg/b4wC3X5Mhk9Xb1KmfCbN+mmvGlTKqGuwuTl5WH9+vWwsbHB3LlzYWZmJkGvXmhcASdcXLtGI9ciIspvYPXDD9QffPw4cOZMuZzFDeXUqVM4V+Bs3apVq2eVy+HDFTuGPXuAhQuf/mxrSxUUw4YBLIsDBw4I0dHRAgBJly5dXizXv3KFXMGzssp/DMUglUrx1ltvMQ0aNMCFpCS4DR6MMp0JTE0psLR0KZVTm5qW77WZOVM/H4TLl6lMe/DgEsvvK8rNmzdxbO9ePlutZgcePYoeOTlCup8f65KXB9ehQyloVEEyMjKQnZ3NdOvWDQkJCc+OxkpLK9Y8MDAwECEhIXB0dOSbZWfDackS9s/YWGRVrw4LCwvu9u3bktu3b+Ott96Ct7f3C8/v3r27pE2bNli9ejVq1aoluX37NhYvXgwfHx/07dsX3t7eOH/+PNe6detKnSZRs2ZNfPLJJ8yhQ4ewceNGjBo1CnFxcdpbt27lZ2ZmmjEMozUxMbmm1Wov6XS68wDOyuXyCpoklA+dTle9sCxfJpOhW7du0i5dukjv37/f5PHjx02USiXv7OzMuru7G95WUxymphV2+1er1di2bZuS47hZotAWqeqIYltEROSNQafT8S+jl5rneTAMAwcj3JBWCd5+m5yO+/aljFObNuTKPGQIiaZDh4BFi8ioqU0bEt4AZWAfP6Z/cxyQkUFznydOJOFoYkI37ZWcnTWE+Ph4MAzDT548+anxma0tCUN9SlqfRxDo/GbOLJ/QHjcO+PRTKqksFB9t2xq+Tjlwc3PDmTNnwHEckpOTn+3b3rSJjq1DB8MXjo6mTHDRflwfHwrOPHgAvl49XL16lfH29mZ69epV/Ai1Vq0os15JNN65E6dNTJj4xo3RUJ8nuLhQxnnTJip/Dg423GleoaBM/ddfF/+4Ukml2rNnA7NmGebSrS8PHwIPH+La3r3c9LVrJVn+/jDr3h3VHB2Zms2a0fVtJGrUqIG+ffsK165dEzIyMlitVotOnTpR9czs2UAxwcpz585h1MiR8Nizh8WkScAHH+BTe3vk5OTg4cOHEpVKhX379kGlUpW4XysrK/j6+kKn0+HkyZMIDQ1FWFgYunbtitatWzOnT5+WpKWlPTEHrAwEQcChQ4fyIyIiBEEQLP7++2+tTCbbotFo/gAQXZXmavM8b2LynEs+y7Jo2LAhGjZsCBir5TQ5mXwIjh+n79xyIggCdu/enZ+fn79z4cKFG4xybCIilYgotkVERN4IFApFIwAfDR8+vNL3JQgCTE1NcfnyZXTt2rXS9/dSkEjI0KpoJlEmI9fr7Gwq+fz4Y3q8Xz8yVCvKsmX0t1pNwtXJiUqG09KAoCASsjNnAkVc9F8FpqamUCqVbEpKCoqWduLgQToHQ8rhdTqaD7xyJfVp60tGBs08X7CASsXz86lUv3lz/dcwAs7Ozpg0aRI2bNjwosN+QgL1K5cHFxcgMvLZcmuGof7tVatwoHdvmJubo0+fPpCWVJItlQJ+fpQBq4RZ23xAAMzr10exY61KY9Ikep/i4uj4Zs3S/7nDh5duchYSQoJ840YamWas1oycHLpeZ8yA8O67uJ2airsjR0oyQ0LgUIkl6gzDwMfHh/Hx8WEiIiJw5MgR3sfHh2UnTgTc3ekaKIJSqQTLsnDOyXn63hd8X1hZWcHKygoA0FyP64RhGJiYmKBfv37o1asXfvvtN2HVqlWMqakpLwgCe/78eQwaNMio58txHFJTU8HzPK5fv66NioqK0el07QEoX2ZZuCEoFAopAJZlWSQmJuL69et48OABl5OTw0gkEkydOvVFF/nyEh9PTvwVENoAEBwcrI2Li4vWaDRGmE8oIlL5iGJbRETkTcEDAKKjo3U6nU7arFmzsrYvNxKJBIMHD8bevXvRtm1bWLzE2beVyrp1NNpnyBDqp5MUVFpaW5PQnjyZHIkvX6byVn9/4OzZZ9cwNaWMKEDZbbWaBHdwMLmeb9xIZdf+/vRYRUx2DCQrKwsXL17kLC0tGRsbm6fZGmdnICqKstSGoFZTX20x5azFkp4OJCWRA/zmzTRH+jnB8TLZvHkzHx8fz7q6uvKurq7PZq/8/ctnkJaTAzRo8MTQ7cGDB/jzzz9ha2vLd2rfnm31ww+4bWWF4ZMmlSy0C/n3X8r4G1tsx8QgZtMmJO3bx0ulUsOzdu3akVfBli1UFVK/vn593DodjTsqjn/+IUO5mzfpdTeG0F62jK7hgQPBHzyIbTodl9Svn0St0WD06NFw8PCo+D70pFmzZjh16hSzc+dOfoyfH1tctYuZVIoRO3Ygv3VrWEVEGG3GuVQqxfTp05m4uDio1WrWz88PTk5ORllbp9Ph8uXLwpkzZ5R5eXlmUqk0g2VZFcMwdzUazWi5XJ5X9iqvFE4qlQrfUVUP4+zszLVo0UJSt25d7N69Wzh//jz69u1b8b1Mm0bXyi+/VGiZqKgohISE5Gi12rcKWuhERKo8otgWERF5UzgCYGhkZOSkK1euDLp06RLHsmy+iYmJ6eDBg03Mi5nxWxE8PDzg4uLCb9++nZk8efLr4w5WFo6O5ISckfFiFloqJZfyu3fJKEqtBg4coP7SOXOAevVeXM/UFKhdGzh9mn7WaEhs5uZSGenGjVQ2ffcu0L9/uUQGz/OIjY3F3bt3hbS0NK527dpM165dn/RkZmdnY9u2bUhJSQEAyZQpU2D2/M2+ry8JnrAw/XY6axaVya8pcywtnWu1ahSs0GioLP/ePf1PsJIwMzNjARQ/S3zKFAqyGNozrFQCX3315LNTuG56ejr774kTYN9/X+jk78/YFjMn+QUuXjRs3/qQng40bYo6N2/CxsYGy5cvF9q2bSv06dPHMGXn4UF95UFB5Fuwa1fZZnKFffDduj37e0GgNbRaKsEvrxcEx5FYHzuWPmNaLWBnh4e2tjj+ySdISEiQdPLxEdLT0+Hk5PRSv7MYhsG7777L3B4wgOHu3YOk0JSxyLHHhIbCRKOB0Lix0YR2USQSCe7fv88zDMPWK+67ykA0Gg02btyozMnJCVOr1V8BCJs/fz5X4YVfInK5XPj2229zR40aZdWgQQMwDPPke7N27dp8QkICC6BinxW1mr7f3d0rtMy9e/ewf//+XK1W20cul5ez7EZE5OUjupGLiIi8cXz77be/CILgodPp/gGwfOjQoWjRooXR95Oamorff/8dzZo1M3pJ4itn+3bgwYOnTuXFER5O5cIzZ5Ioa9iQymT1rSpISaFS9T17yHzqzh0SHePGAf37Q6VSged5mJqaQlKQZec4DnFxcUhISBAiIyOF1NRUlud5mJmZ8Q4ODoyZmRmTkJAgfPnllwzHcbh27RqOHj0KAGjTpg1atmxZfFYrJoacwPV1KV66lLLa3buXvh3Pk2g9cIBGSVWCiCgPPM/jwoULOH78OMaMGQP352+ET52iY+/Rw7CF588HZs9GJsvCz8+Py8zMlFSvXh0ajUZQU5UDM+7oUdQ+cQJMWaLy44/pGH77zbBjKIvMTKB6dRw+fFh36dIlqZ2dHTdjxozyGWYJAvDtt2QMmJxM7QAl8fgxBayK9gpnZlKW3NOT3M4Nrci5f5+CXF27UoDj119pasCUKYCZGYKCgnD69GnY29vzrVu35n18fF5ZkoXneYQNHy4kWFsDQ4YwgwYNglKpxKXTp9Fkxgyc7tgR7PDhGGWMGfXPceHCBT4wMJCtWbMm37t3b6OI7SNHjqivX79+TKPRDK2qZeL6sGLFissjRoxoVdCf/YTMzEysXbsWtra2nJWVlcTW1hZeXl6oX7++/osHBFAwduXKCh1jbGwstm/fnqfVavvJ5fJzFVpMROQlI4ptERGRN5pvvvkm08bGxuqzzz6rFJUTFhaGgIAAzJ8/vzKWf3Xs20c37WXNExcEEt2//UbzuJ2dqfw3MdHwsVE8D+6zz3DWyornHj1iWu3fz2yaPh2WaWkw8fDgBXNzISUlRWJiYsLb2NigcePGbKtWrWBubv7EZEulUmH58uWwsrISLC0t8ejRI6ZLly7o2bOnfufs7Fx6WfiZM8C8eZSpL004HzwIfPYZiaG4uKemclUAlUqFU6dOITQ0FG5ubny/fv1Y++erGO7epfnTAwbovS4fEwPOxwdbFQrhUVoaY2tri5SUFHzwwQewt7fH7du3cfDgQUxt0AC1nJ2pRLw0jh8nsd2/fznOshj++YeMuSIjAQAbN27ks7Ky2MmTJ8OmtF5qfYiKop7sn34iF/XimDOH+lW/+urp76ZNo5aC7dvJlFAfQkKoYuTxY8piX79OgauGDSmwU4T169fzPM+zM4qa1b0qbtyAYGKCuxIJzp07x8fGxrKm+fmoZmWFLuHhOOjpiRqOjsKMGTOMmnVXKpVYs2YNxo8fj7pGug7z8vKwZs0aFcdxteVyeYZRFn1FLF269Pt27dp91rdvX5PnH0tKSkJycjLS09Nx5swZAICLi4tgbm7O1KhRA126dEGpPd2zZ1NVT0mmgHqQmJiIrVu3KrVa7WBfX9/Aci8kIvKKkHxdgQtAREREpKpz7tw5H6VS6ZGenq5zc3NjCzOkxuLx48eIi4vjO3bs+OaUkgNAkyZkcDZzJpW1ltTjyDAkUAcNoozduXMkAt55h0Qpw+hfGs4wuO/ujoNRUUyD/v0Z1z590G3GDLRZuBC1HzxgzLp2Zd++fh09vvySadOpE1OvXj2YmZmh6HsqlUrRvHlzODo6MhzHMYMGDdLLUAkA8OWXVHpb2pzsO3coO1lSxnf6dNpm5EjqNW7WrHRTrFfA2rVrhZiYGMbExATTp09nivUc2L+fxpHpMaJHpVJBp9PhdEAA/F1d4dKggTBixAimW7du6NatG6pXrw6ZTAYnJyd0794d1UxNaf72oEFUil8Sjo7U52yo63dJWFiQ0V+B23t2djaTl5cndOrUqeLXroMDeR3Y2lKQpXfvF/0ILl0iMdyuHf2cmEiftZEjaRJAacTHU5VJnz4k6nU6cv2fPZvOycnphf0lJSXh7NmzTI8ePZ4du/WqGDkSzOPHsHv3XbRs2ZKxNzMT+svlTKeBA5E8dixu3r6N0aNHM9WrVzfqbnNzcxEWFobIyEghKCiIiY+P55o3b16h4Gt4eLgQHx+/f+HChX8Z6zhfFUFBQckZGRkTfHx8ZM/PLreyskKtWrVQv359eHl5oVatWrCysmIkEgn/6NEjPjAwkM3NzUXDhg2fnXuu09F1sGiRQQG750lJScGWLVvytVrtaF9f32PlXkhE5BUi9myLiIi80cyfP3+IQqGYfePGje+bN28ONzc3o65/48YNrmHDhpU6s/WVwTDkRH7pUtnl1QwDjBlDQmDXLvr3b78BixcDq1bpPX/70qVLfN26ddGtX78nN8Ps1atw4jg43btHhmIqFZWbW1kBP/5IPdFFMnq2trawtbWFwSZ5hw+X/JhGQ0Jn06YXM5cqFY252rCBghR165Kwq4Ry2IoSFxeH3NxcBgDs7e15lDTWZ/RoGgdXBtnZ2VizZg1M1Gp8tnYtUr/9VnjnnXdKFzIeHlT1EBtL/y6JM2eA8eOB1NQyj6NMDhyg92nqUwNjrVbLK5VK4wXJ6tQhZ3m1GjhyhOZkFw1kjB791HTw4UPafvBgCmyUxIQJVJru5UVtHXl5dD2WQVxcHP744w84OjoKbdq0efWBQEGgipdCQXbvHjydnRls3Aj07g3nDEoOp6enw9XIhng1atRA165dOaVSiQ4dOkjWrl0ruXHjBry8vMq1niAIuHjxYp5arf7RqAf66riu0+kyk5KSLJ2dnUvcyM7Orui4NBagz9mWLVtw7do14eOPP2aeVIiEhVGlk7U14uLikJ+fDycnJ1g/V3lRGnl5eYUZ7em+vr6lfDmLiFRtRLEtIiLyRqNQKLwAfD906FA0aNDAqGsLgoBHjx5J2hVmqt5E/vyTxM6nnwJr15bdcyyTUWnrW29ReXnt2tST+t135EL+998lPvXx48e4c+cO+15xwlwiobnDJ0/SzxMmUCDg7l0q+z50iG7ks7KAgQPLd66CQCLw2DHqoS1KWhpl+IsKgfR0uqHs359mSCckPDtbugri4uKCZs2aITIyEu3atStZhKWlkdA9darETfbv389fu3aNdXR0FJzMzJjzQ4dac3fgAAAgAElEQVQKXUeN0k/YTZ9OmdkzZ0qufOjTh8rwjUFoKAVlRo9+8iuO49isrCxkZWVVvIy8EHNz+owXGLHhp5/IhRkgMz1LSwpA5eUBJ07Q6LhCBIECAqdOkZleVBT1Y7u7A507lx4Meo6zBVMCxowZwzyfrXwljB9P57JkCQWuevakcvqPPwZAAbK33noLnpU0iqxLly4SAEhOToYgCBV6vzMyMqBUKrUAzpa58WtAgUnawZiYmGnOzs4GfVjq1q2LqVOnIiQkRFi/fj3j7e2NXo8f00SCCxdw+epVHDlyBBYWFoJSqWQYhoFMJhNMTEx4U1NTVKtWTVKjRg3Y29vD0dERtWvXhpmZGXJzc7F161alWq1ev2jRoi2VdOoiIi8FUWyLiIi86dwCgP379+PYsWOqNm3asL169ZIZY+Hk5GRoNBqji/gqh4UFCYD796kvVB9sbak0tnlz6l9ev55MnHJzgYkTIWzejMu3byMzMxNpaWlcYmIim5eXx3h6egr169cv+4avaL9vXByV0C5fTu7QffpQ6eJ33wFt2hhUxo5vvnmxZP6zz2idHTvo5/R0wMwM+P13YOdO2ld4uH77eMWwLAulUglPT0+hZcuWJb8wFhYk/EohtSDj3LFjR6b5unXA6tWM3iXfbm7kzB0cXHJJvlQKfPQRlbNXZFRTfDwZ2j0XKGratCkuXryIffv2YcKECeVf/3kYhloqfv+dqi/27yfB/c47FIyqV4+ug7Q0EtihoZS9rlOH5tp/+inw88/l7nVNTEzE/fv34erqalAmsVLp0YOqGAICqHXg/HlqPymAYRh46ztCrwI4ODjAw8NDOHPmDDN27NhyrZGTkwOpVJo4f/78N8b0SKvVnrh3797YLl26GPyBcXR0xNChQ9kWLVrgwJ49QttlyxjVDz8gRhAQFBSEMWPGoFGjRowgCMjPz0d2djaTlZUlyc7ORmZmppCens5fv36dyc7OZvLz8xlBEGBiYsIDWKXVauWVcLoiIi+VqmGLKiIiIlJJyOVyLSiw2DA/P7/fuXPnhAsXLuiMsfaDBw9gbW3NvTBG6k3DwoJMmFJTye3YEGrVImfk3btJXKxbB9y6hai7dxG3apWQcfUqpFKppG/fvsznn3+OoUOHGp6Gs7Ymse3rS2Kb40gcy2T0uwYNyGgrOJgyiqUxZszTMWUAiaHUVAoyFM6dbtmSzmPOnNdGZBeyf/9+PiEhAR4eHqVnPO3tKUPLlTzJqH///iwAXNy/HwgMfNZluywYhly8C+Zxl0hqKjl2VwQfH2o3eA5XV1d0794dKSkp5Rgorge9e1OwaeVKcmnPyCBztp07gS++oH//8gt5IxRmtJcvpzaEwYPLNQbv2LFj2LRpE7y9vbkJEybghZFur4KgIKBFC3ofPv2Uxt6VUq5cmTAMg6ZNmzKJiYnlfs/T0tIgCEKUMY+rCnA2MTHRjOfLfynUNzXFp3Z2zFV/f35jbCwCAgLw3nvvoVGjRgDotbewsECtWrXg7u6Odu3aoU+fPszo0aMlU6dOZb/88ktm5syZkEgkPMdxP86fP9/3dXZ5FxEpRMxsi4iIvPHI5XIOQAyAmCVLloQFBgZ2bl/aiB49MTc3h1qtZnierxo3tZXNo0fUlzx1quFCwM2NHJfPnYMyLg7pc+ag74MHjGXLlkC/fpQtLs3V1hDMzUm0AECjRk/Lyj/6CPjgA8pE//UXsGwZbVuU+/fJFGzoUOox3b2bjvvePRL1qalARMQLrs/FodFonrikVxXu3r0LnU6nXz97t26UiSyhr9rFxQUsy8JUpaJyfkPNB+vXJ4HZowf1uhdHYCAFPCrCjRslmtR5e3vjzJkzlXfxmpuT2MzMpKBPbi71c//xB71ePXtS5UdWFgVz4uIo0KHT0XNlMr2utdOnTyMoKAgAMGjQIKF169ZVx0fim28oGNavH70XpZnivQQyMjKE/Px89v79+4aNsSpApVKB4zgjGAlUHeRyefKyZcuyMjIyHOwMCZoVZfFiSFJT0W3XLraltzfy8vIMMubLzs7G5s2blQzD+C5cuHBV+Q5CRKTqIYptERGR/xQcxy3kOC7YGGt5enri1KlTzL///osBFXBcfW0YMoQybhs3Ug9p06YGPV2j0SAM4E/VqcN6u7nxlrdusbh8mXpZf/uNyn05znDRVhrm5kCHDvTvu3dJuF26BERH001/x47Uc/3ll5T19vQk4Q+Q8L5zh+Z+b9tGPbNmZvTnOeLj4xEXFwcLCwukpaUhIiKCy8rKkpiamgrNmjVj+vXr98qEN8/z0Ol0kMlkMDMzY6ysrAQAZSu4ZcvKdAKXKpUYtn49+KlTwRo6VsnUlD5TKSkli+0BAygLunGjYWsDZFbm4QGcPUuO3cWQnp4OrpTsvVHgOPrc5ebSz35+1FIhk9HnnmGo9WHbNnIoHzmSKkmcnKgEvXZt6m/396c13n6b/AE8PYFjx/BIEJBgbY2h6elo5O4Oi+vXGQQHk6nauXMk3jt0oFFulpbU4qFSUTl7fDwFuerWJQ8ES0v6fDMM/Vsqrdj1qNGQB8KYMeR38IqFNgA4OTkxABlwlYeCCQj2ZW/5eiGRSOIyMzPLJ7b37KG2nQJDQBsbG4P64nNycrBp0yZlfn7+kgULFohCW+SNQhTbIiIi/zVuAyRAKpqNZlkWQ4cOZf766y907ty56vRHViYMQyZld+4A33+v99Nu376NnTt3wtzcXHhv7FjUq1ePhVZLwnfaNDJKio0l0XX5cuku1RU9/rZtaeYyQD2x1asDFy+S8Lt0icbV7NpF84zd3an8FwC6d39hudzcXOzevZtPSkpi7ezseI1GA0tLS6FTp06SFi1aID4+ngkKCuLXrVuHmTNnskXngV+5cgXXrl3jcwtEmEwm46tVqyZ1dXVFr169jHK6PM9j6dKlkEqlwrx58xiNRiN06NBBvw8+wwDJySUKVQAQWBaHBgzAYDs7WJbnAIcMoVLrsDASgc/z9dd6VREUC8tSNUOdOiVuEhoaypubmzPQJ/hQHubMocz1rVvUe75/P/Wq79xJ/dmjRz89vnffffH5a9aQuzlA1RYaDYnfjAzqB2/dGud27uQdPDyYFq6uDDiOBI9MRq8bywI5OSTSY2NpHRMTCii1aUMzvjmOTA0LzQdzciiz3rcv9bqnp1OlSGHQIjWV9jFwIImsvDyaDhARQaI9Pp4e9/Gh4Jy9PRATUykvb3moVasWAJQ7yFK9enUwDFNJX1CvDkEQYrKzs9sY/MRLl4D//Y+u4XIYz+Xm5mLz5s3K/Pz87xcsWLDM4AVERKo4otgWERH5r2EilUo1DMMYJc1Yp04deHh4cP7+/pgyZUrVKd2sTP7+mwTAmjVkHqZH0CIyMpJ3c3Njx4wZ8/Q1MjGhjNvFi7TWxo3kUm1vT5kwNzdyL65Mis43TkwkkXDzJomNn3+m8V3Xr5O5VRF4nkd0dDT27dsHFxcX4dNPP4WVldULL0TDhg1Rv3599q+//uJ//PFHvlq1asjOzoZKpWJr1KjBe3l5Ma6urgzDMMjMzGQTExOFs2fPMo0aNUJdQzPFxbB27Vqe53lWo9EwCoUCANgmJWWRn2fTJhLb7u7FPhwXF4fhu3ej7qFDsLAsl9Sm7OmQIcC+fcXP9K5bl1zsDQ2+pKZSXz2dc7Hk5eUhMjKSNao5WiGtW9O18dVXJLgjIkiwHj1KLuRZWRTQOXmSROuaNZRFfh6GeVpJUbSiokAwwsUFd8+eZRs6OAjFzjMu2i5TTLAII0Y8/ff48S8+/sknNHtepyNBzjAkxlUqElb165PYdnIiIW5jQ380GioZz8kxrJf/JXDnzh0wDAMXF5dyPb927dpQq9UeCoVCJpfLNUY+vFcGz/Pp6sLAjr7cukXVL+HhNGveQLKysgqF9qr58+d/bfACIiKvAaLYFhER+a8h6HQ6WUJCAuqUkvEyhH79+knWrVuHqKgoNDWwtPq1hGGov/Snn6gMW4/+9zt37rAdCsu5n0cmA+bOBR4/pv7oX38l0dutG/VKz5lDvdOVPcKoUDC2a0elzYUl5YmJ4DkOGjc3BL71Fhfj6gqdVstkcxw7cOBAoW3btqUGWViWxdixY9krV65Ao9HA2dkZtWvXhkwme0acu7q6IiMjQ6hWrRpft25dowRulEol27p1a75Jkybs9u3bC05TT2F84MCLPe1FuBYQgHZZWTCtaFBgyRLKjI0d+2KJfkAAIJcbnhkND6fnfvNNiZvcvHkTUqnUoL7SUrl/n8Tp0aPArFlUGl6YrU9KArp0AWbPBo4fpwoOmYyCGSNGkHFYXByVmBuYHbSwsOBiYmIkarUapqamxjmXopiY0J/Cz0LRCoRC0Q88bQVIS6Py+HnzSJRLJHRdDxliPF+GcpKSkoJDhw4BAMrbm2xmZoaaNWuqHj161BfAGzP/WavVphkktnkeGDSIPrszZxq8v5SUFGzZskWp0WgWLViwYLXBC4iIvCb8Bxx9RERERJ4il8vjAazdvHkz/vrrr5xTp04hPDwcoaGhiI+Ph0ZjeKLC0tISvXv3Fo4cOcJXxM31tcLCgvqenZ1JlJUBwzBCmaLG0ZFE18SJ1A++aBE5iBeaRK1bRxnLykQQKKseFkaZ9s8+w9nRo7FixQohyNtbMPH2xrC8PMmny5ezCxcsQNtr1xhERpa5rFQqRbt27dCpUyfUq1ev2P7tnJwcnDt37tnsfwUIDQ2FRCJB3759WTc3N4wbNw7Tp0/Xf4E1a0gwlUA7Ozv8/tFHyM7Pr9iBWlhQSfS+fS8+Nm6c4UI7I4N6okNCSt2sXr160Gq1uHfvnmHrP8+5cxQMsrenPnSNhrLERYVofDz5AowdS5UgAweSE/n9+1RevmABlYnHxFDpdZT+ZtfTp0+XMAwj+Pv7V3LzeRnwPF2f9epRv/zYsVSdIpFQVt/f/5UeHgBs2bIFANCtW7dSt9PpdCjtu7xt27bWpqamcxQKRRUYYm4cBEHIUavV+k3q4HmqXDh+vFxCOykpCZs2bcpXqVSfiEJb5E1HzGyLiIj8F5kPIDMmJuZubGxsSxMTE1ee5501Go0PAFSrVk3Xt29f1svLS++AZJs2bZiLFy8KBVkTVXx8PJ+WlmZhb2+v+vDDD83MS8kQvrZIpVQe+8knZGRVivmRtbW1EBMTw7i5uZW9rrMzZQAnTQImT6aMWkQElXV7e1NpqpUViRtjc/s2lf5euAA4OSFHq8X5ixcxYtQoxu2rr8AwDAnhOXPo/P38SFwxDPWenzhBr0M5svDJyckwMzPjnJ2dKyS2lUolrl69ioCAALi4uAimpqYMQCXtBlGv3lOzuOfJyoLVxIlo9d13fI0aNSoeuH/vPRKagvDia9e6NQVd9O3dnjqVMsbBwaVuZluQoXUoR/krACpvb9aMggSpqdRqsH9/8dvOmQOsXUvPKWTLFhLbMhllwefPp3L5Dh1oPYWCggYlzSEvgGVZdOzYkQkJCZFERkaiadOmKHWsW2UxfToFOM6doz71iAg6R4YBrl4lgbZlC1AZZft6oNORjuzTpw9atGgBQRBeeJ3S09Nx+PDhvAcPHpixLMvb2toqXVxcTKtXr24mLSjz53keGo0GarW6CwBeoVCMkcvlO172+VQCMqm0uF6GYpg3j1z2L1wweCdRUVHYv3+/UqfTvevr63vQ4AVERF4zRLEtIiLyn0MulysBfF3w47aijykUiu65ubkD9+7dO7tmzZpwLMONuZACszR2y5Yt0Ol0ZgAmALBIS0tbeffuXXh5eRnxDKoQ/fuTYAgNBVxcqIfzObKzs5GcnMyOHTvWsLVr1Hja1/rXX5T5YxianR0bS/Ow1WrKJhqLzEwqd2UYYNcuBE6bhulHj8LywgWgoPwUwNNy2MBA+vv+fTL6kslIHHp7U5l9UBDNW9ZD/GRlZUEqlZZ7zhXP8zh58iTCwsKg0WjAsix8fHzKr7qGDKHy52I4cPy4kD92LPqNGmWcCrmWLUmQOjlRa0IhDEMzzlUq/cX29u0UkCkDlmUhk8kQFRWFzp0763+sWi0FWnr0AP78k+Zol4YgUJVE8+YUVFizhs7L2pp+16gRZbPv3aNgzZw5lA0OCAB+/52ug/x8MhwrgSZNmuDSpUvcnj17JLdu3eJHjBjx8ioX//6bjnflSurtHjQI6NQJmDKFyukByuanpNC59e5N3xUvmaNHj/JarZYNDg7OOHnypKmpqSk6d+5sZm1tze7evRvdunUTwsLCVCqVaqUgCN9xHGeakpLSPCUlpRXLsk4SicQKAM/zvJbn+XwAaSBjvX9f+slUAlKp1FavNoSYGODzz6kKyYCgTsH3k/bixYtZWq22n1wuv1yBwxUReW1ghIrOrxQRERF5wygoDeQB4OOPP0bNmjX1fq6fn59w//792AULFtQHgOXLl/+gUqk+mzVr1pvtVj5mDN1o7979zK9v374Nf39/2NnZcdOnTy9/xpbjaPRWYiK5386eTaKnfXsymzLWWK2vvyZTtILe+2teXvBMTIRk+XJyttbn5jIpiYIAPE+Oz9HRVGqv01EVQDHwPI/169cLHh4eTO/evct16Nu2bXtSEu3l5SUMGzaMqVCG09+fhOHz2StBQIKrK3R//IF6RnJNB0DC9fFjEmRFUalIsOpTHdKjB7UhvP++Xrtcv369kJ+fL3zxxRf6idPjxymDnZlJ768+icDffqOKiVWrqC/bxeVZU8HYWPILSE2l/nSeJ7fywvdu927yNDh+nKooSjG4S0hIwKZNm/Dll1/ComAMU6VReP/4v/9R8GnxYvr577/JeHDhQro2/fyePqew1DwkhII5L4n4+Hhs3boVPM+v5nl+Duj7vR+Afwq3MTExuajVahfL5fI3pg/bEFasWHFiwIABvTw9PUveKDgY+OADCgo1aqT32vn5+di5c6fy4cOHkWq1eqBcLk+p+BGLiLweiJltERERkeeQy+WCQqGwB/C/X3/9dV6vXr3Qvn17Rp8Ku/T0dC2AxMKfVSrVLIlE4rNmzRrvd999F40bN67EI3+F+PmRwDx0CLndukGl0aB69ep4+PChUKtWLaHCTu0SCd2cq1RPy8z79aPMskwGtGoFfPEF9fiWF52OBP2UKQDIbfvo4MHwSkwkc6vOnUnETZ1a+jpFe9MzM5/+nZtLzs0eHpS1rFXryZim69evIz8/X+jZs2e51XFeXh68vLz4YcOGsRVT2QX07l2sk3TosWNwlMng2K5dhXfxDB98QJnfmzefFZRdupCTtj6j5oYMofdJT9q1a8ccP3687Ndq0iT6nP38MwlFltXLhR8AZdkLS9W7dqXPWFFB4+pKArRLFypD53n6DM6eTU7w77xDme+HD6nXe+pUalkoJvjg4uICMzMz4dixYxg2bFjl1pK3b0/l72vW0M9ZWfQ+BQaSidq8eXQuRWFZenzhQjonI5a75+fnY8WKFejUqZOud+/eT76sY2Ji4O/vr9TpdJPlcnkR5Y9/FQoFC6CBXC6vYOP+641CoWCkUql3qaahO3aQ2N60ySChnZycjG3btinVavVWjUYzUy6Xayt+xCIirw+i2BYREREpBrlcnqZQKHwFQbhy5syZeSdOnGjdqlUrZdu2bS2srKxgZWX1wnNCQkKQlpYmA/BOkXUEhULhA2BuRETEosaNG78xzdu5ubmIiYnBo0ePkJmZyZkzDNNt2jT2WP/+uOvpKXAcx3Acx9SvX994rnFmZiSo3n4bWLaMsmrffkvio0cPyggGBZH5lKFkZwMrVgC1a+PkyZM4c+YMmrRooWMHD5aiaVPaT8uWxfcVl0VhtlarJaHh4vIkW5l75QpS581D308/ZSsy+10QBP7evXus0fp1zcyAY8dIUBVw48YNPPD3R81du2BRGZUa3brRzXzR0uy//9avhPzrryngUsy1WRLm5uaQyWQ8z/MvvvYaDTBsGLUwDBtGgQeWpT5tQ/D2prJqgMR2cVUY9vbAmTPUJx8fT9uNGUOtElZW9BxXV6rqyM0F3nqLXpP9+18Q/Z06dWICAwPh7u5eOdMRDh4EevUi07NWrZ7+PjmZro9Ct/LVq4uv5CicL144t7u0TGopFLZKFAZBb9++DQDIzMx8cm9769YtYffu3TqO44bJ5fLjz68hl8sFAP9poV2Am4mJCWtTnBO+SkWu/i4uFAAywPuhsD+b47iPFy1atNWIxysi8toglpGLiIiI6IFCoWgMIBogZ+0+ffow7du3B8uyUKlU2LBhA5eRkSExNTX94quvvnrBXXXJkiUrrK2t/zdhwgTJ615OLggCzp8/LwQFBTGWlpachYUFa2try2i1WjSuVQueLVvC7PZtZDVpAkEQYG1tjYqIyFJJTiYxdPcuCYBCM6ZvviGH54ULKXusD99+S2OLVq3CkiVL4OTkhA8++ICi0j4+wObNlLVu1w44dQowwui4/NRUHAkMFLp+/jkTP2cOWjVoAPb336k/XE9RHx0djT179gharZZp3749179/f+PMe8/NJeGkVgMMg7S0NGxYuRJf/P47ZJcvG+X8XyAtDThyhDK4hVn169eBK1co810SOTlAixY0s90A4zyNRoNly5ZhxowZT0dBJSXR+K5Jk4Dhwymjro+xX3HExlIQ6M4dqs4o9DYoqWc5MJDE6N27ZLTXsydVU0yb9uxnITWVHPMzMsig7fvvSaiDWhIWL14MlmWxaNGi8h13SQgCia1ly0gwFxIcTL4FEyc+/Z2nJ1W8NG9e/FqjR1MQ4a+/DDoEnudx+vRp7syZM7xMJtPVqVNHV69evWqhoaGcUqmMZlnWrlu3bvYtW7aUrlu3Ll+j0QyQy+XBBp/rfwiFQvGBh4fHT6NHj352NtvDhxS4lEgokGXA6LaLFy/yJ06cyNBqtX3F/myR/zLi6C8RERERPZDL5bcBeAAwEwTBNyAgQLl48WI8evQIWVlZyMjIkABoVJzQBgCO435SKpXBa9eu1fj7+yvLM2KsKnDnzh2sXr1aOHv2LN555x3MmjVLMnXqVGbkyJF477330LZnT5hFRgIDB8JGKkX16tUrT2gDQM2adBP46adUBv7bb5R5TEujXleOIwGWm1v2WikplDEEORanp6fzK1euxMnTp3n14cOUaZw1C/jwwxfnQZeTa3fv4k5MDCL9/BDM89hx+rSQ7+GBGzduQFuzJjK/+Qa6tDTKcJYQHA8MDOS1Wi3zv//9D/369TOO0AboxlqleiLyzM3NoZHJcGbRIr5ShDZAAvvmzWfHgF24QNnu0lAqybjJQIf6+Ph4mJiY0Ozx5GTqGQ8JIXM7hqHjKK/QBigrvXo1iRWAxnwVNdp7nl69gPPnqd0gI4P65q9epeBOkRnISgsLXLSzw4bHj/lT6ek4fOCAkD9qFPjLl8GyLFxcXIzrSK7RUDDj5k0ycisqtAFyGS86Ao/nyXm9JKEN0Ln9+SeJbQO+D8PDw3Hu3LkHPM83V6lUPnfu3JkWHBx8NicnR8px3AitVrsoNDSU27t3r0oQhI2i0C4bU1PT3vXq1XtWSZ87R0Zo7duTKaWeQlur1eLgwYPqwMDAJK1W6y0KbZH/OmJmW0RERKQcKBQKlmGYPwVBKNokbCKXy0udU6pQKKxlMtkBHx+fTt27dy95VlYV5MGDB/Dz80O3bt3g4+NTuohOS6Nso4UFCeKXRUQEOZjfvUsivFUrulns2JEMqjSa4o22cnKo99TX95lf37lzB//++y+nzMuTzNi////snXdYFNf3xt87u0tHEAVEFDsoFuxGsQQVC3aNNSrGqDFqTKJJ1BhdNlFjirHEEo3d2BV7SVTQIGLBhgWxIEGlSocFtsz9/XFAOiwKSX7fzOd59hFmZ+7cmR2Qc8973gPz4cNp3GPHKLsXGPhGdafHjx8X09PThVGjRiE9PR07d+4UY2NjBQsLC24RE8NSZTLUjInBOwcOYM+qVWL9XbuYun590XTsWJlWq8WlS5eg11N75c8++4yCxoqkYUMKitq2BThHUq1auDhjhn7AvHkVF9QX5u5d4OBBUiXIDDjNwYNkXpeYWK7PQq/XY/Xq1bxe7dps4NChFEx6eFBAXFEsWUI15F270vfnz1OtfuPGpR83bx49Y3fu0DW9/z79TO3ejXS9HqtWrYKpqSm3sbGBQqGAXKcTa2zcKNObmiKjQQMxy8xMuGdpCaVS+ebX8PQpdRmYO5de1tYF3w8MJPm4qWmepN3fn3qNP39e+th6PdXnL1lCtellkJWVhVOnTiEkJASCIGxcsGDBZABQqVRyAEsArACwBsBgY2Pjo9nZ2e8qlUoDVtr+2yxdujTS29u7toODA23YupUWn9q2JXWFgcTGxmLv3r1qtVp9Njs7e7xSqUypnBlLSPz/QarZlpCQkHgNlEqlCGCcSqVaBaAqAAUAvQGHZmm12jbPnj3T5Rzzr0ev18PX11f/8OFDWYcOHeCeW39aGtWqUX3fkyeUlf27aNaMMttnz1JWZsqUvLZL69aRvDwmpuhx589TgF6IRo0aoVGjRrKgoCDsjI5GyydP9K0HDpTJt24lMyhRNCwgLIQoiggODsbdu3cFz5yaaAsLC0yZMkUAAMbYq8Xw6OhobHnrLdFMLuctatUSnltaCpeOHuXv/Por4xs3ooqZGRyaNq34QBugWuWcGtw7QUHgNjZwHjiw8gJtgD7D1atJmTByJGXXGzSgWubiFniGDiWZfzkXPVJTU6GOiWED5s0jx/irVyu2jRxAHgJt2uR9n5hIjuRlBdtLllC9882bZJL266/A6dPA99/jjEajb+jmhhEjRuT/HGR83DhER0cja9kyofr27Xjq7Y2DPj7cc9Ys9tqlKzEx5Mz/9CmwdGnR91NSqCXf2bO0WJFLgwb0s1YWMhlly/V6atlWSnvAS5cu6fz9/fVyufyWXC731+l0r1ZFchY5v0YHUHgAACAASURBVAAAlUq1kDHmlJ2dPTinJluiFFQqVVWZTGZvb29P6pn58+lnbsYMoH59g8bgnOPq1aviuXPnsvR6/XRRFLdJ915CgpAy2xISEhJ/IyqVqhmAO23btoWbmxscHBwge41g7e/k5cuXWLNmDaZOnWpw33EA9Ad0QgLJs8trKlURcE5Z7txAoE8fatXk4AA4OZH5V26AEBZGdbAlLCSIooiAgADYT5qEGlott376lIEx4MMPSV5piFN2Pu7cuQNfX1+4urry4cOHlzs1rktJwaWpU/FiwAD96M2b6QH64w9g0SKSupfDJKxUbt4kZYKjI6JXrIBvYiKmqVQVK1EujosXgQULKEMKAB9/TIZcheX7CxZQO7jNm8s3/oYNUG/bhjWDB4ufd+smoH37ipl3fjIzSd5uY5O3ELB4MXD/PgWWhuDhQbXYW7YAACKWL4fFkiUwDQ6GeZ06JR8nikg8dQra997DI29vvPXFF7jz/Dns7Owgk8lgZWUF09JaqT1/TkHX1q1kHFiccRZAUvf09KL1+8HBVI9dmow8P+HhpEAJC8szWCvwdjj27NmTpNVqOymVygeGDSphCCqVqr+jo+POSUOHVsHEiaRI6NXL4N8hGo0G+/fvV0dGRkZoNJpBSqWy6KqlhMR/GJmPj88/PQcJCQmJ/wwXLlxIEARhwIsXLxxu3ryJ5ORkTZMmTf6xaFsURezevVt/7do1npKSIgiCAJlMBkEQXsnEAwMDxZSUFHTv3r18HaUEgYKj9u1JTt62bSVdRQkwRkF+9+6UqVm8mDJ0PXsC9vb075dfktHU119TVi23RVMhVq9ezUNDQ5nQsqXYqH59wSg6mrKTxsZ0jfldmQ3g8uXLYkZGBiZNmvRaUatgYgIjd3f4nz8vJA0YoHf+8kuBpaeTO/vw4VTjvHUrMGDA67mn5zJlCmVjW7eG+bBhCGzSBNZOTrAt4T5VGLVq0b1Vq+nrpk3JMKxw5lkUSZbdvLlh486cSc+iiwvuR0fjkaUlOo8cWTkrB5s3kxQ+v2lYu3a06GNozf+oUfScBgRAV7s2fg0MFGt88QWr/e23FKCWlNFnDKbOzrjm4oKr8fFoNm4ckoKCsCc1Fffu3eMXLlxgwcHB/OHDh+KDBw+4TqcTYmJiYGlpCTkAlpZG9dRjxlAP8OJYt47k+19+WXQOU6fSIkivXoZdZ9WqVJ6RlEQ164Xq5Pfs2ZOWlpY2RalUXjBsQAlDuXz5srJzzZptHBYtYhg5kuT8Bj6farUaW7duVcfGxh7VaDS9lUrly0qeroTE/zskGbmEhITE34hSqdQDaA0AKpVqVVhYWDG9cf4+Ll68KEZERMjatGmDW7duISgoCGJOb9wOHTrAysoKN2/eFDw8PF7P6Ewmoz+eq1en4MBAWWKFYm5OxlOtWpFcvFUrChAyM2k+nFMGfv16qtctFDj4+fnxxMRE1rRpU/3Qd96RYft2Ctpq1CBDNb2eFhJWrDCox7NOp8PDhw+FZs2avZG0zMHBAR988AFWr14te/vtt1El11wMoIUAuZxajVlbU7smZ2dy2u7QwfCTfPcdZTUVCgRv3Ii0W7eg0WggimLlGt8JAn0O+/fTfPv2pR7q8+bl7fPrr1QL3bNn6WNpNLT48OGHFLynpCDUzg6Hq1XD+BEjKi9F37QplVLk5/RpUkFcumTYGLlBzwcf4KqXF6/WsiWad+pEwegnn5CZW4sWJWYhPQYOhHufPtBNmYLWMTFodegQ2P37LGDMGP2LrCyZtbW1LD09Hf7+/nq1Wi1zvXEDnmfOIOPhQ9jnqgpKomdPqtUuLtjfsaP8CzwyGXDkCLB2LS1I5CMuLs4CwNnyDShRFiqVyrLFvXvDWhw5wrB9e7n6Z6ekpGDLli1qtVq9QavVzpJk4xISxSMF2xISEhL/HB+6urrKHj58iNTUVJiZmeH48eNZCoVCMW3aNJlxRdePFiIsLAyBgYFs7NixcHJyQu/evV+9d+bMGTE8PBzZ2dliw4YN5W3y152WF0dHcibu3p2Cwb/TMC0/NjZU39u5MxmhRUZSbWmNGoBSCWzcSPudOgX06IGUzExs2bJFzMjIEHr06IHOnTuTAqFrV8qAd+kCJCdTMDt4sGG9oAH89ddfUKvV6N279xsHeubm5pDJZHj58iUK1OV6eeV9fe0a9WjeuJFqoR89onrMMWPIOK40Hj2iAP2nn9D6t99wycpKf+TIEVlMTIzYp0+fyu1oMngwKRGSkkhOXvj+bt9O2W4Xl+KP1+lIDi2TkXJh7NhXn3Hs+fPc1NSU16tXr/Ku4cIFYPr0gtuaNSv7nhfGxATPjhzBnwcOsA8tLEhdYm9P/cfnz6ee5OvW0XOcj/Pnz+sVCgXc3d1lRjntxlijRoj38cENPz9Zz3PnoP7yS/R5910gMlKGK1cgzpqF3XPnii7Pnwv2hcbLJTIyEsZjxuCei4uY2Lev8Nbz56hRo8arftcAgIEDqe1XeWvFp0+nrPjZs0CDBsisUQN3794FAAYg4euvv167cOHC6WWMImEIjMmHNW++U6hXT5Dv2kUmeAby4sUL7Ny5U63Var+eP3/+d5U4SwmJ//dIwbaEhITEP4RMJnt88+bNxiEhIamCIDzXarWuMpnsRmZmZqfw8HA0adKkUs8fGBiob968uczJyanIe56enrlBSMUEI25u5FpsZkamSiXVgP4d2NkBv/xC9ch79lBQ1Lo1zQ8AJk8Gfv4ZGY0bIy0hQTCztsZbb72Vd3zdulTv3b17Xub+q6+Ahw8pwx0YWKrRVv369WFubo4TJ05gwIABb3QpJiYm8PT0xO7du2Fvb6+3tLREeHi4rG7dutzd3Z3Vrl0bzNWVdv74Y3oBVJ+u1QLHj5P0/MEDantlb1/QhCw0lFpPDRgAebt2+KRDB9nNmzdx4sQJwdnZGfXq1au8+u3cmuI1a8hkLDSU5gqQEiEgoPjjcr1opkwhN+9r16hfcD4CAwNZ3bp1Ky+rnZAArFoFfP55we21ahlex5yDKIrYf+aM6OHsDKuZMwV06kSeAwDV6B88SH3B69cn074cLly4IAMAhUIBJycnmJmZISY2FgdsbeFWvz6E588Re/Ys52lpjN26BTx8CGH4cNj06SOcOnUKkZGR4ttvvy3IZDJEREQgKioK5ubm8Pfzw1C9HqYeHoJWq9Vv3rxZZmxszD/99FNmZGRE9z8rq6hruaHIZMCyZdDWqYM1DRtm6nS6QJlMdlev11/lnJeRbpcwCMYEkbF9qVZWnvV++EFRnkD78ePH2Ldvn1qn0727cOHCw5U4SwmJ/wkkgzQJCQmJfwiVSiUD4ArgsVKpzFSpVMZKpTJ78eLF39SrV2/2yJEjTSvLPE2tVuOHH35A7969CwaSlc2nn1KQFBz8952zLL75hjKgMTEUIDk5kQR23Dho7t3DTyNG8KZNm/IePXoIZmZmdExyMtCvH+2fm/XXaKjf9w8/lJnRu3LlCgIDA/WzZs2qkA/42bNniIiIQGJiIszMzHDv3j29Wq2WabVaDB8+HK65AXdh4uMpUPP2Jglp794UwK1dSxJoIyPKhg8cmBfgAfj+++95ZmYmGzJkCFqUM3gsF4mJpESYPp36bW/fnmc6dudO8bJXR0dy8x45kuZfjNz93LlzuHjxIgYMGIDWrVtX/Lx1OlrQKJwdTk2lBZmwMINl1qdPn0ZYWBifMWMGk6Wn0xjh4UC3bnk7nT0LzJkD7NyJCBMTnDp1SkxMTBScnJzw9OlTGBkZca1Wy0RRRJcuXdC9e3dER0fjr8GD0T4jA4KtLWX9MzOBZs2wfv16Hh8fzxhj4JzD3Nyc29nZ6SPu35cPv3oVdfbvh3FOMM05x44dO/QJCQl4//33ZVXkcmqlVx4zxcKIIv744w+N0U8/XX77zJm3If2xWnEwVgfA7t+9vG7FjxzpPXb8eDNDD33y5An27t2bodVqeyuVysBKnKWExP8OnHPpJb2kl/SSXv+il4+Pj9m3334bqFKpxMDAQJ1er+cVSXx8PP/xxx/FFStW6GNjYyt07DLJzuY8JITz+Pi/97wlceMG5wMGcK7Xc37/Pudt23I+Zw7nUVG0LS6OJ127xjNNTfmSr77iAQEBeR/GxYuc+/pyXrs255mZeWNu3Mj5u++Wetrw8HD+3XffVewHWwi9Xs+XLVsmXrx40dAD6Dru3ePcxYU+q+bNOQc4v3CB88uXOb9yhXNR5C+eP+crVqzQ+/j48DNnzujVanXlXcixY5yvX19wW2Rkwe9v3OC8RQu6hoAAzrXaUod8+fIl9/Hx4UuXLhUreLbEmDGcL1lSdLsocr5/P83TABITE/nixYt5ZP7r3b2b81q1il5jQgIXFyzgl3v2FA/u2cPj4uJKHjgigocFBfFtY8fyp5s20bwOHuS8USPOb9/ma778Uty4cSPX6XQ8/+8f0d+fi+3a0f750Ol0fOPGjeKiRYvo+W/VyqDrKwlRFPmPS5ak6wThBQd68n/B7+X/iRfQhAM3E6ytuy5atCglJibG4M/kyZMnfPHixRk+Pj6d//HrkF7S6//Rq3LrrSQkJCQkyo1SqVTPnTvXnXPe+cyZM7KEhIQKGzs0NBS//vorGjZsiI8//liw+7vrp42MqG61Y0cy3/qnuXCB6pkFAWjShLKn9etTT+Hly4HMTFi3bg2TXbswYsIE2E6ZImDPHjq2QwfAxwfo35+uK5dWrYpmNAuRnZ2NzMxMISsrq9IuTafTITs72/B2bbnu8Y0bUyaZc+CvvygDW60aZbinTAFCQlCzSxd8nJAgzLS0RK25c7Fp/nwcGTQIu0ePxr6tW7HBx4df/PNPnmu290bUq0dGaVWrAjduUElCrVr03ubNVBLg4kImagBlwuWlV8mFh4dDEAS8//77lSMld3EpmHnOhTFg715y6jaA3bt365s1a6avnb+11qhRJPsPCADu3Xu1WbS2xummTblZXBwbbGcH21Iy5+LAgdB89RV/2rAhrltZiWCM/AyuXwfs7TFh40ZW/+BByIA8I7wnT8CqVwe7cqVIVl4mk8HExITrdDrcsbcns8A34NmzZ9AAyc9q13YCEAjGRrzRgP91GJODsRkANgJwXzt7ds8GDRrIDf3dkNN6Ta3VavsolcqLlTpXCYn/MaSabQkJCYl/Lw8AICQkBN27dy+1NjY5ORkxMTHIyspCtWrVUL169SJ9dE+dOqW7deuWzNPTk7Vt27aSGyWXAmPAsWMkBf6n67ebNyejsFwEgQLKlBTqhXzgAPUR/vhj1LO0xAUHB9ja28MmMBA4c4ZqtQGqJR4/nmq/c19jxpAs29u7yGkb5cifAwIC4OnpWSmXFhYWBhMTEzQs1EapRBITqT67dWuSwvfqRZLy8+fJWXvHjrx9g4MBzlE1OhpVjYwERy8vaD/7DFHPnuHhzZsYffQouxkUxJ9bW3On6GiGvXvJpMzdnWrdHzyg81hZlS2nbtqU7mHr1vTMDBsG/PYbMGIEmbeJInkBLF1q8L158OCB2KBBA1a9evWK/zlITaUFi5KM0O7epXkX7k1diKtXryI9PV3Wq7j2WebmwP79EB8/htrXFwkJCfD39xf/+usvQbFsGZo/eEAlDkuXFjSQGzsWmD4dD7ZswcFjx9iUKVNQo0aNvMSLpSVgaYmtM2eK9atWFTB8OP1M7N5Nbb6aN6dxi8HT01OoUaMGnmzejLC6dfUd6tWTOTg4FDROM5AHDx6IOp1ue92ICD0YawRgDRg7Ds7V5R7svw5jNgDeB2ALoNfXKlV/Y4Xis759+5bSaD2P27dv8xMnTqi1Wm0/pVJZglGChIRESUjBtoSEhMS/FKVSmahSqVyvXLly3srKqlqbNm1k6enpuHfvHvfz8xOrVq2qr1evntH9+/ez0tLSjEGOvVAoFHFarda2WrVqam9vb3MTExMEBgbi+vXr8unTp6Nq1ar/8JWBgpHISMDVlQK3unUr9XQxMTE4ceKE2LJlS6FFixZQKBRk4rRgAdUsF8bKCpg2jUzDfH2BwYMhfPIJ0qdO5esvX2bvMobajx6B+fhQUJqeDnh4UECYS9u2FAQWgyAIMDExwcOHDyst2L5//z5q164tAii9LvzhQ8DBgeqcAwOpnVRoKPWE3rMHyM4ueoyNDf1brRrQrBksAcDXFzYAmgHAypXAhQvsj/Pn+aQJEyiIs7Gh+3TnDvD993R/f/mFgs8bN8iYbuBAOu+1a/S1Xp937MWLQM2atMDh5ETPTO5iRzmIiIhAeHi48HGuWVxFc+wYtSUbUUIyNiAgz/ytBLKysuDn58cHDhzITErqebxmDfZs3qy3GD1aFtasGSzr1MGcOXNgYmJCbblsbclNPjSUFn1MTUm5oNfj3pMnxQ756NEjHDt2TJ+m08mys7PRZ/Vq4I8/gMOHqX1fKffMzs4OPXr0gH7ePNyUy9mOHTug1+sxbNiwkj0DSuDx48cZoihST23OQ8BYDQC1wVgdcC712jYUxqoB2AXgDIC5Kh+f+gq5fIu3t7epVRmLnGJO3fyNGzcStFptL6VSeffvmLKExP8akkGahISExL8clUrVSi6X/ymTyUx1Op1GJpO91Gg0BwAYKRQKF61W+zOAU0qlUpvvmIYKhWK5VqvtD1Bw16JFC3h5eVGg+W/hjz/IQVmnKzEwrQh+/fVXMTs7W1Cr1WJmZqbw4Ycfwk4USRq9aFHZA6jVZH724gVCJ0zA0fBwXs3Ojo8dOFAwadCApOO//krBedeuecelpVHP4AMHKKDNx59//olLly7xuXPnVnh2VRRFLFu2TBw0aJDg7Oxc/E7R0WRiZWsL/PwzMHp0Xpb58WNg2TJqkbZgQV5bNANRq9VYuXIl9/T0RKkqCq2Wsry2tsC+fZTt1WrJCG32bOol/fAhqQjc3HIvrvw9nEGy+uPHj+ujo6NlycnJfN68eZWj7khIILO9pk2Lf3/QIGrN9sEHJQ6xdetWvUwmw9ixY2UlKVpSUlKwetUqfHL4MMxHjCCDtMJcu0a9yQMDgRMnSFUA4M6dOzh58iTPyspiHTp0EPv06SPcuXMHvr6+8PDwEDt16iTIZDJS0yQkAC4u0A0cCPbRR5Dt2UMZ8ubNi5885/QSBBw7doxHRUWJH3zwgcFGgGq1GsuWLdOIomitVCozX73B2AIAA8F5O0PH+k/DWBcAXwJYAM6DVSqVYGxsfK1bt24tO3bsWGoZaXJyMvbt25eRmJh4Kzs7e6BSqUz8eyYtIfG/h5TZlpCQkPiXo1Qqb6pUqq56vd6Lc/79V199pTXgmMcqlWoIgBYAqsnl8l63bt367N69e9keHh7Gbm5ukMvlkMvleTWZ/wS9elHt9t69VC9aCW2kkpKSEBUVJbz33ntwcnISFi1ahKCgILH77duCZdu2hg1iZgZs2gTcuoUmv/0GF72eHX35ku8ExPeSkwXhyhXKZGdmUmYzt37YwoJkvBkZBYZLT0+Hv78/3qh/eTHodDpcuXIFwcHBorm5Oatfv37BHUSRMtXHj5MsODGRgu78NednzpDaYN06Wjy4fbvc8wgICICtrS1v27Zt6Q+XQkE18wAwYULe9j59cgeiwC02luaY23Yt9/1ysHPnTjE6Olqwt7fHoEGDKq+MYsQIWrwoicGDqb97CYSFhSEqKko2Y8aMUktHLl68CD3nYP7+uH7rFkzGj0ewhwevWasWe6WWaNeOgvDBgwu0BYuIiBCzsrKEmjVriq6urgIAaLVaGBsbo2vXrgU+s0xBwP2PPhKPA4L1mTPoc/u22CA1VZCPH0+qg2bN8nbWaGjB5NkzwMgIbm5uLCQkRHbixAn069evtLuWf24wNja+/MUXX2QWeIPzb8DYEjDWF8ANcB5r0ID/NRiTAXAH8D2AMeA8HADkcrmqWrVqLm+99VapP5N3797FsWPHMkVRXKTT6b5XKpUVYLwgIfHfRQq2JSQkJP4foFQqbwK4Wc5jdABu5Hx7RqVSfaHT6br7+fntOnfunBXnXBBFUc4YgyAIekEQdDKZTJTJZGJGRoZF9+7d0aVLlwq/liJ89BGZk2k0pfanfh20Wi327NnDq1Spgpo1azIAGDt2LPz8/JCwdStC3n9f5z54sOH/F7ZsCbi5QTh7Fv0fPxYerFmDGFtb1KxWjeavUNDCgacnmXQxRiZeV65QpvbwYdy9dw9HjhxBjRo19F5eXhXW200URSxfvlzknAtt27ZlnTt3Zq/qZUWRam9bt6YAbM0ayq7KZPTKz759JNcGSHpcjh68uWRmZsLCwqJipHOMkTlaRga1+nr5kuTnU6eWa5iIiAjBzs6Ov/feexUyrWLR6YC4uDwDt+Jo3JhKGIpBFEUcPXpU7NGjB6tSpUqpCwJxcXEi51z4ccUKWAJ47/ffkdK2Lc5cupQbNNOOnp4k388XuNvY2AgA4OrqypxyWro5OjoiOzsbL168gKOjIzjnePHNN9Ds2IErn37KB7u749GjR/jD1BRZWVkYd+oUamzZQiUAaWlkLJiVRS3xchZvnJycMHLkSOzcuRPt27eHra1tmbcwLi6OZ2dnF99WinM9GPsSwHkAC8oc7L8G1WdPB+ACwB2c6wFApVLNlslkXw4fPlwoaQEnOzsbJ06cyAoLC0vQaDSDlErl9b9v4hIS/7tIwbaEhITEfwSlUskBnAPwyoJWpVIxzrlcr9eb6PV6Y61WawzAhDF2xM/Pr6m7u3vlZ77NzKg+9623KNP99dcVNnRoaCji4uLY7NmzXxk11a1bFxNHjBAe6vW4kZYmuJd3UMYg9uiBVbdu6as3ayYbtWwZBaXr1wPt2wMNG1KWNjHxVT34MwAsPp4fWrYMKVlZzMvLC61bt67QJupXrlyBQqFg06dPh0KhyPuLOjycFgkePQIOHqRMslxeMJudy9GjJKvPdanPDXTLSUxMjNikSZOKeXBOniTZckICMH8+ZbsfPaJ6//yS/VIIDAwUAQhDhw6tXGPAqChSNpTWZ93fH4iIoBr/Qhw+fJhbWFigXbt2Zc6zX79+QmZmJhwdHenZnj8fnf76i7F58/gtOzt07do1b4zgYDLwCw0FALi7u+Pu3bv6qKgohhyvh6CgIMjlctjZ2SElJQWHDx8WzR89Ym3HjGHTpk2TAYAbSfmFJUuW4GbHjmLf+fMF3L1Ln4+PDzn0f/ZZgXk2yMni37hxA7179y7rspCQkKAWRTG8lF3eBiCCsTEAdkOqhyQYcwXgCfo8x+Xel2+++WaCsbHxIhsbG2zYsEEcNmyY0KCQsuLp06c4dOiQOjs7+5BGo5mqVCrT//4LkJD430QKtiUkJCT+w+QE4NqcV1rudpVK1dLIyOhZdHR0DUdHx79nMitXUmZbpyuzdZMhcM5x8eJF1KpVCxYWFgXfPHUKdU+cQErbtsKDBw/QuHHjco19//59aEVR5vXTTzAaMYJqjpcupblrtbR4MHkyBbrh4Th49y5X9+/PRj56hHq1akHIb6RWQcTHx0OhUECr1VJd/scfk+v3qVMURNvb06skEhOpjtjfP28/hQKwti73XKytrYWXL1/qUZY5myH06kXSdsaAd96hdlebNlEQfuECmaSVUX5w//595uDgYHgbtNfl22/pGS6t9ZW3N2WaCxEdHY3Q0FA2adIkZsgCV5G2fTIZoFajTWAgC3BxQXp6et5z36IFtQzLVTgASE1NZd26dXt1ohYtWuD27dvYtm0bj42NZf2vXGGuc+cyRTGu6nK5XKxVq5YAY2OgTRuqCRdFUkHY21Ppgbk5AIAxhpEjR8LX1xdGRkbwKGaRIT9JSUk6AH+VuANlt80A/AjgIYDgMm/W/yNUKpWDQqE4JwhC3Ny5c9826CDG2gL4AoAvOF+ZM45MoVD8YGpq+oG3t7dJ9erVcfnyZb537140atSIDxs2jDHGcO7cOe3Vq1dTdDrd+wsXLjxaeVcmIfHfROqzLSEhISFRhBwJ+s4tW7bo//jjD2QUqjmuFDp0oKxr7dpAWFi5DuWc49y5c+Lhw4f10dHRuHbtGn744QckJyfz/v37Fz0gMxNGw4ZhwIABOHjwIK5cuQK9Xm/QuXbs2CEePXoUwzIyxOpz5wJ+ftSK6sYNkgg3bkwtrlq1oiBx+nS4NmkCGxsb3qBrVwiV1Fvby8sL2rQ0aBs3pvr3MWOAxYspuMpXr1ssnANJSXnXkIsgkAy+nDRq1Ah3796VxcfHQ6fTlfv4V2zfTm3Vcmvbra1Jon3pEtVGnz9Pcy6hn7coilixYgWioqLYO++88/rzMJTRo4EPPyx9n6dPAZWqyOZ9+/bp27VrJ77RgkCzZtDcvw/n6GjuN2kST0hIoO3GxpRxzu0RT7C4uLhX39SvXx+MMbx48YL16NYNbk+fMoWlZbGnsbCwEH19fbFy5Uq+etUq/nj3bhHTpwNffEH3oGNHaiOX89k3btwYo0aNQnBwML799lt++PDhEnuwp6SkyFBasA0gpwVYbQAPwNhgw27Ovx+VSlVToVDcaNKkiTPnvAQHunwwJgNj7wMYB0AFzveoVCpzlUo13tjYOMzBwWHKtGnTzGxtbcEYQ8eOHdmUKVMQExODrVu3iiEhIbh27dpzrVbrKgXaEhKVgxRsS0hISEgUy7x58z4TRdErKChI8+OPP+LmzZuVr9isWpUCRFvbEgOowmRmZsLX1xeXLl0Sbt++LduwYQMCAwP13bp1w8yZM1mR4IVz4PJlYPBguLm5YfDgwTh37hzOnj1b6glfvnyJlStXIioqShg7ejQaqtUCunXLy6qamVEGOSGBelK3akXbQ0NRPSSE91+0iIlDh5JMe9gwkvZWFIcOQT5kCLr26sWuOTvjKUCLF4YawK1YAQwdCtSoUXC7QkHbyvm52+S0Blu7di0WL14MPz8/xMfHl2sMANSqqnr1gts8PYH4eAq8z5wB9u8nE7BiFksYV/yNugAAIABJREFUYzAxMYEgCK/mVGkkJ1MteUnu73mTIlO6fPj7+0On0wkeHh5v/HeZRZUq6NW8OWtx+TJbvXo11q1bJ166dAni/fvkG8A5YmNjoVarWW6/91xq1KihNxIE3v75cwqWS3AcnzZtmnzOnDnoamLCGt66xbBypfB0+HByrv/mG+oysHo1OaHfJKuJ+vXrY/bs2Rg/fjy7ffs221Mw8H9FRkaGKYDnZV4o1SO3BPALGCumJuL/FyqVqoqRkVFgly5dqr/11lsyxljpPcUZswYwCkBXAItUPj73lyxZMlcul8fWq1dvzZAhQxpMmDDB3KxQl4fq1atj4sSJLDk5mR09elSv0WhGKJXK1/jhlJCQMARJRi4hISEhUSILFy78Q6VSNQIw+ejRo1/9/vvvmc2aNTP18PCAeY5MtMKZOJEycMuWkbFYCZJanU6HnTt3IiIiAgDQq1cvuLm5QavVwsrKqmT5cm7v4RyJbdOmTWFra4v169cLERER4uDBg4XCAXpycjLWr1+P6tWr4wOFAibDh1NbpcLyZUEA+venXtITJ5KkvGdPNP/oI+FSvXowSkmB3ZMnVBOdm3V8EyZPBoYPJzVAq1Zo3bo1Vg8ezGWpqcxgWzOtFhgwgILYwtfDGLWq0uvLJe2vV68elEolAODw4cMICgpCQEAA7O3tuV6vx9ixY1mVKlVKddvG5ctUk124X3WLFoBSSQsJnTtTHfe0aZThdnMrUIvOGIODg4NoZmZW+cmFmzfpuSrLUb9DB2DVqlffpqSkIDAwEKNGjWIV1ZbPbOZMpL39Nrp8/DHC69cXgtRqflUm4+5HjwpGISHIylFXFO61PGXKFBl27KDM+/DhJZ8gKgomx4+j1cWLwIgROODlhXv37mF2nz4kXa9Rg1rhHT0KnDtHpnsffAChbl04OjrCw8OD+/v7s9DQUDRp0gR37tzB5cuXxdTUVMjlcplWqzVspY3zi2DMEUBDMGYFzq++7j37p5HL5bMbNGhg36VLF3lCQgJEUTRXqVRCsW7gjDUBMAW0KPGeysfH2MjIaL+1tXXfESNGmFWrVq3Uc5mZmcHBwSH76dOnfy5YsOB/SoYvIfFvQ+qzLSEhISFhECqVioFaygQAwLhx41CktVRFkZ4OrF4N/aefYv2mTdzCwkJs1KiRrG7duhBFETqdDlu3bgUA9OvXD61btzbcyC0ykloTuRe0RouNjcUvv/yCUaNGwcXF5dX2iIgI7NmzB9nZ2Zg2Zgxsg4MpUB8woPjxNRrg0CGSO798CTg5AV9+id9NTdG4XTvU+fZb6h3NOTBlCuDrSxlkQ3n2jEzkNmwApk8HhgyhQDmHFStWiM7OzszLy8swM7Bevaied+LE4t8fO5ZqpN/QKd7Pzw9Pnz7F8+fPIQgCXFxcxD59+ghVqlQB57xo4N21K6kDVq4sOtjZs3T9+/blbZs+nRYOVq4ETE0hiiLCw8Nx8OBB9OzZs8LbrBUhLo6UGWV9lklJ5Ar/9CkA4JdfftEnJibKrK2t+cSJE5mJiUmFTSl2+HBY16kDtmQJ/vzzTzHu4EFhwK5d2Ojjw+3s7PiYMWMKulMnJtLnnJ0NlKQE+P57ylwvWEDyfgsL/PDDD6KNjQ0mTpxY1O06M5PUB3fukGJl9mxwQcCuXbvw+PFjNG7cGBEREdzR0REKhYI9efIk7MsvvyyfiQJjywG4gfPu5btD/w5UKlUVuVweNXXqVPNq1aqBc461a9emJyQkzOWcr83x1iAY6wegLoAUlY/PXgADjYyMfmrYsKHt4MGDTQ1ZsPHz89NeuXLliUajaV2gl7mEhESFIwXbEhISEhLlQqVSVQXwefXq1T+ZMGGCaaVluAHca9oUiba2SJ8zB0+fPtWnpaUJGo2GMcag1+sxf/78Vy7jBjNmDLUnevfdAptXrFjBMzIy2Pz58wEAarUasbGx+O2332BmZoZPbGwg8/GhQLmswHPtWmDLFlo0CA0F5xxHJ09Gq8hIOPXoAXTpAixZQu2s9uwp3bgsl8OHyQTL1RV4/30yPjM1LbLbmjVrRHNzczZhwoSyg22dDvj8czIZKykb1r491aUXNpl7TZKSkqBQKLBt2zYxLS1NqFq1qhgTEyMU+CxFkTLEnBevbBBFkkSPHEku9gAF2j/+SBnvt97Co5gY7Nq1CzVr1tS///77skp31W/fHpg7l+T4pcE5yd6XLsWtkBCcPn0aH330EXbu3KkXRZFNmjRJKPczXRqZmVRH/v33tBiwZw8toBSXgffwIHVAYYM3zilDvWgRmeh16VKgvdmqVavEpKQkoUWLFuKQIUOKv9EvX5Jjv68vsGsXeKNG+Pqbb169PWHCBNy+fTvr1q1bXy1cuHBZua+TMTmAvgD+BOcp5T7+H2TRokVfOjs7zx8xYsQrzXdcXBz27NmToVaro7Kzs7+u8/Tp/gnbto0A4B7auPEp37Fj3RljU6pXry506dLFsnHjxqUrRXIIDQ3FoUOH4rRabXOlUhlX5gESEhJvhBRsS0hISEiUG5VKJZfJZJtr1ao1fMKECRWXistBFEWcPXtWjNmxQ+jTvj3sZswoW55rKF27UsCR20s6h9WrV+sTEhJkvXv35kZGRuzYsWOvsuWOqamYOG4c9RFu377sc2g0ZN7l7AzUro24hASsW7cO740dC6fnz4GNG4GLF8lR+/59+nr58qLjiCLJcSdOJMm4oyPVtJfC+vXrkZaWhhkzZqDULGl0NI154ADVRpdEv37Azp2v5UpeFufPn0d6ejquX6eWvn369OEd2rdnqFWLArPizO1yOXqUpOZLlhTcPns28OgRdL/9hiUrVmDWrFlF3egrAx8fMiEz5FxLlkAzcSKWb9vG+/bty1q0aAFRFLFq1Sq9hYUFGzJkiFCWFNhgOKee6rNnAz170ue+axd9nx9RJOO5Vq1eOYkDIHn8vXt0zLffUjBeCI1Gg23btkGtVvN3332XVS9cZ5+fFy+A994D2rZF8qhRiBBF2NjYoFatWli1alVaSkqKx2v3eGbsBoCd4Lz8wfo/hEqlUjDGMmUymfDee++xmvl+L3HO8ejRIwT9/nt64127TDRVqkSGtGnDUy0tHd3c3IR27doZGdK7PJfMzEysWrUqMysrq4dSqQyqjOuRkJAoiGSQJiEhISFRbpRKpU6v13//119/mbyW8VUZJCcnIygoSHCePh12kycDTZvSH/xvyv37lOUrFGgDwIwZM2TDhw/HpUuXxGPHjqFDhw68S5cucL5zB+N27aK6aEMCbYDqhlNSKANtaYlzJ07oAcDG3h7o1o0y35s3Uz302LEUmOdf/E5Opn7SyckkGY+MBLZuLTPQBoDMzEwxIyMDp06dKn01PSSE5lmWbNnJqVjzsYrg7bffRmpqqggAcrkcp0+fZolJScC6dSRvLw0PD5I6v3hRcPuPPwJTpiDhxx9hlppaKfMuwq1bgIuL4dl/X1/4/fKLaGdnx5vnmJAJgoBp06bJLCws2Pr16xESElIx2RDGSAXRoAE9a7GxJMHP/7ylpAD161OP+NxA+8ULYO9eymYrFLQwVEygDQBGRkbw9vaGTqfja9aswZYtW5Ba0r13dAR+/x1o0ADWe/eipb8/nMzNwTlHWlqaKYA3+UFvD2A5GBv5BmP83XhwzmU6na7IaiJjDM6MwTspycKtb1+53Y8/1u//wQcNvvjiCxMvL69yBdp6vR4HDx7MFEVxhxRoS0j8fUjBtoSEhITEa6FUKu8C+ObAgQMZFamSSk5OxvXr1zkAtG7dmoLBkSNJQv2mHD9OvadLwNXVFbNmzZJNnToVffr0YaZ+fkhxc+NyPz+S4JaHYcOApk2h3r4dcampMoVCwV9lWC0tKVi8cYPk7D16kPHX/PkkPV+4kNoo5QaTDRoYfNqRI0cKAFCtWrWSpQCBgRRA+fqWPWDNmiWa1L0OOp0OBw8e5GvWrOEqlQoRERGCp6cnnJyc9D08PESbKVNoQcKoDINpS0vKxv7xR8HtjAH9+8POzAwj9+yBSUVKskti0yZaMDGQ5999hxDGhMGDBxeocTYyMsKoUaPY4MGDcfz4cXbz5s2K+8GqXh2IiCBzvsKt9TIygHHj8pznV6+mPu2WlrTIM7Ls2NXIyAizZ88WGjRowCMjI7F8+fJX3QtEUcTz589x7do1hIaGIj0jgxaiZs+mz3DDBujWrYMM0CiVytfvjce5DkAVAD+DsTJs4f8dCIKwDACcnZ2zHBwcCr558iQtdnToAJOFC+HSvDnq1KkDWTl/F4qiiH379mU+e/bsT41G81GFTV5CQqJMJBm5hISEhMRro1KpGgJ4NGfOnNIlywZy9+5dHDlyBDY2NvquXbvKmjZtmvfmpUvAl19S/fDrBn8BARTA5h+3JPz9oZkwAb+MHAnXXr30PXv2LH+0Hx2NxK5d8ZJzaLdsQdMuXYruwznw+DFlRjmnetmZM19LNn/58mWcPXsWZmZmmD59OoxLqi1v25aCq48/LntQd3dg927KcFcAGzdu1KelpQlNmjSBpaUlc3Z2xqsMXWwsuWD7+Rnmfh4ZSUqFo0eLLMbExsbiwNKlmJaUBDZvHt3fyiIjo3RTsXyIoogHbdtymZcXd1m0qMQH+dGjR9i7dy9cXV3FoUOHVtxqx7FjpKq4cIEM0Y4cocz8woW0cDF/Pn3dogVQt+5rnSIwMBBnz56Fq6srsrKyEB4eDiMjI25qaipyzpGRkSGzs7PTOzk5CVZWVqyZmRnMDhxA+N693PH5c2cztfrxG10j1W9bAOgIzk+90ViVhEqlEgB0AXAeAObNmwej3AWm3N8DCgXQrh052L8mnHOcOHEi+86dO7c1Gk1XpVKZ/eazl5CQMBSp9ZeEhISExJsQr1Ao4s6cOWPVoUMHYzs7uzca7ObNm/rmzZvLBg4cWDSwbdqUMrxZWdTTurwkJwOjR79ygS6VFSuAd96B0bVrqBMUhLt37wo9e/Ys/zkdHJBlY8OtExNhZ2ubFz1nZVFG7/RpYNIkagO2fTv1KB469LXr08+fP8+7dOnC3N3dSzaOu3GD3LwLtX0qERMTqkGvADQaDWJiYmQzZsyAdeEacJ2O6on//NPwAZ2cSNr/66/A1KkF3jIzM0OijQ2CMjN5J29vhsDAilFHFCY1FahXr6icvQROnDiBmlWrslZNm5b6Idva2kIQBNy5c0cYNGhQubOZJeLgQAsDhw7R91evUt/ydesoO795MwXab0Duwtv9+/dfbRswYABr1qyZDCDzwStXrsgCAwOh1+vxwMlJfO/rr4WzmZnZk5cvPwDGTgD4AZwnv9YEONeBsc4A1oOx2uDcsFZifxMqlaqOsbHxwezs7DYAtR98FWjrdFT7b25ODvvFlLwYiiiK8PPz0925c+eFRqPpLQXaEhJ/P5KMXEJCQkLitVEqlSlarbb1vXv3AtatW4eMjIzXGiclJQUqlQqRkZGyzp07F7+TlRXJdb/7jsyoysudO+TkXVZrnNBQqqkWRcDODmZmZkhNTWWRkZHlPyeAU97eYrqHB0NyMgXXAAVnq1ZRyy5/fwqux44l+W5QEEnIXwOdTscSExPFEl2JQ0OpTlytNjyg79u3WNfz1+Ho0aOoVq2aWCTQBqiNV58+5R909GiSwxeqK7e0tIS3tzfOOzkxvy++INfyK1dec+alkJJCJQMGKDtevnyJO3fuoNbSpRDati1xv4CAAKxcuRINGzYUFy5cWHGBNkCqhpMnyfCscWOgSRMgPJyCu3373jjQBoA2bdrA29sb48ePx4cffoiZM2fC1dX11ftmZmbw8PBAp06dAACRkZECGINYr1728lmzPgIQBeAHMPYuGHuNlTUAnB8HUAdAczDW7I0vqoJQqVSNFQrFjc6dO7fsk/O8V6lShR7ev/4iQ0JPT1IXvEGgnZaWhk2bNmUEBwdf12g0nZVK5estXEhISLwRUmZbQkJCQuKNUCqVLwB4Ll269PDly5cH9ejRw6DjRFHEgwcPwDl/JXceMmQIbMqS4rq5key1vKjVZAxVEpxTRmnoUODu3Vc1w56enoiMjBR37dolzJkzx6D2OvmpGRws8IcPyQkaANLSyOwt9zrzm05t3kxBo05XrnPkMnnyZGzYsEFwcnIq2ldaFOmPd1/f8v0RHxdH9+4NEUURYWFh6NevX/E3cMwY6hleXpydqab44kWq9c6Hk5MTvL29sXPnTghvv827rVjB2Lp1Feus/vRpmYsjZ86cQXBwMNfr9axly5ai/enTAqKiKJtciJcvXyIgIAAWFhbw8vIq2rf6TfD3B54/J8dxX19qx/Xzz6R0uHCBnr0KCuzrGiBB79q1K6KiopCdnS3GxMQIDg4ORvcSEzuC8+/BWB0A0wHYgLEIAMdR3tpHynB/AsAGwKByX0QFo1KpmikUigAvLy+rli1bsufPnwMAgoKCZG9bWMBo7Vpg2jRyj3+Dzz0iIgJ79+7N1Ol0P+l0Oh+lUvmvyuxLSPyXkIJtCQkJCYkKQavVply8eBG2trZiixYtSlROpaam4o8//tA/ffpUBkCUyWRcrVbLatasqXd2di77L/2hQyk7268ftX0qwSG5CGvXUs13SUFAXBxJmGfNKmLO5e3tLXz77be4dOkSd3d3L/uv4NxWSYsXo9P58+xey5Zig5MnBbi60h/RJS0oLF9OGVJrawrEBg0CatZEWFgYTp48qdfpdEwQBHh5eQlNmjQpcOiuXbvE8PBwQRRFWBUnEVcqgevXKatZHl6+pB7Wb8jFixehUCjg5uZW9P59+imZd+VKm8tLzZrUB7pQsA0Ajo6OmDx5MrZv345gExNMdHaG2S+/wKSUfthJSUkICQlBhw4dYGRkhFJ7dC9YQC3UGjYs8lZqaipOnjyJp0+fomfPnqx69epwcnIS4OhI9enFsGnTJu7i4sIHDhwoKMpSYZSEVkvBtJUVGe798AOgUgHbtpGyY9AgqnU/cgT47TcqExg1imT8e/eSrHzevNc7dzmQy+UwMTHBkydPhPXr18POzs7UyMjIA8D34PwvAF+AsbYARgDoCcaWg/OIcp5mIgAZGBsC4CQ4/0ek1CqVqrpCofhzwIAB1rkO9LmLjG2vXkXq6dO8+s6dDPXrv/Y5OOe4dOmS/sKFCxk6nW7EwoULf6+QyUtISLw2UrAtISEhIVEhiKI4D0DdQ4cOdbW0tES9evWK3W/fvn08MTFR1rt3bzRv3lzIF8gYnlKTyahe19C2Y3o9ZfOKk+5yDnh7kzv4tWvFHi6Xy+Ho6MiTkpI4gJKD7fHjgQkTaH6XLgGcY9OMGbxt27YCjh0DPvqIJOSHDxd/fEYGSZIDAykwqlIFePddBAcHIzU1Vebt7Y0bN27o9+3bBxMTE16nTh2m0+l4RkYGS0xMFIYPH474+HjUqVOn6NgtWgCDB5d9rwojilRj/gZcvnwZf/75JwYPHly8MuC994CoqNc/gacnsH8/EBNDjtqFqFq1Kj766COWmpqKE8nJvOu5c6x2gwZFFmo0Gg0EQcDOnTuRkJCA8zkO4xYWFrxXr16sQYMGEAQBRkZGePDgAezs7JA8dSoeMIYX69frMzMzUaNGDVmvXr1gbW2NDRs2iBYWFmzixInM3t4+70TGxlTWUEg2HxYWhuzsbNa9e3dmUKDNOZCURM9T8+a0kLJpEz0/P/8MjBhBaoGffwZat6bziWJe3/ZTp4BGjWis9HT6V6ulF+eArS1w5gzVeWdm0rNbwXTq1AmZmZmwsLAQHzx4IIii2LLQNQaDsVsAmgHYBcbOAvg6x3m8bDjnYEwP4FsAVQFsrtgrMAxjY+O1LVu2NM8NtAHA1toaM/76C9f0emzv1IkN4hyG9x0oSFpaGnx9fdVRUVFPtVptP6VS+VfFzFxCQuJNkIJtCQkJCYmKpCsA1Cgm4AGAw4cP6+Pi4mTjxo1D7dq13+xM69YBT56Qe/XevaU7lO/dSxnlwhJZUSRZtyhS+61SaNmyJTt16hTr1q0bLC0t8944dYra8wQGUiZRECjD6u+P1NRUaDQaCpzmzgWePQPmzCn5JDVq0MKAXg9cvkz/nj6NtLQ0vYeHh1C3bl1Wt25dWbdu3XDlyhV+//59ZmZmhvj4eHTv3h0uLi5wKey6zTkwYADVuReWlhtC7dpvJGlVq9Xw9/fnQ4cOZfnrdl+xahXQsuXr1WvnIpdTTfby5VTTXwyCIMDa2hq2Awbo9/7xh9x72DBu+9VXDBMmAACeP3+OrVu3AqCexD169OCtWrVi/v7+PDExkZ85cwa+vr6vboRMJkP9hw/R6v59ZHz+ub5FixYyY2NjPHjwQPz5558FuVwOnU4njBo1CgUCbYAyyPv2AZ9/XmDzlStXuIuLC6ytrYvecM5Jsn70KKk7pkyh7/fvJ4dxBwfKTo8aBdSqRbL6XPL/rCUlUfu7ly+Ld7n+8MO8823YQMaEP/4IbNkCPHpEyo/Ro8kluwKoWbMmxo0bBwDCo0ePcOjQoaJBIgXWt8BYbwDvAvAFY2sBnAHnZTeBp4C7GQAOxoaB84MVMnkDUalUdRUKxYC33347TzKj0QD9+qFa377ouGQJrqxfj99++w1z584tuYtACTx48ACHDh3K5Jyv0Gq1Pkql8s2lKBISEhWCFGxLSEhISFQUIgBMmjQJpsUYaiUlJeH27duymTNnomp5e1aXhK0tBQ2JidRHuCROnwYKt90SRQrU69cnKW0ZNG7cGCdPnkRyfDwF202bAjNmUJDo5UXByc8/FzgmICAAoiiiXbt2FBBOmkStldq3L97kzdyc2mwlJQHVq0O8dAn6ESOQ9PnnQv4ArFq1avDy8hK8vLwAgO3ZswfXr1/nXbp0KRqkJSVRZrpx4zKvsVgcHQ0y/8qPTqfDb7/9JiYlJXGNRiPUrl2bN2nSpPiIPSCAxu/a9fXml4u3NwXtX3wBVKtW4m69evWSx8TE6INr15b1tbYG9u+HbsgQbNq0Ca6urrxPnz7MxMQECoWCAUD//v0ZctQMWq0W0dHRqFatGoyNjSHftQuoUgVNRo58tYrTunVrYffu3Xj48CF69uwJR0fHopPo3Jl6vheiR48ebNu2bfjaxwefuLvD6tIlUkN06wY0awa88w65yffqBSxdSoszNWoYLr/fto0y4Jcvkwt5794l78sYBfUAlV/kysofP6ZA8eRJ4JNPgIcPqQSgVi3D2rWVQlxcnJ5zXrJchfM0AL+AsQsAlABqgrH74PxymYNT/XZNkEP5JXAe/UaTLQfGxsa/dOjQQf6qPWJICBkibtsGtGwJK8Ywfvx4bN++HWvXruWffvqpQatboiji3Llz2mvXrqVotdr+SqWyEhwAJSQk3gTJjVxCQkJCokJQKpUxgiAE7dy5U8wqJDuOjIzEL7/8AmdnZ15hgTZAMmt/f6rX/f774vfhnDJxY8bkbdPrKUjv1IkydWWRkICAU6fQ+ckTsVbbtjTmt9+STLdePQqg82V/c1ruiDdv3sRbb72V14brrbeA+/epxVJJzJpFruQANty7p1v51Vfo1LQpb+LgUOIhXbp0QWpqKktLSwMAZGZmkjP8s2c01pkzgIVF2ddZHDdv0r0ykB07dvDFixdDo9Gge/fuMk9PTzZmzJjijb6ePaMM75Qprze3/BgbU8u2PXvK3DU+Pl6o3aMHlRVs3w5h3TpUrVpVDAsLY4IgoCQJt0KhgJOTE8zNzekzbdIEWLasyH5Dcozebt26VbxsXq3O66uu1wM7dwJr1sDx2TNMWruW975zh5sHB9P9kctJGr51KwXb27eTq37LlsVK5kvF15d6mAP0HEaXI97MvY6jR6n3eps25AMAkH/CrFl0XVOnFnGGN5QHDx6kZ2Vl/VLmjpyHgvNRAKIBjAdjn4CxWgYcFwWgBgAtGDPMyfEN+frrrwcYGxt36dKlixycky/EzJm0qNaq1av7Wq9ePXh6eqJu3boGZaXVajW2bt2qvn79+nWtVusqBdoSEv9OpMy2hISEhESFIYpiv8zMzMSwsDC45dTDhoaGYt++fbC1tRVHjx5dOYu8jFGmrjhu3yZpcd++eduGDiUTtP37Sx4zI4Pqrj09gcaNYdmrF9eMGsWYjw+db+DAEg8NCQlBQECA0LVrV3h4eOS9YWFBdeEbN1I2sDiztgULKHAEIIoic2nSROy2eLGA48fJrbwYHB0dYWNjI/7000+Co6Oj/sWLFzLGGHpfvcobZmTAcu5cZlTI9M1gMjJIam8AAQEBePr0KZs6dSrs7OxKd9IWRQoajxwBund/vbkVxsUFOHiQ5mxuXuwut2/fhkajQcOGDSmjvmEDhLAwDNy1S/itdm1oNBqYl3BsAbRaUkZcv/7q88rFxMQEI0eOxL59+/Dy5UtUL6y6yPUGaNSIeoSfP0/KjPHjcWzkSNTt04fLPT3zbl5xcu/ykJ5OQfKRI3nb4uMpG/262NsD775LX9+7RwF2RAQQHEylFO+9B1StCvz0E/WRL0VtAJDSOzY21gTAdYPnwPmpnCx3R1DG+gI4L2HV7dUxOjDWD4ASjDUot8N5OVCpVFUVCsWmQYMGmcn1ejKpu3WLlDbFqEVyWqGV+YMaFRWFXbt2qTUazXqtVvuFUql8vfYFEhISlY4UbEtISEhIVBhKpTJJpVLh2rVrMDIywvnz58W4uDihUaNGfMyYMZWnphoxggKfzz4jg7Jm+drqajR5cliNhjJ6M2eSlLs41q4lee2FC1SLHR4OREYiaO1a/nbNmgKKMx/Lx71793Ds2DG0b9++YKCdS9WqwO+/Ux/dtDTsO3pUfPTokWBmZoZatWrBJjsb1XfswNHOncEYk8XHx6PvqVOQW1mRSVUJPa+nTp0qXL9+HYmJiTJnZ2c0F0WcrVoVQWo1T/n2W2ZkZIRmzZqJnTt3FsqlLuje3eAM6pMnT+Di4qK3t7cv2+xOEKhGzN/CAAAgAElEQVTmuDT5f3mpW5c++5AQoGPHYneJj4/npqameLX44OCA4JAQmAUFYUqtWoaXOGi1wDfflBhE5ma/CwTuUVH0Gc6cSXP95hsy5sv3nLi+8w67fPkyenh6GjYPQzhxAvj6a1J45C6AvHxZrHv7ayOTAQ0aULANUO24IFC2294eiIykWvHo6LwgPR/JyckAoFYqlTHlOi/nagDnwNh9AH1zgu85AK6UGEhzvg2M7QTQFowlgvMn5TqngRgZGS1r2rSpVX0LC5Li16xJSo5ylmXkotPp8Oeff+qCgoKy9Xr9+IULF/pW8JQlJCQqGElGLiEhISFRYahUKiMAiI2Nxb59+2BlZSUMHz4cY8aMqcBmwSXAGP0hHxhYcPvu3Xk9rt99l2pPe/QA8pucXblC7acAqqO8cYMcm8PDaZupKbKysoQCxmjFwDnHgQMH4OjoiL75M+n5kcvJFOz0aaRmZiI0NFRwd3eHvb29+OLFCx4WHo6mgYHo3q0bGjRowJs3b64XrKwoE2ljU2LLKLlcjg4dOqBv377o2qkTqk6ejOE2NuyTOXOEMWPGwMvLCzExMVi1ahVelkMWjuRkIDW1zN2ePXuGqKgo9OzZs+xA++VLqpUvYeHgjWjdGli/njLnxdCxY0cmCAK+//57fuTIEYiiiID79/WaNWtg17EjGYQZ0ud8166Cz1Ah4uPjYWVlJZqampJc/MQJMqqLjKQ+7rdukaN+YmKB49zc3KBWq1lMTPlizhLx86OFqNDQgkZ3WVmAmVnFnKM4evcmVYiZGT0/NWtSRj+39VybNvRzp9EAoojY2FjI5fJ7r30+zqPB+WYAHwFYAsAbjDmXsr8OwJcAfF77nKWgUqnaARjVo0ULI/TvT90AZs167Wc+Li4Oq1evVl+9evWsTqdzkQJtCYn/H0jBtoSEhIREhaFUKjUA6jHGHtSoUSN76NChKNaBurLYuZPqWj/7jIKt7GyqVzYxoVre774rKKUdOJBqvrOyKMsKUAAwfHiRoV1dXfmhQ4egVquLPbVer8exY8dEhULBJ+Q4XJdIixbA0qUwa9QI1RMS4O7ujjFjxgiffPIJm7ZwIeTJyXDv2BGjR49mQ4cOlQmCQNnBq1fp37KUr8nJdJ05GcRGjRrBzc0NkydPFqpWrSqGhIQYLp3Vag2qwQ0KCuJ169bVVytDLgyAFhzGji1R6v1GdO4MvHhBrbWKwdzcHB999BEbPnw4u3XrFg4dOoTMzEzZ/7F33mFVXFsbf/ecBogFEVEsBI1dFBt2RU3sPSYaNZYYW4qam8ToNTIZjRpNco03mhijxhJL1Ng7iCgCIoqioiICgiC911Nm9vfHBusBDlhi7rd/z3Me4MzMnj0zB+Xda6132bu4sFrknByWil5Wb/Hdu0uteT58+DDy8/MF7NvHsigaN2au+L16PTQSmzmTZU88go2NDerUqUMPHz5MTZaI/tIwGllWR3Dw047yLi5MAL8MikX9l1+y31FKmbFgo0YszbxuXaSmptLOJ04YQcjTDcvLA6VXQWlvsL9xF4KQ0SCkhMb2eAvAJBAyAoRY3nqwDCRJstWo1fvHVq9uXWn8ePbcJ06ssKv/1atX6fr16/NzcnI+nDdv3gBRFOOf11w5HM6LhYttDofD4TxXRFG8azQa3dLT07esWbMm//6z9E+uCFZWLHoWHc1E56+/sj/oN28GnJ1ZT+LitkVNmrA66p49S+59XUTz5s1JYWEhsrKyzG7PycnB5cuXhUmTJhGhtDZkxSxaBHW3bjBWqUKji4V+MUOHAt999/Qxrq7A7NksYlgSfn6sf3SDBmY39+vXTzh37hzZsGGDkmNJLXZGRpkGaYqi4O7du7R169ZlC5b795n7+6JFZZ+7oqxcWbJhHgBCCBo2bIjhw4cjKioKgiCwaL+NDTMiMxpZzXEJCyuQZRbZLsXYrZO1NW0YGAglJoalEDdqBLz+hI48dow95yei8L179yaZmZl0yZIluFbCokGZ3L/ParXT0p6u+aaU3aOKmuY9I8kpKciZNw/Uzo61xLtyBdevX89re/68E4BOIKQZCAkAAPMOcxbAotxzwP7WXQVCJprZp/jG/wfAsAqdxwyVKN3gkZdn77x7N3OKr2B/8vz8fPz5558FR44ciTcajZ0WLly4+XnNkcPhvBx4zTaHw+FwnjuiKOoBTFu0aNGpTZs2bejTp4+1u7t76YZZz4tKlZhh08WLwEcfMbF47Bhz/t24kaWUf/AB29ecoC0BX19f2qRJE1K7BFfwuLg42Nrayk5OTpZFyDp3Bjp3Rt8tW0jNwYMf3/bBByWnKM+cWXJaN6UsWrluXYl1oU2aNMGIESNw4MAB4fr16+hcQm3zA+rWLTMCXRQdFizKYjh7Fti6lbVNe1E0bsyc6kND2cJDCbRu3RrNmzfH4cOHcfDgQbRo0YLVco8ZAwQGMoO8Dh1Y//RH8fFhLblu3Xp60OxsIDcXXVauJGFdu1JhzpySP/RVq7LU4thYYM8eyLKM7du3K1FRUYJarRYAoEqVKjCZTFCpVOXTncULAWZajCE5mT3TiprmlYPs7GxERkYiLy8PycnJhYmJiYaUlJQqANCuXTvlzTffFHJVKqSlpdHv585tI4piAQhpCKC4HiQUhJwFMAvA+wB+t6i3NgBQmgZgBwi5DCbivQHMBqVhj+wjg5BGAAgIGQpKDz7L9a779NPVfS5fHtGqSRMNvLwqHM2OjY3Fn3/+WWA0GjcWmaCVsPLD4XBeZbjY5nA4HM4Lw9PT809Jki75+PgcjoyMrDdy5EgbqwqaA5ULQljbJG9vFjWMjWURy86dmQidPr3cQ3bo0IEcP368xO3VqlWD0WgsV8ZYVpcuaLhwIfJ8fFhbsGJ69QJOnjR/UNOmrKa4RQtWj96q1cNtc+Ywwy5Pz1LP6+rqiv379yMjI4OiqId0iTg5MeFaCioVW18oLCw022P9Afn5wFtvMTH7ItFqgWHDWG10KWIbYO28EhISlJYtWwoPTNPUamDNGvb67Tf29VEjN0dHlhL9JJcvs8/WzJk4uXIlCkwmpSNQ+uLLe+8hPjAQ2TdvwsfHhxYUFKBq1aoPMij27dtHs7KySOXKlfHRRx9B94TzuVlSUlhEtaT0f72embS9ABRFQUxMDG7evGm4fv26yWg0UrVa7Ws0Gm/LsnwXwDUA1wG4XL9+3TMiIqKXi4uLjUqlOrhgwYICACgyLPuiaMjuAKwA1AawDMBmEPI5AB0otSw9gtJbICQcQASAX0DIRgDHQWli0XZTUX33JhDSAJRmVuTajw0c+HlLg2FaixEjNKpZsyoktCml8PPzM/n5+RXIsvyup6fnkYrMhcPhvBpwsc3hcDicF4ooinckSWodExPz05o1a8aNGTPGpk6dOi/+xCNHsrZMx44Be/awKOT160zs1a5d7j+EMzMzUblyZQUllGBFRUUpRf20LR74r4gIpdK8eeRte3vyWLuq3FyWLv7228zR+UnUaubA/mTrJkpLTzF/BEVRYGdnV/ZcY2KYiVUphIaGAkDZQnD8eHZtJS0kPE/c3Vn0vG9fwMGh1F0bNGiA2NjYp5/thx+yGu7r11m0vLjG2d8feDQb4cIFYO5c1tN89WocTU3FteDgkk3yHoG6ueHgunVotncvNO+8o0yfPl1V3Jc9NzcXd+7cIQ4ODtiyZQvdsWMHcXR0VNq2bSvY2dnBbDu3gAB2zRkZJbtex8Wx13Pm7t27+Ouvv/KNRuN9k8n0pyzLmwFELViwwJzqTwEweNGiRWPDw8M/1Ov1/zE7KKVZAIprN9iDJCQVgA6EqAFkA2gNQAZQDZSGlDAOBYuW9wAh8wGsByH/ARAISgtA6W0Q4gjAHoR0B6V+5bn2sz17ftzk/v1vqy5apNK++255Dn1ATk4O9uzZk5+UlHTLZDINE0Xx+T8kDofzUuFim8PhcDgvnEfSyk9s3rx5U69evWw6der04tPKW7d+GNm8dIk5Qp88yaJ+Hh7A6NEWC+9Lly4prq6uJRqLJSYmUhcXl3KZLLm4uAhXwsIgf/EFhM2bmVACgHr1WKpyafMSRRa537YN2LCBpcx//TWLulqIrSU1u6mppbpzJycnAwBmz56NMmvVt25ldfQvg+rVWa1sSAhzxi4FlUqFhIQEQVGUx6+BEFZTvHo1KzlYt461QVu0iBl8RUezZ2BjA4wdy/qGCwJw9CicnJxkd3d3iz4PtWxsFLeoKMFj6lTVo8/c1tYWbm5uAIDu3buTixcvyrIsCxcvXoQgCKhataqSlpYmfPzxx7C3t2dGf126MOdxjabkE+r1ZWYrlIesrCz4+voWhoWF6U0m01hPT8+jlh7r6em5HcD2cp2Q0g0PviekD4BIAF8BGAzAHYRsAfATKA0u4fhlIKQ+gFEA3gIhB0HpCVBqBCFjAEwDYJmzIyG6lBo1vqrs7DxPu3Wryv7RDBULkWUZQUFBiq+vrx7Aj0ajUeS9szmc/w242OZwOBzOS8PT0/MvSZIu+/r6Ho6KinIeOXKkTalpx8+Tdu3Yi1JWh3vvHjBhAquN/te/WBSwfXuzAjcpKQkGg0F4o7iF2BOkpqYiPDxc9UFxLbiF9OrVC46Ojth1/z7GzZ79+Ma1awE3N9aCrCSqVWPzvX6dRVstcQIvQqVSQa/Xl71jp07mo+tFFLuzG8qIfmPsWGDQILM9ll8Yn33GHMavXXvoAP4EBoMBISEhQps2bUpeLPj4Y5ZFcP48S+P392efl6FDmbhdufLBPTp69CgNCQkhAwcOtGgliVKK/LZtyY6GDeWZEREqNDbfrapbt27o1q3bA/EeGxuLqKgo4cyZM1i9ejXauLkpA6ZMEcj33yN/5EiUKqXDwkptW2YpOTk58PX11V+9elUhhPxsNBqXiaKY9swDlwdKA4u+W1T0AgAdgFwQMgGACEobgpC2AG4V9eUGKI0F8B8Q0hVA06K+2xIo/RGErCl6PxqUluzwSEjtu/Xrv59Vo8a/6A8/CHUrILRTUlKwc+fOvLy8vCtGo/F9URRvl3sQDofzysLFNofD4XBeKqIoRkmS1CY2NnbVmjVrJowZM8a67pPp0C8SQli9c4sWLOJ59SqLtv73vyxlePRoJqjc3B4I77CwMDg6OspqtdpspDIwMBCCIKAk87TS8Pb2lnXt2gl4912CBg2AU6fYhurVy24/1b49sGQJS2HevbtEQWkOWZZhkVN8Xl6JPasBPBComtIiqQCLMpcgJF8Y1auzdPutW5m7uBlycnKgKAqGDh1a+ljDhwNbtjDn+sJCVvPs7/+YyVhWVhZCQ0PRo0cPtG3b1qxyz83NRUxMDPLy8pCZmalER0eT9PR0fDhokArt2wN377J5l0H9+vVRv359tG7dGsHBwYiOjKR/jB1L79+7R0wrV2LMmDFo0qSJ+YMLCoCGDcs8R2nExMRgx44dBYqibDCZTItFUUx+pgGfJ5SOBgAQEg+g+EO+BcBeEPIjgJ8BvAtKKSj1ByFBABIB/ABCDoFF2hcBuAHWt/tpCGmXXq3aF7dbthxe+9tvda1dXcs1RZPJhIsXL1IfH58CRVE+lWV5vSiKlrfk43A4/wi42OZwOBzOS6corXzGokWLTmzZsmWLh4eHdefOnVUvxa38UQh5mGbeowcT3evXs9TsMWOAO3eA/v2RkZFR6jB2dnaoXLmyjLLMsMygVquJysaG4oMPyGO9oefPByIiyh5g1iyWfj50KGtlZgGZRancNR41/Sp5gqWK/tzcXABMtNrZ2ZnfaccOYMGCh/2WXybjxj3s7Wzm82VnZwdra2u6ceNGOmnSJKHUVPgJE5jLt8HAas9v3mTZBc7OAIAff/wRKpWK2Nvb49q1azCZTI+9oqOj5djYWJWtra1Jp9ORSpUqCU5OTmTAgAGoWr8+S3m3QGg/Of++J08C58+rlLNncevWLQQEBFB/f380adLE/C9U/fqsFVkFCQsLw/79+/NkWR7u6enpXeGBXjSUZgPwLvq+JQCAkCYA7EApBSEHAdwBpf8CIREARgIQAZwA8DGAayBkOIADRTXfKBpjdJSLS89LXboMd/3qK13Tpk3LNa3o6GgcOHAgr7Cw8ILRaJwliuL1Z75WDofzSsLFNofD4XD+Njw9PfdJktTqzJkzhyIjI11GjRr18tLKn4QQwM4O+OIL9oqPZ1HdbdvQMCgINbp1UyEykkVoHxFkOTk5OHv2LJyLBJelGAwGREdHIzU1VWjUqJGCBQuAIUNYT+alS5mD+qBBzKCsJGJigF9+YSJWpWKR1wkTyjx3sbFWtWrVyp5oUhJrFVUCxe2+sktqR2Y0sjZZrVqxbIKXTaNGrB1XYCBL+X4CQRAwdepUsnLlSnL+/Hl0MbPPA/R6Vhc/dSq7J7t2sT7uly8Dly9Dp9GAqFTUy8tLFgQBgiBApVJBpVIRlUolODg4qEaOHAlbW1vzf3+5uLAFk717y3evPv8cuHMHgiCgefPmqFu3Llm9ejU9evSoPHDgwKcXgI4dq7DYvnDhguzt7Z1rMpl6iaJ4uUKD/J1QGg6guIh/GQATCKkGIAzMgC0EQAGADwDkA5gEZtB2GoRoALwXV6/e1FPDh7v1nT1bV57f+/v37+PEiRN5iYmJuUaj8SNPT8+/ntt1cTicVxLy6EIdh8PhcDh/B5IkabVa7UqNRjNpzJgxNi81rbwMkpOTsXvRIkxzdobG2Zm1gereHfjoIyRRigOHDyM1NRX//ve/LR7z9OnT8PPzgyAI6NSpE/Xw8CBqtRr49lsm5rKzmcHV1q3MwdtctDUnh0Xlt2wBunVjjtgjRjABbkE6+Q8//KCYTCbhnXfeQfXq1VH1yV7SxezZwwT3Rx+VONaSJUtgMpmwcOHCp+uejUY2n5edtfAo+/eze1rKQsTvv/+uxMbGCtbW1sqIESOERubE6PjxTLRHRjIztKFDmVHd/fvA+PG407gxvVmvHoZMn05Qr17F5ipJ7DyWpHnfv8/8B65efapePy4uDps3b0anTp2UPn36PP5QGjYETp9mEe5ykJycjN9++y3HZDK1EkXxbrkOftUhhBRFu+cCqANgDoAEsPRzHYBoBXj9YufOzS8OGdJx3Icf2pT4O/MEaWlp8PLyyo+KijLIsrxQUZR1oiiWYXLA4XD+F+Bim8PhcDivDIsWLRqmVqu39uzZ06ZLly4vP63cDLm5ufjxxx8xePBgODk5wSEnB+T6dRh27kTE1asIadMGPfr2hfO4cSy6XAYZGRlYs2YN3nvvvaej4YoCHD/OhOmAAazHc5MmLMX9SfLzAS8v1k/6Ue7eBXQ65rJexnWtXbsWeXl5cHZ2ViZNmmQ+f9rPj/VtHjmyxLH8/f3h4+ODhQsXPr7h+nVmsJae/lht80tHltnCxMmTD9t3mcFoNGLr1q1K9erVheHDhz+9w4oVQEICM0TLyQFsbdm9qVkToBTr16xRup88KTS5dImlhF+5wtpwlfdzvHkza13WrFnp+5lMwM8/l9gzOykpCevXr0ffvn1phw4d2CQUhUXCv/++VOM7c4SGhuLEiRNH586dO6hcB/4TYf/4fApgM4AACjQ+8+abcdGjR9uNfvfdSjYWlERkZ2fj9OnThdevX5cBLDeZTP8RRTHvBc+cw+G8QpTvX1kOh8PhcF4gnp6eB4xGo+vZs2dvbN26Nb/Y6frvxNbWFpUrV5YPHDiAdevW4Zvt21HYrx+M69fD94038O5HH8H55EmWorx/P4t8ltIq686dO7CysqJm008FgYmhwYPZOL6+THw/yb59zGXbnKnX+PHAk6K3hOv6+OOPodVqaUxMjJCSkmJ+x/R01uKqFFq3bg1FUVBQUPD4hmbN2Pz/TqENsEWQ2bOB/5hv5VyMRqNB1apVqVln9cRE4I8/HkbHK1dmQtvZGYiPx7Hjx+XU3FzScO9eICqK7f/118xV3te3fH2td+xgqeSlMWIEsHFjiUIbABwdHTFq1Ch4e3uTB87zmZns9YTQzs3Nxa5du7Bp0ybs3r0bx48fR3Bw8GMu8/b29lAUpZUkSX//KtiLhkWjzp7u2bOBT9++USf79y/InzOn5qT33y9TaOfn5+PEiRPGn376qSAsLOwXk8lUf8GCBYu50OZw/v/Ba7Y5HA6H80ohimKMJEnt4uLiVqxevXr66NGjrctbD/28+eijj1SFhYWwsrLCqlWrlE2bNhGdTqekVq+uWnvpEp2xaRNR5+YCf/3F0q49PIAbN5ho7t37sbHu3bsHJycnCsC8YBk0CPjxRybmtmwx7wSu1TLxaC5i6uPDUtDT0spsBWZlZYX58+eTVatWKdu2bROmTJmCyk+2hMrIAMLDSx3HxsYGtra2yn//+1/h008/ZTXhZ84Av/8ObNpU6rEvjbFjgTlzWK11zZpPbc7JyYG/vz8NDw9Xvf32208fv24dSx9/NNpcsyYzsXNywp0//hBatmzJygHUahZJDwhgafTTpjHncl9fdi979So92n3sGDsuKwsoKVW5WzegY8cyL7tJkybQ6XTKt99+Kzg5OWFkly6wL7r+Gzdu4PLly6CUIi4ujtavX586OzsLOTk5cmpqKu7cuUNOnDghVKtWTR4wYICqQYMGEAShJiFkBIAyVgNePSRJEgBUKnrZgv0OZgNIAQtAdQNQmShKARWEtp9WqeJpsrHRyrNmoW3bthoHBweUlm0jyzKCg4OV06dP6wHsMplMC0RRjH/hF8bhcF5ZeBo5h8PhcF5ZFi1aNFCtVu/o2rWrTY8ePdSvQlp5fHw8Lly4gEqVKiEoKAiKoqBWrVqYPn36w53S0oCDB5m4qlmTOUwPGQI0bYrd+/YhLS1NmTFjRsnZZZcvAwMHAp6ewOLFrDa3mHnzmJjv37/kSaakAPXqsZTyWrXKvKbCwkIsX74c7dq1w+DBgx/fGBjIaoIfvT4z3LhxA3v37sUXX3wBnU4HnDgBHD4M/PRTmed/aaxezVLsp059apOPjw8NDg4m3bp1Q9euXZ8+9vp14NYtYNSop7dJErJ++QW7Fi/GxIkTHxjQPYbRCAQFsd7fc+cC1tasvVxJae0TJ7Lo+IkTj79/5gy7p3v2WHDBjKSkJHh5eSE1NZXWvHKFvJ2biz8GDZKTk5NVrq6uCiEEDRo0EMy1CsvNzcWFCxeUoKAgwWQygRACRVFmenp6rrXk3JIk1QNwixCymlK6WhTFexZP/BkpisA3JoQM1ul0YwwGQ2tCCNRqtUmtVsuEEBgMBrXRaFQTQlC9evX86oqCYf/+d+WL335rquTurmnh6gorK6syzxUZGYlDhw7lFRYWhur1+qmiKN548VfI4XBedXhkm8PhcDivLJ6enkclSWoREBBwICoqqunbb79tY2tr+7fOqU6dOhgxYgQURUGzZs2wceNGJCYmIiMj42HrK3t71td58mQmeL28gMhI6EeOxGt2dui8erUAg6Hk9Oo2bZh5lUrFaqVlmX1vMgHe3sC775Y+SQcHFoWtVYsdU4ZhmpWVFTp37oyQkBB07twZ9o9GxPV61pfZQoKDg+VudnaqB33MXyXefJNFjfV6JrqLyMjIwPnz50mjRo3M90qPiGBp+8uWmR/3yy9R0Ls3Ery8sG/fPowePfrpfTQaFo0+f549k3feYWJ682a2mNKz5+PR7hUrmKmbuXHq1CnXZRenk2/fvp2o9XoE5eXRlJQU1SeffAIbG5tSSwptbW3Ru3dvoVevXtDr9fDz81MuXLggSpL0q4V9oRsDsKGUzgUQAWB9uSZfDiRJqq5SqQ4SQq5qNJoGarW6o0aj0TZu3Fho2rSplYuLCwgh0Gq1jzWFNxqNwL170KxdWwXLlwM1aqDH6NEaS2ra4+Pj4e3tnXf//v1so9E4g1J6iPfL5nA4xfCabQ6Hw+G80oiiGGcwGDomJCSsXrNmTUF0GfXDLwtvb29s3Ljxwc85OTnmd3ztNWDqVITUq4fVQ4YgpXlzWnfPHtb/ec8eVtNsrsb7zBlmxNWwIauZLjbD8vd/2Bu8NOrUAT7+mIk4C+jbty+sra3pzZs3H99QqRITeGXQvHlzDBs2DD4+Pqrs2bNLrSX+22jSBAgNZffwEXJzc2E0GnHv3j36559/4tdff5Uf20GlAlq2ZC705rCyQkq1avjw55/R/9Fe6eYghN3PffuY+VxkJPDpp+z73buB1FS2n6Mj21ac0q4orF68YUNg1apyXbaiKFizZo2iVquVlj16oNawYWTWrFmwxOSrmISEBCxfvhwBAQGCyWSqBaC9JceJonhKEITTRT8+VrMsSZKtJEnVJEkq+wNmGUZFUVqaTKaZBQUF/UwmUzUAUKvV2itXrhiOHDmCZcuW4dy5cw9rMxQFmowMaOLjHy6EvPtumeZxaWlp2LZtW/7mzZvTYmNj5xoMBhdPT8+DXGhzOJxH4WnkHA6Hw/nHsGjRojfVavWuTp062Xp4eKifajP1EsnIyMB///tf9OnTB9bW1mjXrl2J+969exebN2+Gg4MDnTlzJiGEAPfuMaOqJUuA4GDWUkyrZRHU4qiriwurmZ4+nQns778HLl603EU6Lo71CjeTHmyODRs2ULVajYkTJz4MsR4+zIy4yjLsKkL6+mtmvjZzJnSVKlk2z5eJjw+rJd+69bG38/PzYW1tDYPBgO+//x5t27bFgAED2MaffwaOHmX3ogRu376NsytWIKNOHdq9f3/SqXNny+ekKIDBALz1FstCkCQgN5cJ7kWLWO1+YSGLzO/ZY1FpwKP89ddfNCUlhU6bNk0QfvyROdWXlR1hhk2bNtGYmBgCIBRAF1EULXYwXLRo0VlKaXcArVQqlYdarZ5rNBprCYKgyLKs1mg06YIgZAG4rNfrdxZFiCvUHkuSpKpgAaVMAG5gvbMfMG3atIcZDGPHMkO78+ctGvv+/fvw8vLKi4uLUwCsMplM34iiqEUnOwoAACAASURBVK/IPDkczv8+XGxzOBwO5x+FJEm1dDrd/ho1ariOHj3a5ilDr5fI0qVLodFo8Nlnnz3dXxqAj48P/P39IQgCmjVrpgwdOlRQm0vpzs5mqeZeXkDjxqw2+K23WCT1hx9YG6hWrVidb7Vq5ZukLAOvv84crjt1KnXXyMhIbNu2DXPnzn1Yp3r+PBPaK1ZYdLo8Z2cEursrl93dBY1GQ5s3b6707du37J5oLwtKgZkzgdGjmVGZGWJiYrBlyxaMGDECLevWZXXVM2aU6WZuNBpxYv162vuzz8i1PXvQceDA8s9Pltn9FkUmrM+cYTXzb70FvPFG+ccDsHLlSnnAgAGqpk2bsusYMODplnEWsmrVqpzMzMx+oigGlue4ovppBQBq166dN3DgwEpOTk4QBAGKoiAzMxP5+flITExEcHBwTnp6OlUU5UtFUX4TRVEuY/iyzl0XwL1+/frB3d2d/a6+9RZ79evHsjdKqctWFAW3b9/GpUuX8mJiYgyyLHsWzYuLbA6HUyqqr7/++u+eA4fD4XA4FuPh4ZF76tSp3wsKCnQXL17sUKtWLU316tX/lrm0bt0aQUFBND8/n77++usPosH79++n+/btQ0xMDGnTpg1atWqF3r17E1VJfbh1OqB5c+Ze7urKaqS3b2f13hs3MmMvWQbM9X4uC0Fg4/ftW2oLLkopjh07pmRlZZHMzEzExsYqp0+fpjUrVSI2ioIQgGZnZxM7OzvExsYiPj4eKpUKNjY2kGX5wWKDtlEjvDZ9OpHZuciVK1eE1q1bw9rauvxzfxEUp3EfOMBM6MxQrVo1yLKMS5cuyR26dxfQpAlzlS8joqxSqdCofXtyOTmZemdnk0aNGj3t7l4WggC0aMEWBBITmZna8eNsoWXIkPKNVcSFCxdovXr1hFq1ajGH9IEDgWJ/AQtISUnBnTt3oNPpEBERoc/JyTno4eERaenxkiQRlUoVbWtrq+3SpYtmxIgR2qpVqz5w9iaEwNraGlWqVIGTkxM6dOiga9y4sS4+Pr6X0WgceurUKW8PD4/M8l85w8PDIzsoKKhjs2bNGtUOCmKLT7dusRr6hg1L9DQoKChAUFCQsmvXroJbt27dSE1N/U6W5fGenp4BHh4ez7QAwOFw/n/ADdI4HA6H84+jKNK1UJKkU7t27fqrQ4cOlXv37q0pUcy+IGxtbWE0GsmlS5dIjx49oCgKAgMDERoaSnr37o02bdqg3IZutrasV/b48UxsqVQsrfhZUuZnzgQOHQJ++425pJshODiY3rlzRxAEAREREdTa2pra29urju/dixahoTjHatIVvV4vCIIAGxsbOS8vT1WzZk0kJCRgyJAhtO3q1QTffAPBwQE9e/aEoij45Zdf5F9++UX15Zdf4mU/nxLp0QMIC2Ppww0amN2lQYMGOHfunCq7eXNUsba2OI2eEAK3774j1WfOVPK7dROu7d8PV1dXy+eWk8Pc5OfMAW7fZosvDRuyuu4KUqNGDdX9+/eV1q1bC0hPL1ff84iICOzevTtXpVKdNRqNb8iyXAVAOZqGAwAEWZade/fuDTc3N4sOqFWrFj744INKfn5+bf39/W9+++23h/V6vVhel29JkgghZJJaEHo5V6oETJkCnDvHfqdKoLCwEP7+/qagoCCTIAhH9Hr9MlEUL5XnvBwOhwPwNHIOh8Ph/MORJMlBp9PttrOzaz9mzJhKVUvqS/wCMBqNWL58OQRBYI7GAARBwMCBA0ut4S43hYVMdP/wA2tB9ccf5R/j9m3WK/r775/aZDKZsHLlSnTr1g0GgwE9HzFVy/LygtXy5dB5ewMAsrOzoVarYWNjg3Xr1skJCQmqFi1aIDIsDBM3bkT27t1o1KHDg6hlRkYG1qxZgwULFpTao/ils2YNi2iW0tLsQlCQops6VaiWnY2qV67AxsYGarXabMnAU9y6hfBdu7BXo6GffPIJKXXRRZaZaZtezxzPe/ViZQNbt7K0b3d3tlDy2Wflvszc3Fzs2rULVapUkUe99ZYKCxcCX31Vatr0oxw5csRw8eJFURTFbyVJ6qLRaIYbjcYvy2sEJknSvxwdHRfPmDHDcle2IgoKChAcHCwHBAQYKKVbDAbDvyypF5ck6TWdTre5RXR0h4H79lmr7t9ni1YlPD+j0YgLFy4oZ8+e1RNCDun1+i9FUbxb3vlyOBxOMVxsczgcDucfjyRJglqtnicIwlcjR460Ntcv+EVw+vRpnD17FsOGDcNrr72GVUUu0RMmTICLi8vzP+G5c0B4OOvB/NdfrO64vMyaBUyaBLRt++Cts2fPKiEhIXTWrFmqp4RkZCTw669ma7YVRUFhYSFsbGygDwmBT1ISQkNDqV6vJx06dJCtrKxIREQESUxMJJ9//jkq/Y2GaXl5ecjOzkZubi7y8/PRqmZNkE8/ZeZjT0R6ZVlGTk4Oglavlomfnyq7Rg3caNIElFKo1WpUr15d7tatm+rRiLWiKMjIyHisbRqlFCnNmtEzHTqQpnPnPh3hvnsXSEoCFixgqe0rV7Ke7GlpzEl+xQqgXTvWo7t+fZYCXo7PVVBQEE6ePAkHBwdl2LBhQm2tlqWoJyZaPMaFCxfg4+OzZd68eRMtPsgMkiQNrVmz5rbp06fbVtTYsLCwEPv27cuPjo7WA/jdaDSuFEXxqSi7JEmOWq3264ZhYe+3sbdXNRBFleriRVZKYQZZlnH58mV66tSpQkqpn16v/5T3yeZwOM8DLrY5HA6H8z+DJEmdNRrNQTc3tyr9+vXTvsi05ZCQEJw4cYK2adNG6d+/vwpgUUSVSvXi65N9fID33mNu48Dj/ZnLYvx4JtKHDAGlFGFhYTh8+DA8PDzQyZyB2p07wIYNJfeYBpgI7NcPyMxE5N27OHToEJVlmep0OpqWlqYCADc3NyU3N5fWrVsXPXv2LNeDyc7Oxs6dOxV7e3u0b99ecHR0BKUUiqI8EPCKouD06dNKTk4OdXBwENLT05W4uDii0+lo48aNVb6+vlCr1VStVtOCggKhU6dOypunTwuoWxf48EMAKK7TRlBQEE1PTyczfvsN1Z2coFmyBClubigoKEB+fj6io6OV0NBQQaPRKLVq1RK0Wi1iY2OV3NxcQavVUq1Wq5hMJqFp06YYdusWCWvcmB68dYs0btyYvjVgAMH+/UxUf/MNq8OfMIH1RieEmaF98AGwc+fjKe5paazE4JH+4GVx8OBBpKenK5MmTWLq9uZNFtX+6y+Lx4iNjcX27dvv6fV6FwDjtVptD4PB8JMoilcsHgSAJEk6nU7nVatWrXbvvPOOTXnajj1JQkICQkNDjZcuXVJUKlWyIAjhlNJEQkh1SmlDISfHpaWbG+196ZJOV1AA/Pij2XEopbh+/TpOnjyZZzQar+n1+lmiKAZXeGIcDofzBFxsczgcDud/CkmS7DUazTErKyvX4cOHWzUooSb3Wfnuu++UTp06Cd1L6r38MigsZKZdgYFAs2aWH5ebC+OqVTjRurVy7do10qVLF9K9e3fz6dHx8Uxse3qWOSbMpErHxcXh0qVLKCgoQFRUFIxGI2bMmAEA0Gg0sLOzQ0hICNXr9bR9+/ZCVlYWrly5QsPDw2nVqlVpnTp1VOfPn0ft2rWV5ORkobCwEAAe1H+3aNFCuX//PsnMzCQ6nU7RaDTUZDKRunXrCnXr1kV4eLiSnJxMhg4dSpo3bw4ASE1Nxa+//oqR7duj2cKFSNi7F1CpkJiYiCNHjqBly5bo378/tBkZEA4dYosTT5Qn6PV6BAYGIjs7WzGZTFQQBPTr10+Vm5uL7Oxs5Ofn4+jRowBAnRUFQ3//nRxt1w5v3r2Lqs2bA/PnA3XrPp7OHRwMTJsGnDgB1Kz5+I28eBEYM4YtflhIfn4+Vq1aRYcOHUpatGjBsiIuXmQ93i2EUoq1a9fmJScnqwBYtW/fHleuXMkxmUwdRFEMt3ggAJIkqTUazU86nW5Cr169bNq0afNMpQVGoxFpaWlIS0tDQUEBdDodqlapgnpduoDMns3M5UogIiICx48fz83Ly4spEtk+FZ4Ih8PhlAAX2xwOh8P5n0OSJC2A1ba2thM/++wzi92gKKUW//G/fPlyOnnyZFLzSVH0sjlyhLlLL1vGWkO5u5d5SPCGDXLDuXNVW+bPl0ePG6d60HPYHBERrE3UjRKyaletAvbtA3x9yzzv0qVLYTQaoVaroVarqdFoJFZWVsjLywMAqNVqKIoCa2tr9OjRA6mpqYiLi1M6duwotG7dGoGBgfDz81M6deok1K5dG46Ojti8ebNsa2uL9u3bq5o1awazrdWKMJlM2LVrF7137x70ej0hhKBPfLwSnZcn3Hn9dQDAgAED4O7uDnz9NTNRy8gAiurVy4vp3j1kr1uHu4TQxj/8QM726AH7BQvQsVu3p3f29mZRZ29vs4sWMJlYzfby5RbXWwNAaGgojhw5gmHDhqFFTAxw+TJLWy8H+fn5+O677wAA3bt3p3Z2djh27FiK0Wj0EEXxZnnGKmoB1ker1a5q2rRpwyFDhuhKe2YWk5HB+pDv3cui/46OZndLT0/H4cOH8+Pj49ONRuPHlNKD5a0/53A4HEvhYpvD4XA4/5NIklQfQAwAdO3aVfHw8DDf4xpAWloaduzYoU9LS9NptVpl6NChQosWLUodf9myZXTcuHGkfv36z33uFWL4cBax7NePibEn6pALCwvh5+dHw8PDkZaWRj744APUychgwqRRo5LHvX8f+OgjJqjNER4OhIQA775b5hQVRYHBYIBWq4UgCDCZTLh06RLq16+P9PR0VK5cGQEBARg4cCCqVKlSnqsv8XxhYWFwcXFBXFwcDh48qNjb2+PNN98UHB0dcfbsWWgCAuCeloaMuXNRUFiI14tENzZuZMK3SRPW89pSDAbWqis2FrhwAahTB5g5E9ezshC5aBHqFBSgyn/+g8aNG7P9KQV272bn27sXKC29+sYNZpD3zjvlug9hYWE4cOAAptnYoIYsV8hoLTk5GWvXrqX9+vVDx44dyZUrV+jRo0fzZVn+WFGUzRUwTKus1WoPtWjRouPQoUMtXz14Er2eOewPHw7861/A0qWAmXZrRqMR586dMwUEBBgALDWZTN+Jomio8Hk5HA7HArjY5nA4HM7/LJIk2QEYpFKpviWE1HrnnXdUjZ4Qlv7+/oq3t7dACImllIoAfgeAVq1aycOHD1eZi3RnZGTgl19+wXvvvYd69eq9jEuxiHv37sFm2jRUz8wECQx88L4syzh69CgNCwuDm5sbadiwIRo1asQi4a+/DqxdW/KgGRnMIG3evKe3bd/Oao/7938BV2M5BoMBN2/eRGpqKgRBwLVr1+T8/HyBUgpBEIher4darUbfvn1pu3btyGPPVFGAL74APvkEeO019l5mJnDlCnMInz4dqFGj7ElcvcruR8+ewC+/sIWPRwzsMjIycHrKFNROSaEn33iDtG3bVunVo4dgu3UrE+Vr15YutAHAy4ulmUdHl/se7dy5Ey1OnFBcR40SMGhQuY83R2JiIvbs2ZOXk5OTKcvyr7Is7wJw21LhLUlSUwA33dzcCgYNGmRd7gi3ogB79rCU/PDwEvtl3759G4cOHco3Go2+er1+hiiK98p3Ig6Hw6kYXGxzOBwO538eSZJUALYCeFcsilLGxMQgISEBJ06cAIAhoigeLtpXC2ALgAdKycXFRW9jY6MbMGAA/vjjDyQmJsLZ2ZlOnDiRvCrtrCilWLVqFbIyMtCoenXq0bQpqb1kCU7Mn08vBAcTrVZLR48eTR5zSaeUmXJFRrJezuZIS2OR0E2bnt42bRqrLf7mmxdyTZYQHh6OvXv3Up1OB3t7eyU/P5+0adOGNGzYkFBK4eDg8KA8oMRntX4967m9dCn7eelSYP9+VlO9c2fJfalzcoA//2TGY7a2QJUqTGTXqvXYboqiYN26dUrlypUxbuxYIX/qVOx0dJQbBASoGtSsicJ589C4TZuyL5ZSIDWVnaccRmkAsH37drQ5dEhpNnWqgN69y3Vs6VOiiIuLQ0hISOHt27dlg8EAtVrtW1hYuFgUxaCyjpckqZVWq11hZ2fXfdq0aTYWO5VPm8ba2Z0+zX4282zz8/Nx+PDhgsjIyEyDwTBRFEWvcl0ch8PhPCNcbHM4HA7n/wWSJDUBcKtz586wt7fH4cOHAYCqVKp/f/XVV9+a2d8BQGsAQwGkAfi6eNuoUaNQVpr5y0ZRFCxevBiEEFBKUSMjA23Pn8fJAQPgIcto8/nn5lOz09JYqnNUFODk9PT2jAygTx+WKv4oiYmsLvZvXGxIT0/HunXraK9evdCxY8eKT8RkYi2x/P1ZFFuvZ5HqkBDzfbh9fYEdO4DBg1l6/fjxKE3Aent7K6Ghofj0008FQRBYJoBWi/h69XC8WTMlLi1NmDJlCurWrVv2XEWRRXF37izXJX7//ffKeINBqDV6dMkLK88IpRQhISGIi4tDWFhYgclkGuTp6Xm6rOMkSSI6nc6/bdu2bfv27VvyKgKlzKhv8GDA2pq9SiiBuHPnDv76668CWZY3G43Gzyzpy83hcDjPGy62ORwOh/P/hsWLF7+jKMqfAKDVahfNnz/fomJcSZLqAYgt/nnevHnQlTOy+DL4/fffaWJiIubPn08URUF8fDysjEY4tG4NXLv2ME36SXJyWGS2sJAJmEcpKGD12Pv3P/6+oyOLAE+Z8kKupTQURcHBgwdpWFgYcXV1VQYPHixUtHfzA7y8mBv42LHAkCGAhwfg5vbw+jIygDVr2D5Dh7KU5eHDn3Ipf5Lo6Gjs2LEDU6ZMgaOjIxP2770HdOkCJCUh6ZNPsHbtWnTu3BmvFT2fB/Xc5rh6FTh5Evj8c4svLT09HT///DMWHDoEsnNnuXp1l4eoqChs3boVVlZW+sGDB+v27NkDQshQT0/PQ2UdK0mSi0ajCZs9e7a12X7ssbFAvXrMrG/KFPbVDEajESdPntSHhobmGo3G0aIonnrmC+NwOJwK8oz/M3E4HA6H889h4cKFuwDUAjDUUqFdRGsAmDx5MgRBwKVLl17I/J6VMWPGEFmWyfXr1yEIAurVqweHBg2ArCwmtFu1YinTT1K5MjBzJtCjx9PbBAGwt3/6/atXgcmTn/s1lEVERARWrVql3L17F5MmTcLQoUOfXWgDQMuWzHk9IQHo1g04c4YJ4gMHWMut48fZwsOyZUzsTZxYptDOy8vDrl270KNHDya0jUYWlR0+nNXL79kDhypVUL9+feXy5ct0z5492LFjBw4fPgwfHx9s376dFhQUPD5oq1ZA06bMVdxCQkJCUMvRUSZxceazF54DoaGhypUrVygAFBYW6mrVqgU3NzdQSg9KkmTGfv1xRFGMFgThSFhY2NMbk5NZa7vbt5kZWglCOzExET///HPe1atXTxqNxsZcaHM4nL+b59BrgcPhcDicfw6iKCYBKDPS9gTHVCpVyIEDB1oqiqL18/NDx44dH/R6/ruhlOLChQs0MzOTUEofREgfUCxGJYkJyWPHmGv2o6Jl6VImJovruItRqYBq1R7+bDAArVuzXtDPQ+SWA39/f/j6+qJ79+6kc+fORKPRPL/Ba9cGuncHAgLYIsLt20xkf/stMGkSE8cWOK4XQynF7t27lRo1aqBbt24CcnJYxHzePOYYTwhw6xaEkBBMrltXKF64uHTpEry8vKherycAyIoVK2BnZwcnJyeqUqlogwYNSOtTpwgSEixKJc/NzcXFixfp4B49VJg1q9y13mVx4MCBwvDwcKGgoECtVqtjATgDwOrVq6FWq6MANCCEfAWgTBc9vV4fkJycPAQAm+Tp08C//w2cOwfExJRoVEcpRVBQkHLq1KkCWZZnUkr/4O28OBzOqwAX2xwOh8PhlIEoirIkSR2zsrIOCoLgWlhYWPebb76Bs7Oz3Lp1a1WrVq3+FuF98uRJWRAE1K1bV3X8+HFiZ2cnDxw4UGVrrk8zAIwYwb6ePQskJTGxXVDAUserVwdkmYnOP/9krtoAE9ubNwPffcfEtSyzmmNL6oufIz4+Prhw4QJGjRqFJk2aPHuhuL8/ixBnZACLFgFbtrDrPnkS6NiR3Q9vb8DBoULDBwQEKMnJyZgzZ46AxESWnu7p+XRt9++/s2fx5psAgHbt2qFdu3YEABISErB3716alZVFwsLCCCGE3LhxA7U//hg1HR3Zsyjhc6coCgIDA3Hu3DnatGlTpUXNmirExFToWh7l5s2bOHPmTE7Lli0ry7KMK1euWAGYDCDAZDJFAPAC0AcA1Gp1MKVUlGW5TPdvSZIErVY72NHRUYeICCAujmVj9OvHPnclCG29Xo99+/YVREdH3zOZTANFUYx85ovkcDic5wSv2eZwOBwOp5xIkkQAfEwIaU8pnVC/fn1l8uTJLzXM6+vrK585c+aB0mrZsiXeeuut8g2yfTswaxZzuC5m3z5g0KDHHbjbtAGCglirpbVrgdmzX7ox2pIlS9CzZ09061ZGRnJxZP7gQdbWrHZtlrrt5wfMmQNcusSEdv36wPLlgLs78OGHLFK/fj3www8snf6NN5jIK+89BRAfH4/Nmzdj/PjxqF9QwPo/z5/PsgpKYt8+Fvkupf2Vv78/vL290adPH9pt3jyC998H3n/f7L67du2i9+7dQ9++fUnLli1Brl9njvI//FDu6ynGYDBg/fr1uSkpKft0Ol1zWZYvEkL0RQZkJoD9bhBCblNKXwcAtVq9ecGCBZPMjSdJUmUAg3Q63WBKaVtrKyuXD2fMsNJOmcIWEv78s9T5ZGdnY/PmzXm5ubn7DAbDVFEUCyt8cRwOh/MC4JFtDofD4XDKSVGK6k8AIEnSf2JjY6/8/PPPhhkzZmifS/1wEZRS3Lx5E/Xr14etre2DFlYAoNVqVQCwYMECpKeno4YlvaCfZOxYoH17Vks8cCAT3yNGsN7Fq1YxgQqwCLiiAIGBwM8/M7H9EklNTYUsy0hNSQHS01nUeedO9rV3b8DVlc117VrW4zo+HlixAhg1irmJOzkxY7JPP2VO4wAz3CqGtX9j0dN33wV272Yp5V9/DYwcCeTmsrp2CygsLMTOnTtp+/btSf3kZODHH8sW2pSyRQ+Nhi0MlECxcVhWVpaMGTPUpUXdMzIylC5duqhcXV3ZGxERzASvguj1evzxxx+GzMzMiwA+mDdvngEAJEmaB+DGsmXLIg0Gg68gCNUURTkA4DMAMJlME5csWRK4YMGCXx8dT5IkjUajue7k5FS9WbNmtlWrVEGT4cNBZBnYtq3MxZyEhARs3bo132g0LjGZTN/ytHEOh/MqwsU2h8PhcDjPgCiKoZIk1U1JSYk7efKk3L9/f5XBYIDRaIRZV+VyEBoaigMHDkCj0aB9+/b07t27SEtLI9WrV1dSUlKE2rVrmwRBUNesWbPiJ2ncmBmoWVuz2uwrV1ga9ZAhD/eJiQHy8oCuXVkt84vCYABCQ4EOHYA//mAid8YMCE2bos6wYehZrRrg7Mzc00+cYGnGffsCAwawdOpZs4CPP2ZjnTv3cNzdu9nXsly4L1xgraQaN2btvMaPZ9ddsyaL7LdqVerhlFLs379ftrGxQV9BUGHjRjafTp1KPy8hTPxTymrGu3Qxu5ubmxvq1auHNWvWqFtOmAD98uW0evPmpEa9ek/tazQaH38jJ+eZzNEOHz6sT0hICJVleagoigYAWLx48SQAy+rVq0ednZ0bZWRk9HBwcLBJT08vzMrKym7YsGGVmjVrYu/evT8uWrQo09PT89FQtUpRFIfBffpY1/jqK2D1araQ07VrmUI7IiICu3fvLjCZTJM8PT13V/iiOBwO5wXD08g5HA6Hw3kOSJI0H8BSQRBkRVFUAFC7dm1l4sSJQkXahCUlJWHt2rVwcnJCnz594OXlJVNK0a1bN1VcXBy6deuGEmuzn4U6dVht8fTprEXV+++zCG/TpkxwXrlS8bFNJhaRHjsW2LWLtdH64Qc29pw5TGh17MgE7rffAjk5+LZKFdrC35+0kyTYFBu/PZE9UKlSJTwXs7Rx45hTuJMTm0sx0dFM2I8cyYTzl1+aPTwkJISePHkSn9avT3TXrrH9O3Sw/Pxnz7K2YqmppaaT//bbb6bExET11A0bcKFDB6QOGEBtbGyUYcOGqayLWrctW7YM06ZNg32xk/yxYyyy3b275fN5BH9/f5w9e9Zr/vz5fYvfW7JkSXLPnj0dykrtT0pKwoYNGwqNRmMrURQjit/fOH36mtq9ek0ZsGaNDrt3A7VqlTmPCxcuKN7e3jlGo3GAKIqBFboYDofDeUnwyDaHw+FwOM+H5QDWK4pSA8x5WUlISPgxLS0NThWIKPr6+ipWVlbClClTIAgCpk+f/lh99gvj7l0m9KZMYcJaUViLqwULWOTZHJSyVHSNhonkjz9mrbN++421znJzY2nUK1YAn3zysDa5WCCvWQO0aMHEVn4+e2/+fGRmZkK/ahW52qkTrhenej91agorKyv6wQcfkCpVqlT8ugsKWEr96dNMcD9KcUR8zBi2GHH9OquxXrjwwS7Jyck4fvw4mQxAFx7O0tHLiIQ/RY8erM1VTg5Ldy9BfE6dOpX9/TZ9OupERiLx2jWanp5OfvnlF+rh4UFcXV1BCKGyLD8MEfv6VlhoA4BWqwUhRCn+efHixaMURXEgpUShKaVITk7G6dOn841Gow0AFwBMbBMyfqIgjF1Sq5bO4+RJWD/Z390M3t7ehuDg4CSj0diLG6FxOJx/AlxsczgcDofzHBBFUQGQUvS6KUlSbQA/Vq9evULjOTs7C/fu3VOeTxPpclAsgCdPBt5+m7mO+/iwNN8VK1j98aRJzMV76lTg2jUm4mxtWS/qDRuYWK1d+6HY3LuXuXrb2LDjAFZPPWoU+75Pn8emQCnF9evXcfDgQbz++uvKuHHjSr0H27dv8WAtSAAAIABJREFUp+vXr8f06dNJhVP3Q0NZZNlkKjGNG6NHs69//cVM1oqOMzZvjh07dtBBd++itrMzwXvvMXO2iqDVsog4pcCRI6XvW7ky2g0dinY3bgiKvT0CAwPh6+srHz9+XEUIISkpKXhQYhAU9HhpQDmpXbs2CCFNH3lra//+/dHBTOQ+KSkJQUFBhTdu3KCKouRTSn8CcBpAAAj5BkAdANOyK1c+QAUhu6CgoEyxffHiRSU4ODjZYDC0FUUxtdSdORwO5xWBi20Oh8PhcF4MBQCQl5cHKyurch+cnJxMCwoKXq7QfpTi1OAff2Rp3StXMrEdGMjaMTVrxmqaAcDL62H/5jt3Ho7Rrh372qBBuU7t7+9PT506Rezs7MoU2gAwduxYYcuWLfJ///tfVdeuXZWWLVsKOTk50Gg0xSKx7JOeP8/q1hs1KttI7K232CstDejcGT4//CC7nT5NXN3cBEyc+Oxt0fbsYanySUmAo2PJ+1lbs3T/vDwIDg7o2rUrunbtqrp79y527tyJtLQ0KIoCQRCAXr1Y9kAFMJlM8PX1LaSURhe/p9Fojpw/f36ki4sLqVy5MuLj42E0GhESEpIfExNTSAj53WAwrAbQEsDewQcPUqNGk3ezSZOs2omJN6plZhrtAKN22bKge/fudSxtUery5cv05MmT2UURbS60ORzOPwYutjkcDofDeQGIopgpSRJWr16NN998U+7SpYvFjbhzc3Nx+fJl0rlz5xc5RcuYM4e1YBo0iEVbg4NZOjkhrMYZYKLvGSnq2Yzs7GwEBgaSkSNHwtXV1eLFhgkTJqhu3boFLy8v6ufnB7VaTRVFgSzLpFmzZoqtrS00Go0gCAJu3rypmEwmNG7cGDVr1hRcXV2htrJi0fc6dSyftL09bpw9C81XXwndQ0KI0Lz58+k/bmXFWl81agTs3/90b+5HmTOH7fPBBw/eeu211+Du7q74+/sTWZZpLw8PAXfuPFwQKSfZ2dmIjIzUAfhMkqQZACiAGnq9nmzYsCHRZDJV1+l0NwFkGgyGw7IsrxFFsUCSJFciy4eoIKDhvXuiX48eX50YMIClTkjSXVEUAyill3NzczuWdO5z587JZ8+eTTcajd1EUbxT0n4cDofzKsLFNofD4XA4LwhRFMnixYuTvby8HNzd3aEuxfTqUVKL+l737du3jD1fEoGBD/tXx8QAdnbA0qXA5s0skr1jB2sdVrVqhU+xbds2OTExkWg0GnTq1El40LKqHDRt2hRNmzYtXtQgiqIgKioKwcHBQmpqKvR6PRRFoS1atBCsrKxw69YteuXKFRoQEIBRR4+isHVrcq9SJao/dYo0a9aszFr7jORkJC5ciOZ16xJh/nxW233wIHutX1+Bu/AIKhVw6xYza8vNLTnarlYD//43S8mvVg0Aaz8GQBAEgdrY2BAYDExo29hUaCpRUVEAQDQazeGGDRvaabVaevXqVWsAGfPnz6/96L6SJFkBaLVs2bJp1QoKxn20Zg0MAQEIGzhQGNiunUCPHFEuX74sCILwFYCBKpXK3VzbOkopTp06ZQwODr5fJLTjKjR5DofD+RvhYpvD4XA4nBeIoijdAIRnZ2fD0vrtqkWi1WQyWSzQXyi//Qb8/jtrS1UsjBYuZKZplDJ37rp1maALCGDR1nKQkpKC6Oho1YQJE+BSVnuuciAIAl5//XW8/nj99IOccnd3d5KZmYkAX1+kZmZS+y1bECGKJCM0FOfOncOgQYNgY2ODevXqofITfbblnBzcmjaNOmq1qPXTT+RBdP/mTSZ6KWX3bNKkp9zTLcbJiQn3SZOYQ/kj46Snp8NoNEKWZVQNCEClIjEeERGBXbt2oUaNGsobb7whtG3bFggPZ68K4uvrKwNQ9enTx9Hd3V0ghKBdu3bYtm1briRJKgAqAG01Gs0IlUr1cYOcHKWLv7910qJFqnMqVeGZvXutAODosWMAIACAoih9JUlqb2Vl1axhw4bmzmkMDg6ONxgMHXjqOIfD+afyCvwPzuFwOBzO/zQRGo3GZ82aNR5arVYeN26cpm4ZqcaKwkyfk5KSUKc8ac0viu7dmSv5kxSLv9hY9vX335nr9Zw5rG3YF1+U6cidm5uLEydOwNHRUXFxcXnpNerVqlXDQK0W0OkI3ngDk6dOBQDs3btXDgwMpLIsIy8vT92hQwflzTffFAghQFYWIj7/nKqys9Hs2DHyWHp2v37sFR/PzOQGD2Zp4RV1Sh86lBm3UcqegSAgPDwcu3btAiEEKpUKzuHh6Ovri7t79sDPz0/p3r076dGjx8N7mZEBtG1b4Xs0efJkla2tLXQ6nQAAd+/exdGjR3MMBkM9AHPVavUntra2tvUcHFR9XF1tMkJDqf7gQXrm9OnAAq12E4BQQkhdSukeAL4ARAAhgiB82b59e+2TC0p+fn6m8+fPJxoMhk5caHM4nH8yXGxzOBwOh/MCEUWRSpL0JoB2JpNp6oYNG6Y2aNBAHxUVpXN3d1dee+01oXHjxlCpHpZ0FxuQp6envxpiu2lTIDKS1WprtSXvN3kye1EKZGWx1OetW1mbrL17H9tVr9fj559/RnZ2NmrUqCGPGjXK4pr2587NmywFfvbsB2+NHDnywXzi4uKwbds2olar4dGiBcimTUiKiCAumzdDKKkOuk4dZnAGAPXqsZZnc+dWbH4tWwL9+wP29jg6bhy9cuUK6devH3V3dycAkBEbi5xp0+j5gABqa2uL9u3bP+4IZ2XF2opVkOJe3Tt37jQlJSXpMzMzKwGoTAgJU6vV4htvvKFxd3cXMHgwCrKzsa1fv0LTmDF9xPnzAwFg6dKlK62tradlZ2cDwJ+iKJ4FgBUrVnSoWbPmY889ICBA9vPzSzEajZ1FUUyq8KQ5HA7nFUD19ddf/91z4HA4HA7nfxoPDw/q4eFxv0ePHofOnDmTmJGR4UcIyUlISEi6detWpcDAQKvz58+bMjIyDI0bN9ZYWVlBp9PRw4cPk/j4eKVVq1YW2Gm/YHr3Bjp2BJydy96XENZn2s6OOZkDrJ3W668DLVrg/9i78+goqrQN4E91d1V3FkgAWWJACOiwBAQEEQQdBEQWRUBQQcUFP3dn3BfEFMUiLjPjDC7oMIjIqgLKIgqyCCqC7CEkwRD2QBISsne6a+n6/iiCLAlk6U4HeH7neJJUV937NjPnJG/fe9/XbNYM69avR0pKCvr06YO77rrLFn6hCuCBdOiQ1Rpr2DAr5rPUrl0bjRs3Fn6ZN8+M+flnQXQ4MLdFC/Tr1++MD0nKdP/91vv/17+s/0paiFVEx46YV1Rk7Nq/3/boo4+iVatWp/4/ERIRgYh27YQuLpfQ6e67BbGkfVuJNWuAo0eBKhTc++GHH9SdO3eKHo9nHIDeANCsWbOI0Y884mz28MMCJAl4/XV84vUWuouLH5RleSUAKIrSz+VyvdeoUSNHYWHhT4ZhPN+zZ0/zrbfeelLX9Sd69erlCD15lvznn3/W169ff1zTtK48o01ElwKubBMREVUjWZY/Pf1nRVEa6bo+0Ov19tm5c+ewHj16oHbt2ujWrZuQmJjokyQpeO2/Trd5M1DSs7kibrzR+s80gddeg9q+PX675Ra0S0xE5pQpZvfY2OB+kGCawNdfAz17WgXOytBM19Fj924zo3Fjs+Cpp2zSwoWmJEnli73k361fP6uVl8djbbH/5z/Pv1PgNOuyspDm9drf/PBD2O64w+pjfrr4eGu822479+F9+4BK9nsv0bBhw5K/Gd8KCQnxPPn4465ac+c64XRaleq7dUOOYSC/sBCmaS4CAEVRokVRnNGpU6eQ3377LV/X9cGyLBuKooTZ7fb3R48e7axXrx5M08RPP/2kbdy48djJFe2jVQqWiKiGYLJNREQURLIspwOYrijKNzabLfbDDz9soet6aP/+/ZGenm67rbTkKRi+/96qRK4olXteEIBHH8Xu7dux/qabkN61q2/EiBE2hIcDc+daq+YFBdbqd3UqKLCqfjdsaMVYmsREYNo0NBs40PZxTg6Gaho8Ho+wZ88etGzZsvxzdehg/bd/P/DLL9YZ7Ph4a5v4WUXUMjIy8Mcff8Bms2Hbtm1GYWGhfcTIkbBdfTXQvv25Y997L9C3r9Uy7OzV9vBwoGvX8sdZio4dO9o6duwIVVXhME2XLTsbmDjRqkL/8ssAgCO7dsHhcOzUdV2YOHHic6IovtmlS5fQsLAw0+FwrHnjjTcKTw6ntGjRwog6+YHBhg0bjI0bNx5VVfUGbh0noktJzfi0nIiI6DIny/IJVVWX6boeKgiCuWbNGjMqKkq/UDG1amOz/bklvJJM08SSJUvgCAvDnYpi/Q1y9Ki1Mjpz5p+rsjNnWtW3q8OmTVb7rLLarO3eDUyeDNx2G+o89RR69uyJr776CiEhIb5Kb32PiQG2b7eqt/fvD3z6qbXCflJeXh6mT5+OxMRE365du3zt27e3Pffcc2jWrBlw993A0qVAu3ZnPANRBN5+G/jb386dLzOzcnGWQvr6a9iuugpo1Ag4cuSMYwUnC52FS5L0vyuuuGLiQw89VKdPnz7O1NTUQo/HU7La3cfpdD59yy23hAJAfHy8uW7duhxVVXsw0SaiSw1XtomIiGoIh8PRu3HjxvqgQYMckVbP5Jrze/rBB6ucACckJEAQBAwYMAAul8u6WFKl+5VXTq2QYvx44KqrgLAwYPVqq6p3oOzebSWMAwee+1p8vNXD+s03rZV3AN26dcOJEyfQv39/W5XbspX0LRcE+B55BN7UVHwyZIhRWFhoj42NNU4v0naG3r2BY8fOXYm/4w7r/ZytXr1zt51X1P/+B+TnA6NHA7GxpbYzS09PNz0eT/u6dete8/DDD4c6TxaPO1ld36soiuB0Ot/u37+/q1GjRkhNTcWyZcsKNU3ryTPaRHQpqjm/xImIiC5zNputqHbt2kZkZGTN+/2saUCzZlaSV4k2VpqmYdGiRYiKikL70rZBA38mj6mp1tc5c6yz4oBVcO2FF4Drr6947Ofj9VqrwmcXFYuPB554wmpndtpWcZvNhjvuuMNv0+sAfvn5Z+yMijLruFxCx0aNhO7//S8cL79cduW12rWBp56yCq+1bm31OwesInb5+da/3+m9qydNst5LZRw6ZBWNS0+3tqdHRFhb4UvRpUsXQRRFtG3b9lSifZIJQATwDwDXxsbG4uDBg/jyyy/dmqYNlGW5lE8IiIguftxGTkREVEN4vd5hu3fv9iQlJQU7lHNJEjBv3rlJaTm53W4AQIcyErVS3Xffny3DDMMq8jV3bumr0JVhmtZ4ffqcef3334FHHrFallXkTHYF+Xw+/Oc//zF27dpl9n3gAeGBjz9Gz27dbGKjRhCcTuvDhsLCsgfo0wfo3v3Ma4sWWRXPS+TnWwl5Zba8mybQubP1v/vYsRfcYRAWFoYePXrg5K6MUxwOhw1AJwAvRERE2OPj4zFnzpxiXdfvlGX554oHRkR0cWCyTUREVEPIsnxC1/VbFy5cqHo8nmCHcy5JshLRSjhw4IAJAEWVPff91VfWau1f/vJncty8ObB8uVVorDKOHQP++MNKKEv89JPVE3vNGqtoWgAlJibC5/PZn3nmGaF169YQBMHaPTBvnnXDuHHAqlVWEbfS3uNDD1kr/d26WSvPAPD++9YZ85Lz3MXFwKhRFQssI8P6kCEtzapk/thjlXyHlrCwMNFms50A0DkzM9O2dOlSU9f1O+Pi4lZVaWAiohqOyTYREVENIoriJ4ZhSBs3bqxkBgkoioLJkyebc+bMMdPS0vwX3Jw5fyaCFbR06VKhd+/euOWWW6oWQ+fOwPPPW99PnGit7E6c+GcV84oUA0tIsLZklxQbW7TIGmvdukptlb8QTdPwxx9/4KeffvJNnTq1YPHixWazZs00obQq6IIApKQAgwdbK/xlVaUPCbFWrkvOj9erB9x8s1U9HrCKmCUnly/AEyess9l16wIjR1ofNvih/3lMTIzT6XT+VZblrQBuBlArLi7uxyoPTERUw9W8M2FERESXMV3Xp9tstnXr1q17vkePHihPEa59+/bhyJEjiI+PN/Lz8+0A0KdPHyEtLc03Y8YMoUGDBvqjjz7qsJVS1KpCvvii7PZY53H8+HEYhoHQ0NCqzX+2kSOtr2PGAEOGWN9ffbWVMP71r8Dx41ZbrbKsW2eNIUnWM2vWAMuWASXF26royJEjSEhI0Nq2bSvm5eX5lixZotpstv26rq/RdX0HgGm33377hfflL1hgvZeS7e07dvyZXNtswGefAevXA7NmAdOmWSveYWHW6ydOnNsKrDSqau0S+Ogjaw5ZrvT7Pp3H40Fubi4Mw+gAANw2TkSXEybbRERENUhcXNzHkyZNerZhw4ZFDocj7Hz3qqqK6dOn6ydOnHA0aNDAaNu2rdCxY0eEh4fDbrfj+uuvt/Xq1QvTpk2zf/HFF4iOjkZsbCyuvPLKygWXmgr06wfs3Vuu2w3DwIYNG5Ceng6bzYa250t8q8LhsFanAWs7tdNpJY3/+Y8V8/TpVj/osytyp6RYW9EnT7aemz690ol2SkoK5s6di6ZNm7qbNm0aevToUU9qaqoLwJ5t27Y11DStPoB+siyvAwBFUYbbbDafJEkX/gREkoDoaOt93X+/9X5fecXa7t6kiXVPSMifrdmefRb45BPgppsu/IEDANx1l7VVfeVKa3w/8Hg8WLlypWfXrl2CKIrxpmnO98vAREQXEcE8vUcjERERBd3bb7/9qdfrfeyuu+4qNUH1+XxYvXo1tm7dakZFRZlDhgyx1T7PtufDhw/jl19+MfLy8oSMjAxbmzZtMHz48IoHpqpWFexp0y64wp2QkODbvn27cOjQIcHlchk33HCDvUePHhWfsypM04qzdWsr8a5bF1iyxGotZppWZe0BA6xWVi+9ZCWslXDkyBFMnz4dACCK4lRN054EMA/ATwC+kmU5V1EUUZZlDQAURWngcDhSRo0aVbtJSbJcEbpubZ+fNs2KOSrqz+3ekyYBN94IPPOMVSgtNdXaWn7PPef+2zz+uLWKHREB1K8PXHFFpd7/2VJTU7Fw4cJiwzC+VFX1FVmWj/tlYCKiiwxXtomIiGoYr9f7hCRJ7TZu3HiDy+WyXV1yHvmkOXPm+NLS0mxDhw4VrrnmGqHUM7+nadKkCUaMGGEHgB9++MG3adMm2/Lly9GoUSOoqgqPxwNVVeH1eqGqKjRNg6qq0HUduq4buq6bhmHAMAzUrVtXKBw/XihwuQS73W4+9dRTtpLt4cXFxdiyZQtSU1ONQ4cO2SMjIzFixAg0b968HPuYA6Dk36WkuvuCBUBiovV99+7Wam6tWsCLL1rXmze3zmrbbBXaLh8VFYXmzZtj37598Pl8TQG4ZFn2nn7PaYm24HQ6Z1133XWuSiXagLWyvWmT9f2AAdY28SVLrJ9TU62k+YcfgEaNrPcYE3Pm8/Hx1k6A/HyrpVvr1pWL4yyqqmLFihXeXbt2FWmadrcsy6v9MjAR0UWKyTYREVENI8uyqSjKv9PS0r5MSUnxXn311aeaFmdlZeHw4cO2IUOG4C9/+UuFx77ttttsqqr6UlNThX379pmiKEIURVMURUiSBEmSzNq1awuSJNkkSRJEUbSfvAeiKKLZgw/Ce+ONcL/yClatWoXPPvvMeOaZZ+wAkJSUhHXr1qFjx472AQMGoEGDBn78V/GDYcOsLdOffGIlpVdfDRw9ap1rvv9+qxCZ3Q588IGVrD77rLWtfOpU4OmnrarckmS9pijAokXIFkWsUdUi89dfQ0IaNrTpdvuArps2RQAoq1LbrS6Xq3uvXr0kv7yn5cutXuELFlh9yA8etNqkvfgi8PXXVqXyv//9z/sPHbJWvhMTgfn+29l99OhRzJ8/3+31epdpmvaELMs5fhuciOgixW3kRERENZCiKLEAEqKjo91t27Z1dO3aVQKA6dOn++rXr49BgwYFp6PI4cPWanBkJIqLi/GPf/wDHTp08N1xxx22RYsWGcXFxfb77rsvKKGdl65b264//dRKpqOjrZXs0ng8Vj/xlBQrkW3aFFi4EOja1WqL9e23MGQZCb16oTA8HImxse67588//mPfvk1bpKZmdtyxIwTAVQCSAfwA4DMAsiqKb/3cu/cXHQThynpLllitvXr1stqZbd5sFXXzeKw2X40bV+z9qarVJqxfvz/P1XfrZq3qL1hgFVUbPx7Yvh1wu/8soOYH+/btw/z58926rj8SFxf3pd8GJiK6yLH1FxERUQ0ky/Juu90+LC0tbfOmTZt8uq7D5/MhIyNDaNasWfB+f2dnA2+8AQAICQnBQw89hJ07d9p8Ph+io6PtmZmZRtBiK42uW+3Kpk2zEtA5c6zCYWUl2oC1mm23A61aAe3bA5GRwOjR1tnuXr2AKVNwpLAQ3w4dilV9++JodHTov198senudu2wdMiQWjDN2gDyAHQF8DqAJABTFwwfHuVu2rROnY4drYT6wAGrj/Xu3daZ8j17gL/9DbjhBiupr1cPePVVq8p4t27Arl3Ac89ZK+zZ2dbq9c8/W9fnzrXe19atVuwbN1o9uAsKrBZn110HPPmktT3eT4m2aZrYvn075s+fX6RpWj8m2kREZ+I2ciIiohpq7NixCxVFWel2u5cvXLjwuhYtWoSapilcc801wQvK5wN27jz1Y3R0NOrVq2dOmjRJsNvt0DTNvnv3bsTGxgYvRsAqAPbtt1Zy+c031hbrJ5/02/DR0dF44oknMGPGDEPX9S8B9DMMo65pmn8/Ob8J4MBpjyw49Pbby3r16hVi69LFujJ79p+vlvTRXrDgz/hTU63EubgYaNDAWmG/6SYgL8/638HrtSqQHz1qJdu9e1s9yENCrET+xRet+374ARg0yCqI5ie6rmP+/PnFBw8eLDQM41629CIiOhe3kRMREdVwiqKEASgEgI4dO+qDBg0K7oflqmoVETvZ61nTNCQkJKBx48ZIT0/HkiVLcPfddyNoHwrs329V4j5xAnj9dWtFuhL9wc+nuLgYn3zySbHX613s9XpHAqgPqzDaodLuVxTlCrvdnvbCCy9Ifu83Xhqfz/qQwTCAu+/269CqqmLOnDnu9PT01aqq3lVS/I2IiM7ElW0iIqIaTpblookTJ+649tpr2wc90QaAli2Bd945lcSJooiOHTsCAOrXr4/Dhw9jzZo1vmuuuaZ6t7u73cCDD1qrusuWWe2sbIEJYePGjYbH41mlqupIWZZNlF0QDQAgCMIjrVq1Mqol0QasVf0vvrC++pHH48EXX3zhzs7OXqKq6v2yLNesYwNERDVI8H9hExER0QWJonioUaNGHYIdBwBgyhTrLHMZXC4XnE5n9SXa+/cDH35orV4//DDQp49VNTyAfD6fYJrm0ZOJ9nkpiuKQJOmFLl26VK6Rd0UVFQHr1gETJ/p1Rd/tduPzzz935+XlzVNV9TFZln1+G5yI6BLEZJuIiOgioGnavszMTB9qQnHTVq2s1lFXXVXqyzabDdVyTO3wYeC996zzztHRwBNPANWwcmyaJlJSUop1Xd9UzkeGRUZGhlW6r3ZFvf46cO21Vi9tP/F4PPjss8/cBQUF01RVfb48HzIQEV3ugv8Lm4iIiC7IMIyZ8fHx3rS0tGCHYrWYevnlMl8+fPiwERkZGbj5s7OtCt3vvWcl/DfeaBVAq4ZEOycnB3PmzEFGRkaYaZqzLnS/oig2URQ/6NevX7jg53PjpUpJsSqS33+/34Y0DAPz5s1zFxQUzGOiTURUfky2iYiILgKyLO/QNO3ZGTNmaL/++qsa1GD+7/+svs1lsNls8Hg8/k/ICguBP/6w2mBt2wb8+9/ASy8Bder4faqyrF271pOamgq73f4fWZb1cjxyY2hoqCsmJibgsaGoCHj6aeC776z2ZX6yZMkST3p6+m+qqj7ORJuIqPyYbBMREV0kZFmebhjGsE2bNgU32XY4gI4drUJkpejVq5d93759QmFhoX/m0zRg/Xpg5EhgyRLg99+B998PWPGz82nevLkLAAzDKFdPaVEU7+/UqZN/GltfyPjx1nl1P+4q2Llzp5mcnJypquqdLIZGRFQxTLaJiIguLolut9s2d+7cooKCguBF0bWr1VaqFFFRUYiNjdU/+OADc9u2bVWb56uvgFtuAXTdSiZfesmvyWRFpaamegRBeFOW5d/Kc7/dbu/TtGnTwO8f37DBqhL/2GN+G/LEiRP47rvvPKqqDpJluchvAxMRXSaYbBMREV1EZFneaxhGk/3797szM8/bbSqw3noLcDrLfHnw4MGOwYMHC99//z0++ugjw+erQOFq0wRWrLAqi7vdVpuxXr2ADsEtxp6fn4/k5GTTNM2p5blfUZQ6mqY1iY6ODmxgXq9Vjb1hQ799EGEYBubPn1/k8/lel2V5p18GJSK6zDDZJiIiuogoitJIkqT1giBENm3aNHiBTJhgVf8+j9atW+PFF1+E2+22//rrr+Ub9+efgR9+sIqfDR9u9c3u3t0PAVeNaZqYO3euKgjCAlmWs8v52DUREREeu90e0Niwbh1w663AgAF+G3LVqlVqfn7+RsMwpvhtUCKiywxbfxEREV1cGqqqGnvVVVfp1dJeqyyvvWYV5LoAURRRq1Yt8+jRo+ffSr1rF5CcDMycaSXxq1b5K1K/WL58OTIyMiQA/63AY/VcfixUVqrkZGtVe+pUv/XUTk1NxdatWws1TbuXBdGIiCqPK9tEREQXkZNbejscPnzYd+zYseAFUqcOMHnyBW8rKipCRkaGcFUZPbnh8QAvvgg895x15njRIuD22/0cbNXk5ORgy5YtJT/+rChKebPaXzMzM43ExMTABObzATt3AnfdZfUZ9wOPx4MFCxYUa5o2XJblLL8MSkR0mWKyTUREdJGRZXmnJEm7MjIyKnAQ2s8kCVi5EsgrCT5SAAAgAElEQVTJOe9ttWvXxvDhw7F69WqsWbMGqnqykHphITBmjLVF/IEHgMWLgWuvtcatYXJzc+FyuRIBtLLZbD8A6KQoygV3B8qynK/rep9vv/226PDhw/4PbNEiq4Dcgw/6bchVq1Z5fT7f17Isr/HboERElykm20RERBchr9f7yI8//ugJ2uq2zQYcPlyuglxt2rTBoEGD8PPPP+PjiRPN/DFjoH/2GVC7tpWwd+gAhIdXQ9CV07hxY4ii2Mxms/U1TTMNwGYAvRRFaaYoynmbfMuyvE3X9fu//vprt66Xpy13ORmG1f7sn//025BpaWmIj4/3qKr6vN8GJSK6jDHZJiIiujjtEQThSFZWEHf6Dh8O/O1v5br12hYt8LrTib6mae5avx4fHjqETyIjzaNeb4CDrDpRFDFq1KjQ8PDw90zTHC0IwhEAP9rt9hkATiiKYiqKUmap9Li4uG9VVf1148aN/ulTbZpWpfa33gKaNfPLkD6fD99++22Rrut/k2X5hF8GJSK6zLFAGhER0UVIkqQJjRo1atymTZvgBfH44+dt/wUA0DTrXPHEiZCaN0ebl1+2GePGoU1+PqZMmSJMmzYN3bt3R0REBOrXr4+kpCSYponk5GQjIiLC3rlzZ7Rv37563s95XHHFFXjooYecH330kdcwjP6yLJuKoowAULK1YLuiKHA4HO/puv6eLMvHT3/e6/U+vX79+p3t27cPqVWrVtWCWb3aKk7XrVvVxjnNtm3bzIKCgj2mac7y26BERJc5IaiVTImIiKhS3nnnnX333XdfTOPGjYMXRH4+sH596QXNfD7g6FFg5EggKgr4/HMgJOSMW7Kzs5GUlITNmzebHo9HME0T0dHRhmmaaNq0qd3tdpu7du0STNM0GzRoIHTp0gXt2rWrnvdWhh07dpiLFy8WAMBms/3s8/lu6ty5M66++mq4XC5s3bpVS0lJ+fXVV1+95exn33rrrXdiYmKeHTFiRMi5I5fTiRPA+PHAq69a/65+4PV68f777xd7vd4esixv88ugRETElW0iIqKLkdfrbbxnzx6IooiGDRsGJ4isLCuZzss7s+3Uxo3ABx8A111nnSvu1KnUx+vVq4cePXqgR48ep1f3Pr0ptXDjjTdi06ZNQkpKirl48WIhKioK2dnZqF+/PhwOB0zTREREREDeXmnat28v7N69W7fb7Y5GjRrd1KZNGzRo0ODU65qmiSkpKaV+AqJp2rgDBw7cn5SUFNK6devKBTB5MtC4sd8SbQD45ZdfNADfMdEmIvIvrmwTERFdhBRFuc3hcNwhCMKI5s2bu4YOHRoqBaOSd3Y2UK+e9f2vvwJvvw08/TTg9QKDBvmt9zMAfP3110ZycrJdkiRomgbDMCAIAuLi4vw2R1Xk5eXh008/LfZ4PCPi4uIWl3aPoihdJUla89RTT4VU+EOCzZuBpCRg8GCruJwf5OXl4cMPPyzWdb2lLMsBKJlORHT5YrJNRER0EVMUxSWK4vzY2Njb7rzzTle1B/B//we0aQOIIpCaCnTtCgwbBtjtF362gjRNw5EjR9CsWTN4PB7Mnj3b1HXd9+STT/p/sgoqKCjA//73P3dxcfH4MWPGvHO+eydNmjQxOjr6+VGjRoXabOWsVVtcDDz7rJVo+7EP+aJFi4qTk5M/HDNmzCt+G5SIiACwGjkREdFFTZZlj2EY8Q6HIzi/071eYOJE6/v33wfuuScgiTZgVQWPiYmBIAgICQlBbm6ukJeXZ5s5cyYOHDgQkDnLIysrC9OnT3cXFxe/d6FEGwB0XVfS09P3bNmypfwrHrt2ATExfk20s7KykJSU5NM07S2/DUpERKcw2SYiIrrIiaJYa//+/UZ+fn71T96zJxAdDTzzTLVP/eyzz6J169amx+PBDz/84NN1HUlJSUhISKi2GA4ePIhp06YVFxQUvDRmzJhx5XlGlmXN6/U+sHr1ak9RUdGFH0hOBp54otxt1spr1apVbtM0J8uynOvXgYmICACTbSIiooue1+t9ITc391+zZ892Hzt2DNV6ROzhh63WXoZ/WkhXhMvlwp133mkbPnw4Tpw4YXv33XexePFiLFy4EMePH7/wAFWUkJCAOXPmFGmaNujNN9+cWpFnZVneDWDW2rVrPee90TCAhQuB558Hqtoy7DTHjx/Hvn37dMMw/u23QYmI6Az2cePGBTsGIiIiqoKePXti7dq1P2maFrp9+/b2devWdZ5eITugBAH48kvgzjuB556rnjnPEhISgtatW6NVq1YYOHAgVFU1fvjhBxQVFQm1atVCWFiYX+dzu91Yvny555dffsnRNO2vsiz/Vplx1qxZ89vx48f/3rp1a6nMGKdPB9LTgRdfrErI51i1apUnMzPz/TfffHOFXwcmIqJTmGwTERFdAnr27GnedNNNa9auXeux2+23tGnTpvrae8bEAK1bA3/5S7VNebbQ0FBERkZCEAQ0b97cJgiCuX79eiE+Ph7du3eHUMWq6F6vF3v37sXatWvdy5Yt82VnZ8/RNO12WZYPVXbMnj17Fq9bt87Iz8+/sW3btuI5NxQWWjsHpkwB/NjezO12Y8mSJbqu6yN79uxZjn3sRERUGeyzTUREdGn5es+ePa9+/PHHYbfcckutSvdzroiwMKBlS+C116zWX0EmCAK6d+9uu/766zFt2jTfsmXLbIMGDTrvM6ZpIi8vDzk5OSgsLITb7YZhGDh+/Lhn//79WkFBgcvpdO7weDxzTNOcM3bs2Cx/xOrz+T7du3dv3IkTJ1C3bt3TAwJeeQX46ivgqqv8MdUpW7ZsMex2+5I33ngjw68DExHRGZhsExERXUJkWU5TFKXx8ePH7/jmm2/m1KtXL7RatpTrOrByJTB5sl97a1eFJEno1q2bbc2aNT6cVafGMAwcPHgQ+/btM/bu3VuUnZ3tEgTB7XA4DgJI8/l8x3w+n1fTtBQAPwOIf+WVVzR/xyjLcu6kSZP+sW7dupeHDBkScuqFL7+0Em4/f1iiaRo2bNiger3e8X4dmIiIzsFkm4iI6BIjy7IB4NsJEyY8/b///e8Tm82Gzp07m3369AlcH+7WrYFt24CsLOCKKwI2TUU1bNgQuq6fyv6PHTuGTZs2eRITEwW73b5f07RvDMNYDWCnLMt+Wa2uKF3X/5uUlPRK//794XK5gOPHgdxc6wy8eO7u8qrYtm2bCeCXkwXaiIgogJhsExERXaLefPPNzxVF2WKz2Sb9+uuvgzZu3GgahiHUqVPH53a7vQ6Hw4iKijIzMjJsDRs2tA0dOjQkJCTkwgOXZetW4K9/tRJFR834E+PQoUPwer1Cfn4+li1b5j5w4IDb5/N9YBjGZ2PGjDkS7PgAazfC22+/vWLr1q13dO/e3YYpU4DQUGtrvh8ZhoH169cXe73esX4dmIiISiVUa3sQIiIiCgpFUeoLgnDINE2XzWY75vP5ugNwAugAoADAslGjRiEmJqZqE6WkANdcU/WA/aSoqAhTp06Fx+OB3W7/XlXVIbIse4Md19kURekUGhq6/oWBA0PtixdbPbX9XEU9Pj4ey5cv3/zaa6918evARERUqprxsTMREREFlCzLxwGUtmydrCiKIIriofz8/KpX4nK5gN69gR9/BGy2C98fYCdOnIDX64VhGDAM4/6amGgDgCzLW99XlP1FL78cW/ull/yeaAPAxo0bC7xeb/Ar2BERXSaC/1uQiIiIgkqWZVMQhHVZWVlV3+7WqJG1Bbq42A+RVU1mZiZmzZrl1nV9oCzLgizLJ4Id0/k03759W64kmbjlFr+PnZWVhaysLB+ApX4fnIiISsVkm4iIiKCq6n82bNhgVvl4mSgCS5YACQn+CawKtmzZovp8vn/Jsrw82LFckCC0unXlyps3DB9eGIjht2zZogGYLsuy3yuqExFR6ZhsExEREQAkORyOA8uWLav6knRuLtCzJ5AR3DbOKSkpHsMwvg1qEOU3MalVq/8WFBX5/D2wruvYvn27oWnaVH+PTUREZWOyTURERJBl2a2qavuEhITsxMTEqg1Wpw6QnQ00bOif4CrBNE0UFha6ABwMWhDlJQjPAfj2uzvuyI6IiPB7PZ3k5GTYbLZdsizv9ffYRERUNibbREREBACQZblQVdW7ly5dWuzxeKo2mM0GNG0KZGb6J7gKOnDgAOx2+2EA2UEJoLwEoSmAQQDWucLC7mrZsqXfK6Nt2rSpwOPx/NPf4xIR0fkx2SYiIqJTZFn+zTTNH3777TekpKSg0me4XS5g9GjrDHcQ5OTkQBCE32VZrrk9TgVBAHAvgJeVcePSVVXt0aJFC79OkZeXh/T0dAHAxbKdnojoksFkm4iIiM7g9XqXrV+/HnPnzsX27dvPeE3TNOi6Xr6Bxo4FvvwSKO/9fuR2u6Fp2rFqn7hiRgJoBmAHgF716tXTwsPD/TpBUlKSabfbV9TUlmdERJcyJttERER0tm8EQRhns9ni1q9f787JyQEApKamYvLkyb5PP/3UrWnlKGotCMDEicDWrQEO91xFRUW6YRjBrdB2PoLQCNbfYR/DNA2n0/lghw4davl7mq1btxZ6vd7/+ntcIiK6ML8X4SAiIqKLmyzLOQAUAJg4cWLBJ5988lbXrl3FgwcPagDeyM/Pv3nZsmW3DR48OCQ+Ph61a9dGTEzMuQMJAnD4MODze4HtCzp+/HgxgEPVPnH5PQFAh2nOUhRFdDgcg9q0aSP4c4KsrCzk5eUZAFb7c1wiIiofrmwTERFRmcaOHftvVVU7b9q06auMjIy1pml+rKrqw4mJicYXX3zh/u677w7MnTu34KefftJ8ZSXVUVHA6urL93w+H44cOeIAsLnaJq0Ia1U7BkBJ0bIederUMSIiIvw6zbZt2zQAM2VZNvw6MBERlQtXtomIiOi8ZFlOBHDfaZe8iqJcf+DAgRsBfAMgbOPGjV/v2LGj3fDhw8Oio6MBWP2dDx48CM8rr8DncqGtaZ6sCRZYGzZsMAAkAdgX8MkqShDCYf2bPQTTLLYuCV1iYmJc/pzGMAxs27ZN1zTtY3+OS0RE5cdkm4iIiCpMluVkAMknf8xRFOVGr9c7bObMmTNHjx4dcsUVV2D69Onu3Nzcg4ZhrL/txReH73zttbodBg/2axwejwc5OTmw2+1QVRVJSUn65s2b8zVNG1xDK5EPAbABprmn5ILL5fprdHS05M9J/vjjDwiCkCTL8h/+HJeIiMqPyTYRERFV2cnE9usJEybUmj179gcdO3YMzc7OdmuaFivLspnz3ns3JW3cGIbBg51Vncs0TezevRtr164tyMvLk0RRPGaapkMQBI/P51uvaVqcLMtpfnhb/iUInQD0BfBQySVFUewOh6N7kyZN/DrVrl27ijwezzS/DkpERBXCZJuIiIj85s033/xs/PjxeZs3bx6p6/r0ktXlKc8993+RNtuPTQ8cQHSzZlWaY8WKFZ7t27dnqqr6KIC1Y8eOrf7eYhVl7Z//F4DxMM3Tz1CPqF+/vq1OnTp+m8rn82Hv3r0OAEv8NigREVWYYJo1cYcVERERXWo8Llfmph49QncPHerr1KlTrSuuuAIRERGoV6/eGWe5i4qKkJ6ejry8PNhsNlx55ZWoX78+BEFAfn4+PvjgA7eu61fKspwXxLdTMYLwOICDAFbg5B9fiqJIALyiKKJt27bo1KkTSs67V4bP54Ou60hPT8ecOXOOvv7665UfjIiIqowr20RERFQtXF5vl/pHj6YfP36899q1a++32WzXGIbRNDw8PGTUqFFh+fn5+OWXX9ypqak2SZISTNPcB8BpGEaPsLAw14ABA8IEQYDdbs964403LqZEuw2AngBexmmrHDab7Zk6deoY7dq1sx86dMiYOXOmHQDsdrsJ4NStpmkKp31/6mvJf6dfFwQBpmnCbrcfrZ43R0REZeHKNhEREVUfQZgKYBVMcyEAKIoi2O32jxo0aPB4VlaWW9f110zTnH36qrWiKIIgCLeLojhVVdVoQRDmxsXF3VfmHDWJINgAjACQAdNcVXJZUZT6Dodj/2OPPRZWv359AFbCnJWVBfNk1XabzVbm17O/L/kZAObOnVuQkpLylCzLs4PxlomIyMKVbSIiIqpO2QBOfdIvy7KpKEpcVlZWbU3T3pdleevZD5w8971UUZQVkiS9q6rqouoMuIruBtAPwIOnX5Qk6Z8dOnQQSxJtwFqVPv3nyjBNE4cOHXIAWF+lgYiIqMq4sk1ERETVSxAaAzBgmseCHUpACUI9AI8BWAzTTCy5rCjKdU6n85fnnnsuxOXya3ttZGVlYdq0aVmvv/561bJ2IiKqMluwAyAiIqLLzjwA44IdREBZe7pfBVB8VqItOJ3O6bfeeqvL34k2AOzduxeCIKy68J1ERBRo3EZORERE1e02AMXBDiLAmgDoDKuv9ukGhIaGXt2xY0ehlGeqLDk5Od/r9S4IxNhERFQxTLaJiIioepmmG4LwMQTBA9N8Idjh+J0ghAL4BkBvmOapHuAnV7Xf6d27d7jN5v/NhaZpIiMjQwSwze+DExFRhTHZJiIiomBYAUANdhABMhbAlzDN3LOu93a5XM1at24dkEmzsrLg8/kKARwIyARERFQhPLNNRERE1c80FwM4CkH4a7BD8StB6AkgE8DHp19WFMXudDr/06tXr7BArGoDwL59+yAIwo8nq7cTEVGQMdkmIiKiYHnq5H+XBkFwAXgBwC6YZuHpL9lstqfq1avXtF27dgGb/uDBg4Ver5fF0YiIaghuIyciIqJgeQKmaUIQ7DBNI9jB+MFAADNgmqtPv6goSoTD4Zg0aNCgMKtIeWAcOnQIADYFbAIiIqoQJttEREQUHFai/R6A6wH09OfQiqKEORyO6bquPy3LcrY/xy6VIFwLYDiA585+SRTFsa1atXI0bNgwYNMXFRXB4/HYASQHbBIiIqoQbiMnIiKiYPovgJcDMO5duq7fA+DGAIx9JkGwA7gawNcwzfTTX1IUpSWAp/v06RMSyBCSk5MhiuJ6WZZ9gZyHiIjKj8k2ERERBY9ppgBwQRD+7q8hx48fPxzAzJM//uivcc9jOIARMM2Fp1882errq1tvvdVVu3btgAawefPmAo/H80FAJyEiogphsk1ERETB1hyAX6qST5gwYZRpml+d/LGeLMsef4xbJkEQAQwD8Eopr94kSVKLTp06Be6gNgCv14vjx487AbA4GhFRDcJkm4iIiILLNGcCuAuCUKcqw4wfP/7FkJCQTzp16gSn0/mVLMsn/BRh6axqZzNgFUXbf/bLLpdr/M033xywVl8l9u7dC6fTuU2WZW9AJyIiogphgTQiIiKqCZ4D8DcAMSUXFEUJA1BbluVj53tQURRBEITRoihOvO+++1xbt271er3e6qjK3Q1APQArS4mprdPp7NK+ffuAB7Fjx47C4uLi/wZ8IiIiqhCubBMREVFNMBWnbSVXFKWZw+E47HA4DkyaNOlfiqKU+jeLoiiCJEmfRUZG/nv06NGuqKgoNGvWzClJ0mOKoogBi1YQ6gH4O4B7YJraWTFJkiTN79mzpySKgQsBADweD/bv3y8C+CagExERUYUx2SYiIqLgM00PgKYQhDkn+1Jv6dOnT63Ro0dLuq4/LwhCqS2tBEF4IDw8fPjjjz8e1qBBAwBAbGwsoqOjm4iiOCGAEY8D8AtMM//sFyRJ+k+TJk2a33DDDfYAzg8A2LZtm8/hcHwvy3JuoOciIqKKYbJNRERENUUGAJsoiq+2bt069IYbbnA0bNgQISEhME3zGkVRzmifpShKE7vd/tGwYcPCnE7nqeuCIGDo0KGhNpvtb4qi3Or3KAXhZgAbYJ3XPoOiKDc7HI5Rd911V4h1pDtwfD4ffv31V4/X650U0ImIiKhSmGwTERFRzWCafwAYVf/w4ed69uwZAliJ80svvYS2bdt6JElKUBSlBwAoihIriuKWXr16uaKios4ZKjw8HCNGjAiRJGnxhAkThvgtRkEIA/AogEyYZuHpL51s9TWlb9++oSEhAW2rDQA4cOAAfD7fYVmWtwR8MiIiqjAm20RERFRj7IuJGfbAjBkhdSIjT12z2WwYOnSoa9CgQc1DQkJWvv322wdEUdw8cODA+t26dSuz2GvTpk3x0EMPhTgcjtnjx4+/zU8hXg9r+/jqs18QBGFQSEjI1e3atfPTVOe3a9cuj6qqn1fLZEREVGGsRk5EREQ1xvxHH725a9u2Ri+b7YzzzoIgIDY2Fq1atQo5duxY08jISISHh19wvKioKNx///2hs2bNWjR+/PgRcXFxSyodnCBcCyAOwF1nv6QoSh1RFGcMGjQo4K2+AMAwDCQmJsLn83114buJiCgYuLJNRERENYbdbo+KKi62o3VrwOcr7XU0bty4XIl2iSZNmuDBBx8MdTqd8ydNmvSaoigVP0wtCCKAGwFMg2nmnP2y0+n877XXXhsaExNz7rMBkJKSApvN9ocsy/uqZUIiIqowJttERERUIyiKIvh8vhsib7wRGDSo1GS7sqKjo/HEE0+EREREjJUkaY6iKLEVHOI+AB1hmvPOfkFRlOGSJA3o27evs5TnAmLLli2FHo9nSnXNR0REFcdkm4iIiGqKa+12e+1GjRsDsgzMmePXwSMiIvDYY4+FxcbGDnG5XJsnT578j3I9KAhOAC/B2kJ+BkVRWomi+Pm9994bKkmSX+MtS25uLg4ePGgDwC3kREQ1GJNtIiIiqhHsdnv/mJgYCIIAFBQAzz8PFBX5dQ5JkjBo0CDXs88+G+JyuZ6cOHHi+beVW/27ZgAYCdPMOP0lRVFaSJK08tZbb3VdeeWVfo3zfH777TdVEITpsiwXVNukRERUYUy2iYiIqEYQRbFj8+bNQwEADRsC2dlAgFpohYaG4pFHHgmtXbv2m5Ikfa4oiquMW+8BUAggseSCoijChAkTHhVFcUfv3r2jO3fuXG1/TxUXF2Pbtm0+TdPeq645iYiocphsExERUY2gaVpyWlqaeupCTg4QGWl9DYCIiAg8/vjjoTExMcMkSUop6eF9iiA0AtAcwASYpg4AiqI0dDqdv9SrV+/fo0ePDu/SpYvNWvyuHuvXr9dsNttXsiwfrrZJiYioUtj6i4iIiGoE0zRv2L59uzRo0CDrQt26wGefAWFhAZvT6XTi3nvvDd29e3fo8uXLV7zzzjtJHo/nMwBbX3c47pN0fa8ybtxRKMr1DodjuMPheLpz586OXr16SdXR4ut0OTk52LJli67r+phqnZiIiCqFyTYRERHVFM2bNm1qAvhzqfj224G//x344APAEbg/W2JjY9GyZcvQlJSUTomJia31DRt8P/bvH7K7U6cCh8MxOSwszGjZsqWza9euUp06dQIWR1lM08TSpUvdAN6WZTmt2gMgIqIKY7JNRERENYLP55skSdKHAP5soi1JwK+/AgcOAFdfHdD5HQ4HWrdujdbR0aFYsgTmc8+h+3XXRYqiiLAArq6Xx549e5CWlpat6/o7QQ2EiIjKjck2ERER1RSrDx486DBNE6fOQdtsQHx8wM5tlyohAYiJgdCrFyKrb9YyqaqKpUuXulVVfVCWZfXCTxARUU3AAmlERERUI8iyfMTn8+mFhYVnvmAYQJMmwMaNgQ8iPh548klg7NjAz1VOa9eu1QzD+F6W5bXBjoWIiMqPyTYRERHVGHa7Pc/j8Zx9Edi6FejSJbCTmybw4YfApEkBPR9eEZmZmdiyZYvq9XqfDnYsRERUMUy2iYiIqEYxTfPci3/5CzBgALBvX+Amfu894NprgYEDAzdHBS1fvrzI5/ONlWU5I9ixEBFRxdSMj22JiIjosqcoSojNZmsQERFx7ouCADRqBOTlBWby9HRg3jxg+XJrrhrgwIEDOHbsWKHP5/s42LEQEVHFcWWbiIiIagRRFN++5pprdKfTWfoNn39ube/2ev07sc8HvPsuMHcuEBXl37EryTRNfP/994Wqqr7IomhERBcnJttEREQUdIqitBQE4f/uuOOOkPPe2L8/MHu2fyefMcMqwtaypX/HrYI9e/YgLy8vA8C8YMdCRESVw23kREREFFSKoghOp/PTbt26iRfsZ52cDISHn/+eikhLA0QRePppq81YDeDz+bBixYoir9f7N1mWfcGOh4iIKqdm/FYhIiKiy9ntISEhnXv06HHhRYDwcOCWW4A5c6o+a0n18cxMqwBbDZGYmIji4uJ9AL4PdixERFR5TLaJiIgoaBRFiZAk6ZN+/fqF2e328j00bBgQG1v1yffutc5rP/ts1cfyE5/Ph1WrVhV5vd6XZFkupSw7ERFdLJhsExERUdA4nc6Zbdu2rdeyIueln37aWo1OSan8xLm5wFNPASNHAmUVZAuC3bt3w+Px7APwY7BjISKiqmGyTUREREExfvz4AaIo3tqvX7+KZ7sTJwLz51d+8nXrgA4dgPbtKz+Gn/l8PqxevZqr2kRElwgWSCMiIqJqpyhKG1EU5w4ZMiRUFMWKD7BunfXV56t4YbOtW4GPPgJWrqz4vAHEVW0ioksLV7aJiIioyhRFuUJRFKmc93YVRfHX22+/vXbz5s0rN6EgAP36AX//e8Wfff55YOzYys0bIKZplqxqv8xVbSKiSwNXtomIiKhKFEW5AcBGURSnAnjqPPcJTqfzA1EUHx06dKizVatWVZs4Lg5o1Khiz7z7LvDKK8DNN1dtbj/bs2cPPB5PGoCatdxORESVxpVtIiIiqjRFUZoA2AgAmqY1Pt+9Dofj5dq1az/0/PPPVz3RBoDu3YFNm4BFi8p3f0IC8NtvQKdOVZ/bj0zTxE8//VTo9Xrf5Ko2EdGlg8k2ERERVZokSZNOfvsBgMFl3acoSowgCONGjBgRFhIS4r8ANm8Gfv/9wvcZBrBmDfDqq0BUlP/m94O9e/ciJycnF8DCYMdCRET+w2SbiIiIKkVRlI3oGdAAABWWSURBVKamaQ4fMGAAJEkaAKB2Wfc6nc6pPXr0kOrUqePfIN5/H5g0CSgoOP99X3wBJCUBN9zg3/mryDAMLF++vEjTtGdkWTaCHQ8REfkPk20iIiKqFEmS/nX99dfbO3fujA4dOjSWJClJUZT7FUU5o7y4oigxhmH07Nq1qz0ggdx/PzC4zEV14OhRwOu1CqMJQkBCqKwNGzboxcXFv5umuSTYsRARkX8JpsmjQURERFQ6RVGuBZAmy3L26dcnTJjwSK1atT546qmnQiXJKkKempqKNWvWFGZmZgo2m+1rVVU/BnBAkqQvunbt2ueWW24JTGHWjAzA4QDq1Tv3NdMExowB6tcHXnghINNXVk5ODqZOnerWNK2tLMv7gx0PERH5F6uRExERUakURWkPYIcgCM8D+HfJ9QkTJjzgdDo/HDlyZEhJog0ALVq0QIsWLcLz8vKwdevW+3fs2DGsuLhYioqK0nr06BG4vzkaNgQ++wxISQEmTz7ztcOHgT/+ACZMCNj0lWGaJpYuXeo2TXMyE20ioksTk20iIiIqy46TX0+dxVYUpYUoih+PGjUqpEGDBqU+FBERgV69ejl69eoVfvJSufpvV0lY2LlbxPPygNtvB1atsla+a5CdO3eaaWlp6bquvxvsWIiIKDB4ZpuIiIjOoShKx5Pf7nA4HD4AGD9+/ABRFLf07ds3tFFF+1sH2j33AG+8ASQn/3lt6lTg7ruBMj4UCJbc3FwsX77co6rqUFmW1WDHQ0REgVGzPuYlIiKimmLjya+dxowZ41MU5TqHw/HNyJEjpWbNmgUzrrK9/TawcCGQmAisXg3k5wPjxgU7qjMYhoGvv/666OT28Z3BjoeIiAKHK9tERERUGgkAZFn2KYoiiKL4VKtWrfQam2gDQFwcsG0boGlWkt2/PyAFfgd7RaxcuVLNzs7eouv65AvfTUREFzNWIyciIqIzKIpyNYCUkz92FUXx+Tp16tzx0EMPhYaEhAQztAubMweYOBGYMgW49dZgR3OGhIQELFmyJEPTtDayLJ8IdjxERBRY3EZOREREZ7Db7Q/Url3bl5OTYwOwsVWrVsUDBw4McTqdwQ7two4ft9p9degQ7EjOcPToUSxZssStaVo/JtpERJcHJttERER0BofD8dDgwYNtV111VcmlGr6cfZJpAosWWWe369cPdjSn5OfnY/bs2cW6rj8gy/KOCz9BRESXAibbREREdIqiKB1CQkKuaNKkSbBDqZhDh6xq5CtWADVoq7umaZg1a5Zb07S34+LiFgU7HiIiqj4skEZERESnOJ3OF7t27eoUzu5ZXdPNng24XDUq0TZNEwsWLCjOz8//Ttf1icGOh4iIqhdXtomIiAgAcLLq+B1t27a1BzuWCnn9deC++4DWrYMdyRnWrFmjHTx4cI+qqg/IssyKtERElxmubBMREVGJ9pIkOerUqRPsOMovPh5Yvhxo0gSw15zPCOLj481NmzbleL3evrIse4MdDxERVT+ubBMREREAQJKk56+//nrXRbOF/Pvvgexs4PffgRpUKX3Pnj1YtmxZoaZpvWVZPh7seIiIKDi4sk1ERERQFOUqn893d6dOnWrO8vD5GAbw/PNAeHiNSrQPHDiAhQsXFp1MtBOCHQ8REQUPV7aJiIgITqfzf926dXOEh4cHO5QLy8gApk4Ftmyxku0aIiMjA/PmzSvWdX2wLMubgx0PEREFF5NtIiKiy5yiKK2dTmePG2+88eL4u2DCBMDtrlGJtsfjKWnx9VhcXNyqYMdDRETBd3H8UiUiIqJAur1du3Z2URSDHceFTZkCvPCCVRCthiguLsaMGTPcmqbNjIuLmxPseIiIqGbgmW0iIqLLnN1urxcWFlbzM+2ffgJmzAAiI4Ea8sFAUVERpk+fXpSbm/uZqqpPBzseIiKqOZhsExERXeYMw9h17NixwmDHcV4//2wl2D/+CNStG+xoAACFhYWYPn26Oz8/f6qmaX9jL20iIjodt5ETERHRrvT09GDHULbiYuDhh4F33wW6dw92NACAEydOYObMme7i4uJ/jBkzRg52PEREVPMw2SYiIqLkoqIiR0FBAWrVqhXsWM5UUAAsWQKsWwdERwc7GgBWe6/58+cX67r+ytixYz8KdjxERFQzcRs5ERHRZU6WZdXhcCxPSkoKdijneuIJYOVK4Morgx0JAGDLli3m3LlzC1RVHcREm4iIzocr20RERASv1/ttcnLybV26dKk5/bQWLADGj7cqjwtCUEPRdR3Lli3zJiUlpWua1leW5T+CGhAREdV4XNkmIiIiAFh88OBBl67rwY7DsmQJ8NZbQEQEIElBDSU3NxfTpk1zJyUlrVVVtR0TbSIiKg/BNFk4k4iIiIB33nln73333deicePGwQ1k2zagVi3A4QBiYoIaSlJSEr799ttin8+n6Lr+LiuOExFReXEbOREREQEATNPckJaWFtxkOycHeOABYNIkYPDgoIWh6zq+//57765du3I0TbtTluXfgxYMERFdlLiNnIiIiAAAXq933aFDh4qCFoDbDSQlAbNmBTXRzs3NxaefflqUkJCwUtO0Vky0iYioMriyTURERCU2Hz582Be02R9+GBBFYPbsoIVQ0tbLMIxxuq7/k9vGiYiosphsExERUYndbrfbHpR+27/9Brz0EtCuXfXOe5Jpmvj99999q1evLtR1/a64uLhVQQmEiIguGdxGTkRERAAAWZYNSZJ+2b9/f/VO/NVXwOOPA9dcA7hc1Ts3rPPZ33zzjWfNmjUHNE3ryESbiIj8gck2ERERneLxeNYfOXJEq7YJ//gD6NQJmDsXiIystmlL5OfnY9q0aUV79uxZparqtbIs76v2IIiI6JLEZJuIiIhOMU3z6/j4eN0wjMBPlpEBDB9uJdxt2wZ+vrMcPnwYU6dOLT5x4sQ7qqoOkmU5eMXhiIjoksM+20RERHSGd955J37w4MHtWrZsGbhJiouBI0esRHvgwMDNU4atW7eaK1asKNJ1/Z64uLjl1R4AERFd8lggjYiIiM7g8Xg+2Lp16/stW7YMC8gEpmlVHnc6gZkzAzJFWQzDwPLly70JCQkZmqbdKsvyH9UaABERXTaYbBMREdHZvtm/f/+Huq7D4QjAnwqHDgHDhgH9+/t/7PPweDyYO3euOzMzc6OqqkNkWc6v1gCIiOiywjPbREREdAZZlrPsdnvmiRMn/D/4vHlA377A7bcDYYFZOC9NTk4OPv30U3dGRsYXXq+3LxNtIiIKNK5sExER0TlsNltaXl5e4wYNGvhv0PR0oHlzYNasam3xdfjwYcydO7dY07QxY8eO/U+1TUxERJc1rmwTERHROQRB8Pq1InlmJnDbbYCqAl26+G/c8zAMA2vWrNG/+OKLAq/XO4yJNhERVSeubBMREdE5TNNsEBoa6p/BvF6gqAh49lngppv8M+YFeDwezJkzx338+PGtuq7fI8vysWqZmIiI6CQm20RERHQGRVEkm83WvGHDhlUfzDSB0aOBunWBKVOqPl455OTkYNasWUVFRUWzVVV9WpblamgaTkREdCYm20RERHS26yIjIz1Op1Oq8ki5uUC7dsBjj/khrPMzTRObN2/2rVq1ymua5pu6rv9blmUz4BMTERGVgsk2ERERna1948aNq/43wpdfAuPGAQkJgN1e9ajOQ9d1rFixQo2Pjz+iaVp/9s8mIqJgY7JNREREZ4sMDw93/n979xtbVXnAcfx3Tntv+VMLxGKpVKiFODuEWHWYMDNNCNPohgkFWSJZs2C0UzAY2cIL7MmVLDGOZEOTOgdoCClthTAa/pVBIShNWxmUUqwwUdpaSVPsXYH2XnrPuefsBdZB+DMKp1C4388b4Nze53nuO7495z7PDY0QjZ5/hLy4eMBDu7u7W6WlpZHOzs7qWCw217Ks/wzohAAAXANiGwAA/CgUCo03TfPngUDg+gu5s1N66imprEyaNMm/xV3GqVOntGrVqpjneX+zbfsPlmW5AzohAADXiNgGAACSpFAolC6p2XVdZWZmXt8gjnP+PO0XXhjw0G5sbNTmzZujruu+vnTp0lUDOhkAAP1EbAMAgD5/6vvL+PHj+/9uz5Neekl68EHprbf8XNdFbNvWtm3bepuamr63bftXlmUdGrDJAAC4TsQ2AAAJZtmyZfNd1z1sWdb+C6+npKSMnDhxoh5++GENGTKk/wNHIlIwKBUU+LXUS3R2dqqkpCQSiUT+GYvFfmtZ1tkBmwwAgBtAbAMAkEBCodAISauSkpIOSnr0gutGMBh8ZMqUKZo4cWL/By4vl95/X/rsM8kw/FvwBVpbW7Vu3bqobdt/dF23mGO9AACDGbENAEBiyQ4Gg3ZycnLuu+++22DbtuE4zjbDML4aOnTo2JycnP6P6LrS8ePS4sUDFtpffPGFKioqehzHmV1UVFQ5IJMAAOAjYhsAgMQyLScnx545c+awEydOTFm/fr0kTfY8T6dPn5bjOEpO7sd/Dzo7pRkzpIoK6b77BmTBdXV18aqqqtO2bU/n+9kAgNuFeasXAAAAbqpwJBKJDx06VAcPHoz+cO1npmmGkpOTt1dWVvZd0/79+70VK1Z4X3/99eVH8jypsVF64okBCe14PK7KyspYVVXV97ZtP0poAwBuJ8Q2AACJZW97e3tAkqZOnTpUkkzT/I3rukclnQ2Hw3FJqq6udnft2qWsrCyjvLxcGzdujDc0NKinp+d/I73yitTWJr33nu+L7O7u1sqVK3vq6+s/s237p5ZlNfs+CQAAA4jHyAEASCwPDR8+3JY05IEHHtDLL7+spqamN9rb23tGjx49ZNq0aYGqqiq3rq7OLCgo0NixY3XmzBmtWbNGjY2NmjBhgjtv3jxTXV3SN99Iy5b5vsCOjg6tWbMmEovF/uI4ThEboQEAbkfENgAACcQ0zalZWVkpff/OzMxUZmamKemus2fPqqyszO3q6tL8+fOVkZEhSUpLS9PChQuTli9f7kajUTNWWqpgZaW0a5fv6+vbcTwWixUWFRWt9X0CAABuEmIbAIAEEAqF7pc0QdLBcDgclRS88PVwOKzVq1frnnvu0aJFi8zLbZJWUFBglpWVxb9Zvdp8cNEiX7cd9zxPNTU18T179kTi8fjcoqKi7X6ODwDAzUZsAwCQAAzD+LPnefmBQGDduHHjhl34WldXlz7++GMvJydH+fn5V9zPZbRhaMGWLUl/nTHDaxk1yv2l55mGD0d9nTt3Ths3boy0tLQ0O47zrGVZLTc8KAAAtxgbpAEAkABM03xEkgKBwKwnn3wy0He9tbVVxcXFGjNmjJufn3/1ct65U8a992puYaFRW1trnjlz5obX9cP8kZaWltJYLPYIoQ0AuFNwZxsAgAQQj8dnSzowe/bsISkpP35lW/X19W5WVpbx4osvJl11gMWLpWeflT76SGM8TxkZGfGVK1eac+fONe67jmO/YrGYtmzZcu7o0aM9tm3/3rKs9f0eBACAQYw72wAAJIYvJSk1NVWS5Lqutm7dGm9qajKefvrpq9/R/u47aedO6aGHJMOQaZoqLCxMysvLM9auXava2lrP8659w/D29nYVFxdHjh07tsm27fGENgDgTsSdbQAAEkOBJN19993yPE8bNmyIt7a2GoWFhcaoUaOu/K5t26SDB6X6esm8+Hf006dP14QJE1RWVqa2trb4888/nxQIBK4w0PlN0Orq6rzdu3dHHcdht3EAwB2NO9sAACSGtyTJNE19/vnnXnNzs/Hqq6+aVw1tz5PeeUfKzr4ktPtkZ2drwYIFxsmTJ/Xhhx96XV1dl/253t5ebdiwIVpVVXXKtu3HCW0AwJ2O2AYAIDEcl87fXd63b5+mT59uDhs27OrvMAxp925p3ryr/lhqaqoWLFiQNHLkSO+DDz5QOBy+6PW+x8aPHz++0XGc+y3LOnJjHwUAgMGPx8gBAEgMKyT94vDhw+rt7TXy8vKu7V2XOW/7cg4dOqS2tjYjOzs7npqamiSd/154dXW18+mnn/Z6nvf60qVLP7rexQMAcLshtgEASAz/lqRNmzYpNzfXM03zxg/I1vkzsktKStyOjg5z5syZxqRJk5Kk83ezP/nkk0gkEmlyHCffsqxWP+YDAOB2QWwDAJAYJktSIBBQMBjs3blzZyAlJSUpJSVFwWBQfX8GAgENHz5c6enp/3fAhoYGbd++3cvKytLChQuVmpoqz/NUU1MT37Nnz7l4PP6m53krLctyB/zTAQAwyBDbAAAkhq2S3rBtO6WhoaFH0l2maY5ITk5ON01zpGmaaZ7npUWj0cclacmSJbrwPO4LxWIxlZSUuO3t7eZzzz1nTJ482TAMQx0dHdq0aVNPOBz+ynGcWZZlnbiJnw8AgEHF6M+5mAAA4M4WCoV+IuloQUGBsrOzL3m9qalJmzdv9jIyMrxZs2aZaWlpchxHe/futWtra2Ou6y5xXbeYu9kAgERHbAMAgIu8/fbb0Tlz5gzJzc398ZrjOCotLXW//fZb85lnnvHy8vIMwzB06tQplZeX93R3d1f39vb+zrKsk7dw6QAADBo8Rg4AAC5imuY/jhw5Mjc3N9eUpGPHjqmiosJNT0/Xa6+9phEjRhie5+nAgQPejh07ovF4/E3Xdf9uWRa/wQcA4AfENgAAuEg8Ht/R3Nw8y7btlPXr17vNzc3mjBkzjMcee8wwDEPd3d1au3ZttKur66Rt27+2LOvLW71mAAAGGx4jBwAAFwmFQuMktUjS6NGj3Tlz5phpaWlqa2tTa2urXVNT43met8pxnDctyzp3i5cLAMCgRGwDAIBLhEKhEaZpHnVdd4wkBQIBW1KHaZr/6u3tXW5Z1r5bvEQAAAY1YhsAAFxRKBRKkXSXpPGS6tllHACAa0NsAwAAAADgM/NWLwAAAAAAgDsNsQ0AAAAAgM+IbQAAAAAAfEZsAwAAAADgM2IbAAAAAACfEdsAAAAAAPiM2AYAAAAAwGfENgAAAAAAPiO2AQAAAADwGbENAAAAAIDPiG0AAAAAAHxGbAMAAAAA4DNiGwAAAAAAnxHbAAAAAAD4jNgGAAAAAMBnxDYAAAAAAD4jtgEAAAAA8BmxDQAAAACAz4htAAAAAAB8RmwDAAAAAOAzYhsAAAAAAJ8R2wAAAAAA+IzYBgAAAADAZ8Q2AAAAAAA+I7YBAAAAAPAZsQ0AAAAAgM+IbQAAAAAAfEZsAwAAAADgM2IbAAAAAACfEdsAAAAAAPiM2AYAAAAAwGfENgAAAAAAPiO2AQAAAADwGbENAAAAAIDPiG0AAAAAAHxGbAMAAAAA4DNiGwAAAAAAnxHbAAAAAAD4jNgGAAAAAMBnxDYAAAAAAD4jtgEAAAAA8BmxDQAAAACAz/4L0ZkICrqqch4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "ax = rs_df.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = wf.plot(rs_df, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_title('Rio Grande do Sul: Nonplanar Weights')\n", - "ax.set_axis_off()\n", - "plt.savefig('rioGrandeDoSul.png')\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docsrc/references.rst b/docsrc/references.rst deleted file mode 100644 index 09d2529e0..000000000 --- a/docsrc/references.rst +++ /dev/null @@ -1,7 +0,0 @@ -.. reference for the docs - -References -========== - -.. bibliography:: _static/references.bib - :cited: diff --git a/docsrc/tutorial.rst b/docsrc/tutorial.rst deleted file mode 100644 index 9b9021775..000000000 --- a/docsrc/tutorial.rst +++ /dev/null @@ -1,22 +0,0 @@ -libpysal Tutorial -================= - - -Spatial Weights ---------------- - -.. toctree:: - :glob: - - Spatial Weights - Voronoi - - -Example Datasets ----------------- - -.. toctree:: - :glob: - - Example Data - From c5b219dc5bfe0e9613a0859f482f2b5cc51ac31b Mon Sep 17 00:00:00 2001 From: James Gaboardi Date: Tue, 2 Feb 2021 09:42:53 -0500 Subject: [PATCH 020/162] update conf.py & Makefile --- docs/Makefile | 34 +++++ docs/conf.py | 334 ++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 368 insertions(+) create mode 100644 docs/Makefile create mode 100644 docs/conf.py diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 000000000..45b306f40 --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,34 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line. +SPHINXOPTS = +SPHINXBUILD = sphinx-build +SPHINXPROJ = libpysal +SOURCEDIR = . +BUILDDIR = _build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @rsync -r --exclude '.ipynb_checkpoints/' ../notebooks/ ./notebooks/ + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +github: + @make html + +sync: + @rsync -avh _build/html/ ../docs/ --delete + @make clean + touch .nojekyll + +clean: + rm -rf $(BUILDDIR)/* + rm -rf auto_examples/ + rm -rf generated/ diff --git a/docs/conf.py b/docs/conf.py new file mode 100644 index 000000000..1d91a393b --- /dev/null +++ b/docs/conf.py @@ -0,0 +1,334 @@ +# -*- coding: utf-8 -*- +# +# libpysal documentation build configuration file, created by +# sphinx-quickstart on Wed Jun 6 15:54:22 2018. +# +# This file is execfile()d with the current directory set to its +# containing dir. +# +# Note that not all possible configuration values are present in this +# autogenerated file. +# +# All configuration values have a default; values that are commented out +# serve to show the default. + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. +# +import sys, os +import sphinx_bootstrap_theme + + +sys.path.insert(0, os.path.abspath("../")) + +import libpysal + + +# -- General configuration ------------------------------------------------ + +# If your documentation needs a minimal Sphinx version, state it here. +# +# needs_sphinx = '1.0' +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = [ #'sphinx_gallery.gen_gallery', + "sphinx.ext.autodoc", + "sphinx.ext.autosummary", + "sphinx.ext.viewcode", + "sphinxcontrib.bibtex", + "sphinx.ext.mathjax", + "sphinx.ext.doctest", + "sphinx.ext.intersphinx", + "numpydoc", + #'sphinx.ext.napoleon', + "matplotlib.sphinxext.plot_directive", + "nbsphinx", +] + + +# sphinx_gallery_conf = { +# # path to your examples scripts +# 'examples_dirs': '../examples', +# # path where to save gallery generated examples +# 'gallery_dirs': 'auto_examples', +# 'backreferences_dir': False, +# } + + +# Add any paths that contain templates here, relative to this directory. +templates_path = ["_templates"] + +# The suffix(es) of source filenames. +# You can specify multiple suffix as a list of string: +# +# source_suffix = ['.rst', '.md'] +source_suffix = ".rst" + +# The master toctree document. +master_doc = "index" + +# General information about the project. +project = "libpysal" +copyright = "2018-, pysal developers" +author = "pysal developers" + +# The version info for the project you're documenting, acts as replacement for +# |version| and |release|, also used in various other places throughout the +# built documents. +# +# The full version. +version = libpysal.__version__ +release = libpysal.__version__ + +# The language for content autogenerated by Sphinx. Refer to documentation +# for a list of supported languages. +# +# This is also used if you do content translation via gettext catalogs. +# Usually you set "language" from the command line for these cases. +language = None + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This patterns also effect to html_static_path and html_extra_path +exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", "tests/*"] + +# The name of the Pygments (syntax highlighting) style to use. +pygments_style = "sphinx" + +# If true, `todo` and `todoList` produce output, else they produce nothing. +todo_include_todos = False + +# -- Options for HTML output ---------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. + +# html_theme = 'alabaster' +html_theme = "bootstrap" +html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() +html_title = "%s v%s Manual" % (project, version) + +# (Optional) Logo. Should be small enough to fit the navbar (ideally 24x24). +# Path should be relative to the ``_static`` files directory. +# html_logo = "_static/images/CGS_logo.jpg" +# html_logo = "_static/images/CGS_logo_green.png" +# html_logo = "_static/images/pysal_logo_small.jpg" +html_favicon = "_static/images/pysal_favicon.ico" + + +# Theme options are theme-specific and customize the look and feel of a theme +# further. For a list of options available for each theme, see the +# documentation. +# +html_theme_options = { + # Navigation bar title. (Default: ``project`` value) + "navbar_title": project, + # Render the next and previous page links in navbar. (Default: true) + "navbar_sidebarrel": False, + # Render the current pages TOC in the navbar. (Default: true) + #'navbar_pagenav': True, + #'navbar_pagenav': False, + # No sidebar + "nosidebar": True, + # Tab name for the current pages TOC. (Default: "Page") + #'navbar_pagenav_name': "Page", + # Global TOC depth for "site" navbar tab. (Default: 1) + # Switching to -1 shows all levels. + "globaltoc_depth": 2, + # Include hidden TOCs in Site navbar? + # + # Note: If this is "false", you cannot have mixed ``:hidden:`` and + # non-hidden ``toctree`` directives in the same page, or else the build + # will break. + # + # Values: "true" (default) or "false" + "globaltoc_includehidden": "true", + # HTML navbar class (Default: "navbar") to attach to
element. + # For black navbar, do "navbar navbar-inverse" + #'navbar_class': "navbar navbar-inverse", + # Fix navigation bar to top of page? + # Values: "true" (default) or "false" + "navbar_fixed_top": "true", + # Location of link to source. + # Options are "nav" (default), "footer" or anything else to exclude. + "source_link_position": "footer", + # Bootswatch (http://bootswatch.com/) theme. + # + # Options are nothing (default) or the name of a valid theme + # such as "amelia" or "cosmo", "yeti", "flatly". + "bootswatch_theme": "yeti", + # Choose Bootstrap version. + # Values: "3" (default) or "2" (in quotes) + "bootstrap_version": "3", + "navbar_links": [ + # ("Gallery", "auto_examples/index"), + ("Installation", "installation"), + ("Tutorial", "tutorial"), + ("API", "api"), + ("References", "references"), + ], +} + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +html_static_path = ["_static"] + +# Custom sidebar templates, maps document names to template names. +# html_sidebars = {} +# html_sidebars = {'sidebar': ['localtoc.html', 'sourcelink.html', 'searchbox.html']} + +# -- Options for HTMLHelp output ------------------------------------------ + +# Output file base name for HTML help builder. +htmlhelp_basename = "%sdoc" % project + + +# -- Options for LaTeX output --------------------------------------------- + +latex_elements = { + # The paper size ('letterpaper' or 'a4paper'). + # + # 'papersize': 'letterpaper', + # The font size ('10pt', '11pt' or '12pt'). + # + # 'pointsize': '10pt', + # Additional stuff for the LaTeX preamble. + # + # 'preamble': '', + # Latex figure (float) alignment + # + # 'figure_align': 'htbp', +} + +# Grouping the document tree into LaTeX files. List of tuples +# (source start file, target name, title, +# author, documentclass [howto, manual, or own class]). +latex_documents = [ + ( + master_doc, + "%s.tex" % project, + u"%s Documentation" % project, + u"pysal developers", + "manual", + ), +] + + +# -- Options for manual page output --------------------------------------- + +# One entry per manual page. List of tuples +# (source start file, name, description, authors, manual section). +man_pages = [(master_doc, project, u"%s Documentation" % project, [author], 1)] + + +# -- Options for Texinfo output ------------------------------------------- + +# Grouping the document tree into Texinfo files. List of tuples +# (source start file, target name, title, author, +# dir menu entry, description, category) +texinfo_documents = [ + ( + master_doc, + project, + u"%s Documentation" % project, + author, + project, + "One line description of project.", + "Miscellaneous", + ), +] + +# ----------------------------------------------------------------------------- +# Napoleon configuration +# ----------------------------------------------------------------------------- +# numpydoc_show_class_members = True +# numpydoc_class_members_toctree = False +# +# napoleon_use_ivar = True + +# ----------------------------------------------------------------------------- +# Autosummary +# ----------------------------------------------------------------------------- + +# Generate the API documentation when building +autosummary_generate = True + +# avoid showing members twice +numpydoc_show_class_members = False +numpydoc_use_plots = True +class_members_toctree = True + +# +numpydoc_show_inherited_class_members = True +numpydoc_xref_param_type = True + +# automatically document class members +autodoc_default_options = {"members": True, "undoc-members": True} + +# display the source code for Plot directive +plot_include_source = True + + +def setup(app): + app.add_stylesheet("pysal-styles.css") + + +# Example configuration for intersphinx: refer to the Python standard library. +intersphinx_mapping = { + "geopandas": ("https://geopandas.readthedocs.io/en/latest/", None), + "libpysal": ("https://pysal.org/libpysal/", None), + "matplotlib": ("https://matplotlib.org/", None), + "networkx": ("https://networkx.github.io/documentation/stable/", None), + "numpy": ("https://docs.scipy.org/doc/numpy", None), + "pandas": ("https://pandas.pydata.org/pandas-docs/stable/", None), + "python": ("https://docs.python.org/3.8/", None), + "scipy": ("https://docs.scipy.org/doc/scipy/reference/", None), +} + + +# This is processed by Jinja2 and inserted before each notebook +nbsphinx_prolog = r""" +{% set docname = env.doc2path(env.docname, base='') %} +{% set fullpath = env.doc2path(env.docname, base='tree/master/') %} + +.. only:: html + + .. role:: raw-html(raw) + :format: html + + .. nbinfo:: + + This page was generated from `{{ docname }}`__. + Interactive online version: + :raw-html:`Binder badge` + + __ https://github.com/pysal/libpysal/{{ fullpath }} + +.. raw:: latex + + \nbsphinxstartnotebook{\scriptsize\noindent\strut + \textcolor{gray}{The following section was generated from + \sphinxcode{\sphinxupquote{\strut {{ docname | escape_latex }}}} \dotfill}} +""" + +# This is processed by Jinja2 and inserted after each notebook +nbsphinx_epilog = r""" +.. raw:: latex + + \nbsphinxstopnotebook{\scriptsize\noindent\strut + \textcolor{gray}{\dotfill\ \sphinxcode{\sphinxupquote{\strut + {{ env.doc2path(env.docname, base='doc') | escape_latex }}}} ends here.}} +""" + +# List of arguments to be passed to the kernel that executes the notebooks: +nbsphinx_execute_arguments = [ + "--InlineBackend.figure_formats={'svg', 'pdf'}", + "--InlineBackend.rc={'figure.dpi': 96}", +] + +mathjax_config = { + "TeX": {"equationNumbers": {"autoNumber": "AMS", "useLabelIds": True}}, +} From a9d6764d6fa8de161ed9bf9bd90840a7ebff5625 Mon Sep 17 00:00:00 2001 From: James Gaboardi Date: Tue, 2 Feb 2021 09:43:26 -0500 Subject: [PATCH 021/162] reorg & clean docs/ dir --- .../notebooks_Raster_awareness_API_17_1.png | Bin 9319 -> 0 bytes .../notebooks_Raster_awareness_API_29_1.png | Bin 35340 -> 0 bytes .../notebooks_Raster_awareness_API_33_0.png | Bin 40151 -> 0 bytes .../notebooks_Raster_awareness_API_37_2.png | Bin 17524 -> 0 bytes .../notebooks_Raster_awareness_API_39_1.png | Bin 18604 -> 0 bytes .../notebooks_Raster_awareness_API_6_1.png | Bin 65884 -> 0 bytes docs/_images/notebooks_examples_22_1.png | Bin 11043 -> 0 bytes docs/_images/notebooks_voronoi_10_1.png | Bin 6389 -> 0 bytes docs/_images/notebooks_voronoi_15_1.png | Bin 7623 -> 0 bytes docs/_images/notebooks_voronoi_16_1.png | Bin 52394 -> 0 bytes docs/_images/notebooks_voronoi_19_0.png | Bin 52526 -> 0 bytes docs/_images/notebooks_weights_12_0.png | Bin 36747 -> 0 bytes docs/_images/notebooks_weights_21_0.png | Bin 37255 -> 0 bytes docs/_images/notebooks_weights_28_1.png | Bin 47568 -> 0 bytes docs/_images/notebooks_weights_31_0.png | Bin 37985 -> 0 bytes docs/_images/notebooks_weights_38_0.png | Bin 33848 -> 0 bytes docs/_images/notebooks_weights_41_0.png | Bin 35629 -> 0 bytes docs/_images/notebooks_weights_57_0.png | Bin 476031 -> 0 bytes docs/_images/notebooks_weights_58_0.png | Bin 530744 -> 0 bytes docs/_images/notebooks_weights_7_0.png | Bin 12748 -> 0 bytes docs/_modules/index.html | 165 - docs/_modules/libpysal/cg/alpha_shapes.html | 869 -- docs/_modules/libpysal/cg/kdtree.html | 461 - docs/_modules/libpysal/cg/locators.html | 971 -- docs/_modules/libpysal/cg/shapes.html | 2251 ---- docs/_modules/libpysal/cg/sphere.html | 814 -- docs/_modules/libpysal/cg/standalone.html | 1492 --- docs/_modules/libpysal/cg/voronoi.html | 492 - docs/_modules/libpysal/examples.html | 193 - docs/_modules/libpysal/io/fileio.html | 616 - .../_modules/libpysal/weights/contiguity.html | 780 -- docs/_modules/libpysal/weights/distance.html | 1098 -- docs/_modules/libpysal/weights/raster.html | 983 -- .../libpysal/weights/set_operations.html | 669 - .../libpysal/weights/spatial_lag.html | 388 - docs/_modules/libpysal/weights/spintW.html | 426 - docs/_modules/libpysal/weights/user.html | 300 - docs/_modules/libpysal/weights/util.html | 1820 --- docs/_modules/libpysal/weights/weights.html | 1655 --- .../generated/libpysal.cg.Chain.rst.txt | 33 - .../generated/libpysal.cg.Grid.rst.txt | 28 - .../generated/libpysal.cg.KDTree.rst.txt | 6 - .../generated/libpysal.cg.Line.rst.txt | 24 - .../generated/libpysal.cg.LineSegment.rst.txt | 37 - .../generated/libpysal.cg.Point.rst.txt | 22 - .../libpysal.cg.PointLocator.rst.txt | 27 - .../generated/libpysal.cg.Polygon.rst.txt | 38 - .../libpysal.cg.PolygonLocator.rst.txt | 28 - .../libpysal.cg.RADIUS_EARTH_KM.rst.txt | 6 - .../libpysal.cg.RADIUS_EARTH_MILES.rst.txt | 6 - .../generated/libpysal.cg.Ray.rst.txt | 22 - .../generated/libpysal.cg.Rectangle.rst.txt | 32 - .../generated/libpysal.cg.alpha_shape.rst.txt | 6 - .../libpysal.cg.alpha_shape_auto.rst.txt | 6 - .../generated/libpysal.cg.arcdist.rst.txt | 6 - .../libpysal.cg.arcdist2linear.rst.txt | 6 - .../generated/libpysal.cg.asShape.rst.txt | 6 - .../generated/libpysal.cg.bbcommon.rst.txt | 6 - .../generated/libpysal.cg.brute_knn.rst.txt | 6 - .../generated/libpysal.cg.convex_hull.rst.txt | 6 - .../libpysal.cg.distance_matrix.rst.txt | 6 - .../generated/libpysal.cg.fast_knn.rst.txt | 6 - .../libpysal.cg.fast_threshold.rst.txt | 6 - .../generated/libpysal.cg.geogrid.rst.txt | 6 - .../libpysal.cg.geointerpolate.rst.txt | 6 - .../libpysal.cg.get_angle_between.rst.txt | 6 - .../libpysal.cg.get_bounding_box.rst.txt | 6 - ...sal.cg.get_point_at_angle_and_dist.rst.txt | 6 - .../libpysal.cg.get_points_dist.rst.txt | 6 - ...libpysal.cg.get_polygon_point_dist.rst.txt | 6 - ...sal.cg.get_polygon_point_intersect.rst.txt | 6 - ...pysal.cg.get_ray_segment_intersect.rst.txt | 6 - ...l.cg.get_rectangle_point_intersect.rst.txt | 6 - ...t_rectangle_rectangle_intersection.rst.txt | 6 - ...libpysal.cg.get_segment_point_dist.rst.txt | 6 - ...sal.cg.get_segment_point_intersect.rst.txt | 6 - ...libpysal.cg.get_segments_intersect.rst.txt | 6 - .../libpysal.cg.get_shared_segments.rst.txt | 6 - .../generated/libpysal.cg.harcdist.rst.txt | 6 - .../libpysal.cg.is_clockwise.rst.txt | 6 - .../libpysal.cg.is_collinear.rst.txt | 6 - .../libpysal.cg.linear2arcdist.rst.txt | 6 - .../generated/libpysal.cg.lonlat.rst.txt | 6 - ...ibpysal.cg.point_touches_rectangle.rst.txt | 6 - .../generated/libpysal.cg.toLngLat.rst.txt | 6 - .../generated/libpysal.cg.toXYZ.rst.txt | 6 - .../libpysal.cg.voronoi_frames.rst.txt | 6 - .../libpysal.examples.available.rst.txt | 6 - .../libpysal.examples.explain.rst.txt | 6 - .../libpysal.examples.get_path.rst.txt | 6 - .../libpysal.io.fileio.FileIO.rst.txt | 42 - .../generated/libpysal.io.open.rst.txt | 42 - .../libpysal.weights.DistanceBand.rst.txt | 75 - .../generated/libpysal.weights.KNN.rst.txt | 76 - .../generated/libpysal.weights.Kernel.rst.txt | 75 - .../generated/libpysal.weights.ODW.rst.txt | 6 - .../generated/libpysal.weights.Queen.rst.txt | 76 - .../generated/libpysal.weights.Rook.rst.txt | 76 - .../libpysal.weights.Voronoi.rst.txt | 6 - .../generated/libpysal.weights.W.rst.txt | 73 - .../generated/libpysal.weights.WSP.rst.txt | 33 - .../generated/libpysal.weights.WSP2W.rst.txt | 6 - .../libpysal.weights.attach_islands.rst.txt | 6 - .../libpysal.weights.block_weights.rst.txt | 6 - ...al.weights.build_lattice_shapefile.rst.txt | 6 - .../generated/libpysal.weights.comb.rst.txt | 6 - .../generated/libpysal.weights.da2W.rst.txt | 6 - .../generated/libpysal.weights.da2WSP.rst.txt | 6 - .../libpysal.weights.fill_diagonal.rst.txt | 6 - .../generated/libpysal.weights.full.rst.txt | 6 - .../generated/libpysal.weights.full2W.rst.txt | 6 - .../libpysal.weights.fuzzy_contiguity.rst.txt | 6 - .../libpysal.weights.get_ids.rst.txt | 6 - ...ts.get_points_array_from_shapefile.rst.txt | 6 - .../libpysal.weights.hexLat2W.rst.txt | 6 - .../libpysal.weights.higher_order.rst.txt | 6 - .../libpysal.weights.higher_order_sp.rst.txt | 6 - .../libpysal.weights.lag_categorical.rst.txt | 6 - .../libpysal.weights.lag_spatial.rst.txt | 6 - .../generated/libpysal.weights.lat2SW.rst.txt | 6 - .../generated/libpysal.weights.lat2W.rst.txt | 6 - .../generated/libpysal.weights.mat2L.rst.txt | 6 - ....min_threshold_dist_from_shapefile.rst.txt | 6 - ...sal.weights.min_threshold_distance.rst.txt | 6 - ...libpysal.weights.neighbor_equality.rst.txt | 6 - .../generated/libpysal.weights.netW.rst.txt | 6 - ...bpysal.weights.nonplanar_neighbors.rst.txt | 6 - .../generated/libpysal.weights.order.rst.txt | 6 - .../libpysal.weights.remap_ids.rst.txt | 6 - .../libpysal.weights.shimbel.rst.txt | 6 - .../libpysal.weights.spw_from_gal.rst.txt | 6 - .../libpysal.weights.testDataArray.rst.txt | 6 - .../generated/libpysal.weights.vecW.rst.txt | 6 - .../generated/libpysal.weights.w2da.rst.txt | 6 - .../generated/libpysal.weights.w_clip.rst.txt | 6 - .../libpysal.weights.w_difference.rst.txt | 6 - .../libpysal.weights.w_intersection.rst.txt | 6 - .../libpysal.weights.w_local_cluster.rst.txt | 6 - .../libpysal.weights.w_subset.rst.txt | 6 - ...sal.weights.w_symmetric_difference.rst.txt | 6 - .../libpysal.weights.w_union.rst.txt | 6 - .../generated/libpysal.weights.wsp2da.rst.txt | 6 - .../notebooks/Raster_awareness_API.ipynb.txt | 754 -- docs/_sources/notebooks/examples.ipynb.txt | 1092 -- docs/_sources/notebooks/voronoi.ipynb.txt | 478 - docs/_sources/notebooks/weights.ipynb.txt | 1313 -- docs/_static/basic.css | 855 -- .../css/bootstrap-responsive.css | 1109 -- .../css/bootstrap-responsive.min.css | 9 - .../_static/bootstrap-2.3.2/css/bootstrap.css | 6167 --------- .../bootstrap-2.3.2/css/bootstrap.min.css | 9 - .../img/glyphicons-halflings-white.png | Bin 8777 -> 0 bytes .../img/glyphicons-halflings.png | Bin 12799 -> 0 bytes docs/_static/bootstrap-2.3.2/js/bootstrap.js | 2287 ---- .../bootstrap-2.3.2/js/bootstrap.min.js | 6 - .../bootstrap-3.3.7/css/bootstrap-theme.css | 587 - .../css/bootstrap-theme.css.map | 1 - .../css/bootstrap-theme.min.css | 6 - .../css/bootstrap-theme.min.css.map | 1 - .../_static/bootstrap-3.3.7/css/bootstrap.css | 6757 ---------- .../bootstrap-3.3.7/css/bootstrap.css.map | 1 - .../bootstrap-3.3.7/css/bootstrap.min.css | 6 - .../bootstrap-3.3.7/css/bootstrap.min.css.map | 1 - .../fonts/glyphicons-halflings-regular.eot | Bin 20127 -> 0 bytes .../fonts/glyphicons-halflings-regular.svg | 288 - .../fonts/glyphicons-halflings-regular.ttf | Bin 45404 -> 0 bytes .../fonts/glyphicons-halflings-regular.woff | Bin 23424 -> 0 bytes .../fonts/glyphicons-halflings-regular.woff2 | Bin 18028 -> 0 bytes docs/_static/bootstrap-3.3.7/js/bootstrap.js | 2377 ---- .../bootstrap-3.3.7/js/bootstrap.min.js | 7 - docs/_static/bootstrap-3.3.7/js/npm.js | 13 - docs/_static/bootstrap-sphinx.css | 223 - docs/_static/bootstrap-sphinx.js | 175 - .../bootswatch-2.3.2/amelia/bootstrap.min.css | 9 - .../cerulean/bootstrap.min.css | 9 - .../bootswatch-2.3.2/cosmo/bootstrap.min.css | 9 - .../bootswatch-2.3.2/cyborg/bootstrap.min.css | 9 - .../bootswatch-2.3.2/flatly/bootstrap.min.css | 9 - .../img/glyphicons-halflings-white.png | Bin 8777 -> 0 bytes .../img/glyphicons-halflings.png | Bin 12799 -> 0 bytes .../journal/bootstrap.min.css | 9 - .../readable/bootstrap.min.css | 9 - .../simplex/bootstrap.min.css | 9 - .../bootswatch-2.3.2/slate/bootstrap.min.css | 9 - .../spacelab/bootstrap.min.css | 9 - .../bootswatch-2.3.2/spruce/bootstrap.min.css | 9 - .../superhero/bootstrap.min.css | 9 - .../bootswatch-2.3.2/united/bootstrap.min.css | 9 - .../cerulean/bootstrap.min.css | 11 - .../bootswatch-3.3.7/cosmo/bootstrap.min.css | 11 - .../bootswatch-3.3.7/cyborg/bootstrap.min.css | 11 - .../bootswatch-3.3.7/darkly/bootstrap.min.css | 11 - .../bootswatch-3.3.7/flatly/bootstrap.min.css | 11 - .../fonts/glyphicons-halflings-regular.eot | Bin 20127 -> 0 bytes .../fonts/glyphicons-halflings-regular.svg | 288 - .../fonts/glyphicons-halflings-regular.ttf | Bin 45404 -> 0 bytes .../fonts/glyphicons-halflings-regular.woff | Bin 23424 -> 0 bytes .../fonts/glyphicons-halflings-regular.woff2 | Bin 18028 -> 0 bytes .../journal/bootstrap.min.css | 11 - .../bootswatch-3.3.7/lumen/bootstrap.min.css | 11 - .../bootswatch-3.3.7/paper/bootstrap.min.css | 11 - .../readable/bootstrap.min.css | 11 - .../sandstone/bootstrap.min.css | 11 - .../simplex/bootstrap.min.css | 11 - .../bootswatch-3.3.7/slate/bootstrap.min.css | 11 - .../bootswatch-3.3.7/solar/bootstrap.min.css | 11 - .../spacelab/bootstrap.min.css | 11 - .../superhero/bootstrap.min.css | 11 - .../bootswatch-3.3.7/united/bootstrap.min.css | 11 - .../bootswatch-3.3.7/yeti/bootstrap.min.css | 11 - docs/_static/doctools.js | 315 - docs/_static/documentation_options.js | 12 - docs/_static/file.png | Bin 286 -> 0 bytes docs/_static/jquery-3.5.1.js | 10872 ---------------- docs/_static/jquery.js | 2 - docs/_static/js/jquery-1.11.0.min.js | 4 - docs/_static/js/jquery-fix.js | 2 - docs/_static/language_data.js | 297 - docs/_static/minus.png | Bin 90 -> 0 bytes docs/_static/plus.png | Bin 90 -> 0 bytes docs/_static/pygments.css | 69 - docs/_static/searchtools.js | 515 - docs/_static/underscore-1.3.1.js | 999 -- docs/_static/underscore.js | 31 - docs/api.html | 696 - docs/{_sources/api.rst.txt => api.rst} | 0 docs/generated/libpysal.cg.Chain.html | 328 - docs/generated/libpysal.cg.Grid.html | 347 - docs/generated/libpysal.cg.KDTree.html | 185 - docs/generated/libpysal.cg.Line.html | 260 - docs/generated/libpysal.cg.LineSegment.html | 497 - docs/generated/libpysal.cg.Point.html | 194 - docs/generated/libpysal.cg.PointLocator.html | 304 - docs/generated/libpysal.cg.Polygon.html | 490 - .../generated/libpysal.cg.PolygonLocator.html | 411 - .../libpysal.cg.RADIUS_EARTH_KM.html | 164 - .../libpysal.cg.RADIUS_EARTH_MILES.html | 164 - docs/generated/libpysal.cg.Ray.html | 213 - docs/generated/libpysal.cg.Rectangle.html | 335 - docs/generated/libpysal.cg.alpha_shape.html | 201 - .../libpysal.cg.alpha_shape_auto.html | 207 - docs/generated/libpysal.cg.arcdist.html | 194 - .../generated/libpysal.cg.arcdist2linear.html | 197 - docs/generated/libpysal.cg.asShape.html | 187 - docs/generated/libpysal.cg.bbcommon.html | 188 - docs/generated/libpysal.cg.brute_knn.html | 189 - docs/generated/libpysal.cg.convex_hull.html | 184 - .../libpysal.cg.distance_matrix.html | 222 - docs/generated/libpysal.cg.fast_knn.html | 191 - .../generated/libpysal.cg.fast_threshold.html | 188 - docs/generated/libpysal.cg.geogrid.html | 211 - .../generated/libpysal.cg.geointerpolate.html | 202 - .../libpysal.cg.get_angle_between.html | 194 - .../libpysal.cg.get_bounding_box.html | 196 - ...bpysal.cg.get_point_at_angle_and_dist.html | 197 - .../libpysal.cg.get_points_dist.html | 189 - .../libpysal.cg.get_polygon_point_dist.html | 192 - ...bpysal.cg.get_polygon_point_intersect.html | 192 - ...libpysal.cg.get_ray_segment_intersect.html | 204 - ...ysal.cg.get_rectangle_point_intersect.html | 192 - ....get_rectangle_rectangle_intersection.html | 211 - .../libpysal.cg.get_segment_point_dist.html | 197 - ...bpysal.cg.get_segment_point_intersect.html | 192 - .../libpysal.cg.get_segments_intersect.html | 198 - .../libpysal.cg.get_shared_segments.html | 196 - docs/generated/libpysal.cg.harcdist.html | 203 - docs/generated/libpysal.cg.is_clockwise.html | 258 - docs/generated/libpysal.cg.is_collinear.html | 191 - .../generated/libpysal.cg.linear2arcdist.html | 199 - docs/generated/libpysal.cg.lonlat.html | 187 - .../libpysal.cg.point_touches_rectangle.html | 199 - docs/generated/libpysal.cg.toLngLat.html | 178 - docs/generated/libpysal.cg.toXYZ.html | 178 - .../generated/libpysal.cg.voronoi_frames.html | 214 - .../libpysal.examples.available.html | 164 - docs/generated/libpysal.examples.explain.html | 164 - .../generated/libpysal.examples.get_path.html | 164 - docs/generated/libpysal.io.fileio.FileIO.html | 386 - docs/generated/libpysal.io.open.html | 164 - .../libpysal.weights.DistanceBand.html | 471 - docs/generated/libpysal.weights.KNN.html | 581 - docs/generated/libpysal.weights.Kernel.html | 545 - docs/generated/libpysal.weights.ODW.html | 199 - docs/generated/libpysal.weights.Queen.html | 519 - docs/generated/libpysal.weights.Rook.html | 516 - docs/generated/libpysal.weights.Voronoi.html | 191 - docs/generated/libpysal.weights.W.html | 1171 -- docs/generated/libpysal.weights.WSP.html | 338 - docs/generated/libpysal.weights.WSP2W.html | 202 - .../libpysal.weights.attach_islands.html | 196 - .../libpysal.weights.block_weights.html | 209 - ...pysal.weights.build_lattice_shapefile.html | 181 - docs/generated/libpysal.weights.comb.html | 193 - docs/generated/libpysal.weights.da2W.html | 245 - docs/generated/libpysal.weights.da2WSP.html | 244 - .../libpysal.weights.fill_diagonal.html | 209 - docs/generated/libpysal.weights.full.html | 193 - docs/generated/libpysal.weights.full2W.html | 217 - .../libpysal.weights.fuzzy_contiguity.html | 248 - docs/generated/libpysal.weights.get_ids.html | 206 - ...ights.get_points_array_from_shapefile.html | 201 - docs/generated/libpysal.weights.hexLat2W.html | 200 - .../libpysal.weights.higher_order.html | 201 - .../libpysal.weights.higher_order_sp.html | 218 - .../libpysal.weights.lag_categorical.html | 223 - .../libpysal.weights.lag_spatial.html | 234 - docs/generated/libpysal.weights.lat2SW.html | 200 - docs/generated/libpysal.weights.lat2W.html | 201 - docs/generated/libpysal.weights.mat2L.html | 182 - ...hts.min_threshold_dist_from_shapefile.html | 202 - ...bpysal.weights.min_threshold_distance.html | 195 - .../libpysal.weights.neighbor_equality.html | 206 - docs/generated/libpysal.weights.netW.html | 201 - .../libpysal.weights.nonplanar_neighbors.html | 228 - docs/generated/libpysal.weights.order.html | 195 - .../generated/libpysal.weights.remap_ids.html | 202 - docs/generated/libpysal.weights.shimbel.html | 189 - .../libpysal.weights.spw_from_gal.html | 187 - .../libpysal.weights.testDataArray.html | 186 - docs/generated/libpysal.weights.vecW.html | 221 - docs/generated/libpysal.weights.w2da.html | 193 - docs/generated/libpysal.weights.w_clip.html | 269 - .../libpysal.weights.w_difference.html | 218 - .../libpysal.weights.w_intersection.html | 209 - .../libpysal.weights.w_local_cluster.html | 202 - docs/generated/libpysal.weights.w_subset.html | 202 - ...bpysal.weights.w_symmetric_difference.html | 216 - docs/generated/libpysal.weights.w_union.html | 205 - docs/generated/libpysal.weights.wsp2da.html | 193 - docs/genindex.html | 916 -- docs/index.html | 245 - docs/{_sources/index.rst.txt => index.rst} | 0 docs/installation.html | 206 - .../installation.rst.txt => installation.rst} | 0 docs/notebooks/Raster_awareness_API.html | 961 -- docs/notebooks/Raster_awareness_API.ipynb | 754 -- docs/notebooks/examples.html | 1392 -- docs/notebooks/examples.ipynb | 1092 -- docs/notebooks/voronoi.html | 804 -- docs/notebooks/voronoi.ipynb | 478 - docs/notebooks/weights.html | 1530 --- docs/notebooks/weights.ipynb | 1313 -- docs/objects.inv | Bin 10759 -> 0 bytes docs/references.html | 169 - .../references.rst.txt => references.rst} | 0 docs/search.html | 173 - docs/searchindex.js | 1 - docs/tutorial.html | 196 - .../tutorial.rst.txt => tutorial.rst} | 0 349 files changed, 91869 deletions(-) delete mode 100644 docs/_images/notebooks_Raster_awareness_API_17_1.png delete mode 100644 docs/_images/notebooks_Raster_awareness_API_29_1.png delete mode 100644 docs/_images/notebooks_Raster_awareness_API_33_0.png delete mode 100644 docs/_images/notebooks_Raster_awareness_API_37_2.png delete mode 100644 docs/_images/notebooks_Raster_awareness_API_39_1.png delete mode 100644 docs/_images/notebooks_Raster_awareness_API_6_1.png delete mode 100644 docs/_images/notebooks_examples_22_1.png delete mode 100644 docs/_images/notebooks_voronoi_10_1.png delete mode 100644 docs/_images/notebooks_voronoi_15_1.png delete mode 100644 docs/_images/notebooks_voronoi_16_1.png delete mode 100644 docs/_images/notebooks_voronoi_19_0.png delete mode 100644 docs/_images/notebooks_weights_12_0.png delete mode 100644 docs/_images/notebooks_weights_21_0.png delete mode 100644 docs/_images/notebooks_weights_28_1.png delete mode 100644 docs/_images/notebooks_weights_31_0.png delete mode 100644 docs/_images/notebooks_weights_38_0.png delete mode 100644 docs/_images/notebooks_weights_41_0.png delete mode 100644 docs/_images/notebooks_weights_57_0.png delete mode 100644 docs/_images/notebooks_weights_58_0.png delete mode 100644 docs/_images/notebooks_weights_7_0.png delete mode 100644 docs/_modules/index.html delete mode 100644 docs/_modules/libpysal/cg/alpha_shapes.html delete mode 100644 docs/_modules/libpysal/cg/kdtree.html delete mode 100644 docs/_modules/libpysal/cg/locators.html delete mode 100644 docs/_modules/libpysal/cg/shapes.html delete mode 100644 docs/_modules/libpysal/cg/sphere.html delete mode 100644 docs/_modules/libpysal/cg/standalone.html delete mode 100644 docs/_modules/libpysal/cg/voronoi.html delete mode 100644 docs/_modules/libpysal/examples.html delete mode 100644 docs/_modules/libpysal/io/fileio.html delete mode 100644 docs/_modules/libpysal/weights/contiguity.html delete mode 100644 docs/_modules/libpysal/weights/distance.html delete mode 100644 docs/_modules/libpysal/weights/raster.html delete mode 100644 docs/_modules/libpysal/weights/set_operations.html delete mode 100644 docs/_modules/libpysal/weights/spatial_lag.html delete mode 100644 docs/_modules/libpysal/weights/spintW.html delete mode 100644 docs/_modules/libpysal/weights/user.html delete mode 100644 docs/_modules/libpysal/weights/util.html delete mode 100644 docs/_modules/libpysal/weights/weights.html delete mode 100644 docs/_sources/generated/libpysal.cg.Chain.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.Grid.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.KDTree.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.Line.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.LineSegment.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.Point.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.PointLocator.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.Polygon.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.PolygonLocator.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.RADIUS_EARTH_KM.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.RADIUS_EARTH_MILES.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.Ray.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.Rectangle.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.alpha_shape.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.alpha_shape_auto.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.arcdist.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.arcdist2linear.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.asShape.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.bbcommon.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.brute_knn.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.convex_hull.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.distance_matrix.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.fast_knn.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.fast_threshold.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.geogrid.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.geointerpolate.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_angle_between.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_bounding_box.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_point_at_angle_and_dist.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_points_dist.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_polygon_point_dist.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_polygon_point_intersect.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_ray_segment_intersect.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_rectangle_point_intersect.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_rectangle_rectangle_intersection.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_segment_point_dist.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_segment_point_intersect.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_segments_intersect.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.get_shared_segments.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.harcdist.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.is_clockwise.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.is_collinear.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.linear2arcdist.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.lonlat.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.point_touches_rectangle.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.toLngLat.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.toXYZ.rst.txt delete mode 100644 docs/_sources/generated/libpysal.cg.voronoi_frames.rst.txt delete mode 100644 docs/_sources/generated/libpysal.examples.available.rst.txt delete mode 100644 docs/_sources/generated/libpysal.examples.explain.rst.txt delete mode 100644 docs/_sources/generated/libpysal.examples.get_path.rst.txt delete mode 100644 docs/_sources/generated/libpysal.io.fileio.FileIO.rst.txt delete mode 100644 docs/_sources/generated/libpysal.io.open.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.DistanceBand.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.KNN.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.Kernel.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.ODW.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.Queen.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.Rook.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.Voronoi.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.W.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.WSP.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.WSP2W.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.attach_islands.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.block_weights.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.build_lattice_shapefile.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.comb.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.da2W.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.da2WSP.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.fill_diagonal.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.full.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.full2W.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.fuzzy_contiguity.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.get_ids.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.get_points_array_from_shapefile.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.hexLat2W.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.higher_order.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.higher_order_sp.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.lag_categorical.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.lag_spatial.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.lat2SW.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.lat2W.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.mat2L.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.min_threshold_dist_from_shapefile.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.min_threshold_distance.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.neighbor_equality.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.netW.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.nonplanar_neighbors.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.order.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.remap_ids.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.shimbel.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.spw_from_gal.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.testDataArray.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.vecW.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.w2da.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.w_clip.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.w_difference.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.w_intersection.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.w_local_cluster.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.w_subset.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.w_symmetric_difference.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.w_union.rst.txt delete mode 100644 docs/_sources/generated/libpysal.weights.wsp2da.rst.txt delete mode 100644 docs/_sources/notebooks/Raster_awareness_API.ipynb.txt delete mode 100644 docs/_sources/notebooks/examples.ipynb.txt delete mode 100644 docs/_sources/notebooks/voronoi.ipynb.txt delete mode 100644 docs/_sources/notebooks/weights.ipynb.txt delete mode 100644 docs/_static/basic.css delete mode 100644 docs/_static/bootstrap-2.3.2/css/bootstrap-responsive.css delete mode 100644 docs/_static/bootstrap-2.3.2/css/bootstrap-responsive.min.css delete mode 100644 docs/_static/bootstrap-2.3.2/css/bootstrap.css delete mode 100644 docs/_static/bootstrap-2.3.2/css/bootstrap.min.css delete mode 100644 docs/_static/bootstrap-2.3.2/img/glyphicons-halflings-white.png delete mode 100644 docs/_static/bootstrap-2.3.2/img/glyphicons-halflings.png delete mode 100644 docs/_static/bootstrap-2.3.2/js/bootstrap.js delete mode 100644 docs/_static/bootstrap-2.3.2/js/bootstrap.min.js delete mode 100644 docs/_static/bootstrap-3.3.7/css/bootstrap-theme.css delete mode 100644 docs/_static/bootstrap-3.3.7/css/bootstrap-theme.css.map delete mode 100644 docs/_static/bootstrap-3.3.7/css/bootstrap-theme.min.css delete mode 100644 docs/_static/bootstrap-3.3.7/css/bootstrap-theme.min.css.map delete mode 100644 docs/_static/bootstrap-3.3.7/css/bootstrap.css delete mode 100644 docs/_static/bootstrap-3.3.7/css/bootstrap.css.map delete mode 100644 docs/_static/bootstrap-3.3.7/css/bootstrap.min.css delete mode 100644 docs/_static/bootstrap-3.3.7/css/bootstrap.min.css.map delete mode 100644 docs/_static/bootstrap-3.3.7/fonts/glyphicons-halflings-regular.eot delete mode 100644 docs/_static/bootstrap-3.3.7/fonts/glyphicons-halflings-regular.svg delete mode 100644 docs/_static/bootstrap-3.3.7/fonts/glyphicons-halflings-regular.ttf delete mode 100644 docs/_static/bootstrap-3.3.7/fonts/glyphicons-halflings-regular.woff delete mode 100644 docs/_static/bootstrap-3.3.7/fonts/glyphicons-halflings-regular.woff2 delete mode 100644 docs/_static/bootstrap-3.3.7/js/bootstrap.js delete mode 100644 docs/_static/bootstrap-3.3.7/js/bootstrap.min.js delete mode 100644 docs/_static/bootstrap-3.3.7/js/npm.js delete mode 100644 docs/_static/bootstrap-sphinx.css delete mode 100644 docs/_static/bootstrap-sphinx.js delete mode 100644 docs/_static/bootswatch-2.3.2/amelia/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/cerulean/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/cosmo/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/cyborg/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/flatly/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/img/glyphicons-halflings-white.png delete mode 100644 docs/_static/bootswatch-2.3.2/img/glyphicons-halflings.png delete mode 100644 docs/_static/bootswatch-2.3.2/journal/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/readable/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/simplex/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/slate/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/spacelab/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/spruce/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/superhero/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-2.3.2/united/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/cerulean/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/cosmo/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/cyborg/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/darkly/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/flatly/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/fonts/glyphicons-halflings-regular.eot delete mode 100644 docs/_static/bootswatch-3.3.7/fonts/glyphicons-halflings-regular.svg delete mode 100644 docs/_static/bootswatch-3.3.7/fonts/glyphicons-halflings-regular.ttf delete mode 100644 docs/_static/bootswatch-3.3.7/fonts/glyphicons-halflings-regular.woff delete mode 100644 docs/_static/bootswatch-3.3.7/fonts/glyphicons-halflings-regular.woff2 delete mode 100644 docs/_static/bootswatch-3.3.7/journal/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/lumen/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/paper/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/readable/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/sandstone/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/simplex/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/slate/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/solar/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/spacelab/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/superhero/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/united/bootstrap.min.css delete mode 100644 docs/_static/bootswatch-3.3.7/yeti/bootstrap.min.css delete mode 100644 docs/_static/doctools.js delete mode 100644 docs/_static/documentation_options.js delete mode 100644 docs/_static/file.png delete mode 100644 docs/_static/jquery-3.5.1.js delete mode 100644 docs/_static/jquery.js delete mode 100644 docs/_static/js/jquery-1.11.0.min.js delete mode 100644 docs/_static/js/jquery-fix.js delete mode 100644 docs/_static/language_data.js delete mode 100644 docs/_static/minus.png delete mode 100644 docs/_static/plus.png delete mode 100644 docs/_static/pygments.css delete mode 100644 docs/_static/searchtools.js delete mode 100644 docs/_static/underscore-1.3.1.js delete mode 100644 docs/_static/underscore.js delete mode 100644 docs/api.html rename docs/{_sources/api.rst.txt => api.rst} (100%) delete mode 100644 docs/generated/libpysal.cg.Chain.html delete mode 100644 docs/generated/libpysal.cg.Grid.html delete mode 100644 docs/generated/libpysal.cg.KDTree.html delete mode 100644 docs/generated/libpysal.cg.Line.html delete mode 100644 docs/generated/libpysal.cg.LineSegment.html delete mode 100644 docs/generated/libpysal.cg.Point.html delete mode 100644 docs/generated/libpysal.cg.PointLocator.html delete mode 100644 docs/generated/libpysal.cg.Polygon.html delete mode 100644 docs/generated/libpysal.cg.PolygonLocator.html delete mode 100644 docs/generated/libpysal.cg.RADIUS_EARTH_KM.html delete mode 100644 docs/generated/libpysal.cg.RADIUS_EARTH_MILES.html delete mode 100644 docs/generated/libpysal.cg.Ray.html delete mode 100644 docs/generated/libpysal.cg.Rectangle.html delete mode 100644 docs/generated/libpysal.cg.alpha_shape.html delete mode 100644 docs/generated/libpysal.cg.alpha_shape_auto.html delete mode 100644 docs/generated/libpysal.cg.arcdist.html delete mode 100644 docs/generated/libpysal.cg.arcdist2linear.html delete mode 100644 docs/generated/libpysal.cg.asShape.html delete mode 100644 docs/generated/libpysal.cg.bbcommon.html delete mode 100644 docs/generated/libpysal.cg.brute_knn.html delete mode 100644 docs/generated/libpysal.cg.convex_hull.html delete mode 100644 docs/generated/libpysal.cg.distance_matrix.html delete mode 100644 docs/generated/libpysal.cg.fast_knn.html delete mode 100644 docs/generated/libpysal.cg.fast_threshold.html delete mode 100644 docs/generated/libpysal.cg.geogrid.html delete mode 100644 docs/generated/libpysal.cg.geointerpolate.html delete mode 100644 docs/generated/libpysal.cg.get_angle_between.html delete mode 100644 docs/generated/libpysal.cg.get_bounding_box.html delete mode 100644 docs/generated/libpysal.cg.get_point_at_angle_and_dist.html delete mode 100644 docs/generated/libpysal.cg.get_points_dist.html delete mode 100644 docs/generated/libpysal.cg.get_polygon_point_dist.html delete mode 100644 docs/generated/libpysal.cg.get_polygon_point_intersect.html delete mode 100644 docs/generated/libpysal.cg.get_ray_segment_intersect.html delete mode 100644 docs/generated/libpysal.cg.get_rectangle_point_intersect.html delete mode 100644 docs/generated/libpysal.cg.get_rectangle_rectangle_intersection.html delete mode 100644 docs/generated/libpysal.cg.get_segment_point_dist.html delete mode 100644 docs/generated/libpysal.cg.get_segment_point_intersect.html delete mode 100644 docs/generated/libpysal.cg.get_segments_intersect.html delete mode 100644 docs/generated/libpysal.cg.get_shared_segments.html delete mode 100644 docs/generated/libpysal.cg.harcdist.html delete mode 100644 docs/generated/libpysal.cg.is_clockwise.html delete mode 100644 docs/generated/libpysal.cg.is_collinear.html delete mode 100644 docs/generated/libpysal.cg.linear2arcdist.html delete mode 100644 docs/generated/libpysal.cg.lonlat.html delete mode 100644 docs/generated/libpysal.cg.point_touches_rectangle.html delete mode 100644 docs/generated/libpysal.cg.toLngLat.html delete mode 100644 docs/generated/libpysal.cg.toXYZ.html delete mode 100644 docs/generated/libpysal.cg.voronoi_frames.html delete mode 100644 docs/generated/libpysal.examples.available.html delete mode 100644 docs/generated/libpysal.examples.explain.html delete mode 100644 docs/generated/libpysal.examples.get_path.html delete mode 100644 docs/generated/libpysal.io.fileio.FileIO.html delete mode 100644 docs/generated/libpysal.io.open.html delete mode 100644 docs/generated/libpysal.weights.DistanceBand.html delete mode 100644 docs/generated/libpysal.weights.KNN.html delete mode 100644 docs/generated/libpysal.weights.Kernel.html delete mode 100644 docs/generated/libpysal.weights.ODW.html delete mode 100644 docs/generated/libpysal.weights.Queen.html delete mode 100644 docs/generated/libpysal.weights.Rook.html delete mode 100644 docs/generated/libpysal.weights.Voronoi.html delete mode 100644 docs/generated/libpysal.weights.W.html delete mode 100644 docs/generated/libpysal.weights.WSP.html delete mode 100644 docs/generated/libpysal.weights.WSP2W.html delete mode 100644 docs/generated/libpysal.weights.attach_islands.html delete mode 100644 docs/generated/libpysal.weights.block_weights.html delete mode 100644 docs/generated/libpysal.weights.build_lattice_shapefile.html delete mode 100644 docs/generated/libpysal.weights.comb.html delete mode 100644 docs/generated/libpysal.weights.da2W.html delete mode 100644 docs/generated/libpysal.weights.da2WSP.html delete mode 100644 docs/generated/libpysal.weights.fill_diagonal.html delete mode 100644 docs/generated/libpysal.weights.full.html delete mode 100644 docs/generated/libpysal.weights.full2W.html delete mode 100644 docs/generated/libpysal.weights.fuzzy_contiguity.html delete mode 100644 docs/generated/libpysal.weights.get_ids.html delete mode 100644 docs/generated/libpysal.weights.get_points_array_from_shapefile.html delete mode 100644 docs/generated/libpysal.weights.hexLat2W.html delete mode 100644 docs/generated/libpysal.weights.higher_order.html delete mode 100644 docs/generated/libpysal.weights.higher_order_sp.html delete mode 100644 docs/generated/libpysal.weights.lag_categorical.html delete mode 100644 docs/generated/libpysal.weights.lag_spatial.html delete mode 100644 docs/generated/libpysal.weights.lat2SW.html delete mode 100644 docs/generated/libpysal.weights.lat2W.html delete mode 100644 docs/generated/libpysal.weights.mat2L.html delete mode 100644 docs/generated/libpysal.weights.min_threshold_dist_from_shapefile.html delete mode 100644 docs/generated/libpysal.weights.min_threshold_distance.html delete mode 100644 docs/generated/libpysal.weights.neighbor_equality.html delete mode 100644 docs/generated/libpysal.weights.netW.html delete mode 100644 docs/generated/libpysal.weights.nonplanar_neighbors.html delete mode 100644 docs/generated/libpysal.weights.order.html delete mode 100644 docs/generated/libpysal.weights.remap_ids.html delete mode 100644 docs/generated/libpysal.weights.shimbel.html delete mode 100644 docs/generated/libpysal.weights.spw_from_gal.html delete mode 100644 docs/generated/libpysal.weights.testDataArray.html delete mode 100644 docs/generated/libpysal.weights.vecW.html delete mode 100644 docs/generated/libpysal.weights.w2da.html delete mode 100644 docs/generated/libpysal.weights.w_clip.html delete mode 100644 docs/generated/libpysal.weights.w_difference.html delete mode 100644 docs/generated/libpysal.weights.w_intersection.html delete mode 100644 docs/generated/libpysal.weights.w_local_cluster.html delete mode 100644 docs/generated/libpysal.weights.w_subset.html delete mode 100644 docs/generated/libpysal.weights.w_symmetric_difference.html delete mode 100644 docs/generated/libpysal.weights.w_union.html delete mode 100644 docs/generated/libpysal.weights.wsp2da.html delete mode 100644 docs/genindex.html delete mode 100644 docs/index.html rename docs/{_sources/index.rst.txt => index.rst} (100%) delete mode 100644 docs/installation.html rename docs/{_sources/installation.rst.txt => installation.rst} (100%) delete mode 100644 docs/notebooks/Raster_awareness_API.html delete mode 100644 docs/notebooks/Raster_awareness_API.ipynb delete mode 100644 docs/notebooks/examples.html delete mode 100644 docs/notebooks/examples.ipynb delete mode 100644 docs/notebooks/voronoi.html delete mode 100644 docs/notebooks/voronoi.ipynb delete mode 100644 docs/notebooks/weights.html delete mode 100644 docs/notebooks/weights.ipynb delete mode 100644 docs/objects.inv delete mode 100644 docs/references.html rename docs/{_sources/references.rst.txt => references.rst} (100%) delete mode 100644 docs/search.html delete mode 100644 docs/searchindex.js delete mode 100644 docs/tutorial.html rename docs/{_sources/tutorial.rst.txt => tutorial.rst} (100%) diff --git a/docs/_images/notebooks_Raster_awareness_API_17_1.png b/docs/_images/notebooks_Raster_awareness_API_17_1.png deleted file mode 100644 index 2f5bf9635095ab4b761183234de97f96648be371..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 9319 zcmZ{qd0bLk+xJ0D%TgaSHFHc+%P}SAsZKcHfSL1LS{OMGsX2Q*mE=^I8aYr#nyHzI zLk>uVdQ!{;XHiL0!`U2D(HA`TeLwf-{k-oVY!;i%-h1t}uHW^$z6;b9xH%v1XrF4h)Fr|`7!eV5J?tjH=6Xa(KyX9=(nlupW>`2f zI0&K!QPWV7xfKx+60WbV9{8UF)PlqO)W^p5)>tPw7GmKV4gee%V!wcZX9cGK0J%OG z^pZn#!Qxmf{>II_v#ZO?v>o2~dnF&vimv`45nz*cw*58f=;=$osR*=nK3x{vdrLv# zV}pV}Leq6h9-=Yz^nBqhN+$G=bS|GOU?W)tv**(a&P{>Ok&TQJ@tp*{yqKA+5y?06 z@jYewvkrwL`TOw$Bl8YMwf@UnePuDXu`Ls`@xq{|7}q=N8;w8&LR$|`Lm-5wNP!3^ zjsHh8=M2NdYR9K)^!k85oaSVS9zTl=&)RHpqsXCeqsIr=hm>Fw*?4mb0)~BZ;aghd zNOc!#ROOEPia*g4(=o##&7I3p1ytiQ*7Q|{d`68bz$m`x1b0e2dedsB0Cy8jP(W7U z64ChA*O^veBN=2K&RxEx0_iS&uCCUdGGXyd6)Cl%MZW>teK`GN5_uU-xUw)0gee;^ z4a`V>az3gdXV-?Xrlfi~A6?lZuD3w7pAq6@g-KGN{b~?hm6(~k~|2c^AR~EM{-@=1M8$%~-SsL+F$xl#eZIOm=(ly=o{ z)13GqX%JX1GQU?P2Xm#E0F>PpcCm7kB|gjpE2h;MW!bNV3+mcp=!9b~$C_L7cQyQH z6}lTaIpr(^yLnpN%<);+?(|l?f!6QLg zcuI|m@HFeYZFD;WlQZm9GzJ1GTKkCy$5We!ev@6gHV9D@-}B`rix~_4N=lC#X4kuC zYuCm@9RdO-2vW7}lNukFSU z<_a6S$Fsq4^j`%WiX;oE@1$snvo#3q!TJuox6B z_H?ch+E@iyjdKTAswb$;If;|WC2vG-e^|F16pVrz3WAhneU7ZWBm(I%bfs&7&;q^+ z)unt)j+xB;m#xzjWynS=@g7k?ZZed9^_mUHo3lCm{>U}NKyC~W?%nmu88IiZ6`QOs zT%Tu3a!N`aQeu#3LSRpz2k?CU2MEOiQX|(H7y5qQTMT_a$ttO}kh~`Aa|c?Ho|=Y4Gf;+E1F1b=XSixI$;V%<@4@E}UHK7n!@zEE-D?dvH?msXX zx>_?^N_g?&LS6KA!ScoN>~?;MpJv%53icKk-bI8ajPdUYB>tGZ;d)0a)SLvo2D1-P z-0)IBAYN(Bprar)b7y0x4+p`l@?~rYW14x%!V$3hUTyB`k*eDg-hwmJ?$b#GX|Omp&*fc8zL6YNSppXErLjjhtb~!m=zz zWRNtyNO_hvKgD5@wKmeM$)$z5VxHL`zrl%pW!$`hpu=H0W~3C%hB1&v`x<#T^ZV4{ zk+>gB!)uqJ0bGwFR5y-Mr32iSQ-~A5svy6Y{T8&#DScki6uTGuQ!}OWd?l^$#ce&< z!U}qr5uUR@3VD|Z&RDeO$s0^gVQgwv>qh9JG8RX%#`T^{q6rI~HYy>%V6cGYR)aGc zg}Dm2kt_OsTQtw6?4h9=q{?XXKH1o7_ZN6`MZI*MxglN!_bKJWVN0t+J5|2^v@i*} z^9C?`l8(B+o1Z)=QLD%}N%th?-}RDbJqa;~R^8zNy@glk0WF%hB&b|`X;z!Em$QbX zN6GnEV>thoU_Y>QZDqwMD5>+9)WnH`fsg}-YgSZ!Z!6}CVar9K#of5LVY!FA#?T0soBB9Myg@O9)u_(hToePdHW*>FGgRK;g zU=chEC`<6t-k0+c z-FRF*aI(A-I6hpd{S;&4$j8!;SNY~NKMq^Y#B+=wSmGI^)H@Z~I*yYj)azdWFlP%l zMdaAekI3}reh6)tc}$K(xH+v)J&wS;U6UFu{|*Z)5J9E(gQ_)Uo%qR^!Ak9Cn4A5@ zRV)b{qpcyXg+pmxv;)lzD8YsjmNYrLsaE%q96*sJ-C}FkEC1Nc)Y2qHa0~9Jr$zk0 z1My@>(*WU+%k^vpbG*q)6pINoX|A`AFK`8LC7^cl+U}s$c(j3ewIhG;$@4VO<0lN1 z2C(U-{K{Fe7f>xx2_s?$JyF;q5@CaEg&z9T6Rgy8$?ZXW!*t_t$ukTN2Gx~ zmMbzR@%PE;6IcvEI+AJOcD}C4gxQ3R_Gp|)%PYaQd3*mF1J_-@U~?%Rx2t=S5fj^? z330viw}z*l7-;K?G`M;A-WaV4GaMmV!xp%Q`nr$*aMoo_*_%&3{1`jbJg)S}TeA0p z4kKWtOb}ATyQ;?uEnZ&5B?e|p=aXJ|y@c?nVY9C5a*5=uLbb{MrIEFj;Zh2rGR1&9 zd*~v9ylt+ljABmF{n10_v#*%s*@7bYz`GqI#>HQWD|1*&AKQIj{f52b4F;4qybd?j zxV~t+>!(chYf`7yi_7p!So`>XF#a*D*wng(PhZobI~ z65a*)&QAHjn%SnK*eSLh(U|d)XFHT|b`B1+&T{lYIKk{pdOV#D4Z;%p^O^5y*{oxx z?B%KWwH3nw!QXHH_;DXyNg1!tj8+5Y18OjZV14Pbw|=G}6VsTz|NTOVTjPWa zR>XL(GsRh@az zI#JrwayQsbCTbT_s#tB)BqCqkVnDs?_aGBXB1zlR*}W7N{LZ%jdQ1GbSVe$w2djN1 z`Sk~96vnmo$#zoyuY^}mF&mblq3`=C{4h~i43xqRbG|9n>cDdGOONqz%Dj6ZmF-sa zBz1q}_6fv^L?3@A)?iP`0Igp8eA_=+Tuv5Tc-(`hIih%RCv}vp^767dZ5Ajl>*EVO z!8yp0C)I)-5?u|>`(w7Z-Pue&v%%baH~Y{0VR1kC`DtDRx8@pP{U$FW%=AM1OU8Vu z^@~hR_3);i!Wu|M<;1T^@Mcr6t~_dN>#YgQXI3>aQBZt;FrpoM*Y?#tv6NlvAU+YS z8V5KyHm0zKaEvVV#Srv*Pu z73Q0;bO!p%O$N*b;3F%E53@JBWPSX5e^#R5WFtF@Fi{x5v=WK@fI%Q^^c|9gKsrDjt+uy84a{S7 zq3mHqz0lSXQ1vT|uk{u&4P%NTummk)1q7}d4$8(DO>jYDTP$OW%V!(pe5_W(4ML1I zj59{Tsyt^Cf|e0%TWl7n($ZT?QbiWwrZQ>V34#sS9n^2fw%g@N;*I^>keYMz;&nB_oFUnW3x~ayDZl16RFoZT$h} zdi%reeC^h|ke=>E-&@|N7fhard}>C}e}N-Em$O`qsPz8D#_T4_@YNaP!h|dV3397} zIpp4%&uJ8nyx~zQ$D{p1BoIE4jK8X+S?wXM%J<4t;szq+j6EGq%~K|deRYVc9rd=x zY?+sI*B)W`*KVcbqj~AWdAK7EJl?q?8iipLd)UIp@p}1c;f_E{A7`~_O;kL>*-c{e zo_ThR;O2Pk1(fP|!C$9FvhP+&ep;o!PBLv0310%h~UWddq5qW*{M`U50x$_h6|Q6&lg_w{dgZAuV|FBuU1n8 zQ}q8iifzB}jA4%b{q)2_&sOO2(@o=NM!incINS}u6AvW`tWoZ~Z}tV3$b45AM#M zJ3Bom=kP`YzKJD6h--5j@XNJ$)$qJmLZWeg9b&MB#jfQZygbv$jM{j@3=%GOF@Yo1 zEpex6%EB%2Gr^vsl(YXC84xnD5Ya;ZOVl@okszQB---=!oe8d2VIJwv8}0}hArO++ zO#Xndal#aeD$hkehhXnQ)L?m!=LxisXP!MEvH8b=4 z9%gcHmQ)SWzcOLgO_VR1@3Ga$Q*(2qv?q#Pc<)?^(QmGy7(1_iU?bQxy`Cpuy>VGlq5AO@MfOzE zumMGTvsBAY!tGgmyVoO;Q1Y|vuSwyzF2uLAYf=|}@Lq?zJQYduco*$2Xt2DU0b3xy zSY&MOP-U~Tcc_=&X9d9?ygiWiwy~1hS1Npx`rDl{e9h|@IXS}gd2lcyhRNQF!w6VdWNL6iFuvdxC!l~ZH5jpUNRiit_Ic+yheoPh_zZz~=Kgx2w zNO?6PBW9A@n9Hy)-;PGrT{~KPf7* zh7Wts&qOm)%IeJbYjm0V#3ZE=Q`zjAK8ONs}Epl}^Y{>eI4JF@Q%{kvbxu?ccTo_=(u zJH-?&^%#HYYM6~JrN^qV%7q}u5U#8nt|du=q%%_O2o~^`Qtzj_hGfXaS4#I-|GCP_KK?a# zbpzKv^RQe-lu5R6)D$N&U^t3e*ZlK)MA$t-r9rlf#3{dlhvZnusI9(G+Qz#=+xGni zTIqGV%)><0|DyBn)P`dXW#=OAd|uq*T*i{M4-v;k1Fl8*5S@Io&$IF7Iw5WJEkOdV zDDu<^_$lHcU*C+@IDss){$Y0WX3YOgbHD4^Bh<9EoFN-S+G%#F~Kv?;5xq>PJ*K*nomeY;}8>+Buz^Zg-moK zU1%_fXYxSqNV0tW@=J&gOG8go+A8{|wlHw~z8I7S;tl<#o2g#l)g>d^_1cuFlPY&o z*)r45F2Wqs+0A?F(f9u$QDKJw@>QOYJpQoT-|bl@-f@ycf~8SmlSL)H8a}f%=J$M} z8_YAl+^PwYeeXNz_h+EUI?2NA$xG|&R}YxT7oR3Gkjb5s%O&?z9(XsLZCV!ZiSrfQ zopeP8M0o9toLIC>Y)!Ti2I9CF0a)f&yB{KC60R>4C_AHw3@l5e=I5T z6%);a9r_bdDs);UHV!7}-k`C#7JsYvS|gUctka+#xJ@s@XKfIv7+3zy(pK-t;tX1> zg3fQVlEe^Id!3cI<+L%#;(%#{22X=@y`!5NGG9`txEa&btyiyLO9_BQSu{FRIMMr7 zAa50h2y8wL`Lz!}jd;Z1 z{80vTnPjxSiwe+#x8mF+TL;V8I{3}2G%e+02e_iK37BUUlh z`2AKeT?$eI*Fy+JLDNl1ymSY;Axs@h3U~fT62aawkQ%X*EO1xn7K1BC?WU#<9ij1h za0UDev?{PMg;>XrHW*CN!p((N#JR_{ay~@v-5Zy{e^ZQ`@&w)C?gUy_vKD%$Eb)?u zD9Af!z3M*#H*y8g>v7iZ*B=jF+b|76-P#NmJDU?Uo}m`SzZiS+P``-XFS@IZ>UJyG z+)UTI%-Gz-LBP-wnOiFM0o2t$GtjN|72n!gsT%G{LZB^R6`2&pAsXr5ia=0BzN1c( z$x5ZocSl)lL1p%-A-kM*y_9g}J^BzZoC_W=!X&UVuOqcAfreH?uczYp(CBImxW$3e zYN@ZnkXsBmtT@FAe>z@`c(AXsB61B9Qi>CooBVjczX+I+0!ttL!Ilq1p}6GAq4cGv zUZ=awak6l2c`9qcM)8sQv%g=rgQB2rN%oOcOdH~Kn*mi5r9HbZHB#8VbDz3ZJkxDc zA9YsJq9Qkc7=d5hsx#`jlgM3=8F27#B557PCZq@iq_Sn|>3?&`&gZ4f3_9CC_s)Q} zGFh4I<5Ye!_4E>!Hvj`~BC=Nut`-_}#4Co>v7Q_saQT(-w{bi>8dQ2Q)t0h84iuiG z{Nx1s8fY~Mr<~SNl^Y@Wj$c>mHEid62po!gSs~1hnlSwfc7H%=T(rKEO^x3-?fYzB z;Jew(#&tdN_WMJ29Tuaj<$7q`^`^T=;j~u{y<#q5rh2txYrWg`Pu~<*r5KsKb{gNp zvX!Rh`4~q*5qlu~WsB|Qmp$2dAostP2oI@9{}h`YFx2If2OFdeDAxm(fsGL%szwoSvFg z%?d7a#19G9#gd&l>N#2ErgC3)6Hch(?pJoTSp)Msq63+KBj{bQuv3tYp5aX7iHj~S zi+*NGnoD&N11a-h`dhf4VWuV0N-Y6kzN@w)gHV$5!xe2R-QPC z1~_G!s6cT+Qpf*X0{4qjZ+S(dbpfbbiC&%CWQmok9+z_w5)*QQjp!?gXAyDt9GCM z+KU+mPa|wN^mTxL9xAWJU$JbQo0-L$Id8!4g*@}_9gex&=f>P8>=qoQ?!jJ`(mEy+ z$HqcuK!>Yg&osRY9G*0Eb%D@D+)_Nb90oD80;kUL_V@JyofH4s2GuR!1BHHy(3WA$ z_l*v9W~MgW(%*gdkVUxVz?EsKIW0jQ(EsZ<@9V1;VjTPeSn4>7z>(ibTY9&Y=<>Mh*7_dNPm z3bHImWEdb=@S@$Wu{?`eZ^0V9D4)FW!NuCzhWjAc86@&@#cb8})ghiVZ9^GG_RZT^ zoG_Z8%#ec3g9``KHidWdRT=!SEs?-Ib<<`QZ1(Di^Rph=0&2vCX2REiDSldZqw0HpQX&UJ zIIGa*{boF8LqlpSUqkJKL|@=q+Gq-Kk@#DFryzZhK#7CDAv~E&HIS_{BYCzhwh%89 z&kjF6O_^X#1RaVvm1A zBO>!`oBz>0rIpoGT@S;$mK%%5>DxZFM~Jyz_^MmZP!eHs=~^|{^zVWjqs}Egu>KsS zP#tuH{)*+?#K2(`nYa*9ZMRDSwigToAwBYCm;mpW-rNKy+LG%o{in8NBUiMh>{6gx zrApQJv}Eb*h$dVxEauLak*(`=dvp$!Edk!WxrzS1y(L+|R;;_0(0rS}EYya=H_KcDA=jj?Q6x@`bY1S8E&aBSl0=_%9F4h3C6OS%?w0y{1kpw zWp0*#IcMFaH?s*`*q5fAxpq2;n{ah6Kb~jfLt|d<>-h2{x%z|L+5Md5FB9AU%EeHW zvEmfI$^n~gIllqhY`?dovn-lqtJ7xE)+_31>`L1QWfERjKVI^V_)@zpOTR?_t7JR9 zjy*Li*G~0#7N~UjN6W8xr;VzY>{r!T_7NT=>4?;;a}fqVx2_%|ewy5rppW)tUw36) zr?%<>Hv5gbQSe2o^vXuxfoY>aL#fL+w+e88gXLY)#EaH6=A2(hzi617NZAZLE7<*b zsK4db1T-+fZC2wU$+LJc0SmK8H`b_@l9h33wwwB>m_^iQr>zzZ28<| z@RNvgoVuv5k+*$%sLy7z*0*`?r?rgIWMQK6>#XZxrMS_D9bT}OfSBVe>ck^Nldb0& z2*@XMnv-x958>p7-E19jf+O<;GsYYmkePaVs)srSrsioi+e0{fO{#_}_Z{!Le p)}JI;+e2I0&d#R)pXR>FQ#;WufE2li^`{>I%oGlN`^U9E{|`{ij?Vx9 diff --git a/docs/_images/notebooks_Raster_awareness_API_29_1.png b/docs/_images/notebooks_Raster_awareness_API_29_1.png deleted file mode 100644 index 8d819fb25f9bdb677edeecf102a7f57a365559c2..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 35340 zcmZ^~Wl$YW)Gds=yUW2Pz`@gdAH%4+w2A7F8Cwq)Jh ze7gm|1kq7e*98Is8T-Ej5+W;y00JV?OHNWu(=+G%-KX157qlJi|CQXV_m55AW32%z z(t$|~;z)|LgehA|)Q>03WGYPDK}=MhBaC=2W6Ah|>A{eVjagJrXDkWTA8J&_)I?M` zxXy_-nx-I0NHJAIP>aX;qxbC5@%hK^SAwQl;HYm6*O8u0osfV2>`V1CLA>xtPSgFL zudgje*r1=1kyteH8y{@pLV@5y3O$fK1+M46n{kNp!G=ZP(kRSNF;+Ej$?V5`K{~x! z(GXC~YEB`AUTrUA^X@)37`8USvjFgqv#pGN?=+R9H5Xd7BzZ|GVfWd#}h z{XMqp+`m2NL2tb*R<;S~T=SZREd~<)M%TU>>Pa z0TlZCAjlwg?Inex3>jI5CvUo8hY( z$j@BlC>w5cqCn)TA6oF^X+K;j#w;{^iV4~1lVdNo4JNvKJ7_e?1K-}LXh`ixgs)TI zXuA`~Zh)Zor{=mezKD{Pu6s~xqMwpxb8m-9uWS8^ai;s2hOVhwQ`jLP9w5uv~@vu#fu%s z^P})LYphS?p!i8)I0L2k4Y+!C>lMvb^RMZ@83jWn!lmV{t`>G(!LU8NtIa0{HBdJ0cBeJb=y$vjFH;Icqh;Y}* z{IC{Z%qt0CUd9*a>(kqn3Psyuz^!A(p_S-?uaWy<#R*Yg^DuN3CHXs0MkF!17H|C= zl@$6uwN&dB_~J+K%)X(%S5WYs(3!yrrVvj_w5zA#`XuPQ#>ucpFXDZN1d=a4hTt~BhHiNg@T*1JwUr7RT6_M~6B959h+yd3 zv{Kxp`$iL$Addpt{$=L_-_nyQA@I|~aF1e_Q7Rr!KG>hmtd6WcV~XCUODL(4ciL-- zNOq9fKa}nET5w*jit~&H4NjaLw0#pSVKo=eXTfqki;EQ+-^9y@f`fa`#F-T4gT?M( zVCQh-Z>CE0fCUekj`IaX$lb) z%f;(SM}W`Aj3Ae_WjiS>Hfc7OQAz6r%i&ONA)>V=g5G$nX9X6&%#40Itk%?u;H=>9u|j|_W# zugjzm44fuOV^G_J0L~^vN94e4LHg3zLtg3apa*(DqeB=$d}LK_5xK?87i_~3ug*v%VDb|wZ8>^(qdo;z`d3A02GQ(<2ccJ- zew93k?I#W*Cvgi5t;Lr-KnC16VLoR>2woTod;!Eqj#<8cYEV7AGhlWw0`heZ2;%vp zVmb&Y^$Y=ex+9#Yw?c(${yH?Xo~!%U;E5^DF;vQ;vQG{pk!y!IFds&BDXy{>x(;IN zFOLuY)tCJ^7YxV(2hF8A^(FZCTb@0OoFho`o7w2A%fL{Nap4I9Tth@A_65diEVTb| zt;DCjBDsKmT}&^*Cm(|g)mg||$V;5WZOlZEh%t6YF%T>C)92A>>=BzdOC5ya8F?S_ z6C11o0_Z&=LeSB;xHFbQx_&-uJj)N>|+F6Ligf{?3bVZwX(>;g3XXfV*l2B_UfsT zueC|Nc#himJ&Iz4*ySrNNP$GRMD91=-fLj~Jxcm4f0TUuK;Tkr++ zi!`Y1Z9hCH0O5_DV~UpsFCv&Tt#H6};F#B&@y}9@eIo<-@4_R^;{;tn?*ytimI33< zqdMk0cTiXV05@IzpAa9>mHrTxW8_$gvry>IM-gM2fSan58NdyB;5LjQ1wiGQ@N~tD zGE|~TR8eH+JUJOTvQCAOfKlicONPYi=P_phd}yfGapeo&PAF{Mc7gH8^=@W5{A{0} znpqc>+5u)f#*BKE?oG?_duYs0gr91xPD3VTmK`Jr6Y{?WATrCQ9cPu7N0aqssWVqJ zTsyI|O{ecv9fa0h(bi7ER;0+8lLDg_7~TjBh0=z-ybuQz;tMZ=#W|g5F#wWJtc7}e zV6Ix)Bkxc#oHEJ%`;pDSdjp$B7w2*reAhe)1stnuF?Qzz9Z>|C>6nb>K z3_A9TcA838E+gN{+|3Ekv!Qnyl}Ob^ibewiLlIHtMTB!p^$5U}{3hX@{jA(yJgc}a zI_RS*+F&+wEYD-AE~1}E@!!gS4%tOlM2DfFfGbhp5Z#Ij2$GNHAr)fgTWtGcasE5X zq}U`=uQ4V~j?+uZv@1VIiGI9USFD_t~k(#h?9CW0&-m znB{H$1TaEjXhAXSFLytG?R}zqY@xra%3Dep>t)riKti(tY#zqa81NZ~cCsWOew=w= zV#}(?d+rBHlQL?hF2*I24=<1hhF|7Mo|?;#pUjk19B4m!W2xnSUefp3~B-3j(s} zFPQMAq?~r-^PyILZwp_nT)CePGPhlQ>KIZBhuY+`>X<^7vEdxWVHmcjwqVn*;9ahM zosO{@pfs(Y#^d}N$`qqEt{e$S%KlftjeX8er}cZ2c6`R(YD{5+cC2|O9tFJo;b4xm zA`4zwF$q70%8fGa)k8~>`TL8kpTpW_z;v~=Se7b`OR)aev4%g7e-kN1_UzU-t2|U* zV>Q}VTWma1jt3E{j{H#|fwMT)aiyR~eStK#FiR#n4(6WE^J1^O9-3>t6g`}(&6-aRO)j6|H zFAG#h=Fo}Z6L)g3sH*ra#gvsPs(DFUgzkiH-#w4Nk@O7xGA+$3f(HjAtOVFXBUHv? zN2tK0;UO7YRc1ofq9Hq&bQ~c)=JaB&9ukg?#L0k`6=h4tpt{K2R6+?JkArs>r*dBF z)S{naMi_A^PMIV0WacO$-`YIGCOK297xrW~AF)P>{&&!_A2dQtEtMbW&}k^FhslR^ zEWg4t?X;8Qly-xW9{eDW#u@(BCwr}-X<~*;^08kr=dsIxES2y?pmKB~tl+|>2xp0? z#5cW?vJb(OeT6oL*0c)249Kp%!0cyXEoul47r2kOYndGPi)ek0q@*e z5w)W!c!3eUQ-n|AGHZAN^Si!c|874H8;5Y!0y{=D$@uH}_-Qgr(^u$%Dx6X15W1WkLDyzGEWf zff17ZpQzm^Pe?oKQU^?E#??OJY30lvi-Q^B4Zyej8j4P#v)HfHJoYnXI~9_V9cH~h zKmRAnY>)6&lq7qs%f(9^l{{$r_^fam<&8<0WD4|n9=(L>{b`(C2m7H45-F=B-8p*q zrzs7T#4Obs8sZRivg+p|`OQlgoj*<%0Ot=eZU8P>#a`Js3T=`P0>U~6m2m9|e zO8F%ll0%@M67M}4v=a=t35n>Q>2v?zB^>#o3*M96^CKm|4gqk(kLjf^N!ABmZ%M+1 z$z)b#OWy1&v=XgbK1VpmwaG_k_{mArMij;3D3_G;zbVQ*yD&QW3^wQ&ReU@IS&{6Z zL|b%p%Ys-V$Gmocn9p}9ueeH9p{s)bZ;ci8vco3UCIN8D=_~MMY);-gxsUS7>BrC4 z8*EahoPvRQ#ZYg!6}y{EF?*b$sai$@?B*(G%-*%TLl+$S35hZ6M{GbqKjcHJD>a_= z9OypjGXNyH6^{HKm%Gy7RW|>G)I|rZ{y_zZ96ozsKS%{jnNgbMFSZGa|l)0{?*1~B2U_V`; z5uD*Zj}PjV0&LeO_mv=~S1TCGX+OWmQG+8V((`wv@e5vOS+h0M#;eJ|?u+gO>w2Fx zOX;8~T=NQ$ZCm(5=l-CW*~MRp!&Dh}DbU`7#DsIE_DR4o1T-`nTR#Cj?;zmIIPA`{ z)PYCPC*&JG=pEt;Z-)}|nfWRqATDC#3!o3Fpi*eZ0WuycA8M<(GGBj3=jewJ>xt#A zCwam3GWD<4uev9Ge{#HM%w(Cg;a9{dZRiVx!!~2*{RaE25{Mq=+tXKA4~Lys%b;^i zOen#hAh{a&vFrfB%Ha8qb#=4zTnE+HS$@5VC+oFZag;^W>~y^^8c*_aec`9^iATUq zRFNsH%p`0el;R9QgN9fs?%Q4`BFqGAO5up<_ zH_Rkl@KQaWe_zT9@^o5J`%eFsNOUV7l!;F)2Q>?1#y&XKBI;DPPdv zIH74Urp=%`1nF>AK?@@N6x)UlOFOk9;bp6zah%>YuQ0hARm`LdG|MM|#2g}6)GILz z9ujX0Z(VmG=tq%IN)n?Y3sH>HLe(I3S+i4+Fx(4t!eNq92o{D$GOHC6^qRwt3lm!G z0hoC_^=7wZaU_(fi2wZY#}wn2EA}zXio&e9S>{(+Q$2J~90eM=9P0y=>qqhDZ3$61 zKV~5Ke?;sF%=%+kPsfuylaunPwv(6*ZPU^dtYK$z0J;@j&8;-A4wBmwQRRP87!Z3qjF7j| zMn;=eDU58bgL{j6scO3pxz02cwFMi~;-PZK*2{*e6DG)~@_Y-jVGSKkDVp>(@ z%eOP)bPMhjSkQk=d0N@c_M&`D>w=97mIqtcdJ767-7Pr|-!({MJ?|w$YVJp>UDYk7 zm?KZn-Tl!5!>hJ|4~8iw=~xUC36p9PTf`_jG%k?>RR`h_8hQla#Sq>Xp&xY#XxY4q z!tFAu?CuUfD=OtT2`x>d)+iCZhaS>Ixx#}xrxu7 z8wjRTW?i?i+E^zDUeqKfD8~23ZeueqqM`GMM|-UjI$AwSu^y4*Eg}Vc{Cyc=+3wp% zS_%{@VnM8sbM^usesOS_p`g+eV=(T^$lr+Slvi5eLD@~={g|6CAXhREdkmES2XAiN zBgU1wLZgho`fH5X8DfvX%-1ZE+Ub0&RH%=qmP18{DlXUi5KGFKwz)a`@5g~p+u`FZ zT_~cCRL_RHa9o^b<9VaxWA#3x6SL!DQjrW(Q9uHMRKbI6)%tQrkT2!Dc&rx^`9#Ae zS?lTmclJfyl5oatJV_e=ZjC$f8#SFv|g~PQaAD%tFNu(S$-%+uADBKCd z4bD%$-7GQZg{0{x+jExpzeGq}>Y5F%`S>n!DcET&m#~Bs=JY|CLm|?%51IZUS+7}m z{xHt7B=3H?`FL$sXXgFAt%@wuSv*?ZCN^0^Lt`@8_;lnxbFa`HUo5GNzci1Y6+x}* zal?!MP(y6(kw;V`{fc7>$=Ss*zu?#1laDc9?|YeSNk{qJe&m=Ur=9uzISpNE7!({!6-qv~X>O z9F$P>qBVw81Zaqv7uZ2RB`%^kNNh!8bwS|6ce!|lJ-br5$QIc#mN3VhoTz8pcGP|8 zo?XI0|D3I?s$L`B0=3y#Jl_zWglkETyP*ar6l}BxZBMvud%vA!N$^^p7CXy9CUpKB zm6Vdq7I(;dp}&x4xj11w_3@57wSzB(?XcJ-RNvZn!{k)0)~Jt$NTmx;$pn~9$iQ82 zFJ-lE(rR9fA-$lB{qoLnPgJVsHWlNfn8Yx`i>p2;_^;uIcz))?<}5YW#Vz^0!FZDy zRqb;y8xcHsikV{g(+gR82LN~}O)RGtRsx0_KV)7xKC zI#lZ`Slp(RU9Q+R8RMyUoHj&$Ud5 zHu&9XNION@^q99N)7bV~;_rrGwc;-BM^!hP3_c02zE*Ztfsw^>U|(b1uY;I1O+R51W5Af+ zz;v=QL7YRHo#kJPSuEi!x7Q-SN9@|0$92uB4DT9NZ%_zk^1zB;Dd}MI-Gbbe853+* z9J%X6U+_RtSzH@b0QvF=?=W4U!$Z6g;)ZtpHn@n9$N^}C>GmCRj~M$WdEkWU)jfG2 zxfs~E#jJ2yFyO>W8WaV;z$57*a9DoZ?>a(v`8+#8zRjAxO)il<6k3uLqUqsx>Qs`& zs$rW>c-}+s$zJVjIY=i}_M8m|yL++#xXFm{{qrfpbwYs5aSXUo>IZ@R0FQrcf|jGl zu=^R=sJ#m-^PxTnXM#T=uDV1iKNUdRwUy|Vr@;YlDxVFZoOrVLgYnfn^VDXXQP%XO zM*28JExtEb^)YE>@1Y$(tRA7IRiLbbKrK<4Rkev8J>2FikMCYbGX~r}ykQx2(Rt`9 zeV9)PmBQ#x2?4@*(dHf92u~K6UVN(XeU;}%+PySzy?kadcu8A$U zwo(M<4I?n3o4_-;vR6-Xrs@=g3G9!D5K(ImsNa0=H-hc;XWbwBbS&k*@}dF^41802 zRBcWsqFwl2@CVS7H;ax#kfln%wAr=*yIlfVm50{8W168)b38U(T1XqWg6=4v6zJ~b zFMi>$|FqZJ$-&x;o9BV`F!sz!thD{1+P_wT`tl#W==tFe^7FZRt7*Twv%Xq`1@)j5 zRHjQEyp<%Az@fi`vZOAdm9X$#kX>RG$fx z2g8k^5Yh+7xMsIp+DHz`29B9EYjmIZj{UNz=yFmWTz<1IQ9D;sDvfpW5CzduTC=99 zB+D_RI;hNGU!a!Zcbn?FD_#}Br5r>8%>_ltpK5*6h5dJAFK!^e`r}wO!Smd0p?y)5 z&PsoRHhodhHe7d&akfJHf#u8FEUUAk2BCXPupiCi4~7*o-P9vPMxuqA8+!-tQ?q&l z3w>xOAY!~90q`y*seCiD=Z=%Epkl+0odBJ@ptf|R9i00tz`c3qh!^_Qg*&5zu;SEz z8ew#|ncVC`%nw-Ae0dnj;XMr9wc3e_(7)SymfATjfhO&e|E=pt!P&?VqpHW!yM3!D z^c;hDen(81J*WT$zrU`qHQ>(wUaws5lSQ4%IRsPQl7Veg>!Xpx%ka0=OrgSZ1!pVV z@uo^E!5dY`hlsoFm!7#5;_BL|3e1PMG^JfPREoG^8}{K9HX(N2$5H?Pa+)VP9@Sz- z<-q*Z;9PXEGn3B>%%Qqm#r^`-bh|dVw%qg-(OykK}|5hKa+%rN3} zFsZQOGh@QC9cT?}U`?^?&{-=XYy=nyZB%SQN_1*)N7bb8Ly%2|$@-$0)V}Ru+OWP3 zjqT=L7p`Sem`*Mw+p?CviHcMvPZfXz6ryp8_e8!T!+a*&QQ*yb)FH76HZ*T0Z@M(- zwiIUF=TZ4Kh*MaYZL$6ymNP;kFi7@2ol?WH1iub1VxwgQcz9-YmdWK!cUq3n^EYBb zJ{3$*Q6uJv#8x{{RerBZrHQg@IzjRKSm|(DojxygLaXi_I%0-nnQm#|hz+xeqWsak zW^7&%Yrrt*BMCf`vSktUgZ3O}ekK1JEIjd@bt+?4W0jS8!3c(vPR}iap6&2?+=Bif zaim9RGf8lXojyvvDkE%tCQq-}#RBmwM|mL8@t5HU(BjY#F-6s6{d$NGi)a({G@k9H zdA`lZEvavw`O)-9VpuJ;Ek*8Ew>xk9d5EcJm-?32u#MLr;uVVW6py3~X4mitu(^4E zohf)*;rvSI3=>w?>UI^A9ZS_b40fP@RsR;q{FN|Tel^HxwjNE_mv58zkf+pSuybN@ zgA^O)GpQW~IC&@8SYrO-rP36Ykh{^2{QsmRJoQ^^qwE#wR~^?pfLi;NgDR9 z%`E3EQ7dHi#|68rP;*~{9)6-xI+E=s2Iu|Clp4MPR9C9Sr+z5Z#{9K#kyu+oEwL1lp`3lxe_v@ z!VEb`d!Hl$hop8;9&k@|h~5h`+Y^5{Ok>?*i7Dbny16p2sI_?=W6aZ*3)zM=sX(zu z#8pMgegN-89yY`E?VD{_w~XP?2Vs-Ecl!;a@XGshh4TGaq>PZY(?ksR~dc~P#t z`{jhWEu;k#Gd~82K=4O~UtKhZGG>@;`sNIi`3-u&7MuyuEFW76ymiLIkHscMEJ;`^ z&K&Nk*ld>Zbnc&5*cz3o#d3S%WLx#g)MMk=cNYT4fFW(3L}XO=%Sw}(&0w9M?me+O zG@Xq>uAM9Aq;2f7W-|*Ra`Q;@^hC;<7j7VpgA@GU>Scu48D}2{Rr;fUu!e9A*Pd9& z>^@!-!vpAFxYO%o8LFk(S^T}pDuyzluT}5tz=;XbRch~F2*{ixfcHeNV5_g^?{X^_ zG(f(;=&$|aGz$Qc3kus5aqRl+uc2Mxg)~RQW$Mt83tOB&w%X-3>=%5tdYUf{=FbBg@488^NX3TG;}hhA;j-hwhiI z(jT&q0y7CfCwc_hame5UGTz=7PHfFz<^mKcse$G371~vjZSK2^ShArbsVt1D?`MBM zU{H>=u7?^}4@UV0Znu!tTqG#90YE}!XX8%7h*vtE&A@jOr__JH$v>$+`8`;CD!*9blNb8I8(msphq{hq@Y zpSaUPe)N)M_R}m{gQJqmff7)#2SsC_1+vew)tMiDLNZ-{bUm)up49d2Vn)0{C|-;} zUk?Fc4#9=FVpXVrp!DaH*YSe4@&cR8Jg@aE9x+<}%A(dfIc@4n?yR70`BqyWG+H0` zq2W&)Nl7+3mHtz9YZUzsIAIfR?p2=skhJAyIn+$wYpg2mf4cf_s@janY`a~}M`k)w zort-&lalu?860$MDh9tUE;h` zjz|$K&zBhxZuqdIeyW8--}jdN0t-K8KNn_$woNi5at6h}2kfTzVEHKD#mv_=;o!r* z#w=aWaNqvWsBmh=J8^rx{=L!B=z~A%XgW=JYxtwOwm?8hoa|%l-xyWSv3M|vt%zga z5bj$9CrPd-Zc}579d|C{Ud|2g2nWg<6fB4_ji_Ls(*q{Y+;sksvbF+Qw);z+T& zTRIg|oh(CUJZ(oGgr(j$lyE3poP|i&SznSFLq`2tpI=4$@@veBQAYd9+>{$HrB2U= zQmelk_y(tFiumsc@QR)<4$NN0ah=kj`&|=cQVW!4RPod&XP|_3T?AVSk0+Gv65oHj zIe{@2khnj5A2P2(wU*=N4r`<2@^;Chm-)-NSR|nIxGtxSbNj|D!>;t;G6pouVUOEf z)_dfO;dKWX?hbJ%kwuskvr7BsZ9sPWs0EiikwzmV$Qc#yPx zusJU3uz=M+0btqCwdKKTFe@3J1a-iS6QbPoNx~73O2Twe2hQ6%E;T3DmrNsav)wnx zXKO4f-kPgqFN^n|@{fO~f@M$7f*97LFw>ouWM*Pq<$A3Dh`U>lA_2VddTx=LSZy~* zjN+Djf951Hr39V#TE5pEF?s|&8a*#B#4?2|4p5<@KU-|Y=XidBAYXZ^5F+)sXx~KX zjClL9V|lc+;IfPGJa0v#pF~ozmm^%4TQLAM88|Obd5^!tIYO~(Ga&J^iacJ7tOmGl z*IYjcFodYXpWIq6h1xfc;B$~T3>}E1+iMliSfXa#J@m3qVfCMQV&gl@cZqGfrG@uB zkYm}M4a~4~wxEvizLNsK*M+ zf`=&jfgFBB1=KTjTr3*C2AHz+#2JQq<28f!j<^ecuLCe$`P)P5rY}6mH>!>{jFP2$ z2v_y1jw-IHsJ|x~uQg?Q#kU4i+x#fKIsA6)+WP9zHBM*JH-^CSmZnycd6|r z6v#5-cC8&1yaG4c8xvmH@qV?)6<=g<_mHjq>ww8ysvfhV4LK{TkFX$rWcr3CSA(RW z;74Sl)6UJf!F_rwLSNFCC=^5ankQ$3Ew_hsIAx_{D9!}@egCD1RVaAX3frJJa@C$H zmu#c`ukfTasmt|`*Ylrf1TmI!&wW8fOjWx6e-p9m{w8W{e{FvSb4k;WUDfULpH?4e z2pYq4Adu7n;SON|d=8Yqm?W9TQlE&)<0ZT>Y)RNFX*+FsA1$B`)*s^Owj866!MVgCngqyqWnApY)@-$+Zy|gH*5w`AyjKALg+jsDP zg;M{{pUQ9X>*mnO6S**D3@ z=;}&;wZpgUdu3@>b9;H-Bzu@x+P%jF`UN$XV$B9uwL_{HsBeyU*>IpG*D)o@Xpv4 z74rm2q5r29%Xb9p*Q9m{2Zk(Hee6&vvtJ^HN?6NNzw}&}Is8Vx{F5Oa{me+R;c5JV z=WI!J2wINS$kffza(~uBhh!ZKwGo?(n&dU}ae3XhA=KdP7Ty#mU{*oUgV&PnszDf7G z`0dfVWlvc9dWtw{l~(VQZ|=N_=s#KhReV zR1@L55aPET#qm`2%O)S9m+*;3AOGL$jX=dInA7n~?Ds8j ztkQ>yC-Ylu@zHzFWF68d2%{{FKf&~P@@nnlcEh9AsO6MSUj;bRRPu08SVgLz8YMPR zZxc9r=7X83L2wX3cn3DF!vyi|PLE3L+AQ&FRppE1Ma?o)9eyI6W0?P#5MH82KU1J3 zv(FP(Ufo#>AA-WC_;3vC!() zSd93cwGS*qOPHeT6Mc`wO+V#5y3D>(1O z4Y6wt3z(9kOn};Idos;yXt;E$!yTTzHGHL>71V}g9-(kLqj7uu9wR+`8_j02H|dZZ zn)TyT3b*={hHl`o=~9cawRL$z+|jWAZ`FXD;nW*)!3Bj=Ek5KnGk_KTv_C82EvB-U z$df=+GA|x^{NOr0aJK4{t8bGPDgf^(Qx}eHI-CbI*_rYi;vyW^-F`NG>nKLrqTr#p zMHtn0erZc@cC9;BU-*c@1I7#m$f(c8(i9ZaW`!pc+f~! zeu@q$0z&~{9ib67`T{rt-B-r{`b4@)hb$p4MPd>rk9}W|*>cD1;;28u!;=+dQ=+CcTeY_TP#E zm?g_m|lvK!v8+=i9B+k8Q!&*(4om6 z;{TWY>z@oha)8_N#n@N4&hWb|C?m7@umpNqzee`x5^`2Nri4LK{4-AWO5A4yB!Zr{ zU>q7$H)0kCC%k&7x>ppJM+P-bZM$;MEx(>m6?{+je!+HeR{i=hZZXM*)t1)TVm;sCaP3ZbN&EP__h@A@ zrwW{IcZxBFkHAzczUai|B7$vr8i*!*QouHa7U^ylh_@7yZJB@ESUdk6=7Bf0H$Ag+ zAGY7v_JutLfWB>jmn?cDUVV^WG zD1-f3#vVBXD@ZMo{xzw^F2RCsvxNjL1bsMx4fYOd6cqlQ8uX)cN z_!;28;TV^?wkLS4b93YS zGOfYt+Q62T+|BA=5(M$HFd6)t%wh~Jm0t&VzUn&tF?5r;sZMoOpCo71@VYZdS1itp z^*EIOV}(7NJb+>996P{8Z1do0hntqm8MxK{7sf>@DkS#) z3Qj~yBj$Watpt^wW}&YT^T^~o$eShLiiJuuSdM|U1gRNIQPDMrm9KEEN?595ZLP*k zyjtFGx;+hm38D{wxjy4>J8#sz90?A@>4t+TunZ>?U=p}O>jn7oCN#0#rlz{Cat0fw zZYM%nTf?11^uD=i5)4jGN>C*iP-O`2yE7o&!j5J$9TN8S#THhA1+FGLnEz4bnoE-a zXUwCXcu7L%%s{p`cC87{t5&6!(+n5|1>J5h3eLn4j4mPSxZkl#+8^B;5LCwxXb&UP z{_Q4zSiOW>$zmLi8$N^9&h5OxWHt3g$j^sBdUfL`4sP+Ws|;}ZOR=-hij!@r((DZe zQNvq^2U2XLD=7A9@mWeU zj~?k%n_jCL>{0Vb8lwRh4|E~j z9>R!HRZ*DBf1RNrtIX!FZ}V3HD97i=n6qq7;YDs5PWP5%ldg!f3{IGy=@F8=GOt3F zFHC@&?0z4~10TnGJ~IippJMq?CdV`f97kM2>Lo&qxjgxzbvrVGIP8RIPUWB@K4~>t zSuS}lXX+mz7JZmv0VoS+B6!gITz3JSK6C!#gzms3E{UB3r1DOk<`$NahR!|ONqcne zwil&3x*V#XN%CxvF<QdAKcb64!U2Z-Pgx%*cYq7 zn-O^0!W8yLDc^j5jGNiNtBvOH)ZJyU@~>+M^fB~8qp69+q;IosD353+kinD~jq@)& za=rJKc_EAZ3aGzzi6;JsnT`FQSSc)nH9CwZAycLU-b({t0%wSzTq}%_RRf@O{QDeW zXjpI+j>m3F8$0PhZrueTTYSMe^2?3hT42=>LMv@96^`-8>dH7j!TmRF%eT;73TIMMu>OZR3jaY*1J;mq7j-aPRK zgwR!n6~SC2c$b{zkm6Lj7X^w{2(C+UlKFFb5{w-l4&q<`yM2H2Eb2L1Z!KB3xyfv{ z!^GV{{qJ&b4UuN}reH(^so3;41uuEXs_zb~WJ%23-FPX~#MZ_kS(7&{C{-6TjBiTGrli=6YqF5tb|$kWBTrcnhH7w|g4nOPN0B0M>qss0)X(Y<3-4RC%k438BoDbI zZ?i_x3Qs%TSpLeW9F8<2aO$?I3Rmh$Q+f(^coew}RZ^xJv4qb1D8e}1Weq9P@tkM) zL__#C_6-vO+gHkI%*iBK5J}Lcvo}_|OUUPjF&|@N6n%;?;zRqp5pJl&@=3Y>{69cf zS8al943mON$L+FxyQAWtF=HfFzdtrxllLW*a3?k?voyPml+pB`-rk<~=PzNmU!b=K zdw6mD`)v1=>EMmJxw&lE-+I-&Uq91 zof7nW`$&`Bqj3B;SaHQ_9u*ebd8?CE(`!O_3q1qVpq|IaE6jy+DG-O0xlb6rKI{4= zmG{-D6sse21VFB0SOSmd*>>VLjUk1=!b!D+RQlV|x%+nnqD7GFP!Z5(1>+l@Yy%ys zby&EodeH7e;KI$kWr$v=@@Nf)hx;!*y8L?lhegBD#J-Qaw)9Gui60eF49(^pBus)9 z+yA-)*=k9pRuEriB9?b#edtRul0mJM{2L(p1FuUrudjDh@;#rt?#yZS%b_lD##n60 zMzSXv3JPtXpW0apvTOz}V7=LfhevJ?X>to(BT5&puMHdWF*yRkI&NVWKJc5Hq{`Ma{1<{Qk}iU;^$2ht0UTn@PGRO{%G;Y7g2BH{h92ec<*bbom+#fSW$F;1rOf1*^;M0i4Ru_DCnm$<}$ZGxJ zo7XQyn1^gw&5lP=n$obt&oUr|eexVGKGEs9;S9dbqe)X?fAfk#UM-=7S|{G3tL9cp zsy5}aktD4JJYoSRSeCvd&*myh{g5Q+7`{+zyuwC?e`)7_l`HTAfvR1{ENi&s@YOU_aFyJDXAAw z5rJ)k+)44v6y*scE<=pfDmpwOadA{oiS76-$?Z`NRg<7`+zf9`Uv_=cE1jWF+nQ@? zqEREhy8S9_gv9j+wW$-X+g2d?#-lKy7B;GOsG#~E{qu*v3YC{Pm( zOzC^^D{T12kCz6q#lJ)e0cDf=FKTT>j_8u*L?$$qJ^BUm!u+Vh%q>06?#)q%^L-^z z#?$j=Dq(L8uX^`dcAqVc(Q(O`;u1C79-Gs7K{NCNwGQp6l6jB9j19!fj6E#WkkLow zo+q%<0eFT1Cc&uJ?=XPG)5*;yu=RAIlWGY2o5{4pnAoy^ zOo7OBkqSF_d{D6CpKpAPulhBePQ$>)#+W=E>DFvrGu) zpPZy2!W&FIlrQ9yGH7$^{1%D=MOg&iGr6+Y?f1SAvmlP&`T@;Z_wxd5eKPOxbIA@k z52qS$CUkb6rCwb6t{O}rM&wqqmprx=xON{)*)r(*D(1Zt0mRGkp}5=ChHC{)VPH|Q zz+;XUAPFeVhs~eT$$9uMr&^sRjQr?DC*)$o#$dXDWUKXLiB5+m2tGf^`6!q8Iy}E*P?aG!9qbDW2P8a~ zh8H!qt%}r$n>v5=JPOV$vC;jhS21w*{q!AZ(+jdk&vqJp-JgD%SwgC1kggL+3|YpI zvcI8VbAJA(Q2nn@uSUF#LqCNh7{2>^$>LhjZFrtDPOLk`+mJ)Hl1G3>>+f=0^_(-=910Sb0PYiVoDj_ho4n3-SvBf>8XRJ7I&Y-|aFV~VCiPQ= z&)0P?+0PD_YNsV?p`Wr$1kTi#ZZLG4-?*6 zFjb*lgcm)C{U5sCDy*$GY|}2K(Bj42wYa+!*J35OyF0;(OL0nZ3r=u~OK^7!?(SL~ z3jBG$e~x2jV`h)ttSqwDb6?ka-ZfeD!567%8r%G?_iUW3NM``n-e9n^(fyP>CTbg~ z%2o!@y3gbT9oEp_0?|b3ZOz(EonHp&U8KF;s)SING&aKk#mcUYkD4J1qHsUBs`%EK zf}ZI}b^u)g1h=rMH@X*T*USAzXM7$R^Bp5up=MpwM0vVw@tHr5P?*AU=!P zYrhS4k*`d_6+=7CpaX(mn5|l5gQmI5%i~gW#5M}q4e?CfxW)4sP%O}<8NmiYMfGEw zqCYo&UJ?~eJ7<^vpk>&kv!rf&LwPgZX3^$9#|dGj+W4Rkn1clu{oQ)7A-=xUdZ=BX zU@c~0goew&+fNyXf-*$x8AsA#eD?&u@E-P8GT(&FB%1rMy>q3*WYf~*ZF2~q0 z&1Ld(<87T+*&}&by;J%v3O-5c@1U0J2sK9>BiO2A`x8`6`S{gUbRPKgz)ouycI_`SMpylchz?Y%eZEaTOh zCtBYjbO(K&KStz}O?EI%WTIBu*Ldbrh>)`n;U_Z-9`s0$4VR5~`hCs*klTzCN;{T| zw;4TpgS((DWyY5P%*%1AzplCH6_G=eCCBAKKjEZyADe%TF~I1coH8GapdDdnVSR7F zhT`pP`K%DL#QqiwPnTEhFPYu80SzrPL!v3~c%}pS*j{ac_1t_Ihg4%FY=3bh^3QJu z8H%J_Nk#KA?;9CktrgzOxKwzE%luRL=JavB$f)19VfpAQv@3k)-H>|0M!F4-Yt2ci z;HO95^mQlSvsN*UP0XK&xVcbLBj_*k`OrA=o%PA5UEQ!g(|OIdj`sd6eYbFfKEeyI z|Bqu1QpEGLU(sc+pV#Z|$exH{twkzVLqIhwm+=2E=tUUjWTn)+2kid{5t|%k?I24@ z)n|S__Has~yqT47(oFmS`ypVIaCaL8eD%p#kzo38zlj+qsI0s8MW$Ba`%gb^(aTRd znCg{Ye%R5cyd0H{ncOcgM9cJ~rgD{`dD@SLTN&X_k05ghD8B^x!9_R0i;xU$e$ZUA zS^+ov80{U&{meky%G@vn*JQKz^=c)MvbLnm@Vz0K@CL#JN#6rH{LHtAoQ|ON<*y-9 zIzvy+>z-m##<1y&?_lbhZ){=~2LZh=q$y~hh{${f{`E!e;FARN5|%J|?}p@&m%siy zON%91Q6`Q?&F*?g+MdPYQcxoO<}%vi8YzjBb{ppflC!?6GX*n4G!^}`KDrM;MRpsTo;a%5;xNjBa-#%LImk%JHS65qtzew{Pe1gnRIgVVoJ$>oA zh5IoG5Qv^A_>Uc$eY-^cdZ-?89Ff;P4iWKgA0rIL z6>j&6njF1+y)Sa^fvZjKjc_X*9C^4( zjL|(lI_J$k1k^=qQl;`6ZaBwclyThMFwWRgw3F4xD83^zr{2P;tN2j-p!5&k^Wvqi zO#ba9>GnIp$vR5#B(;7~x=*Ec2wgMYx4=dt=`105A(pbW4-kDx>aCE@+v4`vBX*8K zg4T%DkN>!x@r{F;%8ys1cDbu;U*YsEUW~ra=@rC%C%T~yRNd#=0moljes5W(8VJ!H zC-`7#K}e+hF3J(3?J{xJmbKBI<@b?o%znBR%VwME{I3Z)!A5@IafE0bONaG9f9-R5 z_>Ye{+^;PD6|GQ`Rm&tb{M4~TU9@@4Rl7)!$cAK#)0czn`-NjuNBdSs-ZipAV+LDu z=>uVo$xx5at?YJ8aUxJ#2&;r4Q;|~}_FwN{=RMx}u4uxi3ME>yL(ODmM)bK>sYX*fjo2xctFK2ugXQCvSV;sA%+Zj~$s)DJ50Q#IT7zhj5f0cDeORaxu!+hvg z`}hUz2~*P0=!NonWNh@eE{mPk0TIJ}c$o-~Jc*m7EIU+8CqX0XoVDA6&#+I02f>F#mjAy~gb4uOs6! z-j}OH992|aF!$?SiwDA<%EoA6r%6K;gx6O5G|+h8`<++GjRwNQildQOhHdzT4bc@3 za*MIy-11|K&DwxATB@A)=WvE_ZHrEKtop3A+=op}65}_iYxggoWvdv9mR#2t=j`AO zzgu#zIM^?W%U3?vB#M4RtM^Fa%xNaMryeguSIG{Yv$!{{3u|{>!_9Q}m4n1an%NWm zPB(A+{h4FB5C1FN!*h-vTc7*unkEiG%wZO-TSTY*?>aTYJ zdESAHanN}!iEMmSL@ViIoyH&hI@#Zt`K@-(V}y}#E{LHoP*Z-+BhUto%c^IuNw?py zGsxbtMG}#-X1T84y~!E(9lRl(S}3ezMC5U*9=pp#-c^sK1cpsJLV?eTJ%LGfznkNv z*Fe|1fCRfH{j}lcU@D#|5jFarzgy{XQ>L*i%M&YudFWmpk(nOYexpOcFS#f@^ z?{J$CJ_m!icX`g6UqO+W<`x1db%)B(Fuh>*nMEWj2K5;laUagKI)b6$n`)cG*HgHk zzw7uvDLGA5mmh~D@?s_6Zi>AR&;#&6FDB|?*tx^|wdIKqQRYpN?ZATSTeP6*ERn0^ zFt}~6Ux*)dpvQ0y7on8hMQWh-VTSYxUuF8RF%)~=wMSN??ks^YhpYj2pP>f5xCN3b zqQBkq^f3HaE1rbRTpEsch<+Q;X8W0qkWvpM3!?~JC zUTD^C?R;Gk{Fgu0aAPFJ$Zz&qSN0VBy2nK2I_-M^<92uAVBUt656eeg^T1*}Yvr7t zbzRwfWL_0t=7%k`L*R!2K1C4iSKU{1cq;jjF#a#aCHYC+bZF8C(nXz)1{*Y08h=JT z`p~aWdbOPt^pX@}+7C!{Bjr*|eb7RV1d;V`ms$5`<|-%$r}~moS4m|nvucOF7?7s# z(OOyiQ3;|wrqRm2)I%U02nMG;irbom%eH1h*{^Bu*MF29rxnh?85)T&tz!nE_xqf; zaGWCrUB45T5Q;P4uVygE#{)!CmBCu6weJg72(EYYqTTufupW}iUIT)g{0Y6#F7e*p zQU^%Eu>VIS*hN`}HI(Tg%l4+qpgM^IF3HjD zo!bn>#%#eY)V=}Bc>=0QpR@reO9dI4j!-FoN^7mx(rV8Q7QH#{AOnB6R3+lsUEpAq ze6XVjqHE{hNZPWcAHEU^sf-@U!upxR^+PRNWjH`lKvOS!2?pI~;caj^$&6~k5bIAKQUlzXRVwt68-P5@2 zW=IJ?*87r$9Yk4jT^^;m)+{n-8T&5Yq7|;Wa9k!OV^t8ThkQnMwrP^REeHtA66u}L zGVIa}eY!yuF{M^oQ%8dF%*+hwyaT#_3_3{+VGT5KHXeCop=WD} zMnV=VL7HzvBFJ-z+uSd)MIBdS$HR~*ESLF~0ggAE6xZE#q?EJb*CpR)_c9=!BF=SBa zh)4O3K$(L94Db(vhmE+m^=U1;sp$<*QrtlyRS?MGe&aKFpVr3=o*0R*CQ5|Z`=^BN zb}MeFLUMIs@>pPv=9=^)!%;_U#wtoSm(w2dak?4BTGdJCod|K%Fgs*J3=70!M%hVX z47-xI0I@g$-;7u>Uojzk)U_f=iKAZGiHOo9*2Z#}RKo4IZCeE2d+%lZl#-XH3!y51 zg)ODQBs)5+IK>!qvt-*jc@lb7eJOKxrcrB1Z0X#e6`@|#+^OihET7WHOYH*m6Jke% z?Zn;!)6Hx4WiyXc@RHbGrLV~!mma&po;2T8d7net;y%TbjiZ>x_=4i&K*E_na=YA9 zl9p00W8=4ayexhD3Z}`-I}N#yiM%odMY1`-sC&g8O|L z*Ht-fN+JR(7v(weN4oSXZEHRDO@FkiZ+B)2!eP|cv&mdo0}yCHYhDm^?&GbGe3%7) z&meaPayD%B+s}ZGsKlCq`nh*Rh+4z*f(cv_+nlcG8#18ujGwCaP!1gbM}YSk zCL+*Y*rl@9%N4z$x~4Q?pPRVP;lAU&Qu?b7B2} zfbDFu6@0VVuMX5EkBM3)z8^KUepx~Zb9B)rKtM7`*t!D3(U)S{ zfX!s@g%7+lvF#{=VNYJv*v1tdY}4FMBBW4=d1(+xD6GD9F&R@il)twqP4;|50nXwvvEywktCr$%m9O>j&;!U%l)RWBa2h~aw{&UJcp%*aO>A44lS|K&^NLsAj#!O;cpbmqy+ zi{E=+jYC_K+L2|$$vt%j^dPid3CnbDi8}?sb$97>BY9G;q`xh+Q5>v6$-Bzr zsB1iCa3aoRb+2g+_S?5j5n`to@#B=wO*Os{xxm3C=6OB5kY?r)JpFP0frx2(f-%`a z72Zk=l$-G9)dG`vQnY(1-c!4ErpRxSXy$vFR$~NjX5qh!`F8pe1GjtNEe0P4F=Xnj zM;*T1ANuX<8VDtN&hEV3aui?>Y?b8v=>52OBWf9WlDBJ}E3k1*)^aC3j+hZVxh-;l zmAXxT{{zc|0!hS3n=_( z9m8cA*zQB>xauw=x>rFzA4Zlx^o2~+Zz&8@Q%i25D&H0BNJk0$GZt;;oC zn6gE1(D+sK{A;aI4~dyAFP3q}1JOWGq!Co7uv*K^=1^0ox1-m2#n+;}_HOg-X)(Ig zzqNb7jq2R*9$(x4n0e;gVV0w@;L!&4DNm?WQRRC3mcWZ>R<^{08A+fZX-`7p?Ie;@(aQOtm z9g@{Vc9}`)r$X>cFE-@;XH0jq(Ju7$i>eKVY1qBgd~{LUwTyXSds2=wW4^QM7{eCE_XdV+kT49#NKU8PoQ-8HE} zj~TR@ogc=pDLMjg^*tlK&U9wyeP{hoFtX^+`)ia6#AjTHcB@Qh`a3O__%ar45dYoz z^HXJN_eN?|W_|)@vSO%KQlTOC@cF)wnZL;r*fdlvj%b*k(hP6ED!(`@d{{m)J#LWL z8_+0!2^rt%wI9yaopK)%r% ze+{O#ZcoJ=CkH#=M0cZziJ00k88$~;V`UDBRN_#ii)AbK0JJfU9u8Ol7>EG9s?oPIAOJ(9nXL=nTN1W(oYRFe1Vh+VTb2qv^OZfY?Gbk4`8e{k-fD@n zY)}98RQqMz|9e_+c`NwiXB1XKjNOpDTwHX0YC*IBkrEQAH;v$3(SP~QG55`D{@GLB z7PDc}(Z!|ZKtfo=Nu#N;ow=H=bYp$kbd{2LnCI3yuq;vT&oQbWtqc*GeOEB-?E%)F z`1>gvUA{Pj;c9ipQRI7Y0UpniQ&P{ST$IT#UCp6`^DM`$Ll1$-X1LZ_l9ffIk6DXOP2V( zsf209LOym>y_e8pLtYN6fA#NsvlHT~pgIhbJ{1GcasKU3jJON+-MY;!=yv5p3bD)K zzkjTtz0UND%L$rSRTFy)|JZ_zD-T> zo@d*Tpx)AXJO0ipRo^a|w2uJnT5pcjD2KJkPBR?p_Sm2tzYvKm?<=rh75Y1cPv_^S z+FkhM@^oFw(oZrchKlpbzd|fDJ08E*p;x=H+Lc%Ff8jhVVgen}^iyVCLNtxreopK) zeJ__&kc>sOx9^UeGXr~zVkyw2cxwD{hE4x5FZnO)%ls1~+CD!Z86zxEUkCv_>Wn)R zyMzL(`_@_)%8s2_ecC?4C69we?G`7qSC3Llw*k6|>W}QmaS#^je$4R+}9VIn5JeTqxj_ zEo*DxjBxhrONvFM<>QNykEjdEG0$EC-^<&>;rPdgRq*-2sDDTA9JzI!i$(I>s$i*Sra~bm4_3}Q_IU1izYMe1WvoT#<~*;B{+3N z#g3v)DIe1=<>6MH(sB!msHt(5#ii`3E9q`KX#|)=1NOUtFB46D=>A{h!_g5^Xj{CnH(h)1aXT+S?DC88xLCl)OGLm652iQEC45&r-swH>CVbgbC6zit3d}5q zBE5{d%za#y;G)WjfeKww$8qWZe(tll&-|4x;3V@SIe|JbL|4`TXUAPbYW12QIC|q| zmGzl`e+MQZlzQ(F!a7Hx_TMUWqnxXI#2vJRaO8#Iw zU3vZ>Jjzg5k?J1IjtHp}`oVS#XgXF{JEjhN2iyV$ zF5v9l^)#Qz2Vt0U>LsEGiyEvVNOnJW!WvHG94oo36_tP}FlaCtBh?^CF_>|bJsG^p zDJ*=@#k+NK#3`IaB}XD=AV^A{bI(0;i)Ph#%mY?vZim;ZGMm@@L!7DH+o#({z!)ot zn@|y@u2MDiZ<(v_8?7yhJQ{a!r7zmsIPW8MJMy z2MdJ6L|$6rFwePDM)iU^F)9$N{oX%VW~n~ILPX>{Uvy_QFEGZmFx-#Mvh!U&oP-6q zYWU{2*XIL)J3s22f2VFKb1vnRIk#ll($yQ6AcG({j9#M0#i!4M1fPUnl%fLS8LHXr zAJ~yi9=$#@s-8$9Wjm%Yf2(HZ%4jE>7qkq$YgO(WX_dj4Xx6nKbs4Ke9#{V9M!xJJ zt<*J<)4Z943wXpA`$zf@8gS?I5EpRC_lOekT;Ois7tr~r&+1U^vcJ^S>}?vBJuV0a zt|;5}f6}HWXI4Z@MP+FPHdHlRxuHN$OxQqfGUEgb-;P6_zF46ypPMJ1X!lm&t=O8C zCHvR9%Cvh2K*2&Ap=M!9Y4*2iWMa6VQD#}-L>F6LXr1q4gybF6q&kqA%gR(DhN457 z3{n0yN3vP3B zMG{yFo`ZE7m!t$q@xM=aW_;mXeM~!KxbWW8@7R*yAwoSU6f@lrjZugxOjOoIEy%da zr#Bt>rKIi7Ipx7nU28oT`Ga;i5Z+u@-PLC8kI&&__Sjd?3c5y%D z-Mq8#V zR?^3Qr`iUQW3C|60tCnbE&y{M1GV7Zz5)INJK*|sevx-`82)`0g%|!p#dgWo{^8+8 zI@UwYYpf#`));+eJIqy?amm0VIzWt3s>u=C`V9AR{7XI5g)}(- z)0uk>C7+M(Zgn07xhlWoWVGf9k+b=_WyAL4DQ>=o-xPuNhBIXlO*cqHzHN@SqcN<- zowNlw`r^RT@&+%Y|8EZYzJsmUjq2_%oFN)}?67BRRggO^U8yw9sB(EfGutDL&1W&? z3oF*ngx9?JdryG5!yGQ^UTEuVxvecY`kb3EwtTD}4KQ9gItc|a(tc34Ex zd@7r6+4dSXnmrAO8T^zlIJY6b^?#2?H=ac|twehF+`2r;ALI@~;R?u%DF#G)_^mAV z*cqm{`~3qGy+i`=Dy8HmsrVf8&XhNxr|!dtj?#naGHXtzdC<+PnJWv%U($KR8>c}G zu0HH#i`?iJ7vk>wIJOkF&s4N_(@=U$06ncLN7lnGi)xWCFwDG2`A6ORam{&tiOPN{ zOl`#%Pto|Yuw)B*n_s-1=*a&11W}YBX;gxHHn9T~$x)CA!?Z)x9u*PA+KzQGB?YlH z$sr5N-44EGcSNDNB$Yu}_W2Z3+IKEe??&Q6-#;Z;atxDkKMy+fs$pHP=>M0T!gM*C z;xQK`R4k@0IGp0!hA!7A1W}U;$6a9ZR}ux;qj8 z<5b=J;CUO_8_KS0sS^PvzmGG)?zQ!^zP|K|vqc;(Dua|-&gXsv^kr=8l z%$h4cT1|}&^Q0!7-u)`>`pxA${3Qp~{+7Kmj_bJ0*h#=iuVIo%UZf^h*l+6Odfl}y ztP%D!DO?Bv5|?U5Dpv@g-Tg6Uh)?=XDs;SFa`~;5^dWqR*MO3rnsO8^hQJEPS455( zMkNLD9VMaF?dTzRU?&-DxXT;bai}yt4d>Y+v>&|Jjhs@Daw-ij!Q%0iI)Tv8r?QW; z)?z=)5Opj`b;wJ<3L^jF`TdUMzS9er)21PjHY%}i7+aRdY7v?>$nW^H87PxO!-pAk zLYFLXFvl2w{*N0&%TRhGo1Bro6`GgCa(J%MR)1x{Y7e8`Xd+c!iy{?D7f7I#HR-N7 zYs&*!BHvtX!^~SGZqvUlI$(J_*u-X4HC4?T^f(={f~_BlM*UQ>-WMb(jtNeVhT-?o zOY}!Xm-?*NaA_b>j=NCU=korFCKZhr@-jBA@Bs0~y(aqzrensKEeKN`4Q72$kvE#F z5piZcbJtg2fJ(y2hWz{YT}LZ-x&NAmo+xb%-RBIkR=>c{KRtu7wgop-g!@{RK1`=J z#odre)C@TmMf_WE&ew(|qC%XBs9)!TQ9&PGE-1~*+hiv?stUg-!*)n)=*Xc7BoxfF zq&aUB;*n~}_-`02+QxX#2)3rl$xuV*XzNYcv-`Xg8<1U>c-Vk0j_?O65SrC+yE_tv z#yD=7t@yTF{x7G}>1W%w5?%Bx*Eh{J$R@%n>%4jdb-N=6c^k(3QTiy2n!fIjzMtbS zd@DN0Ep;DYT-6UinI;wAV-VLiO{8g)8dE9ZvJzO>zc-^w;M%X0e|4RutnGtr>Alwy zr%K9FKYdm^J$Ix-dcbk3?;7! z6-Pjw^WL7a7QYnhlIG%+%?06(eO0FO%kr-h#S@#dr+$blR7VK`-}>n%_W9B0-OOLB z?rUlnmXTv7d~{{&eD75g@Q;<``ycMZk6~hOEN@xMYUoQFxh{B3IO zDn6xQbQdCse77t5ctAMoEsyO|#kTir%n3xF9p(S%oXj+FgxZz^qW%FAopAk-zBMYp zfevWEBi@NgjAfcvDZs3X9Oc#hfLj^xfxD)^L$$3;6Irp$uvr5rwaezr{f%jC!#BAnuuOIV)H!Ilj$fTe?}|Rj(KAgRsjMIbD;ht4)`=u3 z<~v*fcx-v_z#s-pwwH{6KzHmyBJ2yg#ksWeS~wS+;*xA*v%Dq}sDVx%uwah}x0);O>;&^l^QSdfw)az`ZHfMdc%$B7Et8H)%8$iDs2g)s{W6D9 z8W!PANAzM5^6xB~(m{7+%@Rit<@&KPsBN2wt!bGxysh>3%TVFc1OfN*k>yxoMb7Rq z@(tEPXfyPSecNZ=;UP~4a^BqeY8&BCmgAr{sF7bI#(L@We4u z&UUYDI3ZqNxoN%bh|NB8kkEINSNrNqO_!%up1A6f?q;Rmf3{ctGMRJ~>qJ16V2dl@ zOVsW%dds=Cb_V0HCkts9wygFb+Gppm#C?d!@8?RPLdJHcoSQ3JC7`yW8gkF7wj^IN zTMmP_=!~G*5ds5KvYV+v3-6q+-U4j?=lZLTWV3DepS3__zQm(SD?GVpC@sVP$+Suq(1tw>Ml zlaN0lmNp~*{rZAmamGT#}FcJr0ga2!(8LA z1j|fQYqfCtnBvIq?2HAj3>K`UHY``68CL(i%4=ZPWR+o$#hqQQ7_8F*Et6xcL zkEbx<5V!VqXNBsw!)2ov8}_dIfd;r(3au!A3sqOHqNd@GN=v=Mv%>jkN`c<5$8hal zU?yC^b%dUfbKt@5rT2|Ql#x{9ywh{U=lzR=#EE_0KP!QFg2Tx6e|6VGRi2ZCVQU?p zCrkwK^rHX7rfJ|c`qfH!3iN2ACZB~4fOCQx09v6M)dKyZhxhw2W;X-h>KEMB3mOh9 zZ?_SV;R>;Yc3}N{HXCpz3$(YmKOLNb_o!j2ZRpCf|AW7Gy^V*R635`p|CdjyyEEeL z0E?%e%qq{r2T(h(H>{S(!-_rDSh>PI1F^qqC$4#{Gi}4 zK!)6F2A`zJ2F{(oOQyPJXl^PUTKHI9^Ua{ThsgCVN%t)@FT^X^nI;sziUtF`elq@$6ZnljA!lO%e0eApsdklE7}tlH<(H;c&<1 z{6XF-{3kIuf3#&lW}Qr#RLj=W#|0}M18q?8?Ge(YOK%lzdsIJ5*tfl&Mk`)ir9wN0 zJaaVlTnkzHp@{}9w^-|=RV!Ob839V%yN8T4I4o?MSS@f^2=@(E3V6IFw6WY)q|lvcIg=^MKCZY+6_`AmMHEcW{ft&wXu zHhuWA$13|WI=J6kgGwt`@JYaJgd>zyL{itpE+sWr7Xk2_Y2oSlc}`~etCT0u#HuM^ zBii&i??AV{H7(Gdc1!0g5X@#;qnxvvL*ER9iLzr;9jd*KyygF7XbEwKf{V8C7-wi1m6-g z%zL-FjNRq51y&N|#})Y($=}EtEF^NVQ^7o14#12wY~{=Wm?$L;KRphjo0_C}j|7us z@Ev7qhZG_Dm?8kAGe~1FwFcHbZsc$8H6S9XQ-E=XjH8-Cf7Wg*Y*9YYU8xX+H9%rl zQj^pCYk%qrId~}VamW#HEO6h1JFIlotgLEjnUg!YN z%WB<=6g}s3T81R)}(w=&L08v*i*JbhCbksmNzn(H3_Hg%mAFZUeX)pb_h+y zq{4r%ZE!@-A$=%vBHX@*JVy*k16Sok8Yc~$xL1K^yu)ti;Zj@scp6L<|K<$L8WJ2==BL5cZvn)+Fxz1J{v3NNNA-dI8Gi-l~B>>C<#Lh)~fVavP8t48lq%^ zZ&Ehb6Vrgf?ktw&NU2p1hM>mD9kQ^02b=>X`Nt*k_iKBCZ5NF-llmSzw>$MVdS5rL z1`Rv6p4=LHrZh8dVrwH6w?~GgET;MEUerZWRol7NEcB&qe$mWXcI6}OhWFyeUJd%$ z>_A37kMYAG{;S@Py#6D!QYh@7Ek8Z>$Zu~u>8(sSdtlFtZkQi{1S`LXd*P>4xo5-S z2W6i0rB?AP7|yxKfLQ%fL0gw;3AZ1Q3j!mqZrRjw`2MyR!{kNF7(zFq4}gzCanQ>oHD@D?mKDp ztbI;2%}shcB~(?cpQh0%Hv=xq(Rcs2BGmcW1m!w)=>DS5uemDiIj9I7G1fHJ|l} z&9^|s57YbAPfkc2)ON~9>exe$V#M4}&vf3xY4@G1 zeau3PEjQR+BZJ_d%%(8)2^q|b0u$FCv0;B5t5iXS>Uy58i5Io`AD8f&I@;o-t#hJE zM4jQF$NBgZ{74~ku#(J_LF6G%=u<3_+KQ}~{o6$KN=!oBPBCHSD>Z@*DtMIbTg$sKVGwfL0!=#B?Eo^HG6>uZE z-L|!KnER$lWnBUZ20NPS(~oAznhXkPduV@C?r1r^`1Ej5e-17 zNFKCQ9)cemayivW{($pmKc^EOW?O&Fh-kxmfZLRnJ$;TX^Lcp(JMI>Szif?^KeKpyPOKoz+GX8`75;FEZir}*GV-D`YcNIywuE!g+pIN=O&D<4hK^fl zagbUOtk9QL_#^#Fw5GX9F%<;cm27_KCvx6lI>}XaC{r9Utf1DVKV~R)sKFIC6R)U! zdc>PnUb)(WLH8fgbqY+Z9()cbSZ7XJINjT7t{iR(b&vSMtY`DE60@vx2R>I{v>N8t zhzpARP8KXCg50^dprzQ!O$v5AD|4Y(q$vnnH~(vIP%)ZFBBJEk>>c2HIW^RMoAA$X zP?P;GlaT5|SX$RYxzc%uE?cTRON{)~$gCJ50^mR^|N!3??C^ zvpvj(T?s!ar&4-{P$ZeDlj09033EM_#$Ts`9tjvcHPtnw&JkWYFU`6(ZrM8DJwycj zBe-NJfYsvTVWrh|j~_?w24L@;9}1bTcd-yI)5-gt9*^= zaoUmvcKnpcm8o*388{y0cv7{-^YZrqSes(8gP?$;L<}(N!YwbKWVoifa;WyUil)7B zdJ?qiiLdLzEpdIrv(UnjmfI&sH)z{#B8QgCeQdol=;hmZf!nw;F$FU0<+W9|%v znwuB!|4W|-Cb?7C?7)0xycEY&+uVr33c>&1VK3LQ0JZ(v?a)yt$Ae`C!)QUSE5~h$ zA@JNOU&QLe#~#5sWbWg>6@xMlNe}Gp?9hqfG{fFp5jk5{%?>}6n42NSwckY6A6D?G z%k)N;4>GH64JN<5D>gNDJ!15FA;>(i0I%n(tXkkEu7L_Pcp-k0)WsW-!*0t(YrWdP z41)(SYg^8|R!iThgQI06&i>+6`p#z^EGx@RWYZkqO^sK^oN-o8EvW75h&}a*ZNjvX z(XZ3^@0`qKttY|WMBlJ}*9Y2?%s4AmuV4u5xf0ez6s^@Xe~0-=3(-_^J}2ORbZWzBEF;owC_UPh3TkrH0R=X`TmB#p1s2meb}6Cg&;h1jRy$bz5HaV9wGbB zz7n=Frk?VW`r0D~8}&#Uk`V@eIV_>VoA94PYtyn^n_Rwo*u#M zv4|eIzCc1~P1WPzKAw)-FEjH9QRfp<9Z^et*)PU_oNW}E_oqN*+6lksII(XgI1am_ z1D)^^QsF&}ze)Ma0F2OtQ7Nb<2gA(6VfzwbyG^P7if-B+{j`l^xx)$|{rUD}Cx+V9 zYxEW$;mM)~t#wBz%QO(Q!(9eb>4H%k&@7G=QkS8bQ)hX6jtRo|qOzAO%jd-BS@%M- zqnw;^*JOh*;t#BLE=dXBE(sCIMVM^CXhqU*+3!)OD&a`e{JFkl!Cxm;Ki7STg_X{n zXIr&Oad+j86^$l%s$}-hlEX(9j_aHHqt8z&`M}fbDE5ZMau(Z^p9~xbNw3FO5ymEn z27rK150vjN@;b%;Cw6U5;O&avBw&O8oM6#aa-0(IkNpw@pJ!eOj{M(vH+R2e!1-W_ zJ%p+_F<>$8YFP1nbm^#7w5UufwF<&GY#xgFap4w`1VIHgOEl7;vS8q|1J4%dS`Ko6 z_1h$W#%|D?kQ#|o z+m%bYr>aOMJyx2K$_UvBz(#p6% zCT8dxXx6#OgzITqj5?C0HnOZ5Gm2A5k=v#IG@^v`ao}HkzcvfRo&qwfPr18sq50eGdV^PWv>B9A0YO9k}wPyb(77O~dDp#01k|3U+ky+R~ z$&NPt@ZhbmHb!I|e}bt;)iurZf-hpqHRk^xeSN$WFDB~Ui$zE#aHYGz&}&zKderoD zF4}vSXT)q{+R8!z8Vg=>ovBz6@|%+$;$P38i4*dBqPg**IZ&ByU34DR2^xS3{VFko z^wrqSPaicmcf4_=C)%-kLmKveR#0DK3?gBqW1`v1geCsXOUtTvY;|%!M~%3Ag#pKL z1tPki6X@^sR$Qq>!A1dptCbqg3iw{nIwtwh9IL;YMm|c;*%X5<9m5HTVh!32|dpTFX+z|R{zC;#-prM zo^=RUrwR3>!NbHXdjG!Ufn)NU8+)gF18Mmb%1(+rO^=QGYEgG`VItc+}F+$y7Yst=L?b`fZDrECt(|(qQ@g z1k&&NfJvRE5Ce0H#fCere})w5Hq2~bw4uv|x?^t>Lx#q`x!d_xSVj|Abu}c8Tq4gj z(8MA$^JS@W&F(BNZXV`oX!@`D6`{6 z?LN%3(aLN_cpt)w*l;*rlQy*#SP)ehPw0-Fx+(0|lbm|NiwQV208^@Igs%V2gLOam zM$oiKGr0Dtu`5L99a+7PK(M32zb|IgQ~E903_oQN;+O8x32uW9Y_sbni@D4{TQV6# zxbkG<>WpA()JbgKPY=JM!+xY*%&JP|2n(Ypr(!}oQK3m zcm?Dkk094UQL!AR<`Ns1dQ&N+Pxh3Aqu65(EP2gd$*hseo}bAXq>! zNfike5Gn#HuV@e`QV9W@U`f)8+Ubw}>;5`3yE|w0?9Ml5XU~4$H`oJhdG0I`v*mL3 zlhS;|dwg6m+49b-fdX4U;v z)nAf@H&Zjg#-~L?=w7J@a|dJUf)hQ%Dzha#_#*zs6A0Ic;jlu}y|GSdr-NRDm~a8Z zG9cE8dA4;+Cs=$gqK=_fVZ66Z{fb9$7~tLBpYsCdeXl#q6oNY&uniVTSJ zfG4G&zYRahXIQxjmhZZ7s2sKw@YUZX`#!!Rop;9Rg1dsqzp}*~+|KaYpaPj9;+&Nm zEL6UB@yvZRV2OFya*rL4;*|HEwinXI{GGII+G8VZ!MI$v`4u-0i`iiZUprOp!t4h){$RX zoJyI6Y#ktT1qeP@SfTI~hbbM&S>_u_G4ojs*o`HjKGZtuf}mnp-F@7X zZKCd(R3DHB;Tq3%tHOF=Uf}`X#NzSc2O!r!GJd{NW-`bQR6W}l|Bx3un5dO2Ue2V* zp(VE-vrXCd?apc5L!}$x{1D#YLs4pjY>C01xm*XT^2kXkI&hp_85!z zDMrVjht~tLHNdo`@b#dl7D2;wm1rc+bD%k@R-j@tZ{+*0f{9aYaPuTJo!5_V1*xNW zr38`rRzUnCZuTAd*n2K+UWLW?l&M0uO%V3Igb=^CZisy&vliy4{LB`^nY;9-;~tQy?kijnlRh}TUk=LC61aUddQFD$HaK=szR%4=Z^8@mz4)za4By;6%`Krt7R&@6~bl2~8P#9B-PBi&i z>waDxl$@&q14A6z>ruuc{v1;~8i~ETE&vnzJM;-6YFzU_pvGzUe^5h&x%VIRA%w#? z#DMiw^WDSCTZk}WVX(+O{MDsW(uAA9tr@R{OPq(IUUB!>UUj9Hw}kK5AHDb0Ge4?< z7`D^_9Lj-`+x$0#A1zyS!obq43eijDMTZ7OzQSx2(L}5Y@FX#fFpZ^$sP|J01uTXjFfa{G=CvvjjHEKAFTyFVGu;zu&W^{qQy}@l*8aN5z zZ@v4Vl2^Y_@^Ov=z%ar44`HL0f}6gPLe_$VtQF#XKt` zNOg4fjr*B+sv5GsQFBUZDpj#Y47ilHte{CEKcZt+UOZtEI+9~u@K41`YZ=P( zOCx%NSi_r-=Kq2h+%}n+_4dXUxHQN~Z=||Uz37Hq*+Gp>HR!i07E2RVW zV+W0bO&fx1-zdf@@<(*6ie+7#vs}?5x-h9wAO1u%?5y zR6)fO=z1ghB}nGL{j2bzj4}yxqCs0OkPtyC3FZzO+5p_gYj6v`h)r71mJt+768QXD zQ1A{3hJ3#ofsu#kLtLpH*c~1^xFQVAVGf;~nZaQ|e`(W-V4G|3(cc4a!E-89o<`u^ zkhVV1L*X(z0|cy63ycDrMg|`%iXDyWgE6VWHZ<_ppe=2xrDVN9D7Ho(T+a^5Qy)F4 z2nI`MP;ST?n<7+2lSDt7$jC^~h34*!ae=T2ziWOhSd_?vxvAia0a$V$L9`^7^c)|k z_}(mCL;OV1o+dDbJfr{2ux>2GJQO1V9``Ih6+L+;zLiFUDqadvJw6#Bl)#SzL?s`g zcTBO*=RmOGI^{?uBJkAt;>P8TK*U5ABH>Q~j9e2hJG&IaSGFn}0ORodCPFYoCjQ~; z>Yv8p#u&{SD~KWK7+Gz6!f!F&j<3+mV-yAin)tMbhwmS%A*&i^8(|p}%hZh~jhUc_ zylCk2sgm4TezJ5E5z1hKp3H_EM36i~b)@H|V7XvZZ246>VgoXtr(lGJvK^tMeDNgR zr4^F3?)UMRk`hLC#g?-8UZ>(&WbS(NZm9bAL9vPDs~;LO*~kxq{CRRwR8c4U<(jGe z+K>t}rb)Ib<|v_YnfFW|nE#-wOw$lB0zbTCca(1y9uEPB1=G5K4%VUt*%lGpc@2)0 z9}gJe0NDq(4G)iGNoBj#!Y#j(H!bR@yH`NKf%7_8O3;=aisC@%H#8LlvRByh%$v-V zA*!8NR?V$hX`tM=;*By->}hLqXUS!QD~!;knC=i0yhi&h~YE zP)GGDoAM`G3&JK%G&bX~f^GwEqpJTf(I55QrYnnlx&*TIEB>*>h8W}|5782^jyG&~cV5|Q z5}TNzD-BlR5K*q-!+dnbMK9P>L^RNoG|IhD23~v9^3ET>KcMvJ5l3>@$zEAK`_IhA)e zQpzz0rLNWi<)!GUB6|h}Czt(`d&?usux-ys8>T*NrrpFUx~hPM8NZN*>ed15$mQp+ z-Iu^+569tsLa1h~83^Q}QX#I8@)oBRKIK&j3kMaeYkQBZD6skb;nC7_0#ue);KV)- zy|Jq&=I`X{g2!%w#QcrkwcVsTsAEe_A4)y+bQuvex(e4(fTaifK%JzTkcwbGQ2WAN zH-(3o&+dhL-1Dym!&%q)f(~PF?LSPn&|7FJ`+Z;a^%9hgXAZMNrq&$2*Ud@m*vx|1j_7`tbR0_*;pla5H_az z$Fd!aK?KY3Ub71n2)^#zTPGxI_lQgin*Hi0#w)tI_keym@_kbMiqngfbu_`o=YDC- zAGU02#+J>-&56M}d8aQkSVh@WBDoRU9L}PMW1{erx@9QJ#4MpLR zUQCiH$uLiuJ=ch5;Ib@R*O6vak8LG3X%}eAhp6 zJAmGc)`67P_x37!Ip8(IORzoHQYg5sJ%Htr-!Uz(J~)d&l`!^QTXU387CMoQ=OUIw zM`>$jJ{6oH?#j1LeZ0z-V?;PW*x+uTmKmL(btF5L(yv_WL{)XO?C{c52k0RL>;?Dv zXyu6b6+$Z((Cf6aZM-C&{9E!q8jDU2Lv#6KRl#@Fg@lUsJc>-L*mJD-Hk43w6DrDP zf??ds?u*Ns=$q~FZVgx9iWOzO!*95Wu34;HDd zTg^CGAS=X&sv~1Hk;5jQCkI26^ppBHugPY%b&tsG zH#sP~C|V{g0 zxs+qs4zQ)sbEOr#GD<82w=*$ob?QqX>z_z{&(t+8=R~x5 zRhfq8)!d#F`b|i|K+VzpPZx9u zR#*>)1AzclN2GDG5&h^Mk|(@Vry;@gab33DZUH&l5wrr^aWHH;EtCt}3u)Ub9fXl5 z1)yOppAh94_t{cay@WfKP2^;lY%T%uOy*O*>^MCUzp~Iq zAHO=OC-u2aEuYZIq0s=lv~NA)#V+#D^9gF9UYCFEmdJdFQRDQh*c%@C z$=LJ)`XUJ4UN#0skx4`RQ++v49upw^$Z5{~MTCiC>wu@6!d6#sXbv>LVv2im1T+5fdYYiOAhIZ|8Pe1#dEan%9ZyNk;Ra zH-}#+&i{@+6pb1z()a(Gi5aVzd9pP;MC9P)pHL^yFteE{SzlN@6r2Z(*ju=MSti;& znfbP5_h@?E0$Dj;!+=Su*Nv?F#|qY%e48WJB(4Zi zB2RN&N7ji=B(a-0sxM4cb+iW`k%0N)cM~#8mY)3yA%O6Dg^18VIzE!%RgR9&2Bs=U z2Ihw1)&YWp4@!wYIsf{F^mc&0dSBxe_@$^LT{Tu?@SH|e*e*RVb7$QX>aJSe8o3qa zD5h%Zbo>2t7t3mAqin>sTts8a0AdJ0s0wN764~$Rw%Sb|tWY zrmSw-zI<>KM9og`A})$PqKn!jvoEViF2^Q)Ghs_5&QYmj{$Tn!y%$j(KNq~#kjd?D z9>rwa9puMGzJM=(L8s=~wcs`f`3q`$w?y8~^0q(2Z}SM`awVh0!^ZEnn#B0L7c-}m z@y|F6iTw@r(gF{>_c55tJA9lumIpQ^Y-dy*-T%Zp^16}1xGK0-(P>^n;(J1VC# zib=`}R0x#@3*uuRIT^Re-NN^+Zkx=Ly|ICh+9jiReMx079;Q@?o zUHxNpC!=@BoHLEWR=@#(5z0TmNKz(|3L`}M(Z@sXa*`y1F{bD$ZwPu}cw+P%7{el( z!>ljdG1+2=oT#Jr+8eoijJai_`DIwT1<|a^3nY)~5EIdxheS~=3r(P{d%W6^g^CiM zWIF@$Sr2J2H@oh}XEG07f$I{!C*UaeqHH*sBvyW;8cXc+cCIU&VX7k`-|8GfW9Sm^ zt~_@4gMQ>9~wZLe~H z(2eLS8FOHiS%+zo)$T@#7Byyhdh>ax%vJsaUbQ^L13W6vkhyIR>#+-nYSJNgP^{Uo zB-suPTq_EKs5p?iY_j<4v#8xzrTTi{a~J)O_w~zVAwixM{GwNvm&wv++mVy;j$Mx+ zwD_STx>DS$3$|>byj2Y_wpKwYRuSI^+pa-#+a*}Bj_Q29z~1qplA`eD?K&2EZkA09 zm`XQc_qPEgIdS)hGYXk!h}w+5l#S4rp5tIkwY4X}tVmkh?VF5MI^Hv^?yvd$oR0Vw zC{eMFG7#+=*h@c$TF1fsvllUfuE+di>4?5jT^`+L-}fO~l?1}^rVolIgWCiUhjFQ^ z=eIDTIR)VJ^bF3aPbs04sDqnUmnAtf=7SXd!x7c`5Pf--rHXvfv)j%6D!h^az9q@9 zD!}V7eu-L^2%%lVV?j0h>JBAI6!qlv%YkpDGa?1poJVMene__@617|PGOXKa`Gjk_ z_w|wL8{66x0Zg-3jeYKtdUCbTC}v zd9_S(cvUG+Pc&)P-3Z7fYMFVjsA=OrTZaLQ#IF^*? ztPWWdCmFGxqd2XR9s=M(B8Y@EWL=@oEfp~ld*~U2h|oe}5TZa<``ll>jzEDS5>Fuw zpAh$NxOSc?Ei!&FHa`UJJ39)tTl9SlZVN?J-!2$tGWM~G#~&l@d}*&wRTXRs|3H~* z6`J_jicV&*d4Vtgd|%4U7}i2rK3a$XMP+>Gk^#OrLVkkaLP*=iNLzb+zr~1;8BUA< zTc&aT%0gA0t3DF3>I{Q6@uBe_oSe!m?ME*)%7RV52G`yOS&&o@20kZ>m^FEDCLVcl zXYv>NJ*0KU_2cEeC`__1J7r0AkhlwSN)Ntw9iCZGAbY%C_M9#tjnh_=Cf$2V_}f_E zMTP8i7sKR~ELwiU6OWq11&f%7LO(kf^!gL+LDGamzgojT+gxUl=Th;ZRU_b$;c{jV z707iDeK3aadKyE2f44>B|e*5bD83}0pkar((u>% zZeB9Z>EOK7PU$K3DEDqF`3Z?5C-2d$j0OB{@SNdI3WG!jU*Ky@UJk`0 z@YoaACFF1t9RjP`%@k+PyGLSnEa@g~W_<*mh#@lDeSh;>~m33czZyYXJt7(Olb>}m+a|- zSv{g;V9+*E(rb75EQ*5L!r8Lt9=NRxiM!$Y@|>Nr2d5O`P33rS%V>q%aT=T`mkk}u zMUApizY8?4uR?S~kV^7X6YAPB`bYWK(O}=stE@a0du{A-1Z#fLvgyB`O!wij4dTmlI(BI)y|VoN8b^cQ z;~`_sFCNVIq^g48#;YS`n%deLy1K)?_REQ%_KLEX&Ymdd;D)M>(O}h&7Y{I%#`y2r z{2S{@8@!hdUs{r>*$eOs5oK3+kn=My7Gqf&^o#K+Y$(?}V(UnbP=tL)P1t<@6MeDc zZ9YIKm688yVGx=wcD*VuFOL;2_v_*2Rh_+uuCA_zsF`o$4K2;NS|DA)WebAn(xdC|-=YuDSBO0VK#f$ADW!9EVes`xw zqzwx%hSb2ohrh7lN27Il;@-Qm5tt;d((xOvA}$zZLnsdu#VA&m%FA$bn@^#2^Y@?t zhu)(%@$iDq90qtxA|`ZtgPQIzFsp zl3eh5e}z`MoVUPA^RX9f_=fp`~c+a>!{gNlmmq*QuVXn6gGARPM^HHy8Y|u~nS9R~yun z{A+L+nTDGj_(AU%Ubw*Sa&hGr7T#u}aIebMyK;;{^VfY^LbZ+}rKHkbT+q(5i|D8m45T|yGZYNZ5Cw3w%v&5C8o9{ zX$XErDAL}fdu15-P`B6jUjHQ~t1hGU%vE6gmmNDif<%zWH^ft{!`vr1+n2OW5yTWDmJJ)?71usxN&; zyhb1@*3(sa89ke@M2&g0K8Bd~aWYNHUQYLn*B&f|3KhnO@YlsdnyQX}2&>w?n>T|R z_IaIDnx|QM(Q1*WdwC?aqSDv}iV7`Hepb?a|4g~N9<}+p%2+2UNJx77A<$muXF&Ry zzYeuYC<1ff+7>)(J=v0PMY--A*Z{#KEGjMGUiVztX{zZx2+MWYdRP>nB@pfCn^fCr zon_gTfk=&x_3Yv=h*w%!kLj;9PZ&_jqHsCyR&t@@j~SFt+1lboPbEQ`LQbatgDn-A z)cpzeIu@% z*YN{G@t(hEFwE9mu4v5m^^cCyYNZ=-V-3JPIQU&@ei&T?8n`cP3FwV3@sD zW2LW@uL}Yh=T}xUEuj28oU$_(RHM8{1*ZiFL9fKO(YBGJuL6QZH}>-<7c_25ugBmP zMlO86yOxJXDT@6p2vxa@dPYmDGZF{s#Ta$!|KRcDk9@4Kbd^sP^qE*|s>NWSm`XQ` z31E1>BO3=tjP!gtAQ;?j{~%3oqHr|zyz94Vb7sH12&5RpmS6$*QePmC_|=7!hL)ky zim!87*UuKT*Dj&x2Pp~55DbJ@;Mx9M{^>0ch&z4_c&^yZh5N#UHnQvSO3Y>jknd~8 z(R+jUC2xyyGe*o_L49iY^myG!weM`vaRNj&S#2qyknx6+iW_qgll6+8y1_w3BB773 z!_#)UM~YKNQ}v}w#d8Ox^eQK8j8QFhKIr%ln&6)vJEVO})RvRG9!tu(<4uF9y6rp| zKLz7?q(H%Tp=4-qkTrUwK|ZfyyID5&L8<*4BSUAJ=aJhjit7g-M)!|d73n4#Xepr* z1)LJGFM2GN*?|~+=W?mlkn`p@PGiN9b#(6F)*t7_Xkr@+7m(ozNNVw9+0yHAA2PBc z59TMcwD@zOrzX1A_V*of&I*N&mZD5=R~;V(7ZnD5ymB~okFD!%cCF$aK3bN2|yfF+(~M>xIu@I0fnSgN@_|HOhiuQHBoJiNb;d0wau?eFpgU_0mDUb_u+^U&3G@Ra{4znUSh4XPVJq&_ z#a}OE0dhayH5^#A;nZ25t`OXAEfezu?s28_E|DFqK5%HQiFmoHGoOhm7#GxDr;0_( z32W|PTO*Ao8c{dM#r;-w4PX<(c3xJ*HI%e=0}WEJ8;QGuTSH|Qj$OkhRnzT%R>ah6 z>A81>6-6OBU~Xc+3o-bV2oxpXfTGn&Ykt(#ML5YlwR`E+b8#QzI+-N-1O)#2_L*x@#K;h zR;h@$x^MI2mXF}s6dP{XL4A9AC`12S=;t0!>W^fed@G^59I;R@^i;t0x;U-g(Dm;4 zHlb9*UOP<{?mD3NNg7qRgy%)~&XmSM*tSZ|GZ8 zFmq@B&D=jSQ_$2=Og2JA`M$Xxc{*vjf|{eSqW>ny$;oPN$GI`obFCXP#Qz*eer*bc zZHeuyB&CcWqC*YfLVYb{xa**;0@(wDl>-KO;Pe>z>lK20fzfkT8t4p+>hzMFq$hl= zezv)#JBfy>t6Z1Vlaq$b`s>TFCv*AB3bgAtKBA(ZcGhp=jUXjzZJl|Gxb0trza3E4 z*ax^yU^^OkB0fNBRJkN}B=z?}XwYw|vcgxU60a6S7a!q5;A~|xS2mJsL4dj_NvkMn zP^s2Qug(d&%|4lv)D1*Hs7O(~$DdNKKecWba2Rtrcg||IY;_Q9`XRWJ8vgj(YVmWr z$LU0ZGa(3oBd9ge*C2IV=n-Fpml0~=20~O1a+HT^?C%LuUuJ-~1|w)N?;}pb;8P&f zh8k_7fIM)Vpbdmr^}E|6!&%7YB2P4M;!MG!zs}b;QNBlz{l3$5jN-T<-=5nkU4M=} zg|q%)9N=blrT2OBae3iG%9#TC_adsKL_enBTP@e^(yf z$%x8R?zV-vW&@@ff>8XCliud!CxkP^wHl!k`Q|nGRY5XVsgaAG+^2x(!hMi{3;F^; z-T|_}ytSU8Xh-eGk<#k9hef!L)Z+)$q2$0}w?G@x@=g>EYLJSG3R@JtPOK{ay4y|w zUEnj}%fbv>24N|W@6oU_M^cA2E7Wo60u$aVZ6ZxNw0Z~QY9^6>^b6S&u5(Yu+4_}` zThM7JpLca!bxY76_3)0Iv(+;MGDp;iEq_J%S05J7M6Fnt?dn=L>s~C&(!8s*twe)f zc{Djm(jz77do<~}W#QpLBWFiJkB^8Z=-nu1RyjXP!bn%LlVt3Q)i2ds*QeNTUg(cv zlBg@Iv(*?q4hrrMZo4}Lnu56wJfIJJcJWDKWb+~hz<_gNz#JbKuD#+0LTj#yvSpgPhG+Llb1D<$^bs zorj;jnW&Vc;4|eTO_b$8(~S3&gLV*yB1*Ac_g*qxZ*zBj0Sn44etXbmGJKuk&AsZN zYUSoV_8!{{>_nvN<{DI98YH4hFBoAj8Dg1)bv#s`d0CL#&1#N+TaO^xKJdJSh>!fR zD}G^zK6fF>&19;2JJyd!tJ~Lr%YsjQH9R&rbAc6Cm6qf)h&8($E#GH2mD@a z4qedCQ+wM1B`k*X@REcNy%uD@MpGnvO2%(wV{>o%raQ+;`c`uT;*s{Kfrvf8VQE=e zfdImQn-eMdJhx2EyAnQ>*~-pCz1Al4ivsRWJH*McMU~keE^m75{@V2rR{_EO9f+=O zrlfQHE|HX?x=V9Xytu6k&Zk@hD*OCd?Tgn{gZX1_}*H;gWBfp0`BY&_@}H2BsfnD`17z zva72Te*XNKZ)?$mY3ogOHe{-1bqeZkXy2)>f@+JWhX0=4W$$`tK9g+}0(Sr46&q3P zVni=SqV#Ef*;(WiYPLb6A{AC11G~`4xBuZ9(JRl*O}Y3GGRMmLQvV?vLrRdrmE46D z1e|#3{@8VMv>$uvA~Qv*JF8r9C`dm}>jS;ZjH>;&Zl?hjhxgJAa~lUjuP@TdqT=)f zs&CfCmdBQCsxjU>773Da;tJ*!D}F}_FMAhpP-)nwcK6kUR3D#2x`oru7$;Y{ zX!YCcqJgeK3RrhLOT?8v^6b)w3p1pbV&Cq+bm0m`vkBg4hhfK_C^xV`LdW$Cwwb>;%Rc2$yTyeUsKfN+>ZYV=RD?VlC9O8^H+ zAl$WFSV&!8;Z6=*@q!xY2l=c#%Jqqn_M!c|=X4Sb#7sY&A9!8(@Zkd(1n2gKv+Q8v zQ|P6;!gmz!+|D0O?@nXh5GScg(fOd2&X+SnG{HQ7W8x3u*HCQ)?cjD=~zu$+6;$ zO}erG@9M4X%scPEK1*`+)3fV`K!FjHcRp11FBX5nimR)Vi8PbrQLw_{&23h1fP&B= zwVSx^Tw5(b8jDuyOOUUBCIa9RkkNp22C`RSnVLJrq1(7*W|}b2{iE;#ZsFK2%(Q8M z)9BJ`fZTJQh#Eu+{JQccle8M(0I_OE_rb`iiHt1ZL6DD4-vBgTkOhwTOUObmJ!5H*JihwVL5n zLh~>4yZgx#_ye;1TfQzu7BH(Yyfwg#&E-U+8t#C!10ZB~dK$vy4N4k2jt7 z3y{Yix*DsmPb)vG=P!)M{An%ZDYGPI#HrXnIG;S}5U0hhSr*q^2HKXLxhm#?4DA$N zEBVz$5ywe`ZOcvew%x$JnPc#*!xnwTAyXlI(5QCT@BDLMdHFup(zRV+%WLr1^^}=d zizW}65~32dzEI(`tgySK!(2?7?{7ZBL7p9SJyOC{}rR4cjVHSqBy zf7COMR?D{IjFJH0Fx4H$|BH#nYrBVr8?Dz@=gUSUaQSctKDh11GEZskR_w7|UkfY% z4%?OiZ1S|ymB@4FKTUqJPzz=o^9lXLp~{K}=O+RH%5PII%#i#(yHJ5K4#BzoC7MP` zHZI?6Xt3LSFzh(&z!aoLazacFEK+-R6g(vvGt-BhXUBZQkDE%k@Co<;viF@r@X>2h zSymJbV!D8Vt@adv)M;jVc~YdYFCD!s?8VxoPIe8wf;#rmWv3vN<*}4pW+sJQ9)|2J zU7!ETlO$bwv2M7rKisK(F_Ej*H@y$J80iCODa^k9u@m&m zZkvBvV;x^KK*jeDETxx~_3Dy&#H+)43DY|3P)a?L2);wnGfoPbdfDduAk3xuP}=X; zk%d>5#g4cNgTc2RNr|_q^@q$wgKKy6cv$*SL4WiquH2`b#w)9dyjD<=zlK-WWX7iX zZuJh-zJ2~==Uq(i$ov;e82;lT`g;Xpk0znd6R0WBM~tBZ`n8rUC+W{4eo)&;={$0< z$(oq=C0jA<{x+}WCUnin*=#fGgbcxHVPuk27yhl^;ZAu`Ny={^@b(1)is)XWqjmyNlaAO@N6Jc!R%&bBhCN4 z^Z`}9m<4Fk$4z>`stM|~gnXS2=UqqzX5!IjKdsDv;Rh4b(dD_-SVFS~9Yx%X10hK-R0E+og$<=wTx zX;rI^zo$a}#W3%hjt+px%%(lpH3ug=4fBPjkg}Pv^Dvr{}HnuMnUAYHj~P z{a0&opX~lm&sAKhR^T)BF~oOhD2^R=Ot->+F5Lry1Q!5NP?3VFG$*I&4}A&$Uz^!{ zxVl}L_OCNaxV8OsxY56n1Bm-T)Y`O$*8LAMnK=#ovFeH1H4H#8WCmN_Wp5ropn&Ip zlbOESeF_$51ucV33xbmvf8D}W2FnMm7$Os@@#1LH>Yy{l4$7y!2d?lg|Ph-e4mD6eRU!F*Z& zsgTtLz|J|G{D)hd;s}I0A!LoA3X2pI-(zlfKr@Q)ZN60gHCjl_*lbKM*v5^Bf2^aoc% zn}b_tf4unGxI=Sa?^+J@uNd=6SP0-2>#`cpt<~^jS9i`UeGH+^FYRn+S0$ow3YJij z{lHpARay9-qqeg+-&{6oX=Q7I_Uk&^W-l9k32dL>bKnBD9W-{(F7w}fgM%OC0t$V` ztLIdND38d}3L2Ny+r|lE^8o);t1K-mm>c*;M0Db}WPfA~@IJBO0-5*^KQbg?0UlBF zj7h?mp4{*0{`V~#2D72tPuagP?tcibWd%`&$fX`r{NVhkbFbz2U|XK;YGQb9|_@x)yw&z^kQuoJxgS?Fs+ljiXED-4p4n3dz%G!1DPcFy4BJM*-4^LsQfqy78W|f%j-g8($-q z*pF068|g-!NP^=irP^CO_wPn zx}{U0p8ZUF?Y|~u0lC>)ZDY>`W4jgFq3P;XKT4k9@ygF-V$!?Zd+pd;h;V80PZdIR z@I)FcNvN5J(pGPP;qQMz_(^Ceg6m0`w2-M8eyJ3-#7RYnQ0X~~##@k+L7&L%62Qxp zS8?VhWY$EonCHj#A4U>}H^yqZR`u965FgXg%_AdKQY8&zxeZa)sm_0D@9UKYCnPX1 zSoo4_UJ7aggN6wge;Y-%mcZ6$Hih2-+bkrxv=NU$6VAImJ0X44pI`Ly#EW}AEHUr; zIWnMH{yF$sf2$j9wZ2h>QrPbKly`){7A_g4*EQ~mV$;iFeb=MjPfZvN)cUuv9H zu!1hY48ixQU=4Wi$P6>Zh#`^QRg7sIrP<}q@1sIsnFNZ z*_t|-_kM9=D56+uc;2<}{;+lnW6jf;20xado`b8wyb{Hsq;a1%nzF z{AqnxU!y3DLxYnNyp~=VD~lz%To+GWRzAVx-1a1;;{>t#*c_!cN^Mr0I0ZdB1;GtiQ8Els&D z+H%f(jDTadFrzD-S_1&!xqYT|!<~R7+|KN4${avJK-BiTWiDN@nU%7F)AlN^^mXCT z(pzx4_zEr9eIroo5XVgSf4H2xXdQ31)5SatRX0CuC%n@SUdq}`=qJ6j0CwL_(848g zT-PR#2$ZjIb&&QsPEK6?+#ImnqNrX(eORr|pe>coS~W7~b#iUW)HpNPMxn0W0IWjh z(nH>KG3I7i-kCHhuSMji2hk2~>jF9P`3EO)0_8-jjTO=vl90GdQ_GFBpyJDMmyd7m zvywAO^`PhZoXxH=i8-?`-q=kmE{>98yE?>DKl|8zAYT^{o|KA~7tzMmwnlrO5nm0w z)%keVLjc$VJUL&)mFPU7GOJP?1wPCpq4i!f*P?VgsxHZs0j?eWeY}Al!umIfid9%u zp7*Tr;>!!f5hz=U*Oxr^=SW^795(_xqqz|bDBS%VEcNqKI;N|OSX)-GG&l*1sJ-a( z0Aje$H1!E#*Hc!27|20gLWrtBTHz~6S(!2#08YIE(CTSQD9?SMyw>#X+qA+dEU!D)AWa{4LY~){PeAs1)wuYX}mmUfL%58z#43joXIx7NUq+F1ik5C*P6%54)7oi-01>;A& zRL9kKL!H-~c)bWD(ux3I6zA>5dfxwF>AGZdD%Sq*YotuU0<{sucS925Bx81ILYkGE z-(M#XM*bLXVBKF#c+4S4R7iivn$%$XO~@3ho9Oq_8+N3U7jo%3<7fgAx4}P>ebp~? zI$IQG3{1*8&Hrqb?>4X`svnyuXBWl+x!aPwZ!*B-!%W08mD9I+YBf@U6`^C-vWaUe zN&*1jPg!WdXTf=w2HS@&zA>s1_axPMarS6GiC2Ti>In{pt3B(Sc1Y~DTY2o;08G|I zJ69%Uc-C2Ul6bjy8N~uej31iBkD5m(d}UemU7)ny0`%^GDBbsy`$FjYN5EgC*Crft z>8l_>iYUbll0P=N_+Bfi{Gmggd4f zKu;Y)p&|{dJvG>;cK}F}_LpKDSG#d&T(qK0;rzxk zwqCa?FY%Inde)Fqal{KamKL)UE$92gV62qKJ-6KiO3!uW&evVXD`k2Nv$lVO^rOU{ z8ASl?xcrZS!j4wcRM0ref(9U!USN65c z1$6*^>N0SJ69vN2&+r}_%_W{etM`VC4Q1W;CvwII9|@(GPyU?Lfjc_zbe_R-Ue*Oo zjxfbp62}SGvfw}tvl_XqQ=hs29TPe+`V<)K$2U!fhRsq=yFU-d$?`cD$3651=_kYt>Kb$6|Iv&kEGd?1Zg7{ff;7CU{SD$Fk=Jg0E`5#A2&s(4@B5 zPy3sf>b>#rq#`m`r!(IelNW2^gKv(#Ey-2`R`=k{Uf;Dp8Iysx-d zm#z)1V zE0@MFKIC7=-ww(jbh8Y6$@}~^ND6kl0_Gxa1T$yX-=(z+T=&^D1ZGobjn!SFleRl! zhdYsnMa<#=R1Eov!n22S6|ggkj+UjEI*L`D>891%Tzcl%qB)n1L*%Oze72o8 aE zOs89Eg`W~R8`Jz)bdW>q$|au@p>+pjoO$3vPHOz=XTnT4{>2;HntNDCKic^oda#tK zO-T`y?EtVaUgh*AJ1(^mIv>Zn%bYVe6HcxJBGwpOi1h;47bmC!Y~A_kGA>umF?won zQU~qf?9TsR@a@KbT1;{0MO?WYw2v>04KTgt2Z-!fDE^#zb$Mmp|H0fM)+Npdho=x!!roy{CQoRdn02a?Pyr*4fI#o3i*O!*kGdUr&A`a$lW+$)R=ZCv@w0Q%^7p$ zUTvZ>0JF=pyiWy7zIeJ6@6Ubr4*8vjTHrMlEcxU~cA1T4LO*5#C=${zBi&AHO?%Yw z{V3$On6H0RP)3RrGyU)#-{c%}Gu}@xGE$sTN zKY8K3R=FoWCqfG^E^ic&-I2IfX)dc2El~!WzBOO957S76W+D2v#|zz&as`LEdwc8S zTo~2IhcXMizK1S`)h@Y3017V&M2)~d4jZ{2sriooL^E2}Z_LkC(L|+n zmt}bnkbl4@c=r)+XXKaK#Va5#SVw%5w`*?wns$dW9#V1NB#m3 z{*nl%{~OUqMeiJRbz^^9D{%@_lr|F{jmG6QEE5o70qM(Sgo*K)fbq)E*L=eo8qFna z%gI^!W_;P|$}o$_p>tskTlIV*G|IBFXF>#I&Lb9HY_INj==kz{WCpqnhN zND%qju#OTEj>d6=Ioep;-U|5=IQtD{V8b2TUC6M6v(o-gYwvV_pa}9b?VS2}U##MA zSYgoTg&dmOneIj{E4W< zKW*@gpkv)`c>!|gTp76lk-0PmRAGSw&J^sC!@J@R!90$TsxX@`*I{PrnQco;e zJ)+X@UuxyUk$-CWgLlgz$Q_ih?-y%m)8fcW2aUJBoilNqAo~!x&|n`flkwYBx$<2D z8`_>YSBjUQ@n2kX|HHZc_ix7WbJjaa&_1;bt%1VDn1RX&g7S<_D6uS{xO;F!Q!Ym+8oV)IW9ZeU%&}TknqwE)$iURjQmTzoMi6mnIDOqkwTY zV+K{U)%#r9A~5>l<^1ByLcvwLJOnlkVdCE!P-N!o3}=)!%?-X6&cWcj22|$U2te%3 z5CSJgR4YPa@d^T1-rxlEYw|#i&&wIlkp?Jh!2pH`uJEy{bNMe5&kVYr(7?@e zTKwX74lBUN$vpLmKrRRJr9I3J(hl4JL5gfbP{1mgI|`1^MAmm$fd zoy2s%tSbX|NfH~D$QbEzm>*d`-4H4Kb26hTadPrVfZYIiGv$#d=YA)0i=xeOeAIxd za{kWA-i5-dnoRqtgtuu|G&eJC_#T+gRdK;+sEF58(Ns7Izc;sX9<802t_1jAuaz%B zb;|Aosc@r07(?1$;tW4}>2@Y&3t-!m4EF zn2=B}ojopV0|mKw^4ne*j0|QQsrLi~aFCkbY&8)b4~T4R%f|RAT6ji9SWdFLM9f3lOAr@3AuiHu7vho z^7d&3XlTOiJq3^@SjT1MyS_;{#HOkt}|}N z)>r|~D>oNoJ(3+BzGBfgF~joO=Q&cag$$*95@24wLOK8S=Zm9iAUvfZc;NimOGV?c zyCnoh=o(uTT9u?W5vU60|JIM$ zgTUl2CO^ak{!eqY`t`ZGU(Ia>GckO5o&SPa`GN0M-J6;4V z=zj>&y%r!u)@k1VgAkei7eYLa5CV=SEdJJ6mHGRP5{?b@WNj0~B!Ql}OBHt>PX2?% zu3#LT3Ya9)|K^gaa|u~pUfE3n$cnv@NgLuT58=o`-9dP1qsorP;(=KIZ#@xlbu*^l zsk){B7x-On10|<{d!ab>7w5|c<39uPz8_Flp7zPA=|E<}0}fy$a9QVOET88b-YHRr z)B@7Vdt8nODpHfYx2~MGR(-O{0a_zY{}xcDtna8(rIX&2q`@WO#T1XzavNM7PR!3*xAOlFbM}$oR355v4>_q(!7-P&$T?MnZCE1}SNf?(bOx z7<-@dzVCN_9QT?v3~LQD&vRe*6?Z21slN~*uZ2^4=X7@7h0p>Fgbc7K00=O9TgKv` zN5_#mD5acU6<_=I5K`)vys3TCJ}~h5;Q6fPGlGc-j45mC6HLu_>}ma9lxAH3#A${D z$=eJSXvpWtpS;hDfNP{^&2V2jLqi~D^sP^#Fe5`>xX#CzIT1xp@)6-Xu&aYjMhGg`$BDQ* zWwtce57nJ%D_*0XY3b>y85vD|j%%|aG`sw$ns~wQ4nKCHASqMY0Z6p$c9d$ZnwyCn zmG?hxB0+Lbhx@997Q%k+7ikCIDCNYxa0nXz7HF=YJ#C=*ke5Q0h+XDSd8P~RbG1utvF3a<9XCK?1@`TDVeGR>m4CwAn>DE0Y8@v#*fBjgAHp5u$&zDQ=duK z6?Mc5{>Fq(Dht0z!RN)tJ)$pZ>c)JH|4j-e{Oq=;aki8_W@Ywqsfz%7P;yegfc6c! zXvdT0p0(qDqDAmNxPAa7lZ+@Y$AV6sD}SibcH__PKhYrh#OEQ041oKOm)n5TGjmqVF6=$NzyQb$H|1T=w1&PD(p17RP=EfQ=TF zyGC4@NA@MA8x?_3^Bv~{c4BEIz&bLK63&tUnS!oUJ6Mb6i>{?kGXdLG6ZLi@U|%qR zjw`M9XQFL$>3k?yr7biOqD4<-e&9klkv*jk{s&Av;KGtrgTAL-Yu>SzX5w6qgixSh zi8< zcuz6jv`m9ns*8eqR(#LA>Hsz(;JI=>s3;HlqTQ!T@w%;L&dbF&WGk4ypY=a|cDgSWO zD#!s+JWwby9kewqoVcMoTM6-#wbrcE3!ZsiK?>6#Zo-{NH*X6Mg#s^#n((KU7nVMx zW!<*mApkKr##rk(TtfLeSUWj@_#2b15XE)ME#WdU`r%zxL)ZSP4n?!$HE*_mwsfM{ zYnHyyn5CV(aKfkRtdE5P)h9-{d@^oQE}eN0epUp$xclKr>bvZL99Uz4wW585w|O09$63 zYc!x=*wO8NU-__VJZp)jkJV^c^h7#uMCJ&U=jdXDr3JAFgO!RQA$V7W3>w z6xiS-7oc0+>=WSrQp}jgw6o`U{^M2fSb6cZ+=Q;fB@$#& zglNW)Zg#Ao@P?Y2;^+`->sUCV&e_OgWTG#IZYSNMWsD*&;)|l5M+nN|ByZLH3Yq{B z+vw$Ketmy$a+PgJrI6AwnLu=-C=~-Pe(76_I(#7&Y?;^Qp&yWS;8Y2C3?Leaa{^Yt z!N<+%+j16wNi0D`Hv%jH-(KeSd53yXP7$m8RC0_5t*KA4cz!V?t?vrM1+*|a?u7e- zr8rAOcydvnvo%Pn6l;Gd8oSyoX?@K4nEzV>QJwCqfkIaeHCc3$=xISK8C8bUP?Gs4 z+g8bi`IAd2xT@#@60A_~22KU8n*1oR&*gXy3bar~?}lb*L-JGB53noV+oHU0X6SUj zL~>ia6S!IuQI8RqQW0`7kWK(<)vjt(HYGK6WCa_;fdxOQ3Zy(U@td6kQu$U4Dq^BZ zvQyWCfF;DIEj}k3jc(@@h2*TjZv&L4O9`wk=&05#G)7Aw76(}d;m#-i3obho*_3)Eg;OjItya9t9hSz8D0l_ZL7YJP2v43(TKa24p$(#6|&bA#1(BV^psZRom4N#_g~k=38V-O zlVrkiCw9J;&>T=fq5S513pR1u^x7I|P08LCQQvn;>r=1Zqx5UjICev|N4l%wIm6E+ z|6Kq2g3lS8WT8$HW9v`p<&q!lrT|lk4_zC|1>+h7+7t-c{g1HkA19}BO*D1-zPik@ z-MLS6e)Z}O%6qdy6K$rd!_L49bVI4eoY>dilRIM-9{ANre-MDC*jWZUJrmk6gL9jV zC%!v##tP7@1V`h_;bf79-ll9`!!E!UZMd*Z!nFN*6lX>n#JLcHC^yK(@Y~@5w%h+o zLmo(gDMW#&5J+e9T-eVOUExz%z4(e&e#>G#aW|tvZPz-=6?p|c2o%Bzgh}R$ZH=K= z4Bzhu3sHr?Pb=}(VX)JfsAafLRd}lKWTCJ>?ewV(dVqGBzr}0|KyqMi#4^uCdY&eC z41)d}s!&qcF5?p-h^dy}B_Hy447lPKOOON+d!pbo&)gGJidhH#Gh6ncd zhdLnaedZ@bjY=Ibr2prCdZl#puz)luE%cBpjjM_9dr{w>J66qlQ;mwdwGt`Ko(pQk~?ug$VOd8iU(nOx4=1B=qMOOm{?SF z`QV2sY*Me_cr)P^|L@=r9+P6OFvP9_APZO(BR2(v~K#6LOC zUL3L||8!=R^I1qE{#$MmNx};O^YK~7kv_0O8Jdw4TKrDQSswsnUfQ#)# zJ2l)$*a+B5Vlb%I#s>zcjI*&Tf(YmFtGbS#0Y_B=4N-~|Y z#Nxouf0e=H;-Co&UdbQEB~G6nK4V52s!>s(lJ~9qgfVkjbZ2B(?LMS_ zA#=+k1IC8I*JaYnl6t=R#|+vqBrNrn3#WbZ`3&Ouklpzo8_xJhoE&-i=$bIIi>Q`Z zm*LDoLG8g?u&r6l1=O%8O}R zhHn>7IFsQ-cbE8ts1eoob@7^(O6Q&Vaca?a;^?@KYi%R|F(Bqi#3{mv? z0MCYzWos-kxy!>}FRJ>UYy0b{!4DXHBc>Tz8nhZZ|v=RS)t+F zdKWnrs-vy`MpzFeyHK=c=U9;UO5NG!4(D%3KE)0r&ddAuc~Jylbvy|^&d)LSCp+Cf zaEQ?-KYyz>X~&Yt%k}vUP*4Jtee#-_EMpKt1pWsk4=vU`^_=(H;JO{t;IQr%Y+oL?4z_3Dr#gLtcD7? z!Kwm%hiclW+L^n^X;Wd=M}g4R3OO_bCsT%IO@(DwnGRnvi<`G~bI4%nkz$?!T`2};E2m5SlB)7%n!o;a z0?4ITj(*%ms_QsZ06YvRwOwt=q?(Udj+AfZ&Wxk#at-`tuoSMW9)WB;wYJid?*PhG z8)4CNhNu6RL(7c@vu5%)9kIGeW^-~F*N&#U9NC&6a6y6ARIoH~`u}OL z{2ze$HH0T{;m|K1CA<7M0eTsju5j&th1-WD>YoTbe61;cl&=ivd;Wsr&tVWR3ohw= z!7mRZz~n&B)(T1j;GF>mF!4jEZLwDjsXD>w7}1P|gVO-6S|6U?EmDPOR7-&LX{_Dy zFL8pcsJT=ixC)S8Y(-{x0ae#dC9vw(c0#|-o1|$*JnDl`UPi31ysd8fU>E?&V5k?7@)xUF3fRsPDoqH6 zgU9S-Uvu%!jc%&;n+6s@a-;*jYEJ&_T-zcu82!xt|jkR_& zzQ|0Hh2Bd~!VU{)7fkmQ-QVc%iWbP=JjA$DF-0!)!_HZLBtbM4PNJSvaLv1}O71`; zb@t|2Gpm#LKMU>eu-UYs5%XW&2t>z*-yYu!L5#|vBQ2baNqjl{l>Hnk22+Tg%j~^m z7toRcm4WG@%zx@VhriBDq0$4NB$O)U__oGy7qejC>CFYZ?}X0)6s!bkB5Zd+KFjpE zKHe{(Z;vgb=Es1u?Mx!?LZ*Cl4}yXqQp;ryDXi^2O(;1fyeJxVj{AIL8KdnURev3x zs(3(q)b_+B1*(Cl7$V!ZowWM3g_Si^$WNgF-y8H-8ovb%6@Xq&blcH9BN)mU?KJR6 z75paAobM|~$Nydi*(^sj6teC}Z#>w74>5EY+V!Ba307Z9q!U+Sl+6l0Dp+dv;)V`- zJO)FmCZtYiKjvXr^V}61+SlB?CV+rw0Kyo$ZbxW0vs0ctX(n1>GCKmQM`GAn3GV zK}y(A6UBWgw5D`@2)~8$mB(9sOtMUy%sbO#bcNk>`SX>NUyIHI&Msaj{y$8>JWAjz3i}1jb89iwoSN zCm{QNJx$me0I;l6bHcD96^ZTunN0tI2qUC_eXH^e$hoI1v+X97^Z2yK?(2lmideniZzhQM_H*VsHR5xom0_1Zz;!W8%oQ;WQ;CJ7>Yzu`N5d(T>n{z$yN)rmMZ(F#`VA3MH`GU z$PR36=GaMHfc4CKU7Pn?@8g+oMWGs#p4Or2;L4;O+L{C+Q2jUl?`AjQIp-xN?8ZUygydVU4IWvi#A2f$O@*GM2 z0(HPy3PiDdojr$UQm@Rx+lFFh*4B*&J!)Q_*^do(a}y8S&%*=RF_)w-hwvV5fgn%^ zl&Ejo3pucB1L_+XNU=o-O8*gG+6w)3bhAygiC$6I0f5IGDs$CqZ|B24R^*XYJ)mY| zmzq^c>*>RP`>OZ)pu!Y>>=vQJ9S$jTNBE! z!DWPpTB7G_Kk5Rnn&cGG6duJLb{pE)Tz5%uVd5iZM>Mfdmxuz; zmws)pPvFEMrn8ZIT6Jo$erBl+o!hq9C@wh#WVrBrYvYm75pa{w&8M=COOAmdFW5#E zLaInv32S_%u5AekZ#|rF9AKVQbui1a0@F}VY~Woz#fO!l)CD>~hBp^ru0sua#4A0y z172pf`yVRz^+51LTLpJNY2`3UD8PccV9mbTd!LdOq&!?e6)E)+>xw^N|X)XGLK@Nv}*ex+1c6ojc>-{{T)7q zT1D--3dQcu+Y8ZwH~S_Z&U0r}7ul3XU4O@lM2h-~>?Ot6rVNdo&-triRxAwN1diB` zr)TbG=_)SQ6x`B!oNan{QWG=_?y&TR=jP!jCtLZrQ$%XUjP06)e$Ac>f2#qft!2?1P%1GoK6D=&f>k= zKl(nqF6d4D_0Fq-#Gp_j`k&Rg;s@$n2Q#Du!!16V`Om-vSTpl482F*_$qPnzFb1bP zUw5)E&gpH=h_^2wm7ldDv2XEbt{aHxa=-s8^agi>qx6>v^5t%?m~A{ z)U7AKguTfH5`3NAVnBM$7u_C3*INUES%8G-7sN|iJHmslTCMEWAK8O$lmTP0F%a}( zw7z)L!uL=C7nbm;bUl8g3^mo?2O*j)GB!gKy3yZU{c#a3Gp~WI5~$FtuD$}=ecY6c zjE}{|eI3;fyhs4uou+oVkXi92kLcT5gUV-eo(k~$l+QPKu}!rKetk|$XuG_@Gtm?q z)0y5QCWrCk9oZGJqcO(ET2}kC^a#7@2JP;WVD3N&?F1ym>HR~_3n^^twEocYLa8}G zU`sn#-rMH-cKSBhq&jXR=-lU?zySi5PSDcGV0M`(HSPeoR)_0?or=x3-1YmThx}(CL=1K!(@F zUi~`DX|T}vt?L*jFsHD`o)>r$`%y7>xx3X`(kbTm{x>lA=(FTdp(_LiF&ivI(?;Fp z{=zlM9TjV#DSGXvI%HzRAT_(k^|og*F_ypbm_c?t{tnaVDmgkKO#tuR3GK)$$3Yx1 z(3Re~p-S6>z(kO$d`!dL=0-e~8XEg@5W=JPZ{s1YD1YW0(DZgJzbG~11i$?^LUer` zab?Hg{e4x#G%A8voGiWxD;1~IY0~%HqYkQFRjGPkl>_9JctG7DfcGnuCk8;8J4T0g zLkwm6$L_lGo4=(v?+;VcKa+iNZhfoMVsGu%M>&c6SS8+gz%m^o4iz(j9~S?s{V-8@ zd73X6^asH<>p)Wnu$ozG=_Q)vqfkxroxuD{K{HAqb3T9IT|5(i=kA=Jc@&T~OX1R! zhjRTCB84C;3y5Y|oeVJlt*kwrVun1#l_n7=K|Oa~2sVB#9oid6gTN*a_`Sph!dhYB zKw@jGOItVcHdze{;`tnbdNK;{P+oXFkSq3l6b^3S*f0oMbbffQ`zU77$xCI`+n2nxI12++f{pIO3C3lA!{bZ*r4AEL|yJ#A^WIrW85usa7>=*A6@8a37m z3za=$1wz=6>PklEwtnd z7H4t5vn!q1j2EOuOywcKg7QL`SA4noP4MKdWgS-su0BW@Ee)p0n~X0y#iuThdf`}2&q+l1oirSog%IR z>z#$Bt=*jt8#Vih6zrYlIt4rh_B$jm7G^TS0b?-cp9U1-|7&_9{WJ-pZ@p}htQ)!eLdEIp-tQ!GbC!c*MR`-H{96+Fw zQ$=U`QN8{aC)mHPIcvjYDqLT(O`g4)yc2h6XkTFg2)6uw-dx4XW!u0(Skb~`va>d; zE4W#u=b_{*7lV$w0>}1MeUXVOdN{g`&U0nCaZWFz#iARopqup9zL2qn5lj1?!y z+8-xj11Q{e?ala`py_0x+aaxca^w(~a_)OxF9~7#C8m8j1m!w0eQ6aHews-T1tr5` z7rr+)9nzfV$^@VJGOu1U%f9~lxmMI-E4|cxnq890a@T<@0UA%cxLDhSTBmD!?TT>sgj7BMBrf-`{1>n zRVkmlcE0JKLRkbI%?WwPd+52eu3R|Y0Md&nO&)jw93IL`K@>=KB1U06yKHAgIc#&w zW@v!0(3ogXYhECVs@ujZ&M z_{F~tAg*w&$wCAmJ7Ek<2==)N2&Wz<5#2jRZOeWJb{Tgbe*!Da8;tO{CzZorvC(PA z2uFliEgaLm+qG1|nmP>r7I(y)=4UYMVUxuHz+}(+(`*Sn7Uj}~gW2ZN@ZLeaQ`M7K z0eZcTxX7I~xH%tTaL(oZH1b^U24w%WtoA{=Lxuu{BJXF_3g{kqsfueLT} z=rCG$8tLaX52{CPAAC{|`GyIpPBJ+oQ!qONk%RDxL#fg*(#iiXDQ)-ZsZBjm|Gr+n=ID9y;F*eiaJv05|x43XmOZz_5?yI_x8!j-NTsyN4U8> z2{fedM7=!Qys%1+eA>XgMq~1*q-;JBH6#W*5Yz4q`1_4K=>C-Cg7u=}OG&TF6J1Hb zDAICEUr_?=4#1JOI?8E8u28FY^PR>6?m4y2J)$F9r|;;upN#__%F@MME2VSa7K}1K z9{sk_hzrnW$QL<}xP3EPLIr9fgpkVXq52_sR_%tx3=6!EZ?UoT!%D3RU(>fBHglnP zWsvtVQAmfx#Xrw5Pn*qcW)(an3=P>>pYH`jHjp^)-t_Ik^kHymY5G7gVdum7UdFLg zHcVeFB6vjAs73qp_a_*5UzMiTgJ7BE-W#mYAO}*y(<8vOxa4mCPR5GKqJMjaoPL*| zF2ooFrm2PUd1)`YE-`{Vkbn<4{&zsc9$t5?F7PQ+g)ZayWp@bEp6m;rHf>C?$5amnc*-_Ja7O~FzGD-cUM z5?DghLFQwN`swV~~3g+=;R3@Mf#-^&#HW8@NBWEnP^uxK{U^$ z4%T}J)>zIu%5GHXuJ&)TZ*(QQEbDJmC+z~618j>=KDSgLT%5}WAC@HPXn(isTj?s` zxcb^*fH~@ISZ;bA zh0v#=MV)hVkPD`9g+X@IDrnOZ$OtQXR7M_a{99VWjSHkDN!Igu1#x~?dU5_b)1ECRug1@n`TX;tZhY_U4$zaX7sZfv6KE3mxtKoVS4GS|cvG4~tA zZ)z|Pg6vXSU}zqHG6a;gV608v*8ySbZ*EU?$f>1Ll`=N&`J|YONtEF?5j1+cU~;w< zGRsMv2{-tZPTs)Lv$pAfy+Y!XEIH=-o_IsfgjU(e=wfJ}jK0?f5FO+0GE(INb1E1J z?5ZP;NPgfkIQ%`b8}aePwN;=X1WaFG5btt&^WF0;oj$>cIgn-J0A<;%$G;w8yo~H1 zaGo)Oc)XI8-F@yCcbl7qiY_)X``h0U^>W21dqL#Q^|aIo z;BkY7S=f4%uC~k1M3aSd&HS)WdR@EvgZ8REYlEQvfi+EYnzEbn<9zJ%`gzBEhlSYP zmkOnBV20dCkH7gy%CsyKXHUCc3Fn*%UfHx$f9H&wPk`^BG5}IvK9$YmUYEB}O!hif z=KjiSInqp%%Ql^88*q7cnuF$5o=xd-(f14bvgwznnUlLfvS3}QF;`~H?FI!WRe3D1 zl7QUu`9ZFAVyXs(OHx1Qdoi&zQGFB7DlB0xB=2Ij20=9EiTKPC!*5MWmn?V`Ecdy*KdBV?ATM7ZCOXjjtO>}(xf-~( z0d%@exm)K!Dk>-oadyBDSu!3faWS+Y<^WWG5cUJ=7_#6hc|{}!*6~0uIj}hP6X=6k zmY}&8_y^5wzfj+U{0!mOxk2>@o6#uB9iXfWthWTFQk+# z3p+fy@}m_HNN+KA%l*z6I-zxYWn8YzIF)zShgq=-XIEf& zb6>4myT6H2O>Bq9)VBEX6^O)imTYvAooFu^pL!GcgMM5vJht&IZZjrX76UC@0klvR z-?po}INFSN1(ThtCpxms}-euslIFgM;K1#*tW;RNbaYC?N$fSc{%_|M1|2L7gaF*Rf_v+|egu$y^U^zIMxs zZX^ofj896s1Quux;R4r1@R>e+BBu7XFY88ca`IwV^4m{#M)T1qZ3sk6eGXCjp>pNf z>UeToWD^+rKpe++%?T{+$Q3Yj!D^fEX)Twnv#95z8cImqIX6-2D5ZzuDkqAmj=R4T zcW>db0S(2mr31bxtjQ*e;MW8>5i}1vj53PZ+a_(=4mL%=Miz=k*^f!|eD)xew+1rH zIhUJ)`3=3MoXHN=-li=n(Q7M^Mear+gNcfQn=8N~;L@5Y!Qh8AJ56Tdg>bGb$y}ch zz=xeE>A^Adcf2MmCSKFD+1aBcjYDyF04oDe>a3>{XyN#U(i>|ARIw&=tEnjP^l^dJ z#bEcrzZ16rcbGiX6*ff@P2!Hdk>Z~r z!%n~OzKYxKbU+ON2O`fU9s{J%U*j43`&))l7#5w7)E^nN?0YyVB?2h6*xp`xnrCm- zCdgL@r|EqH9^o!9`S~1``hgWsi+vI^t14|xoyX%ptoW@w4l!l7DG0_&4#Gt=VW=kK z>FpiG85UCu!v$6n3P@kr^bLfS63@LZYxxe^jx561US4R=*slwr|2??$i!qHx> zYgwHoj|LVcbe@>z61j}Rh-19S7`{-p`KqW9HT9Jt7t*x+Z);JRxvyda-0&-D<8f9)HAESJizqf08%r6AHl0}?Oxu+nY;Eu~ zcnLg>2}s}Gkh#)#MbT!Oq{fax{gj1Dd1T7;=;9Qihd}0m$*X~orLOA-{y|8|EJOLt z$9p?+2n*nACjiq1lvEqk6s+Ud;Pp)wf{<5Cv>Z5_Z2Rq_42n=qSW$yw*M>iww!h8IB4wD zM}fu;*HYL)qX#M1(HHUByn0mueO8s0r1aI+?m3B%rwXax9ct0(`gw8pPq?QWIt^b9 ztWc_0`UEY-QoJ=y7LGe0Jn`R)@bBdrNx}ezuKl~3+j2_73xMSgWtTp2w)jAZWSrf?Y zx{1Bz`IU-X;!y%7TQYoBk$79%PqjQaa5eD!C&*U`?qY(w=2s2;pVV+o2R1d(BL4BUeaLb$wkXO;HFQtTPOGX;;@D&3OGx*q zelmD{0v zk@Ghp;g!eVXtrQI>a;NbP-35DlB8GpCEzJQ?xRsVsIAupwNk12!lynX&I^Nq4EHI< zR~$;5AKs=_mLk%(>)(640wBlOTNabj@@LyaJ@rMS_+0VhAQs_Py8#%g#@UdkAmIq+ z$Epr;Ffe-SXhe1$QZurX7qSAWO-e&0D_Hbig);wQG0 zueDaT{Fu4ZC0lk}J8ElF6J4Ou$M#Da5#HCbu;yn#!wDE&Mn&)y=KJ*(_64*9Ld1*Q z#(JP`5K*o-Jvapq=FY4ESYmj)!}U@KO$8VO0A!BMZj78r(JYg`cRsTMG?SQ8JseI` zwqBPP&1HSsVLJ+x>b8b(@Y&ek><}=%PdtJYmUc$wXSbmrAs6;tXeol|?=`u6!t`R~oHA9E_ufqj2@yhfIaSo77Eoe@iW^iJ{SY~}>P1CdS=t(Rwx`}gZI`1kX|+x*+B48Pe*4jZ4RLeNDB1S?6DFU{f23FeO@|nW9C$3m%Wz?%YqIrw z8o~Y@ox!&sPK-UODdWK8P4pJ%=C^VR|D5>XV=ETl0jx-0{&I8;ybXtRWjhDDGUsxZ zbx+4DsC`#LpvE_tu9%JRC|VhquIw10`-9%dz<*!l_?q# zF^2`tW9hwi?jLueJFz26tOY?1xnCo?>Q;>DVx-lx$A~M1#b%Gtk&*`dnb1NN3Z~#a z%GD=(9bQ^&p#;JbJLmunKs-;zubE9)Z>Gz&3JUmB3lzfO@H>CAMUw7;oK5;9&n=;3 z7x`plbaxoO8V!5Tv7*DXjRqb7d~QL<(uT|TphE9EUo0lmYUN?EmWqN2kO+f)B4-NN zqVoUHoXJ6z`~flEXlBJZnU{mH3Y*=nxVwPS+PU%#)*SExhPu1&?jJgkmi{~db|h}d ztNeWF?%kePA1D{{6ncXfkqBB2b0G2`v_sq`xal!0_TOSLOv4BT@-4q8#f65_;p== zJ;VGXaN3;i(A1(%_(P1fU$}=QAAFC_<}lz;6frCvmat+bd>B`OuhQ zp2EYx(r-``BbIvPw7Uw5RIsPEF>k@4w`__eK+XQ+$Y~&}B9d50G@`DsHFY2N`LMF( zH$vK-la`7T%|oT@0t_O1utIg7MFnNOqoz2%6q=#8qP=$STX*e{8Xd@&+`ntK>~;3PsivIg!_T)rgY(HTkv8=4?5;WsZ4Vw! z8QTbrO=QMNOG2rx9E?x?w`wW_F(c-xvs*F@k_@MzBzhBmDCCm7APtV?U!Pdf>U|x3 zOLfC5;k%^0~LDcu2RI}5QFkC-`&f>}mr88Ec}h+mU{t{>w8TP1PW5|9W6vuDCmz zc3{8j9iD$&#=$W9xCfR1$8=&7z!V%*3>1c|CW?Z>FjB)$f^os%t3=3F=WwJN86<^K zvN4>L7(;fJ``YD}9EoM8@{s;bwY|Qhk=;`@nwsnp!MkF)MwjxF(1{8rF(yD{4R@|r0hU)q(Ai=AN zLZioVG3!c0+e1|YL`~G60rrBAP_kd)s)NKYx7MGqS@lJU%$aN};x43^%j&yXL5&B@ z#i-j}0v))Z$L33$1!<9|L&2EI+qEN2%3WOycJ}7G9t?I2*=K%`@G<-((tnjkM;glP zqrsHSgu)$G?RxfN=o7=~KMT5L2a1~#3Iv|V+%sZ$cyV}f$X7uXT#0%2=p}qpCnAQU zUYx?;qdrGqiIb($wX4x*)cmjsddKlSk4t#-0S|NWHw!QP*CZXw_@2c-M(@<|yEB2& ze#wda@aEB{It4Klg~sAWOU9SUn5jyQpDEGpta~myI6Wi^SbK2O`CV-Pepu|>#DZ7$ z`Q7;!{uu?oAzrQ~>Xc4HRdbVO|KkXxf(pEP6>zmFp z&Pgc`G&##<;m|TWRW>>6!SEf9 z#@4qo-ir@+zMr8Us+Dg!rRBMOT|l5Qnt!*%tbWv`G>M**!Pto2R1dXhj{?W3bT*&& ztknxn2)60oyO@KjiCD3wPTk^foSCCtn{wQKRJR8EgjGmZSc=-OClVLkf9Wa|!rKwd zTh)Vd5ek`HN?Y@IVVD+e$~i^5>q66FnM1sxA|ZqqIA|p%K|>C6y5+Eazc87do}FRBu8JDn%6k4Y?9rK+OMP+IpROt7hHElNYuN=j z_&%H%_Q??_EvHr&o}Vf4E=l^fXO5mO!)LwS@lcQ1OwI}y#Ur0P?A3Bh*pDf7zx2bE z+pj*(n^PAWPcSq0lfw`a)t_z2#`Wg1wF*qGEA*Ag<(3oiiE_nFkq*mO$Sbk8bXw@X z+G3kpwdH-qbUQN9&mn!WM`F`qu&p4OTXH|idw z)ui@i+0*e_o^xkfXqMY_xw%k8!#}t1?OEN3%qu3d399Z22U@tSggcQl-3EgS*<31} zTaN2zlk1KattHHTda6T$f?R?+ZM)@7+U<1%ehduxO;3z|HYd1Dw_N19tw!{g>GnMe zamqr0Hr;mTsmw3n>ZTv4t7%^(^!EC>CA=Oq^ttevj!9!CimSalQ)^wK`k^vMpXW^J z5=r=yT9PQOxQC%0%CuG#%p52;^qQ=2m?$*s!Crapazin*=-~vv1D&34n^mJ^zfBD9 z-pF-N?&n}&2jxDTh+z+$)Am)qf7@Dk*)%rdbpX@tSA7jW>EIux)Ha$z9wmuDiRxhg z9&(tLfMpy#%t@kp&A*2dW|91D?Yn=y{|_St1IA^4Fo^Minwh=TpiAc)SqZif|7W#B zA^vZOS`BYWSo-@jGk$;W&zDzP&cZMs872|gybYjzhuKn!jsxS$f51s4ZLjxm`s%~(&bX9@2 z$ep^7gFzR|6H8lHYh~e`HC-K+7p^B2EJUih8D^_*W-nu0c1lS%ygT+OxPIgCrraAD zSkK;|5-S|hD}?>!Hyu`QcpLhd`1mqgoTS0BOe)4Zqkl|&AYZ5v6@ttAmWNd~%G8X5 z7blK$l@oiNo0~)*uj}lXa-%0N)-dZTk}P=1b;c5$wAO(Fo zYCU#uCWkp?urI>UU3R3wN<=qflOs!dB8BekTB8GP`(v@+=FXYio8CvqxJ+P|wsi`5 zi~EGyF2vyvXiS%Q8zq*V>fx>zV)JF69rfizpFl_6(-U(j*&ML8^2zbpy|WwnY0c_+ zxuqaZA%SyN|5DUBQTQb|{o>xw)%LeF<%Am`2pZoL^=$)%tH-%o^!nCGI6GV;Rqy`f zrVV9JYhPKG&r&~%h;6TLOTgx=^*evQs|*uCU8w>^b&lc&+nXwI;_<|f*R zq8nTxjZF#O6h2|sml0Nt3Avlx*=d%7!P68U<|UJ+8;y7upWoAyTqRUtTxOYUJPEUP z?_FR+wZM(|c=CDC}<3OB2Z>kBOLn$3An zRma^hL3#%-l_*pMKGfsYUUSI#gh;peXdSV}OjD<%<49k!;%VfvFNXedPc(2^IhE8V4>F(EcDIz!3 z)ra=a!$rF)wmtRRvb{ps@?xc1-wq=)EAVLZTX8*4mY&)PFvnYr?R)Dnf6i+t?}8^< z2<>+dk>{0pdC#iCNmg{_JlyWCAYk~%PR*Vmb7AeuJ8han|nD$7prE&Ye+P@+ppnL8wu0<-U(ji^jCv++hCqV1W zJ{7wA-oENHL!JwJ6h0JO_V&FtxbSoN0Qqjto)#|yI+ zS#&hsV_+B}*ty1V-)I82Dp(%;T)Vz=&Ee&>*uH^&f;$pd4Z7}o3DA4_|M|c!$-@Ue WcgK!L;$wmT-Ii34$P&|k{Qm&hExR@V diff --git a/docs/_images/notebooks_Raster_awareness_API_37_2.png b/docs/_images/notebooks_Raster_awareness_API_37_2.png deleted file mode 100644 index fbb67f786e671d77a1124527945f7c839e256a86..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 17524 zcma)k1ys~uw>Bw)0s_*dgs5~ksGx!%C@7r{4MTS;N=Sorsg&f<9RnyxE8R7OFx1dJ z-x>VB?|tw3*1g~7S}tW~pZJ~MIcM+ZdG;pch00T6B03^0EG%M01$i|rEF1$YENs=Q zSHLH!a&UI=kGS(=EoXH*GiNtrM^mil#?JOOcFs1IZ*IAoIyza}*$VOq^6+!rvT$~` zcaq@ch5p-s$Ij85cY6A47j!~sub}OOg>{Vr^A{T{Ih6(rOKx6K{^2Y4)QxE`?@vo< zX!NLyVAAy!h!{JYvDn>PMDJE8bRZQYyM+3bHuYB32NmZsRj#KSwr=(3uE>jtP1ni$ zuGKg?s;{KJz8U(OU3ve0u>Y+q0`Ki*@Nr^07n}V2Ox{40Z*@)y9!?!LWJEr_Rm+id ztmnkMEI2x~%Y+akVF7<)JmN?3gTbH0Yr+PY5469wE6K~tvndU^hk%bwLg;wO$jG9( z2tD*4XcE(l^xWg+J*>Nq`3&N@lIG?r8KFMpTWd!L+u3o{DAbyFp~ZC5VG@?NYEf%o zbrV>2lK=00zeKQuCNb<*4Pa#XGWqZXFtS4YHx&8*-WY{HS=Gq%<>{G@o6HWfZpV6h zdVZAO^_5#xJBu{MP90WsaS2ywe*S$}_n)edABkW}Q9J`8@%8U2Y~Kk{tPeA{URX%mT+70-KN;rxwy`Er=`HLo3T7mwJLD5;)a;Pl7O+oHzO ztkS;th7b#nK-l1j;N;f548kk}Pxqp@0V_kt_?4&=KX)q+{*vt8t>K(_%-g|Brsfz; zA&D1fy!gsrO%KtafoQBxRC2bNUcNhxJM=Kd_QaQ1d1$ws_)#3l#F+u%i_zbdVi8Ww z2r)s%jwJ0@uRgV?Jq9xp;EfF*6@;e_9Xk2vPI6^H!|n;ShvDDBvNJ6q!MyI&xvn4+ zdI%G?8FpJ3e_X zc75?{zst_4EROGDJ2Vu0ar7Yui5c|&^{(|iG&6$@Uu$Yog#Nh8&CO01?x`Pv7gbd{ zMVaM7kyVP9X4b%F2fiK8W#|u! zM6HLrC5|TzzPzPc%KbNgye`!WGZE;V7hE1#2|u1_cU0h_Lj2rT6ndWTZ^EkDF85wE zP`@$Uqf}HEPTx<&J#OxO zFnr>`fZ9lrF2Q*q8PSJ|@TDls&xN|r20w)o+8K6JB2H^&3SYfS9h~0*8&uQI{34L8 z-fj4|RL%SEtJP`}&XEP9yqg0`;W5=;f8R~;-ju?M;V^h+G9(ts8S^>hN#-jJ4V=KP zu4lcE7NabLy4d65u(V7E$7J2#bx`j2gic;7xpv~X6x{Z{gjV3QEN5GXhkiW62RhzP z>)#ePuj}c@n7oAECLlM^WP3PR7oNA;C0&GE4n@SAIk;idlb#@Nqr#;dzuA`5R2D{~ z5Sj1WjBQhlN;!;CT`G;A;|k6y<3danJPcE=eI(}!dmPNsSo}o3EYI(%S!BrW)B)cl z!a#FS*c!<_GouNgDtqz>%GAkyZTXYvja-xsm^R3>HbYC3(S;iq_zowbMH09D%fVN~}`mZTHa0i|bE=?)0 z3#9*=maBqQC%tR*nytB(wj|m1fmPkjl4O01sRG8dx5)psD301-w*T<@@5~PhbeFwO zUDa|Cyd|tpq}59T-ngY2JYV7B8HbTD1$N%58r*7m>1RF_N)+=1uynjav-^K-r79~H z=qV{FX=`V^MtI$p>Nx$s*o|zD1xY6PbzgrJ{{cFwRlD;_BjVm@b!o(6x5#pki(si4 zFM2C`|7^K^_2z!4bDixI74bMj>FRhd^9=dUIho=q5qQH`3OM?RE|;|5QFBV9&E2)R zVJn4yN*c!d${rqm4GvvS)o2g-fqOjh^);5n3&nOz`fkSDc;b1x{<|w%Ou9ej<;&V! z)a$qSX8mlrWzSkoG*fu0iC5{DS2R_Z(i3DC+87Bc(`pqCvx2)X=37Jd2!oC;oU9vp z9?O@l4^TXLDQ=19CQ}z)WON#Oa)cr=c5qx+CoCcQr6*neYR z`y{GM>T|mi8}0?-6q^K5Nm}s+DI-O>6*1GEOuc$I? z8oNvjmOJygrHaSbQx$!^{e?nn`mz_U?l&{*s|`&Kq|JV?5u_tHvKMwss6Byg7;j-) z6}0K(=$Q&9eQUU2hr7N`wZ4EUn_;3rj3krKmSDO2fDd@r0&EOrHFgI=zSUpjM@2Ue z>KMp6%Q6h5<09Qe?YjfE_$mw&?b2jtkTIS%o2#a&d{$V7hI>t;*+=Q%^j)W$%3Z=6 z&S*LzLspG?=|=>cM4M`-^5x6clL|ZPjNgKFD^5;Rc97jGIm%_1@Dpal3|Z)HVR&&I zgE-zSw|0J)ufXKt{)1|!NE&{YVqUUcq%$*C(SeK^I6&)r;FS72t#R|H1mnen@wmi1 zdW@PJU0-32dWfdz`eI0&Zjz`MUFMa8gvC+d7DJqQsA3~Ytu$|<3LfjW?OhYs zlPdEf9(oQTU$?0^YEwb?zfD#DlqL42oR8|D?o(=RW@B*BN#I-#zk|UTQ_f~E3T&a( z9O`Q7Ur|DOx~YE-W_74~xa~}y`vkik?sq+K8Fv}~bBBmaOHX&s<(~L+5TbT`WU*iR zgBNObP5jq6q&nDr@!t+}g%|dLJ5il!C9?k77>$3@7QGVrx}sJCxxaRUG77CjMd-iN zB(g%yu0<1iA=P9MCm(yPLpjmhsPWa9aP)~H4wokn$W(A82H{7d{s~6ehWmGWvJe%xY1n4 z9CcBV>rafG_`@k>lPsFS@t}kaa`Ff7b+lfkD7LB%vD0&hcei=Aau6rushUII-z8rq z%#b}^OOWu}zx0>x`p<1ah#UjqVH}npd&hw}1S;bH;U9aPpA23R7Ib+KLm+bMw_JZ0 zM>9;N43~ zSkhhqkK$TO`?uFn&6Gh(_`9LQYyO7QO$=~-R<6T99%S+=(xeBfVZ{mimo9_$=|v7LYY*H)EQS_go`4Y5AOJlMSm z#M#|S??{ALh7*JNqcwD6QlVUy;PCM9T-L?mmn!T6JG(;2c$sMvqtc6GANp%$BQE7z z_N}oX7N{iF@>$LFVIwCrv@rOd_KAFF+uwbwt4q!ut!S_;I3D(}nOX05p{O#VqIZWm@O7G@ z?aXu8WlSc&n9USzZJd@mx1)DsS)^}<{ty!|yJGZB7DJxTl*PB7MJGQg3r^^CD6Z75jAeWViXpS3DV}Zj(QVUqT13h^%Ia7G*$Gw4-5Z zc@G)Slig%O_XStCHovBGpRwWVLMlmu=IhtBuJn@;aMn`3=w`0PZOiHb_Yvr)y#kkw zlk63da0zPb6^-Q6>tFNMZ>G+8HSj1}5GsTd%e-y!GkDNOTg^X5idHl=HNA3x{z#Hg zUyJUDwcqN%*RnQfjS!6zLtWFO3vp;YQX93!Efb`&ND9%bbH2B4KK=0S&94eVF3^8K#HE-30)dU1Dga^I0l0!P6h^hu`CoE^tlVG${+PX;Y7_&v7d7L~Ea%Xg(d z8>;OBUT@^F3z)ooG=qyALUo@}WE3V)bVPy(_X$7*re@yW5R=JDT(>tquKh z2T_s;U#DV#jF2tNtOA&_lQ2G)nY<%Qc zYuzIe*ArMPC!={tq(%I7%I`f{XN>RVjUTgNT-DK7y!?kL?8Ci?u~hXTRAw~@rc3i$ z-i#OXIXy$jONa*?9AS&(5?j9UeSTXJEqihLju}@iaygq3pTR;v&+pUKuo3^^T-+Na zbV9&WOwf?M?S9JPZlkp6>pHejg#W%Uz9%KqlD?#_g`nKsx0;hg6(FQ0wmyG|vQVl> zMUun04b{-m;nFQxl=TCvr!y0Sp^+p9Z*0fS&0kH{TPnX}45#YG0o}7n(1lh|Y*;%P ztd+MpZr}}Tx(1F7S~x%yN9$U_99F7>@+98~=;>cbe0m>LEq`?O6ED-#ZNu*VQz8Ca zizOBX1|(fsf4y$gbp_~Fn`fx#0hPV3N9qe|rbb;{4cTv`sN%>zLt+UKw=*V+{9OM2 zR?#;_4j`HGYHH+~T+cn(1HtL4|MJCi=#KQ%*b?K5<*VkT&^K?;n^3ONn;aGjbOvL^ z2>}B0|MJq;%H?Wpkz{S5lC4vEbh)accS>5RdhSK;c1+{j4E4CF{L;Cx`rRY1pTz4f zfy#?%`(JO4({YyLI|vVrVBA~QPQEYSeJH)^kT$eIHyL=GaxF>dR%h7lX<4_QWpg8C zPeg>Z&O9Q`*rqC~W)?Pl@O!we*9X>L@JuH7Kd$_sCoR$Pt929YgC06A=s%u28}^>t z?S08s&O<-_9$#v8o-iMr?cK??DWN+m%|a@}Vh&Ngdk+Y3{~!V1mMx`roShEklhdDxVtgA%jhPL$3q_{;Wv!VtvgOW zaEyl3fcK~$P6hL{e`jU=V2v`9;%4o3Cj$V}0y&Yrt%-+VYaH6>V=K}Z-&aAuEL6Q} zdoNtQQn1i}Sg7(!mVtVzQEaQN~wDoGVwy7wOTHj!%WOM-W-AGP5>48hOJ zQ39CHt>O|2R<7*a`|IH_;WST|8GNnuFUCt>eRk<=CVY-*E`6`(Q-BXeO<0X83;sg8 zLuZc5rW@(r|A5UenMDesrUFKl^?xl!_t^egBzu$mg`-~p93>DSE14L)9De_g450$! z$oW4%+>A<=!7nt+*ffo1auhTY#=zCM!^&C!RWp9mMM-!(h@lNA_uGsDP&n8B)!|(u z;d<|;+K=wt;r_3y!MufE|F!gdNOw7dHS-^IH>1`>K&O!hZ=!{=DN5E{FCXhf)Aq{c zO89{gEffhxCIk>R;%p}1vEHvi|6%37>y$)zId96SWMc5O6j((b3+abo1qzC=^EgcJ zg2y{%C`sqzZm&}$ ziZ#eqK_M>Nf6n*bvY16|^t$m%^u$Ht^s^+{JrCt@k%(8GcH4bpr}ol81wad=&mGaxnqbw( z0P>u7A&xPSr=!I^Nb*otwmH5vYRPkOsmlK6Leu!5`%#)sykCQ)IrFWlGD}rlS#Olw zX6+fCW=gSg&HN&H-(BX`S?Q($q*~cReSfj3R`a7#@DWA*C#$(R!wni8rj_Tx~{BWY=B|L8smhs?R>FQ4v$ym7Dh83rEj zo({Y8&&e43x(>g(K*U8J*>^mIb$2E<5))qdqO3NH6MuduJ8$I4Rchk5mTEht-kCNZ z_0)g%r&xA z&xLsxz8m?izo&sZ;SWP~N_8tqPhV$!yqpOcCU;6p{&+W0I?T zAz}16Vq;9k_waxU*6lD{K<~Qqy{o7vWg~L@OXheT`s%EgD>r)QxHF7)ssrg*2L&(A z*K>*R%xn0H$oloo9=EC^FKen!2ekWd6kCi4`lQv<*LD9@;NE_};PkMm<(UQv1CaTs9}VM!S`Aj5u)^6@7x7}P%6+V6tpk3vOK-^a z;3KyTY_XfFJNvV+g<_`;{vwmlqf2{Q72lX=3#20a+)r>_8Hr|k+(a^sPDE1Izv+E7Wp#uX!>`*<^%qM zDyHqa)QX`^$sSp5?QYU$z9e$yK9b5fg^8()KlOSp0~S0|zBQvuSsMVecpry3UTl{3 zr#Ii%2eccT938nLpi%B`N^y3bHH#-{imWf>9U>ceIH73!dHIv~a^8L+eyVG}bG#|q z<&EivdR|{gvukqPU)Wu2T#G%eq2lCG$% z`D#}5kQ6P}t+J=e{zjL}%^H?PU^iYnI#{{muKyAFFAj=cweX5a8hJczhG4)R~CZ^^l5x%iL7c zhg9djuHRL`oo_{7a$lc%z335JcO7|@ zXNCXkW|R^z#8n$yO7MS;pLGHVRIfWnx`BA_nA0oW0O9g-x(ez>Q<997pjRp;D7@rg zw9dYj*Fh)yj{S!taMaH0Y$b>k_T{EmOQ4ep*aZeKYJ^xsF23_{Pm*97C8vhFexUm| zAU3d$p2qHzH96^d61N2gQ1RN3?q-)doK%Xtd@Co7f--iOyWp=|3ry)O_l5kj4a*kn zpzB^cr|NbMI-cASi)Ik_>8hId6QLGpG8Ck~jz+F8l(sL3@Qz%o2;;D9J5K=-@!ifO zxfDS)In_dOBUD#0pCM1=U@rY>*yNO!=qY*0=R2*#nG~N6&XED0IWi9<5-N%l7#-YA zl-`d+7Q&q8mfOMRv~I5wUjYQrzR zTK^UN-*c4FxPew+9+|3PnsX6!Bvon*g>Tb&yxs|)awunlFZ5@>In#&3WEbVEE zxou6rP}1QuL-t~Xq(4~ngjgObGW(@25715q5?B-6+k&hNDb*OH$b3u6!;O(D5qC3d zata3l6;lZ`k(qNb>#d>+-KUG+>^3c_e<9BAhv=>NazI@{%iKMl9;CotpK@z3UgfW@ zi1u$zX`Xy`A_hij*?L1pVtzb4nnk>8O(gDOPZ3LSgeE%Sscu2vZN#@%E1S!LJD91r6frt_RFNE zNlP$4tyXHE96g9F<~NMFj_NE?BRG#VxGvWUi~6A5pzq*b z$J4XV?r`N#$id4r8GwO&pj0NS;Wt970#~UWzcH+$$G=n`>@8#lG$!ii&<;b6Q}_w1 zM0L2X!H)}U2h3Oph+&)8OLKoOw8!+gJia8+J{djiL34aNAZ~dMS&(W5%1d<5bl(>? zsRs7eY*vb}wY1tv!kDh;=hv@_b4?_V^X&iFz!zd89=&4Z`scr(kkrqo&r?iWpiAN2 zFMwEsmD;>U1(jgY-|L$(C@di5&z0Kkcg`g)6L&D;Q+dJt5gwOG!Id9we+xIVk&vFs zCc^%p$zi&ovTP><@&CaYQ(s0aL@_nJzJ)^dXX1A_L>*MD8$apiL_uKgwqr1I1cM^~gbp8(BJ(%bhU zpWeGkGT6jG;%{jDTUw3YOe>uL+@!)r`%r3JjR2~sx)<1ame$gK`!Dee^MN`=_mAQe zaqrf!wC$C``?p?8Wcm+Nffp|^ukkmM)+SPL$pDfQkwP297!uV7EvRS_Wkj)=Ocs{fZ2Yf5K=yciA6~oXKdy{AZrt832)X3%c z2;Vtn)cxsCFzkYfLivfGPeAJ(exujedE=wQmp!X4S;O;1xT8PWfQX(m0|!LlYiSUC z%v=ZJBC!k7!v|=bO8Lzi`OPxSaT+sm{)iAeuv9S%*YC&yHCufTssHVRRIlu4Ni?@Ahh>L~PD76Q;`@jc zItz=FQEQ)7#JfK>yUxkzvJm&euOl(EQ|dmxFEP6G$YmomNYAdCk_5)*0tx zl_(~&wgz>s3aIxf$uBN8TOG(A%0P1~h&UQ&#nU3D)8zZwwE)i`r9Bziy41Y%>z-em zzie-2Sy_z5kRLMpHsPV4-UHZSMu!bL>c!np!=(?FtIACTlJ-$1o?O}4*~JFUd&=Do z9*o{cjz*)Qn&G39a6CwlmJuf(eN89WC901zU*6~B4Egb99qIGlbcC&a^1@r!8>vOb zKDYkUHC_^t7`3hW%K|V6;n@xmseV+d?Si}TbU@-Q+eO%GyrgI|3uC3?{9I8nlmM|T z*pNXSqVO!a9>$O&f5f(TJEUguFY_4P`*rQ82q9+O@a^%At`Ob1Nr$ghL2sKbU}l#4 zZ~e3oB0|m=qFDdbH?te5!6v~4)^T-^FTOA?5+ zv%*IJLDVesz3cn}yGNf?>rCkS=xqtz zqR?*9fF09xvZ2}aeLq`HokpZqFBG}F4{au z`%;gBV)Uq`cCHy@{Ue)j-6^#-bi$$)9hbp0?efTgSoG8y^f4O&Mvwpg^QyP8Nw;|r zbw+*|2T4YW|UrdwcoH9DA*F__m3DBJvp>?Wg+Ofe-}})UmND zTY39owYa$!#Wj(q3P)$eZs&4*UdpNL7(L2@$_`xWW%|a;ct)<@ZePY40s<|6X1d&{ zqKkn-z6b{Ivis%)KknPh?6nDxgfAfO~)_p@fKMT71 zBWPx+fw1jpfOcuDDm?CoU=Q!vlA}Qr(q^=H3*ESP+l64^Y^TnWG2#aR9Y@>ssRlCd zCHo`lTJ=2OLba@XO8s4r=6Q7-&#Fo{~3`B20xdz_}rQZr?S17AA z0J4%;gkbr(Bb1DVhe(_1us6Lu)Y`3NF#y^m`{x4jxMQ%p>?mPn)I}`bPIe!AN$#X> z#@SToDa2#Dh)x444d?Y4a(>tWL6zSM=Kx2D95xzSMMRdckAeHd9HoB1+By4Lls&@uvJ+ftC$r#?-3Kh6He2zww^rjs3IHN)Asw{gau3>3&#( z=5Duj?(hCBS{jy^U9kKnKflkP*Veyb!60{6W~)5_l;wfo4e;IWY#6G0RK~0`nGx^> zAY@B!3_5PvMINC{)oFzJ7BG1)1ZO@&H#;57!x+1uxd|w@NEloCwp+t_RFko-WYMQw z4Lbx{k1xH+*sq^tLo#(vH*|Jol3Lkl;3u|00xOHhBfu~Q>dUy?q-GLLm1NQl*+9G> ze(ptgG}}C6KPvw6;(UpCUF^>+X`V70bkp00U9|V^{1mFKf#<3GPB7SUTs7x~rD60V z33l8D8!q>x%c^g;%<>xaPE%6U?qvP`H>GrHPt{)qdRUk43n5toEZgPqPr&f;XM^mq z7Or!%@xFfmh9*~KtKBUd_6b_kNb|MouY~W` z-6ZRj1Dm$&k1Q;yE08hhXjW9jOaEEISXFOYBy90r$YVW^g+HqL|4HLS<|CWD3})ah z?lFGE5AXtmk76;8VZ{vKXar@{NhCF+>Rn3k!x4 z;uThrDs0$Do@#So7u03}(M86_oFyh@Pdj`AIAPN>ktvOrFMrSPfL&~npPxU*6!f%O zzQ#d0m5k@H!nujh`z?lqi+Wrg#`$p2>Ewga0l2TB0LT!qG||Ouzu;;=`Yuq8Fu-r!Z0o}dgeUu)GfBsYIRY991Nes1SCA=4!Jm!{6?lR8$ALDoywhq)xr zojzw$k||>JcicYabQAY4z&kd0NUy&jXPP0OABZM=vahmLcX@3-EBV}>qAdk93E>aQ z>$5$1a#P~7%JSd2!FzZ79{1z<7+g^ITA61(xU_zaw^iG( z=%8(t>>-8IIl&5UmrXHfPISlDCphlZ%k=DkDUVqFm4#Ewc27gmPTBA0T36D0TDfNa zdQ4kxXwMNeBzW%=*kBAmpjFXM9d)JLMt$ko_}V{08C5Z#ztGdf=BBQADPEY_Q`zlf zhq@gG)f5#X$!J(u41V2y#zsJV*Pp)qyN9c8A|q|Enft#aKtXg&>c26yTgGX*JJ=@x zwmDgovhaayRFKx85YhDtzShNr2cmR!Ozcfb){I&8wkZ;=BHI%8q96cF93?TKJthpak+eSt!nSgRKUECvWKUCU7t zNUmmHwS`;V0nE>E?BDjYnD)_|R|?G}0C7M4*A(w9FwI!Cf?HLANPjr)(p2HapBr}; z2zN8<>LviUOa=01 zA5QuY6Vn&8yw!Bu+rj7{AjF>?uZfdqX=&}n2TvdU;3Xo?7!z>o*L@l;xJ%3?iswD~R~$U)%iq7>w`%Y4`gL4E^`HdewcmlJf^vQG!)Wfy$hS4ng|#o+{v0W!B9(#d zm;BV!G#lCbtg5Pf*4DyotB?C;Q+48tyYiNnc_15?Wr4kMDA5?G!yxTeWz#QlXGYOr zOZZ+<|KzS3QtMG8mrCUNqOiGCkdq+OeY=V)St^Xz6EgV7`DiWc%1pu8D70rTW}5yv zl&9_^O+^+RVN!?^Xg`C~ln>LC3+(S7izN7r(v<(EDW9QHPs*cnd@Mv~I#Q^uCtE7& zBS+FayEa>G4g&JldA^l!-i5u}&jE|`XdpM-BDX4CGEhh@d3lN0 zRa#hvWP~91{=SqyznK6ZeIkzD^|J{Yr}e9w{x!v7Enl+ce{4*jHZ$_vbYM)Qw;@)~Gapu!=&5R+?zPn$^ zo?qv(cc1D2qTyn${}ALQre&19sRpWU$4ni6h?YPdT9bRGl1>yW#xGT7` zI3OLLcw4N5%AM>eA0g)9vzI0XU;fnc9Aw+=`3SYm@#$#}{9LHx^P+1kzC%NvH~ytO zNSOaNR=M22FMsq_`%SXd;xJ*5QZ%(7)(0@OiZjECV~0akW$pUY2t=3@!-`mkgTc>N z#J-O0zs!K|p}KM_`AbbT$Ur8Sy6LYi1p`8{3R9FxyAfJeR=cdo|H-61Gz2{xevf5< z!c+Qg5J=POJOnaj1hWyR(J(#~SM9tQ3bu|ylNurp0@9|6FfWN*N&;^gD8@vX2%PQP zko(dt{K92X%w>z0&`*kN0olH1fa@TOHrhR8^@M|jq3M-f%~Zf*Xs&Y_^fahak{+-DF*^dWtgGsZ7>L(hqV}hyCg8U*mL-+XB;?{IHIz zl{g&c?B8WH?L=>N3{WbK*g!6$VCm`M9L_-r9Z_K~(%pcSQ52#(=O}0OT|@^cxgnM~ zIU4d;NHo-QVnJ7~Lo`MiF|w0Z{0~1v(Qvn_b;Ory2v9y=a#|grQe^FxF>1+dNi#?4 zA*0H6(T}a&jca%KEEln0-DG4ae6Tti0yU&)$5oRi^psB3rYwlKEiIFNNG5S;4x@I0 zBpZ1+SVcB0=YoJxoZhW!B=3jrA#q`gt^fgS+>}t}d#4W4U66}OHv0mx8t42OfL6z%pg+# zyeLjHz=ZrPO<&tNv1Ht)?2D5$dKe>%+2(g`0v8@O9{)CtJziNEEi;`p22$f=po)T) z5R58HxsP7|<(953hl0;cxy*>cl)wWr3L9WM4EFG+s!1fmcyvNGKsWa?uk3(D*be8I zF-HT;urU6gk+cN{C`t3$%^68`0ugTnR?@(7f6 z@d!j9-1X%WdQ!y)wM*Z87&Se5_WCs?mNki1Lm6jJLN{X1!I*rxS@g-##F6`n=FrfAP8AmTVcOs`x4>upVb zbS4AQo0^D%X`y`P?1@UP7kz|dAJey`7s*9C6(&nq( z&-p{$HiLwiDg?n;Dt}f8fyh&-v>#qsBFZnn^y0TkZ(`|}c)JCU8HegBIhovlDbMB) zZq6j+M+$~#bn&*l+u)_9NmL{eo~I;j{pOnaN5dLJ^L7@^*r7HrZU7Z#VHXcSM{b^nJNg*J>Suq<(R(M;4;LfmBrcWOBp^b00Qo6f`9 z4%-@e-b|<`DA5v~HU9xRp7cYva`w&e+Z#?w=dzL&xn${u*PQefSp&|{L>0jbeY@ax z+k5rj+`5^Ow!M-zYYM6EnRr{d`|w|Jh{AvTOCX!nP3sUi&GaO5sQ?R$@5KvW?lGs??Q6E2)+Rria7Gw@_LwztlJpNCoj`nI~!m)TbQ$m2p;{-k}+u94_dS_z$>s#{Bj+ z%K`@g2iOH2+lmj?USOPug6EJsAz-WeFo7Xml*tn;v!Hkz&Re$h#Y`K!qw$aBy+J{g z_al%TG)xzDQj3M3)kg@g=YK4J_AJQo_$GcKMyYr#{~aoU*PVOUsPY5mCpL;9_fB&> zkj_+#{0lXrl~KoSA5EUk;b{ z^@&M_m=!^iQ4of;w;2~O+!BQ1L!};m*4O(`hSGu)c%AT3Gy zNfOW29y3-R$H>dOx9^V0n)drmv4F=F@KUtlT=Jy*lIm?h*2b zq4z}-cV~_k*OL}NulLu5g2dU*ukYXPZ_cz!BNN;_ljOcn(>t-;a4ZSEW8x#V8EGn@ zoQCI0E}6te6-pNVWV(@fwF)#BNXkMTT@#mD5c`|fdzeNKQjAwPI6O4O z8(j;7NDW6^<5_j81^u%Q(5Zm#tt+gk_~e2dG3GvH|MDUj0D)1r&5s{Hs_+)%=R59K z>143qiR~xHk#2KPGn&hD`hmYaOFaNnv}u?niP*=s7vA=q z{Lr4*3AZsKvghBnhA6{^ejMUd<5H*@Qs-)4n(}51gCf@QK8Mr@8IvWVxtARdbc`M2 zcs6({!XWqj3P=zS1ck;WH);gZ=s>xr{27b-%D;6XjntE-b4N^RDO}Rbv5|k-)X0Q@ z+Na+kHCOVq98|SF)t(uL&Z=~G$DFL+19qrJhzN*A^~M5_MfmL%$F+Fhl(>0UjXcb& zePr!r;ULdJ68h_MoLlO=!ZNr$BJDTnAngN=|4MRr$5C&tv=|GOjgaY5v<|=vv}F^_~-X2QKw~P^B*564H9nC znoWwtQ>L!qKBQBPYA0uVsLT71UiF1VqjLuTGGm8>S(Rb2*GtD|zg*Y<^0G0XixNJE zbKI>kn9B45LB;=Fu?<*@|Bub_Ka_j_t8u#n1I+plIi!c@^Bp-&+3RCzUyuj5;f9FO zquqpd7|QxA>E*JR%FELaO_mJ;oiydGK<6?Tou|As5%z^4w?6_ibFVYcyqEudmN2SA zFMaEb9|M$w_?P7%J*Vx79O3){6M6^wkRG6a zdP0;51q-J8J&>R%YYbr^pYznNLe(o%aOYkOi`9_(~NkLn1O%X97Q z#IBoW7Z=hqB7!{Ih4LV`o37G9dVb{b+X}T$ZMaB}8-J#FGQ3*%oVZBKN`gP=v#x*MmjFm!aL z@XoQ^`gC%^0asOw7RAob;Wja%j7JLaN(#L zsBX4vrvY$@&oq(MZyT%{CXQLS1!;bju~b#m7K&6BitYQHE+K&XmxdH%bQdIr`h_voWyrlylW?QI1c4z zME_z9POZMYH>56n`nod;HFh?W}0~9&S2T)2f)t`Ae1I-Y%aTH5hgCTBK_&zZuCk{+v@@ zLgeS{0>;7R(P#d3Lpw1f@hgRp@aEWNOFTOD*=9)CF-@XEdRPWl5xT0*(~t(@iz}6I zQd)k>VzFbInz10JqQ8bt1DoH{gVr>N-|Q1YY*LLEwzXIBvj@C%kJ9I25#^ctr`}_S z;r#d&Li)|1(#FB6GgTkjk-k`?KNernP<-*G6}V( zrhAG`7CkU8ztdzIc2A&v@0kyCw&~gMv4HQ6{dq2lNKrA4&g?$e0MQ#KWphxYcl>6B z{CBSR<7&Iq{Eo=vO?SV8AI0XMSvs=naL+W*nRkIh^{vbpcgC zg}skwY;g^mk+)I|D^l-P<7*|I)WLd9XET==uOlsY`-F||aD%!EIIm*%`6((iKCLi5 ze!PegJ}|Un?Jr!>kb=;kEAyuFYbr#$9{vb`Th00CkcebPxESJXTsxBD-f}!ij8FI~ z4ZGKd2+uh{z0Ny7_sUz6d#mXmsfH#+)oD<7oL%M4RTIiSIOk=AHawjC*KrxIXn1wx zo6>RK@6|~Bhcy7>O3K(^e}9VwD(0VGh4HVu5yW?x@BfEiSFwY}^*wJaJzBGC2fqOX OOYyOaeDNcrcmD_N9-qem diff --git a/docs/_images/notebooks_Raster_awareness_API_39_1.png b/docs/_images/notebooks_Raster_awareness_API_39_1.png deleted file mode 100644 index 314727db20cc7d57219db78ba138e4ecdbf99bff..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 18604 zcma*P1z1(hyEjaV2!fz=DXla}mr6?sNVl7oO~h7#KH|6lFCrFtAK8Ffi4x zUjs+dWLjCkKca4OdTv^dR&Ji=E|wUo=59{*j&An0FYbC+y13dpItXwJaPx8AwQ+NE zauws@f&Qlex1)9KBxrWNm1Vw1B2i;`VS^XN*W~wh9Z@c?BnOKw9RQB-}g)D zC=|k7Aer#Bz-t-OCzM1#lpg1;U{AnpidJsdKNx#eZ&(w$dGrffGwaYWxmja;gxGSZ zDSA;u_EYDLH#u2Wf`LK7XO~+suVM-B(YEp3N>T|qyS#{fs|vwVTF$6jX_oJ#lTPacnsU#Z&%& zb;J3~E2t27TuO+ndY+N{!&oF|ICX!FvVfbnk*QZi;4KR!* z%*TZTb!oejuQ$e>3d57`x6+!~t$F%8M64n;>CiVV+VcV4gLZKLfQ1D!;?OM-VT=>Pliq(9}BxXXq zQ)?5B!~;g*Kd;yS`Eb#Lq`&Z^fm-f7KPM+dk5k^uOZ1n`@VX0gU}fY| z@!g`-yOAuvA0k=23cz{Go`f=wO@jn3LwQxzNCb;gs|`($@nZww$JEMFKO+(si$D!S z*-xWxmVBIjc|;Q4`RA#I5m|VrB5OQtvLCSskvd%Fber-Qp9u};_H_JM1-!8SzB#e?-{J^lTmw+6GDa}0K;jy0PXjySueVC@fre$KX z<*r1^yR@`qKURu)gOTujIzU5Pd+GG{3(KXG;u(|T{NiGdgF`zzJDB-6KauGl?KW|Q z>&R<=eM4b~Xv=Ro%s$j>qC(jb9r`s|QuZYUH9T8`dGg(czii(3NO|4E=+@$9XZ9d`^@&Pa0a`aSy)BHGsc z9VL@Qmab255Zo23TlJ zJo9>78mA`W?f!W`?}0*vZf05%HBT%NH^cOkF_&X#dV?buMeLL?WQQ+@SY>Z+bSm{k zD(-bCgoK+a*-WM7Hia&2P{C7D&b;v7rz5mr@yfpK`h#>sozi4Rd(QnnW1MA$0yCAd z&HhgHl-KTuO7q9idzqAjZSRAox371RjrWco6o|@2CMvRV5^R07u|j^5YWza*TyC%b z!xt{SR;|gVfL+VU(y!GqHnDxWWH1SATD&`GgaetJt#wrU7Z_3IFaQ}=^7tc&Zj>HYR8^0$+g<)V&<)C zw&ov!McpkPOGj=`R|s22{Z32@H*TS~a&)aCF}s;IbATn2SyjW|qMo4WpO~wntk^m} z)PIZ0fPv!qTa?kPs^+Sw-C^D?=_)R6;k!j)VQihDn~JK5SUMHT=%V*Qtu1wArEBt! z?CS57rbv2M-%@&ot~HScv%uk6c8)S;!8n)!%&Ir^$hu8eaSE*%?+O~<(CcfY)gNKJ z%t7D5NNV7S3hq_emX-ex@3qZ8%x+lm`p%Mx+6~Pk=CigLrz3rTL_gPI2S= z54V3DKnn#<$|FzAr&aQ&yHGy1Of9uuteqE3#>J@`S_5;|14S#%qPdzv*_j+iH+iKG zuYLHi(%@ofEzEK}BGJ@7m301Q92AGJa`W19!Zry$XcX&ec>K$kh6l9eZ)|1Nlg4x>;!KSna`EyoJ>!Ai2Mle-D-p;HmIB+Szp-?L(Y0XolqX4Bvz9=|dmLwr z_UmcEltmf3^ZOB=uM^OeLQ{FTO*)eyp)UJ{d?tybkVI9wPV1bgg<^%-i!siOKWSjf z65@w)Zeax2J|Z%CJ<_v87b)NX#Np&FI$)#XWxv1O=%Ztn|dk3fw^;B|{6Pd<98cNC<0>>uZE_JZ#JdUd*&Rgk;ezNTtF;rD%g zaPWmb`Oz%wL67j}{M(VqCho38Ff}ZcMiyg@_@H+@B|n2Ig6*LfkNwNfu`kc+wJ0fV zFMh7tI0rOqyOWv*oJvv?o%t+_lM*@4stUk<_d(CgQj)XQo}R4kk_ldg3J2-;VKa4AgGXXtmo0kIA&u&pU9f&|$LLkE(PH;r`RupDxpM zeG6YYqO2ltxcCs&kEP>ktP9zNwB{owMCD4SM zU)D3xPHFV8h0ynWzi7Cx#h{tS5nLIGt6E$_GZ}(g_2&Iy6;(6JFTY?GFRBHVY5T1m zuie-An@ce_RB8Qkl9_adw&zLf`{sKN0Xynb`oC0)0}8VcXDU(B5{%!-{<9n+?`^(g z^sln;NxHljs;qEO7*ubm5E>(E)abW>-rLz4Q&p+`;LBTjRPleUjscm3&l8Px-&Z~}`*zzM7hFFCo(in+YE9Hb zN6`$12DuKVlI=|y)%ea$h);kwm;JY?cOqA@6rp?-r{LBFP;$dCX?Ute)6P#S{G}j^+-`(%R_r)_hJrqLC?_T0!YI zsyqX6lSz%rUcl8U4vgRNoT?F{*UL$g@I;R{byX5-(uu4d^73=QjeSvQ9>IcX~ev$&H`yI-s+fDv2#C~Ap+Sf$t4sN9#R$gP-DUN6O${pLQlz$8f@ zeXNDsr@oS!lYnI(qu9QU1ssBZFT2|lEDjf{*nP$@Gl-kdm{AVZdv2&$`F(lAd>miA zxx5k=TcT2CsG$h(n4FzoAzFfm%f@C47+=#10rodf>3zeKWx% z{uvk*q?#HsN)6GWg6QNV+!TaAr-2CNUed>{ipico#VlZ)abmiP5;rsKi#o$WYCkX1 zUpU;-g4wtr(l0yrVYo#un*beAxP`GbhrR@knC;rR*5A-eI`zNjRHfh^b{qnNP&w1> zzY)yI0@6XW6UVm zxY5sP@b{E$gg*Ek|M@ef?uMMNEa+cyY~8;p85#yFgslratujy=<0$0t~{t2tMqIW;|}p8SD(q<($h&qq$X; z(R-v1!JRorQ~V9o0hZqIm&~PYloiyl+j?sv{o$>|K~EvQRv-Bf97$F&LHBFh3;tG{ z$?sk1L7NMAPSesd)uQV<@wYoM>2j7@73uF7o;~B&4^`9!nQ*Jp#iqidjGmeTs9cmy_5XSA))^=Z{LT ziFy*a_BYi`XoCb)xk}*5Fi%KPNf+ruK|#UBXBRj8XW_wL0aVCER5jbKj}`2X*N))xw(d@q&jdswYzD%oE{K2*VmvQd@6G3}+?uJdoNm zZwhQ!w*m_X%jD_LBX#0Iw?n#rP|Js)iiAW0U zbSEjkuk3PiQp8jE<7~X}disX5<(|DC=BKvnh=gj4ke<`gvWfdlquK4ni4$0wj+Cwu z>ZUMqGyXw0OPRqCyq5%`uC;w+0&xC{Z0TIGEu^Q)9<oUW{LAY&~ndl~Eie1aDE~1f^s+$y&04t50bgF9z9TRmVKX^J1*oY4NTJ0WEv(OTq zxiqK8PecaOCcf3v0?)&Q*qBQOE-4 z^j|y`wf#viX)vtsq%&RGhr?`yhCxW5)A71Mjf7fuIERfoy^ZVgPjd2M^0+^!{T7~M zzPkr7lL_tCZ{+QfU2j`$2=x5KFfa=qX947r9!pYN&ioBB>2g%jo-tUbw_O|dn__m^j+?4^c7y&%$3 zSrfmwAfy|1)q3=SpzFVW>1DqH2o+E`bTVhDaxTC2 zZ1W^W)2g*OR?8j#`HGWu=CSRWFJH~eyI5+`poV8T7%om=^OV~3TDHd@|E$jSvm3Qp zjA~zL24=t#unj;_wYQ2>9u0K99xBU1-@O*X#5qdN7-m*^G@dpQ=PLkSs z=5KNJPl!%Yb!;ol_Ijm)ZC>pLNe@3-)AYE1!B2?`q3~F9d&b(>Tth6VN?zj$@nA&)Jma3s3}kVCV`La-re{775b$X2bY#WX>B3HG=VX~ZP9J0+W|->Uu%NZ5 ztQ`Pf0g4@xj#L)>Hw&mQ{w^3j{N_G)<;h~$jAz9?0#LEl(k0d?-SEBfo0Cy`jl<#N zpN#IPx5<=U|G-50p5nm2i;gOYLq50I^Z@n6p*g3?Xc5POD*ofA@da&S?q^T}#io4b z$Ii?blj4rBIKB&zJOMzs-(bB?pg7^AYI{2H;^K*up;y}4v^j2JP9E3YgZe=n8NcS_ z8rcO_*$Ez&{)F7V-M&}dDGY17HvOcxn@hgo#rfdd|L}BJR)cLxFW9bYHOWhse zl4)Z%6I7+c*1RZ$Jjyq;B9dA@0~x6nl4bDbIFX*D##I=f@aZDBLVZ3wnONv}tL=!! zggN%t3NzTR0`+G47S0ublT3{M8@H|i<|832od%jKY_r2Sg1xmAt#*g28sw`i{~%Lc zx!AtW8+sQ>)q%tJ(Qg6s8G`7(S=GxMitf<>wf3x}7KGJIUDtEx0R0{!D?R0dV&+lg zl3exC->6Ut3=q0f8y<2cEir&$@vd$wVBYF#Bu**LNOxqLurvi817I6F>r)y=;7wDS zl6Tc%L4m*bj-^=vPABKWl{;{u6kk1r&8onI8YTo7mm?EfM}R6OrMTRmC~?uYH6N5! z0A-i&jkTpErXjOHhx12!VPx|v2jx&5i|Y!d8JC{01U^>!{Xxxh;!(`K)3 zrQ#_^8sRP%jltz=ISx^g#@FlC3GSi^cd1+kIdwRFGEJw%;$yL=#E;gOz4LJ7o3y%^ zUasl8trs@x@l-?iJ7&y{oCY5?d;h}Gb)4*TAJWiWx03lL5=BP8Na1R=yis3((|kTT za(<$h&Nft#(pt*7bJ3Wu*B9JN1P6q#nD4f99pO8u&a@i-k~Ln{L$)AMS=r`zP&J9ll0D z@cWtW$1zz&(zQ|a=gnnw7Kp|jukSxTD*5`!V^+i8?ciZ_{(ADgi?;LQl-2Vtj#RGz z#J!T9?j%1|{LA^bRlZp+r1A1ZJN0P}Cwm+C5tPrqgC1IzqED+X@|Sd}Bb zWN!k@3tQY2+iJ1BX3k(?rkBupo@({1$ys=yaC+WdG${7$rAbF9ccxfMPfpZgv4U=_ zit(q@#WipL8e3ujF!NVRYP~EWh739 zA9{QeDFE9UsA{~NH!11C#|d!kW)$71u-4}FdLGcccT9b$R}m`b2(R7Fp^|O8Y^dC; zAj<5Lq@>KpF42E)fIP9NukDod(!pZ)Y64B9XZqA(og!y z104GpMYl4!MU!O*mrYH_zDEPb;3p%had7ji-JW7`lF+*bdat7_eTkN{39W4nzRIwM zfpBl*rzLM>$oE%z=Kv)4vP3$R^f-5}ZQ`AD?-3uP@7%1T<&3a(9u~)Q;URcr#G657 z`KpmS7xB6C;zVae$@gOQ$VP;=F?rh_O?Wx@ z1+-XHp`R`u4>ViUc7Iy^3^nm7D3({c?(+HN$`M1U_u1o;9wlW!`<(9&UeP}6`|}&m zeBNgFrAIfn3+5*5$;}*#v6BW{dxxq zFy_pQ`vleEDLVXNCB5_mi43OgK}>b=^|N$E6*2|2=2lb`s(Yx7pEZdNW@fWk&4=A@ zL7(gY<)!wJFPpeK6NBA{NxDf)PdBM^qNu;qS!?@Naw<}MHAv{Z5bj$9lj&r$!5!Qf zlml{>jLIcG8IR1>Tx=H>b?X95meY`}}|HR6|?>1a(K9|vrgx;!1mtxQplQJ=JmmwS!5?2w`%!)X2pyim zEtZORkLR_0tTFS_!A$YU#Vn{RE+|{{ZnXo4j3Yav>+>h8H`9pqHaYK(l&t4e1U{D@ zPAB?H1s?Tfq1*GgHhV$CO6&M z8n(qG9G#}084}h+yRSU45rz+bxE*P^i5b4+)8_k$QH@!FJF^^mJX`ce<##|txWc)m z$F3~IIhA4^*PtuDaz2QdAem33TeLmOGCO2O&-3TPhY;S(lCYr?yt9bODLvt{+oh#K zZB;DzKf*8fvNQ6CWBOU3>z2B-^yB2_{YfHOMk4VjX+y^Ii`N_50uKD}#!Udiqk06v zgvy~)m_JE3cc9uwsOoweX$%JAO4K#oWva3q`twal0FO=onW18FZWZTG7rLst z&G`Dfj`ji^M--)7W)8G_5LNP#hW06gON447LudTXGtMVVVJ!~zdwt)p8}W&OB$@GH zHOyGmp(nEGSw}AQ?b2HAHfoT2tl|=~ZxWA^^S@Li(861C92&9m z4M-(;XQ-z~bMI4VmNGi&xS#R*P1*H|@Y@l}$PfSUQooNM8+M+2_eVyco%>M;yW`>=Z@rk<_jrjQ=>q`e1Ef11ShJ@M?k8$*hk~~4!4psVuQZU$0D1p^QH~&h3>zd$ z@)Q&2-l+q*4+UgHSz=9K?BqEQU${Ol^BFL~e!^?5lJ-TseWSNY81FF5@*5o_bsYAU z*m1LGhI1xVmAr?ht(R*co#5QH?|qPvH6au&w~YVLtwPg7-;WtnE3kOQ{|pvm5mi$< zaE?US=@zS`F9e8TAWG_00Xal0S=JO7GvaODIC;5-rJczzBtza?5VoHSXtEz|oF+1~ z8O6k|5dE|u?@xY4);GoBpw2h?-b@{Fo93sXwE6NU0Up2mn*7FmzY_1m?c@(+FRfI9 z)BDJKu$?aQQ!B^A{@==~3>ZaP#Hv)mo~gt$2pyNvG7E ziKe}twGVeXLE|8+E&t$byXOShGDOPN*44^>|B#ZHNp#*VzZMSsaHlj#*ogNuhOG3R z6yyZZScnaMPjabIio#7zCB!t;GQCCL&pD>4UP0BU?nDqg2UMK<6%|KhHCHEW-riP3 z(oZwf)`2M%P+GnLl6Js)5{L`9iv2!l^80FAUMq=FAu}0GZ8Aj`aXrG`uEGC+*yqL= zY2do<^hbrq*)&3Q<$7f`fdCh^=})}m=2X)pE%Oq=p!li-cuk|fyk=*3J(Pyrfy-jA zl{uGq7gZ%Q4tjhxW+i1`4)ZH%5FlMAGH9%73G{-b`bmqs-NjU1yHQuo{H^p!Nx^Pr z^}22*&=C^{N=)5f4S3?k_A0YorT3D}3TthI1N-Qe6t}Q>=|!vEPb^J}`*#JQP(+DT zexNpxqq>lPRiFt`-0b?UzCdlREOa%D2p#>{hJyrHKJ zaK`oAC9(YxWhK4e}+ry7Doa zwfiuDS#U$KFC*hxA@?}FRUnq;m(V>yGwsw5isIwoYF(*og%9oup4HP_)m-FzQ*R`P zB`yxl#4Tx|^Y13t&sTk|-{UhIsnDQ?a0|liAHwbV;J)nzVzRBN=#ny5CEWpCkDL9@ zaF5GuB!0RR5UQX4W~cvi|D8UZVSVM|@5I1v0Y! zULcSw3OOti6^}uWTfFy`yc@C&eH(;ron$Zoz|RPI>FMHf``n`|S^dDkuyqaP5Q6ga zWKdN|^<#)J(9%Ml9SlmD9eAcv>(N$-boqY2m8o9sFg{rC@VVasH+wm-I&j2vphiQ0O1_Op$He0`Gio5fP@xe1J-6q-QhD)f>(Yo` z86lkXw#;q6*oTV&KB$dp>m=rXJJ1jA{EG121>omSoy7# z*?X#Y_toTho#%=7bgL;mPK6c!%@Zo>9<+6V`^O*e`#e0J2Zydfx{(OOR#~(~M4T6| zwlm9sd7u(EdqyHJCgmBKI{e6DvWl|>-3pS3lT@{sM4x37V zKbQAJ6nMlE*^tRz{JkOBHwmicMQUo_%;!dfCq40UvOkzNqq?l)1>cXJ9`y6<4n0^< zLN1A@4N|%imlFQQKL6pI=58{~c=83*=1NwSiA5VJkMD@@+V}brr~%8ulWkLCqnVFm ze%ag+YOA{~uj%$t(Cnc2tMme&6nRXF0gu1L?}@wt&a{Vfl-7ij*JLil6Z&QS8Xd&m z$!7&oD*VLpYl3+w0#A-tmoqCM&u5&|wtcii7o%_EW}6sK1mBdn9cXh+8n^Ho=s{UM z?<)e@2MVWW(@BhRR8lZ5&ba2SYuPhmtly%n!e{a3D%#I)l~Pv*4u2895jGj}Qu$o; zT0vCF_9KW_PJN>m$PycSURSCW%`X*1kJJ3T{5%H$KjqtuWOkw zGWFRRlfTHk#?g_$CxDPxQLs@W+M}_k^e}`Y-|lY^p#nUT{wiJ|v#<_u=v`#CQbGrWnBtt$YN=;L9e^7cup-m7EyPnZSFC8vY>$oyNiud87b-8 z~J!I?-Ya0dhQ#kp!k=_(_X-biP zV>E8|=~x$*rkt$zqsT-Y_}jl6(Tv8U{IKt)Uw7jk{dV|EQVCSwB)AjvfN_sR&}6|! z68|q_wH#Z|+j&EgjN~MYh+*Mn)8E4l3Yd9}j10LlVaGaRSES9_?)|&kve~Y7jU9N>15PA*pvx5yNtoTNNGaI2vZ_dymN9i4iY0J@7a;EkB}VA(;LcxPG@ z!%tRk3W(8#Lnk?HDcdZELS2r$G<3IWB2(ADWEGG0G+1%Ye`fXfN9LtpHr6y!5?DBh z@4t{prdDR9bDYL`Gpam*>k}UHXsmMm)=_g~GJ~o3G@8D-*RyabDgbl7;7(|+X+Of7 z4ya$WIMpLZ?VX3Hb?sH<&Sbr?iCtIK&2bk>2%RakJUD!HKD?B}F?9a?r6-Q91n`5! zz?w`dwH4JS0scm0dPO^$dh;Vg$h?fzYW@%a=0Y`hFC0;`XSFE>aQ0+?i9lpZlWMQ2 z#=dS(z|NpNsZ#2;zjwL9hq{$7HydDfn?%dA594DpIOUjMxxJ1}8+os|*V$Q6x1Qz< ztPcx-h0vUmZfnw2MV|EtX%0D!t-GKV{(Z-kZyc%AFmF{!4B|^Kj&%>Ay;(%&g0uUo zPt6vFw5dkBdP(NvfEH`BFvWgAe~R9>ot!%O-Qa7r#twkAG+$)uvnF{+ z>u^|~Rw>(d4-i7E1T$f~L$d*`gYFGU(p{(unX0p>o#_?fomU(={NB$Jq+FlM?xnOu zr;zIXi-;R5;DF^Y=%*Ks5bvk%ndLH(lbGLzoqdus-x8@v%N^aCLm5c~eJ*XW4n1U0 z+8JRR-Kh#^0;sKr)`W3om2y|$^OoWCD8=u4z--k8ycpFL44x#VDat^$T5k7XWvshjyW-~k*NxG{oz*3F zR>&zG!IJUX)IQSb+YZi|aB;SGmbCOyK`v*{i;?w!xq6Kq9%Y2{ev$~2ad^zT+VUCG zm)FZKpD}C|+FbrVjH*eW7Qv#|^LdYbU?>XxURJrya5vV;nzKrkTzw=oSzM@pJ>Zxw zhG8-}Y>~AO_Lj|_hP>lOG9P<)-m87rL-Xf2QUVXYWlb{D{`e$}S1e^#c4`*pwbbW! z6k#+L?Ddbj66&&2T3$nyQAq46qc8C4l^?mGtS_TyR7{*M{ku2!BgfKA(`4vE@mL8< zMFU_21U2%Ci;qzHLl$L?_j;%HL?kc%q+Q-i5@79jMZ?CRu#%iBcf$Br92P%1@TQVr zf&~%pO6&^ecxuqd&BB%@v|0^Z4C3&!ysK>tO>oOVzr@;`Q^Deq$FvLEKJXY4fPGNxCJyPvZ;6 z+`hl)oWWYw>A-(kus&D>G&!5<o^KYY1atKvi>Xo(6`y?F0t zQ&{UQl5Qc;Arb)lOmnbwbPv$Bzhr>;K-fM8Y)AKX0214QB9+1#K6}IuPCDQLoTe>% zt{9nEi$;kqKy5|4EP%Zb9fNl{KvaK#n{6du|JPZ_F@1%_!ZLvrg#ap41zLxB3oiI_ zg&|3H1tcZkaR8c+PV%N+p9RPfy#F~NE-CkPVhvzQLG&3n^cm8tHt?}PmlNPPoIv){ zaThidGz6)^n%Y$uXJ&W19&e)cDBn{J7#-2*F&!8sK^8&EY}c5rdnabCsTfPA37t9U zq7f-s?8jg0U7TO@^6rs`YnYg*J)}MW5u-BFa_Bd~eY%f<&r4J(&0PJDYh@732=woe0>J1EJaTysM#==$b%y4TH7`FVNfox#tjJov}pi9 z2po5#LJ2j6yR=g+iFvz`CW*|I*9sHFd|-Res4#FHrG8|H1vprPsTGp9v;@1~RfyG_ zLw4t({cb%c2?^qOL$C}5vVKyb4xUr~F{O-%(Cd!QM`_*XV>Id9>daG36Oyq>kM^c+ zTt9k~V3iRO{e41@e|7E`c`?e;V;iyQe%rC^qvN_bc66F|WJyg0?8U=B_c8EPHt1ep zv!40q=*ebBQkM{Npv@E^H)+py2AF%S|9T~A&zLp!z5H`~3JMC0n=-4ZO5ppKIUyKMn;ptJUC&veAaVqZRd$VrsscD_Y5+-ZT)645+~rK zYY=B03*i<|Rwvm+m{&g6UH8*lwJsCvtrppVIZQ#r!& zZCEWUBr=h2xdEQE2~X0_D^aic@4FL{^Y7^btGLxbMqgz7spcJ*<4q4#vn23mkP?N~ zIX&UCz6qWGRzwmf1!aEq(eDv3HsHQ;Oa*Lo9`vl2EB;0U9WV_p;3a45o~i>AQFe0% z9xq%4a~VS`NI58z2BJp$jqaB4dsdOOhmEyED0OCQB5`;JW|!Wx$^C)J_&+BscdNvs zC}Jkk1GPy=T6PwmBeh$zqL2^8qxSEW;)=At5|c2$qJ@Ch++=ng<-Z>n%SHIWNpAzG zFCo3B^=R#F8vES?w9|>vKW-JiP7mp&hV+(1@X2WQJPm?wUaA}0>CarhqI4ZMIn4aB zP&^e4#mwJ+WzWB%y9A0gwlr`Nd;w--V_;AUJ61JN;Dz+|z>|)|PU>&e5>pcQVt8Ok z+nrUZIphzy0c87M8!A@cr?{TJnHw#0Hklv;PMHAdSUvJ7q3Yx!1FqbF=QV^Y>V{g0{7TxH)1FXx#2>) zl7tiy+99}f5i3J)(6IUuc*^a7`fpCHbWPX6pS-}jKDWDRet32sq4E972+PAO7oWl-Om}6|sP%mw z{L8PYm{k&B8#{vJzqol6IU9{eNNHxkaQ}K{_#UHFe7AL%PbA+<@EaH&Sb`-IRY9aj zScqqW-XWqk5Z#Q)Z~3v0Eu^yaWA#tam`s}!i1+Hlq2rSq?t%))uw2bFY$+8{QtDWqhe}CrKVbBdTY2U3{Y#dCFGK0X@?uammX7gHU{=_kz{{>* zdKX8Iexpjh?*8Drq4z=Pg!D?fe;1bd_Xyed60kM{f357fY@{xcW~-fl56Ia59(khh zl@_=K&)*OH73#x|gIY3wVXI*loXCMAX9a=UncD)4q$=LmdYwToNDOQP13;eV15GM! z{i?_WK6=41u+~eV4-{)6mu^2M)VpxUu-YB`5;)we(V8E&$S7zc^*L~44g?V^bU$1` zxXZL9&@(0nP91?g33SvL{{*IHH;Wjl`!jw0Rd;+gHz4C5hU%7Ef46bS5WF^7T_)yL z-7~EBA2?V*dYo&G*nK)RKU0tcWd4tNG`z8XIYGFYz!o2lZ1P0DizqrO9_`!d&YY{F z5ZY5tk~`vq*F$0nyuCw1LO422tajWhQj|1*(}=+;oiaztwrS|bHbS5 z>kM0c;hQS5F7Z)PQi8ms%WR1Bwg4VfVATO$6E_!XV^;KT*OWwu8^xd+ha3%sZ6 zN5~(fDR*XDO{U?%A+`d#{-O$4?k>>VP5c9DKlC&LxNW{15xEoHC`fFf!|xy4u&GIdt7lbaR5+@W49{UNg% zXohR&lHrJ7%{e%zoeqQM%e=QL)S|6uoC!p9=|k=ng;3{tE%iE0%Khs*^J<(RrQAtu8z;grD7YdEsU1YnmaSaSU ziFMWqt`5V}6*9&rUDl%-VqbZVj6`MthT7cA%c`?qQ$$zM?dz*t6b6%z)O|F?|B^71 zouQ2)v9Rs%`yaXxKurx>1Y8Q{9x;Wwg-r|Zthd7}v{)XD-(Gj}hkwhz7gUHw z!w*8podM%eqO3G2<2YIlG;@D%WFA_{MiT~45;|KXwo!iavgeN@bz9Hp-re62o$3wX znq6?eZ`%L_<&_AUAG6&4h{Ot*G|ZN%?=R*DO+m*)j3uf(@b(?|baCW8fr-O*cmw+4 z@*Q=FGI$ei6*7G_(>g0Z|1u#>g?#48w5WLnoUF z^)}ZGieu#Z@d`c2Vxg4DmYj`9Dtpa4Lv2u{g=~q-)DKc zzbGeIY8V^eY~A=o?kQa!H=x_Gy3$6i&dkU#T|HTU8fe{94!a;O;kABvzEVJw=NG`W zB)3I-eTs5mp80&Q{d!{L(`OCK1H(B9ou@O1YIJAyyl&N-h)rt&n}KWj1%|V` zE1|?O>I!EEE?Z{dJQC;Ro^r_7#xSq75vlmRvp+8+9>;bc#3?;Cn{OGvplIQ02UNg}LEQAA~1{7_oq{Tn?x*ECQxXPY)e%jL% z^Xz*%718`7dch3G)-`3BAAzc3l@+R<{mrnXW78ylE^mC|0+Q;&D(4K7yZJi;C^!8) zYT(?kj7@eUtaEcol>b8#HrQ(QjelqH5DWbh1wKQ5uy$ZqbrP}FtG-I62>&KibH6xe zDh_a&p|v@~sNBU-`cl}+qcGr#NABYgBBnJH(5AhS>3U`z*}+^H`;0QqT0eUMhKKs+ zUXBcCE{lc9kn;IlsYuU%Q;9)EcBz~u(Ce-~UTGN1Svh^^y%YlLG%}4%v#7I(Fqm?r zF8z(aiPhFsVkI23{*;tfmD*%1HeJ8*A6mC$3b0H*sq@{Zyx>U)jG?SQ3IKC8@I?L< zj0beyi1WGw;q4olX(R%0i+bdweeTi0d!MpYhs1i|C z@@DV-{v;^n?Sr2nm3K>3MbJNvIk6 z2=oh(AHklwcZ%wOd5*@nXk9DYy27pA=xqyw#$rztbFnB&4Q86IBt=Jb{I74H9rzlj zaYBy9m`doz7iB@?&P&QyDk{VCNBP$1UUvbHup0Ys%mOtGY|T*iyCYh_cH08BQ-ryF zge%v7;W9f25SC$#{g{&jUyt)H@@rl5Nv(Dn_F#8DJe9gzm6LOg)f&thT4>w&1^o z#D7!ux;CtJJ+4q@k_3H!!i1M;291JcS}9Jw5XvX@sKdKWM-j!lzC z%IATrt^oYjDW>pb@WTwS5n3_0+9X&g5XE}UU;e1wEd^!2kdqW_l z*OESa%LiZj{uI3ped_&I1j47as`ce21vMlG!!D26_8W@|x|q>oQ9~Od{h_VobA*sy8?%o{krMHuOzq0+wPNX4SDZ6y zAz&ZSyWShPs|p_;_;oFz_l5^~wk>)C{MPza&HoQqmvhF}8bVBenbz7%_sEZ}D3|46 zTniLi@L{uWr0qI+&f`#n##ghJkNoVs^x1kE>bLO%@i46VQbsIav7$@jC5w$56Y_RZ zYS~0kDXh!=aTJTHz!tHH5al>71tcD#|PV z=!bEx*nNP$qyOzY2ssB#w_Rro^()doaOip)hgc**C-rokOo;zcHE^I!I8celpAH6H z;Yl@gUCATPb@X!G_a9G|z4{;Th;ua968iu0m52Z3wE(;+_#(mo?Gq9IUQF5L+*tex zd>7&7BWQ?&zep*YOwA@9bql;?cZDa?6p1(%fD|G{I_W4*b9R3)LwW&Xv+^s`$4Xi`q!b zh!bK+?-@Kv5T3*q$@gmVVj~rv#05`^geT>D^r#EN3so;R*x-~%rCn}b_>@_MzI8-d zBwxh@R|zkiRuEqJ)Ngur%Q}c5V9h$n6tzhOX?__oKI4!cP(M8&=EoTfr*yToivagJ zyHlTG&kMI#g$@)%@NsDMgiu5BBl%Lb0*H6()oLgq{+1Er&2mHano4L(`0h$y zvttAmB;q8U&q`)(47D`u;#dQK|K2h|Ezb2X%_z^gS*=-hOdaeuts-;SAJx~a9kHyj zufZ^Dd)J+_`7XO#m0DfQbQ+e(T78Vq)ubY%c}4?5yA~Q+QL7eSiP3T~&4E&RWpY7I zcD-7S#T*34nHz-Lr5h%5GSv6dNd?T6;9DXzqth*||wgaOMiP#}UYD<}wH?5)b;4|1&| znCzWM&<*MmA}Qr{!fTbqVbD!~okRnjl+$M9 z-d$?z2rmTXz7M4LB+v4M|I*hOb(F2vfXbhK?xPzm_j9pFMBF7X5!fqeAX_S2G+^Ty zk&WMHEP0rYv4@-BjPC^Np2Ms#{5gg|knj$S=6apqD-!{DBVokaqQWfTXI6(%C*(0W z{?msq)6WA|M0#9xJmIr%=^oV~MF78%i>*!t$%&Ij68D}uZo{H+ofvi`4Z8Lv=M*ZN zDR&Q&eD0dU$A8rUiwzA#9s_(kqdDt{D5ONJ!N#gkjBYMbemav{(;m?`uhri2D!W z5!kF)jyXAZiK!s{Pn%LVJw6ub-=5`%-=Tq=W;aIDs~3U-$}t25Ql z{MTwPl+9itMWh{$n84&HnFU!tj{(p7$!q^i&DqZfbc8gvNBx3k!pGjmiCOUf15J>-%>V!Z diff --git a/docs/_images/notebooks_Raster_awareness_API_6_1.png b/docs/_images/notebooks_Raster_awareness_API_6_1.png deleted file mode 100644 index 3053db34e3550754d3c9751223b34bff82e5d75c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 65884 zcma&NXEqqZ6ZdqeYv9VboCv zF=5m}bb@d0Cvv~f@gDDw?}v8nnQe}}*FMj+*14`oO?3tG>vY!v03cUVe5MTmMCJfM z7<`QwzjDXY1&aS6>LG97q2mnp@HTg|0@TbsTpXM|9BeKA@v?Grw{>;`@q%~-xc{;7 z@NjV#xUcw%QqOGLMbLq1S8dCe}<&H*iw0 z!}AuiinHm`(ih`Kdi!O1dM4Un@_LZ$A41|-+1aR^FO~{yMI8{OiJ}C{#l`x?YqvCC)Z92piZKdzi#?g+J3ksKy?#AqPGn1)Zj( zo^^;M^K}#JL}4o)*UTU`4rEm?-n;UeMUWSImI)Xf$bwG&K&O2125mP-p9-7%Wp@Fl zEqVn4+eU!2M3`6i`4T@XbALZ@9)vqL0Om;-k_R@nLuaT@gPjSt zl|e9vPRFRT@8+slBO>5jGT69qEa@hdoUl3U3JBJRkg@`|n}eB!YlKs#Km!{g;DdW0 zzmd;#S|GpE1)Y=jCpFG@Rf7^!&k9pp=Mhr&U}+(PJ$pdHZCh!@o@A6FWh$Lyv-K;& zq3F!}Fr6S{YSpcK1Jqx&fxDPNOM}?w$rnrkxL38RzzhN+Q2{%hUa+DU!*2P3MYBjY zr3pGnfi3iEb!g*4BkbJkD|2uu;6dOodBWB=1N>$Mh_)R7XXdd}BoOGO87LM!L$dUO z;D~Hbqn4Jaky*yQayC{+T;uBY&0sF#P5)~h4f=c7JAhNg(dqcD^=(~Xt7T|LJBaqc znXmiTt2Q=*Mk*PvoQ9Hf-r0F592Cq&;D6(+sD-a-Xh!GXS0!P5Dl-l#El$FK^Zu~8 ztdr4s^>ezLut;RnDI@R-oDI0tz+kE9H|GEeFn@jF6zD)-j3Ia**T{t&o_{;d_AO7H zYF!C3((O^0Ju8UM^VNeYCgTwf60p-` zz`tw3KEfG)8(^oBo>*GHPlnN0TB0LM?~9SUOkYS{zYeQS;w+;3uD0^tJkT5ehPktQ z_;Ie?7zL_%0UWX2**$N9T^RIu+)qi3wgQP?TZjdIe}G+B<(gErr%XYZyt>bDU#}iY z1KZ2Gl2v>u_>l-O0(+s*W~nx25hl@2o#0q$g`kd;L-2tvaM*OZdMo>S zCP8H_`uW~NRn<2pwEbWd;kFRazKIK}MAvt>frWc_?*KUO!#f~x!UYb%v;i&D)Ao9z zrv^spj6!UL0p;W5DJfPSR6>3&*E^h3r+U4ASJ3NCp|_ZSFC1Wixv+D#-Edk6EFXVnzVggK8a19!td8!&9cf8Cbf_Q?>9)lDv zzW4Gu`IDqL1QWzs4s!@p04Wz%eTapX+7SlR=KgNs@W1x?X7v<3CneQ1^ZN zOZ)XhX?r~(zF%h~w3x#5D&|+0;_+9o%9m_PwNy01+B92hCvMHzF4K$JOlooIt|er| z;6Z)fY5_8*nyyN%1`-{bM99{Guj$iA1yVL+JZRM(*!u3fBPnu zB=Qc)mDMYFuz7GK$$b0NZ`8op(qH}4-4HEZjfP*7b!bS;i7qCkcW|*upkZaRATND> z(y3*vM7qSkYuLx?boWE)=5FVg{$Yze0TF>McF5_o35q9@_mC|aq$Z<@i^qu6_W9xc z-rD1sBA$~o%DuwrWk+UXzgSohR+pZU2;@#BG$HkYP5L0)In60jcDC8$${k(YP8h|6 zXe>(v78~dR8#B#iF7Zj#qJ>PQFj@R^`!({Io|>s_xzeDvL_%Y!$=?7s81ClG%iS<> zeO>p-2-}4XkROm#q2(i}YX^NtBxOcABW=7Ix&$2!TumarHb>&WGje051N-#2mHEuu ztb-!Op1C)^9haRMMH4O(V-4#arxSi$mqVu9 zFL$HR;$E5l6ThmVLbu`x<7>Nz?1O#-Yw0z`Dz(SePA!gZQ8NzF7Le3MujszgoDUR< zeg%-J&$2V0r#{U6@-iqo^#3iL36VE&599zmA$(XuBU@pm^zuD1HRQaNI^gz4z@ zZqur<%#^z8z>F6hKkgpU3F!_;h15(G`l@|VxZf#k-ID$II?P|P+obI&X6JG2*LAHK z30BL@KL5F&I}cCzLt|Gpmko%$Xps0j2ibEsrTFY0a4X6+!?ItD>ieSUg_NO*TVa2m z5sN4UBL1=&cH?>os1^Oi<({o5{hvoj@^9PxK%ju!e+Z@Uz0G>rVRc@6WrbS3o3n7= z-3yHjCwD{TJWijxP2BS>t?oN@a^>KT+j`34+9dh=5jN7-d%HLz_KB+es?{hp*Vh;C z3yEaZujkZ#zS)-~H(wL}#ZgbK{(Aiv@{rc!##WpK1f5Fh=z*1+7bmM_%2(>2csf%C zG8g4pGsBE2r+5nrdC3=wRzEWuT&`rmbkpzr%0R)>9*t@zuYHOmeXXn9>&VHZ<297~ zI_7o%Kg?_;R`T$xQ`9W|58#h`43Aqw>&7Nip1bxxe}=Vu!{fkJnv>B(^JOEa66(O4 za+`ir^WgaNGADc1dwm<2O^s|EkEg3&Yl#01%^CF2^VbBDR45i{xgCF@ggj3ZYc(TV z#C@ut>f4A1L~E5z`5bYa^7YfZ{A1OIAWvRJ+cA1U#}B=h>YYgnRWwt~#}c|s$kfmu z{PohTC$f&#W6!gUSnHWfC8X)m&5lCz@7%C52H-ZD>;`(SahjnGRgt18Wp)MBv+c=e zaNpzEIwFQ(N}5bnSuHpxM9QoCiszze!G0|0X*YS{MucG}L)r!j-@C;;c1p66eKiBx z8qW%DtUX7Fh37pWYNau^@OVslg4U#Z0j%OtCVOTBeNxQ8JkPP~_*!;(lyzXne)afU zpt+Y*XLr^+=Z^om+1(q%wC)={&pu!j8fN~`sA~f9dq=W==#>CXesM*3*8eKP|A8vT zRm7KrBQs*??+TuCfp#Av+&}w$zExU#i%ZHdHOZgD(D^;%z%wT$((E3PTl53qO(d|tG0o*p;zbAwE zfeND^zP^jpi?Z6>__1$U=B2)7UUYJ`XaD4f0a<%srPv)J_|uwOh1Lm9EXF1JyDUYi z#^!$1Dr8zSneXA$NaDTeGpSyTYc2v~{{%d?=LypC*Nc_r=$k%RkyKfMQU&}>AWhQA zwwX7KwJdH4UJDeBj>{4e&aXWl7Gf_&`Rv;SJrVQR$jp=1I%6tlPiYpMX|_mC`%5;PDxX#l$7aAUDqT^O1BimA$@^3Rx5408JQrTws!eT0AY#&{ zP7xcRkP8LYDaxwTNT*A9scLr=od}nz?y(}!(wn%6##2Ec3wU*}V+Lrs-7$a*6bw!$ zsrXy8ke~tUEF`e)jXS>z@)HU!q9~ldwr~anxv8j^L?0KdO_ExRAm&z>21x7SY@WvF69Q*JXLd3tJ6%yX-n$_!{~$l>mmraRo- z>ch^RYXW6#=JQt<@^FF3g?&jpH3V*)&x;oXUaFDqt5!zsq^Gi>6%PnI)PQoL?X<5K z-VSxaxwazS7BynxWwI1YAE;Xl!`EM|f7KZ!=uo_sS@D7kXQ*Ijugj_ji@ToUiDtiT zKWAO1jbH8$?`+6JN z#iKco=OP)ke!i^@jU8)q!PO_;-Wx+e03KW2vc zzl1Wzz$?dDJYEhPmw|Gk{WI%9(QI>tB9gZkeKuX<`^=BmNid&R7(UYmz1{6~e-%(N zudbZR2=^MOy&)(yt6H*E_+enyR>o*a9wko$$X;s#53qSD6#^Q+jEarF z(2^rFPV&|18IY0nDwg8bNSDFMk6~6jceS60Ec^KGyEQWVd}A638t4LL3mqGUJRFda za+@JxnlfOD{bVSuub0#^rtdf-& z#(K6Cb1U@!@KI5IfeNW16g0Cecw)QpLg^TG`*(?G$*7}XqmE-h=tz3v{ypbwzX%#^ zvzXR*N?J{yhRm}U05(^xDutESGvms|N5*J$rN=m?TV`L$*7iWo#7N})`r(}trTL!b zjt;xro&k@zOFg6N*-A!VXmH=?FDj22|7l%*eV0~2Nqp|-*_$e@C&5eacNGJ~wIvx! zmgG`L`SMSawddU(tf8`e>oq!bE@Cu~qmH>p9Bbl5#@lZx`=fllzl=&gqw_P>_h=cy zs`;GMu;EMh%n687il*gGOx)YC!&2JtMk#OG7R0{X7|#e}gL=3dhP$M5^{%m`lr*>W zUc}HrYQ>@f1v~(i+wpbz#$BvR9Kkw0{E>YT)hg{#G<$vDPMqdjYYG41awLbnY<^jc zHgEn5F)5+qSfBl>Tba@jUk^oXKOYNIz;MtM_pJF^DQZNalsfZJ@zg}D5C%O5M+b^K zG@9NbW-~3?FW?W@tkk-fxZfY;D<%E76dsavj!3+pg*0JW^N1OtaCT>UyF)&hMYK+W zbe?-HtUbYzH}Wulg!>t2C|7$`U4%$|HHxpGTB9Dm>s#k7?Gwm3{+{-^9@Mu<@g+?D zi=Rs70KIq6SADW#9fivS&$6ezo`FtjfEPOwxbqpRmH10_w{Z=WPPB~$rdQ^>TBguJ zC`1e)gyrN=D4S$k!aK-?AE`kAxpgAV_gla_2>I|tf1MS9IA;r1AZ%p(aTr4(BW!+2 zWPo>biizE0hD6&Q-qQA9HGrAF#+%^C6u^siyt$JIn368A4QvPiS(FP^058!t8~8vF z*EV%nEw?5`3Zv<;ob9IrT{=pW0XJ|aLjKbOU$coI|GPEupBdFSCu1T(XlXwbCB)o_T6T>p;PZPtRw!IN5 ziG6RXZ#XA#Z^+&`OUR*gEP+j^-BqH{Li`p|t7%~0-mWFjgFL6pu)(Ou@k!>o%k19z zu+;Ltla33m2V%(ejng8w0}8}ae=8seyYt&VpR&+bo~!6_5B%k11Y?xD{+*gnZ5L_N z>Da2UQx$Qzoaj9yb-z19f5Dm2Uhke#LD(5}58X_96NkR?=s8*fHR4yYBkC%(utbyp z3j3?rgDoyfDs?e*^iyzOMsAKTOF}I6ZSM;en{82ILoMk=m$H`>H!I9ydw=luyow$D zG?W9!?5z#+2b{Uo6$b6TqadrX%t1t*F7?}(aAX;~-_P=U!gShbaSyn`PJEBGdgWPC zx%7s@S~E*Q0U!OWkD$o&+a=5*G1}OOIJio}NbuTl9eGh;rEYIh_cC9sfL32NUGvFU zebk^y2KvooBt)r^!I617!k-B&AK;zS9O57NIdFBQLDfKto^E+-h zB(iN#4$o()08+MKX4#7>CcI^pEf}dDc}9{w`G+VKe-FR~I<5_TeL-3wP}2p>fx%|N z7KVDvT&h3o-AdWa+eIRuUvetHSd)YF%KNy$KExd5f;hpfB{-QP>#fQ4g*n+e81Pc5 z#)M!2r?h9yC4YuDA<2Tb=Gb>@l{^$LA5*WWR7QFUf{@e!A_!}+20x+tUiR#r5=gKJAWI2ad^=5Meko0E5khE#FGAa-gF-;K^Nw!cN0(~WFCk9Y z9C!XPHIra_A9o(cv0u{6cW=mKmYXe7x0^@XxIu|(_Vcj;OEXj8ZR_>%FIuP}BAI%c zIZK|ZIA1{&B>W_ET+=C&bZJ?1#Lt^fH)cYZWnaL)wM<1riAveBmrS3%s0H@uLD`d% zH#%$1rGeC&P;=)IApOAW_FH&$0p09X(yIN+}^{W zl17+0n*mO~GMK!WtlMNI>9m)&n1K<^yE~}Qq4tztf+a7-5gNRvYv1?=l3m3lS~NNM zLTQ4LBf8XchGB+*LKD1`pK5`RVz5`Euv{Ejd^snzD1)s9%fh~cw|ThVJ`@`h8$R4GWH_LMhP^bYCf zi>OVD`(tJ>_PA`o_2ugXqc?CgQvt{=E$F4?ZdiWCZF$|ArJ*I<)!=r4n(#~wBCyva zV$K1a{kTSaU?Y8Cqd2t{iDzX;K|lSIcn&B^=r1jn13J$hhGfE{?te5Uo1!BHcSFyv z2YbU#57Y4~gD^Oo7;i(j_aaOq&tEV;I=-}Mo==5Y#F(g{(<`&Zv%}J-WdF5I!+-_c zI)ED3m;$oIioIBZ5AoLjUmhn@md@|p-h)sFAd9a?@Q(GI*6t0+mEa2ChzE4~9B3eb za0FA~0^KS%@O7od4h(`Zb?gH}BDv1oQUA&xA5FX*O15#3%Ksy5%I(STdxdrl&74fA z6AA`W5d+`@i9M=BN!pHGz<(0a*4_&x2VzOK*Ky|}d+mKkeZw_ZX3y~T427;3prKtK zWbG~w#fWCVka$1!C~E0yPj!l8E=20{|ER2HGlk#6Kvv_J#bBA;F zwIMx1VEpr@=yUmi;Vb$YkbE&-g9%AyE;~cl85=EMLN_AX)=Ec%fSE^O;z=BV%r{(z z3ZX&J^7%1medBoFR)w7m?ZujAsgaw>6m~HjEc=J7t-qe1f%i2NbCWJ zcKuL7z$r;cCqFgzv9B&XCT=iOM>t=5FG0uc8JviRD@|IN{ORs3qOFUp zEbp|2W1Gy6rI9_GmlzDc6JO1meXOno)*~~`T6=7Zc5N=Sbp|mHnZ_gLW-S)YKe2PqM(VGQTyyfO9St z-P#1o%OLCbJjFTww3JD-qLx{9vqmTWFu`^b>4E$ubPpuzoH`L3egwZIf-x)7q#yu? zBVn5qz8qm7UacesMR0PKoIc#31%5N*0roGY%AfLa;#@;!dB zA#IADpoOtRQ)UzAocXMX^E+cSQKsUm;k&v<=!z-J9m&$ChWDqPh!yNm6uz3-Y;d9A z#N!1$6X&Zh_}1gfy42U!&ZjMkN6n*!S0|0FG0Z~sgCFZN_x9sHr6tTAbCw{)rb^mahpe5MQ-6HTq}$(EJHs3%3bKhu}3$04SS=~dM& z%|Xx{qTg%yStj-7bLdA$=4%zmk9J;lw>B)4IkcVSkk@0fj;yS9LR{u z2@pw0=0JDaiBq)n%H5YS1Z7ufJ(_#6=ie%VL%GHt1F6biMNZhls?H-eVdjIO`Y-G>cISH7Dt#_gx-otmM{wic4#_@0=YWwxjB5=i|wcXldoJ;}8QC zn4I+Ycb_RaQnUHq->-bD2bB22$Q)aN41)|J!wd%XF??^IS(3#Dw3w|7Ele(t5h;;N zRoL5(()W1fS7WKk8IZLlkXh9p&8AjG^Fcb7(sC->jwa;?jPm(6`3@tIQv*W+F+aHD znnRF>P+#Ytr10b8S5gwvDUW)8IwcFf*cLdx$D+9qnpK%cPJT`SzG|D#3jg zUJMi|z!3D*RE$=mN|A^1i+3Y?G1_z=R+_ETjZPYGCyF}4BeuK>MiL$-r%zk?GmILf zCzo^N3Zz%nL*G9fj ze3Y&E?RoPLwJ6_mg=SnRo`4^_qb90ZlWGsG$OX9KYC=&`BSA6pxZUq9j8I`T`-nM0gjCRile_k3Y zRG%QZjzYSpU6p#72ccMETJIMPRQOQMFr(F496xR;PmSEHd<$I%ZwkQOE?ReNJ`OzX zBZ+|}FiGF*FIbgmXQSB1H_i7sEl<~0_Pwrs8?4$Km&-2LhQBIWO#5ig7o%+KfGTvF;Mtu|5)m z4XIx&sk=NxmR1e-k20dL32w9TfqM|B)35|t8Gnb{OlkhnR(+@XFDHG&=eFWj34QmA z+=eN3_mbrPc{qOPfqP6RSLU%$s6F;fATBCMSL3j|ZJxU5C7+m(c8E$Y1ua$8jcyE= zS$d&GVuc#~9@4^F=a6+H4tGujJ_y0{XfE*5OuQXpV;2|%RtQ#_PwT*5)E)E$FRw1_ z0$ErbrBlt81?5-aSAWVOp2r z<}XtjH(^vgHIrQINj;`dceq0vZ;mzVG5$VZhXE2_(etFQz9O=8Yod!9PcbCB?cIpB zGAHbRY@Lz^m8lkCqC|}(xr4Ou(&B#K8oFqB&Gmlqsb{yD-2A|v2XH|VFx+blNVt~X zL*w%&7k&d9jzHFx1tt*8W1AYU;t#Vlu$RsPEd1&BGQY1OGTu?8B+SP*Yw zQ~n}Jqah^uNEc*t(QK`>uPpXc@dZ-s=g6FSSws9LGWgsb zbfj(CU7$W3f`mo--S0yRXz3XU2K5b zoU7~;UFDN-JG*v{fh@z~Rrx*Q82tp_!jp{5SRV(chUWC?_x;9vMe24L&AY-j^oY@; zm)xOYo_^-x-cdKXvHDM4%6Z@dTawySv|~(}T+xf=4W@L^a8S6#@REJ>Uf=VocxBs< zBjap?XSbH@dn5!XCP*2h46)}sy|Ni@?=U`XQw6IDfp0MPjAJt`w(xL(T7pI2GVa`6 z3&W8D&h(QT^g!SQdfpKnboD>iXV&rX<^0NQb_G?valfUqu?_(gFXuD##-SshmbUhSjoBhkPKP>P+ zvM>LhgtvW6Q>OTuPKAk%#;8vo{$<)p&1Td76{!L9GJ1TMYl{*kr|Ff+LKb=6Xs7&w5@7sQ zS@XPBetP&hTP^LX>V)A7Rk|12W5W7!`_;a6u$9E62NhY_p8HTP@TM?Vt6#n$FS4s| zQ}NDRX;zkzI#e=deSg{DSas$j^*l;ZQPkFWX<#T$Xmy-+xsy26zS|V5uYP?BD(2N& zR-A3`8P7TG)_gT)Gl4i`lw;ci=Pm0rx9=qK+vj+IdoB(tF17yC+}e?^=$g$(uVihO zV2^#M`#iOGhDGplCiSw|aZCUa~VpWsn@GXl$Fc zjPKHi#U?>o{S1sxR^l9Wf84Tf_hb{*4XLq+qJ%k5ZH|P~E=%WHCZBzo(L9j>{K$0r zN8liapqTwjEHh3oK|Qpu^|(^K^{Ut$J8Q0w${H@AO-k%6zudN^nZa?;B9t>@F&;Bz zo9&wMR)=E`YALCb zZ5F@efVKr(B=@7IW8wehCVo)tB|w{K{-qc802Adx%-8h_l5JrCpDhgff!oS_hP{NA zMTOR({{Ak&gvDvN9I^q8#2s(~391f0)xy7IW$LS@>anwai67O0jrT=&FPZnn!xLev z>`c{$zbA3lK3tE;7OF8L***=KkOmfl(hcc{k(-yr`1DqIAeDY{v+*iE2}#q@5BwGh zMp6`d0uqjdXSXjok))D|{8?1$8C|e<^J$Tab2ej8gHU{`WmTQNXh6vGr&j%INba0? zHO|*6eN+3UF`U|VMyST>+?4$Z=qtYFvDgt%um7W#3CWwwt301>H_12qenBd`ShjjA z+kTj2?Kg7LY*I|o_1hh5C;DlYWm({=l&aQ@5wdNf*R7bkHmcJ%Ej0ck#hfRgG~Zlf zHHO}>PTi~M^|FCYnRA-{c=%&|mgRMBZ^;}SFQ0YY3=~T188_C}8m73$_ywv9m$q*q z_zaVA*P+eBgnOGQb2*PMDGHeFS{AbhbS|QH5MMB?YDg6UwgnrrE4mQTKAd2Y-cY&Ki>n)(0^sIf5R*Z4B+ z?d@uaq~eQtOzp$bh_?FwP8I735~ZK7C0e;XgcD73_`%Wov}lYYBlcfKDvg5A@WVg$c8lH;iV4RwE6o z$h*aS0%H%Yp0vJOtCOeaL6N{u1uJqymIX*lX@no|A6>K~DOeUGA z7ic>9IawJp+DAw4+Wanv8nmCO-DsYSs*Si(H+x-!TwZz*bJM_@y9rL>1*Cu_Bo0?j9TR%F8FubiNCxa87n@474*io3W+sddI%;z-#b4(SoUW`v4-V89kUfwNJl^ z$TXPFt-lGQ|Cg=1a5uzqCG|LT?MMVIc3j0p-?V7goQOHX$p%&`P_hQ}q1S&$U^##+ zEATw|D~b;MW&%dwKWDsAco;_xI03{Zs#O4cs{a9Wa2t0B<+w>lNXXS zeMKvY9{E>!@I_lga+)=4t0!j@sWYFvMS0!OSYw}~O`-md_N`sxfy$RGVNhYEso7Ge z5YIl+UAuPE1|!lKpOL%F*H5tTlLpEA6{cma`qKdS5YI`1|sxH z=^_;l>f&0NpModEQOBc4X+vmtdI?;;$^`AevoDmWuikbH;hx#s`GHi46Ll5&%A7hW2pY-roIBgJi|%^|Ne3TN_8k&Io@X9+p9f!ZpwP*Fd>yCvkJh}jzn?EU zov0b8)h7NWEm141mv;93LPfO1-&}^kr>wRZgZDzmXeAR2$Vfu|{Q7zpaI4RJ`>p$s9pTTugqP zS!eawhvUNno37svEv;W$nn# zu_l>gzW<4|aYd_ji029RDZR>j*(E;*0Vr3+p*CoY!`@P7TdKdZE?1=Bq+CT=8rjcS zL@ZiENEW@%{%-9HVx8UTUd#{PG9qR&sJCpxY#t9LY|Mw7>6^IG9Wn$gk$HIsP857coh4KaliLK zmA2k&Fq3e9Z4k&$wmHzy8?MGBN!e`7yG9Tgx);8GV0uEr|r#k#u?l|AmRkB zAl@bbE?g~I|6{+(c*hWTP7H#PcYua2#(Ugn&juq8{sQ#iAC~OU)T!ZUY2c9XND^o# zTgdwQr%lPGVTUMHvwe1Q5+OC%RoY3nqHgd zSzFblC;sdxJOmoGWF@40-LMU_eAqljTq;W6+dTf6P-^6Q-};>qrfgG6qZ1hRo$wM6 z4C?FZ%(RbI!{M6x=57E&wDhWGpJrpBZ=w`j}ZbU!ya zr&8y9Y_#8ZQz~PJN-_eaUUxw#)(v0GGq10e9tyzSpZ6^wx>^|e<4l{WsZ7-SWlk6W zDPVfFBv=7&GW}RweeNAbJ>wp|=Ud_3<@?jnX6AvX_ljBk^nw`L)Ik0Hw73AXHV3fd z+BA7>2eGcpmgOV9#G*}^Uz}&H(POI{^emIL*InxSKzN!v(^hZE79LZ3S1IOb8Fry_ zz&E*!3HLKh}kcZ(T9$HnIg=Bf$kDp50}#|TZH<`?#4KlI9A5j-WskW9>I3# zO7Lkq{PJkSE!anOC1_(tP;%c74B$adyzH3RPq@JQWE1?JBZLXrn)!>zK!MVNV_Sl| zZ~DzH1}+BX*&;XS7^9!guCu%kbm{EtOzOHTqg2wt+d0WZ;)SORI5vU|h6H5FR3^Yn zvdsdWW#}@3AE*P0QHBSh+9ZVSwbM|Z)p%QlLz-NW<>15^@7|7zn zO{%H&4@YXlT7Y1Q=j9b&UW4%r0KdtA=tv~kntaZeH<*iLsh_|<5)At{d^DyvHg64< zCR*?wy6{~j17@ZF3*LY!;i&e}w10P))#Y)fOc4P1(dT1tY00DOixp{87vu}90DbK1 zQn8?Ov+s1WXf|`{YYTTz(oPzPM5I#wf*y7oWS<*EbU^GK#DynVMYCr!=rhul_aqli znrFPBMHYa|)nFLga7A;}2?@~Rahvh4G$D^N*-PgKfq)7Umm*kuOd+%Pq2B;E(KZM; zpIInN2Y#2Qwo(KLz{dfp$B}L0&HoAvxt=@`@1T=OzrWUxIG$z&-tAxnd!4?T)*xz} zMwmW^oaqDYSMi006y!%0tdZ-i@BjTFB0}bDKJ<)>6G?C+wI}}H=cn+#0KNoauLA9# zQn2HIsbrNp`M>_@jB>n`4YvU8fHgaw`}$1_l}QBTwaZ+e>c^^+_tOf8EQ;3+U{?2^w7-niE8=+M$H>Tep;`M< zdfb$n)^e;@s4U#F4D|i5|KvQuRQOHML84hq$xC)dx=xsioDF`E_>rtT zBo6&Sd?>vw#get8u4rI`{mew-8&iN%wBZCGfkwCA>JS9lMiE&z7XF_z0W*abay)?U zotVk}W(cNr6pV+72S+PB!ly^`vafBHgsch^Lhu$Rbc*&*i|OY5Nyxrt{RywL&DL?H z5?>M1C4B|Hq9?+xc+u0|d>THm(fv<|;Otp`D&xF*(WN}M&@Vad8Er34Imi(MHTxma z6|(a+7Y{+F&1sIEi1PVwfdL0^_RFkqTF`dw_~T^p`x;C{l9HLB=jeAgYo0z4S~rr5 zU>w#!WvJ~t>))Gl2f?}#_zfC!2qtTAEc0*4I~|=~bZ&<_D?yvvm+8UjM(U2%NFOJc zLwoeuG?9YwjIDZv2?>06@z$Ty)5eUQXouc}CD}Nj>fYV7P z%g$Fx-v)^jf5za75DrWoAbeipByyEw`&V-Hh&Yb;rT!b=3uFnVAJ{mZJ>$Vv z{Z=8_#jZ$u`u*Qo!r3yKgq#T75}qfSt1apq&}22>dGA zyVxE0u`WSE_oK-Bee{vNR6qLj8_7B$=A`j!0TyLvZ@?)R5b>2EotZd2xQx-gfLhm> zzWm~%eXiRxdF4V$N{-mZihOT1lu{8>#2yYhSkM-`8(x@t$Dr>;{Mzw}FWT;mAC7k8 zlPFpFM-^Lp9a_v+VZA1a(%h9={*}|KY~`2H`$ljNsC?!cBeHyE@Dp@A%$jtm1_hw79+a zPH$gznuHIx)%dDNKem8eq^FZ`wY7gIMJ&cxA8pE6CX*C#k&$E=vtxv*(S!SpQQE!vm9pRmKz4J8Kcu?efv3YPOj*&U79vyk6esghRzn;)Y2v@fiI z*b0HmC|VU?RVu1iBfcz<>RV&QJbOWuDE!SF)gU@L zSMpT;LsbR*K0H>4>dMYIN$!8t$3Vn_>-*k2-NPuQE4^CpnFY zYoEO|y~t0?IB9*}?4-ZW_i-?D9Mz(#4|Yco%Fvsn75Sdld=k@sJ6bJ5Ov!k|7sFS^ z6g_RcdiBxcBHPAVPfpdMMvUV(j)w-}86$U*h8gAe6W>0NmmGJM-1ikre4f%ah*5fK z$q?<@@>~1N^~^;~K|uFxSLnUovT8vK*|NCA`5eJ6@bgMd^q3N|SbnwNNFdKjRTJ^Ea(YHHwBnF(n#&cVFE8&gU z2s&x)_0L;Y0Re{VlF)cfqMEEaM%%isy}aWoo2&|>8-2%Mn!QTq#;wxuCC`xw-niSx z)ypAc6Km)}v7c`9=_`8b)@x&t`&+B<@%2||r>AP^Lwz-<`a8BRrFEUaP@a#r*p%xh z<2MBkf>CBTGf*jNfzZ}dz`Ksh_N~(Y$Jv{QL;be@|1T*@MTL~LQXyNm>{LP&LiQ~t zBl|k`t*9(9$-ZYNV;%dRZOWQ`9b~c&V>iq+d|%$>zVFZHdw-ALas2-3I8+=suk$*u z^L#!ZXFzJu*oSNjV>LW;ULzN)_`T}Yw>*n8jbARBd2pR|qykb68*Frq*;n_NSq3;5 zAJFs=gUY`%!y_aT%-#@nZb$cDi&nnYkLS=}ih@*6m5RNUkIl9hqL=f~q75Ogf?u}9 zLw4?dM^KyRS`?uX;U3;ET1=2BH{pEe+&`-5C}ZX)l=S6VmfHdeX3ovI;4vi`Q^Xw8 zyZfe4#=fodWt*EYweC*bc;}bsDXu+TPN6#@3iRsdI0})oj=aXV@o!NJoTL-InhW}N z-tRnxFMw9wR*O~N_fd0s8%c0AW2jyyTbtDlUOB3%!n*E-OCt<(yJD+fwF-*Pbt0k< zH5SrM<6%373+}9D)#utYdh|U3TM{|3D&V_&TnG~bB0#s<%DFH073Z3MKk_{O zxL4fKZQCGR5dJp|p$w>?>Gj~#B!b%Ck7R#SZDsx&!U9L1TA&Xs%xf<-*^^hD^cf?b z#~pD0FP%kp3^_od*y*XuyE-bBX3y6x6&U^5<8ntn>ox*GX*+jo^;IUL`6}J?v_o?WFG4mjdr*~)BUeq*gEJ?kYedge@>ZJhZ};qhI|!>h27v4 zs!Z%Ri~XLyN3+qqY&wiBRS>1mNgTL;vkZe6&pL2oF1eHhsg*}9v+Ls(I_DbvpmVLo z-XnxQ(|Gz0MM{aKgSw$Ss<`Jou|G#;bOJFq8QIbyW%`xfp1YeBzg&R2!%?1c)fShF zZI;TCJv;kicUbHp5=u~quJi37soJ+wdA~XDm&piSAj5(1n}})uoOSU8#?K1eM#2s)^bKrfO&RD%B44GiLSQ5E$ETTaM^$^>AIQ zqDI;8Ujb*SGdn4v{m-9uB(=JOG9=;a<{Ej_d}%J%>ZVeSBxQK~s=eHG8@^oa7ctbR z@zsY7_YYjL7{a&~DM$pGkIzfl?-PO-;F>fxJ}eO-l7*TLGBc2CT184eArMNl)VoUt zLwx?J4tOw6z6AIMkSM_YmVY9eWCe)Q7>D|Fx$@un^HAk$A%0KD+5hVoR;wW@QqF-I z+LI3A{{OV_R~3NX_?NQB?ZwKw<>|1820L z19mPco&^BAi2Tm@0fV8O{X$WsLHEk=0L@L`wOg$pK)Jftsqne?be(4H>QZN~^PQw^ z1mBOh38F9T9q^UZx2KO>GgFOV-K(`#14g)SL9L0`dhVlevkG;o(E1ao&Fi4@-I1>M zVbIyHkL;Vfx_~;?rexfKgeMl%znt$F0Sz-ZiN~`CDX>cq=?8fMr7%@%Ufo@@VHwS})Vz3Mxb zD3L>^@$jt6c>#(`%i<}LeKi_)PEF`Xu)@!0m2e8EZb+2Or((p%Eh0ivVy`iubxR1Nd zt@awF$z?yz_C4*;#i7~1azTg@4(OrAZO^UeRVF(3$%3pL84a zI!OUnAe{R0*FeIvsH7_mQhtsTbI^a-d?6KKZwDT!H6Ndqe|R9|KOWgf zrif&Pm@9BqioVctSKc}QL8EWPGT`~o%xmUDeAZfeSw_C_{Vxj7Zm=2DKy(kfCL>Ja zcaS+DZ%y}~+WYD@G%^Sy0f(B?Ytp6r(WV{|!j%?O!>iidtC7B4kIx&7$8NJ?qZ8Ye zmzPO&SUWjcT}p!}iD-lJxCTX{SCaC};cND>x|C`Idh&+K_QhoRuGn^`%*^=;E}1RP ztox$}Tv?>aAX|?px@om|ni>LsCG~SY{0GWa0qbNn22%o8U|eJA#ePYisNJu5H&%#J zfx%2CVcgA_XpUVyJy{cZnTM!GTCtd|)`|x=R29P#5o_T? zXyN%EIR&A5JA|z838&>x+QQWDNy#Bw>X01@MN7nQ%B@tUn8wKj`0`xe9`h6gCcQSB zq_w)gS=@ypiQ8+C+$D2n<9~`MuY%JZljL^OA@PnUM5(m=HTfDs2kttYZUz&&8fG1) zvZ{BZBDgf$TUYjC=iC*9kc@NErbm6y_R0_euYyrCv-!F7`w=8KhPYGU^=?j6ID50s z1ozI7AqetXGbky;k?7EqC*NE;Oq&Oa%An?9GV+;KMXJ#)>*67mWJPkz`Wc`VGOyLQ zn-=ntHd3kankySf`vHx)FuUx3S_G}Q?B5S6a}{(Nj<0O_e??4*vtbCK=3jd6hfgp5 z3ktJx1*Coq$^S?E#1UVXwPD)38cxhG`xE(GO!zJ^K>P}cc1CMOPI$`WQh7&5O6?MzS=;HMsfAGmC$zlaU` z*Y^XRKgQaa;b-p#i(3g=t2NtI{a~r`Um1Z-cVg>fM{Mcz*Xq9;n>7CWPy6fHtzALl ze-B7)Y?h+YtlC~V!_)F^gOvRzLR|B4`2uR@UO%6Khab^EPpNe zC6LMM@;)m6`e|R!{`dK8e}h%h<^At}<-a6qD$*DEzu9!Ez2G(R8!e2RJ1fwp>l+te zKl0BUB4JDmV<#76*@}#p4r`yA=(ZW^N)hV07YJla$Q-_j_c6OGbND5G$;zaQr{>HA zk(pwBw%|_KYkIdv=sF(3RmQQ)_Ff=a_rMk?f*oDaHvznAno7x`*oQMHu!lL;UUhC} z2~=O#xqY$?@#!>uDwfi{0%}B0HHiXy5`fytbsCPbY%$qMTTlreV%O|?2I?9e@6*xc z+tMXt2erS8v`84E>|POq?q)uy&w%c_{zKHuiuY-GLCEh~5$#?fL3j0ph$UasO~_{= z0@NOuNXEG~bxldVT02j;sq`UIFWg+n>zx0)+C~~+l7y(`UwavERuMnv&bL7Vrn20p zra@Mnq`x@83)liG0Di?G{-NRB?Zjeqn+~}uO+Z8aYvAc6Z4Kx@(I&Sb)tl417&{*$w+2U^}gsUTwdnGx2LNI~7FB{Mu>h zy+b`AFIfUZ2^egR;Ll_F?LkgsDoYp96;OL;*SsrcC@q#UXN zeoHtD%B_a8qzye$Q?uLP*I3zDSftTC^j)tylmW*Kv-!goKMp&ZDn{pXG!+4!T4F-H z(T4*aYG2b@Ff37pq2}9-3C^uu;nhT)AF)>_YyP3yfvh_Ua1fDGF%dI5veNE;aKrzw zv+IDCAR2slp^4wVQboX&*CfJ)~;t4q%G_?VEldYFSD+Jm_8Zq{w|P zl7qm)Nx|T`Q0dP6V&d$6_oCljS4x7~+!P4o6MO9%7)LcC`3PX?we*4@ z0^N;;x`HS~E2vt!2j~Vr819m>g-#3PHFS54T-<7tw`Udi^c8{+NNX&d!MaZ5>&cF} zB=2*SpU+(hUMf$MVZ>MFrq~Hfi`#!OyxlkbDtVDTbdHFt=|#iCbY~xLX35(dy4*A} z)iiNie>J`P*_%T@OTc&adU-(w)5P~HW%@hmqx0F=R^+WOQHj~^#*NtD7;zI23ed)G z=Ao(B{!P`@XVrtFZ~tPLT9$Z`H~$c~TAM?`QdZ$0OJwB@815@IW*>leGi-8e4G~{W ze;TLI=8wsEhVkdBNU;mv{3cekY+bFEXPwuNi72mibFCNfv8lXejXSY-#_cdSo|mku zyKCyb@13kvXS`edm>Z3;>`)gg`ON;&5f=pf%%CP1T)m^44b-kVK{0$bgw1FF8#}j1 z6$ecM9Xnsua;sK>?==CEl&bOf#E8|YOq=B^S{Nr)^N`Q!N^=S@QtrkL9%1gR3*94m zb^1nj>)SiUlZX~`tC}k%rBTGppkc13YZY?)8I2p8{Fw|DB4MH7GoSp3kiK^;)g~GY zVj#a1byrSmF%?DsER5Wrp?1JgY^-gtZQ2#Sv*||WG_L);f+AW-hMl8k|i@`5*N3l|dD0w{Z ziyNir5kH z9uFJ%h)Br(b17%hOAI-E``Pq(qO)v6fP2H@X+DxDKZ|fxcXHhT(;{Puk@Y#Yg#`^s z-QjGA&mg5nbeN`%M%SiT@|?VRvJ=miqm~P2%1Fzpkb-wh`&6+lb>8TRJ{T2z0Qi{I zZV_%;bMKCR+N3pV>-SnJdTgiN7ll?kAtuh5Du9$EGYt2A#LE0!^5hKe!TuQFJB=Oz zynDJp&1)p!{c6%DG5(kV+lqr$LK_)>sdyg^Jl(JQgOV!H?pZQadG3o5^$fpdMJ>fZ zdpL+O`BMVKY4NfCF0{t15u8p5Ndhyxfbl#ohwS$gKo*D7IkD#m6iw&qm;4T%)L#Bq z!NFq)$di0BK8Ymi(UO>oMXQJgl#xZ`clU4t2SAhkxehn7s!!0y6F>7qApfqWyr_kQ zwo{$ZOSqzpN*u*H4dq-8`CixmO;q?-g;2uaLFLaz;qX2lEfcpp037fGjb_mEKt51N z3Ah~w#@C-|;^-6QZg_bK`sf9iXD2BrGS$_@_Uk3IMN)RW8&=~>>4$&p4hyi@m8NcZ z+05oa-bk@Ud#A%~%4Ul{@YtQPPG5Mbl(A53e6R8rk8XYSGhE?Yr+{v!i0_;(btTQ% z3u_Kr%VG3at8(igHZ8x(T8ggPkKEN-mfI0jyjKPDf+c{O@6ZFR1h&`*)Ng!)siZBluh$yJv|oN!{5o94`3%zVWRY7%i(`~P6BGSLlAzQE;K!mriGID%$`aOJ=ZP`1F*LdWvbPhyi;%z)KA_e0q6-1ijAifI9-mNEVF-SHk#w(p z%O|2veP+Gy;6ZF8g~XHGFUUtcv3}pWiRt%m;H*AMxNi2l;3Q+2w55|xc}e>GHrwTP zoNhIl)qMTfk4Q$DBD=&&Ui-wyaFge1{EeuI`p=Ws>Q#3b%+ogl>6Sd$e{ufQ#R<=L zelS)o%CpUITIQBeecg~2LFu0^kfKXLKrOxwjS*Gp&3JxlAyr|%!^hQI~EU%!Rvw7PWm>aXKuV<7DT!O%mDgu+|&Mt1c zPg0TRDMFm<&ZmDgRJ^55V5zBC>cQ4}6W<2=vh;PannNoGrY(iM;^SFFkofp93yMSd z(^57wJd*4EUqQB4RIo7tRO+LT+-DS|z*n8X6vh8NZ;n%Erob;9bl(~9K3G2o_$}Z} z01(40`VTx$Tyy39Uk!!f-R%9u;(s&q05@4nC@LR%7l|b^qyfU%3GL}e^oEALA4ek9 z1saso*67!>lT6oL6_|S&6W@+<5wr}Xvo~*cb?F~f(lix9skNX-egt&Zjm^#u3!N?r z4W8ZqJge8m$J`kv7h*0j;UKj@$-w901}d}yEv3&8`2aQ;-ix9LRC+(5RQt+z$^q=Y zAD1^LkNn8lFxuUK(+J$YTJx@lev9^z5 z1vNf0M0nMBvTD2F)8n!rfo2V_-p+YR8jm21*i+@t>w7Thuu7e}7G6%L_b^NP4h6FH zzKB&y0Vnsy*`i^4urmWcD`Tv^R5gRi@_yayxh~+!+$4QG5myV?kCTVol z|9a$S=N;qhR!ncs=l*vlsqScnl6R`$kvXiPvRzOcO@gBaQ-!NrXk1M_l(zZ{C(ZZ%s+Pw*W>RxH;bEp0N}D?v(K5mJ^KU`)hN& z8f^9TUUyzr%ZSjjZq|#f-!FyhdMXykum?9 z@mQ@~ITfBG)u7KLi7HF6>n?19IaX&`VI*itl^{X7v>&eRT`IVGjM%3AS zVVNIsO-qcPPfQ!jVjlkHtB_+2suOlC-6d>Itl5<%k$0D?bbg2)lO*=bE3=slKEBhm zF`53_tf7xU%k7HvIl@OT zvDwmUcW#wjS?z3vsxFOXV7#R5CbgTbWf_`Br}7z-ON&b zaVZO9ubymbgmS~sxrxt83j>>@#ZzZcm)JP28s(QI4q5Giq+5Z};e7l>z=grmTSj@q z`=zKm21(5b+4)nbkT%+`B znPY!@O4gA}jHCv@Pdb1S9}^l0;NQ^ld$}O$Lmz-U#=2C&o);Vv&9nPxEnADM&G z8=tFT;+wAaNO&@AmrTQM{m^t5&6Zl zUf;mz{Ws&pAES8g+a1Dw&CASr`(q9U!jFX}9-YH_==rJYd;X~4Wkdwc&%KNukfeMS zuLzNbB?^BlPn%)Nk9NrXt+EY=jV4|9hkVTG6~Wj#f75>?WbVl-(O0BRb_4-#^U zV3@eI+hx04Ly~aRc@16uk0B}aJE0zems2UiEK|qeVw8fUe0)&HKnVTJ6uhzwjhYoPKnmQ-F&|5?Oo1f zD%m}kRyTNV!bT<(wSHbA3lai>y+yqYSsg6t%%uB0SCR}L34e=E-{&$686Ji_U)JR{ zp~==rU3X7G9yF@^oLJ)dQGyz=KARO1YI=~x{y^Su<2ABH5U%3gvldm6I9mIM_XhuQ z3rGcNXTX(|yh)N?M7o9`V{hLsQn7Cm-PdGo1lOv|WBOVJ z!V7(x;=&Zs2Va-9`z7$NSQMCr`=B%YCG)|`WyOQpVZ1A>#1 zG5ZTlLp2zRrS!z8{Li0(pGyc8<4(Ewp>OvQutKTt?*r#%s z8DbtQ{tOlfoCw_%bTEu9|L*eJTzsj4p?P}e*}b`vyUkzlPlWkdp5#AYxF1>JW;u0l39F}th7^eAk1thq za6*NOw4rdbuz8bg$De6K`{1nGIjxJ}p5bWe%h%d%CYj_luZ+6OM&!oM8D96PQy?&C zcOmbjqLSL$#G>VMSa#1>_E~-MtiKBHZSkPhCzLMxa5zY99YE?O@_!-~b`FfyGB5qK zO^q&m?jfyF(&9Lg?z_HMGkSXIvJ=%fYk!ER>R8i8RsY$IZ`kKIdzA9ZZUA}Z5voP~ znYP8FRL)%y38~SfJm*$@uI|twF;q^!D^FQ-$)MP!abxMGyc@H&om@W zUgKWuo;NrEQ|MX14+5o;Oa)C?#qsrHM{7&m62?Rm$G|-$sqsG0^}}!bJO(Q)?Jm-s z|0G{Nx~azM@4?}oY#w3~E$_?>F1MU(mf(7%JDmL z{_`ILFL=d(01#ifQ9bb0BS7HYcDnt$$tNuzx8)c2Bq++ z&AVKl5_o>|tq+wC_v|HqNl~XD+pp|^_o<_O7bb~g_Hko3jwuX4xK6hXbOao&H|l(?<{r8!25r5Ac&rXC|EYd4dJyCVGl{_?`SAkT-f91Z6Yi}3G>K#Q zk+^cQnGL`fjb@{qVXoL1l5=bPiUwQm)>{FgFbi5Uo#u^638}`Na}QTE#9}7iFC10P zqZb{etZgovEsRDTLL>hI)fRF16aMimAg>gds%!HGTMV6OSt)lCblbie2iDbSP$PN- zcwBWeI{ucA)IwwJ=STgC>b;0Pb0OlVclQ7>fGPN8EZ zX>k11j=-JBLKzL0$jh~#ZzB-bvpw_H@Se-`jSnX7Wu>_R*W^WGlRNTyB?ZGntuRi4 z)c&7B;w0h+WM19WIG03I-|PUbXKCZo)V4>;NM=2Pw(;h>>Q#0p8Q9Zw=4X;yNIQDy zg|(K>Z&{t<=icx_@G0!XJ&oD0p%P|jke)twop-`ba-{d>}oy%=P+{>UG zd4T3weEBr+M4EJSJ7N5=J7id+frF11TBi5)O~{uT8Yq`csA`WsiG z2Aw>Ze{F<75>e--e3R@lpT;gbN+CO>v`gPhSbO9Ot(i*o?ALso-3c~JQT@n#=$+(n zxF>a#tRxEh9a|@mO6D@g(vFC&dvJ}Dj|47eyLDO`>;Ht^>Cq&0?b+S}5=a06;=mCdxB&Mprbvmg?JcRVr7-Pfp z&k1!Et;x)nKOzwNy^Z%_^UwKwI5q`}eJT>Rrl@DeLn>3$Dm@p1;d2gma2c?V ze_`^sx~@I4pQkGa)#wJ29SC`zV=4+y9;QH zyuatkE_2Ho=^Hm3to41e{WbJTJM|~QJr~LCVAyX2A0L)Dk=d)7Me_o^?Wv&uN@IMh zVh-b5z(iAR&7!fOS^p~YTRvViQe$MRL|@hGZsDlw=(Bxht|6uTZpTOs;Y#HR$sJbf zCU$9&w(dJioz>EXn&DrO^%vL?(@-N2K;i7#H<0fBdx4NqA&TF)&uX^!0s_;Onbf}; zqsAKuf$z+nvqzR%Nk94Ecz)R{AUrEdFmXa=;><#eNP@Apn-Fs(7rl?Ls=91?L%8~q zZCTx*48|R|+w3Vyg)`Zynh2TA8?=|WwSEP4$J5TMFbZl)9zG|IUe4{(CqCDICxM|)kW|7Q@iDul= zSipQYa(fDwSmJm@N-PclN0Z)?D$amr?HO7xrr2YWAMNs;<-?_1eD@0IGLa3-d2$?@ zZbzh#f@h`Xf5K~5Qf994s=1-4Y5(WH+49kOD-P?aH&+{I{*GoooZ?!xPW$&TSiXJd z<_b-FSyDvY{$n(6{_Cwrk~VcdcJ&5(cQbe&{e}R&p5m#JcR%e@c+jfJXKwm#-nN&)F_!rt`a3 zBXaRpx7_?rNN#l6Q!`v3JR;`x-4qd88q!=kpfdM0pgK zxE~u$+Xu|vh>*#kj?@^GQwMWP|U{9===7U$;1?oOM+g0qPR}KwEkqR*37(eN> zA8hmibp=$@Q(NJK9yT$f=###2`6Ye(Nmf_44&W$6Z$LDCulY`md#ecgBK6(z8b zN$ArF1Jrpx^^$u!Q>|O6M#KY0EF?24Zf6NpqVy+t##K!#-5$rIdBNLLRAnM8dJN%d zVdV2*!aw>@s=jVVFF5rLkuGnImiVc1RVs^a1_qeb+t5h{Z;Cx`V=LC2s`~o=zFlN47(|B6`xHeHE5;dSVqO!byL;75avKTz(iH|bpnBG^DmqR4(e1CTN z`iPjgd6R2-GT43(qy4xQg^&gJiA}6C-GP)$=5lX@t85m*?!#lRyQ&3v1@G+e*sZ>w zIc5z#j^DPj2X`npcV49^+&}}?bu=Om6W+>sJmzTj(Z9{>mYL7Cfpx^$TQNE5Q);&? zQo+V?vN_Zs8MrYLgPV zcAM@z4FID-v4+V1;$uGwty5fovRlm=Z$0UQSsDW;(JMF|@+yyY{T0aar2n7(MF~T$ z7j1R)pM@pR9#!m< zQknl?6P&Q?zyB%Mf4bWpK@-FY5@x*1zAPKyC{f6tjk!*Se5TP(Br={iVXR*Pq;4MB zCBbI2Xs#=Zzne`)@87FL00|l<{UU2+r@9UpL1D@RA!}O^T7Oz#YS{1NI|~147~U;$ z%mjp<$Jd{3Vjz=p%Rgm4|4O7b@p+jNug}Accn+8K440pCzR#l>1T~1Ighb&iM6D5y zLK?eNUTx}8z~K7bN_0w^GU35>ui~q9oLKQC94+>14Q?(e3R&R5Hnr5IZ!`RLYu9of zalS}fZL1F9GPg9ht1W5jGa@;Zwp7+jC3wdZ4$AvXpl^LcqYgv6b=AgQ{pD~h1-i>gT+$&1ypj@8_e%oLRgb9l;M^cGW)bZ|p0Gip(9X8~fEs;SHT zD$rduuR*Z@tNQJy?v=$&w{&gRXui+kg((XbL&78Cqo*C+l!$4s^f(xExF=rBNpaWc zE!D@p-Ea>!bEtl$!-sr2@KBmnli?K)1Wa5v3gn_fP9ng)9zd1Lq)~2Hj?}a6(e+lvo z*@P;atLCFdq(aNO`Rr1z#?WXI0%0^IP8AHhkgLP}Y~8)oo%K?!)F|h&HCiXkCSiN? znPb=>-n(Z;R|Q;`W1oEGcnRUrxAapO3X;(`p^}~WqhgqQ+C=^kZ;0w% z83G#EntGoibpC{1P&|bHS7HiiQ)4gg$Y=M8EqF(!<4? zA;7{0M@geJX^uvQ^+uL3*HG`rS;?$+?t6RHmo@P_NUZ5Y38;NmO%`qJ1W0r)4 zOXDa9GW`=mDkze$i9JP+Bt!-YX=FQVkbKIiu$i}`hudq!M7I8r4}1z~JO&aQ4; znR;RfY2#u{h=#>&!kAHXs3*e4w`)3Wi{^)H`J;LuNy}M1j^BxSxGQ{oQaBta&jZxN zQunRVpt2sreOvbA%voFmOpxVz#lN{9Tu|3r{?il=X9!E>pbgYS;OG@L_<7tE0Bh}p zuTrw7X5;}+z_$xr3z{Ab?xf|YA)44$+W)^`X=uBazfo4-#-};xM)o_f)^D&Y2AG6G z*PQWeqq*QtnZSdVTXAC$K#HviLS{%Yqt>-zJt@5tv}p+(RLA>}HHinN+W53+v*d$> z9uI)u39t5y(u8bgn%tfH-z|ApP`rPs>HCBI5AowgM(1f zDDGoBg77{YP=x|F>bm=g`!|9DImV~l{MgSRB-dfyTha)8ga0En^z~Z@y`I1Ag{;YQ z548RYyB|J{0iCYn>hxVJfIrAJ8k?E73}8FC?qyhRw)=%&_khoTjm*Jd$%m=Vw^cj2 z5d3~00{j%~rC*z6ffHIG zh;~g5-E4klh|$_x54{Lq@9Q?r17WV5MQy~*!47Y8Ce%X9Zv=(vQbl5n_Hg!MDNeHF zdW=fx-|=;%i7mA4T4R)1a^>n*=(E8}OV5lrubHj6!HkYf85zUx4F@dx{)96F2xOi`%9mYJUi887YPMwQMm*-By5lArsCFx%1}K-;?#>ghS?2n^v8$4 zo~rvynH!Oq^STz4`D~`_5L88x8gC)USO=S4aIYaVzxTPMrMJ#qjJ&Z6jdi3Kx~dQJ zS-9$@wLQ0_oQ3T^D4$0@NM0?`WE^ghFX)aHQI|++6&F^^G!tWc>&xNT(=AvN{!J|U zL>OgR7`VNZp|n&%y33EPZR>l_&kmWALf`KXZDKWjGH0AGa)Z$ZdklAcnh+gSTsUjHGnqJ@g&9rGIKb$zOw(x zQ83#-JlFK3uTig-r74o^_bCvwbEMJrRre07Zy~Gc<>h=V zL0Xe}q^LJLQwVS)*pQ-Ssa~bzmqy9!V6Z24s(Wu#ATkIPvpbJ>67llj1I3XCDCs#& zpRYEJ$20UIKfaB#uMDWbf3*vm_8JMGuI`FZc!l}Y&b92ND?5BrsBVhOR*<`?lMy0w zuc~Wf`WHr$2HQbpJxpJjC#5XMTx7DyfD+=4(3Eh>4%(iJ@wVp>Ml?kzn2=I5+)`=O zr|Uf@)~mE%MhRw~CKe_>R{FtbIT2g>Io0AVEOd6pp}k|jculs}*IU;&xAH=aQV1cS z?DuBF3~Bs3XF;$|D#U%-SxWRGp~E&dn#lYfLA7ApM1(Ia+|yWhZ|bC+g^d@+B*KY< z8>O0z+B35c2yb3JRoxbeW=%IHeB8V8A>2~mCbCd6rZ&@c;rZq63rKT%5=B9O_2EAb z>op@;F`j7)Qv_6=^phvk>xKIyZ>oj3(SyjB&Qd*$)2xBrtU zy(_S4gEf5qPn?;>Vl)pD)fJ`!&o@lCpY=yo6KSf5Y}5z7;Lh}6%cibEU>#2On?l9+ zo<9@i921$8#f0?nzQ3!PIH6t$bT=rB0lMn|psad`V3>-ezsHLGeWSUzdH)IL(i>N_E07oA|baegS0H zN-bFznb<36Bl!_hdJwIaFb2Z?RLZ=_{h5H7#SFN0Y{(JKZV$qzAr%_`7P7yIV%7db zxHC0z1Gm?Jl4QL%9e9lZv7Uhn!(L{I;y5p=a~ZSDAZ#*w$s zT(@+VvTYjcX}0Ca-5neI!cxBs;eKoRa@C5lnS*zf=?H6ca|dOj(J&P%WY{W<-`;PS zGH3TzzK^EWn4r0>19(EyOr;G6C79amjX=68I(Zz*5;9PJgL$)#zp7pcEvBvQnQ4)u zTU+IkUFwIx%Os`dC-smFzG2=k>)ew&XVQOqwdD4Ji#kg$m#)_&^2fdWUqsURar0sB zt>35%!-+fXPnC0I@61;|5s$uaE_=z!?b;OeKWRb9sQv*{nP- zurcd$>T=+!-?Zlyw>3-FkZ}m<9==juc~^XV8d06Xy@V5e5r!9#xUBtzIQ#Ts#gOM9 zE6czcULW{!@tfc2Qixs+B|TPn>;qCaL^4v@t$86%Oy%)4xygG)n!I6><;jw^IV`z2 z#lAAuaFKg(TbKr)gRBPRzRP(H2?~!!Coe7|!kF=u*gf4DpGKM4x;DqojV=^l&Zt`qWOD-1mwY1^RZ~@CJ333`w!a`I0;0`@ZUuqdaV<{TOsqi>)+c=Kywcq z=|vrl^hCB#HT`eWT|DM~L%1s|cN)_f(mtp35(U?ec>Y5j&l0=x&-jEv3hsyzCGsBS zb@s5&T0Yya`3JT?dz#O0g=UPLJ>Oq`FF-r4d>i4Y!sX3AXKyBPA^(S-ykF380DWnl zw2tB{D>?GC(K6%AlyG{KOJGC}vPVYM^6l0|MO$&+uM}+{E#f@4L#88N_}ImSIbApA z3f0W~qO^^9F^ltjIc|&dC3cAe{N5g`*Scw!jrzP_=pG~tOSf#AhQRru`7N6otR09F zO8+ODpR-akRtGxvbZJN`ZTguOmBocmJjzd81!8!%L*Y9TB^8Xe3(F9j0jG-isX)wU z9d=P=$|0^Z{u^0_Am2xk5;E$lwH;AdD}1nCI$QGEr7v?2I(P8!vW7ci&Xg$$OOb`2 zE@BBD$9S-!8@zNI5EsqTl_Xb^-Y+49O+Lrf1etkV*9ebAr4}Qcqe8B0Xbtcrxz1f< zdvevfu0=c@(XW~%I^&uAYd@mD?1v+`WCP`-AD=5dj+!Hx46(M@B2W0{{Nj8E(NIq7 z&2%A19XKolGW=U{0#vNl;;L*beCImxF4P*y7Xoz3-!u`vwCBC5zG|yKb$~6C=C_v- z<1u--a3B{&co|$VV0dv{Mu!oy*(zgPUd$qv!ob6Wy_PJi(Q!~!uvH~kB*Z$xj1-5R zT$=-T5{?u>o>pIT6@@7l+B@Mk|tzgG4YbSStaP>iNMKHyK6zz{GzBJ6^c2}x)S zWL*#RIg`8O^Zo4*Ph{aDi%m|g-vj9b?O^xa~6#VUo34%)T%cxa2s+;%rrLN zx*n@nJE35KpxP^V+(vcxp?srC@*bxXw}Y5TI9+$fi&M^_gI$PAs(DyFA0`&rLE-%3 z1*EQe?-GNy=YtT!+vw1D=EG#NG22rN3zKlomd&}a&uJ!{tD)x0MDhOK-ab#0M|bwM zXh^HKT>1(E`{Urr2cCfqi2e$rObOX2eHA>G?H(kMHYd;mc^vi0f4B32MwfF^%mCc`2sY3KnaoHuU8xhJf$UwS zsllaChT)l6AW3FvawXNej878ESd$1ZMbeB-_&^xr1m^Bi{lW+OL&pGKPq@gOy7ZUG zeji0tq89h+>oV1(1$ckfBY~%o)4bgMD+b<1#k622Y?Sa#g1M!R+IzJLHR4&u#)W>U zbR7i}Q>54i&U!2|!S|VaO$B;rK6XpXsO{0{*e8Rs8=daPmNnJk;-9Nb1!Z;s9!j{qI=WMz940 z+T8{bF1tm!Qj{}9;DegtF$aSf2qxyb0^y|qsB5S8R{R*Vzbxes*0LR_+u_)QON*i> zs;HV4$fSCcnH%Ya3*KW21|piv`4FAv=bhR;`#xYJFO6V!haZdgGX9dHsU)56?{%K2 zo7B>nE&BA1_+_P`xJw)1Kq9JsOYWwc%gC%+kcp1&WfHC@98@DZyNjQ$X<=V_^;OJP z{CDC6-Oq9VAxjRhF_^CwnByQ~9d0+()UI4o$>C zt_ESM4c29-eY`(2-Nc#TSeRoP6P|C!&R_3gyCc^9pqh=@8iBhF8l<{nHYC(Xst+D$ z@D;)LxOmu#B5sdiDL4Rh*_nlRkqYIC^BVS+60d}L+8QSI` z^#w`2!I8Nnv%cGvJRE>B(!Y{(dgj7xT&ne3iR2rg9v>y0EC-@HH1*#-;hbwO;TiPv zAJ@%tZhg=n%&(nl2LQYhml>2=dWdjHLu5&|R9B|}8_IstSmU+IPWo=Tk5Y8H4WCQl zuPQzfR+Nx6syfUned{Cgwy*aU?>Oi+oaRooRGX)ZOg?_g%ee7!*uIoD|Bv)iXl}2i ztLOI;aaMA^G=cpP1+jZL{^rX@d=G!KbC^pNXmUuZZ&7yi`$Rk91iJp-~rm~DO=~=QJd)87cujk=2Yc;S%LZ}7TB9b@V5`h{W?G-*$ z07ig4RUt1yf1MLmW9T9Zhpn0NQB$IopX@ko+s}fgOg|VN zloOqClRX3AeEYk??Q;hHW?Z9h=VX(?fNpdrFwhUkJhxDATdO9D0N_*MUqHA&+zTX) zYemX~Aft1rEjgNR*6dJ*@HtI9e2YQ+;nP%*F8vH-U}U#|x%>YI4K6`TD=_XV_)K6K zvY%;PX)f{JOW!zS4eqLWwBh}HgQqoogX^%H)4=GAFQq?2`XL<_CJY|()G4cNl#GVHrN>=qpm{hWwa`x}3J$Iz;M%$ls$cXnzt!it$@|allN-G3 zP-6BTsQcb!d~zlfNU0rq^H08K&C9h=5#lz5bi0>JB=58$Jb4Fh8oAA%sV_8-9zX^* z&vB!(O!q&v=b3tNh5EjGf7`OOm(DrOn033*S({Ye4Q_ynAjA)r>MdacFWX{yG=B7x zKkqLtM5g-&dV1>SynMvNjeS2rOJfrnxVz*1xZLPR!%LN2)g|kXl6}5E>Bz8&+dmPK zh2X~T|3lbWKt;KBZ-0;jh?GI67<3BK30H~-+hkfhRY)nRyp&Zvnh~Oj5@R>{}_Kk|Vt+0q}c_T6Ijm8w|V90Fh zph#t!TiqK1fg{_qb@WddmUCv`jH_pnexUw{M#R#|$--%px~NSFFosI}sN&Rl`(|X& zM%Me`G%Yc1Hppjhdrke)(n6Ka^V0L|{@3mM7Cc$hb@gr*nl`aR5{H@_DFYq+<{qDT zsaNi^Y?%pWf7yB}CRiNteU)7H+m6R`-s20@EoQ89=QTO4wZ4^hS{jtFT+wIkNTEEp zWe1teD8;lZ7|QMteJ}hIg;~VHsqQ_meQ%eQ+eeQp_ktunVdWS#A{rqF$@-2VU-{H@ zmMwWBR?I}c+1RQQztVXkv-INNz>O;(v8M|Qi&=CTsclISst7W?CR_X+nEd~la3gY` z{y7;u!U6a4+NhFeP0k9eEjG6M&9!P)5Qe%>#Bh(QBBO&`*MJ|?u>Di z`JZ{~H&Jk{yww5C7(uT}8oUiLz_LRj zB_~U6uD~>2{VAeQ?-?5edFi0K^SKMyPBEM2WlkLckXhrGB7mBH0O*NXlj;--D{aFE z=5vS#3pJNavfsBW)q`Zk-iEKIy9-yiHxXJHuvvCJZUS!|B>VL^@qTyu3FkIVan<>F z)HJQIOl?gycE#`>*%&EQ7|gj{m0g3PQ!Z}7II(>*=mb9TLGPuEj`bmr(tj3`oRe^&6j zx2ZqV!ATcxFB5B)a^L>?u?Le@=1?{=9~-Wk&`0uUH${ujuL5C|^LNB#cWvxwi2tnO?B z<2}HLcDcF-Qb;xU$JfK}Zbg8?sjcL-2}d|5Eg&QJ#s`Q68e!l5m>Xq${C~6JxIL~} za@yAp+5Io~=m81>h{t2{zhAuNQHsflv)gOD-W~T_-GEtVGV2@reM&`jPZx{dvCyWC zZ)l1FNRu{a%G3Ad_!~16W4v>7Iw7+j?+#{rPOqRxhQO4~I@9mb2v`a&cZ{{Jl&(&S z1=kxaSqvMwZD6Nl*$Ab7W4y5HH6FCh0_R+G!#1_5hN=h)J2(-&Qx57!C8VR~_|75e zCEr$#-pO6MF~^(7I)wB&$ydB^5`ZSTl{g4}Qa^A^cC_$Y)y$~g$#!jK@pxFN5fa;? zBh1Yn>hAzx*VL~vN93Y56|YiJ!CcIv$M*_E0_>9c%|)2+Pe;~x>r>_m zMhK+3(du*LO4f#TP4y-c5%zl9FRu>}C89oyWa)!^N-X@U$6LEOEC(e7r4K&vSw}t+ zI$p=Jj?B*{M!uC9@4JICJB#nXXA+CD^ICk5Nw4nKQfW4(HurN$mQq5KO#Ra3zPVWl zQ_3BdjVH_{m_>kz7-9Egzz)b2ZVbv*V1l@GtYNn~0Pk^YezkWVZ%QY~c5p0~I>*f> z)_5Bkv}^yo_*XBE8&M`SCB-u)>rD5b-R)Hx1wW~L^mX3b8GAHo z2n1KilKK;W2U55JzFD%Fvp4C<+hw8*2fgYy=XtY42-*RW=pM_g2&;3b?<)BucQ`tYz zy-8Y5xVha#!WZ5)uUd~~pelk>J6FiR4C`PyAkG}QYAj?pVy;)wpxG0QO73lpFrU;SesESl0~BPVtew{Tb?JT$M2FVp&go{FLy z;ZqaOjBufP4_cxOJ|?gDa##H25w@9IxuUiC6hKmc<2DfE~eRPx`3Fl$ykD>tc$ik??#fWP7!5F-GOgE}+%^j;Iw zRd7aa{@V2di3$E}zR~S5gaVdXk$IwCTonZ%5yI9$jAZheuhui)XcXX%P1mH1n$-Fh z4Yk)n3G^W=IK+Ty;xA3F-48`AEKfUZB>(nbe7gkn8WMtl41Ijv*;>)MEl>omJ*(RG z+WHmBaF7Bph5!dnscXN*Uz%VCRmfA)itq)kAnw1j`wZZzFaL!N_`4-`2LcH9-=HLJ z#^{V0UHzES=bt*Alr8eFc_B~<#kqI)n5^S(b*pFWWqD9hLz#DYq&nS+V^rE^%LBp7 zoY)z+`S38z@r*(oyjRLCgcW-pbq}v(IGhMg8|y&itFIJoF+jT-1scEB$3#IsDz6*$ z8)pL#=KB&uts=fUR6P&fvI#8m<>_4BWtqunww>^I*ytP+r8Z5t zA~Ws$Axzg%DH#=C^`+$1o|Ee@Z=&8bGu>xwVgsUFY~FcP`#<8@T^b2Ee_rQ%w7gT? z?RasfMSMq}nQ)6N6BAZiAMAb73EIL3S3X_d{rs|Ys*)s}>M>g+)p9L0ILtriXhDFo z!;z*PP$WLq93Ff8i!f=94?R?AGbJRm(bsKiA=(2KEFOP#WIq#Pl{V^>7-b#-$c0i3 zq#Mi2_`))G^w59x6Z?9x-%8U|=sfWJB5!<<_XyZ104NxdDYb7zj&)cjDaHMbO?y7K zh>$7*fdC%7gBnGAg5ZQxJJ0^!ZdKmP=+U@E-{qf0DuUpZr_sAi1sl#kvAYkcCu4ZP z{cAJr!z%*>J6fJ^9j_+5;-5wwsir7(b9b|(;bejtjL3uS*9s`VJA1reTU7F>DbW*R zv+X#bOKqZzG{3sALq7_?Dgg7d(PdhOXa5Kbe$w9gFg zTeCh}G3w%FqKz05Xl$!o-nuR8S)UZ5Jir_crZwL5K$-5-YuMCNXQZ@w3zDjorX2V! zMHzU_L$`m%0#cpz!B_(ZnGQU2W>$az!Q+j|w+OkH%m6GLFVGs|`884RPj;UF+1ei! zcM!}ceT+W|E9cvv#^T%mD!ha2)93s~#s4df4~Iu{N%*gmf|ToRO1I;-1g)6w%xR}& za+bzDKeXbrcpB!<+{CT3T}w#S&=XfY0VSTYeEL>K>W#+v@4AM-B^5056!U3V9obt+ z(>uzK$#62^G&4XC9u-l#JNN%A^gvUE4Aj%miNuzN{mR z=uZK%KFX?yBa@-gG?tI|Vo*+#pHM%RuWz}JWm(KiCtPb{Ho3YDj-fHErQ zWeOD+H!P74X&h$T+Hq;rlg?N1-;}!de>gMbL_ovAy)ToofZ71+oSOh^gX_!eTzpG_ zxpQ5RnW2IF#~k78Sp+I3Ax4}-e;5P9NI)x5p2}l|5aSgR+e@;nH0v~S!C>>vg4tz7%*CHPC*Z$9|LzxJ4M1z8Kq3^a4={j44K0SMewh5baOg6_rix499O`!g*qg8w zMpn;B78F`0HV&&PMrmxlTZYjh8l2MP6OoOxD>Mj~*}=LUT*y&2r-4h!+>=4~9dN&J zs+gP9O0#A2I!EV$ra+xjEVA8Zc22l{_O8#r;wLArQx1@=lMBx7Js#G9NZ$sK?wblg zBWCl~C!r3IN*Y6*H`HC~Jz_8Fw>_MiP>v#&O(@cBFZ_vyjT#aFA?UxLwZVQ&3Wb97 ziRR^9ylI+_0KFW}t{2Z4C5Zjdw!`+;ZUgjK=&+Mo1M}p^6Eq*szuZ8*{%x86x$9z_ zGx*E_ZNHeBICjYSya`75rW^7FEF&7M%V7Ah*B883P!ixhFhWe%J@r`Uj|msXphz4$0w3U~b%#e-;3r>a^Diz2 z>K06Wy!k-ZoGTHZt8O5byZg|GOfH?%Xvcw^j4u`7$R&W9x%|OFO$bBX30J_UTMF~U z9drP?oFqm+>X-l+ava~`#m_2$C2Wfi9(D6g5FLht1x|=B-}t&q^=)oJkGXlyWO>d4 zz8`83fN|Yh5@2I+FRRj3K!T8!fCOBtXx<7NKy7I&QP?~cG|pGtARBvBaRZPu<_9%9 z2KEy3bcA(t&Rjr2rZOAvK&gcDeZFr1@nygK^!}`yQVX!shO&!afSOr_}{pmya)K zZQ33?h+I*k`R%SO!+MF07FHRoT*@SuKI)U*KC>9{r$@|5xL?_5**2u9)}381Jg%Lc zTPJTbtO2^o1wuHVzB{L98c zj}Y+W;}ge2oDy#_*F*2LhBVr}stul1ZseJ9lc?y5;mi4PYUqV*MWf z-(A3n4eoGj$vopf27#~tJuUC5yn;yGXz#*sU^Hc<0N*x_PV=y9Ff(aRdUI8KP70{! zm_v~i;Pj<2!`!*iaCH9?ydXDstZIgc6i#Z$khzxkjFVLmraFzU7M4HgxcD!&ut%Em zAaqvbJ#Q0dm!QucI*fZeX9#5DgYud7z zHq%>-UD{3+y+8q{QQvV!4cSIypAssEJs^L2M!wq70!}fhAC6roWAwfMOdw=ws9B-I zZG9pr!b!h{shZg6Xv1 zC2DikU1C!oI8zJl51BYTI(rRXul>lk|6tR!UH}*}n2fx(+;6i=a^d?K`YXy;8r`%m z`OV$PBg;mUkDY~RDT9JVD1N$Sro*>k&Gdbiz6M%! zjLSFkW@++RCBKsFgWZgA!eLvF3k6TZj{DVFZmUeqXe>^;dllIn**0L@2%=fYV6*I7 zIw!|C3*q{7=_08V%U*}+>F_N|)GPVNdM}q|bww27^--j4A3dxsvSKGNQU(l~?=RH3 z3B9!yBSs8)4FGVMmq{z)f;xC6&9!p(i(FO%SM~z7s@gni8dqY0AH-H?=1G@nqtyY` z`+J`ogE;Ry$sB#Q;#Zdp!x;1*tF>uUCUafFs~mCOUB7f+z}~pB+(EWK`Pn0MwL|4r zRG8l^ub_ayawo^RJ4j>qPU(0hgQ;NkRzXlHkQ5go+Hl7tA>l08uHRlD;1tvF77l61 zEWOR~@W-Q|ijR0KT=T7Pt{J}s!>@=pU4Qx0dJ6N7-!`P1wu_n*i-bC|s>$!Deg8 zrQu2h7yq&O`~jc&H)^qa&sccB{!iQstYnuzIC8Rx4Sqwl!Ib|54;7A#Y>xP3IMExg z#@N+oVhb`K6S!lwPj!T-@ouJSLh_Mn)`qyUnT%wyT=pdJ=%{qg^rsPOR_~q}y}VDc zQZD(WZtNkCI@PY>7w^)$>qVScNs8XjNAl7Z95hvZtwIE7DBJitwfScsy*Ze;mC#M8 zv*JR>=QG+XnqrjBG%wp}!D3TK^gIMNF6ecR!mQz%K&h82XC^Wpi-OWZby-Ml2rq2* zE$`FpC5|**+>Oo>t%qj8m}W1i`lsJHMh*?qLXPceeU;;D2&-`m7MMARc;Je;TeBR+MPvvbeVA5MABo z__pqDQIelYlveRX@i)4qtss0$EB-Jv8EFUeZN-slDFXSoId0`n<%namc7h&6lvNz2 z&v)h0lA;~kuwF|X@wbIL1O#iGer_JJ>5a{tBZ7`^G^Gv{HRaD-t=uhB@rBd99^sQt znm-#T8h$vGn=+Q^HT*2FkNup-^4|P)=_+8Fnjnk)w<{ z%|Ie-IbEQfqm!8G>QRMB8+j5*^9tjE;Sl`CbYJgT%wFR=_`8DnQi4wpNWCraJ_N$aE|t?OX%@{dp#|r!aJv&#dXdGXC@>ljZ+9!E_{Ko;`l_p7CEc{*SjvTpr9u zGjTbyxyLDN%=Jo)Pnj$m-IiB}Dpx-h4Gj3j&Elv+mjo2(vV^!lyqo4{T-V!63UwUW zkdj;f+?7{3PlJgZ^@hz8zd#B1@T8EFGkJu)Ht%j zXN?q2oz0GU+%C_AdZRZ7!9T+39JyTy36D9Lq$D7naps5)nH7F1HQV4vjV22+ebK^W z;rL7qV_YG{OAFDzhTFQ1ZYvikl86VjR$uT>VwncrI^rAgs-(!vAh+tl$X4Ve za%dP;?QQ8VX3)Wc{+_48l-V_%d2dW~W|$*SR0qJek4}sU1JX-@YY$BM#K~UxrcXjs zFB}|uHP@1|b(iM_``*ug=1GvCu?{C-ob+JZ3y5`b=2 zSq9$RMlF@>@KihoeY$G#mf89vlM3yrBtGJN-3GKctJfqxavu(>1ForeNbt? zkbLwD9(B(+v7u4MW}&w^{Xs(lnrrVtR)kVTvWp09w@FQ5TAD!5&B29@U$4g^h4poa z?4z6{CegeML%7|{Po-K^avdfFFlAP_3*B=RQbr#2c{33S&46RnEmDKXI$@^amj=vc zb!YMZo)0(9#23epRb+5vD29+KW;+lPVZ{_fWLLMM#oGwuaImo5`7rt2aHUjo622!U9`A z`@ZQIqf8oQD}gHJjlnX<{kNL^KVw~ySz$FcW}La&YwUshLV^tyT&#(V5_MjQ=nCb5 zf#}p0ufxGbhpTef;{IAY{jy;7IEpl)y`_7T`)}pkv=<{BE_BUhN;2CAu7`jkhsAp* zb{a`oR`Cn(=4f9|uxUl9 zC#zseT^1|J2{7u`4p!84fVY-4le71qPY zn{rP3UBltKAq8~OA9?N>rH-$RkoJB=mdH~cNv0g;shUdHqxHqiAUHse|KVcp>&Hi^ zPokT;!RxQQJo9;e3rR2FR<+2Lio_R1kgP>v)O{_Be2-G)EXalj7v3RKvE0a3D|Pni zi6<5ETAQk^HMJd>p*15WZV*I0(N-lv_+m79-$b!5TBJ=xILf+TEB2`G9tdr?W zEveRH_e;O1-9T*jt8nY)?3;`&cAqwu_`-+UtSGEjI zv)?n#eJGqSDT!WBdEZljBY~q)oUx`6K%gl`zED3IrozTs_S_Zw@PL>IbLh%ZG0W(a z@gvrEKHol<(}!d-Atl_j1DL=cFVI%y`-{(nA13^|7+R+7|9{tO!HLpKr1>= zV2v-=1F&fym2IonlAY7Rr?FCE`MjK0nmi?umAykY6e+U)qxNLL>8xvMar`s(mE8n* zjP0tBy8wt#!}~beF58eTF3MOu9(|zg%mgFW7&RN0dlwUE}_{n^UimWGX3Yxupy3 zJv2&0Cf(Nuo z(#;o+MPee{abLq8^L~zhp0!pug_B}@qPad~&s!@Z-}b!>nQI(Yb%<=DUP&*~6FN<< zPZopdQug>t45H;}a9Kr8$+b~S^nvoxLu__38HU~)3#S?L#qat^CO7RnAW1T;egfU^ zZT}Hoz*&-**XJ++^T*!p%V@ys^x~Nh%F1~9W`^_l0h!$Je3VE_*}ExzTN8N@c8$lS;2}=Q%;=WT29-YpmOsyVX@U zwx{&VF@0VSoZH~)AkR9$4kVlJ&&rr7H!p{}&?Qa+CMrtXUWmHlR`@Z-2_{IPV-kO$rQ`xBa< z37%A+wAsGz_Na)3HCroE?3YGR*=5?4^mK>oG{;|~mZ%}FriMt--t?j(=ma#B*VZ0p zc`;8%y9<^#TR?=uKlFpzIb0HFZ97>Gpo|^zDb*M?C36H9w8!`LZR7`Eob|e!i)Qni zT}6Es$~5K{l0PA*h*2<2aZpNvmuMAjMP;PUYJPPHZ<@*O{IbBY1Z=XnsK`a1*b`!j zyrVLG%AnCS0v*$A|(-Yu~8^qo)1pia4(qEa-Rjfrh7&rK0H-mMH@L zV*uAiQuFo^B{9OYAF{$75%JRsj~z4%>Zk6Hm*xH*a_}+`FcG{e{4V(1Y`V}NY#OYI zy#P~(u+PO)OC@LcO>1W!$Xwu$u60f`S50avr70z1rOvJTZDobgjrBMkfDA7Dwo|*# zUnX@GLQkbBnGfA=FY~f*xu$vr4&7q+Tl3V-9)cXA{IJqotu*_41`lx(SE;MWoe8~Z z*N4fw(+aFu#VmE70L2GMHSX?vAeU>3&30Q@`KhVy$?`cTa{UZdhO6m`%HcHwh2N8izcA&>Z&|@5E_3io62D;vO7=CMZ zH0h(8m3APW9m>Vy0rmktNeDt**N{B){k1l(1um$Wi#H(oMQU16-imnOvH*3Kz4~o2 z3LtW#>_mvvo6>dHC7~K;+cTFHyzIby_{KKmuU$bN4_)vYfRDtUF9O;8$VCE<86?v; zVcSId7X_59dLGNNYhXgtgVv4x@j2Z2Es~WBdQi#p3I-np=!BnKueAxd4&l$!hS54E zOUDVuC2f$C#$;0<1K+V6(3mQx&wcP8mNQph_T&p9wjMy3A2fv*lE9L1nS5o0588Se& zx(Geq0;L8h9nP+9+ZGG#6oHC4-8LxHsF;`OWOdE{IexfpRhu4Qy8!L?{5HlqH!H9r z>~o8HMn28nG<;J93Y=L$b|54nWoEnU&zW^<0M+=L2b%)eXeBi9rdp6>faso8xGe2l z1TF?#r!#_YXxv)0IyY@)uZrjFXOV$ z*BZ(vpq*}Mz7t>Qu_(yq`>M_4V{*N(7ovU6oD7i46nZpcHbs0gL0hj#U&W0 z4@w}7LTOo31G8vMsyyT0Bjp@$`QM23Q=VauPHHGFq*+vUFD+DB`m;7*z*`m9XrD(Ls>bKR6{it;SIf#wi?%QdaRe)O-5E}^$X zCh9*OFRa=w_9#0^a`A(Ds-3XA;Q^XfE}2IT=k6~zT4ss%I;Ydldh8n%i6VYMc}~6s z;u+SlZp|-?P7;q=bExcw?AAo$pR-5)pa-bpR5>5+Y1ebTR!NZ#4XZSC(b zv^`|?pE!9XL>z@eycj$BgFF50-BK3nyg!bWHM`a0 zKUD8JXa>B}Bonwa6Z#Iyi&LEzUYm%tbX!>KZ~OGWzIe?stl67OPuSf?&-cy=ToXDv z*J#7y^4*-;m8LSCNe{Q+=z}rl=ze3vhg<5)^HcGl+$9&4h=A0tiA( zg@{b_w11L%oyey;n0scumEgLQQAo$1<@B-3P(FS^ON;x?4|?-WL3ZE4`X(;ET;=pv zX>SC=L+}U5dVII_p+Dxqs&L2rCorQvc3Nb1}qzqoItFEp#a+UOE zCuvfl?#z2Kks%l+>5Cn236Xi|UI=v5cnbw9t zTkf}#RcGp{0nX|aNentSJ~=_=hM789CD?Yk4J{!#bm40KB+;RjIuJbgly+qJ`m`fZjeJ zN^1|Nx;^Z+74r2&fBnu4R{9HAc$Lv+`%*t(F40E&7t#x5b~>aWM0ix1g5Pe0~OnX|RN zClAS)8kii^iH_ANZajt5zf|eHb26%5*Idnme>o>R_5DMm=D;Y?kC(mm z?g3}rPW8X-^&Y2y3(h@!_f2k@)9h0ArD*|K+38+)i!nR0$U*5v*{Mq?)@#v?MXl*n zWjLAfQwrfiidpg3O_SfO8$IRIKCPRU$yMRPSTZHn-8m|TE?r^tiKa_$gSPbJRZpXq z`H3xy1|s{#gMK;l#EhFmQ113K*~*V!*}vL*{zT4G#(1Z4gDt(01AeQw=d9bFYKzhN zmDKvyp;z#fcv+7*MItex%C8tKTgXYm`ohyn_cpeerEtVleO-vB@|kjoDKwAdd@__6 zLKKaC{;q(BgGj-TJKveX>#m>LjQvBug|Bi;T*=1L2hcpW$Bp&k(xn+-mIM3F+zd5s z)h-t6DOA=l=R)$&4> z>+)f<#S1hb&GwMa4*6QmFeMu7j}2>{pmLtaoq`sGbAf>Yq-coAxjToD$Zkr3R@wdc zOTU}Q_&Ow_qfSmb>fHh3UcO(8>K3ciW3JTMkGg3(`B3K4=G2Y5YhxZun0IoGzWG~m z43@i2`wZ`lNenLUFDQuayA&scUnC*fV>$MVZV zz}e|GaL6Xlt*`5O*m-}otagc=}$$TE}8wqm}Yq7&Z}UzLcZ2NT0vG?USQ=+bnLe=>Ua zV~vcGc-pk>aP_@J_w6+8P?>WK*5BsH!sN(E(J7me2(JduhV1u8FFf%Ng_ni}FSW#W zfX~x3q^lpYSSordhkQ_F30OU+e|=G$zMfKAoWTAt@)=J9b}Ra~)}!WrWQijxT#6hJ z(E(t7($>CH%d*hP9%|jcvk(i9et`kx%Jrm17{_FtvhaAYOOnZp*<)bgn`-0g(OokPSPKw|S<=>Q&!$*XIN>a;X;#g~q2!P2Y%m zg|RqAidjCZRslMBTkPG~?Mpro4UdORr;|t@GA$W#g$X^bQlm13UPnXl&A9D7o+QM> z4#I%NIv4Rhw(H*4%iz)LOAp8Gh?VbeIFOunrP$@g$UO-N!NDeP09kcGBg$7Eun=&$21j6Ft@pSc4e6iQUYu08D-S#Zr!Vp%ZtrXc( zw@|Cj{JTI27=)u}-UH72-OhE+jb5~SjTpH)fWaoUnSZyV{E@g_$+7Q!x9}c-hdzVP zOo+~kg_sSM4TqdHsk25tp9PCfp+qkE9$1`sWzf7{$8Eaw8J7J7P2H$?lyWqL&xsSX z7-tv`a0bZC>SV+3BB)o?y+%cP;_g%wvR>gwb}n(T-j0#bmf zkm#z258cQbQ&{_6(RPe_)u7qXBE7~*`i4TG-dZ6`x74qVCWr)SJ*5!ZcRi5K_m39& z%AR@QJpeebtG}(^14mCu7@s&&zOEiTdzgo?t7tG&0K{*Mj|R*T2h+_ zhjDq0j8P6B786`3tf>HC+_#!V1aXRgDZ*7GUqhPlvrO;9<;Z+8!csN?*Te$=E778DPQC5~Ww&dKf z=s0p`X1V&$wP>bn?e&)iqQ1>>ACN0T1Q0)&GZV0+`%D{|=)V3Bi^9v= zw^fn(;HXxM`NA5{Ni0DyjuM$=)Sy4`tYW)1N|7&D^|Fy22jEp~F%>t&$L8K5XW(5w zAJ})V(btA{iWDF}X!0Ol<>4sm2iC~>#y#k^b+fuvCZ2lMGi(`L35v>SRxb`q!i~a@nuVx?YhNPI~Gkf|6X*6TF8;mcAquv+%xli!z{}27mpOHLfxk!cZs)<*DNZSYiU`xnZFw^d@2I0q-sJ;&M7kgl8f7)x z4hx-drRz>6*V9vu-ET-8J!*#s<1W3wn`vA98*!E@o^q@eQ$ESZZ?g#V(MKUs3-1M|=pTjj?Hu610<7x9eBuqWa=kfy;*H;996L=9-V`-E z!qSBeW54Bp6ElXk;LQW}*uibnxz){DH$9KsX{u@?VpOdqx6E$UPQd{R86EOsa(bdV zD1g9DYvWy(9*)sd;r8`$?W`b<60x^T??QLcT8zEJS{Mi+tJHp>3(UT+Nv5*%GHIU0 zAa(aG`#Kdog%2G3@H}S$E-}$dTb{_s3{(5_(WN>o!yV7|=w6 zcW?k+JjB2(R%P@K-@XO#QrWo~Zv>K-1QS=_Y#zUWqC=4_q9j~c@L3N>3J9VFju5yQ{LFTc% ztSiDtcUSP{q4ftJ$;^sCUrkAz|tZ!+}G4>qLJ zzu=kY>v z48SAawLGf>G-NXy+;Jv9v@ z=yOmF=%lg1yC8uEwCf&*A9@qNm!#H7;?1Q{OvSPq*#VwWM+}AJ~-frv6M@dYZ3rw{mUGa3G*U zoG$3B`PprE&+WNc_krM@BL8R8gh}efs~i?CWEEds<+AV3J5_v!DH?j`jvTz08Ry6) z|LVqIzJ-WQBq+-*3lL&HR1vy(lXZC2$SJsOR3z4U>StY%OB-|0?ytD>(qd7Dv*TXP zMXPv_>FgXM!q1h3w!lN$rMbi{r&6BWI4Nh!P>F7J}Y@R z%gs_!66KxbG??W~mz+MlViCmr__=2hN!NEu^BtTf0qj#*<1s`o??GXKi~8Jw8&i5Z zjt^!^Db2B?%x#&v)}^N*r|LzXExVe0%qddI>Wec*T+idIpC$+j)upBxe_7;-1%LR3 zE}UB_E6^YhJ^AvRmqdh!P7G(-P%L$#f{UX>(F#hOluAN;)SDjOepD*DVajxIizd#O z??@Q`7y0ph^odm)@{>^0I8#Y?SvX~9pLo#srED&~olH#|lA)xmp)lTx{XIdM@My&@ ze#WeYH`zXKM&D#ZzGz(wHy=oGyLd-7wBWQx0~bH!1>&H^n_xaIrQKcs&b++)#T^iT z!&w!`rXLcjhYz_)T5=;)FId(-C5S>7{S)*E<`rWp`Zi@ibGPP+%=R5YGcobkI;oI< zg-8iG`5Bi|pvGx9IJyOVXZ|TrB9H@#VfdsK32$z911Xcpgvo4@_^1D@iHWFMKn*CZ zCcGfLe{K+oV1&&e`C(pw-6u)w#r7pVj|aMruOF`e5%4*>S}KyWzyqWxuKM7i$*k(T z!a$_oZz4-p_gq|;oEm`_NP-X#TI1TYf5qdmFFA<>f|k8zl9C5 zo&5NxKe;2qw4(bSP#C?-HJEbR>Q;z~1Tr-meQ4VpV+Z*k!sANjsJX&V$Hw5117r$%a zcOdG6j&zh&U)9);ovbIAU?nd%z>0X3I}(-Kd`G_K4~q;-o{o$b+7u}>Cib6ERSm6y zGH%?fuX! z$E)-8X8SrZ{9fy5hA+7liEd>S@4tiWzLFTN+p%V4uc}au<0S3i&C(WnfJLR})LODA zltpw0g}@v;MOY;73$uwXjKl38N5vW5FFcZ8TUm5XzKftbkSDLNVObJK229N9rf4!! zE=rT=m3-S-v5uxJ&{9H72Xqg@0JdxybxBhE|0?XeGjBEFyl6601X4X|kWbbul+_+aVvaajm#?87H*XHs&eXH;H^Z5P#`2B@@ zJnp&gd*0(Uo@3`3X8?A(CA0(QpW-0Fx9_Afq;77WljotR(Hs!tS9tm_qt(nC_b~lC zj1@*r1#fJRc#__A+UeQwQioFRx#iL?)5pHujA;q9aJ{z;&Hl$dRDqvnr)FY#fqzyb z^a=@P2&4%x>$$;-P77@ z6*=v07IBC_iMCHD6Gq#!>LrQJAX7FHly7P_pH@t{#7MZ{(hFttIC9 zi!S^-BX)E8?NY6dmjT25{Q+W@D`Fo2sCyBqI+p_;v1u%P$jHpQhXB2exU%A=k_zA4 z%?RJFJrp%$-f?TTWWtc~PeVd-li={VP$2hl*U{^fv&=jr2a$82Y?qhI76}pjoQY>*RF3LcwYG}cSl$gTJ537xFg?l zE~dmi7O7kN^}UkbyJI)*YI?&Ck7Hp7HjzfJN}He(O+ECGYlP}r?{Jbq=i}xpU-(b1 zjl%?&N;ARDKVO=6904 zuK>$HOv64DY#p`Io&P%DFLQHrx7|3RTjTVt>aSM>i)atdu6pDPe!1PbSo*P;dLsaQVm{gJ_ob8>XA?HI>^hXSo>9w;ua?U$PkiF~-{R%-8MwYk;#{+^lq zO0~lY>-MZpEmjP&6`SZilPMz|@^a591@++6a9uqnT7=dk-kZbHbIRB&dLD|c%jLzV zV~23c!rq5-PmXAmrr&xc_fjnXBq)1ml!ZP2QL*qJzK7z5k``P77*8LXuFk6hhsn&; zZ_=X`(&ZZZ+(7BGzog#&+SOC!z(&@N8{on0nV-ry5egb7j<~rb{^?|;ERvjbUj3)n zcVBLYL+fx78|E>Q@x{$8_1C|soZY(|W$&WX2SkpJ&-mm>`E% zGgJ;hF)iJ&8fTdh1WY^}$iE{k+wqhOGoBkChzuEE{P52v-Z^S82d0|IuV0?;kIf|g zI*2JSsomLdYw+A?mM*s*d#{ifpNe)<9vZdEgPjfoH`>Mq?tu?FE9IH%JGTi30NiDR()-{{_i5IM9K2yko4)^J zN?~GJcBd?xYK5$ zOl8Nk*mlBuSl)}#V@$(maR5;|Lq)+nRed+enh1uh?bojK&k z3)4fgYip0Cd4ErzgG5}WgxUOHnQuC!mMfv4?rNnew%uCvkNV#z)ib(s@wdu37U83M z7rj*5Lab%r!h74MYeCbCchRP1 zdCw{o1JZ2nsK`ZpqlnfEdv^yFWtYJl1v_x2;zENmIZEAm$Aow^Unl53O~zq6m`=Y) z_El$n4Dm3Hwa9t~qR(a-7$C|D`e^f1-vwe-ULWXyc4a}ow zo;<7iI(XFF@zt9m#k?5nEWs*~`R?bPZr;NJ`~ic{*`7S=@B3Q*`D?i>E8;C@?Nh40 zTWF)1H1Fvm7F@5xpj6By6IXrnzX&JIiNneRor}7;ENlXJEgaHuSTMO+$@J6o+5Z{96hO$fQds32i}q;)iiw!YgJgp&_BhFK>q@Q$|Zfj{S45Z1Ub4cc?%?R+~oH zyHdAD_PkT8tJ1Oc{jJ6klP&68Vf>IV% zNyD&pzs&Ix!OA!`KY_61>8iH+`s4|(MLQtWj@Vf9_HyK+wtrMj&he>_l*bjiCROwb7C{us&D!XB{p5jIi( z8`rxx`lDyAy-!pw(0>23y8w^7dZ32f!Fl<)Vg3 zASBGN@%*uhuuAHtKR@a|U;D0uo?x5Zh8h5D4s_o3T+C#_PK#1^M1YC2D2rH8Y7cp9 z;9B6wc<<_~Muny)Uh<5|J&~rIAR%C)X?%QH<{%)-oZ$#R{Ta)6v2$A~0Y%5ML@A}{ z!PS0T@89^Qr7)1#qF!OG_&!TOG9lK5f5(Ho);Y#;kdf>>-2WrMUc-y8ECz+D4WFI8bdpL4RzEX<3Tzo2{ ze9Phs&bhZtp=-YND9WMqu}pDxoP0TSRTjFG2m}*|Le-stZqa`UN<>R;?j_gn2R1eQ z3u|eB1A!=v$fW&VLhN;(lUEBL>dmH@nc(?)B`?+?{d1_2mtM`6Qd8!auazh1lY~Sr zubWiT_>!A*jwe0#g*T0Cwp41PaDfn?gBccEOo{Lt^nbD(3j5tT)%+O05^ z7+7nOTcdWqvM|BF?pB7C`l8x>q1h%gMz^v}Ul^P`rx*O0SWK#rIV`ww(rv%7TCMIM zwWoxCdbAVS9OLnhTX2_i=BtL{2iqnc+G62$+cX*FQdV zqU%9Z%8eGf4=3M_YC;_Zv-x&r!M^luePmJ-EV2FBmsYQ?psC@92Fv#>u+^}cSb8i4 zt!J^G71Zy|In+&%dbg3;Chc|S*oo2%G10`Y5mKLOtdhQ#hm_WPSnOd9lcRA#2EIc# zTf6(C_-LwZw}j&(in)VAr|rrNkMi`H$hVeag|3$WZJgHp*UkL;txc!l8TO{7h6a?O zlSE`r$Jz7aq-pXQAh5@d6f(XX_>FU86SX&MC_W_hes%avqO6SptCroOCw;Mn44MD7 zVt>uQkV=c=BE-U?HnCk!3o5$RSJV{STRo?SET_Sq}gOgtTa zY(SkaVZcvz_IBTtOv%YRx{!Fm0Nh+ohb-tNlsq1IElcrz_xPaA{_C^*{sr@aSYq=P zLxN-2&jaQVniPIY3nd)PjfoP+S09@IbKQj0%Rs{revb)L4FQ=@)=r3GVCe_|M}8^# zujK?9JRg(m0umN`@%Qt)_&0wj5ITmuVs?8VFcwTdeO3|Tr}*Ufub`}LK}0jizF=m0 zj}Y$^Vq&i)_aSwp2%xeoN&1GsLt8<;4Pa$I`TR`K%TyxBmJ$e2$~bHpVRj~x^5T~Y zmlg7%OR&lLw)VftTdS>+4#I6uQv5(RiX_zYU?>RjKOr4l;>{ka`$+2(kp=iDR~`h6 zyCU=oN0oe=k7HsmAS>)1h0|8_)ADXju_H*o!h<@st1oep_A>pRFzdB8Rq#C}6OJ?; zF5MzW>@#7a0E@#D_vC{>q5dpfICvtl5!~Q~A5sQucStJSE^id;%T7 zUAElAcSA9A9<(Lr2(=1^Q~?wGz^?4iP9Fp#PT%(!d1B@{Abq{tHtJ4JAEN)x!!vJX z&EK3b&QS2TL+e8^uN7|-xKjN@=7prhD^P5PV@*=WlJZ$$R}`5}7eI1f*qFKEYm0fp z6J6_^DgM;n?Yz@*vtkNsIqBE#EY-JSET_6Amu;eE!HO6P|QI~MQ1 zUw^dk7o2G&uaZ2-p{SS(?yajaT!(><*MUHdheR8V;d1+pu0)%0qe7d( z+1-k5j{HxGeU|~Ry0`=z*|Ms>z46Cw>8*Fj~|?guDU|K4sTR%w06YMG;-2 zHeMZfyuYju=|_x1#>e&`4)V{&YWsc?D;*(6kfy1{5YGX8aK&a*eRIJ>g_%QIJYJWh z)!?8zJm|m@!t%ccZvoqQ!Bd|TE^)R^yG*Y2ezI&20wGnF7Wnj;&Z8w4zoum$9*=1g zjd#8^dsNsPqQGXr^MHP14ocIt;UgpciTy;u{G%m{BEK%(CA7CkqaUC1ZjnJP9UPX= zdjzRU%#p-|=XD{@Vr=(9^1nCgz}4$_v>~wkhua#UL!s0BpM>elFvvLAPvY6{B9gGQ z)RF$GqI-YB*w!^ATg`%TI3q+{_qTw}A(^KjD_|XTF=WQP`Q!n@3@_{-{NqNrF$uh% zkk5-uwLCb10xX`#9hubf-3JA?r-9&;7-8QK>8y1_z$!YwhN#A|b;HT>`yf>L3AQj>OAO(Q6bV-&a z6U6#3jJBLq2C^N-p%bczb@&*AT4c3V`+#@W$>kuf{|v}4j}X+cH#fcFI&4<4c4G@) z(0hYjS0PVR+=R6}zEa0|xW6?!lwpzOAwB3BI;UEL@SpRb~`Dk7?5?zQ=*mDUi!nIM%b=Yis=DabTPBoJ|YU=Q{EuOI44s zqwN!Sou9^V%L@2j))nWdd}%b(umQUR4^VaJ!D)T9<%>v4oTr!_?=J18e>@guxmtF= zq%sJ(Gwx_cvu;FK?5&PYE@`Q7NqGnfC2yGONBE)>P8MF3M7_Cb+)(AVw`f`EP~${= z=Ih7E_t6w{*M%ORt#e8f9auwqCkR2!&#@G?U}vGuFBg-I67;0Kv}Tml&U4neTlpr> zO#fKqa!nEVknb1Um#jag`gAG|OK*msvfXNuvq>K(vEr_b&rg69uPZ_(@_)b0tUg>F zR{1T=kstBSTX|rxH(;8475%Bk_}od2F8$#PZ3nP+u#UT3&#t?c$A&y0fO1>}&-BPM zx7!})i0HM+VUYvwZCQuo5%0V!!vE3k?mA11;3_*_Ag5#vgf; zg{)}NxD4aXboyqy9eHKazc9~XQ)!Zmy`f0yyb?lXwN~u%7cR2=<@fLBuJ@y5J_I&% z*{O}{y$re%F=ZROn4$un3*g~{DQ#%5Mfft+Fk!I3E^}zs)pW7>E5KeGaR?GPh*x8q zxCrdIe;^oNW-{(xFp;Sf69~EVXrq`k$Gj+C_p(8wf8wghMxRe<+JO)KUrVeH@yJo% z7X{25EkQbr-e3KGFr_B%{^KSf4HRUM_VP;gVSO(tMu~Gm`92Q1cA4J-Jo3KI^Ai~z zw&&zjBI7C<48*!Ckmb99GEIkX905Y~ifP@sZddN1XDWZ{P?3q(aE0S(77IBEZ!DF*;nUg+Fe;Wn%Pt=Q&R9jIutI>u0??ll6Lb^lvK zMHoCEuVrZCAdz%nf)Dfr+>A&i9-O!ZfGB31bRFIMWOwknP$^gK`U0zPHyDpESbuNF zXC^5Afs^?NDEJR9eFLaZHcTL)^`seUa^22dUwCBiv!Pc+M$}Kz@j=8Os3-=pI646Z zS2P%U?1{<|j!s~uyV$E(&;;b~5+wxFL(Hpcgt1|Kp*7uj_wHOqMSXK)VOc%N2H}CZ zG1kkn1SQyL9T59T;v=j~9R{pfz?ELM==fXuTixOUh~jjef_|YrU!J#STDnabz65-u zg(ohff#Ancqjz7jtvzzx6$^PA@15gxQgyZwZC@7e7jfAkNby5%r+nL-<9*5b#u5EW z3l)v|L*9d*OX$z8old^n=)#A^PO~tx$KZru-fK0xsnj=KTca}|U)ILiw52-iI1RJLyT^*uoZyg1x+6@!yOK@7@)qqIqVUY6V?L)mVd+mfkA0 zx{6&Zk>>zc#i{_Ifz6a)73|1p}{QYwou=bTeyD?26+~KaPamwU9;m8 zC$CV_*tOku@u{~vrh7!%=;YVe!U8qVuCB?ip|O#UvBLL#9gecuggG`R3{CoQk!4#Bqks5Q9p#3OZj`->nZzjb zg^Y2@9IFW>heV&S3Yq|crTk}R{H!M$mrk9WS(7@QtjDfi_k82@{s|ZzbDBK#!dX;9 z^_H1z^t$S7-K?nx!bUk)G$L_lc^#CJy~q1k$8+XQCHxV(zJLKgp~4NB`4o%Z;~ix- zdqN#i=Cpb~xw)He5KC9kYoC#h%Y2`bB%EKShbP@mdCYG#0}cbmH}A9~RQOD0t3Y=% zutlqVLv{BY`H?Sgm5%7qWxrDw=eEiXkGu1r*kitnRskVNV(-7-h?5o3cH%xkfZh7g zvaBa#dS^{Kr$>+I=qd)+A{!l)qZasJf;Li=q{5Gm^z*d)!rUr1bFMwCpFCRPBu#$7 zxKesrNQ?5UX!q(_pJOVjGg9wmgGa$bw4pq0eZE#UeWfZto>TXbjH={!-QigO3BzAS z9Iv<$v*yEu(mM?xJosdSwd<+SXaBCFgH_D2Amsf&6j8iVzuqA1)ejrDKcS^a-J#zn zYQ)7y!nUzd>IgxnvFfg*&jla}#ysk}^S}-JFaE?wMV@kRl&vbE$y){PQtU1y&+& zGEV>XgjBdq)tqJSBBO0ue>DE&qZWBEe7W;CRn6@MM@y4R#@^vg;`WAcmGzp;FXcJ% zHz~tZeOPt5bVf)nPGZ`WIaFKffa(f^s7hXOn>UHUvAATh&S&ox#W&SnJ$3!!@hay9dCyDX)42xxp7mx< zStkbuVC=aT5!*Wajj5mCUAYn6-Ti4f-k?`|mgmH_>$oq<<(bhDY|=&yZX^AQwB-J` zRz1w!zEEpjEbyV;q|r<{C^ccC`?2mZrYD@(;Cl7#=l5-0QML*Ou~=NR(dq~!z8 zfsD{p6nU#Oc8vip@g#Y*PcAa>d?S$XlqUb`}?3%<)1PV62(=-+prjrYd;a4#7O} z>u~Bd2m7wjP?MQ`QrT>ov_XR8{o?FH5<|qn&(+w`J{xuG@!PIP2Hj9|i6QgmMv)#I z;ty~hJ!S1L=2;)aZKqJ08iJiI_Bz^8F*x5RQbNfnc4hL4Wn-gFP|jO>ODcL!^sSG5 z;S-(Rr8q)@(G!!DV?bD&!kzA{!6AcpV*Vay48+*cT+p0t;*?MbV#e`ooA$i`%e1!6 zi#R(mLBrSM5c9fAgJE(pf3GxD1aZ;b$itEz{rA=qf2@@!x$`H(>w?>Bc9$MFfu)J@ zYtGuHLMVu~gkv*LKIw8)wV7CzAxZz<%SEG0Lr3bx2iJ2~>1p$GW`=6n+l5d#j=M_p z#GNpd;qj95YA3A)%=6`i+PBKv*1sq4G|}2+6pWBfSw*N7X)R#t@Hz{9fQVDE@{@6EPdx{USHo}dM+zy{en`O{sYF_9x@yP zd(IlYAwJ)zkpWUh!w_m#A%)RW*4hb7;jyJQQvhzWyd&IBI&q!3*HkNCakE_O?df*; z^8$o?uN^*vFV=M%8srt0G~rCzBC{m}%J|3l;khVO>E*u8>NNK7VEr={oLJ#jnc>?x zakFo^*Di|0b%bHlg)>lwc8_DKNM`vgn{>w~u~W;nTHc==bYizg9#+|(>VH^ItB3z9 zvXIx}vG$NI=YiI+V0?`%C)^F9vU)nbjq@Kt&cD}~V{#SDkEiQK6g`*1gmakdtuWn* zINetDGw=wA+xtj4MW}WEwNtlod8L!wRxCdklIXu-XA!CDd}n@N9h|7AII!{jP5rNI zz`s?E$p7(lYr|WFU+LLrU}pNCwrH9y&&1Ksm(8&rM@-* zTlls?`S0$1Yn!}pN*!MZx7pU5F#9H@Lq|ry^0*)R45zKVoJ-pV;@XEg-Rg8RMq_dn z{hzhvfo4Z5-nx@_yxB$%occz4_XHD%fH#gMOsN!>iSj)uum& z75Aw*8nWh2rOuw4N+y5I%YzU3#YX49)ZsP1SG^y{5r(pRx|96Wdn&COZS3g6J^R_L z)^ZYZjIYNqa$BVPLWcU5Y0yWDd+fL?C7Yc~9U`8-A;{f$6sK`uaX`eD)anL!b9Rlo z=Pvx$)`HF)-3d;d%6Dt0^Jbw9mRSol=G--Ma!U-hD_eBs=jcC zLo%GX(IYUb>8UK)D?FE%3!8-A_sL$rzuk=;H4=-Psw4X(N+l!joE0#6;p`iW+aD&F zjH>Crf&wmwmUlJzs)fopdQfiR6{RfBHq9SdonYB^{?=8Xjg^oGeh} zAa^R8H>~mcEvQ=5Im6Bf%P>Lhv6hAR(2A~uDIm305;JoU)Vs31|1*SmRR?g+j@hY4 z5L^DGrS@R#+)Q3X)AK*-5f?$c+3$o~;+k!&^AFwsHu8`Em!9Oxwyk4&4phNfIQ06k z#P58Y{(LJsucdnd0^~wqex-y*aWx0(%V{c=B$UsF21SJ~iK1lG=~bs?jM2c_C@hKA z@r6qAc^gcFarID8+l};^>>mF94*dAj-u3kJ>~%YeI>-zjJUCw=p{c|v>X7w${05Pmw{#GF!;Y^bO#;vKS?>2IT6rE zLbkkFp&aC`9Fq%hQe*sA`ALtyn~)kbidVBi>`zTq?(L?2rCCdt_oR&!ZIQ|yGm$@h zK}-@TbKJSZ5L%g)Yi>S?s~1m#w9^aM-A>eB&ZJxc|0thAHcgq~rKwGJdw>9B>3c&1 z>jYSk047X;29d12BS3R{au(Pa0qz5!@iYo>=BXDlAEsFYODpl)^ga)0NkTF|FwQ=a zPcQj(2YS)soSf#i7IRydTTU2|GZ zkueTp&7hz~xyPsUg`We6{?7pB!2txodhCAQ^g<>@EVJFU3=Q4_4>a&$GN^lE{_{WS z?>I%!141X{X=){Y!5J80+Qd|h*5Aw7Zj@2_zAFw?Q>Kx#8^UsgJxa(!=D*fdM7G68GU(>AS32 zGq3f4&6z0T3km9m5VS@jYYzmR&J>bBB973?9`V=&<$tr59{m5AQw~&r{GUei`}SCW zfj{=>GpGM2ZNv31u+Z`U|H~tZJfIznb6WDg4><1qpnW8M|A|}x;mRN!%-r=F_Tl&i zBxN+#>@O0xwMKDB8=fjtPO42=9M$FOp+`+2&6A4#nr>XkthV2Zq(rs3M>~{OE_6ke zEOrpHrm0xS0@U+M*c5Ul1hiQv)H2C^@Sv8)Q=9_(}^MM85q@GerBt7nSotEOpes-*)W!~-F8xm+=AWG`^LzI!3LdjX^j-IUu2 zS(yciL>gB6AP6v6u3jyKCMj2c08~P@utQY89x3K-_L40p$&~Xpe-2`NgeO z9uTto8bs}G;*0|Dg-JadErD0|6|#cc@O$S;%+(&Q&DZO*Qj7Onx0I7tX5qa0L9 zZBme1aHh@fhFy1{IWsxy;6(At3J$Vc-LQKd09A%5#WW_*!=Y%vJ=Ys{8bkQ8Mg#ng zhbn;f!;2v9rxp!Dnd)T3rLOg%6FSR9*B0?|8;0H`DXV#Obn zd|;=qEP|Xuspdy$B65d%(DQ*o0MKv%(=*d=4!A=+FNX?2m*loq`9i1L)M^i4NUp1F z7?2}b+YlH!$B+pPNlk7BvMYO&cK4+KKcvlw6w{Ilj|!Em2OM4bl-Y72I6m>rwOqI_ z_R<)Y=!18a(qj1*uyRuovT0bb@_u*!g*4v}U?K~YMFzhG5NnO*`5KOeZWh*uhpS$Nsp!4&s^QfDi?nfCVvdL=>btIG#+=pMw)t0B7grLHa&4+zkQ7 z(P~rLR|!VzZ7}8ua4YAe)O;+PJ{77m#`u7KxrOH7RBAK}STSFRf2Y!5F7FW5M<>jI z-O^M>LH+*Sw{EmY8$8@IZqQB3=%%%u^i&4ZC!ZbeXx*P40<`W0oWkr2-Zy^ZIjWJA zRP|+WL|i>`&!&*C)-PnXH)NB-A)XtYfZ!Vk|7Lznz>3fse1It0C6qXP?}s0oaF(k-AJPqNRe|hss3z~`9I@Qy2c$}RANOkmftG3vPT*MT zhzSMfoHCMJyK@#W#xLX}8+q=S`V^?r4lL1DJV5FWsS*9 zY79OJy3Ox~AO;~zr+|ILEBjr^&@|UoQw;pUlMmYmOguNhB^so#-8*YtvjZ+`{*}6{ zE=pK^aq7rzVAn$~fCCNLc)4X8d>rG!wCSkEL43A37<39GAFlm$6F)V#@qK=F^v62G zgA(>g)q4Fj0E(P!bT7zj^}Nec3Ml0y&{=p@m6s<2x1m60R4<(jcSooKxj>-ah&qu0 z;b%B*dLstAMEAi-+J_H@({Pr&s_sCvpqro0I6HKSpBg--1^>aYR@jEn*lTz8i4V=Y z!2{~|djHSTFXwod5-|6%A|*Wa8z8>|S>yv0p?-z+zEbMunX$bn4MqM-q7rtUM7`;0 z6F_N-Dn)$FZDq02vhMG@-x5Vk%7~mo`sl+vVyBQ!Gk_-m0F5`VUo-ms68IzPu}$^( zVZsq*U~g2bx|I#nT+a)&)#br(f=c(nd$lTHQ8@SrI;DpHY-nX&mWF*%D<~(Z~qkl{;OEFvJY*1rs+#qpOOa$0^HQpz5Y@C!QcM}%f()A diff --git a/docs/_images/notebooks_examples_22_1.png b/docs/_images/notebooks_examples_22_1.png deleted file mode 100644 index 815ff76c0c5b5256e00cdca36e91fc87455e2ba3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 11043 zcmZ{K1yoyMvu%(f#kEL);%-HQwNTvMrN!MHinma-KycThE$&*}U4pwi6qkE?|Ml)$ z>#h4(gpiYSlJm_svu9@S`L3)eh4Gr?H3$U4kdYQw1)lqW$1MsH@K>Ahq78ULbPt*Qk!tIxZj(8t%Ub+~l&~BXE%4RYKcU&B5H&=_M8&rs-pVave2)JC-)sv{(~dz&*^Ek~^M@|y<7+rEH0%-u z&Yn-yuwLf`Rz1yH?fw*#&6hRG_%rU9i44>1+o0-2YH#IjcMwA8OIm+o_ zg!Tyd;nEV2P_cD{ZSd=_SWp)Rd=cf*9Oc^%B6|c$DlRTHLPElCi|7*Q%DTD>ECuQB zCM&~SqyPL7la-bIWA}{;30n+&?k3MuivOB|VON>KH#_}f&RL){=GQ;SgOLB_APxkT z$gZU-FVW+go1=o){L}a0HHYY9kC+BubI-;=;o!MTr{Vp$hI}vsrtv&GH|6d6R|%Fu zxry_+9=1V<>!gjxMHc%}_laxhA{58!)GcH&q)39N)OF3VvGFgA4Cjz2;HSCD?N?_^ zGO*QtL0KL3l6hqK5Lsh1>3)%ULYA+4(btES6{RnstV@NF;c|E1RvC8B;w8Ko^()_H zQM0ykd)$OBg0qBb?>I=W!4i1zlpvvYp7s5T=2kMFP`M4qMr8jZw(nj0y(i9_u8qjZ zxHR;b0w{2F!M(ysY^E}P*4odbpR&`tlyF%kC-H`9w9&aeLKjI^eVr?4_inVgxPl$Z z(|R^!c$o_C!2(4#r<>Ap4hQngoT^Aw&;b3}Q22fqA`EVtYKQpeGCi{g-ad zQN84knpIyT61ToB<_Bb3W4_<3Zoa)E^|{lNQD{*3PE<#3zn$rSl%jsgGzfY8YaBqTITz5aUA z%;g(!NnUN=s7DrT6oC{gWD$QEFcDt03iUuqFPE>%%D9A^jcd$S)IL}&44$(4K`g9Q zENodU?9}Uq9Z$@cE@YlEgaJpa>{>-c1LZsj+c@in#0LIJDkSy9kA5skeQMGKtDX^O zsIJ8Q`2vPxi>cM1aGrMFa-ZJeFU?qwN*NcRO4*IHmeiq?4|RA=$#&)^;u3O!1#*yK z{EaP^9C!!(g5e?9j#q<=*D{AZI$NsiIz;-n3ZXx@*UsQ9BH!Zct<&-d*CeLA_BwbfkvwSqD= z$$#u*)yH=oD_fbGbf-6o%W*xezqYCl8eu`yk<-_g4YATWDp(7IUaO-~?s$1*ygHgN zb3#;sEk*D)8XpG@{^olKY;5ctdp+xDEfgX}ck8#A7Tqcw~JeCXHE#Q#h(R zysCl-qifXes8k)>44$O6Tj!-T_q^)*NZI}qz!=}tGKhRtLJrPQ;RW5wq6bTF4mfvZaJo*Gwx@; zRv7lEN`9)}eYUo`;6!J@cw1vxnv+&8&b>>Fl*J1KZLo@;fqGesoesZsqM>n0ShZ&p zf#xeLr55g*RPUcAsR|2kDOU2*O@f9;6gNs^?AF`r0Yt-pb+#}n;H}Ygw=bff<*JtTAv}Btr1ci-dGt9v*jQ}EEpQsY{+Dy2Q8NiGm}T!22+|S)*aZ0{a>7Llq-t1an!vl>2;L3YG5CH&AI*%cPNor%Sfvlq$f**JC?=ZG+=TasjiLL8a6kN5M{7g#f878Ltm6`0)8ydPkr$= zOB%E%`bsp7?zQIBwDf5G5pqt4;16>ahe$$kr{|ekt1MPrFbuy$``_AGg>jN_v*~3@ z$;D)R8+~?6%R9ppCc9AX&xG^EilI`kirK^&C}aGd&kWfvk{nY$NgkyvC__GIT{I92 za~jI@ip0C?_}bCh(f;6IZTZhFL-{n6bE`-sc|_f!*ZFY2q9+Oa=%F~h&)k9OQuI8( zxfS`r-COI>%WT47w@~vvnZWTM82m~avOG{7DYldvL-$fP8w<#wkG*S}l1@(Y+Q_3QhMgg<26R7Hr93xs_ zY2Zyhbnf2HE{xyI{p{j5lUM|~P7|;&2{OiWSwxpA?CBzX#_hgaayCQApF6h>)M(0r zN6_sjbf2O-%q^n=Kn}3WvbWB- zcyUEb1F{8!#{7*cJfSbP!b`aJc=)2?QJVW7ViaqQo$)S5RaSFoUeR%R!;>4YKz=c? zt%bh9kG0kKY#xtOOkJusEZ7I7L3213k^MPBY_End`hnK%GMFtb_{Hb+ZIr>2wayWZ zWRK=u;37up>#3AfvdHh(V{k1XqsXM5YjsIM-=yM%!B9e5$uK` zeWR)Fx=qJIwT*E#p7G(O;l}3jGN0_Qrx<$ltF50NZ7)64kwhAAN%!0oyvffRsdZ?8Mtj1?n%z?eR|9uHJx58PkhthTpM0U=h ziaJ0+GV9&4Pm$%AIPp-o~a){}W_!mizx+(l6q5|R^#L5cSLm`C%XQHc=@k74Yc>1?KZc(9dU?~!Z}*!@MmCSOQfZx z^-DOe6};<=Fl)K)K@GNmqo;=rPAKY)pW-Qo1OS;9%ICT{3Bk9YMnt=egK4c2RCSEK zX>UwSn40n>eT}raDv0E1UCLe}C`N)) zexd0F(_59XiOKkTS(O}{f_?R{FT+zD=1Z600xV3rY9>rhmb}4RXZ-Yy1ux&qZBM##WzW8LudLMf#;V z)Kp<4HHS7OJ7Ja~0mC%atK0OoE<_k4H~LLs)sp?;Z&1{Ga9}9eKUcRs?qrU^p{Y$U z{~EQqupUc>)iB#7Tfi@G6pxsd+_{s*cmj?^Z*S zy8t0+w(U;wRk|q8NEleG&r}rqK?lEV?Jcz7)bNNE6QjG!zqAxQkR2s3x8^SQeAX%I zee{gA%b1&%969LLNb7STV0CbC<28C&F!T6D>P!ofi3+b;)Wpy|Zgo3v7GiEe>wIb! z(YXG-eCg@Hp7+EqyTGR*FTLK82`~VMC2!G*ys3#tBTQqreM?;Z(4{Ohb`(L2JukO7 zZE9COr+iLPLXGdP*h#(quX9mxXeb}q>xCzcE9tE~dYG%aAaY0g5lvhf-LPcTktuVE z{r9Qu-W|uwq_OC|R7wr;_nfd@qQTDIlTN!}x{74<;Q>X{q4l*_WK6jT&C#ZqDyLw~ zq_l?>nExMNDK)M36R1(r@BS|1X%15ExH5XpDkfi=s)-P(ihiTqHl4rcf##{r_l%{- zYg;MA!4EG@1+sH`2trnVnGH?^6l9h=N4YF@8nx$rBYmmXgFIBE^&zu{FFZSWE0D|u zeHjBO3dq3h=Z8bVD|$U2Z#jZX=eUN=$2$=In?f#O>OlVo7shNlxIDPDXvnW3d(FQv z1EA#O@R6nZ+P7UiC|iZNMgIPw&+wW|IFZQD@H_Pt%eFiN(BpkcLCa%#?NQ5v zJ^<$M&g>Fv6Kc&dKX-_Jurb3cBH81Jv8*K@!QQR4w`7G-L35r%NFhL} zoi0KjpXFyYQSpTNGoL+xlG^|A3dMg(AGM=Bi|b8*XEmI{lyqIHHW#xAbTZr#cREM^ ze|kQm`XgfUk?3I6!H=r4f@ds_#h5;!>xprzt^Q{r69Q*Dr z?;b-fRJeIyb7uIT-_pn|KSG5`2dZ#v1pLj$%uQ*|#AHUYufIV7%v>fyz+cQkZMb~A z3&w(3j)(D)O8M@Ip`5gN!rd4(LWi`riV@LqKD2Z7=V=I-j#&o;QD$8dH{NZ(S$afRicy}5uZUgq)<44-V*5-lHuRQh0P+nLu%?yc`FUURX=k<`}+L6vCaua(q?O^ z>FspvH>@dxM=UStEI>PE*@zV4B`emGpfIuC_#aN(*a&EU~ z*8viuELb{jZ|nkqbs(sCK);D4M&oOy&f%_{4ZNEdw}P@NOxEf1{X9KZ&e%zA&XnZG zpHY{D+n=~C<&|RSM{NN-8`uda^t-w-fU8zpPZJ4!87bk+_$YhF*+xyP8SUst=GggT z%mE}i0UDO6bk43!b0IWU6B3U4#ztz!^W1le^}~|WxpM=ISmB%MFi;k|x96g~ydW3U z(?7UxMTF7Ew7YOE!j$TLd!>x_YTt>7Co1v8PrxpaR7e?JYD`FK`dduHa$LG8^U!P6 z0fpLk!qjkST?E+Q&FY~o%DP>@f9p!x=}{2IOL_-+DRVe;t8U2WZxuv(vas_+d&UR8 zku8NeE)r`iAeHEPH*R@QOsyP_+tpK5h?l!qrmn?eVL6@rv3=fL@&W-w)?d92plbL# zWns)o(qQXF{>sX!Yvn$WinVjNYmRKnB0UjjOo`o~+anW3e&)kCo>0wVossveHRh|= zz`q_f_#tz}x%>3+X)ErletjVaC{ZCDrt>|&C(RN~?AU3n0PU_P?ZKFLKwRFO!pp+} z;pNNSMrZwl6mshA)X!%~XirgW8TE+~`(;&pgRg|&hu>bC3u2n`a@!fp7@}GY;ii&9 zHoSx?IxaQW^Dx61kt2on`jwZQMZ^dv?HaqHy*;;a6OYMpE9wbj)4LjVOun1F6My|S zs+eYW9chy!jOMA4C?!Agw-I?U=T~@Na1wa>^qQmJ(F?{#i;N}p?>k>k*6FtY)&e%L z^>2o+>nG27St)G60oLUwOOma^-b!CxlKKp;r1llpcRxo*!8gPAFbUY>b?P?#ky6af z@J~}(odKCTRf?{|y}v~c5(O>*^!>>E)N4FlWOuq*JdzNcv-Ny7nu!GDkga?Ax{Hop z1a5aPfxqkyzfl)bqawx8WM=ZN!^NRcd01Nc-uta|6C zRI#e~a-ru5N)h2{-06n|ax0UWR??KL_+bL(OMvpyZ}4Q241U{*JKx90C-^-bpV>`h zw*6;M*1V8x^yR!GfCQsP+zEVx2Qd8!v8tJV1NNj>(`}aGW6Ji^kUn|>R`t3o$BN3d z3?4Gu-_}_7!ppeV(;m)a@2^2;@pJCgHE$CZ$1?g3i18wtNzm+|&%MzHcrUYVm(`xz ziE8~al>jNL0}+mTZ~u#C!kC6{Cf+r-c~wU5w=f;g)L(gcNsUl_*#Tf%2zLs9nDSig z{L1@WnYX%cez>kl?pg2aNG9{v(^KsgZC*(GbX^Aj0W`tX%u19AHlTSiwZWL0I{atJ zbkJImznLM8S#t-^;$7r{Ydo>=Jy=EKpT8H|A4|x}1oea&NF@-X94Yd(zhnmiB-QMf z@?JJlfat06)h!uYr~oLegIUAZlbcelvjsz!(&X=Ocbw(OJw5UXUd2-+2}+vxV{yC3 zCz#TX+OA#idVE_1V{*Iy!z`e@hmu=uN=Lll+BhVVZRaQuu32w?5ch3F&vH2*iXF1yw<+%49>XXSm@0Q z8TQW>A$N&D--vb1ck$V4s>n&C)FR&n;HQG~l-jg8cv4dQSlSKZvIdK*x#;!T7WU^j zp=26gqJawPNni!B^Pk-n@3L+X zmV6(6FU|{u+lu+=rmr?u0%27cH4&Q?**z>ICEJ3kfHEw}x?$mGhsk$(Yy);7-x{g% z_N%T;ukpN0_NGc05e8fC8AnqHc&N$(+s_X+X*!Z*{g&$-UtZV=O^@wQV7_d0vZFN5 z>jkLCz9Z}t!G)f$5iUA$S?@N`Z1(b&>JSC`d z6EbS}<4X{Sd47elE>rvM1@7~z1lsL&6YL-R_xWxQM(T5)QI?U>2|#aOEp7#{#6$AM zKf4Kdq)-OwnBA_^-{(=THW8sT~Pl%tt>Ceu%TG} zBiJ0Hs<{}bf@d{3+H|`!wHU@l?0I!> zY`yp(sliP~*Y%)5Dkzq=ojnVY^c;V|` zh8i7O;b^yA4+PTte<1np6_91^NTkfiq#4`alUY}GLPsUXrZC~te>8B{$g;kUet=t$ zOqAA`GzIu|qUz*0Oew3YM=c9{?bBv46Y1*b)q{KT<;&?BiEmH;UaYXsD6?1HM-&wZ zP0Y#pw!>xOB5jDLB+6&9eIb8sLFV|-UwWO7=`{A9#>~IJsPtvE)!l~_X(Z`6FS-aO zr)Bh)8X>X_JS4lq(gCjXeAVG3ugT3gV|Nor>_@z@nWQ=V`$ktBt-DIsdZ6AaD-1Sj zX;gyr@)IeIaK81aQ$UGDgubTam1b;z=NN>&q1AyZWBnD|tHUGkmFl1fW%uftsjffM z+gXIeU5oe>%k}qJtKU1bD;fAwD2!SHd<+-6s;r6u;SUqIquECm5eA3cGEINBmW!u8xVM@>`Mzm|qDTj0^NXIory#>CC=eCF^1l!6J@tp;z@dIGah1k)*TGvMn4^ATo zR!dILzCaPu@d=woFKT#9hE5PRHKT(KKhn0p|BQ@+gqzmYLu&RHP@1H_b2(*Cyet_` zgfk|OFr6{_e5)^Zg`B0w#qe zbv>Zg&>|f~@EeOn2`2#YbsBc=3GSIYVk=zwrQpUc3F91t61Vg!xvau%*S15R8DW zj?ISF34yvyz4qD|(^+;(dJ~O|Bvyq~4(wlr4S~sQV!lI1B5TDw@wD3gl>9ip)EK~*Pgl1iP~s|1*F9{r6=&86bQ$Y; z2qVB1N#TWTK)KW4>y>$OeG9bmLahbiQ-7e#c|bB6@_RvjdAzmgnvL0$A>h{078!Z* zHQ-cn0RgSdjwvl5507;AlK+$Az6^*>;>v5wlZ@Gx&$>O`W0ES_{o1nmIf`=My}EL* z2=MButf6}Q9!-{~Zr%FY{hleYoafw<2;Gq`ApI8Zq-8g*f{jmi6 z50HkFr;gR_>+|9%GxVu^MJmceq`ZSt z7DrQtu1nkjZmaU=ulRjp)Ft;({pV{38wTOY-uLdaobTz0BUGqYjJKLMe|&geu;RKq zZbnW{i|>BV3ig`Nczbtm#g)K)$v;v3i?uKv;h*~D|GXgMyYG>;<|uR0l8ti4-K?0B zF~Ioo9;4Y>uwS8aa%Goz`J%@~uap5Y`Hgd4<69EJ)RdTW)<8fH{>Nf3cu~dh1fcu* z*KVS8hM{IJ+YbODVkA;jikhTD{mHMxPb0(V;bPeJuPUrw_J|em`;vF1qJP5~|Jos1 z1K9PYmr*}`dp^EjtYG)D)qUg3PQnu(pO=PT1P;6x$A7B_Fhq0Blk_gcirYGawQ~W+ z3#gbMnMkWgbF6~U-Y9L)upd~S)LoWySzP*B@wgrH&W_6e%xw%U)!GIQ94Dg^9|+j~ z6Z9wyYTg#{HZR8|)y+6ghq9z@hzq!(TlAH=1ZV}b!v@0vXjjo3>q^5sf4baJNlpnH z*)O!T=1pQ9`&m;GwQ9@Ix1C7sem2TBxKTJ|jx;liHI&wHdi-?cuon({E9O7WMNc|4 z8k=Hiu44brjE79Wz3@km7h^tsvX1VL!BidM;N9}f*ytWhAcRR4OBXy{=2Ysm>bYnq z{>X4m-retW4alI*Pu_k8TOaJK%-sN5cyG48(Ry04J0>L}hQX6>0e{x3#(`wg<`j`X z`LWnRG!d}{uZme%rMG+4%+c8(7&{?GZZ_;mFQ2)NH>L4PP=q)kx;%jB*@4C@`8O3H0LlrVh&3H9nl_|P6G=UeunBcRPnFITWHD74iB%j zug>$a)JSlOTy?+gt8oE@#w$SsdAWa-2g+fpL%_`qpX!|b<~kO0!*%|?uf>z?iFa|N zUgnBqOtgexWn^YcKj$%cO+`0~kF>$l>Lg^!4Ji)jI@)fIqB}V*LwPmMPF5uA6qQ3i za)O0NN~n&gg6T|= zCqBHtpZIJDQ<3tHq!UGv3==0nOX+CNa~80`7mZza1$10yU( zFD9riE^(e`soOL<3dtBGtin&g9XK{E5q<(xz&WpQ%OL$DaijwyXrWA3Z7D@a?B)lW<7 zcS>KJlUr)megje=FK`A(hLF1XPykpk5x1z%@8Ex=`^2d3lI%g6Jl-joX`m%E$11qYeS$&CI44*fV-yP3G zW%$o53zB5*DE#$ah1Q$7@|4jN0iMfpA_`!Ng=8F&6S*TziCX*|z5j`7o|X85l5T2j6L04ouepV_Cq+9d_*~Wr#Li$gMm|Wmj6QX|2Z# zL@Z2|Qat76=KebrE0lG`rJXuto;_rqHRRTe-|jrqzZqNXHRZdfT3YOD6v`982*5AC zSj&+DE)hvSROJq#1tI-(xeavN(cB8||7*_ao?f#D7=;`N64vq{XHMr1tQ_NKV}6irH1JM5fImVi6AO#whDxze(CM|I zKE^<+R`q^yM%IBIk#0rqujmkrW1tsgjN1X)8x|k@K(-_lITwFEynrM=5GZ3zZ=fRZ zKc_PXL_H^B<**6{WUa|0)}v|@Nb0e{k)PRX<+ksPn~gc`wj$}1R-I}W*>CLzFQXih ztnaF>)psPd?i#o~cD*8mC+J|Im?N+C4YPx7w|)a@B7~k}R)zu}$#{IzY_T?YBS?hd^YBpgh8HSMS*cF5JbXaQHSa;&}<5m-MXJ`_5T=m5I$ ztl!%o@f ngBlD$;s5`6%>VY*M}Mf&>Jk%Wgf}qI3X+jf6#pgmDd@idUO22; diff --git a/docs/_images/notebooks_voronoi_10_1.png b/docs/_images/notebooks_voronoi_10_1.png deleted file mode 100644 index 2a69766a6e6898558c9325a07b78db85b6259043..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6389 zcmZ{J2UJtd)BdF+J(SRkL3vSnl@3ZGC?G@#MLGyblhBKlAg>a-U=(T6F+@5qh=33T z4brRhjx?o6uku}f<^MnDJLk(e$-Q^)>@%~^&g|??VvO$TFw*hR0RX^wM;Cq{0La|H z`(|2d@OQ-ObtibC^u2Y*gckgS(muq3&zI1;7QO&L&wBAC8<+||1sj$85axcyUe11j z_C8L4r@bHA!^_XZ)j=r0$;a2#>#>}qjHIl%&?7%Tw2G9}|9>y(<>MlCH7@rq0B{-K zf!{O<%3PmvM;jlcQEx5RBuI2tc{p~mls!jZGEEdqdPh)+|D`BS@R!3S=9xb+NsyI6P_7k_cEk&@7ziEpdY;?Lai;tCC%v=CGky1 zrggHiq*bjgXX|`>mD2RNHaX-^ zFoWhEF3m_F^=={hXxm9YL$TYBy?6U46pzQZ|0JP3kj+QVG>HQI*N&gkN7HyOb$OSV z_q(Zd;5>h-t1o%4swdcX^?B-eR6?48AUqz8u?I&XuKk4!tfWcC>fn z3f~5)P)|MhTzW>xtG+JT$_MYCvm(Wzw^69lRW6*1 z_!>DaC6Bbc-?U%+HPr@hF_mohDE@S2j!6FWq@Lw*bbxR~@}rJ+UG_+=tcwnbpLXX& zP$+-wZ5rt(`wk%fuU}tF#hqy?*QLoL=bO}Y7Z$kv$xO^fzyV70M_JuQL6USJv_lz* zw}QXsNn+B|Lq-Ee{TO`Gg4CW54BW@1rvCTU_;`ppG%npojEDc}j3C&V4uh};hKK#J zB+n}^?+hZ_5#nM`J38D3W$=Lc5S5Xs>GO^b9ysi*DE~!Vn*$PBqf>#Wzrym!4rzRE zEZ}dw9kr(jYoSP@U)gC+X4N|FjfNn~xO%OpEg|OLb5^+)VYT37LFjS(F3`P1{-9ki z&4gZ0PoiV5y#4o$`RrgTV>$jxF0*i>je-%QYWyc+uqvCJT+&&Zclw{mmyg0_)OYIM z1hx$i$rGz!MUF4@+7=Yy>>Ak-r!>a>zSG=$^irWpZ#42fhQ3y1H`<9BJ+5tjndx0H)OPcZdO7UcXb>gTFfF^l@U9=9DPZT9+4i++MyuTcpAz*fh^j)Mic7q|jJc=R=d(fahdZ)Gthi zzc&{A1}@~QN~8${rRkvp%Z;CPUo>76r?+$O2@}RYr@T$yMHj^tIT}H#OGK|__TzNQJSRhbXbRg!e6eaez>g^Le@5KNy@yE~&HciJi&5P&WpxArC^qRp1XT zZBl|LqviTdzAS*ElfN7W#u6<1kF0o0j+Kodc7H;1N+muqUtzAY*7;W$SE##qCA z%uzFq`($b4Gt|J&w%_q4^$3&8Jk%~demBc{vbs6PJZq|sBl>}&{Zf~J$GBgFji#xo z%Mc+%ai>aC1D7yKQoRz#|Io!U^S#OtZp3{WgDB z_dsh}9Xv@yGFewBjc=}6Ch6PK0Eq#RifMmEI@d=9E-Ad~ER2@31|uWZNE~|8sZj9h zRV$j=s|(N?f&fjQ6-N9m(%3kurN!}rtf~^xP>l`UU7kPYikQ~4M^ytE)eR{iwu0PvE3r8V3nU4#%ra6m#v;}M zQ22x61QbjmNE@5SDs-T}fC~?wh`Aj-d*ItxoLY(J2Pb4DV89puQNFj+e29rSr|+j) zX^umzdyBi#%%Vl=vvy;dK{92bH54HGQ;DFy=i>|i6gj%vk6qxVdO}m2!V6VY_#$tPeQV{wERNOq0 zkyqo@hlV>es7+mpB(S9 zfQfE;ef+XR<-bGu=hw4lBr2O`OAUC~gFpZMHKoXsK3d9QbK2~M{)3>!An8P;Y+N4qS(ij6xN~PZn*W7zPQz>&t8yh8eC~I8eNwpX2fv! z%I(~cm}a4(7>*jk26ct1)E%pbcC+I9zk<0rIG!40G-2#2TKozwT@w@2)^6pKm+$(x zp=6fB{(TG0r6D+C#MX=Vy`HR_Q@vxT_Ol4p4_4RTgE(V94C6~E_CoZ-uW;u(|P6#BjB~Jvphf9cW>+k=q za(u#^U+BaJ^6#mV;)tf|7;3vnGmU=?#n-N_t}4d|&V+HuId^?s>b9Mm%@o&nqPlBf zKwDEYZ4t?uq$3@696Bh|PG&yz(ryB}zY)gKzjAFd;#|ioq{EPn#36b^Z)WV7-VPR_ zZm*O0OUGgQ-PeA*HqflvNKw}%z?G~ypW`sFg|{JF!@o+1#Q1ZCo05u#Eitn=(5WX zB}a_HEAXTj`Xc>fM~e3{N27mq3bqXtGH-W%eJ0XCewB*>^tom^Q2Z(3y3Kx$Jamuo z_&B7}YesDABrIq?M#_i(J&m$G)m?FDB$#!I#-%+1vZYy9I@l^$yKXCn`G`M!2aMKHsJ|1-$Kr6vEBRb|?V#Pq~l)a>irHJ+BE)h>TM zk2c(CdbSwSVkfcGWsyKZW7A5(96I2~cfBG{Enmaup{7mvM@AG%L+xnM%wk~iQg^pI zm~zPS`fm;*@x<7*_~Y>t=;P5XvqrDW!Lc)f#HUmTdDXt0-%C&8SCve(5Z<@5z~yh2 zDA0Jk#tflTaOiw3RbBAyrD<6xu-u#7@+Hp2Kqr^n=agFkWM%hqb~&rwYc(ur2}w99 zbQ-jTg#@i}qucy+;F762(hd5B^+H+0#+S{AW@ZqeEuMSFfRsy)_Snf%@n>yqUEXSA zvu&$#a<>?ObN~49!@S;4f{8B(JmOt{;XPpp4~12k!Br58IoQw!mX@V%_s`nQVX-$- zuky5}TIhzVT2>=}LP!uAhWkZ?N{x*ry%oZ*N96Zk&G3QdI`>R|B( z6q4|+pn&qdX{ol^2(ND8{h|dU0Vfo=*R()c0$pSkx8bJKhg^^`5!gCxKto#k#m`K* z{PUxoREP0@c=%Mm+k>$Ef4{zucjF>H1`HE_2YM35353#IBT=2-*hgyJ-Mr|Pz6o8C zmqqzTZy#2#315NLq>YG?sWHu>o1!4dfQ>pw4f4n|rO?B3eVtsjZ%gsVOh5#CG6k@I zIV|Bg@F)QRXX~GA6aZH)oz>@5~Bl!-CW#vazA{S@MBLWhbkn;y~5$_esn~8&k_Z5J9y zjgc`h@BL54|27RyHZrNJZ?@D*fRyN6Koyskl1ePZ`i8$`(6iHnCeoBXsDb`v*wkwo zz;Wr~nTq_Tyuwt%*-2np;w=ksu)#wF6mxEQc`9fQxwu|>zuHxC3E`Ota@#tLk?1GZ+vD_jxH z2Jmr2L71JLP%3u}R!!o49yHliH+7c@b=Ga3gdG0QK@;0Bi^cjlfq|DYUAF58L=len zN~Vk30Zc}q&7v&@hMrpEv0`Q>qg_+6L(?~3AH^K>(bD_1H!dH?*!Nn2Ka{iT1*ywq zM9ueWoyrMsC}0EO?-*!ixe((P}Ko4xiGDK?3E@G z^3Cm%doH&9hU~emUrc*1q751K4YBB+=0TISRl}An7^~Zi^|SW%sK@?dP0mkC^?%lb z+C?zhu@mzN;|w`e#Fwyb%$&aC5zm0{{meB8%2VbO!z#3i-tHY?nkt8z=}3jJmfST` zLPh)pcmPt|iTrA0lz|Pr;ZT>Fa!}31rNpH zHv$w}k%aWo6@OJH;5wp!0V7DXXbmo_VIbO?44V#L!Q22s2ObKc!q|wjjM18jyG5E0 zZNl?%a%Z3BQJ2}6jxy&65+zao<9+x|;1H@YDZMC9H;aO-vLt&JwNBby#*hK$X&?P| z!yv`7{B8`{R9n7-m&*zXF2JcO#u(@!!{XQ8I~!ZSqbG(yia8;g7ztpBr$_!ZHz9;c z*N}~>&wK?a6Lmv<$_zeMrXi+x8DH07Nqz_HzITgW75`9airOTr;3oRQs;2#N+;L=e zG{gw}+7#d*y*0EG059Mpl7Q2sRq>GyE4?!%3>Dx^hG$Lg%`n)zj9RDO@&W?LMla>C ztsWitQJAssaiqO#Yw+Gt5PA9i;=q&%Y|#TrvF(Q4x9i^$-gY3MNQ6n1L_2o96~B^N=?*$E@!QSipU`x;MYP5q?Gv-vRoOK z5sOSfd*d%DKTMvK8{|@quIJL;-GXLi=6{(KW`kPByRi)zCfS;yNSVV}UDQ&Kdb`#A zL)rnuJN!3MC%|rO`#@JN2~b+!xRo8%D*5DLCixZydnngBED)s~4teqnEAMR6L$P&D zY3JvmC1Bg$_=gHOw_E|nCSyBSH-Ifi$Th?jP`ZMK4oX$3lpsh`AoNJ@p-L42kxnRr)X+Op0s$#X6EKtn zNa!6RHBuk`-}m18-gnR0yJu&2cFwtXc6R3Xi+!o9K}W+$LqtSG_u{##!F7Lr-3U|^ z*Y5$@IQQ$0%v1S=5!LkrrLv8=9#gwLH}xbUqGkTqh{xxG|7l2jshM~gy4rd9zV!eT zLEd_~xwv|{I9lKK0eg5ly1tVXdn6_ya@)bn%S~2X{Qu31xq8@(^T*|D5)tw6zfgT< z2A=!KK1>{apyq-$&a+Z;y_33a7Fo$3q#x^Txu64EO710M;xE< zQa#Joo^o<(p(|{0Z)D^b8(1Q~!Ko*1Ko(DdyMqJ619)jlh|EEMa+Uyf!hkkCg(D*+ z=gOLT(*DGrnffoU&lQ5@o$~ z=>;2(YH|s1aV@W^Fc07{HvVwILNSeErju3kW0E0*@=oic&eqyO?g6SZLM~}=;ji>; zGd#rsst;^ivQ^vF#ocOH95X@6#*)LgkqnQ73y?<%?WN_dUyjJKz31B05u7!{?;sd)q?9Gnays|$<8mdG$Y@LK$3GZIW`)> zq?n|+Pm;fL63@OoP-u4!~ZoeswBQlzD0(*a5G!48Rte%mgLB41iLzZ5dL7!qXS)rCnTH z9D)Nx)Htn-cL8pHtf7HXZ-P3WFQsP=C2k4%qSNfo$zQ)%bt(&K*{4Qcyfl-zyQAEUVs@h4?XlN%7FF0q|CaDm zcu_^Cbng**dQzy3mQBcKz+($t{ia4wfEGbl=JO!ZZv6ufdcjMf^V3n$*Y|_ru06kQ zVuV!Wx_?a-m8(#LUolXolVd4p%gWWFd?Frk>!!zW!V!lL_CyFxh0}fX!@m;T9HI?1 zVot|`pchPn9Eh63jk&yRsl+kXii|cd#8gK21HBy z@qTcgiExj$p#T1jY1qKR1aH#jDAY3087%ECtC!1^)TXu^9+Pc3eGWX9zqj&Z`G)go?6cy{5_5{0=R*_Z_>xyrm(csMvrkaVYTxAn{b{e?0 ztZ(S7HJ-?{xA@tmA0(o*^5iH7Io8Ffg90|fj`)#REcobysXemG$rb5Ja=!8!=w(9O zdyk8bCLhp+&yAAI@tw|$=3@$v2n6|+6OJ2Ch9`Zq>XAJet_OLhHl?{2U`qJ$NLsT-nH6PBUk;n@<5iYB|v4nPC`Da1NH|t4#J*l3O#igmC zjQ5UTeN&xYCcDY}G~WUrX;oe)f=PPCgL?wv$5&QbF2yhwHOhp@giAOH-RIM*h@JhN z@2tr%OPNiXOP)*ij(naZn}nB~m!t}E{gs&7oe16gb8n|sYc<5yP^(u_?|RHi;IU*! zD=A+jcSQX1U_WXP5#p=A>VH)DX3@PsHCkF!URgQ?y^!@rPEqHNY}t=}q;(cXli9Y0 zyS5H^@3dyKB{FFJmtcPc%r1FHFPBwNN`|?xmF%V z{{droUvG8Bi#TI9+1`8?yf-XUmG#p42oa)5$X?3Z7$T5k?QklXXUu7K&rI)s@A_hX zxg$7upaKyH+-SRWb>fjxX?~_Md)e^%QYF1n_uGURtM|?6F7i$?+C@A>#fp-7lk-SM zFA)evo)zz2Ui?~o-S;!dcIpX{d0jcY&X?l`%Q&%*sPiaL=M_F*-X9e?XI9Z&(sG)s zLUXtGbV%I6Y~&8lmn2Gq1T(xhty0APGN^x-#UFjH3-hdDUf5c1Q-2Ecpxz*AOKY@; zjk7|rC>!NhhZ1MdtK!5ZQ->a@G2eJ1H>JE!N8JPXxkIu&o1=_72Bz$7n8J0$2=cYY zqQo6zVmP3I^zlQelmhb1M8U4qsA)I6xuZs~a7mG>R{iP3-e0d!#RRDh%YdnYNv}Yc zZywx==GxKPE5Tkg8!h6{Y9>b7_froPkZm+y%WBw#`#0g6`6}+>Lmn#?P9c*;>ljRW zRc}+PER>&*C5R^mDI%hPZ2pr~#V&FjDJT~WA1WH5c+X_}nD7AeDM*bcM?WBZ&%G}7 z`|kI0kB5Ukk3kRLGZnH-8n}a$z+9WBhi>YQH1krmkrNGB3C_KV8>J%jGIX(tb#&hE z6gHjN+MUid*9MW_J&b||OGZo&IXpNegz=!JJKNg}AM0=@F`34b)TQw}wcMb*pIBR) z^q*Wy?Ui=CaGCD=FEVS|jOuPB!1V$!Mlx+imR9dw%+;M=ubY`P**FU~FKC3JbXydC zp2)Qi+@g5R#G30C*CZtpE{-b-fQ|;ZG2_)Op$T~ZX;^5Z?n;_oj&IC z=!~cJJS~yFvra!Lh(goUy8^sC<8ilm=SxA#_;^)9*-z@Ks#7I9O(w)fne@#y8*lEjf~_ivgi3OU{IIWsJJ7j)F*yduTp%HYfpH9aemt1Jn-sdt(= zTzq20nI2tySTsZ%fqtz)kZ^5o?ge;ht~1XlfBdOcMj0sNH{`LNHBRbF${sqQb%v#d zG7#w9>?hnG_ogVSXKl!VeHG@7WJwKs3_~~W61GB}*~l5%ZxV#?k_RWRp73Z`kXZp6 z+`g^t|H}88ORT1?smU0U-^(i5R|&ulzM~VAjhk{SAh4Y~ z;tWHHTuCljKG+XWK^mD5I*;R1fl-WlC`N-kTIW99@{{0d`1{5kYvyk+esN*LuQYI{ zktbKg+z?saN}R=4m2IlkHj)HUnly{VsM@T7jI4Uoc-?#JyXiL*@3o}X zp4Y{Wa|qy+^#gn9?xBKL5hsoQnW9sy`cViIom6|5)WH%`uAdwU!_-?DWP9Uw-22vl zO{f6;P}!RN?1kwpQ&|CIxusA>>tQgJx`{vMpN+04wPc(1+t^z`(vxw$!qPANxv?g#e} zAF0gSZ((zXf_;2G98r$s2(Py1NiRSyJ7cm9Q1L4lP3&C*UL~W}G-9+4wx_lKm1{@Z zCqtZ zEo$w}tSe-4OXH!s2Dg9Lv=`al>$jfwgzeWoILhzt%H3-(V#!XxSqN7|KDSHCCzopI znd$LO8?zsO740m+gG>y{f_(Jy9Y{fk-`(9jR384kji1|~vP4yO)ARgj{ZudvDJ!3? z<<@6+kILqsK~n2#;o-XldS#vuP!)xApzfAGeHS;CQtG!pgCnx}Gw(u4ZQ>)?#^-K{ z(AqecpU$dCw}~Y@Ig}*wlO>@pHw-=0VnBfjgEGuUzXHZ(^r5QBEG@iN+{uxk!kC-7#1_Za{lW(tKk%O|K>Ll z>8Yw^syy<&$m!I=xOJ#%RZ3li1hi>^E{U8E#yZ~Br0ZD06Lp8ekuLkl7TGUAey71g z?#p(_;K*2(O!x>p8OJP0w%o|LG_}y-F^8 zM?B`a_EV`Gy$6#JXLN#@N9<|My+nV?R6)I*UObl$meJu34w$^l~^OYG$<BvOYzo`R_#|H(cwme8LNB^i9A`m zDi2v_%Zg8GI=F2&HVJkhwyLPXs0VI^5w0ldh?h9liWC{Q_m)XYDB(<%Ya zZ&LA5Q7omg)M>bEcfmk+^5=N!Y?L^1v3Dr$Xi;@iI*5pTu!R5y>sS+<}e zz(?%Qt?=+OaXZk5JZ0E0N#EBL$B!rM*MEN(kOq#E5)-G9fu)9=bcHRj2Yq~oB^TRk z`I@nWcs?Yv2R1QnsE@6hsE$_b{O7Zt3HTri6%kjPcoQ2g(l1%YePg|oF>4wIf4zN-sVV z7VfDORyy8d|8uUooC1HhEs5N!CKNcIJy@vOd>btq$5crglIDEHh6K+?$dF$H4qlk4Nh zb(4xC+8-Lw{~7FiCt_Y>pY`#?O;w3(N25Pm5Pj9c2#*%RfTUJ(pPhTmY+?edjL+yL zP}`|NsHZj0ZD{InK@<1j`Rd&(6>p@?)q~YJdo#%Ql7T8A7ET_zrV zwst*q41D-%HTNRGT;j`}dJYxvbv#Q3vNy%Y9B}#{wKOC}kJx=o31Vw^WfOOqQ(?#G z9z9{cqdopxePrc`tcSxMCSsUG#UR`rq!DlO&V#(WF!5T7&B|ASN(1#|#m| z%a2DulcD)bAboAz0ry!>95b9O&wlU-9Kz|w)Haq&6>zeb!$o*KcGE}<8qU7BbM%{*<0%J4Ra;6BCJR7c z3Io6om*CH3dA+SsL?Y9(vlyTe#rRq~Y~+4KGJ2j~GPVzVt9rq#dY+ttoAi>y#9bz; zSilb@4OxDO zeeX?P>)dIMrnfllP>F_*g7;38=W6jL#vOq6YEfDQF>P~jmQX>QN{lzXce0~-u&;OH z`B{1S!YIF6i5nY~-P+iaJ&|uPw-sCa*!PQTN`=;p3QGZY;d75YviYu00Q!Dv!VByG ztMx;@sU2(xEw}>cC9fx4B?xu0oBK7MgcBXhptcA>(Pnv1Lra8L7 z%;xabHJHe&2rUzhW;o%?U)x+auL5gmn!%XDjeM}N6R+q`4$(5f_V^rsv>iKyqm4i_R4sy@y}NvY;B+1nKFo?FOPqYE$d zx3`tKG}xuhhQd#Da@HDuBY|X9`ai(!0nej1HA8fXy{Q1z@S2kQvO(d-^r9@k-A(AzJ*(BoqkFu`9{SDpu1!n`0EOtteE^Sguz)p3n21~T@V@NIvZ z8J#z@AITLh^ged^gV+w^vykx}2?~K->97WdV`oKpB_G3XCX!?gpDX$}Xtv19*gvmO z@V2ATD;1)u7&8BCgXyVn{omaGTjUVjAN6UhunZR zjx2<)hVs0H-~mZ~(+_n&tiD)LLJ{jJGj!3W=pKW2Iwl8}s`aGtLHGe~@Hwj1yK9V<{N5FA=>m7Fxliw|eiG zkH~5G(P8MdMM?g81nX$sHxnZrOhJ_Z!C4qQC$PI@vhQ%^3vul+t{f1`ubWVC)!;X6dxQqk!r25 zGW(zo6R=(8OofAxZ8yt0XUu>gXwGCF+emjM0a9Ricohg5X5eE_vS6AC+AJ%Py)-8` z#=I!|l+MDHJ1}@%4*qwj>L?Iz{`TxGID9xImb;;q=2GLpDEBXx_EOvFSyj!&pRsH7 zMtAuO3WT?!NEo)_BSkFtXVWj!z+PkyJS(rA&{f?ft)fgIQX;uzCIIlJZ|I~c&k^v; z!j1lRUo==E(*Q2JBj$Ws07uj>e&q@@OZ{P6@VW1Ko3_AG>1;)lrqMdcr=6|1@*qjjoYc4|9B09lG*@RvV_f5s2gcmS zOr;}^S5p4zo8mKvB5H&P$tqmGLcwPu7>XGL;;?SimP;}DM+DL-V$@cGcp&_md-;wF zXaB!2rEgJ;{B1zu=#}N$fu_W`0bjLc3}By}$$x{f2{hA;pNUpgRa+ilY#N3)QrK>0VEV?{5^KG=|7o`8a}Z$P7`M~4 zWptDt*2&vdrLg-pV!%ubI_={cq zV|=Rj$mf|*r83~AvdvdUN8kQpT#1#~=W5s?g2Hm4dL(=l6gx?kHLkRTQurnIJS56g zG*R_nwgYn-==9)G#BjpGtCivs@nPgPPX8lZ5Efq^a>HGKGuFn0buSm=b zGZ?KSZMrTFrt(NBHX2A7lT=u(vHB>9JeF#`CCNH^}Wl12ZDm^90J+&Q6V5y zxskU8XiD(AcRc)Zs;gLZUkyh=#N>a|?Uq^nL@?F)>G=^IYocM?i2T;y|HDfKqaOrv z>kQGgFi11VYw168B{vofxXqV$)iM4Ff~CwQx+bQ4O@-QuMn{P>L}oPZ;32rj_=j%q zAD#UN$Srb^w37P-am`Sg@FgJxcL?qd!QBb&PH+qEF2O@^ceelmK7zYja1R;W-8H!H&2MXKtM-qj zY8VCv-h21;?LK|ZX(CjVq)`wF5TT%;P-JB!)WGvIc-+Cmg3q*f>&oB>##KyK10H<% z!kdMI*9cBBI<8PqNSOZ~Z~m01?r#JeYa%Lg83odJ)^#;kbS z{S2BHGlA!q{$D?po4n6s(v0wbUv?MyIb~m~CbA0e|9L5qw=)h64UIfCHI=u+^zR*1 zKY#wjh7A&RI9axoy8_?W(A4x#ZPM>&=uAY1hgoTysHnXy)9%+oE|chr{N&qTEqC?* zd&xM31oI6(@S~F)89FEUQY!G{dC<||GYoW(bKu9{9?wl@IRVT6&b0|q+QXap+%%{s z9@-8j7Xu!qw0rGs5o{3o8@i5{R|d_RNEY5yYVV*PRx4J#pH;6yD4cIUcl&jZ&SiBV zAGfKa-G}tsR*AZC!iNm3Rdw8WiA;fCV$4oFcn2-YS&h>S1A~toD$2@?{BixnznO*8 z&<6#TB>2>U6)(CAjYOaNX_BA}sS4sWkD^6}E)#hBm6QM(w&)|7(^YFwx9HcQA(;{q z2XAkJBDI5QuG#O91F#^?&CS}`5Sxa5H-0M22z5W$=an^bwX$)vpELU}r)PM~jP*Vz zzkWf(2E9qxue+uQZC zGslNVkM4XPEO?koJcJjnpq}%W>)u}IK(an#R%Aq&Z|KH-iw&?r8(!;PU)_&p`BJjV zT3bUNyqQccDmt9R#oq}FcLs+I>Sbr8;}w;c2jATxi-}R3-*_mHdQ}H>A3CSKyb-=P z8#--ZVsa1f7c(*CAZnefC}@2UjEFdpDH3jKSZis~Vfdh&l-5Kj&GSZ@m5Xbj!8T@l z+pcEmG$FwI2DZm2%*g|1F2Fl=ZaBZPGP}7M+uLUe9yOMdmG#SlkEcgt!4#dWtWJRZ znbQY6Lc;CE2C3PqwOA>R-qj8cDjJ&A#+Ni|@4yS&PAE=7M4g?Z0gQTh#Kgwl-l0r-oe^zqI}RiShz$)pRt??+gtqZ=JHesF=%jg} z5)=&!XXS#J!~dBp^p*=I{{BsrHFt3B&1}%xy*qwOo+dDOUk<~c6PuB-)i>bKLD{Bd zU_gy2i{06&`LgY-ku2$`6W0+a>c-(8EH(?~OuEUV6NAOR1(l$H6r-T$1;aibZQ!Qd9&RV==p#xjUFE zxo5FjGNCATX*#*+m;3Ufq;Fs#jP(sJJsnS!B4L%yV`h#gJR#v_X|Y6wj!IZKtW4{} zabp%rwQ#818Ch`&+(2?XdLDFp|vB@YGdEcxI1Tgf=c;XUZXS)SJUpTT=6X221mclj z1nNWI{5-3$@EgzafPhz4?8rA@K^$zmE-sF&Z63Iil1%UJ?)2;-PxEzV!k*|;%P1=& z?ejrA?2Q-cQQ^mD)c;N^%9Bj7=4j~Yq$%}T)76!sy+dn4XB9Csb3~=oVxi^I*7Hg@ zud4BvXmGCo`0V-t%(M5L^t!SKL@#?p4qSWr{*ZFjfsM^QylT^&Y>T!aRL zs~fy#bVLNXukYzHRqANr{vkul$#Z1C2?b@6wL_&Dq}V`niP7MT<l1mx7j%q-TDw=18UbNpe`FMQEc^^(=hYPhF*P-2 zS=pBVX5bn=My|J zF&f^V+uZ71SIyef>fSFQRh(%+ixV|GG%u$(jvywMTfL61Nim__J3WnedTP=pH@5V~ z(Xo(yQnkR-Le$kW4cu-R_Kd0J|K^USY`Cl%Y<72}MRY4*I}D@L_=0sS>iLXPO%9$i zG6}>PuG#(2Nb^2&+cl?^Gcx4{yy%trg_jHxd0XmPS@BMejWND^hqkIFGO-S>WEPvd zk#h$NtMKZ2Mpgf*Uj6p`7EQYBQ@(~0S<*t|3`4E zHOtH$lx&M1(Gf$M+vFK>YUk$}f0j+E>OQb1fMZ+-+}YN#aT-r-+8V6zs+}uVYUGGk z8GWpp;}8~(Hgqhl>r`jI*|$PtVoIB@*}9mV#^0C6&=pX*qjR4WjMF6v5heS`6jyMX zu~&il(f-656SMYYalS&74x1t^?9bZT=Q_pxgSnxHYb+V5HViyu@LA_}Dah`yeQ32~ zjh2oMk(Iv!26lkOw#~4qGCei*^1m4li@}`tmUf?gec?&-$Vw`85TM@{;*)xg*;zV@ z>O~${zst>C^>|+c(r@AZu+?d&^3a;_EuLo#>bYf3=txi(+XOC5w5(q#TC}++SsxT5 ze6WVOT?w;2C3GNcg4G)|G;+04_@JJLj(Wpc^Aqcu;NGxT8F_gW-HKToLfhX~)5&RF z%9^v5l!I&0ELTb*930}}z4*R<;``Af-*@*c&#$fkpwY>Je}2wUP`p-GsSc35MM97T zTPY|R`zRLwAmA=AM1Sw6(faD2G&--%HN`<#xGD^E^p4}_r)Tkq@bJRc2hJ>>GcICJ z&Fq?YMJ@n$a48woVFEzW+>CdeIft_`_N`ch0UWAsA&sl@^J{`p;o3DaONhkQZO*Hi z@%OB^x+raHuUh)Z-caB%%abeWYk<%UU!ghLcJ`8(knrY*nj;maGNdK69W`qiMdkWZ}--$ucD};B5`0qJvhWXK0Djqm1x?Anwa<+Bp)g|x`?~GNvYT_d?TxZ zIV+2)qkaYDNmhRTXkDQYDUR`{c32)B9zj7tXHTQ2i_OCs@7g*ftuclWupNy8aB`F^ z8_@LrF8$d;l;m-C_Cj6Z;J9Q)C4C_c4dXySM1;%6vONCm;u8P$s}Q(mwYxi*d=+G7 z`Kt*=D+mOU3Uf)qG0L{N$k7nPN%}ZR;asF$9bOF>448rYpwUq3lGbBm;S_44wjTnFp(Mrax2K&9-{*q8!H z?c>MC$Vo|s|7jp@Zq;e|ibP0+hK0cu7Cr|DOJwAzmwiIL&W9Y}k!n?Y)!kn=CTpFZ zV*dHVt*+`EE#%V~qe7>jur;Yhmy!ezQ$DojPo4T!q)SCg+9z$Lg-GW&SbIcC7O=@= zaRY<5_y)qvC5d$x;Z5;FPq{m%OpG7mo#5I_%c(b1d2?y%`Zi1eqTVR`87pZ5krw z(_-0$gg*Me2-V??55o`eAd*NI z?`$O#r`~k7q>&MvgTsxudPR@UXrNT#?w=xY1w}%dl*rPqJWj5Z zv`YAaML~g%6|Z|q0EV>V0|v&z_I7YaIjv1YVsBWUbRj*vo&@gaI9pcC%FhcPJf?2- zxJE|ud7(SIaWYiDMn`d3Sd27&%4TLxV3Fj?8m_Kra=k(zSb2m!y=h(-t_#FNf< z%+}?0+95Pt=w!g2??4O^j2{{JF{4_XiNlEGoVq(nh?$iMD2qY#o z#V04X*df39_-O|J;n8-!ZjZh@@Aa#=7Xs1e5O;oJE-vb;D}D2o)(#0t z>Wm5dh1xvN)q5@jgD!GL#&?cq#+#de!G2>hK_S9u+1#2_Rd<~&{xiCI%c?&&yJTB3 zW7Fb$&ueOGzwCGGX>HxoU8;UoZND_95PUZDWNpJxSbBg-$i3WFuC+Hk4U?OjXGF5V z(w^f#5Q=o5=A}S~U0ZFO)6rypsOzm?Hlw2F^UZ##v!~NfWII3XC1HD;h=x{x&t=<_ zNa%qb1tm?jwA}I%pTuEsNnrk4Q5{Zb+4~6V@R40h7XQ4qGc2_$GtT@H#~%2NTEITsZ=VlY-|JX)TP^714eu>5Jc^lsEU}ot^%g&x~vP4QnYx#kVZCDdQ__8I) zLKrP$l9-e5?bq+$c^@8h@2((e*4Cvp=hoFRJ4xPj*y7;iX|EovBct+Y=;$)PeG5a6 zLdoX8jvYRAaC`wNgJyIB? zLp!2#3(pQNuD45WECwTpWit%SIo>H5_$W(_es4uY9u583Gte9y45MRjGTX7!eqp5Q zl;sq*+%xJm3Vzimk@fZE2HUo?lg8U8%gT z;RQSdL*wF#7VHwvCv*LhI4oC#DhBRuvi2tXeFBEc>f{OvxZ_h&&f@nQ!ZR|Q+dCYM zipec6LTJ6KS(;Wrf`ZpxGe|uuEZ8&!yPx;Rr-lY75c`GIzZ<_5x3vWp7e`^g_rn^F zn$)&8ot)96!o(oW8{OZ>tEjO2ZKXDKunWbc*T_g(y|IVece)biy73DGR6?OFo&fs= z4KqJKCeY^5P?@2;d$&a7;hQ+Rg@@N{leAAfMLa!YK*q{C%{Usb%}B$|9R;9yy)M)9 zGt<=#_n&27M3$=cqx^|sc$i&wq3(5Ko}C?13>+M5oNM^mYb3Bvc2ajymnAJN*#iSe z+uO&~G&BqO7uvy~2UX&+9EkCo{nr{6q9YpEja=XS{^NoWBx*PF?7?Ra8Atl6eJo{b z%XKuTM}tj3a#~!li3iS@n3Oc2#K8XATS!qcrM^C!mVzSI(Ra(p$usS{%9X02|NMsM z`=}K<#${<&*Y`z5RS6j_F~KnMVKg~P((czKSGS%u4lBYG6q`f@agxCy{eR}QZ7%sz zIST1hlH5GC{%xh>_NesqbgsU>ayF*Uj*b{`7^#X`jQ8f)5U^Vt8qD213~6XBai^ws zQ6+8^T%v*l9GD6JpRyGL>~uiQmZc%z%J@=9M3 z#AFT(T-vQZtuuu+7Z>9=9nX)NnQdn*q|nkz(|zzsb3Zzz;hq0)!E<1yv8yX8GZU-1 z6>+}tguE{PbB*>lr4r}EoHuG}E`T)8FF!^vEHtp2cdD}9BP1o={uOc?FY|4o;Ycz;}rX3@s#%!NV=KnfF+KSVcl`Xhb~4WHDtwB)3viRUT}dW_S}=PGF{ zZkn=X9Y#~bcwKi<3Q+l)BnqxMaC^C@6b;UVq&;w=U;9pTFw- zj^NlL$BDYQjWaV||2h7MhAk|2fMnqNH$V3eZmYtXu;6l-*p!mg0C(LDkMuNCgGahh zl8l7h2<+d#sOJ}h0c2z!Ck#AwXuoJ1c9CHtDn@NK+QW_ExLNLn%W;K-4enVMhILiv z7?L?Tl#mh}nz_}-ZEgl>PF7L%aZ#IdSWdLd>*_LlcjQ7!jHs!olBPA}r+QLzMN1%4 z^Isxt=a@0^GsFy6Ik;0C0EOe-F<}w^+r`QA*7)(}EdVVEO{))GLp#nO$u@sdtmoJQ zVEnfY%Jei5t)SpcY5G-bD};*Hk^S<6c7%_UnHluP#zo&?Ro$qP0EG<`y%h?24TJn=J|Fhak62T|P;_|pWRTpmr zUoS|>dGSa(gk*WUeoItoC{0asLgT5Fm4GI~ijx5cr(T8%b9p)Xa|31suAw2jiwoj^ zmBPQKr+G6nX2;Om*uFVmq2$>{rqh(9{hsLo=x*I1 zcE@mV$W>56#l*2#vL3)lss#BiDvEkapd`y0kd3L)(Td!8{fnD4(^l&xBF{GH9hw4h zA6dhy9MLy6roMPTkR{yBbCprkIQ%F-Hi#uXBNurkNuo{Ht@zQ|ncUflYGN|$Iw|z1 zD10Kf17mN0oh=doUo#&vG~|YfIm<`9`BOv5>2Nv=khIkSuN;6$RMXQFla@xw$XHS! zaJuxIRx>h^^7Q0#cGj_5dH4zuXe=ws>g^{w7G;j>Gfua3bAxJGX7Bpmae;@oUr?|K z&z=#zxmhyiaeaIYZN_dik?j?AeB2fuQIk7gSX4w1Az_!Gj;=Z2e&EJ0CB?sgU~TN{ z8$LZf&V5P4Z24!##=1CM@vfsI_2O!@$Etu&$MFmPyy5yazyJ|{@X zfa0icGWzURkJ2KT+}v#U>sMmxN~yFo9Ixl80VY%b2U)eCy>j`ZbaV$>BqQ2Boz zQi+Qz0;o@8#mcZhGO|j`%^g$D=vr4S#WA|k+huw*TcxuDn_AmpysT=V>9eyo{QN)9Z*C~)=_m82_j$GsXAoiG9v50?F6sf#CO$ozYwY5Z{o{u(2(Jq) zYU(OX92{9Gsr-H}No6TL6Qy!+AL~brzQh|EppFr%#80F-%2O-t?0NT=$RmCqEFa6wDK~ zf8_1#aImm?$0m`6Mi%YV+7GVzEA?BVm3Tgw51wBlH6Cm^D8DII zQ)K6y4iuZ}?e6Bnj+AwANuB&S4S`6R@2En*4Fb4&wN}S7=-aPDyK0MV7-d?(P{=2Puq{{|mF%gWL5d*cm}yF0C{jJCACeyn(Q zie{NJ@1kl^=8wi3-rnAhzQH}v=D2f6?heHG@HuZ%i-}_~@uJyoep_83-l+Q*NMT(= zIjik)S`pzxtws7~i2Y<>k6hjIP$YR_5oXDnZ4>mFTwKEtN-s2D2)DVI%FFYCn8L1UvFSLAoZP}|_4Z2KwlL39p%XlCG zMJn+q%MK%9hDH}`d6WHGV76(5bXKHCl$@Yjkc|;WK^7zC=N7t!8R@2!c zuQPOYK#<6$SYlR4Xf55wR0Al%`2Df>2Q7<6QMkX#l-IaH3*EZeCvR3B|If zR|9rD9;o-79B>$smCrc7y-9SJfKCS-$cmV|CHpU-9fLa(C2@|~hE1j|5NN_4jg5u#(;Dm-tJD3t*ZF36} z5vMF&n!UZ^`5M&Wlc%4$4me9APJ$!ymN##DsHnC9nD#kdzQ-2J|IJ+!d*ih6>k&Xq zbo>li6_x1W8aiQrrq$J#Y=K);MMYfn2%P!-jTn6)>!~;>I)>-BMRD5v2@;Y;>P7*P zJv|Os8~mnZCo{E-MWY7A> z?_1cdd0gz}Ai0K=-CYJbIYX(kPn)NwLHZ=pcE?hUb`j!?9^zGVkSSGpgB4W*!ciI7 zgDoo&&eV288&wZ++L$?$jwQinfD z#CE9gN9H)Qy$M=;V*B1+%HY_urx7V(@+JMRK;mR(4ogiPg{p6ybvd3VO^~BLUbys& zLO3kfS{#>A94Du-i0SpZJo)TYodfpY-^(-i#U=xWlp26jYHK|(@6> zoN4A|ig03gbLtlw9E=RgQ^xM@2TMd2WrUfVuLQAmdez=sh zy>qn<);R11=PQ)lu*L${pxZxH$bwGT_LBPZO_(<0i2xge zE^+IT_MTSO1fNsW@kSwXn%Ukfa&68x@1b%j|ov?f?6&f zR5+`c8q;q6$$aCvPD^+niVgtN`X9>ILlw+~EP&J#LikNB6?|Dh3l+-5i;a~B1O_u=fBa12D8^==L{;yyo|zfL z)>en6DQR{_RZEKiJ~1)KTs@o1Io-7qj;weS&|C6oZ=*&_d03sY@0 z7&f1WM!~=+#%_y@oeX?x5)#a;=l7j29H>?$US9rzktHun`L)J8y`!UP^YdK5XEJZU zx8KYpR;cQFu?Yv#C910GQS;;JS+(aGmJC&3a&)fPXBh`bv|GqplweuGn@88a4|Gmk|o7>#1 z_5B`Q$nDl)s0`{?W+pQ_W}=w$g=o@IwF({3&P{andU@RsQP??}661|$Hev8^S2HpY znDy_lGscpZmmi@h!)h%Q$%lu%^gFy0F89_x(jd_a3FQ@-Gg1^5zWw6!$jc=~P96cg z85!l&QBEG6p&^o31ewGAQD=32k37VkuX5FD1+OIMl)z(?`;qL9{~X$QCS=r@RS-=O zO-kSy@oX=d&>|p!kYJn$0b#bI*Q^%m?`4;i&cae(-w##}jtIFTW0Qg;?wWLwv*$O! z(=!msa|ydV=@)Ex_U&VJ_t+S3P!Mr&ur^P@Jf%h4+3RYu`sC^lASjEL8ED^h#MB(- zj^3mt)n(OLu6-{*#wrmUapSM(MWr8YsX;~aRR81-6WE=@q({O2ueFi zP>?+g+@KK)MZTHCg!Z_Vhh~gY$vX)JMU>0^LXo8R4LaZG8rzkp2s2zIw_(A|Pi3!vi8KsGag;UKMur4^j;uX;K z_UYnAFxH+IYyS6dP$Ht3=GH)SnUsouTo|2*LU83 zRlothpMHpXXh{ijL|?jJaX~@y-@l%q|6kI4d>|~}F^#fV z21pJ-=))sA2E6v7+lkz_1_=s`&!1(JQ#+Lc0%(PW$-koJoOTMU!a_qE*1VV7Wip;A zCMLECkBkf?|J2#pQJm*RbsJeKcA&YN*BlS`KnH#edG}lklA=Nuv|egbS-%Mz$gpCL zjwlrs*SjZf{1%oobSYSXHAY7DfIuJv+uL}Rl^@E+E9Z`Yt7GyXO-+?p<9P<5qBiHV zlLMOyQ0U*Q&!IrplTlv#Xjjg*5TW5+XydFj!Ht8nT>A52+QMkInFZq4N5Uy`!w9&E z;bBn@>fAyXFBuu4j*eZbbpJAs!CmHBc-LG!SC=7otm;$P+Dx{t$-Ol zy#lEOi2X4qloElRkU%LZ`&irK&(IJR0fADr#kj{& z*@I(l0sAc!ADq9~$FD73%zR!#fDxczvaeg{IIcKXD`lyxlY_KVuY90~tE{BZ*Vo60(06u!Pl?%50HHtFx9XpqY{{_z z_5bHj%J6<+P|s1aXqfbVA6+M>1w^Yff0Zh1wEf0mQMoc$W6H95W+ZP{ZhjoZbUF&v zUVre$h6^c}=hMb64SN)-n+9`Sw8GA>khs9Mu~-3iBd$yx8{0|9oR+lOAJ{*CNVvyK z0J#Y`egt@J;jk_a?bLk~*xp`lB^{Q{7ruh7uJwwE?y858$H%KTH~KaHeW zE%y^fxXF%RcB48-(1-{TCQj99%0S`-jW`BY9Zrq5UD};sgRX_8qm`w-BBH55=Z^jC zK+a3((a#Rq;;At;Ez4~E`+J{=NI7W$C#YPSGG;8M!h{$Z2P)-{D1e5Tk|M1_7phZd z@ff*9{PX7o8TJGQan7&({q9;1&xpRH_V#B0FL8kF2d9RBTawfZJ5agV;C}JdE7L#{?%=?>y5%QQHS_584L24}D(I7O_yvwyTy~Iqde{I<^_H*? zI9HsV*IiTn-OZIXbTIT&If;J zk5`|A$Ja3cIjauwT3lp^h}Iun@jP>FeOaaO_FmjSDzliYEU|K6md?j>q8oQpQQvJ1Z17$!SC-y(0cb+KWR;4?6W8CL{OY#p&!RUf4-dVl z=mp?IfKTN!H!a`>{wrtv$9Z1vK668Y*XW=6(L0>e<`$L>?1n9Gle_vw2F&O6XB-`T zTy2Vri!Z6D?J2mqL+0nPH5jPv?X{YH@8O|)pjB0^!NvEk7)0vYmpfN#5*}s8MPFeO z+xt)~m31Qx7??OH^*%ji8$fH)g@QwhmZ<;hs$k%jlptnEY;3l8cvf3~icEn@`utp> zp_R6NO45CEvc_H%Vu&aW?UFnq%fKK^&f-Xl8G+m)n4OwR5SGWq$Cp)8BMKOZ&r6Mi z3WLNLen3!fZcb0?b(ynn&;<>5Sa&zsY{duIXvP-9DoeNeG$2#_EJFicRr!w}iCnz! zK)a8O)|8l;DXpeX!_yTYNN{HkSK7L7Wk8Uu?B_vHpz$^ikm#Kc-(4vGQ> z1_#l2c$Alyf5=d=KRuh4mOq70O^KGhw+0k`P>_(DTm5&<*T9evFK`X}*GR={-W{lc zAG`1FSl!*tL06Z#kcz8wzq-l~tO^Oq^#`dma}U?IPTNCgR`wON^uzy=eJZ5^&cCs~ zK3>2Ng~v1y8yGORMj5nq z%G(}!DP@1j8PB@a84A4Ft^@YUkza)wURQf&o!66hlM1?AXN)5*ii&$OGV@lD2uemq z0u~lhSUAF#+f`ES>VAe9DlV?UySuHm#N=dUD=QeFFB8OsK0LTuH6+=sctZh;m%hFP z;I=R#B;Z3RBq(YQIsrpEnkKS4lps}G=LvWv`+j%c6>e|mc4^Lt?0{tGO* zmA_XF<=w9M0VZm+E7p@v)Ybfy14_Gb>WwZ%0tHSK(9G+GMHxe6s7%1lArg6^-Tv#e z{TGjh1~wxd&)CEy{NRACxOe~q(I8>?Tl_FI0>UsEpVtR2t|E}KKN_w+!^7O9Sel!M zvEf%%s_1I}=-|^Z-e_w2RzV@U z#>;g#X0QHNtEN{7@FZA$LQR$P0}66{e!i0M-TK_!W7yW|Y0qyJG+=KA+`Lej2X_YJ zS7L!qMQLfKH0BOqjT7wbH2h!z#8Wb|?7O>$_WNBH8M#Fn)r4!#h1u$Coc6-Ph@KuP zk27H_Q9F>^Iy#6^v4rq!5A2tlB2yAwN zJV5+?{ptkl9)tm}*d`{J=QpSyn-;W>#xs3!iZY6RY)dxUwd93|W5ZTjeyf>nJXp@^ z8>r+sacI<@`x%3_{!o#(I_;IO&n+HzDG2K8SBlc|TtytSqvkow}|VOISg_W-v+ znI%xg5y4#EW32tL1OoWRnNn6YAN^SXUjU+`qvJJphr^Co25tdUeS?e4(W9oEm0{SJV*Afr|894?Y4&D8gC97y?qi%-Ov`qqelVpJ$;D#JEq-w}Z# z0Y1iJb@K~wAp_f#@Y6Zp?w)kzUVok>#l^s7LV!5MML+PEWQ^f1Y~!(Ku!xFo{G;j6 z8)-)AQ%sRjt^q5~LleX_dmZ?*SO4xJ&tAAqw*t7od6>D_*6~8@)qj{vQa8a+HGF9%C$9Q$p@E&x>fh z6NXYk-i_w?V*px=4m${75p=H?rcv33OIau&)ARYt2(om!%*h>zhvI zo@Ed>*&kx1$Fe-9gW3fsHWgq??f(R-I*_9E&?_kgzA4aHy12|AYL`<@N$TkVt{Geg z3kCf_Xo;TPF##x->q*MFloS+E_4O#D{J$A@vUT-r@g0RmPgmehl>CGGv|SD9unGM3 zS%_=NzSy1>sL@}XvsP)Hjs3D*z98K_-&k|Kwh>ZSN8EPd>*yG7Zf(^=@1)!+o0%ZT zS)13;Y(-yV=$t;NjTYz-DoEqt=5Dtmy6*l6my{#~F4Jju>_c)IX~U2cWd2KTd^{&o zq=_x8s3P^amqI8AqH#T<1ewCR#eyGKTKh4p;@w_HK{lzQCWHaDDOi-Z&$5gyeZAxSyPzfdL&;fA@V6JF7Cv|4R8py&p6s zC=wJ?g~-S=qnQp8-Wg0_ZMlYx=$E(zJ{`T*@@Kx8Bi3?<=KIP~Eo9&TNZ08%kEX_|Atk1v)+s zk-FZp?c&NmxJ&0QEYJ%IjUT;PRHNhe+cIkLs7Oprjlx5&q@vly#7%QhgCe=4^SnT(Yk~h@)1sEWdac z4@edCbWV)ei>hGuVRcq1?Qx^)@+Iiisx8JN)h|s%;)FD|D+dPQR7;C5u2K32X)`})Db+b|b>N(wyxRssd}f)Jt#;RoVO{nq7#FiNy5cN*s<%`71(jMc6UE7mICG-0DMl)?843$D%)8+B=g0rC)l7Kv$m$0O5i8I z7+LL4K_dM4iRkf#(B6g?(29GacPb-F8b z55L;5vmTK4wsT2c7|9|J4n)66nwUK3At1OH9gIbKAHG^B*m}-+3OL?~1SLZv@FN6zfN5kMmq9|7KohCjLMmGA0Gr z`$DX(ov3I{!0-Y=)~`}cz52Vh!N=X5Ucy7VEBw)@XREov$i%IF(BZJy_H{+Z{zO%M z{2mMmQD5>XXAIZ5GFK8UI*E{w1e#e|Ql^EGV@9ZyCW9st4h%&QF}T`u4t5NVMTfSX zdiyTySNGd4uh0-nOM z>X3IpYRm2E5l&3<0iG!?jwKXq;gJTE+uze}xs{bPPtS!5>51}A)hA;Er>E>145R5c zMMzC01!j22j|O~;4Nc0=a(7oQMD9@x3<=9RUzk^THC zxbtj_{yB{*avTOk#>{H#W-Qcjx_9mr?}RS}hXY>Vs3HxgNer89xthzO?}gJiQb62; zz7ZqDWXQtqi;vG+7cY44j@Z`LB%<65vzN{;NGy99 zU`FIFZIG6|w+=KY3oj`_W0?7~Ts>;LHdnsTm&ug{N`YK*`qxC_r>CK_Vg;|ScYvSZ`+xfw+b&zYv9ULQ=D)QRU*Ei=CE_xan@x6QJ^JOQ6KbFJ~frrPnOfevU`S9ij9D1k&yN!qaGsgNq|{Zz%5}$j1~W3 z=kbJNV)D-xyhn8Lf&udaU7zaeL2+|$%$6q+)mctcj~Gcp%5w$m79upJzJ9U+Qs zJ>#Y%+g#(3kgQt31YDYI^Rq(1RneBTq6EK!$f~XkcG1x`{`|Sef$(6AlakVY*>jD9 z=H7)mL$2S%v!GDj+NM>)Fqf@cx=84;i20Pk)(=##}t@afDj(*S@ ziHMu5&zuzy6ifkbc9)$INnmKvojfSf>{SkUn4$2t{iiCBp=V+n&H}ruqK!>uhL|;2 zi8o*d6f}LLMYUj_%NS^s2xyZOw3cOxm#G!+qzhQ{`UWP0aCwKIkNr}p4v3cyGR9)QVgp~Iyyjtz*Wlijl1_EfAb~*8M&T~ z*UIlN?fCUQezO? zkEv{jZ_3jkk#TdU93DcxZkaM*Mkq8s6ybqcOJH5R+ZGopVsX>S5s!&U1JJ5AYpEMJ zz|qoJ0{Wtj(yyhOR2X+He1YGmvQkMYS1=+f3d}oJ3@}!RZEUVlnAOSva-WQ&?st0L zDGjiyNl6O~j~nPlPSz+C87pXjjk5H`8x~kYwu%*a5)u$JG<-)gIL^TEVEDL`rfuT} z55Op#WXa=IPeJ1bT#SqnQMe-8e|MA-P-86^O$l4igrx@vU)${@Qq}mBzH^rPGvak0J1`R?2mC?!Eb z0$lS=GfP3h_R`c8yVBOR^_v40S9l=H*5l&K0%3SPPe+#o^yK261aUuZ=6+$J>3oZ8 zl%xlw2xvmZKM#55Dn9`TWT;*}(*2Qkb+z-u1PPE|WF-4R7+->EODkvp=Lex|p+_2X zbJAM(qqp3iPg%I>wYAC_d3oyz<}?i|bP{xK=5}`9N=s!eEK7LV1Y+bbZZFQy`+CJA z!?NH=8j56!R)KeB^Wb1~NQTzky(Bz}BQpx{HZESAK#mR$?gMf_C@^aMEQ|YlP%>F( zp_o8l^_}v#a_ZfjZ(v=A_SNPY>F_}g+`{#0mrl5P+U+x-6DMlzmkNso5i&9aTAVh} z*F02KbMv$)ar6dQ=dnJqvp1@Ja?cj>$#wd2aeE%mCS-5jsD}!|2p%P-!3n$eI@&Yf zDzDw(%6^s6JM!@ZT1NeCr4iT3vkN?sDkgJj>FB+(<_vvO8*H1ZEfg_2I<#^s8Ih!B z=l7u(qzqTzv>oJK{zV05!cow=Qi}w{t@tl35~$GqGw5@YysnvofoLV0kOH*8?i7PI z5^g<(=|g-Ai(-Hi$HwqRg|4r!zfW-jXEv}H^{#jZto^u#1BcG9shPg&YHJH_Z-2xm zIQ&tti3RLn^XIQgx2vD+i#o353?(SAXxh#k<|T`_RCEu%(}2tZb1e_4$X9p$KvgIo{!Tqsh9H3ek*`>Y>SF(%L~WXJ?}A z?WdWUob5~Wab5WoYh%9Zb<*D6_p`EQ%iN|$@JMnlQdS>_zdzi%eZk8cE=F=p`toJt z27J|#W_~z7?Cz%S>I%;olG#5R^7j9t!ih^?3!`FeXhhoT3goG(T=r)Zlaf{j(yh6d z+;M}1v2cj>tqLMOf6is^XQ41jVN;6dqOMrmDS+ulZz$D|B@L7`w~-Lzn@y{O%S~~a z>CV2?ODbwNAE5wkNJIoTHBt5;62Ex;+UNXStxP?Ce6_K05WEjsS65e@-ZxMC&f07b z-5W|aHwR4O=}^SB#@k-LjFOf^(-^BKss8=!S){m!$1nfuof=O6WM%&yVkdR;lM3Y; z3+0UZhhje@olbNoCc5Z;QCT()4J9uxyS7sn2$`GH-KEtxceld^_1zNm5pZj3eX1Nc zxfK*fXec>CX5G_Ch=%0>j}&welVfi;u7`r^c`4# zVnp7+VXZBkKLS95Eo6PmcKhMN5?YMXB@$ixdwnp z(H_3lbals{kFGkU8ykl%uCCE39+j-8+HchkBId3}y<4o&_tvv-Tdr#VvL>eP|Eeq> z{`M|&@<BMW0x~X{>xxt@ftnPt<(J6;JyCUg8q$Jd6(cOBOe+i@1dF+5Z@pvS=FPH{PX1t%Kr=w6%?z#)orV%sbJBfoyEo z15h^bh2z8hTkDX{XU*L-Tfpb1_Dc*yJLPQyd`>o1A<=u-+|fV8Gzwa#KR4SNFp=Yz77a zLHU2x9NaiW#Fp>xwm$66xRkcxs;T`i1hTNmLgY5g!@U8;K#6%c49kkk${ez@ z>;CCB^~}`uGjooKYE4VHxno1VM~wQ|z#@;N-0fjLPMJEk`ZlwAK1x{I+3xT#c8eaz z)YR0o5OPTVl3}RC$H%+gUVD@AT|YxdFE(m0@BTD)vmg+iT=pe6I0E^JqN>Xuwj{%3 ze3v;*)saySzg!goU5{FVV%5;bZ(@a`q##qGJU~XIM@ED!M?!M)+{JNWM>mf}rRC`M zBnPDbnrCmVYCWBtLgV96+S)=}`N_#=h3QX)9?*V0`|^}hdm4?{Bz@F`wWqgtY@Nlp zC~y+WTy^zdYg>6_)YOSBEtJ2#t`$zUFJF3kZo}=@-rbE!^7R=6vc)B-4JO$)Y1uc6 z(MRO7M5V=4&-jzJw^xVdmKW zuT2MTH+O=un$rRbUGqGCeqFHLfuz5qC=IzJh^wiBht>AtXw${*Gc(g*Z&z^epFbab zeD!VZ58u2}yIeH=qFPpegMf)iibG_+Wmxgx{`>cnAguO$H+z?_JdW+=4w>+O!>L9d z9%tbdcp>jzS7TC_7yM^lZuaX}{oK(yM`tgeSvjE!Bv;1OI(Mc;+m;3gtw4Q;{^S)m z_oU)hDRFY|vuRp*he$|BvZ^nhm!{pE(aWmy8DEnTK~+_MLztGf1J5D?bE1H8f4z`o zmlcFA_x2yXptHoCo~FBt+Um|T)vz6yk0G0{H#O0wrjEi%doQRZ1e4NBR$aXy=%>Dg zMPzWWoT_FD$oT8^y~RaR7}AkZQF#mX;WBTCVdSb}dDb}@hIYO9wbqS8rJA|XY4DOOU%D5f?2U}ZI+qh~5Y zP?yk1tX<~GL+qfSsvn0Uuh1cK+0%c@BCxCZ+JF?>N=eB$FszrA%SKR0!Nj^jm)Z>; z$#0 zsKVP91BEPTQ;*Ql^lfcp?N_zMXixsk>NGAayt1o0r2CG8WAroUJUA=M@Zex;RcA~{ zTAJe1ClqQLfyJpRVyA8H;0U?@a&vRxn+ZRvq+~%*{x30BFj;m=Qy;}6%Lggr>$3>j z52RBG5E0%o?Y)i!1Q;vAr$0<0-J*Ll?t5J{FrCAcuP6ycwQ1DcbF`9|-F1z!U-goa zmVWMja#d_Ptd#r3)T$oNr4g28J-rJ1?Fn3`5W|r<3pQmjG0f+^tT{P49G>wBzf*Hn zW=Z+#T3FekcfF6KJ=YZ%LB(+UF~g~V1U;%}dy;Lc+Ob)YsNypW-dU4eOEnSQ^^Xr9 zLptrdVjq_lEkc{{%Pe^bi>>Kdu?Ny{WmN*%)c$PN!Ad+jogDu0z$S*329`Z5+CR?W|8ke$C-E3B~1uwbXDE<9w zc9Jujh7|g4t{H}=JigA=|;cPRz4DM+_Rj< z4+B$N#(Gj>#~CE}QjbR8BGLv@_`JT^#r zUi(e}U-)k9;W04(*iIB%IVax4svgiMa!E3;y>CBc{(W~b z6g4>#kNixR0xbc`)t7x=Z=de(;~QNafXLC(W|Tyye$qw_3g_zQT=fw8sl*=>Q#7e;kW&5O{2vWbed1F>V}WZS%_KLW5weqTmM+Qupo zlAn%~|K|>0rMNdQUIToMolh5RZrGpRyrX%BY(`0$Ke>!k^j>f+OX*Nd>?TE}{+QeQ zyai3wb)#^sa#!T>r>`l5x(1nX+mm#UEk|JB>pwGt6VPl+v7(`1pB5OXnj0bw!I|l4 zN29O)+O84JvodqH*W)a|*B$bZdvsbaHoFZ#;iUREqRmXCLX8W_B?^A8?D12=FgB>c z2jAOkd%CNtCg_@(wNTW^3JcS=BMJu3UeqhF0uSJMn5cPNNdNQRDn8&~IPH4*ot#kr z$QIi_mhWhg+HQ2A}#$#@(9rf&$sadx*aRtlfrw2_qN80o0Y}?5=KQ0SQ}QN z1Oj0tDl1D@QtEb$I?Q47P+;X>NqB7RG^z$ddz%rQunieQaT7|XggH&u*F-&iC&lKY zr+HpF>EhpW)}wQ@;vS?g93XJxs^DmnxtM-YLoHGa8~Q8B>3XpG1nm?Z=f}6Yy1Rf< zh`R&pNKugqHxJDg|CeJE^BPHE;U6-_Dr<449cOcew#6RDAG4|eZxSrMVy!E0SOlJL3m`@i?|duRVP#e$3qY;&2?+SoyKDWROr7oUkj3wF+Y6i!3F#g( zCML`}ZExfI8yV&0@m*apXBQWk&%V8&rPWo)@2)^d#=dwtcSiKG5C<92?GK5K9gXwH zuU9SNXqn8;%;o&I`bNe`;2N1C+rzNavPlQ?=Ywbhc!$Z;NtAusj5)a zg?iufn#*a2*J212Jgcv<)EpcXLHM(p94_NPTk$jJw@;ongVF9 zN_daG)OpFtEsYH_1G>8UneddMQ-s86Ge93Eu8A#V?swkYXdwF+;Oy$W#=^kD^2)~f z{$IXw^PUYuMh2f|&B=p@zMnsSWQ6(x>@^b(Y-^&$YU#IxV@R5ijd=7CZ>;*)M;>y& zZtrtXGR(yvsfGN-|9zQYkfF&OPT9t0W6<&iYi^C)WQifd#2n~as+2n0L7H(zg&dx*VPX8kz5vai$b*m%J zvirQgj&5Wu2E!KvTic{%L$-&$fsoyM#l`gnoI<6lm2i0K=_NEa%EGrsO{;aspls5y zO_CMBjR;j!cEwe*IC8G80q4EeH=q9f;{)9xczP+3%|hvZ=gbTRTvPaj7Nv|J^oe+5lVNdr8SFY_>FN834@7SJ@N82bjn|=J-Mc~f^a1&dXHI5L z1{i=(Og>qwDs1mQZV!Ktp9Il&znrxC-8R#v=3SKR{6{bU5x5?vxCRvzq_J}7=sGI3 zS6J4tFF6tsZ3Ah=zd4}SG%`=-M{2{3g4;=*ps{hema&GaDr;+Nzk>1!y5usUn%ZS= zAD}E48?LwIT+Zfe8ghnzC8iM@feKtzWgFXN3X~^X$GEv|BEK&xFVN8wLD~R!5NLD> ziTK$$IX-t)mV*QL%uIS{=n*5+puZ~ZD^AY%@87dcOsO(T4uJP1mdAfz6E*t-@mP|p_ z?OOKgSoX4*jQ5qz)`!ezRFpP^jNaw&H}^B(0q3beE56q4^uBTJY5xSLfmY=e5yYjL zc&ET6u2nwm)IL^Ibczwz^}uST_D@E{4ZQLvN=jc}Mx6mkusevJf!oZiFEU=)LRV!n zNjgH=vq#5|+Qjpw-QZ@j(z2}s8gv*05NK8%pi>WLZ%rKk?tFN1__+0dC`DN}_f7Z? zz0Dn7SYD2RHwn}Y6cKhWueVMyvL2qkuVEkpyaljeVKOkF@9$R`7}S1P!8<-hgAkfG z3~@uZEV?!AH1=-}R=vBBxQQlr)900`jrR{r$?B(q^H@`@9z=DVKdH+%d7-9pi5(S{ z2oBT8m_tTv>~@&8jHItSF#OMoj?&bG^@fRh7(+`dOtZm@FwX4o_=U2!xm4i^Ps^SS z2Qe|R5$4|s;o^tp4DSm^fyjj5|0<|MJVP=*wk#wq%?)@ugZ~soL49IkqEcQw3k$<` zarvF>KfiTN{Bd;)nVz0lvE7igC`#9u`&3pau%u*Bv;GRz{RFR*6A|jv{rjQL>RGFw~8{OWI)eWIypK3YP93c`SU_tLkfFP{L);@jwEl=u_`*aLcZC~0JJQj8rP z^i|W3VME;hC=t&nh^D@82iN%$_W0pQXK< zafsWDi^%rzhv@UU%I$gopo9)kf?2&_!XpSMPknu60I@|6%7iLMSgd_w>LqrtBD9dA zVm09C$gaEomBS}*xNIsf@1(ZOcmFbmirtAIKmUuGYJy#`!Fw_c;76tp<#hCVCJhX5 zLZ$HAZn?6~fB<*EMcDtO>RA4?v?|b8Zr*NdA2YFiT|s>B-b)}dN~w)s zLd@R7Q$OV*jTEL7pboOIfYEAJ4K_@YDk!Lzm_qn1YnhtF!v=?e z!Mdh=^MoP>57dHe5J9V|&?c`f!5I}sko}%I;Cy2ACfRfpQp$#_eWdW5O&JYI81oHf zWOyPX@lXcBjB{(u_O9WCK6G$BlpCsB0QW2|MtFCIyj@*`;^GYd zZIqWx8#-_UbuTFno9=no!&KRjH*a9z?tglxdvI420pWd84+1oCT#3(crNM5$r&s=Fbju&tpnF4bICBaD?h8t zXBIOZV8O)`*A8%y78kRZQXr6uwBx;YNdotFb+wtQ_QVNIs#HXdI?T|3 z%(ts+acgpwQ?8lVftx5MrWwRNX0Gw}sVU^NG>D@ufgb|Xw`kwl5K>ro7PmCMh$Q~m z^37*pYO_85Rs7waZ#JE8`+HUv0+=M0>>6&pQLYaTFouS%jnFVdF)Ipocqc2c6KYrC z<|HEGSlhL39b$>}^SkriscIPxZ;+E=NNpI11qO9y=H`9|(+CDe9!G!!V$~E{BCXHN z%)?TYKWq@brPsQ6R;AgtGc7l%SU2?d1T1xS#~Z7$u?b&SLyg_s+@5f7MEN&&4rWSA zjJF;f5ULb-^xRzcb78+CAlwqoPa}i!rnc4t6k@P(CI^eq#MvtgNZvue6rl-qfHVFG!r$JDHlcrf}}t zm-e*@rbqI*6E7buM^xD^Du7FS=iPmvTtj9lvuMv*#rE{ikm2#E^Hfe7b7crO_jCB< zA)*XAYG)kHuI)-s;h!A z1x<`AjA#>uP^ik?5+PR($&T0W-%CJQGQUnW8T+S@?MYbhgehAdsGlAE-m&rVk~LF- zqIAZgKYmcd`yL3f8QfpF0%G}TFDNMdVeH=?MLG))+Iu(!6`Ezk+PG~4RB2x_F$H}7 zOoOvXMeE^n?n=(amQ8p-945~l>8OD-7ly{h6`#c?k5-=_91ypEQ2kMI5IW7I ztei%{%KF!;BB}IeKHsO@Tr^Prooz|J{#Rj114IqX(g&taPGGWo4m2FU#rE5{;9xX0 zRlHZs%;BVBH<1A(H~R4NC@CoJJ3DWxe~Utxs@A8cGUbqx(ue*j(X-(9&7<3^&e?sm z+ePFZ_5;bO?1uyE4i1jPQPFynI%U`{--g}8M0+?b$29Sv{QM#Q~ z4^JqqXLkzq8S`G@NU^5|S6NOHKPRBEXxk?OFe(O7s*L;PQyH>I*5St=A&y zHa#n)#27)bO-;t2MOp#}*_Kj@3bdsMjPIWS66TB9iWt~X%r2+eDn9RvkQi! zD&{#S`-qg%Fz(s8h|Sy|rrJ77_lRv7?Q%Ep8x}8)`@s@i;a;&SO-QgQ zMt@rVPKhI_NKbmkHLcWG$Jo|3>f?X<6{(FM-ehZ}mzRg$M@n<1Hf@_hn2J>wx3}l= z_is=6Q5oIsiHsab!Ob01QK7!F;wB+IWf-I1h|jsO91=7x>+Vj@$CnRhAt$Z4Pfe>q zrSZ2}qth!?%-dmG@s;(C?U$0iJm9`gN38#ze8XEe4{yYS7c}$$+0M*M< z4p$}WEYpQ4Icg($`FnJ9qcV%|E%>PzLQ6+iQf6SmlcmgX=d{RKd7q0rxc(2O@=(J7 z4;k2L>7}KguCAJsan9I4w}zle_v+W%=&LI+upd>d8xY{HlfL-F+}4ojhaD#BuU)9G ztNUM+xP5>KPT2&uL$x6DOcH&WWCHn_6Q{yym&zxmGsZBu;iqrxnI6~Z`8oUH7;XSkTv@u;}H!ccokK? zlChP?wzSZOEV8lPKnV8R@3A0?D0W0)ZZ`3E1MCZn924Iy8l?$BBjmu`>1RI5uWwiK zMXM%_H85VNI3Nmoj7$KWOHN^GMaMiUg)N z!ZN+CfNux`F98SB1vm3C6bxXWIJ-!i%`JDf%iH3c`DgO`cuOGiI(JvCr?BtKZBXdm z6Ce)&G9NhKdhs(B3PWX$)aB^N71ggsh@G~^bbsdOJ6>EVWOv~ag;6jL*o_XaJJ8Zf zv#_vqUR}{jF0)E5V@XM|03Td>JNdBMx@32Oz@;xViRmvG7!A!f*pW~@%!hKCC})&tjtpo_JBG^ zUQ&W0F5P2nVG;Q0lZHw8A&jNc-x+X=nC6deLW(z~vs2<^=Q^pmr#3yE81BH;wZYx- z@_>ADf;s#XSif}uqJ(0*^$PN#fq8E&@Uu~UbigaJ!oSoI`FnY=S+Y~ z=+Y`3Q|u`7{rk7V{uRD_aGm|bfATPwtqSc(c6Wzfq)^Auq3rAVIX(`~4>ipcBU95P z5cM2L;g;1wNEz8XW6&6kd~I+{s{a z!SL1f-`f+`)34MZze65t)?M(wC{KE1@^pTl>FA_wXuu|ZYD&y9&Dcm?8kKQ-UdCLS z-rXv-{F{LDk_Bw?_|x5eqlbn2CAh&G8T5|6fB*iwylUD{cwWY7-N+LO19npKtU#cL zfa9w-l(Bh)XJ0J^Vhc$H&9lW^eM?K*(CWRQ?yAKuA4ZYS`M1_nBgZ=+D8S4ts5brp zO1`~=XrNh&NlP=^xxUcWzCn%QAE!%oVED)LF2PPd4XC z2A}dJ(MM0?&8w?SCG`S#UB%Oex6p{q$c#60&*ou4mP`tC( z6T{hgkfQp+Ei%pPBS7n%Sk9nZhSHb@*n-h>bI3J5mi^OWlQe)*#%KOq52Qx%$P%$y7Igt{-Do3%l)`40y*3ZupKHs8R-u{DwSKv^99-y?Oq-ko(PphvvzvX`2 z&@4lWgvcF?Ve0&ujEvz=#mA_HRkgLkIy#SYax}hDQ^mQ>t>OylXBciS9mDsqE!q1L zd)8xJhwD@wO)twZ;|b%aLuh!vZOB+{2G&w%=RHJ(Vk#*h1_MCxt;&}})bZnvUOr)! zQJIyMp34j%>Aibz3$_@s9%kBnc$o-psGb3he6w>4t+Vp)_jAT;HaC7%niN|;Rqhqo zX6~Qj77`T1ahGi{8{&QPC|4&y#W zB~J<4V$Y3+_;_YPLHQJUBHcx-Zb+;iAIAZ84-9?MAHMlSMshA4)YRJ9+hf8JqIkJ^ScUO-{j0^k4Z5V^1@) zz=MN`@%rmP5%jP+=LFQ2)~um_4yg*+ULrO&tliy@e-3jqvq(YP{kW!2RO5%Qg%zQS z3P-?-uCg*ZrQD5AR+ejgyb;Vp1!+%O+9{vt=sXAtIzKyqkTD8VQj*2JdE7h-sjN%` z_~q{ETnRY_3jP^4{iysVZ?klyRsB9SHUGOVVtV>%OPe}H;>SUI_^qW)b1aF^j>k;2 zZ~y&!W^WI$eh~#lhtQlHrndG=7}?!d-aCHUI4j^YS!pgIOV1v~$r)qL$i$>)C!F7y zh_y67Pk(Uum6->;BV+*9C@64~S9r``Ta@) z73Y4C`3& zoX@{~Gst#64^zy;*Pp$sV*v#1($-!Bf|9}RjM&||l=b_J+{Y&xT#S&NZ3}(xl(~i% z=6&@1*T>gS5bnWWL-0;|dW!tbc1I(l_x}V9F4uKiPft${)ZXZlKHQt2<1>c79r_L>w`?#EMwY7$)&nv^14WB}ER}zeN zMwS6EBCD&rb77SX=}(Ajd+RTXwCIsU$CU0J#lnRF=!hEGO1AK$%uHGUBSSD$1zucC zO3HH4?}s0(tP&v6RN7CtZBSPymEh;|7%j@N_6R ztd&(`7blpBHZ*x3IXK#z5IZ?3N5xl6Zk?+RZE;I#>;3LKZ#Flt;Q8&^G5l=<9r?{`2a(qfjjbXMs}Z^DEKwcU zpZ+|EGTFArz2lc4Pdy8QjWU{Gqu3flZ{FI%QYj=Bdu2L~cQtx*-5l;7ZD?zmFgE7G65d%7Mi-Qw81|FV~qhN>% zYaR-sazm^(->|W?o)CV1+8sxedkDxhhtWE=^0bLqVw* zbvd3^xy?dHgTBFk+=7N#$PkdN z(I0;e2C9glApO%F#Jk!L8QGCLydIk|S`+UwythXh@}&$Z1$!F4EQ7uPtP2#L!NE2Q z3QA1jcD$dj3{=JJAENswsElDO;0p^3T;ib!e1B$cF84C-A>b;C^xNMme8Gnq7pQKZ zKUbTWy86;!JbF8O&e7D2sirkNIADWXiG8oNm0@muy?4B{aA-=i_q_&P%ae!7n$tZ_ z9%2uqJUzqw0yHpExqZNT(N2jcCnsPvO+EXp+~Lg|vhi^wAZy%tP$qhdRn-O)oZQS| z`hREt8B?`K%BJhJ8tMKT>wN2`VD!%AH-hu&Ww%NdE<8o|q0NWIL4;ta|33KBa^&qT zJrMiE#l>lxn=5OkaJJwv5W}yF*vQ03JSPSQ2)k>(>e^o3 z3)z$)`^)3x#SfP!JlL=Xi_1tqUXl;mRC0QHY=|PAoxKnenubq5Iwwc>WcT(nzRp|S z`BKf=Gj=e&7?hIYG*qo&cD1V^xtxq(XV;#J_GSh|W31x4?D~V6nVTCgBSZK$T^zo$ z!6hXTV-2^iQ&VI{eI@1I=H=bLt0%PIO-%fH_nMi`19^m%CqI|q3z|nVCI6*Z?&yU0 zW!L&#t!WSkm7G zLTsUMG?^~GuXeSp3~)MD2Pc!aAEj43SKXYQ<$do#j1z*#K(ePt_yib{D1geViDtYX zoY8Ky@4pUfO~^NOA~D<%Q#xSoR+*i~vIfVRgt-X~DuIjYgb*W>O z!kKj(GL@ja{iA4Rwwb1^;s_8MT)Qzh;t+RV)49KLo5SI**Mp79DgTqeMaG$yh%lx=vcqJbS|0+Prr7|{buXP z`9F~57FThN73Lb(_|VWI-eyP`&(>S363$jwGB`SZfn@wBkT_#|QOiO91G5?#hI956 z4~W-%d~^WOEiNe$7Z%3I$*DnpQY(;upv_r2)bOAdrMB)y=+m2L_Xz*H5embA8twY> z>*AeK;dU$pN`+PBf)zXz&TwufR<$2_!(FYa`bt+f2%Ob-$Y^M5+%K^WO5VL9txSJM zruOtJ?0N+2AnD8WKfi+A1=wL17h8puQ@MNJb6%s*YHEWMy!8L^{&?uRux0L7d)4p3 zKHA?I!yzF-1(P6bfd-T6noXI<8EmknM4V*AXN32Y2hFdhCrCU=^ z5qbcX^=UKLJE`e$U(DTwZPfI?$>G%FT5JDKXxf z@C()A&T)E(e(f8AGh*N!4eU{1WlL@EX9xym4l7s~EYga<9)P_ra(@2(-@kdK+hfmn z-SGaHg`L;IcVY8cPz%ngsy8uuUO_?87Re`vzb8$ke}8t|9C=_ za3A~VWTuSf2rk>e&{_fcA-1W_9{UxZN^723c-d+dR7d9G($ejdlL4Ef0x-XA^7+ru z$SCmRf176KQ&X&|sT|;udHc#%Bwd`6VR!GdIX=6u%!A4Y2#utFiW)zdOfBqlJ}p+2 zw%s3nhQbE{6}mF@^5MgjoU+n@6Q^#MygH`V76W-rkI;7FONH;>_29?N9rk;-?JpME z!L7G{5d4D1oWs#k=V1BEZCh_L_UkxjnwGpU=i$~k5e}+{pFWz(387s5iMwa z>3T&}x~!$|Mn^~AlDyh0dL#y{$w&kN z1j$t1TkJV(SV`M^7^dM1kfhz2_TRRPtnmMd*zSkmpjnk}2R4q`ie@E2z#Kndb>?xg zs@{fUp>pooMy?8c^^gIiOgVD0ofR5({C8NXJCOzZ>`WNW{!aySrXl+kP}6uZ3H0}+ z2EbB6Ok(dVh5-W-Cl|R9znPIkPWnfP>Qxv?O=ks^E}0ur2*V+=rdYPNlkZ>u&B^1H zFkD`Balic}La+mtFi=Ri;x<26hK9-AvVHMr#yi_sH7U>iUE>~^=o%P@O(eO@8^`3@ zgY6xYF)Hv!jH@{`Acf(OI9utzoncDwEs9bSx&)2@D=GO*-2`vnA*h95xaH3o$0G85Bni>&E76Z2ds1vl$; z!i8UvzkZF8YSp@RI5%eks@0&`@ZExv!S}MB*I>ySGC5y;&SD(1V05=rB2tp?SxBqw zbc}X`&pQ*Y6ZZxU6_vJsYjkOD8)7YrUZQrJY*WLMu~x*t3r(Kom!?{pNDMsuPfXeX87`p0z{ARlIkrnAw>`8M%^up=x|kw` z?kp+m#rgRN!6;d2X_QBg@PX(I;uHkbcA%Iyc2qKMtaD;WO0r^Pb%+78G{uhtmJpkC z*|nzc$yjo|%-#3U%j)(bP`iwr^%&QH17!(;R4^}xOJ*5>$XVxZX@8sFzO?iocx7QM zGQW%sV?f!rpIjHi=jLDsm^CJDWwV*qpFW*iDyvQEr%JzUH8lyvBu98}CXBry(LVjI zL*k z-_qg$pj!hRFS73jR(RUV$`oPCZEd=uocrFvfsvcr$h<2*ebp5_68PT3PDf;OM%!!BJN6haGgooPn$;?AJnBzKwRMsJ%guvb zz=HS0qk7rc0{2Lpap3ep8@^s*<>q!^tixc7o(b)Q*nUvcyo2tgKh)8>2xU3lb zIvE)cqr^kx*InlS)BoM4jVc7Dc;NKCruS;h#2$aV8W-!~dzX4p_7a5T)np~^WLAT$ z+$?+vRpB1!BKe|@)25YOaCWo6X(xP*@n28^e4VKX%y^Y#vQ zWG%;S%E`1GY}qi;aG^wkV~{o`rcPS+1Tf>4PE%>^-i9KOkg6GasZ*{lVrs8MeKU(&e{Ut)}<%ctA=O zmS!};SoF^u*f0GUEF+q*REKCA*t3aXkKP)OF;Tz-kxOnQb;;QMYX#R1c@Wah&MTNm zBSZ8BiqJQ(VZ^IlJ3ht947@UE0sZidgjQ5+hK2&8heS?0EvmJ$>ioHB{5b(7XS-%+}zY*D{*GY!Q)r2Fkr|AOlm-*k)WZGz$ij` zbO4MYCnF`+U$q{zKj|AYN=vJ!Wze9Uac~;O4Veb-nYqWsdc)sATTDQ7$!5bU7qIVO z!EXdkI9SPhcJ|uF8Q1piu0D;>b##1`W%qobxHhk)RRp+A1O)~13eSsKa=wEhV7lh( z2Zyrci3z~DvX$DezRb<(xPL!2P*@!jcZEG3kK0D{?E$G_{NbB#YpYtGF)^O5)U&0> zF%C{MOG8^?E-O094OO3)`?jap3+?g1;duAwjoze9HQ!<9hB?c`g6Zg!Miw zD{c(k7ljEk2tYM8NGb)j0lB#hpa4F3;*cTV`+b-m7R7}J1UzweF7L3`_l-eOG4C_}NOJcD%Zp4X4Npj?-r|GxwAU^a?=!K#E%9ZElu< z69ub^7Z0K`QJqs$h~P;AWGNdEZ6w6U?hzncKi5B+1=Y42j_HT{`wudItR%F-+RU6n zf%cPaB-)f9!SrW|Jzr9JBBEopTK#-Wn7$(z+lWyceY^xAJNcGkC8UYsOX$FI&RI zgzWly*ui-;Do#mnL;P{_CTgvc%OC%lKV88i3kv2w@i*Q#AFHS37EURx)l&);>E9_G zKX5QO&4GFPt`y6lCyLN2P%BJ;_JZrALW-TuO-dyToAO8WKnho>v=Np^- zQD1L=YgHs1BclX^(ITOU(Vk6#9*qoaJtZaoz^?LM=N9|;SWi#idEhhzHGmA`!;>L= zf=GjRTGwEo>|I(Rrg-rpwyiC z1wYSyb9YH!-{z0s{|B4M>)cY-))aGd%3eivv|kL-1~~U|=4Ki+7Y$ zT@j3DWyzy~{q(W2y0Oaj#Do+gBBBOz5g+(&Gvw9Kuzi>`6QZN#BqjNqn~5MdF!-n83#eVqjF@U9Joa?jj@2 z_^)`3U1eG+3a#EwpS3yBf2cz|7OdtOTIn1==7M2V01=Gf@$npHKU=CQFCl~!6A0P(P#JO~OJ_tL3I ztf|43l8Se#W68bQvmw#f&*wcFa3-2*ck3|V|EUK^C<2xkxL<>$abPP7 z`}}+{YU;P3AfBK=@pSQv-voyHP8^5g}-zl9{zlN>4xh>tm1SG57v{ zTgy9R+`h9j!aLYfYC+42AU_93BW$gMc){2h5ggqW=@>KM$E&U7?Imo4ny;q^wjtR4 zEEMSOjA2{6g%h)4q6kh%cLtgL+c1zY(*Xpj+UMWXP6VZ3nz@rkl0tZan+ z)L`AT;1tlHb!u*H#g3CSE#DeVviAF~e^;dR^vJupZJ3yGxA!I^=;=8{Mn>wY9FJ}~ z0)4{35Zl@$WfRPH#{Fr=us!t$WMcUE!XVi*D=h?U8(KP<#Z}|Xcqe78_)eg}$AbyV zitXUr9S^BNQnqgq{>%1--z+Orz$|QRv{l}fp^keG#y?mg|1%e2&2slab~MuR^cr=U z^Cu3aHhJ4Py1s1*b~aLvQ{Mgz%G*}m=_(7W*sH5T9=g{d`(a}y!+!H`#CEwm&_Vc$Sr7{f|PCA1A4bqS)2ah-*%|?sHcf_ZzK?8f2h?<(i z%!-8opOD&DQlP%I*kUIq?;j`fZSdwq zLh}lNj0ix^Z7!XVp@J;cSZz=`t9y2FTocvBkRn%#w(r!)L|k}|aNdOYF#WM$9l7yD z$-m_6Tk2U;vCf{J*Ecs6HPt|V!9a%%XmT{i$11Se*@!l~jAcBOM~qxct6ZGSOPq`! zOfmL%HeK3Lt%%M}bO`v^ofRDyKw$ha5Yi==Qy!G|il#)qd|3=8EO6fsjyR=CeVJ*S zy9y)7V~Pt;1j- z3RW<)d~H2CLWUTBY`jTQ4cl8gHGM0+@mtm$wtAGZQwADQHA?UA`}rY$Kb>(GWBkL|<9dt7q?Zuv zXF0y&uBG`WQDMh^Wvbs^!1;WJ$b;t+nG*FnP>h|wO1XrpHS9uSIS`Zqa?-$*rcXx3S9a6;-}3Xr zzkj!fQ!O&u?$6wWvxi5*!~{)jyfzp@2j=+WKR;f!Gp2aLT2-5hh>nD0EH8f&mGC=c zWd-BcFZy@#cHxncj$`AUk)4E3omz?!S9XjyN08tt038r(dRoh3(rK-tAY=YbU}k!{ z;-rOsS}7w1MK9TPV%4&yyL+AN!=L1{Q4kH_=MRIqsH9XWr`Ht+pd87mHxAcLokuIn z)lcj1UHrg*kT`A~9T_QUZJlkUL5cX8P%|-x$E=eKm)Q7c7S@#ALT@2@@7q^V&#>eE zH2TiAchh{Xt&QmDyW2SMxV6>zY^(Iv(7+(pauPKrYQIQ%{;fU}#3u>uswnT&JegiY zI!tpFmAk%0MtOt;9mWDxt0H6=8uU8+KSozN{#K}+oP@u|x)}f1hVhnG;#rhr7BIz% ztY=Thf7_BYH`Ar?oU+%~ujJ$E7cIe|=>sWFcbNMFt*YS+3x|}~gKv8qd*b5s;2=a* zjSEbr1_zw>bS-d#J$e$V@t3bxh~D|b;mYM$@glmL8#Nr+Y;Nu{mjzZx&ezh`0{;wc zYNkK%ynmm3w@GbbfqgL5DIxbI!E5RZzn&grm!+b4Y99U4F+Iw(tVl?Aw-vxL&`(K8 zg0S3_VPSz;T+X}e30iV!Z0r+Ig@98mBh#ytmzVbpQA1EDW~^lS?RGUM>Ee5OZI7?; zU>SDDYxLsLrRFRjC_O>lsI<~9K#V%a(Dm2T3}DsEDLV3EUH*p#ZI?AZ$*i8Ob)&zH z?S9kDOn7*>Xi91-Y(yq!IW!FkXItU<`HLF%0BE&S*ASU^_4Wq9Z+nNFD?1{*zP5Yy ziZ-{P3=v+UfT_VssvX*&>1nj8sqm2z^|p4g*R)rmuuEuosfxiCM`P?w6IST4{g+My zzkoupw0|rsbEk9afFVt>aX;oq?3)`2kWaMq^yD1~b(s^N;^U)16%i9-kC-KIdZ3MC zHQExoX=<6T=b>47F&^FaMXGUXYKtgef_ax5ho72GV z#K)Q0vvO`1F-Ip(us^(8lWWhH=ezkOugz%kX@2r<^UO@=&r_DyuhX`+GS1HZVejq_ zKC7I&L#a+!G|6cp@z4nk?R0J_GxsPSgZ$|Dn32yiVO7qZF6ZvCjQZ*wTxxv#Mzl@g z;cl_*_1l8g`u2f=|G@ZBHXce$oCaBumoScjMl_)|p6fN%A}d?m-*L6pqcRMgS-geC zN=S-i=15Rh(=kWNWS z={w%F?%(S_T`qk&=iReso_XSE-rypGfG`V)yNO@{dGgU6+-f^IegW9R#XYL*>4~zk z((!XfczJOVzJE+Gkr!}`th7t)Ru-Qb05tb1nCr7>r4z;u{h%E9|2aDXDb7|?~O;}QwL!ts*d^}BE z!@r+fKdVra83^U*_ZqbNUle*amzCkMuzbkLS@}6Lv%Fi<_qEb%@xb?rPRuoCc=R>f z%TiSx&&1yvWy>4MZ8z5oqk8l9}2Vs6uu5t5()SAQbR@toY;ZNDd$zIW}l zPYDpcmkv=tEU)&Mj7(}-V>oktu-1jrGQ02Wos2ykmQN0m3pmcGaoyt{fhT zn|Vwooost9EiDxdRN6zwJc`Kum!R82o06R^2KGH$zrR>aFr&4%Q`ayOw`ye6FXdUGY7uKuLz}_HSRt8pBvX9qI&1tM1pF0G|(E!xh@$Fj^-jHsjM|)>j zJcEhU|K`Z9XF+vB@}EdR?-r^?f)I z>Jk#)T-uVx$GaoflYG7YmfKHhfcn7PY?+8uAfRv6-=4&mcVtu@Zif5Mp9dhL(vuVi zPT?=^Eg&a=zNCKdxy3#C>FYdt&fCgXKx?N-S>+h~B_Swe|-&Y$8+A|Fc{^@7%A$qCGSiO|-aTmxH;53y9 zOeIBgb3}gn)PF-Il3eoOjUX>SM3XFH>fq1^Tf`jAJ$hEw$>X*^`Ye-^lYW1f0v{)f zz`Sl-?%~TtMn(pq##|s1d2_U3!oYVj>!TL|6@{1o(b$AmSamhh%}oU@?GFF!=k^8h z)Qbzrd-sPv#8n)zn-*tgpLDN>1{KumI;W_;trkjV_WJGYq<`f}PS)WpEX0XV^TkKFcG*O1 zo(I#gJ3{8fzle5+Cr=zxzOMUWq=r7mQB`%$;PE5)K*D!+V!(~k^u*4jshQ@_F{bh1{Zb6Q49f{-6Kg5jl#ZyC!bHr>e2BsQv*BlwINi?L)gKcWo?b^ph)zyE7oLJBWg5|I zm&&Sz7yT}LgXaD|uKi(t`T6*|df9m1<>SdzAD;cJnYz-X%PI~&>!C^QxyJM|K zMt}%-G%_&R;$&x6tZq;;Fl^ufMy6V1?egkXXHO57wKa#KpmlQh%d%e8!Qf~TaU z6dPM^(l~w>9Yasbat(!^UY0F~N26#WA;F@;N;y@}%5-@AjDda+(b^haC)hV*duc&A zlJX1dMYcObd=D5+(ed(v+}aHQ0G7#;DpodMA$T<|L{hdkGQ8N?*W(qSKr*q2L}Zzu zgQv&S;Y4%PMEl=cCWnpLl6Ib=eXAO`@>jmMZ^m>frA`Me5ad>VQ=aux0{2psWPN=J z+}#_ZLi{RYV*gCWc)$FVfk7&wsjZ&p7Fxd%7Ix|4>N=t}jEG||HQo)2k0%YozCN#9 z^~1q(hmCV^RTU{QaSUwYZYyoakOYMrIC;mrfBd+Egyhf5rv-rlkr^4g1HT1u=oz|! zd(6Q5N_4i?X*BJwB{!*`|CFju^3XTZ4lB{?fq~8-wxy-6`m5utFdXP5C3JP~K~rek z$Yv{S$H-phErw%1R!K^7PyYFQ!4#uK{U7)Y&TBerUk3*}7MEBGq=}LQkddrsj4|T- zznpgEFg7Ncp)v2R-n-6Px;_p(fP`d1N5|)00k@VO$GjCMt7Trtt9?oYWK%7lTE^$w>a-6k%W@a1K>>Ls8DoT+WCMKOpY^miL zO7t|sJ}d|X;dIpo#;PkCIZnL-0+g=rmX_|KqWKn-is13v(&F+D{CW3IdU<(NY0oLTf7H-WjFS^?Xw}}nqn=)$ z3?P6muS88)4h-&a?WOG>6N zFy1$(khyJtNKt1eB;=5klpY=3>*hE!nrt~!K{ZkByzqrp^e}~eEWtBP9!I)0%G*Q# z8b{GQnhx0eJ32Nz|AD~u1-2nLqsPS^=G1pvJ_wKCSl--xYGQ&`q-~qT2E!gNFFufz zi@Jju5*1wBPrgq~#Fv-r7MGOR+SWU&ZV_HEjic+nZy22IoK(`%!X6yF>+@LEZFBQ8 zSecMQ$~AO&Z6IJz;}M4Ffc?; z8n8Lg_AVlyC^{GE)USbS1|7>b7C;2RqzqgF`=uoR%N99TSNfY9iDw8mOe{V%K!CFA*%B&5#_8RS%p7~r-tY2;}8>y zYQdD^z{e*8cE+rVN8d9u`9niVPh zvFde~Hn?uD@WWkzvz4s0&c(&m`}3#Z&CLrqCvX`wuM(#8?N$cZ9n#}qJ5fB^}fub_NJ8s7( zBeU@?N|}!L6*&N_!ml-+KE>qcSO5K6K{->7zUncx86E<$@v6q4(lOLvsI2ZUWF z+wxz7ckAomU_|{DsY!|6e6~jF&6}62un&T{VqBza{0JL68uDwTK#_4*S$TrKtVFxW z*2xLT*=I~_qB6jge(-?Q#lyJe=KcX6*M12om-+YY?ZQ8o4qEjk`LdZMBq|`_9sp)! zbV$e$yjv|jM|+Ylytw(cR4N$G$mi(g9?)t3Sht!EJSVr4G}}CgD9Bl+MjQAz>*3)_ z&)~GUvtw0xs0`n!`?eHBvbO`t;Du9bcuUK31;rsi>5K{*`r=-G&(Bu?7J1aDKL=t; z-^hqqy)gX1Sy@Wn+FGEYA=SPA9Dt#ozRP!T0^<9HLAwgw#pu*j{w|WWJl?zW4PKC@ zn3ynJo>6l8_Dg=Au&&+Pn!JwJ76XD`0y~A zOGKnZhe2FSOw!1RiJY8Z#`q)^mE08~)XHo4RZeQ~{n)I03dc#*cuS6&<5YvbMJD`#%*0WjuO zy;zKiN}U}WyLWLhQ~0F;Ja22K^&lQ%art5Iss&C$!TnS7y3P&6T_RD zRKWU#isxvW4&nUUSWeQDJhXwcK&EezM_NQ;mZ^IYdS~qx31o=5y zz6jVq3N0&G9CreX;&&Mt34O^iX67r>&d$^&t%U-cg3KI41%*sm5YY4~BU`{>rtkar zN6ai`V7<2wtV?=;jx9C|ii+OW*E8i-EFs=p_x2uw=5+W4_Pu-Ih?-MAP3FXC4q7f3 zFiR}MBS?JLe9fGDC?j3`&tcNY$o=nyEJ<|`(<&(lJxj_lMmDAzi00_APD z^!)sh&@tqx7&jl}W?mFBq2S^5%`RO-`>n05o@?*()+}yr4yU}j+H7OcI*AT*d4uq6 znB3j!YP#>;PMq~tF)<6@-{ZArdz_8UBr8F0Z0MIdXkYN`x!7lAF%Y5x)Xt}@ETgGy z+&1M2;;Q!mHe_oTF)<1bwLN7^Nm1FR%NGjy$F!b! zXI*}NP&wzyT3%A=5M2aa6>!xC1O%;~5NI!da&wk2rVmr_j zU0Hdp*rc^dsovy1B3YpXi}`wU6IVzmupP9=d3pY|8856hI}IE8Gt$$|VY!})`Jrd+ z6d8pMZlTN)14;`}!LjIwwRLqxfxKz5LKuci35g11lum9jF(s)EK6WGFkcp? zVO<)v27oix32F(0$%6CD?DjG9)bffa^lE*A88+6t+v429_ru;4XV;uEv$3rqqjhhW zq%qKUZLtj?5C~L>^3EPxK1at7uRL{Z{4tU+jiF;nP4#ndl+YZ11kR#ZczCnQlO#Z! zUtV7Rms150fxPRX#OrtkX#5cfy&!V9&hw-)tnR&j-5eQnwz%}d3&W$aJP%?mgOHxK zGKNGXR4*F>Y|ss<)4W zOX&Ooln1!?Q+W#rL$6cQic(UD>FK+itA>JtbO*DFL>31Zwvmu_KckFQc)XXE ze7U2|%sdDr@gh;UN%08?bZqQd9#c_;?E7ud?S9JD9E?pod9=1h_%24J*5=?#Y0H}k z#ZNVv#_XO{@V9>d{%^8u!S+z75x_a$GY!CQhyk_gfjz~B`>b7TB!|%BHH3oZrm4j+S2aVWT4y_FQnnVF?k{Acd&k1x*xb-IgrYS$B<(Sl(qTrWih2T5L2(AtAS`2j(qw2={) zkkJ00U8mb-ZB*suUTpku`G!V=%{|AQhK3-rl!T1N*1k+dIX%9aBF_M*;I>=dkhWrZ zEaTx}992>h+0ugD)QohpH=)4Wq-`X49}PuDO~Va54h$_SwT@3~fRCF9N;e?hYCEOy zEKHxx)eGoV_x{>hcRX z4EHfNH`?HCgpU3E#gWy@d(o~>nuEi?jAZiZ$8P)RzAA&CGax! z?i_9F?hZRX#zK`+fO`c#KtST*y~)l77o#sgta+<|fXuoLHjna;AxuZZCl=8`|HlOw z7(ny%KDy2@feNL2J~b#=+0Sd#GP_3S0+PHIjozg6cMIzs#m z>x&l^&?$t5`V{WITvu-s27ed`cIY0PAlwheMn%1V8X%iZ)Hyr*%CVu=lgPp01hzKp zLX)MaN} zgNol>i?^~+qe(7Rao_C!w}662zFxmTqu&h0(0xC~%O0D`O}^sv?dDb?gXnen zq!bPn`hU~Ya^5qOsnxBQ!Qa-Vq?e7M(1!jhwSI*<93IZ{H6tLgt&NZD$zSTIs3|6v zKJfpMJ4PMr+Wd8+9ijqn;X~mB;v()q6V5dwRB_LHEG!NqgzrOg%guB zgf1?gtgbe7j33ll|1N@=oRo|c zXP&5Q;^_uO9pdBr_p`Bm&E7`?S=^keiuyAhfM0zwmYe?kSvetbP1hod$hV7)&Ha_T zR;BNm8$Nz|PLX2kR1n?gG7dVyzk}}-m6vMzeI;;DKe@~y!gFlA^+ySjQ~EWaMTUn{(PO^&q{0+Mns&;Mh#Rns(g;wZ?YO=B}SwXcnd##YnPf~fa5 zYPaoX{F!QU0`n2G^0|TB+cbF91ZM8;-e0Q;G)%HooSnJ%aBgXs?)U3+nzR>cK7Sma zlDQS7kBhXcq;!n?AbYz-{@D*&kxRx05B|u;xKohkL4d{H>!F2)DU@w{_m|A>Lfz>1 zBgXWo`S`Rz_}*XRurMmJ(WLdFzpPo6OZ17~gHFNGv8-W{?j}~^y&JOk@@t`00?{jvEFF(>Ce78c_3bIJ;bS)>_FGpQ+~9WqTu`hV)>m9DiyA6{fd zNss;iY=au9&@w#SmXySM|c(ns{PON_YIn7!T?b`B|QrC`U{DQpf@S_AcEq$JTxzhi%k2F zWq@aQR~BF9@bGzDdODzDuyRZU!7#T-(P~$eL~|x`e*Zyd`1GiHlyuHN{-er}ss%SO zSF3mMqDHICQ}euDv>ET;hg|G$9V{BnG&kmstacLQK0Q#_Q~X-h zXs{~|I6RzZVB1wIxmqVHcXy`)XCeQ3+qxV^l6&nfr$Rp}i({YB7VA|}*xM6MmhjAZ zc-4a!Yx_uUE9^P_Y3Us&xbwegGAk%Ncl$lQ4}+revmYcde-)Os%G%r0VPnIA`z5Wa znjl*k@V72neS(f0noU%w!)a+a5GMallIyvHgIM7DdQ@&Mj+)x`z^PzXN(%S(A}{`O zYU1>tn}%O`XZ)nJ{^{Q9t=@>T*Q02G?H5x4pRN53=fJ=-=V77ddj&r1&ktnyav1Fb zeZ9QKei?O$>>EB73!r)b-WHms(P35j=Yzf=?@qw(&g3eRL{>2IdYg$7-8eGh0dx!4 zZh~F1O3!8y!{0f|<6`9PY1>JUgbyce;&DkQq`RJ~*FReid!ru5#qE8Y5_s0ws$NJd zeoKpo_iJYc(Gz!ke2ge5NdoIlplYiYYC=&{^to6O6e;7c_xn9}!|33E03a}?XMgkg zpXwh!cu*;`4$`n|L^OO9iw2lkA}}y9>F8z8d;nicNI?2~&IcqFrnhey$}1lp{Lz!L z`~6~WuIcL(7w`Q@(Nm|NbB6ahk`TWSZWW`Q&@C+snAj2@KB~za9wvJ2vNWxSa(bFC z^(=JMD29&0)T^83`_+`WtR1E?^`dX<@|fN$J4}4Xmh|}>K}v&fdy&=y9=ObGqC?{e z;mTu@PJF8=IQah~72{%o^K0Fw9S1Cg%q(+bG zo<|;Lm+(}z+E4zWc{8=Dq2Z=gbc~0$0ytVwb2C;-%8*@_Cq#5Zvh>W{?ZJUA^e13g zMG9mmAx_h|yR(zpF;P)UWr)A9aZ$6h#xyp50WCW5OM43@))M~hO`Dujc2X9W6?q~s z{sbRGYB#qrTKYW*I``Lqi?$M7zKRnVZMbKun)H3)$xw8rEVzGs`2Jn9p+Vt%r^-Y_ zGvT#l_VyngX6t^ReTmwM2@&x=nr?wNKYm16*F zS(^u7Z2MzvDDymiIEI44;PUS;luPep7T$!(;ZILH+1ejR389d-98qFoPr|&3F#AJL;6E`Ani7uetdoA;EBD8rGief4vA{^niO2xb&#=^J01V0S4AVCub%d zf4y+v)0%M@8QF$O+{)DSBdM$(v&P=$L_l z!OHUTa}|{|3gvi2IW5Kf)D$?3bm!&mz`XQx^&INK_S8P2r6qP))riE}T%p=7k5Hsh zOS<(!D!vkQ5=$F|oj;y&OiUyTc^?XR`N)De@brd_kln8Q8#6PJIKtC(@a)%!BEI;(D>Ke>`{8anUCg8MndL2($ zMuuNa&AvJ@2oA#HBJ$y(m=uDue z^IXjD3C_`OLn|W*!q{Z4Z1Y8^Pgod*x#D=C80$<)cLU%4InGBQ_~-u zA8YgY1Q}9=>1K|ONe~s@K*N79XNop?KZlpvneGJx136hmDw!lRL7npw`RRV(bNh7> z;fCQUo$ltdo2NrGt+*47yaT(DRp<{vF;`GRuL~D44`)K0I@FJ>>Tljf!{S(b7tGuOa2p zQ+er)T<^EFTf63p_7IOp=+$NzSUHW%&bAN7iiNdsB_wY=plFdGO%_P18g4ib=`{l2pkw3Uw(oj)#?>hV|`4(KQkA7T5M2n681=HIlZAbrJzuf8dIAnzbut9Jvd) zuJ;!S3SYSFH*-MF5l*bah9Hn?z7$17p57@gZYt*KBkfo;Wq_kaONX$pB~B}(&Cwr< zdmtgjLmw`P>HbG|P~`i~-cZy9`&098a0t*(PC9w{eo@Z=APE$O#j2rzfhbY|;2ePh zMN0)+Ft*yT{1&6YVt-5;Idi%@- z?ppiYq0Hi(nN6#Hk$^B;+R4{0>KVMj6%nD^p0Zyqyl?&LZ5pMMtRsDc*g`Q9CxphO zrn0o4XBqU|#A`syT39s+#OUX}{FHuNJiGXnpY`NB; z2zPa?XbYBlE*B?b|%F& zddgi6w#^o*)ad{kC<9T<&5~TfN>)|0sbv86!9w6}4cKEwN}K{YKpdnY(Lh*mbzA7{ zw#I@U3~(-xxPagvziO(us85di10Hd`wsm8L<+DFX;_GMEyM|YTW%7!RS-$%w`cda* z3va{1aJHu?m;XV;FJCf4r}%}(>-dL)ai5EKyb}^aE2^t`m`zU1Zxxi4F{-PR zonO7Og7EgQ*NB&$cCDxJ@Th^~JNMzq+qZ*GTsEmMp9SW@&%LTMbYD zqX9wACwL?{fk^wmm6Z%QPW;~FZ_Uzw|MrWEKauB+WRvPTZ4ENqE8fMo80TX0tgO=m zof#A$c}STk&OJDS9}&XC_sz^{V4pTcOt!^FhU>RN- zpcWyH{D%galcSK@$@Yv9w|`=)?}_8MA*1FmuHZelT;rp1@9E~}*B%{q2KpI;JBdP& z%b4Sj`L{Lu*Jaa$o<2U|(|W;OUE9Dp`w&}>A}2?i&IRjKar(7Rw3i~ z2Y>Q^u=?DCEJ>I;BjVz!e4h7ugC>MaP!PWTiwURv;raPzPEI0(926ZhGuSC}@ij<+ z%3bF=E@Zpr?GtImU#;tQ2tzVZTEJTrHE&cXVtbH=THV?0=rPAW5xA{?*3?i^#sX91 zCzvvG17w#~xo@@ESOc<{Am@;9Tujm<+ny+CQi%v;Sbwk^!z zZi@Ni4Mua#3Qn~2w(`wYj|GLi)lCAiSXh`SC?vqv3@Bvg9#IR^(@J{Nwy>h%`a$FL z(%*~K1!u755~~FrR(ZfPOik?tnOu8EM;N#ontRnn6c;Zn?NR&#_P{1i>3MWoo{}9{ zeAoR2u#gn|&R=zl-G`F)^=lZ2hLp+348M}we?7}rSJQkI`sR%hed9Q*tlqTc%uG0} z7jY*i`56;6lvG$4jp8LGbpQDoR#ow&hNdd7{XHkxb`Q~uoSA{$-W2Ke9MRGy7*o6L z{0w|ZMyBj@5rMo)Zn@jHQ1#A-mDvtyV&dFK!3p#66_l16rtA|_|xH#9zghC3aw3L((tVDnQdy<9i`;$BJ zK;_CQ-D3tFc2G$P3k?kt*h-B~Oa!S5K@e=@DY(J##K+&Oai~hyo_+}HsJPS%s;qzu zZgX=aFhaB&xDF4G5ES$>NMEuEFIzCB=zz^R$!~h`TPYu()amjUW#9ZlU_A`Z%joxf zzAw5DB$i+Nm4+|{D_*3*k6OeJE2DdRpZNI9u`r5_Wd3B~*MYon6&%|Ubx8d>FAc8g~ zIGF$HDhGsq`QUxu(<53yOZGN@=r!onm@# zE2eRCK$_vcVrDsFJHcIocS4`VmyLZAVRm z_vg&S++`C;0^m&t0U!8hzs{0TVNxjP7@(rPa{NJx)|0rlfq~T>fDo?RIX{|D%S5y?u)I7MsHkSIoP2 zSejZ!`CpIk@$>Wd_uC}VGf!YvRi(D_iI08O9D_0eChXvJ|N7^&kjsiJpxtGm&D3oiY^&<0iX=rFDwXE#LpFesX zlO-2RXNPHjGYVb8)KCYIRV{*OpwDq2+{dP7X6Pa!27nvBm|(^U388jz|K;Kq+OTE-O9^@qe5CRJD#+Mn z%`m#Y&ILvA27r=6{uk~wFYCh^8Xo@l-{eQ$-~pyeO&`UrKT}oGXC(cR- zSOLe!44(_@+o!7nE$r;VFZXY=d+bv+EDFa_6YV57^mK& z4A9%}8W_Zgc+|~fw5Th9$3!(2g`6zvpA#ea{$og@2soZRFVxh<-#3n|s{_-q|9XaQ z-@)cCF5Z(U!yDM#|8Cu$o?tA}J-)gjb*p(G?D0ErFT}A3om0U<1Zq!0w2WEdYdh!i zK4Pz#}_>0fR7_1 z=hQVh84RzGPlm&zj&y1RgFaQp1mR1AhxfD@y9&!VOre(_*t18^VWifLjlcC?2D0_h z0NLzpQAL#-jiBJtdaJWh9&{16G*Oy(64zM&CIu7J3 zpAqkf*CeEP!o-_GjKHpn<^seKOxlC(rv}0DqA$(iJ;twz2?)Xq^U1>n#}}yD72Z_= zH_ZjsRM*#h(lTr%a-SL-DMdU3!oV(eou-WM9Y<4pYHgs|$Q?l(An8TK>nbr-(u+9? zYR%w>hd*E5&oWi(){{~#>a^TfuGIuv32{EY&WR#0>?~}X5(otmKw8EGR(5SI#@pq= z3wub-g?=>d@bG@RNCDRw5)z;MW0J!ToQi6Ke|nYN{8@ELDKKEHt4Gm&iQ3hb?|O0U zWc#vs+$u7KC!3UnnTbQZBVRe}m>M4z)#x}2HqP~{D|pi2o)NM7pZ_-f@rSI#$!B=` z)83V9iCuJ9UEC?Z9GJGv09oP`Y5aNw#yJ1vJF9tlZ&iynT3#Vqi`@1J?x7Uvgt=`F zXI0pa?SbZ^MJ(z_8o%W0m7QnE-@mW;om#?ja_|frJ+NUH?6}wc3{eI3I#!;}NWtcF zYb&wJ5LLul9I(6?_JO(8l!P~|>6sZGUZkm=Nym5cLi8;q*^Y&mSI}q14z2eAwFj1E`k=4#^ta}B7~_=H(jyE7Sz3JRlPBrHW7 zo~6x2iSq*kQL(rk{iR88!AAWzI4w0e%Qs3fr1oBQaS|8#N)65LdUk##|nB#Uub&uj))4dTNJW+&lb4!4J zlG{Ne4*i1%kOba`bI*m^Q)FgJ9G|68N-OILz=b^k3YIB>Scuj#v#@B}Ie(h_SFr*+ zGNVI1LSiiU)0>0@BiXZx1U@~4`j*fktEfl)K_X!A6vJ&#MZCTDs~mp?>^1gAf0ngtK#{d;_1xLf_xN=xb|J|E7r4)FL0Gr273=^?%@D-EeFG_neyp__Ef7 zp>%JHxNUPYR=(=ML#eo}?b*fUEE~T7*2oJsSrd~YwHhtOtN$K9#`v*Tqp7)yl-h*} z(WYyk#~a=U*%3`nRM8CBEM^Xl95+^$GW zOpQPKF7X^3^2=H|E7m<;I5>37&81IYLo+}`PEN-@_$sg63#W}Ac=AXqE4$Ltv=G1| z70LQL(Nl!{-9EC35JKQ22sG*t(<&?3Zrm(QVqhS$vui{|#``3GuJrxd;^MpJW|8LR zs9H~{h)>!@FxY}F^vB{x(gljTIyQj5PeGReq&i$8qOMS^vrR#gs0X_Aw`X{duzdFR zz8xQbY}rQ~T>R5-!M+f(a?(>tR<4mOxTncQEctBf@~wT8MJjn5sOlOz$%<-frQiJXMnwenOG+$ZSEwwLUFPw=jtH==fq@BF zp|q2JFyI_7GrBX`bd9%r>)=2D(pl&Y+pV*jmAt*h2x4xkI+Y~)g3HoJNw+s{PE&V_ zjT%8R(s9)=f1m`+jF@E+@Op-xl~TybYOQh=FuR$GgaAa+?$1hdSnz%pCtc zq1mff2hpNi5lcHwso>xbFMM2IvdZQ;R&lX~Vsr&Zs5CW*GfAq60J;ZlAcK&1!Jx-m zGe|{x$Zjau3t0pv5N^4=z8-pXpM$h{@=7F6RcUy7`UhYVpt!Jw1}yo*heyT~GSUoF)_bBAhJoVo;pkzAuZNNC|&`vSs^fx1qsQa_z<1e{nLOA zj~u7yW{(BGps)`#DHdG5QHa<+a!}sbLgFsK@0TENEt~v4Njo_=ol3#`=(Pf$!|*E( z)+Z7+n?7XZM(}!rUMdr+06qN$=rthaAZ{QH=eH*Ib8qBSzpyVw980^+vIdCFr3X*# ze%AtvuRp)8ckL9A2ADGnr-+X|Nag!GW<}CZPrrz$`&8=>fU`gv zKgzFDp-0PIQ7)Qa^u81wL7B1es!N`p7BV!thW$BBVQo)d`|ERwp#iqoy}dOZpE|8Y zx3%6&FzCPrB@T7+?1Ev;f_F%CVj?EORln?BWp#DP&5altnV(R=6+uET2260eRrDy7 zS?IY-dK&w&>O#seDH0Pej0DsOYEwoix z<-7YqM>&i)hPZE98_#bS*jv520JT$oKG^uZbC>?flcdco%5uiei3vU+lv;@*OzaR7 zW`8dsA^qSF`7e#YKvLKGJ_olsHd!4Vo_jJl+S=G&UeXUq(}LsU(_;;*7W7Dj8ic6m^7kz~tBEY}ENkT5C5fWO9-gkf8&)m!y zULQh*%r@hP6YFubFA(%ni~&JO@>?={cwkb!&;T{t02W9{Bl;(INu|IAy{0Bw_;8+GT1~o; z%;Nf@`NtZGH-7j7{BQ%*={FGqMWH7ICemXY&8v_W!u6zcl}EMEikOr%yQJi|+nV>$ zNz~Kqe|t6oPh1}{GhESUTo$G4Gz8=8iwU5vbDS0*|)9D9`MYkAs?|%-GA|S*l$VO z<;M>2XU)y)8n@#O=b2<>Wy@=8TX(-MRa9_+NaI6aa@aj@KR+@#xfNuJBC$)%vfHD; zSXNUjwb_}`BaT~1aPo%GYJE+z(S-%@l)5BTrxAPdB$5gpJtU~AYU@znjfjM#ePl#U zu?H(_p*b=tYH9UV#L#1EVUlk_d+$S@`YT5b@&gnZzmWSFJw%l@Jm&>YDPy=*;BfIT z7Q!p>hRve~ii7b93A6!@UY8DP34JmT9It<@rS7tDM%OMp>TG+ehL1e3pSW?-NyVvp zW|VP@foYgDhBPHZl_wG}XgHMd%p@a+f0VriPZVkA`mNEWzPumnbfAToV zYoC(uP_2txzB+`Ucv1124m*}73XATyj2ALnI^`iwMA``fC@gP!8FL@;os}8{B>e~K~QXp z(ic(IuG9(-ZAx5`a|}-`faw`EdOzdfLO zgml%NOhrf(VAXo(Mi0Led6ClT=2k`u| z#iVYcOw{N8(~|vCxNoGMCNqXxn$)mH;NE?ShrE_L z7&zHaIaT2+Vo9}>tDr(RrjNNW8^-YSs-l#-`$<+q$yH!cez7AhkP@lIS&kxz3VqTB z|K=TI_|YM25yjlDLZIj2Hc|-Hj>K5&ek^17J-5q1HC&krN&L=<97fdlIYe({M<(Cr z{Jf-#KqdKo{OXPbF7+K^PZdi8fmolT{a2rsA|5T~PaKh`(u6Muvi-I3K55h4PUE;h z^CH~5YcWMJ zKH)KCQAJM3){|rK$8dF!Sy5#*IWXQea1_;*?=bpyujNJE?7-#!zWtE|2$O$*psNO_ hVUaZS|NreROP+%34fyE_DTw^Q%8=B)WM!)g|E z({xuqRdvhWSA{9ai6g<|!@qm?4oOl%L<#(Se)sM@EG#tm&2v3v1^j??{359W3%q&c2>4dR^|qzF2)Xy z=C(F$j4X_-45VgGPIkOZO#koS8EqX*nJ6Q&rQW?GeJ3d*tm2k_-0JFOIPbpy(n<>J z_Zt38TCk)Y0oZ&X-i- z)9H-^KPfeG@nk=mN+1tc-mM|L3m|{gc=EN4N1$`^4${{NwJ$ zq~T=Z++ApE1hFm4MBta`^Rdkz8!>i4cc{^@udw27DE~iq*RCL$V7u~2VPl9cmvDtq z+sI)96j6hGok^ZrNMTC?NErkdGKn`~?_%!wJJ+dw2q!+!=Fq$bk-}>c8v$QuNn)ZiU_0T5%){2_D2PfM#2Z28^V-7VBOi*kixFx zKz>}!J(&(5y@n5{q=oGQua|XeHVqqa?ktSDw|dw15w;61=GHNQlza7V_363mB}&E( zcFxw-Gny3E7B1jB8l?U?DH|%}rs>Ld8+c1DC}9a7>c^Mgb|U9@FapdB;W^#gZybu4 z$>gnZ8(+BF`;*`El?U(fY%oCy)1cU&?Y}$lH&oit>Y)G3dd`225BpT}JM?q$(-V%L@3q;m>l^V!sP`-13(wX$ zBR`CG*9`>r`#16#s2my}?0Lw0)5+fKS9rH@&-5c4DB*#3Z3te(IE7EL8w8$&-BDTH zy*k_ew8E%@DHM|4^Qd*yp&onVAlGhA`cw#` zLT<26>{mbpkg7niexKQ{6hjT7Y*2qG3?S`+c8BrhhQfrv@n6S+%$|8ERSqDU5UmB_O&qfqPZ4w8-hL&^=kwi*#)c>O z0P>ikg*4%|?@l_ViT9t&Xu`d7Xm~{wSI|T+C>1fYknGyIJKQ#Yq0Jj?LI|TC`k8Eu zzp$fx815*968?b=xe2$y@Y|`u7v)}37?ln@^xg*t$MoA{)BL{OXnw`R!PgIrv^#g; z1&^Lc6_E1Yzk zoN>g>E31pLO%V2*QQyHzhd?h zZ3K3(H8#E#`uV;$Sv|4+kOkG|Zz)5yI-VkMo-V(!gds#8o^$e93-O%j_czR5p>wy} z9GdW#Q&GDQ_h*fmzvDWT4XQTC`YO?W|2L513tyH024dvyH4eSEy54ZUVHQ9tQtY1f z{#6%KG^w9j6|*;)e=Lkb+a5O-K0x80eJT7~j?)JPnCF^hk%c`$L3-FO^LL7vo+66; z^x+2KG~vm9{2RAE{UR5`IW*YeIe$7u@0EVLR_LGx=|KxZXk&_AY9nEDTZVf_>-19o581sTp_~%fQ zT4BmaG=3Eus!L7FLNL#P{jFo0*^ym!u?$;NC?ZW~_Q(TH4SMf=D7#)?F&JeX7#QtW zVH2Nt{_K`8+UymCWH5L)%LAlF840PFTO2#{08_h@!EP$IyDE&1Z{La3JM(*n zT^b%_R5lv?)dH`%7G)*08f#~SwkLl^Ngt2gI%Wucc_3pP4#IQ8LZN^E`-8{IxCZ3w zyC0WkSsR(b24`1TuFD#CH4HFI^3BV>5IFk{jr}*{7juzsNaqHAcPLWlHU{i4cx1!-y%I%8thUy64p<62nWUO+Iv9e82F4D#HhV>yVSgzOak`QGkA=+ zD{kua|09hE<3A?CgwD*UuuxO)XL#*^r)G+Xi}x4PgdYa>uPX+O4-RIxw!Zv7e*$4% z`8Ap(>>4C1PgrqC-yrgqP!O^IclRTlE@}{i>rmEvVbn)R;rqNNw`vgVVFQ@AUem76 zn>~Zb2{(OEkwabIWuc2!VXDm~#vlYJgwQYjlU2k-@aI~6BiRIF3_^?F5LMI$n=Sh3 ziHg~ee(MmT@q?`0+sj7x;SPCNvR+6!VXTCggm}G%7mU$tDPC@1r3a-htSF zu%U_hZZz<8g**a0cRwq%h!$0Jetkbni0si7K|I2C0hZ6LFT?(tuDr6>7YDMF)FTfa z9a8@*rf8No$eQEZLyKZAE-oiCiF#KXf-bJERf|@_<8U}~g&1KyZ>jao%@HDGok?>H ztTa+mu_O0X#r7t~`b32MPFcj*gvc;T2i^8fZt7>-PP}N4A9v0$ZpPmtkGDz07uME< zsQP-ozg;FTz6^-_dA8TlgzMiqySgU-`SYi{y#pd>AGg1!Cy2uoO86hDXw~V)MWu;9 zDePn;Yi0{W_*Q!}3KLvFELHec04c0_<7Mu{XUyJ;4|-64N=gu#{>sRXvM_(ApgVk} z`gd9$I5{bNc_sZUcblKj^Yf?bz{m&%Ep5sFDTmnbd%1VqLe?WVv@nEW8go zu};r&_ivcS*U-=~Ff_y}&g8IYPFA*>5V>SgkH48aI}_t|mNjuqkLdL}X;GRw_~*Pe?g^u# zK2Cp!Li_Ady1xGtry@6NKZU`-xRRit{WIGM$EMWNf7Il1@@;77GH%f5{kU@JJ=1xv zx&{TWX7{s~(9I3byI*ORaGrz(h4Zn)&VOc`;#^|J{)Q5Cid3hs$UozV@GJ;A;DTqEQm^h^F^jAho`pC?T zTU;gav-~*Hn#U0zBH~J~5$~_`YvMh@SF&dKvz@YLcuGeSUly}=6I1F53$}F@1DJ&s z_Sj$d=i#{&R0Wk)Rj(aqB?>f>a;j_s0@&C5&78|;_GwfJV`Bt~Kj&h9{fg8s|87eC zT$ZzH}$uH;pC!A&DZ>EW(KB^7=hn`Tg^w8W4UEIg(i5XeJ4`G=)Wif?YPYrafIwaV=5t@N-sgJu zD4n#?m43Yyp;Hv91pl=)|&DEo5V!2o@(( zQYlsex1k{m4J|Dr8=HVMuJ#zE6ba4L%-UK8On4~pF>tDxJaI`#^u1a_6B8-+_Dv-v zCqtZ9U%EE!zSmd_%y^qA#fOZJ{tV4&Q7%%78#ZQO7>SL`zVnQ3@4cIY5gZz*!r$_i5Pslu|GK%iGqK?%iVd)YJ!Q>8qZep0-?cypF9cc6xdQb`F7y zjwf?P?&wu{3zxVSmR>mtF@wuj#sRLSL=@1p4#CkcD`l8k_9Td+idtIQd#P_}VSRi$o0!3L+vm7U*F%N z3Za-U*M0(lQE)Nrgw3ePTmE*j7=Q$(?q$tZ;M)Pst)NH8F`VEhWr) zB2lfrfJrdl&ZaxQ1yfYr)&?D9dKqpcoFG8~z7*A5p~FNvOlr35jw@>nyKNe3YHCJr z>-{r`V1|bgB=XS>40ZmdeV$7Up;v|81Ce zdkmjT_3M4Yo$NUT1kr#|6(+VIVFWyX7bMBZ^)5<6g5kifk`wRSiT`g^Q)d3-2Iw4| zXW6Ny8WJOO^RWASk;9{L{VJ=;c~=DCAA8Rarrz~%8>tBQfiBIs3Z@3pVHKji}NiHgB-cZYSt?U^s*B;!t z%IdbL+i(i!&XAj%`za}Nt$Hs-fnHsGsc4n*EU0GD(jK|=-;!YxO80K2CSE*WkdV=H zY0jvsYEJwK&DjkVpoAAHL)H5o_BoKU^^ujQ{cU&vrw~EScHs0V+OTg`G<% zSTiG9SMLW%AsQM{dIsxXEsBwo=)$r;t_M>ofx)NCQEO?XQBd%EA(N0)7?}2l%vvD1 z+f+i0k}zOnu&`|6{46WBAm!!#IW|^Os`F@GpnFfpnL(_G%1lu(;qXit(xV~*8Ck5N z>;6`8E^Ev`U*Vgj)v)%v_2m;4HH;m%OSjJ+abLf90kJpa3hUKw9szHi^CNru{1 zF=8k}*B7hAjUMsw4!)Mn5o>zM%FR{R)}q>>q~7#rU88O15b|kz+?+K%9lV`5dl?!g z<>YLC%+gR*?Y}vy01L3D0x@8KGVL=+9AwGE>u5+d(#LW=-_=D6hY>w&@(`Bh=BQX$ zI*&w%6Wii_U#?m*i}%Me8j5_L$!qtL*x1I=bOrCjXJU+)=imymWct|QBpOT>8k~aIVZ)Vl4gcQi-mNX}(NTG##}s_okmaAp z%8!Jw4CSI}EktrMR1oN4iH(gDvw>Lflsr7Wh{!IJ6Lv0dZlui)G=-Ug%($Eq5^nn| zU%nM%B8Ei8LXsQ=m{eJT^23e)#Tw0_?VN@9ZA9(fM~Zj-ac+KKjB#&gP})fQh3YZc zhhxX(Oa9cvk_VKc6IpUUX#y=6lL8GUqVF?8;_D=J?D6Sw)>)z$+td0RN?qN4rRFCY zIppcJS8NuRFeBq#P!OHut5vIyjEu@wxA1rO_3_FTCIke8HrU?vkc*$wC52;9Gos=Y zb{Q;onJo7iRDq;YQ)jGiXh>AzjF2`uG!~7NFesv^D5`+Qi>ajKq_&yy!>kv8f;fcfxF*6MyCBB2tk)|5`nZbYtdgyX6OCaQb*s*sh6(#oc7=bN)3ulX> zth}Ar*OR@%`Lwbex6ulvuBCN*q)hw=1wAY%C&xllb8Ty@7v(tOHjeuSGGMUQUscQH zk0pvBwn`B@E@HzM-VI2t39v!a(x4GTIAjW(!HtS4gvayt<^36sRRn3A#E-BrxFc~mg`?kG`kB%jV^J7x?QfOdu*D2O)sT_5K7OPhSj`kEUB)i zr|;tv5)dE-4_~ZM;{0UD&OSpB7ro_k0Wvjrf*e^KD$%Fz11IPf@kad385JUW`iLh; z+d9pE2j=}Y>qcAcuW^0;_Vv*P24*BC%|d(k^(l{6xf~R-q|CA4&okrC zFScCJfw(lVTh-G~9TyuLBv&Y&J7{2U|Fe|gO_-sx9u_?e^|mRK8F%gj<4UGsu6k~qe^G13*h%YL*IX#RC#O|U=SP7>PP zIiWz!W#fg?+Q$Cp&5cGzHmatcGiKHz+U?@U3`1jEn~c0X0vw#?+Fe^#e%T2f3k$@~ z-r8~kFCjA17H3)%7$0W18<#zGLS|-+RMK&-k&KkoZdpUy!8`%_7h5#`z~Qb%xkfK~ zlY!x@8~qp~D^=CKg9CHX3MQn#LJgXuG)Zx^MrSZF6rKBTqY?Tjr4cmG7+w_k`oUiY zkB_<6@B7x#u%K>kOa})B7Hv@|O)AP6W8=4)>tN?XXJ?J&(i{C$=tSv~l)lXd4H|tn z`x98A)(_I><)T4Q*TMoS28Q>{OnPqaHeFMb@y>2=1uDGj2v~^S-2x+H(aM^d&1a9A zdcHsB=19J?mTfzQTiM{R^c<4eBuRaBabbajE3RaKRVu& z^!4pmXl>LWKSDwDsB>`Xv9O}d*fmwvaBvA*x_f#^@nx|O4i-OhoLO2%7#U#(t->f9 z(ACwoy-vZw(H$N!RoAi)PblCdB#kcFWruPWEM#RRrS38`lO(#DJv$%2y!Kl?`t3? zj+#MTs+qNS#?gHH__-a4$yLF)BbXGi?T~dEZeQ<(u%G(8R}4`?&XK7ea9HDevDd|} z#GGZE3Ce|;VkNTwO=m_%nL3JuK<0S6V63dv=qGD{9TTjLk78Y?){qJ_Y(5sWP*ZmwY7-x3Ca-Y&9A-ttr;o0UTda=?~JN( zep9bM8P6tADJo= zM@GEF#5`7_d3$xun~z=iTu)a-$QE~d!uq{`NP}&lJUuWogWF)+E@^Mip`r2czF%rzxV-dud|WcKY?ktVS@bhxQ}T^F z{W(84L>EotvueN+>O|);0m~P*8~9mACj+FK8-qYlqsqf{Xwr}!7d}% zIy=WTyJ|^D4(62}yQ$C1%0^ZH<(0NR;b}kNxIu>$a+Jq}Jgr?#SeTnvJ2>`At1(?a zyU`Bqu9AN~Ix3-{$ooBQ?2gtx*(mIKhcuS%K6iu%vgPY5xF7{QE~Q~JGaV*6er;`> zbMy0{WjU&;l#xMX78Lv}D*Er`Q8+U4+OWo2Q4!5;&CS5rII^z~Q>A#q^Yux};K7De zTdS6yzu(SsL;bA4f{_e)#4hHP1zgLf30jBU*Ye zI?hBzOB;N8npRrQsHCggJ|0$BAcjkH@{zhQ;Q4v$YfJ>a=?4GcVB2Y5_BB1@!4{*j zaojFftW^G~ijfCUJ`esi3VS|b8C9!ua;g0(;Ui%lpi9)vZfS{bcD21)J$og0cHVCp z2@17Wuhwk1HN0D=eTKEW?~rQ#3^XT1#9C#gEngvgb6D!ny1G1$j^w&IFB=;~_4W1K zKF@jcd8=-RJQbC)X>#K;2zocExL|**G+sd0)O?+p%giY*UaT;XqDume?zSU8Aq92e z)XX)cYRTy6=={Hbja@S{G|tXAEkB6JNN|8yFgqLUH@*&D(L*m~M=mX4O^vE`&DX%- zS7Re?t>)SHbcseY6%|Zp=R#)O$X_z_V1|jOIg`)XCH@+ho@(2iyzD*XmtIZFhMEY z*-5ObW=hMzk6rC2;#A8{7WYaDR3=b!;1Zv1^R2t53=L7qW%BPfjK@Vs%vu;bI7B`_ zAN)X1P%l%ZqIv}Tec$<+SzCoHE;daovRfai$O=)sV#99XC3T97h@fWCI39tr)$I_o z^pHJ0>y6OsI#;*?E`$Uh8PuRGxO3{->Ba^IL7kn=PA>JVyi3DfT~-SDi^L!!VqgS1 zxvq=kD?znTO$po*UtZFILFs#W`BhcDx3C-!vNm<*&4`Rbvfu8z`w@-~q_oA#;$DgT z$px!W>U#l9tR#@}{iTx7W0|{%aDcdZvONFm*T3wd1D40fQ)b>J0vEl$KIjRvDX+#0 zeF`Q!N*=hK?u{_JYj{3B7a+`JS(0b4l~=BBELR5d2LIZ1Pt1DW@tz&?+~IENH2@<) z#_cny`CeyZSfc?J;ee3?W;pJS0~EX{!{DIgKc|C{(J065z9W@y963r4IE&cW1-N)k z(kd#5SXi=FR;BhghYb?4&c?+TrB03uzpj&#jIHWrK_M$vHr985IPOtdT|Ln8nVMAt ztb%c6}ggM@~-Ku(CS*DHD(ctA|$y z8^ll0zag3nvZrxrsN?R>(5^p2ht}Ej^w6+8NNU=nZr)pS6Y@#qw+S=Hjo^WdzVRKW zTFqgI2fqO z#_boESb>xmz1k*feS%j31@zk8ox%Pl$HHK(2A__LZPO3XH;72i2`MROt}V!ENM^>y z(Md@h<+?ANpd$z4fJv9n9_e&x_C+QcORv%_i;P+|*4M``;|%TXr3Hn$V#&+$83d!z zbX-2)RS)@*o8zw~2M}$`%Pj|t;CA+~nOP>s=jO0M;Q+d7$Xy1|SdEM{=8S;4YH)<% zbD11UQ@;Z@Az0Rx&6fEEd!=fyd8;<2MtPyPw*+Q&<|3k^ALB%tS|Kt@OBs~DeUsPM zpUqZQjEY<_wj7pncK*H}C9$>4$E&@W?$K(i?I+Y&FG(&Va~+@bO+sH^w1dTwR=Qb3 zH?yGrwp3n>SnYgBRxZnj^AF#tFr$aU=0Vuajq&M9)7W4_GIN@&j9heOQkI zC7L)!bkt2%t95=3nHy{+H4rv)b6de;%~my4R#A!ml5GT9G=G22)U>P%0$!~PtLV4V zW)A@wIcV=al#K0BeN>#}j===^$yw(NuJvc^o16Wj5_-hp(p=Re(1k9Xxa{qLrGAjx z-cFRkm{wZ)p&gkH=w7$CmNb}?GjqDv?$IEZfw&CHKYV;*M>TclEhpZ^#l`Hx!qE)F zmvetgAjU^VMa8BR-K7ol6N)DH8kiUwfxlTb4<#(}i8vrvVht9hTDZF70)m0@*@TC`)_uzYaPB96@bVLAOpba0UBmV?=|J0^__66Y-MweuSs{1_kal+Jw-lpGi>mppiR`N7+}fyd`L zas0-o=CrSev;|k=FPr?c1R8%M)i(_d2#^p2P4ewX69xxHKT&Wspyt{Krli%}@AHQ2pMw>;9NJOHAIWTy+|_QAfw8yoyCLe^iRV72P>qCBQ|reE+h0 zmosc)8agmce--YH0^{LLTvcWNpGIS_2nLk6xF{(yNvx!ZC&~FcGc%2X()eE85FO*2 ziW=AVI#p&Ko}n_WWMFuK=d%BHLt>O`1&y$k)%k#E;q>6h2=4ZFYfo>!f|e)ehWgJW zqWz`1Gd3=+&6<3^#*P#714EQ1-%t|a0GQ+=bJux)P{V1d-1aNFAM&7MSklt-jdgV) z*3@7CNi04waj35k-@_YCRP=RN(en$Vnn8{A6Jbn51hr6m_~|J@I`7R$TM+8d`yQZN zb8&U9HkbAEQYK{R1WDy@j%Aem8cj?5Nxa;i%<%am^zPvYTG|6lOqB-)5e<#t$QTqw z^J{`KTr}RgK)EmzNCC-S~=%tdV_+R-6c; zqF92ushLBYhW)8uRb%aUh0XG6uB?@mY6bryj6>OsC%^iflS`g6a)XrDO}B^OIJ$$@B|rx3<_rgS6k>-TnRj`4W?x>$N*;CzX}Ig0dQ& zh)DcPKu9e+j<}SB!sLP*h(`_P<{FfYa$$>B8;zvG=lfwaVemBdrlvR`y|{u1eETw~ zgXjLJu8x~uSveJoLDDBijDsU@xNWH2{tC^x?4odr4+lg`5CYiQ`LSK%qXddTy>65%oEO?bUaqafDirvq?4H$RBLP7xLX*477*BH6k0D5$9VBFJel;X#z>-mGNi;1Jf=uk$s4fi++S z*2+Jp6i{S-U^HHeBB(H|v#~pzQTFLQ?OqztX?rPrrmE*g1i?*5XZ}Tsar1NGa9-8L z2T92kphh{qKEr?tF-kY9p<*LJDjyhsj;AY6l2TGzLrJz%Qw}M|$4YV;e=*Uj&VV2B zp?S6Q{{C~%yjVc&e+=6jHEb8)1zL&wi=l+g05c?w8ss93ichQxLyjczF8Q)BFE7Nf z|M0(tYH)D!_rAEnI!8(*><6@6FQAd!&`+HSXDc+m)M{xpx_wILwztu< zsM7o-$T32R4p%5I6sVaoG&Dr!lJQnt;vaqX5$xcmCbYlJ%l}T>@ek0!;J^+Bu+@R3X}rUf=x5<4b8gE7eCpcbt%=7cQ49 z`?XuNpx_Y*SqQ1{^efvS@8#tMsqI^#ymCKxN-8Y5CnYAzJU-ggI9*ViJ>=ss7b~H? zFQkAkS{0jIZ{4{$b!q1K{_=Obf4s7u^Xr}XtMme8Gd~b<{AhrBD&u%H{m~l|`6$DT zy?lD{+* z+~u8>a#mJe3-EeHD&fGEysWnUt&r!)E!6(&4-FKM^YjJyln7PL@AUlV0m@>i9T8H& zJC7ucnhBE$GcXp-KxCU|kOLB^yL;wzVb+D99#wAJ>xZvjb+p@_tyx(wB_$NlFfc%X zVTkS*`Vdrq#+xCB7&7Z;()c-?UJ-LKPUMU_5LWdQ3HZE%;c0R`aRf>*YqZDW*-JqalEblX7ZI*so(9m7$v#9%Cqk)zO zkJ)~MWnf^SNRvo|DP^#y?R@OwN(9tV4ILdP$8T?UC?W$Xz86BVFMV%)7OP@Kkw}W4 zc8Sqo_{L3^Z!gE-uaD#3-ePdyBDk6y_wi+AV?;5z+MAods;Jy6QzS;M0Erz`Mv9R+ z1$&X}TVe3Q@gX6Oz)f$ixn$2(p{i`Pc1iYL>ati}d$X+irJ??7v#8K#sh>xRDnU_G z^Q(^!)b{qvO4|zrzTTtTfVPL&Hr>HN91C?BXT;_vaTcObs6C7-ogpn%X0F4Q`@K@k#TK7GymKLy7tl0@%vhLGNy`OZGsTrzK!bkm#NYNFF&I9 zW^s+Ps)c{Fr-vC2k0&qBOreCs%8CJsAsjXG^RB}~TME5fU7{y#b3le^oeg<%Xfm4s zA0J6XuY`C%63`n-ZXuUeS8oVt&}mCm>ASlD48WwQpn#^7UB4e!s6=^nV*3UGR2k4N zIW(a+txzUWQdvw`=&Xy2!{Cyf71rNIu0IVLu}Vo57m*x@RT*FVM)%+2MOg|8zR&hT z1bu2%RTU_nJ$CE)tVmUXKF7vp2>NmF@bF?{_0z}h)ZIP**7!mkzlm>5|GxC>jhV73l3Qfs^3NeQ!|L@;0$NjbbDnsgl zaVBa3fvmwn;r2V^f<`5p#HafE?@s{DU08Jv;vcuDBTHDdM962Sr!D$OB_^jfU-rFw z8%oV+VY4X$NXZTkKY-X9K_kWEd^q@{c3)DGHZSjAqtgL3@PP2}3C8~uASo&P2L@?H z3Wq6xPgh(FUEk0E7zYFop%*>xpP${W?)t!$K*yrIn2ZX_b(5BqG&LV=F8D&>=!OEk zh|Elvkv(T{McCN7YwO!UsdS>wklpPS_;IHK0MGOOj-QK3VQV@}{bN4pp+gG8tJ|MV zl0bLa=OZRJp9$v zZ=2)ed%nm6Zf=~E@oBXhU^no9et3ObKfUrSvXH)(R8<&QSBC}G;o#5^+|l2_U#a+}mX=6K zQoFksIIy7n0d@cH!osAzJ!*3J3TFz6nu{5Eme~i+v^4CYq2iXM?r$xW6n_>Ls{pbQ zp-b}W1*s-g)7FNZlOu9?DEIVjPE=Gh*t`AneYR^EQfM>Dif@t6%hk0=|Mxo053j#2 z2wupj6FqyBHj-Y9|I$zvl8vnTif$~f{HfHI&H_u zRu1#uBIsbQ@79IM>>ajxf-9TKboB<7mOi|^WT>b@-#ND9;Bf*9q5oi7{t4*;5k_nq znw&giW>V%#ekMNX^{h@6I+Ph6H@-!*y0%mL9O^X>HpcDg;xE zz^9XymnRDcNk+7w5GE|@TU=^t2w;OIz8KVL;^O|(_x8@r$tnIV`h^(M=O3JpQC?bY zZAVFwP@KR%0!i*>lYEVW0`__Tb**Q&0P^2jc2JscUmx^WEuSzj$gpv8is9akc^Yi(cw3_Uwy;IHu1Y znVEM$q5*}T=RYV`^k)T(=dCS7Wn~Qhi=G%5e(KnPwfmFyJ9Mn>QMo;6vSH;NxLQc>lcTy#&!%fn<+ zT(qd0n4gaxH2VGL4;_VK2!`zZ^mK?+Qe!)JkxCJ0N zD)Mgr%46>+AoM;y(zUiW{3+sTZC_|EUNbrEeW!Xvj8#=|BI3hwgF8Ua8!&>;$<^^~sFwl0Wp&-|kTVwmncUrFMN(7^ zRreQHR*W{EL+wv_C%q21!q(MqOL|wE`TVHDwiXw-fZ z&bz_^FyQ!@(8I$9s4z16`irk00QWQmB)Wh~X`R&+n61XR^wN)PY@y}ls`vyBd#&OQ<&R=oZgF2|=^6bTub zOFW2(-pI*+N)sugVqoqTtT+t}x8o!dfuJY~ZJ*)Y=y7~(K)3vrL#Q|3NzaGGMEu1XR z%yH(<5@Y&fNJ_c~02L=Bg!kV;QvAoCF2H@qpM2HtodJCA75kn$1h6)uM$n^y+Haf>oM|Y9^vb`DEi5 z5WJF)@`SRi0`;RZGOTCbOX&vEYvk$b0bV8}kAeset_a9tQqq>>;c#kn+kZ-$Kik_w zaoMzt-PVUq7rqoW2+GW4Q&XVB^+$6|&CiPo3v(bLnRZjTz?L7>gCOL(o|l)`XG>T0 zhX(HJ*H*#5Q3_`}spRl|{h^9<7@*YKyFM@lo>3q>XJ%n(X*huN&@mEPurCe|p)tcD zfu{r`V{B8WX>QvtrK+mC@bGpEWcsjZpZh0gU$-4tK}-sC+UDlAsud_GEU^FWuJ$ZJ zdjJp2W<->`NiFwq|F_%r%7bceLK1d-qUGf@;CXzdOM-Te$0c&6H0S@<>@$J)^^wU} zQZrTX59Wp)Hz?wAvp4xYy#4tez6|>Cd*uN$9gI{YSMsh|O-N>DQy4%Lr)$<9X(fmE zO#bm+!Jv(>0608pM#Z}0N6W&3+uYn9P)Cp=`=WlVNoL0?>#T}^uGgZDkwG~{ge<$b z_q%}SG7b2zN%+s~0jL6gtNeAC z<0D)i8IQRN;SCge7}wj0V0z)xdjWA)%Hv~qw>Mx`F$mKBalkz%39+XAC)CF$IL0_a zqbruY?MlxeJ43&8iiUe~Uk_O(EQNrx*T4CN#l@T!{>nvp;8?4wio3WF1MM3R|B!NfxSeQ@Z_(PQ&vKsScHgkk5zb`9(^9b0coKJG4u< zKQT~3YO1o%Sh(U&_Pcr2FCdZYa}unkXyPm`Eg5-x^Ze;D_G*c_zV>1|#gh<`WiCa( z>wP0s;4!Y#{FO!ke01uTa>o;SN}w#FVdX6N+I%6Cmd5Z|KBeaAolrnwW7}5wmLXE+ zGOIW~Ua=L$)dq4T=)oMj9fmFn4~U;1*0(gPLlXMs$>StGSX|uI?s<5B1m)My_E-Mu zclKAAXSHhWC%-Y|8V?%5I_Kb!b#hwyox2SWilMx+6W)Nzuih_|?c*r@^y7Lg5#4#P ze26|0JYE~uGGSq~zhv%u1jn)1whtQsT|7AYDIcH+fQB_=Uj)naQ(s@m3nPVUNpNp3 z&*f#yU9Z20iXu8z;uVOPIn%ojWz^-Wrj@nqM~?jINkW3Uy>mZ(xn{a43PFMgxPyta zb65g3$vU-*-6uv#NxHeY0sul_0o1&5`D=3XWn$*iTUpk;(iAxPAYK%SFodUbeVSTq zZu6|sF2)*mo;w1PPS49Qb*rvT+j(h=$2~fJ6x*Gs}L3_pP2Gum4 z9xr%t|8MTLLgP1tugT=(1I+FR;lueDG44((ps>n7rC^hzAi?8$>RnnY>CjmP>KmQ+FLdn6AF*3qW?ECzc|8@Zg%_ZLr4FfIb+lEh; zZCTmaLRM{1EbUhp7eDeY@rACxNa)9H#8KUUPM0MMTT;urC;w6Swq3IGdQkX5jI4>;EXAoF(4O$9V90C50U zysE8D%-h@UPTkjYqOlQ@jy??#qo5SLII(S)@$w>MOkc!;U3Z@TwZ0@L3 zi&Q}7LDtaV0p>9_e93)hbV9+|b2|m@T&2ZS%3F^#ZVSB9qs2jB(-|Y995@l-uXNxb z*i7;t!5>U}tV%j1Qn#qg1T$&H0GX<0oFwK^z?>}R##OG|^o&ac!^GEd0gv1?IG+DV@ z7?}w)*#EI(mLlT)lc1lI;L>hh#kSj`#gqa#m_0A0M7|t6ymp+aXU`{Ca8SbW`u1;p zctPR*yH4tsh;9Vo@wB%d61%M)Ad`v#N=Qakl|}W4)84*q+wPoeNlteAggPr%FIhZV zRbEy$T2C}jyWGfgIZ|d%uPF6)j_Z%(`gFly-tM-qgw`eta2J-=mh%etfsm+gY6_Dw zvdsTazKG}H*|e#6@VjGWXmvG)1jVwxCjoR9x%7GV)aR3wy$@(TE;9TM_Vbno$0EZT zmL35pUY9Ac?(>O5+;W*-0jH;`;Ss}u$k%`~#KXHwXDUd|+BA`)jfh~ApqKu26zgCV<$imY<>fMhDC!&`AONW^RmSi1L%k!QQv?jNI0RRo~`3Ui`m-^EEbV)V$5hQ@MUb2kiHXo)J{%4S`0P z7U;){OVS2MTTP*FXCAoOSU2*MH)5eENi+gbsQ!x9>D*k_Uo~v?JFf$85F0)?D1n+O zTY(0}_z|3%!y`VuAV3jhooXKcc=PyyL~hS^7M$Eo6gU}xscQt`BPy!!HYs?sKz%7t zH>-bT1#)_td}qgvkF<$>VqQW{uCTuTR>89?BjenwGa+DB zS*Py3BjCbz_eRfhmGa$^vf*95l7`eH#omZR;*1J8Qs!tF1w-Wa1+oaEi99?sTkC~k zaB}}FYPhXsD4wE*hwMwh1z6Uurw`Zl{q<(k{t!e=dZdcqui zaF+l6t@*F}WMuU3>7jV@fx$*-Iq!-g?t}>-m4FaqInnoA9=X^a)h*f8SB4fB6$RD0 z->3-{2M1AtdB(qgxIhqqo;8Ef{LYzB`}|<*6?W|;;L!9Tm<+m=-$aPS$8?_qbdh&g zokS+tN<~T%vZKFu-yH7NCanwZGR|N~VZkX{&dLCajx|2oILvQ_W;=M}3v$)bY_zUi zVcXoh#MD)-mbOi_w^WN(>BkhFuC4pL(KR)4|A(ftjLLHDy0(QNU4pcPfPl1gNjFLe z8<12=x{;ESE)nUJ6p#k#?gr`Z?(T2#yyF|gAMQVF@0;s7&$Z?{=3IsPeL;q4*>pc> z-)+@+COks&MEKv&ni3Qee&m7gqv-O(rLO_Y=U}1XvbJv3$!+_x#@%ab3VUUhW^B3? zhH&x8+Rt`IM%Ir)S;<^)&OV0kRm>U+5qb@+qgDi{GiXHj5M?P72(&V?-%n5f1buzS z$OzAe4-QrpTYQJz3f>Hda*~qN{2zLjmcpXS=%)_pqv#7J9~R^J&^M|v3A@A!+T#@ZG_*JHm&VObtiO5_B>}X`B&^o=i^_r zu1a%$9G6B!X9-hB{2KmQRKWc7h%1GfuGq;7WCa$Png|sY2x%D^L$kN{e91CBPvzc(l6z;G z`*0El^SNY+Fof`YbPUIYVK~_E=0!Z!h=b)hzd<*cmNv3042A&En~)tJddm=)0^YJ) z7ufY;VX9)aX0jQyJLTWX7ni(THY?U|r51#^&rg}$10I;YbaFrAZir;(=l4xXK?MCS z?ECkS?FIV3)8?U`a(=cHU*$O)r>3}keC&QizJ~r)8n98~5Ou))j4bNh)IKL4pKEey zOi~8qMMNa@e;hdJ)jsrEb)#6Lpa|Fb-1UE2uR54!ugbIu2uPQsU>u^Z z{^!v#K`3?f^|dPybrLzRQujs^QNB64sBZSr@r<0F{t%eHFN+BCre^$~ zO6QgQTg;w~O=;rTW`1!$fWykc$n3ZsCnM8Pm-!}{F zpSGYf0OZ@Kg|uWn58ng`A!TLnv-8Z*&nj=#@Eunyv==Wj-F#;HT!T02uGuVp2yAHU z{Sd(Y$jWVJ*RyskQ&K*wW11TXPv7_NgYZ8;)Mr4$x3R%lvu*nEljHG=PybA0#wI7z ztEv*%3>kf=W-!qBDGX6dzsL3v`H8+ODdkU9x3AFL+L;L9w+HIv(V4vif9&VSO%INb zRgH|Y+?1UeBeBVnx-Tjl;xeS=<$vXE>&wbHN&A&fSc6l)F~Ew8*!g~-xHnB8F%0-} z`mS*2ssiM18lx&Ae#qO@WELzL`Q&JSsQ;eam?HU{S}62ZYW9n}dua5tTXx+n5@9DN zN)ZtZDFs#EZS>}5q}2s4-7jCdeT81+7VeDyJ!qKSue!YuWWAlRTe5zVmzPaNotSuZ zkd)W(@LBMe*48i3i@(WMW)TqZ>nW3SadBy8$b+V)p#f1X4=*-05v@{1P*_UpmHj3E z7w5azz*FbBfw?(hj-A)Ydkk*jIB4 z68#*cq+Xkp{)E?L?HEP5wECX*wL$;xK^W&5QT5)(eLJ{P$H$nT^OproY}@b5*2#+* zQzDC1&mu<^lzwBA_N1pH+;6z?*S|0~^zrmdp?)7p_b^?t@XrsUzDz}EW)Es*&Ro1}n1^ceiH1zP_NSTx2 zsm>elSNdqx37P+)F~c)=&ZSx1nH@$1-yAaQKdArI)e~trIg@sFG^To9W#0M@d3r$0 z%BY4%hl?pEE#3A}{kV2?h}7A)q{PMIH(Nh44Yy?xO&}V<$LZNw6r;WQlHWfgUxQcY zX-U;Cm!AGI7Ev`ESn3J*tiNzD^;lF}F=YJNp{S~g1M2spdIc1}?HUOw zsXUBR$LEXBZW}or!?YU^$y_jUhVkAH^k8vt$Z`>v-D9XAg}F;nu|Ar#A{;lM3Q#yZ zPXdAG)i9^fe7~S>7dN*ECqNOHox;*%qekd_5U74csyHR#sLy}oovc2dKx=q{#I>b! z$a!X&x@%qG86W=u>i-9Bw^H8pwAPQ}%n*NB-Onr2+~bEQa3<+W<>XQBhnjwH?FU2eAVORdCZj`(6|{@lp8 zX>g{JJ1UCN#@n;um_*mtcNG#C?iu2#9q7Cb|MP+3{4F&BmT4Mc=I6Hg%u2%KG5Er}C&EFUp*h{+4 z8cgcyHwmc>$0RSxNK1nq%JFl*msml?3Ej(=1VGW+?9QNpWwM5~ud0f}-oA|G+0U^_ zn}WJJ-=_KV)3td^#~VAIQ~!Vf3Lf=<$?c_)JWkNYpg=t2T@_}zcWrTH2s}E$v%mOn zndIABxP-X|9Kcy*kns~-)6|@tvy*l3m{?VP_&d#*RCjzKhKFz1(eb3a$oUZl{{#at zKHaNMfu90nVz5R=j?&VNNk1tQPR@l2lI^J}1e~vAvpYt0y*PU)_V?jPSd}ItND2RG z#y_XYyq8||*hg3jUJ(xu`835R>SixlSPD_mrfFWiN-8S)-8Mr(;;Z@RIgffP48VA% zxuDEGI+^SIlt(V3pizhf{5!bHY3`U z5^6g4_9(x1y~Q$xk0mBX3CCb~xbHJml&s-%RCIx6gUO{i9Wuz+P~Lcl7!VvRK_|z5 zRTmWfj6gAa7taSOV7I_Gm8Sa6XHYS!ZBdwY9FOUtVYO$u^ob&e=2omQn zEq&G8Mvt!I);!}Ldh=M}myEITD}DW%XxSX7c~IQy*j*FUL3A!VF$(YCV&UZ7JM0-Y%@Y_Htx&rgEm>wL{gOR^il(U z{=|p*$1=FoK}dd4R-VVeqyU~v{BV00Yik~O1wohw;*iZPA5kMXC#P?4<_4Wkg$E$k znN_cFEAK|E2w7p_m6T>%M_&H)!C%O{JQFQ7&YW3Lg-A#49FkT|hiL6qaCCJQ1G&9u zNeq|4TUDCwBj<^OT}!ONIWdZX@~=_%eob!w;XApqxL1eHz6$;3O!76X(OKivYAqMdp{vzcc|ZzAV!w@@1RNDd6m)4 zmPAnSaSAT8_wq6~Ha51)KXvbrsO#BVeyQ8O*@ChR8k)@Ksgcc;y4x9LWs%*oXfZK~ zkvsEE7+~v&@e9(*c_o&gWC)MwmML85jOcBo=)MUx{JhT2iFKhJ-<#$BB20z-;jz~J-|!74N>U;BmS8e! zxs&un)yjIfAvphz9rvU=ux;`Su?r__Ut)0EIVB*w3!n&ykEb9coN#Hz9UYD0a=%Ic zsts*<4ra*o$c-SPIv2Ml!lg*>CN2S zxasKyv45B(CMCgn*|}>Y+y>{GzU#D*y!;zcdjF<*;Dr;*%0ADm1_baCI^X>Q{v8FK zI`~dtIUU^ERUh^`bhN+4A$cW67fjBh{)Lv5PJ}uFUI;&B!o@rWK5Gn3MtmY7aoG%D z;oqP>=J)rXm(l9!4gvxiRNIs&sTHfR@NgMDJwg!?lBt?Y#@DZb3~Ppd4L`5UZ(+ei zuq@#%Qu)R%JJR`Q_>xG%CDZu#kMbY5ui00fqR;BPY=u|f@VJ~5i%#-!>f~BI33f`D zSy_FVMDPaAb4vcGa8>uf&;{(bJEjnCFl=bIFFNB)%lHTDDCggX%NOTeu!P}QOU|1+ zudW)7&CaG2^q138aF&OipFa^S`W6sCxMaG&w*nFYr zL=-UY_|^9$Z;DQZ5Cw&FeOYp&ZFQyfU3Ssc#8(t#Y0N;fyd&;y3!hhe@FrQ$H@>Fu zQDYEK?-WWu$nC7Es5v)56V=dladx1yiOr6i<0G? zzqrz#exxTlVrIfjfX5+4_}b^MBxfY$lhaSvg5kda!n$wmWq0OsoRcUptM4~4nJ&xO z{kiUNmX^svPxnpROrlR`QR`O*IvX3FW<7^`_AxA|Gs7jDbMpv<&6gX;PbRiGfWS32 zJ<2ap%CU)w-)hqvKhQc`T>e${n?W3fE}JF)(sG1E+jwZG7|ILLOrp%RrSOnDPC{s) zU5DO5SQr}-Q68>6|G+?u&o8VhG#MD>hsGSa=Qbs}89saNgMY5wq}%;4tYDuD|3iZKp=5=csXqMDILBY7oTlE2p(^kzROb6 zaC3X5zev!Lect+4)aI}l5O2s@qDgN3@aD}6gG0hE*AzK9hn{wa9`H4w+tlml{^@1o z-_{*PJB|qt2OA;h`g&vRaYI_tbIa%bCezg94YTF0#ICPHn{C+i^&h$%4G2||_zQJH%82ek+;GE~@T57FoFrzEhGGFx=rcWClSpuc=M4*sv?p+}b;qnW(jmcMm7IkI zA*+7gl9-iueSNbkw5wD>QIRk^J0>mTcN3`uvo}uqZBV_8;H9XzC2@Xj=hZmJ%IadZ z!2Y0Rk^+@_yOC&O!#BG^xP|EHzo4U=PSv@4Eq#2AfbdDzp(93C9K3edite7Ay{dH` zYMQKzf~UO7wI`n%l%q4LZ;4^>&gZyC8XO$ug38OLB%+L)miZY*`w;x1Q%Fouh7i{i zpiCGj9PTF^E@^JgvcKyenqD=;~gtToU z_P#$Aa{9qQ&^C@F8^gVwufvYQ_@AAez$z%ksJX|^E}5dTn#IHrMtei})_xSh~pNk`?s+R!L1sd_u%-iz(r#_f6 zjLgRD6PWqMM_UVBQ?}4)TgBY}EbVPb8c#d5ze`+yv5q{Yg&t z48+%_rl`?ssUQJ5?o3E@=3Kyrw z(P=r%YOGGS#9G@f8!66^XfQvq6G}=w;dcV%h&(c2eYU=gKxX@g)J*Iq0@sIl34X`f! zJj5aJIave+JrrXuL<1ZX)x8`lG^1r@X4bAcMnNKhJR05Q(K<%Q!mX1JARz;)DraDr z`7S3Ay0|^#TCOLBFiuix_Ca9+e^HP;XZ!Z#F0)|1zT@9O$O(Bf*!h+d$l*K5RkwH_ za1i({)6&u|F0@2Jf&+kVJ8%64X7@rUH8bKDJDD5i{5{L(Elt^2u}S}H#)7vlJBv$3 zL4kL3^RqzdZMcqw1&Bin=?vPM|5*6>Werym;R?VQSf_4pZ#T5IexACR_^pRi>q^n=g&Ib7!4EEhFC8=p_>uev?Ur+#Z6BlqimcmXjj`JrUS) zJ1T7YP-+GL{REu$xqyJr^78ms73((LQuCpq#s7vCR#rZL)^OUJ;};iyoRx(XAAm}O zxeUgCwGsHOT6DdHh9?qE-g>6FKANjK3Ea*VVb7?UG(z zUe0J;T)QH|Uxw31>z| zK>_PgJvx^B@ccX6>5uCAV8lH?|4(4wKk3wdJUzpJJSvoxmv{MvGK7uON0?(bP3Uk^|_Z8a&kQjz-oZn8XnIen?kbDI$(r6u>Q?c>ntzN?#q{n z0h7Q78)MF~mW=yz4OQKJZHPaDk!dhXYt2Pd-irTIa8u@-89%>YSa^`!T}uPbYyI*` zBMbM*Ne0SrQ8JF6X3VEA#27<)O*6uuM|OrureZj6rMszELwgNrD`eO>7|UvG(2zmz zjrDzp?->+Bo15Ygc>>D&C&M-+ii96OzQJ?c(BMJFZx5<793mYZPR+VBQEia^wqIZ) zzab)w&7cLxVss2aX3@b`wtJHlU*zN67%A24+@t(GLLwq6O3F5kcZQ|v=;iNGAbLen zS(#pq7MN{>^)TUv;$bFueqL~&A9bgI=@T9v@@?VwIHw zWqR8A|DOe*Vw9i9Z$^PHqpXaO`77Rr_>Zoq|3@1ny@F~O#ERaZn zEzKh%U)DHLgc$I^58Qrrl{Whs1;qvxV;1J%ud@ot-ek+B6&)}@V5C}Jt>*gtqf`!# ztLsxs*IRGzkH2#?z+TaY7bFX{$$>Mmn7q*pxEb46v(fQh~3aQAq-N_NlSxNp(k7RRegtm zD=Mod>09mz#N=O3hN<|lvHe?d5{ z?^L5UX#{B5ZOr3q2)`rKjoE7gST_6mv6YgETQ(Zf*o1L7)_Ul9jO; z{%AA3_C|9|V^arbAL?`Tw)<#kXyhRa*@ZAHTD>@~11DF+u^rf$AyGz=J=W#>cXfF= z9l`)U7}b8Oa+sxtsNdxNZ*x}g3raBeuIAG<*&G6i5ssNx%D-*Nw2h(lx3cPR*-*O0 zFDz`>obj42aCWxe&2^cumWJ3^ai#8~BP295Gu_)il&>{I8GfKeZGKHj@r9aOR3Z>W zvzx;9XY}-adwcT|5RP=7ODDXSws_^*G=!T1u^C{3KOB&-fIGzTESKhW>0d4xb93{0 zN3rLR;{0d`8Nq%o@_Exnx4a@i^sT05$9SAbQZJv}N6cnYx};UX<|!U3K2{M;De z+qF$+A?QY601$UNb4glmejQd@%X{b7DAaw<$oLbI5@BGj{Qklahr)-(+T9~2h8!AA z)Q-X(7RTFfLGa;$cPcCA^!E?PCV9oFn>Xcq7UVld*v^etq(n*6Ndt(XkyLHFDyq!vce0g0YYEgX#UI%oT{v4FxxK{R1!+rja2!wb^`jd1u-otOFaw2l7;Qb)nX% zXti(dD=09pjY!=2&zLkbUJ>3(#ZP+;h=M{Xej-%Z|L2{}Jq?eK_m=$`3|%Y7dvc?G zig&nOU2L?G$GX?GI+Gu~bg_IW{9!B)(Y^$v_Te!x3if5KnHg@MKPRjiNeP{j4<3x< zy~2S^i>zTWfp_b`_uyKd?w~=QY-4~NQW<7GW6JPPG2+6RnKDfLQ(8M}xcIZVLERvp zp62Z6qNlm_ZhgbGGjnqzAe~-^;eK%O*L`Dj&0i)%Zq2Q$e=lM7QUe{`9@@w5k#AU4 z(>s*QB$f_3#ZGFe6q?Iop_9XePv8=oo}O;#LanMoJe%_}mX;y9I_mOjfX1%uoBG?D zQ-^=oO-aATnDyi(=Vt;1`xeflEO{`-rl(g1(^Vy%POI)`CpTsnJoxLd%M%mh^wDrt zaAd<2;Ge8WpIU>$l89O_aiVB~ZQJ+73!3sCX zfT=S{51QA8jgcv#mS&+?6xm%~GA@Zqblqdk7H}N>XiDRZY7&Z3CbY z8W^FZF-f7eV_duqhF$Oh8yL2E_80)98Rzv7v9J(%VF7oHsoGDNJafz9#@oB}Q{wg7 zB}3G3F*E>`l@p-bWgf8*zJ9L?U*NP+X-lYF%n!)OR3`Kt_>0T>>8WYe<@Gb}PoIJX zJVX`b)qsn`0eKjJ4NzRtD$WTO79*g0&CJh#SUA>H`}_T>?}rnx2(%9lqJs0q3y5|#cdExml?glF(b|*-GsxuW&mcp!1cj%-Hq34&(SZGK$Nt{72Jyre=9guNOi@(xu@~)3QmuktT4q_Y-!^ zV4Tw4zITN4S5qDmrl4M5nXB(9{hSoyHw9%7%nTtBOg=XDO2sfl|8OD)Rhb>U_M%Ed zpVZwmsC7`-A7K>jY^eb{>1`JbvC-hA0$;A>slH%W`e@yoe>1pCWk4b6$z6I_!1tKtfM<&$;R>i9|Be zg_|wvh)jO+^+o=pybzlTO*Mu%Dr)4+wq`vR0s@%&mRm1((t|QvRQVgO_T7V>s#^f= zGE)~Akj195-Q3^3*e){3yLoP z;7Arunp{%-@?A_KBFDzr>Jz&1+Y9uSV6^Bs-pIlxC8Ir1{0oC$s+sHnk`WA|`6IcW zc);+Hot=AWDl5szIXTH{+!&3RPCGc{ZBhd|X3s6C9IAua{(>Lr96c9^Ubf9LUfV(xc%2Cj|o@;1$J-LM zESKW(Y7a?VF?IEf(~7Mv7d(80Oq&eFbU=ig#-i)YJHRmrsg2OB>}7{z*z!;NF}rLO zuQA=?l924O@=YzX`Ts9%ikh2i41+sEh%x!2MHK$d6)x|0h=N z(o#dU4?P(**N>k(@ds%ET1}r8F^o-fnXY2bh=_jgii95lqSz$X!YXt)nEq+dmxL!I zC}?TDkdpfSwbg_p4*FA+FXk|UeMY!3-{9q7Y+CK|`v#f(DsXC0;sFMm(Tk=gj7R0~ zU=_&p2VQROhN|KaO6+$CpnmlCyLNWQhIK5!vkaPQNLd*^OmJVY$6^zQxL#b6F|+@Z zd*hL>fz|0yGP%9Ay?r6}RU}W-;P5dc{{6!(LOB6?`eNPkp+r&GLUMUYakoIF`gCTt zxV*ftv5_63jA5kr$kl}$YD+fg;X6Ck6P;FYW~OE3x$I+__$b)LTzW(3+;OVBLVn`C(t3<#^P{WCd@v*gc+Y=RgdDHS|Phu}j z>#t=+yqh~2F&Drn?H?66IQchHA?Cv^=ggSmF#O-frtL4k78a-!=IyK0)S{2f?LM&* zfFA4{jEe>t@q2R(FiroLI)Lk_q~Gwq9tu?H^g)ZOl=pvxCeIghoFJu{MZPVYd-~U} z`R*7)-~@me0#U1VUOcKl0}Gc4-rs!>m!0PUB( z{SGtp-gBL%h_EhZI)yZO3bb{K4O<+jelOx@g{nxW$5;J=gE4p$oSHSKhHT;j0;p3{ z8!yz}0vK9XUJfuk_WphjF){I+eHA*|@x7?7js_2+^2@n?wP~&d#F^VF%{gllg3?uT zY=6Ii@6WNtu%5mUX9y8y2%(^(Lx%GcOx{qfMAG5>8fXV1Ni?q)cu{fch+^o2A)2(L zQsk`k0(``WhdAt<&VLX7nV_+;i3rpjv_U~$P{7;-Y4ec0k(RL%mXL=gtx;3?8>77! zyYs2qe=(VVcHYh2N^y!+7>i~x^D5(fAFuWwTBoM(VoL!91s6G8_574J*oY$z==_w? z&4TgV=2ki>Nl9{Y@+aZ6$O-0tKYo;ib#s)Kn!Rzl_fRgn7sGw6i3!u_LGidfSgr5K z!I@R>sfuCki%_Z&ZU1%z#hlkLngGjEOv6oX=3<@D7hsm3MKWc=rw) z%!(Lj{|>_>`C2zvH2p`z_^Eu~eSPLHYE7pr0RC#|>mWZ+URoL%rhZ23Pq8Fcn)Y)- z%MK6_hG+E9L28ng#sfD6?o$M6-Kp8x#VKxufqr8iRi8T<7KWE^;uS$<)vUgS1=E~!V~djE9%1mePVh3cib>1l zkOq41v4f*G6=Gjti_p)XD}XCOy<^hc_Jl_1e?b7sL8|)KNYFS01@R#n?b%nMm0#8q zwL^kX#^1lO!Dy5+GCVvy=E-lV!eg>q)~5hg@g5m5l#-X%hYoL8g+C&qY0Q)aRw9MH zpYgkK{sk2yq*zBpxIU}eg~^;8h=yKXr~bh;TiNFrg9}bmdrkAUqnr5IIVedA_xMWh z0~@3jYZYPqG?I?J8!u$;j`Ss-eM6xq)H<&^FyMmvGM*VR&>1M{EHn< z`Q-;MarXhG!p5=r62Rezj7IvLh6W>&&I?8xzTuNJ5)1f@a0;KFi-F=_SZj_HsJ}zy zc|I($6epo^zPM-F_X386Z>L;`3Nf-fgVuq~)xY-J zhJK-^MinG^(GZ>o*D_4GV8)J~UQT6dq0w*BW&HUvdNctvwv6&q(pRtgkimhn=&wla zOOif2#{A%&r;F`8U^Wu*`S0m)pwkCes#iva;iKb6r>DT;A)Aw;pj3*mD9+MW_B$0( zWh85&Xc}Vu$sJx?0A6mcV1+B-=EfOJ%EwqguB<3nSR(iL-+&YFO&l{tOT7@HlT)N; zTX!#`&_&HHe$S@+M)7ry+jdubU!Ca8?zNuK!@z(5;k;f-YU+?I+VIga1#kzX3@pJs z5Uy|-=uv?-579hiWW}ufQGXP!u=xkoSOsnojp}ab-OM|;6}+N{F}O zgvntCT2;h5{_EsNY7>-)eA9x00N?{Dc&qAV`sde$j^8SBC0v@C$3je>%U~&E6pC+C z?@XfC`1rfnSQp;O=LNj0LH_BR5p|8{o41#R2yA4C3V=VSWg3!)YbHZbNv4h9f(pmr zmF08bxGgInZnQR3nb2WO>ZdcE|2pNGEu~P2YVPy?=uK68OG;sw!8A~z^S&T+6Z{yr z*5ILJ>4R*m^}Um5e2N_rm8;a{Qn2`D-@R#el)tM>`|Pog`>|b8-_DOjU43I7hP%-Y zxNv+-ld%Xh^Y;vX^dXZ;ZHs8e)2JuL$J-k1)v^%6G)I`9&B2f|LYz=HLKJfM%j)mh7*Ptch-uQfPF0W7zt> z5f@87f9!T}E+mlLW%pHbDX9&Mhbb=UmN4VHc*EDB^wZmr?WkKci+tj+t4nvtQi^mK zRN^I;RlxYB;#6L1{+wEzR56yfdXwgWos2gJgC6&qKb_=K9q9ZFDp-)~~Q>bA2l-(i*oA&;dF+_Cs5m5Or~9{6teN{Gm9K zq&mQ915}`n65D?Y+JhwaqMu=5cl{Ws=IE+z{eEeCVn{YNLmxk8!92yUMNd(w7~*`} zU?58ck#9Y6{6Ky5Lp;m*`FcTs*f(D?XjT!c=bOlRa2ut_`qxp3EwOo+KDi�w|^ z@x3$ewcAEu(h^RYnVudMnC^9KZSVOuc_`C?m)qCJXFY6DQwyCm0poS=;%HxSy8Fky z`4ItV>&K_jn1(lOd7xAiV?51#DFX*&`tpC>25i6xJ<)Q98mTv=MZ*$DmU)QMrBYH= zl^6bLI;DSlAvZlstVscj3z#w4D)U3Ts zHFVF*1OC>3ia@lwzbZz-Vt(pzdOL3`<=K|r+4Jg2m*dGP$(t4#I9z*rqQa%00#;yN z-^(BP>0u0mfYFC)n8Cu@22P7w*wKMxY;1hj-rCujWhuvaCI#Y>y90Ds`|!~Q`Ss(y z7v8%KH0aPCt*p@J{@EZPb$fPHGq2@B-rct;3HPehIn~{&v_m74%I4~)C!FVv!FFdQO zpaL%&A_FCV$S;-mjH+){N5w@%h{P8epnn=Ot%4&Q$!)|)Qg8B}*s27%=4b?m%6Cg8UC_FDJ13w}4aF$lm4kGqrJ=#w zGkPvW9RV>}s0PK{MnvRraE2e7VdDJNIsUtBx^3HH?_~rxq=F#rq;i|H!nBiyi0Z_@gFhSRnDvqFE2yrbYf2&5WxsJIK9hV zNy*jK`~F7th$78zcp+v6u@)I=lbXy6m^kV^xxIoB@e5ZEi0p*%2kZ2-0~j4390Q?l zm_e~}c~MPE3(hFQGDqR(FfS>Y0J_9_e7a^nxLt+{`3{bFmG{Za45BcM0fD${{Ics% zwa=+HZg+TBN`oGlq9{SM0u@zOd z#cP+FP{B~vd*mX?!<_J5t|qAtO*$vl)=t9ezLN@S5Y8exB%RJ<3VLTdtaj2r4PD~Y zbv|_BL$!kI zik_BR#qjQ>H|qoWRnmch`TP>-Z<<>LL|}Rk3T9^~A>5Mfot=iJrbu48Ki7<&#KaJG zc5N!;x!9=3Q%h^#Te|BRo+ zMcj-~lHP~DmeE@jbu%nbQd*X+b=etVcfxA93i?m1v8b0du1ND4PIv09dLl$hdQFzQ zLr5uw{Hg%_5D>`3(n!wIu=an>Y};d0Oz*IlPv+TGO{?oX$-1>7yu^Yp2MujCOmd0O zBkpNtZYrZnb3TDcsSpY82@Q$QSnxV!K5Igva%ynW%L(*IkI=i22kjb zV)Vd&?$KrL(7F&sxcJm#hKLSubzxs#ng;}a{%gG)0j1wl_LH~WA_~a!Y0I@JQ;5={ z6ax?pe$nFoJv<&eF~bjUVL|b)(;=eU{Rm00o;t_9PQ=yI`?$4(Omt;MMg1G_`mS^k z9p8TjZG8o7A6WjWlG4btEl4Ve=Ed9n(0_V*vRb@RN+!~FDG22f@Gqa~-=DC!e%jq%Y<%Sga~P+_~i*uIQ>bO9NHZP2a>{dx(| zDs66jjy&gz#79iz`7=8f7VDD}djvtU->I^Us+K2PFMy$ep@xV^)2EY@Etnib-3%^C zfFOHkW(H;xkD^A@$+>!JSNE9lKo2B$ z^E}sc=pE=WH!Qi}Ax5+CP<+m3-XlqMX837Oxb-#Hn3%kLIH%#C_n(0W192%jo_OKr z8UtQmY7UN_w^PDaXK%kSdG?ewwSJrNZGRrW@2ylzL`2_af>xa#`q7?=K4;KG z0tNGVWGh8PN0{^{IQ3GL4W37|U=!uQs|R~JdNADfNMHfaJx*&UVsK$uJE4BLegNoB z$%OE30HHjF;8*F$2CygsYS#`FQNIa&N7rGJ^0qxMC?`M&k`?rfFI%(l^0q<*37l6D zp^il)mTT)<4^_189 zb1o$5=jJ2+dE@udo|913FE9ck))l-XCH~}FG#P1Tq|8@q2MoZbQ&=NaFT|^u?Kw3? zp{Xjkc>N)TVgQalP`g;!N@0|##|+QTfRNt8ujGGY(GtdDenWt=0Cnl1p3t^t#B}$1 zX=)OM5pa!_@dABvalt`%dvuHbQexSP<_C}j0<$=@zl!TB7e34@$Rm%Wu?u`T8Hy%M zOlQfL40{TP#obKW*cccJlIFHdMRoPXp%(-@qL);l+E;fi>p4#@I7A>3sP327^^VM9 zAWnS?4Mv-{=grFA?;9d(FfWIdCU>ehJmf(Aho+{+7DNj-y&f4Gnc)2&70DePx9jmaRzSs>G){9u{k*g@-ORP%R*{MK)@F=N^I7ELa5)s6$LDF z!{151dq<#XY}8v#y*D~)%gu@iJ0XT6nd?; zD#*VNkB)AKHs*Oa?b@1SR7#5c7CGU6jjv`SJ8-wQ5d_}`-*y)Bj_+xs_H6&u}=&}0bd!`Qm>>oK{v2b;DaNvcVMRM{TFxumF2o4Hj09Xs? z+_pF@OuZG7yeeGz%XMPxRs^w{@F{~snTJfCT=ZuK(x=U3$JY<6rx7GfF3@*NE znA71Uxsov`>+9=@2IOGW1Lxdo?}w)Oz4*+E3S&)1)&6g>@PT{hA|jNsvW;5|G**Fb zV2R_rKOgw=0es@&%APeN{MWBn8v~5U2E<>yNQW~`L}T)`P-BhrC;`bfo~($^=Umnp z)TqtpIvvKe0mku!N1mX zxu}giqGhn((gRilz~mzH_b1H27Kq!wv*DVTH+{y%{M*%S$`Ss3!AiBUhE$?QAu!P9 zO&gdz!IX!~%gX`eBtRahCZ(DBui}+so96GRX2Ppqhg7F0v$mgmGO%6=GfRSHR8&QVuaMFleYoSdWYXh}B%ENZwQOdg2ai>x9-js zq$BU$W-sePFolus3;U52?&dUn-8b(WOWgn1Dm9U2wsDdnH(4TQKABc?Y9FILN+UH? za#~hn=3Zxi@!5QWS}rQBLzbE?rezUDl$1=t77R1E5@Aa_@VjR3Rps19AL%eN04*zORk->sLa39asfn_> zmBKTdG%!HXO!b}?CC7Ua3kynzo$3&I&LzEbz&s=30oSv9q)l2ks;GSdB(kUKSQ;)S_Tdi?5gxFfxN-m#N+X-tB zc^zu|+S}(+Fd|(T5CrC1%TLZE7XP^&2lAEY0wRCk#ExR<_BeD})K%%NC^LS1(sd~B@1@hbir*M)1$1qD7E;rV$w z44o`5Pv{|s5SpD|qY5d*kNftjE-S0e^Z;oaRFnwsotmPRle446_2_Xw^#-q}Yz6{8 z=OC}4_AsHzXYgGvJz89( zoT@maV`JlixM*V|M+hbVqNk?_swAP4Q>ZK(9Kl*zESd8BfdfX#e|A)&CT?Mj5*ufs zsC`RqUsb={MfQSW&uZg?0U(r2-C7Dw_xd0M`t zK0~#|2@H9!q~YunAFml&y6*w|+EWLp*jV=cvfJgdq!#YW3+>~$J2JRBo?rcFTV%cF^7l7BIxgi_6j#kJKI^6d3QWp0H&)^5pH=?u zA*9rFywJf%U0A^O50v?6Zx10pJX`kRMMZ=q>a)~&!dP$Qdbl$(Y;A4XpGWzch4v!9 z$>~YY-72w(;DW^5o*oC|&s8E~Ex&N}nJ30|NAfE_F`(zniDUT2SG2O?cJCM1tnz?d=;=v3*rs?Mt;skdYUp-x1a=xKcuAO=R5xQI%@HM z5^kAdRh`4+zE|K#DEi!co4Ju-& zwt8y+UteDxRMj8FDGeeWN+Sp&64FSBbhm3DR< z9(HzTcmG+(aZKd#?!Di0KDmSkPQ@=@^plhAfS#ANww~dQGIE%k&cVE2uMuE7a#YcVAE{d>4RTyYcD6 zjN+4ELo`_MQrjhkmzQ}YBp`j1U)I~3%D(Z+7EYzu{(eS)h#-c&IOW}p-D6J9U_p0% zAU}7le|x|0HicAXMzEn;S+hHD{2hiuCa5|44kx=WXx;E6YSB;sdx9F?IrMc*B5G0R$PogY+hA z_{ivIqAF9C3iC+U^1}Ew#e)d>A4SR0a?6ky*}L*Os#l@`1YTnP{(S1{w^hA0F0{%R0Z{|C*=(r)B$@d2=ruY(# zNP_;kD=jT7f%qH8nW#eo-^Y|e&k8`V;_H#;jjhO#Ot!wWGvEB4@44e%Hrs018h;XD3BWh4~d%IN97YXV8wyp_n}$8gz0IB>LC51_S~Wp(s~LD z-64lbTC!a>gW_|anTeHEYC(Z&uNjJ!tI*vKsfDZq#mbP`1#N0@IqU0jMDLs50O>dJ z#ipit@h6Fge{^??P`?l!y3~@|OHW+{4x2WFWg%F@Yi}F zPvp`HS}K#02DdS$x8^@T6<$^yzl;67%KrvOO`Yq6=i|UwFc3o^ea|i{3jph_V^jtL zC-SG-9-Jc3#HS?r!P@pcM2Y0CJeizAKqO$ww{K;3Ck{qNkp%@Dhv!(v#(z!CR-&Ub zB_T`dXQHKzPe`BQ)Ashr#c%a}Ddjuz zmQCpD+Kye;mj(3KuL0;o?dYURNs}-JE#gP#)uI|LX~?okPQIN~zCxSDfjY`p1bJQc zMXkDSegEYpi?DDZjKykiPIrdY5%Xarr&s^ooyE>}3@GQmSqeT*PF@+8nDsmdK>GAi zg;pft?DRC}#)dw`&LUN4FOA_mBTuljw}15F`qQ1|RT^9O`0_dLJ z-bZQ$C07mt{Y0TpK`^D{;eiTQCS<8Oo~J{!Du`XVL_`!ls>1*Nb&-=-Mti-I6sz9C z*LbE0n`!jt&(e^kK|pYkQfCbV#>`CD#f*#fq`(_|Q8tuheiLw*7-oSFYt zX}rh!E+1<^j`$O|+WUD=UM4E^AiW+B5MK*X782LgBwASDWK-Dex*Yk=CKj*$3Z^%T zJY|F94fG!cM6g7Azw0`$=`Lhu0Q`=CY2N8pz z8Y#+>k^$-u;D&(yOF=_F5eFO7o*wzQ_-f}NZ@8kcoSn;{y$6Nb@NVSl{zQ&eoV-_* zzx&nBBaqm{Bqu8Y!0zf=9Fw3)eHi!8aJTJl9j(mxJ}Cp%odEQ$CW5c)2={vgT>~Og z>#Y}GZ`O;eutz?!bCBggI?%(8_Y@^$iT_q+ni^(JXQkCOJMa&I3&1!Z}~3>0=g6+LU81mz%WejMMzWe3>T&r>yY{j-eta z=Mu7*Lwz{k8ZS;1a!gC$q2}bt|NVPZ|B|I{IVKz4zz%o(L|w2%;75__46CB3y*GS<)7fnfY&e7vW&_732*s!Vh$Omv~4p%Pz0 zo6O1vhll(3_y7JvoLZP4GrYnTQGUd!7Pg{!llWnXoUSf$e7{tkgA z=t~#xOvT){bo6@Il7S2o+)4l4!lGJai3OW@V9yuO6S1_6Vmtw%6Cu&?8Um43cd6=f z>uORf&|{_oG!W|AH`Iv`Z$vfCTuXZH?*D6mt_v`FJYjo5;DQE;fy8ht8QIwdUz`|# zviFCkUjvngH?Kq{V(flc_oBmlI7%R z!oB3K_IUHi`bV)2{2Yn~Kf%L9DdReN3U~9VBH#1pffIFbn~(t#pBE;4sT{#}I5JC3 ziuCE`EZ#o$v&O$vRSaCCnJEl>8{fTQ#txw_Kphf2R5ruZVfm(Py&NI!m< zm~iCetizMVL_atvOH??3Gn1Gzw#M3hjuK9QQ9X<wrC9U3+7y&eOuW3Yhd1d6nH{C0_9t~N| z007VTEJbr>cGbESq;Gk3m&9plC(w)R;Elljuj6e^txmP$QZ0m%#issPo~*bLGcrn= zlT+~b$U>tIdWY=J#RaOvxvczry7_!I{vV-mz)_0$rSI*5)Z5NZopokWa6#^RS$;0- zpz(&sXpwaP_4~4)xm)&rA6tIaf+F^u*f^~1ljR#7XCeOU^0MrzB~H*i-$nv;_4b+= zW~Sukrm(Q0^*_V5QI;oTdYGc(; zCmnc_A4SrLC@U++#-PkR$0?AJ&8h$}bJqtX5X(Zlu}7m$S-Vhl2xG^P87??N4Ir z?zty6UM?NF%yt@UfgFhs5Nc;)q%$VgiU}JRH{MTiUvt1GU}R)8Zu85Qs|@Lbn5dgu zm^@B3UvIAhJ~i73dC**a3gHsDs-8~S*iATdrM9Rn@SljkE zx87ykF;M}#`;60O<%c!LjOA~r$3G4nTew1HbpILUr z(F?Z=fyc@(yz@PKVfYjfAeWJME}1-)d%wIwIy`fAr;vB*NhVZXf|lgp^6Q-qvsjS8 zNO*VUt?rS~vIMMuy7Ip<7DU0D%q>#$;CJ65=1`6L6jV?a2JVJ~WEP=cqhS85ip zL*1YofOPwAj)%KG4Uj?D((=fB;05A%vP}XU-?oqeR09ph@=^s`Z(UrXzXh0OB=fNs z$MyGn1HtG0_UHLH-A48UltFX^{#HZ(2s9xWO%Nho<0JRV4B(9 z&Sqg`*khJ=$p>I#27D3VI%x|FCa8i83*+eM#E9{K_VgFkTpj@I|2n&{)o^SUVC_9y4R9sjPgzlxE!w%424Ocgqd8!*h*7wLxLBN#yUJnFsWL)=T8Gu;0S zIYq^j(8I|AlWu8U-AgyOC$C?pzqgwI6And_@GtKzMimuDU%NNb{HdQcx<5HN31T=Px^m!9MO?+B9I=Zf|&=Z}ODinw%`}YqYlzITuo{1B< z?II4ASE!*Z0hf%d`UMIPz~N7xblbJy2B5|8^70BL_cTiky3Z#vAnJKu!RQnB)m6!u zgGyvzlje#6T!b9t_f?qb!#1ppeP??2_l2Mkw%{)hd!1(ftBf;bytfO$T2W8=qD_C8 zRezhQaO-Od4h$sxyHN%@5^5n2Y%q--9JjC$_OiXX}a2N6P;5lf8eMkd%XQap2_KMv2bgd{4gNT z(%t=RCKmZo(fC;R*>tnPnst4xlyI`maM61@#I7bh-rU>!bs#J0==4=_d;p-D^?q^i z0zW0Lb?L*h6G_w9HE$?**<;|vK*q`}ASENizrB4_yYoIiJssNieAE7@V6FDoLkAoW zL{Y)Rpw<9;MygPFqF!?NBm zgd4xs)twf7(GRF?>BM-6Crjrv9N``9*tw`r7*nbFw|?3(;K9OPt?f)5VF1P z3gCrZ@r1JG^vVi4M77f9@&(UURbJ!VsSp4ft86N#6b&@q0-bW+Q$bb+XUqo&vHHbh zKV*Rq+ojNdisD*h^oluN=TMMYu07;G=U10!#ojZQsGp5%w^t6+iS#XI>Bi|oFePsYHA3k~%R8-V~;_4b1ffF0!`N+&|00Y& z(OvKGKBfmA=wZNhmfhHRrLy9PrWQ+0l0(NR)w;I!uG9H;NTZ-w)3mYEb>#fwxpZI|7Q~s$JJHj z@8=X;JPWS3RecuoRQwZfmLA<(;{^P>B=6T3~A=M@F<^_e~G-jMpwGHUp@ zuSc{1olQ)qh5~0OsyCmu;(}NVSy@XEKViIXslCs|6$@MotYA@u)WtR7)>`;Ci<=Za zUA)b60?AKl!fY%o|IN-ysi{+OD@9Tx-hu>gea#{>zw4rWJgtxZtk^%Kq#8@(75PSy zU(C^Wk=C;~msP1-DTqW+;ICf-Ev?xw)*Q){EELaqISv~wT>?GbM5wZ4(TP4{XImc*u)||s0zx`b##nV#$MD=- zL5Q!r+1m79UdB-aQriWd3yI0!`x%~y^v*%MuK@SUJycUJEg-X!oz1auGh1pKGh z7O^YyEGwI*yppdpzb{DS{QgTZnXX>}6N5pt{O1ExljJZt8=9G=F25BfAOK2(0!WE! zta^6VI!#)ro&o72bk9bNkE8zGkRY_X#31uOEtC1B71Cnn`p<8DIQ9I)T;BCr#?mEU zL+Rt}c}$KSwuPC1Y|s4nXJ?K|X>^mGq%LWxl;BYs zT0J3Qxy)V0B?|bu931Sj=0boZy?)YSS9#DcIJeMC=599VPIPp{hlz)mT~ac%>`bNo z?bFD}Yfu!c6#QK~A_6Mfgf~T2wwsQXmEr?k%Ti>q|M?Q=Qtl?O*D{I$CkoN&%@*9z ziHVA4W|0O?9hGy}yypErU5}kV=KW1#Wl81pJ4^_>na)siW9?ZAHVhA2?Mv8En;2Vj z!%<%q5fg8nYHMf6RBPWZ{jt?Q2LO@AceFIScYTVWn*mqtTM(qd>YQ0y8#Xy9&lDe( z+wLWwHi?FX0x`m6#|z5Oqj>n{7#>LkiV?IA#Zbpuh7I`ct*RtyPS4s$s2!{}9uN*t z-0waUF>uoF`DfnH9 z@lJy@an4s$H63p**qE3G+qL99W9uJ36MO#JL&4K<)U` z<}&9uw3Iw}U}5ey>KfxHC&w$bgbccD2$+InMN%&O^Zx#DQN;x(8S`rvF0LrGcBkr8 zSVagVpOAhqmol^#BZnymZgR-oWINePT6GFzVf|q5VXuB1LL-2KhkrkzW!~^4pr1fS zwO0v4M@@|xwok~#UR<2UwsFhU=mgyvbP{JwF)!vtgI5JK=6ckki6e{G)ej%K7~BYni=zO>PaE4k&C(d%EqhwNlZWjV?t!>^r=A(_;Z*AlNa!R+TAg7a z#Cq~1DfNYK{Qf@qyUK-nt)vg86xoWU;XSK z=;`V*a&rs+*LZCkm7+0Za0NxdCrqruVN$W76E^!bxkE!sLBY%xw)IQyS77%ax7h?< z$oSa_=0p*ow_%Oqj|C)97gfO5^!$bg( zvNVk_I&DrM8#%7nr>|W={YNp~gj3$PNi_*akuorf>R41nzDn&>2%5OZ?!|t-_kl(Z z2QO3OF(l4XxMa8B`s5^1w)oK$yvi&;Y&%|U=Y0Nr?W7I}R9Ne?vr+!7itJm~pJ&sY zNw&0-h?Wfsj1os_Q$@ktCoL^JJUpzF!HItl=O`v=eRgnJ_WSX#X*vdmF_YN;cpgUd zt%^t{&N?%E^|1@j$|8rj>7!mXhTVPxxdJ)X3k7&2rH<+9k<4{ z@}A|7kpI^q9XH(IGXg*l_;Ym2>-hR6bl_1fwD_{DT~p)UkD?-c8X9H28EXZl8hc9b zFJsDO6&0j^h~ogn*3i&^s5dA5i&>A>3IA)(&4u(b%q)qPkfI#*eIInR!pb)~I(uZ| zpX73&)!E3?vpc8UogMW0dD9Sia*Wh0|_P03RCnNRXwrcVQSVs@B_L_LU2c5A-mo#meI2h(T=j9J8R zB$1x$L2mxs?=nz+UYbo4pPaeVl=Bql^hvyG{;M4luk@-vyu7_ZA=0Sr zQne^>Te!P}0k4lz&@DMHDUovrI5-3>|Wo3g5?5z z-p(LW@G&Z0|2B-n!8NI9yZzSu<=e_`%ga9lC8>01oxvWGOYBzNU-Fk<>WBqGp&g@l>t{vx|<-50_Gu*Q+ zEtE^G80Z3829?qAuO)14(ajE+VJ!m0T17)+TaIF-Q?V4VxCk65sF$~~5gIGHB4%Z+ z{Ii)S>?U$vb6igqa2&0|V&v2^rl~hgGPQA6Z9N-3uijG4Tkh^dgX{eUWVc;$mfbs` zqr=8N_r<=ngJlJxBDw+MjqV|#K3G}3K2xrG8j1u_W=zn62ocYsuwrwq3n=(Kv=~iK zBBPp_>HC^P;vrONQX|U&&o&o#J{Wt+p_#jX`lRWl`^(803*B2?&v2d|hSVwH*XyMO zk7zw5&ofKE!%iV0a|tri5=JYmgFl!RV{H-P;SdsV&%WV|268%LKdAzROfScg!x=s~ zX}-4O*K~DZ4^#OhnfWd$U(#joec)%nYX6W^P1f}YEw3^ClPZ`Hi!}pI+_pEvWyG@n zvh9UxX8$!cPpA>f;7u7}eOpyFh@tMWgdM9ocuXM=ZU{SU^TemQpK+?2mo zUlw(444NWXpFe*K?K9r4f}>+&m%O!G&=8J!qu*#uP^_4M7^k0K%H}9{Ee#{=FW#o>&Cs7 zJd4w@5Vjp{CnxmSSQED5ndxaCO=&3+H{@cU<=WKq?(lb2f36-f%RwPMTA8Qq+^R#b zVt`tt7@-Z(-#(SsbAQDP+xF~(Y}tiZ|>@NPCc(LCo|K=JErJD*d_YI3I{mF z_PFZwE*8r&46S~@K6uRVwzN)Yldx`Px}1=3F{8||(W6e`+}`K?>3x5Suyzi6R(#U? z2GKH)ZsQ|Fisv+wwl_BJf?@&UmK~nv?@gK#5_PKdsZ-as2wvkao!AB&<$I@#EdwTlpwztQ+&m0uIpNJPKeXXyLj3YiVi>CrD*KLyDx0-oZ zlU-8##I!VH*AWg|X>Aw6CG$pwW)Xk1vrA%%y#fW_V|j(V`$RRy_n6FJ+D%HKa4&d% zf(CR+fx0Fzh)dU36fhInMHTUa*k@y_^zZ|i4B(MH!++wd=RMTIGBZ=iR`3SEO$7xQ z)s~cU8AF0^GBGbdvI~6h#b_`~!2s}xhl&cXWU4asqr6KB&khc(w<{}C;8F16wy!_) zPZQbmghkuu#Sids!qo(xmGD>054pHPfbfHuIVhrZ|2$JvTzo<7k!oF;OzW5WMKq{rJ9ch3Kmd8+t@M**m_2!$~_&&D2VYN6~s0qSLIx@0VAE$qa z4yB5jT?hLnb$6a*i7mJ9Q;eXdY47U#!xm8K_YQSdovE2%^v_EZC=en!Up{2(?h^>Pv9r0P6{jG|VI< zdAif6^?otX76TbYgI3NQN%tN-Y7;E(w5l*J)4FY&cO7Y)pBK-{;!YKCT~?_+iH%W% zv|^C6K^=!Yn*tXcHY{xY-j7BO(L38_y@P^6Q$=o!GG0Ktia9tc(u$(IPiDX7uT{y@ z_t}9UfDuwG3+w;wA?9mwc$T(!R-hC7H}m1eWW89%C)Jmr&4T2mlPNn{*L!SN?*tRKAo>`A$)MACyq3W>x$XX zzm+-o2z<#Xz_>!Tk;@d5TYj;S)ebrNE?L^kBNhm~8db`9bAWsY zOu!b_-}Ca<2$m}(=%5xXSf^5-UP$P_LRJb+tp}C%{*b#!oWq$6S{qQ=OiXH@I373c zdSG4NZw$R!^>1$ff%i4J*R1Sz|FE)3tl;5-Mey&az9<{s>UL%0Hm4&O^Y7*epl3p7 z>^h-b$8UB}XLdp>YNST;%^RkX5s}hjdDs_&K71G++ymJJL0FrTni{(K0QzhO4OL+- z(BfQNk#U+HRYSf~^&`LQy^Dbdz5nVR8~#1qW6tLjo$VjTAa~$^XN^XwS+{Q z7mE;R#oA4^J4`uCYpe`iN4h#X$g|cknMg^gPnfnExW7rocHNT2J9hs7AOt*Q!G)gk zuO>=d!Ue3T@pSQWIc#JxhMve=Tpz2QS4Xx32-R$OLv%{3tHb)t-Z~He+Dybr>H7`E zYPPnDpt1m*2y8LU7P^e|^dVr6Na(Y6bw$f|#DeS~xD+-wv0rI^_Yaj))NAZd^$S=N zIpg|wpzf!o3;G_A!vO0D-PhW-4bJ*x{9f_C5o7T(kNUlwnWlINLV(#bbtvhywUD57 z@R5~jXRN;<&Y1-QK~JwiWk50S4cn zO#PfbJ2N51+ROy@1Pu<8Fd8}YV z?&^BXp(<~^Nd>7hzk94vj&pifctC8ers0;_t1yScd}-w9NE*-FylM^GKj3+0@a1GU z$8J6towDJboT7nXDkgUgbaA2)QcN%hk0|}>%4f6K3yO!=>lM3z2QL=XkH~n|f_yw^K+UBfJS}b&L z(X=mkSC1AJnz6Fljg5SL`w+CTtsN!_AtxZR4-3Jg0e3?W$Wvhs>xE02iJAF?oZE4? z2aTpT26DMa^&fI_#(1Cj&3{sKWoIGfiiqF?g7KJXtGQPj15C-{*?Y>HdccqVGi}t- z^LbWxgnOPd)x`K%NhrCKPhj%BcG@DR@ar!scFMUUF==`Vy1Gs;DHi)f|NZ<)?d3&@ z!`{q^U?%>(-KQ6(FCr=yxN10Sce*JWEhAPk;X`EQQ5FuDP4{nR9PM!`{50J#1Ov4o zP9ufjBovoneti2rE{+8{LM@~&C77b5q(BM^609c3dP1v0&8AP~jg}DG&DJbEB^qHj6 zxvhh-w2FV7a)FX5?l%+scfp@OrMWU8oDkNeUN zP7J60emoY_ zz8v#1JdB)7o}k5kO}S0xtXJJtL5%|5!1SSMkXdMe%insuwsAY znI^D=1=ckiTPmM^a(?d1<yK25Xzv580HwGsPZb%o)-~l!bhR&o( z)bd~k+JFZCx}X&Py7T>LzFK~q;2ZN@>?q)$6J}>a;4_sf)KJ&m>OkKLH1r)=UOszw zc`~C?zzqr#5c9aEwuXoZ@Z@Bd9Zgu)rF`IdGqQmS*fO$qN@bGsee;e# z7TnW~H@x4!@3;)k(qbY*QkuTB4;qT}AGY1T)=wQH>MHZzKIM&x5!pqHGOhHOEddH? zR7L~8nRDvu!be^YH^@E{g1(xF*vG}sz{|Xn`(e@eM)H1h$p}EeqoW#O5l88E`^V3g zS2YcvtqpGGAq@mU?OFZ3d*!OHT?gqGa^cQ4lUg+`-b0UId^oQpVZf#cg+!1_D&*ln z&x9)$^2E=9m4=XzeD`31me`W+abB~hCvG)DaRgI1-u`eoWTAqxVvOn;358YulS+j^3QyicxgtB$v z7i}{$whD?kPK#{}#b;Lw3n7mlnVwb@fmHn2gU=|*NhtAP;&phn7>0iepJJrh zKrf5qiYJn>G2t6+0o?!$X)XvcP1eC5pb)auQHI<=2F8wBx091+42-!1BspIjZwM5j zY!Ij~YN_mWqQ^!2Axt|n67j{CG+-k7w{kv!)3faKZy)m>`i(+;KovLePq%nRQ4zXJ z4MF3o%jqlz-t>ncRLK8rZ|Razewm%&W9y)(Sb2-_0zqB!hQ*Fz#joQX#{0)&^H(#d zAbZcvrTCh6zZO%Ff86xS^7JZEMXewkOSk_XXs2~u*7-+J=F0<4s-|~E3`XjE_fFHF;u8{j zF_F)z>Tli%`TDXxVl?xx37NsRr%06~kTf=CUL7!4f=(nA=J*HqiUJ0%{zJk;R}N~r zsKEl90grl`mbEbS#}A>(vHX#}2NCGSxvQcI`KPC^4)yaBPEbI!1I``hcynh88LE^A~UjKZ5 z72{-q3K^l(ig3YPS&l#Vp=uf$LXH4r(B|O|1Dg?r+3y4h zP~S_(gbn{EEM6cfhR?I<=^j`o=;`Qwe_!{+Ct`m1knFwDnMzjs9q{$~O_(8%d+WA`tt#M#3g}Y$hkq{_>hziZ&%3ULL2KFH>DWdcQB+L=uB5sRXN~4bdvR ze0bumA*B_|!n^zelOGjw9mq_9egJVBkRfb*c0SPZqtw#cT2R!`banuT_%}M25w81J z{mwi>(|~NfV2%fk8`rH6+pRVp5hU%jn&%gL#J;*P&k;7IFG&)^EcE zW*;=GU~Sp6%hwrHMpmw=V+GGHlGaKoaLfGYXosZzpFJS$?mbMyec#k0!b)1k^%A~h zpoG6IuY%ggb!?jDjm8@iwOV&)-e^VT9H+0VgoL>L_v&s-gui{m2KWd%NWeCc4*-xXNQ4~bz5b03kPs|kYGV} zEe`Y30YWM&af|$WAD11t>t=d#$7Vr~N&UMu1n*gjB7|DNHYzIFZrO-R+mQYpGLDCa z5A>uyAnZ((&bRI-fqoS9%Mh0ay)bl7zrSnEZ^Myj^~X82p3iWjx?r6LC58bh>O$qO zo0}92gGhURfuUJAX+!GjjMesXoeimfg%O zcYJaZGj#7S1qjiw@S+~EvF)jhf&@HZq((_9*n7noV^zd6c=!29d9ohe!gj{B&~e78 z&C3kPFA*0LBUDulF-bdZ0Z249Rsg;PKi}{|?9*LoYIqyt?fH?)@=!o%PF>x z4=y;_JYGAnv-m=_*gj*8O^O>lSt7of2|BKQom`fS(aO-%=~etunj?zPg@qqi?FL{B zVJ095sC+1xs6U$$9o=p$ijTVGb`h|1hC4bss$2A$SQ21Ryk52?EZ&s93G6%g*@GUh zwR^C4l5*gAzUuAUoYF)eo;Bys?{ie7cf+@JcHu<33h+{uNB-&gn560#d`XW(J zttog2zTb4=i;wFr*Vj>sH!!97TfD;`XO$n{{%m1hWHZw$z<(psflI*lZLjg z7?~ZjMH5XlkqGsR^%zG5Ev7wI;Ipc$gPB#uyLP_*%$Q;sw3un|{FBBiI-~a zF32rZ`eJZI$S@(GcF$pC!tDomdTOdxc9a9Va^q$hYvzH@?j+C&qc<#F${e*318 zrUa?+VYu-_6>J|3{2)49CK|-|CQun-j89457|qjE`rk;;(<9ci+?t2aB~*RXiQB1? zhtcPEu_jQ05-u=ySDS9`%#MZrNI1IU+~0#650Rfxs=Sy584VUz7E}MbrL2I~CA$|sK6gE?uJqgNFasTM5(y=Lwjw^x z(fmU)M-%m+#cZ(^#s4;kK-+F!eJ4VKYJ?newCAVo@Ge&37qUka((;lc@#$maK-#*{ z)-8e5=9!Q?qWHv3ANdsqJ4w`N(L<8X=K}oiql$X?C;SUEK!3p=o<({pw2OyWHAWRx zL7qc@@i;tdJ#*EY6771Aw(Ah-R)JFXY$X3>M+A2+m}z?X9Ry1=h@ zln+(m&i2&J^|7P&9Q0x%C3jl-@}pjEzP$hEuFz3pA>!U2WS9Bfq^L$^Yr*&Q@5ZY) zwY+yS_Z?qpdk4|`yxZkZK7@ObV3vUr>yjXH7pdic-2(srUtStqDxsaSGK&Y^fp4;s LN)kn4hJpVBxz!`M diff --git a/docs/_images/notebooks_weights_12_0.png b/docs/_images/notebooks_weights_12_0.png deleted file mode 100644 index 5a56851d22d4a4cd04193b9e424ab0f7efe2a3f9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 36747 zcmb@ug;$kZ7cac&4ke|LR8Wu>Hc|r8NJ)oucc)S+DM(9)G)PFdlz=pd5+dDj=#o2q z$GzkG2fjTH2Amzwde)lrSJStu%CZEwRJaHPf<#=K$LX1lD*}Oc``;JJ*j&IBd{f9xTH8(C(ZbEs#Kjz8Z{p@;=jdi< z{gT1M+{M+}(Si5jqlY}43|4M#PQqMV|KHCaI=WbLu|#CcBM=M-xu+5uULUv9z4gi5 zPkY4{Qkp*Bzl;6m4PIeTeIENep9H>RIbII_I(gpl0BPfzce znj(kq{;0N$k&DZ-_jK9)-_@YHust30&Zx7bTy5kWAk;0JGB!0e{Zd^Wzq7NWgN20^ z6&xH~Fp<>>PdD$G=;^`4S9kp?700|i+d%S3IX%u?CjhzW$t- z_jQna@L}#~Jx;qs^wK*j{yP}3LYOYS>OGM%ODD<6$>J(1Dw?L9_#wo7Rrt0@i$wFq zogD&4N5|v+#jZ&m9i3;2iXYu}XB(bdTU-BB5xYJr>@e2GGsfz5uA@fY`}cA_F1?}# z8EXa__a{|$cXy?FBJY^0Cnf2Uu&}V4{fXcj$(1EKjAfLfvTG;6M7vEw;tVgBv%GAU zAfMl8#YZ*$t*SX{sXh;rpcpRHn8kB;9ThQrsGA^v{EAu5)nX{Md(*8EGs<;!@Xq$n z+5vn-Febsv=9ZQetuozL<};X4mI7(c=l_|16bqb>jg4hMtAFtB4`%gD^BwWo>x}50 z!z*IMoP6MitusPI-ZxJKJ7#6tQvH^vSsd)YgnB)hBt$I2`0v#@L&$`)%#fLx+3#@r z0Pd2>&1Z-w!s*|=2a_Lp%+JrS^uEc#eok73EB%3SfT!H3EjlCweSD_cG72+Tf+582 z7W(1~#Cw|F6e{F~$k%_j%G=xfTtrwnk?Z!i{I(I?wrP2px=l+X4GlA8dHI((j7Ed$ zBA)Z<8P#y=)0E$IHXRigp%E%p;SpR<=G- z6h8-d$KAuj<42=A$M=tqgWogBew%CZWV5MloS*I+9Q+!JN0E1ScGkJQZ3oNz(-xK) z?MIihzKQ8>c9C|KS^o?U3G11!w>Q7d$IebkzssFEme&mUe}s0uNR(70Bsx$%ht>m* zMrDx$RrJl5yG_ReugT<;l)A$Rs2#9hk7O(fp&-06JV&hfA`psOKWjN$|9r)HfLM2H zM2lk%4G9Y?hLT0qY?Yju852Rlb@$1WCpW7@X}Yz#wCW~|yIR4H1@Ad^s+K$9kcoKv z_z3uvo}GEYkv@FKfbGA#B6^P znNI#jRBQ}Y)ZdoTOOeRoQ`I63*#+M{Q6^serJy7$;Eo^ z=PzHr*jf%IoBWE!59#ZB_EcK>!QbD(M60^4$l=2w#ByU}Be}=U&&lsyUBOVw8MwJC zpMN$FdiXUzFYotkgDVTgLw$xgX1V-KHi?z)`)cOC-I*o3vI(voRi&KoUe@;Cmdu+r z^o_E%l6k`tDZ>OGX9bFietbV)&{Dmtl0ZFF|2e@%L?xVZdSSP9Zu8lC=i@2!v%_Jr z(52p(;YFcc4%^{H?|Jed!`x9MBX*~P`L9f$&3owR=o6l}Fu7Y#p7T{F3*yP8b}aZ z7&W?WV8r)_T=aP2FshbJwjMtYU#fqJ2uuvPriXPvVWt=L(I6ux{;gesGlA&huB^4^ zvCnitB9XBlK7@Sz`t)dfrnK8_y17|AIt>?_YUoqd2wM5m}*=kS1nZ0`D- zxtN$(^YN6P0Bp0|37cbicmi8iHZ;%S$a39$wRHU^4|`{Lv?$w6mELLe*s;+n(zus@ z@Dnpztw_!1XnnM@_+67?wZ+gg505WiT;*kxHV0=*F(sm+qT$wjspuJNb9>!LQc^nd z-M6DFLgi11Lt5c@b0j`A(2e`>!OYz_h4?jFrr#KJIW4p-cd0dTZ0G+@PaW4cJjvMD z*p^pU=c~7DYjqV*hiX6R`41X^! zzPh^dV`XDoGgQHVI!B50;x_am%8|x2J1EN=i5keKuI!!wG499^oIZwq(S-?hNj{HgjyA5#1b~%F-LSol%uJ;1@dp$(l5SaLgfE!w`Q-fKb8-H%y z9Rh>|A{w!eIzogH@AD?EA`THs45*{LToL-tiQO4jSjfI%NcwgH3$~h>x%s0UuLYqd zL=YjZuz0>&t)-5~VoOE@Tt&Mm9MpDaeKws$EHYBk%Gw_7-YB%O@mIlE16qgbj00JD$v%{9?(6+Tpwkw2RaoNQ8w74V;AVv|%N9?BppH&#d`A_H@TDnxPZ$(2(H`@8Ya zHVHvXr**~IfY`j2dZK(qqilqPg>zn17=8hGR&r^D5gI6P8a4VrI#+G-dCK+{-q9|> zwEyMr>HG-jPyUvg`5!nJLO3&Db4J9j(8aEpA_B1XZwK8SPNw9)dpAfS2_Y!Rz=ZbZ z4dU-r^?~Q)(;AyedH3VZ$xDt_Rr!E`*5{<%6TYHE7@?Qxm*3V?hb*k2+Phnl41UCU zDs2)H99*uHCZLk2B|jO+D4XcYIDmy9EzLyE_?>TjdiBNrm17&m$MjcoP1aK(%qV4g z>P#O~aZ3$;1vS|sp=Yw+yVt-KJgls&3=m^-NjYlx(9a0)%kIP(VCx9q93Cwa{xhGjUvg_FL=*MZg}FRT+JA^lo9R-E94>=;-J_eeap} zn*LjX!^dgV+WflpF*N z>OOhUP*%EVq>{5gMyN=KzquRA?{Pq9a-YUUc>}JzL<9xveiHpXR54zX(Ko0>Gz@6=0iqXWZ5Yk82Qk-# z*3rR7K8Iea-=MZR+rUe5`}P>~5QjsSg9zXf+i`6EmfhaTqU9 zl8B)b-4^lO9b{%^X5ipZ&?uQ?=HS5VhR4Rn20JHb4VUOKLG)6hK*tVX?pwPexq3fY z7Nu)-ua)W?=K6kj1lRJ*v*M!ekIITqm$#oC^bHMl|F<%r0GM@)-fzF-8?LDbO6;(+ zep!hsau}<4a&z5zspqlV_K(jdf==6%l}?PYiI`_+h{un`*S?DnX9RVKM>%~`7B~28 zi+6R}cEcYY5>nXcxi??gFlWLn*9k8k;p*Z-i2Zust|-r<1sbV(zM8>D0sGXlrl#Wy zVF2dZbq=(MWfz)H8vXZXlPc*0&fvgHu^jn`9{Kp|Yis}5OG!x~eDvs1I?xtP0K$`a zXxilaN9a=(Sg&7a+0NWFJ|dT3YhEY(BZ${!XzBq81D~UBD_(LThd*67<_7-9KLw zm&dL2NCKn#pQi)z1}pZsZUe=j25zIpR(eCwDftUat# zEbQ|8cp2{Sp~0k$dva1z(iH6d`RVDT`o>1BCsuR943AS2S zoWA=DSkqCP)1u_T&aXP7G-wbiwFa*JaV(E=WukC5$MO}r*bMdY-L^2VE;x=|N_G|G zQU5!9mB8_;8M%pK)J9lihl5YA990*NrK-Eq?7F6WezY-ec5$>($h+-A9}8@(#rG8V zMY;a@q@93D-Iq{NU=UF<@jULE8Zp947v!<#cVOGryKThXd-$-t&rYCjO=x#MLW`aK zgUbRnR8H?!vY-y=c8H+046i>pP4ZQdm}vX`Y<%Sa0awzNmXloavyZF?x5 zxE<#MPlxH~g39wtQ+J2*A3ql|{oVdNtyCgqY8@vfBQt?BBn>C!yo&S21dclj&8pDD z`~p|KcwAp-o_HK3#6`J~7c^aB$G?)lxkHd54(RVY#a9$`$C zC#Td7Xs)j2{hlGZ#VM!O%>E7zu1f})^m7h5wb?9*;GB}^K)@O2J3niE8`M83|J18< zSh41#s!d9I(M1rHL{VvsvVSx#?(bV@U3=7uNg(;5|LK2N__4yR`>3yEq?S7C98kor z#0f5k(llO0nOH@h5f+qBVo74t(9$lhtVmzs3u$B#P(1{C~P2UA`xE-uPq5m31`$YE-!S}~kzI)~Ic z(Rg;-37it*;lXRel^&QA>@L7)^?K{VL^~*K9JbgH~3+39UFN}%I*1()^&)= zXL#r5XlGO*d#cK89ap6{Z>1^Lam^lDHcg^=_Vkt}01B7tgQearKB^%@#8@wVV6$58 z=r$oCp$9$=jzlmyw{5oj)|A(uw`|)rx@B?l1x~}>3{ejea0L>i-3lKtF- zvMjOSt^bKmaJZAFrz{}w6?{S>qSQwRt7+|RH%d|u29nfc1RtkR8G3p)I<6^SxF5Xi z+WUmFe{j$dd56~x@q2goNg1q*!I953?UwS+$_h}GiT7*gm%Izgi}YP+6o!S*o<4nw zAM~Kkae>a<(QyF)Y5FGXY$L`~8Ps4*6a)$%co9HUI-*L?tg2eii>%CeD1KS$Oyk*O z#uN3k#n%%~g|As~2cr4nJ~4?@H9~&lR~;9x)d&MVt?t3=wbs_TklB%l2xuaGdhsZtM(>u7hO2bknAiFHp zw<)s5KLN#RYq>xEXwqkl+4$g(O)r!va=6b#!-ra*NCq>-0>k^wsBV5awvnX`MU9B; zjbZ$#jY#C04u*B-0R>Mf^N*z?k>4>{r9HKh=;gvqP)G2qEC$^j&n3(Urcay@+&Y>I zs%)S~#xlR%SZKR3xVaHD>m!beic<1TG_RZAvE^V#5Cwt6ngJ?nSE?zHUNfDOm)>gE z>!WVj_ZnR+l7oZMgxxpM6V0nZ#Qg9XK!RZDoj}m9L|~E2Srif}18%NQ<0d91F6QvX zO$&_tB$kFK9%}oiW@gf(OE3UVIc~F1nyr`Mzl#(t3fQL)ylQdWH>PrN^8BQGdw#w> zf(sP|g^wiX66ava^HIX)FDGYnSZp z?V)U=gqg4&A{}e9B&^T(+st)Z{Xj1WV`(R(#YLVoPwExEp0Vp`bl=L0i@WW%Iq_D% zEx_Ocl+W1s_$~oktrn5z!RHrSZM^q>)}Zvne0nsWI{naE=}twGKv7@xN<`Pr-EueS#Z$0kvcwh#GAB$iRggT6QFIcKT+(9 zhaVkTQd1jmYEU^;VwNTL1dE*og;D)?XuUbp>d!|TwNy-IW;frgvprdow5*@4cxgD= z;A+WZ(utlBA3rW1C6k*MdvBJ1cMCZO`W89oz=frS#TUV}q0Fu0i~7`P*z$?QaoFvT z`1#4$R5GqEx5ik^EG_N^9$IYQV;7%I;Y~RCR8U|;8FoO;XEow^oRVo+F$@?Yq5)0; zZ$?IjO|32gqTc^f0IGQ@b)M~upO{vCu`bVPsHv%$+1M1I=)FfpMWqa~Fw_<;;MZ?_ zy28wXo8!5s9JL;=GR0+-M6CM<>3;t~hq8RmDW9JZ8N=oXN-r-@Y;tlR@^ZU+IpEf| zvxkQaFcm&F<&Wz%fj57VErx-Co~)W)>|PA$j`Ek8cMw0EXN&#yx@08z^eQa+tG0^OtHiR_(fH9QJum2Ub@@_`>t@o zzf=HRcj~xLcOsVP{es$?kw0ifWPZ_G*GAE|y?v&l(hIfpUwe!Paq-mW2`-T!;6@BY z#+oe3nN-Q-{M`_<6vcuEIqbV=#uZv6FH#g)J&lYOa)4ybkWolWpKV_ zKyYuai2_8?SR?;qO|?~N!8_HK<9{9UHGNm~TNRh8{4e-s^2_0M%N7D-rqNKvWuo)& zJfI_8Z5d5SImi>W(gC^5%F9C+^*#AI-{PwTyh{Xppw{dgEK<_a#n$Kztwm-8*gp;U zcX+;Xv9nu!iHH~=1Vt-~NjBPT+NQQMUmwch%gfy!TKYH#*x#*;fbvW<^VX2b+mN9 z*rn*Jsg1>2>#zzYtX$6RzL%v-HYi{5Je1_cAdw!Xr&k!*D9_#7~N z8wELe>qpp?fPcbh`K)5gfzRr~p82vsf%-Rb+~c} zn}!19Hl|1TU0&Yalb*tfZzJ;}jD7r%{e@{Kw~mkUbX$}VjOaim$)RqhOqJ=O4W&Nc z)2jG{Id4~R@Vis;;&DjmsJ17Q^q_4{eLZE9$Ii=t<`t;COi!K|f+E9OUS95EXlQ5) z=FbV38qJcDk{7%7yG)tEhd^d^Xyo6e3HjJ}EO#uCI~At529)?f990D0`p z6{)ismHhgSjy|&A`7L3^kew0zGFfb^}##EK2zoCE7#C%D%uDY zlSj-@g`k%XPL{mrb^xT2(WWfhX6POIaFbS4UVSFRH`-%%|0wUCjZz=H5{ft=5i!6X z|NJnQgFn)rD=T9a(*&Z9wx(5Fm;2s3K&KHo_VFKYxWdKts_eu=6!t~2zcT_#81?SW zn>X4GF6N)LjmoqE0!zX+Oc+a@u;Kq%=NPk=;rso&oj~|La)I6CMegXCrJY@=PGQXV z*GUvk`wZd)Xo%D)a!Sf)W2H)K#RNJ9-FIut3`CvzWii>Ti#iy1bn5}5j`jxL$vbekJU`Dwb zDx-Y74-i^Y?C)9bu?a2~mht3$8)Jug&V}tie_lsMM)s`fnwufmlvP#gSg}zA9PGv@ zZA-Mupkptmk?j^~+1VEzEyt^<5!I`+*}M@&201TTg%fk!LPrt1xvH)KouIzHz7GwH zkXbV=x^=%34-6((=ap|{Uts%zh<-chtIurC>(`pdSed%WF_~Z!V2k|Zq@-ERQA8*I zFAD&c!$tfZOiGc&RvSHSH{Yv+-W?XXi?Frx-!g-HqytqE)z#H0pbqFbdbPA{G#duC z_;sk{tGzNw?)j9uJ*O}bvxQ6jx=B-U9>K4@Y%q*QuFZ)MS7u2$j~WxARgs;a7|ZxK-&7iS|jwf8Gp;AE|je~QVPv>^)k zub=G&ls@i8#zO#F^ZE$dlf8w^^OYnca)+6!eCE4%Q9<#l%@p!{2y3>I+75gt;m8dd z?enb?A0=j1-6`$Dch$U_)&q`>+eP2gMR*COqJ`YvkQ+8%3p{vC#~b#gzJfTc2uCiC zn1*IhndF}FA|df}u^mMl@D)6ySF(LptNUaB9!fZc)7@kYtGiZV0j?Y21$ zxDMhF5#6W}htLAaYjpxid70Pp`_aa9h0)N?!~m5dQ2dc5L8Q;gQ*CX^{|*mVpvw0H z8fO*|(E9J>gcamrch7i4A>Yzl5?&pjmaDy!ejCNVWN)#<at%RZREFJbn5VB{?6e z4Lmnh#bzqf=i_}c4LUljy)6Z}*+f8d|Jy97h~s!s{tOmC@!w~pp;1h3R4cuG+lpzx z+T8~0+W)$uHHRmL?42CdJDJ=L&)ld2n!`-QvS9FG~64NZUuP+G66Y z+(>1>h~rA)w&Vyv%;Uwb@L)tFBrS%+LPNWuO<>lYKu?kmC!%*KAKz%aJU=f&v|I6M zMew3#9So|7VMNoQ@Y+%S`SWKPYWE{(9@zN!W}xi^!Tk$1*ZH%tp>rAfqM`urx%pi| za)?2EE!Heq2CaT9+f+7oG`DEi5iO6BMecRKS@H5DxMw869SoOeXA`@^pYpHgtPb;& z*1NE>!oK7Wh8FVlvS6rD>x;=`;a*r|S#%uV26RWjxR&{xwtG5lL^v)q*ZTTAO%l^qp4``t*&|yG_riSxU40=f|5fPD5+4NSKKBuZ` zVM_SVb<~Odu<&rMcysSZz0L|uOiW@gDOqp+bVtPGfBF;w&LMsm_k`)@LT354*g5kx zQ@MBq`GaK0cIdbI-C<;8+^nhL%ZA%TO)bpTV(5rZM6~cRBV+e{db+=4T%H4z8jFt~ zKbnE%B9FNd6O6Uu6#S~WDnN9j=MZ17+p4j?KFEafpM~Xe^Y{7zb#*DH@u@@Og;8)4 z1vNEZf;@|I3Qy?9T$3PVkYZ1t%ErH*)u%)vN4}+E2&ocz&QzJ_fPb3u$P{y9{1Xu> z8rs{WB#K+;67mWPrekAcW`Th>o33+>2?2k_ZWOB(io+Bor8dy2Y`lVqZ6dJnxcPbc`HOI0zAh}#TU6@|_Vp2C5z=^#6cdR{ zWRufTcBB=At$7obX*Gc&h)>095ov#Ul27o`b0>#x@g3RZ_s2d*g35K40Y{$Cmkegg$7eiz?B(;aGXw`8QOT)S5&dl; z@TO$~ip&_G=_(*IlFvy+oM|l0b3VU*ZBFL{&;-hu1avU2%hSCWF~}+LR&nw|Md1r( zy!V!z_3ZM6aPRndJX{8Yv%5RSKvgklGo277D|PIAJO|>h2;|8gL2$!L!0rbFX#ALv zP%#0yxhRR^4$jwZO*JMoE4n?Xaf?e!raC4&TNT#&HQ&7Bm>0nXdG_p?_{*1f55JPA z5ZfnkOXAVf|Ec$Ttf3+*O_(Vf0rmeI3JQv%zWztQt*Hl(`S}x|YclZis>2%Ad`wRt zQp|jkUL>r12eNrk1DQdk6Y|(jo~X7|3G-f~y~xsQu3znps4*b72F)>6A^Ue3xR##8(h=@F)-jm*CV&bK) z$|}y40Su-72%E7b`+qvk-^j|*Vnm=-N{7L ztLZ2=y5E2#G{!pNd1p6CdcYLa&d&!Nn~`7IKb%obta! z)O|B}3za<-j5-v+K4U>BXvslAhyju&m(W#wv15%|gVzk;PvQXrN{o_W@;>OM7;Szz zSc{1+(OwYqB<_-h<^2hLpdvqcshoL9FwjN$GTqv{B$$NE?Ce<&-V3|u2ooL~&o#Qg zl$Xc-RcrgAe|R_szIx9O*CHI}8l|5;M>1n~sw3VBMcZl*u!aUQ6ZttmRd08meFW^A zk&VsLPG0_7|FPw8L4M(6&5j}gpjAj74xwk+st*OPdB0W*#zO!T$V#9^HNUaMOE|Obb91!N zT$mwp_(cQ_Lcm1A;y?-cS^t0(4W}Tx^vA7l%37fJR2v3n`rJOc)ZP$t9niKI* zU8~`lUyrw@KL_3f6amBZ+HF{~TL`$cPdnN9b;=g94DM^mzr-YH?LBL-E11rD!zhY# zrnd-uTAr9gJLl-?>~t{rTunW9ImQy^?2j@pVal2Z^nkW?If1s$t zP(?#yf*mn@aem$(BYHx)0X%i(#Y;WCRO|Q2+Hxe*{rzwI2M75wh27tUgonoi=9W7@ zKd&0DwVhbP`=USkF*a5llw1v4suzc=e7+sOno`3JZk13gKh(p#S`*Xe^(dX)JYTz0 z^5MtWn3Z0xaH{LinVF86nH1<=Fj4u1QVNSa+P2WQL$k#Xt^c}EK%3zU#%`a#wFW3Tn{J7B>) zAK)fi0b2+E<-Fv@BAhrq`70A=^**cv;dgP*oF@`O=)L&`sa(?>i-$P(nskDqk%d43<^POn)u^qxI)k z$J0i`@O>3jM6IqpvGnufezr`~N>1Oe#@t9q8afw!uR;srWZ^s*hTJmwZ=r|jYv)0{ zgoH^KW|noHPn?3N((cbTy5rqXxSySux7;wM6g5W2mo`+cbt>iRQP7ADde8Qc=R=p{ zHnr=JKG09)kB>ZDmYR z=*;)O2@||E3dqi|5f#=2hq`leQggP|U*r;S@9mSx7aP%!ObbVAv$$W7#Ivbrp@;*z zrwr=={qq(*eGKFRKmXf;7biOrt^Sub%yO?8uz`aKL-;o>ZL0?Kyk2a^Y3~er1?-u7 z16Ao!QA6a2Nwj5LB2jt8I!vKx5{Oy(wqanBe;Y=c9wb8{&dJNmD@EE+^*TrOn~i*{ z8q}DaPcXl;_I+}M!}-YS=jPQ!5fv8g+D8A!(_`tg(cHcXga_mTq!%+BTTu-C$%F!1 zITA6<4iBq{h8A4uBpsFRk7QHM z{haaJI4TpTGpcP-LHX=%iHXg+o%zJRtZ_hCd{HQbuZU%IiI!whKL^XeN zJ^W|aA}&Orq9qKpHVs|i;Y|q8@GuCxOZSz=wSc15{$}T;A+KLaGfIzeD zbl#Uz#G|xeLRHZD)ALX)43=h9JeuCO$YE1Rxg?8tmUo-VL{a58`5fD<;U0? z+dEzvSO~ixl_(GakFBb%zJtg!Y75{&3^*G`g;|j4w<#N4mz?m6_)(T+_>-UL=!|(T z_+vqfh{$25AR{XRrJt3E{z-GdSZKNk+Fq-I6!p}b-+ot*oHlL~lW98Gp`>CpIWNid zL*4!U{kyx~^+3`_Ew#9n75gC=s|-v`QdCH<{e|g^16dz>+i6r#(|(OkOK2LrZDi*l zm6Mm}iOA8uVSCdl_3F=tu7rKX0)ChA*EhFLz>`esj-cq}tBSW%K+K_JP5eeh5Yj(U zgc!*Xf5v2s2!DM=vs%$Laiomyvs;v~HCABJc{(~ewgJU!#Iq`OLg;A5$F~7NK+voz zt4UuzxV}COEXcvE>#&aCD}LKTLMgQMnQAtqsOT*+vhM9)brmj% znbG&;ADa&e{e>pbs%Ikq{CUaB*m1#U57AI4$0_I%XElZt>Rwi=kq&dE2dAeM?g zgJgc&L=dS?5hLwntYEltMlUJ5(#T>n#@v$pM!tGNi}X^}EZIMwD5|N?dKu|5K%V-m zSgpgDI}7xse;)#5`;o%$ol;>V-8HE`i77)hv}3aL&$*iA$!NsswW>HtsvA}<Pj4&ED<*t?(0$7AR4F`0ydt z&9>?mQuLMk7S$sY1|cCz*R}7`z&E}^cP0liPI_~7r~=`F5scbbXd9NtGnVaTdRkF; zXlbKBnlgd2rj_7MPELN8lXK9Rk7~hcVu&3%!Y)%s?v;_5r&dG`i5xw$dTQ{UVYOBM zc(=;wHG@fy;Hx_f1v*(~6mZV+PxiLKj4&^1UW}%7JNVXtvOYtCF!)eiIQ>g?!iI{Z zY`usos{QNRnsak2c7NiDc0dB=Wm+71E6%;WXb=r56}@G3bp}x_?OK}zD{e}LcXuJU z?0a?Q>;k=kN>{rsTI(_$DYrDDkTfNf!GQhG$@BVeSxzxsm<+N&pNsFB0V868j7y)h zzF)Az)5UD@QNu!vjI|{kMiju%pLNqWFZbHGfRA`dC9c#Wbmwt2?`NzH1X_bY+&Pjh z#h-vac)FV(A;qfh{SdOKfe)j=G~3Y7qxgMsn_Nb7ShqGuiIbMbs-cYR0>`5I4k(9l z^78WB)?>^)-QD?PeG|pQFQ@SmkYWmJd_T+{__(QRdi{U{^5DarIuKNILPOv2Ddc_nWD2R3Zr1p> zk5UwcCHu|*NKSM98L9NP#%81dsPN*;PFdajg`NSYSmu|?M^qbkr*dQNo)2(2_l&Dk zjW-EOl^f>cfrhEp;o<10%QDp>B3f6Ue7`jR)A(I%J-tRRE%(u#PnlNiizO9>b@j$5 zBcF38Pa$Pg2|0{=jEpFI&4Yt zaR4CXh#K7;5hYQ<=p}TWL=Kke7rJJyZh068Y3ZN}uB^$N^h|nO1^K?6!?hv{Dd$JW z8o4=z$~*7K_{LwYSzo5*G5>5_hn6p?4vE6mp&FHxCK0C-&iyW;cKSe7|Ai>(EpsQ7 zR7rlwO7wsc8X6k9^6TGGOdhi6nVHcM_T2rrPD6!jZ^8%&a1`QniW$h1bWvXcKY#zv zHk0@72?&taKIn7bn@@l2^c$h3u3oZ7DxJleooPN0G^_vBaUNe53(I?|R3{mTJR~XA zxPmzbcy8am{ZuaQi>`lMr&PqBjj48!B?2E&MUe~yoIth(h9hi6@^6DtavO#M1WPoE zIriFa{`z{pjLs(tb3-KaS>G1c;`fPrdgv*A%W9esn7g>2Uo+DFC!dM^UoK*8>b$Vt)}g54GzC5XrKBXPt)nBCkFRev5bEAMx%iQ0Z&$xM zw|jp{sPTT4>6LhcI(7H%UCDP*QRWbu0S+2mUoX@E9e)`hUx>YRvMI1HCnu+NxHMHI zjXATN&z5*H8pP-{5pN~7)-t5tR#a@)`3hP;d$9~!3M9)`S3f>>Emb{!?)Bq2a*m3d zDvJ94Uof-Y3@UDkIKzxq3T4>aMs*-7LeWha#z+K+VVYt=CWW7bZOIY3otx|H>;W*d z@+KmpWMMqfd?P8IWQeu$bN0^G+E8xiQf8oXn$;AEBz8|U?Lh0vPuqW)_O!%AR-D&> zRtX@yCuCK-YD*ueFIt0=`sg+l)wiRaUoV>d&Uv7fnm9TV#rHE`LsB&1TYwP+S68EH zMYII#5eEC!BX92l;5YI+2=!xqVkj)&`-Kw|z3)d$lM7u<0$9ugam@A=r*CnISl)fo z!$S@Sq8YOWIdBe~Oxe`lr1O}+Q_dZopjzTjQH0s8&pL6;SkX(R#N<{qkZy>EJ1+q- z%>N3X=RV8l#Hdc8Dh&zwPni-#K1ke>KzJ@nm*1^yaY)d*CnN%|B`k@8zde7_{a8AV z`J<3Cq&851T6LuSHl7g_%Urh^%d8CI9Qe@|*yaY~IsXKVxQ`zrEi=3^X*rL*IPPT| z<+lyP{14=h^*K2?&3dD#!@rwrI$7|NIXO-iPiY7#l!E;)#=^299laD#GW~zAOJolf zF;FF|op=q5Rr_=)M(pMJe=Dm$>9q2Tlz0#vJU7%aqgFJS2+Qvu8G#*s1v7Bv-#7r^ z`=d#n#G)(HB7|3OH0=SnH!ndmV!v;*EP3(wnol~?r0{u64AvLNx}QvZl=wovC!7!u zL4iUTqop(zfU#)z^)m_WXYlZk_4;6JYIE+P*8 zO;GR}%(y9k=u}%=+k+|i*kSe=1%ue-U`}!qi=5%kcYvAw@v4hc#M`pB6%%X3QGnd(n2D%Ankg*n=~RL69#E}R*x za<@T@kEv+Ake{z}%xrd;6NaHEbUbp-e}!NLu%78+XXyILT4t#|+CmQ~^k9w96j%;t z2tko4(i&xxt7*@b{E-d1?N>7%9m2LBKSr9@&b&%Qo|{=(Lf?EDy~Js2d;e-lwG&SZ zL>I724s#i>mr#yaLQ0d&8?JeWk!WIKZ8p8&_=*b!T%8%cW{6xCQik1m@FI>`2{vl( z<7g3$)M$b9rTR%FqzXME3DG_EEr2BcHZw8KWVEr7CEpKU)2p^0Z3&|8003HVd6Z z6K+aXeSQ2gEj(yCeWJdvArUz~v-yev`wVE?az`*06Fd7G8W9hCEF!wEAb&0DYLXV> zf|*e7b&zxPjiW-_Ltc?Jb)d=WR;7!1SvsF`=94H02k!=)&UwmCZDEqq>5{5U%L_#h zq(Mp<9pM3!PJLCgctPiN3jtkl&?8~0F(H~B=~Y<(a|Rt$QLN@2uQAdfeNJ5l7%W?> zK&s?^S(EWXE1&ex?WJCIwByZ^nz51(v?3mFpau*Mrtl6BJQVLj z1zm2%y8$8o=g%hWVPlxdh$|^6nT4}}ija_yu$pV+kERp7@SHVWluV7#3xz`R4peRa z8^dqNB?4+IAA<)_K0B=V?vq*Jt^icbfE1Aag=qMa5IiI3Iy+?qMR)Z_R@nP*w zot<3E_k$%Ago@}fY06{Q0vm9(E9>gO(BRdEIo@-?Y*Ul7%IUhk6gai1_p?O*!~PEy zwQ?tvf;qnb>&f~kn*05aWd?eNJ^J*@8OXQPf)3p9S{nI&x{!7GmOsuUi#lGQDPly7 z-T)z2e(JfQG;0S(ZOY2V6N-eKoV)SNa(9kfaYDn%yVnJ7M=$Zr`|h<&4_UZ|gVT~Z z1AR>{8Lmr^( zm-dtFE@axAP6dM-2u>jNzh$8*@%jyhfy}@=s&-BV0!K37BK;sQm_^)s{h|UD{1P)u zG#^od8NXxAsKa~r@83q4O>VK0(%F#a{(@0uPYBe%0&iA!s=~;~jwj{YDJT*(*5d_N zYY;(v3BF-;2=Rl$*rD`~FA7Gj{P;LHZ2z7v1RA-VZ0l_9{QQOH;J|m8g$o-wtgNhT z=H;%VCP)Ne>U{44!S?L{3G17`+1bXK{^VX;WsSYxhw^W~*8=S;EEtREpC}H_UfCBI zfie4Rrtbq5Y40kS%>B^S;>lBxhrD|7~=1L3Vs3{!jL5RM65vS?e1Z z2#$#vUXZEF3t44cTh%Hzyc`ak2vIrye_4R_*Qud(ufYRmdhlR~{N1M#RTS83k6`K- zUBZi%iOIC<-!KUXsrpNwK|h-W-Ki0U(l2S%qZ3BfWFA| z=_ctNF{dnxj$~Ybd_5mCGmRQJ_HM4}`HSfTo+-TJaM_{aei_pJ-vSR{=7X(@wr`+T zB*W;VCQk%wJkI?D+!GsjmKb-at~nJI6-RKSP3D`uAvD1G^j2kc?#1mg+xJRmXQuZN z8lj9*VIQv5`$sj|Wgj(qz8S-Ref*lCrUim)X%OOhP-WIGDJ8`ZQumS7bot!fGOf!? zgXAO->3^@Uua^MK=8;D{NKNJ|Lgu0%;AoEKD^Pd?JW(ran9a_v(aypIkK(yg%6aJYP@b%68G*se>L_jU@;aS|% zsJW~2glK9}AHM$Y-&yNyY>jx0#mfv{oo>$rmzHw=H>SWfIr}@_q_AM`{IF&+mUBE) z0prL2CO7~Ce}37Gdykhl9{3jt>|^uIasBb$UMx7uPyai`nh$JiE(zfrU>{aemdlp$ z*wXsRGf&m%R^(x4ty8UM(rf_h0sJ;VW&cYxpU!mx?Hvz~xZ>GM~pdcVpO;JV}_OLvP zj$kk|=1}Y}_G%Bo>Q3E44^UklJq}$|9T;H7eoE^6ZY{stcFGu9CuquEf6v!+ZhmM} zX|azN6>^P^@`cxtJ|~sHZs5p~#U&zqH`>zl6wKXq?8a4-?G6U|jhWPb3&(4u| z{czx>B=iGt!vfYWmZ9JK#BEG;L|h0A0+WJ>-3?=bA;8h`C%*+Rc!&FVlfQ|Kd}?S& z_p97MB;t~TaiAu+d$}J57Wqt#XLxjNepS%xa^utes>0aJmfH9m5+aWmIQ3_HJ2Jq~ zaJ|uyp7*$64aO}9gFAu-p?2~-L4G{(vBj1O)A%+sx#1Se+}~;vd=FXre@EoH#4sV? zLIblucZi5$w9I{)Ve0obQ0w7e5Vs#zh&#$PtZ4h?8Yd+wDG(AGnjRe!L%+1LlJ7A8 znMqYu{8wC(*5u>Ij~79S6Y~C#84??L&}!u&%B^@v#v$%=e9@$xg$fl}5R7J?Nnu@$ zl}*jx2`{XyO#eK+cqit;$!&`HV4MIu$UcTn`+X*tXNGXXk4zESr7|3x_AmAtPCet* zQ;Om5YPLqvHXpnG{{1`XpOEIoYhL6Kb(57J3_;KXGjnwu{&ETJQ)U| z9$L+2;S!O&`{bK+3*AH$Y}JDVju(~I^9yR6%7pN@B7sr7U_p|T4ui8}6w{G72a+8#lUomI2d35-u zouiEX#pzVNJHK|h#oa*o+~Jat{>G&@RAeAoT3M}Get2v$$3eyfSqW(%#d>^py_@8! zNw#^~*|gs$XqY>4TUHJ8z9!=KV}B->lF)|sTj4bu@d?H!X8dv{V-{hPQ<0j+Ve^Lj z#!@Aze!d~;_wF&s$CU2w^<7-7V%l>GmaNP0#5u$)Byqu`+qcp{DcLciKFTS-t?H2 z-zG2RDtn#-_GFEWic&To!_RajeQuX-cZ7)+zmMBlP2Va|T-+pH-N6GkZD4jPwfvzR zE)kKS$9F0;!;?_~^&3z{qPtD`q5S6@S&iXhp`lF;)e1<%(+A?#&sBBKKgs)MDrK96 z7LmC=*Z;j~%<4-Pr>6Hhxe56ZOiawo4sfj1_w^fu>u5!%PL|)y#?pfYCvaonb;Zn} zqfL9Y7ucB&7fV9RlMne3??9*HP^2?>}q_brGR`Oi#~2a6_sjPKzGW0un!)t?_m! zPs(HY`TMJabY{N^F3^a-Z{I2={G9x?{+Sen;q)8QIwIU}8o|lzvpDc~T`mk?#Bi z3Wbkt$DOmXJnF#<(5$r-~lpyZ8}86t`U9Vwd_vkT9E(! zTM9iTzZn5UuH0uIZ8kGCjdnI|R#TVe8%%iu)af(3V`g#@(TwljUNCW?8cJ1{JM@D) z6|aem93JMeehf_8{RH&15y)TaHS%Iq;1hu{b_rOaOdump036jUGb7|nKJ{A?-XIY4 z5{Yt(p-iV2*H-z5w5Nf%i*RCzbKexc*Lc8&@PH`?WRcqd5{`SQ-66mR^hrj?>YJsB z(RHlFWy7j-P<}doRQ|@e4B83S`0z+(BW~| z=g*rkrE#2s`r;Mc!xoX|JNzkDa8rkLpu-3cnslBGN1`Lhao%!I>J>wUEQsq zoA-qaG(rK)Og1w!i)4Fpv^$T_q1#3EDEp~NGTvb9j;5AYnqzL3DX?Z$X8lxRp66-1`N#k`EiyTy%PTdG2cnMH?l8e5 zB`R~B|3Ra{0ZAE%q=sS4`T}kAC;;Jqw}$VhtFv^)`k}`X-$CvaB0z~n;P-^G?}U1P zq{QQ0K7f=ZRO=EM71a(MM=}X|g*NApaVv19VL@fEb9Bsr$(|8+hS{{Cxe?6S*u=p`*{OvD;McT+t)*aP}7^ycw9X>IqkO#`~y7W~gX7;qD@GbJ`?& zalF}@mg*bX=oM^T=fXoH5&-Oz@22}$-YZo$HntURgGOc0n%x*Y4w@}SYyU{x>baqe zP)@G|E_KYsiP3*_gaqWBeCrN?=VC*5-U?$Vo7=;w>1nB=$ya(l;h`oOfg&!Z`lP>R z(3HOM*)ArD#?9qNwm*b%;bec29&rv`^p=yz)YQ}gA|g5Y6Ev>!ATg1JL!tmpHwurT zhLR<%tsT$N-`?IV$gcGJqc^VH0!x^H-u>}3D7C7(1Ll2(_-ZMhEi=xmtG%DK42lsC zSa7GkE<*G-2W}1yB!PiyC{+sMfz4Ee1RNqDdlswhGfdyS;l#$my34?TkSHm6K_hm4 z_!f-I(gpeXZNtFnzG%8ckBw^{7$CYY7q&!zjq!3#YNbX0fR z&CEEKm|@}%xe@tSIta7aPSQPAwjTbMeTNV$M>edOzsyUIurM1d1q6o)IFfb zGcq^tq`Mn{_5IQlIh$Z55ZvzsiCYoNRb_7!?Qs@}u00jQekf zQqf$2S482CAwBiBs!7JbbzEIfz4A1WJu$m9N5^R4A1vP$>0=cdn7@vC-J3kC?FnK< zl(rL4wy}|sQt4N+0B{wXbQ1N&@wVQisp_jvHN)gFtCjm9l`)*D7A&htQ-^Y8neqpQC3XzQB5bj5vQdPhbB6*vf{4_KqWakzM z$pK@A^|0T3`e0mZ$Enk=zvmFBcL1~YAz;y|KtCKDd93soj$7FS`O60mcg^?&{;~vU zmJnaRezlk?PCEzn=5Zk}ubU|E7pjnupqEl;<=UL^g*~RFp~-~o1c}C^s`7HiX!Tsc z?h@nTC|!1^-h=oARdWjUbf~7PxXoRDl2g|mKQQU!8>R8BxOukIZbSQ@vf+=gAl!{> zyGvo~F}DxE#UhX(M#)pwhp4o5)UY>Pn1u5Lck$YtVx~(H-DK$BrZKz1$Sr>UvU^e_ zBLY-U-Cj~#J)mO4ZSe!WGL8UP9`rV{5Wf9_38LSy=AD0PMzCe2rXoBVk^!&zI-8Q4 z%L=Ioj4_Js%WDc|_qUf2zOO&NM?au03QE-m}?+2*FNeGTFUts-I?pejh{9yTGa&`ZR}jmVe+0sba0tFHx1{VMNOyIb0DVU{>Zbr5 zl0qZq7NM)6=;yhu-d(CfJ22jgkweaz9?qp7u)00ErlL(HIM+m+kk3&#!QBMWPaJjJ z?HwI*94stL;GbG|Hsz^_gLlBk%4%8U^J1*7Mnj_&afx6!dN?`Lg?|qh{Y$s$z9WrL z)TTSNLZq9bFY5*4M|Rh^cs03rB1I%~ zs36Q9OnR4Bd(5Z)(2s!xp@Nu0t3DQ6)a3eh_JEf+SJV)RDC2w1{EY0-iS#L;r(hw7 zh>N?Cym>c7H97+7H`9K@S+WCg%7K)WltRuT^A_Q9q{kwk7Gt-s{K1+b>&JkJWI zb`_Ue5gkibwZk92ovRa4aq3(5^ky29Y=_fj!#&ACUtSH2jy$vx`FBz?(tUYN44+kT zVUHE)EL&Do2>21vN-z0gnL10O!{o!10&VZ2FJkF<&`5uVh@~-)M(@I2$5eStmAf2WkKqK)^uj|i71hsPdK_fG9r9Y^c5oSTh ztDn29=BW}{Lf+IluWDCXwL|(ENS~8-oJ44*n+(c{@mF1IY7~BdroI2W>Mau%Xu{Xd z7K?`WO`kox`ISQp9lCrGu&R%N&u2vr8zU;j>!{oDtb&zEcBjIfpW=GqojP=;a3b$n z%#sIwrn@`Zi8Ct~9_f_cwf)<}>E{ID7xTf8Zhst^lY^xX-RtKMnF1M^m~JA#fTs@q zEW0P9rJ&+23;|HIRf1@o2#wT}CV_{OK6ri%=d3Y30yLd90+u6>H$YzOmQQ$13U+}Q zgK9gYN(S5}>j&{aata$6;W%V=;QBp^R$RXoDBT=G`Bf=00LGI0Oz=V>?&GXlcA^E{ zC_`>IcX_#9F%6+z;TIT)^?{gP1#u7*;&jun(k|9;$mVhNv?KA;rzQ;1!5Kj)=ffJqew9UVXgMNQ@o#rZEYn}rZi`%l6NHi zY#aZWm8jVDzHeuieSN<86v)tfi83;2 zj*g_WCp+!0oGD;p7jfCOsD!6@f1in||3SbQR#wqE@x^`s1Fi%jyYYW_fY-kiS)gth z0!Tip$E}n>V9eH+X2Uyq!xm0OtN;G@_DL|8G2)a@-&k0DUxAwhC5hOcsmSXa8M*cL z?b`qnKN!Io?%ne%)GU#9aB)Rl1{nqUysKI4|BUOt(V0t?E zTD#b{snJJrtmz+io!5mLpZz`SPhI`5>4_vHglXwNLtk$Me6N^|O>9g0^Bla7jNR)~ z6+V)?M@NPp*Ak0;{e%c$_QOCr1QU{*hlj+#9CR0cfDzRYpC5L%Be35Wv|Nt{qs1Bx z|Lid2Spr<+0T3u%>qmHlIXOA^B_&f3xbO5j4Wq*-bIGMh)(~_)JH4iSs97>OtFcP; zxw^U^G=`zj5_*En(`yqT$MRvT_u2nVJ$H{0a$3<_YnvD@E;clu1F;hPH@3Pw?V;1Ys!@%LOA&Lw1@Z<+ z`N$2}bazp9cjq`S((4WDe^r3~l}k2JUlnX5nF`a$zP87L>#oZ!4&DTCgG7&vj@H2B zEzSC^HS76*5xgdLHSb)(5KfQnj|P}8dzB_C-Z)Xj<788{>D-u)#fx)#Y!OR}L>O@o zVex=_OXW*^&sy+)V{hgM0YjiaP9Pi-6?ivS#uNqzIbX8`h=uPKa}=OVn&ax1^y39Q zl9MW2j@TF1FBNl$9?1>y7%>y-Fgb$D5h-LnL9ns0q3WIYl5Hac5OM}w8}GO(A^!Mh zdD8{|-eWvE+k>zyLo2+Xdqa)l$I`{6=w<@}!7MAtNT#+QPl&5y%wld=yGPXoGkrC{ z0H`4i+yA|(nOW&yj?NMeoh-~>zAFz}F4Byhiy5h41(z3nz)u)?-PwGJV8f-l&@8(twcjAc~O#=YgFn`lgt*(+T zL`SfuK3HP%d0>nF8-WBYrX|#^nT))Y^?vWy5`~d*2yrU*x^USBSMnT8Q{81~RS=p1 z_ZRobwo@oeRsyD!1^QC9Tn4LqT3Id{s+?+LO7Y+v5c$?BW|bB}77w}a^s)YP!HH}d zJgmB>2KBM-bYV2zensJg_&>5tdTblx76O~T{$6pEAfwdfmo`A& z3gZ7Rg)cApdtI)7b0b^O4@1d^dvD&%WMp{cp_8#}Ra3|RTgF3#`YUS`n$X+gK4Bgb z(45FCC^Ul)@2Xm z8_RI+mIT?x;9!NrrmNrFf8d?A1qI<=0R#e}hY{H@gS^z<9PG!sx-iiAh%>der8q`J zOecl}TU8sV*(IRnK)}VzE?aawVU(79 zew7NCADk>On}V&0VBaBecbeeLGG4#N&u`0uE7w4>nutboucmdr&SdRiIi^XC%Uoc! zn1}p3JSGL_ZUj#DUj%o4>%vd6`;Rr4k(oIX>OzKogU1?R$?^pT^aZpuhQqZ2s!TT+ z)(+F-i;B3PyqzyC>FNLHz1|iq`X7XV6?IG=_TO#z{ypdwTMY2xwDe?T0jQdySN9ck zD+#Bd@$rm?b2DzYKj+S;&B_w==RW9J13t7sl?HK1j?mjV21vIAtXC%MmV`oNF+{~l zD@1NsJ&4bMh?j92|7OGZFJBHH6-{1WI42bkt4_*0+i9pJR(i>F_Y z&^f^;d|k0wW*&FyI>zFbuiI@YCbmRR6_QX=q6@f?T2=YHW`V~2nNFM`3x;so(AjWm z6VQVR`&@}}zWYq>kA1jFOcPP6r>BbNcc419H^D0;+l~LzE zk+;muu6wy}n@_K=A@&0Un-shG}oS=pKp!rzf6sYVB8LZ z{Ui{ zp6dZwL`*1aW5coL@KE{b)3}?1vAi7jsYJ=?e$7Tf0D3%_?7;CH5gF+R#vzlbOa(?x z=sr|bQO?IK6#ujFTFcQzFz*`Fx1}c;PqaEDyhMh|S>;ASl~clTlBOhtFhf!+2{47={5M;N>!!L6P9eE!?}0Q8(KYb z_9i!5I*4Dw{Q-$pMa%%WT+9RX=&zoe35~Wt8bk(xVWIi z&XZYBh({nQ@2EbWCyNX?p%JT!nPjT)4KxINqW@vx;NXJ*<>AZ5gWHB2+;?(s*n{Sw z6m$fdnwRhYglKb)_Um<2gJpz*E;@3Nlh+Sok$a*$U&3R0okAR9_iJ0ZamLX zEOFhlV}f%XDE%JFiaNV!0#TE_KPcwDP}~U;`T7-gf*2L0QH?ye#Jmtsn$=Vc~6VufC z_T(hd+>|Pz=9WNYiOHRMSMG0+iV6m-)Td{AZ95<7mx^EGH(7QNtE>N!NE#mE3+j(OHPuYq%7{G&F z9b2y@{*mRJ?q$i!eBeoX^K^Tjnzpp;51q`12xyNYQ4Gr1TWUGSk)oGwoIooeF z!o)rTtAhJca>f(>`Mt|O2w#Ab6=vSfGfooGf<8C)^4IYFsk3eWw8qBb($bc=(_e?9 znF@DezIA?KeXco;0r6>4TfwB+%wm$Jpxb{*_H|Kygbr*<_G5+ImNP4PA23i;!p*Qn1ad^ErPHX*f9PEGr4NjcGKU!!YESbk)1lxLyc`6dF8n zaNrXH4BJKdX?!tv0lCF|eD~x=A6jror1sNjTLJpMUJz`Cypoe>p)p*Am=4+8j0Tq5DWGFw z!H3=iIAh!7~wvG3DsP3;;6paPaqinm2UY`eqpj&*hDlz@2mv4IQ2OW&-O|_mF>u-t0r_%-RVK!i@0l(y4G|} z_&SOiFzdU~icF?_lrV)HRp+k2y9dkxe1%>|t|Zj>`Px|Q?Cd88Xa5Zd+1@kkAv+NJ z44%(4I7Cix(V4=(x-Kq))25aR_8SCi|1SJV{J<>hadG-)%PA||jO}(*@k3FJ%1SjB zvP3Rcg_e;l4&?Ru{RFwRadZkUWTEAAVbO<_2&aNI<;6SDljf?i2tw+g;`|nCRGNdS zDI|v>U5-qJ3250044U+3>Rh>D*#I8M@=!WPZ*TA0riK<{xZnHsDLGoj9oBHegMwHt zn67?}C%x?F!PdJk0H4vE;2nZhIK0nkC@9WWMBO%NnXQVjVFq|8B64eGkLYsW$7Xq_ zC9p?mpc~C)*APwUAtf#@f?371pCD_L_QwhkM&EU+3SX$;y;5&cWT2$9D7U4ziHurS z*QSr|U58~Pq`5j(T#!T+5)#q{(^ogKUR?;5rKJT!2;fm%T20>K8-ppIFU=)51|TF# z1|q?PC@6?r_e*hPzX+ITW)>gY*-NQud<|63rP25m`1jrDNN;Z_Py%&3oFgN#WPKgj zkP)?sdzX=y_sgd{yyyU$uReYHl-);99v4E?>Z05}fJ~7bQ1(wj>B3YIc+*XG>slVTA&l(u@bFeBfus)>x z@E#-XGhnfH*WT^nt1Frj^{$_{&9BcSQ)NCX{_Geue*HQS)MZD+Dv4cuo6}`+#_uo6mFoxcQ%&#$)v0OcBm~Ma@LM@^h@gG_J zw_7#{_(^GLX>$EyM>z5$eW`{84$jhocq~vKO$kCw2;0eX(^4*+B&im2)rX_R4KIx{Cc{vlik3!BX6D>t zoomq^pq@iNQ%+RCpS=VIS%_N8GJX421=52C00|-I>WjS#FFNWSP$KqMm+mm)y{t6> z$QBiyfl^GAbKL7$=eVz|YL0ImUHZprzP6;#Y>-algIoOE+<$Sz3DN}lS{OD{z8Q6{ z&!ZZ>h8HF@7?sL-h1--p3xtNkk~scE_(r# zSz}6EPmbdF=UR7dQeSbCBP1?KKv0A-H31vj1sgL+AW0@p`2*YmR2uo3@1YPu+79f< zs*KH6FEL5v$8kHs)${(--Y4;&d8tNjx!bQ#3qE{)4Bwqa^!ye5-BvaK8l@zdSQD07gYc7~|Fe1Z=jaNn}7c zAu~P_8x0<-sl=f-zSY};6dWiePNyLK5s|gBT?p%acRDl<6SjSsd299?9canF{B6d; z#mC3E8=$SDqXf^@3YsC{g{Ay;F3Tee4Hll;w~qSzjn>!O`F7DTe2W^<39z?Zc73N( zn?+^K%yJ(`4zRo*V91nUX*hm$S#NOLkD;24EaW~)q-66~{vi>qvE-zp+WKbew$HW6 zq~##psUw|u{Ok6Y{>VEl6;0iO$yH@TBSf}!sZc~iM&n{u%NE!@7Z6Hnn z{7*HqTqQ}=>Y1fhSa&cLFNg0D#v8KkxLH5~Ayeb+5XMO&Q?muLga4}Dj3TNrka)h-zVA{W6s^3!zLq5k7;vcZR01jK7$^@{ zdYKL)F+Kk<<*k3EoRYtVkHjZO)VUae;PZq2H|}1m8!e<|2^0b9As}rs5wae#AGdhm zYS3QO@V`qU<}R-EeQ9}mSO)?Mpb9EMfH23$W3U$blq;q8cL_-RVju^xNbrrkr%nF3 ze9nC+c#NQlfPF^Kj}8xWwWir6Q(hxUnWO3Zk79!&Dr;67CTWS zkp2_RmrH8FHJYk7GGWRegbfT(r2|3;mQ-maKW&S@E7j2@CC%i}d^FnMpZiXO+}!z; z11RErjf+23qYR=yYBSq0`B)E3)%6SgS$L%4^MweKF`BK?iv3*#ZpN&rOekK40|JS z8L?gWl8vLmdw!@=PgHC48$tDJh$%n~*kGaZ`fI>f(FzUzQ4eGh-au@i#R|FZ&2_^7 z^>+kPzo2oO99vvWc`jf}q!4s-(KwnpLX{;6+2^MLaK8CZ#(k z+y-88DmjkeBKZkRK1xi$6DbP`p(L_5QT`Pm#I}GJ;RXA7Aq;(Ukfd_zAamn2-zm<{ z&t645>q(6%MoCF}=$TspRZ(?MHV+Bf+*O6lD^N+Hz+wr0vqyB~(8})qN~?Cpr%iaU zyf9z<{xA3*&(|q5t~u+(uYSL(bbF;s(ALJo)b{*WA6TigtSbKgc?RHyi;^Df?!dJj zl}jF~KAiS+Jmwdv@#JF3N_}uMdICMm1JQ~gz`Tn`azu-ptIvNHPlEZL0@Dan5u>oG zN(h#1Jm+0nXt;Rnesr(Tx{#=Q}H3r!&CN`{j5yK{*!Gmy{}AyWCHef;l=z|@d%L+zC(>eEcd>MyP~u-9e`~P z-tDm)!d_HU75F3XF{<^exSk2xs_Ip2v^7)d2{c{!ET6UU#w`-1SLV#g0d2>q+>n;BRK4E_7_93og}VRyEtN9lV& zwZC;61-@R9T|tz5A?z3YpvxsWk)uj4`;sn40Ok3W@S=ijPB>t29|UgCW|dA1N|;b? z2rVKEGyL6>pTN&{m&OG^DHHrp10WQFxX(6#2;1xH#XhOywfDtkK1q?lm9$6KF8C@R ziTQ~no2{$ch*>Z)U=;Fd0)ua~H@w625RZs%Gc_pCj*%P!0kZi^R#07!04x|B6B7e7 z*Wc>A9e^=`#i1Y0*Wxdc8O^TO%Kgul5~T_U-IMUAR(QT6UcdP@j2s=kFU(V%(fD1y z76LlM0G%xy_WH9<7B1JSy@i{L!$2D_g`tU`+SxndjU{yeGe#(Ez{qPhJc#Tz6|uJd zX$(4fEjhUlT4rXd*k}7y-vG>P_JXhvgwxV$8FG-qaRpoo#To%PY$MIbt4%SU5fTUjUZ`#NyYlVL&%)K-ceOSqoD4Jqs7$$Eon9S(G z+HCG4wVgRa@eaL<{psyVbYVQj$;mYle7{Es$iR~=ngk3e4dp+F2puwbXweW*)DXTS zzOz&|nYC5Q%%PR?s%J!=2MB#DfhZTRQ_4D0H>`^3A1Iw3K$M17RzEn|*y5#G^(HbE zNa+xC5}qs}>23#siBrrFzds^xr!{Mv`zPX?Fu~D4}}IFd=11ME`vcU3S?ZU zfKb5!rn}4b8%$B%s4)G#$@b9g{#xf}ySsh={{AeAR>yO86SkzMAAF)3cdz!zljCuB zG2}=j=g>1eK<{A60-nJR#pA(1!U%o8_hO@0ab+brYTM+MlhNHm(tD>EKZ<0Y=v2Id1og?${%}qfR>r!Q&12Rl2JaRl$jzT zREU9Fin5#0WR2^8jt>ZKyiZpkO*L1|?mG8>LE!|ObW7l&Fizg2hstz~HpTL-x9$qe zH{vkc6vE!aFSn2eBIMnmL%qz6o^XHFpCnq<4<=}7QKzlc@~SGIWvp85E3HoX#wE*dZhi>Se~oR!H!I$qu04BN=?(gTwvLVv6SKZ0PM3YN z*Flv0hDJv3A(%84L(>wZCuk-eVatH38z|hUgbev7va-*>x4vm`=ab2g@Qf$T?QO{B z1v;Y2O4xt;puu6i=QHB(x7p;8hX^|{;c7yrw)_3lT9VKllgyX1?hM4Oa)AUE7-OiM z?>F7OfxC8w$VDmK_waxtAcc<*dh66^2);lE@zEB}!Fr|3o zwWmtuCmh^X)5}(3ZHE$vC;Mzy2$))`yvAwF=| zAYTKUFd_9l*fDBMzP;I5JJC}+dUPzMU4gzV4BBg>z8^2$#)|K9OS%v+m+o9U?JYKa z2FyMvz007^g|I-FsQMiR*r|AUdEYB$wE#=B4atV`V10ZHWrq%-+|oMy>sM8Y@wK;l zk-j+m#FrQPTT@@W+B?ue&F{3IyaE8f9+uRd%wda4pq89s`(i18Qo@$2SjtV+mQ_(trA$ zQ}v}3T*QFpE5H+fhIsM)x7ycV(2e)A{9C&2>x=Z_L=0j0++X%AR14O@0=urM*d z!;}7ylr+j=7OWVkbO*u^sxv-#ra&p25s$$)WP0tgSp_2O!8-2~6 z#SCmB7?W5+%rrDKWMQ9h;-))l<<;YyQK>9-@f)Urfy$-h88~V=MAkdtSyos`);o`8 z49Zb88BCYma{J9THkyqF8;T|-s(r2{z~Jx*_kC5BYoOu3Qk2OTfO+D?@(7937*Vo623$68f`MQDeLL|aU}fC^q0kzh8z%6*{%qx@Y!r6K%<7;<); zAyz;E=n*d6YKGsS!Q>YbdXm*}Az(BwLax@@n!>TQ^}EmT-|AFrzCoG#AXqTsQ35V+Fmw&$A~v_WM2;n{6P?Mjb1=-zfYsggNRkLA z@bSrKW%KjTxDUG$NMON8JD?^Iy(9em`Eyp7<%Ib8Nx^~WW^HW^@{}$syKicgi(Y3* zQ$Q6p!VM100>o8(hcJ{EY_|p9&V7HXsQA|f_Ih1=&s6kbcgwI1dnkH8rv=AdY~L68(V%g2WHhJE)*c zgpO}Cy%=mmT|S&F0w+XR{O{uMks4`g`LJSzi0Yw3=C)D|{neGI zwLWm^NpF~#^7Hz8LT;SOe!+^jf-$QVINjyV&5zJEyItK{kaIE+ik z)TcK%tdaRR_5CnMM)kT0$U1qI4QE_jyi4LV^+m<8*TEo&L&ym+zz-1&0m(+-@+{D;t3zs!@0>^`f*~ zH$y!aECHF&T|2^)etV|~f*w%R^!KW&vr$3g+lr4>y;KomL~78meW|IgR)a=j8{R;q zN{%%eGJ3VTAd(Rab`6tV5~ARHA014o2zIiNP>^s~&w)Vho3$nTZ>>j$431UW<+z|G zIA4pRvQ~f{&c(ozdqSwepdKa%PFDVh_;0VCDUPRMuv>}=%viulSBGmz9?C-xEx^F7 z@Y*dar_;sU*79Q@R9{4Mfnw%H}61VKt0Imus;% z-fQHw!^;7RnnOSLMa%rW9;}C328U-j0LX-JOIzqGVEX_E0=a6xlQr_ZJTg1VDB{F6 zAG#te5g}+>XdDpU7&B;l?GyH_!Ents6i5nuzoDO?)ZvA$k{Koj_4$enSU!dH|AKK*a!Q&0+lIp7V3 zV4p|Vx&wrhngH6d0(HT?Ktl;y#yo@KkZ>$vq92x{2Wf#=DmXZ+fc7rA(*X$c=*0^% z=x-U5HycxWQ%OZXByZy6CX9(N#=WjD1Bay?G_16EzHFaKHxy4wM(@j*S83_RjWAoo`M#;GF* zo8X54TZMP09ryV$mRmB`J6l_p1rPjRI+cvHuyzZYkW3Ivj{vLq^`{Ga#VojzF%b-$ z{G@QPjxF@yfjZ@$;9#^qP;tW${tB7IHyrH6bRdBCUOiUiuV^NB_aLmok(V2e-9Im*$ zybY=k0s+eJfbm$~@^||S_4#=F1j(CUVq%z*L8Pf9FYgPX9;=Z`Dk?D}O z`9v_W$!coGW(EZ@c#Vt(ZzqfA_Z^DiREJV%J?t1MoiPC&NtqJ_{SWl?uo;larjKr~ zA?``QVk}oHPh(q#|GiRK5=erF8&A87Bq#e5S_2K9duadszqLBclTgGlw%2y(AptETeDC%$4$PcHiQpa zxIjwbU2%xhh!+LO{^f*@8PG_F)qXJu>lTa3m=f8OCcAfW1C2gzx@ zei8j&*Wr;yl`yHvF3Aw}qK^}JfyOY}`@{2^3xUz}BqWA^+4u|E>0B%P406#iA3>AYl;MA`%R+RLhDx>gwLX|$~KE3q)?$i!x8MC1?Q$JM91~w z&UkKEjW-|@7*YcxV9FSTy%{xB;bx2U3)_o#K+tydIjg+4-+#4wFOsnz1MxJjbxH}U zg)clNqt_6p%}w9H&!;J*t3s5ALwpC(mqI+(*q?25ve*BD?9(S3w70|eVAX+{`e+S5 zJMmay|C((Ks%QdzW(2|D&^vtpE6f-iBkcVzCWaQV^pQTc?~PZu*bsdNXgHxCjD%~3 zsngy7LL&0yGHOnxMcrjkSEC#P*KddhnFVwgIp|gLVB_*LXs{^a=Ux7uSi+B20DQ`6 z3HiRrmM60rNnWq6?i++__T*2>b+K&i-u!!?>jcV;xw_7s@}}#74#EmsVoXfK->(er zx{WYaH~iN4y?c%5Fu5>#H**S`RS2fR?KrNMZ}{8BxIEnZH>sCqf<2 zzuaMkLyvXWv|KTZicvw`1T=}ZZ{O-es*F4+rN&^}cP1M*7W77-Cj@yBYL;#8RcUj3 zt=1Ff1tR3ZLOBd*u)GSi-40T&kvl(&(yo39X;cc^`%(T22;d2nRlmi5%`4y)$th%s z9!A|c69u2V#y=d?!re-n=_7eE+1{p^#nZw6y_#HfsA)*%g~oPBe5=u=<4_pU0m9G& zy4yww@y>qDR}QjE6`1e;12}B$YHO%}vKyr3S%8G1HV@v9i{qenamD${ZT?<>oA~^X zdF2p9d`5kEGuP#J+V#ceJ*Ob~&=qelhJUl~L&psS@;^l5zyGlG;m{bbVZnp}d>B0c zyRZivoNgrPS`nUNC{r`+O=5Mu|h|1kIiBYK>=*){S>VEJOr($dn7^?){K z9((V4{^Q|%%3`bA?6&z@#~(jC!+3|qEj-T>~ zeN)h)D{7vB3T7UhSO#%@(qyuipt+O<Pxy>ryDzqIv!#FNi58_c`j}9x7#+xkuiu zMZ9{X7#H;T-r`i{KkWxp1#QM9R`C9WRWZO4VM`Me|B1=T&#o>m z_m=I>SDi#Sf5wFdNsKvrRcqumpx9}lx0lv;Jy|~(jS;k-OC+f@4M*ThWRd9kvNLAc zFsEzW^H?7ImTfsnX_5=Zq&6h-QU1R~@uDpC;G;jDpb0K`!9pfK`THYm&HgWaKY*mY zcR=vr!#^6rG*{($dF&Fx!fpkHo5a_xhljji5G#E%Ta@UGDRPN5jCJrnIxY(=x&?l=8MpN(T0GK`h(>-v#VG-7&FIA1$Ai zk&zjOM@&iYzi+)UFvagfc+R5bn2jp?V+!OG^&Xa+4bYNp zZwL=S$o0sp29IdKbMU`)wPK4R_&9Tz)4=}%|SKj=> z9B}?;j#%ibF2&Z$>ThL1!LN0&t!#wu+JLEvFHZRop53n`EBM461Y(aV5GwMltzji~ zhi;b*FWAOC7vgOHcrIvZYyTZC&3~1W)pR65l!#4$_%DFu+rkP6d$+Hk*w0Vla;?j1ErT2plPvpcaLK;7h5s|Zi{IJWrz_GNdO)ah-PH&!j{+rLg8UIx;SRq>$uZj^)hk z<0eVp%l(x@;oqmHa(7JV&v^~h;9wmz32z#}m$F<_Q*#8LZtfY3bJ6NM*^*IMr0MvG z&G^{Zb9Gi{SfZR9;OgU(Lep6iY|*>8?FV0|FaC1kX0&=$>9mbIe4#X*cl9QT14*!& z%<*r*$HEonc=d=?Ku}avhl@P)MS(`j@w@C)DJQg4uEgUD#oV#W%lg(k7k&Hge%SEC zYV8Lk|4aX*n03^+ScXY>x($ysF1sEAK@6`GK_~5mh7b$bLj57^?>r!Z7q@g5ehX42 jhzsHSk>vmT7tQa5@th-W`2S+9r`8TrQjo^QBF91?5V*23&s7izBwhITF-&y$r+uh08T^LoAR()Y z2`^7flTi5YJGL^K4hRJHfB$|V4bOUC!T;oQl+(VrXxQcx&irYi;9bZD~a7 zY-;adY4eVYjg##O3$2Btqpbit`~UlMHXD0$_J{EiCdMTp;}9ja^n)W(kna1aQF(S>s^DpX2fscV8d^|;y>t}Yz@a;$G{HwB z(Mi2%R1c@4D&BPRbu7KPG7%Nh+H2+n&7#rdWA|nYb8`$250A0AIXz<=o3irC$^gBx z?lfVKU$OLW8{-_*m6Vj~2xA24jQS6oP&zo&O*Nf=TUARn>)Djo)_$a-q|}g>mX6BG z%F6xy4Qg)?!YVP$B!RYiKgr+eJk>rOz$vkW0&{}#0lXiQ?fwa`83qr z7yIyqLL`-7O=DS^O+eQN`a2P%>|GJ;Eum(8$)j~;OyPC*%UJ#CqBaULG8_r<@fu{o z=N%?buCW$qyX_=#lOy3+NeI_3Ju+s9v-EIubd34<@na#KA-V*niDob>HCJ!N-u}Md z`}gnN&-NBKii=t385k7!Jx;drkB%I-8Ph%Oe_L?h;26MT)@}$t`uCUu_T9qpn7Xf- zN8eLZQwMZM-peZMdr=Y{8~dN<&H3uuSV@ZM-a`8^?}Aj;U3hjrj}vQUd;1Ex92H%T zq?e+-6-`k~b=mH?g>beF9=Ob`AtMG3wG!lx{pe+P`;)jrM%NvW$r;($@O-ZJL(mZD zc$7V7XJ;I&T2+YNievHtqw)%r`eqt_H2dAy#G_ARF)X#w@3^ZIzpc2L>NMe*)`&KXZHr?S00vq-qb$^;K0(WaZ?H?$D(VqzbysrKVN- ze-lk@G;&1pT|G~F_wHSK^U?5&Xxw|!iKd>Xvo1k!!d@Y5(FR5;7pOiKa9lGG^*pmp zZEhB>c{dwgSH~Ag$*;0ARsC4GXw*qW+RTgrjsSaScQ>h-xp|Q)^Qd0jk1Fam>gXjb z3VYnBPWaLKUnX-uYMY*J6kj4DA^DSH)AHypsv#VbZVF3xSQfRqH&QO`{%AtI6*NuP zC(};6{>!rR@}0rB6s33k2NRe0kPxnEE^ruVP(BUSJD9J047IbVMwXMbqB<;O`HrrluxxAvI4= zA?NKWCryIDxzmGWA|h(%o!q>lQLE}!#M$`of>%z*JVczFoP4f(3+%g1hyALLSJ!Y1 zFn#|+yy1)H+83Ia&rzZB+HF4N#=Y}qrt7D~j3hj_RN^u#Wp@tm8LAo+?trRz-pE7w z6yB1Oygc)O0lMBNC)?BJkzrwU%n8gh7ThgA?PfaB@r%EFQSxgvbF`^6X!o~sc6JsW zNapD+6}g9b_wL=$$Vi>5b_|+d)uujat0{;cCkKbeTQl{Q&3So@kC>Rm;JyYJ^&)gb zU&zX~Pga`0fbCGEmyMMZRrC*!c%40bxvZ}~7cJNAZ>p(D)X5z8Fi@tf=>Y51d?dk} zPcIq1fB)VC->2TJvR<^?&Ya?{EnKrk8%LytB`8}hx{b~w3@<+^nd=6N-d?@p^S(N3 zr0n*x+~gD*m`38T;7(>l760URc@5X~KR-V|r&Ryf^s@d#GC4HwC=L&#ny)+(YR8W* zKk9pbh>MNwp|EK}lI}(i>ezg)qw~4x&3LJ2<)qN3rMihmXCt(rkk1~Od5OV1I#?LPE;h4>-;p87Q!I=aB9CGuz+2hP?Ox%_k< zj-sL>{lkZJoSb)Op?Dtc7d>EN3e8t7WSFkCd9T&vy8kZj2Y1|3U2!8X5`4ROk5T?i znM70jX|7`I_V#x2h|U9{fx~0oM9S`EWD7O8J^J&UJ0t<j*Sp4gmTvKG)OMq%3Tb9sqXJ#@}r9ee)srpzV zMKi(Lej$H0mC1Znz^B+;@ZqJZ2)?n3#lEW(c!- z?R3IuF})5B4%Aq58>;9ZJ^HcI_Jj`AxI21udUDbdQB}N4iAmRwgoJb~d{z2qYb$bQ zX2!$WyF@L*awK=sX?v>rVF$;f2olzdh}CoIQ)>wr3E&_kol}o_tE~Cah*C+%Ao; z2JKD3LT>>_5Z2Q)An89%dRhHu_UDu9N1g5Men^8gEsQ)#FL!O`Tbi>=7o$A<;M5)* z9wvSM{Mkd880xCQ;1_Y%#URox9bMhkqS1|6p#j19O}9r(LQFIGQnmj|t-^SjewkYt z&l^N4UY!&6*|9o~yu8!zbw``gr<2Z5N~eFB9pb0(zGY6#zSN$d8672t*1+euHYgmn zsnyZfhYMv>wHA&VMh8dP{N_2V>%TWYB|#Kxlq2)F+oPZ(21N1yt{^{pWRaGJr%5n{ z!i1oECN4vZd2XYtV9lGdI#Xx&fK5Q);-;nnfsBkClbGnN_zWk(P?H4U6!cNXL}za` zC8hizk9Usz(Sj%o_vz?2^3uHvMQWx?sRmm`_bzwarfrs1E_VZltjdtq&=xQeHV7{y zMBrx>x(Kn*SL-%K<@(V}EdI1CVUdyXJCYw{boWkArPb6(9)zDpRbnG7#!IPGnO|!s znv%|L*27a^&NyUYBPhF_Voco(#Kn=cjU%1Dp)PdcE-bW97o8WxEIY(3OY|J1$1EG> zctj)bQTgT~ZqR&@=vsYagb@gdISjg5E*h0zW)4F`S<*NRBbO2l6pf!R)HZXr0mE$J7QAk1k`v}=jI({ zg&!=2GJ}{|S+{S(+2do=({28fdlI$M9Oc6YvcdFtXTv$KYt^jUaLEhhYG_?6Evmknlr`tAxk@%HTO?3=ms0a3pwiVrombk4hTx}W0WvT8I~ zcKcJF?iO8q_SpZ^nFsBBtkaCAY_<_eQL%04LvB@PHwq=jXF-g}dnk_ESg05y8jcUX z+Aqr$Kxum^BO{X)IX;n{oxL!w?<4;t>7_UB+l_kIzgiZO-aMR+o)WEU=6`_iS$8y5 zQeYseiK%IrRdq7_mQhz%ch(g}!NkJi$RvEk6TOtk`)wHt^xYl7EbXa>i)hta*G?bV zbbG#t2ULy9F<>EoH9#7y=i;!tZ|~snZ-xGg`*E~^LF4(gV&+pS;;#dx`VuqIz@fNR zwSd*Pz&p{~)3s&uXq1BJELy19c_=L{VhVVJ;FC-*XNP_;AWnmeu zSRemr15NjEW$*CtRl2Cp&CuT7UVlbLh6gTs00A*^wPfOQP6$5DSV(YiFa-{Jk+^X{ zyDb+tH}}=m`C*)=mlqEn9^RO9QBoqS-~N){n{nUMc?`2(2v5)ar=A-`dz0p3a#&wo z*lib)XBErxrXPp!FyAF6e(16@Q?D#2$;}W*;J7|4nVOWeo*EZ-nBIDG(aQ>NKV`u2 zd)@AKZ76I0WM{VV1>ly{G0J3~H|Pq-5L@W z-C8QOO7MNM~wo=B(3b%>IJLK|+>ls%=(uH<7PBDwnA zC^p2N&^&S*ZMD`cO&gb@(0-s7nkLYdv$Y50>Rv}f6}3xCOXUu${r4*;uhIenI=U4U z6fU%D-#z?U(WFb%nKK$hA#$;nWl}jg!%Iv1#TA;9^J|hZ>*a15B<1Y6cW;e}h!A06 zZRdw#FL791-i-w3enmqyaC%od@r2gb%kjYEYZTFgmJuRi;zd|>)&{5%EiAo)&{0=KI7u*KZZFTjHuTX?N`3AEv z7FN*t=35tEXeQciPx0uqcxsB+F0^eE3~?Z&`J*2*wX(xKMJTvzj>(e?yE|rObLllW z-kGj>`Y%yInmC!Rxab$?c1v5^x-x zYjWdK%o@sXZf@SRK{Pe{1!4Q;r6F%jJ(DlW8RxO3z29dRJKx&+`=)*slbf8Jw8f3^ z?8d`tqD(&z%NpmI@pl&vrxG>-3Fw2UHa0fHpaT#{ut;UuMGjefrXV3XQGfpYd2+h} z(AFKR>Wc}eU`K#lpO45Kx;Q%r*Vfhwu(7=p)6ke0@EDjH+QIPZEbNFea93`G?hlwS@5PvC&tHf#L|12ytS^@63z#p zUAVAd@Tt%2vZ|^o_)$!K1G029;`Y?Xai}-xsx! z?lXP|i_f+3!*Zo_hzcHZc^?Gc*I_6BRX3N2&SAZxQHi_}KSMHlM#dE2UyR&LI9a2^ z+~ta*C8q=c6npynYtq^m*JZgF^n9q!PFpSWP0#H&_8Ayob!;w**KSWq`mpKb-yU-# zx3si;;(3#Zhk$}>b_As?uHB%{c(wrc+K@M8`cTNnXJz`)m9gu>H|*s*`1tS9zb->1 z&!VKHOm=s5RhkV3E8U7Destql$;J%!ig=xDWfat$4wZvYBUXsY1&xh=qb zIEk~~&&%A*gORkVz6cO|T_CP6kjk1QaM{Ho_`I(Z5(U#m@dJaAA3o$RtMg9YJ2tw$ zIF4;>Y~=R3aLfg=SLnVmG##i`6!cFpY4vW_mXYcCIrSc-GcKX8X>4Mb#degW=5R)~ z=b8o02hxNqhAdF^yzhlZ=V~Hyj@Cy)?(x~u2IEm}{9Rw4Od>dlPuP#vWFdJE)w0za zdc@-j7Mle=wig6}b_jyIca?oy)QfU5f(JxUN_7ej7t71bEtEdLD$BF9d=@;&=;yR) zah75FV#CjYQnxOJKdvicmjf=UjH06Xj+v}OnO-xktO{w`>gMcQFJ*V9 zHcKL-k+Jc>+v%DTGIwEIuBKDHAdUcqyl1;}%|j*HPpcL3C^Y*ty3P+*%RULZl%4_) z5@q(hY(-|0CUQz}qh8!aNu8nSRc6xvn0yo-euHSo+3gqNkd z)?a3obPpds-2D3^?r6yUCy~MaALdI?Sjd5gKOH#a%_IB;-8*m6I_+%Qrj=Nm1$R(z z_xGK%C48+G9gGH--F|v{dT#IV^Z=B-<&SMOZ@G`R^3r|91AO(GEvo0M-&94Ow;{Dz zzw&xk@?1(vB9=Z^zt!92`gVSyJ%Go(xrMd2LVNe5o|woNqiqd1?}5;+Wp4{*w`m27 zM+QrQ_mM@zAkk}1u3tk#ccHF<_N7VVb7j{BeL=6%6tKeTE;K(M7R`$9XP{tx%+Adn z+crXwb6sCKklTp(%&l}>U0>5-BLDdHtN4t3yb2_ z^q!u+qi$3L@xGJA!dv$;O&w6@KuSShAm|&;``b z>-$D%V7zej=btcnnV#N7_72%HQO6*ozw>tCPDcf|WQmu@LI{mT!fX`9Z^D~>>4h!L!a}nLDNk(@p)i=} z>(5IyMmGFeUBv)FIc)XZd}orL=%#$;R7#yl(gOkKg3D_9qv_<3o}S*zAgl_yX9y1u zgUb`-=CYZRvs`|~S++eoBNkvxn z4hVE&P(YZyKyv8$@xw5MyI?9cf6nuGbUulwL<@^Vbud2|q*k2<$FO@mRzwbrT*Ow-a#Rezhu(FU=#fiXW!x9?nfJjbqNd*2 zytM{ZqPOCzB|V)+l{rE2?PWyfnJh@FxpKdpR$dwmP}9<7{Nw};$YQpk`hl->k##Xr z^invQI2kz!iCVnM{OFCk9+IAWfgEG_)s-h`Pi7ZK>tq}T2tC(DG_$c{P1lo2bI|uz zyUNu_u=_H}IDA{iHvQH|EbH1ysD?4<2aQ}XCISWNhQqts@QMsoX2bodP^v6{< zK?#}rh`iswRX+>49qgt@kbX!_3cKn{DbM?YD7UjCuF1>IwIU1Nr{S|*sC7z8Z#U?{ z#>I^i@wvHjWoKuv)+#|q%rrP*M@L83;11Vwy+z@6wM}A*)+>{Sm2o^jFnz?q5rbs0 z64Ylr^{q2PRiUDZ)_uJ6cW5+~cCDwbghkll(RvlC;G;0Tk-bG#-+Wy`%7Gp+BcuC= zM0C+esA)|JlqUWfZ?d?4q^R3@5-Q3*x+z#mZqKiI~{y1#%Go93prC&GEG(%eW zAWdCf*VtGDr&p=y`C`U1Zd0gt6>Nk-K|yC1n`NAC2PUA^{5IF(sq_|(NtJKjJ`g$~ zE3u{!XT3T98T+F(- z@^BEC{FP}iIGr?aYrT;a{@Zo5uqh@Xfh;E{H`wgqvNhW{PDw@8{33DLeDl&rOuU_B zXY4busf-Ea5`&xQ% z-NI%5N8DrjYf$|%KqdzAeF6S~`!c5;rMl{c=_o>}_4ek{1_jZT^a1& zoPz^}fTdTiH<2~&g`C_57whKVmEopoIcibF7fr5(PEyNYi3f|z%R%?0rA_c@6u9IR z($S?NzhGI4i1_|^ei+zGTrp$meYySA4nXlltB)w$y$7!|m-JgI=kVC=W|7tkH?-MjmAy%j;= zpRP+|DtoxP5(FE5Q7c+pT0-#whptpta1)*Mi~dHki~BPN(st(4_Z;trjyt*yby?mW9T3rRVg z1l-!^c6O@A#qt!J)6=yWdS1kzxC@3*ZJ%&)CBgYGfANuxc(rU~DE*^eW`w)+`(f1@ z^Rx`Ar%g>3;aU$Wd~UrF1eeE~-Js)v*c_!(XDiOa!a~nw_KOzwXq1xQKKljm1Ga$n zL07g`e`M<7J!Ay4{e$p7tCEtES+GAH>ZLlGEMu=9k97o;4*Hzx230Y@W7WK!{*z>$ zR$i;YLMJrvRAyon{JwjHgvNI_GAkFhaVdo`l{yfh$`8dPCp8?{09~ zBp@YaJlz;AVhQpmK$gG+<@g8Om#=W1;WIC$$KL^Xb)^PMdx~E5kIn_N!LrZa` zjoNuDM}ZssZnj}mRY}P=GxPp*XVjAW|78L2&BzR9_%8C_nhtG)C*Tr8zy2m|HGqPn z^%YAm8#FevXevRo#>M0Pj6?V1(F!!t1Ua-|L-I7M3Kw=((Nb1x19NFE%8E(~&!5wL zf`YwJZJb(z6;ktWQ0UqM?>G)^htODycmjvIPlx)?3ZnMd;vBBE(N`VwG9W_-#aAFz z0VDx*YOf>ZD6JB`GS#9-+`RZ#K1`sA?Sg;Cs_%82aDF%-N~&I>^%@>R>Cz7owSI9i zY*j7yz8Or#wb{nnFQZoY-bX{yAEE5=HHaJnKAO`(Y{NNEKZkor^lq{uhh9jC5{zgb z8a@}cy%`77K|?(_y37CwumN5#P4stL?Ea&P_|7Z)H+?G~uPLP9#oEru2(wdAKIQyJWD zK=4dL!W$nS{}!_?6IMR&@87@g{Au&S_#5@s1`WoaR;)w~Wwv1`h(cX`!!S`Ld8iE? z1EUD8L<*Q)MLZbAO`S9TbSlm(v`}=etcvri`A@aGG!U(x_dlMPJidB8(GF2s| zspMd1CvIWEv_6ujI6Kut!zWhB>VA@)`V=!``RDcJt4UeSQqJ+G3=HVq?`ar^hKA}q z&nqTCJ-14Y%Fk!w2g3`(4;_mgA(99RT=ZuTf-#v_2p^D=x9RI)j{uH zxD6_hjvxfJ5Ca2)Ft>)NC=hk3$6l&rO57*?wwJx&mvOyO>_z5~h3(auUAbfgNo3yz z_PjSXi>AcmRrjMWleo3Z0^RTPg6ka2FS3Vg%SP$0uC78;Q>nnF5AErZ$<0la1~>D0 ziCP@*+bJ;uR0g=$HWn6Z=mG6YPed(skqOVg zadzfftk+DQLye=|z%HCGOK9aeUY569w%if}!sgb5vKM3(^blQe7VY!G8+b0p08C>(>Z_CrO3h?;#Dkt}vz}q@#WB@!|lpwFkwSjE05=6%CCOzH|5f zQg?d=%l^SZ;raI>^%0@v>HAOBWM01fUiiA`FF@qsQZJ8~p{#-(8{urShqC^Y)};%h z42+C~Swl>h7Z+n&0(p72vlb33FWnE3)^IEIMFnUS6}5itAB|KE+g`h0=;fpo0~7_r z5zOak8qsL)>xRA>c>x3FGLf2nyao=?gjZ+^R>}lCkt=@VD5& zuuH!HVR89%cfNIw|24?Z0Eg|(Uc_dLc%E@o8h7KFn44?=Q({MTw@0z-MQN$8 z@007xmnrCc{K{^>KI-S*0^4wz&w2POAzTE?)O+Z)*7Gg8csMvju&YI0^pIC+hYR!2 z#l>Z;yBh=aphA#bs^L~>zvUpa)?on$FfC+i4f*#T03FsiQ#a0TyBC0;NH}ofd=|e2 zb-$abqeDkU<-q9}B(rMub~N?b(ztlYCS7UP_X#WvpkjBR#B2a7%K*Mku_?$N&~AW* zjXmwT)P*|$N*!S=y;Hr@Cdty)77OS$>KrnHc+~M7kx~c47suJy166TB$mB{;nC4^Y;BSS zG2t20-o&ud(oz$Eh1o8yc09{*dlKE*>$?YdQ7NGN3IAD;J~LRw$HNv4uK zttegrT)m!=&GM5j+#f@|*l`TI8W?VHB??IhOZjXt7j!lS+%uKnoyxfTcgu1T2-p^F? zHB^4X+nek0r++@b3knXV?(OOMls{y_O~Gp&qg`zk1lNxfOo!jS5upep9u8jHEJlJFOPVLdJCZkb%$Q zP<)o#+Qb-mdDU9n4s$;zC(8lA{E(FNC|$%$>mQ!^=d9!&@YTXn{yS<=DEXYXKK%x= z73{Xj>Ykt}(WTkY!bBkSQn3#ll7 zt&-ALU4itnuutskVp@5xS!i@s3s8fRG9W=gL%!-?0#Ixm(MctdCcn)aT=~0_HM2zY`6868nBTH zEPN8I$R=TY+*qo@#dnUa@wq!b@3MLqV4vmh;O? zE|A9{t){czm+~}>DLe#K-1R@PyWMujZzi+%-v9MukG8u-J~ z9T8P0*Q6GptE;PnG?0Si_^#M(Pe@V8$`+{&q8+MXqUdNtjs>T4S+SwZ7IRJYM1+I^ zmF5GP{&Uadu#VA7X2f7MkwCh(?1`ZprO@#u-zjTBE|z&|#ZB(&>S}PZHTk#i>3r3X z1!Uh~Q$s#`)Q9!;Po`?iW*1J@pAq-`bhs8^{lwG_3TYA$9y*c75#-Z0Ed>?tSzo3K zB%}&^@c!!o&_`cDq5IA?AY^>Hl47#~2xj^{L2Qv)(a67WCCb1d?m)q-GwHqexa_K3 z1{`G2vgKe4)WHCqYqGWxZCLG$z**XQS(IM8qQJAgMe-UK*ZYb?CgAn0CZ0wsjLbvt27!*FEuB5)Dl>RY@?das4+Q#4{wr~q{gu* zyJr{NL^%3~_KkM8wrbcg@RW>Sg~9EF_|`*+bO^n=Pz$KSU?qu2>AN1((aC4~W}ZG& zXO_eL1WXvH)ZeOQ34d_=h!~saj0z%vW8~}kTsuw7_Xm}Pfj&=dt$-&#Qi#9QJ#sbO z?13a9cK^ZKk(je((v1SGO^Xk)5`s2I1^M6CR#wo#>#@5$+1~19Z+$rd7=@xMGDB)S z{F{yw+=AC=2*6fA+MrK~L8K8HM7PMvgz?%)9zJNRSrFO{0vn^5g37N8~E5yTVhxmE1&a6)cf8GBP5!O|NL_qFLC832{EyFEd4~hc*kMehX-S|^$jY|td<>&$k3S+cYJj0z6nV_1I?PTA8)wHaqc~Nem&>0YY6szvdXjBo>VDfYNGf(30zxB z#si`EP_K=_FjG4PZ9bk23@Kx0=aW{1wPjmeo-($Wq zsb`f~rFuEpT7U|XxOLy3yLMW#}q7;_R3EfqK~kgPR<`=ZY2yY=^Z(UG1{>Kx^UZ>Nzs z2sUvs1|G>Zlh$43#@)aCX+2f);vNZcGfCAtj{$i9UH5YaB+Xw*T+-&{8VyMKt5}3> zb~+^8c6t2K4+3MlG3jbaS5ByeT$NsD?VW?ZU-!i`(!Q6Zp)Omc-GVz4#Pv0>Pmxhj zhQ9QF3&0rZtlDr-)MTlm8umx~ja{aShB26uz|#BO=pmjq1eyzp*9*j~S#*^u{cQ?D zhk!OFRgl@M5|vm@SA{WurQ#EdYK;0<6~QXt3HB*`$*IN=NV&+TV2O5wFUi?Z9Y;G& z;Ao;r0+%FHtw{Gb8DlC$gId7En|7d-MtEW&U~xNOHIzY+V%8;4WiIp*v?3aPfXJse zmcc{-ksce%4AQc*{jyr2CiEYbJcWLL3I>b5-ZlZGuq42UsyAe%$atcs*Vf=vy?Z+K zrpom@7Wnz#t+D~~X7E1jd#X`ypQFKNcmG$B`YZOUA?bDVsI7;UrU5PS&w}6M^0D-kLaqcL=KdEY^&t4> z;&Czq{a5{_J!HJ&HSt5w@scd`%fGVZA$ko}QzMxEzQm8!LgDScgBLyoTp@*70+7zD z`@IMF;7dMneo*aI3hx3lR5P;xstt^xfy; zvUJ-Q+*Nu&Lt_)?{SD~!kDM1Dv&&jA~Suumx%p9I6L#a!uIGv*~jrEzD)0 zSWeflzGiQX(!%|fCNKEG%%X=ZebVtQEcDBIKb;7X7cDn0{c6N;o)I! z*Z_$jv(N4AZTddSk`?bokfW(OCO(m^fNC7uWJ%~1*#9fLP;YV3vHi{IJ1sMhMdafX zR3w=fSw$C_8aZ~12xfmS58edhmoKuYD6NT#VY~roBl^@M>uB z`yJPykhrkhOPVBp2ZpB64Q5H=wLw4LCeIr;gLY)7WGz<*FNlbUVjzz!144W!V0^Na z!xW^?B3@JUAih&}k7k%wf9nV}axC&&J%8f#DNFjjT2zKw0IZ_fK-$}G4jgQRR>?_8 zR~kjP9pt8nV>chORPgf;HH~K8ZyUfLv>NJ~rwMxa@b6f?gKA|)-KX&G=Ta()Hl0`v z1f7S!T^Sw@jY$HO5T5E!wWPLwPwg9mam)b3WTHG^g{!jGrWZ zI(S+G!GA)Mh#)&VyASLGn(DH!x*7sZUlvRvCheG! z^|efmdV*)60Voc(^CB~!1wWD~$4e7gYJ4LH$Xj0@I^T3pAv*ftGrt4Jn=uv!0ITJi z#>m`NaWOHpa^E8+O!D0H7sH)8Rh(2s(H~ju!E-oG=pD(C-Ze5Z0vb$!Cblt0rs zFZRBGZf3;*LY~i;`|pE)Ba)HwaYHU@p|~@w6thAgL*zNfAd!9SlM*~ zu7(wiD^dJxRe1UGxmoUZYF%YT#V?$W=W~w&{zblLQ914+K(s5|Y2*0)DwPWZ!D{Ga zZ~tHG`3lANuCB4|cfA!y-IGaXglorDUe`dFU9Tz!EC~AqBrx0S?3O0f_1w^4s=;Vv zWaObZ!9Pa}@@CQ{WA@7(_(e6_NPT25Sc3@?G|fI_@I%AH{R09}UnjDvwnvO&px~au1hIAqxsw1%0}z5XdjUEMl89>xhpdToGB_NBcW1g)63fb{s@qM4T~A)S)2TD=Ua>>3cg{hS^f zdw|?+*E+f`78LSd=SWFXEfUB!4_JD=HFR`}FBd~-An|MeLjGyd@Nb5DzPL%ZxZNgC za8Z1LmsMB{-M5}?czv@`R0iUd1Wl@G(ofMuEZX ztRadu@iDi{Z6!giyaXeEzpuB~cmPI{Tnsd|3V2;PY?rYRUtZ-Y*g89tyr&XmK;rh+ z6esFZJJ~9j7%8^VFJwwgQ)uq~If<4d6B`KZehHXQ{3!(Y%Cu|o{vmfLx^Ntf+yFpo zR9W0@xH@NiW4<|}Va1FKm<(m@*mk}p6-*^VNJ&MbVBp0t6MMxz#}@h-L?Xf|fBsK}Rw)`afiL^(%xI>WXvj^jtfPZdqJ|BHs%N$_0Fs=C z{%z+6?4vRrrdFayqkih&2d*lOyKV{X{lNCu?B{vSx&lUZHY19%< zB;WjUWAMMxO>g$TcE15N{dSJelP~7;O9$JC@IhD%D5gI{@Te*v>iuC{&jS~1!}#0N z*4rQT_4PHWUlnPRGtHvH2n+n&&rOprwg2UcJHc-^1DItBl_y_p&!yWpvR+3oBa zv$lPB=WGF`@YrKnPIJb6X{i8EHyl%~;3V~|(zgQ$A{ zT%${wQlj}x6aTRQqXH^I==^V-2|P{VhX>N%+S`%98!)1xqFM&4VRB5*^WrGEQ6_&> z6>0l}bPOq3=-UBd#-u*88fabluNSvg(|dn@Dth?zV=(5s*-T4oghHB77%&db?Ogc> z^fxvht4m9-${pSR${2J-GC#xer-cP>a?fgX`;N!+azjOfUF>{r3UluEs#noLPGNP04aG zN7w)I_RlE55HucO;z+F)Pd8=F zC-Mv{Z|iPFnNcHb--sV3y<;eTP9+%|z25Fj;e>w?}}QT)(iRz~gU|hht`y(|P0YDkkm+hkDe~O|*hbJFIv_OLU=BlpoeXh5HoOA~Almf>%$ZmSWA_|-HuJc? z{rph~&ICKm1Kd&xI{$@i=dff+C?>O|#lz+o;I01III{0`IO8w~;FS~?Z=dgD&&n$3 z-xoy8jcgDg4Cuk^BY&fDaGYZf*)FKdTbA7!}p)YlUijo%#7G<-2zE?9sA2I1e@ zfIsWZ@y}r2aJucx#0k30O-!sc;B*ZE*(scLSsTnC2j$EK5wJ5nqwuM3WfI299|6}` z8xF#9skKm+9PFB#OVa^HdQ$h!l`kr9%)hAUajAZ5e`u!6@tfDoT2G2cRkCbY_0PTq zJxSn}`EPI5#kY)o)Qc(V0fYjL)`xQ{U?@5X6sRWVS_^!f>~KT#{5t@tGc!8SB{cNvZ0WqO_N9TOhJw^#uB0JDx>`}`mnB_P^9(uv+timrpKs7+ zV1&K^X<}|ycQHenv%v)-@ATpXH>s(q!VXJaQR{FXnVVFSX|$;&FhP_m0n=ulMdRxN zPul9PMSey+E7xj{zUIfBL6Z;C2(aTPO9y;Di*hj@zzdL&mxb(6VePy(MgQ0n zDp%@>+V>(m^Ll(-fv8s8g3j5&b==SQ0anOtj+aS;Ke!wdL!gqiF>aoo;Ka`M z=#d{NWs@;66=Oo6xBrWpLp%DJn4pA>+!q`gg_g)tFuYWPEI^geMah{tJS{*VL63O7 zTZeV4L6qeYvdGsj1o_Yen4qA9fV;}1Z-RTH>&1GWQ(z1Mz@t*~SEu~C#HbnCo}O0) zAV9{;#6FLjy*ej8p%8ZG{?Xsh@brz9{z$7&l&&A7kptk95uQM7c>}HW9{S!sQh#a| zwtmG+{W9Gb-6y9Qzpeg(KxJiRjdG(P7_N~8q8J5g_>=0~G|Osk?FS;%z?+zuneVHJ zA@*)AO?4lF8m#%wUJi?=Lc4Z2alZy8Y!bX)^d<*QTLxoc`5HOyl4mk`r^d$GFM<1_ zHY)`QBiUHYong7B-F9yNv^em|4{~yliDVVqJI(82yPs*T0D%@GcX#(=6kG~5FFVvV zBlwUDg7O06&Njc_YYYr3S>`s1&9lqBND^O7dr8&-i$E&!p!N3J=FggiF?X<`MNMFq zanerda_zjYW+lwfsRqd%)c?lY`yYUj1KQ35mYG`v~(#TxAUn%mld{6E-GQ zF}Nmo;PVDx5S3sMv`5%9STFdA0d$x%ZQ)rA6h>MdL`b<6P4A90R$ zFJt%CfNjC_*%^H8{(4?|rkvZJwv96T02Wl39)Q-q*v8AD@v$&izM#*!jAL8-6QL;#p~CRd758H2nLkrCtOb~ zde6RcOl_8k;85$(nXBiGfTkUCft$PcH4}4g#`NFEC%A)9EneFwL@D4X6B!!X^Hqc8 zma+Gs-^0KW34u+*;;NIQ@;3R2X}Inib@hb^c9A0@B@x2q@hlf(U|i90X}l>FyAal#=ed_BZbR1MV5)oNB9XcvOImJf~eFEBW~NDsr4p7ZIq`;r9*wh=ZyWzL4)1O5+uwzdLW zcKg`L3u|%lb9sMH-s9(BxO#6>^($Ys zYFhq3tWxkzkg27yD7x)vu=<`@q^`&|{^u0bcSnLwK^Zg}KkGDMN7LCUTlNbnXiv#I zCad?(Qzx;x9*gGUs^FQU=^}3xo40UxhR@pc*gq|LWKPcD^4rOIH|N4{m6iM|EGZhv`z3hYlV_hos=*?TY2AuQ{WF*LCWD8l3n$f2A1g-H8SMD*q zzgxle3v5^fH<~ULa1@2?71Bv1uQODB#n7T^zYABNYP_Zu>nL@q}hBofQO>^Caqhktz+0yRre+{c3nXdf~z*{-6q z(;SH#j$f7}-$A1~FZya(2?#3By*bEkjtKLjy>QT4{2K)YSu3NMEb31l83)QoEt*2*j%Z_k6PDB83;sa(FV zkNxPM_soiMj7Gt21qFqP3ahtH;M(cz>{M7Atz>&v?I%_;{&H3&WIlc=EQve+J2G^D zvEe0M$?v)E(LDdr;yKQtoL`|Z1b=*ZQC;)N3LAk-RIm{ub)9#w>u^KsmfX&q?k(p9 z#A7*ePlWPn->#&Oo|3XMlhow_DeA8UUu+zln&n{MXrGv%yx(BM79TYKje@NZ{bQ|4 zeo^|f^sH;lv$U^S)Iie+)8&Y!lk}~7Bhke)HgDF@xewYcDF?<5T*y5*UF~J77ndDA zuO8gEd2=W%G*k&uq?IXXPmY>m78_QECo8eM_#K9~JF<>sk9;4)V7BgO9A@47SvoqM zrexLhn*#sX<~YRN)(B~vO9uxV*du#j@Dw4(j8a&@fh`}cfB_kbr_Y}sdjPB-Sr+%5=tmv9$ zg#yGL4#P}~SECioOb2vs!*?=OF^1MFAueuc60&wjrZT~lW!41G9$3iyxjY8ZLw=@7 zliGDlWeNraDJhh!JUmGJHpbhxF`x>Thij`ZTjK3SC?-j{zl8R!n{r^!m$zXD|36S4 z!oB}U)+uRV)6x|_{lGj-CrSH=ozeX-u68LsrJ~|VcqorEn+7hV(0TdzT0w5@fa*^R zDrP9`NFle}Whl%f;6jL-v(-@Rs1pX-kM1{PQw_$@9I%q0Y;BPI#R#`RwZRZ8QH42d zZe``Z%O;^{CgJ+}`upxbx-KPyIWE^%yA8fx@&7))J8)?B<`_(-I1ne5MkXaBCiYG> z1vKS_WzsFZuvfJ&|6@20pSpqjzBN)+HOJqNl8R~%Ku*>PD*5o&=`@0Cw9Yw%%6Sdx zvin=Mn3@+|g^kTLIk^kHxg`YW6kPIS!^81Ala*|oQl9VUuA~h0>G&{DJ30(_o?!#w zX~1HLg(oOzZLWamoBcR9I7j%4A(t-lVuDAZL~jWY7$h#QUMW?_iZ}Y`6z~KD)Tg)~ zuoKi1624P+`^C%8FPr>I^(PoDtifdiMIzeun6YE|t)h5PUBQa+Mn*va+uqW$eP6sE zW?sy(O6~AvkwUPF>-=DNQ7yGt?y%lp+WRVTtsBoft2>H{pH=APjOQ2>7`7XA-hw7& zMK=9>4h{JsJiIU3L*PYs_!f-i@Um$C)(OBXJj)p^MHX{-rD+;2n>*4Ei|L; z!A-pg^Y;iD@Q}WZG@ogbIy6Kiy4=YYzsv4_8uo^Ws0-?NV#fFzbXY+aQr8W3PS{R| z8;|7_6_?tGr1Es`Vg|(wuaCa9v+3bsAc;$;zfr zR|(_x_8i9L!}T_wj0dta-&})aK0Ji3X%H|xd+^)<+UGAc%a|@ME|To*xDe>vRaPTA zl@8(Xa9JO^GuYD;#lY(=pjB*$K}pr}>(@<4A3oboPg|5WO#STlYqn=*hE}wMe9E}i z=K1vDX4TJ+Pqo2U75Iho@>?u1L7lDbh}hE^5pVh%H~JeXRq{#5Z|U4dOiWF|4T!Fi zU-2&~)`Ak^m~mkL`ulgj2{({Dbfm>srau79Z(vl1Mx{{K$mE~vg$O~Nn1^<0IM|~h zs1P9mnv$8hrCe2gR}BVOC?g^w7*RzOyc+kDyMLBhv`zH%s67$!Ak2UDK&AVR8CU|q zLPrS)ckb~yJZxM@1Pu*MsM}7A8wO4!peB$zUkyVdNhTA$_IbSK#3PcDMx=f#yM?l& z&j)BaFr$e+U0YV>pmTBlFo$2DF^C<_CJ~SwqVTZ=d_SQ4x1bnCDh{p9%?Nl-0mMZp znk0d5ZZOMTn+5R)FKJB&OPIZ=g6Y@X%1WMrDHQv2t4x}FUxso3t0p!x^MK+Pt7I<2 z)>5Nt6-r58&s!2DP>DiP!vHZ+WlI_W*Jh2gY1Tj*QsBj4@S3YA%9ITr)Tba5*bWM@ z74QY};fKI=$IQfpMucYIw@>i&kqZjBz9epfRN(=P_{p7)DfQw*Qu?GBJE-oSTcaAc$^t-htZ8xQbCUA1Pu7I@)? zd1jA>G1mA^B&wl;7zkHUljvTeP-Mg5n6VKLJ}Z}z>#a~mwV(_Yy zKucd+rYABIM5b~eO$SPQ! zDmXbC$Tv_cyg0BSQbJLU!lLr=HGL{rDRaQ1k4l_b4&qcVh|a~cL^ zkeJJ>t5EUMp=ZanHe{yb{c&vi{k!e8L8EuIfwr~`wV+-5@nm^OVl;y$!AR+o5BX8y z1e{&JlD`@Rsdse9M5uKN&`N#(^#Dcd;}I6_f|i2Gr&A;wjsUPA^SxU=oxvV26)xxE zdcrW@a9S2HG_$7udPzhFk&oEGFd$qI3jB!BK(E_du3i=S%7jR=nv6yK^2{;=dj)+% z-_r2&`fHPI)%+nbyXtz$z;b{L!XrZ0KY68OYr9?p6CQ$tfB&9}g1xj9|NAZf`gm5Y zw_QRGh=B*z;{E)Z*m)3PLks+|FRoK+Dj|9|_X(?Bkd^ISe3w^cXN&UAzsAk?@k&iS%=NcSOO?N0=g-kwT>%$bu3`c7HEbI1r&Ci60(R)RUb&=t z+m8)&M*cg-L_n(O`{&OQ5ccT@vxK|5ldEe2%<{JXy?e)CVs0&j*?b?NF?vQbr1M-P z<~GTjWs`7=Pvu-(5{ZmiY5**y zJ%9E%e1H}}3A8jk0z=2G?u!==D_pc)UMehchrnQbIR-A_BF&W*Z6A3L5A(kUme$r! z;ZOnmVNW0$Mnq$yUq^sv0}PhS1O%}ZV)FjH`PW0Tzk-I1t#pG>q35efD@53oq(tC~ z;OsK4ElQ07w4?soXf@}sh*UOrlEk{_r(v|KEB2XkjPw4iuqWK8A(s}fehK@1q8l*R z2>tK@R|XeT`i0v8`}WEC($^;%Ml~-`M?4dn4H$eOBwdX zKOX(xK_*u=K6YJ>ETf@8Xpkfy)`X3qq@+w}gyZBNNQh)W$1)qY5x5QT$c}O6i!-%jDQLhr zKyShgWDA^jb8S;0#%vj`mf1ODfi9?YN;(8#W;P+{7;`)ykPSh2PH>tsgUpf2PIl87 zfO72>GGn7TXai+Ta$4;G43rC*_b1hS{Thz~(oM!yHqyJpnt<>DIL_$g7|&=+dwb}A ziLp!q?jFwvzDwM5)5UB#@ibpnN)fOLydt31^(h&ep_M*AzU_4MqJsGj7IbvM{dLa8 zjxbO=UFG3+#7P?a(v_{LZk7H|JVDqIm}4St>v1`QHYrfW?tv=p{VBv79%v*vxdK=Q zkmU}>F+NWh?Rqk(bYI(FW`{3{PzAap(v(<8JPLI;?nUO}weh$E73#U2T~T>em1Rju zNi?L6l|ivD!kjEnkNmr}#asTw8-+JzVrC95FDrYfrA1s^T)fQH{S*Wk1u!)pDXFU; z;^Yw3dz(sdBo-m6#vYGvokD|7ek0giYYF@4NEeI85|`f7d(rhRd7aB@%)<6Ix9NYc z!tM#@{|2An1nd5)te)fr@AFwv-2K&OZS8LwbUrG?9aCbny1Qd?sTL@ey{JY@fx#Ml zdr9cUJ)2Q^)1VLxy4A14gJ|(ws*PUuyJsb#$mM9dw{Mk|d8(`0VZJrFyX!>BWu_7B z{Hu`_>|vesVt&-+KuWQ97fN&6ij0cDeY(66861rM>US&FhvH&2d|cemyeC2cn?X@I zfA2KSN$~D{t2f=brv77CoG!;q#T2W=3Z-OoU!R7Zm6etG%a?@kzNe(8%W@~HqBS({ zHg53XW8`ZaS{W(*_dN{&qkb{xS7x#du7?fCKh^xFm3AqJ&rE%#P0Y1!_B`VKwFG$2 zjB4yUVEzooI(fj4iqt(Pa-_S}u?=klHJzjywZo)LWJX5lo24$*=87tJQS*oSx_@n< zQv@y|dR={eB-EZhe|3di*##Aag$uMR^H`=Nj%kHH72rt-J3Nh>_flK~iC&AH4AWsc z_hj()G7u5%E%S1IdntSwW#;07;wyV)7@GinXX6)stV+4KL?(zaBnW5>WuQhD6a1ult5{rBX1oCW1`XtLilH8mA$(_9HJE-$lysbxl( zw(AmZz$^*3!#jgGCK7J&2r?&kQ~a>x`_w9`g~X&4aY8`HDFY#mlwahAq@;543X$>8 zo*9OzVOQBWH6>3?JgbGOTqwJRVU?RR8u|TCvK-mNDP`_k zMsuKwfDm7tWvG#X3*UBCyz$a;_T!?3fe*6myaJZAa>ViV?p6ycdZ$n9F3-&6h%;Zj zpqw6f1eG&70*)r-`N}#Kt?Q|R-zEIo+GJ?Rl<3=OnM;gd!VnRfYXhJ4KuZL9eE zO(p-;@@K7&_%P$@fce(7gY zwVEUad%Z|*-(Hw`P$o`v9)W9zzCOBoHH@5n&qQaU(hWa6ySvSu4 zJm{H{2v(FlSyttHIWG^<1azj*iHV7klM5JzGpxJTYk@y`Uv$n4-hdI9pU=fBvA6)P z%M!xOZ4f?Hwz2u#J~BcEKI>3qFeu1O+}s*ZDlFfaJ397@h=}a!X=rd+_hABA0Po5E z>hR052JtBaUaOl93;^ojv9cO*-!qJ0ehC4cDhwPX6}1YP&k=%xdjPAUf^VvohE#To zwxrmG)oAbnMhOGORJp~)C)d4My{5C3IKSotUXO0iveQUq2`Q414cy0JV8~F?=!CHk z5AcY=n4@bkSg2DiOOmJkccv0YkBFglcTS=vwUQr^Q&mLZbN4m>`&7NtP5GdQS+!K;Y(!DmW(dW}3yk&(x!E)-^!=!_d~bRnjEp9=Iu zV&c(1UyQ-53v~<5bo)7G=M@*@gZAtTm_8axN_O|{nN$UuYU+uyARz_;TNx|;H*Z{9 z-V!?IN%P&t@H~h(V`5=J9PbSOY$jqrKR;qB_>Ai@JKI4{Cq_a>KD4m0Bug==rfw_r ztD-7QA89jY+y|~>&_C{@ZnQEk)pzT^WvMUpOL99`z&eLV!L0n{7O$V^UJ+%A*AjN- zKd2}YxqLy7lmS#Izvr&`k9=(r_YF+GS1eb5#|S|91lN39!d;yruCWYpFOn`II-{%g zgLP7-$kIFMXSL1Fv>1Wl>Dj=Vz01etuli6eUER<- zsz3%yNQeT?-I>cbf$N)RYWkWbpab4Rv^rhR{xPoh6f&p>s<gpG>^w0Lik@kQv;PFwed@`SPN7OLr)RJ6LGtlrjhCNut0V$OM>M^ z3%dD|f@o@;zn@(w=`E~-E#v<*F))Dd3iE0NLTjg?ZFR1(o4PM8%pC(eLb3D-6Qs># zAi(}d#2Xq`AS19W=DyQ>p(Dd8O@?9mPk*0v0EvKl2D2f8Ld}^sldr;tIFrQ$4^r}A z;~{-H|GgI&=}F>rPGI3JhxZp;!uucDBWWJQ?4vuGuM(;@Xd`lD15ngDyk-PENw+?E!)`G7@x7Ru^0GYO#NTW%M19-)O1FZq8 zW>yc6;Jwe}WC$~V<;`7$xvimtD=7l<=M3@E-u><=D{EOfSqTE{-`6ZhDM zi6t{U5lBq5U`C`2E(YR@e(Bd@wC(9yO;8GmqoSgC(kxg6-AW!091PtdyTig$=y%>~ z+Z@QzPq#Kk(Ds_JsRetineH8;55Y@na>1T1bQp2gN8*M5$iwe+n~{ZqZcjdNBO zilH9?Px%BGqu_S57%h6t0wL|cP!^7||M#2-rG{L3R%t&%9xBdN-H3zp%V7xg8J88(cTdTJe3~kB_^YWH2 z;6Saab~M6S=|LMS{t&<*nt)wiZI5>UKH?zceM(9M{8bjfVXzF-_YMdiSVIA=2Bd;h zFy8N7o$p{E^ok9FV2lHwY!;Z_OXU3iM6z_xWN?Q|M6;vQ;(Ro&&DolIY>*s}GWcQS z;IT_x?1tEQY*91OiRPqH+5x7q@)hywD8pvsw zH7L|&Zt22#RLB@b9cG-Bg$g&J{MLF6if@B3CM$i8Z+dBHbcw{A-?#JFgn6F6sZ+Rx z`O~Mt(jnNfFsOgE^t0aAkScSx+*_M*st%3hD!!jZ)#<(E@}85di^dweEqB=A7@9jy(9phlkU?U*nD#czA~ z;ZgIC9})Na{livz(@{>5sM(RiT-G~bl!|hY946K-B!etwmB08amfi@6@Y*ZkK5*Me zNQsM+fp6z~Fh|2nZ1E%X1`9tFAhC&I5Hr0AP1VyV&We==aieQG!AR@%*Mx&nejBu__I8mNbhJP6Ck!mE^HtRzK15K4 zOUvr$u;zF;RU_#M1Z*rTOpO$Eux`ia-ZAnbt(vk3M`fK(~6 z1S6_mD6>U`hCQCvG&Q8sGcw$}d-tx|`1Y(agff5Z+qLGhKZP#94q&fpYo#YhjaAmx_HJQvG8DHaD1lQQ`K#Q`>Ux?oTEHRZ1TpnGUt0;1`ljW z=0#Y;fzMN5hohrYB&Jswxa;Jq|An~n+3U5{Ep;9bZl@C-?5(K|IGmP1Yq1$Fq2WFM zLoxAUuIJ^&BHo8wbLF1imaisny*oOhBZr3r(0D$5a`Bh_J!8CHZ zYJbAl`V(rQAFIF+8V|xS*jWzEe&tebJuBJ+Llp4eF``f+U_nA=YIH#hmkaYQOhn2p zPIHePdLVW_GBUaeltTAeQQks(eI`bp_l>|iUOJ}b4c>5n-iwZS0l~RPufuL=(1{{U zzGhNJve<^2#fkbNDe*9{d+Pvf<66zap_WcbahS-V5v4X^JO&^?+Ky1_p-C zAaivN3?QL3xK(Wo$;yb&@3VU|@#^Yxfn@O)6r=WTI?)B`rOv$h`%Uj*s2j5C<$Ha3 z41ZiMS2@^>zq#2&Ih-5;gx(+v%pVK z+2Gw znI=DfIV)3eery3X2h{X0pg!*h!wd|G)!=?&_(J0A8#q}RB<8Vp@r@cJ3~)osbVx~{ zWdu||Kk_|Dg~kvXm}do&E}g|FIg@b*{nfCyK$ zR9q9grt@h4J3KP*{Ak)WXBmg#;r5>}@NYikPL^ekZSL;=Qc<}0E0GgU572KsFCHkV zVJ6*!@iSHZ`8nzN<~T8rEeVXrU=ld^Nu9Lu8HnIVsdKb6&14x{0g{8pQ% z6p69F8~<}m5ekRdEFP*N8F!(9Tr4g&jnLkOme#3i`!Gm!TL7h`tfHb7j9(}UpE@=q zkaJj@o)6$3!>jWYC`TOui}Pl)hNA>1$?7=_?e1l22&2^7d}zAve-G))Ed1O^PIfcQ z+}>U_;w|3pe!uJQjhX+_g!}pnZhIFOf35)F2PHIi{0W*Kp5#D_QG~fxD2H}k1)mZ6 z&%W^K?b$LV)sSaie$d0^f}b)EZaDZ~_PckPV0OXO6dL|dJ~h>*XCH=EgofYT??DbW zthL}fSD%1=_+@X}o4%MB{Oy?!ME}Gc`jj*aRzXC|nR!C`-xJBaF}%Z_Px+uWIXgLd z9+9V}>fW@r2m%LSI8p{hXCb5!!iR8{6#)T(y}ya42*5HM<2@r$K0OF4h3|?>p*PbZ zO3XTbHsGG+d|3@kfmcf*T4DHq>mi_uv7fyH`}+ipB~`%Q8HJAvCrwVy!hfYVaB({-mWD}z^-@?h2@g@imDHaWC`!~zBx z|3ni2S0bpR!v$^lbbl*>+&pnb!Vj~^)?t)5#XitUfG0o9}r-O0?Bs? zE+}TMd$tsDnRNH)z?mT|?iOh+Aa#k^aL%3REFn?5^}xW`_%7Yx=G$8HEoc(n z2aIqT_hme2z5KUy`M0tk*2VzspP^|!oS^x9XIRgMhGt>ggi=hTdFRXx?cup-c25(2 zxP_5{l!byWR%XoE6LCQg4YH0jKlh#a0<(Hr#lzuTrEm0_*GL}|l^J1)iKMCF${D{L3 z;lm6GAM(AuJ;Ch>5RFl0VkkKp42X&IwbO{Ltp>vcwet2yTU%|cNlA4aGKg;8q<=2y zdXpDE;xc~;LV3lv*nVe>?L%>F>B2g-9D!59@QcWY-y_#9E(W#=vQzFdF|E0;A+^cx zlRNJ*TZ*|iE0M_)6_VMqY4Q>M`xlrcVT%Ck)x_ka1O zS6JSFFU_Xug^+S4={>34h6jzNm=2Hbk7Z*N{)ys`UlX1Q9-`??nr5->K6w#Tn8 z&_K)f!=@E^G|97%`Sedd^bpo9!Y>Ez_KJB7-CqWwoBU$(xnSD3eYMdH80EA->U|iz z6dU|PaR9npVo}0UU2|Su9s@*)q(&eSvj&EgN+1xG7Z*oCv3V10>XtAEY=K2Uo$p@H zMi6uTs>Fv?CX)R8@nZ;2`hj)E<<+J3FuXeV4KmG}Hz_-Z;v60usThYPs%#{Gvmu5R z9``V8st@}8FV`lH_ba)0UFy1TM65}zQ}(vG9v$D6s#UY|Vl zQOUiB5>!)FA9SKiP1-)<5SjN@yw^;_tdYjB0ooCz5dNa@e9rEP^J1AT=~dJlV*U2^ z_q_0MzO8X!ilKWObv!2v$!A=qT*$U8tgLjRKeV*WTL!maU70P2V z&o)WX@#YOnSNe&;VhgckN-8U)w8&kY`oQ-J$d2jj_MP*`EzTM7YOG>wzkf?}e0ryA zaqWNRQ-UTBQBD7=RMUbK$}=B&-eBvF{-Pa8`Ij%bfBpKEWioa`GjP7XaoX)fJFdqZ zd$8(tB@reQgqlQxs{{CfQW`^|Zn=}T29!=`0u=!CnJdU{by!hr?!mX55n29f6!tbI z#zxBkH_Rw{(RTQe++wgIm!c0kdNP|Rt_xJmI6VG_gaZ~SB;54EKA%andr{!yK*?fHsNePNV z-TMEa*Zc)r5Xv8ucuFI_pGA(n;>3S}8HBw6l|!ajd6AEY37F*)MwaTjtcCAKut%N% z6_Hq-#x(=(#Y}zYm-mAu*EYPYoM=}SaMw#7vDd>PsV5tb9}719!RGXMS^c%GE$~FU z{v;Xvs7@1?k@7=o$R?t?TJYzOAB=EhA$@&)H}sA;xbmoW>zrXgCLl5{qpO?Xxxb={}VcXI;RxB(&GDf`FL| zu(W&qy&-2c5h^cj#06sEH4IZUVBoN%4|fqZ_}Ie%VGxz;<$^dM*DR}$dGUm{xTHiG zrez5! zzZlo1tZ?efi293Dlac3czGhfF*;`r$Q38(UPukVsUVJ(GC}2ZZTZ-p>j)iQIijpcu z5*M1Ndmb8ApqBEDs_KredH*jLU!qIyNnS0JPX4^Ds1*L6*A=6TIKma@(AN!Z7cbC( zF;6T|4B3(PP4fy3YA_7O|1A)x0#MKp^$wT&R&MnSofvT2KaZ}=HM+*`y{Z4|dAOmP zSetDcsH(1x#k4%h`Clp3rA%7Zcq>GHC?F@B4%I<;XGe#FS%arDWNQgMv$`PT9|^`1 z=Z%rV6dnuo;Ti|ymCAlepZ`9DlH9lq1UzS4YtiFTA(XcPS`83ErQUFLYs)zKYvO3RL z4yG&{xP8{%!w@)|!R_|#^?Pm)z(H1{PGcKcu(~euY$=|)(3MqAE0ldMkbNwK-3|>O zjRz6>oxT1T}jB-qyLaH_pTcnfHs0A)ubXQtD`e#r$M$0 z338zRFq)mLh#i>;%lQ%!0>$x$eF)~&$G7B(L6kg5LC5&=BOjM(4HhVZgW>gQJX`u3 z{C#JehY#-?8cxn;HhOoU4J^X=1sYrm=?Jz!Bmy1x6#pTK9Pdi0$;?K=^rLzVCs1lk zL*M(B=!qpG|49V?GqstqpzJLA{23QPU+TIwt4bq%aj};9>t}q`UtPTZgeZv+Fdi&w zPPucdtE$REzAY9o4bTcHA=<~h6iX?gl;5v~MFM7DmqoVIbU7qu09`RzDXy^@$%rfB zyod>rtmb`j8ChA2iSJLw&L*D=v|U{JAY5IM-4%d1wYtH?!_QAjLP|;%5D@UB$)64? zn?(lbav=aQS!J8&vojYV;Y|j{SlnPlII@TXFz&2E!GWZpdxixCMSSzPQDwv^nE30v zQFW0w1cZnBie7=p9R`fYr-0f6WSg%0<5`%QqN3g?$=JhYDnXFrc)278hTs6W0wq)g z;F7O;drfEnjEIec?LLx}fV;|VcJ&l$PfkHIKSAYu?Ll%;8EW(&=uBe>J+!r}ifY)o zHj}Tt{*L5LyK=#>7fA5Y|NZAxSY2JsA|^J?4*VakZjB|c@2w4;6b}I~X*Lf%`Tp&} zLENvD8dFtw@72N#eU{?*mNvapOT}Ly81&E}Al5neR2unRr%;!wbSv6k8p^>72e8qQ zLd0W>NX-53i7S9a`Dkd;ljp|4RObW+PXW6TrR4PVZh#|e9~>T9aho>$*bFCn{a@kT z>0EpLl(SQ`cvjeC0t>EMU_ULq01BW%K{E@xf;3usd!r%I!nVA($1~eNHB_kcdnoUQ zAq3pY7L(0FucR)Tx2gFRgctVv@9-fYPY_yO&byPE(et#2lJQR1hKhZzGHE?>c?FwR zEF7$o{17OY2j}UVm>BYn@ls80lX{l3(^KAH#szpsm-|+;+lroR8u%TX{CSDXWMg)f zKXi1XI%E@v0e1HA1U>JkhJ^}ta&XA)7*<-}DIDE!{PcD)^dH4H3{QhBj<4uWxVd#T z+~cWBBIr3%fxSj0vge9sK3e!7iwBV{w0aNZx zCKG58nuQTbY*+&W7A8^6!dtH+#L2h^WiO)K?ov+oUEaF^bCM=ueFaiZA8ybg_G zQ{q3-oeH?sYfw~pIXESjLEgFF@Guu)_eMiq__j8PhK{5)O2mfUXvohAf!7BW{4hqm{T446ygQ%){9~T!4nd=Jt zw&v1eeBCHGL}|tqXEQ z3?@!3@eSwRs@n0Gvn^p30f$KJdH+r3L=`PPy>K{xVFRl>y!3|-4i3_|L8Ybl5kR}9 zf*Bf8o*3eoAoa+Bmc>X$wkG~^KB;bMqU_>#8~gcz&JS$DyxGvwz$rcxEi$k={C=9X zdaeN*FRw{82>@c#nGB0dQkdd@zC`@+x`T5Nhib_KFhPlY382qC7{{HJbA563@OTdL z>@7GqI`^^7;Z8%1qrgE_y!NEPGu z$nC0DnfH1n4=J(r^z=9iz^$UGaV}5Mh;2V%NFgKyr_V zhbK_xLo=-5ZifwR@1d>O1NRgcg0j7nxfuN2la;RpUQ8h2cdY(S0fm*+n>P<1Aw_2! zIlsZ$2=*>#4Di%h$1Ek}%$2w0Yuly>v9$lUm>+KD8}!v-TE_iS)Jv@Nz!41QaDCsF3a?U40D%FgK?#cVQ}xC6?=gi z8a5$jPp>n4Wk7EWLZUl5?%1`QS*1z^NHS1U|EkwNu@rBCyf3U>S;2>ymnldZo@ZW= zQO;=*0Xm{pQyhl({{-A?PLY`X#O^;j)kY3=;A8^>JSDlSJY99 zhJbPvrhZItKLhySkDF-b4<3A5h~E4Bo#1tb(1RsRBpE{^2xw{BrOg6*6MzYZ^YZ0q zXgUw~ZKjh5hiC+f+?bFlWj$F97FlT047{tO`y${WevZ{ehv;g4S z3(ySgiYYc-MN!4gO9Z8{@l@*Z>1x$S9!@+SK6D|+Pve{IH!RQ3pIIs2c=5ua1GvN_ zKnRBgNud;&LA(M2WU$BG0B#CNaq$d6Vd2->g`s(b9ybJe9p}Wq!=GQAo=yWJK6pJr zB0@k94kO3U;HF+xgI26N+1{uS3xPmZE6YjiPMyw2Kwo(paHGrl6+#`+a3{ID%?miT z!|PFqha8ELNcq9fP!^$x!K(T9jrak2XNUkXEp&f* zd7!TbtV*NS)(TkX;+h!h_r!fqkf89shBYUkhQs_245mPCT3B4vcCkL*s%_qB!ua`f zG<&)!JBB*oY4tUH5P;^VUxJTQiY{fTu3a7JIjqUKtAET*Xe&k3>rP&hy3t|y(vXkX_QF~>07RxQ#uzexQ z-fx0g9LzpMz0vl1G+&oabRe#i^kX!Hgqh(qe;*na_V@uiyr6K-zJ-q=)O0UM7e z&j^EGC>9<$-~>UDk7;je2>Hs4mnG`P0lEi($zfT2J0UP7_jpOsVcQ5iz%fnVVD z+qZZO^z?nOYyl5oUt$1|9&8B5ze4@J!Axxe+gz8Gq6_ZxdG)z)Blyq~&nhyu+$+n=lz_%nIcj|?l#~SbexiJ|y-`gb_p@}N!Pxt5 z3t-&7*c%jb%Tc~^4g9m7wdISHN-ts-BYjg{MO<+^J&^^h4j?M_zyOB{Obk4gV zWITrjl3>pG>es@-OKeWb{zOpR3(3~3U?)O)?YxqoW<1YW8Ys6F|v=2oh#tosvX%>Vh*mANJEPXA1Y z>MXAci))@*?Mv{*wA8zeuC#c0d&_Vq??YKkLPRIZ!VNukPhXz`toUI{ROv|bWhrW@ z5SZ}skv$qS#g^pJXb3)+SMQCCIE>O$nfUnP z48$LM!^tNHb@GQ%J7ws#Gb6P!uP;gj&qwvmE{D5v6#LDXMMO@toSb%lgE=t@qKP${ zs;Wy4FJ4&oS2-5nkol~B`(dvGhuXMtb?(`$-}&0&beToqJEGaElG;G|x8~rVg?oX@ z!{eAjUl&RkJPLI9_=ag^J{ucujs?C|O;iVX4r)IzYz0mcaF|MfTy=7JMMZFIEHN-K zh@k4W6WA+M*k3uAC{PR9s<2uv`@#up>sUU58KJV$#VXv+!GQptemHZGh%(q-kP=OM z*L`#JZK8OaScsM3^2*9Tz}r~D#kK%&9m7{Y`}@1VskmJYFHq80UyWy{utgN{^{apwArTH_-&8ioa^Eycluv)p#9rN=-4vI>25JFS ziHGCaPB6M%-xc~$5h^DKp}0KY0<`}rG{02CM0@Hlsn?hBrkVe_-0@PEeS;nj5k1Py z0=unz+8SkX?7BqEn_WDBA`%VvOXSMRN-NYN27z|AwGPwnNAa4HwudtmO}|mcfiOwT zQd$LM~7>}8RdVDZ8NP7dn#iTLn=DeDS^CIH}S(}CwM5Qx;$6-vn6YTH4w|us`pw+Un~s zbyjuMC=yNmcZ)$&y`iL-{&~C9#Y6t(&+K-VrfmY#s~-k!U{x~82@3Lp8c6858U@ch zv)Dv4V|K-f;6uAZ0@I3nAcio)T;h@AlFRDa+P{W|=Qwi`J~qnBws_stN;ekKB0MZ5l)5G*piyGpKpuV{WHOd-hB%TQvlf%3aTX& zBu7ze8b=APE=X<0@L?B0T7{I!;@a@*Bt5|O_3cp6(U~NrqaIkq*AjrB^=)|;FtzE2J3z4fafs` zgu!^D68BFk`BRt49%uJaTG_?(yF0I302!6eh%1E%ENZp*dk5rXX;;^(lR-s>M&E9l)5X9xNCwJN;&kP57=&{zs)DTu3LjY#($3kWGWbP{Qg@uQI90kk3L($&V z^)cZ33X;8kN6xtD_neE36}t%$yWRJ7S88fB=+_bOcnzVTQq0KFsAI)O{>dIgRRz0V~-uH)l%AW8S<;gI_p22mlIK zM(&s?E&l^zlf2C_0sxQMrMMh(mkeL+;m`?_k)UH@nskcvYJ==vkne7bDxEjvI^*KwPhs0hAym)$K-*i)cR%>w=d^Ygl3Y|wmZ35qDA{p? z3-rEJgEy1Arn>qL1e#Q!%Kpc7AGVuEGx(pN!Ou{Fqt(=%xsy|ttgu{D2K{jIabaL* z^oJ6CqGJF9TF?98{Ml(5uIL#2II_kjp25MTty6gV?!)h;7n9w1l>Ff}Y|oz$7oXjC zf>p~e<{D0k`}aRxS2b?lVJ2a~l2ZP25Fyzq|ND(eqszLhj$gFw6G~ESjffHW;`ntN4Lx4HQ z9t3R78rzWR(_-&l|NX1X`qP?NEuEEh#HQIGZ%x(aO}@}0thb-E6NjEY!jSPJ_T|Ox zTffmEj+<|u%bKISr>#B}d}m#i>F&BVHAjTy4P4cbkugg4^lnq@=k6;9Om?I+y)U^d zUtajXFZiqRz2IHj&(wV)?84gGWJs3F0O6jhmxA#1T}u34X=&6}UtN9z%dG56QIR;f zh0_E2CwV>{CsL))ed_S|JMp2!tZ9xk zTEP}7U)S>^hmFn6cvumo>A2C!$EzNnmY)75BElu>^dWciy=Mr#<_GWanC6nT{T1aL zVX$iUpZiu?lpOPSpxJOjDd8rl$xfELz5S9oS3Gz9nNgC}A0h&R2jHe&nV2xpaB#Rs z70&dmJcZ<4*IlX6@r2~TD7-bDZ$l1P%_sza7p;UfHwe;5s zaiH1D${ld8UQo4d>X9dKH~Vd8KP;n}uk=Rm0tU@k}+= zro{|RaklZ-a;~uv^i3;Nvkd#6D#8i^FA(Wkvj-0Dms5L&Hcb>0a0Rn+!VGOjERmWhQz%XnwU75ixYPWlUYaSy3Hgf zNqmcR(EeQjnY>{er9C_JS>X2ak)9NPZu+d8l7NtK3fjl=!os`Sj}N=#n4L2t{1-D6 zDbh*`3vH9fHyaHM4cDjtb9ruRbW9{=1*uoa94{tWH9i=}bv+?cpy#pnueI*Ro~W~9<63ddu_5m zYw!YB6&1l?qX5uo^f$x$vS3MSyS9~a;iGy46-($q#F~!!u%r|1^DhZQ_w!vTp9PS_ zZi)0cF~{0G*&h9f%uVAxdgkU<-BeSPl)q2Z4DH?^7-X)?xi$|wiW|(x;nSvwK;|Yy zkoBFK?fZMKUmtw|VYCruGmhZal#)t}Cx}^k1hYy3T0(}!43BR}{>=}rXbU%(LX&yj z$5!`8g#`qb`-S%%oSX*McXqBNVwD;$`5J$HqfEiZM`$|r#V1+OMawal08}8d<7q$r zKS=2o!t5=RU&)3)wWcd}MKjmPaQXRQ2R^{t zx$Ag8p8q@bt%8M0PdX=7Q-36vz(=?Hr2cEb&YtIy$#>relA@xbn;zg5|Qho0Xr&bWCP#}hKH_zOL1!zEHSmf#a z-shV2A_P8ys`dIS0^&rP@IAv%m6kLa!&nF>V!e6*t--^JsKbS?X@NO`8xi;x{`mjz bA6zq2Np3z@Z0|%zz(30J8ggG{%!B_A3iFS( diff --git a/docs/_images/notebooks_weights_28_1.png b/docs/_images/notebooks_weights_28_1.png deleted file mode 100644 index 407c4c1e655431f695cfde8a7f3fa64e5690a05e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 47568 zcma&OWmJ^i`vy9MG=hL2-HmifcY}a5NOz~CbT`sn0!m1ibT^1}cXvv2Ht+BJ*ZF#8 ztx<8tndjMY-&bwJ6cr>!ag z1mjTfGornerV|8$jPde>`n%-)0REEOSzN>UlbxxvtAV2l#Kyqc-rCOD+QN|Ji;1I? zg`F)MBMT!d1Btn_vpo+J)BpE6qn)D}6J~kroqHamzT&bk)F`x$A2)Gfj^6 zWqLzcaxTQ6;V5zEjqUdJwyYFfh1#jkUGLE$gk51y?iJFsSD&1-oE-!GNK(j zQ4#VPN)EzYd04AH)cQNQA`SV(aZD4F9(lZ)ap!NHO?gDfXQx&%;^1xxLz(uma%{L;PZ$vDU zTGX9YM-}0fgziO`w7i7@(xrXfKpKP+8Tq;0t zAh0mIh^satQY%%WrjU2gb&bf-_QdVq`hxdhb1dc>voS={v`@V$igCYnTv#&)D(@ra z;QN|F9tK-8Am7!v8Q)sxLT3F>Z>(4$es8@wG21a@EZ|-i5knW65MzOg`hb-yJ;TWrL6tEp(6MCL}4!F!|yt*f6*WVoag@ zEWN??SM~@*KgaZShXlj?fkuFeRrw;t4@osyF-vR-Mk?QfY(jo~x~>+0Tw{n-(H3ai z@OmO5h81P#K)eIdH7O-N+CcuHWDrA>grX}eu9@-q=D*c_PDCeDbNk$$pWbkYv{KS8 za*Od1@mt8w+y*bC1*!(R0-Yv2(UVBBjAVpw9z!nh^R1WN_+S-=Z+t!cpu_ClrzfQNLX}{)n z9y}6zE(Iy4A%>Yj53IWP<|Hh`oU-|TgfzdZ^QC~{hSTTwB_4YH_@*5X;sY%OrKt7g zVPoSngc-eEMnuX-drVJ6WPLACSqmYlra2V-Zwxvab>Jj?1@7>D_3L(b2ot)9C5DKl z-`1NXCnTXaq{i5!-HGU(m?ByjBJ+tYPcXA^Ot26H(x<@Kj%#;Uj43D)T9-?L|Lu7Q zBrtXWvJCYH!Iv$?%nYS~Jpz3ln&kEHh7*3fCFDd&<{%*xA6Ct4yybAw3L;RLaLgoY z>5b2jOpQ?LYeZgfsb>8D^W|Hxjz zJ~Dn0cVkBWe=lH*^t(a8`_C|95#=9uxtR|EovqKl@@& zbHKnfHu~zkX3&Nk&U)+~@+VmxVruIy%J#O*zV$kLh5q){<#>ssty9u_?Lwz7U$%9< zZ%sz0rc|FhB%>k3-UtNzNcIFmpzgBuG3FM|8yt2o!AHR{8YbYRAPAlrG4t{?!wGz zr7E~zU(t})Yg@^B5>is3PXSYwIc6XAJD_uH7A)(%3knJho}V6_yF=f6m!R~~gJ`sR zeXv<>{;>DAAY!V#d}8l($#vytg3Oi|1liEY=z>^q`=GonOPUsS!m{?KK6JETUvDqA z_E*-ajQyjv+gr07cc(fj6~jXaq|YHIL8PceE^2X55$R#&`NQHYl<$nLr+neW-for2 zkh!q1-%~)-msbiIkn2OJ&Mv5^UV(V_Z>?YNzZFLkLShGuNdkR0tS=mFW-Caw>a1}g ztH~dnw%O^QZ!Jy0&~jZ>obzdw$q`-V>X&` z{d_y-!)e8y_FQK^zCOkH`M1~p{{HX&o}R5Ri9ch|QxmHLqi|}!V0&ZW8Fl_xjVB8t za9q2Et~5a1+_QD{b@Usv%4PB-CJ$|0?oXBUW=@vjGaEp+UkLRImOLiXgs-|Un{J@J zV}`VNTw!cE-ZqxEJ$by0gcsBerbsI>pPT*7;av3_Lc%D4uXp|a{{Bc%4GY$+7|&kY zBS!z`t`3IDOW_-JYy|^~RO$7fyoP#DPa!-mhFN6DyNiu%zg-T31)m=#8eUD!;kuph z=U99qIm%YeWeg`v9I&1l`1$2%-tB5ieeK}j{&#itMG%+^F(}`Xl7oM7adG6P!zq3p z0r2^r|Bk=Ao-D(T?cS;Kqh<*{>BFIs3Ms~Rbh&3qT3Gx%+L@{#wLj9Tb^Ph!;o(S^ zIM@)t&o}Gua7yy0ichNCjT~Ej!M?W(NSw_d%MtL zx)e7fGn1G=yY5qU<`wAH5(UuMOmMc#u>Jw4M8}((Vu$Owa4GeBS2OR4cQ#`D^2j1W z5MRHR02gpJmYeb}$5ei`amTmT3YAz-9v#+i-mwb~0>D6MSeV1fOt~IC4oI<=VhB+6=X^*d=ZyA?}XKS8rzLP8-L z=2SLa-`Fs^n|~heAj}BTZzGUuDRp&rN`uAFx>%MzP;}1s@yPI$fPc`@p!kgmT+ALz-KstbJ+emY zA{{S>wsPxzttv`0>%-&Yc%6-QU~sU&nO5o=B`CLON;D8ArW{Y#oKD;McbkqM%y7`g zjux;(a*0+ChMF1N-LX+O_Vy5!ut*X7EvVt(s-PqFd`#d>Ir?<*>l`yOGSG>LqWk;% zsZrh!tU9otG{ZO_BGg!Pi7-;-DAIr_2;(m`W6(hu&a}EeND&eef>c#ixmAmJyw_r` z_f*41f1_lBn*I0hUq`Oe{32)wi8a~ScUg@*3|7{ZK60iQcSRkYNP$G<@Qe(CxE=Qe zYPdQ(Gzuy$yXKv&lB$$$4esaw9mb-8fr0G|6avB5k@)b=d!2j=Q&^tvZjo!6uLpRi zR~sE*X6s{AQ4i;g&iDLD^t*yl4HXq*HHs7n@#Rigpke%YU9EixG0hk1-t+PCb?bTG zierh7Hw%l1q?nEL1T}7z;NnH~{#qs!rNKgio;J~4*Ob8WQ!Vl3anW!HYHJ%11)Di| zx%F#03L($r_4Gq5DZ{^BExu&%}pZ~-iW=t1r7zzxaG`pQvZXm&$G=q^U*@R z_f9o7T$YHFP0@^{t|2rjU0 z&t+Ew&{8U^or*L?b(-DY;4tc}QYmEg&utmF?Yw3-gmubSV>4#O1%uRd`{ReYIAl z3{Bo&>locU()a>Ja@&JZ@&8mBNwQnd{<(81MIk26`OJF|{Zp}m4-Xla)fnOI^b}qF zmyUG3^;}+)!$z<>X=}cuAJ>YpQ?Ud-ml9S2v(*0_iPfoVS#`XLD`!f}WKlYv>de5vfP#xl{dz{vCzVTI5uIK; zn=J&lU~Ue3YzR*UY}@gC$+woZcM-F*8X@IH(e15pW4=)BLrm2a)dTS(M5aSY?+w8d z6cp2*0bBqi3JsK^5Rs5XKxNg?(vsn{nGam?d0uKpS64*8F#X&J?R6QKXlB8qRfe6Q zjD^FihR9D!DhwzHEhlH)pIpp1dldNB%qK-f)TbLUrkq zBoSJ1C8amRqt!LgA3l8OA03^By6G{9w`aa?T*JWBZ1y}eq@pn=rArL2v0a)+!esLs z&wn4Sx)1wJ*x7@?EgudJ&VR?g74{?nNjyz3&I)34^&p;$02$hiTBFQ6UMIXsNyuKyqsy-eTVR= z3r$e0NFh^7M8tpTYuCNCF>iuH@njK!(sQb^MIJvrTvYG-2O!W(!?eth`|bLSk54;vsqi6HeX?% z4l!A)Uq1d*!~Zf{VX!%z%Es+_oH5lq89@V`&IL1)hAS}L(fn{eWV}6`ihzu~aecD# z@!#rQIsl){t9!Cd=lbd=$t#iy-DwAN+; z`=sR`k)YR&{r7@`@wfD9f5=4d^es7LKb)Q$5?L@Yt)3dxNx#x?dulrIUF-52mW$Xi zM@&#g@Yl~?j(K}?F($}C&{q}{6~$3~{k+%C2^T}cZ0B19^Zi4^E}) ziSB&^fm#{#{&ek7L8+e{m1qnRKeNleisRm2%Bn9%S{)RWmN+MSnKp+~c7mu|k^LvJS~sEcg$Mx9M-+c^OGaT!AFEo7=1JQz(_O1ghI zH~fQkOzCbFCdX+fq)%L|LTvl#F*VW`28cWD&rkmZYpiCXIV~sqZD(4Xc3zKW@)k{- zvlGuAss%g9w8Z|A*Nxce z40NP%Sc%!$*+mlZr&ULoN(Wh$Yt_o+PVC|J_VzBIU^Jv9Ym{P2hGjp7`j?nq|0);3Ks{1={>zVyS!}DmpBb=k?(mM&0IqR3g4vflj!# z=cgFKNzZB4f6HE1uviXWY z=`GGwMj;iIE!{?stJy-EL9A(; zrQWRj=4QU`o}RGd<6{8Fg`@B|tUX%#q~+wkgYGvYuJkbQ3+Gp%#!MF`9#ZqO06M18 z`1i}Ww6ySS?>ofu=5wU|g%T_GWJZRh=U)8l#w$ z*V22w)gJoh<~?m#R+~%2&E1{h-Q^yd=h5R84s!X`uF@6v-d=luT>HZB% z^SS9uCy*ujBXQZdsi~>cbB_$^(=HbC}esSSKNlDpEg3vuMAnokr zln?mFDmghhRE46tg#|5?FM#2a^&$t;l__4T=+JW6qk}s2wk8GHYSxW$>FE&-4cy~h zU0tM2WDrHV#L$=+rYUoFObVkNTC)SS)d%W?41Ru-o#;HVPO0ujg2W>x_|x10AGj!DFG8a#%m0XaqXwPjjBjvt^ND6ANX2B zKow_Ozw&y0{rblI;K}QAQ?{MZW&EY97ZAP18$FRQP-V?7Y+!5(Ma(9AOw1 zKE4bz6qG>F+Od#c6@9LccFO#KIkfB{ds?C%BbzEn%r};AI+C{eZ^Z{($EIk0ku1)} zdFXtN!Q&gj$ArXMG+e{pbngUzf9QwHiH~_YjMM;z@ElGfuCjcKk9XMUMGXR?iede% zkHDR%77V=d!;|M$xzZp}IK5g01v78HT1lm04-%3P0hcX--5xyshYz@Ob8`T}2?2Zt zE(&bQx0{WP-?u7_7UPKcLluf(#x6(#+ZPtJU-~zwTo4=_oP%aswnpbYj4#KFVW3Ix zqdpp&nHlYjW*Pz(CM_l=wq^4{Aw!?>)a4*DyM4Xq(11lBa=>H^QNnsD3~;D;eCO5S zO?idbHAIyOlanf?+VzZjB~#O&-@24GR|lHxI@b(}Ev3BMPF$`ZYjvXA05E<1=cgj6 zY=N&*jXP61VCTer`{sZD?2u|MYQ2r)4`<(ziWP0P!$`npuEuCAmM z6oDtRmE@M%Yy&rgZw{DO`qNREDOAmg!)Q^(~k5`3GxMV8t z>;1J?030gO)nNiA;fRRa9p}N@Mz^@1Y$3r_%*k&STfgGF>`%IX-`(g8LY{5$^&=wh!Z``EspqL}s$H7k!Se6SPIY?K-57a{Mg=%}!d zMwCRr&5hgIdQXIxiVBv;^`XTyH_&T(&;%cR!MYxwnD}&geon?=Il0Qu$ETS89oDwB z)xP{QJ}Ael?nLhH?hPJSbS+>qT3krvB4H_dQjAZwf>FHFRn;YIRW|;X^xj)%2m6Vqo0^WK!UyH1(tJ`^Vw&9+s z5YiQbHj&O{_w7X>6OX{|)tiA!_*#fzHj*|qos0Q1c$dq~bgc07(yJ!>n?m0=71v|q zUtN|$mX>sNwo5Wgi;IDPuq_!M0Cw`3+vkZ7h;2|~eX?auUrch-t`6w=)qkq2139?? zbpP0-q+VWL-Uwk~VG26B@Y#H1M>REUwQ}7k*Ojk0zor%aTixO;zNEYf=(|1|)<|Q{ z{kvTOaD}j`DOGqx#9l0^Xg_EpM3)1W6NOQ${hyUS0PY5~uqgz8MP5$M=|~9yjH&Q9 zL+yf20#ej|Cg^`*(^p@OraCQ9j_lSU|-c5&XC4#7r-Fe&bL$RlpQd2z{|LhV$F? zWK>d2jPJof3-97LyX`RDugJu_{t=V67TeB2ZSL`5)XG{GeuG;>$#Dq@f%sgu`n!K} zxt+EnUq%B{WOZwcG8$mMi&|l*ke}9bRpKtU=Ub^jcps}Nb~M@b0iXGxSf-3V8&z#j z8joHtSyd4SJT85}VvIZdU$H7-$%z9jYkWY;82$jC|?8Mr1Saa00lXD00ku_zsH{jhr9>Rgm14CLc`5yGKc+ADy0F}!ugphMJz6}LAMHvnh=27sIT-%Nb8?y7ZVDuL!uU7MeX=dT{7 zqzL@UPLDNw`t!6&g)Y%hOe}Erw~N(5-RlZ63k!=?cL8#+5xWKFtNosuo~p-E3YIEJ zwP~UWjaJk}5lBxjFR|nsKd6`MzMm}9PL>cC2gDcWa&IE!aIp~+h#rJFYSkfixDGBG z#_37_mjw_(fJ1rLK4i=a%o*(Ty7m{sDGe_03^-t`54RWFdL<1hEoQPk4P@kgn$^C^ zx*mTNPyghKBA}pP5oTuRqsh?z0{BVhXAQ51*3A}9k~*gg-Gt6<&Ry}r{q5};fbSCj zW@MzKga8u#cRs}A#5ZO%oWi05>XYl9auD6-Lj8#CzGj>ESLgjnX&nG$%#}~5qm4|K zk+I*oxS5;N=w@?9eb3?+R!(LrTA%#MP-^>H{a3|RABMlbZ>3S{{6iWCq(JefO8?l{ z4rsT<*#$a&CF@YiVY1Da=0@sd=Uab@za2nhALI*Gv-0tV!ArRnV zc)2PoV_c>M{&QZZ&~QQ%}H;gGj%2GS+#nsTrLWChX#_Xz-D0s?M(2)RV0kbD2)zyRXo{Xgm#LI*Gs?`a6J2AzMZ^YLOTG6F(7 zs6joT_`Eyu+yCRY^n4d&0|m)bi+F&7F^?(JZWPq>$=qicKwYYj3F>B`B=H@v(P@Nc z(C~%1zb2)jk+Kh@N~u(oakxD9(?h~*a zc^9F@Rn*nh1A~HuvBb{-yqti6e;o^&2qG|97BLb3nw|q6v2$f5JDuBs3<%kFtxBZH z)!2B!>~4`g6PUZ>FzYES+*=2-cTsq%?kB%2I{_GT#>K^@Z*tx9UX@2(R|NO6}p@Idv#j(O2;i3QZh1VK!iOhnw3k`-s?1d zkp~qzx6E>8dv&LePsh}D9)T3VO>!b4B2ZsMU#M_$Y%EDqLc$;LC>G^~f?^n-9YOs= zjr%PtI-^Y6L4YZSJt9K1@7L$Bxq0op{$@6t1ue;s13f|f_iCl>Wt+y8!Yi#_6}8h6 z__2UDeJWCT8)RKs$4JtKDjmvbrO{N^ocUL zswHa8J;f6j+m$`Ebc0n6boPA{m|1O)!Ier%{WdE^9r=>lHr7^7plvE=D%1n7J+^|i zOpC>+RTk%3Xwp(s*N_8w?1C=_3I^_UB#omBK%Jh6qK{5Mi_EL9=MoVWZ43=XNKl6Y zqTpXpVPtSZSd4m4fmY1ll9?WHcQCE_aO&#lC?X~XOGZZK22c~Y&BlpD+Q~Nxe!SAiK2_hmQ`pFa&JG%ZY zl*d0@Y0JKvWXUz`d>0-b-tIsEvIRMyZ7R~(?@!VKdk4qA129JwO z3Xe;%u&6|tns(8nh(l!$DjaB!Kyz|9Ui{$k@A&hsGY?rfS+hh`XGKp0?fwikr;VXG z)$Q#qpxLMboO(ju*>@i?tRL8Ef?Cm~^DiYGhO-|SOg>(TWlHk)#4$8wxx0u^ooQR5=zkAF4CFXQn zo13cu{7T8ozfF*#9CIL$n)&ta^q@TB=Ae8P4$XA$^;9HSfwb&+Bc`A*^BB#p;_@bO zd@Jprt1kU(u*_HIbl3J=J$}j1wX{SCzF5-zRv%PY@B1UJ$rAOCSmJRL=In|4a^|&K z+nVkhsH-!2W%D|})XKC@|NX;xemwDUN>BzSG9HKJpRqTzJiIu0l7mVO7l*RBg?O^vKEANL1-N@fWljO=)* zV57ad>W_of^B$mEk%+4DYE`4);CRcLde|>X{FUNr#A6+}{2T&Aq?dsA7hK&leVU7_8ZFx;8fW{AY_YKJsE&k z2uMgTITq4zGO*z3R3(6%JG?qDPEAkcw77&{E(Ekffcwj0gTta- z+anc&W|de5y9LJ1$%)=xidI>Y#^D+*tw9zao2UY4$Gx`~JL5pa`P=%{Q(1|13Ir)~ z?{@#Kzz9Be7n>C;xzTfQ)PAq2xkQs36YYd+e&qZFT~4#RbNt%aw2C8QLj$q4scB=| z9Cmqm8Ei5-*V9$uGq5Ce3=GypkJ9>pD)_JU7EaegYa~TB;-Ub7dFmhW}jtGaDQ*0sd_+&_0s1GY)2|M}FeU^Z`3+w#Fj< z9l-5_VmidBA5+%`96bb{-rd}qZKE)&p^x_(o0xPA4A8m*lu8+$CF{~#(eX)V7&~|n zWG${wcu$!9THBuM)+en4K)KZQJmNS8nCr(NecqJi_|3km{w#B$ilqs6G@DFE!j3zz zh!X_uSA83R5Pk=sRQz4cz-IEvdB%GVP7b_j_Q}AT8kvI5R5mmFvvqOdGBqbmY6Xf~ ztC{I?r8jtkuq~~3;kXG?-Mnu1*EWQ{Z3O&ii1@Ktx{Yq;@li0R5=qK#JRX7!82lzi&sOS%SS#dV60DpZdmREt-mg z0=A>0L$y^wJZ^V?#_VJy4i>ik-z9KSIM}J??0BPw0g~t% zy0LLcXL&S+0EMiB))*HbPp**0jtJD(KX!)+q6lmrS)Q+N9-MM=+N&D1{Sp$efUw4Y zxa+RsisI?EzMdj{(Exo$p5L$0)0M?viZfuA&GPt4mbmk^NXgW?w_>dLnZDHo*edIL zdtrJ$k8i;aD&)zG2G_vN%liqKkZ+ReOr@lle>-!4if%PsnhPYCLVz-N5J(I4c)3$3 zTbVT4=QW43Y|hcA$;ioJK<8E$xLFM-_6(JJa5}p(kseCCboCU9ry54Sygy;+8}8d7 zZt{kLluzZYrrWJ5iEB13X;ea=p8H!*GdRB!Bm&5r>P2~fD;@`G3J5qU%Df*FZgz>V znT`BGfGz%pUi}vq&|z>eF=0M_{5WwD!W|v7lf-C}Tc+pZq5%&rL(9s_x*5wi8JwH2 zf1k(Bk@(kU;fHjF;75y*G*H&kzUXqS0o$bJPhZI2=ck$RPwxI;iqkSP<=-N`QZ1Rf zEGcir0O2$ImEYr<5@QEgIj04gn6 zUDB?$#s!IsPsg=McMXIe=9{>XtYdx5vBbqoNem{a)GjdyN3iZ=2>bvr-Jkpk1MIaI z4+Dg#UWj=Guq3gtvD17;YOVZSg0)wde!Cz8BIwoT{n$`iS{h;#I2?pd^_kV3^-o*d zvcyCk89zTE-x&4mW9PFF%Kh{8kx`gtVdw`30xL32jed+YURP735l%8e!T&^mBxK|d zsd5q~tf{-3o3Mc8riO&T^YQbq9UY;9D*-I7v#$>xV46Idb>QXrD*p@wK|meG5TF}4 zII_+Y@kyPIOLC@HQ-MB;7^eh9MRtFz7aGfbdHjz|3|NOVtTggH78bs6;#l zov>BbbF2nW54U`M4)54ZQAFOWE?=J;8vNNB@|)GTZpjpT5A3clU+R!4Tu@a-xH zILHN7&~_(69`9G4S+CCQ+G+~PEIQS?40CA5mc3kfz$OGZys-Ho(;)R-oDbT3PkkL zLhKvlPMqrB^J%F4`eC9 zmY@9jNpjMh9hj9s1Mj3~i)WYnSYG!vdwqSq8yNGpK=A3Vl_S$%?+#lmRxL3H%wo@J zjNfej3nzKN`%{TsnU~mPwm>Emz&s)%(AS4^3VXVEIKX4Z7qHRV1Yfi-ZRQ7Jf2A&j3Bo+I_*^0tq1^@3kD3x zD#$n}wtk^almSh@^2d)*;P&9i6aXlhU~gHAN6-f*LP-frT0Yx0~NhdVLX5#0P;hA)69yUU7A;W-=!J;)nW`_YTJYM zjp~c}rEyk}pbKtnAilj=RnE0t2LVdg8#gpm|9oX6UAs9z(EXeun&5*7sQc1Ia;YNF zFfb**MYC=iNf2mgX#s&DYi(^^rEh8ycwWrAoeKxO;V($xu$l~Ft*hlmG_|z}N<{%aaWqzZb@im~hdDFrj)zqkwE+{+ zzY`O}2p>!*BBZ#JSd28#%EH$J3R$h+A>S6Ol)e|QHpP~w1$PG&a%?~rR_g8ae#xhE z{xF<4?e2|GMyl09El`#QfzP$IwX@AT4u?GP3%1k(*}31XULOujuDD4_h4e|PFfc3c z+o3=j?L3Yne1lsql{HAO!9KSF_}B&@Ez&%mP9vlF_jGeW;$yw3eBtxr4<+*7W@AKm z`z7UCW&sODXcL}z0vSQ#U7e+@)~dje1cmE2gxhWcnV<6A6M00Q%Q@ZC6;q))vonno zX1cVN7GCT9G4I;$c>X(fbM%)$omsKV=mkjs@u8!m`^vat0J)La+x(iq23Q%aKpc|* zSXpwBexSs1^2ZxM@1nqck}iaLWx&^1n*23Xdfn&nBE~Z6H0ZZ<<2Mqdu!Xq8)ms}J zJK#HlnN|fUt4W4S3yGp?zL<(n)JYRSu4dNvo$CTXqg1a=SEttUEnqxi%ii}kK#o>7 zIaEO+g$1VS>D85Z0n#C_>->Z8JwzBXnhk(#M@J$)uSuwA2$|=$+xStZDbeQaio zA9zWWJb})&xYiXC^&GJ0EH_qCI+j9vd9soX0xk|(R@=*gAu!oqojg<8mF4Ot#-^s7 zb91*^*4CxHg*YBE%+{x3l5Db5S`?HlM(cXd9x5$!Kqf;1kN_K)7!jwZ_UG3NcH|5U z!{38C%?%BUKTDb@VO6>us8s?RU{ZZ7YU$T!USRF5g60`4uy-p7&`~}{5zZ4>WiuV>&<^S+Mgqgi~Idk(-&0% zS1_Bv$1nfZ_H-AKA?UN*pl9pVJa@zfK7g%la$SbvvnlmMS0i#Djgjn~ zyo)giFdM?ADzbT>k)aVfG?UyjB`br1w44aoSkp;sJ_w6AgCM}}bQ!+c6`HxYj!w!C z6^{R;Ziy&7U|$3XBbWO;KY^JmfJY-@AH8rqNYa%40;GrlnS%B7^lvDZNKV@ogAuMP zwIeqW85x-ji1B~7U*uqPa9op_nVS2liBo&%c!kSt5L8d+moOK(WHbdPmE7u;jTQry zU^cE%-RAWBq#OdgLB4gk^CJ+VJ^i=T)V*~v)qz|YCdj1D|ja?q&ABvi9Zjrry| zyJ3N;9|$y=c`ChXBgyN?biO&$^+4c>YGo=UTgG=}i=aH`Ho4Zz2X%U$KyCEFu$jI~ z>@S_z>z8F}>DDfgE))n4PjS(WlGy{MK-lJ{F{|UIR5Y71K?TsEDCp^jD(+>m=2kjG zkwW@Dc-=6AB~3AFoLoEwEg4;5ul;x@*RwFFD3d#7nF*!hWAPdBLbExAKc!6iVw)i{ z{#z#sF^sNMqD)X0zb8h#A=A4El66xU9bR|rBFV-8*qe(Wu8of zEpG^DE--x#4R(PnVVpJ^2m@l)tp@ZA#!+>WQHG5boI*cUEFqh7#-~N-8;)+1mJ1{L zbF8cNE4~LaS9JIne0E-;y%-?+dNPwlM1lEd&v~}aCLK7nu3A~?`;Nj#{GrQ`bEJm}eJ>p~r zF|OL7iTFeV^}k6XSmL1PJv}|%V@NzHb{ZQR5I*#>+v`?98XS9mu+Td`-nrb|-iE2IR45^VV4Y_cq2MUSvg@J# zBT`wU^3O@(`3l@9gMgh~CH-lJg%KetqXAp>@~Ta)RpD=!K*6Z+xUxJ0+esY69TYY5 zeoblquF+C82WLl8?{041y&WtL1vJ(zi>q0btox8cE_#DRLz{+~Eq)90>HuC$yz(}R za7bpV%~Rv-^b@m{D-- zWuaBBxdMH6dgRWAg~r5&i__Lvq$ZOG*JU06jF&`M$nu^qBu9ySdU6s1OxO&i9vt~J z<}wOQ2LQ>Q?g}O<=>$?ERZ}rK`4n$&OGV}e6A-Coh=|BpbnpcXVGrDmt#rNOzGiYm zeSUtrF&HJtRs6ZBU27>0kBSEinACwM2AwEly*q79rA~uA6yW}wQC!Q+zkV(m*%L@k zS=K&bqH?HB2FOuW+q!fm(hsXXExE>U=AynfZ5jY=Yji*czz5$Q_deIB_=@+bsdY2X zjt&OruMhjmt;=>j5S;yF<_IrKj*_$ zn2zL^f4#;9p|SS0uIVNsUjVgUf9o(}4?bz%=<|ysKVp8H1Ek}NXhO{T=1UB+`MNFB z-%T4melYHWyolUT5Z$j+xls&5(je9cx*D_fEb~nYX_}gf3T&C0EHnz`1tG7ga`I(3 zK&lR@si`V85)G@}h}VjD=dwv$*W5;ZT1)SBl$D{Sj#rDams>Qyl@V$**=E`<`9k#{ zET*=;c^5i!cfIxE#1k9A>-WG+@4~E0nY3X6}r*9B+3=|;y@K;GHq&mN0o3HVZ zO;8CmZdtAl*iOdc$hY-&SOyn6{-F?3pP^BcwA+4g-`m@(YSsH1WRNd;A#gCw((~E# zd_7{A-VXIO5v;D8pSwoekLe@O(K}(8nRJ++c|PhS0TF>m znAI&3h*A^9Zx>t^{1z8=UMw&)!xqZ^P#{ZYa63SQNPYbe z$tj@DT7c-vC9xQ-)uM&z#5l;2G+&JJW`IyPko^+vyVv^|*Cus_KHE%*GCI`K&NDJSQneD6@w#g z2ZBlv2$}9b-($apsWcnfIjSr3c}rmt|7W)OSp->E-69cHls z7J>zmlH&@QJmY|u9GsMMS-)G@R9VAq1&0Ix#5CYmV?@BVDioKHFa%MCO`vyqIaDHY zpd?iF)>v{(c(5jLZ5^VBNu*8oN)nrV2>n9y+1mqPH|L|lZ{kNn4i1&88ygp!86cdn z1(*Y%A04d6%Ecg)&!Y?G-W!<2mYf{EfcLGXEs2;UIYG~ z?Ik5CSRn&YvC&x4fbW zk--^-jt5F38aB7mSl`P-{hI(y<<7ywLm?1}yhK7?Zbk$_NG(AIUF%20S(1olbl{w5 z)R@PCu)1iWLMDPtL< zfZrpbNheX}i*Sc%CL=OXyn*HNR)y|ua(cSeP2gW;Q}oxkop?m){^|J0cIT?-JpY#k z&=P*9T%hcSPFAKzr9ZnWEmsp2s!ExF=&brx=+-IXOixbr6-+ zs4_+bw2{%!&@i-C^*iX5VlSCV5Ew1~Y26VMY5dCs8Gs^?35^0tMo)+Tr8O+3;FA+7 z!rRKUHEaDps`=U*4vq-sgp}U^n6B|nIwR%?h9g8h@dm4fYqs$8hZfaTei01Gd8$P zPs+{x4hVd`U^B+4O%>kP&O~O}sUFT&1|a#jw>&@Hzhf~BeCoh{Z%9-??8CmI&1HeH z(5$_?1wIX`K!xr%GgMc0LPvlN{k$p^=&SEkk1mdzO4H2d*>mjl4&?QB73YYc^B()}4Wf%{1XJF|8iz!M>fbdNJbdB8vWycysmODht`0L3jS9CC}8<12X$2oDZB>MV1xS5 zt}*um#lzt7?yBE&k$Jv$$gt55gtCB69|zo7bZSwnHE?b;qRueLghz6Dxm4`&-^vIN zKTwB39H$2;7T`qR8|6uit#{Z&z_VVR_;`e|{}ZI{z{xU6sCWM?w5o#}ImR*!kaChX zzx<_iXzz2c7Us$VmYQd>a% zv5JlxW^-$6tv`+&1Utatssg+yiAl>^m7<9^nF@V<-QBx0xU_VJCh0KnT1D$)Gs*5n zqnSouBjtp^p=-dFww_&H#TwiOQWSF>EmZRnu}!+k=YqTD1_yY~j)RllYc`AkHLMLJ zm%i4GP;$@KNQ?nuJDFQ=V}xcv{<3E4Z8P0=MhR_!jPMOglmN`B)q0;$t_S+v12R*y(BtFdm7tU9 z7~IoMfCWbCc<>G)I4?x|iYK!}*Eq)M`cTsYoE1O6)hZu-#BDzv**mbpDTi-&eghI+ zu(g#fO~$O(?W6trmg&B?syd$ksw`jQR{>uZw1Qj!1ylIkS#Qr@|Fc&L3nA4xC0JL*C! zqu-sarFWuFZ{STD+5)GI#6hH`vAcK+HwI%WeYz}aRJt-SCx-;M42!Hi2k7YS$32cr zA(W~=;^Gc-twT4B3lT5&ONNK^zgNa*WktV2#t!Ald<{zQUDr%62HssoW+YKC3a$tM ztNrAUSduYtg$f*QVSuErf`I5tjtK+@fCkn9A|0xn_NzkPf4@s3prMt|&yJh>>UkU7 zN%%Y%5CVvpRW?yHmmJo7vmRkQFPaJiQ+tZ>mc?2tIJioe{Ywrgd>{h<9Y_mr`yz3T z9;mJQ(XZbUkFoAJImyQyye1k(p~kNSx*uTpM1UU)W%9TjQZ(Jgg7^diINyv`o}Th@ z{d6!q6C}O^>sO9`Na548x3WUw$*5eT@sAK z!zE0kWnkzAP~s2JWnSV?J_C)k4GoZ!mcD6S{;8iJcL0XRYZ8;q3cG}4nmn>(Vh^15 z7Xqa%OOYgE2S%0#+|TgE{m1<14U}+31!X0@_EWAf^KL;HMUuDZ^1b? zL!e~)Yn5$-p&n^U_xNYpqKg3abU{49^Z(HFm0?w_UAr_00!o7t3Zj%WNSA<=bfX|$ z8<3Ljke2T5Qd&Z!LAo0Or9`@<;f(d3>)ZeKrNUZsJ~75!gU%3-@Q=c26qc4-otyabN_3sthOTU#{o&;MfYpI+jIQO zrsUB%zm@vKr9e8tvzqbJ#KAy02L}g)GUovFT`V6gCVRh9b zxY1{-&F~wYcltnfb&0@VT&eCw8uf;NJEO{k`9r7H?n1E&TE8ARbwUWARyb~|uyb*# z73sHpSMT9XK%CMvG@>5HJ+5n^ZTA)dIQs=Ybf~(F=FowWWvJI+X%$D7Y@YZ$cwwWS zy_Oy2i;9_08kaCGuy0+o4cnx14ykI5}azW}lNY!(ZoCYavs9 zey;xY*L}&U7|BwTMOwo3gy?8rXfm)tmF=((WCSi+N4ZgTz)-A8^) zaeK3CpC_;4lSQqT*g`P}d~48?1h}32{nfCMQ9XpK{$){OCt}%PDtTI|JtyAD6E4(X zPXa&?>*&A)on~e~AfCh#i9CC&#D;?-KTHGChIP_0flDk@c z%P6t(>36iiAxx9lpC2=1=DX6PZN4bwD)>|}<0Uu+M4-TS(b}R|6IuzvH43_pd2$i8 zHy-S%-VGu^W z1eN$lREn8Ae~{-Jol40lC}jQp{Uf|T(>O)s z=f3291mem1_S-AK@Z=G&ECD%rvA+I~ZZ3;4G$0ZLW9|xj@*gd#x51)X1}&FVca6uh z!YrRaJbL+xs7lm|baxd3rT7=x#K1t5j2|Co7f7Cr(U=zuUQUYzdPUZR9a zMI6)XH8nJhmX%?@G05-axxtM{ulQPMwr=|4~giB$-BpAafoi_X2Kq3xDRUz$1)ecifhrd%} zEgPynkz|=xr8tO}jA3gaF4GFPZ}WG7{Q}amOJJ>$J20^9ujugOsVWmWB2rSqc=qAVz&t+Qw}tN?EoxA#8wMCepG*rOWxjo@XvUL&2&3i={;lUV=jsa zP9)T^e~8;={~_o?cYh%yqN&_gL5cca$<^_H7HPp(|8+Boow=p(G3oO^<@eYyz=i?O z3g=-@G=plvz0?Np!OrpVqhELoOkpg3ZsO{o((b&i{;>E?`OW;L_bFe;h`aiyf+89o zHPK2Eod*l(uO?dQ{q7_0O zI8uNaYPjCUD~Z&R=ucSXQ}+inejm&;zyfjAYqVAD6@yW~FJpH}zhO43=wsiHjEv*! z!?n2PpH=8dB1?bd0WZR|``vjboKk=U4(`vt@C}dx{iu6K)WsnNxA6Ni|*ZCpH5QbT}{;2e#q6t07uxI@&0Dl7I54zehhP7a&B(xYTe5cVuteQbRfpISJM z-|26j%iFg)Nanalhm7e4UK@Cx)TGk0Y42BxzNN;!)ZrI0oQJaH5fETN3D`L~bpa&p z>fs^yKV_`?=sn1WX6c5LyiHNoA4_WW{DTu3xnnu4S1n z?2QRumkPWwadU`%-(0JQmLXFlG{E7arLBDc51ziC14;@%xYBU=QT<8f0eZ28OdiR^ z`LD4}R_GtbYihWx=j(8x_(XJq>1I-euj%x@J4XnckpnS-_#<+oyLaxW@q6#o z%Cc61LaMjBTMD642U?j9={L}nu26C?-HLi$ge-DC{@sNkfb@i9(KVR=C_KqFDKQbV zTPq!-GL$Ux#p?_@N_kxQ!m0f~qqJmcx`$=6jl@5OG4ZJAs@uUH_QDJeLCECiKgksM z@O&jr0+{S#wa{9zFS%jRBK0aZ5~uJ^yZLQwZ1_9i0eB2*oN9nfs{nG{@r5&i>&kW@ zX@ho`Ga#KZ|M+zK5lb|(y}kWk{)acu?^4NYFT8EG+*mPnYQic<<#wy4d%fq!=coB_*e(-B?8 zkAt>kcIH*l^!&kh*D*0s^VjA*cL)vA)KshYt(-RWkUxHVoZ1}LjEKE{jfY1i_~Q}` z6i7bo7^zr%aY!eXLL&A)vOl=(@Z$SBP4*0{P{ zS{*!^(v8FO+7ps>XVrVvl+U|Jvvw0su4pkm!@@kaGC&p3+LnM~b$kOq7|}r?`!;K#z^L zJd3YYveH#;g2U#@;d(G}FNUsp#%E(&`|p5GRX|m3Tib+5jkn0=%;z_`;lptZYl1)U zsD;B}$%Q~uSCXE}Woyg7p1{&?;tFCnEibR{cSV(`MIuGg(^j>7to*nK`JKVE`iPB9 z=~61g;gEXVJkwI!=nh%#*0!REGGP!EF!3*yxoog>C>7b#e#yM1AC$(8Nl(AtmM^=T zErUu*q9Oy7lzcNNS~EjA&3;V1xmQ$8`!u+0vE_=uyStNy_o?(uv8jm(PF7-5Q&VgtLpQg^AAG^Nb$2?wuf$R^GrdrRul5_fF>+l` z-{jI)iG0_ZWFhm$blzpAe6EKIXnxV;U((!P%B95*MhC)qa=+S)3i9deAGS~krEmzR z#bzKLlq@AT_K!aC&qRpbdzI>VZr_j!TJk_p)FRMgsB96O$*QInPSe7%S`RlU$)0j$Ey(W|jR;096kimiW2Pb6S6rEbp76+1avbqH-N&R~63KSD5ST>yQ7UWVB$CvQEv&J)x)n z4c3c9PfyQ=kdWS^rL%Bq#Wr1Iy3KnM;^u$P^W}^?d&tVQd3f>%$>0(Gc}Pe&aQ>Ic z`CsQ9BIY;PII80t9BQ?F18FkJC+|8k;s&6o!3Y%h9gmK-c6o_b9Uf&yoL-I4G7s`D zWsPBF4#;EEprFV~f0)o9%dI3?@{(JW<9FGPGQM4i++y|nwd6tE`7P*$^ETOMy#_xh zcyktL`pp#VInGtUYC(O|>g(7Ph7-S~Q=4<~p(-KfnGu~O6+23M5RHa5Z#RRvwd)^U{y(eY5aTvOB>o>7g& z#L65t5(xU zoiRSU6C*ALOV}6I{obcO@x=11Z^UJ%KOZIs;_%r{N6M2YK7YcRGUw-yN*;Q1Zq|^R z3OD66DBKg;+H`sXuFf|y;UoZXHfC&$N-;u4p03i(lpdX+mTzWsBu8?yRuJ6ANq!cg)L-DVE$V;W=$E3jKYsMDl3<( zE(;?Wl^R?~C0S4oh5@b>K=PItgMi|+R~xkL}`Nd%i~ZT{+Lt+7xeaF1q_ z@=fJQJe~jQWCJp`Z_A)dg`@NU)ErXIYD8~P7d@(_1dcQKrl#`5!b3*S??LRskE*MO z3RyQ4WOy#y+jp@=BeJuykl+?V097T|I#ShMLJ{5fB!P7QgI|2?WBxj+I}@&>qBoJu z{q@c}DToh#-_(>S0%Bjp0;G&T{9`tWz@y5;tDs04RX4I;dd+E60|mckI0ZL06m>)k z(4190Rm9kv8Qou=oC^xMbNv?o;mH3!3>?#kDAwv*F1wCf8eX|aah*LqasV@UdNH8L zel9n zZ;jOKtj-<}C#OH1Os(2SHFtK8LkJ|e^Q%M#48j8g17{8gOXsVEDe2tKWj2++o89ST zr_Aki>X^&Dw|)VP27=}?8T3pnBxAceyGOV+SI4S49;QQiKTX~}aup#P<+zr2-QgD1 zAJJArtL_TBf4o^}{d1=BYGiY~_L)v83avCsD$iz`q7fW<%0y04VP96hbkx76+b*XE zNK?KvtEE8ZRaTvaOb%{r-K?XwHkX#;9M{F-T#BHzit47mq9UWFx@dw42>($be4|(| z#%khYpD-0wesx16C9T_j*Dl+z9%I`7zuJPen*vsDwp|WXnd;D700{(6p+6} zMwa)y!5jYdSG^|;REwNkj#j~Co$KmAR&u)na}I0zUH^ct=M79 zjrxx06DB4c4GoRqDQmk!x?|Ns*pRlCWC|MbG5k~<3}@r3(ckTh9cl#TQTZEnXh{!9Rr|atAx1t+Y*v1 z`*1Qbkqzl6#-H&J>;V<-EvcQFlb|#(^?qlw)oZ^ge#nFJfsKj9aF)VoP4@6s<(c_P z_V8W1vAn*wEY}yxBvSs>oFQrbprzCSGdM!d`QTwmaob`BkBrsy*m)F`>73v|Ap?iCFTR)WTK6P)_rAeDi2F9#q3U6WT|6D|WL zp5L`}@xZ`sXLVTraavlu0PcSO^78)%uMdhRL3XMpd@()b-Pz{&p-5pV?_?Slq|YHy9ROI0LodjAA%etx>Gz=x`o!?;XLOlhDiaqeCG zuA@@}YULE_M@N@?YJSw*B{hO31Lp~!L@yFTpT!@$nMliNX?=R&K+f`!1`8lw)Oqkj zPV1)d2L0P%sIXj2tCC9>P@Vm5BKMc#a@d=3%dSLR7U9%7zU4IgQ`?`TF;3CwC1iKO zRb_3x4_sJ3EEsE0@eM5AJW=#PL;Gac;FqvrS}eTv??^Z=k-Wo9(~-;c=Cnl|$f4Rk z9dvYbm52g=LP7>66|Glc=;Z9=^g`**f=1nH--myuKi*{Sm~I0L<;OzBOcIWhfuAJ= zIj`nuad76=JWnZ2+`X=%Zzy@fQ63wOkIe0#u!uamZbP*^N_!FQ{9pJl$kM2S3;*=w zR;qS_70oDtUnB(@Ofmz)6r51H{fVk(8663vl6rgG;&k$@%R~;(&tt z@iXtY6gd{EV}Hy$mNNaQaCvy>W=z8!1ETKW;P^B5Ux8YiyRa1EJ_@{8bzYJu`k`35 z&3=tSiRWF+nlGse!ljZoVHq^LgU{OhrQ(wxgPa_NbQ>82#VD(((LwarYc}@By82u1 z!o$_R=(*afzI{uDCZ>e^hXYU@Qi0gRCms8bm$$-je*JbEokcJ-D5NU zaqkyc(q6b77ah1!8I5X5ynH!gW<42d!}Pp>+w9za4B6snjsc2K^njkI@sza{iLVA@3J5@I&**6{S;dhawk9I=TC-lbumov z%CcFE(JAMvAavF3*%HBdP~?X|Evo`WwCvN*iSC;M6_u4@oo_;zh({hX#h z6CqILyp;}q_}|n5JKg2%3C8`!~FRuN&$Kyk29s^G|q0ag@pw=(6J-@ z&ja1v1;@ToRHFmmql9z999Oy(KhRK7sr?>(V*c+am-)REM*JUck85s|I}ku){oDsw z5JRvdScA|IObzi62*e7G#V)8Xm^EIaQLYS&jDO6OOZ-t?rpvoC-v8!}h4@80lNzJ@ z*{ARHuP5fx#t?+w?t(UgPK9@aU`0m3e~XQaOANh(iUo%U>>x9K zE))STfYsC1?gHh($MEn@FqgN11r`Gn6Eh(_odpp%+tk#gdaWMwhxF!T+HsUhFiE9Q zQ9_LK%u`0^u8bH#Q>H5l$?AAAleCvYkVWoYEvcaxqxR(OkxRZZy^fCTgF`-b{}Z5 zxBR@VXHmX_aT6aI8_1bca!N{Eu(Y;)Z8zNltLwttoK6x1uYeO8D_-`A-gggj$ZN2N z@Ze@&x>3PW*Q26R2AbvG@FGS|3jzxb$6i!4-|um+t>V@SLdSeZ*ee!gTL8bwRJof z^Cz!W!Xo!vR~I_0Gh#n~|LBa2=V`*8I{c7#3!wl^vvYI8vp)JQUX+M?4z}R-)>c0> zrJyG$@rZCQI6L>%Dy|}1-=fE;JSIYx7aMm z%bR!(9S3+Mav+%tRkzkvi>(_@wV~M9*ktf;AfPEQB>?c0Ch*}kBn=Rc7TtGcWqxxJ zM_qZhva;rAG`O6_?nV$DSE^AQ7Dz{XJIef5TWK*dWZUV_KaWORuu$@Q1f26U^f%5Cl#-Roxl$@1 z6$a?$ory^xLbC+>r(<)xa1?S)ib3XHTPX3E1_?wicJea!IrQGNpzQw(6VBt$5P}dD zfBSZ{*3tW*Bz*y%S4R*pk1i~v1qTOLLn=#dzz+c0Vrpxh@>|Swb#>Xfx#MyCT7mof zwYwV$CWdMdm4|@$pzrn?f2P8h%Xsp?h~d7R+Fm94+Mlce)#%{_nVQU8X(Fgub}EGnX~eO`FKx$w> zKm{1u0dtRF(f|GsSPb8&g3l$0;M^ZodJKkMXZw#J%Sn4y1uSWa??u?7@fWM5TU&ke zJA_JcHYTe0oJxN6T%3)ds0Xr>!P#0-Q-h#)4Gaz2LFk+#CS^CZbi3bjF z@*^k)7gtyHTeQpRmOo2Z9)~@4j(L=C9J%7F%gP)twa7&8p+VrsBW7m#fge9w!R3k& zCm+CPVh0lei%v}|SO!*sCB_*Y9R)_d{MTFE0`}CD-+sjw*$$Q^u8m=GBVod6{2BN> zJUq{m1xO38uJZ}Ix(q?yHUnDo2r%|mLEM19J_LAB@jDi^wSI#OijhizL@Cf zLVVKz;vu3dixnJeistI?_kCUD*uHDc3;>A*r&@~DWN1J~b&Z-(5MDm_NMA`>R8(Lf z`l82?!aJCGFa~EMuuxC8SZsf`cvC}I$8WgTtK#E{A*|&k+!!y^J_Jao@(|J3zb0o_ zrt1%1>0!WPWG+*wP`wY5Q~3-*ZKcvlM4mN*_X1OsG#4*#51;{o5Kbw>!Ogu^#f*rS zb6Jbmv>YthDM@{xS)wL?&gJ~f2_|yvgX5@baBI3h8&b)rY`;B%i2x@u6fO{wgK*iu zzqxYlg;=va>aLYaf_P^Y5Ykj7CzBJR`69Q1nPC-jX2id0zI}(wV{1B3!kQ2&B)H5X z!%Rn)=jJ+neG>qVtvh{eDNVv71ix*QKesBnaeZ^Sp38fJ$kd z*LHED*dhc>62KA|gV)&}R#_(~>Oj~mKG*F2b*4~}dJ$IaU$c7h++l4c(cN*`C!Ph( z?s7dAYN&vMLKZ|eG)IQAveiqa1A~K1LPemX@PkTTAGk#i zNaT9)rses!>+=os@dDiW^IySZs16Qr0_q8ZH%0)y(aGE%3QAF#k^Ig=KhBSViCw36 zK0xzBJmf3z{Ct`Cr=+6d2RwHlU}+vO9|Ms~r~Tz^GaJY%{tXH2eT0zJ-yo=cSr_U1 zUNJ&NhNU<%ay5b9I%z1|QC;#L8X~-FZ0Nb5;6uiESz*^h<8q7Chldwi3Fo`JPlWI& z?K!Xh@ZVsAZt#6|v-{|6=@-WMrS$alcYshWH9GY#Z<#aoLZy)lEb1YMn(l$5tGv9N zeJj;=gqKqlv0P?;mXTLiRw^Tc0n6VsX(W_zzD#oX%e6f}UElN7y4ZcrSrjSxq4OWn zw|pi5X_?PfJrRK0U}}g(p@P$NfDHDEI^@wK@@*n{mpoKGU|7X_xO+M~J0}MCT1;_G z9Kii6#JjqX%S$<##!wRomy-n+t?kh;@ivg1HEwn|5 zmHtXjju28YnVNUuOwWh>N*Rm|Aw1zcBG14iPstw|%kssYV1t+t&M9!V9I7`Xl(gKu3Q z$p@->2Wsj}+50;n^UH&s_6re_3It*v%vSlRqpP^Lm`~Wm*d3glOqb`*yxVN|3#G;5 zyy_td3BAVlMA0j_-VT=AP!S0~jL)9kgUdJ>tmkmmK%Qvhl!3HAlq`=~SRzo18n9qR z&P|?Qj^As2BKOB^v;a4x?ee&|@+)H)Sf~IxUxnbLyVSyZP?vcAosKaf2PN{4zCJ__ zcV-+7OaQ5LJu)?S9){IC1}(Z1|4VmF44qC4jK%*Pb{9&KyxjhxmaMG(^1dAxe*aKy zP6s5|=D>A+_&c#Fv+)}0J4CDv2=ag`wwk0tLE2pm42#0YChHhH+Hft%&nH{o9>~qf z>5Pu56@aYJz>pA`{JMW|Zqk5F4KBFEFZwM*(h(G0X-ts{BanNntwa_Uh64i_AXN~_ zC!7!}XC_#)*>H}l87)>IpKU(1=X}nosg$i`u-xj)%)z1Z9XvFw%*;eks)M+92%b=B zDHDJu8J~mRsJ-0UP1KJua?m0(SuHO!k1g2bAV%x^j!!AObyT9RxO7s03Eebg0KSJs zvcJFYlbEPkOTYxDT|JaxVBj<`Gdo@V2U}(rk zQdT^}a7i+=8?|7J4&*4Bks)!+T&t#WP19;sl#&%$Lxaw1QXKAAHn=$u9-K_Tb3lK52*|se1UEcXdKwqn1A`VU zWE^>VBm4D68c62V?|~DanV;X9BrV9xGl0)E6MJVUMY{||2 z$y}b$b}>(W7?b)_=ICH*>&^9qfePweXDBqeSNP~t(1`ZxXPO;OF`bydg zhJ`oXJ(1huBQabGE>Y-Mli>xz zI}?ZP$8OMy1gdWYL?{TyPGE3wVnKlWKQ!AhG*{IEntUtGGy(4nU6Am>KR|>!WeB+k zKu9(_{6cWTKjgE2iI80zKTJqTVT5HJg^r0?4K2tcNb3OB`yKH3&~T*>k!crjnHRoZ zy)|IY$Y=#<%fynAIx-v~v_kxy6mt53v9U4pObqDoK??KW`1}d8E-D~P$83Va5Z4mT}0||u?z7hb@ ztl6Ls_XDvPkSIDe=54S^->?3-pOKa}0Dwf_P8rlHm8Vy(rJst5Qn6*+0?=`er;WB; zX0?5MQH!56xjK~NSJc%>!G}ZSBP@J#jXl4-tOl$Mx}k7@!;;{UDcZo;DqHaVmovyE zAc@?3{HT`ZfOM(KH(Oo<|JT@+;E6^!M15EM*CPhW?vJDK--LFc0K-p9O zel6-7gZ^NSv_>*k(U?8$w?{_=`&2Wi7LL8PuAOyN+s%E12; z+AP#RijRxK0?G-x-tn2@eE?BbAaoj#yLS+RMtB5q+Nr7ih+0AzP|zuuy8|1CO;uI( z(UT{V*jQMfz#j69ts7|LUU(@>l}4CNu1EBkt-!owpcRF)=j9cYr~@ovW4D(tg(NPUx_EW15vivwB zBBeJfk832u(f%M8ec%dP1iAXEF zCM1xaHf3+zuEEjZ0uK6nB3A{vFh9CQvw-L%{q&X1T6ea0VYCcK740v3BqG zIXTBor6S$q8pi&$M z@Ie=3KnDQMMD^eS6P}BnEQ${lP*b8|cvWKl7;uV%xbiU#4H85lChbsAn?QhaK`R{!hE(W~;W_4HQO|NX}T7Dhyl3?lhq0i2x5Y`lfVe^0i? zG5#GmTI2n*10%f#nPvA#mn_zoEtjoKgrgX%5Kwph!0Za>pKmUBJgb|MbBEh}tU< zx=>i(klUXK~ zUTlI3Upk6a>kI}+(x&Ya`}IjXkca&-Cl*FROQ`y`Jq$ zh9M~V*%=I6uEva~q%30h&cJV~4YyoI8asFm!2>dp@_4YX?|0gfz1cMMnX4e!di|`>d?KxkjWHY z+vl<|0pK@#2hUWHpPvF13?|Sr%>k{k#B6iMAK=O9S8{QMx>*_Ey3pwK_HZlh&!Ox@O)?C_FeTyjr#X~D<$eW)YJq7C}Q_kSwR^nm%tni zqlY?iops1sAt`@ouv{!GFp`qV{m$eUMPG;si(CKT^yI0k49cQ+rnBt3cQtl`2wGqS z`e*;Q&k&~u@b;~IJ#d@cw|%*;OeE>z?ha6gopu7^F@Ry~N7~V&tia#7Dd$8^6FL)? zKRb9%X!<$qtE&SSVYpyv{R=VBAz|@5zA}di1h52{;)@0c2M_jtNk9^o-JoY8t9}rG zQF^0cp$?Hy0rtYIE|uAYKcIX!INSdPB5h)7VUHiXKuzS#X!-Z(K;862E@2ryl0CH6 z0RU&<$KG7qj&AI~vz#mPX>JyRJ}wX8{z70+_X`!}T;&o*W%rX1*2+`#um)H~J?e)HF!Q?bGMpPBg5$bS#ryVR=ngEBJFiPBvAG*KV`{%^Csl z{0~u@NcX_NT|icd0kW@nzaj_FY9o(ghHSPOyP;CLHiw9-BpSI2CD}!Ebq?GqGZ|6 zUDe&dB|vRJ4AEqiXc!oXPa~hNLheEB3AKOKw-kPvqeGtsJy~SUmqf)Zlv(Mcc`_4~ z$Rm%dyhU6c%k*tshi#P}ZDj=e~lj1!)k`LHxvEXRwg8d520{Tz`cI$hj zudP~xlTWsaJehT++PsMyF1ko7sw#g)R-5JSg_92`%Ow;rQy8_uL{lMcP1}X~wpu4A zNJ;MnbRKkAdJV5$-2>4AS{5|B6<@0*bcQpk*62Hg5d#ANDUXBk3y)wFNkh#;9s?v3 zu^Ki&pSm!qJ$!(FX_URJM_|<`6mmy*AhOrr{lxI>v?anV zQaszhB-pl~pg=q(PqsV-uC6%foz|c}-DD<_mXyrae2HdN-0*1&k@gGduXs;rSk5z* zf|WV$^x@iy3ZIaWI}n6sERiED0Yq>p+?U+BPx)LvsWi=j0pIblpi#}r-1qbh)Df<= z&u=Wga=kZUw(iwnPzJM=BYg|B>VH72n`udj87)X+?Hbj0sU=lT-Buj zhY5gO=F3&v`bMmW`Jyq2B-YkYn^R&?M4IXYj-UJAW_TpvTcAMR~ zo;8+X6eR$XfH}m6a9GCm&2@I7K?VjXI1&8FIZd%Z)sBv&hGd9bQ+7nmiPvEkQ~0#P zrSjm*Od?YvJb6*s;I3#89P(hdP^L-s)cWEF26>md7p zJUK)$y$>y-Q6C>cmI6W@GsPoO+vvzvhzI?N3CLc40S*9p=NxBVjR?+ag~H{8TrlZa zbIyF`QzPeVL8|(#ZTX*gv$Oe40^Q)2&EAdB)X%@2ehdW-z0>xL^3>nGJX9!B%o`hw zwd;UG$tGwOM*8ez@vDVR-&>&@LTcaBIs^|S{+||Lq>Oxwh2`KxnmRif@0RMn8i-l| z9OaqjUq--g`sa*+-~$h%?^nx7?76u}Zb%>?>WX;KADVerSJDK+hT%$uwO#5_7)ywb z>vnesqKsudKO2)@&D&a7x)RGBLoEu^DxU8k*Sp2@i{Mk`S<9*ODq2`HRv+26C|pS3 z!eqq%2Kq5x`D3asJD;(|kCZU*70H0-01H}5jd-zfdU|@q&}K3tHg@)RNP4a33P`6& zH6Eszm!$1>tsQ*i;^c;#Dq|pPz60+~HzdT~&dx6W8yOsx${HW%zPUQUeTM}CoOJ{Q z3x=WmC9g|d@B?#bvEmL55UE5`Z!Cyn0I&#rv_$GKK9Z${_wlPeD+mL-1F+s0P>yR~ zzF%Mii0ECC)wQ@t1)#~~Ug^M4f!Y`09hG3biR}DrBk9AYv#X=Au4r~yp(rx3Hf8%m z)#+2K7+6sf2`1UlEhuv9?^Ndd5VStC%Rp(R5RIY``oV9B-__;DdWQ50waS+I9u*!a z0uhFbYYN_k@Y)QdSN+QDA1iBXR;-F#?BXJ;4p#j<(H~mtRYEyIa`;YR- zM$tleTX9TKEF9}*JE;27JyCWq{s z(%pl}udE8MrX`QoThj&dFI42@`c?t?bv-h#_=@RvT2Q++l&+(k1EGwFI7K$_ZJYim zc}cpsxX1&CP>S0U1JZb#*2%iU4KCXis@uL#j>Q|h*I~Uml62w^Ufkou!+QqHiE${S zm=Q`nGCq4c=%H4j!083_CXL&QgrEEu=}LOi59ZjIr0mEQkjww5Vm?~u7vvxL#%IDe zHs<&pQXuXvx~$+Hzyxz*#B^%7e_#|+TCu$`VrZp}o?;=gak5I|MPrY+gvEVEruD1o z7W4OIMPcOpL|Wg|=8S^zy|cxlAVnD%L08~vk{?A^KL^A+Ix*1<#oz?SFp&G$B6;ZX zX0EgL1yjeI`0;Rg_sbRI?6{-S#TrDdN0FRAY0QG!;cLGiz9C)_~h8foe zZAV2#Nrd4}1IEj8Ky@Lr%M=tAQ`adrHfz<7h?n|@@Zh@{JFE}f7rEM(KmcXB0|Um| z)pZYKp#QS-JiGV%^BZH0t>1=M+h0Oq_#Lj;WMCqjl5)^70dq?ws%Hd+Cebma}mV#|lUjDH)#5>)y52eu+tpPuS96`Z~Ywkc8Ma+~uU z*xw8N{pQmbOO2C%P8H?lSAhU!5OF(x)&fwuX6YnGrUL|W-+(;+2oig8m!zKt<2%@N zy2JY7Yw>8f`Y$;-4HNzS%|>QCb!KY+c_d}p-a@adwe?BV5yKf6+gCHaZ?t1f8g#x? z!x-8@%@0F-FZM|=>FuvKBz{i!pLV$_NADhGyE+VsT$YUu!knlp7;+JdPbH|e(^6ab zZf7I2l=tdi>SF8*Q0#icuoDmXZWsF2w_Za}6*w-MpUC`%jbC2lwI+M6JYRPe?dufh zFa%)1c{~Y=i;bwyd#fm6IGF{XbnUNblr3M~-h4USA$)3ov-5Q>v)WT&gV)ynrk{0E zpu2DtV85%D+iO;D>*B+SG(p!GR;>!3+YOOhz8;Hf?B!P5tFBDj+Kc{uJbJ!{DpXs; z$Aba~$8_vjB$SeHU*3nrcfbK@*x4%!esh*1W+DU25u3oO|NQ#uX!v6aU##NWuXtV& z54JpB|Nk7+4&cFt;PfiI?BXl@`~;QK)TCIyMc7zdN?tzP1D^dk4B*><7=dLychgl6 zmq2j+-R>xAd;mY-bud-Qr<1>bA4L6tNR3f#%D`4p;5V)GkHlPN4UPOSLdHKFN<$DZ zE+|(J$^k^b1><83zQvZ}!4LUzzL(u|ONBm?|D5HD)VMw1P}mTDpb#UmtNLKZn@tAb zmJ!h`VId*!z^9ntnBK%K2JGh)gj2A-X;iy7=%GH3V$v}9QJ5L(e|7C-`X3CvK!nci zZf-K1a>q$FxKw&{cOU`K<9f7SAD_|}gY2~&t7r#PGqkNpOLTB27aHn$?P!Km1T^a! zU6eP-@N<)S@sqgw_gC6G7#!3OKI9hjm^10)K793L=*xG;9W~ExNU=l&FrI<3v+`XB zMg!E;_D;=HFvS50DTWT6MX!DYRTRZ1*r4pclc=*VVK-f#BQzz^37cu+GI#Eb)Y;_k zS(wIY0Ja64HjcTc`$CSO5*eC>eEHqN2gCSl^$$yej`JI z;6Tz;CdbH)oK3SG6E|j&wn`W{FG>q&YXAA!p*y+{V^uqyB(XK&r?1$KL*Y4 zobLAZwM?wJmE6_^=hO+ru{{Fm8FUJPxw*M8=DWwzwggQ~6nY6R?@ux~q|Bd?9wHfZ zw%?vg-r|2R`sjSnpD=p5(yjbeV(Gioy13<^nv5TtuV#>;d6dY`s-1g}aOqg62*!6LHrda%>W}6#=LHfqtCwaSWD;_y}SvC9AKE{I}l1E z5G;V712Pg>IWNar24xpu9w9J#kTp|vqt@3I#wFF=C3!i6!2-ioh@tQ?1LQd;I#g@AEZs5Y!0Qw06CDak1$(o1LkY7Ls zv|TF9mDpWu4uf$PB&8bV;_#&ryAzJ8d!(enP_L-~Kt(YZ({4&|j&|c0D*+un3y>Qycl(o$e+C8oQZ`;*5gerO%9&DR!D9Z;T0=s|Sl6fhV3)xF&nGaN&H#e`=Hvv_SK-Wu=|=bA_>rC9yjPI0#$8`aBUc zvM<@KI_GUuA|>ouY+f}3{)=r&REZRkVqWnM6(44SLSf`p!p6(O0&CRz6SxUF!B3%1 zr5v3gwMgjZ7f0=NCT25RWnz*mh6}l9uR#+%cZbXX@{UwM0>1_Lcvkg%DGCJpqnm|` zC71xMg@FVu8vzo1=;H@4%&*jbbA9ZIrSx=k&a|wDVEkvV>-fHR#83vO)t%%gnI!jl z+1MB#<`)i}*MN+Z0s?O!UOx$>;Zvh@>T9q{fX?lu9Xe;VtaVEe&vv=Zbv?2{`hz-D zsBv4g(TOQ4D#{Eo#&}v@ z&0E}*zMRiZ?<1U9?*W{41w+i-^oSoy)wtHTnIaV!XNQlt6k&)x1-yR$sbQxR#`vfL zd1OET_dgaMLK71NFdZaw0F{EEI-qG3bUS_p;m7)G!=@k89?t2JN4qlh6e-gQjr{v| zd0NbJefC~-$qjbI^}>hUyzRO=l3PnaQ2il8^6>X>!zqwOQ4tWR&?f%{U6>hciDAtB zbd}=py|3>i%=_gMhfvJ#aA=h0-VH*f^6|hO7%bM{HS!p`F)JnBKTqVAtZrQKY-cwgqmvF32kJcX$?&a zk`NDzHQn$Dt#25TO)B&T~HT#e2Ty-|}ehW6ADZ@A5lh*;U;V&u_b9Am0- z@nbmY*ZSgPbjnRZpj4znE)A-7sJapn(kEcO#H;;H}WsCK5c^l;A|Sa=C^D3UpBi6s`xL5X+(udJRKfbN?XHRtr^%ue1_Oo_5cC zp!PZ*{SWE!i`%+6+kMiG7lGOxLB=aWwp6aPYWc=0zHp6n^!A335)rBKb>tTN!=P$4 zJZB{SN2DwqFE*Q?69LWaU4+aSWOQ^gF-C@lXiwuq6=80U>0uA`y>KjNNRLMpW4o)X zbf8pNGOvAWXqfYmf`ZX9yuGiWhC8-xI9(tZu?E0#1}a4Ofd-JnG0QCM1hANO% zkm}S~Yt!<*>m~!MI?nj`I5h)NC~PoG>y)O;=&-?5?}@|1H7caL^9xhTm+YLh3Oxxd zHIbetld3IoU@)2}js?!{Goy&6>N?)tyAy9zG6j=)blm`N0F&(aKG1O0#7r8m5b|)v zbp9u1CMI`mt>-aP#r(6l9?w9Y$jn#UOvj^j1=#$_@zgXjYJcC`qwv@k)GlA{WrNzm zS+%eaUOS5D+C^1CFg(pJNRC3#1c>Q=aKI%cCAET58lFXOU0od_)auXf?%SK|?ugP9 zFX@hn;$y*Dou;;IFkOEaJ`=s2Kyr5{s5Uc+UbpHcSm`nNpD7ORd6*>8vi!zlbmUB}1DhkVKd&q2NlLN{9g;)C>wB1PrT$~k=Js)vMm`6T%Z>GO~&1HOe z<7wZzy>MQXX-}pAp;1MDOImw`u>IM=)!=x}VGm}*h z$gU|frnfCHNfON6PP+@_Fn189qxgbcgp-~9KJe3R!)bgSP@K)gj#6fNh=;`>V``RT zp~RPC;7xolW#=tiI=wg{+Wvdl%n6)ep=JpWape97|zFA1~Dh4v$-2@DdXtd@h( zTwe%#{jivgqpdF6VuDB?J3Ty%frd&iKa9laE^y}{j3R(v@#TsaCZ9LtJz)O>_BJAj z88rp~y&Wj^H6Aao_T`nH%3LF9i%c3UNHME|IV_yq|F5y{4yXE!`#;L6tRgcjvPC5o zB{U={n{3&nR1~rcWh5&hWM!|Ak*w+@WGf_JdkYy^@q3-;cRl|<{g=AVb)56L@B4kf z=JBpr&Z{aaB=`y;1~Nb>>l%8@m{>HQP7I!FpZ~C|lPPeNpFBBRH2GGasj5M#=TXU$ zgHUK7GI%d((km#Clyc~00#|Pilei*yUq>h+pc=XdUQwp3>B{=A$_4+G_6oVk%lm8$ zuB)47hrDyhJU3TIaa5?&kLS64k-q95YAUMTkFyjYUU+x2=U^fPN)(io4d~TiNc=8U zauB=(ILsl08Lu`2_)H-S{#H_a(>^Y7&L%qSPKQN*CCl_%y~d2*Yrly8Zw04+Xo~A5 zdWFydHRPf8^_=54L+x90K|RNvQf1$Tx%?`-CHt>$X`p1Yotn-MviZfn`lDL%;gSt6 zK1Zlj!T_?0JV~aux3}-gf<(;b=#@DRx}<4*-Tms-#Y5!eOXaP3zr5DTqEz*#Tu!MAO$FO#m)S1TCLs}P@OH!e7Qx_8EHQ_vymXCm- zOW{ivwD%kxg~X$rXD(Ii8oi9`VE^0VrBPs?A$p%kvwIT@j2KL|y*e4(t*N0wsux9q zr5R2`C>-+d3s<4u{4n+dPcVE^@n^lZ60XUujqF!ocz1}L;`rC1x9eW&bJg5yfQ+nv zj6AGrVoe{+d?FT6zuYM-;;c1DKe%1`U`$>8$Hul-)md)ViwgG{&NI*|FtgAoC{TR< zb+_?~aOtyOhWXdua7|xMHTuw#TReS2H9soW-(DCaVls7-B6TwPZlSn6jWipQiGMf# zelcLO^d<}N9F6~SimPQ!a`F1uvBj;*@8j6@jUaRiuUcwXaj00pfE`r{eR_5J$Evh6 z_d*-LQFmzHl|2^UNRAR|eXpH$i2RuzNoodzJp2nDMtoy5X&S;`NAKeIKX+55?O;vE zF~CvcB&$MqPsxWzK)1moCKBhXJTeml0_0<#ivU*ZMi;ucurRMLk0g;52goO=Uf5;t z=b&Muj!NwQ6nW*p`yEt~{Kl^gwLgEb6tC|o35tL38sS`hKZNFtqj#~i1hS(q%0Q?G zrCgf!Tn97S*|#^x&vrRGJAZ(g>~?^k->#!EH?Kv%eVh4_o{Q=4x0s^b*!It$j4Lpe zEh@FS(3%JD$-0`@9JCNO-R&NT<9!%wyaoc|pPj}al7f*6T;Z}XB=}#B#sXDNVd3|^ z&){dD>G=?st0A)M&DGIfgKKH!q9P(F!3uzsx85fBSli=P;_a3vNRW0)9s$4g#=gk?l%Y|4bQ{&@GiJ!a4 z2r#@iy*kAh1@0!x-9tUy>^Ge`4T& z-P&4TKcPZ^h&xRrYAR&My~T6dFJ9z4P^gVVE9Q7XLBYFUj%U2&s0TUyxVQ`-U1*$R zPGdr(YbQL9cG)jL@bgO1t@Rb|q~2|(Eu$n5Q7e3wn_^>S@PTrB_pRH=N;3Z7Mk??j z&AtoY4Q}s(4al>-yQezQzMY1%;eCw$gwz=r9pAeB6_7xwJTU*PBLfb zCP%b5ZZGSGG+6f?-Te2tkZ=ROO0-|#yfdzg? zW{^%xeQG4h85JHDwwLYHU5nw`FyETRZ_CHU#npAGzBo@mer9HN$?aM(SIu@R%dl{Wf{n8>H$OMU(giFcHY`j5yePl46cZZA zk^U&r-P=0^$%53_ly+^!8~-DWj5qqOl$B~Qg}E#WAXn^3W?bAwiAl`xtH0mRbwhaq zAaf5VfW=)Wq#`Z+{Zkt^*T_>Y+I9(_qxM1fJn6Fqe0v@M==Z4#2?q?iq|Vt_7`5&} z2A{zrB=qEhlG3)8mD$3L>Qw&H_L>^5(f#|SBqirxHPh#%e^|RTtfT0nq~#zk@h%U6 z`(wub{uvkd(_dR!qT$1#z!T1(_&hN&6vc3RLCXagJUXnQNKHym#f1_@M4W&uM|?7c zk6*idkn`fRn@87)giV2n!sJLMD{C`_CzK({Sy>_^#WU0eVX?97O(tc}nO0YyUs8W; zqQ|P>ApY7i^~=wnap+q;h^S^1yTB6rI%2Jr_K38!KWKYMv0nh5Jw-==OE2b&*T3Uk z>&@}H@7Gsfj%0U9(6b#K@v5@Vo~68YCNEF^)?xbehEY{FA?PFDylKbANfNe(c+Fo^ z*U|CEeefs%03=tfT-v??8&Jry1QPH#WWK5X@QD4l;q&QyeYBX5b)uXi7Nxj^grIS6 zu!Rey=h`UC3KV{ODp+9(uW$B;XMG+8yA)7>z*ZZB!Zm70?c0F|T(`1%BYC_3bdvBd zc1&5M1_>bj^(t3B%^tI6K&UN0#-1d2?8Z0m7$V(vzO?Xg-3jJfA7RAd2E>1U0iObxw$#%)iFB>Visrpvt)RJ zlPB;XLY8e{t(^vA7V`^7Km<;#$u7KDV^l-e-DAfV=y<<8^7So_VEM6VJ(Oa#ZD;;b zsj#f#kCw+VI!*lA2y#3G>4TDzQoBZ^HC{mq9!*?E1^_!l_V)zaG5_!U3zTe!ma@g7oh@!!GO_@efv)?Q20InmIVA{@dK7 zzM@*5B5O{0f*>YdBKtR;?HFYq0$~0d`C0~v>nQ*q$mwl(TU2BVriMhG(%2pRbtvL% zE1;L705c+mm>zSTtf}&v_tyIHT?1d~pQWN9xaBo&*ooL(R%vtnark90muiBv6F#L$ zXac)&TKGY&tzq(r$z$vEBtk4lu3xV_+1pq7dE)}L4~*A^MMWPmf}2@e|8Vm-Ejerm3EQ2k+$d5$@SIO3L!CII^gs zQr`S&q77#z5%L?7`g#NeE0migj~gB}=b-nK-GzLw`uZ+ChzjgP@C`Pk)b4J*q~v5p z9A*1toF=@XLxZCFOa&rP7T$a~6X>(X%17``X+?PnB_$}|~9yL-ihxo6n5U%Yxn zgQ@&R`<3(`plobVVdOa3ekd0C`c^FoA$hS{p-?KQ|5;lsd7oT%GLOrBqBSKi70X_o z$ZD%TgJ0{`L|=6a$DZO>d-X#3m4OYr_E`#08-{(z%9<7LQ&z4)yxQBMN72zNY^brz z%*zu9=idcoIhw~D?y!JiGnnh2Fx0<%;NPa>+IMkwMn*owK&lXlL|?#44ULUB&3T&= zu}sJ*!bE|(my{IzS>Ri%vJ0DDRDnPM@l^M zYdcji>%v)yqPBO*ma0NghAw$k!|7~k4R7Bb1rR~6p{*Tt(y}2^(6WhRzQ;PTZ4lw5 zqobo@JUp-Ou!n` z#{)ZODTD<{d3je6Ai9rqO0}o1JX5RaSQzKPwz8@9ylMr zeLPV%`bT-?x?Nnm8X7IP5#p1eC7T}EGW_0IW!lPLX>&`~%c_|7LPl82+3^reR7QlTKzg<2rV$NJaT`Ih8jR7I@bn;_;B}n6gD}JIqBTDIrdDgg3Ly(8B_7glPy9fhAbwB$wHM~{h^u?@jcl8$vl!;I4VnVGvSq&zTD}k3)(lj{Y zva6yGm&}Qzjc=dTd@~=={qjgMeWo&q9!3(%(k30)WS7nhdK8yhDK z%+38*T&Sr-jQS-iY9Lo#dHPny0hy)8g__W!f?REfNdDWL%C+&1+I#n0ci$!kOaJI2 zZN%8?NaNXXh;NNowWv<9=aYH+{DsKayqD4;vNwa1AP#3$9|tDkFRyTN>9H zA-9#8UF&P(lGjuiDa+sQAti|Sdu@9tL=^6v7YM_BA*r(R6^HgRaiP*xoVhBy%MR10 zhMrzV5m~RQdLj|q=aD+2Jbm0CredHz!n04mLveXftq-?cY|5_1A~J} zJG@~QMT7L&MWWSPknr5Obs^QCl3ekW)sFH5Xo!8}#q2?9ar>t~ z%k~1jQ;w~%xfZTfNbYW^uXm}uGpRAqu)lv__01UK*BJ~@Ur^Wn&CbqF4{syE#YUL-$&*K+Jw(FJZTUe;2G%(09D5V1hSp&yJ2Fi@fPzGK3r$O|Z%uN%I&wR7Iyr=Eb z&ZSS7rIsudeQXNmkl>KEDNQM{Uz;IX}` zFE2myOyg1hcuDY`bk*Fkq1?-(jB}^pnJ&TM2+ILECcWMS@hJi+!4g*mVKiAuo;nrt zy{qdVM~wm@MgGYx{)Fx1;+D^he@@mF+3hbdCEMO-$Ak7D7=T>#BLv{FfFC6ak-)KA z$IoBfk$x3;n^J@XDJ^j1gKLq?cOvEF_3IXcb$%Jy*=R6?jH8QtUsqBIPG$dufu~?)cyHJ9qj>RFl_G9cmc8`}Nl^BdtuW=lq$j@2wYc(z9_gp=K=}7Ge zV499tHy==~vvijiOgruIy}fs2rpc1bDI}3Qv|WAu{Eve4^mG!n4?nPU-cG~PXX)Rm zZC5;3H#UZGtTLffJyRpo0w{bkJ}lI4?B&HH@%P>Y1NZCA0-|z~8a3p6k9nvwa&s-e z?XQ^Lp-2sxhrsWiBC2Geg!O?(^nV!GcQf2QAW!h#zV1rcctX zho^2QG&e8oMPG@>YmO5M-3J&L2nb%j50?k=uP;MFm|k^NkDCbgoXUSIKjFGRh@o#N z{E&*;_3LXVRhI_?+}Gt5cgzom;wuF@Mlzxig0&0` zIDVQgiW5F=Mccdfo~XP)ecMAzNR5%{anLdAA!hR&oS-_oxvXCQp(8t7rXBxpPnM0F-wZx^ZsFb0ZucN-%aB$FW>d-*|Sge_0+JKTVO~jMud1Q zpZVh0g3h<)={1WRv}%`mhcyVHfnpMdWv~0o?xc_+f=31hc>2Xf!rgH9=k!|jdG$(; z(-_eRgv5Og*4Bcv$iHohm(`V&l$1xtS!6^6pT_0u$eeG!MM~3w8O9D2T;YKlD*6+N zJLdOMKP5Mx<@=X2-tu|mE9Rc(a+?gLS=kHOq4bEi$33D8X7q!&lib7?6XH+RXmRuf zUXywMesx5C9Ra-qX>AfbyF_*7wThV|+Dk4ZsiA_@GZ_GeFA%J_)2??L+c`VX{*qZyVaxmRTihDM)XdHJ zc>6Qj+S-?<+x^-OsXSk55bbPkzUp-MuA;kpWvWiLA6l@!aa)FRRZ`j#X%doblD96C z3iNhBRE_v}b6BTFklcY)_y%l};)M$oY2z(L3O`GOWb+Mul*gOHF_KdgFu(7|<7amJ zHc5tQh-5JEW4N)I%~fsWHGj`v7rN%+vicryV;q2uE<*E;mpg07YPLr*cKs?zE0zD# znpFI$D~k2;h>`4!Ni{NFqyGg)i8`uZ?X2lNtgH-J|c zV?HIBh*6fBEEL!T^C3<`+mZS(nYi<4l=US^tu=CWWYKo_hk=jx3&DLiv3Yug$E}wm zKF17sUbQyco+F-rc9lGEVnT})4L~fZzeaH1V|Mc4p~i=;0DuALF)5)fDk|z})xtu~ zEh5d>QB&`MnVHRzs%HljdVF@S=9iW(^>57C-%;(zzHaWHUkJ)5dilwKRUaM!%&Xy4bCXsE^@ zxY)yi`oRqK#@s>I{Odc_c7G1sPYMbo>F>}Vh8YfVHkWXby*j#3g^ik<7FqGe0g>!q$0q!7?(99^V9-xuW(&_gG8C9Fv5e1Glk#MMytO~ zht(WinMxNF6l#ZBTU+PI2#>E&F;EkkCq{U@j%-Py$oz$PyD1Ax;aq!K<;fYg0EO?l zMnR1p8wb-~%ZrGM@28=mc@h^FH}d=UVHsWRTE~SO{GLmD4_jMY0$I0t&fb||92W_R zF!D36#s2dt@uQa;xbUPgdis9#Kz|!gP)_>KZdycY!i@E{G(icjs5lE0%obLEcj(p94sx|RfnGaNS$E9-u z1IzTxkQe*ygiOd(=VFW3R?%1LN}U6;L`{bXfiva)78dhM5B}-x;Vi=O>uhTJTA`ZT zbD%AD>z~20r@oGVWv)S3LcD5++X_V2`?=`E_v7x>9VAh82?UNAoZGI4_0QSatv(o? z^BVtUPoMY@yY_hmxC93WgDF$On?&X{FNrM!0P6ZCsht)kgj!51foQ!lx3S4!f6Th$ z35Dd&;8D_d%ez$&=umEWSV+ccp#OIWH`nMspBsyXe61S^m(gaAWIVdOvFo^Zhm@9vYFXD~fi#bMWAc-jyxkz=b zjVj)L6#2Dx9c{WipBYv)%``UDi!LlUJ_)QN`RQS4NCsFH`rA*3NJpSKP`~Z>7%_nI zS7=7=o)Wn7a(?0v{hpc&CHf(_0bjxwAC1Yx=}$Sr-jM9j5sge82Y|}rl+S4fXsFq! ziTj-H(46t|!~#|`GEyzLduWc}_F{RD_xxuTN3Iie&5hBFgjB@FLHRzk{D|sMUyOdCHN6Q69R^(Q z({|1uR4%Nj(6_$h0ktWz0(W5(K3(_mCHVlQx2X~5xfX7!G$u$71O8-wAAEsbe2}u` zIjT)=MFr>-!N>lhn1Yl@q=lilpA z*VILSYFuFi=ss+T2qMcryYada_2g5zW*tvs*bqJR_vS{IJlbf`^yvqoXf4?I2Qhgj z`RW|$r$9lgO^#h`jFt%K$<&;pd5Hi7`p`4e}n&&<-LG2yU>HlGhB zcvk7#{lTc*wE3rXpeq}?YAO@~N*3&OTZEeK4y_%-=+23SlWtDNYG{rFJ=KG^q zk%Wll7?y|A6c>*;^sB2Iu45Mc{Pnj(8j74Svy$3wdzH-MKK8wm70T8@@v&jHih<>% zPIzqWZamhR)-4I{kK)kgXppIWk;E$>B-Yk$t`*-&xplR`;?|s$wlkz(mOf+IN2!b%>WZ$Sl5S%{v_Zd`V@K2YIDum!SL{|wpHB|87 zi)!`}{P~%athOrzq5t>v3vOcB{~r8DJ~t^XxA%?~Zl1<2=8(Oyo0FZRo1L`@rH8qT ztF@y8Cks0Z2Q#IWo12pWE9?LJJd2}?B`Zzj7kLPxgyi0ct9fM}WO-`g&Cc|$3Ud}I z<2^^T)2cK%!W7S!e!<;?@580vYWSb2q8sU3YVYY1IfY=F%m27-@~Yl^GWn#H|1CGz z9{4zQTg$$HR|6l9ir=I) zrKF^`81jhq@$m4Hiay%7se?~szx+O~uA-s>i}?Td1uup6k<4V`sjRh8!R$r))HgTj~{&Z0V4MHmUOmgvLQ2i2x(3p=ES2`nUpL$_p z6GO!M%c1HQkf1mYvq09UiKQjo;^Ja=XJ?S7lhZE&K0d3%!$V_B%kWm8D;->^`4j5d z@~8Wzrc{#nsTWTz6SMJGSw726AZvVdbo9^Kniv@w8H|pOt}G!TfoC$eYh{I8yLW1I z6pK{T>8GR$?!iJG`oH@#?1ID}&~Yq%#CNpjh=@V-?u1h}2C6r_9tT>ZJv}{brL>sO zo{5{8QJ3k|F)GT-3z$@CacqxfHFw+bI3hU7;!2rn>%V<^-g3upg!G|QPRmg)Z0uNu z5ESemH8nL%7rqgBM!&nlA$!74_qZZ&kd-kls`+~96ZEvDGG!(H+I-lQyi8(|7eInAAi?7uw^I#Y|lN5P4f8VN6@_O2Lwp_nE`L!+^>~zyt5(ha1 z?(^r*sMy#_kr5FS$3g*8CZZ}?28rM30<;b9r6?+ z(WH;r)UEeMlQj6=RI>{SWx_Ym4V_AtOgG_m%3#w5GRh!LxFtH;0JY8Mw@lXgaA03LP_FMb= z_i;5=^l`43>r7exq#IlGD-AU@2GTJJ)h4DmPV#h_?(FYrO~YwHK0c$n%fkkz-|*fS zf22TN%5xDbR#kjXO$8-@O2f>|{F3Y@y&vGDR0KfLs9P;JxqsrteE)fHIB6 zSv#J9IQRR*`qd8=6^_m+ajX$}9ad%&*xJ29%_?L5%vbwieg^IS!qHJt)Hwl<{F#~Z zcv!6X1T1>F%^rvHbz02&Z&ZZtrdUezPUFuM&fP{V&c2ptR(5S3_R7YslEMEV z0EY<*+0w#|JD4(4x7nkt(})e%)~L~C>(@7xS0$9Fvz!}sG!i(W`y=VxOxo%_?+f)B zU8up4@yDN?*>m%HxR~Wu|E{)IK5f%YBX{bHzptzU)Apj3*2L|3IxUx=5Qp$t4Kkk- z5m~z$rQrnguKG@nuB;fK=eo$vilI7N&s7@Bg^Q}|>FGKBdwj6;@XLA^ZruH0p4Wb% zmZQ&kc4s)v^-cWO9Chg?%okFiCh6R@?mUVnEkA9!}$IXB?UQ5HZ;PdFKm> zQ|W*iqt3pD%A5>sOiT=EU^-3fw*j+Tmz~ipq8>~~A@r7(mbmov!Gf<}h4u?N78gn2 z;NZNDTCWb4mzD}`xzdH>sT+m%-HX4q&l(e0h45Xrc8H?>t`HE_Rdp*VUC?4a0-f+eEWvm$;sQ4 zM{j`Wl!W8r23|H&p9cvKA~F`D|05Aw8qU>WePEV8Mj!-HLBt4FC=ewzUMOM^4l7PI zdFUp|9iG&<4Nt~SSZFBySf1=xJ}#?Y5EzY_%%Z%bEKsgSnGO!(7uvBi*X#=&a36@- zjpIm=3hutDyr8J>bsQ^KuYeI0_Zdzh^CQZqPrEh#t*-)Wa=9=Q{SoAACZ2mEpdv=z zcp!8H#RZ7<^Mk7x5|d5lnstxtiT4L5YCpj{z&xm?hO<`ZwW6%7*Ua02AdQk9845q@ zx%qiNdO6iG%T{u{q@Aptu3h**`iKaPlGgtyC=8F~gvLyoZD+eeHgHrb3<^5r68Lb| z(>H|Vu|p>IbI0#naf9oysbloH`ukcS!)S?*k{VGs zEAw2vMBT@AWjO8cL=+J_r5Pb=m3~Ul1XHdXO>{tZjTt8 zTu=KJg%?UKm-()!ncZ%#(k6+CK*cUO74`ZiC|e}je1E2(x2NYd`44Yyo0Wztcrj84 z-OkrFp4u8}IojRjJE|EIab0WByLy@MELDi;`VW&)FNV=1EhQD)@ufwE&-)^H5?=Ux zX}BJ%=W2R9_6vxXmX?j06$WGZMUlC=lp*6*_q!z(Z92O6t`@}ef1&SZLZTr!d8olo z!!~u)hajmkM0Yk+MjprTq%D3;G%gG1{ua&O;E@#Y@Zgaypju&j1 zqssyUC`HJ(lWP(eg0Mvm8eyse8yBy6H2kRTZgio_ROXBIWML2a9hWjL68I?} z5)%^maMfxm?0^9eVoz3Lu#_86k+1j#aPzG<1uutG?-PEd?eK39e zC52~~mma0>i?EzMJ;z`ZP3~f9xRenPR5Kq1;2%+iUSqr!PsZI;tDld0$4EwWefz_Y z-z%*?reLl-x*E@B@;Vw=9j&zL0(8}WjZQ8?>UE*M7R?)&{5mLsF6f|l(F&0nf35$y z(W=N=CqgpKc<~G6HX)}w9&}x`vcZ-O1=BX$Sr+fddl-lJxfL#v2MkMAR<;Ao&tZVt zm+S!ESX}5bh^Nj1ja0<<+Nt8@#_f$5L(j$jtn+S2*YuWxNT#<0D%l4QcWySk3=j@pZuh=>fmb;?|m zh`G-_zI>_Ax1E|}9y(nQ?!q(-cyLebF)5y}G?whvb!;`yu{15CG$Xpc(9D&=-fm1+ z2z=KkwA{7b-*41=b?Yt`uf@#Al?dxFFbJeH(r&sYh&Kud|g4^M&f?GkrWigt`uL}4H9Tu5@n&a76E5t!!U#MF)bHz{~C{JRk zp~8S}fSR8{CKsP>!<8Na-i*7$WZ}q0$L`6-!RLobCGDo!{O&&I>*L=W7B#Sf_cnh{ z;ppBO?c|CV{@mR3lu}tr9lI|Nres#eHHQk+M2));O(bIv=wy-7>ebnq>z`j=LhQ@8{yk9q`uglG+0go< zAHENZ`TGI){h2TE2?-NrI^0;Z6$nEq2p50YL)rpFhhBR)!`V#3FZ@6v&2E492C(-2 z&#z_xXFLD-^Gz1>kT690TAQ6xViDETWp-;Fgwya{S=| z6TbXw{w3BDW9;ns>WV<*b~oPz0R?Nywr;@>N(7z%^{h>u59q=>O8^vda5q58jV|Wr zhl{h~MU%zFW{hK*1QY)QW}a6wgHm&2xcs|ptAUI3%PKGoJ?PmBtxVp8Vfk_%D85d| zo(^Z7P(S~JUtyL02L*OFxp<*c4O{!HcPOm}*fAS8czEUu?E&qL{dB>r{s>qU{+T^- zWYHhg$CF-StnKZ6+T7f1N!Y(&)@%p}u<+$|Fr$iTbWQt>iD~`?Q%PwXZY-lub^h|m zGVR3}D(J0IM4ZytPHG)puv@goaHY;^6&6(4@}cQq%>)M1H!yh*+r z{P@Hs_x(YD^~v{U$}-ABz0Y}mZ*GPHxn}pm`yp28;3Xp?&#?rFz6x$JeFOnB{@WwK zH@+S$H>VIsORps;rG|UnR`n__{;+Qx%@WMlt#=qTFffQlrFwuUb&HQLMyaS!3|Fgr zcHXH??WC|8wka|!11&0k-p(H#!lDq#Z0~6fpxB+owi?enMoMAo>%yd2JD9Kem0b99 zZWPPwpPvRhuRZY)k;8Pv7M|nEFrvTedu_dY1{^Z7=!OQqzt+iI^$yF#5qVsnsf&Nw zXRE2n524$;)c`&TP|+p0+Jh}JK@UPB%RZr&;`gqhMCabZpfQA4jHFwid;3+8CMe&M z(6=sb-rxN5<+sHb1)7Y_`$B~q0oTWp&^VE+qgCFOCU>SI_|a^034Q_n-{@tAIa|jL z3qQZ_MTjdXL`{HhT`;whJKm4RTdJY)U9XOD=m#pQ5rczvV--4nrPII*6Cl*MfT@UU zX}Lq^5xs;O90=HoD^LbwspbAk#VV^X_!yu80Vt22yh@At5sWq^pmUKX1d?(fqGAlY zIsl|(T&1-j8=q+CSA}TAk7|t}K~A*2H(B)0p-KzcVZOS@sBU{gP)Xi|MCXUgrCk;8 zbULr&Xjpi7iqPWbrM*Vzm)RPU&>r}y@{#r7$46$a_4QM}v#!+~bBU!!1h>P%^>+M> zKO_-A-aw4Vb0QOP^ZFAIpx@*+zA!&Oy$SQbn{4|Lfp!c}2t-XUx%d`4en5oZWbaf6 z$$vkZ4DaEMB_DClPDpt1XQm82dnW-%tQl;8!zxj<$`)hDzlIJtL?H=8C{@JomIVlO zK0yEJwO{;U{zgWo#&f2wP&#LgVIC>`kb>X~)7v>WD>rYO2*4Ata`NVZ>IM zxmwzA)qGU#B&mQQXi$K5=2o++pi^tqCoCL95n#4Y&iMhhmsnjz(_zQ6F;`_;>v^>D zRrYX`4x&O_ZuTU=m8w#imX#{7gZ+&zr$l`L_fs}r?W;x!wcKll0J z>7P4I3d+l2h4hK0eOlg{a6fx{O?o2mw0_tTfuGJgY{5C0!pdsc=+eWZ$;;%+ZciL( zU+*x2CgWldI`H0wbWv+)EbdfjZKJ!*peZqlx39N)ED=711e9_xgzq&1VxQ6QlBsj2Lo3au6abyqJ2t-4%a`%A}Y z7HqV>zCJu9g@7-Hgi%gaJQz6u;hHcMmGUbqDplH6_tATKN9wjStgsZt7_WB*Fr@3F zfHO=^0PFymeK*kGF9syN0U+8W0$G=mh9-qQb%O%$qx7S{1V!th&zww7O9wcz9~H8_XtFE{gEQFG!&NZ=qo z4XGHMYQ6Zc;_=kNSN~8LS+U11C^D$!rs)d|XTZ${Q+g4&w=oZ`zLAo$KKrRBdL2j< zetaxs>g(sH((3I_2UTpso*T_$CaxgF(R@>c#BilTM5unNFApSq{LzDh|EAr4Sa(?3 z#)eUW_608hcGovIzgw?XHhQCoLO#Ee$y3RfM$#?G5==u5i$r%?M;yXt>2J_3V;;>g zk2^dFA|+5+MM6FG=@@U2y~cRq@(0oI&kLgj)Kzg zE;TT~`|3m9_@>t(5c9D}`~036=?4+ya$$84;+UXFJVL*AICJ$X+yBXY33#ZpQZA6c z1p3M^n>tx}`QQE3EL(LDK`avgbtySHd2mq?T|^?ikVlk#ul@4vt}>9XlbN-Hffm=jxF~o; z7!qWU<8g#lYB*Mn8SyHt!5Cp^noN*q=S0|NF4O#rnFSYoUu^fEo$!R^=6w09zu$OZ zr=}NmJE7OtUZr}C6F^x?2ku7k?sG;)nw>DV|G|xpQ2U-+Q*&q>b!5+J3G>h$93Mc% zc=(Y$HSe+n_7IRUoY)94oCcMQdacZwPs6b}$Cwj9Q5b`^EiI+O_$e>dW-?ey`4l7Y zN_>wovX>3>$;QKXP#!xkE_0`g5j{-6jnBr{JZAgohVK=N;zg{C&79t#M|FrGVm+krmQZ3*q^J7#lP` ziZu{g`Kx9tn%wcgc8zq0)Q^AJ!K`b`2VKmCZDxlnO3ppR*%)PY6BN zBw)hwutpU!Ea0ks+<3LyI7)YS|92X~+m6c@;Oq2#+&szrbCX8Un_wgpb z8@O}(vlV0DY(>;)F`wZ|X;VeyaUUV3;rxe4iIM1!E+GIlAmYCYK$TZaqk1k0RMp={ zM~;gmLO%GQ1@u`Y=h16bdsPY9^q{TW)UT$xnOl24ULE={hn^)q9i2@81kM2F9=%%+ zL1DhksDra~9BcVa7uspmktY>-49qCWl4%oQ{S5-&v>^hIX<}|p3&`h9l&Jf(is|R$ zFLXl(+mi_fCc^+kgR}C=&N&8;pa?w8RW7FYoxm>zJzKin|3MZgIcK~L5T{o62RO}g zwpgYYfE`4U@=rK)1j2Cx_l{uKt?2=YB@{1qxlPBw;0(O3ilC<+b_57z?<0-u0@$<#NM%#4hT%;e+` zz}p}+?Tc{-6E@#&08>+ifrT}394WOwnt2EvxBxyB0&cs%PPc|IU7RVxgoV@KXR$>$ zy`pBUxV~xE&`L)U{x+)95tNTti>ur(fj$IJEWxAIz%e6G9g6iEB@CSR0q|6|y}rxb z(8Q7df_M;(02w2&qJq_?-cf0NeLdnzwmKV%&J-*VaEjWu>*`eYV}zH!r58MF?JOI648#FYvqQ0t0nuAWrbqlv=gp zsz@U+8v5-X=YLEQsH+V0pj)~H$^0=1NE_KM2XIqqfXd8)X}K9;`uo=1Sn0SGASu@C ze1DgHrQyZk16xecnTs^x;?UN}>4y5=|6O|Sf4f(d7m}pytSBR+5$|(O&y?A}wCm#P zDk&i$vG*SBzyGvEKzl&Skwj%GM}5X{u~q#|tr+;Pxm8tFKQJrnQC56n{m5`S(tU|B znD05<8Hd<^JO_G=dWi-D@PmRgGDt4Y&R#WU#I)W0ZN5)rc>l!3SB%)!K-)zNwB<2; zBh@2qAe)~dWs%>xcDPudK`!F^@w`;uPj`)Pt*kx}onY>rH;Vz#H)Nz#l4awkSo+XI z=iszZbJu>bCK|vOpcIazZ?XN^$*G{BqjRNG${t=lRvpCnk_QbXvr8_P5WFoO)G%N| zh3AW5dN_M*^Rw$N|Hc;9*&(2mX#5dO+AwKpY5agLow_-c4!2j^qewuv+x`u#>!fE? zgn}N--sijG3-yk%OHJ6Mec~n45*4#dCnqOBn$fH!jyFQH~e&1n^m#r~@QOhJK` zDarmoOJmpR4=zN>&(9y8?Er>ags<9ItnDm0NoALlyLn@axmLL@z!jqwhaZ1MWA?>T$N+t)%`{5-6^1rEU%qrzz^-2GL?}+n?Vpl`XD?{y zw3(A_f+^jGedUnZmbQ^p(;rW;MX9fV9dGPyV{`WwWH6*;W&7hpjk}HJThj2jaih|^%=IPNuZ&qJe%cP#y2ly!|ok3t5wtwy+Hc$?@zuRewa^rbJucV_Wjg5_ef&x^?79s)&#SP4SR1A!-uyfkejX}H_(GiWq zkU!Ir7lekmz<{f)sY%Gs&$p*If4C~01bSjAm8I|fM&(d%v;tX~zu#r8G9(#}wFM6k z5A<5pr50GtuMwe|`C)M7n4vgNN(~Sh_i5x9^_eX3lI;Gkv`qgV=*re0pz?SyRXlkV z@Nl8&=H=xzmd9Qq1x45`*eX`-Z-Dn5Ymf>srxeftAGoP=tp}7XF-swP5 zuAfO)@cXD?`|qs(bNk)h-69M9TUlXQRb6Fo^7uq$P5}Yxp6+~cn~Oi(`@A;P&~P`S zvZ2TNn+_|)o&Crf%drVCkepUlR;)lyV7B-@U8aCLn$TDRuyt_TVv?BPSSy0n`=F-~ z2$M!>ZgFw(SB=Ak(%^%NcJd)Xd;}>KqbjWq%jRN$@So?8%li5HqQ&Y0H897o*Njv2 zdhH}S&!9Ea_BY=QL4_u(N62^8Fnei>ZZP5irba2i1@|uj&X-FmgJ3mt!c+4FJ$jON z#Vh1V$p)@zkRw0{Z*xSxH~soF{7 zcse%6f1!Tdwt^o79!^2lM-pg;rH-u^8U{nQbuV9X{3lp%pI`T9M*a4DuiG;A=tFq8 zDbNQ91>ESrgN}Rb-F6Ls-Tu#%+)YHU&6f!93UMIITe-M!K)?LS1YI0N|6wd&^-Kn{ zXN+85E;=UF)^f${z)*w5xQQ{R_uPJ(aTwoUpCFOw*QDW9E;aQCEth6IFJR6vy>g)a zmOv(-b{X0(+6=SU7!&;$N{I?Q)B?bCQ@}OoTJ_9dtp>0HSa4R+a*9S@pjBxUG+y-Q|Nd}!7%GCbR>4a+jC5flDcZDNM&F-+| zeps&W15q+FEARz8`erw;IR@N|UzO`eI@`{~`8&3B?l>rGxBL6K{awI(sRI->IA@oUh})!Gef@% zyxv%fSa8ERAaW62qEq)B1d{q$+wbH5E&Jbjw0^%hYw6d0|2G~H9Wir>7u#W(zJO>k1GeGKCI-nq^y2fJwAWE$HSS|r{J?r zf}Vf5PK5rAYz`#!knTKJectgLiWajT57Lkz4uo~%X-1Ro;q7nK)Y;CKlY?Br@5zaY zN`QaoZR%V=x`y^IX^P}GIzeDYob8PDr5O4@V-eNvtz`Q_bun*=#A3cTQBVy~&(6+H zN;i7+LR*&03%d9$)8784?*$aQQgC$Q0fu=YC@4r6-Ah_93Y@+ab8T8s*6Uo2W?XPU z3qS&vUf$MVQa-SMHu+*qvu&*C_YHpUqMq-5_6+*;i9f><|4mc}(-ajI?Oa{W z5nf<182;XQdllfjUX)YacY3k`2Z2M~{kuEdQz=W}!W}s1N6T!<{t<16qO1M59cv$-sYw!`v=r*$hCjiUc~qcEy&UIT{o4 z&GiOpIG$8z7&<{*e0(rykfuPj=%4(enQR;r+gH46<$by-2RN(@u(EcPGWo<|*+qMM zdztfg(x8PD&)XFOgs}-CT+|+6-@*%uicCTJKrPvPD?e6bJ?zN$D8C)9M?~@HLBg)7ti(Z8n z|NU3#dvh8UyECGz`S|#t4RJv9xm=ERd4%`N<;%6ynzLz^I&~7Dd0B&YDjPGy!|TA7 zpP_`@1-M!gsCpOJ8*_SdJd3+41aki7|CU>Q2t*&RUx8#t5+KCRZEbBgtjx3@-1EKe z4ux3LMl7glXpHw~%BIXXK3}c)R2X$$=xz9?@hALL z?ALS&;z$PPUVoGOJgqLfR=q=(@58No8&GKELy$2W0FVZ~ao*|bul~!SQ}&wqd!9fy z72KhB@rqjoI|Z?O3&HdebRa-g28`NzU`6{oboWF$&vFy5r5MgV>+BS>`SU6yG7+}{ z38fo+{0Gud|3L`!ip*u5Nz|V*trk5jGK=VP>FF)2;)Gg%+DsYom*n_eHr$xe;xTEc zy~`1a2H28HhUMU5f0%QWE?c))l?F^$CNQR7&#l2LimF$G}2h1V!8R@%gI*0NNZiYb-{vLgVg0=4S>>G5>gKhJOvQ5%Mf*O1u=*a>P3C zitb=b(IoJqc7&4^7bnL58l+!wVg&_#B;@~Z(evPAHix-9rd<4YNESzGTy0_>Sb{aY z1?Tl3OZCeGI?-t-Uy31vDSb_>n}Y3Rk&-9^w!r6o{*9ZK_Jh*fx39cg4NfjDq?AH} zx(^p&&2X00zBevjFc?ECNXFjM+ErC{g-%qvF;rS$wvq8ETQ63S6?B1KL)o2^HGoT$}i{m`nSg?6rDZHIbc$YQTI~sv! zmq7RaBMk$?Gf@!2MWfo}t(g~s@3_mOPyROW1w=Ze^FI;sIpxZfm2&8pB)LauRfqPN zxjM#W3G_sPkR@!JGfklZfK-6=H5C{&v3!@C6k3@GRs;UE0@|!kDB{Z}B!p)3F>~Pa ztBw{}$5DIA=4%ezFmBZ4dSGq9b7E8U0?+&l>vt-PnN@4{!T6))=5WxDCIEp-068f3 zy)cdSK|uP>-rys|Kn7+3IB_~Y=etyye9rJPF{JDy7|5?7D=y-E z<{^-Q#fD}7TeRZ3B#;`9E3P>}q?E&adoQShcX}p{+XIw(UsgVTeR~2t^-1$Ju^(_r zNrLhWVyJ&tTG7REx;QyFq|LCn6StcH0v47L3T%UWlW~)ZrT^%(8k**qrYBPpf&hfc~hl)Je!NGw)(!NOE zDXV1k9zF;_RS%e@HvvVFix~Ik_v~^#2HBQK8zqK&0$6$bhPycPA7)h$Qsx%3?}6zujui6t)x1=9>f@aJ&X z1w5kaE*NM5sm4L1p{3QGzWiZt=XzK(rWMr?3X1qx$Z&JLPUm%#$Km%h0e8j~@BP>I zg z1shFu2sBLjRWz^|YC~cQX4|wh2gzUgctmKf!TA*k!RJx~@c@zqNR|N#cG=Rh+88F% z`1@z`C&t_l`{C=A=DsEovz=>aHSZlVK3W=ZUmH0DM)HU*+Fa&t5QvYd2j~91i0TJAe4*H++`WbOQMMc#PR^NM8u@s(8&1_Brp)*A(UJed+oGlyFU1P77Zw`Jr=;8@SNxARK$1 z*oK#Zg;1Qe6M#Ok6m%fDWB%7XnK8XtaHx>aH#Mu)UwF}JC}!Yix;~EsM)r<1;G~Tp zm3;#2yyqVlAoUlFxyIdxEHk0 z4R>8_5Qy&P1DzN3*|Xo5N2~w%0)=24zeo9J z!KqCh*>;R@XHQB&p5DbD`2)%szi9}NKYN8#HgU%~oeVf9*g1TGbuJfj;v-5TQ0TCs zDWn&@h0u415Oa+dwU}-+m0d5By<0PrJ!FUeP#kq&A$2hTgkPx`J+lu=wV7S1UIxSL zYAm*fmqBYTAp`?WAhr_bXSt@uk zsuKOHdGz1Q0v`*${SM1}R>Xry2FsQKm}C>=qetOhG!0P5zu;`Y-5h6^@JDeX2qb|# zA^So(Rh&R7NMW|M)liq$*XzpNb~X>l3%e5q=m&>~otDL6NGLV>H~tT)pO@<*<@luE zKxAo`P4jl!_OEs5{}VUbvq@pudM$&6Y3^MQn9H|zU4OMQ9Xw#jP>YC=^K?L-kH-lBtty(=+BV{*LTPB8+@)< znmmt2yF{fxX66HE#QF1fqoT$-TZTb@_V9zL;STRqS>y&DBV-sbVluk;ql$F>*^AV0 z1IVI=2xL_g#kS+w=*D&@I$C&P0Cf_)zec{b1Ix z*e`+hr+*LHWy8VIm`-VhPS1L~p)VW+EID~SJ<=4J;li)i*Ol>`p@_*5+}8hbo*EnT z?9qYMp)f!vB(5Z3CrG%1qs@$(OG+sddC>g(a+k1c&Y{m=L6b#kme)N53J)b7_8F_;Jtm!isU?9u8{d;20)ASZLzfxWTudz_bE6KXPHg900_AxWywu*x1-nB)p>lsgXl&0?P#Etvo8YBZ(6_&~dH= z($dAL1a)6kbZ$0?C-@r?VUd%Uwno1TC&nbEeElk9so6Kp9g&9+r1+>q3vyrU_HvL> ze}Z{^{>=R2W`M3ElfTs0V_(DKqmXb=B*DBp$W?v7w#+tW$6)DD{r0p7m8L+;^7^pq zO(#XbJzUB3U}IAgBk=Iz^+SSl5sVxiV}T%NwEOGJ{a3jJ<)U|FPiKeU@0JT~G0s-A z_&-mlRgoqCe}0$LabzXj71GYh?1#VL8a%O$b?dw42R^+^WrH*AjruJB+%o2nw+vEV zUJa%6gB}?u#VxhpvK`W7Dttq;y z-eD3+Aqazr1F`Om)7$fiBPbmW&uOg#4gkJ!K?Oc7f6bjS zJ_`It%v)F|DIqJTGtt-6^JLyuCD19c_{Ucbz6}T6FmS+ZaGc-)d9hu*CIyEB|gs!zp{IG)jUJOP506bKlLLGjs+#BB6hatv9zS6*Pz2~5y)Ax9}$^H&*!?00U{euo1hON$PBOb z^!aB^xO%@Pt^++%ZP#=4`P;GVP2h&^uC|Mk7uTEjS($~ArcJwBTU(=|p~VAz>l*Ao zJ&D!_LXlx%>hSOpG>HfhXjO`>{tvf4dGz>>x!|;dH#YhPT7x}0X75-MVIV&!i9Upa zB)zRMZ^`f!E!tXftt)$)!ZO?%SS~aJ^!JI1KCJ$G>`Qm}udAiTbH#X>q9cNT#rI6{ zV5#v1kah~1y~LnJs|~&%H~9Fys9&n4cJ>BDU?foIA-0V>5QP?b`7$`G<4oaGsf&5?I?{~z zTu+ab2<-GLeC4${mI|Tn-XvWSvgF;Rf(kQBjGQVy<MCky}O{0u>Wn`sr`yOVr{w8?~qI~%hUeMz}3|Lan|NBn@l#?t_ zED}M)+*LqVstp)?!+bTvJSZ8wHF?pmb+sJph7)T*aTx<|KSDa63fSYPL$NFC_BX7a-Rl7EKHU46RzL=a{IdVnF#C05Jn+fL@}=g^B+* zN(H$*Cnb$y(k!P3o!j~G-KY6sH{#wXxXS|uF4mj-o3puk$JOjlFX%2A?=ipK>ncY( zuz#i=5UD{3L=W_VLIEDn0FICQyLllI?c^%w4QU|4)W0{=7GW8332=0D{Q2|eSDmsM zmBfkHMg{qq^bzK_Z{w&xL4+)*UGd=P@blWv9GpbrqnBtPKv`HI!I=;A9T%W5Ap#x_ z+%+A5v6jFz{iJB#E#>Z3sihURw9=|D^SlF`7IQ;G!^b2|gMoH^U+3J!PY)P`9Z}vE zLOwv?j9?xj!%{T9%Giwk#$MclzHQ)(-$_CloxAPS8)Erd?KM<}QdO+m$pfw+a?jdOL6t)AG;f zA(7{O;vWCsEWq`xNni63BYtF<<4mdcIPw)JufI!OV_y<`K2r#JnK?ZHPtX+pf-TI^ z&r17;htb#9*L|j-ym+JZK!ew*GU*A%ba;cP+$zAtGEk(h>H$&>uOsrPaUW^_=kEZh zPXzHPHupbM|G-|34)C^`07;&SVn&cbeR71@tS6|!&IuZLv+xL_r0(D{Jh|vW9*2gh4Y2PLHO{S7$+NmygN@M~(XpO|33V#IRCRYeWU2<2 zEwoW@Sf}N#^54idzuy*bvn!i@+N7UDXSsJ*mh2mjZN~F2AP^p^0*SH~uru7Rf9iX* zBCIxSfU44V|H?k%prNTL9<0<(`o2d@h!4aTG2$iRNMG3*7)-UHyy z8t;Dp9(Emxx>*6MT|q%XZkGr1*8q@@gLSMMumZnj#KrNPO3IiQO;FHiihkyUNTt(Z zI@kd3G~=*_a4S}u2j2owI0vMv8No|>06~9juvdp$4>Gy6i#J{&p*T`zYdluME zD+0OGab-zblJ}~r>p*~Hd@r9CH}YM5_?!8V*&ZN{o_iBCEPcK2{cEjF6B0LoEmR7` zy;3Ged{CHE0~W(ZG(GdM>$t6M3;Q1hMKvEXk-PKxY~0+qcpO(0p2!<`8LmJ2nRS@) zQG+2m@&3<}EkO2a1eVDlsKpa-Pfr#XO2I+luO|1=D?-A4-1&%)Z=Zhf{#$Mt&8_F( z$NePCEO6|=aG5qWF%bca&Gz2@$faODEr9RtGyP4)6zt3|UgFLa0R1Hpz{HgW@b@Oj zeMwBJAI(5PL=qMlo1Vr4gs=z{ts0sl)4@_&T_GzZrBdmzEU*Qhdl!(ZKUZMnQ&+Kp zG{(>?b#bxS^mpb$T~zN@@=zQkvGEgvqyS8C zXI)^Q94xlnx=5*PgJZz=svd6W+~Z_a@CcAkG7x!avr#yib?dX^;YCMBzq15Pl_(;w z@`s@0hfTf;a2~++cG?oS+qHprS@5R}SOX?tQ4D1FUQ+lTi+2XElJ;@=u^L*G%`lj+ z|9(MNJyJ_93`HY@^;TeP&;ymd@X721!1fEMdOc?sKafC(%g%mRy3q^g^O)0mh84Mf zuyFk_Y=?mVRaRYG%o-j|3wmB<>c~E$m5};>X!`1?sPpgdp^=aj5Rg*38)*`KuJOA_}%$F=lN&%>^ZJ8^NIVu_f=OndqjX_%~F+D zbEzZ6y1$qxTJs&H*=v?BENoe#rOslv-j|LUvtUiv6=HjgtZ4>Y{MH4<7>ly12!q@aD{%6gk*VPWIs8Qy}nU zPShU}hD<W-j|z#SuH)l zfUAJJ=`S&_ZxYeLzb}6l?vQgJf`S}@lS8UGK-VJs>J@A8!tw9U!PfXiTtSsjgK6|$ ze?5xA>PkxRh$A|(40trK9t~f`YZN|<{ZDUq9(o^vSw#&kEmRpoY~AF!Pu1$PMMXu7 zFqx!PR`Mk|ap`xF;!gmfqzF*@=zrXgw6v-=xDyi-+p1#zLupa*jEvN68t=rQ5X8}~ zL>F$pBAdUun1|+s*YnVP@$~NRo@h-Yqua8qG2nOcYjC&+eiOV<*+4-04)58R`&kW^ zAIkV@m%e<;gwV!$)#japDMKiYefCr(7VpxR2Yo>*d91#^K9X6m5mBZ0Erz$PHwPC;731~d-V>3JpP?%!XC0B{g8Kp+bd5s@yO?Q8l6l#-`eYVZ9%KuP+X zn;YWp=H_>9q|wWytCH41dM7oNqeor=wY9Z;T?B8siE0$Uzj4lo^@D9oRWB_pLccmV zY&E{76^35}r`)5Qk!2Yfl=!l|0^x;&gTua9WgcerNiSW2P}$Ewdh{AM#baKNP&ATX znJ9gDV^M4$dDt-0ehk+j#%%8{*qGcp-4G`f6^vb=e${Mi-l~QjJM5^30I8h>hOFqiY59{jLeYH&SdKI=r zO5-|5nfRn6?V_G6d}^h4Zp6FNd76qdx66kfpr z{8a!Y9!4v)=jG?W1ew5iXD?2$s%nJd{W6d>r_oZfMwT!^Gw3#d;8+uYQEunlORC-Q zCCO4V^YQbGW9cO@9QYmtSbPK-;xBMla-5!@336}FeoIc&3cDTJ)Fkn)w4`UEk}n}K zQShG2{(@OvLR!{0KMC(oV1MzU0t=c9;kr$=Uba>to&_cv0&yKoAbDDRvSKW+qSDU@ zX&sWRtUt1|vX+&bjHHb6w60#c&Tjx8V08`?11^_A9nZ7R8d=p<{L4GpFi0Z)q+-2;r~`a)`}d?NGI&OUCj->B;tcQyQ?;Wudk>q zi+=vJbF{2=pbN=@3Ih!Ki@%`jq#i z%AE>J{J+}Tx^YRE%*Mtp#eSbKHG1(J8eBXttJ-91hNs?5z4q}DFZyUU4pO)K0aB%K8K-) zc(c)e7isN&X=8)4rktGO!@*bi=fpN7JDUOKA4-J6muGD4J_2af6hU7D6(AAoTB}gN z@^Jl!fZrVi!YWZI@ejLNQ=q>H=D#5LS%uGZ&}BT_ zfir6;-ktp{Ad%rF;!!@hk2`c!F5&hLQ&cP-1~PgsE;X&3;DMo`vR^$x--{wiJG#yO zCULSTt9JTRQ){g3y!-Hh`0}uiTXjF=84ia5_RdUj+PXADoC(-w8$o>p+MLkFM)4Bk z=1e9=#u1=$@53N|cBcN!RwTxv7xd^ibH7XK{T=}?3i`^)&S;GiEYnzXRTQtHzk%@B?6;8f961FTjsT%>4K< zSKV`VhTYM;$p>9SL$S`^++#(K_X(;dOOdfeD{ynxVU%8lGeLx(pTFW`;+74HtX|s2wC=Laqx6LT#OxNQ@WIw#*`xPfXPHTSlPE1VBEANK9~E z9wRvw6}v&BM;ru)<#2yLW!PL{-=K)DCDM;2DrKoIXk@3a+$BFanjsoNdP9yQT$ct*>t|aB*X3UliGQ=U>(H>2S67Ed zMd89N!>#xFSLC=i|1gtK7F3X|=2lkR+J(wjeoojM>h1Nq^k#^R zwJJgBKRVt}MeL9@0Wi6>w->Vq!$8HC@begIMX#H`B$ueDEl1)WnQtLcPFGVi5Te`Q z-n9SQ8VQE_P0z+wbR0@6;S~at&#I9V@2~Xu;IkpASTHQp^YfD+1rKcO?5VP*1C$## z2lLM5KYH7KmGiv+>%!#f{im}bJ~I9T0v9)5?%E8W~2 z`V^b$ypd)2k|CAX3=>TF5%6^J^7F^*>FQ>I#pY5BhE`~8VN!Ww&NovPjW2Xi)=KDt zFOFX?$Kbj1X0cgntjJ-$hmwMf^QBBl*d2E1N3t3sZ*rGCS5W_KEz#nHqJj<_FudJg zF!-U%5T5q*JQ-BhV&qU(vRN1gEr!XfSGV%CUU>KQI8j4xplncZFn#1|*;b&?!Rwa){gk|CZ1&cc zekWYcYg%kGoaYn8En@o!``P6K+p=4oOiXeoa!kK|{tN{S28mSt0Y!U|0T(lO;{oa? zcmSbs1Xz=Sn;WaB=>4a-z&ZVz_wU~m(){^Ta&LN!1pBsvGA{14`&Pg%WgE2R=Rs5(DV!r^hTK6(tOZ{NG^v22XtGFngr3}#A1?d;e& z0IK9F*9Eo$JnLn8M=3eILd29!{6<=aw zW0xDvZ~fKzYBJRoy%nGSF6N#X-_geoxk=xRpBRG!_(@B?SijdpkOlVdn7Rufu&b&3 zR*t{NS%FDM;Y%%9(d_7|Bs0^|IrbM8&X=~vkuh2Gq12z}=SMsL+X|9K$IDYEm)+UK z8tYuN!MV9_8*@iC)#n6M(l*Qcq4Zmn)?{!ja7M0PLKk&-t{}m}_R=PR_35;|-%AF^ zEkg4*4;2_0|C|@GHSAyP7Ya#a*zd2Svm_Emzaw0zW>-~L-}Ekdfp&w2)$^YI(E||= zLW|5ymV_TBu76pq6>oi{aXNh9{7vGi)=V@3ksrkGcqFVhG>Lv_kJWTAHLbx9o7wgWX-}ZulqvKr+00>6NaXot@iIrbL;*%@2yx0yCb*vy)LRKscG0nC{qAi|XWQ zbqZ8}R?5q^srHfwYezUpUMstlQ4sp?MV*2;wd@!BD;I5gdwa9Semw!)ce^pOqJmdN zMMW-Dc4S#CiZEz7i*E7f(U2)*O-^sG-JfsvjJN*qK}3^u^2Y^ z-CTefPHg+%`N=h#aJ@g8O?3lCfD)n<#RqHocED4_Dk4|Hb8o_?ngjuH7q1XS=rXzm zT7@*1aTiwD4L3%IxmvIC6>?tTFEc`F#4%}XKs-#7QocYg4}s#{8Je$nc2b%1aD}{=5=z9G{xtcV`jH#7{{7YVb7UWdUz063EGeAm7_ID?o0|ZGfM@|IR}JFyUPf8e zzDC>FDF5$2Qn-yC8ER7=_wEM3ECRs>_lJ6VM0%X&HJXf?v0MBQo0*4a6sLE-OxQ5Q zJ+XAAu1(qWRMsT*RC+ZaFVVlS;Hv`G#!4@Jga~38Cx8*bpDqkXogn1^w4J+0j~m+V zrrp2pg#XavTljRs@W+8<~4MeXNQsT~GoJj*8u|VXw`}6fH)$*TX=GNtDOQaH-14IVQQEd zEBV^Wd2_Y#!1fCJ7?fc(xXAokY!V@(C8#%ufi5V=@~hqpC*BzO$M*#V6H)09*2zx` z-tX?m;)Mo5fxFY%+NxV^b7v9SkntafC?FQpqL%Oym`c~Yfb7OU1HwzgzkkpnhSl=4 z797sA@B|+J%g&WR=pepAmaSsmC_U8sm?4Ribj9eCFgk3H$_OSgF=Rd#gg&8oWIm2= z#zeq${JiO~m;Dg#M-u4f3v8-q3)vFc{=`oEKgz%0R>;$O{$=7fA;Ji;C(gO79nTP% zova_dc*mqm@ZyBuwhJOmoYn#Y5YrcDplmz41YWn?c~edF^`dyT2Fn)E5l^lHlvz8g zL(oMWrlr@g@QEQu({l>0om~q?z!#Qz2ub?y;@X>tgvs%sM0o0Gl+k2XAmyRx>chv~ znCd!dAI+Y5KJ1VQ?&-oMHz|4+nc;UDn7q&!A!B4zO@jlKq78B>Pl2jz^;{5LKHGFs zE4~9`hWqZUVC&3Gy&{$?JhFJyBJZh191%F74A%f#3!%?jNtbH(Awp2Cx#OOQLwzI2 z8&6yl@h*H;^m-&aw8o+@sWCb_S`jpI;gCR;L8sqrJJQ;U0!n361X6lH4MsexSFa)f z-_h0A@AJ&;4!K35;qC)oQ^AauZ&pvP8y4n{#qZqdt%R z;qD>;DQ+|#o-2*bQhfaU@*uxROHc2I@Gz+Q>`+hs02KA*F4qg7mZ=F6AyYauo)<2G>~8+dx44B5QH z?m?m{*AsHfwdU7&Aqg!N706|I`o~BNUff+RGXkk26AKp?6J#I|6&Dp*17M!hIyE#z z0OVu<wR%Lhi5#W&@ad^Cl-J70AfQ;N1o31IGHBdeWAgagR19 z>I5Z=du!)5zJkecDc)UN--IEr#`9-WgX{PQWV1>~V>gI3)U5~57u zRJPZBVjHeky2p{+cV8sN`Oooj5};7>miG2n1^bWT7|MeY_VP)o_DzXa;i%vKlrXv> z+R!__Ql>ZcKGiBrYc_a&@|tqbo{{eT{2B2yhI-`zB-}8urKFk;C9t{}so<5p{}JG@ zU}9+*2EiOe2yujUwVr|4n~E9hp*Q3RM?SgUCLEmcj!RKD1Uz ze0QPuBP7QnC9hgZEG&#xKQ7$>6g(^8%@_ki3#Xo(iDg$BEdsD*^3c%G+}BIrJ78#Y zb8|xkd>tz|3Xj1o8t?>f{FB3@Bd6n?7wM9|Y1=T&|rAL3)vFN=ItBJC`ZT5ZCYnQGy0Kf1Kb(|TwR z$Dsni)B>!mieE}f))SQ&tE;N+V~M(E3+*=s4^j!e|9xh%KGNW-QDWF<^Bp2`e;s`I zVZK!|hO+Q&%{4JHJo|};b{F5IrHIQGA)Fd@tWWa=F5B-)ru$0Vh;OqLzxo#)jZsn> zN1wblUAu&nSX0BJ&8BE-N`DI6IR1@Ra@NoLEW)WnUnntew3* zmG32Fw8TPcuuG!S#3lFY>kj0AKmv`+S2>0k4?%S_18%G!FfPS|^hXht$IGj$ve@)> zW_IsJ%f4rCe?L=jv7U&uohV8)S*YQRwde~de45I+Ui93qRh2Mh(CyDlp$04j;OH&o zrURDwUX`d$8p(RRGfFXPJpmsZwO=ADWfG9&$ppk~)oo`kuY*7ITd zX9MZCARFg_HDoh(c8YkfVM3@E0L<$RD7BRzTq~Y)_k?GML#V<(7@2p7A?}* zLqzmH+sCs<;!R*u06uPdpM0pQ<@Y|p<))O~`F@5NN5I6#WsUC03Zkz@O*qi(R1|XL zk(rs%Nn{K>L4y+|oko;2TdqyBl+5VrqTOjhl)|w2wzIP{({pxqG(Nrn)Ar%jXyL74 zwT$7ShFpy(HLUfG$!m9LnE(`F$n?MV1o3vB(9>_O+hmY3jy%p1l9Q(#hMcHD_-(@w z|D#LDA8~Vg+{V=&Z*`l1$(K^ht$eA}^CDe zRbY#pv?7)AMhl;@p-Q8eFd$mn+jCaJLZnyMLjn~PF5x8w^5Ww3*!Z)_Q*T_H0C0R{ z&#koYY$A@fG%R~_td+-zP<`LPH{@LFCON(e1o?K>=~*ml2=PS zP#4wZOSL~1P5jnG7$x@oHRbaij8iYCXMFkTAAN$@2+j(3by(I_) z`njRdLr{EZ3~o;T_Gbl!mSkh0p0u|Fv}!O{Crlkt1_Nep^57j z;Zqq$>Z($oy@%R*UyRn_q-h887b!e|haMEQ5%42H=DI9$8x%AQB+P1ZmX=HpA#0|T zcnQF1kYe!0DdiPR*tp)mckhO69-0GJXt~q%O1l7_ivv?#Wo2dlC#Rn{!vzF9&P-L? z@1o3>gprOr0E<37jaCSTK{xw51Mu$mkm-mPnwle`F>5}EaKu+MYnGksdpzSV_ySSL zgC*{X8f4WHQc+Q*LY7A(kS?lHt-X;JZ@XhqR#xz7x!KJu`J}Eo#61Y^y;RsLP?H$D zwp(m`F>WoOT0^+DDlZgP5aIL-4o676*UO1z>@gRxo?zqi`McHqBRrPi0teS@X74?H zNn^PiXAzAAY91-*tyV!&{4h^T(Sq+T7UKH)`oI7FO8^^eG)|E8?0E6hi}Q10=+BW- zYb&@6SY?W8_wYi9N$+OG}W z@wueI&PT{8&GIH{@Zd(76ahvK#D1>=h^|kQe z%wAqz4nTIP!*5!rmar__(KwZq9RLQqvhJ9zdr>B8J2nN zE96!{1Y}Vt7*s$#Ad3`_tsqPQZvfH`f#i}Sp@3#bMBK7;OwX-vD2Fhq7+R@8Mn*=7 zU+%bwy3J*2m8&bH)b-yc^Y(xitMl`tKc)k8pZsu&r*&QS7W75@e-R@SXy?l2!z5 zb)Dt4h~+dp07`tHkPwodP93P#3u$c5fb=eV(m=Umfwu|#aOI%gN=Z$n2fZAXfHfg` zttc6=)fYd>wFF&QLKu~YO%w}? zBJb7=We(u^#?W9adSan@oorz3EaEp<;NI5PcZMX{AT!r*6>uV{6$B?H-T|fn`LTqu zpqy5?y1GJ=4FC?7L4qVCpR5+~FG`KC{JxXvw8PT|2zD zEOY$r@1%aq<(Y~XOPP)XCmSjxhD8Voi4fDOb8>KODRVc;L1jrZfFWrw9g+##%^@G0 z6%n58VURP@h?VtCDUa>-Z_gWcOesUO0b=+f;GlJ?FE4j|qoFZe#mT`!$`M>$`EtQj z{iRuZFD@Bbzhp%=>ed)mb~L`*%^~h8=-P#GaZIeN9$#Hvo`M*d5G=}YDP;OOp6sHv{mNDyooX_M8a^t`ZNzB-wqJ^N~CSMsfl z`$;mFhpth~ATD_}od`uzss5wS8gyb}`r>Xo6p%NM1AYH1xV#{|{?7y6bR?Ysm-NSv zh%svcCQnb#UWuq6c-Vi+H-=I)DaDnfC)S(487-W8S4K}EGz7Wyr!u70^2i3e})7oYYyR6x@gw=k!!fIF>Pk2 z0t2}Dd8R}NI~!_Yg`-^%a8d%pL;3w5nT?vA!8Tt{%$JG>H7R6GL=;@EK&M6a_9{V) z6eZZ7p(ld3I(TmebVmQYh-qkUljIRUW&L@W>3usCI{1R6@2a~(c61is++fjV}kK~S~ z88DmXv6Q<(pAdZo!9A)#1_ZZ$^2Hn+{lIFT23e#sIU_xY2RBAohb2f7umD)x5OvA3 z^*-2|a8?ZjEtS;MC?He=GVUE^mZmDZT?k#Qde+eKnMjwGFMwJx-OZ`B3HC7Dvv_K4({F#prf=-}m$7^XGSvD{R2~ z5eIR3s~Z~%@RVaC98dP!7yI#;6{3lI+1cx*HRUb|q%?j7pa|qXXP4|6A>tC;fB1^{ zqOuZI_EClJh1-Y-T|kZPRE#IWwz?(fak=LjzDjsF!h;65q@KaS4I|%w6QZSGLkK~c zI_rT9kpUs0*P9<77^TFwH;;swnPFFk!_038jh6J4HuAa^Xkn55u~wMIVII5K*_AUK zsYVARHUb9X6d`-cirU)EmG$w{2k*UL7SvE;M2Mo)U5e2RJ>^ACbWnlxKV)P`oPx&n zUQkd_Ce1BIVy5kf{?|^!)fJ|=b_tbpe_uD3?n-V?6qCa^#oF!kVEfWjq_gvLqBd@X z!L^I`W2L~og;v#c>{{k^=@3FZDxr7H;9~;Md+U)nAa-^c{;R?#>>ZVZKyXPyw z&c2-oI9Xp>aq@&LHg1E2SNVQ{x)tTZd%`68$&Xo}IaP&>tbpJ@e}+}l zHhb8IrCXEu)MW*9ABe-|Fq_E0q0A z2Tw#vyAp%xm;fTHoRBp!Q7(HTl8afL7#&k++Bi=u0@7J@k`fZ;@o;g!o&Al!JdrEa zc88Ak0w@7HEn9??C!d&(pWn{W^`4l?4qT)inat>DkDX~=*t8%AMnnQonu|g^I{4#9 zVIUqJ0c~ZJL9GM+qE5~Tov3J9CK$+LwTjSrm^e6g)c>{c2t20nuzbe$yuql(`bHnJ+kHcBcriZ(GXL-rZIRm8FN=Q=--1y$@t9Emi#IDCFf^_7+-R zmm^Aq{v+CcvVw_caz1qFQ}^IOR%f-XbQV+=g z=Cx4rX@N~IIRyo6gF44R>>!>y(o6wiI^U%z9t{f~6zf)+|8OhSrfTrNxo!ldn_x39 zeb3=ROX=B>X51$NbE`)?GbD^uLIV1HAT(WteADoEB^+Db?@Y(S+S^hxYb60H;_vh0 zg!TkD;KGYXwzihIXCseQDh~R%2?_4C#TIKvz`~#EizcW*MI+Y3pxqBS-Wy=%c)<{} zRD+Le+1~=piixeQvQDYq^UXY1O_eoa6X6UBv@xuJ5{@MNf;<$fAyfo-$3IVPU+Ac- zojztr?h~7vnPrp4=9eleF_$4Tu?QR1&}Lt%Ktmi^@bK{wL*f~wK-&1{qDYH|g@%e> zGjUL~!Z2$F7(DDID6pRSfFbMct-W9T18*q9tTtD4;kD>(7(3QC zHV$25KL3}X_`%5c&gm*{!b4GpYzyT-GN$yka|8G=EJ@q2DKvZ|NmU8kxx-G^fi~4V4P*aKOWM-hx%>5~? z4H8Kki#yMdRQ;@$Pts*6Q)k

vx7AWf2|`T~^sceyysjdy1&j?D=O(x0g0MkcZ=CZ8;l^aP@b zkB&~$-XyScIPZ;NQHYXSTpYL7J|;k?ei-yvi*?Y`d+cD{{H50!-)u8PFQ+Rk5(W zCr#$#l3!nC?!WE8I+0wr-*R)VzuKHCDl~NU+mAlJ#?~%DIJwGe%AmxpZv@c_gm3tt z+#4}&#O|x)+xp~v`>e2VI`utb^_LTeDQu)P#Ys+?QsVcLbB9gTF7cgdIPy5hQ;Mftd0&ZAZ6D28 zNqatoTBpJo7vCOKQOMetPFa6%0m9lew6(jM;OvxJOkiVpc$Y!|J8rE@vv}QnbfXom zms?jlJ16_#Fio&!G%x(2Go}Q{{ww9999{ler=@*@(C=NGUH@yePa)`XjVGBrH~*$Q zzt*K#7~i?W0#yz}r);(BJ$?33&f|j=-rzMzW4TzAy2egPm6<9gr$I*_HVX{2EwGzE z#SHjpQrpgi=#_po=J5JviLQfbYVvp+KJxtJ_ngiQSh>He71FWcOjo@%bg{v+lZ#7? zfjjNC*O5_tA>Lo#f(Bi zLJ!2mK7x5i?(e^USM8IOAnktysCqQOJwl62ly^ES*LckWrgcjm`WfK;SG&36w%>J! zpZ@^{dJAkxfb@(_!|s^St47a~ej=Kf;-d{sdj-tIfs|I)bUuvSM_5U|O&458HrTgh z0%Hlj&o$HTa~RG4Ra49Cclq9zM9(cuPIaH*zpLBSJ-?{Qh0zn30^d)e9KgyT>^~^) z|K8MJ67u?bU7%WR5{Nxujy*Wvx?f)vrQ9A3w@bG+W+Bnss>(zR>@+LxztO)uo96Q< zUvwX5QS4UBpfOgtIJWSkQU4|F{Q(4T$enraBiZuD%|k@jqDWz6GZm197%f%^NzgpZ zlz?}_-^AS9oRpBzWIj)sTy13&D_~(YVsaAsfFLgw3mpQS*Gv$EB?mtBoALnIPXVBU zT)z6J7$(;)At5_n%oYnXGneqFHJ|tobQ%0urAo@Y%hgj^zs4h^b~fLhVℑ!lWe6 zr;%#Byy%a@%FnApG4v@eHmHQE?AMM+Lr0_ur!s^sic8a->u2G*3A_HT`#jVi|L@<=)&D#hICJ__8T z|0p~rpraGH-@I9FhQ(t;+BX?PYsFXo*M*KL%u`+bGn%B+DthVdQ&roId=*p5&EFB& z;zMg;RaMk2dFJXvA7fHe*;RV`gi$=u116ZTZ=q@6$kw1ic7>J3c{0T&p!SQR-203L zy}hsb=4v|s5lD3)znAE^g=OX8u=^74oPwB`cCqg^r%>6~xQJnNlNSze_~yDsD`$LJ zxw*SRui^r&C*z-`+Ji(U>uRKT>dvSMvl{xhe>zQVJg!tv|Z|MKF9s*UU3 z%l8*P4IKCwh)Yh_)y42oD5>Y_5yiKgnNYCswy_?=r5NW`Vb!+liS>p*2ziQ zK2x3Y+8mLHgSz;Y9-<_Wx9lvPETSpIT1J`T$jA4ho#i}s%n*oJknuU5d3xdmNolau z2Z4B{txX1CN;IJT=9ZR9h>pu4<`rS&!F)}+=znvCU9EQ&^^7f=hWBMiNg?mgp-7fU z5$|IT99&#_Y}B^)cB*P8^ZD~Kr$sqtI!A&LHLqDJM2A*E@HWAN$=u$@dOPF zrOpv@quOOt-bxRMOG88D^8k~705C~zRu)2hh}%s~EopXhgF#3@fNpB>noaIcJ3wcR z-fwRFLS6~jWk3EX#Bm|zmmV#h#uLaYEGj^sI$<5qm;70i&B?tJr%sr!vzE6AjmsnR zMlomP9ioNy;hS6o(oS_4x{hBzBxuG$zT)bS^0YFpPC-#K2i(sb$fJ@ZT(e*Er%QN~ zAys-Hp1p<>9de`5!9Kf8OhSSILVBR1Xb@m}HFa>f9kcfS<40V8>tIFXZDEIbX>iWN zEX>^S?b{K65uv$R2+qBQ;I=W6ue)>c`|_IOo!w)f$MT(cha{Nad2Zf|P+@4jI^H!+ z%iyfD7U*~25lx$5plYAEg&@=DxUYBsi8Xb^-59m?JLdVc0e z21w6R=3DY5pM3PT?L1!H#yE^HD04z6RU-457_|suXK}#w=G+#UI-<(S$$75=Y_Jca z6^=%Tm1=dQW{9PqyE-{D1k7dqy{t;Ns@79Qh+~<&RVzS#YB`KdNOc70EAS9FI5>18 zzgl#(m2MF({`ozTK0T}fQqX#vq>tMq>B(5?c^?Y-7QLcamA_x7MN6Ll9Sb8bIybjK z(XR>c@{%<+WU!7|U41F;^%on!&NSF1{4im(8vKdk2yu@CX`tD*s;Dn$LuHywmXWLy ziENKD{6XXX46&&?#UGPTk#sS@#eX6FFc~=n!Hd-fB`Kn|R+v{%kP!g5Rp15Qr>7fO znL2>%4aiK`8*zhs|Ni}vjt+F#lVp__(;?@!eF12(ZJA7!HIdNHqN;`a9^qj7qjir= z4JA#dZL(j0;_1Dr9v9+`8&4uhLr$=58voe50icBKwEFN@h3M(&9RmFTXeJ>@%G*C( z4f$(Ghx7c77S1$s{+w{8PH|U8#D{{Q!TmA3^uTjPx{78L1Ik=dB?0?r=F#5cF2~<| zzdW3$#(LWs@?H@qbX63=7(fQlr6B_QO}%(G2+!JJW%N48!h!L4qORTz=rw5O2h&?Y zxD*FJp{L%Rz-i%Ium+n5v^MV1v2Pzc@|gen)&GQrmuPF6$m7fc7L(q+BRKWl_fq6r z)^lSY_(Wx2h+ltT^zUDjI?^%)`*UhPY@R&^3r;cIk)fY&&McLFy$9I>D>MXJd1Jq* zL1T6ObZD10gnmr$pg_xT^J*V}g9fm(dE3E1enMLiUF$9s46QB9wJ6gGfuNn7BG8~l zkdl!>;4dnCXCi==>w)3R26}o6J`!N2aH!4)f*CGb({aAHPzkB=?oHO;DC{Zw&*7;pE@YoMfE|z@3)~&`#k)nlZ z#sl_3KMY7D)6&x7v7Z%yEEJcoMQwxqD%X$}`5&aHPenya zN=ji2-bIP&>{&CGXw-n7TO>XYHGSy2TUQck3e@QPMu_~%n)krl0jEnS`~oPze&D?* z-QC%d#+HHC9nk_19~T!_RssVv11jhK(&N5=+i?vRQGRv`VI2dLNd-&3Z;M`y(Rp9F z3N_U}XV2%GZvG_5t@3fwrG=C2rPjB>3|f8j>{Ov;W}4WT7%p;j({adcjg|N_oC5Nw z@6CWG=kcX-;7iL?ZT=*g-7FKN1-ME+@hOHU6r z$i3kP=Yt4|9^!q13JX~Y5TFyGn66@;yeFxWo}Nzm4(~Or9TIZ?T22VTkG=#n31G`) zHz?JXD$^=-gBFD`#eK)T@R_K_=AIFI(r&pm5x|7>BR!Y&O`n+0%52kAgrW@{vxL|jwsc{S+|7y=9x%-3czVK^@+MpN0s{XmQy71Rg-|3G(Y^Jn$>D7%RCB3 zc>=r+kkWmji~Ji(ZnR8^-VQ1|;YE|XlmXCV2d|0zfjFUD7`t;ppalEY2>VHhPrupE zN`pWS;srsqMhW_Ln&ucatOM~$|C0U}9!=AF{OHFE5+y6?Uhm<9T>7?6;uU zeRs;y;>OmKAvCrknMWWSxCb zRiZ}<2*x@mb&~tjZ+*7crw)(p&f2nm!mMJFlcJ>TWc*oLON$tr{@~9a(^gT*%#11b zC5!6$F2Iu}+wM_JTQjc!YZ!uz!pVsfS^)?Zf@AK@=#|zKDCH>?-_+@qCIw)uRrp)H zLP2T;ZiY09Cs05{6{l7}mH&)Q5K4!mlar>Grzh;)Bn2ypCQ>131tzHY-%Mdk7@Fqy zob6}JmyeEy`q5hYqN*wMU!b_T!F_lP+pbbTfe)9_83AzJ2>9no*Eh|k)TM42jf~{> z_u>fgTROt5k{{2c$^b@4x{zUTTo3CX1p+U z){>!{&ZY_a$jhO>yZ9HJ>xX~Yist5LW|kV++WL9q(fMi=cZdwoGkbe`gz`kdQd>_H z-GP~d;r@L=c=g$lLN$nm9yE?Zf{FeSaKX{639^C>xM-QM+Z=&8MnyoQg_1X(3*hR9 zObKtLydf5Po1}RIp_!?UkY6?u;=1u|RIhm+PLn*-)<%j0+TaO&n7IkHPCi$Q6%sdr z_6;V_d+?B5Sp`<^RVDn``tM}%K9cW(1NokmpE&P_zEpEI?pRN)ajTz7HQd+Nu6~y= zw}pe?%mCu}%fxCtkETl-3Ye9Yl`Fjd*>E^y<9h;$+Xev*o)L1gswyfWUkw|cpx&d_ zJqn7##jUxz;ODe2)((ic_2I*ZgE4g}6q9&S;IKi{w6d{*X=uZCXylu?xFJG3mxGm% zpWg-?&Nk-dci$ID7YR{6$c=sIL2HxZ?(EzSVurrTs;VPw`r8Rw7y%Te+G0;Y7JJnY zf3#_a?7qpKQF+B;ETfv-4M>6-+t%7jzn=QmLK0uo9A$r)enap0T|6wjRzgNuL)75bO8b+poRW%42Z)4uLGYMzqt|{6 zQ97L7nnXCBG}}UU0dUUyLFa%!=>i5>E)Xtc^3Q!EXXfBEeRC~-PeVhR@a~UyRsez= z&Med$l|8nzXetNnUZbXo5 z`0Z3IMzABXsv@u5DwgidBHR9dFm^s$Sm%z<7oNTN0 z8wVqwqPc7^&-113ys@_aq65h^H?>JMci00+m{ZJmMj4r2d38x=#>EAKnFkrXflrRY zYT>++#BC*sCs?M)%8z0*Q@PTyw%8Q-qG}q|P!OPM5{NPBX$eHz-bv6dmWSW+@9>bp zm8^kst$He;oW~jyzYU_&=_46-#|j93t^UT*)ysalt=-`;7xo=aTjNS}&Aq+0M-d^k z!hV-#1ZJ{GgYK&_7$Dox&>|N`ugQiyFc^rXsml?ws+G8i#Y|2%{N_~ z%F<&KqM?@iox8}G+VwZVnhe3;gfs~7DujX$2{g{{&UdF}AoTu-@hc6w5^Lz;NY2|T zh#tm3Txb0~ifR6>a>LK_ZkzX@7Np`9K#P}wVC)WnL50vioY`~#{WoQYIrp05sem_R zUv;8TbGok-!{VgqJe=uy31X~pOZ5r_>$n0?l1yqK^k=JEQ1KzaR zlvp{=ygWN14zZ6I{_N~MEb=;5R-^m^315xsG{n6QA4s@v-WHAVx=IM<)clho; zWqgvyG3@18al5+8YNq7BRQ?ykH_K?+!LF{QM}OhaaD+qp4#?mX;dJ`}`=vx|ZEZo& z@gDA8`_$A)MTEK~)Aq*UUvu0bAt4or6EQ}mnX&+fzZ%u4%ZB2mY=_gX>EC8x1FsNO{$S!tivL)7e9_7;| zD%D#uPoQ#qA#Tgphv>)U=?1~=mZD>Au%z4dDm3Yp!Nq_DA9bL$BI;(wbK2qLjB`KA zr|?}t^^rOc?`d$is;mt`7rNvA*E(N(S%fK~xV0V4VCj3E+X`xfxp}xG3G?Jboe)AW z;CwDBQmTVJ=E85*pP;{^Q4OzhUfU3mmtWo(3^m_S5$Vs22EevxrXpCBR#cA1PrPzr zAuc`L2N?4`DoV+-rT^8R$3$dg`C#ssAO~hygp`lP<0 zp#nG**Ha(Z31-;#CG$^o^l_tAS@G-lIIZcD%^OT584cO|7Z}(=Ak}g-c<;^7K=cD# zRL<&hIt=Q!#P04uh)U~7aHg(_5X#yNJ#tdK<#%~zrP=6Ddo|E6BCmR1uIXrfb+s)t zBqR$&Y$YmS0FV}zuz)cHQ zHIAcAZ~sFkk|?;l*BTfYyn8W~GU0kR_VK%7&udR7{;!RfZAIe(@&%=h;=C60j2K_O z5C)5|vj+wqzfa3YZYq3aZ2ajCPN<6ERH>tg9Y5Y9oVV>Cc!yt(I@Gqqa;_;?l?>4d zgNm1-)~82nu`e+VpN>t4`THIOZvAr{k|4iUn?f0s9}4+xQxU!Dw&ov*aQkT4vVZcn zZRLO%VTfp;FuU&gp1zG6%2iMAIEZWhf-BjgUiSI(O+)vEpDY|4|EW@YRMK!ls3Rj} zas+{b2yp9nm(d04QN!@APrcs$-I2MI;T~CVBQM{w`6Sjio>5Zjh=_{%7+$8w=(X6eko{-q>cn`f7O}kC8vGf= za{j*>jFMQaUUieecl(U@*DEDCA>o;6+Qyr=?WR9BHhMuL?k;DBVVA}PI_q-3E3bEK z!zcUXs!emV9Y4Z8I-m;K5pKTS93b&-4MTZX$+$sRJ7+JNp{D=h#mrBsaaUey=ee4r z?xwH5-O_^75B~9BwIDNK2S}zaMs=x z`ei(8C)s?57HF!|1~G8FfN&sn#QiC}W~X|+eVroNtxWvY)vLhFa$eKx)~fw2 zG*JNH=}l_ef=~ zh99kl&E>1EvgqlM+Zg-bBapljIOKl#!A-t9CSv&JSfA+NlOLOQRjdS)c6%DrSCxYN zn5}n5P;&o(*O>~cHtz3+?;*UC0>|7BDm1o;`2w6XA1IEJ6cup^s~!m%PVtY9j{1NJ zT+7X^hM%2Xxp!!&xlx&{!{Y?@;W2;|7S>|6S~I_toA?pG+I$AeQ<(wwGU*eK;lIao zDZ776R@Y*quuMEXSBv(NIJ2vBIHIVW@;yz}PiCwFv1myLUWtkYc1Fp+7o%>u9~=JG zibw?Dd~q7}W>X5OD0lxk-JD^@bvBVrRzi~3uahm#Heqd)fa=jPxPN_t#CoHt8D~~L zCF|;14Z)W5aK&c3L|vT4p;aG(AQ={J?pno#g_p4+goOGS>^hOpD<4E8+Q|fNJzhDA z*bOOSt60#`VLtY1zTjFdzejreZH4ENCBg%vh1MZ=Id7Qp0c!fuU4$PL<3>p-shea7 zzxXmcIT;2g+*)BlCb89vwJ!w)SoZezlR+4`x$LUT9^0k0@8GPS1*?h2Zc{*@Rov0R?VEBF?0sg7@Q91vLLgB8Nom@K~$-Pi6`ka=B>YAiKzi{+9 zbM}1za>0_6oV>67Sen9WcX!w0=IR8k;p<1YZwsG`Y)n7^X5;7gePHv*6doR6G`Tg5 zjbArG(8fqc1FuqAJ{&wah!%<{e;HnB!!GQ*7+tyn&fljiOPWzr+`*gt3MyUF)V8bS zFY zcZ|u`o@jSf#pq@ya?zU!@c0)aTFMZ0C?)`Mr$Dq|`6Hp6&$YGWphrD)b#cipDmsrf z;ql<+(o-ocI$tv35xE*YxdY;82v_aQbKdIe<-xN~6Iz|pPYRtf^2SH_4N%yI+we+h zk~W0M5p5b^YUHx?(gOBe1qXYn!kZlqV%Uj@M7IR{Dr-X8SEP8myxtaW6Cw5y6g%D4 zst{xDy;r}P?bhGMgEu}oc@AptFclw))(dKcgXO!77;R1|3;4_5p$&TKy?Jv;Z#YH% zrHE2RRTb1Nd5RF+q~zu0)eD_0Pa0=90A(xCpIF=4ZeKuPNc^sw_j3yi#@JjgL^G7( zah`Yow>QA+p%Q<6IW2Z*G4K+|3==c6f15XL`t)x_&4bb|r|A<4k64y7oM4$?`on$F zlG&oJk+WycocZklGyf95nMSEM&VTs*HzP04EGjx0xaRlogw&rN8X{HV2h@8E?{CPL zI|fV;U2n>MTeGsVo&%15E$dnOzaTzdJ}WDWY1caOxJ(wSoee-+EFR3!HkeA?Gsajp1bQuntoc$J{5n_37wfniBF|L7qz%gp`THsuvmkK`v@M62pUAuN|-nH(& z(X^@Gdz*j`oiA{%l8>R&@Y`L}c$vTV=K_a2N-WgXpKk*m25jwCwCSLU@0BZ8egLE3 zn!z!?BMZ*7xC0AM%l_iLaFM6H%P;S&0PCSgSLR?dFUB|Q4AW1Wrfh1v z{`x3z9-Zl6Lc!A0Pk&Xu(#8MtBT|Dw!W z!oX8PtmOB^#>N`>2D4v~y#GoFSpO@gxWwp9cfY*F6e!IF%)$HyzQUVy<|p@jJ-&OJ zixV)QBn_vZ-Wm@y64=y|{P44eqy4b?(cQ~joPlzk9jBjGgZP}KEj@t)V7 zCZNFR*cr2~mZ7Nm-~;22>r^jZu#9!$=v0h)DdgnA6ZnFfkoxS(UjAWBll1<3U-Ya{DWM`8tvc>P|d(Q9t z{{1MA9# zjtL*Wm}X({-&jun>9`^gckbQ(LK>U*zk>fM;3lK(rsinj=4s+$j<7dzbFy=Ev$Hm( z^)PpFwRUvie)QxK7dx$$o12r+!pr9_$r<13eeRfcPHY0s(VcbS%ohRA+gk#)py!hF3wgDd3 z_cC|8&`9SbpXwu~&4fR3Zw$`0ilgJaTchH8zy8nXkJQMV>j*FQ#W`Q}>4d{YluCn})i&`p3Hyn_mhF3V7(hjBCIrTFa{E z7iDK>k3|(IY01dQH zu4Aal%snZQVolrb!4z(q=A@I`Z#|`$AY>p(K!xO`{?AmWrbIU9j|tgl>bxJ)$>yH& z@%jh>7b?rqO*axbIk~>RKCI#4;o{25%AeEII@_zOsPKR7rYpK03>;=Ww{E<>R5gi@ zQl0t)sG=R5@0s%+38f9M{{C&{?&0y-r#ao-*?F{~uFh(Jn)TDCPs&TrsHv&jIeFzo z%yhcDqbZ$Nd+#c+?BXtBjvRf#hA-DoEv;7K#zOa$-+qRtdwzbtu$*ze+LlyRP0jl9 zWY^lz@Rvhmm+Hx=9L+zLh~<5RsdqX*@6T#@w(1{WGwN(2x6ReNF4)i3><(fPG71O@ z3GsP}=_LP|w#?`YM#p{d@8Xy~QFV27b#Z69@^5E2VV9twpl-BmWsezG3HsOYjq}0K zg*UhNwK8U=q(y*QqFMAW!hAaXaqCq@ux63{cV8A3mb2a3g@d1ZjvAD&IVqz5d;Ywu zP%U3!I88X;MCasnm+84oeC{yR^+L^BVX&_C@2|~ zLZ;{GTo!z(lT3_^p%-UoPPkay1X2<#Z#dX2lFgSkHZa7+#fN&|(erwHd;cddpW?OL z8U7?CC8Z%&{Msv{&rBC-@p1Y_+0R*KxH4j4>%*i{TFm=YJ^vQh)`)pMcC>pMGz)oE zG&MtCi2oyM_BpPQm64g44N85+n46os2+u5UV>oR^AV&BlU#ga}!p*9;ShZoo|BCCs z1YrXN0jgw=^IT&Ed+TvGrQ=sTJiOzN8&l;k&o1{{OAwr9y#(DOBeB-wpK-O5OD26a zi-Z72>OAY^qDq;@leZbFf|$pk>OP8(C8?AO)(Q;~``bsov?W zKNw`;8_r3%3K}3wpa)J@S_TuS_K@=?BqRhoww!l=8MRtQpb7~HR8a_f6jx?sEF3?H zXON6%NR_%vtgPU?Iri|AkbA$&)tPf;pV>Vux`43kvpazT=^Gr!d=23r!~?GH8W}A( zl$MrG@?%+_2Uz9ZOj3Swm5#YVTyWf7Ov|1c~qEsOPP@p@vYJARMm zSdXNOhRf!ZUsBZ9*9-VvRKao4kI%>$ai*%Bu;aVIF}^c$^boiHZMW(5)p<`(EX~5u z*8T zoR@4ito({M{UXnrvQwwUDsb zJ;bWIcGMqG=0l}1j5biA9-o^U^)RG&{PXjdTd8+dsVyqWG4Su_!Z(^^CmEnk-*~|@ zvwAxm_T7*cb7I9V7-?yZ58+Ae{4}4cvQF??YzwOON;fjz7JN-BfW&E4J%b^m;@h%( zBzNB%m5z??W7+BR2Wx}c6{ zbj6F{P*hY*+ZL8{ed6|8d92hxSXX!EDrum-z1{10LW>#&1*HeBY#&w9>O){C3+#x9B zT3Sp$hZIRxR!`2_;wKMBj&2*m1cFX2P;_xC3ga$`>SJJDgn$B&(+ zh_P#np^s6 z;NGssP0M{R2OhVQnV+BhvZ^kiq+RdKmtVrg?Td?O>kkdT1j`&*L_S`O8s zaQE1?!Q;)?2*vl0WJ=iT+k=D52N3x9v>do4+}x5f<%EHz1YA@hA%StHJM~|?OugyZ z*tWGzO_z6f-I3h3f8vsplh^WeDibH0-=(1V0weU#;qVBY8F#0FGNS_{tbl&_O zf5F@1fr1>!l#b9WMpz6=oCxm+j&43e!NmAV8u&Oc2!W7NdL36!+gW|}s=C}LeWN6s zd3d4P_PsA##M2!*0Rb`?iBSyme31qS2?+^=K+JY;#m=0bePl#`S{sLF1ETH7msDXh zZh6_XW|(YyG)F>3rOUxzh*=a%K~Z9pQCTS4_Xiom2*nA-i3WilQjAQehd_ihp-8cE z(TuT^C~m?bDt_){8y#9y#8#!tG1S*rKk<1kP_wA(&f}&wK_Q`QIf4+C+L`;rNwaCQ z-!_pEBS#gQMWP8wNg7AA$!KE#h-gs_6Tg|3&MtCEluL!89iq{186jNFAn46ImVgpsN5>JrxE|ISA7QGR9V&UNw zo!!WmBgpo%$by0rcI;oR)jIYH?%q!A_wU|0zv?3GXJKXKQjAaZFWOaBsh_Ve`BXY# zlT>Rrt?J3w{&%xY@$u3xI%%qzTE`n@@4Uo+l!A$dD0#vNq8kzG_~WabSY&D;gpn^& zl?|HRuVS<3ynjcKh&l~hO>z950XhaZl{hHQ`XW|Ol zX%~kIc@dT*0a==or~lzygo>S}HYN@k!sjhd$iWz+y%yAGP{l`Ps+2$gCBW|RMHjJlsr%a@z@7i~E~){W)D zS&?O#&|^bD%Dy$4gF!CjR#2+h*Lia(p6T~$@lTKQ?hG%xPDSn@0F_o4t*4C&t{!O0 zokzYUjmocSL!h~xIj?lryKVg_^yiO@%gn8z7DlhKn!}z3z^g}3PhSt?iEpbZ`VISl zc7<7Zd1j{ZTjq!tiHbHe(X^OiR6S|l7n}KMO-*)_lY*XmRGOvwScpllbgiOQbqB?% z(_gRlHD{er(1VfCgXvg=gf33!=Jelpc6QP>8;-!C*DxYmTtaf&#}g3x*4~Z;z5C}U zF~5uSsi~>G(a}*oT=ZZv8k!r7JU0_5sn;*v+}w)WjSKj!>^R9Pa&mHBzQ_<0731Vo zE}GmfqSO?≀C)mN3rzxA9Zb*H>isSM#eJj|i)0m~;T;-ZJv@Pu6B;E(SDu?w>@( z#3=EQ;dnIf?a$Wk5BLKC!NkR_-qy%6A4vYHTk?0gD>4Q?(ZclQOKx2Bjx@TjS%+my zHLeZBWH_O7lELWqVKFhk;*yj3_P)KjqpG6v?q_>@kbtmOe7pSwHZzL~U+V+we^Qlt0ob%-Z=Vd{nIh{M4G?H$MzdbDzSd4 z)0II#OOh}o=_{O9WPJb^e-600E|~1dOfl9WfzkXiGn4l1+}zx+uCA_@Cr_SG+WLIg zkRd>&9;nE`r{pVsQ&jXXzVG__I@j;=f{pKI3;eINI? zTeS1#uTNT*x1-*KLI>Ue2ja9NOE$SBIt9UpHqHi zFKTw%RE?~tsKAemjHKE5S)#{QG%*AC=RQ2Qo+3j0dV)@;_|YwuDcnlWnrbm%aVU5SJOzqvPOWI-0`WWG;_v1d@FCm|PXCFa5$CyW zr~|^w)BXK|Q7i0(_;|a=vH~7BVPRh{)9uyukysrNAP*>^hY9bB+Vcw)^7R`$ow;?8>bIZo+)Y?ws;ftMRRx0JIsr9Kl z2zus@qalC+D8};~6_vGoOXkq)+}5y@i$xw0d(|;@s8H&UIIPy)rA7FtkGo3|gw$vj zRVOIr2L}hEkcGC_yKW55*4PtnKP#F2iWC-!vc&-PKG~jm(ef!_D zq*(x@wgXqUJ!vv%M7}wHk@IT-H}w1>yRPno_1`9&N^*gK7UzwscMAbG276<9k$-n8 zN8*<{-fnLd$~h7~dh{qPBErSV$?5EK-=pkoQxwmt@ip)CLy>?%)AFe4CU4hvcuWO- zW~vqB-7#o*_nX9Opdk&$(Mfaqo;hhbI_~d<#K{$0g0g;uZpySRRpPn8wIQZZCnlYWYFq5v>K9@y!~st zOrO9kU!xZDB|A7oKH10kA|Jl}Jqrb}rnn@5-5#R|^s822nk%jUPEtp0O0qrE-{ z^3s`@m<)o9L~%n`I0=LC9z~&#(eutygGSl`F2cKaM|Z>n;ArW}$@Rpr50u*O*%lQb zJOjsxQG!@MMgF%*k7&t{E^rgZVO9wuQt%v|DLBv`jtKP6y&$H!8GAhbG`Kp zXg#vf3{J1kkDf!RywU-oL0R`pu}doFeJti(pQkDe(4C|CH`fLvEEpG8P;jVc*p;-1 zWI%v>8$-?=I+dF?*GnM9Y1)aYlx$9^5v{IH@qYH#rVAB6N}D;nm>)L8s9E@VJlU=r z!~Gb0dvI#o-Wwrn%pgQBe&-CAwOo9W-v8CCr>3y|{oU1D{smvxPf-1CS7(3RZGRS* zk5zCj)^8-btjewe`_ZnkBTs&0pa8Q6S%qk6eVs8)(Dn15K`a%`oGyN?DR@W`zD zpS@{V6u`@ojdo!O@nypN<|RqsaJhhz)cAJx;_Y(+R3n8=VL&@fkJ0OcVuZIGHjLEYR(P})#3W4Bnyn=h@ zr`~rupw-oHj(C|Px8Sw|;Aj}9qY1@0Pqe$a!dNoWDtPHl=Z6nyE3;M3hrmrWi)0K9 z@9&HTl_(4(bBuzf;C-|{^cNtuB~sha5UzuR!*Ti%qpDhx5@`|*Syxwo=uCf7^rJTa z#WtkGq@;4`w|MqHyeXwX(p=i!-fr^xv)qFwDbRUz^}cq7F{v>__zHA z_iyp8tT^xGGrTBaZt6JD)+9C>ym()?p_pgBpGxL&-lpZN>Agt7~mt{^{M{6L-R5 zwfLs{`+#}?cYI#KUc2Po(rb}}d5#|_E@2%*i#d$YM!Z3^InOZxC&5K{twi%H+nz>J zOf|T(DP@Q~H}d@>Gn+JQw>HF2jMYyk?Qo?ZA4o4pQT-ioJqoCXo!~w=v%Rd>xMdst z{rw;$g_h{m>fR$HtmM7TzC3AVN*H)|`-x&kmN1bu_QHips2j@-(j(B->5~QVS<` zf7D=ML9!Tb%8F{pQtwq+-`L=v`GmVxyWpR2eRcH0ZlQ%*{Q4{hj(n)ehqpWwLwKnH z=<4cQ?bMZHXb4FHDFhW#n^GztZW6y4-0atY8-D;2%0MD#0K|RnPP=w&QBmy$+3rG4 zHs@}UW(n&6e89UrGS@NeKJpz3FA8Btio;Q8Eoj%2Lv+(ghi1|(Pgk(N9L<(dU1;%} z4(pDOo@>w;y`L`H=)7JT1RP3nX=%yM%gd|Mppr34mY#%NJMiZEwDr49_1W5cqtzm< zGA?-JpS4Q$>8N^=T&QXfhoDU^Y0iFeIdzr``=DjaNmkn3)zv&wVb}L(rH3Aqj^gp- z$KN<{cqnkMuC72Xc!rFO942kwc(6OelD(1C4T@YyXs8X)`~CFPRAF_Zt^$BTYZK`& z!cY+8Z4^zXhSiEv!R^NLwT?y$j|>{zN?$xX%}~7i``E_$zlB@jqy_tx zH_PzqgqEXM^iM0E-&5uEpOwPM7GqL zOwcZYw><;ECNFZCyoIof4Gr2+%n=c>d}xva`hAt#AGosw_=P8Z7Fn|r^b#YAxskO-p>96>ytHD0)zY`(F!vB3>=z%g!R zO#lz4gGU6>>dtmBrs)0_H%fMK*0IQsd4kl_(-WxP%vY>h2Q-TzRiDx6UM(ZPhj*no z!33NGXle!;dBK;5vyuGzLXlM@p&4a>GzSU^CWU(u~r zb@8Tr(!~a1N@1->=dWf3&zQF~nyhzvVl*^Y6ntwm!RZV{LLt-prW_L!QC`{Re~ z>^R_yM$JEQP)KrXjnFp_Rk_xu<58FEmC6~7n<&zHx%BOgc8jlfN&2K6U&q7*F{4bd z6uNN-p@K}8$6mqCn;A|roFB%Vy`UHfbC4)T{{8z`?JYhH9ySin4|RLDGf$R4!{Yi$*Os$vFb5?xkKuB>$C zk)cdp%N(y#Epl+X1O_femEZSF$$+lT&fE+kcN=xMZeDmzXV;heORK9PAt9(WzQr!8 zkt7iv)!K;~>Ul>0Nnrwv;=#hgTGFjNN6MZM`ggFJ5I~L->a$HtffG6ge}^AjyL8ZL zs4|PcZjHS+CqtK)m#+e}5S5WZ1721NNJvXo-yETEJm;=d%OxF(Bmb-XrQ8Knv}|5pUU=eIB6u<{5Op`#mjKQ~ zx7Vsen0LpisU2N7h0^eV?Udt9*C#mpotfnG7>@xQjYNkh+uBkiBPX}d!OZ;O(LeojVRpV0ZpqHxb=48nw@RW*D3@MLZyRq|XdFh=j8!^PI_oa z$bazCcw6qBou4lqEOod5)7Js#9u*zk1#WVajF9lCx!w5d_O7f)!t zZej76?C#z2&n+J0IOwj=o(;}G3*CpoE?vQXTIX}jy0W*Y1Xu7X7>Sb4E)(2Kv(?^r zWPEmHYVJwvOG{t~u0lKg4)1m=O~)|(fyL3(OWufSDiJRNsvdc;WGyaEb`>KcBR7-J zyzcGq;E*=oH{{zwAE<}|ex?9Wo%V6_-+P;rWw$jMURL(_u8hj?;Gh|FJL_79d50SJ z0g{ItgTG`mLJ$c|Y(-~p?;~Rd@iJoqtWS8PUnc$spw<(!hHDy2gF*5L zHThBVpO7EwREqz_@tK*$mA~xa+MX=quVlacqvzP%#h?9ro|j^1-J~P5dKWHQPgV6b zO~92(g>K1U2o_;jzNNdt3h^^WLb3Bz!Y06$1$;HBpNfBTG#x5LyZVBisrui4nA~tZ zlucvx?%T}VFVS^w#uQas{r^qDQgN}=5O_s=uW^lJdh);$sqsjM9OWJ~kDM`B`R;{GBi2=)Q6Kh7a- zkR1H_^?#6~=mj{h$RNMxbLC$Ei-k1N9Q`s+$RE6lc6UGE=YM}+)F%-TIQNLi z5ssRBIyR`l;1DXr$H(8|YC(4PC=&n-F2OKtum4d>R3s2;QVYJmVb_zrsIii)df6?J zGx~$9rvy(Yxg3z!SdrG_dt_u`KuW&bPL|?Eg@-#wM@AB^fJ_RbrG%|at^VctWT_h) zJ*HHhY|eD?{q+ z%2uuUBLa}xzM6DcfqGo7f%gYwzxd0)n;mlutkQ+?;|=zyW63S|;4aVBQymvKH(Bs0 zc*3BF3;hoV-Us7soH!)Zxl zt3Iq18Wu2yT|heRJ!=ofiiiwSe4mIdBAj*(Lq8AF3pKA!_dsjoR8vvwNsC{<&c(eiLbYfKKq*1HM+~#qgli0KfXlNXpeb2d|8A#p2 zP)JKeaZ!-#H(@sE`{keSw_M`=`t|D&JfLlVOg;7+A{L&Ig#Zk6{BF`B&Axy14?eVL ze7ldkw%V7VUF$&Y^Y=F$oO(a@yE1_rNj6Oz>6NyRREYlcF=gEHQ%oG3rgXXo16=R{ zW5`PI)k$%v`LsqnLo<3{azK*Cc8r+op~fK`PKnkOsdLvTm!u0ptL`HrqHt=H-dQT-~;JD`c=Nug_NSqpU`e z?Qn~xAn-N@+^K&);O3vZ@Z5Z3(D_kN>-85`t2F&O#Oiu>WXPlyGO*(pH7 zFJ*I_A3#}ABrwR&y`}Nj9<10gOz8VdHgeSMl4eed@V3!jUI^cED+<~;X9tQMQ(yOK zccw^7?#41hV>yc|zrZc&EqO&{WxMlSAy_JfYxxwEE(S#tThrSAzPkxg1BhB2&3u%IB7&_F~vQ?%(mx(YNli;Dd9nLrlja|UHIwMu+nsPQCA23?KU?~r zwNrhFuRssML8E(tKww&1TawCRBOnRc1DU-feCDpLiK5M!2-}~*Bo$F7p~z zB_<*=zU^&q@u*jYcqv&soNw$nXR!17w+;u%^A@v2lniurv2~J16ECrGIs#V&&JWiV zG-g{`6r_jW+#zn<3TKWm)~Qiisn+EP#iji0eYsov=b!`Mc7WQQ-jhP3UQM~B(kC- zE?{h^k_bexVKW85qQs-4BXYzoOC^%{$3sGR@B4Z6P`1MZ&h0PZxroyiEKSrI7j>M4q9KycH0*0RlLYi+=;~;|TyV z3BWcYz;^;lk9TVoH2WinB}|rvc7JbYekpxwpiUH#`}wo(L-`ro$u9LhiXTa(xIa!V zhB$F#qbc$xH{FWX{r-+}Ej6Deo_Z-@APFGJU{{!?90wp6g9y+=n((Ex39?J79ys7; zG9eO$^$`+MQpn-4v9+$=SmqtfELfPhkaVkpDLn{GcB-I&*#RP@WTHMiwv(*2ucIl6 z>HapvnH!JX&qJ+OAdyv7y$8ViiTlboUNa6Wds5fw#66)rc+cQUVV zJ2ZMAdg2V|mv+_cRRN&9cH&^}VqiGEzxLTc>}8d$bQk>*#XtAxbFr&x5a zywkPxkp3yEblh=wjhG>DGy9*5J_gmkf$Y`N9hBIQc*g8mmHF3}K=tl|Yv{f7->0Rt zgNVFgTC*Qu%{8B%?u(nQMG*gA5SKaXK^xc;GE*(C^K{Ota2_so0s5|{06liI3A>J3G(h3R9FhrOhV~w-kVE;&R;J|#% z`EI4o+o$>0=eBv^E7ZlB+fOA4b|Mp0ZCGwv5Q*zSW6cQG8I=0inToaFZD(F1DbUKD zE;_^A*(?X!4mZ+^%DK@IYZJe^)_nY*ShXppj~Wck$se~n9FvlbFSliRZDd$%{T+w@TW9@y3|#~&v}M&5yQ_Hbi$ zRfGle8#bb3yF@{zu>9(B1i?v#z{K)8+O55l{31;uElSoG8pzqm7Y(9;eW9peP?c#pfDo3qDNv~|oecYV|M>Ro5b#)@afa|6v ztI-ES&dX1`J33ZES2i~{0S7>c>t4BTNvCN!0m8}I`JIr*PA?uACqiSSFdT%s2fVyV zP~(jq$L66hzHl>Fv%fmq#!m)y@#^YmqzZs7!;>c}4zo2J zDSY-Hhc-PxMiqEH{B)NslLD!nyxRl`Jc7Gvx2lppx<&h)AuhLYydX@iw{Xm zBw}D@su1m>@1 znVKG2vtjIQvoLI(L_80SWyVT=jAs6q*Dr|s(QeuUhnSEU+$T1O|^$E%G)oaSw*f%NQ{YIduWBo+$0!50DTB8_RXqeE4XKctV*L-8^0dr5fD zi#bd6X}=|-VH)!0jlpCJ1cwPr4Vx9f z=?14fzT?|BvY3_3QLFFZEUY*<#3 z;UgY)Q&L9KPnOaRm}ZqVUkhR3<1+zv^T4{RqEPPt&u7%MyvdZ4?9h&1V$I>H!RF7l zChsH7l%aJj;sAUcoK7IYHo|M@*VmVhe-_(=Z3SZ*55Qq*nkV8*7ALDf7{iG8{i9H= zWW{r5DhSZg1*k6xy0aJRax#~P*$?t6rHeHCWese;#C!0XhAcPj5_M!Hnu3lo2ClVs zv*F|O^Ye1B_B&zW;8q9%m*XYm$E>t87RUk_;#rv)^z++ zkAESgzZK7&z65>H;%KWs;Dx-rq=Q50(8k8vnhsg$^n^MP6R-3U^aB9|5hS4n#aLOf zVL4z7kYP}6F2iMd4SSJqeIr{#RZNUTnW4gE#;bh|De{rYPgN>}kS_+gd8f*HoD-7I zeB9h>BrX9z(R4G!Ur2OMs@(fX9G^y50HSe8=HAWoOkd`b3fSg# z2~bV$25usJzOv71<&Sfui+JBIv6S$3+m>r{!tzNG`@kcS5&pEV5`tixD)OWbEoEh8 zxeb1Jl3U9D286h)i|sP6#UKpjqR>)Nzk>j;f-a|m3TstQzFOLNg$_IcvzpivgODikK zxwP46pw7)!AtkeyZ>MV(LvS-W`GkGssCC*syWb$ZVXP#L9MJ}xAlZC@pCTF$><^CH z7-q??iAMU&QzRb6_10;-`$z~7RO!Lz?rLz~{tf!_qX~7d?}chiw?(1d>MyFGs7Tp^ zDU}!}tw{nQL;({@&Xi{Y{#OEzj9PFK`cOknzJpcumHkf91hzt&xnT`i4#06s16x42MmYNQ3s}~5G5Qt$!h}wMABM9lXPRN|n z={*vm3%SB!9TeVcM?&-Pz3I{kKfAm86%eS}N4D;E{G3(xjpZFbrA?qaPYqKX~c%?6>rN^A$ zj2tcSSEL0ghj=b-Z%5{*`+Vsx&wr88oe^*yewSX>7+6wOZf*!F8d~4W?x@1@!d!z- z0$I7~u$>}Mbojggnm>rAhTz+oL5WVfnzQ7=D})s+$Q^#)K8`b={#^X-3mkT|J0wtj zZy$idwzJSmBkZ}?2_jPPOam)QgvB0!{ncB0bi!!LRE21KeME~(!sfhI$mcI}4d?;h z-BIK@yDeBrjrZL1Z0SWtNWpD%6+u|0ZxFKN`609eE_eB_jwg-Qzod!+DxLr}%^#8o z&o38)@% zu&luLk&&{Ku}zn!D!E`{mrie{i{Vx|;!_E0+7@ynpjqge=?oXT$Mv^jPi*oLq;I(X z^1s}@v8>ib0pR3h2R4{FFp)A@R;7c|dNkOId*`3EoznL^>_c3lH#uKb3)H|2boHtkqV^_{hrCKeNmr{v%p4rVNCjwj zZy&w`ef!ZBu?i7JhOno@K16=(APO)UD<~k433=MdoBNQKkWXN&zbECU{E>(+&!8TB z&U8S4(@+ua)8N%_i{!)Uy`3X7@t3xsZR!WHaH($HzmInkj30O$ol!$UO&tx!l_>>pFgxCwxWP$eFrHwQ5#)F@yuQ^4sZO>)-$sY0Yo)U8 z4biY$275CxO%PN{UK@B%IRu|lPACOv;w{vhPSHf^UDPa(KY^jMGL}Ohk5jr#$*X|8 zz6RS*Xk^rir_;(#Ib(>D`O%~6{PVSJnKo&BB)wWz!Die}GcJ?9_=jV##r4FzpJ0pmuC1;X8^Y_`JU`m7r4okNU<3`)Z^~BF!&=5-Duy?g|PEC%|;& z(@izR$H&*NcX{)UK|VbA9`f(w2(b|M$q%}kq_-Ho&WR58SsCHzy^W215&hD@z~BkU zKleyUd(?5O^&35KZ<{Qb$w>ZZOBhdOWfkbHSNg!&KD)4RL!YK}`igt%VPv)dkC>R) z3K-0MlMFb&0I%l`kWAL!}4 z=pXpl6~QA-Of2EvFciul9|?)+3OpJy{oRUpD+0Y0&%Qqso`)e5ku7iruiu*2y%NF_ zuy?I$VPVl+=6bxP0hs1X6>=YNDpa2xU;{q%bv0bRWVB3w|oUV<Ar{Z zHF`21jeMI_uf9t#$RpF`de2Z7%{_r@@t#gfN?KDEd`qgFOA-KQiJoqiFnuFc59eib zpV`bG$TB5Ekm$&NMD%nn7~s$f$i;0;8NSG``h&s6QP$S(g&6#-+Xz z$49~Qk6$$Z-z>oAIowuBva+QR_z?T}>66IM$w@7>>bz*k2Y`_3e7Gu41$kb0;D>-j%m9paLsF5~-n7K1 z^_P&{6zAvC7?Ozx@(PWa;eo z-JPrF1{Es|)Qp)b>tK?Ae=@a@%WLqvdQt_uMUJ){x5SZL#OnYfTBxv}I=W%Z-r}i> zJ_#kIZIjayvj4whEj2iq>Cm%5C)mNQHBNe!2K?W#O1A_bXl4WZ%(RA^QE^m z-2kk}VXFo>df8v-FuAPEXWR-^?Bc(3 zcCq_m(bd~r@Psk#CnDnF@BJV$Eqn~i-|-BasFKQ!4n_KMa6lk8UKVdLiw2x+R;ap8C*T9$r!Wd(w9cPPNugD}9#?G-{qHmu9^ zotmoZm$VU^>UeDLZlAogIgdWgB8@(;MS+I_9^;G;^9F1*RGXR6 zx}()92yA*GDA;s_S1cE^=$eL??st*-+`I9(dl|Osi39Aa9uOu8)9^NZA53f=z5#XR z{2UmtC!{hil1zE;24moh5s{KI8PqwMWI{%3V`(V}FvB8{;aeK?p`RQDHgW_2Y;KO_ z-5K3Jo@_kVB%q{J48 zfEMQhQ*Ny1c$Yy#K#(ag56EuO_#t1D2Zz&$Xj{E&U}~z%CxSo%&iMwq)+%)+_z?ww zhb35KAaHnV#!PGD=P=W_(8O3r*GJ5CTN{c!Vj-VN(HC5(bUwG?>66! z1;EJwri_ZV_J61Q3y*KB|6+C&x;Df*_}8Hm@;rJJ(_3M84ErUBhjP5oCSgW&z;|4Q zQOgDW8#EgXKK^jKh5KYYm`=_}JQSQb!LWf92U0~ZoP=E1!XbEgyCIbT>;xN(S$&!NJCJu`W34bQ*ZvPyp`WUB!eYi(5U0ROgMPUTr;C>| zYn0jE83Lj{UawaKt~SJPOrA3)P?3_p-Py5YH)u$_FYf=zu*H`gVrM9&h9!yaJ)Hep z$pq#dLw4wVc6BTdp)kQSq5+Iyng2XB^mc56+5x1-1&(Ig5>nAb1Vl&Fi44?j^uI*R z7t94xENT_r)k$uBk~(x$Yd_nKhJnEiX5Vkz9vG$G$tEARizIG$LLn4j@zS=bpObR$(+K@qYhNc!ZYSjrs3*9=5W?c?%-5ONvJKKY9PHt|UkZeLiK!VyB z=FA&Nf?$D1Z9c&L1fuefVa03|);u(U&%dVSw5UvBCc=j9+t&#JY@xK$T-Y8%3p~QD z-{%UjTRnLFtOO*+TQSQMmdUedATXkkGpar_%=s+OtsGEpw=pMyo}M0~urMWha1iVd z>Oz2^aHUc4+#k!pM*VQs=!MqK1_%@;o2@T%-aurtIpPN5%y-p2`7uzsu ztg9+3gJFWex99^@C@bLho4^$&Jk+adl0p{@?r(j4;aDKe6{zH34pg`SnTFU~)9=;Q z&N*;dJ(~>!a-Ca|Qp6t|KGXWF^i(CP0kSml7dv3gLU<<<1Y`(fe4Cz5**f;=URa<3 z2H61!y1jxOaCkwxvGK?!L21xdWVMrJAQcJT=Vl^{8kvNGiXP|(`94!!z4E$t_7{gY7YUmCOeiwgDpy@>uvuV<@u_EP+r<(~sJBb;JI)0$7ZMtBQC-n>zIked3a>xby2 zF?hFd1RX&itR`|p?whNOANz&QcyDIKEQ5h`<*vFqjoJ$`ch(xD003a=@)4g{njW|P>QOpN8U6z*+|~K#kAXg{71(#`eNXB>igXqj8we31>|F1# zo*K~h8HyKiD_vvM%_>@Y@cB!9R>?lKDLZ*<&GFeI97v@A^GH}oWI-e9R`R;KxP1Qp zof?+I$cYt6rmF(Usw_p5@0G)bVM>6dLWR*aA|l|UfnKU|@>PY)+GdqL`}gnN`>FWr z%9I!-J^6-=ue{RLdg>woeP6o83P^5MBGfcA3=(XT!Ha(!T})nYUzar3#1aY!Bp2E3 z{$u<6ms^(X)PN{%rKWPzGcYXt?of?@J?9aqCt@ulT)|AjqAYN{DNEU$6yU^&Y4bPyKA^#NK3VaLg5*7e)x<5kBZxoRoSGXm<;d7gPj()IU_4yZq@^gY`D(XVtK-)!=NxVG|7I z>CH8XrMXY~EvNfLAuTQY6nBsL^YCk@8NvU2C1fPXeH-_ZY0$#`;Y#$+g-fy!*??BJ3 zc*PP1S}VgGcQH}jpN?)ZFOMa>_?AqAJQYnAElwVuc63`VBjv2nje_fS=zYe)ec&Qj z=Hh&8Zue|c`_`wo_V~KS?YfSKva+{1qM)GQ7u?9{aT_y)j^N*9W=xgyA3EC&=64xu z6ImizSCWnM_RlLnZ1XU4aaFp+wfC2DwZguAg*pxnPoEo1o%K?9;Z?Z1!nyZIVV?|S zgI0xS!wL%Avc?An2NBv~5T$+k_%qn4d-HdtBqW3a<`_o@*bhx7@HNIPmH@Zvs7^th z?Qr`??xJZ;Wq^nrYcxJiwY_?waTmS=5|93>8%kB1%hmgCF1dKgxkcl_L%XXDJN9EB zTy>wxD9+v*vu@s9OpSL?2>bJ3zUcuWVd1AAU-tK(Eh{g#M(#yv=vK(Wsk01{rD*G1 zb$^6cZ?4Ztfc>P=FMi$0%bhmCO^PFT*!r1<)JNhXcV|%>TwhL`@aBakuc(-mM5%tZ z-D5bv>EI!gE1MNxh2!5(Bj@L!|4#UXCKN9Eam5JAPkoTT>** z;icJ;W9^Z=OmDJ}=Zt^aY)9v44P3FiwpN`BRKG7g{zP68DG3T%Iz$b`v$bHu3qe#y zuXSNJr_R!UNg;`fDk?X2)=LZG0{N0MNL+d2<}Gr-UsM%hy2 zg3s>SVs3pfI#2dA)IfY88ij<5mm78lF}I2vyZ$z*?oLVBX|85$%qH*B&-X&SC34q+ zXfGe1gw5LV_%r6}U5Y$2r%#_Qgza(_2!40vEc3PimSPjbi^E6$wKP;yhtCezR;{l+ zGS1uQ(*GjdY;;V?^M#ZUHBRPjWXz-t;c(b$;E>pjO^H~aFcXHuOtZs?K@+Tm2Cij& zchA#xufDS)<1=McW6jG<%NFeXS2wEsRPB4wCp}PoMjHuABu54puD$w^70DL}XH(IJExf zvvFgJ*eFYYY)=5~A60ihX54PxdnJpwLSWG*wqu7%db8 zSapJeoct{?!6NOT^;+LmW15Kf=M9tZm z;~-+Eq2x~J+niId0JGapK5@wNQ zrEh2fL^MA?e-in6{ZLufA~6L$)5*LZT@sU#7pz-Ag{~|&{BHS`mkbzI``RZzX&mu# zVMYDP<-KNS)tn?ZMm)<#O2ycbzO|L3F4*%&9U9mAjt+egfoQNFo-{D1LxkQ(L=Auo z4nt4^NW%)B_2Zn3)Z(Tu83D($5&pl)`*LKhb|TMzPBT=jWE*~;o}i(m>GOVO}eEsWOg#2*F-V^_LK_9wv zB`!UUk&1Y(SNX*|?P<@Ht!R9>h@0MF5v?m%fHTTW!b8+#824^)$Yv;#V{E#x@R@cN zdHI!q%1RYzOLa*v{0%#=!Z{!$B61r#c*#=VsYiKYmJ`>5}%Uj<{|HOYIA#T z_L>}9`Xf~ER~wyK>8X@eR2C4Pz(B;#Is4M1CWKh0Yj(794M{zovG#AaD|g%?d9ABQ zrWldvK0>nN2?0vIJEV{mb4<22^=34uIcw}qWc>UJ zm%fmrAPa+>xKE@k&H%c43R@~>7Zkr_BZ;`u^)3_)sR2i9^@<7qHu-lfu#n zAfTkAG#o4dVl=<7UKG1{)&rS%isH>MR z=b1i|VEdeCF}tp+$O)rI`d)pRjDbibu=p&J(=%9&PYU1Q__y(fB_S*_IH*A&`fORO zoUi|$HLzeh5RfM${NZrE@tM|c>}bJ=`aGL&4E8_Wx-b;j+O1p8Ox%icWJQyK6D#4L z1Wj>c@-NttTUph7ZT|SlNCmdxyveaK0l12ceRV}8B^wb->A+0+rJ*VLiP*AvtT!K5 zlZisKAW4ptO=8Zazj)B8loRW~_6as>cno~~`Z>2q+tSA-?kzQPxsW>swLKis4Q3K^ z6DN0QXMW8$&bn#?;tmzHR#znopbHi}>1vchR*JS)`H739vV~G z)Q)y>ckTp0Qxj+q4j`*5FpwPH{{KVYL{4XahQ9d%Hc-~&zeG=Y=z5uPj$tF-sjpVk z!yx&WFJC5r3k0)9@S8a~Il_`}no55qR+A<=C=hze@Z|DDZ@DuRqlX{?1Jh@Xtf{B> zw|RiJxW4i&F$;Bg3r8p&wHn!OviX~nd3j_9EBGMFzz#0VLWAAlc3xiIdxU(A04{9g zeNo2l@QKIa!oQ0|@#!Gfdrl+r&lM4yM+vi5IBptOe(yI;$U+Y3>xs0(mX@C@n~%7^ z_>Iqv*Ee`#rJbwkyxZTAzlTp=u(3J43NAxr$M)^PuzAS?k6c<>`UB42-YM#L3~x-h z-o5PO&L!vHH#gU!XAj0Dl9!RW3-{LDT-jmN37-iEDtZ+`5_9T_SCuHbzr%30AN1JG zwwMDYx1ZQ=)5v)Iu zG81&pDZB1^E)1RrHh#5qH5&aS@K-*ba_e66YEGp7%Y&s@8?EQPTvNx0F zLl(n)mwrt!9b8$2{roMMvwJUINdH0e-^g-ES47@z)J#L<{9BLV0DbtUHlHC^7i%vX z!MW4p<(4K_YM`j^{YqF47KUK9}dXV5NQZu*ctoaK_o0}>MUAz z^Pg)YVL(K+43vp@V+dAyX7+kJZWxkzZ9}(mzvnt%%`@P;Tz8}U={fzm$;mJPLR~1@ z_F<)fb3~EXNH~t~>j@EfhN5$?cy{k4169?d*ISYlJOoS+%>o6NMi=e>>eU~^+^!$M zf zde!3R$+K8+DrgxR#wCGDK%=}*PA(3KG71Q{yoFK+bs~FcfOcj80Iv6T)pBxjhCjP= zcARF}snfjj`*HK<+9SHUfd)Cj`T4G;{Lq#}!`QB;cl`Js1T?_&UxUVEpWnuH*s=s* z%V9z(TY~;Na%A1ZN;lwpTb7A&eDV%{N*v*huvBV-Gl1-12MiwDhV&+REcH+YrYpdbd)T2Azt z?$P6yNVt7ZrWbw83;K3;uQuxVD|f}`Ff~&Lsh=`5r1bS&YvgTki2G%mnUU)X2qz^e zAwgT{_a^fPpR zKf~5s#^&sSfuOLtly!X^>qrJRLg4DESme4e$9Vu=2O_A^LXi;6OjuBoQ&Ofqp|dL> zDS!IxyY>^D#r}d8G!)5ZRo9cT86;FmyK*w?gbuT)84=iU;@bAFsz9=&^IMa5fi z07m6%I2_?i#zPDk70tTbiQfT;-BnsWAsf? zR$>~oU?JLmdVgcxJ#~fFZ>CgtNXo3tABF1aeB%gIkK3RUVLNmP7Ck3w=mLV&a)`!$fAwjq8r5a_J?`l@KNlfbp7ORKszme9Y8| z@iEFFBdsn{IQDHlK0JK#;`XDo0kC6^fBP1K!!QFy8z_$5P-M>k{tXimE(`0-&!2A* z9;w?$Ncn-+k0E#It%KZMa8lcSrdVX2o7K*?BsSp1!y#R<29ZL`Pl;Sa5WD=Rv-PZ8 zT%6o)BGFb7*thn%PkrN$xI#1nz|x6=giumIPKK&a7(Ya)mU1isfhyUnR!`nUr z6lB|u9YM&)3`YgT6fSc_+>F-C_mkL_GA6ubJb-GCPQs@IoX$8d#k|a&tgpbL2{4+4 zgo!y;8B!8qg`h)09SQlj9Eg{Md-tBU#@B${{ofe@ebYx_(nahpBXLjAa-qqE(=H4U z_^HfJ=6qvQn~)ytSYT7SKYglhWa#>Fg@}IFWnf@9{m19V`yi=}0Td4IrRTW!L#gSS zzvc7XFj+KLz)U2E@JUf34fZYSEgX|nyu7@y!RAClK(vT>-&a{rawL0(*mgx}qt6RN zo_7Zf(KMD1%nST7RHVO-(V~s>7&gL&{|`K??!7tB-h3$v>LXOtOfa>cM5@v%og|-0 ziLZ~mmxApUR|nVPA86A-k*6#!Em6;oh7{TB|C#HH@$&UO{GCUaz zcdP0yHPN>PK~D8WyLez&3<AwHmNx;5vlRu9STA0BdC>pE6y-O71W3I#}aWx>fx0iNA+4jPsOUzj@O) z>OVetif^~3lNx1?R8UmZ7F0Vrr5g8ilk`67d5&p*-rOh{{EnZDE3jFo&!K!RX;IS@ zh+=L_=y=&ZNb~LieTeI|T{c8T4|uE2Qu+h8TV;r8o-v_vyMmy91^3Tt`E$mi_9k)PhYsU z9Q68zDZA1&@yy6*>T9!_zxO*!YZUCg2E_ZIZ8*qB3a&$uo;p$F_0q!U-WWT*NK2&I zz31p&UHt;#sFy8mA!y^M)aJC$_simt<%XQic@#-XTU;)Fdj6+KIDG%|KwI;j`>YEU zaZO_3Y7Y)kCE-q(HO^3qS?XswWf|R@s@B0VQTSHaP9^kyBCH zm0x~Uur5Ms?0#is|Hw#czu!EWAh??uELO=JlsK6>^~du=y%q#+>K+rkdEjDAa}Vo} z42K>Gle)(UAa425t&Ztvb4fwl&%smyWeoKtZ{8_)Rl!&os7iQRJr)~d5PWExP8gmwH{{hV~-#=NL2~GIYVDxUq$5M z*&+NOqxpgW#NQp8i&`abVG zb4F(~+mVpKOs2Nqm2;L$Nn7KgACJ<=NJB)PF`<#; zX-_#&uXvH`Qc-c?N-IZfjaui?%tsfcD&J~k)kT_Dvgo8fh;{!X+^waR}$MV9X8 zCnD);LxB*T(jJuMl|Eh`9t&1!6MHXnEuS@GOp{aYSj#ocU574O)AaNahY`i2YW5w^ zUmiVeNEx&FPv_ju{@16SW)v<9x&JWOAMiX1BANONGW(wwObQZgpmx278IQlCaz_CK zEH*e0R4p<)EfKo{H;5HrA@4bl4^HtuQ+5|fO);4k8ssUP?Mlok`zg4%5gxORD(_7F z*td{F(WT%w~~499rWw#e%!99m%eaZs%`3lWJ^O80|1@ zvLE^jPo78>{r9cF&z2*U%;0nY?qQ~{rvl`prE*)tZ>yw>#Cp(fn+!%*m9kzFi z!C~*@2Nm;k;B>xZH9Aq{{hRz=X}nKySTFwQ(&@uC|K8$ShHwbosP}~VkiKqK6?`NV zO4t0kQe^T&{M87Q$hjPa&{@}=u4s!La zc9#G<&auKCk8%I{TMIoK>m|k2s^e9*4DBK;N47G+kHSh=-jHbW zg-DX}a)wu~t+ka!DKz*+D!Tcv-xA^3_m?nz{P(g3`6X&b+ySu#&|N);-tE}?cqy*7 z7IKPO{9zkoJ(u4^s%Kg=yHv;TQPKFR(^&=_2LY80ah`rFX&$Gi^~x==%20yMvYjg@ zBr{Jez4LR+vBYO8zKaHNZ!XIv6#3p?$1CqoU;W<6-+?}qgR3cv{4Yz*6Oab?UqLTX zO=P0Ng*8AF(Veg$#_}vYjbN}IAOC`@AW&Ba5Lf4WdujwwfkX1O2-5=mCj?QdcD{Gx z^XII|%uifgzg$`r-BIqu8h3f3?#)x$piwUhNX~@-8^`_}Z?h8#%CJz4eAi(gn<8ei zd1Xelt#RWw?~jO3E0UjIKL;aI`#b2k#~z|*_L|OrWk`4#lzuDozVjH~A!X_+j;@`C znTdpFC;{nl!aY-*gPs@cbRT6PjG|7QQ84-T#eTk!d+(X0&O60f+4fMC{rPhRFsnuL zjn;P=V!zLN%~dW}efQqjg=1Rc(4h?}2+p_^uTB}7LQr&ldBpRBgWMQ`xpdyIbzB3+ z^5vSu;$sMPp^XhezJp1^9u&f3!0eqi{!r5dk-xa#)?aMT)Od5AEDrq0pGn_u^oAT9 zlc*UpSAHFHiXWC`7dI7J9O9PO+s>%wv-`yHc%Q1#2JnTng|iwsx4&^W4# z3)2EJPm4eOW~z~M3+o7~JNUK-WiW)r7Ci_V32Hpg<3e3&)ZCNXP@%NiWVX&M(fSKM zy#A~C8A2Uq#ZIxf#_8@!J>bT3dGr0^_;xcjnPL{LZODX!!t&)$@WbyQ8#;Bb@Y{I{ zi)S1Mwjxvo3EaZel$1wA6)$K1>F4ETD)$g<_w|yV(Kwt%Ek4v@pputR^wN=n>!84T z#kxF+4;(`zTo!}gTBm|x>TCQnU?2YyA!rUC_BhUkdXteNsWf%(YZ2_C%STVZLJL5o_-jt_@Qmk=PFv&1&8P6K6t=ItUw~W^g~~5K#z~_F@`W(_!6i9<}lXt2?q9?8}R(A55KCA!Qk?Bx^jH$8?ea`jEPxa9B@)S$x;l z)&qqZhUPF)sS7{s3?)-ICbIq&Tm2kwWO(4HL!1WmD-@a9Wb3O(jlxUg$y9gS1~Mer z`pI)fWs+W0Z>&1gW&PphYO+0)aIcr*p#GWfw_$woi;0Lh4IV(N#HlCT)o?SEU?m7~ zcK^_jsoO}o7Gg9d40M~(juRnZ3%FW(-uma!T3n3QJ14KUWEC6-~q3;X3HqJpP zv9IA&+uhoA?@vi#0N52=5DEw>x9O)UA61!XfwA-4#zMTNYcZ-Ybc|*wh5_P^3Ft2oAP-b%@ZaM{!QpsdHIt< zyGa*QiKgyzhNl`)UdJXT-U53A-?H~@<|0d616{Q0 zP~dVR&qt%ue6!n3@#{~jaJ;p_N+uj~c2tiS+5;$@^+jrRMm_X4$gjUno7>d9zbXunLS05JjwEiU6T)?^6YN-X&V-u4LIJ%tDXht;lJ`NNHjD8!y4}l zqqOf)s?pSd+bfYJsplKpLp-Bc3XP{POw{gNw~!S%hSf`YELDBR+?xstuv!Q}$Vi$j zR2`9w^2+NV6Y8{=2j0DXv2}6WZ`s9A}GY05v!4^YHIB!CN~oqzT)`REe=koa?@U z<6#Hng?ZPmUUi)($BZj=pj>3T69aJBjaY@LNibg!@pphkICt!*#~7krP%ljmy()-( z_%H_Hb%pPLg}+>y$$I$fGEywft=I)5%_C9v$%+|2Q-gn0`r@#{OF(5#rK{)As z?-NTC0s8z>QXNY`RX&lipYEzcDHPnT)4MHpEDQ7Few`MLhe3c~hY(^6>*6Q`{oKLK zCERQg4lOA4~qo@L7H#>TJ)^0H=R{-?IjRG8QvF z^5s7Duk<7gXaaO3vW?Q}4-5@ub5+O355XiFgE1E?g}Pa~6tR7u@2P4Kd$DLz+xIg> zEEm3ZFx1xMJTNv)<4K2+!6;Sb3Z$m)3u9VnDZ`DT_Bcb$$wB&1Y_FdUN22h~ez+Tr zcD6DdiuHMMZBBCCqJTz3lpGLBSs8#7#6C!a?peI_q0IZY5Y7c^b>@C(Au=Ki=zb0a z1*Y?%^a1!_38ZKYWarTW^GZr3B_%eJ%j%MrTORA?NbxP~42H#w1x)K}%V%KKaFp)& zJ&wUBZ+};8Rb%%5p__Gy)<5CfT6?lA4Y2L_)?KDAUFd+0>sCkP9{(nib(eNyLuvk7 zqF4KX37I;nuCAuypG1A;+w_fvF$XGfAR1K41GVBmCHw&eS*HLbdD zC}TRv)1JE|za^6_lR=zoVucziD5-pyg49~1VAt;0CnM(wPUogx4*^d zyu6Dc%b?-Gt5=5e^DRma}8AW5gR5vLDE$h^R1t92?3XRMEf zU|L>M@&t${QIk?9R$Bgy#Kc4ek1nA`Y<^`u6$hb5Ggw#Dj!7`+77)AxW+Kbrc9HW= zB>w0I1_e#uFbU*KM@1V&{Y!OC2B4>E>9O@6P^`qpQ{m zmndJSD%r%>k`8!!;-FY~3t0`Qr=7^S%g>iUOK|}QJ~IbLvwU-VsOv=g(;mkavg;cw z6Lqk(3;@&dHwZ^)nw)blBfR;D-I30I@DqRsC^`FI#rQue{1%85ebO~m-_w|NUDK2R9LWS6E!U!vX`{?xv(f0CtWbr~}j%CDv}z-EU4Ykgj8J zo*a(xAE#m-^bQJ(iq;j`wm?|R+go-6JX9SPu1SanKUO2Zva%Tz93~IvOkX{A2}196 z^q%O)F8~+_-7Q7z14ZGiBxx)1bFVILiD(FXU{(K?BLCc-Pbw;qFb7xv`z95o`yPIV zju1kQPY|yta>F4~zD&!XmLcp!dJA{hBd(_X&pRe|Xrl494=f5D-NDx&u#?Oo*C5B( z+s9|gOSrf-_ut=4mM&MdSqCdCenKjT-PQ`D4{%Sx(IS2UA3x9A&T}mIf^5l?(7LC{ zzGBVqX|FI3GQebZuYz_KMCYARnBpHra_K7)KvIG z9pZjwrR-v*s`x7qyT{fPdANkx3bYdGal`R=T`gF$n~}OW%3x|%PFdn|JCB0{*kc4c z7njTHxwsw;&E@rnq^HbJQ6`ANW~+&g#|Ou$lYEL2`3qZiJK3xfnkEm9sH%PX%-;OR zzb7MnO4h%0xiStj?&e!tTTcU~-!cU~OMQHa>j1e~72|MUO?DN|b+s%5BU(v5I-Qhq zGe@PXBxytx!ZPI+y8RiQ!h#2IX-Z1BbFw+w5dv5)`MVqUvc;fi0YafHHBr zSvFxWX@F|%PP=U-4{%%T9vs-vaDKrJHF>4nclqjHcRn!&B3=AU0o%n-Rc&ByQCZRg z3MafQM7)QPiV8P)g&Mz2hOghr-KtDHXiu@o0=S!d)%|qU_2^Xp_e6v;Q>C*Qu#UQM zHE}G&m51zS12vllaYpgHvg#N*o(VkiF6CE#WH`mTuC24M=|-L5R0oHI>xMLiDXD+K zM?!WK+a0a6@m;ETHIqMeqZBTQ20|c%^Wm03jwVcl(AWwR-dnWFD7&7YyQc06YOrE; zDi82+4ajX65C9N_A;1v1^&v&#EhK;7hnG=U_`0!Bet02${ebVw^ukhG^P4N*e*I)- zBVnzEBJ0Hx0dse=*2A{d+&JW6D`IhwtI6p3<&As%LyPZ}yC4W0aVn)o6?t(1CCstn zB2E(rIs0hCnh!@fxwF?M1#`p()*&P}+_%9)Q?9u9Jpv0dBofNxw*5FF2%Ciee1tfLZwyL2;O2aDp9%XjZ#@;M=q$K!jV5AOf=oc$&b< z#+Cqz=w%+NT?jqaw+a2~g(?I2!{Ly5CM%{oIoJ0Zzo(J(r0e~$`&Oi=h$*;xS_TFi zgbJ$x6c#hb7{VG5wv&LI0p%OJQlHxiBpj%OCZ@53U}rs}$j?s+m=whsS|sw{hzI9) zX=T?qR}#y%nkztS*%+<$p~72Fwvq=Mz_zZB9~~gi;!tB7xkU5_s=HC=*_$jSVT1sR zI~`M1)oMkt5uOC>&(QBg5H5|)_!t=#7|6#nFLtJ zjx+}Wh*AbzjLF0N(B9H?uhnh%|92fjCRVb8W9d-d+MZ%D4Gj){0UgB|?630A>GQS{ zf(Ja${Hm%CxlwMCQ&8->85^}LAeK2jI#lv1xDH}QDzs#`ap;^AX9MFb6UfI5l_&!2 z_`ZD@@9#Hu zA5*xvT%Y=9KpW?ps)Vi4#e9xX4qcIT7EFxveQJ}Poh=|Ls!JTkyldpUDTcziWy&x-+#ex%rEj0n6%RzBc}&7~oNveeoj2|y@54R!+H?pZ zkPOKyjfu*AaA@dF8Crft5ZH2#A0Mlax)LoL-fhm4Cr=b`6PoN-mtu*LAyCZTdicI=p(h1nzZGz%_}oJHyZ*Uh8lmqo6z zm#$-MgSAI#aj_UgAbX+XPy`ZeU@AqG*%?NReFn6cwBMPHb2@CH40`jk65ZYeS7!7 z?HP5b3;&%Dr>Ndy+5GUR7mBbujwC#*)Xdq&c@vPDUggAa5Fr%Bpo~EPRfT06x%NMl zhUyHsD;xUv6Hf1s!Fl-_C3p>}j>d)u$Axkp&IZ$Mp%?3Zi*Dc;*f5|Z1$2SZ$>U|? zOjm2{DY3vVaFTWWmekU;yWtdpsbeU-G4k%{sjFEdD+ph4uJ ztp9Tui7%ipu=emMl!TNF{)TA5-KJp9Z1(;xnoYg*WS#~#ay>1gt%u^35(>>0@)i<5}YC`{m?FrZk(p_hP{ zcEnPEAfumR`FJ))nHb@hMN@0q(OkDt4X5WajnoU!l7j-MT;8d*4V@sh|0q{egUZL+ ze=z_`BU=Sg53|+K5^&nBTeq6f7wzA2RLPkZSD)}cv}Ooz)H{_*ep7hK?!Gl62pLtFJ7yv4b6b$~$FhtR+AV!~_A) zC~X_e3^7K-Y3=4#Q1a^4D@TN5bM6SlGqV)~;_qN$HYWOH84I&SjNVv2U&TL8KJO>q z61{`6)&_kXhO7^2mYqUx&H&5VEsUuwUfsn-B2m~K)l@eeITZ8N-|r+^>^t6(@R~5x zZ1MM9Vd8(BY>@L{{QGyi1E6hZg35gnppNWuT2$I- z%RzBu%ey(9CtUyv4D$^|H<#oZm!A=a;rk-~k!Y18jSM2@0 zi({bpzb##c=_^uf2Cd~&>>(~G*YLs)<4wkau!nP(xlsqkox@ zF5~9*DbFk@I}$99vvH|)R5DWlI! zY5@)Cq(P)xqy(h9zQuda zcb$I^*Er0;p1q&vx$k?eU#$sIdL?}qn+zL)K-`s;d7*+pAnC$Ck7J_4-yJ?GlfXCB z_Y$&dnDFI^Y5WoX9m`He>pcR2^WgRm($6{XOZXwbqok&zs;#M`%UcH%g!NlTJ1bj9 zD+@zvXA_6_7PdBAtQ@SIEY#+Xj&=fUZ2#ZyS#2H6*q(%C${`Tc2-z3nYOX0;sV+8u3-?-=ZaAOzltv6K3gRS%N@z&qmpS*RXOTrO7@af-x?abdm?6-` z@rngf2QAr2j4?1U_yq*^BO@cVrKP1y0s>I(prbf%Pn*0ZFzKt(X@vLdt@0JZx&K}^ zCWSw;@g<|v_=Y20K)bcm1DFfbW`im9U4|8xSc@49p?NV4@&CJ!#YEQz1iR7q@Ipdn^%QQ`T?4ofhGWmrEQ5cu z^>U5Q+cIH9Pcd@|?CtIA99FQK?Up1QbaYbGvqva+6BRa*E}w=PD(vk@+^&qVo9XRi zDp4=e{c&&^ttfh>2G2B%N8i|(_WE@Boc3WYvs?oZEDNw2Ql7BNY(*XO_lk%9~tEDd^0S z;jq#xVc&5l5Kl?&ZB%#vfsm)C=i>5m_Qrg3BOMJ5(trQ`_ncLyZkU;lPU>XNW#J)D zqCyeU<&)6gSC81_Zf`SM=)EG`ri(b9x~sdp^WV|@s7z`$9=4yOqa0>~6x^1-evB8Y z=0760i|q;g@k2(Z&W`5j?^uyPHRk65(*sMn4I*WN>`?APSb@+~q4(K1h#1-pRPlr_ z485K9%is6hn_FZKQUqOa1)aCbk;H;=AM#UCQI$#rVK2JDZ>FqxbsC-T60_-XOTKua zgg7zL(zC6a;zh>v7#SU*mHmsFA^yF#+II*c=HQ9$%Z(6}RBpObAS%qtii!Bi*?{Vc zj2O*(i9(a(%e7C(%8J{1xgYj2dju6_cWm>>#_Rmh{%~*4O-L%< zmWYoZF*nZ+)&}Tedn7QYj4L#~G4NPIvub{Xc}w*t@oa|I*1G5t6Mybb4&+`YPFguh z8dzVwoXXG3n}+pvmH3e&8%y`nZTy|O@>#7alN2$6R`z`O+qY#ODxb@W_x7uqalhBn zeO`rxg^^<$kkjNuQDe$mj(u5~Z1!+z&dz?!YdatQer+(*Y$&bz?Y9pvvPTHc$@cd4 z>Kr#>9#B%I?Ju^Yh~ov$nO3YSwcRlsh>eNyr}93f znKP_##FN~6f%Q~TQt}D0+`zi`(U``Ap##H+4QAcU0r|9HM%&F zMXYMZN7Q*pwj>&Iz8f!=55Txr`WiN`;SeDuW#slu?LxUG%hR+q;lhHZzj1l_MWY*z z?~s~A9M_e+l<#)+#L`#z++5e-(P^7s&O|_tV_4oAs!8tR~C<>gnlqwV>w`cpPtWqzbvkVEWq) z8*^TzGlXh{3RgglvG?)tl!_-g+jxIxWoO$jbp##4dAu*F92cHWFMd406tjF( zys#z|NwMa?=El^wuNw9wkO3;rQfSis7;@7pQhLR-oc8widnM}c1eFQc;wJyxR&!fN zB!kud#MWO0%0`+u*H<_teY+3HyJu&leTP2jaf>*U2Y7-Gv_92?MQhXYDnhW$|Z9B zSXM;~p%FzX%=D{BV<=Y%=LbsU^5UYB;j~E9-u}J>)ZRyrACJ`8FF!~ZWkW_r{z#2! z^3`UJjEsb&Zq$m`hauEZqVTDh~iq%B4&jHFcxRh}dzX`g@UyS~0Yy*wDY3ste1n`}TuHYSulBQq;&e>S{S z3NLW9NTckPyu3W~uMm^oIC0po*8bEl%sStN1yW;kDTGnbX7_oc3(;rG(F;GykvfmGaYAMU<4pDcg-Byu^+tUtkC zCMG9u$Xc9+B)bVGIY`Qi}Jlm^Of!FJ1X5x4R2ua+meIcsY=v{|EhPk=9 zz4ejo-)oJ8C=!_NhwGW-yjBSnV4>*^a5?#Tn0?vw`}~QP@7IDcXw&*&Ny{!=a6L;%do`IX@tdP?%`EdvlD;S zE?G7-G8%daJ)!Gs1LE&^Nmw$Ut;hu4^H;8E(qdx1AJ)#0NK?}RLt!u0lf$A7q0~uW zV(HdczMij`OXBgH&_lVt#Mf*j;t;(;CAs5*a74vJrbdV{BM>yQ)W#f`d&o5J#AQk= z^py#$iNZ|OWn@0?3x&SG4rpx^eemD`zn1sg6kUWE>>p}O38%C*GohWDf`XN5nbGE-DR9=f-G&u@jceq z^FS{wv^Q)J$H(_eEm@zb7CIYv1}|DV)Kmgu=AVjCO? zQ6v%!>M=eBnPBS~U#|;Im@0po-ePVh&-&+vJbSZ_K`&oR$0nsD+D#^IvxQAY> z*}d&_&o`Nz-IkKwgV&%62^Y7YI$aQhMNg-ioP`eVNJdf7hbCaCw6s(}9FI)6=nR?$ zqioDYRg%7BZnY~blaU*Z?1TK#jncd1y#0+TxyYddznA@vx5X9HI%9a=#TXhIuA)rR zg#NC0q@#hdh(b@Fua)j~ocOqV#g&aS*)Ig&k5SckW7KcK+bFF(>K?lRg58a?+*_F4 zfmZ1wk$BKb?SgkeSXkI>mDvz+spm6jk72}YuecHws9q*=nmEb!C%!dqL@ww(xO9~G z_z1J(ZSsI~{Bm7ooC7#Z>+yYCQ^73${JTh@@xq5>ftJqB3z1+SAi=xhtNZN5m6 z09^Zhb{Bk5TCYANFL(yPD(2DB(OFvY&U8YJ^VE-fhk=fswlQ7v4yAFdiS8Aup3g%W z1=RB+qh!wj^opT$FLbriJ0uY-M7qc0(^| zr6{SKqK{k)CtksIDcnZtbKnUN*?>R#U9#xNhk}3i;}ohjeal*q|4v|_-)Z|6e6PZF z@3&*s)TIw#4BaG?K>B!IVLhHM$DUt2?!i_f9A@gczJo%00*kS+n3tk!JmAW zgfq~s37;Mr1w({U-+R}W&~>&BX=}EJ_b&t5p?g~w+7Ht4AL8cb3?=%l-XYGR46>Ls z=EE6&bRr`2f>7aa9tt@Ac+9}Co-kt0@@x5eBwO0YawJPKz}MGTV*6Pfvj#42a>RUt zQ=i@XFwMWk_5cp4?7bDdNu{%i-43^gXaCU_wn$}T?H?bHpPioapPilEzjrTcD*zr( zsUF&k`v`*y&2p~`=h2nE&&$vyZJYIOo&#l?)@g8L+`hiLFv^4W@Tm3OARuJTGQH-c z3E&31IFuq3>+=sug!oUE>F^C|kb`lN8eLGLD3LJkA#YD3ne-vo+He@@=3*a2a)qA( z@7tKFGV3W&&Q>y*TtTA-)ZXZ_^K}*whD-7QZ|^+OF>r`#ZR^9`rEksH;hSs7xdbC4 zBf!~0d01Fj#!RbT6HD%$g{c=581HtF>ms6Q3z2;z$s+O|`noK59=zXL3Yj=4xp zN^BQea22hKSAtkjl6jHl8aRf=^nQ*e?nOkR(_$68A?9}ucWcwr^QAU`b6@EZOLzG$ z03(1clVq=oj)#X3TDnX`M8wOiIGZZ%l1xP8$1IZ6iDz7<{n2043OT*khcn$9eg3&c zkC=18y?BW+&Z*4uSB1*S?y8W?70bl@Qpz6L+L^7dl81+%hAI_B@iuBJ-MjZ^Gi9qM zD!@x=7NR}}ggl`7sDuQP_nw}Y9$5^fLnhvQ;&`hJp+D1AzEJVmP*gPftyY>?J?x7o zyb$>>3A?kC-7kGev>Qu9BR8+7v;KQ0Vj!vF)b8S#C2jls_Xjq{+`9K`xHhwO;wRfP zpGhD6#a=962<_48mWv@kELuU!kDG7y_$(u^3;?v;q%XcYE-o$vj`me1?W&qGBQBec zLM?T;l#!K^((ukinf?vjNd^>`{_P?aG=9&7+!!=eAPHyUf9O6vSI<~ zR@qymN-dslv+}R<%zt6JURbY=4JBg~Ya$hEqp6kQ27W-6|BRd}fJ8~zmL=KGuru8y zK{Z60wg#0fC`#nKpx+k>W0o#oEysFut!KV6{6f!rsP;t-%eLh# zFZ)%#s%no~njl;52pR&IN>8Pb1@N88ns=Wil?lYMkyZ!MzDF3@&)?x>s@F!iW{g?R zAlXT<>e9ngGOwDl{Oc&Ne&lXP5e)b|>11olh>`tHl{GmY#U*W6X5il8VJFbTv^1SE zv-*y!bB^UkZ($t!{*<0OI~7K4)fT?_^uv`;L^HVs;!+@yy^sTY>V{X6?LT`sk=u zd~htj-8uI`3^_NV_cMm&1bWN$d18q$+cmsTu6l{~?Y6)-41-ivp#e`s&{XfeUaD{&a9M^qW zbsOqj-Q33L1Dj&|JiD!Vlh-21`9vC_vp$vEa91Y42Uf3-z{JHJoa6C4#dBSIm?0Z$ z=2V13(=i~4xG5%aZ_I>Gl;TOai+Y|8I|4w=SH#9Kl6cl&wpKh>|6aQAO>L=4 z=f4;A%d6iVJ`g`e?v1nY=^04o>$9G&R@T9e)z(lz6^G6{@T^3=Q8k7(%6~{nnbA!T z>wh4bvQoR``}+EN;Ap-g7uFA&=e})i`QPD*6RH>01kuVmyWpq6#ppw=Zv(*apJ~;~ zu%M!h0lD^2^!Etz_xJDLf0F)t?N8?+&GiA5`b!P$z`#H;Wr9+G$+_1j(9!5i+6@W@ z4=z`KwtNl6-hDu#D;wh~8`HE!${cDaG<5Kpihk_m-@xzW%qgyKDXFQ-Me0v?h0@vI zulCoGa+!Ks4qbvIHDgmXIrmOZg1Zc9K<#DgHYv5v0acu69eRwS?3PSZi;GJIyKEs#++xx%@lJWyQLZELjOr2*qT zux-6E&ED8xQBTUH&Ze#NIAM){`sTwE`S@Y@taihS46CWieLw*6gJV$ZdsH1LMn5tH zl@gHi*{BH#3m2A^?QpfK>%qsigR=V{?Z({NSIkd7PuZGAKABA2N1%$6Xbo$ot$Apa z>Lm85i;vfHZK75rEn;8SVpo{4>rcq#jq-9_l0L^|HKJaE@ zz=noNhk}7iprfn%*|KIj7cD(AONFy(-K_z3)WxknL*{FJb~lc;#}CgTNJS1d^wF=q zFOiXU6Qr%S3<`AKu57+uA91@zNu;_4tI6Ylurl=yym9mF?pPW1lcI+FdrAE-pgm#V!nx>lw{-?_RMKef# zmES0hDO;{xl5DIskJ2WaJ;DOWEX~{7yAWWYi-Np-KvmVjXl#N)u`dmO!fQhlAhs`y zb?SfSFvy`P6U1)m5zyQqm1D(ymyP*@>5H+83EMoux@zh>QX9b5XtR?rPf&LGpjN*S zJ^O>7)w7gJoQ#F?W=wXZFa>xuTd{q5UoRiVR8Gu0)P5`=vGDCX`iK*nbi z4yw$XsE2}IQ&j}AlzdQ_n1cQUMQ*Gvaw9;3YH<1ctEUx;H2&<|+>L{a%S{Og$7x{G zfCWI<4ILdF#AHb|wO^x9oZHG;E4%-)*z$g2){v^P93v3Ny9O1kB^sy5ya-2b86if{ z^()**{V8JLv%dE;N(6r-b4)whZKv^Fb29-Lz%4A?Ec5uyHpDhsR6`{2L>h0<)zm`UqXSDk-thfSm+@ zDn`@6pkU6siPCy<9bZC@JLKp(E&YdPTy}PLZ6EJHz5{Pv_HSe3nRNc>cF%j7z;&c8 zL^(rxP2Q$s!$S}>Bq*dO;gq+z2YSc=DmB}P{-{+lAZ>1+btLrh=(T;9T)e)d1wCVXGT?Y(gD%eJe;2% ztmSewv>7>7pb&-S9)MhcUxk%8BR^5-giN-V~|N8)3e!jH03GYSE!1WK#2`#ytEt*VvWJ@FZvh zoj8kP8oKL*zR&BgwhOrM;HF!=JYuRg);)Hby8*Re@!8BSj{f|)3k3^J%y^HeC~Kb^ z(D49m_K3kSI3fc*Jv}lnU)J0hN1~h`qYb7SJu7ovQ#+#P1(iYAWew(s(pUuY&L5pFOj`B=@JC!+38gRY^WK}JaUx(Vy% z6ous31Ae=|lU8ZjMJ(gV6rWiHbimK)onPuS^4U)4l0;Wfma22-Il5 z%*}DzxXI`@J-`6LarzKc+c#_diI3Udd}ZNz_N;ypA1Uw2=4RiQF$bYzcURX8$uJ_K z)K|4Pw|sYRfN$Y&kpCB%*aL=|B0cBcIL27SugOLi+soPd_o@J*;=Fek#bFPQT_>Z? zoDF@+PX@>7k?=v7Mv+GWy2zpDp3NMZ<@UQXB!EzoLrLxkb{Eb>scy3K zpC9)-zkgqKkL)p)(9S~){`jvr(n4$qH+(Z-#xB5U+CBocq=~ zOAz%DQ3se)w!)JkR#C1<|6EFLr$-VYWywwU30nVFt#*k?seUV^ z{rTa>G`Jl}DG|7}R#S#kl_og0++>OL6HU){r_9=tZAEg0#W35u!iYz~GGU{bsvoU- zX}->nY}I+V;oLAfHSV%t&YcET*nq^>Ub}?ob&-0_rl&Zb5|oQdmmR&j#>QAhk+VRM zRGwpDVJ%5Ke{NBvUV^Eiv|;lCbyHKQQf!-ADv`6eOdHGM2~>>~etU^hrA%bA+UpLs zRs_bq%0Y^j78c6Xw80je`4sE(v9h5wHSO9#Cv1QPzro7KeJDUpOB>j?E|;=7xwvSM zHDWFUtp*e%P`c~J#l^)pBczP>oS(l|<8(C%x1p2D{_pF%2^(9m;jabk7TbG^O%PQ6*ky7#WRPT`f;m&FRQhK z2_H*cnsAea6$gNor5Z)?OhvtHg75I;gcz~FkNE2GNJ&FL#uxz)MJ3zxC0?4@-smG44yI7#qA_d{dD%U< zz>pr}ELg3x?xzp%wa_wKMT;W))FO*?1uwMuBWtKFe+FJ%H#H@&dl11M2Ly>N#|XZj z9~>X!H>&E!T6Ey3X5YF=U`F3!{uN4LceOIuii$gRUkV8PGzQmAbDsy}E?pdNH+q9j zNC{dOk(`AwSW_5?roHdv3~-t$KTnL8^a*T`-BBbZNqrRz#d1bqYhkGVaC;N)?j2$9 zSXJQBMiM(&!?V8u(Kzxof#iEQM>aEGt)cw;m4GKz-%#|KRk!2I>mqY-@h$RSrPdWo zWdkNOhKnrFu3_5$HXhF4Mvzc!SDS1=-6FN~3n1OC04^B@{7eS?!>k1`wgB3hIKgSNf zM^)+#oO(qnyFy8kkBO;%PmWyImvkOZ7E4YXdT18EC_n!xbL4UitA5MuQ(j*6(l@oN z-S!j*3DebY1utxykN!{z2RNAY+VPkUeK)0|;@}8S zvMQbc{P~J8^yeb9o0Os=<`T^cL*9UD>lt1$3JL`%L6L*0g72R-b3-4oqsZR^?*7$c zl+MK{KDw>b>inorwSVKZf=kec7$s?Ge!*w$qp#)+B$dk{ zfig8Wml{qfoODa5k&uu&XJ(Q$S%{v{(R~OD3CRR!(96A~(YfMxL=%}8Ix73pQOc5E zf7a*Y?Wvt8yh+Q6?||z605^-CskOytV`Iw&i(Nwe{GN0qg}8#kok)sj65y}lBoEMa zcXjpLn)J34_rxThQ0aZ)T#R`UL(2yJK&@!Zc^$GJ&yV_#Hw2y8qwIQOw&-6-F3tY; zc>ilMpKQ8_R~@WTl3Uu14U}s`tkPR4d1|Wu{aWZ#?dnBU6_s5OoO(fkCKqyL-`oAs z_&KY`xMORoYH#JU{-cRW8(03(H>X=wLTj3Jc9}Y5dcvi^q^630jtwL;@_7qQ3Ak6! z0vNo8eJAJXDP%F<^o)b#4tt`)lw2xoTBg2A1*u4io)x-Zu?Yzu^?j~B#WSjYh$P|g z@B2D0dV|XJ+OXnJN@q8UDVJax6%Ntjf9<}XDk?(Xuk@1e+fid6gocQ}WbY4&-W30W z7W1oED;5wwr)2z!Hjopp5zUo_LFS!})u0h`1voR?)6E_yAJPR~N~v<=4)*rm>VXkH zbHD7(Ne`C3R}i*;TTMFue~^s;$h-tf3M15*HyZx$8mK`37h+|#@l`JxgL0pyUZ{cw z#_=-t-y~*CWLOVmef@=5!ts`yH0zH%@8Y*jB$e%sx3pfoctOp{8RKyH?md1Dq?h675gpMH*2!I5^oS|K_qmT%`vc>jgY1VUJ@LuiZr?KFePWtZPDv zBzMrE=0%s6vr~wA>sWv`*8MWE!y(|}@U8HSgVB!OI8u&kzNZh-5-zT$$LgKyDl1Y8 z^}IVH$A8fxq+-n|`1l~61<*+r1mBNkWo*zN<*7tGC(qmbP*_1LjbB_`bOmwlvUgKW zPy4zi%|@M8*0OZO+*#n+GYe+5f(+}o?B+!u0)4~DG1Lm$(9zI2oj7f65n|9!<5_i+ zY$`O9K4zUd%7#n4dkR=;U`Sb8T%~esxS%?nwdvn zHFo>hTHC&Tdu}mN`Vb_N=2`mI_Za-{1g;m``M6pvM8JFvfOY?};*EuL#R6-)Q&^Y( z*!xwboey_qiA6=#lXPB4el6}#7u7F>W=A^NA}sE}X?MX})W&R{&4B?v(SO<5*=Mkt z%utAQR8$_Y>NO<*Xcd0cxBoV*YoFIwO_@L+^Ci}&&jFuB6l-ZAc2hTIS@K^(!X%%7 z!1-ar!J1JP51GL?bY5x(Oc^j03BW-BXVrL> zCKLjXGm#7U~pL*aVG(t3fq%&0Bh?diiQXUf%@Ek5DD~#+f zj;(>LX;_RGlg@jc=mxXF?*TO&@dic*L%wGbX{X(<0=RS4t%C9bg;84pEBnrn%V^D zv4Lg~4UYTvcnNtSgqJcYLv(d@>rYQzXF%Ec;fI3p0}%2jXup3wHi-^SwQG8hnjo8H zSfl;PbF{8E?k#zQ`nwk0CtKdJrw58{a}Swc(rH&o-y1CbM>aCT@+a0PmWv+9l->LH zk0BKy2|o0epc9j{`w4oU!do<|AUtzEk~`+V3hrZJV?T0lro_d?9o{@D01Yw^T5t|{ z6N5ktk>FDCpFe-@b&rDIj-Q`@k^}zG@bf3A9(cTV$O`3I8*EY2ik#MMX;O?5y&jI8 z(8qAt*k1Yf4_D425pLxgdr=obge4Y&H-bi1_z zv|R>V5Ljx`>pS!<>}n%F-Kwy#u!G#TNqJXwDD!z6_@DYdg#6WFHnWJ|%l{?Bbxw_S z1gjXVD>e4TTwPr$gE_#W-;#oZiRoKg%jcm|@0D!*edWIGU_|&Mq8ZSqdf=hDMlMIk z$3u`41R2$t4DkSNup+v^x;O_n_bw7RuSPK@TBpY|wy{vqyNx-I@Fh8(J~x{p74s*H zKXu6>o72IQF4?{iJD zG(1Cn()Ti$T&IH0lU|JX?%jiG`U6&RIuFr#mKVR-%sC%t^SryT4nL zjuIm<$zcfX>M;$`Y*CgTy zn|b4<_>P#VFKe-il|6F%Lg|I?qeZu8h75Pl{sxae}3DiKCx%EH34%BpZzW85x)UNrWl41H>9TlmZu+k4L zx4*H;GqFpR%fUodRW*|Vd#g9&nJ09781bcvrC=$@6Hih(o)!zROJ|O3Y$a9yy2deJ z!1MHfbMkILJntbi5Sm<4R%p8%n6k*bxD2T{5)?=|E2btdl(}VNP!XD~-om|~nDc=M z`J#wHV(TRm!AqmPANSQrxG`U0Vf8|47qvuP-b5=8PMHMo0dr`bIP|)j+2~5m0?{e` z^B=K)4~hEeHEX_=itj*`RNe(*%$Syz2K9t_^6$;TJ;7GY?JYrz0wWw|G`2K5*k|BQ+cVF$(py{o8jKz9KEp2*KH4hui)5M z`ESVi->-67oI4&MZA{9vy`_&%17 zj2<2y?l_U=O7<&fr=|t~GYZJv0er*Xf=+*F?~rn$Lht{Bv$A4Z=_SbgnH5v=Ev2P| z1TVCfw{PD9=tsIO@)tzxHWaFa%*eNlcBS_du;Y&HsVaI8#8g+1#T~^|Y-6FflVJm< z&mqlBeE+Ra($_J|E~v{TL}4q961oa2pTv0@(5fmSpM3U@6VNO^blK4vtFKZB9V)7f zIRBr58HXp~JEG|2M8z*Jo+~k-kf0ghB0i4hw?2K9?yZ<2lDfvQErr=Ln=n)5bK{*^ z-mx}W9r9@u8(D!4pN!Y)BRDhJpfFkSwH6$%w`)(W1r4CzA?*m?o~^GxHd^M#jZ-nK zqF1|5H5Atw>Sz1m;|S2Xx_rYQ`kw9H>KDfx8}fo!P!p4r$+7XTu>d3mM*F-_R(peV zC9nJq2Mu3*8&hCk=$?;{&lzkPE`(>onwT6Rg3g#kTj`t&vnPD#nST(yw!){Jy^LS? z0}m&snj0tf;-5B_YBiJHCFhXB=ob^MIEd(5)+X8#vw5JZr~rbN-HKqufqS_4^*dm6wP1_lPL8(j=W%!IVp$+2a&%efHVH zqfqeKR8wC`Z|~QQj{4=j3>#0wWbtl-RlL0s$jwKakeXH{irW81edd110HF((Cr_yn z{9a_I=kLDu#A85FmXBxoPcdC2;?_O^12Yd=fiyJTS{* z=`)|MF4VnI8yp;j6R7(8_irhgm})YyvqwcL%1QBiZVwTTNC*i_g#@8z_A8A$D#6v< zEZWtWH(HJHhEtp>70%YWA~e z=ugdhYb%z;zrEoMGz#zenTs?~%!ZI-Iw@}ep9)WIbz0UK4y6gpy?B9oeX($3n(W!` zkLF-#_(;@zn7XdMzP+ahtCHn0C+7o5iS9$SaZP=dA5O*-`rgTDVDkaO7h*rmz#>jBTzgRUr*z{iyE>BY$eXtV)@T`e0*|p@?$TE*(&GGtGVg^;6La%k9?}t!TFFj z#9CWYvSME6Qd=3=faK#P#=r>}wBmiw$jBI_ ze{-?Z`nGC{pO24kr6UNZa^`o}FcK(R5be0j4ib%bM~YW%AGO}CheVzO zC_mqhHYd_W%&RyQh53kBQ7J`UoPLk6vv=FsB%H>W zmgB`|hZ!CxlaJrmJ51KvQURLU06Rgp#oEi^@xe=a#t-Q6=@-Vzf2pO)*Q%}nf& zz}WIYpd;F{o4(Yh%yTi4ma6d9UUD5JBP|SubV5KAR7oM1E8q~ z&%77l{BwxwrKF@70AB$UM!DzG3lR1cJmAE}_Eg@d9twN`z{C3!xq{Ph?rB6SCWx)L zA2B%p^W0xm#VplpmLrs$(q6}ZttSghNkuEGjWA&GMHd?4gV705TykCo7&P#Wr>qp( znjwC*_gi9a6b6K1VSr)*QhHGmsRjFTSfxD!gT!}h&K2jTie)J9c=%&Z@RVJX3V*Cd3JCcV*_NtANjn>bO2OeD_(L|9xIvH_p8Xn z|4*o5rNL=aYI%8?P>vDe;12pqc6PjpfX9iM>0(15JU5FUfKxvE2eQEA(N$(u+`NJS z{vo=kjj)_5!$yp)ugZV;tgRluGDINBfdH>*jWPE>P%t=i*Y=_yg}k`6WraLUT~_}@ zmdRT`iGI_QHuMoqU@=Oh=Pk4RT5{Ybb+fY_}nh1VNabTBuUu%h>M) zGA!{(Hs-k$2Jn#+BuwaQyyOv5y5p=(l`OYYRTd!b%f*?TePrpof&n}`C=axdV~tTc z$I#qhpbs?+xqiUuUUHWh^{qIxPhBz|%fmkzW4&L-5Mue?!19)b1IIj3p#1!n*@B(K zn5;l&1G7S%rIkzlt?5n9N7lSV3%V8lU0z82se&4%5LLMW6L4jowFOnP#`4pnK2E7{ zl0E+BcaWF_x1bonqpdmV1HMNtk23JQ+i`WYJU8;vkV-~7N4H!u^H?|l4EwmbWN|(j({bica*^L$Nn+Vv$DKmBUM(%ljj{`FxcACKc z78#W05UB{V|A230L8XKkr{ZsZRzk_Ko*G+gGsu~g04xp$b&#KjgX6!4w_t0?CqZ3; zwdwkNa~5z;edDp?YfNmz*SctSXZt3B{LeBs1b6Ii9*R)>JMOd)7TUMUOC$y|dHay| z;GsM=>p6hPfU?Ltnio@*Q8kQ}zgJhKj<=?szkhjOLB^oaUeFowx`=49>M0M;7&3LH z5?|)NTsGO<0||nzM)1$Cpj6*z)!OJLjahnmDwIuRgSZvdY76@B2i%8$B``<)co;q7 zH$(Z72g;t%(kfiQ^w{W7y68RQ>R9p3@%pdaWom^F0DM`wtzMg&{G0WpD&wk$e3*ju zOz%-LAI8l9Uz@t%Pjy`#&0q{c5Y#%r9^tTC6oV|7u#*rYV~BRiI6Y0xd~+gSY5>Sh z`$9vpfNMmtE`D&9J3m!@g@gO`VgNGIW9W;1b8!8=x7YuIpvy6=>*p0z*T!2j)pYP% zENx(0cQ*!v0yV0&w{1!Hmdxr|1z`TG9zuR|xAP2T`mKYG1jjpOLAdp_m+!dAV&YAu z(+3nqkZk6d>@*!5_G4E+;}9Wio4a@qkGFa*a^8O17ftg6PXgM`3V<)e)7_;Xvk84Y zf;&ymL8yNPE|%6hEkB8Qv~WA@eh^=8O?7|ByWwZQeOHz)?fqIfLXEd-4Do;`qcv!)--5;vbh7 zfg}uAdjgsaxaV`RU7G+dY3^)q7ddTU28^)+9=Z4i(`rYBkQn9u72SRgA?`_Ft%)kV zfmYsEpG;_sdyF?Andh?9fySyopocIY>0o8-2D^O<3=iDQu<#w z?oU}YdS3~6-(0y&L-zU(aN#Ox(-F%W2|QGO9OP)yW%P3UWvQv5A;m-?H_kkTMC9y| z9|0=yxZ_Q3#~yd?peFG!?`lII?Y&eP7^X76Z1sjdO5?-*>`X$4>nW{k!16`Cv$K?=70H(BwmSgF@}(QKesef}?G)`7S| zuDF)zERWE6z0E=W0Aiz%=8}?q^@`|w6jhXt3CV(YGNBsn6C@vFwcfnERr0Tzjm{+? zoCt8+%qGCTjh`$!|CE-73#ycx{z7-5p{%UzZ3Y*1N{1+G=2vaMSE-ss8SMe-n3Ytb zgX0^2)D~+F-Gwn}uzmfP*_dv~)Uq$a?@NvdKv*_6G^_s(F7B%#i#Ed3zZ;@Qo!T zB#_T`zuh|^x}*!VPMT}I>Gaho*p2(X4cTNoGO|#}hcbY9Z47*L{bw$YMuLt$d_lJ8 z!OUbu+hA%`qnwi5-tN+KUIxaH-0`bRu4q+;t4p`|}@dUN2NmBmsz=YFNq*+VhwFO5AupcqN&efO}LFg zqh$jpnAuhrrW+Ee-6=r<>O1~gjnwwS&1TkM-quuL;_p~pofRphI_klBL58Nc_HgUt z<25NuOD4?R$!5>`2d8~(llAZEVa=hXw@(Zx9N^qVtIRnSUcK1S`iv#`p9yJTw90*9 z6*o7f2%C)u56H=jhLXPFuorfLppbK4!t}GFZ23bg81=vKKHtbc1YfvnHT*LhR}^mB zyRzmFz+4Q$SWkck94o!6kf%6gno|X3KO8)QJ-`plu7q)%5g#(2Ye`9}5!`0Qjr8>F z_V)bfo{=W8>P}AnQfvIwf7_itta^K!H&~PNd7j#VH`QUxNh87<`TDP6t407%5`k#CVq4i3>P*xbXtoaN>CVQtf@BsQ?T;}6TIXN=ps;NBTV4fc6 z$6F@6$roi1N7x4F3NxBhs6CL``N+56i4VB$mOA*O;lzOo(*se7jK|WPD2X`m|Ac^$ z@%UXrY)dom1G<^w1`lE&ed8hi%bH`e+0tM!?*5&;uO8q>=Y7R<;BPi)Y=o4Tp^j<4 zSBiqsaj>NYA^S`Kqw9_*th%*!G%D)F1~iegb4}ahUx#=cl0T6o3R7J*!Nd z-UD{CFNt1PJk0$v@*Y`3cx1h+Odm_$__bam-_A`uY8!}%jw8tVqw&`Hf;ZNY1(i4X zF3i@@%BnQl6bVVe`3q<16Yc8mwuOtj8erBa^?V1xaMzB$}sB?`CFZGN|U=IXXI$1i(8|YpWklC7MQCSI6)lpY5tZ`he+UxDlAgQ_M}B zvg(i3ZKYfvze~dRZ{ynXE}0PTIYsv^+5EH9dZSJmR)vE+b9r%L8~@X!szQxT&hPq4 zi^xAl-b*@HuGsOckL|7Cd-R1($6fPjZri97l?+|M#pNiRqXVJ$s|u^1k3%pDFPW8c zAHGhLh{<8}r}mtJ3-U_UuE7&EL>*Tv4M#HS?%)dhGCo#xliqxQ8}@r^`t+*b%E)Cy z<3(Av;5+|DXz6=Yb|U6+jHcriX!68B3}O@&WH}uZ!R&) zTCW8lX2_bClfzC)N%?!x4}}z_N3#X0-+Ucb)|Mm;S#0rY6Wke|*BtKOOSWyff8;Jq z_bNrRX0?m~86?F%m?P3AJ3Td8+&5vWWX0rela@xYo?fhN_UQWa$Jo%!EEwR@t(Z#7 z%K8eX0MROHYlDv`Ii^LvdV8&O7X>yo39)EZq9Q)nQP5vx_ryKI&`p$Ea%-tkDGX2K zwulLE@f33A2zTV6m-gK2BA$w|h6$E;;zeVXXlQ6L?FQ6PEWg48FB4)q8_G!fZ^#05 zLwJIPfdKpKVkcJMq}4iutkPhDIND&*H%l~DJyc|5IpSKN+UmucG%_*&r?K}A$9n(c z$8ThBS(S`PlFF*gL@1OMGBUGMD0^pBlo^t2vXX=-Gdr6|GIA&qiHyp~?{R;=zwiIw zbDeXpbDirP?)&|Ijpy^Rp3QRLl$0~IGhV!4LY*5AFa@-}`r?jNkkG*W;eO_C17Q@) zI@v+#ffV8N)y@*kAYr9^R`X-h(|Z$zTEyr=JSTi;BTOnC59S2?+wz7dh??;I7FUwN zG)KqQd~7GJctWG=7_}nP#P|!#kTpGRCYtA0VjnB3CjPB?AwnB1@0-K0HXjctj_16q{&t?xqPN zg=x>?qF{U#dPi#;8%vy<06*f~rd#Qs8CTGZjQn;V7o*eH_g$10c8O2DC^3GMY(HI7 z2IO3i;A-9c)p?v>L`2DO;x@&=m2md9C*A2%n z9Ynt@kua+2>uA)0x+>oyl0rybQXSsDy}8^` zsLy-&FaY-XpL^^g4h)$*lDNYl?YFE_5iCO>s3`&ayc-?ehBhm#u~8|JiL}=2IGj-H zsIZonmd+ryU=Zfyo8Jcy|A%5+gipEfQeIR{Y^+$)bd?tOoPy$vdDxS=4!uYLHCaG^ z8%A?vS%$CpVHz|(L{Cl9B>D|1iN&W+l~(5RmP9!P#NC9Je-4nplJ|8%P7)S0q?e`n z`FG{Le+kSX=fTp59eUZj5fLl^D|!j#D%U~o<0XUi|+(jl)@ znJ^GGWQ1#?oRD?GJ=sXwfR3ybt&Nzx{C*T4nd>2Dnm z4-C86aEBUaYLBJJeH)^sV$9>drpixW6%g?Im03BJu9wu!I}B`ld8C#0t`Sv7At1OU z?fcFEl}qHMB1J3U(+_tMl;r0O4LJ=H*-(*dC`99uj|JQsdiZ_b?(SX%GMW8jV`HMO zQ_4@*-iAnRuMGz$SlZhK3y?V1QE&fQelgh?o4QZjAej1%)>cD` zXI4^QZ$_)7rG=Ia**8ht4=p(_q{$@%`(;M{gB6AGjKdj*H{y&+C3?a~)|1VuJ+!7` zEaC16s{Bmh=l5bh;c}>~%>L3(i|-gOxGED`}Px zi@PPC#YukIqx4C`&-ie%imx!Q zGl;);7n!6e)cxCygm3vP4Y!BP|Ax~`N<1fpvI&g~D5sFQ;SwI-om(Cr9$1Az-L^%Y zD}I~b83k4(`EcY@#+n)$=C{9l-P@PQ6f~Vb4>FP2FbhL+v$9Pt@-yZF{d+$hwl67(7@0y)p~) zIjyi{TC!T++r6hKnnbCdh?2ym^I(fDLky@6XDIvh)YJg^5fTU-|m7dqe3svHXpblnWm-|>!hO6td@OSEw{0Fzidtq1B3mq z5j!Wf`NzneiWN|Ef_yIf{Txy1z<2sIw@7Cei2bSd%(HvOzjo>!`4h14LtW z6}jHeU!Vn!u zF}toHzrQGWNuJQVEcbJX@E}Oxf$DS#k)F$kA6y&_nI3>FnJnLLOfGXQ zKW@|02>Y}5Sm-aaOKxZrrGx8G?D{83L7OS%=GmF44{zL+G&LEf!8p+KoPGj` zHsuM|37U2H?{_tM0@{J^U&Z6HTKd}gZMBj1f}`=?56?|$30*jpLStfL#3OBv9Xo~$ z8waO0V1Z=p_xWv_mvuQwPH>XV8Wmh&TXv z;$4!DG6b>b1P>jWkE|pQ`b_eKAj+5#yaH_=G{bv)SNtTRrqdq%sgdJaW^G!jNwgW+ zrO2eN%w!lfU8vtY<$W4u^i|1^i%ex<+3~|sUh`SWlml9S(HXOV1+h?wDV;b zSj~Hga(hR~eY|#+<-4B8wVkg?L8<%W_zx`kTIc-Pm@m0pzsSTMev3UaXY9poNugN( z8lDt-`%!lC(N~sQN~D91CpLcnjAk)E(UdCtargcQNCZok5$r${XOcyD8X$QSL}t>H0?m9Pu=!`P`e%-n9TS0SN^0?D#qhyP2U{ZJ%m}0; zyIzXy%hD63{5Uf57h-0m%UQL2RHTbMS?}808vqQ(#>bN-+VG9#y>+s)vkUkyjAIbY z*s-pjo;vU{PhGe?H`JcgKbbq-;=*;gdBsmEh>1|ZNK@4!5Shiv;ul!_el$g$=gk}4 z;!v@xL4Dd@6^>y<&)GO!CkUYvsonTqg!H-dP$KYsC3`NQCUxtVfM4JrMHxB!7_X^e z^AUUq1+NwbVVc>~oA-BZZu$!TCnRcfyA z@>e_a$N4p@PV)dueT3YZpFi)Q^&FKe&be0nIF5rP>nM@3TC6O4o=Ec#mYAm(zgV%t zDkZj-zd)j&&F&WfYkH2M>IC%FY(d8edxcmdRMm4|CJU(Drfc##oS>cpt!^$%4bQ5p zt9#no?!YFHNd59_9(!$Vtr$8*0wNM3n_<(Hz-k50NmP`Si9{lma1NrnL8+rhi;ohE z6}bRJSCSde7tXCWg0!d45}HV1a`AY&UE<&nRIhNIZ=V8prIM0MmHRayI+1X_$MvKu z^unwU?Bxj5)*pt4IS$UmN!M?Yx-MHiOP9X1RAO!}CLuxx9m^2KcyKT&k+rJHG?4J` zNw-@H+@aiBJ~#3}GyVC1W`5|ENbQqn+ocX!Xo$R0cg7Y~ncptq!6Id6A|TV?>9sV_-0A2aVp(2st0-Htu+vNd2G z?iplre59i@Sn=OVuY>b^1Y6a3CK;z9lg#fQo#od)r$L$z%JCtJa!?fftnBPB0RUK? zKTlOq?=2zrXERd5+^0Y_{asep0b&~pY-9i|6k~1C5sT8kH!tfImRk3fm&ZKZRkLPL zv1#l+8}%*6VE1%)O59FfI*Yz*xT&^w5K3(g!FV+|{_i8a4um7Bc1x0=FAED@utL+L z+Byj8Zx`W$U_62=hG`Bmhg*t5!vhrV8dL8|O-+mebK2}^{?K=Qx~5%{*FWj?qe4$e zNf|W{;D*AxBl}$RKQPieH@Pmq<{0AVMZvVUX+=(_Xh=g(nC;R5!($N#koV{!FKfcJ zG2wf`VPk$Ws5t(RMoDY)i@gan_MeG@Vj^Kg(m?8#HQ&V(D4KS>{(g7%IgKo{=$;dD zNhhv-pu(@>JmEN4+ohYEk2U@OQ=Sc8R#%XDgfzlxlI03W^MFd(ZACrKHUG zc&-P9gXU)1zkk2e z$&_lck0wnT{=$FY+vX@5`aZk4I(Ky#g&NZ@YdbZBcl;uRGKtb%WmhS^sqyffGD_SN z;Wi^lt3KO`8yZ@uPI`vqdA_3pHzLu@MLfB&P@U0_sQJZ3`CUHMs8 z>*c@g&I?`zdcx(UMA&*Mkn5bX&a-~=PhhkxML8eAJ9>F6V98=b!jTmuk%P0S)m4&H zr*aC0KCW#44(@LvGpI}{m-q4uBg=DPDTf??x z7pJ9qehEY!C%)RZD_bIAO3NeA)952|v>ELU(b>WZ4uvCf=I<2 z267z9;EDfO=Pw&U$@`K0s4;X$C2KKW4^Yd}~y^?o@I(>iLE^K9EWo06mTniLGah97b(VG|bCy7Yu zh*Kd_AlMNP%Lz>}gtHGC8X5+IbnDMCuBMz$rS7xOK|77$o0Nb$!$gX=ABr8ihpn@k zSXHl*Q{JI;MT-lt^d4imd!_Mh)9Rq6J99sEbfiRGc$LF~V@23QSHF{gw&}D;dPD`3 z;8S7iOSf|GK3=K1<#5RtHX4IRj~&(nlyamQBf%z{~v1&JN+|Zr=WqK^5 zNe=n18nL`oy$bJ6n-b4Ty4yRy@Y8{_k}KI+Rh(?NQBvB1Gc;*ohP;?e$+#w z$HVyLOW)+aJ!&CV?jw!|SATxyK|9-(z#@OALp0f*)_meXFF*QMlrV# zX*ZZhry)E~_;))!RqX7i)d7tv2gwLaF3RClSqF|?P1++J%=|&w=SV_G2;KKVoJLXa z76f0og(lL<%#0gX0%y1)_UpSp%hR!GX`0~leh+B+LElfuDS9SPPnZ#J@||+qC6%+N zA5ZLkK-atSvBp~h`Ky*f0ntakeo-sD@p~qvp{Qga?EM~z!m%xsaet;Fj|%{oLc&Uh z-??Vw5G=vJ%!x;tC`R|5E{KYk`AkdeVq4Ia_X!2;IQ3C4_)knsG>?y)ew~{uxB>Cm z+VPEF8X2xvGqlnpdiT(sX^R@{kvq;P6~KiPp>?**XU(zST3laR>3+Fn&}@+&BP|0% zYqCUwNn)yALC$&zWjuwv&zOel;}h8m%*>LbsV8WwymzC+NAhc&08w}}g?-fuP)IFT zSB%j2#{F7BMn=#xlS)mNUAO-{oX@a_s||vNDC7;CZeQ^;iJBg`wk5b#E%X90L3O`6 zj&uNqqk_(S0jC@E#=LbX&n_g(1UiW%{NXwk6%Y_HKMVEFVCBz%moHzwfa&n9z2r;C z3lBh-BKTEe3{)r41f?3;BF;qUpI;kA-0jtOJw0aIC_xPZd{^$`hM!TCd{J3>85#(q zOYvdH2xo?$H~5>`*|fjQ439NFT5(yyE&o$SH5zv=S&s{>DnLY7l&HuE=;$fhTnRx4 ztB8b$DN8f2Y1MU_)oby!@NW(lmSC8)#Bq82o*ySAJoojDH#_K4{Z&V}AikNyyf4if z{r2vO#z-{8*QV)T1VzNl&OBDv+jnI0Xzle-5-F|?I z1`P(qi{xW0zkUVb1a$E9+=`9im6ny&=#~G?il=tN+51>gV|0E*lN0s!F(Zc4PkkZiiiq-sCej(}4l4nbl~ ztXxvOaT0cSuceFyq; znym;ZkobSzoNA`VO`rx(#uq53tl)y&&CX5{ZaFzS+xF;!ps9g@!44v=60oS0!s7oW zy$sy>w*;{_JuwC?xi?WWFXWbEVR_)Jrex}gNTJ3igvta7UJR=9KeBLW*r`?c)G0pX zl+BITD-hAZ{-mV&8b-Ca7nV&F@o1G_DJ8~EJLMNc@MHg>Gwgz@N&=n zeyUq{7zTRE>~h5}#@;J;{_llUbG7QcIP1HI>f19Yy{Td6I z(KNQJ&BlYa`+J(K?d-0CdjE!R>WUl`zyNr%nTEPApiKd3*|D&&(13&L82OS&8uzaF zf?w_RxD4I{CoQmvyz|(6rRz*WnS*2wx12F*63b_HV87Bva52Zf6K@l4|4)V#Z z={GTtiJTc_qwABU{&PJ3YoB-i{Z0VG;c!hZ>+jetx1stRO`pHw+XXp1??*SuW97;Lz^bWQilDyaf+m-|9al5PDtIO$h4}Wi3K#iETHSwZsGgYPzN~#Rie^ zPwbKRk=)waIuAcDH3LH;WN0dcpx3TsW(*8KvB73oE9*2z~qe@Q+g|?tU}Th z-hY*yU3d2WlFOOww_uT#0mB>?63Xu)e^Xt3^-5`wCVrf_xcDOubHCEA{3Cq3K)4S> zG*@|bwl{re7CO>^f|0PD>33Zn9l|EBe14l|_qjlGQaAD3=ZLTC^pphl8$Flah@*@ycsmz#}aD2xnAv9bL- zNHe<#<+tOjtdss5wWke(64^D=p1Hlp*FPXDYhuM2enrNE?)#6?{`C>NOd<2?q6kR1 zu9orrsjD+rq5`tn4B(xZ4Q^q?&Hx0bEen*w~d`cSl4_TQ2?`D@?%aosggSdDWIV&y=SyNu^P-3cBdX762#UyX_YZ_p z@8(ocsHeGZQRSa9ak0YL{J$zld+}@r(596Ms11;D?qOzLPI9zpZ(>HzI$d=HQiT!R z0DI!qCF!}F8^g{Ruy1?zrnxmtk{}tR|NZ-TCSTvl+TZrRMjjqR$L+@-(-aKHSt;%- zy>R5p&k4QV2aYrHUHf3sJnCF_y8AJS=TD`P*AhN%KQ*yYAzabX(^E!V)jO+NvpUzNa z*0DA$rAT6W1A@j#dH0{WbI8?oh{)&|iy_X69)izK6gw|5-a~u4HFUDM#`_}+$DOPN zCtiLss}Kq(;593bBQ4-6G>j4Dt8O1Zm1m}s)%uXUe$93&>OpRxb&GC%1<|qt=G%tH z?N;{77!i%O3)HuTA`D;oRCocJ8`!&oQ-xS{L%flxp}cGKlEo-MK>%s=dsgUFuXE_(4SGwIP?3 zQDRtXYAPo;x0z*M4xOz;w_CM4*-Tf#k{gg=4fVpnpeWwUv$TJdV?v%^DE?1s@llJF zk<02govZHLz9@mJU)@moxb^ps|GLu{hgw`( z3?B$}@@pToZ?8S!lCdQ3Q+qRYoPTq{2_&N-iQI}d$2#K~z6c~`Es?s+v$H*W9r&o# zmh9LSLdV}8`0ii#+%RA-{x4vO#NEBlJKjV3p(is56Fd7;;o0wFIgP4XoUflASyjdLtnDgi&Ua#)A*ln$Dcegmp^l8$hU}BSXezGDoPME zARGF}#e+P?NB0NceLy}nUFth7WB=qyj+o~nlfGl2*WdN)yHceTbB@esV`y{Hf4#=GTF-JWcMEFX6?wq@u+iD347slMDJFURKSt|6ST0`4eOcA} z`r+9-K_&GR0e^EF^`?RMsz908+Sy5aUM+L9>dn9}T{KVB`%gsto5((wJGF)@9#2A& zIyi$sh?<`8yLs7I`sVN8uCs4lpTy4ojY0!sj^qr#V2p#10&r#9nRqmA#7PjgV4^i3 z*|z)fZRTBG?sKFi!)8}Ca=75j4+GV^Hvnze3fY^!0X0N$Xsm4x#+dZLN?s zM_26oBhK;x$K;gH{*)rdyY%xk+dJR!J?>1(TpZTw_&Y^=fJ=^wBZTA?Gk=W#9Lvdc zIqHF`(l5{Y?{XinX;8{-{Bq2cb-AZUiiL;KU6JJJmDi+)f+(n+of~=>q+AFSp`r|j zv>4DlmCE%-PfIP{tK!@ma^jMB>OkqcnLk6nm+89A%QWA0ZKEFbK33L-YwuVJ=ay&F z8{W8=Qv@z@ZTs0*G;D_#Bp^fjI%XApQX7@Gg_xu3Y?JGi9zZkl%x97SpgIHeKLkM! zWT${!xi3J%XTN?;yuZsDGA9O3G1BqRK9SdB(ijSEn4a%WA?r-!D{(eAOgh@M^wH2` ztUue@&t8bt++RiFv4mazZe<^t@ypd74WB9)-6xRR!3?k#p5G#`lENWf2@Oih$@vo3 zS{n_4*48OFGavq&@cjraax>rAj8}$CagV6xN6PZ^v|~EUY}MuyMc)3GBY@nUrspQ7 zgxF|^!$U00yuY#;Bs`{hW*&`FvT?cgcONQcy6g&>BLbSl_EG& zOJvVSbh>WvBEVdg{Y$JrU&z>GzckC;2Q32-l`)u^-Jf-?|1T7csM6WY_j93mWo5Us z&o#{tU3PG`Pd_cS_Pr?X;L(c*Zq0~ZSA9SVPg{VP(}>c1@3|=6B0DXF>9G9N%OjC> zV7XpqQpIFsWMugIW^S0}qb4Nd{yq1>>+;2v54?E++vFE}(s@{ZrSIg=Q|{6mgUuNE z78@;(V-?HB4_~tHz0sLSXtTVy^Y7J6Q}|)yawnse%w%<;04?V_L@t^!2I@0LUongE zc5>lLqMO`JNEg9asu|o=r-7oB(bCfo5tY{c<&NY*6I1tY+_-x$G6b@EYFhdhV&Vug zPP75p9%6U7D7YK=YC8m*+BWH>)xHjgnq7<8FHTJ-�+s*KLV^XJ^g$eWave@a4hk zBK;!*U1<+S%53|64g@6@o9rGeINMjspRnI=$N%xTukWRc6BP6o=6ZVK4|PspM9PL1 zAg`LgGbx3T57Zp(U3nlKwb|Kbzyowj_O+c&%NpqYImM7?@)JH91<##69u$xJaI^Ay z_CF8LpSrbQht2b79myy$FJP)?*gWKgQ!&|%zvNYj$7E6}G<)aYNCa~3E%nI$^y^&N z^2GIf^~#m8YtY)wpR#P+RU8>f3nd;2g3W93*m9HuU!gs#sJvFd2Zf(ujhEP9doQD)0T@==5x^a<^IS1jIzEc@K|B?SuITx8$d4q%y za!@0G;s&~*tv3hw3sSozdLJ$?eX4X$*W+3$isFht^xmW5_XOFQ(OeKS`-5)D^_Gw> z(X_b^<@@c_F3I)2v9Xb#wUZ1;TKpN^Oil~NCMKdNb#AU9a7Uw)T9}RP{Kkq_pM{lC)1dQ(N+2=oh2n553fUJY-(UY%05QbH-k?GiAKtk07{|eA{T_X>hJ5$;>Rj zWZgo;%Ns<)=OF23n8i})w5KQ-_{y}ve%Z??(b&M+p9KVqnw5=U#l11b!wd|3>tM~! zzs(}AwEBEK;p{tfd$I~Up4L3YKADjK6ovkGMj98Gb1RTg5Gr%4R9 z`CFoXkh{B`sWwmR(CDq3p{nveq9UD`#zGF_Qwgl!qmGUHos&~ao2qx{$&4#i&(HSk zA|TITFA%I_UuS3G#@8K~U;Bb89XNu^j5lcr$r}W$c%G%YjbJ7~4gdlXfK5fr^Zxvq z2W%r6S3Pfp01F25c40Eg&sxmGShY*@o{1gpf}8`^Cmw2xdZ7qsl9Nsqldd+{si069}5{*>bSiABYz|H z%9VeAu-BUY2KNv+B*sYm^83E}&jnhD-YdLBOkg^ReZfJ+SGKt}pEo$?_6H>LMGP)n zIdI^>zmrJ}uYDC~j)%>9D^YoC77YbR!wq{qm-fgB3pjh)dwVNkgg4LuVS=SaTj~5+ zkO=bupb`M~Py=ThczknP%Nv-?h=*fX=O+#9NEzvhAlmwM+veV{e)wHn8Fbm~_FSsx zQWKb_!a==8Nk;*35e)&gM!dRvNKHY<62>xnmr~sIfGMZ&2k)c60gyj-91{}WwX}p? z)YJ^ewX_5+a2ch-4wrN&Rnvr5w!sMwMJ5*ndLvPS4Z>AVm3u57j3GAqBdRcm4*d=Dir35bujI+~52s8% ze?@ZH!Yb;#2a6wyQ$CH4*M6WC*!zG2iOT{6_dT4l9!`G=Erc^SZX82UKH_>0sh&G0 zffu0)sG|=v8u)PhfHbg8IJo=zQR6-yMS_e+sGuOlaWT4B*gWvsl3~=v*gj=W>6-#6 z>FJCW#@h`Uocs4bz|my+eIWPQSu<`^NuM7l5Zg5gM#!3AY>ai&3Qwz1xMg3fQ|rvC z+d42FUAVIyw^{+c|DU8O-b07Z`66zUjSznM6>evejJR-3LU9rlezMvHdW}veuOgQL zd_=0GgRVS^GGOL=G1?YPF|@t}0SJN%_498{Q+$7Bcw6JzhmWdxxrc-0{4X$nC+FM$9d7B8VFRY@A^nZzm?w$O+YtI9L6l z`5mo@#G#@8g06%bIt6W0#5yweu4GF^jW(~;aO=r>#OW3+&}Nhyc_8rC#nbcn)d@}} zCW5c;ruYtrnc44(3UwA`ozMNq6)cJ7PX`r~NEhd#9!h4KguTqCAN zP0$t_1lg1#cKrIDJ$s;qCPzAGCNki1P$biG+acgW!6F0Il<9>c80wwLQo-xIj)`mDvw*IyFS4*FM~*xE6Bz z)!>h@zuFNl1Y#6JChl+IcphOnPZaoI4GuS1mCB(9Q~x^~*(sz$P~Az*B`3<6cdjnU z@e~>qeFh5|vg%X&4oXMFj&8)nFd?G!KDx6AoWynuKYnETwku4iGpopm%}$>U!B9bs zq1KMr)YJ!VUC+b8HW(-;a zQ-?+ALeL-c$;cSPvF4GR%be034gxF_Gr$r)yEeD#T0#J6F(hmqxI}XD%a?}C0Dp(U zM`FrFL&RX^V4;Zn==UYW#SK$655XdN*S*$z_y5eW#?MJ0z0B=HpusErFeVjdL=Yet z@ECA*+<{9ZJXI*-O)Ts3#gSd+c7Lt1rNq^%%M4r%fzJ$|Oxj;`Hp9-QVkf8!d z$g@K7)>UWcx`WCELv{`n1qM2pYcsu``9TkJL(Tf9Ym7q=w-Mk&an#n9ACdQj*-R0dE--euOQD@arir1qZRL&q^j4M5m;G+^ za(^m=Hf8Q?o>sal#xC3TJfY4re)cEn5H1ZAjv+-wMb{B~&!)Km`8pfUyG|*m(QyA` z$NKi47Fp|g$7fj2{b%dexMgVI0mv?Mz+PR*wmGOZ)*}BQshh6^#~!>K>))Fh-D~5iw^W>Iz_u|by%CEqpJV) zId_>8NsoV}OL8#K>$Snl%QAp7;oLrl&0iXhkN>XpRs=ZU4P#YBOW&H&tEMufP|Lc0 z$^HAoJ-aE+l#L}zbQQjSS{~Lbl9}ik=_+DxVw7a;}G+}C4G5Fa!HT()bF$;lcUlg)$qJ_ zg&h_tO36dmFVpv`Vsi;e#t_yWWM^lOgT^cdC!ZMPQ;^+T<8p&M<*z(* z`l_37^v5bO{iC-$^Ezzm>dMb%tL@GR@Rvg90Pf(pfoxqyrf10 z7q76gv8e%P=MetfI-l5rz|YJGs2Y-^JiH_e!GNbT(6 znnc^3KQf`)dBN@*B}PZ4bbf9V=`#DB#;SBg&}86aJ}P{=06z2)mO2XFJB3dxu4^3R z>}(R1lx1WH*DN__Z2Z^_TWcL_g&fYiL{!bVtu%0VTyy+Qv0WX*F<|{K0V?vxv)-S- zeEHIk%lJ6P{q@y&-+BdmsW2vuw{ZvIsoaOV`W}+}EQ$XNrOt4`AsX_vUHc>`?E5As zrn9K7)YAOfyp(rER(5j4uAn%kp9&!jq!#%t!Ns95vH{nwpVv4@**jm zs)Z#U9!va*%McVVF8GrLrGvH}C+YuS{-FO>2;;Y_{+o%XAun!4!Z0U2MF{FGAF}pi z|GW!hO?hvEu!Wp-#bc;;QPgu+l_PmS26w}c2#9m&lg zcr8lHgfi`?m%K(HC3~s!anqgK*M{?{uX?{--HQ?olU-imriM3qzjK|D2Ia5Jvkq-7 zhtePVZ#9z3eA9Wi`5G|BE%=5pxo`h(t+`zPI3fyHkYzZZ2^oZs0c(p6Uj8ravZlty z@@RfCb`@qcNzD+mFKd&?i^baBZ;O84LviYqMGu#-^hhRI#a@nGlY9roG|+#(&L5sn zhCp3@Ab@E%8Pq&}e=HMH42uo6uqE(Yt!joGP1{|^dd|syQ`kq;H&(D}y(X8Sd#}aX zqD2Urt~&S0?&eK#kA;tXwU`{h$Wx2FWC?lCsKkB76{NPkPkm~nrOR6umMkYzoWBiz z>dPGLx;Z8#(_kTKkV5@)q>K{RXcNZQFmZ8RslH|M<{`K5MOUL&8HDo}bK@Qn=R3Uc z`+IW*=l2j@6Edx)j_(M>cemZc1!zrJlKV{4Kn?cgEX+4+VA!yAixWIYf!nzv!@M7p z6!%Ks{1PwWeCc!-kg+(Lq*>LSt~LLBWW;de@9Z~; zs}!W26*)t9^M!a1-}}^D|L1_b!O>?)kTnof)Bl5VPY^TDQ>LpzDirPop1j$Y5PLWr zo&i4V2-WO82P3TRV#p!@sN<`vs{$Au?}JuOHz6??Nic`f{YcRaUPzT;W1PRcY^bJ{ zr*y)@LoZ{dxYA<0oSO3TvonzwQzqpsNgE*7UW`2cP2kE+@rIXf2Q*oaLlPo;xJ;5-z{EE8s<mn)o`i6>4L$r^EL#htJxE=A*7vnqe_p6ESiB`zxk zEl)d4j#n}YiR45Ft}sko%1JO4iel_S2Kib|du_693lFx*#e9b>I@>Y(28n(R@{ zI00Sc9#|qm#;Ia2mDVHBjYLnDYSEA|%F|-Z%SESc0u^jKws+&u5ZfWGG-Wq8xS7@$ z+UDOZ#{l;Ou+Kzja2@*`s1!)@%O&)F*V%^uk#uQs0^2kh#L&cdu#5_Xyv^W2ZG*vj zI~u)*fR3S*p&-Zxy>dWS=5;HpEHAtx4G)i35Q5x*QG)0M6WjZs&#@wKPTHW=|Gn?k ze?2RIj>Jmfjh)N+7@h{9d(E9E4rMFRXAy=rLFR$#O5Qtbnl}G; z4^^{YTZt!=cGTa%S0$3)9h-gf!oj>~jRw7Zp~AB7KS1z;T!Acl&HCRtRLS?du7=Kf zvp1Z{)%_a=d&V&0k0mP{WQ*v%y}gM}A(1!%f5c(1!|QI|?M+Xz#2>^WuL{BCyI0BzNvp{80>^q5dQ$Ny#uHwt>}O1&jN~4Ey>DVlW22}CV27$#0k50 z>75VdiKwcQ;)8=^{YNE+x5WxxiXiU!G)T&?k$4f7ME>%H4(bahyqA}gTku``o=c>} zDmI0Lg&QG}2nCXy1<`A;%}6Rzx5hVKAL}bup9Of@EKakP6ceWd0Z~gi$z1khx%;bLr$3@ zs|qo>FAOjJl62JQ7RQqr1#aTLZGYIfQlkWTyLfp1(8cuArklLImCyy>MR9iy(~~~F zm+aUSYUg&q8JO$BWrtaI67&>J1JFc6pUS5H`nshhA2N2j@uVMfxm=4Pej4iz>>TR~ zfw(k~W}h>yWwz zv8o@0W2*7*ByA^ZyhnGQzTax&gNRU^n8NU+*>y}%sof=rCgyYWzn#&Fz=wBl;~k%E zv?wdiz0+>FaJg7c*{nuQm1T)>N^PBCRIp$dHFdA(N9vPrMr$l5Hy!f+>YJO1Ri_pe zesA>MiLo+&e)m|A!o7B19oAvf;iFBWTRyT}426Z8lAXVl-AJ~Ip3k4sAHTyC&?tK` zK2j_|dN#^o_-oiVQmK1)YYM+#q_W)8*5ATuYLv)x@x9;EiNxJmw3F5ceq|M64%D#~ zxoZ6Vl5+=rKe-D#v$w%eb=}YG-~Ytc(#Duf33j_<56zAZy?Oq-pz=$2;2VO)T@4Nb r9kVGx6u-NH2}5(wD*r$Ki&gq@MPAc~iH~>*_(M%aQ~9})MezRzA?FMT diff --git a/docs/_images/notebooks_weights_57_0.png b/docs/_images/notebooks_weights_57_0.png deleted file mode 100644 index b2572fb12340707e22dfa57d7c5ba066842f190e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 476031 zcmeEu1y@y3*Y2T_R=PnEQCbj?Mg&BWP`VKbX^`#)Nks$^Y3c4RDUp`$?(T*=dEf6F z_dncm83P%}@woTebItkG;*-3r6fPD876O65m45O34FZ8O4xd7p=!a8y*9 z!r0laJeHO7<9M9 zL!>;i7^ZLUvuCgHKYWhq?5y3Uec**a+MPV9+B!cM497QI>h7#`_`SbVyX@c|keP+` z43plM;N}l*n%QF-#Q%Ilus7}ho9BPO`S*v(jPQS77#i~bf8a~-|MZev?YvhTYA@<^ z-?qLf4ZH7IS@p+cH-)l?LElk?=honZAER}s-GQPPrH8sUc%jbGhP~>)g^e(n* zsLhPW=t45#75sM>k4g+<;r2f;6tT3uj40`toYbnc-=x^EcZnP|t2=NBUzaUn!A6`R z1)^FZH`o`C=1k11N~ib7k@4Fat2#QKnD-EqlBQHtkTHI}RaaNX^zdQhk0+*iDoRSM zE}NypR|guQ9#CrPtS1Ga^^Y$BaFW;B`8_#Pw^{U?f z<|<$4|Mw~vkOuRlx6nng=~|#-*F^HOOk_k6J>RXZt$#EH;EO!$*o!qRu1xkie!OB^ zbw8v~KDgy^ml+T3Wj!ATqSu%^{9t=}nuvr1T|$AIStT!|*7dZAydf5@ZQZsCA5F~h zdG_Gg@1`cd09tp|o)I6`wxLy9yX*7pm&@xVDZ)MD(qe?Dz8>WQz#K)hGOi)3i;7#t)<%xrCiDd(!+g3S|yrfYb4 z{Ka5YC42CSjEZU^%b+95pH-ub0d{~9Pi!{D*~HjqTC@gQ(JUz5bBAtmg~)7TV!>-{ zZ_gz001A=IgMRYuy7Mi}P)Wjp%8y2`U0rK3hS#6e?UkA0AVN>y zc=G~|){yr0_8z1Pm60P-i9RGzTRS_y^z;W<*x1pZlF8QA*T>V~k|XFaji>8s9S>Ie zq7gN3TyQ6mG|zE|zurt3-v4e>8c&vv5YD5G{T>na%8H7ajnU$6)1jPGg{Vc$;!#(q zZPvAc%&+e`$Sms8Jg%?&i;a5f_~5Rol$1ocV!MJ^I)u0>x{hz%x+VMR)2BQ7IOOEy z&tzr0=@8RXyD=24BMfn}$Nmh`G!_;XVZVPrQ;J&jGAwr5MhQ_vG;|skr(De|XWL1b zn5;D^C@3)cG$K?~RBBG-juT)lxG7!mCuI_JZ zYs+^z-by23Rrlod-(T+0KU^CeHs{e;cCnj^GN}Bdob5I~YbB$or1a02n>j~$ox6C{ zEYmF>c6xoROqw)q=qcOaplB>l!(etpypZS%OnCtxkL5~tXoaM?%BJ#{qxx!5v9Jff zA)JSVBj1;*Cve7gMX!fBZPy;-;ZyRkFmiJf1tsf3n^KPL;?a!wg^FN5KRX+1YHEs$ zePW7kX=yo7pV{}hrbaMFy>v~|&hGHJl2Q*vXsa80?Lh>mkdW5vmoNDre_ZMuLC@3B zf#=Vu&+@0gzdt@9!Lo4FjQ%)_@20131sImyx@q!o5#=N#B=$%;#i16HRnpKo-ARI5 z@|CicjhRZ&(b4BBm*cs#t8CjVJg(iJFf(JTsj2;K@ItZVc^DcL^z6->e=pRc63`MK zx5gtE^tQE0#qn9+&92wxXJ9~uXT!TST5QDVXwhpPZbG12xMZ zD(MqS$s5+y)peK~cUuLD@=?cL0-65pn3x!$@lsQV?XP)x=w>{LD(s0mBD&k!GndC+ zh5BA~ZeC*_m6eF$f#sHsngy?Um$7tod(+9lqp`8IElJX;cjs49DukU_cYeIx^FzR4 z>s3%P3)&2Q(7VX`dJ%;7nDD!1%*mt8@p{;FF(cIumOj_wV0Vt#frM?J|tz zb~)N8g?ap>{6oJav-BPH65~eu&9T9Y?%|tZPYaLzAqqMUhkrnTI035b#crE-mmxOV zjz?L1Jk+WOKGyh6%~G47n5iJ_SSyMV@1dopi;Ig}GMcoKsh63Z25+~KiHnLNE-o)e zCn`VQzI~fsQBkp>r3DQ!GdJfQ#j24tIy$;cg%{wWtDD$mQ9eJ{5^T0TRT~D6>(k+M z&-i%kE$`l}qqZqoS=j{1=g(L0sQDQ(vw|`*m~be#SC)2R%nz|^l;yZ6DD;sQvB*Ku z;lcduj^TP>*`N0MPiLp1x3{-%Z?C+gv-8whA|ek|idT;?%9JC@_b1pZ{TLOF zw^v399hb;wK0PR~oEAQZ4*roy;2DF#Nj?%HS9!d9 zd|U(BGb`&6rnkJhLk>$vGJ|w+h~#`EypUquu#@@GBdhsVTqIXhZfK?pDk%l80YFTM zrT4q#^{=*~qN6`Xm}qOqrz9soqr7t`+1J(Re||2`)qI2-B?6K>Zfa*_J;uZ-GyN?UGm{AAiddgr-uUmvx(h)=f`P&3(eK;^= zbq+VjhskJY@O&D38<4FU+S)MQrprFL|KI_}_Gt0)bXA(eyAUr<#-a1kUwu2;mO;sh zfKqhsr}z9p>3pC(6J zvNlSHiHH7}3n}IHbU1B3s)Q8RaQ$Vd8?RH**j=u#Xto=HZ0vQIh>;?@Y*tp*O;#l( zUK8#gDeN^n-i__;w-EAg-}>MSpCEW*aUJq-Rg{QH*|nQfUq$N{suJV@h~R_&PXkC;7}i(7fNUw_M#shnhszbvS?M6{4*@}i|Jab0qn|tpNEHslb#+) zJ(nb1Htw0VHK(Sg=FIkXc-rgOsY9Bx$!6?PPT9E~zFuk!Np z*9wu8!+Bas<`>?op0MXI7nGpaX?GLK~i0iaMuN?6$ z)j5>9!&~?q=XI`f#o-oiMRiJ+j>vcSv&{a2Qq%Nu^D)K#5)TiUU`P%QffTs>_8XX_ zq@+|&ZJvMVPs7dDc-2kj6B|p3jEqb`Mb+u*=BD5wR6&P{*>9}6+x|5yq=3WF?L<#e ztG?U9zi(I@ML7@EAGiAS$3N5IoyjEe5n76%H|+V1lf}iQ?#{J{T#}umtCsboK4aZd zb?ehT0|o{LQKFV={H(0Gq%kveENrKgGGA2DD6jc8uk~Rs6bwhi@s4NvAaPa}mP)>M zTmb;bFy-vSFB21*6_u5Z!^5QU@$r~AIKJWG_^|JV+6L2JQ)U86_uiFshSV;8X;4;XV}95`PlAOx#Thw~(a zoDT}FA(gqjK^|aLYf@Ia5I(Qvj1PGBP}C3kcRC?(2T|kP#LtL9UPK zzItD2y6_(Mbjc?u!<-*a-&Q&wX7#R)a31h`&}`P!G&lTvLwZc>ju@|r!8jyl_RM_i zwP8l~umAStW_bojtRMB_A{mbh&vemxx7w;e<|7VA4u2dfCX0=c+wIj3%)|LQMgW6= zAYg>Jor!k!NQr6F2nq?&OWy$i?30{)7t`C5i&evf&DU2~eSOF(<|!d8!pVt#Vp4AN z+AUn%7FboQrw=e1ySoKd>kmnGM)XBrVp;x)O2F5wLiP3EOT4^17JYN4-~(aeFp7l4 zg`wzs20G~%2RpsbN6e;98ymxEm>&K9_V;Cp$>3Vue8t!7Y-Y{vl`0xaN>dSFY^b8- z!mbr`(hNJ>gwvtd@du@quBssnTk1r@qn=yO*V6QKJNK*+)a{{pv9(2}CeZoo7Xyn<9Tj5c z*WmB%4Yi-`?MV7KdU|>$hK7tN2st@9A|fKup9YWv+g)+#D9snL#sLndAZ9Tv6jZFpDi0eDD+5B5H) zmxm>Eq`ngU@KCVs9FHb5lS7>)@4dqj~IZHRwXmVnwpqg zLAUv)bCy&2aTyO7<9x32diISB5!Vx(d=gPyy#I4$#n??oCS+x8Ey%L&bctVoL%(=b z^E6vF1Q=z?f1lJqgh9-zZIv1zX14l6Bcbz+Vzc9|NxqAIIfAoesn@S@^D?t$L@cO$ z3-wP!Hq#T3XBMZMaM8_#>}5`V*_oCe>W60v5laxrFzQ~p(g{%V+4y2~lWHT>OP@J8 zJ+0fArd3jM4PIFj^Py^*o0rh6>ug$C>=10mBS((>hV&|WPty3F)D%y5ypYRX9v+f( zxdilL^}eGxhlag<>x)iuv$2v-tB1~=-#JmRN!e@>1Oj$z3syEZbKj7(s*y!5QC&~y zciJB`bjNu%HO6L1JV*2hca#%g<4frpXH>b)JwFRQcZQ`} zOQBkfzH^9%jytDUC60k;SX_8db$H}&>Mks4XwdlZo=;EN^?rhDn(KyYgYg0{t4TR+ zb@axD84w?OHa0wjyt1+(!m7l6dvDMO9oGgM6SHCZ`s$eXy_&WzPb~9$wJ=^XoP-dn zr~fL<$IBi{NJyk3ChWaoJ5huhmN7_+D=Ky6WoABoApNfdM1>Wu$B!qhO~dzM8Ki?Y zCn}3GEm&X-{ps$GqQYxCcc^hNMWh0?pSdFacB2O*-yorddT*8vVc^<6U53G57(R5b z=hq8wtJIVg(_!MTAD&%7aebjS5g)UZj$kPH(2w5ceu9)L;E*+yU*G*)p?R@Jko$5L zW9BdM%%p=?`&Tc<*SasI#k?oOddzw3|Me4Q?k~~v@u^b7Fd@XFLXfZ`yI+x$aUvV( zxDl^ML?rI9Wpn~iiShG$H)Bp<(ex&-v0*$~VX6oQy|aVWcQ!VU0eU^OU+G2S6>zDp*eM-kugBS#>T25f za_{0ohS9xq-16RC-e~H-?P6kLNHw&&xxB5RC~K_@K@IcaD4ChAj5TUp?s%n(>q&Zg zFNCZ_S-HqYGTko;C@DK$EhRYl_pGQWBe#X^ns-I9qHGn%X=tfAtq++fY-cRXUAtook)k+4W*zD=krzi+l47$g#0JwN~lJ)MFGC&`kB%&5m50CB*0~ajS z*4C~C-td8inb}lBTRZH}pBJEl%>VgvFU~;i=t*ps%6fQAk-Ll^bc&i9Z} z8oUEi(G$-En)i~xH!!92KtlUNt8I?4O9<*u-sX6DbQFu)UK&eBcBkRTE%utQ58OXI zq$3WjK;~!~9aRen3-f0RQZ0PvH~-rY``xo=-erPCsUm_d!EP1)~-L24IA#*7XEL$q=2jfz71sA8L&&@U-pzrQu(7dIPfi>IfJc-rO`4(0CZN|{M)myG zsc0}7qID;8+x_bUHHnJ~(39wf`d>JZQBzTwtpH0yMO`y)HMa>=)t~1vb;gJ0I@ea&uD&^17P%$|wX1Qg)YK2~xm*l~ zp7+e=ChoTf;osK@_Wdb;o(xZ#o7NOI)c{JD||IHFpfV9HYlOV>xbc;y~}AMV#EOG+1$MGb3f?EU|CH~4SGZA zSn4f(jS^!$1Oh1Hjd}&twXmR|ppp)A=jg~iar9z2!9$x!qOZ1~fP;sfJwIjALJIWm zuI+~RkM)`ZZ=W5m4?pOErqK*#QT{NfXdOzvA8`E>yny*mx2Y*q(c%9Hmj{RgguJ4n z@7&xw5-O^koR<>`Lx4hCAB9l>xbnq5bkO{b2fxuxYs;uD939Lm=T z2UwrR^w+#N_c|{m1P39Sur*2VcFu~RyL)#|IZ?zeC|a77csD`h40FvJP4)ch{O@WG zix}F@pL^kS4mX93S+Ep6ZGMd~7VMs|zRK_zl2x zSy@Mr(Pl^Qwntw+Y(Qm*EqLg2Ttu{AK~@5D^g2w8L=4Gj#;j2~_Gu?y449c;Rc zcLjj)As{Fyh>G|D!5G9Qds4BT?M>_K7afJf|iXiP^0%0*8%u@2v$Hc~Ns<57y>4;(-=Z8IW zjPxfpHC4Sz9~%hg0xbanBDTxF)O1+8r@cM%3&Uzf zm*K18@lEWl3&C9F^U8#T=_a81BqS`V1Q>K!4TTu|oFLV+|Id(#Z<<}1TVBRMFtM`w z4Vsjq@Y&_h8>ks3Gj-!)V)lY^c$b5tfURQU$msohh9BG?yrE39u}N6ur9vt0J32Yd z!obPM$$1WLz|}BPO|mz8_Ti^6|J8muJw7+}%Z0CUBe3^oS66Qdo-(ipU+surc}MH` zpIz)1xF3;g$MNC^>$u*A5hn$3_H$H}|0@byMxDyL1y!P>so1^AXx#m2NmA0cG~=Dn z`Qz|`L%Zz{$f2w^UE^K%q-pGzd)h)LG!L_r#7F0QgaWFUOm&=Zsg__Kr6;sT zu-92>R@=X}bziuRYG{x-iAPH^cjr#xM{B)2asR};gQ_rK-q#7mMtWJ9je)oC`FeXJ z6A=@C;f&X<2Q7~$@Z8=`H8Q1>xL2TXi)%n`Q z#6$x4N-Mlmj!k2|%YTX{THZenrFvo#+4!!o!K4%mvBm2m3z|`WAcz|}?%SMzMCh-h zz~j4o$j?94GCE3*?t|3Q((+PTy4^H0GxIHc#31!|{cjckV-u$51T^idsGmP4Se`tw z`!1QHwy?D|Wj>Ihz&Po4~^U8r(+5%G;kqpVDF_uf6dEYrP11d)W- zpos*)Mm!q9KyV{U-xeFn2$+(LxnFPsqmootr?{A$)N|aEHulHy>YA+}-}=swl$<6h z{g!ApE1L9s2PjAO3>Cu2=kXOd^Ts?$U#mefwa8&+a9{Qw6~EZ66G- z{>X<`BobsI7X-iCzg}={;q+bvBdM1nUtGeF_v?seX9juO=*yQcy(XpQwAuY)JI5HP zNNas5Yr7~IWZphXw6qD;M*b3C^7q5S>)m1>Bih1gRaA1-TTsOsV1I4%=L?vRm9+29 zhl^mM`?eVvU`-l&Vv#{s~*GG5L;;x+`9w*5~L51MJW<2aCJ&*p;JO~Bxk zf%lVwJ>2{%nynIq$!bvdMC1~LCudeyGeLEqn6I|qd?XEz{*BV1=S+w!Mz$O=#n@2)A04oi|<0jdsBiBcmHafA{XQ zevpVbSy(!s($Udns1+MFg8k0L(aK+0S!s7u%cl9-wI$BAS6;&6>HYK!48HJ#q?{ZX zR(5tH1pBjwCvpLzE#%EyMiy0?;uoI_^pWWyQepi7MjT0&`az2MGDsZrrzP2~lTwHqT zHR)>AQGLr+!Df{TeO65)_Ycyl{tk{GsA&zm z^KGDG{rvg!#ASJDZ?i#A(8664M1UxEoo)a?k>p&41v*$`-@bhtsc|aiu$mFYp%Em5 zhR_BWcd*vw_%X;aFfN34ws8?Ts)fjinZ-rB>0yh}qLxCpb9?$nkAgy}1)@GBV~P=2 z?aYWREG}j?Ha5PFi;Hs!p?LClVQvl?THw<1a(aGF&W4tn+EXosNROvfVUNDH57dI5 zo}A1yDgNx)Ss6Gg0Is$bw6v&)p@~`|rXoLc9<3JWHG#z9b7LpMkZmpV!NBjnEwQ@^ zw^s){PfJm0(+v=DAr$&qvb+2PkQed)lLdBlM{i& z?Hfo8OJlt?@ziXxiui$Cd^3pT1JFL-O;lL32n)xfp`nT852KJ^Popz)-cDw^3+4Rb z?!6?B75Wh~9v=4#M=BBbi5q~c*Ap)U0|7?3U2}6Y<`@#n$=Gs!J-YDq&uxv%aF3nO z>g+!aVUU?T^Zw`DNroikj0nK@Att@I6Uu9~@aHxv8d@W8eTqCCVF+i`UH~Au)9OVoHg-i7vYcQe%1M=7Lz%g& zr3EQzUAp~v*@YyEqkaK+UR1)aWMB)nd?I`>5=Jc`uc?`XN5LJ4OUZ)+PC3EPp9M|r zx4g^Cvpg1w%UF3ym-BU0z%gsy+ux_&+S>B|Xw7MLz{LJA|M2p7ni*P?8MyEpc`^Iy zKqFL3O}^Qz^wJ+TeRKjV5u%Jg?DrPI^I+vRc%c3AC zLM2O7SqkF>9Poh7d}n<8_ze~&Civ3kC7`CN2e%ZJLeD(jOc8}KZT{avZHh3c1i~>L zM#9UVRPOPcV>qen2~!i^mKQahrZMBO(yX*2;k zedomo#RL$nk7SA$Q;;`Pkd?i?q?s9uiHQklp&|u9SMJ}v>rKyw_nq%H2z1|h!!2D7 zTPa2JwL#MEc6P~bN|(9qM=$QVX9Mu5!9-$IKRjvN_twa^71I}O?U1e?Xx7b`C6Aa0 zp2hM8tjwpBSx#$Xn)G>>dR#df%f>GxxnH@~m5rL9RoTt2H*I5{z&!hXy1zWTu<*;- z*|`X?BM#V7zJ11ub8~aPk;!*85BGhN`(_r}zZ&-?w@jvvsO**$JE#Nov`Y(D$l z8Nn0|A8I(^XW&)u8t0U5V{d3p@Got zW`Qx9fYAlzWwKKW`79PeLCs-My|u(m$I!$?ot!FvfYkBj=TFU?K4W3`li7gDwK^^x z9i1eY!TdTp)8j)W5E{`3bvP@T>7(<(iuI+oezd{p!~6FQY+t?%>V=Vhfl>V!#&bd_ z#V<&yoi>3-pI-`(phgE#`PR{q50WN+VDst09p->GgRd^j7IgQHiIE^kJu&(D>}SW@ z;gCn*1mys7KS>o8BYpKA9-Q3VC2UGu6ZtNs(WD$Eikn|@8ZUG8_4RL4QeqpTmgj+3?Qd=Bu3C)Sq;^l^YS zLD+*#)AD-f#}5jyL<(TgOdWr;$YwK!#7_UCpnv_t!@P`)jIB?Zm{x|q+MjQxUX=n4 zrVDzvmZMgT^v-L&swj4q-O7yxFR$^Un;o0Qi9Jrdss=77Iy7zO$Qz1X_+VbMU86 zVmIl^5C0fATCG<9-3M(g7@D5^<`KpQhLR#Gi*~1v*;mGfpHFdVjY^RN@Wll_+;Mhx z(wkZ8+Bsi+AZ9-KqbEe}2ddyc4t~S8Z=&wPV8D3x1(MLy8{ei4&#%8E`S9VxqbQcy z$!?^Tcn=yMMwteBg=St9jJ=+-;d)OrY)7drY*NR>@F3)~LlhH}6PNK#!4pY|U7M{9 zGaBcw5uVUUB4dMZH~BY0XV-RcTb~{vcz&DD7L(5!S*zOKujO5%oXDjwqz?wP-s?^a z&%`;L9Ij5rdib|D8}*5t1=2bkvFH{f#qy%qxhRR8vn04-II0}3nE=$GXJ?lS2@kKg zdyR&4vMk~xUXuE%FS&rA(R}=oFthSZXS`5YM8q8)vk?veLu;hzNu}znkiL1ItDHTx z{vD)`n>eW}1Hwr4un>uXBGDzmWo+^P7SBCb1Qv&9HdZ`3h_<$!&?H5jnZ zGV=0Tp^hws4GUEp$ixBRdaQD9G4t}OAbCP@SKF@idL<=#PWzs=iJY8Wjuvk_hgMe$ z3Z0P>X2)?DBgai;f%3x-7!W_$!4dE2<{NZ7m2%Ur0 z`@g{ck&YNa$@MrQsehFtr%cfi0$Rto9EXtA(CbTtLvtq0)Fz$rEYX*el~18tI=dwDa+qQ`DXB zN=cXxZ!Kw$ARIp(X6Nsf4r*(Q8Z!Fhkb8r0r#D_^p7ZSC5 z4XS-TMv28any*Q0?l=YBJt16`qn0C^B(>nHlk@DmI@0qCrO3uKqJ<1?$8Oe1oL*u~OzV*|;?#a`H@w z7FvK!&i|?lE+z^S7!-#(J;om|d`s^}>;I$xr zFdhcJJot;ldAkif?=chH%m=aXS_{lNNRSZR5xy4}t|OcFNxy!fg2M(tog&n~=OtyR zps2F)UN7iV;Jj{(m3Hjz`(d+K1C~xrg+2p~6~f>t5N^1U+ksHVJ%*T&yST7WTn}5h zIkwrv9~3(=Bo0#&{K~fQ{T(xoojV^r^NBs?aYYq$b&619T#mD37ZWzE1CKf=9%kTXV`Ig?a`p>NtU8G)jK3aXc^4P= zX%l#snmT>04W(32RSn$RvjNia@Nm7KTz_Y8?+qx-J=)HzsTeve+HDpXbypPk@TmwM zZ`f;&Rg>nuO>5Z9_gLh8PlRS=Ge?ZCH{ZV8g%ESEC@)q{_tc zmp0m!0NPb8Gb0C{@=eSK{gwky#oobzFCAuqDhmtbGFK-m_t{m#pHjIR+KltmEuH-( zrsMc**+WdzZItE}+jze|ueoXn+6afom1}8Yq9?0b5h{WMf>&hX&peN(mqVM;ab{*m z-h12qMs<{s3Wiaxcqd&J?P$}7-ln;-YAV~E z_Y(85=!&Nm`Wu_$wvW5BnqH%EvfndpqOB}NP_WTS9{HgZd4KQsG&1r4DZhi^S+0iH zzc;$evZ4eH6O*%LhPVx6nurrbAnJ7V1*F|tve@h76DYX@KMB|)l9FD?$|{5Wtp+hh zgs74di(1k1ClsMK{TOnJYLoo#ki;|@e3Y7z@xtmB-qLh?m0fwOs*2ald=q8Sx5%A+ z0q01JQ8{6xs|%x<7SdCeLwu2)J4Y!}rxd3FG;@n9jD#j*C1Qi8`+U(~o7gHUGwB-} zaV#t@&d+zm-F@aJ9Zr9oEp{ZWj@*8lE=&JPAyP%#Nur@QsUg;K>c?o*FAZLTJA`^Y z9pdWJw+?o9$)?h96TY!OL^^Pu>EfOBIN|t#OPiNb8tXDV49Id864_EWj`I57&F%DG zsC;fecsF0kF4arvw>AjSAtXdjn-hx9~bfC$0L3LftxrIDeS6zgnV0^z=NVH^Q@mg<$orGQ&u~O?;fk1 z>UM7~BX?VEuy@<=L^kmWD79IEaXoG-PlJTzGZ3CPf`A z#0Wlr|NiGCIxg~?w_c%?pfY$xMiNCuL?DMsqIh_Cl>YkV`z<<}3-lTAnclyDPshR{ zV`pvM2*h(BCvToMrAzzY-=#{~R(->yN!TO}e6D=;qkU<((?e#v@3h0}oS(3F zm8&{B)dyqi+}m1eHOlHTOf=W{m7d0L=H-k>jrj700v*(PW~RgcGIv{$-^C^0Yq znW$q0H<`5D+WGl@;{b^c;xPi^l#;C~Dq2UeG3i=P!x^}!d zY*U2@MAC%=B4UU%kd{y&q6rpXD=1?($z+iI9`*J0AveTw2{FO>mXnhcCQysLB~uz< zgu>bf#opRU3ZQv*BV|k!NfV%EWCelUVcqDBw#J-a^Uo@CD}=nJd2BMS=j9`;>AdwG zk0sOao}aTxIa2t-u@enOPXz=}5MUi8BM2b<&iGT@T283fNS=q2eCafzGn!Kt{ z$u^hs;b;Q-74Db(8-x#vWOsK>_I**yDplAc?Kgvdhf?-Ey6gRG)wenz!VN$z6`N+bWm3kXm)QDF%Tc7w+s>9rbuzy>0*d z*E@DHOhL!h>z5R*l5=;=y@tuSfD!bgf-AjK8^^<~PAv&WU{%IPCfSLIV zkMU>z3>^{o%P98c4kR}11=E@J%PAO9#0lz|X#xJoS68}k(`J&0nF$U~mrs_94Ayp}zp7s1&BEN91E}>ac73qgevy}i z$9#^LXv+0#ewR*V#PmgGc_{^AW26w0H<`L2je~>Vv}&D+fz>DyhDxTohH~4F&~f)&X--ZElIZ*Qznu3Lr0E|%yoKNZ<8Azk^ZM0Txh4C}#e=$ib8v@( zl(Y?;FDNopv5IAN71%B~pwvy)xd{}jvY0jb4B0ZP2jXMZDGSZqj&$e4Q_= zaNCmGuy|LkIl%+H$^m1_JvKUWIHk|nWSU2##%dN>5{#fQs;A!IZ$P)2f!#;OZA<_$ zlEy089}H>bmf;EK#~|DY^@3yuxw6c%FZYPA!703*;D$bE?7OhoV#G=7M#SfI=bV(y zx7&ggl*Ya!_l%s6TU0t7Le_I#0X&vd8+;LQtdf5pM`~4bm~5(RI_|%2yQkke@sk8F zj`1AmT4QEwQ?hZsgn4<-98zu{edzyu(1gE(jUOPJF7E7HrLLvbl_i^?+{UKe`En>< zs#G>WNyk02%yc*mVrw_u8G%hj-&xdc*2BvL7qs61YB{`qj@|9V% zZ-i-0m;DE(F z8*OEw_b*VQ7k?s)-iXue>?-me*hP>;-rL)94wX&!nLV?!J==T5#AWns=diX^wi*eB zqvtDw`x7d83zO5Y86k4Gw%UK!qdY2+U~p95uF15mdRWw<=y#9 ztctYPPJgtkqo(-+11nAy!OZ{(7FRlAU}a@x{7UvI6`t#U7cWosUZ26Sb`T`0*q4xQ64V(*{nOQsdqnH{Fgf7}ZGcH_y$?{E$6p;-H>8w0o243)7Ex zu(P||0j7;7p`h&y?#NjGrI$bAmorT0_15uNEes@?|mgF7XVK7-28kY7z^XA zJDprT4a?fNrCV^aYPS)CHUkL>X>Fx1#m{Ba$dx_8b?=kW9~!W$^?xO`P>@i=L` zgB_c#sMDxm8zhe5?dDQUkI5?CXcLCB~J8LgMEUx)G={Eb9E?yZwn z@(RHbe#MSy#iHsdG&{RyAfZPLx`%Urnu(?+mFZZ?Lpa<>KWZkbOV=IXo1v8T_pVg9 z|9g&|&89Wm&A*oZt~*FpJ9PMC4`g@t&YTAc!H7|R#{l!AtskrPuBVS9A|mL(7|Wx;MUG~jmpfSX`KO$_<6vot zL;e^Q!ZP#W^+yys30JG>g0{5$z6Q%Z0zb}AKY_|xd)WFwZVzwM2Yt5=iJE`s%^p~C zTI)!f&|IM={jwm6Zu>|d$G$oa;^}bu(!V}Kl5^?{!X(~oa!aCLC+9kUxHrLDW!x8l;uK_9Q81=+)Gg*pcN~?6p*U9#0 z&P5s0jGRB7zkbKqSJC`D#X1ygBya-@3-ixifs74-NiC&qT2gt<$1$f}E>qJr{Rtlh zrK+m3ER-hac4~X}T@$ElwY0P<1$&}B*}h|%l%7#|CTw5BNdi#WugCSKodo3reg8KL zupDMjuQcLC*X4TOL1sdYbbriEK=`rMuh0*~+S5s&?7N&Q1dS%iX;_ zZ$NgBn3*f#%nUsf6DFiSf92%hAbJM}TZRV*cOkb|6A;k0J@keP#|L1l&BclJzv*dq zM@Pqtx7}S9hK9{YlMdE{V?Ulh;YrqEc-I}=;(9Wai;7QJElwqX{!{2x$_RUn=wt~b z&`GhEhL&x&Knb#)P-Y}EnXlNK4!0`Kw zAreIByP=_f+$+7kdbf=Y4E&as4C~6vqv4500ND7+XYCE=Aq64P<69;k(Cc!+cQjGy zGc=@(ii-LfEa_xe;E6HEwQ557K9^Cj2eyU$;IYf?%Kc$B$e~ zkRYU*ZSn2z*|CbJ$lp&ivXFf5LY&3<&tifi<2*R zt5VU*=38g?d~XHDaDT!&S&mP^<~shgH{TXMZ}{P1S{y&xc!Gz&vGMNGZrc}AL;tce z9z7t`?<)ox8xUjyB;PrGepFUgBxYm;X6EOU!k%A^<_jBYa&hWgcU-3aA&lP}5`1Le z(0&tSlLUeVCuB~*Y2^YNj{#0x<>lpJjurZ_jj*WOUNijKT6=k)_1g>|juqA3-d^wc zcn29JQ`)?j{z& zL{#ermh_w*^5URoI>c;8jc4c-OSlQzOZ8W z)c|YZ2*&B+_1wHXwo=d^rr^Lk4jc#=e?m=7{Td-mHNp1nWokWTm#vM>Z@`}Z_5IV+ z;lPRzq8~my`!$*SSpl*{zNjU2CwC!T)w#T|!11n- zjMnYo_OCaYx~8Vg;7D^kj=|Y*nD(M30|oyhgg=Ee+qA(Ohx4zpa&qB9?iUpVJJIz7 zW>YeL^I1yVmsJ^vaiI}vucRyep#+*0sZ89XmDN>xIyz6t70XkSe_CX(v2qB2vOYGoYW#p1 zHt)C{ai`Vd!f|DKTqoY(wy-6QiH-;Ly}aTiub@R24i1hP$N2hlVQOKVjd3YbS3W#U z%tW{81lI^dm5alCQT=<(KK_pO_VxuuMaYPXs;WIWX4|kfh~rGtM{({)YP?n(Poryz zA3&!$;Rxm|1c1Zl7V`mTlI8hx9zlQ?eID><$sWP6XZsyPJ-=*dIgtRUp zpF%>KAxLnWkWd_Mjr`TCS1(fEkd2Nu(g{-Sd3xUVw+5u)s;x~!Nl54eyPg1A%A*Bd zvqWr6bynhIDvSaa(3bq*;I3ey>(gDAt*7XmoQjxoaab1T_AdklUw}9RLN|^aK0eX) z0b#<~sL?O$ah^ZrmTknP>KwKX59R<>Q<6(d?CPo?-~65v=nZ>-?uzccSvf!d&}?^L zOkvK-istP@|N4b!g=TjNtuV_*zww_8g_Pdm;efF*byaose}Tp2yu=N@y&jU1o^`^g zE-qA%ditP6Jtv#c+GB2Bp`i9~Wqq9x?hjUF?(a9|kdX#N_v-2|gT41@)zz^Jsj0U} zrd`F0=I1%B_k`Bv(&hTi5WMB*X__Ld6}GpE(&N3&1~RHC$^v6KeqTtof$5w6z7W(Lv>xP{;V8X^H;nN$=_W?akjEPL5*hkn*mdQBeS1G#p)C zT&#~CE(Q65iWd$J=xl6FVT%Y)gAUJ+%PWQdhp4Xrs&b9m-82YDN;e3Kh;(-&jfj-A zf^&jNdUPVfkd_v7GDy4&URwI~Po}1(f!r3|N&s|l_;`Dlvy(<+UC_cI z$XyPg7O5&jwl^YI_X`RNW}(N(__MKbPk@KVyTG;{=Hr6qW?v&0mw%jLG99Hl@5vC< zvvYH?F|o0^6%_mTQ(!_hvVQS` z2r@|e;9(>rC56Dl-~@j@;KD3`k^pS8D0CBqIZzL%(*+&rxVgAaE<-Ae)y^Lp8ff#D zrSty1-udj{=jUhn>{%jI5SP_KS|ot>-~jHbdpquRIOfuDl?6*h0XoR6e06nGa%w9H=>o3(6gJmyr1qyO4@Hr%j zHt7EMdDYa;?qZiCFxww>bTm*oNx_$c?3J>*`pqJZ?3*gMxYPM>m#uI3+Htg4eI@&NrXUVMD{ z#x}`s*o;$`mkpj~HoNo~f zGj$yRDg6)?+J$?P1<)Lr!(@OsU?7f)eD;!WvRRB>O3)6WM|OF6Dde+7m0j`kwUnZw z5XnNT^P%Uv!yJly zfIu`G$$1KeB;N~S%gT}QjI^CVxVkpdBlHY{1^MNBo|rI>Pf;4Hr1HqRUVwoBKr%tS z1#;uSAO$oYv(CBYw700z(m${Q3E4N%&|WlpTi;O=PVGbZ_&Bk$F3!z;-s9$0wNb#7 z1mGfKa1|P8%jeH+ys`omb2V!ucQKIF;KU?c-R^(-87$A^IS+Dxduf$aR1DMJym={~ zt2uk6cn(&9TgDAexxBy}cT{sMFD~v%N!lP1`hS;{mHph<-gZ}0SHI$iVxy#?kqvsB z6|py2>x+x+TzJe)Ui(Gy0M`^WHok>M`ZbVeNMH@R_>%~8Pf!tn+EEz>JXAEak@0cN zxMd1)adAFD!6e|rjT&F#fN-g|w>Qv;lib|GB0%!}+?ec))ZdLqpFX~4U-uUG;8as_ zcSiB{G5h^jnbWu#8(Ji2sM9hsEdGubMnd)lXq2X>rx(}PAKr+L_H0?VaXA~Lef>n6 zsU-SU)W+U2wu23mzKbvrpa?0w#+P^Rr6?h+tRhK>88+5~m(O>Se6u1RnJ!ieEql>{ zGE2yFmx1R~_2MUIX4UT4kkohr&_`-&X$2V;7AhV6lkt;9VKy4EZ25zy4X7~iajEw}q{R)IrG^@Me+IIYlrE!E^deOhV&alh!zbjo3|^7v zPYvFD4N&8C1bwjAp1h3=D4liE#4q_&ug{)%CZ_~rqguKM^K_Z#MaRe`RXn)hm3{>L2YeqgUjz|O=DwqxErDY2B-#L&D_KB!S0p+nURcaX}hKVba($8ZJJP` z|7tsm>0j-WuU`|vyb>B7E|aSX8fiLckq4jX=wRoQ5Mwtt5C2_@3^_l>{X<5!0(e+g zM+b_wqTFjV1wMYEprw{1)A4`=2g1^+Wx4QP#;Ggr|QNzT{#K zFiZ95%w&1dtmcG2%^A$gUg@Vd_r_9i)zCPkB7X9$~GfU8y zU@;{>be3Y3%~I{&7t_e(G|JK1x^JkEcE-pNQL|4Gl^5b0yDqf(TIong=gnRk1?;9t_I@454D8erGR7G)a>QQK_k^T_8%spUdx! z&XXr!y1Oy8OG#nep)fl*)Bv3=1~4oj8;Q2GvciR$qE~5(^1{YO#>$FKFXgtyPV9kr z%vkZ?Hox-{sj&&H@$y2qavT2PS-j0j6qehJk!G4E`ceM|)&2LXpM^ftkCbDotebSCz@vp@=<6BL6!fQp3pki4DyPLAe`Ka^$wlW)`<~d6&`s^q zH^&DDmYDR2Tc)AIcN{F1D>L{I2F&-#;;sMk9n6YRQ>W*|Qumojx0md+hP2iT&UyZ0 zDVxaR$K~SxN}w2*(>qHu2y^qmNaAyhOi?V$XF(iB*hKxmTs#{zw^!sQ8-!wB#bcRK zn8B40Bgcf&U(F>T5DrQg=n90;(9oc}p^lA>CxM)kMh#qfk|2<%PxLzF$z1-0E*cxY*p1)b zjrsAj@aEPQ(I0mL$Ed~{GTRYEDd<46 zy#D)Z!}$qe1_o~AUN}BB-VG+kcyWdDn)-cXEiJj3x!4C+SI4c8-r`$pAg)M=UMt6> zrCd15&y#MKtB~&{CM@g~@vHUB{lB8K5ct1Ehp0q{Js@56Xa!8p2k6$38G?rjA@0y*Z z0W}=qtFO(vA8x@9qXe>Cx^>k{ETSm6$fzhrNKWeN?Zvj}jtP2L2#=A@l7|wyb1!g! zMkqD}oCGNxH@Cdd_*KMe+KF!9NK2t)8@&1*&D=caiSbQmZQ{_lo4?%t;N5yZK3>y$ zIKKyeGc6xch5Lq>plM`({`Be6XZQQU4^nxTs;UTDjCpNsH_JZA##eDW&`Ay&(uv3g zvuUuRjgQMfzc?~BMpDGWLRf7}PDoFXme$@eLWDUo5~*Jm%*V%>kzkiT0Db%;ihx7c_mVr7^R2O9+k}jYvBra5 zB?b;W8#FXuP@)>aw%m9&0oG>IZruHXhWZ-&uc%;33I~wUOgW4!7&;P6hgc&m4i_1s~B6?(d9=)m!;o`a%rbD=HU!^sISg01w-Od9E* z(+?d)Ma(-NX_$3%h7FI6g(M~tK`;(8q$?4EQ{a4%miWBBO$+PasCMJ=w2 zu+}d9-cs8H|GZ~b+(I9YlQYUEj|aZw4_M6t&Pd$XH}=EA!yCNzS)tB8ItUf zR88phnkmGyeNjcF1BaTuDr;&&jW~-788I;vpj;K_GCGnHcb?D)qyGE#O6lJ*`2{a8 zLEY!ZLGmcMfOq0Pb-vv(l&@iAY=Pv2G~D3bDyTMhk{>=we#rl*P}}Q+&U^1L8SdTT z<70w69d`K}VZqngH2-0>bN{~-JuIZMcW`KBU}2FXKyci@-?87^P*vru4RK%&Fw)#h ze)t;P?RE+Z-B~p?H4_j(mReL)UUszZXC!cY`wcIem(PL@3;P5fKsA;OF&@ zC;lyqL`5J>0XS3WtW)99%E`&$H9fj+vUYIz0~JddB(|FR`hArg{i33x@y(In9`qU-Ze*4!wFRG zQ$(fpj63*D_ z@1G!XEp{tQL81NMZ$9~{0X*nEDr;-ywX}$U+DRK89!@;wXF=Di3T`y0FwwxsPb5-P ztE(;aD^_{9=F!p;wCkkT(AYULLIiO^vcOV6nxXo^hxa+@+-Qban4X`F;%>ut22CX4 zV_j{w%^U_$sEp84;#@v$%3(zJo}Zrub&6#5_L;;(6&2`f6+}ct8sN4erlC;YMbe!3tP}C)>YAuoamghP z(u=H~F**%UnAh7;_Ds#mf`Daohxnqvcwl6GvHwrKV0`V^vR1>S=*C7uwq|R0tD7nLjYN_=#B! z(m;%y?2qwr5g^crUyrS%7pFn1MgbzkY3J^>+pv8@lnkkxIIRadOmVB za6CLUg@Z8F*FAywTW*VQq@C#*xax6nUE_msr{Fm>9iNWA`}lG5R##Na3nLmXXC_Qe zlkh&c=EJq4#Q*%+EFzF-e_Lx?%6uZLS7S}|NMAn+2EHTkJ;Te_IXm?!y|P^@t+41< zQQ3WhM~{|DfA^bNTB4Wfin3_-Ey^l>WFUlhW_PPT@Exu0M?LA*lV7+;5K$&2B^3x% ziZjH0!nFuaiykh#jn&nNoE!$s*4Dsy0zZE|q#}tawI6aY)DMo2mm#@e7IH83lvrwX zK@WVkIWryj%e-+%Ts2$bo!#9#gzKL^_1W0kRs##_VtVNxv=>P{zsiN9TuV5PCqX_UhX%@uB;I+Ss}4m%$Y@?hbd;_d&=aT1mI!BBRg>Cn6<9 zcXf5Ot~E$8qkvg}xv-wx?j;|MfPG%#)w#b3yueEURm!m^Bjala;gQ>px37=iUu@b5 zl)S`YKu4mdV`CruAZoV({Di(Dpvg~4=->(3X}fL(<25^;)c0X$LGYTUKbvxjTYgUw z9%V|=9YPokzPe%{MF!MWRX3loC(AJ2>}Usv zhsQXJcSZZ4XRgxa`euNN~!UeWT6L+P2of_h`zhSs|bC=;)|9Kc9JKe7qaw zWWu%g8UYSJS;!otqNd)7w$CcwN&s5^^qEYcN@{!Ro1B1ichb-ZT$qk&5ay<)?eN67 z$H<zHq6Um}J8zBOAkU|HZp%IaE@zQEO*oy4`u7n!3p$$CKT&u_Eb4d+IMOr+?^G z-U)I^g%`7pnAG8ME5>V&eXz>LC^s%-dLWstFb0DLX1wH;5O}O0+b;wPI2U}w&Vj#U zQKhXCZm-KfQ7N zB?!;Xq)<^88*IrF-h@)NM|OxWmebwBkW(Bx7f;i+x3-QUutKaJc`Ae?%xk8U@;w_&@(i&0DIj9#8`D7q$DS1J~5G3a^1y6U4K*@NAVgEJ;A6L%fnBf_TUcZeRg^2lp#jBxp)HY2e<1V)!yGOV6jWN z%g+9*K>P04+}wBZ)8+Wh+BNH|s<|f0Pvj<{Vj@&a;o&O~lOlBZC*z~3b)>n6hmPIc zx3-Ia{R9E}Ahg}I+m(=*gl4$nrwt_(V~C950mCH4&F{1t8s6e_{M(RNu|q^mjQYUQ(ZHRMUc(P%+YA_=0k&*kCiuD!z}m*V+|<CMC20Lq$1_|m|Q4Z*=*5!DfKr8?~PUFLh?;EP>zb93wX_U#6|i>CTy z@N!3&zJGs4)6R}aJUctng~240(8cllXG{c~iMHsdC>;2RyWs_CFe%kJgHRaV|2Z4W zZFKJ@K}rT_0uwxoi@SmNUtKHs z4G(SgaAWVO{e4Mh?!+qZofb(xe;AvjO<0-X`exUBom5(KefWgEdBHC=TB4K`=wLdK z>j^?O#4{`c8UGV5cd>I0ZiAM$(YfTtId_NX{gv=rV`75_)!APQI2QE`3>5rbTv`e& zyAQu~M1Br@_;MU%UoIA<8TlB4^oG)96Vk9_=;Jf&?K3l8;rjfW74Fy?z1?+rIwZ$J z45olkNdY%@-koXwjx+VnJ<-}K827lY+f80{u`xs48$vPyOy2zicokfDyqmq z#r2=&Ku=$P34~?{1U)^yGz)R!{Je2_Yirgi#A7IFY7&CA*tFK;fm+zAmlPr4-^KRO z)HjRn22`%kJJAp1}PVO zYhU$Cc)vlBg1k#0UU3mf=FiDvDGDguG}C8arA)F#RtOr8`V9?sJ^dv{L8UD>GyNK_ zpM)~Q`hO5lVoDLtg(s_*g7Jl`()LBr3uPRapEdxs@^bV8D}x2#Ccw8n1-U7XXlQ&% zzmDvuf0g9~7WJj3jLOpz5J<6fw)&kn3=XP~j*N6*2P1%#&=V0FJ~cK}Q6btUS%YuI zQtvR=*=G_U|3i^J*K9$ef#8f`aguxS;KihBI%=X43pMnS8<4)8m7Y$ywzK1ynUwT} z7cU72NWBlBBSEo7;oBD*a;8BRY$cZ0OJN=0M502Duo}(h+f5jug!djic+jVbqiSeK z{R0xM7snTe?SQd2d+`ECnven^9$=UE7ucOPqNm^ggXAvAbG1uvR+zLIGbJinLU7YI z)QFjYp}N0-#o>0x(_d?5I3_BELI9YSoE$neAt6I+JzWOWS6y8fgR+#wK1-m*sMEbK zHGm$EhVU$8CWZo*P)$DmVC{VrFR4B9>kp>6T?}<{ z^6tg?f*Ij0d9FJ(bYCIvJc;ln~Aqc&Tlmak<-K+q^;`W%xGwSG05 zO;}nQyQ(I%Ym!1BE{=;bwzUrb#g&p zztXBXKjn4ar@I~+Ilx<9wP%XuH&|FQgejO4YElW}Y2VsZ9bOS2~t z%!9MDpC?&U^S_T0Kc1U|5P(Gp57=%MQc&Q#J^k&5UgI08K}t&L{E3CYjkT?6_K z0<$aug@`IGy$b~mXlo1{2BnO*=!a?C(4m;6a6XL=3`D@Yl-Js742G1PiQN%JzC-^z zGINvI1qBFJ*0tyuQg#CR?xC_W85J*KYT*~eckdV4`oJ9zdtP!ZE{_bS{Wm|aDj0>s zH`(0Wgk-!|1Cx47M$$oqpde}IIxu?tm;qAz7&+t0931OO(Q_dPVt`7}A=4AA9aMnF zZ9p9LD=1i6;b!B!cw?Q;vsR#+T84y*@8Bw~k);%4O2h_d@h=#Uoe@mHPTFy;kT4`a zWW+{&WMb0BBrHrBnxG7yKPLRWlK1bw`7Xx_)}aLg5)J28G5O(7Pz%8Ad5Y8*T#GjL z{?FNq$kkz2Lped~Re`qg((359kop3^Z^&Z;R_&Na?8&O;=1c?#5RJ{x%$$4R=2C`x zSq5x0Hj3yHqF+D@!4SH*Rljg$6^H2IM*#f(sJ3h+!4NQP%7WxN_mwV2&ZY ze@(9W;V1ZsMHis0K(tR~`v+g_nqBPvcw~B$mRK+47Ifs0IFAeMKUm@!#KdU8nvL%4 z{KL06|0zedUeh@{I1JQo&3pzk1J7-dw?ywG37W4&wlps4 z+eXfQ5J;jIsf7gCah!gxChoVjWjs18bo)gBHcS}e2m_<3VDh61y85TWUM_k0W_)>k z0?j1A&!b2B6DOwBVxwD$xEJwezIQq`)o5#9dU{Rk@s!oy)sWKVCmNZH(?&*mx=cjg zpdS9w6JdJozdk%atNJKzbx=Ma;M%FIAtZ_9FYsgH`uZ0m`HK3GSpn?;&o2&r%Bo1#G_@QI!N&=h;X19l9$6P!_?dIt8ij`IFn&1_s!1w6g7+ zQy#QyC?M=(;N?xKsjruPZZ0FgvpI!89M&)7yMe8?Q8-CH!w(N$T zS)4y11e*STiJ#2>{0iX0eA%V{o;>?_g)s&yszM6OOZQ-BcLgvg2kU;I_1bwpfM91Q zw6hyHN_(qr%O#LSN=H`?eI_Gzuo4GZ_AjA9VYrDPcVQC7YBEFs1i0=XCTB)Rna;pd z;05m|6dEoF%@_a`KFoCwI62jUy0X+aGP=kD8WZ5@C5TmA`@6FfK!SMl@L7Q#hlDzI zA`hM`S^H*$Bn@B;7xlTX{v&030tg=#j%sm`k;4u65%eiYiL(ENc>UaY-@t&;63{T8 zs;fJb?>+eexH$Q(8}hN*r8Up>k3PVsyGBh(d8uN-%gajw!rbs{9*7WI0?k<;eU#G# z8KCl=;U@v)nTgCeA?(5s_D}6ePlaq)A zf849WR83R+*w=xG%rWbPrtSnr&h!?&Az_-N+oQ)j@Sp-EZ>9wpNE%B#!wh>}FuiwAsNr|`i+WetaJ zkJQ8cpBC?P!sc^M{#&1_QT50c0uGb8e0Ge9&;IrArVGZ`VUmP4sZVWf@ohEa1S(W| zZ04As*G^db?G-4uPkrLMeOA?DT_7p)_Qpno(0XHwudo~S@m?h1qhIB$Fcw`u`IDLfFTHFDuGyS#K> znJ{q%M?sq};1pm`9ozg9UKuaR8l$VC*868j5jpn`4+ox|c|#xHsVFZm?kgWeC^Fxz z;QcONaqJW(NQNZ*0LZmX<&ls+t zkohhI&F`~3llRbV;>JkcP^C~&1qGq0SyeD89W6G|QQ|nixI25iNfc|`YNWBfqaks= z$y;7g5&zrESOHranz16)^x*b(DQ86xg0;7|*MKF6XlUP5Kjnpk!*f0={JR_+a+a1W zA^eviY3b=5U%rIY*4MK^*gZ&S{(6FFKO2fs5mVyYKaj}}Ff%d9LFzd_1w_7$N6;bT z@2=hcFR*@r1^%`@kZD`5!8?v;U|^62T0B7zNj$q6xdbJ2er~QAk{h&ubkp*Zk~FyN zh#ARVNzy<;2BG1xi2&`Vx;j?S06=0;Xj$2PRW&tdq-q(aC`gW6+SwC}KR9^VYsrI0 zNd;X7qoiau2NWkj*rjqc36WIQTS0w2J;LON5TxdE0y;Kr9i1-VA+DCK|44SgLMaZI zH4`Dq4=HbLXlnX$F-V)nX@EZFWAjsx zstjjmwzH7!Lf(FSd`yBsKJ+Sp&XLC(??&)p)6Q$xxHuzeXKonY)!>eHPFi*fA*A>* zE~BL*=YRMw_#GJWXlSgr4*U|P4c=slV8qG=m&_Wa*-c7q7)69eKa?M9o2V!bcIuA7 ziu+Q{0XYZIXuxOM0m+JUYP6UoRTJU(I&bb9t72?q3iF}jNfDyMFBpn+&4O4DKIjnv zZ4F7anaDoN_GYi%W+&-8x*wt#5(BXopK76eD$d5VFb{^Jh{RJ7fe=^&7!hhuJR3B9 zwcp6$WHFkA2prl&pPs|67?J>5$4uP zLnK7fk3K&&YX91`xMOd>M*d1`=NIbf$zIpT8q%BR$4T$R;=g7HbbRSRiA!ST_6?A{ zF!4_Zw~^+=Ne>+w%y^EDLqOyuL0A${q_1Hm#&@{BKYaKASJgsqUz;o2Q@q5!z~!DG z0twId!wWDvr|~@dwkvvq5Yt$V2|+_3ZA+c7jssijQ8Sw3ECblSv3PkJK)YQHK40zP z5o{SX{621hKaOvbxuN+3D{$^m7UAOQsu>N5?8l?cj*{bf3;)U*(%{Pr>@IV-g-SJ~ zU3uRr+VKC_7&p7uZ~msZn2>~If0ul=A2*>NrIxCsJiL283+M_Z1ZstSPg+)_`huA0mL| zklkiUi6#i2wihMEB9UUfd;eE}-4lQfwec|r*#p1~iO>S`^YgFZ&vjmn_#fx}w9%LY zFJC&42x*}2CMwmjIfR%Z4$v%BQoj_r$_8x`u+3(Uj`1+j5v4qH{{8J1P!dRo0RqG? zpbcR`=IHUH#~6Z%Bm<-{aN@Y~6=IpLmH0B!(%{3OSA;HQ8Ng)-0pmpm>_JKn;0{pw zgFw{|Fqf`ggA?Q5tu2h9{e*{wy+cFbh`c#5KR@V1gPi@^AU0uXjc#aP=;d0%@WO%y zq^RCr?^=m$Ufzj!)wyWf5gFve2D7p5}uDcI7$rQy}8 zy^5zNyBheOFT@}EBfVjeri-2Au3 z$BJd47f>I_h{))P$AyNDd3X#BtbOwnyG|68lpUaI2T4Ecs|DYr$kGOu+12dj-&g)? zigN9v^I179w7r8xm%|V^eq;W3e~@EquKHg_#soY()1Qwtmeds^)&Svw8Q;svR3&w^ z_bQ#YhW<>}W(38+Wmn0Phl-ZI09IvyloMKwP7*5o5Pn-wo;tCyMMTBNvw@V-^~pyD z%I$4z?`8Zy3Ob}0JCYT-j4NQK7WJjTf(0e29ApfsBs8K58$XA#izmQ`J==_9X(^Q^ zNe_uZSC=L?aB$kgaKSC#35a@Po^BFcar^ML#gvt8(Hlr*0w^Gw*LJZ3a?BXW9DUdZ zL3(QU?%n$(I4PV1|1`C=1vK1BgOLqwn3a|F2Am#>K-56WKpw;tK=HHmBDu)(Wib-< zpHBRQAn4gtF<@6|xo`h==qfR1z6OpgqqX&F0cFyU*Sv`UazF*wj-Ffcmeq?}e3=9vnKHe+Zo7zt*%SSlZsc3BrS2F#=c$2=`z-xHq`)&}1T!q%1VH zy-hoDmePE zejfFBP?U?CI|#JM5Y(y6LLB9Eeq?X{SPO+lGA{VU6V}C`$Hm31q_1X$L>Z}9EUze2 zxg8y#N55iJ&59|CBJn~~RP?-w$7Lfb+9=MS%xP-WfB*wwRV9J2}w^R66viUMK`Ih~$KqLsEqN1aN%{TQrA+xh5 z9yWe~Q~?Lj=`Y9Dpcr8wTdoa7pT4=p2tqf$=&u*SlX{p>Dp2d{4*dBA$KC{#kyU;Q zDX1hY_c_{SPmbm=YS{IF97=1um9xD3sJY_>=A4T7zb+o+b^$#~z+!byPruz+UzY)# z7qIMopNIei^q`=0zZqZJ(n1T=4`P=Yf!tk$OBsF&=Da?(RVXJdP3e_ditMo2Hq3Z9Nda&T~@nfRZ69UC5Y0^?nKF)Te&-r3oaRL17!=i{S^DeE?wx;HN-*4pM~m!|hi5HY|g-U}~-+4JWL7#u@mjT_JUt=FBc*xbteFWuHVkrPmlx<=1C zl~nYQdrv%dbgQjxV2MR~QQg@&nxKQ}@%N1B#y|woqo=Xsi>7PJg_UP3BISr1D_b@-mM`clX^q~LrH8EcNZ-Fv5OCf zWC~b{6w~}7F0LlU13Mr9c8@_GrooWCIZyKo>y9Oe;gStE@Hjp{7;DmU4bKg}%y7&B z4+V4qupj{&AtWTU2)|I~b)G!O^P%wHrZq3+TAZX&%6_|h6x(+r_+Zu!G4cBHM~2AUZbPA5pCITEFXk-`E%gM=Qt{KnzxAT845j z9&WUU;t*O{n*QjHt+cjf7IoijhmlTEL5ocTv(Em@=OGDMN5=<5=qT`3kU~)MLy$)h z5)!t95y-<5rz_QDRAeJNplFIHHueXLW2E$i!$_l>wWvSMeSCZ|g;?_rXPp?6&oZl9 z#|vXSlIDBxI^sdBs{c#tnZY=P)hA_CVlj+7yu4Zv_vM}Ci8|L42Li(&!cM1IKa}ZQ z0oU8N`9gk4z*r432hbk4c-*|a-1*_RFkt67qUf_m_`biNvQ1I$PXq{?Z#c|1_i^fd zCN`2r$%N&1`2DHZ4swR<$>tC?HUK{GL_q3cEQO#ROoB4AYcxCwS+YRpKy4tDMHm^S z&B0Z&Fg9kfv$lp^sv{y61>!9mU!XXb;b7eb9s8tiV$TNNDqB?<6eE$4-WK7Ho zd}>qRD%m$&H3WDzLZal;;6HzqgvFkfwk}H0GzDrS-&_=zXEH$-e z_ic3bY|QoboWp%tQzx!HSNEdM*@;vUL3;6r7~%*a;f_qgW*}K7YhIARC=PCzokj@) zvuE;SE!Y22n-Vum?!3ipwWFL9m^AJO-ed?;;K8yG1j<#5-`|p*C_XO9>yU1hUW_On zSh>2cXI(*AOj3e9KH@9Pl9x&e00vg?yl; zO{lLi{ns5!VQnj$n?a4;-#OcXvM=Zm`tBXA*Wx^)rgmx(xohO!Bpi}|kf5?`_5JNv z8N!m!GvAV}HI$``<$^zE`~L#KQ$JCu>-^+|3*lD*BLWc0fub<{{h6{_`t>_3V|%-# zw3HFCxV#(!cHyF&90VZkT>RY9Qijx)=SL$3jvgNCOp;bNWAzrYzj3Cb1qH2bZxtR6 z$_}Kz}L` z-CfbXZ~;!9OM^8!U3F7Y? zmMlUTb7=lq3n1dwW22*TKsEOEM$&sLUf%-L1MdE!0QlU93$;H3xQYdec*#+I37Emy z)H4&%DiOmM65#eywnCXd zgYRs6_r(Ag$It}=ofDGZFkGxCcY_OI>Bp4vw;wi{e|LHwhj-YksLcL5B69$- zaB4cQH2b|E4GC!vIdlh|Ctu*6u(!8Y68E?nXIRH2-qBI=R-F2=ni@kWgQzI=cRD(u z!~LPz?|+_;kBlUmz%2X1)^-^QS`9~Hr^V8$gn1d!l<1}jRh1G5 zTxQpQn(CGp1PcqK+}KYwMm^fhHFukWqtXxr?L8yVClC;Io1iyyqU3+I06%hxW#kj$ z37i~Bcdjds=a;mSZ6{8=kFwHhlo`Wxw3P@z*oMt=K#Yw&>O)SX6O9%BYsplTRP4?j zcI-P0c`r#r8FIs=ycr6TWQb+hOAFMe&d-`V8&tUq1a*{_5V_fz7G?O{+iC z8^#;P^+_aUmrGwrOU7*iK)@PeP^MsJ#t5s3ut0UHeO0W=SUuO5n6P)ky=~kWs^zg0 zeJODk`B%Gw2S$~j@p6exKWFi>R+s)jB>Ke9pqWY(N(F^q&MGP?qr(g(??1>VN8#|U zFVNHUbaZy2;&|-H47E$q6zT9>*U$gbv-;Ob@$N%5{X487Srrvr*d`X7kxhTn>gQ}g znz*!yr^PB;v2KHYo3(SL1I>w_f6CHRYDpb_o`<3?8usQ=g2UZa4nF#^9R7pvU zKIiro|iP2HiZi*(i4dey|B3jy5SR?>$fv0!w-hYf6+>SBZ5M=4- zC?q0m2I_ZYpb;iMRVZk&@){c`EoJ>}(9= zZ&$%scvC>wn@@l6Nm-suZ=SpkHYHbJwD4Fl8mxbU0kh=82NIxheOS|I6z`L`y9Xu` zQCJM$l6Ueumk}|SGwjC%c{m0&b;h>9W|hU?%xv-eOW>E+Ym3=Vetyu;PGb9Pcywg5 z0bE0kjLh2J#>Asn?PJC5M_a>3N8zV6FO+uov?8o5ofMLj2Y$8(HW@v}*g4(LeP5yI zZ^JJ5s~cZVnI*U_3MZ@#s?^oh!6SB^w6x|(CszVGF)2{drAfGRB&EDTR8{@pZSxcL zD}VpqTI1sE-r>mgO^1b6q-2Megd}MX#JY{JnbIe>5ps(mH0rCI79KUXdFZ+a!N(v> zs*8#+g{g5VGqPGjsD`*k{fNhYbvwprAm8(t&8m112>9?rJa)hoKM$K_ldZpy{cCKM5~V-puzV z9rm!05Hvb*?@*AAHXn?tJf+XkO}ae%qqfc#7mM-!!(Yc|&*X&AbLV(sE`0AmxHT-( z_3>9j@9>(}mERHgloAHQ6l`++Vej{@PlU?6eLmbjx|gU!inm3N)t$b%S0 zu1dV9b}b%0SR<<6`z7DyoS6W@m+1&54Q zlCx-fs>+g=cZA`diq0L-5&}v2*oWZuQM0U_B>@GP)kLo}fa+u@$Dh?oJFI)89{4B(nZ2o*n1KB>YDJf)7v#u!Mha!QBPjJOtW@;z{)2G?*IwNbezrQ z(9MUk!hXh33c3Els~#KOJz~pV?D^eKDf+Uc|832euVJViX9v0anBU1K#>c}ye-?(7 zatuj*NRJ;t8jKwa^klbhSAKRvSvE9a&~KxwtYgiac*p_%sKTo`4>OSF7(RNG+clBe zL`)U^P5u?b(D%o%_$k5zk``eTih8yLzWjzar~@g026w=nSVlO3M9U#+i1W4=ddj-w5bcl&2WRTG{flJtZEo_V0mhrB;-LJZA$yi&}@@S7v{Cvi;8-02V)#eZK7wb&diWC zO0nO*cfS6U@40<9-s1jHP!x&T)m~3zQvm%>eEbV5-sh&Rxr~{3_%Afnvhd)g*Z&0z zPsk`KDJ>qwsS%wxFw+s(ZB$|EBoW%m=vHxUa z@;s!5AMoCf?L7{|T{AR@E^KXG1nwNJ)arEJpy(S^`+qiP=hYG2y~=qys5@;MJ)4ZR zv){f&11Zx9a+@ZpaR@1T^ju@WcS>Q2}U)y-)S$&zBaye~C*Q zrl(2eiYf?Z+cfHatwO3z3@D)@0lEGdaDBB7)Gr-k-h1OdEc48(t|o@2{$R11=f)53 zEqvHIw#WAa@ z=Fcc5wtM$~r(FEQ3$J)ihRPN;AlqSz~|HA1il? z2n$0&jF&%E>HBNqi(=FkmqNk@l9hY&t$rD$KW*&hn<+o$2K5f^E){${J00PNO#xR6 z^K{A(8zb|Q4<4}*Czk)^Eh{FbAEn*hzSk?34GwcRj=L3TlvN%{`d_4FOZa&Yg=IH+ zyinD(ZS#POCrivL7_@2bUX#FtcOhG7pe2D8L$rr>ge*<`K))KK)z)cgR{Hr)EIm@c z&7ZJ9`^SA_JXokR%+LM8!|unAAEuDAn4rW0uQcR1Zi!zH$(9unRwg7Ip<=kWl(2cv ziBt!KDCzn6i6eK*U;S{#$FEdUC-cb`{vwps1KUOzuu*|;{tBsZRj_lAdAI*T$Ipqe zk_v%>qS3W-_5IozO<^YnregKSZDP;y;@LEm_WXemA@q9sDcpdJi7Bw6b^TugtZ={u z9CH?y^p%tp7Rs}q6{%Ty=#$R=yof%0M|DlI^1=kY9-X+*{hT;U=v6fd*U`JZBBJ+?^ zJvO_k>fiJ9;)=+MxquNHYXtu>y!apvEW{=-X2ar=sL_Dp2m^RL@R2-z^7!!{j29mr z7g~h^u9`(45#4U%z8~aa&bIndgR|oqNb|sSVX9rK1De-OATjOQ`YIp-2=+(oTU+0u z7I}FGyyBlFMd~33AM_U}TE!ZljPKs%5_Jvtc6*l@Sjkl_@8j)$AQDfjf?n{*^a;?y z0BEzoSvCh21J<2Je5$IF_Va5&Zl>P@fiVzApc{N)v-%}M7(6k%fLK>!BFe^}fJEpy zu(x8qCkeM%SP+QK^8*wE1JedadJf}&ck<-q%nS?&m(MgQy1JYCZncD@^h3vh*90_l5I zO6z|jOid|*9?KlW$>v+OWOO$P3SUz8%?W{dd`AqGeEKZr#g~^b#eP#67*-RzRd(fD)ZUeg|3`97fsgSv@Cdk`0(^BR?zzTaA#rbrFmwiCM$NH#={%nZjRCmkMNk& z(7x-mjCts|x}r(l<9bKJBklz?^_QcA7b4v=jwI5cLD2zn(V*wWSYriFAmr=7YP57- zHRW9M9?_kIOW#g(7tfQ^#M`Y{o!==!pv!=O$gj|E^TsW&U2d!;92yd?iOS_N9QUsD z73elKp>1yq5mDb`DJbOTAF=?4-kN}g=# z4+YT%0Ztp_(xbz%Vht}VD=Ra2KYV9mKZ4eX~- zXE2sQ&&5aM?`DfqX(FPJZ2o;qF38#wi(Xz{+Fy<@IX|(W@IBCa(#f2Rih&`=B66s7 z{Qe^g(@V$)B_+p22Cc$oAdn&o0H`m)HHbgYu3m;TCiQI6FL`g*Exf578)FESTw(KwmBdB zzVs21+ZL4`R4n0}4-1Lm|H}b~e7tt%X7#p=k+OiT?z2a!jI)z9RN24A$05 z)6&H)qG1g;Kf{etRTVh`smn5)8S{5?o#vX&JbQ^lEP`yKl*SD^f$%t@tzjdbG+~s|WY=91ZJc!mC28 zuO_7OB1!cNm;!b=LxcA!GmtP0q+CS&Y8S?KELmR$e~7&Ae9dxWFa^6&U)=p?l^T7#J8X z)}V(@c?l*j8U#3oDbmw&#$mOcDii+}{!TL^Hhd6Bu3(v6d zR<7F=2f;szMVuI5jw}}7=YIyA_H!^g&gs02Th0L`7oZUxup2?(Y?^GUr>bTK&;LDZRK7lV)IJUw zEGh8I+Rg@|pylM}qft;Z-xH=(BqjzLiwThR>Ro^?8#~n}G)IWVo<;V@-=l`J#tBa%@IE}*bEs(7gd{h8lpu-g!#~lud zVPc-U2*_4|EdXRga*Ch8vwY~{=s0M-Q%CKRWg@F%NQGOVF`t?HAS-eKror-VHcyxVbqYtWmJ=OaFD)-- zVp!N6T2bA|-958XFE1H2r%F?93rx0+nN;kBKonBa=hjL+GfkCr(@E=W`x?`aE_Nr465+YjrHO90w9HD>>5%5&j>d-a4wvb^ZQc zG}0{%f;1xC4GJO>f}nJRq;w0?9U`UDA|g_PbV>_INH>C{bc4X}TIZba`;M{qKilEh zu-5b3_Z4$~W{v;5lGXQOqMOShRx~uNqrK5~Sse3J{8Wa&R;*m?B*WpJE)Vb)vp!vU z_vv7-71HSxd;j^tucZ2Wn}C8uex4y1t65_fWCtX6wzi^(1#hFjS#N(VEGdM>RE^J6 zMjGG_fm0j_MnP^qzC>iI zIOKkIgDRkPZmwxF`r`+UEOR$O;vXk-XtZ=gxGfr_q;Tg(Bf%9X7y^MP3H@!>=B*KugNC9?gLZs67hF|~`Prl!G6BqmCiSpftm2}Cp0ya?M+*wt69y-qPQe1xN`-|XxoURW87g{Bmbdbb%*jVF93 zc%|bz@Tv{M&fK z>#->B-2H|_YQ7j3HJ?SsT0hYiX4rroyjdJasYa`h)ZfEiER0{|nUESWw&H z$XNa$%l<|A#k4I9@=JqasU#>sor}e0Z2WX`GV<8NgKiXyj*gmqY$oRC?V_qG9iTk^ zo*L~o?_y8eI2efhfKsz}FtE`VOH=D9DM=|Q*-cRTIPpn!dE!cJL4J;<&Vl06cbE{BhYvE zph2z;1$>bsFo0RYBBaM-z`_z;UN%vEMs>J7v&ic}-T&=pH{+k-uJH3;NbF5mwFpe6 zkI;hOJOS;fCdhK$111yLsWq_KasR!yw0m-LGniHFwutg-CRo(AG@5#Q*Ns(h3YR;eADAIjClP-^<47n?QVps^!E6GD&Hok5)s9gM{sLmma zzIfZA`Jr+)Z`s!LtILZAJ*7p=PoDCyy`G<9xch5Z{^7&koucBZDzY!aw%V!2AZmN| zoMT{TCNfK>m?SNUw0B^@x+^Aj$ZLn*>S%}XrnU83F=-Qk31uokL?}#RlT`AN9`i3T zF_g5lYjy6KdvsKje5|G9fJFc?QVUp{JK%-VIXmR&8!yS%(m}3VK%5PMQ+9qVjSXvyaqNFqft5^MUvwObpIvK$7p-B|-ddyXS3j$0<;0?Wj z=*y7M^@Muq7Yg@3Ev#SvnNbZUI3UMW!OfUHu!Sk|!P7ZsKvfc6IF|Se25fq0;XvSZ za|BlJ_8@-pn*02dvMq2deGoPT8!&}DPM?9P(mx2zKp+SR2q*=t@F2}IFyJZ)`?)OQ zh@-kPA+$n>*7kIF5praSn!!{VLo49Mo2u=Fdx znKBsb*UXOEq8{K$44n1e1{P|GeaKJTzgoU=UAFY<>Mtcek#Sggk@&(UX3@uctlhNA`)c@QU!DKuR=0@%ILn+ z!sk1`3SJR2x4e6cOnn83hI+%RS12&u0Fi7jB(a0nO&*}G77!2Vl!Znp$LL;j=Wm&( z)A{Q9WO-F`@~61iP^P=;?LA3&A3whNS^SuI{aYC$&4KIl140Jrzv4Or1My>qWC8Q{ z_9dB^)`X^pe_R~1=tEDXZJ^1n{0GBQK~PvY_tPhA=-vjmAI#DV$KW{HjaOOoBdrdp z#xGyhl@k-fgtlWa$H3nH3pT>(Y9CjPkXBjXGgaR2o(k(q4_YiuGR-GXLSY$*r1a4u zIt#UJZs3zcxT=C3Q^3uU(V+|WJ6n%w>)h5~1N5VnuXDFIM`5E@OswJRfamqWs>I(_ zA0KU5H_x3kKEi}e%R`&@*ZU8T>ZE+Vq&Xt#A|hKyi*!RlCwN_0^$vC@-}H(h@)7sl ztz;GBqr*e{YxyS6olHGI5nKy&4I$q!@&Eq~0|GDFJD6i$99S6pht460fH3c278VhyfT|tVDGFOlZDBrMgLOwE zr2t2~F*5)HSq=0+F!@se*LwT3ZEM<%ho1h!3tykdGIoR(7v2*!buPN{3X9$__{bhe zlMCqX-4u@NUD!5!bF#(7#1_syg19uOPkH^7juyt?eTXuKfPb2RwKkLP@3#^4r7)(X zYOSfG?j@jCT>qKz{fn3@bc#1``}jsHl^B?Q?C2Qm`ML5X|FLR{N{)-ieQi6wPjrBL zr(}?sGk+`fx#-nvlGCOuali56C274f#263HZ?n*#KVH7f@=8j0Aa*%J#`1y=s20jE{@bi1a`UxGI0`bC zipzQrqoc$N)P^#vD)Jf|o|9IxkO0K*A)rlR=+6e44((%&7NbRp* zn#_uWOlS#m;meu>7zCVVzjqYthmz;rhYV*qz&^jC5hugYE%gvpJv_PvJc6%O0z|7@ z#V=2HZ^3Lh4G?H+kYOAXgZF~uMtc}$3N=kM$^iK-gvQWv<4K(uA0W}N5Sb@C3h1Zv zbN;&TO-%-mE?Aj@#`23z_WMOZH%DLaVWA$BB&ofl;8Im3Lf6rG)+5vVvt2uJ{{OT9 zVTp}WR!!%ezunzy;pN>RX1@O~Crgr-S3^f%U&1&?qmK?|%dZ|44ERI3g)7|hYyoa~ z$Qg1eM*rH~|K5|>(*JhbI;-b=9)hNFwb{ilRQ?qbop5;_PRI~9*XWxEwW?H+rj#t% zJ?x;tx$p^t$3gX6y7HsLsOcp%UjOMO@@f+Beg!b>WEBfKSB3$mquR+T(P)L`>~oRvcq^8x%+O3+1e>Lu4Y zCnn}*zIxSN<@g6CH1&D`t}g6U-W^ent6zOj9AVJ~h3P-*6QLTH&~tTWW{!3LMTYvv zJG1pLth^h&!(-45mSc+y&}~gr$G>T+G8Yudo1CDW2dh}J?}>*DFoJC$*(j^7))cbg zU|&A^vE?bn_Z0S+(+v!wS|63bk zelP8>2g+M;c)Ko|I1^JG}#na$R@cmMo(AI|2o^Kav#Z<2`@ug|Qh zyN(6|hA&*5QBv+=K~@gjE26H)UjSb>082BpWEBhuT|EyEEgv2?Qi#oC7LBvJ2Khx0 zTs*+lnSp)x&KJXn_cFk3H3fi*V_Or(XDwZ^o65|0xo?M_P6@Hc)3xp0AVn84H^?dB zX{RT11GD8CIhl!p3eGUZSGu_HGeVTHO3?6kRIR3~x`&B-S3wx^URlyJoj@*vKZZ^E zC&${C8BQt6*$ia2p_>JLh{#5%qhqIlt1B5qj<^U2KxPC~LP!BGbZ#(;foO;}7?$3$ zvW(pSYk#Z%R}zpy)QWW!ignNsR_`Svr>-tTZ*|3cUgyGs9EYZ}6Ba};zE#$*CfLWl znef%Odg1Ty?@#_~QFn85v-s%{xo!QEv9OAwd~Yw!(FE};UZ%5IKr>eWqDY5e_~)xu zsLg{+FXZRu{*tB0^sJR~3DnE$APS$kiYNGwo=OFU_2eW!~WrMOx=r| zHtA_h%?~gCpkYOPsjZcR3lETk^palLFxXlFIVK8X-+F*o-`Kcv@@xJDou3wIA?RC3 z))5Jy1O>EV3$PZEQ>@vEvGF9-&GiSLzc6YnypAWFjGdiDNhm&oABYUP)_Y+7w;IUo zhcggZYe*vy+?G$JUdE8$xM6a#<0+8=rccOBzyb*w_Kh1kCujX47Ip-=7}Fqsd$~`K5QK>g%GkKB_KGl}`2~S(y8)&FXL_ zBbT(mT!VUf{HtSL_mqjP3eGiGX~L-2g$H&0hf;N&d9@D=Fc(Zp4A&*4FfjZ8p1|flkS!|Ti(KE z>Eha21ROJq+i`SH$!Ks>UJqZ*z~p#wtXSUw0B3F=I;V&8;H; zi*Bo(rQlp*W{r!#RF1KS|dS2~SIoQNRv@9NNc05R8tKg~V*3x=@_n7wz7xBia;niDGHWM8q zHQU-EuA_qR5RJfh6#|!lrffT(gF-eiovJ-YA<@Y`Mk4QiVK~J0j=xP`gaO%tH$9Yx z-74xg&w&q|`g=W6&)htw!2^GrlESnei1+#Dx_UG57A zk$ztxV2Oc{wPcBcb8zR|c*61~ZhBP}JKz-c5cZbU-Kd|ou-N*||M;2?rnd_~3X4_Glq|G}nI*mFY!Bo# z$TE2WLzsS*e3u1q-VR@Hp&>^~*H6Ix@ZWctE+U8#fuNUp83R!v@MW}sX9splgF{2F z($goeM{)lhPdhOosz4Td9b;28>gL*LhViVh`5#F`AxCFr94Za3Ng$_$g#Py%s9!IR z+G^;(tOv2@!tmt{Cg%6;PW-j)>F}^Y4N80(OwemKeg3Qhe)2{5aTRa6x=#3=v9zu9 z8!Cm|KqbB>AmG;IEF>brHp;<*;e$o^-R2i7-qj)&BMU~d^+4|U?~a8O?ps_(H;suF z@A6=}xDsD1-+-=Q0@}@|t1TixshpUYXaST*K^!gd$=b%(jWS*vJ3D4UK{AK2YlyUf z4HlnG3jzW-b2Pqvvx`KQ!i2kR;TEOpDoo#qWFg=X0)gGO&vr#36;Zo1^A>?84snu;yh+CjtD0foy~xKcnLo|2J)udY5&a+6Ue3pMlQdF10} z-O`WrGeM|K`a2B@jid1ld8X~ylIcRY_d-J(Ox=aPg21q-UgF42ynE zd2PM*N9TQmN*m4is_Xd@1G%>q0`ghXe;^GjG_3KAwKD&4O_knHxQv{?&(Ln;IxQTc z{vNyFoycTm2)ac`xGPG9buc-3PX1?{NDmMD_4i^9w~M0x=n|nXudL*gFE@*9 zmMPUK+JnB!WVt&rf>wk8zuM9C`)H9x5d;5+ca3vE0|A>r7(YKr=aVPO{6a`(-?B@s z3Tsk1ly?WrN^y!%lnjGYJvxOVGnTTIj)ouITfzf2PNz31%s#~typ>llb##mi>Wbf6 zN*5U17*{WY5RZAbN56SpSveMpG1x=GwGjHNS7w0`2NydEXD7`|WjVKmDaeOx>Pnkg z$uClkKZTmEX)OFnUH7qj?oO3~k=^*TgI_=su*vqo1U{1Tr-mdyX-;zTc2!kg81E2} z+z5O3HrM0yMRz=Xs16&KKMh0 zc7rrgV)nb?;CiFreu{8#*z&+gPoxXUyc^Z>`AONPwyI0_4^+pwkgMY@h&&;`Yt+zv zyfaUTNRtVW22E>tf@QCU|1RU|@_NsESVGuO7DJClCa(0i!=2KvctK06AA8B_VkVYkZ%R?aKn|YUy~0M}Sj^KXWzl z{d+txu**0wgtNcScbk{4EC2T!7su6y=Ml)XGm1c0^$4t~=|)Bg-4?luOr|i+LV9mzwca(AT@O=#^1#dfEe zbhKf7GCH0b^h2EZymP6mRY`H7JfFo1=y~&$ZBkB7w}z(Q<Q8Hb`)E@bNXQtfKnE2_m0+Zbzi(SMwLc5$Nx{ z$Fvps*M4Kbu!iWIM&vh`xHb$7J09#b^)7?1)v5(i_Ra3qKR*NAq7IxmbMJfizBevg z+=8TQ5Rk&;+YIrI6nq&iqU_i|&(8WhXT@uLy%@#CsbReUtq+T2{G#v4@RZtH#b+1} z9%cwA6s_CB3B#A(aA<^tF-fo~0mPRaE+*E!lap1D^yj!Ab1#>alm(m;iE)zCQ_|!O zPf!B51hme)4(XKEb|PyRPXY*lD-0l{cN+x3cXOv*Wfk2BD)R(@x5 zgu_+{qCo?fOe`%s?#EERf@KOBXprEQgf|HLO)sBGFU45>x3q$yqK6hnta*tJDJf)4 zV`#8HdI4YwNKwi$Hpw1@A4QCk`gKL;;BIJKaAs;+E1bSC{4%6f06{GYu*fWccTpp4 z)*g`}<1dTs#hVFYzZSz%$!7N^N|&=cOcw>qtE*SR;Y0{x%CRd4Oa!>ii9yubk54U# z4QRECS@Sxw;|yc; zUU#A*J&?FPlVU@^%jdL?ywQzd%FWG1&ep*A3z~VQ0fE5f~V}-sfZu+EKGK!h`d@ zKSTi`_f1ZR;x3I~#J5^3X!Ho_AL0-yopwZ1rX-?N|0;;&zC0u)9#E4yByn}^R*Gu} z5f=ghTmE}L_LhRiT7%!8eRzN)xR=D)#yX~K!`W{$kkb{v79fBT|PZa-Qp7) zIu@FxC2vG*2atfy00Q#we6#egfrqd`<+sp7hL^GsNeY;6G#MEgnCCD9O&hXTY|~Z8 zoEzM5@aq%H-9;yT}D3VPJ^ z0)>L)M(Wk5E=au;pFb}Y-90-Sfh`&fi>v{y1q#Y(7o4I{QGx+;0d#qvo^YCq!U`u3 z9r-6VjpA4{kJ1n@On`v;&v6)cIdZa`n(=FD0)YZkw)^6ct>r;?Ht+qZAQRi+p!ruhN2`|7eK)tKZ=?Lm&z z0WCcGci8pyYM8LFwA(vzprDq!UhP>M&L^wsrX-?`S;>E>Ddfg3Ln3QpvcRBJqMo5* zH#DMX=e{VfB=?0JA0OWq#NJKN&g=10J-#1LfhJb6>eQI0#DT^nO}~4xbG$lN+(i!y zlZM8|GjYuj6xmWKTQc%`POf$T%W!Byhx)s_(+C*}S~9OsWuZ)Oy%rU;(EqO-6E$-+ z3!EWst#JQ3(~jRsZYU{<0~PMSIs1*uNN|7Oi%m0cb}DOl~S*eCg%wy||Jg zv0-Z7wcn~=O)~VUv_RS}J?3>~mShgPV{HR7BNr=X7z+!w_{;b8tAALoa*Jby0xqVb zgJ%$r^<~aNl*6k#JmSEvc|0Sp4|5fB#1xJOc|vB5LX>XL>H(-^FFT z?O`E|n^*pow9?#qV`Ka~4%2n6T$yb5py|5Qg~|w!U#N&}7iPl8ZHJnc{3!=6O6hMb*u(pj*0?)HAg;7)(R+s@B!i6o_B1Nua%Meq_4U zWKGG;udj1oYPq9hnKz-AL$U-v7dvCzSgEDVG{ViJvmWwJn<3ux-0#n_n^Z}oRAcH* zvWqGC-nwN$-uu3G!?(q=KnhbgASMQyLl8~YuK)VjYSWJWK04|*{1>ZAmig-9@%=w^ zOWR)bVo#nR5Jl!)8tF-B(J;fv8KPhWfvyr`Zt2~Oi@C;1V_e+&{z9xkc-r?t*?g@&aKI;__Kv!Vc4D$Jus$HtfdBjO4P3Gg7Lq5*v-yQGAGGx_sH zD+%d3>t*{5mBl;UA85v9YKWJgaMs|W(t2*U2VY(!W@Ql~VA^K})Ai`Kx~UdtMeKq{ zdGF4hnpu9|NlZAec4d2(sT6m6cwD@S^ZAzE-f+1&pscU= zoCq`!?^g$0zXSqR&cj_}e<{P&KfOqF9H`Xf^L5PI*M@ADz{yK|Q|Y#}48!SP0Z~c+ zANYQk?zB^7a-aD4&1?rJ>Hs{#3;APnk^{8DPWOio*LP#%cZT%>cbd?&Ic>PeC}H*i zuGN+&y1KZ~&isa@RG{z4i@$wTeAi=lglz^HO*Ni#RP^=dGnQl$k;uD#_4l8?NS*ev zcCfb>H+uRo`nc%vg8@E~f}_Wr57smJg6-S0UgGq<8^2@01)*vOs{=b5;*geJK}!p# zXDq1dbKqWy;Zq|DiQB=~y#2&~g4gyy)II9W!svF=4 zo^H+x`h)(ev+8JTx-o4K2S|mgX}od`ZtElhgX6kv+cP~CZ>bG{=L*=1S$%IX*9QH< z9od30={_R=JPY_t;BcWF6#iQBXz_ZDnUkq$53~4y!C%({8SR5E_X6&pR2f+IB{O1! ze0Dz;8Zx^T7dyBj&24=CCzM330Rog2GjrYosCbSj?WVyR3BXU@&h}&P#tbmqM}n4X zyI*8J1Wt6j&0p|3h9xIIiEo?)RVHA~@sZ)J<>j};wlcf1rH_x?SxcD0~_!C5LVH&*9r4pXs7>N zA7>aEay*c@g~HCQ_~g|YruUe@1$Xkqpl`Y!m>Ppq+ls7+YAWL26*m_`XHIdok0Rb-aS4lex zsgh(b+vm?)K`sCprme6U|5jNU0l<$DfTouk)^|eN4okkm6Tf|n$H#h39|JCrbkz#; zLyus^=CO=D=_^*UDeg*J_+j-Yio@r>5AO~I$ap#ctKWI?J4PBg`J$$msKH8q8wW1# z-c+$ZB(kc(1i=I+6ctqAP-&oBI}y$e5|x$N?6d;AvaMNlxd zM-VfM8*y{T{QY5Mq-fC@hcQ;lmJbSg-p&^w9&v}cXKGRsGaj{I#PMVpJ`}dUV+uLI z;)wwu6X)b)a@YO6#lZqXVjy)e^_P?+==! zruIJb_o(vf{2qjXM>jP}{{5gbz`lR5!>0#<}3FAmvf>};QM4Xwe46kc4;=#q0i%70!r|z9ClZgQoZkpxK_J0zxlO`U z7elP+cVajtLqRd}(Zu}M7Bvi*kupFy9det@LxV_`z?xN+PW7d@IH$Nc7UqVq?z;uU zGMFyNTlz^>_-+aD8XCSRZM?raIXujFvr(YR5##)@RY6J$iVqX8y&N{?K2E&6Ox9g% z^a!h$@F&0`+@^jy5d|{U+pMg)wY9bVJ;Sdsa6frfJ2MmeySl>0JT^~h2`_)O0+hyl z{`&eR6TG7Fv^|jcJpxIZ-21~U6b<%N#ns=0it|$_UR;VhT3g--YLp7Y#3%;^C7`Qw zQ=@S+vVs+q>U)OswHYHLbH+V9KJFx#w)xmcmseI=0A=9Qox7`t&F45NTsqlbzNp&U z+LAyi`Ye?=Hbzs^S7#H>>&CH)cny%?TP;LKTsYcUs+JzrF&bloF2Mu&)&ZPujzO6l(%m`I|ADWso>5tWVuwBX?pa* zVcVdtHA_61yVltM-iMzfWF~n0%*>J?7T$*;e_~p9p8{*6aeqfgcaY%Xwt8%66D)NO;h(=3 zBXb;^z*bF@U1k@n?d`Mdq=ehn6k_e!*w|J!HhzG1g%WWDdNZhMX!0Y}-zxg=7BlBg zeNRJGiVgbmjp63l7@5ncw_-xQL}BBvkHm=+%~@n#Tt$u#bq)1C6Tm*(*VZ=5*v);f z@?#i$qR2HaXR-=1JO)fe!>wSXMld2CD9ULQ1F;$&3_(_w8^`kj10modA|?jn#BHD} zmHF$4nd9ZMN5LiDH$HxI>%wjL_Sfs`MDk8VXEwi3$9j$EQ(Lxc6S3oxQ(Pnz>FV| zF|V{{oAB*iU1xrcBDEy&u*q`|cZPK*6tGQZNpKwmV-B5TVWIi>0DQw7xS1NuNV(*cOucu_b9rv=hoCyxmw*=y-E=Szk|ypq28`rXwS3w|8)OZi-wS=ii+hK6`;rZIXCd~Wpw1fOi5w~E!$8ku*=Z;l)HJf8IyK0QDB@Nat-*UKA; z)v|^A^Cy@EU?!CCXC-L9Jed9jOvbL1LQzo|j6(I5m1OX&i+cP`V^36m3Pv#~mqA@D zo(bzv3_%(irn%{AG+YYC`ElKm{-2#K&DR-|mHlT;-lW5(ZNMMv!7!?8mjpcg*RAPR zcQtuyyfl7{YN(dK?lhUlIW=N9Xld<%cnTZ?IN&vy9gq=9=Kixej;8fd!>Z+HhW1mx z66^`->B~h0;k{v&iN8}Ay1Ke4X=&^*K6U|>K`uae?FdaP%Cb*v9A=k1Ensv6wie!i zD?d>(@*&U32JdA`YRNPgwvXxs^5LmB#U7cNtw{#3G3R~xf)}oD$OSQ5-$57i%-NX_ z_zpWje$05eND79C;A{2l^2Gn@qh%DIK23`UPm?{wEQkjv%7c{q6jZc1A3xqlVnOWi zHAsP~tO!#gKsx<6EE}K?ziGLxExMp{x*6()gGr7YC0AZz{BIkYrMJ6Xh`${n^;IV=1vNwxxHr6 zr^v!i-_n~}LL!eIIhw^p@=^B+bv`X0e3u=;e(&w4z#uZYjh6QZ7fbm#thHxNJ7<^9 z)>4G=r~<3+C#`qdjCShhj#dPP&3=7+ga{<9cBmJnT1_J$$ zrQd@tYedwJGl39v>Q&||5+@{>-P0dCNpVx*E+c|IEG$7t_;upMY8L7G&PMJzOpSh2 zib-5=TZwXVMmfQm9!D$2RHFASs_kcn|Fg~Of2%SO8jOJ;qo817XOH-5whE-wi$kp+ zev=bKlfGBpOdK>Kk4@Sp(l#cr=7L4$WCIy@jZ2O2lU2h8vl*QsldjP=yh&IY&SVfV z03f_&GEYg<{YvuX?ALoXtKNJ?ip!U0foCzt`Sl{$y;=?0C83g!l-D?{UbU5>uw&n>N_HjUe0X28W z#>Pg|0cgigF1ReLlg3-R7?LFQ^O;D#IWdgxa*+kA*1@ChRsAaNbUr}+;7XHLGU9=Q zLxeRROG(MolYszeT9`dIbv{5y7HhyURSnAI`UM0}Xd1+- zH`L3p_7d=EDg#t#VX{Whada4@1J zt4Um3c(lpEI}{8CtxwZaQxiqyjO=2K z8Ha!%Fg~8pf=dUxnu}|((nqKZ#DOM1b&WN9qM~tYSI5VH2{1}!_)(Q)EjJu@Nz1Ua>lA29?5&me7s z5JsP_8U|i|NCZP-XrMWxn|h74Rx0G~p5Hepb0zn9olE!A=)iK1h3(%)<2g$FWiwmQ(TgYwJkMooo0&NnXqN4kRye=I@I{>uK57^l4*(ogp6njTo3KGqAjqqu1F=Nk+*uSs_r9Y9!yN5-Jh1sPiax?a!YMu;m1SeuGh3 z+6a$;!0LTD-!>H`V?iwye4&&;NcP!p3-{X{EAFNi2s5nrcm(xp-!Ry>}U21S^|EQhx&?quQh2QGu?eC2i zH!z-n_N2Cw4BWf0UC!Sp)ckNDeeKsQ;blOZt+CL$|EESnE7&g};I#RaiMzP?R-*C? zAqg5+nSVq8VxSz-GM{ZULD}}(zoDj@76_X6FR+b+LOuwRl)*9H1q5nha;nG#?}LQf zNpihEOVlTMv5Sj|Vq%?@bBJdDT}}co9cDfFPEJn9g)w|tq4Fs3c34s z(2LbT!Z{`au7uyGH%LtyZHN_~QSmy`+K-o7695dcs%iyz%MzfnLT;i20nLBPD?lnU zJ%s~$A2ZlTtZi-fmY17HE<4WQfxJ$TUmjex(4p7r8v7?du(MlFKRn;`A0MC$HsI+( z?p^>%1BUL}>Ov83&b76}YX5of`H)~LW=$>G8aaDoZ_OQ*pO9fpq|}jP^f)>bbP#2 z`QgJ~_=JQE8*?9#<}R7=u>YMo42;6UW1M&HY#o6$a|;F`OUNAv2|4-bezzT7((Bhc zY%DCH@Ncr>y?ftKKwr2|10R~c_@44}HZcJ$sX(9m)&1;9_7PlcLQJAt;s%2SS=<6dRFT8wxUBTjL=IbkA z$IBn2Y4O2?ochP$Y%Gr^()$gW<48j*QdkPFD2NvRg0_X%)*@g{6w|a(reeoT)JKT^wbqaXzQ5ZiMKxC{>{uCesAzKD^_pG41 zXdkQ;{K?H3MI#j;&0|=H4)`_Xh84sTYe{?p_iy*jXKkoFRAJAfCzks;+9-51Hm3MB zFE6s)|D40^OED6?53X4)=vz(TeQhHxpy%y0v9#*!yFR+xndxoy^tmg9=cYk277PwX z;3Io)XwK|~6)xBK8uqU-AkLQuFf9yOUYs0|a=&}4xH?@emKsZw9;$-zb1w7i@xzn^ zk(N)IpK1dbz~|ou6gzy_F|Pdm+Xt;ncKu5!RGBME93TTvO}Bk2i4*W%rHhEZsUYk` zZ@Bt~L$MCo{#EI`Nlq2e(L|{()S3i-@gPjaN=kTi9zSMcoo(P)NlC3pAe0FiJwKAS zQA8)Cq1ny5-|9KW4bb#V2$GbC?Fb-1&tnF%3zXvKvI5kGjUz)=7EYvA2BeO90G)w} ziMimN$-=@?o~RTrF9Ik7Cw%kw7?}mxt-1GP?YP?amYjv|5)yOieyFcb*mZ)7J?*Xl=zdC`WZ&>3d}v?@VuwN1vH_nyMH?tx5KdhK6b!rg&fZb7uNu zizgeX)Ft=OK@_vNyxcxDHHB1NfO1wri8C}MpJkXF=UZlzw1@%Gi|c?ZW-@G40Xi9@ zG-TUB%#ek1;>#Ob14E_*!j1jkD6+h z+ER_T!03;FBl6wvxPeu|pd&^0m5{dxR|ArC0vBK!WNIHA9)38{*VlR$T6*^lc*Wi? zEH8&ZP?XpD8t;kmOVf?n`t+g#wt|9!F2h=v(B8g2MIZ!wsT(t7Iy&N|-d)mh7m71# zh=BM)lH*28+BulbM!5gMtdHFZ z2@NfmPWtwllaugSRm_k3^!_O{REYy^84_eRf+ASUE^o$07-eJ_K&ILXzV+DM-4`oc zTm3_ozfBz+@S$a!1I5qVtSl!FsADpqZ@X3n(5R}ia(7Hr6iLp1PAM$Xd;NMy)0^Na z7c3JFv@=%;&rVNwLC*!xRjQ}8rR6M8lW_nE`b!EC5gTg>!&D3q^D@Ih4UfGdxLvui zgR0`<)E1zTT1I-;>A{o_!RRJX-hgVT6_O2z$jL)@>9syyQ=e=n_STf}y!ee?JAd5m z8&4;JG=3A2n-Fcq4USPRVUk~g((!fi{Wn;Aq?Qt?fU%C60L{P8>(Df&wq){ zq!~8F0Jypv71cz@k+$lK!HwiNHK%?)81l6j{QjM`f9&wyXO%7|J3BBmJiG#V9>z2c z&fuAjacdVFM2?K>{`4(YivJ6(mZ zUZ`EhC)nG=4p>I%lu0av9bNW zCo)Hr%KhxS4;nV~e$AK1?=&DS2OgC!Se3tWYQ_i(DqG!nf*r(o|K2@55amHuJ9bbY zAm@wp_4I1Ilh_1$+rkT*PEU4M-r1B@bsl38!eUaV_&cDYMgcz1(40ciC$ErmvUV^q z{5tbVXy^w=Dv>z;rpZZJi`$^=4z!bc?Fo~+#YyWdI?2U&dX@)XY6KXH)HFT#SA#in z^w_!Vx&PJIoF0uEmxD-Lbfz{~BH+6IDK%wx=IMCzT4+WF00O*8@np5MNSprcKXeB9 zN#CzuNfsN^Rhqo4ya_AY0apT_^5;P9tO;kNklonf_?zYv`eIWW8a?L8$#@3!Q_kuiXV82Yxbf`V1^`Qf>_INT`J_bO53J@w~7n z#MS(O*9(vlB4K+(rk_i~uQK*1h~oh2U#j!(FB%8J{ugTO~=$< zc4kljc=SW%;pCH0)H586Z7HunmLeTK5s~UE`g-Ah%>cHS zgqDu313tTtMMcpto_F{36oCS9-S7VWk><(1nC)PH;su?oDcHSTN#3WDy?_E!LjuD@4SFF>&JH=j3dV*3}s} zx(ZYZ@bmKALU~=rdvuup&|6nTM~I1}DWv(tRnlXPaV!A$-J4 z7GZyfyM==1!@{p|y%eA6QhN}{pxxKVnLq6G@td-?w_DQq5}rM6(Jx-XOS!Am z+m{}ZDGtj>eo4PmB8bI75?r~t+d)nuRxn4svYLhU@81F~Y4DdXAXw*$Mqc-Ndenfd zf+n-S*r@R>)%u#o<;CYGZJumv$(Ha&x^>3LLF51kAcjDD4^1q{;iAkb?wIKf4UN>- z-y~!hPK_hj{T=;gwE7#Y1qV;hH*22iVhuPocaX0B%yDl;J(>V0>)|6+N(=rvLLD7J z_4~28+@9`2XY{HWDn}z|gIWbVK-PN=b|NIrEk;ZklO9d#nBBO@0p5c`N@}VZ7`jkdd}nPCBeN8XgB0U9p=sK32W;QSQCB~ z{7SpZ{1LgDGdz0lYfetKgJp*SP)_+ZK@dA)KF^k{0{BHnJ|UrRSr9aS8;pat@YRzM z5t%G(YhE(-iw{p1o`T4K+*pTGbD^5Yo=l``S5a+V1K%K`JWySz$5K*t8t*L=$ zXLjnVG&(o=9I8ReTjsoUAL6~1z}ROl;xrc$8~e!9 z(lQ@C(8k<67-T&O29md4#e`MaqabQ(YFbQZL`y)M={)>*lADpygi@C!XmB(%>v+2( z8XP1^p}4I8U)C{i4!6!?alt1tt@lke$e8!Bn@ANA6kJ#v%B%6*p|6qf%oef4aq}`V z*#6TI0`hS8BhGy|0?xLosR|w^rV|e~7hWBW%SnOe%YFVDQay%rX`F0TmfJ_k<8~U* zy3nu!rF@^x&R=!ntqj~uZ9Mq7blnN5zSfipd^=mgM*8~E@JlB>o64Ig51z^bJHe<5 z)D&Tl+t3{_&7c7M2ezROkYnm-YRb`EF7o;a_84t$D3^#MlhG31B(yYoEFh?jyimaS zpaapru25tAF*7qeH(CX=JKSi$M67=%aMx5;X0-#38XJiA{~bVtK$4H? zmY&P2X3u#3p7QeG5+xvl!m8G#wxKkG1i_sy!?1L8c=}k@uf_TA)J&~Ss!HfuFqSv$ z+P+#468h}bx-Jv%E+@SSwZLmcHG)+6)7E8Crl9oA2shBogcNN3n&+T zB4TLossIv^>2#IDtcMEAJ3c##_;Vj7Q&5#Y*VDaO<}JWIGefl7Cy-kdi{G}`rp*j% z^wF#HizI>T&rc9GaWKDqp`iS4{_4K_p;Lq0@X;4;8;D(4n7sm*|All4(*r*^+L2^T(WF4BC(u2xJa@hq(Tao}&#i?@f&vKx=Ln5%Che%u! z-G*Z$ZD>UB4dcgxUvEWyQ_d#?PH$m+e53OBS)KOm$Vhv^qjzB}q^u^88eE#3q%ctV z*Pj3FbmKeJdp+_YJ?!h0#aHbB=2?|D(b}Sm=1Az zIvyuEMi{>Uma+9Cd_T~%G&MF(_@D5IQ&T^UF6YBj&tm=Uw}2pC9UGIg(}F~1sO{jZ zWrCABczM=yz1HicET946N_cK7!c;XCuSEo)Y+FC+=zDtH=EL`_5D4&{ zOb}@3;u%~&OyN!h^XkdP$$Y?kQGNXd1E28fZ=; z>+9>anGz4*IzE6jq00Wgz8NUNSfDRAv$SLp;O7qlV*xx#5AZ~n z15*+Oxy%?vL*qwtB%AGeO~SA0bLsBlbd46=03q2qk(PT$QQcW32xq7dM4K|ZQ`lg{+{gI3|d-p=HiaYsxZUoN>59m zHXX>kqHxU249sG1glwgnx6~2$s8}4_w1C3wi2uYfv{_N^ng8xa{ z>6+fpfdYiQ4n^XbWiKWN84SIk>cEAmCqTr&331hQG9aVABw%7F(3t>xP%8_IGPop# zJ+}=?cEsHFm@E_L{aksUt0`w^l^V}`ZiAvL5;pB$Dk_rpB=2HkU=(J6NN)FR_0oSy zLSjABZx>~jK|x{PVs{S(d_=AqM4*g8t9|uKgDuL;$3ytxlJ_U2n85z_$OW*P1@^rc z`*4VjpFfaS^w9i$%KgS4UGW8dCuaxBb~Yxry5h z&9zCM&dAo@9uJ6f1qE0j?}d1Ea0Vwq-aIrF09^eI%%oS0*ftIh z z&cUHrqMrF7_G+d7O(Y5W4=*f?SNR2PSBnZ3W8-;yYnp>SM zkfEBvb&Z5m5!^4P`C$-7C8SdmJXlxn=9fIc!;l#-xXZlvks|N@{UI~+K=^e=fGGM^#`^Qh8kWoCK5eZ04)bS;>MnkK4gp2E{ zniAf_7H>mN#&oQBh=QXG#ch`Hs>yelcTrG2LSe7{LIW*CMQwm8+Zl{Eo6OTvjW-OU zho}(95TD8gAM*jR13W9}dw5BKH8_1+;H%`|XvFgoo6EPss0i=|y=`rk6@+dWD^pW{ zY9WVW2m|hqS=(RyCC9Ql00F>Nr>ma_fz-3;r-9c1kWgG(X6D%^D!~qp+!anVH6jG? zL79P6YIA+vq|~YpS?Q;)p%DOLYK_Oz)ybXTzH<^!L=kL!qoq=sGS}3!%>oqi&Cj2M zYT8V3-0hxafv2Gu za5A}n-(m-I(36%nAAN-wT9PvDMwrUxYMIB;(YZA>HH-g@oEv-)#{^Uv0E1iaA|qQD z7fo_TW(H;^5_!)c#Px7{>uOII4Fu}Q7|eVa92@|7P=PQmw1Kmmo zS_rKN$2tkqlTV|@LQ|lkMT&kw2!I>494tU{E@NXC`y*OIQ7?A>_-UpBj-NqCai!>{!9ed`UUSXWdCD#uTjYQ(jI?NfFwuG<_k! zuSN!vucis|4k(R(joZx#1Cz5|kA@PmRkyBV-7uuJm+z0PPMDqPGfHFvmo z7Z&OuFrIO4&Wj80&PCk*^l7mF;G@t>I;-A~NEDG5hI8(AP%ehmd!2v}$lxO+I8Llx z;SPFq{w^cF+Idh@Vc8R^aC)w}x3sQ)cDggCMn-yPW|S27WXpeeF6GZtt-&>;ib%l) zxXQO(qi2merjmO04&QG3qvc)vVWug_Zyu`?%g)Ws%E`Td3l%lgCc@0PSO$8$K=X-Y zl)(C1O1*f9??;L=QyF{sj6MS|q3}MjprmBYGnp1s{C z>sAxD!zct>6;IWY3xXfW5o%Uvs!;syq`&GQP=7hfk~1;lB?2v9AcdlEad+uQg zSY9FTzO=F;SXvgHPW!3pw;1BX)&8J_3PD%UJpDUqY=$L9(%miG8W%UIWx71i-q!5o ziSppsSP8BLr@_NT>snqmCAWwV+)BtXeSdaDZO#7wB{!Lb#wood-{8Wn~Dg zC@_vA5Y>Hso#kb+&SvzSX_AB|_vDLbMsDgsVbHyMXfV2T_V%^{^#MeZU)jdBw3%w&QMODjTpdqNZz3B)K@YoyTn8ZC`BE0j4=H23R8?zs z5}#!rJ;0l~O%TZgJr3|PP{S2>0kvOH4BdjPN1Fx>X*H0o=bWR!o4CzGVj)nax1bReV{1l?lo`m`($s!W5)Gkd+M)v@%nlB_n?K zJU=-3iQ97hjHq*Nd^|zW5_(Cqx0_H7Ym|2v8jazU`3Zq^RSgC9Mzk^Zl9FHh3i45& zc?S99YL7TEKcVLr*{5Q8j8nL&xM+EOZm@b-}Xwaqo9%c{$p3w?IU#CZe zbcg{7TnDMX>^s;jkN_`ZL`(JSm!mj6D##pU+Tr}rjEsmdN47;w_>q|+)<5Zd&mM3( z7mO*at1}JB1N0fPIusNX{PYWhAw~&+0W7y;4oef@&piM`=ml(aW2!VJHa4&(0QD6J zr4Lw#hBnNk7oSF&{$1(1JenNIy~(rlN&?dn95xsKmZOnzggHl|l!8%{)W z-DPK|#KbQhm`;xtd88q;771^{jU#cTD(dY$#GssJj8=+7JGxvzmv#3u$%ws@~`njUQX7h%^pUus0aMpRQh2yM` zjc3|*kqDUMfjYj<-GP%PPD!|}buqVB`Nvr6TPTn>AN%?gB6{TEJpj2d?(KG>vx5Qd znm3fQ%NFGUQYTw55?q8wu(r_NlG8g%^FdAEkOqqKB}7lxhutW9h17Zl!BxH!?|puU z5H~Az6A@D)->J*haC&AZ{VgkydV4b>#>hw(9T#UX>2pMXSM1Q$uZTehhv4~y`-_?y z3Z6sLN+pZWN7NEN1eD6j1&j_64@g|{=U)Db&7?9m^cFC_xKha0eXslbT-F2Mr zR?3rb4RvAV48HjMa`AlibKDpdKa)ahc-qulO6cc|yFQ%kGE?M9_ahXHQc|xA+zqFPzDPDh82AmY_dD_oYe@A;ZfuO&s#{O- zg1$9Q4{i{6oeHX|bg>Bu*I=8?Y4ExdyWX0wSGYJfaO&Qg+8WwCg|azy9UaKBz8f4A z6b4R!)pYFCmW5psOzkT220iQ%3B~Uw;+p(N0zh=BFpK{<&hvyCip}Q zM5S&V=whQ%Zr&o-lp5{GT{!urdPhV=4`|KmzJoe_QaN_eN<4LODJAQ0dZ5KNW&nr; z$<<*q7^Hn^r~>)_6IOOj0${rvq8&{QwG-9x1qdsjAc~)lug zu@i64-cmoLA_rVO3_^YT8Du5MK;pcDf)(V;?}vT3S=1O+1KnV8am8@c4_npbSiLWZ=S&JLE#)(@!7k-$ zXsT+92obhM^J59eLx6}A6$-bb1`|2e&r5HypOwO35x399wy~LL2ooP9EMbF|!4O2n z(DV$Sk<;$HI75mg;W+FMKO)FtT-@}jUUb*i_=ONUt=8_2Zj*EI9<_#D#GD=k-Pqs1 zh&y&uXt<{P;J7 z0(NR*FH^ZCnL{2!vMLWhTlmp2F(D3400d~kx+9I^>dZ6? zyS;_1QslhnjAkPjMll5KL(E{F!vl%b$5q}2ReRHRhP?*^BX*xZKj$=TlqjHY>Y7S| zQ#3C$3-Elx1t2bFunvR|Q(``@BYz0U6-0H1e!m8?ws~#@XDyMtjxt{gjPZFa%(_j@g zUXXBUlqi*s4-b&+>tk30+vVH&x*IxQNW?l~TqQUnd2@4e__a+<%W|e?p5Isgj9GqX z5lR?0AOoucM3*@pZ&!HRxm{M3IUzEqM8st=Lkrc|7eAN$nMrYZ5ImEwM|Q}_$Y>B? zK@NOLDM@z%ec+77zJ1--SMD}xB51WJM}1uNha{kMje!{%lGXt+{!tmr$~J$jGP#Qxk-1i=e`TVMP|v*ysjXyN2C zaV;#>o0bUcXb~pxJuByHO|z5YKtOsRPtN7uk_?m_?6!f%A`$K1$!$7WkT)RG{}*%S z4I%~s#9+zu5vC)@#s$zkJj~ZR12I%WLsnLnKFB6sZ;ls6!6~#2F==t`uC6qwdz>9k zbT~o38Wki@WJu-8Dl27}Vv#lIMex0VTO&!9en}OCpsOn@#jv35L2EA&KEUf=dSWMTLr=e*8$ zBG$yNyeP7=yFW@wHXg*mywZ+|g*G%)bv154WWftSFCakWEa4aVdyXnpr05H2zE-b+ z){>^Drsi%(R<%O27w|nYUgI3y|BkEH2qSK>D+EX;uSpRC2{6b!H&=7Zx%|_g*4D!T zm!N>vU*^1_kbd0@1-A=t4)Bo$x5vkBkd}S`S+5RXcy<-iu@9dF*}^Nb&LIYryw$= zomw`t@n67>kq)`y9~6@*-mS2ALG`J0kDw3aWb2n4{a*orLwg<}=1lJuY)@YJE^>Ao z1c5mUfYFxx5MQLvG)pOmtVOnoJ3IQX6i6X;$TfCIwlYZytA zMO_{l9{q|4d{&?au|PKif#Ws3zPf}C3 zTW_k`T*upqK+hE<2==3ZtGxIh{NZ62BZx11ktJGy(3Ha5hje&@W4O0h8JUrY?2bl7 zLxUn?bME$Zjr{aiOFzwxzF>ip0ohK+&i>d4=z53%ybESXLPLoCdGi>z`Y&o+-zSmS zjrza=XWV3Jg(rlyG3f^)aMWhqb4 zu!1E4Lez?$k}1P{n4tznJ0e(6^7f9co;F_4iyGB+2Hy({NTCe}YO?6`6gY`yF!^{1 zRmhUm*519i+*Q-ly~D~&B1du~^*&b!6!nPM5IP1)c%PM}Kd>fPCZw~lamd;1?o6lZ z=4xa(+2gZ5<7=lD8n%1A`3D7rGC#h44X15zy@5-A@49$p@dq{@18aVRgvm=n(_RYG zE%qWu-|ngT+2qiP-#vj~$=t|5&m-MvsgjfWj zlAtD41r|B3Pw<+sph#kV2wfsZG{eie#v0t|s-hHwNV zc?NE}P5-yE|Ec}wJUa&XT#Z2phVdJ)#munzt!JE7qg|gjXq~h{tYIRFs!K?8xL?ARv|_p zbusro$0YOBRn_YwwhPRP`437U^ByH7`=zE7PDD%F=Lxyfb(7UDYA@VcdbpNBCpmwb z;^qaQ0?45_1O>^!ksZ{*{TnCX&f;2{FPSATB^Y9Kfy@JE9E)&`6+TASYCoe(W1}Ca zVJq^+HZH(_k@K7wB+|YF{~gE|eW~E@QsMdX^@38och-P!0NmxMkw1#8ev1Ispb=8w zZL$176zdMPuDcLhBxqqiYyON0tQvgqdOI9#j15c1`cn`<6J90|Gq?l(8 z5TR0D;{_0xj9UrhzkrbR77W-w!y_UvfPnJ>y#b(&i4o@?G&@x_^o11( zayn0?&pU~6v@VABt$Go^me2VL5h8hDB}!_+Z#~{-sJ=X!kT65_Q&?&Zi<5@%+4Xa} zz{5k=qe6p9;gd4{$)4Z8w(zNSqgyEejsX(Fa2uw)a=`1>sHydAOzuDvd>Hn|y41ov zT_Trp`_aW4*Y%BuyNlAZi9IoD&!X;b{)<%&<>>!>@()+zo1*^KDkf~e@G&Dj@z(vx z#BlZHV~LxO_K2|LNy>;JB6)y=Mp{0Gpla?C)>jA}ZifQO(SSRSf@r9ZAY&DRxhsoJ zno+AHY&|BX6e;b$djfbrV`iKSDaj z%Jr2{JR^tkd{MV%Cu%q+ zNK^S7{OIP*IQd86((F3Cy&t8enZA5bVz%nb6uC_-ZQ;40h0{t(da+YSijD%F6L2I6 z%gZ+Pwgj$P$+V=4=8G%E!wFBuh8H+1e` zfbj@|N`klSalpUM(8s%?#o(;_L6t8{}^Q#KkpT>!H| zMMcGozwt^~#PmAmUS_(QBLFPFScHU_fY%*w@*DVfM^t}we2ADf_X+iJ;4b9t0$Zc@ zP0{r!l*a)955b)4g91x10Y8K!LWoTcg<~T178w~1Y@xkSrbsY6t9;oBf0nv%E$3DI z%#nt<9?q>%h;=^!#ZcDv(H9bKTq z6pOrR!9nl`dK6)fdY4iT3q5DNQvAr^Aos2Mq<(og7Tdte1ivhNo}JT|P^*}vU)T=v z9B^7U(Sq?0G!GyJ!iR%i9EhH9IyyRUYTjzYD5SFl%@2V2EI|JNb$saIA*=%*@8bUQ z5APOC24?2Rvg)!R@d61sEbTE#Nvxn!bpl-b7nr_aklg=QrXh!+m_Cql&$<4Mh++{n z^>ddxD|`_SLY;*Ni0$odVc#n;C>anXd|!HG0L@fTWp58!TgZ4rytX9)x5%B>8|&O} zL$0sVU(6~nEQK)#cXzpOKYSsBMzy_#q)r?FmYf5#0a&yCf?ucaKn!WNsU@USaJB07 z+mB}t4BKt+ZlZp#j6U5F=WtTf*E`C zOz&c|C^oVpEAWhwoLrOX2e_KByxr3CZ|FaJ*5tmhRDI*-HZxzhKs#EFj`YXz}UOJT^6%YmVa#x6rfj0 z-)BX$I*)x5lB)->+z7kx&=4Xr1Oyyu#6RJ0IlTa37BWi&)+)7$iHTTa|9sZ5{BK%* zMO++NSxexb`U!Y+HK=E@J6i9oH=%^`Qj(D3IMRebHmm{zi5B!SbM*E)ZnonCPm2_| z>_c8QOk9+K_w{8@w)d7A>`Wp}0rE8j?8tF%Q5u@=de*1*`X5+CV&Kj2RoBUhCmS2Xpwjup{QR%ZiD%}5^|G}m&s0BSZp}q(j*TJd4sf*d zc>Y~!_8}S@<0t#`CwsEWtuRfvKPm9$>8Y)Zx3|L;*6m_;P*yWVN8$^z;o>o1oq&OD zjZiYZG#fpft1-LxFLT;^C6lJv6=4EF0OcS%pFAy@<8`4?kK>hCVOo2;>1GTXlQQD! z@@4<;{9LsjC!lY=2l+t#@VTw+xuOZq|7!u-ejI1guY*g_zXe5t7*6F!ZhDmMo*vvV zokQhSp8Us8f7_Rquoo%`A1wcxe48p|0k}Y2UESHVe^P6E_%kM^(8-!xpRZ3<$1l3s z-@lv@w5Xrs2ws<5f2QPXbmtF}voRBRK04X4%11ES5=q^{^SO=D38{q@Sj4R}ZH3JK|eN)C*DkH8Lr)t;Ag z)sEk-(a}0sJvSTt!684cbGb=icvh^cZ|3wst1;#CV;t=GaND+->GcDJFZ@xyB=wvZ z^;KXQrVw~OTwHYY_wO$tkeex5AYK%-4dC5)Yt6?e^85+DmG6~^P)jHF7hLk6U2PbN z4HqQ-yY(SP5)x`oG{B6Y$FUoz_k*)3Bi7ry0ruV^j&^jB+3I|R`eZ+4#PBv#4mB)&?B zN5RB|xK;XmNpnA~@Z>7t1$x{Sio#fl^0Y@j`EKNA+?3-Cfmr8WtA3il?6BMpJ$n3@ zL$B(+=98oVzdc7hnnR%c%6mH?jgSBB=Hw5AxfmOp-=7gvGE(&4Z4tkc_^dyI@fbdq z6QJfo;eiJhM}hydWZLP22Z21nj+&b4HRf37hatDo<;lq%K&%W8hp_WXsP0Y5E;32y zxvs7*n6jaE13c8^5Tr&5iF+`GirUXs#XuApxZ58Aaf?jlaWY(Z2Orj3S$d>ncztcH zL-*lBUr$vF1~p?z*T^e|hO-TJr0E&O1V{k3>z@A{1;qb<6okMY5+qB1x&k(hctZIy z6y8w1D#wfq$Xd@jI5;RmdtXysEnYDQ!G@$_16heI*H7Uh0cSZ1qQi-XhOTS$tJYV^ zqI)~*2*@QgR3!vqhYVQBVK?yddUJ4*rFSPjeAVsqwKAn}7Z+jp-O$A{W@N-@buo4qa1oL}GY!BD3&ocy{a97^F=T z-F0)6k~X~yEaq%5&#h0O*~-;mbMoHQ-v2jM$^qdI=PhR&c`RqPwwZpxN^%o*?p%su z5#gbZfvYmEu4Rr85VZqcgyc}}6)$O2=M6p#uwD?*bT}b*VxZ))qBA}lNGdwH<$PN8 zy>hW}s>vxd<$w}?!o8YR;N_(@ANo6Y$%Mz(!3%o@izQfS^7V(GS?%n!I zuYs#8-TW2Iz4`@;g@gJB9VRx;1LCiCW5p*v*>R5BFFu7JHm5CJtu(PPG(PJ9p5SxI zt4{bKkujK$vo)SS-nBKIuk)nkVh~H_9mL0H`(2}=q5{34w%!Rc!FVyVweHc9uMb1R zGD8=Sar}=Jl<2>Jf+|I#yR%a&)i6rkZh}`&3L!q@FvqeyATs8*x!JPVdP94mAfd|p z-0iWQv^srE(|P&C+x2fc`>@kBfn68|734U<^gz_PvL}&J;yQVh4tOL(^`Vw27&FDl zso1)lU;WlBD4-C2`Hc(eS4_G{R(`KRpf)5jg1~m&xHecZDJjp{`R7tBvu9W$IiHYF z;_TV_z0Qd6$q4t|pNm)CE53UuQT&Y&&^N&0+^;zA@KROd_;*j2`em1UTc(`ru2y<& zVd0{MslVgBd$I~<4+U@Ix0m*dIAqS#QAL{y}HF!2i+i{9$TDIDNI3ORdCz%~|tB z#*#}gM+1BVz3}oh5^t*Rs6Js#^W!lmf_^+N=*5UWbOpDD+6B~`V!-rZ>Fv|7(%1L7 zdEPU(#q&#cHZ)%|jepbO8ft5kb98efLzYVY`}eP`!gK^Ia&kG9iY=#*$=*z3tujNQ@-QuY>B6^x=c?%MT~8q12s&^SR8`l!&kjv#@m#05ec+F<{X ze-(80_iMM(tcrr);pdm>+(IEi8ew3IwBmSBJ2sRQO&wC7n(AS>AYpG*OLm5X@e)BX zGJ>{712E1Wgh_&I1$ZT7t<;j^GrG$ClQk|&3vBy7st?99Qz+Wnj-YxH-kFPlq`{$b z8=LoWREQ6;8A*v)$)XsV=H_oE4aty*F}TVZAQwP382~I$FEM_B1rjtiyZ`Jd?hRX; z3^K9$Vp{cmYO8RV3kP91NOj~4f0zXgnij}E(oo$D4JB}X(=USTPloZV#qR12CnQ}j zHK9ny}inD3AN#T=fQ7atr@_6Hz?tZ?f?VQ zOhrX!l~0Ncr!@j2F7m|-|KB~PTbmIR5*Nh>!Y}O6qi9>QGU*Gh&g^85cB5I;Ndfwv zIrFV_ecaiLE^%FFPLAf{^2tv1At@Lv<+kT)Ln-*Ni=a_#czF0N#Q*LChi!%6_SiE) zwv;vzN)Fb-2{=t%;pG7GPUPu0RPW_3;dN{e#Wx+4S@vFPL~nJT`NPp}pPYh$0Q^ec z*7hp{GdpfA*gUxs6!e*uAqNHgLLUPI17V{QMnM3{(5c=Kf!L3QWDX8zpL6_j9v<$p z@)teh)KnVp`R~bCCIzxN_5)BF46q2X-yoa_kYbGuqScD#=H}{w@|(z)JLrEew1r}3NwNFAgbJT)$^6&Y$5h=qaiL*=sD*e5Ae!IClQm4M*z z?#p>}?YqAvwu4U>lLr2c7AM|p_yqgMD; z<}<*>f>XCO{{-E9Q(IK^=FREV!MoE|;~czl26Z3X+p3({-ZksTBs@Bqn*7*4P}KPF zbScE<47l+^y}-ofUwhC96FFakQJ_;);nR`G6^Mb+d{|iNQ65F0X=Ae(U({e`f@fU6 zk2ybEibZvKhO)X!L?`h!_8U87N9cl52r4}W8ips@>aT z6Jj+fw!}@bR=_5nzC3?0Y7bU1I04h(OeFBxOHr%TQx^U*XF7y`$q`sJgnh z0@rMs4s5U<&};bvVr=1Mz5yrF3;!<#9HMJzSo&zFkgf;f8*(tipyzAhz}hIMruLpx zQLzcU7#6kZeyC>2v8sN`!MJM!>`)|$4*$D@nc47bPp}-wY098wZ&k4aLB_n&^Ep=MKs!awx$2ezANTwb7gU zTf@~SMi}`$jE#Ro>Aa1D_bKBmaWxiE>igZln`WyWJG+`=rb;u02K_7*72jiG#Mo8+ z;PDROp&!%JbM3qDGB}m=2IJGG>DPH^*^^<>Az)K3o~w*b6LATK1y~jv8=DBSKL#f! zvB7}!E5EBNTVkp#U*<_Ah^!!54tBLFP#Jc3{aSrwdz+S)*U0XqpBHBR#zx7r@v*yy zd#2+M#tb?T8c|mTQgmtPWrASI9imosws?pwUAM)4CF>#lXlB}M0D=eukNqFED-17; z9vaq)IQ@Fd%gUPn`;s}5T8IFi=paMR$_Pj=I0xGop@5(u<~PMkD%-r^|D6L*|8owE zj?Okw+=QC;C^TVG8k*V33q9i`WjCZ4PT$Cq^_rHuy%?xc__xSmPsGUA3WxiV1#+rc zp2Ow)=8YIKqY|P_@MuLzp*!Fw2!0=?RBzM($08!rb$0$`Aygl^$}WOA$9T0iY? zkQmi4`BPGAo#P^=rphM2e+wKK$|6ET-HS-2JBMm1e`)DDNWE9ye7^d0q9~RhFzV+& z#wQgBe)e7FK4=1wQBQn)9-RPA?pps-iO#-wz~(|Dc^vzPSa0UxJbBVIUB14y{SMON zdDKaf$&Wym@`cI%l#in60thB_B`Hb$(a|qC=TnE<2pePh-9KSq%*F; zzl^&Z&@omLLTD=L%&=-<&3EZ@`LWph!3#c191Plm!u;cgiiFP9*zESvxKukmJ?iK4 z4Jo`c)zz{z6!$*NeIr*KFo;}O9mw7GEaiqd=j&KhScVjYRhCClar;HqD=Q<^We-D% zt8xn8-IWP$x+_dUaDQ#Mp}#gs_{l;^kY$nKjabR6#T$*+QJn{CNsnaETBr4?(4cFy z>GzhN$pokH$B&DF;M(1#7AjeP;2t+;HIT5_!}Vv{eJ8sBpz&;`!I68s@t<&LL^6l% zaS;Hr!X<(VVox{V^imTOJM_5C({DWAd#)xp&$#@A=8tsM-< zjJ7H!jJanJhQ`}PEksY*wEzD7xO))f&lCg218^KvF1`Mknkp*@YggP#<$}WT{aEP? zwMEc*Y8V?Ys7SYJe;N2Qa#+{?F3Wlymd5+{Ia2t;zCa-lHZ?WgeKs@kwAC!cYvcRR z>U81V0#b1?`5p%c9;n+V8+^pA>i^N7y`1N09?ClO@m#`Kygd0sX+QVX8QNBlbwMT9 z0J1B(uel+o)6;m2j7^Kphj?qf8Hmwp7p)088s);xvaryiEk6MMlIJTjR;R7v!wm1PT?ob%T&H z6D&HuLH}lEX3VEbEIF8%Fv&R$-;4QNP^^9}8A={8gLuTeg#Fvs=^PV#OVCY4MA3q$ zF6-*b4@zyo3AvPVo_xjxNz<5k%F6|&;pvjlI=6S7+B#DP)il*Nnd$i%F-C-5d>DOm ze&4=5>e8++6T0PH8XZv(maCVSm!@WB0U#p|M;3`%Y)_ZJ?@xK$dh3q--@7sjB(t+c z2Dgx72qZX5FNeL>Z~MUb&wLSyEA9t{5S9waM=NoAi^lYR4}e^7h78PN$EAnQfg7%P zxe$d6DS_(rlqmlvpIP9Xl9PT<78j@1&U!C!=VY-NVH5Mh!J$9PVZkZ}h+_wb?`r9A z)~zGs7kYa3FAMaL?dWMDCI}fHi7_+D*Rqs0Ns-5%S7OB5P(6u=OBmMGD-Umv029J^ zG7UYO5~GMCa2OH!KOfSYLUqAg*Jf0DC~{XzH*d$I|INcAJKY}jW%?9$tJtUryW06I z`DPJ$!`Gr^930%P>uT|pl}wBnR3H(sQ@{qbO)E%2P!P2gl!}xxi03geqw>=oAuHpR zFEy)Mrb>y}*ohDKJ3=YNbT!Dyu?qJbU#DVVthlA5sZJf}m9BeIP`E0Vp?vBAnhW6v z0mvni@Fsw1i4SBcAh)Fkr|L~G1SxtqRKAqoiMa=K(2F+!mu)E$29s%NYa?rWfThMm zTo@>0Mnw28cVv8&pxyiXbAR>f_e~~czmybOSH%sj>?y<(+I8#;*n^H0BH@9i_9!_k2C&8modhX)&DclL5_f89)av_}$YoXqC8dV|f%O#ROONKMoB8VK zpkNUW*V?QqQ!R8vqg|e60ZvJ9g)O^Rc@1RJpdc z=`ry^Ls{|>U~ImBQr^-N&l3!GE3<_LZzQA#%qi$aS;@JcaSV++STkp8p-NsL_AfkX zrmAlSqM}x1r^wPGE@{^TY;<6g1wSru0?-bJf#5K#B7##brDAM&7@1fr5Db0B(3Z`U z2c}495X}{rgtfu=|1kjpP%iaAKfL9A-WNd4rhwrj1zw;ALv8JL`0Bl>-^NcxpzR?V zvfCW{n?=C9wFjwyIXPB6X8A2W)L}N`z(&QyqwqsP!&HFW#B^bwiz+Qm z%~-G3uS*iPXg4;Wqtu$qcRZUoKhb3RiVKA4Vs0STlAvweu;bO6u%$#}jh?hzqD7UD z0^hPWU-8wr?-IZsBW>3~0I5)+y5&-AU$nKufZN}ur+}nJKj7H5=4y2S_zi=T;0B2H z>)y2EX@4t<2C>OV>1WY+Y&*@H<)Ty)bqD<=rTI}Vzhn^%SUzhh?!}%5Rt+!*BfAYD zIP<0_ooJlx)WVz61E1c$u#4c35s8i{Mvc7uFyMkp0Vf;+X(M!twE=to9>ilnv8Mxj zkF-?^adS(73n@@`IHAwo*|v6V+fLWIpWz|w8Y`1O10wgnepB4=KII*2+?kOtF;rDO zQ!%~k-B|J=;C`-3%$tST-Kms{7LfY0lz-s9m@$nhbe0IgVyZIhn3(IR7(m3oaM3>aM^CS=` zos18@FNt^Gd2ey0sIzYkTNxU1nFMU^@bD0PB=4t&(!T>a*%O7x@_>?0tGMf zloJvVu!M60B(~DfLjYmNYsekbkTV4NEr8Q&WNb|CjRnJAGuCWtN67ZKBIaCQwHZEW zE&LuPC^g~z8|Pi+Cn~Crwf<&CHXQW`vi-LO9OxM6#SY9WgO6=z1T_p1*=EJ%jDK+l zy$ioP9GMiCmYRbZAmt4sTq8@re+L0Ko(=#5ZOQk(6e3}Sm6=&)97yy|P7aC!Spb&BPd^5W&hsBCdhGWbh;vNIAet z#$^=lKJOV4kOQsUGhedHx|Y0-HuAoElE{So1jD_*e3X=d!FfIk9^9z~kY?=EPYilT zm~0;-Ls}ZeldkvW7dwebF)*Y_+XT@%kBcjEq-33WF_J$y!76Y0@L>S@9cQk1B~uHF zY|#1o<`Bw($ro`4A0ctJo>k48WN%?^zWfR9|G(DWI&lAgZWi7>Y|xUyhjYNdtS8}q zWsXY9bZ+^RCw!mC837QKgT?ms(FO)Irhp6;nShlifh5ZiO@o8)?Vdm9fz?~W=i=YmIqzCiy_Ya8O)pwUr0MJ1Z=@n>;JWI4 zw9p{y@c8jeNyC6+7r~7i&3j8Nr|{}gA^Hz%yiV37|VXTwJQ$aA2Z=Q#VmejC-?BC`s`=$mfk%%=>RTGlt#<06SSa zHC|S<6!mm>7cWO}abK>hyIvot(o1@uArcadj9sjlEPp?F5;p5|DL{;R>tqv3o@Ifq zM&KkPNzanwqr7W!8{5pL@I-RrxJliwzA2*dWSd{Rv9C}8_}K#vr+H{d9SL?mhu>nu z=_)l6lY!;q*|TSZ`2}y+tke91g35hVGt^9W=j-c=i{C?7&idvid*X{3rlC&{$d3RB z>qbF)Z)tw-86CGDOlBFGnE@zG$V^6H{lDgt%XO$8xiU77Wf`^yke z6(R3ySaNjtEKHUbr56h;-@7iMBIhp{@W-z@!1-GTXB5ZAjWC{@avl~IO=rz$$+!71 zP4L7a{qm0tA+qlVBAu_!N|`kjZ`2dQD6qPjDjrJ1D~lH$N<@ky*HOT@rp7P$kPSPo z`d#E(NZOg$ezE>39GF{p-Vah&{Ts<>AxWVclGOT$X>BPs6&ym@s$e#AhU5sZ>% zzq{jK_@k<4|DdH)A=rc*vD%VgOy`nDj~FdV_ub*y^DD1U5nPRt-|+FfYfcZQCU5%? zA$>_Sy9>FCrZRm0uLaNuYL&(L@M`msz$Pzcye){1cNO#F=3@h~G`$1~2`va{LcfON z7=ABWJ8~8=sB|#0UI?lYowhbKWcP=s(;r0k!r*0={#`36l(>@;b_3Ki%F1{Y=19`V z$cQ#u@;XvD2(<@3#VHBG?P9ndAa}N$*xPUCT?}!0R^V%I?>7KiWPbU=2)yga=`7@= zG!hrpWBM7M78zEff*hQ~sD?C?<*T+xzLc#k8{pNnmr!?nat$)!0FdkZ3JM6s0|RgW zZx0G@y>}usWZqprR1mbE+`B%f8C8RK`RWB|#uS9t3}72(^&S>}416RI_j&pG>e|}c z5QRZOMorEBNLIEOm|#c=y$MN~&@bcr=OcKU!RSM5{AOPcl4p}Z%(Pt{CWwG6)RvA8 zELfomYHFz9k%EA&lzax|OojgG(^HGD<<5*IW&ywfnckx4J#0_dLa$m)}DJJH4yrpLac?*1e zr4?;oV~8z(k#X&On1ooxpUurEU;wbv$R~w&!v1HzCP&X4Z8U{Bt-iOOUilaiA&o-B zA=#U@GIZWJs<6M=MkZeO(dqFip?c)NY#~Kq|v8<(O9~D-B z2~#=w*3j^5YB=|!OB7t~c$B;=f6jfMSy+8|qfN@%BJ9jCHgdc^#KiZkmTd2c(K&n0 zQm2lyS)^lsxx*9iU+n_jyNU`5i;yc|1tF!~phPkPWj2K8(Q>%HYUX^FeLjdMO#}{r z79bnqLD&wRp0|D#7RK0HF+FQ=LL)&#bKrN)Q_C-k2BD}Gv`?+|eeNK*Ex`fCY>3{A z{j*RlwW4;XO(;8jSAcy+Z12n83{)zrX zp*L`>_CXA{{O?g?LPtU>t*}PnypP5~)+|Y;3r}a+Uq%%hL38 zIk!;*%>qJ9pLz9t_0cks5kZvHz z2)=jc4g$0`b@};<(4C-t_U|7yG$I%7E~wwSg{Q7A`}&pZ`enA3#3GW?5L%m#R&sHmq7M45s{wc%45Mngrk89|WbY&4`{zu-mEWX}7&-@FYGuoU1j{_i6ADWer2ZwV+J}3GhA!E?IHH zvHL)T6&K@mvIrS*~Hjn`$Nq!SMu2ZUZk3SU|O&&M`Ha zca7q({_|6qZ^kQqu>z|$jLq|RTdcv=)U0*QhT;be&H&V7Bkk^$mGV|rOh_jhB#A3t}9W2`LjI0^Qi1{b94OBTT#{oAI4>e~ujD1cSC3NdQb^b`9wKV4!2pimfr+cbY{)f#_W5nK%{zyU4+%3%_j&*W`oRaQJ#@s44_dO)IFkgV}?Jn20poMLLg~@gPYjQQxZ-btSWxyFwGH<>KwzC>Zg^+zJ57K8 zS}K5RIbBhoigM(>!J~t=kyyM!{r)V*MIHykTo*9TBeS!>kDpZ|PGcS?4R5-Fs?HSk zR9|0Vd95FG5w9J(CVv#Yg@Ca?5TvY)@&6RRXhhzYqzkx%Ja*=)oC1S_gUyn|UC^W^ zK!nIInET{j{wpKe$($z?!e;2T&`n+P{ksYYU<;3pjI_OD3YIzHy_u(w~Inyr;LZ)(nXHS+|l#h=#{m&@(m_gIXQz38Kw zmXAP{A`LU7rc|HmiKHZDq2_yJ8HR&^p(DU03KXW{5DH}v%7=n4Of?M+bUd7#gA@<6 z-z+Y-^lWdb>FcxonJ7xL0Y$thzM&C*cFr$&Dv|x=30%emut=QMs_QAPjsJSSmu$1c zHvkoTx|^@8EY+vvT_|r!`C9=P+6KTH158k_?WCCC5Fp0D_&L2jW9oRuAO7_lvf9DU zZqxVAE*Lf$nN*VVu7Q!9|6WuS0%kJM$wJiYOIrz#y{0ut?|Hz^#&-1s)Wa0*6n6IZ zvqUsB7wg6%2~@ThbLsv6Vg7v|Aob)R{eKE>=>>=iez}w!LP1FhwZcv@9j&dQfK*w+ ziw?9($is|vh9KlY3{7-)jT-Rd0D`*+8a`kIgF`~(Cpe3?@5FXFLS^f?^2)WSEOC_= zxnNscK!`s|FDQ~7EE$tec0(MOG4D&Tv)QN%TjIow-1bQqg$>r^)LFKp-FaZXJ_$Sz zP+|c=h!LPD==}Y+q9F1M>9#&IbBtPcox!;QLhu(M zWueHdHPCD8y%F08#*?l=gd?Rb}+Dniy^lac4{0=vEuz9k|8OH5_0kEUol_xWY< zcXmY5bYa%k{A889UG95zWAhe!lfJ%iP|%PVwNO;({I52Ko2i2DB%&j;?VhOQaBKu% zK>a9$oPMMLtBshrI7H@83#jw(W$iyOX&ONzA?FGxG>&$8ocOc5>jv1?SU5Oj;nxz< zhb}Dzd)wmHRwR(T$VzH4vAUyFeO+DG$txI+1_#I68Fh4$p>4hXco)m(nzoUWDl;=f z8opc`^q%k#`0aly`dOTbIxHW3$KVI*cLxXLtU@RL`YmX!+C}6+1PI>`a@1U1UsoV? znBaUZlp-vh?KZ}?*g}{eKexA3#f067o-Sa8w?)pCbJLF1={aZ^y8N8}T6B+!3QKLx zkSi1EkKF?p0mN%@t)?QLY2LTSe*$S?548Jmyqb?Vcnhjbf3EfgpTwb#?qlsm#d^5wmK0 zMwYxBObkOkJ>Rz92=Lo{7w=g3OqML{^w1M(fWgBR^^Qs)eDxffjKxoDcilAp!o79_ z-hfD#DEPuY@ZEu_khjqvZU5mT%mOsDAt>Qo7k~Wf01uwLmYyD5hz$Vh(huZB5Xb>f z+u7ltdqRSO6_9VV17<(3#Kgo+C^uY>_TBWe&D$69|1XE=`vBUTdjX&N$Hu~vXJBHI zz6$bP48Z@Z!KenklARFRL_|i`4h+r|$T*3~$wR=hiZm|$SzphK>wsM5pHPtCdv(g} zd$>;Q^7IF`7YU@HPJB0#0T<_k9{i_E&1l_tsgkPo;eEZGhF{YWg!Og*>H|=%#JolM z7hdCv_9XZxeb%fPY!6mQOrpGRf`;~|k$}K4RRC8EZaB}2kIZdtODak@jo#;i0P*TR zdK6relM@Wg11`5^)oHqg(YfWHHMk-hK=0eL;^ zIl|;to{j#LjI0~{jjwYW`)NzGh+UYT3 zYq95N$-F9)kf0U3g$}+(6lfrN0%nRX7^GApj9gqkU`~t?-`GM0*gF*B-}BV7-jh?~ z#(EwMZa&{>c2(QBx3jDI7OJapP&o`0EVjeE3bL}0o$VR0?RT`b{eWFGqpVD;7b^T} zUu`m#mC4?eBYyh8ZE-lw_pi&;6g;PE;1E-;G?uj4*dP%xDM0&=LJS_Xy?^`WFgo4k z;UT^}JMyZ)JDeB)5aD}(U#|2?GA*>>vq8r}qgSGBxj{*=%PNu6^Sf;@WE_kQ(`%Lo zVukrhn(xm;+$TU#a^NTdRX7K@fb)~(YidY6G~}QXaAS z{aH1eaB!D^MlH6|KcU7nx#p7mKphW@fn8}iJ5EtsEAss*V*^XBbMP!$BB zzwiqUDJ*=E7#<2!k+iY#ZGa{rciS3fSUK=4z~zBV8Hb@b6!upRdV19ApdbkD3Nrma zp1wN}%QoyAk!+QjnH8QSWkivNgvv+*ElKt!s|eY96(XBtWs{wqor;iEC^LKO``z#N ze&1iu=y?kFb)DyN{HE#AW9wUWa{OexG&K85%{gZH4p2U4WC%Go{8A))QYiE?UeQLF zhzMFe5>WnnpZVUeO#g{B=tx=MqL*L#a7%PiGU_Dx-xY;RHI!?rphB|Gi1r~+uE6^j_ZNNmkkm8YN}ZM#GSEjL`|!xQE0@{dx(%1@F6^;%Z(gh9 zjB;=?Ucf=Fe&-H#M;Y?56f5keUv}XmKxzRYP>dz_HgTQYvj_i0CJp=Shq90yg`NmL zVL^h<8Gr+L4upDodOSD#wQpDaB?1L`+!G!Ts- zRBgLjs{vM|^X})qO28KfMiEQ9QE|W8 z#Ug-RT4S721+*^y)j7iVs;S8r#3FVcExEL+Dk^%2@kBG&IFMsu<|f#Xz}&b;1Czy6 zwcBP}2PU%-N%@OU4-C2OX<1pXr}$L3`ln}V@aaSwt3Kql(<`@ibo5Yyi}%7CX(Rg~ z27eb{ly96}z5Ap`ATO`t4hvHHAMfI3uqD{ zLM8T$;{hDsmbSLPV2Rb|U|Ngag9w(Ik98jTUo0wDmQAMzEP7TDBet{sC;bfL4|)VrIHd`F zR1e@w=ZM=Wu}IJN-`Nt?%97zv~|52%O@o#dlOlUQV zHGX26AbJj9rSe8-G9}D!Ad^mko`%97GYBvkf+Eon*<^sYfv+G^Y6Q<)TdBqUKyNaIkS}nW1{TYY9L}&kPpClYAb~`c?gB8A;Sw~&a zGMuLS;5jrw6@dD>rrwDRhx-HxG_+BPc5S#Wkm;8*i%dP@jz*>xUaX{y3<_jlT)uLJ zRKDJ-C5-?5oevR>&Ne3JiSXTg3}lnKNaPM@!ILM&QLkPd326CrAWq7Z-u8`YkHh-$ zuc0OL41cN7;>HV)KBj`-^S|o%NSQu3^&}wYr!?WRK(-}9kgoezp}_s)KUX5p^KNjM z5}K7PDi$uKTT>9N!-r}D)&6~8MY}8iekEXH;G&iIev<$`K7s1U@ti<7f5qlhruN-X zkR!puAXAQ`H`mv>{2SiBywax|Cy>(4fX5C!t1maUww7=ZsSxoHgNcKKE|yT`@H6^m z7LZ8KzG_$3QShUm5V(f;ROQ(6cfnOok^O7i%Lj|RSS7RSnqVzDE+%%)+&sqtLj>ik5)&R)a8-gR7`^29wC)?4QwrVVS38uXykJkz zxzb!%_#FMYooCaX1;RsxYuaa{gQgJk9PhFz1Y=bM9*i(UBcpB!XXlb{hA<9~fjdE) z_kJkIJYi;^yKT1_o_&!|6u{J;)<`b*kU+z30^40^MR~H;c$v)X0Vm-&8@DwKIBu`H=s+rzkEk>pT$grHF z|7&PZo3MM)kCur2}boi>~D|+@`Smp9&Hc5k@;5S_Gvx+4en%Die1l=arSd9 z#s5o@0bY@)DV&Ftd!ib&&34zmSXj`bq`n$+QET^Z`Q@Nv``$H~I65kB*t*Dt9&>j7 zM1R%|v?{@IiaP@Ymh-Os&6B4l?~(^uTmSyv5wF_$^-DzK51;)EedTukQwvm-m(ymZ z`eUqI?t%Da#tjT5{9sKD5fZ_5|EDy8Bi05Yg)toHus0E6mj>5nJ$}SWA4l~X9NOog zBVamq2OIQ0q`Stv@a4HD<3Jzz`0**($JFfX912kC)b{s(NZrxyJ+ibl&u|J%p35G_MLS0GYZ?CHAYy0df7wlinb92K*m;2LwqNloCL z#8^EPkYF1nI98|NFX)gw_H6eK_@uB`K!#LYsNRL(;Jx5YyMW{ITe>ROIEa4!cY|%O zhp(2Q8TOw^Pzqt5_td_W;{_aG7J`tjFeLO5RvI!~nu=+D^o|Y=`@q?|Zyby!1!IR& z8IV2{c(@1)Hd<;A08D>@RwW<6=t-z>wA@-XV>)=S?&_5*QSV%eks?!viwzz%C_qqv zECzt{Ag)t#IC_FQ`a~=(xhdAkxztqBLwN_-vx#wvU%;UYnF6X-2z@WH-Q*>>4xk1;2y( zpt2u074GG;i) zbW}d+B~#9DbuKLDh!Q0UL0t*th9mRyoycY21r}jlovNbc8_k+;ZQX@~FTGdn@nem> z<*u$LOkc~zT}HXIT4U8MQ68~|hKL_G&Y8lscjAAF0C5>dy12NI^n6K~wznb{7q4M~ zKzt7s9i0JdSy{z!p%Jysq=s20<&u=|MG|~UI8hQ$9J{tW^+U%n(%-yKzUWt4T4zb= zo0HxosH-a6>FAGfr;>G|SHDi?`$9YQ`@r?Ty2ElQ)j z{#I=GW}<=W2iM5R!t5f6$cVSk;V{5T>VY&3cd@-dye2IczI`FRsikB$9~mj`%FEkQ zKfg6E^!nfL{bb$B%7RF#Ik)o#1wK{1wY9eMo2$>9s(&A`#5jYb}YTVz7$ukUe$#i8xUPGR_flbUwuEbNxkq%6G%Z^1=g#qoSesR-n?Ns@yG{} zUV>>u)t!rIO`G~fs(I7zMnl8-^XA9G!ot9V^7#h@U^6C#Wv&cWgwyo(6g2!B4*tf9 zD*kVJ7k(PloW4yH3~q&%Ip4Rt8b{ z;PR9BdW4ZSK<0Cfo)mb3FKilNfHLYZh+vIr0@{M}#|{5bM*1Y@r#b{rKYrCO*4B6D(bI9RoUIpdUE za0wu2`8ib0#Aoh%d}C@JkGM-g#T)i(_UhWNSNGqF-YkugnX8@Q5&r61`t_$36O_*yvwfhR9b-;YU;-Huy2V z(-D@CJYb}(l=#mz|IKaHVCp;;-sp-nfwIiW$#A|Z4p<{$DRBUSKQI^VPo>ZF+Br{0 zORIKhsH!MO=aiNEKK0uytiweXQmJZ0be!^Mc}Vo^=OP}gTZX+k`#o&R@$WaCIQ~we zmPL`H%{O+9Sj2slX#9V`0ALare{T=3Ip?=RXW7TBw7Z(r~2_3?wVJ%bA0Z(R$ztEk=ND*vFdSBEDt zAdr`gwD&;NiK3S~0XL^HFqfSWSm7rAlC0oaPJkx>iL zWd?)J^A;aTAARlh$0KG68WJlEDG`+7`-s$xA3VRVtvy!gO-I%gex#-JnuCV4!NQuitPFb5sZK2sB&!+ickcla&eR<~Hn?|UGh4Qs)L+j9n z@Jon`w^7j2UixNl-rMC|FO zy>y&|(&c6kr;i&!WO9lBqEEdf?CZx);A08yi+jnX7T=D^Z9{kyCRgafhpm8Zc`7nIu#}0IGaj z;j;7LS5>a)+RRs#C|zA*qowoxLqibK9+gL17o1^Ai!7Y9K0H8Zn-Ezafctxq;-G-- zTpap$;(9}QFBtmV3Wiaw17nqpa48 zCVOjPaq*)?^-iPQ?z-O5dlf7vXlSCc?gwkz+h4pEe=O#5YF6+o=5WMfOl?1nby-jd z*j~BCQbJ!-?dM6=5~ve7`lHy4uksmZ^CLKjj~^9$j&m#I^h44|Y*HVQq&*ov@@ZUC zZ-Atu<+)k!u}^#@ThE3sc$ezx@ortAKW;y+yl-QJPu1R*G&9q~OArBXAf|Z{qKP`? zr*F&3QdGXy7a9rPE7*I;&hEYT`{!02PvP zckoD!cH19YTfz08f0SN)Z}FWdN<17G4@dO<>mCInwRN%VL`44`eW9lnZFpP5UH#x=2+GeB@97$-N$6R{4c7!_jF1Nn43&c1*!XWpAY0e=f+DvZ=cR!X zLSHyuY4|E1gFq=o098!6=DyZvPZP?WBwT1H)FG#MPaqplygxuu*(F2)pEUXzBE!!thS#}U$@y87j)`<8! zkdl6ZMT$1`diq$P-Sn<(5>3edgfxNn%<3*3Hu=o9VJw7bKmT+Rx*LpmwZV7BB@pZH z57o{v1ht-s7jqydCx5kL!b~vomi<2ppM#*_|7Gp?2qdfxghL2UDg*gHMV&$ka4y;P z-!A?GcXXhg!|zTBP!D@UCI%wpgHx<6E`$Btb<*s7Ju>;>SC8g_6GqKvL8_G<5HGPdc5l zvT}q#Zw>{tUW?>fT332%iX(a=y)G4y^L!>6*{dG_BUs2&7`g`o+ZBuL71vOZzB zT3O=N%GOl&AAc?7`{3AZ`82H)tV*hM9Oq*yD}QHai^xM(6hT9ynLIPDu-K3M`GvD8{i;)~Vc;tl9a8;q2y`~-;)bPBU zbxyAI5?{T#?*IjUa${p-x6hp;wopG-n50M-Rt6rq5eX3=B8c}SG*qPW&)!$@zpSjq zdQ3v%@a&N6=(s197J18uNJjnBCdS(Q%}|hF+S~^taU_UWM)MVlcQac(GenpLK7DNjP2J~HN$ zU08T@VD;G?et|`(nct({29h2EPeB0FP;h5}74IEKT~U!yM=;B|PEDS~EPMa5s3M7$ zuUv9`8u#v9bAxOv=7Nh0U-bR=M4w;X`&boo=wif6p25bwPNJ2h(=Izc?@@ZQmX&Q3 zU}R*+t%^&WaAN}-AWZV$(+JC?qN4YoSn0ZV#>S=XUoxo8%?pFQ_D-eCIUEl)WM)28 zvWNV$-IX_2stXGFd~NTrhhic){QU#tOEjn_5bqh8p9xU(^>qk|@8tP8=8!v7sg*u* zk&1zGb8>!|e*vN$!kmjA3^5VQaZ{E@=H@9ZiwlWuE;jOLKc>SRoQ1dRDC!miP{R6$ zi8(pT)%B*DS`DH;`X5b*nC;9B9$s+2!@zEKNKe9*L67JC>bA(B$1I3{NS+PTlB8G;&~GD)oE`58XC(Ef?iuGT%g;2FU|R#JiWf{ zIy!_Wj1(0)%)Yj;bm(BWR8>_M2+xCJ{qchbgouZ67{s*;IAd)rI|i68DDx{Rw6|yM zZuwUAAtuYm&rbvO%=v-DcgxNXJFeZeerw(_$S)v3h{5>;Zfw_C>tz%R4*uyzB&)&}I56(}Xe4RVQ2{8;?^HzdF`LtRuf zo$Q&WCL4vBVM5#20=}>9&`;KWEiecTkL3R#AVA5Rd(ShaG%9F#xBsPR`qA}Tk2rfc zI3goQP-F&O=W|c8DS>PC>dwxO3=Hb(>q*hZLTHWkWBhMdW>n55Ejzwc_|YS^A11cT z_XjLaD*O8{{2n+mcdk9+i0bAHF|H?qse z9G0$9R+)W2zgFr0%_i0cT@?#(a}}THhVFdw!zB7XfYU*o#)BR`nWr~TI7{Y8iq{}k ztFKs)Nm$shrzR3v8cyW z*ge)EFlNDus0|A8@@kYuZO|GlZO*FECluyTFOTuw6M%U#IL<3z(GZmjf88a7h@6f5 z7hJg(cY?s$T3LLjc0upMXzDshmM4C64t2U9 z;*G1NIYODAnuccJOxn#%N8BA4zxaTD-UDuqS!w|Q<0vk9LMqj*f)6@`ha2F^--QKT z%o^69X3MR9dc}g(JHp4;O!4PW{&vd|!@<)1!zSX3fnyJS|6`c>9zZRbWpSTcr<{pE zMP_Gbmt__keEY^U*mF<{7Z%{j<$!=L2o*=9ZRk(9%KaxO81nAjy9dyUnGaXB>ubG4 z+(E+4Oi(ng&A7=P@7YT&|7~;Sgo>(x7uptYwq)xlr5Y1TFMmx;d}{wTv9+eu;_{Ow zKiGAJ(O5A+{>nohR5Ohr<`bgl_%@HX3YYc@IRlEj|JGxVnJVEQT3>~W?8N`$Q<$}I zb$(dROY~gqwoS+0H!@^jZ8}>*(L$ik&|Trm@4K(D-Zy*q#R3$=#~bm!8$3CC@*thR zAGc~WiBcGM>j{yUi2s}{@}GT&eAJDl$^8Hy?;?TxD+=NoW2H@-TSYHKNr$gy6iG0i zEL_#Ix7R4u>8#1lN{K&w;d#F{Ce_rjrhI+DsqQ_O=Bw#~Z{4d6Fo-7@)8V&IK_NSk z8iH7Qrz!8(ts9}A$_>?f9}RqTcWNL@bbR_Fyap9G#cpozUrQf6Z+aBy*65Afmpvm_ zf7R7I-xn3fp%qnPmb@g-kZ~$JjAW*dIML#M0H^FB;4Xy45(oz&v)tf~qgPI9;)T&7 z6J~#DXQnXj5um|WlDoNWmL5kmHa=9n$BEkn8>t(?g3wiT=j%4#~#_LMDsH%NJV z;!^KGzP_fKq3{c?RF-!sBS1QOVuz;ZKZ=ZyPG1Y85*5}W4Rf&>B z^c&SiVz#*w=l6PT-oxe?(0AJkLs{7jmcR3^2i?q_b}$zZifJ^!(Za~J4l`gEkbO!t za|)2l8=TXlp?O|@`WP*nKtp|Ferf5cjiHJ5EUO-Y?c3LRQ3`N9Cp%j|)`n2|28I$p z=KQKE7nQt{G%stBZ&}1`?S#?k`E#P?`~bL)6Oxihfa|}_$?@{_RqE~CuSwl}gm)h8L{A3Dq0l6$4n@_D4|v2S}a< zG#(_4)bNw?wzap9Bj)T|U!TvbdrlbZ2ra`>MnTS&6dn6am;;?O88{e2&9Jh8PL znd9UnNEXLtOWY7F;!UfNo51aJEjumwsLtLuQH11HPF!jc!%ov8PT6+T&%O3WX=@=n zKnvBUfN}_d(ZuLVO(cY_)gYel_}}@r-t1mE>-MqyonCxmnF6$q+t`ypA{gpMTF@4epE^ zNJ9c3KFo($^wz{4G>qCSAv79He zeM`@GpHJ(IP3-))IsIt9+R|*|sCQL)AcnSr9vw6CEgx*7dy0a9M&~3=wYHbtt1g<5Q z(^luJW~V;weI32u$Yt%Wv5{eRg|RpT-^7T#8O1Bn@CI4YV2vFep{RhoiB7_YO2Ehl z2id_wCdFy!_*c7b3i%}^?+=d`MT)=)oeuSGP0jVhaK}0fUta^LDK%jQZ} z&Y|GmNAwqSo;|m7PnxPhyuqUpW4+{UP0QmZdIQ0}iAkRZ%ToR#ZAu|MPcNhMZg$#} zuv_=Zh@dm^wiv2lO%i-^=GBiMN`bHRKQ;bcGGRMkY{vG$#2=E0F?cMWHisOJ3%44_cY+Uc`sVycCnX^m2R{!9#WR zPpa7fBmSEKBXOF)KO3UxcF+!5NM(k#wY#Ke5yQ8fl z^Yb&*u`-?scgs)d!G0YY2&18i_#voOe_{_v67>5RrBjk{4MJn#rv+Fj@RSk5!;OQ2%}>`W?ioG)XrDliP7|cyAY|u;D*f>@kzZIH$XCqN zvj*r45U`bwOD;lKSa|)tZr!ht5PD*wOF`_ugrF02%0IeF(MD>f_PKoiK&{JqNGvIr z%jJ}x1)YY8rWV78V~>i8(gA87T;H_QR#T0m+}`|;!O1B~+=x&`$w$y0gk4G=y(@H& zup>Otj5y=){lrU`P4Twrsgc1SNr?E9p~;1Kk?_kH-!MWVA=eTndbD^kgz?q(^jv2m zCB{QVO|-PK(y-nV{%2eCSlWx--5nwB02|72RL>~Kc66j!R{kg#3VC<8mY4{GCn9NH zV4ryWu@b(C&D7BSeeJJ*|C#Xme$_Kq_~5}<)hiL;7wZ-m7jb%O;bH|=n`>9qrQPy5 ztRpyEr)BPkQqm?&7KFfr-9PE^pJ1JijG7k<3SV4GJ_ol2;dT9i#QN8${RQ1II5>1~H}!o;=g6Jn_|vZ(E0=<1WbK5@ zV=hS|cL|xTU2LLnLB}Zi`AZ!tbuE-8w)lv1#uc~vpz306D?db|NViRq zooe4cwY$|WJ1bBk{_@ezzPB*y&2^jOdp)#9{0Oy%D7#Lac}sK}MxtUqTO*b?|mEiCe17JGBkA13qRHh2`WB7XK? z9+S^;3D2RnXcp^fCLE?Z5%wof9_su`amRHlaNoV_#PS1s%=Goipf~VQm2LQRt1@R#f61Xh`CPRyZmfZt+Z$EhZ!f~{Y-&%(i%Cx`-w6$GDdODfr<6X$PhyFp8(o& zA>9>FeKRPjnWac~$l%EWPeyF=rTymw|4TM`G<0Svz0x7C=O(|T!z_-04&-)#wZYoaeD z*XD|eja4Ra>(>71X?yZTkT}U_YRZ^_iHSsBhw9%83bQoj!rHkXmU;Q-mrg02J*!Oe zZ~f;)I?jcP?ZsBJe{-#(EwZ1*ceDOmHX2_<=^j=myRgpT-A0um7dBbBjTdvN+T;o* zQPJu?sZ6h>!l!;TNPIh_dUi)#(yadlQWcvv&CSucLP=;hWKggodmhf^vOel@#EBT| z$yt*BT~F>S*xD{9p*<+zwV0mQo9gQ7{G_Chm04LcML1loJ2nn=lqrHvwS}ITiHnO4 zwrt=*PX^c~#>PG(;*B7b9R>E9_5M9Qj$SkOE>3dj&u-kf0r>CS!O@qfkKl*859xM` z>03S8KbNj5QB$_n2+ zSLjJ8f8g@CJQ~JdLnT^M)4UHOlm>nm9O{O})~)#gU;|?1o*k0S%*=y@b_F^hGIH_@ z**BA6TE~BDieMj(aIZ*Zo{;};6|0|YJof*!0HshDU=z$MblGvz1;KSxP;eh?oF2$| z#X@@AwC^~)JLCnV2Xv_H6*_+b_ODt?IKft>VKlcXWt*lVl)0}@4%DViCr`|R4JeN5+?*^S+ zdSW^9%6#y-qg9^i>!{|wS`QJC197^I)Kj8ECBc{bc;`gO;UXUS?GsvCs}{sY-Z}Y3 zukOG>v0v*}%l#Fsa-cLnHj$gxdDp>YkHoD9NrImMzdq&&f*@M+EhViN_rBk~xm@r_ zMZdeD@}j7S5DP>|^!irU5tLKDXpQK~*n#)NtO5d-b~fQ@s_`8Ir4liaP2<@A3-XV2 zdu#Z(>eW=6>(grcNs%3J=CT3;1$c6j6|YZwf17A$*(vd*2;%2giq>m-xO`nzjEQ|P zETvL+4@WYp9qPB&hLTN=h=n@sN|~qV{jd#&8c|+DBP;^_VF)Zs_`WIHdIGB5Bj9>; z@yHE6{G;*y>T9%m>W)l$o3ylOVB_=$2Xf(pM;~wzT2WE!l2l1b#o=c zH$kK@h)cBzTkuOBRc5@7JV4Fp4;=Wc-=%X4_y>HCH~(Ys6AI(2WIcE=S<3j!+a=Xy z9_%izM6UN1yU&s1kf8(A@y`Mr`z0cwypxaH)GC)hs|bMGT(5w7_%ODqi}&tv_P#@` z$SNCB!poms?T`lI&TSB5fh}s6$laC(|VzeMn_=r~( zT>ZZzXRQ>Q^RGO!iFX~ESb$bxpPUD|e_+_f9lze(Jvt@l1x3j%{%JJ^@_zjOXx#LY z9`DFZz_goN*cW9QltX?YlqcX}FA~4W zB-GW32w_P+NzHpmNPgjg8XJy|KJN1OxyZueL#XpjF9@^hMWF`<;UNp-%=dl%uB5US zA5jg+-b#l zN93+u0cKezd%Ao>mC&`*u zFssiX$Da{Az@JjCQ}PN~t~*rzkK0DHZ(V}mfT}0JH*vD4srSC#XZvA-q`0tspu}EQ zI6(3_!+KwzV%R+*+xgQ^0(JufNI&;j8Fq2MP>t=AKzm|3^@|Se91@b>D<9mfdSum; zyU#dn_1EH5gA79A>CZr^fP1bxcCw9qo9MO}R{WO==wR5r<5CU*LudkqFhx?sQqxX% zcKdxDFunKU=v07MWn%gf81n^WMD^j0IW{zTdJ-*RUmNWC@*}uTJNFn{_mwO8LNh*Ry-kd(dfb!^=4LO9?R+AMJ;A z$G>HVFp2K%>=4Mze#4nD1~~ft%kYEWtzZe58&a6+N@VFW7OQyF5*D=f@2%jKyaHYc z3h_g;P^$MqdSgxZT_;k^6bJ>CcT-`4{C^_E-L7{ zYDITtC7hxC++%cjoo^)8J*3d4%mZ>~)BYFWRuLPYh;Fl-%*=2cQ0iYZnWfq~4P01R z3vZVcBzu~fR4h`4y2rarEsLP8&2oF)%Hh^cp1J1zrEPBlkwqacdVU}ovhnWjZbF6> zAXYs7QHA)*i>ZG%arxGZ+__A(_Kj32a|V{3l&SGo-P7BS8=qcVSf`{E(#)NZNFD0! zJWGxwY`@=z73*XEAJgMqD3!u$q!lsY5IyJy%dfA`p}B+lh^y34w{d6_7drfV)}NMJ zZSK;H@FYU|r``5hH69oR66QOVBD z6%AIss&C)czR-Roek9O!w}782QFe9autIM~&Q)D6n;_ujq~d{3ouJ$=HvR4nT^AFu z(PTZ7hvx^xU0qbvFNYc4&($I46L8Pf@eXT$y|C5(nuVTe?>YJuFp>+BOJ8*A`l2>J z|My?{Y&3epZY~Ahg<+evRBJAVx%&dB{8J%IU{ZQhwUP`TlfDk!6Or~)e`QuwbuPs zO@3#g$#U*k^U1UE8VduNp9A)HONpl>U1Wau0V(8@+oB~mpd;6Xu=5=*oSZ%H|B6;d z;oTPX_}`aYaRF5=Pet~9ToaC*QXtCY<>9$TN=`1-YEKX@qw_c>FtFVQcK++>SE3(o zzs-~I^72BHW{5s3dY~R-zaVHyK(7!C4VT0Cq-A8DOqZk8A=Cmgm{49txzM%K$g5#y zV)6rVI6@>+fnOj7V~o-Udgs*{H$gv;^@`v=dxWnA`$JrTY_i0X^3xert*;KYY;T$* zBoYgG>}}DycdyN4T$$2fae5A7wJ#7ehLW>-=oeTW;J#Zg|-sX7~b_C zKmIfae&z2c#;Le(UQdnG@6-Kk2@m~VF11)u@eA&b;F5nwR0Wc@4IVrsi56?#*-CD# zB~C}t(5FDQ{U$~k8MiXa1pQ*g8p-zTk!=4+;-}Xnm>?t(Idr{z#P#oUKgI$B`#S+7 z>j<2v$0U$*GgEhDLV)JkD4C?gvf)siAHwWzFfcRwgA$qqFs}hENSVsC+|ZOUkEKa( z*nhP{RZIIX2XuEX|2bu3;JrEB8$JBNE+CLg)nD&=4^!COxWbE`x;^e1zNIfn%OHm$ z7&mZ^d0?+>j(6ety1p?vP;nKen^=I<>>M1({?TfheP5XJEV*b*Dv|Jiz-oRdaPO;Q zcf(>7n`MO%2L5pr@u2QL#Xbn)aC7Wuugo)Eb#RpCb)5y70jc&WNZZ-GyD6!=a zAoJRyFECA<^XRhqqk*1G6;LoRy!3MBw0$${du#sho~mzBb{xhje_U8zQJOs}oaC%- zek@K!LE+b~ny`?`IeKovNP2zN3<-(fr)>mI-pUa4Q91p3bNJt0xpgAn(0Lf5AO@g4){Bv|C5{3~VKBu%*&zo)D!hrNJXGWl~G^(6_3zlFt*Jq$W7%B#^k zE&q0dClxzN0sb;VQ1V!h`<<~Ikx!e+Dm}n?ZL;<3?zsj}36smxoh^xL163S1?d&e! z%BcVER_+NfVrgoEmV{E-QPd~ZqwdGWR($V~BgymI8~JwSS5Q6}uDw0+T4as(^y%Xr z>M7|*^e4w_*SxuI-*PkX@kv;6Y79^e9-aE}I$}#qubHC2MK&Sb8|sVt`uZ9q*m9n- zd@v~*7Ij%`AFtw*?Kll3&uZU;e{2Z1EzIg5Gkyn|38?yD16GFn^A>Q@6-7hCx4L)k z4CZ0W&z|gzKYNg!{pml^%2J#v%!${F?Ye*(vJk=&TX1TKX5T5(Am}mw0S5HKBrZyF z8`XY^iHHpvQte5*dXn?_gPMcYRcPdZ5bzh!8AzePJ72 zL#57Z1oy~s`~;VcIVgK5z&jpC>>mMLYR@FN*L4R=tq?08uCMhNnT2kUubj1;iU4BP z?KpBnY9uxpm-614_qIYSrjPZz9dI{m#>vsBo7`AgBd6scaa!~Gph#yrRCaL5Wta6? zY+TD+iSC}2GqhaSE{X|d*nKKFYNxkED*q_?!=d$ADIRJf5J|+HXFQ1akdJwDxrBf% zXsu49KO$-J?I^0Exl9LEXV)#ipU|KLZOHe>dCd?NyL8BFxFRCbfDH{TlrJ&s>==IB zX*>C7ZM(Pn%_DnbsuPQdw23;}idw?wsj0t)(&^T8ij?7xv>5o;*LPX=7bD}ci*{06 z+*Lk)-sILQYs_T81^7hnl!g>c#!vnp=3+ThIxq{umK~M1yhQTY^w<&d4%egA?)Juc z$HxL$)!Sj3r%X(Ejxv1vDuft5VC(`{;y%e;RaI;mZ+&m~ByFkwJL~!=`R3D!iIl?1 z)yfy`X3F*$G;D{Shm6@vF`qE0B0rvX<)Dj$q zH>ALzJ*;x>haP={BpF2`3m^+!L&Ii5{qEogyXltnJzu_Q+`ew2Z!vL2gC7?+<@JG* z@X8X#jKaP`iXunH5cAF%o6N!VVyWnhq!BDBgs{ z1&-5Ez5nIuJrYr*I_Tu?w_Zhbp2yyBz|>lG<7nbIqbS0B1`v)I;*ry@N3dhgo6=H^_}Q`vuKq_A0ObA0~> zoM2b4tGD<5{sRXdzNL}<)YkS?(C^`NTCM?1$NGDD;cIj1vnh+%#+1mN=RlSjg4Z?Hwp)fGqW5F)MGmwVgz$2-=6g zRg3_Di{{JGD%gu5J_I69*3IQa%>k`~%NgBaO9zkm03JUX;jy=ST85mVQOykFnUHqG-nr@j8eUeyDPxHntJ@m5>!D_zX z@M#rb^kyFo-cL((Ng&Lg4H5R|bafM9%WWh(7c$uvU5BHy>x;R(|NNqLf3*jB4@pmp zuM>v4bTe67pJsQy?)i^(<+PT2{>~J1qM%i(08eCJf8QAmHz=#TkG3L^xE3iaggA}S z-JLCrf%G3ge(W+>di-U1_P-Tz$%%Jqg}=TD)dGJew6P)OmVjwu(^){Wk2{2Dq|aXu zeD9Xz(~4!MksDKxtip&>h=s%vq*3y#SJ70bBO6=ud?>O)$5IQ}jQ3p)JdV&<9+uu*PBrd$n_-#3P zt*PqU8`+j)ucMXxHeuwtRQ(4PYDhpq0*6|LCN7)C?A@I|r}o&!T|OXGOyIN4htt*~ z_%_!@FXU(Jc~m4Ksz@>UTV31l&C8d+1eC6%3~j*Wy&ao)c)z`#p0bEV`f}u}R~KID zL$g3gHi#>VHQY0F#+xQwz+$*#nu^M5%##_+brVKT{#!S0h&4u;;yCes@!~JW!R_de z{6wD|1VvIiIXSL=db@gW{mXTZ_-aG-rhhjxLtjO__`<6=^6#6@@%;QGCU1XcCFx1_ z2h>2!F;!5$h9zNd$$ys}ot+D2nlDETm)44E-!??LbQECqLJ>(IR52jVh2KA>VXT9i z^ColZ0f@^9k{^6DAg%~$J0-}&&Ay%IZlfh|<6D1>Ur2UtC#Nh@6*+i&7k0511L%3N{UgU#K=}oGPxYRmo{a3VrOk&dlM1}f{=r(X)bFjm?Bj} z$Vfb9GE#Z`Jd~7MxJTb1u9&-Z@huokY2{RF(#b*X?3?pDBOY{|JE^%IwEt8Rcn4&D zC)Bx8LtB%gqxG`8t1IC_K+&pCd3jkG>uw~2g}wdSg!)xzG9ic#^QPqx9^LPkj}WMP zE*ttlKI$+{0qd$kG<@yq%y(Xd!vuqrO@l5(14=*N!AKd?y zh7Fa}wbB;qx8!yTqhDld3M0+9HAyfZxUI$?eqSbst+nuX?a~=nu3e*#R6gbXBIF?^ z#Yd;_R8`EnALO3?`Co3=u*>@4?^IHzhAY!mW(>-B)z$|~&yiY;UDPIZS!E54Ow%gJ z-ZNX+bPNn7d>ePU-ruYIFjEB2dObG2U*L!Ua31yc_C9&!$dMLkkq~}+yV^x|{)@7) z?zzJ@L?UW5)R$|Q77iyNOL`^$&1pqpv+~fJvx({H5SAS+E&JhvT2_+*PkMI(U!$42$W8^(pHhNR8Ox?8RA2^j01t zXaK57M=e~p*l0Oq>WK>(Y)_?oZWbC{B+brx%aZ?88XeN z^~OO$@1KjzaPFNy+iR3$ahc`zJ$*9jeEemMV#xcdfr}8LIGW&Z=kD}B`!#m{tdNlA z)9xPLF&ec6g=xy~m26>rql35ZD`A&ky4TTBDEdnD$YjmGE!PP8f5EO@F6f;p&gFn8 zjZmGze#RkW{MWC-vLGa|5cVhtF+uv9Ao3**9dE~7*6D44aqScuZ9~kAro+bP#CuqX z1pIjLZl~hbdi!mJLvp)OpKG`dN*GH7-7V!dSzhiN&Af$J zPGRAxXS>p6dV8sfc6aS#HH8zq4UfOSTkghGxw)p8>$uccQ&Tg+aSN$C_gyv=svH)Q z9(E<16W5+<6;-OObO@bO&8|}MqGojmds$Zc)$5s4HC$M#L+Yl@sLgm|vDhr!ucA_`($h1m#87=e^y8*ezX26R zoIk3rI+EQT-!HDau{drDG9MDhOp`2Qk59l6G1 z5u6qxXRp%SPb8T)Pc{f5t&&Wttq#cN`w8f^4 zd?^VDvzy_tI%8RE!r`rU`?er5jI0`?uy;~m{`ltf7{)__@g)WCpY6*N&=z=NrISPk zBcVvhXr?a@4y=dRIWg;l7Ji8~dl2KuofIF~0-pC@e}8{Icn-^1y$1nIuELBX6JA*G z@*yk5OBZ^m;E__n7=c<7;^p`utd`OJPtn41ztokAt7I92Zsmv_6hDhHc3-LiF&lRH#vdl!vBhZ zOv2k+NH=WK=uWmAUH8#2^ywIBMi`*XdaEyj;+>gudl7~<^Q$G?R85(3xwTcNk*=r? z;z)NePBpNZdwe*3G5hheYq2#oB03{%>}^<*b)hf+(cb)ERrPEj^b?=pC(ti0E{;0m zcmjT>!@~%3MV2HZ2F*qcQTo6HahT`+eAwUY(~&XWsub5>cF^y7ddNbsYfW+z$u%RR zLN0CcOgj=nR_KQh7^#w^t#Al&;s=6|_Gc`nLxUnp_?`}6j*QmGc!WR|H++{C!ZDX| z{!21_@uth@J7H&B(m_IG8<2J-k)#uq!8iN&hu|W`Y-{v)q&Du>221kNhu6PWkP!ys z@d0e&dhKg59^^(013?^*T89d}HCN63j=@~#JEdg6gfv^%AiZWvkg+M>kJU-^gS>9*JpsjO@(*us=6T;l$`j`fsxV z^TOHiac{wy_Kxqc;oqG(0;@B2p|mOrx2K4zbB>--GSqX`Uq(0b6F6--)15HVak3W2H|9&yeXf(aIXk|?uj5@_9)d&ydg@OIU=doGu zEe;0>OhBB5nTX)Gp2(=h z#6aX+AQsE6w}3F$kmsNIX;Pk0ke|6U5OpQYuSmo+{qDvCMn2uJl$S55Sy@>Dx?b!& zO0{nvpZKj?#u4U7H+=vjoFT_joO8*J<(Uk>_RMpU{7TOSR8m_ImrRW@c^^hPk;8{A za8T9^eDcQtyS~lJ%0;-l=WOW759J0p^H$f__rV?qe-k^H|I``(?20oJ*VmmrtEio- z$SI?5tg%-g$TB(z#t*V<{VTcetOaEhRyZT>&XSt0v|p4tW^-Zm2s4*9Ma>y%Qv@*} zGM6Xu*qvQX$Jd2M6I#XAIxAkrZWWK#g^=l*RL%d^C8AOwklEjyP?C(h64gwon`eTr zFZIs)O23;dvljF(IXTh72Jc8<$b57JlT6dwOtZ#=I({$GqwRWIqE5ctb>V^}&9Cu{ z>q0%wO)awXOP!d>u9%n<%}#%Ko}|L7*7P*+iG)?&#?)KmnAWJ6wjA!p#C@ZBXPGHx z;H;zwnXU=US4IB?I+Uv6SRtkYbU_{J+jeyY<3jUv^L_<|G5P1$lW`pr(K`$`j_Pb| z>0qJ151zDtBeE<72rSkA-(*Zr5D(u z*+mor)QgRBa%1VSId9-#NG>qoQNlzNhPo#??DzM07 z;Q$eDMX~`%=9i?ryzkch_HPLZS5a{VwOEtaOy8&Q9PuxossmATuN=*9a{fF;)6+dd zz3<7sCU7e0FhH*LfS(2hFIN>kf3ph7I4C(v^KAp?Qwy4*3Unb2ZJ?jfG6CkT8e%l&e8+o|c&NHWv-*&Cix)IMN@9Pt+s@|YupEq=D( z&9kXc+wRIewzj&<-y~kXc@yxz$Z!at<)>~@oTPYFRwdy1|7VPg;i{sa7ugR;9-Pv$-AD!d(ijwD=j98(xM`RyVJ#^ zac47akDHP!f5bxb&TYmdAUN0p)6-(5uW#GR7XOtn+fTT8{U`p=x!-<{s6DVk*wD~s z?EmI$CW0PCwBx0~nC%A%5opTwn6a#K9+0efc$E zbA67VcBXT=Ctr=FH#zju>e|^=&gSvD473PpLUsXv0eoVBAK=&F%&RJWAH^x94S$Mq zKPlNe`#}|UhCOOkErmY>ERA~4ENmk=^b8ZnLO=jHenz3Ew*X6oE8Pj*jXn;dM-2xT?6+T#NE{abM9=Kn;@A$s4Pu(Zc2xymz`IV9JKBh{`{-MD zvfI5+rZmr8Ok#EMTuEU~b;~^=yS0*2>K2`kg;Q;STRpC{GUnP~*gO37jgSljJIPxv z|E^}G^?_ddafQd0PMWqq>ByZ-$^e^sYv-%a=ufeAtq$xP_y z@QiH7zrW}kV7d<(G8qvtefxIFn-=RX+&hLipSfk7_UtNtAam%%es!RVc`hddN;iorX_3fG(y~yhVFcEB3i*#a$WiO$CVGVSlJP-5Wfc z_Chb&@&si#`BQ}_`ZLMi2VPjMI$VM_e>?TIiMmsL7oM~||H7QTgIZ~^><)XuHHPNG zBL>LJ+PT;vg<>I{Q5n;t~=iS zCpTNUeX+>ZsyN#|!>e%05oqo3@84hcQTPrva!nZ72Lp6XOG_j8FX3dP$C)ehnHhDr zdv1Ft$da|SD|>%sfr9)2(5CF(L`!_=@fs1L-uCwIf*HmogiOzn|N2OJHr3oBq$+|# zqpTz>>d-ZNodEBDw=cCR4ob;EP`Ve&=!}MVJp+?Qi&w8-AW;5-v2g=pCxdaoKZn{5 zl{%JwJT5ZR2;Br$SWEP^_kSik(VE`!e*Ej^mVkkwUg*cc&v5)TySqR8`jIHdfe=bF zx(dGGRs3p9+}wos^gZ5|E>4AeNt2!D1`H3P_{{Rqqf@SKZW$iKrrz2e>ujcJUhDV# zOc1gOe3XKOT?(@2BPL-)?lk<8gON|~llW}=lXUw&b>yjb3j?T_&`}@79v|S|A+Fz$k+|XwyS^XR3RO%rit0f*K8lH% z1z#nBZni#@I6W7TzGimM!{eoKDf{T1mB$PBL%VSWR%1z;!;~xQu;wC-U4T+ikuNKJKiQ7G3Ig~*`Q+u}an{lUqXSBoSn(;#=;YULYAEzZUu|pB>iSalM>sjEYieGp z>1~J|I`m3JMy6=4#rp-oRpYUk{~RPbgWOxIwYFYf|F}_YdL8xxN^lj)mfs_3Fz6_( z|H&oPq70pfs7bK6SBLC8NbBvooPn(lO;4W);G#Z9DE{fw<4)=bFAG5pAQed$M4wf7 zuTnsvHjuY``9cH1>wU-@Wn^UPFsZyjrWS%>c7AVdWkRz64n0Z|?*uuD^R{o=QuFj3 zXtw*~BhbaJej)mi0a_pk`LXE8WVU5!mXYDwpYF4LBMp#EFSni38N^u?t&;MLVe7kA zTcqcrfNlDjYMAr?;u!S-56B}bs=G(R>a`-woBa96XkI)+K)JU}$J4@r}pS4FCsa@S5#wYn(fFT$MO4ATU@UFTVbX%6pttcAjbaL z!s5^wSo;I9GyHXRm&t8!O&uPoxZi1_8j&gZ*0z^2{ywdKW1R2TV21s;pb&e+xOeXk zm|?80U#CIkt!!y|Qup0Cia#ap#mG@C#*^Im+L*}xQr9P0PF?-}j}IS&b*-lsfyxdf zSRh%v!EPT687fOdr>UDOd*ko#cXdshC?K<->*(mP)7Lb7Otcoue{lVj`%I~Pc4NV5 zx!mg;emgv>SO}4~k<@+tssdyQQtUJwX3n+wHX#G&^_A?*{f?BcZp#r`04xX}^Yva1 zBJpG7_L; zFB9!;*X(Z41}5#@Hb380o1U(V*IPcEvf$IFtKD0JRC37x+sw~wZQ9Mys|IhonEhQQ ze>8cf%@tJ=dJQ<-h^kv+vH;fjEF+`SGxe5}QzZxD!(jLP&~*Ip!M>8}obrFWfQ;E9 zd#kUzdpEB0t`BZUh}sxqW8v7xk555r!E_>gkNS}u+uc`Y@@642Ce$_R1-Y9?(bz52 z)7?#jO_Lqd0mA22GeQb>q3O*XJqScmh9MXccv$6+Yex6HJe}Z-?L-&0eb%1CWPq*W zj@s{q6x=eGEpa+Coo03Fv8TW=rGX4DR*h{!i8;?mIh^x z`!?ODq-gM>jOe~l4IcBz&rcKjyZ&&`4GY!Bjd14Y%*@Pk zf;x_Q{P?^3QJ*)H)6+3;`gZgF>#PtUEiZXmaD7l^A~);pf!E{F`-kPmIvL_5Y4D16 z%}u;Ecz1>LGAnJ)v*SBrPVwDbTe~`gv(kN%||g(uJCMQcR+>O<)(Ja>2HheFVL z74k9^8?eDiQk`ACcFNjmuOXO*YdjzZS=TbcU}?s5iBAuf9Pb)N}Ac-?-^_ z{czgWzm>cQlbuz4QajwoA70P@bstqx?2ekq{0)77@?` z6Y__EhdZ5XK!D&2aqV`5aYQ(CS&*yF(8j#r$CdSRm`bZ2` zPWbkc>6A1J9<7?vzX-cbvp>dtzvo;v+YB6!UW!nTg>MO~agZSIrVF*1Pk5-IR8WSp zs6QR|h)$M+_i|HNsBKN)OKX+?$iy1t4!g&q57gUy%kHC0vUzllH&`J4KZ z!t~R7u)T_cj1jG2#K@uSPbo$McMiyn31XcY2;Bap2QH$AGM+L|x+Obvl4Mn%G$hKC z3TKV184^X>KpC#$A10K7Du*69VT!37x=$NLBHI4JP0z}{=_)Nn1>nYXU_c<9i)Mb( zyH0aPgsL^8Bz>&7i1Et~I{s9Nefz!^6;!adwY3lOSg@~66}H8$*3b_dTrzKq;Ie(m z^K7dp-=XlGk7}+UgAzxx*=K=J=U?QOlX4v&E*Ub>+!Uv{BN+2I+9o@a;h){5J?|WN z_Z-x&tj?26$8kASQ1;AiCjHI|`eAeI`_mnzrPIUhFYU2>VAc4iBjzR83P}Cfr-#*q z)8yLrumNC#u&-$CnttK%hrPj!FNweDn0L9B#tfU^DDRyW`|bt1&C@F6S;Lh!F;G1&?_( zu+q{Th&n6^qno|6lJl^jz|U{gF!H-QJ$(rqA5+83bG{ok0QEFGV?|!@^uE++(YG^XIzjwcOMa@ElJ~?PgXocGC0b)igA= zBPQlD0kgwRkHINO);T~y3$}Zc2yCN7S342rK)+WZ&PHUAs5?YdCI)N@n1ec|HrhH4 zST+aHu++`ZKfiYU3-h6N2M3Y@dnyh&mR~lVas0fbuP$b*4A1D0dsPN3|KOJM8yZ{v z;Hr1bt+m7jC0r0EF1#s@83+_Oa?r9SnA_Fxd+Li96u2$#hV#Zz&8j=Yy106&5>_~|7!^{Tu*LBMxN5u z>_@u4yeYkfr&0r$Pi=Vn({o50+{MYD2n~x@xy$%jdc5VDTWmx(t1a3-g?B%~-6DAR z?{7AA#y9~X^)8_iXj*^_im61>u(f@^MlZTe$Y>GnriYGt)dR_QBY%KXe|@-Rcr z@6@-qIO{}_2#fNb=(m;|?yofT^-^qgB%Y^+DCH?*?}fVpjAbyw64k|A{}{B`WS0dY z-^m105t`FRVC$|0h) zwdXEmz6sm(9w2#^NfS;=#)yv!3Ck~*uGW8jd1etkJC-VU@2+3!8vH!|^KopehpS@) zYyi9P_ag7=)*E<1cH`+tAY?I`R`E2Rxw2;^_HbzKU7O`?cs+bI`g2Wf>x{pjT)Th$ zZzq_ssr-2U6ZY2U^=Bfi%a@Fbz(}s{KbV>#Ecm@8rF6<5u{FQ=$O_+pnI%ot`+@gi)~dkJB4Y% z%@@xMa!);@N72BQoqN8%rJ~TAnLRM8KotKrYH0+2zR$|;yey=pe=)c@FxSUC8eo$TN1>6a|){;S^R(^6F(#&?+$&UmQ|8qQi?8JRdzCD?8sL~ny`Tny$r6s54- z=v6q9_;F$J+mTCZIrH*vW4qT8u`3>(^shBzy!8C}IiBMts1;VZxUk-tdyQ#&>>hvu z*TKrb4l3tGYg*5cYA{8qdgoc6s0LA|YeYDp_1B=l_KEdWPktXDd#3nD)kckp+aV7H zL&)#K`fh%CxdzyxnT<_70v#@FI4RyGrAubSJ@N`N=!XnoLp=yqg))D8Y{7pB^J~xI4&wD5YwP zC+3OW{utfoJJHSkjAQTKFAhih51X1M5Y0~EOrPA*w5)ofzn0$CVvDJ|^Ieg0K!i69xbK_6F>BFWH2iHI(E^M75}g zTIc@s9WXF35Y5#8>YfyAnak9p!JVJ2cLqh2_7a9y!^-=MAKvSEV|Wso4G=>UuhvhX zz)1Q?gacf{f8Ob9o7>C$4#aIBb`biMjkl%;4Oe4LUCWyu9z3_6xip#CG@W-{U)*6) zz+q;urI`G;7m!XcD>PZ4dfvgoVazd@gNrL1Y9R{HMR?3gnwm5L-%g_&+E?-z7qV`H zG4;WTcJCW2+e81q+mT0v2YHhR_pbAcvj$&(v!uBj*8P^`zP;pE*Tew83Xrijp*ux# zkjd@Nq(tOqz=rYsxnDeP!O0wxzOJ~O#P{#hZcx+SU~3jck=e|j?%6oGN7to_I|0h2 z4u9DhHalmQ@cOX+X>CVk9R`fO*NETbB>yjjDtFIRY(*fafcNOp*l@U8aSTlKv=nbg z^%DVlBdA~y4JIbje!{|pfJaJnHsowlpJ4l^YgHnKq-@|IV zuc@kDBCCm<$zi>Sk3U}2Y@6I3{l^H4nO$|H%ghe0SsW)qVnZV$D4Q10k`D1Wu>U6jtB)Nv zR!-r`t^R)Yc97Pov7Yue0j2p`ZY6b!u1H0drHte&qrU@j8HznQ-I2@pj7Fg;wWo$M zS~Xaghne?n8oA98>u}fq(*kt7F$+2}q1lfz+2Pt2ZN_wANd!6X3jGaV+JjRsAlRix z0|g+3B3=D7Y8>1gsc$1PUtbXOkF|ZW>IQ%m^1C2_HE}*ZJ^@=j9EVe?4y!NtU8d8`pg0%3M5k~X=scp?s>oYTISC38-N>BfO!ekN__5J zOx5i8cas}!k!GrbI9#~ercLu)1lvioFVie=$&11m1|Cij-G}OU?0$A^K{}8y5SJ8) zg2i8Z3SS)(XSsiW8#A-OdXbrGM(nY>8wS>2Me{D(=RS19LxOB95HhQK!;Ou)D5DGW zI=)5?2H7gi?2LLKHOEo&M=$onBK~>2HG_$jwR%AzvRh9t0lthUFY=Y0IkJ=Qu4$rV zz%M+U{wSJ_-1F>aT1$O5H=NfBOA~Uw(o%#QyGR!0G^7)=hjD&17LcKg-LUirtv zt`Gm(QfzzP{+TIkeJG)z-%2 zy-df}m^j46$w{<~5J5vEd88VSj)nZr0DX!I?78ogEM9j?ySYapy6oV=ohdWDY^#4H zkXl>ry`UXE*I%m1JP^(i@<3A40DW$H#>PM1Hm)Gv174gV)t)Y z%!{4QA6Ly88uUVbB_Y9_PNo#mP=XA?%LQ~vY)AN@3td5e@eZN)Q{&G^tb4AK}{(u zICW90Z|qiW+7-?uYP&kK4{pN{x-e6=LQ?aQU3IMMJ#~^o@$cUl?5L05X8HB-pzq%W z-nFrPZ(hB%f^47BJ?R=O0M=qwZ7nT>0MY+lq@92wN4jw1bF)Yc(=qcJx~GMHN~U(5 zqYIBXVFqP~dq@ z^uBb*k&HSyN6dR&ZS9}xK9gDP(;%XTVK4`D>WOxSYd3E;zJB=<|4Zn0Iy$wjm7hB` z(bu^rVz(-3@%7e|<##7on3|_`O&MZhRr|W`DOXqDU)51$ebSgflNHT8Fn;doin&;p z#`L+)3|R%g`H9^hyfSF@ zZm99h#2tA2qnL~ryqN%2_CQwfkJLrFURNb#YyXuaF_i)-0nA%X7Wh{WF^3Gldi!>o z2QBr&7cX`ut(R{G^TyVHa^y@qOBBiRjAsVXf5f>5g(jZwC-pMkr@H)H8(v%dtM|gffN4=FqC(9a$VU#R(HW+S-oG+*^!`4GrD1C^(>7t=OdK`#@E_ z`A=Z|?=|+)O}Vb-lsvP7+*CS;3%l$XCnp59b8+{ZueE`&0V0mEhxT_<^5LH*WtZ9< zhfE9%?tza{hP>2$G|{c=a8o=SqP^48`ZiO8%Kw~JruUoY-8vjKnUUe%LYTIa&JEQ|(l8 zU-6t&4U3_p{Ys4FZ;U_ef*b$?*9qLyg`+Sp*b@p6;RS~Y{ej7B-mV@TzJsr`%WtgQ zcC^@Mi+Gf_7AEtg;L?VTDb&If?O-IdoIvZMeht7}UH-42*V#I_O}_-{8|xhfpMVer zLQp0_VgRK)#(TLeO&D@M;?a^4s7@szHYk2%tW)17^Lzu!4eH8Vz zTem!tMrC;wxh0ksn^8r$ZJ*tUG4?RT6*J-m!K<)Zuterg1EGKgtm^E?J!J^njKzaz z2jMsQ8igkInbcHGdNHfhk#GBs_(L;efwK+4qiG(0mpao*(cvIvblie+@9G*~OWi$t zYilJ?4=9$uT2o!k&a#^(5{Jx)j9hZWsU*#ZFE@sBo9+dyOlh5pOTT5MdQNw4C{pnR z$V$AJR7s;oUnSNK9;g(SVV6dL==3`xKn}X$XPKE_81_is(>i%lHzqbV6zafZdGY%= zj-E|)aT2GPTb@dl(lv_j__V%~nPAZ+D(*JfN>!OCU!-@DYGyyo54#FoFE)SYGu>`C z^|mu3oMT)HNO-7+wZQJA>Kc`oS=ARI%|;ch!$dQw@2H38a`&}n2=Iw+4eZv#C?dx? zq;&KUtrgpmvkt${&(786nMeuBnCv2cL-^DPk0xy0`IH0k;VRBfW6r}B0eEWl5Dc;L zQdi1@zxG}k>ft17Z65rv~bcwiii2(v>4=die6^uMhh|!8i5$9 z7$?oG{>fs)Q*TmLckkCdVUEz&$~4V~1{y<80a+tTG3E#?nop%{Zd*l8c0_HseMyINB>KZo!g4SaB24$t;luB}x9(C{gdwHM z%Ib%VLA-0<4_I7m~ zSa+^x^DvHY->#Z5H%^QF-sa-lKl7dNadZ{ho7S&jXGM_=q2z%u32!|GW;QE(dj>A9 zL=g$UBLO@Q1Um;m4}7k4z)x5eoGGvODzl=uef4T~ZTbhJcKit|C+~eCrsZLv)bW0r zwZA%_Z7a|TRN!OoHI@LuBN^XA-TLirZEZb7r2|0u-MAG*vG{eELND>8kBmy-g z^8Dhe;bz{pslE_JN`@fU6G4n=nq}v3g}U9$s9k6)fA{KD@7_7!3M_4!y?VTVHvlW!pAr*w z7#A(cGjMDTn+HRrn-++gS)%Ti*m)VaM4%cl0tPFw<> zNSwypaTVB>3a%OSV-Hlgm>s_GMhQF~8^WXe5#R~$+4D)dr%8L;|A-in(Cr~Fj^}_c zoQGN^_JAf{qBvRS11k+j`=6oXVYIx8j4GPNv6`0eSt#4NAT{mqi5SuZ(;PJiXJ?D+ zZqp9&2ekcG2US0zoAlRv3q$1#yO_N^oBMxok$ha4rr*V-T^8w{RQF@Nb!zR$@w*%B zh)gwjZ?1kgsymP7x`#*6?Ww2FQN?l<(u{$DE6cHUDn|SVnEx8)28nBNg;#CTA-_<_ zG~x*v<-of~tVi`kW;jJPwO{(@85HOI8@ZqnES_xlyVQ^5AAGvX zx1`cGH|sX%wKf~pSBei$OgL<9I2TD59=Q?Pnj!e1GsqU}07S_+EdIzl6S3Wl8R_$s zQc`^z{!~nWIq7U{T4JuZLfp4KM6D8G%Da`i&q+z;H_Dqn39D1%kjNc*+EkFAjL*Hf z>phtn@@p?LvIH@QP-}DiiIB>>684p}y zf_uL1@c^Bg=-2&NQSka&7>nS-i0_>(uWtwo7vYp4$@*hkIzFnAUwCKp_O%p{*65Jc z2DkL4`^pU7YWMfoRNWrb3+7%vrz+J{P@qr6#iC|YRpjUrxi#!;h#3YcM03m`0k`%H z=^W?n+!(pw%gd`~09$%asgrD5XVzz3d;5)z`Xk@ozoFapBMZ`Gy|U$`V`^${Q+(o0 z3m^R`pb@6qd)!k1y}BU_b90{%chxJLb~{yL-$gAgFhfk3x@ECt1-^K(AD#px8r^s6 z_hN$urU(kuCibBorl|zZuhVZ$w6iv8X?-wkhb?TsF$z4&5bYdLs;wdqe34VYYw=zf z-^`EHJNX{YHo6brKc>6A=1XS#Q-fQte}?t&rA-Bd`XUe5@A2acqs5Jm!&$TA8F{Yd zVLLr;iri9N-3gWn@uG}7ckYAG{m;%#f@4G<;=<`t zWKe$V&bxljT~+n7CW$64$eEt*b2R%mLv{D03F3Q5&A`xv_3+ZCh0>t6Z*PujFM5+= zi8_Zz_YV0%qHq+P0rU*$3wnA&S%dyg^i6%JkaeGZR@vUpimmq7(=R5da;T4RdOcXGm$L|59iPe!04>+{?Px4)dloDgzb zMKsJ0?f_?r!+!+1ukH{EpTVw!zX1z|?wOI1j;Fr)d1-%^Kl*EfhVqP3MQ z9#U)R_yyo^M98ZRe3$sl0$|d42kNrr&JVdWzlN*Y)|V|o3}22^_KT%xIu|)1Z1ghr zU8bPdzw?^r7W;ra#gvrreQVPf5I#)&ckhEwe#N^qO2_Zd84AJnaK_4_tKr$ zs&`#^XT*9!o1TL0M40;=`>U7Fl(n{x%#_tGB3T-(_tT~yyyTbuCduWGT5N7eJn6aB z!u(ozuYx-v#Vr6n9mX!^_ar`E6%9t{Dgy+(d*wOv!`Pq#Y2@U?!Q=3)DY$>6fkj5f zJ83gNcb~fEr9H<&dkc4J9y+|Qd*dEc8`-~>eS8YeBM)fz3(}mgj~&X0WzXF^zc}`yf~$$Tn2V{ z^Pl~zTbr}0P8AX1FQUVINN)dInp|85=jeWGj?dER;#*t#2a<;m0U+_bEw`L3OIA2$ zZPpeenBb~Rn$MkAm{DRwPY={;mghMamv)V5RMf}5;ux;!PKKwKF6rv&4PrEGdg@P` zIDOGkj45|S+C3~P52%Rmb3RBG`=U?5qS5sn%{<3qe~q`A<=b&A?3E6q=aOSVU3~%+ zsn;MVLsSMeXDtl?>p#$>6EQgOg{P4llqcNy+1@Vr5e#4ZyyBe`A|n#lT*duuL!nke z0m(kB)41$XYUcwH8hz$+=}DU^KZ?W{ZYN>kfS)CSW~xC-?adD^&F?>;VrJowwe1rI zSY&!l$-PT^tu=c4ulSG8Y!nU7&f|LvmfGDZz)C=c32^FNqt_syH{I36>lxED-bcX@ zI)2FflYtv4PTKA%?$1x=fhuO1>FLtx&!3x5WBE9GxYti`PLbZy$_P|9QSnueKS&fj z^4kwUz{zn}0CuDCr()>HSr3)+J`xHemoylujtu|!Of128Gw0AkOJEiLPsQ(6Y;DQ| zSRhgwT@8mY9_%G?gJ7*1T)8?XSTxSnB2{cHmi{NZ1@gy?#CPU3Lez=d5x@OeJCm;>ya7VayY9;H;%zocDWrIRZSH zRf$I~Dx6{sA=rUHBi&=yr664*u*}$f{kNIu- zgCRUH#JUQ?8>)s=s}`UCUkKMbE-%=do2zgv{;`erM}^^yFsqwqy48G6ehKE@wleLT zDC7HVpGLsYx%77n+QO+Y;vm9e8=*jjRnU9+&u%Ib)q`iqV;}mDva;f0P(|mU?!}9> zBu=K%qM`(7j&@lJP{Kr2d5nnRwy6!zS4Zh-QU>bpF&)#A-M;ZiV*Xiw zYZaf}p4l7K^md!Uz7r2Piw+`9+hSo`W-$*naoLkxxpCt@0o315cfE>7asqwJO*bCI z2A)2V=FutQlwn#Jk>e~Ur?zM08}Ij$YYfM1upFADygu9z_<-?Mt+pmF^JjKlJ>Tz@ zDjRdX_OzqF%%gyfBv^{aoZ`PHC|tcyOY4({X|h@Kv&YdpJy&^|#($Ox&R#WB=D#z2 zdF`J+)#B-wnNdPd#G? zKXY?HLB}^E_uBP05!?su!Rel*LWPRY*ZoM!{%UjMhKh4F?G8?j6~|s_YB90q8`eGs zLeqag+pIdg65je9d$V5r5+d>hr8oHzT<~$hbH(J4Mx?9!P49z{7?A23RbwO(_4!JP z$m^8vU0pA8JQl2ENu)@QEvB3UCZ-T0)q6@HMNJ+@h%))dJw6p`e19uZDCv!!tqJe= z(?uMfkkGk9(AHw9XhTBeivU`!K!ke4kc{V2`^7kXO#saImYora-3L1m5I5-YM}p~g zR~nbyW}PWtznKy4finV^4vD?}%*6x00N`WZe*oP~Jr3iFK--bgQ5=oiQJqsMz`@}@ z)%V3=)3cDH(h8PjI3Xy+pU?pTKtl9>f_fZGjXZAt^3`*C``}CEuGBkD_^SE!|MlidewdxJnh37A`0s6$8_tbZsFjq^*7;!ocEHYI6h3>BLh)?|SU zenI<2M1k(PbDsf;BdU|3#$fbrho4g8Z!xi$Orzo)DT^)ujcO5Rl03(G{~^Q&YloGi zm%qPYbMq(NEQqrroS zjb3c4FR6E?rb+1;Seg`ESns|z{J7%!&L}$zi?t_@cUeMzV06i(Oo;FqBB^^G==4y} z+hk~MSMk%u5V-{xn39&(cI@h+5)yajZb`-p#y$PMsuQPFHNN2yt@8TS*$b<6Ote*H zze+A(6+~=!O7-b%jjAf$A7u}BhIhX;R=Xho4683l+0~^^(?AH`rJrR9c4nUAAF>}J zH$fW`=(f40g@r&~_&#p%GrRxkXYk))bL{^8mm}UaVK;S%8ZwqQ$SD{azFK-`j_=gk z(&xlZQw>ec5C}Ry9!*cbug|gPil_sRqRrf|j!#>Q=LY&@zxuh6G%XM>OI z%@6PheL?|44;A^D(frY1p!zfMk)x=x# z0D1vj%%do*rPvDDDVzRWB|j|JYN=@Mx6BSWgaZl-kAkX2JzzM773`;!{#iyJ4jyTU zliKd7%P1bfIhasrOImn?^^3gr>5{jJTG}s?3a6*}RolN4hPk!nsqG**hKGkqNQON2 zVny);*Zvv?yMh8~qS)-cheU38sDLnSYZjT0-J4R#KuI!H`Fc)1;rI1STXu&=N3WJ2ycp33(Qyqc!oe<{ZLll`ciN1EAtyGX#{ zf&1^>l4YvX{q4tx5K%Y&f0(7k zMQj4rzRf|; z;?j0qhYle=rJ$gz?jwKjzMUOVI{%2jxd{2cx5fukJ_u>%JygyD)Dpl&qLBcRja5 ziemy^AsPU$JHhl2jWYNPJP@R|W*6Hgx4aCqdiCJv;6UuY63C{x+cwtn{5ZT{hxU=( z78ASL*d;y2!KJMnr1`K!p?a-EPA&O(gUQykyh3NQQr%0vIv1y3_~hM*7;ba(%59B_ z{u!Bq>t!jvP$8x*b?=~lmM^$J(C@Bx=Q$`1h^BJRTGUpii$$FzhZ-B|u^{Yf%IfNY zUw%8aZ6awLmDa}{`7HY@*6x23kd4@8TvOu{u>;&R*80|8Mg3v;Rfj68LyI29hpKJg zu0J;U*=y-WU08TZkNQVOk}@4-Qp=g(9aAMMa!Rk_i=F4rrr+Xv=RA5wU0XZc8VUW! z)?LQNqi$E$Pd@4&vV@TFBZhuL2@m_wd;BuRh)JYshTtT3Cv3n}G=7Zk@G18bA_Sgd zJ>30tF;|Jne{2`djvSna=im+g2LSC)!?$nxE~XDs{z-rg1tE8wL+XZpVbq-vwQX4O ziBa-#VqycL^l7mY8JDlZ86o35LI*Vr4l|%ggpJhH``>w-F;@WevcfPI0FB52=8##4 zDDG98i=m0Ku!=5(Q$IO4%I|*HzC+YriR^e z4#}Jcj$J<+x#WVEPFTtTWG;e)DqGiA28->vKLg6F@VMdk>eV4WyeUrC8q6EtzRltg zk(cM=vXgL@m5piX%?qhJu`{#1wbdVfAq?a^Q75mUa|M4jqI-e_vP(Uf8Xdpv*m2L* z)oMP7GVr8O5Psu&q!?Zm-+fp}XxPisQ;zj042UCA2CY6*o_O7H9^zw)l|9{znq6jrT{lFV>ahce|7e6*V`HW10{L70FNn&V-%*hcyE-V}lACZ52ywT`4 zR|%O2>5@;M)b@hkzFt^z+a}z@Rw$F!#7qK*YQy;p7Y-#DU$$n19hJ_eR_N&m`5&zj zqmc3HTlBScu2}-&hv0#f1j=b^5eYr~aKt*}w0#g4SBLC)y|ZWe7A2%C-@J{8Vam*u zY;v9A8+S`S9z!wJpFC2LedI^#Zi#y@cd_O_We5t?<6aBdnHi(ZD8Ml@s?pect&#EX zBqhoY(35QiS}6eNTLNRr8d4WTH5i+|Ia|~wIb)y9eBm#41{(ORx_l+scLCZ zy-GdNvfwho@})7p^V30{F^|cw--P(de+iyr92!b(HZ6%+Sf5p;W1#kddKcvJAk;{P zrq0gkOMiAhtXSHWCMHI>RUbx28@bNvC?C*eSCxpxrq?N!gtn{W4Rreb{Epe z4Hp&;Mx8|S=Vu5VqR?TZcrU#ArCYz{^^}ylxZ}p6Z?Y_(BmI+}1^(b-zg!6-1B!!V zI}SHVs%H13TDUcd+ASzc;h0$e{G)YeHv{+l_XN%kc5ViV^XH$EaSi@bQP$UPcQ^>0tx`;UnOp5iLxmqkERDiawmXGBy0=CK;bM1-^~=;t(0CACS8WI;g0? zrWE%xCCcYO42dDhA)ay1p4*Z(kTDvhJ6t)o{FKtJbbV;app%QB#3!9Dn33G(Ut1REESNH zj6o(6>xFC+;ZvHLW|)D#A)B1|*vjr4CE?-aB?Ui@`YB2PmWU=15i%)_yQQ&=;RFZ3 zi&f|jWucIO7>5-Orm3cIu^t|i4<`<&!HcM6?+KOQ>hpOgJ$03BE~YAv6QiU3pm8Qz z!uggA4TqUGP$wEv*O>nFoU!q%?Ofsk!;RW!rtNs~toqdsl>b{cA|(M`7X;m{0Q~DP zJ1fonu@&m6FwOg$yjAt+@I_ri!!IOxjD$Z9n-3j_G#w`Du5zyrJckZjNMKSmynH(7 zl(`u3Kp_L_?C7AyRKjN0U(V%!?ko`{KN6qx^ZP3etYQ)pI|0W2=%o8uu5Ab`gXG*f zg_7HkNQVXbnFtv!iKrAS>$@tok8Lc-k0Sya5w6O^9AXkN#=vo6B2Y*1MM?L$4C~YK z8(C_6gLzL`$c-z1a2b5qg^}_!UleN1mB7AP;Q+?Zfk2AAvv0x*wZSM2)owaArp_mR z`>A-~HWDg^=rrIveCF8(d(075T31)s5qdv-KXb`d8e?zgh8x=Sn&)*Atp5!KQPTR* z?cMk)QVnRk3PXxqel4UD{vr2iJ8oQ0`S^41Uk>SaCB@E6Zexr=Q1>MrzVN`4?U@bo zvL_&zcpI`QD?-lT9H<$g$dGW8w#lKPf+f7Us!CmHu71Z(?WBCMb5ya{s%IYxY|y06U2 zjNrS%o%ZcZ1NK$KC0ohAdpFAivYvb@+Y1&DOBepWhVL^82^2G~w+5CobeuaVDC&}A zcXkKwpn1=6H0RkzC2JS`V%u(&CIo-*&)J9Gr{xi9sn8@rvWle)p4=~(DJB=vQC~S`XA5~TDCyvq zRE^K6hI_uTm#x%A#bmvH!!O=to3u1ntHx3i&0pw?A?@L*7x+&2;Elj_PKHp~qA*UH z2AZ7%3a&yBmq2hvB-3Clg|=t_otzs$RJ(l;S7FmBQf{wJKf0TVlx*it>wg>0T93D& zHN9U|rG|+oezLzp5&bYNMWY*D&mm*u_vkD{(g4D>N{qIA zTp7tH;>&Ey2M{pKsB^0M}LFt%wHFK}83iyy^afeoeTDoy~Pe!aX&~>~9SzsF)N#>@B#>qnfo5=j-e zHyvvTIj%Qh(sn%ZK_qCM{$E$3p8=m)%~0*b?%vVlhs=ZDcGJ$v$hR)dDWLf{%kf;s zwlilS)EInwxwtY+QmVy>(fXg)M%>7s>d>n~Bhx#uZR4BHhHnnmI!k=h+~MmbKKW8-umuOC&L;gM- zed7Wt+>9Bp!t?t zM$O+)g3LXorDX^fEjc!}Q{-e7yFc7`t3Y@EfpsjWqoy9%+IJ9V$q&Ns2XSER2_+>T zb5xPF;GbK;mX;2IVdmnZvXP--2<}yc%qzjE!PQNePY^c{fQ8io!DLq{kF>_GC=#1C z&R9r_lJGqt>S4`EwVhP4i4w~gP!A%t3-Bhsd@5MoL0E0&pm^{z?R~%$(`NQbo^(_JY~IPWto^ReRw=# zc2k7H1l3nPy~WNUvy+o<#e$Dd@cifc*oS<-Ot)^7-Hb>*U65$Jvh@4X zCH|1k)_ppGy@kFZJM|KiBWFLj73-y*C`&N9?IDZezm4?Q^`|7IqRcJG{)F5y3IvpNWEAY0U8$9bqK0c9q<*tC?alv3(^)`exu#wCLqr;+TS8Qj z?oI&#X+e=jP`bNIX;1_dP`X6ABqgQ0Q@W8*8U+6PoB3zfoLRHx90&M#-{-kw?`wng z_Ab=fFCrJ^J%nzFy3_U6yS?)O|5eJ`3ez14-(G;c-~$=$tu|{r#Q%1FHik_`)GZGp zcTZ1ln28Ar36;Y4_YsQgMHG|@Tg)4Ic?S4?2FHAoo$GQ>A1qHm$L7 z9GAzU-ttmoLz$bRPoJjO+0*}>^QDT>U|!$ZQGRniC#FGiw22C@G;D3#0DF*_nRyr0 zA9lWJK)-~s;wp5xgAO|}@{F9kyfP}#F2-?*$}6v;Umm35TwN8Sa6EZ}RR)~Vi(}vQ zff3>Tz>i+~s`s#R;Q9qMMZA8E#Oi(yB(u>{@`U%8wJA&6~X+Tov`SS-cJ*&xC$u^(} zy!v=djr=0$wBCb%)Bl0^NfO`%U^m9me;srk!O6$Bnj+zc2fsTYr+ydw0>tX(>1j%c z@{# zp0-BL{yGD%gKJ&pnumeCv$H8MaCR7r2cV~bw;By(mG_06F;LFV25X!`%8YAk86_?^ zA9M#2lMLN=?M+ZwN3I+g@84&Do@JcI5=F?(?ez2vg%A@8>OY5@PsQ)ulSQJ1qWSst zrc@;`@hB)}gR169v-0w8i~07NawjrDDFI(p7R-3?JB)%15!gmOVkIq?_uxYgX2eqwUA4^~xZroZn={FnLe6phxK?v_7{RJy@o z)&?U8*n$gs9x}na@h8-%Er5|pQ)5EbW9#edP6PsWe_Kb#grEQf^CKFZkpH0U6GAY+ zPYq?3qIR{t@sp_gwzG5xrB&d5K0L|oD^I2&m?&;wV8Bo#by=2^WJl*9eWdrawZw{y z;GkNtyHiL|&DC}!r~mb{%1TWZQBPj`1q5rcUV!_OjJVONV$sCK-hsu%vBTd5qfjc! zjW5*HI;%gh(0=v2p7MP5Y$j|-=O8afu5uz!((xChKTZ$ei>I+pE_d*{v9ZDZmd?b) zblZ)acyu)D#P-jlsey4_ ztBo_Aw`=^hLoXN|B%LnlV9Sovczs9E>6YrdJ8ju{PmMP=zG67Lktt+rfbA6vDByk3 z&*LsQ&)+YY_JLC*J+) z>A{s#$QJ3bCkC^|)Q=yMz?SsrVSE`h?_pP`%lP7AVl>M)P=&(eWttN|<<;5j>Vwpy z>}<`f5f#kE4yXIZFl2;(gPGO=l6d|>q=if%9UTzH=yO#tUq4VS`{{SBOW=Eu^A(0Y z(%^T1#*eM&oG?rV=AcN6nBcXlxH0Qp)bQ8`Tr8q`hvmuoPp0|-bs}X4AsPCLv(T8U z1N^g{e9pFEkNWY!=HjDTyKmn{!+W8ETm|k@2@~i0-fKNQd*2-$(ZYhC5{7;>419bK zDYUDiyS2&hYDs$tp;42u-Keiu8zI)TZU!Ls3HbBUo;}v9mP9G4u72kDIR>S=MoRf9 z5wzTawY9=D_A}pI@7*W5uXG#qZMfhxfd(?1F19NnIXT$~7&)k@LF{1#O7|bZj|90> zVCCux#(S&iQSVJX zgQ0Rrsd4MAM~D%)F+_>6WC;cist~hCY3QY)=pivSc7!m{7Hp54xwyEHGkX}{!34`6 zpa-tBo$$bbD1-#Qtl`k*)?UZypXHd8lp^HQ3QHL>F!6=M$UO}4VFv`?I5ttw;Xa9k zVNj*Kg)aXt2dch)H)mgxEJgGkZbQmX?CEgzlh?kKt&$OeDhsv;UqEUArOu2EcM+(n zOS!maFGSq9E0ab3SgFUne`(Zo>jq<$bvvK~%QpPuVxmG3uLp7r%EQ87qzMKE@L29c zNxU<#Ubpu(xi6ljgofu9TcwkSM^hLPCxH4V8)?6DQ}77->cO@75&?fI6v}d#HKYrv z4JmQAe~b%d;NyK`0)?(};Z%aseIn4yJhj-WsdHRaB;VLZjgDq0&_=1h_U-Wi$zutK zI-9$@!y#)7GUzc7gCKfFR=hX}QdaFISXa=kre2#mOijsO>;g25_K;Bq zR03?cLZm^L=#*cO)pwZr*c6Z7l~sW^A|kB7!jh0{7b6DacG!E^ewERRE|i*vVF2dk z)!dKIWomskwR(D?#ED6S^!vv-y*3ui4?lcpT3t1U?v45*``eD6VY6*ts6}0!-@qLj zxZHT%cZ=VwfZf2_=Xx!rDv}^3`rQMo>Fw?F~A=+w;j zuvkqkkBu#mJq>KMtCNax#gs)#Tq|X*|1n{ZqS0SvVPQ63T$D-y1`*+zg1n^d-du~Z zzW#W%C*Lg`$~Vo1e!rY-gb^4w%9fYj2;kGcwuJ1N5AX2r^rzsy3At;&rD?p-6u^K$ z-fDKn#zVq>CNDczit>l?Aj0Tc%oGJ#8xRoCA42rPQ=}#g%KPu0e4mA^NE2cRgho}9 zr_a%`(9o*c^#fn_l2iBe%e~eh#GWfdTc)8AiO034o>)poPLg3Bg5UpH0Q)$Cl#BJn z@IgWann{+y>7U1rJlAWVRoD{Y)(gggqA=g?9Y>Q*_z%mNAZg?2v@8%rBt=GBQG z7yy442y4>Vo>dG?%mDDV!lD7$Yf83I2NtpwQBf>jmz}H{YsKwdoQOD)9&5>(#%ig% zHuI^eKXg!-~YLvtE1z|gLX&DGk(s@HQ~kZHq|9-7-@hw& z!QXVpc>^aWn@bJs?5p*tdprFT-=fu0Qoh`nFr4_vpp-IOU{VX; zjeE+2N9@VbO0;+HT3jKBInS@Wy6ttfM-PjNT=_dPS4`EjHA>Y@+Cu@kRH0huN>DRS zWI#sdiJNxD6yLHr&ZY#y;tm?>{Q`0Ox+wv|A0HD7MwQ8>JQ_ku--CU(@w?kSEQp%pIcX@<6dhp#dq6+Wh@X5 z5j$XXYeOjyJuC|cD{EYrX<0S2;Y{kpb|{@FX{c!^`xufb(&^@IrfEGfwKE2yAxp=*Rq+1IWFWX}yvBBIm51^Qg!N}WC=IKyRc?vj?~ z-8c}m$$(TZDI@b{@XN^Ad@yK{g`vnSEY;N4)H0rrx!cmWVp;@31nJkWbIgIj37e#S zDD7TqXb{4KRSP_fI|yX5F>HcJ0pzckjK?qHhGhUFJXr+=`vzys=@L#>-8xdxC$&UU z@T7QKzj~zxGps@qlGPtQgO!x{lBtdfbr+o0J6 zZF8|W8gc!p&#qpwAE=?XKe7?W4VtYW7(T_`C&2WRwyK9y7&dwq^Pby}YAO zH%DZqfi^hyh59!fPLeGBx_sYgGqt1RnU|B@@i-jyi27^s zsMKih5q6a0`Q`}%fBn55yVU^bj)9I+pRJ3CDw@u$c zLik)^Z3eRjNQBDryk&J;7Hf3p*OTTVHeIIte_*|PFXXV4m)!Ze1$Hp@;EF{cF~>$j zI$@_Ajqd~IBnJI-!Jqh|T<-AX#H_EY&E(}vUMNP{hRk_=NU&tL<{OA?%pajvy!t*f z80^Qq;&_$|3R*rKOw1vU8)xuAeumu<9Yl?(K@HOht;NG9ii$Go#Pk?9Akg>2SIvh( zz!B7Yo~IchtNu?vU2Qa?lNpX1$C}xm^5~vTkZmA~39zYgwx^A3f^D4+59mlJ{t*$_ zFdY3!^gyKqUTSa%`7aCBpKs;=L&6B4&Il{q>iLHc3u>#=%aeJ~j%I-I;cT5Ue0wO5 zh$2ooS@A_@u*)X`0(;NH&^lpL45aE%>}1vn2GX}-jfNY&JP8LDe4mD3!SJ{JWt5QA zUDUI>F`Q4f^tzAm^hNn3)Z=trRpmTsV=(A}ono1b6qt}?Ug$o0uG3ACDjr3%J(2k? z_W>*P=u@Q)?+)K$$Gy<0Pq1WMUCHQ(EJ6JtNFKYjv z79a_?3?h&P?d*EVg)8Qqx`&4eVO!A-&1KsiLvIuouM0V_On@$=2AIMymDV8_^W-i6 z{{6M?ck2Ks{JxHCa)J$Qx}kS>cjFG}Eme+U&tR)tFJ3eiH@55@TBxk=C?`$?uQQ7! zE5#hj%(MozzifHqX$PqpkDQ%(;mrJ;vQGVYw_8i=P;4X@)oOe+_5d=uFu}ofw3eg! zunoeAAPDDMPDd$ax2kyaXWc3&!*mjkeup)VK7kcm`;$)$RtK*Q^vZ5pZ))gFN?ePg zVfCkEOUgVWRj}YN%t`AR%5+wexRPHcB9}kTddo2ZzqQ*9AfI<3OTKfT7QLw=`6gZF-b{S01Su`v!@e& z^%^vt4Gy{j`1l&saUaLu4};!L>T_x;#}K-mvoMVWycjtrL-VQqX7df2*EY6z^#^#0 z0P)&_ouK9e5x{`ZVW`>)B*X@#@mZC4FUdr*v%S4Aq?-|z@~?JgW=!>#K00H0HhRvaYJi-d}DEU&N2fR0hJL<^nR9pp;i*| zP8g*N2#`VGQ-AFv&L4{-*c}XL7v&?t_c|i1B*fgtR^#MgjnpKf^^pn4jHU^&YY0%& z4jq<_DCzp8&&tAKhS&!?EB)QOsEwD$p86ru?t#Li`?(h%*#*`ssY<7||Ws+r4gpDc2{E~8s` zOY`BW%ht^Uvy|pAF)yRIB*l3sh*89>tUL`3?x0P7Nw&Zl8QJtOwo@IzFj;=)wr-9K z4K`GRJ)NDBPNsD*))|If30}Bb&&e0{BaI4X~Qh=eKDco~@S7#4EteXD3lU1hz z1C*NYdsfXM0p!O6&aP5{q#B^ ze`&J)YHf=F=*4KaZrzaV(>~l9!-hdU(($czO-(C&Qz_NpiR(j_F4o_>`U@xX4#T6G z7>5VTR0KP5#NT)fYRZl)Nm%4HrV%iZkbCih0_?cI4*w-dq-Isj`>7Vz>gk6m{p@&J z=ve0ppQ88EiEsd0-B(U}14^Hz8N0?Y6iJAXJlk6CfEJ($ku@{DVO%|i`&NRt# zepk~7QX8JZl#!M7X7(RNW~8YFb7K4ponZ#uVogr&44e#2MY(4ocqq^%1thhGDBMqt zm!)W#Fhm#d6AvsX5G+!q^?X+)K=ABGvylaJ47#Bqoycblula`R&nfH-cY|K&>Y4x; z97zha|Fb0958*F!3IKFOA2_HMv%7QWWDBjxOjZ9dnx-B|`k-Bg?i2=V$T1hJKuYIy zztim;+swMSw!=@<Rj~yowFFdLYte^hIATwCpR~A1Tmzc@bPKYdz};^k?Rf2 z3U)A-2Mtjh+<3PTDz>&QKM$Q%?vTh%socE_ov!g*y$4cgOh7_{JRK=Oqhks+grLLH zO#^aX44NF}))~JcJ?yXdV@XL559YiyegDqbF=EfxR(==w*A+|r)xohvHZc-pqLNXk z;9TJL=Ha3r7BK=1c<2T$)xuc^EmNv^auh8e*6~=P6_oqEp9S8DxNH#*Lx5SQi^HO$ z>+iu|AlOgW#p@AsSLiQ<(@vB#DD5I~^73`_eydFOM z%G);ZZkOwa7ZJ*YrNx)Mxon?xkJ|nZA2x(Wi)d)(-(t)3i@4=%pKPeteniKYQ!%(R z`iaBjeQ7BZxLe`zSw|UoID;ZkI78M&qfCjp}9Dl(5tgNP~y_aa2_XptJAIL^5 zm~uc-1F}BIt9TG02qTaYJbJ}F#Tu_zc?B31p}$qX<*BCC&}~fXaBWUMN#$wkC}a=! z#okxu=C#hjE4l}Z8`u`XlzYq_P-1rh(<}K_+Tok$3=Jb;7dD`;S0G&!Gg$>4hO6+K z1h#2*u&4k!l*Txa!3m22S+Ey?{tPWqsoiB`aPhh#<({xGCHx`K78T-+iP>FSVPMj~ zm`~!<6oG-2mlTS0j_Nv9xDU<2-_A6%D{t;}%lQ=UymNyVWpdihKafcJ7da?{4&2+@ zdrKtuxz^Cjhitfmo40-T(-z{t^wyr8p^W63=y(c?%;pjOh0A8A*4cPLP$#nQivq>B z7HOSMklEfGno2B-mXeA(4q6t3iLo`lp})MYQyCZx0sy9ce8^nJ00@%|#cWHZaCXD{ z7C^#8Bk1n_s_L97?yrYeDjYF|frZA#u$|#%*F87Ng<1zD3gu+K^0JLmlWp_|_4V?e z^)Jz!GvyYW|DCzN{~Q5RvHSRwkZ7JM7ZoU%xd>8DdYb9&j|INj`BGWSfJq z^T@fyRz~%?`a}%bUrw6(ayQf&1#Hx_K7^y=Bhb-TrltdlZf3Q0w6aO0l5R9!t8iZk zIhlXy?b{Rq_%&cYto6Piw}sK`9>k=iWl&N;2Nw*s>(@WT+dSP78&JRq`(EE&j zmckXZ2x1n)KJ}ep7O;j5aH>j(0@H ze#^L;-p3RpUbi81!UR3umJ=CzjZCg-kD}@r>qBO5>jJ-Z5m5pVxO8~#PJy0Ly~<6| zUho2S-OyL6`9Z2=>w&zI5;4Lakk!r09q&-o2JG{6aJTuaEPG^9ZXnqqz;j0+$P3)2 z{r)BNU#3Yl)q5OX$FpqeZ7U0)-mt7ig_yh{YHSR;vcl&-f6qk)#qpiXH>M6Z6X1aOlH$p@ zEfuGj4f1$Ycm=Jm^yTDa%wuCW1wX`wVTcF~iCrJtP>#6nglf)A6PAAeo-?275q$Of zr8J{=7h%&Nh|NeQPgg&^ciD>uLPr@X&7bXzintU*2M1@4K}+VkUyTy+{jA#ipU`D) z-=r3Cjf?_qAzOSlwD4)r3AI4W^AYAJRvLNEKKAw{U8#Oo6aWTE^~oDD7q|JkVfBdW zil`!HhreRc@K&DYIRu7$>MbHE%uXqxfzXP<4NwB_p$^tDqXDu0D~xn-p=d=c>{QMB zzVvyae-jO@8Px4i)8wiozl4GxYJqdJ?aWluH#k;lKP4nEeGzmB95LrbD%XXt z;%hr|Q95E!#suco_}zyXy0_NWG=8y2wo7s}D)9w%bycXr3c_*722Y1=f1ln4J|j92 zDis5Rg!6@fgddh9{R-K=i@W;HAVE)d-OD-e;Ij&)6B0^)$nj2Wd8tJyGSYugE#ciA z+{I&?pRRlT_xqA{8~NfI28sy?|_AsNzA+_t`G~na#K+ zexPL5t7GeLmp+O@reM~NNls=<+g;MR9lFA9prnYZs>%@Q(uvjK5Y^?Xf~R0aMVPfS z!|ddBWZCxw)QjLvcnqx7@nS;`AQbuMlbLsR(zO`cBxsgfWrY4L;ned!Rm0K#9vS6o ze_NP@%t^V%^FS0ISV#z@5~;Y>{po3Fm&5TyR1aX=!sEO52QBBs&D z>k^mynTRVXsbrPyZCL_=z`(RIOXHF92eXG*0kDxZRL>HgDquagR=_+4`y>43oS>1F zt#jQ$5)=DJMu=zXn;AxCO-9v&Vb$23E<1KkmVV#;P7 zFOq7)^fvMj!MJa<(BMZ>Dxb^4>CXwbr}zaPNN0AO%oF|L=R)Z?*l2X;sxpO#y*qp= zDXFDemG+y778B(}*|#y?_2p8o>$r zG7x(}K;j2%Oibwc@j26L>**nS3|fa%<=YE>XWVblu|)rPZvE=e<>W)4!sE_aBI5l`@A$Z*k~I>roSIeKKIsm@%49A%$x}trBG! zbZV)3S80#6NTTM$h=|`Oh1Uq*ovGTaAF~;lz=Cncn56?)YDv5JO>m$^ z=K{3Gsdc4J;r2{baTsJx1GFC(Oo!*T@F|k`4;<}12hKGj1>s17)fSXHoyT8+^50ry zB4D}t56lA#OK$magOoKGMgfQL55LBGn{m^>prmBbbON5v$R@w`-6pHcOGpJv*?F>T+lbB>;nMOT5jDcIS-U-Q8)v4Qgup#TGQ= z=>-BoCMJ%@7x&LOO+XrlmHGJTYnkgGLFlnE=ljM8N%)S9&CEhzm$z0vqoqY``Za>( zInzv?k<`HtTU~I3As}0Gkw+!v%|Rj$Z~yo2#N;63JwrjMK3PDy@v6*I*d}^8p=hz8 zH%azI>dAcZ^|{v`AGarjzqOSQh(`cIU;o)NQa@nPrvvAhCJA!0u|Eh6%4AhxBRx;mV!0YDYtwv6ToyyTDQ`{-v{KMpNN=*$x;wZY; z;Vo0QJ&m>P*_vq|Y#i$bRTor9Dv-_}3*-tmP?rBgK=tGvk(?ayd(TBQ^7`|Kh}!2U z=G?LR_}k+F5^i|-v%mf<9Pd2Xi+hU}(_&d(6b$59r?uY26POuvUYv4{MN+&k)}1(X zO{#v~Pe!untxmvd=&erPLvD64t}A11=pN7>y}SW2PWN770q#Un>B$ol?!-u4h&}*t zAUQ(R`}Fp?2jmsC0rV#b&>&b)zb(xsaiSg^9lg!ZXJL#C&@Dl<@^ClpOb%t~ya8(f z))!H@(&z-pIKmj5XR2D$pL2XGy~Ca58&%Gv(UezTpF&TEK;B+u(-s!Qvla`=_OHiT zf8Jv>s%?~*E;dw^d+lsr@oT24>v2YPg8X^etE`r=h)l$%DBNF8A}$%+J0iKnWCppncr{hCGdeEAdD^`& z|8RO|CXUN`BAUCDnK{nk&;D1Jva2gE9ZA;>N$mLGuOD5gZZPdmYq5UpdC^+C4wiqo zpfKTIFfd#P)4@GtB-h!+g$caFP+%GU1iNs#+$#{N$Xp#I%KxC|<^Djb3JeRYVkyTn zZV)xLQMRV#aK4nebX8CFk&7tJ%6d@iJJA}1&TBg$irVUrh@=)!2^I0ycD_1Ly#q(Z z$5$t|O|7UQDqn8z&NmLw2sz$_Ubz;8d4CZxJD!O)>WnR%Hag3DCXtMzBCex7*202< z3)!CxmQ=q8(!+!+Km_1S!mhtV0ddEz?YT+<0%=%>>p{p948hwD1|$Z)-OKp-*T6HZ z9gb3kHDK5&{Q8WNtC7B3HUDxpk!QBhA5l>p%lu8G7%b5*Mz1cH2KViQ3w4=M-GKnS zPgi8n$gbyLzW{l}+o0_n{M%G)puFC=TTd>Uu(rR}r`r2nyr0( z%Dw&lq-K3dZDa9Q+pp$f&>?GNl;(@BLmfvcUFOP`?DRIUEYcxCh}5OnjTiKVnqOX};%T_>6d!R&1DizN-+sF*jXEmFFn;F6RK}J-&h_G0yKD z<2mA?t6dQ+Q9uyNp0NI(j@P;jWq?kc@88QJ_#n%>R zE2Y-A2EodlhB;NK?<@}=rfK9^hJFWc zk6bi0CM>7+MdyVx^bJ(9RjCAq_xk&t-zmv|HMCsWQk-zNVAe-w+k2FiG2HEbaPtIQ zt?;P#(}VRakXIEGDn@sAcXJ+YZgyx0;t{TtwdKa*td;1KE)hFxW};RV5+S7#MWzhitE}{E&t$(EHGZGr)%K-tpGh z6JAcvQ!mEd40$;P2M5N=6p2)Z^W}DRpZVWY74`x=cQ;>Z5VCE3NoM9TH2Bc%bHWmj8jm1h~p9VwkKe7-St3C_9 z9zk%*_k+*iV?lwzuS2pfQyI~n-~Jp8h~7Rf-#*HZ60a1?*}gt}Ui4;R6Vv2}`hcp0 z`uzF>f}L)~^M(|$fTy{1z87q7G9Sm(`AImJzg~<9LjB~seCrO{tro{683w|(wx+IF zBNdelI9rj22W*P=fn3%CceYTwwojRuDF)i3qyrgyH@h$K#qAJ>S`BMry#{Xz#J-tk z9H-ftql(YL{qaq*j6-pd{ij4d{|I!h{FEd`3W#>6JPBU@kgDoblvLtuV`-L=;ol;y z$IL;t#;)6LyrIUeF-$el)}G;h;o48ff$xKkZ|l1t8?$9==o9ZLFCgPBI<_nxV4bh| z5aF*=Sj2HOaaW+~>g7cn838#}1ZeOaEPe?e!q#?8fE`2g(|i@jO*6AEfPnZqW(gd# z#jrWj2dcw0cLa*Awk<4VZu~t!adN^jtO&h;vZB;(UR+y8r)6N^ohL2o=x$y=^>mdT zEoi{e5#$O#L+X4lYfo2`_^e^Gxj!+%G>{c1BEgapor0@iO9v?AZ<9>Xn^He{|X5*57G zUhA^*&v!-M1oQ7~4ew(zj{CBTJYwCMnVH7s=Gu3wibEu>=vKQ&^OR#7pqE%(Q|5w! z>1z{{Od?qVP&FgUQA9=$9)c6`2#dCYmH2yRmE zJuxgMNPieCOk78*OOYdDmkVr@{0`XM;T9V*r4{$a04XhK;62>k ztEtl#(o}MTVC!QI2B6FwcxqktB*UE`XDZo)YOdos*$G+CZfLw2dS*eW0@I& zTm5=^@>j_T@^8#XnHb{r>uwAURowPjqhL@;PnS7mBxGQNQT$Y*#C2A|&l$Us^((o! z_;{)OG31s3Jm7!e4MWD7!(MjSWpns#BW%3MsHt&k^rFGc;mN|Cs1yu45=U6o3 zoS4e_*z-#4#swqIAJ^jHUPnu4A|mvRjBi9d{xbfjM3C^+V`X8<$HfwJmyDSD*x%J2 z#Y>ii=x{*BsV#18g@aY@%WQdw$gfQFVbF4e3IV*G-Ov_GGsIMUY5B9C);qY^%3B5A zVNWG7%)yD1ZJvxkNk*Og?6+=~54&Oy{=Q%S-TO+f_NIUjORg|mGMMq+A`_e{Du{FX zYF)e&>?1H5trKWS0L=1T0JkrWv?uYiwMl;#1L)jIu3#pW_H_8DSa$ zMhOXZ0%JUGJ9)m1#9=qfQD}RzC8jSVfh&^&VQI=5c45+ridgG=OVU4&VpT1@1pQ8E z&>Y$I=<;l|NJ`u|Y~$m@endqMUXHWfzc{zDhY<30uQSIaTAy<@wf4c1SE;CZaa$jb z-gxckJTyEz-#!=1auNP;({4uYHh#8q1+S&jULS5_`EdMwn!D8~?#lWLU#4_5@+gjZ<%Q$H{l2PMy}xhwPwY%H&H(=juApG( zl0M=J>caB`tI7a~;Z=8bKCA#MWbzz-COaS`T-FerV5`jpgUw-dM8p%Tu#EWsX#w;b zygf=)a(O^~f8rvXT*(x^*JE0CXKrrp7AR6j~W{K~n$9lWu&Vt{J-Q=66>1mj!8O%f+9+^uMv?c6fh?oEk zP`S+`7@Si0bH9}ydJ|+$b!dKf#>Tw05eLQ!r%?LNQ_#{%+~egvw5w^~`Tcu8m9mKM zjbirsOz6e@TbPslp031(x)sTugn-mec%beEhlKEe>rf|QTe*XfNMTygPn<&6Wk)gM zGn=k?0Bg)(%j8hZR;0dO=$kEl%lxRst;OMc+zDI5Z+%6@0tDt6H{JKXcfdU>04un7u_OJFjDgle9Y()XdO)txS08V+X^~Sj zbBU+awUfI-5NGe0<>cxb7Bf5h>>(}{9gP6q)PPt>G^mK)lyJV;`=x8eUg^Q3LB_F$ zOx=B8gyLM+(El{^kerGL1t@tnbqGHMVfEYK^O)!7f&p|BND~Wlio1UfaN!RyyE9#zuC%&cF>*N zxB6i9{?lXAf6YN_`fF0$28c=uV==jRw!>3bur^>4;FDc9_`&pqlvZ_F{geItk0+)Q z;&b6LWhU5QM+=5-b{x%z49UVYQ74&?dGE)^^U~te<`4$dICXJuS57dUl2Iy71eJ1K ziXPyg-4?$}=yckfbJpLPdAt<|Mg%W?d(JVnlMShZLJ9~&(xQhxE9lJ!(O;7s+@R`mHoanG%uA02s%3y zTH5nE8EL1k2{N@jwG53#q>L|b%(4MoXrQtTgjd;T?LoM6!M%Gj|F&*FDts0Jrb_9H zt_Lscc7G+#*L#$h8~dWBEwpvePI%IY-UDYoxn$)ipXtS{kcM_|@{^)VTrPW~9ryan zY_fiSKF^&JL4AW$bJj@*hD^NODnGQ;sTKA ztaJ~MgV}vz)Wcx?o3h7!>>K? zeu3ug3?lz(l7(G9K**t#RQ9v{C_sO{2Eb7qD&IK1MBi_?9VVdp=25n=P)Ree#htks-FLf%vA>`rh6=T<#Ve z{<&LYRqlV5t~Bxv-J+M3ptB)U%y#7Se~gP+sgXy0VbAK8!W_bVpclipG?yQcVKaGCXx*+4>U^iOhzw{CU(9Ze(A)rWg zfD|(z)`ue#Bi{sT@Xt?t3QhNI{^9gsZ1Nd;KA-@>0HA9kJx?7O8G3lUqpKUs5nDO= zK!}0i#>L6rV@MF&o2%gwCMRE5Xbu8V2o}N!igs8U6;o)!TM4M%7FG$vL-Y9*;~gFD z2rT^Ez1jN2P6KW7S6{@$kgyjRq-}wIS`db8&xjDiAmiAoYw|n0cUfnIVpCob*RRkK zO)M(t`$cIZN9Ep)e)7ITSRPBTvMCrecnK(Y>S97E3|_@QVPRoQNZ%+3*g|S6*WeWZ zm{6oSYxwU!t3BlB=i3nXv8-2;L&7 z0YO(UgNf++yUKZX^jtVNnr1U;(Cml=OY%0Ij?U8H>7SSB$u#(Cx2?hGtCu-_4PL9b zlkEwng&Ma#12D83b^ogCwP?OkLaJjpzA$0PEPp}P>8hfF2SW)IMCC73nHcV);NY)Z zq50VH;oXl8yKm6a){5`WTAW`h!$?difiu7d>i8Cr-@O2b?lviDprq3S-ipme^qYeX zqPSTal&v2KYg6HKDzPLXEH)TJS;*yE&HiHuOq=3At-#6)0<)oD^!EG2M2n)6ny$`H zgukp#;qhHCnDM}06o@H!KeS+i_y=zAUnq1mY3n(_hvB_oej9Chx>@RuvEBTq^WX97d>9L5)S82eO7x%kSpTxbv3*@Hn+p~G+wIh?nftq!>2;!?xBfpb)-_w5f9s<6x3g!iZ#4odzX zHMRP>y27-GQH}Ch7jsO{OmgOH<&!@v48-wYt=n@9uCjwBMiU3H zOd!>62E_wf;j&wgiJIVaDJbka+tYo}L}e4?m%VxsCS@UfHA2PfYntq7MGQIk`LY2JELf`FQ} zwOK$D+Fzc#z-`kCyzYM^5Ge-_OV2$6C(vvTqfg zavRM?3qOyWiQHufCC}4zj)pnLW`)Y*#3i$o^ohTJ z{0gIukC1gy+;~ZvJTgK*wE2E*5e4JMzcI^|hGWWbeZ8My6GdDg+<-iXNO&owa!1l( zA}V;e6ya`U(h4#s#C9mgZxMS*WE{g39LO);-HF2){XLE5``1*@`_jdppP%pM31Ix} z9UP=!tA8$^Z66tZ%c|vVy+XxkSt*)1FC_%7V`eZh0Jy4`euRbp2ZA0H$!DjF!RbrpFEvz7znsunOD79f{@N!EYF){-~;|0#oV(-%mZO((C=n ziLfO0Jlsg<gvC8<)@M`!<(>|`T=e~h$;&Nl)fCu8l2zJO03yfTRX$R3K{Ne_1)0fihx8m zOZefpvy+uo_29P21kx9N%>-AFXaiVM9`Uo4SV|L~N}VVW^K8ICvjZIsEgfXvAfs&t zIS?8!ZvMO_Gcb=if?bUfaJ62-5M#<;*adK!@sl-9xiHX&{iRp}C_PM7u?S~>V6*Cl zYE)ACIq!V)GB@jpq7nHxrCEn2feE%*F)HjFp| zC3!lh{IxXArSZkqmw%=!3*21ZuOe}+aOMias2mC6Jrc8C@5}5x0v2`%-VnnvCN%P= zFmd>UJQI=xP(lG=12`pcLk`yKIZtvj_@;Uf*IwoayRIqyboba~kBk2Ub2bRcUfC*o zwAJ4OJ|JpXe?^e8S!zyzz&T3!Gk^2c6b0B`9G5w2okB2{G9Nbu=4MZ`A+)!WSWocnTAPVwsYL|6$73RWR{a>Q3qC}!wm6mC@N zCo+Z2dxX=)G$KqGfI_`&upp|qILVwHz;}d6u=b0w-;Hz_r=WwhoQ~bRm}val%`!Tp zmz(Kzkm{%5A+19>mWPTYroaX)5z;m}%?IiFTU${<>pf|ZTtf?@SJ5xY4tqiP07@L( z9cK%j_YM+?AZ<2Yk^h}2ti{U9_X=#WflT4<|4zAb$1G8j@o0-*pzeYT`|^AdiU{CA zlahgD_0HNF!*LM4%v~wTGi(mz2~_a)YbeYjz|R-S1w~~W>F+sQ01Qx3ZSbLcd1)B& zt_KX>1d0&S>I49c`LPU4B07tS=oG7~E4I&td1Hsa&E;Rq#(-FVqFSf09pDnkyBiWd z6g2b4AW_T}dQNQ5Q1ZJM&#i{g2o7 z`wLRPDi7ArqP4V^Snl16Y;=3K=F|~g$RBuNw+M9?{3O9uRc@JSx=w=+Sa~UNYoTx~ z4w43FA53>JQr0013pe&0vgshl^c4)`u@DUYVu;^}L(~$?6@noYNqz*I$?q9(@FYUx zXw4n&4t{~(^NrUzirJKH4tm27Z}zbG+c&srrL)0fE(+6R@a~<0(v27PHrTNCQuY(i z)(|3W5)YH%b_0i4e!SuRrkMjS{V?r19pMQvQp<5l+@*ottEwb4s%o!6B%P^1ft7ybl5I0cI$|T zKFOO)(Z}DI_kDs*WM#F`Mz(EJWI1q0o`!~szy^WrfFbG7AN-SoNa=P~7UV7e@m5p} z-vu^bJ=FHFTkQc}hBgd0KYaM$3|AD;((JTs%=M^W?deE&M9Xvzq`!*TLE4=W^;6%-U~0xBeo z{AvNdy$|)n5+pLzJosSkzoq!R=qBVz<)Gd&lD6l(&a4vfbw4fXvNn49_2at{>S|Y9 zH*}oaGav}<1!@4eG1)<_Wnp0fpMBuQ@87I25J@4si2}-_lB)7$PB-?L!dt`FX_!Q( zqbR8Uur>xC)@xJK5~PM(x%R-38V#2cx&T;0z?K0ok_#hQU1HD5?4&d%7nzXVJ_Qx~wClQD7$K0pp^ z{jTbftHN={p=bGB_fG5fQiO@(KYa?p#ly27=xWZ-e4MF2kiwS_v6=#q9EA>3m3EQ6 zdekVnAZX=Y9`+|Q`R*fP&FIQxhQj(%6962P-}3t898-2tJ2Pa?jZwW#I_8tlgVXLZkz1K(R9C09ki|I z4W2ATMKbvhFBoWoRg4P%4rkDUk@>)vA(|hKZ%Guhq1b>Pd>m?U2Z_r=A`t$=;)@&6 z)YYXx&1r-Hyv~DS&4)wfW~v|rf3w!V)W+C$xrCi0@hEtdQqcFDS-}N3rNcg;qMOvl zh<$KZTpYZ9cS?rmA9)?M#8g_ve77X=G^qApTJ9JsD!Gk9iCgWm4Oknr_4N?2I!}*I zYAa;N5-IXhdjI>=QHgRdrPxMmbxWssx52Q{w-@RS(1)3T;`jyvCL?1BJruUnH^a(# zL=P=*laVc~D4afFWNLK7Pk-^E7c|+R_!-%B)~Lff>J=TxG-kU1mjfBVyM>7kEm#62W6ek$k!#yW86lupm>6S3EifQ0RCq#G(Rzq6}(XRW?w? zfScz5>c-a6QVR?QeONI9vr9`I5*4$T1fyAa1q7P`ITckaplh!CuEs!!Eoo|+RRm00A6eGb4|#rYqZLEa~nQ zML@e#BsB6J07RsOgn@AL^7wC+!i@}BP~BFQIzKx)oZvL51@oaJ6c%v!t?^MtRln*X zg-PKMAbh{tlC(hLhAcGd{a|qhPgS!vd#=CaQ=d|*K(6kFsVQ}z)oKS*$&v2fS}3~7 zO+fW0-75SWinwz4>j3a=KqPquHqipDM6GzN;O6Fy-PO0CQ2~Kl28=zdVVebIp2e>k z4yLazghd8lO84z?2Kw9aBaQo#_#jP^7#yLLC!DreEYA=#-vbP*)kM$s>3Qqi%GXo8 zR2n<;+|;N$HkC)2?$%pVyb?Zw>6RpW$jtAlCO}3)x|3&_8<-5Zppi%vV0`*Cm(ciI ze=ka$j{*Q{LCoP2;Opx>wc4{(Y5PlChNetk9~~dW8l`ZP!{*f?k_#?hq%U#_1`R(M zU1+k8*iT$mFCs{X+$4+x0P8OTX{gxXFIfjvg-m+_Y+eN+pd=l7F6Gp!LfuWBi__&? z19BLDZ2(dE3^N4pkJ5ZfAth{%fKr-w6<&x;Ic1p4?eGu^|e*pTodWqK(6HUwQ!S=soQcP;WEi9&8iboTU9 zv7r~=BP}0)W*Q^7i6ZfDKS)hYt%+jG*{JU;Mvvb$O@~VIjTFB-BikRYJr3j5NgjA3OGi32XzOep@@@ zo&3%4?`@BAwxi+nk8C&aOJ36|HX!aiTgLx@y6s%e?Q|bj0uD8*w7`aIfk_F3_fS@C zE=Z-1PA7c^6gC(G6XM@y!g$WA9VbrnSq4Z>{B@$P+S@;*eHL(Fzl)lDM-=hty`*Jw zYlww-Rt{m!eBGzro%73&ii>M&w;(!ZZEx=#xHHqiY34wU4z`FzP{^#U`JT{(KQ9i> z^qu|4hT7X_ENX~{6fqXFEEEihxJ{N=2y zq_kjU_TXlbeou|hwOF-~lTIqdK%b3pU7e-YkM&@n!9Ca1d;_KsZC%~+YeDVns|%UK z)Hg-?%;p7Z6^dNL#1I59MeFx30QS+8GwPY4_1n6<(bNjx!d~_0xUO8&-t2JT-*6!E&o?hC>i0&FLWlBKQMZo`x z6Td8ob4OI0J)8l0%%K%0Snx|1K6?UZc;mN%g5PL}45nv5liq}xENllpI@bKlc$V*i zkBJ!r^CK=qFi08*C2OS9PoGbCT-UwUqnh65fN9!qwitOi_c2Y=>I<2|fuxt= z;_5n%hK_zcVOd`Je>|OaRMzXZg+D}E5JBlsK%@mkx?2TlR9Z^9yF)-EB$blx5~RBX zly0QEQKTF0`t}|7{&UVa!+qHD#rs?DTys8CgB9?wsolN3M(GUS;UL0+(-!h}YjChu zr%42ThixgK!ahRPpu@({ipaO_zf)h53~y81f3t@3STTELvO?o{gHdIDj(+lcIT6hA zg?tl2owkRZ=8ga)KDgt3S-N>`1d=w0b6}1}!r;Im;sTL8xPbit+y5r?$DCT7o{Arr zy?e7!){hOIjUw`IeP0>v-&x2#T}tGM-t8qM^7OkedRIzTs_O%0sM*-@s^Qfk;ur45DpIcza21{l8O>EBF8pJ zO2ETTulqA=8#vbAf=MIOZG1Oy)p28^=<`ds_S%69l!2Mq0LkoxiR=d`7E|R9CKW^? z4IM8|a*l3+BmnEAwH*0G^rH@PE`=?_@9@BY0AB#$d)6KJ;j^0|((k`D92E5JF&Gj6 zI(UbiJmg!`6`5c^z$nv??n_0gQlnxhr)ELu;E~s^lybwtHkQX3W7qLc(AJ-+r*B%- z(^7rD8#;C_hdj>pa-ZSvI%+y+Gr}q;eeZVD9&ukKPp^28Yt~AiCKJNWXz2R?U?0{; zsg&uidFUYo9e!-Iv=Ut0+^aa)*!Wabeeh^(VWaWe9Q^u~F-~!&D<2LtEk{b8KPAu6 zVq)|(RPTl^F11h#JxB2?DbZMb@R1IlHurTuv;}QA2EYHyjB$JM`C6Z1FbzM*3mpd= z4A9&JPp=xst+8OZ$^xb1ZEpo*^e>x>6WhYyB`65ANAQS913nswAPH>4({+#k-a@kY z8*Tk%(}c?|SH9f!Ff3GJ&j4NQ`cuPBc*y2tqwZQCy96n}?BgLRMb+kFOeXHo(s7fg zxt#yc1sM4eMbi6X^dzjGScQwe{|AY|3psuL_F4SQk7)S#5j5BzeD2GOZT3uq!FD*& zglqRwxUfIyHv6q7&VPm0rpu0W-2a>r*~anO(m?k~FL3$Llo%NqSecYH#=bR8Ox$G| z7|A@ljKEK=B`fa!9DH`~UW@l%EiuckyMZXE>lESS7$ak?%^iW0`B_;{c?vCpH_f0j zy3}0oF>m>{Yd8@1N= zZjcGlP7vKhd7kyX<}A2WIzw4aZL`ViF9qc|2DM=9ueokK*y$@PDe-A&Yg^ia6>Jlj zS$Q{>DN7;Sjc$aDGmngn+(gI$gjrrlgI^rPA^{2vet!Nq9_!?fT5LNhP`}s-l?agi zS%gB74~R);@HKQZiiqegfhsxATO7JnZR&TQ1y!-Z>(VU|J_oTES<(LpGD0kz({LVh zK!V~MW9)MU(EXg@5u^s5tVpOTfaY5O4&rtEo)ZpQT3kdHIIaTLespXMfLF4HP&W2T z#}y5hVD21aYnoNcPVJ-jz!}5c2t7GXk$HRlb1?qzJZ!^D&(#U#N@a+!kO7>yJ@1{%i($}|Oa0jO@D9*M} z)=2~j(g`?t|8=E`%}dfmg`b^1&ZKu-m=jAftNq=Gv#c3CF zx_bWm&jW*LKFHkIu*X#Oooct(zSHTN6VEx}hX^IOtk{C@3O0KS`31}ggOvuI2r<$2 zaLS)T&UjED0H&0g|<~;jNye3H%7wzoR%!mlsdaYwDidd+{QwK*U9KT!AKSh)%vYJeV8N zo-9<&Z%@yZtbV4YJ|0Dgxs?2pD~KxVs>|a{x&&H-PQNAIP%0rZ*y}6zbBQjd^}$p9e$3BH*l!1MZfNeJ zg|I6$j%wY31^fiE{OfOCa)jtOD_v$R22K8Q7yfw`Si#lYah;^Khzix5YKL_w#} z@1ewOT$Q>7sGYV7&X(F*>sp^b6EF(er21O$T!sQfl;kN`55mHbrvTjLLCQ$pOxc;k z5OH8|vYzRhgETnt+cBP^7Ob% zFNkORil^zp%e4-ZDnV2LmE-!rALxOFnc}26W#>VDvqNv}d!h{ib8wNWh z-x&C+Le@X=H4LgOOx30|`D|(MBxU?nn06=ArBst0me3=T@w5YO{B3Zn$a9E;?OwsF zL2xtbmP0opLUk^$s7T&CHW2+z*+SdKiO7jhV^{aDm8%(Nlq`a-2z*s&1mI!!IXEz- zpym!;;|+&x1vKiA!^4bSR_)&OV8-v2g$Hr4`s*GYZmX%9TYV=ZZAYN3T~a$Q5AA;U ziQ0aQeg0mD@TBJO8^Pw|6V)J#0Ys9?hB7ia23j~$&wwHgB)oX;*6lSS%L%`WtQQ=8 z{omfQ0t6vIi!CT2fsDkUXxy$QX>xxQ)ST5-Y{dM^N;{$%w!g4QLeeo#f5(v&9~FGN zIpeq$w=_}48~f!E66A~kT}*w-Anjp&1Ec5=mDAtMZD&i?`;k6tu28lZKpfI;0d=wc zM55n{vP36_N1oYJ7<~l4*a)B{;D@w#!R%22 zJkR<@m_~B8QIDH^*}l&Nu+`U-K!i@03>ZNecoaTmW&6X=LQ^nQRT;XMb`&bo5tl5O zbV886wb~XFGYlOO({^$PBH$`~Q%E~)y{!%Q5_x>BW+IN(?<5DCj7vxbVD^j_ID}J) zWaBzS7iv2?J_Y|D2RMY*j!9oUXYk)0Rw%mS(rZRQQ$`Uegw#?y4aYi9I?bmW<;VZ5 z4;o9J!@0Erz%FD7Pkdox)(9+%WT@{%S}|`asYpbLf;HCYfTB}Kdkq(&5t_TZF~2N7 zEssFO+C30Nepi@(!6zVSg@5aA7xTCID#xv6pcl)>v7^999QJbi>C?OHX0!%B_60%P zL((Zh$PPjQi~YT=jpdt|H{1@lFowna*$u{642_Hy;7>8}@H*P**^U~%evSMZ>ATl2 z(g{rM_uvY0+;jsCiWX{S0L@|M(Re>1ZMfdGU#=Ww4;#j{T^e3q#Xra2jhc`C6kRX; zsbZ`ii^=4cGNwPf{D*oYEUeV~$fC#k+jV_1mC-;VZ|4g~$4L4}n}8?AdjB$H{7Q^* z4eZwzp?bNoPf~$|&yEg+x0BPg6xY%BH?6{}c=DN{2IrQq9ct^i3HVna`1t z4^;2n#mwpI<`eSvhHgSADCSgA89q`dR(@u0cz%Rl#!SI4NxDhD@5>Pg2gMTvvccTX z-|yzy={{+;d`8bs5?{=vB}b65y*&s2eZ)dr5RdUU_v7quro*zu)C5DDB^t9;@G*3G zMM&7Uo$-mm{xMN>=H%cVkjCIvoB8lzi9mUdK$y-Hr)n-ASSL^mW zR3E##C%RZQZ6a?E?mun{^Jzl`7aS zU|xOm4+)6BI($`fJS#EX;t#=r`$CS-Km6)3oM2;n4pl^>6@>3UeU#j72#29=bm9X6sAb#(fCYR4?(KP1D& zU6G0$r?Xk~bCm-lmAl)bmxmxcDgcK9#VKQa>Mn~vqBT`&>!S57_Kl&Y8cG9_%#F2< zx#nG&_9si1HiEaHS8dWglkujQD7c}>ueb;tfC-s{xElf3tXg+T>8SL)jfTx@TEIr4 z!(I=fB$y%)=l1q6fa&QrxR3{-@wfsgcsk);mX8tIhIKgFF3(y>$TzpQFNW~{!16jR zJ3COz;u@gS3NN{rC&?*X#%kB}x8$V~p*c{quP_#8;P z)XBVa6C*@AjO<~_JL4%wU>$td61fna({&HqTtI-<*fuZ_;cR2$;Y6-$`ci<+Yndj5TsALMi-8sB{>jOV`jWS#2>!>0emzX$PiPuq|F z82UxWN^zb!h5N6aa$k=jl5-GJhIC=yhLr8L$U<{X9=dSJP!*o@R>m0VZ7-9u6uD zgDL#?I{T7Z;5K*q@WtnHrv?$HLbdG5n?JgN)PQihAtqcf|6@2Rl`A6usfmoJLNC4WSjT!Q4FG~1UA=4emjwl4( zyW@icNw~>E*$~XcH9+iO20$6x4WH>neXZ9G3Eubwtsq?bf((c3YU~YT_@>)gUSTdZ z_xQDs05RMBhfiZg_Ii0J5b!>|M?pn*xS}exrA15NkNQC^FvhO4Y3>4bWr-Lv0wLQL zwbVQup4(j0Gr|8l+8x*T<_JPLfT*AT{rld=9AT;}WE^I?#l>Y8IE=7kp9=Nc6@0k~ zpb$L(!Fpfo9z+N*STev;nceeDJ2q->Mbp7;Sv^NhnW&6vE~w;ze8sw!U} zOqBh)$T#3o>#`Uh8zWb-8&3GRsVWVeT09&;=wwkgV3c%SQ>u5*8A!>e; zCMs^0Z?o1%$;QQX7o5IUR~KE+IWNr!SfFH53cgE72{ZB6uYtYYmhs|Z5?g3WgRgM1 z`Pc`lsY#>>4SG}Gn|ho+G;?rJ{H})r8%FZiK=mO81yUTWb?_Sa@K4mFJz&yt4Y(mm zNUvCQUNxtzF2GInCO#gJ>Aq0VWj?VrTHxc4N|BT_Kfg=|GnBNVB7P?cA^fxe!p=|o zI2gDDZ|8(L|B*e-FBRbyjbDA4%RAB$=3n&@dqns;=|=q7nPtApW?GF4heeJ;=V=Hr zM`j}%MQTMhSa&X~tnR%17NqsEVl4U*Dvwp_ULU0@FW&=~c5Ejw13>Z}1-{@QFu}sx zAKI6O;A#&G#k9npbScBAF?8Q=#l`BgP_EV9y;8qa_=ch*{2{5G2}2RC{Fwh>V$|L%p1xow68ASzt7=*4(V)VB#7mk5q(dOiFKOlkj~P-x3yJjYL^d} zM!(=zR#sxdSqAiG{+YFNsRs-U>!n(3x>)!BPzyy6-x_SXzTELXBdHw-U@P|>7*LFb zrEney=}}Dy+aBsr8I1|gdm~`Py)M;9vp1t@zmU_#b;z@mY=H16c2LD6YtL^7rMaY`uXf-$3s@u)vc}b3u_N2Cx>Ev zeV^z@558AOJ%78fPkV?k>ZKN3SFE+RwCn`~YUxKnaDoCZnd0?)XpkQ%?;wjeq0=MK zN&8SuE%<|p+0ZrY!bY9EPTm?2eOe3lF?@%5dYU`)9gX<0);#Oc_QDxRKJ!bcRx8ih zYm)lHl%FNmy(!D}f)$d3Fyvv^sFZ5UE4M>+-sIVU_Fm_kH!vD3lKp+ zN`BjpMd}MWnlcu0auPn?64+GJJ$#6C6G9&VrawBaKCApEC|0tCBb4po!vH>BUeWy# z#;&9KBaMROW=j||pjlQ7AFj#6ObpHdZ$ln0B>WBx=DQgAk-DYnyPjUB0jsVJVq~J0 zAJa4PsIF(6$<5yLh5O6V8-VQ`cCfzpG1q6gLU@d@M@=jL#Q`Kk628(jie`_VpT&Z3OIGkd;R+ZkD0{7RIxJz zoNsOcsuPGQBlHs!<@CT09&fz?3K1`)Qb9RSh%TPiBJ+1dc?7i;uv}|t?FkKo^;pML zrL9|EpKM>B`d@CY<-&LUfyU8eLVl$j*e{;{n=5z)u3HwMhH+WngKi5yr)_+;{DQJN zi9iO7xI}v!$A=ph7#*rl{SXjx{rSCI@?RJ^JaFOU4vPmF7EPh!Q%>_Z&s>DvL+E^=jK))7$1Kpl%G#h3AK{-Z&6F!p7zG#lII%7b4-_&OSWHK4v?^m{$yd8=j7zP znWx$XZIEfLBs40@CtELHYU$qowAxTCB*-A^d@Wo=Iy!2Yda~n1a5FYGi zSachc;^X5hqE?+hPzuO0Y0u?l&{FWKdtsWLtcvjQ-@25ovCb^n9{`dy3N$we5vMU4_~;dJQSxax%?v7BN`a> zq__Y11s7V1fNxx@3_sbuSURuY2X-V--*XE0idff{mKGU+GIU)JqPmH#cm20Rc3w=F3cenrinE=s87jGO?P#USu@TcYNt~7A+H?A!!Iw>-t9Z#B* zD5=xue$!@lOHb8gzU*{NY@}F8Y<;Gl5cu?&POYx zehBfus&`$V%fJ|YF7gY`UnDfofG2`>}Cjq4#NC#y3PGhe79uZwu5EJcG|-jnpq_ahO~ zjtr`4i9shG+{0)eKmL|BOUYwh>AEfdwG2weOKcXz&x}SGx(ruVB6rjC7-MtlkH{if z1JVbX_19khyxONep%g%WDUVxI@CwHuTkfp@5sPRQl@Lj>&O@}IV64keAF)eJ33;;! z*bF-6tHlR3&dz#ymV0g?{CpNqTuvmVTj7~LP5Bg?qb*2cxEp67E32?F6(KU7=L!wX zZ=qLWxyD|JIkI_dj0ny)7O*;lcy<96d_G4^0?RDsR`jde$`i)n6emx67{TadMocn#9-?hMhmYWlFVFLOQv2!)9&+K}pe^)K7Sk|b-u}YsKhYH%M*63aB>|QB z6-`|}wlgPZs=69l%C^NSh_v8O#K*^P)|8R5osEpd)U1yyE3I7hKHGS-pnHAxiZ)}3 zmu5SJm~cTqv`aMMrZlMmvh7Zzc;;|mXed9$pN8RX(LHivwt=T7XXeU!qjyGoY6}mZ zIRCV<->NS=P8Moz3u3rlB?mk|DG0M2#88L|%WUqqt?#*G*?aF}Iw;IGT|Xv`6<530 z8czA)3A?DC9VbYOE*)`-N=gq1Zlb_d)&o``Rr>881NnML{A+8^q6O3hSq(Xr?*{}9 zkx+1l`iWrN9`ZP)eyW0sfCa%I6s@^}8|9^xRF<$oQE9;J?P#lC?3b3 zD1PEdzcT($J6Kp*2>_d8GF0s(FhbQHTbqQ9gPlGyl>+)PG`8L$Chn{QPoA-3BQ{zX zhwfZQXL-4-89AZE1m}}7<5grSGyFR6#k^Ja{kxfi{?jKJa`M9#o_hBqQf`M*-v-GV z20*02{KKbDo!~BeznRaJU6h5kkt~!+<}#+Sk@Z58FL(Gs`~w;qarkFspin9V{>#mc zKas-#9hss+&nswa86qHNVGY1BHSL+0AcgbK1s0QRx{aZ*{sAdPOhttd7GDzZRBSUJ z7bxFaU&n;62Lmgs5pdXLBqeX&6l;d5XR4BJo|k{D(UUQv(t*)4HU|GKJ5SEOj?BoU zpBz0PqfkLKg+lq(`b|{Eou=D#bUxJVsqrY6C~xEbj|=b?ej4beCE000s5L9MrL-1bu2^dp51@Ub`V3&MPM`g=I1#@+pB zzP{|qBKTKF7*$efG4BeJac>8=Jp-!By<~p0KSi2@_HF3Uj7Y=EDv$K3fcfxewSCY^ ziV#lD2TU6>vP|^SiY&f_&*)&tS_0-nofoBY@cY#=$vw%ax%oE5H31Z#p839%po%6D zW)-!2eW$0puOM#%FU4SyCJ#V#(q8Ai2hCH_afeFs?_b`WV!W?|8E9*167ioiXx-{+ zN|6~;+ES7Ubaa~}PBh>wuz-OZGOXr0!>rMfwy%IT{s-FTotkosi;dw`fFd*hWDBOx zkz!r(3L-_<@4A*}n-n&E=*^V?00Wx^)X(wp6B>7hNTC2Ibsnqnq2K*f=(pNza7)w3 zd++j34}4mQre{#fD=^{E&?b56@>*m=3Q|FSGy#>T&t>2OFEB{0n5uo{0$q zII%b!H&qX|CkUbTNU(oD2^uG$jwJbv73mfPogJ#lMCk}@3n0x*P#VW6JUe?g&DqxV zsGsbf)N++n2yyaSsr#{2T5T;EwV4UK)jvJG9unTTgvvMjkBLG6f)ER)S(X%uV8{LgLZ>%j+T>3oBa3-6I{s)8 zC1Tp^7XiZL=fUON^(8gjZgHd>pW4Gr^yuP({dl^jPs{hH)b3$L*+fI#L>oYo7g__f zTwHkJ1j2-i#6LlW@vMAoXeivI_VCH0_GpHtxK~I4T+iCNpOW7pcVcV0!JQcKuTNk{ z^wq1XtVGTNfhM@ULS*4Flx&%Q`M@rXch=yp66_OC`gIFPweymXx?gp5KlA-9r>$oc z5GwO&{<@dP17LkQAW;3DnkoZq8wz50WW<7p7Ap6YxhRCEO@u#x87Im77$&u{(Dt*W zD#-4iUe{krKJmoe+ah#}3tKPjHb+#?EE*eq63PEsPQLdMaxb}oa6Vv&=Tlcj1OzA^ z{SDj7kip>@9eG`uK|8BadIQ~&trrvsSR4^so0xonu(T~~2jLs|@8~Fd9~j0G4qWVB zg1q5vaIPTvvr2t{)L>%7+GucVf$6ll)-hL|X(HqLikNbx9JG7bd4X8QX=(A#44NmJ zc<~?!r4Q2an)~5;OFUphWWGGkI6JZZ$->HLV)RbN-n1DZnkKs35msMy-v;6rs&kao z3XM28MEDy#PclwNM7gm7pXagT-AovCohO|3) z*zuw1hK4eSsDoe!{2Q$C}Y-Y9nn`nD`{Sbkjzq}m5IPQm5lnl=x zWc@i1>i*vNnwS^@Zxy^_5^P^+A@%^pR@HZ?KV1>h>&>+W4D9bM<^UocHiioTii4}S zH9Zb;j0S&YDhJpu3^}VeHn9PjW(Zy=n(!s$ZW%Nf{fX~JmglC3<=M;KPD<~imw+m{ zWXBJwsX|44aJ3i`*a??qm?R(_sb^^T1B6*XCQS}3z)6Avk)A?GU%o9Cbk5Bk&~ma( zOP(<^03d8t`<&2TTpOl82PwjfwqngUIz)_ z$zX912Ia8mPIfTsX2r&i5@xW1?-T##$@%#{#FB8Yfkv^{F{Tpzh|o2T!=D=u-hK%(b17vYXYC#*o@0hB181OW1lmN8XFH9uy&Vu z@jyqsK|vWA`6Xz2Es~LxC;X>9Ir4t9>=r9CbDoj^@h%u;xFV*&`&NQvy21)`me@JOf*M9OoAY0y zfw|lV*}el<{sPZ~4{6zfVF~QM_7JRrvPQ^gs6v?TBckg=MLgE|A`XqCfb)$yr>93& z)?(SnhureAp(Hi`k2*7Rd!nG*grwwxamhA|HzWV0ryCcqg9gDcJ|_M0`f430oTFx% znyC65R9l;iR*p}%)|THhmKlo`V7Y=5r{jF5Y3>SPdgrc~I#G$IK+kOoQBx^2xo}EC zcu(GA@bPUIMiW*WbiRi}n>)z|q7mD(4df7e7yz6$3^v_B&Qnu+;Cbyizh|WP6Cb4N z!nh|v60(?Gpp8WCE)BlxCSr<~mCxE&Oo=B7X_1o;xW&x;T1C%C*4>F)dq0Yx>qp}* zdXdz(#^;$+%|3oA5`hEfFB7F#XjmtA0j#a;04f$pJ;5;61A@kOZ}}M{bq|_OZs2|X zEV=%wh{ovI8`7df-QCp>ceY#8B*X)JQSL&>+Pe)M`y`A?eiLdz^|oKv@?>VA z+`AWHJrxM+g$I@`Hx3f{qW>~RKN?<}EA@Xa#>D(g%my09vJSUQlbl8SC@Cmj15*hW zQ5u)5jEq>orI0P&`h1@t_&%n%!8n?j=yalWx|}9?fT`&;m|sufqzUIh2U7kzOu3M= z?dj~q002uMSYntEJ%V;O!=oRSWfvd79tJ5nN{EZUhhE#NMhrBx!HV+`>5mW>1kYRB z`*GbMUiOGk+$r|#16c1kIF#>!L*E#B5a!_qKgu3NNIpDiy6?u-%Cs!_GPO;b zL9wae4UZO5ArH^-G1VSZVj;p|V`D426{ExSL6VO4YK7SD)blxP7$IF}1M0V_M@b`V zY=cmZvpvNf*hl9DelPiVT7h!sX4m}4uWzo&L9%pk;`t-XdedRYc?EY2WM$%)#6)Hr zicTX#!w)bt;gORk9+lxBZlI!`LT80dC@YVaB^^24-kdr5&v9s~l zF6r!PXe>7-MWU?4FjkuxJ&b#q(wF`6>ms7Zk|LrknPa(TxAY7QP+_5lEJ1?E$^^YT2qyhr7V<6ohT?QzhNUa& zlT>eE;0abNio-$(;zS*gnZN?OLnOR=ZaY&LZv{0# zD!c=3I(K|$Dnh)PTp~Ywlf0pwcQ?eiSO4Fk(FL{le5-ZS+x#!D+McbtQUO(l7^KFy z(ozmkm5iSl_xNOGJp?ke31y8FE+%Gb#a16>J_pYeiDuZQF)}Wk*4Xobf}Y^e{aGnK z_zQ7FJQf&d({wx$KEgp2j{9Ew1?nhO*3o|RSDt&kyxz$@RrU2BlJH2y-@BgLb#YxE zkmX00B+6pulvQ>#G4+m7er_`@HyK@)wsv_Pr2|Uom)h%abi; zun*M=*f$!EtGm(AE*etrTXkGr-VGfYOuL>d@eLpTO@fJuv^X4@n70`&NqgC*2vc~S zhiyV7lV1KuY&1*YWK^@Vm?Xz1a69#zV1U`_Ph~mw?b~Z`r6xxg_iQ=>Lm&hIP%o^T z7G5gi`^kg>+C|38OPI&Fhori$jutj*VDQrW-wx9*D68X!#|Uf%qB#HDyH_-84LOr( z7)JoBcYBFmn+`GX+I&)eo-{Hk=@$67e+vjap%9iUUS(BPIecAd5x)+(1*p4N1nK0B zE~lvB#>U3Ky}dJY^R?mB+5PsxNL5K_mGc!RCf3{0VZs?4wJghAOOb}(kxJ0ThfyWF z{w}{up6bWKLY8brhN}s#a~x6PiNE5+I{JmWO*%}Gvf%(_Vg}#VqpvTMaY0x{rhbrZ z6nHR11DSK?^QsZlg_dK5d{`gAs$+%m2H^u=fMGYDe%r7g=N-6F5<2y=@gF-snX0TV z4sBe`ST1(m>k=J(h5>=X($8iyl8Awx$f|G_tEozPS6F~Xg1Hmub!kOK+Pa^x+}+Ou zHFn_okjmyC1gmf7Z5rSn@-%vV)yNcblT1A8BP-?OujIt>zmM>~K(RGr`l0KI_Q=zd zA~@6#Y=I^#9%oSBkzY|Rn-vl1s|z2^&v|*@gH)N!s%FMU@>J(s)?Q`^)?pdHNwA(_&7bYs$%c>OLJ0tv;yK}fK<1}t+VC_o zpNg{O;F>Dp|KezC^@*en_Sl|Ncyr`=zP_tgVAAMF0PqW8p*iKe z_t3{T@{nMCeal|je0(uYvh@{n0g7q?^C85p@M-@GLK_mWDr*@PErC*CzlLCDF6m9Q&G;TQgGlYQ zZOuQPd&lb>-Zyc&FF83q?W5D6!K^$zlXvfxIuV-U#bsWAx{$sB3N0<&=NQpE)kP43 z{J;PKiWU4tB|)r9PdOM%&w7PjM_zlGl(8qjtEss&NUeZu6oaUc6w`i~K5&Qe0jx z?a$vqHhN>J6P2F6#KvZxDkz`@y5EIv;l_uHi!J?`=1XudE#;!35~3OH2_;okMvZuc z>H|g!noM`+zT$N8=0?w3*l0#sqoW)9?*pDP5Q7b**_HzS^Jd5E{mDID@2s7%rTZPJ4;cpB|bI${Q*C+rV~sBTM;Nr<%@7-=tu|satHe6hX*ngPPKZv}?* zfT$<}tNqp9R@e|s5I(&0z9*>QJNN!3lRQwoq7dWXc$~sdmI<+ktY@AZf!?Kv)eZoO zh<7_W%C8Royx0uNQQW&w11TaEO!UveWkdWb<@XK9tpPs8CzEnm0Y1JD0B|=Lh)XUB z+*{Af9sXkCFgE{kHiw0WKVTG*0-?nVI+kle)`sO4C_(;?d|T_`;=Z58#PQ$tD-{k%|H|0s^)1`MLOv0O^qbbGrYv_>pB` ziWg1PZ!Cj!H;~ipVAQJiIOPP-N8skBnGs|Fi3th)f#tFQe+%TFAfT-Hi0p-|tfHBz zY0Knf0;E?!EUR$$_s?UrG}AW-{%2w$$Vc$_3!#$PCSLD;3}dZlBB$ut8L~$z27Z3e z)Kpz5+8~sj_9k$LX*GRe5rahd@1>o7k-|blc;v4pn~VYPN0MHHw*czTmH>VZ)q&6r z9W(%c8jfr4LRIZS3XZ%3DiPS~v;Bm97tBj<)YU(?LVMp#a1}u0vWn^i)*1}4Iv>(2 zA6e`zuVyRw`JgNKobLakEATSVP!dxf+FeTItA!+G2_z}OI#*)P>OAR}$7m#;LT4)I z7GpLy=TX*M2|@!mfbxRi0S>i*@8BMtq@1@5Zmb$ekl5nk;q}0!9Nx?aVD5nD&@3d^ zPQ}K@2sm(XXggOlt3Ld`Mg8(mx^aJY>GHPRe(Oa14IL;-P&(YtNC~>V!#;HhrC)Hm zwRLo454O~lL~xdZP@9|x)D!?HeUPMK(W#Gfq~?o?fBjl?zivm5*PgztqQdCXh|{># zQ{ZTQ;{iRrbbNAhA6Uub0ai$->y2w-n%2>CtBLup#YGaIjiaNbV09*4{;wiy&6Rnd z>8|HVA3nWA}`_TX%LD`9Z^j%I9%I4Fil8I$SGNS{dWD5W zX@6GGEavcrM+@Gh`uhWCAP3G5LnuLK;p8NMuO=oA4)UKweo*1UnWpyKY(y%R^}+Q`+1cnw(y9Y=n3cfgVx=t*g;`y+!iy?CZosAZ$ri{j$S^2y%c_Op zc-sDOd3k&{Q;p&03jgCz9ay4v8$?_7uy96-{qSO>!D9(}RN&fkayYIFMjs4#Js_;q z+|`AxoL7FTp;VP!kedrls%c2r0^A@qG&G>YIuw_Zzx=YIy(17)FZw7HF#tder^8LP zmg(svQgZSP;EAO3*{6COU@lhj3pm_31{hqW>{ApJD z%7G5@;sF$$;6kqkF63lj)S8D%l3vJ=2wgiR)YM4EoF8TkWuG6LzWms(I==JwrCGT1 zY??i&`yFQY|ob!pAu#`$TsUuxde1$+=UG-&|>l4r3c!^^k?HOsKfY?#{{b*p` z!rB%c-umlS%^9!>!>&mF4%7-fqay$sfEKiw@^EmNR`&g#oU{w&0LOL>05H+uDpFzP zxGRE5kJ&2Xc?{Asxx7I20!_ux03<2b#AL%UxCH8bV;4ZU5ysB}v#jA?VO$(i51FT}5`)@f;P;o~U4yRH zFiIRS6jr;wRLJR#l9QIaSdf@3{3q$`|msK)@e`s#k1TIVUy zkP{@czjSt_IlmyG3O^3yf*_c;uf*hTol)`sP%|~h!6JOLXEi&U4i-*>z9hb0|EP`* zd~Per!-EZw9VLJ?KEM8f)qXAgIg=DX{$1c^_|gITp~J#jHlL&i2TL|?{d@u2IY=sT zK!(Akf{qIttw?08PYJ=!^s%w?hhk;@#_u~fv3W1HbbGsm!L0-3dEL;Qngq!}a6s5X zR@VqV(3+4h8kd`S@MZXSMMaja<`*n0EcjDo?__p%`hyo&Cmft!m-jmJ^WVc8RW@BO z2!1XY-(b^w4=IpJ(mZ%7{tT;CXH=p>Lq!Z<>@PC2Ff_4dusXY%S`@Mm4y(l6BWI=<8`5_~_X8Kj zFdzAg7q#3npKi?5f|p4Tls3PV6l#00wfv0Zkj#FWl3n}f4(<9bpZy01-G=8aGqr~` zkTe6T11duA>f#hUqa7QyoM^B+@PaRkRw9aOa*mzZj+>ND)}8gS5Beh9#Wd^IZqkiq2U}; z77;HwrqD-pCgAGa1vmpXL`g1Sa?*)I0h*^I*zjQihJt|MNCJ9QH&1iGR_Q1v<~!2f z9^n0N9tFf^DPVD6_)Nk&>k=PyCji{@oKO2}4vuZZ-4L$ zISSO!H{lN{*ffX<07Bdj9)@Ul073M2NSd; zp-SA}8=L+m3mwG0mgB5Ho1L|MKpz-h)%a~kMHG_9Ac;PJNQ}CXt!=5Sib`|}udROK zIGFcKgcEK-O0@;#w1tHQSjE>vm;0^ancAI&wrA6;0H)A=q7b-}hr&#? z0tP=xuw^emyn$@)1-#sUL4z8|{s@&h-IP<#Vi_g1Mi-~P1tR*uj*11=0zxLXnt4e{IjF|G|7FSzN%236< z_Z_E#CitFeucBi#n6m6&?d05#y%CCp|FH-QH@b?PaTt(&{jmk8w&s}U^}A?3BYj(9G&fK5r z;7)+!jgG3p$i-#{P)xyo1E7uZdR)R0axq_8zQD^yUxiw&)uOBb!M?D&Uhn}e4iAR>mYIp@@;^X6A1ngIDfuM;7cU-tm zvT<-k-XkXFIhqR#$>_c6O)OuqW`3=#jXT?iC&O*sae3jPqoD8!42|pvhS=_1ccnYV z+jITfk9DP6_Er>`aNRHu|IZ5$YuKZvG&rFCT=p3X5sS}I|7|RZpw{eU_JbV-yOqk+ z^r3;egsH0A7*0Dxs{8w-k1*-(0Vd_Aiv^3#3bvV+w(a`zv)SK2F;SZ?qUuH)1gJi= zdjPF!i;DVF@aZYdU{8Dr)I%4cME;xezW#c7b-uGcob!o&ur~~6JFw)TfF~blHV7mf96470`DQDq z@V>+-`1ZQnW6jE2&$9@K*|g?|hlY58z9S4H(-R(^HDXqcA7U~=V+FJ_8WrPkE^$#% zP(YSG{O^m;_ua=>TomGbpm?O58 zn#*7!Eko-y$@Q9;$giqIRNd$y96xUW$RZ1h2f!gO?E5#NKN_Hx^TMQgwJ0{w{V>&H zJFP$i;$uxCV+)A{yvN>< zg@#T#T`t$XW*BA8 zFEAV!v=-^MMFf|^0Jx)JnP~7#-MP5$(TV+BpvliQ#0zgaw${i6Ox5+zM5!_%nX%sRnTfx zi~2@aD>dFrJl5!~HI5OY^rU|>x1zW>La$H=p zFaIovz4@E1sFt;hsc6gy{eNgmN(?U7o|#&8=(1U1&ryB8J3vnguKi{AbbatAZmS>T zf}bjQtjawp`1n+#A&Og36(27->3xEtkBj@-%(MlRQgQ&sHJ<+!K$dI3T{*C!L1=#Q zhSl23*RM79K=^tKJ}D4{RBDg59@%ko2Ldc=*6ZBz4wXoUGgK0_wgsiTEtQ{odCfC3 zfmq>$1Wr^}$8E*D%_?Ryl0ijH6!F@;i`K8>UexPt@8~FHVv@^AL*oan#!<|VAHUNt zea+6vsn5XpfV0|#qj%?w;KP}dT6}!imY=w9jMt@&04*x`MGC>Og)6kZHFGN_S(b3ZS#$n}exqXE z-S+xJBKZ8axE*CWzRtUOJ!xKTY=w94)hm*m?C+@iYx}gq7ZKeF!e8b4x(&wm*Pg`1 z4NNLybdUg~=#8;4{o>+cTu;}>V?4}xb`wQ^jtSU$APK6Ko}zhqhTm7WUNnu9+i?GR zW~nc3-ug*IncZODIEF#QNE$wY*$Vz*NW&b(<2nIJqVpN*EY=OTk z0oHH$*t{S$=BeVYBZaGvGLxzr3eBBDdIfX`hk4+6Ad4k3mGktWwEXKL5xh4*KLqvl z9{O#n>9Z%mL_>fcj9n>&275j|cp(4_Q3{Sz`AkKI$)ow)SI1uaxJ5=d#LDrle`iK! zE&piL=2%V))$rim$|N$$kQt_$mog05s+U4UEYORZmF_NWthu#4OO`3DsOOamgUEIDo!J{ZOBoaw8##-9@`)$2Z{OZp>*pcMK06x{Bz%u&bfF*) zZ}}cfH8hAa$iz9LHsd1B69u!3nyQ}yQRLMr$UJptNMo|Lix-luy84VR%9@B(BlAe% zUD=d4v^hgvQ2=~rzat$8zkgp?zDz+j2$#LP4X8UsP0enQR$LJzJXRFr&}kAA6O#(n zN48L6)L@gQM@`Ur_xVG}S42cd`@`;e{<`#d=B?V-H^*B-YdX~jv#N^tilU+|AJJG| z8}J+v)k#Nte15h_C&AtxYOJr%#UK2zgTSD~SyHhSmF5PMe8Tfs9c#X|}1rNH(h=(_hF2IDrcT<+#jt}V2gYxoIzzr;yS4=+urz?;8sE3b<9x_ap&Hz-4j=;LT`CcR_+2;WRcke-XZdaa$Sv6q=Hf{C8%v za@}MxpE-D6#$uj8+&KP;;#UETP%^X!thkI2^a%}-_>xc74B!`tVh|yFY?{0-H3Z|p z7YHwYBwX`xad8JBc$2&}#t}W|-5LL`|0ZM(A@DJ^*HYtT8EqK7#4DG?dk3N}Z7_92 z!jui-CLml|0hs>gog*UVDV4xyBDV2jl)OB;UIn>Al@x7i$fzP&t`OUYcjL9H>JOcG zi~gi%Az5=~MV6A0nC9n4<(5Uh&!tFfBk(z6`5iuNn!p}^XL!(eVtp`9UC{?n_Q*cg zbCCN~;nHS3^U?m|M0%@pt9dq=idGr{#Cq1po!{ZR_G2`bvmr3BTy|`j*0hO1*=D|n zRPWMF>$FoORhbFA9%|7IMPX3{WOL3tLta*sBh9wRD~o1<>|VqJ2|zL8Ln~>EtBdGX zJ2H+8ZF20heSP8KDwcM0d4#hw_3?AxzI_4~Kg2+8K#FoT8+Kz?kTsJI!h=PBAfz?Y ztkOm)!l@t098Z!~EGb2GD6P!OJ4P4jwP zi(LP5Y_LI@+-X3*=b(JuMQk#V=cg$Sybce~=DhW&&(qQF2nF(}O0R^N(0Z9cxN?Ih9 zZV?cq8-q?M>F#dn?>YB=*R^KNTF#o0Ip=-eYZe-N&rqOu>ZXZF;y@Kwa4d@* z>IaES*#pnVGzF3Z1{jNDv{beN?XNc``=H}#-LR{Lz(^INJ@*X_8fMLbP#!fFN2!+EW$b|&J@I&5g zlu6|rL48qWk1K=H`A|wh$JrEk`hJgBOeXS}8^@#F=U^&$Vr~7scLVM)&CLieFRw4~ zdF{ccQw`QOJUp{r8qt%(Uu&i2w}GXh@L4#J4GYVDbbZ(! zVBW){&rD3{kW8(QAG4+7&iTPpx#@L?&}Hu)9Fjf#EX11j5SsJC=KyqsK)?jU?a@ik zr_t>1^$=%*X90MR>S^K;knMTygaI_7q(&(SRsPR>9$ZmUBg3RYLRevwoQ zOZmHPDBgatq}=23GwAmEncEyp*}A*Cp%H@|Ir^c1ga-1I_sEdJdHjK>@4oC~=UIgL z*cj`0CEo05JQ{J8lT*b@WkB`7$0`qI_hP6-dXc3NaB$3=BYSCl`0gg}u2)`hrvX$g z!PNVr!fq5v0^zSKdRapQ`7~lq4vw2c?y@Bj!0 z*-HF<3i5v*{~Ix0gr#8c zO~JwbH6z^ql0XuNs9QC}Opvuv^KfUv0nv>)wnI}_mnl9j4htC1K25FbbdUUi-wsb3 zML5r{C_yU)g*kvlNFPQn=oddWntEgm3M2&Xen7ijFZ>5^z-9Fr-hA~YkGE3atrj32 z4f883V3PwiixgRM3EvsAk;Ki5oP~*L7XDl)-Z9_cb1Hh9KrYu!&Xr5mUoZM$3j8Kx zz1^yePyHp0^0S$YC#~%UGnc2u-hb$_IJ^QuIN!+l&$GRK%P&v(1@k_6YZ4NfP*Z=| zt92(>9mZKYJNwr767BM(O9l%-6b)Dv>!Yx1BT(5bkH_oH81P%Fyo@3L}admWHfKBNZS zpvhrE0GJJ-u-;kr5N`z&C>{UJxRI3o`hq8=q{42E!p>$u`XNtD*;n%Wn#=&r@S_tm z8?3korgXXBfvl%y_TBa-j7bh;DZ*MM#{88ISqLRf%|Ud_f&$rgP7cMM*-cfWsT>t* zs*r}8FfUU8*C&i`{K4=<2|u)4SeJ!>L*_V%IDuv&wp4ak$m#|gzRNhiCL9ylt5 zr*E`Re)gv(BWu50z0<9%D493^Y&R~>RlK{KHEgQEJL27|rOxLYV}NJS1NbBucyBcU zP$T#5dk^0(vd5#N(+sm_iXJT){ z-!yp3kjf#^Khlt#A=g=Y>;UI@*w$Y{>zgzL<%aWF?hd>f#m}^`ARN;f?GwCF^Z34( zr)SG(d&q4zti%Ucx29_6e#f#%;>}rtVeTCRX8*td(U!2=Gcg?O*{2pvw`Pm&0^a>JzZT3X`-I~__V^3S?*4q#==5xtG@YdpC0rVt@oN4 z#&PPgl5T?G2k2W05H?}I$NrA(&6~-+9F;h|l{(MYsUhCNPN>#l?b zVB*^7U%w0gNJ?5{cw5|QCe&K%2}vbfr3=7DRpew0*jU z1SSK&0G`-#Ao@8a#mLL67U4HGKK`T9TtVR1UkV;^@ky}apdfg7cqV~4q&f9cnULYW z@jHcr0?e_-CrBJC6n7^Y870k9(sXm-;squpQNpPns2yK~fnjsKJ0~*$v1OQvJ%#2m z8c@0vHG;49mmYBWo;yrAVjO8{Nu30(^nKFfeSi*iGGJv{fVyBsMRoav$;nnA;<8YRxFx-1y)B@M&dk6db55O4(lX4m;!Wnh#YidG_x4#0)FMTVx9G)xX{DFR| z?V_!Pg*&GjN@b?E!g;{v@v~Mr8C(W0?~95)_BlH&K!)bV|NeD`nWzt}uW(R=gUdT8 zYI3&y01ZU%z(@IXyxiuo&M)MA8Tv@=L6Zkep$J(2Vbt*AU|9{uh3a6g)O{@zugGLr zW`X4k-dXSt>eYoC`&sg zpQh~vU}6LR3zdgY0A&2YfB!tTe-cQ55NC7vY=GqEs;5V^P)`@C!AkGI`A~%;rym?- z0b&0R9t%jm393>qEo(n18P{$5n}|yC^r`DbuKL}d_l{7Veg-A?ffS!o*b?xzQ`xm7 z-*0KBiH{EtZ*_V3!)MP0d2GkS_2FtZ4IQZbZk-4t=a>34khO9DL)iOO8pj!RChq}8 z>}J4gEm$Hc@9*X9>cY~J15Tbx@tGZ4d+TU%S6Sj2b-#7WQqzrb=| zic}PX`qE-aueP6Xw{n9&(GiH1?Eu$+^a4DAUjkx*M-OWs@v^L}^H+_uWF9g~rLiyG zCni)31)b77Fa}Zd0#NvFpYM;6L6QKc>38sN_NI!3L3nc>{9&`6CeR6>01%b+)=^V) z#f1Cyfi*(I6_Heda$#h9AZ?PvW>yHng%z;;AXUs#AjVY!c%{41RcTZ7701sqOW8>a zUaFaU2GWhs@iKcqzpc!;E$iX}S`n+8t1DDBP;$j~JglxWuP!Z><$1+n!E1CR1Hr@f z@O>`3QASh3SsIcXfuUIVjo0G2Y;m|-<5*}WCZBD)$T)a-f55EA2prZPunRsvI^X$c zbLrL6HuUixKey(SiN+K`tpaY_dD*zUJQjL#@?h{bCfoV$nptm--G~}4d@=U}O)Eo_ z8;ng_3JSr~ci!hiM(dWT^1(<18AX!~7ZIm-VVQDEfI#lje4=Y&0_3?yL4ER{! z+|yrbuFwM246SN;>O;IxSkFrx9tz`8^U-K&DeXf8*O~ipLPZ`^nr}R*(0LaF1^j5E7=@`F%a z9)(B*7FIP_`W)|(?ovL;*DDe*#X8v@{%CAyJc8$X#RYke$yzrY(LTY|;c3?W1Eo?z zdX2j`oto6x^Yx`6LBqwRLDFoTqkWo^mS#GLj_OPF-^xFU5M+T;L~-$Ukj-GOO;w4* z%e`w#Wa|$6WfbfRX!SzKEF)*u$gdV8!Z=yRr{Ix#44JAED1E{NQGO0F3mv=cp|U?< zJNSv>2Q`RbP({$vrmSyfLslyYpB6iEfhxl1q=+S8SdbTW`VF;@o?13AWiT{*PC+{Q z4KUO)ctegA;_C8P-@_f1@D}#(Pkpw*!8)yF-=fRZMvI3PXURAih-1?Y--lVmgCA9~rkD9j#I(KI3i;)G!Gq?)!5J#)^7!Y>?tUhN z;$xbaRp0ARyiZi_4%#c+j9>4ntvNuMi=4R>a<17#cQsxgFR~ zw1*6l8x%*oOOhbHM_?0Pe5uU_B_JV+ie`VC()=|b{Pp5$OHlZYm{)U!ukY2|U|#;V z%M^utM5eiJAWXpLp|PeOnmR~Cv38F#;nD*MtYL>)VYl^P;Ofcu zN^^Ib?zTj`Ir}vX2NxBU`)N0Yq6gi-W$H;4b@UIha~ZD$i=pdi_ow?z0ol$(8#SEL zKkLfPLk&r-+Xg5~|B$6qP$}UNoc(hhMcO6rJ73J6V?AJBKb;!9}v?8gHR4l@Tc$%7DC=|7hy4e3vxzI|%?`Ysia9PztTBd~;oh$B1? z^54)Q@acp0;_l(4T--nnA-!)JDFhv*vQ2M7cK)E*^!8G4KYQ1I+Qn7Vd$iaI?m7sO znt_e{W6f-nO~pYC8SY}!XQv& zYB<5OCxHEmyj{v=jv# z-!mKfR+s0;ccr0>sKTcZ#;8b4(GAw*?X9gMcEI|D^W5j<{h&vZC;0X&N2l4ws-}QT zv)}rr9{=YQCGm^Plf%Y0m#pSSmgR?5;2lLamjIdc%_Wz}>*V%Ny2`Rny)?qhw8EMr z5AR2=H{jy34$jU>hIO*nY{IJpa+$0EbZH%a?c9u_;(rg0u{qc_0NP5HSIp^a6qHQ` zqY%!+&V*cl|v7a6da#h?yP8q5o z|7#IRhu5{#wbrrFwl?!a+L+XBTNPanJaOz2*PlsA;6^IW?L^10h-rE{~!@LjYW(1x~xe%9Jnzg)36}w{M!iU(f)|U=f@) z!f!uULGF_EeZEdpzq#|<|9Jr(X-P44A;V=Agw)hHQiR;#X5@~%Gj{$vEL+v)W`*}a z2`l@Lj#BeI4n7hMK3+4(`f@wJYE=>xEahenT7xb=DJiLEFzJ$mBNtHkWpcDL;F<7% z@0qouYk_mdn_zOWV|Y|O&gTh;Ic?O?%MAN6utXY+=X5bnc1G`-3JLKyWP2Z`pzC}t8m zE`GxOsEH25pW)(>@PXsUP537-7G}4%dx0PUlRH`-aD3%bQ-q|m>2SM`KPVnB&&@Lk zwtr-3I6LJ&^Bde<$WF9@hEz&Zez5Jkvhv3%6EF9%g?(mEv zpkq!|PfP19eDQnGHo^ghVk9`)uI$7`rRBi&py5RTru`jCVR%I7(vwS9SFN*ia$2AT zZoEY1;rs$y>}401>)`&eqhi_cx3WxCbstgA`zM>XQQgi3EZJ#jO<#+c_>T)d$bjl%h2#|y?Dy{c$jmvSzcUVND>Apx8bwb4)^_A2sLp+- z6*e^_EC-<}GAILi4`|(iejMq(vF~VoaD4;*>w6yLR{$aM^Gv9;=7zb@G>G1idxm?2 z|Do$gwY12>v$Ma2g<(1C494>4F@YKqImB2}eyuG5(($rC=*7Hrkz=98W4Gv-n77an z(>(U`hWtdOo&*`5%@sFITURW#Z*O?}bABVMd5 zt4ZDCj;^zKiULL*TyXZlw$1?zHd?401vTZS{glk;(@q!;R(IVy3HOKddC!jSlmuK|b_9dM8DgK4E!o$L z4?w_qShf?vUfwx9ol4JbCYgeeqosK$+4g8ESp`o=htc!x+vtl0dI)Y1;$UMZ78r{i zjy!TJc7U-;HE?IT?&)JD$HjgAFr*W4y`0RCw@d(IuYdpkAz?i|8WiC%W zx;k02B)kQB?6}yXG`*Ya<9Fm#Vp2_t7;i`}{1}WyExW#5#t9M!Sm`0GXudc98|vci zQ`uIQv@|D&J{I3~E4yWeWd;8X__14$tlNrZCr$)e^nzU`e~k z=^5}7D4PlrxL5-#!)Uy6PJ%)tO~Fj2Nx^j>gnFQ6_ZB25*js=9E-f#A@Midn9t=5g zp}GxT%K$-xYH?5AjwC2ptfU(s8X|=++Jz}tljvh_U73yjH8qC(O)2gArM7>UV7 zc%SimaK{V~?1GKs8TfI)DX5-h^gBUXC5$((BBMwx%q-_a z2vB=FK6@YL_v+`Ioz4FtkTCnE+A2>)k-k61w`f|;@Vu@r%pDK6`gIh&`E+NTqKXO$ z(&O!ABhf}w+Sh6OFPT+apGUmWGS?cWbE_^cY#~ru?@GqeEUuvN_b&6Z$udi>>&RcS zyhXNnr3!9!B3j^i3zQysd1@Z_ivsSAQHQRK%XD-W4=P`AMhyOt#`d?LkRMCOBC&pi z_V(j#baYwtVP-FR`4Y~160gt7;pE-^_)DZ5D8!(q1;ZzY#D)nAQvpN;{B>ZQ0MH$T z8;M^x)Ia2Sgr3(H<>}^Y1#9jHmO?FKW%V_YSCZa4Cchrnhm`HV1OyZD01tnW&8^=Q zyHoBS=glZ@`ts5knVExjW|}01P$FPRvpH2q4tj_*fJLjIT0<9hRgSZhw$pu0 zhcG|*Jq=E%b8j5XqM!+SAWNwMTqj)Xx~9EQ_Vs>M|M1;~s%$3hfXzuPu=GG+0mRqo zbp~w7oxa{Tr!B8{{g&~~%^B|8cs)|G;yj018y(<$6zbya40w(WpaK0`vR1*`5GJDD{NpdqCT;2!8uQbGmm&nt5z-|l4Of$!fB>mb&VZGhRM$?a;m~d# z)b!yehREnAy43ht_3KaDFTA`+8A^&&Ykbqn_9JfUlVZzNU|=Brot{E^69+~}2%*R( z3^Nu)NT%WH%F0Os%l}5~u8KK-n!tZH_V?${g}wydOL_%pxk-XK)Ej`aAy+`iaj7X> znPN~2^hcasoIals0D-d+xV@0-Mmk<7&2d4QdtKur#u-5d_}TJZYT@!$i?4Sn#6OeC z6%;J$;%mm2m3>h3kVfVFHRHU+fdIM(MmP_+8-4)wY>)0|&(qVF?}tWh*UV zH=5s;M>`d%G%*m?h`D`nEE)p@rvL0fR<6Xo_t_!e${2+zmE~~$W+|XRp$#S~wz)ad zSqfQ_`itt{t=c2$aUYK06!bAJt`r85nd9~a{H*M#Fp+-U@G8O|$8J=+(tAbSxZKz% zhF6NT!;tk()^bd&4Abna6ffB)o&d0zGR@oCsjTC~y>HBu36{?Zg7FrTLJWT@t8(?8>!;VjaYvPoS~9rXl9Hdi+jJE_4Fs}x7#tA=*9$hlC_cD!=}iFj{ntkCzi}MN;JTfQh(M{nZw>fDN(gFz0!)pDd#k zV8h_Lm$yDzLSNWxOE0R3Qt)CS-{Aa5pzPt-udM%w$Q82xjwLP5=uu8W!fF>>WzWFd zkIZd=E*!F$lZ&dZj{E!f*H_*q7D*$gMTf<{lDD6_=EA|=bC9C zYG2d2ItK{Zcn^5qI(iA8;Ze)CxePGYGFLk0?1;FAkSY!4jSfu+1f`0-m>D(5d8GU6 z&i%;Vj0n7#kMG`5$^DuCJqvkiwYEsuK7PU!7qU!ewM#b4327LHr{ zYAB_>MJrZ5~`iuM(!;d z+l#Y%XclB#%tuNN`MRzSLrqOLSUEU;LAa+2ymWDhLqzk;Ow;kB2LJ-P+S=LirSS^` z;k12YbJUmQzf&TXA2Tzi2JCUgG{UZ{*HhCb*H1wmh0a^Rpc5kqDJWQhya9Hpm-=d) z?2p1gRai)Oj2*t|ky_#?_W&YP$U1ufLJg~bg+UsU?zl$q)p4}kolEHj2Cg-2hrSGB z2CkH~HQpGy^;2GF22K-Y<<-^`-h!9+Vv>@utgNgcYxowN_~EmwtL-&4H5H<(JQj)v zOomhJYhhgNVuJVafw`&x4vQQ4qreNk3{7-jLj|`DF3MjBgC6$Zjx%^AkXP|qBp~N5 z=NCLYwub{18(k5L9;w;cwtRQ}$d>r51U`m*AtI9xgD!iUm^}PH`RCIHawkHOKLHpF zBuhW=K`eK?QpZnPy0~yTn3%vE`qQOY30Bd7_5prHF0V06{h)ejixpy3!<==Em;4+?S)GPE2}XS4>1=LV|%B{b4w+Fr6Oo!BN{yhl@k_MY~e+Jlx>?Dh*8WczTX3p=oR%&4rZqM z@|{Xn?O1e}=}8f$=jpzjZ;vr!(a>g2SXmnf`i{fJuFUK&tj-5@b%RH*wrOG@_p&xO zhXU*c=J$+%Oe~xbf;LX<=wWHd+yhgoRb%%!cb`yA&5NKcL7Q8F^wD`H|+ZZbki3-4wG_J^ZwwYQ{hNr9CD&oJ=cX-K1@k?$Ya ze0p36=4MudSV7I<(OR{rhoo5Q+TsB8-NnRENUpU1rC5IZ zc0MpeX3Q}39jV#+xoX|3!zVDN>_rid@|SF(^)uF?qUd+p8I$RIQhO6&XrLd&NsQH+ zl>B3OxZ=4eKE28J9bsXJU?a_bHze`5dRnGai(iDkLlr90#4Q+pXK86!V!%E^^C8ye z^H87J`I&&2{0t#%7~ib==vtO)$DBXhOBg9{?X2joQzT1%e$dd$6s>Bc@ zsfHQpFig@<;kFAsj7X9wH$VR^tr6u6)WRRjjBNKY z2~j30!pfv)-l$O4{0?JN8Ekh4wG^}r-FoOH7=-)h1RNhO{JhRSk_8v(;w>&M&Hc$y zNfh;b*%dM8m&|byNn1|;NpSGMV)=J5Dn)~JO#emz!Nbi7g&?=w-12sJXT*aC&Vc7Y z`U6m!AxX#Zo>7UYqQZ{MvO?_>sMWr=uo=f*3OQd2zjt}*ytHpwO@5093Ite>j&4&? z-_gHMp5wCoO_7CVz-CT5_fA}qF$83hsZ(;-fOJI$B1|QVs z=BAmWV=oHnW6ICb2paKlA%Kp(ZnWx7pOw1>cgLT!51kQp?pr@P^E5K}>?yc?JQl=e z6F5-V?>#j!3<3AbLVtz~XuY4o)1};Way(I9vOe8Var^z@DZnVq+9a-|+!7+5kchmB zERBTxcrv%8cz7B2Pfk}{?WbQS zv?j6s@c@H{d4(50T7rNBRA2c+`%6-t2%5e}YWvQFla6!oBf(^E#ycpjV4gt*k;#6l zRxfVvkj?k<7glLWFh(pC=%QJPUw$kLqom|t4{@9_6EZ{ilVa})l8|&8SG;d&56K?n zl!5{ua{jSmyrau6>xl%^{O`|i^AI)0#YGS6WB44X^;nG*WeM#qDxIlUaLI0cwGz`n zad2>;prFWioUZQx?^wRQgM+8L`-!k^DYBpeoTS4mOq`rWYqjfYpIEbs@KdMim0AR9 z>g7)4+{UCKVkF~S0Su^C?j**c3rnrm9YBWj4u}zCFKivFDZ(87c0r8YPCkV@8;|!7rW2g%}k7! zAN#({6v_Du%w1Z>#+^s212;e>U7{EF2?5m<$&1h_&;@$!EQnlpdz1MK_v+yPuH(Ck z%A?}|UP|s4jM+9e6ymm|#r5a+8A-7RMn_MU?h(+^3OhME4kdrd4{1MHXd7Bq(TTN) zND&^G|2r5<_8?sASU}_xQ*49RfFZ)V<;}SOdut(?QvcQ_>PB}^Ly2{lQbt^re0Iba9E<%MB)gtJ)Tl>pQr%5o!w zpTqAQ{UjiQ);45YV?si33YcOMNFxf^|AB5C>*DUNkcA$k&DP&223u#)U`~#QmI*#E zl4Yx)W!fB9TM7X#^C)QRezQSVOeflY|LW|Xs3q@WVDQiCbOf50S9@7yklrhSY%;RU zqxZKqjcnOB8|tBi5o2lQ8Xx8oAKhNKGG*1tPbPb&l7ojc(Q5{b-7$MrO<06-iS|>S zv?8x?5e%^%?QGr{#sJ-07M?B?gOteH@sKc0v6A;-2-g~sjgmW5?a0! zam#eT#IZ9pH`0_GjVNI2xyy-32!7Pr{g^w3HFo5Kz-qWy>iXvHX1R5b-MQG#p!>^N z#Qy$EP+APYgZb24BlTCubi*7aT_nUl@-6E?-_3+^qt4mCZ{+N^=oI7%4!37kX2g6b zsxmWobyaX^hYqfa9$Coi%T)%(vdnqUp{9aEM|j8}$C)Muun6d!&9YiZx$w>PrTgl} z#scI(@Hzw}(=HbX_IbFu^J^6H`I^JXh6(dA2oNMBtGT)R_~POZ2%a=3+lEC@ha#w` zW0gK7QFdgnm~bc|c%leaZT{{rZH~3nqNafBz;bJL;F@3U&PNL5DW2DrbFYJ^d&?4u{dd`>1)E8d3)@v{(rvK|Hz z5o!=EAvEP+l(uFdXKeg4{u3g_T#8{y!3Aa0Ko*F&Fq}OFQw_iAS>QT;_O>bF-=DrduC|$(YbS&NNc%KVaZjSuhw5MgHokH=R zK$(w@j`HACCj>nT+1X4m4Efff77D{H_#_|!7Y^*?k#PZm@yab-4ee)5xBklYAJXKe~m44n4@UKmkw)~@t9{aFOZ zIbUlc{Ax!+{$e~CD3m#V3i_Kudxe39z z>YYv8lMu{ROG~Vz%yu#8F9k81RF#+C!DoU_EE6%=oANQj_G{JNx2Lj0ppf zlc3-3OP#a7zG6+3px-(=D!g_31_?3T1R0G9-+~Tt>~j!NcCge%9Oj3pH38(Tcb)C6EjweX@G3{S?e>`Y zqPD2H+>91wWo2Zz@cnyi5TyzxFE49|#l-etl>H1`NQJ;;f*1^2T&FFT4?wfPf=Lby zoZ!L!Qz_~xy>ifshdt>qKICzNn%=6o)r^9WoVH3Utq#N)P}7Lgy*V<%RCP6v!%NfM znd#S-%&)6%Zu`E#sfkl*bAlWL61)?~$4nwo;n^-QHGJ~@__+D2kzbPp{4{3Io-yi< zUR0si*6QX>NyBwC1Qf)#d3jb-$C`Xr+Q(O&w}b@|9UG6Vr)|J(qF1QD2jrftLiAsD&k|{KQLTWW+KJ~y8;FR++m=CfWjBm2L28` zFum17iW*s35Jm`JD*whwQr1Vy)LN?v+AVL(0G)!S0K1VXcG0 z_pN5}(|2S$I(e06CpnRk{Te@38)*LL1yGS03Bu#vn)>7=)}$WgVs37XK$ZRC;$kxp z8!vCv2+{oX=3KQykyw_dm!As3P#J>w3#S@13=E9ojt%3SOth}$krFZFDllE=9tBP$ z#aWX|UQ#*iex|zvLN@O>kXf*h(9k)!EFsfUkkQ!{d9~>$r5IvOPSv^1^_W!_h#7!M znvC{5Fw-$?*ED{w#mr2xw1RXi0U-;%|5;!;`!Qhl2xkGbD+G}UkHYu+oiG^!M`6i# zujTM?GYgBGcUV~dc7G0qyBbvR&702n1o()F9nN_Ym6qaqdg^l3yWO*-EA%qEG1Nwl zK;G){^(k+`JU2h+XuHS7#KeP+Bnua~kr3g7Ngxr>%yliTtPbKG9cB0FMAPjp9d<=K zMiTBjc!ZM>uO=69*1#dDEwTlyM?By_&^SNVJU1!qnH{S8dX)wE06?2K|C^X;CZPIN zaB4Z*6V%Xzfboh+V>w>G7^S`KUs%tCVf86}QR@i{CE<>1~sw)%F z$qMl#0`caQd{!bhw(iw1uJvvun4fxFU!DM)9~*g3I9?qHINF(^pA5ig9{c_;4SHZq zmOpc0BK%&4z7yLV#CUB`k~@C>NwC9NTTLJK&L2N!qd)#ieO%89cN`orC)C4D3$hNd zz))U84`7B3%$p*@)ARBSF2OB`6klN^Y|m9X{Vl$1{n zCCs`GdF{~2g>1Is}ogR6Aj*iZ%&uUISjw~g(RiW zq7koKJu@iET*%RFEMJPJf_e2bb#?WlMC2L{F8W~lH<+Qae=ca;A*QZWsEV@zSv13X z3jZ3R)cON_xJgn)+r%mBi4j1L!WX6aPYO0{mJxyuwiib{=8AHAK}f3(bi|zv;T-E_ zRVNN{4CZPzohK-5Lld%f)obsDJQbuba8K0NAV=HtM*iW!0m)3a$%R}0f9@Lkplr_2 zG%H3f)WZAg61h-LX&!{Izl9wb!TP>lmXRnJmy*%V-Tk_&E~@G#^f=TAr1lrE|7rkV zi~}d9IXa0q;V{32qW~(rRhlpydkR5xpBwl&Su#d{yAn*NHAbgWY||qmY>1vrI4|D? z6T(MBD2C)TF3(qDw1DLwJhJvcZ9t0nq9UfcvSCFAH)EBb?kwllHkhGE^bf>jZqd=X zo#8d{s;b#7&Lhwaj<<7uuh@;OgAfs!l$`t?R8rX1M0lX70vEi9bJTrlEJn6EH}kNN z^)rBOwTB2HbRXHg(W0PMSvU>jVhtF1Xa4}^j=&NKd=h8h|LfOHD3_*VoSHQ3-&=SF zl)!G6Lu+t{7q&JW|K(wXhKyMcx^?|00Of<6@^cu6zXL-opeg`KjYx-8dmf0uV*s9^ zkj%MVawAk06%aWK)qM_()v16x5WG40JS=dg@R3I+!sX}L87;|B0&@n@mRwlA+MoTU zLm#+m(WmBd=$kL>E~}mO!pSSGv| zx>T|uq)?>10`s8W{%>+uF#;;t#p9wX#lV*b%smB77yfrgMnp%7ettha7_gZUXGHZq zr%oBoWK1Ryf`tQVsGPO_?gZ0b`Ogx*;%a6E1s{6|Y$kU>-rGjDC?gn|+b%BNRb8EG zY|jeLV6qz+nDx;;1fJb75z*(b1|`Bl!61D-1eJY?i&XC6uQtBme$5Yd^x~?NW=Y{? zB>-3x;3pbNf&cnMsX4|ro!A$uUk5%Zr;Y2WEHjO?M9j?ol~sZZo{do4?Per}lOb@s zd}#Qtn~Xd=1E;6G_VGdv`bOfv)>2k7l&;$&RNMJz$8*r?Q zN7Bw)ZtQnh+loMQ9Oixy5h*FMSsQ4l-?ke=8I$fhj^BJ--S5g0a8~Ua+UwmA{}cx9 z2t=GRe@9CF# zxub&>(t@i6g7N7D2C#0!h~6G*LLx>d{V{vNT#W={0o7|ZFYS##h?+}rpSJOo@97FF+xTupQff0AiOOEVx9#aEyLsOv8+Yd4 z-r+?UxvP(Q8Z*nqcu2%uCC9#0Cet_nqSwQQU7p0*jDUwi4q=}-zRM|;G(__HtpB3i z`S$RZ=53i(x1&=)%tmHZ3ZSte#tHa4yHFy3#;GI_R=l_~;<~9gb9B&WaTuSZ zRJM6Co#pvxYY~6{6ublcl*)X3*cbfFr5JIN`8=N&(rH8!y&=9x^ZE0ana9~VftY-J z6yOE{1KXYZ_wnILl!X0|HAWFm&#@0%IznI6y^0YP5lV_2hUhEBzu6nY%v%#W1$~=i z7W?{5QGy6~^4cj#wj?g1uie(PU&J$f8!x^Ip}4PgXZjO?Ec;6_M?M@BwJq&B@(yY9;TkExpLErfO>q3h8a0_U}0DN`?G`|&5p z0Hf~!>8w71v=zA3l8uAv*+3DPjikHVL2u3^S2SgCxKUzSLuSkzt7nBkK{o5bU0`L% ztpv0)eKm-pNPu-1!gDOehNb?)HXB1#Tn=qvAfvPk{*LDnr!I@j(r$QD1gud(V1vS&>#izjgg`|-*eL$jN6x%8hoff`GHP~gN5}r zD=Ui~em)I==YkXY#S{j8|2#Wu{@(as134o~C2eza(|dJd;13rU7pH?Q9T$PT?m!=m z_KAnQY;@h;*2J(z$I?rry&^I)ayW?(-fp-uA=|hZ7$l*?Y{?_l3Pdvdvy1kn@_a6K zR4~wVp_0hy8I3bf1gj;>qU45$C*yvh(q>a~uj(c@=(gbxh=74oTCRAoT zS7@J`nfc}Cvw~6m=FOYBC+&_Sw@xe}4f*eM1+%L+XgV+LhwKxp{5%E9iq+NieH3t) z&9_DV4qa%Q<8exT`D=HMIGh57g3AB=)atCeJ4sgG&T@mw?Uz-!KgE&VJ_i0*#|^!R z8ke;*o!GZ`6jomxb1=kai1|UO`7@|z`~3KRi4E;vVh``ZQVk6j-XhItm!m`;rkTr2 zcdEgk!8#0VTv5DsFb^-)^1iLB|KY`S5T2~{a2Y7e@&Qsx-p3(PJJXgX`1rH+^{kkn z0S@z<*2!m2Pkcfp>53l+p7snb=5fpY{;E}ncJ_;!XkqadQfpn>G~)5O@K_!xAbEg6 zP)ywo@CIS>j0{-{fG=ibpuqX{fX=~z@dV;e<9BkivytvXX|P8KT6U6Bh{Gx!g2foci4)U5 zEQOYZoz#qT%S+2d-Mk*Hh!O0O(bw~6`{bPdUk$hv0|HDP8QJ5s*M1n7YBiUjC2~JS z1)Opl`1&D93!Rf2!u^717{T&4vf+XYY%W50lpjLzR;0QTkq9~2%TgS&kUc$zDeyizE-5zN|>K=YMup40P?RjJu zhVj8h3BI;!-)r%_f&wfIH$QNGV&XgUvL3Rpj#u1+W3+zWFBFi&+))V#upd{T-@g4o zFrRkDt_AisF{4$4buPhE>f{^OMmnvc4%RZ%2n4vO#sToRBL@7%BIXFz@!j$04hup# zElLWCcCh?57zx!R0pU{ATYjrKGt*jYeMbZ5m!RS<5@Zw~&wRKwVF0bP3!ks(y>}?} zhbvwaL{%IM1@~s0M6xnq8*0Y*@wb|2bA;XBg5bss$_Tg=+aU0SPfkvrotsno&A=4R{beRz z$4=9UVeVhfkIEmWC&n&|j_<+!4LV=^;Rkp?g$F_{(h>%E3F9|hmxm;_0sgxKp(GD| zuj)6!*wlD+W(Q+VAf;o0dq=}+O2CHENmepL<9F3mLNI-L7^^)=2?k5e4qXq zM3j*z7{xRmK2VboUs*B+EoL?A%koK61|}Kd!bq2vq_Ca~8OpDe51QTUM8GTq=R z4*rcxVOpZuHu}8tXAWwV9a#!%ZX+Yj00{19XL`q5;fj5_xs6Y zT=Fo~?Ec78Eq3|fi%{@fw$kjuN|yZy2L&~CKwwbiXH$rXmK$@PicHpzeVDQfgAbVI zp|hj_56{yNOi~}1hJXo|n~rcRX~gbYw~cQTqM7z4U_Kd5NlqrN(NN7U-B}30CLsZ? zvl4tbjtz+i%UZLg5vN0dAzB2=a^q?X#@x~A$~T`a{%^il-xum@+;BLU(F4TKFu@0s zxVRIw*V@{>0}-&4P%IA6dB?)IGGF#H&=i)mt+MH`dfe^O)$m!u77DGx`x8m4;?_e( zMr)T^_{FTsS0Yy8nuc;{{R4kO<^@CzYk@up=%Uu-V`df><7H)dAN*KP< zy=KB`@I>uI;$d}H0$4-m4x+?=4F8gSmm-RF@H=d7MCYK`sVQgUa?(Z2Tg(r>fSSfe zI^`VgFJHedLM2P4eAXP?gPy??LLwIfJ;y&fJKq=YRL%S`v>jA0p@e^iG{in?^brDc z)DL@l?{F-Y_~wxx{-YzKVL%ppTsZs#kcCvD9^6Rw4w$H5%}dv0{RQJ66K!qj<$&~U zn$ptJG6>n;@B@mqGPGDF^4pOC=!qEIYo7A*L5V3TJ#g($gqtfVHj)Vxl1NQ~DAb>` zqNX0=Yc=thL(?}hVq02S`3_{M+dMo(+c(gg88{=BcV6cvf!@}?=GuVM`gVB)Ha%`A z?WUln)arLyQ8zoXP2Onuogq`cyvp`ABqG8AE>ilK{<9=>bd6Of^wR|C65pqy-nfQ> zC|QUmWr$2AEX{O|9A+s%LPgX10Ttx*UW0>4b^q{i5r`I-=j5p_{0+12!&mLY-T1+Ek*d&`<2ui%RMrCiyhUjr@WAy znDNvv+Y)k^QlJY&0b+A(oEa>K8+Or{WM%p36xv z0k%f?$IqX;ou=!tnx>UcG(M*%?Dom6^l{I1IElsLkf-GqO->d#AH!^e;__HHtNWx4n*KxXx6ql-W;okT^L!C^!@vHG^6;rwKX;| z6P=$%uLQnX6CqnX0i{&{#@}JoO=oC{s0sCWC51J;B%lc-Y#P!FkvjqZyqe&rs3X(ffp&_gP4)1fK!NN7- z=Jw5`@$*MHEiKt?s3cM+1qEE`WxPFlL>je&YQbEDXW$&F9-*sI9pZQoNmk#slB^gOSMI!?5by+?aJO#MMFZ`t?d+Yk z%qAfOOlFYw9$+dV*(3i)(^rO7nRaaxDh{O}N=Y|@G)PEyN(s_RigZht(n^DLNP{5V zsdR{Rqadkt=eO?XJ-#_+{){ua*?ZsDwbq%?g8k^Fu`vw@`F}%h$Sb%G1t8Pr9az49 zj*NVV<_?$3Gv~Lz{BNT1+5{f#c1>Pg9%sST>~SzGQwQ1`S~;R8c9f6x>jNQ&bvH_e zJQIDgi4?a;%UJAn0n$nW-E0uY;fQkk&K((RYgTxQ?cj4*URlZd{8m$NmWp!rj_LXHp;Iug$D1T=mVU-Z#eQx@u-!yp_K9|QLx%Id@a>$AO6U*G<6 zQ8dxbUH+9bPm31Aw{D04>E!NY2dSF-D`NdHuoX()rkC>CEn&w`VrpTW7lzw5HA|@nKmf z9@`>~6a#Av(6k{lQ3eKVB^W!NjyfDJZNK{YS#B0gcrbG!-H^~RAuyVD^k0RUs^KqS zJy^74gXgE~uX$i9d=E!h2;}kV<)|UxDpYBs`dppnc|ur7Jj5~DvawCMwxYQFnRET~ z(8D7>H8ldtT@Q-iX*<4$4nJO}rOv9pc488e-T~stG-_&UG!V>})5@`cv*~De_vK`D z#BCjOYlkzGDjl3o?Kee5k#~EE^c$qht0jUMXHHyqk7md=Ts*>7l)k_x8UI*66mmgc zLImk#p9BNd_H#~EBcSDvUD*hi3m z_mL#xRwsq`WOT@CN(a28pBCI?#NDU+vHu$E(T%X{D7@x362$o& z%{;P{7{t}4_~t2J{MjEGX^f_=zr&#N^Wn};2Cwq@(YmwwxCOTt!!$}%x9dUVgpHFa)*hDs2F~4iE_ZG@`E<`{fAp6xV{r`2d$bU z;j%f-O8)R+KYXumzlbkTN@L7gPrI0Gog%Jv!Ep?a*aZ(?xh1uTovj2uf=ED@ti;_L zaKXUeqokyLy#6Q&ZzkLX9c6WOsfo9nCic8b3z-`)#;Q(k=z1Zov1K9IjXfc3_=2{rb(Yqt9 z*MH_bv`%U3=;(L{^%$?<)X*rmTgU%>5C56-KN2lQg1rPoZ>Fiq$wiQlN1A?u?iK}T zHZ37s{1v22yLzniv+6>=K%@F37PQG&P<;ZkezuX3QR~vu65SyGgU5Q^2wIn$ORtzN z-1KKUDKQa*F&fW{#uN#pUIWSP2{*(ukYV-pb-*r~6HX%&d2IN_CA~|86)eIxBXc{skwM~zCWqbVf5IO#UBzuoc>CLCKOBZ zT6n-7FO|R=b+#*lzWNY|F(Ph@yP(k8g?>bks-U6^^fez|1jq?ot!0~#JDjjv`?_z8 zPoc|32f~+0BHmQ5#hc9MVmBx;KE4wcxIsuS{D%AkD-iNCf}NxSu5GxD0FgjT?lU6K>&a%Q{CRY$t}5+Z7_6zkVPrr|LLjHQ1!tC^ zpdh?)?VxW1F5>T~!u?6b|E~ooPkL7!q`?jdQ^*hDB@p_nH&^ZnZ(b=K3@ z=YUZk@>x1S+Wq(9ZJG5<27q#}21rPZkJGa0X|WQ(^!f>^3ZZ-BrHM(PipV7as8rg( z{^kU33^fR7BXJfm;Iksy{}0=wdcjlTjh^Ie|PTgFk#s@NV(a9qjHl zYL2G;IJ!S zzcp`2F0W&d~e<5qJ~AT{K_NmjzaO_qZW6~=v&x` z>gNRF@l*{A9^;a52h%Y9cc1ybx4bgqWA6Pw;v5a$6l@CKa3vcHQHXnfvbFVLtzCQt zM7qEi!6$_H)InHo26<0A|Cke*Lzn5;otYz;o;?tR$}8A65mhzZO>B^TA&*GVAOP*# zzrTO$y|$oVba8rpgy?YAF+c4oDU8zaLI&Y;qlDuUOCVJl=ID-lDnf07p7g7qh2Q?= z*fU=X)Bs%_WI-o1)Yi7bFhe69ZZyEN4=fwtAWmV84>Qa&l=EVMWvT-{SqM&+Tn*+n z{-CNV9vB@GZB6O+aqq~i{r=8MyU^Wz8zSA~WFknu!xjqD;xmukEWOJvioZ`*Vbtw_ zkA)o&Wq8KmJe3DCTFWw&w(mlG+XeIw?E!i933gl<_fD64VumLt8I@9=L?NN_bF6GZ zGf_0PF;P_d(BKMB_H%W08bhQ*ikln6f5|y{c^wdZAClD#<-f~-f>*%V-OC&oT2&-y zYninQRkmaV)B_WgP__Oj^tU4(9v+3OE5-RRzjlRWE*zaf-kuO_$gd)_8((ayZb$?qB4KWAs|^nIKV8Utx|s3=HeN$5_9l9(u)Cg{3nlXHD6Mj+)0ZB@|V-gVIv6T(6! zqWq%oI?5jjqgDfNoX2`jf_9!WOw+U+TLtG|S=8sYi%O$0GY8(vNK5yEqzxNo915fg z(1l4zRF8s zNrg`(y$^yYCI@d~-6bImic0A?=_huWvL$`UZ-*kQ+ zXKOS>PXxpZH2gWguYa*j*Dg zHn!7Y8H#_Jfo1SJ>q5ac<9}nm6O*b42WF?Wj&IDmi4w!gOnXJnws! z^Z1PXLjR2jK7pqP05PvTaBpmBaakBnpW2cUsTb4Jn~ebh5AO9NLI+g>#HCP>ks%7) z#F9Vd#nZZ9*Y+A(T73|G_6l|jw~UfxD?=kAQBtvc_Z*H7cd6>u>l`Jkucbvz0VRVN zs+SNI$B78&A*I|6{PJC)x7F1dug?wHJvuM!;?26HzZNMjVDmBZ~|r^)Ey zs^gQxQMXs~($#K#a)gs7h^Jv0gz;+>*RI=Y($Di~?y)^Bd<$dq7mY_Y&2(|XHa=jn6C6d|Uf;_$$GHPvROXRg_c z^ba9hZ^!H$@eRLTt(4TBovksg*V$mbkZT*WJiFMjQ=8?k@tUp(@;;t(ja7BB&opXX z?umWjfZ}KDtq<{3WcYjXZ6{hS2E$@iWwJkbi{nZ%j5Sck#b{_ zBiGup9Y}ZRLmYpc-$^uL7;0pr+!o@C()+;Y@V?iv|4pZ2Z*ToU9-vMjUgH+r4EBS- zwNXLkQSp9jq#tU8;F~vUepZvB3pF-mk+C=aPTwrzd6W2SePpkjZ{BFv#l_*@->Ky= zJD;h@QnqLMIByq(Ys1OHx(q#|VEW>@ZiA6@O54YW*JVz?%zF`qr87c82UNk~;bjhg zkTb;nbY&PfbEeL8d$%MY#(r&^*A}U`lD;Plk37 zB0e8sAdr4(tE0~(kznFSkSQ1^aIkkmFRwqCEjZkGEk_w) zK@4D^qZ7*;$pkRI?z8wc$#VncwwdGk&8ru$EHS0*Iiy9dg(@0Kok><7!W3Ezh-Ql8 zTR18m;EzXM3Csqg0;`YpPz>BqT@(_^4F?8PndJa_SG;?pai<+iujDzB9o9cJMGS}2 z8-B_hwf|s52X&^x{rmS3o?vR~lc|{r`>!F97qOXC{&|Y)qu)4SNrGQafC`^~&BSR3 z=%PLYE+S{c_ii`2#54uL0|lrsqzB!CnXVk(mlQxY)hc2W6L0&v6ASP6b6w(ExdR#t z9WysU7q6ofd4b?G1^w7~W+SD>*6H0&#=5+pM@gz*W!WkK4Snsg|>Dzd?q%isR9*&CL5h(&m` zZUNqym2O6nCYaft&Fz6+K=MlL1%kQ#2+jkJ*0{_4*-)e>$LIpT@?^cQD9} z+K(4ToI^tYmz8IFUR1ayP%y?F#HOF+f%?q1Z2*Ue`?j|LncWF{K-~SmHuEMhXCmRh z{adcLF(U8X^?mf^3sI9R+o@zFj;tL1-1SriDjSZ*8Hpf7ys(5>PEs*kc@Wp@4drKN^Z4drsVN7%Un zuq9aBAb=_<5E#TKf`ST=Yrdve;`9fz zKt)PH`YLGl0xBxFzUbAVq5K4Q*jw8GH9+G6;c*3yZuZi-qC87Pt5gl=U%9Chg@<|{ z>ut$NDb>=3DW43Kr8_jM=p!wxSxyQiFQN0>`TW!KEVc;WH3|8Ux0ZH9|bzia7R|tW&XJ?{7N_U zdZ)g>3YB^ALs}~+q(1o86*J4n9lK>ny1cxM=s`fM^EH3iB5;M|2PEo+0#2uxJ-h=D zvtsiq`Ji%t>LU^77QsWuA=Gm0O+#-#9th?0f!sV`-vQ+`hA|LDmSp-h|E<*$o+~KP z{0z#ng66Nai3SxmWTseQVIh+wB+0do?{pdTV86 zT0^KKGgeW_J3cw9uGVO9cy~LK_N9phqaZ2iqwN-_5aOhy-g{l)FQxZa@IqXj={_}P zQr&zTD^GnMMyPIfT~ul@$IX>p*W~@wYvSTG5uX$*tWhYozG2Bo+~4W}0quZJxg?6L zK#Oq~uF;~XVlqz{0Y)$fjVb-@ zdsOB8w?Kcaswzn|9uiEe**f(8R4mv(v0Ys{ed!dmfB))G0}G~>0RQmG{=sMSIAQUH z*#~bf+*+qeUbb8-n-bgD94ICWeM+;{zaarOtX!4!4-i~Yfpl^Rx!namAud-bdEBOr zSjepmsjL7g4anqB$ZKr5-VTshwb-G;x0wijG4Q$8;XD}C$JHJ`-Pzf>3z*FxQ1pW8 z2pfKvF~d&U+fGB*o$mauTY3;wivzlUF_;UlhkULAK!Gn_s^B5!H{U#(+TQuzU#iKE z7IjEiVfAPwnRQ_ms!SlEPB!|+i+DIm=1TIEF#hva!%xXomMVMqE(O3|;mZScAs7kD zY}L&GfC+}goLeZJD1XOG4cX8l!O*6)&~R^E=Klr^9ANnHMh4<6&WA6)mMb)H1R`(-iWEKIT30QCJJ%8xE=Lex7&nwE*fnZdr3Z=~$e#ZU zht0mhghO7A>dNYsY&{G5*RQem9@|f+^GS#f)@VRX9JaBs5wBAqywpYUn#-Mn__Z{E zh)8x6>{vCi6v0`y0XKhpxG|=?C`qQkkh9@;5qH=xdAqVwwPih)2Z6wn11toUz`=rb>Ccc4ZR_625TC z!)L0i^VNz}&0nFN8l)D|%Gp8wzs=gSQx4w(2?^c)9+YQh$K80*dz(FFTAG?K5#1y- zcHb0>tkPix48Q9X`rvnfbV0gy0A_#?IpkL;K%VmzBIu46CKEX`WIp^z8CN&6hh$@@ zW<|}|dxw0LnB-zhn%v|3Dd1hyPG|Qs8Mow#O2`A&(yKI8R|QFGm~DKku2*gKVtdQb z=5YyXw4{m4V9NO5e*=E0YZe0AbP57TvJ(M7yKqn3L!desu^+>V03Z4@Ev+CBg>duo zqEX_HgE*c^J+~5WO0nAZN+U$nb4CT}jqY(E9!@GF`%j*R&P~J0Baw7n)iU3Gwgm%~Z=dNZoYJ zFOKa~RGK;|(gLQ*-lY}g>k}G@A5R1o6hy8PmoDB4fPWo|hWBv_2njG34_;Gp-8&4x zpgE7z`te!KuZOdiw#{`(n#iC@UhPaZ8)cBHj}z2ys_N?KzOwEL)oRfeDW>K%k=4ay zf_6M?ca};@Ug{XCIB#uEsEh6n@X4J~KoZQ{&*+uss(2+{@7~3>&DY22#3-fDzZnVw zmHpz3ZOcs*Y*JoDgbId;lGxXxZywc*aQJwiLm4fFT4w zuHxDB7km9*dFirZHTK3s2I=wA@--2pOui#>?W_AkA~LeFvfJTAZ{8Gm(my2wV={Dt z@mf#c0MFN3h^1kjI0D>cvc}f1p~hkG+I_R6#(gre3HbFPtK)2nIbRO?BiWT{WamKf z1qQse9imT%{#^z>g^V~L8(tY1W!N38sX_%ukHmZI^@Ny(AT!5kU?a{e!^u>sl(D z2dZWV-vDtTV-x719fy= zt|9e+O$su%-TJQ6-G2WE(dH76srxP9j_{<{!r^0JFj1DKbw*2cF~*|lXoJQr<;X8j zS2apg5@fo@R=me1CYByWNFTBDz7P6DJhHOVTYdAU)hh{f4QR*Q*f4sbhGzEqzy4$l zexZl`Jt5#!Sknu_p~>0<^n%#nt3U4t_l)O7NW(E`+6*A73HB+Zr|mu1(=LI?m<8p# z`&QlRjls8@VBtoqu~EI;gWO`3lI`YR&ZN+=U-9X8DB>`^X=KFty#xjVpgOD7zd_LS z00Wy6t%K+jh4q56Sn%GSf&M=1q4^qx^QK%M$g)Xn`1q)ypMB)wjg=JzCDxt1>A&x= zRlu4ebSM%o2(%n%7}|kkv%fg82g8U0{2L+g3;^+x zI5u0+2*85QJy>2spsNC1&?SSL{#MmQX~)SptM=cyFoj>gf)!*VH#RpvJufl^`7a_c z20rE;khYUEGkxK{9%jbHbxJQGG#-L}7RRK2jiAY8)m`m&m8>{tW^&gg$flJZ zJ;{9^#K-peZx}o&?xHAv<>fOPoE5YeH?cZ8r9Xt+lfz**!`AoF(y~nD_24B|P7}td zt!r~TvLYBv%xs_y#YC5pse?Z1xq_mA-Wk##7Olpw*a2mL6*|RpleIQ3R`zSQv^{i} zKx;#Fig;hWg*gU&=#y7AABb(6{~M_;!6js&G>w*)2psJX?*wnz%@?5F@|W7(8#Z(CN?Z}J?M)Cg44{bfx;7YAwFAfT0qNE-*oT0a2d zrIm`bjxQtv0@j6{F<#_)ucv#8(~%o@I_;_vgVYIOMFFG!%#h}mW$t&y)|`PKMNf`sJ5@r8hEFaVu^0sRi@Es4C5uLW&w>@k1FIRn!&a^IJ0-VqYrTeeyL0G{bYLD$F1X+lgspm?-` z5T%{X&e$R{5>iw#(WTzFAE3yZo*}(OMT#Ovh z`I_}Myej$4a~zyl{jiT1mT%h1D+;QwCOJsBV(6p34lTCPeiwELH(7Vxx+|CVG`ajK zIk~S+L>oE=Cu1Do*Z!c}G%}*Z!o^*2>?SBRPTG&)W7LMs$p~v#*WL?F&8YC|+C-Dy zsHnu~gdlEcf#@l3yl%hAyI!}t$l+Cgb>{TKriA0FON6n*6Vgrh`xb)96DZc5BvaJX z3y!?{iF%*8d#Gm&jl^_2a}i}zioK#9ODxsJAR0RIAh-DRP7e72fD2w3LNkICV)z#Dl2K!QEQQ`uM4V1oBVtvlb>l@?Y>F1-pF)*apVP=ahm&LO0hyFR5 zkvXew?^h53rTfv8M~!^Y4RmxVXq-h<8b=V;{d;8(Ei!Z&=zg%jN6!@%PP$bkVF1sF zaM)0L&WTc~8OzJV!x14(!)<;#BX(Cu$13wh(|sb@Z)d-yNS0(NI5Ymg7J!gVZRNbQ zCBJ|1bah<_dUAtKK5;c@aw1v;0OZ?~c-|n<5v%Dwx=8J%!P( z&gc#gL#j{>n(Oa`bJfPP_0B~wt~1=Yd2@Jr?moG9qJP24iWl#Q6>cENqN<_$8^V2i zK^C_My^p6*p2oO2tM~hdx|_Qiii}Fbw+Gz3(J9UO!Dupb`5Q#W02zIL409!_FT9m5 zhI|W?vQ6{(+YbM?+iX{mN1(^=`r z%%bnhar8MgRX^L$PweAg9uZh>;(Z|PU$)k~cZ3*7rblPz=UAdeFLd%gBwtztftZPi zm{<;m8Lt@YmJ@2z57g8G^`mG9qA45!)IYZyC6+Bt?2NkaTFus~La57^!ouGO;tX0Y z7N`nBqx{dm71XX^-w%b#)01XXYl^plw0_6sJ!c4EgN%X7P%88K_3NMT#MjLm^jf#^ z<7HHGPZz5skH1b|e4v=F{9@T=ag_eN#cY728QwX5;KBjr6vM^B8u1_lfOQut5|P$O zXncx6q*upR?w^vEj^APZ5q$eryUw{N@_eVm!NDRQif#j2TSZ?&V<Z0w7`6AA2w<~}@0Ke_zCoc1y^X(Q1U>2d*XkAY?IZfFwwo!=s zWy|Gzp+}GS4f2d{+Ssr+YnA^*O&Phh-Ar->`gl-RyOQ^FaDP@>zNELxb1tXXWsl(q9xgIpHGbEOyRFmJItSpGD6Gk|HZHT>vdFQ2#&4=6u*O#1D+FgJD6lzwcdF_Q5+$%(IC-@j4 zg^z7zFm-0P(RDjl@zUp7;ms?(hpDUK#7=C3DX1FEjIr|2Bo+cus{U#P-;6 p5s> z$H%vWf-mque+**L$IKrqLqV9Mrv2&{g%G&-b5K`z!-=306D#}BcwR{D9;6v@E|sx! zn(ptT8+b$rp?=ZJbSx;gvVL3bSvN1R1ppuf|MiTH#-fwmcN+lzs$IGu;R|4Bqu$>V z-rbs0Hk@I7!k{VbYF&W>HkCfO5+Oz)%G%1RK3)C4{|G*>(M*9qr7hXEIRw^1Pltj586!?Y#K^SP9AZrDK6&m{rMo_@$mEmJh7o`@>?4K(BvlaT9Y6U zFbo*3D%HlX@}1;{9DU%t5cl$WiYN%d(1>WfU{uax1kbcdBfR^Uk_{jKPgcyJ-Qw*9 zWg2IeKwLg$w!6I8A3{ZecMY^O+%VPD&xQa1lU-l01JI5r{FcCj(W|7*eo-#59?zus z_tMf5v*h{A@tH+Vbon%7D+e*!3O*53k6-V`d598hY0M$YG<{mu4 zkjlmbCi*xy!KPpnd|Bo|ci|+kay+h!22EEiGNedz*LOlgNiY;6S#!I~07W?g)v}keKgMd51jgNIC9o8IIQDkJ?J`%OL`0Sv9 z3hAKXRO>lDm6F{0P7#&Fds#S9J^K?mn$%}x@jvZ>w)%5|V|2sSA>kNJ%eD9B8!Rl{ zs{*eBRnN0F40du6@}thqJ$xFP_u#G8(Mue=)RUX!>_vs&WcxetQbhI-*e_3V zpoofz`Ei4~fKaap4YeRuIid z;Pi%r(1xybcUMFC?p;w-46zJ;$fnfb`|^B*N3W$h0ADEYXI%cF^Em=mb>xZu0wvt)c2d( zRhSTMoq>5fW7F-F(==t_ZIJAbUmdJV#~@d9lT>-`2;UfXPELR5NI|r4BG(u90H!7) zrnu9UMeUZ#kA8S*N!poz!+ce_$z*13F4fe`j2fcX5UHru%a?6v=;*&pOr;!KJKqOW z7!&9uX;hw>+tF`>I!@ftgxWgPB>(KUd7EyLO6CIp$=?QgQbI!dk-2)_&nk-}BGAfzXzL0h zpoi|4yPNa;FzjZ-c~EoXdA)xa)~(psom_vk6yOx@T%RxKw-`|L_N@~;ojQCpxa#K` zx(!hTUjcfYs`x+)FtHFb>zIm_hp!p2GZ%v1!k&~O>_sxNzwcq4f$2N`eRE=lB8ElX z$YhvWO-Sj}&!Ug9rci)B3yyi_X&3f&03#s_vdm}sG4cvlmKJBGD)r{dz&#KqAdCGm}n?^Sg`rMMVr@y3RY+!v^u z@%C;;5@A5~JHJ0|&}lL9{F&(RL8H(mX-p7#*5+tX^C(O_pj3&1t@0B~pPh@#xNZlW z!Pq%!OrRFavVNc!O$*6dhRTYHCimzS7oo~Z4O*B1I3k2?9)WXG;^Mxixogo#fSKG`?GK5LD8!bskpSspOrlr06y1a@mD@*0+FxKSsG<-jGdj(xT+&nqIhpMQO zx8LL#wDpVBHqxPOGI2u?6&e5G222Dc+2*1wR-{ICbv*CdF{EoG%+=aUgo0QWXc`TD z{Q>yv<&U^V1nY706p}0Dv(07s6>vxGS>Jrx!!M+yf|Z6NA=J^)F`0NbG#myW)6(~L zcD(24Y6}R#21UcM+kpi&7Cn8XeRwD}f8AFO&QgQ#JuwW(DhJpIV$}h>Db(KHz7Yh& zIWmn+O-~;iHnV`@hZ7_SB#ss4>bG`NU3C-~a4B-Phb0#4#ldy~ESL5Sj)$P9s#Q|*1c5N1eY7uhb!k|r{q1w2Emt99tW``6zof*>OaqH8 z)Hjdegw%F1I)_fNq?lb>#cTv*#7OiU2yZPx*bD;iTPWz|6{>50v1fLdK#Gb)v`Wl1|_uPoz|?6B4*Dmd9;%=Bp3*zG$`~e^gx_Fe7^GuZ8tsYce>FlsH9wj7YfNihhm`19 zq;(H|x0F==>O%;<8=v{r!9+SQbp7wIY}4-k5cn3JX+Ec>V^aZJU)J){Qb$C6bSl@a zYI_>R8>laol%Av{FzDAig+Lh6(QMJ@!q7B^J5NWmA$t&*AIh7zZec$49&gz}i_<#D zk@`#yPc1AwzhTBFx_|#&XAs5vLP5>R%OC4&bp!;G*DW3iy#%;qSt4_Z(>&Xxpk|t% zCkIh7c%&*)AczZwc3#aPl6l-3o2U(oxq9-t>PK<%e`o7rLb6V9d~2cXJmjg+i1%!e zcR3g}XM z@azAa1RRR~i48rg(i!05N@V3lo_f_jC!2?rM_U&9R%&l3f zy;`dmtB3B+&aok*7TtsyY*lO4nPbt7n%Qj`5JTxAISviDMY+eP(d^nBN)AW<{n+$a^;>k(FHT~*!XxktT}1X(bRc)dBz88!)J!G zKSU3+U%xi-{KjuO=`29qJAjITfpK>I4lDLueT|$3BLRd@`vnDIApI=BvbaDlC{k;j z`VpE73Qt!amQ@C(rjivF6%GIRLD>S1Jr-Kp8*OcEpfsZ4<&6i}vW2YS*7i3_1z~yO7NV#19 zC_?@H`#TU|_JD}2__VH-C;+ks0OR|-sNdjr(jCR_xr8GdMkp~d84UCT__@baQZ4na5__e-8LH@sDM z@I2HMZl6h(Bf)tEnFOne9K{OlPhZ`L4I?yOthFyY*n0(74`fS=f=Ars)vNX=tN+IM ztfM~3(Y7SaLUmLU00vx-9u=h(T();G)lP(rtg z4xUShL_N@R-)U1;V%`o?&Xa)K0nX?VT9j)NJ{vuXbG@T%L+SaC-YBp=H9hrx7AJoQ z_tLt=N8z)4q*(HY1$X|JFY(9!X1bDeDdA4fs;sR1H-q?6+B-Ua&Bf=hfh73^%DyC1 zmAkZxwcECQDD4Ml&HA|sZ4`oji3#M%Mp^&}9{k?H9l&pkdXL4ZQGYS?(BA*?5dsp=@XioBswHyqu%%} zb#itF0LN|6(tvjbvD1OoLa+iR<69_Tpg4orzriTJRxCCrcSa~eSKl(#gt(VUxG17x zVn*ysii(i##4k#u+n9|PoT)0h+!&NUN91&v`ZOk*otQM3HT%rrt^nO-6d?gY>)4p) zH7cj{i-Ryiriwf807@>WICg6HjFystB3=qBoWH zd1dt;|5k|5zAz9dbpfNb#o@Ps6s_EvRk3hz$Y<4=8Q3{HG?8|pfQ=hKsAU+=1&q|y zF^#OIC4a8+4o-NrtE;rF?3sG~#A<8yzt_XmfC;PV zOitmUinv8i_Y9=Sz3C6RR|}k6`zQ`6V+Poz^vClD$+&MP`Jv-+nB$5|M~G``-bc)_ zF#SwUO>v++v0L;l9$7cZUNo9o7*N`&E*H=K$^odDE+R~!GCv0e9`tjAs8{8)z zCyq`SU;oIw{@ApQ8@4gqY_QEQvE78l=)ywDsErpu^7WWRm!*JSwUmjEBqs6OH(E2xcRfBU%0EFaxJ>3nWs>`+LE5t}Qo*}SxA!a(;= zNvTRHUSOfQwv{DwyYQ8E()F-RJ7^TNB_#v7!BLmFmuL?FKqpZLNG5-@f0sgz_UULk zwfW2Q#H0iUr`aab8ZXbq)JV~Z{9MV+_c*@tH>a9B>_nU~$poB4VI~F!WCw&Cs3=f> z3aQD@(uvafB{ogChM@!+0BZVFen)8{PLp8ZRckr}$kEZyiibqjcA=LA?=p#1NW~XWKgg^ot%5jS_D;^Eiy$`DJ8Y{~E#I&}N}Z6r zxwhun$4|j57hMn#AORRhvMR`3Ud&-g0wV@4aW`Nnw4u*cQuUiJD*BIHB~r*~<*Ad| z0;)6;;KXDk4rIeqUM{)}XeH(@^-qeOrkuoD1scVTjVY+U5a$M>vu_YIR11o^#l^*) zelL&fi844CHG$ZN(dRo{-MK?H@w9~-rrso%Hg*U~Yugwz?#f{}t9F z`e(bGO!`>)4V)CAPyO$co)|YWfjPYc`UH1D4>&O$kGPqIh0|L02L+SN14Ztbm<}s$ zIdA6we$I!Nt)}X%bg6$YG}IR=zgAV%Z(h_awGUj!TR?WzhJ&w!WUJX2}HBsI5PL=*E+!AW^fYlFw!|C6M1Uar)7`$94}! z9xf=V^8St$CG>Z61bEwR5X=p=T;n=zVZRes^^o4pQTW^%{NanRx2Y*@gU>&5PMmIxiFyjflJX&T zXn#syj$65EZM90IjN`>(NqGzq1_d`78!Lpn3%_Jy%phMqKPFYY;dynsibNH-4JoG* zJujtym6W2m*|9c!c$`yPTTl1$!p)(6q5i(e=9;Y3_wT?HA~k?r6h6hLvw`m+Cm<`s zT;;-Tj~0ka39tH`oYv6$Pxy>{nZZW%5Wsu^uPc6=+#LJwoe@Y*10twF!le}H)!{n% zuSBQnceZo{K6p|Q*!;FX3drrB>g&HA{E_KDwK5=yOCgkTY*-&#c;GKOv9r`Q#+*h1 z7*%j+=x@+T6oWb)vOfwzwH5|8?d6x5MGF7bnH3*GqBsm)FqlV$hK0S;GI%Qmt=y#y zL#0E#h2)usjb-L{=5+o1fH#kWC4~V7lh3dBJ1InRc^vjkEOjj;mGYi3+U@?90xT!P z=lW`GUN+r1rpy?lgrUNmZ*vHylQQ@O)Z*k#YpkZqFU)6x2?^PHjuaXrwVOTPdO){I z7_6Th2S-QakP>g{M831%3JKRIpk3nt)!_KDs*(~wm8fv#bjHck#nAo-00TQe`8)gLj&@FaX>RTsd}~L)8p}|D+2ZW% z41&%;vfDj4xB|A>Mi6Ah#m2IO9OpIgN#bD-Sj#SFY;(3|s{iA)ZA7i0lE@F;7s~h& zNcMD^1)nXU53Jt^WKYG)iUYq{Az0L&@;_0Ph|VuhjS{=1?B}O(>ZP+fCGQD&*FOOr z3QVFYZa&`ol8M!Y z8+AAd_B=N@)#q(T88MqHD}#$=WYjgw@LpRh!FmZ?_A~uY=%Rik#@NUy0LLPj%7(%H zIc*v7QG}lJ?UHni@G6AoJ#kvQE8y}se{XlUU@NtMC{J{DsMKZqD~XiUGiezb*c`wb zke@R2rLezv$9-#qRrj}di}%kSgC<1bfhhFg%_BS;=ZE^<7a+4j@D3&qG<4Nk3%qIu zdIV7gd{9DJ`9m)NL-39J`}=zsl-EH&2Ti^ukwY}1#doz?V%^Ss2F2H^kx zz|CN?Wj%xcsr2D+tg#iMRaAgT&$~KRmfurTQ-_PpRo>Gnw4NQ^EShqOjFFg-3&O3M z*Nvuy5eLnBy0Q&s&y7dPTk|=a8$U90tGZBP-I!Qt)dbCz<6bW>b$$E_ZG#7Yr|yAt zz4aXy;azBQ2Xq0tl5r=2)ZGK!_$v@@C6{PWpP$%klMCE{^62_>Zn_r^4rSXVHSE*F zc(1}9R5n-HsyJL~76tde(7wxmyhq)2D)5iHrLpq$GFo4XUH;ty!!x3xhqxrU7zULG8+7?gOCb;WGPGw}d_;hhLL?d+Cocy` z3iAu++P4?-hMMgB@YQbKjMZ41zR%7rX=X+bRvA9%W8Q(8OxW|pPHc%wkRuBFhxCUV z7neW}Ya;!EAgX76WNqzsc~Md3{Oxu>C>H<@%cgunqziI^h4m3cgY*Q9gfa9=_#4%` z8uK3~L9fQf#Pky4v&C4Yq{Y$ZFk%>D+Sft*CuV;s(38cWGVT@u;xb56`#V#k(hEZb zIIP|sIj%+%FD3Did^DGsthOeFEdj~q;9Ky#7a>2pnbnvQY?iY=!DakQTwd1Wt)Jru zunFRWUgW*&z3HYh8#2vl9Bf(T^yocFwqQtSBqt+dZGszA$;W%*otm6n5FSm^9DXN% zmzJSd4j3}g6IgX!whC%~-Rx2zK2>P6Lk@?p0IA!=D#iq^}9k2v~?&DBW97KK_9aV z(NkIjVUHOZMPYmWvG-bDtJGkZgDw&Q|A2TnJh=`VsCuMXo zW$?IWf%lYX3|uaXy3w+sGg&vw%y1kCFs-I5{{wd$65>7yvHUF_$6s3E%XlgvAX{D2 zwG&GKpga`~4Z2x_i+x_dVkfWdm&198h5Gg_5Hyoq5%_B6=F#ISpTxfzjpldqRaeHI zjq&H5H*|7v@bbQg9Sdt`r_56Cist5{L_vs|kEJ0pH}o&d#C~akv4}GscyN zfB)5FvM}bCmX}vbzUun$%fQbQ#Vx5AxX*aX%ycDjDs30Y zLC0F<^TbQw-_QrLSd*Tiyp86Vdj-O=@@nH6_|rfacg)VF9IuZAHSP62N?MBQSG2ST z-qq3z0zD<5JX=zgAS_Nk&G=1Uu5v2oW^a79q@$x;XPuFd88+JW8J0fD&Mqu@08fFp z<<2A+)seEZcF=5pFI@I(5VYnKtw>jpx1fOYtZHODKKeGv`~-LcK%sXR3GhPqxqNpA z#2W5{gCwqBIeV2C7(lB(F@`cE zuo-^&PNV=w#rn0&-P1dZIbzcajnCj5srwQi|J+Jc)Hg0KZ`J4XF#nS$M1TtYFA8}6 zB*k15rU5{TI{<06hu*=oPoJ3V2j2nr+yPJn{QQT7RF-jlBKp64$Pw>4_?GOqX8D&_ zSBrq^xKS0}2Vyud+JHz!0zg}+azMPPFCdl_c^hD@mz0!*e}RDnzXSBSM}Qey@&X+W zsWw1?7`(mbHlRBMws=C!>B?UW6vC2(btxejxRDL{1?v_6tX?xkC~f@wQ*dhI6U$$1wXd^PMuJf00z24?5sCC42Yx~C zi&|#D>p&MN4HC&ISibCE4Uxxnt)^qOCm34B_xq>(@VPwH3ZJQudkdv=0(ZzTp$-)} z(g6g%d+%PyIpnpU-*I*_GP7o-eMC?gr$_L0Ytwbkk|jC z=`4V%T-&d|X({Pc1nKTpy1PXwQ4my0N?Jm?^Uy8b2#81tQYzgIf~15<=XdS*oBx?P zGbaq(JkNb!vDRzgwycU@Nx^H@7ZM-w0jeF@&Xr3~bQSk-b&jl6w8E{EJoxwyEr8#R1ON}+tm zEtWd}z!`Ir3@4-M9StNPK_sgC;RX?O7I84NgVHhAdN3b-p3bjT+=Z_1%%LrA zcp*<=l?`Bq_4=aXr~!zeFzh=g%ORZQZVspD7&5+4JgP0H>Dyx*#<(cJ9-u|C~<5g|(x=at!W|g*y ziG3jD=g)K1QNn8UAZb`$ZbaR$UNUFq;m~V<*}!p-v99cexg~n@wKx(U4;7_+y;!<2rCr|loQDJ$WRqEet*uw-n4R|JUrc-=xU?;&p%BqgeIY^+Y)|Em}i zJ}O$@zWte#k(|^e;r@Q{o`m-LxufG-#hx${B8TSznJ;bDmv;g+%MH;oq``q?b`~e?D}yv7G+F_%*-yP4fYx;Fx1{W zukeS*2?-B4ySNbW(#RJ}53gz~w0nnB%N0%!&g7i`b{1Q_CNF`K2-C^ThO82X0h=gq&NLum|%Vq_O25tm2^b2c2{r zxV3=WRt6i%uJ5guh1#sh+37urPZJwoOnhLl(OqbRFZM!XmtTmlG2UOO8~b(RJs$ z*VL@k=x8JSI*|9EGE<n3M!A=5I`qWk48hYu=@vbQ`41;aO9 z;(XYWR32Y%d-3CSs<(zp{fwpkI6HkILX7dtXPq36>xVN{X86lvYy$(?){RaWIL^*> z>HI-%lM_~yLg9?tEL!nlx+l9)C)!dRV}<7a{)bc{1fyaH2c?;G%NZY5V!+43GzF4a6u?A0gWZhqpGhiPX4W? zi%d`1&3=>1e86z_=ZU@Z3TC#Lv(-2%G6!#Sgb4zp0-SHR{Q1Kk<^}p8v|e`&LqiIv zMpwaFF#^gK1=o(B!^1=?6x^f$g(LDjtxmjJ@_%!9_)1ch*<#Yg)v>7f7MvXZa9*9C z>^gJUqkR@N)kxG;3M<}-SwmfqH{(&ALa;p6hBuB*X!k1$w$W*4%WwV}2f z5@VCYqocoHv1sWyIq_sUhQ) zGLA<}ka2>%d*FSr<}z*|1p-+~Rv!nXbNTZzLk=3i@q!oO7#h&Je{)`xQ&tuM0!0;Q z_}hUP5(p_Quz#w7H%JXA3<1!U!AA#H<;T#W|LE_BjH4Gxg5DtYqnA##=%zF%6|)Aa zX3gEfB~G~Kd60(YMm|qL@vRNQziA>dp__WKFCH7|3NZ`T^*O89r z(nCOtvYH{z#OUQozclY=b5#Kejc_<&u4iOQcs)8eK3+pXLD^!}LiGOR=3oxy689kP zcAS-Q)z*C5vW; zIZVoQG=MS5UJ7lP?DOY&`gGwPJPeBFy=7H-|Gw)dHbw` zg;B`uBPA{s;=VT*Cq-Lv4Z_I9CHM`HhWK=0J6#9|Eqg1=$A#}6KPhLr`a8}=loQVw z^m|&)ZdKyk5Y7__865gQ!fa-R<8Rr#F%l6HR*d=L=4jnZ2!>8DxhA;*Sme7rK>8ZM zU?vapuT)DRbUQn0F2Kgd$;ipQCU{cq*LzZ+rg6^(Vp{>Ri&S9QROelP#gZ4Dti(7x z&dhO~pEJf(KY!LwIy~s`Kr(A@uJfXpf9oh< zumQb~DK9NWIZWaxG2mHewTOgi60{cgF0R}pJ%{LmLkP;koNun>_aQ57ZuX9oo!!D{ zf7Hp*KB2jd+DW3S!un~Z+iRaX*6>)yukeJu0MZl*#ra<&Y%E?@wLe2t5{$&BdyNR z;J3l3gkF03H`JNf2#ig*?op-3Kf=-43VSc)r%_&c`Q<+%JPXE?2QC|_y$z7_0HRT( z@7SOx2v@=TN~rICOG}?%k^jPk;@>_NdHt*a+u7OK_s#>F%()MnMjv6fLEAVk?iCxi-)ln88jV<9Hc4bM~*E5$5!TNM$3~>+V1?nfV%?g4MKgePW&0(SHsmxcFC}8m95Lx`ugYVG)>v%!M-YG_36ip@5014HK0rU-zd~eZr!ww%#O^^n=I0zi z{#eu;5plY9hg-@qVBW_)K-JcFVu{TTE1^U{r?RJcP5Q*{DXRW)L`;X zQvDo*NgfrI^%0vji9k;h2>I|d8O0nYFU?4-)WZ9{@} z5AO5Tlv6h5u-0T};z({{TH#b+x=<#uBTkS&F^|eosk{;lr^|23EC^EhgX1*gZ`gezv3e9ZE{1GabmO1-g+ItIaTr)N2)2R*g$hdH`aKFQ>+`%gCOs`E(sQNGVGI{Hx1EmfovODP@0NsGWRB;F z><4(PJlk+7Sf$a5f92@v7}#{-;AA9o<(p6ThMJw+=zMj8MZ!CzA`cpc@*qsNrKzdM zCO#81Njm<5V;HP-|k#F4#{f+E5%AAR@5Zt|55ox!1` z^m?@P(z{96YJjn?Em*z`auBTsv$#^y(?0^d4-JIVQR`Qmovm4=&d@_* z?#jUCYqaG4xR#2_GZ0i1Tiq&qL`3vzRPmqJ^%={4zX;4Jp=0eTtDfT1YO0h1w7utVSA_oqx7eF;!^TE?8vA<>g7wM_S5$#~b+&<6@V)UV zgsK%uAEz#whT^hA_i3B>*Z540tym%kKgeErV12vuSJ%jOG|gWHU1HL-(C|!}OevxN zICC%TIx!C;qJlnGa$85{0w5(VY;w_e^c;ZzU_-tVfeBD(dccMTAjX8b`FRhhWk807 z4YCaI8R5X=u0p7AU?=*?cWGeTnY%(PUi|bxz_BM*#^MEU9Zsw~-Op`vcAZne~Ar&nK-#y`luo0x)B7 zDJ{}SB(zX1#&IN+Dw~BQw`JloEhjhT782>>j2*ZNKq_5HpKM<^z=0FGIwjhYe3J$qyWoftA&Myl!qR*Fdt@sMPov}-7Gn5peSI< z+ySpX;k|p@hr9C^VbiZ6Yz|5Jg}YG1hS}N0rEYa&quAqvs>Ur@*ZLf`{D;(jFk>af z31SCF$JV61_-JZUQ#d1k**#}0t5rPO34{%)&|uV4L{7#Tsm8t1w* zL#AGkmovMV?HPB2W`VS4)PT7Xq`4j7l8b=GLaObebErCPqxArXh?k@6^{d~jee#Wz z`AbD^4yE3vP4eR{FbiG~_VtagQIsbndeW45E@)hzmjkgsrE?%qseknJ=4`;gR~1St zb3lJ0{Y*Bj9uuVo9C%;>W}U6m=^`b~fq|QPiT*Eev@HWd`Z>Igv2aan?L-2Nh#1xe ztxjTxN>QaEdsAa$q+oVK!W&>!qOGfo3Pv;i{$xzneed5%m|i&?)|aZVRndiC2Hskv zb41v@-EU?qA&r-xK7q~DRNO)BKW!lxJBQ7EZq&x@`TfIX_s%Qi8U}3QoGdI#;&7U7 z-zDpEX>u8UOa!fD2PCTCf!&4j)vNp7=PrGWoROxqQumacozFlN0TPL?@Wi|q77BGS zF}eGxuFeuPLy30*qsShQZ_rX{R$$ZUgyYW|Uj6YSa+DtfIi4UR1eGoXga&}|`u#=l zfs^WOyBYaOdv{TyUmS)oK~c^Wf3|XcH6-bbxp{WB&%wIX!a)C6+mY{KcXZIfoLFyp z`OAKOUg@!uMdz|I!_xC z!yqV!|3bbvRL*&zUigHZl%~N|yl%)f-0%_2^9T}^@uKs3E9I3|4(7ig6P;op-Y8Sl zQ5H!Dhnc2MqnAjnfPkZ7?h+8_LfJVjjl{$#Q{uih2NPKDJoN}V+Jp%1i{l{JYg$C! zXJ-$;%FN*Wd~+p2!VL`fnIeLt$Ajru-YFH&FbzBu_vsH6lws0cvS#g*u@BgvpFEFov7r!U`*P6F8hsqTO1eM$(R zl`;v94<%5mk1?jE9vN$71*TBy-Y&k_wOIlj9~>}fWxA=w`iXS+Br|rGtz^~IaARnt z9(8whVZ&}zIc{eb_bnUS#&I7@tVV|N$!x-Tqgc_S=yvHPDkB7}psLuR{6m12@_zl( zws#uEM$Pi3&53bs-y&`~tEv51mo%3Y6QhEnq!Z~s(qkIFnS?k&Va^|s1gQRi3LNg^zd&>8LyA{(XQ%< z9tj)lPw=St<eYRS5>hv(b+sqVyc^L?>a8$(vW3#!beLpK4Q%GqLTBeb-wa=Gv%oElhIP9bsxhQVMu!l6BIR%F`xc4) z&7wEE3#O6K4gm2Z7WQiBpdkcLEYhPKMKONmbFt*MNgVl`q-ps7v;gl;bMFm5>Kq*< zL29Sf)ZW9nzr{wb814P5dF7zl#md*iDP}lqK|_c z_PDShPOY|ttuH2h;~VEKfXmWyLpX;r-%}rqWCBTZE=Fu%H6vd)IB;@wOJMngh7i5D z*lSFWNBxm;_gPDuRAOHrB#N{H{Vx^7lNH~dK?WvV<$-Wc>(w9CPnNFl2m?Z?6nzrz zXuF!1!}P~sOqH$}d!^k`UdilxOchtEk-i~Oq<%lCUrP$b%8K>D8^rH{0oEt=IA{_N z&24ReB66&4ITuHB-zWZC@-HSM@19Ldcm9z_pBqucqNb_5v<{;mv&kyGgQ^#5x*3-j zi-}93zF7^=eo~gUH#j_ z#4(s-Vm1Re!0M$XqW~|jAFLF>pq1l##;++Z+71be7XTrE!{G5pD||&y4;c<&as=H3 zT_2pSDNw~YfuJqis3EX#p{35M&OvKi=Er}^L!+HJT9W?%a%A$HmZXttABUEs|GGPU zm)cPbKt??=&=CNULm5u=ghgu|nwpg@huf`kN8F}y+7dL;L#J%!-6!HF-Z0+yiTbm+z#<&$i4Dn8{!&?Ob zk5(ID%pIk^$MsvV-uG?$icT=)*)z-Kaa9 z2K-{0eiuf81DkBOv5^rYK%<{TqEXl|Ku{&9OL~xJ3hbM1yyy>nZ-K~d-(L3jqQ_e)R8Y{_C>~-Co4z(-Y5Iv8h`-e@V2z5bc@;Fjf?U+ z*-#@bIauFTGsq%h=>1?fM8_}ueXxjqwcTHzs+29}`X)4jf=3k;6hA@34>{a=MZ(uu z5fo_I@4_b(6)CGKqM%>Ef&X6(9=`<4_uL3p*r39v(s?>=$mH1W$6}Qwcszir?+@W} zGr^dZLNIgsnI?n_7pX3=m|%x=Cnh?Y9Dw=5(7BxJI{BS%=jWGr>X~WQ9yE%c9~>7l zJ`x~i1o^h>9`{^QU$uZBY3-?dVrfCIklE<~`{@?_LdD%Z$I!+W;;z; zFr59ib+WjbHC2mox(pLiv1dR1(Rfe(`d23CC5a`2C+i>VI+;{t!Ih*2afSuyA_bi> zw7AdB=|(3f*Z+jjQtr+($aP9x(w4~=kXBR?5x%sx7R+bStuHYcbYG70^6H63fYJ2A_#eE6w3oj7 zVCCoM_iQ+YF?cD}dcUlT;Qm@VwJ)#+I208W9N!GkCB(5ox+9rTJFNfVJRm|j$U6fD zT9;FIj?Xb?7Yk_G2Vs7`Rpop~WMnU!2xNaF7a&?s3ZPpBTAAmDucL zL=}s^EN3fTdqn=bbE)04b#`jswukP=$J*HF1-B^?(0kv$y{cZe%kao>;rovg0-g8` z6L>!5D_^LU%Gxie@BQ97zcG+B1KR_%fFEHzC;$yMJhrdyxfUpz-P-{Zvbnf8l=Dbe z6&yy)ni-*K3s^9DKn6&#+x@d*wq5wC+R{>>iA#Yqn864;2x7`8#zo+cF757eg9-9| zJxm_QX-Wn@G>&-nGr9y!jRx?8ROl9eByNgEg}HISEwf1m@N1t zgWW+|ORH-5??c#O>%zg)_2~ES_KqOS(#ffF29-qc<|wah16XGmIyG_-3Bdkt*vG&~ z^G5ytqMiI#N})4sU*9!Q-J`ZMc51TnYGdOAd%Rc*vFA|h3#O#Y?OHw8`Z{l4bNrKJE0U{v^<}w} z8JL)YVDOfX%u9wvR|HDS~Dkb1wV{vd%3}j0U!af8^W9+6(fWzvqZMGH zxxF4vM!ly55CjmM@fLMOF#Q|S4i3W2{(_@Qhz{?6{BU_b1E^ zdya}gQa@krw^;ow=D%H<#&(qmS|t#92WuM{m40^pI-9QC@!6R%Jwv2wnH>}e7)obn zj77HWy9*eSr-)Wy6GNQU2wX8AK=cz1k_X$pg_glgp-0Dr|6mD~4`6}kA2TgboOC7L zMy}33c&lxG+Cxif&iO>P=lPyleAn@gnoM3kgMr;xw>}B;&`B6c_9gr>ma!sEjAB>U z$9MYvpx|V5N9Hd1oV%o*c`daIVDM|<4v4+oTi}AaA1N)@c;LoP7MrNQtrXAb?`&38 zN<&43U9>&fwZLWE@#fECm)p18B_~5>>dLvDoLGk)4;V{?*ZT8w9Iw4oc!M{UVq_iH z@SJuRd!ho-?blbo0efndyrRg^wB>B8Z0khdFn=7IN<^f6;T}eY9ARMTyFn<6-T{rl zOh@NFYu`@Rk(Oq#!ur5S?Ta6QO^{bU#n*dbZuls}Vf3W;qn!0cQ9q$xiq^6=$=1-(_hHPFd zYcf-;I<%tPll;(@)K@I)y>~Azv+bt4zb}EvXZ)dGx% zhy=!x|2lHZ%hflAJ`42az`B{;MVm10A-=_ls*^JlnyG2c>)?~qzaPw;U~@aTaL)`8 z5gr}@7EskMhCDkc)M|D{sQzOzmoT{t~NP=!D` za!p+wDTtkJoh@UTU2YJ)14W?$jJmoe&AjlTvO|)RX%|b$9FF#%jSuj44^_!w$+UV1 z7;--y7};Csf@MTprLIb}@8x}$Mxs_ERFzk&g zLS9I@(w}!=sMeMnD|II!_IJM=UfN3Yjlw#~g9JEqNXXQdrm{OT9^ADmXp>bUGm4ha zp7{e-?aoDQEqVluZndT&zgzOFrwL-i`~W%4GWuj6g?vZ4+O8E&4qCicaeNOLCD1Z6 zs2%h?P(l3V2+h|EPtPWG<^&&TY=yxA?|lT%SV#7XeG9L zxjWqIk-*NdyE`_Tl&wYf-yd6?1zX#fI=-i|rC|yRj6F?W$?vQ!Te7QAD=|2cX)j4 z;Q`@!^z=qtMueY7CJIXL3 zJ4<;9$JM2auzh~rkaGf>I1YRoaeZX-G_l$TtIr9^++-e-R7zny z3OhTdPj7d!roQXKIRu%|&d918w(!-rZWn&j*3)NOUaq?q47hD&wc)iMJ;p9>B)>kO zpK7}$;eEX%~b6G;{ z-jlkGi-u;lJwwYEFyW=9*5m+k)wj_oXv!W3*B1!CloqdCQBP7G5TavyozOR1YyHQP zJX(I3#w(239VwFz02+Jy0hkc*w18ZO9&r~y7;5qQKJQD7ov+U$db86ujy7b%{3=cP zEGIbs?&m4ojf=x8DRH@L$?vH-{&?jFWKV5xbKrda3Zuqf0s^@#$t$}ei`6*;nfJr# zA-CxCj$APBza$R6obt$Q`{{V#pyjAVdCcacp+5e*GaKo)6AnlFbron%K~STHv=-23 zWPErO9NbRvG`5^py6l15o8c}D4!1vkx+Q@y!2Uil@u=>u1T_UFUTirzC!y#%(trpX ziGsR1!MDJ5e)RZpFDfePYmfXfb;cjxf4sssNLWrIR49#ncg7@fBPXjI2ZPnvc+`&z zEx9ABI~uK7hHV@4T4GAZLnhc z7}v}GsW4UsFZVqdizTJ87f?{(UVD1-)_k%iL@$k&c&CmMP{M}cYFIV$7M_dL`3~9h z+J-^|JNND0?*V$R*vbzN%?qov_{)@HSbLR~a}bUY2?WiR7d6!|TDgT%>0zC{Mp&SL zb!f&Uqq{31F){t-_I3np-lajxk~^%RNz&xXpz@E_S9@?Wj$vFTlDe{THSdbCmMd8g zVYF#gh7F1cLiAj-w&jn=-VJGan&PvNfBTPFMNmMX1nVgIsq##>SU;!Fm8-srAl&P?@6S6Io$Z`Jt0&O zzeYy;Kyh8tBei0(UCxGl0eVCQO(S) z!NcoIXLG2U&W{YOh>865jg1YSTNU<-g#fmxbcS`+X{L~x-}>_UfhmK4bzZZZgXPWs zd&(hg2Tvy0rPhFs2Qqb)KU(z@14RV$h1Atp-M60`!}#gUAq#&sz)t`8Hf$nhh@Kshyzv0dNa(!i!`mC3iJf#;Tgc) zPtJA(C5|~dcmB1Tjm=DA%8jpH8M@!p({>T9*x7P`16K~xXpdy-Bx$)fhH{%~TUxW! zd+tl~vhl3HyCVW6p8)XMjKaVFB=v-%#rysHC&`JV8{?mMT`c)GrlxbDy8?gb5{NF= z0rpG+yU+Zs*-t!2T6;4JeFXui)wmQ(Fr&dc*J*7#sY4&CFcbB^Y^dW>F6!ILk$ zf_OAEy0#!r#je|)eAP0%{{#flAUN}b=rYEHzD7nB2m?Se_>tURm@hpsGrMJ zUHs1`+~pV7UJsib-!lj$J=-yI>d%(U91{?ltY)TXVZlltV-Q3ENp~@PXyYR9vKUq5 zvIfnX-TznT_@ctlltNknk%>q_c@x)XNmE}}H{(2Dj2*CKZegJ(3@KqP))lrlTEupK z%3813;(CvFHc?i79sJodX8Wz7rqaF$(_|K_Jf)Y*pn%ZIPb7?W|qaaH_cW7KkE8x8U^dhDinOS4+ftm@Mp+TIC1 z01+YeZpiGHWY5ccQib6rXrT4Y;Oovxv;FZq@r@3v-*}n7LIm%hUkaAA;(@L&UR>_* zv{}{~l$C0Pva=TlJbx~mR8&{Db)t(Upv5=yrz9>@gBVD)Rm?L8jM(Mns6iTs>G*&n z7#q^po132u$!F3Ki;EAOFV*mTP8-GU9&W`@|UYizKwU{%)(D2W6t0`DL zy6)1@+_C(b;f&1ojR!^8od<6@F-j?Th_UUqLR-X~dn2o?+OMJ4cHl5X1(D>x%F0l$ zeS~CF6DJcB2DtM*YY7xIL`C(P41q-v@ms{+{K2}r-HhNZz%}lP*lO?TS4bTl9Q=Yw zje0yIWyxd#xSK1=b9C7qVZu-O+Gb@B|IVB53-`cB*gX3^saiwLLZm0Us}ZOVl?RfO zK#sCdjOy5px^wm(mx6cWuLbkJ<3h>(61~kSwj^HIntZ8h4WEm|lX2KHOH@?s82IXM zxia50Eav-9Lp4AnRdzd4R)>SlNL!blElCyWgco+(9TNB2Ca=(%ZIIbq4|)3TOu;Uk z<-f~Al0z=8xR%#s=k^PcFuK@0JwNK;Kmj75mKN{~6V0uA0+&0VHM;ZFpEe&Gxyp8Z zMcF^WvcLl-7ZLcjxP7jUCcz5+99oN+C`y!;?MXK5k}877#&SQpFch7{Kv@4hreF$*R2Hh4Ba zeO=m(jeu_!GS62V{&KxR2Hd2n>z8q_lJ}diq~QS=xyZvKs_I{c9{usoC!w2x#q9Go z3hqF54qQZ<8?7)!P*8h;nsWb-&IfIms4Fp&&-YJQ9Efae_;I{d;kJPgyhWt72DUta zTY)px^nB?nngrrKs9zr)UcO!J>QH-MmwYM}1t=9`1$lYzLCV>Zf`X$~ph#Kb;zrcK z9a!}i!Zi$GhGKNQG2H30)b9Tr%7FSP!AROyx53+k5`nMuR4h#x7+ZCL~0uEOG(kf&z4hE#01t160rLOHjC4cZ~YkNE^ok<0)9nj zEUXYC%fTN%)Lu^4GF@I>P5+C(EGj6t4}dhdpEYh62EwGlI6#-oSo$V0DQ-HkMM8zgdf>x?5twf)T{mS70u0Uk zry98Mp8AlnTU$5u58PgU@uK?VIQXpmiN0gqN1OOpns6xqY8TDec-FU2m5^K!JE}9p zhQ!W~u_|Dw?%(fanTzZcz&!L_4N5fX@91K2P7-e}Qa!en+&%;ubs`C$*``=c9+ zy)T`4O-)skpWP^Dw9#?tG<1m2Yy3l1zXfpp_mWe`BC4A@sxVEKx2pT)bK-pFZnOLv zh5X0Wxp|KXG0+uAW6eHHKHHU8q)pGg#mdaw=DoM=ndLE5@+qVC$Bd1L9nSg#x1qli zTz|GE2~;9wa=c! zZbk;@An`eSntLlNEe+h*q|mi}@>HOPi6A&i@R6Q?Rg%nyDu-)l|Lzn9{1oFeEYx5K zVd9JHhA_UvnW{F_o!QP>1CDQ?I)zH}624|xcs{dYa!1OkUgU9XoB{-)5mrJrhK4D7 zQ!*!mV~L4L7l*l?8#rJ9uLaj0Fnw~8S|rq&HBi%qa9Q&5g}{D51S8luvq!=40jQ$4 zX$N5UIGA?0^Fw`i&i^Ems@mmkB~jwY@UVY+2-btRtY{9mJtrP1DNGw19Cpn#`2v*l z^P!s~!<5t%>DQCDQ7|$0-S;HYI_JNPN|a75zCb9@h)YvGq*Ta!@ZNEX&E)^I0I8{v zGLH0Yfhzh8#B8!t`AW6@$xrzi?%cuo4YIH?BWEiGgt=pKCoGVO(Pk| z%b~iGh9P~4>#VWEFc7-&v{`fV^WWoOVu7Arex+R+2j|^B3b;23LJ zHg!!}y{VuXRXQzDd*gXwce%FutqOtM&sUnYd094a| z0j}^4q<6gCFeTdK2Nn`gByv7h@w^Ygs&LMHFlu(ZU6sf+Ih>nQmrQ{%oK?G52O2i; z%OjB=pl#jXUzQVl`0y@}5^h8q^i^>%>OsQgHW1 z@=feK$;8Z}P*7OiFB=~MTXCQt0^M!HFP5CkeG=kyt7|<=_buhVQoer{)SC%DI~aq( zMxvmT@&d1Yuf_9d zxo_8U8XnVMRlQH861z7%Y}qbouYUWHEhp75nU93nx)9zz>_>q!P5W}>12&)>y5RBq z42-r%>`AdNQh~RC4a4lp5AT6RW&strEmZsmpjTf7C77X6C6rpnJoNcyDD_5Bi@rCe zyD}A`)Mh4SMM?vzuU=i@EF1BO5D+X)K8?#v3bJ!vGykhZOXSm_Ma%ziqJlxy>J2Xj zx8$kc7Eaq`e8$wdr|0$-F~;%XD`LMi$;`;6>#ML1P8A`6TgluykGuvlFkjq;OE0%d z|JSe2&KvG4nAmy+1v(YyeF^d}L_}CRw^miYn>2ngq*~bAG*JAPD|a}#a1Yh*!nmOq z6!V}6w*r2ubNu`FozC^PusZN>=#LtMo?_kp))B*lY)v z4L=YgO5&Bu&LH97!1>m^gcqWikK~zybn)O14`dd11FJ>q$|o)kc(&5Oe)yLr(gUky zBr^;?5gL%^E5IG{`&no3c%h9HwjKFZj1(&_Aa?AS{xsP25z$JdO+Z%F_Ril6PM}L+ zgEY)tR}dHe#8k2vpo2h?zU}Zic{n*qg(fBhiw+KY{Zm9@0+ePy8NSe$x`@mOeSHGJ zuj`KfbdeflUWEDA0P#H;*sp{Cavkghq!c8^5c*!^MpYcW@v`ZyhsQTnHXau8u5dCT zyw}i%HeVgj=5hWwg#>!!b%{LU@Z0?4LUif&>L(Ehng?&cLBqPb2-=&HtgLF2nt*7p zUcwwli-(?vx8UCX4ac0*qeuU-st~Vde3aOpw9s+nBV{MsU2Nll&=Ojt@?m~{4t@QP zZF^5hrCtK_*sS}vTi^FDE+$3q$`CG1SJHg>VuAHz>8^&HZ0N{h#hn-WJ3D=jLc+lv z<7BBdHK*@(j24<)Z9I_1Hti&xhwl41q-11Fw>h}G=d0Qjr~Oby0Q#i>Tt9G-nEX6H zHvX`-hLcVuHyTU$8B}2bK2NCdK!{_u(hWk(j3*)v+zOCSpC#&yIq~*wJg7$~GyY>P znw}L%{Er`Y^!6`a7zklTMyY7qPjDLHhTJajO3pMrBk!h!$Ov@qAGKvAY=0&y$=by* z9H6mOW&g7?+~{c0e6jn*c4wyENk=En@9zqmF+n@Ll1OApwez~B2e^up(4LYi9PZ2- zf~1~o?6pw#&Tl44Miz^SgWu&@uEpnR--lww!2;ac_*sXLhc(ni6BD2QQD_MpA4b+( za_Rg^_xQI9aO(#GdrI=3^^Nf3Cpv!Tukh*u(M#2QiJ^r4{O-c;w_apT5l&-wPY;;h zH>P)#>Zcm;Mc>^`{b>FE=8&Xqq>Q5N_b+-%ch5Xg$$M4Nch5e}Qw&-b} zz``}L)>k#_3#RKfKkyFW_|f>uB2*CP>`C7jfee=O^l8jg8yaW_VE>m4&V+BU23DxQ znXUE|Qqb9(&o>fAj409O{`rRe$77v_jf+Wvvr1c$49Pq6a~=r6qw0V(#rlXgKWotj z@C?C`%kX~l1k@T4K=p<616-CgRq+o_gClTitx!oCY~8Y?~l z8sk>cILufyLv>XY4`=EDJZ7<0q9=OXNiZf`qC(ChCY)CsY@*2 z!20G=%$2gBkRilXnXTus>j2wSwJV2M3t7)} zZQk)*e?LB$JEy?L_Y@>yR{d!PWlEml%?l^zk{yNc9Nx(qh8A82v-!5^I<^X)5Q2n{ z60Yn3Armtg41+E{B_#y_JfKe(tMzpKtv4Q2M-K7Z?D}b&3K9}Hg!1yS7U}6~z9)Z5 z1oXa9b{6a8S9_h{EDTL66x9b zuj^Tdk5ExXz(x6TvXaJF!1{K%i%Yf5FL|+*5L%Eh54HMuK_(0XqYzniZKP4Y@6qeL zUTe!Cq3Gzsdgz{Z^$OcZI#9i$B6+QrWd)B8^8OsxShTnMle$2WaK3iOo02kAZ?A1| z^=P}x01{S9ovk;cL>359h?kul9sOt5v-7?Ch#BXa*@}CjgIL3rRh6Z4B5<3c?u49t zd8+`!6XXY>4u0K7)&u4p5V$c~X}V!)!SFcd4wiyS*uz&NjN(zzG#KdUbmKi(#tpX5 zpr%-5P>eKBDyOsaY9Ewj2tU{uUUjj_eZ=7QTNUr-%=$i1;;GiwR^?}>b+ir29JH6` zfFVeXO@hvjOZ|ZSd6gNkOOmUewsD_cTv$MaDd@9dZGr3zp>}Lv^olVBfi=O@$Mrqu zZpN^+9|M_!nmv)Z<|~2Nj80F!k^{CKIdmj@ZwcFEJ~`U z3*+~1k=!fArJ^!WT-IwB1GEK;<&*!;V3(e?Yl>ewL|IdF-&0ij$=;>+`6oI;8mFGy zrGx64%xN?2{+4h0v$cqh{;l_=yqYL4&9;9`sjyAK{b2&y|J6Bb>jW9W*QCRj;;!`T z@8-qtf??H6|510{b4%(d%o;ST063e6hyRKdBMg+aw3L7z_X41Ol$4axgy?`x38(hy z&h`ft*w=60S%u}56c(od>hU7pUa2!;!G1}~*fFfTaZyHSJvJUfK_;ea@!)LX5>W-=d3 zqP)B~_-3j`eEkdO4;X#MtEsA@BSb+1f*foqMNxObvX2!5={IH4BkbR5*L{G>=7`{j0;3O&JyzG72`mBH3|>m(R8vyS4vUMp+#XFw97`5W!v1 zc9=K+hSLT3E7)+70oSQ)9P`k@pN?>+t+oE(WYNa5O29T94L_a`T0M5x-dNst5vuVg4NlsSWVLs(^Vx5&AW~vT-D&7eqU9`NPtQFQ%B7^XA(9%1ljG z&00Lez}R26{IpTJzQdteMm1}&*GUq$>`_HLT)15@vcIf2ae+b-4)c#gIpsOz+mj?O zE~x5`b8_f_$y#O$dPiTaA@femyv3Q>(W6$kD%CRs(y%ot4}P7VwwtWoA0TeqCnbwR zd)!k$uB#0s;b2hx(?jda&c;RrM-2}*cV+ps*FB_319lO=p=q%OwK>8M{(%9qS806? zhXwX(;1#`fD;A6}3V>%?0FWIyF>wG)Layo$0=gplw2hh@7nZ_|D!ONw)ObsaZ#_w1 zMlL;cA#i4@*~58vbv2M>n=w1ASDCn+3Je~T+2$R+wUIlspPV5!W-x^>|Jkbp`}tnK z%k%A-Do4%kl~e)wD|_iR2}#L&IyySNO>SE8v=0g885mx{{3pC0?*Aq^ENDGKAwtCo z*mE)vdH~Wn>lZI-pht$Oac+EpHnvJ$y}T0EErJk1Z&7=$r_tS}Uw~GN8bC(}O)(t7 z@JDrxP6ciPG%tMtVDNxUMwYjmBN&;crW`b1;AxXq)477ueY?t9Q#DUIv5Z6PQ);S# zrl}AVH{fx=C8;PcH@C4t%Gxa|L-5C^;J-JJ+xb0VFoWo)VO1sj zCzOqcAnhzPt0>gX3=E{621=21U|`@9Y|n}iZ&k2MGGVFk{vbUiB^3I`75L9sZB7{B z@3C~QyYKL(2;+C8JLtB23R5vK#4|R=ksa4DLc&}#Z6*)?Zco%KuKkSbiKgXAWMMQn ze4KI#+~e`hDHz4Rm-0T11>}}8!vi<+XI6?_qper})fTAzH}v`4>HQb(Soj^gJ{KRr zcKl{QM^~3#{J{gYs@C(;$5iMeFa16+-W7Gz4EH`%h8nbJ;&W-+oN`12MO=dmTXf5{ zc=qvxv9FIn664HXLGci6UW-x;5ekp;!zhFZd*0Y3! zSGz$Wh7uICT0d(AtY5$6{ZLr=yfYXdi8TIyJbh(Ym1(s0M!E%2S{g}d5Re7|0ZFAx zKuV>g8>K;M5a|$UX{AG2N=iWKZjjEi_MG#5^JnI|#u;Vr_kEtV?gW=lFih7V0diel zT-2I)RsnV{Sn>nuA5wulpHQyi#mze$%?pI$k|xptDX&auzr;U&vp%ADm)pdznXC<( zfllEA-vh+ux){R_kY*o`=hTR=B$DEOG!S&vbJag{ZP)o9uwx5D)4&^N=eqB8bsJg( z$&Fota=z$*xd2cG<02-42k>fSHo@C~0A#)Z4nQ?QhK2{(zBf~xasZKrykux3l>-ej zpl59`cIChkzy>1#HbhrJU9fbn2KWtbf@=OvB$ojq;l9PmI(u2UZy{~eaI^4Gp^Az% zLwT8X)ap~i)#1DkWH)a%M@B~K9^TF6q5wbzSt=E=5{ec4?&jY^)+a_F*aVb~4NC0D ze6?Nf4(DlKit@!?y{A&_KRQ^8J1i@wN4+On_j&Jv1hZ87Wf*|wJa7=SW-8Uh2zi_ zrHAGRl;`r+7Ji_#KX_I%?PePPKmfOxw%VhZ5d6Vx%rcxbjdWM=NS1v1)LWFu6589yAq>2{Z}CscZiCZ*H7+iA+1JjN*4NJva%U}naE1Ih96W1LT- zuCLo7`wuq?M>Yy&5<=-OPk1h0(YF7c?!r3qK11kNhp=#<8uK=g{5>N`{q#T*VAj?E`V zZy$HOzpZyyC~rI(`ESywPM?u3XjDm#qH6`^w94^|NXo2ZI?4B#Z*r zLPSBq)(Ar6cz#dLxW`O0-y9e`psbXHBO5P2k{Xqof){=-?L&BY zED9C`GrY|MO!d6AZB3^?EjK1%ta#{jB|Un6Jq(~pIw7INAB}9Yi;IkC!9iK_Hf%pD z`(30^;wdh6QPH!?D_FnIEokx;+=3m5@~FVce#V%7RoBk*BMfl9`A{5q?z~tjS!)Mx(!M2ky?Mx^|fs z6Jio%{1`hbwUvWEb(4@Y+ip9ltn>A@s0ikkE9o5#W>Mal?Um)e%AG&;ibWB1u4~?} zUmtvY(YLCe*=5Jk%l$+VB`eG17O`~8O=@ad`hZLo%Dv~Y%pngPWe?VdvQ1k9d~feG z$Y;IVsn14BDrw zgPn`N*SG86fbh{6SL)_xK$1U==Eq!cy@NhN2xTJ#|H~XalK3{dEyBT!ipbqfuejvp z6vTwE(@c(0;iIom!J`c6{!wjhZ6ATa0nx<}cph3NCUn`ik2b&WY^m_CR8}T`#P$ zO-<;_bkop?X@#58X1wID#4Ud?7|V`AHQ~ng_LE1=eV=j+E-sH5TbI{#CycAbxjVSc zI`Ezi)qU^SbKMwIIf17ZGEKi*zNi7F4k@XbXm0l7guo5xO%lK;qQx?a7~MdChI}7{ zTRaG>Ki_!Lh3t$hHpl~|QGj!R*oXyWr!Rnq@HX!RsbDE)otfI&_S~0fM~P;{hLy}> z$Cf%5r{M;SJrUr^zPh@C1xgzB^t96osP2Uv!WejCLGD4+J3eahzOiwioyMDyOjmzl zy4hb%S3esWYGc(G!w7f74ail4!YC)W3&g>Dm)Y`aad{xG_VQjucgigb?N8k=LrfAM z$q;&a;*e-L4ZDsX%L`CwX(ZV$q937KtYFs(xDG?ZicR>pL^Q-OneK6J9%g2Y!{Um2Yb)T#S%a1ijQgTdomcY+o zyiDcQpC9=Lw2NpPf#xlKWp@lEaM>;^ASBg-2pnfBN~)(y%JJj*eDe@lbZ? z#QdyeOW25($PPNL-$X^UT3OA=dJHjDgeJT8bM=ZBPi>boqz*Cd_$i1_&gXF%+dE@p zPad+cWOzf!tB4&gu47ngYT+BXv>$alF<1*#wp!;B4)o|=i5zrgU3WNF|45t{ZNFv? zklZM*66h25Bf|;}l{BG!2yG#QYP;6M%`vg8p3|AATkeP4RaeApJztvLM_unR4OI=! zud0ibiX=fHmI$&J#)Z&gHsvTi5O-~|@%(-=TfEiAod4FdXD1LimHCAsWH3t(*Xv+N z9$704IhTnbPho!`B679WnCyaw6JW2Nu=D}prEO%?xV3Zj|IajRUteF*Khsu)HTzh^Hav>z}TBv>%_@`83> z<5eOLMh6+16bMuoYinx_w6zmA*4A1eBLJjs5j-7m)kEr35Hzi1z*K`|NdssvzNcFE zQ%%ki-YxRYmT(S>h(6q4Ju8m1lE8$L$vqh9!(j>GcGGA%L7xTxJ}k1E->sV)8>{e^ zLAr*l2?NsxHay8zGmTZcsK4Gbq?zM5p z!cecK?AY-L$l3$*s3U3#QE z=pdT`$2jE!ds!Let95dJ|F5NQqknyOvP81I1Ox=mB8GbQ{bdlT6PK764lZg( zxQ9-@nzn(;Bpy;5AWVvkM6Y!Te4N_~5zYzv-Y!~sF!grpE~VH2 zykgx5Q0VTz0k^MjShh3e*t2=STkNL zwXGv>Z0x7kX+j^UD*o27)>+v+K1R)`ofuT}_*46Ig7x|SV)s1kH^?;wMJ=Bq7|g`9 z2t`>bEoxx|gupuh$(ELs!~*p}@bT^fE22DI_LkcFKtbV+(=9ZqW~gZDWADM$ee#5W zZROu$H$U^AKUVlXy{L@X5OiV!;Q%k#L$j#Hm`n@Wga zbySIhy*I0iENLwC)kw&;e>m>nw;SW8dM#bi7UY0VbY8v1H08Cx+3!yemixDiEX0Od z7AXJ$1EE!ozAky)75*7O8N7x0#TLr}-tj{1+uTBVMdqIbE5!w0V`aQ9d5*Z*@Bk-2}`H2@OE^f8HjPb(e@#90gMr=({(H{^*20$4W zGX;Kf!6^68_`L#WbMts!pYx;24+(K<_H!Nh56CFnIPd=#0bB3>uV75u+Z)TmV$j)1 zW>-~WkDii}-)01B+jX0pg`_IAVb)~!%DcJsMt4g~e1M-Sq#+HpHC@#f zz4|p)X-198-3V7#91#IKqhZ#o3NoI6tGf>sd>0n1-*>dDt7Xn8=@$G zNsi88e>x8XXIj+kkcw)x1* zlK>^}fOqEtEO-lYDF9%@g-%hKT#cu$Cckg_qC}Oc8yMgfFBpRT0q$3%9v`q#-~=P! z7KTtNsqCRFQc^PO%fA%I$S@|AwERAN>vb38r$;UGQ-de&X>?173q5IqBWn_uuU zaf94+Pj37*y!zQWIg6*%r%7avlLd!;{LqaJ9Yj`4M+0+{0*+L6GtAk?T|{tdsSiIO zma`eJdX7$hNJtaIQ|&24e&f}Y#&QM9mOLaEA&XytK9RbDK6W&4^+QDoIud9vx4?y9 zoJCN42h`PxlHjy!;=dJkTK>Azcn&i8mY=zkI=q5{K@iXnR4xa=VfRK23bR38&D{60AjF`b=-^;R(e&zY*@4OesC{Yd*jbhlF=;%XkHh$TL zh3KSRRwKX6$ju;i^c|#r-`=<^LmSjN!&QJbNqD{p?|ilFT>m+2HB zO`j-{3kb=#WJsBqb$lI~@tw)=lb4c0;lsjh6LxYUnfl$##(@V?oToq0b(wD;seB44 zFS#w?Ma=L>&9E#GU3e36&KgEX;yTKYbOc{B=7F}pmfWBgErcFo7m@^DQT#hT4ugwy)$~fI%0+z`JeX@UTgbFWzq0J9wl8JjgKz9FGTZa}cnpdvR&?MuM zCZ**v85OE&XtR(Y?e}nxA(ia!0s|cwbYD={z9G5`CVEfToz}f=Lq|sPY@U+a1Mh3j@Uf6~;}?w`X2wjpteHf0m>zP|GVOd1&f zc{TANk<1#*+VuPTA!WNcBK3{pqnxN}#YT~HLqjLOCMl%sn($Ycl+@I;kkvO{o@zefsf@rLD?7y_SkqHOJ(fv@LJq$q%#1nf4yn=7PSVV>apOfRJ?sS zI{*a>D)|X`asE$PNRZ;S@!{cf%XlWHP+ne0wYIPVi&jxm8PDZ;)wlvvl?a+Y{k5J{ z#;l1A=bO13M(KsSrIcuf`aJ`XIYC;MEKa!gvJmG3=M& zz*@|m>@C!*ri*Wau^ySa17pfNKx|M>_2iE7B=fae$Hwl!j7KU!fsdp*Vq@Eof;ykG zwR_(vDU}+Yq~D3>vm`dG@`p9ukG7ZFEo}Wegj|DcmI7v13mAj--k!l^umo`-MHamY z&KPE}s1ALsb4H!4daJHOR_lAlT6?`B@w`5j8s^~Q;;r;>{`h$HvAv^Ly!bxeQ+c|&uAstnIK?3U<$jIkJ)92yW)?5dArMeK@Po^N|J7ui>*nuhcQ>~Y$9fR< zEWtkC0*ImBH+#B1&^v}^Mt{^@I?>bDY}z>e$9i7vYRCBuIic;H?=)$POhV*AFaT^e zZ5SMbL-{X$^laBNBDR zv3GEPQS5E3sw#D{MCw!M=}J;Kx*y3P|HIGkKi75~I@C?2Y^Z$t;!-8PxIFgIn1O-! z4<;V%y{uZ9oNSrOu?W1gpMEF^vnay5?{uHtfe~|Vb{3(6D3P{ zVfEHOJlo!y3Kef~<9YXL$^^X`!px@u=lY_?GC0+VnF=0Wp_QL4uXOJK+XbHA>iWYw z=8+h0OAOzxU0t%^V@m;3t$5321-2ORA8k@HPA{L535u!?iNvq^{fRsC^<#Hx z@M@Yv37~Tgx&Uw1US4~pb*1V|lPdo~25k@XF}UJydwVB0QHwnMd&j|vp)V-v=GmWj z*l~Nl$A8(D$t3+N4C@L==3O^476E5{+V3Iu_dam@@DZJU$UhgK;Qg2CIxPji!O}mF zUwnfadSb+bm0LgyI9}(Qog26QC&+rLQ*PePovZQP6tcw52433zBfh5k^EXrj{GkJP zp7ILisbJDtTFyylNsFUGc%a^$W?cMoP_8ckqVfEC{gac-P&w1h+kv2XFEXsV6F>{m zC<;C=JWEMKzpym-hDU^`isySw&!p3zQwqhH4&9t9-u}Br*Q@3E@skn?2{rYs#5Emi zfnl8pUke;DNl;Si17SH3D5ab#Qq}Ul`VKsetw^Q=!cf2?NC+M=&^uKc@*vk(9i88^ zvoYXVfN(mrkBLM{3K$Sk!SLpklWTSO?=^svN>br4g)bL7obvRptKW8=26hDbTVSB5rpnRbhljxjGz1-xIY|WT7O;7+Zh`3ez9O+% z1ae>J)T>08MWjD;k4Y7F!hi-Dy~qq*J-uXjI|^`DP%;o2|CY_aJ_~O0jhC(|eia!} zPm2YGR?fK8XD8hUV<}9#Qc`g@3M+=~N+U zSOTZaRm}{2v4fe;)gGqz@lMmQrN=>rpiVHM*;%pxyJlokux&-fuQ)jLdF#Wf`FGs5|2!^hgLO(0q~8m~w=%~+<171Ir1)8P5vA8}lAwMxg8~?RaBcweH^F%)X=J5rrR0g(ct52b0x1zlYf7IcrL{B#VIoxmC_amIX40z=pW$Y zo?BWvJP_i0)TAlq)M$c&eqK?|vT+IF8fuih@4o!?@F4kSGg`3hqpcy`nfy`FcD~Y@ zgsQ5N(X`&KDYs#N+_<~(qv-MXu~)D#U4`5@xejT&T)Ybi%6eXd*sW%Xj7P^!!HLs9 zl`d?*ns>+W0P>{|K__3XuNk~Ankc5HE5C0}t5Cj>A)-{G-23xAu4S@`1~F6%|2tEt z*#qJXd?6=cK!9d&YYa14G?XTXR;jKX{34z*kxf4=j{sxLY?I5-ZZ zi6KQ=nZSesM7;#mn}xI@_M4a(q$CN^ygHOUx4L>VAUwIY_5<&CT}^duWwu$o1CQ+; z@&(szehw#Etf%Cp#>Tw#kChbvd{(?wuu)Y}xa9UJIr%y093bGSfG%i64J*J8f?XgA z6PY@zPQnA0F@ri6e6T(`nwn-t!C^4wJdz-B3y>AJPJ*Pvt==0IF3FTCORHo*Y^TU2);wQHd+ZKE}Eh9sSkVx z0H}O`ynBP%H`vgqng4fv-Fo%!r`2F%FR5z+yrQP*8gWLZXc?!SyO$CY>E+sBA;j=K zM3ArK+!r%JkhgvOxcKsNUuj7nL?+BgJ=CO=sPj4rl$;17n8WBX2&lSXvI6?^0iwCB z4HY$1j`mNZH)YfHl_-4tm^3sru=LKsAcyR8t$H~@3@28}n(bW?EuqxOk+||H=*-Ai z8)22a305(gJZ+*}JxXJwBL4nhO~mix^7IE{#K#fMq_uxmh1N|sjDCVk+H6Zp4o0Y0H`L}V=PP&)d+ z>-e=67Z;eg2p_EI#6qSqPj#Rb)epnPza4*is*(4R zPj1Tt(oA_8jU`Ba{4fE>12;Ff3A_`DPzRoqz^RV|Dy7y@K<2m<4aTQFxmr&p%x&rx zBz_2`qu9GRZO)cY0`1ue>pe^h3=D9Y^NLPycMAxKrIzGXKg^;Vd|w!Q&ze)*J9&9` zYibq)Bk8LaD% zYcCQ2h&fmht;Leg-52)q zT73{6ZXNlvpV|KhS7XNM3tOds(z#hN5kw4D^#pg7R~|k`i~ptk=@IAOWd8gLF%ucc zQ0V}c6i(0UgnkhSi9z~tV3cQ5(wX)?Hbe#sR!#Sk)eQ*y-jbyELyh2B3#1uTLby#J z1>;P}`2=BT_!kw%0N$@|MAD>Od-Kt0Ponn(YzsV!1xbd6y1si;0&?4xDoT0}qN&g_ z9r=Kxg)nr!j-=>lqH!z!eaM=VjeqrFKO zb11qX7%-E))Xm9@)lqx-@^4&a)J@)-m8Fs7GC^trd28S4dd)*#PRe4O!^v*SWn5c+=`!U-6V0O!JUb#;X@yfFX<}o|g6u?ZXEOfr5f(P&|rC$Mu2g zcsVNz|njcG^X2M4!z0be(vR(83}q55K=#4r ztd_qB+;&gjW0;7SQ!3WeF~7vMz|+ojcBTWV{tAbO@%naC%(U#`+mJ$4DOh8t+Mf}7 z>#GIsww!F2C&-5?55IAtQHv7S6+G`Nl!dCy)7nX_JEXT%Af6z(6ugd{LnTJuY?0ou z`e{6Q^8N(U5u3jK`vNh|v9tOvg6LH{(@c+KBoRzdFV5Wgr!%kM{v}ribbUc+QY=7b z6Od{=5&qo%g@wf&jGE9y;2yaGuAqn$D5Zz|xAQnmvzM1E>Aurzx-)A#J9a?*j{|W_ z0&U|t-R1Su0|PsAxWcp7JpU^r@Got;5_#DbMMrJ)rg&Sa-UJOjQ{!t63duZdv&di+ zD8@P6U#eF$p!$c8)jaJw-IB#)7G?MRhB}EU6fiF?nuB|YPE3p%#Pv5;s9+*+UHcU% zCokU%%O*(m2rH{HlXY*unW6E$Q19vQhY;K!If}6mTJRRx&|I!O>I~Oi3%H`}udlp~ zG&EYFeVO0)>VhJn1w<4%5Pcsu>0%3Xha@miF99A~vmL_<zUx_TG#7v_T{7)@aNLRM$PfpfmW;eUC~x&du^x%5sl4p$fM5G03GL#>u* z#q8-dl&)*qLl7Do8X8c_l)w=pS$2q~eFwVYi;opwq+JB_yFA^aQ7(&|dVVsRxlTW< zRo$tV=|8hA9TL+hWE}>f6f0V1`>5?Ayy$VkK|#E5QfpG5sy+wSt{iLuwQyNL)Y0l7 z9V-*llA;Q357tbRu|UE`YmqJsHh%ku(x&&2z72|pfAHt$gTt<;URX4iuZTL)-F?x( zXAiwhlI;d5NE(1VMf#@(LGR)IH9Y+5b)xa2m6#YbB}GImLS@O=3lCC~n{|2hDUWR` zPfjg+>bVRbmx90NFij?CtTAA%t;@SV7Knvdx~3LU2J<(bIF zI{3{oL`6kGP|>)I%f$4CI$0>sf!7QJ9XIZ=hfzM`y?jemoSq`Rz@I;r;X{Ki0U}Vv zuOjn;p1bcb$S3K#2oijt4&M_NRsb<_r~LbOk;R)s7#MnQD?HUH9RR zg6{>AAEkiAhT=8I^@>6AyK{3WVq#*e>+90_TF+d92Y>mZOCj!xzoQo>-`q7V2zlb;5c z9aP#Jor*pg@rPx37l_oS63xVjGla9!H^(KYqx51_)KEh7BeW36=1`oC^M3Hha*)dH zp+Yid0x*}I;LOGeq}NWcKn;|3C@d;^N#v&n38yOFGkgC>UZuCq%rsS%lx%Mu&-fZ& zEAj*){}MR4mURjkI3ie@($YqL znXeAA;h3UELcKW2%imu!%T@P{Z>%iZckzx!iQhW}se;$(QX&jj?fP~NfgN!D1{vtv zP5KRhY3VK?knsb3pyjR(_?O<^=)I^6)orP&TRJ8Itzj;Kivgmp5Foi}eyr*W3 zZE$A)o0s>e@M+<*ZuksH(>`NeYwxCCUtmHpM&MIJl$>u5aIloqjaDpUV`IL$j!;Cv$!upud|shY}`mz_y{5X}N-D!;tzRu-N|Fu_xSOjRVx2((YYqwJO}xo{ij zM@Y<_SmGS-F2osreVq!@^io`qi6blafMv_f%L@jg8Gh-VxZ6NYqDJsjx??y4&FytwJ->ANe zltZW4W~2c8lS2trEh%A=90{DL%F4U83mp%kd$Q{F-(+~8dmDVuBe7v86@G!Yl9F9t zZ@|6#CrI@FX#t>y6uNZuhuJB({W_r6RiLyq7?X!JEo-~M=h7n|%w^AoihHW{RQxy7 zeLvHFVj;dX>eW$HLT$WGljZp&z@XkHvdp_e1#hN1Pk(hfO&S08OzHVy3e{xiMsL4O zuYOjRO=4KeL&cB#hIKaRxd1RQ35$y2LT}nh=er-x!hL~$2nsHVOWE_D{#250=le=} z+RVyUQL`HrQJ_?ZBtfZM4WwbyHx2(OK3GsrfTaDVSNsBDfI@;3u-nMds~S#=3%s=e zl@w@rFiZ&iXfW}})TXO!wW+swR+g8uAo=r~@3puD+;`@>FCxkYgjX;xFD|w(mSRu1 z+W$ji2SB9V^cDE<-XH?%vm3u0xb|umdTwWVJxMpRjfFm8(C}v-jzRDj5DQ3ynHs1j zrdl9qJ>+zE&OC*~$lz21nhlU)Fe{6TSTKAf06)lu$VvGQpCm#Onq8v6SpsK97qT-B zXpW4~$jGN4zd&}1B1hv2-vcMJOOHvDLh|AmMzBN37#q_-Ex|7UoZ7=UXpf=r8ZN7A zr=}`LrqM95KEI*o`{s^}1(cJfrn0O@d#6rKGdJy@981voikGz~H(?4}WLn5)U-GfbDAJ=jFeo~mzo}Hg(!zARk zP>RKBt*#;6Z}sdB`Cn${-!&cr^>xlNe8nEs#hj^AOTDs+k)fFp7yhV{S|pG4Dj{Ab z@f*O%q7Zt>sMxxyU*o3l_w=Y0y~~6Yjm-(P6F2-R1*2;1tMCbJ}7OZ6&113q`sK1Xps`Z4Cn=*N>N~gSf~J4^sp=f`Ld~}K>b<&?OW2v zk019yF>84I3oDTKZ#bZTuE63PHdQ~{!MnSp@zB(*C5{6D5gx^5N2TTKluiouA zIV2>_;=IISGSVgzZwc5|0 zH7+5jVR2R9bwnR2SC3)c8=^^f&sa^8TQYi>km!UGFm5d01C39h>;~zPWrXRE5Tc(z zyxdSp71i#8Wa{qj>p4sW|2E9Mc~B5t3i9KOs(`UZuTw{;O|@HAHzdQO#T4fHV72b! zL-Me{7xnBg`&VFX45pCXjisgEo>vcdy!RPx_uEOe${|R$47U6Xiz8@c@B`Kt$I6B#)JFyKlNm$?D(9^m;{_|bNKcMzEg@ePJ z5>eM@7+=7|gN#H#hGACO&RyS6c_4+CG$5XhSN*KYfF%EIXNlqBOG^u)a27iM?Ez!+ zsAA~F0MG{6mk5OU)xP!1iE{MY^R~nAA`8N!=ZT8tG5-n`k%F3mGDt1S?I##fRtC7K zT~~P#s$>lu0n9*Q2o>>h>-ocF^$%w4F%SwmLl2%tzE(%U=z27qA#=W`=2yMD8njzX zSNMawiR$UszJtY-qfMMf28x8S7UaO{#J@j+9mi;GwHmhl*E}~l#WwqdtTmflKiE9B z?0*M>vKRd+tVl`*9<2E-_HvF<{bYj%kK0)+jvxvlK)~R5;W<_TmeVg^mS2WvVO`>& z|CV}-5ef%`B*?8`g6e=066QQ05@dq#@-_av!ZQCD(OP1d&S}*qtiJ1WQMUY#T2$kO z%P=#s)2V1P+2xbY_dxb8y5Zg+Z$OMLkW-?jie`TaFzORtfw6h>y6pI`sk-6c@r^&C zZE92=J0X7b8NbkO%a+OUhb8|OaEVlpwNk#wC3~*?lhQkqnVE+tbjXTh=r_AySl07Q zhA#(fzf4*9j(vPz2GN@+?pJ%2tjtN7esfy+qj@yxxzzx{rq>ULp0TmsBhOG6;3KiA zgKLVIm>7yI2oXsl&NjG1)n%Dwo1WHS~6a!qVw@N+N`Zcne#tPS)8|# zt}(|JZhBUf(JI#7UMbFH{Q0>awU+V@9wde!kic>ErJNaq+}F6rwLWs_(E-U6^j0ea zHL`S?8eIwly$o_8iKN9eh#u@)v|KEHm01CClrLV4D4ks%hnoCMQ(1J_d+zw-^i0}) zmv-M}>v_-o^Q1_c(qvKB`-FZ{nY3od#Wf21UY8=b!}j;H)|X1_f6X~@aB&3}78VYI zDknksfei_?6#yY(?0t9}ZnMLakPPsYRY=QNTSX-_5JPJjGb2}W_qf`*m66=zgT(-N(mv8bbZ}s_u&U9 z{-Of0R1u_!guH+MD6?9SLsN68un3Q^wGDl$J^cId*;$gn3%o^;Mhp$9!>?J!87mEr ztr8G|^QKx>pG2{}>=orGYgD)2=d?}Wh5cpe{h#?X>J(@=h(CLlqx0oUhL~jW3t@*F zQQao)+f>iCCj%p9d@Y-3L>R$hqv>D#4lOx7Pjy&iqC8i{|2}vQk&7!Qq4%~ySb)&s zd_wQia}aCpTA^Fx<2$~X_&u0n5}_~^!?cK|TbIyfDgR5JO3IhZ1G*IwhUj;@&Zt4Min2>ay$?FBbK|Ai7`D(KvwySNB0JlLj2Od-sx zuNq|Ob(b&U40lAFuAaJ*iG#XhI>~o^CjQxU%4j&DErgu^&uxV{#Id zY2gJ>349DCCLk0WE@2umbCT%%khddoA$eMZOBy3&XiS6Dq{DVCtBz)d2UkD5h0yrP z-|RpI@#DIX6@Ojz9kaIf&51Y$Rj2y3x#Uw_-ELT38H9yT*BbsgE#I6_@OXSXfmY2l z@qNLAnL7FD6W`ktuki);FuI~RS?TgmcbZTka}XYYU(hkBtIr4S2XH4|2xk?msqsS{ ziz8`znawf8(<2bDC_#~i1~elUFX4HuP=`f{F~Rv@4`EzHDj06CiGdV0ea$BgCqliF zODK{4OE{^fD808guUdGxzwcFSS4=LGH%7;o8_u?0v`EU>?=xpNdMaTOu|0odcTMsK-O(^<<|E;}hW2vN+Ff^al$mi5zbE;;idq5_a{&`Zg)RWKO zovbAcs=}}y7YZsDt7~eaO5Nm!s$RfNWME&<*OH#rldkg?b$j2IjZQ{x*5~a2kXtxp z!^{I_5(Fe^K~GPZ@7}KI?>B4o9d+MA0QyV;ts9xyDwOY(K;FdbnMOmcnswU>At6Bx zbD!Qjj%kgTg2JjJ!hho9C9kidii{%DN=gcVe%=M1u@$gwU5Fup;{=KB%#CUrFP$lW z3KAdw>>!bwhnswP{#O61Ut75a+5WVrL1=h**uQ@Z#{2@WWR%~XA47E@N^iIITH*F` zP|%_|6_hFixeF$^M}R`Jb8%r#HBb`D5;1@Ny!cX4F%vi6;+o-+q-Jhw-)|k$qv}^F zYlE2w|9&bvveX|C7pIR2AFEj1IvpQ*si~}LY@GhL-aQulMQ>N!!90E2gKB)<%Kaot z;dpQ&k>5m6wfXPlBmQlZ6C%65H4m?1M0ixI+ikOxf`1li-DK z3jwrVon(dDZ1F>;rlwLEU4o3np}(LPRM@l?4S#|rX35N=|bS^*Nlf%OTFr~FYtjUIAvxX zp}D8&v^=N{Q~5a)6KLO|U19|Zd;$j}NEu}VPviCN^yNKn0jB5sB*HB~`^-aJg#)nV zBV%Lq;3Wsw=vKsv%a>B$>Us9EGA-|id=-~FM!ugZs#8vn}|h z-AoX?`dCIrjP`7Zl{S<-6=5m`_ zWuSfPQyc>X9^U^e)dO9J znx^L4M(^`|Nd8Be!DIqx#^>bQuuDfz zeG;<9L($VmN9Sy>L7dezig(yeb$saUxuIWnMgWp5t?BL?U>$7Xwog<* z*5YgdI32dZ9SFLtpp<3Y4X#Pdq;fnu1s#ju1>7@pC+h zo!=;&Dk=_;h+G7FlOW$^*Tft+KFi%!+}Wa{ z5Eg3DM{AObig7mocIhabAwB5$by;bX1e%oOCl4NW?O#+Ra3Nxnzp?7bs*`TN5*yyas}j7G0RosU4p-Bkhf+Y@pgrTg<2jnrJ7o!gd2)G*T?C$A7vV4O-R%F#jq8{h^BYZH`n#tJb-LJ$t zk{}tr(mWy*mKV3Js_}344Qmx9Q{Jjd%E+K1F-;5jJDJ(w;Gl`)_Y{!WbV4)~T>UU= zWT>&!qC}y5IhUbXw+mS@KNr5Dqz%hD8ShF@TbRMb#f5_5QBfB}MuLH_+%(bVW(Z5y z(kuqPv}BXdJUolPp%nZoc|(HTEiL4yCi3@#6sXCYc4O4V=0ydqdLb zfKG5G zZftzqX26<;5gx@vpujOsNaH(EBKAI}( z(@f)eyVz^&t5U$Qo=)&)hrs3HL3CWyO_M$fH;8)cPZJ9V!3quth*xeB`Ab<2l+Sp3 z*@K%zIqe}isH6zq3QhYh9?w`CvB!Utu&2cn6Px4q;Fo~BB`>JApO0pchm$9H-Nlqn zg5^E|%JB~0(a{vb@BZ;N9lu0+@880z%~Bvs!u4CYX2dS(F{KZ zKD_*{$wuPv@TQvXEt;YU?T<1B>syvUUU=@`o#kaa)kp|Bi%{*r_E0%sJYrv3~n|o~k^&12;mN@SzLLmE-Wd2aG z`@tunENod7;6WE*@I1=#+R9bZ*Rl{0H~>|wV-$yxa*jTIru+3TrOI(|$_rEWr)GmJ zeW#mw{qHBE_WEvuj;<-ovFL^EZD97Humlt5pmHaj1E* zMt;iH{5-PQ48DcduC5U0WNi&i8K-BeAF_^$;pq#uYdl3ZFV17)Qy`N7ZES4p&yQZA zsH|}#xb0_~I{?>L6yWFYM_oPsNwaE)bJYgoD%F`brwiZraP;FtB`VoWlkfEk`Y(v( zf$B(4l*^9LUcOL7+1dy-a{Hui+6rr+s_jcqUS_rGpj&#_^NH*Xd< zi?@ahr~c8=cqL_Jk^v|aqoAY&ZM%}YT9$(G=;)%H@0bHSTUOKBrv1?&sQF6^A}%pO z!U=dPZP$|H(fsB_6dskrE3J|CDWCI5$9{bLP;Qs8CmejS`+T_?VI1OSaRT60g79rK zWN9;mLW@-MJ^Jvu^?_M9o^XX?drr~+Avxi0e=+FoUr6T=k=LgM$H|;o% zKf0DiaFn$Z>Hmb^QLlWxrN`@0SlI2(V|7!mJdx`j1MkBWg^Wmi^7+r755!BGp18*h z4aN0R5TTG!WLc(*Ll3u0;*aipCK>_ZkMtXk!bBw~sP-U|%2d*$SO~_~jMS}9lCfZl zKB}xdasrYfhRT(Grom~2pzzBVN%-sBc>iHE$UaujAUFbmxYfxj_A?L93ZtDS!jE;L zbxrnkS^xHRpnCAGxEBk|pw$N#OAnIu*VZ_REjT$HF~}%mBPPb~{P~q@FYG}Q?c&1G zJVn{n<<}ia$uV143IKcv5cCBRwJuA)mK@6<^6+z4-)%zYHTp+0-`gO3Ez3@a3@;)w zGe5r@askw}weP`*61xFRNK!biaC|`l3mYu#ELGJV4PRK6y${*GF)4{q0Y~zX1mpvv zOo4M#cKU3cb~6MWWP-dw&4l89DofQZ%k z;$pR;t~RUXCtmb;DPQ9DU(=#(iMvEnP7WP-wHTez{17H)vTFihFfBZUppJF}A{)l@ z=(M!=0QnUx52Ozqu8-ovS1o(E(-dBSPnpr=z_5_WvG%PwnIbK%QbIZXNq=ijj*DCu z1halXR-ekJuK#-waaYB&XCdWV@!XP}=da-}y<`lS8+J{Z6Q)O4(AQSnlhDoW^_%-i zVL{mK#g*{Oj`tQ+o%!G}7Jk2Q^X}b#kE2a&6%`f8toB>@w(Mf9D*G5mIGTf_%ir2& zvdF+MoksDf>EuR|K)6wp6%o-&2JP8I5|3VwD{mNBBLu zn)ZdShQAaS%bA%mK)f|LaV6SddOVn@!fkVYGk6)RdgVb6*~$n+QxQiAvxwdg&mHwQ zi!&cz-=tJB+Opi7!;8wX1H_I)RFo1DzL9zoI4vd7d@gv13MD49Yu z1W4)#;Op?i!$W8!GlkY6>H$?L+PACoas_@DXwVLT)J$G2qCcnv%LHEmM}n<=G{vq<2|^K7)w%uU<^ zJ^1m{!d2Xi?-?5Ei_$6@I5-N)glax(Tuq3lPr3Cgu_o;rm8>dz;k>SXY5l$* z_?J*{RYVC1@|v4hetB{?QrYL2TJF96am~?w78WoK2SxhAta!or3s01C-R%0Q?#cvJ zl2~}`h=sk|nO0di=wUyg5)CsK1Y5o&2VJ~Mr_*;O(t@}~FX3qau{HL?Lqw<4zz~to zLI;YVAl6-8G!@TV0OwMJJnIKY(1+lg!#dp(!Y(M(&-z?E^ycqLJiCMEl;F>U!`w-H z+p)oh_B$I=d zw^^N$ln-GV`TpIFM>v!$TdcVqy*dD4sH8M10c&_?UT(|x{4Qh<48h%pUt+q=tzKHq z;^%4*<>oHF2?@@_B_-7AaL%Cm zB^)`sZbuEn+gN?t`{+?~d$@wvo?ICqwE!EI*3{fzSH%X0W#uWp>B;0xy!<#S<-8|D zAD?PS=c|#Ea|YhkE@cjEDKV6tpYcxAFnB%lS#0aCE34e+*oz|&5j$ZLP)W+lqJaQA zqp%PcFms?@!>X#Pin@inp#{R!%xrjj2gGhfr?fi6pUCg3!M6_?4k2tOz*YxlT#(ZJ&X+1l{k!!BLJiFHe~%F z>{C}x>j30YLP`CtX z{l2dAd`(n12TSc%UVode3yf>JWxo4Ev-4&|tuIZs<7i3GPz=rCMy#Z&D(K4>t;>eo z|I-3|snP#+x60*UF@a9rJh#9YQVn1IK0i|W!t*Tf{`IC=7@b^-)B^`9s<2%_eM?Zu zfI2`#QZg96r#nE7rjGl|(}m0n2ALLUHb_%HfShN@)bkiDsQHXl`&^aI;HZy#nShAz z6Z+a`Rs!O}yo>>4dDNaiabwcTgx4}NR_I?%MNKAtCUyX_k6xWhrcFf`f+fwFSK}Oo z)ix&I`^32H;o?s_%VuOTJ+*# z>z_3{dsss9=V;bRk;|Vzy5+({%?ph#kcV2~9U^o)ePt059{vPfbPY!Xw@Zqg)$hjd~Fg-^fG4ExHf9DmdW@B^b4{^NUJ;{PU;t3zEAyG$`I%DxD2| z+*aRGfU{}E6c$Ax$;ym&T*3Hpyd4V0ES3%kV};53o@{05&i1q-(c!uRWnwVSpZYH> zz8%AJ>FDJdPkF7kcNCPB+BUZ~$tj+dRnx9@O;#>jY>a+fb*Z+ZcARN!IL`+761?Bf zRSNayyl(}dV)rvV63`T|0?02m?VURd+1^+FhB`V9sgm=X8=<+g5FHZnn5f}H-2BE$ zyZ(j4lb58sNl7-)h`usj{OhcI;H+(_Q-5d>>AgNOb|@-|qoX)@ubyshwtmYENppPv z{tXj^n-#Rp#&k|4a@M6Cqvn-3 z()f?3G8sOq;^I@Su4K)??a!dx`EWx-gnO=8_bJ6v`)6iG1~NwA;=u<@q?ON2m(0A& zX+EILfVLBoyYcb+DO}hpvhh8@?Exn5zv>WuKU!Ta1T!)c7fLVkwk>Sop0xm_kf^04 z6K#wXl$^eqYDm=0x#pqtTlI=#UyfJRiGddZq76PLC6(3H@xj~bTU=bc$CJ*_6wz-L z=(j4ob?|~dqr7cAku-~w)ADFUKtMC)eShb3GxRs&Q} z?>~)^ve};(fegJ};O;oXGU?)_sI%d)^xT?pp1UqRNN}(EZQ6VFxq_3~hbiwnXn}XK~)A0<)L z&CLkC8$?V`C$ox8b6SxmgWOF1gZamPR#vQz4)JARhtaL4Ufougo73|gt7d!)K$jFn z!Mo~sMUvhnb>S(Dv;ypClU8M`<3L2N{Sn(PLs4CMPA&7myAi(9OI<}zXep3YaARoecdz{tEGdMrJwo8H14OW%Bb>5GZefAyEKeEw` zRT3t|B!f96ANKw3I@h<7vlnG}mKpm=oVs-&in?{JKL+)L_4qz8SCJ6WifC7`Ff|29 z&WDn*Kls75KiMBMF@4n)`jn8s#h(@nC_!#6-TSY_I1nZq$HeqhbzG2+3C-&gdvRQM zX%+Luyo2#Gc!0hZ7vu12P9Jr{RJ7WPm5kvgz z(#FO#xTITo@bPzLKICnRICA13C1Ie6ewY1~=6Q(}iuxcFHJnu;Tah(wtpyxNXX^?y za2${8cqlCM+z)59A*JP#&}p$HbxD)7v0<_1bY{jQcKj&rlfoz=A&ydzkA#Cm%IAO% zV%?pTog&L)Snxouo4@)yt5>5=bYIg4MzJ4~p;Jc~oEg@>j^g8V0!r|`E5E53=e^6KhMyblK ziSqIf#d9Udi>GsjJLbg;OtiFJ9pM{F%rC+y&CJaaRc+w1gm;h2hO`>rr`cA^J6lm5 zPA^I5oUAMSg?WX&|FZ0w^j5kaR-K)hoTimIR7fp`6%nFr0C^g8?Rh8xE~HF^G9D^h z>=D;Gq~_s+aqnhn>79bYkXD~MOb(^lG*ivLK{>)`1HS|#DOvX*goV`) zMzQ+b5`=xsvpz_FI<>OWoXQ`)JK^iT*8g;)16vtzn8zEM0MP@CmTvU}+U@Tz#MxYO zNeFxl`kg!0eU}i=>Io-NkFPrP40X4f$3eE&VU4*50?c5k*UT2>t8Zy;)Nmr=X8fIQ~kL zlr48P4mEDW?_^Vi&D=NJ?AcYAszF1uFfHF(V_gr!VeP%7VIc1&2bA5#cskgjHj<5oyZ2nDaT7 zOIomK#yo)VlhyYNf8?0tagktRn0kqeH~;<}-UR6V{Oal}ZZiuRtrLD#G@CY4DtC$4vcTKD?%tY-XuEly*wPsQXqf)u@Up3aE|;uL?>K9 zV}>$tCDVr4DG&b3!~WezKRHHnv~~w6()%EA!hTg|?AKKCYJsT8KvQE{W*bzFfcPW3 z-Y`2>5r0H^P1iGix5?XkQmnpVil}R|%LopTKjY(w6dlAH;^f);kVrz}>E7_OZ2=pk za8@(ToFb-3D+?oL+P9P>xC1IGWiiRzVt*z+Yapwr_{nk_DBw>(1 z{V3M|-iNExZC@vkmoY}U6eh^f{PSXLbTmWLjA0ngVcW-CHo*2v%B8jK^d>%ye+}_a z1sY{W|A9wp?&CE79?S2Pzp;GC(MvxZH47&-CTMBx#Q-r2b>972Ru-#S@4|X=Gk0tI z-hAvUjDoYZZz+amW>U%E@8s=G(0?y?-+@_I<+*)Qx^7R7Y~k;YSKHMlI7jhPY1{fb z)sc#KdwMk7RKYhSp_Hug0HqnI@N}0va1em_J1hHmG5bvg`PG$=stz(f>I4pPW=~hw zJTQC!=EL+h^@Hfyvt{a^&QbkC_oI`OKf;k%@bcx$Gtf;T!Y{>w?;Ed=VH@L6EMBej zo`IzvG+z`gpm7sP7&N)c%F62yWDI==i-_Ud@bTl4gQW$A7@NefkMN1W zU<78eAo!7Xpz`POI4dE-$NvSy;=NOFw?C+NWyc$r)L;h}RjBOfwPuG9Q^eS1rbKfL z71^8WfmABO2g2^%)pJ!s6rGWl^s6-S!?Pn7oM7BJKg7n~A!GsU7NZjTqRwp$nFUBgQgF@)IUFonkCz>XbbIam0kU zVi2(w@Q`Z;Jw5+PC zhY$qK0H1{ykkn*N@{}1;@8ofb)ybrT(($0C7eTNBAcYF5ib&QVxL@<7nByv!DT~#` zhVr2x0{e#exv~)6>MGfTV3XD)P6FdPH^LJus~S>@fnrc~f=m?RcmkfFgXaqg?gDrN zp36bv;g_VOO!(md(d8Bth(Qx578Vv5)6uG2kNyw}VPa%<$-N7p0@xQoN$_^S{l(*b zQ_lbr{KVdsd_b0N{BZpQF%kUb$$u0kn+I{jrnN>A6PJGOHHrnF z?t9-#w$*XcvvQ(URNC(CY9oC8GyI#0{k9z6k$R--9YR+jhg+1C2X{;G92LAx;Hc4p zS_eS46qJ<%K~^mWBMmr+=>~@%D4m>4$8p^0luPj$nIwrjI$CIOp#L#l-wkbn3ve9! z!Gk>xvWduN)y&Mx^)8<*?$9wazmkwZJHo-B3>G*4{$8>te%Xlf4zRl~509vZi{zu@ zKAhXdj^8d(5R^tm2A!7~uTN%Ue%ja&)_=+vgw;~0s?&l;MddNmz%L_oO&}6SYv@z_ zBH-hrmYul)5$1b>7wC6pW3uOr=Ks%(hNe(G`l}78ZQrjs6O3I9R>2 z9L+7JW1XjwA({Z(5|KI$ZnlVU5l>G6kTQy0_Dt8Z@VMaGYip}JI&y+`(iI6YYeIv@ zFPK5(AqNCOlt7ckIh?Qt5bg~xT@^H{xWo~&vm7^^>MbpgblA=nX>!+t_jo%C@`ym_ z24vX>CISNaMh7LOX#o)#`J7#~1<}{zYX;69{Io&12HxPvL{cC`h97b?& z;)h5#*O<7IWb3raewSD=FK}REeRT!JE5gRT2ktT)Fc|>zcEiNZZXXaA7l)wWI0Nz- zrgfWi7|8`RQUu(&*txl_pYG$+M3b2ICPdEVzInvs?sllltd7FL)oOTZ6;f@rfb~R% z$L-VBgNJwXs-1rdv2$@*$vyAw?pBD~5df$$1|)?2-uWVD6u;~d!zdn1%ob33@@F%5 z;@2E9fC^W=FPg&P13iQn34|MlLclVEeEq+I`}JKgD#YBHJ zU%9KNrxkWtJVHXq9|AKVtS$kN>lQKx9eKgzRzO>o=H$F0;xT_1_3nF@srv&A3?Jk> zgVE7Ga6NFm!E{ZN1QLh^1}qqH4}mB**ixJUyA~Ziy@-QDMYCkT7CI^-LUh-w4{n91Q{y>0Y} z?06N%w>v3enAO2OC$CTxf_`!PRm4auD5&b0>1Noe8NHXn5WaCHjHhZaJwZsg8!ISu z56(T!JgzyrpN}$~S5(k#ZY_!7wS%z1WTMBHDz3YkNX)>1(j$47mzi0v-s`$<-hGqc zJ2Az8S1KPNq#EZV^dUu+TAFV*7>-se8$cwhx2Ge1efSaGr{U_bH`N`3gv3-fI6%Il zdx9vO71|)w09bekR1S3Td>9*f@eskn^se}=E&L+gTlysdSo7IW=XMbLmi-|6Rsxh% z7QFB@X=$1LRhC%gCWb7AC0dQ7uIJ}99_MV3x}a}l6aY(I7VM-Zv0+~uOb1ejqXhx|$jo*Xl zgV5Cz@!g3Q$Afq^OD&D$9kRThRVOZ{POKLmE^F_*(Z9n%{pcz`4?ey_pv2b3yQXDS>h^fCttBP(ZlS9_D}?xO3L)v09zdj*K#E2QCRo5A<&MEb&0= zjo%XR#{x-E;eiW~fQ`MqA;1B(B-LDAwo0XxVZ(3$Eq7E&7k)tlh$ID-p#dOn8A|}+z>_>nU=-01Y zI#WPJ9VAh&jvPz+PTPlkT=R^2@B*ad3_aEE&dCiLGY=D&c$Act7ogX1|M)mig*Mib z6J#t1IUIDXq+=7aiT6TAnj^U8b+Q#@k$j*q$r$1SrbfhH`Pthoc6jcKyx~US)bWg0 zREs3d&^aXg3V#IQ_7AI`6*V?~rZhTQ67_M3+{ieT8yatq4^D%Jc4s(t$->`)ScWRs zhJ^Y-H!UPMhbkBvE8{igT-mzg?1!oJw|I!V@jNll&U{=Gl-6Jq1 zou5Zzkp#G_tLH;Bwf&36GfJqAhyo&34t(lxBEuG9!1hH3BFFWS_E!>hDS3H`p&lO5 zlhqd^$Hau_vTN?`#e@;43t%mPQlOCz5zfoO$vFfK-~D?g=XO1gAYIS26mW|UP{Iva zZ@l5d>#VhxKD@ZMdI5+AJoy-)w5u}DE{mna1rMW(x`R^8oKuXZqw zUWVnU@NL6h0)fcx78=Nk@4DC1IPyGyq=6u)1k+B;KqbHiQAiNJh&(?F5I#ca%i?1Jo%rKaG*Dc ziAG09Hv^If>()>X-#++R4?yy82MI8Bk;VdYfo28K;@NaYU;|EjIXp!5+j}^fJcDIOZD|`t&cyj%rakjI_M~Q*WjN3BP)$;wTBOlf< zy{3H>iT2y`x0J}-)(`Ml*za&~*r?Os#}Q)WEN%5_-JHK=xpPM&E=$rsuD1msdc|rz zXhuwrQ2?7h*L+A`Yx0jvZTBu9$#EiFDzxX`u6RK&~wZm zIy%vAF3n!u4^ptOm6emely>twvxR=A2jj3T9dA~v4_~5!3O^R zZ`uD<-$7x~pM5zd=V-S}I-@C>M+T8E6aDw;LqjufF<;nx=BuoAQL(dQ1LKT%sCX+} z!YnYGca0T)zi#@9q*jS>X>P7un%M=``A~p%NX26|(Up`2U#9ZKlRkz@IFsh-+6o;% z|Ga|MRQ?e{y>mN7wX+LF*7kWl%6Z7dt>2c)Kt>qX!B{vA_-PxQPbVd%3M(4w-Piz* zA_Dlxy}V>rH!-mB@z*ugOCN`Z0?VYozOfzxLA2_z-@mUPolIecF94#Y0`Hq#wqhxu zynh zqHuT{>YOaAo7g*|L9ser=lJH|!NG@v+s&;%e=^5ZkT3KBU>)+T2A0PR)=(|~YbUa=m?qT~l+X9>-JcHN|B5Fk zH69_EBlO!UguUr;zOzmFB>ng7)1vHFf4s99A0b-u7yrk*`C zqyTPy*0Uic<`%m0;pypIg#PHM7!^K4c;TVsgM)=()REE$%9>>m_k!x9PWr;I)c^WFkr2YD6eW#i}_HSs* zUt)LyY~fuvJ3Eu_@g>2-`!rW9A6@!6;Z;xq-}gUr={IB~ukR|$<3jHdE*@UXLne*3 zGy-WC6^ItnhpI9dR?CPUJ(4VY@K@WwGC?NhRfc-wI`~%}OJ)OG--q2!7rEx-+UXG#u*y z95+T_2nHq>4`QPG;Nz4Y#!_4cq749SN*0!AW<4Wu`>mBk-z>=%5Wget_oE|2U~R?V z6ok)G-M;vM{++1@g>AUFq$Ky6;45+QCp0ww%i72XgRP1-lXuL+)2eSux9(w{kquP~W;qC$g!f$Z^z$q*#k^l1PQyU?y=rJ#`u_NKIKT?((Rh>#Gy*j7=y5Dt1ao>0`8hm3kj$jI}M;VS@Q z`|aKV697St;bo*_Vv^9%AOZ9d++Q^79yh$qm*@Xgv#~*TWHA^g@d3f42NEi5+n}dDoScn=^Y==ZUDE7SA`;5yPkpf;vj?58 ztk_Psg)Vy#38g_EA5w&BlUK#*z!xzgikF|qirr=%_vDP+m!&AzHLIdugRe>Pzug(C z(6Z#m*V_wXNw>SZ@EgKLtQbKdl!l3g6`(7HZUWB`2b|lXVSK#Em#4pME}hyYCNa*@ z&;~#AC!V);EcS=s?VlXz!!bz+=|Z)jKxTueoQJr$!g$x^CI~(da(YdF%*+Z|lc!q0 zRqz>t;SN+xU0q$c_bOD#*Eb)0;Nr}-pU30j=P!q}9@Z~1V^yQ^ark(%E&icT#z&Fk zXvG8_8Aw$N^>l7-5ZOV0hKCKH+R9}i@DXSL6kX*D zHQRv-Tdj5s${(}xIP=DaGRz&60)B9klA6AtqklSVZ85D_AFmOn!BSPxt3a6?>`R_ z{0~MDSVxRtH_`Vtja=V|(Z?KY8EfEo&ArVf@nL0S?u^>2Z`#l58ld%K)o*>*P^`r) z2~#GhbeVL1Iz>QMJ4bIDxZgm%9-W%X1gCy!p<(BIi6?&*#M3+P%^HKh0)z>K(D8+e zgA)~budo!4i2FYM^+l+*jBN5zp=MToJ_cM9(Ay*l=pVdqtj0YAIpdAmvg|*!YAIoT zw}LE~9e1KT1iYF}X;?j7Qn3Q=u9dXz)z9nYbT|4kAlq&cn-v6 zmj%b23`6__Tkw}-j6zIiOxAPNuC5KKq9=)f#K^0wJ>e20hdvVnJ-zw#Ff+)`$to** z0KJ^PaHPS>Rtl{Tuw05T#IwO3l3;(%W{-pJ6I5)Syza&h$b^=$qa_OGtamykPI1GS zYkzv={p-Fcp;$bqttns1h2aFzQUp6q0E8u%Ku$Elqesw`k^#PnZBQ~Z3J7S2L_{Fo zPIUu=%-2cDy$794%3{C=-_0)AFPR&;8q|d4T^5th?>-I*Y&#*xuHL z4#_yb|27M=4D>8g%E;n9dPECrB|8}J70Ey`K6H4WvJUV(@qd7bycK%-XY3)YY+c>m zcuR|mY9Mc7v!3xApRyJ+u#m||I&P$li-}w7CsR~+2nxl2T3seu2La(}Y5hQ!=@}ch zBW|{e3XYoET7-N6a?jvMa@ojEoUE>U%o%nFWJlN6oXs)17cYRE^v%u6`USNwdXwTF z88maUh>lK33~z_BllZ?=Q(_ZM~a5=2e zneg;Tb#;qeCF){8i!ytJdbuff|7Vd?0$e0&>iLXxip&?ft03?LwHSnKh=J(bo+)TC z1bsO^ajCJ2i~K%CWCy@8RxUgwx?aSRva&HTsZ5~gsDiArhsD`}{;R8uOaf$Vva&7j z&uoHH`Spp&u>YPNNXbd#K{MiKz(@b=&2`FpdWI7VrHN=JcV#yT@vdcN(KFnxB!2qd zJN*xYW=1$AAN=JmZ|$8 zti;4MlM{3gS!rHzaD?2)r!9Nl(Xlu*+t6-KPj3+Ug*cOeLB7(Og2Q>&i2s{ni}x6# z$^g+g+(zqK4X;mi)ud`CiqO;NSA!S84j;5x=nWvoomp`Mz|d`Yw)?yNK*dlrK<|kh^OB$J4(wA;k7xo;=KZKs{!{ z1Zi(|?H(U?QVfjC_2i_Idi^MI3z2_dpoBdJzPYLJ-|9KGj{@#rclPG&ic(1J3Y}C& z*g$BPK6Y$p#Ae6$_irWr`aPeqKOGUvUD`GKws%BNryBT`UkiDs@fGA+a&<@%F3cl+ zN@!&fAggtBw2_l-uQ=Ws5_*CJYp@B7p9nD`6j~zEnjvN`r=Xx0?h1)O(H34Fo?JMF z&*ta#upV<^0SAm&*g=5V4xJPF*6;70$|l!b8+Hh{+m^t&0baRY_$m-|Kj{zM?@IUF z-CqYzG^VB~c1Hb4V~%TaIeM>k@UPA1Km29~M@=OTq!KGKB?`}g$Fs8~e@pL>yp`v( znyM;-<@d%P%v=;M+nBeK2d5+Zf}P&afH8&O(TzM1h}~MQESUjGDn%XZ4JyQd?WwJc!P~mHvq? zMoJC-EFy@2h=gP@l(2{b&CqDVj#NUKi7{7bnL@;nO1eEw>5PdvGQ`W{B{A{Z5V8M_(x`&|kM@E$5Gcxq2#z}dE@9Iha z*G+}oqq>Df;URq2d@EB`*X!^37Qe8H%0swXP>?Jj^ohC{(%2|hD7>UzMY}OKUNA_+ zYpAX%Q&FSB%?=!t*ds~FGt1el;D=%eG?0PNh>duJ&fJnxLn%z9M0k7vmNs6#NJ zgF_-11Ha6#FCt$Mk;>q8OOCI?58y36_ug)BR#P4y;}jg5U9(wl@DF>E`9un@-EZRY z$*iG_g+dl2~A_R;+bg0pk=qP?t#lgS+x?kUX_M`i{ zI$J+?+Hjh9@KTWaljn(!dpvI^seS)s)w6J>A&y&G8J|M=`SixdL9B3pIhxs_-c|wSbziM z6@()q#aaeKGY&+d_}P03xM|lkkC2n|IPa2bLa`J(8(Ztln?#%QRy40nNu05)w-gnb zR%1V&NxI)$Rjq8KEY+o_d*qeKvs9J1P!`)Rv<5=jWL)Fzjr$M~p71_;jN~d5_MuqP z&=@J*yBF7T)B6GmTuIyy$;kSk&Jej$BjWMJ1(C-d`8EX1(a08%uSC|>*0OdG@i}dW zNcOO-8k^iZo~{kq8xBn0o1^HsxY*84)bY#6cnUDJf|3%o_1`iH2>JtR6(jiHG3(~C z^u)kt5j>7}?SQnNVL* z0?iGgmxqTHT~%Co%F+MxZLHJ=@}l!Y>iEJ^6j+}jHK*{}x51SOBv&S+?Hoe+4*^Kd zuKv7r^^3s%!^!apQbl?JoRzSV+k|Pd?v)vX&CSbi(YVvZf~0G+u9B@MJN0hUJb?$F z=+`j@Z=OjnpMeWc%*r}SNl1tsU_(&ZGJHma7rbNWcI99bg`F^xTmS>c4Cw^piHQkx z$g7jdQ}R3B!U4mm{gsgThXt0&wzg73r9u`;l!;2r;nu*KukupP9TE5{*E`l&DOpaP_gS2s zA6`sZ54Lq0?r#6J`DCoUwJU_ca=z z#ifk6)QBQ9wEFrCU*u*;8%BY33%2YY7`s81f{zMv?e(oKAzPYz_wE7ENei6Y3xrl^ zdS{wf#K|!}IGpSw=%UeK2ZL;7_m?lYRfS!7W0E1*j_=pl$$`4-6_00w`=iAa-jUef ze~Ifb9}e<*Z4<>HG)Ijtr5tqh(i|3VcE(U(K}yQcXCOmrs-Kv@-uvZU-FfurrdSWS zcsU5e)9o#rew$zni2^FI)Sh670Y&9zjZpiHywo_ zaqkhcw3&rPI7G5SJMWKD_^W_>iI%zpwRR~&-q0=oRuWieb?7U=!NxYuq{9HUe)|Q7Pz23;uPH9OS76_%A5Z1K zop4n7;n5hN6}w)N!o4^5L+2(}K8ci=m>xz@0fkaETvQT&0e3pKpO#bjiu;gj0^Mt3 z5ZU|Y5KLH_a~9fUIX~2?bUgdZafn!uAf}H8wk2mrN6*#zPt*vPAR+)z;*gS3YO> zomZ_u^&P>odW~J+a_-xLyKeuUEL9onPMUm$VhqGZgM)>&oT>7Bewx>9Z)-d*Yck-< z-KWG)&71rB-Nhzv5299Y_x_d#Lt6x-d68Ke7_>4_RARWF?Pq{x zR}AUX?d&s7!jh_v(gC5hb572|CeP$bh9EWV>xpJ}67Zl`EKIOc;^`nMr+Y_UYgV`B z=AyHEc<8+}e+b~s6!qVfloY5{ANkjWm5~8Dlih*j;M_Nf@+vAP-?W+pYHH*g=f;ZE zXc?6&@8v&s&+Fi<$Ty#jD(<^0Vt#P^FXw?N>| z7z3i(mk2Wi;pM-LJ8)-9QF!=BfItpPqAR#Y%p7#;iJV?E{T8%$4xXL)xo@iO^556W zIwvOLh5}Wg11jlQ8|w*{G@#GbTwM0ST06E);1{Omv_2>T*DaNh{VLX-=1Ikfm%eed zp=TEh_nz<&LEe#Cr5T}&j7&86+K<3xWU{B@fg&uang|jEu{*_0REv z!^#CVCApA@gxs6JThCd;>SzbPsLC#mpZ%Y8*T5b z&yu+zBisDjZzeD|hrobPc$DZkSr^oGy|FKc6^R_TyWpRA4%rTxr`oD{bnyY?e)&`U zyhAr+c*rRNn7;Om@PR>=?F5i|AVT{Fmb8ytpiEc9g{Y2ZxKU9p=H$xe3mNSgWo3MR z%S_MI;GJ@iEPGtglhoI@JrxU@2j;#V$Ub98p8q*l7wA)NBC(Ndtw&6X)z*O`A|j<1 zuKKgCRqAaNv5ArJ>8wD_+Nx+s1lkYXd-k@z89$h(pGl{28Ha_W350H2);4lk2k{#g z#q-Nb{9Lltq?F)$E)@Q>I^_8Xg#aat7hq8!%`2BJm~!Imemy}f<|C#|UW z31h@UuEKK4N6Hw^goFz3YTI1^=3&;}fH~UKF%64I*!}ihzti#c<@)i-l#K1oOVCbM z=z!bGAnU`6o<7TC^&;Fy!PBLNu4M(!x7?2zpo&-@h6;qi9LmthbqkoF3!?4nLv4LI zd-kG{ab-fYrn-W5fbX3T{XaC0w=daQz6yYNSaAmu0dF<7zr*lAS5e)0UOl_`Q9ytg zWMx?e1%K6{%H74yuK4C!9VUIN>6)jE>Sd@^10he`U0j-5T9B&^3nK|-s zUTD=c?+{|>YZ*~D+d4OEiPe zc%>DMwJJX>YHZw^+XJ71V!(Q)?ig2i;I=B$l<6R`{2Gcpf$eFL&XA`*-kDOJo0-ub z`SZtLr63T|j^yBQBZ=XD-Q)+3pA>#)x%|955o6=*L7m9&0Js4c_;tv10z~Tb+uK*c zE5iWh60yJkjX%fE$!QD^;m&D@C#tu%H+0!UdN}-c%ieOmw>{4Z`X(z2c2aV`!!rq8 znl_7V{{dwwnyqLH9!LO}${=|^^81DK%~KBI<`}57N2RMfD9mqUiuoda&)yx&(us>0 z%Xv@n-+@pw)M*C-2;K$0OFc*l*1vempHVig(R$Zx1}b#vKtoRdkbq!>&v|Zwi1p(` zX|1&V`VROrc+D5e%(da;8wX)We|l(4X{uTg3`+u zI};*H$A3)*t~}He5URJDx;jd@vY<4VKK?bZul|m^)5ID@4`K5MF$zM{siKll2&Pd+ zEjma<`K?v=NxR+!4>AZk;F3v~=XydPY7}KjuY&4}1##k!?5Ya#^Y=%AT1`lBk;MIa z^ylqB;q!e|28P_4v4bUad4?Fb%c^=<$n?SO^kUVfK&d&|I+KqYwf`PYD-4&P8&1iC za46*L`^FNCTAwWD4Zvab)0-lrxT*gR3d(1gD5K-!0|DA=0SPRi=!cN;lN3)XDv!Hu zG7xlKX3X(kLZTVW@=iM#9#^cua7;E9Hw$l8YHD8x@Xe1DH@$AGtzFE0E9fiTj_r+&w`$O1y`$& zL*Sk<6hQ{f0!0F|b{MdB(0~!Yg>om5xvFaUWqZd1eLgpi?!M;?8oaMyUJ(Of=G^U8 z@m0~jO;B-nVMZx!rQxoZ`st{OZfAMsJqYvU6nxNb758`@s^Ds9L zHDaK9(y2?(o%g|l`n%Ddj@s!~Fd+={nh@;yt3NIN)%WbsRIhWi(H9K?BhOV`mM-_o zBY!%JAtgz3S*jC9r$z)Db{gc1`Uat4>RIXg0u1(bvE`00ElsPzt(Q`PQrGw&|LoBJ zvY!;H-+_5A1Co^BVCtfOeg_NNHlrk(dva0~}ixQvJ)ocQS9;ie3=uCMW zK0Td*f$1FdmQe1Rae5kuhiFFJby*=aEiZ2&T7pW1piD|(f}tWw93lu8d*9Y^_~YXv zcIb7Ks5R+B*_{JLD;i}Gw&7m=Q6$}`#6J@on<(M>1E+JnI8b0-Fs}2*jamC*;@;Vn z{l)Z!8>I|Le?3)I<2-b-TniZhny?%GGrVpOI!Vj9Itj%S={N{zG6id7e4Ibvryrj+ z-QM5WRu3tY!P6EH=s}JQ|8_)47t)VHMJ4_=o%!e1M(O?4RjfJBQy1n6he&O$kZ_lt z`(_aS!eV&$6$Q@|2ONx6m=l*jeh@SS^VYK3Ngk@fADxI_e1nCCZnLjn5wc z=zcRW>@Q_X{D$AV>g}eIZ*Gb4f zo$%BZbm!{W&fY;03k^Do14y{+8sDZ-=Xr{@mYZWiOO&CW5vn#4v_mGr_IwxUZG)aq z^aEGZ30=Em*sdZX!@^`_c;;i#F&`{sB9&}ei7#J2+n;rpCn7PZ_ZK^ot*xnP1`WX0 z+S+#zM4iUr8+AXRJTv+-%$vZ7{3_h^Jq7q>lD*^Y??=4yhd(&Nb~j!lq9>JKVR`E# zY-xFQbxGs5C&`q@ecY^@3V1aqQbRC_+d{G`Y=NgHa%$=c2$>fwP-@=SoZI2yQjLvP zGx(O#|1vX6zL~r|p)1PV_)DRCIYMs-q4SnBNDcM%kitC2$m=~q9zy*1@h|YRAU8wu zqA%EA5X`Rd_>X;Z{)8P&j8?$p+X47f|88|T@PAqWZSB+&sC&1&aX+S9vpFz`t+$?) ziIJnCa+8dY_whwma&=|t=@06i`H6K8M=^5i-^TK{D6%)ob|p5~#J>}J3>YPLf$(XW^1Yee{XPnBM% zA>|A;kBky_KVXb((K{e6ertP_b=f{>ISzfz<5MQe8qiokSL`EJhjsZJNMW9s2mvmpb}dsv z6x3eiQzF^f1lUDI*(PBT&+c(CMMwoqs4)<&t{m5JCTBb)sH(~>sa%0bf`#E{!WllZ zJ@F+(f~0eMQ=JJX8+Sf_CQ?MUn8nhn4~YaiG*9Ue7{xK$Q3guqDl4D_?&jy`qk{JN zcbdS@O5Z186;VVaD9*cs?xzPC#hsBu?z*LZnLkyFV->Tz`{z?mwigXXR8$z zur9K*3l}=DQ7_I#>g|J9#j33;-VzeVEcNr!N6xxomXwM1^(9{c2(*nIkFi73cD+Qg z{e;j!&B!S(SdK&q(J<>Ntc^bEZAW5$=b{|OShLF7LWjs(N)YoHxb)>4YVyaP(f zC015e;H$2{H{7b-&ldnCyDjhM62>dHZhU%gZB#Y=yZ}mkklzy01LXc>8<7d_AT;3>xA^4P-Xb56p`8=f*`+f+lR09~dxTuKmxS&9q^7LQ% z6&?qd!SB|<=C;toFSbjly>h8%!EX{O)GO14);8+0xZ3Ac z)(3Y%)O&HHFB!3Fyskr)eBodu1clPsn$T@GRD439FBBa@;TROfkP$5jM3NKku5XHt zPpEOQaft87KgUhZAFcKWMHoyEEU?`^BqT)mD1H*oc0pUFw9{H`V;hUNK-Cc4>L*SM~P zMFaHbss^aduaLIEY{lbxNIha!iD-wSu0Oi}szrAktrfq65-zH})t5zg1blofFe#K0auw z?>i#mKTnCyqV=;%cDR&<{=e$X%;o0z=V;;*85Rqo7JsX80G`Ay8_eC2}N z8L9B>a6-+;9!l4qGBL?IX;sN|spQ$vGRic9X#xoe&{WIxYiw-s>AzEAeC`j`xvgy8 z;o!V)aN~?Y^1MLuzdPgsrP-88$=`0m6{u?rC8;~x7aFslK@_5oTq5&uI5E3;0ZlCA zTy>^bn?LF+4a0D&J~KA)Ubnx2{J&$}D)B>zXyMKdy8 z#U$-EZ|9ZALQk%OT_?1iHK=#9IX?Y>d2&LHXKiXa_4jU9OWMoxFB`8dGr}#)!x@)!KRVL zY9axxo1-=YwkXfyXqTY-ZqSqi7Zn*++XQ&g1D|UD^aH1v{=6_~7LE!F8CO?U0^wOL z>*;w-x3#7JuaBD)qBWJ26`X@Dr$TV2%h1w5*yeu9jA(&)%w<6YP$lA~g*#+SI`&_8 zFol=PVifk^t=yGz#1)+2Az@*5iVX4ASQLUaR6CMqoKBmeH*FNjz~v^qeik2r|pSXmW7 z8sA>1Ud{ruMg{kYHy>nWU?noT3T|BxzylnUl*I51s@=c=s@>>84BbA~KM#*7B>w!| z9P~X5&&r}-Tc=;Uha^E^Zk}#oKhieXbl5`?%in~{6HI1EH`DOg*v)Od(VBwzgPdI3 zIxWp`i<#aaBMz$1QfJf~KqgzE+X|P6CeO4QcE{WI9SJ@!MwNdM`sdF5wbdm7Nt>VZr^Q$ynr zPW>`KKAUG|8m=SsE*xS5tS1AijKaZRJUBic+|VEZ!q*tb%POP1Q4BX|jIxL_WnldF zKihBn4uCWFq@<-q0E340Dru#+ugKhL`ibF1AGhWs@{1GASXZIZ%>tORA*h$(_3PI) z!NHyOv`Sz|1dYuX5I5QHj74-bcZW*V4l9OfX=o_69d6KlXS_2yTI0BYavEdYl3Vjx zk(*hU=FZ-{NNj=`$EQvWjn{bg9YB1b0_qQ~&#cn12o?k=EN^@SOAo$>ftQkz1Qv4X z?*+47u?`$84UM*=G3e^j`TM8W%2jAE0W0kXx9D_}ce<*QQb|Y0E3gLlf^8Cn1uO7w z+5wd}1UMwP-`l|NHov|eqU(Jf&s%@N@cSN4j#OEb5b>es#o*0|B3Cc3^qKcn42FJX z=^Au2gVamfFDokxp2C^U97_ueP<#7=at!tET|dWNtkE<98v*+uG|x*Wi|w5l82ccG z1~%8Pe?=akx;^^xMM?g3!86CMWNT6M`>*1^)5?vHE>y+Gdt`qV<|5{NT|&wpWGA>c zlhx&<@{m`gxG^l&ehmo|lc=UfILbcf>dJnZpXW(I*#l5=+W}|%(_tgl!uyPL+%_3Tkl2*S{FkT%MOnlfk;~1R}IcODi1KNH4fu6M%eBzC=_~`POxv!FbeAY8AcBMv(jC%DNQi=nlyrAD5`sucHXy+1_NBG=aU`<+Yms2fq3C#oyY@HH|u$3W}@m z0|R%!m+_fCz;k(P&ftu8Qy1d%`*qn3j zW;M8r$)npSNkp8@W1Q|Yl3yMy=53FlefI&76$Y*iZhtiCJ^nQD1XNLn~9>#w? zlLq-VsQm|6Bej5&xCF(LD)bjXKuv(DQ=#x7Pztnb?E-HADTO$sz`C`--f%*^JzG~Z z4Ewyb^>qvt5=|qchX91thZVCOyef#eJ98701;qae4%7IE2m)ZsfWPT))2>NP0C@VK zTX_Ik8@Caz0vJ`EF~>b0?C)OzHNTtw3vLQLu(ZLOaD7?t=I(BG$M%w+JjNTiBHRse zaGPlVaKM6_xd;dCiqS<~hIiGeQm}mvb#dTz!3mt+g5Xdv=)Q-U76#zhN zqmbg-TG#D!b(LG7-<35mpiYQv0Z#?qx5jwCnVckFe^*L!yR@SIj+P@r@ z18Ct;MRHkF!Hxr`@#5KH&{O?5HsONm>Z?-!9pHWo->sHMMYA zDHjm!?1qpQ?@c^6K+S~yvqV$3%5YeO>52eDI zy_YLT@wU`pPg$*f5H|Milq4ED~xwhUJ%0L_gY*W3EK3Yi<8X<(9qz3K5l^dMJ5xRE{L8Gp$$dHrG{0u zZ+5(s6Nw)9sO-ehd{ax9S$>$R&Ac3yps$k2YJtuEj7S&)bPhRgI$ByR&fDXP;`5C@ zT6jk0IE8F)b&ZXKU`qw8dxW_P-bpEKE*bZ1df%i3-w?XtER2GAcLL{~o%Af#MR-LO ziZpPbu_^~~jikh_-6S0ysnlMr3vd`uYw7f9c3}nFG)(_c=L;v$5@dUsZ_QA-pL06fI~&VHXg!z5!s6dvd$=7KP+FNucU|}i zA56C&p!8r_TUj{(L&Y&-u(Y2QvCvEQk@c|@Bu@hW;tp)9&i3cm0dk@WyQ;~z`R)2| z-mD$2#&s7It!{c=Ebtrb6elEv9oXzaFY?IF@x5dmtAPXsp1Qm|KaVLfpJt`p=TB6N z7su;-C4JDZ!l(xurU`k4`HRP(3Eg{Bvt*=CXJ==ptMTUJmQI6BRwhDUV#CC~{v{{p z>4!#954N}ZnqR+SzHXoZTZ$oQ@jrl`66Rj7WwarWT^IS8 z7CbS>u!ZPUQ!O=|7j>AaArJ+W1O$IGpcAQXaazIL zbp@30mA$z+U6av(o70w(8e_C~SAJzhTX?68c7q4G5hd>e{0i82ux*esnKB`O4UqiQ zaNLt3T(ei7?zIRD=QTdHc+4CKhuz8!WT`2Ta|eh1jEzHqBFWC&9Kojg?z~TpXkpl3 zqYPrk9*Cr1JAnx54TeygI=4GsHy3fkS+WEfwFCf7Yo2)L|7Sa>{_FFq$cbXCRU)GA z+uJxv(^`3eB5C|c`W3bkdcdC;Fg^y-tqbU)Q)RNqp}D;vHE%n9hcvFyvC?!vdVLSp z%!@QgqGaGMfLJkIP%RHR{C3)%X1GI2ij!FMG?4~qeNn=}ngn(?#FF*6=$?cgi%Mfeah z@Z^_o3SpEYc6AaB$1f9dGl)EaniHrD=oC2RIsn%RFB>Zqz?h1=-T=F0B)BJdGGvU$ z!qOd|3cR>mv7wW;v7zx3r1S{=A@IyXSNq~_1V(nNZFVW7Z3_yhh3@7mLwlz>w87p) zAJqK&@;uV5=u4(WLV`m$-yAJQPX54H-M%X7S_?|=?7x-UQQ7cq<*8$0VMRhg_{4ed zcQr;{zU6aERt{5Q3XN~#hQN8n##y`^kv*`8i0ST5M>!{FU3#ITWEL=6=eytdKz3zQ zZdncVGtyAq!iK3j6YRvQ`Gkaov}ow)qSSe$iBzvq-#o~S7 zYaASEn9>UISW`QHiZBLYG6yS*AFzo3wG@{8oYZbox|1vR*QdJ#z9IdtR=@FtuMD~d zDB<*r6+@zJu*jW#JYy-NPZx=zSjEAQQBZiFfiVj-)X6nfvFj*tKEBd%4crp8Q5pnMVsq%7g=AO| zH_5`;3lhTvD9uJ`s6}zT)^M*EcOd#iedi8SdAVQu3tjkQCA_9shewwh~?C-}__~Lu@&vrXE?FCkI%LM5uV5rxFF>B%7C!peg zA@!aitj0QMH{>=UyH2*JPChC(MR#Q6_mV7sd)bI1u%Bwi?O5n8K1~*M3}pla5+ra( zwjKR^-u#7icw;MbF(vI7D{I!;c_OC8@|sraTj?fNw}-Q1Se%kuMkVPT1P)^u|Zk~d#;bM|j< zXGF(HrM#eqdDUHT$N+=mi;UObjCelh;+>lw#@+EsQ<>LftC3=lu2>)VZ=nmvYK=a; z%a%QFUXuPs2tYl}P1k?eH(*5!f9#~8J{=fM{M8$;%OFCASxoHR$?54A045#(4a>{F zC3+oys$^g={l?O=r*mY~{MjpD7F*h%B{Qq#2q#oSj?WYlqgGx+68(*@uR7mTSqxzo zY&@L13zN^;dr-VDRsNc`fWQs|By^H$>5my1F+i`AXJuirQw29gm>4(VP2d0INZfEw zWR&FRZ(0{>6uBu?ym|_~Atxs%?3-alQwt&Y&*kM?V6(UgJqc)wgiFH5j$f#%`T?X9 zhSIObO}OiUv$q6hwA6%~^Z5^87RK}&zU&7P$OMSeSz?}jU0Gje`~guVQ1Lchol-)% z;R4ko6kF%VAy7bv+CiUzZtKJ=O%;Tfl@=TGImZ3cWx9KN%V)(fDnw-ZTNMCJ6TYBN zO_Gg*(u(<&+6Xm-KsLt5e=f^WZ797xkL~EV68xifL?UZUwGj$H!(i**e+{1(MiFxo zW8h_`-MOn8V6!4;SIYXhyL7%hFtzM?9BC*E>76_G>FH6;$G^E|2)uct=AW0qHB#~o zHz!v~5Xn<3hu2C+Nh zwL;z5Aq1lzC7;y+%!KB0q9cmOo$pr7^Z#(6Fo@8i-qXTHDr5B zNKWdu;pB36($RT&XCSR!IFzlD)YBTr)YK<|yc`m+fK_{aI%8ckq?0Nrz07GbiF2pv z-%iEQcPQZA{BSV+mu+Huxco(WaglrIooirf&rn3Se}nri0s?KXWxR7QkNRP;Cq!j5 z-j6lGu>WOhl6Gv0ykTj{hLI_lGK9_ua_bzBkxdk)IbGD$Og-D%KUbbz{9%+UIyrGj z7WGW5(PZ`R#MMgMuSfAoo;oLgu4u60DnUqIRO9RIR3yK*I=RNHUqi5KWcMLkYUv06& zH&|^s1ICo|ACBAcPm5$`zp(y&R@jm3dTaxZ(q9u3ZF7V8)NMh_i(6ygC-b9YlG4}_ z&PA6qw$Y*zS>KP(xgy!*i2*AG%jgv_OJPBvZk4H?1onquOt*deb!058y!;Yb=ncRq z7YVxisk;3oXGX@;<_Xqdp`r12QJsl2R}YKv$irm z>F5kUs$^CRPy#+$5+%h4T#504BpYZXLbMkwXR3Rk&nMO*W{#`2lw9%0AQOZ!JvNS> z(=s~M>0Sqeva$=fT=mDy>OW2J{GS#;fPqyJyyK=1cK}aa|F+HrrMa~;OoC71^Ho+> zVELbI+ly06(VMgz!^O6s2W_LbMQf~D);sa2w9B53a|38ZP}1k;numG!hm1LL4Q4UHG{43QSUM~I9iB_pZs z1Wq*GP`ARKB1!Zff+_a;HQ9eo6bQY3EI^KSyw<`c+W6K_6K+GQ=kk%#*4DfZgH%R8 z^_4;H4MLm%ts)skIn4d!sMejQl6sf*`iT+PzDCwleo$|=PES)HKINbw3{{!11%aF# zi>GP>5%SU98n0`L$KG#kZQ1)?04)7Ewr=)a1^OrR+uIK7X^4L`M@8u~ab433@ z{-DgLJs&sH`8g9%;*X{(gnwAS1AjpuR2555QGbVN4``y_cuGpPWkY7y0YFv9y=kuP zs&87;{O~AwQMWcWs35hrWHnvF|GME}8xjy=Y_Bg}2g&?_kqGAEW_^AA7jNIPMo{oP z1AOKAO>EYsH!(DizUlJ=sNwVS(!37H1c(lP62l_>oJ_mJ`M3=eqa zpO2YMZ@gp?eDTYSmgmlskdPz)AA%D3Bf9C0q7ME2v`|}!6Ly<`1>8TQ_!F5n7gsOW z*hmIu#WU&iK|#S4VGbFYqGC2r^mURyFY}qo`P_M>zt&hjSk@*9`7>7;5>~U=#%%Y) zQ%GR6#%hGecrbhYf?$0c#A~adK-Hc7;W)(eJ1MjEflQdsyNO~FW(t9*%oIMW&-dTF zQ(kGup!qDdr}B|V`@8t^(Vq!=N-rf6Rt5$%#Q15ZhMj6AQmU^!4E#0cuu$-Wi*B5R zWI@48G+FfWpiH<54Lrh;5KaTa_%=|i?5M<`Aw}NVZ+vd>`{Wu4&NnRj? zS?}MI_~PTZ)5V>`pO#Zpl!iqI%-g`TmJNcdtHVSb9v+fAB5swQ3A#2M1Np%L?Fz;bRqj- zcV0|C2R zf|aEr`elE@$_cB^<&K}MG6LHq%*OVq>CgC^U3`b=3K38k&q4d##eQ^ZNjJ%+oo`fB2!QMokL0)a9ASWjJBkBE;H$jO?De1?(k6?n2EI#%Z zdI1{<7<>IFR_j6FQ;v<_nwUy*K7&ggD?7%9gqtH8qC3B9neK5Q1qrMJG06iw>aAHg zqx=I2qnCvcwiqbvxTW6G(-RWh1&Q?pvCpX9m5Nhms$xC-c=r}SYkRvegyOU4lH1yH zBt1b16Xnvc^? z&EE56RL-nr-AoZ`t~4Fq`yEoEoGQg?0E!#oKqLWkqG;kYO(yNt2OPCm145lqnZ-I!g8QK z-6sHHtjT(ROGuj664%a7{P+Z^wsJ|8DrUMCSfC=8aw}sjsD*@jajb14JT6@>_tqIH zcV-xW&sAa>bbbn?#RSR>C!DV?K!v<5eV7KD)a$w-n!Fp)|Lw=S{zB{|Dcn0&@nm=wfC zFo*p7J^_fzuuRIBpy@BOx($3PN_(}4!Q2)yfohhQ+rhs_IX4z`PcR_F9Tl20Y{gfV z)zzKl@B8wm9d7e8c9mD3mL=DfN3D#o+z~ioU@&}bUgbczwjQ0azV%G0N=EX7wJI_B z?|HB1wPixiqE_xv@p9+JeP1FYdjtd+?AN2RR+pZh-64^Zagsq7*o$L}yfq0#ofQD? zQT1fgvouz_azP#<*=SW^X<>Fi@+UZ}kR8w1k{dgeL{G&1TQAIhR zK$*^djenv0Ohn```J*nn(xL@9wESJ248}&XfE1bVdy8riY=4sY0&9CigrUg;LXW?J zQwV{$k204aEOj~5&nV78$I6mfJR=a3va@*nu=;^LFRb*B6Y+5#5NB7$WG2JIIcA=w zib~JO_z}dBWFl@3=KDk4!C@J>Ya`Gu(rbQ^hR59s@N2mW2}k>mL>%1N|4vS_FB`vn z(AKy+Q1n3d+B2}Duml+*Y2c8KqQ5UDMzbpzu4t%MW5ta@j7~|^ zaiDEQV)Cmq9es$1A+XHCPp>u6lNhWH$GdaXGsK9&$BI{4(FQ6QJzzdm?zpBTB=kJ$ z?OlMx1zg#PCAcaPP-`e_Kdj5dZEtngUhZ&dO>B>=tX%&VNaRaMs2m*VHz}H#QB%LH zny_JcqS9wHq=CCTit*fdFkoTHFMYAicgu|A@{)^$jcw=Ye53ZzWPDw4rYp-kZmQONO>0rv@Z4&yJz`#Wv6(WmYW_e@}kU8o6PGgh!dVF1FwnAmH0L{vsB*40&szk5Pt1k|{X-{I$)j&|Qy&F8S`#C523!h3kU{-`o4fVHKC%<+Ks z&#~8y=d{qgYtU(SF5QRKH`TgexiB#dd#SE2eBCmTRHXiZB3y>Uyx00>lToX1-V-B? zhCrndjh!`6SPwY>|K5w0Wq0WhfS(9H#y2fMZZJqCLYQ0CDN}N>*>DpHblZMJ?z<2!4TA9Roo zr*LDjV_;MOq z@sK}L)PTy{*>8949UNlzXX_?}$6;{|nNmv#+aLJ#2Z$|TckZ+l86))OtNvMyRbX2J zmsB1BIWl}}vd^DCP7+Xynf-0U$?-zv>adIB;?h2m-OH=F(Q}yN1D7A|y4MMjw`V6V z(QKV$na%wvIuPa}XET6UHCf0G_3xio1q49eD;o5{2n?)0U6NkoHp12JjIh4;($%Gf z>~@5KP!7~i#~7PUx4i{sycfk<0cC(og59x(a3S6dZCDlokOy#Vp|JZx1R{ZIX$9zQ zIAAzJSOy|4tSUejgves{otFsnWs&xoRbM>vikL2du1k-~(C$IUvHJURPU- z*tr2dCk~=L14;9_e?y4Z%H$o=oBT7NqkNC2yn=5{+j$|}KmxqUEyY5fm zvhw-f9_59jDc%VKpFm!MHM4KgB9;BxJHa<$^yHPSoOeFOl%k1TM?#X@K9Cx*i*W6ea@(CGc5G0xYSMjJ(D8 z*ogK43N-(4lmZMy7S2hSYjr@Ao&mHS+#Az>Lf+nXGF=gj%+6~6ey}%X=P3xCU1@_s zQy`JX1L+Vvz4Ui1hNg?7{(G4uU5HFUh;= zni^wGO-)XuP={9~A{N4Z5B}E{t6&aFg8Gn9`SQElI3YnMfen zCmQ+(7BWi8nnM0td4CO)dOODoLu_Ws16k5gz_!}~DFGirBXVdyQ^R!w1a~m%Eaj$o zVI$S&`+TLvl!|wAA5DGtPPu%vQ^sx2Y8KQcrFl&J4!hXxoqqQCi=)aaw@EP?9%>$j zkyqvv>wMK$n)kxNMCM=T_c%zeKe{>#RD%hYsY%)$fEd5@uqp$WGY@RG5^)4W=pxg= z=o>~8F~en4dhw=4cdF`9L1%b0S6gd9v7;kZozs(;SfY`OtFwdZQr&pr1i9Xv;IdTe zfrO5an@wDtKKS=^H8imrKrRCkM|YPcQ~-v`W#ya`LGp5iGkavkj~^WSzpy$%gFqvC zF6A^|7svBTa$@8b>Meg>D-s;%y%jixl7v7 za=yfVpM&Eha;^>;J1^KzW=G%pwLWP$g}K6!e(&gk!mHb(;W7r?X6iAoOEaWm9{S-u zmWyU-;M0q*Jv-~l!Dew~Z;Cr>9Qt$Kk0Bb9;65aB_Pb(2$9;FXYZF2)61wZ4ESP+q zXF2I3y|(58!R_1$xL1%p{6JQAV{;oi0TfWrLo~M0oAQcH!NCN{q4-++%><`S;@LjM zpEi&Qejp5-nyvMVlH`#I+178GuiMEg>l@@-Ai$nmhR^z^G0*NftiTb>=$>#+|@ zM2WpU2X^PLYBF5<2B!C*mYDM9vml#I3J+JdmLA7dRHPXF>$1>A6Uk*w4Wc@M5Gg-I z2+o^o3nEIut!rsf{JT6Jx`hO+EF`U9b7AlT09Bv=V7nySWQLVJ9M`ml2<@S_Y7W&-vDNoFc~l{-$Cajw}o)o#9!oh3ZjT z`*r)l*;7qTZKktz4)XO|%l@?@?wp#Ve=KF-0f7bZ0hy08DEoKqyRL4SbWms54@&g& zVB@|ugjqTBUrHVm2}n*qv2k&w0B8eVgO4SR7ucCh)h9|XSz;IX@gWF} z_s6df8)!&Kp!b2*BZi}&-G9P`(%N=-v^AFeLKADRk6q+wI`JJmPadlPM^CG&lF-j>|Hhl7k)c@kzEgTt3s^gk8jwlD_j()ND_f+W%|8 z7;-3stQN$|7W67eNQlVk%Brf`8F~57%4whczVpLug`~df#~ABLQ6@0K}#ENJa>L%e{LlVw_Qq z9PCT3kd644S|kA3z+mtp*KH$%&UE#!OR(;j2I%()q#l0Zw57w|pC^69!V>>9Ll*{s zMSB|{kf-G-lsVna!mEo=?mGVN9*3MS8^NTTSD2-Ew$j7u9R;H?n1$|XHqwPX`3^cz zkXhanb|KURG)hwS)xbtqRn zVf*Q^shY=+532$2bNm2#7!yd%lWQs}vQ$g%32jWm;;pKEs@5_5tLPQ2~ zYpSj)M(yz;l(qgAN+%};)mK3=It}d~CSR{5#G;|FvX1{;pPZ&}IaUnVpM9QV)zP6( z^ZfZ>VM6_?>klzSMHORxWNAgb%;(Q+08{5sT1K=&L?oQ8O7|^CA)~g^><-#vS62rb zppX+1-C`3UkH)83ID#nx>(Hp%(VROt?sZR351z>{`WX$9G;mD`^o?cCZLPUFGhiHtnx9wHU+ zS^K7~bUZebWH^-Z?_H z1>4|7@Mh^hdjFzCH0y*1I1ra@vDXp;V4R@GE?L|Vkvud>w)P1lEs+OF9U`d3V1cj5+#&K5A1sgeg zZ}0Ql#>WV$oU!rxms^A02T1a8i8C_hp60}dMY_(MY&wYT&dC0YDPU1e z@-u*^^@?479$;e+`j+W8{^=n|3KpTPj);A>`n$QgS?Dcg@=cP9O2rlO4L5A2vVkbD zuN2SGGPoU<*p(_ zUnbQ~<6e@2w|F?_J@r_AJ`lH(4v;X&AO33)fP)l96(acNjmLaLU3%WPl^8QKm!4@Y zswYm5{XgN8>;BnORGngPOb`E<%P6wJsOVPg?ri_45Rn(HsE7xzl+%+ZHntA!`Bt;- zV3Fbl4eZI@EG3+Qq*(LnoxmzgOzhDt`JlF0j0#+aIl z7B&ef3V@v0AN^nO0eGY{C7ZO6z{Wvhpsznk0ktqU_rk)}zi#thvtC0^Td=ya-jbD* z!^BofY1NL!P6Tx&{Xp9MlLZC&3_RnC5hYDcbLRFy9QCfV^L1sBF7W3fhV4*x-T~gi zG@7sT+Q>Qbm^`JrK9F5vh74#|;ZHOwT~9x$GV3C?e5p!I~` zWB-Nx^7Efzc$6l$-T!hx8FMheH;2YD|&L!tluIu?Pik`aYQx7PBVG|tyE94E&Es{}IW}@XdwmZ0X_D>du z@9SKRJP@b*?LwU_)xcM>6#kk>>;cj#};@VfQ8ike5KueUvK*Q>iduPI38<* zfliv_%tWFW!I)j(OY7FEv6!M$0GTH+VKX0Fd5VZc%y}g}bNN<}^+xuhe*NcY6FLwu~c4soQny8!d^IP0EUcC0ae3CNM;Qse~ zN&2Oe6EDP=u_Hp=fNeo2ulfoDXwv>IEd>-PD7@a+9!hFzw@pmMO;w4h?y&^Ts z&j;fzBsz7%-m?tMR&&B~mPGg+^OhK@h3-AR`^J9yN7x98jVk(COwC;b9~w zymVj3e?=R~Q4@d~4@l10dAE;?2YQK;85s`3?q@#}8$E@JVgdNA@hS+k85_LjcLM;| z_PbP~H0jqV65`3r=k3*e!PpFH0-)vwJk4kZv`Xrnc`X+#dJ`igvTaN&s0zV zoodDRV$py4PJ8Xyr5q*=e>8&TK~bBv)YB>zkC?Z3-S91(;^UF~`}H!q(_8HSR~&{H7eO-g}ZP!-*I;{`Tgkn%JH#nR>~ zHa&m@^b$Ol`btXp5LDj`leL#Hu7tbmPWWI-8+n2PH<$!9inKZa_~EQ{9yiZJv_eXdxyVLz&bpsTS=Lf5uMMt#`+)x*<)H!+pBYKz+K};daj{e; zKDEL%Dr^sLs05{^M&opllap=s&(^1x;Wwvox`f%a7j>>U4L%TOiPbC~_Uu{1cuKDNd+d zVv{)Z{5s#=F+r&`-JW}_Xzm9-v^lqJR*1U21CQ3t%Z9QWGe80r45o>(W8r-r#D$-z z6@csKu=9WE2%i|tfC1{R5Au){V}9vK9kH8B2j?|0a_GI|#k@r!qZ0ot_fM=B@%Dt8 zVpQ1^`Ar`uf>5@W;mM zx(l+xamSlR z+RMqUSR7)h1@Al%mq22JpfQ=6GLsot9A5m9OXS6y_&qBPOPURjV?1hH>Td-Vn=!9b|5FpwQL+So*neiq* z@rCVRaZ1A6a0W?wk(Tta$>rbig(mW_s=2tAFHQRU172u9792|M;qc%`+a#99kpK2F z+TYf~;v0B|N(b40_OYvJc>lHGBsJGLZfM9yufc=)ONKg&N>b#l!XJVv)@|q-kZfK& zSBH`CkTWzgA49^iP7$Cla6rE5;Muv>fifUl9_nGdl)(H$Y#;M}LkcBt4 zxk=`AEsPDZgR%t$?WN7))y*xp)}cX@p?_#+tdy$0YGiaY{o%uR$8C*|SQcR2zw7GK zEc`gE_#f#zq~%U9z2d;7ep$XZ+oEp}LP*UU#yRQb1qFZvYzt+=$nG!nlT&MG_*8I( zju%P7)S%SLq8;wimsDM48LO+>VR58y%Jk771;h6ICxgaKAG-}3yKyx+Ie)Htrs0Ld z%d}FC;)zEk9QBu+EWN$W$HE>T@KCU^IiPTYrSUh&Q1(1ujr*G^|5hK7>0Ml0ijSRX z0DH3Sn0Pt!f1mG5nK*3A7`AjrGR5}U-seO(nlr0_vH*lTM#uuk&{|y*e`LD9G5L(w za%Q|hcoP-kE&4&e(}07WPR372s;>`r7qqKtAh76K&3!#hMlzv($aouT?D6P6Dk!ud zM4=0IfUwl|2ToUWStB(% zKE9M7o0b&$Y2*VveSJUZj_ttNcn3!00<+EH>G}N-$$cB%CSfFXa5=$n_%7^ppMvXm zqm9ps{s^|vKY|JhHZEl%&@WC}svwgX49IVUTshm^_p8*%!LNdVq7{QZ)dA+yk`w5M zH@t}X^e_X!#Cp^uC6_4`6$j?vVxfR>^KWmvPJV#1qxm>*J^OHkrd4XQ_*5RgLl~bX zndiG8z5e0A{7y>?L6WwZsaAxbpG852C&qr?(wFb{Dp=F_A(33O<;2u-&bKLmwd3a)Cv9UH) zefr4!Au9_}V*$L*A=lbxtuIwXiW)38U8jRW_bReOLJZMgYRFK=Ea_wSr$yh-FDdB) z5yt&m@3f?(WZabJaq&Sp54{(fZ$UN0YdlCb?xaH_>hT(|2gbmbGry4ma4pfhXV_!S z<|Z#>OgB}dBv3e>%QZJ(5Ttr>Q1T&9PxG%XWrCvPE_+W+Y%l^DzTYUJCk2 z#Cy(U8g5Lt#6%Fm5?WYV3P6!!vby%vd4$d;BZDe6*}J51dTU?TRNi;3(v$?#DJq53 z(cvIk;URZ?ytvyEs-&0bKoCR@rBsw>()ukULMl_&!Ija1XKr;fLGE^%y>NYMiG6~k z#aCl#p1)}Y_6x9uwvb7toj6F$bO%=)p9DOU#rPdY{#lOxH?U81c?{4iQILn7yYLHM zHG0%GsNG=DAiaE98r4^3yDS4lo<#uKf)4#FudkiJthb|M5leCasw(4b9R_^BdM75o z3-fdv#*5#Z?2-RIO^l0;)cg`jG)sAYPM<_AN)>KCzR=n1`+4>UTH%6j%*3x|y8FJQ ziVE#oj*f@0f=LF12DEz2+t${~W_}Nk3`)P;rE=O?_$hWn_38ThHGz#D+*vXY=}W;` z#s(^Zk4-nJLtK1a&~w3L4ao=2)z{In9n^5YPA+wDR8)P{z4MEu=$*#hsJ1peyG7(! z+HcxZs<~;Ak++Z#uD}S>(O@~GbZ!ox{XiT{Mdcu~zcyBeF8oncRO+f27&*DQT_Orf z9}Z`%4OT$a>a{P@-E>18L43Qzmd2y`U3FE5V&GG5LFZ4PL6iHc3IIRk@6H5&HyKTu z&L6_AkOyoZk|GaK%7O?!o(-iK7_r=O;4iMa%&nz2zi`mva^A~cUuJJ=)_9I{_x#*X zO&n=^ceTTDYVx!lE73bKF(v8((jq}kyDBp|iDYWJF+|qK#HQg16TEt+(8=$%%g2fi z0-xj(i(BW@++Op!V^$(&S5RjH4vrlW>VrrLWCi>+IPtl?MgQT(^Wa!cRKJHvNYIRd zjP!00E_o|J5?;f>1=fTh@DxB%0JC2#Rh1Ro#M$kn!>vMYQN`kgL|{<5xO~@j{>K~i z=+#E5DGCV0fH8!?FCY$C{+-$9RU04gRz*4d_@Q2YKlH`)WO}140q=1a&3*UF_)p$* z!bm4nLUt>1DXRI&q-13AQ-5wqo=^z25}K_(ME>-dBO2|`q0_}amRq7T=sQGa|(edSh{` z84i{7qN1ykf$g6^+4_h>|9DgT@8_Pz{$n+#B#dwi}9-< zMK$$bG@L6*+@{2!mT!geMgYLRYP>6^wXn5dzg&*?rY6et#mu+9XfomNW1iky>b)+2 zMn&81`{H=P4(bNTSd@itZ7m^Qe0@!kMA*frK~E2nID>@7Hw_V!b%%CYbt z>TfpRI(iQGKaR02TFlq4_f~dbKn@BAY4~xKQUp7kb|!Cuj42jAk=nd8F=bZMi_@=<72r?n zDO)(fW2Fh^2hsDD+X@MsXuzU?TwJh&mq94zP>&%ef>90yhk^;6vjY%1w+2%%=f11# z7@0s~`1UbGA;9J35A}*+g>f4w6Cdr*F2`Coh8%2|K)T;?$~jALW^k(W{?qpc4=x5% zX109Zy_8iMVH zSIX-iKa%=OJ-9OvX&+t}n~ZvgOC2fCmjpi5KNh`79{<^N72Y{9ooJRW`zZj%aUhSe zJ-cwUy$q+MBE5rlApCdYootCt1A<5WX<4g*2sUBFVIc4@H6NweU6l@{9QL$?Dkmz6 z7!?&&ytwfB#MzQ`K`kWK9oD(U%5ivl`YaRfE~C8H*6x}+MCyJ1yoF6$d~h%&5AYYn zA*e^7tvk!4E4^?NW?>Qs6|I7z;>#zH=Rks59~0Nr0Dp1cWjD%gx_D;ca{1lyb3tJb z^ISV>@TU*cBU!;zA{1IwjQqTg+GM8hJ9<-6Mhs3Zs01A_bMLaY2BYDWX20RnZuHOu z-^3#Bs@)ezOyW*SIaD)a>4cywQTvC_ir@M-DxjxT7~9&OTG$M<$JPlQd0$`!6&1aN zC(Z+Y_jC;v3HpROA-FRMA=Y;YhyEQh$KM@Tnd_{<%OTDkJ#I}ID>qw&0KVFBn*7Q0PA`W+6 z3r~;9yRTklyk-lMcc^5F>vP2mM6Q0uASK~rD}_415a>7Fk*_vV>cH&w-q41;rA5EL z_^p00qP%!+_W*;zkkUoz`s(T;#2kMp3<)W}N#r5Mr9_WU&^ub`@qoF* zQ%OmP-V+)FnyOE`?SwhEfloAs`*kdq=ENN6Mn@jI?gCu-SP^dlAB9D@ptcNBtPKl zL7z=xfq`**rrw>;a!n?T_I&?_-G-_s{rNK{q}QcBoMAUhF24X>0&6HR5hH9k69e_- zgd~fdSAsW+nYOz#K6R~SK{Plr^ zu7^i?|1mfVE!;WK<9$M1J{q7X*2z}h#Kv7j{dzHC*TVnKa z&4Vy*6hX5(bVpqU4dD zH=ZAtonh<;4TvqoK5=w%*sm$Pe)aN}b-nMme`g~w4ZO>)^SdSXZn|zZBn-@^auoSy zJ$U~hIoZc~UfR)91QiEo#qu}i^GA=^czHEopoA`^(heS7MC;8aEKG&;9hNL#@eJxM zM(Ean@F63_U-@7jRU+Lr{i}39A8c|PM{`t48;l8x%}p@b9?057Gb-;*xAXBZZ0>RG z-3Co%e-dBBBe3_uact;n@Ylb0(jEYm|x0VwbRm?&|8o04b1e z7^2DpkD^KHWilM)a32oP6JsR_IvZnpyA@$TI=`U+QpKE#dwrV zf9q|t{usmWVdUI~&hpL#1;+cJQ(6Lhx+GAC-lTaB{2Uf?W{RdH#efU&;^qLQ5~}AW z=ZM>=i&Ih;2aD<~$J6Fgbc3n0R(O!Q=IgPo@kPLubLY>We22x@R{(40KH0&l`hcD+ z;(ix=yg?uGnIq9@ycIe%nVHp{_ckWk3`$hq;B-Y1OBgK6;4?5(rmnA#PG4;1N?BbW z;k-Xc9Q*^Jm#wg7oFT%1R|cRBa#t7T3jCfFq;u}d!{eg{fK>pYu0GD`u4H3F0~wzl z^2wh+fxvC3!EY~kdBP)1))~P244Eckzm$`GpB?=^07X2McDIu zC2P%io->eR8X4EHpe`-nO6@ucBB%woE7+wnz(S=y)J?b*`mwgJ&Z!KDN_GS^TJK+|gai;3IJM4TQ8q275NT_F}}E*bRGzB>HY zHn<9H3gnqrMa*JQVS}y1ToiA7{=Sal3t<`@UkW-wN>OE#Gds zLFgR+S#e7Zg)PV?0KXZW2m~E4 zOsCoXJ4P||2L(Bz-v=Kw1sz=x4gtaH1i&-$b2(mJ-(>Ou7qJse8`{y32^-w0K#Y&i z>gejuftu~hfro#$Op{CL;=G-(W961KueccElHVf3!|DjT&;GHoV`C{vclYV^YAdrN zR+w(@ZP(1pu*8G_zi4nU%B!wg-g#g(L-uHIa4_e+%?L|@pSW|7&`ZD@Xguejl6of& z4BL5->y4HqJRy_60&SrT$o$qS+_=Rp2F-`=V49d9y}dq`%4P?OJB7Kc>z`13+Ond8 zFoWWjnZ(qk{nneH+@um!2XgyYqw~?+4J+GlL3qY>p=9V4;}H zQ?vIiQcyYBc$o#->)#`N*BeK?H$@^UX4#eLVdZjb(=CgM;HxTTM|Tc|)Zc`T_my zf&~O_h98wP?%iL7JX^8>@#$TBqA`r>;ynKBDLZZVDL%MYVa?^mS=AThrAQ z5|R*vGUgL9W_HdqdfmP2!YwM``ETZP$?2cEm5kQI2cMItY5&3OJ+INApY}n>6smTv zjR{n{(!vt-Z{YrroGe2=u$z(ldUFlIG9Os~d7o;Qd0h$>k7;Nefwg!ciq22i%pmjg zXX_PrE8jku4{bwEW@>=6$&70pS8R4C)f2CN2tc3jRLnfb<4C+PMcp z_QH8p0P7PODx%4}U0Hwax_gWP2r~mc- zJsAI~teE?ApsBf;0m|Q5g-GkBl8lTz0-PUNi|z78hN)_aynX?tJnA}uu47|cG0C+5 z1O*`xI|xoMh-7UCBRa&o_%}GA`!qHptbD6En&m|d67RiF;jEE5J3k-sgqfi$WYBxHoUf!9Rnf7L#jgB&R9%J3-VVl#_zjLgInd+c$oT8s?mKx;zDf>wZ>;CNt+8EnzBv(|WRwW&+MGZH z`~nQT0LX9lkVbXyK8uVtasX-QM)08X)}%2+(kPuCbZ8xLkluk5AT#LyGcwL^Gfs}?{Sez6D6tWnf1tMv zS1d#_NYuMJdi(j}z!(GkVDHso_AH(Mp=0Wc5S{bd&8se#^L34KQvSmH|7ihoGW-Z1 zKMkHLeo-0oAJ1)H6eg0L2>~N}=vcE)W%)+IqB1FfRgsXuyl&x}By)!&cZ_TY8wNhh zAd!-Rc%|=^m1L2CwFdLCq=?9u`DUL6#B)?4E7mmi-AYzZPm$Im`%?wvaK)P6Qcv+i zuHzN3Dm?ZUkb%&U4)d9KBFmFhmn{K>YD;!~-joXd?ugPVrW?C3O=1in8K zBnCRD;;q4glPX)Yquv!yHprzeP$hS=Hs;$OJLY(lukXUjc3bp3y}S_a`DU#>Uhi5>{RV zLp$#8pL%k81%(tHO%fN1dq{IWlsC&=s5CUi91vBf^;89tIAPXl3!1+l^H*07i=NB7 z)~K~vWf%UZsis=Xu)qHe&$58ghYM^1^%_~6yxugR?q|oCY^Hzb=GOQzIh>h|4Ur{A z>Aj2rMFASzRZmv8@#ls=!hIm$I+$7psbv8A|D&vi-sMEP=cIJt;@+hgc3B5Fr&_e}f=gR~>Q+utKi{6OM>+Vm*godC-R@l2Mof zMZc`PeB*2`FfdN(ohE-t>C@v=V_&t7C&@1t?<@J-r>=R67s{IKwOAi4Yj z51|)gU%GkaSukX8-7>agKu@1vw6q+3SIbCG@z>ab$qF7F=ekjIe^zaxvfK0@*&U^5rHh?Sm7wR&s|&y8nz#UbH12mK>JmcNb9lhnUgs%5 zQ(Uxnwr{oricC}JRkT1AY0m#89oXymO`fqP%l>>^nGTsg{T1 zJ^*U*VwKH3=zv}hA8pVrEnA7dyP>8)#b8qBl7IFr(cx%a1F~$vme2(N9KP9kV+Tmv zFtZrS%&4bP+?j=V<3MWwCy0~ELsi@FPaz&zT+N;Im!Rk&}iGW9erN;9~C)GFZ;~2q~J$T(I<*~@_+vL@ja|i zD(9p56;_UZ1g>Bn;6YW_zrXjWeRUut=5e~F#LKhd3~6ftZ|{XG&j>0$6wHG|VxM)Q zx5$VUcYkj$3A{h)np|IIHbxDaGnnm@6CaILy7Sweh$DR@r^Jk{vZ;%=w_ku8)#;nk z4i6RzY{_*w!j@J+r`zCb*?Ob6$1?fO&kf45%U>{HdIJiq3JdCih0lMHJ!q_nmD5ks(pE7nH0wY5F&A0G(Id)?~i7 z7RhzlIiJq8^kP0MYA(aM8T@x3IitygZ|C*^SEbqKh2X$kns1K&^dS+wntpZlaWxW@ z_C$uydkb@(Qg$VM;R~qtOJO2%EVp|RzHARWM1bu=H5wiNpI#>S`36L0fGA)L)^G@q zT3y0C-?)s^v&%D+oA=1j1YjW~1mkgm)`u!h z^iNMOWkqu)Zs9;eZKX^G&Ed^uqq;Vl{pR@iyr2+@nEQ|6e!L)SYu5JbErC7p`3faT zm}GQ`YUaoBho-g-M)4Q=`9b3Aqm1l87+Jw*Ek|&Pe*Vl>2{wH849kJ8QXx8r=B);6 zK--=JPT7;M><2j_n>Qnh=AVvt8j3Y_I5^Vtu%45$mrV~O|9l?kZ^dnZShfEiA4iaB zPDg*GXKS-48Pfk#QY!n?oJz)MF;wkE4NRqjf_`oG8?TnxgWb!!H*J&C6L z@^oG+bvs{6?gk!_<;(G6UR7m(t0x5BXMH?nckc&DtKlon3JCc1#PWgNM#Jz$pA-dJ zH+WA_LYGa*$OEx+pSHWLJs}v))oRtz^bga@bvT;jdv==ig?qj6At^k-=C*R6hS!)55_$ysjrGwcdds~+m}Hiww)w6{1$@L>?a?sxh$dC zgBF&65Z4UT$cJ3V9|?}E5fFO!_w|v+hK1Ft!X`_d6Vcd(f#?Zr3JYwqvV6iK`e4Jg{<7EjQcO~ev#UeFiOIO3 za=&&mtX~*M+o>dARRmzxA;LtSatT}>Z*~EyH6L^gZU4n9BY+G3ObGd?_|P48b_MP6 z-wpx7wypEYYgE&h0WJ#f3bnbmfV02EfjTb)IT)QF>ySe#g5yEv@XEGrwm~kDot=bl zAI||5Qzqd{sNdougq~D{aEw_bC0PPjQ10eNtVCB2V1Zpz-}k|X^;lT&6$0HW$Kq$C zPV~>lCT3wdKpq(x)<`n2RnUYCJ$*gQzd35Pzna7_qNq^^)RIN1T7v=u@4`by5~uu^ z(RSmYC4kbW+BhAZ@$Ful0WAGn!SH5zqa|T+E8BJ`4wLl7_4RHBSh)a!p&S+^w`0M_ z#-SiZiwA{{o{kQB>6>O^MtX^`{{k=z?K#-PKyph4r-leL%D17Zg|Hzev`l@OfHP?;U2!v$kz!;=roqM_(WA{rmSp0=fi4ayd%M&%Qfo^2D`X ztty^tlBC%Kb@(vQ8ImdEsA~yeY5B02J`x=nhtQfVbnK>pfCUi52Rikc(g(h zo*o`1&{C)t7W=($HiQHN`Vf>9Nj2(P_WV_?49%Fvixs8b5BuV;>gGI9c?D2&vjZV@ z5n&H*boz?}mShQOJ-yEo6GgcK&z@_(Zn;Zq2w+oSAr=D3vQ8sQ;icsxq|wUnS*?F> zd%?Vd zn2DO$bzd0|4i9y#tgQM+M`LfkmX9yoWqSXQ;dF~Rc>Tf)$07Dp9-he%15N2412Ecj zo0&32hamM023f_*Rc|fIrs#5lmB@@2I6D|VKK%KY=N7%n4fSsCj4#gASBnKIb{1vh z`o9De*4Sh3^M4_-HfL4H{l+9JN&|hDsf$ZxVrnWkgyuN|BR3dcrabNZ$-Oe(*JCYG z_Y@*gK&v`1R@lGRitIKqMJ;LfqR$mwnQfpcTji?_=QBOM;NddfoopDV22~3U2&$-j z3J40)6bTK&s5?n}IPz&5qEcm5Rqb5U$N?L`EIjAS%i^ z)PubCH_(3GM==QEs()Q9Y^xzFxC-)m@It(-9}H$3SGr^9Ifk-Twx`kAUzsy~t02jW zhq;kR!@U%s27pYXC%45SSJy_e~BPj+EJnziMEOI-4rtl~etNi`Lf@qx)_ zAi92FVQ)`>Z(;G=dtd-m(pc}_g@i?Qrq@2)^YVJIJNK3}#`^@zQ(m6)=EnOqF)^~^ z0RqaM&dQ0U5FcM#XW~}|IUFK|VL06a{7n0&!BFtn-s66GxyOv>zKx>An}?3=!X%}itXvrWfc{s;zNZ%>Rs(aqrDs#|mf- z{~ZqbEtx*>@-jUs&~b2g4<4)nX;=#n!E{ry=f!y&sPo1X5~z~W2o66IVL>>m*U@86 zM&3tsH-lnZJ^aPM`Pm0a!cUw)({9}Jv(bGPu&hm1T9I}+{wX90T{#qSUcJ(z&bTJ# z?L_qBZm_x$uQ6If7YziREh8l*CSXR}UbSQF7&-C*@`4qHNgzrH2@NF%aeX8V^xb!C zFD*>=O#a2!J9GG>qApH-&+P@~!tLAex9`7wwzB%2#L1qcB3+}(4vi2x=x2X|tb$I= zP1VK8$rQ{90KOo>AfW4(7<*8J5AhU^rX5&+rs_zcGS5s+r5E!)xo2u-rUN^ENQG#x z8^rqr6Hj7t^6Xy7j)P@{y>|E*&5NqBcJ^!^MK>H*e~g07X7 zcJ$dwQiG$J&HSI&+Pa@?FNT>}J-xHiz1`2wE)K4fh3dqIWXa?)klNbXmS7-^$TU%f ziJ{wImIfaUVs5PgcSfYj;KkpM> zbBh|~P98%P48qPvox(HV;Nw8%PXC`jjmHu;Hh0&rkM;PSuFlL@zS!D6#$VaQJ-f(s z+BJG`DNvJG%CBHP)){I3dTo35UN}V?)htv_BiF_Gp*<>}4~%_|$%7)PQ9bpk9hNb0 znr~<%-prZTkl_HV{|Ag0uYtWBT*{+OO^xMy>k}d3tl(1h-HclzS3c(XeR47+5s{A% zAErOGFL~y<%OH@#hx)9U4&K@Bfx%U}gF_7o*Mf&dFNDXvPi)C3$R1hjnS6Va7SU0` zPxIFIR`>JS=7isy7J1i}ceR4nan@~XUk|U7mI5z^q!ja+${Ktw_F$<9T`9`^k?QLP zcTz_z^*WLv)QGmkI|~-*2hraYc1fJVzw{XlgMUg3IJvZg6aTeV^kB zy~$~r{~p}=LhrNxFnh~;x4k1+pS`qvjR7L9jH03l0U;s#Qx3IFaqt)6;o~!Z?wbPA z;Riqrzl7DJ3!&fxmwX>qBm}Svkj`dc_xb-m13GxC+4XPPX|N%JlNiRDXfwI4RlI_1 zhw`Bx(hQ$!=|d3KaEp}c@exdmc#I%&r7FHtPgggyxjF67u$itXUtH#N*EcwtY4{@T z6UrvQ=>fYU5Qq{*r^p49DJx(8*LW;dl^-7J=`}W6Y6RmUyuvV1IIPY8>b4)-;_Ii| zh*f>th0qJY7W8-?4o$Di%geqrgSea03}AplxE~pKB7cBKWpQ)!QjhVMFL`GaeYj+H zHt)^9|DwX9gK5ny8|2B*{ALZ_zWF1$S*VJc@k5zP1t<4R&#f)F3#<@X1fjT1@+b2UDKBi>xPerh&G-*l9MANliw;gnUITA zP&3_S7asYT8LCGb$;Pfx9^T|mEKN*KCf|ngSWh}BuHDahaIQs)Jvb`qa_6$?(ui)p zOOd5)XxgT@>4eTXN+h?Nis1S@ckjG6J|*=lOZ@MO`q43dR5wH_l*KBKfT+}o0JLECi!zn*eL4qf$!8Kcf$RSk+e9fTG>zu< zjAH^;)-@Ia2(9l3^6|0W(WP9_;LQ7X0z04&hfDG+3{nIV`1s`_Yn>?~&XXV^Rl+F_ zs<(b8hbAA4G zAlUd_J~MXlMmX~OpacrZ>mx1O`DVjEF!mn(_3KARD5=e1U!k)fF6geBUa1Uj9}dyt z=fXk(M@q^dp^tgKN(I2X0|+)2U>xrqj{O(()i*~*>qX74!zv%KNd5c|MxG+e&~y@0 z_YBwY$fqtZ-#uR5G1L^Ow35}_FEQ-N&<4FQI55gz571;}X8I#a%IRu5m6i2&LI}i6 zcX5_gPzZYHvOYW=!1sVGQIa04;=>uT${J*B_k=%}*qQp1K|&E=rf!GTx1^jE8X@S$ z=5)x{^sv!$n3qo@banMld9%-#@NBlT+^6~1)4#IgjBl<)MCdP%{BAPkm;9pWryT6; zEGfyQvo+f$f68l{zviz?rtPzuAP`DRE89DOGe}xTgZNK0odz>Uu%Z&S{Kt4@Cr#C~ z2yF?8ZbpfM8jeZ^Nx4G%+2I0XDR9K*!xPyp%awgZnO|8wbTpC`sp;F>*Qc+>;L!5! z2*9usFG#TWX5K7(ip{XH4of&(9TCN&du)Y+j$S#z{xnCxX=lT0JS&RhwJwI`8}TzmXX)JWI5F2@?n+RGcb|%TW|8N zgTqgdi?>KK-vOeVoZ^)QPkqu(X75`yKnHc0OX>aJbq+FO+87w0kGDzW{$9qC|M_!DyAdBK-%VUha}PLcV%-kpY} z&C;H%CSR#4x{=YsyBHlhHHDTtuPzuPHL~(Ne$O_TKM?m&*D@~<0e$XbI8QUuqhC*@ ziHK-uxIijA=I!u`pBg-v8ChAVz+Qnx87AUDG7A3SfJ?z$zyV%L0a?%z*TUf7!TA^9 z0FaZD563A7mIMZZQPWcG^#Due5dpNiu<#Lh-QSAPi0u3kLBpqJspU58ojpI+v!C6X z+Or*1_p9kAHX{Ccbk& z+48NMhd4}jSb7E`mZyJe9W7_7xpTF-5E;$O;9$rsEq!y?`K#H7m0R59v5vlekNd{2 zY%4+hA*~1JlYF0c$NlQZ;0&sngc5iXgjf#Op!Wnq!w+bWJmEOr6DO>C3E6GYAha{o zfh28#D2Bja9Ur2NzAIdsuLC;L~;!88p+ungz7n5O%#k-WzYb z&>f=|EqD*lkbsebjhQ*(dJmQQ!&hH|hhk=B#oRo*qnJ;yvA2F+9HSHzSl<~?`Ao8? z^q9%2q@0i1J1}s?quwntgtJSdyy0I#y`av!WaOd4vYHyo!qEHDEExv-qEYyrR49<{ zl@~)SIa5o#N=C$P%jvUx@m~)kRS#C z14;bd6-dc-enJDN55@~P%t#6g3KDhRNhS~H65f+KOFyTq%wW#W2PnGp1n<}qH!Sev zTwIPCsF9MAzIF3HU=1E`^*h>9$|f5yXh_I38`H@h>6jX#YKL!8AE45JDcb8|^hLm& z)pKpJGDGG&qq{iFIv+V7TeDn@Ma6<-4&jt+UR+#HN{OgF-aPj_T!j?u;LDrK-4ReW z6BoY_aG=|+5^?54srM9ESVom{cINziZ&6+S(P^0lVGLnft|*3H2@y7AKJKiI7bm&X z4;@0&CWFXPwH#)Gok>>z$ViNN=grN+;McD2ulkr=oeGNa=*iF~XO`ui_yISZ4_`qn z(jy~Hl8Ax^l@D;pc^z@qzda^rcm3C~gn=(JmB5{6-v#Rr9?(veTM7#wtxw03k(}<1 z>Ko`Qr7{BlCe&c?Aez1%a!K_CCMbA}`GrH#V2~ycM*OmG^0)*U8LhD8K0f$S)*kHX zvZFd!lF8yk^vVJisWyeKt;A5QBn}`p!=VZ!kZ2bM%f<;)$d<>J{Nb?m}fHNRsW3v>aFVN9NqQYkG#t(?D zLi!*gs}^d&ks5oN*k(xy)SaE9`_@PhB@KQ!Lxq!$Y!lsrq%xe0*d63){P6x`2$iy~E4c7G9h!!Yodr)BsWB3N7E|BFdU z4o`jhHH>j*vJKRjsEg|);s4VDWcy-f7K3aB1L2eay)m@o`Y?n$e)TR|IIH4QMD4X-ZXS$#{iBqSln21eUU2nGXG6}*5q7>5u9m#xVdkcos|-#0RU?!LQ}7Jv%-0_#yC znoN1zq?yf$js7cK0&~y<8#H;5!$TT5v|7Pme=6bq*jn8EK6%yQLFRYm`?(gy#!^lU zuU~&U^4iqZRBe2#vO{3S(XY~2+Mx`Z8#&!8Ww%QiZ$gOVa<7Kf@yQ@xvfVX|=DH$T+C z%q7!(SY4?Sp^X>nmA=-(fFK71!Bv_)wj9VSx;$QeRL6yGF181$DRFTh1S|$ydwP_h zL43B{-u5RYtXq)T)%WVG{A_DVKw&1}jnS7*DvAHLr!}-&EQY4PM$#!&Q*|xE+|lFa zs?Oo|#^+?EhjbtQq;Pd=Al%i)&J6kgrE;*vIO}n-tySgUg$Y(f?vq!9X_DkDckYOQ z;0xM1g^$YFKOpsoX7&nHV!&OApMU~mRzJg5lgfJg7U(BV_!#>TE`fSVjUy{t>7up%6W{HhT;*Z3GL8rlkqe zuBlf}wvRLyYp1Q})DZeX`Lv&dpp<{e$X+u{{=`vif{)2jnL%H z8$v*`0i~<8zhCw0X!Pk6RBR@5ndqbH`8Q6LxTVH$`ew>naw>yr5P(&xmp{;7mIYy~ zEiD}kevWy}idfJ=!KghrIQZ5uAV*`LPmpi!dvJ4ZZY*+_BiY}RBi0SCU;lL*WUL;fe=klT;AkdexTFrO8}%^O4emAvAAa1kV!n1J zlhoHW9^=lgiwkHWKU#v*yrV-d;nOF7{g#`sh`A<>D@cVjGkO1cW1}k8_N4|-*cPl* z5seaDR)O&R4f3)Fy>r+gi5XZjb>g}kABQXE$P!uQ$J$aM~Ge74{zXsoGmzs6Fx zx+^c(avn5}oX$D%GhFU<0dN{@EUm1@yfO3trq9jI{m_w>g%#r~QSYik6Q=um%E}~CD+)t!Auolod<(5Ai0{q zeM8F#3i8hh!T|K^PYGNc8JO}R9D~b7%|*Ew1w}<4z)w``-9=EnwIpvzLq&AgX6jS7 zn;_gW55K66*BZEh4AY7VHQ`>{Ygt+5+b#Vkr3K0<<0bS0c|{$0YeQ47&CE1X3HV_$ z3f(hIzL6nW(4^sMDv37%RqMTK`)sld>#mVIjEvgfaw-5s_y{)2Flk#Gygi|{m+)Yk zKH3=owc;66CHbOiUw*U?5kk5N-QmH)*{nMq9lZ!1L&Q`2`PXXzZdBK3YwHc8(^HK4 zNNV!~O;mu51SaY)J3@$|=&LNV9ARO&d$;v>K9QjzGZqS2IE6I76RY<3*BNVXS|E8h z^p{EkPp$z#PS8!wGP=84?GzPD)^=M)ld`i%Jm20*0;KA!jF=)+>YD{IZ}bbN~V zOf|6;<>fGIa?QQvZJ6P1)Nc`g*+mUw2sem#rV@_AiYXQZ?WmRZ#FaSiyc? zX~_)asF2<9Vp>4jkR3+RwH>!UQY|d-PsnD2)r&YDVX&DtnVg;;du)#h6(eDLEXT_x z>#-Nxeh5tt2#lbohZ|G$S*-)J4QFhLk%?1l-e|(V^s@RSLBhqWW{6L`~lu- zC8baz5|SVL;)Jk`69Rmq1D#^$?QRR{7w-u=o%i2Bl#Oyn;r;e(_)bnvk)b0WR9jsH zjFNcJXOBVkelDb@{Q@6=SWsGvz<)#7>~5hF2hZ>zm>x>Sc@{CnJU3Rnx+9J>>!v9K@!Fu zpm|7r-oAY{yJY2Yo#eFny`o#X+8nzQB4S@=DK2Nr`5S3y43CWkYIFUBNsavHII_f( z?Y@smVek|AwYAF@eQ&VOmwt9{&NF)R82azT|5pIBheOnVx=8oAizgTgfrDrO%R69| z?SW$vC!B&i)3I@DiXDAK%yTvjDBRKpX4LJ5kr+bo;o`fG1 zBzHd|61lV0k*)}i8JGlx0HvsK);K~#B?qHvko(>}Z7|_B78d>|UpP~p-9$!ts!&A` zL|~`uWN%}G3-(?|7@DiH#6V0P$#)5H#7?l&Z5GABW?WsmykAwBp85e6I1BS8f@=v7 z@!6-pf1^PHS~gfb+Jo>1qBSC)O0nHNEirV7-UW9Kz8|+i_hK;PWA`lC6_eimQY2LAkk1 zSpIpu{7XRz2{L+IuaMHSvI3+N5*}-FBCwgz1+st`?1abcfiEtlX54Hi1{QW(Q@?6C zCjiOtt?8tmtn~c)M8|?li2|*0rMj+eC$2xzU@Owco>r;=!6Dq<4!NC`-}(ODZ^b{8 zFc5T7k>Q|!qZj?yF8zWwQ3(J1Ki$@j-Y{#l+Paa6Pi)%PZ+ppD86|N3wg+?GyZ1rY z<$=rcQY&cuf`4Vme)C8ar+)k-$d5B@XrRAi;%Qo$V?qKRlJVc2s0Iav6;+?>q!U@& zd#0wQ+W(?xJ3Bk6lD-ZVQt)*4#F1T{uYDy#ll}`!yXfEAeAbt4e6>E_gKa&bgF`vb zI|Lz-^%U2i$pPL+NRF||!kH6<#a6B~>E7WX1a8uo+0TjsHfj9R_L8aBYjIdrrAa+~ z5~EkT?lnFRFONLTYmgq4ERT>C6>t10tI7Q?%T+w#V|I16e+54e9ZK@?EN2UXn3xrZ zln0@m-`%*;1;oYIRi`TgS1#4aWMRWA0OBNMB>pcEq-cKMYifd_`hl+th8avTj~Td) zo3E~BFmD*F8#!itjk{rdOM7~DN!tc7pD-<7Y!6PR%{=thApPH-RiqUxx2euz)@xm}N-Vg7q<8o&?%+LT8 z9Wn#^2$&lW!zPmE+y$(zY2uzgK)?_RC)rzwV=qvQW-tIU&Vt*AGE*ddyzC+)Ab%Rue|kz2696av5Mn6ou+XZob_5u3 z4R!Ta9{mb5I7%XWlA;NT*?oLiIzIEr`u38!T&$3SHtY__o8j_1paA)1NP0U_nkXKDCfwsmbO+bT8<7x?=mB(0yQ9D%#A}G1yaX>a{GgXmI zf$i6Ii^@m&X$)5lZh;9U_uFIc$So}`g&>s};rFLt zuP*r$n{_(eO%}>{rh*IT3iF!)Le2@dU#wxBI|HkA|!2`hLGPMIR;>$YC!B<<8@ zfg&Qc&WG&2-@V-@|E{tK@)8m5{*m6zkY$GGlc&n6a?#QOdn-GJP)`mwf9l~3lXANk zSN!76kLjeyimL2GZ89sKmA}Z-(|{6vZ*boNUU4YCLJ@7E<6_+1Mvp`Gl8&E?H-o7^ zIFf~(8(dsW#+sYD2^snk-A0#`7q~i}@_(JFd6}(lvU;@Pp`n3%?Yj9-RZMTRXW?fE zv8C`k@ib3QM+`t#5TQLZs?&UdMg0DCSJd9o{>zxfMF0p(H@I!9tE(fCl9HA!w&z#W z#Sm|+(9?H^hwHzbmC;vblfSpU9qO<cT{_(bBU0 zB2LXVl;$WOfRQnJajbr_9iF(@uJPK`A4fu>mW&b+E$ulzz84iyq|u3#-o4J~i{$?v z&%&Z{e6-!(*;xln{ZgBULoWdqRi&!M`8c27f`AFjp}KO#2Q*<;JtV4E%Y^B*R73AB zuxl8kDC$w@@bLX+8yrQLk-6f-fc24nxOL&0o{0ilp#?B*$jhTc!Ph0`FIk!pJP_KG7_4;$Nj-rOQqRxtw!!st)h3HOBg{AxZ^9+etp3rf00gvq;YD&$k1 zoVd6ZZlkEEhzdiX79Q|Nt0V9nC@9v!$vjbCo0t-Oc|x24`Sv08;kbszk-N=V;;l$AM1|PSFXVHg>^KrvvV0c-y`}V@kqGq6D$kcpctXY-Kg%OrFuV$uKUa zo-EKQyoN;Eo);wJH@lh8F11`8-~t|1`>W3h^{so$qxjZCw+X3vq*}UjeIOvEdDT6~HcpDZSaNWV)gA&eK9e7+8 zp^RMAQdB5rUofn9Ay!dQK?gu~^OQmN?Oim?(LT4XD6fhGI5`0Zya>w*IB%fRC4pb1 z4-Xp6+KU3*nMV9lDQd@w((*)uCVYPE3;R} zC*Jl*8e|!o`3SpEqt`JG9Iv28icJLpMhb_xnYL-Z)c>&ch@ux?zH~W44CP*TMx+5!f1NT<%I12q<05Z z34+_^+^E4o6k38xJac3;H#0DeVWP_YO&F1c$0HI0Bv@B20pZ4G{5M>6ynK9% zV7z5ZoU3cciHu0}cHjj8m^}ENj{c2>!@ZU6-u^g`^H)_c9<$6dUEsnZF*6~(0F)L^ zpp1D0!fBoftLwMt2RWN!SSZxxP9m*`wdb3qKU8F8@oYx?+W|>KeG$$RvLfRt&zsxS zDLi~f_s|(b3QXOMzE^xU)wChX=nix^IJg@6`l0Z};Xue30uniQC3~@g9ogXPtNc_W zt03&;Ta}>0$-V8!L@L{=3KAFxL(O+P(}k}t-GGX@KCAv*x#MC=pnf+?(dxd`b)^u8 z(d_fS?vRx=NDMG%<-cZByU|{5yGZ6y@kD@2G?ggA{qt_P+#h@LM=$go^b8*g!1{ zq{e2CbCR3cdcIkUA(Oe9H+J?{pu$bzMYj3z!^Fxe{{nJ3&R@KI84?-Qi6<*-`S9WI z%|N4o6?3QObB#(C8>6`oDF0di=}SOnd>2CU;swB`(ZG$b+jO66iDPFv@C7M{>E6=M zVO)H4JUn$tCsxRo4g##kJ)=e{r#ia&{CrNM28s%u!r>e>+WMi5QH?4)+Hrt)f(Tq= zQ%stvXCEjBv_g1KA3Q*7INq$&?d)7YLG?=&V~%2s#*F1y4$>~*;^uyp$q8oj!Sg?j zq3?j^5aV`CgMo$wc({koInb$T@x!jJ=y??mV8#PF|Mq?3=NHO3e9pyoQ0Mwzn)$0x zp_(@W^iQ8IT(~x-2;yF{l7xtgvRIh103~)$2#gVhcePAJEeL$Zr>o-XM{)_9uTNfp z9zvQ<^6f*}S8VbJDk^v7vx*{iZq@#gA;J1$ve`!r;?RN=n%2j@U95c#O$jr#qmeUZ z5plo0BIOkbIQ#qg8RY%Z!CdmG3Def={`A9NV^t@OlxU*C7zE!evg#$)#`YY>Qk~b% z`~ooB)m|ji{b}+Vxqh4-*IQ;oDH2V{@GWe0rY2T4-%Qb~(`}o@;<+Oq*yh1@HW@8R zk|rv`XXoq73@ch+n~ugZqR9&MrHWS%J^#glE z;Cz-oVvafhJvR&TFvTOvsO6jS11mVYu9g{Z!E-4#1^Ya{>gxGr?>y!(?e*oBFz2=R z$f&K?7yn%xh}UGxV)A3$qCj1&4Sod!txF+JPAu^u=yvHH930fMb8`>J$H!9u%XD~f zP!MyG{}P6#n3$M4u+as&2qOgr`(T>HrPQY9L$A2i+i;$4*>@-RKygeA-a8Nw5D_t5 zoS*YWEkBF>@U0-Malz41O*syE_*hHx@y^<|n%%QGzO|`=0sOwtJcbD#g8_V1 zA{BpG5JC2}%Q_Kp1STQpr-kj=qVJ1vejy;+f1N~NFJzq=ZVmqCFeph?LB9e{jevQL z%x8r9`o9AjpC?#YT88kMb(TrpoCU}$D9Gq*`U@o`m6ay^D2Rb^ItWI{$jH)jbe^DA zT94tt!DPvGSu(?%+g$6W~LNly}|9`W?_AL@+!6L5Zr-czKn zx_fLBr}p(e#_h#_9K{7Jw(ub<;9&OW>%<=%q#(DO zS#mK*DS-LFThMntjIvR!L}uxd@E-3?hVAZh7qd}4TJF5>TBNK@`tK1KvHH8ZKB!T0 zFld@4wrXxRg`H}muM?PY|BHiANy8lXca+(0PLqFN z>jH}%TLSQrR~FUO^V7*G*sD{-zci7KU|2>)Mx;YSweolMVBnJ-J^jLoU7{{2!h3HI z0}@E#W&|MHxJ!!>B_;ph=}xxKLl@5MSUGu(Bbza7NYc{0qHh!buC29r<44p! z^kPSL!pX^wS(4NH{J2+met0OFA^Z5(NJf=<{yLHi7+ytMT9aAPdLC|WWq~hzs66i5(2;@35MEzn@W#uht^LH- z&`6o;j6Az;MIPzsK!ee#IKDn3GVGk$GBUQNjyARqA;6C1^JtxhaNt@$H7_Qn>Q_m6 zAY3kkqfmK6jQjbcoMQa;7d0VNN~~3KH0c8F$JSx%5P#I+@S9WF8@ap9%ANq;K<%28 zr9uFm9ZU;;)6q4BpO7eQMN;O$r^&@7S7$%~2OR+YC^9N5 zyU|sJ^Y~~*;q5t_C?+N>C5*@*^~%G+K+T(1Cz!wkCFI7s=di@Eb?Unb$I~CP(=$&u zCcD|^FL*#q4gaJ(Z%V3ica*;ESA9feGM9~;^X`P&L)rvv9B=g>V?77|SdN0i5eg0= zhs?9tjF%uuf9SEtL<^lCAT{sGOFxZHn+T`OZ=I(7n4BCA8Xu4o$R0VkTfnHSbE-ku zmF{d`G3=3|{D`N>+lR%o1v)N%q8iR_C->r*nK`krm@@Hy7vdwwhtYA{OnmzOYQCAK z!pwc73k5<&ex_PzB8%W_eMm%4j->OBP&~H^aWV$R?@eBV|yH+8ENG> zkfe28XR_EIT3kBD{7(z8IzR z7Cm2^2Ap73$C0Gh3~Ea-VNGUYWd(nflrc+85o~-``v(Sof@AkK{o5FjUsy??XKU7) z>z~JV5~-4$Di6R5^#yAXF_1y)$D6z#J);`jo+s=p;6g^?2s4e8=KkF0xbcf^40IMA z01q7lYxsFR_Y_Fg5R+B54*1?+mc()2xViuI-xw}*SZ`Q|%sL|$k)h(mgaPNRN=*Vp zSQ$3BNdt%^k^hx4ch9+d0AH_blPfMK*N;t9Oibl3}6Ug$`RAg{_*$_j0(Y`ZTpMCtf}-OpYSl>vzS`T zjPeG;Wr-J>t&;DcYim17@E#S@(l>u`NrqMBK1apPPs*e7`ugJwF+FW<1P)9Fd}tOX zCQNXafBFw#V|8^Rpo~ubXLePZ^-9G_cT9syyXFNci0*seYH6YYeW2EombT6N!o?nj zaxzf1b{&dCRf@n|BcvZH?+^myzkdTEJgFKMo%alCKki)qVq=kY61iSt^nGMGLEsH2 zYtwvfTX5BiI@0BCEFx#*Vah)m9`I=M zxVUwu>}GrMeUCzVK(M%+Lbq=In#J+Y!^N?qjg+;~+~Mz)wkzf3REX^c zWK@_V9^-GY!)6K6?X0t9G7@V6cz^1&?u)$Jb25+EPt8Nt+&!?YR6hAWci3{*oL|2w zWZe5bRZX~6pyQI6Dzmn4L{mfeLhxszI zMul_EFZR9nwKLRO;1veUn;i7t!j}o&0a@Qw0q6s{I(IZwQ)*272xC;)Ms~S!WWAdA zp~1n}5TsYygTjX~byISFFc>0k{BV7zM1rgm+k1d_TTV=Q$sxMlz(@s_05G_~s^gcR z&kAQ(>gc%Dm7~pHwNilsaDi)2a61whz=%moYWG8rUYsN7=rC`ut&4bhmG$kW>QsmA zJ{f_>X-iHz(pYgZ-T7a+zYw(#Vd)iD~rc;rI|2bl&Pu{4SmwbE@uWAm%?_ zp6+mb{L+`W6nc8*BFf3~Tq{z6mg2cND4MyZUD-;ep!rY$iVH9vb+;4MfkHw~G}+lF zde6`Q{o??IkybQCxP$cI0kPe(_ze~$0T6RN%aKfUc;gq}8pCW5G~Jc(Zh1l~VTX9J zlw_P|p(9T({?Tstla>D)f8@#M%=Yv}&1Au&>;@Oy?*31J%A^jX2;7P%g`0Q~lvNW$ zht0etl=!)Y_n2EYIf(?|czroTvC)mFR7vsQ#}LHg?T#mQk@xT{-ry(Nb`&!K-}_I1=BiyYk1PTk)pzqj z$_rRM*TV}7eG1qA;i?;|sP}#olYG_}JJ%D%8~_WA3P>}QaG3BgJF!CoY_0Eb2I?^? zD*CrxMZD?h&|S0kuBg#0m83SWj<+%AyeRTiNQ%}tB&$-BGojFgMX=_JYC$ck&0h| zb(~IEIO$b|xxy-^rPVz_qvq5SQG0rDVcUa62g?u1w&1q)%k(s9L>fNC#YzsQ4S)Y& zPOY*0*n4w5Qsw3G)7H$4{y*n*Fdughsq*ypnZ3UK7svsnawzCw;O%%4D;%K*jz1`7noAVpLR{ur|qEPXi4c2bbyaHZ{sb={2aO%Wj zkWF9DlIy>mwav#$F6Sg%KC;dG%M=`)WvKPr{DqILt*sax9rByOWI{|_a;^ICr$&)h ztE1U^UD?%qf`L27b4?In_^y!;U9@x%QN#v+c{tDIlY26eNz9Dl2C>o7L-LoW(KV&H zFFp9oU;nxoqe!Y9hbgz7PSS_0v?O|Ns`O5oww1Ef) zw+|jsSzKlILZ>jac!YFS4QpTXLpjfH z#AKlrMg$2Q7Jr+sPm>Pecz6%|pZCphM1~xpCE?a3zXo6hz}g0uuJA)x+_0#!82+9*nRu0g|oz8Z7BR7WYq1 zkr5E&l$PUv`ZunpI~?my{x!b@?PgboRHf|orKa<5R|y&P#x>w(cdM%45w6BOf-{IM zeqRJbc}@DW$HSxdP+kwLSWn!%tNW8F-#Ic&)EU}7QzPht4oFP#Dh=Z^BhlxdC5_}^nu^m@1ljkUF;uGAs~$!))Cb7f@w zR`b;LVX=pCUm|4`xCo&AtlpFCa8zSUKxpFl2Q;Lj3xpMh&g5xAq}S33l$$}ir%&-I zhlrN1Hz?>~dckj0hC`e6vw^Z0V4M|nQg*{_s33-T`o@t!`NPLQf9ytJ*~@uy_!2eD zzbc7>(cov^6LhpcsCreI*Avz3GKxoszPdjw8z5vK@kChoLf6~-+L~QoUcIne9?AC+ z(#w}G@sJ>~&pyA&MuZ$TY@2~ZUU0K4Q)C@> zsH=a7N&3nle*Fn1lPyzIq@XU_Sx!ezeCQ`VLHfAfw;dAC6|hm3Kf?l*PNXbPnFCwO zOj^zsrN;W<)nfo|zj74?aY(4W;>(v7KYhd>)jDF{Z)&0(Is($0uipI*At&F2pIc_U zFtenuca};+zsoT{*T5(K%HWGA6MDEJT~tq*_qDq^5EYVyZK=h0xeMJM2!yo(wV@W! zni)CSX$fR9fOda-s}ldraWM;%aQ`D}zS_9>t-|KLXX?{1d8o@zb%eWhETl1@fOw>@ z?`xauV#X$kk)6Cs$qP0aIaCO#epfMa&)341&lZSJ_<|e|km>lA)nIsmdTRn#kH!nl zWK$*j-6CG&{YTwzD}2P+Hio)@i7TLz;794@XhjFz85rT^3rt?7o`zrX*FX+J5CmOE6Eg14u##3daNNd<5@tOFNZPPVp4UJB=% zp-7=$y}_s7^zo$S+Vb+St_RaF-&o3(Jmh1>SvHky94}4HTuJYd8+{`^swdC&vIggNx>`sZE*a>wyi_|<;NBz>8 zf_oh?NmRx^3|(hXu-w7&ABKdatc`xX_haby=9rI1haGI|o`CP2gDVLqNVc*sK0@fv z{_McO>0nOR&cR^?bP!UcCYZD!5q^e?95374=|e~xuYkY20J7G9i5@=pg|8hdWdz~R z+S=M$0)P($S+%O(j$wfLV14{v=L1<;ocw$(Q9HwYFWaN^LvwSm!=jZ01nhVFEaywO2`H}SK7;^SK zJrxyOMl)OKx2!@>b$r|1j}L=6NE|mxKM>v~H~Trte^b7y(mt#zlfD7Ir56^QI=^>5G-G7niS|$}dps3#uhkhzmA)%_vRc7C)yvpJ~l zghxx}Km>&*I@LC0TFj~|uOr2Ghdf|`M(*l`8C#Zgi6l0|Lxds zZEwTYjZ;{-SpjL~=&!FZp;Vi#n8s)AKTNb|uU=8W`hO2T0z~HHLd+XyF)~uGLfQZO z)=2_4V-5bDw>M;y<4n3oD;*#WgxkyoEqi;fWK~(q#Ie7s{k#d5z)LNri;HAP6jw|z zs|4X2HK?IuVopAFsr$g0O`MmZAu*nP*BliycmwRyJ{Hbex(0Wb{+gwGdCURKAI7}O z34%ly2?=X?@=AqnPvF?j>3(bpy`T87_%co#HYE=Zw*|5WdbOe`W~j4mH~zGvD=rnn z6cA1-(S4%=Mtt4(?@MZpTm5Dz7V6^;XBimYCYyEf&C*E^b;`1&a{5Odij2R9g;=Ks zZ*(koWPDg{%210@Wxh5-HRy|ko*wzk8;j+by1IC7=Yl22YoXieFGRzX;?%ss_r1Kz zfJn6%!Js}>N+XD^p~;GAV6d)7FEKij6%H0rp6I&<4Ic=RApJu}E$*F+yacxW&?J6a zdRp4_o28T#Yld-D%!#WXTnwm}lf`Xi+;5EEyi<037<@ceZKE)l=!+D5sD1V#&UHW7 zK-eV+%oxD>zXOlR6Q&Dbz+Jp4dGaL3)rfmvh0M&((b1nJSipYeQ+#UbpqQP@=bJdA z$g#2~o}QL8BJN;n%7D+C7tiYUPNbutoo=JfxGK5l4L&Rl| z6d|P`szLu-BMt9cM?k2T_V)TIU}^%d2Ble%VSpA~heD`?s~1kJLb@&bf}R1wSEhW2 zz%V*m?GqD&KhEB;TCgQll{S7KKVuFyCl>RRM}I9F#wdgOtS(MhH=3r}g*`(3-MiqQ zy#9#UZ6~xIUb|E$CqL(!x9IEUn5jE5$SKCa4nTpMWPdBNsm9htSTYh*hw3#_de0mnD&!=v<4kes}@O^uNF z{3q%A;lT1gd#(iy&DOYB)8Nmt%GVzO{Im?Z-WB9WGqSS-U;_sfq;YRFD*_w(e4u~$ z?}oDRsf~?_^8FY}Oz`Tx|DC4}ec&0_)$geYv$nSQg~Wfl?Dw{|p>9nPqTk$1)j2Z1 zs&^?4=IrzUg9mJX9YwAFf<0?JRds>N=@7ZopTEEv9!|%aJeWV`bzmechtUy|nB(VD z&y%A+T#xPoKXMPQnSeKug^xuXu(q5P)3_tukTdoSvSZD>G?}uPS_$p4Dcv zvhq*%Y$gM>IG4QCNUE}2q9pdgt2zg!ri-0Nc1=xd1ZpJti5$odN=ogdWUUY?v9Pe{ z07+MFfDCnT)=a2KcIp0JSJi)+=$*|!=ggqrD#5NGli+?#Y z0VuQ@9_J2G;%wkV0Yz&hTZshjd*F2W6p$tsI;j*(Yq9bC!(#(I@rWc&hb2+3;GeAg z@O4STZl0Tw(c0*Feh+eClHkOKxvME$<@_dSe1^Gw4k)i%+X9`QJT4_NzxgZYzB&1B z`4~xBP#~}1V8Np8F}on~gGd9~7>K!`z&9+2lz4jD*d^?LyOCsjliT%& z`W6?QI1#ckG6T_y*%VNi^!>UCNrxR+dSx#AdeDegM#lZRWpXm^nmMxh_CEpV;6t{> zQ8Cn~hT(G8M?{BLQ(laoVW0|rbS2|7A@Hvnj00sw!r7EDFgkc=VY z6uK6}u2*RcRl25_Pv+-nEP&kj2J1~$Gl!vNVl zL|B+eomeKgA@9qt{n_Z*nB?c5raM1l^~bVnl@-|<(ckUtToXMz%q&Zyr_P*|> z<>B~{dozxx$il|P)`21RQL~n=!oDV-O}gdS;d*r6zc6@67_??{^FO#rWk(1<{2H3WCH1{ZE>-=9989I9DSG1 zjRN7`l+Mq^Y$etm{oL?zgfj|yGW+M}Q$#)g5kL(WTzE2P-=uLm9pI?5$;_LEAQ8aX z9h$hyL905U5jzohJ&+kI!f&h5`>B{+A(@-Ir#6kZuzKqyk$}%l1ERVCj^%&&Ug&~b z9X6Rz;1j?RHS_3qe&y3&zgX@Gd5d_(3T3{~Q*@haZ3RSH5CsQP#QpmK-gPiLcLhn| z_s`8ASq#~RpFR;RQ*)xQg4F~x4+M@9SomOJzz2BgG8pCm{Q2_?Sm=PULEWw3iZRMn z(Ql((L8NIOP=%^M3wC1x+aKIlK?;mcCCNfEtG0_b`)?^JF&9Sf5yI{4O?7quyIb$i z%1PlSuRo)Lr~lpDoHW?MdOKVkvwo@Pszi7iHioTsjh#=_^AE`Akn-@``1)rtDB@H4 z8e3ua(Mho=7Cu~uIOTfHVt7X3*Ke3R1zT#1H`{vh>n2n!#@)FhuZh+i`T(X$SMKI69GNfe@`Yvxw-+Pr2)=zwsD zI&p7Y5^?954^)b?q`KW=FkY5SZg#p8$;b)e7MP~U_qaC>uPsYa);ZrLfAwn0X-_`k z2v&4gR#xAycl)7D8qCkzNUl%VEdWb1Q5AWQmiNB+E4@R%Uy`i=)xaDgIA?bruvpLMuBh@v2VT+xk)!QyazjNI;%>i%H*9RHq*Y5g*0~XM^)&f{L zPMhB>mX{}4mlNObK!Zc2&)S+=h4FB@6*58-*RQohrlzJwXlOvrdkryk39wM$o+Si) z{;VjJqLPntjzWn(dp-1nZK#s$^^+aP)+h zNz#tV3YHUoT$6liZuarW)*v%|^M-#99QKnFg)aa2rD5y__oi}SGV5*k`3OhHYHV!K z+|sTVKWR9^8-LOGkDmR&pnep^=v(V~^QYGXiF8k%sDy=u#hRI#u7Rp9$jKRDU8Tnf z+E&G5sSLGlNEQ|?lg&;~bHWJ=BnxbK5f8z!uL~)%;(j~XwQc3nOHOvZY$+3n3W!qNY{aGYFk9rQ~i zqPh8HA_8ApIk{9Y+aM;8uq7bU((o>(L$PvMbu~D`;t=%fp59)?yp1ak+30oMA9**I zTk6<~j1ME#k6!iJ{Je{gI!mn=je@odM*c-{>Br4A*i9c(qPUJb?Q;2=^EhMJBmWO$Id!FH7{75&I|D z_l-jkA%%}0KlXQZ<;qUWcZd?m{2UT>S5vOZxS1LZ^J5WpAFkDHh^JiTG|Lm4>_9J8 zejY!Nn`Y{2NG(FokP-G(s=QIO*JaOlbR>c@8WX=8>**sY4J$T;{|8PpFG@HSnW!M< zOE&lV^_u5XT}iUy^CM&r4*(<~XsJ-QRnXJV`5SXGrvO%tl*=~!5zue!nweF4hRkux*rD3}E^K%oRvcz9qpK&-keHv;1GG4K0^xxuB zBR;;@U-4-^cg{6v$cJ-c-#Bflg+}}$m4d%}3iM?%vm$q0@a0n_r6?!pJbL7SV_=Z~ zy{jK*d3jl&!kXllYFcMUI028Ud^mF$%~Li-MHZ>|7Ba}KyOVDZRMS*;HPgg?-wYFk zyB!EF4N|Qo#dClb8egDFGuj4ubiWeEO}~Vsww|6l5F3>>Hcp>|{mp)OIDs9a9-ksnH%sbwM)=*RmXlpf)Z(F)%)tNoP1b!9Qa6!M-)0;Vkm++m{Kb)aqg4FDz8`D2$XRhjOF(eR8 zvbvEAQnrgfQFTbofDns%p=wiX3QlAE2t+9sm?jNB=MvOqAfU`Rd+C4J(8vAb^V?RtQ$= z{Bvq1CiA_3KuziSnZ(SqzF2ipM@yCw+&6=at5bbnaWdjbHP*sHzBjYRtfd1J9V6rG zU71TvoIEwN8_`z5E_hkjVS8-_wI5`aar|(`UhK~SBX2+|{Nzmj1$1awxSdNh@^zpr zfTC zX?Y~{aJ}}t=6&w^UkNvD?uez8tJB!1WimeXbLX*~9Ab0uh^<~^eM92smuG*q0&gTF z%FJHKBtX{j&rV?}*ZDvD4|rsLD<4tqp_9f9KL1SZ!Wek2Y@`$v{*Hzo3U@cZXHpSK zNd#rdeK{0%W((a0ilp07w;LC4_T<;EZyVuIZ8?FXe0a3HP(nrRvi&OytdcPWT38MC zsE*a|W#nJy{GRWBt_8dA$b^ADpaYC&3Q62U$rzTl)O%SDrXfX0+GC9#e`S_NnTVaX{Xp8yC@TxM zc=KizF09uq!3asTOR@N+o+-<6}O&On;# zWQ_@GdFkn1MxCewBZuQdNsr_3q|-gtTGgZ++r;D|Br`;!0`#Bt+FF5D7##t*`qv8Z zVtGtZ)Eib;*g7r{y$6Sl9^*4iJ5EB-lt2iqEK!6@gZ$W>hQ>kf8%^%!PaCr0$(x(9 zSB>NhP&FmxDH1u9;=lUoj_F#X2SL5l$Jsi^=ngS^KSfpW@K&u2QjtSC`32jCY8sw^ zfbV_cGH%C>?krIev=8o)40<~99}76mjD>9tJ2qKgas?g)kPL6{>3Z|g`&C(vpzPxy z^Syj|Zwng-?dFI^=ONRbH$Z0kuQz7cad4HA$}Nt6fuKoVRW3miIaIa{ZhhgYsd&&n zXYygOiRFO|^xp*djcWYqi+lTC+#Rjs)19($t7$(mFFWfNq%~N&Tvw#m9z2j_?t?{f zgNRwBsGopF?D@yww__|HxU3%(i-wF`tgg#k4up^esVcSY&(@4US+GzP8*Ji;9*@4> z-bfS_luzKV&(X+V1LrN4_q&-TmH!q*OoynowX{CLmpv%>Mla(Y##VsXx< zE;SlBUhdX=U;j*wjeQ76r@L@Ti^0Spr6q=@-{j&~8Nkgf)GkJ`vVMBLMJOaJfF-V@ zcgTEuj?c}-1>TqZ=!67TygE0cL8-vZ32IJJ_wW<|jiQfJjFqElX^;^SG2j8O!Y}9H z!)}oM;0VarXxRKyo!RX(#^3(wo4Y13Rr~?KeIHm!GQBq}CviPIJfO%MNXa;GrM;EO z)b<{V z&9ZGA4vcNJ_AKX<&9rm%nBdvPj_3bInRvSYrNRbM$X7Ya#}J~CZU3`u{@mw+m25&a zH9P}X?Q|Nz=$=Fm!!$yS8SWXC@(js zl#>pRxTfIRi)2I$Dj-E0Zc(?9IQfHFkWf}OS~QI-!0^9`(2D;|Oc?)Zy(;_Ys7I43 z*||U4{dN@X<2M>J-yhtmId313kYvIC9Zrb(B5wg-H4AkgnO3T)&t;tzvC$<`MKS~{ zyoBwx2o4ew>>aBTC(~zRr34(%*wjBM5^#XVWe->GTIbyd!k+&)knV*Qy1=bGFU)67 zfGwAlC#Vwd0XzK!@cY(kMct*vZRZuu8rUp;S`9laiiMy}u@*mo2j2EvSUCELVaTq> zY1u9ml$=z*v!tRP-1GB~I9x(j98Arwngn+Vn}>(c(B5<<_0-G+Td;+>Ihr~#5XBAV zr#F(h>R)UZsUm(6v)^a}-+rUkSzBx8u)vPF7h@fdQL@O^=wYLre!!krw6dk{t^z?K-^N4i&PVpn<#PF;pH%F#-9<3V#}4Zqh@{7Cbgg$Io9$Uk~HI|blR0wke z$j|g}*bm{f8`PEAR#hWFCz&WIHh&8ZnIF*{9o;*@=pzAlGqspw}K_UekGbsCr_$sl5wz*3_WnGHwTxQ9zA-^@ELs)=VMg>>#+QSRH>!%`guw^ z%Qxw;(0o9)3^o%}aH)XS$!-rF$2qXCk-4B_$}v`koS@J0Z}xnD{v%P1#H% zFX!j%vR^)3*d0?%usV9}fJR9fWEdYK(>XbsT{)7Sqwx@uZyBU~IGGWIRB#!5n>RD9 zj`q_)*xjoGo9n^GK-OZ6qJvPhqPrM|zsaAa-kV}njNw}?-rkz`*+&yh7l*0mIj&dSOP z?Gr$+^#Y4YG{AL|z((4V*OdAnHoD-k>ZHsh3Vd-Ox%~j6I(F6Q`$C^*?y^~OQK-lB zuE+X9t|k3!ych#XniH+l37w{!gKPccrwfFH#9KRyX?eF^mp2<4p@$FDM-lEmP$er% zi=S3Eii*~g7}BCnFU?(EM7ACr7+yL@$BydfvH8ZPgznWjoTx6gqfX{wodHExp!m}##u%IWhTWz5!Wvj`}t=&?mI%KOWQ~n5u zKE07D36i@efq0eLIJNXpRPI;?WcjxME1;yHU;<;zJ@{{HK_ju*-zPl! zL#Ow_t#u9{*B9j>AvoTE+Y^J?@?TI>4o`L`5nQ!}?+Qe*NlABMadLqs zXRy+1@95`^GmcJ|(uAgrYG5}A3XbTB+mND1dz_$b4ET@lO%vp*%9(qL+{M9ZhsQnz z+xaxmV6lMp=(IZ#Y5-ar1bniz^7ofnY6fIKJn8x`PgtP#{K%0RWH=68hk?uK4y%_2g*FNh|kiBZ-$s z8}5pBTf=l<{}p&`YAT77vOoLw8-)<@*35knN3gzzy=I`I$`E!5p>#7d%bTeQoKF?q z%PeLev*anOs_KBgNyGxu0?8ib{k>t&EwvoLmE;J!JnQd~i2AQN5GuGN>zr7pns0I8 zpET7)GbYC8#8P~VjSfeklJDPJpk$>g-vXy_+)7$bt`7zn=19Z!uC@ym7D{!HX+jwt zWeMW4Bq&D4Xzv=+=Z#+BkX7+=;(4CL+g3cKBjE9Yr$9fP^D{z+gPaX027ddh;>&ff zYL?1P{1NKsF{BV)>wbDnlx1^q99)5-8w)V=_lPh}e`hBK91(yi@ET?yTeHpLGXVjd z6m3n0_m`J>jJiVdjoB>w{GC8e>lX7O4|`Q(`h#&9{y29qqe7Q%=1*CFy0&Ih^l5tF zPFyCyo!fq?1=%E7`;nzyHJbY=0%8P&ZWnlHYsy+F&TvA1{pdfv6}Y;-9%qZO zDl9MmI|Y*;OA0IQLmV{tZV)k&cT;5&bCBvv11sy|qi6OfY-A5jOr$$5w;1lx{q%@q z`AWomk9~VcS`qu*>w%;wGZ8Cdi)uV7dWO};v+nLRv6PbYU+5RJ8w2LUPCL>o+&4Go z$!i;<7{mn6-f;n~>hbiyziUf&Di|daA!`97-GUW0nANs{7b6VkpwapzN%*!u%g1Cn z!Xg--gs9siA3k&10_nr$)uYRWr-Q7h!qyZ2c`RT6P_P4OX%U>AovC62#j7hiGaCbT zdKGAXis-tr5zsebJz4S>lxX=#G^r$_L5120z`-g*z6-QyQ+0LqLnv`ipvBTDGnQE0 zut?(5N+P9RVEGsiq2WxR(N?eohu*E^lnooaI58*ix)mM&rIIW^*!5@m}Yvi z-S^P4w?vKF_d7bYPzZ>n@kX!CWA>B0F`qLjryY4+3^!2ohiw33W76$a+Gp9URv?f(@?Na4 zxC>oXNKk1CT-27qLA=CVREpJ3b+vS(W+C*u7P>G>l4T00D=KRB4F_XA9JrO_<GWdEPPgJAB!_8`h}|F%ZDVDH4PjN}bl(ug>=g+5_D?Ofhf*s$nw;8sONYVK~xrA^q2f{ttlnlODLC0hHZm$Ps0}x{^(JpF z)CNA4<;s5OHWbC50h$^tQ1@*~V4xvzd3{E@y@Iky#LV)?5(@)p`(?WM->vIDlusxf zfN$z@J2#CZ4=;A^yF%2by*(Qq>j@mi>_}vSh$N-6EAiWm$d3g8@~u1I!e}_7ZlAB` zJRPP>ww!pLs!9j6@1w%ta>xO*reXIU}FGSl3 zJibt$b`TlOn4}y}o2g1;H)wynHA1ftsa*{7jmB0Y5veT1wUOpC%r_`v6rEdITQlb2 ztq^+RR^^)&N+JQRLoe?cMX4hzVTj`TtA_3*HTH=IoEr^G#bGG7MD-I zzbk~E(%;$|6P#Jio;Dx4z#$6oaMHSZOyB&ZC1;G#*=L4_YeoDf-YWn0QV<=ba)C^PQ4Wb`Ndce-+fl5I!mh5pHRFU`scgSVGKy!tN=;L6DiHPIFhY9gP zKp6p|L=40b(2BMDkU6@!a`4FLW8K`A70em+XoM&1W)mScEpK91jSOk}vTH)Z+UW*C zkx~POo!gg2>ccj_(C)=@ab>o2_C&2wp6x45H%j>bJ0HoKe&mnAt55HE%%XlPepPm{ zyRkw1LC`JorrPuTX{H@H$D2V)@TxCeogaZ?XzliDQ+zs{PU-^;As^XRYA6hL42cu9 zWn;s>)P-CIvjgqY`(a@@VzVddx<6k3IXQ`OJ(y!{fCBhRd~6hSonv zb6cbiMW%yLa&)2?#R*HE6LFo+E$R~eFQ35Q2G33AE5P1}`r)7ty4b6l_v;{zhd3H? z6R6+!dsY;FbNyDCBX6ns{NbJN_IMl^p|Yqj5dO^O{G;Nr+0n*8BrR6v`PlWeTqr%W zAYXNb^4wqwui_&B6%bNTJbG-@)F8AT??@i?!tXH>8yO=24HoffF!~1~UQ+WsW@XL4 zb_6%vGka| z+TUna;n({2!=}pg$e!-)#dh!VPc>M4RtF+Ht3Uu`q)S z0y8X`Ri|nETwDb`#);x-6PYs;{Xs!`N;*gcM@u^|x<^KE6cj>Vd+^#WP$E8J#5{F@ z-N^9rBh>o1AOE_0|0(baSK#RS3l>*=N#Pd^>pp>Y{I=B(-8A%UDY>(w`BoYEXD)3Y7hJZ=mVUDm8X7)J z6Z>$yMF97JPW_xD($E=S~kM_nEm zIQ-cdWD+`Q|03N125vqu@bx_F>CJpx{_(w#9j*EiQbE+?+zPskhCbbNgoV#FzM zR?ikoJqL`D5))p$HY})iy9hm61#>aDT3*6ZB@xMphKYFu!3{gu5@CD3bE-P>{g!xd zTIyqv5e3IvMwsr}t#;z-i+GVQEHBUXwSKG`wKA!679L1q;2ZZJV?I)j$q?* zs&{2D9%pMW(DM99%OfJy^^MueD(1N%g5u_L>pfTRiVvBTb{7SOj7y+%Se$f*WNg~s zijh@<)qEf+OG*|)I4(X2(kY)&h1}eTALrxp@$sC(Btg2_d;N-=m$xHNJ&VJ%9qSY* z|Eu7}EV>+fjN(7_^1giJCt=qEAUp-O?QZMsWM(Qd?Yl#z@7V4Ml!E%nyr2^a@Iz7b zd#2mLtZMb!ConK@^>Dq<0jQN|3XzCsASfngSXN%M*%lQ=LDKqu0*4727l6MJLM}K; z;8f^Ki?x*e1KNbZ?SzO{clY&4fq`Y`>C?Y|(#bz4WQtl&KKU7F+obUOitX4`H}-D_ ziBY#uN*Ih{^G=VR=*z2Y|8!n6$Abn&hqL!BofyC^?t&&%5NQf0x1GjGirtRbI^?a} z%1n;0p`C@sM;bItmW|2Ie0-w}`uVccMi1U_K5@V$SJA{{XSWEV#LhM=oJe6q|;%TmBn`*B^K zY0`GLEES*v<1pu}G?KG~1QF-ej1vGob)vuvQSuD6Eg4fYv}_dk5Z*MDrn>sKZqteq3eJKM z8UNYYB)5)s4()(#reJzV>=>udPhNg)=inb#c9SKO5VSv1FYO#q`4Pt{^_gg;prr{=Z6?nPA_$V2Gp(c$Hx$2JqTD zAYmN>)#?L0pHz!B6SC5m3pRp zb4|);mR)!SRM+?Oddu8@@(U;`^|aReH2d8Fram&#)*(;FgLJ`>Acu6g%>IA|a!PS; zN|-5oUHEOC$3_pIt(lv{(c!fu3jM)c1Pq!3T=r+m5$|4iHx|q%HbC_Ir0Xr_ABZ{d z6{F%h+40KmUzrw{8HR^KJ~0rTEX)fLIXftMegI=+yUWve*KpC(H8IK9+S_{^O2#c) zL>S)J|GkccSXy`K{k)~P_1I?=`I3_3nTcZG2*PTg>ncWtNCBWQSiQ@%TDm@C4I&~B z#?Jn4P9Hvd_(mXEjF3i&+L zya_(oMIq6+%+wdh?Y&3(aL1_@su;!vC}ss%(V=iB}3GX>n67UbyI*cB+1Is_p*0DxevLqnw|%{x_- zEZc-cQoZL@=Bdc{XkW0!kV1P5co@c=IiHy}gO|QQSmk^Ig6SV_+!(#js8mt}QQ>Tc z@YJr4F!0&#YFFo0YH{t1$^EwE>4xmmda}>h(usK6(@yR;m$%4pN_fT9*@@*htQh&7 z6zL3E1SK4!1*PQ~14EWVCX36sRh0(ZD0$(`t#(yxIpjkCTtyyoT!3kWfRX5GI_{{e ztt*ga0s5LTe0C>@d#cOndZ!^^HnM$v$(q<;j7-LU_kmVw+cW#B%Az9Mo3CbI(uZCe zX9Qy!F**n1C{~*H1uIB{s0#nvqFTU^gBS||JMNL5;`WIQILAj7V#Xlnu+q~@9`ohx z^P#<*logzXqgn?%I|LI}B~5HV{9-FBcu#PXQYZxvtZ6NoGGDE-g(vPfI`+oH2!gDr zv{_}v6k=t+7pvc~V%>ir>-cV>NVewaLKMEZkDzfQBjK=(;AYCvw7jw+3_ZwBDA4v&rf3?mnlf_h;mb#-YU_+4F?yM41GAt5Q!uZx5W%Q9TH zp+fUQTq51K7mt7mTUz|y=&C6 z!NKo|J5r~vttb~WRfPvGZ*h$gKyi>T1Ii6PP88=i@p1n!-RBjUg};V(GV1c|OUf|P zZ!6wJe%rym$>PLL5A6r&>I+^ZyL>j`4;yZqrhbjTP=QE{YCH!rdFW@L3bX=174FHI zNUvW@n>}TJH#|KEdaS;Fa_!0hKb^V72&wy3ykb}{Cpc5+pu?j$-#Hxx3Ba*`ug@00 z0%?o)_W_;4@mztBbI1!JzMA(VB3Gxci2s{H21-D!@p!=n)jQwLi^KKGZ|)z49l^3C zDVc6(|M77ji0z-DXAc5A_E1y%zTQjt>HEpBy2g_S*2D?A1hoB$0XDiD1zVPUH{FCT z=EJnQ)WWggjy8dfPe0b;y@|<3R=9EB^YHKlvlN^-O%@v5;0PKBMWhuTuF_2xZ0`a7 zhfl^O%~BeG@vN$+x~XXoVg{B!+_<9&31cM9?%W|JeT<(-wnRoXfL*F@Le|kyme>1> zb4xv0+(^{U5FLK60xo+x=Uvtx8IIo%eh7re?oF%gQ0(@$kT1X{fK?FSz+D zrHn&NH`|m#`~oY46W-8b?ME@u(O8h$lmX1?x@SDkmx-mbg{&o$7bDF-Io!C=6>4lt zZ`|QHVc%Qt1?#zfSa9&Yhsud)n*}yMe?qZe&llUK499nKI-41=ezH7zBqi|-DP++D zzt%o$W)aNCbP5{R-)TKO(%-#G7IVh_21&IHDa?EjhHU22CHx{9MUw%>4W)?RVbt^$ z=>deje&QM4a9=$Tajd>Iho+U+Fj&|BZ)N3IF%)$|_p1?EQcMbFKP1Lf)$d(R;RE z!XA=az{o@Xdu|k0$v6D*q-)$t6i8U-JWoJ)F_u9H*MO^S2W(Uda0P9st<|9va$>O_ z%fSV0o2BSgjSAdUMfmw&0!Y=^sw$DY^MkH#0+0hNU_C^TC_!apEmQ+psbUg8@th>+b;%Srbd^p`+jm8m$KlqS>;hD_M&eq%8 z@|j~<9GRN!?r*YVp;WP;Aj)xJQObnh4S<9&&2T`Dw1KL#QJAiXO*q`Z*WU`x5CH#!cg0|& zv_YMNH+x7+TXu4L=^5FNA#vtl;Iq!#J}L}O+*w-fVv$-sO45W-NPEMIf4l zFW}|i=)(xtZUlfKMa(PF!`*$ta|2ds`XJhiW03WML#{RQtqxnX(U;Omm?~#CM zBWuJiR95qdy1k2EuV(>54pdN613%1o$|)))i?z==R|_c!nPKObeT@x`0r?UV#tRG2 zELo~@-N~Wh>T=)w?OxTp_(7Y-Q(=uNN*1CUX? zrK?M>y0Ws!J8hyUL$t8zS!|tPjM(x1*H>)!4^2&tc`OOgllb3%che)u`pkJ@gNYYj zJAU~eDjwc2uwdZ9FhiVT1qN}FutS5w+rH z%m$I}J9jK!=mbGeZ!cM~-W~LS0B|8K6nt2~_VM{3C_sBY!ERHu(!lGr&D7o58JY84 z8gh=pj0%3R9*8*aXi4Ob(Lti1uB1d~wu0&5W5W>buOwreG(15zNd7+t1ph2}a3pb} zlCVGi4u#iPz?^w=f5@K`hV42MAz^w>QZAs=*bfFkSnkIIRSU~PNt*lUrw8@58|zGW zRa88oR(=IOx&Rn2{p#olfLYZyVUQ<_O-FcClz+29Jx_LI2*mG$9zY=CPLO34aXF1x zau~N7a}*Ez9{6*QDN3x#fFd`+&4 zcYL4dls#*3{f`<2kESy&%@YMMdp+wnUOMasY>CuDpB`FRL@)1*1}JhnICOLN4Ke2q z_Xa2LzpB}S6|iUe32Vku_k8{Ld!Aba21jKkT1NH8$b!gG%$l8heNW$d@6Rh8Ic;ks zzVbL59m1y`K5}))bl=Fusez%k4SZZH2)gghPx~CT;ktM4w#k(g*)E^Q#YT3IhEWl- z2)N+*FSyB7di^JQ^=5?rS=KUYXvmJf87%eTDJks0(pUkZJu);@d4D2T68YwI7E7zp zp8X*PNTGQ#4)0qMd86-?1faavOPv=2Y~;pJn$hJg2?>$KHOYj@ZW50~d%+9i*&2q^ zDNex>P3DE4$`m7D-F0zsK}=;}X5^r&O9m@HEMU^QvAB%^xVeO&uUctb3o@Sqo5h!w z7AB%eNlBC5_)bE-zj#sL8cp)SCd3Z+sqYotb$6gj{I7?@S>*ST$HW5seaTwUC5w+eznLj%BIA!6L( zo45-#9m?ZZLg7%`16kR>zxJk$Z*GY7ZRYHPlpA68G$HSfM@Of7di8usUGWoO2GRc%A4k|OjXm);eZ=PkTG|{?)MNr#H~7?NwH2exc!-`C8WZ{mu>pNU8%=ToWwWc4z8U0XD>=8&4B0X2?rcV z_5>J~=GIuwle;p|r&DsGC`(GwRldiC8j|e4WDjI*Y69+#^h~~NaK06T>aoHf-g-4T zynCnbE_4atp@zb}!24)JITfBSwx2J^k9HttL%+^1_zwzT6-U6L2q$AER@NZHX6k^` z)9&i3j-q@`87bKY$PoM~9@S0v*&J*Uzx_giih;NpegJ6)3PPAbymwES@!R_~wO z5l~4}!J%PhzVHyG;(?dK*v6(mlv>POHSPrxF~>0oxUic+zKS&=J{}9=a=)M}3##{6 zywB!ck>t%)3&$PaFf)_4mzQfvW{fOaNcjNHB|_rp`YgIGk+1l`?41o;hs;lxVy&GgkFszi z)d)uJr-@{Qw4dy1^^I3Bk$K#?b3EVXzp(2QongYEX7yVmRthvCIR-06UUJ-rs;T<+ zegNOw{CX6428LNG=V!?Ef_6vVTR%PB z5@$qj@P9PD1yq&m);3H^H%N!TCRIX^E=iH@mXHQ%>6Q=$K|mCdlk8duY~*}PXX!n>QD`TJY0ke|@$=M0&VxVfysV zD$sL`HwOf~6!4k(0!03;&fZKtKgx)nf+?b*=v|3&He*J|CkofP)|+ISQB;g{LEpPC zp=fR&dK(J0{=xHU3XE9M<4``hSK+S;okB9ujTdT?LSarHYuciQ0w$V;#Y=1J?rmBU z6O(b<4*r{+PA3S4+0u}ggORH@n&uQC9RUF;l!7VcjN2^%_(NajU8&}`h8?rv{tKkO zVNly`1rHlyVz8?=AiaAx6C@dG9Eot-$%3{KT6W%n6xi(AhZsHev7>=yAtwQWM$zDq z{KFui#C5E(w5+VM|H`2f$`Wxk?W2IP`hhal;2U9pAjf^E;Zh+*tf6oiPxYoV2o8S1 z(3G}k*VOErsBawgudV)1ZY=v5KU*&nl-a)qr40^XsRi{D)%Nn+GjojzQgk9UGif3o zTdyJA3cG%7cM4Dlv(X~Tnd{4i)iJ&g-_rmL>Y^AKrOc{s8&Av|Nr`_nmx=yWGdGLM z5wi21c5L^O*zwc{h+!QCPdp^IwidRUe7IP@ZVF+(5YTIM4p?>G~WN8+dk6_>cP7U!- zi2iQBHD2(KxOaVVFH;(0iiLSmP99rOjNLXp8FRP;*<-Vddo%#DqaHx}_C}BnS+2^j@%B5(V{1YQS7F zm?pvX84dkSa=%iqM)Cie8X?B|ee${lqX2*oHmU;8<{;U4|?<=2#y^vP{|VXN>(&=8UCTr6R@7S%dr zEMO3@SWgT@i?2^t^8e1{k=rTdh_MBOA%X#b_vtB2fKH@en^3UPyPB^m2yuHTb5$Sx z-gjo9U~7-SAG!KD$fDks{meeQ9b}B5cjTO%xlh6KlHvx{u|%{#^$F=HDP#Nk7WrO8 znwEQTzJxBnEKSX|FBut`_kS*?Sb!H+Ps=3aV^UHCj7@aV&6a(#8#W^Hs?Gn?~kJT19Ybu@C*>rf)-9d z4+T_PyM)V&l2YmQZux^vHB|qCg0}GY2_%Lo{OoSa%gWkdm^}a<>05SAA0>U@eFaNP zLfzs_54Y8xhEVYPsSAMxzWSt80vfh!%WM8jRXxqKr-PBMWDWT)grn6!5&^>C0H0Ae z;Pr42agJYSW#;`*5-QAvxHneS)cYLl?4J+s7hZQi@q+>CcE|qgw<*Zg4`C0h1*vNd z6u^~Lv>TLLpZ#d3kOrJ`=;u$1kf11>({h(9kO3iZ2Cf?+?*RK76wFL~^}b9* zl(|9=0~P=&US3|NkSbm0fB6_d^?ImVE3B+_#K&Hs zD)KqnXooc{8Zff9(NPlEWHoFQBGrh=!iXAQ@f@zc@RRW2YXmZ^s!22-l!%CSdg_Ie zH3CU^FA%>EcsEBpR@dXzKc}kjj{tY!f8%%Y(mCk4cUX*vTUM#rj~?&+!$MK3e=l6A zJcJ9nN9}r_vJXYh<6^bLr4k2qcfd*WfX=plkZP%*&NnG#+H)b>p>c_ligIK&nLD@( z#2I`ocn^vLp3!@vj{lybaCSvmr-7`2p_yn3WM5WRV(f~lZ{Ffgbk{?fvM&e?41Upg zxMm_56zaGSJv3&_mCs235I>T|PEA56c?-F_LJMwx2*nQbeUz&W@POEXj}1`}3_*wh zAH09$>w6jH@CPWvb4Wpyee}N$Uxxel-=)ErjyU}w+x*c^Vu~BhYz^K^EG+K8H8MRz z!%Fz02wImNAYH_Y4~SS7gu@OudApe{X36*b9PH}MWEA!OC$j-pMD;rw3tSTu6WHcn zz;ISp!f~Nxps4cfK|#L4g3`NYEsK1SVEy<}xUG9Bb~PlsSI6 zkaKQg=~v&_hyxo$5r`VS27i5+rl7X4{$2Ag>@B&zjLd7;IdNba$|+_nIOT)b38D9XFnO{xRe32+NmX@SSUqotW=7G*NsB!28 zXA(2STslAf@F_7-J1g{a#r>?r_XL+q2Nr)I+Gq{}rqhIS8|J@?*v{h9OquR&L#_rC zEodP=10dtskoZhtCPZ5*EH%|oLt6X%$a#O?6!i5^V5A)eT`l}@2pS;=LHZd8-Buxp zu^e8HdI)P<-T;@!*xc7@_as%Ti9*=AK~Rn-do9 z{Rp|N;KW2Spq8A#jq&L5W5mHcyEhyBazVV$4kF4{$R)wq3(2KR`_OjO;;_FuwEv~e zi-}!sX#Y20XnWB*`C5(Z{huw4YHfIqB@kgGDWcvQ0icac?QKM5b~k@{6LD%^0>HCO zFDEAx5E#+#3g42m<7}?Us@n<(@P>c=YWwIaw4x-uB_Bi>74SwZZf!+b-G<#&Mj9uE zU`Zn2j7l{58_LQEGrm0Tb*yo+b`g112JgluTy&XW2?3;{fEK9ka)6V@xJ5%lpB81? z>$Y`cOsl9sa3l&qB0)9Pm~&UU8IxH@SKbci=houGGgK-PH$D4@L#vns6p}~V1mX-F z)jH3@%idsFUT7CA82t!&?yNc!+1d2%5u-aY}02H(dagqcH#hlfe#u|7ux3L zXaVJCyZkD$(qa$|!-y$lnDAeQU7o3_eIs(W92642+L!K66{DWe%!!SExgn}fKqu}O z33u2(2=96f)@3cXcN!Xz*=A-^MIT}b`%scFM46v{Pv*BTb6o?g&?BQ}#p)G=*yEPZ z=ZN8P-)|>`lwo9K1ag*QM@L7);2@oxerEj95}5pWIA$wh32*P}$}y{U2tsKW@zi*X z2;p@vs7mNqRr#9fZ~G%$__O)Fd-q%+k^3h!X+d5T6l$!pu(13C0cR&w-_{zU^$WHa z#0~~d#ufnba@0BU?_2f|W|sT+?|$m=am8VJ$hs?8-|pUUx*Tt517vguPC*b9tGoap3>Hq<>EUUQ2ag63FiV*5cImh=2%!LwNNjOq5;pMn{a^N5A`z%;{5z?^xXc!vh!J4P-Le* zmVp{TC!Rv^MIx>IaQ#i!{U{IXSr(OV4xRm(DYuK;VdEI4nrRoavlv})kGLR&X7DL3!jI}CdE%r+H_Rl$2(ie2Wp zD*X9X)j@7Ckl-RCC-)B#HvpE?^Xw#(g5w!FQLi8XCR|`}DH*prhs!@KJLw_M*~R0j zWjv>5^r@LAsS@;ne5_$%VHpvkmFN^^jBa*7G(|l?cOVHxDw|OgAy9K%-^#3MAbnbZ0ap|v9EBWBY66y62q=P#&b60t6efR3uJ{E< z29)ug^?!b}w74jFn>QKnys%x$ls$Xi-_s*$Zl0Nvl*Ee2cm}^!QbGbZ5PkZjvXHWe z?PSNNrjlxumCGeL*bmxun8lEon3%wU@(gGObBIe^1CezGWNbA7>ywD{QU!kwn$p-Q zK7N#Qlg>s_Nqrpvm04~co$#m4%wLS{d%ce?COs-Dh$bSHiOJS6v}l&_*dhhQrQGXa zS@_XcAbZZ>@LYwoScn9LvaN#lbq(a^)RYo3PBu<^+o$*Me2q!jmrIAM1L$CAPl|`h z|0nok$v#4572MHJ;i-ycev_}oF(^b1qDKnBi1+UaE-ueUump3PhdaY24)fTs(T?^A zz=TMu;NgtKq9XHWqL@&?@rkVs+wHxef$BKM;TuTw=TpK+m}gfMcjX=`brN!_1%CS&oYypuRuPMMEq zj$*WhxrUi4>**Lpr-`I&bW|i;dWa$kAvFr4!k)wD^Xr3(qk^-}EAhd@oyrD>&j7^E zBO;R4W&X~2evXKc|AG9W=>Ap=h-MNKu973)vnKAVN)*2m3k?nJgy734xKRoNn}q{Y z|9FZip2Ex~3AaAv*k;o_vcg?ppnkv<`e$vvIq|g7NX6dGoiDmHUUO|WDmpu;b91zc zpxDG%nF$eh2GH$y=)r_#cvP=b42#3%se(ctX>At4aMR7cwB$3K%hNr1DXCyYU`5WW zO=2F_2xBd4gH6#$TgXaQC;%#qjG^4e3sOI`tLFIcZKt=4-O_!I)<2pq^8o% z0MC!G2Hj3ur|~~n83}Rr@CYj@c?f_>KNP@#iBy<3FfdRdTLUws4TN;~Vl__dKrB=6 zIGbvZA6`6o+x@_a7SHM(BEt^M$NeKC zMDXDqF#xH}PkCfYH(NjrTS>2?v50%+w70k>3B_}Um z*UpC|Yhe=*5Ujx&aBkoYpzoA@)4e|UWKzo4gdOO4xJWW z`-{lB(1sfQEUB%tlSmU;yOo0;v}Nr;u%e}|e+JY7=!HlaLkvaq+4MJp+w!|2bjvKy-}J1z2TpEfuk`rt(XqN=?Se0Ibk@C%8CTy5_C=YD-4Z=Ugfa?$Z84NrR@G4>n)xpB*vCu>b>tGUHc>Qq=L2umDl_C z(2X@TGg3cA#?-!C%1NV#n5PE_BP}Xh9VrzRGy-rMj#hCwb{=MqPY1LwdItc)=aMVz z8(y=V9ULD|GCDlm1{%wRz?*Z{Qi!stDl1!TZfZ(xrX6jiefDwqFgNX&6$#P75S^-j ztRg4v#{!j!6rmSm|NR$-%$WEgaOVV{!wmR8&n9u`(RT-E0Y zIo-SRK<3@;#YISXo-u>V4(23`p+gFOJ5oqLVbfgMQ$4PT&PWeJ+cxn}91&rn*n*Z#nmle2m?HS=Luo#ZpRvi@^CTwHGF zMMEUe|$;Qa_u3-&DgmtCe>r)sJs)cBlS zoJ9iqzT5=$HDe^Nx5x5HoNvWnrHQ>wQ2t`7zm^Paods~spp6g$)NW8nP%zypnfvi$ z9mJ(&Z|$Je_uJA^=HBhDK!K;K5_4Ron6C|fVOQ@YxdjNf;j3RB+!*O&M0Wqu0ZQvOt z4W;F#mtgZ!T2_g?`bM|LkDzc13=YTNK6cz_qG|&_0UZ5Iv#o*j5CMh9mHNo~!ysrQ z`G&yldVKYk%Vux3B1}&nsv&~w-G?qITdF9k_?z^f zwYbWy4ZYh4^x$`22fjRI*y&50xt31DC@(+SKVjjRr*=}CIDm3dOi)qcD%;zeGvwt( zXy*QMD>d;5aD?? zuN8IVNp{idja2-`vW#MTC|EM%$K?8GF11i4Y`+Ego!WSe{!p zw}JvAQBfLz1i@lQ3Sr|sfB^~bp-T~}85s0I9}O$3X8t#R)0?Y4fv3y~|COLZ^rPY% zneVmg$Jn>~Kl&sfmGCfAuPm)elp}P0)U%p8?36}NCUJ~pnO6t+-$w`d6T;Xnt z*khx=UVmx5?m}l_F<<@>QRjM5#nAVn=u39?2Bf;^?<^4DFfsM~8ZB4RB@gW%FnjF6 zi2fybt34^6b<=x_+Xt!RA0|PrlJ5&t?brVA1=rmdC~|EgczwFJ;|^bU;>b)E{_}AmXuzG_$_` z_TS4n89-ZU>BOiA(W;=T>&2h7_WAkLv8(@xvF{>Rol;O~1od@=Phl1;=7ry}Yze%K zrmzeTuSzwpe=_OR9wJQ83SnCOKJ;@pB-hqoMB89?0{o}`$~3hB7~_Qz$8ozL*#`-T8Z0#I|V)H?oVfxz5rCz0R6!ZO~o zjkTGcdp~DV3wsyq`sSC`c2$tn+#9P%qgG#_?M!9#|Lk3I$jqdeC}oWhV}AX3zTBd> z2jU)RaH+qLv;5NW?x8_I0<9a{&)gx-diy4}l#9{?j;=v@0ZL5hbNY#>VX~G!P(| zODY=&%E@rxSon*47Fs2aRa@LJFma0{NbD`7RrcYS7T6}SwYvi<4VY`yr4H`&Wc2ph zo`u2ye>jPT_;#R{6Qr+Zr%lZVgCG90QE>@lz#Q1qNH0B&W9T9M^CuH35rE6|y6(=${(!=Fi%iw% z)N-$(KACE~t&q3V)qCxdUg8dtpixr~a*zm8kv^)g$hW@+W>4)$2mp!z1oG6{_hf~;B(C=E#-2i(Y<|PKN&OOCoR3W*Ltt3 zTY6^%^)r1ykNC~bBWOVdOQSPQ1lViKZ7eMQfbB#4V{hB++;nv)hW^vZ5=a|w{|>Rs zHkM(BS#nZP70mYV;h%yx4h1s-9Hj0qX+?gCC#R{pUj$rlT>bdLuGZ@Ps2GP;b)u0T z7DwQ>xbP{s({JpDE3M-j(1567e<0$XZtCqLT>emtR`l0;!8enlW2G~bs;sVF?#zqmyLnnpckxQLY6WY0*c$>~gSuiHM?2nC)kJsp0ju{-3zBYO& zZ)Ub6;ZMPZVG{V2mpd+Ql_o{xbk=T&>pwoevdz_}QZ~Oo?upouDz#jFcxADs+;QuUIdZT$TMi*%VHwYF;xKBI3y%p#ru-Itv{)kf z6zgkJIgfgVb$_}6P}!Tu!)kpmaOqVF+Db~s@s_BnQ-@H(o&*EsrCC;9PQ$?m?J1{eNrj6VUPwWyM-#pO%m^HSy_0Kb>D(Z~&rM2k#jRCJKBc zLO|iYg2YLq7C%a8ErnJ%H$DEPtT8QYwzD&}-F1L(ZR{|O8`Qjk+?|vudZfd=7Q*Fs1N(JKoAMwW2K?~cPn3b|K8jr3^cl;>-hM1 z-Cm#Gi(+(lcc*G0Uv+I8B8aNCk9%RkWOv`7BZaEMQ}`8gp9@~6C$tAWWMGg)L|cvS ziAhMf?i?S#xyO_^@mypU4IcKZe?PhUp!g|Zu`Rd=P`Lqu6fglFHy7w6wznq^z7Itm zSCI%%%I0_b!}rBM>xrFRfrg=B;{l#!CpPvxQr)MIIZCj%QS$_dYJTCv(rc!&TRYxH z#8;;Yx!I_u2@rT)QM@F^f;^l3t7V)kbv2|U-RGTG__T{FE1>}3Ai!0aEysO3pE1jv zVknUA9$2{6DJ%6@L24d_WJ5!hr`EWUn)-HSC34JjuzRrigf|fa*F^hLK2C{RKjFfF@;=vNalYSGKV7 zdU+9q*^_}eJkFd3xbZB?%Md^j3_>6Gz4_}j@svP18u>4|Uuhjnrl%h~dm4ZRa}I)r zc-ad_vZnT@D4v-FJlq0K($*Vc*}g}-Y};w^(qAq*->y19R^xQ_f6sdIHpbp;4K%#+ zznNbO4t}AP9~&#_KJeeOjbqA3Tb@UN{vJQqzMh>Z{wA81s^Tw87S$*IHYvF{q zz<96|3z%*=3-a^JbxpjpKOTV10-r{Z0W|QR>l+$$Zddw0E5FSB_B{k0=M4Uzd>zZaFze0$JsCpP#c`gEQNV|%tFY&!p;96Q+2}^53dU%Z5M!JD54;rEPbw90(O$+KYwzL{{3TgvN&-_W}TUFAD|YI zBTGqP3q3yhogn0oA6JWrik*TZU!?V5#rE13lZS_tIhi-Rx7AWhFR~;#xz2Sj6?zKB zUtp*i8yhP;eY%93JQd$~mqnH3vE=Pd0-0kFoxO!csA`|@8i$EDdS^=uS^M3ftzqTA z3%S05zrI}rJ`zYmVFX7yn%dS5zcGn!iCQ`j0}=)+e8&R=Lcbxl=%#Iv+&L=TG-D@pAY6W4nbA<$Pe3kHf8(>pau^}hxt_VTtJLyKI@fdZflu!x3DH@;e8eeeMD z{Cp8QVnSX?+$i+38yXrI78TnrjQ`5)4nnRf-P#yF1(WFan;XNi$9$wd%E@D1N2@1} z4JM$7Cp64RpX4&mw3e5j*+Xtng)8n9bbH0|kSehaBpmtzs|woeoQwZ$0FSh85aKHCa ziUdYOnt~T%+K#&yC%c^N)xegQbqCzYoV&ybyS)CT3&&i8ouLt$G!g@47*ucF?>Gcz+#z5z(?lktxd${{5W%P|1K7!#5bUw6l$E`{-q8?-?kX3s0?^6jL;>-k9x67ks!8OfVHDOShJ%?z0b8zOfeEOEX;pu z@2!m7rt)=TY5N&I7r4h^IrlHt~aT zn*4&N>DU(#b3*AgFqm^rMHV*MauM}YQ8{c=U_p(==jUB>TBS4-5pADeNB^eF>)rw9uPdV6-M}E(3rus6m@a<=H;sGiEuF&*UmpuU5j^FBUi;~>X=y{f zYpy3N?@^aKS;I`RTqRLN*kmem7)R@Cq3Zz_Dh2>8G-!MNb-GLhb zAq9ceEYs*=1Y496A!1O=%g+zyVF8Zf(^K#?R8=KZ0;idynl@iG6G+zJfqHWWRcg`^ zY+ojkvOl{yOTPI`*P!EU(H))pjvNX&DBb^S+U} zzVSupjNoB;%&t&vPhM?VwB!KRkxa0~Dx#u>c1_N{CC}HA*RAFC8bxu$@jcmj1Mt&7 z@Ppdai2v+(Lt0hD{{3|F`RXSzFSXP4rsg+a4=(rIzk;qdWkv2!R7S=d2a`N(|Xu*Z15k^f4zCG_HK8#9OFv-7oB zSxH`=sNvGbtTZ(2*HnbSj+~y4HTQuykM%#EFr_=TL#d?S#2`%ZG>^?y=JF)FKIN0b z;rZcE?=%Ff@pgC|x#&s}qCrWBYo&GrJ-^E)v3fhTa}~OjBpgW_ySoE3d|d_gp6|O% zcMbaVP)UO{u#Wi2SXdIJ;^!KXkpT73yX_=D>zMk4GS5qS?GI1tjfhWz&5Et9JFb|o z2E%D_EgRB9%rVBn`P7>QNv;bZq`^MF1Ua(cTtKwumFa_wqF`0#Y{8&VfIRb>G4 z1&D-nQ5FH8`vgt$VAcIDrWu}9zbM!jNkOSjKUttx6`A7n`Q5w3D!!Q%p_qz0JUj{6 zgFWfO6~AkHktq42aH;B3GFQUGWfq$K>i;!TYdGCRAROM7;ICN7R!oC_19MQN(E}5M za9xJLH;9Xerw^BKx&7or2cuTHU!a?r?25MFZxl(Qc0}CAf-xiz`0=TwMcmKNF9H5! z6FA2~Qqu(;^~A))9Uu%-(bOaX!JG&EqIH^j_@Cv@k76z{S-6wXkmzF4xhU?w5ew@b zu7H35tSm^NV*Fp-C%haLP>F{{R=o_jY6dJ(bMgEs$t)`q52ok@gT7ZL1xYmy$6Nk6mT#mMBLtd!R@xfmT{r!Cgo7H)`m3i7*qe@iIUow3KjSpTvQ~W zn~4y`a2;J;jNnj!`V++N;_l7|ZT8c^GjrNphA`ya6k`(~AjAfs>_hB{X2a=H16dLZ z+3wHjg=H*i9rT;mgi~ZfVth}{JHl|L&iC(;LoFDn9bV>y%Y|upKR`n#YL?)wFdKQ2 z=z7$bxQgj8rKY_3X`ZnH>IB;d2TNw4LIitX^tq6Hz*)w`B;<>NPqG~(L12D}u$7)c zk02QJclm>>Zhv^l{z>nBpSK&LK?_=O5i~pbg7-S@1hbT!6obx(f(1|I`zA{5?>x5I zo*5;%^-|1{zkK=a8>HfaJ*Yag(nAuy36Ny{xj5Z>53l(F!0gK)g|c6WwX-V|^NjiG z?q&g?OxTw%hHDFgF(DPt{bf}u*gnK}A6C)TH!!+);kF;oiwOo?^J7?8VA|Ret`Bx< zp`xl6lng@j>zu{UB;6X(6#loVvT=V(K2weqsHUWQ&nXy6#;id73yYkLOquXA9K?7j zCh}_R+*^tefvIJ~WHDJ>e*Je@7F%#<;rTTcCB?9JiqN6aPBw_w@(K$z6D&F+`y^)T zrH7#7g*UmXnq80!(_IV+yN!i;xZ&@L^rZbb$1hAQ%=Dc)4Xk}p(5kZEK}Y8?G&Ed8 zBwM`Pfo%<>nmv}h)44-_jKy9LtAu}ZVM4a@!;7K7oA~E?dNxP>{6@uIwg{XXp$60U zu)O8u=40+ItE#Gyt1rK3PC^P{K!`mbK78m0es_pp!3C&1@LSTW2MXDV>X)wfsPF5k zJ;iDDe2?pr{h?yKzCKY!wl(1Bswl*G03oTZs;>U>{1BJ7=RaaB$ij#QNXHU5(xF39 zfd4o_p_~MArX^6GqjbACoa{^&IVR=>z_7YMD6+?$UHORaWEUr`**BxGu#glD8JaIa zzzsGX6#!}>zE4mh|03l@ll+gKl0mW5R!*L_$vNHs?sMf zn1P{l|E6(Y%p>X&6pB5eAss4DpZ4_j5+MdduzO=8ejw-&@^YcpZ(}5M`*$rDYERwR z@NnL|1T+Tzf_%z*`C`7w9ttpv-v`hi7(NoORPurTelI{SrVI^9@E+aE_V!v||l ziC<&PclsMV5{Pi{OIoX#AK24ZaeZtoP|xYvkZmr>?m?krH;KLdP>;`^*EmVPH*( zgz}UA4EFD?06u&bW6%HVa8zMQ=;09uF|>c@>zTx{@O7|5+Q!DlWPt2|y7wO41UC0Q z6{Yg-_w0w%6jOZno*;qT;}gIAUFe`-1?qtzzE=jC2O&HZ@MyG#iwiayA!4e{O_<_| z)Mfo?k<_Q4k<7=`(a~-W9SIx#uj5n@b$R*D06Go@3JOv-aczl7*lm^V*=oG%hVRx! zJYLXAL9wCj-xkQ6AK71WZ~bW9LycmgR8$)fu+VZR)B(g3Y#bcRAE8L4YU z%s_-9vqUAhHdmFJyvzX!QdNe5<5HuHEX3!p?)#U^)ygcgHRs8GxsZ)xoF=ePbU%Vf zHu;cVSFxCLoFQ|24JzOzR%r70cq4wO6&2EnfaT~ zm+G~jy;IW-$I}=^Jo}=QI%2*blADsLAX*>dE5h-pS>VNQo$1`2DrbTf$DZ0nGY5um zjwqV~`S*_>oRQI~kRCm!QzP=L=7G7@RuIk zgMnLP?9hV90anN%DDaE|I1*rQRR7D9Fo^nkryaAOA+1H<;4gA5M?%RA87O*9UOe#V z)q&lG>E1nL-p@*9wYBSIrpR+R9zwsRq_o!S-KxQ`n29mn=l|IO_aZY?{N|o?dbt^@PGcjg2Kzw#UQ6K@*NZOd7wMC^ z1ZsK;1%um@nmNZun|BD{`6GfNN-zkL{73v|15#4}_m+aC8lsI54VdSk4y_V+q&evB zx}2f4Ecb#L!kD1NdFjs|7GXg_ZfHM6V0pygGJyOd0NZ0@7ml|VYaB`FuGb|HV1Fh7 zeb*OW%KnSf-1@O6C|_y1GvIhNg0JltM8Ym@r+j&~HM7#CT~r^!farpQa~%GdoW6PH zC(yvT9v#aL4Xc$L6_zq1ZH9oV0kFoGVUYSa40>-BL&Gm6P>5NT8hFJMeI3W-jz_IO zsjQ^L4UraTckXaNlwf}ngjVgf-j)b*xy6uJot-%cZf;kmWJs%XB10KN^?H;{2-DN2 z&a}b_n-tWVw9pIAZPG%sYc)XZo$7R!UgMDAv9q4WiONVtb!6za{`meZhC!p#TthaR z+O>h-1$(h0tIF7=J`iyU7>~DZgGpEwsG;!qVwwvQd8+oTWvr}n;6$IS@?c^Kuh_gi zMWq(_;B)(4LWk?UuzO^xqa$av+4mp86}-;xf(^@2T>brD-~N01>j6iUuHWT@Cr_RL z?_rrHHu-;VtR!YgI=GsE|6X+!g8$6aIKI8bmaQgx5QB_*XCD?y!GJ44Xdm4o1uUg| zxidkTnm@`0JaN;{A|W9jzVm~Hr5C!LzI*D?o@#`YSo!&@YNU4`&+u+|$EBschuITk z5D3R=N^mf;VT+$oMP;SS_QV6osD8fOxYuG>jIIHp$w2t4OZyu8GK&FBD18|UWX zu?A($QDAz_DK0ivMxXxiBQ#O7p3;uWP#c_TGE!#1(Japaw-mV33oNz82oB6;=J*6N-^PX7L@3 zcWO&BR@d^GgTqE8gi9U3&avo42b4V|bN{G^brejnlDfLJ%K{MO9Rm<5WZ}DlRu43I z$_Og*ZDgb*IA;EV9SDZ+V%P7lu|(q)pK{x6>-6cg9P7kKbhWi1B_}5%#C9N}iHT~s z@jlE06G4&#zn~!BoF1KM-AB}dtSn72=>?^pwSU&;eq$ktWFv2r9%R`YJi_UANr)5m z{=mD0G@@=_f&nEw<0Yy}Lknr2o|cqoSr}_J<4?)3C66vUVSl@@G%O&6jD$) z>WfL%y0I3MLtb0cH#Igj4Gk19H6-IavL@E-n5B8Ov{e0QRoi8Yl=c*&FRgSDhN|VR zQgly{<8?qyUI~YY<*#pYoeV$2u)+YGcZJQ72*PJIuk}ieQ6D>IUS?-px-C7qxU6xE zrgQQKvoHxH`%rn-tSl=$UyE0bG!PFI9|+EIcZpTtKuKyy3y2DSOYXM$o?bfgEu!%W znZfROYn*4ukGR2o~q8&}f$(d;-C#ycO)t9*L#I6$qwgou;GV}5qe1=EI$DMFEq&JO|qV}+Z zOVbq4UJ{VDV1cF(L6_^lOm~IBm7AAW!^hXx4T4U_aS7sC3ic=7SakP1b+GzbdVx@s zf?j|BBgbwqn13!_+St7H3(Q&+;osfF{K!rbCbl)ly&cXh*OFhgh`W2E9-U&cQSZ4|N0fu7FP0~&55!GM&T2TAdV zTG^+M8JV7n^4u?amBS~VdW6~3%#M`FA?q!dP#OLjY%?xMb#Sa8c+S+rb+<6-h$mM! zm)Q4sVPFh^&l3vhFd(WHP^Lk!ED!nl`zMCqyLaF5JKB+98PZpGcM7Dt)h}r^evO7v zLmI*lY3cKg6dE02SLR!2HnlW0Wq{Z+M&L-?K)3}-dTR5Hp6_+pNI}j7&kRRm)WyX` zCglDk0U8N$8z7d50WZuVSdK#AJ&fwS_fK@l-NVBhlvXWpOAe2ZNIAS<#&5ddpnJ+J zN=!UlVl0ACl~y|~n2_mZV1eUt>jV^r_LpZambKVO@a%SjI?EegNGNinh0BxFYAAI; z8_oLY_)TJkuYlP4y5?7Z?~i(fXkZjaD60G5^fm!n9}EHBNSR;1(hAs(<=F+xzC5(T zP2qcUosp&a#YM>Vg{+lfh8n0KNC8)jRm|R(a7B}b6fDt~G;JKB=$)a$BP~>EVQlrpUeP5MceJ_VjItD2L~Iw?NGFUC;LNuev{d9$DQ@G zzt~)7OGvAWyx|~;gh%A+q zaJk@^&B{Urjvry%f|*HWM$7^izVJQ>ut4ao%_k-%fUxGXHZ?_hkWBEPagmHXeo+Sp zd>^O?_Q&ghQBea*3x0m&`8%#_cqBj-IyB$>y==Tt=olH5S+nH=n?IC9dkMPALHCId zS5H}<>Rhd;G+xj}>GLK9OFB_i{e>9XHxDw3l|LtF7xvUScq+-r$wPVW#H`4`lvEA~N(%Um+&n#D z=MBdUa-6MGha>2}fp)1-wnLVv>S)k>V{`L??5FQl^?qs*P$y8Imx)jhkR&83vfH2i zAb64fo?7?wXX?lAD2Sdub>F+a7Ephw4K;5D5(P2p0piB?&!1~m313`P_hBI3RFHrI#Bv9KIj07y&j^$z(E@1RU1^Kl)?w;%Eg*caVVp^8OS1@5f#s$}Wor^T6yGTG${1cw)CGgn+a`^)$Awpu}5V)&u|76LAn>#c|A5MhvsbA)_+c_ybf{taA1Dah~M#adWLAfz7&Ki4wh zGZhHD@q<3re{l6eh#Gmk0&}$o8Z)s?a`Ja}zJ%WumT!ApQn(@i@dkd|VO7N^wrYgm ziHRZe%mOJ0mJu5#CxSVMY4aT!X&M^I3Q=OQ0Kw7y?%p>Z1~s^bPoAh1n zg(n%(Gr5qQw?3<+lRdb@^7z~8bd+@$m?w3R^!8R)nUy|qXPB1*83#oal~8pNM9*XX z8jzlge|M{EGNt@3cWWVlMefiy|As5`xrEQv)uDtx*yRA(;N0Eat%pX{E0IrF*yxmb zy}fufO30GOA6L5KMy_##(_sWgw3I`dg0rhD0-DX3N7?l-poxi*c?v)0?zI7&vsI@H z@?VS__eXvAmJaXU+=Ry_CWgUJUpZ#iREtdvOKtWEE__m2`UXZ=bFj*S73F=hNvf8{ z6aDSIR@THzV0msP-TuTP!%Z~g|B&}HE=_lPcQ*!{3n7)2mA?iCqE8PFh!BeqVA5eR zU0o@w^I|stF)zj?k;8>6`{2QYk-oktPT0BB)Cj?Riiw0+@S#TNGd!;V>vqO5$?MEF z;@pkZd98@2A2w^$$2Rj@z_0A>-MGI}sE!_~Q2v|N1^6jq6kjd9a@q)zvQ9>5{mZn5JO9D)Eoufa)<}zmxmu<%)`t z+8P8P_k);4R+xG!8$#N=>+5?kF@tUd79vMjSnjV!3%q_>+N|?4KuJ;Y`$(3&EX1QK zeHE_0xPh45Be!+uXS%vQiM@nSaYso-g?*C5m9?_cy#w_=nGFrX)Q=q~3fZ>xt1wkB zkJ__R#azJ6oY#P|VQp;zAp(MY-n@Lccwq<9;m#8aexbaos%XD|XTjJ86;!VwqXRl1 zD`C=(SrHTz5wS>!BigmVdnfPbCklm5_aKe8;zDSGOsg;iKw1d9A_qGs2_k?9e$Pjd zj0iVK9uz;Lyj7Ocr}V&is_JxMUBDnHsE43)#m`sc8y3m}#CVh+JLEN&s-`I1|2SQl zQRjwXkBTb$`AIuKW)K(perwy`>>k8vms}l@BtSl_Di;^x@&^n&3eL_`@!PAzq#yei z^m6uAm*|KT4nTB_dEtx^6cW-lWCQ%I3`*((fDKVlQhIIARLxrK_ z-L1g2^wQvG?5*t1ymFVi9)(bl49|5p1RsY326QVz;}|q%m#b`_Y%$#`G4hn3k1hTe zZh;>ZTY=;TOPzG2+Fo}J-mvqeUn6&V%p6{-&UP_isx^9(e54jw?i$V@beit~34xiZ zX%Kvz?i<6%(AErN7075Hn4KRM8puhA0gdr4Ds>9IF3~==gG}o>a_H6j_Ik>ANjuO(c4-FKQmC0?zjDKh#7;x;)nPKOwjEuccG?IqJYdwRu z-m~Ye)ki!cHNRaT#(&kps7Qkl4i*DVS{-0(4D3c48nn1*wThZOFI-ejPgV2~2klMm zGE~Tul5?1a#UnB{M(YPcr(*6Fk2r*@i(rQG17Wer9l$e%@Pc6O+d%(E;a>kG;Abv`8%c zh@%}Ip2q}C?pX^8Cb5g{F=LZ!!HF7-YnXOywD$*l0pqSdfwm!%{v?b)LpRJe-QGw!n1?fm;=iUw80AiBa(&IOY)zNb;R%m?`b4e4`zUZCgOIV@#J z&Wi_U{vl`>Hd@}6ne)wj|4)4JW%G~cBu8vo9+!N6aGX%PhOC@p{QQrwOdi78*#28* z#_#IFyTc564%4aOMZ$J_dV0ES+L@#$&cZQcaS1v7R3sH(zCMG64Li6tJ%hJes$6F=hF{Op@WPKhIq~~el%AX_>L-SCQ%4%@q z&Hztu7n;(KzCU*Qbh#gkx7mk|6E7d~(H}i}DdKyLXRLAe6?v>PzW*4IpIqg?D+}j~ zI9~q|yp{x{B>U*B)UT2A8ebcH0~%y?eAZfEsywzgaQN4+CK`eM+YV6a{5oIbb^4Wg zF0~0@t?cXDWb$fiRLEO@hl6WLf!biK_-P zUlrEeV#_}R5QBd2Ek*)M7ndTw(PIJ@w2F!Wv6UD1$S>~(?RTWe+}fJj9$$+Al0;}= z4i-gnYoTU~`XzG$X5?{Et8 zlOiJ{cc&2@BIvxMQkkCF^_#9tq%YriG&3!2aW;lmx6FtXdO;Z(1mf*QAb}ko3_F_o zN=9Ms44tb=D?gD}5AxU!RYk9^~C!NBUa&qepFRjZE*} z8~#1!vJYiqgFdJ6C%wa1&mGE6FU{AP>Och!u4jJPPNq>J%P-m5M6WkCH;?0J z1^CG%>Bdz9{1h)UmNc@oacd{61jsKxfGxZVM}MCed5u@*43@rbUtJ1&JSZzRc3)FY{jJ`TQ+wfA8W(!=9BdJ-lANcWKma>HoAp^V;{3sUd%Uj2gcH{ggmx59eo0N4)5ZC3817 zPUSbkjgN^S>!vv!JE^9|D`I})EMd>XH(=0^l}}yeMz)mAlXT+--Kd1~0rae5rY30GbV1A-sgpZzD0{Oe7M*(q$!C(lje^S=+52nI!? z%5_I&a!-ei6Dk+t>`ruCGVyL)0LKB^qDm)C%h{*m$#o?)ST3#;6C6*(uJ9)ZDspaEc4w%Vs6R}{ z@EZku>v=KMH8&7RY3jtE<1d_{!wcRo9`+4F1Usa4i`asDsh135f=XJ=OT?I!wwx*` zycMeMY>44fA(-`^4yEmRaOE#`LJOsX!($&Od7^!xy;kurGcyT^^jPY7%}hKKOR;gONX`h+d4|~nn&XoNYq@=<9|5gufdoL%h8MkB~diApB-@>ta4TUE)bW9gp8-)*G zghn(JE7FS2#y%cI{^B~Jx)YlqVbHw2GPOA46n&T2PU@*Z8uj2ybuQOR4_>>j(9rDp zzy1$9-rP7UCMNcKXEcPpui!*f!agGtPS<}PP3gHjag_V^aosXpHSwG`ci~lWaLDck zr*pgT(tREha`KB>x^JQiE?Ze!2Lhhz<;_ok*&2&h`VgX~Mt8QU+5IjCnmamvNrbPy zn-*PCVoj$BGCL@Un%mm)yw^Sll8tG>W*+K$N6Xelc;7|UXl5oRq#6Xv0T;Mt_3|OT z3WN5z^JSyY=DLh@bYs+U6vLR<3G#u4r+o3An`c~SS;TC`kikM~2$LzX>yq&+=v?1Q zfot;gT$MUJjh4Elt51cFEl+9xdf$Et$|~Kfh;~{-jvEG70zwAQEx{FpFVv$2SeoBZ{LjTb7&8} zzi|uMht(MPt#NqY`cqJuT2QdPwQ5?h{{A&nP;f9AIW<%2AYdT5EA31;wnkHA^PlcV zm$=QWi5T^hXch*UtNZXZjQn~N!gR(tJ|NDZ<@!~g*qF5MB|%fk>WbAwF9?hrCu&%z=gzaAO*)%kWt^Oz-f)Y2NST~0e$v8kV{1s?M0NYp?t0MCSBGBX zV@KxoLrfh8rvfo|4v&rPArgToUA_CyRDWdBqYEJjs6U#{GXj57Ahd8mRl7Y#w-#-3 z&7@recIM|b*Q{*54Y}8B6hmW-?yb+~#}U$;<5K;Rw*lSaR7O9zL&78VwSywi9D!wJk zHa5O*wz-+MDkM1k+{Q|di7Z)(lfOly-_Gn8CEsd@kBLSiL){?%-#tna2_9qvauHgXkKg^)@W0!(m ztF~DRk*NA;Jn!QR{d+JCE<17@`N|j6)vvv%srl!OJkWBC6w99yV-4V>t*pc^A;X84 zH411;DApI70?)zS>x9ZONO=$;K``Yt7NsovQ}G){FUH0xpV!JWs4q^bf$1y^Y5Bkk zD<9|@+pAlv-5vd);&4U16gL=-6ClL#_&r)6zO=NpB}7@j(Nm-9`7!wT&aUjrmoHje zp=Y7E9MI;WAw5{bkgOP+K-(t zXOLsUcwPpr0U#6KfMIzynNVP=vNA$U3OVmZ9;eN}%1$?dxZN0UWyE^=NGu_2`p=(7 z$fs=Y?4-qW^T}-e2*Tt4ZET3*=*sNO)t3$peZW$CRkufJftu!{Lau6$KHrf})!_RF z!|%Kfn3M@VdF=RcQee|TT1xHeoKfqp3FO7(^2j%VVLXwNh`M64GwRL&n8 zMa`nRwdAQ*2 z1qUA!71d5MH~LT}EuHIcs6ksUOiGa65ER*XNeS^25Z<2slUopzxKEUKU(WQj^}=`? z;m<-#IziV2>6{bI0P-=1{T4aNl@y1U@{L1O;8obZ_zEg zukYGb_J4_S93ds)Sy$XNi->iKX|c%*BDaF(MxuPQUlp|l@0h(xPOxepx%6K$bUcR(G@rzevubH zq3`|aRQ^s_Nl_6x!LsX3$txbw;Wf3oR~3Aup1bH@eB|!t=DIkd1biZ82>(w2w*uEk z2_kFKj=5Ya6&OVwUOVz)UFsIe!%;ZQ$(@#FyQ6;ubhpcN23Nq*wj7UizEVLI+qo5n zlG|(7e`aeR$L1A>pOg-@6Jjb5rv~xI4I7)$n%Vv`aW`-?+?-!3Dqa^glC;Hjy*1C_ z+UIS0)Xr#aJ}d0&=QQzT5|ZrX)%WaIkDAu#jhL8g5<2IQ>xgN?aOXspM(p-ZZyxV3 z{Xr5Da>Qn%1P>By-gDIuKio!iVrfT>0rxBosH zhBUX++n9STilN)6(Xak9K4hSYw)CoriTuR=3C*Q=k7~vuRi~(f(mCmJu6>S&y}>M=`uWSslhf{#Qv78DbzQYyO$&pP6j&@yK=~tR(c>$rBG-oYf0Ay1E!H-P!gmhFET}oC>NaH$6SQ8=uDsy}zBE$_TOL zK-Rz0#+zoI$4bdZ?QkvZX<-6q!XHujqn3Al;hVjlg~dHQ!ub}B=6%y1VWKTiGQPUf z!FR6k-&)aB8k`gBZNj4s8Wc*5cA*f!c7G_X`-0ZQRIejzB$}jzS8jNI-X&9y?-RnE zJJNs?h2H0CR?R#J9Q_US^xpsi7vr&k8KV`~K|XG1VWu_zV|x@nA345=HQ3;CI;8V} zef~@cZ4J?~vxoNG5AL#^pXl&eEzhUKU>bux{T^Y-J)2hTHcpA?rMKlKf==BT`(QD3 z-P!U+E`Cx}_q0bdJ=Hy9qc8lU9tfjBk5-zdc3dYyW#H)HBtjXYenfaUBP8&jOgf)a z_2w0gY->EXbloUjDEoc($R5gfqy5j_G{pYleoiFmr3W>G-=Cu2v7F$E@R7dovXx^m zLyXiNCW%Xz2s!8&4*UEbyK0bI&Nrxe76LTa>E_&+#ZBOfzWD@Ea@4y3^|E6|vK3D3 zSZ<9Zo|>vE@mmWL*peWZ4AIEq|DOIpG&)CFx!Y%cKtD4-FId-n+7-g0(2H<;8++@DNjqYD&hBqMBK5_9j)tqzQ6T`XN+|m0Aef6v zc|wxbq((2{+V$jmY1y9(v+o`STVD{PqSEQu+Lj=*O@F~lpOS1ovmn$aHga?RepkQ6 z@qss_cRM?oJl2FRJ&8^=$cuv9_ffi0X-a+l!>UgS7wUglcxV1*L^F|CeI9MCSJ&C1 zx#U}a4v|GGhx1)GJBz(<5&ca|ae|i#F|KfSsNfzwK+FNliTuM{+)!>vdeP@&1n;7i z*EI zbc51PpkWBdE)X%LI6H6M)pM(8S22G)YtlS4WRatj6XA&@p@y`FUfxJtv?ko0JUkC( z;SmDCfkzrg2!xbGRxi%RW5l3a-d1kLiP8Br!{yR_;{qQo*Qh8*%@B z%(O#*>1xS~mGtKQF}>h}pc;5OEL*~uV-v68nWVx~q<{!EUiZ(n5^w3b9ju=} z)+*rr>K=6NrbGAcSp_EJmzNd?%Jp7+l_xCAOUujO0BchR{j2$DKtW0>X5i-jCbRyw zU8aul%(@x>*cg#nEoa;JBRBgC$wo%I96lbLdgBdAu^ZmEdxV<=RfGhk-^}mdeE5Jy zRALXicHa2aOom7KBap!Z?R@SZyxcg&4$zkOq{{ZUgMHvKI_w5vf;Y^yMh*e^D=cHtIm5rb;i0$;L_J|@EP?}>>oR`pKY%M8SzV*+isN`%Syf? zuYs1*mhFoAXNEl3k%t2;YfNg|8I4yNL&9$8JD)@ z3{ue>CVdx(?FRBFRquu9R)35awcBC_6GOhAO#tQBPmqlsE_v?U8^~Uu276#^Wb_(t z3aFr9bx|-kXKU-|u!94IP`nOhBDQw~W|M>~AGctYj;E58tQ-D7hhM=E$EcV-58XOPrN5OTz(T5tAIN%Pln zd@m1ZY?RaGi~R$E$9JSS8EuGX{2&ROkBxKXuR=3B|bfb%|rT@!AAZ|myP*vClEh(inv z@;`{mvo&czL!7F=8R-~z{YS3rt6VCA6^Vc;BgM59zlD?Z)w#jyAV?3p+S;fv0LRPR zu0XjUnuwWf@~f0I&CQb+Fxf6c6lgFnTg@Tq3Y!JN#qml|V9)iT!u~a=K~<4fY71>; zti~8rSSVOOxeZgu2ofi)fQ795`A_j2@57V)yE`}QD@SuI*IiqqzZljO-L%0x(_%CFC?G2(+EY&#=1eQHb+)>*0SJ(E0M1)%)lp^~qse@klBM25PRg zoe`?Uw+7&kKFk!{zS%m=!c1o+92r0))&KL(a!KWjGhdPJR0(JXlz0Ai_&L$2n8QDR z>J8O6GJbSdiW(@>Cs*O@w+`Sck}?}_L!Otvgv-mY^{tJS=dbMPqrAL?j15vY`YEz( z6OMkWy_uE2ku0;aA?y2EUA<&>{OLx!`m=zjTMz zPiov<2%#5Ji-zjxeA?drX^-Qof;F~t!i~-=F5R{d)O`Mtj0RDBtZ#5Kl1*J zH1(B%;j{Oi*GqXtpLu{|Z!c09p+8sL*J4`KboCbEyDxftN*;Ts^Ks2^0J#TOe1F zwi^YdQ)G_pIuSp+%m~oK6N)WWkwwCv+`SIH{XYpAM3pnoTpD;g9otI72p%C6xfT{) z4Kg2|9wqx$NCxe@tf+(pyT0!H4EJ48n-&I5AIRf@IMTiY2A;e5fl8ViDwatIC({A+ zV5lNwSrj8Y-I(yqwkfu=BX1u{f>uZjn~^OMubSChbz}5vOSoU-$>aa81vtWp%VstD zNyxo>!z1q=NyCE_4sRItQ|Axrx6>a)L?}a*Q}-l#>Le1MR^^3qLoiXp1>b_({d2B9 zKW;hB6DP=U@!L5XX+D<<29I|JiLZKnzw@vM;-^2hGqyMt0`bF?M~zrUj+odF_*J2T zSjO-B0hXBp!}|nI`fH=V9E-&DcA*}Li`fSof@62`BsFR^SLb6XwJKabMsuGp7Ba2kxLR%!<^FTw;8J&S z*}W((D^wIXBTK`1V`+Tph)dluy(3ywwB%nLkIJ~pvm{0x`^qZ)VaC)f;mNC07z7fY zJv#zr*`iTrho?La6+$x3`<9l_qWZrkqD@7IP^HmwMxxTkj?{)rSN3Ma-f$E3CmTyu zH-f}&X+CsrD{V*hHX0Z5ieByC&#kX%a42dfjGFSEq-570{U~P{ltAj-^G*MHAJvQYzg;gFh7qUODtCPE*jXB_Gt%NQ$tiM??VD>+bv~zGd2iU|*2?)M zi9OZU=E`I}9ZEvp*|~D(eT1U~H;}PS2%K$9D)P&&7|#BtO!+%&46jQagi2xTa%`QM zq-4Du{};3K9$(;C`-(@J`*{-KuVoKC9fp$k#oAhrj*ga~x$PFa)Z6b|CrWIEg>&}V zjQDD5QuB?ATL{LeE{!mW29EWl_?gsxiVXtxfM<^P=G5oA&~};b;YdDv<2)@54Nb3u z_$g+a7iTBcwzsy*h)#rkaV)pk{PwChu=X4scwpXJk}hnkW`=pwC0>GLd+yT&ZN!T@ zFW2AJQak8aY1pQ~aQEG#=>Zu_qVQi!#bp^{B>uah^Q$u|HcJJSd<};g6i;yelU>$F zgY9|EY$W_F!j#PkTRgBqddF*S13B~s7Z^`o#g-K>d4-y4V~jrT~*l)ewo!PwFe4d(?+P1mkTE1bIi~rwm z_QOh7ys+z#$Q#cN4h~WzEtj8m`Aj8!4Oi@GWZO2D-@V&3f^I_=S<%T~Ce6?s;*u>D zFdSgRIL?mK!vWM@LjNlLYv@=I!27zpyR>h~w$r_da8zrmA`#M!pDkIa&z3lcS@X(dCr#Pd0l$dNy6x7pw>kCq%=;!$j||bg0^f zvCss*X+|jRUX|$20Cxx-rKoB=rgD(U222HIaNuFP8G?DB34tKco4tn)?F57~sGc|L zb1c7<*GpNG-mVGM0M-FbRnQpa@qEx_566A}yG3 z>nS21A@zGHnbplXLeZZx{(Xj|`^1;T*Y-HGi;IhIUCzBgn6{x-eu0(}huk8=xvxoMxzF}@7@^w5R+A>pmXg2{RQUcyHB;rub|8f#lC_v8VgN)|X7ru?W`3GqcA?9!q(i|2o{X_4hta`>X%< zr80qpFeOQ>M>E*U{W4J4l26dk=@$%^zr|G zM#@WymG#pR3CFEgC{W=R_OmT!{?uC_=7*K4N3-ZpYw^D) z3@Y7<0*Go3A@c5|*X}yS^Cz;hF*(o09|kf62Q!@A_#;foFz`*=%rlbhEYt%xdmTiO zc~2L~MttZHS`XtiUUZqRE-%-T4S(;J;|(1-4A@X+@W&4onZ5=YGN~2HQb~87i=Ind zWEW0ql23F7zgb`WjG#B9%iQyMb~l1eoiEpG_JctC_u83FFE70zQ|52U5|J5m<2Tkt zV)fgT&2&y`tBJG_SUPC6@pgSFJe{Yi^q%8Pg&K-2{tmV{&C;%_#%~k% zvS+&3d-=)+2*g0y1s8;b;YkzKJKc`}`wm7*aXJ5FlIu$Sd3YNG-D%O*h$oa`$Q_nO zH>Bh@E-o+UH4FSAOFn_kndLRpk)IG67kK)}e<(T!bdOd{xNt4M<88a`KGs8mW#`(z8Kdj!ydA(xKHQt|{ z1eC)>6#8%oc@e*+rg#X4hi|gZXbNc=+)lz+#*nt# z(84@~3Emi#2ch2&7^;u)lghudyqg@MC!+sMl084yUrl2oihTY{-4a9MGg5a?$|54? z7iyAX_q)l8Zv8#tIY|oo_M=jF9&Hi zt}o-4xn)jB`>gE6gr}peX;q?`B3sTqkcp*F<*{A0hX%^@oMuc+;wiCn*j$1KBAXn=5zziSP0sBQ6zqg*w{Np#8D|+MbhtKcEF6$@ItU z3=b3jrs_4rAS`Imhv>283#dDGrcliNEcjasZo_r{r_7D>)|}7Z#QuT-!hGW&A>-Bc z#*HS_1RgkYgkLl1Y{~f!Ppr$(Lvtf1zz{ljIdEV~uvZj*s&p~@Q1{zI3ePGpib;Z# z`3>Y_9}_{9@;QQqtipajbz8@q+P`+@><;X+WDZay zvS@wHUr$awWjj=I-0;pS{xvKTgqCFtuTzPE z?UB?}vlLmq^V%$QbQyzFJrogChtvO**bv~KpSMP7;CbOh?;jp;LIDPo4Rul7lIm>w zoxgt>9B#Pt_lUj$YKH-zz%v!QPiheKx`7x4Mn*>V5Pf&7-Vk1hSqyaUM@RMPx3EW7 zTg9MTtr<$s>PL^LdhB};2#hSBLQ|r{MC*GfC?@v>TE;wi5(HWI1c^hlWWQ@?Cd%j9 zEbc768^N5n!SCesM*v0{xSQW@!6T=Trp4tTo_L5LJVuC`798x8BGk=Quy#_YgphzHBA|M*uDK6u9YD+k_eD`+f9Y^YHsf+!3H zL=y4~2*iXrJHNf>`A5WY-IZzPhZ;TEsZ)CciL!K}uAtTt|3ferA@CiXw+#%ibO18O z&Fg*kW!pAmcp}J;`_(9~L#&npoa@#!a3wP#DJd2Z?;%*!q;AephbxmJ!H~|Wk7&r> zVo)c;dwBxyL{!7(+_^45zG~5LLrHi_5&I0G4^Nq6FD1llU(xT71j84>P7L+!qjDK? z`jeL|(c$w3*xQ&w5c$4$e9Zj(t=6;OE+j-y>`#uQUi%;k{P`SdmavH2>t2?&#hUMfJS>8n$F zA93l%xN5KMIpL!AM%>Xx#g=!AulAhWcxvI-gu2Yo`TfycRyZf!aEIK6c?w|;%-5b2 z3G?o|@~LoP6*o+<+9m2c&d#sJH}G zsl2XjaC_F|b>AV3qhFa>1<^{d7yV|V5t*4W%xprAigbrIHt<3Vd2~FZ3gme3|8D%{QDQwPYb0pA)s2DWiOsByj4K$Bmm5Y%-iW>~souDPu#a z*Y5An63y=Iu3w!qYb^w4iAN4XFsGkiSw#G#$;9jGRmM|=?G7ppP}JY<@idQQ_s>{d ze6#;V(dWS8m@Mcqkn^RHGhP-&v|J2x=8c^@4>`x{*ND*HOVf-gd>q9K zdvOLW5h{9M8GwvaH?KEZH8c0ey!vxhg~IQZZF_#fYEF=frU4VcX-0=@kK69bl~Bsy zk<^qFi|Yjqn`FsS7?&Ku8zN9kXVuXmed#RJJ56BY$MBz_QYsK6ghLr;^=#7&rv!3@ zHTrIPUDwn5a+orhGf4EW_XfRIbcPGDvkF8uQHhBIM_zjp-BpVd__(yTmU0JMzaT;q zOykBwi2D3jy8avATn#2M+CT^Lz1@`_O;*HfP!ek1R{is?J`-rWsICs5qf#dMe<)<; z#TR|$3NGmujA(>@+oYr<5%-DqENl4|rVDt62>Kh+*ukSm+tdw+7+lm6oK;DWp#}~k z05K7=f7%GJ!K&wrUINMj7WR<&?b&kc=4Pe~c&Z>eNG*MGzB7kh5@vG7C z=$*$`jb96M7~=MWkytYVE43Rk?(jC_7cYip1Gn{;tKYvko+cQffycF@bGpi;U?Q5U z2~aFxu|pz`3<-dG#1pc!UbzHW&6#rQv-|2*e)8Qop?=h`z;QvJAUy)2yZ`Xv!`=(S zP0c;IH_7F>X5a2(ktiu)9DIr_o%^-g+762YPFfLcf|lRUxJCJq_fLWXaQ<3MjAMfd zFw+|kL(8zz=HOs)<+l0TnbCW{e0wE+x6$_*b-W&*SoXiE$}D^2jjTbMD+Z)t-9o+SL zf8R(l*O}EB%~0sD!9MD6WBFvfiMrwjvKDyyJc_9Hr46hRlV)e6UDc(`B~h%iORych za3A*b&qkMR##>_t-@PNlxY~QJ`caa5MphOcl_UAsMDj7;LCcm~mOrnmc(3sF7Z3Kc zaDy@vUH4mjmle(RixAf5eRaGel<~x;)fPMV$?gpXHVx*rC){^uzyG@8MCCOedW-FG z4TueVVE-)C(ER@TKF`6l{!azm>gmhX;(upf*krulSpK59Q#s@~S8YZGl|P3>CGDU% zXJFV*jil7wwV5=_mD>648$!YR=uhr#+})|286M`ilq}7RKXxXB-S08#)GRh{<0~3- z;!ufgC@{zqwR}y4UI)#swZ>gD}?SA*LZSBGJ&CNX24aw>vApv&&t_AP5 z0gYs7n9kF<@9rl?Y*lwU}uBqrt-2Iq~QBAq-6u|^P=%31e`Fib>33=9k+ z7$qbH1=R^~We8P)0TrAgFbcIA7MjxGJpn`ddD^2L0ZyPSUVTQE1y5}2q*P6+P7a|h z6yu!7?=LwDjhnc`_7Dk}l38Eza$jan7>8=jNQr%^-G6o0;cOH2vECR%4Q;{ZmyY}uSaQEb1ed^S$juE zSH-o<)JM;1;der3>3=Vj!+-zy^Br4{OT)%XLN~HD!#9ju#qh6t^z~oynn#Yed}rsr zeV@*}DUkbF4hN6?9qEtZDMU^1CkfGttH+D{nm%|%l$5g@Ptp_iwfx z%6(UmOVdNIh#Hd$=Wl_?zp&OKtrC8Un^Do$%xwBBzU9B$REHnfuFa{>|M@uZ{G3Op zes5^@G1pbTYJn6vO@;J)f#Ix_&w2$deHTJL+jeu6721DJ!`?&4xhELb%xb+p61<_f z^}o6_k?>Gas_uQx7AUV8&~J{;=>TL*0gTOrFr?(NFIQC<-A8hs;TxN0=)~RKhX*B1 zX{avb#R)nUWtf!S8<0A|^;m#uOvZg{{l*!Ds-2X+CBLVD&!L?0Lj@boO(bR@z=IKW zT!hC8CJ^(HA`}6Ac~<@5cm~N&fA-Kk!y6u-IXo7Y0%7J3>|L%sSd;tL)pDS~ssPtZTZ7>wR{;iy!9YFINiMLc>T;He!F zVPZ3QHu^#1u59dyGG~>h5_Fl=o2GHx+|1yjbavI~FY(=+y4Blrqd_|KLxqvkC&qK< zq$-FCc8eNyS=0}>LF$IqYB2n!cU#WDi%Sx6tK z87O$+Cnn~>v$_{qDvtHZ#M4n+`%p8TU&=vPL$LGGA*>StL^17iuS$8^;-YoV@mfpr zFoX`MCpiXS9!JeG5}g9@%BDA$YYe5F6^b|+35f4&qp|(UtlE=eNFcZE&tJG&ucmhJ z$N_{&-q*-_gI>(!=QlDqv{?UTYl~Y6%0#%iKeVm5u6{S$UcQWYI8ttB7$;_3pj2j> z<#i1)Q{$IjN||d-&A}&5T0A+aeWvwiGS_#*qBC1HZ(DR;IyI4q-Se4b6-!jT$aAtz zsFeDs6hYSeqHa?4n%0AwTMe#z0>G+AKy4g98WYM5+jE8g{ACpW7q&=+=*H)&7c{;A6qr)3tm(rchYbq`at(Hz| zxxthcyf*Jb8FgSJUPobsJ4%A$@F}yivzu@TNB;iDPxa-uM@;x!4+Zy=CyQ>iULvNI z5d#_e%4Mfnatme$6Ot+$cUXMB`H>x!JWm|Dv0O6u>XW6lHOXw*Rkwb#+W3EeivF-l zlLbIZF$V18;*eIurP(su^-Msl4ASw{th9sBvO4>ylMN!DZd>rE;ej z&+WzkqVEYCpWiGnt4$0t_Mw-59?_6zr}hufzT$A!rDNQFohojP*ICPVonCKL!Hc4( ztq3~Oq)$0|Zt7wyAsSufa(!ah4p)w1liMO^I2|e_{`q(lOI+u$`z9s}xyR4(KSg97 zf0UQwcDF(bEu8v3S3L+#mk()pIrQPdobTyj(9YGsFEv$imq}LNQI(qQL0>3+rq0Hz zw6tGu>5eNiRpg|tjlNPu%o%P5=hD!zs5SV!ww#^q9xeO|VQ+v|RZdPu#&-aEia6AV z|9z;$gJx`;=3_wpk&dfXB4+3%gR*wQ6ASM)*!jO*|FMfI9B3WvP_67;T3O+G!_Z8B z$yZv2pgVyms~NB2eXxjM)TNAQ2zfGI!>@^*f7T^@Lhv390?e^geMRqSBSbLBJ?S+$ zqHJetn~DS4GsSL-Th({-;5VVx3OV%$=@0z2|1AbYwUxr#n4g}#zai9_kpsvVr9*~7^=q?T9G29Uv0al0uxW`4+nn0 zU@^x3w%538R1q$C9twnl%hWQWOh@QTA|iz^H{RNoiu$xT`fy#w4jP3KXn)*PRYQvb z)N$t_yG*^+`sS28;L)b&U^4ZHRb!Xf(7z938KYQbRGc3SrAWno_}&uE#Ty>Vw{LG8 zWs9P+GKu``$-m>NT@J;dR3$-)0SD#Jdx@Zx#1+kWt&I@-4o)#@$}itw)h2BDkcbKb zO{faoaKdT^G#pLpgq4Z_7Fu%@O8cym5ZP{Ty*gTqD5sTwo@FzG2^p1?WOPxvfwHIU zb*OUL{fH($y$3T)h=AT>YpXS!U$eXc{BCtz`Vw5tlE!b{=!5{h7}kUvTYV-YvK??(+-L8Z{(|{S&<0U46!p!7hlOY7fm3<;nI^ zJ8{|m!pzrddJJTrE&LM3=KhP&I$3>JUo{LXsAH$Qu%dPx9c-&ACf=KWoaSO(rLoT|0D0 zJei24-@;el#>@wBH|`$`rWf0XhsnN?V-}phYH3+qi$~S~XtSC58C_>14o=reb2JJTi$Kz5t4+-x*kk~L@E5zBwVU|B! z{U4!v9y`CoKpAhLMPnzRSVB&>t(que z6}VoNpsjE~1cS&H_RJ-OX^FtN)P>=GzF|}7J6tApKC6x|_4vjS_)Q725Nbun->2=2 zTR^F$&6AnC9FCV9gEEaNr*(tflp^8d8}A64w= zM_Mhfsp~Xy!@7L^gHl41{cQ!hJ*^JpWZE4$C8Fg~1I2g6gnc&+X1{Lld5r38xMw%; zA)`3rt_Z+1)!Sbr&cZeO`pBf6*$TJj%hbM91#$CO)f#1Kp)T25kN3`fd~$+*xhd#T zcy8`_@OYmwTFiVcAw&}kUadEzN|N<8(Lf{#gpGVYHgDheI}@F?A~`@$nx;Zeu<=`C zt0kN!xOExv%Dw?T;sN&YFqjZB<2a7`AN4+miFg!+>zmtuD~==b~LOuNj4Ssbl| z<(=Sgl2`BqJcgb%8nn;-oO%7LO$M3ZBx_1bm%wyRuJ{9*OTAi2Ie3PIO~3(fpxGeoRFZR2s!woxxsgu?dA%P zWTHjA>ic3RLmieI8lP5eZvFF+qBSgvrnK!jDHZ88mmzxN7m1Aj(R4u-29b(l4xJ($ zZJKR%|JTP(Ga3x}so7lnA;nie-4zrl=f9)UR2D|vn*A(6n}|a;d2d;zgk-j`nQ9YP zK>NfB52ZY@yp}5EO+KE-C9YNi>HB91=yqJ@W7{uq3#B}v{({D( zT(vvrrpS`XcPyS<^Y`EFQ_WmT;fr-_hmwW*M~eLZzWW3@$r6)I%1LhSNus@fmzUMN z`~GBv=;S1Q19wLLP!FyNbT#Y*pi9Tu*?A9SvgzsRRe-t)Q8Yc%9*8lhtplq}XvBUW z$&PD~zXi|27;33E3=KQUc4E)(0 z0LuD_j|h9j)^H1)JP_V?dvX( z%|$$I6T`z=XKE}M@eVx{vr!aD7LV$#T^BOa+IBm4Gn#9$m9e!{TH!+}H8?oXBq=FQ ztq7xv-+eE4QPvkiW98pb^|`|65-7ouLO2o#P=Tmu)Q`czWVRlQs>fsb-z%R`UdYK1 zaCa36k2J5(ZYia-2zHE0(d>U}P>}7{{r%ZRGA(XKGytMjR~eXtH|%ImGJa<#A3SFIi)ZDyLYc*jHd<@u%z~irvOlr{Q=+-zk46#)PJh4w^7gNc=-# zW3cP1uSgak7#yJ}j5@wog!qBH%E1H^=*>NswY3$iR^E1hew;DJ%R6<&iT}B*Z({iu zhkLnUZJ}Mc`k6YOK;1zD#eRDanLFLJA>YF}6#I2%J-xU7SY+H^A3t0ZcW05TrhZqJ zih7>{L_<-t0Yt4A3ork-rzCFjD}E!-&doJ`X<@VTS#3|Xf2|*3A*uD!zFizA_;9A5 z7$V^|`aM?PxKm>0)$~c^1hC*9BGN#5ad z4_;=(&7FUrVjVvvB#m3%g=wkn9DVNKS#{pXUHkl zxx78f&JeJ(eN)Wm_O5RYZ6u5Sgy~q)DEQY8t*r+U%Gl1=InM(i}Q zU>+ioGbUMyVJH>v37Ec<0Nn_Qfx~!smVj`)TWYJ9-v`&?BGfi}v1GhKYFigHx*#`* zQ+>@-%$Km1S$7Rt8w=V{;~$~D>Hq~b6A?^^Kr>6hP7z{LTJcmt3qOXp@G+zrCV%4e zPoJMRfEXi2f%mt}jyNb{J>Tb2lj1ph_wrm-SfQq4VBkWf2_hRjC%)?A~b4xJ2qN`Rl7edv$fZSZuUvx zzMY+nTVETV52m!W-Q|DN@hpaTs47Y}CFv5qx3Dnhd2qBv`gfp(hrhXB>PJeUX?64H z$jDcG%lr+Jcg~i-{jMGKdUi}jM|$R`*~B=$+lNk}8Etqzc^WA2IfviAb*mVBJ#-19 zxtE&w?(&3Mh8^SNBzbqzIsKxIUeVM>f8*5p)*^+>?$mK9FRDYSnx;wXDaS5w*xSnU zOfH!c@7s5x`@0TG4lpL)cLi;RaXdiuK4`*UUVr+gbQ?5oe>^Dll7d!?V{t+~dQl_s z9+#nE@hN*t$=hePHM9=M{I(>&Y#Wg|Rqf2&zO)p2Dv{CBPH8)9d+UQ|EiHlS=2Cg) zWTKI#b;r@c!H6f+T5#|pzcn%io8jjn*yl{1nwVVfd13RPW6{grZZ8~`<#Xq59@J)& zNo4%89f?W}f(0hp`&8EEZ2PWQpSL4HTZOT^T3ht% z&FP*Ke|pnM*?f0pD1ZELn!i3bbE&Q6{S(tVd(DAl@8yfyr>-81%>zlFYH-{lP5z>` zQ z9SkT|J$&o#B;~HV?f0RfA@Z^2_(4p|aSAZoeW#M(eRz*{0LAYcpX zLP0%Y0&-ps4vqj)OYkd2ItO#)8X<atgKRxzpNHiCa)$EA;qbK4A&9rM=aJ}e;NCz=N^}$`R%!mTQzx57I*Ja!^yWS z2jmka?_C@2uqHNYMSVLetD8;ggzL#CC+Pe znfv~%Op6oWp``u)=tqjzgx8Bi(F2#};tFZ9*z0Y%$_R49>E*{jWfl1=1DOTxnLt7zP8^(K`?ltg35 zkAHIZr(pb-FKp^@D&3d2ioyUBLlE;EGsmkRN=?Dai;KkxlJp}({x4KQXv;(<8NTS| zT%_z^vis4v8F4Wwgd$NhA&@Qn$a3~WdgG9N^w_-9x*Ry*gaG?5^}Nua^N(^)j>yK` zIhM#?tDQT1G?KR~`ug=dC81QMA+ADz3pWFEzX7Gf0TU>R`TjV)B|HvEIHkdDD`U?7 zeRKJYNa}UUfAXzmXe%--dYKx>fy^VF&rP`SJ&Mc~GZ5}Q+FK_X zS{(+iRwm~N#2;aNAU%J6f#Woz1n2RMA772AS;Y6^kz%BUFWo3v`Nc-lr%&^Xw^JKm z)4$(k_=X9;=rAuss4#{+N<1KsqoS-BnjSA0njRYz6jTAQ@Fd}>?3rKYCGd&p zR%k_<@cYv&>JA+#x6UB+zlUgDGv_G@5Z7nW&_y<2Vi!}1*25g%4gQV)IhkX*388)i zHq~YrezrUe{_P%v)mOy%t4P!L??*80Q9_mo$bu7fWw@0;f-t9tuSj?HCRip;q^J^J!L9oDDUgzQl4l80DWTK)e`b6>Hy z=Z2f9|NBGZ1AF>vJe{hs=zW@-IHnTQ82@$=;PcLJ1*dM~bXeiX;&sEA@V^=RMxz zc<G-|sxX-_JaE-)f7h3*|>UiA}6m&sZx%Kdl&P?j^`nnm}y*>`( z$o!3Sa;LB!5G!6#f%XO$w7Pauu8GKe<$fb*nthL)Sl##%pERp4WOJCB6gR`1XvC69M^9c;WAiKL->0}knxj25yI+I`Zoj_qweS1SR74eX9b-BW%lQ%( z9>z?0@6(6%>sNmLg1?mCyWuX#^QoW+6v=JV5uQD+s~Z;J=P#yENq_}rMcvQ@ z!9+5|miHm&HP1W$Jv;$vBGc~Op5{q~%m1z#LWtbLM<~VX@sConJb)u;6YJZk z=lpx6K>6;ci|_NgS1T^)f7A__H!Wck7q&2~idZJOq>tR6jOo(gD}SE_Y>=04`$@ zNtPG}tpwlTsE7qTM+4QPdr2JY<~8Qsr&K5u6q3e&&ui{pdUQETQk0e7wd?JD!+M9e z0_nLfGHTE2EK1Z7AE0&X8C%L@IfvUE1)Q4w+SzGIs+8*1LArIx;o+-)R-Jm((lW?0 zyMd!Q*~c#P-3rQ&c8EXhaOMW>i#Falcl@&`DyW zh74!i280hP#U@gOi-4sU*MHEA9I<=y3vqza0!J$uy3PmW4B>Fr`kmO|Ja=x$7svo<)$c-2MHCC($W6e3Q>7$Xg-EdtZt&pFOY0N&h;~A2?q;}D3X}m9C+lK@@ZAz!h zn!g;4jd{loX&U)l>gOK+hvMSGH_t<Ucub;E%C8=8x-&#sjo@H+^RN z)#yhm1%EZUAI#DZ4@b<=os=e@I8qkf3?p~+;nt@d>AAE%cd9PKU(i-iFzJq^rSYDR z6B+MHP3XD=X&~M{-{hN!s`CgCHua`o`agWg-pj@H1(6G%GVu;2PLG@jxLa#ovJ3pW zXNkpKW$>1tAcFFidehh2+YaCtY3?sz{ul+I$%IN62nyyt#Bu%5a1?U$pJS1>e0qn} z!PQmfZlgCD3Ig|^U{boq>%m5Q{<_as0Z}ulQm3~i3?lXp2Sr3^=T%jwG4c~D5$5(~ z@oPW7zcxQ}mt7+Nt(kT8#kWVSt!amvw?r;v{M(9&El*0;=9j#7F|9Qgl2Bq#-eW8g zj2x1|!YMr$H{Ae*g-=i0b07D(<&At{|9t#hF>p$JLTy@8>1qD$!{>4z4w~;2r8+A9 z`y;)BPV%;V3m&}o7@5ds-}jGnhK(z1m@cE}21uCGTqoybNVyUak#d)Qq^Nfno`5F%^1N={q&nS#t zM4ny!1%*9hD;oz#93ML^tlj9dZWbql< z2S(@4jrIWG_4@G0Dm4O5+9slxin;<>Y!^=9SpRVUXmo z7iv5xF~EGEd+fT;qRu(otmk-ug!QxYHPzK^n5SHFC{y_4zX}LUb6l}Ir4st3v)J`F z@k)NSDUc!-%dKr6IA`P$_jh_XuQnL4%}k}1LPl3dA??o+R)srxgRlSYKayW~c0gJg zFfWcXS~s_!Qpw-atFDYm5zn-v$ok>E6&1yIww!LYImX5CbTwk>#`^l`5mi>U)?GI2 zygY1Xop);f-O}&h5m1{NDEX7GiB<*=q=!%JY#-u1L?&^4E>z*k3Z%uS|NKK_$zsBd_xWl=A z-K&pMWu=@Hv^4?qjU*J;TYn6n28x^L2mk}2VM(y-tIpeDNIxbuFY^#5Hd(3S} z&F)5&u*4C=g6fwnEp(eRP=-e3}^4o3zqae&Ocfx6Q1=E*L0>vowqH{x^;?i-fOI9lwsvHl7t3uEaud)w=%5MWRN|MiNTh`$UO2behha9=AR; z3R)kYDu4tc29jT>H}cns>T{%AA;aPTo_B;HKZD5q5WuWmsE0Zq9p?}zap5y16_u-< z1HX)rP;gwM!Yvk&YP_$kKbzOB5=RVSoU3>Hxc|Z1InEZx(<3d?fA`o=P{(N$kV^u_ zx^fem;8)J$J)g~Ssk4Kep&%HRn~ps1p4tr8C^%wRI!r+TI^OdW$Daa05~@%Oo%HWZ z(?kaln5+~Di`s{8&gNo!HZ3KFE6+e92|kJzUDh{wD+cu0Mk)+AiyDg=}dWNE@bKbIZBMpR*bmF`bt}0=-qXI81D<>v4CNQAaTCf z#3mN=VGjt)3Inh6xH4D6s91yVN#FiptU>AEXI7qHmL5Z=tvOL!Ja#NL>frH)!8M-_ zdZ`_ez0=V#0iT;Y;DDn9tW;ql(xCT%*gQ22Y?|7E>}aWJ`DdtOIZ?3|nBQ3`Yo8`H zEx)hs9_PtSi#0I_BL+&DK=LF21|=tODEd}mEBMK&tBPW5MHv~BY&o~=bN2M66AcbO z&e0lpEm$nvhg~5Y#-O0Q0B@s9cHPg{Ka$ngYw2r~pc1CDsd-RdP;>G9qX)t3A0G_7 zd_j&!GzFd`HNyMe-WV)5Q{aS<=`b~!A!EBR+ebpTtBC%F>7F_-PoKk=Lt$Anm3ii$ zvYzVD@prw&;{n^h4**?P?!O-#F(b?tUg1=@E7djIKX_i&Q-FDX$=xXMn^&QiO{}6Y zEzMsL5q=2JGsm?mN-rYF&p(CgQKL(j1VoWMO!Pm0gzbaUT;OFlqms$~Pjh3*)AJ4! zUE&sM9X@U?7Z&+z#Mm8dZ~+m|D#E==)6!n+$kWg_Tn1%rR6PU4$ZGg%E~(6r;~Mj z9jsKb+>;aPI{EPA%F2Lt`j$*hKbIVf-+04H_s{JkuglD(;lGF`CV#*dpA_Kle{yV~ zRE5l(kA);x9BI;cw$v1z-!e{uxF);`GG1YtM1phoUpSt;|ISE z)6kR+{V6k8?R=N-pH=rRKmK@Me)I9i!@9L3zXZ=! z1^>5x%N^R152a=j@9-jg@fBXrBVudZ1Q&a+Z-IB2$Z5~4F6xSewuMF6?Aog;PLh*H zZjjpX|Fi(doiTi102#%U$IQeO{OOa;YDM0)e8?S=V+)V+-O_TrS{^ z@+`0Yo_yFp+K^oH0u|Ng8oi=O(+V`(eHPE#{Jl|2N7oJklkcn)r7N6d?8qdFLfYgW z?=UBT6a>k_2XC8fZ`H}Bu%5|2Q^GgSfDsYt2AUsL!Z`3^)CF}(Rb8a0u@2fd`~Lm( ze=xgn$loEgreYuEeG9Q&I^3%OA6uu@x8+|L>(7E@c7&jCGQD_PIR+WtUdU`&^SDBC& z&`3-)IDg^73^p{nftNehG*AsSn3kR}ekst1KQl-^=x@_drL_{Xvf+JyxB-9kO0?J$ z$t+?z);;MCNq?Czz7(VVL#1Yn5V5loJ`r_Km}Q9l$&c#l%H7`>7Mr+xdxwkei1G?i zUl11$;gTcjnXslo{S%EEs(hsSb-j9}j*$LjhXzi|ZFxnv4a>xZtipX(9{r~l{NY3WO<7$exyNsY9~zR z`PldQv_s()LUh>|^qfK%lb@55qv$*&gyJJCs;@fZxH|XOWp(8+1O)KNr%wkgj3+jX zB;RRPSKryxxFQRh;t)pLb;R!fTRmC!_(OiKhUp${+2$ta-|}_og?Gd0oC$Xvwl?f| zj&a<)+`oj;AeK{>7OqGRDSPT{lU9==BU==X5Rr^yvsd87cu#CgPm@w75QL?T@6F6b zZJoL;)wI69`#KfFE$2C-Gdml02k&3Cyk&21Gw`n5<1L%$=;&T)EsK+v`o3hH^F3B~ ztkEO9W(SE&ua*&3_-{RE2AM2^9)HOb($Z*fi3uM%bn3^sH!mCL@q6yIyLfRFkXd$f z4ZlP@-!$rjZv1(WqZRt0VjpwyH^-hmCl7HWutCo412@d6xK2kKuUEqT7?YlG2j9A@ zo127ko)E+5A=v1R6RHa*{P~Hg$D)@zG$zvJ*^5+CWf?>^gF%_tPCcS`-=s zSQ=3G7esH&FytEuMQ^*MzL@D{WzyD{Sa|pTA@g+Lc7pUZ-ai`uz1UU0CtrwIG-kA0 zM~C_P&$}P=O<1d(cAuf7C-e?nz9$uKzhZpfz^|h(ZMxs}R-?l38dn>~@G6k9*Qk<7 zy-h{b8nUySEi{b*ams|X0#{Adr_Av~re5W3r9pM&qLc+KGQ`boonxT|1J2o4@VW)|i+#=b^JC30CovxeMdILqav&lG5 zuhh+dJJ(MFi}#v)Gt;1-#K+G+iIhl8SCOnjsnn2lbVyI9-M;Md%Zk{5U7s@tQn1hOh0oj0yacyEbUth2_P?J&Y9%fIviWK=lbvvyvP@M_<7KY-d}L-C%E(rncvI8UFNjNL zv5p(=DHtW%JK_&muUch8HTNKPhU&oU&$37FRzw+Tn~$=IcHMD#e(SP_KQgm0S7aXP zuz2jc3qA;<91JL)s<)?*UF?KT5=0Nhdv*+87tvL@9f&KcS)UH0QY#eHBiD!xj*Fq= zOiNovU2jOGX|(kms339-n7C#CI-H@j*oNG<90 z^FRM*&+awasB|YEmcI=FU^HbI0v$q#?gt=-^{5XC@%(FSdwV}5g{9HYb`c1MtUD-R zTPaL*lf7G>mlw!WVtOXT2$tg03@^MY=MP%9Y^ znlUh)&0++`-Ea$)B6RThsX96eAs6-~p)6pP?A?_4l$&NfmatR=ChZ9_&AFDU%!x5Iv3yoUQ zFmAkA-&_efq?vnKFJgYavRz4$o0*ov;_x{eCU_-7th7rN3|S4eaz|m|y@sez?i2p3 z;2GafOl0s23Vy*d>o{7KX9C~@{VC+|C_o!*K}|ywVpVw=35JeEBfEuftmyK}R#bRB z`|!cO@cy95&Ij!Jdp1TYmEIK5P*Z=>{EyofU)(o<)+yF^umm9TK&mG=XP;g+`G=sK zn#jklgLZj&g(X6J&t3P(zxF$}%LgfF@1f|(4{$?I#ORZ2hg$sCM3C;}n=&$vhC79; zW6!JoWkvnt>%w^q%GWgyB=$Y?c6sVbMw#$NP$+VU1FrdzJhH{Bqpk7?E9ZVc8RKKy z7d$>Okt#iW8c|N5IdezmH#H9g@(pb?PL0cQu23=F_4magi*taI5DT|~Yl{uZqa10? z*2F`1%0JN5AyYj8q=>5mwRPR0|fK-Evqc@<>p~1 zETli-Z{novi)hL*Bz1=h(H`@yk{P6ov>&NttT1ZJ9XVAx{29!?BEq@f&9C*L3jo8` zEk13>y=g>~(VhPuH-$Q;`H8@nLCweOiCdC{63-?j-(e z#IYq4Qs497GN9IVg^4tgjaD5Z3l|zf5?|f0bKN4AMFe~cxkCMSRCJs!l^y3-OipL@ECvS%aitGm`wq(X3g)~%x4nD*F`(rCz#CPUmAvTgj+#Wh1xR(X z{q6?_eEJe^o01W8B3WR$K_}JpX0v_T z`K8h{vwZ<;&v$+=_~p!x?0x=Ri|wp-;3GVDEeN3d*5I`JiqaOfdhLy25u=}1-V;OL zPA7_*M%IX($}<3t{vSx(NSMvhB9Q7WpJgM-fnht|Y8Pj2+f=)ZYiWpSsX8tTdP2UC zRSMr+T}i#f>cA0}g@c5fR1e#U+=RXP-HF2%wL({5{<)dNw?@JQ+~E-P7IFk_w)zHt z23zhN&bSWaa?@?Ix^jzhJ*-2o5Hapg=E&RoD*_|?TMvGnSLucXLH_U|);bk;$-s}B z8wMG@EY$S$qj~0Ls3X?4CzAlwnc8sZX#%n+x$7&Xb`B{r8OOXdrpdI0iZTZ;ej9;yW3O|c+WBjvLg zP~rf%M9BXGI_17}#y{8=lx1rV+R~PEd4JEjR>vxbQK?XDVX9qLp{j_#&PMuoN5w(F zWP(5p>0sh1#(_w{=txw{Lk{s-`rt&VY2ue4-(zcn5*RQ=jxs;0$v>*o>~Bc;qTdQn zKYqqw#QGLop_#x5;SQmYGnw{XDu$&a+v{|H3gVZ#u5AClN-IJ^{`!1MqDu4At5>_# z`iE0U6)eQLx%Uko6uf=8>_YFm*;%{a--oM~e_b4ZS6;o5;l^}rNB-i6K(oH>Kc43> z==ram6;f1u{o>u-5$n2W``PtH!-Vpymb~?BuMDH2y#D-rCc0J?A5Tm{BggcKLYaaM z@qtY3G-W%5V~mXHW`8&JjoSO}k&KS1D0z$Quei`#(o}JqA+bG3Sve(j0mFEgq^yIV z<>TjD@5GHHc76s;^I1^>%4QqLIzhJ+v1{Yn%B5qPnguSm860ig;%{(qU9o5+#y@<< z+6dl{91ePvil#J4BL4&&b}J+*4b~r@m8}%%$ns7=*TAH{d^C7JvJ8sPu5;pXJc->; zM1@Ij0eD+Rn~hM(zC=DJdcy8Hi*hn#z0|?SjzHG>_h13r+S^ZY9CObtUU=(Tycvn& zOsw|mi{R0=NggI$Av0;&)yha9ww>-pRZ3WI;?)iXVgs)MiNo?a543nFDEVfpCWYX@~64&-j#)2C?@ z`MMP`{GLU8eYRC)yc`F80KfJ)b?a}O`In*ka&|>K6Fj!F*ZNZ_$jNV<^qB54ikXJ` z0cLr+%#{QG^pLzdK&gB^cw7=P^uI%JZq63C8SRUH{phkj5aI(^B-t?L#9(gj#$&wc zLau&ORBZ11NPLarkWrC`W8Ix{YFhu#-s303)!gxHsN!S8MoZIdB_Y{icgC`%w$EuL&$;u|xUoHv?Mk3rN&rHye zI#jzvPPN}A0`zdO(_iYlw>)~n@vO*M;rt8a<$G={Se$S6WzL&?nzuuBAlJ70TH#wm zLcYM>g(OMoLvKt@;p;hsm6nL~mPnl{rA9;c#Vc3JhH!HzNi6xGQFZ;oq`m2o~I3L_~i&i$;I zQ^$2@Da<{~Ig!!#9e7_)6&L-T#CMM0esamVPrVbDsjCjTY`(Xi=k;ceqPEogDoOeE zudjp?etpeQZjY!UILIInZV(dn=t}MOh}u9lxLBTpLLMyC-u)q0g)D+{S0tZs3hNWg z#`-%GPk5+(i?3Sp@RByWPKIs_YG#H<)TBJRe2P`wz5fV8Pl3CcjDI&_A|D+av&Cd` zCL>FCALZi52d%1XLMF;=il;M10Xq5$2Nx0QE>nD>;b9^4aC*$G`5)-tY(Z#~-nX@_ zaM;H@(I@yJL*aVGTn=+zAZz$r9f@Xpcs-Yk5o3^NTKaQ%S{4_sMV^7Lh^QzRhcqP; zL(`KNa(TA?8*j-OZ%zpj>m`u-RiIx8nN^#N7Y#FGU8yCZqG4z_`_7>UY1Ho5T+3mk+CeE&j2 zLqkp%d006*e!JLgrF6F3H0Q8iAG~*Pc?bQwh37H@qQwldC*sthf1!Rnlf*|uz|kfN zEB3h(lahZaPVsAxLp2Jn;XK;C=HG0D3^)`$V~z619OaN@y!ogTyCf4cGYJ79G^Ze) zVZzqiywb1mneIZ%1(tt165209LmdyEP0Je{u{ORWF7_iTM-|klANEx~?Tfp(j;g^3 zsB_}y*RKM;0Rimd9RTXiA>#=X{Rj%xYdpTBrOThRJ#1FnB_Txk{6(A8GOnNnU{a>e!;?JJ>dz?bOv{+SA8Bs> zW>m_}uy~cU^GEXXyRy&Oqn7ooEr$<36kc7%X-x%H zWl1l>owC34@<8hjJ6Kpuj7~^uYHAev204#jIaef+G;nBj6y&4~cOL0zFSkdWqmJEJ zc~$T@kxM2rv*_PSj)`0TQna=rwR^*FJK$LAWMhM z*`9YRJ}ANd&uDeY;Ff-`_4nwJ2)7n2P2};>(Mcfsj2=;kv=N&A%4=t*9xm!Ub4JMK z+IQAE(g3x485v)i*FWq=0pcqM^GgvWL#!R^Zf@3MQRv@|rL_)-^Y1Etrw3B%IuwPM&1DYP|c7 z_wiJR%`n__UkKUG&I*!}1`^SqBk<1+ka>n16`!H7xe74S+sn%yIZX9PeKtCM`t&oa z%2eod@1U3qtfJA~Hk*5NpR~joQbn|lW%-yiRCULG$}3*ph$)Lbz!;w9N;r0QvOaS~8eZVX z&DXwYIO7&IOF7L}1L;W@=YBh{w9Y>U=h%&IU*w>V@J1-~eT#CR>^2);^nQFs1G#Bd zRDAsPR|5lPB_<-cg)PK?K%YTugd&>Ph!LXDgD$mE9ry$)dgF791Y#?m&-SIQe6Axc zrC0EI{oM77#@2J0cfnt0lizP{t-T4%%aOz&Pep)DM-*jW=7;uTfFNEBUoubKVBL9S zYMD8Q%4)5gBO)L3$f^S594yol_oTpD62F(8HS^wy3}? z8=CUDr=)l0#_M9F)E`|o?wJ1w^Wj=w+MS)nQD!lDPV6CnojhhBp(BO^LfdsIiSI;x zCO1~ckeVhD`r1U`%s6idH;nGf$ozJ18%o4mya~k@nD}V($Tc^DSZH zXl+XeE$xHs2q7$0q7f8)+5w|~bZ*2biaQyR*9XIQI8>u`6Lg`iD@bZ;z793_fAC@? zPQuo7C-&pFv#nnT9&Cryvmu6c05T`B06)L8LCw2&N4>wBqSGto$NpoKWOc!E!Br%T zhZ=E7?Vxi=2(SVsH8(fA9A&t#C%$d~WgGF*he^?ryNOMmH=QuawJ^@MzTx9lm>bf3 zVy|fE^b>?25dF)^$-BYPh7-e70?oCz>aP|}?Ar6(M)FhRbIxB@&Hl@&R{l}w4wwQ- zPpo-y2hj5Yuh^F2!Vj%C+4rL=o1w##n^`wxOv_775~yvk{}ZoSQZh1%prD}Rva)9hOFCEk8yN-;eDCrR zuXdk$p1-Rb(Xl)PZ8a5>aKau^2)C{Y3kh}kc05>3J!M;4HqPe$VlHh zd^^w;$!&fLV;n7ze>pNWXzT1ui&>6XgZFK`uJnq713xj|;#~Db3b-k=x3e?qB2-oA zref$iXjuJj0WGt3iBva?|3>OB*?Smf}*<>=eug)lLHiEV_rM$&%XsCmdl+8NeV>s z{zT{Oq@16h{grxu?;_VuS&ae>ukx17h}g=K;JP|lFz$me#48t>ktYCy-=7QzD@&3uRnfMb1@&G(sf^-PF6PUjB&JJM z*#7gg+p7zStgIyqEPrG04Hx2;Gvg?~=Ha1=>;2mD=a)t#bufd-&@n^|=c-7S9LN8W zNbrHyBSWrI3FDuZe}=!;zP|dEhS$VLp|YI9H+)T2$#;#3JkJeZjCjtAXUAq=&#z%|DXK8UYXsbgBbdwK z`x`g*zc()~D1%Ko`g&++H4Cu;ru!x#rY3#JmL?u?%b*ISdEI=q5ikj>B0>7z?b}qA zm@g{$w7u=ODKz(u-K1yb^dFwm2W6&5veYq~6O?@yL6&EVO?(Dky}Ei%vp#1R67htu z&%IHX{2c+?2!*oiOi)^xk9N}^shu*bU1H{{bfs027TMss(YL$H)tMK&yEoiya`Oih z4{6EBX}WvK1Sy=%PW$FnyHqQ7ezx|i&g=t|q`fgwG}_T|vZ2_-5-YdXqHdI$tll#u zO;5M@^DIuh@bqCVoq9RxzdK`>U&g20dG9u%(SnSRn^zoc=hDK+kj!70x$^mkgC0Xx z%V4u_D`EU*Hw$#_!3Sop~B8* zk(+|c$hcUbCHkEb92lquXhl$zGylHBs(K7*?Q7rF_x@33>EdW_@>>~&avIGiTnA6H z1eup#VsC0{z1-LOWPD%I#d~RnlL4~!Ts$mPtdG-5cY%+chRit<*PI5Vi6XK$NrmP) z*x7GGOo}iQvNP#2G+=KrKhIzxFB@z5^~wuQnvX8AQky@$Q`mR+ z>`FM^EDt+_!8*zjHXf<0gaiZrN6wQ^Wob{Gk7i{R5D?IM^eD{r4d0#f%P^+*pc17l zz1YG2^$A>8Gc20|x{l8_R^N^v7cnD%aGYu*GkW@UdfG(4{`$}R0gdEicOCY^eldkm z=d$OEv^8hi3LXlTD6x~LPx!Cq4!8~Sz6kK={q*4k(HN|MPcnpr39wvGdwctsnROsP zBN!w{e41OUs~&bDSb~U79Xy$@k?3d2y!SsS7;uxGuMyu3*WhuF7u1}krDnz&D~|?* zb}M-aU3~i{Ath5xwfF_Vz$4z@O=O_!>KI{nb!DxMi75zn+rwv{CR->M4A!1HICj-sTiin(HtH9Eg*{=ONo%t)0G{ju&H|}x zx#X?%lws$PokWUT<&kN*#Sw7d#8!G6$#c}9?ha!$4y90(JY7H1Ke0DhwcJ$GY*i6= zDiHf~S847(5RB`6@#0O0=z#-URv(_$sjjK%x&vXx=rEruW^S~t-M}!whWl@yl@NMn zmdGIPWg(yX3T;v*P_CsB_qLmDt;Z$m?u|Ei3KDn_Oa~F9^3P70hyJe1LH{(ZbHmfb zy%tXMy&F&e&P&4U9nR2xt|hzX%DZ=W{3xPl-VhRX4#lRm?QF*!h>6Pkn5A$^)`Kte z=3n#ip9|v9j4U^miS0o&{I|tvHILE1J5CdfN@6#g6G!V^%zpG;;j1Lr^u?Y%C7I1h z9#U8~H+RQYMo#d!qr2n@C4ZR{si{yZw+{^+>-nHo&Yw_U(o*y!X+~QT!}(dLQcFuTAJdOer{7E zLiw;WHqVtFr3V|nym|1Jq@|sWhG0nj1Lj{8m$)I*p}a!{5HWERBwB{?^CS~BE`G1n z{pFd5r0jpM3@FVaA)j{N@^L|SKkJWgJRMUHuii^#PsoV5%YL}^nL6EmZtgx5D!@A} zf%7BkB{p<;D4x58?-Nv9^&hL%WVF4bcN>aqP>I@Na&l%w+y^hB2;Vs2!Z!G`kiGPU zWk)D?fs2rOR#PLgxWCGgxtP|&(-v#*UnntI1kWgE7xA~CKkT~oQxhB6HT$Zn+%LBx zOttGp(Y-=NuF^ICIxp<&S3GF#EnnvnF1Hm@%JI@7&jv> zZ`|Rbu6-zVu{-H=ORB_!kEmEtI_hY!{IP?g(9nN_`rZ+{2wzO-$iS-xI`9c_hx_&G zLDj?Lo?lJg2eA`Qzhk(3nT&A0-Ys=rUGptnx}2c-_PrzaMsG{m9aiI5ek6U>?>ITE zo3V#WW|O`C{7j})@PGf+Cdj5wo^L))8~oqCBR<OZi z$RPWYmw2X_nJd+XG@3Y*c4CD63A5^ z%CHohmeyg-SJ=YM%~AbnQYdS5cL;fZ3!fwz8?Bn z$S|<$f47_rjNLUr%CKxU~j<3v-w`=;>}=d*V{cth$*$?jmX22v&w?T2Gp`&Hz zS1*bprijG>(3a;&Ih-#4>Ru3gW9Xsb*^geg8B$z=ywIT9fV);TTy6WEIBnC9Ny}_| zpYLi8WVlJ)xVU&kXtUGOeh39adF&BJ`AC!~3UZqjM+$&$o)pookIU}Q#%s_Sw6=9(g4Gmr& z(G6s z=Sm?%JPPi8a-o=Y#DUxJGMkU+QJ6(^s<+y<@F^y8VjeuPGI9e0ECRYG*w-nS)&(C- zigfuvibm8lzrz)J@$r=cVci0amu~{OxJrx}cNM*Ka+e%_Grv|OJ>$TI$X z%HHlSGBRRVq|K1fw}@S*YQxAXuYY5*L!VD~u#q;o1W)k!Fl5`?y}Pv}0nW_uv5tAk zmv}BYy>l%$PoPSLpq<3mfBaE(H8VKOTaZr{AgXA1{{%|bQF`18IoK#pv?A;R`L=x= z_X2n7Ue`G2z{eF23_Ta$F-!~)ODJ>#2u!P9J77nzYPFwpcJ@$PFI`QG61j>p&bVHO zhXwihNbLR(xdw)2jMuOCa~^%6)DeHVL_qf((V*u#84W;;bEL?#-_~ocLW=36zs%;j zJH_Fz5RfKPwsO)lqDNgXi#N*0{9by}`R&dF+D3`Pa@ARLgq(c&zsEzOEUMtXW|5!_Ni7k!2<7FbF<}NK$q#Jzt{F&EbcA9#U{jfd! z{$*&9)ryK#9{>7EQo%RD!Qs;LgVM=E3On1z$^$*oHw52R3cfAxREBy;4EYtQ&NAuN zblq2&aY>Y`=J{F|oBW>1l)D%!JDVvTry*?sPSq}U$1<%Cj>mNi`Zx1^;L>w{Wu%=`^JxW4^!u=jary=?wf zOPgQzJw8F(SJ!?X=MQ%dr(!(JJB}?~&h@=Avhnw){rNgGa}ec_Aea>u70>ra$Ff>C z`|WOVoroyn)GfXWW4Hhb)BYm8?Wnxm;6AF6vNpz;J>AXQ>p``@auMdEq)6Jqy25;we;rmEsJie8KC_=Y1H;*C)TtT0^g`uGIDBM7L8=Xk2#xfIC zT@$NuB7j$3fD&4dSpWlnW&%;?5cR3Jz zO-=6teh`f3K5j(*@WTdL$c!8vA39=mn_u(C1+*8$#H9tftD%yf0-wHw5nISnf-Yu9Qf4$@Bh}Ef&Q|%7DmtKkN z&w<#B{zhA9&$>A&$^{S8YH=xqhW#Ob(2kbUAKTn6ynnXhXwf@Vb z_h?$>ku|XfMCY4D&5aTk_x{9$gj|CARHA+pEii#hJc`nR3w0xE9UO>ke1Uyp1_zf9 z)|F-G9@q((xLysM+&-h^yJVAr?|*?SPQz0h1g-d^Ml(KbPU}Pe(rRVWJ5j<_9d(od zH*9ad(0+?1-)rJrH6v4g>ifnj+Ucn3EVAfxyY_?A<&KJpK>_%yz(1Uw@);R$xf`#jC>?kOc4BleU`OJUgi>!wIl0Pf_X`<@zu?!}l$+b?D7JQSVD|qu zLtQy(MhR6iY~IYQva+nCS{G>zA~<=9A7pT8mr{gSJn;UhH=v#>S#-iX`etgEKPqbO zNjXHj&-AcyE8XPAy@V>a!+}lR$x-jksDgr=DLmI*g&(*V?Do~&Q{ezxUn}v`AXFUr zodTF-XaGO4PUvSwKG9A#2y%1!VudUjeCQawLM3a}*&I^R+Pbf+4*n`DPlSpQl0hTD zG0v5-%j=b|Z&e%xsZGjpYP`n5{e3lARb6@YBVxic?xKa{x6jt+|UY%MCse1XFnLP^cDm9h;dqDEI5?-pu;)o&~xXh-#2F4^Cqx#iJY#d_dj^VZGW1{*N4B-NuN6R(xKTJp^8nh{Il?VW8B zDk=_oN@9EmZ216{2*Db4?r+~AE*N!c+&EQZIgXHGsKZPuB+JAy zGtWCZ?!WmkpuaCFN{#QZ75U9gil?#kPUCX^aH>Pd9P{6Q6~Ckt9rhyd6xEq4A|HihQ_heb;_Zs8 z0yRi$z^BAWlNUS!sd~2o1=4pC+^4B4TP`#Hj=22@uQzq5!F%J0m*M^s0~wlcuJsG^ z>|r(8vU>H3-*5Xv^U#0GDQ3}UC<0ryqRDJ5X*-D-L)KL`D$D1mf9ikPWG3wf`hdLE zqwp=z_%~Zga?pcpJ(QH1p;N@X_C1m2yoXfc4-C|oZkp|S>NWQqLtr{07X;1o45|Pe zi8R77Z@=1k9Q}8dtlZq0{M4Z>V!i79A7KmfCRmbu!kRx|Btq;vdf5l%!Z3bD+LjnE z`F(1JeU>%$-NuF&o$AI@1ogAe10}y?tN6^Q_yu-OU8FO8MmLtHWx?PL8XFqrifTPX&2mfu&3;x=V5ElfHDwUCmX*-BRtF0C#(ju;!YPI|CC*c`)+b5x%F43E>(<5{ z^NF>ej#uf!HQ0$M{QuDO9^hQ>{r~vKDl(%aQ7Ngc2-ylz870X|Mn+~7Wn_m!vO-j5 zRzgCN%|WtvL0a=Q0sH?xz?lo@6>2JorkDeUMd>qTYOpRyhQvlu#Ra~ z9^>|t>pht>Sm+OH0%mro@2CoF&ix(}|3*S?g!SIVNacx^)F{>{AIH}_?YdvT7`28XRL4G?H<{y5i z%jSn!|6uZqFmI$2;U!PPBxOcgS?=v>NHP=m*+E=`Q+P&_i@Ec1W@ljv-V2_PZ_o_^ z*D7M)JYuG6*O!ud43v|BY@fXA@9Rt2b0V7d4r-hN|E{fl4-x-{>{rB!OM}CttYbr0 zNTd4mgDT9k2~t$@OhKNHTWNj0@d`&Tnh^4SbP5#VG9cmt2|WZ~l*%cgqvy;_>%ywO zqtgADZW%k9MA$C6mr^@NJk|bRs(2jx*Y{CZ>Ct<-2NfV{VceO{RR1zg(D;U>Y8=~u zL}OLVdjQ^=Rvf&SMqb>9{#X&a3uu=Z@2+t=I7lvmpY%Y)ux;6 zFYSI6C=fhpQWeHkzPz{6q)II_c-0?}|DP7%@YlPms%Nsb9Yd7!`K6_=JvILurk^dB z(Qdgh2lMM`Vc|SCmZwsLpbq{RDcrRJa}rq z)2hEGo8HsXcvKerUI4;UzIUXmPWI(bjB?iWujO%MkwwtqmxSqW2h&+)@}n2E{w4pi z{akr#h+*mHLliCBetl1mL$(%BF-(lb#??@eD0$DO%I#jVX>MszM)Ep z?Y!IbQ$;A9eNUF5le<4b#`Sl8gXO~j&GqEWD?TkR7wYp&5edqK+<0GB0eu<$;|TYu z^_V?Cfu#fJ<``;gQ(CM0?38g_sPcVE62$T}l9)Aez(Rm=AvB-IcPv z$Ln|C)2M`2$o@zq6i}67@<+fO#ZRPqAAI$SBq!HZZddKcJ5&RW^I!DKoWejE9&bqs9_SVhC>bYGG zI%q6U_3DxLjxX}2@*cH@MyikNSXsn)gxQ-dOhtuj{{#yQv(xj`F^dHSvi-`?B~?A5 z*43cgHD!MMt3~`==tCtb+BZDy|E|Zxe4c&!^5xziFB}ur2a2jdZu^6&p!odxb6cT} zjyzA~P6g`2)Z`a_^|7R8UlR#xQd@34Lk%B2YUq`elnl^ImZlb~S=@q8hNy;NLnFY3 zhr8~nquXzt-fBuz+-@Co>JIlmxhMNmWvgl)UJFL{}RH!hHOkS0oK!!dt!wyYT7hDz|`gk?uKmz&O%ZI|9LV|+UR&idZAo@I|7jJv` zd2S*B;i*ch|Jg$(@&1kXY8{8WFw~Vm$kdrTb-%sb<33Rc2WjImK|vl&K&xl1%GS^xE`zywf?t8^kmE`pK#-7sl%&>UZt*x(y??T2Tb}L< zGUHoOTSqT&N94jFm=6un?l?v|kH8|=MIJ;U21i6NM<7R;I4Qcz?mO=!;h!EvHI5@^ z@C*)W3>hP{vn`gL%d!Z51~?#(jBg?!1zX!mj2Dm3b2Cdkc@Q7JABwex9;eGamtVrG z>WD-!6k;Cf>FKHF%Pp-gJX^Q+p*@vW?Ci&T+4|$fP*xJb$tyZqrPp>joI6Vrx%uAV z9GR@F>eflVvxQMjgWvr~(7KhNpg;TWjmwJ}}jtwTCF< zK}`#O^XXITO4RB%MDJ~gC1T?aQ%P;Y0sRR$FdGg&ec_5b{wi4s=PK=NR0q@c(H5AW zbQ826`ZlJH_*#?SV-2W4GMe$cR{WwRh+zjgKR=R@2pk-~@6k7)(56eaN=iy1krS+c zf_K-B4M;qNSN`1mSoHBE1h8-X{i*OjX)HAQ@puFU`z-&oO4wMR6JOg4QkoKo55HFH z^!vipJF{!b2XhQ)o<40m)6)_0&4`@BO5YEU&nXk6sBp zvJnx}zm&Fn21l4a`OL;^n|%*7mk4L;W%%z9rg>#D#) zmf)d$^In3qj(tf85B_XI$%vU}oRq_)u!Ai?_^_V@Eaa$NUipm%$7k=+G>ni6EeDR? zvAxWlIA7>8y?=K$qAspnUm2g0Z%>4QV36CH`#5qXA3i+qc)_iR-#7w&mebef9 zpgP$rwQ$3aR{BtwW1Kr8(`vMn(uB@?i|k8*MRT0{@;bC>h1kjSNOYGE@a}%eBkUn% zcd3J1GjkVKP!8`JeZ8b7UUVOguhr8ApFNaE_BIUw;nuD6AM7~o&M6%)EU>{5qNfQrvGZm(G0#X5SHp6 zpr>q8`2f}kw<4eODRFTyzp-x+Zv)5h6UeA4tE+u+#GllOq4>zqf6g7qNqJEb8!S=- zAe|RxOXfBQOS)ygf6p*@m+@#tSGx_=6`>75&%qgR#Lth$#xz*gzV&Br!YlcfpVrk~ zM(m!=F)}6UC`zv_+2Ikg_=!B%MT_c1naoBr4fR@?`y{-O!hKMSvM@270UOSS>kdCK zV!Q6pvhrvA(a)_LD6TB95*klP4a(o&(P_2pFd#9_YB=sPKGAt|07cNJPLPE~D6HFw ziCS4xgPv2Mj+b$*o}V85?{>if_r8_T9$wAi>W!MbXju2pEj;JJeNWNHcYxl z=eb{(lS@nY>s%l2e@+zXnK!cj#;?=_{DRtbks35z$HM)A)3W-RwnVj2ncMEm^-sdd zKHN$g&AAR$)9ZEV=mu}ahn7RDpQA!%@9XL9-GAD%i7r#>5c1vi$!<}zu(%mDG^aKs zgvuqS+0{JkE%^je(KSlt>XueWhoDY-AM@e7KG47wAEiQhXnJ+T&&Q)Y7 z?V>sE>B+*rJkz@@;@*bhbLFb)YugxJk(Gt-6mzxR2IvjZD)y3GV-adR>uUV037Kmj z&mI!Kzp(W^I!?Cbw0w}K<%#}j1=3k5{QS`KNc77#W)gL zDYD}|8F;P(2TpsICZ)Yzz+4doPtKrBYsGQa;3&KnTKudrT?X-^MJu>ym$&zm%F@@@ zZEAO2g8KY%&}dN#a-A+)*`-Qt?ws_s<2-Rvl9cuh-yNoedOAw^gK+R|!2b{;8ZLj@ z9;T130M0_UbSwn$y!b#9Se}vb2&Ei!H9|nh4)QnNz)CG7DtZB{r+=J>d z@-Zy2?k$oR}ZTK;Rw2PRETxuR5VBZvz5G(`U0 zwp{7L3*kV3kT}*zNQ)tNsD^V+Pl3ATHV0yea^Jmw-?LFexxG{Pe91kl((}Q8mv!`y zH#fZzwY-AXg1zAOpzsq~ZJf<965%P^-OM6Wu%Cc%sWP zXD_xjLYjyHVcb5r_WRsVw@_XFXmXcz7=Aoa=1iU_xSB1WkQ%4tZ{Ysn?4dw_($lw! z4fd0UJp#}E-s7EeBTu(y;I8;vb%@n}dZEm@7n(Hw*gjmgbzU99rS!7mpPDIPEha`#)v!P zu5zpRB$VSrBwol}0y&TD4i&@*?Zs7m2fxX>PoEx%BlGpb1)8xtl1Hh@0nED~T)WpMmB^+M%I9}Wy6mQvEMMifB;{}EfkTmb+H{?yj1(? z6E(;tV=T?4$O}qxrmcHvNg>Zf5JoU>)2gI0qZ3M4NQmf?6~W`}mh~9#5Uwt$W6oup z1)YjLWyf9u>%b>7eXjsl&#`ebkF~akL+n24*piBnvIr|86~3}%zgtR*)x5Z;d!+Le z;6fsKDjcH*dOq74s(fm~xadnlhl&*kTYGb;xF}%`#n@+IVcBM6i)syMR+BKkL!d-W zO%14xv|VHS59BjrPD`;ms(GH;_=`i8vduunrS;AsuY?xyT&`g4W4nq_n$d}A6Ij-% z3NQD;kNWcNjsQU!5VA$DqoacW%)%8VTMOm!L2-M{-szh@*>+_qb0m%8jZ)VFquz$h zzURkzd8={yRKBwv+_BTt)OyEFgTZSBKv3br33!Xc{vHwwm;%oN860-q?|ZPatt~7H zKN#SdPz-@057z!Xl;bModv8sh^zTPnnrKy`$?zfO!1*7~?N0*DhIY-!1R*rQd^$FN z)KSx?UR^42o?0fg(U1kRw$H4uV-PiWO04+k(#|G2|IW;jCQagr7ww=Z> zS1l}Tnd+@X!gX~@x-BP2m;YkSdF}^n0eh9G|58+XlETh&lZ+3u1{c2L6yuGW9sp$y5G5cIo!U?{?U^(0cw2?(>Um90!)~HKKqkBN_A$B z?N67Hox!yiND-tnhr(AmF`#~jqqB`rK}d#-#k3L~MVLJ%fBrm-`dUI<39(o!WQ-y} zbWr^M11B{h9)K7HuqGvcqxQPMwL<3{YcIhXAtC}9XLI}$&A%}hoaHAZ#Q~Y9KX$k4IH0a-~*45P=&aK$22EBV6UdMbuFIk08fJ4#Z znHM{CsxJSRd}~8eD?j$7#|lZS&MooI4vF&q2fN%Fs;kMdsIXw0P-Hz}I8b0CAzjkP zc%FuahRFElQG4cn5&H4ILFc)iiZi-wQ4hbBY=0K_{ob9E7(j_E-H@)meSLiZ|8G#q z4`1#UX78FzH`KFHEU;&MqbuK>zJ@@A-*L(DRPIyES9f-WhY>|;2uykY{92huWk^K0 zJjMRyH%qL>dL!IGl;=NQIu@N8$ezmlC^VhNu>V!jv;FB08GTMI7c>|aouSBM9q5J5 z^a3JFTZQNpAq1`MdcOKxYPZXbSR8+*gA}fZdi2WF!vGaJ1U=k2YO?y?_54{{~V+PQB^{*y8C?Bg$lFo6%uT_^&8!{W1aM3@3C-z8s3U)%G! z>D7hcj*j%Q{`c>-7RX8A;a|$kX^mL-w+Ki$J^C5`)K5DpNhs*?8`%Ig!R?58nA+uA zA8K_VH<)%1p76@<-6J-=)dK@BoXDRkE5h=qpXBVAC7PKvFgH6mbt>*WiVLxE(jr*t zXB-ue;ym}t zjl8076b9F6ES8Wg~*(*&jIV%s|CgL#Fv< zLQL=%1WcoI1I0Bvd@G4bdlK82q3ihW0F!6djN{0TA_SU!px5YST1}A!6P1hJFjgXZ zQ$$1&kmBuo_dG3L`w~uhge+~~_-H~jzz%>CCeZ8rst}wsEDX}_jXsgP+=0uk4;OSi z;^X`i#O)2o4ZbJ~pCnIHCp1eylPOheDy4x{6J_^zX@-jCt z_&xu#*Z$k91_}Z0p{@(hx9#TA))pOpDILSZJpF9Xpskv^)v&fv;=jfdTAU8kTKQiO zQgZ=BGsUGw=tR8|>Dzd7wN%Cz#d5;I#@^zJ>CL5ca>%BR? z83j-6Xxl1ZOj!MHZ4ZyzD6~?XQ%6vI-g}!pvU7U_p6t2*Z~608WMt41W8W*y<53o+z6kbG{&lZm@zQrkY z!>?y-lr+D(U^+H7mO-)<_wD`vAH}I*SI<(oZ4DJ26|V)Uq*nJDc?orR&}S17dnb2hcKd<5k|NHNNaY0!XxV@?>L_D%g_S)|$lMz2Sn z&~D6C8GDU&{7u*(FuZ|ap4Zq91Hm_~;_JMmWn?@G^rH#TXak6`*Pe5&L;$rAj08l3 z0r7_*ai%Jh>Ro3=$cgeq!A>zZ6*NMLa1CQb=uDnmc>Gy`vbqX4g^a~X}_2nyI z-`U5?ns)mweVgGoEqnW?B}J7P*4>%BeSKP+t{W0FSyc4HkiZw?OInu-VACMdWeeGp*AT25B>B?Sq|%h;up0PCs`{V23?Vtvo5v3?e6 z1*4#SviStbI(BO1;NNbwCH-V}`IXl0! z^lGs>M$m3!6~p;r*C1z7Bo7y?W4iBc^~OD9rKR`rH-hB;Idw8iyS*YxrQd#L_{@67 zrG#y){E00yLmuZ?91?m3FUG~jR#jFej+~Je2vOg5pgZ%)Wr!fRu_l~dsqxMD4CoYAXA&4nq=<#_92)_*th6m0l<7D5$>^KfcdVs;%R zxhGJe>%qhDl|%?rcE(Ti0cJmpmM5E`a@kEQWwR}1{E0$$#?JR3>j$PcGmy*k%gg45 z?cZOhdds~RV}I)D%$A0REje@66gnnj}bWSEZrH6*|tGC z)C8{TFO*m|xgXW3Xa30E@mt}v4lZ`In&T7Ge!WMYDGdLTdb|uFDXD{AVjeVlB%)D- z)u*d;c&#pNe6{~zTVbOCH~Q*xM1=+D@87R=YCzNMc<)GB(Y}fu zRQ?z*?+vo9!ReIr?QirHw*3%6;((rrlI#L{+~y$@A_ovafcnil zv;d;Mg&ta&CsLl98GnsnI}Cu!waQWJBps*JF2K5vLPBc2HWw2n3iW2Vs0%tAzn^`{ z7)MuQJY4Amdc^KFz8_4pDd>W^o2#1Yd!uHX%!|_pXk++&ut-7p`UJ3K3dEWYcIR0c zNVT;>f9Dln>=oM)C@k!LLO}w+C-4a15A2}_WPNKA<%iLN9&1?Uhv)!w9Qv1GhdF-Y z#LYOj4Xmw1@5%eLpN_$orB9X=S>E)3vwC|wr?lvfZF(F zx&@ZuKRoFWarfYW08a#JMKAa-I*s;Po~NdN|9WNf)SiH(?Cp2+?g_}|G}9Hh#@E9c ztD&u3_rHzH=M?GJz=f<@KTE-v>S~l|wQG$y!k=SQk6D9(B*DiTdD-8eF5gACO<@RV z8m`Z4c655J@mlnqq}qT03HR@QZGS%Rwm`Jamv{HYF_ebFjpBr?1MDO|h?PP+;!nAq ze`Znw+%H_{>QaC3o(VfGGD^Uv=RFaVJ-lBwS@x%#TxC`+uH6wpLa5oLXnY6Ma#YDr zhy~?K{!zP`PZ*qmTc!bRC*VaSNbrY@b8>R_K}q5O{C0Zo87)2iZajON2Kg517Aev+ zSWh02+{sBd@+4Fu%{LoBgcpH8e@d2dZ^41%A*Llotc^AJ#l0l*$$POCQIb5u&o8~k zIy}>}hR%r}d=k1g>)6aUHx^qp{T1@g^0WS|^C+wQ-y@3^#67}5u(cm*nZ4q-IPx8j zs`HjZnuG7$rsE@}d?j|A)qw$nmj3=YJZw)LG41uAOB;=?6rw{>Mjm1lEI_jVLi|iy zu75-aIu8H|T|OotV2)U(W>K*=?7cWt2~-qCve@_0iTxNb%pyqwTCj=!lZnyJYim9B zZ`MKs%zaGjy_I=;APZwdoUMYQVt8ca1N4*Y2j)wsU#ihCI`EHzA`p)(Mcd{I&a?$= z{@>Z@-;aJz+`}32;qW1cjn>n}ph14iv?4d}?O9&){^%ImTGRS>f`*0={YPDgX`#Pu z^O^;=D{fxips81Lp>1WSMV6SDWGBrlPS#s(Ua9kBp}ihzM%|hsxSZO1T-*M-L76d zlBt5R3HW^~=0U3z=|4|*k}7Wxq^s-xNKm_BVUeaH7}NXr2H;!a`zy9J@LiVuLuG=v z^-Gs*%CI!*oU0VwluOjcRi z_PkQ$dvx}YgtTuow z3kzSCa98 zLGdX`@u44@EXCL?ckS6j2+$xJJ0Bc*Zuy3_3ZGbUaWf_A$b+>SFP%2dBWis33#n(sAADN8>}>*&Z96P^6f zKoBAKZ;|%8tgHkC@b~o+<9F7(pS^gIE;vF(g?5O_r78MZo7=aAC7z68GI#az@?s#Z zfS_6Ef9EgRQzkw8$!uQquv)RTe)=LdO(f5AA$V8~ zD(`L)<1B&0kqz^M&Ou5~l-T)IJ1ey`pKC#9_X%~2& z`w#&5_5tA%e@u4BkJ|wzo8a1!!$c&$PQ07Bsq85?^YGTeFWbC<{1Rm%YHn^)PdFqM z2;-Uw4ut{6(;H_telL#n!dK}%i#@Bfyxgh0GL6xsSo zq2*|MenX6*I<((VQ;yX026qH?8i0btm*t`+2b@;cbd%Nz*B;X&l?s%t-` z-+R)p?CwuihW#??rRHr+j@{E*>sO~et0at9xs){^?C#|wfCA3zxO;r`4fp??w6N*@eme4~Vyb3UQ`4K-gHk6L?dqPS))}yavq9fz zDuj6ltV)?kdAjaYORkejT-TT=O%SJK>&Prc%3!Q~dK@`0lj%x@-+?WUVd~)m^HrQy z7&X0GpG-W)U0P~zP7yVDmo^- zv#s|WU@Qz9Bg4Z7Ng1sC5RcS!c1GF`evA@6b&3bqPt?B#>mz>Ff zC$1;UK5})9(=nq-68RW&V*59@EWPJtkZ@oysa=$5MW+KZsjav7p&C!83|pyV`sMn? zGzVC_K!FpmwW~-)eF(+-TXysY!p@xQ$P8~lo~qSp2iluSG11XCP|xunC=no; zwtBRx+N@$!&t*$ST34sDy!Dk1N46&-`_1az4uaI*dshreg2q@l#{j=o6I^-PQlult z_5hQ_H^+a936bR1>AvJ|2ZBvaL$i}ey@f^U%2r4Ovs9;h4}antI_oQP#RgA;-ZQ;Q zO}(14HM_NWln(3VOypC)1m`&(BqeY(zN^MFtGkPpJo4z_<<;AmMG$&A0`iF{BLKVj z1>2ViURFJe_DdrE5G!OG;^ZlZn?F!VmPW^%o8ruA{l;IPxkN|>`xRo%1JR({Ve z#U6HxT2Lt_H*cN;6!i@M2d1W*3GKu0f_(IGreS=())X(hukdj&>EIE6ZTkaqZ)B4v zoA$EPMMaTmYr}`RpU8Q^d0dk(_u&o+c0^FN4?;rJ%`cVxuc!;4eGM=aVL%Wc2g3>j z4{BIBRCtDLf8=}SfW#jD#HdD#*DgTriPImi7bC_^cnW>6THP8d4*|1GLE6T+|1lZG zwyp|hg$(z9)l}B;=~Qz6macT5_9YFdaPy!3V|*#5)1DhUGwhY^)q{dw>r9N_nZ7(c zdc|hoy5pAuD;5=1)di$wS>9|)RgjM~T#ohhT;82cj!rU)nPSJOgsKNWucty^S$6*e z^z*e4k+Xn(>|TxEji?RG__TASiwxKP{?*j<9;pdmU7wS1TROJz`!}KRkB__gdA!S} z@(bISl06D@-@Z7lI*c3K7fVx8qQ-@_6CDKhD9g>VH}(ep;J#412TL=N^v>VZr133l zPdV~34^cc&as5rqb`ulZ0erl8@fcUu74s-mqHqSymwQyv?dJzqUb=7sUZXe;OWzb+RNu8tm2G*pJDTGYm3$=v?5^l*X^AePb3rCK ziZ}{WvTT30U8c&@ZBpfq2qd}PG&k2Hg^@oZB~p3^m0ugA&h?_Pe&`CxRDs=BR(uxz zF)@2IQl>Kmx}u_Yn7*k9*?Cy`EqX^N@X;D^EGwx!u8Yv;SjZl6Wh+0w#>}8D>cMoJ&pnkL9;DzP^4m`T8TIByBBMSH z@FM-Te&i@x@A$)hwQt8bRhP0Hn4MO+FBW?GNQL(fm3zJAVQwy3WWmN;W+z`lSAW}B zkDw5UbNb45n2hc!fYA(m{Mf7op}L3$^PK8Py?d?<7p7TkH2Dm!pZ}+EsxVKBuB#LM z^!Q1S%$M0VpSZ5f)<*Nj$rtygY1&ZNDFWR9;pCp7>?h4EGVUPXFO!kI#6&4&<2I?` z#_^*m>2Swu_GjH>jqjex-aoYuBrjzAAS{_MqhyMeln6qI?n?-$>1k>2TW|IhizH99 z)cXHh7rs+X>4G4!EzRDXRF$XL8WX&>-QSW^esUm`5aqM*s14(ne2_Wt;6M=>k03)? z^og6@SJey2Ydbn3e)Sj9Vr#QFDeW8(`ha4ulnv|Ra1{l10-cq_eE#(%{TLOWh0)s{ zOO^%`u1!nxmK&)*Qy=P4GaoJuW;EnCX^AZxIBBH6toc=)c_SzE7}0F$9d)NelBb*IwR49+`S zxBkA@;`PU27R+KvAv)|aBbIpInfllh-eI4Mo_Dm(P)-Vrm(gqv$459?L_OMPL6>IA!!Av`+oAUl#~?F zqKN(6V;$SBv!#! zWt~-3>|W6@(O?=j!PLvm&;J-lYe~ED61FEou?ay$Ex9P$Hw4lR&Gi};OU{*T=R1+x zzYh`W>=fiqk7J4@2P7FF?GsIY5=dszx^3S9qq(M4=nOH1ypRWFclvh&OHZEqz5p@N zvxUNDR~uTlgWdkE6g+?P&PiZnhOV>X=dF3$KHiOdv5ENEF~6|6yD6`Z(batFz7WBK zr1F0rDYci4pgjY@f2UY8^TlfsrTfKgN_0|Ame8Lk?Af);7I$_or96`#KGopO+3D0L zUi(}H8mO=mTG zh8MRhtU1?GUlaqFdWFZVf95a^-7Bw)FI+z6Y93c-=jLu(tgG9`Ciza!BL}{;8;HZK z#^^|k%inb0M^@bbUvRTY1J&sq@ySycPckSeSCibw8i-a9qFxsJSQiDZp1s0L}kCB<<*^CcgC^h3oI z{lu_8C2MBBw<>K5zT~6EW7E&9dHm}7qgnwK_pAOBuGrKIo=*IA{_n=Z;p{hB^%dJ* za%ewfXl7bkT9TV^^(;nEt0Uy59d&!!7fxOVkOQ?AHgYk={Iu)n^iE1of4EQl*2Z8- z@^#h|X;D2zMQH-gTXMr=ul}yzY$8pJQw@d6eMh8d2o)`>v0oOS_@}1F(jUx&nYuGs zu4!rghuC2@PAMm*g1wet*jQv`%O-S|b>EWMq~EW#c9AJqzt*Ohfh-P%?9|jF z*aRN{|0SYx>Y;P}>0yr(sR2aZU)&i$okNPCvqeAX+qHk|ot|GmN;pyLet5E3VtS6< zfG?`D(566L;S!^6ep-tX7+tcq@VimxQMG1t=GfL_DCNH-5x2HZ z5*C=rHtarX__WLJz(MkSd3kv|5bb9$H(Y*?gc~KKOByxqyjrhX51%I(8*d2FHfH`@ zjW%yb{o)8HMvxVoCC=wc-dz8>v{Ti>qCi}a1w7v+Yo)MiAv$chZOe@(M)q@tw2Rz) zN2t(%b<&WsJ%_+FDY(1KbYiobhUBTM4u&(#jQc|w2Rr<5tfHQkgg)*k?5KN z{LuT{Wf~++B!X;k{nAB8N3#jvpcGRO5z5dZf3llza$%b#{8Mhjlb7ATojcn$m$M(n ztn+wGhBdkmJ{g_9Rr~34vdCn~Jt{+w-SA0Z=gBR%Rb*1&`{m;kS9UuyEy85$?*q$g1q3s@m)a+n8@re)%|qY+?ZkXmvY+piUgcF*rLK3 z%w|R{Ct$pTs{Lm;VT-rKeZuRtzw5B&KPq$G*C~ zR$$RR|Cny=n`%saTyoS?5~kv$q=VN!96Eja0Ms{1fa0MwW9xeHb&vzpqU&#N5YSZ@ zA^(M2*VQwU0alNz4YKzw!@kckA|TY+=oYPsUNoNSMHC9}XLsDr8hDoQo!@^1|*ZvT^en)29#6Q(ctwSeI zMr=oLk+cGnU%I$o&ULG|uQa+0=l`QIp6W>7@|xi6H`;6#?_x~$Sq}nxaRuEAg909_ z4#Sa`URMZ9KmXWqO_vnRIsz6^0?|{1OTbcw^G2^Apt*~Z_dUiYCK{tu#%ZIk+wE0J z{e2;l_v`(YHbXms*yQmaKfVK{8;9?xK$pMg_#q=rfU*pn>St3m)qhCbI_zx(74i@A zHkoVLqyDvEjEEh8v^M|8nPvaQX3MVyRy8~*%pIxOb5`%uyCpK$Rfpynt8NvMsoUqN zIgPZUnx9)SnbWSMqh3;q4Yyb-w3wTFRP`a zX*bNYtRDNv^?sZA>Qw&Mm#Q-3vVK+<%*9o(o8pD|59M>g7~8|J){g*XBg(t*kEu~J zB+|u~$rDYfs#-L8ZiPJ@-vNt2sdy2>cp*rj^aIm>|Gu*^U&F|adPAh0)T1U7HjU<- zYabY7T05;5ClV<3oaiwuF8929bU8_Js_eghc5Fiqjww87=4>}RzZ;>@R3aiGlUK7n z9XXbLHMXzx^@(cyDEiF(d8FpyUqlpz^X!FdtaEHJxu8Ic=3wpx+OlCLh2QvArayh` zk~bUc96F(Y2KAaK)l8LX&4qU8V^EW76D@*K6zdn|`B{yq9Cnj{>(D(JE&m8<1Q88q zXl?ykLsK((X=UY9+b27%dRqT}bO)_@JdbD`C^Np26B+dFAUd!Q)kkSSp5hsk*jSiI2wu ze*!^aLPXq$(>vuM>#P6hllR}uH=~*FyII+Kx-)(R!pgR#ew%{de;(8IqcDd+_kIl& zv*4sHS8l{{@D{}F`M!z+(K0Z1#oGTb=M7xh7?nJU%MXxC55ZFcok1D8L3Req^nZh# z)QstiQL3tBEG$wgpN0;=+Q(idoANW%gbl`MVI-@bN01@DsRsNVi(jDPrAv$$S2RQA z-|UMDGBo8lxBCFU>gk%4a|L%md)vt$9+u3!J#9&Vd&aryWv zZ7k9QmL=w7`A3^Yqq+2%;OfA{$`6x#SXm6C$7*X(_3bZ~y}DwKE^SjmSoz(moK)#0$~Y zulz z$ewJ9y3qQ6)e0O^PSn`7ccav{kTuY-++7b3levI^z+ZTeERCdcG~0QXKi;j3JgW7v z)O7pZAj9I{nLE4Q+Z9|ItR@Gywh~mnxh6tG3Go~RU)Xw8@m(WexpR0qd8LNwVnSWQ zty|R^{=Rn8u6sbp#H!U{zyKAW1UCr~O9cl9p-z~TZa%l0?vH9Q+n(XW)=0ijyyH~> zYY3FHj%B4U;#>Rr&RpKvmPS8tK+dluTOiWPBH-y;p#f99^PvaMWd_r#rCmzjeO;c^ z|33A{EyahL4`i-gv!1^@$t0$P;7{$b=B7z8b8D6L_kVtoeREOdlixuiB%=u0{|~l@ zFVKF6gMlL>?VzP48Y7sIta%c3IMx@(kt_;Rqp=)R)r2$l04qn6-nZf_($!KfOsl_D z&)Dssno)0czWe)}Z28X*Lz6>OQ=%6%wfy3L_SS6vP~Wh%=51PDFd3PkR#Oba^|#rI=V*cU{ULM8Udz8E_xF{ZmR8p__=vsM*^Y6x!oufIWCmm&&*^Oq z1N{tewGV`J|&P*CRPRO%L6)}M(-c6hk5uC7jjiE<_? z;?m1xd5suBCyp!HtZmu*IE8D43SZ@sCi7lMgtuJKZu}uDW2sp)U|>_Sjf4wM5RaY> zDD!YK%XR<$xkN$i4htjK?ByRls@!w^beID=t!;6A}4BwXM44>%M;;?hXqvMt*!8^$fEEdw>1v zD>w10jZ*H@NcSbKh6-tk9v#N^hz} zrSytD7ii`yw%X;q1U7P1E?lU>()}5(5HBsFXj z4hKmPH<2O9(&5gX8xzgXw_|1hd^8lH*Jsb2t7&Yc4G0K;6Y)SFyyv4MBU}W!2N`$X zhY#CH5nzPUUcK^W^2L+Qb?{(fL-!};SlRW=7o|zw8nWxo(_J5pPT!-`EqL@flZ-dY zV}f&d-efJ2-uTN~6A8#V;2n)-P+!&^5x-v7G>^F9O3ge9lo+=bJ zs;b5VMFG7d(`#L0nfINoXO~)}mqtYR-;A79VrlQ~ttSQ>q{YmmF2ev#U30&FHHm2r zTA=4f+?LIvIX=V)X&Dt;o6->DiZK*PJ572c#njHjFU{0iC5o*vrt>qTas}40aXTLG zRct-2s>}hZ|CsIa&vS3e zki@!b30Z(6$wm+{@xzp{@oMnaMC7PbvOaMJ-mY$}_Z zL*SO~T~7r|LnxMrDEfVy^#{(keD&ZNrmq`2S!Je$;--7D_jN@y#}NuM!YQz^g+jGH zu!ZOce7U@`5`e)Up@3|pD8^_4kjcNvh;*YGJm@38e!Xc9UF%x-+Yq_tp6X@we_DW{ z$d~^LZd~6}US8R2)Vck4{>_BXEqoCaz6XafY?5=GwHbFcH68uz1p}=qj?%aj8>_LA^Qd3aSo|J7B!zxXbT;jJKq z5ULk0$m8Z5=wkjBcRuyZQ2E;rAL?PinFpdUiXPd?!4h#O(W8_f+)|*{;_Y4(KkBmd z=yT-hwMV>1N%~QMoO#Z=yIYF6w!BEM*A|e>Rq0;1ba#2-RL!$DIMNBo98S;{8s9ci zM&GjgR{rIV6Y1-_ShvybQ{KIEJ7dR=JG8BP0GJdN7jyCR)1e;^UAa9j{!M>q|bD@^ORqvWK{#-iWYisl4s~%Nv+<@>Z zu3})w16|018FVj&KnP>|Q#hE2OcYKr>s_c9GPG%W43#GlMH3en1fHzWui25a`{Ugd`J0OWzBtde#eWXsy(?zu^-}v)mq$M` z=Chf$QIbf6>EnRp9Y2_Ms_;DO@d?D90eCusH@B^`^Drdd=Ip;Fv_cQD%e~lkGd#Q? z!Lj|&!DEl)j>W}Zj?9my6bHc`WYBFoHGHPt+iu`I#g4-%(-&I=yv_9p-US&!2!A;X zQkR_f$$hb1JEX38%oH5L%i+H@?NYu64cNEJ|kndq8T|8Kou zP0m9~cJB2_PZ{;KH%5%dqC~yzMr7v~M(a@zd=wHnn+~#*r%nZobY~eqRXIxrni`8T zonJ$iwr~K-orl_(@QAS_Z(|IIO*!0&*rF;^BHH|g#BFk@e*bH1L>7Z^lIE6udD85t zwsyg1G?6*Y1aZsCZdh18+R8C#n4B9_ol|6BSdv;-vTE*&k*?XH~vH(v$ zL8BLego8iZQ4MqD%$dqq@Piwk@C?~untgx@gg0LcZPM|S{OiDP`(MXX)8#{sP^(Vi z{+3&2@7XU$=QMpbx1E)F=guU;YiNXvRomD&G3U~?b4Nb58%a6I96o!feHCN(hB||$ zRJ=GOsDKLwB95pMVog9ar+a4-r0xcRL6C-g@b8*IcDLYENV7!GDP(~h^gA=So(-VV zvSRQ{-g3p!lM&hvepY{?Mvc;)pZLK~{@Sr;1R6X70ojLXY!Q%je*c@#7|O{=L_1SK z&hd6u%HdukD`w-`9r|KsZ2b@DHKqW+{d4Zk>EGA6Jl4=@r&Ze*tG$5`^$UT|#S8Px zb^r^YhG8XHC!x{BU50+Z)|S`H40B#(<(Xv{J{~c#!m68ljf{-4XB}U@de!!AJmVO< z%kq?B=*{!gQ3m&2+grJ)MZ-S2gs;%%>M5#E?LU31|JSM;P{Zxq%rw{xc-((C93>iu z91wDg=KuV7>^?fDU+@n-o%8i@A`NgDS`aGD zpU*x+VVzsWGAoGFwsMdAg!F_Tcpf@x+}YntrEGF9*qcJw zmDYbZHd>L-hn}{cA^LdCQMr2+syn0Q2^daaYaHvbFf*HnW%{6>s7d*kV8+IG@2^Ik z?JjbQ;=L%hnppeQ6;cjBnwp1V8ta2*So-i3uIoTi=SpXG0Yh z3Ld&oX%4U6hU_%EAY$tco3QW4i@j7e8kvj9N={u6=>*UX8xe z|Bxm)H#=KkEo)lW`A5)@&V5Vv?u_>K_jHOOZ%^5$U5G-Z4a@ITRe}C&+&tu@kIr)~ zFxs+%7(+UE>09_&4c-Vl>jQq6Zr5WEe@1OPWca~E|LS}D^lXMp@ojUnOH({vM5ZbY zVtRNGTxinS(ebFiyX1nI1v%VUP{cKXoyUwW%B3-qT78mE-__LwZ40&-{>ri>0e;Sn zkJoOeq?9T9Am@HQ(%r;FR9EnLraML&F2Gl^Zc7=Sqe4Q7jbHjM-&N6Pmwo8AoP2Q> zOYXWx$e2kjCCy>dGN)e)R4;`4%q70}iQ-`J1NE}cNr(wh@nd}r&z=f$czo_esfbU@Vyo<;9C(Vlo*q{4#D@ui1Bdjz$GLh|Hms*kY3<0E4a{z+3n{#> z5BJyA9#`V-?Lzuwzv1@T2*K8_#YpY-Vj zm3`7qiKEf++bOoS4d-$}QFUkI(|P?^n}cWCpJH}L_$?!D#KMGgls=!M_c^SJBc&o) zDcIQ5^g(j+p{1FxF=$nNsE~xD$Roc1^Dm5nYQ$YHEoB$`cw5u;l8$fvd8Sj67UoLp z`8Fz9z1bf2dw6`D3U%yn zbn|>^85oqo_yH^A8+slQ0qX$GbKciJZaXRUlM+r>ENGJlxc0|vt_q83u8;50uk9u& zP{VQDe21f+->94euuL^HEZ#$2TV=C;Y92`ct_Xcyk2Gni100F(HtoJTKy?hV=F`+uz2 z2~56N6{8nqD*i%#Ve6)Sp3J!o(J6Aeewk5Y9EU3z_0>y^~G3M{2VjXWgM= z$EZ>1QMtAG=d`A__Da(S=)k;~?d|8b%}u}#OG%R3m{$ayY~_`fzYW$4rp1ZYEibtC z_=9Y`M(1M5?oC~%+?khrL;e?i-XC_=H-T}_*i4y2>a@h4-)CuTo{P&;HVs5hnW^}_ zGdtgM9rHbQl_~W?)ceNSmKQ?@wrji+P`~_VQAUneTH5j6&3m!-_l<~15nONXH*P5X zdD6`-7eDw$?!bom&3xk@ecCgtF83li_tHS*xG*3&5d5Sr-+2K5HF6?$O&274Eb^3a zZBKk5$9ap3YgoVV#$qlrP1cPQ`dZHQS%UdDV}{r_WLjGIFSi%+(Q+hYMQg`Ed2=O1 z`N75U<7lAFZ}H=0W*|r%5evFM?dJ}JLvA(l)xM(k;Q`O{psg}cy9OT<1~HrRPaE#{ z?8?>!^SiOtYRey17NVNnFU#wB%Vgxr)|Bg_?!J4j4jfqljBJ$_Wug1cMFtHGyY+dw zD1npjYE3w8#49w@kxB~yd=mTG@WjN!?Tq`MI_bh$RW{9uN6vOEO|9Ki*vP9nCv?L- z+ETYH?y6s*3q4TPWWs;k)I@wEe_=`8_rZSX$Jspgh4)EZs``Uv>q|F6Wlg ze%*uTEZ|rW;o5$LCDk8ajFq4*p>Lo>`oO%5k=v4TlCkO0T6yWp2n9(=k~hRLNr+VM zUjI!^W0L)6T-OsSTs~lBd_@jl_ymp}6N0`7OS=l`#4*L*x8aTBbqMiKZpyeQPv&SR zBx;sWqK_Xa9bp%Nh~^yXu|6kdX!AerV;L|K3-*&O6eG&whU#rzC?!MY%M!w_5HYO) zWC^QRR_~~}nb|=IsiEG_=$MhZ_v<`qn8@-zSX!#u{_Wd-$j~M`QiF@2cZ~QuuHT+a zwaDdJeqAHeOnkMqfTrWm(8IS*$F+t$gA<$7-gy2L;Mklv05OZI8VZjgXz+)OviqXC z+=)3WjqcaGv&dCb`6o$Xo-6$B+ZmOw>FBV&DWkmo<|G=|H!UCdkl8fHH0q82Zav-i z*p;4$ej1TrfF=K2Y->=ieaP#Q+UPoPr722Vxh_1VhyFjBzB``Fe*gbt3uQ#Zh)T*P z8A(>C5ShtdNk&M7l92|I%E(BRY_hjPC3|lQMHEsJ$^1R9`~1G=pK~7Fr#pQ<*Y$qC zUe9@i-LUpSuvLHmZF;9SD@|;kA}7ONtyKM6DR8@8?moEb?3}fOVO+-W_(*v~MxNh1 z75)2HX5BvD;Vhbh=(G9bD6&FBikt>@$AA6|hdJ#FA_-_n5O^BysdYHww6W4Gn&p=> z{XL&oZ>BHXy7HQ6yxXf4NuqE9asI9GCU|mNiWLCk7Tw-20#=AqPSjom3w=WrI=V;6vprjc(vWHTyaHc!{agWwDgtV1%wZ0=kDG7&j0{uCdd{qaWkYm z-okkMF2$s(O(;6J%iT}SbW-49YtT4TSG@N`x~y6=b2GW71A5q>K)vofJPmAf! z-OaZ-{}_d*MpW+2(GD~=>|xY(y-kM`6rfFAwKOCscU2s(XFX)<)2j9oKjvp; zl`Z(ZVx%*&U$)~a$w{K;z2V#|J*5=Z0r7K6};?bk}C&@8|;FwLAFxqhVgjFxx0VTVXwtC$&N}hzzh!U(wPNG%?nF7*FfuT_go1^#CcB%R;pkDxO0wc2Tj94B zH)RhZ=4p%FOKv&Kfce&V zp&AByo5owykSEfY=;=Pge^(l23i^Lo$bLLMMT5H1?FIO~2JwP5&CMDx$Mxzjev*J) z_udQIV3okgkgDm3hyasPqa;%fTC$CmP^$7<)cF$wj}IvN_{5&!Pa#CK=%ok_K7E?n z4r?cL2=xH}i(Rgr(!LlRVNFN(%+q!4-$9P?bW*YLR!k&m^|HQk{O6u@PYd7t%eAk< z10Ch0AGkjk4{LGXs2PdB!eW5)gC~fU)R1Y*cpI`}wk548{TwQ4_Ds=w$b zsf0tQoeuWwrKF(XqyF}z^|5;O`UktJX15(+Vkb}xlr?L51hEsqY2DUWJgh)5K*ue- z+T1vrc;I-Z-lN=mQqD%jn--ha!S`R84N5MwaIRu?%y%A^A}X%2P}w5|?=(@bO^K_S zyxwhSljX<9SYPu{zn?<`dHx)hFYayr)4r|k;pSEgam>HRy#GE`ehs00Chr?}`Oi{n z|LfP{u49To3@`b8W@QyyT#6EG_LV_c6SCza8g1F$*x@GVvOnTW*oh7moD-_%Uf-%L z@??fSQ0z@lIqf#P#CT(4-vfMnC~eWq(9Mv~`XTF4wfoypgU2^7vIg73IwDU-OY-v0 zDtP}^d5q{9AQQVdII3q;zNa4qE~iC^)Dh6l42t3fve_>}>x;k|c>JTiDjMQ zrx!Qk90PG2+9P#cPaUloT)cdIk8zT`t*uoe*#0R92I0YdK}h_XjyfnCDazS1b)?Y$ z7O}XK9})54`0fkp53V_xa_T+RI%OGX7Fct6AWFR?QJr^o9w+`}w&VgyRSxetChKni}8$yLtw- zAgkt~>}{^Du1OfnY#~4UVs!m_+uF2&;hD8|Kco1~z8vk`;EG?uE<=$AxSnaJ@*Y&! z`o|$8c+0}YrC*k-P0cn+e?!=^RXO~zqz!Fc-VNxJ^a}_>4L-cn{Ld@C*)Pd@&Sig! zOT5k0x6ZV)-su&e7V5hLriUbh7U#lnR=gV+h!HU^x)<61?-2@QeSLj@+;WzX=zEj+ zu*SHWDuAjbBO`nJ2|gR)k6$ej9`$VMJo(%}ep=t<_A#J09UW&24oPfB`yNmA+6&*L zGyE_fZCA@mir_;w?_OGESA)vOjkf&QZ^!#Eo{3TM}n*8w@I zGB_yTs3o5lif9y=k?MG!OiAz#^`ZNZ3JPizAfqsfhc*M^ywW&C42uliJag1znw3g% z#BbA=h+hX`#|%i*>)AnU`eWG6I$xgN4z2IbC%Rim=B%ngckU1kV^zjEYNt-!!_VEk zU3qMJT0kpCOlju9%e*`>I)54c3*Y~+xVgKJi<(sgLA4tfAFqKbi=g!ML+Z4jk+1!q zbOdMEm)rC^q0amn@nt$qEty}?`h#0GTiGf5Ln(R(C*tC+d>eR_Aq&W6kNs#><52L| zE2*-tUH3u@(!zdU*Kl1ZmD)fX8xArhb#OBPUy~9dyE`zD*1IyKNE?5y+Urqpx5tmB zz{o3*G=8Z>|C-giJGC`qv7Jo^wT-$aCR>McQtn+#(>gGy5nUrF8CAJw`>hd{Et+7O zE@k26Ta7*6~ciHqAb9j!ah88xVp3(ziw_9am>rMJ!;rmHj8Id)%sbz;*nhh(7YQ*>@A2o zpfZad%`^~v4Ib{BN{{(=?DC2@G2oRtYiiKva5ipS24`VyYirK($ttyEq%@6Xepi)* z76d3Und+kh(dsFIfGpU%B>Rxe3SZw|L~`J_C~0fwsvPAaRTNJ1{cRSlzDKAQVLo_^ znFwM5l~(}Y-a_T=-8@B=%*p8=#?c9(X1a07#P9aRyYr0^DN#wP%wB6TgZ{;i^?}K6 zmHFZ*^8`HI#HuZo5~}(TLIAbkLpDLfNaj~Q-;Z2+n>p-3)?P>o93L>fJY14Jw5l0( z3^pZ9vJgC~48Cm4w`pn0si6DP?*5w>RqlVT%>_BD(^31aiQlYrqbM2w@La=esN%SW zp<$h}dwqDJx}%x3?R%jT(wM>~nb{joyYc#WhxaENo9#RkcZ9I9<-@(Xg({fGPF5J)@B+w$ydp_*pgs{`f_=sDj0uxD|p?+ zx+mA4%FJhM9^I>Hkf3Y#)iBuq0<@|~R-sf;`yJPDc7i4F&o}#fFYbYwU0zv%)Gd%| z{qN7h*fqb6&bh5;1!AEXaduKkA_u_FODZZTf}S$}id5HcH50$auUCMoIYDCmL4Kmn z(AmP*AcM!k;QfaW`%tihUb=$@eSNu*iTwxNnlq_dv^j=siau$cN<^3BE!_-WXoNx$ zn41WV&;Cn>r&G=9vuca?#XrOG+26R~;BexCjSWSx3OS%E_yoHU*ZpN|OmX!3&*NPW z$>#*>8c0N+xG88r47;k}bT8vRkn#G(Q;IL!%f}}Wk5^@7Vds6DdZVxHgS*=p_b85e zd!ESB&FA=$c+*5liXiqiKDmr(Jtbm*o1 z`uicQr?)riDl9NkxtZ1=jm=-js9*QieAc4>y8eDf;<%{A0~0`Ym96nxq}}-n1vtbM zXPSzTwMoQkR5Nmp`6S4Y-O4f1*pnRjw!K{&8>X_I9pAx_eLwnhxdE4G6esUg=Lg4L zxAf}O$CsxgWG1F4{?3u1Pr)vmW~+6=*01-^BX;IXa=83kIK1-+x#-_d*9@{+OpFVB zxfR+r6t3_xu{TXlE&LYvV_Z^Ndh#Q;-!Cd|zx!K5cPKTwAvZb+fe1N<+YwwS5VDU* z+M3kOkdYA$m)6ZtzjjGq#r}|^b1v_Bw59eq6jLgCs0vNnZG2(7&Gh>bGtLRnj-d0VSq zFu1f-nurBW=skO!NFXCAUb%7@L6Hw5BUK33EN%<^!_pf9JW=YMI3k3M^8Djb0|Pyw zIMPq89UTQnDm+5XE3R%Kq-D_l@vki1{xu%na7O(F&1Cz|Gd@d{@+`Ng6wMj5+eR3|4qJdVToNWhpKFNM53vi-koQ zHgqo~re#EUF=JQ|LFd#Oc&w{9ag~)M?K+VK2*R}~Okj`b!^VMhxPqM+CVKd#3i2;# zoPTsQ&%e^B)?6@7>O$c4IxZT&&DP8fX&1vd{TbvkMv92Y$X|RQbE!{=ctnie+&GFJ z)|W&}i~P#B{l5wP4|_JtP?>nO&8*R9zs*%{kf5gjd|2rwE2EBj|DP7X)OFDzW&BVO z6WruG$ve8H7)aYsW__~!EqLEl7Fs@op(1Kp)WEI*r!j zU%ntW!0!?E;}AU&i%F-hu7>Q}^joe?ZKGfD+Eb<%Yv#Nz;W=yc8U&LuB>vMPt2m;u zSg5F}QNw6)2%!vq^P$JQ@|wJ@Fj(wm4ey^Z=FfYfIeub6~*LmxiHZ?BD9cAj%y=3R#-w8_GsJebowL&g_oIHkV9x zIH5)-wl(y1>t6`}u}+%*b>@mBpK3FB^;Z76RL2X|1n!C$D2cH5BHiWH`_R=P$>@ng zC3UNRs}ol`o}4t?Q6b1`n^r9O_`x3G&U=LQ)(sFYJijE;=1PCH`UhhGo8_BpQwqz! zn?*I`-Ut#wmPG{xf%*czE2{e+ksSN-6!nv>42=ZO6{rkUcwFeafjC#_3GW$)fuVp{ zzHo=1qvMX2_?W!dKXm#vWd5tuf-TzGG@f%4r05o;VdTNt4(Z;+_C1z13iya@wGrs5 zEo|fuyK)E4{|LI#P`^zMT80}#s(NHWOuN|GGkYD1w+b*Fk7)i{LW(>bD|AleiMw3; zMcTj)BatTyhhsI5Y54cUSFRx1rEH~8=9hR$t>=q7l0NRh-+v@Zy*T?pbjJABTbmdj zEtc3}0v<<#=1ahXf7%)wgCQY(aQf7#ZxIOzXIfiY?ios4l4WNgJWUvO5h`>ED*}gB zt|v2MBzGa<__P>qoBfbr`6FIh9I9@DQo&G0i$Phmzp`?#4f+)UAs|bJ>8F(Qdnp7I z2|aykL>jDEY&JLFf~0lg-P+e0IvWYo5&`AN$jZ_IO8N*`kYIZ-??h1siw1>poKMLO z&S0ZJ$sf30YGBtXM$353*k^Zd-mZjZf$77|V7eqaT6hHo>5->`R(oxYKYKt*tGK(n zS6J4Pv#_%Z!1C>eMe&s`Bf>-|PCnq=i}(E{bo?pYPQ%d$jD7x6!!@nCE2XC3Lbke# z%`HqWh*&If= z@EW3q1>|jM*~51Q#9LWe1G(vkP_oO@lf=>eZ6x8xxlqSnh`kqxQeQ+y{M5VOd;Tsg z3{#HzCnkNa-FGP<+Tjh%*vwh*-y?ctd4K=P(A-fd~lg$1mMfS}2ohLEZ^AO@- z+~3N2Cr`e08ELtECpkGbimgU}BAm-6ptF#duYjlcf`;YB4a+&xzUa&LM#4JMK>Toi z60{p;-i)PTy}fnO?)%mB-+Vflm=`b0ZKq*xF6CX zori?r+(yZrJN~(%dA`TQZp!JAT!weV9Nm8O@NUnMa*C4&54I#6EA^3Iq@a;!+oz#v z>sS5Pyl%J}`QZCpJ*Y^;+DlDC69L;}xW3oNgW8rK+>k@Y?6Yad+Lm?QSEZ-ao$+A6s{*%%EZ(jR54Pa5T_s78d z0a#gMzyN?WVjJN;dG0}x`7)ZOePJv#@;tsbCBpm)*6cZeaH2By zC_*pi7Z-0QC)-@wwBafylGz-=B0){4f~o2G*+XT}@oh)P@h`b>fJjLo+##G!85tQt zTH^uHmv2EHWGx@p6J}Lq#?q|pDpt6XAnCXR>EW<5(jZa-3YOL1FW} z<*N{w1R<5Rf&8eWVxKXa0Gmm7!3CkS*_iZWq!hR%`x&Y)zKNB_)C&Wi^eCgHR`2t~^Y+|l1VlWF1%#ZLMGu_9M=!mp-md4*N* z;~U?2ut7y%b~ySQ+@N6~tt?$|l$4}`!gY|_kD!N6A_nM^27tUCtmS<7 zUJTTCck8|CRWf&j5dk^p1D%-$S?0jldJhJP8F-nPOe$Ht3vz?z3dr!yb2*09>Kl-;yJ=>mnR~$^9Zucq=cbP_-h>=j%%a7PtZF19H&w;&};;TWQ?i`pV$2`DTK*~ zV7;)WpcOB%&uDkGX`J-MjSeE$fLMu3javh26*g^~z61vgjX8|I`5@hfBphfpkk(OT z%+{HSl|8uPQenH_2HD(5PNj`PJsKfoaE@76jAlyrb=%aIBy!U$S9)Gp=nTp$cUMPv zd=RoqY`~GFYZ|pd>j9Ht)!D%+S%1uE_jEJ#d#2g<1(|W5dzJUH*>5v6urBnumiEEV z^gFv)+)g-)i(8HSj4YUFU7m*@_(G}Pp#g8Yt+(y%?qCfFhK?cTs5>8Gj9;zoI;c&a zWf-;A56BcR-2}qxLy#tS#i$_Y0CSP6#i3M`jYEfT_VtQ))Xo@9K8;!q{Z?wDq%*YV z+uS}zLXfS#Wv>t!vZw0Rjyc#bM#aa|b8{yuL-Mk4=BaPLPU(M}H2WcpIw@&sX>IN8 zPmm$_diLwLj>jN6LviS^?fUUX7N;Q*y@bzf0%?MOpqj1Vcp$4L5Tz^-WoUGpH^>qK zTmm-*$v_9+qE2;x@BQ7HPP4mlp^*C@pb;u6dYHLmai2(#3Xiz0{t;&x!TuS|epvR1oH4m6kfTT32!yVu?(NT z38|^sO&=?z<6K7WFD*>&Rc5-kqOfTdc-1&F`(157@N@pCnld+`hd;a1W<5Ei{4b9_ z_*Hpr9&k_xs3%L@0k{h?rfp^iDKrz!C+k6~GF@?he$+F2$l(ug;4yD=(pjafw|Wy- z%2^c|NZ3~VjB+Sm2R3~Dt%ZN?2SfoxXFMPO9y29H(sqqMf3iDo@~7bHIZNj6aX5C? zJVDr~o+I=>2NYRyr@bNSHLFF;tCpLh*`m}Bq?bsmCqO#wbqq37Tui%t;`N-=|TyvD7bvMT#Ze6@)svM(U^oTi2-q_gi(_^zU(Cu`f z`VAANE94EY;uGcu$f_2jmxjZ4)#~TZJo=z2JPn)6kni`@mw8QYu3`@(DVJ9zo>x6T z5gX!ey^p?z`#8C&Y0P6!qg`V^S~F`@0sOpGC%;l`90olS9-98y+hLqrp32@{i_*BzN`zve2@Hl1SkVdgOw^jhR(pwtNKY0js% zLsUKp(yJdT$&~l1c{cvdsM6*f7$kybgr4{m$f&Fx%p5WgsRmuDTOR{5))W&yo{$hK zV&<={KqVv;bI5F_ujcjj8qw;!l8vM8{>Zf;cQrg@IX-QCIZ6Q(5@Acm8IEkN^r$BJ z6jpR3MC!u3$QrWGss4WL?IfOW3f_TyFB-@3@WZV%)!ylu!F+bdZ z8oc1{-TJ!B5?o6+X7O$42e${5yl>3guk!^rIITNQCJs~Rge3$NU?6L%!sO} zsw(ka_kH|@z@Ly&5f&P{AG#qHJOi&nODx1txrem`$A%Dd36z<}pXlcKS)HiM4>e%F z6+EM*#Yg%@go3@4%Sx}{;SDm-87{V|AIVRCwrzVL0u06@wB?m@R1elaxRBFmlBuKk z=kLWI&5OI7D6&JU>{{84jE#xjoUbmtv@LYmI{OW&ghVebEVP4{DzGf6(xFj5AINu% zLwauXWb#%H%f*dVF@vnwh5>B_ve;Oe>p!0{v2wQ12a@RN>Gw)YKlurvlp35cSA?H@ zlB^?I9$&EO%nptKY-eXlxb z1C7oyzBTY*r=z+M2k|m81mXKVQ~U_{#6L5|E|hh}N`SjK&Ojy?EqwMz*hw`(TeeS& zc2FC6%!8WlOrEioUp=q&OpYI#o(Ra_++fT-3FO9++n%C^Q9*z6sAK=(ufMO2WUS8% zDj{eQRY7}+ZY6M7ggszZZS-cd-LqS_1WVM6OYVDcaLT?1%zF6(+nhD6)$|Cdf?~k= z;z?DdB=@HYN89S}dS3|NO<`hV^QI706z7fKUa2LQ7m?Ur$;hRQ1^>;zNe<-VA$XmQ z@LwQg>=ZPN}`Z953kBSP`rFvaqqLM_|8}_Y0**XEpKDII3tpK z>_y(g;JFO_Y~eR$1CdYe<~K*rS5CHWSEaZWcaSAs>H-&8dx7t<>!X)H*0}E631t9L zF|D%iQIgq(XR|4u!>sTuPGX^@^nl{Yh$-$2aDB` z2}2Si330$Lq4gj@i{eqxFfBiaTXTHcO-k+?$XgJloUl2jfO5XD|2v1YKbxTc*XFDx zo|1g4ErCfqp3amsPbdf4CA@#z7F_D)t2mRw!gc+x8n>We+wVEEk3)H6cKP`|k9EmY zSXz%C7w;cpPov&SUVZbpvPsE%1uH98`>r5tSLmPE4wQTuqDHVF00f?wz4(XDx@h_I z1g`CTm97C>GQfNdja)dqG*BpWjN-%{lE#zhZ4F&rmNMRl8SpOyqVpZO|Bh1ewQkwQ z050`@UO9NMBzhnCBjSDp+SQ3AvD=RKE)zL|h$ArcW&@lv18AG6HglZ{shFuO!M2sp zpMTy3;lMgp$(p97Om#PzmoM{v=KfpA^3_!5hgLlk!{pKDo%S1M5gv$0+l}hKyARHh z%1!5xajTFyBw@RF3NfO9P#H*T;I5aQ+2Spz{lWDK@M%AD8tAy#?sx+Bc);~Dr7X*j znN%Mk#rF#U+80Q`!hm%jl<`~SApIBY%mdmE1C*MwGC35iV$kBR=;YsQWm08^^j!%^ z&>0Pl@ww4zMo6JC0j|u~bH9T~XX4cjyl5|sb0*>RCE~kLlzGIl@BTGl9+=5m$({YF zc&6G51s(;EfqfuU4+A|l-NuepuLHIpG)iLKvu$n3B!Oxe2oEVnu@~K)Gm{#3b^Gp^ zZr6B@F}Tjaq&CO+tZn~Eq;2W0c+gNE9?mi;E&97EB}FaeWH~ie*lu)vIY#^fxd#Tx z8*B6RPhm(xbT1P-dk6|8-Zp%oW*!`*R8{u#`a{brv+K_4-|oCyG^dT4qnDRQj>ouj z)_(7<$+wZ?-SOQcFU!+{e|weidAM6`h2-X}s2U5nTooYu*nx z*BNaj4ws#Ym)Z*@WYo%~a~~e_OfVqvH?(FVGlP){j8U=D$9%cnb*@ zyl|68AKW?=l8N?Yrt8w|8PB#ggh$o}R~V!GUfQ9IY>Sh=Z4=@Bt88Eo+y zrLa9|6zz#!{daMxT-K*Zt)56;cFbpRoIdi64Grm|@qeEL>1G7sgG-6D27sGu zCIvE?arDN*R-C2k>&nH5%0+pYS#YwwpAyv_oFEbuquboh4 z5pM&2pb0m`Ng*%+T@#g)TefLykA*8d>?;vQ9H#n`iHjMX?`m{Wj?G)jrL=8$L;?Q> zf!IjxN%>^xDmM1jpm6G$Lc2iS*YjHFT?(Vt%_u5LTYh~VK;7)R$ia?2`y(kgdT{!M zAyci%jT0ITw9qPt7d!qNxePn~YQIIm)LLnZEsD=UPLm}`{s%0(x{UfyoT7zWI-l}xJV$&)?!6tt{@rQk-%c($TYi#_ z);FqJzGPi96z5&GGnn+{n@*qMHoMMV^bgL1#rX(q%%QK7dDrrv(UalPCYJz%5vf9X zIP!?rogSE;t16 z)TIFA-G4xe*M)?MlE@zc+k;c#6jl%|z?DR4g1DSqRSQ=)A|{#H+0~KowWUVR=iR$^ z-+?rb$V4q*-sZ%_s;R9#g{=HYem#e%8)d$$QV+Nl9sq+$1_UdqC$KpqYB{DDgaH}i zcDPzgWt;}`R*s67x=_5kBYr*Oi)HqC3BHd8p+E0J_<+c9HMj#O-mFXu_Qa-7yt|w2 z6Zf=btvd0!*VVu&@AO^=Am9N^x+|Qlta)^%$NjI)2bHFNya6%Y|~S- zO)5I?@jTQatQe??VT`oP9#KRx`YbvOft7@&tQ*s^D<-Xa-1ty*kizfL%3S+S-qsg= zfKlLV=4h3-gfHHY^W|4AEaukNhm%=Y^p(h8Vp;fjbJKThOlgOriIG@9>2JGVHrD>t zn|4ulCr`qv-WT>ThIV$izAZV5ZF_cMsc6OvXxS){;QbcdsTblg9T2_*GRT$lWLQ|( zA~E_|y$uS9`Zv{nu^-wfq4Zo8Z#hhoKp`O>*|<<_eB6vL;<%6tju|b|t|r@p!0Fck zqKPkxIq+aqsh8w`k(qmtm6g>BOnkBUjn>@gMZ>EmrF~vn*YPb=VUVS-UY)D_)H@Qe zjm!82k>lA}vp4AeRd@FYsUkEaA`q7f&yKmslWQQgtqh!Vq09p-y?cZNzA!Zk2%9mq z?w6E|iU$x2hJe#CL)Uk9KpZi5w`jzX2p%_RvYVYeocmo%3j^tF?z4G2yB6i?L3ep) z<6igo26;C1+gv&8UoW&B^I);pQ$Js-7{RA#$JfJ2ldeyYL#Pe_v~e5Hh!$8b|3MdK zWy^~f54OcghDNZ4zB%)>A@GB&LxgBJd`qBdc1G%spel+|@i)tMD@>ge)th(Ba?Lv^ z5Qn~-Kv~fZ)QPk*MA4}bRvR!zkI>?ECg#{R5k?Y9>h?p6xF6)v3q;aMW8lYpa(9oG z#{QheMe!S7)nD%1@nznny0)&43abMm7(T$+a0zil1LzUo01k$hTNO-+#2<&d;>Bj+ zk56o!>CAdhsQopb42+&WEkr9VVdFjpT?pHaR(2`DA9HPc9DC^ybRs43WBgs_$P-Zt zZ||C>D510c-8KP360i(RPR2lSAR4j{E7B>b6I`5}7<5=4!Ow@kwHt;8f*3eAS1f7A zppn`VL&kZ`&?+xSUjX^n!Q@EhGxL@pc564 zXtk##A%e>F&vft1f!yid&ujk{h;s1+h{p2s@)WJC_V(pkFp`K=@l>q@hfp{k!>NL<= z*U=1y3!MiyJA^8zb0Sc?gO5(txN-jQSQM!6T@!z_jninxgDqJ%!xf@o!Xb`Y_CKhf zwuKuJUJPmy;<%X}APwV&p5D_qd9D|S-a@E^({v4A(?e)F5v4=qECeyp2Ku9ZsTqP~WG7f(k3Vde0{r#d&oiA>G!1XrpykOq{ z_cex=r;Qbo4iBF$%+Kr408Y))&m_w&9DDlU&i^Fs0fitv{IOU3`Tgsc{X^yk$iH1z z{#+t;JZZFzo0bE;e~ejqE*B=nCq4OJwS9@8W`J^pF9)QsSGRHE%q=Y0#O8+YK2lem z(2)@li0$p|ccY?u1sC^hVtBWPHl#5S6AsFh-*DegV)0}%0K8$7PSru4nu=X>#0L0YegAmyq-P|%KE?)IRdQ|b@sTygQ2L#VP zSa{dr2s?zm5x|Qp>^t`%nlaDwhp}di7#U1_gf0QrP+>?cec>0|2pf98TcdauN~6 zj|5p;HZW6AwH!T~t^6$V{m?{r7m37v@}%it{;hq-6PC=%9*##mHcF8@{MexL_3PMD zPw$Zl5)!0Qu0DAqOs!j=FXBS)@;)zOAytE51SpA$!&=Mg-Vp27>V7@ln7(&Wf*07P ziixC>W#osr_c(Z%#A-&H7OLVyJO1A~O5FxBO$+tlTlWBlYW>+VO{UH-Vp_&SNlE#O zG>JiiOLDLs3y|m)&VCN`Nnd+a^ddg<&Ra}!b@=j$HB!1^qCQKjGpsZQAwF9INu*s0 zH|0KtI7O@IsOamnK7IO>{bg|sRulYtNhG5J+ta6yErlwws-p5z70ARmn$F$>*L1I5 zU*drNKm|eL7z$5!XGZ2pJ6T%mS8vckd$hU!)6W_chBWGOiqbWPGs|T9zO3HZdBR7w z@K;7{IU6Mz9In+mFQ<{(N2D`5I6I#K!DofsX0V;m&(=T~g(KHGbcb*mypI4cL%=AT z;%Ah3a02K5|F6O;T3oQ%a?g0hCe-Ei?OhiyKD|5?S#qgcjZ@M=KV@_;LbGIiSB}U$ z*p7wv?P*>XAp2kN3B84h%8NvV{6l)v@~PaN1_DISzaT#d} z@9iOUXwu6@CGCBCk z`-y1b&wJuF4p+})=?h@8f6k+z;77P}!h3Ei$zIiOojJ;x2AxQtsmK&)UpW}o{&kT% z>##P{t@{U8vQiBt6vg(xx`)@;isZwrT!rz^v3zI+O&T;1{O`otQQjEA5&7w#<86R} z#-*2AF-OtE+K2Y(8m!uG(>?r%9_|FJxm}r7=D|B6c1!As>0JVohfYHI(UeTN>t}L& z=ST~!{4IL8gL)wQ7ltW9K7wQ;5&TL2^?Q<&h&3@u=~kZ0sJtwEF4oS@W+ereT^Ma` zNtQq6K!#3Axr~@vUC37p3L+(|ko_M_uF1{Jlt zkRJ0Me~0~IVh^zliecwQ;~6vbOkU5X5EDY_&#!|I?K64|z9O-}74x>{QyFFij?}y| z6S|jq;Nv-q=V!)0j76$n!8&#m{j*;U|3bcw))@Rv_y{`)E|QNJtf5di+3O%FE+Ij5 zN(Dh*h~2*(@dX5e+ao`#r)RY}lS}#UUol-#1WIPmtBY-rxWWw-tZK__e)i@9ca*o0D1EsVXcyrLqIi5#=T26TzO#*)4EMm$`s?}NH3u3C{hBG<~l;_%4L z%C5WrnD=*RrR?j!Huuux2>a(-^W(*rgSF3`F%XPus>v+9LFByGzerA|DX*+N_v48f zH0^mojmz`BHw98yH`f-zbyIZLlj(~*s!shU=HD704DWJLThCR;n(B>3QLv(+8qq?Z zK`^Hk6&I&K?kaKP!%5@w@$1dDhb2jyi8ojHC8VYM_YmQMoezhaRCV6tmLz~xVT(6a z)(4EaJiv5)LkJa#aN(ZP);@{70s1Z&o9W>y0<*Ri(Lp56daJeNdHsEl9^wUg-Qk|B zFOZLc6sON)pt>xug&}ZVbWY92J)SW5gQ2JuIM9s3fleSa!pQrQR+J9)2Luj zEh)Kk_byF8CRwaX!SKsZpxqE};JwPqW8Q|NwOw5-lXiATT!*E)vaY%C#n{nHs5AvO~nwYykAf-t0I9dhpe&D zDccd!d1UNSy>sKleHVlmBdX{zg(5clU(iP)EtwlAyYRNFm*Cx=hZ+;s#LyUpi|zUh zDXhSa(jbnp{WVrAX{cC@mPt|)6c`_g^sOI1!oVO&rjsq;?yy<@^?4b3l(Q3GL(u|9 zL_FiUQiaYQ`UR8Oj8^IJu-lWXKl5*{Tm|)_l-%ixurH6lyIWc>^wyoY+vIm+x+jgU zr}sVDC*Z?>fg4;J%k|-Kg-v#X-A6?_c@nR6GqxjG>&ihz7jQG|VOSg8>>a2tWkp)* zZD$fouu9d{?<}adR3WFJ*!$=dW^EDBWAG|2o*;Hs1a{*PIp{gl7uLPP9u{g-PfMF_ zkR%+k52Q&TJW9{8QT0}*ZrvKYY-Y-tXV3hrZfCI%qqCEfnD5HfH>j@RtOr3={ipH9 zFVe5yZ-*K8JZxE*;-8(RZF_2!Oy{>oMoX^ov}gWXu*$w#AW1mROmNTYr@l*)!}0%z zWZU;$nOzLh+soK5`4Kz^=*PvpFkyC}cB3W1BsmQ|qyT@j6mtw2F~t9qGzr?qC3%8~ zY3a;6{YB>0SqqEJlt^zjI@NiFVe(y&f-}}g2?#jQ?Nxahc^SV&*^F~$CbxQo|4DQ1 z)Wk#)CDR7tVg&&;9brePzM-_(;%#)r;`oM~Y(EwvsdUBZGipF^q3$5^v;nIIf%JG= zUr&Qoi5P>fL0F4RF5~IE`#x2Gbwv3*(zj0G48p&L8Y+6Ip3ds9TDiE0K0wNV^pPXk zf0i*h5V~IyAIrC~F@MNbdxvLogn=`nn3xk#3fe`;Nd(IxEOVBvw?AogXpoS)JouIRdI;+IQ6c zNKKNGP@Y*?o}tE9nQZ{$(lAo-LUolCX^nn?3zMl?FTLGsMiUeIZ?5}u-?Vhh-kT!( z?65@a@3I6g`fn%0?`(9X$T(e4ee+B#!1)A!9)e0;%oAva>hPfur!|%*^4!*+0>#F{ zx;H=V@Ki)&|ekAR6 zxDaWPgMmhrXTRVyn8%7&gU^PzXU?hzLl28#sR1892zh$M*k+mQ5UYkTQgKFbjoKNeivSox5L96patOwK&~!4mq4fP;CJD@vd1rn zMW-5O;TSxDt};@@TV*?XHa3H6N<$yZ{qNGiyBH&8MGh6`ZAe(&0;|LL2G3XOAy#Zq zaEv@~8p6@23Iv=?hjkwB4;}8GrxO%IcVeFOpjv?Y7 z?60`|Zhn3GNX6hsUcT~REZpTKyOIa;>qS)gt(8(vG3zVp_?(Y+mRMLFCrNdf4N&#` zlM4^8kZ^B{{d8gQr}yaJ)ypZUVDN_A^;KTp!%HXuw*%94@O~vqg>c05m=P_TD+nQ( zLP=KnJAB z3f!kOdF2_y5Fx%Br!N(I*yJa*tvo!Il$80xJRKoO)mb8$B5*Rk*#4-v_@k6V4ub6q zR-}FL?sIoL@`SFJWM?}$UAU0qw$G9J3+n$86#Sk+--+xZ&E_59^t&+s?@#ylCq+g^ zp2b|J32ciyef1S%T(&tRsAgntk)+eoY=Y?DM%81m&&SoD%e2=x8ad9wYz z7Fw?k2@Af9t_!V|U|3sQ!-%x=>d%pcZH$alK915lx1a0gd?=T=$b|d0dS~6!qbNm%=oy-OOPG^( zfj}k9jaQ*~`t$)N1nwN&3^Y{b!M!{OnY*1)^aVaCWlIBneM_u&BvRdNdO58`Y6qYD z99yNOYgo4}J`s(0GvV`x)rEnukbquHuvx_-PUNLZ0D~i}BA*kRSC<|gT6=tew_8c% zpr3-K0o$)1rD(RE;ACX{V!hdC63%tAt1*Ie=N>JEu6Lh;5LARQeBQvoKzog=6Hr2) z5XS)LjDxT%=T3WIXf@mqXe41aq&KgoIATb(o-L@e{S@2{mKLCem8* z36DdJ05a~{JM^B#1AOy6D$Bmded_mg^2v;M$2?szXXwK@1E7lmscXSMk9JpPT=>8xJ)0u=?;~NC;q6<78%ux2+7(W_ zO!!^*uSm~*~=_YZF27#|-Ozqz(NK=gb$udAv~am|IWsd(wJdS{pIx)-|NqwiD2qt@Ub z!(_hGzm9GzyUF!<%l2=+|NhN>T)qEO^9%-3AY*1bZ{tlFBRv>*f-o;sldp1^q1jOf z|C`ePT+Yq_bKV1w9#Dn5W%;40m*^2ze>SxV-Dmrmc*%giV4e~xN@H`1;l=p)2Yk#Bk1;| z!=<0O#}Q#QBf;ED?T@+)k|GZ3ZxTL77G3@99-RtWP1eJo;{`8cETSy%jlOGYqQf@> zHfU#Jbo7VA4DSdZ#|YT|t4~B~Ylq^7P^^h??{$E6HV7~MNF>3Pm6f^TaK8`AX}8zk z%Uv5Y)thygPQEAlZJ^bbJ7L`9)|^3=G%| zW^O0|NvX)rW`JafpZfq5}>Wa3MGpq6s-HnoR0kaV!Vg{ zOt*24p4oUCd9m%C7+mi({!zw=n-zw@}FlYC4k;;n<`&Gp58 z2RvEiDCp7j_AW1n88#08XK=1;?APCXK%yw?mGY`7G`F&}KRrqT=AuzDxCi0XLO1aFzkWD*t3cK=D0X!bpb(@OZ_*;R|9tdN@o#uYATBU`zvgJ1 zm6ej(foGuyur9`p_HAh5%}=}JKaMhCBJ>|`VIRgsUY(`~l0WkC@}%P$e0vElwF}2x zYnCIN2gxa^*-ti%R;Ug==8|XVDQk`o1Xme$&DAx1W`11^mnkuS{`vDBx5`YLPKJKc zC3X}}8C7};V^9l7O5*7_a;ELG_gDk7<=|nK#*JSmYH9;wVkIZ^M-geIs6rY1tJIku z&oOXpD@;&e?YO-_fS{D}>EW^uA4zy=29U8Zy}kzquhOR0)`WW(O`V#*Ug3akV*#g> z4Pf?X*+mP#{jJ`eGP}7yYzqb&H|XJ_470ePr0EG`S5d6FM{8}On8XJC`e6t~a;U`x zB-kYvQzuEO6lL_k&(}cIP8+Mal)lxK9_h0pjbDG?B+cT_ev23~l44G;!vWGSOv#@= zFKMOvr(QzZhc#&0BCRyXt1fl{Y4K3nEuiWl5(^EYE{HtH2&X%e2XWL-0G*tfvs!A6 z&s!d6)D<13w2$MXzADRgyImm-77>(78+~#+creX4Lac(w*8lr64fpU?;&y$1?C05f zX{RwfK)4UoVuiTMq{xS%F9GTB$j3S?xZ?1qa*DDFDc`5VrNOnP`mAU5xLxS3xVz&P zNXJFY@$usE0|#y&_uG&&FfuxY;QZj9Fx4X?D>!Mci^^-=!+MwWb*YTjw$=mjoMDaT zD-+v!gu{yNWu8w1Kse$vBPu)&XF+ zi;qm|aBTKlR!4`eVhjrbxw*Nk_@SSzaizW>r`W;9o=Y~@!vPo zKs&mFI4xO%d27I|r7KrvX3{~PtgFYm*ajtR$!>QiJycP&k^93~o!k9=b1ic7elq}_>>bgq6yLbW$GR`U}LQx5mHMAUR^tEy7rc_iAQcn=N>s-#MTF#~>sdv8h1gnH_M<`E!`$h|40n~nN6)(u=(3c9tWv!muPcy#Y z2GLYRB1ZQYZ5q*}?$lVjg4}8;Ifqp-ImVznk3G*Fj&CC@&H1%%8 znhg=&`BY2*Ua$2Io|5%^iEdg{s6tv(Gu^AWxxss7Fo#3T`>>_+nU#ke%AQhJv(DL= z^uIFoD7~CVOP^dH#_`wx`!hgccJ0qvU#6tsmVU~9%ro1{{adhcPU^Jesv`+lDq?-1 z;90jIMaS9d2oq*>t?oZx@Fvc0mv%IYF7jCYA)T}(RvCgXoW-62T4}4VI&aa^?%J*7 zL{D2}?e*+$vAA-W1;mJcSg##YbWdaSi49eG@eTmg@W3B7DN&#!%r$F6o6TQ;zrnx9 z&+N?&Z&Z4i^}=` zeE01sc(<-$A%@Q4l~SSyrtbz|65c7<3~dq@mAgtse|2lupxsJg^R$EOi4)va-`+8j zUA%a!uN3TG-^IU|hYl!kpWn{capLaQcObm-5juPs+jaPwX0zX*^#5rAfM(@mN@M-= z?UwT)*@SIS1;3)U6K2?b_&vt@b&7J+Hw95%FOO`2PKV5utV2g=hc@{yB`7de?RZYXSIi>@~0 z!iSq=*WTuPsWFVNl%CGlkHW7}aUEkG5xWe2KGJY;_@DEL&YvHhbCMDyC2gi)MGkR~ zV%phpiox60j46tOc1lGQZ`vH9-@&3={D@;THr#zBZymmd3m_1)E;0~xf<7z8KtpF!OLS#y3@0r z$*R8K(CXYr!6m$c=NFF^ znUe)e?DSu9Lu&i36J99LMTG_vLv2Tw18emf%hJ-NiSsfP-DaJJ*z4y`X+VtIhjDzQCVG78X(_TXB*2 zO0JpK?1{)Y%S(v$e>leO*2Ib%YMcdE|L|9H!dH)1eM+kYzA`3}jh$NbVJ z7C>Wky)IwdVdnKW=?&xrH0z*^Y`)3vVThR{k}^)tC`VY}6jEW`Men>sr zV8s%(Ad03aEF+mYyS<|4=v zb+d$vplT@63{IEKW2{V1PD&EQ;SHhn)LZ}jYBjFT#z>!kcbsqhT?}R|6Nt5J>o)6N z{i?3bhB>(b@0~V8wMqyvn2czZ2*>1el#kCJZ8-6*-lquHEZ!|bh*oSUOw^Y{3<2S# z&KHla7ig^!#|SP@wIU8mf{h*_Dn2n|H@f4q*KdBP$PmYEdArUYSxo?viOTDJL=WlC&YQ`j} zY|vgDNYfU3+|@>>IGboT0Rn1GLYT^#)$$v`KW(>qZ|=4lG~HxdZ_{a`v;Me!C^b%_ zLgM)s(FhP?DYqdR;5vSMASy}FYvb6^C`FFZt>#oy;O{4z{jYpoX@3unuyEHASH&}T zFpzd5%-#p7{@i^cuXA$3$W@AGEj$*dK0_gMcU=1H^!uWd=h*IITYP~px&wey6at$N z;>jm29>a}nfRMP{1cFtofqT zhFjB>iOFi;IgfZVyvxOEI2U%3f;9xP?Iuc!B{r9veI7b;EnazMCCUs>T|Icv2 zbLcq6`5mrK$)EH)PA-3I(~-{=$n4T&KdMET@sLrY=;SOW<;XM z{T!>gvJ=gt82rCOHZk_;@oCwit}3r%=GWl!{=(PIzJ2=$lr(}uLZ=d=S<1q8QYbl# z9W}0`#rk@)<@u>Fa1&LDe~H}*6(Nst#KI5|SW;9}3)+$6N!r`l6G$6=yA4Y@1Va~+ zr`5SZNfUBp(_H;oIE9l;jE#RqIC0V7qe6ucq!TmvS@oa=yl3^~WLm3Ll6!&~;-sGZ z`3NWc$LUXSrKOgxn;IKGJ$&+{Dg6-j$Cu28xkt@-qcmO>6j;eYD+T23b(-cc|g6QcqFqRDUkMDJ?hmEp;YAFg!a;n z^^eLClq++4cWoCK!bc^|x#!FIjLx~AZ#En5H>p+g9}2sfpLM5u=`X*1W$**UR3|0f zp+mtQvPS%K3qwNvRw=E72}Brl16IVcJa%@g#UF8ViBb+p-?~u9vE2>{S23toA*gXd z!Jko+*bzU?P4(}Bpoz$Xc^nqTfUu}dLe__b*$Avt$N+qaFha43<|-U51Gg7VeqmxK zkdHKt$9K>aWp8L`h&AK!gCxP+i-)RnI&DOLx>Q^wT|=k|t0oI)(Ao5&+}w02#PuRE z)C!1K67H8<)v$qFOV#;+7o!z!z=jXB_f>q$Z^TO=P_qHRYV4tp-aNGSeq9m76&Z^P`)B%jTVl+-?DZnAkheIgCJDLen2&*F8?8{_2pRe_6KyK%b* zfC79IjU4T*@jipzcS6PYGi^Q<%` zPFLvEn`bNQ0il;*Jl};~iksACq-$m$F?ZOYNMU3Vsz?u z6Ah>DxH~}C?23vCk4DV$r453%tW2VNiRquoO#m9pYSO?HX{V$Q>t*~>TWZb5dfo2+i>acqv32vF zt-Les>3qoGUA8XSewj4PiSO>HioaflENGVLP&m-kZMJ^J?+; zup+PaY}GawnYO8ny>0EPS<6XE4a~hC<0u#?!uBv;-}JWYn&|06{fA9BHOh?c#=P-q zA8&~P6u}Em94c#Qq=XNJ1T8}1lT~r9)aJl z0X$$4dT2ZFxc{;dJ9ywg0kV@J`zHUdZ0xjQbKLqkW2T-OMaG-Br9KB%DaX^cfw5|+ zR{zBtT{8Oc!Gjjq-~F)WkeyptQGCV1!Vqu7t)}LC*ks6Q{s1U>&~bzRK-UeUNK#Xz z!gg}#w89?Qn^Rn(R~dq>q`K(uT=^i-_~|i@Tg9H^(maC$dm0CB@4z~vu{mU3osvR{ z8_l+>`A|p_AqqNhsY5X2a}#;d{Bh*oKmaWUZHIqu zFc)I|I1e@{K{vZIktF>Jb>F2QD5Utr9*1q>s$++qyKoArnecqBesghk{Q)Dl6-m=G zKch26?scMBOduo@?_eut$Hfa#wxrmfGxE=unZLa!&gx^;aKQ`$Ve6i72_o}4?!D&r z=$$oz`a*(v8sB7iLbMqmc;dfO;>9(%QWjNRF9Wn>&rqHe6qSnoe-#k6yDaS$;$ zAFc-L5$qk&{o2|ZHQAZH1CrrymZ!Eyj5=N)Q9PNixy$^UG*Re?v$Kq8clejk?R!`1 zcbw9CN(f#!ZWGE{XWZc_s5L4FJhfBFj$6h>495a7|2TEo@4D zR}2U`O+s@Pz*N}9Lt}WP3B-62Z8z{yiHeISlkv7d-fm=rDYg>&7~Br0p$=sdkvyF^ zl8$<>y9flYYiz7-YzzXl?KXF<_H#Ig>rPVKGsc_i9(MoczE895(8Vtnb~e2hij3i( zKUL73V~)rM4zbJkymOb)(Q16a^EB5bs~c4+%0EClm%ajmU26|Qx%OItc*PB+#y@=g7DH9Y)U9xfvL)1TYFVlXr1uD#?zBG&{q3^ zs^RKe|C$&v2j?5A&HrK#s%kF2k3t4yUEP;YIRoB52}8fOHnXf+WOsqV#WE(nb4*@u zHuqFlSGzcSofx$ErPpNnRm?c*|Xj^)T|c%^8I$j^mhAd=O0aXV6*vK8*h&D-Bq{`Eqf7|V+Ha1zBuOyvUd1F zu3;7E_VVx8W#>LK8lg>?j5aEm2f@4?4tENDTy4nc)-Qn206UvN+`{Oi0!NNF0FJeilS>2N=lmC zwu2|-Q_05$#YMYpN?e$y3C|kt&m|n?uPW0in^|jL8y<;^y-SjkqOOtBI+|xY9hDG^@VUF`?IqbZo==OE+zGfTFcqdvFwcr z9BqqV0W3M;i}8MYhw6c5Zr?`v4SBB^#8kJ*&;-UTCb zyr(CgmC4GQAgp<2H2C5^Qjo3P0+NX%%3r&2%zY2OISW&_VXEYa)kyUmm#^NyA3R>t<_i@bIvRh%)#=vtgAJ_IL-mmbw z&-jwq#cC9D-(yjHPm(`%ip(v+p>5K{(2y=wCzHyt;o_vNs*Oh50*KN#FsNQ_iLY;O zXGL3`GS)me8Q$oi)|10y@$iHS(1XLK6#>{R-y;6~!hu*eC2gF;qo6JyILq zwze`u*-QkY=pDEV$QU}r2R0=u-GJ$?OSI zr+0$zp?fo)3`&yBWhc>xXALFGNZk-!_F36r&o>GI?mYvn+5kNlXj^bl; zV)B@uPjyRBc6F6JaNs}&M))+mydccIR8_a!f^RkpD|=R6UYc7%5N=G;+Vf7ED*|OE zWPVqb2-1tZSptE82je~}kt(yYv->YuT1Eg3o>+ln<9qWPNT;78ydwv;zP9&_{KyT$ zxiZ@S?Hj&YAJjC7NcAvbyzeN#tc-2p}1-j7X@ zGQ+YkrSvLhe=uulq0j-|sbNj#zPE4T6QNog<=%GUH|S)L34D9^zHmRWLrwj|Ix1pp z40Ux>*jD2mR8o!~2vMxC=A4tKU$pDotS~_9q55^7pC5J zJt`GQ9<-L{U~{}aXA9_tAz@rMyt4S=*eB>%QlQt1I_m2&A{;d&OGESPQ>p#8iK1)P zQ!B0@B4|p!Oau0O_l_J0hLvZ2)o!ZiQ@0H<_7IhSmkbuh@#G%1?G@faTfFsu$HOPS zm=6eNCcPwbhi+h;;%dRIA`oeN{W>JPnvy^0n`TvTmJ>xcFHQ&Pd}jV^BP7Ae_~}zv zw4#Ls=6~vEXVcAOJyp;+wX)jn+0);@TSD`6k`8lWkFTHu%YLospANbzYUG?MySCEN z5v_ai<3Wo-+$y_0Uf)ddDOXc!%UqnMY5EvE>v4AL*PksDFsHC=>E>fRAtS?y?l+Pz zuC5s%D>l0!l&W63QvpqFV>Qc`L~PN(s?b1mXUr=#NI zLvcM48gi7c!YGWY*kgQADogm3bZ|pj9U1=Y#07K)z5@K3d1;++QPf@B-eU>*}T+t9AhxQc41lw*QL2ZX>h0)`2qHG+NT1J z%2UpV?Nn6Roc2-F2nr;Rm!f!eJ!-r8g*+zh>RTd1zvwFeQXkRL74*GeO7`y`WS~Po zwZ9F!e=o82|GRJB%>1l>ee6LtUcTT=Lk$Mz>GhSUVpnzbk&rx{D9&HsjHC0WCRDqu zthcD7UeU^`0Kou#&q~T!_sZ3Ucs!7>G7~x^(P@VI+8CklCD7%Ol&p4M8aR5gyo>~ zg4rp4mcN9zE49^X31*pz#c#T7_;#P4qar1wIhl6|hPgWWrfTc2F+m7t{`%1A=hiy2 ze}-F!2xG`oge+6>E#Ax<1-2YDSuCOBxo7u#?JA#{~T|>C?bNHj?hig@HJyo|@AJ>0vt*xgx#v%LUUQX5l^DkUH#~$BX z_-5=}>Eol5KJ`=O(}3ZY5}{Aw{g(?%N~n~y=hHn;Aiy@!L|ePHZ-`#R7({SMd|Q{x-%&7N~wb1rqooM(;z^4U=I_fB!QdjM317tlzu$r>Bq)YP<>f|3g<1S%>1K zgL-;;h#G2z64n@zWRU78X|vtMDuw20qcy1M1OcYIaqiVwYuA!<;%aQ=3=fR{_=6;m zna1EvXm|d8%f9CPfm%XAS7y88#5OM9yQ!)vN0}YsM5G=y4e%%_)!hsGcB4w~{Q12Q zLLCi0W|(i9a%L??>)sFo5AV!RzwwjX;CXj^-(AHBZW^U16>-OD2U13^yX&pS67g$4 zBhH@ns*-J;7KzKuKkLz!;<=e1yV^QBT}^LQqUhE9RJBXjK=mj+j0EBC=h=hb^?i+M zw6mMCr(#o*UnW$bcG<|KE4;cG5+r2v?We34xI-v^ZhR2{S(;fKa|t zFL>#sEiu@^No6~6MS>IG0azhODfLrz0GMj4rA7l2kQl^T)p#AMyl{NDZEz1^Vj(({ zv$GH4nA*cM4quI+u<(!EoE&L%geKdmA#$$*Rx!ffFd=MIN+KPaXK#Rnx?-5R%xg{B zR8SoDT zO880R+pCFGM3wdBuSNU^96}5?&gh_!0ed0L@<#E8Adme0JEsB~D@RhZ#^$wLeIvX3 zJ!8`5pEyPm(1<|Yd;$M=I3N!I3T{JDUyi67iOesZ@_+E-1polXP$;zHir8qy^{0kU zz!qx4pDr>)g;RZf{ZOwV{uxQWVR8uAoW@p9f7LotL7Q#**RK^lnQ&!gWj@gVJAxHw zW@k?$^=485bkAR)0)OiGuM3P&;|LS%v1jx;P^tx9$dM0 z&FnSc!fk~Yf7d%bjX#sTg_?v@pdbFX34k+I=Wl=j%!CNGTEHd=V$UBy^o611IPXxs zoYt{+g!$dLAIu^%AQT=%Mrx^x)brQ`9EH+C5yy{jl3+|QA+W{W)P=q+)f;$r!D(y( ztsexls7REGpl?d?F2&V_6w_BHn?72sH|+Yk{8$;P?-+a1Co} zm9e@|k!lq@C`aH3LRT^Up1!Wn9eU@<@~h6+ytA#dx0O$CCnG^QL$p-RoY;IntEZzw zGsB1VI5j0np-tEsk;VqEA!Q8|meyjA?L2P`Ms5*h4NlPO zK3AKb82#}2wPwx}sx~$Uu(D-$Ot`ei;XNJv@8}Tw-_h|6`pE~RlljZjW2=$)W8NaK z)WywhNf|zJNB29sZU{?WwVuNQ`l5Xzg=9)&u5E0LT0+}yCJqj(y5nv@C^Lu+O!mgu zr-!B?gm01>XFc|w-5Mt^VC(^2o}7Fc(<*owB9k5ilhuT0^VT z+&(9pS*7N$_ur#mZi@Y0-CMjja(RV?@0HfcRv*S~t>rha8J9Ww5%T#Mh}npmg&%FU z4Pkr7tQ_8GwoMpq@!4FLO7FCpc>n%=8{m4-8e6CtIC$)l?o)+0)qsG2860oAnR;2% z?g^WLR}54wEG%9@8l51a`RWo!11G7`>FLAKG89d~dlmBP$X_fe#V>jkx`eDriJA6nEVBmV)MByd=J0|*PlEzmk$-8s*+P^aO zit31-U6YMc&`yafOWk)rR_W+=PQR)uS)v|MKtyC4cFJ_X`ddPu9M$;zrP96b!&*_Z z%H~W#!9#<_+eoV96%q;_lfDi^_a=3XP;3)3Hnii$o@edsejm%#U*(24A-+4G+_7S; zSv>OMp{;I~k5w=8e=vkr-i~EL6^kQExn6uiKNzH6$ydY-EZX%C^32Q;_8MSJK@dDv zBA=CVW|%Ns6H!A%RhC*J!)stP!oEf&n-?4!Q67(4#8s@=eRJ&ev?pZ$15@Rn?*Ua^ zXnfeLVb*H|ADNu2(}-d|!0rR9a}$?99x~e6PAcai;s7v5;ZENVi{Z791e=q%(dQ!a zrz5jnT(>g!oFIyA!=dVV4lxUI;`Cs#Y5Mrl`bnDm!z)7gFM>nHRvYa33GXKWhh*H} zGJzHvE3b84oEyRyNt6%9e40lf2GYH(k~=5WQi0yreaa3@N#Xz2Q_A=St*c4pVv?oT zJ4NoU%{KdOuF8$fad82nhE@GC&k-&j?9V@3?aghx5&x88T%7)?i^|Er&DvTS3TXxm+QPX>icY@PKk?& zkw}0qT;=kSHMEA!#O2V(v-qqV_v}e-`1ZSed#~iuy?V=vf%m0qO2+H`{lW3oWM6lb z%zr)f@$f|$s|EP-{{PF7oDl|+i=@}2-xzM6!6VgY|o^77t!S&S~~Lx-$@o~8jX6sepc z2cEkX#2h#y|8aLfZ)2IEHjNDp@36uHrk9wQ{s5a6VDAv)Z1(j40ZH;=o}Ufo=dY)y0HRomyZ=KZH6uo()PqxR(6 zg~e3t;5yg>wlWQq)ASY5Z`GQ;w>r-hsjFd2wf@%YFhB{t6Rnl+z2?BS*X!%5dTuK& zL%ovgwjJCfPi3Jq^ zgpBGD>cCK&a_#bEX=wkX7k;*$F22^hhyCNrWIWI*tvmkN{Y{FC>rO7=Twbnmc*7jG ze(VN`Ld^!@c4hb|fco_gE8H%vnGO3-V?jBG4CgB-X!9XSxg~6NBS%9{_U7+L^^pJI zTT)Y3-$|-Y^!oRqWF_yK!NQJIov)LygL5KQBpbECNq1ieHyBdDgw*rKM-C1KQRvW? zR#&A2e>2#KcQ&D+S;@skViB8bJJ2^{usGJbbE4H=%VN-;wdR}28CSY711(>}y_jbW|Y^Mi>g;Q^Pc`X49(?tdaoImJQe&5{e(A&#s zF?xpOS^nM8d$Sc=JnRzXeD*-iC50DJ33dYfQm+R<$?wKR$yCGt@Cr>sW8-G@vuC-Z z?%ugP#ff2xygR$#MW=~%(O~#$7cWl3A*tpdE|IGrifK6;>^1f%`+FJ!;%hXz@eW&aY3Z^}$W7}7Ow+W>p$EY2 zjydIQ_$$o=|(6Yi5$i6L}Bcdi(aYLvNeD=H=*`TLiw)ShBxj?8UO>eQ5U zkrngtv34yZt{fZoM4>-O@e0q7vd-=zXfxcRQ&f`wJEmg;lTwMLDJevDwGGCQ( z`T42un^93vA@PT-OP^e4lXmo-6Z8I=02w0oKPr%8V0QLc7IH{v-he|oOog9tfHlsZ zFwxVae5`S`($o6hBaY~kh_%a)kmbEI$JzW*{Ffe#2>=}%Vh>)BZ=b6GQuu`eY1D_w zXC!^O$#SSgO?jh!Bauk_irC|K8KG{}%TOLTV`q?z1QQWObM!iYyw>d%l1Np`qBNoJ z!;6Q2+ka3gB>-e>(k!yXW<|62C0Gfb7TU{VJ88^Iag|WjZ1v?JWjCfC$kp#Vj_#`q zH#D<@t{4Oa1r_0^*MJ_!xMqD?ygKrgPVIBoqXt;t9(iSTfoRQafm$=pNT$uqS>ggua6H?8*~yBm+t7PU($gY z0YJjovs(kLucw!a&fsf+g$#j1A4C~y!@1?ERV~&bKtPr+2VBX+IFC)zS*E3=ve#b$ zIv8tCG?OyJx|@jv<{YC}TY+5uh7(<5k^0Gzmq0{lE)?C>~3%l4QS+GUk3k%D^$Rq;9iywLB$j#*^RdL^nsG*p1K&MH_ z;e+C}@ea{p0mHTP3nu}V^pxL77u&yoJn(<+!e7FvEKF{u|7mM{ z^+ZHS=mnDP%Z7%A1d#ZPcy1(wbY$mO_hyXi@v{(_TuY;oa*r^n6hWC~5jLjaE%)(Z z)JDtnn{9FV)ptA=>`=s2;%<^hHX>%4*t2yD86Bh5*VT zWoY}gIC$<+L`cPAPY`$XYD-*gkm`fKOHMx(6lSoh+yDxmGXKF6SsrI_GezCM?~9&! zz%v0Ds2}JZ_;LOK`xR^J565L>oRQ4^#q%v*Tufdov1o1GrCP3)t-R{}mn!)EWP6_G zHYDL2A`WH{+R{k&Uh+T;Gii%2OG+BPm7{u!KVGSsWiPH6d>}#?7Zzz91uQ{^fyCTA%!{-q>QbibOu;d!+F2PKU7G&v%z+qeN}krdyI}Dh3nt)+qrv z1tOFaI32-HX1VugKr4f7{&g5m^5k=ZOw7!0Vg3z7%RzknEc6s<36JW<>^L$z^BiKv z^WQL>o%G=X{ishm%V951MuKMk)zrgivCO{e+iXYe#WH>vV@cnD{}j}zadM}P99vrh z73DAG|DYLi;YK3wLlhqb_IzK&#^UPBU0WRD+%oI!hfpxI3S>gPCBI0ZuXpe+^~w)q2>KZu1vE&~1yW=(xQi1q+^ zfk#PW?tA<=g}p0;{bz~0xTU>a58+55GzO-)3&(W(n3*F>-}M%6VG32HEIH{SW7$$K z%HJkqyS?E0Zqm^8%lr=D2k;WbPwh!c^1VyX?RAL9_c9&F9lelmw^x~}YO!8uv zsCCxX%A%wACcNFXYK+eCW*v+Hp`mj2EH#Nv{x8_tzmu>cY(F_HMt1wT zU~5WEjd1ZRDPcN#ipr|_>N()p7#%`E|9clA;n6{}Obz$qp8pU>+G5zajMX(X=H58} zP@~dphr6YezE*Sxa=Ohv!Ce4QLQ}>^LxW)#2giGe{Z2X`l8`9Y4>*xHY{%3+4jL8X z2pu3_@!m2VEWV&bh`a|7XcE?kGW9|r=dkOqUXPq}z_lYU*Ab~Sh`9#rn0c&v7XN=_be ztJava+BHw?4=T}w*{P|oub8aDHM{#Xct71r! zn`(AvLfV5p_8rf;sQ2DceE(2EylC%Pv)lXfBU`Ew;YSF~vRbVY0PPNZ4Ji8VxWVjL z_<7h-T8kFL5W8=@es zCBnQSVVfUDcw#EDYo0@a!ooSJuvL^V8!2~uVq!X>ubJx`FyJu4>5ssLd(f0ajYT0A4xk|*4pOmIDA<)T{*Jatnn*wNx0kF;ERbtnA8g++4@WVWlsLV-oB}K z`ufE8nw;;ojX(P7^J);cuZ_po#ff&B{b!%b|lnUbnM;~Vc)^iLEGfw zB;8+jG=DAsk`4vHZrC^xyV+UGMyGVST{F6NdAz3nXi)9&iM>-@4rX3Mi*zL11c|9> zXov*=6Lq$?n;)LK+gs&ce9`n%xDXBfbVjJ#Rn_V>o~L>&*y`4P>yh zV#!Pew^I@6NJCZl;4h8sC$h1bwTbjYD@HVh&k!{M+yLrJ|9eUA71#VI4p}BVU3)L9 zqsELrcI3v~-NGtR)7!f;kf(fD|6GkB5A1m-UUKN3JLiiN?h?YAcmm{^D9Po|)Ykg7 zoMRF%T5V)enE7_2IT+|>atTZm~fbQ}zy#hP)$} zW>z~gdtTlY*1x^9SJr7wy6ReKx7GClO7z$H&d!*(+WMBPt^8HieH-~ahjc{`n= zc7UHBS*MjmnU(EF@M|3_9QWy6EddMB+rdyNRm%iC=-_bu*>`#B8_C#Xi zXSguxaGBl*GPq&e=O)Pp_z$gB*u6RhFaJ_Ve?8HR&!14H9!^`N#Y845Dk_gJYx1VT z^~36&3;!%ze_PZ(8eNp_%HLcaf5hRda}n7tI1UQ7F$Apqc@=eYR$wC}w6>%FwJJg` zs;*o=ySu%8%Tb4`0#{C+tf}$SIOO48sA6x@migy50*vQ#ycZ12YpKoK_^%EKs2=KF zUmkb$z7BXN1^459{g6?1Q@y4^s@+yX2H5}=#vLHwPpXz$_ZsbFs_ zu@&quqyW1t?J<|(f^0n)Y0~x6m+(vv@i2&a6&88o>7^zu;B)@kgYJvg~z{ z;oJcZF;3Gd6wdRIR25I@UB1_XbbDj7BI;nIrdK_CT8DrC!qKzYd=PR)BT6RxxbY-O z;SgCRZ4GBl%RaRqD!0qm{=hNUEyVr+tVgrszb{EcTac|B z?SR5EGBV!)gJnT=WC__BPI(QO3;0o|mm3okGk{IMDKsQx&PnRL-r=}wIB0DVL)r!_ z(+o>oiPZdXq%Ev5_!HOQThGb7Khe3#S~cewE0{O_+h zM=LLgT(vpsA@RKP z^Hp-Z+Ne)qDc+4qf9Ee@P6X_Tw^ zLBl(;%^7}rd?3n3dV2giE52Vof1)h4&u%sOhNS{G?VX#gymcQgU&inS8M7N~u9JUu zI%1(_QH_r1^yW`LLt98*uti?b_iocRIXjWK58jM)bYc>o&)J?I;8%Tzr%Vq81IO@< zW+=QUo0CraG`!Z%6T9)qS(~PX73pbf?}Zgk4IuS9d|6?EX)TTQ^+ftx zF)UOrsApC%sna}I>-E2KC?<#qA+H`dxsnS1Y(lZYYFaWi0Ch1M1BxF zW#UD=BN$?LL})*aqwC!RhZvHw586oDr#z6QB!eUI1>pKNWG+qGQ4)#opq0<;Q;jZH zcp;cQ>Hai`Cq>S8lYEKvpaIk|a%4Bd5)%`z;mxzvxD9Bt5hsTl%s0)*pbOK-YZrN~ zjq8itwmo0R9HpOLjZk=TPxnA9MX{khPwL!9OmJo~`;mj~`DP8a|l;fdP+%_7V{ga`bTKH2*?9HCG`*!)LG!|yBi1ZNl^GF*mrxg!)&K0#qk9Md{|iY~?vWeB zywRdV=R7C)CE+-Y|6_4xRwnsBplxGc?z6l^=HtU7w^^O+g;rBNQ`5tc-V%;|auRx* zfS42h^jOm(u~Rj%%d@FfeXr=#($WfwirT>!>gPB|sis=e3rIPTdw3u%fCoiYOpAZ| zf|&Wv=xshdA&(gzW$ap2NXIg^lA=^lB%LHxQ;IS^5FkV8s;;4dK{+C>(;J$<1Mw_? zJYP&T`Xma(%nq>8?cOQkD7|^MtcUnA(@A#~m}z+O62`4a--;-=qF7@ZdNn_sA@OLC zwmc)m&aWEX@4Bmt?#^>&C2bZZ?E^wWM|Mg(@(`rltf%`^{5~+Ja}&AR`1$!rgc%8z zg<)b;L4<__dPlPsH}8r)X23?j9o8V*Cr_S)09`HI{rB%7oyqYFxvGTtxBwJ&u}!BM zmcWdnf$P|NkQmL9sz;3SsI%XLEE2Nl8`o2Uzli`hsuhys-! z`192siwWWd2|WlrD$gH`EGToID)E+0LPTf8{NJ}gL!%NB&LW*A0-YVm$xQv1()7`f znQuyDfH2n}b_fp~9{?Sb{rUdL&NkH6e%qh7i#)qIVOtHA?>50sawK(nsk7B@B9>J< z<2qS7COh0!2emXbJ|Twe5*uCp*G4I)t>cOG|J{-S#)PVBy|iq$7X%(szB8j07O628!Pjq#`Nc4&K7R5CD4a?D^{;c+gn?80pQx zt_BA)Vxmb}T3v^2S8r}tefYs;&u8!Z@ECvS>^%Rl_2i;>g-%{&Ch{1XHD*MkqnjP_VMbC@;K1A0ZwDR?K=Wm`gpv;SgiTFzU3iwv4gWW6rnvvzx#2jiF>$6I!5u%=|Eg>W5F}4c{mHyj6-}e(Ahuattu~VC68mi$Na2fi$C2^zTbl|< zwhTcx!KfIq~Aadx{PX zrgQbYwf^6K{IDi{%b4G?6qKZQzzEzt-yNRIXkKY~b9O&-8*9yL(oNsCE4Lb%e>g8+ zfJFTUzIz74QoCS?BU-UJ5F&}Wuh$ay1u%gaR)i^Yf;{}ptfiyl%v9QI@vY;7AKG{2 z4LM44osDslqPjf_XgEt2(l|9WwS>6`HUT;zfR9x`jdi4@r;kFkzJyqc`-zEKKjEOBKDkA#_O-TDo5P9*-|M%~U2i&a$MSV_wGd8iXwpLwV zUynbe%Ofhv^ec%sniMCO1A-6wYzmZLb#(#dj65%Tf6aaC!=tG1j)9xj*Eq8t&r-}T2nb$|u zc9aaM*(nIQFoz?`r5^0A?ZFFbkHn}rpllirQjS1sk~k3-fScM21EdS!zRm@65kWzw zzas2?80pU*j%$PmT}D@}-&WR-i8-K>)|{HOPjLNorXDA{FCGJy3WiT0VHUS5MpnHjcD?^ZQg@D*ovN9HAr*_t3+NFnRrVak< ztn=@{rVyt#q#bv0!(xOfyxDo;)?rc4qlVtIjIKtd8u#zq;pu2w$UGGgAYXcwky96qJB)ptupfv7;`>C=9j8*#z!o8^2` zHl8w(V_`vZMSr4hOjKgC%?GLLIm^-tkA(Uuh!Kc0{0ss~tmc9~rYO-fxZc|Tc+fi( zl^`_@4QEip#kBJN2h)HD{UaInTVmpf;ZmEL_k5!aoT>QOttr|nhkjn^TY0@68y8I7 zmGn(bBbHnz-#`0lHB`4H8i0vomc^-LfYsQaUqR-4mY{AiXj|e0isZVWqhm=sq@SD+ zkj?}Z05({Ww(jm%SFr5XLyFMGsl`*rRYOanAXVnB&D7d0rzajpo8t6wY3Xyw2V=c< zZCrW7^p)LL7DBMGjMKIN(u-Vv)fhlg`Z4_+L9-&t_!qY&&T-*O3~JZ-J3IT@8}7tG z(gRp4w}Rr(Gw}AV{sv0eL-XRS(GE!QP-Pd1pBSJKEAXYaaKE;`zU2TEiXIIPneAL? zPZ$~*xq}fi2GYw9Z{H3x`z0V7hsXi2YE7at_4-@C5`0FX<>hG_=iwO(j>tWXqYv1g z``I_{u~@LXx~D6P{oKWSUF~TWJ{EgBQ80r$prZT?ML|IUp%sUd2yKmoG6iZ47-#&> zzy^$TY)pGncEb%_+m}Y@yKGZyFZe%;~G%ulrnXl@-@n~0P5Bvx#`~7?R=#7RaH(mhUAOa{wlLQjE%BoXP<+6M$c7XmXa;&h~p{H3aLc+i_&OH%oDyp3rT`%Ngoapqf#&mG~TbZ^t zLc}-F0O0jCMXF(V?c=azJa8{*$&u-4Gq{L-=5WBP7aRU5#38?fP$@xj3=4|HL2C)jLeIip#IhmXG z8FZXPp;8A-o6lriZMF;1BEzWxvj&eU3+i%Ik*#tJ*a}?Ee8;4vnNUV?PHl33rBUhS zi6++lFWDykj{0fIT@n6Fy^Z?2vr2RT#Dsj1Fkw)qfiXbyRt(A9j^WV7bFW`}o+4A9 z^ciI&<)q&Ph)48h{X+ZWD}OIO_#5uFR^Ohv-bpvGxh?`nO0txcJ@0K8fqwsL@sq(D zhWs|23HRpDRNwjyOv($LIw^dX;fm@0eJoLSm*cHQ9G(0S)}XpU^VdJ1DKgQpo8TuQ z2QT#&dU>J&0qu}XaFMW}jL@GmWMI=>Ft%y?9Ui+x3F~M?{V+2yGCKVoQL@J*aS9_- z*rxv#o`5h?%WnCX|7y2&bImStXQ!vXN(WDo012&lmQc+29z2xi5yEuLAXlGet#7-e z^wUPh|HjtZOx9a`v6(nNR`>Ygl<6wM@%t|=%+Uua?Z`w)!5^dGeNlBr-g-XGM?S5^I-KS4ZsNu+95LJR&z``22w6fAwl~84Je7kD(g<3|^=^(LJ_Tkh8g>OsZr3%r2+|$!z zg;PA+-aSQ}ocv)Xq1 z{O?y5gQOky^rD6MTVrHUbu!<|m&d2Uwl8FeZe_Sk?Q%}fd5`0L?x(n}^Zfn3-_OK?HVTh;L$vmx zair3D?X&CT_l{zhp{p2JZhT^Ku5?yKOp8(GTX%O9q?r#J@FEPE@9tiPDs2!tcOX8+ zg}@uE$9x8z)+cA;9kzj4XxkdBbmx_>(2cp@zq`TNx&44udyGphW0Pu()AGzknm__e z?;W>DUkz!d$DGa^sj@fWkXsnW;X82J^e_k9({39Mw|4{T`V8kI?$6WQ`np-WFJC@- z@!~>y5--j2iWUD=_bJMW$@3=;%a^=dWdI|ng^;ADf&n@%Vh7DIBBQTM79eOab`j{= z1U!GnS-mbS^q5RBV0c*6Tgv{cHPqp5{Waxq!j<|!EEHY|?jSQX&-}2kF=b|{r3`Rj zAbc81K%9G z=H|I$C}9a{F7+9nbap-+=-5pua$&RXohU`eKKYCIR8DDV@L|q)-616~ zpcH_daWfAOkFA=G=iaHsH<*t;(eS9l=P!h$+}@@NBBKg%7M8v!^*N(OMZcao2S*p1 zgsb&fFsFj`vo|(pJ?QC)t}X9{eG0_%gAueIT#*63m-DNv7?`r1WUl`Es@P!;h6vdd z8nzGI!s<(XhcE=)3=7+V7t3AKT1E~jxG7jlPCSsYmNHiWd9*o(o0RN z_de}HOzCAOkC8Q(DKuvf_Qx?5I_4TKM=M%xWnEo5w=a+EDC&qHRs;>^iU^Kn6D(GH6ovBfzDY?u>DC! zJrFr8+xtl9EEu)#DMk!%$Og#dABb|F`FybHHZ(%G8=JS$zp(8L1we+T=%0KSB2Epl85=`OkXj#3v*fqnH@tB7hUGZ<}mi<ku^EjG^=L9 zS(~IR^1Da(-o30ZfrmsGF*cwR>kSLbDdQvSMcq$p05YK*)e^=n)xnzRPGhG_O`K*8 zY@iw}Zx+}whkvG`$_);$3h!#_Eza&<-VCkVEl|uvn* zie%G~$qDM|7k_$FhA?CtM5s8VI=r;RM{EID1F4`<#qZvArX>K~z0dq%kP6AJ`1JYS=65owb^))4A7Ea&Dk{2NPhVwq)28hwR63>@ z`xv%tJ-@Hw!{|giQE~b8yus}$bO9~<6Fq#~)PUNP&|vpa#cQ)}lAB$DIKz(j{)&EV zwV%jQBf<2rp;jF>`gzV?lu-M7&rsMsavCV}#X3 zUa2(cODe}Q*L9?Gq-JK8mjZ~QBEi!*?D#CbCF=@Bb#=wxm9)0xYxs_lWzql!z!62u z7m0N?nkzx25%clm&5%iLX|v7m1h~Ez&958JAb2=7h)ABJZ*=!Sa>|-Q_SyVI-Iu#E4(5%c85u{lckJ}IP#|e&O>q=45U9lo!j$;~Z$UNT5BmAj zJ)j&vE~tWLh`>olQSweA0Sy--X=WVzYk^(p}=nf#uf?&9ysrmZxU2*jN*IGVnH z?RY3Pt9;R!_eG7573t;YPDkz=LJSNcy@vCQc6MgwcFCE?+_J7W?{AYoftd|qv}Tts z1-;REwd2VHat?(pk7Xztwx;FU7?i@UVhIAhfR$qWxDRa;w zoWay@li+=1Bc*Ng{LG?1?mxpl)8|9?E@T@_GNAt}pwI~>(z&432*KY;Mk@0)ziYea zp4w$~*i3!fUTghaDq)`zO`ezcV+#&gSG{nh=hWGns!u846R>S|FSq98qU(^V)0=bjLVIfr|6*L%MF#zd+nsU%8SYYyVXokvCiEspBj$#PDyK zn4GjhOVXyZV%eTR&oQkvsSJnKeEj${E9)%nmMxHsrMcsF#E<-x_$qKlAi?f7y1_4k zT!gV+NN?8lakL!B|4K`4Co%d_KD)YnNE8<2Vk2y64o z+)tis3_a_k0$4Ix4fAaY%^xEaw+8vP_b-{7D-nDJ;EL6y;Q57X;mqex{3U~>2(Rcd zMCqIwGy8~dUp?x2b^WzQZ7YE@M4{eWUuju5~K4jZ%3iuqJ77X37S@%Is}t| z=T7a^DF$BE-@ad5Yzcxb0D?M6|7PBn?jDZJzM^Xffjx|OMn^njq?`0PtE(FXK;a&$ z5cpEt$F^??{tk4HHWgRe~gZ* zV%$B7&M`AvTfr?Cq^CvDn{O_50c&x#zKoPcus3V3E8owYl zRPjZUFUH*|;A5`>zcdQGtL}!|yF<$S7E)d6vE-({TEjfoxhr~lI69uI*vN1l;@#@K zc;0qxeU%ca-6SF-2ge(^nZhk9I<^yld(J?%tOlcn4N^KmG&={pKw)_v)D5oXS2yuZ zmpq?Dy!PwN%xK(fHpt?=ewzP=%Jc06wyTEFj4!R{{pJr(>vluurh!mjL|d%?3Zr~+ z^y&c@6D~#0hX+H~%G`uqSR8xV9v%o*=+3)1`eVs+Cig)s6)!KTt1I&A+m2m;Lcq&! zCQ%c`t*1`aDxTpLy8p@j>RaD?<>lplYmq{`P_vsBLVvPfQ&D+dQxPe7bZ~rMEPY3f zM~9o2H#tK4&lAJ+^|Q~;zIOAY$KikRKm8$xF%MaVI+QENkAFDn{&RTvI|L^`a0j8h zZT71`r@jV=J{vkD6XTz8a}efC@DLC*9EXm3LKxcqO*`1+c; z|K^?Pwi8h(vpZ+@o|0RdiRBRE@?RIGD#!LQN2}RxgTg4~3e6|x`-dP+n=Gk0VQKmD zfp+{t^2jqg;#HVmTzt^$814C;T-@)FkAl3yMHOnancPBA5}o4T845orD#qu}-{GYJ z=b@D-=kgME?r2>>MvVbdE%8!#>>a_J9d!mSBi8HOCmetR3c>rECk8vT;`;L5$4{P& zwhHEvaifQzprAk-GD2I0#Vhr@_kolIC1c~no`K{O8yHBw1G?hMXz{;|3Gg{e9T|5? za3#Yvx%u!1nFly>TcIbV#7TqunGuEcN{G1PmwbD?xa`Qd2G*8*&iMQH`DAI?K0baM zuuAuSW1R}>p?wHxroJ9Hc3?X&N<6|B?d?CC=$t!exqp!X=M@DBO^g|1c`IMEJC+`4 z|4b@#-kWumZ^E(fqdGEVLyb#LMOv5#K9V`#=D%Qzy_UZKf3}m0#n!Fumu~CUN9{gp zz_PmXX&2K)M-@D%jJS<9mhtH#^Zon*HI(@xD|qelQ$|^T4udSx@|wp}ACG~l)em)b zG=Q^@p(uHb@&10i>M@KwAm`4n^c=K$*gVyCYXR>bm0~^bTI-iIFPpwQxsv{OghPnAM-zRA03MrLTaSBs7TtqP0KD6+ zGmoSv-|Xrp5iDOrLxWvuDAb=8_+E%E!6!kBxQdgJDY*r!pEV5l7|fgjxPO?B=78PTj{KY^Gz?F7#>(_FE0)Q#a83?X#7; zt4puAP;nn-MzW{6&(2JwHDj*{awI#8G#3JL#*{QaVZCxePaK+O1Ln&0RMR5mpcMUM?h4~iu2#l~*U zZ@1M^%SPUgtgNgV!p!oc&LhSI`#$jx5_%>8uD5tqKi1cWW7|cD!u_%Fadl8_LME3F zu$FLz1vUawAaN7-1|HoriAN&gk>`X>DL}Hj`_z@bl3UR3e1^}qez-XywmFr>nxL?;B4x@$*KX!0TmRZiiluS zEQ=~afjP|U!vYHQ#3Sl6Iy$Ps+Lr!^6WGDeCMwIuw7+a^gdoHoyj5OF$=@P?N~+J! z_H@kN17@-FKb5wVYY2cMXy^r$YOg_QAP4`NN&nMpT91E*JbJ`VM?=GdU|Y6`6o!3< z=}g!^?h?ujDLefqWm>WK?t$=u#1@`A#U$G4#rZ3Fo^Z17B*8a$d>I(#3k=G)p-mri zCF4cba{=ZM9I)Ow=HEJFl_SJVe3SE;EA})Je}k%;8UeP0fj+CR&u=Ivmo2zZ>?X3y z@2_Xa-Qq(9S2k5grMoX7kq)bgAU7}N^1Kdzql{xlPxR_=Y+U%C!v4N~Ebo-?xxl<_ zLNvci=Jj!r!pow$n*P`*J`S52`nV^(Aqa~n^qd>p%`d#sjjz3&^Q2WolrHj>rd6ho zR64^r@IB^V_-pDx90_yz&Qu=Sedhj$?~)RlZfaZv`Vh~B*I7AT-v?vldI1s=zCaiu zpuqP8OQ;GMU9eJTht~n8eXOdYL6G?#rCr=T7rSQ>doH^4mtZR4aYt}^qEU!gG z{|lcG+eqaYUhLp!>FJ|?wg~%;Y7f+lrS@u2AA`X}9Ob3Fe0;|kC;`dko|^8?Kb?GJ zL;m1_)Gg@`ZjH#fq?D>~9Y5a9Bedm9B)dp(kG=n( z;ly(4RyzJE`9-$jIq5{2^X+uoV{--6piWZ#VGo;t~=q-CbSn>P~7gCtRO=G2V%*g9Yphc11oS zi^ebYjY9@Kb`xOCJLA)$-Tj>1Hyh@e*>vljD4hQO{W~N-G84V;m@#&$0BbW4UAnjL zs4k<^Z(h`)nOW+ue9RK>h!N)b-g0c~)@wh^=PwlBGg_Q|_MY8QcjKkZK?)FF+)}#` zi-3ola2()&U<2kS9Svs^#iPg_X5QZTv)$Q|=V=&|MeXNHo3BP!N@jxALQ~R7V9l^+ z*CXFR7Yvpt=_z)*FYwO=0X;?W#92~kyswhR=M`Ii&`M@=O_I! zU%zf2^S&Gb_zjsiPmuxqfWB=~S_)JKT$ci1-2|r=Z(pHJs_kILGnqP(z5cbOl>+|9 z{1&O34uSb|2yBWau7w^Mjk|R)8+5@I&{a;q|K`_ja>S7RGIMsWfYGpCY_R#u3&B=v z-s$d7B+JhgldlCCt84a(h(w@>s1nU5{+lsjQ;P};aszJp2T*cdJ(3xdCc>oEZkyU? zs#STqJDvn;29j_Hds2bPCBra+!0%veJmnC8ZV3!0?I&}>ji5aPD3SuDTM;L;dP+TK zf8_ATwORZ)3d+M+FGbF{I`VG#Rwl_));ek!8=j#AUJ#XHItYAOlB(2|<7l+F{@+a@ zxeuFEy!M-Uc;~B;4}9*3%;isvdwqOX1r*Y~?m)m|L^6i0i51_qNn90%IZU3+$%%x;{G-T^8WZ5=Yz9i`8ne+UyjIJ z$T`vW=urMK3+O>EVi$jbi&Pb?1QdY5Q>MJzLgx(r#~x@jQrHYrbwVy9&COjwq*`g} z86ru{iqFHt!?1T9l-JnMkZva9RoEAJu;bv{FboLTs4$oosm>%ST<{fVvo$v-N9q^}g^+8ihzWy4kx&xA zJ_2w@`^=fB8R)0pBZELLVriV}V@;?1l)hHwmkGBM$Z~-wp&pHYM&K-7Zla=^&K!RW zbmS4q{!7;-PMM%zR{8cTWj5amwk~vJGN=EUf3w7ZGXlM5+Q5o71x^D#y}s1=(`lXc zzqRmj4I-Ro++S$3B9Ev{X5YRylh~yr8SW;Q!J)Q2aq96Xw!-s-p^Iy~# z*kri5Nmx_9!ld_WdOGt)T*q!LMxYNZzns;k<8LBlNhSJ)3j{bbvlknO+KarAxq#4w zEtn27{j-V3QQ9F;=T%_ilk=CpRghQ|;%|L>p*~&6`VBY~{9b$zShyLgCf!SFs}KL% z_w2^vaOyc_*~90&9%p8X`TF@yhcCg)j_ZX6)b59{UBb=1tvYP$Kf=jZ{@C4%;)-T_ zF+W^?RMcT&ObMDpd}_i_NpWvi@`vy*5%R;wD)fKzj-DE4JXyoM#jxNn{n}6VXBrei z?wC#qpA2!Nx*!>NQ?SzPxt*Wy5yr6pu%|`~W3bH6-w0@aqt20HEf5OmM3K@n&_LY4Z^%GUE;f&4cR6k)Ix$*U~KHU z`=3e?OA0;eQJm=*RbK#ej6r1SIh6>8mRy0`G1_mY-Q57@y+`gbl2c@Xu*PJXzG8o= z@!UqnaYw_K7Y`3y-hyP`lp}A`Xu&&m*tLB`c;3wFba||5OrGKM7T@Hvf(O{82Ee^4 zz`@nOl4{qPovyfH)c>Kk)Z~?&BpXCe%}~LB&g;X|RW8UFW_!>Iq*5!*e|v=2M307W zVj-NdH;{<`%@OgcAs|Y2J;K!hyISNbGHd_?r6^N)n?v)MgdF*u&vS}naM+QWgSUD^ zV@u*U#6QHQkkIHgC1*AW5+fySDHf0~$dpkymVbds4`S2#Zq-PM<+rxsvP1rlK{6MY zrw$iL6%avCX))eH@g+K-QTwVhid=~_5Nx|NPM?;9yzV1ZON4qG)KF;L^S$a`nFzAS zA0EPai1P6vKDC-?2%5+UycX&YC&*&|C=CCqHM}Ero7j4w=;K3UojqQo@0;o8^OS0b z&_i3EyY?s24ar$+0LDAV=kd)DZ8HEz{z8^)0&-}-RLg0c{5$`*Bgji!zj5O@u+c)m zi<58t*NR)AeTu(qxPq%?l#t&se!-xFMgrOHzFkIcNLk^LlVb%_uJr26ljQEE=G{vX z`2_u=&{67c3QRYWGgTFZxA}u%Vdne#>3OKh(JHI)V85{%k;3G!$Kk@IYHn$BFXz`{ z&gF{V!=HoY_iy`iRqm$X7ufF7xv6m?B?&4qD)0H%^eT#cKu$D@=ml(Cy-IFm6uA2^ z`aH(`qaDlXjNWZN#z0WB2;aC38D2AhBs(m%Tz>tWvdw1M1cE{MoWiBpGy>tEuxsYl z6b`B-`&=|UAii4rH9O(BX@GJ0k;GMODQKU_LI>}2gLM5Sde~_DT<;EJ&LI15&X_v^ zFH{|blc>|UpneXopB-L5m4POPTC-xMe8#u^TzGT+%BRoky~*K%-h#0OuH zd%=i^r4Ycml*a-=NKx~kj`t%DRw$PvF!6WD@f}8*2=EiMvK*8^g*{9skfvShhE;3_ zJ9{_;u1FA2hcbZ9KS%kW)0(re?!uGNHX3ZE?Z)RUXglCL2AOmN3XvAfn%b9boxJ46 zzpXuGh^;?AwiGUAUNiZvZG1@e*)U3@T3_YHPi@;h*6G;Q&-FEz3R>&@%dE6?UCv}= z(G#}NEaKcEq?6{>)~6;XC%brgX-;Wu;y?Y`gXAynB9it|L~=T5F~XN zc8E%3eT0Eo|AJ(5Y7F9885%u$Hz2jz#&skD)(**<1EiaKX8w#L zEsz{<$K=JUZ#gg_P$wQO&Yzo{}CVgyb2wB)p&8A zLqk?wU5#HT7-uF@1g2tl8$jw7lY9jUvwtsqF2N~v;jPiSG_<2uU{QO`I%d9m=Zli# z9fIXZY4^^Z&v}CWzHYHT^3OnJ^9e9C>oLK#bAQu^2)Thy5bAB9R2RE^psNRP4|_); zr(q|kZa^U)Dk?}IW9|Yox&_wrUVOX|uFV#h;O`V~nF8nVw4}r+UfRJhx318nz&`H8 zzFp9+D!1{OFNyzWn}O4EdmlV*tI$_zX}{MlQ(U3U%J#bCfk6NYP8*DLak9>PI92y< z{8l&X+|QJrah>=ca4Oz`-*LV44$1>J|NMM$Bsi4f)-918#&^x$d6=AMJ!_ou8*Sb< zsB%yFi24E@)Yj6vV`gO)I=l9#(ss=o<-3HK8vFA#?J#_>TF`BF7rWU#1E+zI*PGa8 zajA(R-@^_s;C>9loTh#Y_ftwrd~I=iL>Y?pd`2}6Ice}6{Z4V6_e!MmBuY{l=``6r zvKeTMxwuuoa6{nO0_6J&deY*93Q$Y~Iyo6Bg8HPda8@uuQ1ea0_X6>OfB5HTcZwGU z$VvkRa{21=G7BAx_|XoIFQ4ETi-ZyH!`H7Y7!E-!rW@wJ$G|u4x{h=8&fU9vvFT-Y z-JC=K1*E~u=s}e=vgkKO+WQysMxozQ3rBCXonb~yaS}EoTW3x(-a|wYe@O@3q zNQ(>KExFr;uZwRi0J6=u%{K(omg1d#EPZp*^Yhcw9{rd14J0H4J~3{0q1$5KGJk_g z*iq3vA}+__oBp@nKHRE@;b&I{9GWlZ5p`N*e|5!WLq|{0r|l`b>%vGVu7|Gd}Kzs{&Fm93_)j8kUKY zRb5>e!4-3YFMQTT_buXKc8_ll!2bn~B_9DRE#TCW*4EZ@X-02zL~zclYSNGh2_?qB zpX<{YlcYG&9vlw$3^x4;sC=at=EoYq$^(QuH8?oP?pg+v5YbXMAU2u(bl;M#&Bd9l zF)@I5R|zI+L{md4mHcRlG1#trOoUo+&z>;qFNb>$Os=dsx3^R7 zx}7lRU+P;r)E8&f7+AL7Dq%!!WOaHL9-Lmo3N?la^~&k9wHas(BQadn(VMY#eynhD zefFe}-psr!T4yH$Hoj9m&1&{Xna)~iC}&PU`uO6J{!;I*3sLRYGsX#5soRapr}Qj` znM`u6To6jI$5w})2Xg{ZcZ9ZIPd&X-5@q|4ycXlqoP5AQcdVXFxqxa+IIrp?pXvd9 z7h7Y&;tcw;dJE^ns}3mZwJ(y)#92Q^d4_{ zL%;8whL)w}&(s`|)sWCo$LA*=F#LLXHKirCZuQ8hute^X zJ#KROjl>O7UtdLuS3VmBX??YSBL^FR3uy;g#17>aqgEI2fs@B0vL#5HU-y3L`9CcH z&2-?nKLN#V+%W9DJzQ9V-4@dt1 z{AKN#X0NY-L@`HPwjSn#LxJ}@!xFp3Bw2Wp+n-;0#GrI4e2;2O?2Q{AG@;37Tdv(3 zE!+9x={dji@NY+`>^1QkzHhs#eiE*KXqeGokE&5`p!24WJ`G2TDk$v6kW_^s#PGRa zO8c#dh!fh{F&Tne93|P#V;ow*y)2V>c{qZs>Bv_3->33Lb4dfR87yOio2{UrHw%oW zZ!Uf3N3-IvXlMFLa7)3J-cOK_yhXI4Uis4M6-m0UIhz=iea!u4o|Z;0PWxMl-PET7 zD^Z3eLGl?)+!Y6#zH)JVPB4CzjWzl_Y&wUO8LPf_KlX6g$lHbwx=#;Rlw&KxpJ(Lh zjXUuVY{~74fG`6pjFP0HqKBi!>+u=mrZn#WEPfw3QppPWW3DNy~?sR0Ud@_0@4 ztnvDy!Yi9zYGy9p2K#utRg%ydvrAjjMnjhUZlZ>2Vy$`&;Z=a^-5~|a0MeD8In_7^ zE6&=rqgOIYA9iOL2R`2`Zl^z4UHlVsG07H`rz$EW&(@>tOjCUiC_+k3Ous5r&n78m!uo+6tNIJdg!L-0L0% zSy?k&@h=safJq!L&7t9uYVqaD+^Iy(Q|RpQa$Hn3X3-J(cXQZ!yU#onul)M8E-gHK zE2HvvxMAudA*(IUKn6b(*0&yf2@oUPe7XOZz7E{GR&a|CcqN=PG-QK`&m0^ZaWXv{ z|FaNxrPnfdR=(*&SJ(N}l$0G9Y;WJad*eLRUI;dEB2~=EL$*$3+?j3LF67V-w;ROd zA(r?dCJeacy80;ISvA?xkHV0R0bS(Y>gw~}Pxqw~^ib9a^W6~smRAAmDN)Z(NEn)s1OE!{LoDp@%U;= z2)37_=GvevW{6Nl_X!q!_#QQ!Rgs^pDSr%Ji=gFx{pXM=(SLCF`E!#JADKd&+-o7U z-#rt`olQN=#aRfmM&qRe7jZs{h>PETH(0(&gJK(3fk0=#dalCv1Zle3dWr;pHqTjQ zA}6NpwPC+4`e6X=$|HQ4<8B>fRV!CG$W_kQ^8G?h=D^oWFH7>JbKlzSPk zssi4u0#JujZxsK2r*Fg&T|77&mNbA#`VV3w98rHXrhopyNC{F`6GKBnezr+kDp9{> zo$TTdV)*hyHRdBbZAhnALVycgRcG24wqBto*l~#tDURrrs?R_#=Ravh#)f zar)KFqj2O%Lh164a3zPu+_BFpwzK){qZXOD4m4w!h?nfOjH-^zMvL-YgmoaC~x*|bS1E|f}AgTjJ# z^9?d=WNjERgC1F>xfz37suOi+Ww9_Q_b-L?meb5(^7A*bcSzJ%4vWW_8Dm;oo;KrF_6}Juo$u0V%62hx`5od=T)P**&#Z1zG)Ru8LH-JpbAzL=oy0@gP^|xK*9j|Hv|J_l? zh-?9sXif)e8XAcn8@=F{HpGz(Af)`h1d~H z?EA}}*u+=k0WiRZNW#WQ-vOm@Ty!)&p7L|4T&EG$C~g1s={s=wf`T`f=I1FbXp1xY zPYt*k*MRt(N3_Dvsi{Wj+{SVBKSnXYIF4F|UAs2jsH~vfOp$9K@)zN&^Q-h61K$TJ z2GWx7ASH*0-I^XK#KQ0P&bcK0#g}wA3>;&HEOTzu`h9$D^(g7l2 z3{@pV8vHvC#+^oeoiETa;^CS?#RCz2Y=l&luIZN=gEOs~i^+d_J+8^QOo*2D^iHnU z-Hkyavp`2pZ3fJ1n@4wbCCdlwMMTVpkh0d9Z}tVu%3AU!BNfy%F+-M;Yys}Bt{k#fjT|)zg(!7*ANBQ>&+W1o!FMQzB0%hK z>KYoC;cQ5QhwnXvi4be0kBp4W;Y=o7nb=rdTIvKF`U&PuqHnbrM_NkCRj7bV@MwUR zTL46`AB*&Of4L$F@>GUIzeU!cn>STX!-$-Fc`G+HYOty>SD;CYbQ+mwFH?kO9J;@T z-(9=jV0j$K23}t`Jw4W@Ih@2{XVI^Y{rzEsC9)oNk{({DiDDW2Rm(To9bCsO_C7x# zz--pMqGqHcJDRI-X|Au7eP*U;;kv*XQuL86Mnz`_r%Su+tD*9T7=>kIdYV4@Wp_=S zVtKWNcr{^-&>tQd*-GL-pup|hx6eLH857rH)UlIiz*kDE@_hC<Ip6y$Nhn)7>(MAw`13D+Q(4#lE6-QE4vRK@3;f@7ZG{uyNy6 zJwUcxTU9kY3%B-*YW7#G7E#^MY@TL!3I8C7@?cgzEwoh zx(`xmz?sVk#g@d22v-0NCg>s^J1ITAZ0A80cR(Ru?WLmzWlw)@>=4t_n`QQ1+DtnA zNSY21VnzS@W=6Cx`<@+H)yp(G1~bH95?On~v-0;RW6SQy)$RiS7ai z0wq43cx3nF)R)%cm!0Zo&V*q8#mAoo=~FKz0$hxW)1#xeh#F6poi_%O_S`G^BP60P z>}{%EJllS5v9u>zLH}L&r<_u~bC&!lmO{2&Cm>(}^1xtdBH~QErDnI?K1D??q9N`Ph8HN)8u?H? zk0~`?O2fybbHUN}QI=XvTgRmX4ogc*T=+0L2K4B5DOci&X~*xwT5&*6Z-XZ+si(P< zFX(T9R*nYN-S!yXHxz-;dZrD?HjX2>p9#4dF7*A=`F;>ivDN-EClFO>rQYIgnFf zBJ=(OavGYWqC!{p?xQg%+{Pla%^?3%neOVHlUGWJpN0O&GD+q6oqb{N=~xe(;8JuK zna;6{RM@vM-+EY}o0R2|=@+;1LR~6)Jf4nSx*}ldiXWEw-w!38cZ{49kda}AHYFtm zMc3_;lLs|grO9PYTR&ciN%kjc6WPmg5*8sk#~Yl8)f~ivjBwbF%eh?%+m&b4ZW!HU zQ1ZX_-vgS!t4bayMf!OwiJDXd>pt!V0{16954D^ohPRh$pa+}8ckp%q^GIgbxl3ko*k!!_>FGftBfTdvk}ZE*SmN}ZIo9J4 z=Vj6Awwr)`Wuq|pUFSa9DoG-eAMkV;iK*v4x{HO;7YmR*WIrrNd_8*;y|t zHZd_lPxqtZLYodUjNbaBC0UEP7F;}@eq}aseC& z@!%ebE5KfnUxZeiWy0Z|k@2+b1bB!n|21!U;@6&^&lBjzNg(dLXJ&b@R(O9k3P-|- zM8=x@%M&t-F6RXHp&yuPdEC^_*A8-=W#rUmU0QW_VwY}9Ip^U(_|)t=(yl#!{@ejS z#5TN*YNwaZ%pZavrwc(o# z$~Zj7_6^L|OvhWF)6=^M?KwQPX$md+jH~v`kL4=3HmF%5ojg2F!fZ8WnKeT|Uncv<%VFwr00pM#S>rX6XO5(9_0ZA&bQpfzHD$7BZHn zE<8d|61R}h7UcPVhrgk&H$C=hx~C6?MKwu6qJrHKbhVYKewq2EnU6b(5dRV{Db6T~ z5X4U(n}$9WYnG?3?pLeNrUAPVF;r9#@OZ>aer4#cOac>e&%$ebS^7~VMa3G3xs#A! zA|1<$pPGCem<4lIfMV$5$84f}L}e?$uCJf7EjE=bo2M^%_c!2UONW}J1ZCMQv>~TS zy<`K3^15DWRz&?&pvKve{GoSYw!QR))BgVJBBcB+F%ltIHT(b*GHJ9XT#oQNIaxx@ z(?G`eEr>y>*7#=9Yt-{tky0$_^9Odx-4gd1w3ZuvO2=BUd5_ zVs2*))6Fk66ZaSCcD{NW93Bzz5j)=uZj&Ent5bFlQ(P5%$nOeJz(zk%8OTfKX2i+> zmJy@%pjg1l*61Fi)!*|oGl!=pHwR)vHV2T*L4ugk3{)b>lL$;2KV_o^8xs_^PLCvp zhQ4~`_j65pW6IU|B!*@HI-gM;@@mz`le)R|N=jn*l{wF@!4*rpo5XQb&RVV|5qZ-XHiBUd2jqe+4L*)^OuM!)bO>i$|`e}R~0 z<|ZT!{atAaD4R9=jwAkSp(9u0$dGt+4cEv_4Nl(Y=PUq^Phhlvc*O6J47Q1Dhh3`I z8NPGY=0pIy)Ma91{Htqd*lpUHw^QYL%S*ve9-Zp}M`My#<)RKZv5Y(98*<@U(br;3 ze0>E@(r)sH-v^Ko-bH$NnxBjWyU2Ci zGX&Swm+`F!7CWU@N&LI?L~u^-HJ=H^EBS`m7e8#qkN?rFzKIG#S+m(6h63H~Z%t(J zAe{biu!&_#a@<5)J1Lq?N{vO<>FHWqUL}WFNA0VBInLiYm z3y@zk_Oe{q$jV}IhU2E0Eu_~ef0nUNTf~Z-|J~Ivs2X!gk}c8-+*VIZQ&UqF+DZWL zC}|XKCZ0i*dRZ!KJ-~8v{XyhTrTD#S1vEe!d?3?J;#EBYAoe_r^er#XJQ1qRp;gv$ z64Sd+#*LVMaLBsoSSlZgOZv8Lh70_c_Rs+6QM|9($hXaHQJg6ZskJ0?XInKbi;(-GHUSQOPdX0UglkTBPZBNn3iRuS~COI8V^s)zaB4M zU2vdlzZk)TJqi$|xNz7H+6v~1$V(Sm^E7b%h6`xKQ@&!G5Ww%7=!@}CURkSJheuNB zl=?r+jX|6KgjO3FqtWVJ5Lz;U8?I0ooEdbR?t6mLj4%^LjpPeV)ht8;28QToXrlUq zL3(;w!JzQU?o~KfX6IWqUEEBH6CYBaI7uN^synWO{R}617w}k5kLgBiR3z`Ej0+t3 zEd`<>A;A}ab>)^!{R|=E%5dTWd)R^70nI{A7U9Q?9+xf{?Dq2UxiMJeFH@RliNl6P zzu~hVOvC`N(*QMHF3xzwYQaS=OXB{?9Li4$tTKOVm*WQ}hENBsFMdY9gd&M!V!dV@g09RX$Fj90&e=dL^>Ez zi%4i6aX&=hNlL2zHXOyd>CeKuRp<7v5RubGg_%ndR=r2DLtEIOKQeFM(uP??kStF}=LmYP*azTJH z1RwOD>D_P+4v%m|iYpd$*{|(V_EOSo=OaBP^E?$JX%v&Z7`R4uzwT1lyQ{;EPbwjt zsRB%)v%mhgr&=Bjk0{MQ3|ooqCa)?jX{vm~-vM54sVnuMF>eK|jhnK_UFF5v;JdWb z@S2^%BjgiB;hO+fyj4cXrjy9@%)%R<4xx`Y3+?GnH|zLnFcqV)S%|Ym%A)~GRkcM= zPZ{VWX4y)54q1i}vGTm7im7jf`kklGs44ZOX69&JyY_fcIFl4Hn;T?~A(dxyqkG3iGyH`yA*UI? z)2~N2GH6^d)s>ynEt>-Y>JY4HCzq{LamFAv6G97WYG6S9sA02lXB<|sY2aI6Te4wM zX4<*)29?LuiDR7^Mt%2%X-OEBJUUAk`BqkHQSdguH2a-{S#0yvph^t~-D!A}tQTlhSCukOT4a|3!v@@)&n8 zN*EzR4(H3<&M!rVnc(^(*jMwUq}%88surIdew9Dne2j32V;+YKk`|onbFiR9(~qbH z5(H%nt+&rf#tkfd59P2uJCJ$=Vj_Uj*72J=AF|}V)sH&@ToUTM6ZrAxL2J*#ib|%f zGZ`=j!GjtF_vy#7EeB;~ACAaw!{SX?Q-%3dcaW$_AuN&ARFua&`w;bu1K8VPOyK{t z0I4@{t$o0n_ZfkyuA2jKqmg$Oh>sN?IUkeE4Z&DBu2DS?jbWT4T{uUczZeX<{UBu_ z;5u=JXb3l0OR69Ou;v;6UDZd50c9=FT15#M^;Ia21{R@O^gmHN;OQRaI9X&}coYr+1kJ8D{<)YfEz+HDs4Bp8_Qm zch+QEd1AoNv!NYVmJqG73m*ezjWZO%y*fG)aza~JA4&5ZI%LR&I5inC<{N%uDEs6& zKIU60km#!ok@Pii7W5=6e(?2J1&h=hla&x62>d6`@M(pM+kD|2!2(@?{2o3jDJc|+ zuQMOrQ{#LjB3px$M7l{L9vHZDYUk^z)WAlL0iJZZe4g{zEoq))zJK}$YMY};f{>k0 zQHks7wJWBZl>X5~PFkLEiDwIstgOK_G;72aOZ|SMz|~ajsELtLkL_KDM-3r_MH&y- zFC4Xt*fBahHGN9eRmoH$i-%v}^y#}PfVl#X$}rF~rM0!nwWab}b@f5t@|DfLdj-1j z)m?%Zrsv*19RnvPaVipDT-8B&$;ip4W(w#zy@s}5SrteW-?&MgQJN~eP2=&+JAHkH3a@y47uwHtW77|UqPg)wREWeTvbt{%#27jh%>5swX|g@mI>_{fmcc zZ9Me(EMnr3hzp4=Z?wk zNrIOBIu)QyY5!ZWB==}BD!yB>Q;jLn)q8R=w~L>TpZ^F8dO(4wUIcaC13!@4-MY4v z9S-LoWJAnEI!f?d;AP*wd;BGfCHLIide!Gev4yjGK?n+#=i<_z?QtownX|M!5XUCE z2sSSX$swM=x*R`C_V3w8v)oyJ)*;7lcF)-w|LIOIZ*P;0C(d!WJr|(qalm`$I8^!h8n$M-N*Fv~FA2pB%GTW+R-PKAC1Zr-N3o6*so z*xQ03ywyvzrl@!xP3+(Co2knU1P6YQN3b|+&Y~y#H=t3#{hM!8&i>I4eFOzerI|Qy zO3Ei9oEz%J#rNf0bts$(mA+>z!4|Giq>teQu{psg$`6%2^?qIT^7o&eg9CRH) z|G>#)RtDwlWi)<9nMH_VZ&y}PdH?O(g}K>T8>z(h2nl?mbRZZs6&7?`fkQJeQ$?^- zITgkwqp?jtjr6nWWat~6?cPJw(pP$@;q>Z7{QR-0XK87)7^L72e$>cv{OD1VB9dZc zd*A$c+hQH9^Wa*vV%b8ekCBr9!Mk;?-Hfd?td_2o`iDUPsEy%)gppK2#F7tbaJ%0T;jrsO zd;&NyG7mwOj$g&DWPcXd7RFUoA=@IE2GI57=>mSj(3aY_KQl#$P_1K#t9Is)xm3$= z1s-;5V1Se1)fx{;_hKnVM=KgiQ)Bn%_p4K&8|^0s8|1M&?QJOwArmKG76?2B$vpw? zmu;;3H~0VYMVFq(%)_Xmt&rOH+_T(F(ogzy)uD9iv&pM z#v|F7N8*-ZLIpOh>6u)IH-ixeC_gaTWft4%wj0QQ8^#tzu)k35`wz%Y^*wm$*hN0k zyITGN3F?7~iGKa=6n4le0LbRQP+Vy?Kt{W1CI&5i2`C~3LUkU8iD;O)>kTRu+{4LU z6R~^nsZpQM64BRNSch1;UOzSe&4)MVaOKgGQc_al58d0StIM9YD)YMKrpq|QtSQ+GSY{^oksEyDfd)FgJuB{WG5-CV zH8=2#f41n)uI~c_1L%biI>bmEIQ z=m6{kKlH?Iep?-*%rV>L?d{UB<{2}DcR}De)|ma8kf|bRZk0_cNQAQYfK zAaGE~XH{+lFnJr14f1nfcp_DF+WXe6eJyoGza+(4qO4jDd^mIZbSWx4kU+JwogC_T zgvyc`rsvo#^M|nWa1x)_Vb`QsKJI1kfZX34w8g@d#ut`-N6k*<=<>4rOV+G$-8EID znR*cscKHo-R@It_>^e{;Dsp23yx`k^fk60H*$pK4lntGDrJU8tX#=Fh7fGK($$c6% z+^*akbmYCifyUU9y@?nBpO3(z2z*HUzQ^wDf4Grv$3=r!Uj6?4cMyhhFcO{7uK&a5 zJ~oCB{v|!{GxFwVX1fNnKGXe!gYQCnatQ%3)|ndYzv$(^cewHq99{O^KB}hz@5l1( zCAOUkbbozi%I3A(@|X1+vTEH3$I;c0DLhLx)1h{HkR#|33wkG*cBLfG^h30M4f`Pi z$9~uUUMQkw;(nz8yFDDnSI9Ivg7;2mfea;RmOCEavuEO)ZsuB)?X4#G>$4J_(naeS zaz33vKavlirfglfz6DQ7XHW%ZuJs(>GdF*FfF(yqP&o(d_Wsyq@o!fp)e)*Sy zcB__rPyXspuWsfIf)uCb6)VN>^=)1uUugRsk@Np;*86;3N`X%nKq7UC25l2FgC>0v z-XVQ|0Tqu0@N#1;>2r^V^+1Dt$zKiCHA$dT@}R%yim-=$Fu7A{;8tm%heabxo|eL4 z;&C7NE+6i>Pk1>%p}epVCS)esz1~sT zj!v)%xfD5FoGM*ESlQ1g_$f3voeI71x{_FV*GdByl|WYk&9ep~6xEQFPXSPikBWM^ zcU9wwx9{?oRutC+4+F>IJc1sodyjhTt}QFD12{>b7RCNYm9TwQBIH_4F0%+*e`~odk>>Mty7!h?*Rowo&;4%x6&JGLypq$#m^(f7xqU9bkRi*M z!P;8pcx_Cnc8n!xc}Cz7uyJ$GJKffXfv0XTn*%s{N91@c-!4YC-&er19YNJaOHHk> zz!%v>8eYHV+gLkzEGkkX%b@?}pw;pr{xmCaI2~I5i=nW%IH!AsI!Dp0ZPLY!x>`wB zR}`nq?b~J%vM)sf`#GalILcP z$JaYVAepS+E>s_N*4Thx6y-%oz|WBNtV zC8O>+>z3Bg;u9y@bryzQ22Yo5+H{MNl~88rv@eaSu>0Att!q~q8-Sy`AP!sr={0yG zxG4EsYDmh@_L`3omPPqUh>sX$IrL(5TAOmKu`_KGGffYjLggHxCi38GH%N+GqzY~T9_X2Z?P*j(>NoM{cp*OPw>+HmC5 zmn*aTKouyqOH|6g{&Cmk!#pQd@^;U$Fn;-}tHUB~wD#;pBb8=z(U|0_qRq}7l2^XT z&Dz-Q-hJh#>Xja)S#_qf56`GA?o=Bn!YL{@a>s{g-`Oxqi=4}HMR2gaCYbk>IdNgB z3?$RoK^%F;9fG(DV0cM+`AUqM`2=A>Zs#dokwo{U<28C2U!c^S1IBKuXvE+o@mW{! zeuzfLNFXnLKfE%*vJWLsI0wU zj~cy#=%!u7L}ze?Q4SUKAf2%4s;VOY#ZptQhl@A-VbDMKK_!$Mi%uyjW*QnBi_!V) z=pb*Uq6=M_OW`)Oe_tc=4G0ZwxpyG9$D$m3Y7U>W^?-f)-&hOi>Ap!f3BLzIR0JkM zHCJc;RaG_`L!9$3-^|9~+g*HKqi>)?mr731vFNuSy3^}`ob_UuKgh%-;ZafRWH(&& zihbJrCFmSF0({ZM#l)?7yfxQ6;t*23iy=P}_k7rO$3Of(Tw}Z3xyz}hZMOlI)JV2Q z3F*37!HTD$$^zMQJ765wmf?NOKAvwg5s?kje#GzISF$n`?Db=Bd4x)qP<=P$_ zU^Q2nYSf0;7&#+%QA2;UGS}%G!~kER+dz`e`K6_c$gmYWk&C|Fog3v3OL{p@h=rcgYF9?yyYk|FTdPxy|nw!xQMQuKf&@IJ)55kr4hdQo?qv zZO{9!&hyj8j=-tH)AIh_paN?Vhy0lS{nX@2ayy^h98UvRmt8XZMxrS@n6PK#2WIrZ z2aS;A#`Ajq_supShgaIwxZStA4WR$4q|$t-6CNdJRS8AZya9L~E*W|A4I3Fu8TfXK zV#8l3ZJc>gP(WQSYf}G-{SBr)e21n?TzG<0{l^S!&(nq`{RE8a2GxC0Xi~BpXjV2~ zJ(z=R1njhGgfDHBP*t5g#0$s@!U#ug@5axFeK__$S@9q$%J;!;m5Y15M)|hL?YQG# z5cjWGvphfdiQR7;s6XhANLbg4;poZ!p`qo7h*I&nvH}A)qFwykOz4L|-ljijE=Cb% z5V0H6W{tTlYU-zK(+BeBg4~fwTiZo%;=d zQ)Xx^Ygjbj{g|SLmY5SK%Cm@>5vgLvlCuEA3M9{Neg{Zl_Z+GsYM_sqPRR_s#!6f* zNLxV3(cpYJPL=@Izx098Aggu$1<-cd>4zOdpq*k!8aY|eWns39fA{W0`JEl0rvi3A zVjmU#o~?R?6=w+qDsBM6_n`a_nSeDz zICjU*oy+eZfZpL5TRMFU`Y|_b*iiqLxji^2=nG1wxu)SPyk6h7VrvqgGqX#s2>m^- z*5u+5t8O(m5Xd_Y$iowZecaBIqOpgD!tv#o0eDTxRm_L_3 zaB&@BALZ9fcTz%~81wX)0F05eX*5wD9&Mwg`z-v(CtsH)$?zT@{T`0VIS|fmu-zl97_uwzkJ1mW15cB5lZNOyr1| z*+)L~Ia>qJyozlenU^PqRR?o_-R;*z85_D=IRttzt8>4EgvOR-ufJf{bpkRAluTZX z6roZA=`pitFd;_s&@xeuno}gSVA%zF3MEi8S$bvV&Ndv;ViTi9^M#(?aP)f^0a{2$ z@y!<{4!UTVk}}uD+cPNGWaHmg0}k?v1tks83T~3Hj){OC+db$kzt_v5qLJI(GIfaU zRG`8`rG$#!sGGG(2Y5DqJ_9zO^i1Cl@8sl3xH4hI1QhHT7nxui8r-m5(UL9(?QE5> zBR6yP&zCp)Z1rh&$?05*kxK)?qB>n#u$MuuwS{chB+5WYPoIXMWx7C8re z*P{_oK{4vyD~+!zGvWSiTsh_9!fPcQ!tCn`aT$XsKV-u!CajA;_X@bg@3Ap`ICf-% z4XCO?rU{u}qsf8GMUGo_97pcP$Hsn3$HSI&nc4XAd3n_s&63rdR1`CrI6-i4&#QaS zrn%os&-B4^=sTu9{GC@kmztyx4)?K&BSzGmI)I95O|2;PanNin(7Hr2ZwmqZEWoIV z-gw`a03zjxzq|Lta431l=#&6wht$1z&7AYRezK_N-}5eS~gN zY&ueQ9pg?JGWls(fMe)@X+bsihDt$=(Lr!+O^-NES$W3tb(1yvYHH;AVyIw9)4+d#ipe~M`I8XK~{cO&_F5Wj8F|&<~1DzS1F;T^7@PUf7=|O-% zxiv}Aw)$Vi*P%VD$DN7e9@>MC`FVJJfo$85{W|@%fN&8I$)ZyV3{ny0-7Ik)`>>vw}32>zFO_nMMTe?UWdh ztc97DVt&yG^M`z1l}t`Yj;)#&_|H`bV~Q)o@5aNRvG$@uK6*Z?ml;fe7 zc88arpE0rSJm`Vjnf#0vA^M9*)0arq2{zG>C~a7lV9MSCk#BH`+tD=DGdNg-^Jfng zFlVy4>&zJ@>HM~*5ckc18qG^cY=O=wWNcvYkgm0GwlO;$OhdE&sWi}`g4~89r z1zJI?PBvwq2h}g4#%Rp`+-AQ+AL%&apZ;;H{;ojVORe?gUHb0>dZ)2)Cm5^fHS+@H6xk_{S+i=Ewf{;q)YBVr0n2W){gqe`3wQl+MTc~dZrfOn6ir~ z-+U$k=yRLbw@S z`(j+QYKiOS+pqm052tI|FVlY-DF@QX=x|A2YDGFa;U>e()zqw^2d{iCNNxNG**Mnz zFLvL)LH+}OwM_|7NH5S0+dqE&e6WlSl@zWemo0GL$Dt`Hv{x;Sm_x{EA9Yl~>)YKK zZn(LM!GGUv0|B=f4950LjHK~yGBfYD8Y0K5p(S@|%+n&v1w05|92}!k+`i%JBZ67kXLHT1xHb9zqOi#c78Kp2eC037DbAx}T7hdgZGL zCkd=_oy=+K85P*>rT^YO|89+uw>V~ef*9%!tJyIc70Y*4Eyt6RB9YY!ikc0%5)YyH zlz=DrI1q!=ptRvmM@`O;t@w0Ciw)MRrWXb~930h}UQLd4b@u*p5)SZZ&2m-hTq@7E zibCb4$);X1H#^5&?j;~Vb(bDY8GO~O*Q_N=8ytLfDLpSnUU84`g=d=(HSP6VRUx%} zgFo-udj}Y{)=J!reieOG$x%jjRpbMwW75Md-j@PvDydz6gB|PIAkEUb@1E{8v9+a| zkY+3e5wEJMt}YZ9ekJrFULuZ`->vk}-%#UXy@X0qZf>(O@5YsGwblugfQlCYz4A^? zyZ~)F$@86_i_*jk!nHB(Dg)uVi7$SyoSe6Z)Wj$K@+hZ?)~@?(2j1)z5TMI_Z)s|3 zx>Ph$#?e*qGa*74ifnwy?i)~Tx^mp57UsQQ{t15{r|~gb$@MD?|KkFf-!1*>mhL>B zq99xjH}m|0n%Yh|18d>(%N2dOOhI9nC zq$B-3+&Al72rAaVRBr=+;m+T2syGYq;uT5v$7lmK-zwlcL0 z^=HGFr}iLx2fGjHfbJaI?pfZQiJ;dG4cbk<-Jd_IUZ>PmR7@$5#U=ya=?^D(JaySL zgH?HU+Fm9~!WKWBZS&cyy~^PtNi~cJ&EKORAQSVwReQy2iTI%OocRwVosk_q3(fhp zKW2+Ckyai=Qya9SRps&zZ0edUy{9X8q)xM6{LEujGo6jj&w?7M?r*;SZUHhD_0d|) zyzK&qk3!-u`dLEe!P(p;giM3fOkbSK-o1O1F}N7kmYNz2_5gx{jg2Bd+!*)!gQ@7D z%ciQOC4fOPN{VHJU#Hib-p*Y|KN~jFL#=6EiZE^*AZKL+_5Y4EMInUmeoIXv?vHI%dG*db5>3%lRXb!TM>TD9a-wL$c&bjr)&oi`+?VRg| z0k0gpjyI9}-uT85ErcUZI%`WeG>WK9kBmi&ISWvP!Oqo(F2oC+J>$pxkM1C{uRkM? zPKn6XsEhWfbY3pEo83BuLrNlp>(M$eZEjnVTW2Y2j9DyLQBH4MQ$baxp~ z(RrjvTS-J7JlIFzFZFJ7n}-~wF)hC*{JsIJIdcGLL|(dV!@N#cumR6u0}|nN<0zD| zqH*i3_}u9T3v8374E0~}7w$6=ChVkjkvV9h-sEh9a*9Mk*x#eCv8aeS)hU^xKW{S- z;rGd9t(Q_j81e_P9@SE_oz$x4NFz3RJyFm)quh?rAvWLM&~Pl~3}uZwd=^%M*-C?@TYHOked8gWh_@ zR?eK9oQ*yT$0?Zth7a)mcgS_Mk}hbacWBCg_u6*cBz4xSg5i>m6WwTUFA2S=hvZz? z^CRAd8+JmUG)|G1ki?dGRouTP*tKr&iPCdAf|v>-xdRYgye$N>`qf3)op#0l|5xvP zC}P^sQ8Zlq>9^tG_zNN>;tSQegVH#^${n}cC>y=seaC@95Me7qoZLY!g_SnAV>1pA z$;ra6f=}{}#;W$4_&W#-3wxyj*$UzsZ!!Uhx6xCsd2hVlo=2;&(4Q675kx~^v!te+ zO|WWoWDotGE?c)i^^IR3;J!y(q|DFay}V#wUh~Yilf1%zX*#pis$Ocbvy-xu(;Uxv zX=bdUdg}^;Fg-!*IEX#J+P!oqrgu!an5C-BhdnHx`nb=kVWBj0)xc!!bQuTSUXHO7xI6Gh<+ue%5+UGoT53s z8PT8)3_U*Ew?6N)&FSmB8>fF2=&}hzx`Mw^#3eSTC_y5NmYTlSz0?lMLN#Ic0ven? zyd9H*QjUfQi}#Tz@;!|2{<}@D!$NOzN?O(C>1^?ZZ>+`s-hxHqX6+M3spBV^nN!D! z>dcGi9oQR(@`DcBj@`RYSU}elR!%1ZyTLAEhaEP~f)jMJj0}wu{-~QXGb21=t{a=+ zi@%uYDE!|Em1(P|PKvDE0S>@I>!C&wLu86ukz2k(Q%Kj$prwnZorR2=K zsv7N^fBLphezsLH66bUVskcuvsn&u`K^A*S9tT%x`~roNiL}{7ihIE}OKAmRB7A)Z z&W&kl<};U9NGgs;7cYm|-HN>N&p?ad7*fKY7__JfPKCsvJ^9fKhYI%5&?+W~nPMH< z>grQB_S(==#{{awwa=dQAB`)LgAKp4nUxhnMuJiEO@!;VMeEz3z_+=-0qOX83x1Y0 zcS%)2;|tjwU~ohFnj>_Jr(BOTxcuvBsSoCb==eO{XadTF07mey$0}xMz=ZWbp_t?s zVR-C+t3$1)azyoNH3JKL;@6QwyOa;OMHpDc zLA0TUOVMC%d*;>lGYan;lb<~c0^o99?!{eBqJfRH3{UQ!<@-~Iz$WklcbH*&E>sl^ zr2f<&4+GodsPnIk^4ghPn^Zbadu~@jPdH6@|BEkf1}BchqZVGyRQfO>NV56rgQfo& z)dn|1jpIP-9yM{=!pc>ycm93*8T3X^n77YoHA{9Y6u#0RU`#bl*;~8^6s$!B^D*dF~epnR!(yzZ! zA7*02>8P^s-BILw>D;;P2!gL`wKzS|*u8>?+(J5@ldP|>mA`tQ923|g#zyYO!FDkk zcENFPZ|_;i2z8|*^7>n2>3p7JojYcy{gOk>v;$1&=colm9FBqqg}izCrhu-!@e_w` z!j&!hJQ?b5sbTB(+=UZzwSPAZ@~&|&Z2%MbC!AMEMdI>2;PR=48kiT(CHJI`EC*xJ z?B3Elb~7+7CB*ef^X$K$1(O2qId!T0^!;vJCA1b&+UE5Kc)9(m(Q+{GZDdM3{zBG~ z#&v|a*j0ZR)CMS9~ib3vTK^+crEad*UPqBMbl2aVbl<1etmbSk}^m2)DKgn53e6`qx9K zH(d+LKC7xqA)69?dL16zu3bu)NG`4^V~F8gE^Md;@5T(b+KnPzlZL=$4vpCV?Y-)? zf)Lo07eIzArm3^+_eSC@U1r3huIOUW~p~Z_WzWuEaRCwFD zU-TBOP_8w1-F!ER*NuIDWY?MG^G>h$tYU`1VIup=%iC)a#BK7FGlG&(j26E4ZQnqa z+^ek=oM?S!hr{FrZT~%;9E8TlLkzWSJLoO)Znc5yr0O1k?3$I#MD(sEpWoyDSh-xgonOekgwb*-3e3#!xc7xY~$#3tlz1Ntd?xKIf;k`iONtY=`@~aDv9{*kyUS zX?|x4SX$0s!bpF8Cc8P*vtkYO!#pbHbVen2Z1j}U*Jxf30_CQkkb@k%t7J zid^R!Nk(Fu1RuWImuIG_h29lwn3>D13!GYMI2(fC=nYR}a3v2s*VPb5fm_3~qkb-b z<95LXRV9lOkw;(na3Tyj)Sk;@IrV2NbN5bG$;kDgeq>s7kHQ|YTU=ONz!IaTF za{mM_nt)ob<^uQOS$&YHZe*Cx-e9gg(nQ-4P!WV0SsSA2nukJjJ2$S@cz#7TwOf4s z-uR8Oy-Nt*^@~Bz7Mz%|hSP#fD8(xwR{dO)JD5rxD9mo&eN`|mX9z(`8v6k~IliaQ ze)iv9FKq?>*U>*t3*(FTum0`CjpIY?PR!xvrOXDYp71S}Hf?yq0|d7x3_9XRt8oYm-jh1sB4_YQm+k1LfJF9m6`04H0Vlt^487>~eP4zIq9IX*2i0s9ROEw6 z9mq5kY`au-bS%L(c()ZDCoZ;}<&#cfM_rsB4bQ5a&0g~5?^{7>eB!+W9MaAc{JG5q zeuf$k;AV#2Lt-WBPXy^Q(7E#UT%5uWk;{^CV|khnut-x#yZ6~?P1?yCFCm_+s9Q{< z>#6Har>;4Pb56*~A&N}P4SA&CtGq1dMgLCGI3-Vg|XeHs#zL-Tk z(D?A%x^IV{)Hl;qL0HlB&(`H!*MSV*e%};}j}|6oscl|5*v;Wq%Rrpux(K&cQu&EO zQQV_KGgl9xyC4F->@|_^fcETfkeARHEEw9f_+%`Fpz5n%tuz zJmi6%QbNoy4Z$PIJ>6wo@$bf*bhK~$jGw`Pxnjhb>h%r;QR7WILvUMZ=JrvOgJjUQ z`C7=>YoLq+ApTkSm3Mbx#?lS}B3oE03qNId!bZ13o?S0NeFzaNd!0M$RSX*H<1@8H5I2wFxZk_(k)>Xu#FuLFg064%GA`wrx0l(rCw?hNdpXme zl7UXg!uQsZx}3wy330A}pUNQ>4W^~^ju_h~kE*H^!zAfu9e^-H-*%7OLU`#`yNo#L zviP+Wlk{`VLo?5{c|x~x@A(9!q@$3nJ150mti6ZM-={>lhTLLmKz{4tF;%ocmd|Id z4Kxe%@!hi3y2P^oGFv+ajNR=P?>eXG#C8pncdFm~dxQXW{t0bl-sbfZZWlE)_K*tn zgP<^V*>EQE$a4@@qKk=`&&5HoHyI`6{Mr4+6?r!A$~^TcXYM5cbJ?i*C5WcZ=IePA*7wHG)o@AiMf=;lTq1AV;Ljfz;Ho zvE2F|j2uxZL&hM{o(gfNk+cmgdlZ*{;nJmQNPN*ymYzQYgY+b5Mx1=*F$U5hIF?P$ zIiTO?8oY7+IaLdoBA@abN4ENvGX|-qI@^j9GNWuobwxaIatk*h0wLCUtx=f)Mv>!M zP!IqkpJI~_vD6m2C1y5U-heG#GVQ*YjJuhL%z!XXtF2b+l%s4%4CjZcndVK-@~w&= zRuE6tEZ)9zADnUSpIpyc%SiIP7nO+AIHBOt0gQ<4T99onYAq=2UVqgs z?gv0?od2?YJrkk&I zbL@wwBoBTFxjyZ3%PX}#Jt0Akw-E+G1_z{#72za+ zjF4Ay>j{&9Me{kfpA0xfHhO-NU1_=oF&tpdPL!)QjX5oxYoSN0Do)GxE+w+hkem3o zgAQu%n%*-UujyJEKocDymvNJ;eA?J|d?~RkRep{F8&MN$4pfe}Z-a4iLV^O4yYqHv zf-yv3crpHhJo%h4qywunNxg|&fL@(>Ox9Rp6Y#LW-e?!;q1pK?-|oMvdwwi`w3;B8 z7k6e%j)fp)XH@Sgl(yY`ZK>o4D)1OuZbnT$AQ5XGd~?EgG5Yi2w*319}3EQNxo{-AC%$p9WFsf5%VqHcZ5N?++x~Dj>0c zcBJSdLK%bRXBu?;Sz;>`2CJ5n=eeYkG!Q28+071=QAfVb)P0oWeuWmFa-AxXV}8d) z*6jZhib-4#P|RzA%@d63Rqjz2BxEE>Y`DJQPqukG-0qyqWMP-N6=%7XmfbB~w!`p` zg&5y+xX*ES4#a>Qkj|TFwY-XlbZHH_QLH4%Pe2XbheU3WOa})6BG-c(40L0r2x?$z z-wM+1l>Qv=eGQd`O`yN0*>D<*kQ<1)W)a4V(cnr=NjZ(~uPOlZ0~~2uX5k5txMn0F ziZWUzWJnhvvNmA{I`heT>_p3=X(MuK16FVGyksvTaMaLAG;9el2LLWK_VRd`;1JR4 z&@T7=6AEjaC=^gX#?ZOX^%LW3M_P*K)wB`Rza{6iLf2g5So6n^6{IP^%%n*dY@KA) z4VtqWm_&?))mlx`AIY1 zCSJngv-nR`3P|e$Oy2+k6J$&_oK`rb_%mXB<$CU*tp|-h;@d6QXyy6))DwgN^WwLE zD^l|nK)APva|hU)WP9KqiaA2CU0`;MqjY8nP^tld4>NORO--;n_YJ;3Xl+K5Z@O6A z2a_t_6|~RRQrv!B80R2y<6PXz==Uk^ywRg}zc1cDk2=JX@)*rs1I;9_k^7dN{hK?lsxJf@lSL zrTKyIPFP?AbgwN7fXKjB6ljFt#p@(4mHwrp|KAqIWT#?MgDv-F!d0Y%OdPY9ddhuc zVb-v%7RWP@qeLIc6o9=L16$7MGv4~~L9P@mFcvoPEw(_7rsb<9a)RK4vA5mU4&6Rt zu`op`bk5###Uux1v?I8Rlr27D=|yHt(BWie9+6U+M>?|`bzUD!rvc4Gtq;;srr|bl zKX=jktM@)q;{3&D>R-ivgdmi*36pZL=|Ik{L+4CfDGygDtw(@|WWP_$$u|uwW;W;?6A1GFdK&e;|ZaGp%L&Kq=1)4YH zZTnd<*RjGnvYHQ(&KTFf2TQC-OsOU%t3l0ZdtX&0*)bVOzPiKj*DH?$E*(!)3ZuZf z9r?PzVad^jP`^5DU_w>V{7ltbfJO%_fWO7i?WuBUkTZ^Zt9L*jVpONN91%-rf^!!K zHj^hvgZ>qXb$10dbKe7lGkrff7fre&l~a$%FG+%{G4!dEa^FF34F>OKHo;WX^nCVt zICNoJGygD}pNzoKIB=!J71v2=1)oC?e5-^oNJbOM^RlCYX64B$@#Y=x3ri>mex28ZI`017a(FD^T6gMXlOmhz@A8eVN z`;0M5)pBwq*I8m-YN-2Nw>745hFsFtw&=7fWhyJV#lTc5^d0Xqis5I?=smjTK2V?^ zq*@p;(#t?>OJ!4*VBG{~+LhhxByZ4;Ci^E?Je{cp5KoZO6?MTpxF8%gf{e$Dw0)%0 z&eD75^`h5d{mm$`u%@eo3~kXN?FRmy%yanqRRyRQ9WCrBNW(mv@^+{ZIRH+WMvM1> zwWa=u;wyE)BWXh*YzWk2RxxRAiNZ=^o4FMkw2I#{4Nt$?`Et4$A0&c8Apw9E?VB~U zuA)~`ze^YbLqm-LQlW}G!YV+$5Pg!@dB~xYCs_66?e&Dr;z1XeMUC@mf2um_aRU4!N1;o}5E{@3E&i$UQ~uuBYnoQQ|2S=qCLx z^W~ypsAm<pNU z5@}B*8MojMqyhvx2$*?Ew~9Z11JXg_FL1GvME=){g(={F!lW6&->JpQ!T+-tiHsXx mgH_mhN>26y{`r4fpLw27(eJ387D*P1>n49jF74PAxBmlYmdtPf diff --git a/docs/_images/notebooks_weights_58_0.png b/docs/_images/notebooks_weights_58_0.png deleted file mode 100644 index 5c8a58518ad9f1feaeb0cc70fb70d9fd4c30ebb8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 530744 zcmeFYRa{kF6fe4HloshmrIAkQv?!&!ySv#)gOq?shtdtwwFT+!E-C4ft~>e8IXB+U zeYsDUpCIhbX0Ns8m}C5Fg(=F*Vm&5(3_%dqo7YkwAP8v=e9EDtf=5DXY(9bikewvn zD5HZ9Z*=2O@be@4*BVX`gz@Cz6Jd10_Xa%3?<}qE{L#+T+0DSw1hO%3wzsx(wze>& zb~SNyvaqw|ddcyUlZD#c+1Xx@jqU$>{-vFx8QY79thW$E4ZV>PS9VX`U2t=MI&p<| zc<}0#)+oNjV;Y1}^cT*EPY}aiC(ury(xNjl(W*Xe-lf0|%NFfx4n-k|eM!rJNUI`& zm5E5p^E^IA;*J0Fl!dgD>s4$0M_CJGY+uh$goK`RRhbR;51zo?JzV}gYe(C;LC1Va69k+`P2ZvHP`=oX5#bz{u4-eK4Mb$brYu-3V0);Vdkzp2|RJ3 zx+PJSw#QAMLJjYxHk&o1xIc%E+PVlAlHs{fXCv{sTR+B2yJ+6|4US?c^5M;Hv2c~> z@DiSkc+mDbpu9Z@zm*78k_dfsZ!kkgn=B@U7Wx+vFYS3Yfz){QRq67Of2a)Zh%YS@ zUA8vuRaB_AZ^%h8eKsd;xc%H@QYdH9wYHzKlycwcC)(dObA4(vHOHRok7#%w)BGtc zu&rGS!ZP|?Axeln_nG7Dd_)U<1uIhkMhNK^<~kA~)M3CCAq0pPp$Q|?Oa%=;R#R^C zR+1*$7%D@kQ$Sxq%A|n>wXQOQ8KeWvzX+VB3uJJ+)nE*C z@7=3=PfIE*)rg=?O`8y^`#k$usp_(i)cDZeg@IJOjFjDz5dm7kw^G9MXR=R5P^ZlN zAjPT=&9=|72c(q6q*`&6dMEbL@T#e^bxJD

ThHr(%$-0S(V)rM{4Db_rQo*M_*sNY475AeWae1+sdi~NW*z~dCwjE zB|uP$0vBnGsj3IwmX7R^GE3+~77Qs!hGQzdV$1q+5v%0sX-ro19Pj;-g<6IS&P zsOUti5C6Rbe@ao&6_vzj@59TB3&xTP6Lrg(JmeVL@+Wzt!&)dEKmdz&z^DA>6e)$U`7@v^}`^i&Yg@#0BB4 zloZAj10}VOFTTz`5T8hGuqPJ~l&juiX*GaW7HTXwg9IQ8_z zo}8S>#p?76!!UtMQq?pEMc%+bhGbuW3-2ml@wHkO*4XAaq0bf>{E!rYIr``P%r%pr zx0FUjZh3JV*L+1e6CXn+IFC-iq&3$UNldH;#3(;WjE#>j_mwD2H8st8@uc9YJ)TIl zXtJ>xSIuQ?G2N4h+V1ucs0XN!LcK$c-^JqEo6_$cNC@~HhyMI%^B=YK3nXf4SYky% z%i>PL!^Ok1H|wDt#-GN;Dj6GlrcOtfaHAo=4$3b|Gn;XiBw-#Nc$6bILFxpErYGut zDZFCKJ+F%S4<*6z*2@AV2rlDTdm_y2mZst7`fUGv0N!Hz@e{g6&Yf+*)7qMjPK2zo zvVx%9IVZi*E?Enf4k?(J-#Pi-4Dt!}81wV9*gG)0>;FJT_$TcA)!`?VQ{;Qfv(N7R zn001|1eDma1TG65A#U0vX=v!^^S7VSwwyyXtuBe@f-^FvR4px+sbN$3=1cYK?>Q8p z+j;v2Ny0lgPfV-=pgQVyR8Bj4N(s-Wx%ii$!v`Qje~3Hu$0t@H5m`g|OBcjfgd2IlWWV`P8V!{NivO~J@!=H?+0*rZF4rfh<`Iw=hez9IxM zJl7J}8(rw8;X^$`^}xK=qnwYK`_(uPzh66ZIUR?|^J(XsFfwUsgYvSJYtXWirg0#a zbD!uNAio#tJUeqGo1WC}yXI~WUh`o|{dI2*mfX94lgi48pE_cwzt>Urap57jAGr~M zz0W8{kwigJ0f9&tSJ%Ax&Dr;VGz=$N#t9T#Pma4Q2UP3-&1IqBX@9u7T(_k+OiE%5 zENR_|BPA9!X?iWu7q~1=g*#`d`rEmw=bD5E;1{Qw4(86kNNH-PuxbY3d z#cKI)kU)f}Ks4w5cl{-Lu-drk>lI5RWD=!?YLub}eN zCtDsHJbS=X9335r{94f-K^@o<=hCJdTt@kOQZ&+N85@Aok>@j?b(E;Rqx<53Q~JBWPusT^TTy zsnCXbFHeCFDyO|Yk`OAM*qd|5yUZKK+e@i(oEV*aolF-o7H5#yVUZ#bHm%i zi1R=|;$=W4idjjJ|E;|8kX|AaUTsjc33VPT`f+*bG9E>%)l@Q&T=H`0fH%nN zLLi(@-sO6;deLQ@0_j=91##`xCoSTqA^XcJ9#XDL1vhHoaxe`%e+YSt8tcLPH$Y=s z%9Rbf`M5@+*wK%v-`LpXdd^2J9mvsWHx}vR>$?OqEgpCk!h)cqT_14-*1rI@gM)Av z{Ny&=!WEOU%PZm~dc?iHJl&QSeW%=0Yk5@tT*E|5Q!^7EQ`>iEx|dSQKN=PsAFrF2`1G@fFI+L`XVc;_hH!jQ^m?qpJ# z2QE=~ggZ=_~ z4tHZMSO;BSU7f+uKpswO900ifi%-KB7LOB8A&3P5N)|l)HL=~BO8{(rDsMlfCRiBDG|pA2tG82($Q3nGkoYuN=x&ewNZCA@bKje zNeTA#^#wOJ3IT7E7DIXLcSJ@GP5q-+J%OgC|9uH~mQF_2_jH_jn^{vRb1pd<`Dh2% z8ood+o^;SesMOEvEOUP-m^$~&NAx%6`kw>^c5(4$ZfR-yMHQ8f>q}cn3lsxe8)g#$ zVWrYEQr+;#uN&v?t-po|W}&*Kksm#{JzWsIW-b~iL8X~fWnT-k`^u-9nrw*;zJjnT zLw0m@9QpcnX;yOgD=J%d!+)#@3))Za=lh=a0H5?lMh@h9cW8oS<~tDNUQrLg+wlF@y-^pIUUzg41yBU+4C}tYG2A_P-#vK_W-WoT}d)|nX znL`u9k<7e&kgpi}AwP5<9Eb^{Iucoul!|Fwvg|Av0LpZQsa1r}#}}@^bT~NwEiKc_t(9kU|btoesO!#*H9bcXpx^A9oO~c zvwL^i59{L8bN5y`cF%mLpNs$M$B!TYUR zY>M;S(@)tM7{DdnRi;AxpZ5{Q*)l%H_2qI|Lj!HS6K*f7u1GZfw!LL9(%hV~vND15 zY;!8mS|n*jM9!S&HCuT7>8EpoU%w_uTyFXYuf0#&1&^)^vGUqNQb@$EoaP*O)ZX$& zLfNyXK69YW-D;&T%SXeqjkkP+Em$w$!3ro;!3xz4w_znX-c6c1AD%X7u}4aAz2y zjb+%;a_=Gy0RlXg_M-3)IoRV4mVA%p$~$BfHr8EW?-83V=_lmRCF%F*AMxXjm^FQU zy$>qCcd%%?Zl|49CU4iI`)T2t8P5d0mC+xWlV*NGrFyaOhdqQ|KdiaBfo24hbXdvI z#?r%kl-LiV@ssV<))X>mx@tH+jn~(NgoJdUr#pavI9x39=6QvgLzZp=GSFpZ6+{F< zZL8-2dBfl~-{V+zZtkG2mdb*HFdtYxJn`AP!fxZ z^g;~i5uL3g06YaGI-L-9Qd0WO*_PzAwx;yC{%OCR)A_N>{sAN|-@i=iEJ4pFLenL%$r1<88ehva znROlefDduK&WceDQNd*l~(c!uKdz&~Eg@PKLELBg@vLeE!&44snukUHD&{wVyI; zKfT)m#N%Po(JFxwv3x7DRs!edmr$0?*m9ee#bmzTKhQK!c!s0Ie>PMUCn?>{^30FA>n3#2Ow-2wO zpe9A9XW_PbBgTXwOYrl38^@>SSD#+-OR7(la2V#obSu(A7rt(|3%9 zR5lPJ{>sW4W~N5WNcx%ad-D|1bC_yemlx#Qn!X&14DX24`PbSS+$2Kw%uoiLE-Wl8 z3lO6z#giQ?k};$G0P8*n=T|z;&M@5W>gWhIZgP?JhOF3KAyW*6on5*tfDwW5;lmh+ z(V4*=UJk}g#kYHO+myJk9pT#ySTlNH^Lr+EH1G%)Q;-p1R*v=LSN#2fJk=O+-s};5 zd`NsCAkZWeob54qKZRO6GN%1zp!Aay?h6}q5Jt3(>eL%3DoXhvz3+YH+C4>aUtiy4 zMTDr{*tlQn-z0Gwcsbs48ks?)qF(vqM^@AiHku%SgpD)tz2Coo&qBZ7G~k!nwfcUH z!|e}3A|i{jygXNBrsM_+3GbR;N5~u3ITVlIYMuS|llul4o4X9H>tvmE1=QD|A$u6K zk9JE6HC5^bC}6~A-x5J_2X*MmKfTJR8>Y`LmN>`i3bF)EfMAV<4n|mIrQ@>W(#^T% zK>ru7SJ6{Z5{sWdTXjhLJ?hCRU??NOl6X7F+xcU=TDCr)HOCM8hRJKagx$fb4to+5Dv|R&@LK;g>B3cZDeIK zs<~B^gR8IGW>pn6UrCUSj3}tJcrY-uQ^Ruc9e@MVlam=hQb-MI zWmt2yy~K=7j6(l4GYhVzl+C#|aTuS6&l^;~$m1iolBoWEeeK01EuCZc@@1W{LeFP+ zRy{v}9CWpKvHof@;HIZBF~ODk)88aAQCeQ`d$&DVgn$fVXOMeDj>}+RymHw~-yrUX zq=e!7P$Z&JRaM)cHdez^`VE;afmzBKA&5y`_c{A?FD7kL-nv1WJdr9SF(YFly@}W6 zCsiZdwpM-(y)w}M@hY)u+stftIcypBt+1!e zL0;glie*ZlB;z&8SO!s21@pdl@BTBjAOE7erCq8gN1_O>E?MXYL9P?-LS>u>9zk;w zbQ}M4e}3y%S;Z|67@Z0#R?EAt&kvPa{{C(X$+jslOCj;X>T+G1KJD2jq}=?Mu$HB# zpl>MS)sHwfc=ATe+EIP(;=nC~TT~PvlZNF_cx-1g%!hNQVtd{mbtA~A>k`9ORms-2 zqzN<}MWv-N;Oza~DE9U0yd#FVgqjZpk<-ZKWW1`)T^vGHB|8&@+HRsN=H>%{6`Sks zR=iuH44JlB7y_2<_AO`q7diQV+4r#4Q&M?vZUP9wC;8v5hRsNpI3vZ(7j>G2MOo@@ zR$XPQGQ=TQm-Bt48Epen2ESvAu!e>apnlOSS@t08?`t(R(Mn1hQ}LL|%=R=nQWB7$ z$P&~9-3CUm#1aANZ(K+~p)QHg-+5MU$Z`5LxN7>^T#>C~Vhp9dxPIZ_rskKjdNuiZ z{dF)$yy+(`^(DtaHQ7WVEtzf_m2JV*Z`(fIU_?1;2F|X4llD-q=XF$*(f`;-{JAju$9kq&G*hu zp1Dv8gh)j_<_>v$RV{YZ%>C5D0TYybZY1(7yiiM zHUbW}fQ5za5EiZ?%v`E==6)p5NN4BYg9aS$;WtbcML5?HTB{Zw9BTSZ(cFz#gdZs@ zM<+Hn`^Fa+7s~_dgz?rMHT`C~q~gO@wc9J3E}!?uAZdz(;CBt=T4JG)%K>*Bc(QGn z@<%08>Kwi1|WQTnhf2?x(kfD<5UJ>!B8 zq2shro=P&4Gsg@Jyzjiz&_scFkc_{-#LiqBdn+F1;+J&k+XOj#2+XWcHL#C2B+YGO zMIb>(Z&=HKbm|_7%lbspTz|z=g%l|ycvAs%4Q>R$$@04E;s3WeZ|ZV>Vb2x#gTm>Y z)U@NHoo=D59MV{uYnZ$nUmNh~`my^CJ?Q$9l8yrO@w}={NH&a~s<;n)kC*${e)XoW z`-95viS4y;ZeAWDAim-59zh962550~LU^viuome~L=5AG`KH=>8+9)txU1{5I=fD43^13kx4^+B*-Kc&#I-fP}ft zPkySZJco z8ha{7`jw|<&eETa-&gQi%quMH<}_&~gOC}4x&2^=>#zC1691!ZHOBp{AEV#gdQy%iNtH)P%(0u1OoD4e@v(x5?H#UP|0F zR-AP4Ls-lC4-TH7JK1bA;>k&$?*)lp;safnAgUtJo-WF-kN=k@VrqzSEFU#|^4@v4 zLLNQEb31ml))Ihk-l2D5@T%sfT=y1FlJ4T7M})i-6pW0CWQg*gGglu-#s4_|Q}xtS z$URBf0p?jgGrm1NoG1S$Z zFSqz_wc933dPuLk4GSAPuaf9YZ+NVLz)?^zI!m0P>(BkHV)b%je+1t@t*y{iP#+D%ZfRV;uaQa&ml_Hk5ob;`N@L&f$dyPB7B zCe)xe5recq_TLq=-el&b^zCVwo!*Bu96WDBU_RQV^H9fmO2NcAv8#W%cNIz{<0!Hi zj(c;`i?}fK2+{?DC69;4u_K%;8{vtRcJ_s z47`Clb+W7cE&V}EBm*Wy}aU=^piaV#|T`ID$s!C^Q zCi8HvCd4k_{9!uVuL`$X1!TOw`c- z^(3sQoMXItA6qZzJeL^q!F{RbvVvlbq20E!xo#AC`Li;@ncKaY%6a5skFzQf&(^jJTG8ylSplU zP*9}dJ?P^}mwYc*2`{aJIxlCwXyfNB&OzHod?KrEM4URh{av1?JH3RZuR3bXyPATo zH%;%j$bbREhs6UxMm+&JPz%34{7VIcZU-W}^A-9or(Ezedh_M#&6)@v)OdIAcWKjc zC5EHEe5V_CmrjOtFNg^9A%E)b_8sX$`KOwcTjO2+k*3;;`AgL#BuvcUxA*B!cl7bh;@i!v zBQhz4waAF*J4TXxz!K_MNTklm0g!*?g!pfM@7`J1OH2E{#U@2~@POypGiYYr5gf{W zj}~|WB`Q~&M6kS4R6}BjS-;;d$R30rZz?@nNat0!Xz>iN!M`1zOi4*$1XymXXcZ8g zoLt-fJO!Tcor2c|Kt_}w3gq+ZA|q)MJg@KwzmRQ3dVlZ=KYm-dE_O|B2r9pJ z9s)Z{?j4iyBX_a2HhI`q3ESn<8n$fZ=`CbORN>%=Do#pz z2cLNJo82H*&WNJx9e=$vEKNOr7f;tCdQkpH&?laUjbN z7N);@gWN|ZFTMw#r?O9g#WqmXiAo;m;*b_)bt^FzZ=Gu;zY*Ntta*W}XbS>qMSR}K z0idZBTzH829@D$3=jGN0U6G{=V%xQNEx)a;9sReiee+Tc#|RBw{`%NH`hl1XI_;~o zk%EpU*Voei(Z7n+7wOXCYOzosw|Hx>UtEbYZ;zrz#@!#`XJ#6mtMlYEf%gTdO?XB| zWcxRMzd5V5Onq2wvIu)CVELM(CB#fnP(TGizO}IMb#eJ1lAwTXc1g1o&!g~0LJ9vf z0(fS_Fz($jMCrUvk8^2>P$^{KW9&$x;^X79O!$yW$sYX7CqH-Ft1l<#+GGsLnv7et z=JJq%ri9ANnPC4pQ1T{Sn&!{rG&Xcx3I#{M?d{U-m9gUgvI-xo3`=<>DjZ&4E_RT$ z)LBNk%{F^nf!dGo!2?bpmqdecA}@fIK6I|_6+Wn#U7;RS2l;3^XzT47C`coAz--eu^VYoH$B!v%*{=)Ti*V;=Z7uO?@+RE9DMFUm@%9yF zwDtLRY4~fq?9NHnLeY`)iN0`k2&^JTXJ#Oi#B2V@*H;-2hvdNns&u9DC(yoH09!MK zhVeVmWaS^vtS(_Ys|sVFxt^XPPr1F)(sk(|sndgRn2gph>dMo&7MHr??xI34UV>$% zY}iCGzE4)FYVcZ~zFxQ;E2~m(d_4Fj@4R3S)xA7}xd+KxYDR|o6vN^xdA!-|g)AVB=OSFL7 zIBsQ*W>Zp+b2!by`0k4o0?YYZPXwMNh7Yr5b#>_-V?oqwEXq5)*%?c)Ps!|(5fUvXzk zkSEOtFt4Y*tvi7#pIdt%3m=aeJZ5a3d!A5^$iUfr_}4EIFQ@sRUqt=xQ~3HSWF{p1 zdj~D6fdL@E_oSw!wLj})<*BLiItoQK8c$hy~1bH(U}0;XI^Dx0>n#QiiI6I zz)GsH8I16EYwP=bo4eBF)c5$_48esK&xqx6131(x;Uy+gU7U2MyceDJvQMoG3b%^N!T+)P32 zKuVznSf5n*cA=F79N(Kg%n{VA%`sqBzcAHk=t9=N{0EV8jkSLC_LR39C`;_dYc5cOSvwZmSg3BF&Nh7mQNm0?9 z64N~st}Qjb$1fuipC`(eKT)wL(o_N#m$Ig2wGIo3CD35vq`h}@5Eh6hZ>HsRbq{F( z8}sMpF)60sNj%=AO0ra0@Q;?D8yu=$^R0>6Aocu8h^HJmKe_L7ddtn@!RGURy!!U6 z{j)1_y3~XFy@`mzPP83A@l+^q>IdU`I@TL-W1>>-C!bsS{+;YGzwTI{TtO-@mu` zt5kOjwu!@IW4drbNOPW&p;?6s=pv-?GC`6&3a+4`fdL{E*@X;Y=bPO)`jZoZ_Egn_ z^pzDY>h~-+69SYFpwZq7@b@>oUb6GP&S=f-?A0H~eFgs3+#XIC@4-^*@6DO--_@X=*$>dj%zR~| zdfKjIXxC#2MK5x@JMUI*_@7W zV`sM15RzT>Z~6IEILb>9iZmjOboXE`9zDD|h=3sO=;(jFfY_3qME95T=~oW@5#8&Hq;W~1`xyAW zgFmwr5f=)MjtIb*n|)QP+iwpSB3WwM z7*%6Ut}ljZASMF5X%xWC$&G;|A}N{MN)^v*xZj%Vy%#Jl&RBa#l4Hy*x2E75RHkar`+%DX(}C^Z|TEYu3Cd{GeNymA0+gPz6uc>#0Kz% zI^5rvZSmY@Y1rsMG-8Gc1><=iAyEc}iuJ#VT85dKnVOfs+2EU-o9IA#Z{+FDKb6D7 z@8r!V_bqM+gtf?si>l6*~Fen1zTjPX1?ri8~Uk?(UUe3A`2yDZj>gXiZX z8_=nzaV0H?1WL>f9jvZ=-`mSA2~MC?VYH`BsD=n(lhK&T$JW+N;uO`N`!Ed zW~jU@Ex_SIeZAL(Uo8Ey=Kqesk*$!C+^^}87T0rxvc1ozuiHxb@NI*sB`A=Tq9V(T zZuHF@)S`ZeAX|A~nJTae*y+4iI+y)W^v0%pBniiXy?n~Atg7lhoUjMaC#L0XE2EqU1q$ z4FkbUP?G@!yZ`+1l3m<$>uha5wtQ~7&iX&C9C0PfIc3+9Z{HN4h=T%;CpoCG!K!czyNplBv9UiM23eTA9UK|nNlZo@ZrJ~3NgrWpkm;qrjnf3*bzgYT?4?h zkl_pL1P`TZ;Vzdi4GrIfzG%zax5HcWG}(oPE^O?e91?&MrIxXNgb9M*!_@qjKPXC& zNg9Jrxz1v-Y+IVYPJKfe7%RRTZf`cHOoXu8oc3>15S7qD@1 zs_K}w`97GovaNl*n3%|P0F^E@J5{Weo*ovs2^M>9=ayFfaM`0x0vctXAw;y&MTx&p zl83>D;|=gRl8Ts)6qCN*k$=wl0wp5i#=VRD{r#ID<@0rV`aRpD%L^jJO#Y}p&n@+X z)_xXl3ZP(Pm%uUArz>iC=4X~|g9U1O21N}0ag2~U?SU5OvqvL_0T&&eorrK^S1Z*M zYJG%*1L82Ao?I=K8iz?fIN7>R)R^O*hOUVmtS~X_BC1nTQi#*gT+IFZYz_cQ7pSXG-nt&xGemW+$zBElTi(CS01 zURKV_&w}w3)*;3XWpg#|4OuvKX!wzvCECiz2TMm6r*P7BX?4k~BA`b|cv89WZ@G&r zOZru2y#P+T8)}5=!y`pP4&gL_E4(b3m-r6LDyqHKfReI z#I=0-^z?Mv@d2#4G_K!|dJu9oXoId0qv=PpGWU#>(8bl&Qz5@}RYA^gc62GG z$DJ*VPk)yTJVj*`+<CJJwFA#RG{QOO! z&Y6!-dAPI+O-@d$*$PvPoZ{>BAU5C^N5!T5(-r7UP0P+4oi%M52e@i#as$S`g*%v< zn#NkZ<3WU-f|=?=dk6$79zxb892S6e?U`AdQ?HQz`Yp%H}7( z)2JW=f|85B-(sw6cV^D<_DQRZyFw)W!f^xzcjA(n`#&D@GU9*(ox9fO@WmZ0aChZi zHteflxA+yj3TAe8F`=PIART`6R9`;=j$~3iJOon5UrY2+TH(q1zZBD2OQpFL2JFD= zaUNTO2aVI8+IbV8-l2V@_6wT+E&p`*mh!}I!cbMu$?^HW;-yOB`3Y1Nx>^AqFX;(msuA?Bm~{R$b= zoX;?Og8lRe^ax?nWe$-A4DS}9FqYAV%Ts1K?o=co*MI^$Q6)KLl_&-yTglu!Pa#hW ztj~eAA~w$m`l3?@5wn%HG6dxs)gnWBdZ?(Si>UVC3cWX2q~4GGJ{48KE))XovA~6L zSRc;w7-#1!9Qek{YQ@r?6$|}I#RZ9gi@&Fq7RqO!q0Y@mTIJ&Mp7?+{rJxw_95;bM zDVUhK=GTb!onqU*o-$eo(}n5)8|zMP0c%t2A*hPmd`}-aqgPj@uN~`C#IS2*J2 zu+=bns*S&6KOUUQUb|Xe{cVm}qlRg$Sl9?>2bW6x5%u@k7S`s@k)&@toSa70tgH$Z z`oGilD;tiES?L{@zM)Ab!6w7|;*6JVX=$&fiA?fmc0}a!MCMAPyxCOt{QA~3HY4l* z&jMuL<2FPnkHS~6Jv~9=GVPh{km21~eO#o)!s9$Ap?}FKW|<+Zr0vQJTU{oKeygt{ zmX=>WC}Ka);zyr-@$=i4e0pAXamp2&<^=P0Nz%xHQ1MZRT;yE-o^Jl8ca zc$<>KqfG)*)@6SS%Mr^Zg*tY<-Qjtf*Q$iP?nQENavOz=+||J#_u1d~&bjyRDV{`? z{m5z-OB&*Q_WJ1R^PNgk_hSu0wsfz3P!Lr^-B;k|C-L(VW@csiY&y3qCaWZy3E1ET z{7L5}@gbs4Z2C8rx4OdE3|Gm8Ej9ON1T2aL^(oo60VAvkCIE7T9t#eY2mvf-oNu%g z%Rocp23;COT|4`+^YsOpZc24E+Q3WBz@1^lL`=**Oq_7gEFA$vaD4kTROWQPMYu8{ z<0O-GD94~DN38pFXPT5thZS?ixOq6RvPvU~#oU~cT1nxx`aKHOP@VE8^*vv|DoX$w zM`G=CmjMQ(iz**qs7;k76F{6lXxP$33&CLqWBA8? zth$%#-7}#kp`x0RIsUHcO(W&gc>4lI2uTRGh`F4-u0d^k|Gp{c3^~u=ypo(^18QJt z?8h4T5t)Z?$egpw(bJ*MPrhr#xJ8__CCFFi)RIE^oOw{u)>djZI~{)ei#6AP+r|D* zuK18UF>%3vo}PaxGCsi}6?y1z;!A)yJi<~SmfQ;POdD(KZm8hAl)u)i z`Sd9Yf_!{1g$8yIq{~P_NO8Spgdc@Ba>o5!`S4~%1z1XEa0-M|KP=8Hz-vR^>slcz zr=zdPc2@ZeHmGa{?7k`z2e%L!hLh6%4!{8DkilI^MK0!zGhB zg#VNN5nzIuJEvQ;YZsxK08jzaRX0&M*uHFwV*>|kG@Ov(1o#ze5=FZbCElmU3j`~LZ>8&@ zt1L;sx3ld*rewgKvB|C0q>kSl@1G!6ESs`-z~Oj~u^Nuql<}VZ?CM6`3!VnDK$aWx zxu)P|QYZ404ElK#7WPjP)?IcKyhsnBvSeXSXAd$vRaI3jpzA^b{A8t{n5U=d3#ey2 z;_gScdOV(lc-9vP1TTo}80X{u+9uX5A~?suMkXSr%M_0SDy|PhDG5GM+1~IP{`PjK zMConQ7GHXLd1B!TWzhd#Jz$W9_yLi4k;cQYkuKyWH&o>5dUHRn=N%B39|41Vb8sSF zj9@Y|u}U3yl)u%PO4H*zGcZS?WN$f`t!t%Vg_cYf<6o{@q#79oe~|(>V8l!&)fer$ z%0kqcR?Gs5P}=1FCZIc+LmU&x7LHA()gSqN?gw3`!X7TWux2HljGiYk@xLb!qyXu! zjOMFZGHH|Zr$gB^#es9p`Udqn25I#C2Zu44I1~zVe_WSsX_iHNA#k$IZ%qM&ixA1B{LDb7_VV1G6TI)59?+=9WY$u7V)!)bZ zWQi{Wfv+NbEh4nRUUV%A-~4TISkv`o1dQ|C#hqpdR3#)ocLL2qC=4wIzJT{K1nqmm zmRVHu%CJ<0g&7eonC;!-{NDGg|1(Ns}Z`1t7+#_UpG+?Aeg zEObmxO}S+Q+}3%HDt2?+XPS@!sL_boGUf7JY2nu?;^B1i* zRU>puW1qC9TUIwct*#Ik=L($jFy4tnv&8Hv6l3Ja*)k=Hnit( z?LV&c_haWCe{nFwcJKJWaO}c`=f_CbY}Vqjee+N-!o_9Kb)3X7FE2>GGga1pAFkCG zKX1~awC>T!4yR{CIR}5@mxv$L+H znWx=E@9|H4$-;^0(K1r?v9RnN&0F6!RjR*-C5ExRwQl6Ki?p~X(%{9-QC5b6kjWC; zfY$Jws~4z)DX*v{m$tXIQeZOick`1KBzU1hXq!TSj)Kww9#w!E`2)CbVR`w`JJP|!@%uLbxBVPIp2>9O4d%=I@xqy3{GtRCggc2{H;j&GX*mk=FiQ%mOw z85q3$>< zmw0k{>IOP_TPLIyLS4d)Pr4$ik6B4}HmggUbe})(LhASuAkePo;>q;pVH)vM)27!_ zrqAB@>8M|(0e1?{^)gS58 z%N46mr_CojP$F7*K=N(-jv(^=`w9%&VdDj2#l(~CseKk!x`H*%dT8N8xCh<=HsVl8 zo%yD4kitU3C{ps02A=XL1_oPvyo9m8ek(59j}K=oi#WQw_W`oOAei;|n2v&SoR9(B zn@lX&n4P!1b6!!39!{p!r4bn>GPG7=L&yj9$wdyqro@CFG%?O`Oq?hb-L)9r1PZTcEhQV z|EVz!g+Pf@gU1tN;{>=Z7v$Fv;8i}e{CBor?K#TE*0%tjZTf)iXu5sK2?-3@|tBOnb5NTZa}jS|u!-F+r|@AJc7 z%XJCg_r6ceF~&VwF0so>N)|Z6rBkhEz`s-e>65suEb8vfzmMoPHaw~P?{Z1;r9w)K zQsVEeZ{%$IBBrFIN2)=9J}t#pbDV;UJLm21#-y=_XgDRmfA^Y=&CgEi&bD4muwTq| zhmh-h#3~X!6R-VJ^?I9?6&7{FmkJa}XtdLFl<)5o9h9|Rmfv`mM_it6#odQ78nK{# zzU$fm1)SC;KlexYkigt*JEWS2wh6WxlpsloOZRWibxwF#6$b5aXG!H<-V~l_#O@l- zb2JPL8a6Qc_Tj|$zn|-FV*;ZKZls**^!Ju7cQ=lwr)zb`2$antB_NtKS^f&&8uE!A zJ-Ejr<%Y^}q9P*h98m8D+%GmEAwV`{bpxv(kBSO_KK9byzn}h_Z6fI^FJFWbHGy$n z7H&T2zZuWar>aqQ;j(qq9hJwc^)hXB2<$1$XXg^koZW{#^0wq5FfM~d;yFaTa9z5- z8&98Xr<)B@(h@mfqt0m~pz_ZIgH zl!)!lxT1P@X4@K_tVf{psmN*TJ3QnDfKrR|y5Os=tHX0XWP}DhR7mhv-!nD+F6tfm z6f)=Kkl6wMt>!Ft7;?Q2m8ZK<^}lVaj1v2G-Ll+k=QS1IB?xtcE>h2+^g$d<>uyKP zyf6<*XJ?mzF3{?5)LN6UhIYVSp98jBr+f#YGibv?aL(>g)- zfJ`dui`)8!aI#zur>zguUn9)lX-gW0U*@AO;i{vho!!Q=sL*pq$ za1-JXx1PKWl?MFls$z!Df66M8M~?Jtder)tXO)0);{hljwlhG)6_wLux1{AlP7nyc zSm$g(=$ba1mUcZIaj006=|8X}OPLm@OqLgKSHjvsIbMsq1(j%PySp*qYKOdD$`cK- zoJXXjo6cW4LlQ9iW-~(n^YEA%)zCx?x@Vw8V1R;Hj)B3Z%qXR%pX!>nrv7)C-m=z` z22wCQ;K)(oNah`%a|Fbn-tQTcJzvCiL){G|+_3d!4a@$nDAWT&O0tE=jv>2($J zH>&3P76Yg zXHCilgPE+X>|Lz~Xq;7Emk?ci23&qW?qK-k4b>EyQ^le6j%#N{YUzn3oC)vDgM@?( z&Y&ypGjqS<2S;xS7-1!0;)>=gC?phq$Kg)pb5098g0I`svJDh?s5oF^LW6$>$bF$6 z`}dN0cml(^V;oM%_-TQtqcV~1@B1@((uOb>_C*rz?cey1MV;Q%6kHu=YsDklt>fyi zth_EyBBUqd54U^$`d8N|zDAILWKL&DFPEjt_p4;1o_d3(6wJKll7nVeCN6<`!zb1~ zD`vv*y~ll9>b4SPVnD31SSrey-ZC(X5<8n7+#WY&gq)hCkx= zJT4!&|MdM_@`p+S@WvFXWMD$S1gILCRV6QKm?vv6G;{t(OlMkG zQqr4>!fJMX@z}bflcxWdnZ+{~9mZF!(YcEz-sq-#DbJF3-foV~G`)L7fNTZ8|Lxy2 zP({zd9ha{D_N~3*BhJEGULJYxijtdGI)%}!hy=%g^=N=RF5Ams(bd&IKoSiE4-Y)I z5zt8ay5ch>_5yS?;ihNgY%S3_mVaK3{V-7}+O_>V|48ka9d!uiV&)bWA)KvO)qjJN zGF65bkGHHu|NT+el2(c!CoG5$Ef(V94Zz*9~dMW-P*vo>Yi!Z`v!!%9;!xZ{?O53}}0J+*kU*QRXG8qg#&9 z8T@zFWj+Ypn~si-dhm(_ZoV<25DtA0=)%5f5@?ah8N81bDEy49v9ORp`2hw^2V?;^ zUOZ1n_q^gJaCU}Uth>8=VtJh{4d^Eqw&}RWmZ3Rm{D%hO2n!n+{S#$>Uz;N3fhs^n z(kt=+v*R=~GsVIZoz6Fr;R$xBj3ZyNnl?)9o1olW+N+~cRsVWd?lf*N_uPyXCswbn z%R979CTCWab5weZ)DEQk4b?qPX%Q9dRr)aG%Kl1mEdnzvEYYymmAm+bum}wRq7Tt< zQo1jWrK9UCB|HXy9^c=TBw&$i&i2*NK=vCW{+Wy#}& z;Oq4zspX$3-1!}`^0q+vw?}vevfbt7a;S~k{hI_;(eu`pVE!{4QQrk#y=7a+^%;gJUm>2IVuR%bgu612Qa^l(oK2K*wN9k0NWNUV>GO+iZHc#eOJ>7)gwGSJhq3c z%6IseZ!gvTpxoySmg+}&vfR&8)X2)-K|x6T@IYEo`4}g<83MF1$R3>SYnc@YI(g8lqXBOK98iHtqq%HXU1jo zI9|Mi=x_BY1_z+A3^oopB>r3h#B|_c#xo#WrYC5=^Q(aM<*p{Uu8%-FaHpGUYY@f5 z!(gzlqrYB&fSF+Zi3zeG%l^KZJT{qZzMAQ2RtkE4VTbWFPutJ?7Ubk@&xGv3cd!f| z#MtR4wQSigdYTlBrGLlsto?y)aIE&!zpYK zfO6FJnHfHd?wF!aZw$zLPs++(TU%qPs;Z8Aw+%qd1BSRQ)r+=pTdIzT;C?^O+65l+ zlYR!J&DQm$7_0Khqr~!v%1SPfqL+a3G87RNbUsnG%*@Dyzb|Bl9@P+oBNHHYp06Wn zKm;Qv!2Pj7HbKPw$n`(1mc4&3^5L+lYtI8^GI4Mphi$wvKahU2q?RI@F62i~DEV!B z02$LsWF)iA`1HpvhkjB>iraD;Qu7FsK)U6@Z)EU1?(e)3=3pbB>gta8YHITR8w11V z%1T_&{ezwR=Xzi_nXP817ZPlQtPwi2&Aft;+YS_)zFC&Hjf~^DORSP?P2;Z=7oWKg zQtnIq{_=US#cS{A#GExZfg2Tyso+f3m#D}vyGbPZ%dmEBqDI7$|u*O?CbV+UMXPz}Ox|vtE>z?)u&)^7#H0EQ0rrwj&PknQ(`T z@%bRHYhuZqNle@ZEk8~bdw`n0+WyL>qMKZ2Yw!QJ^;Vf)tJQk}>7H?u2fyRIH<|NN zH(h%ds>tOgadV7K6(aFbvGGk{4vRv8ZKWmNb=jrm7#NFzRBj<4+@isSJj>n9t@ox# zpW>Rb>6EhfulLP4=Wb5g$B$t!5wLx7Q0#*Yz9oYWU*8L!zE$91T;PQ_o-H7STN*VY zv+3u5ILs21iu>Ln8BX0IsUvc?$bd1891($32L)ws;Mwk{lcL*tIWsuZ+>N|on%vnF zM@OcGf{laI4W)2*QNpR|X**|UXDkFGLqlu?bS$jz5QOn2dXbQr2+R#mRtJ0gGw?Qc z0xtr%=pY_YfLVSIk}QG2!O%Bf#%;eWZ^-bP?dg;>H;st`1+0u@oNFH>KCq)e@wMU=I&F zWvlBt_(_)nYQfuHR<+S>y9{K$Ig7)EI^*z|q?z&;r3AlkI*7y|~WT`#Rr~Axs z2Qs9JKCq*d%0v(&fGMtLV`DfVw*ZW4dEcx_`eVW|-RCY(hP@pxpU&v$B7qqTsEGA2 z)Q2O8A`%i3CA-r#D5kQ{202_B+Pt$#Raf0E6;rtN4VX4 zpx-Z5_8Xp<=mJ}l9mH6sW@h5eUdlv*%>QtI<);<^75)?DZNRQbLKnaU{8d;4q{l^1{*$GIYuUJKPQhSO)QjT@D#5 zogU|lxMzP23)|cM+xcS}#%3;bbo)SMb9}BW6J1=KBI@yF2#|3%6h1yZKzJ%MkdwDp{h^SFM*E z2-&$FF67X2c9$doNEkBr}7J~cz1QB6Ux z8=;3RLIk}1*7eOIj$&7_T0Bm}Wn}#zH2I!v4@2Tsf4;Q3Iv#d)B2Ws4&vJVP3LQ?n zslu{ZnAO(Y($Yprqr-D8{tyd957=q8#PL%1G*JwJ^Lb3R+pb;eJaDzp>ArcMG8n zb}B_9B1+)h`$r-I3z9rfllcRRk&;V%86M2tS-OMogQ^r>*Bean;f>!$+uxc=cdgGg zE6-^{O%kyw1hHM4zow_itNh#?HzO`~|G|$BHa3_-7=v1qm!}TWdhI)FC_~H?^NGH* z*5v0S)5%5}!+hoJd@T!3MSeK&z0JXpg0-^NM@&Hj4U3v&PATZ<<{``%(BJ>oxm_Cs z_v%%(mSJ(e<-l4N|Bhvrh|(@0*?nPmWEDBI8a}=^TR2dsj`?*kYi&)5J~kya_vpqe z5vB#+_>2p1d0u~KaxZyn($8i72abY5uK$uTtg%phgAG}7zIi}|b~6j7)5hU5jd&j% z4jyw9c%1H#L)nUfLF{BH(aG-o;1}!ZT=~`Dvj6V|FpJ!Wcv1(1_$w`^xKwydgN07_ z82&gpbUrsV9jLNUJ;r&$$1LQuM?G8d?U|s&&kyQJM{VM%hflU>c%Kkz6l;MXYaSF7 zboX3{0k*^b;t@wat+rD(tUGI3XfiReOfKRx zM~?{kB`I|Oy&2KQ&fo_Du=zz(JnItix*z}@AjDi6dA6u;TGTamgxl~#v#gxdL@_=j z2ZxvTO&`^G@W;{3%sAp~O(yW39+2!EPcF;9YLI;UO_K?T7&&)%yo+Ng0|WAo&Q3f^ z%4irpwq?uyrvYw^2q4C&@^ZH?bGB-&obV#lJ8eB0U`ZM}-k0dEuD%$bf?Ss<3TnK= z-mFW7=pYH*f%6Fc)b}4%n;&^!tb9_B^*X@7L*XG&%*e3I(|$Z*u_(>>D+UJMIN=}=5K35&W4^E#yaYIArFlQ8ZHAC~?cvEg_x|PHPXhMHzs>vorM4y% z#avt{3kn=}`m^I1KiM@KWx!6)F0oUaOCfe%tz+p<#oG3mD$F~(|Mh605VNf^4W?x-~U zGV+v&_Ab>C*LY}vbgy2iROjzEG@S1xQ+i#8!iu0v-pa+K^tX5kuMQOOzV3a9X&*@{ z6COQ~(SC7^fB&hqv2IgSU<)+Y?j7cBnPXMf$xK}CcK#Vs`(CI#hC#!E0p-jG9Vmzh zy3h+0{D3UDq=Xe*JsZb}(LW;aO#WjqpKs}x%@ROdvB+w-y>O(JdH+Z4v?KFL#Hv;X zDJR0XPH$hI$^A!c;^0jsg889gqhpvIIU0;dS0F-l&X{D6g5vmoA}9c<(npLSPxkKw z^in54i>S>!_DAWC=(*OI+|&8)rJ(!6ZsR2vVSgfr1w`Bf8(H|FmmFV1Lqh;GLk@5k zfmuw_(2x>}n@qt@YKhB$eMwyZ+e_L)y9=CKhX8k&9PW7gDL{*pySr?@1U;Vq}F z9yO4+u%2sb+Uo!n-Tt#{i}&2vJTA<+U|oV>tTX%JD_E5QO}zq9CO7arUOPEDnt^}B z1TOMmT$_LVh{IqCFa;D8QPA0P$GewTRwjfq<&QWzIe+ex?ocjeWqWb@hxP;(1Nm?I z+}-H~?>{K$QP3w91hIUX3pkWph0kf$MkbSUku+FHh;(!|Pp>G@v9TW!o2E-CBYu=s zf1$7?MD0sH_gI(Ig*gpMYLM@ueK4)w!~>sOGuYU_+R=qSbMys21~COiKg`j7z<=F= zLsy;8Z=fJu*qFalJ`h&_oOJfr=r;EWucxaQ()FM?W1ijZ#n#2;)KnEcUd7Awicg{G zNItiy*t9%6mecGtbW4~_{Q77q=*so#P)S|^ien=lEkuMf8@0aQj3{OioP-Fe@WxD1Zf#>@ zolLk^Xn42=T)aOlxlzWv4Ud$Ol?^XD*|kUyl6m)%iZHG)ULMqv2-gPO%*_TS`dCx1 z1N!X%=(V=?{3}UoAt`BCT-ylIr=CM$kDDt&HY3f-5%2=oj2bTNcYJc7u zbRot4N5(&)%aW8B+d0`Pw(u`9&Etf6EkSkRnfY@m!k}iaPK!d;gA*8Q&imYuz_ZH5 z$478iC0~5e<8!f5H1*{j*&|NF$WNb`zjt@%l}YAUKk*c}wf}JprMC+Zj~q%BAser; zkXj1B+4L!VF6+@hU9)Vfl6iIE@QT)NY@BevREGsWBD|g(nzix^{!U-+F7-xJbeshu zmxBy3LUQ!mW*HsYQmyC9y`vxN#PVKFTP*K^?9|*Q{!39=W@>Xh^udFmtw0Pji%)RI zi)T^|{*ZtlTw%~F#Yi_@%N%d|)rE7rXlKV)BkVo@d)sZ0JZfC*8&NI)j8@D{|Yx*egfJ>m>L{WmRr zfr>oTQg4A%_O;4%*!j|#(bcUT{s-)nlUg6=fAXi$;E{>pZ|Sf@Zd6c=vGL`dZ_r)4 z3#1U<5GlTRK_cY1?hAHF8W<8sL`4xcervR6_dZ8S{?#8e%)(+&8jHKIZ>lBg6`tsS z@8s72c1&(wRlO9NhJMra(*mYogco!R>U)%*``PG^uW9HWvZBXfW6ba$o5qoL{B%#k{;`k8EcIaX|Wd&Ke!5d2Hg z6mesDXy3{p;Olc;2Z3#$0bn#;chkv@q_8I83St)*7sF%!SLd^yAK3few5OzFL1-Pw zXXt{0xw@XhogdgYPb|JRAEyi&`e;my8VQY@BLTnY5Sg+Hq8aceQ!c;OV#SEKRzkVps~E9V`o_+VjS$%hx0DgStpDydB<^IoT-FqfEBS}wtF?XN`8hWE`!vzMBML#sP~ zC1n5X+J3l6hIv?IVj{s`aNbI4XvFV@_ z$kJ!F`0xqhAvIP7FKFEmSvzucH@v>o9JA@dGO4;erfVqkYo}5ihuhm--0fpsom1yc z0Ro9<8h?UcF{|FnzdzP>;mqLzc8h_;@HN5|fUBmkVjE@zTm#c2BKMH+-oIlP^|>Lx z3$ET-zhG(@n3+ilNdw5J2E%0Qy)$%65_Nq=5~sSB7@-MXgOQF8Y~HwvI(lp)f0sewxddzJ>PQ(9?;MnIemT4 zmBthF)7hc3O(9_jeqpdp<~M=eEIBn56IRE&`l`>W^DXIBK`79jdgR7w_=$p`tLHqE zCkX2W6H^}%_IX90 z%4iYojH4rvsCXs|Kixi+Fg1f*t9PAS_EZZ6@l&i*Dv=IIbxs3^ItAuTZ0ziR0qq77 z)I!amo|-k=z>)ueLUXNbZ!>RHz+`gtn4Ai5dBA;yvN0nj)qsILXw0VSG-F zHaD8E+7IO)#4(f)z}h7s)FG=H^U-G7pN@gSHY_HDjRA#FN9WVrR~*ub329*wcWI5G z%{Rh>16?qh9D<1DF=bwkLB^9boT1 z@lAHfL=4xDrnnEc=E&9?Qkthv*T+kV@_t+N3=Tr!$x}cx#AakXfYZq9>L8RsV!GUQ zhT3<(AJHf%$TM@uripqDWyj`8OJbiUJtipI`b}hvg@S@20MRNv4Gmfd@KnOB1iD2g z6{n&iqZ)q3#j$;P^-OqdR0_(U)<48|=tq*G40Hypmi4Islb#PtTd{BN?~$Me3yZV& zH6hFO#ovYYfD|YuW2<--u)OzLk*T=-2A?Sq{oT7S-{-09r8;Nisfg(;iZq#0amvfZ zyQ7T*P$eJ-;|FCXbiBO8TU&5f^cE>At>mJuNr+$94+!YpKR8A653t)U`?>&7okf5D zA@6ZkOA#Lq_X@*)CDzAb(p*m%7=A>N(U)ZkCCS^^*pv`enxMS8t$Yn&Xy)-zQ;|n( z#v|`%<)iQ($u7f8(l|Ky&f5um6Ob^F;X>@au+Tm<&?l*GLJJ7g`?$vx(8_0 zJ6GtzOB)G53Duq+|Cf1r+9||=O+!k$ezO$wFSG7Rf}2NPe~C7j7gz?{~P#bHg?O1@)cd<4I1t za~VlHQ#6kAH6f+K-sIJ!GO-%P$dA}*&4*^2|LX5dL>+u5xtw*10(C#>oubmY^Woa) z3x)(50fBl}CMJtr@a}nEy|Ot$japPTyQB(s+L{mqUCw|4sF*pWrCam7CS-ULc!4P? zt$ev<{?fECy(2`CFuo1-w^a7y=HXbj=fO&AoMcj6H=eHaYl#V`UAs&+lGhNm!0w%G zY8uo2q20`ID*=bw6rTSS6Yx!->S!^7(SG_r9ulaJy)&l+z@`d1&1m@fb(^5!qC$X0r8jZI4W0V!L+pB3EPPgG2m1KfbftERJ= z%@L4fXUz+Whi2!K`e!SE2lhnxEO245u2Nv+d4W* z8yi!%y6hS{{+m)4H2IF+LOI=Tw=7=YQ0&0saa!0U5*A4QK}<3F>^yF`(G<d$F1+H669D{fYT6wcDM8|K7}gF+pj5zhe+Tb&m^qs78g)>EdYP z3et7lP&{_QpikZBHB{hG2t%O4oJ@_cB%q?V6w<-yn2>Hd%Rj#XF&*#!Iz$3Q{LXywD1qVt+Yg zvtyw1^*R$A4|86puNc$CaQKakw6KVMq5S1;5ov;iJeTX9u?jFLbD5uJj?jin8v?bq z#_@!0Z&(h-J4w>gEr-~>ddJ5bYlMWggYIsKU0p-$>_Igd6q(K&w2aVAP#Uj@_Xs~g z5Xdgh-YwN>eu$iKE2EVsr)bB*%APMJa*v|y|NHO7MI;P+X8tWp2L=?gWW ztgOJCU0O?vK-lPg0TJcRn~qTKh@J z5(MUggM){VEGHIcc>;FFN3b^4Kgtlo5J~1(0WMf>=E1AR*v{jA{>1od7fzWfC&%@V z6e5amJ-(wGuRj0o?vBac)FiNGHA;XQ7xxg{71h-|=>krQcV{keU8x%w{9=F6LY}(R zr5>*QN=8l`L7|OG^z$T#x||V}DL?=R#cm@%ns&p#D=A{+AF$!ZVIaR%Tbp>ZK17pU zg89MDj@apdUcab-W@%AI;Ca@-kJeMlGmck7`+bDr`iAx5#Z0U}MgU&778x~8cvz&0 zrvEkg--hN%z7kQ@XcQUNhYz)b>+85Lp1AX|tqoQ*XQe8x4t*5B%LoYgvEXqEgwV1# zc^$U)w7HyYSSi9JAHW{+pP1N@=dBmBw7RGHJNCvh!+w#uy8HhL3GLl3AT2A=FW5Uk ze@_1cm}(OW$4r2oTt=Jldnmg8Z&0iv$jnkKv4`)|7TluPz9=G(IjeqM9xCroH}dN%mh(y&SZjnnq?X9OVu z0W%Ew8vwruf_)HNZ){<}V%O?ovp+YS_Zf(pFwBEq1?vN_G#7TEh9Dvt3tM1EUSG+d z^P8bV`kx~NyDDWMBk1#$=MFsQFf_ykYS&=W17hFY*>5@A&TJEE{Jz0xiuODPFTbvO zgRC(My(@tHlLYs{M_@Bt&NX3#v?KJVY(;>nRA!0HIl zMn8bGV^IhlWvTl$0S;0YFS|dDWq0>K5a~zy0d5;lL?ov%ak9PPJ6n~f!y4j;bi0*& z+ZqU-0mz-GiM)tU=zZa~?~mnMWt!t~BkZ|sAB;yw+!ZaeqHE;mafV9@wTiEAJnb!K zzB2Wu6*7_>0u1Z6y1FM6$d{4dfp8+Aq(o;yn!R3A$jEZPD~hhjcz`^f;T}PpvJzdl z$IhSIvlO^m1qKD#A&|VQ3vPkC-S5r6@NKfZWLtj*8w{+r@yfC_F_(~Z&|4kGj(P*>vRQ8V1=OVechnKrnhk^ax;N&oiILPo~!TyC;3%=n5u3O~ZPNHaL zV5~KOi7;h?nNe6oqyc9B=wP-Pi(6b(4v(F0lrif`eNr2(r5I2z5HG&AQcU-!+1)RT zH$>@ct@NZ+$k}4CW{%4VTlDTc=UrnjOtkNS<2}Tt@GaC zjl-Onn1JE`H`}wl*KDsE6A!*JJfw}%8oBdZ6nn7!RsL&r$Nt;N zw$%YbXc^gG02IxiFHvKXF;t@lWPp3!`)BPmTuSQ3C*+6#akf<7vyQREM4S>*j)@6A zLmaAmmnSrUo8_zhvie4oe5Nj-ppcPQ^*MoRQnKlIiS`?^Y8xY3c@xu|v(3jyvl3Erb;%>5RI5lHyBO*w1e@0s0<5+>%Sd*1KMaoLk=D9_K2 z=A2lae@{MRd(%XO;>wky#g~nq@*0uq;s2)TEmLKWlqOV@2S@9H(O-`=CMQ<89*~cj!Aqf3! zZn7K{a8I=FU9n&O-W9&Gy85rPSW|r{7X=%T8)W?NeRWxf$A{GR>>aI}R?Lj4_vSn* zo9t0)o-4nAc`FnlfKjCVWopWTv!}5B$>w-{&4VG&sj4NH0&y_Fv3>)U*ZA6=PXK_hheU6fnf$Jj9@Qez+Qkd^CT{xMn*2QykY+?2+}qGRhTY`$krP8$A2xK;ii}A2E8VVBg8H{K>IeJ%8v}_!@&#$G15d zlRFU^Cox(<^=ivwclfrv{D>T(kwg1-;^un8MoU&uysI@v_4?-Pt;C*i%;KU6H!p8O znL)!tFwxQ#eBYTR2-_G9*->`#deYO^CkgQs@O}Y04v&PS7^10sr|^Js14|9K=M-Yz z=^I;H5jL&YPaW*+{LD2)<`H2J^^%S&n~b#p4D?-PB^+e#i0OvPU-pGX^3?Ns5QRKb zG9yY$g-XWA_4L%n+S~nBb4wo!I*`k$??7u(1+?J^o?V|FMP44!@GuCa?hJPLPpo`? zu`FEQSn{%^2@*>HmS2I7u>maUwKktQza$Zgd<($6U19drY+G3gG844Ag1`1o~b*R~SH zp-_yD3b)mknG_LTf9v9s?P4Qs(8@vjA(^-N$T425v2lV^U~N;eq9P8_fjr~``%4}G zYeFg=O?zc!&)J2E$$8iC;&=Q*4L;~LP(d9W6(ZyI$J*>ouoC+>}oufs|#&vHe z%}_QU>y~FjH00Q9zo1|lH=1&GxsHK}X$cnhMJRA3v3OUeqbMLa>}K$_?WHtwoTyW& z2Y)aIe)h_8pofBjByg1n}V-Pc4^HFoYg^iO_ zwaN3mTHwtXvnaUvU~@!GPDx<~^j|eRLT~}BfdZafSac%=1!5b;8R=fQ%(qBGmuqpU z7Br&gFV$K}hyKdK8T~qs%J0Twh>W~ot4)}hUszqFnpF+t>^2C8!*u39kU8(Tp>-`h zT-4RMP3b+%US1kd(mKZ64oO_H6VURwIXG0TagRQIqGmb!{GzsecD9!W2K2IMIFdep zCFNJ_B_LUQ1P%_EvBi;)J+4pt$nAN-G8+NZ&(fr?7n{69!;Buqc$34xm@ET?SnY9%6y1MKAoboZdcdqZw-A1X~E5DPg0Fe#Un zXxI_c72WKcu0x;mL;{not(}!lBef}37XU=SQ3x8Oh1(8!@N6SWGR3ocfLrAOhV{WH zEwbOhwV(rY?t2@Y_8HQbnPL{Ev$G$=pj_+nRPNMnDW#@{7nrDRJ3Ft;%Y`PlXgQ)M zw$_L16j91Z;|FGDNP{FKD(9NXoj%5&xXo};_#Rw)zw`uRR5U^U9}{@z z;bf%+KY9Vn+0+yZ2B`Z)9B{x42Mf&+i^q0bvqa4vBjD7#LAx>o;p*#`FDEHbT4&i@ z-rsY}2Qa~ft>a*eo{UqwHuW<>pjAOEM1?naPhJ2=JQm`<=tRr4P@t&f2}88MghRkK}AU8 zf7g+cO+C!U5Ck(1)S9mL!Wl_6kq&B;|YaPwEgSu7^XGT z^&#EIb|oe2bw7U4hM<p%tdubI7{?O>JA!vexJ_w*( zFGYlh2QDry7Vb{ZWzvVfctOx`e9B~Dx}m|d7)?$SB5^rT`$Q+M1x!ar6A-pKhUEfrJ^m0{b>mPtMefi3vpy5`!R|Ej&KZ0=pIM$` zD)*%7m}elftaY`y+3Hmch0@l=^{J8IjT3;{z|Nt2c@29oE|mR2eG?1^YOSXq+Bc+! zCM_6~x5P2<(m=HD*1C+SHY6^dA#Gw%iqQi|^8; z&2byn8a!=OV}*f~xam0S$(+Zo1V^%i`1QShkUWpByQvcJkN0STTMx0nLd^zv@=QT* z@Px}$G?f?!rJ#Kvch}y;OB+A#E^thuZZ!#q<3g*T4Rg{%yxccSPD`k-b|XooeMQ|Q zhyTK``yeky&F+}hAtDsF6tazAK&gE{n~D?~8>d)c0(>XUa~yNywk|tczILb zY8J)kH$``99-g`$EMw^E>FK@fr9kMXf5(|9*BO=?IlK zg8KWrKB4p_>T`1EfYpC63)VUdBL_tBA4{9V{p zovhGUyt92~1*7(lmgOKVr20Q4foIR|Q}SBa9|+0Nk(E_cTi{G9 zudcQQ-N$v=?qDY(@>_FL>7LEVjEKV%5ECQzJ|PhtHtmX~&?Mr2KQuE}mDhVAM8Zoaq)?~KWDWHkEno#fB2Pgocfz=gt*AlHxU6`%_)}+igvyF8bSy@@;NE6$;_mT*lVVzOGtdYq}#ekRm zSH?4MSZ5Bqo)7=F877=#SlRVej9bmWqQ*pcO|XmFjL$czK4X^25K;6fBGO8xIA4kB`%@ zm`0N0g#}_6CkdY>8!_L@E|95M5{O6fIU%_g<+z=J=Rd7WN`H$-p&aB%s+8=C5y=f~ zmg}l0S%|%rT8;Kd%+<%`ju?5#47@QNh{~iCp$ZF3=hfAvMS~|DtK!u+OOc~(r3N35 z(|Ek(4CP{EA3W|(JMy0c1CRFNmo#yNRksSYA3NC?zk8?e(A#TvG?1l=_w>O7`<6|` zMP42RU0ut;^e_x}cTd2W!6_gKz&HTae58H*2>JQ(@k;6JY}_L%oHSnqr#`<{F+p|C zrC~Z+7OjD&pYYqlJWg##JMO*5z&IlRVpC)=l_wWgKR!lp0%I-v=(q9_O@2r}V%77e zI{c7~vS=Mn*c5JC&vI`DA3WGdeVZGuSG9DM(kGE9TT(&O z``145hT)=P=1!hpB57-X5_QGZ@9L62U&a?0qcM+7mRnnk5z~lMGBvfAB|+lhX(R50 z{AvBnGap zdLL#hlhHTUQ?oG0IEIEA8%GYT_Q+Q==#+b|m=?yoe-I?;2fLc=<>1>lZ=Py#H6LPc z%R~w0obEhH?YQTgh&EXv<$9I!_x#Yjw3&^K?QTws&7?Zw{nbQfiL=Q$D$}pzQ(gsU zI1jJ-7Y}~^^8lQ&Ewy6$%hemNnTS7sLUDJ8{CcjY^y=P?^oYR40Y2F0mERo0l1|rY zNJ&Vl@aSas6bl{_aTqMzLqbXdtI?-c$ZT1*G&ICTO`=OYM!yG!v8sg;21>9TeB}r5 za$H(k8dLZpPCx1A|660EV2z1ha`P?@4(=)f5a|J>i2K!fNf(?T<+FXt%Wt2^y+i?= z|HtQy_T;Dhlx^m|OY3S^+x+&-^IplhZ6P?Lw>vv#i46_IyHBmNC$oeV(Dw2bHv7J@ zzto_2=|pACK3PB%bahyZPj|m^jW;oDc^;CJMMc7lf zM!Y-gKrbcifWX-OC{1f+?5Jv!tE>RWW4N+~BcWk0G@s7BH8eW0Tl&QMp4ayF#!Es@ zZf#H*^JAo0i`ccaOgUH;dsq9CmOY_q+Gnopm68v*`DBD^>w4RGo-zj5Z)({`hexou z|0z-x={~6Ng&$oH;D~Up$>Cx_%7~t^p=S4}QXpxp_A|*r^w||PV zsIWF0s;(y{eu~g<#&U2-^#G4^9I}t?HC(? zA^0lleQrg`gdCaw7!4F~aO&!gc%!&xS^)F|lwD}@(zul@s9z8WXDuw^@41bRh>((& z4qVvY?q^9-{QmtrI(RbD8FG z{xH&TF_Iql#RiAs<8v18Jw(pNMt?z}c+Hb#jQ%A$Ib(bxv^1+x0by5hv+=9*N&%=o z7Zt^#p;>Or5|WW#fG9k2F@b?HH7%{bXlp~6rOS4%S5fg|;=K3o>}whX>#0gaVBQj% zo2MA+_i?>_ghFhn{w*6(LsMa8l9=_e6^^jurw^V!a1)CD&pfv@AYepDC^e*veVSTW z6}ff$!TB@~_X>F4%tkcsc2t}sS?=Af!*@;Q1WV$BVd262XOHV9qJ zu_JnYxV~`h4sV1owT?V`KoAPZi)v~^5pXS!0V=@D*(*QyfYk*^ar1Y;rAq)|0Ipp{ zadGM)P=Wqt{2B3W^i*}w)11o6+s3>HYESw=_yml4Nb9j4=Dn&ZJ3Gg->mz)b4ENK* zD9;%_A@a$JqWyti^ipo~q9$XlH>pqmP78U*1l z$HEw+vA&*bcJ<3OEDUlSVp+76^PW;~&HhUEF(v&BGYgN=C3;FKlDhmMIGA2(#Vy|c z=3~iPg#^6of>0n2@)w(4B|=3;Da2;|Z00k`w_Ch=Z6RAk-&k^;)7bSCW)6aSqj}fx zzWYn&7(1-~dM!jlljs7f^tJ+pP@6t&d&X$d{)?y?X{I|He*g$;U)TclC79=Cd*<5sa6Ol9nLW z*2+)Yu3<+Fw|FH!yFhD$K=zG~u&bGFjumsh!j&8RS{*Mc#)}WtMfD#uqdiV{@85O1fr}atvcv#7x{G~s z=+~m778GD{aMW@b;%^hl;I*DzK7I`C)8IH4Kt>xqEDeCrFAYo@MY8aN z5;^0&JYj*CzMr3Z`QXrMJ19hxqou@I`UT1LF6gaOJF~upj3+zu6cP62Wqe{GrAc_8f&Ysb4OE{(cRs|Au0(k|+FxP&OC zK0d!L_oUK2POySDHYy(?S8X4xV8MAw@+BGEy6a)MrPpABf{%2M%TNxD|NWnAatp#l zMJKetz{N z`z3gJXKsP+aOsZ1y}7ay1V%3q4RVxcXE3863}OZ%!p&2w_-sv`;JIdxLpVu8<**Eh z8P%;ZID@j02=?}O%vq2T!PVi<4c-f+yR@uwh7h4n*-Lx{LLxcSKL#eA8zY52ryE5C z#iCA_0QfzFSV<66_}W6}uw?6asT;Yl{N>7W?`BOLH|<4rHFFOhuK2(y3KJEb664*$6F@8;n#-WoXa*k7xQA67xpJWX!9ga<}eC|ljOnSVO&!BuhreT{%9R- zke{2~8VsT#8*HskfWv3wJGXFpx5kM1f?uQVb!614KzW%)@$-AJ2-GCv*a&n8NbsC6 z?FsMZz|wxSw-@W-?yh)qQf;A)m_X%yCT3TQSdz__{69rdP#kcZWgwLYU0A)fRouOO zFqIBiYeS4TgUbvd0Zct+J{74J87y^%u#`CLQj+vtT+o-jpU=#lJl##;d$Xcw|K^?b zy3Mct-WTA=A@{>)>RC6c^o{(0a(`^H@Xh6aCb<(swl3 z7f!3^usWpQV(Uj<#G-lgSO)#@;J_A=NeI3ribrq%ZYW>_mPsFE86_W@O|fq{x?$Iyl6uP8^}TI68g@f|nj#2I0qvh45hZ2X+!0 zV_#=X8L3XM@1gF)J#gO1FDi1FB`tNF&q3NwgPLu9zKX_RYTI|Ta@CLIqGSKQS{i$b zp?&1ie(%C%k6Px;2aarYLodB5}a-kvM9{{n*#(j6uY4C$RF zR0#jV@?+B9GQP*f!A$*dB|&xXI+~)-F3Y>`tG)e09*bYNFbqV4eFF*&?=vwm0n`Kc zzOk{mVpK`Vq|k3L+~4^bbiL1L>izGfN)2YJ_o+Wv9n2a84XGoT0OuhyfxMGTcc;hc z+11q*>iABM)`-LJ)~r=SdHL&k&;jvQr9#xIY^d@no*mqu`0Q4f_h87tsLDT-oQTMM zV0ajsEMf(OB%#+RtD9EgM`aEH4&Oc!9N5m%_btTXi~Xr*1HNIhZkB zK!nJWJEf*BUYTRuJ(t%-tdy9dms|Cf;7RxjS%RgZ(X-U4`zPT0l+XhAr$4O>o>uBn zQ0{d@_A?(CKdH$V}l6YA#7}Fft z*@ia2E^BTsFj0h)HB~{S$(l4({~9ToKJ2BQp7HW>?{oFiM<-q17u>dII-uS@2p)u< z75kpwwGwBEEcO3cFdc7>D>3&4p^7*3g1Nl<5(vdm_SgeSBas{h{C6&aLQa-ZQ2xee z9U81#&h?`+L_UdLFY)N=?WVdxqt<)7-(U|pJ3mJhUt#f(km%vz=|JS?H`guwkP;h9 zeZ3}j>j&E|ClE){9sagAdw2#$WB)!|ih*1&E;5{LJ`rLD-8oJF{4v;ehX!%8y~Q8W zlpokGbSY&cspD%u9ZGN$VA9%!H+sRmSrPW{hj$5(#lDR^+2N+CmWQ;-e;rKL-{8wBZ+2I&StLV6?J-2w_oh$s?*G>CMUfOPZS>&$$6=KQl~ z9|qQX-{-mGx_(z&L{d`H^x)t-|Cxe_T$2i7@tFM`P^GwYZ*T$98Bq=T?s*-huXT?7<-uS!+m4TAQ-4CZOVlU}1LMI|Eo*p0pOgVPf$qHD;jUu~n&kC$9-yd+fB#lG zp1;kvsxjWFdDvrQWb_S6SXWQa)AFoJUCx8G6rwjqC?OBkqUn&pOhN>^DYZ5qkC~1@ zniy^v1J;9-vI5q3oCb!5ia>-RDBoGVyK$ANDH8I#zPF&w3a5%GXadB=1cvEzz5W;R z&wED>vTDlUJAsA~c7*RdHbYJ__*2P5=rK?#tEv*x(#m#6ilTuH*hz>*JmlH7WtqhlJYp=q zI7-549M;|*;3Bp*S?lS-u|R{IbNR=q9qoees1#{SW%>f3G&?#vYRb-@+cw9iF>#DL)J3o;UxTCo zVwIBlrtxSPYpxsZk<8V~wDu2A{u65Yj8#x=e8#Ag;<1l$t3Dsq_ck(yR>HPU?lU}VWa8=7RY5;goP;) zgH$LROf446-h5)&+-)&2I9QU-f2&eL8&cK8x zZ!;E&N6IDM>U&!4y!7oJ54`-|K0Z&7Fob=Hzy3@ky**zCm1fGp!2v=b0I9Y&XUlkU ziDC1Bw^Z}~r&Rv`ex@1FHR#r0o}wcWp4_tj{vjwsuaxu7tGo959||Ni*rzmxhDvSn zl&KeN7**(wHaonMOa1dPcCE3Iw+g4RWo9WI5TcLhI=>YX{wqY}rGeS$91bTvQ2OR- zlp)eE?Y^0>5)LNp( ztfC{#Otb&-?B%Ol<^7Wrt0!qYzAs+P?)``%E6{yWfxkg?ZL|L?y3C(Mz&VKYA~48P z6zpwI6Vn;(b+80ogzh+d6zli13oaKhfI7A$F|kg zonFbxw0XtTt>j#Ll9}Gu!oXiq?)5FdV6zpxn`Z2(qq0s;s+3 zP~NaGqhsMf3XgG`SD8$S7oW>G^U`?C>mazZ!|D)m=oFfgLL@9Kj6g;txV?kfTkA(D za7$;+wt6R(joZO;y1;56ow*NZ;wL9Evtx57B9=m(unsc2l`{CM>=s8XC7wrMN@?fe zj8V{vQje5t%SA`pJ!L>3X5dtuUHM3w=S9cZEIEc^chkG3w8uUDi>XJ-w?pC@EzA$OW8E272B z%pm6}4)onAoS#!4Gw2)0Vl>$%c*0`1;Jtv0+3z1Dglat(6ll zGktGvIk-4EF)NUbRRc4PQM+FnWLn9?EEIYiHPOJw)6b>F$0mO`gog-^1ObcYz^7Df zov;mbjSn#pvnrq^aQb4$#MlIup}_l$1|iYyjfZ(F~K)S$i5f*4qB6icYDr?#$>tiVv zN9vheDJfsRe2J76hu0g*q8ar=yGX+nym)@=s$!jo`=(6TQw8UBAK4arJ5<50V?L68DNNL}89GD$3u0F%`@8m;Pw%J=xfe zr$p{Uz%dQW%cGqPJP2z`*FnZN-B?@<2EP)Wu&|K>2=iCg)-ad5W2KCZvq4qnh!iB5 z7ZeA*um#T~0w=fy(&HW|oxpka zvyb^kgAra4;e09~tqXPK&m7&PAaBmosrYBGIva!i^4PAG=gHTsA+@lU&*p3SGL@36 zD3i;mK>~>Qf8jN`+qHfmi$y_@PwlUebp@% zNyGZVF~cK^Wm%0%9PAA@0s@Ojcy+{r__Xx%a?L!`qxyS$>2s8n8?Tq*DDym;ULv!& zKl2F^we9&M5Q4Tf`ntH!{ z5eLf8PFe&ynR7ydK~XXzT4KNrneOgP@JpK>`-#e4w#)}r2CxBXv>T6_Z}Esu(WN4L z`<8yRLSPSAjj%!1X8{5Y8A!xkuDs?PMj7)S3XuMYjTr;p(0!14rNQ%kcyvUFgN>~g zpNSpuJnoA@W5`X&oeg8PAoxOQ>F7|lCpFatUuiz#(N%g>?NHp?2ix+MSMNjql(sWn;8D1&n@V>>78NA*SOkq%mWfQw zWJY<3_{x4CgtsNrD1OIoXF+_sZ;I6GhVtO4wVMB)u@#TM(66j#sbti`ax!wTc^W!z zcI#IjNQBq-WP^Ziq9*n3tKW2bZ^H10ixOO{2gQ4SMZ8_pFDh!&xs_&=e;=R0_NJxj zivT@ZBdEU2%tP0dGw94F*k1_*Qn!I@)>K8M*8hgm%J9>{MM44wHUGP}&tB(xThRYZ znK!(DaTgmSChoUKJ7JELqZdfR{8e_N;P3Y5qoKTC>I z#3%V**0at&7WcK?-N6-CL71bG5)*eLvtIqll|cQO&Wm+>y%+fJ-w&FCe_z8Z1;&4L zg`S8EwWu=_sv`}idWYb7F(Jyr?@$&x0!{jJCxp;;LLxBEP2=B|xx1N~H9f=}H{?== zRg8Cdxf7-)jN9bScwfo=JpW*+rkWNq*xp_Vk#!dMAMKxituy4uJlq|7OQ@&(ER!aX zzM#&>1M|0K3?U89MC!)-+!4=GOGeP%Zt*hgO`@5jjhy-K{5vdv8|@#k?Bi8c)@YPDgTHRBLYK33 zd+Qif+OUgMAzpG&&XX zd1S)xTL(HjrRm126pi&rNa%V{Pf@S@1o(`a@i49*(!6Ffg)qdq&YFBJmJwMIk-vWLTCb*8P_b3tOhgRf}U*= z1Rf(bz%zk|zev>o0)tnv=R1h40HYCw3ic#jNlWVUAPhpEHRL1@~E1GtoIeC$s395i3-WzZSE-gzhp z`N!n3q`@}m=+xWGs7yh5uN|IzsE`!zw>b0qinhr3uqgZ4k5_y1)*+1aXB+D2s$^u+ z2fyB{3t``^D!yD-!MHrhJ17E!uDp6loD~a;+WH!u<;kmJ zeqX+rtV}O=*AIk=Ih+bo5&4IkqjGyg$c!YMD13Z9gM+fb{OABrq%OZL9rjEMkutx- z{pkh=EGnujvq#Majdn$s?^2td!q(wKL0}*cyALi@nO9JS{qIuAp|Q37F8C9^+dfD5am}ZC!2c7hrz<13!HsJ(FTt ze=3$;(fy^Xb9#QbBd#}&Y@=!gz0@v^ghg1W7JHMPTu$bIVC|2dq1)LR#%h(61pb1K zbgck{S0lnVK-Kb|*Pa-H;o$Rc7{4yakDOtN+G1g54(jL#Y?sU8v@16}t^;T)~sjLr{;AX=S|6^8e;b`8AIekmK zGizweOoMdL!2e1vWWI0fmv2sm_UN0Y)EQ>_w=p4qKFQnm_T=L1?da1zJ33-+6%kC6 z+^3?F_x2jUydYVGssJI!2Cfxmno>6_N9hqUh}vSn-yaT5o>q-96{LHe?FHUOLlWt~ zJgJBen3mxRGT44^qxx7=FrgoSc+&9pc2U?~tPNy%1FcHv^-d4sTmx-3*!@so+@^b( zBg&D!zP3~#6%lXsGDtb}F8A;kB%e5%iVPlGx|7Y(^{n~B4DrXQ_CDrGby-PLvgQGz ztBMdNL||K@LSRcwt@5O#Ha_yHp%?>S2H`_fnx}ka;ecj9GD($#l-Qpx4n0? z{rpXOXy{P0n>8H<6o{u(RByvj<&aTrr~%jXEsS}@!?wM@Co;<74%(1Qg|6n=a1MieDk`$@+{gq;o;$&M`Pkcg zM*VSwuaD4E<^vzsL6?7vQtoW5lzh$$;+>O|B(O`gv$wY=e(<0RbS|Bw=FZN}_@Bv1 z9}4sR2lw^cb?8@scVCq3-%ScriEx1Wet_dIb*H*CtF zqV^reyt{iBCu9zOV`e)Is>Gyz_WK4f6TO1S(X-8x9H31kjWCf55l%H?rO!+P{@_FG zc%ywI$8S~%*aVUyA!LX`{EqSeAoeVLr6e^q6;f=!fP1kQbY{J?Gc%-v*+u-i)rC2w z%yjjA%wDMgiIq?MMla85LIb*luR1`}<1VA^M8bG#ogXk-Tv^p7LRnw`+f7R9Rp|@E za%v)m6)GWmK>-0EP^H&J3B}rUfBZ>jk2Ko>Q>#^ObDKSb+90}@Rs(c39u+!-d5lTJ z)Z~QH_I0v22EVKa<2(Hi8COP23IJ`3g}ys0C9Z<&G+vBj&k|K?U?no}`?Y2&BVN6uR@RJDC9fOF~j|oKI3TZuI%J@|}fm;MsE0KKo9y zUxGN-qHAGv5)9KAHkfHu+}1d9AM-6_5`MVy+oCbNpC}#WX2V=JrCY7mSp%$r5PT8e z#DB-5s#-*@eT37_s@e3NU}~gzK9Ek|WA%%%sK!=P!;uF?dGw9lw$9(?AMfs<4y_f$ zz3=Gg7)z_W~Z^Oj!tHtB9TNg*~k{Vc)2ynj#2pS^=7`m@~HU}&Nx1`qQvZf z;aDsF*qHhARR#oXe|MDnYD1-5{{44~tUNyk-WmmutuX>hDyoXPM@Kj?chQKQTT=>*2<(q!a zIy{syYC&si=H8jZNs^5n;^D%FGty=#SK@by;SFo47IUlny;M%4g&YIJu3As0H&`Sa z&7Rw`cb~2wU8QoCP%1(Y$8&r+^_zds4;Xtaw6_F}?jvG00F<||u#mg^=TnWImUg?H z>({CGtvfa3Y>tl7R@VnuM1&(=j-b~MS4^6`#-$S`H3!nfy7geDDO9Fg@bLV1D{T41 z!N~{k>p>&tJWYOS0rqllmw(7lsH92u*~#Qx=C+^%l!Z`QT?_UzhA`iSEs2b&X&E(tkB#brqPQd%}efCg;M4MEFW z#Y#SnR10&|GUGNMBmA(DWp<3@h-VfUy<9Xj3i@U-QHo3C|$cr+I|)>=ZsWtb0E4v4jCgGq{-UO7v&;I_38RM;!lat!|`eg{2HbVdcV`G)i-*gn) zO#iMg{PpUO?A*?a&!s*-rnIw8R*VFGZ9eMmu_a6*x6_TmkhVA9z>+@K{0Q>Sa%S88 z4O^TSLqJK}4A%e;MzfV_yZ(m-Ysy^njY-Wt!- z!^3iw7}sGaXhMa6obOfS?|N%22(({-r#JQL`Z^r$K%xgemS1NwM}lCKz>|~c>nnRV zHk4ky=X|BNhD1S0iC(e-_<<7~wasqBv|RWRcr@K)fq`Synk5aLupAPJrWR?q`zaQu z7tLhe?70@Ku>x+dJsV-~TVd%q*vG!Fiwke^;>Jb~(nH^QQBq4w2?slc%lwCg6w@HB zXbQM)Q7F@D&nYjbQNxVU<<410oui(cn^OjSD9O)$-s0i|3vQsSp4+5WY@my~7w+SH54_FD^?J ze$OCm)TofB1xsS9e!AUiAd^5zd}|~IYhQ86^KRH8eZ#c2h?guWc^;*o#JG}HqrR+4 z#(_X`{tCPag%fB&RU0c%(WoPU3KRK4IX4X7<)o+t_8RVb*yqgVtE01RF%EQX3O zv_&x88xhJl!eL%mR8$7ZxsMs?>5-72u^Rqh**`L#OCy{sg!bsU2I)mSZJ<-<*A&CUFd-9qV68U{GVYbkyJz?iRn*Ljbvi>T&}S%;s;16 zs|+mYFeU9C%99#yYHe-*fd4?sl})(yN_b=6neKglzQO|;LBW;a>DpjnvQ@2-fCq@} zD1fCGG8I9e=FN}SR2x5$R>jfl@%(udrK^X(Nb*N)=fQ-eB!Ch)2f$EEr$UEgGn%vA z>w5YfrNq|n`l;bkf=>+%D=;p+LPS`=)QNQZV^zaDfiOBv%L=&DIcuowDg*903ktFZkSq5 zq?^c=1M3U;K`s*b^Z;3ak?3$|r-YsV27ZO9T_2`y^|v^guz~m7=4zi`I|!*2d)vBniVIWwFuf%~RZQrIGm|@#K#a zzQ3OuDS6){9?jrIwm|S@m7yEBJRm0a!^QCMOBWY>8qvZrfGoO(L6Bm}kGSRGW;dhv zqFIfgbHunm`1T>CShj{dkF5nHw^JFnH28gGq6?9W^gdKL4#mU7T!JEV5!wz86Jsd6 zuO9zc_FepX2kp+CJU~-!K^qul=6!ib+&8X-$@`jj`$ZZ3Z@*j7*@Eb3om31wrmrA~ zosJ-W%ua-Je6Xqrx)OQ#u3kZ5Ug@PAqG4pbJM)%Uw>th^QH|;_hW*5l7a8dnD8gZC zKLa?9O`~=tf=s8S!v3FVO3HaQQ}{Qr6w4|VI`4(OUCXY;!2Ux;N$I!$$Ekx#=a};* z=+k%fUnjnAK7IOBT2bMPNa4A-H6fd}<8_dP&_ZKnV`?%<5ubQk`qU&1J4Y4F0CnFu z4b$iK*7mmn=nB@}T)eypnD`l7GG(D<|cWCjgeltrnP)yUIC z`e}=sK_k2F$YaM@gUfVA3+*y`1~&dwNt(U+lGvLgTh=i?D{L}7TwESJ!-j__C78$e zVONV-svX0$={tz7Z&%A`cEJ|R$JgB%iVhpzh$gUdLKsJ=(c=hudCA+G>&1)9JrqDt z{Zh$N&=KJ@srUL9LRddq!qNhNTSv8jMsa*%aTT0oQrYG0{_mHEjUAkN zxvyPa&3+EVrm&A`J%(+TAe!7q8_XHNGvtM8SIR$>*KoO=V3jJP5BKSgiHc=rVtPWE zEy__9L_wzhPH?>e7b>0m2dYO4A0cW4!dJiybKv;iLmAO$$~%%Ys&(Z_B^PVT|KSZ1 z-UT14v!|!^;NT#%qa42R=r|!VO4#krp4Jp7sAxt206Gn62an>hM5cVv)zJ`)1W%Uwi*`TrT$Kl$& z0TdKDKK~0A0(H0yEHo#pr~j3iU-G@m%#ulo zKzA=FFm=8a{XoGd9h^Y$gyG&XWYG$aRFK4OxA_usKOlKNDdNT`(+I#}vCGp(ql37* zlhrcq;o(}doya&I9t88{L=-wzHFz6kqcU_mobY#m&i{_da%Q5%Wc`&7iG~0sT4zo`s!LEoE>Uft7%Vp z&_hGtDs9fwycei5GOGiEDJ0k?Gk!;b-Xj6FDC`KoC&=oJ0Gzfm-8lTg(}{F%KCZNo z9^UTmqB2eWQAoP~@4sTlpZMbH#RC&V{WZDDWci8h88X07ru;3aZ!=wEc87$Pb);*@GLCVZ5CU-SIVC7 z6%Xx|GGiXk)R*Wb+?0Iz{vFiJn~Six*@BV9Tks;;J$v@7&VI7mY5v{jp0olc0d?Tr zB&N|l??apVd-u){CyzxRrrP5W$0po~H%rP;r0_AK^xy3v(7>E-EI2Q%Q0xxLqH<8X zxHx(tqp*#*0)ePm2fK^=ml-42nVFd{&CNqWbo1rcFT8x_d@z|iySmb;#^&Vk-F~FA zu-5Es0V4FTp_9LRd-+&cw(U*Lwr-$`EuLV@;3FVNO;?az1^i;8nN2CjlCDLid}0`E zS?VNZ%IHHvZP_cUOak{hQ4^o#1gf~f+S|2*k%i?RoW!dz4U&R!as}h((NSCK@bHw! z={kV==#6&079xlz2LyU9*p!6Y1G0p@R8*WOy}t-XC=`VNTmh78w|)vp>+V#?+nQ8w z7P}hv^bH@d3^j2V{f!~hEUKy0YG)X+jQxqk+%D^a@^*&PMvnPms+-_D=O)!}w!YT|uJ>Ea#ew{56 zZ4HUkDsQb5Q&Qm4=2w7&22>Xj3qYaNoef)DTx@lkZ~xgnl32dPMyPdbG0MowN<<{H zvIn7~xpv)~8|p{O3im;^7uh4~KPH7tz+n)N{VuxTax^Tiq}VQ+oLWRdy4^_S7mT&GU*Y!!0=mqZilkSojv7}glH}@e zeB*OqB_pN4x(02c-phxvd#CfLzo#+M15u7lxWCzpMJ2kaE>FBLbDS`N@yV`B)03?N@e%{ zdjJtBO~t$>&0f4jRoHN1BP@MBS7+Q148TU5jfm}xF>bTTc9@Yn@EfL^eg;mM(t_3g zw~-a}25R_dh+rtlG+YFW$JJ!MdnN#7T)>t<&%pR0*JE4lvnoyI-W-*3i)REB1AfQ1 z*EIbkGIbya=Xu^8$5}O*9C3RUA(wr)&Qg`zBjD-c(g_Y7hzq+z3%>_KND9v|S5bS5w$5)KXu4&Z|(YEMXp5 z)6hFJmi&5)4SJd|*;w+o@OvVx`!pgxg~s((vHK7%P*1L1xp5Kq1xAdocV;gg+xI^2 zm2w&R2(9{R{}+0!8j_dyF$F7V$v7oZI?uefSF21^G<&V2hI2KZLl23N@C*GT)GAF) z?;43vw3QXDDv=RifEC<_qhBKh*AxS zCqaZs1dnV6+c9IYZ!YZV&`jFtmjR1JJL*$PmD{Db-b5Lj!o<=5OIA|M_&R^0(lwyRpP6;MC_@of{)8zN>^@Lx87tU)t zomOAJ@TE$ItU{S5nF&@|D=;KTr}9dQ=sc;fUJJzN5V} zC9$miM7Wg_VtRnoL=BbDQfSBJyE;|TVObe16p?bS$6!0Wx2hw7i%I8wcs$uaj6}y{ z{cA$jLrYy1Tztu&o>^h{a@erdp{_IweXzu;;gnZ0G0DM$$mXTvNAh3ZbC+7b`dM&z zpcng9a;C)t3o2j?9Gq1+KV+c}>^H(nq|eLE4N4OYP?9Y+P=4}qNAGWh#gp_Oe0&y} zTiYZZM3j`3|Mgm!@haEsJ1G>#udR*jWsBI}Ag=_^bmX`urLyPof)#sPlsjRfp@>1m zS5x!l2z`Us33ki9dm~xO8DY`t>ZFtu(G?}CimkQryycn^5N40@y1l)&zE<2+s6o{l8ZqEPeDR!%L*YxGX7o#66#T_5tID1$kS|Qgx>i5lpXThjkTSLKkYOLNm z3Q^A1s|ro??XkYgKNPpdv=(3Hhz8N;O_ytXrKR120KD=w&Ljd`w4ph3M-{Y`P*m@K z+vATUAvoI|_#3^K4vs2^3tQSg0n0y9z0bitUisB-2`RkVq+My*7`a@x<}vIkbO#QH z3hxcnkZ?vmgayrIB7M5`a(A1)0(GhO930u-K^b-k&3`R)j6fp>@v_vxQJCvr1D?3p zaDf2fF8=vkk48I;*RD$-9Wfh{_SK>%SsN&j!&g;R*hY^0#vJkx0}+M_(*XikXSgL;GeyFFd4}=dK`#YKu`d582i6*V;^Z9m~b zr{DR5e&-s_z=dlT5=`g}_)G54dVP@~0bM>BDK73_m7HNX2=2cUKxK4!UGSU*+wt7B zW$sf|VYOCbVx7w)mJcTYpj` z(cn132nljqA1o7GuY|Sb&#taeZ8>&&JPF4 z$X#b$mi6iq5;7FgUdkw(zkR^-I-REo6Ct?;-PyP9Zb>nIl2NOlLAw<3mHnxl>&C{$ zmJjMrch&ElnszDpo*^YNP1e{~cVL4fM=u{zs`V8R^14FqL2jePXHCo|e9)0* z)mr0Sew)z2uMp>1*nRPk6OUU*XR6VcA23{C&S3<-_C6>T>JjXJRiU!+ro}~MCMhY> zYQyJu6}@w=m$1^GKeZ#Kn2qheslxN2cZcU{LCW8s#MD22 z3r{UQV20OLSGC*4ea_3NU8%7tWE1S9-e_$Kp`f57^E=JWTta-RciTT@zb}T%q1Knzc?F;VTD)z@ z`@5|u^77FmmdaZBq>;t=)jVYiGqF|Ig^t@INuJvwJ{x$F;S32pwbY{02g2>HKk&Qn z@8sn*B;-6h?PlNW0Isl}+d(0{cFp6K<6WGJ@6jxA(Qalf%S$#%s&cs~oD_WVKLB2W z$=Oi*FueJ-!-a$6%}vie2#8{=S?b2Y)aQNrs76-Xuy$pA)L-8qapdT?HDQ2=HEtU< zrBa`39Q8_-v*)BN7E;ZsPdg5LQ}FmO!oF@_BJ{4d$WgPsuEqw>CSJ;7KWE)jF%yTQ zqq0{cP8|{u9VDVT%Ktzb8JQk6M>vn$mjatq?e&zed?cO7Hj8G@A1V@bN%n#=4p#&j(45V;P*rI=cs<|A%9*poNK9NrZ))^bzhINPs3!=$k zhOq`-IMX6lDX~D6u&=wb(p!H2WWK-Q6Tb`wBEi?aFJ0H*4%x^SE^B7`dUGv}1ZThv ztg#5M)$c$mwwJdz?QuyCzWX|EwXj!EwbRR26=YYOc7cKjH|?o#Ni#zxxGjuW9nJk4^^Z4=OuP~EAsAIJJ|581Z{g$0Z z*2~VF(kKV+i!4PWya1YU7>Pn3tlE4d85N>X7jE+}W!qkR);7RH2-J~X=H!@wD~4+Q~0rR4XooQ+G=vkSiYhSx#2?x|wWUj#h{BLMz=tB;fIpOTmU*!*#)~Zoc zLt%>@21Y7ng&uGOC){aoUsXW{vK<2Dir+ucjM6-Da=<60FfrI$T-td~Lf&4%LI-?+=z&P!|TC z7HPdJq#yKfpS$%E4IDhzHF0??pIK7eKJRvo0|fnb#sAnBq1VJ^o{rh^&evPV!NlO|BG~ZL$aO0+A?6*E7B6nqKefTedUYX(Gc)B>?DCm^rd`_u zZz;0smC(>&SpOe?>(>X$YNfWLxig<8t$zgePzw4WiN=t$&;3=CFP=ZZ33Oj1;2?({%60h&V^r1aqTWIYaS!7X5L;M{@R*6d7Df)D0UfhI3HLu zooZp}vb*#1e6dSgwB`wY*sXOZN;`aWOOq<_mbY`;5w0^Bvpv|{%!I&&C(FvttC;H@ z*WKs)i+-mEtK~43lfw+pUosB~5fJl;I^-}E5c6+2TLmB_{1mzy&_tBy1n%e!K961U zJFplm$e-Jp?*9Vou5-k@sIY2S{tA!A)zR|1w?X*y=N7I{oQB|1|F! zu=tfC#}0(|Tkr)OJh5Cr*r^U_0v6D5Db=XJ2jkY5K5-CD(tvKe(vm~7P9@|lYKj7y z&0pTj-I*nY``~L+prv}IaCPN9D7X$o`gIsYtv-K8S>{*!2zB17h%Kcn+0J-+gZXMheq&zFgA0;%5oXHQNOC}`k+y&N}qwFx(Ym*)$=0|I;0 zmI5w$ht(IQ4s4!%JNPd9{{G#K2{Da~=t72S?kJcyKl@!7}^W z`iBaP8;}#A5aYKu=RP=E(rEAV=OaH^i|4%wP|F(sXKf4S zs}WeNg~2Siu&@yDa_w3iSNo>q9sJlPlf%Qo-p5;84(I1zQ*CX3N{#P;MZ9NJkyIV1do?A+Raw9T zsw@@Ae3_NdndRY5`i`nVZOCK0RPrbzH!x745hnR-rk39CS093lqukQ*@yk(0%pZ4c zsz@nDjhu$_cTgj6$BAppF|}BMZ(e?Rn&5m?s%HG|**Ycs38CQXmsSr0(iFgF!XOOd z>(CHB&;_}Y>8GfKq|Le9ZN>+kUMXqM!c14yFakGauP#3_fr8)cx=dC~` zb`pDFBht&+mLs<#W^b8K5J6s$IX7Knw!hGcASM>&=0046hjI&={;1WDMed&H0cXhL zIyJ=0NlEfLwsy_fG%AyyJV1Zq)M0yCW6&7Y)iC?xou#RekleeNFzwXG8zV(n0D}T) z6i9;_=l&Mbmlr?;{qb*VUf4bQ`7t~F>4_BXNS~V;9$sm57=3dhm#alE5%hqGesNLi zu~IfW@pHD67_;B?5hI_{`8Yf)5g}#PWo56R(n#4`O~)mJ&>-U{p4A`6XUa6E`K;2d zjXp3+7?59QbBCU|57;X(IPX!v;n1fm1P0=^Wq;3uwg3?s@aUEu8$Ff%zP9!=&;R9~ zvB9H8drkGxfNLAd=nD(ohCNs%({gd)tLBKxz-(ctNRb5mp$n5HfgCV9$k7oZrr96- z*I|xvbBLc7AD@f1|3+TyRt=Vsi_a+d)Z&Ibf3wP|#!0%8^U@*T;%$4(!ipkO*gNq> zlQZ%vINCnf*$_BrF{xa6th>AB$GbjwfVpYVv~NPClMU-PV?SU?b+<3v7F6+T(pJ&CQq4n+U>MBTPgwf7BO2Mxn+6#w< z1d*VW^UM<$m`f{ytoG&Le@{mC_$iq+?nq%>Feve57FF)jjuU`p#gRr97J(* zFT@vB)?2CAKV~2+WpO{Yu5)D|cqA`R^d{Nb(h@OH2c~l{bCiakpRn^@HqxNH_iGpL z?R_mAumE#Iul*l@0|RO0Ti+xQm@B3xCLHsvl!v1BMgVWZCNO#rN?PKte;Py0lNhyV zq#rz?x-WUyBy9fYSDdJ(#Ok@mdu~(=%#iKb&k!}-1?yjKk1Z`=GUP(s1L#o@Jqr8^ z%@Cimo++P*20btsI=Q+FL(%b`P^l*ipY9N7ZjUD!tq(ky+js|_z^-*jTA!^p&^EFm9C&TIE&0y^fpx=L8TLLi%kOL6hfs#X_dx$34S{7oG)fs*7JHr-OWv9*EkGJ~Y% zGld@-P=dA;!@yzj$&D#Nk=Gs(iv?46O$f8re(c8iB43Nj+?>Pv5Z65cCVQrEj+nu4 zX0C~JYoSxxpgo zVZ*=DResO4=;1#%M=juj!WV&e$o1&aWBEiiqll#uhG{9#pLhdgf{1@C%xAI`d93oD zb{w^UI$CGu;LVn(rj^&?A6N}U7K*rrVW0Y*_TYQC6*LPwQuY>$`1aJf zF5lh6wLEf}1l2zpIy#oI@oFIv407@oh)Aas>EX?Z$DR{Efs2zIxEM+8em?*Dqha0;IkFu%|mp|!?~Gs`-L`dSSu#Mu>?>fA(l z-RP}&e$4SF*#O^iV2(1o;Gg$P|H(DK&3Y~)Y5(hGDQ7_RK zVeJds#u%TqpJ{u87`~}q`$2lEM%Yp4efap17-k2+w)+PB1%1T%WvrXpx{}J7 z6jG|Md$|69?5vo2uKZ;`u|}=&TT&q~))3Or05B165uyWu*OKxEkLEEn^AV8cW0)@N z{RC%hxPZ`d1mco<6Pu5mLOy#2`(Hvb?5SRdRqWCDU{=V#o9mY~%-~BjNC|eMOQsfn z`28Oamh}1MnF_bb^ib`RQ})>SliCo9XQ-(q6+U^IM!-MSu>J1wvO zM!|F$d?XEaKTc0P4ZS> z-4Jx^!MB;cXhg99@?t#DnL<@X&kM&y%C%S{^Yu{Vd-o#zr?zg(il{Z39V5qB)N$~l&((E*T_U^b$Kf*dUKPuU!9?Ee?k|L zi9tk~+7y_>T2^Cl=W718O=VCA2^ue6`-y#^Z2%!i)W^TJpdjz!K(P`OCM9vAAwMc) zC{0=)7R>ZS+HERj$hw*J6Mvbd3eNFoWLaJwcGxpUwz7)X(AY1u)qMXx&85FWmki`e z%|~{Q+~NszpoO!>rK0=laP9MCi>wd6wb|rbz;2#hTquB=iN#lgh*;yB zT-O`v|30_;XKei|=K-wtpL;xggInb1sHixCEc>p|{sD+W-QS`^;uVYxE5xpkMwc>l zmBDS?*y{Ep{+|r~Uh|JHk%!8O zSW*MS|8;h&qE>tGSI z05449Lkv(rMr(6+Zb2!H18OAmEn*J*?X@?vz9(ORS;ZlLA6`v*c{A81gn%K~X}W=> zzppP5cu6vFBf%2X@85S4xLnu+=75iDp2}&`4ZRZmY1-4W?*juFW4xvtY8p|=eV$Kk zEIa$739EFIPvFS|LvE&sFEJDj2vi6X5+s-#L3&Mvj2)}v-n?qJx|aYMn)W}T|D#17W3KoWm2{S$^Tzd);41XGrKpqJLEhm@Z99qW({`g2=|#40+|6)?CEZ}9{}%h<`SMF zQc+;_w~R+4YN4Xd!Vamq;q_wv1|Rw1Q*t&p{{}$IjUKsdQo_Rj=-)!PyfZjTU}8>B zT*A!bpfEQ_!YQ|A)T-Ag8HNN>7H*#-n~xsbI-rXvfI++4U^5)yFD)(am}_dT9Btic zE2J0pJ&8eO_OFAD7%upT?&nPvVdZMju1%V_JQL20r4Y+r{7Lrk8HHz!QSki!;@QpR z-llKgMiNetdlTrC7|gyPkrz;l^u4;(0av9FV^T`n>yzE0wpvOA5eD{iUz1rhS@{}3 zLc>TUdL=}bU!nNMQ2|qi;w@d(k5=I)t}l#wd`<3Y0C62i#d)QAtM-uYQ!EBow9nYl zX0nEUhp0%7%W}geSLSFY-aT6Vr>^vy7$+wi8{7Tqc$ATvZtG80o897bo}ph|J$0OE z%Cm|&59DgN6$J}9aNJ&)qJDBr2x|6DLW{|xbvO!S;8_GLM?+`1R-me4k?u=~289Js z1qdZL;Qk{Sn3H&x;rXVt6q7%@1KY=k@b#aK6%*3|F_;KsxXFmtfTJgX#T9v1>G6bo7(P z1On)w7~!y}%+GGcA?FDKWSf2K60x3AHfVN^%l>)!9PH)*;<^aeu01l`Mh`wsWy`Fd$R>x<6RLI zvH`O#GPE0D0$J=ZyL0rXv8(C!QVcCq>=z)u*vhn6|AB!F>ERJLj1W*QQ}q|yllD1J zv87V!6i6iQyo!t(*=hR(Jgx8dm3h<)%5)i;JG9yu>!f3i+1|E&no_HKi3}Nm@vL-m zNn|hIr@0ND{$NvXF*Dm;_o2=nW+~aNKQ)~AYz(1Muh$2uZotQhNU(;(x(U43+#sfc zn-9uXn064`=PW8ik<#L5ETZUHQNcXC* z5e##QiK&H!>;JrO9{aFjp-3SR$%FF#s?6a|qs#-wn`0{0!{a+ACl*OwXS!?ABVAEl zVkPoaV%fB6>uWuEiYMoXmJiCn-v$5#cEoehWy0MxGxM#yqT-_tduPH^^S0`0ei4w- zxbX3{2--{^5DO8Pg)RMU4=p8siY5|DBnNsP6S$Z7owuTQ;PSJWETyTducry2-P3Kv z0qr{1zZqL)C8ef02&Eh0C7nFK7}m^ZU(rXmBS(iygB?h+U{N+bJrj8L$n8wG+e_q| zBRp-8b!BGu1U3Om1Y|7Py4AkqPoL)X#IPiRl*SZk({FWcEf}^qpBm5gX(s+(3((j& z2{1k*6?<}Fe25+*$03!RGGHknU3Z2xARr*onwy*bK5Eu%%!!l1EdS0c`4{VY_3`$t0jpnL$NQ>ZUq1f3@|iwmokf&U zneOscB%?9-gx`uurcUzeO>0F~q z$nxx+hqEKgSU`>a9Y$u9PU7l+$LYLJTf@f+P*a2M>7DgGLtrSs=jLwoXi>D1)!|)T z>-FApg4Khw0|E@ti`4JKUw}lZ`*N?d08oPjHDtnxKeCShC>L!k1Q%&Zrl$43^mlxNqkkEu-8T1^yP*oakbK4O2m|Jp|BiQ-l5=UjPMEz1^Z zRbH6$Pnp8|!X?(9%J7(mH-;QDCch(AoFlZZPH48;{tieg5xE5B@80#pJ}?j@%LuUn z+)Xhe7aN%lY+qnR4d4Vs)c0(IHyNlN{h%tI09#)1f8}Ps`}#~FiL~rk zFr_fp&PHKng@_RhB)9n?G$bD%pFL;>pe!hnZCrCtdNcf(|a!C7?8Y0lzmsepIA))w?;;v%R@ifIn2vK-w&D&9Etj;$b9) z5a3kXEurlH`SS#eN+ikL!$VR-w>H)*>)bknfg(~`(x>>~Bc7h#_G;J0 zaQt^c|yfeOHK_fMY==l14JrO|OXA!L+?X+PQ?^fe&mjU&LrLji$?;m%}P zoep~rT_>nBsSRiO6Y&8!UqvpPIYccgN(JbnI<2A($Z(>EIZz%5sgmG&=Z{!vizcX0 zD#!-=fb4$VvEo0Zx$m!d^n2sQoew%A#DUaGz=a0tSkn9Zb$75RFik^=4gmj{G~d0o zCVCT(;?)y7RQFG)*673n6K}$cqZ$-f2(XGBM~@;2Z@x5_tW1VMsOZi4`l8#j02!PyoZB>HgF7uJ>I~vHH5O}Dwi&m_%fz810cPb~Re?TUIOo8!+fn$9b zI3di#=W6N$=g%KA1d^x!=m-hDuk7=f)foq+fNAS!3OGl6i_sEHsu?I|34%~Uz<08)n~!+LHvSuk2EG$i94 z{%6Xs_Kn6epX^O6EknB7N&zwtp&<8TA#WV1x49X)D7XBszLJtJcyk?mt_}kyK{mz? zeN`1CA@M%Tp|+$zsfCq(I@st#8%0s+!oua|L^;2pU=BzSynSDY@%5`@d+&fx8SlY{ zG9G`TXrt;7iR#2Wh)RFimT;e6LsetU*5 zvEtrI{XB7_6{b%}S=9taoFXLz=TScHhk1om2J|Y6N*R zd1c}P5&q-d*&6&vIzxclTK_v*+kxuNuYIkD)#lvJDUs{WtFUkqB%(5F63Xv6p-T*} zL%fT1miAXyIh`BddpS7#z$GW|_4M=%h0GR2A_(|RKLSqp;CV7m2BY7)`^M%bObX1P z&ti##6bO*Ecg@Wu6A}?2U`#w*Tuf&6vO)t-@$vEJhleAbMrv(g&dNGqcvXtC4(R=I>khu zU>1yiSRRc0vLUPgv!-lwQqEfTze$2(nws&rWMn-o1egF1rSx3|!U-sf8g&f5YFA?F z%7hz{g@v;WFJ7Fo7>aKsCE02@mZlsMLk*L(Q$fC!5?u)L&x#z@64Fl4xGMjDKY}zRpl{J zg{=lpzV@u0!z7>vj6KUxKo){MDT{(yj_wF{WAsdx%;NEaaTTwbB`*KAegC(`vW3EJ zqm}I_19iN{V|<4JN<8Y>iab@Pk-qR^eHa)o57)V$&LANb5edjdh`ArqW|;N8kf|Yu zSvNEAV)he#uFy*GY?F310>4Mn*~7mExf!%4S55ZhP;7s5TWmtEJMI_MsjQ?cA%zia zIw_@Ms2%U*Y+{7;_(XTWrY_H6L?7ez}AA!`(_XLl9WPe3c6*a`^Og3(LWqLJSy{p3ozg$ zCWOMhr^kdFno^0J5yR13WkhY5UE$e5{M>bq6})oEFBKKdii?YhISr7YmcWr9eQ+wc zL`d*O^Of+6bfqQ$=YYFP!q75*)O=5;BZhFp-XX&vfH88!WBIOtz-dt0g3lvQj{jOV z(eM72_PORwd7v0A1@q+^K-xj7HY$!92B&b3(j6p`bKfmH+j+WHrA(Sm&t{bFTw!nd zfP)6_N+KlYIc$whE@DzrBS=uNhW4J7kFRRgn?)RVL9ae><`D&3_J7(>0pS7ZLd8I% z596{UX84kg;4as${X|lJl!fSDo z%V1Y4Y@sogLdXdbAvb8j17i?>A+CqXfA`iR6ccFu$Ze3szP-uuZ4a$sfB&9bL17V) zqV@@QQ{&@+|P{MO!22nbKimm6dZ4DQ1Gup4+XU^-&B!n3nN);eS^! z(D(#io6!A+OLh%f<{TxZ`gdMJ!f_0WNU^cM?Oi*exTG&qXMw>QA~{C_fGOwD&00_W z_yoO;Dz1A}m%(7}!)cwGmZJa4rI+~?$$2brZ=nc@r>7V9z7cw1Y;>?O^ccz4zB3|n zV5M`T?!E9Ze+26841*;PshO2kkHgi~WSGs2ozs@8WTka*?C#7WyY4MUq*Coo z&SV~3I4isVWnEueqX%d2H|Rt)wX~M~&lYm59ui8elwra=9Uj&oI1#fM9Ip6LH!Nw= z$f&43Lr0SiyEt0oFn>msqBDQ=lbz8HN~l3K73O}a-PB}0j?pIP7yIzVw5Pk$!&6C5XaMj^N-70{a<90xJ(GHjJ+58DYH-SH2OvRJXsP zv!o?DnClf6LpHUvRJ6%ptBtIY0 zxBoobNCNwIJOFK0!+j5HuMl~qLftQsD)sqnVyChG=ut!0C?C>beT$gw0UpO<H`tjVaiA$D^}W{RQC7=~ZY`f%;h~Vs4EfH{XeJXR zxTs&IhDv85ciP{>#6)mB08oDy9%2zjMp*|J7c(G>XBf8zB<(ccA?|3St}%ZNAoG_n zD~${dy{`e+J;=Wv1KR<~0K#k_$(s}IvGd@J(XOe4bbefJW3;zYz27u$s2v=cGB=i# zubcZ5rB45iRgC2k3=NrJy-rp1lN(q9S`EA|4Lom$vl3?>jG<=8b|%G0vBiW~y)hs7 zJ}v=1!hm1=g9qCss)E~FTGM=-PXhK_=MHK(huBjeg%F~=5xC7 z!b8>m6;13+^L7vsC2~>;c>QQ}uR7)&Q+n#|K?e z1Z~W$SxCBsgPTs8Rn`eSunSWE5BL1-J9h5=qz_ZK*QrjO(}`=a?~Wi9tn#~#|35pf z9H`!bJEQRLl#LC0Ge>bLHaIxGV2B#dgK}7E3bX5dT*;JSz4CuR2RV1+wXU}6D&r%K zqN-?UZsfSW$*8FC2O=Sr?^xGC&YqjKO}Gv^dY8+l%AbolSH`V*3K~jEkYULH^AV`X z2*$QLv=sK_=upj{{H(|l$VuFONI?+}559)#VKHm2IvQk}28D(~a&S%-94N+3zQ|aS zl3+CvqPcLhLG=j@$%PaRkJH8>%V1q&n^!BxQ|_NWehh-^bQT5+djIxgIT*fo`P{s* z*QMg}+o_X_N~`su5=BFQNtzttygN+@E$rI5XACC4J6;?x0b9Vq2K-JaUG2aVtgELt z?+0e%M#_MR+fKKrsrRU$oLGf#UW6D;EYKCSR}?+)CxahIaZv(VXdi2456}iFkXY% zX46<7cA=}S!=GpG3Xkki#eJ#o5teI?rE9LiREWv(Xv*9qNUu&-b?5!{md9APArv%5 zT3V#Aff0ba7%+v#i%lPlU{UCX6#vv*@z7BQ9b)UQ) zNAMvz!N&`iA%e8m0foDPxjDKx?!j;&U&Ledi<7tc?Wv-v0O>` z9BH#>n`?l^3zk8HLU>Yq7HvCnnEjNf?_wgXwe2 z^c2ZB$jK|dvuOB2;;^U#okxr)FXAu;ZT|~+O8&vnG40dWhl%XE^5Rj+Tg6LoaqftMec^g4|F;LrZjf_&*u_ zR6l3lYw6dY|BPH;e)xC%mDd=}MM@?V;RFX10P}nOg6xQga7i)hnTj`<(=(w41XQ1u z_{d#jW7Ayz)dsnX3MK}IA&jS5fTra}hL0aqZkFCOh@0biA~quPxzy{QgL1ZtJvCLy z(T#=eLEJJVo?tc|Uy%bObUPo51<7r@=x3?Jnmjv@vDKZ!zfTaoP8nQQ*OaYjzVZrb zxs4jiC%nEsYc!!YGr6(}JOcN?+IT;FZo`I)~j`&Bf6o0 zTPDWhXBQV%-5umY=RYaBVHi#yBi}wj_x)6B>9gpTOXKwwV=0#%HOYNmemwYk2t`0V zWJp7CAP3tZ^B5+VMn277(SDex6cqw?zTAGBn-+q0)Rgw*@T<*^jwa}WHQF!u#=Cfz z+$n(t;`_cQwzRD5;pMyeUYNZJU2L%cAuWi6lr#fi!mG7@)YNdq16itN1iU^3A2bRz zX+WEAk3pN8rN>SCxU$6r}Quj*jNPU5%l67T3n`%=U?4(SBpjA-64M(Ie;H z3)pQzl;9$a?hp_oc<9jK&ef^56So-6eHcQqE5Ee+YI~H*2g%ILZL&caOm(Qr1X3{V zE8c!uABgD}O(BSf`s)pY1M36w-1t-G{xmi8gs`pgZItZDA1x45H=S65hbZv-lLRJz z+EVdZPa;9ZdI+=X9uEZII2d&A<;NIMDQXy+c zs8NjZAdJJo-_!}4`oVlPmPtYWG=m$jwz-CI5QM<{PYdcE*o)MG&=C4Xuxv z(>-)%M+%bBKjDf;M5XTPdGT8(g|{ zN6glq88vDYbOq^Fg>kc}8Nik(4<4<9SBG9N^io`YSj+n%KyzZ ziUt)NZ3QezP=dl?JF~muK(H-oHzqe z%DBqkf1yy0tssG`1P?^v{Be)EV&6?70r9-#^6#gXCM1}X7T#Q1@(N7eLC4dEq;}>4 zrkMxNVRYy#?w>y&kxj3=kS<~6Q|OP5-{;sJt>x_v6>3me7>H2I_+gRE&diJne+#a! zWkkeJ4)+Tcj*m&?zi?8$UaVx>8{^qNcld~sOz~W)s3C`;jC4zTa$kT|yGmgT^wU=Q z|53M$$Nq>`S3imSBDPaIsFW|0B1H0_%2p;&Z(vP^KA3w^-%EU18L2OvO*{5)JcmD+ zpa73caC}7UV_R=sec?r>gpDrn|PI|EZ?U3e=}0FiioIHiS+jMNqznK?46rilT$Ow(85BhvH1WV zeqQy-o6HZx6OZ!r^fG$#)splQcnflK?|}_Y!>V$c2&@xw@5}Ig{4d(R^|}Z{?(!F8 zi>~7V<d`}y;1 z`&%Eov^3g~{`T>I;M3SzH|x!dF?W9D%F01E&6Kv7tuEt#O6|*1 z{OIr5Ss=u9An;l+tYM;~`#3c{{R4g`jbvv>m*Qbr)jU;%*b7#y+v*J<0TD32xR5lz zTE6d~n)51i!1E;SuS%x$*G0X?_tCrsZQ>vaX@f3i5Qxr*u^#MQ+z;<9R=njmcvrk# z<5knUGv{h`)9^xh`sf|7quaga-@a1FIxBFj^7nt4{4KHGzno*T=`@OU z9s*XZCa&8=7SG^a1aS?yCoFv7w*yXewY*X@NMQ#tFUtPMyLqP(6j<=G`{_9dpuPfh zOsD4rJEoa%AV~5grKK}KyW;E_VAe}5V|Q#ua2J(kp;f}=36mUR17~Y%3riPa!l#yx zrE$X>C#PKO(kj2RwzT{v@%m!{>=vQ^zBS&tUqkz}k3S&a`Et1N&=2NH<}564w|+S% zSvI4X;E?|YrB8ZEiT);?Fg%MQyDg|Ddov6-(Ft87#KiZYz4d~oV{v)e4-7~&F!7G2 z3*MfuuU+juEFI5ME|>3bsh7HP)bH=>Z+bC@(1HOb7$93bw_7afG9`L-pJE7; z_baU`0LCs?ySDP#@W(rf+3BApcETY4VRs;RT@KH@zCc9q;X#LK4Y5?~TbrBVfSd3D z?bsKn1UDzfo0s`r4kN2_J<%8&Dw#bPQF zt2m2}`(9MkOD*Lq3WG3MxC7h_xdq-#a9N{gz*BNseptx*=8c__n;6&0yh zlkZ_-LWhTsKLp+V!_%TL-38pc-Gfl`N}d(cr(ke`f@mIssKI;c@94^4ytJj3VWsy= zwLg6p7Jmk|wgb+a!)x9a&Ex;C1vqVZ0xk8Y;w}yS`m3r@%fx5Ttf@N-Ded^_QI{wL zjjHQ~q5tnTOGpq;S4!(EpVk8}i8@PtgktjVn#uZa-2VosQ z!(d+VI3_*aP+-jxL^LqqfjEg~fa-#a2(0aXoInY@`Q$9BqZ5?QX-ADZf#fj`VpDF- zqx{9CrDh-rG28qX$YmT9GoFTAH1{%21+BUi7nCN(j~?->xnQ@nF!tyWfygML9JX_?G~5{{9} z-DmNg?aeyuC43fL_T)Q%1_E_opsfGd4*mG?t_V=pCL4W3LD^yW_AL|QH-3C@!1$IU zxUf(w+)#u8J?de7Q}$+>8hE zkmUWMmX@6QyuDfGI)F&`kcjAsaOS|%oHAqg1Fy}x+h+6=+w91#n@4Q{sbV%bp-K zTToiF^6;oKGcy~3dJ@*Dl5lU6l8_qJeSV;_ykf{4_gFs?VN93H96E@Ih(IykNnNr| z71hsXR7p-(`5L9GdSZ0yH6WfdvIO@G5_k;DwagoSH6khyC_Do$wgOuc}P&rfD@38Tv{jq2&_cn`$I)~r-?yGepqZiSu zgM&xTK#B2I-|8mJI2|8t0Bw%MSQbW6CC5e^#4dmV$QidMs0OwGa0i3LWVm~oyZ8jBV>a}gUJNa z1Vh0A&|hiIlKuRJy!;DGk6#21hqR8at_b`q1P8PMh*!1R0-is=g&M~V$kPqQXTS_p zc=hj{>)zlmDqOK%l$s=zJ5=71yIDw(kwgN{H$=_;%W0GL-^GOk$KxNQE32vpoD2-r z*QeVg!UM_Mc$G!vf_nd+!cP`H=$bi=~GioV4w%*e2~0)&=$38iqp$mEk(zBCePjaHAKH$zBfUq-6d z6~|VI;!80L-^0km&CT`gRVW1=-elvgh})YtG&Eda&seq9k7(_j=*(UaGH-x&7Ll}R z)*FvpzE0wyu0EQ*yrF#IL)hs9+kPf)?#OV6Sq2@|@cI5+?bX>U1=-iDy(E}IYF|g; zf|P*uGLnw_hjMR!jgQazT__$B6I-yw^$hUA;CvIXuvl1nKjPSsVAz9lpNQ1}h?}5| z;s)#AXRuhy!t$sj37I~G;1jt}Joi&}_UIzF;7@BlD08*=YA#DJLY!)AZ;Jv)0K<%E z{{eww=jd3#c<|+t8dADa*D1G&+UApy#97ax0Pk#aP zX%IDcQZmJycXdcRKwvGO*95!u&AGAD?u-V+y%@v#@Z6k#8Z=mrdQW;TUof)LF)!@R z5&X_ax8Na#mIe!Yt%JkEbmT&%K`&h)s<~?M!pvWc`htRQ^1{@$kH+CvGB7ey`DyT4 z5obtLSSYuGnjtXdCv$E)tmi6KX=9e;^#ZmK?C+>k}ylnTwg&QX6E;F&5Sxl~n}W~ElBb>j!)e>l~w!PyXFyE

{N5oILXBlUm`|vjedRorv(B*kB}t zUaJC{o8q@4-@nl1)kV5fPy<7+-_7lwp>D0izG6ZPxVMJjsj!}|2!;mFA9OjJapmP) z{j=nsc}RmG^kDnh!olmCt2fmSYnU)_OloWtH3(|9^ zb>2Y{LOa-CedP#zlDr@#FRL17scqdoxZ3keOJtmFG1}N%h?Yr)sbP*ia9G=YNMsBq&#lvp58EFhIfyBamvlr#U%jLr4NuAZ*OX$ z%lm!0GZj?>Ahc`Oh4#+fY4QDWw!M=4mBL5AO*r&jndPEw_GS}4W^Ew@niL^m%Nnzs z+L3TnXaglZITn4#3V`iqp!`A^lwnR9%M+mn6Nn zbYne413`I6&)osd0*NtJ24hQG+g<29mSKkN2Jl(T8ypIGh3GdqjBgT?6sCq_*|vAG zguO2aU^VNfn8UJ=5yXWT7#i{YdUsCSneSiufQ4{xPv$TRcwAVKe<#e;)f_FH?!NqQ z7cBTU)DI}>a!%s(^_WY)#Ks1IY#eaAZFrf}O-*T%vt50CMSmad9}jF!GAJMctTLb@ zUE*YFKy-xvauwe}Nim5Utu+{5RT|=#Pdt5mNHwl6hMqeA<38B;8M&IN6X0SZV$bsS zzGN%P%aC0uB_$B#GBPciL{cHRT|&?2n%HFg%^WpUR;U*q@zku;ikHTc`f1Ag6f~?KiFO!OII63wbCL+)g+q*1Qg*hvieXNm~z@#DUWpQw0o@!6;XM#D-Ue?q^DHp3R@
SX{ny&PBZw(;kw}Y;M)dZ*!^lO=sbYNP%pK%$@lr;5PRNUwHm&lRc z=ia1N5V&)8xgRN=X$U1J!lc#ZkvX!7$YD|@Xtx>DAANRSaM&?bOpkKs&Ki7oIUp+C z-JThGPYG6pRzKAHn!xT8^g8G4CFAjpPJIA&7Q^jxdkRmX# zkF8wLC9Bui(4S$UtgH-lwRT|bGZW5i!7l0%85tt^wwwI?(qGgw7Hhkr!g70CkF2dD za_E*@oLD(a;V=OEbQ+C|l@$vvsh#5i(Lg=t{GSuWL)**kP9i>6%C!_5n_o*KYXw^# zP!g;;xX%$ZsxhZYpszyyFgh6@(gUiNtxyi7q-O%K;n{$q?LTep){YJ|kc1k+__-P^ zx#`14C}dV+wHoX0FVYogbn8u}Txt*YNswPTPL+HWpwL!~D@Uvj&Gn=ottL$npGyVSM z?)bJQEQW9vV)8s^s)U4uQ z6UET3eZ0O>e>T68qS3WCUi57TELg+P9sUyXUxm)ZUB)bg2s4 z1xhF@*I|5Nzt&Ay)|Zp&z*eGrXWk>Ud5kb9*!?ZvSFIvxI4(dpj!QwoW@c(?j|2?l zXX3b#$UI$T6>a}0g`W&)mUjquwXb6f#>MwXqj+BG^xy$gdw&EkSYa`7aLoLu#b7}Nf>uIUWI0hmsFWUzX2*Zfzx@5- z88_{C`!Via%rIDBM-nHU~vz;G9@r_KsNJ#@Nk1QBTc;^U6mO^tuex-A4{L?ve+}nWQo}OVfY~_ z6C_aI+nHhkQUqg2B%RzUiS^Wrzde&>YXh~m`WEyU-McgNueG(uEw)A@KLc_aL^po^ z{_TjJUY9R&BsaTaBCDK^yb*1ople6*!^de>v&8pBufEtUH0a8M1Q1$RdOvTt+ZWwM zj^LH}T++(v;opd4tK~C>^5Me=1@<^wS35gmzV}ydts0vaqMyAz&q5lg-v2h${BP;J z)X>gqM*W$|WU0p1&h0>R^M|kxsP}Jk<_nPey{UVCy*_S z=e(vuh`o75c%V51J@7Lkb{)-S9uS4y^HVCOWP!+Q_^G2s&KK|eZSi&xcUpu1Gg;Wj z8B|G0sXp-7(@9R=)%UqpgFeI<*0Lp|Umi(46urGFPaCp0uW?+@$hykT4YK&jqM=f? z=^XHl>@86pqjRHXxc8+Cx1XN0(58S+y$2zT;?7S-UR#~{Z%;5?f>q5_Fhv8U7!!8Y zAiX9l|3L@pdNBCb5C6*o7B{MN_>1n>qDxy7`mGE?l|ye4I+aK{5!yNwDPj?7};ywm0=g%UF-(-NKXgzKOWpjso?e zhU4QdaqkAz#aDV52eq6NOx1=hH)DBR!|h7pFzr zVlaROjg02;h8Bd-qVhd={oXL-xISFJ zKTQ}JjKPORN_VPTOBCVxmoq+5#Uah-_NWkDF2fU+=uV0&9m-FfX8AFbHk|0K=C6Tu zB4|%r2kGL}FGzCN``gzhHJRS8%D#obKb>q{6w40)9ERC}w!_td#P=ViUuIvYn2Z&D zLzSm*dBiHVQf~fmeG7Ad%13f#yvS<)tGpBrgx0A_+~Ogy3@}VIgefP0$AjgwBYVKo z0%6(Tq4v5I^DZ;#inN8h?XqTdb;n0gM6dZ(yja5c_g8XA);pS**6wafgFkJwnC

drwaQ2WRv8tG*u$ri8AZ`k>`80y|BlHUS0*F-K>VQf_Y%_{k_qS<~=VD zLHR2M{uHh}E6I;e*%Ii*rMdUOKuizcLBr*qAi{`+FeWpGXhIYfq-*xeKnwK8#shxtn;1u1C=^cOE7a$Oj{fSNv3xYTg%KZ=a}jREvLOHgrktwXa911)&H zIYHzO6JF5q!i(5#vku}a$X1~I1{?uq$BHpaUL#}Uhxqt!j`Tp5==5B-W+$tx%pP?q z3d9J_V`FM?g5v3&2(`Ah0(6_*j=ZyF-iHc=inu%+ixzi$<+F_-SxBvaoxIa^$7aD;m^6XeDrXxKwbnHgr9nWRFVG#gX4D0uMI= z%)qhW+930w`#msgjjP`a-$5KyKo~Ur9z$77r`f{2uYCw12O3~+8Mv~ z>*bHHW6Y<;)J`F&mQJFcId_b1wbBSe8+-7izP5LEN@#!IYfyo^r@tFGa0Ufq1oyNn zLncM2d~~iSZHD|B9t`qw^06<7CUF_j?<~BYsdM{EeiDW?4UKI2b24=QpQaq&lw zesyY;sQfva<`tT&z<{xWW~R75aaefX%kJ5l3Vm1Cj4K9)k#o&o716rGzj!gukO_1k zWmWd21c)hcZ0ExQii=~$cbF4-B_?1T0dUa@vp&+c&Iyt9I7l!D1{dO8SiY#VN}v1r zTE%uIpsKk!=J_;YW0=TmW#>9bEjM4zkU~s?L2E3#H;OTC8vUo>QyCZPn;eC7vHtrn zGKUPHN;Co)+9xn4l))bE2u$R$P(9}==8$y~UlRCw!CYu3A+wJFvptgUO%5|eyfWGe z7@~y71Yk4qe^(k@_`55KO7)!JEsMIrdYZT_?pA4UP0d$+Ku2Sw5Zylu2vBJ{c8~uS zr6^~5aF{Mo%l+}=m+H(+;~4m0NcN1Hmk_{}!{zpPetTMY1JCOEl<0xi?*1#}-yF1v zQ8Hl$Q)GO0Q_O^@am*N$2>n|Iqx`R^uYx^9GRpcwO%Pgk+Y!RMa$BL_lInDzn^h zz;yB`*;S0&O7)m;Q&STWyydCDacN$RVR{hPK2=V@do$p}xV^NdHf%lyq7?1~=wsEV zDGNab3gap4&__k)@I}M82nY$qvsIemKdDr!gCHxdqQ7H#?6-uBDJRRzzZrAcRkR)` z6^tQXM+EOD0Eyw`0c|zE_XQ7>MOknq`~|*=hD-5j zFlbB3McJ_&E%=8HV*Uv5Ek>o7 z?o`9Dp=ErW2>#c0SU7xwupv7Tv4f_=6fWEm;hrm)g!rzzGr=DYe#`taUSeY`Sgp|pqj2eVEtq^GPD~(#`b9npDh4=Si!DR^JgUav3pt(xV z&COla$@d4HqwCeVJ<^IVbJF-Ppns?x6;f_Q7Rvnh=JM4lt^p(Mb2(+6oo!DCGakY5(%pTS{~g_yU3v@IPr zr**c5G$wCy95ky6U%dVU(xgq0;kk?FnN(#2y<}%+Eh@!jvz=f4M=OaEmYO6a3j z`*Bu_#tTe1?j(}i#QJ)JT z&dfIDIIt<6nj(StCwOJ`cD2g4wnv0z6$-r+-Oh2tMgQGRX=uYB#3ROq0?jh7-RClZXm@vyM4Cc!qD1?OKmJl9MD0{@L#Rx0F-aLGkZLdArX z)^>;xkPc?a;qL)L;@iH?K-x(Da6DjW zTA;s`1o*(@%*=$vA>xk`c0ZE5fHpEa7@r~bk-ODMfa(YLhG>WDUrjv){WgR0uwYkK zZM-ag{~5#NoSffI45Y|A|ESHA2TN&&R*DL915S&6<`=(OsD8-rN#te0hz6>VBIr9n z3c#4hdvbL20(hVg0Y3#Q=uM`kUhSXKkYSYW*5Eu`@KHyRR@ajE$7f2ZKOuw}H!Yub zV34-W{oZSrV)q9u!@``E3v&&DrKj5}dP`@%G|uM03gHh_25jo+igJ0?-r)gT4WgHY z^I+0K5Euaa{@;8#pBhq-&Dx5@%Ecf}{)YyS%9CTul*X_yEZC|(22(2Hxd5fnZ*7>` z&vS9V$ohmj0oDQtLuN?I3&*yqbj%^}yb+?UtApY6M5*1<3t}SMZ!5B;0}H7?iZf&_ z|Lixuo+wm)>=5w&ItCB9)>XqZ1@39ULByc5Occ^ESp9RrWNvF$rdE6X8E$BN=WL4w z%J`?~sNR>fl^PuHPgXilurva)=n_kQIs2ECaOmjhlmdO6?#Yu7cvJI~9E;Qo>^BB! z5Wq4WsHG4|Ba~Yo`gBSjaq3 z4MRN5N(801`0Ho#Qyb)ST8gPBeeP%#R{5_AO9Md`8ncP>m`tU3mZEn#`o{9 zujLroSPJUcTN0kGril(%RJ(os)AU*-ucFbz1{|#n9i5%Wl@3+NKdA1Y_;NI|-rm%E z^2FXj88n#}a^iQ!1l&NU=YBmx`V0WTMR4~5$G|*{D~#+}vC|MQcSho=KRT1$!OG`0 z3*=nk`J3yudrWW8RyH>70ZWZbR5TSR%ReWJbp`tYq{qa>MD9z$;Uzx57_^P!@$>ULa(+ICjid{f zP(46l8sq}s9z3MXJjKyvW6_G?tHm(0B>F9>FH@b!>dG-To7FSa=XR< zlBD2g{QY}VYaq|m1TwT|5Qtjsc9;<#71cU5Gb2GD1^Ee?aMA#7O0wuOO9M@udObtI zOzMAGQtEZEIRV}YL494F+vCTXc!ZZAY(Efs00tPmPK9h0LvTaKa~h&-L43mfpo}2E zMnhJ0CNN!`Lw7X%pqLB+Sv4YTp_AC3P7Wcs1FC3yMg}dYV#B6kxpu!nd*Ada^cqBP6V!kwQ}wbQ&Syj+0D^@mFrvjvX95(6 z$@Ez)TjunMIn3QQzb2?UNem z2yfRT#Ws&l)M6Jr(pZLo@yRM1vb)JRyRban`z&fuq=ZZVORXUP)8~9YI%S)`=u}@G z>k^fl0`)lRAG_-So(s>LsY6lQ?swgT(5Ri~`Avdi`1g25);(r!Cd9X zP9kn!lD-|Td}tE80te3BXA}lK+jtbmtXS;e*T9$LwqzJ zk_x(0N`UPG2$Prd!<$a$!dEZv@y#JjqUBYDl0IQl~zhYA&$6M zA@$21+9@DoK7u&+ZqOj`SPY7Rz%>xImHZK{uvR?uLSYmDE96AU1l!f23_j93q}5C5 zu+ouklglH8S6tH*kIXhV+p_-sGspY`2!wvS_aXv6BPA1-30ZzG{XOgaRLu`jpZ8z@ z;A1cT6a9fjBWNyh&b4io2MdVbe7_R?TP#=@Vs%;k)bT#W!-sdJ2m}o{7(;S{NU>dB zSaX%pU9fV^tv_`OcaJ?ErIW@F|2`F7&q7ohDqo&9Odu{M_B>Ae&(+POp7`?+`bHCP zs??C5y-BdMD6F5*`}U{(BZgGt@hLrTSbEeQvHm~n{X^zL<^?kdO(h7hZnNeLOn?7Q z`=@o4;I^sql{Q;bYy;-DF)*OH3yK9MdU`2bsju4q{l^7nuxr8nx;KB%iu7NHB<;<; zy*)eZRGqiK{5v9E-3gr|$g{B!z^(z{znXGS{e|)WrJ60lO><9+s7WmfxYMYzRcbt; zo9f_Id;+CL8a9P|(F3gEVrBz4FD{V^Ih7RZd-qMa z|9j$FVm6Rc|D(+v18M7y#l18^Un?X(NQ?NP#yrM|L>3+vR!t{2L>m6x+5P&0h)s(? zOH*@l96HVGAsH%?>otWLN^|in$Mr8MDG?Au60=EXor_UbS}F!JJs?hX!1M{s5^aH4 zB($Ts$O&4nkmK`5xzzo@;Kr&|aj&7FL9HOP5Dg|+Aeccz@&%DU)OT&>lz}W7#fUK1 zcwQ?a=3VUpfv%Js#UdU~)23qGS|=zr5ep+rFF(Cn7i=)>uOWQcEG0QsDk^xOutBgj zbxZW>Lq;W+mgpX`WfsyreTonES%WYdK|wO8Wo6($gg-S4su1y#iA)&44S%7LkT z_k&~Cda_g;$~yRbiYK;VDfa)GCpmsU$148pcmfS7ykQ&T3;s?(06|rC{>J7 zV@V4FEGQCU!WL>lMUq{Ew=AI7jKztF=X+QL+OxFQDwV&T8)`J*DRAnZ?kHC zdhnX6d7freT267(b~^qUJiU+Q^&>zEl6;`mCyPIC<51t5kndS%Hf0X;qeU?8mG3VaH)Gc($p{56jKhcIkK&>Ci@rnq420Ah&f|HeU5A)*V< z@jRTyBEj=8dtQ85uUC@z+}Tpu-OzzMPqeppgE%>9V>&)TS?noGXwZ3gjF=@e<@C&B zW+C$KGUL-*lA^O+H@t?s)@D-PYhXs*H_-mxT=-M3oF zS0wtNUsvXBCoPCPNuiS|c1&F;i+3RFk0j*n-F5air%5;%#`UopscK)*N!JJ>liRMax9O@r%p z#UEna|F~f@2BgU|-+T?hozlAbBCnjQ{U7GhE>}V#CcQ4EY=AU~A($+E9tL(f0O}#o zQ0xZs5E9%)!2|WWh(Z=xE+YqF}V3!f}KiqUF#a z!VFp;q^t{Qz8J_iYuFkj4ewzYH3mGNkMI)1rk{_-aOz7C{o9j0u@hOAWCdi007#3j zp5yFThEp0y1MxrmON@0ZDhTsLr@ zuNxQ|BAu5RLT=cwCUZ|MzYV^6h!{Om#dj!u7e3aLXrZtaS=V0yoH^+Gpz0s0b23IM zN}*!-tXVL?b8=o=Q}Z2`?Qh_F7M{}$+LjR5P=0Lr$Y14R^(vN1EURzR$Rc#sxurPr zq3p)>bk%x@`70VA6vBm$h5)yV5$-T1bFP{7cS1@f_}cyd2&e(ZU6Ryo!;&UD)!g-dO#7cX;sk0sbC1s9XoLRsH-QH97kGOJS$+=WqRL z!3)!y*sygb0>ZLsmDgvBb91~h%OC0>m9#&K|=gz7AO$29mo8X65f(2 za&ptr_Sc`c_F~rtKcm}Dl#t)05yb_>02F$X3LphVK6mpp{#YUU%B-o&kGsF|@Sw=b zPEkKW0Hn&#)wO!6ko)#-IDV2_t8c2@$#`*6Jg@7~d%mb+P9drt(}8SRDLJe(J{wf4 zmMjH2$GMymOE0rVI76Q5lz&nxQV9#b^hE~fEG%`VK6YoT31Pjb&mO6uPz;!BpO>uKAAXp)GjKvb7DjLK_hbrsqJJi*Q*5!9W5Wx|9>a21hq^L+& z^wc9^wcdQTp}_^^;X~x;*yGo)q0w1NfET}fBqj!6_rC=bu3codlVwo%cxwrgd z51c(ffQs1(#rjqo3Zn8Mor%i{2Y&s6f9{dluP5A(dAS~NMo~S@a`y?aSF&{3BKaob z^JQgOdibdICIosn3{?VxZkE;}j^B6hN@+oI*%7!SG5ln1sUgSh5hk6d9~nnKW> z0UN5>rj)Wt9-)DhH>IWQumJnU>QnaQ3DKF&eKD2a2;%_dE#=#AJeh!aP}T7t+zI9u z77^GX!D!4E`U(W4R)ma0X{SqJhi72xUo!pv?OPxh$<4iC|CarG(;O(t3gem|)$HNk z`Z%8M^ws9Fq?BIacIlByShs6 zx-k@_2S^dP9)qhA3GZiS3>E8e8sOlLbq=UN62TbwR`_8b2b9DL(6>`ma&zwfI`r<< z7Kys8CHSSbR>s!W_6+BeCzz`XwLcO#y7&^IsKc=UP zsB%qtxJ?j8SjzGr^~*`6y;%c|%4K0?|L9RS9x-u9*gYCxgi!+phGS;V%1V=0n7!0i z;~N2JYVwuvvN3?L3vuFsKwX1)Yc<pPR8Nn;Q^-=7H%5`fyZ$S!i?mI~2+CrR42@H&KNar%`7mL+Sr8+~ z2n7yFXu4dW5k}_5T&LNXNs6_%OKE*QkKDCza-xeM##m%yXBlOX&%@&8&Zz;=-sbe5 z6J7PqJ=Ju8%0y^MNeN#GGN~ruoOZn&;H#>E<%+6A=o84>G>}uo&Q0^-r%$O{Q8qBmjudJ?K z<#2SQvz=s2(4^kpVfn0q3V<$nKF*;Kd9CrE!^JW02@$q_0B_nzCc|BtPl)f)6=(0saRLal}pxOwzEdd$`pauQ-*nBjY`$UNZTBc@b+Pup2-qk2p1 zm5a@SDVA=s)WO>4t7$8_=k;;M6e4L}d`>ESz47tYR%gf0u^szUC9{98Y4@7%-ZtlM z9Q=CqZh|Ewcy)BIMRrfb<1N-DjHnl$FzJA1UEW4r^Wr4}x;YT^z$;^|K`h^xNQj{d z6Pam9b|V+~b0m%Z?val5+p!|)XHau4p1b9-8xQ!c^(|46a1ad@67D>|J`vMz1w5n| zK9%yx%okJM0Qy1&21Yn$do_#4e@`{syq?6kiQD-B=a40K$g&SW7VCgc9dk!{Ih(Sl zry9%ego<6x?}CJ!R`?-IF_D~$s%$xGFDK|VIX{1BwmpRoQVf1O4;*Z~#~>2=X=q?z z>nP2J(qa?~(FyWk}M_j4f>uIOI4&F+BETi{rzVt zZQ`za)pAnWB(zwAM%jlY&Mvukj;fCFInbbdhA4^VF91`;h15<38KeK&nX-L5K!_3x zHjlsLAc2HtJQoxhQveNX1@$o_($?Ae86Fei#BZ}-)c=e}@!Rs5c z0E}>A)hywj(UFnE*tzx)uqr9S6>9+kJn3}-OI(L@zCNH@4Q!my}(T67r&?YwZ;K{AHyKA_vxF^(43bmU7UwLS#7l0VxW`9 z1gxHe*+ zdifUoQo8>}634L+eW|OPEH`Y@wx4fq7%Mk!)mSSBBV2e)j5JKL;dDisDY3szPYvmY zy}^_3?xnk3pGX+<@&z3>lSAF`hjn$ zH!RI(jQt^is7Pe;>YT0$>I~Ck**wjam5Ky5dqy288!f7>^`5pi?e3rd%nh4Dv&U@Z z3$?I$AXid}kr3ixERtzNSbd_40uSGyA6QmY++ujYE=WB@gK|KSexQA89IdL3Nds36v36*K-CJfLZ^WvcMpUy? zqPf0#p~J!C1`-X6n$Zzv=7WPlsmHmwEP$Vzy?v}OBh~iw zUk2E14UHonVWAqdrFJ@vUw@{I>hn3?XVHqi|M861@qP=Sk%b&(W%YA0P`m@XJ>URK zxjCRY_etS!b*!-^E~M2i`Oqf8V2Au*U>A17C3AtZNK<)7JYT~Nz>cQRl&f-^Izplj%Q{rYu$diqar zGSov^OC#iJ9a1We7(x@_e^)jhO@6rOnfh;<>S?5R%mf}-ctZeIwFHl$@9*B^5>SPB zgR*_!izhdjwhboQ3w|e=)kwetCBKrZyL%V-@uy)Ynh#kDk3%FL#L$Qt!37HjE;frC zMtK4d4?%)_7bfW*#&g5_!gBZIIx!u#r`Cn){^UT%xII>=xeT&}A;4Ac0+_6-vJ&}K zL)$XSR60(;!ZvJo^&dcA?O?$U?Fy?{@$#+;WrSpy+?vl?Ulo4hpBL*YGZ{%W4>)ip zCWx)tZLucHjZ>(tFpbNCVQESihA36VA=QvMINZ#k=+2{0h~T%CdiHspm!ky8(w>2U zd{Bh7Vle1f;22SJ5JTx=ezef?R9^99uR!_gJ(twy-lF84sd!YU4AO=T98~gr8{WX! zd;K~g!4p_$!*634ybeD~j;9aax{KE?;#FyFHeXJIG4e<}ii92cO2T`6XRr0fUwx~E zl@@uTC@X)5y}Y82*{@dP29(7W5>0S{!(@iu(#pyVx{*_WDsTb4ApF94?qwA z|9ZH2yc-M#z?gy|PZy7LaagQ2c@%KnY%+cQq>zDdz zfX3I4H8W!ge|7rUFgD>pBVmJ2@!eu<{S#bBUhS6JT~jW?;f%6>u9uuTt)i$1?vWb$ zl%LXp!G9p^^<2#VLiuoeo=U|3EdQ{PfI!0BZb$$8*Vg1PEi3lL+}t$YqesHGiRl?f zJnL+w-!Kbj*oNQ2{rotQlbB>Vyo#qxjzD;BF14x2C*IdYVRU>E(m`x0Ik`@Q)V zWHJIgHtgQIPlQOwiI2hYP%QG~y%s%WoE=znpf}1sb*Crp{j7d?@<8&l|J-!yn%u(I z!{{V>>|OhXYhS6^A=$6m?ASsq$*!6FPN8PrLbjYnN|Vl4-q^bhO`83OKq`F9&XZVH z6@r0*ARq`A_wi16eO_rHjXnMYg%4rAd`ea@I^y}TM!%y(Pnz&%-(V>Nxwfi|#?_rH zl3o~Y6)O!$rUl3{f%MBs=!0Kn`31s+u5BR=B0P)MutQ#yX%yaH+uE}GRmAA?WgtWT z-c{-I;vIKGd|(o043b^^gSkutVgM5zJ#Ty}OpFO?b58+*I*OM#O#m+Bcbdlyk@#3w zQ$q}4iBWIgt{rVnT0v5jIV>5FM%YWg8J%GI~HZVA4fDH*8AmnOi zcYR%_tU))~#9m2kvV63w&*a@f0`3JAdVk@We+V-<_!56trFYADBMS0G=9X89fpxkC z5O*R~MMX2H090j9euBuZTHP`ls|&~Z)E`^%T^#yp=ePwY_GRd}F@x{Dw@5s$xv{D8fk`JRy*o81jMZfpl7o_1G1Yl(uT>&S-yOs&%xC3#2W9a z$xN2+Gcchma?3gKX8}}dT^}HJbv68uZU%zs{Jy#{%^6!@;4(y@MuA`F1arevC`Eh{?|eWs%;I0m*08YpG*(tsEj17Jh{i{c##*%Y`WsM#e<@` zh{N*M1SY6&hlGU9yERYf*6)Lw8;q1BFs{rJiU*=Y##0ZK?4%@mKm~ClPE9t{rkw8r zbVavE1&5(c@CS$)umN$?TKYHSX0fJiA;G?Q)x0GB|Fr;GMI4~K$X8>A19R@TVWVsO zc>V2}ED^q}|3JAc4wII5F4uPA;^N*h{+@RNUHpZZnY))j+t~=Sw|O9UyFgEFd$J7E z&Mug3g@R+ZZFaWllw-LEP2r=O2@G^3K;#R>`5+a?|dy;^gJ!*%%o^A#G0*&|~;;IyoT~8epkqtt%-a!fe>lF&^&v{c>+V1qrE- z+!_-s;0{{(5v7mUB9S5Lrw{cnAxJ&ng33&5$G@WDW32!s|4`_`^%ZH#(!`dHq=8-? zE==lF_piTyZxakNDlbn%QDK11$mwQ5Hb`M~JB!j#Td<(`4x$XCPh0Snq-;wUu+e;K zr`@pI%ZUnpSmdu%YjStEf(qw5%m(PdS-AGKtv6CGNJbK!iT+LHIrv4NDWK{3-}s&T zsNBU5Z+~s`5K_VOJf|9yxn;V#@`k1=^L=ytRxtg#_F6|X0#4)j|4~!B3WLm0sUYF~ zduBKIe(Mhw0P`XX-gTL`_w~-j7JL)$=hgj3=ls+wf#_c7%t+=_6a>JE@gZ~sC$Kwd zi5w61gNBBN(}5^xZGr)frJ3~cm!2Ky8kEf!95H)2(rp{VcmWr8CN?*b6<^l-FA;Pi z3%HS4UI!bx{7#=*1NJctqXb<(3|YTtWC)Sx;(}^!vjrbt%KnpTzTy&7A^G}8Gop1NRaLqEK;s*;r_ z=&?_SU-D3vmD)p?>qml{;n({lXJ@~yTDKLk zYv4KC^biz^C-@g{>zZ>8ad2FNfy*%SxL+(oTD||)f;vb(OsWhthnuX zcyhUeZmv_taJ03hgH9F~b5?9eF(iIOKC4oN3zC;mG?7nseu+gTa@ky9U2DrtnuLOFNUF zy&h^sJ*WlYm37UG7UF@$*F~CU?b86++W%OS*}FryaN7C<0|Wbhv?{|$aP-**Xr*FjV29%nTUYu7N3;#O~2M&&qb=~$$UU|C3`~y(KtsZ`(b{rGG*_` ze+ejFdPodDkj3|48GD4L2_ntB(V_DC_XcHML-{!4_jOjkd0#%U=p7kRNd0I5Of@i% z0Z?ZNa8Q1S!?ORmG?gQ^Cd=31`P{xbStxf$?1wyH4(ETjGZX*j!ekS~$N#8Z&k01I{>I57rZ%)K|b*Ed@^JXK*nQ2UC(VFTv1Hv;B=vd~~YlJ6_Y8f;V!O28kf zpjn<)2$BrzO;S$@hK4$}-S37wQ3JuEaShJhF8+`eg`NM*kLv$@{?Fh|V8 zarmY`>kfeFzB$Z3_8g?nn<$ojmR-qR5K6Ih=!$I(5ee~|L1+)I4+*EfMI`JNWTSr< zSQy%}?5D$c-%dM(kf)R1OAJte8=nr@!zn8(PY?Wf79w=A*Xe%g84hV`ju4UdVu0my zftE&KCRZ8_oOTC4$BFOA#D+H2@WoOKCe)m*5^g}Tz0{jLv~}d^dcpx8PDZi#n9|6o z>2bdR?;dN%QfHE1Cf958Z)iNMWK7Q3uP5CGVo;qmzn81;W3=$eV{`>CdrZDbKW!GB<3Px$u29CZY>U;3=2BdCeM*e-90_c@nTOQ^)mDHjI%p`eJik4 zOljVav$EU%k7OB;@2(BaqqLUL*TlHXN(d2OKu;TBL#Dq zC){0K$J{rD+Dibqp8rSI*y{7REga&x;*5zHwlJEU+c74DKh7F)Sw2<%77F=BSXD_v zN77_aKKbbPs|J4yWQa*QC)y~&KXNd}Wu5t< z#ney>I&!`bZ4I)xhRr4jzA<5#)eZ!PX?U#jVF!u>RF>kuJODV02hk8>5j?8W?72mO zpa#v^joLnYUdJJF>3@^it*~>i(B4zII6DvdczbKlMKqwJ zKQn<5b_$3^jpjNf%L|S=rc?Qs`1zB_xu4k62uaa*fWsdTjM7{F7cu5Z0*-3h*59yt ziTLd0T5pzd=+ZFFYF^*6Nwl+7(3|Uui82_m=@-OU7rjbCCEc1F z-5ME*oQTHu{-sR{6MbR80DlfWX9dLx+$fJk*57d!SS5ZW){(Xz4V~!tWzaj8o+{Ea zAOJdwq-kRi?|ld5s`y7WqS76^$q^qy0_G~6i8NNMDJ$EeCO-EP`|}Uar1Zn?F=-f0 zP?$O>v$rDB(iIpW60y0~f$(2UbUmF=TKia%+!;jPIQaTS^*Tq#WOLI!uXqt+R6HID zM&Q>Pg<}E^Gf6B&*rp2=W`Dg_?o@N*IUqJh!??3CmuX04M@$+ry1-y+5Ubos$JUDSNg-qsF9&9IOzDc39I-gV;#7F;S8W)!OC{E~la zJXJX@25NY5nRlvguI|y?7wyx&IE(nx;xlY=c{);hOQ$SPJi3DGixbWL^W*OYlA&MV zDO!PHkA{3@CfHa2T@&PTEz75RM$=4p+4^9XHCX}iWo&-lC_OFBmL4nE9Nf$h@z^mw zUXumXU?kWp(N*fmd8q^A8%T3EkIv%*YM8a5B4!QD)?yu3M|6U`bR8`YW@63*4-$L8 z23q01qo0+U+5>4lVDaq>(OJSYqDBv*PKqA>wDbBNbJ0z6y?YG3efj^Qpm#M*EGjVM1YOxAQr~oCAfo!N&z_b)|tzV~g)xV_QYIF(XAARcH>?^RNoF0xvlv3Uz@g^+n zAqR)bdv1%~gQuexXYpDm#}0I&#sP*rw;F7T$Ip^w0qY)aFXF4qT3iOkeQEm?$F!rf;+j@sbN*X3(LGCuryS!|@ zvbiXp`fa{NUO(WN&BE^WYn$zz?Qktw>EY~P@e$3IEbd>*X+yCFMq`n^qluN0(dsf0 zE(unj^3{($mn3FZNk~Q(;5WHA+S~?ytj!SZeHV}Q^Njoa2fK!r+-|Io{e>N^tQ3`- zJY>_2{qaF%XhFqkly^S=P_}!q#8h%dSHN0aYSRnV6#g2k_0^$u%3v%ip&>6Kl97|X zbXmQ*2a@5J4l`QxrpgLA2U$-lm?e*cgI(a{?SSLW3pnDVBipaQr3Mw~8QdazN=mr% zz6bp|QYh==n)=GA67=Igw+gr2^`HVm1HUgQHbtu&e93cYhgu-}Dc_8cn3%!k=r6)< z{yr#98=rcpZEQx|ht+hM9-4N>dr@zxSN~2u8}IU1iEc7E;sV`vuDR;6TRNf%CEg`|Ys8+|p zLaJX)tLLIihGCCu8wP`fw|4t4blHuf74P1y_g}wDD2>0nyIb;eCAu&*mHc8UjOGyO zhFt^(-lsia(__N@@Or*8bo0$e$w&UDWD1rb+ZnA~>SS5`55v>bvl|i?*f(7pyI&do zLkavn!NT%ndA%S4gdkSLMCKzPfPbPjs`U!Q6Y!+q1JdLTOcklm&d%W7-2gxM7|2&f zF#Q=!A9HOF1r4~&3H91j62)Sc-iq0svML~FhW!>Hxj`LZaeZ8`PtnK zyz(p^vl^ET5AV|Io3z^0SmynDqD^t-I=w8g8ozBr0BoZ(_+82HV zT{idY;NYAZ{Ts&QT&289y1AETrx; z|JgccTg;%|=HResD)~wW)dO+}i!2jD(%Zq{2}_>$0Cqw(ESgE%{7;<7hR5R%k;69} z9OJUi=7`()k&`CTz&JvB3y~{sWMgN!%at0vusEr^OJ_ z0F)MF+9h-quDib)*2dI@s2Wy9J;g`5H%B9AVNgi#acIpgeem~#_i&3(q0HQT7WV@M zhK7WjEo0tRh-Qo_VIDE4tH~GJ*^y_bO&kvW>hDMQ5A3qFpPY>8v@9*F_o4mZe^+HW ztgD)i8BG%#{!MBdG6)=_NPJJLZIq@z;}6xc^WMH)|30JdJes^S8s2+~{;kPE?Q6Mm!@A|S6^SPi%EHYJq>=#`7}KkeebK{x81sh&q)OV0YY~P359;JKWBaf!7}Lp ziLha_9LV#Ym}_E5-&&T)7b+}F+Jrle{`bU0()W|YycO>1K;L#}SJ!VKT0Vtv$M;cD zipgt+aDAtO!Wd?vxC4TaPQyGpTVtnwkzdp{o8ApZ1PtYb#KN`K`{pvz51{xHxl_7! zew1scg#u66%e6joBtr!Hkg5YyQ>?ddWvX*?jiMu8)Tw4J^B3#z{LT&-si?D;|MyoV z6OoGhYmVwPOw)#xqn4oKsGdHhsuSp>bQ(I}|H;YgpPK5Lefbw{dg(zRfMcS%+6v-mB4mmw9FA4+X19s+t^gz+{tX#VUIu%BqN)6z zSkls{>Z7}FoA)vM*Z02W2CT1XPqPSv?QVTA`_}re_MbnCwImpsnKvRkTYTgRCrS@` z)tTp8ZOvVQC+wpR5G^X0Ia-WQlk#){YbzL}OSiE@P+>3}2B~K7+;L)HVq!;g!HA^r z@U?hxzEwyR&fJYtt8x%mL&n6LgwL8`sAUXSg8AS$+`CbcMX$ z2eL%$^dO-1Q(oQ%ysbzEOAbts^C#RucmPU#x}LfajM9qZ8GEfKjLfi0%= zj(JpPAMUZEBU_OslZ}flYvNs+H8*fi?Vle#pnf8L00)+kfTTmC!CiQf&@nLDM@I=U z?`aMQLL(TTl9D3O`Sa(NQO&Jonr4E>MyV+MH)tS-6*RLiG2k$^c5rZjd?JVI5$`-v zCP=N%yLbDx-qr6EW0msD@p3V!A1D!bv4a0%Ab@JV8<}&OYE&qjV!o=Ww+Hh*2-5iX`qn*eN&XKW3}vg}h=9Lb0PrkUFhT%I$k+syxOCSx zJXUQWy#e?IaG{_P=?4MKK#^24L&SjTBnMsP#ffGu-;?)A+}GDhUNMn5HQ$|McqtNa z%XOcve|4hi*=ACq@8~0IIhkNThp3YCJ_>I6MEcvXq=p3ol-5Aw5`js1Xx*KG`Pd5J z>$iY*2|3$x`!B&rb@EqV$>(c*qQddfKonQ%ii)IUXe)zJz^Nv9wRDSa>mCh3(4U!P zqukM9PlsP}po{+ST`;Du+)2GSOD7O4T}V(II0jT5avpU8(7pl6z5{^9Z9Bc%GfHlelu<+aar`RLZi+G?rOsS1sh@#11%9=jU-%ahg{>GZY!rOnOTrgK7M`FU*{ zJ9X^~exzK6O%m9*gIrQL7b)=ooTa+l&?JEH%d777Eqqavz^vP-^N<&m zS^;NEeSs=8Wt2FVhlF4h#yiWt`Fp;Qo+=wlXqRR44LY>pPAt>;6oOw$C!(O(1he8T(sny8xPUC=_K+oQ=%*AakZ{>+#KCG*&G0Cgbq#e->) z2pa354?&`j9x0MRqy$fF4Ew@t&X+h;v9PO_McKngR1hUS5&70VEurC*R+T54f3@Mz{6Q~Uv1?5A}{ z=f}zZ!o?K32ZIr=&!3OhTrAwM1`L|z<>#A1r$Vk@TB{BdP{}F#KZ*t!X{(CkXZpI1=7efW?el!q?{V)5j|%x=DG{F zd%gD&E3~gKL9F5D=vX!dKB-@kk;`UUtnaLBdI)E0R^F|x1!u~j{p^Z)K%^PrcXc%R z9;Eez<+*Thm_oE?1gOp1jg>dgJ-QZx?I}Uix{3(xHLo-V9D?795V4e-F)2)_S74=z zpoNW@R%g%BQ3%Y^;m1U%ZBTXS*zl&YARdE`+*UEoh#Z$ZO~fbsF(oc{QE-b7i%U|* zqI$G(r z=IB_c$dVQ~DD(^r?SFAy+}yqcMzmPu7A)$Kr@nQKK9VnIOU~#HWGa|7Ay)tpT>#aV z#7Be~U~vr6MEx57uKFB#C#e4TriOR{iiCnbrQUxW`cmdU+Jmr6ina6CKWZyRMn8Ma zoGW69YXJuN((WS|9dTc=Qm-l~(f^~muVklj2mJsDxLP87#5)Tii^P*}jxJ3Se z0Zb8;M#R}=$4yAIb11isPu87z4720atGEY|%~iP% zUDA1PZy!6PHOb3sp;p_G%3t9?_DhbJ%VmWV4TVADHy;H8GqFpxb1ln(Z=FMGh04xf z5CihlyyjRIajKa);-6c^SVXR`oakN)QL#{w<<4yW2#P~K8A+doxw1`Xvc}+ju(&X)ShLTlgC_krN8S`s<+T8x+`XYaxPJSd2*B&e|?>G#x z5u>2rP`HPVczlc&$hdeZKPU`4ZcN%+2oQIV!MBO8NWn%@9+_+p)gZ`uz5}k9#kxn( zkQ1_C4nSb1X{fn_1!TLkv$s@Zbgw$zD9qZ($jX{Q}Pq>i;HMAEj+>l<>qW##2Aelm`1eGu#zpqj~`LNgcBE+-SN|hd$k`YLPn$|OL z#pAJ*Y@XrT2-O;{HQ{yf;RZ{TB(J zzJ`|^G`dM;)!G-H4f@~ZwH?C(U}6{3^i4I^ zxZ2&1!JMkcpSix;fA0B2RYAdg$c})R-uB$ct_Zm4m7Hj6>KxTGt=uZ?NPD)WUj`t$q#e0audRAZMr z)E5o)&RxI)u=akX93y{TtM<H3L4hb#L6*6pp>DrDK#0L6bG5@Xc5g11ma8QU0CuCx_wy=~rkofpP=sFs= zF`%U-C{_$aye(58-jC17C^Y0fmUEpTgo-lUZ_rLX5 zE8rWfdkkQsf<|jwGcyI*j$wZ=O`U$#2Z36py{AVWa$+;o7TSaK6M#*}a;w(<^R7!u@!Mu#3#skNohwAn6ul26q5P8~7gnm-R_0DL=dqH`*a2Ba1rlXe-F;;6r%S z>qO>`2>(aR=WedNJZNPG?XXFLkSbajOH#w_2Lg`=Ao&3M^@{}h|6bVL+%pomEbZn; zKpp)_iiO1aB%ditPz(aT4n>Q5p zJFfOifDhd~XZ{S?B7oppq zF|U`TcK^(0h^(weLx0Y-*zVzA(H7=MDGu++#N>F-e`d}A2wVZwIUrFEkBkhCjlE~f zYElIB1;<}c?gMTy!=)C8M~*=4myMxdKm>|DQhY!3RixzN$n3pf;%ZZi_p|-qDP&jQ zNhN}#a2zcxUtG`x$lW1jGm-3yWwJS2Y)=ko&{jlw>g1FVH;^iM_uCx`qWHZiQkL1h z9c8{B=>nRywe)|+SYFjB!}U8?y~z_J4-h7h$Q|)ZV88r-EdZR#FVdGe1{l7;z7DxR z2Hou6Kgn=3&_Bo)Nk{!?HxY+EH=Z0m*5Z@I?koKSpifRCdAGrFhXM9Y_)SY7y#1^Y z2PwuGlZBeHflAs$-wHW6j5%Ie)9{9O*BYrtMvND;TwLg;J@xu$emonD(XCgBPV!JD zPD+d|n*N%UbHrskH&%|z#O6%PxdK2pz@lG+S!DhMIY<-70w`(6fm=iL=6scqZqMIe z8ogBVmK;8Q+)SP9+YpS}^YfhV-=nNW+=}Lh`;@-LP^t#B&o#Aiwu*25#?V%4du&UT zoEc3aZ8scxC-2g8i@nj9fZ#Jz6-u=FJFR@WVE;4jU+MhPwzjNLUOX}sfMYEN#`LuC ze16J+wAae4m_$Z(ouGd+L4raOFqNqFJ7cJ%rPd;c5} zuhs^$#S&b;W^%bN{^V@EkKRRu=s=tXA8c@c%@+;y+%eIbekf}}aJ-Kc zFH3Gspc)w3lpdcHRFZXlzP~0d!BNmgC@u>9jd_yimNrYFH~3^w)-P4OXo&IfXn~)1 z0}EAZ>){-XKNF=}nDVoM7VA0G64%D`^Vce#A|7uzNxs5i zUDLaTbJ+;qIw=qEUNtaB`WPQoG@GCokN@!k2Y1#&Yd}CQ^t_kS?`O??FS*9i*VhO( zcZYMgC;4n7DE~~}hw&UTT@yvkb@JD*OZk8)xPbvep$Ic-5_@}lXtT^x-53bUChtba z(|b)lZlw0u6TNX8w(V)q%lAGi?dnC+eGa`vvTCmWONMNg@tY%^URNf1EeGMS24Lq~%nD8U{=Cl~%4FGXimoq0!WkmE6{tC3w}i_KUynm_ zCzkc>yInIH8k26k$6bq9ZO_WXu6AZSKo@m-0>IxB$VZ>8wmC>z8aO*x2mLFQRB8(o zB>X9yXxaXe@5@`eN+(Ji4&K}@X=uM(52Fd!qO`RaEI9f;7>nhh=j@iRq-x1XUdFDA zxG$pbK)L`BUgSgq2GzjRw)x$7xVFB&0%A6B(wIVmT;YUAGoHa$r96iTwwdPnR#h{) z6ipKMc2w@)6rz{O_l;m(V9rf$6MfOIxk_f9rHTrw zX0f!co_b3aiq(MH)8_YNV;-(j7w_0HaLEvT*{bW!FCS(~?vKQDhW+IKvON;w|MikU zZ);*{=ILJBL5u*aVK=;g4^n=bvZag~;M`>-4n*-eRwJKT>LgC_!a{Y;e44B6{8$ta zwaY7~t7LG6Fu;};_8}{97lG^h<{>nM83%l@-FdHG{4W1L%Qbui*Kgk_Qbc%;r#I{= zV+7X~z#lUT6f%mRzhA-74r$K^-cFV)FjwHI#{p?OfadE20AEXD;4~+3F(`W z_xlze2=G5>3Ys@5S@VwBn6;zo|8Sb4%enf=scQZgNyDtMBOL?`BG3>|fN;MtT5u1! z(go}hH$qJN3g@PME4Yi&F=rZ0CF*l*-wN+z^P1yx1`{V$v0|OX6$d5q!P@fHPu*8`){)vI zxGocwx}~Y@WYBzfKUs%Ook_WH`jPN^NSFxfPaAggS}5n4APd>6|V4$`4I`7Pjcs;)C^+o0%k{1ZoPpE5CEKt=b<6TS-kG?PQO*=e>-` z!Y?OE>A&;yf4Xp);f0YDvxeppuO)6-R~MZMqvXM$=;&=U%pobxAHQUYq=gyPwqc3^ zU|}o}Plv-8{s7+ON~m`3i};cqySsa5?|miw$4f!N>s4ufwAsgmZM)0J)O5Q;u&S8zB4TT{juVP&gQeHp z^z`U3rsViOj#Z8-8;eTgFQ+FZIk-Pt$C9Wg{Ke5u@nD-ceh0D)3c)#|y4zAW?~Mb4 zkQI>aETduKes(VD@9%Gbs?LQ?uOlnN%3o$>~#5qM_YMax?d1! z6QwT?*0c2}0|KU=JQX{`lEkcrDQUh^4X9uCFZNm`i^u<|LI~sMe^n3Y->h9`i5%{g zJ`egpD+T=^bzZ@W|HZNM)m}iu>9|fwLsL^=Phz2?$9!`^)g^q{&)$8Hia*+^bIyDc z|It*kvF;vq-oeR9zvXpKn|KE)pQB9zGaQDImW745khw86yo_9#!i?xacut^* zPZr}0BHrH4&N&2CsFVam4B(6uW?_*Zv90NY)#+yt1i&ercCv|9F6a`TmwccU-vibu zXjIfVZF51vXYDlCSo4Ej_`XLPU(~Me{tIa!t|L%y4zh3PQGxAP2@`+_5Wqk*MI{HU zK@)n+UqYEHhyY73DJ);?_trgV2dDL>?XP{iFz+!kOornV`}QlMnjNwY_T~A#tKwN) zzqQlsHDt@%8|ZbQ!FquupWqGex()CL+#4Diy0AlXw)>lM&D0l*iY|Pf(K7r9$FJTy zJ<|EpsKz!#0#g(i1!5wA7Ihy%h>ijwy|CcAhjbYi`Av&?X8t9eXAq-&vK|RbBL@&j z{Qlj*1Y8Md3qeWH+1D4{hnoeqbqr+GGpHfUoG(xJKYgcB`hJH)VHtQmQ(ygj{2d(~ zAFul|20jhAHTf(=qCzTnnD^lD@Y_epFjr8KRIa;q`) zEW2h{vj;e=F+`30i3&WQOH8yDA&8P++RIf2>V$a_$ zN~drb=p!Sg0h!BQYFMLC9Toe-%4)E~^E)>Ff`8ODqcZKAkbR;WeX*HN$zQE51?Jfq zY{Fb>Afd8ub`|QSfE2Sc6u29{-KPEV?=BTHVs%|-X%=)tFn?q z{=W#A8b?J(n?sFN>I}-mc?02J1+in^UD4}_{os3A<>!o@DPz}@Aoz7pl(sc!rY0!) zQGAUnOUd5c>+vA8#nFO?`>XO&BHrItxVhsJ5;~r&L;F1mh{UMSHhaiA2S4p&hnea> z7^VjY*^aFfjeJ9md>y;<$=+Sxu)02dYIab=>l`a|rP-cS92~tkVM%0_r{5Iuc{hJC z@AFuI>sd|>pRL;;DYs6G8km4<w&W zGYoAgH<+q@hv|A7%btgcU7t$Qw3-Al%M(C3050QxD$s`kSO|#6|Bb+q4FFNlIS=&@ z+;zV=8Eq~_hj$sM(F6!yIVC06i0I4QoJq0cK`uN88pH+S&tK=|Z?}PYo&xogEGGa8 zTr)3Dnp$s0Rl~@Keyf-2)5z90lx|Pg*iFm$lv9Mhk+EiO6MO?n&wa#?{wCAcWIqkK z9*>--z{89Cq*0i*y0+$xa89D%T!(DaTnz@r7z*_d{OmDfM9E7Rdxc}m+j^|!{|<7k z)FQ4-fV}f$9nxEZA|iScG5)}0-nPZ)=3pTR=Q7~i!drWoy`Oyf^2Gu?M^0}k_;_FSybjRm<$IecB)ox<12EXF0dTYmFFV}Xl7J#l z=`kk-r$7xUhrwUo`nNzQ-vIG@Ka^kvUI+aGihN{{tfr%4X}K2gWPRZ#(~&JkW)%3q zyFviAZc!;9gm1RPEQqaJLrwKxVxiXT*i0u}`|nYU^sTHIAH|CZz%DijwlpB}z=JkB zBEH+08Z$c(EC=DWPR1fEr|a38&iT0OQ&vF!w8AGM0xAL{U@>8n3!k@qG?!cgI(&ii zl@^K>dR3NS$}9h}=c1s14csYDh~=49JSpCojP<`heJ!^eL74x8pE+FVO>=WNUdrQu zgrC1*l>*3X_;#{f_*7PHG6|;kCC&T9Vol98NmFLrr3&v>Nt04YYHQ0mA>Df53-m>3 zN5HixQsvUrMn*AK9Ht(2FKQ(DQ8*ZX$YLpFgD|>GP)u}Jx?FGa3e4Kl_<~=8+Wx~M zQBjCv(wn)uC_erUO$TG&5T(yBozRH__hVp1B>_|Y4Klzn0+_xKc>_fj5`MCu9JeDK z74G`I>)mntRCS>}A(x8_H`>-jO!%x~8`Rj4I2H;px*YS{&*2{nT=`@LG+oDtO67{FDe>J|=2eqwL~`v-sYDbZ;+W$L9jms;$zgkXo%(maRpL# z8jq z7c@pp3=I1qE)`8B1o~k;xD~)rxS+FCa?@@X4i)ZQEG%TQ=L*#4_t*>@#{ev;5(x-u z;Di%Ib3wiNShajo6$=Y%3LB6GS4X$NK4REKHp)kRB*jQ~In-O{#QbAGTe{*%x zoRpOG9Dar#TpZtlhjCD&?~tHUF#By#|%#9hu2Cf=qD6AUFH%Ib+ZVd|*Hafq`(f|3GxrjWer~CA? z4yX5*Iww_?e0_F@b7(_Z;xnnF&$h-so^<~%H@tF!uNAqMLI$M^LnQS~t;3@`)WWCb zq(m$@0iqn6{|@um?$v0q(Ae@BHf>GXT?%1{G6sW`IvBz}VSxjQHW*!G&~f4s5QLy} z2R3(NE|WHdl$6vWn7qkA?RVro^v6|-n^Eb5OZsD!j!EO(m-~I0D7Jj3k;L_f0o#Ti zo+iL;=NL><1^ zKtT!u&gup zeOZb-7__zt!~AawSu$^l*ZfBGgnH~0IcEU#1=-#ifTv6?nOt8Qdg`T><>hZsW?%UQ z)kTp8;gHJlUtVAQ7SnWo%oKpA!w)XfCtQ&1SF$fJ!07 z-e(yd@c{~JWXf4)M@O8?3Z@XBL!?Rqx>EMt*mvwNVW732px^IJLgXAfGWuKY(W8mp z&euzm#y!HW-?3kDig_n>tqx?mE~sX!Jljwe{n)6J`F3?8SiE(iIYQB6w{32Q!vE{n zq-U4ENxhBU(x|pG$;x`a>*dCn=(LGrn83{I3Os_thg8v`Ha}g#D!d(FzKZ zgEkXV6%xUyLw=tsf*!1ju{VDuS?XTCUHO|3dk>E|WY=Ri@a9l6H6*O+_h`ZEb+7Kq zXc#wqgr_IDR_OPWyD-6c4-ADzz5NUc+GtghAi%)1vEi1D?7s7#qX8zYjiz59qEKju zdkQ0zE!RwA;^VOvBP(PGXHPEAnh?9Ff$lvCqm^s{1T-`O62;>Kt#A!TL*4277$EhD ztqcoQCuMMmI&fWs&4-AX+bYcgw%B~3l`Am#N!yaRHo z9D*<+K>v6Iq!AK>X3v);Y(F!Slm9b)_AH2`&GD)hvh;Lsp-Be+{+Uv~;^iNCeFKdj z0a%pK#%I=uaU_m3?S1-V1jB5h_0)vlZTZwd0^B1A2zW7CzDbq zLitis!e*$Yl@t;mKdfpoV|LXVOp6thr10BLzf_w=o&dQjB_zy+-F@-DkXNj?!Vw_x zsabsa@?#G_1n8yfl*N6U7>=ix`ShuJvEDg|n*&7ouZG;Vx*tq@4&TRRPzNjeXnhXS?9o}H~Wo2Y$ zF4=!LNBj^uW+#I!0Ki$c@|)}?a}pK4Yd}Cxbln0Y0d`!6RBQ9hZPOB3e4sbSKE8~wb6qPI;vjq^TLp_0{KlbIjg@eJ&koCY7(^GexcyfW`X zwwD&`O921$_PBcs#hPemd318$m-O%83;KM_%EFeC8l*u%}L8 z20;Z(!9%5cC{T$&<^~mPvr2a05R}8?3DUfxBkAD_9Il8Lm%`SXbqcvXXvX{qfw$bw zzdrj3n>_j2_bQbLJE*YMkhX_F#Oqg6w&u&7ACTtg{DomCF-fdt_{0SAFn_|#?aQsV z+VHM|uPBWCqnT$eO&Rr|$hE9yr)!`>F7_=hRf2bx2p6bUd{7uP<5br?n*)I;Y6)W_ zaNr=t;ib>>le5$cr4TnP*Dvv`s=Z{uJ2?jGsq>x+VXa)X*F@-stq^M}h^i7u$yAB5 zeFMCd!}Jq#pD2JpR4HZ;9fiRT9=e=r;lcS4i$`mKW9Vp2|0JQD>W5et*EJwyusBgV{04gk)NlAKGPdUa%IIw<$Y-8 zrL2S_QYCg3tMf=(`wokMgFg?@ml%FPWXx3CBP*%fA+4=llOBV64m14&GMI{rE<3;P z)J8`;TwQwV#iZc{NI1?FvupkJO5uiIy4gS5&(P%8SE2Dh1}T9FNKp1d@i{;Hb+JZ$3c1{PfboF zB@w~$LXKy$h65u3kBTlk*{~yW{woa~FOSJg~WWS5?;vs8RA26LEz$22dJ~)zcuo#l7G>3Dq5M&LK$oe3;q!1FGAb6)9dKI0fhcHQo`#Of=kp(S` zQ=*HbLjN@EMw?vzE-$Jbv5@0dCx&FJ&0`R(E|_q{vA_tZpzk#Ia>JsoV%0pjtg>=> zccz{mrUVIAnFR@}&89Xu$;Mrz*M~H)`R)d6do)nuR4U~)^U+|b$YT|DZ^XK@lc-F< z^@Gmazq5*bBh`+Yx8m-+fgrz`o;WsB`RK&wFELt1{H}v>6&Z%Wh^z{!(L`@Cf^`o^<~GT%vwPB?*|z^$>iydIX};J+)4kU}5RvxkRqgPhV>|l7r6&$X#`|z7 zs3t19?&)(O5n#kHs&#;d#*5@+Q`+iLCo^*!DF~_VfO7yyXeb%`-#~u{oNyBcc+uV!9(vv)ZzfsM;8koz`b8c~2?Kw%DGUq?HuD|*4IcPJXnAWs7kDKwaS zN-w5CrJ|Fz&JPsm!6^Xy#44ByBG`aaLV9MX5QnMr>={d&<1TgSryiqT61r(< z9j!yteT#o{aQIWjyB5zENBjj5OC?3(}%32_{{A|0K@jOZIV)qjs|8l}L*AKq=beA@MI5pybH`OnqdTr0qV$+j#< zm@j5)IJA^-uxsqDrsxlaA> z&_DYz0ml%ZRZ@q%z77^?SMmY^zxdL4g4EIZkbKP*m`Oc`&q+W)K)pev%h3r`)48WR z84`hIzE@su@Mcou@ojpEk}Q<4gE@0u!Bd#3ze_8;`xxLeT5>Mwfm0NEPOym?8QN2$)gDTAzf0a^TFE1y_#4nDOQuG^7 zP7+lmi6p0N!%|`EaQ+6B95=^qmH@`H(aHQ>LWRIQpTMi{2)=*)^A38tK$|opWA_e( znR|E*>pC1UW8iDBew$-ra!J>4;D}Smoq?CZl*o6Ts*ERln`6UoJtY|!#OsYQQQfvx z=ozICK{E^Ac73oDO=fkzBXH}@9ca*Q}L{t8i^TyM!dMGfjvh`HdI;m4MFSA@*>Xx zb_`h9*h?U)Kw?Sp#GklIi0HA8#{AVWx`vzxls-&^1OYiL$4mUqVz1ZBU{gQK6?uRL z96;)O)YR8d{*TsySPN1v+Rm~+i5j`Oez=h}Fq66cu7H`2qr3YPuJE-RmrR)ERlCOg zTrZcm73tftQ(V7e4Q7M~I>w@Z9Pw1G{ljW1;l#s4F&ZIQsq#aZ$;=aHgNY23W9B$h zy3POoW5`_+(D?(HwRdwfDRSDnl+ym7l(zxPiRp6kqs&toY1Lbvo9f@pfLKuj0=9W) zCktQz6W$4bsn1Bay)GMO|1r4Y<>}7Q{A=Am!jx2sUUo0zuQZsMvyBWT!iEA+&qY{^ zTwY~tET&OE&-jDUx4%Z{mJRTkz_Pb zW>-w63T=FDx_VqUkQyp}b{h6Z-rU`p`#D*U)c33t-#S!Jo#)jQo zpzdNvjvJM0-;x{N8b$A7t5YkpJXx99HxRtNj!8l)H~Hnrh5Q~E{rPw;G){9YKzs$V zrniI-o-fosOWqr|{yOyU;@{9Q6_s(gz(6XBHqyJd?5Sr5xiB2f zx3T}sY1LP#)h?5F{0JIwJ>HB)%r5;nqPn>jGF=Wc1p3S261kUrv`NMqwJxYC99&(c zH8uZI2SK{31*jQer{DnVQOMXpz-l216ha!;zn8m4vfO&(H{IVXp?|#i%#0eVaA3*x zm}yKI_hN9X*8-No#goxU3e*V*1A&s!@RVr_fXnXg?z+uy>ea=cm1<^NYLT+*`;vL_ z$->+RaLlccI5`CEZV^7rQ)7LaT#MgCsueOgKe(cN>_B^E$9(nWKHP0xnqPETK#=ML zFTyo=m%Q*HFxt}Ge5o%}8V{)~yu6h?XaHgDcV%Ldio7`s3}E_k7~%GdR@eKVX$s3g z1qHtqgBe@gWivqM8w3pYNo6A$%Hs0f2asdK&Ny!nE z6+|R$ukx?M=vGJFhwkpDpHE3kP%GGB1N*d4J^q^voN{JnW&?yBNpj+bW9`{`Of_1R z>4$5s#|owDoEm$LR~AA-BMSXj2<*$gJ|wzmeT_SC4fv^kiAx(y5tx_f2*tf79E zd{=^tI}_t#bF8Y>_pQUhihLo2X{I#u+dvjJ!ilYRq_&Mq*JeZh@>eF~SB==od0PVG z!k?~Qzqxu?d1WT;ot>ix@^gN1gJUTqORwk4NR*8jODM_Kbj^^f{YWqm9W31g9ieYZq2!pGI)-Y8#DS+pE+f+|a9v;^rS2X{i+xOi! zP)lBimE=7$L{l-KV+#Ix^1Hlhp}HbV3G~t&ZsFm78mNTg18!ks`0Vh{=L}j|YMXAQ zf1wh}g4~0$M1K6BCa<=mt5ZwLadqvO1lfu)ARrOGR6->)2InE(1)$R>AGTbg>JhCP zvJy9pR6lnSFpC21Fdh6?EW>UDC=*OUIefgx!l-x%wX3vsKwk$5rN*OZ6-{ zo;2uny_&5u(x=k{(k2vf!oaPU$oQkk#6&H|%7c>=nevccV~il^X?SdGGs(oLgZ}|> z?oA;GIyHE!OW0Y_rfN!^_#%@j`tRxcNVjoxOl|A5PfjLzpGC%gfopOs=I?C7#@u7t z>1c-gU}8KuJTxYDdl|{_nV(uD>)bhlo^GU&@apg3U|T3%Y<+#=!csu|t6EeN68Pp{ zt%6|^8MJ5#$bl4ap4IjBIT^FUw9y-%>ggbaLjbBb`iR1}i%O98`#jAlB~`Ad^O}P} zIMFLi{Aimu=PqiEFnGf7PT?d3)yKJ@U91QcPcML}S8_Hx)pfUTK~HrTB!v%au8ol`!IUsVe$gpUOk0a{r{h$T7l zcp6v)9Hv--md);Oi>N~?@df(d$)epl*gxn!E_x6EGVT_}(28Pt`Kp5QvJ7^Qj$lR} z#k71|#8hX`hfO*ZI@cd~9e_rtu+h|v^~6wE8Ae1YiX0`iU0o>Zg?-FT|2y4b@smKn zW{P2lhReUUsw(!jlato3Phwe>foL2x=SP{gVvm`tM+m3KOBGX+j#r2?{4rEG+B`N@ zidhtah$FAf%gfSXVJ0*2ggv~5LNw)CQw1sE26I}wC?f`ojEqzbF0aP^k8ub++3R?a#VZ3T=^#40;sVgm|!eu&0?NzG5);de|MeNeQ^5s{B`wx^W z3P?zC=h zem*_WWsoq)!^6WQaMlPrEQsHVRe?cvD@3CiBDjrX)n43T6S&qCcm3&d|_A$m-j zEi+W7THHH(8|K|VKuZDC8wO$`A_r+{X(Uh%+`17A@^|w`HVo9CrLTciw~%KLLj+p$ zw!=4tI}Eyp_h%|9S220bxby>U!#;fY1wmy!Ef1O|C$Fz^HxJpq13Hd!JP)_bjl-x) zhX{v~*&9x_6(us&1_mc}-lv?f17iaJK&_LAml=~MckF+tZ(uf4!60AqRQ8Q_9-^?t zZ{taoB<5$uScTT1JGxFhJGc}~r_&WdtF^Yb45>Nh4F+w+92``=jh*}4@HUS{S^1F}(CdfM(u6yWvE1|u19#v0o zud3W|JUkS)smb&5T1aVWi55KKfr2&U_o)z|N_PQE6yG@)a7TXEJDWpZ)`f2TY9Ioe zmxo9A!)YAa5|cd44Zgw=vg?7i=^XM9(BTh{(Gc>{f~ddgv7T0b8|Aqj@CzZ{s8-mB z$OyQ#?av_37Be!e_s#8(N;))iYEMQ|g^n({9!V_=oKFMXwgwH=0vFi4UYQY6ui{N- zATYUf%&K@hPVdt_v}2P7>W4(=5(~uG(j^e4kd&Xl9@g=kEg+8Al;2gbN1Rgd=sRbR z-#rF-qw!l#v#@Qs&%uEUazSL^CXkr9V9f5fhqHwU%F3C4tnzdT6OW<7{SSdD`gGO( zEZ8F-85|$bS?&a2R3USeOlX3GCC@{?G_PtjuVlwfAUu?Fp<h z^y$`xdP743=_Ak$DQoB9WTa9>joiLxVYs>?rRKxWe*^%shF@Q(c=WxW)yT;iKsZrh4(E@`Y{=lz&AW|*qaOZ6;^BPHuX1Bq7qI6(WMyrKT|+&LaN7F& zpHnnQ(+BpX#$SH}SWpe_Ll;1rZ%C3$%i1Vj!qGBUNpkX^pC%+dJo^Q9sBZ(`O8 z1GwCFl)svUsB5f4UUPC*zy`y@(C{soTv-trz^g=d2O#da@9p7H=I@WNgKQ}fTL7kd z2|{%`UYaD5P*R42RPjqfGg1ECcR@k&AnY`X3ui(5-~ItdE;;D}Z_6&<=yvy+K(dvjMxLE1I8H;sG6(EJ1pL=D z#FD3LA7DhjU0Ma_UL-@P4{-WFDUvG~&WjrS)u9^?J`8#)p}pdJ1?5ni0N%))Pr_<_ z-NN8_DYw}GCF#HOcIP=^cHKGxc;$HPEuegEI%jp?E3I9z&&o=K*d*BqO0a~!gw*G( z_7XvV*b33L&eJrX?x@m&^dEcb}Cuc z{jPp6*xT>THoPEv7I-VCxky20u7c6@{uUZ$Jl=|_ncD5@I5x|)>gu4~lqcAI zNrxVUfcXPT^*sp!b`4eyyH(5*av(y%oA~@WNR#1#=364nVn)iygLF#W3KVh$&G+&@ zOzHf+RrZPiy%K3f4i5`U2D?QHiZJ9(Z6TyyI@_aRO4<=5eFUn1UrLe^)! zs1C&gLWNz2iDmgP#hgVnd%Bub#FT!K4E&q2`%t?`)TPDQGaWz=E!1F6R4u) zjJH_hyhT6O1$G>J(}90w2oJ+BGV|6BrcryI!7{eWROdDX;>W#ySJF8yo#8$69fw#r zII#~K>Krb=hdLnSsCTv$B|hyh%ku!BUW(`FZ%9#bSgdJ}xXqLl&n`rCd6&O<;8euf zSs#d*S?BT}NpAu#?T0G?(Xd*d#Lj)_nbW-~sm?$i&<1dTPeR@jEOus=odS zypJFOL4!@(EQpIY8^b-R#?c_W=fTdrY)|PcfCuI+flZZjLhlPFP+Z#}?M@r2Z_p%v zr=z1Y(T-n*9sMDcRm2sE;2}gBX0Y@tgQ>js#MA1%_#}6+37=~ipW3O>kKP&nB(^lp zKQBH}a0dk1nhXyfbRgrKA1DV`R#slmkRg!h!PMs!)zut+ z9HvQF`iE;o?~3lPw2DjZ&ak9YKE{bRGjj?I$Jw55(NBA1saCq?&=md#^sgH8E+Kev z)_z1V7j)g7OD&GHn6H<7o6zLli@64=(QVVXn{28g^?*4|m)x<}R z{byrLiddo${rpHmZ6vQQH6f%*)W^Vki=?FapG=MKS){xIBl|O@l}6vIUuNU%W;XWv z=T}rhYT_H$KG@7B8>e*{ImR#903@R#If3N}QP4ssF`}E|yHLJRp)Q~y z&;%lSiO}1WbJe61CY3CWjk9|P2X`N0q3VxozsA>&4}^k=Pu!6>B$x5(Hcn1`%Zmr( z&cK0~mju%J`asg5loSO5j40R;tTJ@pYv-AJeISdaCfzSj+Rlpg>W1uuYFz*ihRlyox4yRYz+^V? z)2G2OM>HamyKRs91Tk-^F=b#^K(5pOpc+v2#MPN@J+su+Rmiy*A7|LVji3JmCNJ`N z)lix}*&?EjMc?YKe2&Jx~m(3a}(ohbvpaAJ0Y7Emeqk>GzX6K6&3)ck%b&Z9@99DIZ zrs5_<4NbMwlGb`scb}Y`nOwMC0-xy|kDC1y)_v`V{3R3Ad{#uY5SV5&Q+Fqe`9lRe zueG%`r>JOJGK8z^sE=}F;XosbtTIYo)kaW3)-R=v{os~Nxc|l{F(){3QXraz8ZZE& zPCq}gY)=RBI46)H&&U13xg9Vt95~pepc0QnMQd}UL?R$LC9fdcNlHd$3HD&4V;v(e zz-!_Ga2m5mhN!*HF5f?8y@v~wd?L5EA{@M1-AFQ0kNDZ%B2fXmv0M_+>@>92eNNcp z!cqh^)SjAP5fZ9dmgph*_feq~aNO_W=ujF#eASR&Dn7)#PM zGeT`_8cgC2ZYkePNby*uwbt?l-DsuRo&DPK`$3&So5?dS8^b?< z3~N_Ti`8;3X0nR_y-g-ldDZrC?rnfclw4k21)@thfC?}eFQRtLs=9M(YD$=c z!I0t-2N#q0}t8dYs+(|oC&>){J{cB6Yb7-{}EDC zu##ngE&}RocHm$@A-e>|^M9LG#Obeo^2qO(l*;FsllB>gTVb?Zf8O*>O)ZQ7=Zem@ z#UrABqAmqFrv1F)a&lOpgd-h1eE9t6qW2+7vaQEg-=jOPcT-ZZdE1~K0M8QAH`Uw} zYbdkZj&W|+e3ORdo-SIoH}I1-TG$ZP6@!%L-O8$cvwX!=Bmp+|(XR3&cBlWgjmh@> z!`ET&7Y^W3b>ZjFw>{q5zaO#-t5%*JdHGhzrqvWOf4)&-twTP$e03p4{R&_xu#A!5tvYla-NCcrr9}S@)`T@1n+5iybSsMkH_OJxQsK<5!pMvq222QLE?~ zzYC6W-|PBOkoA9y!+c%;H1|K{1u!(UYw4Y`(AR(8P0>j;~u z$>HH>NMn2|E{-@q+IUg?SQ#RfJOCtH4yr%V=g|wpr4&X+#>m)Q2y96IcdoX2@+(tv zGEKxA=>5BJRwd(2>*l{12QH65;pIe7@6(XOwofI@g5nL+5`zxffLN{}HqB;*i8 zUD2AwtDr?00u#epgC}pD<%s|51_ML;PiB~S3oxq;0zn3oa$5MUu|y9u6B7uE2!5ZA~aNf!F`Sf<<9=W9A|k|V?QB3HJiJBtzzL?cj)GtjIaF54Sy#{@XK{qlr??@9BIjp* zdq76T$bjC1*1wCzOM<|Qh3JFi+}s=#)sML0!F=1$AOwfT5eT055d*yy!nm!E5Ss7- zZ6JedWIGND6=-{Tz^O)z;2hgDvBrXJG+1qGn816tKxPafPYcjk#zI-wfG$B=s#bV_ z0+8`pc#|d70LXqEgs0jZSnb4d3dCw=?#9xpl&^Dd!kcSrWF(iJ$BG_+>jnTB%=^NA z7O*0&w)v^|X`T3g4I`yGs|L1z*U8TSTFQ@b0m1+L4#>Ow$j|!VD_M;8`D0a&^cD5i?(JW#DM6pvXom5&~ZrEj^YZ+Sq{Q;W|9$8kM} zU9ma|B<#VRvP4v^db`S6R;=YB!q@5%!;O+c)-dkNm*;q7**d}^&r`F~Z)raq7$rjf zU1*wvVc3ZbC3fK4niF<3vg{C*l@)Z;Br!c`YWz8QGR|RzL3mfK=dac-x?W6>wKlSe zhA|-yY&rneRcK*t-CJ!l8GY*Wm+$*08vKT)+>hSyDs%v6sxN4^O?Ci~;pgW7)G({D z)D#r}e>^RX_XhOgZ(zAiu^FSHu|3Kx#)Xdu(HU88^4~V>x0MWWQ~N3S?ZRQ}A;uI2 ze=)ee-m^526!aDE05bf|?18dVDZkx{j7nbBs4v9I);TVdBECJZP})q^DCRQnOYGwR z2_XrNFsBD3XAeA5Kp!=OCuBR-eNMu`fh!?B{o%7Do}iv}jJH2?i`g>N3>)(w>@=N_ zg9n`xyenFtg*~0(=DUFi%n0M+$+ou4gTI`5IXE^Lr)BVqr+`hHdLnba@jq~|+!Pgy z_^nfYOX%w(0GSOnAXU$=&gg#^X)qMtT)C6e=y2Q_1+(9}RaeAlmgU)Aw1JiCoiaPB z?jf-=#P2ecT3+5vQ73e`1VG@82NL6+uY5YSc^N~5PqT->;p`NDPHW#ApYt;`jD9ti zJ*M1Bmy)G;vtY#_JQL^-Oh}U`D^|NDqBQ*DM=@y9$hoaXnF+rxS#$RC08IK780|#} z5!wjA>9`a}Y&=mdp8O#kEXk?|8w!RNzXhj$e^8%L( znues%(9jjY@0psIyoWIC11O=>zIrkXC9nANnro&r!i;mO*3(P$al2>uk_`q4J1uWq zoj|mRe%;=vPSeIcVu+)_?ueHdnA?dv;XCf%71-*M0RnKyP%jY1G8$_ zQwM-t3wU)X2+nGUk#UPh$T(&q8k#{+q9eIYK@x%JAOBAa@HCT|kKnEbtI|}>$M+cT zEpFDuZr*|x{n+>V=mkK;Q%!_eLf?O1?QQ+q@-!w6Lpz=u0KilDMyfgfnp6Qq!GFez z??De10xGcXV(XV*I7RZ03(8LFf;}2uJivfZI`z9__r=mtWk6~}p9`PvQ;6I_F1IGT zxiDi7cfU5=D+)-y*o6m)E~U%mL(`!nj1yX7OeuG&DA10YYOxcN{9dF0@NzpM3K zG3D?`p)M;cHuI}6oK2Q%EnnXoQH(~je%2&eHVKFYzWa$f?(g*(nm0Xt(qkctt5K^n zRF{^)BuSp5pK^5HSy*CMefRtsep`?K+C9H;-_@f7Dv#)6;v@ZPg`fs8H$#R&gxJiO+icrX(f=W{cFGot-^Iupoj0xER)a9{&{yhAUu7l)ySM=3zNwz5(N)~1(5+xwRXikIz?k)(B*#W^4 z;wETAdZ(fAg?z;Y`+fN;E}vZy(CraDvi)EycEb+IO}q%*R8$!dhMwwlRyWkZSOula z(ZR`S39N_RF_8U$rTuIzFh2;Ub8H-}f$TB*?-E`<>EITDhARM+OYv&=A@BskiK(D~ zyn8h1=)W?qz-U^38`~d(g|xI!MuWW!x$L!4aR|dAMVugQdH^S?*Q{1QiuyrO41fs=kGxY4v+o#!-t>D>19;N zMu2tLYOtyh9S#+@YYiljgm0#aJd*Kj9>*2{nVQpz9HGy2O+`^Ayk08F^1p^@BpG!B}}0?Mq2prrM%T2rZR|431l z0X*I*j*<|(++Fx>hkcrR+o!%sl^d8!udoRu^4#l9c)9!eH40ps+>pIWLPf<992B%a z$TvCAn~jlaIDc5-;6RJ2dJ8_6A27KAPam-hFDymwX=#f@8S{xp8%8WgMny@W1i(l< zcR%=Ne=g28jUS@Po8I%#Y=uKV!WTvvhXEK1C8fQ%{vaSfK+Gz_W~sy=p&rR9o`0DMb|mEgOw6qb>SJu34f!NPwq(l()wIaS-G-xYD6 zn>&g|z=0Nq`l_{R8Mf03=QCm`5Yuj8Xm}qmMW35*v#}LLi8u%IH2Yz~3VfH2uloE8 zQP{l~@g5_2I#eKH4_NnvktARw_ZgoL@9dbI10*g^tjab_!g^u}qH!glgVm|Ed%bw= zk%mM)!6=3m?@U@+VtW{af`sF)GxqHyne0VG>+rCe9W0zj3smXHa~1DJC@N;Vx!6u2 zj62o;k-@la1w=`EaCCuQ$W-@I&(LB%4fPf|?mw=hP3c?4BqZV!Ux>bY|K(#neIJph zbh6knS^+^ce*}I1F_Q6ZDyksh=?H~ywh``FWUeRpOA8AMIkxOe@R{}w;L;Cfr&#)W`K zq%f17XVAcY%T2ENSOA8)v#2Kz2DaNSQ=A;GP!eQaE*3_5~f< zq28v4Pu5m_{1hPW#IUB2fu9x%dlRUiFONo)gElrc%!CKcL$eCd5UNCh5dFtWy&Vih zc2ufh4$*W1&~)~)v9r&pT*V)IM5!p(Z0(DoL63&HU>kT7f*r62kzdnd|5jp@t>(Cn zJijZ84GjV@WzPBLI=^BXx@#C_qk?Y22{bt{(j2L_9Fajmz<~z|K`_WLpkagsBq)1z z%JVnQ=OEbF%-$YJUuJ;}0XRygkbz~29rSd`lNt<1ypX5`QkOMdxfn>!9bP{c37Z! zRfBKVDxG?`)~5}4(wUGfsef#Ebpt= z1w$4NXQM2WC5rdfHdcQC#p=i8@87N97XN`yh<(1Yf&ev)>p{AY=3nzVmyNp+7ssVI zUp(FRc4bCXlz}Gw@yE4Mnhy=qsY0^aTg^U&;kf|2o_(OK7CIP!;d0sJy-~S4iFUcA zA6Zh8F=U|y7eT8dB{-hBVE7R&u3^G}A@Wp`?XM^j^8EyA)d$a04B+8}LWk&(ho^3* z|8w{2PgKjlf0r}d-kplO6vI)RkB*jetT4ieV}<&xd1h_aorNMjNj{aJh-($#q0oTd z;?!%@0#6-#Z&En7qIP^Tn8;tk{d1hiZOmR$TIvWbG49}D^^PIv;C9eRA7VW{1Zd3l z17_xe3Hayxz*hsIbh!gPJ)0PyzdrL07B75CiBAp=x{`34XT+ zAC`#aqh%0U7z-Bwur&Kq3siJ|7%a%37F-&F!0i51j(l#vXgUJ!D{w6@qHKG!3YGl7 z3F3`53?A_fGK-71!j?yMsbnJF4RoN@7Z(0(@S|DJ&SKDx-v^M66C4=1=g(yTurgF- zIikSm2j|PnuBk}+r?^yG=i@whm`^qY^5&*IkB z#hD3Y`+_X$Cls=au=a-5pC9V1?_gfsCw`J4c84KU?nLpSYVbEsDT<6!P^9t&S4S;2 zpR-<#Sp01J_KZTuLR(8kGduVXOjJQa{R0Y6h(Zf#fpkRCtD})AzX)>-)tv3+dh#kw zT%4RAMsANy+rt(Y7vDnjU<76_;6;2*Hfb(+&l9Yy#hadxfElrz(d-;zlB$7`VUonq zwl$6-Dhlgk_(tNTRb#zzsCwEugGp?oqSW;utWf-L?cDbSf#Buk^#n6u37|lnp!!dY zi6I17d=&g{Er$a_adTU_dnePa-$Tm?id7sBgl7p4*I&3DTHb#gZ?XwWli!c)^vKAn zI$4qD{VG<@uUBFc4NSdnra6IMRh)GXbbO15{h9xsV%x!4f`2f#axQQjG-$AW@` zd*BP}%lf^AEGFvQR^HES&56|6Pojbd^FzyW79Cyf`1qrfA~1QNKq!rtUq^Iot|ALs zN!QtaYqJj#^AP5`*Kt;QdAU?%tt~y>bnfl`c~8$H5pz@3R^uT$%5_h9SOvbceEIS6 z&B19wdmX^zRBpBYkd+QC9Ue}UK3sbfHddUO!u7WN4*j1w7x(;OY{~DPsGt^pTQ}Df z`YZW!ba(dszCO80$4#QEM!%N!C!p}b6LQ;Tjy3(Krm8xG9jD;hxwjiYtHs2?fCYo0 z6kb3}F2h5>=r7pNT&P}zB|&ftsK5N+7rC5=jyKuE+dCNp9UZ5gmu?zCD?gm~?%g|6 zQ;m=CDj0?+6fdV2XI5CozQVe7Ha zl$6c@HlSKO29W0@<_~>f1O$6yBb;=+}6Bja%ENDgG*m6Zf}ES(w71_AL3eC zi4eQl-CfZKH5k}5?cnXfhyVF>S2-202pem|h2c0NJO?ovV>H3p)5ypa-#ec6#95}< z_ev0$!#VKU80(*fbKG<}>=++0oAlewvKYOfO{;8?Y6k=7g)2J4o%h3iY zNlC@6;DUbr%PAjiUfd#d*uPu+#9(TU^QmH`G{e851!${b9ZMI;^mHV_TJ*lFRAKG^ zj|B{c;bGz<%eyUriYzZEc%N=yg*{RFstpyDRrC&+Hw)kYx!#lf7=Q_52WYSDC+9`aMN}nLo<1UUwVv3fV6XRd5q<}u+oM?+*5K`+atGq-a?z$NHPtihf|q(M zs_KwfDdW5~u5sPm{`8yQdVe-T#!+4!PBUb%YQe|+uUsLw$OyAFno)5SSOzlgJ2NN< z?>L1xov{->SXKe}tMe6Dr_+}bm=FR5YK0%tT;_=vi@~3h`SPpYF1$Q1_Wh?CJ)NH` zDfK~YkCn24nYkfbyV@es097I>W&v`h|sL}kS3R>QmW}*l7Xu&qUSJb zj;!LsmOf{^4xpX+4+n=5x|~KSRZ5tT*loW0*s(GHU+VJ^q>2{mkUls9$muf7^N1k; z4LJXpfVEeQMyH{nDTjG_BP<3WhMdyLj#I|m>_DrT60P})1Uga3&`B^Q0|AZPvuCUD z9)oN>ESO--jgOy{4}FBUv}BSS&mbH0lF;YdJ1EApOTY^Bo7>;>6(J7h3^#6&_?py^ zL|e;813$`)wpcZg4D@gY zhrF0Iuwgevv;N)Uy!1VE2IiF?v$D)9f(t3|X!1%7o<*fS51WTy^G-4}gZnW4Lp)4B2{#iGV22-x<_t7V5FA^b;>@o;L#cLUa56MZkQ7>_!y%;#!M!jzS%lZeBxIcZ0@Ba;S94|3 zZl{0YrPLKluEQiGQgzmexvKnIEP}GC>h!kz1H*F=oUHD+? zCK;(kK1&Y)OEd-nHX?x5MHB|E{{S*V0bmF7Hy>9L1`!}+0@4stcLQpkTyQiQto0?8 z09=Hfo*oURMQ`8^f+84c4t92ShHq(;rI($9CYd)WIhjxbtvZm0k1r@W`IS6d+&#*0 z?z4aYx*;G=3Zxd3gg*AsQb{(dIU%OFIHnBp$W$jJO9fygKS5OW@BF-dW+r8Ib(I?q z9Sr>`<~utTvX_?Y*IF*s>`-bT+n9x)KLM&I$!fkol(O0hu|zs6{MItZjUa|^pndi% zmroIXJg{HiyxIL1juV}yx%O1=4mm%QnyPRfuA#AUAQX;@Kz~VC?@M~o;4Q$IJ8(M( zSgASr`IRtv&)5hhR1c)Sqxz2ml1)ATK&D_2#!g7keO_Kd8s9U+u}z#bOyBeWk}gg= z+&XRz{Ocq8@9&gjFkUw(Qw!9`b%=Fecl&tukvhqI#o>6R_UnOAGS8>#4O={d(1X+b zzO1LJhT==`Ge9E_o65Lxl$T+30(8QuLKA_f0W@n~WrShs7#PSV+SwC#I}Cjm5K6CV7_z<${Sv*plGHAWcFbXUSt zAO4v%rn`a?4H3=Yqkq+A6|rPYgVGA>|Jy(#ut)VE8JNBo9TW4+MEkK#6rj%pu>%%L z)CyUfA}PB(HLQlo??}9jM8izm?AC)3VQoQy#p;V$OOZ4RF#362wgkY*007{msCIl; z9OKu)yKoplSsOw`Mb!_uYwheIE_nFJ5J)!}XwV$aF#}RlsjOxw8qJk?_Ue68>5k;( ztMy4+Xi2#Y5J0PoohZ?!KZXr{@r#Bs;NeKwO-WVT@@cK?&NjTnf#fTY1w)yt2C=RC z2fYt@JGBa>JzIRQknDz?!EhWL9PEJFwyfRl$x7suHaC|MIWq#5%|!U?Kd*-XfayG2 z7e!LAxEPn#P+ZIg3xWsp%|6K-`puN!wvU0tjovHc9C&ll+3>k^`-DTj`1X`6P29x@ z+t&XB zi`%l)#m>xJL37w&TGsmugwiaCqSPPZd0*o8*P+XYtr03dlRpcoz48 zKuCzL5g8=(4*Ohsf(%~bGpzJeV0994*;G$m_t1`aJo=-Wr&-JmDH}bZkHrra?Ko#c zf^+bpbt3dkeSUiO8FqNBFf4^k5gf!T_)Xuy>f&UvH9vVZ|PRNpB~#{&nEHKc^u@JfxrzQLQi80-r6K{pV({1XQ~zQSo@Yu zN#v?wpd{*C?rLv~86$(pz-J_L{-hQbH?W0a>wzT>J68Ml2UL7m=^%a;4jZfu=T?n- zeUK^t@4x?`q8UT+_=eL=J&1euu=#8$T{OgNblLs~tT1X}#MKG%&NbJ;0(CT~qcn;& z5R9biN>V5l!Ua(41#!u#}SvMyQw)h$t54?Cxfuq{mWc9A8RAaw9?Iu`=(q#Q_6Y38a_r8`CdY%K_R zW`GpTp%T`Uz!*XeJ`RqJw9$J)R#T7e9vA&-WF|VAEKuc}n*jI6<=OHlpdlx683wqy zB|=8BvlC><)aF+G_egXYD(Jqxl5i?W1!6R>u%l9(s=+nOmUUi@Hl*N>UT%H&U-jJ@ zA@Dr_;|Go*-a|Sxn5%UTHGI2+B4S%48>DEt!=?oHGRruSM;SY(lt$^}GNaJv4V7U1z1 z5T8q4H)!_!{J8*^PH~K~H#~dc!@f6EWLFo5#b$lt!PR`HJ#1eypybm9)6*^WRo>TB zeSH?~%<}51z&@8ZaN^NuRLq2`Q%+6}fe_}WD7(5SG*TyAbuczA5-(&mBPFMxFkbl? z)s9Rg24$raw2XfM2OlR1i{0<>dk#d1OGr5ugQG?Pt6!aTLTL$gTjq!^N8|v{9TraI(59e{m(s6&_=JDl^6<4z zB`d#iZ1{9ja%T}X9v)F6xX}C6HBe6L9L3e{a=gU&5P)I`KNk|Sk9?Lu6I210sk7km zLb3Yyy+m%w3)d=fI1$IUn+~usG;F8u+Sb*mFw04mW$Ep`L(e+WZ_r$3fT&z3k=ez> z(v!ge$C~?7^Bvr)QVJS${>rVOCACAlO>xl%@j(?MlTI$W=Ql4)DKuPGYi(2 z17G0ND42((aO>*oGA9jJu@uIvufJFj^%MR0Z`yuzWap1o>0ezCWI=?js)`C?SgB z$OsjmZ{|C&^&K*_vlgECmSnIRJWC>pmKvR%YbrE4M;C|)ggLy&MsCaf}T95p}{RyT~>Be$lbB#xr_Kjd)f4KesmJ+kU3$oy2t{6P!qYnY(a!FDJs@JrL0&&A!3!n`p7 zcD6HYc5~>0?!ll1PYDXb0E!N1v#=$fCiWh0QSzH$F|t~rbdo+#5omiNB$QpBH)U@q zF}8>=%G|)!b%)+$>XFImMqtY)su*F&~X-9MAR)!JC8zkLM3K#NXfVIXt3x65Z?W`U5Fb0BMsOkd-&U0CNe1IVjMi{y&<& z1Dfjp|Nq*1Bzu!RLdYJ8WN%7VC?h+vcV<@hD0^O8h-^YW%3hfjvdWgt|9QXv^Xr^G z=X}oRQ@HniU$5u$F(Emx3Sv(EV0It*=xmO%uYnaW4HDoR6$kaU`2 zVm1L`hWCb&!WRwd=BUwdu@KEBS1e|3kY76AH9y}P5BqZl4#V()?Ibcq2l5@h0e!tF z;jx*FGQoTXn@r;`@2heM(Kk+((h_qXJ22|`H-Z5hHJoM#kU7yeu)6=mhh`#(iY)xU zMzm`I0DHwjwk@~;A%52P!wG-hb;vD*0bMwkf}w#N{vgQDdI2`;nwm<5eZ}0x)pay` zvBG&*8jBmoh``4I0e@{v1i0Yw2B}D~=KKGEFwufwlr?xJ>j60_QfRKqeVh zSB87J_yHxFy=aALMyuUOEuw(|#e(helHXSFeWXn4SD2cb3VH2X0O`#FWGjSN@vO=C zpRenrf3f!J?T-+(9SOoH?P!Bh))L|vwTCu0R1_6E#ii+m74Ez4j56uJZltaxLV?x>>f5}xeh-W4L;V&bN%=HP5 z-Psq_c#u9C3Qh^&AxA2ohy{SutT&3F5>j;784qzG8`==`1lYM}5g$V_45sHA3SOIO zoP*3?GUDmeUPqi>zy~G!8}wx$O+p#|Dxp%2>`o%O#54aw?{>k7|2`r=CrLvjK_ zU>lQ`k#Y4Mr2LG9?N)Mjc*ED*XX>n92slcxsIJ5DF_1+}>>kU(o>EdGCCNIlz!0|6 zF?`l&AI2deVFHyqz4~76f4DLTX}Vi9vmQ{aKm}#h&hq_%o@^QJU39Lu{(GzoI7+mb zDe$zuV`pbivD1lc@w!12aDqnjUh-#s8Mm%sB^lfiFh9SH0mYTDm>9|$k7c*1Zz3kz z+Z=ESCLT@*O^Vr?C`*DmsURo;30`h;>lX&88gz%M>X4VDo(9$WE0N?8AiB|#4fpAB z0kYz&bh9yIoCm?6J{2XU;Yl8xwxIX4a)UTu8kAO^6&D@#SK7gy1d+OGlwbb~8C@A5 zHL5_AzqT`=LDm_?L5e)YynU3tr{&k+k%W zF<3UN9CNzV9Vy-G@9!^w9Tde7V|3c_ z|0>ZQIa(}wGqhw%gW_l)eZGA*HF?Z-D#irI&8@WVaZ+^J+Z%YyvNX0#a+=X&1rH`w z$+eQ)At9`CkJ{_f1Gzgi5%T!!qf^6>nMY0Ai$pCXvYlEVoe4Cy7nOkJP}Hed#IGeo z0rrR!w>X&3wR8XOm_I-5VPT2XD;H|=bQXEk7!y&+|8;+Vq_#%;6S$CfHZ}$XU6{GO za4<<<c{{GMR@!h7Ec0>Tsr^YgiyA3u6{yuuWiY_$(v6Zc6mS!89+ zz}52xftU-pOlht*?)|$ng7%RDzg|p~qOGkBWdAsz?4rsMgE+>*dI!Aad!avs-K@ic zJ(R=)uUa$LPXD?!UpO_BsN}auA@p44RS|D3{&*tFLYSo~mG(&ZwR+yf&B5000ZeYo z9cM#Q1RYhI3uxD%Rj=Y}#6J?IZVhtRi%zt$Z>8+2>?WX=i#86biWaQ(5%%Gtvx`)77L4l&oc-ZtwZwgp)ebMKEBsb`EGK@wDiguL%Z@U*d6$&*w3xNIp)GV=U-3d$EYg3iKb~_dcc(+(yqzsr&IA8q zwn4tlXPqOd3qlZ}Nss?#D`5Lrs9eGJ>nmRt_^5+B0I*#cGkX&Ot^68JK;$!V=_nfE(*3M73S!yJY~0v(8{sfUgWv^KxLSxwV3 zNJI=I{oDr+$JUiU8aMZ6!pDsc6T70^$e+?rU@WaMMy8K9Y7N|UK{?SB@ zApX&G=Eh7IBg4RwwH9ivl2{0X!k(zgI)a%2UUzgLl}TjkDBu<`htdWb_^4f|`Ov`- zMHy}}7j!+%^&gl01?5W&bo4&-NHD)fz<{o(^BFX7H|Xe|fM1_!3Lp(7Fox*r>b`~m zithX`Q)^-2S#+1CZJEeN#v^6scfkVCGdGuYus#3S0@^*M*^6nl{g#g~iKVJqltQ zEp*sfq&+s>3<0?SA}A+^iT=q)Y}s?d5Mzy-zvZqAuWW>cFUz=$UI$*WNS3sd5rT~U zSxPGZ4RA{ZgZCTYFVgnQe@`I9u!hmhto09`D{CJ$Y{|E59Zq-@pK};&@~E~u&d4YI z%@RY)AVhhnU_AqeC>!D#G4$NfKz!XWggEzPWMtGrNv36o7tzh`&!1nTa!^9CiN^k} zh&ZZNV-W;J;^G%B`BvK(t$nZ=nC0cyIFGLQAbg}M_QH_NdOZ>l#^o<>Z^4}A2dFa! zB10WJOd-!-(ChqFkwZ!*N=g9_o)?@IFN)`ctZ{3e6R~HwKh6=#|C!c)n*zTsC2_F) zpTaas#0Ldz7(fG~%5fpfATe3-o~^-@0Rm6V{*ee!8w)!fT2agh=m=a9nY4v&c>pWw zpoRqlXhO!4H!fMsxbO)^a@w_dY--CL{r>h)OH0|pB3B=J<^3-9`q{`gHdO}*o9Vv{ zM?6TbhL=#uk;QAb4!u@G;SF7s)5gIY#Z&MXNo##6Q_@P=6ObTNtdnM#Dvu<=@JR+nC(Q9uX z%i3u(svUZ0_h(*(|E4779N-B-%(!bX{CjrHhS5C1K>TRpN6?~`DlHAa!D==cYQH+$ zdIv17k7N{jYG1tERHo@Z8)){yJ^dI=0F;}K+8AcGE(S+8sVzFM#h?HU7YKb{&?awz zUFE9*Pl}15At+Q5i$DOW&qD!+89SuW73YPvxv$Tq1vEjBu(xwmK%VZ~gz=Su6;FFd z4RUjx*Idz{hEoJV5vI1ce$cO4#J(*`}y{3LmQ0rwr`G?O7K)YC=5-1{83-N{Yd+7KFBI&>Yfq6 z_XC4G394v3)p4;;0OO%v?ZWs%i+)?|8(sn8SAVFn?w_6p#S)<~ zAUM3O0QI#s&oGt<0*D@!@Bqq1uI;ikHazIpv9q&#)bfgd(R=N^C9+{iyS!{4N(ALy z1dnPBMRbzcK4JSDmR`{&uu10J5FGm68Y7}+S&r}3TU{7{0NVqo16H&yu6=3 zf3|pXgCHNpu0KxM7qwC}m-A3{J{}t@QhN+h!cA~NOqjg5C6|+E*Ku9tpUBNy?%>g0 zlOTdGEi&lw333LY_*fjiTM@`AZTGs~Uc@ri zoICtCC;#ehVU=kuh-ZMaPobG(o>_r#j--Pyj@<>3;M@QX*t2gp-kv8J;{8p2%r;GpD!|Jww z#z&m1i!#hoPdF(DGDTmw!MV5ec5rp}82#ltZiE=37*WwRBU?G`A6yH@k|v;N#W#O( z>Bb1#*lL0-c|#-EB$4d`B=O#G!Hcx?XXk9z6u= zZ3D_)!5+q@wA56N%&e>fnNOZ;PntjJYF}FCLZE?0Cs6vCqCJzmMvvgKnFe(t4~8QG z;_BtIIFWTqUkPkq`@t*ug3$pm@kysXLW?QBy2oexgZr#cq_ysO$s@E=cvS*qO{M6S z|JyyXkc)=|k8K>3$J7ej47q?EL|IYsHOyfX(FKdU zE@L?(db#h@(?M}O-~r3mt9*#jAh!;Wc){c#B}ulW^wJbo$I0bEiFUfhcny( z#O?cc8i1yjN$A0sb2XKZ)!iT4Q|37LL(G91f~*I#C$I>KqeUe^Y( zUL;^AH{o!2YHf`PnmLynH)?daykclD=%sNzMoGcl=Ky=+`fLMl+WIE`7R&vakutqz zXd1FOKV1_sMIVbe)1+)60WQ=T~usYVjV{Y-&;To9%JjLjt{r1o0Djnw)v|KCG3D`>9o zE7q`re(PqZ|KP%!fz;g@$Q&CCOwSrjk0-Hu`&P?e3gkh(P_V9h84^JrSKHO)J=BXD&`-o;^#sgsiqcC|dNpoHyzF^M{&%`1X0b?!Zhe zT})W`W~&OgW1;$4iBDFxeclG-hNyq}-){g;D44!3vii z(`1Ritu<|-)+_g541mIbhe0mFc481!Y*Jgge*ILC0rKqB+cuLwgwuf}ZoU6Qw zzC4sv4i1j-KQcIVBqXu<`Yl%I+fJ+Tw;A4Q!Mkp3gQ}X(;mosy$HD>d?LY9jHeC8U zr9tNT*OE^zr*`PQok`#N_OM;|R$bt|%kzae1-8bpM)5c~J}cgWztYYqQHQ3{7qbnyIysTKiQP-VOUw8fc}zofx( z98*a^e^0~g`rgG->CnH19BjK?|6de4!vAw`P~;Ur4#jJe`LI2j576^$sNWwrxD$wkpX64&0p! zixW#{Qu*DpFE3Ot8qIxUFOqU5a=^QgkBNhovcmwiq{x#P8h4qk9|eqbbZ=mvsDrmO zt)%U;&K)?M-kg7ck#|@ko(|{n zGasxwGzLF?k2yS!3@am7F-SGq9iLbR+GS^jAm}AA-T&ezc`jjn@{E9yJ^U?C2ZD;q zha)3X7t1*DA)8Ydy5xgQo2$*qnM(aS$U%4rB9QUzPHSsKOM?wfD7?1qMRuOO!SHly{QP1K3=R#S z#V4V_9HY#LeSO7lL$ftc*_w(3Qnpnsfb0Paib=~WjTVYUzoga*IuWi7B6^uj2S@j= zsY;R2iXs7*qLUM={m8h;5l7hk-0^XR?8z}bJ-zsi*}i6pk$_U^bLUiL*kWpGca%YS zVa@Mvr_jdZ1TG*KclYE&8e1xeo`bJ)sVfHE8e|)5%K1(=Idv`2MmlgvZnyZk-Pt`| zTbVPjeAjcBkzyD_U`Xc)^*i(RY8-c{P4UivOZH`&Js7OWT zZEm3hLIWG!EtY#)2j(Osx>x2O;}YppSU4llw{S?-FEFvk8cYe;*x7@H!kb^NS%Q`h zRiRPhc|(hUV3Rv=?S0)2gPi7ZM@4k$?qo6EGr$bjY-3}Hug*kR0JR- zzl}0%p}s!o#h+UB$E`lAZdJH!qy;JX>)kJU-nsp9gE(Kj}mTNk7|?oV#rj&s0jYdx$(ixC2i zk}|;ju7-()M=0tc4Ij2<1V(+3$!!~ekFtbeoz8)?Knoz@0}!on!|jw$NK8yQ$erJ= z4i&{5-yp9(eqk`^(0yMgHioS{t%PO2=oZQ<3>|~5&=_JMXSDVW1H#KHLbA!cvX$Xj zErN@08P4U|>X|AAQv!R@sC^guCJYI{{=U4pbQ{B&DOs zGt?$+KT(b((#&S#9k`{u9%nt;-B0dlfBw{e3_o9`LO!<_%3Jl$M)?Qd$@tzy>fxXgXu+`uwpbQL+aXhT_sYLD z*`I+!P^6-w8aPwA(K^d2NSZE{R#n3Ja}}$?Sm|(8;w9H<9uANRox{Ti#>t+zk|a4HB>2Z z<96Rc1WuOe+0Y~YewY-vLo1TYch(m>@!}sVD`$l5^3mqT1A+kTnudm6h{#2ZtW>K) z2ijqGG{-L=1sB1n(b@0c_W*K@d{fTy!DUez--$`K5YIsspWBy;+lC6_2haX+|I5e7 zWpV&6RTJLaM zuRbmE96|Qa?*4uVz`U~Oe}oC?#S=uG7wJL7+z%t53rOYL{74Y{lGjH@NVhkvGMtBn zq&Yb`@t|sk?vrp-hJ(qkvfNw*xbLh;m}Ec0Pap`GazxUR#wqV*lG{yhOF@P6o^ z^@MCu7iSLX`}wI<5u*8dE`*$GeqmY*E&wgM&s$#okh`J=UvM^2h`cdrW~Zz~M!)lSf#^JexJwc8gEP_Eeaswz2 z^dJHRDbRGPq_0=OQLw%G^XF4~Iy&Cf-@lPy>e&>5BtQvgJEFb4{s{~Q3Z;zG`w{ik zZZaAWL2f`(kbh|3o2O-qnTn(s78WkRn=R9mAI{c#76{~HSm5;~74Tz_zhDvb6at%2 zP@jSVI&_v1!X^LLzwiA!goZ)ibQ*dEQ$TKEaI=KV!Ee3lDJrY4)cAxAO14}&56Tt% zq&4E!zVUj4x`M1KQwZaGGZ-puYj@ivw?z@ zjj;C}yq}JdU&jYhkgiFL`{J|uklBVi5i}Akx$&U zbkdCadfSvsLda=e??v!WabnP-qr%;t7F(mhgHQ{^<9z9}-EPF@l6LHbm zXT7rjv9JX5^s}%epIFBr=X{X181mq&2TTxh1#fW!#SF$qUfGAR?n7>=H2|0nV}&Z{ z!w0CAc|eHcPfoo04y5@3pu=j{0%;4rmna-V+pa{dZQQ|!i@t}gz{Mmwj+gX|_k@zj zc#~~*g+6_kqSWQx<}(qHlBIS$9Zuw4A(G;ZIKQ}TE&~T({jS(z?)lEy(SJ9CRM{{8 z8F~cp$m@8ROQD5jhSVy$%s)iv{Aj{MTp_H&CM*BZztu^8U3$i06EiEzp;_^^#{Bdr zHGDX=)3dUCA0!se;!V-)j`ff_&{@dyGp7yS0>GbR5tayTc!5g{%a6+@Hz&ZP^$o={ zt5ln{#nf+T`TguXICOI_?7&z0Zr}L<(~2#|{SS4G!*>EYTZ~SK$O7+1JsJD{K6K&a z2CSEKvcX*{54)@q;DRW-4d~8kfTev6@I4ISz|3+)vx4vUe;heXOv`k49Ujqp0fP7g zdi5$GM>=L%d=cEvGCqg$Zf^(H`r2qoat<<({(c)2gccYJqxZt$;qcYeMx5 z-J`mg8@+8jnKf*qm={nD8%)RCRoMF`IPbozfbdONhZF(iDuhvLi~qoVdtPD#gdD96 z4Go~%Q@+&epR`Bn3Ye)cc9$FKpmz<&hXk|S4+^+^sC4>a_#s!d785?c?1lEZe8O^R z#BmSFfbi^6$Cwf{Xn~0;5{PtR9r9+tBn-SeY!3ws3zS{IeAC#h*5Chx-4B*6Z7yqD(3qzQ~6fkBd+@T^%B{5 z3EqQQY ztk-a}esBAasFeMGGu8wd9G#3ohDA%~V8*5e8qj|h9_MJsTr=#ZW*tL0)(~Vh4UJ-# zZ)yS?vaVcTpT#FQ&#-(C(2xA0+lT+4TvPSSa=*yvL1S9cqwCc@G=4ph6ATJI zn9$LvvlyiO^xJs}dvoI6NM9^S5xT%2e@JNy*$LE;r*Q#VJ{Fb4t5TqL668}p2!9u1 zXV+#FzE~3+vft>)U8eJ~>fh4BM*$t%a@yv;-nhxi8YgYCuHO%MX9(?39Ok*IH;l zNR{#g+ey0U3rcuD0bwO}I&OYRO-VCA3tY*+pX1f$k3XGfiW+drWZvbcv|gF6R-QOs z5+1J?ncdMTh#al8r?87s&r~$n(iI1zB}nC!Kty`@M`bu=ZyAk>itHHy9(S$9M6T;H z?a|(JnO+3WuESXw%^*gsQc#B+2E)_h9mNWd~@^Xu}qmK0_sUX%Y*Up zrUXw4@}tS^;j*J3?AAj;%sFi8TpQq}sL@X9A!SRzIoFgHvX3crI0{ty>+Oca4XgBZ zv2yLk)4DM(pyh!OVYJeLWO(!TY!+K=JLMP*Q-b&GzSef z;4+(ZV#>zm<6EbZ^q0K!o!~+m_w|uw{V0fEm#%zt&umU3OSfFbjM3oj@~_BIy$)Hd zB~49s^5s;1ZVCO5w`*J-sW#Gfafu;k03FJrx7I7|o{Yn@Y7l%s8VQO_|a$;xCL$m7b zUjfYFSLJfQH&X+x=H>az2T(Thc4y>X3z7W@BCWDQ&~}8G@nG%d%au+vf$FKjRPN}Qa1j~ z=m5WpJ-E7$)4(_qbdCA{mtGpTW)mpqFb5Eb;2fBN#p&r|iM{HhNJuqu+wCFIml;hW z)htS2+rMh4WqFdChJZ881Rx1US-;5V-!i)%K6zWFC0E3BCS+y*_XEMmYg8(d0%S=5 z;oTF>Sqyp+sGx=<3Xsy-J_#Pt2f@xrRbuuWuqsyaW%yqq)bIp8M=XJRmW$p0;hT1x z;e%M29-HvT?oLPg+FzoSc#^5|Nj}KJfr_dyNXM-_t|k>6aAduhn zk{&CIcGg?R4SWTkdwW%4gxXS29h=eD3&k3A;7qXV*e_7lZ=;u`hY-^3eh`9$xvJz_ zD2M*{Pl`VlnM7-fr>BQ(9m-UqC5pK*c~|Y~oR&peN_&JsS6a`jbgW$RBUp&Nm5N9d}$m1?;{Fd@f+fjs|V4A)UK$AE$2lYbe=d*Qes`RPhL4q5+VS~mu>ngp78Rk1QH7_~InF3?_pr-kBg4>eSmYPXg>o_|M%itr;Egn=Axai9h z!G>qaA#5tRcz8PCXlx$&@?|{|noS(RoP_fu7S6kA--B;r8ehR_gLQ92KuMKOuo1{K zS1L3UoZT+rrEt~GgVxH7jK`}Pizi;0FJ4DXpS6G-7}ejQq+`O8HmEh_Bad+{BjFrBseISW0AWzDME)Xq?vk6$9$Xc71U=QEp0Zn27(lp6;V}pDqM@~z@N(A?> z(IaXJvWh3l(<_;xpQ5M@Ltt%132=#+WKBwrAPeWmOzo{%Zt}>esGp#=!-LbRY%pJ` zG%XpGe1Lkf&sdm)7PNV~khNqnQBn6mddDYGI~W<}Nm8N!F>8{3*~-5;Lo7?_k5`Uh0XzgD%+mA+_&l%{YJrrYY-(liic1zyC~f4oxS+MN)uEqZkY z17RdAZ*Zc$d6a={c);E!8E;it`;t>boOjc^zJ{6O_1hc9pPJEPSVZ|^$UArsHm4~1 z`X-#kyj)fX-$~q`{1FY|9U?CtOl;%?a?rkd8|?x~VMFgEZlSbpSwdFW)x$_XLqkf0 z#bT?s$t5TEY$E2xrP$HX&^wizZgB?e5oG#cH<%;oFYo0y} zwWp#&o`4+Sm+N%3(KS$6`rK#h1@=@7vVP)_JUtM@+cJIYmdb~`d!fHRf*2D6-r3kT z3Mvqwt(x?ev)x(BKTp?zZWb=o2LtEd{6lM$=l+^+x()q9e8vVIj>qz%FC+sz;ULHB* z;(pHb_{)A6klKF4SHwy1@}@LH7x7;x-|87t&%e{;5=_l$ z?x(Z0(+pWqfZ^vn0l&nf+i4vSMSL*K5Y)CS*wnkpaF>Jv4RaM7A0L0J_aW7r@rQT5 zk}4UVz~9*-Cahrss-QMsyVkUskJ1pJ4tWR#a43AzxWl25ALZcg9>rRfijp)#0uGmY zrU)K8dC2i6%8f`MAZ6U{LNzbX)hGh;1)p0mOF>Zk^vXZSbiX5t(In-VQh%j; z!W#mUS&y-uoL0*|+KXbL!`m`3-24)#S^is%lt6~JwzV~v+$go<;fJ`OnyJ!4fhP}+ zr;@qJ3w?ak8rY3L6u&a}*<(G51Ps#Kd`Fo{=U4Z)SjA=$74o=S$PXzLSig7;M_w6- z#+$XKqpwEdj`^3O!&qfo!wcC{@0c;{N|H~z8$GV_pXeumZD+7Zn zI^tm>+v)lF0YI?2updhx&azHkP~+&8kS&807him?o?9#D`oxN?FH<5(*3-SvYPv}X z%QAv^^yqlemptZZU1#~*=3*NJH_Ze?Sotn+!k~lrJdng$1b7!N45+uKY!C=w^lU3W zAbZQJbuCqUqTRX8TxR#tcS&E>XGsv!{dw6fQpFlseFBw*%Cra+k_IfxA)x6i-=Sdo z_&*#b(w8h^A5U%pMhQ-uAFy-(y!j8GybD@O1X zMAt*e!7ngRss z0Ih=CY+|OQm4tR}{K4AL5SfYs0e;@va{baRg2ywz{xJbGq}DIDT|Iqo<52} zBcRllTUMjD#ef#lU!W6fO5*eY*;FHkE5Kx9&D|;Q-xI-gHBgLSJqItQ1-Qt+KnnqU z8SEO$F8a^Nk(!K%Ry*Xu_|0>+RDRy2 zai2>`toJ+=ShEC_h`Encfv^R}f`G2d*<*2DRIv?*L|cxZs6X&LwsfBMg^aN9Syr~@ zp^0*TV*BPSd_KsmQ#AN|{}uii{t}74#sB0#0bwt}C{GBPh)N9!`L9EZqriV0lQe}H zWPEU!1Xor%o}NasjeauVx_Dx2{0mB!6+l*+kdhJxF**dm`+%(nIw{i3L9WLr7w|PJ zBV&Ve#E|P@QM&bvEf<%pxGQb*A2=U_J9=WV z#zrfaXTizIDPh1G6=(??AAF`DVL-iWX^9CgH%Om$*sFtM3ltCvp}G~ps$jKa8@c;b zq4#bA)$L@jikBuT=029J4H%b4R0ggM2rEKR7OZ03`%$cwLkzZOI}ilUw0KrKC8rZJ ztotR)#z8UcBwg-O)>6QIeSLBm)^tj~7}kARqeB?*fp85IWMy?KUp*J|Fw=iOYCUFL z_{cmR4wIxXj$^=}x`s+5)C60~$IuxK74O1iQ>s@oWbW21otLQN1~e@jEEyn?eiIZF zL={H%4=X4K(L~9cCTA6yKQsS{b*}%GGS_L5m2YR4;MV>YP<8v(<3sLJuja#wBxHf{&Q8m1}iJO zM24Ffufy(1`caPpb2s+k1XlMRFtkndnjwu970Hj|c)@V&WzvS<{!C3b2WD)Z!W_T+ zj-7G&%3{2W1QvbQ3c>>Av>MFkLxs%Tw+b%YzGdp<=j(Ce(`)5a`F%C4ORIBu-#>K!KhX#6vGNtb6G_J`-gU>g@!q_iALbjO99#|+;LUWA-$o_(hIU7Sc zZoR$?@|XZ!(gnA5M(4!%_)Q4C`U7976BOp8R8&S^YaVq3_^)CxN+>AULX`BStfgY_ zptnz=(xZ(fh;=9xy(JKz_;|^$z`!zgSsa$KT9};S&Rzy`lYBAY+z}KQv1#sh_k=`? z3Map1vF|K2-|weJKq%JwCwUOwXy z+!8`l{;o%~)N>@cQbF&3G}-)DOoWRo2%?gs!G_J1wWJrJWpZ8>*Wy;#$p>r8x;~QaGv zZHl@?ut|z@%gHjgK{zjwy;kcucQ?7kNa6kq{RN8XkSAbIH9Wlj&$pX5)L4V!kCf;7 znWW|{Iokhe0RrBgl>_$p^7L$LGUwxncHKQXsnjcH8|D5+(5oB7i#f5a?f|s(NbQz! z2^O>+1DN~S?LZ1VWJ6%ehxiyfRErdF6bJ;w0vj@Rz1q=SbKbK=&KorjKYu=9Tw|yA z{Wvy;YhdM$QLzW{8pPD|3JZ_32?&sYYS#e6*6=b-?!F); zZYPDjoQnymcvWVWyz_2-W8;uOnn>Hrh{SmC#+7$1|N7+utBhZf?gosQ*H#ls7>9UZ zm z&@>uWd&k)Q29P3QsK6D-3`G@`6eX=fY~!E#=9~ZJBMe`p93owQAjfIArrRl}JNFk*w5;or65$y^{s<~YM5%kVH zP{~?9`Q(hw*#dq5xFCqZRU`>-q6-+j!+|b#nhexo3tUJh|J2wYlXq-XT^wbab+=RQ z8i5dzd2QgWwuLpAhEZ1LPLI@G!79y^@vtAbUh;W!w((}Yp2Bj38J{vFq*UNzUFXT1 zv)bpb>>x->E;fD~clzNe23CXUYsds4L4c{?-4un+w+~wjo+|Yt-!mTJLB&*5QZ!c? zMX*qQDWja({^ESI@ndz0o~4|`yT5;1^EY_8_Bw=e=H}fuVmlFqLXrZAuR(Wfrib(* z?BRoTxL!`1nXTCNDH%1V|Jmdibo_O7ohZ1p{`G7|@XT?h=`9&`fBa3XmdrwPkOPPH zE5&ffEu)O{01aTN7?jSZ^}NPAREKB`)$B?z+fF#c;RI1x@C#@-c=~by0rP`DT6E`E zBo+Fx<`t-qOe5Ha_@Iev-4$kJY2~LA! ztZr~+v!e{fMSmYYOP9$C$x-z&g-5prvL_*ZH#|r1DLP_n#=z-5p5k}Pj3=4U(K)dgW$jv6V7QY3E{+3YF`FTJ_4kq~I}j{r zY&gnE7&Ot0hOd2jvFKsP|{T)9nr&2<)+Lu$jeQ#=b zg7kPnb}4DBL6@IG@xJ8y2X1deok_?%S5<^QDwVgoC<#1BR?%|*c+lLuKWOypyov~5 zDBQrnz*m6xqKpD50_o`wWyV}x6^Y^_b3510Jdi6>ipn8E_LX}_{NB!+`hP1nRqvCQ zCi-lWLmC#|_tSGDZ?kxM309Dnl$HDb0|f?YB3mBZNM0s7blN+MD;NQ*__e9X`z^2P zhbd&nCF1yq%>&<0OjF>imKGJKK1mh|2eb=*fp9-x97EXp3#tjm3N)~@;|#ibgSbqr zaviU`_SSNexsaGVDfo9XDpp#E8QE4hX@vjd=jDGC^yIzNGPFKbfa}n}W)g>xIra1T z&Q1QnUy71InunNojZt1@8oqYo8Vo>AkHA(A5EDy zFB*c>Ikq4RPp>gL;E0EPRJD9#8UeAe+~i8G{a~&lnY3rdxH9j|ec%KK8$i_;Ci3z@ z4QwiEVh%HcFRm_5F9O@U8R*pm125ikNWGy-^Sk?kQb$NDXKJBwom~MsK})o`#2buF z;}ZE)$i(A79g5B~FPzN|wRFxCUHJ(4^2+t8x>~w56M!8NtP;*n|IP z7^xA1(*7`I$}T9!mxff9jo4M4^SA&sfgSX}h?j=KGXC!Fb&u1!f8JKD}9TXFdkx;$sE`{M`WMD56;UQJ@&p@~9c zlu<=HukIjgxEK_O`fY{}abA9)Z!MQ`f!iw#fEDnIdQBSIsKi|cW1 zh_SKHA@f;x6+~DEr#Yg8!oe`bsU2J=$A!bjOL@gS%ZJI=_7a$Zx`=rWea;D}O z`>rDEBZSU9Qf)icq{f3Xn?U|AI2l#y~#K z6jZ8DzXq-A5r5!Pz)5hT-dv;15epX|n?M-8z5+y|hBM=yLmzh-9?Cap$dh6U51=LJ zclprtS(VE$A}w*LeHr8#sm~cZ6(aNR&HYJME#e+N=*cc`a{Jb;Q24QdR+r9xNn}{| zh3hLqTuSNvcm z8dXhze{VE<-^0s<1bJbkatvasDoj#@TnD5Q*D?WCgtQripd;&! zym9MrYC%~^DGHJPQerZlHcwZ_MTNjU^vBlLV2+e0G2~2H!W}^e^|N3>RqCULB-83; zkglMblSr+fhksmkd%pSuA?<_d7$B=Idy&BNot;7_?iTlMlI(K*ROMTnXT2yHD=h&& z4~cxW8M{QSu1eLou#Il@pM0fy!K;mulHcC4>`%3*#}^0SDybn_mEEdkwc9QNzY7eA(BS=#9Qnd z`9s{E^X!kX>T~^?o!RH#688ViLCNECzH&TelmB_snbfODQ!0Vy{%6P4yYr~N3Fv}5 zg%A8?3QOAU(bKKp56-9Cq}YRe54q-iFA3ox3e_yRkAZ_@@z3E-pfAS^Dg+$>PE@z= zBZHOnoHXUN$%@C%c#*xm6J**0g!^zQ*da`&)}Gln%!(ppv33(_-gn^Yd_|1hi2088 z5Yx(vCHhPX%`hY?YCs)S3MEusx0G#V_Q@DY5iYQv7=VO6k}LX&`75T_iyaHX##rjp zE%CvF3-s6rH=%PP0|d=qffz)|@XwET1Z<}&GE~6qRCN6?>Qrn=TeNE|ky8BXs@}_P zB=^<(baNJPvVMhG63PwP4W6~Bc7cQ+I0guoJH*k_^4nj_u^^xfD*w%gl=VNW0deg8 zBWt!)*g?w5?7kJPaB3!0oV@q6|99fHK2=G#Ib9tO!T-Ovwg^CfqPymf@QOud&4aL# z4;2N`0C9{enwkoYx&s!`;oY{RP8(@>SSP|t1T0>O#IOaY5{ z#-v|x%kN>(3N$X9|eZ5F`S1@4Pq^W$8a4A47aUVZs9kR8)nzs2+0J7fyPU0o=^x7r8#J-(EoRFIV zm6Ga(p``^40|OCUG7OfMUXIpm`_%XQ-b;~UqJgMF90KU!?&MnU@J;jC&mk%WfOvvs zFikJ#-v@Gvw`%8SM-!~tXn+yvB79=&fl~z*k*t)rpyN=9{6puA4PraEHUOcS=Akyh z1m4p^-7+iiKCH6|&`dVE{8Zzv`?b7$gMq=caMbpJ0mqh@<%&{FSL2Oafj6{n4=tr! zm;+7Z4M-9NWH+i;8V06jWHi@9HmB}K)jNL!pRgsCY>)LsB;}3$>LvH{+)%ieSh7~W zpo~FwX01M)%&lh@U{&3Q9WczeISkedV-gP+mmqx}RF3M~?CjfppFa!2ExQM;T$ZBv zO`d<4KYC;6717WH0lg6qEGa%@@1X)-oOb(}tXkd>)QLHEpOQ00dVCw} z#q;MuEmHGIiMh+(lGu~>#AHPaSi?8Pq!!O_C;!7Q#U>ID(e*7U67nk?>foR1c z8p}vePd2^eU`s&ea;&WCkRDVA>eOs+;5{rNji>LbO5s&wpsUfx^o}q`@6_(R^a!cpCXPal51@$ij z0TkQda>O>YJ>B<8*!@oIib7RsbzBfyNGw=U>Ca-EVRK8m4(& z57YtP=f1m#mkTIA7gSWlFTY=32^{Ji|5f_-)_IDJl8R~%7EWexpdl?X#O!)OEG{v1 zbv4_lm}}QpSK{XMK08aR+U{+jbGv7t<*LQ+pjq*fKk)zf&B&MxchqlB z`+nH(%m}n|q7FTT*o3QkMAb1nJ3AFcd=cJ#x^+)AZlhKV7=HoXO*|i-J{H2T3v!3v z-fPIur7)(GxuUlFHaM7GqE#A#I$1ut{_*9@mqv%8I4HoAn4mUbW!=*zKlpcnFQxpXia?uY=Uof+u}UDz_;xT>s+E z1fcgS$l<#|?1J&H;=8+7=NjXJ9gxKtMjfzi>op-wG?sezBRWH&7# zv6^^l`la*VD;hsViM?>ejEfqh=gROEJA!`LbC?Jl`?0AhGrp-s@BtC)uAo>Zh$4r@ zcK6ISUX~B(JW{1!1(PFlF|aHTy`ssbF-(PT$IAzUeGi$Hc3H3gT=X>0pm0M?uQo^b zcP-E)1Yd6u-o?bd1LrQ;NbO4n6kpBYPIi6&K+F+{mN@y^6Rz#;gT6<`QxA^Ha3tyK z)nlrim6dLYYye`uV;$JBoM0{4)JftsGWvsgZK$7hUjt4h5c{uU#Mh886XtdA?q&1G z&^;}(Fx%FXk7@PK%{40yY&C3Xi1}mqZoznhqvXt}RnJjz(ed26!_iSkgVXqqNExcTr{@Bcls9nW zzi*9(j3HjX)}SiIKo&!wfPMoR$8Zrtd;wE4FiMdQJ+K{r0rV*>LO^tu!<>*wKiQty zoj;as2A3ZJdwaqEEiQg~*~P)ZtM_t{+-lB; z1Ry9K(A#8sPqlp!%hhC#cWP{;iVbOpvFQ|9tV(3iZ^z+S>SPhSijLg!ujSNIBcCP-k?zP;D zuVzOn_H0-cWx6xiorex}vgREsb28X@sh>RjG?*3E0p7DyZAl_D1%8aV4d-?UX zQp!VX>1H4V@U~w_Tc6@Q>^8QvEEuuky;an4pjfQ&_y)5YGogoke(a)$sCwZjAM9LP zB(onDeK|G?U{-q_TqTP*%uIsFR#w(kkE=K)L*|1J;0^LDFbp-rVyLU9M@+4BJX6cZ zfllU|DY7msMiq8q-Ps4tE{E{2KvZPpC9{~A5#WO9CMp?u46p5Xg%8(Xt%--X3%M~j z9PGM3o+>cwS@p8tWCm3(47%S+XktgGzOp%WmRD@4-2I5m?bQKg6+mxn*IXZ`fe1`n zN2k{do@iJUf48XxH`NcMMj;<(wNsLtz*CK(qLi0d+Iwx~ZRmpOUm)U}UY0*k&Tkfq zOe>L+r6<_arSgMZ382bG0EuT~$@!7r+V^{aNTmTB*~c@%vjv>kFIrWO6X7$>)-`$_ zZMW`Vhd zJ+r#`1!-BW@}-zG#lQa;%Ft5zHHG!{3DR0;TSU|<>?Q3~5<@=AGUMj@&pyQ1l+$~7JEvXr-f`OZppUNj7K!VJ?^Y~|O5AwNINEj* z?G`w|h8+6z!pub_=1z+#x|sEkyz1@y($cO2TC`Pu@0qv?ETrpsx_$3RJ55145jO*Y zTwY*cpeC3~e4!K9MvxqM#x{jA`=TO@+0eu({fjk4o)l~F^YQUfsg)#!M&uF0Ya-u4 zM&jIp5ga_7bVS%+=f1cP$)sb10o_iN4{iknWHj|p@P&mHeQPwwVxtz5 zneaLH7nn2uZqt86JAnc`gRihTr)6S#x_f-Q3J&BFa#zGZZrSK8Ffxiuw4D~bt z2WnO`T8!_TkOCfnFU63(u)x9_fj!tS1vofTOAGWJDCEQLyJz&k8UJT}UDw9BV00aF z59RUZVObCiy;>EFW1qty<`KN3240)4lkw8xg_Lxqm-L|C+4=(v@b)9!*tp`yziJ-T zW(*`rRJ-zg`lmF*k_9+)&?HL0^KKHj9sAy8`EW(FACpE!*_j=}nV5L3z9Zl$WbxXz z{_a2hXLQusPdPnj*sB{?O&W2qGm_hJJojaGmKsQ9_@D&ogLjQCAW*-0V*tQIc?V+7 zjcK0}`<}dBy(JY++_5qK0a0C@gKh6FSn0vjHE(Q}E~t93RG66rgS1*FyWdB=x~7&g zC};40lqC~QqwEk7c_SAWQ>tP-8cAWbv=K(eW2xcr%%{RoIkGo4ZhfwPw&dgrf+%|O z>jeZMN}8-ml*d zqg5^5jfTzJfB)JO5D|@|h|7A^hv%GN_!FuUl9Y^Z7zz)Qd|P(j2T#nO6Cups%6pje zXx(p7djpv<;@z0?)vP%nK=I)3%x~cMGnJgr`O--%;o(W3ONhh&Ab)EPWMp3=WFGz# z!}7xVB1Q*;%KP&9|ICUt&Sqe5s+cmCbFk|mrA3VHZTnNDa{G_OTa#D4I!c7n-k?KY zn{7Q;x6Z!z;QgTeoMEZ+7+7`eW}1i~j0{v5lAkhtbI_~W{mMjMM2^@LZ(NN$?I_F? zZLhSM%jg~~GrHb5s<;8Dx@dTG5+8q6PJc`UlO~SV=Y^vtP;4P%etrq=-;}3 z3q2U*ZgcVsGsjmxkLPTYtZ;7M?g1mqLxA4>#U8j@~ITMiaA*_lbj&wgaXRzVQ1teEyg>04FZ*`ZbTePxJh zqr!KSz3B><3Oj;4mb?gXXf;V&VGM~w{|63pBt(Gp$|7tSVrlI-G?+_z9f(v9qUs8-j!k^sO z`X%*QmT#b>BpftUmZDC9ZH+HecbNr9Sj5`(yxPd|DHL#iW8StZ*l+Q$U?mN?^gh&dr;LWGyFb3Qk52d;y@x8Dm4KZ&)kARj?dFf1bb9%H!N|<5aMb_M)FcQJ5K`BA@aEeLd75KD7KjXwH z5cC9Cz<%k1vg05yj<&Xey-N_a_&zli$&dZgclz(&+9Wpi4^Aw{ z3&BI&2?8)Ny2C*aPH!c1jn@P1m;4L@d1~C_sr-@CpV-;oTwf(#WyYhYiQ?HG+H9cE za0k(^SX#Qm&O3+z7tr@RG4~+2srMVp3(5Fk^q6FX|PyOAc+L)8fCU56X2=_KxT9efAlBuTEcZv9aL- z1Ktuc$6U`p2j-RQRr<5c4Ktp=-evwA9gsrV{r!Qjudi&HM-=D@c7-cYRj#BL$Y9Nd zJ2r=_u0DEPa`?m#vnc0M$X^_BtMKe_9~LjoQ0EbXQ#Uc8rkqwViGY?*@eWLFU`|bP zL#JGY*`CaDHS&Vf?7yP@i&gE^SG}^==gB-TuIk3Ob8_zcL_R6KZAQ=fygJD9-1E2q zeRuay&03>J9PxX3!kOOKwPNwlP9E>xfJ|} z+^3s<*Kbh!(n^V8#EgOf=E?rDkt-j0lh)r~QrF4~x!?BUS$U&a=!3>E0x?FEow*NH z#N5TpgpB-@)UHPhGkH!4&`{t^T;BOm{2)lHOyy$t&;H8G@y~NKg3f5@+7+E5T=>7* z+Fa8v&PuN)PUd`b&D^GVC&Z4qUsAx5MW`aPgxlMOcuD0X}Ezg=yd_N+p89BA3>h&2M4FgAH?!J@QBy zlOz#=f9j;ExmiVr);d-3ww<2J}X zavP+kj{sZ(*&*Y9$_r+-}mzPbrF5Pro!3}a+bi6!!1?=rmnC5SBQpsuGPjvW20GSP8Uwhx5wXdv? zTGx3|@r{jQc9TxkzQjo^R{yo#AXrtYK#~9oFvuwE$eIYsqTT58i4HS`b4XTRUJ}-A zppbo9@S>oA{+_7on)RIRtG+>W-&6FppOH~j#O$&^&VTA_I9*)0a4Yjvp0}o^QUE>@ zNt+!`JoLOHo#paE?b#ZurjmS453kLE^YC-5{~|&O0gL<*1Y5($1wCI!_?-V5e2Bu> z9LJHByBB}cOr!C&OYWvct0z6#^{&*$`rlu1vBLHC?>{vrlJs4C`Qk+8-z<-g>9AA1 zn(_{-Iv^0=!~`Y!^)|HGT93oZxFO9F$Z8N#P&&>`j3#)CEFf#wF-g=n;%$I<{6-P; z)I`aR)2=5ewU>QN^e#IysZlQwKo0F(q!#H~0yUE8YqnHj4{jg^Q$c<6Vm|?2z|@Zl&zoA5(xQm7NkO$ zRn^9~mj8u@jPMw|HaI5d- zXdkM}D!JuHGAqSjZ=g>2j7igSVbzu`C6{7A^{D}eggIFy{4+lS=FHyUi1|OP&02Jh zY>%G~Dda{FiW|1dOO%w_o~{D7_eXCTg}^s0CxtpPLbRnN+O5CO$Mmaiymn~EV~u=k zzNV0PLswVOcQb)QSUAls{GEi>`B76#z>PLAq9C_O>s1D?NALRrxmXSLb8PZ9;Nk9q zlOnmWl(n0LXoS*5sZou!whCh5>A&kY*@n{>F)vQ&6f^jm zaIkNX^P>T{7ctabu&~Xo)cGpa3c%W{Kl&iX|zPS+o$A-v0hC zz=hR-z~FA69=Va5UPqFmM8vFe@g4)f`$72MxjApQb6SL7FJ)D7rB=aBR zhxsd7?V(@@hm-Fu@Q8mJa2MYeR@O|xqbO>6xkf)wYpe0jdgSiU1hz<~HCGRX&~ zzihO$2;hZ4M3{DD-618r{tc?f--}p$l0{Mtwb>irCj$Ky77lj^2w>gJV}our5#{+u z!Lz&lB%ovz7!`XSkd&Jqhgn%h@tGJX1YCb+KE>(dW3aWJOW2)Px!ep4b$u;i?UBCKBv%F46fox!kgCWFsC z1SZa0n3y3YREr7%tUWLYZ-6`^M>zl7Td5BO;QXt@xpnJGgYauQvZDoQN=u`KhyAtl zqe1I-r$7zza1vAq?KnRLKL9c*TSrBu5(z17C!1%0n>37T5=QY3Kx5B@u*|QwU>;?N zk$(F;HYg~l2$op=3iPqpzJN$Ig7+$Yc6yqBv^HXvo0(~p1ORs!26Vy4(Z@$VXw|O0 zZS~Sb0%z%S;DbNDMn^h7JFlWa*(R$kV8k*I2@(i94@kmvB zKho^T&={=MV+YC5J??HnC>xNp#XD$k;uBSv-}|L(EIz(q(=J!JZ7q+jDRFs;LX(;3 zMHMl^ubfsSg6@wpvhIqssucGg6$b*t>6(4fT$)O zkTn1?4bFe%h|th^=;U-@RdBCN&N*Q90V4I$U1OvW!3+pgPk@>8Eu~?3S=C{wNHt#J z0R7Ft*5g+i90p2b*C+-pbHWx)|qd?=Z<|YpZk*F?-T4rp$ROC$5v6`y+)u zUT*y2$v0BJV3E3od&h339L8bH3mXd3|F)@`CMd-29zVGPk!$Q*a0|TXgokM8Hs;Z>qX>J5$v4Z0F#T~$;B}iOg-0>R;x;nU1xrd6 zb?z*f#yl@ZCilRbth!$8!A%z$J;cj$F*$KmD;MTcFD1aiG5(5u<}G>_S~4y5_Cs-K zYHF$(d|%VRxpzE2dI>aFQ+Tfr-5fi%(YH;eDbK>MHU_5Rcb9u$*f` zw~aCr^dy9ZT*#+SSE4v-4;WU2g=IzN7o|Qml5pgS*Q0f>x!e7Wm|}p?bDl>Y1Y3zl z4|#dwez&@FsXcxj^eOswZKj5Rb*&qxrq;}KZ_Hr#TSBT~Soc@ZflN~$&{f22I{xr< ztiuAo(}faK;?5X2dIw;AH`dvC1NyHJ4Hjw8e!^n7k@#`?-x9TAyG!K{ajfz3`tP1N zBY9SBFeXggNGCksd-}K{in4fQAMh!fEndg=B_M^D%2pxuvW+CAG^>2s)jJ1e`jIB+ zg$DZ%SX(7Q1YvAumJ3Lv59|gF56i00VfF3~Q&S%pKlZ?uXqj`?h$v!YYZP!2EWgJ~ z=@o<>{fUoen$^)u!=$yLvw_kd9GaoPAGm(?3+-J{-g_L9ACuHluxY-7zh~fR11NH& z?*RT7*aBA(#;{fF3?pI{l(;j$yvzXWMn|~M7#8Dopz%PH@YgC0)+>_%nHy4S1Xr*r znEps%4d24XUW^T&qsWVwq{)NHQev+@fN%?f-wdGSuz)T(2#{Mt2Y;WJ&-$Ybc<-4e zwcjCBg83kFzyY0056^euIU z^isau)VK(!IK@W`K6C-n;7TibBS&9g{s+UEPuI;e4}5)n>=a@S`s4MO7?$X}5_gco zEkPk6vyb=g3c#JPP{5cbj3p@eLCpDE2OPa{rmFq~KtMaHx!uaT+>YC$H+Aqf`*^Ur zLql&GwEI3^61*im{0Ua9>yLe}MdrRvB$iB1p(ur}yP!&2Wb~##0{)tgnnpR>Hqh z_*~g_+tOmOT~>sZa3_DOKLoGvrQe+B#xaI54Mljd&}-wwTD~(*gPVmZ5kH%~PuF+O zkK$A3;U&03g$-uSb`wA`BNd1hBUT7wCjVtPN-trK{40WM<-tu!_4H>i7;grASUtUg zm_S@C-sog{bCd~AB_|4~pvU94UYzbLt67ivL+VYMppzshJup}a!`ipUNa$Ws-+LW&DBsw9ol=Ju4L@r6pveeQVJ=PsWqb zB6d7t+dbhroPk~Eo8UP0bxEVb(R=*-#K7!^Y}Wuq#=9`h8;utpe2`fO!B+Do{HtjoD+QoMai&gbK0>pY{tJ!B zI{;ZgAM?<1fV2jj#g@;Of7he7dj9d$BS+#b!LWZ5e07}Hfg?6@Z(#5!Vn5D;{T7Z4 zuC@)Tf?%kk0`uea$ZY9Z){k$)59IUt^h!Rf{gX8*dXdx7=; z2L3KA_&;xE#s?|#;(&Wb6x2m)E;XOLQf{8D(HU>+EdjJ=RKQ^aiR6cAX($v10W!G& zn#_U9{vEt6Rdlx49m;e42YOs(Y zctGQ;b4sCg>|VV?41?VE*z-vzN;ilV`i)GtE$}p||2vzn>bm)JTs9c;(UH$Q(aQ4j zph1n*$cl|aM<~7smlksMzWA{F!pFzQ;uZUM4DijR+Q^-b`2OULuAz(&1amY5 zb0D|$0I+=vlGPs-?VaSt1Oft2YV0E`d0rr*%#?C-=C`*m4J-z;*bGh*d)-(i38e{1 zNOFO2s#ivg9QDB__s8gHBOn8$SmJX)7|;7{ZC0dYR?Ec?h6}e5H*emA=$%Dd{@HH> zxb7!+{xNYZ#t%gd4;P9vKT0QlEkK^+oS{S0xWEMh9b1D(*qh15_GwG8`nE0(QOs;^Is)GNZ?yH>(9vJH!&3f(pfgOk)^zKctsoX_?ivkmxyKbbg(96rq9;hI&@_XB` zIzsnzdW;a2m{Uf^iHo{i7ZoWN=;`?aGFmvJiGY3|jO6@43yma>A#pwM8~nUem}xxQ z#CN!$Ez|1BOK=M@l%DISuEu;bvA+)$=E6hqJ8h_pinM&O2G7*?&~cbi$Vg>1cfv{5 zlb!=J;?>=|u*#5Sbg;zG(Uq`&5u%!r0dnyMw;gH)C8cEujRO)U#F0VzHYbwd49u#9 zZz6SXaXoA>8vOi%Kfi|C7`(AMR;H%^1_5`_R#RR7=UvUI1BsQ`XPS=p04e$VL{)V} z6rqin#@xN>PuJsg7xZ1%+aQDBg4OFrq=1N9RIDuD$&h=jF_gw7f!*T2WnY?oL@x7t zbnEPXCBx|QytXuVJ%qB@4K>fOJnH}XBTz$2$M!jqmT z{{tBzR@9WZo6`nM>^g{@_jIMJ@&@`_bINapm8bJ;yMUyj*-TEP*(xi4gOYN$(!prD zx|$%>VX6znt||rw5kOZXLVVAW#)$w>N~e=J=ipTBlDNTLkD?4P=Ldy^goDN&6!65G zbM0a^dh8(2?gAwoMoeBE)IpudQWmK_k%^)_JwR7Z63;Zj%lih|q|ibWj)J}z^fO2> zr3nlQ3~K3@LBVREUHk-yrLVWAg8eQxjfSI1`}?wwAz#LNDXLkh(%IrrMvsW_dlk@M zhP6H68{Qpx!8;LvPCs}H>%pZWOaQ6?>H~vmd~jKv?I@#%=7hrGj$=2LAFVf$f=Yc2Q9%)Y$Wa&$hhR2_6q* z44SukwjTJ#15gD#Z+@LH^#fb$0<01y+o2D-OBJ~rMKuB{F5VPTDs(L^L2i>9P*VXc z`C0DBE=)+I;E%(a11b7@*bR!W-OY;jFpvy?1VdDl$(Of#5nM<=GKdNYkkT>4RT-lum+lnruw zF|=f)H<&XHW3}%9XFXq8ag2^+X!nm}Dh`A1>G^Qm8TMpjoQ!z6kuuQ;MA05MyB%h% zAYT&vuy4XFdI46hC)|A!WeKt3=;(QQ#r{wM5kWO*n<$f;e5L&NE;y7bfG|ws1Dp6k zn3m&!ce57W3<31*kX^=Z|0C~R9ZYA5hsF;nK*lQ%>0A`BkdhG^YKJUos zI3pC0O7?*NZg1}?&F70*5oj*nn^$#NxQ`WW3{vycCnpp752R>*+LQF~(BMkrE&k_G zJuX4`!2Mu1tK(x@avyj)fL$UDnS0D(_iaaVf`>rR!pY3+4=o!mBd41SU84*8(SZGQ zgDRW^hU>Q=BfJV83-I&G3iw{Q!vvZLd34Ll-UMJ%QOa{kMO-TQmY0Y5%7L&M>Ck>j z3>!UAk-G&!-339{?_5>}OgvdJKx~vL&LVAZ&ym1sbPItLekC!h;RKhmYQBKE74`mR z#S-O}b>sAGlv(xp$lKOi$$LLbyr0$|KDt18IiL8G?V?hB`_*g&9 zeI_PMa2Zqf+=J^3);w?}5ko3pa6^M&#-iY#?LS`{*B~^Rm4l-bh}y`Y+g1(I09x96 z_fP_8=Z{J>JLzz6Rwf%ieTU@WHpvIo)WC@BoSvoxG8Q2+*bgfJ0lzU5XyDS$qo@RF z27;QT2K4B9Z@P8f&Rgd=+O>;JU?AeTN|9}Q`2YLbMT6bejmyAeh8!QSi5 zn>P*4%V9bO1_RwuR5%qFcp09$I{NDWEc=P&C4CR@RSXn+_J-0Sg4?xqMX)5+hBq&v z!7X|y*m95=g+5M|<`Lp$uFTC}l@d>6-cG(;QH)ZS%igq5#MK;8&h)i8)42ubp-!vk zt2bJuuT+@{fANXlyuyH?hD*jO4{X3$yl@P)6vyfFX$gp}+}AK&pMIMyK!PN7^T zcTaR7M;vN&wnDWo>MsIZl9l>9qk<-SF}1C;DJyTuD&MVq*HgKVh5W_Db;;~ znwE#M=M@U=P!g9^!Oqr*_E!i!3WlLFQU;(LM`OcxhXMzJST0t@I(leO4Gov%^)-!h zvVS!v=EcS_Y0ufQ(fS7@()d0cXrmO8iJeO#jeWW~Qh06thaC*Sj*qF78pwd<<()}? z8%;tS&QDM?vEmXNGC+8lI0PypjG;x&civ)o^g4p_!{VYXp%v=E?8oQLT1de5EC61OS*S>c-8V?3ky=L<$&2NmKo94 zcTYL6SN1acI0y}U%1DFD-26L#$^Ng5N2tJ*aV6oH-_$JaNKX2|u>u|agQ?%Yc>sW< zqp!a>lr97)-$1bNLk@WmXbT(x?*zLFBG}3{!pzT+GGt-F6r>+WF5~`%hrGCAYQeQ= zeBeV*-i7HIr?Icd=%!%6ac0TiEdu*0q|iZ>_}#Ok?S8p@HF$FW0P(X4X7YOoWB4V5 z(K)2qX%WM_wZ#}#OuO6lvPue4XBVeA+Kvz7rW@6Hjt^cyPb7&9Bm+g*xBk%0pD18Y zS^P>#2`aYEFJHdGX;%%e+YGp>2>(hN-|y)|!w|0dE{C}q>hN~}@?aAZ(ua&sVYt9t zA5+19AbtaU#-Gd1o8>Vvcc5Xz0r=Da9Asa+y4H{$9_Q|EM7Beu5X87*R zUam)2M&;Um2u5dk78uZ5VRm3858Q*1DhF#UNLikVXKlczWSezyBf+eS%NV@DJE>xRS4HH$lzyyG+B64(29v_(&a2t4;jWRS+<7uRHF{;;FlxZY z!Nx9NGi-5p7>|Bvy0px7gsf*mR9WKF-o29>20wahwYdJBplTU0T9-toH?M7d&T3h6 zz-cAsKNL}=4rdr=V}0#Y_<#Yfbq@eAE+7T+xRQAnL}~Bi?eDQKJLI!P%8tv;WBoyA zIHPv4=JGz>(;p{nPoHkgmEUS?9M7;Y;Mn}Bir}}We1xj6vqmNE3Ft#ma7@GK98l@_ zl#~$wmYRo;5tP?=X+*tyNzGu?5C2ZFp^>u&VdL|jo{8Pycm{TMJa8qB^Vv@)+0M2+ zg0~i6z%hZuu1pAh2N||O2d6=iQx={|#V$Mz9spT>_oQ=K)G6B+84B$W!38<6b(ySt znK}t|f~AAQwYLRT*6Yv#MFhQ@-|+|?$KOe=N#6^uKKp*0pqF-5Z(YRweNomAH#@Q< z#7#|qp@Xx}JnYaya}+HzTbpx!MQN!*=MC2Hx<8!*$(?~M!sUL~SMby$VY%VpblNA6 z!~mQRG6^syDXG^zV-+mz2n3Q5rC0V-38JC=kWd$BfeF zgtkT(_+17ey{>Y4!w>}6@VH4zNxgzDy9FA+dO$D(U^+CWv9}fbc8i z-~hN{@{VfREumObDPNDm_ElX+g!MR&*JesKC^( z2XvY%GXKHqXdtvH z@$?Pqh+3JYpZyel`MAxiom({J_4J}5BG1(|G+Y}uysmhdSy-n0;NYHxs-*PvYgy3g z{`&braMg!1_{GA@)yUH-y-kMtlFpCeKXFmhplq3zt;Iuu8S>q6Z6l=R7NC+G^{~pk z4<;5TAl+IH54`8_Ox|WC#K!Z-QAp$%{MO&^a>E}EqcH~EM%tT5mk`qW0Z*vr))Sl< z-Tox5gSd1hl(8@(dL!R$zSwpT&!0uZikzgmzFm;IywBnjot`RC>{n$@?V!}){yriU z@~k{En}sel?gBNW%?B(Mpo0dz3KC!nv+0M>R6)~vA2c~|v7_}k!Fk*O*Ay^8^p`W0 z`V$Co!*V2MuR$OKhd43hLvO*<0pR^G;Jyj#opG_IzTv{;aSDMOsF-aBqA1LK=yCna z$S@npOz#5NbAWUf1)*hH072OZl^^r)b9k)K{m^_`&`{(x+vJb@hJhrN`R&2lsv5Mj z!_pJE>q`gc2D(J9*ZVF%h3{QKNBlcjV;$nfdf0xjA{d z5p}ht1-n8OL>Qn2h7r{gtSbLgi__A=rhppCLrZwH%!bc|Ca0!4^*Bg4D~yI8gM;r1 z^VTh1CDRUsywzZ;_N%NiCW3cp@FgxHqXYj=R!PAaFUN34*~BCpk@a_A@1xHUs8Jl1 zhuTwKN|Y7kP4va_X@v)egy2AzQfyP(v?a_>Cu4(;97W5{FcN0XkN!Z!$8Y3}tKrni zUmmM<>mUoaEr`yATkbbOw@wLjm>b@KYbK<=+2$H>XhUX63b^=5Zjo_!O%Dx~ zuNZyDxX%|q)g*d#viL2qk)*0NpY5X3q$6F3-VF~IP4qNq1!FkbEGA5sOs_7l8E7!`l1~Yj@V`j+E5ic_c+nX(=lbgcV8k-C?=`1%X_bPSiUX zrHT5GgC1^2{6KUBCpW0oaY-K{;P>}6PPYw&=uhE*gHd1*^smS~0H_sX ziZoj0l6k&^kj1_G&e>vg!_L;gq4)WA$*=?_W=UwKux?|{ea>h-oYy-X*GEo^8IM)8 z@AByD=XvkG$(n7?w5>G5e4v=|p1S>n9IB4J^}g9%PYvK254owHiW7o9~O^*oQ zL!x52v!ndgo40(6;UYzYEo~ND0#>kRIAnNaX=(187$Z(i0E_S=5n;~{-PzW)nv6V< zfDM!bw6=x@(*N{92dB4r9$*Q+!oHT5H`QfQ4l6Rs{4>dAqX{IUSaDTV42RA4^7%>d z!-Fvz6_hG+CMxL8jnio22@-C3w{lgO3E<00NJvVWY;fu;s@8>AeW*nBCv9p zuRxLG`qsT1OwQhMYQ+~kAfbQYzXtB>kdFq9KfHJ6KYOwp+u%UAbqzFacz7~s_PE|l+kwy#&$rsf!Vi7ab$&ry}gp3R9uf8Sl>Bq(!^CVy28KaI#b54{hQ2j1t|3BuGc zc|wM6&%h_`?$cJvOCE`s_xpyTPxw_G^j14#%#*ip(Ewtz(@*Z*PDn(Agg?U8>UEQ3 zc7ysQ6|%oe8c#zlR0sQ0(j(6#+i?tFvk*(Gn!^OI+=RTGEEj#HFjI}zah-r{ z2UMHkpTC9|-?y+hbRIUd#9LvCfHoot_DcIChH4xk;wfLe+Unpn!czG%j zp<7U5rimHt@#m?jnSC&uEg7+LJlxPk9;cvR0fjJ9YYrtLBpI97+Ty^p*AkkuHgiig zM;dZ@413KYHC}Q&XBQWwj{>!S!PMqWXe6IO48Ix1_QX>f4(w22K8HXA{RI4{$Q<1kFfK4= z2={&ILi=BUH5453G@GldJ!QI|WMDJRaSj{s5g6|P=JY<&7X;(m{@z}Mc>Ey<$FRXW zgCzf6Ww!D}NB{9%Jb7U$kg7o794Z@1M=v`Kch(vzLsiPT43F zvsh2pCxmt-$27#E^c;S6r7W^-0oGcFw+VeU@!hm{1Lp6|xAv>Z6y!CBk1

cIO2Y} zV80na<3FF+xU>4*k<#rR508r@h`oL#*UD!B726vC`4Gg2oPT`tg6*uVF^T1p{Tw6a z%&-{d(!WCc)wiL(Z?ivkjO2=&-X|jwQPv=|Ajr&gyAZxj9ix6&ZBgTc-b34p3yS6* zaAw~Z5lNR*R!&6H{Lb2Vcoeo?Sm+XGdjG@vvM&q{od{TeLRJm}fr@~6ysVPaSGa@T z$HsOd0eBY>nsVr;&dn|BT5Er46Lgg6_rqXIA+a~VF_d}5gPJTkc~aC*6zv@vl>7wH zX~EJk0E)f}Br*ZSHDe!j)uB82v;-@(P8i#8x&1YOS&0kGuVNy|M9BZLY6I<6_6`~} zI30B=l}$}Ie0_UWOYvVHvB8NGew^ce?L%O+ze>l<9EyX5^&YDAe=syKZ*6JGXt9ES z^dl&sf!WjEE_Mx~QF+0rI9yJaO47GzHVH5rQ09lrC zcf*L|>w@H=Zd$R-q0N658|Ox?DQ7FJZy@#v)b65AcFM3)1#T|0_3t`%cqMq(hN6!C z)w?*v-;a|cm8#-#d;3unI16XJf&;kcQ8B)^Y^jmrllJa=9amfU7Lwt^v=%fF_khMc za7_n1g$}2*iGIQI5=gf*tb2=5E)!i~Jh0-dL=>!6+yyt^KTz&5HyV_)O~49IMx5~X z{rj4!_D~U(zz9vFNk|XwBDaGzRXNyGjKL(J03iyUU&U0{SK^Kz_;fNY1lj+=!(ss4 zMF>nt0f;#K-Yd(Hl5hIr=`Rr)8tzB?`=~&z_@+np*3;*Z%459p-b^pFQxE;F!lOx! zcoIImx`VdS2udvOI01)*^BO~R@a;SLiuUgIF)dAj&kloAC*dpXj<}$Rho%Rl;!Vo( zJv%eaA<$<_Uq5~pPrbAJurLI)LfeJ8Q+Db0H)UGPSpQ)l*zGJ&NZhCNBuPILq> zh6rIwkm=0~=?g<(yoRsn3$PGwATlyC1^^e`Rc6qr*6Ebi1-LY?cpaX7en%zLdr-yZPTk-~Q}E?&6(+Ul5+e~;Td5svgCTS+Q&E)}87Q_Z z>;SC*<+AhXVxpsa1!1tH33f;A_i%Ae`)S(IXHt5&VX#Prn5YUuv_H2S4X!fDJ~68C z;eV|Ql_ip4jEmg=_s{bI{}Onv2oL}w)xkD?N_1xmk%i$8G7=o<{>swS>_w10qF%lI z;P$UiAyk5nw2RA!1aSoX{K|t-3ya0qj^7Bg%$_zm?M&h`lTv8hk7GhL@{x{OlMY1x z^~>BqgI3tkcwLPJOVllDg+@q_bTzF6G{q|2?UfPjXnAVuIIT6(Ubn&UT`(8IEtWak z&#uqHQFp)~l-k_^0aBV+D=YrtI9S7`z@fi^Ft2flu0zG-9)2;Kul69!vJjbDb-Hv{ z4%Dr7FJB@*Y)CC#%#5T!Kkt_-Y%I+4Naf7U^N`HprR8O=;GyH^O|B+zh#>d0hz@urgP}=Qxl?GN zV56{i%p~=cgajLHds^=83o0RUtv()Wf;&`^O@+#Iiy<`hAa=h%nrPc1Mv?)h4T*Pu zbQ9Rs=Xr1g;a0GPrNKV2KYP5dV+A!&f(1N_KfCgHcVZ-8Z|C5@R8?K(pKkF!t-eD+ zkqTg>Hs*;Na3lrchq2DUHCIf)re8PE4*I=Z$WF33__qvg@v3dD-Yo>0L=5omlKai8 z^~oa(N)0%axsI;Bg-d2zVa;PBfYWG&1jZ#lD-5K)2^WpeAI8dRpx*(2>#2?7P39v%JTQ6WKwSZD4gqjB5_1^noW-HNNlR*eh1zymmxgJFSYQ9Je(>-9 zm+Hz&?*7EP1O%1Vql^fDA9-xXp(GR>pHikUvki@15wC@WM7X9JXnEmuY*`&NQ%-vv z3=NO~%>++RX}qldq+z|6cmEVh)bBFARbW>8sE zgG}Hhlk&9JWFdn31|}FF9S_YA@#_5j`@Fa+ixzQxrGOF`bBACGeoDl@zi)EG&xM8G zR;IOeyyPDAqX3UsP*+n+0)1Du!(3a$XOR^Qi)CXBXXcdmed+~o7S({G2DjL^#-RvipjPYt+ zGPxW=D-1z7OaB9qRjJRDBe=bT(}d-04I9LD_qnUvD)_3ZItG$mzc?VkZ*hm4 zhldOlFUX3Bi%V5pLd@;m(kkly%E-A|vbkk!kzviv&`{dMleIPO%sQYS-(z9f=zA0q z9U1(U#!sc)&Vx*hdTS)t>ah)B%7!a0_@X|yc&yDdAIB-d6@#tRISE5&O6XxuPggTl zKUpee&(&BfcB~9~!?Vo;H|AmjDi3Zt7&1Q3P;JAeb>n0YVqLR*O_dmwEIbd2wpc#= z5cEnY-z(LApyIfp(TM&|6cjj8aIb>VlGAJG%mp;O&agdKl$Xc;-QZ-F4fhT%qyZ5p z7bsbubpkpdw5~xc=YpYeI^kXM z1B;-?t^jI~1tOJtckdt`#Gaqc(i4#5FKsK?xApaD7<%vB$2uxvX5kd|nOckL){NDw zU8}tt6nj1%eh(x&POn}`!)hC9E982-Y0|Lj#>pn1lt>(xP@FWvGP*fJ9k^ zh&O46)mkOBNRw;5qYpfLEf`VM`QpRbQu$GtpJ0b0lPdwUaQD(Jy9QqCPFa4tJ1ax! z{aSkGp^9&t#V&(FypFPL?br^{`zicddknz3vu4eARj`CvplJg>!J{Pi~ z2VK^p%|v;bTO~k$0X`Gk4EfIxx5t?Dy@5-Sg5SK-6df2o2d(@2!>$~}#AAtErL5q-kBB7Be zpMMQ~u6^+dewzXO;)xLIIDT5pgxk3}IahFP=uLnit^_#Jx^IMjRhy7vfXuN)gT+UB zKjm9T_ghav6!MC@l!|2I8{=}jyjJ3t@>=BBPEix-1o9s=LO*Uokk-gXNy3gnPJCF0nIgisg-S_+b zdR^CZVv*cNE51EC+T7?He{;0W#|iK#10|)1;1y4hPV9kF%oMIxb8g*E1=T{P=fe$k zw+Jqv^nw{TK2-@NE`{%=mlp`0&=3F%_)f;&B1Si8!uL7SZI5!86`vh5wn@v^R)leL zkdBctBn?u~*9C;oBJV7;`CT%EqD$h1tazS;ylJbE!ZK_NK(MesU~~U$%yfNDYv^I@ zYjNWCkw3?-<{8_%P4SP2N8%QJUPVf!2IWTnf@FZy_u}^%PkQNAHA6 z`s0KSpJ#LfAg_D}C&`i>Z;A_aP3r#(k(Q2#VE*qsr~0`Bnv>W22M6p`)!m()EnswW zr~3H-L5SI`o->3&vCV8u4fQej;#Hs`q6V+)Xme7j3P_Ze;nAZq`ZVNFQ&N#lQQr1u zh`bbwAmDH#ufAHBr>pwxES8y;FTAYonk38c7n!kYqS&_++ct2RBJIY2bRo|v1~4Mi z!1kmH(;O+?>k^_GkN0IBV?`p#WDc6kJy}gn=TT=nx}zp7s0bvdgVe79wQvJEdA`^? z{Y8zUEv_E_H6x$w~o38H{Vn(z}Wl6hPQrV zse5xVNf+s1bo`~x82yF;pAS+4k4)qP zF?kqMKRA9Pq6*@P!UhIZr@OioIC-({tgIldRK*5fJOhLq+rqdJCUmW(<>jr>he`j| zr;p);mH=A-AmdQbFq?n>F54Uv=6H|VbSBW36hMcKv|`1soYF42dM+7*DF%}++~HOX zE8b6+e8-u_21P>j2JdCi4uV!riHVK(P`#YJ&TpO*JJYW+|ia^E2p8K#Hy87-Czm985cjYy&yV#!1mpkN_*jo@9AkCEeON^_^339E_3B{KlM6_Iu_90MghO#Xt$NsI(cJW$}h$>s5b9u zR*iMqHN;^|A%|KMxb;=7e}C!Zxqc4XDZM>Nu%i@_O9A=;k{8P0MP?h@uXA5BrMz{E z3%n@>3EfNb9m0>Kbjr*-ITI~5dNag~x99d|eD-^%;K6T#ZuzMf|NcxAKuVxepnv#P zq0`(P@lL~wd`X_wd-U|6DL9eKA8CwXJf$z@|1?f|D{pesf?S4#g2G12q$3y_dytpt z^z>Dy49Lqs=!EPF18ov=(q9Dk|4#tpLO=nF9aJ()k}j3q%Be&kLHGrN^hrbUsr5Yh zaxmZ*kjxo+cI3#46^gPxmgCt}SsAaUQyz*}?{$#*F}>;P)5M>|M3U{P!gbAjnV_km z+vJb%Kr;Ok-g{(52BH9X!D;_%-!`vM!6@#@p|67%u4d8c%E`-IX1T-Mj}m1VDFR!Q zhoKP0lX9T$RSYXV5fN+UD`|8>LUAL+>1jXZ5sCBFg=ZE#dp(d8ole1~r7Q9e5?*1Z zMHLrWr;VV78a-CRfSeIJIA6GEMQl}7{PQ*^pR|@43SDL_fbm2&LzH)6n*4Ly0Run3 zHtc&UDn>bIAbBq}dzyj(eToxcZU>YkYc-bSnD98o!Up4l#7}q}CV7uS(wB!d^`ul@ zD_-?bED}(MS5xqOxB|&k>jE4xkZ*@K|w+2{{GirVA@;xs+@BNf*Pd!PUf(n zmN$(EJ*ynbwEag`)OFzwFT&)6(?b$M*hMb8X}ZHeqzQkd*jOW7qE>+dU9|dZQHt9) zDW&-vSXkV7#Qa5XI7(#xp8WAc+xL5dtR7`_VkpSm|1Tj5jIqlUp%S1oJ#4h`L+wY~ zZjjABC1DgvL+=c`9Y2Bo3(^19t#&qR0VO`8aVC%Zd{zKk6EO%*Ycx-f7w z!omz$O~;#PkOVAW6;t~CyEK5luR@=5x-QC9PUmSbkY}uHH|1$w&q_STGRss&(E5Iv zseDY$X@c-g*D7XO*-c{p4!;Q+WCGXn+sh?yydeO6YM;;|v)?AUZ^u++c2_vj4=s4V z8CVm-8$gBoj=*mRh0`q54~v-gy?<+)%O@vepM!QX=DvuC=j0&C-VaGId;(;x_2hRJ zGAb(j;cGg$xFB;%7@63V2hhoFDk}B@ol;3CcpdNtH>%e!2BOYYaQ`ShS}t9Cr^$L* z4{~JIWTmgr^}750cjYq}n85Jh2s;aYnxNa)5Ri$S20!{4vk$v;h}Gov`F0bl1Ysp9 zWnTDOO+M+;2lVRg&&e(2_4FnOo12@lfS(%&c%#mh$|^1?iJy~!!MqfpuSpP3lf(Ar z4GZ5>uyhctxz{Qq#xZb755QD8SA0grdIvxvg8u!_uox7b{;S&-NMB)dFve?ZhRJ;A z*#AMqA4Py7C}j`#`+38EwuhjDX*J=)%8JILhrGn&4Iev#U8rsZ@FQzH=6|2;3P9aA z?2Kf92ghAQ%JeS$l4X$KG0;7p!@R$uA#9^gK@oQ$ai}96G<(3B83&tw!v_ma)VdxV*7hmX*xyec#3j+<@ zqgsUEFZrSB^wLFgU^xDp2#v@myEgKLX1~h>rPBk6>`!(MtE#Ln9EIBxay!EBK`y+9 zlqDo!;O_Vtq?+_|4!V8Y(W8&t7U9rDZwsY0-S|M2T0W@)ZEFu)u2x;< zWg5U)7F~i)wOfg8em83nA>#e}qzZ=+(o12wTe9U%AycH5mi~sVWMLHu{$^IP5Xrk} zCah3*YIImyZ%YboBLOR?jPNZiy{p{lgdKAij)_lz5$x>l=6%1c=Ora}r(ic!_^RnJ zIqybiyETfRQc7LzahdUZaoL)7!z_2n!$Cq-5*EH?d5L(YB*z4+7>s(}5Nm=SPW zkm$(0dpnDDc3#fnww&oAiCW<1%A9Ycj4siPY@vp6rvCcsyobl}Z+GG#aexhEssffm zNJA3^!t(D=Ro*OQO8km^+q~SJGzcY8MS%9kf@Fv6oSGIEZBPLzLbIlcgG28~t{NJQ z1&zTLy4XPhptHe+Yy}elQw{&^|9%5kF~E=-kmJ${ZXBJT^wT$m`|rUAiZsB3*#L>e z-612pZ=risE%RCM0d^}Tyq~`v`;s2$A6bJ_C@N&(7)&7U5I3WTAP|Vc{cT%801A&8 zF#6>pHS_N%y_B4o6JXQT_TQeyc@US95{^8K;Q}#&@%@V_79+j7=UWk=9f}2E2|#Pc zwn-YJO|-Z(T&S=8lT#_%uZm<^0L+m2+#dUTJG*zeZX#Z6s0*GJ88$-(|F*pe-DM*u z?u%1y3K7Ewh2))&{A*w9Z8TW3idq5Dd=5fYfFWDp%LW%UlSHwRwE@a~1A{u5dq8+} zIhh=`5e(D%TnIQXE7hd7-&_Liih%a4{a^SEtrEKD+DL>#MZ5z-a5Jv#?G#Cf+d@&; z-vJSX4Vw-sLLPWOBlfW-*ARo2^0F>}ymq<-h22qoC$5{6yv-qB7^)#+f;;Vo(o>d_ z@9r!K8Xr>zmXI-j~Pa7KV&ozHgU8)J>{`6GB6@t^|pU~7sDl7W#* z<1ru&71EfHND`D1-tPghr^IDJ227wh;N+P^zT;MwmML6#pZU1BYQB!xa=)@~?aH)e{z9 z-$M#yV;8D*KMj!Pts_@`>BUHioS|Kg&q*mOo}74SSoi)!Yux}AHZ|(}C_6&qk%(KN!sgjVdUzZ+F_jD%apePxC@Yg0-7t%TGxzTlISSDbil zD(S+fdArGl4{k{LD(Gd%60TlY_OWLS(D37*9B8oSu@loeOi?x}3xd(U4X!Ha=mv98 z#@5vI_pqo!DXccKsHm?>&Vzmiw6r*VAgpaP5;17-O4vO*vV@lNXBXHNkQ82SB+olt zb35m$(ub3d$U)VN`_tp51;kN(&gWo0T|jv13(SF6isPnKJum0MCQ|1RVp zphYF1ou8a;_;XNU$EbUC#kny}JwipDoYI>zc<8`jJDeK`uqh6Bx^KhdpaT+mP*bZN z_H0gwbG3AVO7r>fub7?j@;9*WH)GMxYIu8t<9imyZz2dRhfzWTG*{Ke&{Yr970lRk zkm`(m^CtLV$N?D%2jKz_4C0AUF)6}@Re%Ra5q$M~Fx;U_5VBugojVmOF-?6Mw7x$Li5?zXrZpGpRA%8{62l zXFa_*G4rZ77UR}r>ngK2sM34dI?@@Y5IXcbAd`-$jK>P~iNS#}1`MtcE@=-SWq9Jt zdE^Kt)iw9xaSB1bE90TfhN28+uds1RfI|EJex7ENr`zQiCn|u^A9!tu9@&rYd}{NP zL_K6n!XhK1P^ue&F! zz%3;?s~X0*4x>PqnR8#K=h-xwkFk!f zZVTXOhyjE58^O=X;lj=|Zt`0l$tUwW-{MDF#v}6bSU9jzyOkj-(n~xBAQZ?rj277+JfMI(DQAMx%8HIPylgl$Q%l3x zforLtJvJSmfiVW{V!4-B_Dry4mwTe#lLwBr{@U8wJwO8bEsHNMyRD)Vg;tc7+ zL6d{kL1$06-By(SA~I<84JzIxYlhzvdP&#x!cOOjG`T}Z4Rmz? z{{jUx0x$}U_V*KjP(wynA6{B8)3w6c6c16Amg;%DuPt;*+BiLs@jEpJ>DouE#l*^x zP&A|Vj9>wd+6ut8)#0)S;rxF#5|H`o?=~oXlo{*dXwtM!2Ba0_a*L3YScRjv3R9af za;v}PsUd)BVr_1|_ywdRc(v|pL_f>y8-dYV0~Y>i&%5MZ{ae8ELw-&xjBRPj!k&8@ z3;0^3QBjM*sWH2zq-{Xe^P5w2~P?ZS@6YU`62!Y+L2tI5jIPNkI%mJe}gJ223txyo1&~IXL zbkW;b%yA>Vg!A&{V>{A>&SDlf_6KQp6}H3$1J=3h*RVCJl*DrK@R*?xiz)ha5#yAR zPx2IKqC$-QV!1}OqnFp?^X;(PCNuuVtBc$H#??Q6qBLHa}XNyWgx!v zSLx5-&{pZsfdkd0gTXJ=fJa2ChI#PXM%n(=b%}$x4mh}6$Sb*_kw0RLf(@1&QSG@9 zW7xe7PGBH+lZ~Xb7=f^MPCP)fkdLYl$V_oFO*2R;QW|Ie{$=~#17Kwd$b}7H3zL1A zlvKVcBfYqEuQul0+qd;DAa$;4!Va3v8d|$TDe(bQhc!5&29J?L8>kSefi>XqlAmX@ zI)4ezL5}iL`z;#frB)uRSY`+{>M}npWR;W8Qa=>&{^hgYM@>Y%(1CJ!E|skwxZ(*B z0g~#`7ApeyFh#)UK?s_>5MZtn;XfrO?}7p#A~~5NE;^dd2RJ@J3#(slQAW{-;2^Ar zzTVWUwAb~~Vq*$TZ9aU#VpJPnHu<+Msgb%r&RWDdKt}#q&|78#;r<24Wk5Ekfie~C zc*Q9g61vT{2irEATl@RpclY$fYZe<(L#m{zMgkhozg4wiQ5RGt-A{W9 z@7Kuv&U;JDn4y$8)9VG5sE>}v+Hb}@03Z0lAGAkdc>@)kUgmfoQkAw4j1a|(Q4oHF zV`ZtH_-82YPv6bLUo{ZgY5>K#0Sf@;+cw9u1SC@c?BNVvmGP;meZXRteSLh4bYlU@ z557tJkU>WuO)8WVn&05C|B*eEGics{m-=t~*5=L}xkUuUVZRHg2t^_E00ezZGj$$L zpWki)29sM1N59hNLA=6m7V~E%rtRU~kf?3_Y#`$j3B>)Mj{`dV5`K)1l7hr47pgX| z-eIAua=u*Z!l5<;TOVxM={X~|=bcM?ZX|k2(u<7u0IaR(|gUY#h<@mty4H1N_rN#<#;_l(cucq%|EjO}wo5tdb5o%7Z883LvoPzBtD zy$Y}~A4m|q2dM3I2n}Arc6RT;6ypP#GhmBC2FbhZ z%t|OZ3?M2})AFS2d826WmqN**U|$*e)#;mv8hWThxWn(bSYB2(4tk!puiuSqeIb-F zeKW(4p6qb`1J9eYXH948YujI+eohR6p6+;6TF6c^UEDS6GBs{e4ulddmJ*F%kSpv% z@(fRS%18q%#5I|i2GtSWK&t=R+XcZw?6tpOC*0?P9 zP#^-})`pL`4`fAXpzV;z6ZuZnfs*WqTD(k^qsnE6lgcYA{+uZJG5M(gFVD5{E!M+^AfYh^+`5c9Ttl@ zNc+1mG@SdL83+kt*k55!LH4bE18fI^(Lh+?z73PN(o>tOqf80SaATsVsNog++zk(T z9i8YwpqwT^5(~iUZZ(Zk58&cXM1duU1C2pr04omM17h1K`x^r=AI3a zxXq8B8VT|lq73UV9=l#|6`E1cq}CWR6Op;7F&gJN!m2NYu0Nv&8$@5K?Pm zOZjX{V6sCj7h*e+zG0^+hABX@9%$DRaPchs8@ju`grB(nFS(ic;QUprn!a} z4td7(f+TQZW9UL>JE0;TEO`aw7p z{NGAueeeasVHAZ}o=(75S7f7>P`-pmUK{H>D>HDx79_^7XoB6cMwGWdks3#@72 z=?!UN@`NC+iw`nVl2$`s$#{}jNg`_|O9F$4Uu?vd6mSh*HYdAj9zkT>UT)I}r=?NY|G_@^cXI_#0UydA z+eUtcz5;uOILthP0JMYOP!8$-f_QCAP<3}zq(el>t6kG{y~3-(T&%P8YUtE zh^tln1K$6l)oNbS%>D`ZvYfXj`Q|{GYMHM2HaJ8rJFbEc(hj3DG6>)S*Adh9RHK9u zGK6Al4S=|8A3+ceJ0O8v`aKzt^wlGL#2{WBN-vso?QnwvfZLUyB(eN9Eq!$n_oFW- z0~Pp#zi#YtYBn4CPHLW>Ta&|aXMa5wC9jTW7)1}^h(K1foEy2c8qjCewB1+v-G7@& zm2UQ*A?vxQ`&;C38W4!q?NJmYPQNqGwVw4rL66enW!Y8$L#;t0^k_R zM*dbAf1073Ji%k7P~@{Z^rmYkQo@=U!vb{Idu&k)<6!;*-sM?+L_MLK+gSt|dFfnE z#;*_xIvx>4MI7;^C1^VtSgn>s4@5=HQI1JA(j-1KtE)px6H21N^NK3R&_IP*qfI!Y z(1$UCR%Hc@;21?-M_*je-iu+1qm)%md*P-h@P-$_T}FfeR}s|yl6W=oaC1XFZv~<+ zv1Zp!JWzhJ1y(s5*hMjYb=F4<-+{k|o`FGH2b#|pwzeXT-qQ|A2SJ?P>H0G$Kt+di zD3}$@$wLDnZwr9>R}jXbnXmO!9ps}hV}M}%7VtZvFi(LSqx8jwR<>TDQ4`E^4-(wh z>FGKC6V1G>U;Bd^0Fw9xaHD(!^=?Un*I_J$84RfAko5cc-3jZP5R4lE=f`;*nzZ%~ zdAyaLZtKQIP3cOhu5N*0x9{3dM|4*?-Gg!+aOxPCn$mxSA`9RQaNwrnI1eqhZgMi9 zN*H)(to&~PBB|EqJ!ViGCdoBBqMRB%OUoTcg;rM%+?#vwPA)x6R+J~TUsd~^ zziKaG$IVv10W5SDu=|WnoTQ`-7YcVP=obEzn#q1Wt$hIvDiPC+GmegnJ=9bNuJVnV zI6eor63VsBH8p&MDJDh8m~DX&K?b$~^6?z3qD#itp5&o=tbW&N-#DN!xCIm~#1Y@L z-xt09&Py~7g;)(m8gG`7snI+8{Y(E|JOw2-d^~gO>$a*)rRr;gufLI_qUOGsz3{XZ zV+nXp{%S)=vKSRTcTEJPb0Z2|+bd!$|h|$Rq5<)*R)LvwQ<|%>>8 zbuSp|cUB`xk6exeXL0(!-4E8(pz7OCz8;m%yxL)Z}pf0}5q z@q9)t>e$Ic4eD{1U6SN%Ay+~hotD;?{}n#;_#m%i=vQ7MXD-5m%={9YB?VWT{$F%% zm1#nO(9P_By@%_0kJ$2i5=YLX;Fj0je3;wtOpkxJxeW^X8VH%24T*6q4$7p_Zs9t+_2X!`Sn9S5goQF_ z0MQL%eHmgi$1h%blHFpF?)mT5+=Z_QUmP#s1JH267?_wZ9gQd7(ui>J^Mh0063j`I z{1pkkpJj)WgkOA{lWgvdq)O^fd(Hh2e+>wO?blcl@M4HJ`NcnY*gG;x*wZWj9U=Z% zMy0z;>1|N%dlFjNK2M_>6T}OC}51(ZZ~) zk#`tVhCRK#7r^M9;IW(XF>bu4=S!xFs_n{BN1=)C0S_laRX)PK-SQpn+116 zQ3Z@+V5q=GfXRd|3j{&We#*{&bYdnSEv9WC%TAte05>&v@WqAC5oiZOBTHGuVRu{* zxJQ0NlX}tBa}NlqGWZcxn|L=;NGx_u<9mXD3Lgx|i9eCW!khS}gD&R<&XlkBAnEwEj_f_=_|T9nJn;&1Q|w(C6Ps|{<>rDcbn z`u~g?cDr0kia$I$V3;F_-f47uv+Ujw+3%;WYY#_AM6N0wY?isjMM_8V z(a1Prck0~3Iz~Xcu^;jGZ{7tNqSnLzc@6v`$gBw!a7RO@z^h0ZG{{TNf;T%B4sJR~ z6S#qcGe1_S{|2DAvL`En#x<@OFtshX;Yxo{Vp_<5me2G8l%J3x9pPFF-9T%W@kvB9o#uEq zYc{n(gz&Zo3x|_u?z4PSM7+>1b%;aa#M6*BRxQStAT)*Kjw$ksABsr<*O%{$=3L49 zAydE<+z?%$VA&>P*D2|l#Q@+@;6LE;wD>uFf&w328#!aIPL47)=nb49*bUNz6h>J7 z7ARd^eME0g;WMZCDmy^W%^m9jJL%5|iv0sVZmz6|srGl@M>`@H)g7Evk~#VLT{()B z!u$A@l^9~2_nE>XGyK2q8jcmm)jYfPDqR*tUqF!o+D|q&q#_oQkT8PFAq~5a8Z1Xg z#Z6c9{ujHljUehr<~%B7o7xTMws?Dbasif%*TxBrpXRr3-wr9a>gNV)l%$~)PkVa_ zC`{8=JhebNjT3^37-wR%h{>=TVj`OQ_pe=)3O16tI*-r)vZP8%*pr68Zmvb&1s!R7 z|3Q&{lELQ9n~h(-svC=>xs?KQ2?K8|-#08>$L%-U0ZK$j%oyp_z1_`9IxH9cv)E)PRP+W@Fw^>?4Sadi}HV8 z=Uotp>H-S69v{2Q9So8udElAe0PM`mSMvR=BKUc3(?L!~E}s7Tt7BmCOQ>}zo=#7V@WDDy! zXi+>($o|vFOPQ^-0-ZH6mwY7jhO66)5QW^t1 z{u$j7xXCHVyK4ju^d>wOxXKzT&wXZ_--&EJsU{^1c&V$)S!k_l(n-`65lMY+8s;aC zpi8=wPH~eUXT@*-Y1l_(h=h9HaAxCgb$|eWtU)7SfvzT{(T7461=L!16w7{0AjWX; zlOuvC?#V>E=)i3J;m!x@?@(7; zcLKpj@rn%Yh6EI*!p5PlAVms-;}8YWHTBWn(lQkKC%%EQXPB({4$rl2{>WDfhDuKw za^AP1bv#y-^-TbIL2THQyg_Ty2RbDt6)oTut!KKxqVfftM>?H8se1vX;4d&HaK09& zBH=V)VJcwtAu8aFjM=MCtx%8)*fD7om0+v(kKV(I*4Ci2^t3ej_ym+TPRZm?9fL8_ zV?V-%2^y_$3BDyukuKDirReUGCS=a1A(cr!>KARB82nsn+KzMg*OWfz?omfcy>Mqv zcTzbn8N2wD-59yFOkzy|q_Kd=ZUDlC-~cZkzuE#_ZYn$&6Px}RKvsrG(@Q|og)Tr0 z5K)N_^Te2cAfKHaXM#A`(Jr9$?^j=c@pzz~j;j1Yqc4Z(BgfP^NuhhMy*^1vD*S~k zPcP_Jg?T*v`G#13jT4Dg2COFuxv3)+x&(MlN6wzE&w73{5b&!vkQ9PU8mN@$g2dnq z2rW1&aR-5A7R#qe?5GVy_#S(+!i593EG*r8>{8RFg)1$3p#P`j+T~eM@#+a ztQX9(r)&sTsCthGLeI+^wk`4Z-<|49Mk_E>>}N6WCMBBUrm$#P>CbUJ#izCw2?+|q zWbD1m5n!Qb`Qe?y!SZRT)N?~#C zl{pj>wKgXJ=vM72hab9Qugkt$w^j20|O;^KpmMLfQ-zO26DF` zat9Y-l%*OG)4e2QbabkT%ANPU+9=fY1OI!2BMt-3SNGM_)W)0qn?S$b0M-=m0p!JJ z#PdJYB}3|A5*vz-;m$(kr}r$x;r}2=6b*8*h3WwOaAt3dtcgY~=Y0t>d>9ce5ln~@ z2qe(=1ZyDxc@(>N-v}?y<4mw`Vi*|YzS$RqYZvJfi=q}9Evc{@elgL%P;bx|Vak4AdO{dpbkH zkqp@!dwPY5H}UcN;7{`<5BT%P9{=nuVNZsw=njCAx8YBS?Dolq22&R*tCZN--@=TH z*(BX%%0yv5a1j0b^@%H|J_s8+vj%_TvrbJ^xCXR}9|eCPpWW}z!|4pjRBkzrJA!H; zUA@A}41%w8g2VfYiNVF@*~ZL#a}i}0@H!b-2M+y;KsMogeRYY{Mh;^I zfKl!`Q$0@!FW(f;I2&+W(4-RVD77wYBh;xA+ z5zrf4*wmFkF4X;E6` zhk-JTW2${gSEFTIXAf8IY4(+S`u(cC)?>$G$30#FztnHc3S8BY1kwzvIza!%t)EQr zG_uuRU7s{vtL@nAnx36*H+8;po|CM7ba|03no}|?%n%$T$PosrAEf+OxW9PW(+_|3 zyn!~rAEye!%4&dAC+l9?=SUXJ+o&3TG=6z)PnoI^x9q9BP z1pH{tfZiweFzI!qQIuPAu7(fQ#kbT-`+6Eg-T&8lX^1%%-MC7%E=UrM4e zfdL&31##}HrDo3YowMUbh9Mric(gv^$ul4MGf3hMYop^TML#dYJAEv#0<_9c=zyr- z9JBq+aF%*`!E@tD;z)N0Ey7{~S8=57Wp=-gn#97o0_t}~GFGV-&oexD2$grX>!p&n z-w@=Dd9Q2Q>M}E(fNTI+-82WY8Tli7ou$#(DkqhtZM)HdeqG%IQ4Gx3u*rH)_lHlO z>w5XjNj|=RFR^ZAWyP#LoMaWcVTu4vQ)w(PGc}#v-Y$l4(KukjZY{m{C&9tM%?vbn zSZuOzwGkIAFg7S5!*wpNEsfDhe>v9em`JZCHQYz zy~TnF8VX3T^TCj)b_Mjt6YR9spaf*IfVbcQvcLm^e_Gu@@EDz#$b`0|9P9v@jn6W-LSxfHRM;(mMhl57rhK=~GQ%QB{A8mssnVU; zeoT_|v*sn8{YFh+nMg!}h78jmP%a@vzu zaN^yO3B*dw7Il!?0pqi6z>k+M&&ZFCnv;2k@6*z%Ohr;i6%uJ_9Z+d&e_Q|6i!tr> z&M5Bk+?enZTn(nEXlQf){uv1lL0mez*CG8-xmIENm8f8H(R<0Ny^;KP#f!|T97Y0F zb>Ee2S%@nYh%qIQhZ+L*D<4-U?~Tz1$aaXwQ40_{xwp_?48cJdh-;fH!+?)rVK?kF zQg1gZJSn<*_>dUE-F%)^BKC2i`aRhLz3(G$f3nf9~0k$DO4MW4Z@7fvDoH4$*~EJ&;YCdEbyoP*D6GDR22-#DXxiVF8Tz94HJG zSqVnQ!IL8SxPZAfmd{1+OO0KAbf^=q_ECT9V?KDqoM$D-8T|u%$L8P1%I`nZQ2KbZ zX?2$`foh+J`&Z`H`L=xSYds>QoHWs*6sU$hY7cpA)UZN}ZaGdeA}XaujNA7`FVk}F zKda|;GP=c=rlFBM4Os|XZLo#qBUL>w!cup%2ngCE zh|Y?Ke|TsNiU&A#TQD;={INqMcLU$N`Kbago8QYvQ*CdEtK;REqb-_OD`6N$#wGoN zao@N7%0A|rdw!Jz&g@$v@UyE>ULiPdqqp$W(TUdpqbBTifDK8`kU$ZQu+~f+z(hnX z_^Godw1BR91jc=~ZXVMDR^(m`8-yOzjuD!GTIEl@Cv3 zAR@C>hV=>L0I{i9qlx#XxZgfm%hANVnsSQwR8stGq#bn+CGn&Fksb?6JQunkDNuj= z$W*Y-p&ZY{xwd$lR6g93oi?%+iKI9?kL`J7B|Q4e3&NiLahJ32(c5!@AV(0_FK6Oz zI>oI0&fDdjNJvG1hqnk(?E6jEmjobr=7}1>TFv#m>2$Unq;FIYek6{1 zzT9i|Gr+J~eB$44Ro2exPVqNqa8m*SHLwY#)9VxjH}1L#g=Q@<7Y|@Evw>DPj3l7L zhlFp^JKd-uV1Fg=FWtS@XUoM#*|W+q6u%U3aSgtgw}t+Ef2y&zCg3w05G`g)eA1l+ znMRQH6|o^#G^onCu>6$Um5uc~iYo=jW7PL6ot_O0SvLo2E>G`=IiNKXv_b1Apn6!s z{rs>3i9%j-GAR|6&!hYIWxHJdU>9oDG4t}qPl2~kfiO7o)4;@ELn+$!7@3 z%2;nr#j#|kOX}y3%!4**9b703g<2aAa2#T;ADdc&rdaw573dukpMMa;kYJuyN+*PCe`I>ckg9Wz38 zin4?l(!@f{q?Uqsu${23xEX)^fx4A!(_|<3} zPnXAb4p?4LfC=AdbQEKT0FU9cI?pEk%ioy{uShX}qqA`@k&zV+UCD|y3uLe%62@R) zKo6p`Hz+Y_F-O38?}|`F6d+14o1u$q;WLNiEk57?Hm2-CUjO~o1`ja>tSTF zA}|mQC~qunDkdL++iYlwYQI>vc&u$~O#2#C0=nQAn@!jE*P|Tyrsg{ncRxPivd(%m zf_uuUUtP3$M1m07o$Hl#TveArDX0W2t>zte*4bqsC7+XqL7w&e#_2@P7(Vrl3lBRCpqOCsS`JmGX~}gv9KlN6s_?C3~n20itaq`SQt} zt_&7q5LTzRJWu*66rVBKUyw`$M8#QAVb9T)d++@`$=7D9jHD8$L3Nm1^v(Dn7qw`C zF{PNO+OXgI(LDBOqquo(sQGwiAwuS})9P|4#6~S%QxZs27l{TBkH^;Bi?yD(k_tA-V5vg(_5X4K5Fiq(h~`?3PfHUK$YIj|M6AjB z>{+rBWO6&HtS3Xtvz229UZ$V#>yFvf1xQ<&2immk!0Xaojkrqw*hn%cntO@}{_?-a zn(&PxKnTW2aK+sLOD~;wq{-IyBCKdgUCCGFG+XBx7sLUUyCiC7dAA+wvs=!}y8r%& zXR6TJjx5dsmJ)NS?HE8vD)XX*k(~khN&p`jS4jz`)O%3ncNQPWHQPoYZ)EdUc_{$p1#w?SY=u}7y0AiTvOdR#kGkpe=Y>9b zsW)0JKf=Dqt&Vih&fEpC1p;BUWub@Cnm0v4A-in#TXygdfAVCgu@n=*0<0(O8V@pb zAm8nIGYkS$j^K3%S;JEZJG?5jhBhRm9@-xiGU>6g^w>ejK5YPcI)9*{p|t~23WRfm z4|O(rV9@8IEqUeXN(V;6CpS1{B>ay5#pmhPf8cf(@kTv5I@nG!jvX8xGuF_0Q1wLP zF48V0B_)+SP?kNO>*w3T{5Yj7uA{>}^3*W-<}4_;O(DVtkctC6wR{s()O#KtCooqs z+$7KRxY|<;%+84uI^UVoT&RD+#%a>LQIoR*EeaN9`c(fro0_SC2V)?|s^)=5I`cmclKfS~K2aVM+*^H0hQ|St_L3d~zv1pTx zPTkAzt7g`{*STs3shH^E+I5foZsHN!!Dg9%xm87+nHWE4h4;0uuX=etD1Ud?8UplV zgMv!#^O3*=z5t)63G`K7z=Jsd8jGM>Ip;RO)(|FoLlBXeD04UrHJ1cC^Ey>gi|59E zy6*TIIlt*4DJRs>YUG<{dQ7}D-$uy#;xT;5FhxIllBa3JX)k_5ss<9D%G`QW9H>Yi zn34;|E?!`YW&jutL*FwHM$(K}^EMX+Jjj}TKX5nbiRh44%#?uQ)Q<=prb;jkAQEV7)0wv{i{k$pT*MiwR2{h z#dS?XOdXXwGz#@%4B$@3fw&$U(Nqmgze}%gV-JW0p!0SYiZw;&f`AeKh z+hIB>zJ_#CBCP_>+@IypKnKx<&>51_5c9pKr3Ho7X9oqIg$LfCr&ePeGr-FXLDZz` zMe6En)G=9ExlaBYXxWMLIi|MYBf&v;`t$a?eidM7bm68;lruL_eeutahkU^4M6Z4njlNw+7hNJMwO6A+g!-wNDrJpZwg}Eu5 z7qLrTK6oIvc<DW$g{#ZF;~Jl=ynroLNDy!hom@H2C{H+&CC$GdTa&|o z5EtY6d~;ko!)5by|IhGn{1_n2dqtrBHaR;8no8kgJ5ML;_<`OZMb(mlgY;4fbbToyf8AEXANFV99))ytGlImf!>nUA{oT6{<5k5wqx&nlYM(pu{l*ZW)yvz` z_OxryQOPMdnJ5>3jrprU4GoYO3hTGb zrVGi#U*1Qms>8K>y#xp*6-)>#qKLe6@4;OO&hp9*eW!*54-lJbZbRm@(ehP(aR8X` z+o;KPz71-@>ICJbQD6@?0Z7ovodsesb`B1HK-(XZPN@RNKS*o~Ab=7+;IxqUWO!+f*B9zS7VHY2}Z=_n>QOZ{H(!d7uFy(9*|ZZ27r%HCeyRo69T) zM)O|t-MnMD?p`aNtn^a5c+7YyH7Uk1i4(g6J*Lz*PfIKP(CZsxxJyId{1p16 zAk9}CP6b@d*o0n4>y9R-x;RcNXKy?W<<8{dBBm1*j6r|-N5J~u-!_$dGCP1I?*Ung z4bPXmk}LN>G3{2y$HOt}+?itnvH0Y{I@cu}_}~u#wEY%M0FS#BAV|>1LJvX7&X7mZ zfW%)a^zdj!sfub)Jf6=lu&C}IG2O7)o+fTCG*l$AzIU%Hlz{33*(}P*)%mt3IFIi@ zc(z_V&ntGau&^)EA4Jp69Kd{G_4wtA@@|v#(GlR(PK?4(f1H+y4AXotl_fyZ3J*#4esP2}apD;_BV-@U~fNB{nQ z%o?%vW=rU5R!D`}?HWJTZH=+vOVUBC(e%ZYZZ1{Hup{L&c0>9`u9&xnvUxkK_$I{hUr{1=H_=Ty5cb9Dr$wlqNeu!!NaKg zhIJi0PoJK~7B|kLprCltcC^1sJwJ0bs(ZAOoa|}l_~+MY-FBkaB%C%^e?4ZNZDQ$T zHyHJU&7BFdzy}A=Rv*I%^rt;UG=I5Q5KExRIdH!_Nf30&EvS_K2=Cnq~R zR(-2bEwg0!tJEyD*x1-v-`u=q+v(42{S(~U&;UeV#iaThAGkk`cX#Jtbs=GURr%us zS1O0Dx_ce7D~Ne|hY&=!Z=V8NJ+F$ zA5iJfe|qw6_0(ykD|3VGh8pqdd&R^r8|ZTwSYCVnE!#`iVPpfrX#BSe3hN%~eP@Q^ z_>S3r0HW{vz`I8Q9V%(pyBpC)zc;Q2^IbOzA(5AXp(_${XZzEH#?suTPXWp+gM%IC zju3cqpuCa|+`(@l)L5tFylx{WG9uTp!c3NX<}9biIdDB01I7Axa9PgbhK9=AQg>jF zl1`Q5%{aq4PSaNOaph!slYW}Vl~P#EKe1M4GK$!evX2`=X1M!lZE;d{oG)Ek*} zUlYz=-jDC>{!Ol=Kex_xGr50s zGyzhBtKw;HrJ$KMmzlC)Ugm99zrS}or&JFF^1X><8=*dnh=c2J9*%vjXvf6Ho|>L% zW91Anlm&mYgayA5<9tU(b8-lu*Z9fcv!&21@hh7V!COG^XqDSh|Z z>Zr)tGj(;H^VTiH8oYZx_RpnT&oMm6+SAfb;>>$Fo%jb*z4!a^X|T=@X?RR9QmbFz z^h9##Tkke_?k)ySfpt;?e&&cP5tu__M#e`CgNe+O;?EQPS5S!o&|H7wOUT2`l z1u=s}*z_a?e20)FLvaPFM5!`cs&^6|lD7yIQ^*D4Xhg~1iqjEQ*|xNpc1?k2RTWTV z_3e?lw~VY_7x9BF>5Ik<9v|TgrLFlVc8%}ud2A!RtjWnc&;3n9m%joh zAbG@6EEez&dr->&=hRLjS6w?uEhr@9p~8R5t|qcv^;Fnl^#IW11njp09T1V2K|nmn zW9X0e_DG>CS5N{8E8kJve2A8dl8R|iWg~M0m{%3Z;;f-};tUTA=zu8q_`lzyc{zZU zxY|t$40_Z3sChgItr{wq0~dIsgdLYdP@#t(fGh^Th1qh25ptY^qO%wGtx&X5n~!f` zOE43l;YYw!y2)*5vBMWO9ZMg0a;&QQE`!hmT8VEJXR63B$bsO?!^_(O_pQ5}Q;q&t z;y|(FL}P2o)kZwpH0laJR(*aR(ibQ zS#LpbXggn6O(~{B4hcmZn`13$BF>=Qm$s|5wd;8zE|5s>tMo*nHf!?de8TMx!V|D! z(Tch$Wqum%0U5{l7YEjhu@V7o;rYIX>_`2BgM@%^3GkbLFq_!-0}kV?$xT$EaJ(4$ z<3*^asIuAARqO_3nzaZJl`UFy4qOM*LS&r<$SKT4{D9g!44J36wLX#6)z$gWsUp)% zl;_T2CQVYIW5=DV?s>HHwj7RQ>UgPlsM5TNHtF&BW3H4d_JkfKF!=+Ww*iu6uo0B( zWVjSX8fW|gPa$;s{m$Dk2&b&o__9r;>M#ib!XQdf%Q~@Nik0Y=($2ff%Tt8ocX6P} z3vq^Un=%1E16*VoT9wHZs2eQRexQFIH}gAO#+1IT)ck$d!C+u8CYDZEmB(s0;N#Dx z%f~IAlf|B0xw&dXi|E*FSp!{}{+F-e`1}iPIt>rE=VY<~hgPB$u#8&-v*@|<_wQyV z<~Dfe=lncgE(Xabe@%^k@L9j9GLkaT6+j2=l~%3OE$Br(%)f(Mlw4k4RfXbtZjW2{ z;Mg77Zrr-qWy;5yodp5uxmcQ1`6)n(HX)|n9OO+t^YxxdIe#8KV*J|h=}Dx&|1hKV zz#;IW2~kd)1|?Qh9KHE1b{$kwnb-IoAE#rUe)%ZI;EGnD&NTF(qXT{D(R0Ki+&EGC znW5fZ6Uf0MK7;ZbNOf@X zgSCAU40ubTfE@c8`VE0CaskjZflK!2t8B}nXLtAw8(OB&5a=zQqB32lDs5U62tzb2 z#9%OleHq!>`hYy`B_~)owXCVEz%2@r$CNj3-+J7I7B?tOl+L|bIhp=8g(v=}#eJNT z^X!g&!Lx#5uZH zz=*=ybb&?DkU{5r62F7deiWa8xzu~3*9^?o7W~zIQ>{T}^;A@tVTvj$;Sj?x|JmP@ z7u2S(nPEboDjOhIU%)TZLig|u-#FaMID~oM1pPS|TzfGXH*GX`U*|!MZ{6%3V4MPq zia70I!vC8HjCq242p(hU`9pDEC+zHIPNC%0w=-^>M;A_|z-!>We_sdX8itsfJ0(%z z9o4C4d)*S8-{gHQBs3Jr&5wn^C9bY051l9+u{ER1%NoB;a;45#`OO%4nlF~z?sNi|=@ij%~m2OXsHuREVr zO)&~SkBencDG0V0_~$lZY1#7Y2Y+)n4t&)dU>0+Oo8>-;Ju2#w{a*s2v+=xx!qAM| zBY4lgd5VN*f})wgf!<~~;7X7(0qKCfD;B`J_<$Di%c-^iHghgOTxsM>B*2Zn0}^Za zWYzROj{a^0_wfy*dPb(d3$nOXkf6tM$pFSRd$bzuK~opR%U?d;a=Gfhzzg_xc5<=} z!l|?yYkI`8YJ-%pQF}=dyYQtdCH9y>-!n`WnuypBxrcdvbbtbd z#&6q~XZbE?O;k>-LXQA z=+zR{;nu*s+o>+Ra;yfL#j2kUca3Ko+=+nkD+Rj3eK5Y?n3#D28-yVcfz$AyfH4P~ zfJMoMx$GNjd)?|!2-^Yb-r`=f{obKQUzSO%M_zg{^!2qsRRiHyw#i55s5c@ya#)q8 zUMKOt)}H1i+q`}C3a4doFs2D!;TwEKCf|Pt)YLpcuU-a9>0`Po#Out@ipgn>U__%G13`W+J?i*y*wm+nAA*`&- zINm17a{hH9w?_d00Z9lw7gA6s`C!k>Xl5sUqA2yyQ~da}s@f2AzOLJz0qN?{l$Zegubj27^u&KD)Mde_tOS>}kcrtQ!!f0b@iX5X6N` zf9O7oy#FAL{2IL&8X^5hrE)z3p7-f}-*Z^L47uhH5xDdzpgMCvNRIGyP|jfa;Uta5 z<1cPrhid0toyT9Oqq6IfIH0vI(lc%T%%(1sIPqd`f#KDwEb1$107Sgi)zZq+uX8gW z{0iHRG+gy*>F9p{$dF)2zdVgB^V~b;6cq)qk)VClq7mON9swqz1|A`FlukhgA4Xde z4!a+?!9c?Ya0E=iW|9vuh?&@RMHvHrFaa4rqi_-mF0n<6t{9VrlReDY2F1+SSR#>q z|3mFSPoeIf<%JqYbP#8AZI;70GK*Z6w?0vS9*Z%kj2Gc1QxMKV>5RE}?esy{%6tlN z9V~*%%KqL2-whNEQnW(0Z-=wu%9o*f6LwjTyDutw76+N{1<&q`UR~nF#T_p^{O`(d z`-QPMou;Yt#|>(Nk?!twZ5J080(tqarWbs7HPtP2^X`6iO<-~ubo{$4J67-<4+?tB z1(*-Hs-#Iio~deuslhN{=A5E^uP%KpWz|*>MpbyId4sHDQn+$!Z7M4~cs%(qzX1Wk zj_Q4H40gEsi~Q#zXNMU5COblkipYBIY|M-tX(#XH%t;>w!e??PpUyTuO2|0<18`- zEb`e;TrqSzDh5LS3f-%|#SV zs}X{s1R(8?2!xxwoeqF<*am#SQwjjx>0cV$uwp}lrG2r`@X zD`@1Hkrjv(lihd8Dzw?2mekU!C0t4S34iV~jDHS*eTSm6punvVb+QLuJqj^Kep0!% zFk|SNq5%5EdbMZ`2KK|XCgx-+nprz-?3Y3_YGJ>oSD=!j&m>D4UJ2p)W~Qh}A=~#i$+%pmgo-oQhsGAWYA5>=n@BEs7tsVpWn-32wy6Fx&CAK8y;1Mv_oxvwHKQ$!`11IBN$n)t3 zv~LTg47BHdz-1HE{lTyuM!XvXT9`YS(ZtJ#g!X(vV>DCM`7~ zSESTDkN);QEr2OpAOjh3N>-m)!JLQFQ{m5!XTr^=-+Vym1#i+dC|~W*-BV?g?yQg3 zi`Y1x@acjG3RuP9&+9`WXlnh`vSf~JEBUA|7O-(nq9U$J;_ zB{dO|&&0)#QaH5vG`Ui`CZIDu5XU4#4e;NV*+SKna2Pb0F1Nqt5D`hGgQ}$DyQLho zfhLca664}{Fcjpt{=0o5%N4%2%Jl} z{fspIy{iu?406JVZVO6&(XgERCa6I~-*29u-*2SLUqnvH6A(1jI@v~9SunEMcWWD( z7WClfLM-kswc+66N=r(jARx5{C8%g&?W8-;AG^+UuJk=i(62FcjU*3HSHQcLF8Y-2 zsKP37$<6t$Y9!RJ@Ry~9g~mxwD1hB+@ARoP$zU6e7icbg`uLF%z?-m=O>T@Q5819N zeQdZ8`sQ=a+X^|oL1Wf_&sl%|k&nfdV`A#=RnsKog0&}pW@sHS99=K4xLNdD1Lari(Cm8S^ zstJIwPP**nVw50~2eX3hZ$@ud*Hm}6Wm9FP>jFq}-a>SG(U@~;YARfxn9iUe@aNJh zUG#q(#?AECUgp2YgfTIIsRMO-F%ZpgmaBfOd?x!QgRszm00y2W7oVQYwzf*!j(vWE znvoI9UcaAC2p3IE1l&xBU_TO??dIf**CDN?sE~^U(i;S`27$P#rK4kI{1B>Ys0OiN zqWf0J0^c?`m|c~DC+qmHAob!fQ@m)C&oyBYq@myIg(pwG*XWCmogC_J&<%({hT7t$ zB9)np=V6r6FCkmRClzc^tV@c7!=&I9KsBH=?Bn4tHE8&p;lA9yya0GM>yHb=?DN3Y z1Jiy7j7%YL6ts%%APvTOUhoXLR&TjDS9v!dU89)e{?w1JE*EEqD|YY2)5!@niZPU) zFh$&ihk^n}?ZYQ-ohiJ*#1)fBW$v4-pzsS9WJ`#}6hpu7w^>tIV!lLc5vw&!UuZbFu!^`p-7786UspHO2k*^fv3rT3R|m;zx|*OYdGi zZY{}wet3B2;N;4VjwWDLPSYCOzR#a9hVA|*&cyuC)i@M$8zor6kz`$ag1^x$a zXpk5*7qaFGqnY+0YXbNFtklU|5rXpRMy(#bAShS&pkEj090RtmP=83I@)!qM<(k(ZXKkj*URPB;%H+p}FMB*MH}@KKbQo_Zs%-^` z3{9?|So{|FmAAc)=Fr}27HYKs9A)bKWDkjeeg=S&kGHEAjKJZjVr$E|_xFQjZDF(X zwvJIBxsCw1oz`gOZ>z|C>3$@9u#R;3jRtzd?ZU$?_PH94l(z65jK1+3kmSfG&M(MW z4ij{nhk#BJGHwki54KAugya)Gs=Mqo6OCfyxfDXF-cO)6k)_Ip3Yh2Rfj4IifC6XbkKM=Z z7wAEy`0F^gMWkmQ*xp5P#HiRE2H*YbZhvO;DP-S32Acxg5x+ilYU(rj%ZsB5%F-7^ zoLOWkfk(THu9C*V_XgQz8Z57;uDkwL&uaJqJmU6`A6ZZh)MeP;BbvT*8^)V9m2j8Z zP2V`6B zU0Ek^Vs-!zWEq-<&bjJTnyW~V#@UDbx3oy4fw65$kJ)>h@d7~~K(E|LiRgn%ahjO7 zM%0fonf1{|u`P>!Hr)&xHUQ-{znM|I9}bo2CWNAy!98XbYGIIin3j~U#N_9{6@E#3 za2*PeEoVysv-y=R{ITNbnh=aa-D<*}Xga*SwV}Xhn!rek9<{SeU$~_I%l`T5W{)Ef zfO~3kn8zzpTH&aDlbjqz#cz={#$n|m5be2$7?(?V*yPtdm|n8-*noU(C{rGQki~|1 z$&HW;u|zjr{o?cUNVKoZ{o76=UWp%96_d$k#l3}g*RQ)YU4-4bt6?-zs4Y9UeixmA zfscv*m!4v>B){X$Wc!&;pse?yyn||FW!B?&8o)0A!{1k`$z)ST!g(1Rfcyny`dXt6 zg>NQ<8q3dGjUoe)*XWF%=MCO2{nZQVJO(%*%!fvWRFTFWc!pA*bL+jx%%tEBIGRVF zu9E%tS?v|EEQD)i0l!PD()zj1 zo%nG(4x*@f7#Ek`UO)Bglmwm^JPfO_YJ1AbNjEn;8v<1#71c=HgA^1zP^a<^KTOub z)${QSqBh^e#j(9Ii(~yyr2tOpT;-BU|Eozu|J3^Azt5@Q4gge-M-Ca{bZ(Hn_~iWv z!?}I$#aZIYT{27bX5iSFLBGBWdOz(DdIawcVLh~N9U7gne?suzH%l2%nr?(WRcAxD zvwH1(TX`MX+&NFbJ`v3aHl(Lw`%`6PZ`TaZm6bpFjr8=eP{l@JRK4WnAI1uRkIKu; zjGm{Qe#ci3ipf>&WZNG-`C5Br5sR>G$XQz#;2@l8X<=Y)@mfKl`I{??JvRXnQT+WT z4>gCgSP8VJpBR_A7>twO>9Fr{wHE0DEpO?EzoFsr#lJ`hP3(HV_BQTXPypCQdmwaq z3f`paBqZv*KZrXYVSdj-irJKvv9t_b)#rXhzyLG$cvkYP0}p0_y%u-LDtMkLWf34y zH@m~bFy*|T5HyJ5sKx1wG`PE9_+8Oi4kISKkFs-{B+~i^T14b^bl$NC+&hu7Co&SD zq&dMdJ)iS%7&O11UfgYc(-eO&szsE&r?tr5uy!t1Vq)j21)HGpco~lr(q5e~r@b2J zVMx?ZChHhZW(fji-~VsYgtXg0hU5;~@hXIbP~FInf2^$B33ZtWqT=P;yP%dg%nH&M zpJ*kN8}byJA@&qh5AjdZ@85uRVEoC??~$YPPbUe9_{HRK~y(mCem^My*c z7@BKwaB4$_H-Guo)OdF{4uBlUsRb;XnVFf( zU_h@qhxbse9ZCa7Xx%_E)J-wwVDfB>p-)2&ZCHQ{48|WumC-xVUA2UgHxLrRWqh_v zS9FkUgO33B^H)?hUn88roNg}bh=fqQrIC6Ozy+dfi}+JSWTT)|=HlLmTPo3VdupLi z45X#AmHuDa2#*V5n5oe`1YQiLjoj+PLdA!os9%t}bP5N3?>o3(9IfUmHm4Y>U+ivT z`6H2J&8rO6Eaw*=QhAU~QMA`44I1{rC&b}j!9W+?UabE&-r2I+R%(<>KjKfD$nG&O zXv6Znex&jnDhl~SrvP?lauCD375BX#rC0#X@Z_K`u@YR~s_yPaM=yIFG*JZ1G1Sow z$5vo&?k#6Gx6Uv4`nDXkMrS8ftA6xU3Xel`BoW^hd})AF|;50&s#$) z9C-c3edn?UG$hD)C5 zIAndBii+0Vquzqw>J)zU0r6N%pwwF9c`SsX}-~VeoamNk&wbIf#_6593#_iH%(v&PX?9^ zA|`^%rWa>RHB9_T;jSA4{mB+kkqaRz8GLS7Zn``>vwx{fc-E0vPZ_}$0oI&Rz>BVh z%H{m#MD;ZMCE}y>z?3PyT&Z>^i5)!F2T(bE(i%jAmx2fRD`#QyODA7-(5`u=hfV}cyyFeEA3IIi|Y?=WO_w)iq*YYZ zDe9%N(xI|~PziI0S2vur6i5fH_9mwubeQU|Lr?fWk0lzg{M-l+AmHuq!p#-?VEubr z)=$`8p(ETZ;(yDX9>j6Bz46Q6YTs;C*263q|2aw8Q#q@3)x|$^nu2Yh_Iwo;MdrRe zeG58IU0H|sPx7f~Id;Q|dah9;Mn<}~IFIh{y;ruISCYz6)+~1Z#pn6Y4AtL;3FDn< zO&zk|vF?To|1PdGP{<$sA-FDk-PqU|(q9b!-gD@u+@LZr0Qm2x<7L@`gTe5G1Qa)} z4CZ|}_DutIMOrOW-&}8O7GCaKrA9Ktt}F!|yvfajLhw#zU;G|L%g$zdulEXC&Nmqu z5zzJC{rB(AboJ?z-6QM_iQ8R{hKAN%5Lool1$MWL23*{&O=?D|9e`OvOA=x|I6K?h z!N5Z(cSJ%e8nm|qLwm$1aw?z<2hpWAKP}(u;E&df)tu#I_z)A0hIc@RKyY(&e}Ph> z912%-1mLC3>~*!8E#Y1?E#MUEA3P)mtr=)541hga;kP;V!68>C! zjSC%{PkQwp*8!<&5=qYa_?dF^Ut=wKz7D>I3cyQj&VK3U6Nw+%Xwk+1}muwQ8a2vDc+X%z=TbyhhhRRgxHa58JSOjR+6AwYosGRX29|UVk#26qRKpiyf z4(o8=U(w`?Zl#b|nU~8^1^EPY2WS4>p?)MTFPjn~%Q)209f8h1%ht{v~le(Cw`kQZN1g z9zWBoY+)kFIVizhD?tf|5Uay;?n=(T^q35%~QtvxC`D{Yf~?y9--Nn-fTtj5zOu`G#E4#GN@ss+Cp}Z8a9{YBu$=B6Z6j<+nh% zLI(W@8lbrE%?rCmOz&Y}sk5pPv$bvP#6r&!*s{23fcMG}LtpJ@KVcEH9&QaVAku48 zy2=ob1`B&bczC!fK)E#Fmo|t>99DX7_`$Re4zMtIDNr;}E-o$y_N{Nw`!hm}*HR=W z(@1Ym+p~aba~#xoYw&uTpKQ7rmRa8zE??Okw^_TH^7P5!zm;dBhWJ5@&C}D=RX~P6 zy8IhH3uA|uXXBdqq^t-8coSlvNr{$~(GC);MYy(@fDZ=N#+ytLXDkrrl)MD1g3LuY z(f5r@Uo)S}+D2%{@PQclfyb^SD)kVvR*x`U`8Fyn2@`I$eBEb<$V`6&qdl00)I>(& zK{qgR-eFLo+;5*PU-XmGhn=IH+u@Gb*uBcJ)Rye-BLTNOW}@muf5!D ztKYMmlI#qTxWs`3*#}+^dt<-n^xUdL`wVdaz?{HFw1WNJ0m2%xrEX$QR5xqcBX-bs zF->idX~;G6dx3cYbyNt#&al9};2V6N=xX`TT;W6y0DZNn3SZ85#Kq|corT8r8nbJ~ zg@&;UerE)bCB#`9DR~WkDg^A2y}!~*z(z0rIQQQ`E*o@uZUp_e)ANk%CPL|*z_m{u zl-4MmISfF{q2S22_Vm_B2`S>lBzXOLOumLiITH)FdX7XEcMOaP>~>VBM&)gljE7FZ zkeqq)9*y5ZHEw-HwxwrCfav5?Or@bKB4d33#pLmna}|S9|+< zFu<-4Dyy(S0{^m`*mk-Cl`LD2;=KZ59y+Z^NkH{bIgR1#6p_Ph6h)PbijHPlsKooM zj`>6`#-}o36xebokOfd)n7j_RuEE$mI{_lTy&5U90j_Ne@}uMFF6_*jy0(pxTk0|{ zn^*!iSoM2^wLM20m=J~+$uDS4$y)Y@4o3lGf8p%WyU**9+YfKr{uE;UN+c)Y#ayp6LG+;@Q$r@$m*RVr+x!r~eL%XiQX8JM{X|K!9Rk z48<#-jlX}vBn+9BkCxK-98Eia*^O?pKZ0$F&(-`*TtL9nyy24`(lU*iDuLDNg?OcE z12NpJJ#&9&oj+*C@#x>W+D%kCp7gd*; zP>Ba{qyxPZ9Rc&qc>eRRF9ar1`2#{_e@trA-m@QR;ESUZb=!qn0ut}Dpl0F&?6i{GCMhl6%$Xlr&HKs>Hl|X9dN@4L;B1U?<(MT_7}`yZ@|6=Q%zeo+)Ja zvRs1%`v52(fw}OT-);m$tE#ZuPsS-~9)=;$>un8+1~#0Sx9Iz{aw*L7{S7fW^7%(zkbZ`a zi1TkP)OOK-nn&&!b}te7C?8*#n_sA}#-xP@?WrNMkx|&DnE_=wShN(FSy%{8O8)+y zzXT@$_rnH>8DyH|M$)DwaJToTR(zf)82@sn1E~wZ?#_l!ie(N=X+cO7E@%W`qwD`h z$5+Z9`%!)^X!tWlm^6VGrX2!kYgWeE!otE#pojo4{|$JT^+h7H(00s8r? z!Pr>JbqRpHLZ!lAtH8hPfWa7X)7fg|;Z~JLS-{V(o}zk65ZV}wYAR_Lh9 z=`~$$?DclQ4gg^+?Vz~c{kNj{jJxn#_W_pW*ekCPP#^S0{r%}^`|Huz_GoyYnAqM+ z14pNwe~?8i_3sU{=M4CUXfD1@&7kizDjF`-$s^q$gP2w+mu#m2`&kk0`9A5v8*W)U zMBIp|kkAB1vup5L^GSXhhr7IL=P8;nxAFM)IPZO)38Da!C_%RBHct__u04m%{S(wP zsXYf?eED^*k%>YbpJknNJ|vw4Qv+!Y_SJldi}C{TZm4>`Ps1T5?C41`|J%_i!DFS6 ztG)!ZCm!gf0nxJqQm9Y_0-yf3yh(YVK(K?BIV8>;TyAkPy7*4M#^(hgK#6t2 z6UDbYw?pxsMbgm|K9su&7m`c2fp=&T{0x0va3^=zn&Pd1debN?U2(jid8g?q!(4^H zmZ;Y=pZ)bWs3{NZ<}IwEG~@1D&EE&pTPPDi-jTDD|1?fl`;Ef$Yhop+Uawx0A00ru z`CvB@ppZ=~(zzjJEvN$HK=7i4fDQLG%%;hEbGg>%=N9odpxOrFR5l1>xM#MMi9gHr zFSPzo3$R)vaN_ToubU!%7Dt?A+GXO73ex~mp-1KM;$pyJ9PwLBOykEzI$Axi-#A#JXxslIL0a2{8#qq z?_D6ZZ@_i1{J`ttI24cKRAV<0Hs(8&|C{q0gK~r!feP7zHx@klw@@ZF(5&V+TeRG2 zro3Qcpwx0W`!nY$Rt$p&YZdQ(#J~4x`nA&Ad5D4>==9RQZ)>x9pU)0GxDd2X%Z_G| zu0V9`#r5@9jVJuSPu}$PkZtW-eYCK+DIoC7!QDN)p`qaz{GasX^f8|T1J~z^Xi!~N z$O$Q?C@f?nwK9Eb(#KY-7XvQsEO<56r}Ie*lry51goL&dM4VAb{ASPtfrkJl9XAY; zWyoWGnK24h_Rj(8FANlPs0r+r1yTr7^wmw`{1dor$n-BW> z`X|tHg`X-?tP)faAozU$WfRhQSU?Ic;YQr`pDaoXa2ldJn0h%7~WPSz6S5lt$b~80<#m@IIh& ztbSaTxz8Iv*VCo(KT5-Tg?U|#10!0WjK)p&$(9%^wO}%(Zp6Fy?dyVkRMFH=oTBf& zqs-|fQ5>5ReZ_`$Ga@_tCRz|cR0_N6CS2-K?J&WSw1}`xIlJ_DB<|+?@U=9zx zd>Kf|ReF;A>T-mKT3bWjVRtm<9~YMrq6t4j_9Dfwd_nDTYMD`v9LGTYOZ|_ZK8+0C zR;HBd9wq4OL(kQeva&C2a-;}~`_A|=r1Q`NubG9I4=qG%-m4U!MWKBB^Y~epM#)Qk zt8US=>9?oK!(6!G4q)2gjQ#aJtFKrD9n{WJ4#ft^!^FbG+oUqtvsr zY+3Wny6i$d?Q&y!gftGyA_&?-X0RIvF_v03MHBGfd@Ta89*wp8kD(~x!L=txHK$*07* zoQQX;V$414?A@vNh{gtED%l_d8UnFL=uF<6J?q?jIiZg! z&HC;~-f`y@c5^9idKZ2Y+uY)tlovbo-uIj%N{syfK}x}YZhRm#e|?WSI-MNc)+e3= zZ`zjXX*~vn;9)pqh-R~GAeD40EWhVNi_~s?G%vOi#L&OPw1*-eC%rWu1qqNm18?ClatP(;pQ`)$1@cci{k@nx5{349H~J?)&ao_ub_dICUQZ ze2HNJ~T^w5x7CKQ(BB^4d@Kln5p=knO-kaRqL~sg*!m%Efn3#A6FFsF$c%VA#iZ0a32$i_Z<|U?T?Q8av9QpFHj&QsIR|6I}ihBAh?LMjRdIg zk*8)QmHvY#W?)`3wdx>DJBZgdI=ZK#5YKgTd`t_sm%@9Xr>FUX`wl$`Pg-k+#onG= zFe=*odf#ArDo(n1!>o+k`fwl$kJ-KrF|5JgEjcthwKP(=ENdK?{`vT5>6V&!9iS;^ z2>7dxek%M_Ba5dIJ6|x~X6L-h)5fJTq&~E{u@M1N6qsrSXMYZNc`Yo$yQG7A=Z3B! z8wZELjOhjPM+OCKCEfIRbxI{{$W7b9k)Q6|r_YM!# znD5EUCzD*Tq;P*7n&?jz2FDYw5^FBA>gjTy_YRXd5AhF3xP-J>ax$_k5CReLvBCXa z9vmr;R(g~EewSyEIttmV)mB&6dRX~!-@hRvwW0w*CM%_+gbzR+s~W$HZ#|X*>W~Ts zJC1!{xerCNAYu|(1LfHq|IM4(DUduD{W$l2jZsSw8iI|F<1E{<`w!r^#;{89n=Od{ zi6H3MfHo2|qRYraD~S!6;*isF=W+@UcAse)H5}C z`}#RM%!|<^e@Hu=d$`%%;$(TCGCQZeUvF>N-11>eA5?h(Al}H!+zw|br~b1!sa;WD z)A?h8!9#!s#rpW8H!Hvh>02S4(I)ko`vPtJv*np3L)bTG` z?x$};&wd_9-+Sakpusn%ZKxo5JU|&_3K%|#vCV@kUQxDOZA664y{TXpmKydsuwJ+-dS7y(+d~ zu!9W12HX3t8~e+ny}H$Ylt1cSUW-U)KIqBzqo;3P|4xp#0}>K;Xv5s1js%0cIx4In zm7^9g+!3<^}k>W&^wzg!|pV?YWH=d2>49!9Y zCm6L50q_tK07=zb&VdJk#vzP2D3Mt_;ADNy|8{}5?1h}a{x_aA$LLSLNH-45E$$|U zLr57Uc9VyNhW>uSI;y3jGL(}{zxn%jEnV}WQ+nJ80a4@ak3<2F5Qa!f{ARikTjVY& z8v)nSu{q;M@c=c%JQ@?W)bDGm))-8t2qko*)UV7;-x8?>8w<9!9;np0e(AmZj(-F1 zjX4#h1xA#Vl+ZWF%H^p2YWOOWc17^t4N(!bA#%fpcy@Y99}^MbL@(m>@kzc_*HD7n z_Ee<0M!5G5J&!Tkm*~sMCM`1H{(MEd2T*&gU@4EBn$RgyD1dH0c%XM6<;YnRy1y}w z2jiJ3*DLYPfsBje&Pp5Py?YZug)9ZnP4^o7(q(ly9nrW!PbgI~nbKgIr@Wf8DN9!O zm8SQVpXrvC(Jd%=% z&TR##Q(kAkJ?uwM!G4S$*{J($9}PhlphwJy48VCz6BJj4czNSs1&b{jbC-d5cr%&-A9kM>tLXh`8=nyX`M&{$Mr5_#ZxeoLR%KPob`9*a{l_N zk=dts6T{l+ZSD9^tzmE{n@vt3evDN}$ZZ@pJXVlhb$L|UuCIg*@X+4JB| zWYy(S6NkCSz9sAD*;#s=9cbZz#JJbGa@zJIA4n`vZLGbD5l}28yKYZkgNaQL76G*5 zrouMH`(8?nH;R>-T~jokZ>W1HWksl+Z2ab_kAcB!u`kF6#Gl`d+{{Nr@})4c7*dXZ z`Ra03q?=k-L*?Y;l*NV{Mo6b~s?`>bu3N>kcG@bfvA4Bz^|nV#LxWseMh4^{L=|>3 z6NOGg5J3q?3Ksg^kB?-XN_7S#>!v*t~`%bxMiWFdaP$?~_f(5k7uVSJ;`a^ER z4zy5|?rNGqp8{o@I0?qX4G1IXdmwMs-rjBm#t6)aY+I;9B4yQ-{5~NwZzslJA&5zc zvW{gMF`EsD|1k$-BJ1%Uv$GvwGf5#xkmm?#!a&(+3SD=bz*Rd^dyNJ36TwcI{UTuTN&CTtzUTt|)d4Fj? zT-ILqc7`nn6Lp(5e1JUTn>TyujV3sf{ls0^Y|Jf?sj~UAg7ktHcRYh~BQ7Dp2%%Il z{o_aKf>jqG9Khih$%d>yJH@uPZCCfqU%bEuhA}k9I#E zR!dq+h+H+^RzX`E`jYtdg(KjbF)%Px0Z|Xi_4ae_XBVf1H?%RY;o-G`YiQ3*oBj^~ z2lST$4FnP`(092`8*d>3;#d(|lI)mF*vMIA?iCu-b%Y!mF)|IY%NtSSFAEyG$;H z0P}tX>tq9#bvR_e=);Zm;NM7ZW(YB;KR`@(7!mtIZO(3Hn1>BV@SE#XCcb!CONQ%a zu*^~5-?T`Klw3-DEEKsC=9rcsbq~VC3t*DbQUOg?YVc{6RDV_>i-}2qp`Yinlffw z9fi|0N&c-%)1fX%!v5ItEI?A)ehfHvD_FNe+=4~*`0)t|W!~R!DmlA_b^b`L4BVKf zJ6>mIQHwwiCxS2i#ue;gob(`79)%(hjK)BPCk3AhBM8Qi4|Q2r%fF_!j87Exx6J5O z2;L5tU8%N3eseXAnPQgXLB5o_e?la2o&`BwOX=?OQXp1WJLoYO=>QWl#*sWjlJErZ zxsCWzO94ogx0w+wCzP3zUb)K#5DagfUg`FormJF5x#3PsO!UGfD@1O!ef{{aQiZ%6 zAAbcLG-`7fXU)fdYes8$8?;O4!;~_WRZ9#yR_`cmJxKoO36bvS*u@6E1qKq(<$*q! z9JDkO!FllDQk7Z=Lpjsp`X8q_Al1Vpj7m#IJ9?4w_A=nNF8%x&3=K>1#-&qN zi_+wbOD(%SMfv0(t?fMtL^JNGEtUc%FjjsHk1G@|s1glr5jP~I(fA+s^&oBSel+B3 zlV*`^P8OPwCHC&>`PMPt79KrBmMvcu7LR7>U&2xsb-@6 zj^-WmYg$waim0niy)dcQrRHdVq91=5hC=zF_= zIXJc`5_+Ebw*+BE)()>aTwb-gG3xlQJnL$eE$a*pKa>Hqa(exm=@;dp)fB=03Q`Q%yUUU zDWwMWs#Jyab|YHb6zKqFiUnG$UjM5zLsa6Nx!}@^K}6FPq3!gujWX`&GSfg2XRRXF zfp>s!>FEgsrUgjVH5)DtXH*!PUeYNt_zO(yeP!h@b9QP?m$)R>sj}_qMUGjMD-hur zS?!O0;$3qxG<4(kKDZ+`?Yl)O%5@iyjs1D8?md`n@Nw5cFAo4_>WHJ11pmmMgX4% zx`7yr0tw>T9j_lj7lan*kC1qhuIQ?%Y>$yQLaH(~@|Ug3%f9!1wLrzOQDb9cCnno5 z_wfY<2Pc6ye-pU{a0n1tNBJ*Nbix|Z_MjH|&tlOAFSUSbk;cyYbmf;PvGihNCDJ;c zfPaGyTL9D?D6VTnHp=_}g5}e;^pTN(VC>YI0__A5B_b*`0lSE~vqL8E@1*jY%Juv( zhr<#b8!aQFdAXxdsQRtv-rKi33r)WiK7nR`qb%{CPGxWXC$OynA%YfEE^VM4XIP-5 z?6wYKXb|TIjv6{lg#o7FgG^V(P7_AbisPT}KTTcpw<!%x7gKyJ85?PwG3!bNQ2B)rLrqip-SQc!Gz$B5z7Y{*e0Ax*61m`KQ}F9gvDMNB zE*L`ihHg+%fnAqy29P1q(izx5eX5bI|Zb>Q&B-d>2B$ikgjhZ=ly+a%^$O749;`z zXWx5Y`wCfWB0@q(u#YTU12;)KQyZJJx?cr=z}$dR0Vop449cPZWME=~E^NVMgU#D} zWE5DNOdc)G0bMeyuvE2ib6aipszJQUTKu~X0cW0Za$l`;&69i`?xW1iw1Z=xs4ONX z`RfwRaBB5nljOKKGO!?d8x=(e386O+Bc;C_c#R~COTdX+vUhVU#PsbkVw~}bk%~C* zVrmQr>Rmg$ud<-z>^YK)3^BGk>yA&NJ?iFC?Q0SMMoGEDtms=Bk<&F_UP|%^QU7$2 z7}!NT^V)x2n>bLlve3Ux#+F!+((qz^=dkv^_dy98pv4K8DcLExpb!O*kKc&3& z#KOYDJalmGKuWRA>3{G_%`4=n8&J)!JIVi+1kD2>**7e>ZwN6lFcceBJy(3>a`T{r z3kUqXY^UmXKlQ@fzwGX_#b>;(5j0fvX83V1U9P9Io_jCN$dzX=jn<%T>9@0v$+WX71;ivC=6%hc&X6F53-*D9 zu(6XbVZ5BQ96-myGe6oPf|zm>Udk6>t$7Ly%-^6aild!;l#8lYYsUF^xx7+BuEzQp zcANcI{f2AHbV1X-zGsOiPt6#1*77&crketXG-@+)?o4W>4wSMK8#bFf2Bof(L2Wh* zG$|3;T19d3B3_vzQs}C-SO*?gA59O-m>%p=V&PL;)>hFk}>@2|6>;2O*BO z@8uLS$_LCDkEkgWnG+5D{#X=_QGpa*1QrQvME1o1N~u75`(GO>L3aalqagv>!|_RhFPhRC!L zWdPKDXkI}+43JA6F13(`N{aj%B(xVS8ybo)d@JTZE~(RDICw*=Lj|-joiv9U>!p+r z>}X|eziyR2bY*oN?dp;N_7{?K=c|+Nbtz0T!KS6-(kN_Uf!^4}mM}ey5h48;xi0?; zE0xW3OD-I_z$Bi){+uM$q?@4lC^zpWe|zH|DhI6AT!(p{$F4oMhj;1Oh1bMcRc}{~ zh^a+fTFG?Yz)%#$hvr<5=pj(R+11L7%Ko7VFKR<3IyEpmI z@NirFH|nf~kh^>OCmrqIa7ex|KmXnv7Ok^5*w`+BmTn^R(G+0Of>E%Jb;d|IS!-U5QB=9^wHqG1oVJ`^-o?BRuK*lKi z_uHbPG@vH|Jyw+Y$){(pYE|zv^ZN?DA8+V_ZaxTfCmj(ko+a0+VT@QIx$I7 z(!}n9ZI*dg)Lw+<7r5mu;cgCsPj>Ik-$1m$XZ|QSGP1ItfbNnxxJF1slm%;B!PWVB zBCECCXa;}+$n0!vinf64_54c+(FAn8qK=15K}Z5D$lL>gsV3yInrSmtU%@FV+M3XB zdCLo~G6w>J$eukTL0AUddC0=@(G(e8H;j+{EL<6q&?!%Y@#O#Vvaqm-tEfa(0txUX zK&I0mnz>MlU)qJc9|asVdaDu0fz!VoZvbAVH~Wz}ECV$v(I3gFrmdvSO``X%K?L(NcZ3{HmOOAEbmMwmv z<5Q#hokcW!NTGl5AaMp%N^mMcL^w1tkvuUuS@iDDbU1ld)`L##0kRfDE(m!5hZ#XG zE@e%)@W9B-xGRdjdTV_cebxsJEc-!+6_m|#4EchKMt&z!2k@~TPly1!uXlrYCuf)f6Of9bT zpxDno59h+8s%+fGRs#d;mB6hmAvIT#Ir zt{a~Qj|UG@Zo~1Bx!R(~bFbw5{QT@LE-oDWKw|Ocz^g^aFu_4K8jId6T9436P`eOa zAqh40VW(fdTqdx_fw-IpEny5D))R;^xvxsf6}Qq1-vrtYuM=`6J@0tW@cmK#;8tx_ zm5mtC9pyCT*X7SqxhW%bT73l39~r;5YZ}O*u%*fu#2e=G*TeJ1KB)C9Z4rO(``e+Wcf4G=mLD*&NM9y(801M%k@dE>!5-L&IDMFeblQmEI{FQkTz%YY9c}Cd6bTG#d}&H`4N@*HZvxK_ zb&IxVEyA@Jg~f9EL%>jl1r#L1Bog>*2d7+8s?GW{Cr%G;Dc$?O3nr357S`kG%vhhb zfkIf#KgxA1`a4)BRNfezVWDr?|L;=R0u(Na~MH8A`3R-r)_+TB$(dZ!jYryJL8&W{kSoYAEW3(5 z`VReZFB<267=qX<23dF|e?AfrsAGj)!(eMy^%6`KpbC9iYc(jnHrv*QZLBI8CwK6B zBgWSUbor+C3+)RRN!`!RJ(vdG;G*P`g23znkcc30r0;ub;6&QP_Fz25qr_{8Sev5+ zT|JVE(@kKwMi^(FwC*C593P*Dih%c>Q9vL8Dg*^m7drat`>$W$0P`X9_Vxzaq@kmW z3wkbTShg_X4)AH9F@(z)-__BP5ZFF(KoS80pe0B(G(o8V9jZo&*5J#Rs9BJL^&=%; z8Rw%u#qrK#1WW0lG(2iWWo2d_;Q9}zrDp0@qTjW*M^rCd7+@;zmHeck-;5! zAk7?7rmN0F08uS1LS)nwg6{J6n8yI-KQ}mp8Cn5``HgKLJz!XUhEKMru zu;yb2Bqd~A<*XjlGlN%b3e}eHTC|e33gY}YXZ!_AE)W)k;DjYv@KTn+E2#_Jjkd=# zFOU!C5HOe9+%m;{-Z!Xbvd`KmoMB*1rq4mA6;CAXCo=xz4X&=iz@LAFzf7>09YL zP;OBW;HX$$RrOd#25WfZpc(|>60iva<1`7lcdY=2vx59g4WuyzU=neVUX%sr96>YW zUuW4b(E!fJ-+Ou(;IZ^u@(!8Zf8Xf3fekfQ3T%m^Q&SaS*(R4P;DC>GsQU^{RoMHj z$(-@euVu!XC{zlf5)(t9BaQQyKN!2-NS3cyx5u*UdQd7IPFOk{>5NG%M^XO4az zgT{cK^q)OTa&#bl1c0&kXLon_UE*<3vUDuC?_v=YlmEu8jK|Ro909|C#F2=dZSsUq zXR_pyU+uQ}oHz*q{GhfktNOQ6&?%@vo=g9m-s6U*1W%crU_7Ue24_wE<=%uRkyQC! zea>UIh=__6ha!k8t+h)~54X^Ke7lAJz_$#&3|x8ePeH#W1E|rvfbEBXLdg<_3M;q2 ztNmz@F&zR!h>+VR3$lxaWE&(P0Bi>aP^3^H*W%5dRkmQB1@A)<%oW$FN`}K=|29@* zL(u}>+<(19=z}tqeVU2W5}2nvFI*AOz@q_I6W`~8k4Lq;3lRpp+VHg*5wkM=H%&o( z-^9+ve;ux(oMGVfRp{5{yB{7tSG90(s0t_NPSW`a!YJ}leKc`!r za$jDb3lm!WV>tc@1USU!!$R@_SO$mnTmB`K+I{Z%jnx`uh7EM;kYUxE>yFO6R9bde71dciQ zG{PT|Yf&UU4SIwZhnu>V;9{R1AN;n#Sye?RWHek-fZyKibDb>7$o_;H?zNFZHh%JY zN0g81n2CZUqg9oJ4VFafz`Oe4fB6bTTvZo$G2H$gdE$M=r1hn|)8%DtF4M=jcf%gZt8$1}$%OKeKU=j|^w*0u`3HW&@>i<^O zSM1RY<0v;ELAjMNXvk|N&0Pb!-FWCK!+=OHjuo048;0=141kyVJE#P;lfqpr%*>Fk zSD#=d^afqqhhBIa5S`|P%RdLc^RmN{fIEcunaH( zY2*?Iriw1pUJca%u2zKT3A)D?-=X1iCdVagXRHiSYA^)ZlzrOrWBW;OdOKHJ`Rm9h zxSRLy-*@!-K{}))o5eiq@d~&HT5H2OZ;YE<*+`Z^@WlxV%I@&oq$f`j&S*f#M8ctz zs`B(n1Ti<5Aw&v1fjAf>nJEDP*}L6)WtHrIP#q`L<~d~5)DZ$;sDlmJ3uXq}SasP5 zAezOV@9YqtnZwUYg;dl5bl2+D;up*kcJ#yjHuU2KH~#MmqLGc(K-8joXtRf@fiRqo zo*o4}co6~g*(@}i6WTb&I02Y)-@ks9axgW`K^iU~b5{UG{S3Q)!0O*Ovu+i$J1GDBTU+0Ga1ZlI~JuPH$OMGlPR3}#iGVfWTTt^fRD=ox$vI-rVhRT zy2hr9ODq*S`bWy4;?U2Y`+fBQLU6^a(ecHl<=>LFLX`WSxm63g$XM~a76!~f9KG$D zdN$NfxHM(v0S+;L^$7vnV{qWD*CG9yS@|x3p&(AH$iT$HV$>H(5kR}8ongvf z%${+;LR6Pjzs%zOdKBTlZ@sT?Aoat5Pp@=A)UnH=*zV=+&6bswbqu;Ej7NkzOaWTq z$6g1H&AL2{oE(aY5E{4+J>=n2srOPZ+_%|B8T}xu=ZD9uM<4mTT)yM5^8nCWDZ+X{LB!W&3^V&HhLW;gyYf^+V{RV zp339<#}`MlR`B{P_hu-=A^;XU#c!n_RNLb{Z93#uJe75F(lM(okGh`t^+CuCAIO183K$cHc*9Zcd~+9;;}Nq7Qh3Ik$Yc za|%{Jd^TgEkKa_rF3opjINkM+27U-Qi=nCKDFlMCHpw9ft-v&nfsuYKM!DQ=OAom> zC?gZez&w~*uJ*veDtvIoDG}ylZR5{WdEq#9O?2iXDEC9uDI|@dfGY(3{}kWy*+e z{n;$(UduSZ7D~n5dwa$6;vZVlYcl`&brWI;m3v4n%Rtfwf%Gwe>IWE!Vb^(j9B48K zb>qK-hX5dtV5W)r1~^*9>`c}AHP7x2Dyucz=XPf5%jq1PL`NyF^FO^P(hmF{lX1ou zD+Mzj)a=|T0Ft2t{|t9Th5@8hcgOd5iqNBgqb+2$T>p)RsncDu&^i9OqtaYqQ!!O1 zukTlPcL%I+`+%p#R2?Br9!D*jI^6wd9PJIOrb?Ti?-DE#T_ExnjN355KOC2qmKJ2A zX+SO(7PTzW5+BU#(VRlsfv9x%t1`WKv0O!wjs~ar2V7w+2vTzLbwC|4U<6W;Ban+W z`{sA?0(OJs=<_lV(&``7ETDJ%9j7$orW@WiOd(MrnD zs<2BlhFr`n3HY3rpCk+zEK~pS`c78Omk_=jVRHtGVJSpycmxLY$o7iX2ad~ z0m_7APQP#)1chH~bjL(R9lQN`Yf{0?|BQp%ikPI6{6Q(jiJm2 z#O!j6K#%(hui4rhjfh4fU(r;}j5*-DfuF%9BP%mg940hVlm}?-a4Mh&%|YL{BvIt?kZC7}y4>7-diM7;ta#sp~JSUij;k~v{le?PRY6b>;(f=Ce z`Pe{~uu2A5Y9NN=W51l!gOYKS;?Nohj!RRZYDP|Fm*n#h>m{p8h&}{~Wv*bn^~}P8 z8E6eE<~F6uJcze9K7p1Nhk@~4g@H=DT4#|qrdd+xFSsE}ClDl)DFSG-zMWrc*sGFF z<=4YA?!c0$-fz6MYt9mp`u)=xZysV%E0UK=Hm2YAB zql1!&OV@4&LCZU+eVB+LYgg`Ejac&rg(E=a&`Y!)j`jDez6rsi<9ugs`gfyK)SVH_ zuEj7C20bz$kInKVDWFNIzV%rSUxX98f?hU`6dvH`r^-Z2B779Etd#GjA>S+Wy~Xcb zd_5Z*8*Jc0upBsG4JHdSUK=HQc$K~nxoyau>p7p#iW>K2c2d_*R-?RpsZ*3&V-pCz z`i=J{fXdWYWufe{p(QQt^up|N?h&k<-R$BUw^lGAEbeLJmms%`)AqfkfTo9#$ilAH z<|hJ9qwHyy5dw)_Y=1;B2x(~}VUK5ee!Tn9NTvN$tT&^#5?k)stSI>jXYNHD&=kNe zr$1krcEWB(_~p?o=8XUBW-D}L*`RlS3>}XwJhVrpMi%e(#LiW=H|~Bj<~D}@wc+mF zyJs#!2F|+iKvDfGb>5j@ilw5jG`>cz@YAs=Zex{ zjk^P+ApLaR(i>S25~b0pKm|jXhEOnlGOYw;O=$taGsPNQ<8RtO=st_=|L-mt`Qw3q z+v0L%qZG_%p+fyWo zY1WdL6NdHKz3Lb6v|0a0v3$@Qz!H`P+yg~f+0cicdmpCS{Qcu#&g!=e($!vaBBZ1Y z1NyZ%sO{lh_zSfWCiy#1%C#XeCkUvfDd>+>MnSyxo7rkA@#aTe{i=ygHf`h2X~ z=4_i$ZAHZ+qem)`#>StalqM&}MXzwK{=@oPlgquP6c}Hi!oC5|*N^&2iHM86rE0JJ z?7cxC-S?~1$f=UP`Q&@5GkUzvW_(~>8#P#ClO*vF zfDZ7GA}K)!~UR6U|H8uJ(w~OiEP)q0;1LXAaah38{%7 zFzYY@SP7Y?n<45ux3t8lF4te8FQ5t2Ep(&7#5PqKuZ3K7>~{aI6-y1D{i(uo7|c^} zG;C1Ytx#kle^2v}e5@wCrvG#vlm9SPP{Go5vkQH@ZWdKg@VHivY~u55Ms*Cs7%5eo z$a@i$0yRcqimK`t3yJFWF(fJS_xk%4#v*Th586*KN){1jUkC z=u&=uZqZv=`wRpcc`;XqlMZvN^ zTM=_!Vai@P-O{wQ?}-lAG$83CHkaoozTva_m1eR|(4J8LklRw0llvTuM}-|BZOW!f zdM9jl_JQwd@ z_stSwge^=Bt;bVWRz~I+9E0(c$U<07PfuB)EBp*D{B&5TdCD1=I=+WE3)==vfAbVf zKI^IKgco7p=q!%kimlXei3ko|gmYO^1n6y!>u-rIr#KG2)14A+eM=`k2^Zu8zw-x4xZ)HvzXtldLxRMlB58_$YAWH&yK_DA0emy=;sW-V z>mc0Uo#0DOPgn9gS)y2WGccPUFH84W65uW60?r3#ZBg zIK7rP&1d%k+FYs^jXG5xl+)8$&nqe|2%F*wT_n`%mE@R}SeUqEOni&&GM zwJK+H=850^3dJ4?LpQ@P^8;MWKk1X z_dp?M4as=j8zxuF58Y|r^_NngO=Lc5P}=(QM;Q_zrNA@e2k8WY8{j_^xX<_eftsQT zoRm1E@(>6^fM$QaU9lOHF4ns~LdC~ADYIEpH^#<+w>ouGRP3CtDNR)I>GTx3LhA9R zUH{>xNx`11Y(S3b_cN&PE?3RM;D85wKek4qAr7VGHuLVe65eTedZG; z0qkC5+^b|`iYG!t1q#idQ*I%0+{P=BW-qSncB<cK-Cxj-5K6G{p}sqRFcH#NqTydhHhuU_d23DOsT zyJ?*L=jPq@@wb4Q1DYO<%y=0d9{&9`_&N#GN3dAI0RO)Al@-hyJw?DE*}Ff$EgJ?g zWW1CSP%}VXSpaJmq)QT9Fr@JIWz|+b>pv25WzVQ?5wTAd!TG6ebbb1a495Pkm$x+aS;%pxNi$TCA`ZFCi~#1 zID~Sn5dGmMf+c{`t0f)$66yQR?rVYxp8$#(C2nv>C3_i>RE2mngZAz2Hy`OT=Ucq9 zjUs7`(jajmS4n2TK$R4YB{u<{$HRD+Z5W2W!^Tq)z^!SJp{o!0A)B!O-xhFTsgiz& zSlgJE=H^@AVVcGH_3yf>TKK6Un84M&6)_?X3?w+y?)-vqa|58VefcMQbc-pb4K)ZS zUMp9CC%Ygxae)O3c%#XB^i>w#;~D{mCEAKt0pWi zE_MVBiWgXjQ4$gcs6L6zE_bzYDpO-D6mt#Z1+UT`y|cHAW(=H9LzZ1Ph)phiv?hIb z=)6mei~^f>uvp1pM&q&R{>dRYQL2S@btxeKy-W)aVIy`;oDe;5Vr&d}lM0rTV;YvM zpms)x^HTnthpS}*Fl)d-HEj?#!9uv~Vzo7zK^Mic2J}Bx!`Rs0e5;@1;i8~mQ9V$( zF;*WqvKp<<}kLjnALUMPZB%9;nn%IBtgi7p~2h9v6RKr8XCA!J?i5rUi+AGusDD>8ZAH9xW)_>ey}$noua z==CGnn8e2?cNUo1N;qD@`bH_a)oVAC$XKxkcPL7=^P#$%_eOeqzV?> zjZqlIu63osY77!q+hNv&kT=gYzIE8#b%>Xc_pM>gc%a4PD`6lur<=6#adAIXvflyz z$ux8@|Ag&W^x|6Nw?(f~3oEPo!5C*x$IGqFZv5GFLfTq1c;ssz1^L z>F9)oZ^2B3N{FHL$xc@wfn{La*h&Ywf5dZX^LJ5;6vI zYcz;fgd~FgC7sWBtFQM~3=Wchk_Ts*8R~-4KfJ~N{{P+Es6Gi;KmeVwGPKW zkKeLSoR*9%*V)}&+t7Q9FAIVLR0?R~T_~uc^7HfCD4#W1sngw$9=5irVf-WDdEZ+V z+swRTXr)A7H>J46n|4yOY;*y*pwez`{1C81A4$pg<9G5Qh+R_HG5iiUF&!dq3GRLJ z0h)g~R0g1U&i7|ybmb|^goV&?rU*P{DZp=3qJHjp4axD2w}6;XTR#qc)QdB;!@~zc z_P1If<9%(kjMmlNof#2DL=~QDHMn{bfUy2=?{~YN6``XOKiuD!zXz@nAVn0-vWJwlOhalb8#* z4EdN`E-wmz(qq zp9l}diHR%S8*SE3FIir)UpHG*!u0T4@rc&Yo<8H}Sz&OP^`0HI9l_lgDSIL(hkg2Y z?N!ruV>h{97WP~qq|Oaf+Kh3tEmtA;pYT!0{gMQF-=3UUJaT!!T_=SDJLo@e31ok` zTwRQuU5&OCU&-l(Xi9dzOVrjd+ni{dJp^e-HhkdxOEDs1qQDThtsqX$gub=yCX9*? zzWSkjHUT+L0$E9?&LDJl2FlL7IM+*P8J>2O)Ww`Ef;p+4IfV?q0 zoHo|nlM%rZHqg7|)G`V-J5NkZ=9Pm@gl7Rx*)OS^@lqQ-V1`<_geBq`e-1}=1T;YY zPY0_@g>w`o6HrTSNr;Fv@94&hiCkDnsZy>riURffa2%S3a!5qW1XK!i#woChUyWh7 z>#^0QROiW~GEmiU+rGK~w3jz<)bQ0rtB7CI5_z?}g5+}S-RDPRV{?8{#>wrYMi3#P zhw5)B8&I{A3xq^J#fzPk=7-W~iTNYMu9xh;F+%i+%n2uJFn6LaCnf ziqO1^Ufg<<>*IGObZzB?c~+dL2r1QUDb>_|@Mn!e%G8WT4?b10Q-x&*jc*+u!GYZ> zh6pBw!7s{U7a#0^Q$F^cY%50-J3i!NuyLiLq$H_iC3`+vVkyfH0sa(@!wv#5+pG;Q zOK5=Kr>EODl~ga@z0rC#Qz%)=66bA581RJl>-N@U#bsVf)J#p01CSZ{gWjMyujmym zV_=M|ySuWolo$F5*jj$oN&X@UCdj;05Bd&YDB%ZNQwq~WmRt1FRKwkS?(Dj1d{O5w zw$sfua&r?teaf+})DXNuJDs%t?a!-BVDlkuVv^qUdg8KF^fa292iNSWnX~0(e;!w- zhJ>u%XYSs+uBn-@)=0yO^|Ap-m^=`u)~0f=#@e*%qJgnF8lEr!d~;Yh9cf|DF7TZG zeyq7Km2>co z3`MDRs4J{H`a|GzT2S-ZPtDMf2FBKRFmlfV;_n09S)Ityl(QwoS34d}LvJSD~|zp&^OLPW8%(>CQD5QQvNkx*$|>AD?FMm1(@Csp-w#&y+2Xr(GKw5@HR^js7OM zJ3v+Y>ehR$-o@m7Z1RWUe4Q>SZ5jX0n<(|c9E0sh6|7xzVD4?7hV3MLj z_sq>1JI1$YnCWMFKFz}&r#}Ts;@lC)1Uq2B_W>@YA2(SU_m_hL{g}oReP&3*2a;M; zb#yEt!;w#kYrrjdrX|p{^Or$r+XDW^MQVv*i*sF?_R!TO=Hd#N`lD4;4#X&%X zM)?fNvf)0Ur*DLm$s-@?8q5~4gw44K&29rsNV?oD6m0tf zACuFWKc(a&6a;BAGqay(7sXb`kp%@Kqk_)G zRlfr?9k*Un1ZgdnQLxe8{*l|O{cBql<8+~0IeTM)s3g)56h_~atZm#L%JUoEG zW0kSsgZWKKD@jUfJoadrF#)LRkO8dtAI3V%5_3DuG{{;BHcZD zy4QZ%_F0ZJVXD$bNATy*m6)r8n5#1vJvQOwx@5ibi!1uqJCl)C0$%BB~ph zS$IsK%XTr{sLR%i*tt9#xw#*`KlSx%`$ttW9QHdMr&07AKMTz+$4ujV-o!(3>3?38 zhUgRI;Tf!TSyNLVJ$MM#&03mP#<#O6-+kvNB2vY>9rl|!*hB^-f5m3kuCs)_{2s%c z;=J5*Z*XAXoMI|f(4XlgSvCCbENB|*m*Vvc$se!$YTxhGpH)t^EZI~_J+>g*4nQoM`i)$lP97Gn;x%>>jJ&2E~F$QSpIWWh0v#MEFUm`wy02gn4 zwsUjMT!QNrTBY*8B1elbr+lh3MQF;y5*e8jxY|jWi>t<6H&E|9(WB)*&bsmh{p#SF z%cW-gQVGKTnhF~y=XNJ6fr6w)$8a-`34C1%_Y6k!Cv9ut5tewj!o|a)OjHV}@_g6( zJ0X#g0>ES4LiE9I0_1={1x&x;W&wx$G$&GYy*y5Bs8FKyID7L@X9XD*b0avgudlE0 zr+@AHJ0)eN-w=<3b!LrxYvQ;s56aqi7qs+CDvR|kBIspDcx*-x-SH@lUndJ!;V*)Q ztPknBv%Iu)63?!iJz-mW(O6p6@9K*gU znsL>0l)*e*wiy$XkqsbuOkx-F7Fur+15e2YU$^w{nP^()!Xu#L;&!Ye5L5h0k_jYC zlklV*BRS1k-UQuuG~Z2BA(7KQ=%hWv9Jc`f_eEhlSBkQRtRZ{Bp+*Db)> zz7CWVH~^GZ`R{(E2zmET+SZo6w0ZBx4~&Fl?7thBo74KGlXxA#Q>BVZPsfMyQM)4V zQ}lVhTq_^N=3&jC6=THJNhBEv@3q8MtJs|KKj`T9Gb`7or--%;gt|dzxBM$D9F!!D zV8TM_^>UU%;lwUo(G~Krd$(hG<}!kY<$FaJcM-`oN_GyetO9g zwwq`5>!`b3Qj&t`lW@zEJ0JqUmy>}_rPo<=x}h#nocQSRCgFzLVhA zM2(;e`>mlkn2yd((5{SVjW!q5RwY%9H^&1zEi35v)nE?RY?76&d`i@4Za6<}BJ ztb@B%L-T-4H$L*r9NznI-2bl88)c(sK_H3-6`{wg?xjit11Fl353o%<9vB#~1vLg) zX~QyQ)(}ryKKNl@mwtQ01T%ov@Ay+42(~8y9_xn&_+ueFr;1^y*2;!>sO>d75s=1@HdTvzZpc& zVL{SB^R2T)w9LiX+z*XsFEPZQWgqw+ZI4*nm*};JbLowy2-N+up0p*K;Dkx?H7sCF zVVAgb;-iRCZ>D>g?$>J-S_`+Ug@OCDYpERLL_keti&f0Q1q3AU?=s34XQ-=}d^mYS z3oiS`M>j~Em-lyfN0b82eTs7RH%8*Z7uX96pM4D@n*oS{%qrQfj=j6+;yyP~zf{IUx>Y-ATUdAspYS!* zo}_FR2~sI_QYo2eblK=0SZLt@mkyNDlB(4i&6r?qKK_c}v-d)TW7{4!a4}x@ik|g& zEGJoPBBEkrgP@dUK}^~q3feVjdan7MYwx}?=_uwH%d z8sBFpFs@kithlDc2N3YJ{F1_{XtS0)miBC^E^?`2)#2OwqehP2)(Z31jlYrzCE3z(ZI|Y&Vva?L7c~I`xFB6T{Zw2U~UAW;d_5cx7=5-wFkpe$z^? z*d?41Mg0$X&)udf?x448BBH^>2lktltYHopQ%y${)adg+yyW9`NGA68IJI+t`ryEPf zh$$$Ja%ZnG-EQovIG{k@t__4@Jd;E`P{8`= z{d+Jz8yVj=Yzerl?)agca2B6BOw;%5x222AYMYTy#oD&pR=G=8lpgob3B(@41!G4j zfB~USflEuXWIs`@l=hCgBck)%AvJZ$zu>X z31lv#4_10&OcRol7QgwO!2gfZ8n{+CWKz0oZV+bhw0@@%#6LmFd3T>W|K$6G^J4|g zZCm)j)WwAt_MsL^5Qtemxz)$}v(@{^9%OdcxTM=z5rm^1!P?ts6( z$L~;PZn(=Ij~;NL{N=&TDYZ)W7ZYr|KG$v)$^PK);bb?=Os=cZ_m_ zw~IAonYppl6jq2|!DF4B7k9z1_V4Z6LKJoHVY(l7gozi01s$Ao9CfRtAJi@Yg|`3x z{X1M(IHRd{9uX4q>r0#+^0|W!FB|5Y?fSzBn@LQO{%Zm89D(jLf^lC$vqRu#MMWTA zNx1t=0r+gSDQ(E}s%vVRZhu9fSJc=Yue()j8+hFWlqA8O3%a?5>oU6Wim?WScnCVI z&vzgd<9;Dy|FvSx3$E7k*33er6GBOm1A0c5rb(Naka$DH%6?0!%TKcK3d2mlR-uGWABK~5Q z0+aLYOsk1j5OLC4OS~A=Dk&aO)i%&v@8(az8+KCI+A)FDnBx6k{r&AE%821|C);Eu zpdN&|8q8|^dJ>Eb;nr*{bCYVh6ms0E(c-cb+w~AW-mL1K0s;7-hNf?;FztOpB7^Oh zS2*yug>ZIpzfIcR-JPkft~P%2tR~UxWa+*UI0%;$flW^RNmW$|_Vk|?3&wMS8A~$p zqF~8~%*>e3c0Yo^nMAAPDo&TSY!-f1QZZyARsGzG^FpqiYz1rdtbf~VFfT3|uv?rd zNJ)E4vlS&Z{1lLrF()bzj{A7G#*s7@(99N54jEtmxhih`XE1jXhXeQsdr#AD1)KzHX8q>@Ksx-F!}}zouwd ztB@2{E}$D476YQcGaxsbDJw-~0s8hRF4J;MMqb~`zMDxwrj-}^BM35_(~M{_dEDkpXmaBkvVbn`pBN^Xd*&Nm zW4zti!#&P)`*vdpV30D=9}Zs9NrD=d*CS9N(OC0JG!huT3t&nTG`UrK1RFJCWj2Qk!J{r}0bdZMbrhE=kXjK%~q2_wc+KWSiheW_2W-=w-OB(?HzC zc3o8M|F{6(1^?KA?BE+TeHC5@)_@paEA*<2@-m_4e*U&b>O2rL;A?oGOjKc)(^qtM z6y~Dc$xIk%@BSO`DCnVM?}9A0)$0@MwLh=j5`9|w@+mkPe1e{E2P)sfLMX}4^LwV5 z{)abJnrh?9-B%GoZ?qrx#SPZKFon3Np668ue2P4H?avV{Fl6Mh{P0Zi>8@;696dOL zdSO#nnvl=oE_gF|_;NGj>hEL}D5_v$KKfXA+B}OqesAynJAMzgh=78trA6p|iVqr+ zEr+GXg9&nuoyNh?);z0iy*3(J8lfQN+joBE7&-*JDi%^D1^1_qeULSHq%e4k1M4#p zLTqB|@FqfuCF~h%nA-D#zxDO?4w{-5u5iO#uBqE4Yvmr+&47c#es`2;1_2DrcJE6! z{A0{dg8q9ED#R(_9)W)P!}SQD(M~~gHHWc#ys%<-g@Nef-FUkDB{V8o;7Lk?QSHrz zZ&`|dqTs!BTOoxX4^&G}fbxvI@4!zdF)tL}#5=cde+I$01u}`kYo^!p>5H#q9;;bz zQo(-y{V4a_%S!f?ulCE_7^eXB`lH&6=SrF{Gyz5m@UdS}NcxGE z`}wY6{PYo>TUCWRNymx}Tyr{x#kcyPntl(H0I)7oXd<6*E0RFd6Ks`?^naP&a!Y|V zAhE(AFZc-4K`1u{@VJW7kFU+;5yBh8!42F_`XI*V8ER!}iS$Z6xP~0(mCa4>j9rq8>7&xF?+9{>GmGizcq{jSm!l>RAGu9>vIT9l1(6wq-4d&iFSA6S1C(BxF~Bw zb!fvAzTllZKz()Xq~wSP;d5~?D(&P{X%Nj|nS8B-8y4lTY&_?GqPe)Vg!J#?IP?&{ z1OJIU!7VbI#eh*(Z+}Q#`L)LJ36Xm)P(W(EuRdqP5|C(wAk zp0Hgi*3^HBD|}WQXL(jZZ~|7OVW3+Qy9H^nY<^U+At8uzNwy15Tyrg zgDr-}za=-$fYQ6&z)Tm)Z>)(C85$Z$hXo@Hz*40^EwV@f8yfsu4+x_KyYH~E;efH1 zI|T(rn|qcd6~e_p8mV6W(y(YgP@bt`CZxs_-dCtmzJSgv8>ZqsXf(mNacj;RJAXbJf-8!f5J;z4y9UIRki;$t&GyObdT&QyOAG|N3Ur=$jjVanYu9=7#f0w zh(Y$t;pqSr(F+J18G(%6jrO4%?y#5S=KPzI5yN1AJsItw?xoM*6lsM_rT~SNi8s8( z6>xmnpVkwC(6ns_p&1K#f&izGS|#(Zf+{do@4bb&?hKys2u%MXD=q!p0k3faS28dQ zC+=_Z!td#X^c9y5?#r#ZN1-9BxQ8$&U_88b`}Xa^mk?|63|?t5t7P&*b;pZoPNa3#GcU9cC(>@VRa&4C((lqqUx^7$RlW0I1QT?g5=gpN+4(Ta1^ zG~C7wD}Zo)@8{hDjoOt~(hC?y_a}E3Iwb0h_O=1tr}np?04cfNL(Dt{l=HEfo-H?1NOx!~-M9m}*}Ct1H({}GbF&J0 ziCdj`0kyNt5BSa|byH6AC2~j3r6J|qndb6yHKWBNMvou}rqTV6eG@SL?m-td3u_o# znAn8=@Z?z`vj>2|26Ss^rh-jw08O&q0#2gdqep?=YcAW+O*<S1 zd>n@S>#sO4hA#PRL%Tv+_<-dJ&^VW zJm8k0ADfo8MU4Jw%kcp|s?7e0PbUmZ+Jn`k2r;w}|D`x>UjI&(Zl~=JvN4wxuuV&N zgL{+MY5g@Z86{Kv8WqP&D?D|nB!o2wD-?T&wKo`o~Bv8|YF97uULjuSz z@Xk{p0RH+@S}=DAw3`HV(OeiCD!-x>pY0f7V`;{Z%Sh^n!7u@MLi#aA({!uRV6_8o zhYp@G_{#g~mXxv>j9#V0#{QLqCkZ_fM0N#EJ>7t?m+kGnLZI}dT%Svb!I%gMVF~!} z`DD-d?EmZ~lNx_kHO_PaE$u6SD=jI5=^+NRbH%Nx1^7>}2)hqdcU!Qrs>Y)hLeAKW zpV1P`H?-!;{J|;p$4kxG#!B@q=(QZz~JBq0r?Nh3)b zl{8P^Ywh0iJ?D=&`zN2bckR8_v!3T3uKT*L8vyZZQc&~)=1I0+TX)#6?x3@CiGDU)#>9E7A{%{^rzo76e3{0 z0b| zSB7q1G{M5Mz>>k5=hBiibGgL#Lr$?;^K*+^k}rxpdOpT)WtXrL4Emmrzfxl5t8zNm zr>)>I?4xZ79ztrHXc#>#Mfyy{IXC&b+_krO+LUV$0*C|Y=5XTf*}4fq*djkK-}Ky$ z?5qJGQLi34elzk7hgq;YPDc3Jx9nOn)0}28xNZ=MK^liiD(9^P4kef0iCwZ~O8V$L zD_V{EoUWzg;HfJDi*%cl%Zg>Ud ziKBy~o@vUl)ytGzSx?x{tSw;Oj&5xne_NtOi{(Kv!^3rcT0~>vn>WK~+ez+R{|GVs zQ)>6-d_@CmbpYNcukNc(Jk{P^*MFAfEk@;3iY4zOR~MuwxweYMlh zEUR#b0izb-zR@ox>U8%PW8)!IhS^FDZpXx2N6R{eT9K1*Kj?P^?NA5RAc%_rDM=ix zOj1~*)>FS;>35M;iT}GW#*(?^GJocMex4^6>$y{6!Li+RCow_A&k7}?`Zwj}^V_u! z9g1+wZ#Dh;HQE7b$!6N4pUXSNpe5*#+wucKp?@G!N+BTYe+(T;C184d&2;RMaoWI4 zeS3r2m`UNBw7?vVB3r?-%)0aH0d>rcowgF?N*t;6(>CaVcAEBz!?0C;Sfj-mFAHS4 z3Z(+yA>NP_5)WjV;3dGGI93J?#lI#f^i*J0xD(Mq`i6^;0LbSMS5uL~xj|;Od;k7V zh4d_R?o$d~V_yD4Y}+xia+BY#2KCd^J1Cmh9cvEp>YP&%y@IB$)l+8!uw@aH2@xi< zXYsSL60{J}@b0@Xv00=gs;9oa=u5}o_?Ib;J{f8K_6zz8@$VGcT3;{0;i zP8u_Gsr~&`lK^p{oA86kF8sD8liAr=b(yB_=Nxg5{;!*0IOevKS%DIvXlJH8w_SmU zCyI?$l=)o@f5710=@?TSoMhpP7CsTmWqL^$WCzxNnx8*vN2*v3aF}vrK7mVIjk$LH zGivXdhnbG|Gg$bKh$y2aQHs(mF!DiGkNb`7eEbfEdbvD#7E46+77O>_IG`%0-=s8j z+&65Wwsub??QF{KkM21^d|2!I$&j~a_p>HdmtW99M}#hRrh?DZ2E?pkj61t>%{HTS zs6ycSpUXopi^P_3O*o5+hcm%P0-!x;%!lx622u3b7JU(mUF&aiQL-s1g{eOSs(NOe z&z*bmvsRbvNoNkY1w>q8K{O^P=wmopQsFUf`S5mP0FLHs90YEdkg>2=*VLSMj^jsD z-QBScudULqZGzXzt|S;IR4M6`Qo#^A*Z>KQJKBb7_Hik@xEaE0d(EFY9=#`5<>=#S zz97wTAIIru?Z$8eDI`Xet?Md!9-qRXpbHSt=dQcgsed~awEKlclv*_;a+*)Bp) zPyFe?%)f|+o^`c5CVg)!w}$I;iE5t9wKtACj-t?gB#uKL@_3Fq2m~z-B9A9 zfZwP>b$#u@aO5l{nc(O8#DDA^vqifOC$Vo%Sq6_7YZJHS^mRTGK5~Rc?Ins)MM8u`3ZLuMyfVF3+j}KzfJB<_Z95xA>fuF6ga!qr zh0?$kqYV~Tr($OIgr}hYpm-9&*Pr|rmnOk$pOv6abOJNvY)O?5WKC_5CQ;UnKz7;2 zM0FJ09S&MS6SPI%FlhO;yVYJo{wANI{ffiyK4JCFFUo%r2SyR1z`<*}drdkUyP*NP)h551a!WT(3lS(zn}h%S z7cMpT%4qbBp!aV`ynI!fK?`Bv{beIr?$fhC>yE2_eFtE;fflZNYLl;x3?um>q+X|| z^(XbS7X%M4tK*_xNwtoY>PtlZihJL3SL)Fy_4(e9NYr81&Jahell_tLe=MN6pN4(h z!t@F@ag_mLdYUXdcM#!}BkcA2Yue_mY3x^ViwS71D#Yuu*2v>$%jB za~^lL**u$`G>KI;YD9N{n6{>wSCKX2!OJE|8&nc%`oKa=uj;&^Oj3*m0wgnvMiRiS zJ4qwmXg3Tg6BT8gtEh3rZ}#+O6Mf4dZEl4zL3`sC8x z6p?_DO$=r9^_N#Rf1gT_yh=BOWWD zuLGC-n9UK2CdYYh%4U9Qj6!u=Zr0@aLW^q1j*H#WMcUUjHqA;AWq!|qUtFn1M()}T zwMqi?Dy&*l&e^+0*K7S|kz7HoOtm)Qtr$MHeX$-x5VJKioam{@mr#5NUz?tfU%U0+ zuU+i_=^L|5%bns$p~}bFfA8Da;*yt&Vp7u!)O0EF3!o$gT0M)Y0MO{f?6!I>R?_Ao zU5evQ?m-3p)y-v7WtxPdOxI_4xd7y~f!Tb7NX4|L&`V_KSPSFTE8wWV#&vPMxq>$Hdiu?n`4j&arr zbI$>DiTj3{uhHVBu+xv|t$WrXrF$p@mX2}wfim%|DWtnHT$PfoB8-CPl35L?QgWax zU<){yDq9{Zp|MbL>(;FUunG)t^ic>K=Xh=VGMpR~ZTNIreJ85qW1Qz;hefkZtfi6D zu%*@)0(3Z~NxmFbTYn|;K(gGYAK6N5k{00AVWB^09^G@i*Xy7muNL=J=p`5w|0$WZ zKr1~o5Ig#xd~D~?+(E40cjIYhec#|0Y!p8x2x)}90W`C?>@xXv+)Ex_Ux6>xRoav{ z`EL1ll|kfC7+u~6a~e6bH3U{hN;eUup9L>SG-W~D0nH(w*6DsZ9-I_J2{GaBr%b8( zdD+B$GuxyaAyxgSB{x+n*q@C;sEKn;{OR0CH?`&gY9s&WBy=h2bNQukU){EL_RuL5 z!4G7Dg1-;@Wh3*>ryDX+kpQ9pGGzKS#2X)I(G!~B;=tL*2PLVj^y3MqA7R_CxHu>v zr8{!~4lS?WkkG8@G~%6w*R{(;^vO+ z#|?s~g8rDWj$zHo#AF%06)5uTp__7LAS%hTIUEpoR*q z^jNj}fMsrri{SQiPn_!>XjSjpxznTsn)yuHhHd0vlNqo**XK4n19u#)+r<^AA{y3$ zJzQFSV5Jq8^XycAt~EDGo*SCGE|T6uWkg%2rjveE!W!J!h>by z^B#FPQ+wABd7vAtz~aXF8`uq9==fy!*q$&3lj?H=k4A zH}~gdla+|@iWO&vb1Cq7bn(>_*X62a)9iNs-$h&vr#p4IL}b;eVje-ICtpvz%E1;K zeY@hoRXlKLl$2u_7#)0~Khy~^+qkhBA51~}4)H~(dq2yK?4>(~#4Hd*dOeS7_;kLd z2-7LpdFZ^?(C(We^f~OG?shko0d5~@J{}%e@$Mbx=|YQmsGrP*pV=Y9Y(Q)*`?k|( z8Pv6JBu!1fp6n2j)s3+3-mnjpHz0dRSvUN|$_tVx-KsR6!Sh~=kcWnpD=#lmtHFh& z&x2DpLg8ecWK(Xfx(Kr3`;ch-F`XY}KL5&|5M-(Uq%x1V@aW!%7k?YgPkC4(#`3v2 zcA3nxjJdD&<;V#bwLT_aGOfz^WH-0Yb5cuS7lq&up=)W;^gDVo5c5E8?-6Ig_>zhE z2r2I@nc(zL^FNe>%#zQ41|-S6!8R7>(>c8dLEs~FideY%9^exYIF5RxI^u}*tZg@f zo}5`aFgG7K9zApPXxyd#od%rTLXO@Xeh`6GL$v%51CGmaXx8<8_YRg+qN@|7GQ_5E z62VDIXyPdaRP?74V|O{BFc(sNbS_IA4XRBp%B`k3auQj2y7-Ah%`+j$zMUBAl}?dq zFkG4Bz|Qs}l4@vcONj@O@(0GXaI{08@HZ%3rp045s=DIgy^4gn^#zsTJLkNgZFXxj zl=(Q0P^zH(yJrzn$1t2+-Gg?00 ziB|v8MKMIKRGtD2b0{r*2FzB6ah?Xqp)$ugL@sMg{E^6cbvTvodikbpa&n(eA}P*A zh<^xLhjjdV%s^;|gkC$*5pB0E^BY2+B-W)QeoH`YZ@iT5m+QoWOVS2iDgb*XPQuh$ ztZrJ2lL-;V&Bo84A0EkJ_;t4S;jBlK4$O8ok(Cuw2~_b`baZs)z>KOE$5lAcoB!Q+ zIlRu1l{njOBYy`eyVZv)3jg^_lt~;y$?p)jlVg-&10xf zrE|pLFj@^R@Y~+8KFkwwD6tXLyt4-Iia*yXb#c$Xx;BH&)LLT$JXZsI`IJ?3&&#r~ z!2fmK4T9%i?WpY@z30u-T*UYLi*)v#_%+bppgz`xey$Y{$Ux*m_m5vnmJ4p)+NR7d&h1@*=<|h{2X^$@ijEu z6~_8^PO6MvP_?}?^r24=hXfExP7FVL814W5J7?3OW;1=pIZGJHCp{_b_pr8iR%Pkx z({?15jX8|3OLrG9;z~ z)6z=bC!It&ckNQhbS^mQ1uw(*#o>bPuv=pt&7~R&UU|N26E~I1zG=)!_N~keKprTG zW>|VmSE<~otsPZPkhT)$56i_k;KDqu1sELm|ET2nWK+ zY!LWXp;WpR;Za!_!Xw#K`#F=9WW?Mu1oxK!Z+`l_j^BuTSF|}0`ZRTC-SN>+`_l|1dfHvc_3s)}^8H z?~26Q>%iUlF23%FIbkNBET@WWPj2aq*C8;!i`*=;DQ8u0a-z?-qc;t7pU%B4ETkSj zKv}(q&W`T{TL9wd^6t?=`jO+=#}SUDEqQURO>h_#jMVt{%(^t#;nj+@bYs1yK7Tz1 z{Gf6%F|=OeS|S+mm}?W44xUvEGyh&#*CZ#rVG%>#UQVISQbxQL!CcvH3F8gD>7KT^ zndbiC>U1Vq8B@iSx5loklJ+g34^KX#BDT|z_vyXK^L#p^O(Yz89+q$Y)`ybB{0zl+ z(W@fSd*LFs^2cfs$rQ)v45!jhv@f8i!52^T@C6hqw9iuMJp0uqS@5>#4S6My5H$a7*k+Ob+}l#!3?snuIeUEMTVa~-(U#19Dj#l38UTa9|Rlz}Pf7{(FJ%mkYV_3yL*tOYW#yviz!K88gBR3kN49F`FO#1C*4TvDa}*^oWr&l~y<^}rOYtkSYsb=rN-}qY(#pfXeEE-3LiyA($f3QN6k3*T&oR=Uu4xpx z_-pbCgzi>BZb^XphPDqE%9rpG9mB|*zlG`uf-hQETgxaV#gS72=TAykn0RpBY!Yf| zPccF57Q~afJ0&}OC1RCWWMotpy)i6CN}95@t*di7{k;M^W=$0Dt$*Qg!b~|pjEje7 znrq3Y@#;n_c%abO3da$OiRVhuQtNaLBWL+^wmm8?NRruf&GsLptJ8N#`nUONC=`6s z@j$hhI`ES95z9`^oli0Vg#QL{vNS%WP>MXbw|!YsK0MMQP1JTB!z{*IYpTvn^fj&B zA3L%av5LB9|I^f+(jR1Z-j9n5CY#Ic?d@3+13DWUYbKFqFQAO` z6qIhm7&P@+_Px54H3!tkUY1`6jfq&ZpSk%TnnKn@%Ukv<>!01cg51n2Xv-*D6?Vt^ zKthEHZ*rhaumpNVWgmlZnyk)?He)!jZ6qDg=kKAynNy~^N16-G-;VwDYdytek_mFF z^DPiD~0_4!`o>tj^0E4W(qf?Y2j0{RhpW8*D0fX>0o%=Boda#zBoc*8SmG z!n;tR?!&x2+pm|8R-=6&87MoWVph)UdF5>PmA7JW=dRf=Qm7UyX5`WN|Vh2dvZ6-OAUE_Z7;jz=oYv;Y$0e%_j4Gt2tw`y2%pTVy{g z>#tzrmy@Zftz9%|8oxnX@-zXO#bYMibNZ*mVA@|YsYbIxcekr#)~_-1ir5Ds)Knjd zsd>61ZQy#J^C|cR?oVhb>%1`$A+-(mVa1@z$BhtyDiMWrdUn&jT4rcgRHJ~_gXX9b zT6qYD!B~TK6%T=<*h}I-O**-ObF+W^2VF=Oov_h5Z&W&uRyseW`co3ING2` ze@wlydBZ>*$}+r>SJ}PJadi9$`cu+qd%x_$>A6GX-q$R84N&I1A@3Ej%0T_Qbj2e9 z#@w0LWaQ;>9u(W+QmR8kLgH7DkMqR7>+aHzw7WeM;O93PQyfb4p|k%)tXl0a{I^Wg z(2xfWidK>F@w0c+(he}uUhFoS|F!(ZUf%2h5*h6HX)BFI7wKk=1?I1rB7-Lh0?`^q zh83x5X!xe3IQkynh+o+*M&t5+&H|Ozrt)Ckk7HfmulqxftLOr@9^r@Xej9+~!w408 zaihCA$-QqhMk6gG{Y*+)wFe^9kS^pKJW^wHkdQN@%P?os-ovCSOqh5*!+a@$fueWrCq6bT7+a;*cn9IHGFrMgBB6%d70izKUi#f^twK-zaqv$kc_rpm?^|&WGwbp z8>Xmc>CiJE(s4a==C7+|(YdGF=3ns35%0qDWy9Ha9^CcWLyWAbuaTBcc8+T_jqcG1 z5Jtq;;Auh9xK1d2i#$B9%js1eytpEqPg~rTRxKm1W|T53Zg~!q52ml`(GgC*}Syt zrIjT>929ubBH<&*tz$DW_#p7$m&PiE(9=a(i+5Vz;s4B8ip_4cgGDMH>C+04jN*UG z>#{7zYrG;H<48qPZ(xn`Up?ltz)myPVnL=LFSKOf2*NCyLpQ>w1^uGq26GLj)b4Ql zCJXukiw4!L8DlM-m&b0B5)w>G`UCID*EQ!)i$fBAjCwXoY&)Z!p2xB{MgRLNORTCu zP-sS;BU%!Bj|1t|A(;#ySieMxF?~W3!FmLZz#L?NSbqRr{Ot;%)C1ACDeMw%(rw`J z`jq5?Bq@l}@&@(OKi;a+D688%E54JLmaCIg%5&H7&er;Xo;rj9fkFkk!6E*u_he{$ zby2C+hp(aJ7PsCcL*|Re{CzxWPlGst#s7Om68v!#4M#oIn?a|7@JAjy+k1u-M`Q5| z+c9s5ezT4ldpUFht6pP@hfrKfyDVxu4Z`Hb%CyD(+){!CTD*>~hwsePMAqw^l=5qo z`Po_D!7(r>NE)iDqT<;{X=%GonAJRMB*@g{jUw%qF_9q`+5In2D&{n%iZ5z*mQaWC z>23YZR5t1()=;1Sclg5Y-R}gfp5<>OcPOh8%}jpY=AvwV)XK`L8)C~-r|SNl!<-+R z#tbLdQIDw+Te4Vpr2fSwpn>xTUh40MQQq?3bqrb~GcQ+Nghq6$t6v(OWzp2BwlM{E zdMLttE}i-jLWkN|=nWJpjMx5m#r}F1DA)BTmK9q)07-hn42@}XioY01KGt2uN^g{v zG6CnVuKN4j=`Ql)-%|fMHyuN%`0B=DH0l{kd{V;TCjTN2|8{Yl9lu31R zk!2o@?r}OPjIj9Jnx$*=24I4B7^EIf`@6TW5M9^Qm>XZDo}Rm4;B{*HFx%T>PmP`gs;FK);t{K$sLx#g z`x*0Jd~ke`0c3f z;XzCP39C!Bg}sA}japNRtf>bJI%`F`+B$kK4y%^z=vA-fxXFF`|s3vuxVoV%E68_AK@B<4}N8 zN#Z_Jwj4s6A1~7HS#?N3hL3mZ<=1`ZFq{zd)a5s{7lcA8e4Nc1TPX4DgrA5eZs3;Y z&WCl(y6F)S5uAFL{sj!|RuH^=;$!5xIMl}%ndCRdbog4&3@Uz5m@^+?JZf(K5=rwD z*H+(imie*AUlYU?q30Zg=CKc)%dVWqD0Y;wOImGO^S-OpD1${Ij1f@HVB9Z+|1SD6 z+WqB61wH>a>&v5ova+(5L@V!F8W|aFle|L^U8}MBes4E#Si83JKFDs_@QnM-N_}2S z=})K~Kx=<=w~C&@aHTKTcGYAd#mB*{eI>KYPLz3gc#Ni{rPb%T9_XEIA^chcFQy9+ z1mTwEjwj~A%rvytgf6%bIixsVL$xE{)Wl@MvL55wUPCj*)7p1_yl2l}wWrSwFa5Yd zVHxsN%Yszm5tIWb^ISFbPSO)@Ysm$_VRy>Q%S$r?iOF^&NF&VM94Oi&oxpLu{4^#i zW}Uw<^eq{s|3}5e7HEJD-KwPYBsI0yclGPP!CxEKyq>)OCuDGVxDk59Ui||D8rVIl z(RN#A)maFFKB)3Nh1e^{#UY{I7OnKtpGmx~YGY|eN=nLB44d-WjloqXV9)*2(q!|q zvTEdHWa{AYJ$`)>!latrH*emIQ?LzCJ=LLh*wXUL*3P|E(bFYV^Z?+mYnF#pEc{S0 z;1PL9A>8)Rw$5Ah3V@Ka&U>-u(KkS>Pt7Wn_FB>hJ%84z#G-w^!=wVK@Rr zjPFEmv>x95$WYPbXqt^(@(bsfKLZ1;r`7mF`1twwGRM8?u-MDVm&d@(8aN!Ir1hl? zIZYIA@yNKlN(PiS2kv_fgG>_gsme9Nz6N$k?jgA+K0v`Ci;$_=_ow>?)9XTo9#nGb8}~MS6*ux zFQ3Eohv+Xy_eC*7}$H(1JY99R&vT=>22RQu6 z4vA6fGkcG#9YEX8C}gSQ0Dx{8eie4S^w{%Q@R!aEqvv5qp6g;qPR97WI0NCQ6{^}w z5K`ARO0UB(_=ulHSt!5=pK@~AeBWoLFTL~g!mz4iuR-6#>r&;n9OGo=%!I zBY=H}UaG9QEZ5e@SD2D#E`2DTy6_M6r6$18MkXdHkan6ve?THHGeed_-L!sPe}8{5 z(55|Nphli1sA4yl?l@lxpq=-^bg$Lfv$>=F>CfU!Ib3V+bX?r?v8F`o#Vk~HouR+` z4hjL|5Y4${X=xcVU)a%M3g#qsBy2kG_V=_^v^qcrItIM5nbDvlVPIqi=OB@uSM=|!8Q91Npc@l5FBhr%YYxC>y+6X^!8mwM}a-C=*@i;9brtsOHue0T-qf@%xV zj+N4TaXo6qOmp=VLg76(ZP#Q*bY#1#CPM^$&lk%S$1vz;8f?`+``9tg@qTZz&ZEzj z(vBqMbwq8Lt>W0GsL05Ip`jrl+&dih-&bojqG#w%E9?LDOL3n@l?{~5=M{X=#2{AgUaitL6B9;NdW=3{pq?vLWtu$L=9k8fR6 zOw8mth+9q@$Q0 zy6zaai2Z2kX4Y6@UaXC;-$I5X7KSpsdbiKTJRXhcZ?O|4{G4}TnISVYGlWOa+w&Y32|KDTg9G7$pOw zQ}VgLzvqwlc>jMm4r1HQ{i!R?>pZVJ*~D0nf{cX>4-b#RKwtX_9v;38@b}amV&JD= z5`+o(MdYt(V0s7min!yH1iU8o(YN%+!voX&_l^G(6L|%^DIcI?5%AReWk9flpEI79 zLx7K`cYvqc3$7q%KYurGsI-`*n3M>YYe0aHqPY0~_qmw2pNlwuYQ;l5JT5!~Z4J|q z;+>MvcJ{!~K{ZRRyLTKY!kO;s&p63>;+xV13JazvrGm-KtUpdwSTqK*T6uh^)r2gd z$jnXhARZNknGJC&eB4BL`Z&1w_?&pT4Q|iJ4~oNg6A2d{T(ZgWrvPR+EcENA3eou!((Ofxh`EE2B98D zw=uS?8DeJ&92uT4VmB-HkWbK`fr0#Si zfQcBIa(5QtiD#>Y5c_~7WC#B>XX4#56gWcf0GsX@#9a2TwCLymw&I)f1++!5aiWAQ1zNk9JH(;g7`lGclQr^np>c}Htao&Cj3mhVjAJVjTSv0OCLVHszl$JWS?Cy31h)PmktQHa z``?m-NRY(Eul+yRXf46s_XX<8kX5dN^6@tQbib7TtiIqKJ>N;4I65W6TM1*E;7b zbDJkn_o7#uYo1EhS1NC?uTqK>z)=bnd$zU*ffSDVzv%xvSu87R$yq*7K|=Bv;|%({ zOo# zy9_+)-(BwhXkH?L4?~AxjqZ{v4X;=Qg+_ekI#}f1U@>bH@{ZsIoZrn6r%q%{Gqd=BDitdPA~}))qs1mJFR~3ntRy$bBsSGSBnK-ZFt#rkv0{J)@0{wABkXYW z6Fm&@6@!tAP%)N^UB5~WaOl*BB#4uLU+&mc^+Bcs6De@bH3tn^?Va-8K{sPMLD<>4 zO%+dAZ~c7ANaa*Xg2Oj7Z6)i)ZUQ>^Stc?=9XbI&mqJrDPd?Z_C7$z<-yeZ`f0ek1 zDZPs!-ZcunBGs{$ImW2rU8Aw@@}GV-mi3sHSlN`FFq)4%D1tm1<(# zgEU3$4onBfg*a6z<;<0Hc9Y|)c7nPR{>*8Lu#-OxwZPu9eqW2o)&w zxJ&dH<4D$iDl1r2k#A{y<3{c5%f7!0IG1Rc!ys5p>mB-8`PaO$80v~WvGhew=RO^H zWI3ZwFynFRNkVSbxMt*R#@o%$^8q_Ts2$7k+9cUys6_3+_lmt6$vvKQ#x#6n(hX-C z3FUj$q+|NYQh$|wCU;szW}~BX`$Z2{-8aX@xUY6BC3b0@$?r~PZ7CuoKK)(|>2;~} zIOBPY-xU~6E4h$5Ahhld+6?K9M@>r?UwC1ybXsm?(xh+(6ScrfPF+{}I^G_s-BQcn zKgQ@xDAJ*gV+)iZv8yZBns3L!ENbD z@}R`<+i3zf!aJ~F-^sfh0a%UfVBT4HqA~*2Vh;Kw!%}2`Z?#USv*Wu>@11oh_ z1is)*xvZHlf7r34WGm5GE=$472;=XR)m*yf-xuPVQe!=!wNFI{i|c;v>R1I8wJ1t_ z{20cgxDjb@bHmQ~l_<9dT|YTMiTNASTL$>Xmw(Yi>=LX-!-Cm4G2%M-&--w~u<$b~ z*jZvaD&F;0xh&KL73l0p>nr2EkNmqxQQxOMjgx|H+E!Cv>|UUQ)e^5h`i(1zr! zg7gC9p?qXFcvn2f7(2Xrl3lKAk+w=^_Z|v!!f>u&O?tDSrSV_qixMg2^*U|3xUMMO zSHf}u@}4q>_ie#f6*gNIxUOdeB;_s53KJf|_)G6Dg{-t{Q>R68$Di?Um`14dF{#_V zOX~-$kXukz#GrFRqhfE|pz-vM>CSO~+Wg3fqUp^X7@E!#LgOrCs6>cm?S*RZsm&|mb z9rTukm_OQsVAc5@Bc{HL$h(-MEN2<+UDS}y{x$jZ(B!Zr*+7KwNC&Bfb`M*Sl#jA7 zj_LPl+Tw;n`O{9@*J*e+zYk)I5YV6m2Wa4@soSAg~Gur#0%vZ=ZY^2mi< zcK;cw6{SNivTD=^z^9weXcZ3pQJu%s-h`^~1p>v2e({b zZ@lNn@KK`lol^l8i&w%cx`?7V3)9;3f9T*ovE31-mE+eyoFsmB6McHk;2t?AqA+v> zvH$x+$1pFj8;d|?9M)+?jq0YZDujKyw;w=POwC+8Z=44#WxJOD?- zifmcq2QHPVVYkL3t`fuL;{S6o@b?Grl}M}TWLDPcQfNo|LAAd`J7@X5=zYLs-yVR) zs_*rYq8umAUj($jxbP)ts8qjx5DCCDr22Q|t zlwFwIn8|kI@qwg7Org3!d~ROUmzOQpY=7V0h&tvqI#@0Nc_}O*+PA4!PM$zLbSuw7 z&ptZdRZq65o7h+jx&M6?a&&B5^LA15h!qIAPyY<0Ee~e??=bR#!=TxB#ug^D{n3dU ze_=mt!j_1*A$tad{?7$Aek#K@Mk9B&6uQF8h3hL_s#I+E!{C4Q&IUOGUy#u(x*+zv z{kyro^U?I_f6Ju9us|;R&&oNvT*|RCLe=b!PdM%1J6W!egS)YQgJ3_M6#&*UpNpit zCtOIfCMjvpn7V!W)I`1U&P%S58(Zv~VvqQt%Chv+GrUeWJx%Ubn)Z#qbNEZjzaM$Cw36T3~6!B3gB^Mb_3cM$>-%Mzo>)>LcEC z#n1J3DCksvuVAc$P^WC=xRV;*V&Q)7=OMpv+I@EHHh^aChdlPys7rkQC82+aD%3Uh zS5=nZsTJ*`%-8cG39OL4IF+oVI_-ZoJ5AcQx)~d_hYlVKgoc$1<{99LoS2-0tKYaK z2N|E2K!Tua5qD&guF+wvfmu)_p0Z?EmKq4x_V4kiBT zv;jeQk5Dz?8;@Ju^$I%pSCI6hrhM^oyM3zc7m=(q-}o4OrKO_}*7kyxSd;gbg~s1# z`G)?MwbfR6eU$#m4*q0}QbUf}gnL{i8bBM4JH|3;K?S%6)UutkB~Cdn_9$Ry4K#I8 zpnWyLOCE~H(ld#LaZoyuNelSLZz&vFGT@U>g0bsEW)rSGYJ^vJlMh8J_D=n!c@Ub0 z0rNn)Nib=0FI_GXX*DFcH}snt?_Q2d^P1ZlVI;`Xg@k75M=)W^%tlE-R(zMBH*}8N zw71O*-$S-F*7Kzh7XJ%?yqxi;r4l3rI=z6}(hf_kNb*XZnc@q{IFRS2Yh(t&#-PX| z7dXQ=S*j?8^>vQl%LP*3S+7!8jZK-d^7A2i-&X}2T8TR%DK+Ee@uGA$eMTU%s~>Tf zZooXBSUp0d7T|(V2eCOx!P0E$asMRk%}cpbS3!2f$h?!Q2g*qVb~_>)#thcv)U)ixhk}pg=cWCU}C9xXb0#FXHgRJY# zo}PC9)!X>zgh6iSVVZ-K$);ZG(8!^8QJ#ZfWX6S;C!9s-4USSPAwcK3EzhTu4avk3 z17CXc4BmWQ-tDA4#=C>QEp-;*Y_Dm8bA+{{KAmexB-bb-& zF7;$y{gO;6{B6!>_Bd;Xh~Aj)J00I2gIV>-%UPz$xXk%a zNbh1b_xO^NHIG;=8c9st_q92M$vI_5#iA++1= z9nWP2%2g@jX)ktpfdtM0LW+TI3jC67ySk7Be{BwA^DDd8u1&~hZ4{=Sr(1*FI^U^) zuVCpOELwQY0ZM?$GGV(=c2)8_53udk`QAb@=MhvSH+fFd)18)E^XZ_W70X3MU`%&P>lPDq+Y?{Cq{p0~@_K>hsskj*j4p>iG{uu~#q-fL6r zt!{5UZFGGuHwuVpah?8fB2{?Auj?8xx?~)#l^WFa)DZlJn zQUI4SE7h32>-LRh@`3-Lt7(p8n&g?Li$IR(zMrC>G~1)jbgN`iSTMD_TnK1*-AGfM z^7%sclm;?>2!!6+*yEC1q?TpPaO7+nd+XuEPV=wNK)f9{Tev8Ky128OX=Udtgsc78(#4>*Ym8l9)XUQ zk8ikMEKas=`y9io$=E~Uf*Kq`BL zm98$bcoNA0!1?n&vgOEQ`BH8DL0-F~9bb~5WCL=~=$y5zh!I?|kUlC{7Z&evgvoom z&_^ry_(Gq~bDjZo)g)DgYc$rqeNj0dBZznEBlBp7UC?OTA9c$w-y_@$a62TK>TK~( z-b~S|EnYJnUMhUz`lN&8CkyF`9xlzPJL22QLDy-RFhKA7h$4PSPQba3F$$C6)ukzg zX?E(})$c?p#&mF9k23qi#eAsu$BC-g)nP;tZSA}lg}o@>onMH(Ba0*ia!!J{BU9jPmglMb$v-eE-4;k z@*mD^ETRlh{G^oipJCl3|DK#x6l-LSDW}vNib!L!rAXcl{Z31jq4&}GBm0;V*7j5# z&7@m^`vXKdQ4`9&r6*+^=poIm-K54LMOCWv$M!r8{b4dujvx{LG z(k@Np^2rkn4~GVbQs;+`hZ6-^xq?x>_`8!YW=E2%f_2v`02$SFt?h7p=a21>2CnPA z*3wB<^cC;JV{a#Mtm4|U?mIe-;`lc}`8}AtXPxKb&8oF@P3qos0lSa$a!qmZ%BvjQv&yx^S`S2`nGQmmK3u-_7>1`KQKa0^`q z5I74~_~%L8j*J)2eKXniO&J1Q=p-+K_Ws0J#hvLv+KRoPE=c!;)_*sEpm*fyL^D=d zus!R$`r2C58K4{femCE*x$(jg{Ut z2SJ12lvV*Nnv2~zbnqAT!_qI#Y3)M(p5uPGg}>c~)|qm{OV)gEA7raEesiewAV+Dp z5os>Lh*fl#X#8>JbaGqwgw(WNoBMj|Ap>g7bARi@C=abTORzJqT}{Y_^>w>in;pF$WM~5Hwt3S z`jJqLfBn9pUkAA%BO~_(DR!y}rrfRl6}Q}qP7{7_op%WhZge-r$--3!wA%0@Zi3%mY#q&)P#B&u#U3!5z%6{ z+@_zMM8$BLbz~7QW;C(PNz&__G|Q-qOEEn&-DsuFRB{paYfKY&#hB-Iv`!=z;LLv* z87*vGU;@yD; z+bpn$kdt*?Kd4s5cari1k+M6mwrzy9<`M>|L!UwT=Q_M7mF~=ZSibDayvs59=bWGX z?>72VT6wnt%gap`LWxIhF960S@nuyHp--5GkB7EG_XeSw_ra+M@kSko#)fcnrRbTE zAZ?}VF29Xkip+w=&raR47Zl!U8rojmw;bn*3Hf{Ylpen4C9du|_uVO=rFt4)*-f~$ zI7&h0IZ-A~y!AYvV6?}~dfN5tFq&?uV~n(4odda~VF0`paGB}Jk=$vnMvuQbU3WTo zcQrPliBjmpTG=woByB%_VZ)&!+Af*SAVhS%p5~kBy-SfT33EqfVd(d-N`TvXjbAfq zk^74?m7G7`g0V1EyqAJ|rX0S^P+tkN`*jJ=d%?u6lzO%5(Te{-uZJS3u8V~z z3Gw5}1VbVvdVw*>ikK|*)t?qo^OsS7Mma-mo^ElPw>=QyDVbcxOB$NRLa@D6ZvTOB;HS@TUQhgcni=2S zzT5+YL?!74>oC)br|XRQaHO9~QG8BXV1@~hyyoR(y}o7$I8ylVQCC;@*1pmsfNzV{ z*FWLuG#9rDnacY;9TmA&2BI!nXYIdfHH&|yGJa*AJm1bzqPOfX`FJtR25+VcZ0my> zg@-9$M5f|Cd!cDHEnh={L#_1Sb2uX3Fnr2=8SDgp}-wbZv*h!9b9f$A1W5!aftqaIoI@ z35~eIOg_r4dU_=>CjXvrFd!r<1)z2myS@MKXy^LYKPB*GLEg_aS~*DnkP5EXG{&4i zS0vek>WF3Rn3OGIVpvVc<^xjd!y3bxrP*#PV&z@9FdKyA(@nU>76&02Z5)b4nu zu0!eOJxTSmldSev(%DAlNhgD|mdvSmLF(1Jv8mM@{Rj>GnyO5nJ<7jt{C>EF&=@u1 z=p>ZL<*CnYa}!+19Y=q%FGi4@n`ILsjGZi-nC2)Df7k9UQd?#Y@-BCS-#K7n{rs#{ z>g4`RAQLWXnn?u*+p=aSo~OPzwMAeAPrI@*6veb0)UfW@?Q}*b(uXYk0ISRdg!sQN zrWu+85+wmu38YF`T#BA6!LugnrdppFXk-aw@hDYoqz<&&UIW7f6wgpZ({ElK!jwAr zpc)_CQ?u?sQ~aX$Uf3_|B}Mdq=2{GJ`k)$5^d*a5KXd-1wE955<;zZtI8e)X6s*F@ z0j*BRhvnkT;#G>zxTf5qON<)9lI~*x@ye_HUzrD?O#2Y*Bsy40_T&dVc~@faAeJ3% zKPsMxEE>uV>_%~0s@a$%^gh{o?eTd)%HW~XMy6o^XE`kV``d+Ak)(qaMPEO;E`4TO zcB6>$UW?3z<&l_hrhXUb>|Y7#eTkYtJ)8Jtbk9~t_52@>)K%5b1x6kM{wNki6O^^GL z`3&{78k@f2GLK16B1~9+y*wp}eB5*X z&Id4L5s^osSDIV?W9HHlxZgvDrlycf=Z9aPo4T{PEb}>w)%Hhna;fL}>^uiUHurLH zjQ`ADkQo4YvaK9O=>|xxsRR13I~}irYW5G`Jt&nsi_KyISVqz-y;!Y1T?Q=2qg%PK$&?eg0V9s;(G&MD@Gem%u*=ldsi&i^=WXX_ae8(w-qQUiB?>bLsD zEb?HRNx37Kh-MB}DV}*}Nw3p)ZzSs^=b4YjyYKagK=)b9(4p6;iEHam*6Z=l13NqC z!ZdUUpgL&Pnw4>R7Vur(VOW+Y+SPQZ!rpLw3sQs8h z|M+LpF2VCI!R&o5vi;ikV(mNnyj$R;VE^_kSr_s(E7N=J=zq6=ZsU;i?oMXh1vr-E zB;E6f)G)M{V$%yM9gRv~oUfN8nXZN+wNal;(+?SNR=f(e<)4yR?_VFRR((gcceD8- zWS4#W2!Oe%BdH-h8o|lQsdw=3s5$=Y1y~}; z&+ovewc-6wOagc|9#g{u>(OPUa-tKXM{~xXc3&9GsQcyXbv^8S+3IAU*m5s(WS!xd zs6nB2-lX)k&-F5j+4L7Xls$~cEuYz+YQLg7F~AL2wA*ZcuVeVfm&&iKGz1*@{4!b| zg@)5#KM_-(dPW2FmOq6!Db%a;ND=%?9h7J6+cg3GzWe%4 z8(d%3+Hs%dboZu(F@<^q8F-OfA-x~b!SzO=V-*9Bs#!c`!!&22BlC2e-YaK76H3UU z#p=vR0XCXHg|Wr`r|BI4GZ>un(R_fC?kcaz^$;e{Jknot_f*d~F-Uzd_xXk4R+y_3 zSz$>KouBL|k#S{dem9wASM6bj9{w{0+x;o>Y4(Sc3uZ-#<8Io@=|ehdPxZW`KLHF2 z3MkNi{@-G`3N}m&NIm(#^x#AM`?R|DK+xS4sdh;HSR)U&Sj|*1AS%eZd=t0L@f|C< z@1N;f#qQa`JdEXf-mFkCH8Xq=G>NN%7(T$S1E}V2xxjEO53iL9{_Z9yRDVYw1W*>% zf>fCQgo5O1Agu$vn=TKq(eyrHp!`l+(%(*sR#WxmgA=ktgIx+uLH7i@ z$9b^aTRaM2%eNU7dOvrD9+)_`*yx{GHR1(`S>z_!s1J z-^+qKc;5etoJ8~DAg2&hW9yMi46Ws)lGOP@kVaF6RPXF>4LDAlHfs%+Iind=4ua(z3T(?j||p=ILnwI;S8&T#^<#^TgL*PAYA*ZRQV zg&pyGiXG!^#mi*Du{&$fYWlD=E##~cvuDK^50W42r|6>J4LT1PWzhosS{HzXph>zf zw0hF#1|A9*YEq>CuA0$MANLRcMU3Q5M;nV3e)n5WPTr`ehi|*pFUMc%RoaaX;Le=Z zZsch!QE<76o-FTHS}SVK8YSsJ*A-u*2yTn_XS5)sa)S0943=#r@8eq>Rl-<0<@-81 z089IM$ZkqzEnqdFuw~8X8_zM8Q4aTSvDNV6T2f6ZsqtD`y;rBk8d}151m5>5tFr^r&oQu5*)v*f0KUsed0{F>- zep@8Q27NY+|FcP*nq?PK_I}!y=Z*M*G{6Um_xi#NWW2@eio4%z3@wdD&=I%3b&jBJ?nSsP|-z)yn{vS-zW% z2}tK$*>uFv*hJrlEFK4wJr}1J=+p%S;98xG9|)-AxK^bUiHfcq@i&%vX2p^`UGv?i zxzmTrn2kg^VpDqyr^(>!j5?7h6mx(XPkC@Ia2YDrJd(}re-at?%>5MWNu)T0L z@dC04{=N@7nCL3PXE_-0V(`%>OZ;8g${VtMH(l|8#PRq0yxGWEqEa!_p3?} z`f%@E#a`(%^z#oAkER9V0D%lZNBol|n-bW{f~W4txqiXkYx+Z@IQ@rX^~Ex6{;Ew= zdc2JbNmBIo_MJZk=}fKCMV1h5-ecZrQ-&|x;GoF05RED8$x?vkC;{S&tPk^SnQcnT z-CJwy^A8PE>ADqw%EHk;eGvPvx~(_S8qei0!|{;M@?l$_fqIEe32(lB+gbqLkIb?VwpZTD%_iPS?E|7C=rP2A;<0p(#4(1y z_VITh9CvZqoohRNc&zy$pbJs-eb5AT5RVS_&KPHoi8LRiYlx30FGW!g7NLKfgl;+J z2n0(@xT)G8-0KKbH7^?FYuoAH`Pb^ae&`6{@}PgE*CRvhEl{DpDCnfJ6C+|(m>x<* zx**7x2agd?^n4{Jr!{pXwN^R906Mizjp*my^i1wk?*+kH{bP99#rLzo>%EmCSbcf5 zIF?`C6v?g#yQ@g7K(4c|R$u5PSH3=VEO-;viSHwgg@`Ye&hHrBZ4Q7BCqHMrVR@Io z&i(eL{U2S^OG-_i76QwhQ%;b@h6|von=j@?l>jv%*B8zeb{fXf_2*B*#Av5RHjTrF2?1bw8SG34XdTnpOyeYpybJU-fft^-1IW1!;HfEx zz7}OVzIh9yRTpv#e$s|E=aIw+^q)i~UNz1Su+Mxu`W7|*a{DyM3Fg9Xgd~^eI>xj* z4^E7E(}WS-igYGV7NkQ>d^c_2m$n)a(q+oZh7pwKoLWmN9sl|T-|w^S1DzW#uNynw z0_nh}?;zGIT8=O(o@c?WiTMxDr-tE=l~!4}_uswC5=4fA#=_m7Qc*hl1X>ptai=d4 zLJ>vWG-V%9myloQ!8zhXuY)t(ETSV8cPyxinJ%Csx<`Pd4v_Rzk7g~&fEAT;(Y$gr zF*w+4$&edW&->%l`E=n3Z&=cJ%iJREx!M##@DGFm30Ibl&Sm#9|HO&zld{>osf-BO z{V$V6u*ce8W#9iY5NZb{htMl)yF5b+!By8^0wn_ddR8z%Fd;So{YVZgvbMSaP({C= zG=FseH?0A3flNcNSChB6W2MKjG7tgCyTKvi7dl8fOBiE$`C~Z?L)gMd zSOBj@TwG8p?s^b?A?tC3Ib?LBWE_>H1Mg0&*`^k>5!(z{uQJ*9rt55!>14Cj zWv1Mo_+r&1(=E>eJEtNjQ~wRE!W)c7c1f&uz6Q91W6_C#_@WO;bR~V1uI5wibu*=u z!?JPhjLq7sU~FQl-uS3oP^ zUw}-{kqrOK4D3I0;2^fopu33#Bw>_h83)jw*M%nW{qIwo#^GBk0$ai%gzBw@>m5>OJby0B4>Acaz{CE)RF9A zhD+pTr_QwvEbusg?h^wRk_SCe&weQ!A-01LPwKYz7aO8l9!$t45K*kY8rS7{B5QU| z7p%8F#A~vYIET1(_?DsOKB!Me)CKCGFO*#loGj{JNDv-fQT$|-lJ4cqPZd5PTUIBz z1{enIRT;!vL@E0XID^2Bx3 z>atR>0-MGSD1{q@c3h!zPi?bvFZ0H%e^S86v#OD;aXre(eyP(uU>L>zXP}W&bon{# zRdSu=TY%Iu)UjzYcJWE93{t2DBt{0C z-do}5Oh~SCkhu$5Jk|ReZr@i{&wT@lcrffZrsUr38PR!zRyk zF408O=3+nCFbKJQW!vhbf&5)16qIIcE(Ub)&|(&~e*;U^B?jO~-0({e5U4E+8B#9t z;3rbhNl17F7hlnGKYBanzn+W=sP}u}8uA$lsk_PFSWW0>*pCy|@9fuCqnAOsyz|y6 zT@kW~y+i^gF z#0Vp!iDOR5)PObog?d*C8wOAyh=49RmiCmxOVuj^d7ziU0z7{ZOIpq2%}0a#gl6mH zc|&?7yskhMhrFzcJ)3C$Z`}sky{%LTk;J*_an~1Gi@Pqt_|y1HU|4YIFbuAZk4lA@ z*+OavDam1SkDi`509NH-nzjl;WcB}(&3=3a1C6}`a1PL=TLqpOyn~g&E(yLojOV=A z1%Ya$-vS^!O$>m|f-=kJJTmXQ={;ih2$#r#7Dt0iCXxu+bJKKZKygb%c2ySGP}uyp zh!Jgu4G!1i@kW%iAibB0MEysDwsgjBM&}ovSL4* z=nuf46@`<@~V>E6F;Z!Kvx3Rp0--)hU_zndlj`W^);6qQl9*jWXh-~8X3`r3Tm zW$GY0+0wnAK^F}FO_he0bZ;<*Q%{^;p)=9~h)qno!aU0=B<*+GJ4fa>m1=m#fR24l npj7yO{s_VU?}3EOTats((^hpV!b#xC3p@iIW9>Rk``G^j1g>dm diff --git a/docs/_modules/index.html b/docs/_modules/index.html deleted file mode 100644 index 066d71b63..000000000 --- a/docs/_modules/index.html +++ /dev/null @@ -1,165 +0,0 @@ - - - - - - - Overview: module code — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - -

- - -
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/cg/alpha_shapes.html b/docs/_modules/libpysal/cg/alpha_shapes.html deleted file mode 100644 index 6ee5dbc6a..000000000 --- a/docs/_modules/libpysal/cg/alpha_shapes.html +++ /dev/null @@ -1,869 +0,0 @@ - - - - - - - libpysal.cg.alpha_shapes — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.cg.alpha_shapes

-"""
-Computation of alpha shape algorithm in 2-D based on original implementation
-by Tim Kittel (@timkittel) available at:
-
-    https://github.com/timkittel/alpha-shapes
-
-Author(s):
-    Dani Arribas-Bel daniel.arribas.bel@gmail.com
-"""
-
-import numpy as np
-import scipy.spatial as spat
-
-from ..common import requires, jit, HAS_JIT
-
-if not HAS_JIT:
-    from warnings import warn
-
-    NUMBA_WARN = (
-        "Numba not imported, so alpha shape construction may be slower than expected."
-    )
-
-try:
-    import pygeos
-
-    HAS_PYGEOS = True
-except ModuleNotFoundError:
-    HAS_PYGEOS = False
-
-
-EPS = np.finfo(float).eps
-
-__all__ = ["alpha_shape", "alpha_shape_auto"]
-
-
-@jit
-def nb_dist(x, y):
-    """numba implementation of distance between points `x` and `y`
-
-    Parameters
-    ----------
-
-    x : ndarray
-        Coordinates of point `x`
-
-    y : ndarray
-        Coordinates of point `y`
-
-    Returns
-    -------
-
-    dist : float
-        Distance between `x` and `y`
-
-    Examples
-    --------
-
-    >>> x = np.array([0, 0])
-    >>> y = np.array([1, 1])
-    >>> dist = nb_dist(x, y)
-    >>> dist
-    1.4142135623730951
-
-    """
-    sum = 0
-    for x_i, y_i in zip(x, y):
-        sum += (x_i - y_i) ** 2
-    dist = np.sqrt(sum)
-    return dist
-
-
-@jit(nopython=True)
-def r_circumcircle_triangle_single(a, b, c):
-    """Computation of the circumcircle of a single triangle
-
-    Parameters
-    ----------
-
-    a : ndarray
-        (2,) Array with coordinates of vertex `a` of the triangle
-    b : ndarray
-        (2,) Array with coordinates of vertex `b` of the triangle
-    c : ndarray
-        (2,) Array with coordinates of vertex `c` of the triangle
-
-    Returns
-    -------
-
-    r : float
-        Circumcircle of the triangle
-
-    Notes
-    -----
-
-    Source for equations:
-
-    > https://www.mathopenref.com/trianglecircumcircle.html
-
-    [Last accessed July 11th. 2018]
-
-    Examples
-    --------
-
-    >>> a = np.array([0, 0])
-    >>> b = np.array([0.5, 0])
-    >>> c = np.array([0.25, 0.25])
-    >>> r = r_circumcircle_triangle_single(a, b, c)
-    >>> r
-    0.2500000000000001
-
-    """
-    ab = nb_dist(a, b)
-    bc = nb_dist(b, c)
-    ca = nb_dist(c, a)
-
-    num = ab * bc * ca
-    den = np.sqrt((ab + bc + ca) * (bc + ca - ab) * (ca + ab - bc) * (ab + bc - ca))
-    if den == 0:
-        return np.array([ab, bc, ca]).max() / 2.0
-    else:
-        return num / den
-
-
-@jit(nopython=True)
-def r_circumcircle_triangle(a_s, b_s, c_s):
-    """Computation of circumcircles for a series of triangles
-
-    Parameters
-    ----------
-
-    a_s : ndarray
-        (N, 2) array with coordinates of vertices `a` of the triangles
-    b_s : ndarray
-        (N, 2) array with coordinates of vertices `b` of the triangles
-    c_s : ndarray
-        (N, 2) array with coordinates of vertices `c` of the triangles
-
-    Returns
-    -------
-
-    radii : ndarray
-        (N,) array with circumcircles for every triangle
-
-    Examples
-    --------
-
-    >>> a_s = np.array([[0, 0], [2, 1], [3, 2]])
-    >>> b_s = np.array([[1, 0], [5, 1], [2, 4]])
-    >>> c_s = np.array([[0, 7], [1, 3], [4, 2]])
-    >>> rs = r_circumcircle_triangle(a_s, b_s, c_s)
-    >>> rs
-    array([3.53553391, 2.5       , 1.58113883])
-
-    """
-    len_a = len(a_s)
-    r2 = np.zeros((len_a,))
-    for i in range(len_a):
-        r2[i] = r_circumcircle_triangle_single(a_s[i], b_s[i], c_s[i])
-    return r2
-
-
-@jit
-def get_faces(triangle):
-    """Extract faces from a single triangle
-
-    Parameters
-    ----------
-
-    triangles : ndarray
-        (3,) array with the vertex indices for a triangle
-
-    Returns
-    -------
-
-    faces : ndarray
-        (3, 2) array with a row for each face containing the indices of the two
-        points that make up the face
-
-    Examples
-    --------
-
-    >>> triangle = np.array([3, 1, 4], dtype=np.int32)
-    >>> faces = get_faces(triangle)
-    >>> faces
-    array([[3., 1.],
-           [1., 4.],
-           [4., 3.]])
-
-    """
-    faces = np.zeros((3, 2))
-    for i, (i0, i1) in enumerate([(0, 1), (1, 2), (2, 0)]):
-        faces[i] = triangle[i0], triangle[i1]
-    return faces
-
-
-@jit
-def build_faces(faces, triangles_is, num_triangles, num_faces_single):
-    """Build facing triangles
-
-    Parameters
-    ----------
-
-    faces : ndarray
-        (num_triangles * num_faces_single, 2) array of zeroes in int form
-
-    triangles_is : ndarray
-        (D, 3) array, where D is the number of Delaunay triangles, with the
-        vertex indices for each triangle
-
-    num_triangles : int
-        Number of triangles
-
-    num_faces_single : int
-        Number of faces a triangle has (i.e. 3)
-
-    Returns
-    -------
-
-    faces : ndarray
-        Two dimensional array with a row for every facing segment containing
-        the indices of the coordinate points
-
-    Examples
-    --------
-
-    >>> import scipy.spatial as spat
-    >>> pts = np.array([[0, 1], [3, 5], [4, 1], [6, 7], [9, 3]])
-    >>> triangulation = spat.Delaunay(pts)
-    >>> triangulation.simplices
-    array([[3, 1, 4],
-           [1, 2, 4],
-           [2, 1, 0]], dtype=int32)
-    >>> num_faces_single = 3
-    >>> num_triangles = triangulation.simplices.shape[0]
-    >>> num_faces = num_triangles * num_faces_single
-    >>> faces = np.zeros((num_faces, 2), dtype=np.int_)
-    >>> mask = np.ones((num_faces,), dtype=np.bool_)
-    >>> faces = build_faces(faces, triangulation.simplices, num_triangles, num_faces_single)
-    >>> faces
-    array([[3, 1],
-           [1, 4],
-           [4, 3],
-           [1, 2],
-           [2, 4],
-           [4, 1],
-           [2, 1],
-           [1, 0],
-           [0, 2]])
-
-    """
-    for i in range(num_triangles):
-        from_i = num_faces_single * i
-        to_i = num_faces_single * (i + 1)
-        faces[from_i:to_i] = get_faces(triangles_is[i])
-    return faces
-
-
-@jit
-def nb_mask_faces(mask, faces):
-    """ Run over each row in `faces`, if the face in the following row is the
-    same, then mark both as False on `mask`
-
-    Parameters
-    ----------
-
-    mask : ndarray
-        One-dimensional boolean array set to True with as many observations as
-        rows in `faces`
-
-    faces : ndarray
-        Sorted sequence of faces for all triangles (ie. triangles split by each
-        segment)
-
-    Returns
-    -------
-
-    masked : ndarray
-         Sequence of outward-facing faces
-
-    Examples
-    --------
-
-    >>> import numpy as np
-    >>> faces = np.array([[0, 1], [0, 2], [1, 2], [1, 2], [1, 3], [1, 4], [1, 4], [2, 4], [3, 4]])
-    >>> mask = np.ones((faces.shape[0], ), dtype=np.bool_)
-    >>> masked = nb_mask_faces(mask, faces)
-    >>> masked
-    array([[0, 1],
-           [0, 2],
-           [1, 3],
-           [2, 4],
-           [3, 4]])
-
-    """
-    for k in range(faces.shape[0] - 1):
-        if mask[k]:
-            if np.all(faces[k] == faces[k + 1]):
-                mask[k] = False
-                mask[k + 1] = False
-    return faces[mask]
-
-
-def get_single_faces(triangles_is):
-    """Extract outward facing edges from collection of triangles
-
-    Parameters
-    ----------
-
-    triangles_is : ndarray
-        (D, 3) array, where D is the number of Delaunay triangles, with the
-        vertex indices for each triangle
-
-    Returns
-    -------
-
-    single_faces : ndarray
-
-    Examples
-    --------
-
-    >>> import scipy.spatial as spat
-    >>> pts = np.array([[0, 1], [3, 5], [4, 1], [6, 7], [9, 3]])
-    >>> alpha = 0.33
-    >>> triangulation = spat.Delaunay(pts)
-    >>> triangulation.simplices
-    array([[3, 1, 4],
-           [1, 2, 4],
-           [2, 1, 0]], dtype=int32)
-    >>> get_single_faces(triangulation.simplices)
-    array([[0, 1],
-           [0, 2],
-           [1, 3],
-           [2, 4],
-           [3, 4]])
-
-    """
-    num_faces_single = 3
-    num_triangles = triangles_is.shape[0]
-    num_faces = num_triangles * num_faces_single
-    faces = np.zeros((num_faces, 2), dtype=np.int_)
-    mask = np.ones((num_faces,), dtype=np.bool_)
-
-    faces = build_faces(faces, triangles_is, num_triangles, num_faces_single)
-
-    orderlist = ["x{}".format(i) for i in range(faces.shape[1])]
-    dtype_list = [(el, faces.dtype.str) for el in orderlist]
-    # Arranging each face so smallest vertex is first
-    faces.sort(axis=1)
-    # Arranging faces in ascending way
-    faces.view(dtype_list).sort(axis=0)
-    # Masking
-    single_faces = nb_mask_faces(mask, faces)
-    return single_faces
-
-
-@requires("geopandas", "shapely")
-def alpha_geoms(alpha, triangles, radii, xys):
-    """Generate alpha-shape polygon(s) from `alpha` value, vertices of
-    `triangles`, the `radii` for all points, and the points themselves
-
-    Parameters
-    ----------
-
-    alpha : float
-        Alpha value to delineate the alpha-shape
-
-    triangles : ndarray
-         (D, 3) array, where D is the number of Delaunay triangles, with the
-         vertex indices for each triangle
-
-    radii : ndarray
-        (N,) array with circumcircles for every triangle
-
-    xys : ndarray
-        (N, 2) array with one point per row and coordinates structured as X and Y
-
-    Returns
-    -------
-
-    geoms : GeoSeries
-        Polygon(s) resulting from the alpha shape algorithm. The GeoSeries
-        object remains so even if only a single polygon is returned. There is
-        no CRS included in the object.
-
-    Examples
-    --------
-
-    >>> import scipy.spatial as spat
-    >>> pts = np.array([[0, 1], [3, 5], [4, 1], [6, 7], [9, 3]])
-    >>> alpha = 0.33
-    >>> triangulation = spat.Delaunay(pts)
-    >>> triangles = pts[triangulation.simplices]
-    >>> triangles
-    array([[[6, 7],
-            [3, 5],
-            [9, 3]],
-    <BLANKLINE>
-           [[3, 5],
-            [4, 1],
-            [9, 3]],
-    <BLANKLINE>
-           [[4, 1],
-            [3, 5],
-            [0, 1]]])
-    >>> a_pts = triangles[:, 0, :]
-    >>> b_pts = triangles[:, 1, :]
-    >>> c_pts = triangles[:, 2, :]
-    >>> radii = r_circumcircle_triangle(a_pts, b_pts, c_pts)
-    >>> geoms = alpha_geoms(alpha, triangulation.simplices, radii, pts)
-    >>> geoms
-    0    POLYGON ((0.00000 1.00000, 3.00000 5.00000, 4....
-    dtype: geometry
-
-    """
-    from shapely.geometry import LineString
-    from shapely.ops import polygonize
-    from geopandas import GeoSeries
-
-    triangles_reduced = triangles[radii < 1 / alpha]
-    outer_triangulation = get_single_faces(triangles_reduced)
-    face_pts = xys[outer_triangulation]
-    geoms = GeoSeries(list(polygonize(list(map(LineString, face_pts)))))
-    return geoms
-
-
-
[docs]@requires("geopandas", "shapely") -def alpha_shape(xys, alpha): - """Alpha-shape delineation (Edelsbrunner, Kirkpatrick & Seidel, 1983) from a collection of points - - Parameters - ---------- - - xys : ndarray - (N, 2) array with one point per row and coordinates structured as X and - Y - - alpha : float - Alpha value to delineate the alpha-shape - - Returns - ------- - - shapes : GeoSeries - Polygon(s) resulting from the alpha shape algorithm. The GeoSeries - object remains so even if only a single polygon is returned. There is - no CRS included in the object. - - Examples - -------- - - >>> pts = np.array([[0, 1], [3, 5], [4, 1], [6, 7], [9, 3]]) - >>> alpha = 0.1 - >>> poly = alpha_shape(pts, alpha) - >>> poly - 0 POLYGON ((0.00000 1.00000, 3.00000 5.00000, 6.... - dtype: geometry - >>> poly.centroid - 0 POINT (4.69048 3.45238) - dtype: geometry - - - References - ---------- - - Edelsbrunner, H., Kirkpatrick, D., & Seidel, R. (1983). On the shape of - a set of points in the plane. IEEE Transactions on information theory, - 29(4), 551-559. - - """ - if not HAS_JIT: - warn(NUMBA_WARN) - if xys.shape[0] < 4: - from shapely import ops, geometry as geom - - return ops.cascaded_union([geom.Point(xy) for xy in xys]).convex_hull.buffer(0) - triangulation = spat.Delaunay(xys) - triangles = xys[triangulation.simplices] - a_pts = triangles[:, 0, :] - b_pts = triangles[:, 1, :] - c_pts = triangles[:, 2, :] - radii = r_circumcircle_triangle(a_pts, b_pts, c_pts) - del triangles, a_pts, b_pts, c_pts - geoms = alpha_geoms(alpha, triangulation.simplices, radii, xys) - return geoms
- - -def _valid_hull(geoms, points): - """Sanity check within ``alpha_shape_auto()`` to verify the generated alpha - shape actually contains the original set of points (xys). - - Parameters - ---------- - - geoms : GeoSeries - See alpha_geoms() - - points : list - xys parameter cast as shapely.geometry.Point objects - - Returns - ------- - - flag : bool - Valid hull for alpha shape [True] or not [False] - - """ - flag = True - # if there is not exactly one polygon - if geoms.shape[0] != 1: - return False - # if any (xys) points do not intersect the polygon - if HAS_PYGEOS: - return pygeos.intersects(pygeos.from_shapely(geoms[0]), points).all() - else: - for point in points: - if not point.intersects(geoms[0]): - return False - return True - - -
[docs]@requires("geopandas", "shapely") -def alpha_shape_auto( - xys, step=1, verbose=False, return_radius=False, return_circles=False -): - """Computation of alpha-shape delineation with automated selection of alpha. - - This method uses the algorithm proposed by Edelsbrunner, Kirkpatrick & - Seidel (1983) to return the tightest polygon that contains all points in - `xys`. The algorithm ranks every point based on its radious and iterates - over each point, checking whether the maximum alpha that would keep the - point and all the other ones in the set with smaller radii results in a - single polygon. If that is the case, it moves to the next point; - otherwise, it retains the previous alpha value and returns the polygon - as `shapely` geometry. - - Parameters - ---------- - - xys : ndarray - Nx2 array with one point per row and coordinates structured as X and Y - - step : int - [Optional. Default=1] Number of points in `xys` to jump ahead after - checking whether the largest possible alpha that includes the point and - all the other ones with smaller radii - - verbose : Boolean - [Optional. Default=False] If True, it prints alpha values being tried at every step. - - Returns - ------- - poly : shapely.Polygon - Tightest alpha-shape polygon containing all points in `xys` - - Examples - -------- - - >>> pts = np.array([[0, 1], [3, 5], [4, 1], [6, 7], [9, 3]]) - >>> poly = alpha_shape_auto(pts) - >>> poly.bounds - (0.0, 1.0, 9.0, 7.0) - >>> poly.centroid.x, poly.centroid.y - (4.690476190476191, 3.4523809523809526) - - References - ---------- - - Edelsbrunner, H., Kirkpatrick, D., & Seidel, R. (1983). On the shape of - a set of points in the plane. IEEE Transactions on information theory, - 29(4), 551-559. - - """ - if not HAS_JIT: - warn(NUMBA_WARN) - from shapely import geometry as geom - - if return_circles: - return_radius = True - if xys.shape[0] < 4: - from shapely import ops - - if xys.shape[0] == 3: - multipoint = ops.cascaded_union([geom.Point(xy) for xy in xys]) - alpha_shape = multipoint.convex_hull.buffer(0) - else: - alpha_shape = geom.Polygon([]) - if xys.shape[0] == 1: - if return_radius: - if return_circles: - out = [alpha_shape, 0, alpha_shape] - return alpha_shape, 0 - return alpha_shape - elif xys.shape[0] == 2: - if return_radius: - r = spat.distance.euclidean(xys[0], xys[1]) / 2 - if return_circles: - circle = _construct_centers(xys[0], xys[1], r) - return [alpha_shape, r, circle] - return [alpha_shape, r] - return alpha_shape - elif return_radius: # this handles xys.shape[0] == 3 - radius = r_circumcircle_triangle_single(xys[0], xys[1], xys[2]) - if return_circles: - circles = construct_bounding_circles(alpha_shape, radius) - return [alpha_shape, radius, circles] - return [alpha_shape, radius] - return alpha_shape - triangulation = spat.Delaunay(xys) - triangles = xys[triangulation.simplices] - a_pts = triangles[:, 0, :] - b_pts = triangles[:, 1, :] - c_pts = triangles[:, 2, :] - radii = r_circumcircle_triangle(a_pts, b_pts, c_pts) - radii[np.isnan(radii)] = 0 # "Line" triangles to be kept for sure - del triangles, a_pts, b_pts, c_pts - radii_sorted_i = radii.argsort() - triangles = triangulation.simplices[radii_sorted_i][::-1] - radii = radii[radii_sorted_i][::-1] - geoms_prev = alpha_geoms((1 / radii.max()) - EPS, triangles, radii, xys) - if HAS_PYGEOS: - points = pygeos.points(xys) - else: - points = [geom.Point(pnt) for pnt in xys] - if verbose: - print("Step set to %i" % step) - for i in range(0, len(radii), step): - radi = radii[i] - alpha = (1 / radi) - EPS - if verbose: - print("%.2f%% | Trying a = %f" % ((i + 1) / radii.shape[0], alpha)) - geoms = alpha_geoms(alpha, triangles, radii, xys) - if _valid_hull(geoms, points): - geoms_prev = geoms - radi_prev = radi - else: - break - if verbose: - print(geoms_prev.shape) - if return_radius: - out = [geoms_prev[0], radi_prev] - if return_circles: - out.append(construct_bounding_circles(out[0], radi_prev)) - return out - # Return a shapely polygon - return geoms_prev[0]
- - -def construct_bounding_circles(alpha_shape, radius): - """Construct the bounding circles for an alpha shape, given the radius - computed from the `alpha_shape_auto` method. - - Arguments - --------- - alpha_shape : shapely.Polygon - An alpha-hull with the input radius. - - radius : float - The radius of the input alpha_shape. - - Returns - ------- - center : numpy.ndarray of shape (n,2) - The centers of the circles defining the alpha_shape. - - """ - coordinates = list(alpha_shape.boundary.coords) - n_coordinates = len(coordinates) - centers = [] - for i in range(n_coordinates - 1): - a, b = coordinates[i], coordinates[i + 1] - centers.append(_construct_centers(a, b, radius)) - return centers - - -@jit(nopython=True) -def _construct_centers(a, b, radius): - midpoint_x = (a[0] + b[0]) * 0.5 - midpoint_y = (a[1] + b[1]) * 0.5 - d = ((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2) ** 0.5 - if b[0] - a[0] == 0: - m = np.inf - axis_rotation = np.pi / 2 - else: - m = (b[1] - a[1]) / (b[0] - a[0]) - axis_rotation = np.arctan(m) - # altitude is perpendicular bisector of AB - interior_angle = np.arccos(0.5 * d / radius) - chord = np.sin(interior_angle) * radius - - dx = chord * np.sin(axis_rotation) - dy = chord * np.cos(axis_rotation) - - up_x = midpoint_x - dx - up_y = midpoint_y + dy - down_x = midpoint_x + dx - down_y = midpoint_y - dy - - # sign gives us direction of point, since - # shapely shapes are clockwise-defined - sign = np.sign((b[0] - a[0]) * (up_y - a[1]) - (b[1] - a[1]) * (up_x - a[0])) - if sign == 1: - return up_x, up_y - else: - return down_x, down_y - - -if __name__ == "__main__": - - import matplotlib.pyplot as plt - import time - import geopandas as gpd - - plt.close("all") - xys = np.random.random((1000, 2)) - t0 = time.time() - geoms = alpha_shape_auto(xys, 1) - t1 = time.time() - print("%.2f Seconds to run algorithm" % (t1 - t0)) - f, ax = plt.subplots(1) - gpd.GeoDataFrame({"geometry": [geoms]}).plot(ax=ax, color="orange", alpha=0.5) - ax.scatter(xys[:, 0], xys[:, 1], s=0.1) - plt.show() -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/cg/kdtree.html b/docs/_modules/libpysal/cg/kdtree.html deleted file mode 100644 index 873bf7cde..000000000 --- a/docs/_modules/libpysal/cg/kdtree.html +++ /dev/null @@ -1,461 +0,0 @@ - - - - - - - libpysal.cg.kdtree — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.cg.kdtree

-"""
-KDTree for PySAL: Python Spatial Analysis Library.
-
-Adds support for Arc Distance to scipy.spatial.KDTree.
-"""
-import math
-import scipy.spatial
-import numpy
-from scipy import inf
-from . import sphere
-from .sphere import RADIUS_EARTH_KM
-
-__author__ = "Charles R Schmidt <schmidtc@gmail.com>"
-
-__all__ = ["DISTANCE_METRICS", "FLOAT_EPS", "KDTree"]
-
-DISTANCE_METRICS = ["Euclidean", "Arc"]
-FLOAT_EPS = numpy.finfo(float).eps
-
-
-
[docs]def KDTree(data, leafsize=10, distance_metric="Euclidean", radius=RADIUS_EARTH_KM): - """kd-tree built on top of kd-tree functionality in scipy. If using scipy - 0.12 or greater uses the scipy.spatial.cKDTree, otherwise uses - scipy.spatial.KDTree. Offers both Arc distance and Euclidean distance. Note - that Arc distance is only appropriate when points in latitude and - longitude, and the radius set to meaningful value (see docs below). - - Parameters - ---------- - data : array - The data points to be indexed. This array is not copied, and so - modifying this data will result in bogus results. Typically nx2. - - leafsize : int - The number of points at which the algorithm switches over to brute-force. Has to be positive. Optional, default is 10. - - distance_metric : string - Options: "Euclidean" (default) and "Arc". - - radius : float - Radius of the sphere on which to compute distances. Assumes data in - latitude and longitude. Ignored if distance_metric="Euclidean". Typical - values: pysal.cg.RADIUS_EARTH_KM (default) pysal.cg.RADIUS_EARTH_MILES - - """ - - if distance_metric.lower() == "euclidean": - if ( - int(scipy.version.version.split(".")[1]) < 12 - and int(scipy.version.version.split(".")[0]) == 0 - ): - return scipy.spatial.KDTree(data, leafsize) - else: - return scipy.spatial.cKDTree(data, leafsize) - elif distance_metric.lower() == "arc": - return Arc_KDTree(data, leafsize, radius)
- - -# internal hack for the Arc_KDTree class inheritance -if ( - int(scipy.version.version.split(".")[1]) < 12 - and int(scipy.version.version.split(".")[0]) == 0 -): - temp_KDTree = scipy.spatial.KDTree -else: - temp_KDTree = scipy.spatial.cKDTree - - -class Arc_KDTree(temp_KDTree): - def __init__(self, data, leafsize=10, radius=1.0): - """KDTree using Arc Distance instead of Euclidean Distance. - - Returned distances are based on radius. For Example, pass in the radius - of earth in miles to get back miles. Assumes data are Lng/Lat, does not - account for geoids. - - For more information see docs for scipy.spatial.KDTree - - Examples - -------- - >>> pts = [(0,90), (0,0), (180,0), (0,-90)] - >>> kd = Arc_KDTree(pts, radius = sphere.RADIUS_EARTH_KM) - >>> d,i = kd.query((90,0), k=4) - >>> d - array([10007.54339801, 10007.54339801, 10007.54339801, 10007.54339801]) - >>> circumference = 2*math.pi*sphere.RADIUS_EARTH_KM - >>> round(d[0],5) == round(circumference/4.0,5) - True - """ - self.radius = radius - self.circumference = 2 * math.pi * radius - temp_KDTree.__init__(self, list(map(sphere.toXYZ, data)), leafsize) - - def _toXYZ(self, x): - if not issubclass(type(x), numpy.ndarray): - x = numpy.array(x) - if len(x.shape) == 2 and x.shape[1] == 3: # assume point is already in XYZ - return x - if len(x.shape) == 1 and x.shape[0] == 3: # assume point is already in XYZ - return x - elif len(x.shape) == 1: - x = numpy.array(sphere.toXYZ(x)) - else: - x = list(map(sphere.toXYZ, x)) - return x - - def count_neighbors(self, other, r, p=2): - """See scipy.spatial.KDTree.count_neighbors - - Parameters - ---------- - p: ignored, kept to maintain compatibility with scipy.spatial.KDTree - - Examples - -------- - >>> pts = [(0,90), (0,0), (180,0), (0,-90)] - >>> kd = Arc_KDTree(pts, radius = sphere.RADIUS_EARTH_KM) - >>> kd.count_neighbors(kd,0) - 4 - >>> circumference = 2.0*math.pi*sphere.RADIUS_EARTH_KM - >>> kd.count_neighbors(kd,circumference/2.0) - 16 - """ - if r > 0.5 * self.circumference: - raise ValueError( - "r, must not exceed 1/2 circumference of the sphere (%f)." - % self.circumference - * 0.5 - ) - r = sphere.arcdist2linear(r, self.radius) - return temp_KDTree.count_neighbors(self, other, r) - - def query(self, x, k=1, eps=0, p=2, distance_upper_bound=inf): - """See scipy.spatial.KDTree.query - - Parameters - ---------- - x : array-like, last dimension self.m - query points are lng/lat. - p: ignored - kept to maintain compatibility with scipy.spatial.KDTree - - Examples - -------- - >>> import numpy as np - >>> pts = [(0,90), (0,0), (180,0), (0,-90)] - >>> kd = Arc_KDTree(pts, radius = sphere.RADIUS_EARTH_KM) - >>> d,i = kd.query((90,0), k=4) - >>> d - array([10007.54339801, 10007.54339801, 10007.54339801, 10007.54339801]) - >>> circumference = 2*math.pi*sphere.RADIUS_EARTH_KM - >>> round(d[0],5) == round(circumference/4.0,5) - True - >>> d,i = kd.query(kd.data, k=3) - >>> d2,i2 = kd.query(pts, k=3) - >>> (d == d2).all() - True - >>> (i == i2).all() - True - - """ - eps = sphere.arcdist2linear(eps, self.radius) - if distance_upper_bound != inf: - distance_upper_bound = sphere.arcdist2linear( - distance_upper_bound, self.radius - ) - d, i = temp_KDTree.query( - self, self._toXYZ(x), k, eps=eps, distance_upper_bound=distance_upper_bound - ) - dims = len(d.shape) - r = self.radius - if dims == 0: - return sphere.linear2arcdist(d, r), i - if dims == 1: - # TODO: implement linear2arcdist on numpy arrays - d = [sphere.linear2arcdist(x, r) for x in d] - elif dims == 2: - d = [[sphere.linear2arcdist(x, r) for x in row] for row in d] - return numpy.array(d), i - - def query_ball_point(self, x, r, p=2, eps=0): - """See scipy.spatial.KDTree.query_ball_point - - Parameters - ---------- - p : ignored - kept to maintain compatibility with scipy.spatial.KDTree - - Examples - -------- - >>> import numpy as np - >>> pts = [(0,90), (0,0), (180,0), (0,-90)] - >>> kd = Arc_KDTree(pts, radius = sphere.RADIUS_EARTH_KM) - >>> circumference = 2*math.pi*sphere.RADIUS_EARTH_KM - >>> kd.query_ball_point(pts, circumference/4.) - array([list([0, 1, 2]), list([0, 1, 3]), list([0, 2, 3]), list([1, 2, 3])], - dtype=object) - >>> kd.query_ball_point(pts, circumference/2.) - array([list([0, 1, 2, 3]), list([0, 1, 2, 3]), list([0, 1, 2, 3]), - list([0, 1, 2, 3])], dtype=object) - - """ - eps = sphere.arcdist2linear(eps, self.radius) - # scipy.sphere.KDTree.query_ball_point appears to ignore the eps argument. - # we have some floating point errors moving back and forth between cordinate systems, - # so we'll account for that be adding some to our radius, 3*float's eps value. - if r > 0.5 * self.circumference: - raise ValueError( - "r, must not exceed 1/2 circumference of the sphere (%f)." - % self.circumference - * 0.5 - ) - r = sphere.arcdist2linear(r, self.radius) + FLOAT_EPS * 3 - return temp_KDTree.query_ball_point(self, self._toXYZ(x), r, eps=eps) - - def query_ball_tree(self, other, r, p=2, eps=0): - """See scipy.spatial.KDTree.query_ball_tree - - Parameters - ---------- - p : ignored - kept to maintain compatibility with scipy.spatial.KDTree - - Examples - -------- - >>> pts = [(0,90), (0,0), (180,0), (0,-90)] - >>> kd = Arc_KDTree(pts, radius = sphere.RADIUS_EARTH_KM) - >>> kd.query_ball_tree(kd, kd.circumference/4.) == [[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]] - True - >>> kd.query_ball_tree(kd, kd.circumference/2.) == [[0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]] - True - - """ - eps = sphere.arcdist2linear(eps, self.radius) - # scipy.sphere.KDTree.query_ball_point appears to ignore the eps argument. - # we have some floating point errors moving back and forth between cordinate systems, - # so we'll account for that be adding some to our radius, 3*float's eps value. - if self.radius != other.radius: - raise ValueError("Both trees must have the same radius.") - if r > 0.5 * self.circumference: - raise ValueError( - "r, must not exceed 1/2 circumference of the sphere (%f)." - % self.circumference - * 0.5 - ) - r = sphere.arcdist2linear(r, self.radius) + FLOAT_EPS * 3 - return temp_KDTree.query_ball_tree(self, other, r, eps=eps) - - def query_pairs(self, r, p=2, eps=0): - """See scipy.spatial.KDTree.query_pairs - - Parameters - ---------- - p : ignored - kept to maintain compatibility with scipy.spatial.KDTree - - Examples - -------- - >>> pts = [(0,90), (0,0), (180,0), (0,-90)] - >>> kd = Arc_KDTree(pts, radius = sphere.RADIUS_EARTH_KM) - >>> kd.query_pairs(kd.circumference/4.) == set([(0, 1), (1, 3), (2, 3), (0, 2)]) - True - >>> kd.query_pairs(kd.circumference/2.) == set([(0, 1), (1, 2), (1, 3), (2, 3), (0, 3), (0, 2)]) - True - - """ - if r > 0.5 * self.circumference: - raise ValueError( - "r, must not exceed 1/2 circumference of the sphere (%f)." - % self.circumference - * 0.5 - ) - r = sphere.arcdist2linear(r, self.radius) + FLOAT_EPS * 3 - return temp_KDTree.query_pairs(self, r, eps=eps) - - def sparse_distance_matrix(self, other, max_distance, p=2): - """See scipy.spatial.KDTree.sparse_distance_matrix - - Parameters - ---------- - p : ignored - kept to maintain compatibility with scipy.spatial.KDTree - - Examples - -------- - >>> pts = [(0,90), (0,0), (180,0), (0,-90)] - >>> kd = Arc_KDTree(pts, radius = sphere.RADIUS_EARTH_KM) - >>> kd.sparse_distance_matrix(kd, kd.circumference/4.).todense() - matrix([[ 0. , 10007.54339801, 10007.54339801, 0. ], - [10007.54339801, 0. , 0. , 10007.54339801], - [10007.54339801, 0. , 0. , 10007.54339801], - [ 0. , 10007.54339801, 10007.54339801, 0. ]]) - >>> kd.sparse_distance_matrix(kd, kd.circumference/2.).todense() - matrix([[ 0. , 10007.54339801, 10007.54339801, 20015.08679602], - [10007.54339801, 0. , 20015.08679602, 10007.54339801], - [10007.54339801, 20015.08679602, 0. , 10007.54339801], - [20015.08679602, 10007.54339801, 10007.54339801, 0. ]]) - - """ - if self.radius != other.radius: - raise ValueError("Both trees must have the same radius.") - if max_distance > 0.5 * self.circumference: - raise ValueError( - "max_distance, must not exceed 1/2 circumference of the sphere (%f)." - % self.circumference - * 0.5 - ) - max_distance = sphere.arcdist2linear(max_distance, self.radius) + FLOAT_EPS * 3 - D = temp_KDTree.sparse_distance_matrix(self, other, max_distance) - D = D.tocoo() - # print D.data - a2l = lambda x: sphere.linear2arcdist(x, self.radius) - # print map(a2l,D.data) - return scipy.sparse.coo_matrix((list(map(a2l, D.data)), (D.row, D.col))).todok() -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/cg/locators.html b/docs/_modules/libpysal/cg/locators.html deleted file mode 100644 index bb09d62a7..000000000 --- a/docs/_modules/libpysal/cg/locators.html +++ /dev/null @@ -1,971 +0,0 @@ - - - - - - - libpysal.cg.locators — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.cg.locators

-"""
-Computational geometry code for PySAL: Python Spatial Analysis Library.
-"""
-
-__author__ = "Sergio J. Rey, Xinyue Ye, Charles Schmidt, Andrew Winslow"
-__credits__ = "Copyright (c) 2005-2011 Sergio J. Rey"
-
-import math
-import copy
-import warnings
-from .rtree import *
-from .standalone import *
-from .shapes import *
-
-__all__ = ["Grid", "BruteForcePointLocator", "PointLocator", "PolygonLocator"]
-
-dep_msg = "is deprecated and will be reoved in libpysal 4.4.0"
-
-
-
[docs]class Grid: - """ - Representation of a binning data structure. - """ - -
[docs] def __init__(self, bounds, resolution): - """ - Returns a grid with specified properties. - - __init__(Rectangle, number) -> Grid - - Parameters - ---------- - bounds : the area for the grid to encompass - resolution : the diameter of each bin - - Examples - -------- - TODO: complete this doctest - >>> g = Grid(Rectangle(0, 0, 10, 10), 1) - """ - warnings.warn("Grid " + dep_msg, DeprecationWarning) - if resolution == 0: - raise Exception("Cannot create grid with resolution 0") - self.res = resolution - self.hash = {} - self.x_range = (bounds.left, bounds.right) - self.y_range = (bounds.lower, bounds.upper) - try: - self.i_range = int( - math.ceil((self.x_range[1] - self.x_range[0]) / self.res) - ) - self.j_range = int( - math.ceil((self.y_range[1] - self.y_range[0]) / self.res) - ) - except Exception: - raise Exception( - "Invalid arguments for Grid(): (" - + str(x_range) - + ", " - + str(y_range) - + ", " - + str(res) - + ")" - )
- -
[docs] def in_grid(self, loc): - """ - Returns whether a 2-tuple location _loc_ lies inside the grid bounds. - - Test tag: <tc>#is#Grid.in_grid</tc> - """ - return ( - self.x_range[0] <= loc[0] <= self.x_range[1] - and self.y_range[0] <= loc[1] <= self.y_range[1] - )
- - def __grid_loc(self, loc): - i = min(self.i_range, max(int((loc[0] - self.x_range[0]) / self.res), 0)) - j = min(self.j_range, max(int((loc[1] - self.y_range[0]) / self.res), 0)) - return (i, j) - -
[docs] def add(self, item, pt): - """ - Adds an item to the grid at a specified location. - - add(x, Point) -> x - - Parameters - ---------- - item : the item to insert into the grid - pt : the location to insert the item at - - Examples - -------- - - >>> g = Grid(Rectangle(0, 0, 10, 10), 1) - >>> g.add('A', Point((4.2, 8.7))) - 'A' - """ - if not self.in_grid(pt): - raise Exception( - "Attempt to insert item at location outside grid bounds: " + str(pt) - ) - grid_loc = self.__grid_loc(pt) - if grid_loc in self.hash: - self.hash[grid_loc].append((pt, item)) - else: - self.hash[grid_loc] = [(pt, item)] - return item
- -
[docs] def remove(self, item, pt): - """ - Removes an item from the grid at a specified location. - - remove(x, Point) -> x - - Parameters - ---------- - item : the item to remove from the grid - pt : the location the item was added at - - Examples - -------- - - >>> g = Grid(Rectangle(0, 0, 10, 10), 1) - >>> g.add('A', Point((4.2, 8.7))) - 'A' - >>> g.remove('A', Point((4.2, 8.7))) - 'A' - """ - if not self.in_grid(pt): - raise Exception( - "Attempt to remove item at location outside grid bounds: " + str(pt) - ) - grid_loc = self.__grid_loc(pt) - self.hash[grid_loc].remove((pt, item)) - if self.hash[grid_loc] == []: - del self.hash[grid_loc] - return item
- -
[docs] def bounds(self, bounds): - """ - Returns a list of items found in the grid within the bounds specified. - - bounds(Rectangle) -> x list - - Parameters - ---------- - item : the item to remove from the grid - pt : the location the item was added at - - Examples - -------- - - >>> g = Grid(Rectangle(0, 0, 10, 10), 1) - >>> g.add('A', Point((1.0, 1.0))) - 'A' - >>> g.add('B', Point((4.0, 4.0))) - 'B' - >>> g.bounds(Rectangle(0, 0, 3, 3)) - ['A'] - >>> g.bounds(Rectangle(2, 2, 5, 5)) - ['B'] - >>> sorted(g.bounds(Rectangle(0, 0, 5, 5))) - ['A', 'B'] - """ - x_range = (bounds.left, bounds.right) - y_range = (bounds.lower, bounds.upper) - items = [] - lower_left = self.__grid_loc((x_range[0], y_range[0])) - upper_right = self.__grid_loc((x_range[1], y_range[1])) - for i in range(lower_left[0], upper_right[0] + 1): - for j in range(lower_left[1], upper_right[1] + 1): - if (i, j) in self.hash: - items.extend( - [ - item[1] - for item in [ - item - for item in self.hash[(i, j)] - if x_range[0] <= item[0][0] <= x_range[1] - and y_range[0] <= item[0][1] <= y_range[1] - ] - ] - ) - return items
- -
[docs] def proximity(self, pt, r): - """ - Returns a list of items found in the grid within a specified distance of a point. - - proximity(Point, number) -> x list - - Parameters - ---------- - pt : the location to search around - r : the distance to search around the point - - Examples - -------- - >>> g = Grid(Rectangle(0, 0, 10, 10), 1) - >>> g.add('A', Point((1.0, 1.0))) - 'A' - >>> g.add('B', Point((4.0, 4.0))) - 'B' - >>> g.proximity(Point((2.0, 1.0)), 2) - ['A'] - >>> g.proximity(Point((6.0, 5.0)), 3.0) - ['B'] - >>> sorted(g.proximity(Point((4.0, 1.0)), 4.0)) - ['A', 'B'] - """ - items = [] - lower_left = self.__grid_loc((pt[0] - r, pt[1] - r)) - upper_right = self.__grid_loc((pt[0] + r, pt[1] + r)) - for i in range(lower_left[0], upper_right[0] + 1): - for j in range(lower_left[1], upper_right[1] + 1): - if (i, j) in self.hash: - items.extend( - [ - item[1] - for item in [ - item - for item in self.hash[(i, j)] - if get_points_dist(pt, item[0]) <= r - ] - ] - ) - return items
- -
[docs] def nearest(self, pt): - """ - Returns the nearest item to a point. - - nearest(Point) -> x - - Parameters - ---------- - pt : the location to search near - - Examples - -------- - >>> g = Grid(Rectangle(0, 0, 10, 10), 1) - >>> g.add('A', Point((1.0, 1.0))) - 'A' - >>> g.add('B', Point((4.0, 4.0))) - 'B' - >>> g.nearest(Point((2.0, 1.0))) - 'A' - >>> g.nearest(Point((7.0, 5.0))) - 'B' - """ - search_size = self.res - while self.proximity(pt, search_size) == [] and ( - get_points_dist((self.x_range[0], self.y_range[0]), pt) > search_size - or get_points_dist((self.x_range[1], self.y_range[0]), pt) > search_size - or get_points_dist((self.x_range[0], self.y_range[1]), pt) > search_size - or get_points_dist((self.x_range[1], self.y_range[1]), pt) > search_size - ): - search_size = 2 * search_size - items = [] - lower_left = self.__grid_loc((pt[0] - search_size, pt[1] - search_size)) - upper_right = self.__grid_loc((pt[0] + search_size, pt[1] + search_size)) - for i in range(lower_left[0], upper_right[0] + 1): - for j in range(lower_left[1], upper_right[1] + 1): - if (i, j) in self.hash: - items.extend( - [ - (get_points_dist(pt, item[0]), item[1]) - for item in self.hash[(i, j)] - ] - ) - if items == []: - return None - return min(items)[1]
- - -class BruteForcePointLocator: - """ - A class which does naive linear search on a set of Point objects. - """ - - def __init__(self, points): - """ - Creates a naive index of the points specified. - - __init__(Point list) -> BruteForcePointLocator - - Parameters - ---------- - points : a list of points to index (Point list) - - Examples - -------- - >>> pl = BruteForcePointLocator([Point((0, 0)), Point((5, 0)), Point((0, 10))]) - """ - warnings.warn("BruteForcePointLocator " + dep_msg, DeprecationWarning) - self._points = points - - def nearest(self, query_point): - """ - Returns the nearest point indexed to a query point. - - nearest(Point) -> Point - - Parameters - ---------- - query_point : a point to find the nearest indexed point to - - Examples - -------- - >>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))] - >>> pl = BruteForcePointLocator(points) - >>> n = pl.nearest(Point((1, 1))) - >>> str(n) - '(0.0, 0.0)' - """ - return min(self._points, key=lambda p: get_points_dist(p, query_point)) - - def region(self, region_rect): - """ - Returns the indexed points located inside a rectangular query region. - - region(Rectangle) -> Point list - - Parameters - ---------- - region_rect : the rectangular range to find indexed points in - - Examples - -------- - >>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))] - >>> pl = BruteForcePointLocator(points) - >>> pts = pl.region(Rectangle(-1, -1, 10, 10)) - >>> len(pts) - 3 - """ - return [ - p - for p in self._points - if get_rectangle_point_intersect(region_rect, p) is not None - ] - - def proximity(self, origin, r): - """ - Returns the indexed points located within some distance of an origin point. - - proximity(Point, number) -> Point list - - Parameters - ---------- - origin : the point to find indexed points near - r : the maximum distance to find indexed point from the origin point - - Examples - -------- - >>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))] - >>> pl = BruteForcePointLocator(points) - >>> neighs = pl.proximity(Point((1, 0)), 2) - >>> len(neighs) - 1 - >>> p = neighs[0] - >>> isinstance(p, Point) - True - >>> str(p) - '(0.0, 0.0)' - """ - return [p for p in self._points if get_points_dist(p, origin) <= r] - - -
[docs]class PointLocator: - """ - An abstract representation of a point indexing data structure. - """ - -
[docs] def __init__(self, points): - """ - Returns a point locator object. - - __init__(Point list) -> PointLocator - - Parameters - ---------- - points : a list of points to index - - Examples - -------- - >>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))] - >>> pl = PointLocator(points) - """ - warnings.warn("PointLocator " + dep_msg, DeprecationWarning) - self._locator = BruteForcePointLocator(points)
- -
[docs] def nearest(self, query_point): - """ - Returns the nearest point indexed to a query point. - - nearest(Point) -> Point - - Parameters - ---------- - query_point : a point to find the nearest indexed point to - - Examples - -------- - >>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))] - >>> pl = PointLocator(points) - >>> n = pl.nearest(Point((1, 1))) - >>> str(n) - '(0.0, 0.0)' - """ - return self._locator.nearest(query_point)
- -
[docs] def region(self, region_rect): - """ - Returns the indexed points located inside a rectangular query region. - - region(Rectangle) -> Point list - - Parameters - ---------- - region_rect : the rectangular range to find indexed points in - - Examples - -------- - >>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))] - >>> pl = PointLocator(points) - >>> pts = pl.region(Rectangle(-1, -1, 10, 10)) - >>> len(pts) - 3 - """ - return self._locator.region(region_rect)
- - overlapping = region - -
[docs] def polygon(self, polygon): - """ - Returns the indexed points located inside a polygon - """
- - # get points in polygon bounding box - - # for points in bounding box, check for inclusion in polygon - -
[docs] def proximity(self, origin, r): - """ - Returns the indexed points located within some distance of an origin point. - - proximity(Point, number) -> Point list - - Parameters - ---------- - origin : the point to find indexed points near - r : the maximum distance to find indexed point from the origin point - - Examples - -------- - >>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))] - >>> pl = PointLocator(points) - >>> len(pl.proximity(Point((1, 0)), 2)) - 1 - """ - return self._locator.proximity(origin, r)
- - -
[docs]class PolygonLocator: - """ - An abstract representation of a polygon indexing data structure. - """ - -
[docs] def __init__(self, polygons): - """ - Returns a polygon locator object. - - __init__(Polygon list) -> PolygonLocator - - Parameters - ---------- - polygons : a list of polygons to index - - Examples - -------- - >>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))]) - >>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))]) - >>> pl = PolygonLocator([p1, p2]) - >>> isinstance(pl, PolygonLocator) - True - """ - warnings.warn("PolygonLocator " + dep_msg, DeprecationWarning) - self._locator = polygons - # create and rtree - self._rtree = RTree() - for polygon in polygons: - x = polygon.bounding_box.left - y = polygon.bounding_box.lower - X = polygon.bounding_box.right - Y = polygon.bounding_box.upper - self._rtree.insert(polygon, Rect(x, y, X, Y))
- -
[docs] def inside(self, query_rectangle): - """ - Returns polygons that are inside query_rectangle - - Examples - -------- - - >>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))]) - >>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))]) - >>> p3 = Polygon([Point((7, 1)), Point((8, 7)), Point((9, 1))]) - >>> pl = PolygonLocator([p1, p2, p3]) - >>> qr = Rectangle(0, 0, 5, 5) - >>> res = pl.inside( qr ) - >>> len(res) - 1 - >>> qr = Rectangle(3, 7, 5, 8) - >>> res = pl.inside( qr ) - >>> len(res) - 0 - >>> qr = Rectangle(10, 10, 12, 12) - >>> res = pl.inside( qr ) - >>> len(res) - 0 - >>> qr = Rectangle(0, 0, 12, 12) - >>> res = pl.inside( qr ) - >>> len(res) - 3 - - Notes - ----- - - inside means the intersection of the query rectangle and a - polygon is not empty and is equal to the area of the polygon - """ - left = query_rectangle.left - right = query_rectangle.right - upper = query_rectangle.upper - lower = query_rectangle.lower - - # rtree rect - qr = Rect(left, lower, right, upper) - # bb overlaps - res = [r.leaf_obj() for r in self._rtree.query_rect(qr) if r.is_leaf()] - - qp = Polygon( - [ - Point((left, lower)), - Point((right, lower)), - Point((right, upper)), - Point((left, upper)), - ] - ) - ip = [] - GPPI = get_polygon_point_intersect - for poly in res: - flag = True - lower = poly.bounding_box.lower - right = poly.bounding_box.right - upper = poly.bounding_box.upper - left = poly.bounding_box.left - p1 = Point((left, lower)) - p2 = Point((right, upper)) - if GPPI(qp, p1) and GPPI(qp, p2): - ip.append(poly) - return ip
- -
[docs] def overlapping(self, query_rectangle): - """ - Returns list of polygons that overlap query_rectangle - - Examples - -------- - - >>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))]) - >>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))]) - >>> p3 = Polygon([Point((7, 1)), Point((8, 7)), Point((9, 1))]) - >>> pl = PolygonLocator([p1, p2, p3]) - >>> qr = Rectangle(0, 0, 5, 5) - >>> res = pl.overlapping( qr ) - >>> len(res) - 2 - >>> qr = Rectangle(3, 7, 5, 8) - >>> res = pl.overlapping( qr ) - >>> len(res) - 1 - >>> qr = Rectangle(10, 10, 12, 12) - >>> res = pl.overlapping( qr ) - >>> len(res) - 0 - >>> qr = Rectangle(0, 0, 12, 12) - >>> res = pl.overlapping( qr ) - >>> len(res) - 3 - >>> qr = Rectangle(8, 3, 9, 4) - >>> p1 = Polygon([Point((2, 1)), Point((2, 3)), Point((4, 3)), Point((4,1))]) - >>> p2 = Polygon([Point((7, 1)), Point((7, 5)), Point((10, 5)), Point((10, 1))]) - >>> pl = PolygonLocator([p1, p2]) - >>> res = pl.overlapping(qr) - >>> len(res) - 1 - - Notes - ----- - overlapping means the intersection of the query rectangle and a - polygon is not empty and is no larger than the area of the polygon - """ - left = query_rectangle.left - right = query_rectangle.right - upper = query_rectangle.upper - lower = query_rectangle.lower - - # rtree rect - qr = Rect(left, lower, right, upper) - - # bb overlaps - res = [r.leaf_obj() for r in self._rtree.query_rect(qr) if r.is_leaf()] - # have to check for polygon overlap using segment intersection - - # add polys whose bb contains at least one of the corners of the query - # rectangle - - sw = (left, lower) - se = (right, lower) - ne = (right, upper) - nw = (left, upper) - pnts = [sw, se, ne, nw] - cs = [] - for pnt in pnts: - c = [r.leaf_obj() for r in self._rtree.query_point(pnt) if r.is_leaf()] - cs.extend(c) - - cs = list(set(cs)) - - overlapping = [] - - # first find polygons with at least one vertex inside query rectangle - remaining = copy.copy(res) - for polygon in res: - vertices = polygon.vertices - for vertex in vertices: - xb = vertex[0] >= left - xb *= vertex[0] < right - yb = vertex[1] >= lower - yb *= vertex[1] < upper - if xb * yb: - overlapping.append(polygon) - remaining.remove(polygon) - break - - # for remaining polys in bb overlap check if vertex chains intersect - # segments of the query rectangle - left_edge = LineSegment(Point((left, lower)), Point((left, upper))) - right_edge = LineSegment(Point((right, lower)), Point((right, upper))) - lower_edge = LineSegment(Point((left, lower)), Point((right, lower))) - upper_edge = LineSegment(Point((left, upper)), Point((right, upper))) - for polygon in remaining: - vertices = copy.copy(polygon.vertices) - if vertices[-1] != vertices[0]: - vertices.append(vertices[0]) # put on closed cartographic form - nv = len(vertices) - for i in range(nv - 1): - head = vertices[i] - tail = vertices[i + 1] - edge = LineSegment(head, tail) - li = get_segments_intersect(edge, left_edge) - if li: - overlapping.append(polygon) - break - elif get_segments_intersect(edge, right_edge): - overlapping.append(polygon) - break - elif get_segments_intersect(edge, lower_edge): - overlapping.append(polygon) - break - elif get_segments_intersect(edge, upper_edge): - overlapping.append(polygon) - break - # check remaining for explicit containment of the bounding rectangle - # cs has candidates for this check - sw = Point(sw) - se = Point(se) - ne = Point(ne) - nw = Point(nw) - for polygon in cs: - if get_polygon_point_intersect(polygon, sw): - overlapping.append(polygon) - break - elif get_polygon_point_intersect(polygon, se): - overlapping.append(polygon) - break - elif get_polygon_point_intersect(polygon, ne): - overlapping.append(polygon) - break - elif get_polygon_point_intersect(polygon, nw): - overlapping.append(polygon) - break - return list(set(overlapping))
- -
[docs] def nearest(self, query_point, rule="vertex"): - """ - Returns the nearest polygon indexed to a query point based on - various rules. - - nearest(Polygon) -> Polygon - - Parameters - ---------- - query_point : a point to find the nearest indexed polygon to - - rule : representative point for polygon in nearest query. - vertex -- measures distance between vertices and query_point - centroid -- measures distance between centroid and - query_point - edge -- measures the distance between edges and query_point - - Examples - -------- - >>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))]) - >>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))]) - >>> pl = PolygonLocator([p1, p2]) - >>> try: n = pl.nearest(Point((-1, 1))) - ... except NotImplementedError: print("future test: str(min(n.vertices())) == (0.0, 1.0)") - future test: str(min(n.vertices())) == (0.0, 1.0) - """ - raise NotImplementedError
- -
[docs] def region(self, region_rect): - """ - Returns the indexed polygons located inside a rectangular query region. - - region(Rectangle) -> Polygon list - - Parameters - ---------- - region_rect : the rectangular range to find indexed polygons in - - Examples - -------- - >>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))]) - >>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))]) - >>> pl = PolygonLocator([p1, p2]) - >>> n = pl.region(Rectangle(0, 0, 4, 10)) - >>> len(n) - 2 - """ - n = self._locator - for polygon in n: - points = polygon.vertices - pl = BruteForcePointLocator(points) - pts = pl.region(region_rect) - if len(pts) == 0: - n.remove(polygon) - return n
- -
[docs] def contains_point(self, point): - """ - Returns polygons that contain point - - - Parameters - ---------- - point: point (x,y) - - Returns - ------- - list of polygons containing point - - Examples - -------- - >>> p1 = Polygon([Point((0,0)), Point((6,0)), Point((4,4))]) - >>> p2 = Polygon([Point((1,2)), Point((4,0)), Point((4,4))]) - >>> p1.contains_point((2,2)) - 1 - >>> p2.contains_point((2,2)) - 1 - >>> pl = PolygonLocator([p1, p2]) - >>> len(pl.contains_point((2,2))) - 2 - >>> p2.contains_point((1,1)) - 0 - >>> p1.contains_point((1,1)) - 1 - >>> len(pl.contains_point((1,1))) - 1 - >>> p1.centroid - (3.3333333333333335, 1.3333333333333333) - >>> pl.contains_point((1,1))[0].centroid - (3.3333333333333335, 1.3333333333333333) - - """ - # bbounding box containment - res = [r.leaf_obj() for r in self._rtree.query_point(point) if r.is_leaf()] - # explicit containment check for candidate polygons needed - return [poly for poly in res if poly.contains_point(point)]
- -
[docs] def proximity(self, origin, r, rule="vertex"): - """ - Returns the indexed polygons located within some distance of an - origin point based on various rules. - - proximity(Polygon, number) -> Polygon list - - Parameters - ---------- - origin : the point to find indexed polygons near - r : the maximum distance to find indexed polygon from the origin point - - rule : representative point for polygon in nearest query. - vertex -- measures distance between vertices and query_point - centroid -- measures distance between centroid and - query_point - edge -- measures the distance between edges and query_point - - Examples - -------- - >>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))]) - >>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))]) - >>> pl = PolygonLocator([p1, p2]) - >>> try: - ... len(pl.proximity(Point((0, 0)), 2)) - ... except NotImplementedError: - ... print("future test: len(pl.proximity(Point((0, 0)), 2)) == 2") - future test: len(pl.proximity(Point((0, 0)), 2)) == 2 - """ - raise NotImplementedError
-
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/cg/shapes.html b/docs/_modules/libpysal/cg/shapes.html deleted file mode 100644 index 602f5b43d..000000000 --- a/docs/_modules/libpysal/cg/shapes.html +++ /dev/null @@ -1,2251 +0,0 @@ - - - - - - - libpysal.cg.shapes — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.cg.shapes

-"""
-Computational geometry code for PySAL: Python Spatial Analysis Library.
-
-"""
-
-__author__ = "Sergio J. Rey, Xinyue Ye, Charles Schmidt, Andrew Winslow, Hu Shao"
-
-import math
-from .sphere import arcdist
-
-from typing import Union
-
-__all__ = [
-    "Point",
-    "LineSegment",
-    "Line",
-    "Ray",
-    "Chain",
-    "Polygon",
-    "Rectangle",
-    "asShape",
-]
-
-
-
[docs]def asShape(obj): - """Returns a PySAL shape object from ``obj``, which - must support the ``__geo_interface__``. - - Parameters - ---------- - obj : {libpysal.cg.{Point, LineSegment, Line, Ray, Chain, Polygon} - A geometric representation of an object. - - Raises - ------ - TypeError - Raised when ``obj`` is not a supported shape. - NotImplementedError - Raised when ``geo_type`` is not a supported type. - - Returns - ------- - obj : {libpysal.cg.{Point, LineSegment, Line, Ray, Chain, Polygon} - A new geometric representation of the object. - - """ - - if isinstance(obj, (Point, LineSegment, Line, Ray, Chain, Polygon)): - pass - else: - if hasattr(obj, "__geo_interface__"): - geo = obj.__geo_interface__ - else: - geo = obj - - if hasattr(geo, "type"): - raise TypeError("%r does not appear to be a shape object." % (obj)) - - geo_type = geo["type"].lower() - - # if geo_type.startswith('multi'): - # raise NotImplementedError, "%s are not supported at this time."%geo_type - - if geo_type in _geoJSON_type_to_Pysal_type: - - obj = _geoJSON_type_to_Pysal_type[geo_type].__from_geo_interface__(geo) - else: - raise NotImplementedError("%s is not supported at this time." % geo_type) - - return obj
- - -class Geometry(object): - """A base class to help implement ``is_geometry`` - and make geometric types extendable. - - """ - - def __init__(self): - pass - - -
[docs]class Point(Geometry): - """Geometric class for point objects. - - Parameters - ---------- - loc : tuple - The point's location (number :math:`x`-tuple, :math:`x` > 1). - - Examples - -------- - - >>> p = Point((1, 3)) - - """ - -
[docs] def __init__(self, loc): - - self.__loc = tuple(map(float, loc))
- - @classmethod - def __from_geo_interface__(cls, geo): - return cls(geo["coordinates"]) - - @property - def __geo_interface__(self): - return {"type": "Point", "coordinates": self.__loc} - - def __lt__(self, other) -> bool: - """Tests if the point is less than another object. - - Parameters - ---------- - other : libpysal.cg.Point - An object to test equality against. - - Examples - -------- - - >>> Point((0, 1)) < Point((0, 1)) - False - - >>> Point((0, 1)) < Point((1, 1)) - True - - """ - - return (self.__loc) < (other.__loc) - - def __le__(self, other) -> bool: - """Tests if the point is less than or equal to another object. - - Parameters - ---------- - other : libpysal.cg.Point - An object to test equality against. - - Examples - -------- - - >>> Point((0, 1)) <= Point((0, 1)) - True - - >>> Point((0, 1)) <= Point((1, 1)) - True - - """ - - return (self.__loc) <= (other.__loc) - - def __eq__(self, other) -> bool: - """Tests if the point is equal to another object. - - Parameters - ---------- - other : libpysal.cg.Point - An object to test equality against. - - Examples - -------- - - >>> Point((0, 1)) == Point((0, 1)) - True - - >>> Point((0, 1)) == Point((1, 1)) - False - - """ - - try: - return (self.__loc) == (other.__loc) - except AttributeError: - return False - - def __ne__(self, other) -> bool: - """Tests if the point is not equal to another object. - - Parameters - ---------- - other : libpysal.cg.Point - An object to test equality against. - - Examples - -------- - - >>> Point((0, 1)) != Point((0, 1)) - False - - >>> Point((0, 1)) != Point((1, 1)) - True - - """ - - try: - return (self.__loc) != (other.__loc) - except AttributeError: - return True - - def __gt__(self, other) -> bool: - """Tests if the point is greater than another object. - - Parameters - ---------- - other : libpysal.cg.Point - An object to test equality against. - - Examples - -------- - - >>> Point((0, 1)) > Point((0, 1)) - False - - >>> Point((0, 1)) > Point((1, 1)) - False - - """ - - return (self.__loc) > (other.__loc) - - def __ge__(self, other) -> bool: - """Tests if the point is greater than or equal to another object. - - Parameters - ---------- - other : libpysal.cg.Point - An object to test equality against. - - Examples - -------- - - >>> Point((0, 1)) >= Point((0, 1)) - True - - >>> Point((0, 1)) >= Point((1, 1)) - False - - """ - - return (self.__loc) >= (other.__loc) - - def __hash__(self) -> int: - """Returns the hash of the point's location. - - Examples - -------- - - >>> hash(Point((0, 1))) == hash(Point((0, 1))) - True - - >>> hash(Point((0, 1))) == hash(Point((1, 1))) - False - - """ - - return hash(self.__loc) - - def __getitem__(self, *args) -> Union[int, float]: - """Return the coordinate for the given dimension. - - Parameters - ---------- - *args : tuple - A singleton tuple of :math:`(i)` with :math:`i` - as the index of the desired dimension. - - Examples - -------- - - >>> p = Point((5.5, 4.3)) - >>> p[0] == 5.5 - True - >>> p[1] == 4.3 - True - - """ - - return self.__loc.__getitem__(*args) - - def __getslice__(self, *args) -> slice: - """Return the coordinates for the given dimensions. - - Parameters - ---------- - *args : tuple - A tuple of :math:`(i,j)` with :math:`i` as the index to the start - slice and :math:`j` as the index to end the slice (excluded). - - Examples - -------- - - >>> p = Point((3, 6, 2)) - >>> p[:2] == (3, 6) - True - - >>> p[1:2] == (6,) - True - - """ - - return self.__loc.__getslice__(*args) - - def __len__(self) -> int: - """ Returns the dimensions of the point. - - Examples - -------- - - >>> len(Point((1, 2))) - 2 - - """ - - return len(self.__loc) - - def __repr__(self) -> str: - """Returns the string representation of the ``Point``. - - Examples - -------- - - >>> Point((0, 1)) - (0.0, 1.0) - - """ - - return str(self) - - def __str__(self) -> str: - """Returns a string representation of a ``Point`` object. - - Examples - -------- - - >>> p = Point((1, 3)) - >>> str(p) - '(1.0, 3.0)' - - """ - - return str(self.__loc)
- # return "POINT ({} {})".format(*self.__loc) - - -
[docs]class LineSegment(Geometry): - """Geometric representation of line segment objects. - - Parameters - ---------- - start_pt : libpysal.cg.Point - The point where the segment begins. - end_pt : libpysal.cg.Point - The point where the segment ends. - - Attributes - ---------- - p1 : libpysal.cg.Point - The starting point of the line segment. - p2 : Point - The ending point of the line segment. - bounding_box : libpysal.cg.Rectangle - The bounding box of the segment. - len : float - The length of the segment. - line : libpysal.cg.Line - The line on which the segment lies. - - Examples - -------- - - >>> ls = LineSegment(Point((1, 2)), Point((5, 6))) - - """ - -
[docs] def __init__(self, start_pt, end_pt): - - self._p1 = start_pt - self._p2 = end_pt - self._reset_props()
- - def __str__(self): - return "LineSegment(" + str(self._p1) + ", " + str(self._p2) + ")" - # return "LINESTRING ({} {}, {} {})".format( - # self._p1[0], self._p1[1], self._p2[0], self._p2[1] - # ) - - def __eq__(self, other) -> bool: - """Returns ``True`` if ``self`` and ``other`` are the same line segment. - - Examples - -------- - - >>> l1 = LineSegment(Point((1, 2)), Point((5, 6))) - >>> l2 = LineSegment(Point((5, 6)), Point((1, 2))) - >>> l1 == l2 - True - - >>> l2 == l1 - True - - """ - - eq = False - - if not isinstance(other, self.__class__): - pass - else: - if other.p1 == self._p1 and other.p2 == self._p2: - eq = True - elif other.p2 == self._p1 and other.p1 == self._p2: - eq = True - - return eq - -
[docs] def intersect(self, other) -> bool: - """Test whether segment intersects with other segment (``True``) or - not (``False``). Handles endpoints of segments being on other segment. - - Parameters - ---------- - other : libpysal.cg.LineSegment - Another line segment to check against. - - Examples - -------- - - >>> ls = LineSegment(Point((5, 0)), Point((10, 0))) - >>> ls1 = LineSegment(Point((5, 0)), Point((10, 1))) - >>> ls.intersect(ls1) - True - - >>> ls2 = LineSegment(Point((5, 1)), Point((10, 1))) - >>> ls.intersect(ls2) - False - - >>> ls2 = LineSegment(Point((7, -1)), Point((7, 2))) - >>> ls.intersect(ls2) - True - - """ - - ccw1 = self.sw_ccw(other.p2) - ccw2 = self.sw_ccw(other.p1) - ccw3 = other.sw_ccw(self.p1) - ccw4 = other.sw_ccw(self.p2) - - intersects = ccw1 * ccw2 <= 0 and ccw3 * ccw4 <= 0 - - return intersects
- - def _reset_props(self): - """**HELPER METHOD. DO NOT CALL.** - Resets attributes which are functions of other attributes. - The getters for these attributes (implemented as properties) - then recompute their values if they have been reset since - the last call to the getter. - - Examples - -------- - - >>> ls = LineSegment(Point((1, 2)), Point((5, 6))) - >>> ls._reset_props() - - """ - - self._bounding_box = None - self._len = None - self._line = False - - def _get_p1(self): - """**HELPER METHOD. DO NOT CALL.** - Returns the ``p1`` attribute of the line segment. - - Returns - ------- - self._p1 : libpysal.cg.Point - The ``_p1`` attribute. - - Examples - -------- - - >>> ls = LineSegment(Point((1, 2)), Point((5, 6))) - >>> r = ls._get_p1() - >>> r == Point((1, 2)) - True - - """ - - return self._p1 - - def _set_p1(self, p1): - """**HELPER METHOD. DO NOT CALL.** - Sets the ``p1`` attribute of the line segment. - - Parameters - ---------- - p1 : libpysal.cg.Point - A point. - - Returns - ------- - self._p1 : libpysal.cg.Point - The reset ``p1`` attribute. - - Examples - -------- - - >>> ls = LineSegment(Point((1, 2)), Point((5, 6))) - >>> r = ls._set_p1(Point((3, -1))) - >>> r == Point((3.0, -1.0)) - True - - """ - - self._p1 = p1 - self._reset_props() - - return self._p1 - - p1 = property(_get_p1, _set_p1) - - def _get_p2(self): - """**HELPER METHOD. DO NOT CALL.** - Returns the ``p2`` attribute of the line segment. - - Returns - ------- - self._p2 : libpysal.cg.Point - The ``_p2`` attribute. - - Examples - -------- - - >>> ls = LineSegment(Point((1, 2)), Point((5, 6))) - >>> r = ls._get_p2() - >>> r == Point((5, 6)) - True - - """ - - return self._p2 - - def _set_p2(self, p2): - """**HELPER METHOD. DO NOT CALL.** - Sets the ``p2`` attribute of the line segment. - - Parameters - ---------- - p2 : libpysal.cg.Point - A point. - - Returns - ------- - self._p2 : libpysal.cg.Point - The reset ``p2`` attribute. - - Examples - -------- - - >>> ls = LineSegment(Point((1, 2)), Point((5, 6))) - >>> r = ls._set_p2(Point((3, -1))) - >>> r == Point((3.0, -1.0)) - True - - """ - - self._p2 = p2 - self._reset_props() - - return self._p2 - - p2 = property(_get_p2, _set_p2) - -
[docs] def is_ccw(self, pt) -> bool: - """Returns whether a point is counterclockwise of the - segment (``True``) or not (``False``). Exclusive. - - Parameters - ---------- - pt : libpysal.cg.Point - A point lying ccw or cw of a segment. - - Examples - -------- - - >>> ls = LineSegment(Point((0, 0)), Point((5, 0))) - >>> ls.is_ccw(Point((2, 2))) - True - - >>> ls.is_ccw(Point((2, -2))) - False - - """ - - v1 = (self._p2[0] - self._p1[0], self._p2[1] - self._p1[1]) - v2 = (pt[0] - self._p1[0], pt[1] - self._p1[1]) - - return v1[0] * v2[1] - v1[1] * v2[0] > 0
- -
[docs] def is_cw(self, pt) -> bool: - """Returns whether a point is clockwise of the - segment (``True``) or not (``False``). Exclusive. - - Parameters - ---------- - pt : libpysal.cg.Point - A point lying ccw or cw of a segment. - - Examples - -------- - - >>> ls = LineSegment(Point((0, 0)), Point((5, 0))) - >>> ls.is_cw(Point((2, 2))) - False - - >>> ls.is_cw(Point((2, -2))) - True - - """ - - v1 = (self._p2[0] - self._p1[0], self._p2[1] - self._p1[1]) - v2 = (pt[0] - self._p1[0], pt[1] - self._p1[1]) - - return v1[0] * v2[1] - v1[1] * v2[0] < 0
- -
[docs] def sw_ccw(self, pt): - """Sedgewick test for ``pt`` being ccw of segment. - - Returns - ------- - is_ccw : bool - ``1`` if turn from ``self.p1`` to ``self.p2`` to ``pt`` is ccw. - ``-1`` if turn from ``self.p1`` to ``self.p2`` to ``pt`` is cw. - ``-1`` if the points are collinear and ``self.p1`` is in the middle. - ``1`` if the points are collinear and ``self.p2`` is in the middle. - ``0`` if the points are collinear and ``pt`` is in the middle. - - """ - - p0 = self.p1 - p1 = self.p2 - p2 = pt - - dx1 = p1[0] - p0[0] - dy1 = p1[1] - p0[1] - dx2 = p2[0] - p0[0] - dy2 = p2[1] - p0[1] - - if dy1 * dx2 < dy2 * dx1: - is_ccw = 1 - elif dy1 * dx2 > dy2 * dx1: - is_ccw = -1 - elif dx1 * dx2 < 0 or dy1 * dy2 < 0: - is_ccw = -1 - elif dx1 * dx1 + dy1 * dy1 >= dx2 * dx2 + dy2 * dy2: - is_ccw = 0 - else: - is_ccw = 1 - - return is_ccw
- -
[docs] def get_swap(self): - """Returns a ``LineSegment`` object which has its endpoints swapped. - - Returns - ------- - line_seg : libpysal.cg.LineSegment - The ``LineSegment`` object which has its endpoints swapped. - - Examples - -------- - - >>> ls = LineSegment(Point((1, 2)), Point((5, 6))) - >>> swap = ls.get_swap() - >>> swap.p1[0] - 5.0 - - >>> swap.p1[1] - 6.0 - - >>> swap.p2[0] - 1.0 - - >>> swap.p2[1] - 2.0 - - """ - - line_seg = LineSegment(self._p2, self._p1) - - return line_seg
- - @property - def bounding_box(self): - """Returns the minimum bounding box of a ``LineSegment`` object. - - Returns - ------- - self._bounding_box : libpysal.cg.Rectangle - The bounding box of the line segment. - - Examples - -------- - - >>> ls = LineSegment(Point((1, 2)), Point((5, 6))) - >>> ls.bounding_box.left - 1.0 - - >>> ls.bounding_box.lower - 2.0 - - >>> ls.bounding_box.right - 5.0 - - >>> ls.bounding_box.upper - 6.0 - - """ - - # If LineSegment attributes p1, p2 changed, recompute - if self._bounding_box is None: - self._bounding_box = Rectangle( - min([self._p1[0], self._p2[0]]), - min([self._p1[1], self._p2[1]]), - max([self._p1[0], self._p2[0]]), - max([self._p1[1], self._p2[1]]), - ) - return Rectangle( - self._bounding_box.left, - self._bounding_box.lower, - self._bounding_box.right, - self._bounding_box.upper, - ) - - @property - def len(self) -> float: - """Returns the length of a ``LineSegment`` object. - - Examples - -------- - - >>> ls = LineSegment(Point((2, 2)), Point((5, 2))) - >>> ls.len - 3.0 - - """ - - # If LineSegment attributes p1, p2 changed, recompute - if self._len is None: - self._len = math.hypot(self._p1[0] - self._p2[0], self._p1[1] - self._p2[1]) - - return self._len - - @property - def line(self): - """Returns a ``Line`` object of the line on which the segment lies. - - Returns - ------- - self._line : libpysal.cg.Line - The ``Line`` object of the line on which the segment lies. - - Examples - -------- - - >>> ls = LineSegment(Point((2, 2)), Point((3, 3))) - >>> l = ls.line - >>> l.m - 1.0 - - >>> l.b - 0.0 - - """ - - if self._line == False: - dx = self._p1[0] - self._p2[0] - dy = self._p1[1] - self._p2[1] - - if dx == 0 and dy == 0: - self._line = None - elif dx == 0: - self._line = VerticalLine(self._p1[0]) - else: - m = dy / float(dx) - # y - mx - b = self._p1[1] - m * self._p1[0] - self._line = Line(m, b) - - return self._line
- - -class VerticalLine(Geometry): - """Geometric representation of verticle line objects. - - Parameters - ---------- - x : {int, float} - The :math:`x`-intercept of the line. ``x`` is also an attribute. - - Examples - -------- - - >>> ls = VerticalLine(0) - >>> ls.m - inf - - >>> ls.b - nan - - """ - - def __init__(self, x): - - self._x = float(x) - self.m = float("inf") - self.b = float("nan") - - def x(self, y) -> float: - """Returns the :math:`x`-value of the line at a particular :math:`y`-value. - - Parameters - ---------- - y : {int, float} - The :math:`y`-value at which to compute :math:`x`. - - Examples - -------- - - >>> l = VerticalLine(0) - >>> l.x(0.25) - 0.0 - - """ - - return self._x - - def y(self, x) -> float: - """Returns the :math:`y`-value of the line at a particular :math:`x`-value. - - Parameters - ---------- - x : {int, float} - The :math:`x`-value at which to compute :math:`y`. - - Examples - -------- - - >>> l = VerticalLine(1) - >>> l.y(1) - nan - - """ - - return float("nan") - - -
[docs]class Line(Geometry): - """Geometric representation of line objects. - - Parameters - ---------- - m : {int, float} - The slope of the line. ``m`` is also an attribute. - b : {int, float} - The :math:`y`-intercept of the line. ``b`` is also an attribute. - - Raises - ------ - ArithmeticError - Raised when infinity is passed in as the slope. - - Examples - -------- - - >>> ls = Line(1, 0) - >>> ls.m - 1.0 - - >>> ls.b - 0.0 - - """ - -
[docs] def __init__(self, m, b): - - if m == float("inf"): - raise ArithmeticError("Slope cannot be infinite.") - - self.m = float(m) - self.b = float(b)
- -
[docs] def x(self, y: Union[int, float]) -> float: - """Returns the :math:`x`-value of the line at a particular :math:`y`-value. - - Parameters - ---------- - y : {int, float} - The :math:`y`-value at which to compute :math:`x`. - - Raises - ------ - ArithmeticError - Raised when ``0.`` is passed in as the slope. - - Examples - -------- - - >>> l = Line(0.5, 0) - >>> l.x(0.25) - 0.5 - - """ - - if self.m == 0: - raise ArithmeticError("Cannot solve for 'x' when slope is zero.") - - return (y - self.b) / self.m
- -
[docs] def y(self, x: Union[int, float]) -> float: - """Returns the :math:`y`-value of the line at a particular :math:`x`-value. - - Parameters - ---------- - x : {int, float} - The :math:`x`-value at which to compute :math:`y`. - - Examples - -------- - - >>> l = Line(1, 0) - >>> l.y(1) - 1.0 - - """ - - if self.m == 0: - return self.b - - return self.m * x + self.b
- - -
[docs]class Ray: - """Geometric representation of ray objects. - - Parameters - ---------- - origin : libpysal.cg.Point - The point where the ray originates. - second_p : - The second point specifying the ray (not ``origin``.) - - Attributes - ---------- - o : libpysal.cg.Point - The origin (point where ray originates). See ``origin``. - p : libpysal.cg.Point - The second point on the ray (not the point where the - ray originates). See ``second_p``. - - Examples - -------- - - >>> l = Ray(Point((0, 0)), Point((1, 0))) - >>> str(l.o) - '(0.0, 0.0)' - - >>> str(l.p) - '(1.0, 0.0)' - - """ - -
[docs] def __init__(self, origin, second_p): - - self.o = origin - self.p = second_p
- - -
[docs]class Chain(Geometry): - """Geometric representation of a chain, also known as a polyline. - - Parameters - ---------- - vertices : list - A point list or list of point lists. - - Attributes - ---------- - vertices : list - The list of points of the vertices of the chain in order. - len : float - The geometric length of the chain. - - Examples - -------- - - >>> c = Chain([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((2, 1))]) - - """ - -
[docs] def __init__(self, vertices: list): - - if isinstance(vertices[0], list): - self._vertices = [part for part in vertices] - else: - self._vertices = [vertices] - self._reset_props()
- - @classmethod - def __from_geo_interface__(cls, geo: dict): - if geo["type"].lower() == "linestring": - verts = [Point(pt) for pt in geo["coordinates"]] - elif geo["type"].lower() == "multilinestring": - verts = [list(map(Point, part)) for part in geo["coordinates"]] - else: - raise TypeError("%r is not a Chain." % geo) - return cls(verts) - - @property - def __geo_interface__(self) -> dict: - if len(self.parts) == 1: - return {"type": "LineString", "coordinates": self.vertices} - else: - return {"type": "MultiLineString", "coordinates": self.parts} - - def _reset_props(self): - """**HELPER METHOD. DO NOT CALL.** Resets attributes which are - functions of other attributes. The ``getter``s for these attributes - (implemented as ``properties``) then recompute their values if they - have been reset since the last call to the ``getter``. - - """ - - self._len = None - self._arclen = None - self._bounding_box = None - - @property - def vertices(self) -> list: - """Returns the vertices of the chain in clockwise order. - - Examples - -------- - - >>> c = Chain([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((2, 1))]) - >>> verts = c.vertices - >>> len(verts) - 4 - - """ - - return sum([part for part in self._vertices], []) - - @property - def parts(self) -> list: - """Returns the parts (lists of ``libpysal.cg.Point`` objects) of the chain. - - Examples - -------- - - >>> c = Chain( - ... [ - ... [Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))], - ... [Point((2, 1)), Point((2, 2)), Point((1, 2)), Point((1, 1))] - ... ] - ... ) - >>> len(c.parts) - 2 - - """ - - return [[v for v in part] for part in self._vertices] - - @property - def bounding_box(self): - """Returns the bounding box of the chain. - - Returns - ------- - self._bounding_box : libpysal.cg.Rectangle - The bounding box of the chain. - - Examples - -------- - - >>> c = Chain([Point((0, 0)), Point((2, 0)), Point((2, 1)), Point((0, 1))]) - >>> c.bounding_box.left - 0.0 - - >>> c.bounding_box.lower - 0.0 - - >>> c.bounding_box.right - 2.0 - - >>> c.bounding_box.upper - 1.0 - - """ - - if self._bounding_box is None: - vertices = self.vertices - self._bounding_box = Rectangle( - min([v[0] for v in vertices]), - min([v[1] for v in vertices]), - max([v[0] for v in vertices]), - max([v[1] for v in vertices]), - ) - - return self._bounding_box - - @property - def len(self) -> int: - """Returns the geometric length of the chain. - - Examples - -------- - - >>> c = Chain([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((2, 1))]) - >>> c.len - 3.0 - - >>> c = Chain( - ... [ - ... [Point((0, 0)), Point((1, 0)), Point((1, 1))], - ... [Point((10, 10)), Point((11, 10)), Point((11, 11))] - ... ] - ... ) - >>> c.len - 4.0 - - """ - - def dist(v1: tuple, v2: tuple) -> Union[int, float]: - return math.hypot(v1[0] - v2[0], v1[1] - v2[1]) - - def part_perimeter(p: list) -> Union[int, float]: - return sum([dist(p[i], p[i + 1]) for i in range(len(p) - 1)]) - - if self._len is None: - self._len = sum([part_perimeter(part) for part in self._vertices]) - - return self._len - - @property - def arclen(self) -> Union[int, float]: - """Returns the geometric length of the chain - computed using 'arcdistance' (meters). - - """ - - def part_perimeter(p: list) -> Union[int, float]: - return sum([arcdist(p[i], p[i + 1]) * 1000.0 for i in range(len(p) - 1)]) - - if self._arclen is None: - self._arclen = sum([part_perimeter(part) for part in self._vertices]) - - return self._arclen - - @property - def segments(self) -> list: - """Returns the segments that compose the chain.""" - - return [ - [LineSegment(a, b) for (a, b) in zip(part[:-1], part[1:])] - for part in self._vertices - ]
- - -class Ring(Geometry): - """Geometric representation of a linear ring. Linear rings must be - closed, the first and last point must be the same. Open rings will - be closed. This class exists primarily as a geometric primitive to - form complex polygons with multiple rings and holes. The ordering - of the vertices is ignored and will not be altered. - - Parameters - ---------- - vertices : list - A list of vertices. - - Attributes - ---------- - vertices : list - A list of points with the vertices of the ring. - len : int - The number of vertices. - perimeter : float - The geometric length of the perimeter of the ring. - bounding_box : libpysal.cg.Rectangle - The bounding box of the ring. - area : float - The area enclosed by the ring. - centroid : {tuple, libpysal.cg.Point} - The centroid of the ring defined by the 'center of gravity' - or 'center or mass'. - _quad_tree_structure : libpysal.cg.QuadTreeStructureSingleRing - The quad tree structure for the ring. This structure helps - test if a point is inside the ring. - - """ - - def __init__(self, vertices): - if vertices[0] != vertices[-1]: - vertices = vertices[:] + vertices[0:1] - # msg = "Supplied vertices do not form a closed ring, " - # msg += "the first and last vertices are not the same." - # raise ValueError(msg) - - self.vertices = tuple(vertices) - self._perimeter = None - self._bounding_box = None - self._area = None - self._centroid = None - self._quad_tree_structure = None - - def __len__(self) -> int: - return len(self.vertices) - - @property - def len(self) -> int: - return len(self) - - @staticmethod - def dist(v1, v2) -> Union[int, float]: - - return math.hypot(v1[0] - v2[0], v1[1] - v2[1]) - - @property - def perimeter(self) -> Union[int, float]: - - if self._perimeter is None: - dist = self.dist - v = self.vertices - self._perimeter = sum( - [dist(v[i], v[i + 1]) for i in range(-1, len(self) - 1)] - ) - return self._perimeter - - @property - def bounding_box(self): - """Returns the bounding box of the ring. - - Returns - ------- - self._bounding_box : libpysal.cg.Rectangle - The bounding box of the ring. - - Examples - -------- - - >>> r = Ring( - ... [ - ... Point((0, 0)), - ... Point((2, 0)), - ... Point((2, 1)), - ... Point((0, 1)), - ... Point((0, 0)) - ... ] - ... ) - - >>> r.bounding_box.left - 0.0 - - >>> r.bounding_box.lower - 0.0 - - >>> r.bounding_box.right - 2.0 - - >>> r.bounding_box.upper - 1.0 - - """ - - if self._bounding_box is None: - vertices = self.vertices - x = [v[0] for v in vertices] - y = [v[1] for v in vertices] - self._bounding_box = Rectangle(min(x), min(y), max(x), max(y)) - - return self._bounding_box - - @property - def area(self) -> Union[int, float]: - """Returns the area of the ring. - - Examples - -------- - - >>> r = Ring( - ... [ - ... Point((0, 0)), - ... Point((2, 0)), - ... Point((2, 1)), - ... Point((0, 1)), - ... Point((0, 0)) - ... ] - ... ) - >>> r.area - 2.0 - - """ - - return abs(self.signed_area) - - @property - def signed_area(self) -> Union[int, float]: - if self._area is None: - vertices = self.vertices - x = [v[0] for v in vertices] - y = [v[1] for v in vertices] - N = len(self) - - A = 0.0 - for i in range(N - 1): - A += (x[i] + x[i + 1]) * (y[i] - y[i + 1]) - A = A * 0.5 - self._area = -A - - return self._area - - @property - def centroid(self): - """Returns the centroid of the ring. - - Returns - ------- - self._centroid : libpysal.cg.Point - The ring's centroid. - - Notes - ----- - - The centroid returned by this method is the geometric centroid. - Also known as the 'center of gravity' or 'center of mass'. - - Examples - -------- - - >>> r = Ring( - ... [ - ... Point((0, 0)), - ... Point((2, 0)), - ... Point((2, 1)), - ... Point((0, 1)), - ... Point((0, 0)) - ... ] - ... ) - >>> str(r.centroid) - '(1.0, 0.5)' - - """ - - if self._centroid is None: - vertices = self.vertices - x = [v[0] for v in vertices] - y = [v[1] for v in vertices] - A = self.signed_area - N = len(self) - cx = 0 - cy = 0 - for i in range(N - 1): - f = x[i] * y[i + 1] - x[i + 1] * y[i] - cx += (x[i] + x[i + 1]) * f - cy += (y[i] + y[i + 1]) * f - cx = 1.0 / (6 * A) * cx - cy = 1.0 / (6 * A) * cy - self._centroid = Point((cx, cy)) - - return self._centroid - - def build_quad_tree_structure(self): - """Build the quad tree structure for this polygon. Once - the structure is built, speed for testing if a point is - inside the ring will be increased significantly. - - """ - - self._quad_tree_structure = QuadTreeStructureSingleRing(self) - - def contains_point(self, point): - """Point containment using winding number. The implementation is based on - `this <http://www.engr.colostate.edu/~dga/dga/papers/point_in_polygon.pdf>`_. - - Parameters - ---------- - point : libpysal.cg.Point - The point to test for containment. - - Returns - ------- - point_contained : bool - ``True`` if ``point`` is contained within the polygon, otherwise ``False``. - - """ - - point_contained = False - - if self._quad_tree_structure is None: - x, y = point - - # bbox checks - bbleft = x < self.bounding_box.left - bbright = x > self.bounding_box.right - bblower = y < self.bounding_box.lower - bbupper = y > self.bounding_box.upper - - if bbleft or bbright or bblower or bbupper: - pass - else: - rn = len(self.vertices) - xs = [self.vertices[i][0] - point[0] for i in range(rn)] - ys = [self.vertices[i][1] - point[1] for i in range(rn)] - w = 0 - - for i in range(len(self.vertices) - 1): - yi = ys[i] - yj = ys[i + 1] - xi = xs[i] - xj = xs[i + 1] - if yi * yj < 0: - r = xi + yi * (xj - xi) / (yi - yj) - if r > 0: - if yi < 0: - w += 1 - else: - w -= 1 - elif yi == 0 and xi > 0: - if yj > 0: - w += 0.5 - else: - w -= 0.5 - elif yj == 0 and xj > 0: - if yi < 0: - w += 0.5 - else: - w -= 0.5 - if w == 0: - pass - else: - point_contained = True - else: - point_contained = self._quad_tree_structure.contains_point(point) - - return point_contained - - -
[docs]class Polygon(Geometry): - """Geometric representation of polygon objects. - Returns a polygon created from the objects specified. - - Parameters - ---------- - vertices : list - A list of vertices or a list of lists of vertices. - holes : list - A list of sub-polygons to be considered as holes. - Default is ``None``. - - Attributes - ---------- - vertices : list - A list of points with the vertices of the polygon in clockwise order. - len : int - The number of vertices including holes. - perimeter : float - The geometric length of the perimeter of the polygon. - bounding_box : libpysal.cg.Rectangle - The bounding box of the polygon. - bbox : list - A list representation of the bounding box in the - form ``[left, lower, right, upper]``. - area : float - The area enclosed by the polygon. - centroid : tuple - The 'center of gravity', i.e. the mean point of the polygon. - - Examples - -------- - - >>> p1 = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))]) - - """ - -
[docs] def __init__(self, vertices, holes=None): - - self._part_rings = [] - self._hole_rings = [] - - def clockwise(part: list) -> list: - if standalone.is_clockwise(part): - return part[:] - else: - return part[::-1] - - vl = list(vertices) - if isinstance(vl[0], list): - self._part_rings = list(map(Ring, vertices)) - self._vertices = [clockwise(part) for part in vertices] - else: - self._part_rings = [Ring(vertices)] - self._vertices = [clockwise(vertices)] - if holes is not None and holes != []: - if isinstance(holes[0], list): - self._hole_rings = list(map(Ring, holes)) - self._holes = [clockwise(hole) for hole in holes] - else: - self._hole_rings = [Ring(holes)] - self._holes = [clockwise(holes)] - else: - self._holes = [[]] - self._reset_props()
- - @classmethod - def __from_geo_interface__(cls, geo: dict): - """While PySAL does not differentiate polygons and multipolygons - GEOS, Shapely, and geoJSON do. In GEOS, etc, polygons may only - have a single exterior ring, all other parts are holes. - MultiPolygons are simply a list of polygons. - - """ - - geo_type = geo["type"].lower() - if geo_type == "multipolygon": - parts = [] - holes = [] - for polygon in geo["coordinates"]: - verts = [[Point(pt) for pt in part] for part in polygon] - parts += verts[0:1] - holes += verts[1:] - if not holes: - holes = None - return cls(parts, holes) - else: - verts = [[Point(pt) for pt in part] for part in geo["coordinates"]] - return cls(verts[0:1], verts[1:]) - - @property - def __geo_interface__(self) -> dict: - """Return ``__geo_interface__`` information lookup.""" - - if len(self.parts) > 1: - geo = { - "type": "MultiPolygon", - "coordinates": [[part] for part in self.parts], - } - if self._holes[0]: - geo["coordinates"][0] += self._holes - return geo - if self._holes[0]: - return {"type": "Polygon", "coordinates": self._vertices + self._holes} - else: - return {"type": "Polygon", "coordinates": self._vertices} - - def _reset_props(self): - """Resets the geometric properties of the polygon.""" - self._perimeter = None - self._bounding_box = None - self._bbox = None - self._area = None - self._centroid = None - self._len = None - - def __len__(self) -> int: - return self.len - - @property - def len(self) -> int: - """Returns the number of vertices in the polygon. - - Examples - -------- - - >>> p1 = Polygon([Point((0, 0)), Point((0, 1)), Point((1, 1)), Point((1, 0))]) - >>> p1.len - 4 - - >>> len(p1) - 4 - - """ - - if self._len is None: - self._len = len(self.vertices) - return self._len - - @property - def vertices(self) -> list: - """Returns the vertices of the polygon in clockwise order. - - Examples - -------- - - >>> p1 = Polygon([Point((0, 0)), Point((0, 1)), Point((1, 1)), Point((1, 0))]) - >>> len(p1.vertices) - 4 - - """ - - return sum([part for part in self._vertices], []) + sum( - [part for part in self._holes], [] - ) - - @property - def holes(self) -> list: - """Returns the holes of the polygon in clockwise order. - - Examples - -------- - - >>> p = Polygon( - ... [Point((0, 0)), Point((10, 0)), Point((10, 10)), Point((0, 10))], - ... [Point((1, 2)), Point((2, 2)), Point((2, 1)), Point((1, 1))] - ... ) - >>> len(p.holes) - 1 - - """ - - return [[v for v in part] for part in self._holes] - - @property - def parts(self) -> list: - """Returns the parts of the polygon in clockwise order. - - Examples - -------- - - >>> p = Polygon( - ... [ - ... [Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))], - ... [Point((2, 1)), Point((2, 2)), Point((1, 2)), Point((1, 1))] - ... ] - ... ) - >>> len(p.parts) - 2 - - """ - - return [[v for v in part] for part in self._vertices] - - @property - def perimeter(self) -> Union[int, float]: - """Returns the perimeter of the polygon. - - Examples - -------- - - >>> p = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))]) - >>> p.perimeter - 4.0 - - """ - - def dist(v1: Union[int, float], v2: Union[int, float]) -> float: - return math.hypot(v1[0] - v2[0], v1[1] - v2[1]) - - def part_perimeter(part) -> Union[int, float]: - return sum([dist(part[i], part[i + 1]) for i in range(-1, len(part) - 1)]) - - sum_perim = lambda part_type: sum([part_perimeter(part) for part in part_type]) - - if self._perimeter is None: - self._perimeter = sum_perim(self._vertices) + sum_perim(self._holes) - - return self._perimeter - - @property - def bbox(self): - """Returns the bounding box of the polygon as a list. - - Returns - ------- - self._bbox : list - The bounding box of the polygon as a list. - - See Also - -------- - - libpysal.cg.bounding_box - - """ - - if self._bbox is None: - self._bbox = [ - self.bounding_box.left, - self.bounding_box.lower, - self.bounding_box.right, - self.bounding_box.upper, - ] - return self._bbox - - @property - def bounding_box(self): - """Returns the bounding box of the polygon. - - Returns - ------- - self._bounding_box : libpysal.cg.Rectangle - The bounding box of the polygon. - - Examples - -------- - - >>> p = Polygon([Point((0, 0)), Point((2, 0)), Point((2, 1)), Point((0, 1))]) - >>> p.bounding_box.left - 0.0 - - >>> p.bounding_box.lower - 0.0 - - >>> p.bounding_box.right - 2.0 - - >>> p.bounding_box.upper - 1.0 - - """ - - if self._bounding_box is None: - vertices = self.vertices - self._bounding_box = Rectangle( - min([v[0] for v in vertices]), - min([v[1] for v in vertices]), - max([v[0] for v in vertices]), - max([v[1] for v in vertices]), - ) - return self._bounding_box - - @property - def area(self) -> float: - """Returns the area of the polygon. - - Examples - -------- - - >>> p = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))]) - >>> p.area - 1.0 - - >>> p = Polygon( - ... [Point((0, 0)), Point((10, 0)), Point((10, 10)), Point((0, 10))], - ... [Point((2, 1)), Point((2, 2)), Point((1, 2)), Point((1, 1))] - ... ) - >>> p.area - 99.0 - - """ - - def part_area(pv: list) -> float: - __area = 0 - for i in range(-1, len(pv) - 1): - __area += (pv[i][0] + pv[i + 1][0]) * (pv[i][1] - pv[i + 1][1]) - __area = __area * 0.5 - if __area < 0: - __area = -area - return __area - - sum_area = lambda part_type: sum([part_area(part) for part in part_type]) - _area = sum_area(self._vertices) - sum_area(self._holes) - - return _area - - @property - def centroid(self) -> tuple: - """Returns the centroid of the polygon. - - Notes - ----- - - The centroid returned by this method is the geometric - centroid and respects multipart polygons with holes. - Also known as the 'center of gravity' or 'center of mass'. - - Examples - -------- - - >>> p = Polygon( - ... [Point((0, 0)), Point((10, 0)), Point((10, 10)), Point((0, 10))], - ... [Point((1, 1)), Point((1, 2)), Point((2, 2)), Point((2, 1))] - ... ) - >>> p.centroid - (5.0353535353535355, 5.0353535353535355) - - """ - - CP = [ring.centroid for ring in self._part_rings] - AP = [ring.area for ring in self._part_rings] - CH = [ring.centroid for ring in self._hole_rings] - AH = [-ring.area for ring in self._hole_rings] - - A = AP + AH - cx = sum([pt[0] * area for pt, area in zip(CP + CH, A)]) / sum(A) - cy = sum([pt[1] * area for pt, area in zip(CP + CH, A)]) / sum(A) - - return cx, cy - -
[docs] def build_quad_tree_structure(self): - """Build the quad tree structure for this polygon. Once - the structure is built, speed for testing if a point is - inside the ring will be increased significantly. - - """ - - for ring in self._part_rings: - ring.build_quad_tree_structure() - for ring in self._hole_rings: - ring.build_quad_tree_structure() - self.is_quad_tree_structure_built = True
- -
[docs] def contains_point(self, point): - """Test if a polygon contains a point. - - Parameters - ---------- - point : libpysal.cg.Point - A point to test for containment. - - Returns - ------- - contains : bool - ``True`` if the polygon contains ``point`` otherwise ``False``. - - Examples - -------- - - >>> p = Polygon( - ... [Point((0,0)), Point((4,0)), Point((4,5)), Point((2,3)), Point((0,5))] - ... ) - >>> p.contains_point((3,3)) - 1 - - >>> p.contains_point((0,6)) - 0 - - >>> p.contains_point((2,2.9)) - 1 - - >>> p.contains_point((4,5)) - 0 - - >>> p.contains_point((4,0)) - 0 - - Handles holes. - - >>> p = Polygon( - ... [Point((0, 0)), Point((0, 10)), Point((10, 10)), Point((10, 0))], - ... [Point((2, 2)), Point((4, 2)), Point((4, 4)), Point((2, 4))] - ... ) - >>> p.contains_point((3.0, 3.0)) - False - - >>> p.contains_point((1.0, 1.0)) - True - - Notes - ----- - - Points falling exactly on polygon edges may yield unpredictable results. - - """ - - searching = True - - for ring in self._hole_rings: - if ring.contains_point(point): - contains = False - searching = False - break - - if searching: - for ring in self._part_rings: - if ring.contains_point(point): - contains = True - searching = False - break - if searching: - contains = False - - return contains
- - -
[docs]class Rectangle(Geometry): - """Geometric representation of rectangle objects. - - Attributes - ---------- - left : float - Minimum x-value of the rectangle. - lower : float - Minimum y-value of the rectangle. - right : float - Maximum x-value of the rectangle. - upper : float - Maximum y-value of the rectangle. - - Examples - -------- - - >>> r = Rectangle(-4, 3, 10, 17) - >>> r.left #minx - -4.0 - - >>> r.lower #miny - 3.0 - - >>> r.right #maxx - 10.0 - - >>> r.upper #maxy - 17.0 - - """ - -
[docs] def __init__(self, left, lower, right, upper): - - if right < left or upper < lower: - raise ArithmeticError("Rectangle must have positive area.") - self.left = float(left) - self.lower = float(lower) - self.right = float(right) - self.upper = float(upper)
- - def __bool__(self): - """Rectangles will evaluate to False if they have zero area. - ``___nonzero__`` is used "to implement truth value - testing and the built-in operation ``bool()``" - ``-- http://docs.python.org/reference/datamodel.html - - Examples - -------- - - >>> r = Rectangle(0, 0, 0, 0) - >>> bool(r) - False - - >>> r = Rectangle(0, 0, 1, 1) - >>> bool(r) - True - - """ - - return bool(self.area) - - def __eq__(self, other): - if other: - return self[:] == other[:] - return False - - def __add__(self, other): - x, y, X, Y = self[:] - x1, y2, X1, Y1 = other[:] - - return Rectangle( - min(self.left, other.left), - min(self.lower, other.lower), - max(self.right, other.right), - max(self.upper, other.upper), - ) - - def __getitem__(self, key): - """ - - Examples - -------- - - >>> r = Rectangle(-4, 3, 10, 17) - >>> r[:] - [-4.0, 3.0, 10.0, 17.0] - - """ - - l = [self.left, self.lower, self.right, self.upper] - - return l.__getitem__(key) - -
[docs] def set_centroid(self, new_center): - """Moves the rectangle center to a new specified point. - - Parameters - ---------- - new_center : libpysal.cg.Point - The new location of the centroid of the polygon. - - Examples - -------- - - >>> r = Rectangle(0, 0, 4, 4) - >>> r.set_centroid(Point((4, 4))) - >>> r.left - 2.0 - - >>> r.right - 6.0 - - >>> r.lower - 2.0 - - >>> r.upper - 6.0 - - """ - - shift = ( - new_center[0] - (self.left + self.right) / 2, - new_center[1] - (self.lower + self.upper) / 2, - ) - - self.left = self.left + shift[0] - self.right = self.right + shift[0] - self.lower = self.lower + shift[1] - self.upper = self.upper + shift[1]
- -
[docs] def set_scale(self, scale): - """Rescales the rectangle around its center. - - Parameters - ---------- - scale : int, float - The ratio of the new scale to the old - scale (e.g. 1.0 is current size). - - Examples - -------- - - >>> r = Rectangle(0, 0, 4, 4) - >>> r.set_scale(2) - >>> r.left - -2.0 - >>> r.right - 6.0 - >>> r.lower - -2.0 - >>> r.upper - 6.0 - - """ - - center = ((self.left + self.right) / 2, (self.lower + self.upper) / 2) - - self.left = center[0] + scale * (self.left - center[0]) - self.right = center[0] + scale * (self.right - center[0]) - self.lower = center[1] + scale * (self.lower - center[1]) - self.upper = center[1] + scale * (self.upper - center[1])
- - @property - def area(self) -> Union[int, float]: - """Returns the area of the Rectangle. - - Examples - -------- - - >>> r = Rectangle(0, 0, 4, 4) - >>> r.area - 16.0 - - """ - - return (self.right - self.left) * (self.upper - self.lower) - - @property - def width(self) -> Union[int, float]: - """Returns the width of the Rectangle. - - Examples - -------- - - >>> r = Rectangle(0, 0, 4, 4) - >>> r.width - 4.0 - - """ - - return self.right - self.left - - @property - def height(self) -> Union[int, float]: - """Returns the height of the Rectangle. - - Examples - -------- - - >>> r = Rectangle(0, 0, 4, 4) - >>> r.height - 4.0 - - """ - - return self.upper - self.lower
- - -_geoJSON_type_to_Pysal_type = { - "point": Point, - "linestring": Chain, - "multilinestring": Chain, - "polygon": Polygon, - "multipolygon": Polygon, -} - -# moving this to top breaks unit tests ! -from . import standalone -from .polygonQuadTreeStructure import QuadTreeStructureSingleRing -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/cg/sphere.html b/docs/_modules/libpysal/cg/sphere.html deleted file mode 100644 index ee8d82e0a..000000000 --- a/docs/_modules/libpysal/cg/sphere.html +++ /dev/null @@ -1,814 +0,0 @@ - - - - - - - libpysal.cg.sphere — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.cg.sphere

-"""
-sphere: Tools for working with spherical geometry.
-
-Author(s):
-    Charles R Schmidt schmidtc@gmail.com
-    Luc Anselin luc.anselin@asu.edu
-    Xun Li xun.li@asu.edu
-
-"""
-
-__author__ = (
-    "Charles R Schmidt <schmidtc@gmail.com>,"
-    "Luc Anselin <luc.anselin@asu.edu,"
-    "Xun Li <xun.li@asu.edu"
-)
-
-import math
-import numpy
-import scipy.spatial
-import scipy.constants
-from scipy.spatial.distance import euclidean
-from math import pi, cos, sin
-
-
-__all__ = [
-    "RADIUS_EARTH_KM",
-    "RADIUS_EARTH_MILES",
-    "arcdist",
-    "arcdist2linear",
-    "brute_knn",
-    "fast_knn",
-    "fast_threshold",
-    "linear2arcdist",
-    "toLngLat",
-    "toXYZ",
-    "lonlat",
-    "harcdist",
-    "geointerpolate",
-    "geogrid",
-]
-
-
-RADIUS_EARTH_KM = 6371.0
-RADIUS_EARTH_MILES = (RADIUS_EARTH_KM * scipy.constants.kilo) / scipy.constants.mile
-
-
-
[docs]def arcdist(pt0, pt1, radius=RADIUS_EARTH_KM): - """Arc distance between two points on a sphere. - - Parameters - ---------- - pt0 : tuple - A point assumed to be in form (longitude,latitude). - pt1 : tuple - A point assumed to be in form (longitude,latitude). - radius : float - The radius of a sphere. Default is Earth's radius in - kilometers, ``RADIUS_EARTH_KM`` (``6371.0``). Earth's - radius in miles, ``RADIUS_EARTH_MILES`` (``3958.76``) - is also an option. - Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html - - Returns - ------- - dist : float - The arc distance between ``pt0`` and ``pt1`` using supplied ``radius``. - - Examples - -------- - - >>> pt0 = (0, 0) - >>> pt1 = (180, 0) - >>> d = arcdist(pt0, pt1, RADIUS_EARTH_MILES) - >>> d == math.pi * RADIUS_EARTH_MILES - True - - """ - - dist = linear2arcdist(euclidean(toXYZ(pt0), toXYZ(pt1)), radius) - - return dist
- - -
[docs]def arcdist2linear(arc_dist, radius=RADIUS_EARTH_KM): - """Convert an arc distance (spherical earth) - to a linear distance (R3) in the unit sphere. - - Parameters - ---------- - arc_dist : float - The arc distance to convert. - radius : float - The radius of a sphere. Default is Earth's radius in - kilometers, ``RADIUS_EARTH_KM`` (``6371.0``). Earth's - radius in miles, ``RADIUS_EARTH_MILES`` (``3958.76``) - is also an option. - Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html - - Returns - ------- - linear_dist : float - The linear distance conversion of ``arc_dist``. - - Examples - -------- - - >>> pt0 = (0, 0) - >>> pt1 = (180, 0) - >>> d = arcdist(pt0, pt1, RADIUS_EARTH_MILES) - >>> d == math.pi * RADIUS_EARTH_MILES - True - - >>> arcdist2linear(d, RADIUS_EARTH_MILES) - 2.0 - - """ - - circumference = 2 * math.pi * radius - linear_dist = ( - 2 - (2 * math.cos(math.radians((arc_dist * 360.0) / circumference))) - ) ** (0.5) - - return linear_dist
- - -
[docs]def linear2arcdist(linear_dist, radius=RADIUS_EARTH_KM): - """Convert a linear distance in the unit sphere - (R3) to an arc distance based on supplied radius. - - Parameters - ---------- - linear_dist : float - The linear distance to convert. - radius : float - The radius of a sphere. Default is Earth's radius in - kilometers, ``RADIUS_EARTH_KM`` (``6371.0``). Earth's - radius in miles, ``RADIUS_EARTH_MILES`` (``3958.76``) - is also an option. - Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html - - Returns - ------- - arc_dist : float - The arc distance conversion of ``linear_dist``. - - Raises - ------ - ValueError - Raised when ``linear_dist`` exceeds the diameter of the unit sphere. - - Examples - -------- - - >>> pt0 = (0, 0) - >>> pt1 = (180, 0) - >>> d = arcdist(pt0, pt1, RADIUS_EARTH_MILES) - >>> d == linear2arcdist(2.0, radius=RADIUS_EARTH_MILES) - True - - """ - - if linear_dist == float("inf"): - arc_dist = linear_dist - elif linear_dist > 2.0: - msg = "'linear_dist', must not exceed the diameter of the unit sphere, 2.0." - raise ValueError(msg) - else: - circumference = 2 * math.pi * radius - a2 = linear_dist ** 2 - theta = math.degrees(math.acos((2 - a2) / (2.0))) - arc_dist = (theta * circumference) / 360.0 - - return arc_dist
- - -
[docs]def toXYZ(pt): - """Convert a point's latitude and longitude to x,y,z. - - Parameters - ---------- - pt : tuple - A point assumed to be in form (lng,lat). - - Returns - ------- - x, y, z : tuple - A point in form (x, y, z). - - """ - - phi, theta = list(map(math.radians, pt)) - phi, theta = phi + pi, theta + (pi / 2) - x = 1 * sin(theta) * cos(phi) - y = 1 * sin(theta) * sin(phi) - z = 1 * cos(theta) - - return x, y, z
- - -
[docs]def toLngLat(xyz): - """Convert a point's x,y,z to latitude and longitude. - - Parameters - ---------- - xyz : tuple - A point assumed to be in form (x,y,z). - - Returns - ------- - phi, theta : tuple - A point in form (phi, theta) [y,x]. - - """ - - x, y, z = xyz - if z == -1 or z == 1: - phi = 0 - else: - phi = math.atan2(y, x) - if phi > 0: - phi = phi - math.pi - elif phi < 0: - phi = phi + math.pi - theta = math.acos(z) - (math.pi / 2) - - return phi, theta
- - -
[docs]def brute_knn(pts, k, mode="arc", radius=RADIUS_EARTH_KM): - """Computes a brute-force :math:`k` nearest neighbors. - - Parameters - ---------- - pts : list - A list of :math:`x,y` pairs. - k : int - The number of points to query. - mode : str - The mode of distance. Valid modes are ``'arc'`` - and ``'xyz'``. Default is ``'arc'``. - radius : float - The radius of a sphere. Default is Earth's radius in - kilometers, ``RADIUS_EARTH_KM`` (``6371.0``). Earth's - radius in miles, ``RADIUS_EARTH_MILES`` (``3958.76``) - is also an option. - Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html - - Returns - ------- - w : dict - A neighbor ID lookup. - - """ - - n = len(pts) - full = numpy.zeros((n, n)) - - for i in range(n): - for j in range(i + 1, n): - if mode == "arc": - lng0, lat0 = pts[i] - lng1, lat1 = pts[j] - dist = arcdist(pts[i], pts[j], radius=radius) - elif mode == "xyz": - dist = euclidean(pts[i], pts[j]) - full[i, j] = dist - full[j, i] = dist - - w = {} - for i in range(n): - w[i] = full[i].argsort()[1 : k + 1].tolist() - - return w
- - -
[docs]def fast_knn(pts, k, return_dist=False, radius=RADIUS_EARTH_KM): - """Computes :math:`k` nearest neighbors on a sphere. - - Parameters - ---------- - pts : list - A list of :math:`x,y` pairs. - k : int - The number of points to query. - return_dist : bool - Return distances in the ``wd`` container object (``True``). - Default is ``False``. - radius : float - The radius of a sphere. Default is Earth's radius in - kilometers, ``RADIUS_EARTH_KM`` (``6371.0``). Earth's - radius in miles, ``RADIUS_EARTH_MILES`` (``3958.76``) - is also an option. - Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html - - Returns - ------- - wn : dict - A neighbor ID lookup. - wd : dict - A neighbor distance lookup (optional). - - """ - - pts = numpy.array(pts) - kd = scipy.spatial.KDTree(pts) - d, w = kd.query(pts, k + 1) - w = w[:, 1:] - wn = {} - - for i in range(len(pts)): - wn[i] = w[i].tolist() - - if return_dist: - d = d[:, 1:] - wd = {} - for i in range(len(pts)): - wd[i] = [linear2arcdist(x, radius=radius) for x in d[i].tolist()] - return wn, wd - return wn
- - -
[docs]def fast_threshold(pts, dist, radius=RADIUS_EARTH_KM): - """Find all neighbors on a sphere within a threshold distance. - - Parameters - ---------- - pointslist : list - A list of lat-lon tuples. This **must** be a list, even for one point. - dist: float - The threshold distance. - radius : float - The radius of a sphere. Default is Earth's radius in - kilometers, ``RADIUS_EARTH_KM`` (``6371.0``). Earth's - radius in miles, ``RADIUS_EARTH_MILES`` (``3958.76``) - is also an option. - Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html - - Returns - ------- - wd : dict - A neighbor distance lookup where the key is the ID - of a point and the value is a list of IDs for other - points within ``dist`` of the key point, - - """ - - d = arcdist2linear(dist, radius) - kd = scipy.spatial.KDTree(pts) - r = kd.query_ball_tree(kd, d) - wd = {} - - for i in range(len(pts)): - l = r[i] - l.remove(i) - wd[i] = l - - return wd
- - -
[docs]def lonlat(pointslist): - """Converts point order from lat-lon tuples to lon-lat (x,y) tuples. - - Parameters - ---------- - pointslist : list - A list of lat-lon tuples. This **must** be a list, even for one point. - - Returns - ------- - newpts : list - A list with tuples of points in lon-lat order. - - Examples - -------- - - >>> points = [ - ... (41.981417, -87.893517), (41.980396, -87.776787), (41.980906, -87.696450) - ... ] - >>> newpoints = lonlat(points) - >>> newpoints - [(-87.893517, 41.981417), (-87.776787, 41.980396), (-87.69645, 41.980906)] - - """ - - newpts = [(i[1], i[0]) for i in pointslist] - - return newpts
- - -def haversine(x): - """Computes the haversine formula. - - Parameters - ---------- - x : float - The angle in radians. - - Returns - ------- - haversine_dist : float - The square of sine of half the radian (the haversine formula). - - Examples - -------- - - >>> haversine(math.pi) # is 180 in radians, hence sin of 90 = 1 - 1.0 - - """ - - x = math.sin(x / 2) - - haversine_dist = x * x - - return haversine_dist - - -# Lambda functions - -# degree to radian conversion -d2r = lambda x: x * math.pi / 180.0 - -# radian to degree conversion -r2d = lambda x: x * 180.0 / math.pi - - -def radangle(p0, p1): - """Radian angle between two points on a sphere in lon-lat (x,y). - - Parameters - ---------- - p0 : tuple - The first point in (lon,lat) format. - p1 : tuple - The second point in (lon,lat) format. - - Returns - ------- - d : float - Radian angle in radians. - - Examples - -------- - - >>> p0 = (-87.893517, 41.981417) - >>> p1 = (-87.519295, 41.657498) - >>> radangle(p0, p1) - 0.007460167953189258 - - Notes - ----- - - Uses haversine formula, function haversine and degree to radian - conversion lambda function ``d2r``. - - """ - - x0, y0 = d2r(p0[0]), d2r(p0[1]) - x1, y1 = d2r(p1[0]), d2r(p1[1]) - d = 2.0 * math.asin( - math.sqrt(haversine(y1 - y0) + math.cos(y0) * math.cos(y1) * haversine(x1 - x0)) - ) - - return d - - -
[docs]def harcdist(p0, p1, lonx=True, radius=RADIUS_EARTH_KM): - """Alternative the arc distance function, uses the haversine formula. - - Parameters - ---------- - p0 : tuple - The first point decimal degrees. - p1 : tuple - The second point decimal degrees. - lonx : bool - The method to assess the order of the coordinates. - ``True`` for (lon,lat); ``False`` for (lat,lon). - Default is ``True``. - radius : float - The radius of a sphere. Default is Earth's radius in - kilometers, ``RADIUS_EARTH_KM`` (``6371.0``). Earth's - radius in miles, ``RADIUS_EARTH_MILES`` (``3958.76``) - is also an option. Set to ``None`` for radians. - Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html - - Returns - ------- - harc_dist : harc_dist - The distance in units specified, km, miles or radians. - - Examples - -------- - - >>> p0 = (-87.893517, 41.981417) - >>> p1 = (-87.519295, 41.657498) - >>> harcdist(p0, p1) - 47.52873002976876 - - >>> harcdist(p0, p1, radius=None) - 0.007460167953189258 - - Notes - ----- - - Uses the ``radangle`` function to compute radian angle. - - """ - - if not (lonx): - p = lonlat([p0, p1]) - p0 = p[0] - p1 = p[1] - - harc_dist = radangle(p0, p1) - - if radius is not None: - harc_dist = harc_dist * radius - - return harc_dist
- - -
[docs]def geointerpolate(p0, p1, t, lonx=True): - """Finds a point on a sphere along the great circle distance between - two points on a sphere also known as a way point in great circle navigation. - - Parameters - ---------- - p0 : tuple - The first point decimal degrees. - p1 : tuple - The second point decimal degrees. - t : float - The proportion along great circle distance between ``p0`` - and ``p1`` (e.g., :math:`\mathtt{t}=0.5` would find the mid-point). - lonx : bool - The method to assess the order of the coordinates. - ``True`` for (lon,lat); ``False`` for (lat,lon). - Default is ``True``. - - Returns - ------- - newpx, newpy : tuple - The new point in decimal degrees of (lon-lat) by - default or (lat-lon) if ``lonx`` is set to ``False``. - - Examples - -------- - - >>> p0 = (-87.893517, 41.981417) - >>> p1 = (-87.519295, 41.657498) - >>> geointerpolate(p0, p1, 0.1) # using lon-lat - (-87.85592403438788, 41.949079912574796) - - >>> p3 = (41.981417, -87.893517) - >>> p4 = (41.657498, -87.519295) - >>> geointerpolate(p3, p4, 0.1, lonx=False) # using lat-lon - (41.949079912574796, -87.85592403438788) - - """ - - if not (lonx): - p = lonlat([p0, p1]) - p0 = p[0] - p1 = p[1] - - d = radangle(p0, p1) - k = 1.0 / math.sin(d) - t = t * d - A = math.sin(d - t) * k - B = math.sin(t) * k - - x0, y0 = d2r(p0[0]), d2r(p0[1]) - x1, y1 = d2r(p1[0]), d2r(p1[1]) - - x = A * math.cos(y0) * math.cos(x0) + B * math.cos(y1) * math.cos(x1) - y = A * math.cos(y0) * math.sin(x0) + B * math.cos(y1) * math.sin(x1) - z = A * math.sin(y0) + B * math.sin(y1) - - newpx = r2d(math.atan2(y, x)) - newpy = r2d(math.atan2(z, math.sqrt(x * x + y * y))) - - if not lonx: - return newpy, newpx - - return newpx, newpy
- - -
[docs]def geogrid(pup, pdown, k, lonx=True): - """Computes a :math:`k+1` by :math:`k+1` set of grid - points for a bounding box in lat-lon. Uses ``geointerpolate``. - - Parameters - ---------- - pup : tuple - The lat-lon or lon-lat for the upper left corner of the bounding box. - pdown : tuple - The lat-lon or lon-lat for The lower right corner of The bounding box. - k : int - The number of grid cells (grid points will be one more). - lonx : bool - The method to assess the order of the coordinates. - ``True`` for (lon,lat); ``False`` for (lat,lon). - Default is ``True``. - - Returns - ------- - grid : list - A list of tuples with (lat-lon) or (lon-lat) for grid points, - row by row, starting with the top row and moving to the bottom; - coordinate tuples are returned in same order as input. - - Examples - -------- - - >>> pup = (42.023768, -87.946389) # Arlington Heights, IL - >>> pdown = (41.644415, -87.524102) # Hammond, IN - >>> geogrid(pup,pdown, 3, lonx=False) - [(42.023768, -87.946389), - (42.02393997819538, -87.80562679358316), - (42.02393997819538, -87.66486420641684), - (42.023768, -87.524102), - (41.897317, -87.94638900000001), - (41.8974888973743, -87.80562679296166), - (41.8974888973743, -87.66486420703835), - (41.897317, -87.524102), - (41.770866000000005, -87.94638900000001), - (41.77103781320412, -87.80562679234043), - (41.77103781320412, -87.66486420765956), - (41.770866000000005, -87.524102), - (41.644415, -87.946389), - (41.64458672568646, -87.80562679171955), - (41.64458672568646, -87.66486420828045), - (41.644415, -87.524102)] - - """ - - if lonx: - corners = [pup, pdown] - else: - corners = lonlat([pup, pdown]) - - tpoints = [float(i) / k for i in range(k)[1:]] - leftcorners = [corners[0], (corners[0][0], corners[1][1])] - rightcorners = [(corners[1][0], corners[0][1]), corners[1]] - leftside = [leftcorners[0]] - rightside = [rightcorners[0]] - - for t in tpoints: - newpl = geointerpolate(leftcorners[0], leftcorners[1], t) - leftside.append(newpl) - newpr = geointerpolate(rightcorners[0], rightcorners[1], t) - rightside.append(newpr) - leftside.append(leftcorners[1]) - rightside.append(rightcorners[1]) - - grid = [] - for i in range(len(leftside)): - grid.append(leftside[i]) - for t in tpoints: - newp = geointerpolate(leftside[i], rightside[i], t) - grid.append(newp) - grid.append(rightside[i]) - if not (lonx): - grid = lonlat(grid) - - return grid
-
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/cg/standalone.html b/docs/_modules/libpysal/cg/standalone.html deleted file mode 100644 index 68f6026c9..000000000 --- a/docs/_modules/libpysal/cg/standalone.html +++ /dev/null @@ -1,1492 +0,0 @@ - - - - - - - libpysal.cg.standalone — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.cg.standalone

-"""
-Helper functions for computational geometry in PySAL.
-
-"""
-
-__author__ = "Sergio J. Rey, Xinyue Ye, Charles Schmidt, Andrew Winslow"
-__credits__ = "Copyright (c) 2005-2009 Sergio J. Rey"
-
-import doctest
-import math
-import copy
-import random
-from .shapes import *
-from itertools import islice
-import scipy.spatial
-import numpy as np
-
-EPSILON_SCALER = 3
-
-
-__all__ = [
-    "bbcommon",
-    "get_bounding_box",
-    "get_angle_between",
-    "is_collinear",
-    "get_segments_intersect",
-    "get_segment_point_intersect",
-    "get_polygon_point_intersect",
-    "get_rectangle_point_intersect",
-    "get_ray_segment_intersect",
-    "get_rectangle_rectangle_intersection",
-    "get_polygon_point_dist",
-    "get_points_dist",
-    "get_segment_point_dist",
-    "get_point_at_angle_and_dist",
-    "convex_hull",
-    "is_clockwise",
-    "point_touches_rectangle",
-    "get_shared_segments",
-    "distance_matrix",
-]
-
-
-
[docs]def bbcommon(bb, bbother): - """Old Stars method for bounding box overlap testing. - Also defined in ``pysal.weights._cont_binning``. - - Parameters - ---------- - bb : list - A bounding box. - bbother : list - The bounding box to test against. - - Returns - ------- - chflag : int - ``1`` if ``bb`` overlaps ``bbother``, otherwise ``0``. - - Examples - -------- - - >>> b0 = [0, 0, 10, 10] - >>> b1 = [10, 0, 20, 10] - >>> bbcommon(b0, b1) - 1 - - """ - - chflag = 0 - - if not ((bbother[2] < bb[0]) or (bbother[0] > bb[2])): - if not ((bbother[3] < bb[1]) or (bbother[1] > bb[3])): - chflag = 1 - - return chflag
- - -
[docs]def get_bounding_box(items): - """Find bounding box for a list of geometries. - - Parameters - ---------- - items : list - PySAL shapes. - - Returns - ------- - rect = libpysal.cg.Rectangle - The bounding box for a list of geometries. - - Examples - -------- - - >>> bb = get_bounding_box([Point((-1, 5)), Rectangle(0, 6, 11, 12)]) - >>> bb.left - -1.0 - - >>> bb.lower - 5.0 - - >>> bb.right - 11.0 - - >>> bb.upper - 12.0 - - """ - - def left(o): - # Polygon, Ellipse - if hasattr(o, "bounding_box"): - return o.bounding_box.left - # Rectangle - elif hasattr(o, "left"): - return o.left - # Point - else: - return o[0] - - def right(o): - # Polygon, Ellipse - if hasattr(o, "bounding_box"): - return o.bounding_box.right - # Rectangle - elif hasattr(o, "right"): - return o.right - # Point - else: - return o[0] - - def lower(o): - # Polygon, Ellipse - if hasattr(o, "bounding_box"): - return o.bounding_box.lower - # Rectangle - elif hasattr(o, "lower"): - return o.lower - # Point - else: - return o[1] - - def upper(o): - # Polygon, Ellipse - if hasattr(o, "bounding_box"): - return o.bounding_box.upper - # Rectangle - elif hasattr(o, "upper"): - return o.upper - # Point - else: - return o[1] - - rect = Rectangle( - min(list(map(left, items))), - min(list(map(lower, items))), - max(list(map(right, items))), - max(list(map(upper, items))), - ) - - return rect
- - -
[docs]def get_angle_between(ray1, ray2): - """Returns the angle formed between a pair of rays which share an origin. - - Parameters - ---------- - ray1 : libpysal.cg.Ray - A ray forming the beginning of the angle measured. - ray2 : libpysal.cg.Ray - A ray forming the end of the angle measured. - - Returns - ------- - angle : float - The angle between ``ray1`` and ``ray2``. - - Raises - ------ - ValueError - Raised when rays do not have the same origin. - - Examples - -------- - - >>> get_angle_between( - ... Ray(Point((0, 0)), Point((1, 0))), - ... Ray(Point((0, 0)), Point((1, 0))) - ... ) - 0.0 - - """ - - if ray1.o != ray2.o: - raise ValueError("Rays must have the same origin.") - - vec1 = (ray1.p[0] - ray1.o[0], ray1.p[1] - ray1.o[1]) - vec2 = (ray2.p[0] - ray2.o[0], ray2.p[1] - ray2.o[1]) - - rot_theta = -math.atan2(vec1[1], vec1[0]) - rot_matrix = [ - [math.cos(rot_theta), -math.sin(rot_theta)], - [math.sin(rot_theta), math.cos(rot_theta)], - ] - - rot_vec2 = ( - rot_matrix[0][0] * vec2[0] + rot_matrix[0][1] * vec2[1], - rot_matrix[1][0] * vec2[0] + rot_matrix[1][1] * vec2[1], - ) - - angle = math.atan2(rot_vec2[1], rot_vec2[0]) - - return angle
- - -
[docs]def is_collinear(p1, p2, p3): - """Returns whether a triplet of points is collinear. - - Parameters - ---------- - p1 : libpysal.cg.Point - A point. - p2 : libpysal.cg.Point - A point. - p3 : libpysal.cg.Point - A point. - - Returns - ------- - collinear : bool - ``True`` if ``{p1, p2, p3}`` are collinear, otherwise ``False``. - - Examples - -------- - - >>> is_collinear(Point((0, 0)), Point((1, 1)), Point((5, 5))) - True - - >>> is_collinear(Point((0, 0)), Point((1, 1)), Point((5, 0))) - False - - """ - - eps = np.finfo(type(p1[0])).eps - - slope_diff = abs( - (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]) - ) - - very_small_dist = EPSILON_SCALER * eps - - collinear = slope_diff < very_small_dist - - return collinear
- - -
[docs]def get_segments_intersect(seg1, seg2): - """Returns the intersection of two segments if one exists. - - Parameters - ---------- - seg1 : libpysal.cg.LineSegment - A segment to check for an intersection. - seg2 : libpysal.cg.LineSegment - The segment to check against ``seg1`` for an intersection. - - Returns - ------- - intersection : {libpysal.cg.Point, libpysal.cg.LineSegment, None} - The intersecting point or line between ``seg1`` and - ``seg2`` if an intersection exists or ``None`` if - ``seg1`` and ``seg2`` do not intersect. - - Examples - -------- - - >>> seg1 = LineSegment(Point((0, 0)), Point((0, 10))) - >>> seg2 = LineSegment(Point((-5, 5)), Point((5, 5))) - >>> i = get_segments_intersect(seg1, seg2) - >>> isinstance(i, Point) - True - - >>> str(i) - '(0.0, 5.0)' - - >>> seg3 = LineSegment(Point((100, 100)), Point((100, 101))) - >>> i = get_segments_intersect(seg2, seg3) - - """ - - p1 = seg1.p1 - p2 = seg1.p2 - p3 = seg2.p1 - p4 = seg2.p2 - a = p2[0] - p1[0] - b = p3[0] - p4[0] - c = p2[1] - p1[1] - d = p3[1] - p4[1] - det = float(a * d - b * c) - - intersection = None - - if det == 0: - if seg1 == seg2: - intersection = LineSegment(seg1.p1, seg1.p2) - else: - a = get_segment_point_intersect(seg2, seg1.p1) - b = get_segment_point_intersect(seg2, seg1.p2) - c = get_segment_point_intersect(seg1, seg2.p1) - d = get_segment_point_intersect(seg1, seg2.p2) - if a and b: # seg1 in seg2 - intersection = LineSegment(seg1.p1, seg1.p2) - if c and d: # seg2 in seg1 - intersection = LineSegment(seg2.p1, seg2.p2) - if (a or b) and (c or d): - p1 = a if a else b - p2 = c if c else d - intersection = LineSegment(p1, p2) - else: - a_inv = d / det - b_inv = -b / det - c_inv = -c / det - d_inv = a / det - m = p3[0] - p1[0] - n = p3[1] - p1[1] - x = a_inv * m + b_inv * n - y = c_inv * m + d_inv * n - intersect_exists = 0 <= x <= 1 and 0 <= y <= 1 - - if intersect_exists: - intersection = Point( - (p1[0] + x * (p2[0] - p1[0]), p1[1] + x * (p2[1] - p1[1])) - ) - - return intersection
- - -
[docs]def get_segment_point_intersect(seg, pt): - """Returns the intersection of a segment and point. - - Parameters - ---------- - seg : libpysal.cg.LineSegment - A segment to check for an intersection. - pt : libpysal.cg.Point - A point to check ``seg`` for an intersection. - - Returns - ------- - pt : {libpysal.cg.Point, None} - The intersection of a ``seg`` and ``pt`` if one exists, otherwise ``None``. - - Examples - -------- - - >>> seg = LineSegment(Point((0, 0)), Point((0, 10))) - >>> pt = Point((0, 5)) - >>> i = get_segment_point_intersect(seg, pt) - >>> str(i) - '(0.0, 5.0)' - - >>> pt2 = Point((5, 5)) - >>> get_segment_point_intersect(seg, pt2) - - """ - - eps = np.finfo(type(pt[0])).eps - - if is_collinear(pt, seg.p1, seg.p2): - if get_segment_point_dist(seg, pt)[0] < EPSILON_SCALER * eps: - pass - else: - pt = None - else: - vec1 = (pt[0] - seg.p1[0], pt[1] - seg.p1[1]) - vec2 = (seg.p2[0] - seg.p1[0], seg.p2[1] - seg.p1[1]) - - if abs(vec1[0] * vec2[1] - vec1[1] * vec2[0]) < eps: - pass - else: - pt = None - - return pt
- - -
[docs]def get_polygon_point_intersect(poly, pt): - """Returns the intersection of a polygon and point. - - Parameters - ---------- - poly : libpysal.cg.Polygon - A polygon to check for an intersection. - pt : libpysal.cg.Point - A point to check ``poly`` for an intersection. - - Returns - ------- - ret : {libpysal.cg.Point, None} - The intersection of a ``poly`` and ``pt`` if one exists, otherwise ``None``. - - Examples - -------- - - >>> poly = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))]) - >>> pt = Point((0.5, 0.5)) - >>> i = get_polygon_point_intersect(poly, pt) - >>> str(i) - '(0.5, 0.5)' - - >>> pt2 = Point((2, 2)) - >>> get_polygon_point_intersect(poly, pt2) - - """ - - def pt_lies_on_part_boundary(p, vx): - vx_range = range(-1, len(vx) - 1) - seg = lambda i: LineSegment(vx[i], vx[i + 1]) - return [i for i in vx_range if get_segment_point_dist(seg(i), p)[0] == 0] != [] - - ret = None - - # Weed out points that aren't even close - if get_rectangle_point_intersect(poly.bounding_box, pt) is None: - pass - else: - if [vxs for vxs in poly._vertices if pt_lies_on_part_boundary(pt, vxs)] != []: - ret = pt - elif [vxs for vxs in poly._vertices if _point_in_vertices(pt, vxs)] != []: - ret = pt - if poly._holes != [[]]: - if [vxs for vxs in poly.holes if pt_lies_on_part_boundary(pt, vxs)] != []: - # pt lies on boundary of hole. - pass - if [vxs for vxs in poly.holes if _point_in_vertices(pt, vxs)] != []: - # pt lines inside a hole. - ret = None - # raise NotImplementedError, - # 'Cannot compute containment for polygon with holes' - - return ret
- - -
[docs]def get_rectangle_point_intersect(rect, pt): - """Returns the intersection of a rectangle and point. - - Parameters - ---------- - rect : libpysal.cg.Rectangle - A rectangle to check for an intersection. - pt : libpysal.cg.Point - A point to check ``rect`` for an intersection. - - Returns - ------- - pt : {libpysal.cg.Point, None} - The intersection of a ``rect`` and ``pt`` if one exists, otherwise ``None``. - - Examples - -------- - - >>> rect = Rectangle(0, 0, 5, 5) - >>> pt = Point((1, 1)) - >>> i = get_rectangle_point_intersect(rect, pt) - >>> str(i) - '(1.0, 1.0)' - - >>> pt2 = Point((10, 10)) - >>> get_rectangle_point_intersect(rect, pt2) - - """ - - if rect.left <= pt[0] <= rect.right and rect.lower <= pt[1] <= rect.upper: - pass - else: - pt = None - - return pt
- - -
[docs]def get_ray_segment_intersect(ray, seg): - """Returns the intersection of a ray and line segment. - - Parameters - ---------- - ray : libpysal.cg.Ray - A ray to check for an intersection. - seg : libpysal.cg.LineSegment - A segment to check for an intersection against ``ray``. - - Returns - ------- - intersection : {libpysal.cg.Point, libpysal.cg.LineSegment, None} - The intersecting point or line between ``ray`` and - ``seg`` if an intersection exists or ``None`` if - ``ray`` and ``seg`` do not intersect. - - See Also - -------- - - libpysal.cg.get_segments_intersect - - - Examples - -------- - - >>> ray = Ray(Point((0, 0)), Point((0, 1))) - >>> seg = LineSegment(Point((-1, 10)), Point((1, 10))) - >>> i = get_ray_segment_intersect(ray, seg) - >>> isinstance(i, Point) - True - - >>> str(i) - '(0.0, 10.0)' - - >>> seg2 = LineSegment(Point((10, 10)), Point((10, 11))) - >>> get_ray_segment_intersect(ray, seg2) - - """ - - # Upper bound on origin to segment dist (+1) - d = ( - max( - math.hypot(seg.p1[0] - ray.o[0], seg.p1[1] - ray.o[1]), - math.hypot(seg.p2[0] - ray.o[0], seg.p2[1] - ray.o[1]), - ) - + 1 - ) - ratio = d / math.hypot(ray.o[0] - ray.p[0], ray.o[1] - ray.p[1]) - ray_seg = LineSegment( - ray.o, - Point( - ( - ray.o[0] + ratio * (ray.p[0] - ray.o[0]), - ray.o[1] + ratio * (ray.p[1] - ray.o[1]), - ) - ), - ) - - intersection = get_segments_intersect(seg, ray_seg) - - return intersection
- - -
[docs]def get_rectangle_rectangle_intersection(r0, r1, checkOverlap=True): - """Returns the intersection between two rectangles. - - Parameters - ---------- - r0 : libpysal.cg.Rectangle - A rectangle to check for an intersection. - r1 : libpysal.cg.Rectangle - A rectangle to check for an intersection against ``r0``. - checkOverlap : bool - Call ``bbcommon(r0, r1)`` prior to complex geometry - checking. Default is ``True``. Prior to setting as - ``False`` see the Notes section. - - Returns - ------- - intersection : {libpysal.cg.Point, libpysal.cg.LineSegment, libpysal.cg.Rectangle, None} - The intersecting point, line, or rectangle between - `r0`` and ``r1`` if an intersection exists or ``None`` - if ``r0`` and ``r1`` do not intersect. - - Notes - ----- - - The algorithm assumes the rectangles overlap. The keyword - ``checkOverlap=False`` should be used with extreme caution. - - Examples - -------- - - >>> r0 = Rectangle(0,4,6,9) - >>> r1 = Rectangle(4,0,9,7) - >>> ri = get_rectangle_rectangle_intersection(r0,r1) - >>> ri[:] - [4.0, 4.0, 6.0, 7.0] - - >>> r0 = Rectangle(0,0,4,4) - >>> r1 = Rectangle(2,1,6,3) - >>> ri = get_rectangle_rectangle_intersection(r0,r1) - >>> ri[:] - [2.0, 1.0, 4.0, 3.0] - - >>> r0 = Rectangle(0,0,4,4) - >>> r1 = Rectangle(2,1,3,2) - >>> ri = get_rectangle_rectangle_intersection(r0,r1) - >>> ri[:] == r1[:] - True - - """ - - intersection = None - common_bb = True - - if checkOverlap: - if not bbcommon(r0, r1): - # raise ValueError, "Rectangles do not intersect" - common_bb = False - - if common_bb: - left = max(r0.left, r1.left) - lower = max(r0.lower, r1.lower) - right = min(r0.right, r1.right) - upper = min(r0.upper, r1.upper) - - if upper == lower and left == right: - intersection = Point((left, lower)) - elif upper == lower: - intersection = LineSegment(Point((left, lower)), Point((right, lower))) - elif left == right: - intersection = LineSegment(Point((left, lower)), Point((left, upper))) - else: - intersection = Rectangle(left, lower, right, upper) - - return intersection
- - -
[docs]def get_polygon_point_dist(poly, pt): - """Returns the distance between a polygon and point. - - Parameters - ---------- - poly : libpysal.cg.Polygon - A polygon to compute distance from. - - pt : libpysal.cg.Point - a point to compute distance from - - Returns - ------- - dist : float - The distance between ``poly`` and ``point``. - - Examples - -------- - - >>> poly = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))]) - >>> pt = Point((2, 0.5)) - >>> get_polygon_point_dist(poly, pt) - 1.0 - - >>> pt2 = Point((0.5, 0.5)) - >>> get_polygon_point_dist(poly, pt2) - 0.0 - - """ - - if get_polygon_point_intersect(poly, pt) is not None: - dist = 0.0 - else: - part_prox = [] - for vertices in poly._vertices: - vx_range = range(-1, len(vertices) - 1) - seg = lambda i: LineSegment(vertices[i], vertices[i + 1]) - _min_dist = min([get_segment_point_dist(seg(i), pt)[0] for i in vx_range]) - part_prox.append(_min_dist) - dist = min(part_prox) - - return dist
- - -
[docs]def get_points_dist(pt1, pt2): - """Returns the distance between a pair of points. - - Parameters - ---------- - pt1 : libpysal.cg.Point - A point. - - pt2 : libpysal.cg.Point - The other point. - - Returns - ------- - dist : float - The distance between ``pt1`` and ``pt2``. - - Examples - -------- - - >>> get_points_dist(Point((4, 4)), Point((4, 8))) - 4.0 - - >>> get_points_dist(Point((0, 0)), Point((0, 0))) - 0.0 - - """ - - dist = math.hypot(pt1[0] - pt2[0], pt1[1] - pt2[1]) - - return dist
- - -
[docs]def get_segment_point_dist(seg, pt): - """Returns (1) the distance between a line segment and point - and (2) the distance along the segment to the closest location on the - segment from the point as a ratio of the length of the segment. - - Parameters - ---------- - seg : libpysal.cg.LineSegment - A line segment to compute distance from. - pt : libpysal.cg.Point - A point to compute distance from. - - Returns - ------- - dist : float - The distance between ``seg`` and ``pt``. - ratio : float - The distance along ``seg`` to the closest location on - ``seg`` from ``pt`` as a ratio of the length of ``seg``. - - Examples - -------- - - >>> seg = LineSegment(Point((0, 0)), Point((10, 0))) - >>> pt = Point((5, 5)) - >>> get_segment_point_dist(seg, pt) - (5.0, 0.5) - - >>> pt2 = Point((0, 0)) - >>> get_segment_point_dist(seg, pt2) - (0.0, 0.0) - - """ - - src_p = seg.p1 - dest_p = seg.p2 - - # Shift line to go through origin - points_0 = pt[0] - src_p[0] - points_1 = pt[1] - src_p[1] - points_2 = 0 - points_3 = 0 - points_4 = dest_p[0] - src_p[0] - points_5 = dest_p[1] - src_p[1] - - segment_length = get_points_dist(src_p, dest_p) - - # Meh, robustness... - # maybe should incorporate this into a more general approach later - if segment_length == 0: - dist, ratio = get_points_dist(pt, src_p), 0 - - else: - u_x = points_4 / segment_length - u_y = points_5 / segment_length - - inter_x = u_x * u_x * points_0 + u_x * u_y * points_1 - inter_y = u_x * u_y * points_0 + u_y * u_y * points_1 - - src_proj_dist = get_points_dist((0, 0), (inter_x, inter_y)) - dest_proj_dist = get_points_dist((inter_x, inter_y), (points_4, points_5)) - - if src_proj_dist > segment_length or dest_proj_dist > segment_length: - src_pt_dist = get_points_dist((points_2, points_3), (points_0, points_1)) - dest_pt_dist = get_points_dist((points_4, points_5), (points_0, points_1)) - - if src_pt_dist < dest_pt_dist: - dist, ratio = src_pt_dist, 0 - else: - dist, ratio = dest_pt_dist, 1 - else: - dist = get_points_dist((inter_x, inter_y), (points_0, points_1)) - ratio = src_proj_dist / segment_length - - return dist, ratio
- - -
[docs]def get_point_at_angle_and_dist(ray, angle, dist): - """Returns the point at a distance and angle relative to the origin of a ray. - - Parameters - ---------- - ray : libpysal.cg.Ray - The ray to which ``angle`` and ``dist`` are relative. - angle : float - The angle relative to ``ray`` at which ``point`` is located. - dist : float - The distance from the origin of ``ray`` at which ``point`` is located. - - Returns - ------- - point : libpysal.cg.Point - The point at ``dist`` and ``angle`` relative to the origin of ``ray``. - - Examples - -------- - - >>> ray = Ray(Point((0, 0)), Point((1, 0))) - >>> pt = get_point_at_angle_and_dist(ray, math.pi, 1.0) - >>> isinstance(pt, Point) - True - - >>> round(pt[0], 8) - -1.0 - - >>> round(pt[1], 8) - 0.0 - - """ - - v = (ray.p[0] - ray.o[0], ray.p[1] - ray.o[1]) - cur_angle = math.atan2(v[1], v[0]) - dest_angle = cur_angle + angle - - point = Point( - (ray.o[0] + dist * math.cos(dest_angle), ray.o[1] + dist * math.sin(dest_angle)) - ) - - return point
- - -
[docs]def convex_hull(points): - """Returns the convex hull of a set of points. - - Parameters - ---------- - points : list - A list of points for computing the convex hull. - - Returns - ------- - stack : list - A list of points representing the convex hull. - - Examples - -------- - - >>> points = [Point((0, 0)), Point((4, 4)), Point((4, 0)), Point((3, 1))] - >>> convex_hull(points) - [(0.0, 0.0), (4.0, 0.0), (4.0, 4.0)] - - """ - - def right_turn(p1, p2, p3) -> bool: - """Returns if ``p1`` -> ``p2`` -> ``p3`` forms a 'right turn'.""" - vec1 = (p2[0] - p1[0], p2[1] - p1[1]) - vec2 = (p3[0] - p2[0], p3[1] - p2[1]) - _rt = vec2[0] * vec1[1] - vec2[1] * vec1[0] >= 0 - return _rt - - points = copy.copy(points) - lowest = min(points, key=lambda p: (p[1], p[0])) - - points.remove(lowest) - points.sort(key=lambda p: math.atan2(p[1] - lowest[1], p[0] - lowest[0])) - - stack = [lowest] - - for p in points: - stack.append(p) - while len(stack) > 3 and right_turn(stack[-3], stack[-2], stack[-1]): - stack.pop(-2) - - return stack
- - -
[docs]def is_clockwise(vertices): - """Returns whether a list of points describing - a polygon are clockwise or counterclockwise. - - Parameters - ---------- - vertices : list - A list of points that form a single ring. - - Returns - ------- - clockwise : bool - ``True`` if ``vertices`` are clockwise, otherwise ``False``. - - See Also - -------- - - libpysal.cg.ccw - - Examples - -------- - - >>> is_clockwise([Point((0, 0)), Point((10, 0)), Point((0, 10))]) - False - - >>> is_clockwise([Point((0, 0)), Point((0, 10)), Point((10, 0))]) - True - - >>> v = [ - ... (-106.57798, 35.174143999999998), - ... (-106.583412, 35.174141999999996), - ... (-106.58417999999999, 35.174143000000001), - ... (-106.58377999999999, 35.175542999999998), - ... (-106.58287999999999, 35.180543), - ... (-106.58263099999999, 35.181455), - ... (-106.58257999999999, 35.181643000000001), - ... (-106.58198299999999, 35.184615000000001), - ... (-106.58148, 35.187242999999995), - ... (-106.58127999999999, 35.188243), - ... (-106.58138, 35.188243), - ... (-106.58108, 35.189442999999997), - ... (-106.58104, 35.189644000000001), - ... (-106.58028, 35.193442999999995), - ... (-106.580029, 35.194541000000001), - ... (-106.57974399999999, 35.195785999999998), - ... (-106.579475, 35.196961999999999), - ... (-106.57922699999999, 35.198042999999998), - ... (-106.578397, 35.201665999999996), - ... (-106.57827999999999, 35.201642999999997), - ... (-106.57737999999999, 35.201642999999997), - ... (-106.57697999999999, 35.201543000000001), - ... (-106.56436599999999, 35.200311999999997), - ... (-106.56058, 35.199942999999998), - ... (-106.56048, 35.197342999999996), - ... (-106.56048, 35.195842999999996), - ... (-106.56048, 35.194342999999996), - ... (-106.56048, 35.193142999999999), - ... (-106.56048, 35.191873999999999), - ... (-106.56048, 35.191742999999995), - ... (-106.56048, 35.190242999999995), - ... (-106.56037999999999, 35.188642999999999), - ... (-106.56037999999999, 35.187242999999995), - ... (-106.56037999999999, 35.186842999999996), - ... (-106.56037999999999, 35.186552999999996), - ... (-106.56037999999999, 35.185842999999998), - ... (-106.56037999999999, 35.184443000000002), - ... (-106.56037999999999, 35.182943000000002), - ... (-106.56037999999999, 35.181342999999998), - ... (-106.56037999999999, 35.180433000000001), - ... (-106.56037999999999, 35.179943000000002), - ... (-106.56037999999999, 35.178542999999998), - ... (-106.56037999999999, 35.177790999999999), - ... (-106.56037999999999, 35.177143999999998), - ... (-106.56037999999999, 35.175643999999998), - ... (-106.56037999999999, 35.174444000000001), - ... (-106.56037999999999, 35.174043999999995), - ... (-106.560526, 35.174043999999995), - ... (-106.56478, 35.174043999999995), - ... (-106.56627999999999, 35.174143999999998), - ... (-106.566541, 35.174144999999996), - ... (-106.569023, 35.174157000000001), - ... (-106.56917199999999, 35.174157999999998), - ... (-106.56938, 35.174143999999998), - ... (-106.57061499999999, 35.174143999999998), - ... (-106.57097999999999, 35.174143999999998), - ... (-106.57679999999999, 35.174143999999998), - ... (-106.57798, 35.174143999999998) - ... ] - >>> is_clockwise(v) - True - - """ - - clockwise = True - - if not len(vertices) < 3: - area = 0.0 - ax, ay = vertices[0] - for bx, by in vertices[1:]: - area += ax * by - ay * bx - ax, ay = bx, by - bx, by = vertices[0] - area += ax * by - ay * bx - - clockwise = area < 0.0 - - return clockwise
- - -def ccw(vertices): - """Returns whether a list of points is counterclockwise. - - Parameters - ---------- - vertices : list - A list of points that form a single ring. - - Returns - ------- - counter_clockwise : bool - ``True`` if ``vertices`` are counter clockwise, otherwise ``False``. - - See Also - -------- - - libpysal.cg.is_clockwise - - Examples - -------- - - >>> ccw([Point((0, 0)), Point((10, 0)), Point((0, 10))]) - True - - >>> ccw([Point((0, 0)), Point((0, 10)), Point((10, 0))]) - False - - """ - - counter_clockwise = True - - if is_clockwise(vertices): - counter_clockwise = False - - return counter_clockwise - - -def seg_intersect(a, b, c, d): - """Tests if two segments (a,b) and (c,d) intersect. - - Parameters - ---------- - a : libpysal.cg.Point - The first vertex for the first segment. - b : libpysal.cg.Point - The second vertex for the first segment. - c : libpysal.cg.Point - The first vertex for the second segment. - d : libpysal.cg.Point - The second vertex for the second segment. - - Returns - ------- - segments_intersect : bool - ``True`` if segments ``(a,b)`` and ``(c,d)``, otherwise ``False``. - - Examples - -------- - - >>> a = Point((0,1)) - >>> b = Point((0,10)) - >>> c = Point((-2,5)) - >>> d = Point((2,5)) - >>> e = Point((-3,5)) - >>> seg_intersect(a, b, c, d) - True - - >>> seg_intersect(a, b, c, e) - False - - """ - - segments_intersect = True - - acd_bcd = ccw([a, c, d]) == ccw([b, c, d]) - - abc_abd = ccw([a, b, c]) == ccw([a, b, d]) - - if acd_bcd or abc_abd: - segments_intersect = False - - return segments_intersect - - -def _point_in_vertices(pt, vertices): - """**HELPER METHOD. DO NOT CALL.** Returns whether a point - is contained in a polygon specified by a sequence of vertices. - - Parameters - ---------- - pt : libpysal.cg.Point - A point. - vertices : list - A list of vertices representing as polygon. - - Returns - ------- - pt_in_poly : bool - ``True`` if ``pt`` is contained in ``vertices``, otherwise ``False``. - - Examples - -------- - - >>> _point_in_vertices( - ... Point((1, 1)), - ... [Point((0, 0)), Point((10, 0)), Point((0, 10))] - ... ) - True - - """ - - def neg_ray_intersect(p1, p2, p3) -> bool: - """Returns whether a ray in the negative-x - direction from ``p3`` intersects the segment between. - """ - - if not min(p1[1], p2[1]) <= p3[1] <= max(p1[1], p2[1]): - nr_inters = False - else: - if p1[1] > p2[1]: - vec1 = (p2[0] - p1[0], p2[1] - p1[1]) - else: - vec1 = (p1[0] - p2[0], p1[1] - p2[1]) - - vec2 = (p3[0] - p1[0], p3[1] - p1[1]) - - nr_inters = vec1[0] * vec2[1] - vec2[0] * vec1[1] >= 0 - - return nr_inters - - vert_y_set = set([v[1] for v in vertices]) - while pt[1] in vert_y_set: - # Perturb the location very slightly - pt = pt[0], pt[1] + -1e-14 + random.random() * 2e-14 - - inters = 0 - for i in range(-1, len(vertices) - 1): - v1 = vertices[i] - v2 = vertices[i + 1] - if neg_ray_intersect(v1, v2, pt): - inters += 1 - - pt_in_poly = inters % 2 == 1 - - return pt_in_poly - - -
[docs]def point_touches_rectangle(point, rect): - """Returns ``True`` (``1``) if the point is in the rectangle - or touches it's boundary, otherwise ``False`` (``0``). - - Parameters - ---------- - point : {libpysal.cg.Point, tuple} - A point or point coordinates. - rect : libpysal.cg.Rectangle - A rectangle. - - Returns - ------- - chflag : int - ``1`` if ``point`` is in (or touches - boundary of) ``rect``, otherwise ``0``. - - Examples - -------- - - >>> rect = Rectangle(0, 0, 10, 10) - >>> a = Point((5, 5)) - >>> b = Point((10, 5)) - >>> c = Point((11, 11)) - >>> point_touches_rectangle(a, rect) - 1 - - >>> point_touches_rectangle(b, rect) - 1 - - >>> point_touches_rectangle(c, rect) - 0 - - """ - - chflag = 0 - if point[0] >= rect.left and point[0] <= rect.right: - if point[1] >= rect.lower and point[1] <= rect.upper: - chflag = 1 - - return chflag
- - -
[docs]def get_shared_segments(poly1, poly2, bool_ret=False): - """Returns the line segments in common to both polygons. - - Parameters - ---------- - poly1 : libpysal.cg.Polygon - A Polygon. - poly2 : libpysal.cg.Polygon - A Polygon. - bool_ret : bool - Return only a ``bool``. Default is ``False``. - - Returns - ------- - common : list - The shared line segments between ``poly1`` and ``poly2``. - _ret_bool : bool - Whether ``poly1`` and ``poly2`` share a - segment (``True``) or not (``False``). - - Examples - -------- - - >>> from libpysal.cg.shapes import Polygon - >>> x = [0, 0, 1, 1] - >>> y = [0, 1, 1, 0] - >>> poly1 = Polygon(list(map(Point, zip(x, y))) ) - >>> x = [a+1 for a in x] - >>> poly2 = Polygon(list(map(Point, zip(x, y))) ) - >>> get_shared_segments(poly1, poly2, bool_ret=True) - True - - """ - - # get_rectangle_rectangle_intersection inlined for speed. - r0 = poly1.bounding_box - r1 = poly2.bounding_box - wLeft = max(r0.left, r1.left) - wLower = max(r0.lower, r1.lower) - wRight = min(r0.right, r1.right) - wUpper = min(r0.upper, r1.upper) - - segmentsA = set() - common = list() - partsA = poly1.parts - - for part in poly1.parts + [p for p in poly1.holes if p]: - if part[0] != part[-1]: # not closed - part = part[:] + part[0:1] - a = part[0] - - for b in islice(part, 1, None): - # inlining point_touches_rectangle for speed - x, y = a - # check if point a is in the bounding box intersection - if x >= wLeft and x <= wRight and y >= wLower and y <= wUpper: - x, y = b - # check if point b is in the bounding box intersection - if x >= wLeft and x <= wRight and y >= wLower and y <= wUpper: - if a > b: - segmentsA.add((b, a)) - else: - segmentsA.add((a, b)) - a = b - - _ret_bool = False - - for part in poly2.parts + [p for p in poly2.holes if p]: - if part[0] != part[-1]: # not closed - part = part[:] + part[0:1] - a = part[0] - - for b in islice(part, 1, None): - # inlining point_touches_rectangle for speed - x, y = a - if x >= wLeft and x <= wRight and y >= wLower and y <= wUpper: - x, y = b - if x >= wLeft and x <= wRight and y >= wLower and y <= wUpper: - if a > b: - seg = (b, a) - else: - seg = (a, b) - if seg in segmentsA: - common.append(LineSegment(*seg)) - if bool_ret: - _ret_bool = True - return _ret_bool - a = b - - if bool_ret: - if len(common) > 0: - _ret_bool = True - return _ret_bool - - return common
- - -
[docs]def distance_matrix(X, p=2.0, threshold=5e7): - """Calculate a distance matrix. - - Parameters - ---------- - X : numpy.ndarray - An :math:`n \\times k` array where :math:`n` is the number - of observations and :math:`k` is the number of dimensions - (2 for :math:`x,y`). - p : float - Minkowski `p`-norm distance metric parameter where - :math:`1<=\mathtt{p}<=\infty`. ``2`` is Euclidean distance and - ``1`` is Manhattan distance. Default is ``2.0``. - threshold : int - If :math:`(\mathtt{n}**2)*32 > \mathtt{threshold}` use - ``scipy.spatial.distance_matrix`` instead of working in RAM, - this is roughly the amount of RAM (in bytes) that will be used. - Must be positive. Default is ``5e7``. - - Returns - ------- - D : numpy.ndarray - An n by :math:`m` :math:`p`-norm distance matrix. - - Raises - ------ - TypeError - Raised when an invalid dimensional array is passed in. - - Notes - ----- - - Needs optimization/integration with other weights in PySAL. - - Examples - -------- - - >>> x, y = [r.flatten() for r in np.indices((3, 3))] - >>> data = np.array([x, y]).T - >>> d = distance_matrix(data) - >>> np.array(d) - array([[0. , 1. , 2. , 1. , 1.41421356, - 2.23606798, 2. , 2.23606798, 2.82842712], - [1. , 0. , 1. , 1.41421356, 1. , - 1.41421356, 2.23606798, 2. , 2.23606798], - [2. , 1. , 0. , 2.23606798, 1.41421356, - 1. , 2.82842712, 2.23606798, 2. ], - [1. , 1.41421356, 2.23606798, 0. , 1. , - 2. , 1. , 1.41421356, 2.23606798], - [1.41421356, 1. , 1.41421356, 1. , 0. , - 1. , 1.41421356, 1. , 1.41421356], - [2.23606798, 1.41421356, 1. , 2. , 1. , - 0. , 2.23606798, 1.41421356, 1. ], - [2. , 2.23606798, 2.82842712, 1. , 1.41421356, - 2.23606798, 0. , 1. , 2. ], - [2.23606798, 2. , 2.23606798, 1.41421356, 1. , - 1.41421356, 1. , 0. , 1. ], - [2.82842712, 2.23606798, 2. , 2.23606798, 1.41421356, - 1. , 2. , 1. , 0. ]]) - - """ - - if X.ndim == 1: - X.shape = (X.shape[0], 1) - - if X.ndim > 2: - msg = "Should be 2D point coordinates: %s dimensions present." % X.ndim - raise TypeError(msg) - - n, k = X.shape - - if (n ** 2) * 32 > threshold: - D = scipy.spatial.distance_matrix(X, X, p) - else: - M = np.ones((n, n)) - D = np.zeros((n, n)) - for col in range(k): - x = X[:, col] - xM = x * M - dx = xM - xM.T - if p % 2 != 0: - dx = np.abs(dx) - dx2 = dx ** p - D += dx2 - D = D ** (1.0 / p) - - return D
-
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/cg/voronoi.html b/docs/_modules/libpysal/cg/voronoi.html deleted file mode 100644 index 73b28ff89..000000000 --- a/docs/_modules/libpysal/cg/voronoi.html +++ /dev/null @@ -1,492 +0,0 @@ - - - - - - - libpysal.cg.voronoi — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.cg.voronoi

-"""
-Voronoi tesslation of 2-d point sets.
-
-Adapted from https://gist.github.com/pv/8036995
-
-"""
-
-import numpy as np
-from scipy.spatial import Voronoi
-
-__author__ = "Serge Rey <sjsrey@gmail.com>"
-
-__all__ = ["voronoi_frames"]
-
-
-def voronoi(points, radius=None):
-    """Determine finite Voronoi diagram for a 2-d point set.
-    See also ``voronoi_regions()``.
-
-    Parameters
-    ----------
-    points : array_like
-        An nx2 array of points.
-    radius : float (optional)
-        The distance to 'points at infinity'. Default is ``None.``
-
-    Returns
-    -------
-    vor : tuple
-        A two-element tuple consisting of a list and an array. Each element of
-        the list contains the sequence of the indices of Voronoi vertices
-        composing a Voronoi polygon (region), whereas the array contains
-        the Voronoi vertex coordinates.
-    
-    Examples
-    --------
-    
-    >>> points = [(10.2, 5.1), (4.7, 2.2), (5.3, 5.7), (2.7, 5.3)]
-    >>> regions, coordinates = voronoi(points)
-    >>> regions
-    [[1, 3, 2], [4, 5, 1, 0], [0, 1, 7, 6], [9, 0, 8]]
-    
-    >>> coordinates
-    array([[  4.21783296,   4.08408578],
-           [  7.51956025,   3.51807539],
-           [  9.4642193 ,  19.3994576 ],
-           [ 14.98210684, -10.63503022],
-           [ -9.22691341,  -4.58994414],
-           [ 14.98210684, -10.63503022],
-           [  1.78491801,  19.89803294],
-           [  9.4642193 ,  19.3994576 ],
-           [  1.78491801,  19.89803294],
-           [ -9.22691341,  -4.58994414]])
-    
-    """
-
-    vor = voronoi_regions(Voronoi(points), radius=radius)
-
-    return vor
-
-
-def voronoi_regions(vor, radius=None):
-    """Finite voronoi regions for a 2-d point set. See also ``voronoi()``.
-
-    Parameters
-    ----------
-    vor : scipy.spatial.Voronoi
-        A planar Voronoi diagram.
-    radius : float (optional)
-        Distance to 'points at infinity'. Default is ``None.``
-    
-    Returns
-    -------
-    regions_vertices : tuple
-        A two-element tuple consisting of a list of finite voronoi regions
-        and an array Voronoi vertex coordinates.
-    
-    """
-
-    new_regions = []
-    new_vertices = vor.vertices.tolist()
-
-    center = vor.points.mean(axis=0)
-    if radius is None:
-        radius = vor.points.ptp().max() * 2
-
-    all_ridges = {}
-    for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):
-        all_ridges.setdefault(p1, []).append((p2, v1, v2))
-        all_ridges.setdefault(p2, []).append((p1, v1, v2))
-
-    for p1, region in enumerate(vor.point_region):
-        vertices = vor.regions[region]
-
-        if all(v >= 0 for v in vertices):
-            new_regions.append(vertices)
-            continue
-
-        ridges = all_ridges[p1]
-        new_region = [v for v in vertices if v >= 0]
-
-        for p2, v1, v2 in ridges:
-            if v2 < 0:
-                v1, v2 = v2, v1
-            if v1 >= 0:
-                continue
-
-            t = vor.points[p2] - vor.points[p1]
-            t /= np.linalg.norm(t)
-            n = np.array([-t[1], t[0]])
-
-            midpoint = vor.points[[p1, p2]].mean(axis=0)
-            direction = np.sign(np.dot(midpoint - center, n)) * n
-            far_point = vor.vertices[v2] + direction * radius
-
-            new_region.append(len(new_vertices))
-            new_vertices.append(far_point.tolist())
-
-        vs = np.asarray([new_vertices[v] for v in new_region])
-        c = vs.mean(axis=0)
-        angles = np.arctan2(vs[:, 1] - c[1], vs[:, 0] - c[0])
-        new_region = np.array(new_region)[np.argsort(angles)]
-
-        new_regions.append(new_region.tolist())
-
-    regions_vertices = new_regions, np.asarray(new_vertices)
-
-    return regions_vertices
-
-
-def as_dataframes(regions, vertices, points):
-    """Helper function to store finite Voronoi regions and
-    originator points as ``geopandas`` (or ``pandas``) dataframes.
-
-    Parameters
-    ----------
-    regions : list
-        Each element of the list contains sequence of the indexes of
-        voronoi vertices composing a vornoi polygon (region).
-    vertices : array_like
-        The coordinates of the vornoi vertices.
-    points : array_like
-        The originator points.
-
-    Returns
-    -------
-    region_df : geopandas.GeoDataFrame
-        Finite Voronoi polygons as geometries.
-    points_df : geopandas.GeoDataFrame
-        Originator points as geometries.
-    
-    Raises
-    ------
-    ImportError
-        Raised when ``geopandas`` is not available.
-    ImportError
-        Raised when ``shapely`` is not available.
-    
-    """
-
-    try:
-        import geopandas as gpd
-    except ImportError:
-        gpd = None
-
-    try:
-        from shapely.geometry import Polygon, Point
-    except ImportError:
-        from .shapes import Polygon, Point
-
-    if gpd is not None:
-        region_df = gpd.GeoDataFrame()
-        region_df["geometry"] = [Polygon(vertices[region]) for region in regions]
-
-        point_df = gpd.GeoDataFrame()
-        point_df["geometry"] = gpd.GeoSeries(Point(pnt) for pnt in points)
-    else:
-        import pandas as pd
-
-        region_df = pd.DataFrame()
-        region_df["geometry"] = [
-            Polygon(vertices[region].tolist()) for region in regions
-        ]
-        point_df = pd.DataFrame()
-        point_df["geometry"] = [Point(pnt) for pnt in points]
-
-    return region_df, point_df
-
-
-
[docs]def voronoi_frames(points, radius=None, clip="extent"): - """Composite helper to return Voronoi regions and - generator points as individual dataframes. - - Parameters - ---------- - points : array_like - The originator points. - radius : float - The distance to 'points at infinity' used in building voronoi cells. - Default is ``None``. - clip : {str, shapely.geometry.Polygon} - An overloaded option about how to clip the voronoi cells. - Default is ``'extent'``. Options are as follows. - - * ``'none'``/``None`` -- No clip is applied. Voronoi cells may be arbitrarily larger that the source map. Note that this may lead to cells that are many orders of magnitude larger in extent than the original map. Not recommended. - * ``'bbox'``/``'extent'``/``'bounding box'`` -- Clip the voronoi cells to the bounding box of the input points. - * ``'chull``/``'convex hull'`` -- Clip the voronoi cells to the convex hull of the input points. - * ``'ashape'``/``'ahull'`` -- Clip the voronoi cells to the tightest hull that contains all points (e.g. the smallest alphashape, using ``libpysal.cg.alpha_shape_auto``). - * Polygon -- Clip to an arbitrary Polygon. - - tolerance : float - The percent of map width to use to buffer the extent of the map, - if clipping (default: ``.01``, or 1%). - - Returns - ------- - reg_vtx : tuple - Two ``geopandas.GeoDataFrame`` (or ``pandas.DataFrame`` if ``geopandas`` - is unavailable) objects--``(region_df, points_df)``--of finite - Voronoi polygons and the originator points as geometries. - - Notes - ----- - - If ``geopandas`` is not available the return types will be - ``pandas.DataFrame`` objects, each with a geometry column populated - with PySAL shapes. If ``geopandas`` is available, return types are - ``pandas.GeoDataFrame`` objects with a geometry column populated - with shapely geometry types. - - Examples - -------- - - >>> points = [(10.2, 5.1), (4.7, 2.2), (5.3, 5.7), (2.7, 5.3)] - >>> regions_df, points_df = voronoi_frames(points) - >>> regions_df.shape - (4, 1) - - >>> regions_df.shape == points_df.shape - True - - """ - - regions, vertices = voronoi(points, radius=radius) - regions, vertices = as_dataframes(regions, vertices, points) - if clip: - regions = clip_voronoi_frames_to_extent(regions, vertices, clip=clip) - - reg_vtx = regions, vertices - return reg_vtx
- - -def clip_voronoi_frames_to_extent(regions, vertices, clip="extent"): - """Generate a geopandas.GeoDataFrame of Voronoi cells clipped to - a specified extent. - - Parameters - ---------- - regions : geopandas.GeoDataFrame - A (geo)dataframe containing voronoi cells to clip. - vertices : geopandas.GeoDataFrame - A (geo)dataframe containing vertices used to build voronoi cells. - clip : str, shapely.geometry.Polygon - An overloaded option about how to clip the voronoi cells. - The options are: - - 'none'/None: No clip is applied. Voronoi cells may be arbitrarily - larger that the source map. Note that this may lead to cells that - are many orders of magnitude larger in extent than - the original map. Not recommended. - - 'bbox'/'extent'/'bounding box': Clip the voronoi cells to the - bounding box of the input points. - - 'chull'/'convex hull': Clip the voronoi cells to the - convex hull of the input points. - - 'ashape'/'ahull': Clip the voronoi cells to the tightest hull that - contains all points (e.g. the smallest alphashape, - using ``libpysal.cg.alpha_shape_auto``). - - Polygon: Clip to an arbitrary Polygon. - - Returns - ------- - clipped_regions : geopandas.GeoDataFrame - A ``geopandas.GeoDataFrame`` of clipped voronoi regions. - - Raises - ------ - ImportError - Raised when ``shapely`` is not available. - ImportError - Raised when ``geopandas`` is not available. - ValueError - Raised when in invalid value for ``clip`` is passed in. - - """ - try: - from shapely.geometry import Polygon - except ImportError: - raise ImportError("Shapely is required to clip voronoi regions.") - try: - import geopandas - except ImportError: - raise ImportError("Geopandas is required to clip voronoi regions.") - - if isinstance(clip, Polygon): - clipper = geopandas.GeoDataFrame(geometry=[clip]) - elif clip is None: - return regions - elif clip.lower() == "none": - return regions - elif clip.lower() in ("bounds", "bounding box", "bbox", "extent"): - min_x, min_y, max_x, max_y = vertices.total_bounds - bounding_poly = Polygon( - [ - (min_x, min_y), - (min_x, max_y), - (max_x, max_y), - (max_x, min_y), - (min_x, min_y), - ] - ) - clipper = geopandas.GeoDataFrame(geometry=[bounding_poly]) - elif clip.lower() in ("chull", "convex hull", "convex_hull"): - clipper = geopandas.GeoDataFrame( - geometry=[vertices.geometry.unary_union.convex_hull] - ) - elif clip.lower() in ( - "ahull", - "alpha hull", - "alpha_hull", - "ashape", - "alpha shape", - "alpha_shape", - ): - from .alpha_shapes import alpha_shape_auto - from ..weights.distance import get_points_array - - coordinates = get_points_array(vertices.geometry) - clipper = geopandas.GeoDataFrame(geometry=[alpha_shape_auto(coordinates)]) - else: - raise ValueError( - "Clip type '{}' not understood. Try one " - " of the supported options: [None, 'extent', " - "'chull', 'ahull'].".format(clip) - ) - clipped_regions = geopandas.overlay(regions, clipper, how="intersection") - return clipped_regions -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/examples.html b/docs/_modules/libpysal/examples.html deleted file mode 100644 index 8baed1607..000000000 --- a/docs/_modules/libpysal/examples.html +++ /dev/null @@ -1,193 +0,0 @@ - - - - - - - libpysal.examples — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.examples

-""" The :mod:`libpysal.examples` module includes a number of small built-in
-    example datasets as well as functions to fetch larger datasets.
-"""
-
-from .base import example_manager
-from .remotes import datasets as remote_datasets
-from .remotes import download as fetch_all
-from .builtin import datasets as builtin_datasets
-
-
-from typing import Union
-
-__all__ = ["get_path", "available", "explain", "fetch_all"]
-
-example_manager.add_examples(remote_datasets)
-example_manager.add_examples(builtin_datasets)
-
-
-
[docs]def available() -> str: - """List available datasets.""" - - return example_manager.available()
- - -
[docs]def explain(name: str) -> str: - """Explain a dataset by name.""" - - return example_manager.explain(name)
- - -def load_example(example_name: str) -> Union[base.Example, builtin.LocalExample]: - """Load example dataset instance.""" - - return example_manager.load(example_name) - - -
[docs]def get_path(file_name: str) -> str: - """Get the path for a file by searching installed datasets.""" - - installed = example_manager.get_installed_names() - for name in installed: - example = example_manager.datasets[name] - pth = example.get_path(file_name, verbose=False) - if pth: - return pth - print("{} is not a file in any installed dataset.".format(file_name))
-
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/io/fileio.html b/docs/_modules/libpysal/io/fileio.html deleted file mode 100644 index 1e08722b6..000000000 --- a/docs/_modules/libpysal/io/fileio.html +++ /dev/null @@ -1,616 +0,0 @@ - - - - - - - libpysal.io.fileio — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.io.fileio

-"""
-FileIO: Module for reading and writing various file types in a Pythonic way.
-This module should not be used directly, instead...
-
-```
-import pysal.core.FileIO as FileIO
-```
-
-Readers and Writers will mimic python file objects.
-    .seek(n) seeks to the n'th object
-    .read(n) reads n objects, default == all
-    .next() reads the next object
-
-"""
-
-__author__ = "Charles R Schmidt <schmidtc@gmail.com>"
-
-__all__ = ["FileIO"]
-
-import os.path
-from warnings import warn
-from ..common import MISSINGVALUE
-
-from typing import Union
-
-
-class FileIO_MetaCls(type):
-    """This meta class is instantiated when the class is first defined. All
-    subclasses of `FileIO` also inherit this meta class, which registers
-    their abilities with the FileIO registry. Subclasses must contain
-    ``FORMATS`` and ``MODES`` (both are ``type(list)``).
-    
-    Raises
-    ------
-    TypeError
-        FileIO subclasses must have ``FORMATS`` and ``MODES`` defined.
-    
-    """
-
-    def __new__(mcs, name, bases, dict):
-
-        cls = type.__new__(mcs, name, bases, dict)
-
-        if name != "FileIO" and name != "DataTable":
-            if "FORMATS" in dict and "MODES" in dict:
-                # msg = "Registering %s with FileIO.\n\tFormats: %r\n\tModes: %r"
-                # msg = msg % (name, dict["FORMATS"], dict["MODES"])
-                FileIO._register(cls, dict["FORMATS"], dict["MODES"])
-            else:
-                raise TypeError(
-                    "FileIO subclasses must have 'FORMATS' and 'MODES' defined."
-                )
-
-        return cls
-
-
-
[docs]class FileIO(object, metaclass=FileIO_MetaCls): # should be a type? - """Metaclass for supporting spatial data file read and write. - - How this works: - - ``FileIO.open(\\*args) == FileIO(\\*args)`` - - When creating a new instance of `FileIO` the ``.__new__`` method intercepts. - ``.__new__`` parses the filename to determine the ``fileType``. Next, - ``.__registry`` and checked for that type. Each type supports one or more modes - (``['r', 'w', 'a', etc.]``). If we support the type and mode, an instance of the - appropriate handler is created and returned. All handlers must inherit from this - class, and by doing so are automatically added to the ``.__registry`` and are - forced to conform to the prescribed API. The metaclass takes care of the - registration by parsing the class definition. It doesn't make much sense to - treat weights in the same way as shapefiles and dbfs, so... - - * ... for now we'll just return an instance of `W` on ``mode='r'``. - * ... on ``mode='w'``, ``.write`` will expect an instance of `W`. - - """ - - __registry = {} # {'shp':{'r':[OGRshpReader,pysalShpReader]}} - - def __new__(cls, dataPath="", mode="r", dataFormat=None): - """Intercepts the instantiation of ``FileIO`` and dispatches - to the correct handler. If no suitable handler is found a - python file object is returned. - """ - - if cls is FileIO: - try: - newCls = object.__new__( - cls.__registry[cls.getType(dataPath, mode, dataFormat)][mode][0] - ) - except KeyError: - return open(dataPath, mode) - return newCls - else: - return object.__new__(cls) - -
[docs] @staticmethod - def getType(dataPath: str, mode: str, dataFormat=None) -> str: - """Parse the ``dataPath`` and return the data type.""" - - if dataFormat: - ext = dataFormat - else: - ext = os.path.splitext(dataPath)[1] - ext = ext.replace(".", "") - ext = ext.lower() - if ext == "txt": - f = open(dataPath, "r") - l1 = f.readline() - l2 = f.readline() - if ext == "txt": - try: - n, k = l1.split(",") - n, k = int(n), int(k) - fields = l2.split(",") - assert len(fields) == k - return "geoda_txt" - except: - return ext - - return ext
- - @classmethod - def _register(cls, parser, formats, modes): - """This method is called automatically via the Metaclass of `FileIO` subclasses - This should be private, but that hides it from the Metaclass. - """ - - assert cls is FileIO - - for format in formats: - if not format in cls.__registry: - cls.__registry[format] = {} - for mode in modes: - if not mode in cls.__registry[format]: - cls.__registry[format][mode] = [] - cls.__registry[format][mode].append(parser) - # cls.check() - -
[docs] @classmethod - def check(cls): - """Prints the contents of the registry.""" - - print("PySAL File I/O understands the following file extensions:") - - for key, val in list(cls.__registry.items()): - print("Ext: '.%s', Modes: %r" % (key, list(val.keys())))
- -
[docs] @classmethod - def open(cls, *args, **kwargs): - """Alias for ``FileIO()``.""" - - return cls(*args, **kwargs)
- - class _By_Row: - def __init__(self, parent): - self.p = parent - - def __repr__(self) -> str: - if not self.p.ids: - return "keys: range(0,n)" - else: - return "keys: " + list(self.p.ids.keys()).__repr__() - - def __getitem__(self, key) -> Union[list, str]: - if type(key) == list: - r = [] - if self.p.ids: - for k in key: - r.append(self.p.get(self.p.ids[k])) - else: - for k in key: - r.append(self.p.get(k)) - return r - if self.p.ids: - return self.p.get(self.p.ids[key]) - else: - return self.p.get(key) - - __call__ = __getitem__ - -
[docs] def __init__(self, dataPath="", mode="r", dataFormat=None): - self.dataPath = dataPath - self.dataObj = "" - self.mode = mode - # pos Should ALWAYS be in the range 0,...,n - # for custom IDs set the ids property. - self.pos = 0 - self.__ids = None # {'id':n} - self.__rIds = None - self.closed = False - self._spec = [] - self.header = []
- - def __getitem__(self, key): - return self.by_row.__getitem__(key) - - @property - def by_row(self): - return self._By_Row(self) - - def __getIds(self): - return self.__ids - - def __setIds(self, ids: Union[list, dict, None]): - """Property method for ``.ids``. Takes a list of ids and maps then - to a 0-based index. Need to provide a method to set ID's based on - a ``fieldName`` preferably without reading the whole file. - - Raises - ------ - AssertionError - Raised when IDs are not unique. - - """ - - if isinstance(ids, list): - try: - assert len(ids) == len(set(ids)) - except AssertionError: - raise KeyError("IDs must be unique.") - # keys: ID values: i - self.__ids = {} - # keys: i values: ID - self.__rIds = {} - for i, id in enumerate(ids): - self.__ids[id] = i - self.__rIds[i] = id - elif isinstance(ids, dict): - self.__ids = ids - self.__rIds = {} - for id, n in list(ids.items()): - self.__rIds[n] = id - elif not ids: - self.__ids = None - self.__rIds = None - - ids = property(fget=__getIds, fset=__setIds) - - @property - def rIds(self) -> Union[dict, None]: - return self.__rIds - - def __iter__(self): - self.seek(0) - return self - - @staticmethod - def _complain_ifclosed(closed): - """From `StringIO`. - - Raises - ------ - ValueError - Raised when a file is already closed. - - """ - if closed: - raise ValueError("I/O operation on closed file.") - -
[docs] def cast(self, key, typ): - """Cast ``key`` as ``typ``. - - Raises - ------ - TypeError - Raised when a cast object in not callable. - KeyError - Raised when a key is not present. - - """ - if key in self.header: - if not self._spec: - self._spec = [lambda x: x for k in self.header] - if typ is None: - self._spec[self.header.index(key)] = lambda x: x - else: - try: - assert hasattr(typ, "__call__") - self._spec[self.header.index(key)] = typ - except AssertionError: - raise TypeError("Cast objects must be callable.") - else: - raise KeyError("%s" % key)
- - def _cast(self, row) -> list: - """ - - Raises - ------ - ValueError - Raised when a value could not be cast a particular type. - - """ - if self._spec and row: - try: - return [f(v) for f, v in zip(self._spec, row)] - except ValueError: - r = [] - for f, v in zip(self._spec, row): - try: - if not v and f != str: - raise ValueError - r.append(f(v)) - except ValueError: - msg = "Value '%r' could not be cast to %s, " - msg += "value set to MISSINGVALUE." - msg = msg % (v, str(f)) - warn(msg, RuntimeWarning) - r.append(MISSINGVALUE) - return r - - else: - return row - - def __next__(self) -> list: - """A `FileIO` object is its own iterator, see `StringIO`. - - Raises - ------ - StopIteration - Raised at the EOF. - - """ - - self._complain_ifclosed(self.closed) - r = self.__read() - if r is None: - raise StopIteration - - return r - -
[docs] def close(self): - """Subclasses should clean themselves up and then call this method.""" - - if not self.closed: - self.closed = True - del self.dataObj, self.pos
- -
[docs] def get(self, n: int) -> list: - """Seeks the file to ``n`` and returns ``n``. If ``.ids`` is set - ``n`` should be an id, else, ``n`` should be an offset. - """ - - prevPos = self.tell() - self.seek(n) - obj = self.__read() - self.seek(prevPos) - - return obj
- -
[docs] def seek(self, n: int): - """Seek the `FileObj` to the beginning of the ``n``'th record. - If IDs are set, seeks to the beginning of the record at ID, ``n``. - """ - - self._complain_ifclosed(self.closed) - self.pos = n
- -
[docs] def tell(self) -> int: - """Return ID (or offset) of next object.""" - - self._complain_ifclosed(self.closed) - - return self.pos
- -
[docs] def read(self, n=-1) -> Union[list, None]: - """Read at most ``n`` objects, less if read hits EOF. - If size is negative or omitted read all objects until EOF. - Returns ``None`` if EOF is reached before any objects. - - Raises - ------ - StopIteration - Raised at the EOF. - - """ - - self._complain_ifclosed(self.closed) - - if n < 0: - # return list(self) - result = [] - while 1: - try: - result.append(self.__read()) - except StopIteration: - break - return result - elif n == 0: - return None - else: - result = [] - for i in range(0, n): - try: - result.append(self.__read()) - except StopIteration: - break - return result
- - def __read(self) -> list: - """Gets one row from the file handler, and if necessary casts it's objects. - - Raises - ------ - StopIteration - Raised at the EOF. - - """ - - row = self._read() - if row is None: - raise StopIteration - row = self._cast(row) - - return row - - def _read(self): - """Must be implemented by subclasses that support 'r' subclasses. - Should increment ``.pos`` and redefine this doc string. - - Raises - ------ - NotImplementedError - - """ - - self._complain_ifclosed(self.closed) - raise NotImplementedError - -
[docs] def truncate(self, size=None): - """Should be implemented by subclasses and redefine this doc string. - - Raises - ------ - NotImplementedError - - """ - - self._complain_ifclosed(self.closed) - raise NotImplementedError
- -
[docs] def write(self, obj): - """Must be implemented by subclasses that support 'w' subclasses - Should increment ``.pos``. Subclasses should also check if ``obj`` - is an instance of type(list) and redefine this doc string. - - Raises - ------ - NotImplementedError - - """ - - self._complain_ifclosed(self.closed) - "Write obj to dataObj" - raise NotImplementedError
- -
[docs] def flush(self): - """ - - Raises - ------ - NotImplementedError - - """ - - self._complain_ifclosed(self.closed) - raise NotImplementedError
-
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/contiguity.html b/docs/_modules/libpysal/weights/contiguity.html deleted file mode 100644 index 350a7b9c9..000000000 --- a/docs/_modules/libpysal/weights/contiguity.html +++ /dev/null @@ -1,780 +0,0 @@ - - - - - - - libpysal.weights.contiguity — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.contiguity

-import itertools
-
-import numpy
-
-from ..cg import voronoi_frames
-from ..io.fileio import FileIO
-from ._contW_lists import ContiguityWeightsLists
-from .util import get_ids, get_points_array
-from .weights import WSP, W
-from .raster import da2W, da2WSP
-
-try:
-    from shapely.geometry import Point as shapely_point
-    from ..cg.shapes import Point as pysal_point
-
-    point_type = (shapely_point, pysal_point)
-except ImportError:
-    from ..cg.shapes import Point as point_type
-
-WT_TYPE = {"rook": 2, "queen": 1}  # for _contW_Binning
-
-__author__ = "Sergio J. Rey <srey@asu.edu> , Levi John Wolf <levi.john.wolf@gmail.com>"
-
-__all__ = ["Rook", "Queen", "Voronoi"]
-
-
-
[docs]class Rook(W): - """ - Construct a weights object from a collection of pysal polygons that share at least one edge. - - Parameters - ---------- - polygons : list - a collection of PySAL shapes to build weights from - ids : list - a list of names to use to build the weights - **kw : keyword arguments - optional arguments for :class:`pysal.weights.W` - - See Also - --------- - :class:`libpysal.weights.weights.W` - """ - -
[docs] def __init__(self, polygons, **kw): - criterion = "rook" - ids = kw.pop("ids", None) - polygons, backup = itertools.tee(polygons) - first_shape = next(iter(backup)) - if isinstance(first_shape, point_type): - polygons, vertices = voronoi_frames(get_points_array(polygons)) - polygons = list(polygons.geometry) - neighbors, ids = _build(polygons, criterion=criterion, ids=ids) - W.__init__(self, neighbors, ids=ids, **kw)
- -
[docs] @classmethod - def from_shapefile(cls, filepath, idVariable=None, full=False, **kwargs): - """ - Rook contiguity weights from a polygon shapefile. - - Parameters - ---------- - - shapefile : string - name of polygon shapefile including suffix. - sparse : boolean - If True return WSP instance - If False return W instance - - Returns - ------- - - w : W - instance of spatial weights - - Examples - -------- - >>> from libpysal.weights import Rook - >>> import libpysal - >>> wr=Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"), "POLYID") - >>> "%.3f"%wr.pct_nonzero - '8.330' - >>> wr=Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"), sparse=True) - >>> pct_sp = wr.sparse.nnz *1. / wr.n**2 - >>> "%.3f"%pct_sp - '0.083' - - Notes - ----- - - Rook contiguity defines as neighbors any pair of polygons that share a - common edge in their polygon definitions. - - See Also - -------- - :class:`libpysal.weights.weights.W` - :class:`libpysal.weights.contiguity.Rook` - """ - sparse = kwargs.pop("sparse", False) - if idVariable is not None: - ids = get_ids(filepath, idVariable) - else: - ids = None - w = cls(FileIO(filepath), ids=ids, **kwargs) - w.set_shapefile(filepath, idVariable=idVariable, full=full) - if sparse: - w = w.to_WSP() - return w
- -
[docs] @classmethod - def from_iterable(cls, iterable, sparse=False, **kwargs): - """ - Construct a weights object from a collection of arbitrary polygons. This - will cast the polygons to PySAL polygons, then build the W. - - Parameters - ---------- - iterable : iterable - a collection of of shapes to be cast to PySAL shapes. Must - support iteration. Can be either Shapely or PySAL shapes. - **kw : keyword arguments - optional arguments for :class:`pysal.weights.W` - See Also - -------- - :class:`libpysal.weights.weights.W` - :class:`libpysal.weights.contiguity.Rook` - """ - new_iterable = iter(iterable) - w = cls(new_iterable, **kwargs) - if sparse: - w = WSP.from_W(w) - return w
- -
[docs] @classmethod - def from_dataframe( - cls, df, geom_col=None, idVariable=None, ids=None, id_order=None, **kwargs - ): - """ - Construct a weights object from a pandas dataframe with a geometry - column. This will cast the polygons to PySAL polygons, then build the W - using ids from the dataframe. - - Parameters - ---------- - df : DataFrame - a :class: `pandas.DataFrame` containing geometries to use - for spatial weights - geom_col : string - the name of the column in `df` that contains the - geometries. Defaults to active geometry column. - idVariable : string - the name of the column to use as IDs. If nothing is - provided, the dataframe index is used - ids : list - a list of ids to use to index the spatial weights object. - Order is not respected from this list. - id_order : list - an ordered list of ids to use to index the spatial weights - object. If used, the resulting weights object will iterate - over results in the order of the names provided in this - argument. - - See Also - -------- - :class:`libpysal.weights.weights.W` - :class:`libpysal.weights.contiguity.Rook` - """ - if geom_col is None: - geom_col = df.geometry.name - if id_order is not None: - if id_order is True and ((idVariable is not None) or (ids is not None)): - # if idVariable is None, we want ids. Otherwise, we want the - # idVariable column - id_order = list(df.get(idVariable, ids)) - else: - id_order = df.get(id_order, ids) - elif idVariable is not None: - ids = df.get(idVariable).tolist() - elif isinstance(ids, str): - ids = df.get(ids).tolist() - return cls.from_iterable( - df[geom_col].tolist(), ids=ids, id_order=id_order, **kwargs - )
- -
[docs] @classmethod - def from_xarray( - cls, - da, - z_value=None, - coords_labels={}, - k=1, - include_nodata=False, - n_jobs=1, - sparse=True, - **kwargs, - ): - """ - Construct a weights object from a xarray.DataArray with an additional - attribute index containing coordinate values of the raster - in the form of Pandas.Index/MultiIndex. - - Parameters - ---------- - da : xarray.DataArray - Input 2D or 3D DataArray with shape=(z, y, x) - z_value : int/string/float - Select the z_value of 3D DataArray with multiple layers. - coords_labels : dictionary - Pass dimension labels for coordinates and layers if they do not - belong to default dimensions, which are (band/time, y/lat, x/lon) - e.g. coords_labels = {"y_label": "latitude", "x_label": "longitude", "z_label": "year"} - Default is {} empty dictionary. - sparse : boolean - type of weight object. Default is True. For libpysal.weights.W, sparse = False - k : int - Order of contiguity, this will select all neighbors upto kth order. - Default is 1. - include_nodata : boolean - If True, missing values will be assumed as non-missing when - selecting higher_order neighbors, Default is False - n_jobs : int - Number of cores to be used in the sparse weight construction. If -1, - all available cores are used. Default is 1. - **kwargs : keyword arguments - optional arguments passed when sparse = False - - Returns - ------- - w : libpysal.weights.W/libpysal.weights.WSP - instance of spatial weights class W or WSP with an index attribute - - Notes - ----- - 1. Lower order contiguities are also selected. - 2. Returned object contains `index` attribute that includes a - `Pandas.MultiIndex` object from the DataArray. - - See Also - -------- - :class:`libpysal.weights.weights.W` - :class:`libpysal.weights.weights.WSP` - """ - if sparse: - w = da2WSP(da, "rook", z_value, coords_labels, k, include_nodata) - else: - w = da2W(da, "rook", z_value, coords_labels, k, include_nodata, **kwargs) - return w
- - -
[docs]class Queen(W): - """ - Construct a weights object from a collection of pysal polygons that share at least one vertex. - - Parameters - ---------- - polygons : list - a collection of PySAL shapes to build weights from - ids : list - a list of names to use to build the weights - **kw : keyword arguments - optional arguments for :class:`pysal.weights.W` - - See Also - -------- - :class:`libpysal.weights.weights.W` - """ - -
[docs] def __init__(self, polygons, **kw): - criterion = "queen" - ids = kw.pop("ids", None) - polygons, backup = itertools.tee(polygons) - first_shape = next(iter(backup)) - if isinstance(first_shape, point_type): - polygons, vertices = voronoi_frames(get_points_array(polygons)) - polygons = list(polygons.geometry) - neighbors, ids = _build(polygons, criterion=criterion, ids=ids) - W.__init__(self, neighbors, ids=ids, **kw)
- -
[docs] @classmethod - def from_shapefile(cls, filepath, idVariable=None, full=False, **kwargs): - """ - Queen contiguity weights from a polygon shapefile. - - Parameters - ---------- - - shapefile : string - name of polygon shapefile including suffix. - idVariable : string - name of a column in the shapefile's DBF to use for ids. - sparse : boolean - If True return WSP instance - If False return W instance - Returns - ------- - - w : W - instance of spatial weights - - Examples - -------- - >>> from libpysal.weights import Queen - >>> import libpysal - >>> wq=Queen.from_shapefile(libpysal.examples.get_path("columbus.shp")) - >>> "%.3f"%wq.pct_nonzero - '9.829' - >>> wq=Queen.from_shapefile(libpysal.examples.get_path("columbus.shp"),"POLYID") - >>> "%.3f"%wq.pct_nonzero - '9.829' - >>> wq=Queen.from_shapefile(libpysal.examples.get_path("columbus.shp"), sparse=True) - >>> pct_sp = wq.sparse.nnz *1. / wq.n**2 - >>> "%.3f"%pct_sp - '0.098' - - Notes - - Queen contiguity defines as neighbors any pair of polygons that share at - least one vertex in their polygon definitions. - - See Also - -------- - :class:`libpysal.weights.weights.W` - :class:`libpysal.weights.contiguity.Queen` - """ - sparse = kwargs.pop("sparse", False) - if idVariable is not None: - ids = get_ids(filepath, idVariable) - else: - ids = None - w = cls(FileIO(filepath), ids=ids, **kwargs) - w.set_shapefile(filepath, idVariable=idVariable, full=full) - if sparse: - w = w.to_WSP() - return w
- -
[docs] @classmethod - def from_iterable(cls, iterable, sparse=False, **kwargs): - """ - Construct a weights object from a collection of arbitrary polygons. This - will cast the polygons to PySAL polygons, then build the W. - - Parameters - ---------- - iterable : iterable - a collection of of shapes to be cast to PySAL shapes. Must - support iteration. Contents may either be a shapely or PySAL shape. - **kw : keyword arguments - optional arguments for :class:`pysal.weights.W` - See Also - --------- - :class:`libpysal.weights.weights.W` - :class:`libpysal.weights.contiguiyt.Queen` - """ - new_iterable = iter(iterable) - w = cls(new_iterable, **kwargs) - if sparse: - w = WSP.from_W(w) - return w
- -
[docs] @classmethod - def from_dataframe(cls, df, geom_col=None, **kwargs): - """ - Construct a weights object from a pandas dataframe with a geometry - column. This will cast the polygons to PySAL polygons, then build the W - using ids from the dataframe. - - Parameters - ---------- - df : DataFrame - a :class: `pandas.DataFrame` containing geometries to use - for spatial weights - geom_col : string - the name of the column in `df` that contains the - geometries. Defaults to active geometry column - idVariable : string - the name of the column to use as IDs. If nothing is - provided, the dataframe index is used - ids : list - a list of ids to use to index the spatial weights object. - Order is not respected from this list. - id_order : list - an ordered list of ids to use to index the spatial weights - object. If used, the resulting weights object will iterate - over results in the order of the names provided in this - argument. - - See Also - -------- - :class:`libpysal.weights.weights.W` - :class:`libpysal.weights.contiguity.Queen` - """ - idVariable = kwargs.pop("idVariable", None) - ids = kwargs.pop("ids", None) - id_order = kwargs.pop("id_order", None) - if geom_col is None: - geom_col = df.geometry.name - if id_order is not None: - if id_order is True and ((idVariable is not None) or (ids is not None)): - # if idVariable is None, we want ids. Otherwise, we want the - # idVariable column - ids = list(df.get(idVariable, ids)) - id_order = ids - elif isinstance(id_order, str): - ids = df.get(id_order, ids) - id_order = ids - elif idVariable is not None: - ids = df.get(idVariable).tolist() - elif isinstance(ids, str): - ids = df.get(ids).tolist() - w = cls.from_iterable( - df[geom_col].tolist(), ids=ids, id_order=id_order, **kwargs - ) - return w
- -
[docs] @classmethod - def from_xarray( - cls, - da, - z_value=None, - coords_labels={}, - k=1, - include_nodata=False, - n_jobs=1, - sparse=True, - **kwargs, - ): - """ - Construct a weights object from a xarray.DataArray with an additional - attribute index containing coordinate values of the raster - in the form of Pandas.Index/MultiIndex. - - Parameters - ---------- - da : xarray.DataArray - Input 2D or 3D DataArray with shape=(z, y, x) - z_value : int/string/float - Select the z_value of 3D DataArray with multiple layers. - coords_labels : dictionary - Pass dimension labels for coordinates and layers if they do not - belong to default dimensions, which are (band/time, y/lat, x/lon) - e.g. coords_labels = {"y_label": "latitude", "x_label": "longitude", "z_label": "year"} - Default is {} empty dictionary. - sparse : boolean - type of weight object. Default is True. For libpysal.weights.W, sparse = False - k : int - Order of contiguity, this will select all neighbors upto kth order. - Default is 1. - include_nodata : boolean - If True, missing values will be assumed as non-missing when - selecting higher_order neighbors, Default is False - n_jobs : int - Number of cores to be used in the sparse weight construction. If -1, - all available cores are used. Default is 1. - **kwargs : keyword arguments - optional arguments passed when sparse = False - - Returns - ------- - w : libpysal.weights.W/libpysal.weights.WSP - instance of spatial weights class W or WSP with an index attribute - - Notes - ----- - 1. Lower order contiguities are also selected. - 2. Returned object contains `index` attribute that includes a - `Pandas.MultiIndex` object from the DataArray. - - See Also - -------- - :class:`libpysal.weights.weights.W` - :class:`libpysal.weights.weights.WSP` - """ - if sparse: - w = da2WSP(da, "queen", z_value, coords_labels, k, include_nodata) - else: - w = da2W(da, "queen", z_value, coords_labels, k, include_nodata, **kwargs) - return w
- - -
[docs]def Voronoi(points, criterion="rook", clip="ahull", **kwargs): - """ - Voronoi weights for a 2-d point set - - - Points are Voronoi neighbors if their polygons share an edge or vertex. - - - Parameters - ---------- - - points : array - (n,2) - coordinates for point locations - kwargs : arguments to pass to Rook, the underlying contiguity class. - - Returns - ------- - - w : W - instance of spatial weights - - Examples - -------- - >>> import numpy as np - >>> from libpysal.weights import Voronoi - >>> np.random.seed(12345) - >>> points= np.random.random((5,2))*10 + 10 - >>> w = Voronoi(points) - >>> w.neighbors - {0: [2, 3, 4], 1: [2], 2: [0, 1, 4], 3: [0, 4], 4: [0, 2, 3]} - """ - from ..cg.voronoi import voronoi_frames - - region_df, _ = voronoi_frames(points, clip=clip) - if criterion.lower() == "queen": - cls = Queen - elif criterion.lower() == "rook": - cls = Rook - else: - raise ValueError( - "Contiguity criterion {} not supported. " - 'Only "rook" and "queen" are supported.'.format(criterion) - ) - return cls.from_dataframe(region_df, **kwargs)
- - -def _from_dataframe(df, **kwargs): - """ - Construct a voronoi contiguity weight directly from a dataframe. - Note that if criterion='rook', this is identical to the delaunay - graph for the points. - - If the input dataframe is of any other geometry type than "Point", - a value error is raised. - - Arguments - --------- - df : pandas.DataFrame - dataframe containing point geometries for a - voronoi diagram. - - Returns - ------- - w : W - instance of spatial weights. - """ - try: - x, y = df.geometry.x.values, df.geometry.y.values - except ValueError: - raise NotImplementedError( - "Voronoi weights are only" - " implemented for point geometries. " - "You may consider using df.centroid." - ) - coords = numpy.column_stack((x, y)) - return Voronoi(coords, **kwargs) - - -Voronoi.from_dataframe = _from_dataframe - - -def _build(polygons, criterion="rook", ids=None): - """ - This is a developer-facing function to construct a spatial weights object. - - Parameters - --------- - polygons : list - list of pysal polygons to use to build contiguity - criterion : string - option of which kind of contiguity to build. Is either "rook" or "queen" - ids : list - list of ids to use to index the neighbor dictionary - - Returns - ------- - tuple containing (neighbors, ids), where neighbors is a dictionary - describing contiguity relations and ids is the list of ids used to index - that dictionary. - - NOTE: this is different from the prior behavior of buildContiguity, which - returned an actual weights object. Since this just dispatches for the - classes above, this returns the raw ingredients for a spatial weights - object, not the object itself. - """ - if ids and len(ids) != len(set(ids)): - raise ValueError( - "The argument to the ids parameter contains duplicate entries." - ) - - wttype = WT_TYPE[criterion.lower()] - geo = polygons - if issubclass(type(geo), FileIO): - geo.seek(0) # Make sure we read from the beginning of the file. - - neighbor_data = ContiguityWeightsLists(polygons, wttype=wttype).w - - neighbors = {} - # weights={} - if ids: - for key in neighbor_data: - ida = ids[key] - if ida not in neighbors: - neighbors[ida] = set() - neighbors[ida].update([ids[x] for x in neighbor_data[key]]) - for key in neighbors: - neighbors[key] = set(neighbors[key]) - else: - for key in neighbor_data: - neighbors[key] = set(neighbor_data[key]) - return ( - dict( - list(zip(list(neighbors.keys()), list(map(list, list(neighbors.values()))))) - ), - ids, - ) - - -def buildContiguity(polygons, criterion="rook", ids=None): - """ - This is a deprecated function. - - It builds a contiguity W from the polygons provided. As such, it is now - identical to calling the class constructors for Rook or Queen. - """ - # Warn('This function is deprecated. Please use the Rook or Queen classes', - # UserWarning) - if criterion.lower() == "rook": - return Rook(polygons, ids=ids) - elif criterion.lower() == "queen": - return Queen(polygons, ids=ids) - else: - raise Exception('Weights criterion "{}" was not found.'.format(criterion)) -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/distance.html b/docs/_modules/libpysal/weights/distance.html deleted file mode 100644 index 5858a82fe..000000000 --- a/docs/_modules/libpysal/weights/distance.html +++ /dev/null @@ -1,1098 +0,0 @@ - - - - - - - libpysal.weights.distance — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.distance

-__all__ = ["KNN", "Kernel", "DistanceBand"]
-__author__ = "Sergio J. Rey <srey@asu.edu>, Levi John Wolf <levi.john.wolf@gmail.com>"
-
-
-from ..cg.kdtree import KDTree
-from .weights import W, WSP
-from .util import (
-    isKDTree,
-    get_ids,
-    get_points_array_from_shapefile,
-    get_points_array,
-    WSP2W,
-)
-
-import copy
-from warnings import warn as Warn
-from scipy.spatial import distance_matrix
-import scipy.sparse as sp
-import numpy as np
-
-
-def knnW(data, k=2, p=2, ids=None, radius=None, distance_metric="euclidean"):
-    """
-    This is deprecated. Use the pysal.weights.KNN class instead.
-    """
-    # Warn('This function is deprecated. Please use pysal.weights.KNN', UserWarning)
-    return KNN(data, k=k, p=p, ids=ids, radius=radius, distance_metric=distance_metric)
-
-
-
[docs]class KNN(W): - """ - Creates nearest neighbor weights matrix based on k nearest - neighbors. - - Parameters - ---------- - kdtree : object - PySAL KDTree or ArcKDTree where KDtree.data is array (n,k) - n observations on k characteristics used to measure - distances between the n objects - k : int - number of nearest neighbors - p : float - Minkowski p-norm distance metric parameter: - 1<=p<=infinity - 2: Euclidean distance - 1: Manhattan distance - Ignored if the KDTree is an ArcKDTree - ids : list - identifiers to attach to each observation - - Returns - ------- - - w : W - instance - Weights object with binary weights - - Examples - -------- - >>> import libpysal - >>> import numpy as np - >>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] - >>> kd = libpysal.cg.KDTree(np.array(points)) - >>> wnn2 = libpysal.weights.KNN(kd, 2) - >>> [1,3] == wnn2.neighbors[0] - True - >>> wnn2 = KNN(kd,2) - >>> wnn2[0] - {1: 1.0, 3: 1.0} - >>> wnn2[1] - {0: 1.0, 3: 1.0} - - now with 1 rather than 0 offset - - >>> wnn2 = libpysal.weights.KNN(kd, 2, ids=range(1,7)) - >>> wnn2[1] - {2: 1.0, 4: 1.0} - >>> wnn2[2] - {1: 1.0, 4: 1.0} - >>> 0 in wnn2.neighbors - False - - Notes - ----- - - Ties between neighbors of equal distance are arbitrarily broken. - - See Also - -------- - :class:`libpysal.weights.weights.W` - """ - -
[docs] def __init__( - self, - data, - k=2, - p=2, - ids=None, - radius=None, - distance_metric="euclidean", - **kwargs - ): - if radius is not None: - distance_metric = "arc" - if isKDTree(data): - self.kdtree = data - self.data = self.kdtree.data - else: - self.kdtree = KDTree(data, radius=radius, distance_metric=distance_metric) - self.data = self.kdtree.data - self.k = k - self.p = p - this_nnq = self.kdtree.query(self.data, k=k + 1, p=p) - - to_weight = this_nnq[1] - if ids is None: - ids = list(range(to_weight.shape[0])) - - neighbors = {} - for i, row in enumerate(to_weight): - row = row.tolist() - row.remove(i) - row = [ids[j] for j in row] - focal = ids[i] - neighbors[focal] = row - W.__init__(self, neighbors, id_order=ids, **kwargs)
- -
[docs] @classmethod - def from_shapefile(cls, filepath, *args, **kwargs): - """ - Nearest neighbor weights from a shapefile. - - Parameters - ---------- - - data : string - shapefile containing attribute data. - k : int - number of nearest neighbors - p : float - Minkowski p-norm distance metric parameter: - 1<=p<=infinity - 2: Euclidean distance - 1: Manhattan distance - ids : list - identifiers to attach to each observation - radius : float - If supplied arc_distances will be calculated - based on the given radius. p will be ignored. - - Returns - ------- - - w : KNN - instance; Weights object with binary weights. - - Examples - -------- - - Polygon shapefile - >>> import libpysal - >>> from libpysal.weights import KNN - >>> wc=KNN.from_shapefile(libpysal.examples.get_path("columbus.shp")) - >>> "%.4f"%wc.pct_nonzero - '4.0816' - >>> set([2,1]) == set(wc.neighbors[0]) - True - >>> wc3=KNN.from_shapefile(libpysal.examples.get_path("columbus.shp"),k=3) - >>> set(wc3.neighbors[0]) == set([2,1,3]) - True - >>> set(wc3.neighbors[2]) == set([4,3,0]) - True - - - Point shapefile - - >>> w=KNN.from_shapefile(libpysal.examples.get_path("juvenile.shp")) - >>> w.pct_nonzero - 1.1904761904761905 - >>> w1=KNN.from_shapefile(libpysal.examples.get_path("juvenile.shp"),k=1) - >>> "%.3f"%w1.pct_nonzero - '0.595' - - Notes - ----- - - Ties between neighbors of equal distance are arbitrarily broken. - - See Also - -------- - :class:`libpysal.weights.weights.W` - """ - return cls(get_points_array_from_shapefile(filepath), *args, **kwargs)
- -
[docs] @classmethod - def from_array(cls, array, *args, **kwargs): - """ - Creates nearest neighbor weights matrix based on k nearest - neighbors. - - Parameters - ---------- - array : np.ndarray - (n, k) array representing n observations on - k characteristics used to measure distances - between the n objects - **kwargs : keyword arguments, see Rook - - Returns - ------- - w : W - instance - Weights object with binary weights - - Examples - -------- - >>> from libpysal.weights import KNN - >>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] - >>> wnn2 = KNN.from_array(points, 2) - >>> [1,3] == wnn2.neighbors[0] - True - >>> wnn2 = KNN.from_array(points,2) - >>> wnn2[0] - {1: 1.0, 3: 1.0} - >>> wnn2[1] - {0: 1.0, 3: 1.0} - - now with 1 rather than 0 offset - - >>> wnn2 = KNN.from_array(points, 2, ids=range(1,7)) - >>> wnn2[1] - {2: 1.0, 4: 1.0} - >>> wnn2[2] - {1: 1.0, 4: 1.0} - >>> 0 in wnn2.neighbors - False - - Notes - ----- - - Ties between neighbors of equal distance are arbitrarily broken. - - See Also - -------- - :class:`libpysal.weights.weights.W` - """ - return cls(array, *args, **kwargs)
- -
[docs] @classmethod - def from_dataframe(cls, df, geom_col=None, ids=None, *args, **kwargs): - """ - Make KNN weights from a dataframe. - - Parameters - ---------- - df : pandas.dataframe - a dataframe with a geometry column that can be used to - construct a W object - geom_col : string - the name of the column in `df` that contains the - geometries. Defaults to active geometry column. - ids : string or iterable - if string, the column name of the indices from the dataframe - if iterable, a list of ids to use for the W - if None, df.index is used. - - See Also - -------- - :class:`libpysal.weights.weights.W` - """ - if geom_col is None: - geom_col = df.geometry.name - pts = get_points_array(df[geom_col]) - if ids is None: - ids = df.index.tolist() - elif isinstance(ids, str): - ids = df[ids].tolist() - return cls(pts, *args, ids=ids, **kwargs)
- -
[docs] def reweight(self, k=None, p=None, new_data=None, new_ids=None, inplace=True): - """ - Redo K-Nearest Neighbor weights construction using given parameters - - Parameters - ---------- - new_data : np.ndarray - an array containing additional data to use in the KNN - weight - new_ids : list - a list aligned with new_data that provides the ids for - each new observation - inplace : bool - a flag denoting whether to modify the KNN object - in place or to return a new KNN object - k : int - number of nearest neighbors - p : float - Minkowski p-norm distance metric parameter: - 1<=p<=infinity - 2: Euclidean distance - 1: Manhattan distance - Ignored if the KDTree is an ArcKDTree - - Returns - ------- - A copy of the object using the new parameterization, or None if the - object is reweighted in place. - """ - - if new_data is not None: - new_data = np.asarray(new_data).reshape(-1, 2) - data = np.vstack((self.data, new_data)).reshape(-1, 2) - if new_ids is not None: - ids = copy.deepcopy(self.id_order) - ids.extend(list(new_ids)) - else: - ids = list(range(data.shape[0])) - elif (new_data is None) and (new_ids is None): - # If not, we can use the same kdtree we have - data = self.kdtree - ids = self.id_order - elif (new_data is None) and (new_ids is not None): - Warn("Remapping ids must be done using w.remap_ids") - if k is None: - k = self.k - if p is None: - p = self.p - if inplace: - self._reset() - self.__init__(data, ids=ids, k=k, p=p) - else: - return KNN(data, ids=ids, k=k, p=p)
- - -
[docs]class Kernel(W): - """ - Spatial weights based on kernel functions. - - Parameters - ---------- - - data : array - (n,k) or KDTree where KDtree.data is array (n,k) - n observations on k characteristics used to measure - distances between the n objects - bandwidth : float - or array-like (optional) - the bandwidth :math:`h_i` for the kernel. - fixed : binary - If true then :math:`h_i=h \\forall i`. If false then - bandwidth is adaptive across observations. - k : int - the number of nearest neighbors to use for determining - bandwidth. For fixed bandwidth, :math:`h_i=max(dknn) \\forall i` - where :math:`dknn` is a vector of k-nearest neighbor - distances (the distance to the kth nearest neighbor for each - observation). For adaptive bandwidths, :math:`h_i=dknn_i` - diagonal : boolean - If true, set diagonal weights = 1.0, if false (default), - diagonals weights are set to value according to kernel - function. - function : {'triangular','uniform','quadratic','quartic','gaussian'} - kernel function defined as follows with - - .. math:: - - z_{i,j} = d_{i,j}/h_i - - triangular - - .. math:: - - K(z) = (1 - |z|) \\ if |z| \\le 1 - - uniform - - .. math:: - - K(z) = 1/2 \\ if |z| \\le 1 - - quadratic - - .. math:: - - K(z) = (3/4)(1-z^2) \\ if |z| \\le 1 - - quartic - - .. math:: - - K(z) = (15/16)(1-z^2)^2 \\ if |z| \\le 1 - - gaussian - - .. math:: - - K(z) = (2\\pi)^{(-1/2)} exp(-z^2 / 2) - - eps : float - adjustment to ensure knn distance range is closed on the - knnth observations - - Attributes - ---------- - weights : dict - Dictionary keyed by id with a list of weights for each neighbor - - neighbors : dict - of lists of neighbors keyed by observation id - - bandwidth : array - array of bandwidths - - Examples - -------- - >>> from libpysal.weights import Kernel - >>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] - >>> kw=Kernel(points) - >>> kw.weights[0] - [1.0, 0.500000049999995, 0.4409830615267465] - >>> kw.neighbors[0] - [0, 1, 3] - >>> kw.bandwidth - array([[20.000002], - [20.000002], - [20.000002], - [20.000002], - [20.000002], - [20.000002]]) - >>> kw15=Kernel(points,bandwidth=15.0) - >>> kw15[0] - {0: 1.0, 1: 0.33333333333333337, 3: 0.2546440075000701} - >>> kw15.neighbors[0] - [0, 1, 3] - >>> kw15.bandwidth - array([[15.], - [15.], - [15.], - [15.], - [15.], - [15.]]) - - Adaptive bandwidths user specified - - >>> bw=[25.0,15.0,25.0,16.0,14.5,25.0] - >>> kwa=Kernel(points,bandwidth=bw) - >>> kwa.weights[0] - [1.0, 0.6, 0.552786404500042, 0.10557280900008403] - >>> kwa.neighbors[0] - [0, 1, 3, 4] - >>> kwa.bandwidth - array([[25. ], - [15. ], - [25. ], - [16. ], - [14.5], - [25. ]]) - - Endogenous adaptive bandwidths - - >>> kwea=Kernel(points,fixed=False) - >>> kwea.weights[0] - [1.0, 0.10557289844279438, 9.99999900663795e-08] - >>> kwea.neighbors[0] - [0, 1, 3] - >>> kwea.bandwidth - array([[11.18034101], - [11.18034101], - [20.000002 ], - [11.18034101], - [14.14213704], - [18.02775818]]) - - Endogenous adaptive bandwidths with Gaussian kernel - - >>> kweag=Kernel(points,fixed=False,function='gaussian') - >>> kweag.weights[0] - [0.3989422804014327, 0.2674190291577696, 0.2419707487162134] - >>> kweag.bandwidth - array([[11.18034101], - [11.18034101], - [20.000002 ], - [11.18034101], - [14.14213704], - [18.02775818]]) - - Diagonals to 1.0 - - >>> kq = Kernel(points,function='gaussian') - >>> kq.weights - {0: [0.3989422804014327, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 0.3989422804014327, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 0.3989422804014327, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 0.3989422804014327, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 0.3989422804014327, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 0.3989422804014327]} - >>> kqd = Kernel(points, function='gaussian', diagonal=True) - >>> kqd.weights - {0: [1.0, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 1.0, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 1.0, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 1.0, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 1.0, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 1.0]} - - """ - -
[docs] def __init__( - self, - data, - bandwidth=None, - fixed=True, - k=2, - function="triangular", - eps=1.0000001, - ids=None, - diagonal=False, - distance_metric="euclidean", - radius=None, - **kwargs - ): - if radius is not None: - distance_metric = "arc" - if isKDTree(data): - self.kdtree = data - self.data = self.kdtree.data - data = self.data - else: - self.kdtree = KDTree(data, distance_metric=distance_metric, radius=radius) - self.data = self.kdtree.data - self.k = k + 1 - self.function = function.lower() - self.fixed = fixed - self.eps = eps - if bandwidth: - try: - bandwidth = np.array(bandwidth) - bandwidth.shape = (len(bandwidth), 1) - except: - bandwidth = np.ones((len(data), 1), "float") * bandwidth - self.bandwidth = bandwidth - else: - self._set_bw() - - self._eval_kernel() - neighbors, weights = self._k_to_W(ids) - if diagonal: - for i in neighbors: - weights[i][neighbors[i].index(i)] = 1.0 - W.__init__(self, neighbors, weights, ids, **kwargs)
- -
[docs] @classmethod - def from_shapefile(cls, filepath, idVariable=None, **kwargs): - """ - Kernel based weights from shapefile - - Parameters - ---------- - shapefile : string - shapefile name with shp suffix - idVariable : string - name of column in shapefile's DBF to use for ids - - Returns - ------- - Kernel Weights Object - - See Also - --------- - :class:`libpysal.weights.weights.W` - """ - points = get_points_array_from_shapefile(filepath) - if idVariable is not None: - ids = get_ids(filepath, idVariable) - else: - ids = None - return cls.from_array(points, ids=ids, **kwargs)
- -
[docs] @classmethod - def from_array(cls, array, **kwargs): - """ - Construct a Kernel weights from an array. Supports all the same options - as :class:`libpysal.weights.Kernel` - - See Also - -------- - :class:`libpysal.weights.weights.W` - """ - return cls(array, **kwargs)
- -
[docs] @classmethod - def from_dataframe(cls, df, geom_col=None, ids=None, **kwargs): - """ - Make Kernel weights from a dataframe. - - Parameters - ---------- - df : pandas.dataframe - a dataframe with a geometry column that can be used to - construct a W object - geom_col : string - the name of the column in `df` that contains the - geometries. Defaults to active geometry column. - ids : string or iterable - if string, the column name of the indices from the dataframe - if iterable, a list of ids to use for the W - if None, df.index is used. - - See Also - -------- - :class:`libpysal.weights.weights.W` - """ - if geom_col is None: - geom_col = df.geometry.name - pts = get_points_array(df[geom_col]) - if ids is None: - ids = df.index.tolist() - elif isinstance(ids, str): - ids = df[ids].tolist() - return cls(pts, ids=ids, **kwargs)
- - def _k_to_W(self, ids=None): - allneighbors = {} - weights = {} - if ids: - ids = np.array(ids) - else: - ids = np.arange(len(self.data)) - for i, neighbors in enumerate(self.kernel): - if len(self.neigh[i]) == 0: - allneighbors[ids[i]] = [] - weights[ids[i]] = [] - else: - allneighbors[ids[i]] = list(ids[self.neigh[i]]) - weights[ids[i]] = self.kernel[i].tolist() - return allneighbors, weights - - def _set_bw(self): - dmat, neigh = self.kdtree.query(self.data, k=self.k) - if self.fixed: - # use max knn distance as bandwidth - bandwidth = dmat.max() * self.eps - n = len(dmat) - self.bandwidth = np.ones((n, 1), "float") * bandwidth - else: - # use local max knn distance - self.bandwidth = dmat.max(axis=1) * self.eps - self.bandwidth.shape = (self.bandwidth.size, 1) - # identify knn neighbors for each point - nnq = self.kdtree.query(self.data, k=self.k) - self.neigh = nnq[1] - - def _eval_kernel(self): - # get points within bandwidth distance of each point - if not hasattr(self, "neigh"): - kdtq = self.kdtree.query_ball_point - neighbors = [ - kdtq(self.data[i], r=bwi[0]) for i, bwi in enumerate(self.bandwidth) - ] - self.neigh = neighbors - # get distances for neighbors - bw = self.bandwidth - - kdtq = self.kdtree.query - z = [] - for i, nids in enumerate(self.neigh): - di, ni = kdtq(self.data[i], k=len(nids)) - if not isinstance(di, np.ndarray): - di = np.asarray([di] * len(nids)) - ni = np.asarray([ni] * len(nids)) - zi = np.array([dict(list(zip(ni, di)))[nid] for nid in nids]) / bw[i] - z.append(zi) - zs = z - # functions follow Anselin and Rey (2010) table 5.4 - if self.function == "triangular": - self.kernel = [1 - zi for zi in zs] - elif self.function == "uniform": - self.kernel = [np.ones(zi.shape) * 0.5 for zi in zs] - elif self.function == "quadratic": - self.kernel = [(3.0 / 4) * (1 - zi ** 2) for zi in zs] - elif self.function == "quartic": - self.kernel = [(15.0 / 16) * (1 - zi ** 2) ** 2 for zi in zs] - elif self.function == "gaussian": - c = np.pi * 2 - c = c ** (-0.5) - self.kernel = [c * np.exp(-(zi ** 2) / 2.0) for zi in zs] - else: - print(("Unsupported kernel function", self.function))
- - -
[docs]class DistanceBand(W): - """ - Spatial weights based on distance band. - - Parameters - ---------- - - data : array - (n,k) or KDTree where KDtree.data is array (n,k) - n observations on k characteristics used to measure - distances between the n objects - threshold : float - distance band - p : float - Minkowski p-norm distance metric parameter: - 1<=p<=infinity - 2: Euclidean distance - 1: Manhattan distance - binary : boolean - If true w_{ij}=1 if d_{i,j}<=threshold, otherwise w_{i,j}=0 - If false wij=dij^{alpha} - alpha : float - distance decay parameter for weight (default -1.0) - if alpha is positive the weights will not decline with - distance. If binary is True, alpha is ignored - - ids : list - values to use for keys of the neighbors and weights dicts - - build_sp : boolean - True to build sparse distance matrix and false to build dense - distance matrix; significant speed gains may be obtained - dending on the sparsity of the of distance_matrix and - threshold that is applied - silent : boolean - By default libpysal will print a warning if the - dataset contains any disconnected observations or - islands. To silence this warning set this - parameter to True. - - Attributes - ---------- - weights : dict - of neighbor weights keyed by observation id - - neighbors : dict - of neighbors keyed by observation id - - Examples - -------- - >>> import libpysal - >>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)] - >>> wcheck = libpysal.weights.W({0: [1, 3], 1: [0, 3], 2: [], 3: [0, 1], 4: [5], 5: [4]}) - - WARNING: there is one disconnected observation (no neighbors) - Island id: [2] - >>> w=libpysal.weights.DistanceBand(points,threshold=11.2) - - WARNING: there is one disconnected observation (no neighbors) - Island id: [2] - >>> libpysal.weights.util.neighbor_equality(w, wcheck) - True - >>> w=libpysal.weights.DistanceBand(points,threshold=14.2) - >>> wcheck = libpysal.weights.W({0: [1, 3], 1: [0, 3, 4], 2: [4], 3: [1, 0], 4: [5, 2, 1], 5: [4]}) - >>> libpysal.weights.util.neighbor_equality(w, wcheck) - True - - inverse distance weights - - >>> w=libpysal.weights.DistanceBand(points,threshold=11.2,binary=False) - - WARNING: there is one disconnected observation (no neighbors) - Island id: [2] - >>> w.weights[0] - [0.1, 0.08944271909999159] - >>> w.neighbors[0].tolist() - [1, 3] - - gravity weights - - >>> w=libpysal.weights.DistanceBand(points,threshold=11.2,binary=False,alpha=-2.) - - WARNING: there is one disconnected observation (no neighbors) - Island id: [2] - >>> w.weights[0] - [0.01, 0.007999999999999998] - - Notes - ----- - - This was initially implemented running scipy 0.8.0dev (in epd 6.1). - earlier versions of scipy (0.7.0) have a logic bug in scipy/sparse/dok.py - so serge changed line 221 of that file on sal-dev to fix the logic bug. - - """ - -
[docs] def __init__( - self, - data, - threshold, - p=2, - alpha=-1.0, - binary=True, - ids=None, - build_sp=True, - silence_warnings=False, - distance_metric="euclidean", - radius=None, - ): - """Casting to floats is a work around for a bug in scipy.spatial. - See detail in pysal issue #126. - - """ - if ids is not None: - ids = list(ids) - if radius is not None: - distance_metric = "arc" - self.p = p - self.threshold = threshold - self.binary = binary - self.alpha = alpha - self.build_sp = build_sp - self.silence_warnings = silence_warnings - - if isKDTree(data): - self.kdtree = data - self.data = self.kdtree.data - else: - if self.build_sp: - try: - data = np.asarray(data) - if data.dtype.kind != "f": - data = data.astype(float) - self.kdtree = KDTree( - data, distance_metric=distance_metric, radius=radius - ) - self.data = self.kdtree.data - except: - raise ValueError("Could not make array from data") - else: - self.data = data - self.kdtree = None - self._band() - neighbors, weights = self._distance_to_W(ids) - W.__init__( - self, neighbors, weights, ids, silence_warnings=self.silence_warnings - )
- -
[docs] @classmethod - def from_shapefile(cls, filepath, threshold, idVariable=None, **kwargs): - """ - Distance-band based weights from shapefile - - Parameters - ---------- - shapefile : string - shapefile name with shp suffix - idVariable : string - name of column in shapefile's DBF to use for ids - - Returns - -------- - Kernel Weights Object - - """ - points = get_points_array_from_shapefile(filepath) - if idVariable is not None: - ids = get_ids(filepath, idVariable) - else: - ids = None - return cls.from_array(points, threshold, ids=ids, **kwargs)
- -
[docs] @classmethod - def from_array(cls, array, threshold, **kwargs): - """ - Construct a DistanceBand weights from an array. Supports all the same options - as :class:`libpysal.weights.DistanceBand` - - """ - return cls(array, threshold, **kwargs)
- -
[docs] @classmethod - def from_dataframe(cls, df, threshold, geom_col=None, ids=None, **kwargs): - """ - Make DistanceBand weights from a dataframe. - - Parameters - ---------- - df : pandas.dataframe - a dataframe with a geometry column that can be used to - construct a W object - geom_col : string - the name of the column in `df` that contains the - geometries. Defaults to active geometry column. - ids : string or iterable - if string, the column name of the indices from the dataframe - if iterable, a list of ids to use for the W - if None, df.index is used. - - """ - if geom_col is None: - geom_col = df.geometry.name - pts = get_points_array(df[geom_col]) - if ids is None: - ids = df.index.tolist() - elif isinstance(ids, str): - ids = df[ids].tolist() - return cls(pts, threshold, ids=ids, **kwargs)
- - def _band(self): - """Find all pairs within threshold.""" - if self.build_sp: - self.dmat = self.kdtree.sparse_distance_matrix( - self.kdtree, max_distance=self.threshold, p=self.p - ).tocsr() - else: - if str(self.kdtree).split(".")[-1][0:10] == "Arc_KDTree": - raise TypeError( - "Unable to calculate dense arc distance matrix;" - ' parameter "build_sp" must be set to True for arc' - " distance type weight" - ) - self.dmat = self._spdistance_matrix(self.data, self.data, self.threshold) - - def _distance_to_W(self, ids=None): - if self.binary: - self.dmat[self.dmat > 0] = 1 - self.dmat.eliminate_zeros() - tempW = WSP2W( - WSP(self.dmat, id_order=ids), silence_warnings=self.silence_warnings - ) - neighbors = tempW.neighbors - weight_keys = list(tempW.weights.keys()) - weight_vals = list(tempW.weights.values()) - weights = dict(list(zip(weight_keys, list(map(list, weight_vals))))) - return neighbors, weights - else: - weighted = self.dmat.power(self.alpha) - weighted[weighted == np.inf] = 0 - weighted.eliminate_zeros() - tempW = WSP2W( - WSP(weighted, id_order=ids), silence_warnings=self.silence_warnings - ) - neighbors = tempW.neighbors - weight_keys = list(tempW.weights.keys()) - weight_vals = list(tempW.weights.values()) - weights = dict(list(zip(weight_keys, list(map(list, weight_vals))))) - return neighbors, weights - - def _spdistance_matrix(self, x, y, threshold=None): - dist = distance_matrix(x, y) - if threshold is not None: - zeros = dist > threshold - dist[zeros] = 0 - return sp.csr_matrix(dist)
- - -def _test(): - import doctest - - # the following line could be used to define an alternative to the '<BLANKLINE>' flag - # doctest.BLANKLINE_MARKER = 'something better than <BLANKLINE>' - start_suppress = np.get_printoptions()["suppress"] - np.set_printoptions(suppress=True) - doctest.testmod() - np.set_printoptions(suppress=start_suppress) - - -if __name__ == "__main__": - _test() -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/raster.html b/docs/_modules/libpysal/weights/raster.html deleted file mode 100644 index 573c49736..000000000 --- a/docs/_modules/libpysal/weights/raster.html +++ /dev/null @@ -1,983 +0,0 @@ - - - - - - - libpysal.weights.raster — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.raster

-from .util import lat2SW
-from .weights import WSP, W
-import numpy as np
-from warnings import warn
-import os
-import sys
-from scipy import sparse
-
-if os.path.basename(sys.argv[0]) in ("pytest", "py.test"):
-
-    def jit(*dec_args, **dec_kwargs):
-        """
-        decorator mimicking numba.jit
-        """
-
-        def intercepted_function(f, *f_args, **f_kwargs):
-            return f
-
-        return intercepted_function
-
-
-else:
-    from ..common import jit
-
-__author__ = "Mragank Shekhar <yesthisismrshekhar@gmail.com>"
-
-__all__ = ["da2W", "da2WSP", "w2da", "wsp2da", "testDataArray"]
-
-
-
[docs]def da2W( - da, - criterion="queen", - z_value=None, - coords_labels={}, - k=1, - include_nodata=False, - n_jobs=1, - **kwargs, -): - """ - Create a W object from xarray.DataArray with an additional - attribute index containing coordinate values of the raster - in the form of Pandas.Index/MultiIndex. - - Parameters - ---------- - da : xarray.DataArray - Input 2D or 3D DataArray with shape=(z, y, x) - criterion : {"rook", "queen"} - Type of contiguity. Default is queen. - z_value : int/string/float - Select the z_value of 3D DataArray with multiple layers. - coords_labels : dictionary - Pass dimension labels for coordinates and layers if they do not - belong to default dimensions, which are (band/time, y/lat, x/lon) - e.g. coords_labels = {"y_label": "latitude", "x_label": "longitude", "z_label": "year"} - Default is {} empty dictionary. - k : int - Order of contiguity, this will select all neighbors upto kth order. - Default is 1. - include_nodata : boolean - If True, missing values will be assumed as non-missing when - selecting higher_order neighbors, Default is False - n_jobs : int - Number of cores to be used in the sparse weight construction. If -1, - all available cores are used. Default is 1. - **kwargs : keyword arguments - Optional arguments for :class:`libpysal.weights.W` - - Returns - ------- - w : libpysal.weights.W - instance of spatial weights class W with an index attribute - - Notes - ----- - 1. Lower order contiguities are also selected. - 2. Returned object contains `index` attribute that includes a - `Pandas.MultiIndex` object from the DataArray. - - Examples - -------- - - >>> from libpysal.weights.raster import da2W, testDataArray - >>> da = testDataArray().rename( - {'band': 'layer', 'x': 'longitude', 'y': 'latitude'}) - >>> da.dims - ('layer', 'latitude', 'longitude') - >>> da.shape - (3, 4, 4) - >>> da.coords - Coordinates: - * layer (layer) int64 1 2 3 - * latitude (latitude) float64 90.0 30.0 -30.0 -90.0 - * longitude (longitude) float64 -180.0 -60.0 60.0 180.0 - >>> da.attrs - {'nodatavals': (-32768.0,)} - >>> coords_labels = { - "z_label": "layer", - "y_label": "latitude", - "x_label": "longitude" - } - >>> w = da2W(da, z_value=2, coords_labels=coords_labels) - >>> "%.3f"%w.pct_nonzero - '30.000' - >>> w[(2, 90.0, 180.0)] == {(2, 90.0, 60.0): 1, (2, 30.0, 180.0): 1} - True - >>> len(w.index) - 10 - >>> w.index[:2] - MultiIndex([(2, 90.0, 60.0), - (2, 90.0, 180.0)], - names=['layer', 'latitude', 'longitude']) - - See Also - -------- - :class:`libpysal.weights.weights.W` - """ - warn( - "You are trying to build a full W object from " - "xarray.DataArray (raster) object. This computation " - "can be very slow and not scale well. It is recommended, " - "if possible, to instead build WSP object, which is more " - "efficient and faster. You can do this by using da2WSP method." - ) - wsp = da2WSP(da, criterion, z_value, coords_labels, k, include_nodata, n_jobs) - w = wsp.to_W(**kwargs) - - # temp addition of index attribute - w.index = wsp.index - return w
- - -
[docs]def da2WSP( - da, - criterion="queen", - z_value=None, - coords_labels={}, - k=1, - include_nodata=False, - n_jobs=1, -): - """ - Create a WSP object from xarray.DataArray with an additional - attribute index containing coordinate values of the raster - in the form of Pandas.Index/MultiIndex. - - Parameters - ---------- - da : xarray.DataArray - Input 2D or 3D DataArray with shape=(z, y, x) - criterion : {"rook", "queen"} - Type of contiguity. Default is queen. - z_value : int/string/float - Select the z_value of 3D DataArray with multiple layers. - coords_labels : dictionary - Pass dimension labels for coordinates and layers if they do not - belong to default dimensions, which are (band/time, y/lat, x/lon) - e.g. coords_labels = {"y_label": "latitude", "x_label": "longitude", "z_label": "year"} - Default is {} empty dictionary. - k : int - Order of contiguity, this will select all neighbors upto kth order. - Default is 1. - include_nodata : boolean - If True, missing values will be assumed as non-missing when - selecting higher_order neighbors, Default is False - n_jobs : int - Number of cores to be used in the sparse weight construction. If -1, - all available cores are used. Default is 1. - - Returns - ------- - wsp : libpysal.weights.WSP - instance of spatial weights class WSP with an index attribute - - Notes - ----- - 1. Lower order contiguities are also selected. - 2. Returned object contains `index` attribute that includes a - `Pandas.MultiIndex` object from the DataArray. - - Examples - -------- - >>> from libpysal.weights.raster import da2WSP, testDataArray - >>> da = testDataArray().rename( - {'band': 'layer', 'x': 'longitude', 'y': 'latitude'}) - >>> da.dims - ('layer', 'latitude', 'longitude') - >>> da.shape - (3, 4, 4) - >>> da.coords - Coordinates: - * layer (layer) int64 1 2 3 - * latitude (latitude) float64 90.0 30.0 -30.0 -90.0 - * longitude (longitude) float64 -180.0 -60.0 60.0 180.0 - >>> da.attrs - {'nodatavals': (-32768.0,)} - >>> coords_labels = { - "z_label": "layer", - "y_label": "latitude", - "x_label": "longitude" - } - >>> wsp = da2WSP(da, z_value=2, coords_labels=coords_labels) - >>> wsp.n - 10 - >>> pct_sp = wsp.sparse.nnz *1. / wsp.n**2 - >>> "%.3f"%pct_sp - '0.300' - >>> print(wsp.sparse[4].todense()) - [[0 0 1 0 0 1 1 1 0 0]] - >>> wsp.index[:2] - MultiIndex([(2, 90.0, 60.0), - (2, 90.0, 180.0)], - names=['layer', 'latitude', 'longitude']) - - See Also - -------- - :class:`libpysal.weights.weights.WSP` - """ - z_id, coords_labels = _da_checker(da, z_value, coords_labels) - shape = da.shape - if z_id: - slice_dict = {} - slice_dict[coords_labels["z_label"]] = 0 - shape = da[slice_dict].shape - slice_dict[coords_labels["z_label"]] = slice(z_id - 1, z_id) - da = da[slice_dict] - - ser = da.to_series() - dtype = np.int32 if (shape[0] * shape[1]) < 46340 ** 2 else np.int64 - if "nodatavals" in da.attrs and da.attrs["nodatavals"]: - mask = (ser != da.attrs["nodatavals"][0]).to_numpy() - ids = np.where(mask)[0] - id_map = _idmap(ids, mask, dtype) - ser = ser[ser != da.attrs["nodatavals"][0]] - else: - ids = np.arange(len(ser), dtype=dtype) - id_map = ids.copy() - - n = len(ids) - - try: - import numba - except (ModuleNotFoundError, ImportError): - warn( - "numba cannot be imported, parallel processing " - "and include_nodata functionality will be disabled. " - "falling back to slower method" - ) - include_nodata = False - # Fallback method to build sparse matrix - sw = lat2SW(*shape, criterion) - if "nodatavals" in da.attrs and da.attrs["nodatavals"]: - sw = sw[mask] - sw = sw[:, mask] - - else: - k_nas = k if include_nodata else 1 - - if n_jobs != 1: - try: - import joblib - except (ModuleNotFoundError, ImportError): - warn( - f"Parallel processing is requested (n_jobs={n_jobs})," - f" but joblib cannot be imported. n_jobs will be set" - f" to 1.", - stacklevel=2, - ) - n_jobs = 1 - - if n_jobs == 1: - sw_tup = _SWbuilder( - *shape, ids, id_map, criterion, k_nas, dtype - ) # -> (data, (row, col)) - else: - if n_jobs == -1: - n_jobs = os.cpu_count() - # Parallel implementation - sw_tup = _parSWbuilder( - *shape, ids, id_map, criterion, k_nas, dtype, n_jobs - ) # -> (data, (row, col)) - - sw = sparse.csr_matrix(sw_tup, shape=(n, n), dtype=np.int8,) - - # Higher_order functionality, this uses idea from - # libpysal#313 for adding higher order neighbors. - # Since diagonal elements are also added in the result, - # this method set the diagonal elements to zero and - # then eliminate zeros from the data. This changes the - # sparcity of the csr_matrix !! - if k > 1 and not include_nodata: - sw = sum(map(lambda x: sw ** x, range(1, k + 1))) - sw.setdiag(0) - sw.eliminate_zeros() - sw.data[:] = np.ones_like(sw.data, dtype=np.int8) - - index = ser.index - wsp = WSP(sw, index=index) - return wsp
- - -
[docs]def w2da(data, w, attrs={}, coords=None): - """ - Creates xarray.DataArray object from passed data aligned with W object. - - Parameters - --------- - data : array/list/pd.Series - 1d array-like data with dimensionality conforming to w - w : libpysal.weights.W - Spatial weights object aligned with passed data - attrs : Dictionary - Attributes stored in dict related to DataArray, e.g. da.attrs - Default is {} empty dictionary. - coords : Dictionary/xarray.core.coordinates.DataArrayCoordinates - Coordinates corresponding to DataArray, e.g. da.coords - - Returns - ------- - da : xarray.DataArray - instance of xarray.DataArray - - Examples - -------- - >>> from libpysal.raster import da2W, testDataArray, w2da - >>> da = testDataArray() - >>> da.shape - (3, 4, 4) - >>> w = da2W(da, z_value=2) - >>> data = np.random.randint(0, 255, len(w.index)) - >>> da1 = w2da(data, w) - - """ - if not isinstance(w, W): - raise TypeError("w must be an instance of weights.W") - if hasattr(w, "index"): - da = _index2da(data, w.index, attrs, coords) - else: - raise AttributeError( - "This method requires `w` object to include `index` attribute that is built as a `pandas.MultiIndex` object." - ) - return da
- - -
[docs]def wsp2da(data, wsp, attrs={}, coords=None): - """ - Creates xarray.DataArray object from passed data aligned with WSP object. - - Parameters - --------- - data : array/list/pd.Series - 1d array-like data with dimensionality conforming to wsp - wsp : libpysal.weights.WSP - Sparse weights object aligned with passed data - attrs : Dictionary - Attributes stored in dict related to DataArray, e.g. da.attrs - Default is {} empty dictionary. - coords : Dictionary/xarray.core.coordinates.DataArrayCoordinates - coordinates corresponding to DataArray, e.g. da.coords - - Returns - ------- - da : xarray.DataArray - instance of xarray.DataArray - - Examples - -------- - >>> from libpysal.raster import da2WSP, testDataArray, wsp2da - >>> da = testDataArray() - >>> da.shape - (3, 4, 4) - >>> wsp = da2WSP(da, z_value=2) - >>> data = np.random.randint(0, 255, len(wsp.index)) - >>> da1 = w2da(data, wsp) - - """ - if not isinstance(wsp, WSP): - raise TypeError("wsp must be an instance of weights.WSP") - if hasattr(wsp, "index"): - da = _index2da(data, wsp.index, attrs, coords) - else: - raise AttributeError( - "This method requires `wsp` object to include `index` attribute that is built as a `pandas.MultiIndex` object." - ) - return da
- - -
[docs]def testDataArray(shape=(3, 4, 4), time=False, rand=False, missing_vals=True): - """ - Creates 2 or 3 dimensional test xarray.DataArray object - - Parameters - --------- - shape : tuple - Tuple containing shape of the DataArray aligned with - following dimension = (lat, lon) or (layer, lat, lon) - Default shape = (3, 4, 4) - time : boolean - Type of layer, if True then layer=time else layer=band - Default is False. - rand : boolean - If True, creates a DataArray filled with unique and random data. - Default is false (generates seeded random data) - missing_vals : boolean - Create a DataArray filled with missing values. Default is True. - - Returns - ------- - da : xarray.DataArray - instance of xarray.DataArray - """ - try: - from xarray import DataArray - except ImportError: - raise ModuleNotFoundError("xarray must be installed to use this functionality") - if not rand: - np.random.seed(12345) - coords = {} - n = len(shape) - if n != 2: - layer = "time" if time else "band" - dims = (layer, "y", "x") - if time: - layers = np.arange( - np.datetime64("2020-07-30"), shape[0], dtype="datetime64[D]" - ) - else: - layers = np.arange(1, shape[0] + 1) - coords[dims[-3]] = layers - else: - dims = ("y", "x") - coords[dims[-2]] = np.linspace(90, -90, shape[-2]) - coords[dims[-1]] = np.linspace(-180, 180, shape[-1]) - data = np.random.randint(0, 255, shape) - attrs = {} - if missing_vals: - attrs["nodatavals"] = (-32768.0,) - miss_ids = np.where(np.random.randint(2, size=shape) == 1) - data[miss_ids] = attrs["nodatavals"][0] - da = DataArray(data, coords, dims, attrs=attrs) - return da
- - -def _da_checker(da, z_value, coords_labels): - """ - xarray.dataarray checker for raster interface - - Parameters - ---------- - da : xarray.DataArray - Input 2D or 3D DataArray with shape=(z, y, x) - z_value : int/string/float - Select the z_value of 3D DataArray with multiple layers. - coords_labels : dictionary - Pass dimension labels for coordinates and layers if they do not - belong to default dimensions, which are (band/time, y/lat, x/lon) - e.g. coords_labels = {"y_label": "latitude", "x_label": "longitude", "z_label": "year"} - Default is {} empty dictionary. - - Returns - ------- - z_id : int - Returns the index of layer - dims : dictionary - Mapped dimensions of the DataArray - """ - try: - from xarray import DataArray - except ImportError: - raise ModuleNotFoundError("xarray must be installed to use this functionality") - - if not isinstance(da, DataArray): - raise TypeError("da must be an instance of xarray.DataArray") - if da.ndim not in [2, 3]: - raise ValueError("da must be 2D or 3D") - if not ( - np.issubdtype(da.values.dtype, np.integer) - or np.issubdtype(da.values.dtype, np.floating) - ): - raise ValueError("da must be an array of integers or float") - - # default dimensions - def_labels = { - "x_label": coords_labels["x_label"] - if "x_label" in coords_labels - else ("x" if hasattr(da, "x") else "lon"), - "y_label": coords_labels["y_label"] - if "y_label" in coords_labels - else ("y" if hasattr(da, "y") else "lat"), - } - - if da.ndim == 3: - def_labels["z_label"] = ( - coords_labels["z_label"] - if "z_label" in coords_labels - else ("band" if hasattr(da, "band") else "time") - ) - - z_id = 1 - if z_value is None: - if da.sizes[def_labels["z_label"]] != 1: - warn("Multiple layers detected. Using first layer as default.") - else: - z_id += tuple(da[def_labels["z_label"]]).index(z_value) - else: - z_id = None - return z_id, def_labels - - -def _index2da(data, index, attrs, coords): - """ - Creates xarray.DataArray object from passed data - - Parameters - --------- - data : array/list/pd.Series - 1d array-like data with dimensionality conforming to index - index : pd.MultiIndex - indices of the DataArray when converted to pd.Series - attrs : Dictionary - Attributes stored in dict related to DataArray, e.g. da.attrs - coords : Dictionary/xarray.core.coordinates.DataArrayCoordinates - coordinates corresponding to DataArray, e.g. da[n-1:n].coords - - Returns - ------- - da : xarray.DataArray - instance of xarray.DataArray - """ - try: - from xarray import DataArray - except ImportError: - raise ModuleNotFoundError("xarray must be installed to use this functionality") - - data = np.array(data).flatten() - idx = index - dims = idx.names - indexer = tuple(idx.codes) - shape = tuple(lev.size for lev in idx.levels) - - if coords is None: - missing = np.prod(shape) > idx.shape[0] - if missing: - if "nodatavals" in attrs: - fill_value = attrs["nodatavals"][0] - else: - min_data = np.min(data) - fill_value = min_data - 1 if min_data < 0 else -1 - attrs["nodatavals"] = tuple([fill_value]) - data_complete = np.full(shape, fill_value, data.dtype) - else: - data_complete = np.empty(shape, data.dtype) - data_complete[indexer] = data - coords = {} - for dim, lev in zip(dims, idx.levels): - coords[dim] = lev.to_numpy() - else: - fill = attrs["nodatavals"][0] if "nodatavals" in attrs else 0 - data_complete = np.full(shape, fill, data.dtype) - data_complete[indexer] = data - data_complete = data_complete[:, ::-1] - - da = DataArray(data_complete, coords=coords, dims=dims, attrs=attrs) - return da.sortby(dims[-2], False) - - -@jit(nopython=True, fastmath=True) -def _idmap(ids, mask, dtype): - """ - Utility function computes id_map of non-missing raster data - - Parameters - ---------- - ids : ndarray - 1D array containing ids of non-missing raster data - mask : ndarray - 1D array mask array - dtype : type - Data type of the id_map array - - Returns - ------- - id_map : ndarray - 1D array containing id_maps of non-missing raster data - """ - id_map = mask * 1 - id_map[ids] = np.arange(len(ids), dtype=dtype) - return id_map - - -@jit(nopython=True, fastmath=True) -def _SWbuilder( - nrows, ncols, ids, id_map, criterion, k, dtype, -): - """ - Computes data and orders rows, cols, data for a single chunk - - Parameters - ---------- - nrows : int - Number of rows in the raster data - ncols : int - Number of columns in the raster data - ids : ndarray - 1D array containing ids of non-missing raster data - id_map : ndarray - 1D array containing id_maps of non-missing raster data - criterion : str - Type of contiguity. - k : int - Order of contiguity, Default is 1 - dtype : type - Data type of the id_map array - - Returns - ------- - data : ndarray - 1D ones array containing weight of each neighbor - rows : ndarray - 1D ones array containing row value of each id - in the sparse weight object - cols : ndarray - 1D ones array containing columns value of each id - in the sparse weight object - """ - rows, cols = _compute_chunk(nrows, ncols, ids, id_map, criterion, k, dtype) - data = np.ones_like(rows, dtype=np.int8) - return (data, (rows, cols)) - - -@jit(nopython=True, fastmath=True, nogil=True) -def _compute_chunk( - nrows, ncols, ids, id_map, criterion, k, dtype, -): - """ - Computes rows cols for a single chunk - - Parameters - ---------- - nrows : int - Number of rows in the raster data - ncols : int - Number of columns in the raster data - ids : ndarray - 1D array containing ids of non-missing raster data - id_map : ndarray - 1D array containing id_maps of non-missing raster data - criterion : str - Type of contiguity. - k : int - Order of contiguity, Default is 1 - dtype : type - Data type of the rows and cols array - - Returns - ------- - rows : ndarray - 1D ones array containing row value of each id - in the sparse weight object - cols : ndarray - 1D ones array containing columns value of each id - in the sparse weight object - ni : int - Number of rows and cols - """ - n = len(ids) - # Setting d which is used for row, col preallocation - d = 4 if criterion == "rook" else 8 - if k > 1: - d = int((k / 2) * (2 * 8 + (k - 1) * 8)) - rows = np.empty(d * n, dtype=dtype) - cols = np.empty_like(rows) - ni = 0 # -> Pointer to store rows and cols in array - for order in range(1, k + 1): - condition = ( - (order - 1) - if criterion == "queen" - else ((k - order) if ((k - order) < order) else (order - 1)) - ) - for i in range(n): - id_i = ids[i] - og_id = id_map[id_i] - - if ((id_i + order) % ncols) >= order: - # east neighbor - id_neighbor = id_map[id_i + order] - if id_neighbor: - rows[ni], cols[ni] = og_id, id_neighbor - ni += 1 - rows[ni], cols[ni] = id_neighbor, og_id - ni += 1 - # north-east to south-east neighbors - for j in range(condition): - if (id_i // ncols) < (nrows - j - 1): - id_neighbor = id_map[(id_i + order) + (ncols * (j + 1))] - if id_neighbor: - rows[ni], cols[ni] = og_id, id_neighbor - ni += 1 - rows[ni], cols[ni] = id_neighbor, og_id - ni += 1 - if (id_i // ncols) >= j + 1: - id_neighbor = id_map[(id_i + order) - (ncols * (j + 1))] - if id_neighbor: - rows[ni], cols[ni] = og_id, id_neighbor - ni += 1 - rows[ni], cols[ni] = id_neighbor, og_id - ni += 1 - - if (id_i // ncols) < (nrows - order): - # south neighbor - id_neighbor = id_map[id_i + (ncols * order)] - if id_neighbor: - rows[ni], cols[ni] = og_id, id_neighbor - ni += 1 - rows[ni], cols[ni] = id_neighbor, og_id - ni += 1 - # south-west to south-east neighbors - for j in range(condition): - if (id_i % ncols) >= j + 1: - id_neighbor = id_map[id_i + (ncols * order) - j - 1] - if id_neighbor: - rows[ni], cols[ni] = og_id, id_neighbor - ni += 1 - rows[ni], cols[ni] = id_neighbor, og_id - ni += 1 - if ((id_i + j + 1) % ncols) >= j + 1: - id_neighbor = id_map[id_i + (ncols * order) + j + 1] - if id_neighbor: - rows[ni], cols[ni] = og_id, id_neighbor - ni += 1 - rows[ni], cols[ni] = id_neighbor, og_id - ni += 1 - - if criterion == "queen" or ((k / order) >= 2.0): - if (id_i % ncols) >= order: - # south-west neighbor - id_neighbor = id_map[id_i + (ncols * order) - order] - if id_neighbor: - rows[ni], cols[ni] = og_id, id_neighbor - ni += 1 - rows[ni], cols[ni] = id_neighbor, og_id - ni += 1 - if ((id_i + order) % ncols) >= order: - # south-east neighbor - id_neighbor = id_map[id_i + (ncols * order) + order] - if id_neighbor: - rows[ni], cols[ni] = og_id, id_neighbor - ni += 1 - rows[ni], cols[ni] = id_neighbor, og_id - ni += 1 - return rows[:ni], cols[:ni] - - -@jit(nopython=True, fastmath=True) -def _chunk_generator( - n_jobs, starts, ids, -): - """ - Construct chunks to iterate over within numba in parallel - - Parameters - ---------- - n_jobs : int - Number of cores to be used in the sparse weight construction. If -1, - all available cores are used. - starts : ndarray - (n_chunks+1,) array of positional starts for ids chunk - ids : ndarray - 1D array containing ids of non-missing raster data - - Yields - ------ - ids_chunk : numpy.ndarray - (n_chunk,) array containing the chunk of non-missing raster data - """ - chunk_size = starts[1] - starts[0] - for i in range(n_jobs): - start = starts[i] - ids_chunk = ids[start : (start + chunk_size)] - yield (ids_chunk,) - - -def _parSWbuilder( - nrows, ncols, ids, id_map, criterion, k, dtype, n_jobs, -): - """ - Computes data and orders rows, cols, data in parallel using numba - - Parameters - ---------- - nrows : int - Number of rows in the raster data - ncols : int - Number of columns in the raster data - ids : ndarray - 1D array containing ids of non-missing raster data - id_map : ndarray - 1D array containing id_maps of non-missing raster data - criterion : str - Type of contiguity. - k : int - Order of contiguity, Default is 1 - dtype : type - Data type of the rows and cols array - n_jobs : int - Number of cores to be used in the sparse weight construction. If -1, - all available cores are used. - - Returns - ------- - data : ndarray - 1D ones array containing weight of each neighbor - rows : ndarray - 1D ones array containing row value of each id - in the sparse weight object - cols : ndarray - 1D ones array containing columns value of each id - in the sparse weight object - """ - from joblib import Parallel, delayed, parallel_backend - - n = len(ids) - chunk_size = n // n_jobs + 1 - starts = np.arange(n_jobs + 1) * chunk_size - chunk = _chunk_generator(n_jobs, starts, ids) - with parallel_backend("threading"): - worker_out = Parallel(n_jobs=n_jobs)( - delayed(_compute_chunk)(nrows, ncols, *ids, id_map, criterion, k, dtype) - for ids in chunk - ) - rows, cols = zip(*worker_out) - rows = np.concatenate(rows) - cols = np.concatenate(cols) - data = np.ones_like(rows, dtype=np.int8) - return (data, (rows, cols)) -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/set_operations.html b/docs/_modules/libpysal/weights/set_operations.html deleted file mode 100644 index e466327c2..000000000 --- a/docs/_modules/libpysal/weights/set_operations.html +++ /dev/null @@ -1,669 +0,0 @@ - - - - - - - libpysal.weights.set_operations — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.set_operations

-"""
-Set-like manipulation of weights matrices.
-"""
-
-__author__ = "Sergio J. Rey <srey@asu.edu>, Charles Schmidt <schmidtc@gmail.com>, David Folch <david.folch@asu.edu>, Dani Arribas-Bel <darribas@asu.edu>"
-
-import copy
-from .weights import W, WSP
-from scipy.sparse import isspmatrix_csr
-from numpy import ones
-
-__all__ = [
-    "w_union",
-    "w_intersection",
-    "w_difference",
-    "w_symmetric_difference",
-    "w_subset",
-    "w_clip",
-]
-
-
-
[docs]def w_union(w1, w2, **kwargs): - """ - Returns a binary weights object, w, that includes all neighbor pairs that - exist in either w1 or w2. - - Parameters - ---------- - - w1 : W - object - w2 : W - object - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - - w : W - object - - Notes - ----- - ID comparisons are performed using ==, therefore the integer ID 2 is - equivalent to the float ID 2.0. Returns a matrix with all the unique IDs - from w1 and w2. - - Examples - -------- - - Construct rook weights matrices for two regions, one is 4x4 (16 areas) - and the other is 6x4 (24 areas). A union of these two weights matrices - results in the new weights matrix matching the larger one. - - >>> from libpysal.weights import lat2W, w_union - >>> w1 = lat2W(4,4) - >>> w2 = lat2W(6,4) - >>> w = w_union(w1, w2) - >>> w1[0] == w[0] - True - >>> w1.neighbors[15] - [11, 14] - >>> w2.neighbors[15] - [11, 14, 19] - >>> w.neighbors[15] - [19, 11, 14] - - """ - neighbors = dict(list(w1.neighbors.items())) - for i in w2.neighbors: - if i in neighbors: - add_neigh = set(neighbors[i]).union(set(w2.neighbors[i])) - neighbors[i] = list(add_neigh) - else: - neighbors[i] = copy.copy(w2.neighbors[i]) - return W(neighbors, **kwargs)
- - -
[docs]def w_intersection(w1, w2, w_shape="w1", **kwargs): - """ - Returns a binary weights object, w, that includes only - those neighbor pairs that exist in both w1 and w2. - - Parameters - ---------- - - w1 : W - object - w2 : W - object - w_shape : string - Defines the shape of the returned weights matrix. 'w1' returns a - matrix with the same IDs as w1; 'all' returns a matrix with all - the unique IDs from w1 and w2; and 'min' returns a matrix with - only the IDs occurring in both w1 and w2. - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - - w : W - object - - Notes - ----- - ID comparisons are performed using ==, therefore the integer ID 2 is - equivalent to the float ID 2.0. - - Examples - -------- - - Construct rook weights matrices for two regions, one is 4x4 (16 areas) - and the other is 6x4 (24 areas). An intersection of these two weights - matrices results in the new weights matrix matching the smaller one. - - >>> from libpysal.weights import lat2W, w_intersection - >>> w1 = lat2W(4,4) - >>> w2 = lat2W(6,4) - >>> w = w_intersection(w1, w2) - >>> w1[0] == w[0] - True - >>> w1.neighbors[15] - [11, 14] - >>> w2.neighbors[15] - [11, 14, 19] - >>> w.neighbors[15] - [11, 14] - - """ - - if w_shape == "w1": - neigh_keys = list(w1.neighbors.keys()) - elif w_shape == "all": - neigh_keys = set(w1.neighbors.keys()).union(set(w2.neighbors.keys())) - elif w_shape == "min": - neigh_keys = set(w1.neighbors.keys()).intersection(set(w2.neighbors.keys())) - else: - raise Exception("invalid string passed to w_shape") - - neighbors = {} - for i in neigh_keys: - if i in w1.neighbors and i in w2.neighbors: - add_neigh = set(w1.neighbors[i]).intersection(set(w2.neighbors[i])) - neighbors[i] = list(add_neigh) - else: - neighbors[i] = [] - - return W(neighbors, **kwargs)
- - -
[docs]def w_difference(w1, w2, w_shape="w1", constrained=True, **kwargs): - """ - Returns a binary weights object, w, that includes only neighbor pairs - in w1 that are not in w2. The w_shape and constrained parameters - determine which pairs in w1 that are not in w2 are returned. - - Parameters - ---------- - - w1 : W - object - w2 : W - object - w_shape : string - Defines the shape of the returned weights matrix. 'w1' returns a - matrix with the same IDs as w1; 'all' returns a matrix with all - the unique IDs from w1 and w2; and 'min' returns a matrix with - the IDs occurring in w1 and not in w2. - constrained : boolean - If False then the full set of neighbor pairs in w1 that are - not in w2 are returned. If True then those pairs that would - not be possible if w_shape='min' are dropped. Ignored if - w_shape is set to 'min'. - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - - w : W - object - - Notes - ----- - ID comparisons are performed using ==, therefore the integer ID 2 is - equivalent to the float ID 2.0. - - Examples - -------- - - Construct rook (w2) and queen (w1) weights matrices for two 4x4 regions - (16 areas). A queen matrix has all the joins a rook matrix does plus joins - between areas that share a corner. The new matrix formed by the difference - of rook from queen contains only join at corners (typically called a - bishop matrix). Note that the difference of queen from rook would result - in a weights matrix with no joins. - - >>> from libpysal.weights import lat2W, w_difference - >>> w1 = lat2W(4,4,rook=False) - >>> w2 = lat2W(4,4,rook=True) - >>> w = w_difference(w1, w2, constrained=False) - >>> w1[0] == w[0] - False - >>> w1.neighbors[15] - [10, 11, 14] - >>> w2.neighbors[15] - [11, 14] - >>> w.neighbors[15] - [10] - - """ - - if w_shape == "w1": - neigh_keys = list(w1.neighbors.keys()) - elif w_shape == "all": - neigh_keys = set(w1.neighbors.keys()).union(set(w2.neighbors.keys())) - elif w_shape == "min": - neigh_keys = set(w1.neighbors.keys()).difference(set(w2.neighbors.keys())) - if not neigh_keys: - raise Exception("returned an empty weights matrix") - else: - raise Exception("invalid string passed to w_shape") - - neighbors = {} - for i in neigh_keys: - if i in w1.neighbors: - if i in w2.neighbors: - add_neigh = set(w1.neighbors[i]).difference(set(w2.neighbors[i])) - neighbors[i] = list(add_neigh) - else: - neighbors[i] = copy.copy(w1.neighbors[i]) - else: - neighbors[i] = [] - - if constrained or w_shape == "min": - constrained_keys = set(w1.neighbors.keys()).difference(set(w2.neighbors.keys())) - island_keys = set(neighbors.keys()).difference(constrained_keys) - for i in island_keys: - neighbors[i] = [] - for i in constrained_keys: - neighbors[i] = list(set(neighbors[i]).intersection(constrained_keys)) - - return W(neighbors, **kwargs)
- - -
[docs]def w_symmetric_difference(w1, w2, w_shape="all", constrained=True, **kwargs): - """ - Returns a binary weights object, w, that includes only neighbor pairs - that are not shared by w1 and w2. The w_shape and constrained parameters - determine which pairs that are not shared by w1 and w2 are returned. - - Parameters - ---------- - - w1 : W - object - w2 : W - object - w_shape : string - Defines the shape of the returned weights matrix. 'all' returns a - matrix with all the unique IDs from w1 and w2; and 'min' returns - a matrix with the IDs not shared by w1 and w2. - constrained : boolean - If False then the full set of neighbor pairs that are not - shared by w1 and w2 are returned. If True then those pairs - that would not be possible if w_shape='min' are dropped. - Ignored if w_shape is set to 'min'. - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - - w : W - object - - Notes - ----- - ID comparisons are performed using ==, therefore the integer ID 2 is - equivalent to the float ID 2.0. - - Examples - -------- - - Construct queen weights matrix for a 4x4 (16 areas) region (w1) and a rook - matrix for a 6x4 (24 areas) region (w2). The symmetric difference of these - two matrices (with w_shape set to 'all' and constrained set to False) - contains the corner joins in the overlap area, all the joins in the - non-overlap area. - - >>> from libpysal.weights import lat2W, w_symmetric_difference - >>> w1 = lat2W(4,4,rook=False) - >>> w2 = lat2W(6,4,rook=True) - >>> w = w_symmetric_difference(w1, w2, constrained=False) - >>> w1[0] == w[0] - False - >>> w1.neighbors[15] - [10, 11, 14] - >>> w2.neighbors[15] - [11, 14, 19] - >>> set(w.neighbors[15]) == set([10, 19]) - True - - """ - - if w_shape == "all": - neigh_keys = set(w1.neighbors.keys()).union(set(w2.neighbors.keys())) - elif w_shape == "min": - neigh_keys = set(w1.neighbors.keys()).symmetric_difference( - set(w2.neighbors.keys()) - ) - else: - raise Exception("invalid string passed to w_shape") - - neighbors = {} - for i in neigh_keys: - if i in w1.neighbors: - if i in w2.neighbors: - add_neigh = set(w1.neighbors[i]).symmetric_difference( - set(w2.neighbors[i]) - ) - neighbors[i] = list(add_neigh) - else: - neighbors[i] = copy.copy(w1.neighbors[i]) - elif i in w2.neighbors: - neighbors[i] = copy.copy(w2.neighbors[i]) - else: - neighbors[i] = [] - - if constrained or w_shape == "min": - constrained_keys = set(w1.neighbors.keys()).difference(set(w2.neighbors.keys())) - island_keys = set(neighbors.keys()).difference(constrained_keys) - for i in island_keys: - neighbors[i] = [] - for i in constrained_keys: - neighbors[i] = list(set(neighbors[i]).intersection(constrained_keys)) - - return W(neighbors, **kwargs)
- - -
[docs]def w_subset(w1, ids, **kwargs): - """ - Returns a binary weights object, w, that includes only those - observations in ids. - - Parameters - ---------- - - w1 : W - object - ids : list - A list containing the IDs to be include in the returned weights - object. - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - - w : W - object - - Examples - -------- - - Construct a rook weights matrix for a 6x4 region (24 areas). By default - PySAL assigns integer IDs to the areas in a region. By passing in a list - of integers from 0 to 15, the first 16 areas are extracted from the - previous weights matrix, and only those joins relevant to the new region - are retained. - - >>> from libpysal.weights import lat2W, w_subset - >>> w1 = lat2W(6,4) - >>> ids = range(16) - >>> w = w_subset(w1, ids) - >>> w1[0] == w[0] - True - >>> w1.neighbors[15] - [11, 14, 19] - >>> w.neighbors[15] - [11, 14] - - """ - - neighbors = {} - ids_set = set(list(ids)) - for i in ids: - if i in w1.neighbors: - neigh_add = ids_set.intersection(set(w1.neighbors[i])) - neighbors[i] = list(neigh_add) - else: - neighbors[i] = [] - - return W(neighbors, id_order=list(ids), **kwargs)
- - -
[docs]def w_clip(w1, w2, outSP=True, **kwargs): - """ - Clip a continuous W object (w1) with a different W object (w2) so only cells where - w2 has a non-zero value remain with non-zero values in w1. - - Checks on w1 and w2 are performed to make sure they conform to the - appropriate format and, if not, they are converted. - - Parameters - ---------- - w1 : W - W, scipy.sparse.csr.csr_matrix - Potentially continuous weights matrix to be clipped. The clipped - matrix wc will have at most the same elements as w1. - w2 : W - W, scipy.sparse.csr.csr_matrix - Weights matrix to use as shell to clip w1. Automatically - converted to binary format. Only non-zero elements in w2 will be - kept non-zero in wc. NOTE: assumed to be of the same shape as w1 - outSP : boolean - If True (default) return sparse version of the clipped W, if - False, return W object of the clipped matrix - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - wc : W - W, scipy.sparse.csr.csr_matrix - Clipped W object (sparse if outSP=Ture). It inherits ``id_order`` from w1. - - Examples - -------- - >>> from libpysal.weights import lat2W - - First create a W object from a lattice using queen contiguity and - row-standardize it (note that these weights will stay when we clip the - object, but they will not neccesarily represent a row-standardization - anymore): - - >>> w1 = lat2W(3, 2, rook=False) - >>> w1.transform = 'R' - - We will clip that geography assuming observations 0, 2, 3 and 4 belong to - one group and 1, 5 belong to another group and we don't want both groups - to interact with each other in our weights (i.e. w_ij = 0 if i and j in - different groups). For that, we use the following method: - - >>> import libpysal - >>> w2 = libpysal.weights.block_weights(['r1', 'r2', 'r1', 'r1', 'r1', 'r2']) - - To illustrate that w2 will only be considered as binary even when the - object passed is not, we can row-standardize it - - >>> w2.transform = 'R' - - The clipped object ``wc`` will contain only the spatial queen - relationships that occur within one group ('r1' or 'r2') but will have - gotten rid of those that happen across groups - - >>> wcs = libpysal.weights.w_clip(w1, w2, outSP=True) - - This will create a sparse object (recommended when n is large). - - >>> wcs.sparse.toarray() - array([[0. , 0. , 0.33333333, 0.33333333, 0. , - 0. ], - [0. , 0. , 0. , 0. , 0. , - 0. ], - [0.2 , 0. , 0. , 0.2 , 0.2 , - 0. ], - [0.2 , 0. , 0.2 , 0. , 0.2 , - 0. ], - [0. , 0. , 0.33333333, 0.33333333, 0. , - 0. ], - [0. , 0. , 0. , 0. , 0. , - 0. ]]) - - - If we wanted an original W object, we can control that with the argument - ``outSP``: - - >>> wc = libpysal.weights.w_clip(w1, w2, outSP=False) - >>> wc.full()[0] - array([[0. , 0. , 0.33333333, 0.33333333, 0. , - 0. ], - [0. , 0. , 0. , 0. , 0. , - 0. ], - [0.2 , 0. , 0. , 0.2 , 0.2 , - 0. ], - [0.2 , 0. , 0.2 , 0. , 0.2 , - 0. ], - [0. , 0. , 0.33333333, 0.33333333, 0. , - 0. ], - [0. , 0. , 0. , 0. , 0. , - 0. ]]) - - You can check they are actually the same: - - >>> wcs.sparse.toarray() == wc.full()[0] - array([[ True, True, True, True, True, True], - [ True, True, True, True, True, True], - [ True, True, True, True, True, True], - [ True, True, True, True, True, True], - [ True, True, True, True, True, True], - [ True, True, True, True, True, True]]) - - """ - - from .util import WSP2W - - if not w1.id_order: - w1.id_order = None - id_order = w1.id_order - if not isspmatrix_csr(w1): - w1 = w1.sparse - if not isspmatrix_csr(w2): - w2 = w2.sparse - w2.data = ones(w2.data.shape) - wc = w1.multiply(w2) - wc = WSP(wc, id_order=id_order) - if not outSP: - wc = WSP2W(wc, **kwargs) - return wc
-
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/spatial_lag.html b/docs/_modules/libpysal/weights/spatial_lag.html deleted file mode 100644 index 1648f9d28..000000000 --- a/docs/_modules/libpysal/weights/spatial_lag.html +++ /dev/null @@ -1,388 +0,0 @@ - - - - - - - libpysal.weights.spatial_lag — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.spatial_lag

-"""
-Spatial lag operations.
-"""
-__author__ = "Sergio J. Rey <srey@asu.edu>, David C. Folch <david.folch@asu.edu>, Levi John Wolf <ljw2@asu.edu"
-__all__ = ["lag_spatial", "lag_categorical"]
-
-import numpy as np
-
-
-
[docs]def lag_spatial(w, y): - """ - Spatial lag operator. - - If w is row standardized, returns the average of each observation's neighbors; - if not, returns the weighted sum of each observation's neighbors. - - Parameters - ---------- - - w : W - libpysal spatial weightsobject - y : array - numpy array with dimensionality conforming to w (see examples) - - Returns - ------- - - wy : array - array of numeric values for the spatial lag - - Examples - -------- - - Setup a 9x9 binary spatial weights matrix and vector of data; compute the - spatial lag of the vector. - - >>> import libpysal - >>> import numpy as np - >>> w = libpysal.weights.lat2W(3, 3) - >>> y = np.arange(9) - >>> yl = libpysal.weights.lag_spatial(w, y) - >>> yl - array([ 4., 6., 6., 10., 16., 14., 10., 18., 12.]) - - Row standardize the weights matrix and recompute the spatial lag - - >>> w.transform = 'r' - >>> yl = libpysal.weights.lag_spatial(w, y) - >>> yl - array([2. , 2. , 3. , 3.33333333, 4. , - 4.66666667, 5. , 6. , 6. ]) - - - Explicitly define data vector as 9x1 and recompute the spatial lag - - >>> y.shape = (9, 1) - >>> yl = libpysal.weights.lag_spatial(w, y) - >>> yl - array([[2. ], - [2. ], - [3. ], - [3.33333333], - [4. ], - [4.66666667], - [5. ], - [6. ], - [6. ]]) - - - Take the spatial lag of a 9x2 data matrix - - >>> yr = np.arange(8, -1, -1) - >>> yr.shape = (9, 1) - >>> x = np.hstack((y, yr)) - >>> yl = libpysal.weights.lag_spatial(w, x) - >>> yl - array([[2. , 6. ], - [2. , 6. ], - [3. , 5. ], - [3.33333333, 4.66666667], - [4. , 4. ], - [4.66666667, 3.33333333], - [5. , 3. ], - [6. , 2. ], - [6. , 2. ]]) - - """ - return w.sparse * y
- - -
[docs]def lag_categorical(w, y, ties="tryself"): - """ - Spatial lag operator for categorical variables. - - Constructs the most common categories of neighboring observations, weighted - by their weight strength. - - Parameters - ---------- - - w : W - PySAL spatial weightsobject - y : iterable - iterable collection of categories (either int or - string) with dimensionality conforming to w (see examples) - ties : str - string describing the method to use when resolving - ties. By default, the option is "tryself", - and the category of the focal observation - is included with its neighbors to try - and break a tie. If this does not resolve the tie, - a winner is chosen randomly. To just use random choice to - break ties, pass "random" instead. - Returns - ------- - an (n x k) column vector containing the most common neighboring observation - - Notes - ----- - This works on any array where the number of unique elements along the column - axis is less than the number of elements in the array, for any dtype. - That means the routine should work on any dtype that np.unique() can - compare. - - Examples - -------- - - Set up a 9x9 weights matrix describing a 3x3 regular lattice. Lag one list of - categorical variables with no ties. - - >>> import libpysal - >>> import numpy as np - >>> np.random.seed(12345) - >>> w = libpysal.weights.lat2W(3, 3) - >>> y = ['a','b','a','b','c','b','c','b','c'] - >>> y_l = libpysal.weights.lag_categorical(w, y) - >>> np.array_equal(y_l, np.array(['b', 'a', 'b', 'c', 'b', 'c', 'b', 'c', 'b'])) - True - - Explicitly reshape y into a (9x1) array and calculate lag again - - >>> yvect = np.array(y).reshape(9,1) - >>> yvect_l = libpysal.weights.lag_categorical(w,yvect) - >>> check = np.array( [ [i] for i in ['b', 'a', 'b', 'c', 'b', 'c', 'b', 'c', 'b']] ) - >>> np.array_equal(yvect_l, check) - True - - compute the lag of a 9x2 matrix of categories - - >>> y2 = ['a', 'c', 'c', 'd', 'b', 'a', 'd', 'd', 'c'] - >>> ym = np.vstack((y,y2)).T - >>> ym_lag = libpysal.weights.lag_categorical(w,ym) - >>> check = np.array([['b', 'd'], ['a', 'c'], ['b', 'c'], ['c', 'd'], ['b', 'd'], ['c', 'c'], ['b', 'd'], ['c', 'd'], ['b', 'c']]) - >>> np.array_equal(check, ym_lag) - True - - """ - if isinstance(y, list): - y = np.array(y) - orig_shape = y.shape - if len(orig_shape) > 1: - if orig_shape[1] > 1: - return np.vstack([lag_categorical(w, col) for col in y.T]).T - y = y.flatten() - output = np.zeros_like(y) - labels = np.unique(y) - normalized_labels = np.zeros(y.shape, dtype=np.int) - for i, label in enumerate(labels): - normalized_labels[y == label] = i - for focal_name, neighbors in w: - focal_idx = w.id2i[focal_name] - neighborhood_tally = np.zeros(labels.shape) - for neighb_name, weight in list(neighbors.items()): - neighb_idx = w.id2i[neighb_name] - neighb_label = normalized_labels[neighb_idx] - neighborhood_tally[neighb_label] += weight - out_label_idx = _resolve_ties( - focal_idx, normalized_labels, neighborhood_tally, neighbors, ties, w - ) - output[focal_idx] = labels[out_label_idx] - return output.reshape(orig_shape)
- - -def _resolve_ties(idx, normalized_labels, tally, neighbors, method, w): - """ - Helper function to resolve ties if lag is multimodal - - first, if this function gets called when there's actually no tie, then the - correct value will be picked. - - if 'random' is selected as the method, a random tiebeaker is picked - - if 'tryself' is selected, then the observation's own value will be used in - an attempt to break the tie, but if it fails, a random tiebreaker will be - selected. - - Arguments - --------- - idx : int - index (aligned with `normalized_labels`) of the - current observation being resolved. - normalized_labels : (n,) array of ints - normalized array of labels for each observation - tally : (p,) array of floats - current tally of neighbors' labels around `idx` to resolve. - neighbors : dict of (neighbor_name : weight) - the elements of the weights object, identical to w[idx] - method : string - configuration option to use a specific tiebreaking method. - supported options are: - 1. tryself: Use the focal observation's label to tiebreak. - If this doesn't successfully break the tie, - (which only occurs if it induces a new tie), - decide randomly. - 2. random: Resolve the tie randomly amongst winners. - 3. lowest: Pick the lowest-value label amongst winners. - 4. highest: Pick the highest-value label amongst winners. - w : pysal.W object - a PySAL weights object aligned with normalized_labels. - - Returns - ------- - integer denoting which label to use to label the observation. - """ - (ties,) = np.where(tally == tally.max()) # returns a tuple for flat arrays - if len(tally[tally == tally.max()]) <= 1: # no tie, pick the highest - return np.argmax(tally).astype(int) - elif method.lower() == "random": # choose randomly from tally - return np.random.choice(np.squeeze(ties)).astype(int) - elif method.lower() == "lowest": # pick lowest tied value - return ties[0].astype(int) - elif method.lower() == "highest": # pick highest tied value - return ties[-1].astype(int) - elif ( - method.lower() == "tryself" - ): # add self-label as observation, try again, random if fail - mean_neighbor_value = np.mean(list(neighbors.values())) - tally[normalized_labels[idx]] += mean_neighbor_value - return _resolve_ties(idx, normalized_labels, tally, neighbors, "random", w) - else: - raise KeyError("Tie-breaking method for categorical lag not recognized") -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/spintW.html b/docs/_modules/libpysal/weights/spintW.html deleted file mode 100644 index e7dd3527f..000000000 --- a/docs/_modules/libpysal/weights/spintW.html +++ /dev/null @@ -1,426 +0,0 @@ - - - - - - - libpysal.weights.spintW — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.spintW

-"""
-Spatial weights for spatial interaction including contiguity OD weights (ODW),
-network based weights (netW), and distance-decay based vector weights (vecW).
-
-"""
-
-__author__ = "Taylor Oshan  <tayoshan@gmail.com> "
-
-from scipy.sparse import kron
-from .weights import W, WSP
-from .distance import DistanceBand
-from collections import OrderedDict
-
-
-
[docs]def ODW(Wo, Wd, transform="r", silence_warnings=True): - """ - Constructs an o*d by o*d origin-destination style spatial weight for o*d - flows using standard spatial weights on o origins and d destinations. Input - spatial weights must be binary or able to be sutiably transformed to binary. - - Parameters - ---------- - Wo : W object for origin locations - o x o spatial weight object amongst o origins - - Wd : W object for destination locations - d x d spatial weight object amongst d destinations - - transform : Transformation for standardization of final OD spatial weight; default - is 'r' for row standardized - - Returns - ------- - W : spatial contiguity W object for assocations between flows - o*d x o*d spatial weight object amongst o*d flows between o - origins and d destinations - - Examples - -------- - - >>> import libpysal - >>> O = libpysal.weights.lat2W(2,2) - >>> D = libpysal.weights.lat2W(2,2) - >>> OD = libpysal.weights.ODW(O,D) - >>> OD.weights[0] - [0.25, 0.25, 0.25, 0.25] - >>> OD.neighbors[0] - [5, 6, 9, 10] - >>> OD.full()[0][0] - array([0. , 0. , 0. , 0. , 0. , 0.25, 0.25, 0. , 0. , 0.25, 0.25, - 0. , 0. , 0. , 0. , 0. ]) - - """ - if Wo.transform != "b": - try: - Wo.tranform = "b" - except: - raise AttributeError( - "Wo is not binary and cannot be transformed to " - "binary. Wo must be binary or suitably transformed to binary." - ) - if Wd.transform != "b": - try: - Wd.tranform = "b" - except: - raise AttributeError( - "Wd is not binary and cannot be transformed to " - "binary. Wd must be binary or suitably transformed to binary." - ) - Wo = Wo.sparse - Wo.eliminate_zeros() - Wd = Wd.sparse - Wd.eliminate_zeros() - Ww = kron(Wo, Wd, format="csr") - Ww.eliminate_zeros() - Ww = WSP(Ww).to_W(silence_warnings=silence_warnings) - Ww.transform = transform - return Ww
- - -
[docs]def netW(link_list, share="A", transform="r", **kwargs): - """ - Create a network-contiguity based weight object based on different nodal - relationships encoded in a network. - - Parameters - ---------- - link_list : list - of tuples where each tuple is of the form (o,d) where o is an - origin id and d is a destination id - - share : string - denoting how to define the nodal relationship used to determine neighboring edges; defualt is 'A' for any shared nodes between two network edges; options include: O a shared origin node; D a shared destination node; OD; a shared origin or a shared destination node; C a shared node that is the destination of the first edge and the origin of the second edge - i.e., a directed chain is formed moving from edge one to edge two. - - transform : Transformation for standardization of final OD spatial weight; default - is 'r' for row standardized - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------- - W : nodal contiguity W object for networkd edges or flows - W Object representing the binary adjacency of the network edges - given a definition of nodal relationshilibpysal.weights.spintW. - - Examples - -------- - >>> import libpysal - >>> links = [('a','b'), ('a','c'), ('a','d'), ('c','d'), ('c', 'b'), ('c','a')] - >>> O = libpysal.weights.netW(links, share='O') - >>> O.neighbors[('a', 'b')] - [('a', 'c'), ('a', 'd')] - >>> OD = libpysal.weights.netW(links, share='OD') - >>> OD.neighbors[('a', 'b')] - [('a', 'c'), ('a', 'd'), ('c', 'b')] - >>> any_common = libpysal.weights.netW(links, share='A') - >>> any_common.neighbors[('a', 'b')] - [('a', 'c'), ('a', 'd'), ('c', 'b'), ('c', 'a')] - - """ - neighbors = {} - neighbors = OrderedDict() - edges = link_list - for key in edges: - neighbors[key] = [] - for neigh in edges: - if key == neigh: - continue - if share.upper() == "OD": - if key[0] == neigh[0] or key[1] == neigh[1]: - neighbors[key].append(neigh) - elif share.upper() == "O": - if key[0] == neigh[0]: - neighbors[key].append(neigh) - elif share.upper() == "D": - if key[1] == neigh[1]: - neighbors[key].append(neigh) - elif share.upper() == "C": - if key[1] == neigh[0]: - neighbors[key].append(neigh) - elif share.upper() == "A": - if ( - key[0] == neigh[0] - or key[0] == neigh[1] - or key[1] == neigh[0] - or key[1] == neigh[1] - ): - neighbors[key].append(neigh) - else: - raise AttributeError( - "Parameter 'share' must be 'O', 'D'," " 'OD', or 'C'" - ) - netW = W(neighbors, **kwargs) - netW.tranform = transform - return netW
- - -
[docs]def vecW( - origin_x, - origin_y, - dest_x, - dest_y, - threshold, - p=2, - alpha=-1.0, - binary=True, - ids=None, - build_sp=False, - **kwargs -): - """ - Distance-based spatial weight for vectors that is computed using a - 4-dimensional distance between the origin x,y-coordinates and the - destination x,y-coordinates - - Parameters - ---------- - origin_x : list or array - of vector origin x-coordinates - origin_y : list or array - of vector origin y-coordinates - dest_x : list or array - of vector destination x-coordinates - dest_y : list or array - of vector destination y-coordinates - threshold : float - distance band - p : float - Minkowski p-norm distance metric parameter: - 1<=p<=infinity - 2: Euclidean distance - 1: Manhattan distance - binary : boolean - If true w_{ij}=1 if d_{i,j}<=threshold, otherwise w_{i,j}=0 - If false wij=dij^{alpha} - alpha : float - distance decay parameter for weight (default -1.0) - if alpha is positive the weights will not decline with - distance. If binary is True, alpha is ignored - - ids : list - values to use for keys of the neighbors and weights dicts - build_sp : boolean - True to build sparse distance matrix and false to build dense - distance matrix; significant speed gains may be obtained - dending on the sparsity of the of distance_matrix and - threshold that is applied - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------ - W : DistanceBand W object that uses 4-dimenional distances between - vectors origin and destination coordinates. - - Examples - -------- - >>> import libpysal - >>> x1 = [5,6,3] - >>> y1 = [1,8,5] - >>> x2 = [2,4,9] - >>> y2 = [3,6,1] - >>> W1 = libpysal.weights.vecW(x1, y1, x2, y2, threshold=999) - >>> list(W1.neighbors[0]) - [1, 2] - >>> W2 = libpysal.weights.vecW(x1, y2, x1, y2, threshold=8.5) - >>> list(W2.neighbors[0]) - [1, 2] - - """ - data = list(zip(origin_x, origin_y, dest_x, dest_y)) - W = DistanceBand( - data, - threshold=threshold, - p=p, - binary=binary, - alpha=alpha, - ids=ids, - build_sp=False, - **kwargs - ) - return W
- - -
[docs]def mat2L(edge_matrix): - """ - Convert a matrix denoting network connectivity (edges or flows) to a list - denoting edges - - Parameters - ---------- - edge_matrix : array - where rows denote network edge origins, columns denote - network edge destinations, and non-zero entries denote the - existence of an edge between a given origin and destination - - Returns - ------- - edge_list : list - of tuples where each tuple is of the form (o,d) where o is an - origin id and d is a destination id - - """ - if len(edge_matrix.shape) != 2: - raise AttributeError( - "Matrix of network edges should be two dimensions" - "with edge origins on one axis and edge destinations on the" - "second axis with non-zero matrix entires denoting an edge" - "between and origin and destination" - ) - edge_list = [] - rows, cols = edge_matrix.shape - for row in range(rows): - for col in range(cols): - if edge_matrix[row, col] != 0: - edge_list.append((row, col)) - return edge_list
-
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/user.html b/docs/_modules/libpysal/weights/user.html deleted file mode 100644 index e4aa1248d..000000000 --- a/docs/_modules/libpysal/weights/user.html +++ /dev/null @@ -1,300 +0,0 @@ - - - - - - - libpysal.weights.user — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.user

-"""
-Convenience functions for the construction of spatial weights based on
-contiguity and distance criteria.
-"""
-
-__author__ = "Sergio J. Rey <srey@asu.edu> "
-
-from .util import get_points_array_from_shapefile, min_threshold_distance
-from ..io.fileio import FileIO as ps_open
-from .. import cg
-import numpy as np
-
-__all__ = [
-    "min_threshold_dist_from_shapefile",
-    "build_lattice_shapefile",
-    "spw_from_gal",
-]
-
-
-
[docs]def spw_from_gal(galfile): - """ - Sparse scipy matrix for w from a gal file. - - Parameters - ---------- - - galfile : string - name of gal file including suffix - - Returns - ------- - - spw : sparse_matrix - scipy sparse matrix in CSR format - - ids : array - identifiers for rows/cols of spw - - Examples - -------- - >>> import libpysal - >>> spw = libpysal.weights.spw_from_gal(libpysal.examples.get_path("sids2.gal")) - >>> spw.sparse.nnz - 462 - - """ - - return ps_open(galfile, "r").read(sparse=True)
- - -
[docs]def min_threshold_dist_from_shapefile(shapefile, radius=None, p=2): - """ - Get the maximum nearest neighbor distance between observations in the - shapefile. - - Parameters - ---------- - shapefile : string - shapefile name with shp suffix. - radius : float - If supplied arc_distances will be calculated - based on the given radius. p will be ignored. - p : float - Minkowski p-norm distance metric parameter: - 1<=p<=infinity - 2: Euclidean distance - 1: Manhattan distance - - Returns - ------- - d : float - Maximum nearest neighbor distance between the n - observations. - - Examples - -------- - >>> import libpysal - >>> md = libpysal.weights.min_threshold_dist_from_shapefile(libpysal.examples.get_path("columbus.shp")) - >>> md - 0.6188641580768541 - >>> libpysal.weights.min_threshold_dist_from_shapefile(libpysal.examples.get_path("stl_hom.shp"), libpysal.cg.sphere.RADIUS_EARTH_MILES) - 31.846942936393717 - - Notes - ----- - Supports polygon or point shapefiles. For polygon shapefiles, distance is - based on polygon centroids. Distances are defined using coordinates in - shapefile which are assumed to be projected and not geographical - coordinates. - - """ - points = get_points_array_from_shapefile(shapefile) - if radius is not None: - kdt = cg.kdtree.Arc_KDTree(points, radius=radius) - nn = kdt.query(kdt.data, k=2) - nnd = nn[0].max(axis=0)[1] - return nnd - return min_threshold_distance(points, p)
- - -
[docs]def build_lattice_shapefile(nrows, ncols, outFileName): - """ - Build a lattice shapefile with nrows rows and ncols cols. - - Parameters - ---------- - - nrows : int - Number of rows - ncols : int - Number of cols - outFileName : str - shapefile name with shp suffix - - Returns - ------- - None - - """ - if not outFileName.endswith(".shp"): - raise ValueError("outFileName must end with .shp") - o = ps_open(outFileName, "w") - dbf_name = outFileName.split(".")[0] + ".dbf" - d = ps_open(dbf_name, "w") - d.header = ["ID"] - d.field_spec = [("N", 8, 0)] - c = 0 - for i in range(ncols): - for j in range(nrows): - ll = i, j - ul = i, j + 1 - ur = i + 1, j + 1 - lr = i + 1, j - o.write(cg.Polygon([ll, ul, ur, lr, ll])) - d.write([c]) - c += 1 - d.close() - o.close()
- - -def _test(): - import doctest - - # the following line could be used to define an alternative to the '<BLANKLINE>' flag - # doctest.BLANKLINE_MARKER = 'something better than <BLANKLINE>' - start_suppress = np.get_printoptions()["suppress"] - np.set_printoptions(suppress=True) - doctest.testmod() - np.set_printoptions(suppress=start_suppress) - - -if __name__ == "__main__": - _test() -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/util.html b/docs/_modules/libpysal/weights/util.html deleted file mode 100644 index 5beaaaaeb..000000000 --- a/docs/_modules/libpysal/weights/util.html +++ /dev/null @@ -1,1820 +0,0 @@ - - - - - - - libpysal.weights.util — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.util

-from ..io.fileio import FileIO as psopen
-from .weights import W, WSP
-from .set_operations import w_subset
-import numpy as np
-from scipy import sparse
-from scipy.spatial import KDTree
-import copy
-import scipy.spatial
-import os
-import scipy
-from warnings import warn
-import numbers
-from collections import defaultdict
-from itertools import tee
-from ..common import requires
-from distutils.version import LooseVersion
-
-try:
-    import geopandas as gpd
-
-    GPD_08 = str(gpd.__version__) >= LooseVersion("0.8.0")
-except ImportError:
-    warn("geopandas not available. Some functionality will be disabled.")
-
-__all__ = [
-    "lat2W",
-    "block_weights",
-    "comb",
-    "order",
-    "higher_order",
-    "shimbel",
-    "remap_ids",
-    "full2W",
-    "full",
-    "WSP2W",
-    "insert_diagonal",
-    "fill_diagonal",
-    "get_ids",
-    "get_points_array_from_shapefile",
-    "min_threshold_distance",
-    "lat2SW",
-    "w_local_cluster",
-    "higher_order_sp",
-    "hexLat2W",
-    "neighbor_equality",
-    "attach_islands",
-    "nonplanar_neighbors",
-    "fuzzy_contiguity",
-]
-
-
-KDTREE_TYPES = [scipy.spatial.KDTree, scipy.spatial.cKDTree]
-
-
-
[docs]def hexLat2W(nrows=5, ncols=5, **kwargs): - """ - Create a W object for a hexagonal lattice. - - Parameters - ---------- - nrows : int - number of rows - ncols : int - number of columns - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------- - w : W - instance of spatial weights class W - - Notes - ----- - Observations are row ordered: first k observations are in row 0, next k in row 1, and so on. - - Construction is based on shifting every other column of a regular lattice - down 1/2 of a cell. - - Examples - -------- - >>> from libpysal.weights import lat2W, hexLat2W - >>> w = lat2W() - >>> w.neighbors[1] - [0, 6, 2] - >>> w.neighbors[21] - [16, 20, 22] - >>> wh = hexLat2W() - >>> wh.neighbors[1] - [0, 6, 2, 5, 7] - >>> wh.neighbors[21] - [16, 20, 22] - """ - - if nrows == 1 or ncols == 1: - print("Hexagon lattice requires at least 2 rows and columns") - print("Returning a linear contiguity structure") - return lat2W(nrows, ncols) - - n = nrows * ncols - rid = [i // ncols for i in range(n)] - cid = [i % ncols for i in range(n)] - r1 = nrows - 1 - c1 = ncols - 1 - - w = lat2W(nrows, ncols).neighbors - for i in range(n): - odd = cid[i] % 2 - if odd: - if rid[i] < r1: # odd col index above last row - # new sw neighbor - if cid[i] > 0: - j = i + ncols - 1 - w[i] = w.get(i, []) + [j] - # new se neighbor - if cid[i] < c1: - j = i + ncols + 1 - w[i] = w.get(i, []) + [j] - - else: # even col - # nw - jnw = [i - ncols - 1] - # ne - jne = [i - ncols + 1] - if rid[i] > 0: - w[i] - if cid[i] == 0: - w[i] = w.get(i, []) + jne - elif cid[i] == c1: - w[i] = w.get(i, []) + jnw - else: - w[i] = w.get(i, []) + jne - w[i] = w.get(i, []) + jnw - - return W(w, **kwargs)
- - -
[docs]def lat2W(nrows=5, ncols=5, rook=True, id_type="int", **kwargs): - """ - Create a W object for a regular lattice. - - Parameters - ---------- - - nrows : int - number of rows - ncols : int - number of columns - rook : boolean - type of contiguity. Default is rook. For queen, rook =False - id_type : string - string defining the type of IDs to use in the final W object; - options are 'int' (0, 1, 2 ...; default), 'float' (0.0, - 1.0, 2.0, ...) and 'string' ('id0', 'id1', 'id2', ...) - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------- - - w : W - instance of spatial weights class W - - Notes - ----- - - Observations are row ordered: first k observations are in row 0, next k in row 1, and so on. - - Examples - -------- - - >>> from libpysal.weights import lat2W - >>> w9 = lat2W(3,3) - >>> "%.3f"%w9.pct_nonzero - '29.630' - >>> w9[0] == {1: 1.0, 3: 1.0} - True - >>> w9[3] == {0: 1.0, 4: 1.0, 6: 1.0} - True - """ - n = nrows * ncols - r1 = nrows - 1 - c1 = ncols - 1 - rid = [i // ncols for i in range(n)] # must be floor! - cid = [i % ncols for i in range(n)] - w = {} - r = below = 0 - for i in range(n - 1): - if rid[i] < r1: - below = rid[i] + 1 - r = below * ncols + cid[i] - w[i] = w.get(i, []) + [r] - w[r] = w.get(r, []) + [i] - if cid[i] < c1: - right = cid[i] + 1 - c = rid[i] * ncols + right - w[i] = w.get(i, []) + [c] - w[c] = w.get(c, []) + [i] - if not rook: - # southeast bishop - if cid[i] < c1 and rid[i] < r1: - r = (rid[i] + 1) * ncols + 1 + cid[i] - w[i] = w.get(i, []) + [r] - w[r] = w.get(r, []) + [i] - # southwest bishop - if cid[i] > 0 and rid[i] < r1: - r = (rid[i] + 1) * ncols - 1 + cid[i] - w[i] = w.get(i, []) + [r] - w[r] = w.get(r, []) + [i] - - neighbors = {} - weights = {} - for key in w: - weights[key] = [1.0] * len(w[key]) - ids = list(range(n)) - if id_type == "string": - ids = ["id" + str(i) for i in ids] - elif id_type == "float": - ids = [i * 1.0 for i in ids] - if id_type == "string" or id_type == "float": - id_dict = dict(list(zip(list(range(n)), ids))) - alt_w = {} - alt_weights = {} - for i in w: - values = [id_dict[j] for j in w[i]] - key = id_dict[i] - alt_w[key] = values - alt_weights[key] = weights[i] - w = alt_w - weights = alt_weights - return W(w, weights, ids=ids, id_order=ids[:], **kwargs)
- - -
[docs]def block_weights(regimes, ids=None, sparse=False, **kwargs): - """ - Construct spatial weights for regime neighbors. - - Block contiguity structures are relevant when defining neighbor relations - based on membership in a regime. For example, all counties belonging to - the same state could be defined as neighbors, in an analysis of all - counties in the US. - - Parameters - ---------- - regimes : list, array - ids of which regime an observation belongs to - ids : list, array - Ordered sequence of IDs for the observations - sparse : boolean - If True return WSP instance - If False return W instance - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------- - - W : spatial weights instance - - Examples - -------- - >>> from libpysal.weights import block_weights - >>> import numpy as np - >>> regimes = np.ones(25) - >>> regimes[range(10,20)] = 2 - >>> regimes[range(21,25)] = 3 - >>> regimes - array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 2., 2., - 2., 2., 2., 1., 3., 3., 3., 3.]) - >>> w = block_weights(regimes) - >>> w.weights[0] - [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] - >>> w.neighbors[0] - [1, 2, 3, 4, 5, 6, 7, 8, 9, 20] - >>> regimes = ['n','n','s','s','e','e','w','w','e'] - >>> n = len(regimes) - >>> w = block_weights(regimes) - >>> w.neighbors == {0: [1], 1: [0], 2: [3], 3: [2], 4: [5, 8], 5: [4, 8], 6: [7], 7: [6], 8: [4, 5]} - True - """ - rids = np.unique(regimes) - neighbors = {} - NPNZ = np.nonzero - regimes = np.array(regimes) - for rid in rids: - members = NPNZ(regimes == rid)[0] - for member in members: - neighbors[member] = members[NPNZ(members != member)[0]].tolist() - w = W(neighbors, **kwargs) - if ids is not None: - w.remap_ids(ids) - if sparse: - w = WSP(w.sparse, id_order=ids) - return w
- - -
[docs]def comb(items, n=None): - """ - Combinations of size n taken from items - - Parameters - ---------- - - items : list - items to be drawn from - n : integer - size of combinations to take from items - - Returns - ------- - - implicit : generator - combinations of size n taken from items - - Examples - -------- - >>> x = range(4) - >>> for c in comb(x, 2): - ... print(c) - ... - [0, 1] - [0, 2] - [0, 3] - [1, 2] - [1, 3] - [2, 3] - - """ - items = list(items) - if n is None: - n = len(items) - for i in list(range(len(items))): - v = items[i : i + 1] - if n == 1: - yield v - else: - rest = items[i + 1 :] - for c in comb(rest, n - 1): - yield v + c
- - -
[docs]def order(w, kmax=3): - """ - Determine the non-redundant order of contiguity up to a specific - order. - - Parameters - ---------- - - w : W - spatial weights object - - kmax : int - maximum order of contiguity - - Returns - ------- - - info : dictionary - observation id is the key, value is a list of contiguity - orders with a negative 1 in the ith position - - Notes - ----- - Implements the algorithm in :cite:`Anselin1996b`. - - Examples - -------- - >>> from libpysal.weights import order, Rook - >>> import libpysal - >>> w = Rook.from_shapefile(libpysal.examples.get_path('10740.shp')) - - WARNING: there is one disconnected observation (no neighbors) - Island id: [163] - >>> w3 = order(w, kmax = 3) - >>> w3[1][0:5] - [1, -1, 1, 2, 1] - - """ - - ids = w.id_order - info = {} - for id_ in ids: - s = [0] * w.n - s[ids.index(id_)] = -1 - for j in w.neighbors[id_]: - s[ids.index(j)] = 1 - k = 1 - while k < kmax: - knext = k + 1 - if s.count(k): - # get neighbors of order k - js = [ids[j] for j, val in enumerate(s) if val == k] - # get first order neighbors for order k neighbors - for j in js: - next_neighbors = w.neighbors[j] - for neighbor in next_neighbors: - nid = ids.index(neighbor) - if s[nid] == 0: - s[nid] = knext - k = knext - info[id_] = s - return info
- - -
[docs]def higher_order(w, k=2, **kwargs): - """ - Contiguity weights object of order k. - - Parameters - ---------- - - w : W - spatial weights object - k : int - order of contiguity - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - - implicit : W - spatial weights object - - Notes - ----- - Proper higher order neighbors are returned such that i and j are k-order - neighbors iff the shortest path from i-j is of length k. - - Examples - -------- - >>> from libpysal.weights import lat2W, higher_order - >>> w10 = lat2W(10, 10) - >>> w10_2 = higher_order(w10, 2) - >>> w10_2[0] == {2: 1.0, 11: 1.0, 20: 1.0} - True - >>> w5 = lat2W() - >>> w5[0] == {1: 1.0, 5: 1.0} - True - >>> w5[1] == {0: 1.0, 2: 1.0, 6: 1.0} - True - >>> w5_2 = higher_order(w5,2) - >>> w5_2[0] == {10: 1.0, 2: 1.0, 6: 1.0} - True - """ - return higher_order_sp(w, k, **kwargs)
- - -
[docs]def higher_order_sp( - w, k=2, shortest_path=True, diagonal=False, lower_order=False, **kwargs -): - """ - Contiguity weights for either a sparse W or W for order k. - - Parameters - ---------- - w : W - sparse_matrix, spatial weights object or - scipy.sparse.csr.csr_instance - k : int - Order of contiguity - shortest_path : boolean - True: i,j and k-order neighbors if the - shortest path for i,j is k. - False: i,j are k-order neighbors if there - is a path from i,j of length k. - diagonal : boolean - True: keep k-order (i,j) joins when i==j - False: remove k-order (i,j) joins when i==j - lower_order : boolean - True: include lower order contiguities - False: return only weights of order k - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - wk : W - WSP, type matches type of w argument - - - Examples - -------- - - >>> from libpysal.weights import lat2W, higher_order_sp - >>> w25 = lat2W(5,5) - >>> w25.n - 25 - >>> w25[0] == {1: 1.0, 5: 1.0} - True - >>> w25_2 = higher_order_sp(w25, 2) - >>> w25_2[0] == {10: 1.0, 2: 1.0, 6: 1.0} - True - >>> w25_2 = higher_order_sp(w25, 2, diagonal=True) - >>> w25_2[0] == {0: 1.0, 10: 1.0, 2: 1.0, 6: 1.0} - True - >>> w25_3 = higher_order_sp(w25, 3) - >>> w25_3[0] == {15: 1.0, 3: 1.0, 11: 1.0, 7: 1.0} - True - >>> w25_3 = higher_order_sp(w25, 3, shortest_path=False) - >>> w25_3[0] == {1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0, 11: 1.0, 15: 1.0} - True - >>> w25_3 = higher_order_sp(w25, 3, lower_order=True) - >>> w25_3[0] == {5: 1.0, 7: 1.0, 11: 1.0, 2: 1.0, 15: 1.0, 6: 1.0, 10: 1.0, 1: 1.0, 3: 1.0} - True - - """ - id_order = None - if issubclass(type(w), W) or isinstance(w, W): - if np.unique(np.hstack(list(w.weights.values()))) == np.array([1.0]): - id_order = w.id_order - w = w.sparse - else: - raise ValueError("Weights are not binary (0,1)") - elif scipy.sparse.isspmatrix_csr(w): - if not np.unique(w.data) == np.array([1.0]): - raise ValueError( - "Sparse weights matrix is not binary (0,1) weights matrix." - ) - else: - raise TypeError( - "Weights provided are neither a binary W object nor " - "a scipy.sparse.csr_matrix" - ) - - if lower_order: - wk = sum(map(lambda x: w ** x, range(2, k + 1))) - shortest_path = False - else: - wk = w ** k - - rk, ck = wk.nonzero() - sk = set(zip(rk, ck)) - - if shortest_path: - for j in range(1, k): - wj = w ** j - rj, cj = wj.nonzero() - sj = set(zip(rj, cj)) - sk.difference_update(sj) - - if not diagonal: - sk = set([(i, j) for i, j in sk if i != j]) - - if id_order: - d = dict([(i, []) for i in id_order]) - for pair in sk: - k, v = pair - k = id_order[k] - v = id_order[v] - d[k].append(v) - return W(neighbors=d, **kwargs) - else: - d = {} - for pair in sk: - k, v = pair - if k in d: - d[k].append(v) - else: - d[k] = [v] - return WSP(W(neighbors=d, **kwargs).sparse)
- - -
[docs]def w_local_cluster(w): - r""" - Local clustering coefficients for each unit as a node in a graph. - - Parameters - ---------- - - w : W - spatial weights object - - Returns - ------- - - c : array - (w.n,1) - local clustering coefficients - - Notes - ----- - - The local clustering coefficient :math:`c_i` quantifies how close the - neighbors of observation :math:`i` are to being a clique: - - .. math:: - - c_i = | \{w_{j,k}\} |/ (k_i(k_i - 1)): j,k \in N_i - - where :math:`N_i` is the set of neighbors to :math:`i`, :math:`k_i = - |N_i|` and :math:`\{w_{j,k}\}` is the set of non-zero elements of the - weights between pairs in :math:`N_i` :cite:`Watts1998`. - - Examples - -------- - >>> from libpysal.weights import lat2W, w_local_cluster - >>> w = lat2W(3,3, rook=False) - >>> w_local_cluster(w) - array([[1. ], - [0.6 ], - [1. ], - [0.6 ], - [0.42857143], - [0.6 ], - [1. ], - [0.6 ], - [1. ]]) - - """ - - c = np.zeros((w.n, 1), float) - w.transformation = "b" - for i, id in enumerate(w.id_order): - ki = max(w.cardinalities[id], 1) # deal with islands - Ni = w.neighbors[id] - wi = w_subset(w, Ni).full()[0] - c[i] = wi.sum() / (ki * (ki - 1)) - return c
- - -
[docs]def shimbel(w): - """ - Find the Shimbel matrix for first order contiguity matrix. - - Parameters - ---------- - w : W - spatial weights object - - Returns - ------- - - info : list - list of lists; one list for each observation which stores - the shortest order between it and each of the the other observations. - - Examples - -------- - >>> from libpysal.weights import lat2W, shimbel - >>> w5 = lat2W() - >>> w5_shimbel = shimbel(w5) - >>> w5_shimbel[0][24] - 8 - >>> w5_shimbel[0][0:4] - [-1, 1, 2, 3] - """ - - info = {} - ids = w.id_order - for i in ids: - s = [0] * w.n - s[ids.index(i)] = -1 - for j in w.neighbors[i]: - s[ids.index(j)] = 1 - k = 1 - flag = s.count(0) - while flag: - p = -1 - knext = k + 1 - for j in range(s.count(k)): - neighbor = s.index(k, p + 1) - p = neighbor - next_neighbors = w.neighbors[ids[p]] - for neighbor in next_neighbors: - nid = ids.index(neighbor) - if s[nid] == 0: - s[nid] = knext - k = knext - flag = s.count(0) - info[i] = s - return info
- - -
[docs]def full(w): - """ - Generate a full numpy array. - - Parameters - ---------- - w : W - spatial weights object - - Returns - ------- - (fullw, keys) : tuple - first element being the full numpy array and second element - keys being the ids associated with each row in the array. - - Examples - -------- - >>> from libpysal.weights import W, full - >>> neighbors = {'first':['second'],'second':['first','third'],'third':['second']} - >>> weights = {'first':[1],'second':[1,1],'third':[1]} - >>> w = W(neighbors, weights) - >>> wf, ids = full(w) - >>> wf - array([[0., 1., 0.], - [1., 0., 1.], - [0., 1., 0.]]) - >>> ids - ['first', 'second', 'third'] - """ - return w.full()
- - -
[docs]def full2W(m, ids=None, **kwargs): - """ - Create a PySAL W object from a full array. - - Parameters - ---------- - m : array - nxn array with the full weights matrix - ids : list - User ids assumed to be aligned with m - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------- - w : W - PySAL weights object - - Examples - -------- - >>> from libpysal.weights import full2W - >>> import numpy as np - - Create an array of zeros - - >>> a = np.zeros((4, 4)) - - For loop to fill it with random numbers - - >>> for i in range(len(a)): - ... for j in range(len(a[i])): - ... if i!=j: - ... a[i, j] = np.random.random(1) - - Create W object - - >>> w = full2W(a) - >>> w.full()[0] == a - array([[ True, True, True, True], - [ True, True, True, True], - [ True, True, True, True], - [ True, True, True, True]]) - - Create list of user ids - - >>> ids = ['myID0', 'myID1', 'myID2', 'myID3'] - >>> w = full2W(a, ids=ids) - >>> w.full()[0] == a - array([[ True, True, True, True], - [ True, True, True, True], - [ True, True, True, True], - [ True, True, True, True]]) - """ - if m.shape[0] != m.shape[1]: - raise ValueError("Your array is not square") - neighbors, weights = {}, {} - for i in range(m.shape[0]): - # for i, row in enumerate(m): - row = m[i] - if ids: - i = ids[i] - ngh = list(row.nonzero()[0]) - weights[i] = list(row[ngh]) - ngh = list(ngh) - if ids: - ngh = [ids[j] for j in ngh] - neighbors[i] = ngh - return W(neighbors, weights, id_order=ids, **kwargs)
- - -
[docs]def WSP2W(wsp, **kwargs): - - """ - Convert a pysal WSP object (thin weights matrix) to a pysal W object. - - Parameters - ---------- - wsp : WSP - PySAL sparse weights object - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - Returns - ------- - w : W - PySAL weights object - - Examples - -------- - >>> from libpysal.weights import lat2W, WSP, WSP2W - - Build a 10x10 scipy.sparse matrix for a rectangular 2x5 region of cells - (rook contiguity), then construct a PySAL sparse weights object (wsp). - - >>> sp = lat2SW(2, 5) - >>> wsp = WSP(sp) - >>> wsp.n - 10 - >>> wsp.sparse[0].todense() - matrix([[0, 1, 0, 0, 0, 1, 0, 0, 0, 0]], dtype=int8) - - Convert this sparse weights object to a standard PySAL weights object. - - >>> w = WSP2W(wsp) - >>> w.n - 10 - >>> print(w.full()[0][0]) - [0. 1. 0. 0. 0. 1. 0. 0. 0. 0.] - - - """ - wsp.sparse - indices = wsp.sparse.indices - data = wsp.sparse.data - indptr = wsp.sparse.indptr - id_order = wsp.id_order - if id_order: - # replace indices with user IDs - indices = [id_order[i] for i in indices] - else: - id_order = list(range(wsp.n)) - neighbors, weights = {}, {} - start = indptr[0] - for i in range(wsp.n): - oid = id_order[i] - end = indptr[i + 1] - neighbors[oid] = indices[start:end] - weights[oid] = data[start:end] - start = end - ids = copy.copy(wsp.id_order) - w = W(neighbors, weights, ids, **kwargs) - w._sparse = copy.deepcopy(wsp.sparse) - w._cache["sparse"] = w._sparse - return w
- - -def insert_diagonal(w, val=1.0, wsp=False): - warn("This function is deprecated. Use fill_diagonal instead.") - return fill_diagonal(w, val=val, wsp=wsp) - - -
[docs]def fill_diagonal(w, val=1.0, wsp=False): - """ - Returns a new weights object with values inserted along the main diagonal. - - Parameters - ---------- - w : W - Spatial weights object - - diagonal : float, int or array - Defines the value(s) to which the weights matrix diagonal should - be set. If a constant is passed then each element along the - diagonal will get this value (default is 1.0). An array of length - w.n can be passed to set explicit values to each element along - the diagonal (assumed to be in the same order as w.id_order). - - wsp : boolean - If True return a thin weights object of the type WSP, if False - return the standard W object. - - Returns - ------- - w : W - Spatial weights object - - Examples - -------- - >>> from libpysal.weights import lat2W - >>> import numpy as np - - Build a basic rook weights matrix, which has zeros on the diagonal, then - insert ones along the diagonal. - - >>> w = lat2W(5, 5, id_type='string') - >>> w_const = insert_diagonal(w) - >>> w['id0'] == {'id5': 1.0, 'id1': 1.0} - True - >>> w_const['id0'] == {'id5': 1.0, 'id0': 1.0, 'id1': 1.0} - True - - Insert different values along the main diagonal. - - >>> diag = np.arange(100, 125) - >>> w_var = insert_diagonal(w, diag) - >>> w_var['id0'] == {'id5': 1.0, 'id0': 100.0, 'id1': 1.0} - True - - """ - - w_new = copy.deepcopy(w.sparse) - w_new = w_new.tolil() - if issubclass(type(val), np.ndarray): - if w.n != val.shape[0]: - raise Exception("shape of w and diagonal do not match") - w_new.setdiag(val) - elif isinstance(val, numbers.Number): - w_new.setdiag([val] * w.n) - else: - raise Exception("Invalid value passed to diagonal") - w_out = WSP(w_new, copy.copy(w.id_order)) - if wsp: - return w_out - else: - return WSP2W(w_out)
- - -
[docs]def remap_ids(w, old2new, id_order=[], **kwargs): - """ - Remaps the IDs in a spatial weights object. - - Parameters - ---------- - w : W - Spatial weights object - - old2new : dictionary - Dictionary where the keys are the IDs in w (i.e. "old IDs") and - the values are the IDs to replace them (i.e. "new IDs") - - id_order : list - An ordered list of new IDs, which defines the order of observations when - iterating over W. If not set then the id_order in w will be - used. - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------- - - implicit : W - Spatial weights object with new IDs - - Examples - -------- - >>> from libpysal.weights import lat2W - >>> w = lat2W(3,2) - >>> w.id_order - [0, 1, 2, 3, 4, 5] - >>> w.neighbors[0] - [2, 1] - >>> old_to_new = {0:'a', 1:'b', 2:'c', 3:'d', 4:'e', 5:'f'} - >>> w_new = remap_ids(w, old_to_new) - >>> w_new.id_order - ['a', 'b', 'c', 'd', 'e', 'f'] - >>> w_new.neighbors['a'] - ['c', 'b'] - - """ - - if not isinstance(w, W): - raise Exception("w must be a spatial weights object") - new_neigh = {} - new_weights = {} - for key, value in list(w.neighbors.items()): - new_values = [old2new[i] for i in value] - new_key = old2new[key] - new_neigh[new_key] = new_values - new_weights[new_key] = copy.copy(w.weights[key]) - if id_order: - return W(new_neigh, new_weights, id_order, **kwargs) - else: - if w.id_order: - id_order = [old2new[i] for i in w.id_order] - return W(new_neigh, new_weights, id_order, **kwargs) - else: - return W(new_neigh, new_weights, **kwargs)
- - -
[docs]def get_ids(in_shps, idVariable): - """ - Gets the IDs from the DBF file that moves with a given shape file or - a geopandas.GeoDataFrame. - - Parameters - ---------- - in_shps : str or geopandas.GeoDataFrame - The input geographic data. Either - (1) a path to a shapefile including suffix (str); or - (2) a geopandas.GeoDataFrame. - idVariable : str - name of a column in the shapefile's DBF or the - geopandas.GeoDataFrame to use for ids. - - Returns - ------- - ids : list - a list of IDs - - Examples - -------- - >>> from libpysal.weights.util import get_ids - >>> import libpysal - >>> polyids = get_ids(libpysal.examples.get_path("columbus.shp"), "POLYID") - >>> polyids[:5] - [1, 2, 3, 4, 5] - - >>> from libpysal.weights.util import get_ids - >>> import libpysal - >>> import geopandas as gpd - >>> gdf = gpd.read_file(libpysal.examples.get_path("columbus.shp")) - >>> polyids = gdf["POLYID"] - >>> polyids[:5] - 0 1 - 1 2 - 2 3 - 3 4 - 4 5 - Name: POLYID, dtype: int64 - - """ - - try: - if type(in_shps) == str: - dbname = os.path.splitext(in_shps)[0] + ".dbf" - db = psopen(dbname) - cols = db.header - var = db.by_col[idVariable] - db.close() - else: - cols = list(in_shps.columns) - var = list(in_shps[idVariable]) - return var - - except IOError: - msg = ( - 'The shapefile "%s" appears to be missing its DBF file. ' - + ' The DBF file "%s" could not be found.' % (in_shps, dbname) - ) - raise IOError(msg) - except (AttributeError, KeyError): - msg = ( - 'The variable "%s" not found in the DBF/GDF. The the following ' - + "variables are present: %s." % (idVariable, ",".join(cols)) - ) - raise KeyError(msg)
- - -def get_points_array(iterable): - """ - Gets a data array of x and y coordinates from a given iterable - Parameters - ---------- - iterable : iterable - arbitrary collection of shapes that supports iteration - - Returns - ------- - points : array - (n, 2) - a data array of x and y coordinates - - Notes - ----- - If the given shape file includes polygons, - this function returns x and y coordinates of the polygons' centroids - - """ - first_choice, backup = tee(iterable) - try: - data = np.vstack([np.array(shape.centroid) for shape in first_choice]) - except AttributeError: - data = np.vstack([shape for shape in backup]) - return data - - -
[docs]def get_points_array_from_shapefile(shapefile): - """ - Gets a data array of x and y coordinates from a given shapefile. - - Parameters - ---------- - shapefile : string - name of a shape file including suffix - - Returns - ------- - points : array - (n, 2) - a data array of x and y coordinates - - Notes - ----- - If the given shape file includes polygons, - this function returns x and y coordinates of the polygons' centroids - - Examples - -------- - Point shapefile - - >>> import libpysal - >>> from libpysal.weights.util import get_points_array_from_shapefile - >>> xy = get_points_array_from_shapefile(libpysal.examples.get_path('juvenile.shp')) - >>> xy[:3] - array([[94., 93.], - [80., 95.], - [79., 90.]]) - - - Polygon shapefile - - >>> xy = get_points_array_from_shapefile(libpysal.examples.get_path('columbus.shp')) - >>> xy[:3] - array([[ 8.82721847, 14.36907602], - [ 8.33265837, 14.03162401], - [ 9.01226541, 13.81971908]]) - """ - - f = psopen(shapefile) - data = get_points_array(f) - return data
- - -
[docs]def min_threshold_distance(data, p=2): - """ - Get the maximum nearest neighbor distance. - - Parameters - ---------- - - data : array - (n,k) or KDTree where KDtree.data is array (n,k) - n observations on k attributes - p : float - Minkowski p-norm distance metric parameter: - 1<=p<=infinity - 2: Euclidean distance - 1: Manhattan distance - - Returns - ------- - nnd : float - maximum nearest neighbor distance between the n observations - - Examples - -------- - >>> from libpysal.weights.util import min_threshold_distance - >>> import numpy as np - >>> x, y = np.indices((5, 5)) - >>> x.shape = (25, 1) - >>> y.shape = (25, 1) - >>> data = np.hstack([x, y]) - >>> min_threshold_distance(data) - 1.0 - - """ - if issubclass(type(data), scipy.spatial.KDTree): - kd = data - data = kd.data - else: - kd = KDTree(data) - nn = kd.query(data, k=2, p=p) - nnd = nn[0].max(axis=0)[1] - return nnd
- - -
[docs]def lat2SW(nrows=3, ncols=5, criterion="rook", row_st=False): - """ - Create a sparse W matrix for a regular lattice. - - Parameters - ---------- - - nrows : int - number of rows - ncols : int - number of columns - rook : {"rook", "queen", "bishop"} - type of contiguity. Default is rook. - row_st : boolean - If True, the created sparse W object is row-standardized so - every row sums up to one. Defaults to False. - - Returns - ------- - - w : scipy.sparse.dia_matrix - instance of a scipy sparse matrix - - Notes - ----- - - Observations are row ordered: first k observations are in row 0, next k in row 1, and so on. - This method directly creates the W matrix using the strucuture of the contiguity type. - - Examples - -------- - - >>> from libpysal.weights import lat2SW - >>> w9 = lat2SW(3,3) - >>> w9[0,1] == 1 - True - >>> w9[3,6] == 1 - True - >>> w9r = lat2SW(3,3, row_st=True) - >>> w9r[3,6] == 1./3 - True - """ - - n = nrows * ncols - diagonals = [] - offsets = [] - if criterion == "rook" or criterion == "queen": - d = np.ones((1, n)) - for i in range(ncols - 1, n, ncols): - d[0, i] = 0 - diagonals.append(d) - offsets.append(-1) - - d = np.ones((1, n)) - diagonals.append(d) - offsets.append(-ncols) - - if criterion == "queen" or criterion == "bishop": - d = np.ones((1, n)) - for i in range(0, n, ncols): - d[0, i] = 0 - diagonals.append(d) - offsets.append(-(ncols - 1)) - - d = np.ones((1, n)) - for i in range(ncols - 1, n, ncols): - d[0, i] = 0 - diagonals.append(d) - offsets.append(-(ncols + 1)) - data = np.concatenate(diagonals) - offsets = np.array(offsets) - m = sparse.dia_matrix((data, offsets), shape=(n, n), dtype=np.int8) - m = m + m.T - if row_st: - m = sparse.spdiags(1.0 / m.sum(1).T, 0, *m.shape) * m - return m
- - -def write_gal(file, k=10): - f = open(file, "w") - n = k * k - f.write("0 %d" % n) - for i in range(n): - row = i / k - col = i % k - neighs = [i - i, i + 1, i - k, i + k] - neighs = [j for j in neighs if j >= 0 and j < n] - f.write("\n%d %d\n" % (i, len(neighs))) - f.write(" ".join(map(str, neighs))) - f.close() - - -
[docs]def neighbor_equality(w1, w2): - """ - Test if the neighbor sets are equal between two weights objects - - Parameters - ---------- - - w1 : W - instance of spatial weights class W - - w2 : W - instance of spatial weights class W - - Returns - ------- - Boolean - - - Notes - ----- - Only set membership is evaluated, no check of the weight values is carried out. - - - Examples - -------- - >>> from libpysal.weights.util import neighbor_equality - >>> from libpysal.weights import lat2W, W - >>> w1 = lat2W(3,3) - >>> w2 = lat2W(3,3) - >>> neighbor_equality(w1, w2) - True - >>> w3 = lat2W(5,5) - >>> neighbor_equality(w1, w3) - False - >>> n4 = w1.neighbors.copy() - >>> n4[0] = [1] - >>> n4[1] = [4, 2] - >>> w4 = W(n4) - >>> neighbor_equality(w1, w4) - False - >>> n5 = w1.neighbors.copy() - >>> n5[0] - [3, 1] - >>> n5[0] = [1, 3] - >>> w5 = W(n5) - >>> neighbor_equality(w1, w5) - True - - """ - n1 = w1.neighbors - n2 = w2.neighbors - ids_1 = set(n1.keys()) - ids_2 = set(n2.keys()) - if ids_1 != ids_2: - return False - for i in ids_1: - if set(w1.neighbors[i]) != set(w2.neighbors[i]): - return False - return True
- - -def isKDTree(obj): - """ - This is a utility function to determine whether or not an object is a - KDTree, since KDTree and cKDTree have no common parent type - """ - return any([issubclass(type(obj), KDTYPE) for KDTYPE in KDTREE_TYPES]) - - -
[docs]def attach_islands(w, w_knn1, **kwargs): - """ - Attach nearest neighbor to islands in spatial weight w. - - Parameters - ---------- - - w : libpysal.weights.W - pysal spatial weight object (unstandardized). - w_knn1 : libpysal.weights.W - Nearest neighbor pysal spatial weight object (k=1). - **kwargs : keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------- - : libpysal.weights.W - pysal spatial weight object w without islands. - - Examples - -------- - >>> from libpysal.weights import lat2W, Rook, KNN, attach_islands - >>> import libpysal - >>> w = Rook.from_shapefile(libpysal.examples.get_path('10740.shp')) - >>> w.islands - [163] - >>> w_knn1 = KNN.from_shapefile(libpysal.examples.get_path('10740.shp'),k=1) - >>> w_attach = attach_islands(w, w_knn1) - >>> w_attach.islands - [] - >>> w_attach[w.islands[0]] - {166: 1.0} - - """ - - neighbors, weights = copy.deepcopy(w.neighbors), copy.deepcopy(w.weights) - if not len(w.islands): - print("There are no disconnected observations (no islands)!") - return w - else: - for island in w.islands: - nb = w_knn1.neighbors[island][0] - if type(island) is float: - nb = float(nb) - neighbors[island] = [nb] - weights[island] = [1.0] - neighbors[nb] = neighbors[nb] + [island] - weights[nb] = weights[nb] + [1.0] - return W(neighbors, weights, id_order=w.id_order, **kwargs)
- - -
[docs]def nonplanar_neighbors(w, geodataframe, tolerance=0.001, **kwargs): - """ - Detect neighbors for non-planar polygon collections - - - Parameters - ---------- - - w: pysal W - A spatial weights object with reported islands - - - geodataframe: GeoDataframe - The polygon dataframe from which w was constructed. - - tolerance: float - The percentage of the minimum horizontal or vertical extent (minextent) of - the dataframe to use in defining a buffering distance to allow for fuzzy - contiguity detection. The buffering distance is equal to tolerance*minextent. - **kwargs: keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Attributes - ---------- - - non_planar_joins : dictionary - Stores the new joins detected. Key is the id of the focal unit, value is a list of neighbor ids. - - Returns - ------- - - w: pysal W - Spatial weights object that encodes fuzzy neighbors. - This will have an attribute `non_planar_joins` to indicate what new joins were detected. - - Notes - ----- - - This relaxes the notion of contiguity neighbors for the case of shapefiles - that violate the condition of planar enforcement. It handles three types - of conditions present in such files that would result in islands when using - the regular PySAL contiguity methods. The first are edges for nearby - polygons that should be shared, but are digitized separately for the - individual polygons and the resulting edges do not coincide, but instead - the edges intersect. The second case is similar to the first, only the - resultant edges do not intersect but are "close". The final case arises - when one polygon is "inside" a second polygon but is not encoded to - represent a hole in the containing polygon. - - The buffering check assumes the geometry coordinates are projected. - - Examples - -------- - - >>> import geopandas as gpd - >>> import libpysal - >>> df = gpd.read_file(libpysal.examples.get_path('map_RS_BR.shp')) - >>> w = libpysal.weights.Queen.from_dataframe(df) - >>> w.islands - [0, 4, 23, 27, 80, 94, 101, 107, 109, 119, 122, 139, 169, 175, 223, 239, 247, 253, 254, 255, 256, 261, 276, 291, 294, 303, 321, 357, 374] - >>> wnp = libpysal.weights.nonplanar_neighbors(w, df) - >>> wnp.islands - [] - >>> w.neighbors[0] - [] - >>> wnp.neighbors[0] - [23, 59, 152, 239] - >>> wnp.neighbors[23] - [0, 45, 59, 107, 152, 185, 246] - - Also see `nonplanarweights.ipynb` - - References - ---------- - - Planar Enforcement: http://ibis.geog.ubc.ca/courses/klink/gis.notes/ncgia/u12.html#SEC12.6 - - - """ - - gdf = geodataframe - assert ( - gdf.sindex - ), "GeoDataFrame must have a spatial index. Please make sure you have `libspatialindex` installed" - islands = w.islands - joins = copy.deepcopy(w.neighbors) - candidates = gdf.geometry - fixes = defaultdict(list) - - # first check for intersecting polygons - for island in islands: - focal = gdf.iloc[island].geometry - neighbors = [ - j - for j, candidate in enumerate(candidates) - if focal.intersects(candidate) and j != island - ] - if len(neighbors) > 0: - for neighbor in neighbors: - if neighbor not in joins[island]: - fixes[island].append(neighbor) - joins[island].append(neighbor) - if island not in joins[neighbor]: - fixes[neighbor].append(island) - joins[neighbor].append(island) - - # if any islands remain, dilate them and check for intersection - if islands: - x0, y0, x1, y1 = gdf.total_bounds - distance = tolerance * min(x1 - x0, y1 - y0) - for island in islands: - dilated = gdf.iloc[island].geometry.buffer(distance) - neighbors = [ - j - for j, candidate in enumerate(candidates) - if dilated.intersects(candidate) and j != island - ] - if len(neighbors) > 0: - for neighbor in neighbors: - if neighbor not in joins[island]: - fixes[island].append(neighbor) - joins[island].append(neighbor) - if island not in joins[neighbor]: - fixes[neighbor].append(island) - joins[neighbor].append(island) - - w = W(joins, **kwargs) - w.non_planar_joins = fixes - return w
- -
[docs]@requires('geopandas') -def fuzzy_contiguity(gdf, tolerance=0.005, buffering=False, drop=True, buffer=None, predicate='intersects', **kwargs): - """ - Fuzzy contiguity spatial weights - - Parameters - ---------- - - gdf: GeoDataFrame - - tolerance: float - The percentage of the length of the minimum side of the bounding rectangle for the GeoDataFrame to use in determining the buffering distance. - - buffering: boolean - If False (default) joins will only be detected for features that intersect (touch, contain, within). - If True then features will be buffered and intersections will be based on buffered features. - - drop: boolean - If True (default), the buffered features are removed from the GeoDataFrame. If False, buffered features are added to the GeoDataFrame. - - buffer : float - Specify exact buffering distance. Ignores `tolerance`. - - predicate : {'intersects', 'within', 'contains', 'overlaps', 'crosses', 'touches'} - The predicate to use for determination of neighbors. Default is 'intersects'. If None is passed, neighbours are determined based on - the intersection of bounding boxes. - - **kwargs: keyword arguments - optional arguments for :class:`pysal.weights.W` - - - Returns - ------- - - w: PySAL W - Spatial weights based on fuzzy contiguity. Weights are binary. - - Examples - -------- - - >>> import libpysal - >>> from libpysal.weights import fuzzy_contiguity - >>> import geopandas as gpd - >>> rs = libpysal.examples.get_path('map_RS_BR.shp') - >>> rs_df = gpd.read_file(rs) - >>> wq = libpysal.weights.Queen.from_dataframe(rs_df) - >>> len(wq.islands) - 29 - >>> wq[0] - {} - >>> wf = fuzzy_contiguity(rs_df) - >>> wf.islands - [] - >>> wf[0] == dict({239: 1.0, 59: 1.0, 152: 1.0, 23: 1.0, 107: 1.0}) - True - - Example needing to use buffering - - >>> from shapely.geometry import Polygon - >>> p0 = Polygon([(0,0), (10,0), (10,10)]) - >>> p1 = Polygon([(10,1), (10,2), (15,2)]) - >>> p2 = Polygon([(12,2.001), (14, 2.001), (13,10)]) - >>> gs = gpd.GeoSeries([p0,p1,p2]) - >>> gdf = gpd.GeoDataFrame(geometry=gs) - >>> wf = fuzzy_contiguity(gdf) - >>> wf.islands - [2] - >>> wfb = fuzzy_contiguity(gdf, buffering=True) - >>> wfb.islands - [] - >>> wfb[2] - {1: 1.0} - - Example with a custom index - - >>> rs_df_ix = rs_df.set_index("NM_MUNICIP") - >>> wf_ix = fuzzy_contiguity(rs_df) - >>> wf_ix.neighbors["TAVARES"] - ['SÃO JOSÉ DO NORTE', 'MOSTARDAS'] - - Notes - ----- - - This relaxes the notion of contiguity neighbors for the case of feature - collections that violate the condition of planar enforcement. It handles - three types of conditions present in such collections that would result in - islands when using the regular PySAL contiguity methods. The first are - edges for nearby polygons that should be shared, but are digitized - separately for the individual polygons and the resulting edges do not - coincide, but instead the edges intersect. The second case is similar to - the first, only the resultant edges do not intersect but are "close". The - final case arises when one polygon is "inside" a second polygon but is not - encoded to represent a hole in the containing polygon. - - Detection of the second case will require setting buffering=True and exploring different values for tolerance. - - The buffering check assumes the geometry coordinates are projected. - - - References - ---------- - - Planar Enforcement: http://ibis.geog.ubc.ca/courses/klink/gis.notes/ncgia/u12.html#SEC12.6 - - - """ - if buffering: - if not buffer: - # buffer each shape - minx, miny, maxx, maxy = gdf.total_bounds - buffer = tolerance * 0.5 * abs(min(maxx - minx, maxy - miny)) - # create new geometry column - new_geometry = gdf.geometry.buffer(buffer) - gdf["_buffer"] = new_geometry - old_geometry_name = gdf.geometry.name - gdf.set_geometry('_buffer', inplace=True) - - neighbors = {} - if GPD_08: - # query tree based on set predicate - inp, res = gdf.sindex.query_bulk(gdf.geometry, predicate=predicate) - # remove self hits - itself = inp == res - inp = inp[~itself] - res = res[~itself] - - # extract index values of neighbors - for i, ix in enumerate(gdf.index): - ids = gdf.index[res[inp == i]].tolist() - neighbors[ix] = ids - else: - if predicate != 'intersects': - raise ValueError(f'Predicate `{predicate}` requires geopandas >= 0.8.0.') - tree = gdf.sindex - for i, (ix, geom) in enumerate(gdf.geometry.iteritems()): - hits = list(tree.intersection(geom.bounds)) - hits.remove(i) - possible = gdf.iloc[hits] - ids = possible[possible.intersects(geom)].index.tolist() - neighbors[ix] = ids - - if buffering: - gdf.set_geometry(old_geometry_name, inplace=True) - if drop: - gdf.drop(columns=["_buffer"], inplace=True) - - return W(neighbors, **kwargs)
- - -if __name__ == "__main__": - - from libpysal.weights import lat2W - - assert (lat2W(5, 5).sparse.todense() == lat2SW(5, 5).todense()).all() - assert (lat2W(5, 3).sparse.todense() == lat2SW(5, 3).todense()).all() - assert ( - lat2W(5, 3, rook=False).sparse.todense() == lat2SW(5, 3, "queen").todense() - ).all() - assert ( - lat2W(50, 50, rook=False).sparse.todense() == lat2SW(50, 50, "queen").todense() - ).all() -
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_modules/libpysal/weights/weights.html b/docs/_modules/libpysal/weights/weights.html deleted file mode 100644 index f86bf0a9c..000000000 --- a/docs/_modules/libpysal/weights/weights.html +++ /dev/null @@ -1,1655 +0,0 @@ - - - - - - - libpysal.weights.weights — libpysal v4.4.0 Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- -

Source code for libpysal.weights.weights

-"""
-Weights.
-"""
-__author__ = "Sergio J. Rey <srey@asu.edu>"
-
-import copy
-from os.path import basename as BASENAME
-import math
-import warnings
-import numpy as np
-import scipy.sparse
-from scipy.sparse.csgraph import connected_components
-
-# from .util import full, WSP2W resolve import cycle by
-# forcing these into methods
-from . import adjtools
-from ..io.fileio import FileIO as popen
-
-__all__ = ["W", "WSP"]
-
-
-
[docs]class W(object): - """ - Spatial weights class. Class attributes are described by their - docstrings. to view, use the ``help`` function. - - Parameters - ---------- - - neighbors : dict - Key is region ID, value is a list of neighbor IDS. - For example, ``{'a':['b'],'b':['a','c'],'c':['b']}``. - weights : dict - Key is region ID, value is a list of edge weights. - If not supplied all edge weights are assumed to have a weight of 1. - For example, ``{'a':[0.5],'b':[0.5,1.5],'c':[1.5]}``. - id_order : list - An ordered list of ids, defines the order of observations when - iterating over ``W`` if not set, lexicographical ordering is used - to iterate and the ``id_order_set`` property will return ``False``. - This can be set after creation by setting the ``id_order`` property. - silence_warnings : bool - By default ``libpysal`` will print a warning if the dataset contains - any disconnected components or islands. To silence this warning set this - parameter to ``True``. - ids : list - Values to use for keys of the neighbors and weights ``dict`` objects. - - Attributes - ---------- - - asymmetries - cardinalities - component_labels - diagW2 - diagWtW - diagWtW_WW - histogram - id2i - id_order - id_order_set - islands - max_neighbors - mean_neighbors - min_neighbors - n - n_components - neighbor_offsets - nonzero - pct_nonzero - s0 - s1 - s2 - s2array - sd - sparse - trcW2 - trcWtW - trcWtW_WW - transform - - Examples - -------- - - >>> from libpysal.weights import W - >>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]} - >>> weights = {0: [1, 1], 1: [1, 1, 1], 2: [1, 1], 3: [1, 1, 1], 4: [1, 1, 1, 1], 5: [1, 1, 1], 6: [1, 1], 7: [1, 1, 1], 8: [1, 1]} - >>> w = W(neighbors, weights) - >>> "%.3f"%w.pct_nonzero - '29.630' - - Read from external `.gal file <https://geodacenter.github.io/workbook/4a_contig_weights/lab4a.html#gal-weights-file>`_. - - >>> import libpysal - >>> w = libpysal.io.open(libpysal.examples.get_path("stl.gal")).read() - >>> w.n - 78 - >>> "%.3f"%w.pct_nonzero - '6.542' - - Set weights implicitly. - - >>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]} - >>> w = W(neighbors) - >>> round(w.pct_nonzero,3) - 29.63 - >>> from libpysal.weights import lat2W - >>> w = lat2W(100, 100) - >>> w.trcW2 - 39600.0 - >>> w.trcWtW - 39600.0 - >>> w.transform='r' - >>> round(w.trcW2, 3) - 2530.722 - >>> round(w.trcWtW, 3) - 2533.667 - - Cardinality Histogram: - - >>> w.histogram - [(2, 4), (3, 392), (4, 9604)] - - Disconnected observations (islands): - - >>> from libpysal.weights import W - >>> w = W({1:[0],0:[1],2:[], 3:[]}) - - UserWarning: The weights matrix is not fully connected: - There are 3 disconnected components. - There are 2 islands with ids: 2, 3. - - """ - -
[docs] def __init__( - self, neighbors, weights=None, id_order=None, silence_warnings=False, ids=None - ): - self.silence_warnings = silence_warnings - self.transformations = {} - self.neighbors = neighbors - if not weights: - weights = {} - for key in neighbors: - weights[key] = [1.0] * len(neighbors[key]) - self.weights = weights - self.transformations["O"] = self.weights.copy() # original weights - self.transform = "O" - if id_order is None: - self._id_order = list(self.neighbors.keys()) - self._id_order.sort() - self._id_order_set = False - else: - self._id_order = id_order - self._id_order_set = True - self._reset() - self._n = len(self.weights) - if not self.silence_warnings and self.n_components > 1: - message = ( - "The weights matrix is not fully connected: " - "\n There are %d disconnected components." % self.n_components - ) - ni = len(self.islands) - if ni == 1: - message = message + "\n There is 1 island with id: " "%s." % ( - str(self.islands[0]) - ) - elif ni > 1: - message = message + "\n There are %d islands with ids: %s." % ( - ni, - ", ".join(str(island) for island in self.islands), - ) - warnings.warn(message)
- - def _reset(self): - """Reset properties.""" - self._cache = {} - -
[docs] def to_file(self, path="", format=None): - """ - Write a weights to a file. The format is guessed automatically - from the path, but can be overridden with the format argument. - - See libpysal.io.FileIO for more information. - - Arguments - --------- - path : string - location to save the file - format : string - string denoting the format to write the weights to. - - - Returns - ------- - None - """ - f = popen(dataPath=path, mode="w", dataFormat=format) - f.write(self) - f.close()
- -
[docs] @classmethod - def from_file(cls, path="", format=None): - """ - Read a weights file into a W object. - - Arguments - --------- - path : string - location to save the file - format : string - string denoting the format to write the weights to. - - Returns - ------- - W object - """ - f = popen(dataPath=path, mode="r", dataFormat=format) - w = f.read() - f.close() - return w
- -
[docs] @classmethod - def from_shapefile(cls, *args, **kwargs): - # we could also just "do the right thing," but I think it'd make sense to - # try and get people to use `Rook.from_shapefile(shapefile)` rather than - # W.from_shapefile(shapefile, type=`rook`), otherwise we'd need to build - # a type dispatch table. Generic W should be for stuff we don't know - # anything about. - raise NotImplementedError( - "Use type-specific constructors, like Rook," - " Queen, DistanceBand, or Kernel" - )
- -
[docs] @classmethod - def from_WSP(cls, WSP, silence_warnings=True): - return WSP2W(WSP, silence_warnings=silence_warnings)
- -
[docs] @classmethod - def from_adjlist( - cls, adjlist, focal_col="focal", neighbor_col="neighbor", weight_col=None - ): - """ - Return an adjacency list representation of a weights object. - - Parameters - ---------- - - adjlist : pandas.DataFrame - Adjacency list with a minimum of two columns. - focal_col : str - Name of the column with the "source" node ids. - neighbor_col : str - Name of the column with the "destination" node ids. - weight_col : str - Name of the column with the weight information. If not provided and - the dataframe has no column named "weight" then all weights - are assumed to be 1. - """ - if weight_col is None: - weight_col = "weight" - try_weightcol = getattr(adjlist, weight_col) - if try_weightcol is None: - adjlist = adjlist.copy(deep=True) - adjlist["weight"] = 1 - all_ids = set(adjlist[focal_col].tolist()) - all_ids |= set(adjlist[neighbor_col].tolist()) - grouper = adjlist.groupby(focal_col) - neighbors = grouper[neighbor_col].apply(list).to_dict() - weights = grouper[weight_col].apply(list).to_dict() - neighbors.update({k: [] for k in all_ids.difference(list(neighbors.keys()))}) - weights.update({k: [] for k in all_ids.difference(list(weights.keys()))}) - return cls(neighbors=neighbors, weights=weights)
- -
[docs] def to_adjlist( - self, - remove_symmetric=False, - focal_col="focal", - neighbor_col="neighbor", - weight_col="weight", - ): - """ - Compute an adjacency list representation of a weights object. - - Parameters - ---------- - remove_symmetric : bool - Whether or not to remove symmetric entries. If the ``W`` - is symmetric, a standard directed adjacency list will contain - both the forward and backward links by default because adjacency - lists are a directed graph representation. If this is ``True``, - a ``W`` created from this adjacency list **MAY NOT BE THE SAME** - as the original ``W``. If you would like to consider (1,2) and - (2,1) as distinct links, leave this as ``False``. - focal_col : str - Name of the column in which to store "source" node ids. - neighbor_col : str - Name of the column in which to store "destination" node ids. - weight_col : str - Name of the column in which to store weight information. - """ - try: - import pandas as pd - except ImportError: - raise ImportError("pandas must be installed to use this method") - n_islands = len(self.islands) - if n_islands > 0 and (not self.silence_warnings): - warnings.warn( - "{} islands in this weights matrix. Conversion to an " - "adjacency list will drop these observations!" - ) - adjlist = pd.DataFrame( - ((idx, n, w) for idx, neighb in self for n, w in list(neighb.items())), - columns=("focal", "neighbor", "weight"), - ) - return adjtools.filter_adjlist(adjlist) if remove_symmetric else adjlist
- -
[docs] def to_networkx(self): - """Convert a weights object to a ``networkx`` graph. - - Returns - ------- - A ``networkx`` graph representation of the ``W`` object. - """ - try: - import networkx as nx - except ImportError: - raise ImportError("NetworkX is required to use this function.") - G = nx.DiGraph() if len(self.asymmetries) > 0 else nx.Graph() - return nx.from_scipy_sparse_matrix(self.sparse, create_using=G)
- -
[docs] @classmethod - def from_networkx(cls, graph, weight_col="weight"): - """Convert a ``networkx`` graph to a PySAL ``W`` object. - - Parameters - ---------- - graph : networkx.Graph - The graph to convert to a ``W``. - weight_col : string - If the graph is labeled, this should be the name of the field - to use as the weight for the ``W``. - - Returns - ------- - w : libpysal.weights.W - A ``W`` object containing the same graph as the ``networkx`` graph. - """ - try: - import networkx as nx - except ImportError: - raise ImportError("NetworkX is required to use this function.") - sparse_matrix = nx.to_scipy_sparse_matrix(graph) - w = WSP(sparse_matrix).to_W() - return w
- - @property - def sparse(self): - """Sparse matrix object. For any matrix manipulations required for w, - ``w.sparse`` should be used. This is based on ``scipy.sparse``. - """ - if "sparse" not in self._cache: - self._sparse = self._build_sparse() - self._cache["sparse"] = self._sparse - return self._sparse - - @property - def n_components(self): - """Store whether the adjacency matrix is fully connected. - """ - if "n_components" not in self._cache: - self._n_components, self._component_labels = connected_components( - self.sparse - ) - self._cache["n_components"] = self._n_components - self._cache["component_labels"] = self._component_labels - return self._n_components - - @property - def component_labels(self): - """Store the graph component in which each observation falls. - """ - if "component_labels" not in self._cache: - self._n_components, self._component_labels = connected_components( - self.sparse - ) - self._cache["n_components"] = self._n_components - self._cache["component_labels"] = self._component_labels - return self._component_labels - - def _build_sparse(self): - """Construct the sparse attribute. - """ - - row = [] - col = [] - data = [] - id2i = self.id2i - for i, neigh_list in list(self.neighbor_offsets.items()): - card = self.cardinalities[i] - row.extend([id2i[i]] * card) - col.extend(neigh_list) - data.extend(self.weights[i]) - row = np.array(row) - col = np.array(col) - data = np.array(data) - s = scipy.sparse.csr_matrix((data, (row, col)), shape=(self.n, self.n)) - return s - - @property - def id2i(self): - """Dictionary where the key is an ID and the value is that ID's - index in ``W.id_order``. - """ - if "id2i" not in self._cache: - self._id2i = {} - for i, id_i in enumerate(self._id_order): - self._id2i[id_i] = i - self._id2i = self._id2i - self._cache["id2i"] = self._id2i - return self._id2i - - @property - def n(self): - """Number of units. - """ - if "n" not in self._cache: - self._n = len(self.neighbors) - self._cache["n"] = self._n - return self._n - - @property - def s0(self): - r"""``s0`` is defined as - - .. math:: - - s0=\sum_i \sum_j w_{i,j} - - """ - if "s0" not in self._cache: - self._s0 = self.sparse.sum() - self._cache["s0"] = self._s0 - return self._s0 - - @property - def s1(self): - r"""``s1`` is defined as - - .. math:: - - s1=1/2 \sum_i \sum_j \Big(w_{i,j} + w_{j,i}\Big)^2 - - """ - if "s1" not in self._cache: - t = self.sparse.transpose() - t = t + self.sparse - t2 = t.multiply(t) # element-wise square - self._s1 = t2.sum() / 2.0 - self._cache["s1"] = self._s1 - return self._s1 - - @property - def s2array(self): - """Individual elements comprising ``s2``. - - See Also - -------- - s2 - - """ - if "s2array" not in self._cache: - s = self.sparse - self._s2array = np.array(s.sum(1) + s.sum(0).transpose()) ** 2 - self._cache["s2array"] = self._s2array - return self._s2array - - @property - def s2(self): - r"""``s2`` is defined as - - .. math:: - - s2=\sum_j \Big(\sum_i w_{i,j} + \sum_i w_{j,i}\Big)^2 - - """ - if "s2" not in self._cache: - self._s2 = self.s2array.sum() - self._cache["s2"] = self._s2 - return self._s2 - - @property - def trcW2(self): - """Trace of :math:`WW`. - - See Also - -------- - diagW2 - - """ - if "trcW2" not in self._cache: - self._trcW2 = self.diagW2.sum() - self._cache["trcw2"] = self._trcW2 - return self._trcW2 - - @property - def diagW2(self): - """Diagonal of :math:`WW`. - - See Also - -------- - trcW2 - - """ - if "diagw2" not in self._cache: - self._diagW2 = (self.sparse * self.sparse).diagonal() - self._cache["diagW2"] = self._diagW2 - return self._diagW2 - - @property - def diagWtW(self): - """Diagonal of :math:`W^{'}W`. - - See Also - -------- - trcWtW - - """ - if "diagWtW" not in self._cache: - self._diagWtW = (self.sparse.transpose() * self.sparse).diagonal() - self._cache["diagWtW"] = self._diagWtW - return self._diagWtW - - @property - def trcWtW(self): - """Trace of :math:`W^{'}W`. - - See Also - -------- - diagWtW - - """ - if "trcWtW" not in self._cache: - self._trcWtW = self.diagWtW.sum() - self._cache["trcWtW"] = self._trcWtW - return self._trcWtW - - @property - def diagWtW_WW(self): - """Diagonal of :math:`W^{'}W + WW`. - """ - if "diagWtW_WW" not in self._cache: - wt = self.sparse.transpose() - w = self.sparse - self._diagWtW_WW = (wt * w + w * w).diagonal() - self._cache["diagWtW_WW"] = self._diagWtW_WW - return self._diagWtW_WW - - @property - def trcWtW_WW(self): - """Trace of :math:`W^{'}W + WW`. - """ - if "trcWtW_WW" not in self._cache: - self._trcWtW_WW = self.diagWtW_WW.sum() - self._cache["trcWtW_WW"] = self._trcWtW_WW - return self._trcWtW_WW - - @property - def pct_nonzero(self): - """Percentage of nonzero weights. - """ - if "pct_nonzero" not in self._cache: - self._pct_nonzero = 100.0 * self.sparse.nnz / (1.0 * self._n ** 2) - self._cache["pct_nonzero"] = self._pct_nonzero - return self._pct_nonzero - - @property - def cardinalities(self): - """Number of neighbors for each observation. - """ - if "cardinalities" not in self._cache: - c = {} - for i in self._id_order: - c[i] = len(self.neighbors[i]) - self._cardinalities = c - self._cache["cardinalities"] = self._cardinalities - return self._cardinalities - - @property - def max_neighbors(self): - """Largest number of neighbors. - """ - if "max_neighbors" not in self._cache: - self._max_neighbors = max(self.cardinalities.values()) - self._cache["max_neighbors"] = self._max_neighbors - return self._max_neighbors - - @property - def mean_neighbors(self): - """Average number of neighbors. - """ - if "mean_neighbors" not in self._cache: - self._mean_neighbors = np.mean(list(self.cardinalities.values())) - self._cache["mean_neighbors"] = self._mean_neighbors - return self._mean_neighbors - - @property - def min_neighbors(self): - """Minimum number of neighbors. - """ - if "min_neighbors" not in self._cache: - self._min_neighbors = min(self.cardinalities.values()) - self._cache["min_neighbors"] = self._min_neighbors - return self._min_neighbors - - @property - def nonzero(self): - """Number of nonzero weights. - """ - if "nonzero" not in self._cache: - self._nonzero = self.sparse.nnz - self._cache["nonzero"] = self._nonzero - return self._nonzero - - @property - def sd(self): - """Standard deviation of number of neighbors. - """ - if "sd" not in self._cache: - self._sd = np.std(list(self.cardinalities.values())) - self._cache["sd"] = self._sd - return self._sd - - @property - def asymmetries(self): - """List of id pairs with asymmetric weights. - """ - if "asymmetries" not in self._cache: - self._asymmetries = self.asymmetry() - self._cache["asymmetries"] = self._asymmetries - return self._asymmetries - - @property - def islands(self): - """List of ids without any neighbors. - """ - if "islands" not in self._cache: - self._islands = [i for i, c in list(self.cardinalities.items()) if c == 0] - self._cache["islands"] = self._islands - return self._islands - - @property - def histogram(self): - """Cardinality histogram as a dictionary where key is the id and - value is the number of neighbors for that unit. - """ - if "histogram" not in self._cache: - ct, bin = np.histogram( - list(self.cardinalities.values()), - list(range(self.min_neighbors, self.max_neighbors + 2)), - ) - self._histogram = list(zip(bin, ct)) - self._cache["histogram"] = self._histogram - return self._histogram - - def __getitem__(self, key): - """Allow a dictionary like interaction with the weights class. - - Examples - -------- - >>> from libpysal.weights import lat2W - >>> w = lat2W() - - >>> w[0] == dict({1: 1.0, 5: 1.0}) - True - """ - return dict(list(zip(self.neighbors[key], self.weights[key]))) - - def __iter__(self): - """ - Support iteration over weights. - - Examples - -------- - >>> from libpysal.weights import lat2W - >>> w=lat2W(3,3) - >>> for i,wi in enumerate(w): - ... print(i,wi[0]) - ... - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - >>> - """ - for i in self._id_order: - yield i, dict(list(zip(self.neighbors[i], self.weights[i]))) - -
[docs] def remap_ids(self, new_ids): - """ - In place modification throughout ``W`` of id values from - ``w.id_order`` to ``new_ids`` in all. - - Parameters - ---------- - - new_ids : list, numpy.ndarray - Aligned list of new ids to be inserted. Note that first - element of ``new_ids`` will replace first element of - ``w.id_order``, second element of ``new_ids`` replaces second - element of ``w.id_order`` and so on. - - Examples - -------- - - >>> from libpysal.weights import lat2W - >>> w = lat2W(3, 3) - >>> w.id_order - [0, 1, 2, 3, 4, 5, 6, 7, 8] - >>> w.neighbors[0] - [3, 1] - >>> new_ids = ['id%i'%id for id in w.id_order] - >>> _ = w.remap_ids(new_ids) - >>> w.id_order - ['id0', 'id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8'] - >>> w.neighbors['id0'] - ['id3', 'id1'] - """ - - old_ids = self._id_order - if len(old_ids) != len(new_ids): - raise Exception( - "W.remap_ids: length of `old_ids` does not match \ - that of new_ids" - ) - if len(set(new_ids)) != len(new_ids): - raise Exception("W.remap_ids: list `new_ids` contains duplicates") - else: - new_neighbors = {} - new_weights = {} - old_transformations = self.transformations["O"].copy() - new_transformations = {} - for o, n in zip(old_ids, new_ids): - o_neighbors = self.neighbors[o] - o_weights = self.weights[o] - n_neighbors = [new_ids[old_ids.index(j)] for j in o_neighbors] - new_neighbors[n] = n_neighbors - new_weights[n] = o_weights[:] - new_transformations[n] = old_transformations[o] - self.neighbors = new_neighbors - self.weights = new_weights - self.transformations["O"] = new_transformations - - id_order = [self._id_order.index(o) for o in old_ids] - for i, id_ in enumerate(id_order): - self.id_order[id_] = new_ids[i] - - self._reset()
- - def __set_id_order(self, ordered_ids): - """Set the iteration order in w. ``W`` can be iterated over. On - construction the iteration order is set to the lexicographic order of - the keys in the ``w.weights`` dictionary. If a specific order - is required it can be set with this method. - - Parameters - ---------- - - ordered_ids : sequence - Identifiers for observations in specified order. - - Notes - ----- - - The ``ordered_ids`` parameter is checked against the ids implied - by the keys in ``w.weights``. If they are not equivalent sets an - exception is raised and the iteration order is not changed. - - Examples - -------- - - >>> from libpysal.weights import lat2W - >>> w=lat2W(3,3) - >>> for i,wi in enumerate(w): - ... print(i, wi[0]) - ... - 0 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - >>> w.id_order - [0, 1, 2, 3, 4, 5, 6, 7, 8] - >>> w.id_order=range(8,-1,-1) - >>> list(w.id_order) - [8, 7, 6, 5, 4, 3, 2, 1, 0] - >>> for i,w_i in enumerate(w): - ... print(i,w_i[0]) - ... - 0 8 - 1 7 - 2 6 - 3 5 - 4 4 - 5 3 - 6 2 - 7 1 - 8 0 - - """ - - if set(self._id_order) == set(ordered_ids): - self._id_order = ordered_ids - self._id_order_set = True - self._reset() - else: - raise Exception("ordered_ids do not align with W ids") - - def __get_id_order(self): - """Returns the ids for the observations in the order in which they - would be encountered if iterating over the weights. - """ - return self._id_order - - id_order = property(__get_id_order, __set_id_order) - - @property - def id_order_set(self): - """ Returns ``True`` if user has set ``id_order``, ``False`` if not. - - Examples - -------- - >>> from libpysal.weights import lat2W - >>> w=lat2W() - >>> w.id_order_set - True - """ - return self._id_order_set - - @property - def neighbor_offsets(self): - """ - Given the current ``id_order``, ``neighbor_offsets[id]`` is the - offsets of the id's neighbors in ``id_order``. - - Returns - ------- - neighbor_list : list - Offsets of the id's neighbors in ``id_order``. - - Examples - -------- - >>> from libpysal.weights import W - >>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']} - >>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]} - >>> w=W(neighbors,weights) - >>> w.id_order = ['a','b','c'] - >>> w.neighbor_offsets['b'] - [2, 0] - >>> w.id_order = ['b','a','c'] - >>> w.neighbor_offsets['b'] - [2, 1] - """ - - if "neighbors_0" not in self._cache: - self.__neighbors_0 = {} - id2i = self.id2i - for j, neigh_list in list(self.neighbors.items()): - self.__neighbors_0[j] = [id2i[neigh] for neigh in neigh_list] - self._cache["neighbors_0"] = self.__neighbors_0 - - neighbor_list = self.__neighbors_0 - - return neighbor_list - -
[docs] def get_transform(self): - """Getter for transform property. - - Returns - ------- - transformation : str, None - Valid transformation value. See the ``transform`` - parameters in ``set_transform()`` for a detailed description. - - Examples - -------- - >>> from libpysal.weights import lat2W - >>> w=lat2W() - >>> w.weights[0] - [1.0, 1.0] - >>> w.transform - 'O' - >>> w.transform='r' - >>> w.weights[0] - [0.5, 0.5] - >>> w.transform='b' - >>> w.weights[0] - [1.0, 1.0] - - See also - -------- - set_transform - - """ - - return self._transform
- -
[docs] def set_transform(self, value="B"): - """Transformations of weights. - - Parameters - ---------- - transform : str - This parameter is not case sensitive. The following are - valid transformations. - - * **B** -- Binary - * **R** -- Row-standardization (global sum :math:`=n`) - * **D** -- Double-standardization (global sum :math:`=1`) - * **V** -- Variance stabilizing - * **O** -- Restore original transformation (from instantiation) - - Notes - ----- - - Transformations are applied only to the value of the weights at - instantiation. Chaining of transformations cannot be done on a ``W`` - instance. - - - Examples - -------- - >>> from libpysal.weights import lat2W - >>> w=lat2W() - >>> w.weights[0] - [1.0, 1.0] - >>> w.transform - 'O' - >>> w.transform='r' - >>> w.weights[0] - [0.5, 0.5] - >>> w.transform='b' - >>> w.weights[0] - [1.0, 1.0] - """ - value = value.upper() - self._transform = value - if value in self.transformations: - self.weights = self.transformations[value] - self._reset() - else: - if value == "R": - # row standardized weights - weights = {} - self.weights = self.transformations["O"] - for i in self.weights: - wijs = self.weights[i] - row_sum = sum(wijs) * 1.0 - if row_sum == 0.0: - if not self.silence_warnings: - print(("WARNING: ", i, " is an island (no neighbors)")) - weights[i] = [wij / row_sum for wij in wijs] - weights = weights - self.transformations[value] = weights - self.weights = weights - self._reset() - elif value == "D": - # doubly-standardized weights - # update current chars before doing global sum - self._reset() - s0 = self.s0 - ws = 1.0 / s0 - weights = {} - self.weights = self.transformations["O"] - for i in self.weights: - wijs = self.weights[i] - weights[i] = [wij * ws for wij in wijs] - weights = weights - self.transformations[value] = weights - self.weights = weights - self._reset() - elif value == "B": - # binary transformation - weights = {} - self.weights = self.transformations["O"] - for i in self.weights: - wijs = self.weights[i] - weights[i] = [1.0 for wij in wijs] - weights = weights - self.transformations[value] = weights - self.weights = weights - self._reset() - elif value == "V": - # variance stabilizing - weights = {} - q = {} - k = self.cardinalities - s = {} - Q = 0.0 - self.weights = self.transformations["O"] - for i in self.weights: - wijs = self.weights[i] - q[i] = math.sqrt(sum([wij * wij for wij in wijs])) - s[i] = [wij / q[i] for wij in wijs] - Q += sum([si for si in s[i]]) - nQ = self.n / Q - for i in self.weights: - weights[i] = [w * nQ for w in s[i]] - weights = weights - self.transformations[value] = weights - self.weights = weights - self._reset() - elif value == "O": - # put weights back to original transformation - weights = {} - original = self.transformations[value] - self.weights = original - self._reset() - else: - raise Exception("unsupported weights transformation")
- - transform = property(get_transform, set_transform) - -
[docs] def asymmetry(self, intrinsic=True): - r""" - Asymmetry check. - - Parameters - ---------- - intrinsic : bool - Default is ``True``. Intrinsic symmetry is defined as - - .. math:: - - w_{i,j} == w_{j,i} - - If ``intrinsic`` is ``False`` symmetry is defined as - - .. math:: - - i \in N_j \ \& \ j \in N_i - - where :math:`N_j` is the set of neighbors for :math:`j`. - - Returns - ------- - asymmetries : list - Empty if no asymmetries are found if asymmetries, then a - ``list`` of ``(i,j)`` tuples is returned. - - Examples - -------- - - >>> from libpysal.weights import lat2W - >>> w=lat2W(3,3) - >>> w.asymmetry() - [] - >>> w.transform='r' - >>> w.asymmetry() - [(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 5), (3, 0), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (4, 7), (5, 2), (5, 4), (5, 8), (6, 3), (6, 7), (7, 4), (7, 6), (7, 8), (8, 5), (8, 7)] - >>> result = w.asymmetry(intrinsic=False) - >>> result - [] - >>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]} - >>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]} - >>> w=W(neighbors,weights) - >>> w.asymmetry() - [(0, 1), (1, 0)] - """ - - if intrinsic: - wd = self.sparse.transpose() - self.sparse - else: - transform = self.transform - self.transform = "b" - wd = self.sparse.transpose() - self.sparse - self.transform = transform - - ids = np.nonzero(wd) - if len(ids[0]) == 0: - return [] - else: - ijs = list(zip(ids[0], ids[1])) - ijs.sort() - return ijs
- -
[docs] def symmetrize(self, inplace=False): - """Construct a symmetric KNN weight. This ensures that the neighbors - of each focal observation consider the focal observation itself as - a neighbor. This returns a generic ``W`` object, since the object is no - longer guaranteed to have ``k`` neighbors for each observation. - """ - if not inplace: - neighbors = copy.deepcopy(self.neighbors) - weights = copy.deepcopy(self.weights) - out_W = W(neighbors, weights, id_order=self.id_order) - out_W.symmetrize(inplace=True) - return out_W - else: - for focal, fneighbs in list(self.neighbors.items()): - for j, neighbor in enumerate(fneighbs): - neighb_neighbors = self.neighbors[neighbor] - if focal not in neighb_neighbors: - self.neighbors[neighbor].append(focal) - self.weights[neighbor].append(self.weights[focal][j]) - self._cache = dict() - return
- -
[docs] def full(self): - """Generate a full ``numpy.ndarray``. - - Parameters - ---------- - self : libpysal.weights.W - spatial weights object - - Returns - ------- - (fullw, keys) : tuple - The first element being the full ``numpy.ndarray`` and second - element keys being the ids associated with each row in the array. - - Examples - -------- - >>> from libpysal.weights import W, full - >>> neighbors = {'first':['second'],'second':['first','third'],'third':['second']} - >>> weights = {'first':[1],'second':[1,1],'third':[1]} - >>> w = W(neighbors, weights) - >>> wf, ids = full(w) - >>> wf - array([[0., 1., 0.], - [1., 0., 1.], - [0., 1., 0.]]) - >>> ids - ['first', 'second', 'third'] - """ - wfull = np.zeros([self.n, self.n], dtype=float) - keys = list(self.neighbors.keys()) - if self.id_order: - keys = self.id_order - for i, key in enumerate(keys): - n_i = self.neighbors[key] - w_i = self.weights[key] - for j, wij in zip(n_i, w_i): - c = keys.index(j) - wfull[i, c] = wij - return (wfull, keys)
- -
[docs] def to_WSP(self): - """Generate a ``WSP`` object. - - Returns - ------- - - implicit : libpysal.weights.WSP - Thin ``W`` class - - Examples - -------- - >>> from libpysal.weights import W, WSP - >>> neighbors={'first':['second'],'second':['first','third'],'third':['second']} - >>> weights={'first':[1],'second':[1,1],'third':[1]} - >>> w=W(neighbors,weights) - >>> wsp=w.to_WSP() - >>> isinstance(wsp, WSP) - True - >>> wsp.n - 3 - >>> wsp.s0 - 4 - - See also - -------- - WSP - - """ - return WSP(self.sparse, self._id_order)
- -
[docs] def set_shapefile(self, shapefile, idVariable=None, full=False): - """ - Adding metadata for writing headers of ``.gal`` and ``.gwt`` files. - - Parameters - ---------- - shapefile : str - The shapefile name used to construct weights. - idVariable : str - The name of the attribute in the shapefile to associate - with ids in the weights. - full : bool - Write out the entire path for a shapefile (``True``) or - only the base of the shapefile without extension (``False``). - Default is ``True``. - """ - - if full: - self._shpName = shapefile - else: - self._shpName = BASENAME(shapefile).split(".")[0] - - self._varName = idVariable
- -
[docs] def plot( - self, gdf, indexed_on=None, ax=None, color="k", node_kws=None, edge_kws=None - ): - """Plot spatial weights objects. **Requires** ``matplotlib``, and - implicitly requires a ``geopandas.GeoDataFrame`` as input. - - Parameters - ---------- - gdf : geopandas.GeoDataFrame - The original shapes whose topological relations are modelled in ``W``. - indexed_on : str - Column of ``geopandas.GeoDataFrame`` that the weights object uses - as an index. Default is ``None``, so the index of the - ``geopandas.GeoDataFrame`` is used. - ax : matplotlib.axes.Axes - Axis on which to plot the weights. Default is ``None``, so - plots on the current figure. - color : str - ``matplotlib`` color string, will color both nodes and edges - the same by default. - node_kws : dict - Keyword arguments dictionary to send to ``pyplot.scatter``, - which provides fine-grained control over the aesthetics - of the nodes in the plot. - edge_kws : dict - Keyword arguments dictionary to send to ``pyplot.plot``, - which provides fine-grained control over the aesthetics - of the edges in the plot. - - Returns - ------- - f : matplotlib.figure.Figure - Figure on which the plot is made. - ax : matplotlib.axes.Axes - Axis on which the plot is made. - - Notes - ----- - If you'd like to overlay the actual shapes from the - ``geopandas.GeoDataFrame``, call ``gdf.plot(ax=ax)`` after this. - To plot underneath, adjust the z-order of the plot as follows: - ``gdf.plot(ax=ax,zorder=0)``. - - Examples - -------- - - >>> from libpysal.weights import Queen - >>> import libpysal as lp - >>> import geopandas - >>> gdf = geopandas.read_file(lp.examples.get_path("columbus.shp")) - >>> weights = Queen.from_dataframe(gdf) - >>> tmp = weights.plot(gdf, color='firebrickred', node_kws=dict(marker='*', color='k')) - """ - try: - import matplotlib.pyplot as plt - except ImportError: - raise ImportError( - "W.plot depends on matplotlib.pyplot, and this was" - "not able to be imported. \nInstall matplotlib to" - "plot spatial weights." - ) - if ax is None: - f = plt.figure() - ax = plt.gca() - else: - f = plt.gcf() - if node_kws is not None: - if "color" not in node_kws: - node_kws["color"] = color - else: - node_kws = dict(color=color) - if edge_kws is not None: - if "color" not in edge_kws: - edge_kws["color"] = color - else: - edge_kws = dict(color=color) - - for idx, neighbors in self: - if idx in self.islands: - continue - if indexed_on is not None: - neighbors = gdf[gdf[indexed_on].isin(neighbors)].index.tolist() - idx = gdf[gdf[indexed_on] == idx].index.tolist()[0] - centroids = gdf.loc[neighbors].centroid.apply(lambda p: (p.x, p.y)) - centroids = np.vstack(centroids.values) - focal = np.hstack(gdf.loc[idx].geometry.centroid.xy) - seen = set() - for nidx, neighbor in zip(neighbors, centroids): - if (idx, nidx) in seen: - continue - ax.plot(*list(zip(focal, neighbor)), marker=None, **edge_kws) - seen.update((idx, nidx)) - seen.update((nidx, idx)) - ax.scatter( - gdf.centroid.apply(lambda p: p.x), - gdf.centroid.apply(lambda p: p.y), - **node_kws - ) - return f, ax
- - -
[docs]class WSP(object): - """Thin ``W`` class for ``spreg``. - - Parameters - ---------- - - sparse : scipy.sparse.{matrix-type} - NxN object from ``scipy.sparse`` - - Attributes - ---------- - - n : int - description - s0 : float - description - trcWtW_WW : float - description - - Examples - -------- - - From GAL information - - >>> import scipy.sparse - >>> from libpysal.weights import WSP - >>> rows = [0, 1, 1, 2, 2, 3] - >>> cols = [1, 0, 2, 1, 3, 3] - >>> weights = [1, 0.75, 0.25, 0.9, 0.1, 1] - >>> sparse = scipy.sparse.csr_matrix((weights, (rows, cols)), shape=(4,4)) - >>> w = WSP(sparse) - >>> w.s0 - 4.0 - >>> w.trcWtW_WW - 6.395 - >>> w.n - 4 - - """ - -
[docs] def __init__(self, sparse, id_order=None, index=None): - if not scipy.sparse.issparse(sparse): - raise ValueError("must pass a scipy sparse object") - rows, cols = sparse.shape - if rows != cols: - raise ValueError("Weights object must be square") - self.sparse = sparse.tocsr() - self.n = sparse.shape[0] - self._cache = {} - if id_order: - if len(id_order) != self.n: - raise ValueError( - "Number of values in id_order must match shape of sparse" - ) - else: - self._id_order = id_order - self._cache["id_order"] = self._id_order - # temp addition of index attribute - import pandas as pd # will be removed after refactoring is done - if index is not None: - if not isinstance(index, (pd.Index, pd.MultiIndex, pd.RangeIndex)): - raise TypeError("index must be an instance of pandas.Index dtype") - if len(index) != self.n: - raise ValueError( - "Number of values in index must match shape of sparse" - ) - else: - index = pd.RangeIndex(self.n) - self.index = index
- - @property - def id_order(self): - """An ordered list of ids, assumed to match the ordering in ``sparse``. - """ - # Temporary solution until the refactoring is finished - if "id_order" not in self._cache: - if hasattr(self, "index"): - self._id_order = self.index.tolist() - else: - self._id_order = list(range(self.n)) - self._cache["id_order"] = self._id_order - return self._id_order - - @property - def s0(self): - r"""``s0`` is defined as: - - .. math:: - - s0=\sum_i \sum_j w_{i,j} - - """ - if "s0" not in self._cache: - self._s0 = self.sparse.sum() - self._cache["s0"] = self._s0 - return self._s0 - - @property - def trcWtW_WW(self): - """Trace of :math:`W^{'}W + WW`. - """ - if "trcWtW_WW" not in self._cache: - self._trcWtW_WW = self.diagWtW_WW.sum() - self._cache["trcWtW_WW"] = self._trcWtW_WW - return self._trcWtW_WW - - @property - def diagWtW_WW(self): - """Diagonal of :math:`W^{'}W + WW`. - """ - if "diagWtW_WW" not in self._cache: - wt = self.sparse.transpose() - w = self.sparse - self._diagWtW_WW = (wt * w + w * w).diagonal() - self._cache["diagWtW_WW"] = self._diagWtW_WW - return self._diagWtW_WW - -
[docs] @classmethod - def from_W(cls, W): - """Constructs a ``WSP`` object from the ``W``'s sparse matrix. - - Parameters - ---------- - W : libpysal.weights.W - A PySAL weights object with a sparse form and ids. - - Returns - ------- - A ``WSP`` instance. - """ - return cls(W.sparse, id_order=W.id_order)
- -
[docs] def to_W(self, silence_warnings=False): - """ - Convert a pysal WSP object (thin weights matrix) to a pysal W object. - - Parameters - ---------- - self : WSP - PySAL sparse weights object. - silence_warnings : bool - Switch to ``True`` to turn off print statements for every - observation with islands. Default is ``False``, which does - not silence warnings. - - Returns - ------- - w : W - PySAL weights object. - - Examples - -------- - >>> from libpysal.weights import lat2SW, WSP, WSP2W - - Build a 10x10 ``scipy.sparse`` matrix for a rectangular 2x5 - region of cells (rook contiguity), then construct a ``libpysal`` - sparse weights object (``self``). - - >>> sp = lat2SW(2, 5) - >>> self = WSP(sp) - >>> self.n - 10 - >>> print(self.sparse[0].todense()) - [[0 1 0 0 0 1 0 0 0 0]] - - Convert this sparse weights object to a standard PySAL weights object. - - >>> w = WSP2W(self) - >>> w.n - 10 - >>> print(w.full()[0][0]) - [0. 1. 0. 0. 0. 1. 0. 0. 0. 0.] - - """ - - indices = list(self.sparse.indices) - data = list(self.sparse.data) - indptr = list(self.sparse.indptr) - id_order = self.id_order - if id_order: - # replace indices with user IDs - indices = [id_order[i] for i in indices] - else: - id_order = list(range(self.n)) - neighbors, weights = {}, {} - start = indptr[0] - for i in range(self.n): - oid = id_order[i] - end = indptr[i + 1] - neighbors[oid] = indices[start:end] - weights[oid] = data[start:end] - start = end - ids = copy.copy(self.id_order) - w = W(neighbors, weights, ids, silence_warnings=silence_warnings) - w._sparse = copy.deepcopy(self.sparse) - w._cache["sparse"] = w._sparse - return w
-
- -
- -
-
-
-
-

- Back to top - -
- - -

-

- © Copyright 2018-, pysal developers.
- Created using Sphinx 3.1.2.
-

-
-
- - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.Chain.rst.txt b/docs/_sources/generated/libpysal.cg.Chain.rst.txt deleted file mode 100644 index f91f22f1f..000000000 --- a/docs/_sources/generated/libpysal.cg.Chain.rst.txt +++ /dev/null @@ -1,33 +0,0 @@ -libpysal.cg.Chain -================= - -.. currentmodule:: libpysal.cg - -.. autoclass:: Chain - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Chain.__init__ - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~Chain.arclen - ~Chain.bounding_box - ~Chain.len - ~Chain.parts - ~Chain.segments - ~Chain.vertices - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.Grid.rst.txt b/docs/_sources/generated/libpysal.cg.Grid.rst.txt deleted file mode 100644 index c7b6aa23b..000000000 --- a/docs/_sources/generated/libpysal.cg.Grid.rst.txt +++ /dev/null @@ -1,28 +0,0 @@ -libpysal.cg.Grid -================ - -.. currentmodule:: libpysal.cg - -.. autoclass:: Grid - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Grid.__init__ - ~Grid.add - ~Grid.bounds - ~Grid.in_grid - ~Grid.nearest - ~Grid.proximity - ~Grid.remove - - - - - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.KDTree.rst.txt b/docs/_sources/generated/libpysal.cg.KDTree.rst.txt deleted file mode 100644 index 020fb9649..000000000 --- a/docs/_sources/generated/libpysal.cg.KDTree.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.KDTree -================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: KDTree \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.Line.rst.txt b/docs/_sources/generated/libpysal.cg.Line.rst.txt deleted file mode 100644 index b04ae005b..000000000 --- a/docs/_sources/generated/libpysal.cg.Line.rst.txt +++ /dev/null @@ -1,24 +0,0 @@ -libpysal.cg.Line -================ - -.. currentmodule:: libpysal.cg - -.. autoclass:: Line - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Line.__init__ - ~Line.x - ~Line.y - - - - - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.LineSegment.rst.txt b/docs/_sources/generated/libpysal.cg.LineSegment.rst.txt deleted file mode 100644 index dba1ae0b8..000000000 --- a/docs/_sources/generated/libpysal.cg.LineSegment.rst.txt +++ /dev/null @@ -1,37 +0,0 @@ -libpysal.cg.LineSegment -======================= - -.. currentmodule:: libpysal.cg - -.. autoclass:: LineSegment - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~LineSegment.__init__ - ~LineSegment.get_swap - ~LineSegment.intersect - ~LineSegment.is_ccw - ~LineSegment.is_cw - ~LineSegment.sw_ccw - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~LineSegment.bounding_box - ~LineSegment.len - ~LineSegment.line - ~LineSegment.p1 - ~LineSegment.p2 - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.Point.rst.txt b/docs/_sources/generated/libpysal.cg.Point.rst.txt deleted file mode 100644 index 133d91fbd..000000000 --- a/docs/_sources/generated/libpysal.cg.Point.rst.txt +++ /dev/null @@ -1,22 +0,0 @@ -libpysal.cg.Point -================= - -.. currentmodule:: libpysal.cg - -.. autoclass:: Point - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Point.__init__ - - - - - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.PointLocator.rst.txt b/docs/_sources/generated/libpysal.cg.PointLocator.rst.txt deleted file mode 100644 index 1a65fb787..000000000 --- a/docs/_sources/generated/libpysal.cg.PointLocator.rst.txt +++ /dev/null @@ -1,27 +0,0 @@ -libpysal.cg.PointLocator -======================== - -.. currentmodule:: libpysal.cg - -.. autoclass:: PointLocator - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~PointLocator.__init__ - ~PointLocator.nearest - ~PointLocator.overlapping - ~PointLocator.polygon - ~PointLocator.proximity - ~PointLocator.region - - - - - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.Polygon.rst.txt b/docs/_sources/generated/libpysal.cg.Polygon.rst.txt deleted file mode 100644 index a0fab3ee9..000000000 --- a/docs/_sources/generated/libpysal.cg.Polygon.rst.txt +++ /dev/null @@ -1,38 +0,0 @@ -libpysal.cg.Polygon -=================== - -.. currentmodule:: libpysal.cg - -.. autoclass:: Polygon - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Polygon.__init__ - ~Polygon.build_quad_tree_structure - ~Polygon.contains_point - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~Polygon.area - ~Polygon.bbox - ~Polygon.bounding_box - ~Polygon.centroid - ~Polygon.holes - ~Polygon.len - ~Polygon.parts - ~Polygon.perimeter - ~Polygon.vertices - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.PolygonLocator.rst.txt b/docs/_sources/generated/libpysal.cg.PolygonLocator.rst.txt deleted file mode 100644 index 482bc76b9..000000000 --- a/docs/_sources/generated/libpysal.cg.PolygonLocator.rst.txt +++ /dev/null @@ -1,28 +0,0 @@ -libpysal.cg.PolygonLocator -========================== - -.. currentmodule:: libpysal.cg - -.. autoclass:: PolygonLocator - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~PolygonLocator.__init__ - ~PolygonLocator.contains_point - ~PolygonLocator.inside - ~PolygonLocator.nearest - ~PolygonLocator.overlapping - ~PolygonLocator.proximity - ~PolygonLocator.region - - - - - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.RADIUS_EARTH_KM.rst.txt b/docs/_sources/generated/libpysal.cg.RADIUS_EARTH_KM.rst.txt deleted file mode 100644 index 001acab4d..000000000 --- a/docs/_sources/generated/libpysal.cg.RADIUS_EARTH_KM.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.RADIUS\_EARTH\_KM -============================= - -.. currentmodule:: libpysal.cg - -.. autodata:: RADIUS_EARTH_KM \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.RADIUS_EARTH_MILES.rst.txt b/docs/_sources/generated/libpysal.cg.RADIUS_EARTH_MILES.rst.txt deleted file mode 100644 index 36c27f184..000000000 --- a/docs/_sources/generated/libpysal.cg.RADIUS_EARTH_MILES.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.RADIUS\_EARTH\_MILES -================================ - -.. currentmodule:: libpysal.cg - -.. autodata:: RADIUS_EARTH_MILES \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.Ray.rst.txt b/docs/_sources/generated/libpysal.cg.Ray.rst.txt deleted file mode 100644 index 69efdb894..000000000 --- a/docs/_sources/generated/libpysal.cg.Ray.rst.txt +++ /dev/null @@ -1,22 +0,0 @@ -libpysal.cg.Ray -=============== - -.. currentmodule:: libpysal.cg - -.. autoclass:: Ray - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Ray.__init__ - - - - - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.Rectangle.rst.txt b/docs/_sources/generated/libpysal.cg.Rectangle.rst.txt deleted file mode 100644 index aefa995d1..000000000 --- a/docs/_sources/generated/libpysal.cg.Rectangle.rst.txt +++ /dev/null @@ -1,32 +0,0 @@ -libpysal.cg.Rectangle -===================== - -.. currentmodule:: libpysal.cg - -.. autoclass:: Rectangle - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Rectangle.__init__ - ~Rectangle.set_centroid - ~Rectangle.set_scale - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~Rectangle.area - ~Rectangle.height - ~Rectangle.width - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.alpha_shape.rst.txt b/docs/_sources/generated/libpysal.cg.alpha_shape.rst.txt deleted file mode 100644 index d7b00aabd..000000000 --- a/docs/_sources/generated/libpysal.cg.alpha_shape.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.alpha\_shape -======================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: alpha_shape \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.alpha_shape_auto.rst.txt b/docs/_sources/generated/libpysal.cg.alpha_shape_auto.rst.txt deleted file mode 100644 index eabc9198d..000000000 --- a/docs/_sources/generated/libpysal.cg.alpha_shape_auto.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.alpha\_shape\_auto -============================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: alpha_shape_auto \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.arcdist.rst.txt b/docs/_sources/generated/libpysal.cg.arcdist.rst.txt deleted file mode 100644 index f3ebba8ee..000000000 --- a/docs/_sources/generated/libpysal.cg.arcdist.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.arcdist -=================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: arcdist \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.arcdist2linear.rst.txt b/docs/_sources/generated/libpysal.cg.arcdist2linear.rst.txt deleted file mode 100644 index e3afcf98a..000000000 --- a/docs/_sources/generated/libpysal.cg.arcdist2linear.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.arcdist2linear -========================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: arcdist2linear \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.asShape.rst.txt b/docs/_sources/generated/libpysal.cg.asShape.rst.txt deleted file mode 100644 index 2bd215bed..000000000 --- a/docs/_sources/generated/libpysal.cg.asShape.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.asShape -=================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: asShape \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.bbcommon.rst.txt b/docs/_sources/generated/libpysal.cg.bbcommon.rst.txt deleted file mode 100644 index 3a774e5c5..000000000 --- a/docs/_sources/generated/libpysal.cg.bbcommon.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.bbcommon -==================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: bbcommon \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.brute_knn.rst.txt b/docs/_sources/generated/libpysal.cg.brute_knn.rst.txt deleted file mode 100644 index 549e67cb3..000000000 --- a/docs/_sources/generated/libpysal.cg.brute_knn.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.brute\_knn -====================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: brute_knn \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.convex_hull.rst.txt b/docs/_sources/generated/libpysal.cg.convex_hull.rst.txt deleted file mode 100644 index 18c1c230c..000000000 --- a/docs/_sources/generated/libpysal.cg.convex_hull.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.convex\_hull -======================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: convex_hull \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.distance_matrix.rst.txt b/docs/_sources/generated/libpysal.cg.distance_matrix.rst.txt deleted file mode 100644 index d4e57bc66..000000000 --- a/docs/_sources/generated/libpysal.cg.distance_matrix.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.distance\_matrix -============================ - -.. currentmodule:: libpysal.cg - -.. autofunction:: distance_matrix \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.fast_knn.rst.txt b/docs/_sources/generated/libpysal.cg.fast_knn.rst.txt deleted file mode 100644 index 7155f9186..000000000 --- a/docs/_sources/generated/libpysal.cg.fast_knn.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.fast\_knn -===================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: fast_knn \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.fast_threshold.rst.txt b/docs/_sources/generated/libpysal.cg.fast_threshold.rst.txt deleted file mode 100644 index f86c422fd..000000000 --- a/docs/_sources/generated/libpysal.cg.fast_threshold.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.fast\_threshold -=========================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: fast_threshold \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.geogrid.rst.txt b/docs/_sources/generated/libpysal.cg.geogrid.rst.txt deleted file mode 100644 index 2f375ae00..000000000 --- a/docs/_sources/generated/libpysal.cg.geogrid.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.geogrid -=================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: geogrid \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.geointerpolate.rst.txt b/docs/_sources/generated/libpysal.cg.geointerpolate.rst.txt deleted file mode 100644 index 73f93e37c..000000000 --- a/docs/_sources/generated/libpysal.cg.geointerpolate.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.geointerpolate -========================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: geointerpolate \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_angle_between.rst.txt b/docs/_sources/generated/libpysal.cg.get_angle_between.rst.txt deleted file mode 100644 index 9e5c317bd..000000000 --- a/docs/_sources/generated/libpysal.cg.get_angle_between.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_angle\_between -=============================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_angle_between \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_bounding_box.rst.txt b/docs/_sources/generated/libpysal.cg.get_bounding_box.rst.txt deleted file mode 100644 index 089f0fa7b..000000000 --- a/docs/_sources/generated/libpysal.cg.get_bounding_box.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_bounding\_box -============================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_bounding_box \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_point_at_angle_and_dist.rst.txt b/docs/_sources/generated/libpysal.cg.get_point_at_angle_and_dist.rst.txt deleted file mode 100644 index 66a05376b..000000000 --- a/docs/_sources/generated/libpysal.cg.get_point_at_angle_and_dist.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_point\_at\_angle\_and\_dist -============================================ - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_point_at_angle_and_dist \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_points_dist.rst.txt b/docs/_sources/generated/libpysal.cg.get_points_dist.rst.txt deleted file mode 100644 index e19e232cd..000000000 --- a/docs/_sources/generated/libpysal.cg.get_points_dist.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_points\_dist -============================= - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_points_dist \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_polygon_point_dist.rst.txt b/docs/_sources/generated/libpysal.cg.get_polygon_point_dist.rst.txt deleted file mode 100644 index 3d53d2328..000000000 --- a/docs/_sources/generated/libpysal.cg.get_polygon_point_dist.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_polygon\_point\_dist -===================================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_polygon_point_dist \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_polygon_point_intersect.rst.txt b/docs/_sources/generated/libpysal.cg.get_polygon_point_intersect.rst.txt deleted file mode 100644 index 1cd7529f3..000000000 --- a/docs/_sources/generated/libpysal.cg.get_polygon_point_intersect.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_polygon\_point\_intersect -========================================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_polygon_point_intersect \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_ray_segment_intersect.rst.txt b/docs/_sources/generated/libpysal.cg.get_ray_segment_intersect.rst.txt deleted file mode 100644 index cfe51618c..000000000 --- a/docs/_sources/generated/libpysal.cg.get_ray_segment_intersect.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_ray\_segment\_intersect -======================================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_ray_segment_intersect \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_rectangle_point_intersect.rst.txt b/docs/_sources/generated/libpysal.cg.get_rectangle_point_intersect.rst.txt deleted file mode 100644 index b31e074e5..000000000 --- a/docs/_sources/generated/libpysal.cg.get_rectangle_point_intersect.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_rectangle\_point\_intersect -============================================ - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_rectangle_point_intersect \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_rectangle_rectangle_intersection.rst.txt b/docs/_sources/generated/libpysal.cg.get_rectangle_rectangle_intersection.rst.txt deleted file mode 100644 index bcdbf5ef2..000000000 --- a/docs/_sources/generated/libpysal.cg.get_rectangle_rectangle_intersection.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_rectangle\_rectangle\_intersection -=================================================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_rectangle_rectangle_intersection \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_segment_point_dist.rst.txt b/docs/_sources/generated/libpysal.cg.get_segment_point_dist.rst.txt deleted file mode 100644 index fd32bb258..000000000 --- a/docs/_sources/generated/libpysal.cg.get_segment_point_dist.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_segment\_point\_dist -===================================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_segment_point_dist \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_segment_point_intersect.rst.txt b/docs/_sources/generated/libpysal.cg.get_segment_point_intersect.rst.txt deleted file mode 100644 index c54747be1..000000000 --- a/docs/_sources/generated/libpysal.cg.get_segment_point_intersect.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_segment\_point\_intersect -========================================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_segment_point_intersect \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_segments_intersect.rst.txt b/docs/_sources/generated/libpysal.cg.get_segments_intersect.rst.txt deleted file mode 100644 index a0325a346..000000000 --- a/docs/_sources/generated/libpysal.cg.get_segments_intersect.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_segments\_intersect -==================================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_segments_intersect \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.get_shared_segments.rst.txt b/docs/_sources/generated/libpysal.cg.get_shared_segments.rst.txt deleted file mode 100644 index 23d6c5174..000000000 --- a/docs/_sources/generated/libpysal.cg.get_shared_segments.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.get\_shared\_segments -================================= - -.. currentmodule:: libpysal.cg - -.. autofunction:: get_shared_segments \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.harcdist.rst.txt b/docs/_sources/generated/libpysal.cg.harcdist.rst.txt deleted file mode 100644 index fd1897c42..000000000 --- a/docs/_sources/generated/libpysal.cg.harcdist.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.harcdist -==================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: harcdist \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.is_clockwise.rst.txt b/docs/_sources/generated/libpysal.cg.is_clockwise.rst.txt deleted file mode 100644 index 02e3491bb..000000000 --- a/docs/_sources/generated/libpysal.cg.is_clockwise.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.is\_clockwise -========================= - -.. currentmodule:: libpysal.cg - -.. autofunction:: is_clockwise \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.is_collinear.rst.txt b/docs/_sources/generated/libpysal.cg.is_collinear.rst.txt deleted file mode 100644 index 35252dea5..000000000 --- a/docs/_sources/generated/libpysal.cg.is_collinear.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.is\_collinear -========================= - -.. currentmodule:: libpysal.cg - -.. autofunction:: is_collinear \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.linear2arcdist.rst.txt b/docs/_sources/generated/libpysal.cg.linear2arcdist.rst.txt deleted file mode 100644 index 25004601e..000000000 --- a/docs/_sources/generated/libpysal.cg.linear2arcdist.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.linear2arcdist -========================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: linear2arcdist \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.lonlat.rst.txt b/docs/_sources/generated/libpysal.cg.lonlat.rst.txt deleted file mode 100644 index 21197e585..000000000 --- a/docs/_sources/generated/libpysal.cg.lonlat.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.lonlat -================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: lonlat \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.point_touches_rectangle.rst.txt b/docs/_sources/generated/libpysal.cg.point_touches_rectangle.rst.txt deleted file mode 100644 index 19475cfc2..000000000 --- a/docs/_sources/generated/libpysal.cg.point_touches_rectangle.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.point\_touches\_rectangle -===================================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: point_touches_rectangle \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.toLngLat.rst.txt b/docs/_sources/generated/libpysal.cg.toLngLat.rst.txt deleted file mode 100644 index 32a85fc4a..000000000 --- a/docs/_sources/generated/libpysal.cg.toLngLat.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.toLngLat -==================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: toLngLat \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.toXYZ.rst.txt b/docs/_sources/generated/libpysal.cg.toXYZ.rst.txt deleted file mode 100644 index cd18210ec..000000000 --- a/docs/_sources/generated/libpysal.cg.toXYZ.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.toXYZ -================= - -.. currentmodule:: libpysal.cg - -.. autofunction:: toXYZ \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.cg.voronoi_frames.rst.txt b/docs/_sources/generated/libpysal.cg.voronoi_frames.rst.txt deleted file mode 100644 index 5270c27a4..000000000 --- a/docs/_sources/generated/libpysal.cg.voronoi_frames.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.cg.voronoi\_frames -=========================== - -.. currentmodule:: libpysal.cg - -.. autofunction:: voronoi_frames \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.examples.available.rst.txt b/docs/_sources/generated/libpysal.examples.available.rst.txt deleted file mode 100644 index 263a1b59c..000000000 --- a/docs/_sources/generated/libpysal.examples.available.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.examples.available -=========================== - -.. currentmodule:: libpysal.examples - -.. autofunction:: available \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.examples.explain.rst.txt b/docs/_sources/generated/libpysal.examples.explain.rst.txt deleted file mode 100644 index 3964e1189..000000000 --- a/docs/_sources/generated/libpysal.examples.explain.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.examples.explain -========================= - -.. currentmodule:: libpysal.examples - -.. autofunction:: explain \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.examples.get_path.rst.txt b/docs/_sources/generated/libpysal.examples.get_path.rst.txt deleted file mode 100644 index 8750fd88d..000000000 --- a/docs/_sources/generated/libpysal.examples.get_path.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.examples.get\_path -=========================== - -.. currentmodule:: libpysal.examples - -.. autofunction:: get_path \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.io.fileio.FileIO.rst.txt b/docs/_sources/generated/libpysal.io.fileio.FileIO.rst.txt deleted file mode 100644 index 822071cd6..000000000 --- a/docs/_sources/generated/libpysal.io.fileio.FileIO.rst.txt +++ /dev/null @@ -1,42 +0,0 @@ -libpysal.io.fileio.FileIO -========================= - -.. currentmodule:: libpysal.io.fileio - -.. autoclass:: FileIO - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~FileIO.__init__ - ~FileIO.cast - ~FileIO.check - ~FileIO.close - ~FileIO.flush - ~FileIO.get - ~FileIO.getType - ~FileIO.open - ~FileIO.read - ~FileIO.seek - ~FileIO.tell - ~FileIO.truncate - ~FileIO.write - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~FileIO.by_row - ~FileIO.ids - ~FileIO.rIds - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.io.open.rst.txt b/docs/_sources/generated/libpysal.io.open.rst.txt deleted file mode 100644 index 28508b74f..000000000 --- a/docs/_sources/generated/libpysal.io.open.rst.txt +++ /dev/null @@ -1,42 +0,0 @@ -libpysal.io.open -================ - -.. currentmodule:: libpysal.io - -.. autoclass:: open - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~open.__init__ - ~open.cast - ~open.check - ~open.close - ~open.flush - ~open.get - ~open.getType - ~open.open - ~open.read - ~open.seek - ~open.tell - ~open.truncate - ~open.write - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~open.by_row - ~open.ids - ~open.rIds - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.DistanceBand.rst.txt b/docs/_sources/generated/libpysal.weights.DistanceBand.rst.txt deleted file mode 100644 index 528076369..000000000 --- a/docs/_sources/generated/libpysal.weights.DistanceBand.rst.txt +++ /dev/null @@ -1,75 +0,0 @@ -libpysal.weights.DistanceBand -============================= - -.. currentmodule:: libpysal.weights - -.. autoclass:: DistanceBand - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~DistanceBand.__init__ - ~DistanceBand.asymmetry - ~DistanceBand.from_WSP - ~DistanceBand.from_adjlist - ~DistanceBand.from_array - ~DistanceBand.from_dataframe - ~DistanceBand.from_file - ~DistanceBand.from_networkx - ~DistanceBand.from_shapefile - ~DistanceBand.full - ~DistanceBand.get_transform - ~DistanceBand.plot - ~DistanceBand.remap_ids - ~DistanceBand.set_shapefile - ~DistanceBand.set_transform - ~DistanceBand.symmetrize - ~DistanceBand.to_WSP - ~DistanceBand.to_adjlist - ~DistanceBand.to_file - ~DistanceBand.to_networkx - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~DistanceBand.asymmetries - ~DistanceBand.cardinalities - ~DistanceBand.component_labels - ~DistanceBand.diagW2 - ~DistanceBand.diagWtW - ~DistanceBand.diagWtW_WW - ~DistanceBand.histogram - ~DistanceBand.id2i - ~DistanceBand.id_order - ~DistanceBand.id_order_set - ~DistanceBand.islands - ~DistanceBand.max_neighbors - ~DistanceBand.mean_neighbors - ~DistanceBand.min_neighbors - ~DistanceBand.n - ~DistanceBand.n_components - ~DistanceBand.neighbor_offsets - ~DistanceBand.nonzero - ~DistanceBand.pct_nonzero - ~DistanceBand.s0 - ~DistanceBand.s1 - ~DistanceBand.s2 - ~DistanceBand.s2array - ~DistanceBand.sd - ~DistanceBand.sparse - ~DistanceBand.transform - ~DistanceBand.trcW2 - ~DistanceBand.trcWtW - ~DistanceBand.trcWtW_WW - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.KNN.rst.txt b/docs/_sources/generated/libpysal.weights.KNN.rst.txt deleted file mode 100644 index 7eca1d31d..000000000 --- a/docs/_sources/generated/libpysal.weights.KNN.rst.txt +++ /dev/null @@ -1,76 +0,0 @@ -libpysal.weights.KNN -==================== - -.. currentmodule:: libpysal.weights - -.. autoclass:: KNN - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~KNN.__init__ - ~KNN.asymmetry - ~KNN.from_WSP - ~KNN.from_adjlist - ~KNN.from_array - ~KNN.from_dataframe - ~KNN.from_file - ~KNN.from_networkx - ~KNN.from_shapefile - ~KNN.full - ~KNN.get_transform - ~KNN.plot - ~KNN.remap_ids - ~KNN.reweight - ~KNN.set_shapefile - ~KNN.set_transform - ~KNN.symmetrize - ~KNN.to_WSP - ~KNN.to_adjlist - ~KNN.to_file - ~KNN.to_networkx - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~KNN.asymmetries - ~KNN.cardinalities - ~KNN.component_labels - ~KNN.diagW2 - ~KNN.diagWtW - ~KNN.diagWtW_WW - ~KNN.histogram - ~KNN.id2i - ~KNN.id_order - ~KNN.id_order_set - ~KNN.islands - ~KNN.max_neighbors - ~KNN.mean_neighbors - ~KNN.min_neighbors - ~KNN.n - ~KNN.n_components - ~KNN.neighbor_offsets - ~KNN.nonzero - ~KNN.pct_nonzero - ~KNN.s0 - ~KNN.s1 - ~KNN.s2 - ~KNN.s2array - ~KNN.sd - ~KNN.sparse - ~KNN.transform - ~KNN.trcW2 - ~KNN.trcWtW - ~KNN.trcWtW_WW - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.Kernel.rst.txt b/docs/_sources/generated/libpysal.weights.Kernel.rst.txt deleted file mode 100644 index fce92dedc..000000000 --- a/docs/_sources/generated/libpysal.weights.Kernel.rst.txt +++ /dev/null @@ -1,75 +0,0 @@ -libpysal.weights.Kernel -======================= - -.. currentmodule:: libpysal.weights - -.. autoclass:: Kernel - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Kernel.__init__ - ~Kernel.asymmetry - ~Kernel.from_WSP - ~Kernel.from_adjlist - ~Kernel.from_array - ~Kernel.from_dataframe - ~Kernel.from_file - ~Kernel.from_networkx - ~Kernel.from_shapefile - ~Kernel.full - ~Kernel.get_transform - ~Kernel.plot - ~Kernel.remap_ids - ~Kernel.set_shapefile - ~Kernel.set_transform - ~Kernel.symmetrize - ~Kernel.to_WSP - ~Kernel.to_adjlist - ~Kernel.to_file - ~Kernel.to_networkx - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~Kernel.asymmetries - ~Kernel.cardinalities - ~Kernel.component_labels - ~Kernel.diagW2 - ~Kernel.diagWtW - ~Kernel.diagWtW_WW - ~Kernel.histogram - ~Kernel.id2i - ~Kernel.id_order - ~Kernel.id_order_set - ~Kernel.islands - ~Kernel.max_neighbors - ~Kernel.mean_neighbors - ~Kernel.min_neighbors - ~Kernel.n - ~Kernel.n_components - ~Kernel.neighbor_offsets - ~Kernel.nonzero - ~Kernel.pct_nonzero - ~Kernel.s0 - ~Kernel.s1 - ~Kernel.s2 - ~Kernel.s2array - ~Kernel.sd - ~Kernel.sparse - ~Kernel.transform - ~Kernel.trcW2 - ~Kernel.trcWtW - ~Kernel.trcWtW_WW - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.ODW.rst.txt b/docs/_sources/generated/libpysal.weights.ODW.rst.txt deleted file mode 100644 index bd6e87340..000000000 --- a/docs/_sources/generated/libpysal.weights.ODW.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.ODW -==================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: ODW \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.Queen.rst.txt b/docs/_sources/generated/libpysal.weights.Queen.rst.txt deleted file mode 100644 index 36858f566..000000000 --- a/docs/_sources/generated/libpysal.weights.Queen.rst.txt +++ /dev/null @@ -1,76 +0,0 @@ -libpysal.weights.Queen -====================== - -.. currentmodule:: libpysal.weights - -.. autoclass:: Queen - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Queen.__init__ - ~Queen.asymmetry - ~Queen.from_WSP - ~Queen.from_adjlist - ~Queen.from_dataframe - ~Queen.from_file - ~Queen.from_iterable - ~Queen.from_networkx - ~Queen.from_shapefile - ~Queen.from_xarray - ~Queen.full - ~Queen.get_transform - ~Queen.plot - ~Queen.remap_ids - ~Queen.set_shapefile - ~Queen.set_transform - ~Queen.symmetrize - ~Queen.to_WSP - ~Queen.to_adjlist - ~Queen.to_file - ~Queen.to_networkx - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~Queen.asymmetries - ~Queen.cardinalities - ~Queen.component_labels - ~Queen.diagW2 - ~Queen.diagWtW - ~Queen.diagWtW_WW - ~Queen.histogram - ~Queen.id2i - ~Queen.id_order - ~Queen.id_order_set - ~Queen.islands - ~Queen.max_neighbors - ~Queen.mean_neighbors - ~Queen.min_neighbors - ~Queen.n - ~Queen.n_components - ~Queen.neighbor_offsets - ~Queen.nonzero - ~Queen.pct_nonzero - ~Queen.s0 - ~Queen.s1 - ~Queen.s2 - ~Queen.s2array - ~Queen.sd - ~Queen.sparse - ~Queen.transform - ~Queen.trcW2 - ~Queen.trcWtW - ~Queen.trcWtW_WW - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.Rook.rst.txt b/docs/_sources/generated/libpysal.weights.Rook.rst.txt deleted file mode 100644 index 364b3b2cb..000000000 --- a/docs/_sources/generated/libpysal.weights.Rook.rst.txt +++ /dev/null @@ -1,76 +0,0 @@ -libpysal.weights.Rook -===================== - -.. currentmodule:: libpysal.weights - -.. autoclass:: Rook - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~Rook.__init__ - ~Rook.asymmetry - ~Rook.from_WSP - ~Rook.from_adjlist - ~Rook.from_dataframe - ~Rook.from_file - ~Rook.from_iterable - ~Rook.from_networkx - ~Rook.from_shapefile - ~Rook.from_xarray - ~Rook.full - ~Rook.get_transform - ~Rook.plot - ~Rook.remap_ids - ~Rook.set_shapefile - ~Rook.set_transform - ~Rook.symmetrize - ~Rook.to_WSP - ~Rook.to_adjlist - ~Rook.to_file - ~Rook.to_networkx - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~Rook.asymmetries - ~Rook.cardinalities - ~Rook.component_labels - ~Rook.diagW2 - ~Rook.diagWtW - ~Rook.diagWtW_WW - ~Rook.histogram - ~Rook.id2i - ~Rook.id_order - ~Rook.id_order_set - ~Rook.islands - ~Rook.max_neighbors - ~Rook.mean_neighbors - ~Rook.min_neighbors - ~Rook.n - ~Rook.n_components - ~Rook.neighbor_offsets - ~Rook.nonzero - ~Rook.pct_nonzero - ~Rook.s0 - ~Rook.s1 - ~Rook.s2 - ~Rook.s2array - ~Rook.sd - ~Rook.sparse - ~Rook.transform - ~Rook.trcW2 - ~Rook.trcWtW - ~Rook.trcWtW_WW - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.Voronoi.rst.txt b/docs/_sources/generated/libpysal.weights.Voronoi.rst.txt deleted file mode 100644 index ed097d5c9..000000000 --- a/docs/_sources/generated/libpysal.weights.Voronoi.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.Voronoi -======================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: Voronoi \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.W.rst.txt b/docs/_sources/generated/libpysal.weights.W.rst.txt deleted file mode 100644 index 21e1d5c00..000000000 --- a/docs/_sources/generated/libpysal.weights.W.rst.txt +++ /dev/null @@ -1,73 +0,0 @@ -libpysal.weights.W -================== - -.. currentmodule:: libpysal.weights - -.. autoclass:: W - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~W.__init__ - ~W.asymmetry - ~W.from_WSP - ~W.from_adjlist - ~W.from_file - ~W.from_networkx - ~W.from_shapefile - ~W.full - ~W.get_transform - ~W.plot - ~W.remap_ids - ~W.set_shapefile - ~W.set_transform - ~W.symmetrize - ~W.to_WSP - ~W.to_adjlist - ~W.to_file - ~W.to_networkx - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~W.asymmetries - ~W.cardinalities - ~W.component_labels - ~W.diagW2 - ~W.diagWtW - ~W.diagWtW_WW - ~W.histogram - ~W.id2i - ~W.id_order - ~W.id_order_set - ~W.islands - ~W.max_neighbors - ~W.mean_neighbors - ~W.min_neighbors - ~W.n - ~W.n_components - ~W.neighbor_offsets - ~W.nonzero - ~W.pct_nonzero - ~W.s0 - ~W.s1 - ~W.s2 - ~W.s2array - ~W.sd - ~W.sparse - ~W.transform - ~W.trcW2 - ~W.trcWtW - ~W.trcWtW_WW - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.WSP.rst.txt b/docs/_sources/generated/libpysal.weights.WSP.rst.txt deleted file mode 100644 index 8192bd7d1..000000000 --- a/docs/_sources/generated/libpysal.weights.WSP.rst.txt +++ /dev/null @@ -1,33 +0,0 @@ -libpysal.weights.WSP -==================== - -.. currentmodule:: libpysal.weights - -.. autoclass:: WSP - - - .. automethod:: __init__ - - - .. rubric:: Methods - - .. autosummary:: - - ~WSP.__init__ - ~WSP.from_W - ~WSP.to_W - - - - - - .. rubric:: Attributes - - .. autosummary:: - - ~WSP.diagWtW_WW - ~WSP.id_order - ~WSP.s0 - ~WSP.trcWtW_WW - - \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.WSP2W.rst.txt b/docs/_sources/generated/libpysal.weights.WSP2W.rst.txt deleted file mode 100644 index 0b05884a3..000000000 --- a/docs/_sources/generated/libpysal.weights.WSP2W.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.WSP2W -====================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: WSP2W \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.attach_islands.rst.txt b/docs/_sources/generated/libpysal.weights.attach_islands.rst.txt deleted file mode 100644 index 49cb88ab5..000000000 --- a/docs/_sources/generated/libpysal.weights.attach_islands.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.attach\_islands -================================ - -.. currentmodule:: libpysal.weights - -.. autofunction:: attach_islands \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.block_weights.rst.txt b/docs/_sources/generated/libpysal.weights.block_weights.rst.txt deleted file mode 100644 index 30a79c630..000000000 --- a/docs/_sources/generated/libpysal.weights.block_weights.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.block\_weights -=============================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: block_weights \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.build_lattice_shapefile.rst.txt b/docs/_sources/generated/libpysal.weights.build_lattice_shapefile.rst.txt deleted file mode 100644 index c742797cf..000000000 --- a/docs/_sources/generated/libpysal.weights.build_lattice_shapefile.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.build\_lattice\_shapefile -========================================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: build_lattice_shapefile \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.comb.rst.txt b/docs/_sources/generated/libpysal.weights.comb.rst.txt deleted file mode 100644 index fd4fc858b..000000000 --- a/docs/_sources/generated/libpysal.weights.comb.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.comb -===================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: comb \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.da2W.rst.txt b/docs/_sources/generated/libpysal.weights.da2W.rst.txt deleted file mode 100644 index 5dacd87c0..000000000 --- a/docs/_sources/generated/libpysal.weights.da2W.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.da2W -===================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: da2W \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.da2WSP.rst.txt b/docs/_sources/generated/libpysal.weights.da2WSP.rst.txt deleted file mode 100644 index e5bfd8c6f..000000000 --- a/docs/_sources/generated/libpysal.weights.da2WSP.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.da2WSP -======================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: da2WSP \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.fill_diagonal.rst.txt b/docs/_sources/generated/libpysal.weights.fill_diagonal.rst.txt deleted file mode 100644 index 84d067071..000000000 --- a/docs/_sources/generated/libpysal.weights.fill_diagonal.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.fill\_diagonal -=============================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: fill_diagonal \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.full.rst.txt b/docs/_sources/generated/libpysal.weights.full.rst.txt deleted file mode 100644 index cd584af47..000000000 --- a/docs/_sources/generated/libpysal.weights.full.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.full -===================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: full \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.full2W.rst.txt b/docs/_sources/generated/libpysal.weights.full2W.rst.txt deleted file mode 100644 index 8cd2e8c77..000000000 --- a/docs/_sources/generated/libpysal.weights.full2W.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.full2W -======================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: full2W \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.fuzzy_contiguity.rst.txt b/docs/_sources/generated/libpysal.weights.fuzzy_contiguity.rst.txt deleted file mode 100644 index e8d510ec9..000000000 --- a/docs/_sources/generated/libpysal.weights.fuzzy_contiguity.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.fuzzy\_contiguity -================================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: fuzzy_contiguity \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.get_ids.rst.txt b/docs/_sources/generated/libpysal.weights.get_ids.rst.txt deleted file mode 100644 index c49fa48e6..000000000 --- a/docs/_sources/generated/libpysal.weights.get_ids.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.get\_ids -========================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: get_ids \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.get_points_array_from_shapefile.rst.txt b/docs/_sources/generated/libpysal.weights.get_points_array_from_shapefile.rst.txt deleted file mode 100644 index 3098243ae..000000000 --- a/docs/_sources/generated/libpysal.weights.get_points_array_from_shapefile.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.get\_points\_array\_from\_shapefile -==================================================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: get_points_array_from_shapefile \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.hexLat2W.rst.txt b/docs/_sources/generated/libpysal.weights.hexLat2W.rst.txt deleted file mode 100644 index aeac82591..000000000 --- a/docs/_sources/generated/libpysal.weights.hexLat2W.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.hexLat2W -========================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: hexLat2W \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.higher_order.rst.txt b/docs/_sources/generated/libpysal.weights.higher_order.rst.txt deleted file mode 100644 index d51b29b23..000000000 --- a/docs/_sources/generated/libpysal.weights.higher_order.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.higher\_order -============================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: higher_order \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.higher_order_sp.rst.txt b/docs/_sources/generated/libpysal.weights.higher_order_sp.rst.txt deleted file mode 100644 index b7e831e72..000000000 --- a/docs/_sources/generated/libpysal.weights.higher_order_sp.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.higher\_order\_sp -================================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: higher_order_sp \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.lag_categorical.rst.txt b/docs/_sources/generated/libpysal.weights.lag_categorical.rst.txt deleted file mode 100644 index 1a2fdd7e2..000000000 --- a/docs/_sources/generated/libpysal.weights.lag_categorical.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.lag\_categorical -================================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: lag_categorical \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.lag_spatial.rst.txt b/docs/_sources/generated/libpysal.weights.lag_spatial.rst.txt deleted file mode 100644 index 204f5d807..000000000 --- a/docs/_sources/generated/libpysal.weights.lag_spatial.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.lag\_spatial -============================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: lag_spatial \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.lat2SW.rst.txt b/docs/_sources/generated/libpysal.weights.lat2SW.rst.txt deleted file mode 100644 index b0b48ae9b..000000000 --- a/docs/_sources/generated/libpysal.weights.lat2SW.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.lat2SW -======================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: lat2SW \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.lat2W.rst.txt b/docs/_sources/generated/libpysal.weights.lat2W.rst.txt deleted file mode 100644 index 93724cf5f..000000000 --- a/docs/_sources/generated/libpysal.weights.lat2W.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.lat2W -====================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: lat2W \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.mat2L.rst.txt b/docs/_sources/generated/libpysal.weights.mat2L.rst.txt deleted file mode 100644 index 8d1808c3e..000000000 --- a/docs/_sources/generated/libpysal.weights.mat2L.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.mat2L -====================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: mat2L \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.min_threshold_dist_from_shapefile.rst.txt b/docs/_sources/generated/libpysal.weights.min_threshold_dist_from_shapefile.rst.txt deleted file mode 100644 index 8944feb4d..000000000 --- a/docs/_sources/generated/libpysal.weights.min_threshold_dist_from_shapefile.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.min\_threshold\_dist\_from\_shapefile -====================================================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: min_threshold_dist_from_shapefile \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.min_threshold_distance.rst.txt b/docs/_sources/generated/libpysal.weights.min_threshold_distance.rst.txt deleted file mode 100644 index 6a2941498..000000000 --- a/docs/_sources/generated/libpysal.weights.min_threshold_distance.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.min\_threshold\_distance -========================================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: min_threshold_distance \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.neighbor_equality.rst.txt b/docs/_sources/generated/libpysal.weights.neighbor_equality.rst.txt deleted file mode 100644 index 714af0a7c..000000000 --- a/docs/_sources/generated/libpysal.weights.neighbor_equality.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.neighbor\_equality -=================================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: neighbor_equality \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.netW.rst.txt b/docs/_sources/generated/libpysal.weights.netW.rst.txt deleted file mode 100644 index 492b0d729..000000000 --- a/docs/_sources/generated/libpysal.weights.netW.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.netW -===================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: netW \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.nonplanar_neighbors.rst.txt b/docs/_sources/generated/libpysal.weights.nonplanar_neighbors.rst.txt deleted file mode 100644 index d19855dd8..000000000 --- a/docs/_sources/generated/libpysal.weights.nonplanar_neighbors.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.nonplanar\_neighbors -===================================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: nonplanar_neighbors \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.order.rst.txt b/docs/_sources/generated/libpysal.weights.order.rst.txt deleted file mode 100644 index 77e9ed195..000000000 --- a/docs/_sources/generated/libpysal.weights.order.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.order -====================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: order \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.remap_ids.rst.txt b/docs/_sources/generated/libpysal.weights.remap_ids.rst.txt deleted file mode 100644 index 4899fc477..000000000 --- a/docs/_sources/generated/libpysal.weights.remap_ids.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.remap\_ids -=========================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: remap_ids \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.shimbel.rst.txt b/docs/_sources/generated/libpysal.weights.shimbel.rst.txt deleted file mode 100644 index ed151c58c..000000000 --- a/docs/_sources/generated/libpysal.weights.shimbel.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.shimbel -======================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: shimbel \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.spw_from_gal.rst.txt b/docs/_sources/generated/libpysal.weights.spw_from_gal.rst.txt deleted file mode 100644 index fc4592a3e..000000000 --- a/docs/_sources/generated/libpysal.weights.spw_from_gal.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.spw\_from\_gal -=============================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: spw_from_gal \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.testDataArray.rst.txt b/docs/_sources/generated/libpysal.weights.testDataArray.rst.txt deleted file mode 100644 index ded0f3098..000000000 --- a/docs/_sources/generated/libpysal.weights.testDataArray.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.testDataArray -============================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: testDataArray \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.vecW.rst.txt b/docs/_sources/generated/libpysal.weights.vecW.rst.txt deleted file mode 100644 index 8baf549d2..000000000 --- a/docs/_sources/generated/libpysal.weights.vecW.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.vecW -===================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: vecW \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.w2da.rst.txt b/docs/_sources/generated/libpysal.weights.w2da.rst.txt deleted file mode 100644 index 6a11417f1..000000000 --- a/docs/_sources/generated/libpysal.weights.w2da.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.w2da -===================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: w2da \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.w_clip.rst.txt b/docs/_sources/generated/libpysal.weights.w_clip.rst.txt deleted file mode 100644 index d1731b1e1..000000000 --- a/docs/_sources/generated/libpysal.weights.w_clip.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.w\_clip -======================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: w_clip \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.w_difference.rst.txt b/docs/_sources/generated/libpysal.weights.w_difference.rst.txt deleted file mode 100644 index 6f0210d95..000000000 --- a/docs/_sources/generated/libpysal.weights.w_difference.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.w\_difference -============================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: w_difference \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.w_intersection.rst.txt b/docs/_sources/generated/libpysal.weights.w_intersection.rst.txt deleted file mode 100644 index bf25a21e0..000000000 --- a/docs/_sources/generated/libpysal.weights.w_intersection.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.w\_intersection -================================ - -.. currentmodule:: libpysal.weights - -.. autofunction:: w_intersection \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.w_local_cluster.rst.txt b/docs/_sources/generated/libpysal.weights.w_local_cluster.rst.txt deleted file mode 100644 index 56e84ef20..000000000 --- a/docs/_sources/generated/libpysal.weights.w_local_cluster.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.w\_local\_cluster -================================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: w_local_cluster \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.w_subset.rst.txt b/docs/_sources/generated/libpysal.weights.w_subset.rst.txt deleted file mode 100644 index 2164fd6fd..000000000 --- a/docs/_sources/generated/libpysal.weights.w_subset.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.w\_subset -========================== - -.. currentmodule:: libpysal.weights - -.. autofunction:: w_subset \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.w_symmetric_difference.rst.txt b/docs/_sources/generated/libpysal.weights.w_symmetric_difference.rst.txt deleted file mode 100644 index c06c0b5f3..000000000 --- a/docs/_sources/generated/libpysal.weights.w_symmetric_difference.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.w\_symmetric\_difference -========================================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: w_symmetric_difference \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.w_union.rst.txt b/docs/_sources/generated/libpysal.weights.w_union.rst.txt deleted file mode 100644 index 278a9c33f..000000000 --- a/docs/_sources/generated/libpysal.weights.w_union.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.w\_union -========================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: w_union \ No newline at end of file diff --git a/docs/_sources/generated/libpysal.weights.wsp2da.rst.txt b/docs/_sources/generated/libpysal.weights.wsp2da.rst.txt deleted file mode 100644 index 7b71f7f45..000000000 --- a/docs/_sources/generated/libpysal.weights.wsp2da.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -libpysal.weights.wsp2da -======================= - -.. currentmodule:: libpysal.weights - -.. autofunction:: wsp2da \ No newline at end of file diff --git a/docs/_sources/notebooks/Raster_awareness_API.ipynb.txt b/docs/_sources/notebooks/Raster_awareness_API.ipynb.txt deleted file mode 100644 index a38dc049d..000000000 --- a/docs/_sources/notebooks/Raster_awareness_API.ipynb.txt +++ /dev/null @@ -1,754 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Raster awareness API\n", - "\n", - "This notebook will give an overview of newly developed raster interface. We'll cover \n", - "basic usage of the functionality offered by the interface which mainly involves:\n", - "1. converting `xarray.DataArray` object to the PySAL's weights object (`libpysal.weights.W`/`WSP`).\n", - "2. going back to the `xarray.DataArray` from weights object.\n", - "\n", - "using different datasets:\n", - "- with missing values.\n", - "- with multiple layers.\n", - "- with non conventional dimension names." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "\n", - "from libpysal.weights import Rook, Queen, raster\n", - "import matplotlib.pyplot as plt\n", - "from splot import libpysal as splot\n", - "import numpy as np\n", - "import xarray as xr\n", - "import pandas as pd\n", - "from esda import Moran_Local" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Loading Data\n", - "\n", - "*The interface only accepts `xarray.DataArray`*, this can be easily obtained from raster data\n", - "format using `xarray`'s I/O functionality which can read from a variety of data formats some of them are listed below: \n", - "- [GDAL Raster Formats](https://svn.osgeo.org/gdal/tags/gdal_1_2_5/frmts/formats_list.html) via `open_rasterio` method.\n", - "- [NetCDF](https://www.unidata.ucar.edu/software/netcdf/) via `open_dataset` method.\n", - "\n", - "In this notebook we'll work with `NetCDF` and `GeoTIFF` data. \n", - "\n", - "### Using xarray example dataset\n", - "First lets load up a `netCDF` dataset offered by xarray." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "[3869000 values with dtype=float32]\n", - "Coordinates:\n", - " * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0\n", - " * lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0\n", - " * time (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00\n", - "Attributes:\n", - " long_name: 4xDaily Air temperature at sigma level 995\n", - " units: degK\n", - " precision: 2\n", - " GRIB_id: 11\n", - " GRIB_name: TMP\n", - " var_desc: Air temperature\n", - " dataset: NMC Reanalysis\n", - " level_desc: Surface\n", - " statistic: Individual Obs\n", - " parent_stat: Other\n", - " actual_range: [185.16 322.1 ]\n" - ] - } - ], - "source": [ - "ds = xr.tutorial.open_dataset(\"air_temperature.nc\") # -> returns a xarray.Dataset object\n", - "da = ds[\"air\"] # we'll use the \"air\" data variable for further analysis\n", - "print(da)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`xarray`'s data structures like `Dataset` and `DataArray` provides `pandas` like functionality for multidimensional-array or ndarray. \n", - "\n", - "In our case we'll mainly deal with `DataArray`, we can see above that the `da` holds the data for air temperature, it has 2 dims coordinate dimensions `x` and `y`, and it's layered on `time` dimension so in total 3 dims (`time`, `lat`, `lon`).\n", - "\n", - "We'll now group `da` by month and take average over the `time` dimension\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coordinates:\n", - " * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0\n", - " * lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0\n", - " * month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12\n" - ] - } - ], - "source": [ - "da = da.groupby('time.month').mean()\n", - "print(da.coords) # as a result time dim is replaced by month " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAKACAYAAAAVY3CsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9e7wsWV3fjX++VX3Zl7PPbeacM1ccwBEELwMMiGIMt3iLD/CoIBr8DZE8kwR+CmKIaMwjJiFBUR41iSYT0WeMqCDXEeXmKGNABGdwZICBoFzHOcwwlzPnsm/dXd/nj+7d67Nq1+pd++zuPrv3/rxfr/3aq6tX1VpV9a1VVV3d76+5O4QQQgghhBBCTIfsQndACCGEEEIIIfYTugkTQgghhBBCiCmimzAhhBBCCCGEmCK6CRNCCCGEEEKIKaKbMCGEEEIIIYSYIroJE0IIIYQQQogpopuwPY6ZHTazF9Prp5rZOyfQzrvN7NQkli0EMJ1YNrNrzOxDZvYJM/uYmf3AOJcvxAZTiuevMrPbzOz2QUz/i3EuX4gNpnWtMVj2QTP7ezP7L5NYvhDTQjdhe5/DAF68VaUx8FoAPzyFdsT+5TAmH8vLAP5/7v5YAN8J4JfN7PCE2xT7k8OYfDyfBPAt7n4NgG8C8Eozu2zCbYr9yWFM51oDAP49gFum1JYQE0M3YbsEM7vKzD5lZr9hZh83szeY2TPN7INm9hkze9Kg3lEze/vgU/q/NLNvGEx/lZn9ppm938w+a2Y/Nlj0awA8cvBJ6GsH0w6Y2ZsH7b3BzGyn/Xf3mwGc2elyxOwzy7Hs7v/b3T8zKN8N4F4Ax3ayTDHbzHg8r7v72uBlGzrn73tmOZ4H7T8BwAkA793psoS44Li7/nbBH4CrAHQBfD36J8rbAPwmAAPwbABvH9T7zwB+dlB+OoDbB+VXAfgL9E+0FwO4H0BzsNyPUztPBfAQgCsG7XwIwLdW9OcVAG6v+PvVEevwVADvvNDbUn8X9m8vxPJgvicBuBNAdqG3qf4u3N+sxzOAKwF8DP2nvC+50NtTfxf2b5bjebCc9w9i+oUA/suF3p76099O/hoQu4nPufsdAGBmnwBws7u7md2B/gAHAN8K4PsAwN3/1MwuMrNDg/f+yPufeq6Z2b3of1pUxUfc/a5BO7cPlv0BruDur0X/K4ZCnA8zHctmdimA/wngOncvtjOv2JPMbDy7+5cAfMPga4hvN7M3u/s9decXe5JZjecXA/hjd//SGB6qCXHB0U3Y7mKNygW9LhD2VdXI4xXz95Dev1vWM7NXAPgnFfP+ubv/WMV0IZiZjWUzOwjgjwD8jLv/ZaJdsb+Y2XgedsT97sEF9z8A8OZUPbEvmNV4/mYA/8D6ApADAFpmdtbdX5loX4hdjW7CZo8/R3/A+vdm9lQA97n76RGfCp0BsLTdRvQkTEyBXRfLZtYC8DYAv+3uf7DdtsS+ZjfG8xUA7nf3FTM7AuApAF633TbFvmTXxbO7D2/WzOyFAK7VDZiYZXQTNnu8CsBvmdnGd/yvG1XZ3e8f/OD24wDehf4n/GPHzP4XgEej/0PcuwC8yN3fM4m2xJ7hVdh9sfw8AN8G4KLBSR4AXujut0+gLbG3eBV2Xzx/LYBfMjNH/8nGL258DU2ILXgVdl88C7GnMHffupYQQgghhBBCiLEgXa0QQgghhBBCTBHdhAkhhBBCCCHEFNFNmBBCCCGEEEJMEd2ECSGEEEIIIcQUmRk7Yqux6HPtw5umGxJiEU+8SHlIzstPkmo71V6NftRlbHkKrbLYf21blj2j6VR2mhzV4ekj1iF6y6vLVoQXxnV4esHbPFEehVWv3+nlk/e5+7F6C9lMqzmIZ16fUfGR6m9qnXYUXz7i5RhjeNJYIraj6aXPobIasU2zeI2EoXEsxxvNiur3oritE8OpfZFa79Lr06tfPu94brYWfW7+yMg6ljiGzyuexjX27fb4PR8S+3vTWFtjfE6SGINRVE+38ti13XiO+lTjmMbO4rkxt+jtpaOb39huvNSpP6l8w9F5ZfvzjKvt88Kqy9FiozE4Me8oePtE1w40PRnPvJwJXdOV4vnMmb/f0fXGtPmOpy36/Q/0ptrmbR9be4+7f+dUGx0DM3MTNtc+jCc/9p9vmm6JQdy6dAQVVO7xhQ7XOY8jiOfnfnS71F6iH6l5mVEXeNmYHmLycvLSMhsUHq3msFi0qTxP5bl8WO7Oh3JvLiy31wrrVDTSJ/9oAKR9lq9ReTVUaqyGAz5fCds/W+mE5azTfumWBgjeB3zx0gzbwOdC+b0f/XdfwA6Yax/Gk7/un5cG/fAiil8A6PWq3+t0K+tEcVfnhnPUDWpiue6J42e7xtUaNzK1oQtKy0MMpmIZrVY0e7HQpnKo11sI8/coznvN6puzqEu0+bJuvG1yittsjWJ4meJ2jcqroYwOlXuleNmgQdug2Yze8nZYp/d8/D+edzzPzR/B45/Sz6nKFyiW+DDEuonpvXpxE23nUTcaG1USF00j26tzU7tb4G2Q8/gaNlTRioOz16Z6TapHIcI3Z7yfMgq7fD3EXb5C4/Eyj8HrUds8JmOdynze5PEk+jCEj+lQ5lgGdhbP7aWjePRzXg6gfH0RinGcY8s6KUbeHKduLlJtJPqUvGkYMX9UZ7vrx8dYzVOBJ25AOB75eqFHw3ZBY3CPh7jyeMwhRaGWUXg2VkOlBsczlfm6I+vwebm8bRPnxMSH2E7HKx/HAPCnf/bTO7remDb3P9DDR97zsKm2mV/6mYun2uCY0NcRhRBCCCGEEGKKzMyTMCGEEEIIIcTuxQEUSHw7Q0ToSZgQQgghhBBCTBE9CRNCCCGEEEKMAUfP9SSsDnoSJoQQQgghhBBTZHaehGWG3mJz8/SEiYcNctahMpveEgbFyJq1yRSXsM7xcuuY4urYDYvSJwlk9PPuWijXsaSx6YpNcWT/i6YDQE4KobWgEMqWQ9+zh6ptVU22CraqDYO9+bi97mJ43ZkPbXTnQ987C7QepEnL10LbrTNhOS3qX+PUSph3NTZ2RaY5skRazuawHOPEG/HynNbHmiXTUpfqkpEJZFRKxm0qHlN20KJkjmTLIB8nqWVFxwXZFCPLIscyxVn5vYS11NiYRnHLRkTnY4EtbCuroZzFFqrsobCsbC6YEhvtUPb5oOYqKJ6LVmi7aLNBkS11cXu9g3wMUNvd0EZkAT0T1iM/Q/F8NpSjdV1nTVppzCET5E7wzCID6rC5pCmRKkW22vMw1LJZM3UuSGnUGzVtjMZjTsKWR7EW2R/5PFQez5mE4TC2Pyb6QW1n1EaeWia2H6s8Pxvdum0234Zy50BYZr4Wn7cbK9UW0OxMOKfZSihH1kTw2ETHevnctQMcgA8WnUxBUccqeD52xAR14jml9Y8zQsQNpuyIWcIcmuwHL4bioygPC6n1TVgXs3WvLOdrKYNidRkAiui4oqb51ErXF12y4GZLdK1B/WisNKgcH98p821kQebTJs3ba+n5yH5hdm7CxJ6Gb8CEEEIIIcTs0Rdz7MVEjONHt9tCCCGEEEIIMUX0+EEIIYQQQggxFqSor4eehAkhhBBCCCHEFNGTMCGEEEIIIcSOcTh6KSmdiNCTMCGEEEIIIYSYIjPzJMxzoHugEau0ESs+WZmadVjJThrvLiu9WSvMKm1SDPdiXXdkWN3unb5Vq4ejcjbCWdvg/pJXlTTqrKeOlOBRG6xgZ8V8KRxIM4+E1t5Z257SRa8HxXC2HNTDOfW7BaB3YC7MfyyUO6yuX6rW3zbWWN9M089RpVHbmXXxpCbvHZoflteOzWNsZIailUXxbCndMOK4i1TVtC+9lhOZY7tacx05e0fMX6tOtH6cHoKUvSVFPSvrLZVygbcBx2mTfMWcBiJLHXulz6E4tjkmaAzh9WOtdk7qYaf6BcX1+uFYC79+sDoVA8dCsxGmZ5RuI1upVvMjp5lbYXsUSwtR252LxxTPBvTa/T7G43GizONrNGbU9HUzUXxVjz8pytr26D1L6KwTfeSUCZZTn2jfWY9jqLyA6n45jZGeODektPnRNiir1nn1aH80OnTsnaNFUf0eqbu7i6HcWSRdfZNithcfY81zYZ429au1SuMAZVyI0l9kpKWfC7HdPUznjp1iQW9eJ563LYE7jzCPwo7i4HwOmRQcR0VRPRbF5erGPYrl+L2CX0eHfnX6hfiY5r5WNh31r7FaepOSB/Ox1AvZQNCbo3Q4PFTz8d0L5ebZUKX9ULw92nw9ul5K+7LRj5zH/7Bx1g/NzKW52CETfRJmZo8ys9vp77SZvczMjprZ+8zsM4P/RybZD7H7iW7AhBBCCCHETFLAp/o3q0z0JszdP+3u17j7NQCeAGAZwNsAvBLAze5+NYCbB6+FEEIIIYQQYs8zzWeezwDwd+7+BTN7NoCnDqbfCOD9AH5yin0RQgghhBBCjBEH0Jvhp1PTZJpijucD+L1B+YS7nwSAwf/jVTOY2fVmdquZ3dpZP1dVRYiZgeN5XfEsZphobF5TLIvZhuO5u6J4FkJMh6nchJlZC8CzAPzBduZz9xvc/Vp3v7bZWpxM54SYEhzPLcWzmGGisbmtWBazDcdzY17xLMRO0W/C6jGtJ2HfBeCj7n7P4PU9ZnYpAAz+3zulfgghhBBCCCHEBWVavwn7QYSvIgLATQCuA/Cawf93bLWAomk4d2KzOjutQQ7ljBS8WYfrV+vBU9MBwEgRna9XK+5ZR2prVCZVu5EKmHXdKBJaeSDWb1PZ2uRYZcUw6+rX10O5QxuBNfadWBUeLXeeVMkLYT/0DpDOfa46nPKVsNz8bPDG2hpNf2gZxVIwJLKmubtA2lj+kJI+/GguU/ls2BeNZdoGpNPvPOxo1MfVo2F7rh4hVexSqNOhMt6JHVHkhrUjzUjny9rdTXEXxTDHZ0JPnVIXcxu96uVYKQ1EpLXnfkUpIVg/T8cFx1dKG15eV1ZSc0xSPINjmOuz7p7TKmTVqRhYcw0AxTzF8yLp3Vuc5oKU3ufCcZUthzIfu3xcrB2Ox7DVI3Rc0VutM6GNfJ22M40n3qY4PRLiee1wk8ph+esH46DoHKAXf4LzxnNgfanfTkqZHcd2zbQMNT7cTKnvs251nSiWy+2lzgG0v+NjhhYbaeU5PQqrrRPpIRCfP6L2+NyQVbfBum2n9no03vXm4s9boz7SuuYrPHbSuSQaW2g8XgjLXTtE6UPosGqwbh5AY7l6x/YW6HxD55XOgXD8sLp77RDFNo/NQP9X5ueJZ0B3kM0hGZ8cz8kFobJStPbno5ivMU/yWqhbqhcNz5z6pE4bHM+JtktjO2fPcM7YkIVl8RhSNDjmeXr1crgfecge0n/NwzOfNvlagyTNPD5y2w261mANvpcufzqUvmH9IKXZ4euZA9XXNt0ZfxjrgJI112TiT8LMbAHAPwLwVpr8GgD/yMw+M3jvNZPuh9jd8A2YEEIIIYQQe5mJPwlz92UAF5Wm3Y++LVEIIYQQQggh9hVKyy2EEEIIIYQYC8XWVQSmq6gXQgghhBBCiH2PnoQJIYQQQgghdozDlay5JnoSJoQQQgghhBBTZOSTMDP73hrLWHX3Px5Tf5IUDWD5uG3Ws7Iqlm+86QupWY91vKgsR8vheUtKV9aDswI1X2OlNGnsV0n5uxL8qTmp0201uFNtfYTSm5X1GW8I8gG3aZ4e6/GpvV5Cg98opQBoBWWwN0nrnZGuO9LUFlQ/1CnavNxgQbTFeP06B0N7y8fCPKukdWFtbPMsdX0lLKt1irYnqdNXTywMy6eujtXkZ64K8xdHSTve5P2BsVE0gOWL80h9O1I9HKnlQ5nTL6T6l1Lfc2xnrEEv67NTGnA6FjKK+SzSbbOTONW/EUp81np3qtM9RBp7XlZ0vNDnTXn6syduI1vb+jMqPha8FY6RgtT3qxeHuD53abzM9UPULdIdt06HcuMsqcLpGFs9Pj8sP/SI0PaZr+JYDsd91qLAweYMGOdLkQHrG8cla6cT6Rf4jSi2yvGRUIJnPHzRrs8pa0GkrY5SLqRXOj42qI959bERnT94enRIUnt5Yl4AWc5e7kS6CKvW0kerFJ33SPtdOqa7rP5mjX47bLheEQYnXqf1pTB97bBRGZX1y4p6Pj8yq8eDlv7MlSGez10e6nSO0g5vcx6C8Q3OngPrB89v3mQ3Utcpo9IkpNIsRDPQolLpTjgDTumKL6WyT7bH83q1dz95firVixdGVax6uUhcu0Wqe1q/eLSLG+HjqkeZEXokaS5COMbHFY85q+nzL6cfWT4R2l69JCysOEjXZc099Csqj4ZEMYKtvo74P9DP4TXqdP1tACZ+Eyb2NnwDJoQQQgghxF5mq5uwd7n7j4yqYGa/M8b+CCGEEEIIIWYQh+yIdRn5fRt3f8FWC6hTRwghhBBCCCFEn9p2RDP7FgBX8Tzu/tsT6JMQQgghhBBC7AgzmwPw5wDa6N/DvNndf9bMjgJ4I/r3Np8H8Dx3f3Awz08BeBH6Py/8MXd/zyT6VusmzMz+J4BHArgd4feODkA3YUIIIYQQQggAht5IlcTUWQPwdHc/a2ZNAB8ws3cB+F4AN7v7a8zslQBeCeAnzewxAJ4P4LEALgPwJ2b2Ne6+2feyQ+o+CbsWwGPcyxozIYQQQgghhNh9DO5dNnzazcGfA3g2gKcOpt8I4P0AfnIw/ffdfQ3A58zsbwE8CcCHxt23ujdhHwdwCYCT4+5AXTwDevOorwlnXWtKw5pSsiZ0q0Csu89IiRwpjbvhp3Y5qb+by2FzN85ReSWYATNS1Fsn/mljpOhmzTy7QKM9Sv7zdmjDiuqfTLJuG4iV297My9U3tZ2vhT7xZmNFffdAWGa3HX9SsnYotL9ynNTHR0i5PU8a/AYpYFd4hwd1NzyUV46FOuceVtoGx0K+gTapj4teVlneMRnQa2+eNmyr1JQnNr9xPKZiOxHPUbnN9WtqvKN0DaHDWbdaxW00netw3PTr0T7m9W5TcBd0zNBxgW7i58CsAI8UyKUBhRX8a6QPpnpFK6cyxcdc2IgdinNWFbOSvv+a2pvnsYX7SzvHQzkZzxTLcxzLpf1a9Mb0SaWF/RTFGtubuSlWStP+3TzW0nup8TlxPuDlFqRg5/KodCeRij6Z4oTTkoDKnKKheiOUj+eCxldLaPA5BllRP+JwrVwOEK9fj8bhLsVgj9OS0KHH4/Tq0TB9/XC1pn/zhg4Ls2OhzIr75ctoXSmeW3Mhnns0Hvu4YhkADCgGGSay6ESWrj/sR+q6I6WlLxvceTU4RhKpHziOUueIkcdLlNKA6tG1Dad+sFTGlsTmL48xUcqfGrr61LaKzl2c3YEyz3hJuBxtH9qIfB5mRX13obqDfH5knb6V1rVDaQ5Wj1PqkyNhsJjKtcYFwBFl2pgWF5vZrfT6Bne/YeOFmeUAbgPw1QD+q7t/2MxOuPtJAHD3k2Z2fFD9cgB/Scu6azBt7GyVJ+wP0d+eSwA+aWYfQf+xHgDA3Z81iU6J/Qef2IUQQgghhKjJfe5+berNwVcJrzGzwwDeZmZfN2JZVR8rTOS2cqsnYb84iUaFEEIIIYQQe49d9puwIe5+yszeD+A7AdxjZpcOnoJdCuDeQbW7AFxJs10B4O5J9GcrRf0t7n4LgO/eKPO0SXRICCGEEEIIIXaKmR0bPAGDmc0DeCaATwG4CcB1g2rXAXjHoHwTgOebWdvMHg7gagAfmUTf6v4m7B+h/2M15rsqpgkhhBBCCCH2IY5d9yTsUgA3Dn4XlgF4k7u/08w+BOBNZvYiAF8E8FwAcPdPmNmbAHwSQBfASyZhRgS2/k3YvwTwYgCPNLOP0VtLAD44iQ4JIYQQQgghxE5x948BeFzF9PsBPCMxz6sBvHrCXdvySdjvAngXgP+Evj9/gzPu/sDEeiWEEEIIIYQQe5SRN2Hu/pCZnQHw9e7+hSn1qbovGdBd3CwniVTELVJbt0kT3KD5WCO6Hn4SZ+vVqlHW0ANAthbeYy2xkXo11niH+p3VUG6dCeXmOdJ7dxpUjtc3I/Uxa72tS09JE0pjxgtWKKe8uyUirTSpgVPqb6t+FO2sYW/SNlh2rB2s/olipK7mXbkY+n7uYWFZy5dR29zeHC1onl258Y8jO2t0WLAWNx+fHMcN6M6X4pdUuWU9bvSa4pzjOaMYzlYpTUIwPCOjmG2sgOpUa7iBeJ+xHjmn2M5XSdcdKY2rddsc2xwHQKz4jrTQiV+wFh0+fii2e3wwkKa8SfGbpb8yESnW8+r5C5rutB6dBapD2uRNfiWO5wWK5yspni+h+rQNevMUz4u9qipYX0sP8Vle89jfAs+A7sLgRUKfzfHbozQTSI3NADIan7PV6nE3X+VydR2m4EO7tOt5f/O4ndZqcx3W1YcVz9coBUGv3vjBxwwfJ2WF/7BLUTzSdNbY5/HK8naIYpjHI8r0UbRCnfUDNL3NdarHqOW5uO3Vi6sP5ILO2VigeM7CcrsdXsFQtDHKdT0Dirn+wqNsLhzbFLd8reF8jihoTE1cX1hRCsJEOh1OgVPua2XbvG2K9NjO9Vgpztczztc5PLbXUPBvugyIjrHqZfE6pdJZRNcRjeo6RVnZz5k+eH5S2XfnORUJ7VeK7WIh1F+7KJGfAHFcZJRagcfdHqUzcpp/XGPzhaScEkVUs+XQ5e4FgL8xs4edTwNmdtjM3mxmnzKzO83sm83sqJm9z8w+M/h/5HyWLfYOqRswIYQQQggh9hp1xRyXAvjEIE/YuY2JNfOE/QqAd7v795tZC8ACgJ8GcLO7v8bMXon+Vx0l+RBCCCGEEGJG2YVijl1L3ZuwnzufhZvZQQDfBuCFAODu6wDWzezZAJ46qHYjgPdDN2FCCCGEEEKIfUCtmzB3v8XMTgB44mDSR9z93lHzDHgEgK8A+C0z+0YAtwF4KYAT7n5ysOyTZna8amYzux7A9QDQOKJvLIrZhuO5eVDxLGaXaGw+pFgWsw3Hc65rDSF2hMPQ2/rXTgI1fhMGAGb2PPQTlT0XwPMAfNjMvr/GrA0Ajwfw6+7+OPS/yvjK0bME3P0Gd7/W3a/NFhfrzibEroTjOZ9XPIvZJYrlBcWymG2ieD6geBZCTIe6X0f8NwCeuPH0y8yOAfgTAG/eYr67ANzl7h8evH4z+jdh95jZpYOnYJcCqPNUTQghhBBCCCFmnro3YVnp64f3o55Z8ctm9iUze5S7fxr9pGifHPxdB+A1g//v2LIHuaN7qLtZRUta1qwZnK7NdlCCthrVbt8eqVu7veAzLUgh210tbaKz4XXzIVYRUx22Ls9RmZS/3Tbp2RfDchrLYebGSqw0zklz22uTgpy0vUaK7kjXTf5Zz8jdyg7ZstKeX5LuOFJ8N0hvzHUidX31MvP18GLhvl5kSGRlemOZlfOkYyZtbKSQZQU26Y0t4xUq6WRZG8wx1aDtOUZFfdEEVk94pDouWNc9HytqWXHbaFF6AnIDF72wbVh92yWFO5Ypfh8McdCmrH+srt/Ub1Zbk3q9R/GcUuKzuj7SEJcOao4pI/X3Jr3yRv1m9VCURXp8ihWK+bK6O9YjW+X0lNaelcgFHxccvqWUFxznPdYmN2ll5/nYDZMtoaQuaN9z/OaNUkyNS1HfANYvKjb1z5vUKUoPkbdDudGKU0UwUTxTDHe7tKGXaew8HcqtU6FKFM8JhT4Q76doPSjmWRvO8VhYdazw8cKa8U26+mhoqo6vqG2en9Mv8PHZqO5T+XV8LNL8OZ9vaDqX+VTCmnEOzbk4zooFXpHqttl5Hqm7s+qxOR+n0jtz9DZSPlA/+HgzartJ8cz9iMZmWgeOay4DcZxjNWxcPxfKnIrEaXtECvc8MW6WNlOkmY8yelTHjpHOnVM3pFL0lFNyRMcDLSuaP0oNQvNG42t1nUhpXzqMomVF5y7aT22+QOHl0vRoXOPjMG4vs+prj1Q853SdmmdS1O8X6t6EvdvM3gPg9wavfwDAH9ec90cBvGFgRvwsgH+K/qHyJjN7EYAvov81R7GPkaJeCCGEEELsF+qKOV5hZt8H4Cno3+/f4O5vqznv7QCurXjrGXU7KYQQQgghhNjdSFFfn7pPwuDubwHwlgn2RQghhBBCCCH2PLVuwszsewH8PIDj6D8JMwDu7gcn2DchhBBCCCHEzGDolX+IKiqp+yTsFwD8H+5+5yQ7I4QQQgghhBB7nbo3YffoBkwIIYQQQgiRwgEUStZci7o3Ybea2RsBvB3AUEDt7m+dRKcqyR2NA51I6VmGtbis6F4jFT2rQlkh2m4GR2rWDnpQnyfHNoCV+eBVXW8FVy/rka3DTurq/tpiqNNhjTfp2Ftn4x82ts6Qtp309ZGSmpTe+SqpzDuRf3ZYZN22lRX1BKu8izzxg0teLumRiya7n6k6dWnuVIEe1Yt0u7Rc47QCC6RQZqU76WdZLx3/TjS9rglD9HhpOHpHO3F8jGiXFfodSpvA2nwjrW2D0jVklK6hWAyO9PWFEMu9hbDRWqfijmQJtXz0bQNaDVYXs06ZVeHNc4nlADBS27KWm2Oby5EJl2OwqNY0p1Tkm+Zn1XheHZuxsry6f6yhz1fj5opoBOYVIY11Vp1ywROhw2rskRkoijEFeu4oDg92etR29TFWkKp9vRfirpwCIopn0oBzuoaCx9EDYWMuL4bYbp6h8bGUIiBFrIOvLuc0bvNyOdb4x+mRArxbOsa66fFoWCeKtVSchjKP2XUV9ZEefNRxUtEnp/Nej1KJWDm3BO9nqw5iS+i9OSZsxLXAjsiAbL4fY6m0JKlrjYL2S5ZIj8Ia+1Y5RQOlsenMh5253g7xXKzQTubsO4lUA86Dc3l1ePNTTEbK+OoMP9Gu43Gex/9R7WWJ4yqqznGaV5eLhKJ+xCk+uaxUOh3wWJmnYnNEg8lLJt+qitjj1L0JOwhgGcC30zQHML2bMLGn4RswIYQQQggh9jJ1FfX/dNT7ZvZT7v6fxtMlIYQQQgghxCwiRX09xvWlTSVbFkIIIYQQQoga1M4TtgW65RVCCCGEEGIf4y5FfV3GtZUm9AtZIYQQQgghhNhb6EmYEEIIIYQQYiwUui2oxbhuwv5gTMtJYhioXUv7lTXzWVZS4W7My3bRRJ0U7UaskG0fCK/PkGp2tRF09XYmbNZ8pVqPzNZeVqwWS1QOVtr+azIINs+G6RmpgVn7ms+FtvN1UvsmdMhlkzAriosWKedJPx8Zhnv8olqDz8u0kqmYdd3cF95uGWmhLWzyGNbGNmhBpJbNGvHKRqkLuEz7eLuxMxIDrFkkFbflVAwp3fd2Nc2ciqF9OJSXKd3CajsOvMZDIUBZM5+vUSXeNPR8vTdHVaLUAaSuX44P6iiOeLGk6c/XabuxTjmKR5qZYovjt9cqtR2lUKjW4LP6m9MhcCVP6KKzkpGatyFvn4g68Uxxanl1HJVjZWzxbI6sMdjYfHxz26n4TWjJy8tKEcUzlVdaYeevz4V4zs+FWM5W4y+CRGMLj328X+jQ4Njm1ANJDT6va2nTG8V2pLLnFA0cz7SpeNxMxVC5vUhhzhpwq64TacC5SiIdRaQQL/eJz9nN0DGO4SyRuoPP96x6b+QJx/n5YD48P5glxuRtKsdT8V+GY3iuFQJplVKOrDQotQilK7E1SgvQqe6gN+J+OKXjAcWzr9Oy1qvP90XiGInG41IajOi6Z5ta+rgSlTltx4jvdqXSlCSXm9plfBzTWJuXrimiMZlnT6TxyKPz/xivNcSuptbXEc3sF8zsoJk1zexmM7vPzF6w8b67/8fJdVHsB4pxfRwghBBCCCEuCA6gh2yqf7NK3Z5/u7ufBvA9AO4C8DUAXjGxXgkhhBBCCCHEHqXuTdjGw+bvBvB77v7AhPojhBBCCCGEEHuaul8C+0Mz+xSAFQAvNrNjAFa3mEcIIYQQQgixb5Civi61tpK7vxLANwO41t07AJYBPHuSHRNCCCGEEEKIvUitJ2FmtgDgJQAeBuB6AJcBeBSAd06ua0IIIYQQQohZwQEUMyzLmCZ1v474WwBuA/Atg9d3oa+ln95NmG3WdgOxyrPZCM5TS2ltyVPKdZwWzY9RraQybZIK9+DCKtULC1jJguu1Z7SJV0gln1DIRrrhTYp6rke67oQeOaf5c9bXsiaWtPdlDTErkbOE1j7SzydUxzw90oOTEhcAOgtUj/Tzke44Uh9vT8/OythGM/bjxrrjonJ6MxufBtnMkZf6kLFavKQ0TimO+Zhg5bjTDiiozMvh9VxcDEG0XNLjdij9QnGGdPXnWBlPfY3iK5SddfUUm2UzZr5aresuEmkdeNPE34Cg5dCmTtcHCtbPc5oFPlyjeA7lHuvLOX5HjLIc21G9qJPVY0UUz+2wgqzrZu0xx3L/vfFokM1CygeOu5QePxnLpek8vycO9VQ854uhvELq6PV2CMjOarxjWFnPiu9Ibc1jJO2W3hylXKA0DkldfQlL6OcjtzWn7UjUj+IpkSahTDRWJ3T3yeUiMZ3XoVdqvKjuDCu+W3Qu53M8n495PM63mapjFMN0OOXpWfX4nIrnlHLck370eKxu0TwLrTDActurpPjvtsJO8m5WWUZpO2WUyiGnctEO8/SWQyAk1fd07jIaQ6104KZS1EQxkYp/VE/3xL7fFKdcLzo2UoNLog4XE7EMxOMrX5umYpWvTccZz2J3U/cm7JHu/gNm9oMA4O4rZuXbk2rM7PMAzgDoAei6+7VmdhTAGwFcBeDzAJ7n7g9us+9iD8E3YEIIIYQQYjbpjfiwQQTqPi9cN7N5DD4DMLNHAlgbPUvE09z9Gne/dvD6lQBudverAdw8eC2EEEIIIYQQe566T8J+FsC7AVxpZm8A8BQAL9xBu88G8NRB+UYA7wfwkztYnhBCCCGEEOIC4rCZTqA8TWrdhLn7+8zsowCejP43ZV/q7vfVbMMBvNf6X5z+7+5+A4AT7n5ysOyTZna8akYzux59EQgaFx+q2ZwQuxPFs9grKJbFXkLxLIS4ENS6VR38/uu7ADzB3d8JYMHMnlSzjae4++MH87/EzL6tbufc/QZ3v9bdr80PLdadTYhdSRTPBxXPYnZRLIu9hOJZCHEhqPt1xF9D3830dAD/Dn3RxlsAPHGrGd397sH/e83sbQCeBOAeM7t08BTsUgD3nk/nhRBCCCGEELuHQsmaa1H3Juyb3P3xZvbXAODuD5pZa6uZzGwRQObuZwblb0f/Ju4mANcBeM3g/zu2WlZmjnars0ndaZF+fmv1cR7pbquVs6yJHaWTXWiuV5ZPt4OX+FQzaP+6Z0n1SjrkSFfPOuTS3mGtt5PqvXEuTM9IFZ51qQ5rv0lv3KEP/bolQyGrmRvL1TrySD+f0IZHmnFap07pA8fOEtVrk546tQtIixvp8dnI26jWeM+3aSUAtCOFbFFZbth4lN5AP/ZarW4Uz1ZDe1wmUpDXSL+QokV64oVW7NU+Nxden1sI7vX1c9XxnC9zbFM/aL9wrHkpNQKnVsi6oWxRyoRqpXGUxoGWw/Ny/KK0S5Mq7oQ2metzyoXuPPeJD4a4vdSyorYjtTIp2VvV8VwnloExxrMFvXgddXfKq1vuXyr9QoqMdlKLxoZF0nt3FsJGXlmnYAGwth4Gp/UVem85TLd1OjdQG5xSoyBdfaS9T6RJKL8XKbCjOKiub3SMMCmd/uaK1fU45ULRokp5jbF5lBKftN4cC5xiYK4ZBo5WlHqm+pydj3lsbre6m9qLy1svp05qnLrzN2gbzNP4XCyEhXV7YYd3ihAs51ZCcK4txzHvPVLZF9QenSuN4q63XhqshzOHYtHla430ykaxk0ppkNLVJ879EeVrxTwxDtcJHYpZ5/7xxkGccobjeb7ZpemUfoHjGVuPnWLvUfcmrGNmOYId8Rjqhe4JAG8b2OwbAH7X3d9tZn8F4E1m9iIAXwTw3G33XOwp+AZMCCGEEELMHg5IzFGTujdhvwrgbQCOm9mrAXw/gJ/ZaiZ3/yyAb6yYfj+AZ2yjn0IIIYQQQgixJ9jyJszMMgCfA/Cv0b9xMgDPcfc7J9w3IYQQQgghxIzgMCVrrsmWN2HuXpjZL7n7NwP41BT6JIQQQgghhBB7lrpf2nyvmX3fQFUvhBBCCCGEEOI8qfubsJcDWATQNbNV9L+S6O5+cGI9E0IIIYQQQswUhcQctah1E+buF9xdZ+ZoN3qbNcYJ/TwrYRsJvXGR+M5qSlcPAB3ysLNGtEXa0UYntBfpTNdZV0waV1LUN1ZD9bJ6tbvoleUir56fdfWsK2btNyu9e6RZLs/Dyu1IFd6rnp5aTqw9juv15lj5TNuQFN/WSEg5aVvlzdCRNunVF+bCBplrxF7nVk4K2aw6dsatqJ9rdZMq2nK6BY7tlAac0ynwdO53QW7e9W44/Hn5zSzekaw7PuvkYWdtL6cIaJB2l1IjgHT1rHPfFHecYoDmieKW1fWJFAhRSgfW44/ajYnUCgwfM5xGglX03HZB2wOteKGsOY++Z0B65YziuTUXVpzjeZ6V3hTLkeZ6xNi5Eww+1IinlN51UimU+8Njb7QeefVA06M4zaKxudrhfs7jAagoqo8f7lWUToTKvfmwTr0FOt4oJqJ5S+rulL4+Ov2krmm8uhxtzmKEKpzik+PZaZ9xnIJTKdB4HCnAueMlVTjrz+fmQwwvtqtTvqTGPo7nDOOJ5Y02NhT5qRQiqTE4dUylYnlUv7sJ9zqPzxzzazT4dbphJ0XhUZSWeS7U662EcnEgjCeRrn6OzsvlZW1A4/mm9CgJ5bxlie0QpQuqrpIiuUzEaRK4nOXVB5AnFPVZk9IqtOPULhzPcw0en7dW1KeuWcXeo9ZNmJk9vmLyQwC+4O6JLCVC1IdvwIQQQgghxOzhDvSUrLkWdb+O+GsAHg/gjsHrrwfwNwAuMrN/4e7vnUTnhBBCCCGEEGKvUfdW9fMAHufuT3D3JwC4BsDHATwTwC9MpmtCCCGEEEKI2cFQTPlvVql7E/Zod//Exgt3/yT6N2WfnUy3hBBCCCGEEGJvUvfriJ82s18H8PuD1z8A4H+bWRvRz+2FEEIIIYQQ+xGHfhNWl7pb6YUA/hbAywD8OIDPDqZ1ADxtAv0SQgghhBBCiD1JXUX9ipn9GoB3uvunS2+fHX+3NpOZY7G1Vjl9g0ZCZcvqzyyhk00qZEvK2fVejipSalrWuLKimPXXrGAvutSP0jPGfCW81z0Q5uktkhK5Rbp6qs9KcGO9d0ppjNgmy1puULlImFR789S/A+RfnmOlcUmZTbrjNmm5G1Sv2QjTU8raNtXhmGEtfaukYU/pjhtZtU52p2TmWGitb5pW1YcyViPm6yx3PaHuLi9ntdusrBd1kdS+vYVI6h2qrFTHP2u8AaC7QHNTF6Pjh3dfSitv1eVIMV/zY6gofcLi1vHMquMmTc9LMc/xnNK7zze7VA4xE6XFSKTkGDWWjSvlQp55pGOuoo7eu9yfVPqGVAoJHsO5zHX409mipG0vejRWs7Z9KaxbNw/Bk61S8PCyeD1IV9/jtCTrpcDjVffq4yQi9ROIxHjupW3JWnos0BhH4y7HcMYpEzieOS1MQgmelXTbqXjm8ZljIRXDqTo7JcscB9prI5dba6xNjLv8+5XyOM/zsKI+imda71W6hOPYZkU976O5A/E11FoW4tmXw7KKVVouxQGnFKizvxt5vTEmdb7jderRMVYU1dsmNbaUX6dSZjQSsc2pALo0TnD9A6Xr07lE2ptU7MRjeCLfj9hz1LoEMbNnAbgdwLsHr68xs5sm2C+xz8hS+b+EEEIIIcTM0EM21b9ZpW7PfxbAkwCcAgB3vx3AVRPpkRBCCCGEEELsYeqKObru/pDZ7GoghRBCCCGEEJPDYdHXREWaujdhHzezHwKQm9nVAH4MwF9MrltCCCGEEEIIsTep+3XEHwXwWABrAH4PwGn0TYlCCCGEEEIIAUC/CatLXTviMoB/M/gTQgghhBBCCHGejLwJM7M/BNKubHd/Vp1GzCwHcCuAv3f37zGzowDeiL7c4/MAnufuD45aRmaOhUZns2a5hpY+rl+tHI/1xqQqLjmCWSNaJDzBR+aXh+XTB4IbfnWZtLHn6M6dFtMlvXe+Gi+fdd2smS/mQ5+8HaZ3GqENY4Uya4yrLeX9atU2/lh9TKrjgnTd2YHg119cDFrbNumJWbENxDp5fo/3ZTS9huq1RRst1gfH+zWvoTgepY3fLrk5FpvrtVIpjCLSdSdiM6XwbXnYll1OpVBue25lWDy31BqWz3Qphim2+UOp3gGKTYrHjGO7dBhxHEXm70hRn4jnhKI+UtGP2LQcz876+QXSai+QJj4Rz/OtEP/thKoYiFMllN8bTq+hLj4f3Xz5GDhfzBxzjc6wPOzTNtMnlNchtT1S83draKsbrdVhubMYD3CnqNzp0Fjd4PnD9l9fplwH58KplMfarBX2fU4G2O5a3LYX1eeSaHoi5QLoWHA+Llgr34rjpjUX+tWmPnLKhCieEyr57Y7N5XnqxHOdsXBcsQz0leUHBuubTIFT41xQ51qjWyROsojHcE6Nw8s6mIdzJvfvAQt5Pta6ITYbrfiEP9cO49SZZrhW6Z4NsV3QON+iFAaH6bzAfWXlO8dKmdQ2XO2F/nYS2yf1eyOOm7w81lJ8LjTCes/loZzqU+p8ypTjNJ0aidNqVF9r1rke2c044nUTabbaSr8I4JcAfA7ACoD/Mfg7C+Dj22jnpQDupNevBHCzu18N4ObBa7GPqcoBJ4QQQgghxF5k5E2Yu9/i7rcAeJy7/4C7/+Hg74cAfGudBszsCgD/GMBv0ORnA7hxUL4RwHO23XMhhBBCCCGEmEHq2hGPmdkj3P2zAGBmDwdwrOa8vwzgXwNYomkn3P0kALj7STM7XnNZQgghhBBCiF2JoZf4uY6IqXsT9uMA3m9mnx28vgrA9VvNZGbfA+Bed7/NzJ663c6Z2fUb7cydWNqithC7G8Wz2CtwLLePK5bFbMPxPH/iwAXujRBiv1DXjvjuQX6wRw8mfcrd6/yI5ykAnmVm3w1gDsBBM/sdAPeY2aWDp2CXArg30e4NAG4AgEOPPjHbv1QU+54onh+leBazC8fy0qMuUSyLmYbj+fCjjyuehdgBEnPUZ+RWMrPHb5Tdfc3d/2bwt1ZVp4y7/5S7X+HuVwF4PoA/dfcXALgJwHWDatcBeMcO1kEIIYQQQgghZoatnoT91uBrhKO+3Pl6AI/bZruvAfAmM3sRgC8CeO5WM+RW4GBrdaSulvWkzaxacZ7SyqfolXSkBS13PaFPPdomhe/Foe3PU9+X7w8KWVtP9Sm+R7YVUhHzW82wXCOFrDdJ2dyrboN1ygnzar9et1oJjnnSGB8K+ueLls4Ny0faQWXLmljWxwPAYiNokOukGMipDn//OEe1DnYUdTTIKTXt+ZCb42Az/TB5cyqG6niuO/8GUSqGSIHcqJwOAAcz6uehh4bFu6nOmWw+vODtxGpm4+MllItGqa8LpK3m+TuJz4y4u6yrT33ElIplAJgLbc8dCPF45EBIO3GwHeJ8jvTzXF5ohG3WjHTbcTzyfmpaaDv1KWJKb5yqM4pOKgfFNsmtwFKF3TTWMpPKPFJ311OR14n5Iq9Wf3dZA03LueJAiGUAWCAN+4MrYXzu0RiZk/b9HJXXWCWfh+mczoDTc6w0SG8PoFds/akx6/9ZXd9dzyun56SlX5gP/QCAg/MhhnnfcQzzfmKNd+rcWndfMuMaw8cVy8BgbKZUBsN+JJTj273WiK4paLsCcdzy/Hxtw9cdPP2S+TPD8gGK5fsplst9aiY0+nxkcGoF1tKfWDgblps4r2xOO1GdkoDXO9b50/ia0N1zGzzutkvXF81Eqg/WwXdqHId1n/CkfhOV1xjL9sLvqfbCOkyDrW7CDgG4DaNvwr5SpyF3fz+A9w/K9wN4Rp35xP6Ab8CEEEIIIYTYy4y8CRt8jVAIIYQQQgghRuJu+k1YTbSVhBBCCCGEEGKK6CZMCCGEEEIIIaZI3TxhQgghhBBCCDGSnr6OWItaW8n6vMDM/u/B64eZ2ZMm2zUhhBBCCCGE2HvUfRL2awAKAE8H8O8AnAHwFgBPnFC/NpFbgUPNlU3TU/pn1pyygrSsnK+Cdamd0t08/9iQ2+smdPXH54LGdeFE0NHefzBoY8+tt4bls6vtYXnlobloWettUhG3wjo15oOKtdEKZWdtLCnqPaFh9ZIJuOhRvdAtNOdCG0uLQeV7bDGsK6/3UjPUKWtjU/A+y7C1ojil+q5LSj/Pyx2nBjmzAguN9SiG6qrM6yhuGY7hLq0DHwusVl4v0sPC0XZQtc8dDfvy7FKIYd6WK50w/b6HFkM/5oKiO2vG+6vZro7hWqudOLyj+KdlNkttL5G6++hCWFdebx6HOJ5TYw7H7yh1d56I87q67w3qplIYVzxn5jgwSLfAfW0k4rnOmA2k45zVxxyrHM8ppTeP3+UUGZctdKh8OiyLdNarvRC3XzxzZFh+MAvtzbfDcljp3aA6a+34GFujFBGsq+dtwqr81U7oR56H5bZIg3+gHYyznFYBAA63Qr/YTFveJsM2aqjo68Z8XvN42GD6Y7NjMe9vE973dc4rdVKDMOV+ryeuVaL90g0n40gNT+WLWiFFzLF2UNfPj1Dif7EZ4vlAO6jelyiVyqV0XCw1Qkxx22sjzh987PN56RytU4NSK3B/F/PQj1Tcta1TWafcx17i+UMj3/61wyQYZzqcC4Fj++mg9it1b8K+yd0fb2Z/DQDu/qCZtbaaSQghhBBCCCFETN2bsI6Z5Rh8Fm1mx4AajyeEEEIIIYQQ+wTTb8JqUncr/SqAtwE4bmavBvABAP9xYr0SQgghhBBCiD1KrSdh7v4GM7sNwDPQ/9XFc9z9zon2TAghhBBCCCH2ICOfhJnZ0Y0/APcC+D0AvwvgnsE0IYQQQgghhOiLOdym+jcKM7vSzP7MzO40s0+Y2UsH07/RzD5kZneY2R+a2UGa56fM7G/N7NNm9h2T2lZbPQm7Df3taQAeBuDBQfkwgC8CePikOiaEEEIIIYQQO6AL4Cfc/aNmtgTgNjN7H4DfAPCv3P0WM/sRAK8A8G/N7DEAng/gsQAuA/AnZvY17j52febImzB3fzgAmNl/A3CTu//x4PV3AXjmuDszitwcBxurm7SjdbSxuVU7RPiHg6yK5WU2SgpZvuPm97rUBqs5G8a61aACPtIKyusV0h6fXg9a+rvnhjflAIAzy+E93g4ZqY+NPhDIs8R6JxTIm+uFhbF2+bIDQVN7Yj7ob1khy2rZ1D4q7xeuxxrk7SrZmd55aFKLxA9K59CpnH4+ZMN4DutZV98f6+qr9zHHc0bK4MzDvBzLkV66FBNdTstA++IgpR5g5TWvx7lekKiy/neFFNtzjfR6r3fDeuRZaNsidXfoX5Pa4DrdXlhOi9o7MR9SKQDxcbnYCPHM61Qnnnk75SNSD6Soo2dPxWlUf0SdJsZzPsnNh5pzHu/Gqe+PVNz0BQ7eFxzzrN6uk0qk3D7v+0taYbzjNliDf2puflg+QErvWJVPp9uSW5iPsdUuHa9Wfbyeo9QPPM5fPBfil1ODzGfx2NXOtx5reF/yONMkbXudOB81fnM87yTmm2O8NsqtGI5tqW2wk7QR0bUG0ufAVDwvUGzydL7u4GuKw5RS49LWQ8n2WMd/bi4o44+S7n4hC9cwddIClJ9QpOL5AKVJ4G2+lHN6mxDDHCscH9yncqzUHXtT829Feazl/cHbmetxHT6W9oLePZUG4ELg7icBnByUz5jZnQAuB/AoAH8+qPY+AO8B8G8BPBvA77v7GoDPmdnfAngSgA+Nu291t9ITN27AAMDd3wXgH467M2L/cj65vYQQQgghxL7nYjO7lf6ur6pkZlcBeByADwP4OIBnDd56LoArB+XLAXyJZrtrMG3s1FXU32dmPwPgd9D/euILANw/iQ4JIYQQQgghZg/H1r/TmgD3ufu1oyqY2QEAbwHwMnc/PfgK4q+a2f8N4CYAG49kqzp//l/JGkHdJ2E/COAY+pr6twM4PpgmhBBCCCGEELsSM2uifwP2Bnd/KwC4+6fc/dvd/Qnoiwf/blD9LoSnYgBwBYC7J9Gvuor6BwC8dBIdEEIIIYQQQuwNil30mzAzMwCvB3Cnu7+Oph9393vNLAPwMwD+2+CtmwD8rpm9Dn0xx9UAPjKJvtW6CTOzP0PFozh3f/rYeySEEEIIIYQQO+cpAH4YwB1mdvtg2k8DuNrMXjJ4/VYAvwUA7v4JM3sTgE+ib1Z8ySTMiED934T9KyrPAfg+9DsmhBBCCCGEELsOd/8Aqn/nBQC/kpjn1QBePbFODaj7dcTbSpM+aGa3bDWfmc2hr39sD9p6s7v/7CDR8xsBXAXg8wCe5+4PjlpW03o43jpdWxuaUuTW0ZmmFKIAsFoE9WtWhOWyjjmlR26SSrhDWu0WzXu0GRTDcyWN8F35odBHmn+u2amczoruxWZQwEZ6e9o2rTx9o79ACtnL504Nyxc3g+I7tc3j6fU0v1yPVacpJXsdHSr/ULRcP9VeFBdj1MY2rYdjrTPJ98v6/pReNxW3rKLn7dz2EFNrCXV9o2Sq7CZUxFliH3N6gsMUzxzn964shfZKqRQ41lZJtcz7r8WabFo/1iyzHpzn5f6daAf9OBArkccZzym2++Pl7cbmqDrbVTCnaFgPF7f640Bqe9TR94/S6fM4zPXalJNjzUOsrFEbDVacUwyez/pf2jo1LLPR9a78SGiPYnCBYm2tF463Tllnzeec1tYx0aFzDCvjjzaDTvwApQxJpWkpE52vIj371vEfL6fe2M7EsV29DbjOKB35TmhYD8ebp0fWSan16+j0ud+dUsqERk7pF5yuFzj1A6fWyarHgyK6zkmPAZc2wnqyAv7eTkiPw1r6Q3kYz3k9VunYq0sqJQH3YzFbq6yTSi9U51qhXG8nY/Aotq2432b6kd2MO9CbvphjJqm1p83sKP1dPMgefUmNWdcAPN3dvxHANQC+08yeDOCVAG5296sB3Dx4LYQQQgghhBB7nrpfR7wN/d+EGfpfQ/wcgBdtNZO7O4CNRyXNwZ+jnwjtqYPpNwJ4P4CfrNkXIYQQQgghxC7kAijqZ5K6N2Ff6+6rPMHM2qnKpXo5+jdxXw3gv7r7h83sxCCDNdz9pJkd306nhRBCCCGEEGJWqfvF07+omPahOjO6e8/dr0Hfs/8kM/u6mm3CzK7fyH599oH1rWcQYhfD8XzuQcWzmF04lpcfrP7dhhCzQjQ261pDiB3RT9acTfVvVhnZczO7xMyeAGDezB5nZo8f/D0VwMJ2GnL3U+h/7fA7AdxjZpcO2rgUwL2JeW5w92vd/doDR1vbaU6IXQfH8+IRxbOYXTiWF47U+lKEELuWaGzWtYYQYkps9XXE7wDwQvSfYr2Opp9B37E/EjM7BqDj7qfMbB7AMwH8PPqJ0K4D8JrB/3dsu+dCCCGEEEKIXcU4bdJ7mZE3Ye5+I4Abzez73P0t57H8Swfz5+g/dXuTu7/TzD4E4E1m9iIAXwTw3K0WlKGIVKlVbFdfzj8c7HjYFKtU7hTxJpojfWpKa85qX9anZmCNd6hzAOHrPAca4ad3i434az7L3aCBPbU2H5bVCH1irf2BZpj/eDvo0FPbkVXHQFoZfbRxjsqkqKf1KxLbo642lklt57ivpHdN1kmnHoj07qzOpb6P84emmRVYyleT6vn6et1q/TDH3XIvPKnoIEzntAqsqC+vZ+o91lDzPubyocZKZXucxoE19ACwRHF/cSvEGm8r1m8v5OuVdViBHB2HVOdQHvoHAEtZ/HqD7cZzXY1xSuPL7aXithft+2rlcs+qY6X/3njiObcChxp9dTVv86ZVp7yok26hTKT1ZjU2pQxpgNIW5NVjEacGKbeX6he3x/v74mYYUx/shi+GnOnODcusqL+oFcbKspo8eSxl1ek4y+elDTjFwgLpvcvxmDqOW1bdXiqtQJaI/5yWWY7xWuOzVcd51A9qu1P75+1bk6PAgXy1cvqwTzUU53xNwWNzk3K+rqJZmqc61rKMdPzUdjYinqs4S7EJAJ1G6ONh0s8/1AvXF8tFeDJ4ceNMZf0zRVgu76/yGNCk+GoZpxkpqqcn4iseD6r3ffl4LhLjZYrU2Mztla8j4vlrtFFj3BZ7m5Ejl5m9wN1/B8BVZvby8vvu/rqK2fj9jwF4XMX0+wE8Y5t9FXuYuhetQgghhBBCzDpbfXy0OPh/oOK97WcmFUIIIYQQQuxJHFLU12WrryP+90HxT9z9g/yemT1lYr0SQgghhBBCiD1K3S9S/2cAj68xTQghhBBCCLEvsZnWxk+TrX4T9s0AvgXAsdJvwg4CyKvnEkIIIYQQQgiRYqsnYS30fw/WALBE008D+P5JdUoIIYQQQggxe4wyR4rAVr8JuwXALWb2/7r7F6bUp0oycyxma0llaZk6GtxOjYd5eRb7R1g1y7rcIjGdVaopLTArf1np+tVz90RtLxwNKu47Tl8+LD9Auvq5VlDAPmLhvmH5RPOhyrZZSdy2oFPur1O1JnuR1MesQU7pjZn66u5EWoGoT3SQU5HbYJ3sqNgprHpdIyX4GA2OORxL+UpS/Vxe/6SanPq9RrpuVusvkM6d1da8TFZmc8wCQBtdmqd6+7OSOlKC07I4Bg8dDHrjL60ejdpb6QUlMqdpuLR1KkynuONtyCkkWIec0hjPWZyuIZWCIkU91XE99Xo6lUaYvs7jSUJjHI1xvPxS/XH9cDpHMVT98zaLVeZbj5Xlk/Y6H7teVJepDY7t1LjbptCuq23nZT3UCyp6judHz58clj+3dmxYPk1KcNaeP6x9P+rA4ysfY6zm5+3GY3hKAV6mTgqQViLdQErjzcuZK7WdGp9TKQ1S6Ql4Oby/dkpmXpmqIqXdTynLWUWfOg5HadRT681jNcdzFPOJ/bjmsRL/ZOfwsHxF64FQbobyfd2DwzLHP4+vx0hdv57Q7APxuM37m8esPJFmJJV3Kn2tUEpDQ9skFfNRWgGvPve3vDpO10vnTR6fU+l7onOt7ln2JXV/E7ZsZq8F8FgAw7OKuz99Ir0SQgghhBBCzBTu6Q9oREzdj/bfAOBTAB4O4OcAfB7AX02oT0IIIYQQQgixZ6l7E3aRu78eQMfdb3H3HwHw5An2SwghhBBCCCH2JHW/jrjxRfOTZvaPAdwN4IrJdEkIIYQQQggxi0hRX4+6N2H/wcwOAfgJ9PODHQTwskl1SgghhBBCCCH2KrVuwtz9nYPiQwCeBgBm9rIJ9UkIIYQQQggxYzhsbPbdvU7dJ2FVvBzAL4+pH1uSwbGQrW16xJnSjmak6i0SSu+UgTrS3ZbqZOQRZX19Wes9rJNQA7OetR1ptcP0o/nZaJ6vWgzK+WYW9LAfuO+rh+V10tcukRL5suaD1Nfq3c465HLfm+hVTmfq1In17+nH1etg3W5CTZvQyrPWthVpcKu1wgDQo3lSOtlxkluBpWw1il/uXzOr1uACaXUxd7UTaYJJg5+I2YymZ15P9xypvykeOTa57YUs6OC/qhFieSkLcQoAn1y+bFheI+34HB3TJxpBD877iLXJHI+ROppigvtXJpXSIJVKINL3J1IblGO53rI4hUWXpm8zFUN5VROK++2SW4HDeT/lQMqIxXrvlPq/rHiO0jew+j61XyiGc9LYR3E+Yn8znKogpXfn/XVlKyjned47lq8cls/2gq4+b8XLZMV3NA5Y9Zjay6qV3in4WCgzKjVGFVEMJ66z4nEtXib3hcfnKP0Cz1PnWm58hno0EOI5pcRn7X6HlOWp8ZyPT15mWcsfxWoiLUMK3q68zecS1xfl9jjtwVWtrwzLrJX/UueiYZl19VzneB5iuQyP4XEaCB7Dq9c1eVEfpadJB0udsTo6Z1iYzukyUqlBmh6n6InGfb4GrXGtUec4FHuDndyE6TZXCCGEEEIIMUTJmuuxk9vtMX72JIQQQgghhBD7g5FPwszsDKpvtgzA/ER6JIQQQgghhBB7mJE3Ye6+NK2OCCGEEEIIIWYXx4jf8IkI/fpPCCGEEEIIIabITsQcQgghhBBCCDFEyZrrMdGbMDO7EsBvA7gEfdn7De7+K2Z2FMAbAVwF4PMAnufuD6aWAwAGR8t6WC3t2Dyhby7NPISVoHkWyqse9KysB23lJe1opBplBWm1kjrVV9azLmUrw/IonSxrYL9u7q5h+cFDi8Py3507Nix/duXiYfmK1gPD8kWkkF31VuXyAWDRglI80vYTKV30akKDP0f68vLjalbF1tHEpzTgHdLb8/7KRjwdz6JUB6G87tV1dorBMZd1Ii0zt5vSYpfJovgP8cLqYdbrskY3Faeb00AktOOs2qX+chyxEpxju0XH6iNa90bL5b5/ZuXEsHzX+tFhmRXKRwc66f681akKmFQsl+HYPleE4yQaH6JjtFq3zXr28rbkdAC8/9gstU7DdBHFaUo7zvX5OCodb2M6SWZwzA3Gik7ilMJjM28P3k4txERae1J055G6O9RJff0lpYouH2Op8TmOZ+oH1WG19VXNkH6hMx/W7xPLlw/LX1gLYzMQpxC5snE6zJ9IfTJKxV1F+Vjg8x0zR+vK80T6+BrjcaRLL9Xn8Zm71aJVCmeeOE6bVq1hTwv4t0//WqPiWoL6GsUmaddZ884pILgOx2/5GEylYuD1novSVFDKnMR4zMvhNCFlUqkOLqF0ILzen107Pix/uXt4WL6qGdI1XFK6flp11tLTGGfV43avRjqEZdrmPG/5+onnj1MPbH0dkYo7rlO+PuBjIFWvSX2KYwdinzDpW9UugJ9w968F8GQALzGzxwB4JYCb3f1qADcPXot9zHYvKoQQQgghxC7D+8map/k3q0z0JszdT7r7RwflMwDuBHA5gGcDuHFQ7UYAz5lkP4QQQgghhBBitzC134SZ2VUAHgfgwwBOuPtJoH+jZmbHR80rhBBCCCGE2N04lKy5LlP55ZyZHQDwFgAvc/fTW9Wn+a43s1vN7NbTDyR+7yXEjKB4FnsFjuWHFMtixlE8CyEuBBO/CTOzJvo3YG9w97cOJt9jZpcO3r8UwL1V87r7De5+rbtfe/CoRI5itlE8i70Cx/IhxbKYcRTPQogLwURvwszMALwewJ3u/jp66yYA1w3K1wF4xyT7IYQQQgghhJg8EnPUY9If+TwFwA8DuMPMbh9M+2kArwHwJjN7EYAvAnjuVgsyOJrWRXOEMp5h3WqqTkFa1Myr9aybdd2kJ3XWjlbPz0rXOVK+83LmSF/LOmSeDgCL9HqpGZTzxw/fOiz/RevqYfnzqxcNyw90g8ae+83luWasr80y7jspphPq71gtW63vj5T2vP3h8YGUUOx2Eup7VoVH9VlXz3rvko6Xl8tboazNHhcbWu851jJ7tYq8Xz/0txXpchN6XVpW20mPzLp0mpfrp1TFI/sRaXdDrCxGymtSJdOxsFjSJn/TwmdDPXrvZOfwsHyuaFN7vcrpB7PVYZmPpRapg0fp6jmeO9G6UioF21qRHo8NpbEoMU7xOrHmn+M52meRip6WGaV9iNuu1HCfBxmc9nPY3xwTvG4cX1EqCiuNtdG4QWkWaNss0NEaaacT7cX9jqen4nkuitVE+gWKr4NU5/FzX6js990Uy0Cspz5jc8PyOU4hQv3gY6zO2LwpzmnVOUZi/Tlrw6vH4/jcysp42nfl7c9doUOmSKZ+CHDMJ1PS7BAzH+6rVNqPVHqPLOPjkOO/OpZ7pZifQ4ijncQzpwPh7crTgTi2U/EcX3eE9AvMV7pLoa+03udKYfdAL8R2Mzpns/I/lFuJsYzrFwllf7O0naI0Qnw8RKkHepXTo9QgNa41+n2p3mfRtQan6IjGn3ppVMTsM9GbMHf/ANIZD54xybbFbDHLn2QIIYQQQoiBmEPXdLVQSmshhBBCCCGEmCL6BaoQQgghhBBiLOhJWD30JEwIIYQQQgghpoiehAkhhBBCCCF2jGO2jYXTRE/ChBBCCCGEEGKKzMyTMAPQRG+TnjWlimVGKbc3YFV4SvUNjFLR12mDVOGkIGXVLmtVWaVdfo/5qkZQIh9bumNY/szckWGZ9bOnioVh+Uxvfli+vxc0swBwugjvPbL5lWF5kTS3ZwrW7VYr7ZN+zEgNW9qX9B7rlZvGSurq/RTrbkM/WAdblDqVW7WYvkf7e5xKZNYgb5dYB0/TWUVcSm+wAat268ZypKTmtik+8yilQNj+KaX93IhteZQU30+ZD7r6L7cOVC73jAftMWudTxdh+imEmL+yEdI7LJT2waki7Ps82vfU9ygVQ9gBBSmKUykyyjHUpHI07iSWlSf2WVk/X0U+Qse/EziW88S2QSJOR42brO+O1d005tCnrYtZ9fqljtty6pJWNA6H/Z2K81Fj9QZHaaz8B/OfG5a/3JqP6uXR+BzeY3U97+KcVe358rDMx/05b1L9eDun4pnhNUrt11glX53GYdU5ykv7PKGr70W6+sruIY8U4OOL7Y1rjU3tWSK2ibKmfFg/EcvlGKwzPnOc8nm9iPTs1fr3TeNPYmzh6fxEY4mW+/Wte4blUzSm8rxf7oZxF4hjgVOInKNx+3DOqUXCstYTqYa4vWZljT5FpLivTpXD8DmKtwGvQ+pao1+PxqnEfs0TY2QTk0m/IHYfM3MTJvY2dW6mhRBCCCHE7qb8QbeoRle+QgghhBBCCDFF9CRMCCGEEEIIsXNcivq66EmYEEIIIYQQQkwRPQkTQgghhBBC7BiHnoTVRU/ChBBCCCGEEGKKmPtktMXjxsy+AuAcgPsudF8uEBdjf677bl3vr3L3Y+c78z6P5926TyfNbl7v847nQSx/Abt7/SaJ1nv3oXg+f7Teu48dXW9Mm4OPOuFP/G//ZKpt/unT/5/b3P3aqTY6Bmbm64jufszMbp3FjTwO9uu679X13s/xrPXeW2xcHOzV9dsKrffeQvGs9RZiWujriEIIIYQQQggxRWbmSZgQQgghhBBi9+IwiTlqMmtPwm640B24gOzXdd/L672X120UWu+9yV5fvxRa773JXl+/FFpvIabEzIg5hBBCCCGEELuXpUdd4k/4tRdMtc1bnvlLMynmmLUnYUIIIYQQQggx0+g3YUIIIYQQQoixUEC/CauDnoQJIYQQQgghxBTRTZgQQgghhBBCTBF9HVEIIYQQQgixY9whRX1N9CRMCCGEEEIIIaaInoQJIYQQQgghxoLrSVgt9CRMCCGEEEIIIaaInoQJIYQQQgghxoDpN2E10ZOwPY6ZHTazF9Prp5rZOyfQTs/Mbh/83TTu5QsxxVh+mJm918zuNLNPmtlV425DiGnEs5k9jcbl281s1cyeM842hACmOj7/gpl9YjA+/6qZ6WpfzCy6Cdv7HAbw4q0qjYEVd79m8PesKbQn9h+HMZ1Y/m0Ar3X3rwXwJAD3TqFNsf84jAnHs7v/2ca4DODpAJYBvHeSbYp9y2FMOJ7N7FsAPAXANwD4OgBPBPAPJ9mmOD/cbap/s4puwnYJZnaVmX3KzH7DzD5uZm8ws2ea2QfN7DNm9qRBvaNm9nYz+5iZ/aWZfcNg+qvM7DfN7P1m9lkz+7HBol8D4JGDT0FfO5h2wMzePGjvDfokSYyTWY5lM3sMgIa7vw8A3P2suy/vZJlitpnleC7x/QDepXje38x4PDuAOQAtAG0ATQD37HCZQlww9Juw3cVXA3gugOsB/BWAHwLwrQCeBeCnATwHwM8B+Gt3f46ZPR39T+2vGcz/aABPA7AE4NNm9usAXgng6wafhMLMngrgcQAeC+BuAB9E/5OlD3BHzOwVAP5JRR//3N1/rGL6nJndCqAL4DXu/vZtrrvYW8xqLH8NgFNm9lYADwfwJwBe6e697W8CsYeY1Xhmng/gdbXXWOxlZjKe3f1DZvZnAE4CMAD/xd3vPL9NIMSFRzdhu4vPufsdAGBmnwBws7u7md0B4KpBnW8F8H0A4O5/amYXmdmhwXt/5O5rANbM7F4AJxLtfMTd7xq0c/tg2dHA6O6vBfDaTXOmeZi7321mjwDwp2Z2h7v/3TbmF3uLWY3lBoB/gP7FwxcBvBHACwG8vub8Ym8yq/GMwbIuBfD1AN6znfnEnmUm49nMvhrA1wK4YjDpfWb2be7+53XmF9PBoWTNddFN2O5ijcoFvS4Q9lVVZHvF/D2k9++W9bb7aau73z34/1kzez/6F7G6Cdu/zGos34X+p7+fHcz7dgBPhm7C9juzGs8bPA/A29y9k3hf7C9mNZ7/TwB/6e5nB/O+C/3xWTdhYibRTdjs8efoD1j/fvC4/z53Pz3iq9Zn0P/KwLbY5qdTRwAsu/uamV2M/lcOfmG7bYp9x66LZfS/mnPEzI65+1fQlxncut02xb5kN8bzBj8I4Ke225bY1+zGeP4igP/LzP4T+jeJ/xDAL2+3TTFhHHDfuprQTdgs8ioAv2VmH0PfdHXdqMrufv/gB7cfB/AuAH80gT59LYD/bmYF+rKX17j7JyfQjthbvAq7LJbdvWdm/wrAzYMfkd8G4H+Mux2xJ3kVdlk8A30RA4ArAdwyieWLPcursPvi+c3ofzB2B/pP5d7t7n84gXaEmArmul0VQgghhBBC7JDFqy/1R//qj0y1zY9+93+8zd2vnWqjY0CKeiGEEEIIIYSYIvo6ohBCCCGEEGLHODDTCZSniZ6ECSGEEEIIIcQU0U2YEEIIIYQQYs9hZlea2Z+Z2Z1m9gkze+lg+jVm9pdmdruZ3WpmT6J5fsrM/tbMPm1m3zGpvs3M1xHzxUVvHjl6fjOP0z1S5wnrdturWT/ZdJ35J7UNqOyJ6bWhPhr3t6iebjQ9OW+qXCbR32id6COL5fvuus/dj41Y4kjypUVvXHQkXWFTX3fwaN/2oHwnWqUxfu0hta22G9vJGLRa9aLY5qbrxLMlqpSbpnhev+v84zlfWvTGxSNieVNHxshOdn3teSfR+RGNT6U5r3wv1StPxXCt6aWu1B2TtyJ17sEO4/kAj80X8itV1fto35LaBlYvlqNQ44Aptp5uifLIOK/qa7lPqWup0uORtbt3dr0xfWy3JWvuAvgJd/+omS0BuM3M3od+KqWfc/d3mdl3D14/1cweA+D5AB4L4DIAf2JmX+PuvXF3bGZuwppHjuKKH335yCMrNbgnD5oUIy646sRVrX4gMf08Tl7Jm5Ht3qRs6hhV43JOZYqgoknlRnX9qPEiLDQrpRDN16m8Wl1u8PT1sNysw2VquhixspT7pIjWKUzvtkP5o7/x8i+kF7Y1jYuO4JJ/+2PRhh25X1IXOCmim8cwQzzon8cVUI0DgBe703E42cXUxd92j/XydwFy2lZUtgaVMz4jJ7rXC294NzRi63GD1qFjYC2U83WKiy51l8qp8SQKFY7l0mjfa4d1+uwrfuK847lx8RFc+qofHTSYqESd2qmQ11IxnBy3Exdpo+K/Tr3txjYfFyNuxqP3at7YVEKhFsUsAOPYpvEhta5FLyysoHgGl9c5znlsj9c1ivlUPHM3Ehen0fmmFff7cz++g3i+6Agu/TcvHTS4zZ280xvoGrFdawwf5+dSO1jWpmN91AdSlY1TbFLM8jid5UVlnXIs83FVdCie18MFiq2G6fkKl8O8fN2R0XUKj9MAkKXGZ45hujYqWqHca8fz/O+f3dn1xn7H3U8CODkonzGzOwFcjn5EHhxUOwTg7kH52QB+393XAHzOzP4WwJMAfGjcfZuZmzAhhBBCCCHE7ma3Zr8a5E18HIAPA3gZgPeY2S+i/7HVtwyqXQ7gL2m2uwbTxo5+EyaEEEIIIYSYVS4e/K5r4+/6cgUzOwDgLQBe5u6nAfxLAD/u7lcC+HEAr9+oWrH8idxW6kmYEEIIIYQQYixcAEX9faOSNZtZE/0bsDe4+1sHk68DMPjuMf4AwG8MyncBuJJmvwLhq4pjRU/ChBBCCCGEEHsOMzP0n3Ld6e6vo7fuBvAPB+WnA/jMoHwTgOebWdvMHg7gagAfmUTf9CRMCCGEEEIIsRd5CoAfBnCHmd0+mPbTAP4vAL9iZg0AqwCuBwB3/4SZvQnAJ9E3K75kEmZEYIZuwtwGBqRRTzj5vTpWNZ71fL7tmbIV1tD21jEdbrKf8Xts4qljgjwflXyij2y04rCMLG4Ja6LnZEmj57BeNrclLFi9uVDuroVyg81ykckodLyxwusQ73Dz6o0VGbiovGNsw+S0w68Zb9cwVepD9TJHNrh1e3WaKKqPi/7rOuvEZQ7ORP1R7SXqJYeTnBphsxyVs0Y4ENmy6M34oGaLYq9Nxq61aksXKOZzKhtbQHn5bN0rb5txfltksO4jjYNbNDvKGJj27icWbNX7JdpHebwvMn4vKpN9jbuRMBr2CtqPbMkseFBL+6x5G9Yx053PD+Atsa6W2G45x3OLxkdav4LjtxO0b71V1uPGFlCwgY5NcwmzXASvd7bDcZQxwBsV8ZwycdZhu1bAEe1ZwhiYivNRx2TKxOm0/XmsjsbtGieQcvzWGR/qfI0tXtcwPadjOivFBB/HHMO9+bCA7jzF7QKVl7kc6jeW6VqDri8ARGN1xtdJfB2XUtTPzJV5Ne4X5OuISdz9A0gH7BMS87wawKsn1qkB+jqiEEIIIYQQQkyRGb/fFkIIIYQQQuwWdlmy5l2LnoQJIYQQQgghxBTRkzAhhBBCCCHEWNityZp3G3oSJoQQQgghhBBTRE/ChBBCCCGEEGNhN9kRdzMzdRNmxWh1bVK9ntKzsyKd1KmjYidpWGW9a6SjJZWqV05Oq+uLuCOR2pSsv5HJtkYmg0hVXdeWy21zGymDL9VnlXbUj7KROqGsL6jca9MMi6HYJb1x4xzNe7Zaid8o94n63iN9bWcxlNeXMD4yRz7fjZS9kVL3PNS+qV2ZbKMmBcVhEcV5tTY8NfhGSm/SdXvpmK6lRN7JVx1G6KKTX6Hgvner+8SLYoUyEup6ADBO39AKB1bRCgd4N+eDPRq0hsVIAk5NF4lUEf02xvN9kbxR4PDR/kGXkwY6S6iqs0Qsl3/IzfuiQCLuapA6dvLSdO47lxtWPZ1hLf1aL2z0tW4od7qkuS7S65CzGj6vbpu3LW+bSI9fVE8vv8fbvaDcIL1O9RdlovGEFOl5I+Qo4VjuNOLLjF5Or6lto3LqKzpOgb6hkQeAojGeWAb6x+iBi5Y3Tc+jVAXnn0bgfC5OU+1l0XTaL+cxQHIcdSkOuj2KW5oenQsS8WxlTXyiv1xOpXuIzgup9BAcv6VrIaOx0xJjdbNNMdwMC+jyeNwKA6lHY3O8DaKQXEclUfodurbpzuu7fPuFiX4d0cweZWa3099pM3uZmR01s/eZ2WcG/49Msh9i97Mph5EQQgghhBB7lIle+rr7p939Gne/Bv2EaMsA3gbglQBudverAdw8eC2EEEIIIYSYURwG9+n+zSrTfP7wDAB/5+5fAPBsADcOpt8I4DlT7IcQQgghhBBCXDCm+Zuw5wP4vUH5hLufBAB3P2lmx6tmMLPrAVwPAI0j+saimG2ieL740AXujRDnD8dy89jBC9wbIXZGHM8am4XYKfpVWz2m8iTMzFoAngXgD7Yzn7vf4O7Xuvu12eLi1jMIsYuJ4vmg4lnMLhzLjUOKZTHbcDznBxcudHeEEPuEaT0J+y4AH3X3ewav7zGzSwdPwS4FcO+U+iGEEEIIIYSYBC5FfV2mdRP2gwhfRQSAmwBcB+A1g//v2HIJVkOpzAbrlO47WU7rwZltZwHnQIw071ZZRpfqlB7oOmua6RlmZFqmPRpp5dmsnFDJjyKykTerp6Panh21kdH6ZR2qU9LJ9iK1NqmI24kdQPrZjHSwvRb1KQ+dWsvjndydo3nmaTqpYntj1MY28x4uOXo6qZ1OqbDrwirgRkK3zXVS2nAA6JImuEuBt07qYtZys1Y4KifUw0VJb5zUbEf6YarTJY1xL3WApyYX6beSVB/T3DaXbUSXMlKQF5F7unoeVnT3opilY4RivmiF5Xs7XtesXSOfRQ1aeRdXHjwFII61FFlCpT0qBrPEQDVqnq0oK/ELr9Zv12mDjws+XlbpuODjpXyBwnrwOnrx6DgkDT54PKF4apM+Hohjks9p3MfV9TDQ97pb6+obFMt8fup1owQKKOjc7KS4j+J5geKZxn+neLYm6ftbOxsvmVbewxWHT/XbrnEhmRpH6+zHuvFbp16UaoDKqdgs1+sl4j/SxEfTq+ftRSr5ctqJVLqT6jpRegnqel5DdV+MSMuQukGI0hBw2PKQ38l5hrDM8jUFfUHA6RvbfE1RzFPczofxOJ+Lj1exd5n4TZiZLQD4RwD+OU1+DYA3mdmLAHwRwHMn3Q8hhBBCCCHEhNGPwmox8Zswd18GcFFp2v3o2xKFEEIIIYQQYl+hFLlCCCGEEEIIMUWmqagXQgghhBBC7GEk5qiHnoQJIYQQQgghxBTRkzAhhBBCCCHEWNi2SXyfMvImzMy+t8YyVt39j8fUnzS5ww92YXlJKU2KW8u2udcTj0uLhGoaANBL6LBZk5pXa1VZF+OkS2XFtnVIz9qN24407qyZT622V5cjPf4os2/qabJX12EtMacIiPpnIx5RU72CItNbXlnmbRWp70lRz611DoTy2tF4o/WOhgU0FsMCGg3Su6d7vm1aWYHLFk+jkVVrwlmXvfk9ih1aQ9YPp9TKKXUxT2+UgqKVhz7OWdhOGacOqKFEXi+C2pdV2D1Pa5M9oUpeJS33OimDu6TDZo09H28cZ17S4ztrjRNxHsFDAM96HiegaDxZo5QLqzQ+0JjA6Rp6S2G/tJZC/C62Qx6IvDR2svb689vvbrScA821TcuMldk7+9JFSh9f1EgqwPHcooFivtEp1dv6WOT2OOVCl2K7IFX1QiPsi7r68kg/TwPhcjco4891Qh4CjrVur1onjtgSH20TVsvzsRjty8RmTunZo+N7PW7cVsJrPhcVlELBlsK+WVxaC+V29fYs89nkO1uTm+PgIJ5TY9l2Uxik6mxOk5CIbZo9imcam+P0I9Undo5ToDQmUzlKS1Kc/7FbHts7HBd8buDpvbCyHRrPWT+fkUq+1QzboEnn0/LYsN4JxxIfJxldq7Sb1Wr46LiiMdjWq/cRAHQXaXw+SvF8ZGVYPrK4XNn3MjuJZ7G72eq68n+gn8Nr1Jnu2wBM/iZM7G30qYkQQgghxEzj0G/C6rLVTdi73P1HRlUws98ZY3+EEEIIIYQQYk8z8ibM3V+w1QLq1BFCCCGEEELscRzJn/uImNo/czGzbwFwFc/j7r89gT4JIYQQQgghxJ6l1k2Ymf1PAI8EcDuAjV8POgDdhAkhhBBCCCHENqj7JOxaAI9xl3RSCCGEEEIIUY3uFupR9ybs4wAuAXBygn0ZjTnydm+zj5111imPLiupPa0UrQWr17kvND1vkzKV9KmsiI61wqRnJV19We1brJOqer1aW12HyF6b0Nj3KybKNH/C6hyp+dlwWzRIM9tEDOt5WX9OWnrQti0arIjm5WSV0zsHaJlHYz11mzTIrUZoI6l8HhOsoGbt+movPjRZ59shlXCk/E30j3XYnCGAY5CnzzXjbXPIVoflg20qN1ZRRY+Chddvrcfr16Q6cZxHKmhaFuubW6TrPo250DYHWyI2LbImx0Eff85UI0dD6hipGSucViOjdAhFi8ptGuMo5ov5UKd5gLT0CxTLpLAunxTr6N3rYNic1gAAur61/pqnr3XjmO8mtPYp1TuPxw1SWC+Qip4V9Yt52E4AcIBep1T7ax7ijuO5k9GY49XHZHOEQpw1+Ge67WH5LKnoT6+FOOdt1Uuc91i9XVahr5H6uyjoWKTp3fXQhlN3OU65jSaNm7wvuq3Sfp2jGKa+23zYNwcOhrHl0EJQerPGm8fB3g406qNIpd5YT6jWuQ5P5zLHVp6VUu4kVPZ8fLUbYTvN5aG81AzbbD6Lx/ANOqVjimN1hcdkiu3UscukFPzlsZ2P146F96L5KVyK1tZjVOpYLV8PplKf8Hies/6/UX0C6SzQscfXawulioth/qUjQUV/8YGzwzKPTXzO75S2m9i7bJUn7A/Rj9AlAJ80s48AGJ6p3P1Zk+2e2DfoR5xCCCGEELOPnoTVYqsnYb84lV4IIYQQQgghxD5hK0X9LQBgZj/v7j/J75nZzwO4ZYJ9E0IIIYQQQswMpmTNNan7Rep/VDHtu8bZESGEEEIIIYTYD2z1m7B/CeDFAB5pZh+jt5YAfHCSHRNCCCGEEEKIvchWvwn7XQDvAvCfALySpp9x9wcm1ishhBBCCCHE7CExRy22+k3YQ2Z2BsDXu/sXptSnSsyALC82K1yN65C6OKFMZU0p60WT318tTWdVLytQWTXdIC39wlxQR7MumumwfpwUwZ1WrCntdEgVu0b6YFoPsK6eN0HB6lbSOvdoHUYcNNFm4C+x5olKtLDUpo0t7B61H82TKBtrvElpv3agukFrktJ7rhu9x/GS0tJn2WYN9/nSg+FstxVNS2mPgVh9HMUwK5R71d8ublBqhJyCghXlvWid4/nnG9W64wbpopuUq6CgAOHprE1ey0OZ1chArLXndWWF73pCb8zHZNGhdeLtyeNEI96nHBeWSEfhiTGE24vyMnBcl7XJdPxlOem+F8L26bVIM0/zc/qLdjv0m7dHKm0BAOSjDvht4AjxmUWa+NA/VrJ3rVq/3M3i+OWxMMKq90s0Lx1Lq1TnQJO2d2neNunrWVXdY603q9rpuMooZjOvVmaPYo3mX6Zx4aHV+WH5wXOhzPp4o3Fpfi7EzWI7nHvmSscwH/sr6+VcIX28RvoXVsyzKp/HnMXFOJVFpx32DbfRapJ6vRmPz8N5E1r6sup9J3A88/5jvTqr4bNG9f5eT6QS4W2fla5UeT1SscNx26J+8Pi62AjpFnIK2h7SinpO2cDxuNIL8cjrVCTOSam0IgCptZFOr9KkbbDYCnPMkZqflf2pc8RaKc2L1TjHp9J2LLTCsdQ4EtpePcCpIuJtyykbFml+3n/c3yiNge5g9g1b/ibM3QsAf2NmDzufBszssJm92cw+ZWZ3mtk3m9lRM3ufmX1m8P/I+Sxb7B3GdD0ohBBCCCEuFN6/uZ3m36xSV8xxKYBPmNnNZnbTxl/NeX8FwLvd/dEAvhHAneh/tfFmd78awM2Iv+oohBBCCCGEEHuWrX4TtsHPnc/CzewggG8D8EIAcPd1AOtm9mwATx1UuxHA+wH85OYlCCGEEEIIIWYGfbupFrWehA3yhX0KfSviEoA7N3KIbcEjAHwFwG+Z2V+b2W+Y2SKAE+5+crDskwCOV81sZteb2a1mdmvv9Lk6XRVi18LxvH5q5UJ3R4jzhmN57dTq1jMIsYuJ41ljsxBiOtS6CTOz5wH4CIDnAngegA+b2ffXmLUB4PEAft3dHwfgHLbx1UN3v8Hdr3X3a/ODi3VnE2JXwvHcOjy/9QxC7FI4ltuH5y50d4TYEXE8a2wWYufYlP9mk7pfR/w3AJ7o7vcCgJkdA/AnAN68xXx3AbjL3T88eP1m9G/C7jGzS939pJldCuDe7XddCCGEEEIIIWaPujdh2cYN2ID7Uc+s+GUz+5KZPcrdPw3gGQA+Ofi7DsBrBv/fUacTlnmk/QSABmnfjW6Gm1n1dKZbVCtWmV5J+71GauDOKqm0SVXdZZV8M0xnRT33m7W0rGddz2PtbkbK7JzU2gX1MSqTrj5SdJMWu6AmrKwhpnqp7/d66hW/Qds2paF3ACBFN5edyqnPOzKOi2rjcjIOgJKKmDqZ0z5oJFIMnA+9wnBmvR3FKVNWb7M+O6VEZsUtq3ZZt82cW28Py6ukA2c9cXlZjcSy5vNqBS8r8XusLkb19gaAFq1rShkcHa/0IIbX9Wwe1m+djluPtPDx+rRapMluBeUz69y7qZQSTdI3syqf00OUU15EGvAwnfvFMWgJPXsqJQerjvMsrjOueC7chlr1FsUzK+pZZ83TD1CZtd8A0CU9der45OnL3XDgr1C5oPLp9RAs83msbed0Cny8peB+8LjNGvu6H9DWSanCPGRhPfgcxfX5vDLfjNeV99NSM2znlFa9k5jOaTUYjs2ybp5fl9NhVMHHSLRc0u6n0r/slNRyeRzk8Ypjm8cM3n6cbqRMl+pxPLPKPFayhzpreagz72E8zvm6yOL1iWKeTpAc/3yccP/4PNGhdeI6rdJxxNuzSWU+Xj1xrPM2j1IERDERpnfLaV5a4XUqzlP7httu0rjECv3y2F7n3MV9bycU/GJvU/cm7N1m9h4Avzd4/QMA/rjmvD8K4A1m1gLwWQD/FP0buDeZ2YsAfBH9rzmK/Uxe42wshBBCCCF2N7qkq0WtmzB3f4WZfR+Ap6D/2d4N7v62mvPeDuDaireeUbeTQgghhBBCCLFXqPskDO7+FgBvmWBfhBBCCCGEELOMnoTVoq4d8XvN7DNm9pCZnTazM2Z2etKdE0IIIYQQQoi9Rt0nYb8A4P9w9zsn2RkhhBBCCCHEjOKIzWsiSa0nYQDu0Q2YEEIIIYQQQuycuk/CbjWzNwJ4O4Chk9Pd3zqJTlVh5sizItLulmFVL6ujWQOaZax7DvOmNPHWjL/YOkeq3+Vmq7JtboO18r1IAR/6x6ro+WZQy8414k8SVvOgcU2pgVl/GumzSZvfo+lJjT0QKepZJTxK9V5VH7zevfTMkYo+r1Zxp9T3kdY2r97+jJWmc6/qqL93jqGb2IdArJsH4vXjWOVypCNnhTKnRqDpkUqeltMtpWVokf6fFb6n1kNS07NZ0MHPkdJ4MVLXhzZ6Iz4la7N+mNaJVcncxoFmGMYOkjL4dDv0iXX8rC4u6/vbpM9OpQ9g3fR6RlpoUtrztuXjfq0bD7lrHVLnU71opMir9zeTUtfzsVpOezCu2HbYUPkcKdVJq81xk1I0t0rbO/Uea8AjPTXFzSrpy7k9rlOOwbO9ECOs32ZdNyu9c3bR06J4/Of6o7Y39/FAHmL4YGN1WD7cWhmWTy2EY4/15Qxvs7JqPUuMcQ3qe4OOpZQym9s+2wnnwzWaXlZ3MxyTKRV9NE5RP6K+jlHpbbS81D7jeO72wno3Cu5f9bjbiuKp1G86JfAYxyp6bnuulGZhA47lPBpD16N6C/R6jvrb8+p0JwzXWSmq932npHxfbIT2FqjMWvtUWoY64xWfLxqlsTKlsmdi/T+NX3TOSB07o5aVGvNS5+PJXXdMjzrpJ0T9m7CDAJYBfDtNcwBTuwkTexuXol4IIYQQQuwT6irq/+mo983sp9z9P42nS0IIIYQQQgixd6n7m7CtULJlIYQQQggh9js+5b8ZZVw3YdKgCCGEEEIIIUQNaidr3oIZvg8VQgghhBBCjAUp6muhJ2FCCCGEEEIIMUXG9STsD8a0nJGY+UjdLauB80S1LKFy5uWyUrpRsvaxhpp11uvdap0pK6iXu0HjyjrquXZY5pHF5WF5qRkUwQDQJM0wa2BT+tMOKdBXGqS3J119l3T1vZKaPFJmk9Kdte+sIeVt6KSiL3i5rKj3aiV3fwI78ctvDhcQ+kT7qdEkNTPp1VPpCYB0XETa94Tufiewpj7SzZcVtYn+MZFKmLZtt6jeTqzrZp1vOf0BK9kfWg1q7PtY20vb6UA7xO3x+XPD8qFmUGyzmrksWeZlsR6cFfcNUn83il5lHWahUa2PH6Ux5uOYy+ukoU5p7Hk5fHw28rg93pfrnerhmFNYtCmeU/FiCQVyWW9fXvdxUEc/n1JQp6YDwLqTwprinHXfXGY9OOuvGdZ+A8ByN2i9OY5Yq320GeKZVfJMh/rKSvV2Vq0TB4C1IvSFx+24H2uV5RQF6cFZuQ9gmFKgXC+LVOoUd7RtudyjfXGmMzcsR+krSF3fb4PiIpE+ow6TUtQ7KMZoqI3juVpxniXOHXVpJFIx8DjTScTzCmvsKZZ5/y41V6N5OIXCgdJ7VfNzfLD6vuNh3jNZiANW1wPxdUtqG+aJ7cYxvJJQ9kfPFUqLicf9reOO4389odAfFYO8rQrf3vOO1HlsltgDlv2pUCsyzOwXzOygmTXN7GYzu8/MXrDxvrv/x8l1UQghhBBCCCH2DnVvz7/d3U8D+B4AdwH4GgCvmFivhBBCCCGEELPFtM2IM/zUre5N2Maz3+8G8Hvu/sCE+iOEEEIIIYQQe5q6vwn7QzP7FIAVAC82s2MAqr9ALIQQQgghhBAiSa2bMHd/pZn9PIDT7t4zs2UAz55s14QQQgghhBCzg0lRX5O6Yo4FAC8B8OuDSZcBuHZSnRJCCCGEEEKIvUrdryP+FoDbAHzL4PVd6Gvp37nVjGb2eQBnAPQAdN39WjM7CuCNAK4C8HkAz3P3B7daVpUinHXM/H4dzXhK9T1Sgx8tixTRzTC9RzrrSP3dCJrTDqnhWZ3Oy59rxArXOYTXZzuktialMbfHWtss2k5ht3dImd0tK+pZN03bjZXZrHpnXX1B24CV/zy9vPVZiZ+C+xSp7xP7krftPKUU4HUAYr1sFDuJ8jhIxR+wWSee0h3bCN16FSm9bsuqYwUAGqRk71JMtUi7m1KTx9NZ103q+SI9DLFKOI+WS31KKNlZwV9k1f0rq4AjRb2RlpjmXyCpPuvSeV35mOxGiud42/LrcxT+PD6k6s+Rdj+l+m6MSHswTq33Rnymjpfz0eGnYr7OccjzptT1B/L1aJ5GIt0Aa7wPNUKahUN5SCfCfVomLXekqx/x63Hub2obcloHVsPnqI7nlFocANoZn6PC+i3kIaY4DQTDcR4pzknZ34jOPYvR/JzugeN2Lk+kkTCOYU5DszMdfB34+E7uo8T0ZqRBr96WZVL7kj8uzxJ14nQenGqDrw/ifvA8C1k4HloWpq9S+oQedYT3fdMTuvly3NGYuuaUlqHY+nkA932epncozvMobtLrmhpDeFvxcld64ZjuJnTz5fH0fPb/Vv2bKfbAKkyDumKOR7r7L2CQ0sfdV7C9BM1Pc/dr3H3j6dkrAdzs7lcDuHnwWuxj6tyACSGEEEIIsReoexO2bmbzGNzbmtkjAWydLTLNswHcOCjfCOA5O1iWEEIIIYQQYjcgRX0t6t6E/SyAdwO40szegP7Tq39dc14H8F4zu83Mrh9MO+HuJwFg8P/4NvoshBBCCCGEEDNLXTvi+8zsowCejP7XEF/q7vfVbOMp7n63mR0H8L6B6r4Wg5u26wGgeexQ3dmE2JVwPLeOH7zAvRHi/OFYnjuxdIF7I8TO4HieP3HgAvdGCLFfqGtHNADfBeAJ7v5OAAtm9qQ687r73YP/9wJ4G4AnAbjHzC4dLPtSAPcm5r3B3a9192vzgwt1mhNi18Lx3DykeBazC8dy6/D81jMIsYvheG4rnoXYOfo6Yi3qfh3x1wB8M4AfHLw+A+C/bjWTmS2a2dJGGcC3A/g4gJsAXDeodh2Ad2yjz0IIIYQQQggxs9RV1H+Tuz/ezP4aANz9QTNrbTUTgBMA3tZ/kIYGgN9193eb2V8BeJOZvQjAFwE8d6sFZeZoNbubVLRJLX1C8ZkndPCjdOHlflSVFzJS+7L6mzSlrLtd7gY96+m1uWF5rRd2yWo33j0HmkEhe7AZvCjrOenuE+vBuu7lnJSzrXAf3unFWmzWwfP2aeasDa9WT/O8rHTl6eX2Vjthfdc71aHptM8KMip6j1ThpF9mhX6LlP+LzVhP3Uro/FMq4p1i5mjn3fPS4Sc14NtUjqeWM2exbpjVwKyRZh0wx+0y6Xw55ruk6z6YrQ7LrA7uz0P6bNYgW7Xyt1GQujirVgyvkQZ/lLqb16mXVWuXU/U7pDc+jXBML6+F462c/iJPpJToWfXnY1yfU1gcaIR4Tqm+R63rTsjhWBjo8neiVh6VLqCOrp7nZ9U01znYCHF3SfuhaFknGqcr22DlPCu6Wem9mIXxeIlicLloVy6zTNNCPR5TF2gsY939WiKtQ5SKBKy0j+OJNfN8/B1qBO3+nIU4OlOEeH6wE5Tz3CeGl8nnHgBYJ005x+pSI2zDeUofUEctzuu6UzJzLAzaT8VXSo/PdZpRqoh6ivJmSmVOq8fXPIu0zS5unhmWD1P6hHUPsXK2F/ZjGdbSH83PDsu9PMQOx3O07xNy4/L69PJQcY3U93zO4FhNxTDHb50YBOLjlY8xnp/HcG5vnuJ0pRf6zee0Vrk9mqdNx1KzRixMKuXC1HAoWXNN6t6EdcwsR7AjHgO2HvXc/bMAvrFi+v0AnrGNfoo9zmripksIIYQQQoi9Rt0r319F//dcx83s1QC+H8DPTKxXQgghhBBCiJljL+SbngZb3oSZWQbgc+gr6Z+B/oPn57j7nRPumxBCCCGEEELsOba8CXP3wsx+yd2/GUBtvbwQQgghhBBin6EnYbWoa0d8r5l930BVL4QQQgghhBDiPKn7m7CXA1gE0DWzVfS/kujuroyzQgghhBBCiH3F4OHUFe7+pfOZv9ZNmLsvnc/Cx4mZY67RjRTNQKzy5PdYE8/q7iLlUk0ss0xqfm6PtbarPVZj25bl5fWgP13vxZv96HzQzh5sBTVtSq8e9Y+1x41OZR1WyZf7VUef3i2yyvI6aV95OuvZW40ultdJU1tUb0+eh/d3j5Y71wrrd3AuKKmPtFdCnZI2uayXrWp7nGTmWGyup3XzpTivo58vEkpYXm4Ud6iOwfI68+t1UmPHauZqZTOnYngQIUE1b+8DeYhlINb58nKbCV09q4eZSD1M5XgbxDHfq6HVjY9d0t3TevMx2aKUDuV9FCnFaR+3m2H7sNL46FyI4QOkp2ZVdVJzXWJcsZ1ZgYWBIj+lX05pvM+vPdawU4oA5/Ensb89/eUPPh4ipTQp1c+Q4julxl7Kwz5qJfbFemLefnvVYxErs+N4Tqdc2C4cO3WOPe4H12eld9EM2wOIde187HO5SeMDt5da13yM333KrcDhQZ9T27NJ4zPHCpPU6Y/YR3ycROMz7/vE7LxtWEvPmvfy+jzUDWPyKinjs1box0WNoKvPs7AvV53O13SMcQqb3ojjbTUL7fEY3ktcY8UpGpqVdZjydRzHFMdLNF4musttr+bVbS+UzmOc6qXOccn7qe4YLi487u5m9nYATzif+WvdhJnZ4ysmPwTgC+6+dTIdIbaAb8CEEEIIIYTYKWZ2JYDfBnAJ+um1bnD3XzGzNwJ41KDaYQCn3P2awTw/BeBFAHoAfszd3zOiib80sye6+19tt291v474awAeD+COweuvB/A3AC4ys3/h7u/dbsNCCCGEEEKIvcUuU9R3AfyEu3/UzJYA3GZm73P3H9ioYGa/hP7DJZjZYwA8H8BjAVwG4E/M7GvcPfWI8mkA/rmZfQHAOYSfbH3DVh2rexP2eQAvcvdPUAdfAeDfA3grAN2ECSGEEEIIIXYN7n4SwMlB+YyZ3QngcgCfBIa/63oegKcPZnk2gN939zUAnzOzvwXwJAAfSjTxXefbt7o3YY/euAEDAHf/pJk9zt0/K2GiEEIIIYQQAgBQ4/fVY+ZiM7uVXt/g7jeUK5nZVQAeB+DDNPkfALjH3T8zeH05gL+k9+8aTCsv66C7nwZw5nw7Xfcm7NNm9usAfn/w+gcA/G8zawOo/lWqEEIIIYQQQkyW+9z92lEVzOwAgLcAeNng5mmDHwTwe1y1YvaqL1j+LoDvAXBb6X0bvH7EVp2uexP2QgAvBvCywcI/AOBfoX8D9rSayxBCCCGEEELsVRy7LlmzmTXRvwF7g7u/laY3AHwvYrvhXQCupNdXALi7vEx3/57B/4eb2VEAVwOYK9cbRV1F/YqZ/RqAd7r7p0tvn62aZ9zk5jjQWtuk6k4pvpPlhFY7RVktyupjVrqnFOKrpIpd74V5WZF+fCFswtONdiivxfvy1Mp8ZRvH58P8rAZO6babllbWpuiy7juxDYostMcqcyT8mbz92/Pdbe+/lGKdt+3BZlDUt2l6o6SATWncJ6Wob1iBw+2VZDqEzZp40jEntgfD2yYVBxzLvL/Kuv52vrUAdT4LcXesHeJxuRd0vue6Iba5vSKPH6YvkOL7QB72Hyt8U7DGO6UjT6nrgVipzCppnn62164sM4dIy83l8vHGxyKrmXnftGl/pFT0o7TXkya3Akdb5wblGmNqjf0IpI/JZH2KqW5O6nQ6Rg43Q5qPY434GyRH8xC3i1msm95gqRfi8SvdkELkTFF93mVd/RypzOdKLmzebqwKr5NShWOzl3Bsz5U06hwvfAyc6YVzzBotl+e/vP1gWE5Cqx0pvT1WevM8czRujEoNs0Gd7bFTGtbDRa3NlzVROpzEOTRPpGI4H4V+J3HOzTK6jsg4lQKNB7SNFyiWF7KyRj3Mfx/F88nO4co+sa5+yUJsl1N9pOBzESvuO1n1mMyqfdbSswY/pXNPpZAASsdiYhumxqkO9YnTSfByyqTORXy81jm/ifNj8Juv1wO4091fV3r7mQA+5e530bSbAPyumb0OfTHH1QA+MmL5/wzAS9G/WbsdwJMB/AWAZ2zVt1pHjpk9a7Dgdw9eX2NmN9WZV4g6TOpmRwghhBBC7FueAuCHATzdzG4f/H334L3nI/4qIgYOjDehL+54N4CXjDAjAv0bsCein7braej/5uy+Oh2r+3XEn0XfDPL+QQdvH/y4TQghhBBCCCH67KLP1d39A6j+nRfc/YWJ6a8G8OqaTay6+6qZwcza7v4pM3vU1rPVvwnruvtDMiEKIYQQQgghBADgLjM7DODtAN5nZg+i4jdkVdS9Cfu4mf0QgNzMrgbwY+h/31EIIYQQQgghAOy6ZM0Txd3/z0HxVWb2ZwAOYfDzra2o92tK4EfRzxy9hv53J0+jb0oUQgghhBBCiH2Nu9/i7je5+3qd+nXtiMsA/s3gTwghhBBCCCE2s4+ehO2EkTdhZvaHGLEp3f1ZdRoxsxzArQD+3t2/Z+DTfyOAqwB8HsDz3P3B9BL6Ct+DzbVNFr1GFoQljRrq9WZiOqtvIx1sqX5B7a1TPVaQsuJ7oRFuhs+yojuhqz+wGBSy5XW979xiWNZ6WNZlCyHn3IlWKMe67rB+KaXrKJaLoJNdIe14ymrIiu2itbUuHYhV3Kn9lIL13qwDTunVR2myWbc7qr87IbcCR5vLUXzxtqyj+gbi9Uj1m/dFpEGvcSwAsc7/oua5YZn3F8+zkIWYb7eDtvfBbojfe9eDDrnMkUZo45LGKep7WD/WBDO83iltMivAyxpjPja4zPHf5OM7D+vKCmvWFbepPEpDHK9f6BfHMyuRUzpypoj05ZZ8byc0rMCRRl/9nlJ3nw9R37162/C4VmSUMqQI+66bSEnQLmnbl7Kgn2eFdYvi4HDGyvmw7z+7fnxYfqi3EJZJivqDtPzyvuD92skorYlXn2N433M8NxH6ym2Xlfsch6wK523A+4/n5zZS8HjAywfiddqulpuP+9TxslMaVuDiQfqCaExO9DWVHqJe+pD4GIyOaVpsk647lrukdudUFs0Qs2UV/Qat0rn/RPOhyrbvXT84LN9nYaxmRf3hLKR7YHjcLZ9nOV1Bk2RzPH25oOsk2t8cz6k4TR0jZaJ4pmMvlXKBSaUxKachKB/jVfN3kFdOr6v8F7PPVnv6FwH8EoDPAVgB8D8Gf2cBfHwb7bwUwJ30+pUAbnb3qwHcPHgt9jHtbOtcVEIIIYQQYpfjU/6bUUbehA2+23gLgMe5+w+4+x8O/n4IwLfWacDMrgDwjwH8Bk1+NoAbB+UbATxn2z0XQgghhBBCiBmk7jPPY2b2iI0XZvZwAMdqzvvLAP41oofrOOHuJwFg8P94xXxCCCGEEEIIseeoq6j/cQDvN7PPDl5fBeD6rWYys+8BcK+732ZmT91u58zs+o12Fk4c2O7sQuwqOJ4PXLKwRW0hdi8cy4cunb/AvRFiZ3A8H7msvUVtIcQozPeXon4n1LUjvnuQH+zRg0mfcvfqX37GPAXAs8zsuwHMAThoZr8D4B4zu9TdT5rZpQDuTbR7A4AbAODoo49rl4qZhuP5+GMuUjyLmYVj+fLHHlYsi5mG4/lhX3dQ8SyEmAojv45oZo/fKLv7mrv/zeBvrapOGXf/KXe/wt2vAvB8AH/q7i8AcBOA6wbVrgPwjh2sgxBCCCGEEGI34DbdvxllqydhvzX4GuGoNXw9gMdts93XAHiTmb0IwBcBPHerGTIrcKC5ukndzRpYNuyxup7niRTWiR3HquPNWmdSvWdBL3quG2t4NzjaOldZvm8tfL2S+3qAlNfduVi7u9oNGteFZqh3oh209A9r3x/qk/b1bG+usn+jNNJrRbVOttng/oYHoqxrZWVwSvtd1grHitZqjS9vf9YHp/Ylq31TatkyZW1wqr87oWE9XNQ6G8VvXb13St2d2mYditO1IhzyvC+4vTPdOFZWeqRnp1i7uHmmsn+s9z6cn6uczv1byOOH6lc2Qwxf0gjtsSb+dFEdzylYe9yz0Dar5Pv9Ddpl1ivz/McQ1pv1xkxKpz8q5rdLOZVAZT8Sancg3g47IbcCR0ldvUEdvXfUn9Jngjz+8DjM68F1uIleHuqf6oTtf996GHfvaR6K2mP9Nve3RUr2OdrfrLmeK+nuN2CN9zE6FlZL++JMEbbVetQeHdMJLX2P6rCC/KI8rM9SSVkej5dB/c1jO5NKd8LnmDhNSCBD3DavUy2NO7WdO22nHajuR9G0Ho41No9tdVIucD9SY0B0DVI6Bnm/cnspXfrZXhiX+Fjgfb8+4rzFccvxzMcup9g4moXlXt7geA7rcY5iokzuRWW5KCi2UZ0agcdmPq5S6WZGneNZJ1/nOiJVJ5Wip1wvuo6kYnz8VKvrxd5mq5uwQwBuw+ibsK/Uacjd3w/g/YPy/QCeUWc+sT/YycWoEEIIIYTYJehLvbUYeRM2+BqhEEIIIYQQQogxoccPQgghhBBCCDFF6irqhRBCCCGEEGIkUtTXQ0/ChBBCCCGEEGKK1LoJsz4vMLP/e/D6YWb2pMl2TQghhBBCCDFT+JT/ZpS6X0f8NfQFwE8H8O8AnAHwFgBPnFC/NpGZ40C+jnYeK6EbCf35KD3pBin1OatCV3qxbrWg95rUBiuR10kDzkrwI42gVX30gS/T9KB6Zebzi6PXCw3StTaDVpi19KxxTSl8I+VvYjoQq9BZRX+I1oMVsrw9V0doakMDodi0XqSejhXHdISRp7POPk5phfMRR205LcEGxRgNjg0rcKRxLo7ZEZrlWHcctk6kq6+h8eY4Zw0up3fo5rFum9MvfHntIM0T6l3RfGBY/prWPcPyYYqPL2arw/JSHsqssQeAS/KgpZ+j7dPK+FgP/U3FWqRnt7CuS3m1AhkAliz0i4/1OrG2Gm3n6mNs03K2md6E46BXIzdKB9UpCYDxpVxoWA9HB2PYdlX0ka67NP7wsuKxgXTRpPhm5f5CFlJ4rOVhG5zrBqX3368didrjeR7dvntYvqwRYqJJO+ych+msNF+gmLqIYnshUo6Xx5+wrHOUiiFSVdMsnHblIB9LGWu8wzmirNJOpTfgep3k+ZHStNBxmCXGx3Jamag92sfl/V/VHsNtswJ+p+QohmNSSqHPpHT6PP5w6gA+L/OYMQoeazlOH+wuDMv3dA5SnRCDV7WCwPqqxqlouRltWt7+67Q9L28+OCxfQuf+Q5T6ZIm201wR2j5XGmPyxD5etbAdOJ4XLCzrIJ0/Usr+uK3zuDKvMx7XHLM5dQTv5ThGEtevY0y5IHY3dUeub3L3x5vZXwOAuz9oZtWJsYQ4D8aZg0sIIYQQQlwAXL8Jq0vdj/Y7ZpZj8FmcmR0DdKsuhBBCCCGEENul7pOwXwXwNgDHzezVAL4fwM9MrFdCCCGEEEKI2UNPwmpR6ybM3d9gZrcBeAb634h9jrvfOdGeCSGEEEIIIcQeZORNmJkdpZf3Avg9fs/dH9g8lxBCCCGEEEKIFFs9CbsN/YeKBuBhAB4clA8D+CKAh0+yc0IIIYQQQogZQl9HrMXImzB3fzgAmNl/A3CTu//x4PV3AXjm5LsXyK3AwcZKpNIGgDlSt6Z05Cm1OKtvWeOdObuA43m6ZPFjvfIBBG3sCmlhWFfPOtkm6bYvys8Oy0t50AqXubgZ6h1thDIra1l/y1pcViiv1zQRsr6bVb1lrXfVcpukXmXzIZdZu9tGZ6wK+K1IxQowQkW/TZ34KHIrcDhfjhTNo2AFc4vUzKwSTqnrWX0bHT/UNKuw57NYUc/pF1Z6QYr6hZWLhmXWAT+W9N4X59yPU8Py5Y2goV8o7Ytl6vs50s/P0XpfRCr5VQ/97SV00a2E0piPnf56hL6s0rZdpDoc57zdeCyaQ7wNU/QSsZbUdbMq3BLz1lxmHe1+HXI4lrL0uDWqH9G2LGnGef14X/Ixw2NIlJKA9stBUsxznJbTj3xm5cSwzGPco5th7Lw4D2P4GQ+67p4HjfccHWOcYqFDsblYGkuatB6c+mQ1oV5fLkgNT9vjMOm954wV/3GDLXqPNeVRPaqT0n1Hx5tVK+2BtE6c54/SpUQxTGMILSvS7Ft8XbATMnMs2PrIOhzDvA587cDH13q0HyndQkkhx2M1xzwf0wt56BuP+RzPX1wLYzOnA/n61qmovSNZSNmw3AipbuZo/Y9S2ps56m9BMdGmdcoooHpFPMZwHDVrjD+c4oTTOhS02SLNfs0L/zrzpFIj1K6T7Et1ypJelNZEdzD7hbpXvU/cuAEDAHd/F4B/OJkuif3ING/AhBBCCCHEZDCf7t+sUteOeJ+Z/QyA30H//v4FAO4fPYsQQgghhBBCiDJ1Hz/8IIBj6Gvq3w7g+GCaEEIIIYQQQohtUFdR/wCAl064L0IIIYQQQgix56l1E2Zmf4aKnxm6+9PH3iMhhBBCCCHEbDLDv9OaJnV/E/avqDwH4PsAjE9HJIQQQgghhBD7hLpfR7ytNOmDZnbLVvOZ2RyAPwfQHrT1Znf/2UES6DcCuArA5wE8z50cvxU0rYfjrdORwrUurMtlDXLGetGM65MS1+P21kg5zxrkPA+3/Q3Sz3PbvNxVUuKvkob7quy+sMxWrHD9+07Inc0K5aOkuOc+lZXPGzS9+v65rMvNsEzvVetke9G24rarVbvxvLHelftbjNMHvwMi7XVNtX8dchSbtN68/pu3WbeyHmudeZtFCn5OHUDHT2HV25hjGYjjuVvwPg59fKAbJO5f7h0clr+aVPSX5iHOHyo4zUG5HxxrrO4mvTF9zJbxOlHXuf5BUi6vj/gpLB+vkSbYqpXgrKLPIyU478sRsUxvcawVCdV+hmqNcXQsUXEu0af+6/HEc2bFcDyqsw7xJ6TpPvD2zJ3Wg8ddWhinCOAQ4pifa4U6nSJum7fHPZ1Dw/LfU1qGSyjlwrEs1H+A2lilc8RB0okvVp9uAAAtOhYXScPO+49jvpOxpjzMyzEfx2/cXlKBTfWi9qJ9SZWibC50ruS4LjUexzNrx7mNaqLzkLMmfnwYfJhmIO5T9bk8xXp0Pqv383tevxaN+TxWL9Cismaoz2l2esmxOR4DLqEx+YpGODbuL8IWXS5C/CMnZTytUyc6D1WP00AcnxzzSxbOhRxrPH8exRQqp9e9bOhRt4pErMaxWV1npEo+Sv1QnW4jpemXLXr/UGtPm9lR+rvYzL4DwCU1Zl0D8HR3/0YA1wD4TjN7MoBXArjZ3a8GcPPgtdjHpG4YhRBCCCHEjDBlPf1+UNTfhv5nXob+R/KfA/CirWZydwew8ZimOfhzAM8G8NTB9BsBvB/AT9bsixBCCCGEEELMLHVvwr7W3Vd5gpm1U5VL9XL0b+K+GsB/dfcPm9kJdz8JAO5+0syOb6fTQgghhBBCiF3IDD+dmiZ1v3j6FxXTPlRnRnfvufs1AK4A8CQz+7qabcLMrjezW83s1rMPdraeQYhdDMfzQw/IayNmF47lU/eP8xc5QkyfKJ4fUDwLIabDyJswM7vEzJ4AYN7MHmdmjx/8PRXAwnYacvdT6H/t8DsB3GNmlw7auBTAvYl5bnD3a9392gNHmlVVhJgZOJ4PHdVv4MTswrF8+KLxCWuEuBBE8XxU8SzEjvEp/80oW10JfgeAF6L/FOt1NP0MgJ/eauFmdgxAx91Pmdk8gGcC+HkANwG4DsBrBv/fse2eCyGEEEIIIcQMMvImzN1vBHCjmX2fu7/lPJZ/6WD+HP2nbm9y93ea2YcAvMnMXgTgiwCeu9WCcitwOF8eqahnTTMrYWPNeLU6nfXErHot0yRdd+YJva5lldOzhMLlK92lYfmSxqlheSmLfoaHJmmyzxRzoV4e9K5zVv21zUgln5H6mdSyWenjhBZt6yxS0NIDVNKwrrOifoR6elinZEQsK+uH0xMPbIuE9vV8SLVd0L5kTfZO6WuQO9F+4RQB65v04aw7rtbSR+pbsIq++lioE8tAvC+beZhnMRHPn18/NixfSfF8WR76fYZmPVPEccDa3pSim2FNMOuKOSJYjdyjdS3rs7ntjI6lTmI/Meu8nUiJX96e0Ty0n3m5SQ049W/76vrJfQV2o83ceHytXode1FeO5fj44vmbVj1ur9F+4bQMka6e4HG+3YjrpHTTn1k/MSxfkn9xWF6wsKxTxfyw/KXORcPyajOkHLm6eWpYbpXSQ/RY653QxDdpe5A0HOcSKu1oOaWY7SU/Oa6OwegYS6jvezU09v33AikF/HbpTVnpzefDHh33O02tklqPOql55nJKo5FQn/9993D0+hGNkBlojuL5XBF+8n935wj1I7TxiEZ8fbIBtzxXivOcXnOKoDZVW+ZrNI7naDyobm9UFERbJErlQPPzeTCqz/FcfYyU43fUuL+dOrOIYbaNhdNk5E2Ymb3A3X8HwFVm9vLy++7+uorZ+P2PAXhcxfT7ATxjm30Ve5jUTZAQQgghhBB7ja2+jriR5e9AxXu6zxVCCCGEEEKIbbLV1xH/+6D4J+7+QX7PzJ4ysV4JIYQQQgghZg89pqlF3S9S/+ea04QQQgghhBBCjGCr34R9M4BvAXCs9Juwg0AN84IQQgghhBBif+ASc9Rlq9+EtdD/PVgDwBJNPw3g+yfVKSGEEEIIIYTYq2z1m7BbANxiZv+vu39hSn2qJEdfUV8mpU5n9TOrzHn6mler6HNSuJc16qw45nKsGi8qp6c42wu6+c+sXTIsX93+clTvksZDw/IDveBK+XLn8LC8mK0Ny0fzs8MyK5u5T6y0b43Q4KYU0axY5WWldMNRugBLP0yN6qF6O7N6vQ5sYCxrxiO9Pu3znITKdTTBdcnMMWedeFuC9b3bT+YcbRvW/yZ03byPOqyJL+26BdKtx4r7oCvmY+yhXtB13756xbC83LonLJP6dH9vEcyXu4eG5eON08PyI0jxzZrsVe5TtF9DmSNlLtK8p62cOamIc6tWdPeifVb90V8nkQqjv1wav7xaM5+TFnq76vpoiC+lWMhpv+4Egw/V1fF4x6ksqscPZtP0SN9P+nmE2InHahonEmNDm+ctKfGzaB+H95aLIIT/1PrhYfmRFI+cToT13n+9clXoH740LD+6eX/UNiu3OwnNfFw/vLHI8RitA+uz0x9Lc1qHuFp16odo3Ego5s9HPV/nXJmq0xpj+gWDD/d/Qeee+LjfHlH6nBHryXEOrpdQzvN5PYv2F6eeCeXV0jXPF2izXdEIa3URXTv8LV2TfHj5q4flc3MUz61TwzKr5Mu9zqNydVzMcUqVaJ0SceTVdTgVSZnUscH9jeM5uSiqU047sXXcR4p7TrexacvNIHoSVou6V3rLZvZaAI8FMLxjcPenT6RXQgghhBBCCLFHqfso4Q0APgXg4QB+DsDnAfzVhPokhBBCCCGEEHuWujdhF7n76wF03P0Wd/8RAE+eYL+EEEIIIYQQs4ZP+W9Gqft1xI0vHp80s38M4G4AV4yoL4QQQgghhBCigro3Yf/BzA4B+An084MdBPCySXVKCCGEEEIIMXtIUV+PWjdh7v7OQfEhAE8DADN72YT6JIQQQgghhBB7lu17sAMvB/DLY+rHluRWYClb2aSoLRIaUFZ8d2rklWa966j6GatfvVovnSV0sgzr3BnWNN/fW4ree2Tz3sr5/2b1YcPyA6T7XspXhuWLsnOVbbRItpuVPrpg5WrTYnnrBp2kbjqhqCf9bMtj0W+kPqb9x33sWbXStQ6sxC/Py9pyVvWvFtVpDHaKoa+o5/VkTf55KZdplXKKzXVOs0B1OGabea9yOpBW83Occ2qE6Fiitu+leL4qeyC0V4qVv1s7MSzfQ7r6o5Si4so86NVZ59upoQWeS6mOAayT1rhIqrvPn/K2zMBa+uoUD7G6mIi05qzSpmM1iqN4uO95PXX4VmRwzA3a4bFz3eNaGzRRravflCIjEas8hnCcN2k8KRLbj7d/XhqnOY44nnkeXi6nRriMxtrLmg8Oy39x5urQD5r3kjykXgCAr2qEttfAxy5r0UM5SPOBNm2PIjr26gVtj6qlFN1MStfNCvdo+5fOEWWV93B+43QDIVZ5v7Ro1lXfyeVLGkNYF1b+dxJpaIoonQoq6yQprwOtXyr9DscjXwfweMxjAKdPKF93xOkGwnKvaoR5vkTx/JdnHzks8/Y/nt8xLD+8EZa5VpL5c0x2+NqD6szReZqvSTi2WT8fbeXUdKTTNHD8x5FKbxhvp+r0C+Xrp56nj4EN8ui6c3vXM7sePQmrxU72+njO4EKgfi4ZIYQQQgghZp2dfJSk+1whhBBCCCFEnxk3Fk6TkTdhZnYG1ZvSAMxPpEdCCCGEEEIIsYcZeRPm7kuj3hdCCCGEEEIIsT0m88tWIYQQQgghxL5Divp67DEdixBCCCGEEELsbib6JMzMrgTw2wAuQd8YeoO7/4qZHQXwRgBXAfg8gOe5+4Op5QD9H6E10dvkZCxIzcxqbFZ8F9G95tbqb1bLsgIZiHXHrHtNK0hpWay3p75Geu+EZrbfRlj5gzTPieZDw/KdK5cPy19av2hYvnw+1DmWh3l7Iz6t6JCWlVWq3I9I30zLOpfQB8+xMru0LzuRSrpa78t1eP5epAmuTjGQRyrzuE4vUoWHer1ITTu+w2VDg8zC4FS6BWBUPAe436w35n3EKvMUo9T/vKwm9Sm36njmOosWtPIMK5QB4Hgz6LtPrh8elj+5dtmwfNH852j+0N9zBR9v1evAlLXFPA9vqQ5Vi+M/vNFkRTfV522zyQIa1QvlLJX6gY8R1j/X0NX3No0nW8fCduH1S8VpK6F8L4+hkaLbUtsjpTv3yjo8vVlKA5Enjhke55vR+Mznm9DGwxoh/cLdc/cNyxzLt1NaEQA4tvh3w/LRLAjoHyqqU5nw1kipu+MtFm+n+IgLcAxnkXKeF0XLovbWa4xL/WWlxmdWgod9kxp366aV2Qms00+Ni6mxNqNtE11TUHkOJWV8oo06unseD6I2KH6XsngM5tQs3AKnPbiqGWL47vaRYfmezsFh+fa1K4flY/nnh+VDWZzi5YxXx3POqWdqGB24/mpRvW3KqUiyaGwKJNX1ifNx6lqonHohuoahJlLn4FRKgplFT8JqMek93QXwE+7+tQCeDOAlZvYYAK8EcLO7Xw3g5sFrsY/pbDPnlxBCCCGEELPKRJ+EuftJACcH5TNmdieAywE8G8BTB9VuBPB+AD85yb4IIYQQQgghJot+E1aPqT1+MLOrADwOwIcBnBjcoG3cqB1PzHO9md1qZreeur9XVUWImSGK5wcUz2J24Vh+8IGtvyolxG5G8SyEuBBM5SbMzA4AeAuAl7n76a3qb+DuN7j7te5+7eGLJvOdbyGmRRTPRxXPYnbhWD5yVF8lFrON4lmIMeNT/ptRJj7amFkT/RuwN7j7WweT7zGzSwfvXwrg3kn3QwghhBBCCCF2A5O2IxqA1wO4091fR2/dBOA6AK8Z/H/H1ktz5FZsMi2xqWY9YUpkCxZbx5rWG1po5tCJ5i8Gogg2CwFpC2KKcn/nsmo7UMoix9PnonL4OttjW19Otv9QbwEA8FerV+Hq1j0AgFNFvF683ofz4M2ai2yOoHK1NYvtboetgzPF5vAq3KK+b9iFcuvF1jk2BbF1iIpFZD0Ly2wh/qpftF8Ha5KXzGhch01bbLuaBHPWGa5307pY9WCT6tSK52qDXOb1vlJTpIxfCRtXK7LGVdsO50rbdoGMXHNRnPeXtZivRPF1eOF/D8ufaFwyLD/QPTAsf6kb8siXLXe8DS/Jzw7LS1l/nXpwNAfbPIPVMmUxPOYUDrRt8/GQW4jtDD60JebwkkGw2rQVjRsjLI8b5rgcPoyFpvXiOBrEcx3D2k5hI1jT1iPhDpvfNvrStG7aOkrrzcdnaj3KZjmu10T1cdyKbJ/VdZqRaY6XyeeeYEi8srE2jKPvXfoEzhSDfi0Cn1hPxfN8mE5j86ki1DmWnxuWD2ccg46mbYyjFhkS6+xxNnmOirUNOIYzC/O3UAwNiZn5cHzOy8dUNP6T1Zbjg+bJrVM5Puclk/Aoq+t2yQbH9BzZlDM+zuncw9Pn0A3vWXxMc//YfpcljvVUnVHHMccqnwejPiZiGIlx6asawXZ7dOnjUXu3r106LG/E8x+evRqPaf/9cPoijf+rPjcsH6NrjaXIjIkkvcg4aYPlZzhDhsSNbd5xYDGxrDrjfJmiYpYWCrqG8SiGo+sTHucTcdSKxp9e0s4o9haTTtb8FAA/DOAOM7t9MO2n0b/5epOZvQjAFwE8d8L9qIQHuaobsHGzkxuw82HjBgzA8AYMqHcDtlOqbsD6bW++ASuXx0nVDdhugtc7dQM2KbZ7A3Y+bHUDBoz3cfxWN2AAhjdgQL2L1FFU3YABZXVx9fSdwjcvfJFWdQN2IdjqBqxfZzKnoO3egO2UVkKxPbwBQ/oGbKc0ue1t3oCdD6nYZkV9Wde9E1IfkEV92iV23Uhpv90bsB2y3RuwnVJ1AwYgeQO2U6puwABU3oAB6Ruw86HqBqzc3jgNzzN/AzbjXxGcJpO2I34A6c81njHJtoUQQgghhBBiNzLpJ2FCCCGEEEKIfYCh1jebBaaoqBdCCCGEEEIIoSdhQgghhBBCiHGh34TVQk/ChBBCCCGEEGKKzMyTMEOF6hYAUrpusO6W7TlsKQrfWp2jL7CWNfRsNmoljIUpvTFb7rgOG7vKlq7YZhTaayVMSkdJV/zkubuH5VMFaZ1p2325F0xGZwpSIxcHsJStVM7DprkFaq9DNijW3S5lW5sdm/Dh/GV1N5PT9oj1+GwWrA7lsvaVzXGREpysUSkl/iQU37yN2Vo5Z52kUSsVz8xCpDqu3q6j9Pvcr9RxlUqf0Ezp7Wk5oz79OUG5Do7OnRyWv1JUz/Vl0tWfKoIRlPd12ZD3yOapYXkpI0sqabDYeLeU7DDHYPVHfxltftbVA3FqhfWErptpRmbBMJ33S6uUrmE9YdqcRPqFlFo/FRNljX3lGI/NqUI24LGynA6kaplcH4iPdTa38j5L9akOl+Vh3S6bvxcd6uNXaPOnxucvdw8Ny6eLoPfm7XF1FMthX58p4v0bxTOPD9HwUB3PqbGZt9Ncad/zuWE1EYO8zzoUw+mxudosOO5Y3ogLjpeWUxvR9QKfL7h/nFZk++eOOvGcohnp++OUGs2E0XU9MX4xJ7Jwnn3qfEiNk4plAPj7Ho3PZGzmsZrHZx6bD1E8r7KmHzw213uWsEppW3rR2BngJfH1TMc4lqvHq/I+To3hbK5cN75GY6Or2C/MzE3YhWLa6tvUDdg04BuwadBJ6HwnReoGbDdyIZXLO7nonAVSN2DTIKU6nhSpG7DdQp0bsEkxTo16HVI3YNOAb8CmQZ0bMDF9mjbdY4xvwMT+YsqhNrPo64hCCCGEEEIIMUV0EyaEEEIIIYQYDz7lvxGY2ZVm9mdmdqeZfcLMXkrv/aiZfXow/Rdo+k+Z2d8O3vuOHW6NJPo6ohBCCCGEEGIv0gXwE+7+UTNbAnCbmb0PwAkAzwbwDe6+ZmbHAcDMHgPg+QAeC+AyAH9iZl/j7mP/IrmehAkhhBBCCCHGwy56EubuJ939o4PyGQB3ArgcwL8E8Bp3Xxu8d+9glmcD+H13X3P3zwH4WwBP2sHWSKKbMCGEEEIIIcSscrGZ3Up/11dVMrOrADwOwIcBfA2Af2BmHzazW8zsiYNqlwP4Es1212Da2NHXEcWuYJSiXgghhBBCzAB+QeyI97n7taMqmNkBAG8B8DJ3P21mDQBHADwZwBMBvMnMHgFUXoxOZI1m5ibsU3es3/fkqz5/DsB9F7ovF4iLsT/Xfbeu91ftZOZ9Hs+7dZ9Omt283ucdz3fe0bnvCV/1pS9gd6/fJNF67z7OO54/eUfnvmu+6i7F81g4uXWV3cNu3t87ut4QgJk10b8Be4O7v3Uw+S4Ab3V3B/ARMyvQj4O7AFxJs18B4G5MgJm5CXP3Y2Z261Z3unuV/brue3W993M8a733Fu5+DNi767cVWu+9heJZ6y32FmZmAF4P4E53fx299XYATwfwfjP7GgAt9G/EbwLwu2b2OvTFHFcD+Mgk+jYzN2FCCCGEEEKIXc7uStb8FAA/DOAOM7t9MO2nAfwmgN80s48DWAdw3eCp2CfM7E0APom+WfElkzAjAroJE0IIIYQQQuxB3P0DqP6dFwC8IDHPqwG8emKdGjBrN2E3XOgOXED267rv5fXey+s2Cq333mSvr18KrffeZK+vXwqtt9gxF0DMMZNY/8mbEEIIIYQQQpw/C8ev9Ec99+VTbfP2X3v5bbP4m75ZexImhBBCCCGE2K3o+U4tlKxZCCGEEEIIIaaInoQJIYQQQgghxoJ+E1YPPQkTQgghhBBCiCmimzAhhBBCCCGEmCL6OqIQQgghhBBi5zgk5qiJnoQJIYQQQgghxBTRkzAhhBBCCCHEeNCTsFroSZgQQgghhBBCTBHdhO1xzOywmb2YXj/VzN45gXZ+3sw+Pvj7gXEvX+xPphi/7zazU+Vlm9nDzezDZvYZM3ujmbXG3bbYP+yCeP7/m9nfmpmb2cXjblfsL3ZBPL/BzD49uO74TTNrjrttsX0MfUX9NP9mFd2E7X0OA3jxVpV2gpn9YwCPB3ANgG8C8AozOzjJNsW+4TAmHL8DXgvghyum/zyA/8fdrwbwIIAXTaEvYu9yGBc2nj8I4JkAvjCFPoi9z2Fc2Hh+A4BHA/h6APMA/tkU+iLE2NBN2C7BzK4ys0+Z2W8MPtV5g5k908w+OPgU/kmDekfN7O1m9jEz+0sz+4bB9FcNPgl6v5l91sx+bLDo1wB4pJndbmavHUw7YGZvHrT3BjOzHXb/MQBucfeuu58D8DcAvnOHyxQzxIzHL9z9ZgBnSutkAJ4O4M2DSTcCeM5O2xK7n70Yz4Ppf+3un9/p8sVssYfj+Y99AICPALhip22JMeFT/ptRJObYXXw1gOcCuB7AXwH4IQDfCuBZAH4a/QvAnwPw1+7+HDN7OoDfRv8JFND/ROhpAJYAfNrMfh3AKwF8nbtfA/S/LgDgcQAeC+Bu9D8ZfQqAD3BHzOwVAP5JRR//3N1/rDTtbwD8rJm9DsDCoA+f3P7qixlnVuM3xUUATrl7d/D6LgCX15xXzD57LZ7F/mbPxvPga4g/DOCl251XiAuJbsJ2F59z9zsAwMw+AeBmd3czuwPAVYM63wrg+wDA3f/UzC4ys0OD9/7I3dcArJnZvQBOJNr5iLvfNWjn9sGyo0HS3V+L/lcAtsTd32tmTwTwFwC+AuBDALqj5xJ7kJmM3xFUfYI7w5+5iW2y1+JZ7G/2cjz/Gvo3cP9rjMsUYuLoJmx3sUblgl4XCPtq1IUhz99Dev9uWW+7n1S5+6sBvHow7+8C+EyibbF3mdn4TXAfgMNm1hg8DbsC/U93xf5gr8Wz2N/syXg2s58FcAzAP9/OfGKymOvzyjroJmz2+HP0B69/P3j0f5+7nx7xtesz6H99YFts55MqM8sBHHb3+wffIf8GAO/dbptiX7Dr4nfEMtzM/gzA9wP4fQDXAXjHTpYp9hwzE89C1GCm4tnM/hmA7wDwDHcvdro8IaaNbsJmj1cB+C0z+xiAZfQvDJMMbow+aGYfB/AuAH80gT41AfyvwUB9GsAL6Hc0QjCvwu6LX5jZ/0L/Nw8HzOwuAC9y9/cA+EkAv29m/wHAXwN4/STaFzPLqzBD8TwQKvxrAJcA+JiZ/bG7yygnNngVZiieAfw39E2fHxpcf7zV3f/dJPogtsGMyzKmibkeGQohhBBCCCF2yOLFV/rXPvvHp9rmbb/5E7e5+7VTbXQM6EmYEEIIIYQQYizMcgLlaaI8YUIIIYQQQggxRXQTJoQQQgghhBBTRF9HFEIIIYQQQowHfR2xFjNzE5YfWPTG0aOb30js6FrfR61TJ2lm3Rk+oeXWYaff1Y36zuXMq6en1rXcDxbMFmEmo+mpMi8rOX1U2wxVjKrRc+Pl++66z92PjVjKSBrzi948dDS9L8Y5gPH6jDHuptL3cZHaBqXt4Vl1ORnn0cxUieO0R7NSedN73bDcOIapve1u22hd45Xl7p49/ffnHc/N9qK3F+uPzVH3pi2GqtvcTrZzaswZ2V6NBrlKYsHO+ziK5dK+T8R56tiIjnVevyi2KX6jWC6tW0HBnYrtqLtWPZ3XtRTbp1dOnnc8t5qLPjd3ePMb27ymsGkMhMkm6rZdJ0JrjD87Po5T+5jL4UUc5zw9MW9pnvhagPoeXV8kYpjjNzW9vFwmFbeJdQKA02v37Oh6Q+xeZuYmrHH0KC57xctgRenIqnGBbr3qq+rUiWXURWvywmybdzbJi+GRg0j6vepGqHpie6RuWDYtKg/lohkqOpfbtDAqW8aN0zJ7tDFX42/GZsuhwcY5o3Ko01ih8irNux76lHeoab5IGJVRhK+l8/Ci1w7Tb3v9T3xhxBK2pHnoKL76BS8fEbOlLqVuPgmOD95f0b5LTB91c5ZqO7qhSK1HnWvLctvbje0a90ROI11B5d5cPE+XXvcWwoJ7bWqkldgBndBgvhLiuXk6TG8/FM/SftDpvbBBm+dCOVsLZb64TRKtd+iH5/GG7bXCe7e855XnHc/txaP4xme8bPMbdBGSvIgvEnVK9ZJsN1ZGjAHRhda4bsJSF3jlC7TUdvDq/nriBuv/a+/dwyTJyjr/7xt5rayqvk5PT88FehgHENEdcGRR9ueiKKvoAquIsI86rDwP63oDFRUvq+667uINLz9XfzuKu6OwCC4gyCKIs4ILKjDgwMww3ISZYaCZe3dXd3VV3t7fHxmV53ui42RFd1dlV2Z9P89TT52MPBFxTsQbJzIyIj/vsBkO6kE7VOovxONrbzHM0+vQGNek5dL4wMd6jcba5kp5/LYe7ob6KzQDAFulXL49GqB5+/OH0IwaUg9lb9CB3KA6AN75kV8873hut/fhKU/6/rOmp74YieImiq/ExeYk0vm4ytc98NLp27W+ZP8GqQvrCe2ILjooPms0ZvH41Qz7e9jiMsU8lYfNuG98LrfEmFBbC/2or4YsO7VTIWbtNMXzmVD2tTjO0Utk6amFNhrHcJMOvjZ92ADwjk//6gV93rgYSMxRDf0mTAghhBBCCCGmyMzcCRNCCCGEEELscHQnrBK6EyaEEEIIIYQQU0R3woQQQgghhBAXjus3YVXRnTAhhBBCCCGEmCKzcycscwwXB5PrRNYtVtyVq6MjDXoFw9rEilU07J5YX6rdVW1hCUujJxeVMHEVzJORoS+hJY5VbGQyYkESGeeyRpi51iAzVhvwYZh/sBDqrS8Fm1B/NdSpn+JyWFSDbIo4HRrCNsVaN94iSfPYApnHGlvndx82gNXLPZ1ioSjgS8VqKm65DzWKCZaIRaZP3mHpOLB+eC+j3ZcFGRpqVOY6VdILjN5MNCWl5S6fXAnrxa9ZIGiJA2hAG87bZC7shE4NFqjcCfV7y/H3Xt09YR3rJ8Jw3DoRdlTzZFgWWxNrZ4J9K1ujdpC1zHthfcN2bJDzhfj1+TKsA6uXZvm6+Y1QjK2abHfj6fFyk7bCc0y5EK2bhGWRWa7Yrqgf5e2IDGtsN4z6FxbEKQhQ1LZHDU5MpnmydbLP9mjDDcrPkWyWA4DBUrCvre9vjMtrB0JMrO8NDekvhHl7S6G8vi/UOXNJWEfzUFhO+3hsemueDDuhfiIMFtlpMtCt0yDSp53Wo37TMofNLfwoYzY27nlKf87VOQ765fs+FR/FwSuZsiFh2YwCleMusRyfYEOM5qE4si7FFBv/IrNlwhibFb7nJ/Nh0szI283L+5TxvGTMZKvgsEO2QQCDxfC6vxhins2h/f0hjtb3hXJ9PczbWAkHQ/1EMCJmj5C6GQBWwocSX18vLUemy0ZokzdDWcw3s3MRJuYavgATQgghhBAzih5HrIQ++QohhBBCCCHEFNGdMCGEEEIIIcQFY5CYoyq6EyaEEEIIIYQQU0R3woQQQgghhBBbQ0oyIyJ0J0wIIYQQQgghpshM3QkzA7xoQk1o3yOdLCm6USclKGu8eebo0rTokK3Q0ISW3gdUZuU4Tx+kOjGBZNs3J+pd8ZuLc9TrR03qksabtObDOimzG4WZa6RzrtOOXgzlYSvM3yXl9qBJmlrS12a07nqwyU78lmZYD/P0SFHfXU7Ocl54lk4DcNauZ818QtvOWnpkXjrdsyrfThX0/extp33mdd6vFMM0qrC6PlLdR5rlwtpTWvpICZ5sLq2cqlB4DGvl08vaskFtjdX81G+aPmzStonKobH9ZjyARfr6RYrnFm1P0jzXSE1eJx12tp7QRbeC6njYipXN3b1bo6iHAYPcDF2jYyxLaekTNmvPiq8TevAKinpLxArHvxVScvA4FSvFy5cVHa9ch9Mc1Ggb8wYpKOorp0jZoBWWa8NwwEV6/EitX1gf1eO0B14rjzue3qWUI8NOKPdJXd9fDPUHxdQItF+NlPPZGg0W3HYuk4reO0FH3ruEHPoXiGdAvzNqczJVAddPnX5Zz87pCcDq+sKyOK1DlTsJHGw85g9TgVOAx0g6sAxhn/F4HrWJGzvgdrA+vvARk4+HWuLDSqTK52OGypy2oEtj36nV0IzCYrOFELi1g3vD6i5fHJfXSFHfW+LxICytdTz0YZG2f2uFP2DEKvrBqVMoo8bboxHWPdzTLqk9W+g3YdXY1jthZvY4M7uV/k6a2cvM7ICZvcvMPpX/37+d7RAzQC3xyUwIIYQQQog5Y1svwtz9E+5+nbtfB+ArAawCeDOAVwC42d2vBXBz/loIIYQQQggh5p5p/ibsGQD+0d3vBvAcADfl028C8NwptkMIIYQQQgix1fhF+JtRpnkR9gIAr8vLh939GADk/y8tm8HMXmJmt5jZLYNTp6fUTCG2hyieTyuexezCsdw/o1gWsw3Hc6+reBZCTIepXISZWRPAswH86bnM5+43uvv17n59bWlx8xmE2MFE8byoeBazC8dyfUGxLGYbjudGU/EsxIViw+n+zSrTuhP2zQA+7O735a/vM7MjAJD/v39K7RBCCCGEEEKIi8q0FPUvRHgUEQDeCuAGAK/M/79l0yUYRpruorM3pfUmP6Yl1N1RHVKAZ7XyOgBgPE8FC2xsdCU9O+mQfVCucy8qlKPnXlPrjky4VGnAy6XFcJ1CXyO1Oan9vVZeTrWDFfxRm9a5Exm8ERrGKul6KyiUa6Su7/G2PUNKXWo368i7pJxd2x9rk3sJ1XJvT1jJYIm0uBeIOZB1DRnZdc/n2xyOeY/U6xRfvL+yCkFbrMLqY15fnXcAFTnlQmqEidJDTGhKFEc0O223jDX/BJm70afyMJitMWjH8ctpE6LDgfrEivqsS8cVp2IgBfiwQwtqFxpL6xvQOoYnI3d0Kf2loJ/vHgydWtsXAmFtP6nFg5UZQBzb0eh8Hlh+aGR0iLDOOk6TQDNWfJY/0tUnvjpMps6I0jhY6XQAbA5HrUvjz1p52Vg7Hh2HfOzR4uvhRdaPO15bD3GRdUPZ+jQm0gnHKSVHv1Onctg4A0rnMax6pk+d1CLNfygPOtw+lFZqnogXxX1njf5gKWi5+5eFfCDr+0Lj1/ZTSgdKGdLdU2jvXxU7UJ1h3cbHUGpMjmONPjtw/NMYEI1RnhhjiuvjNAlRaoTy+aO0Cpy+guNpEHeI28hExxillUGDArpHqRF61PEeDc6sjwcA55wlFDCsq2+Ecc3blGKjHVJsOLUp69Gxc/JMWM7JlXjdpIy3bmgvp1rpLYfyOjm7szArmidDuX6a+rNS0NCTnr9+9NHjcv+yfePy6cMh5jm21/cWjsO/x+wxw7/TmibbfifMzDoAvhHAm2jyKwF8o5l9Kn/vldvdDrGz4QswIYQQQggh5pltvxPm7qsADhamPYSRLVEIIYQQQggxJyhZczWmaUcUQgghhBBCiF2PLsKEEEIIIYQQYopMS8whhBBCCCGEmGccsZVOJJl4EWZm31ZhGWvu/vYtao8QQgghhBBCzDWb3Qn7fYz08ZO81l8LYNsvwixzNDtdDAvadp/kty6D60e6+XL1fPFintfn1BbLgt2vThr1Rp30qVRnSLr6Xj9oXwekqx/046dFI/X3kD3sXInqRH58qjPkOkjiCbW/TbA8l62OFemRAbmgsY9091Qvq6XMiawKD1Nr66VVsHaAypcWOn7p2ri4Z2/Q3B5oFBS7OfckWlQVz4DBwhDDBsVQKt0CikrkRJmpoASPUxUk6hdeR+VUugbOSEC67kjfnFg3EKvoI/U92ZEHrJ9PaPqHkZaelPFNrl9Iy5CKT3rBza1i/OftYWeldCjfgazgr6+T6p10yqsHQwdXrqLpV4YNWD8Y4rrZjFMsNLE1eAb08xQPA9L/c1CkYpBjIitkgKiSsiGKoyjdQ3lahig+gv36bLLy4zI6Tqx8etS+xLHKxwUw0qKP5+mUn5Z53/dbVCYtfW8hTOd94XFGjriNqXGAtxUti7fbsFk+ZkfjN43NAFA7Qwc4xciZI2ElJ64OKz/16NAoOxjG5kZ761KGMJ4B3eWzD+woBQjFs1EgRGk0Il09L4jnLaTAoXqcJiFOyVGurueYz7rl8c86d6CQZiEFbwo+vvk4puUal7uFfTQoP1Cc0jd4M8T/cCEE22AhTOf0C9y+2r7QwPqpOOk2p3voUb3VS8K6WUvfWwwdbFEqkuapsJzaQ6Sl7xfSjzzqyLj40HX7xuXj15IG/3DYPtYs/6wxq0jMUY3NLsL+wt2/d1IFM3vNFrZH7FKS+caEEEIIIYSYMyZehLn7d222gCp1hBBCCCGEELsAfa9eicpiDjP7GgBHeR53/6NtaJMQQgghhBBCzC2VLsLM7I8BXAPgVgAbD746AF2ECSGEEEIIIcQ5UPVO2PUAnuAu56QQQgghhBDibAwSc1SlarLm2wFctp0NEUIIIYQQQojdwGZ5wv4co8cOlwF8zMw+AGAsAHf3Z29v87gtjkZjEOncAWBIVtCkrj7SytPkYbnm1BI69tE6UPpeRvO0SDW61Ap+3mYt6Ei5rX3y3fYHoX/dQdxX7vt6j3StPdK7sgE22afyrygm6v7pvSGr8kmpD5oebbd65McvXbwV2puR5r/G+n/S1Q8XSM28h7YNbTdW+PaWw4uMlPQAcGhfUM0uNMI+65ILvduf4Hk+V2xkhLRheWwWvx4ZZuX7jOdnvbEndNFcTtUp6qyH/LoZGuncJtr3A9JvW5Om87FDXvmsG8ddjZTWvP+4HYM2KeNJP+8cazXWNKOUs9Ti7LvnfcNq/gbFIC/XytdnTVLGN2ONMadfWN8bZlpbY396mJ5R2or1faHG2uVhbOkcXA3ldtiYxbGz+Pp88Qzo5zbooo58XCel946U3PE8vKyUJr7YjvAise8mpRSIUn2UL7ffptgmTTy3ifXgtS7p1flwacQN6e8NGyilmefUClH6BT6L8zaYkAaC+5RarkfrSBxvNB4Y1enuC/Oursdx5vWwQt7/awdpnqvCG61LQzwvtMK5leO3P6j6ffLmuAGDvIlWmL4Ba/qj8bJC+gXusw3iOOB6vI9qnC6Ax3zS0vOyMhr7ahz/9cIBkLhbYZEGv7wcbY8WH+Cs1o8Dz3oJRX0jNJKXNaTprNoHnWP4WOrScTS4PE7CwbHdp2OMtfTdvRznoa1dOvmcupw/X1wayoND0fpOHQkrPPkYWvflIYdOk9IscEqiYX/r4vmi4K5kzRXZ7HHEX5tKK4Q4x3RvQgghhBBCzCqbKerfAwBm9svu/pP8npn9MoD3bGPbhBBCCCGEEDOEfhNWjar3PL+xZNo3b2VDhBBCCCGEEGI3sNlvwv4dgO8HcI2ZfZTeWgbwvu1smBBCCCGEEGLG0J2wSmz2m7D/CeAvAPwXAK+g6Svu/vC2tUoIIYQQQggh5pTNfhN2wsxWAHy5u989pTYJIYQQQgghxNyyabJmdx+a2UfM7FHufs+5rsDM9gH4AwBPxOgG5fcC+ASA1wM4CuAuAM9390cmLSczR7vZi3Tlo/YFrV6jTlrbelB/Nmphei+hgGfFLS+zqG0fkB52SH7qGqmmW9SODunOO/Wg12VYf9qnZfYKivr1ethdzUboX5d09SlVLyv0M/rF5JD6NyjMm7qb7MPyeSKtKiulWY8/4VeIsf6f2kjbxHjbLgTVa/fSML27jz3Loa2tZthmizRvcX1r/eAfHvA+Tmjiz4vMgc4Awy53mt5vxSrzZifETp22Abev3w39HvYSXm5O0UD7y3ppPaU3aP+RkjqjYzE6TvgYGZRPZ51yUZvMr1mt7ZGint5YoHKNvdylxZjiLuVxgLcJ94/jgJX4FEOp9bFeGojV0wvLIW1CtxVi9dRhjmdqRoOPhRAfPDawxnswjA8+Hi8vBK8Bvb2j7c5xFGnQeX8thvVm1IaztMykNrc10vSvh3XU1kK5TlknMjq8oxjKystArAeP4Tgonxwp6llfXqd20/DPqnsA6O4hZfZeqtcJ5WGUtSCRsoKOqxptg9qZYr3ytrOWfkAq+mS6h2H5RrA9obNrnTjO1i5PpEZYCPUaFM98zl/nMY6OyWwLLQDeAM4czpdLMcGK80GH0lRQ/6zBOTVo26yFPmeJWAbifVZfLd+XHEecooTbWqPzSv0M1enF2ym12VhRn1GaBZ7f6ITtpIwf1sp18wBg/YTunsb8QZvGrGb5SBop9HkI5jQt7XiefofSAi2E6XxcpdJf9PeEBZ94bFjOytH0B5roHLUYdg5/HurTGMefq2wrP2tcJCTmqEZVMccRAHeY2c1m9taNv4rz/haAd7j74wH8EwB3YvRo483ufi2AmxE/6ih2IUopIYQQQgghdgub3gnL+Q/ns3Az2wPgawG8CADcvQuga2bPAfD0vNpNAN4N4CfPXoIQQgghhBBiJnAAQ32zXoVKd8LyfGEfx8iKuAzgzo0cYpvwGAAPAPjvZvYPZvYHZrYI4LC7H8uXfQzApZMWIoQQQgghhBDzQqWLMDN7PoAPAPgOAM8H8H4ze16FWesAngzg99z9SQBO4xwePTSzl5jZLWZ2S//katXZhNiRcDwPVk5f7OYIcd5EsXxKsSxmmyieTyuehbhgfMp/M0rV34T9DICvcvcb3P17ADwFwL+vMN+9AO519/fnr/8XRhdl95nZEQDI/99fNrO73+ju17v79fU9nbIqQswMHM+15cWL3RwhzpsolpcUy2K2ieJ5UfEshJgOVS/CMnfnC6WHqszr7l8E8Dkze1w+6RkAPgbgrQBuyKfdAOAtFdshhBBCCCGE2KGYT/dvVqkq5niHmb0TwOvy198J4O0V5/0hAK81syaAzwD4NxhdwL3BzF4M4B6MHnOcSJY5lpvrGBaUpRndh2Qt/Z5GcLp26kETn5GDtEvO2e6ANO/k4F3tsxcYONVthfJ6c1xmjTqb/lg5z0rdJmnz66Tg5fr9LFb7plT7/UZw1rKGuqik3iClqO8X6rOOP6XtZyX+gNS0ke7eyzWzjBlgtB0yUiJnWbk3lpXxS21y+LbXS2qn5z37PUo3UCtPdXChWM3R2rMebUvW5LcasS97sRVieKkZ+sf7klMu9DjtAU0/Q+kMVs+EWO6thjj3XhwHRvvCSAFfb5KambanR4p6igleLunIPSukgWBF/SARO9xETr9QJ002t5v18RPCcUDtGpI/3vvlqn1EoUntpnWn/fjx8VejNrbb4ZjOFro4FzimODVFqx4vp15L+JjPlbrDD3bzdYfJHBNNipWFdmjHAsW5Fc6kHM+chmOdyt3TIW57J0K5eTzsxzo/yU6r8IIpfUBD/TBR5iHZ+uXTBxRgvI60Aj9WY1timHHWxDcTynjWhlM+kKyQHaXGOn96+i6jEBm0WBtOQbxIenbeZTzO077MmoUOtcrHjfgYJY03xQGPdxy/W5VuARil5OgfzjdEIjUF96lDx+pCK5S5D5wqIkopU0jLsH6G45lS0jxC8Uz7K4oVHmdojKp1OY1DfIzVaH/X1ql/UbxQG3m/9lnHT1Wo+qBVSHvTKR8MPZqHPl+0OKaqtJvGnJV4HfHxR7Hdoqk0znPZKRWJk3q+36GYLX7c4vGMPw4lVPQ1Sv9S28J4FjubShdh7v7jZvbtAJ6GUfTe6O5vrjjvrQCuL3nrGVUbKeYfS1xoCSGEEEIIMW9UvRMGd38jgDduY1uEEEIIIYQQs4ySv1aiqh3x28zsU2Z2wsxOmtmKmZ3c7sYJIYQQQgghxPlgZleZ2V+b2Z1mdoeZvTSf/gtm9nkzuzX/exbN81Nm9mkz+4SZ/YvtalvVO2G/AuBfuvud29UQIYQQQgghxGyzw2QZfQA/5u4fNrNlAB8ys3fl7/2Gu/8aVzazJwB4AYAvA3A5gL8ys8e6+5b/WK+qHfE+XYAJIYQQQgghZgV3P+buH87LKwDuBHDFhFmeA+BP3H3d3T8L4NMYpebacqreCbvFzF4P4M8AjNVs7v6m7WiUEEIIIYQQYsa4OAmULzGzW+j1je5+Y7GSmR0F8CQA78dINviDZvY9AG7B6G7ZIxhdoP09zXYvJl+0nTdVL8L2AFgF8Eya5gCmdhGWmWOh0UPdYoseK56HpB1ltXyXdN1Ncgk3ST/OGvsG1dlXUOKfarTH5eNUXh+Ub8pIIU7t4Ha36+XtKNJn7biX38Tk5fL6WPfMdVhlXiso6lP6dFbfxxrpUE4qy4dpXzdr6VnRzvrhosY6TA9lVslz/WzC/fEaxRWnDIjKtnUGx8yGWGx3o/Vy/HpB67/eD/HF25/7ynG7UA+O4WYz+KiHC2G5K+3g5j3ZDrG8th6nZeB9xspzVgbzdq6xJp7246AZ2t1bD/0ZFjTNkUacUyOwrp6bwfFFKmgMqE0NSn/QCNtpUkx4FKu87kSbhon2ceqFCakR+Lg0Z/Vxubqb4fiPNN607lrBQFp8fb5Y5mgtjOItlU6C92Ok6Kbxo9geVpAvNEM8czqKfifEzonFhXF5neK5f4LWsb55ugwgVsbzvmTNdUaZMFiZzfOyrp514kVlPL/Ham1e7oDORf1FLtNYy6chDsfCITZkdT63i9XfvG4qd8FpHHgdtKEoXQmr9YFCGolU6ohEPNdq6XjeKixzNBZ7Z7UvUsDTZE7HcnotpK1J6fRbFMuLC3EfBoshqE4thPF5rRXiuR7FMzUpEdocj6yrB4DamVBunKIUOqdoO9M6hg2KZzoPZV1ayRZ++E6ecml8pExDMAqirB83pHWCxmFOl+JZWTEKyCFp7Dktg9G6vTA2p1KhRJ9JOI2KDNEXyoPuXmZiH2NmSxgJBl/m7ifN7PcA/CJGUfuLAH4dwPeiPLHMtlxWVlXU/5tJ75vZT7n7f9maJondSFbblvgWQgghhBBTwhB/kbgTMLMGRhdgr914is/d76P3fx/A2/KX9wK4ima/EsAXtqNdVX8TthmbJlsWQgghhBBCiGlho1ukrwZwp7u/iqYfoWr/CsDtefmtAF5gZi0zuxrAtQA+sB1tq5wnbBOqPeMhhBBCCCGEENPhaQC+G8BtZnZrPu2nAbzQzK7D6FHDuwD8WwBw9zvM7A0APoaRWfEHtsOMCGzdRdjOuu8ohBBCCCGEmD476Cdu7v5elN8sevuEeX4JwC9tW6NytupxRN0JE0IIIYQQQogKbNWdsD/douUIIYQQQgghZpSdJubYqVS6CDOzXwHwnwCcAfAOAP8EI8XjawDA3f/ztrWQyOBnKaVZwZzSTWdgZfO5Pda5UOslX7epfLIXFLKnekFTywr41V65vrYzDP7fS9rBgbxY0NUPyEHLunqG+8d1uuRxXSOdPqv8e4PyZQJpHfAazZ9ZKPdJ28t6atZwF4/RSONL2v5mBUU96+NZ255SzBdjJRk7rBneQkW92ahtvHxOn5DqZ7FNtQl9KqND6nous9L+eH0hmmflTIjtXpdU+ZHmNxRrrdCPzkKI4XYzlNdpX/d6cdylUiNEcUTxNSRNfEpj77TrLKG8LswCy8r7x3Eb7Sd2REfq7fR+idpCscppGZoUz7WErj5LrC8VK0B8bFwIBj9rO47aurmKfFL7UopnZqkV/NmLFF8Pkwb8ZKszLg9PhDGqdiZ+EIRV3HEghOKgTeUwnGNI82apLCO8ukJIsKI+KvNxxaeiVVpUxipt2vek0y/inMmBFd+8C9g6Tm2PVfu07jpVovhlJT0A1DlFRFZ+LNYSaR1ScV6rMPZVxoAsbwuHYBale0iliqC2Jto9iYUGfb7YG3bgCdpmq40wPg9PhJ1XP016dooVS+xHAOgthfKwwWVKg3Ka+pH4+MS6eqPUIDbh41Zq6BzWeBylIscdxTb3aUhpHLzw6dZ75QMKp2KohWwu0bJ424DT79Spr/V4H0epSbheIrY5Fcl2pV8QO4+qjyM+091PAvhWjNSNjwXw49vWKrHrqJd8iBNCCCGEEDOEX4S/GaXqRdjG9wDPAvA6d394m9ojhBBCCCGEEHNN1d+E/bmZfRyjxxG/38wOAVjbZB4hhBBCCCGEEAUqXYS5+yvM7JcBnHT3gZmtAnjO9jZNCCGEEEIIMTv42T/6F6VUehzRzDoAfgDA7+WTLgdw/XY1SgghhBBCCCHmlaq/CfvvALoAviZ/fS9GtkQhhBBCCCGEADCyX07zb1ap+puwa9z9O83shQDg7mfMqgiEATO7C8AKgAGAvrtfb2YHALwewFEAdwF4vrs/MnE58E2VyqyiZyVsRo5W1oA3zlFXDwAN8qQuN8LP4lKq8S5p4vukcR2SezWlTl/IYj0+6+fXSTnPKnruayOxXK7D27RbUNR3Exp8pk1qc9aqsoo+paFu12OH8iSFfBnDhPo+2hek926S17ZZ2Pe8TVh3HMfUFirq4ZFKH4j1xkUdfkpZy/07V4U+p1iot9Lbno/0UxmlX6iFGGRlPKumuU+cdoDLqzX2/wK9fnnccTsGrKj3xFCUCKFIdT+M5+W+N1r90nniNtE+o37Xa5xuINQvrq/Ksnh+Xi6PXxwHWSJ+i+PnlinqrTw+Y/1+QqGP8j4DcaqJ5D4mWO99eHmldLnH60FX318hxzyAISnrjYYmPhyGfMashTcGpL+ur1KKBR7iLFEGIh08v8cq+eQmYI13nxTdfLy0CvNw1zk+qX+sux/S+OBNzvdARdoeRlr6rGi+5RQFFDetRvn4kBr7UmlJLhSDl9p6z1Wb30ikaEilbCkSnVuXype1mgVdfT8L42hKV19cHcfXkGJkyOkXGhTbZ8L06HRDxwifWotK/AEr5GndrJyPjz3abtSOfrt8u6V09UB8DPQ75dM5/lk/7xTbZx27oVb0KmtQfFKKgVQqhuj8IUX9rqHqnbCumS0gjzIzuwbA+uRZIr7O3a9z941HGF8B4GZ3vxbAzflrsYvZyhxcQgghhBDiIuE+3b8ZpepF2M9jlKT5KjN7LUYXTj9xAet9DoCb8vJNAJ57AcsSQgghhBBCiJmhqh3xXWb2YQBPxehm7Evd/cGK63AAf2mje+j/zd1vBHDY3Y/lyz5mZpeeR9uFEEIIIYQQOwUvPK4qklS1IxqAbwbwle7+NgAdM3tKxXU8zd2fnM//A2b2tVUbZ2YvMbNbzOyW7vEzm88gxA6G47l3QvEsZheO5f6J1YvdHCEuCI7nwUnFsxBiOlR9HPF3AXw1gBfmr1cA/NcqM7r7F/L/9wN4M4CnALjPzI4AQP7//sS8N7r79e5+fXPfQlkVIWYGjufGXsWzmF04lut7O5vPIMQOhuO5tkfxLISYDlUvwv6pu/8AgDUAyE2GzcmzAGa2aGbLG2UAzwRwO4C3Arghr3YDgLecY7uFEEIIIYQQOw2JOSpRVVHfM7Magh3xEGKpborDAN6c2+zrAP6nu7/DzD4I4A1m9mIA9wD4js0WVDPHUmM9UhoXSWnYa5H6mxTPkRK92gOsvI4OuV+XaiSLLOqAc4Z0zbs+CJv+ZL89LvfJsdor+F33ZOERtk7WpXqbq+RZab8+LN/t/cJyTvfDdXY3MQ/Dul3W8af0/Z166AMAtMhTywr/QULjy2p+3m7x+sIyl2phfa1aUY+/ueK4Vinkq1Ezx1JzPakTLxLHdrl2vH4e8bwBp1vgMgAcaIXHc071QnCv9oMSeY3Kp9ZD3AwpDvqklV9o0rHTivu9ViuPNd4+Pdr3PP42E2r4fqIdReoJvf6A00uQZp7rsyKd9dIMLweI45ZhjTVrjBdouUuNEM8c51VNo1XSQFTBzNHO9eIpXXdqXdy3WqHdUWwnlM2ptCQdiq89zTA2P9QKsX1/Zyla1tqZELeDNYpBUtdnpIAfksIa7dC+QZvSNayz/51WVhjSWC3P7w0WSA1PmnhQDGbrpNZP6cGzwvb3RLtYu79I6S8WSRlPum1PpFywhMIdiBXdbdpPi80QzxznxXQi4zaxMn4LEwVl5ujkbUmmVkjEedQ+Kx9LmFTqi+I8HTrW23vDtnmkGfbL8Wa4g9fthPHYKD6ytUJKDk5pwPuePsOwVr5xiuelBUWK+vI0CQDQX6QyPQzCy2qs8HQ63linT4cnDxtcHhZuE/SWqbwnkXKB45l3GW0bT6RiqLfjzxSdhbDPeDyqV0gnkkrLIOaPqhdhv43Ro4SXmtkvAXgegJ/dbCZ3/wyAf1Iy/SEAzziHdoo5p5X1N68khBBCCCF2NrN7c2qqbHoRZmYZgM9ipKR/Bkbf0z3X3e/c5rYJIYQQQgghxNyx6UWYuw/N7Nfd/asBfHwKbRJCCCGEEELMIDbDv9OaJlXFHH9pZt+eq+qFEEIIIYQQQpwnVX8T9qMAFgH0zWwNo0cS3d33bFvLhBBCCCGEELOF7oRVotJFmLsvb15LCCGEEEIIIcRmVLoIM7Mnl0w+AeBud5+K1i6zIZbraxNVtA3Wz0fq7s3148wkFXlKB59qF+vghxN0tBuwAnxt0Ije43UcbJwel5eyoGBmzfOAHMVsH0z1odi+5fpa6XtDWm5Kfc/1ud0N0g03C0ZEbmMtUreWq4h5Hbxu3vcLpPJvU0qBc1W4A0BtC3U/mTmWGt2kYrte0DKz7riRUDanVP68LQeJ/cjtKK67l5WnAhgmNOr80PJ6t15aZsU8q92BWDPPRKkHUF6Ht02DlhPHb3lsArFCnvvK02uJtACRor5WroyfNH7x+lipzyruTiLNAo9xVXXdWxXPmXmk0N7AEqkUWDmeUs+XraNsfj6OOWUFxzBv/1P14K0u6sGH/c2fzrcuxc6A9dmkvG6HdQ/qtMz+BB35kLTXtFucNfis0iZ1+nCBlOCDcsW2FVXyvA5qojUotluhH602pUNo8HmWtnOt2r7k43KR4qZDWnreZ8XxaINJKT0uBDNHK0+5kNLMp9InpNJDpFJRFPvAqVlSYwDH/+lu+LwQxfOg2i9HOLOOZ7TuTmhXf5H17DTm8yHPoTnh41akvm/TOvgwoVzZnLohGtYSu57V9cNmYdu2+Bil/Uoxn5Fy3oppHTam81hEKQIWW/EYuNQKG7dd3zyFSCoNjZhvqj6O+LsAngzgtvz1lwP4CICDZvZ97v6X29E4sXuQol4IIYQQYsZxVMskLCqLOe4C8CR3/0p3/0oA1wG4HcA3APiV7WmaEEIIIYQQQswfVe+EPd7d79h44e4fM7MnuftnJEwUQgghhBBCGFyK+opUvQj7hJn9HoA/yV9/J4BPmlkLQC89mxBCCCGEEEIIpupF2IsAfD+Al2Gkp38vgJdjdAH2ddvRMCGEEEIIIcSMoTthlaiqqD9jZr8L4G3u/onC26e2vllCCCGEEEIIMZ9UVdQ/G8CvAmgCuNrMrgPwH9392dvYtoiGDXBZ62SkXQdiJTvD6tdapIgurz9MKGSL8PpZJ8vTWQHPOmyezjr9A82gm2dL4EqffK4AVnrtcblTC0+BLjdO0vxheqpPA7DaPWjwi9uW+8es0Tz1YejHgpM+m/rRSKQIKKrWue1tC/PzPuP0AQOwLj2UG1a+7pS+v8gg4auZlLrgXKlnQxyk/Q7E/SwqamuRyr68Hqvoe8PN4zlS1E9Y9xlr0DwhJrqDMHywtn1Pe610+ukzIZ7PrIdlFte3t31mXGa177mS0v+n0hwAaZU0K+c79RDnC3QccsqFVqI8CU6zkNKtdyjlQkpjnEqFcVZMnUeahjJqNsRyc/2s6azVjrb/eaRlYHh7ctxWGcNZ722TNNCkqsYSjRu1sI9YV2890sTzWXWB+kSL9IIOP2pJol388+tIn031jbKPeFFLT9RIP7/YCfuu06QxmJTxrJJP6bar7gs+ThbrYd2NCvE4SJyTtjJ9SM183N9U3KZim0mlppiUIoPpJ1KIROvgdB4cEol0CMNWvJz+oFw5X1snXf0CpTghdf0wZHtARvHPR/FZQxHFLYeIN0hX307Ef0K776Sez5ZoPG7F426jPigtc0oU3p6TzhMb8HGxpxGPgU06Z6TGvKpj9UyiO2GVqGpH/HkATwFwHADc/VYAR7elRWJXwhdgQgghhBBCzDNVL8L67n5iW1sihBBCCCGEELuAqmKO283sXwOomdm1AH4YwN9uX7OEEEIIIYQQM4WSNVem6p2wHwLwZQDWAbwOwEmMTIlCCCGEEEIIIc6BqnbEVQA/k/8JIYQQQgghxFkoWXM1Jl6EmdmfA2nt0DTtiEIIIYQQQggxD2x2J+zX8v/fBuAyAK/JX78QwF1VV2JmNQC3APi8u3+rmR0A8HqMDIt3AXi+uz8ysaE2xCX1lYnrqaL+TNEjrzBrcIuqXdbw9kgp3aP1scp8f2OV6gd/8LoHRfcCaaf310P9B7rL0bof7nXG5VP94Ie9okm6+1pI2zas8LTp6WHQhrNCH4j7vjIIenzu39560InvrYUy2w6bVq7oLmp3F7OgeE2lEuB1s5J9UGF/p9TzQNzXLqcYoHkmae3PlZoNsaexhjop9FM6/Umk9P+8LznuYq0/xfmEbbOnHpTzw4VQ70Fq40ovxBG3/cBCiGfe3yfPhHgqHqt7SHe+r3mmtF4qfUJUJ7G/usNa6XQA2EPK7P2UQoC3QYdczo3E/utk66XTJ5HaN9Xqb56OYtJYdiFk5ljK9cyRcp6Wz+kokrrts1JWnFt6gir7/kArxOPq3kb03jEqr6+Rf5t10aR2H5yh0+dqiCkjNXytFcbBGmnvB704BvlLY9bPpzTzrKt3Vt/zeSihoQeAA52wHfZzSghKucDlJYr5Vq18v/BYNimdR5xW49xiMDWWbSWZOTq5np9jmOMzlT6B4fqs3+exq1cYi/iY5DQVPA8fPwfbYT+e2LMwLq9QbGYUm54VFPXLoY3D9bA962co/QIdloM29TsM4Rj2Evr4bMLdkDq91yivx7GNGsXNQojB5aUwNu+jWG4V0puk0ow0s/LxOUqNk1DGNyek4kmlgEnVSaVfmFl0J6wSE0cxd3+Pu78HwJPc/Tvd/c/zv38N4J+dw3peCuBOev0KADe7+7UAbs5fi10MX4AJIYQQQggxz1T9KumQmT1m44WZXQ3gUJUZzexKAN8C4A9o8nMA3JSXbwLw3IrtEEIIIYQQQoiZpqqi/kcAvNvMPpO/PgrgJRXn/U0APwGAn6077O7HAMDdj5nZpRWXJYQQQgghhNiRuB5HrEhVO+I78vxgj88nfdzdN31+zMy+FcD97v4hM3v6uTbOzF6C/GJv/+WtTWoLsbPheF4+0tmkthA7F47lzmVLF7k1QlwYHM8LhxXPQojpMPFxRDN78kbZ3dfd/SP533pZnRKeBuDZZnYXgD8B8PVm9hoA95nZkXz+IwDuL5vZ3W909+vd/fql/c2yKkLMDBzPnf36UkHMLhzLrX3tzWcQYgcTx/PC5jMIIdI4RnfCpvk3o2z2m7D/bmb7zexA6g/Aq1Mzu/tPufuV7n4UwAsA/B93/y4AbwVwQ17tBgBv2YK+CCGEEEIIIcSOZ7PHEfcC+BAw0Z35wHms95UA3mBmLwZwD4Dv2GyGug1woH76LBV5FQ07w5px1nhnCQXpJG17jfSrkRKcynszVqYG5e/qMNzZq5FyltXu68N495waNKkeKVpJDX9p/eS4zApfVtFzHxq1oFUt9nVt2Ch9r0HrPlALGu9DtO429YNpIK1hryXU1axurVInms77G7XS6QCiCG94uQaZ0xhcKHUb4NLGyeT7RaVtSnOeUtw2nFTaWbm6O3UsnBnGd5051q5sh0wSi6Rz//zqvnG5PwzLbZMmmKezmnmxGXTBAHCgFWLqcCukpehTG9cHm+8L3h6sez49SN9Vv6QZUjxc0To+Lu+tBRV0rKUP/WONcSORlmESrPVO6efjeJwQzxvzThi6tyrlQt2G2N9cnVgnGuNIFV2vqO/nbZMaq1lRz9uGx9F9lDKksRyvm5f7hRN7x+XBgMbLephnLRr/aTvXQltbpKhvN0O/e414rB0kVPSeSFXA0/v98v24tBiOzyuWT0TvHemEsWexFurxsc7lDtVJjcF8XGxV+gOgkG6ANhvvYz5XXSgb6UOAdD9YOX+uqRSY5oR5h/Re38vTahyilDQ4EIqfpJg98wA9+l6IM28MS98a0FjtrI9nRT3FuTcTY0mtECt0jGWUsiGjZQ2p7ZyiodEO2+PgcjhHXL4UYpnHoeK25fhcoPQLqXQK55pKoTieptKMnOv4NbNs3RAw10z8JJPfwdoS3P3dAN6dlx8C8IytWraYfVIndiGEEEIIIeaNrftqXwghhBBCCLGrsRn+ndY02Z6U80IIIYQQQgghStFFmBBCCCGEEEJMkUoXYTbiu8zs5/LXjzKzp2xv04QQQgghhBAzhRT1lah6J+x3AXw1gBfmr1cA/NdtaZEQQgghhBBCzDFVxRz/1N2fbGb/AADu/oiZTTV7cg1D7KudnqhVZl19lxSfkeKWrKFRnYT6uQiL11vGSumw4FP9kLyUl7Vka+Pyl7TuG5evqD9C9cMuuQ1XRutmPfXeelCxsj57HynxWcm6YqFNpz3sOt6eax5rfvk9XkcnC7rig/WgyF20oBrPEn7S5gQldRUVfZV5I1i7y0p2Kyii6b0m6cVjJXg1nXYV6hjiAG07AMjOwxDJCvJBBZX5OqmcWb9c87RPNk5PELbBZU1SA1M8srKZ572nHhzKrK7f0wjxBACHSBN/oB5UxNze9UT6BIa11af7IUUDt29P/Uw0zyWNsG6OeU650KY4T6UOSFFFdTwJ3sc8Zg0ivXG1YX2wRU+j12yIPfXR2JZSyXO/Oc4bFfXePB7wsZ5KucCpMBjeZjxWAkBzT2jLJe0Qd5zeYI1SI3zx1PK4fIJ09bUs9HWBFPVNSgfSqsf9ZuU8q6r5C15O69Dr0zFJ2vzFVojNQx1Kt9A5Hq3vYCP0b6kezktx+gVKJ5LarzQ9FdvFce1cj4EqqRha2dYp6jPzcfqNaHtkHMObb48UcfqJ+LyVGsuGXj6mMkcWQhqC5uHQ7mPLIU7P9OLttNYNr1dPhTGy3whxbqSxr5EmPsvKz1dG28MKdfjYMOo6xzlPbzfD8bOvHY7XyzohdQmnFdlDsZxKkzOJKqkVeCyaVJ/HJq43rJAaZCtTLlwUHMBwdu9OTZOqZ+GemdUw2rQws0NQFgCxhSQvooQQQgghhJgzqt4J+20AbwZwqZn9EoDnAfjZbWuVEEIIIYQQYsaY7d9pTZNKF2Hu/loz+xBGCZYNwHPd/c5tbZkQQgghhBBCzCETL8LM7AC9vB/A6/g9d394uxomhBBCCCGEmDF0J6wSm90J+xBGvwMzAI8C8Ehe3gfgHgBXb2fjhBBCCCGEEGLemCjmcPer3f0xAN4J4F+6+yXufhDAtwJ40zQaKIQQQgghhBDzRFUxx1e5+/dtvHD3vzCzX9ymNpWSmaNtPRQleillbcPKtbasKM5Iy53SOp+l1wVr6cOy2qQ1H9aCJphVo4/0F8flg7WgVb28FtSrTfKznvb7S9sEAMs1UrFaULGydr9DitZIXe/lWujiNuDlMvuyoO5ezLqldVKK+QvR0J8PXYTtwesrqoQjpTvNw6rrlPb6fKjZEMvZWqyJnyAcjbXG5Sr6lKY80khn5TE/oLgrand7w1BvmLBY7ifl9eE6qZJJ8cwxe6C5d1zuFGJoL2njWxTDrIvmedJa57BtVmshLQMv55L6SjTPcnQshnrtKP1CuXo9xfnEOSuwo9Qb4LQalJ7ASM9OqRSGE75nG/jWGElrNoxSZozbESnOy7fB+cQ/00ukIknZVnk8Lq6vVQ+xxqprrndqEDTerJx/oLm5Dpt15JzqAYg154Nh6Afrvhk+py02QmxeRSr6w62QQoKPPSBOM5JKsxDtP9pPKXU9c6HjWqodHLMc25NSbJwrmTmWamWK+lBOpRNJpVxIpVIojl187KZivkF95e1Ro1hZqIW0N3ubYUw7M4jV5ye7IXXNfa2gsj+9HsbLWCsf1jGkOM2oDh8XRZqUToGXy8fGAh2Hl3dCDHM8d+gzFp8LJqUMqRKTWeJ4Y1LzFvclj8nR50bbPOa3KHvIxUWPI1ai6kXYg2b2swBeg9Hjid8F4KFta5UQQgghhBBCzClVL8JeCODnMdLUA8Df5NOEEEIIIYQQQsmaz4GqivqHAbx0m9sihBBCCCGEEHNPpYswM/tr4OyHoN3967e8RUIIIYQQQogZxIEt/J3mPFP1ccSXU7kN4NsBlP8CVQghhBBCCCFEkqqPI36oMOl9ZvaebWhPkgyO5WwdK8MWFslUdtLbY4vfmjfGRrOe18b1Tnobi7kNamW4MDaddX1hPG/P6+PpPZp+2ltok6GtN6iNX58etiLrzYbJbXXYHBt71oYNdHLT0tCzyNCzMgxmohO5ge5QbYC9WTAYHa0Hy9Fn1i+NLFdsUFsk2xVb3dg61MntTqcHDRzMRst5aNgel784WMLl9WBtPNlt42hjlI/7rt4BXFY/mfepjn15O3qeYTk3Qq0M61jMLZFrXkM7b8ea18brLtbZmL46DOWN1zw/lxv5Nux5liyPLUcezJWr3hjbkwZeH9cfvc6i2OGY2rAiDpBVsuFVoW4DHKqfxEODpbFtcmUY4vT0MI6708NWiOHBQhSDG3F72lvUhzoaeb97HmKW47c3qEcx24j6H75j6aE+juFTg/Z4nt6wHrWRDXgcg5fltsS7u5fgce1jAIBj3b24ojWK7Ud6i7ikEeKu5zUcaYzee3iwhEO5wfD4oIN9tdVx+bL6cQDA53oHcVXjobPKd3cP4TGtkWH09jNX4rH5uj+7fimuzqevDBZwRSPknD85XMBltVF7Hx4u4UA2ateqN7GcHyenhy3syy2KK8MWlsdjS1zeMJKuDNvj8YDHhuLr1SGvo4l2flxxne5gAXvyOseHC+jk+36FxsHT3orGu46t531oRZbH4th2IWzsowf6y9H+2ujP6rA1Nk+uDBawtxZiPtRJb5uzjo3xuF0b1+HY5HheR2M8fW3YGI+hq4NmZFnjsflEvxPVW8ptiacGLVzVHsXLvWf24+rFUaw9cGYRB9ujPj201sHe5qj+iW57PP2BM4vY3xptg1O9Jg60g7Xu+Hobj1oaxfxnTx7EY/c+AAD41MlLcO2eB8flJ+77IgDgI49cjifuz+P51EF82d7R9JO9Nr50cTT94f4ivqR9HwDgvt7e8TEFACcGnWg/HcjH/Yf7SziUj/PHB4s4mE8/PuhE0/fVRjbUlcFCtF83pp8cLpSOaxv7b+P1yeEC9uTHyfHB4tjauDpsjcevgTejMa493setaMxq5TGx7rEB8Hw40hyNAQ/2lsZj04nBAvaO+9oex8fKoD22gxaP53DuaYbYHLSi8ZjP6Sf6C+NYO9HvRMva6Gvfa1gYx3xrXGfdG9H0DcvsSr+NS5qjPnzuzP5xGcjP8YujeL7v9DKu3jsq337/ZTi4NNqXx1cXcKAz6t8jZxZw6dJo/i+e3IP9i6PpJ860x3VOrbdw5Z7R9rv35F48Zl8YX5tkj7z71H48fu9oHP7Y8cPjeP7HlUvwhDyej/c6ePzSaPojvUVc0x7VP9bbhyubo+U+3F8aW25PFGL5AH2eOT7o4EDt1LjexhjE5ZXhApbH43Z5eXXYiuI0tS/j8a8ZnbP5XM7LatGyNsrrwwuPZ7FzMa+gkTSzA/QyA/CVAH7b3R+3yXxtjCQeLYwu+P6Xu/98vrzXAzgK4C4Az3f3R1LLAYAv/YqW/9HbjkQXFUCsZE/pmFlXzBrRLim6eXqk7i4sk+ux7pjr8UGzllDfHyI19le17xqXv6QRlnN3P77Z+MG1R4/LfAF2BZ1c+QKVP0jzBU7q95JZweq8RvpU7gcvt22smd18uVynuD4mtayUerpKnV5C7T5aH+m+Wf3NOmHSgz/j6k9+yN2v37QxCR73FW3/vbc+upA+gduQdtRG8ZnQ0qeOiyrxX9Tmpo4fvuhiNfDlFI+Xka7++LAzLn9q/XDpcgDgknpQEdcSymC+mEjB83YTGvs9lLoBwPii5uxlsaK7ipa+PJXFhc7Dccp94thkUvFVXMe3POaO847no09c9p9903UT183bL6X3nsQwcUwOErGdKieV0IgvwrheltCzf7G7b1z+x1OXjMt9UnfXScPN04sa7z0NSiGSiK8WfYDlY7JTCxfSVzTDsccfQLOCVpu/JEmpu/n4adjmD77wvLyPU2ktiqTGIybe3+XjIAB8z2Pff97xfNUT9/iP/ulTK9cvpvTYIJUyYVIMRmPtcPPtweMB69X5eOPPKUVFPbfl/vWgqD+2Gsq8LxsUt+sDSoNC69vXChcizUIqBr4IW6C45W3IcX5ZK5w/DtRCGpTUeDLpS9LiMbAVTE4Bkh57y+qkxjIAeNmX3nxBnzemzd7WYf+aI/96qut8x92/OVPbaIOqjyN+CKPfhBlGjyF+FsCLK8y3DuDr3f2UmTUAvNfM/gLAtwG42d1faWavAPAKAD95zq0XQgghhBBCiBmj6kXYl7p7lO3RzFqpyhv46DbbxtdxjfzPATwHwNPz6TcBeDd0ESaEEEIIIcTsIkV9Zarm5f7bkml/V2VGM6uZ2a0A7gfwLnd/P4DD7n4MAPL/lybmfYmZ3WJmtxx/OJ0JXYhZIIrnhxTPYnbhWF55ZGt+VybExYLj+fTDimchxHSYeCfMzC4DcAWABTN7EjB+sHUPgE5yRsLdBwCuM7N9AN5sZk+s2jh3vxHAjcDoN2FV5xNiJ8Lx/LivaCuexczCsXz0icuKZTHTcDxf9cQ9imchLpQKvgmx+eOI/wLAiwBcCeBVNH0FwE+fy4rc/biZvRvANwG4z8yOuPsxMzuC0V0yIYQQQgghhJh7Jl6EuftNAG4ys2939zee68LN7BCAXn4BtgDgGwD8MoC3ArgBwCvz/2/ZdFlw1DBEzWKLTKTSZtNMZCCiMluhEladNnpjo1ADwJo3S9sUmXgi6x8vK7SPDVPcvi8OlqkMPDk3Ah2qAaeHYVlszLmvF4SVbLpq53ru0fqoHZHpKjb1pJxBG2r2Ik2UL5cFQIPElyC1wgOwqXq8LG5f6vlZfvw4ZUfk7dHAMIoXGJW5TYl9fKEYRtuXbWuTTEuR3Y+6lyXmyRJ2LK4fm9CG4biyQWwhZcMntZethq2E6pyV4xz/hzon8eEzR8evH+yHY2BDeQ0Ah2rBIrpMJsNlUl5zP9JWtTgm2KzG7Vqm9nL/eH6eXjQ7lq/v3B89HYBNfWQGtHIbWtPDOjhWGjaI4orblW3RN5WZDcf7uXYeBrIq9sjIAsqnLepCZCCjIu+jokWStwcfi40obsP0jRQJAMaafAC4by3E7/1rS6FOLcRWvTbEUiP8tPoQqcI30jUAcbqRlGEysrbS/t5L7QMwVswD8Xg+TPQ7Fc/nY5ZLtTcZj4nzcbQNomOP2mTV4qgKGXysDa9i9UyZO6Pz4QQbL49FGY8zGZ2zE2lZ2aCY2qdsNGSFOhCP24v1EHdrZD482Q0//+/UQ/0DLRqPKa6PkNEQwFjff1a7Eql0eHtwPO+L7Ig0NhfMmPxeKm4nnWs3o7g+3reREdOy0nl43ZF5ko7PZgUb6Y5Hd8IqsdnjiN/l7q8BcNTMfrT4vru/qmQ25ghGF3E1jD4/v8Hd32ZmfwfgDWb2YgD3APiOqg3eqoF2EmuRYr78Amy7eDINYHwBtl1czJzmyQuwKdCboAnejcQnkmpK6QshdQE2DVIXYPNI6gPvTmEa43l63dPdHqkLsO0idQE2DVIXUdvFxYyjcyV1wTGP8AXYNKhyAbaVpC7AhKjKZiPAYv5/qeS9TT9Cu/tHATypZPpDAJ6xaeuEEEIIIYQQYs7Y7HHE/5YX/8rd38fvmdnTtq1VQgghhBBCiBnD9ThiRareP/1/K04TQgghhBBCCDGBzX4T9tUAvgbAocJvwvYAKP8FvBBCCCGEEGL34QCm4DSoipldBeCPAFyGkQrhRnf/LXr/5QB+FcAhd38wn/ZTAF6MkVnrh939ndvRts1+E9bE6PdgdQD86/mTAJ63HQ0SQgghhBBCiC2gD+DH3P3DZrYM4ENm9i53/1h+gfaNGEkCAQBm9gQALwDwZQAuB/BXZvbYPO/xlrLZb8LeA+A9ZvY/3P3urV75uWAY6WlrBcvTIKEljogeTWVbWDls2Fm09Uj5zKrRSA9ONqhFK1cMs5K1TWrY08OggP1cn28w1nCA6j268eC4/AAZ5T6xdqS0Hwdbnw/rBiueWfMbbzR+PrVNOuwatZ2tho3ERq9VEI9NqjOgNg7P8dFiVuhzfMQ66mHBAsi643JdPW+DC8XgUWqBjRYyHHc1TisQtYlU5rz3PEw/ez1nz8tG0GIaiJaV6+dZEc2xzfOuDoNd9LJasLV9efveaFnvX71mXP702uHwRjsUL28fH5f3WFCId6OUFaxALo+hSVa8tm3+7V21Z7hp3YV3eP2pdkUqbk4DEem6aZsn1PWjdZQfA1slB6zBx+kDaontl1SUTzBxRuY4PiYTum5ed5fm5ejtFGyYHKupeI7Sl1DcPYHikcfzvz8ZYvm+M2Gc3t8Myzne6+C65fE5H1c0gqKetwm3g7XVg2gbZqV1OtTW0Xvl40CjwrhWJRVDylDYKMQEx2M8xlHKhURss45/YNtjo6vbcJyKIEvEc6QiT8Qzx3nUbsSfCZJmWiryscDbnFMgxONKettwn5azYOy8vHN8XD5QDzr421auGJcfXu+My51W+Jzz+MVj4/LheqyoZ/g44RQPvK04JjhmO/S5KjXOFOM0Naam6kTTozGrfL8UYz7aT4l9OYjiYo7tmDvoN2HufgzAsby8YmZ3ArgCwMcA/AaAn0CcKus5AP7E3dcBfNbMPg3gKQD+bqvbVjUCVs3sVzG6Khx/LHL3r9/qBu00uom8Q9PgQCL30naxmwSr09CwXwgXM+6mrXvmC7B5Z9pa9OQFmLioWnO+AJsGqQswcXGZdgymLirnkWmPd3N9QTUbXGJmt9DrG939xmIlMzuKkbX9/Wb2bACfd/ePWJw/9woAf0+v782nbTlVo+a1AF4P4FsBfB9GCZYf2I4GCSGEEEIIIWaU6d8Je9Ddr59UwcyWALwRwMsweqTiZwA8s6xqybRt6VDVr2EOuvurAfTc/T3u/r0AnrodDRJCCCGEEEKIrcDMGhhdgL3W3d8E4BoAVwP4iJndBeBKAB82s8swuvN1Fc1+JYAvbEe7ql6EbTwXd8zMvsXMnpQ3SgghhBBCCCF2HDZ61vDVAO5091cBgLvf5u6XuvtRdz+K0YXXk939iwDeCuAFZtYys6sBXAvgA9vRtqqPI/4nM9sL4Mcwyg+2B6PbeUIIIYQQQggBwM/dqLa9PA3AdwO4zcxuzaf9tLu/vayyu99hZm/ASNzRB/AD22FGBCpehLn72/LiCQBfBwBm9rLtaJAQQgghhBBCXCju/l5s4gPO74bx618C8Evb2CwA1e+ElfGjAH5zi9pRiQ31cmz8Kn+iknWkaRU96b2jZbKSeIg1Z303q6fJNMTqaFou673ZULVcO0PrCHXWyLDzhUEdl1G9axrHx+UHBg+Nyx88dfW4/JnuoXH52uZ94/JhanfPg9Z2rfDjSd6aTbLFtFkHzLpVT6u4N2Mw4XeOrMHnNmU0T6+C/Silpa2Zoxfpvrkea9+3x1KYwdG2Prq0/F4ihgAUtPQc27wNWNtefmgPEhp71lQ3MIiUvFmkSx/SdErLkAV9cKyrZ3V6WPVjGivj8uebD0dt/MyZS8blzyLE8+OaQYN8RSP09TT1o8eKaI4hWndnCw1hg2i/lNfhdhTjMZoncTgUUyuUTY/nLU+3kCGO+a0isyH25KprtnpyDKWU0sVDOFLG09jCuudITU6LZTtZLdoGKJ3eLqRe4DhnlXaDtO8c2wez1XH5soXPjMuc7uHm9S8dl08PQrqG9x3/EjzzwB3j14dqJ0M9SlkyjPY96brpWG9mYTqnJ4iV+/H2T42LVRgkxoYG+DjMCvNQHFIb27RteZ6Bx6P+GNoGWXTu2ToTXobh+PycUo7zNk/F5jCRnqaYliGpsk/M30uYcxtU5nYU4zwa62n7H6yFMfmqTvh8wUbF9z38JeNydxi2TScL8XgZKer5s1MRbhePD43kJ7YAf5YqpuRIkTIiR2kWEts8SqvB8U8xWEz1MKTPT91obCo/RuNUBTPuqnbAffeYOC+EC9nTF8V3PG21+KRBZLvhC7BpMOOH/TmxHR9G54Wt/EAjdg47PeYvpjJ+2vAF2Lyzm/bruTKc8rapkhNOCDE9LuRO2I564FMIIYQQQghxkdlZvwnbsUy8CDOzFZRfbBmAhW1pkRBCCCGEEELMMRMvwtx9eVoNEUIIIYQQQsw400/WPJPoYW0hhBBCCCGEmCK6CBNCCCGEEEKIKXIhYo6LQmYeady3ypbIqt0maVuLRGrUSGXOet1yrXAzoTpetG7p9OPDBhZpnhapWK+oPzIuf6G1b1x+sBeeIL1t/cpxeTm7a1xu0yZbi5Ss8e3jJsoZVLjN3E3UaRvrjYuqXiKhnR0kdN+s+u5F6QbK46Nhw+i9pK4+0q1v/XcWqfg9W2Ue2rGWsNylzFeR/tfLtbtFBok0EKn459juUDy3szCdf6fLLeVYBoBHLwQ98v3dPePybetXjcsHa58M66D+rZK+uUEa6baxSrvamMHxyKkcUmkceHoqlgeFsOZ6jVTqAS+fHscpLSg6Rnj8GUQpEbZq7DRwLITlp1IbcLtZaZ8V1NQ8D6dciPpNG72ZyKU5SIzNzcLxklLRR+kXEvps3nePa4VUCseW943L95w5MC7/1cNPwFHSgF9OxwCru1e9WTp9mZTgzXNODgJ0E8d+u0L6hlpibI9iNlKOx8uMVPTg809i3bQ6rtOjmEiN8+eDIajDWe7OqUF47GtkrOanj1SJ8bhbUMxXUdlHaUk4DUdiP3L7eF6O5dH6UjEf4ovj+cHl8Pni7tUQz3ethbQiVzVCXBfXx7ZpjmdeX5xeqHy8Yy39KqWEKOrqm3y8cmqdKM1CeQzG42N52pVJMZhKbhPHfJgepUM4j2N6R+EODGe8D1NiW++EmdlVZvbXZnanmd1hZi/Npx8ws3eZ2afy//urLpMvwOadxQkXg/PGtA/XrTxpzxvFPDZiPuhuU847ce7wBZjYvcx8PqgdTLNCvjEhLjbbPQL0AfyYu38pgKcC+AEzewKAVwC42d2vBXBz/loIIYQQQggxy7hP929G2daLMHc/5u4fzssrAO4EcAWA5wC4Ka92E4Dnbmc7hBBCCCGEEGKnMLVn+8zsKIAnAXg/gMPufgwYXaiZ2aWJeV4C4CUAcOQKPUojZhvFs5gXOJYPX757HhEX8wnH86WKZyEuGNdvwioxlQeSzWwJwBsBvMzdT1adz91vdPfr3f36/Qf07LSYbRTPYl7gWN53UF8oiNmG43nvAV2ECSGmw7Z/EjSzBkYXYK919zflk+8zsyP5+0cA3L/d7RBCCCGEEEKIncC2fuVjZgbg1QDudPdX0VtvBXADgFfm/9+y6bIwUpQuWq+gCC3X3dbIt8fa0mFCX95LbArWbY/qlX/rW1SKbxArYMtvz7LFh+sMYJH6mOe+vH5qXP7GxY+Ny3d0Lx+Xjw864/Jdvb1hfaSiZV3uo+ononZlrHRN/PCR25RUdFeYDgCDxDZMzZ/W11KlKnpvIFIqD6MUA6T63eIff2bmaCPER1V7XZvEySnLYyoeU5reAVu6LNaDM42C8ry0fRTzbePYLm/TVfWV6PWzlm4blz+6fsW4/PBgaVz+x95BakdYH48BRy1ovxep3zWLt1kqtlPfUFWJ7VQs1wq7K9b2p/Tzm+vqWVM+oPqsAz/LFrZFEkyDj1MRsCY+FV8cW6k0H8X5s8T25JQXvO9Z95wl9hgrsoFJ8RzqdbJQ5m3O++toI4yj377vlnH5g62ro+Xesx5i+O5eUHy3aH3cj2ubXyxdd+q4mkT3AoYyHl+H57Gc6DwYxX/YfzyGDIz3K+u9Q51sCy2DZj5ef6yML19HlAKEjrFh4gDL+LPGhGMwlfYG0VhGqTf4s0aiHcU0JhzbqXH7GlLOX7r3Q+PyB5shnu/tBl39A/2QVmQli4+xNdLJt5sPhH5QILQTxyHDMdhLpJHpohb1KSKRxoPHnCGdj1Njc42231mpB/jzaHSO4vG5RnXCZ02O+dlktmUZ02S777s/DcB3A7jNzG7Np/00RhdfbzCzFwO4B8B3VF3gblKLn8/JdVapcgEmpkPqAmweqZLzToithi/AhBBbT/ICTIgdxLZehLn7e5H+rucZ27luIYQQQgghxBRxnN9t8l3IrN/zFEIIIYQQQoiZQhogIYQQQgghxNbgu+dnDReC7oQJIYQQQgghxBTRnTAhhBBCCCHEBeMAXL8Jq8TMXIQ5ys2IkS60qGAeQ7dFSf3J2uNGQUU/ntPjdbJxh99jDT7r8VmZmlLRcx9ifamlVdXE4VpY7t72PePyw6SDZb44CArZ08NWeKMgE2JlM2vE92ZBq7pOt5xZ/b2XtvOQ9fHUv2heGLoVTHUN2gQZ1e+ldMCRZj+93JTiO6qzDdZAjhvWe0+ia2H7cwxHav2sWzo9SaFKVsHMWYs02ZvHc3zbPb38y+thWQdqd4/LDwzK4/nz/X3j8irF811Uh5XN1zSOR/NzPK/SPmhTDKfimekl4pfjrqioP9d4joypiU0YW1W3/5EQg49jgfuXgXXim7ejVmhrFunIWbld4QEOGs9TivoizSidQvlYfa5cVQ/LObD4yfDGInB3f3n8ko8TVnyve4j5L/T3j8sPD0O6hmsbQfV9IAv7fpXiqW3F8xifo1LxDKpD6m6ankX7m86BhWOhm9hnKV198ryeGMq20oRnCDETp4zZPO5YGZ8yORc18ay+H6bSMkRa+s3H2lQqkeK643aVL5d5TCMcV4dqd47L/9jbV9o+TpMDAGsI8fxFGrcfshDPj22EtLEHamG/rgxpPKBjel+2ecoWYPR5agwr7jl9RqSfL9fKp+KgGIO9REoDPoslU8mIXYMeR9zB7KYDtMoFmJgOVS7A5gW+ABNiWvAF2LyTugAT6dxjQojdwczcCRNCCCGEEELsYNwl5qiIvoYRQgghhBBCiCmiO2FCCCGEEEKILUFijmroTpgQQgghhBBCTBHdCRNCCCGEEEJsDfpNWCV0J0zsCJoJLbwQQgghhBDzhvmMqMHN7AEApwE8eLHbcpG4BLuz7zu1349290PnO/Muj+eduk+3m53c7/OO5zyW78bO7t92on7vPBTP54/6vfO4oM8b08bM3oHR9pwmD7r7N015nRfMzFyEAYCZ3eLu11/sdlwMdmvf57nf89y3Sajf88m89y+F+j2fzHv/UqjfQkwPPY4ohBBCCCGEEFNEF2FCCCGEEEIIMUVm7SLsxovdgIvIbu37PPd7nvs2CfV7Ppn3/qVQv+eTee9fCvVbiCkxU78JE0IIIYQQQohZZ9buhAkhhBBCCCHETKOLMCGEEEIIIYSYIjvqIszMrjKzvzazO83sDjN7aT79gJm9y8w+lf/fT/P8lJl92sw+YWb/4uK1/vyZ0O9fMLPPm9mt+d+zaJ556HfbzD5gZh/J+/0f8ukzv78Vy7srlgHF86z2bRK7NZ7nOZYBxbPieb7iWcww7r5j/gAcAfDkvLwM4JMAngDgVwC8Ip/+CgC/nJefAOAjAFoArgbwjwBqF7sfW9jvXwDw8pL689JvA7CUlxsA3g/gqfOwvxXLuyuW874onmewb+fZ77mO53mO5U3261z07zz6rXiew/2tv53/t6PuhLn7MXf/cF5eAXAngCsAPAfATXm1mwA8Ny8/B8CfuPu6u38WwKcBPGWqjd4CJvQ7xbz02939VP6ykf855mB/K5Z3VywDimfMaN8msVvjeZ5jGVA852XF85zvb7Hz2VEXYYyZHQXwJIy+sTjs7seA0SAC4NK82hUAPkez3YvJA8qOp9BvAPhBM/uomf0h3Sqfm36bWc3MbgVwP4B3ufvc7W/F8u6IZUDxjBnv2yR2WzzvhlgGFM9QPO+K/S12JjvyIszMlgC8EcDL3P3kpKol02bWuV/S798DcA2A6wAcA/DrG1VLZp/Jfrv7wN2vA3AlgKeY2RMnVJ+5fiuWd08sA4pnrloybUf3bRK7MZ7nPZYBxTMUzynmpt9iZ7PjLsLMrIHR4PBad39TPvk+MzuSv38Eo28ygNG3E1fR7FcC+MK02rqVlPXb3e/LB44hgN9HuB0+N/3ewN2PA3g3gG/CnOxvxfLujGVA8YwZ69skdns8z2MsA4pnKJ7nKp7FbLKjLsLMzAC8GsCd7v4qeuutAG7IyzcAeAtNf4GZtczsagDXAvjAtNq7VaT6vTE45PwrALfn5Xnp9yEz25eXFwB8A4CPYw72t2J5d8UyoHjGjPZtErs1nuc5lgHFMxTPcxXPYobxHWAH2fgD8M8wuuX7UQC35n/PAnAQwM0APpX/P0Dz/AxG5ppPAPjmi92HLe73HwO4LZ/+VgBH5qzfXwHgH/L+3Q7g5/LpM7+/Fcu7K5bzfiieZ7Bv59nvuY7neY7lTfbrXPTvPPqteJ7D/a2/nf9n7nrMVQghhBBCCCGmxY56HFEIIYQQQggh5h1dhAkhhBBCCCHEFNFFmBBCCCGEEEJMEV2ECSGEEEIIIcQU0UWYEEIIIYQQQkwRXYQJIYQQQgghxBTZlRdhZnZqm5f/djPbl/99/3nM/3Qze9s51j9hZm9PvP8/zOx559qOWSTfFl9Dr3/EzO4xs9+5mO3aThTP84vieVuWr3i+SCiet2X5iueLxG6MZ7G17MqLsO3G3Z/l7scB7ANwzoPiefJ/3f1Z27kCM6tv5/K3iKcDGA+K7v4bAH7uorVmDlA8X1SeDsXzlqJ4vqg8HYrnLUXxfFF5OhTP4gLQRViOmV1nZn9vZh81szeb2f58+rvN7JfN7ANm9kkz+3/y6R0ze0Ne//Vm9n4zuz5/7y4zuwTAKwFcY2a3mtmvFr9xMrPfMbMX5eVvMrOPm9l7AXwb1Vk0sz80sw+a2T+Y2XMq9MXyZX/MzP43gEvpva80s/eY2YfM7J1mdiSf/lV5X/4ub+vt+fQXmdmfmtmfA/jLVHvMrJbP98F8Of82n37EzP4m3wa3b2y/RLufma//w/k6l/LpP5cv93Yzu9HMLJ/+w3kfP2pmf2JmRwF8H4AfydeXXNe8o3hWPM8TimfF8zyheFY8CwEAcPdd9wfgVMm0jwL453n5PwL4zbz8bgC/npefBeCv8vLLAfy3vPxEAH0A1+ev7wJwCYCjAG6ndTwdwNvo9e8AeBGANoDPAbgWgAF4w0Y9AP8ZwHfl5X0APglgsdD24nK/DcC7ANQAXA7gOIDnAWgA+FsAh/J63wngD/Py7QC+Ji+/cqPdefvuBXBgUnsAvATAz+bTWwBuAXA1gB8D8DP59BqA5cQ+uQTA32z0DcBPAvi5vHyA6v0xgH+Zl78AoLXRlvz/LwB4eWHZLwLwOxc77hTPimfFs+JZ8ax4VjwrnvWnP3fHLNzu3XbMbC9GB9V78kk3AfhTqvKm/P+HMBroAOCfAfgtAHD3283soxfQhMcD+Ky7fypvz2swGmQA4JkAnm1mL89ftwE8CsCdE5b3tQBe5+4DAF8ws/+TT38cRgP4u/Ivd2oAjpnZPowGq7/N6/1PAN9Ky3uXuz+8SXueCeArLDwLvhejQf6DAP7QzBoA/szdb020+akAngDgfXnbmgD+Ln/v68zsJwB0ABwAcAeAP8foRPZaM/szAH82YXvsKhTPiud5QvGseJ4nFM+KZyE20EVYNdbz/wOEbWbnsZw+4kdA21T2xDwG4Nvd/RPnuK6y5RmAO9z9q6OJ+aMQEzi9WXvyW/Y/5O7vPGulZl8L4FsA/LGZ/aq7/1Gibe9y9xcW5m0D+F2MvvX7nJn9AsJ2+xaMTgDPBvDvzezLNumHGKF43qQ9iueZQvG8SXsUzzOF4nmT9iiexbyg34QBcPcTAB6hZ3q/G8B7JswCAO8F8HwAMLMnAPjykjorAJbp9d0AnmBmrfzbsGfk0z8O4GozuyZ/zQPDOwH8ED2X/KQKXfobAC+w0XPTRwB8XT79EwAOmdlX58tqmNmXufsjAFbM7Kl5vRdMWHaqPe8E8O/yb6BgZo+10fPcjwZwv7v/PoBXA3hyYrl/D+BpZvYl+fwdM3sswgD4oI2e2X5e/n4G4Cp3/2sAP4HRowpLOHub7zoUz4rneULxrHieJxTPimchNtitd8I6ZnYvvX4VgBsA/H9m1gHwGQD/ZpNl/C6Am2z0WMA/YHSr+gRXcPeHzOx9NvrR6V+4+4+b2Rvyup/K54O7r5nZSwD8bzN7EKMB94n5Yn4RwG8C+Gg+EN2F+NZ9GW8G8PUAbsPoGer35Ovp2uj2/W/ng3I9X/YdAF4M4PfN7DRGz6WfOHuxE9vzBxg9OvHhfPoDAJ6L0fPjP25mPQCnAHxP2ULd/QEb/Wj4dWbWyif/rLt/0sx+P+/LXRg9bgCMHm14Td4PA/Ab7n7cRj/o/V82+gHvD7n7/91kW80DimfF8zyheFY8zxOKZ8WzEKWYe+qutJiEmdUANPIB7RoANwN4rLt3L0Jbno7Rj0M3GywnLWPJ3U/l5VcAOOLuL92aFl5c8sH2enf/wYvdlp2K4nl2UDxvjuJ5aeYAcAAAAL1JREFUdlA8b47ieXZQPItzYbfeCdsKOgD+2ka3ww3Av7sYA2JOF8ATzeztfv65O77FzH4Ko5i4GyPDz8xjZj+CkUb2jRe7LTscxfMMoHiujOJ5BlA8V0bxPAMonsW5ojthYuqY2fsx0soy3+3ut12M9ghxISiexTyheBbzhOJZ7GR0ESaEEEIIIYQQU0R2RCGEEEIIIYSYIroIE0IIIYQQQogpooswIYQQQgghhJgiuggTQgghhBBCiCny/wO9hUV32/biNAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# let's plot over month, each facet will represent the mean air temperature in a given month.\n", - "da.plot(col=\"month\", col_wrap=4,) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can use `from_xarray` method from the contiguity classes like `Rook` and `Queen`, and also from `KNN`.\n", - "\n", - "This uses a util function in `raster.py` file called `da2W`, which can also be called directly to build `W` object, similarly `da2WSP` for building `WSP` object.\n", - "\n", - "**Weight builders (`from_xarray`, `da2W`, `da2WSP`) can recognise dimensions belonging to this list `[band, time, lat, y, lon, x]`, if any of the dimension in the `DataArray` does not belong to the mentioned list then we need to pass a dictionary (specifying that dimension's name) to the weight builder.** \n", - "\n", - "e.g. `dims` dictionary:\n", - "```python\n", - ">>> da.dims # none of the dimension belong to the default dimension list\n", - "('year', 'height', 'width')\n", - ">>> coords_labels = { # dimension values should be properly aligned with the following keys\n", - " \"z_label\": \"year\",\n", - " \"y_label\": \"height\",\n", - " \"x_label\": \"width\"\n", - " }\n", - "```\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "coords_labels = {}\n", - "coords_labels[\"z_label\"] = \"month\" # since month does not belong to the default list we need to pass it using a dictionary\n", - "w_queen = Queen.from_xarray(\n", - " da, z_value=12, coords_labels=coords_labels, sparse=False) # We'll use data from 12th layer (in our case layer=month)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`index` is a newly added attribute to the weights object, this holds the multi-indices of the non-missing values belonging to `pandas.Series` created from the passed `DataArray`, this series can be easily obtained using `DataArray.to_series()` method." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "MultiIndex([(12, 75.0, 200.0),\n", - " (12, 75.0, 202.5),\n", - " (12, 75.0, 205.0),\n", - " (12, 75.0, 207.5),\n", - " (12, 75.0, 210.0)],\n", - " names=['month', 'lat', 'lon'])" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_queen.index[:5] # indices are aligned to the ids of the weight object" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can then obtain raster data by converting the `DataArray` to `Series` and then using indices from `index` attribute to get non-missing values by subsetting the `Series`. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "data = da.to_series()[w_queen.index]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now have the required data for further analysis (we can now use methods such as ESDA/spatial regression), for this example let's compute a local Moran statistic for the extracted data." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Quickly computing and loading a LISA\n", - "np.random.seed(12345)\n", - "lisa = Moran_Local(np.array(data, dtype=np.float64), w_queen)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After getting our calculated results it's time to store them back to the `DataArray`, we can use `w2da` function directly to convert the `W` object back to `DataArray`. \n", - "\n", - "*Your use case might differ but the steps for using the interface will be similar to this example.* " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "array([[[0.018, 0.001, 0.001, ..., 0.001, 0.001, 0.001],\n", - " [0.001, 0.001, 0.001, ..., 0.001, 0.001, 0.001],\n", - " [0.003, 0.001, 0.001, ..., 0.001, 0.001, 0.001],\n", - " ...,\n", - " [0.002, 0.001, 0.001, ..., 0.001, 0.001, 0.003],\n", - " [0.001, 0.001, 0.001, ..., 0.001, 0.001, 0.003],\n", - " [0.002, 0.001, 0.001, ..., 0.001, 0.002, 0.006]]])\n", - "Coordinates:\n", - " * month (month) int64 12\n", - " * lat (lat) float64 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0\n", - " * lon (lon) float64 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0\n" - ] - } - ], - "source": [ - "# Converting obtained data back to DataArray\n", - "moran_da = raster.w2da(lisa.p_sim, w_queen) # w2da accepts list/1d array/pd.Series and a weight object aligned to passed data\n", - "print(moran_da)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEWCAYAAABG030jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAj1ElEQVR4nO3de7RkZXnn8e/v3PoKfYWmuSgX8UIcbE2LKMaoxAgaQWOIZpJMm+AiJNFoJibBuCZrZjJZ4yUzMeOYMJ1o0o5EQowEYlAkPSImRqDlJle7baBpuummG/p+OZd65o/aHarrfc+pOudUndqb/n3W2utUPbVr7/fUqXpqn73f530VEZiZWXX09boBZmY2OU7cZmYV48RtZlYxTtxmZhXjxG1mVjFO3GZmFePEbZUh6T9L+mKv22HWa07cVkqS3ihpc4/2vVrSI5Jqkt7X9NgqSd+TtEfSZkmflDTQi3bascuJ2yx1L/BrwF2Zx+YCHwaWAq8BLgQ+MmMtM8OJ2yZJ0mOSflvSfZL2S/qcpGWSviZpr6R/krSoYf1LJD0gaZekWyW9rGlbHym2tVvS30iaLWke8DXgZEn7iuXk4mlDkr5Q7OsBSSs7/TtGxGcjYi1wKPPYn0XEtyNiOCKeBK4BLuh0G8wm4sRtU/Fu4C3Ai4F3UE+yv0f9KLQP+A0ASS8GvkT9CPUE4CbgHyQNNWzrZ4GLgDOAc4H3RcR+4GJgS0TML5YtxfqXANcCC4Ebgf89XiOLL4Rd4yx/2oHXAeANwAMd2pZZW3xuzqbiMxGxDUDSt4HtEXF3cf966qcPAN4D/GNE3FI89kfAh4DXAbcW6/yvI0lZ0j8AK1rs+58j4qZi/f9L/UshKyLOnewvNhmSfglYCby/m/sxa+YjbpuKbQ23D2buzy9unww8fuSBiKgBTwCnNKz/VMPtAw3PHU/z+rN7cXFQ0juBjwMXR8SOmd6/HducuK2btgAvPHJHkoDTgCfbeO60h60szoHvG2e5ehrbvQj4c+AdEfH96bbTbLJ8qsS66TrgKkkXArdRP01yGPhOG8/dBiyRtCAidk9l5xHxI1N5XnEOvg8QMChpNjAcETVJb6Z+QfJdEXHHVLZvNl0+4rauiYhHgF8APgPsoH4h8x0RMdzGcx+mfmFzY3Ex8eRWz+mgb1A/5fM6YHVx+w3FY/8JWADc1HD0/rUZbJsZ8kQKZmbV4iNuM7OKceI2M6sYJ24zs4px4jYzq5hKdAcc0uyY03d0XUbUaj1qjZmV2V6e3RERJ0xnG29907zY+cxYy/W+d9/hmyPiounsayoqkbjn9M3ntfPecVRsbN++HrXGzMrsn+LLj7dea2I7nxnjjptf0HK9/uXrl053X1NRicRtZjaTAqhR3v/qnbjNzJoEwUi0PlXSK07cZmYZPuI2M6uQIBgrcVW5E7eZWUZt+gNUdo0Tt5lZkwDGnLjNzKrFR9zTFLWa+22b2YwJYMTnuM3MqiMInyoxM6uUgLHy5m0nbjOzZvXKyfJy4jYzS4gx1OtGjMuJ28ysSf3ipBO3mVll1PtxO3GbmVVKzUfcHaCmyXqizJcOzEqi+XMzGcfwZ8xH3GZmFROIsRLP7Ni1lkl6iaR7GpY9kj4sabGkWyStL34u6lYbzMymqhZqufRK1xJ3RDwSESsiYgXwo8AB4HrgKmBtRJwNrC3um5mVRiCGo7/l0isz9b/AhcAPI+Jx4FJgTRFfA7xzhtpgZtaWegFOX8ulV2bqHPd7gS8Vt5dFxFaAiNgq6cTcEyRdAVwBMJu5M9JIM7MjynxxsutfGZKGgEuAv53M8yJidUSsjIiVg8zqTuPMzDIixFj0tVx6ZSb2fDFwV0RsK+5vk7QcoPi5fQbaYGY2KTXUcumVmUjcP8dzp0kAbgRWFbdXATfMQBvMzNpWvzg50HLpla7uWdJc4C3ArzSEPw5cJ+lyYBNwWRvboW/w6KbWhoc72FKz56e+oaE0tnhhEqvt3pPGDhzoRpOmJlNINLB0cX7dDvwPf+TiZFl1NXFHxAFgSVNsJ/VeJmZmpTXmknczs+ooe+WkE7eZWUath71GWnHiNjNrUh9kyonbzKwyAjHSw5L2Vpy4zcyaRNDTAptWnLjNzBK9LbBpxYnbzKxJ4CPu6evvo++4444Kxa5d7T233RlAMrN9RC3ae267juEZRWwGZN7rfaednMQOnrUkic1Z/3QSqz26Kd1Hh9/D/YvT4fgPvfpFSWz3mYNJbP8p42z0Y9NtVZ0vTpqZVUjQ24kSWnHiNjNrEsBID8ciaaW8LTMz6xmVejxuJ24zsyZBuSsny9syM7MeGiuOuida2iHpIkmPSNogadw5diW9WtKYpJ9ptU0fcZuZNYlQR464JfUDn6U+vPVm4E5JN0bEg5n1PgHc3M52nbjNzJrUL052pOT9PGBDRGwEkHQt9QnTH2xa74PA3wGvbmej1UjcQ4PUXnjSUaH+4+an6w2mv07t+DlJ7PCS2elzlf7bM7B/JI3tTAeX14GD6fYysTh0OImN7dufPrdd7hd+7MpNLHDySUls7787IY2dliak2lA6Z/fcXbuT2NizaSzbvP7MPl778iT28C+n6/31G69OYqcNpJ+nsXHKLM7oSD9udaoA5xTgiYb7m4HXHLUn6RTgXcCbeV4lbjOzGVS/ONnWOeylktY13F8dEasb7uc20vyV82ngdyNiTJkDyBwnbjOzjDYrJ3dExMoJHt8MnNZw/1RgS9M6K4Fri6S9FHibpNGI+PvxNurEbWbWpIOVk3cCZ0s6A3gSeC/w74/aV8QZR25L+ivgqxMlbXDiNjPL6sRkwRExKukD1HuL9AOfj4gHJF1ZPJ6e0G+DE7eZWZMIGKl1pswlIm4CbmqKZRN2RLyvnW06cZuZNamfKilvfaITt5lZhscqMTOrkEl0B+yJSiTukfn9PPW6BUfFBg8cn643L32hc4OtD7xobxI7acGeJLZ7eCiJPb19QRKbtWlpEpu3Od3v8ZvSgp45G59JYvH0zjR2IC38qY2Mpjtpl4t3qmGciUD6jz8uidWWLkxi+09KC1z2vSCtXDm0JE0FCxe8NIkd9/ihbHua7XxpWvh24K3p5+6+89NTvdfvPzWJ3X4gLbhbNjheMdBTrRvYkk+VmJlVTpnnnOzqV4qkhZK+LOlhSQ9Jeq2kxZJukbS++JnOXWRm1kP1XiX9LZde6fb/An8CfD0iXgq8AngIuApYGxFnA2uL+2ZmpXGkAKfV0itdS9ySjgfeAHwOICKGI2IX9ZGx1hSrrQHe2a02mJlNVQ21XHqlm0fcZwJPA38p6W5JfyFpHrAsIrYCFD/TYckASVdIWidp3ejBaYygZ2Y2SUd6lRxzR9zUL3y+CviziHglsJ9JnBaJiNURsTIiVg7MmdetNpqZZdWir+XSK93c82Zgc0TcXtz/MvVEvk3ScoDi5/YutsHMbNIixGj0tVx6pWt7joingCckvaQIXUh91ocbgVVFbBVwQ7faYGY2VWU+VdLtftwfBK6RNARsBH6J+pfFdZIuBzYBl7XayPwlB7jgfd87KtafjEUOK497NIm9d37aGf/Pd5+exL71zEuS2IJZabHB65dvTGLnX/DDJHbZ/LQ44Bcf//Ekdvut5ySxk+5IC3rmP/xsEhvYnxblMDqWhOJQ+nvEwTRWy8zQMy4X8PRULfO379+VFrjM3ZYW6hzIFOUMn5m+H3b9SFowtq8//bufeFy634uXpp/FX1/y3SS2YTRNQX2k+zgU6Xp7xzIzWXXIMV05GRH3UB8kvNmF3dyvmdl0HbOJ28ysijo4kUJXOHGbmWWUueTdidvMrEkEjHZoIoVucOI2M8vwqRIzswrxOW4zswoKJ+7pmd03wjlztxwV2zy8OFnvph3nJrE//kHa8/DZp9K+rYM7BpPYQGbM+Ec4K4n94+BrkthH56X9zOecnk7WsPo96UDyf/Dqn0piT/5jOrj8ovXpRApztqTjuvTtT/tnK9Nnuy/TtxsgDhxMYmO5PuTZJ7u/97SM8/pF2l2f2JW+v+Y/lk44cuDEdDKQ4UXppCHLTkon+fixE9KahUsW3J3EVgylSe++kXQf9x46LYltOLQsid39bPr+n90/3kQit40TnxxfnLTKyiVts+e7CJ/jNjOrGDHmXiVmZtXic9xmZhVyTI9VYmZWSVE/z11WTtxmZhnuVWJmViHhi5NmZtXjUyXTtPPwPNY8ev5RsaefTgsLYjgdIF7D6b87/YfTb9K+TEFDXzqOPP2ZupP+4TSmWrrfWJ8WPvzKg1cmsRU//oMk9sFf+0IS+49f/4Uktvj+dB/zt6SFCrN2po3uO5T+wrniHYCBfekLUXt2Vxobp6gnUaZCHc3AkVbu953mfjV3ThKrDaafib5M3Ur/wfT9uudQexMVLOtP/8b3DKfPvXlvWiB3+zOnJ7FNuxYlsb0703lnh46fxMQfU+BeJWZmFRLhxG1mVjnuDmhmVjE+x21mViGBqLlXiZlZtZT4gJvyfqWYmfVKcXGy1dIOSRdJekTSBklXZR6/VNJ9ku6RtE7S61tt00fcZmY5HTjkltQPfBZ4C7AZuFPSjRHxYMNqa4EbIyIknQtcB7x0ou36iNvMLKNDR9znARsiYmNEDAPXApcevZ/YF/Fvl0Ln0cZXRiWOuEdH+5OCm9kbZyXr5QpmBjLzAPRlCmZyRTR9o+nrp0yhjjIvc7vPnbMzja3f8uIk9rtvOCWJ3feuP0li5y1/fxIb/td0xp95T6WFGYP709e0fyQtfAAY3D0/jc2fm8T6MrOy1PbuS2PtFupMQ99QOgNLrhCmNjLezCodlCm26Zudvv6alcYAtCQtUhk9MS1K23NW+jc5eEK6vdGT0g/A2Yt2JLF3L1yXxB4cWZLEPvNEOvPUQxtPTmIDT6czTw3tThPi8enETuw/tXvpK4BapoguY6mkxhdldUSsbrh/CvBEw/3NQDJllqR3Af8dOBF4e6udViJxm5nNqADaO6LeERErJ3g8t5HkqC4irgeul/QG4A+An5hop11N3JIeA/YCY8BoRKyUtBj4G+B04DHgZyPi2W62w8xssjrUj3sz0Dix5qnAlnHWJSJuk3SWpKURkf7LU5iJc9xviogVDd9KVwFrI+Js6iflk6usZmY9F20srd0JnC3pDElDwHuBGxtXkPQiSSpuvwoYAjInUZ/Ti1MllwJvLG6vAW4FfrcH7TAzG0f73f0mEhGjkj4A3Az0A5+PiAckXVk8fjXwbuA/SBoBDgLvabhYmdXtxB3ANyQF8H+Kk/bLImJr0eitkk7MPVHSFcAVAP1LFna5mWZmTTpUgRMRNwE3NcWubrj9CeATk9lmtxP3BRGxpUjOt0h6uN0nFkl+NcCsM04tcxGTmT3fBER7vUp6oqvnuCNiS/FzO3A99T6N2yQtByh+bu9mG8zMpkZtLL3RtcQtaZ6k447cBn4SuJ/6iflVxWqrgBu61QYzsynrzMXJrujmqZJl1PslHtnPX0fE1yXdCVwn6XJgE3BZqw1pRAw8dXQhwtyt6Xr9w+krOXAojfWNpLH+TEy5SVlquWqbNr95M8/N7WNoXxrsP5QWwrxm4PIkdsOrr05iFx/+QLqTu9LZUuY+nX6PDxzMvztHM4Uhw4vSApfZ29MCkP6daQFO34G0UioysVwfLQ2lRRxkZoMhU+CS05crwBnOVHe1219MmfdHps21BelrtfeMtHgK4NmXpAVUB1+WFjGdctJTSez1C7clsRXHbUpiVy54Mol9ZldaHPaFR5N6EvbetTSJLd6chBjak3mvH87EMp/twf1dPtNb4hO0XfvNI2Ij8IpMfCeQllWZmZVF+wU4PeHKSTOzDE+kYGZWNSXuVeLEbWaWkRs8riycuM3MmvW410grTtxmZgn54qSZWeX4iHt6+oZhflM30/lb0762fcPt9QnVWCaWmfigbySd+UCZWLtiIO0nrdFcZ/FU/6G0j+/IbenA+V846/wkdunL7ktiXznwqkz70r7Fs3fmjzpy/eNHMuVchxam/c8H96d9rGfvTPtJD+xJ+yXnXv/arLTdh05KX69Di9K+z6Oz099v8ECmn/+h9O/Ul3kr1NJdMDI/fWEOnJjud++L0/f0xa+8N90g8IfLv5nEvrD7nCR23750Ao5nh9PX5vqtK5LYp+9/cxKr/TCdQGPBhrR9Jz2V/i6znkkna+jbn8Y0mulHn/mYDOzP93HvmPY+mj3RVuWkpGQAlFzMzOx54Ug/7lZLj7Rb8v6WTOziTjbEzKxMFK2XXpnwVImkXwV+DThTUuP/28cB/9LNhpmZ9VSFz3H/NfA16pNYNs5Uszcinulaq8zMbFwTJu6I2A3sBn4OoBhXezYwX9L8iEhHpjEzex4ocwFOuxcn3yFpPfAo8C3qk/x+rYvtMjPrnaBe8t5q6ZF2L07+N+B84AcRcQb10f18jtvMnr9KPB53u4l7pBiOtU9SX0R8E1jRvWaZmfVWZXuVNNglaT5wG3CNpO1Appd8d/SNwtztR/eGn/10WpzRt/9wEssWuOQGys91+s8U6rQ91mN/pthmYOr1TkO1tC1zl6UTF3xnxxlJ7O3L78+0Jf09RtO6DEYzcxlAfgKIWn/6r+NIWn/DvlPSKpX+w2lscN/sdL3MhBdjg+l+Dy9O93twWeZvtyz9BdWX2cdw2r6+gfRFWLZkTxJ73wtvT2I/Nnd9Evv4lrSH7dcfeHkSA/jWDWkB1Zx0fgQGMxNh5CYS6cu8/Zdnio4G9qav1+DO/UlMu9LJMrKfsWkY6urEi5S6V0m7v/ql1KeN/03g68APgXd0q1FmZj1X4lMlbR0CRkTjV+qaLrXFzKwUen0qpJVWBTh7yX+vCIiISAfLMDN7PqjqRAoR0eVRXMzMyqmyR9xmZscsJ24zswqp8jluM7NjlhO3mVm15GoVyqISibtvuMa8zUd3/O9/6tl0xVxhzVibM9aMputFu89tk/oz06NkCnVQejVbh9Lionmb04qZJ799ahJ76y//TRK75fSXJbH1QycmsZHj0iIYgNk70jb2pzVRHFqaxsZekBZxzJqTzoBzaDR9vcYy0+zkCmFOWJgWgFyweGsSO+/4jUnszKHt6fb60yKTk/rTQ7KPbkmHrv8fX01LHv4qnZSI+VvS2WBe8syBdEWgb29mcM6DmT9ApnArG8vJfSays9Ok26vlPjvtFq+1qW9epmLsGNHt2iMk9Uu6W9JXi/uLJd0iaX3xc1G322BmNmklLsDpeuIGPgQ81HD/KmBtRJwNrOXocb7NzHqvjXFKennxsquJW9KpwNuBv2gIX8pz1ZdrgHd2sw1mZlNyDB9xfxr4HY6eL3lZRGwFKH6mJ1YBSVdIWidp3chIen7RzKyrjsXELemngO0R8b2pPD8iVkfEyohYOTiYGWLOzKxLRL1XSaulV7p5xH0BcImkx4BrgTdL+iKwTdJygOJnegnfzKyXOniOW9JFkh6RtEFSck1P0s9Luq9YviPpFa222bXEHREfjYhTI+J04L3A/4uIXwBuBFYVq60CbuhWG8zMpqwDp0ok9QOfBS4GzgF+TtI5Tas9Cvx4RJwL/AGwutV2e9GP++PAdZIuBzYBl7V6gsZqDOw6uj9r7N6brthuv+tMf9JO99nO9cUm14+7XZnnDm14KoktHzolif30rN9KYu9+Wzrz3F++6Lok9vBIfpyxP3z07Uns8afT2QsWHJf22f6ZF96dxH5pwT1JbK7St2ct82npI32tH89MgvH9w+lrs3k4bfPDB09OYnc/kz534wNpbNl307a86OF0coW+rTuTWBwYZ9aKzHsz2086E4vaNE7ERokrUAByOaCTOnMO+zxgQ0RsBJB0LfUOGg/+224ivtOw/neBtBijyYwk7oi4Fbi1uL2T+pyVZtZKpw8orG1tngpZKmldw/3VEdF4xHwK8ETD/c3AaybY3uW0MRF7JSonzcxmXHuJe0dErJzg8dyg3tktS3oT9cT9+lY7deI2M2sWHes1shk4reH+qcCW5pUknUu93uXi4qzEhGaictLMrHo604/7TuBsSWdIGqLeUePGxhUkvQD4CvCLEfGDdjbqI24zs4xOlLRHxKikDwA3A/3A5yPiAUlXFo9fDfw+sAT4U9U7NYy2OP3ixG1mltWhysiIuAm4qSl2dcPt9wPvn8w2nbjNzJr1uKS9FSduM7MmwlOXTV8EDB890H4cTicWmFYBwnSKDdTmNd6+zCD0uef2ZXoQ5Qawz/y+s7+/KYmdvn95Evvmg69LYn9/1gXpLs7JD/D18y+7M4n9+dlfSmIjkf4uN+xNK3o/tOmSJLZnZFYS2z8ylMSe3jM/iR3cNSeJaX9axDS4O339BzN1HfO3pO+jMzelExcMrU8na4i96aQOY5mJMWaq4GVaRTltUu493GG1g+MULHWIE7eZWdU4cZuZVYwTt5lZhfR4hptWnLjNzHKcuM3MqqWXEyW04sRtZpbhUyVmZlXiAhwzswpy4p6m0TFi57NHhWJ4uEeNyWizcCKyY+Jngm0W9MRIWpSjTGFS//1pocLijWmByuLvpoUsh1+4KLvvG898YxL74llpbHRe+toM7Up/v4FMnU9/pkZlMLPewt3pPpYcTj91/YfS13rgUPo+Gtx5IIlpx64kVtudzmwzlisMy8gWwZR9xplJyL/X29Tm+1+5orQOceWkmVkFaQYqTKfKidvMrJnPcZuZVY9PlZiZVY0Tt5lZtfiI28ysapy4zcwqpHOzvHdFNRJ3rUY0DTw/E4PBT8e0BpKfRn/eXP/ZOJD2S+ZgOgmAdqX9kgef2IJmpxMaLHt8SRJbuDHt831o0WC6n8zvN7gvbfjgnrSP9cDTmVkO9qe/X3aijdx7Jjf5RqZ/cC1TN/B874vdM+3WRXQxB7gft1VaLmmbHROivJm7zTm3Jk/SbEl3SLpX0gOS/ksRXyzpFknri5/50jwzsx5StF56pWuJGzgMvDkiXgGsAC6SdD5wFbA2Is4G1hb3zczKI9pceqRriTvqjsySOlgsAVwKrCnia4B3dqsNZmZTpVrrpVe6ecSNpH5J9wDbgVsi4nZgWURsBSh+njjOc6+QtE7SuuFob+AeM7NOOWYTd0SMRcQK4FTgPEkvn8RzV0fEyohYOSRfIDOzGRTUL062Wnqkq4n7iIjYBdwKXARsk7QcoPi5fSbaYGY2GcfkxUlJJ0haWNyeA/wE8DBwI7CqWG0VcEO32mBmNmUlvjjZzX7cy4E1kvqpf0FcFxFflfSvwHWSLgc2AZe12lAA0VwoUfJCh6hN/TtxWsU77cq8fjGaie0byT5dB9PJGYaeeTaJzVqc9vaMOUPp9vakMyREpiBoLFNs0/GCjZK/t6zQxb/TMVuAExH3Aa/MxHcCF3Zrv2Zm0xbhiRTMzCqnvHnbidvMLOeYPFViZlZZQX5QspJw4jYzyylv3p6ZftxmZlXTqX7cki6S9IikDZKSsZkkvVTSv0o6LOkj7WzTR9xmZhmd6FVSdIf+LPAWYDNwp6QbI+LBhtWeAX6DSYzb5CNuM7NmnRsd8DxgQ0RsjIhh4FrqA+09t6uI7RFxJ5AvmsioxhF3RFqAU3bTmcVmGsU70zKJNuf+HtqdxvqG0/ei5s1Nt3coHUislpvZZrTt97Y9z3V/BpyObP8U4ImG+5uB10x3o9VI3GZmM62945ilktY13F8dEasb7ufKoKf9jeDEbWaW0eYR946IWDnB45uB0xrunwpsmU67wOe4zcxSnTvHfSdwtqQzJA0B76U+0N60+IjbzCzRmbFKImJU0geAm4F+4PMR8YCkK4vHr5Z0ErAOOB6oSfowcE5EpKOsFZy4zcxyOjRRQkTcBNzUFLu64fZT1E+htM2J28ysWfR2arJWnLjNzHJ6ODVZK07cZmY55c3bTtylVNEZWHJFObXMTDlqt5iqoq+DPT+oVt73nxO3mVmzoN0CnJ5w4jYzayKiUyXvXeHEbWaW48RtZlYxTtxmZhXic9xmZtXjXiVmZpUSPlXSEe7TW0m5vt25SRPUlw5b3M2B8s0mFDhxm5lVTomPFbs2Hrek0yR9U9JDkh6Q9KEivljSLZLWFz8XdasNZmZTpYiWS690cyKFUeC3IuJlwPnAr0s6B7gKWBsRZwNri/tmZuUS0Xrpka4l7ojYGhF3Fbf3Ag9RnzjzUmBNsdoaJjElvZnZjIiAsVrrpUdm5By3pNOBVwK3A8siYivUk7ukE8d5zhXAFQCzSWcFNzPrqhJfnOz6nJOS5gN/B3x4oql4mkXE6ohYGRErB5nVvQaameUci6dKACQNUk/a10TEV4rwNknLi8eXA9u72QYzs0kLoBatlx7pZq8SAZ8DHoqI/9nw0I3AquL2KuCGbrXBzGxqol470mrpkW6e474A+EXg+5LuKWK/B3wcuE7S5cAm4LIutsHKKPOGjzbnVjCbEUFPLz620rXEHRH/DKTlcHUXdmu/ZmYdUeKLk66cNDPLceI2M6sSDzJlZlYtAXhYVzOzivERt5lZlcSx2avEzKyyAqLEcwA4cZuZ5ZR4Ig8n7m5R14eBySvxUcKE/HrZJOVmTQI6NwGCz3GbmVVIhHuVmJlVjo+4zcyqJLITXZeFE7eZWbMjw7qWlBO3mVlOiS9cO3GbmTUJIHzEbWZWIRE+4jYzq5oyX5xUlLjLyxGSngYeB5YCO3rcnFbK3saytw/K38aytw/K38Zutu+FEXHCdDYg6evU29jKjoi4aDr7mopKJO4jJK2LiJW9bsdEyt7GsrcPyt/GsrcPyt/Gsrev7HpUZ2xmZlPlxG1mVjFVS9yre92ANpS9jWVvH5S/jWVvH5S/jWVvX6lV6hy3mZlV74jbzOyY58RtZlYxpUrckk6T9E1JD0l6QNKHivhiSbdIWl/8XNTwnI9K2iDpEUlv7VH7PiXpYUn3Sbpe0sJetG+iNjY8/hFJIWlpQ6znr2Hx2AeLNjwg6ZNlap+kFZK+K+keSeskndeL9hX7my3pDkn3Fm38L0W8LJ+T8dpXms9J5UVEaRZgOfCq4vZxwA+Ac4BPAlcV8auATxS3zwHuBWYBZwA/BPp70L6fBAaK+Cd61b6J2ljcPw24maKYqWSv4ZuAfwJmFY+dWLL2fQO4uIi/Dbi1h39jAfOL24PA7cD5JfqcjNe+0nxOqr6U6og7IrZGxF3F7b3AQ8ApwKXAmmK1NcA7i9uXAtdGxOGIeBTYAJxHl4zXvoj4RkSMFqt9Fzi1F+2bqI3Fw38M/A71MXSOKMVrCPwq8PGIOFw8tr1k7Qvg+GK1BcCWXrSvaFdExL7i7mCxBOX5nGTbV6bPSdWVKnE3knQ68Erq39bLImIr1D9YwInFaqcATzQ8bTPPJamZbF+jXwa+VtzuWfvg6DZKugR4MiLubVqtLK/hi4Efk3S7pG9JenXJ2vdh4FOSngD+CPhoL9snqV/SPcB24JaIKNXnZJz2NSrN56SKSpm4Jc0H/g74cETsmWjVTKzr/RvHa5+kjwGjwDW9bF/Rln9rY9GmjwG/n1s1E+vFazgALKL+L/VvA9dJUona96vAb0bEacBvAp87smov2hcRYxGxgvpR63mSXj7B6jPexonaV6bPSVWVLnFLGqT+gbkmIr5ShLdJWl48vpz6tzjUv5lPa3j6qTz3L+xMtg9Jq4CfAn4+Io686Wa8feO08Szq5w7vlfRY0Y67JJ3UizaO8xpuBr5S/Jt9B/W5upeWqH2rgCO3/5bn/pXvyd/4iIjYBdwKXESJPifjtK9Un5NK6/VJ9saF+jfvF4BPN8U/xdEXXT5Z3P4Rjr6osZHuX3TJte8i4EHghKb4jLZvojY2rfMYz12cLMtreCXwX4vbL6b+r7NK1L6HgDcWty8EvtfDv/EJwMLi9hzg29STYVk+J+O1rzSfk6ovPW9A0x/w9dT/RboPuKdY3gYsAdYC64ufixue8zHqV6Efobjq34P2bSgSzZHY1b1o30RtbFrnMYrEXaLXcAj4InA/cBfw5pK17/XA94oEczvwoz38G58L3F208X7g94t4WT4n47WvNJ+Tqi8ueTczq5jSneM2M7OJOXGbmVWME7eZWcU4cZuZVYwTt5lZxThxW6lJ2td6LbNjixO3mVnFOHFbJajuU5Lul/R9Se8p4m+UdKukLxdjPV9TjHFi9rw10OsGmLXpp4EVwCuoj2Fyp6TbisdeSb1segvwL8AFwD/3oI1mM8JH3FYVrwe+FPVR57YB3wKODP16R0Rsjoga9VLq03vTRLOZ4cRtVTHR6Y/DDbfH8H+S9jznxG1VcRvwnmKA/hOANwB39LhNZj3hIxOriuuB11IfnS+A34mIpyS9tLfNMpt5Hh3QzKxifKrEzKxinLjNzCrGidvMrGKcuM3MKsaJ28ysYpy4zcwqxonbzKxi/j+YURf3AB7MngAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "moran_da.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using local `NetCDF` dataset\n", - "\n", - "In the earlier example we used an example dataset from xarray for building weights object. Additonally, we had to pass the custom layer name to the builder. \n", - "\n", - "In this small example we'll build `KNN` distance weight object using a local `NetCDF` dataset with different dimensions names which doesn't belong to the default list of dimensions.\n", - "\n", - "We'll also see how to speed up the reverse journey (from weights object to `DataArray`) by passing prebuilt `coords` and `attrs` to `w2da` method. " - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Dimensions: (latitude: 73, longitude: 144, time: 62)\n", - "Coordinates:\n", - " * longitude (longitude) float32 0.0 2.5 5.0 7.5 ... 350.0 352.5 355.0 357.5\n", - " * latitude (latitude) float32 90.0 87.5 85.0 82.5 ... -85.0 -87.5 -90.0\n", - " * time (time) datetime64[ns] 2002-07-01T12:00:00 ... 2002-07-31T18:00:00\n", - "Data variables:\n", - " tcw (time, latitude, longitude) float32 ...\n", - " tcwv (time, latitude, longitude) float32 ...\n", - " lsp (time, latitude, longitude) float32 ...\n", - " cp (time, latitude, longitude) float32 ...\n", - " msl (time, latitude, longitude) float32 ...\n", - " blh (time, latitude, longitude) float32 ...\n", - " tcc (time, latitude, longitude) float32 ...\n", - " p10u (time, latitude, longitude) float32 ...\n", - " p10v (time, latitude, longitude) float32 ...\n", - " p2t (time, latitude, longitude) float32 ...\n", - " p2d (time, latitude, longitude) float32 ...\n", - " e (time, latitude, longitude) float32 ...\n", - " lcc (time, latitude, longitude) float32 ...\n", - " mcc (time, latitude, longitude) float32 ...\n", - " hcc (time, latitude, longitude) float32 ...\n", - " tco3 (time, latitude, longitude) float32 ...\n", - " tp (time, latitude, longitude) float32 ...\n", - "Attributes:\n", - " Conventions: CF-1.0\n", - " history: 2004-09-15 17:04:29 GMT by mars2netcdf-0.92\n" - ] - } - ], - "source": [ - "# Lets load a netCDF Surface dataset\n", - "ds = xr.open_dataset('ECMWF_ERA-40_subset.nc') # After loading netCDF dataset we obtained a xarray.Dataset object\n", - "print(ds) # This Dataset object containes several data variables" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Out of 17 data variables we'll use `p2t` for our analysis. This will give us our desired `DataArray` object `da`, we will further group `da` by day, taking average over the `time` dimension." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "('day', 'latitude', 'longitude')\n" - ] - } - ], - "source": [ - "da = ds[\"p2t\"] # this will give us the required DataArray with p2t (2 metre temperature) data variable\n", - "da = da.groupby('time.day').mean()\n", - "print(da.dims)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**We can see that the none of dimensions of `da` matches with the default dimensions (`[band, time, lat, y, lon, x]`)**\n", - "\n", - "This means we have to create a dictionary mentioning the dimensions and ship it to weight builder, similar to our last example. " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "coords_labels = {}\n", - "coords_labels[\"y_label\"] = \"latitude\"\n", - "coords_labels[\"x_label\"] = \"longitude\"\n", - "coords_labels[\"z_label\"] = \"day\"\n", - "w_rook = Rook.from_xarray(da, z_value=13, coords_labels=coords_labels, sparse=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "data = da.to_series()[w_rook.index] # we derived the data from DataArray similar to our last example " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the last example we only passed the `data` values and weight object to `w2da` method, which then created the necessary `coords` to build our required `DataArray`. This process can be speed up by passing `coords` from the existing `DataArray` `da` which we used earlier.\n", - "\n", - "Along with `coords` we can also pass `attrs` of the same `DataArray` this will help `w2da` to retain all the properties of original `DataArray`.\n", - "\n", - "Let's compare the `DataArray` returned by `w2da` and original `DataArray`. For this we'll ship the derived data straight to `w2da` without any statistical analysis." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "da1 = raster.wsp2da(data, w_rook, attrs=da.attrs, coords=da[12:13].coords)\n", - "xr.DataArray.equals(da[12:13], da1) # method to compare 2 DataArray, if true then w2da was successfull" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using local `GeoTIFF` dataset\n", - "\n", - "Up until now we've only played with `netCDF` datasets but in this example we'll use a `raster.tif` file to see how interface interacts with it. We'll also see how these methods handle missing data. \n", - "\n", - "Unlike earlier we'll use weight builder methods from `raster.py`, which we can call directly. Just a reminder that `from_xarray` uses methods from `raster.py` and therefore only difference exists in the API. \n", - "\n", - "To access GDAL Raster Formats `xarray` offers `open_rasterio` method which uses `rasterio` as backend. It loads metadata, coordinate values from the raster file and assign them to the `DataArray`. " - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "[827200 values with dtype=float32]\n", - "Coordinates:\n", - " * band (band) int64 1\n", - " * y (y) float64 50.18 50.18 50.18 50.18 ... 49.45 49.45 49.45 49.45\n", - " * x (x) float64 5.745 5.746 5.747 5.747 ... 6.525 6.526 6.527 6.527\n", - "Attributes:\n", - " transform: (0.0008333333297872345, 0.0, 5.744583325, 0.0, -0.0008333...\n", - " crs: +init=epsg:4326\n", - " res: (0.0008333333297872345, 0.0008333333295454553)\n", - " is_tiled: 0\n", - " nodatavals: (-99999.0,)\n", - " scales: (1.0,)\n", - " offsets: (0.0,)\n", - " AREA_OR_POINT: Area\n" - ] - } - ], - "source": [ - "# Loading raster data with missing values\n", - "da = xr.open_rasterio('lux_ppp_2019.tif')\n", - "print(da)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACJeUlEQVR4nO39e7xtWVXfi35bH2O+1mu/965dLwrkYYwJxpRGQ2IwpIqC+BGTIxEVwxENN+cQj3lgRI/CzcOE3NzPDXhyEkNQglEjYCQaIxQVcpFrVGJVRAFBUF5VtXft93rP5+jt/tH7GLPPMcd8rTXnWmuvPX6fz/qs+RiPPsacs/XWW/u1XxNVpUSJEiVK3P4whz2AEiVKlCgxH5QGvUSJEiWOCUqDXqJEiRLHBKVBL1GiRIljgtKglyhRosQxQWnQS5QoUeKYoDToJQ4FIvIFEflLx+1cJUocJkqDXqLEHiAif01EfkNEdkXkw4c9nhIlAOLDHkCJErcpbgJvBb4c+IuHO5QSJRxKD73EYeJrROT3ReSWiLxTROoAInJKRH5FRK75935FRO5NdxKRD4vIPxKR/y4iWyLyQRE5G7z/XSLyRRG5ISL/5yIGrqr/VVXfA1xaxPFLlNgLSoNe4jDxncBLgS8Dng/8iH/dAO8EngXcDzSBf5nb9zuA7wbOA1XgDQAi8hXAvwa+C7gbOAPcywiIyBtFZH3U31yuskSJA0Jp0EscJv6lqj6pqjeBHwO+HUBVb6jqf1TVXVXd8u/9hdy+71TVz6hqE3gP8FX+9W8FfkVVP6KqbeBHATtqAKr6FlU9OepvrldbosSCUcbQSxwmngwefxHnUSMiS8C/AB4BTvn3V0UkUtXEP38m2HcXWPGP7w6Pq6o7InJjAWMvUeLIofTQSxwm7gse308/Hv33gBcAf0ZV14Bv8K/LFMe8HB7XTw5nRm0sIj8sItuj/ma5mBIlDhulQS9xmHi9iNwrIqeBHwbe7V9fxcXN1/17b57hmL8AfJOI/DkRqQL/kDHfc1X9J6q6Mupv1H4iEvkkbgwYEamLSGWGcZYoMXeUBr3EYeLngA8Cn/N//9i//lagAVwHfgv4wLQHVNVPAq/3x74M3AKemtuI+/gu3KTzr4E/7x//2wWcp0SJqSFlg4sSJUqUOB4oPfQSJUqUOCYoDXqJEiVKHBOUBr1EiRIljglKg16iRIkSxwTHqrDo7Nmz+sADDxz2MO4IfOaJzwEg4qjhCjz/q599iCMqUWJ6PPHEE9dV9dx+jvHSb1zWGzeTyRsCT/xe+1FVfWQ/55sGx8qgP/DAAzz++OOHPYxjhYfMKwtf/zPijbcEi7zfgceSdxduX6LEUYKIfHG/x7hxM+F/PHr/VNtGFz97dvJW+8exMugl9oZRRntaiBHUKuhIyZQSJY4dFLCjZYIOBaVBv0OxXyMeQm2/luEh80oes+/d1/GmGdt+z1GixH6hKF2dLuRyUCgNeonZIAZTibPHttNZ2HkyFHj+odEvjXuJw0LpoZc4dMzknYtxBtUbWFOtQmQgsWiSZOEWMQJEqNV9Gdts3/ScRWGcnLEvjXuJw4CiJEes0r406Hc6xIyPgQevSRShSQJJ4v4PbKZD24M30IEBnilpOiImL1EEagdCPSVKHAYsR+s7WBr0OwwD3rk35u6h97CTETFBtWhvD8tLb8zFCIjhoejb9p081V535HvziOGXKDENFEhKg17iyEAtEAVPF/DlDMI1qPWrgRGhlBIlbjOUHnqJI4XUiJtqFXpdZ2zdG6N3GhXbHn0S1PpkqhgE+snU0rCXuE2hQLeMoZc4LBQmQ70HrUmCaTQAsK32xPCKRNGARz+Ri64W2+0NHQP1laZW+zH6fRj5MtxS4qCgaBlyKXEEoRZNQLu9sfHpge2tcV69Woj916jdZiwtNzTUYty5xCBRhKlG/mVBk6QsVCpx9KGQHC17Xhr0OwWF3nkYOlGLbbemPl5qeKVaQTtdf4gpv91pTN0nZSWKkEoMVd/BbXsHtb2ZQzuld17iIOEqRY8WSoN+J2OvHrCYzChruz2SsjjNedUaSMMsfoUw8/E80kmrNOwlDgZCMlXf8oNDadCPOWYu8c8VEoWPszg5DBQV7Ss0koZ7EjJvXW1v8n5jUBr2EgcBlxQtDXqJBWNfOi1BCAboh0VqNcSYLM6uVkdz1vd4TmfYk+y8YzFBGqBEiUXD8dBLg15iQdi34FbOiIoRJK5gVpYhMmi7A7Nqt8gIGuSk+PiIkv90TBgBq35yKXntJQ4HtvTQS8wbc1FO9GwTiTzbxCcoZW0V4ghUHX98Z3d0mCWtPA2MeBYPzxvwPRpgtQoBE2fU8ctwS4lFo/TQS8wN85S/zRKcPtwhRpATa84L7iWw20SbLbTTGcsTT415+t929sEpL/Lgg9BMOO709dKIlzhIKEJyxLp4lgb9NsNcDXkKn/jMPPTIYG/ecjFzH2KZhhvuvOXEFwsF8fVZK0uDMc0clilR4gAxz5CLiJwE3gF8JW4B8FrgD4B3Aw8AXwD+mqreGnWM0qDfBhgy4kUJw/0aNy++NcBeSY87rUHOe9DpWPc6tpK2WOIIQxE6Gk3ecHq8DfiAqn6riFSBJeCHgQ+p6ltE5I3AG4EfHHWAha4XROQLIvJxEfmYiDzuXzstIo+JyGf9/1Mj9v0pEbkqIp9Y5BiPOoqMuRghWl4iWlnGNOrzPaHaflglz3jZ4/FKlDiOcIVFZqq/SRCRNeAbgJ8EUNWOqq4DrwDe5Td7F/At445zEAGgb1TVr1LVB/3zN+JmnOcBH/LPi/DvgIV3yT7KGBVeCSsy0yrNEg6ld17iIJH44qJJf8BZEXk8+Htd7lDPAa4B7xSR3xGRd4jIMnBBVS8D+P/nx43nMEIurwBe7B+/C/gwBUsIVf2IiDxwYKO6jSBGsM3m/op6Ai30A9dNmRCGkSjKBMPKsEuJowpVIdGpfeLrgVNbhBj4auD7VPWjIvI2Rju7I7FoD12BD4rIE8GMNNOMMwki8rp01rt27do+h3v0kTWkiCJMJXac7L0cJ4qQuOL+h1TDBcKJcFUx1Wp27iKkyovpdiVKHFVYZKq/KfAU8JSqftQ//wWcgb8iIhcB/P+r4w6yaA/9Rap6SUTOA4+JyKfnfQJVfTvwdoAHH3zwiGmf7Q3jmCyaJM57tb29edV5wy0GREEXG7rJGDRemVFIk6e5atN05WAERJzOy5QovfISBwmXFJ2PCVXVZ0TkSRF5gar+AfAS4Pf932uAt/j/vzTuOAs16Kp6yf+/KiLvA74WP+Oo6uVpZpwSBZhDkjJltOz7eFOfVt0k1O0NsmiKIMYbc1smVUscWaRJ0Tni+4Cf9QyXzwHfjYuivEdEvgf4EjCWt7wwg+4D+kZVt/zjh4F/CPwyM8w4JRaIgzSWocJiwug4eirW1Zxusim98hKHiWSOPHRV/RhQFGd/ybTHWGTg9ALw6yLyu8D/AP6Lqn4AZ8gfEpHPAg/554jI3SLyq+nOIvIfgN8EXiAiT/kZ6thjIYVDs0BMP87tk5MLia9PKhgqPfMSRxxppeg0fweFhXnoqvo54IUFr9+gYMbx4ZmXB8+/fVFjuyNR5BGPEM5Sq1nytej9hYylCKVRL3HEYadnuRwIykrROwCZp81wz07Xx5NcSCSZ2FN0uhObYs30UG8923QO2uolShwgnNBFadBLBDiIEEumseKehG8MG+55GNTQWItBIgp7jWZSuICdUZb3MfteHjKvLHnnJQ4NitCdb+n/vlEa9ENAoTbLIj3TUcdOBbm8d+y89WRPBT2F5/PXVeh5i3HMl06nH96Z4ZyHnmsoccdDlVkKiw4EpUE/QCzUCO1nUogizErdGfRuz0nlFmmOuycD58wmgzBkEnjoI7sapQqPZailxG2LqYuGDgylQT8gFBrzQDs8H8eeCqERn2bffBI06+eZIN0eUq1gGg3krnOw28RubEIcu69sYvvdgehrn5t6DUTQXs93M4qy67LdCb1B1e6721AZailxWFCOnod+tEZzTDHSMw86+gywSiZBTL90Ph+vjisuLh3SDcPHOQ974LAVF8/WrW2SWxsu/NLpIsYgXmYgz35J9dLxeulZ6GZc4VA4phmNeWnASxwl3DG0xRJTwnvJA3FnGBv3zvYrMJqpnvnAMUYdK1fsY7e3B+PeACTYZrPgdQ8fd5dGg6jhWtQRmfEl+2lvUL+vG0ruuCPGXMbOSxwVKFL2FC0xAeM81iDmPNCAIrdvEaNkmvMWaqtkx0tym6cNm2NkZRm80FZUr4ExLlzTYTiUlOq5nzkNqmi3h9Sq2PXNgWRs2fi5xFGHAt05abnMC0drNMcUKcVuJGYwXKk416z7zYxpwiFisM0WNFuFK4xRyU6JIpKb66A2E+0yJ1bR3SbJzm5pyEvcJsi0zo8MSoN+FBHGtgs88GkrPveFSccq4rADRR5+fj/b7QVsmAS7tbVnpkvJQy9xWFCOXqXo0RpNib3hsLRP9qrxErJsrGbc9yHJgRlQxtZLHAZm6Fh0ICgN+gFgZmOTGuiDNtKeeTKq8cTQtvNA2MOUguToDCiNeomDhKpg1Uz1d1AoDfpRwKIUDWcehvQ95EnjGTfhzHo9wSSyVw89RWnUSxwUXFI0murvoFDG0A8bB5HgnBIjqzpnQU5OIKw4HbU99D3z/XjoZRy9xMFipp6iB4LSoC8YEz3GI2DI5w0xksXER2xQLBlQosRtBJcUPVosl6M1vRwz3JHLf7XYTmcqga+J4ZUZQzd35P0ucag4apWipUFfEI6UcZnGKB5kDD9lt3iGyzSVrNPiSN33EscaaaXoNH8HhTLksgDM1ajkWCdTS9uGSoa51/sHK+C4HxSmvAZTiQfDN1PsF97/Mq5eYpGYc5PofaM06HPCSCM+yoBOi5EFPNPvPzSkQENlWqSTykLj3RIoOQJSrWJWV7Bb29Dp7CthWqLEvKEKXVsa9GODvBHPVAan8XzD0vpFNLjItFnyp5U9nWvfhjy9xgnXmk4cpl6DOAbfrFp9Vem0KD3zEouGC7kcLYN+tEZzG2HAmAdytqmK4FQ87hCL4KIXHHPPXu4E0bCp4/TjjhMUGdlmE4xAkmBb7cnqkzmUsfQSB4GjVim6UA9dRL4AbOFcq56qPigip4F3Aw8AXwD+mqreKtj3EeBtQAS8Q1Xfssix7gcZTW8vTSrY4z57Pe4Iz33u50mRGvEZ4v5SrSKNOlKvQ6/nTzFihTDmuGUsvcQicafSFr9RVb9KVR/0z98IfEhVnwd8yD8fgIhEwP8NvAz4CuDbReQrDmCse0KWqCy51MOYQrEx/J+tILo97I1bJDduzqfgqUSJuWO+pf8i8gUR+biIfExEHvevnRaRx0Tks/7/qXHHOIyQyyuAd/nH7wK+pWCbrwX+UFU/p6od4Of9fiWmgEQRplbHNBqupVwYApoUGvHhI1OrHwyVMVSQ9H+22STZ3nF89hnYLaNQeuclFgXr+4pO+psBMzvAIRb9i1XggyLyhIi8zr92QVUvA/j/5wv2uwd4Mnj+lH9tCCLyOhF5XEQev3bt2hyHPh5H2Uik/G6pVpFqtf/GNMlXH8fOOh8dlsZMQY4h1U6fZUxH+XMqcXvDsVyiqf72gWkc4AyLZrm8SFUvich54DER+fSU+xVNaYXZPFV9O/B2gAcffPBAeW0TG1ccIjRJXEs5mN3L9XF2xzhJXI/SsF3dIZTqm2oVqcS+h2kydUejMo5eYlGYsQXd2TSM4vF2b7sGD+kcYAX+jX9/wAH2tnQkFmrQVfWS/39VRN6HC6VcEZGLfnAXgasFuz4F3Bc8vxe4tMix7hUTjfoiKImTsJ9WdDmYivuK2G4wVy6Shz7i2NrrZrRHiUBtbzFjKFFiBswQTrkehFFGYa8OcIaFradFZFlEVtPHwMPAJ4BfBl7jN3sN8EsFu/828DwRebaIVIFX+f2OJB6z7x3t/U3J7jhySGPaYrLwy4C87ryQarB72mdGgcwVZKlVbLeH9rrjw0Fj7uVD5pVHdkVV4vZDynKZV+l/6AADAw4wwBgHOMMiLckF4NdF5HeB/wH8F1X9APAW4CER+SzwkH+OiNwtIr8KoKo94G8BjwKfAt6jqp9c4Fjngj0v6WfheB+g8dckwbZbWel91px6zmNIK1cH2EIhayigPobdjdJ9w79pkBr20riX2C/mxXLZpwOcYWEhF1X9HPDCgtdvAC8peP0S8PLg+a8Cv7qo8d0WSHnZqeeaGrRx8eNAjxz68e59U/8WGDYaqZk+Tis+XT2UcgAlDgmqQm9+laIXgPeJCDi7/HOq+gER+W3gPSLyPcCXgLFeSFn6Pyc8ZF6ZGdN5UO3S/dWagXhx2FFoKPyRGvNKjHZ7EBlotw+Mxz2k95KPiaeCYeF4ppDYHTmB5Y49zfFKlJgn5lVYNKsDPAqlQd8DhpbqaRw4MLDOcM3hZKlh9MdMmSeAY58YARHEGNRapF6DxEK3h7bbcxjADENNkkEjHoRMilYNUx1z2m1LQ17igHEUK0VLgz4DCmOuQTx50BOOhj3UvSJjd/i+m7WaM5CnT0KlgtZiEMF0E+gl2EvPZGOZW0hiWg94FEslSZxq5Azx90L530NASX0sMQqlQT9uGGPAjC/qyZJ4k5KfI9+SLF5slpeQagXOnCJZqbu0tiX7H126HuxTgf1ozAxc0JwkfGc4zlCoaNwEuaCQS34Sf8i8sjTqJYCZeegHgtKgB8j/eMMfbhojn8kgWcU06pilBvbWOrbbS98o2tj9D/ttpuyNRt29dfokRJHTOVmqYlodpNUFa9GlmitdA5DUsw2YI6MQhIqOXG/P/P2eqqXd3nMYj6x9ty9cgkdbP8tD0bcdTh1BidsGM5b1Lxx3vEEfR10bem/GH7YmiYtjq04fOkjVEFOGS73mPHJV9NoNtNN1yc7LV1C1qBikEiNLDRd+2dmFXm/6zkbMMSwzL+yFFhncN3cIl0wN8xpFyeH0M37MvtfJ9Pp9H668aigHkPLhS5QA5z/1ygYXRwMHxUFWq6jX885CJ9N2IBID1mI3tjJj4op7Yq+DYKDXw7bavqCgiXZnM+b9Ux2NePVEhK31xqx0UmbMLInpD3Z+DoCHq98x9l6UYZcSKcqQy1FD3hsMWCVziTur5EIAU1oYtdhOB3wIwA3VMWe02Qw2c8dOdnYHzzvLGJlRJiBk9PhK0qkrYqcI/2SFRgX9UKeuVJ3xs8tCavSLlcLPLu/dFzKdgMeSd8903hK3L8oY+lFEyiDJ4sjzjZnuiwOeG8e+aZC5tnemEvcLj2aJO3t+fCoFMPW4xrWgS6mNVS8B0G47/n2OBpmFVabpYDTr55if3Iq6Sk3YNwzhlDj+0NKgH01khveASusHZGC9QTWV2CVOF9nByBtyAOIYY3xjiSRx7d6mPb83rjNPWCOOnXrmEkVgJrS0m+X+5Hu35vfPJ4UJWEW93HY+jo5Usu2yRPes4ypxLHDUkqJHK6J/kAhFoPZIq9vXuYF8IdJCjXkKH8qx3R622cI2m+6v1T6Y848cljrhrXYb/CQxrTZL7kD9v/R5/r288FcyyAZK9eTzxx2in/rJUaLIyfvGlew7VerEHH+ozlecax64cz30Q/amUlqhq/b0pfozdLWfBzKPsz+oBZ9wTKjEh3EQdQZ9XLhjkZz6HLOlMPmaeuuRARUkrdw10o+7H0UFzRJzhpCULJfDR+Y9HZb+R8DESHnPBzqGNOySesBJ0o9XL3Is4+LeqZpizxYmWbMwSF5eYB5Ij5cLv2R5heB8EkWY5SX3eKmBttuOxdTrDYRsbgvGUIl9o4yhHzJCES0Xr/UfyCzx43lh3kaJfhhnUmxbkwSsIpW4MI4803lnvY5piplyx3WGfEFGMp90LUKQRNZu1xl1ESfDUHeFX/R6rl6g2epP1CWOLUotl0NGPq6pSQI9i9RqEEWIVcQsODG5KMxCP0zDG2klae4Yeznv1PATz9iq1DCJuciQ0CyTkVpst+e873abpDMo+ZtOUFKtQrUC3bKj0rGHkhVnHxXcUQY9g1/aA24Z32z135pnGPuolo3PMx497fmKkpSTMI7mOO5c055n1MpgzP79FczgF0UTb9S7PbC2v/IrcaxRslwOCSNZByErIs+QmBXTdqYvarNWtNmMHe4njS39M/Uaplp1zIxxTJIpxjgVUsM867GCQp+Z9t3PJDXu8x/1XcmzYxKLdns8XP2OvY+jxJGH+qToNH8HhTvTQ18gBmLQk0IK0x5rHsnKIIyhQUhpbMy8iGmy1zHM6GWHicWZRMPmUbG6F+RCXhJFaK/Lw5VXoVbLCtJjijLkcsA4UD5wvoBlXsebM/YcNw853PMY2xjDOrJydR7GeI9JXKlWs8lw1CTjqIsWqdSyuHuJ44uS5XInYJLB2K9kbVF1Y9r+bZKuyl6M4V5j4GOOl9IQM972PD3w3HnmKQvs7nMEvW5hviUVUEuVG0scX6iWBn3hmKtHvsCkpsSufDyjt02bqEy3y4x6UL2YFsPMo6FF6InP8R5kOYY4+Oq12wxo6Exxvql6t2ZsnnSnPSaD/XHEV5ROYug4vZlgbGWR0bHFUaMtLvybJiKRiPyOiPyKf/5CEflNEfm4iPxnEVkbsd/3i8gnROSTIvK3pznXZ5743BQDMkhccX+TSssX9WNMy++LjPkU+zqWThfb7WXGxbV466K97vA+YRJ22uTkAsM91vc7ddIDrT0V4aRho8zTH3VN4YQ0bdK76Fj+M5taWXLOE2GJownV6f4OCgfhOnw/8Kng+TuAN6rqnwDeB/xAfgcR+UrgbwBfi+uE/U0i8rx9jUKGGzlnr4/DvOPi+eOmw0gnl2mTekF15aRjFxq1g8AYI5sZxlFGdprJR3MNJ45w7uKh6NvmfswShwtFsNZM9XdQWOiZRORe4C/jjHiKFwAf8Y8fA/6Xgl3/GPBbqrqrqj3g14C/sq/B5IzaVH0+YWAiyFrCzZNOGI5vlm1n5WbPEj6adfuiffcTrvL321SrmHqtL3pVhBGTwth9ph3DtPTTSfBjKwW7jh90yr+DwqKnjrcCfx/XxjjFJ4Bv9o9fCdxXsN8ngG8QkTMisgS8fMR2iMjrRORxEXm8y+RE1ICy3ixL76DCcS8dgYoH0zdEczvmqPPAdMYn7/nPyh/fL5ffH0OTxIWkkoRUd33qcaSaL1NslxntvRj/MqxyZ8MnRaf5mwYF4enTIvKYiHzW/z816RgLM+gi8k3AVVV9IvfWa4HXi8gTwCowJHqhqp8C/hnOg/8A8LtAIf9LVd+uqg+q6oN//E//sYU0Fkj1w4+s4NIkYzSKaiimX1wUGrV88vCwjJan/YW5gmn3A0ZPAmmBVbWKVKuukXe9NmTY9/15585dNr04hpivi54PT78R+JCqPg/4kH8+FotkubwI+GYReTlQB9ZE5GdU9dXAwwAi8nxcSGYIqvqTwE/67f4J8NS0Jw5/OPtZ5ooRL28rSMR0Xt9BIxWN8mMrZH6MiteDa3JRrbrNkgTtdA5m4pqWcbLHxHR6jRJBETXSdVpKIME14R53/rEnmhBaCt4Pv4ulcT8emBdtMQhP/xjwd/3LrwBe7B+/C/gw8IPjjrMwg66qPwT8EICIvBh4g6q+WkTOq+pVETHAjwA/UbR/sN39wF8Fvn4v48j/cKY28HkjIsLCZVH3ULSTGibTaKDWIr2ezw8UGJpQGCvdt9MF36QBq54OuOBimFwl6MjNpqEmjtgPcEqSgHZ7fkLub+P44r66My+0FZ53EvbI+S8bTd/+UMDaqQ36WRF5PHj+dlV9e/D8rbjw9Grw2gVVvQygqpdF5PykkxwGD/3bReT1/vEvAu8EEJG7gXeo6sv9e/9RRM4AXeD1qnprHidPf0QTDXvKYfZe3IGEHfZwjrR1nSaJM0SxM87aag97j7njp4qLqB1YFTpju0BtdB0jU9sfhEtAxyZjs8ySZ8gKrwKZg3wxVl5oa6z08DhPPNWcCRhU00xEpVG/zaHA9B76dVV9sOiNMDztnd8940AMuqp+GLdcQFXfBrytYJtLuORn+vzPL3JMUxl2tYN9JfeCKdgeWZXnXioa0/Lybm826mOwXWZcA3ExCY99GDH0lJKo3Zm99DQnoKncbTIYDx+grqbGuBJDUKAV8vkzjz3/WQbsJwBpNFz4xip2a8vduwmff9lU+vbGnDjmheFp4IqIXPTe+UXg6qQDHbtK0VlwIDSyKYxQWi6+3/NMPfmMCe30GyGbw0sCB+PbS97Cdjr9sE6we5oklTTEBKi1mBNrrntTkjgp5bZjS6ln2BTeh3Dyq1aQeg09exo2t8FaZGkJ2drqTwT+ekYhbbwClEJetxPm8BMZE57+58BrgLf4/7806Vh3rEFfqDGflYOdD0HsYf+pEcSvnUzAoFCXbbcGt52XlEDBOEbF+PvDKfCKZzi22r5mjEQu+SnGe+TLS9h7zmEu34BqBV1qINdvuq5DPl8ixoWyTLUKkXGxdg1UIH0ISJMEmi1Mkrjfd2Kx29sDE3V6r4dWYaGXH0VItdqX3Q0Kp0ojfxQxPSVxj3gL8B4R+R7gSzia91gca4NeZLQfs+9dvGc+L+M3T2XDFKGhm2bb/Yacxhw7wx5olyFTZ6QXrxaI3LXGMebsaeyZNXon6qgIveWIykqVaLeHJAmcP42sbyOqaKuVJYpts+kMff7YuXHZze2hcQ6svsTnLAYuzbWxM42Ga4ohgrTaYGSgjV0pw3tEMedFbC48fQN4ySz7H1uDPspoL8yYz1PZLyzTXwQ0J1p1mCgw5vnJZijkkca9Pd2SPNUyKIpSq5iG286eWqNzZglbM6iAGugtxYhV1MTEGyCry7DbhHsuQLMDzRZs72Sfa/7zHXyeZOfNxpGGriRsIJ1bdfR6btIAzPlzsLWNhtz7gkKpTEog9x0pY/EHCAWdnuVyIDi2Bn2kJ16Q2Nqv4UyTcKZRd13gA8Gs0TuZwZDHqPDDNGPbiye/n2ue9p5Ns13g6WbyCo2Ge8tXiiLp/Rzc1SwteU+2SrK51eeWDwzB/+CiCHP1JtXYIK0OGIOtVRBrkS9c8glRxXa7iDFIu4Nd3xz4HIcm66JVRm4V0f8uDE9UEKwuvCefPHVpxErE/R/QhCmrVI8ASoN+uMj/CPYQf04fhzFO1IKqM0bdLtqeLEOQxmkzNkQ4nimLVaa6hhytbt+riDH0vbQRhDNm1idZ3T2yzWZm5AopiClPvtPBrK4g589CpwOtNrrbzCbLzMD2ehAZ7PZ2/7oCj9806pjlJfdekmBv3ESvXsN645mxYSIDnr8PfhXtPebsuOOue8T9GZiAxlA11U9a+fcHVnzz1g4qMR8cseLxY2fQZw2pSFzJPLtpDZ37gfc96/SHmGxvz/TDcz9kkzFLpuI/71VzBEYalLkjSaBWwyw1oBI7g97tIdb6xGKgE6M2S1y6oSpCgt3YQnab2D/+HJJ6TLzdQT7/NDRbWXs3bbUhMtlniIibSMVgVpa99+7oh3Znd2A1lKcyjppcsgl8mpXGJIxbSRV8xgPfx9xKZhTzpuS2HzBKg36EkBnLyFVadnt9jfIRP9BpmipMhSyOPYYalx4v/SGnhv8oasrkVi/abqOdjgtfnDyB3diExE8sAcMm9ZJDBgpR5Kh/9RrmD74Ez72P5sUlarVnET91Hd3YwtRW3fGMYDe3nQG3CstLIOIaNasdMuQHcR+GzjVlZWyGvEdexP4Zs0p6uPIqPtj9+alO9ciJ17oJN4og8udJLNrtop1udu/KZGwBZissOhAcO4P+mH2vizNOEYZIl93OK2TyD3/eBmEazzkwlAdqmPaC1LNMEkQFaTScNsyNmy7Jlzal8BNTqpWjSeJCHt6wkyTIyRP07jsLIsRXN5ELDXbvqmHO3YNYpXa9jVglurKBdLrY7R23MkhjztOESdIK0igaTlTudVVT5OkX0VKnGZuY7P7kq1zH1hLEFV7a+C4ebf77kYd/KPo2l69IKaxGMi5+eh6pxJkD8VD0baVRL0DZJHrBCAs0xiL9kXmDaVvt/UnY7iUxOeUP+8BCJdMiP+4gbJRCE7CbW4W7h6El58WnUgOJ0940gt64Sdxu03vevbTvO0VnxYBA42mXm4h+/wtgnWSBrK6QpOcqaso84TNZqOhakcHNjHNx0jirPK3V3KolijIKo/GPs+bT4WehNgtHjevGFSZW0+NowtC9y9colOGcApQslwPADEZVe110jLwsOPncwkRe+n695nbvdEb+SPc7zpAxcSgIJskBg+QeOL76NBNUwWQ7IJSVgKiPqVerRLd24dQSSIXGlS4qUP3s5f4EDOhW8cSxL+THOcLz3gvS3MnIsF6qy9Ppem66QZYbSL0OXZcTMPRDL2EyOPW2H2397NBxH668auB6pqkxGJA9gNJTz0GOmId+rFLnU/UUTZFqX09hhNKYb5G+dpEuyMjns8Ivuffk/c8D/v6kJe6mXnP/l5bcX8oDz3mJY483AmFuIu2Paq/fRG7cwux0iFpK7RNfJPqNT5Bcveb6e47qoToPpNcy6pomXeek78KkVYN3ILK/Zgt712nsfReQkyfAi7AVeeJF8fPUmI9dhRaMO7+9GBmcGO5kTKuFfoBG//h56NN6TtMwR9I4as8WGw6f2NRW2x8mldidzzxZqN63vwMOvzbmXqUUREQwJ0/A6jJqDFy5Bj5hNjbZN+OElte0SQ2ZfPESq1frWVz8UFcqkzDhu7TnY1hFugmd88tE9XOYMycwT13B7u66wqggPBKGVAaaaO+HqZMmav1xSk8dQMqk6KGjyNudByc79GbTL/+4opSpDh3QI/eLwNPGiCtp9yJWheMKxaeWGujZk0i7C1euods7k69rgjGfhvWReqdSiT0LIwmYPvsvCEvHWaRtUzi+Cfz78F7ueQIuqpyNIhdyuXSNWscpa7Kz66pLve5Maljy5x0IZ+3XKQjyORJFpVGHA/W+p8GxMujP/9PPgd9hmEOcw0Jof+GXvRJ7TvSM0q+zFBcF+4zV8c4284JTqXG0Ful1+/HR3LmyexfHcGLNGfNegqyuoDtNQh7+yOvII5zoQoMcbD9wv8QV/Ig0HJ1AFbOyjG02nSrinOAUE30islrp67akFapTTMap4ZSay6fQbs8+6YzIL9Drohtd91lv76RvDGwz8TstBjGDRICx++Q/m9x3Mv2u3/GJ0iO2UDxWBh0GudoDBu4g4tCpUfdsg6z7zxQUSlOtgtqpNLSLzpmdbxJjI+Qbpz/yUT/sKMJu72BUHaMkkJWdyhiMey+/QgqNWd5YqUW6LsRjN7fn/hmmevIhBgzeNKEK8ZotkyqEx322+ftAv5+tY6MMx7+ndU6y70Xq7MSVrGhdfIOUVD9+4Ds4QO3Uws/vjjXqJQ998RiZJDuomKs3sJOYDIW77oNnPsmQp+Eb9WXy6QRgO0P15v3EZKsNakk2Noa3ITV6c5ooR+U01KI7TffbSVcU8/wsRzJN9nPIMWOcMo7d11r3OYw4diJe4cQzTR6IYaMvRnyf3KjP2+90xmoLFX2/shqOIFE6bUHTLHi4+h1Z8ncct/4wcNRYLsfKoH/mic/xZ+TZgy8eFkMkf85xCUnN6ZDnMSNDYtRYBnpqjpWcnXweU4nduHyce97Iio9qNaTimjjrToLr6jyn+Pk8EGrHBM26Zx5jQTWoWi/rG7y254kiOI9adYlUErfyCipCZznW0EQRRTxy4rVor+cqd4H3X/nX040rh0zCIw0P+Wbej5x4LQAf2PipPR137rjdDLqI/C3gZ+fV03PhCPnSaSVckhyp4pw+r52pwjFhwu2olP2P9BTnDG23XRx9aYno1ImsInTfrfH2OymEUgfp82rVhW6yxhczHG/E5D+XblajzmcNmvT2vjLMEsDpeBMXckq7Qd11loe/9h8SbezCzi66tQ3GOP0dMWivh3Y6PLrz09khi7SYMnJA2/ZrRkoUYhoP/S7gt0XkfwI/BTyqetQKXh2e/6efw2OPv5uHzCv7gk1h0+QUI348c9MzDyF9BUJg2KMdwzIZGBMHnA8YhwM4b0qJlGrVeXvVqiuqCSe0RVXnTjVA3ygkijJvVKoVaHfQnd3px1E0lqFwx/6GWnTssE1f4Rj2iijCnDoJSw3sUhUSJTmxBKeXkc4psGDaXbi5ju46eeSHq9/Rd1byv4eBfIqvJoYhLrzEFVBbWFAVYkB+eA44aiGXidOdqv4I8DzgJ4H/FfisiPwTEfmyaU4gIpGI/I6I/Ip//kIR+U0R+biI/GcRWRux398RkU+KyCdE5D+ISH3ai3rMvjeLA/uDZdWcA+fwHryp1zCN+thy6b0i866TBET63ks6cYyiDGac9mC7UeGQoEgqFbva56D7Mdy4spD7MhbBtUmj7pg2vR7a67kEntWsyGkmhOynsIhmH/crZQ5JrQpLS30aYVi4NircNurzPyikv5E9jCH7nklfE0niCubMaVheQisx0fUtoi89g9lpE12+idluI50e3LjlPstGHXPxgvvtpQ4YjGdJ+b+BoiurWX7lkROv5ZFT31u4+8OVV833u6y40v9p/g4IU8XQVVVF5BngGaAHnAJ+QUQeU9W/P2H37wc+BaSG+x24Jqi/JiKvBX4A+NFwBxG5B/g/gK9Q1aaIvAd4FfDvprusfoxYmy1MJe6HCPL0vIyNspgflhtH4paKI8YwvNOY5Xp+3/QH5T2Uflx7ivMUIP3CR+fPudPtNp3eSvDjWbgRSg1vFCFx7EMYXms+jrMEoXZ7mHrNSS5Ms+oJWCST9FSmRVr8RBSh65v9PqPjdMwPe4U1DSaMMd9aT6oVtwptttD1DXdfUtXLm+tus0qMWVlGW20XZ7/7LrRRdfr53R72ytXh7lOzDLkSuzGsrvCyB/4O9BLe/9SPAy6xmq1055pUn9+h5oFpYuj/B67j9HWcMf4BVe2KiAE+C4w06CJyL/CXgR8D/q5/+QXAR/zjx4BHyRn0YGwNEekCS8ClaS5oCGr7krhDbymadFwThUVjwT9eTRLXzMFadNczfcYt60cdx/+Ykms3soIWc+ok2mpBq42kTIt5X08RF35lue+dt9qIMaCaKQKK77uZLtXDhszptQx5oOFkmfPQpw25DXQisiZrH5exRCYlllNDPymOP6KeYiGTap6bPsP3RYzFNluI16LvH1L6n4E/ZnKrl90n+9Rl93q14j5X8cwbktkmWv850O25HEvK1Y8ML13+69g03LqA3+BRC7lM46GfBf6qqn4xfFFVrYh804R934oz+KvBa58Avhn4JVwX6/vyO6nq0yLy/8Z1um4CH1TVDxadQEReB7wO4P7775/icsITzRZ7TZeWAwbtCDAu0h+VNpue5ub45QPbTBuH9cYmayKxmSA7zcVL9xZ4z3ZzG+NbwwEuD2Ktj68P9tlMwxwDBVGdHIV1wmeVeZ1SGR2KSPnmAUMpTQqqLVB6TM+bXmPR8zHIqnsjN5lljaPn/b3LrwrHVRCnhjqQYujL8Nr+89x3rl+16idcTzHOs6T25KGrHVyVikHCsGuAx+x7EZlTGOSIGfRpYuhvyhvz4L1PjdrPG/urqvpE7q3XAq8XkSdwhn7IPRaRU8ArgGcDdwPLIvLqEWN4u6o+qKoPnjt3Lnt9roUOqTGv1ZyhGBjAcAjkoCFGMCsrmLNnkBNrLiZZrWbGfey4wtcDQ2Pbrcy7CoWw5uEdpvHWoVh9yo2m74Xq7i5Sq7pYurX9pJv4MBODnqDtuhWEbbaGf8xFIZAC3rf4Yp6xse9xrxXFz/Ne+yTPPFcBLMYgcewldfdojEbF84swYeLLb5OFmoL/RRWs6iUnwvez71YqtrbX3EJwXsDlq8JJXsz8C6DuIHGuFwHfLCIvB+rAmoj8jKq+GngYQESejwvJ5PGXgM+r6jW/3S8Cfxb4mVkGMM2HN1XLupTRAO6HFXZuz5fe54xGZqD2o7U+DXzS1d5az9q8jVw+5yl3BGMMMSpcMCtyRiQrmAFkeQl6CXZrK7unUqu5ylkfJ0fVTaSV2C2rr10f1JIZOt2E0EmBUU+bOGu4+poiHJKeD3CTUiUe1CufdJzcMbNJLY4R0w/n2GZz8FrDxHHaG3WSkuKsKPLSJz3PvxfQbkfWK4ST3hzyC07bxrpGKUZ4tDX/Yidw4ZbbMeSyJ6jqDwE/BCAiL8YlQl8tIudV9aqPwf8I8BMFu38J+DoRWcKFXF4CPL6IcaZGf6JhVx8nHGMsstiqh6nXyPpcwmzL5BmKidQqttVG7PpAs+Nx+2WVrItGmOBMDV+1iqyuQK3mqIhxjGnUXUItvVe9nvNGV1ey51jFNlsDk1XR5zHUbDn0+rONhg2T0znJfbYTEqwSRc6jTxLMvRfdW09dHo6nTzJUYb0BznFIVyEpm2NohSFpqGcKEbdwHEVGdtRKc7+hnSwklQuPpY9rNRdK6vb2nMgfPqX2V9SLZlgfsQYXh8HS/3YR+QzwaVyi850AInK3iPwqgKp+FPgF4H8CH/fjfPsiBzXVUqyI5pWjUIXLRe10nGFKqVKzeGpRhKnEjlKZhk5GhQBwBto2W4NsnlHnK1r+zzLRTDsRpNdRrzmOtvc8iWPs+oZjNbTaTr1xe8eVoy81snZ1ycYmybUbbtuNTefFh0ybos+j8HK1/yNPP4s8bXEUjbFodVNADZVaDVpt7IklzLkzZGJo4bYTvNmQhmebTRc26nUHrzH8rMLPborPUOIKpl4jWl7CNBqklN2MJRVQX+fGTy+4l2rV1Rc0Gm7iC9oTDn23wrDcNJTcYJKzzRba7fHSxnctTMM99dIn/U08jkhdRP6HiPyup2v/A//6aRF5TEQ+6/+fGnecAyn9V9UPAx/2j98GvK1gm0vAy4PnbwbefBDjS/GYfe+gpx5m/mcxeGr7ib1ZGTSp95SGASDrYJN5keMwIpFV+N4Eb7FQ3IzUw8p5vSO82EzXxsNUYmy7ne1nW+3MoGiTfvwat8LRfGn6KE9yiqX/kCc7KrSSn7SGJvDgaTqsbo9obRX5wiVnSML48SxGUcNOQlNmsiexmdKJdWXZMYci4+mEtwYE1/ISwPtG/ljBOLXbyxK803yHpg7FhCu1Xj8pupBqW2CO8fE28BdVdVtEKsCvi8j7gb8KfEhV3yIibwTeCPzgqIMchod+pJF56uFydtKXqMgLmUbjZIS3kSWLfJIv7eAzdLyQ+pb+5eL3aWHQUDHNuHGMYAeIEUyj7roVNRoFsfjCixn4SxNiAz+8tDuPZz1ItdL33Nrt0YZ3Fszizc7g9YbjsrfWHRMnZFAEoZmFhLim+AwyB6Hddlr43Z5bFXkWUMhWGZz8+ucYWsVMg1EOhNrs+5xf1Y491l4+f7/fIkTDmNI7n8ZDV4dt/7Ti/xRHDnmXf/1dwLeMO05p0AuQGfUZf9AzIV1Khi3msrdksgFIE2j5tnhBrDRrNuyLPoZ++MHyWuLKwLI73GbIaFRiZHWF6PTJyZPFOBQYTu10nEduC5gSgVGRKOq3wEvfO2jkz5lYUHXx/jBpmUoY1GuD93i/Y/aT+SSjmDkIqUywMdlEmc8rpKyTodDOfscZnGNhGDPxTEV+2AumZ7mcFZHHg7/XDQ3fVdV/DLgKPOZDzxdU9TKA/39+3HCOldriPPFY8u79h18mwR/HJdD6y0LTaGRLYGfURi+DR45Hnba6qcT9RGNwLQMGp1bDrK6Atdid3azBQxiPzwSYOt0sQSm1qlvCN1tZcdZedUfyrJV0UssfL1N59F2XTKOejXfmStZpE8+TwhBico3CNRtr9nhtFZadNIDeuOUKYKYJoY2D2umah2erRkiuXutPBEVJ4txx5tKcfJFG/DDOE0CmP+V1VX1w3AaqmgBfJSIngfeJyFfOOp7SoI/BUEx9HAqoV4U9Qf37plp1Rgmc/kXYgafqmg/YGzdHn29KY5AVQYVGKWfItNN1lZjViout5qr7BrZNElBBt7ZgKzhWevxZvbEiyhr+fkm/YGXg/CS+M5BvG5dew5QFKenKSJMEqVb6Mfr8Pcrft1FQ20/sBYZSbT8hrq02khr93d1hg7oX5EMjk6AjmDzjdikK8wXHmyvmGb+/jaGq6yLyYeAR4IqIXFTVyyJyEee9j0QZcpmAMPwyVso08LZNteqYBEtLWbx5IDSRxhC7PSSO0Y1NV/683AAj6PYO9sbNfrhh1i95PrYejG/osf+B2u1tetdvuiTuhKX2gChSYPgzNkLI8JiEEZNMur9pNDDVqmP8BAlTej03AUHGu58K6XmMuCRhpYJUK/1jj0uIjrwEze7bUCFNeq86HfTmOvaZa3vTxBnFcNpLbDn/+c8S/tnrOWcd1yjMGqYKQnTzVloEZgm5jB+myDnvmSMiDVwtzqeBX8ZJr+D//9K445Qe+h5Q2OotSKKKWtRaFwoQ48u2B3tTqlUkIuNVpx56ymke+MFPm+FPkd9uzP5Fyc8hYzOG8YGEBSMBt31GDzd/HrXqCkNSymNikXoNu7nl2BFiMm1tQ9152VMyitIKU8d/7vYnhLx3PglFq4oR1+VyAwGrY9Lx85/ZIgzo7egRzzBxh6J1U3H1Zx7LdAnPKXEReJeIRDhH+z2q+isi8pvAe0Tke3D1OWNDBqVBnwJh6CXkM+c1PVKkPSqdN59Ar+BHPBQyGQ5xqFXnOUZRJkg1SjVyJIKEZr8RQX8M0+w/FgPjNfR/NHvQfskZdjGSNUPg5Aqouli0tS6EsbriJstuDza3+k2vJ5wjpZJKMAGMLTqaZswTtgmbM089WUyLKWL82TEHvg9HrMxxHgjIAEBA+e3yWPLu+Z9vTrdQVX8P+FMFr9/AFVZOhdKgT4nH7Hvdkm2a2HWQhJpmu4GXcgJJttvDiMk0ZEwU+cTbFF576qX4vpSEkgBTGowBxo3a8eGCwGDM3JYuMDTZDzL9v7qCNmrOb1lbRnbbyPIy1Kuw20Q3t4ZL48ch/HyCyWNu/VHHnDev9JgvOttTO78pvgMOUT+Ml98v3E7GVJAeBKRfyTrT9zX9vqd5Cz/Bf7Dzc4sb6xGbE0uDPgOGmC+LhjeQmUe5B3lTF0MUxBioVoYZL1MiTejR7SJeXqDwhxYyYiaNy28farsASKPuNMbBdShqO9leAFaW0JUGKoLZ2Mk6GPVlV2f8haVhEzFIFIx/0YYsW9nJ7GOegKHcxTSGMfjcUqXOAc2ifQ8qp3k0Dn4spuLO7xQcB4kGY3Vh/HgXwj0PT8VMLJcDQWnQZ8RMzJd5IAxphBVzo5Jk+ZeSBG0WFAnlfvTjfmSaJNBselZIddDLmzDmkeGAXGhJ/LGJYxdiadRdAUyz5ZQWk8Rpv/QSpNVBdnZg1YVhbGtvk1Q4loGVUZDgzucC5t0Qe6gadz9x7SI6IjAU/hqVU8nyO2Z4bPuBmCzpPMQmGgXN9TGYFPpLVzz+PGGf0oXhCIpzlSyXPWDuEpwzwvgiFVOJMwbIUIER9BN9BayErNhkgnHOtEW6PbetZ3NMzWKZAbbVxm7vOM0W36TAnDnlVBZrNbAJdDrYS5ezZtEsNYjOnx1hyPaHgcrJZA/e/0Ejl6QdQsBmGVtduiAWy746XvkxjavAljTXNOdJd/y4pvw7IJQGfY+YaNRlQrn3XqoE02VrGmuu1QYohNN4Pf1DSf9HPc1+4Q/K6uBKIaCGDV3zlAnATOIglDvodNHdJlhF1zewz1zFPuNpuEniKjOTxHWT3y+KJj7NcfJnwZiqxYljGHG8aauHTb2WTfiDb/c/84VNTiPGZwOe/qIQ6uEvhKJYeNIp/w4IZchlEQgTfEVxyHFhkzwKPGu6vo1Xuz178iqfENzHD8wZiP5XaF8VhUPX6ah+0usiu7uukEiMK0tPufPXbrhwTNbIYAovfdZr3sv1pCEG6WuUzyXhKiGLKP96enj17fqG8y0D38O9OBR+v2ziTicHX7w2Nlm+SBR9pnu9vllPfcQWbaVBnwMkMyiSxQgnqgNCFibJysa7vX5XoKGTBGyM/LKz6AczC/87uIbsrTHe1ICnl280Ma8f70A8N3Gdi1IdlCChaLd3nFaNbyxR1PosGPjg/3mNteBea5IgtdiX/1sIFCb3jBGslCJDWjiBjHo8A8SIi1OLuF6z2zvOoB808oVoIVXR3+dUMnehydHSoB8vZIqGjbrzWJqtvmEZ8wPOBLFSnjk4PjUU7zuOCpnjGYfbz3QtlTj7caYSuYXGIh9PXqQHFni36X3NEEUILjQj1Qqm0XByvNGICWaBdMSiMWvYEGUWSLEnHWqGh3RSgeH2gNPy0meEWoVOx60Qd3bBWiefsBf21F7Hkb/+9LeXqnPKgqmKKbRkuRwrPGbf67yAMK4dRdgJ+s6I1+BIeyimEJNVtiE63FUo5HnvdXlb9CNKvf84diyWbteFc45gEjCTX0jpmEtL0Gy5H3clRpLESSpME36ZBvn7Ne7+h9uGn3N/8NOdK4+C/dLCNqmaTH9nauxnYlML+ErptG/rmLh/4flmzbGMOnYUYc6dARNBuw0ry7CxBc0mL61/p9sujnl0+13jj7UfHLGfSGnQ94mUcqettmv/lteR9l/YgVZ3Rd62j49mlW0MqvU5A1EJduhvN0speWaMisIEo7ysKSmSc8eIH37GTe50+7HcSoycO4NYdYZmewfd3R1Oas467jxzRHM8+7AIBnd/M0G0cYZu2sl4xGtpxXARJXXRyMKKKa1w1HWOMOQDfXb3mMfJVmpWYWfbfQeWGsjZ03zgs/8vAB6ufge02+4/LMRrL2PoxwyzlhOH7JgBPnueb+7/Dyg2Bl1l0g5GIxNleYwL2aQhAtsb3iesNk2SrGI1a0QdriL2mEAc98PvL+eD8I8fr0Rk4RZttRER7GoNExmk20VOn0Sv3UB7vUwfp4hvPhFTGFqpxM64eEpnYUGOv65sos7yBIHoW8B7H+v9FsTTR03UC8EcYvC0Z1hZ5JwKTZK+IqmIE2sLuiDBYgz4EI6YQS9pi4eIkdTHPE0w6OySdfdJDVQYssljFtpcSNvLeZcpv1dqNczKslOPrLjwjMSVwbj2qPPPEE5IYeq10VS99P74zjdiDPaLT2HWd+DaTeytdexTvh2c75I00Ahiv0YvxyyxrTba62Z8/SGD75khphJjTqxlnZ8kdkqPEkWY1VXM2kq/MUlR45DcPc0ULuMKplEf/VksAntgkqS1DGmbvpkm1fB3MRDKUsyZ08hd5zB338XLHvg7M49rT5iWsljSFu8czFx5OkvcfI/JpoEwj/qKPTFIksDurms/5yeTST/KVE53wDuehn0jhmRnd+z1ZAwbn3xEDMmXns6qBfNe8L7iteH5Z2APFR4rjpFTdfe0lzhVzijCrm+4lUSe9z4qsRtOKr0uJAGL56h46QVGfxZef2GDDfH9BCLjjPnpU+jairuX1roitAOAUIZcShRgIL4Oe/Jm5wXn7Rnv+Q6eO+Wu22bTvzRdMZPaIHxQ5K3vJbmbDdgMTBqoazYhldhps2TVngpEfe9ulkTduG3ph8Ukdo1JMJKtCvqH0EwrBmtdmKBeg+1d7MYWUq9l3Y7SyWkqzZO0YQWwJ4XLUQjj3ZMmxRETSNZiMQsniUvgFjkCBcn//Dmy+1ytunHFMbKyjJ5YRrabWQvA9z851IN+YbjjDLrX930ceFpVv0lEXgj8BLACfAH4TlXdzO3zAiAMTj8HeJOqvnXR4z0sPBR92+Ql7Lz50wWwkzjF+aTgBAzoUI9jPez1mlKjpv1QgxhBGnWk4pPI3oDa9Y0htcN0+0F64IgxFpx7IPThVwa2VcwQEiMuBxHHoAo7TdKG0uonSXd+15Vp6pDGgr4PGTUwExAr7gEwrngui5cDGIPt7BbnfQpyAv3jJK5QK46zXgSyvOQmxChC1redtw4HaszduA/2dJNwEB769wOfAtb883cAb1DVXxOR1wI/APxouIOq/gHwVZBNCE8D7zuAsR44pi1R7vfYTAYN6iw/5uAHGGKv1aZjDU4B3W9uoaHCQ3jVxdRT32miURuzuoK99zzSTTAn1rBPXXJ8/3zCt1qBbg+bccf74834ztUKrilGrz+RhNcQRW7yIDBy+etLrOu/Wq1CpzNclDODB7xopNTagfOHnnIUjXYA/MRvm013f1O20agVUsG+WY/dSow0Gq5/ba0Ky3XYbcPWNtr2SVARPnDz387r0qfHnWTQReRe4C8DPwb8Xf/yC4CP+MePAY+SM+g5vAT4I1X94qLGeViYRW8i9ZCccQljw7N57VkvU697sW+M8rrzRn8Uk2UvksAjh9KvvNVuz8WmV5aRVg/pdJ0xHeKFe4+PimPDFF0buGpUYwqrdNMVgm6P15RxjCCFSsUZ82Yrqw7uh6L2QbGcJ4Lvl5hU4jhy9y8yLgntVS7DgqdwX/fQSREMvJ6uakZVuuYretPJVFzhniSJW+HUa9Du8IFb75j/9U+DI6i2uGgP/a3A3wdWg9c+AXwzrjfeK4H7JhzjVcB/GPWmiLwOeB3A/fffv4+hHiz2Kh6kVrOKzr2IRqXGY6w0Qd6rnsSbDuPik+LPfvuMyeHj37bV3rcnmiXQ4hiz1MBubaPXbyJnTkG7g712vR9nt0Hc2SrQGtQkyaPXG+2M5b31gnFJrZYVPw3smiZ2p/0sZ7lHgdE0q6uOl58/36QwXhZiczRBoigLZQ3RKqddgaW0zOA+h9+H8Bql0XCdqXwlKOAmZiO8/wv/YuItWDjuFIMuIt8EXFXVJ0TkxcFbrwV+XETehGuAOrIRpIhUccb/h0Zto6pvB94O8OCDDx6x2zsaA3HbnEczatssTisCVrOElZ2yl2bf8MwwEWRGoaCPanDcMIk2LnmWxWWjCERc4wyrWTu4iV2eRp0fF/8XI85wtT3V8sQq9uQy5qYz9K45R7irIsY6jn0WhvENwYNuQgMTwV4nHWOQRsN5lo06stQg2m2S3Npg5GcyTQJ5DNQq8d13DcTo0+MO1jiMPQhpnYIkiZNXmECPLOy7O3B6GQhjZTUOiXXfcd8AXMS4frv1mushay3v/9JbJ132geFOKv1/EfDNIvJyoA6sicjPqOqrgYcBROT5uJDMKLwM+J+qemWB4zxwPFx5Vd9L9dSr1DssQubhLTXAeI2QRuS8xlRXY14a0HmPK+dJjcNYOd6golKtIrFnPGzv9D38fdIK0wlOrSIk/dZ7iY+vV4bDKtmk6BUshzz07PnepV/Fe7Xa6UDTwIbjAMhSo9+ZaRRyseupOgj5e5neb3vtuj9U4BGHBhWg0x1f05Af1oSOQePez/rkWoXEYtZWvL69xZxcc4ZdxBnvp3586jEdBu6YkIuq/hDes/Ye+htU9dUicl5Vr4qIAX4Ex3gZhW9nTLjldsUHuz/Pyy6+HpaXXCz76nVvlCH01EJvVpMEvfc8KkJ0c8tVQHqa20IrBPfgEY46TlrdKUaySlOHfTQ+8AhZEVKteH0Ti+w2Ma22mzT9/RraJx1iSK2EoVj5XuGahm/56w5WUyH9c0o4Q1wZnniGN8xWHwOdrvx7qTMhxvgm5P1iq0JjnL1HPwaenwDVjrxPmRCdVVfZ2+k6JtJd56DTRc6fdkb8xga02lCrHnljftBFQ9PgMHjo3y4ir/ePfxF4J4CI3A28Q1Vf7p8vAQ8B/49DGOPCoedOkazW0dhQAewz1xgl/ZoyIcwfPYVZW3E6JZ0Cb2qRtMZJS/8JceSB7byXOWSQZg0vBJ65VGLM0lLGebbbO86It9qZ0Fi+ucMQFS89337v34hCpKwvZiDbMHXTh4H7m2tblztmKiU8cHwJjG6aVO+BpvtXK0hUc4ZdzERvXYxglpfcITsdsDoY+gsZQun4fUhMqlV41t1oFJEsVegtV1AD9Wd24MQqbG4ffWOe4k406Kr6YeDD/vHbgCGyqKpeAl4ePN8FzhzE+A4D0k2In76B3tpAg0RZyPpw3nc/RGC3tmB7x5fde42TnDEYJ3u7t4HmGhpk0gP+/VHnCEIs2RI8H8PfQ+l4flwAZmXZJT4rMbZWwbS7mOVl2NmBkyfg2g3Y3R0cb1i8Mu8JcFxycCAhPX2IY+y5guR1amQligZ7reZCaSEtUIz0heXSiXaaexMZxIdHBoTdwlVOUCgV5o20GtO8exmNBNNTaleaSKeHbVR49PdvD2NeVoqWyPD+T/1TXvbA30F7rhHyxCU0/QSeev5yahjyCda+Nzos+p9uMxXCxJlapOaMBbu7SFR1LwcNOUb1NS0MCe3XmKciT1aRM6ewaw1svUK03oRbG44aeOYUGhvkxCpSrWA3tpjLZLKPcc9y78dum6spkLjiG4I3M8PcLwoqLopKq0yHVlbTjFGMWylCdr6+6FhOAz51CqoVFz5Ui3QTKls91AimZ9GKQSPh0Sf+weRzHyHIEZOYLg36ISKlXaXynpMQNma2QRI19XozjewwnpxKlfrlcJpYm4X/7SovG+5xJUZWV92k4sM+Yen9QPelcMIBspXDiHOkx8r48ZOMWurp7jad6FWzi1Yilzhe33CND6ox9vQq0mogvR60jEsAHmQj4RSzrASm+Ez8A3fv/cSqSf/9lPVTGOveC4LPI1ylmXqtWIMmuBZNgLZfRZw7Azstqt0Eu1xDI+GDv/WmvY3pMDHHGLqI3Af8NHAXYIG3q+rbROQ0rmr+AVxl/V9T1VujjlMa9COAUOYz46eP8GZTudoixoNazRgEZmUZGk4Aim4PvPCT1GoutmwtkulqjOaZZy3gvFDWkM5IOrY4duqIPo4tvmjGxbL7q4Z8B580/i1+rLrTHNxmlFEXl8yTWg3WVtxriXWJtZVl7P3nnffX6mJubLpuNt0e6GAoamRF5zwxz4R1ELowayuOPdNquy5CXiulb7wT8nmCcOU21sCLGfqsTCUe6FaVTioDoZ0CpDo2UvWrut1dpGng3Gke/e037+0+HBHMMeTSA/6eqv5PEVkFnhCRx4D/FfiQqr5FRN4IvBH4wVEHKQ36EUNeX/0h88rMy5JaLWtX5xoo94aqPTVJHHNmRzAirsQc5zGnFLXMex7gXY8x6oEAlJjYGexAO8W9bhAx6OoydrlGdH0Trt/A1Gv+B58MaKdn19RoILVqv3oyMgh9kauRFa3qqj6104FLV9x9uec80knQmvPWWxdXqHYturaMXL6e6aKn5++PZW9Vt2MRsEDc8xHFOLMeM2DmSK0Gy0tO12R9w92PdhvtjGANheyUyCAZ82c4JNOPe/fj/kPftRnorOnKjSjiA9ffPtt1H2XMyaCr6mXgsn+8JSKfAu4BXgG82G/2LlwusjTotytCzfSX3ff9EEeuKKXZct7Y1WsDXlNmNNttbNhBSa37sZM+TQ20dZQyn7gc9yPNqg5PnYTVZfdis4W9ct0Vm3R7SLuNiWNsGpKZZLySBKpV7PmTSLPrjlGruiKStMR7cxu036UnDD2JMb7JBX6ycwa7e7KOxoJYi9zcHEzapR5zmBhdAByjo+GkBapVF9/2tL9xDZ5HHCwLbeGT1Npuu36izZZbCbkDjj1mKl2QxbRxnnf2nl9JhZ59OuHtC16g69DK9BeEGTz0syLyePD87b4ocviYIg8Afwr4KHDBG3tU9bKInB93ktKg3yZ42T3fB0sNqMQu0RfHQM/FtptNsuV1yioZ1YEoxIBWSdV1gGkNM2fC5bdaxV6/gWxuuUMGMrHas8V0t3AVAANeJlGEbu9gGnXsUo3kKx/AtBJMpwdfvIR2+5PCgJRrkriORd2e8+RVkWu3XJjJuIIiNdA9USeqncfsnkI+9+RQCGIotjyqyCk0/GOYPdnDNJ8Rxy4Ukt7jNGEZ+4KeNOQ17rj+nokRZGU5C7PoTtOFW4Iw0tgJIihS0iRBejKYsxjIyfSvaej+7AGHkrM4CExv0K+r6oOTNhKRFeA/An9bVTfT7860KA36bQLd2s4EimS3ib12o6/1DYHRnD3xlYUB4niQBgdZ0+oBbe+EIcGlUZ69ySiZzntOJ4XMC2w23fkuX8GcOYVtnMZ0esi1W47XHK4a8nkFcR3fpVbF3n2WpF6ht1IhavaItzvYiqFys4l56gqqtr9imHRvRhnzKe7pgDY7uHxF2+nUDEx2OXnYdN9RBtlN1upoqz4pjVoXAksleLs9mEHWYSCEMmkSyMY6O9QqtNtIFPHSlde4WLq//ts6/KLMtfRfRCo4Y/6zqvqL/uUrInLRe+cXgavjjlEa9NsE2unA1namFmhOn8LeWkeiCjZPeyz44Q3odgTGN0ueJUBa/g4DIkmDhTgppqiilMEmDUXnRaW/bl3fJK5UsMt1xA7z68NYb0pblEqMveccWolIlmJ6DYPpOgpc9dou5tLVrCHH0MSUl9wdR62cssgpXR2Z5SVnaH0iOg35mCVH/bS7u74FXezCS+JWGdpqYzud/pgC3nyq6pik0gFeXz0r3hGBDsV67rkx7gmB8wBBQjuOXTivKGQXFlWJIqrY7R2yAqPbGPPkoYtzxX8S+JSq/n+Ct34ZeA3wFv//l8YdpzTotwnUKrTamOUlJ7vabGJOnoAkIapWPZ+92TeigYct9ZoTwYoiZzS2d9B2e8BDy+Lj9ZpLtp064QzExmbWGCLPepjG0y2sHg1ZO6k4lrqyeNncwvQSJ2QVxyg4hkStBu32gMeuSYJubiOfadH9My+gst4m3jaoEaRn2X7uGo21GvHvfQ6sRVMRKD+GNOHnKnSnFDibgOx6IDPiEsf9LjsAIphGwyVprbokc7XqtNTVDhrzcJIJWEepBEAaO0/L6UcmXefJtAnH5QvNiOOxekTpd6Hf6LxyPMIwOjeay4uA7wI+LiIf86/9MM6Qv0dEvgf4Ek6hdiRKg36bQIw4A16vIWur6PWb2Os3svf73lzQ6UaMYzOsLEO9hi7VkK2mUxz0S+D0xynVCub0KddAoBJjl5z3JHHkmkQ8+bR7HoXnimYz8OmYcrHYLJxge9j1DaTdcTHwlJUSrBpSgxAKcGm3R/Wjf4CcPcPOV17AVoT69Q5Rx1L50nU0jUOK9ENI3iMXI6PVKsNxTmkQTSV21E118XO7u4t2OpiVFYhcMQ4wNJlqbgwDK5LwngUeb7iPNnNyyAGbaF/MmlFIJ5deF9Fo8vbp2HyoTJOEDzZ/bvI+Rxzz8tBV9ddxTn8RXjLtcUqDfrsgirC31l1RRmKR1RW02x1kkgwp3SXQtk5tz7c9y+uBh2wRqhXsSgOztYvZ2nEiSXEEqyuYixecjKlnV9DpOo8sLCiZNsZasF2/HF7Qnd1BLzVJCjv7aEK2KgHQK1eRLz+P1gy9RkRSNS4k0ai70Ae4iaLbRRJLsrkFRJmRj06fIrl5ayhs0Kc4RpmBDO9fPpwlvV42IZlGw3W5980viibA1HBHa65tgHa7br8kcffa3+OQ9pkfX2G4bdQKaV4oSr6PC1MFIZ8Pdn9+gQM7IJTiXCVmwSMnXuuWdJ6Drru76Oa2+x/EVweaNYxCQGFMGRPm7Bl0a9tzlztIs4VJEqdUuLGZ6V7LbhMqriEvcezCH80m0kuyUM9w44hBDIVrCl4PZQamKkfPGw9rqP9/P445e5qNP3s/OxcM3aW7qG5bqus9TM8S39qFRJH1TeJqBXv3edoXlqj9+u87rn5K4UzHlGsmEo5LjGRjlWrVSRwnLlxEZDAry2i7janVsNs7wwyg0Iv2nHqp+fBYow7rG24F4pPDo2Lg8zDaY3Xsp9k/5a17YbBxwmvHwph73El66CWmxEvr3+mMto+jpuqAGdKwSOQ00ENmRBYLzjYdrasSSqbK6oorSqnErjfj9g72xs3B7VNj2247DXavXW5WlmG5AatVpNVGW22kavzYBo1CKEVQaLwDDMgWTEJO7Am1mXiYvbVOZfdeGjeF5hlB1GDjCmu/fxN55gbJ+jrmxJrzrp+8TD05T++rn4/pWidPvN3CbLewV6/149KjhlGtuvth1YW1dnZdJWSjge56eVwK6JwD9yhI9p5wXrp95prTyk+NY57FNOM9GrqGoUlh77OCGHGTvG/xJ7Wa0ycqCK/lC+dud5QGvcQQbLeHWNfkImxWMWD8Uk8wUGYc13ghTZ65J6mRTCAxYAS9cdMZ6FAnPP8jz5KPZMeRyCe20iYE9RrmrnOutH5nN2N36OYWttnCVFwhTCYBXAkMdsqHNnbQMI9iY4RGPCwuOnsGvbXuPFx/f+KdHtsXY9RAbSNh+ZNXYXsHVleQZtMZn1oNzp52HruF3koF6SmmHaEnltELJ4ieuk7v0jO5YQyW3lOvOXmFtHlGFGXx7TBROES/FN/sIc11pIlrYzCnT7quPbtNF25ptd3KycviTuVJ55KoUvPVmmGFcXCcTPdnVk9dDCkXfogKeYyNuQu5HK2YS2nQjwJSY23EFefkvPO+jjYusdeow+7uxLZhWWx5IPaa9M/l6Y5u8+m+mI473oIbt5Azp9DlumvxttOG02uocT9uqVSIul3srXX3POd5mxNrIILd2s4MjbbbWRNioL8aCYS7ZKmBnjuFtLrYlQZac63sOLuGabaRdo/uXWtc/ro6GsOZTyY0nt6h9Zyz7F64yOknrmMuXkCrFXonG5h2D+lZoq0W0S0LsWHzy0+y8qVdoisboEp87gxJunpJKzaXfRf6bg977YYz7OnqKjchj4wlQ9YpKa34lKUl5+nvNtGb6/39fQJ7VOhqHLLK2l7P5VIoDoEN5EJmmTRC9ko63nRFmV9JHTOU8rklijEugZXR1gSb6npPeUyg8Mc5iy55qCUjSw1Hr/MeunQTos0d6CXOEBvfVq/dzjxWs7oCS0uws+Mol0nitFuSBLO26ihvG5sudLG6gn3mapY7MCc9fTJJoJdg7z3vFBUbNf7o70UsNTrsfO4EGivRziqVbVADZz+eoJGw/mURG88+wdmPd1i60qV9zxrSU6pXtog2m6T879a9J6hdc/d29Q83MRu70O3CUgO9ftNNQN2eC4vVa+69ZstVbHa6QzIHefnY9D5mieuh5GigOd/zHrn2Rc0GmoLP4j3nEpfiJ/d8EnUgCT1rHL2owjR8L67NdrzbCaVBL5HiITOWUjqEmeKcOc9oZEOKoEgkfX+kB2iMM2aAvXodbtx0Rj7lrCfWhR6iyCkePn3ZhRFWV0jOrqJyEulZTKeHjQ3S7iK3tmB1GanX0GoFbVSQpfuQ3bZbCSwvoY0q0nUGXTo9tp6zStyyLC9tsbNb41u/8Te5WN0A4P/62IupfrrBxnMi7n33F1h+6izSTeicbmA66QQmaGxoX1zFRoJWhOqtDlqJaJ+tY2NB7AqNp3cwX3yGzYe+HBSqWwn13/i0k0hoNp2GzIBevIsjZ2Gk3D12D1P54sH3ZbmB1L065s4O5sJZdHPbr8T20aIvN5nnJ3IxnsoZmb7Y25RFVJn+OQxPNuHKMrH9VdcxQtngosTBIBB/Mo062usFdLuctx7wmx19TxiQW42DAhARdGPLhRV8rFSbLaTddomwTtcZJl/ABECnC70e0UYTFUGrfsnfsyRrDfTUErYSoZHTXhF18e/IGPTkMrZeIWlE9JYibCTUbnWprfewNcOFf1qltxrz4Ytfzz968zt4unuab/2K3+E/fe7PknShd985xFo0NpiepXrVUQd3nnuKXmON3nJE3LJ0ViOe+ZolVr8EzfMgvoD1XHeJeO1Z1NZ71H7rD5wn7sWxTKNB0nEa5K5i0sW/Zdk3mthpBvz2fjgim1jDiVStmwh2my4PUK0iDQbCN3v9HmT/Rxhpta7YylRi7CTJ4v5O/XBKBNrrYuq1QuXGVKv9g83jw2zJoFo2uCjhMKt3PoBxJdzemJvVVadauLyEtNpYL686RG0MfvSaJJjlJUwcOzpiwHPXhKwoJu/Fa+KW8hJFvgy84/TTE4ucOuk8d3Dl/L5a0zZqxNe3YWcX1lbonl0mvrGLbO3AypKbCBpVok4PW12mstXj0ovq2GpE+64eX/bcy3z29++BquXsR+FNb/5e6rcSSJT7mi1MJ0GsJdpoYpdrVG420WqMrceIwuYDFXbugd6KsPbcW/Q+c4rmOUEFNIbuKohVol//OLERWFrCrNUyMTBV61rfpSsbI26VUq0i3S4sg4lMMUsmjS+rdVW8K8voxmZf+rjTdQnc9P6OMrShamPBOSDUMC/4zvjJXJOEZGd3eP8xkg7p/rKyDM1+jgNRl5gWyUJuj7Z+tvg4xwFHy56XBv0wsC9jDhO9J4icXka77Tyn3WZxU+ngWGmi1PqiHvdWnls+2ltMGTeJT+RlWh1e7tcuVdHYgAXT8bFca10Yp9NFLGijAmYZub7uJoQogrsvULnZpHeiTnUTbAXkjzcxopz/shucauzywq99mvf8+tdx/6OwfV+FqBsTtZXapqXz7GUa17tEOz20Yog221z9UzHVTXjW+3dJahG1z25xcbnnQjw9b1S3tr0sry+p397JYtwhG8k19WiAqpNIsOoMfSVGGg1swIIwK8tIo+7yCJ0OUq07o9dqDzCNCkNe4zxsd8Pdv3SCgaxxiFh1dQhpgVZYfDZldW8+iZo2rdCdpmtc3um6vq7VCnrZ60dFER/Y+KnJx7+NUYZcSjiEP5L9aG8UeOuZtGynQ/L0M9n7k6RVwx6TU7eoK9JlSY3LUsMZZd9JSBLF3PICY+sbroGzD2HET113zTjiCCoV17TBWri5DmuryEqN2oaSfNsN/tLFP6JtY1iDX3v3n2btFW3+xJ/8Ajd+7QGWr/SobCV012I6q4blp1pIojz1l5Z51i/fQiPhWf/qUy5EtL1DlOYFdsDeuIlUq9id3eyabbPlL9MxkAYaZvesE/5Kxb887NbW0L1xN0ihWnGqmeubzsimoatAu2VWvvlAsw6vcy5rq644KTLopSue6STFIZzwu1ZgvIfO5bdTq0hKQ40MbGzBidVjp3k+EkomlndUsHCDLiIR8DjwtKp+k4i8EPgJYAXXI+87VXWzYL+TwDuAr8Tduteq6m8uerwHAZOqzMWx01VJBY5yvN1C9kn4w0u1TaJoJENmZmbEOMbCqO1zY848/GYL2h1kZRkDzqC1O66ytNly70fGacisLJGs1NFqRNzpoidX4Mln4L67SFbrYBXTVewvnOHX7RnUQP2WZa1m+f1fej5xC+o15ZE3/f/46M0H+Nyn7ufLfr7D1R9os3FlldXPQOfMErVPfgmWllwlbLOVUSFJEleUlBrzoBgn1GE3J0/461bsZvC5ZbdjWJEya9W2s+tCTAFSBku+peBEemLATsm6WamrZSCK0M0t2NmdrvFFwWtFBV4SRZjlJRdGiyPodLDPXMVubrukaqPB+//wn48e83HE0bLnB+Khfz/wKWDNP38H8AZV/TUReS3wA8CPFuz3NuADqvqtIlIFlg5grAtF2gzaNOqukXFQMg8M09tSFHHFU+562OYsQCZ/65sHHxhSdoNaR10U43RURNzzOHbL9HNnnBAYOOOw28REAm2DLtUgUXjW3Whs0NjQOVnB9KC2YTEJNE8btu+JSCpQvwVJFUxPefe//0b++d/8Sb7mubd45uVCVw2v+dh307p2kvXn17hw6QT2S087lcpn3QvtjjNM2zuuWMnEmXbKgFFLhby2dxznPElcOKaZ9JPKvklIpr0yQkp2IIa+tORlGWxfmSkZ0Sik8Ha7UJf6lQRq0a3u+DzLKKSsl3SCMAa7szt8L+pVt+pK3DWnnv/7r/3E9Oc6JrijQi4ici/wl4EfA/6uf/kFwEf848eAR8kZdBFZA74B1yAVVe0A89E3PQQ8ZF6Z/YilEiOnTzoe99XrLoYacI1D2leKkQY5x13PjES1OiDHmumdz4LcMjw858A24evpMjyUIkgcP106HR+f9zTK9Q1nxOo1p0q4vQNXrmPWVrAbm07DxFrEGCqNOhWRrIpST67Q/NozxE0lagtJDTSCrXsN/8/X/QzPq9ykQsRdkeUNTz3Ea573W/zaqefz8Y8/i927znPys+c4+Xs34epN7MZW/5rS1m5FZfJiMl68vXAKrcZET10n8vFzKhXPv++AtSS3Nkg99OGOP/3VmPR6mTRw2C1qYrgrLBwrSnaPqCAeiTDUIooYk3WLCqUbSBL0qcsQKFhqr8ejOz89/bmOEe40lstbgb8PrAavfQL4ZpxQ+yuB+wr2ew5wDXinD9E8AXy/qu7kNxSR1wGvA7j//vvnOfZ9I5/87HOW1XGrz5/1Hp1Fr9/wnl2BAQ/DGvnY+hDHGAg7/UyKf48ory9s+DAKYfl4ECpQ60MJnW6WLE2vLDOavR7WOmaE9rpOxMq6Rg/OuFpsy3HMswrNTodzH9p1RUzAzp+44JQVVfkXP/wd/NN/9m/4jn/wN/kLf/ujdGzEf7/5XC5tr3Hm2be4eWKFnc06p3bbTmvFCFgnHyxLDZcMLbp2ta64Z3ML0+thL55zRs0Y103qhG8pZwza7mST61jDrBbbamOqlX6ycka9eX/TpzvfhGOFTJhs9ZgePxUQC9QtAT7Yuf0lcPeMO0ltUUS+Cbiqqk+IyIuDt14L/LiIvAnXjaPI846Brwa+T1U/KiJvA95IQWjGN1p9O8CDDz54xG6vR1iCb5Xk0hXMzZrTEomMM2KehVLY2MC9URxTDxF4yaHHlhmocEgZGyJgRYTiWREBd3362OtQOXkwlkzHfIBF4/tapi3tPA/bxYLNIDtHrUtCrS1Dt4u9fjOLaUcdS1IRUPjhN7yOmloev34flSjh6vYKGzdXiK9UOPVHwvlf+FT2O5Q4dgnEVjvz0KniWSHD12tbbbftzXXXBMSrJNor1wZXSH6CGrzpwyE1MYLd3B4MaeyhgGjPfPVwTOlzzTXk9oqTcLyUEvcLV1h0tEzOIj30FwHfLCIvB+rAmoj8jKq+GngYQESejwvJ5PEU8JSqftQ//wWcQb89kS2j+4JZttlEOh0XU853miky3PmY6CjveeBcvuFCNRoM56Q/Yt8+jEqMpJNOWgyjmvGiJ2LKkExYdDLQdSivsmjViXwlyYADZFZXnWBVJYZuNxMCEwvVWx2ny9LuOiqkKp//7/fQfrabKJ7zLqWyvoF55ubgJFGJnYE+dYLuxRNEOx3MjU2nzyL97k/ZGAMvuHf95sC4NfGFXEmCGB9ii9NeokFrv8jpz0i95nMdXtMGt6qZemU04p7nE6xDyFWuhuMyqytor+cSnTiqJapOP6jEMPZQvLtILKweV1V/SFXvVdUHgFcB/01VXy0i5wHEWZAfwTFe8vs+AzwpIi/wL70E+P1FjXVReMy+l8fse/sv6KBORtrAYGzbsLxxD1+bQvAoNT7GGw+pVjGNuvsBB80ptNNxHYKiCO10sSE3elrkr6EgH1A4bs+LVusacGTeZrXi+ewVolR90BhY33AhgSTBnj1JvNUlvraFuXQduXbL/W01uf8DO1z81Qr3vi+mcyL28gFeDTCNyXe6roF0JSapRSTLTqvFLC/5JGkQP07vZy6/kf6h1vd3VWRt1RUM5YS61KtqaqeL7jQz2lumR75fpBzzSbUK+Umg0XDGO4qyyT1DZNCdJtpq89KV1+x/jMcIojrV30HhMHjo3y4ir/ePfxF4J4CI3A28Q1Vf7t/7PuBnPcPlc8B3H/hI54QBox5gIMY+wjhnZeUwKNA0xX6Ak3g9fxatREjPIjduoe1O39PsdMnobkXHmUbdb2Kh0+Dx0vFlKpBFoRvf7IEocnowqtg0Du/vQXTmFGogavsiJWvR0ycRVSclUDGc+OQtUKV7doVkpU58swLNVtY4Qq3FRBFYS/13Po+qhZVlJ2mQNncOCn5cGIohg5giOuVpjcYglYq7zl6Y6AzCTz1Lsr7eP0xKP91DyGVm5L432nQGO9WUT8dgt7b6jKnE7j20cxxxJ8XQQ6jqh4EP+8dvw1ES89tcAl4ePP8Y8OBBjO+oIi1icRQyQeJecfMLGIrPSuqFN+qOXpYKJDXq6MbWwL6pxnZGgfQl/ES+4tRM2cqswPMeei/gzw8h5H+r9dRAR5HLGCBx7Pt2NrB3nUUSxRqnmKgXztA91cBW3Ll6S4Zot4K5tU31yZtoo4qeOQFnT8Lla6CKObHmujZ96enMW9Zmyz0u6DU6aXJzErgN1xxjTFK6UH8+neDyCoj5e7kX5MNi+TCgimO3RBWyDzvj4idZgjvTVC8BlFouJTweir6t0LsOk1MSRa7RwYlV7FIVc30DNrYwtarzsiOTVWGS6pundLK01Ht7J0vUpTFxzXmcrrhmCalVHVUtVUxMl4riVbMmxGQz5b6MgpmTZM3FpMP903EM9OpcbvS95Gavv6KoxI4e+JnPoyIYVVdNurNLpXsSu1zD1iNEI2w1wmxsOerklosLs9SARt11bfKt9WRjM6Mwamdwsilsp1aQ71CrWeXoSLZKWHhVFOfWoBo1jhHPSR8bE899DgPnHJWPyTGTst3S2oF0LDku/kgJiTsVd1BStEQBHq68ajAJKK4PY7isB2fQzMk1l5Ts9pCmwJIzcMkpnwxs9TCtjjPqqmBvOW9btc8aST2xoDx90Ovz3nKzhbbbTmuk14N2G6lWiU6sOQ32sGAoj5RTHTvq3qjwTbod+IbINl0hOCMhyw2MGGcUez1ILMm1G4E36ZQNs+NbBXUTlF3fdEleazFPtvrJoWoFvecCWonQSkRvqYKoEjV7ROu7JCeXMM0ushP7Rhq+2US+SUX+OgqQNZIAHPe/eBUyabWTJYqTxMkTRzVn2NOcxzhu+uCARp8kNxGB6yaVOefVKo/u/DQPV15Fyp0fKjC606GULejuVLy08V0ubFKruSSJT/6liUqp1xzTIbGZcp/d2sacPU1yaoVkuUL1mU3YbRJ5bWmNnK63rtRdwm/pLqdo+KXLfU+cAqOUS8w6z8uFF8QnQsWIi6l63rEzVAkhzXEgbKA2kIsdPo87eGBgrHWeNo7+lXo6mRGMY9c8IunHnFOWSV/VsT1wLu10XFLX00MBR4P8/FNZV6DaxfMkJxqY3Q567QayXKN9fpmaKrK5FYQ9NPNQJ4VZspZ0Xis+YwqNC0FNgp9AtdkapBTOipDuOoqBBP3vIWSrvEfOvq6kKU5C6aHfWUgNOZGj0rmYcOIZFh1XRn7fXdhqjHnSOrqYSEYj09UltGIwncR5k7UKctk1L3ZxbgPnT7sk3IZr9hxKto40RuGPvKA4KexFme3i9ULAJy3z9LhpCmE8T942Wxiz5Mrnod9gOIpcC7ZWe3T5exCP73usvh9mWviSn7R8VapWIjf5gTP6iVJ/ch195trgymJEsdT48bhCo2xCCCpC94SBugIYW/0Zfp7p9efPnb6eN+ZZuMu6RG6t6kXVEh459b13jtjWXjAney4iPwWktTtf6V87DbwbeACne/XXVPXWuOOUBn2BeOnyXwcjmLXVrA+m1mLssvPkpJ04A6nq+NNrq64lmwhaiSESpNUl/qNLLumXxi/PnUHSkEqzhTQ7zphYHWAiTBUuGGVsAmMikTPmsuYLfns97Ppm1plnVlmBlIoITrBK0rJ5qyQbm4MhlnBCSZsYJwmm6il2vZ6jWAZ89rSRdbafGDC487S6yKVrbvtOB9PuYutVzMXz8NTlAapmFv7KF/0Ued5i0HbbtaoDt7LRCXzwaVBklNPXizCJ0jrqdSNIqi+Uhuf8SuiRs68D4APX3z7j4I8/xM4t5vLvgH8JhBoKbwQ+pKpvEZE3+uc/OO4gpUFfAB459b3I6gr6J5+HGnHl69UIW1vBRkLnRIxGIKk3bKC6mbD0+XWX9DMGabYdU8KHZ8AZKanE8MxVZ1zrNScsdekZshZwMJx0TJGvPIUgnEJ2jvw2muDi6M0WZnkp855n4k3nmRvtdhYyCUMned2T0KiqlwgQUezubiYMNXiJSqqYlB2r10XiCnZr28nWpjH/SoxevuoLeiw64sdZ1B8UyJXbO6aI03Ch//qc2CmmWh2gFKrVgRXMQE4mfZx+rj4WP9BsI/iOpFILg6f1fVyTxH0nofTW81DmVlikqh8RkQdyL78CeLF//C4cU7A06AeFP/8t/5zazQ7meffTvtAg3nG9M21FMD2ledZ1y7GREHUUjSBqq2trBq7BwvZu31iRcpOD5gedDirGJf8aDcebpp9YHGnMYXDJHXh+abJrrAiYD8GkBT1Ta6UH5xnUeUkTca4v5ZDMb54nnYp++XCVK87pDLyfniN8nj7OcgSZ4ctJ3w5VtRYb44yTjSvWUp+07u+zGBaI+4zi4ok0nZSjCJMWMyXWhU4qFeh0smYdtEd/P4YSnp5CaU6fzKpvS/QhzFQ0dFZEHg+ev93LlozDBVW9DKCql9OizHEoDfoe8dCf+zHaZ6okFcky3bZmsJUIW4mo3uoQbbXonlmieq2FWd+i/qUadqUOPYu5ehOWl2Bnl96zLhB/8YrjQ6fMD1/koV4eQILiHzGuvZfd3cWcPtXnjG9s+krIMSGXEUvyIQM9YmmeJg1NNeWSR8PGOHe+TNgp530DmWZI/vWi1zJPOMcI6p9K+hrxIySIw2sbZKEM6s2MDE2lFMulJeTkCaTZxG5ueYmEGVQtCzRUhhgs4b2bwHBJE8HaanuKatetSMCNLY5d2G5AcMv2pQhIJyvP6U/bBYJLYPsQWYkcpjfo11V14XU1pUGfES/9mn+AdBOkGhPvJtjVmO6yAXEUpqidYGOhtxzTXVmhdqPlGhWvLsGTz2QsAlUXdiCxxJ+75DyqM6eQ7V1XDBTH6LpbvqtXT0zpjVJ3ol5Sr6NrK0i749q4RZHrR+mRhVKCmHQekxJ+mWEMQzTVikueJYmjGBbvmO075AnntERSOmLGW88dJ0ReeGwg1ODbxWXPo2hA4Cvtbj+gN54zoBPvBfSN4/UbWSeglNqXT8iOg6n0f36jKjCnDdukKxhtt/vX26i7783SkhOAC5uoaNoU3DqBspVl9PRakNgVR5tc33bGfHtI6LQELHrVckVELnrv/CJwddIOpUGfEo+88EfpnF9GT9ep3Gpj6xHxVodop0fDCLZqqFzfQbZb6LIrWU+WfNik03MsirTaMV+YEhn0vovYpQqSnCSpx3ROVqhuniHe6mCevOIaL7faLoa8upL9yKTZzhg02ulmzJOsn+TqCvQS14S40ylsvBA2ych3bR82oNadJxOZMv33AyOeGdN2u8+G6R+0/zAhM/qzcJwzzncUYU6ddLK16xve2/S6876Nne1tQlxzSVFAeyMmoVGrk9x1mXNnXMXt5av9z5TpjW8YIpFqFTl7Gr1xy/Uy3d3tHyccz6QkKOFn5btY7e5iTp7IGn2H26RKmuKbSHNyDa1Vsr6vu/cuUdlJqNSrRDe3Jl/TnYg5xtBH4JeB1wBv8f9/adIOpUGfAg9/3T+EpSrVS1vY5RrRxi7RFzcGquaiyJA8/34iEccDt5bIU7+sj2n2OdXBt8AbMXP1Jr3nXYSKIdrtUQWaF2rUIyGWu5yMmgW6CfqZz7uwgxHXxzEbhIFeGv9xjBe6PVeQ5MW2ChEkCY2nrw0bAbLHYmzWvs2sLLuq1FR7RdV5sJBpmw+cJ4+CApdpILHrzSmnT7o4sbXI8pJbAXkPk0oMnS7m7Bk3rijCXrtBX054RHxkVOioEmNWV9yk0eog6X3t7S0Bqt2eC5e12q4NXq+H8aG1MFYuRjCNFdTarMdpdq5cmKofUvFFWM2WKxQbusTBnIRcvQGdDqZew959nsYzLaRnIZI7r63cDJgXy0VE/gMuAXpWRJ4C3owz5O8Rke8BvoTrHzEWpUGfArYaIYkizTbR1RvuxdjHG5PEeYetdhY6yQps8lrehE/7lDyJIpL7zmE6FluLsI2YVBa2fbJCdznCVgyV7YTGp5+BtVVXhFSvOcU+6PfmjGP0xk2013Peo7XorfXiBgoBpBI741ytui9pp5st08OmxZmnmhb5VGJYXnIt5nw4w968NTAhFF3/fpB6l3RwBvXGLXd9Rtw1+ASevXbDhbIadWcwjWBOrGLXNwZiyYXjy3vF6njyyc11p4We57lPHvRw+Eptxh4Kw2MDlEsvp6DW9pUi8yi4t6nI10BfVILkt090S4SLvbfb7hytNubWJuapJvaBizz6m2+afG13LHRuIRdV/fYRb71kluOUBn0K/NeP/J889KJ/7LjFcQS9hPdf/r8Htnnpymv6SajUWPhQCEVhjtQwxjGcPIGtRmw+u0FSFeK2svJkm7VPXIftXddy7f4TdNYi6mvLSGKd8TaCrCxjr99057EW4sh1QlrfxO7uDnt0IyBR5BpugPufJO74UcX3vOwNJBrNqqdN+iQanY4rCNradoYnP3nkGTa51/IqjOG+A5NIsL9UK/2EpL+X2mpjmxuD17vrEnxy8bxbrTRbLn8RxuwLim2gry0TMmUmTk4FyVjHva9mCex0VeOSwgUyAUEIbGhlNc3kmEoMpBTOAjpq+rrEBjmxhrTaLuRz7QZmaYlHf/vNk89zJ0M5csyf0qBPicf++4+Mff/R7Xfx0vp3Dnh8eZGn1HgNFMyows11Ks0WZz6vdJ53F9F2F9PqoLHB3nuW9tk6SVVY+4MNF1Jp1NFajLS60EsyI2jXNzDtjtP3brUxYTIsM4gaGIv+l9G22kTNFnr+DNLtuRVCHGcTwlCBT+yMkt30IZ9UGRFc4+N2GxnVLNkdcPB/eosKvN3Ue5UlX1marj58SCvtWpQ15WgOHxdwlNAbN7MJdigclKdzTkPNLLiGAepkOIF5TzjrjBSwWEaeY78rmyLaaNHqo9t1xrzTQeLKHdnweU9YbAx9ZpQGfd6YJUGmrk8l1QrS6dD7srvZfFYN06tl3cQlUarblsp2Qvd0g8q1bdfgYWfXMWU8xMetOXUC2dh0xUy7uy4kYqTvGaZFPElC2LJcjLhxbO24Sabnmm+YRt2FT0zcVwBcXnLD39l1HnrPKSGmfUDTsUi16mL4KeUuR/3Lx+bDsQwlSKMIOXPKMYQuPUNaYWuWl6BaBVWSK9f6+/vVRtpARHd2YWe3f9+LYvuh51q0upiAbCXhWUB2py9qplYhZdYkCeqPOZU0w7QYtU8u4Z2uPsLuSUC2sny0+e+nP+cdjjupBd0dg0dOvDZbek1M7KUeUxRhzp91iUsj9O4+Q/NCndqmpb1mSGruR7b8TEJls0u02cbc2HDnWWo4Slmj4TxlgN0mLLt2YayuIM1WsKTHJ1F7jqGRVmq22lCJXTeaJMHeuIk0Gk7Pe9cZP+vFoaSx7DxvI45W2Ww5Wpxv8pwZjQTY3XWStCvL6JXrQEBPDD39AspkSEM09VomuIUIbG55DroPYzWbTu53cztjyUij0b/VYcel0HhOKoYiMM456uXQRB0yYDyt1KwsQ6WCAV9G71cqSXCOcQVIBRNe0dj6FzoivJXb11RiNyFXXELZ7uz2q3SXl9znuWt5uPod2TEfS949epwlypDLsUQUDSr/wVhGR0a5a7awF8/RPd1wLBZvyyo7SmdNMF3YPR/TPhHRuFnBPmsF01WWPnkZWVtzxrgWI7tt8OwLrbmE6gA3OoVV91evOVbIUsNVp3oD7RKNHR/O8FWC9Ri11nm8ccz2n7yArRiijqV+pUn0R13XkzMwImrVhW12mpgTTpvG3lrPmBeZjrtal5RL9wkNlVo36Z1Yg6UGemIFVUWaHYwRV8bedfRJ9fdUuz2X0FXNKJrpscd+LsFnEz43nvapO7suf0LkQ1YyZEDFl+Ubv4qw5086xkqn46UFgolgQvHWwJjz4ZzIUTLN0pJrML617a7bTDbqAyqU1notfTd2u73j9HpqNaerz2CYrUQBVPtyG0cEpUGfB3KNI0iLZ4qWvrkfqNlpUbu+TnLvWXbuqrJ0pUt31Vm56rYStZS1T91Eepbu+VUnE9BqO156p4O5/x60UXUUs+1dp5veqMOFc+jTlxEiFwJYXeknMUXoPes8veUK1Ru7mKeuoru2z11vNNx27TbJc+6GROHmFlQrrPzW592XuObi5drpZJ6p7XgOtJG+9kuj7lhAafEQYE6fQleXkW7P6dCoIiRZTDy7Xd2uWy2cPUFvtYpGgvSW4N6TmHaCdC1mqwmXrvhenrbP4x6F/Ocyxqii6qiP993lOrzvtrHPXHXj9eO0aVtA3/HHXr/h+nO2wtBWmvSNsolL4srIRGXROLP9Uj2XUL0z3WVcRWmQJNVmwKIJ5IbDFY3xx31p47vKEMw4lB768cMHNn7KJUQLMBBmCPnCSeLib1vbznB1E9Y+32TnnjqtU4Z4F5audJ0BF4Gb68SXrjhKXtVzsM+ccoe9etN14en1XIFIJSJZqSNnVoiubGBPr9A6t4QaiHcTomYXFCrrbYwvGjF3nYdaDa1XUFXsUpXmxSVnJIwQn6r57VYx7YRop+NWBimzx4gzAn6pLlHkpAt6vcGKVTHYGzddl6FuN/PU1SrYPi1PvPofSYLGxhnwxCI9S7JU6cd9PctmUqf7QW8zyj6bUduKEWR5CV1bJlmuYbqJu89hX80hg+s1b5pNFyNPVxyRgR7esNsshBOydtKxZ9+XnBdvqlGWC9FO13nRxiBnT7sJdXvX00U7U7NghhLT4mmMs1Iy72SUBv144tHWzwK+tVyuYGXgR5r+eJKE5NaGez2OMU9ewT73HhpX2jSuCdF2l+jzl9z+atHE9hkSVW/Qdnbh1Ak4ecJ9seo1136tFhM/fcN5tnedRHqWymaH+NoWnXtOsnPvEkuXW3RP1th+4B5EXfLVxkJ3WZyYWFdZutJj6XefxN59FvPUVVfAE8fY0yvYRgWqMaYWY1q+0fSNW06SoNP1cgW4661GmLUV6HRdEljE67Z3svuTYqCU/+wZUEu00SRZq2N22kgnwXzxGVcpu7LsNj19Em6uDykGZseMon58PS3VB8eWCSmBaUjMT0B2cws2t4iqVZcPaLackU7CXQZbtDlj6FUYu37F1kuvMeWE02+xd+Y0qGKfvpwlqtOxyqmTaKMGkcCTz7iagrSsv1qFWhW9ej1TUUwnolFVuUXPU4Odxtfp9SAKvH6i0ksfBaUfwjoiWLhBF5EIeBx4WlW/SUReCPwEsIITbf9OVd0s2O8LwBbuV9A7CGGbeSBNIj0UfdvIGORAoi7pL3ujT30Ref59SDtBnrzsKht3djOvUKoVxBgXMz13huT0smtDt77lCooqEeaZm3DhFL17z7L5nAaNq13i3R67F+vUlivEO13WPnaT3vkTxDtd6k+u0zuzwvrzG9hYOPnZFre+vI5FaJ+KqD5wAdPqohfOOAmDSOicbtBdieg1hPqNGlHbYjoJ0VIN/ewX/YTjjVtknKd79qSjGDY7sLHlNGAClUUJvFkxLmlMzZfqx6afF1CF0ycde2Zzy5X2+3vUD2v0BieGtDPSuTNOZ/7yVTc5JokLfXj2SRZzT41jWpq/1IBuF7nrPFy74cSvut2seGqgAYX/P16+2OURJIrcpLy8hDlzGvXiamZt1U1WImijgq1XkOfd7ya0Jy+h3R7J+vpwWCbBxcEhGFtBiKnIg4+i/vcsigYNVRlLH4HZq4MXjYPw0L8f+BSw5p+/A3iDqv6aiLwW+AHgR0fs+42qev0Axjh3pIb94cqr+nHOIM4+8IP34luIQT7xR87bBdRrnPeFpHxxi7WItURfeCZjtWAMdrmGMSdp3bXMzl0xaoTNZ1cxHWcY2yeqrH4JkJNoJPSWYjqna6jgBMUacOMr66BQbapLyl6sI1on6iimbbEVQWNBrLL6+RbRTtvx4bd3nAcOWaNhZ/h66M4u0uu5MnS8sfFt9KRa6TeFaNShEpOcaKDGEK/vul6gsUE6PZKVOqYau/ZxcQ2Wa0jPOr77TjMLZZhKPGi4/L21T1/OlBohNeDDxjf97F5a/85+orVRR1NGkZdyyCOdRPbStu1ld/3vTnStY9CzJ0lOLCGJJanH2KrBVA3Rxi7Uaq6hh1XHlAmZL/jVhfE8+k6XIXmDIJRjUh0XyJQ8M/qpj/OXnvkYKHdWUlRE7gX+MvBjwN/1L78A+Ih//BjwKKMN+m2PD3Z/3nV86XRdp3mffEqb/vaNuzMupGHkMFmXGifrk2DViit3b7edwfGiVNHNJajXMBeWidvQqyvSATVOjx1Rtu6rAlWWr/TYvhijMag/VdRxNElJlF7dUNvoUf/cDVjf7OuB3HcXWnE0QvP0Nde5KJigxEgmx2q9YUgNoDTqaNvHeHu27xW2287Qnl7DNmpOZqHXw9Yqjqq5tQ3WEq8sw4lVWvedwMbumkzXUm21vSa5Ojpes8Vwu7bhMFiIInpeGkY7CLz/mX819NpL//SbqX7+MnrmFETiJB1SNlKKXKLdNluut+kUhkb9CkWqFRf2yTUSH6n9U6KPOyyG/lbg7wOrwWufAL4Zpxz2SuC+Efsq8EERUeDfjBKDF5HXAa8DuP/+++cz6jkjbN31yOm/MfhmmijLo6ByMfWWXnbub6I9ZwQHwjrVCjTqxNtdqnVDdRPinYTOyZhew6A9SGouVr59T4z0yCrdkhpoBNsXI6pbytrnm671Xc8pAKZiYHLpKnj9GJvnZafeok/cZRWT3Z6jVDa7fUMjpt+JyXPapd3DWJBegsYRsrnteNypAFKni0ZC7fIWrXvWnOfaTkjOnSTq9tDNrYztMq3Q11HmWT/6xD/gkVPfi/7RFwBvZEdoz6d5Gk0SkrSAahzScEyv2w855XIZs4il3bG4Uwy6iKQNT58QkRcHb70W+HEReRNOHnKUG/AiVb3ku3Q8JiKfVtWP5Dfyhv7tAA8++ODRursF+MDNfzv2/Ycrr8oef7Dzc4XbzFKW/Zf+wj+hdqNDXaF1toqNDb01yJrbCsRN96cCpz7bJt7oOAbOyrILpYgAXgWwuz14giK6XSV2qn3bO35VURlMWEpf3jcV1aLTRW/eQk6dxJ5Y8j+UFSf6tbIEWzsukfr5pzCNBnWge3YZ07Gu+cfmFllzkGNkiD5w6x1ZPmZcRylgsHBpSrjm0J6qWJGS1TIT9M4x6MCLgG8WkZcDdWBNRH5GVV8NPAwgIs/HhWSGoKqX/P+rIvI+4Gvph2qOLfYSfx2H//prPwzAw1//j4h3LVHTsnQFqptdOmsV2qciWqcMtQ1l6UqX2tOb0O2hN26RPPc+R/Db2u4b7pz3O9TLMjKO8x7HmOVlp1HuQyEDvUO7PaAFz7kPuglcuebCUiKoMZhWh97ZZTizRLTVwegSEpksoWqu3CD28XQSiw067Exj/GYxekcBM01S+XqHIkmA7POKMLXYqy1qlocoMQWU/urxiGBhBl1Vfwj4IQDvob9BVV8tIue9kTbAj+AYLwMQkWXAqOqWf/ww8A8XNdY7AR/8zcE0xUN/7seobLsippN/2KHxyUvuy9npuj6lqkSXrrsqyWSEEQfX9QYcBU8MnD6JXa2jxhBtNeGe80i75xKSYaLSa8dgLb0zS1S2luBkhd65VbprVSSpIarOA+/00Gs3kErFlfqrYnd2nTEHUl2XiRSywKAd5VBLHkXMqZGce2+oU/GvgR6kgZFPk56pxo/Uauju7sD7JabAHeShj8K3i8jr/eNfBN4JICJ3A+9Q1ZcDF4D3ieMLx8DPqeoHDmGsxxaP/bqTBF77gw2SlRr27EnM5Wv9xJiqM55hYw7fDWiglRnemFcqWUNiaUcuVNJL0JSJ4ql+JD4ZJ45NYXqW+MYu3WefR43QXYuxcb9Pa9RMsHevEq/WiDaamDhGU4VHVbQSIUnIWgHE8FhSHK66nfFY8u6BkNxIpJXKkUGimpukw88wDdH4+HlK3cwaYI/rEVsiwNEr/Rc9YjPMfvDggw/q448/PnnDEhkeOfFa1yjDa6MM6beH1Yt55DXKY9/RZ2U5042n2XLSrNs7fdVFyDjemiSOO336JPR6JOdP0brYcMtZgcbTO5CoY7vEsWvW0em4uL7/MZmTay55u7Xlh6wj8w/HCQ+ZEQ1sRoWT8qGYnLRuum907gyI8P6nfnyOoz1aEJEn9lvbciI+p19/8q9Mte2jN/7tvs83DW6vQGKJ+UPVaaanZfgT4qd5oauU5SJZc4wqdq3hhZ/EqyK2ho/jG0xrt4f6pgrsNF0D7p4iidJ4ahtzfQPT7qKn11zVpK/yFNOPC9ut7b48r5g7wpgDPGbfW/yG2kHvOv88fS2HjMIo0lfxLDEeqeDdpL8DQln6f4cjE2ZKcu3NCppgQL8sfvBF42iKjXpW0dm9a414vYnsmCHRrfS4AwnVes0rRgoYoXatibm24aonb65nx0hb6WWywOCSqUds6XtQGGXUHzKvLA6ZjBCMy/TaE+MapZw7s4DRHkMcsQhH6aHf4dBULRD6nlzABBEjmEqMaTQwjYZv3hC7pFq10t8PvA5IhHQT4hu7yM1NdGt7rGaLGGfAtZPK8ArStSSNCiw3nFJjp4Pd2XUefS4clDdQZWWjw2P2vaM9+ACpzo2pVt1nXK+5yl1VXvbA3zmAkd7GSNs+TvN3QCg99BIORUtwIyAV17ChUceeO4HZbEK74+iI4JUfq85zP7lG87lnqV/edgJdm1tDTSb6p+sXwjjtER8Xt5bGF9fRazewrfawBxRMNvOmeB5HpEZ9ZLwdvEyDb+3X7SGdjstrBNK8JUbgiHnopUEvARR4z2myrBK7UEi7jXQTl+A8c8KVl+82EVXsXachUVSE3pKhd6JO5coNVx2aM+YjE6w+1m4ueemeTtd5/CljI9BcuZ0oh0cFj9n3Dhj1gedqnbRDpjNkEGYrYLszoUeOs18a9DscaQLRyf4OQ7s92Nx0HPOnrjhdmJ1mpu0ip06ilYj2+TrdlYilyy2kk6C7zcIydTFS6FmnevLa9uGZQPmwpM/NB/kQzDQhmRJjcCfK55a4PZCpQ1a/AwhobGrR7R1sGiJJRbgqcb8DUatH1PJ0xF5CtL7jGlingl4BVW4UAyUVwnrk9N/IpG0LW8iVKHGUcMScjdKglwD6HnpYiZgPjQwIcSW+ZdzODhIZzEqNeLPl2tl5YzygwMh06oWp1k3msZfGvMQRhXL0vp+lQS8xgKIY9zhD/LIL/xuAq9a09HW1fTI0FX+alRueP+eokFCJEocGvTMbXJS4DbDXROP7r/zr7PFL/9Sb3QPVvixwQWPsgxxfiRKLxFFLih6r0n8RuQZ8cU6HOwschW5J5TgGUY5jEEdlHHB0xjLNOJ6lquf2cxIR+YA/1zS4rqqP7Od80+BYGfR5QkQePwp9TMtxlOO4HcYBR2csR2Uch4GyUrREiRIljglKg16iRIkSxwSlQR+Nwh6mh4ByHIMoxzGIozIOODpjOSrjOHCUMfQSJUqUOCYoPfQSJUqUOCYoDXqJEiVKHBPc0QZdRL4gIh8XkY+JyFDvOhE5ISL/WUR+V0Q+KSLffYhjOSUi7xOR3xOR/yEiX7mgcZwUkV8QkU+LyKdE5Otz74uI/LiI/KEfy1cf0ji+XER+U0TaIvKGRYxhynF8p78PvycivyEiLzykcbzCj+FjIvK4iPy5wxhHsN3XiEgiIt+6iHFMMxYRebGIbPh78jERedOixnJkoKp37B/wBeDsmPd/GPhn/vE54CZQPaSx/HPgzf7xlwMfWtA43gV8r39cBU7m3n858H5AgK8DPnpI4zgPfA3wY8AbFvgdmTSOPwuc8o9fdoj3Y4V+TuxPAp8+jHH41yPgvwG/CnzrIX42LwZ+ZVHnP4p/d7SHPgUUWBURwf1gbgK98bssDF8BfAhAVT8NPCAiF+Z5AhFZA74B+El/no6qruc2ewXw0+rwW8BJEbl40ONQ1auq+ttAd57n3sM4fkNVb/mnvwXce0jj2FZvxYBl3Hf3wMfh8X3AfwSuznsMexjLHYU73aAr8EEReUJEXlfw/r8E/hhwCfg48P2qC1PjmTSW3wX+KoCIfC3wLOZvPJ4DXAPeKSK/IyLvEJHl3Db3AE8Gz5/yrx30OA4Cs47je3Crl0MZh4j8FRH5NPBfgNcexjhE5B7grwCL7o4x7Wfz9T5k+n4R+eMLHtOh40436C9S1a/GLZVfLyLfkHv/pcDHgLuBrwL+pfcMDmMsbwFOicjHcB7Q7zD/1UIMfDXwr1X1TwE7wBtz2xS0G5q7NzjNOA4CU49DRL4RZ9B/8LDGoarvU9UvB74F+EeHNI63Aj+oqotWrZpmLP8Tp9nyQuD/Av7Tgsd06LijDbqqXvL/rwLvA742t8l3A7/owwt/CHweF78+8LGo6qaqfreqfhXw13Ex/c/PeRhPAU+p6kf981/A/Wjy29wXPL8Xt4I56HEcBKYah4j8SeAdwCtU9cZhjSOFqn4E+DIRmVY4ap7jeBD4eRH5AvCtwL8SkW+Z8zimGov/zWz7x78KVBZwT44U7liDLiLLIrKaPgYeBj6R2+xLwEv8NheAFwCfO4yx+Ix+2rX3e4GPqOrmPMehqs8AT4rIC/xLLwF+P7fZLwN/3bNdvg7YUNXLhzCOhWOacYjI/cAvAt+lqp85xHE81+d68MyjKjDXyWWacajqs1X1AVV9AGdk/3dV/U/zHMe0YxGRu4J78rU4e7eICffI4E7WQ78AvM9/3jHwc6r6ARH5mwCq+hO4Zeu/E5GP40INP6iqi5AHnWYsfwz4aRFJcF/c71nAOMCFc37WTx6fA747N45fxTFd/hDYxa1iDnwcInIX8DiwBlgR+dvAV8x7kps0DuBNwBmcJwrQ08Uo/U0ax/+Cm2i7QBP4tiBJepDjOEhMGsu3Av+biPRw9+RVC7onRwZl6X+JEiVKHBPcsSGXEiVKlDhuKA16iRIlShwTlAa9RIkSJY4JSoNeokSJEscEpUEvUaJEiWOC0qCXKFGixDFBadBLlChR4pigNOgljiW8HvfviUjdV+J+UhakIV+ixFFBWVhU4thCRP4xUAcaON2Pf3rIQypRYqEoDXqJYwtfEv7bQAv4swegAFiixKGiDLmUOM44jWtMsorz1EuUONYoPfQSxxYi8svAzwPPBi6q6t865CGVKLFQ3MlqiyWOMUTkr+OUD39ORCLgN0TkL6rqfzvssZUosSiUHnqJEiVKHBOUMfQSJUqUOCYoDXqJEiVKHBOUBr1EiRIljglKg16iRIkSxwSlQS9RokSJY4LSoJcoUaLEMUFp0EuUKFHimOD/D8x5G2eVRAGfAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "da.where(da.values>da.attrs[\"nodatavals\"][0]).plot() # we can see that the DataArray contains missing values." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll look at how weight builders handle missing values. Firstly we'll slice the `DataArray` to reduce overall size for easier visualization.\n", - "\n", - "This time we'll create `WSP` object using `da2WSP` method inside `raster.py`. Since our DataArray is single banded and all of its dimensions belong to the default list, we only have to ship the DataArray and the type of contiguity we need." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# Slicing the dataarray\n", - "da_s = da[:, 330:340, 129:139]\n", - "w_queen = raster.da2WSP(da_s) # default contiguity is queen\n", - "w_rook = raster.da2WSP(da_s, \"rook\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After plotting both contiguities and sliced `DataArray`, we can see that the missing values are ignored by the `da2WSP` method and only indices of non missing values are stored in `index` attribute of `WSP` object. " - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAETCAYAAAA2zVvwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACcRElEQVR4nOy9e5gcZZn3/7l7ejqdyflEyJEwTEIIxIQQDIcIQYhDBBf9uaIgioIcVdYX3YV911X3fcXV1dddD5wCREBOi5xERWMgBJSFkANJhhwZOslkcj5nkjn09NT9+6O7QqftnqrurpmezNyf66orM11PfbuqU/1Mfet56v6KqmIYhmEYhmEYhmEYXZVQqXfAMAzDMAzDMAzDMNrDjKthGIZhGIZhGIbRpTHjahiGYRiGYRiGYXRpzLgahmEYhmEYhmEYXRozroZhGIZhGIZhGEaXxoyrYRiGYRiGYRiG0aUx42oYhmEYXRAReVhEvl/q/UhHRO4TkX8NSOuwiFQGoWUYhtHRiMj/FpEHA9JaLSKzgtDqSZhxNQzDMIwiEJFNItKUMmI7Uoazb6n3q1hE5Esi8tf011T1ZlX9v0Hoq2pfVY2l3qvLmXTD6Omk+oAaEWlM9W33iMiAUu9XZyAis0SkPv01Vf2Bqn4lCH1VPV1VF6Xe63si8lgQut0dM66GYRiGUTyfUNW+wFTgTOCfS7s7hmEYhSMi3wR+BPwjMAA4BxgH/FlEyku4a0YPxoyrYRiGYQSEqu4A5pM0sACIyN+lpoUdEJFFInJa2rrTUq8dSLX5u2y6ItJPRF4VkZ+LiGRZP1hEfiUi20Rkv4i8kLbuBhGpFZF9IvKiiIxMW6cicrOIvJfa7m5JchpwH3BuaiT5QKr9MSOjIvJPIrI99b5fSelVpdYtEpGvpLU9ZgTXbSsiNwKfB/4p9V6/E5F/FJFnM47xFyLyX17/B4ZhFIeI9Af+Dfi6qv5JVVtVdRNwJXAycHWqXWZ/cMwopYiMFJFnRWS3iGwUkdvS1oVE5E4ReV9E9orI0yIyOLVuXKp/uFZE6kRkj4j8Szv721tE/p+IbBaRgyLyVxHpnVrXXv+7SUS+JSKrUtv9t4hERaQP8EdgZKpPOpw6lmNGRkXki6n33Csi/5rSu8TnZ7NJRC4RkUuB/w18NvU+K0XkMyKyLOMYv5ner/dUzLgaeZPl4iPw55QyOwfDMIzjAREZDcwBalO/TwCeBL4BDANeAn4nIhFJjlr8DvgzcALwdeBxETk1Q3MI8Arwhqrepqqa5a1/DVQAp6e0/jO17UeBfyd5wTkC2Aw8lbHt5cDZwJRUu2pVXQvcDLyZmtI7MMuxXgrcDlwCVAEX+vqQMlDVucDjwH+k3usTwGPApSIyMPVeYeCzqeM0DKNjOQ+IAs+lv6iqh0kauo95CYhIiGT/thIYBVwMfENEqlNNbgM+SbLfGAnsB+7OkJkJnJra9jvppjODnwBnpfZ7MPBPgNNe/5u27ZXApSQN+YeAL6nqEZL9+LZUn9RXVbdlHN8k4B6SN91GkByVHuX1uWSiqn8CfgD8d+p9pgAvAidnHO81WP9nxtXIjojMFJH/Sd2B2icib4jI2dnapj+ndLyRacINw+hYUne3VUSG5lj/DyLybuoO+TfSXp8iIm9K8nmr36VGBLze60+pu+y/D/AQcvGCiDQAW4BdwHdTr38W+IOqLlDVVpIXWL1JXmCdA/QFfqiqcVVdCPweuCpNdyTwGvAbVf12tjcWkREkL7JuVtX9qdGR11KrPw/MU9XlqtpCcgrzuSIyLk3ih6p6QFXrgFdJGy324ErgV6q6WlUbSY7QBIKqbgdeBz6TeulSYI+qLsu9lWF0HY7zvm4oye9bIsu67SRNoBdnA8NU9f+k+rcY8ADwudT6m4B/UdX6VN/0PeDvUzepXP5NVZtUdSVJAzwl801SBvk64B9Udauqtqnq/6Q02+t/XX6uqttUdR9Joz3Vx7EB/D3wO1X9q6rGge8A2W4q5k1q3/+bpFlFRE4nOU27M/6WdWnMuBp/Q6qT/D3wC5J3rkaRvCBpKeV+5SKjk+sx720YXZXUlKiHs7w+BpgN1OXY7gzgBuDDJC9QLheR8anVDwJ3qupk4HmSz1158WPgC3kfQGF8UlX7AbOAiSQv/CBpPDe7jVTVIWluR6XWbUm95rKZY+/aX0byQuu+dt57DLBPVfdnWZf5/oeBvRnvsSPt50aSZtoPI0kei8uWXA0L5BFSF27YaIPRBenGfd0eYGiOa5wRwG4fGieRnGp7wF1ITokdnrb++bR1a4G2tPXgr28aSnJ0+P0s69rrf/N5j2wc0/+lbt7t9bmtHx4BrhYRIfl/+3TK0PZozLga2ZgAoKpPpu5cNanqn1V1VbbGcuwzTe09Z3BOahT3QGoO/6w0jZNF5DURaRCRBXxw0Zft/WaJSL2I3CEiO4BficggEfm9JJ+j2J/6eXTaNl8SkVhKf6OIfF5yP8PVS0R+IsnnKnZKMv6hd673LuaDNowexn+SnMKV6670acBbqtqYutP/GvCp1LpTSY7AASwAPg0gImUi8mMRWSLJ55RucsVU9RWgoQOOIyepkc6HSd7ZB9hG8gKN1P4KSaO5NbVuTGrEwGVsap3LA8CfgJck+dxVNrYAgyU1rTaDzPfvAwzJeI+ch+OxfjswOu33MRnrj5CcvuxyYp7v9QLwodRF/uUkpxMbxvHA8d7XvUlysOL/S38x1X/MSe0vtP8d3wJsVNWBaUs/Vf142vo5Geujquqnb0pnD9AMnJJlXXv9rxd59X+p68QhaeuL6v9U9S0gDnyE5DPFduMOM65GdjYAbSLyiIjMEZFBeWyb6zmDUcAfgO+nXv8W8KyIuNNNngCWkTSs/xe41uN9TkzpnATcSPJc/lXq97FAE/BLONrR/pxkB9kvtW8r2nmG60ckzftUks9tjSI5BSTXexuG4YEkiw5tTU35ysW7wAUiMkREKoCP84EZehdwCxd9Ju3164GDqno2yalpN4jIyYEfQH78FzBbRKYCTwOXicjFknym9ZskLwj/B1hM8uLmn0SkPHUz7xP87TOoXwPWA793b6Klk5pW+0fgntRNvHIRuSC1+gngyyIyVUR6kXyWanGq0IoXO4HRcuzzYOk8ndI+LfX/9Z2M9SuA/09EKlI3N6/3eK9jaiWoajPwTOoY3k5NZTaMLk136OtU9SDJmXa/EJFLU33KOOA3JI2iexNpBfBxSRaHO5Hks6QubwOHUjf6e6eM9xnywWNn9wF3ichJACIyTESuKGBfHWAe8FNJFlAqE5FzU/1de/2vFzuBIZI7/ucZ4BMicl6qj/w3IL1w3gpyfzbZ3mtcxk1MgEdJXssmVNUea8OMa17I8f28gm9U9RDJB+KV5N3+3ZKsRDm8ve2k/ecMrgFeUtWXVNVR1QXAUpJf6rEkO+F/VdUWVX2d5HMG7eEA3021b1LVvar6bOruZQNwF8cWCnGAM0Skt6puV9XVOY5BSE7f+V+qui+l9QM+eCbjb97bYz8No8cgIotFZAXJqW5/JyIrUssVwL/wt8bmGFI3k35EcpThTySfaXKfsboO+KokKy32I3knGpJFQr6Yet/FJO94j6eEqOpukhcc/6qq60n2f78gecH3CZLROfHUc1F/R3IEYw/JQh9fVNV1GXpK8ibZFuC3IhLN8rZfAFqBdSSfsf1GattXgH8FniU5QnAKx/Zn7bEQWA3sEJE9WY7zjyRvCr5KshjVm6lV7nS2/yT5/7ST5LS39kZMHwImpf7uvZD2+iPAZGy0wehC9IS+TlX/g+TU3p+QHM3dSHIE8RJNFi+C5PdyJbCJZJG5/07bvo1kfzc1te0ekp+XawR/RrII0Z8lWR/gLWBGgbv7LaAGWALsI/nZhtrrf70EU/3wk0As1S+NzFi/mmRBvadI9q0NJPtet//L+dlk4Tepf/eKyPK0138NnIH1fx+gqrakLSSfT3o4y+tjSEYcbAaGZll/Bsm7ZBVAGHgZGJ9atwS4MPXzdcD/9bEfF5P8gv2+C3wmE0mazCdTv38J+GvaeiU5MnlC6ue+WTTuITmV40DacgS4k2SBkt0Z7f8deKyd/6OtGa9VAPen/n8OpRYFylLrq0n+gThAcuR3Yo5jcY8hfT8PAodzvbcttthy7JLZj5I0HrtI/gHfRPICrQ440UPnB8CtWV6fQHIEDpKGrNpjX0rej/aEheT0xzYgHKDmWJLPnfUv9fHZYkvm0pP6OpLXr1uAsaX+3LviQvLZ2ARwcoCavUka4vGlPr6ustiIq3+O9+cVCkaTd50eJmnO26O95wy2AL/WY59l6KOqPyR5p2pQxvNbY712K+P3b5L8nGeoan/AnSYnqWOYr6qzSRYVWEdyJDmbzh6S04xPT9vPAaqa/rB+IFXjDKOnoKo1qnqCqo5T1XFAPTBNk5mnxyAiJ6T+HUvy+aonM14PAd/mg2JF84FbUtPAEJEJkvtZUCNgRORTkoz2GURylON3mr0SaSHaIZJxO09pciaQYXRpunNfp6rzSI7AnufVtqcgIp9IPQrRh+TIdA3JGxZBcQuwRFXfC1DzuMaMqw+6w/MK+SAiEyUZdDw69fsYkvEMb7W3nbb/nMFjJJ8FqE69HpVkoaPRqrqZ5Ijuv6UugGaSHG3Oh34kDecBSQZYu1EUiMhwSQZQ9yE5heMwyVEByHiGK3UMDwD/mfbHY5R8kDtmGEaApPqKl9JeelZE1pB8XOCr+kGl3KtEZAPJG0/b+KAw2oPAGmC5iLxLcuZFOKX9F5JTsC6WZFE1+x4Hz00kK4y+T7JfvSUI0VR/fYhkZdbvejQ3jC5Pd+jrVPXXqpr5DH5P5gqS/0fbSE7b/pymhkqLRUQ2Af9AcmDGSCEBfb7HPSKyGOhFcqh/MB+UMP8uyTtMH1PVg6kTabqq/s3zPiJyPfBVksZoDdCkqv9LRCaSfA5oCMn5/Lep6hAReYZk2HFjSmIAcJOq/jmlNwv4lqpeHvwR50aShZT+EzgfGEhyuuzvgX9U1UMi8iXgK6o6M9VeSU5jqJVk4ZB/J2nQ+5Kc31+tqk0iMgP4D5JTadpIPrh/i6rWiUglyWeZziT5nNR6YKCqulEI6fs3i+Q04vRqbiNJFvCYTrID+X8k71KWk8wbe4rkcxZK8oH5W1V1TcqwPg+cCziqOjT1/Nh3SD4HNpRk9bl7VfXn2d7bMAzDMAzDMIyOxYxrBilj8iVV/VLq98nAK3xgLkeTNEYfzjb1I03nB0C9qt6T8foEksbnwyLyLDBXVee3sy+dblwN43hFRC4lWfChDHgwNRU9ff1Eknevp5EMPv9J2rr/BXyF5M2NGuDLmqxqahiGYRiGYZQYmyrsQXd+XsEwuhMiUgbcTbJC6ySS060mZTTbB9zGBxmb7rajUq9PV9UzSBpfv5VXDcMwDMMwjA4mXOodOJ5JTU99UD8IU35WRIaQjCTIfF7hq6mfn+PY5xXGkXxeQUg+J/TJlPZfSFbz7Ssi9cD1uUZmDeN4pvqiPrp3X5tnu2WrWuar6qXtNPkwUKuqMQAReYrk8ydr3AaqugvYJSKXZdk+DPQWkVaSVaq3+T8KY+jQoTpu3LhS74ZhdFuWLVu2R1WHebc0OhLr6wyj48nV35lxzUBVFwGL2lk/Lu3nbSSLMLm/fyTHNj8jOX0x83WH5POz/zvLuqxahtHd2LOvjcXzvR8ZLh/x/kQRWZr20lxVnZv2+yiS1atd6vGZCaeqW0XkJySfbW8C/uw+a274Y9y4cSxdutS7oWEYBSEim0u9D4b1dYbRGeTq78y4GoZRYpQ2dfw03KOq09tZL1nFfZCK8rgCOJlkMbLfiMg1qvqYn+0NwzAMwzCMjsWecTUMo6Qo4KCeiw/q+SBqCj4opOaHS4CNqrpbVVtJTum3rDrDMAzDMIwugo24ApHyPhrtNTBw3QkTRwSqV7MvZxHjgikPB5IT3+Fo1sG04jmt/6hA9Rri7waqB1AhvkYj86KsA+5ZLVvVUvDzVw6BHOMSYHwqC3kryeJKV/vctg44J5XB3ARcTDJb2DAMwzAMw+gCmHEFor0GMmNKIJnpx7DgjW8HqnfyY/8eqB7AyOEHAtfsCFrbyjpE9+1LfxCo3sJNpwaqBzAt0ujdKE/6h3oHrlk24r2Cnr9SlLYAYrlUNSEiXyNZrbsMmKeqq0Xk5tT6+0TkRJKGtD/giMg3gEmqujiVq7wcSADvAHOzvY9hGIZhGIbR+ZR0qrCIXCoi60WkVkTuzLJeROTnqfWrRGSan21F5OupdatF5D8641gMwygMBVpxPBdfWqovqeoEVT1FVe9KvXafqt6X+nmHqo5W1f6qOjD186HUuu+q6kRVPUNVv6CqLR11zIZhGIZhGEZ+lGzENS1zcTbJZ9OWiMiLqromrdkcYHxqmQHcC8xob1sRuYhkkZUPqWqLm6FqGEbXxeczrIZhGIZhGEYPpZQjrkczF1U1DriZi+lcATyqSd4CBorICI9tbwF+6I6WpHIbDcPooijQpuq5GIZhGIZhGD2XUhrXbJmLmZVycrVpb9sJwEdEZLGIvCYiZwe614ZhBI7jYzEMwzAMwzB6LqU0rn4yF3O1aW/bMDAIOAf4R+BpEfmb9iJyo4gsFZGlra1H/O+1YRiBoihtPhaje+A4wdyGCEqno3RdnZ6mFzRd/Xi7+udnlI6ufm509e9CV9cLmq5+vF3l8ytlVWE/mYu52kTa2bYeeE5VFXhbRBxgKLA7XVhV55KqGtq/7yi7KjaMUqHQZt/AghGRS4Gfkayk/KCq/jBjvaTWfxxoBL6kqsu9thWRrwNfI1ll+Q+q+k9B7G8oFGLBggVF68yePTuAvflbgt6/nqYXNF39eLv659edsL4uWLr6d6Gr6wVNVz/ervL5lXLE9WjmoohESGYuvpjR5kXgi6nqwucAB1V1u8e2LwAfBRCRCSRN7p4OPxrDMApCEVp9LMbfklaobg4wCbhKRCZlNEsvcncjySJ37W6bUeTudOAnHX80hmEY2bG+zjAMKOGIq5/MReAlknfOaknePftye9umpOcB80TkXSAOXJsafTUMowuigGPf0EI5WqgOQETcQnXp1dmPFrkD3hIRt8jduHa2tSJ3hmF0JayvMwyjpFOFUdWXSJrT9NfuS/tZga/63Tb1ehy4Jtg9NQyjI2mzEdVCyVaoboaPNrmK3LnbukXu7gKagW+p6pIA99swDCMfrK8zDKO0xtUwDEMx41oEnVHk7mySRe4qM2eviMiNJKfkMXbs2Dx22zAMIy+srzMMo6TPuBqGYQDgqHguRlaKKXLX3rZHi9yp6tskE4mGZr65qs5V1emqOn3YsGFFHYhhGEY7WF9nGIYZV8MwSos74uq1GFnpdkXuYrEYixYtIhaLdcbb5U3Q+9fT9IKmqx9vV//8jiOsr+tkuvp3oavrBU1XP97O+vxsqrBhGCVFEVq1rNS7cVzS3YrcxWIx5s+fTyKRYO3atVRXV1NZWdnRb+uboPevp+kFTVc/3q7++R1PWF/XucRiMf64YAGJyIDAvgu/e+tdaGkMUG81NDcEp7d4DTQe6LL/H79bsgEObA/ueJe9B/vqA9P7w/+sgP1bO/zzM+NqGEZJsWdci6M7Fbmrq6sjkUjQMvESWPcydXV1Xeriwd2/xnO/BJE+PN8cJlIbydr2/rrFR3+Ox6NZ28TjVSTOHwcioNp19eJHqHjzYfv/KFSvi35+xxvW13UedXV1JCIDaD7nWpoTLTzfHCrqu9AUn4BOOw0QmlubA9Zr4vnmsiL1TkXPPC15QfI/D3W5/4/X9veheeIlEOlDc6Kp6L6pqfVU9IzTQKA5HoTeRPSsiXBkb4f3dWZcDcMoMUKb2lMLRrLoydq1a2kcfirh2kVdrgiKu39E+tD/jfvbvas8e/ZHjv6cK7TdHXU5dP5NXV4vHA7b/0cRel3x8zNKx/HS1zUnWkCEmZGtzKgakbWt13dhyb4y3tgdovz1+zh8zpdBhAsi9ZxdNbIgvTf3lvH2HiH8+r0cPud6kBAXRbYwrWpUQXp/2R1m+T4IL7qHw+d/heYZ1zAwWp9VqxT8eWc5R/qOpO+iezh8/s1AiOrIJs6oyn7OeB3vS9vL2XioDRb+nMMXfBURYU5kI5OqTipI78Wt5WxtS+AsvIfDndDX2dWiYRglRQGHkOdidH8qKyuprq4mHA53ualaEPz+9TS9oOnqx9vVPz+jdHT1c+Po/pWFmBXdxpt6Mlsa8/87vGRfGW/uK+eGU1qZc/GFhMtCXBDdwRtaybam/Pfrzb1lLNtfzg2nJJhz8SzCZcL50R28rqewszl/vb/sDrPqYJibTkkwZ/ZFhEPCOdHdvKZV7G3JXy9o/ryznNiREDePb2PO7NmEQ8JZ0X0s1Akcas1f76Xt5WxtCnHLeIc51dWEBaZED/Iyp3I4kb/ei1vL2R0PcdN4Tep1wvlsV4OGYZQcK85kuFRWVhKJRLrchZxL0PvX0/SCpqsfb1f//IzS0dXPDXf/ZlSN4NOj4jy7NZKXeXVN6/XjmukT/kDv3KrhfHJknKfro3mZV9e0XjeumYo0vZlVw7n8xDhPbonmZV5d03r9uGaiaXoXVg2jenicx+qiJTWvrmn9yrgWwqEP9u+S8YO5YFichzdF8zKvrmm9flwLoTS96vEDOX9wK/M2RfMyr65p/fJJx+p19PlsxtUwjJKimizO5LUYhmEYhtH5jKlw8jKvmaY1k3F9nLzMa6ZpzaSqn5OXec00rZlM7O+U1LxmmtZMpg508jKvmaY1k7MGt+VlXjNNa2diz7gCokqopYAx8k5GneDPjvotQwLXPGHEgcA1O4L+0WYufvX2QDWjZdWB6gEMjR4JXLNXqCPO9/cK2ipZnMnuoRmGYRhGVyXdvH56VJwxFU7Wdl6m1SXdvF45upmRvbO38zKtLlX9HC4naV6vGtPM8Ox1hDxNq8vE/g6QNK/XjG1mSK/cbYPEy7S6TB2Y3L+HN0X50rhm+pdnb+dlWl3OGtwGwLxNUa4b10zfHJ9NKU0r2IirYRglJ1mcyWsxDMMwDKN0eI28+jWtLl4jr35Nq4vXyKtf0+rS2SOvfk2ri9fIq1/T6uI18lpq0wpmXA3DKDFBFmcSkUtFZL2I1IrInVnWTxSRN0WkRUS+lfb6qSKyIm05JCLfCOwgDcMwDKMbkMu8PvNOfV6m1SWXeX1i6Za8TKtLLvP68Fub8zKtLp1lXn++qDYv0+qSy7z++OUNeZlWl1zm9fvz15XctIJNFTYMowvQpsUXXxKRMuBuYDZQDywRkRdVdU1as33AbcAn07dV1fXA1DSdrcDzRe+UYRiGYXQz0s3r2dsOsn5nA08ur8/btLqkm9cZOxtYvuUAL6zalrdpdUmfNnze7sO8/v5e/rh2Z96m1SV92vD5+xsZM6gif5F2+PmiWt6u25+3aXVJnzZ8weFmHn6rjtU7GvI2rS7p04YvPBLnnr/G2LS3seSmFcy4GoZRYhQJ6hnXDwO1qhoDEJGngCuAo8ZVVXcBu0TksnZ0LgbeV9XNQeyU8bfMnj273fX31y0+JjsuG47jEOqgv6BB719P0wuarn68Xf3zM0pHVz83it2/s7cd5I7fvkt5WYiHrzmLQRWRovTO2rKf259bRbQ8qdc/WrjebGDqxr189ZmVVETKePQL0+kTad/2eOlNqd3D159ZyS/+fkpg5tU1rfOuPouIh2v12r9Jq7fzxUeXMbRvhF9dcxZhj/PGS+/5ldv4/CNLGN6/Fw9ePa0oPZdiz2frJQ3DKCkKtGrYc/HBKGBL2u/1qdfy5XPAkwVsZ3QiXf0iP+j962l6QdPVj7erf35G6ejK58b6nQ2Ul4VQhfoDBQSzZrBu52EiZSESDmw7WPy83PU7DxMNl5FoU3YeLCDoNYMLqoZy+0Xj+fozK9myv7FovXxMqx/WbG+gb68wR1oS7G+MF623esch+vUK09Cc4FBTMEU9iz2fu+63wTCMHoEitKn3AgwVkaVpy40ZUtnmG2s++yIiEeDvgN8UdjSGF46TvRJlqXQ6StfVMT3Ty0fP6D509XOjWN1n3qnnyeX1zLv6TO76xCS+/fs11Gw7WLDeE0u38MKqbTx8zTS+N2cid/z2XdbtbChY7+G3NvPHtTt59AvTuHP2BG5/vobY7sMF67nMrBwciHl1TeuDnzuTSDhU9P/Hj1/ewOodDTx+7Vlcf944bnpqBbsPF27Wvz9/HZv2NvLYtWdxzdljueHJ5ew7UrwZLvY4SzpVWEQuBX4GlAEPquoPM9ZLav3HgUbgS6q6vL1tReR7wA3A7pTM/1bVlzr+aAzDKBSfxZf2qOr0dtbXA2PSfh8NbMtzV+YAy1V1Z57bGT4JhUIsWLCg3TbxeNSzjdcUt0IJev9MrzC60/GW8nw2SkdXPzeK2b/06sFD+kYZ0jfK9y+fxJ0vrGo3KieXXnr14IEVvZhW0YvvzpnIN59d0W5UTi699OrB/aIRzj15CHfMnsDXf/NOu1E5fv8/LqgaCsAtTy4rKConvXpwNDV9uZj/j/TqwZFwmMtOHwHAdY8uaTcqJ5deevXgSDjMp6aMBODaRxe3G5XTGedzyUZc0wqpzAEmAVeJyKSMZnOA8anlRuBen9v+p6pOTS1mWg2jC6NKUHE4S4DxInJyauT0c8CLee7OVdg0YcMwDMPISq7Im8kjB7QblZOLXJE308YMajcqJxe5Im/OPXlIu1E5+XJB1dCCqg3nG3njRa7Im8tOH9FuVE4uckXefGrKyHajcjqLUk4VPlpIRVXjgFtIJZ0rgEc1yVvAQBEZ4XNbwzCOCwTHx+KFqiaArwHzgbXA06q6WkRuFpGbAUTkRBGpB24Hvi0i9SLSP7WugmQ9guc66EANwzAM47jFK6fVK+c1E6+cVq+c10y8clq9cl7zJd+onM4yrS5eOa+ZeOW0euW8dgalNK5+CqnkauO17ddEZJWIzBORQcHtsmEYQaMENuKKqr6kqhNU9RRVvSv12n2qel/q5x2qOlpV+6vqwNTPh1LrGlV1iKoW/pCOYRiGYXRDvEyri1/z6mVaXfyaVy/T6lIq89rZptXFr3n1Mq0upTavpTSufgqp5GrT3rb3AqeQzGTcDvy/rG8ucqNb5CWeKL4ymGEYhaEIrVrmuRiGYRiG0fn4Na0uXubVr2l18TKvfk2rS2eb11KZVhcv8+rXtLqU0ryW0rj6KaSSq03ObVV1p6q2qaoDPEByWvHfoKpzVXW6qk6PhIMNEjYMIz/aCHkuhmEYhmF0LvmaVpdc5jVf0+qSy7zma1pdOsu8ltq0uuQyr/maVpdSmddSXg36KaTyIvBFSXIOcFBVt7e3beoZWJdPAe929IEYhlE4Cjga8lyMnkEsFiMejxOLxUq9K1kJev96ot6iRYu69P51ZT2j+9DVz41YLEZza4I3dofyNq0u6eZ1ce12mlvbeHuP5G1aXdLN65LabTS3trF8H3mbVpd087q8dmvR/x/p5nVFbT2/WraTDQecQExrLBajqbWNjYfa8jatLunm9d3aOppaHbYeTuRtWl3Szeua2s2dcj6X7GrQTyEV4CUgBtSSHD29tb1tU9v8h4jUiMgq4CLgf3XWMRmGUQhCm4/F6P7EYjHmz59PIpFg/vz5Xe6CLuj966l6NTU1XXr/uqqe0X2IxWL8cf4CEgmnS54bsViMF97dgSNllL8+l511he/fmAqHc2Uji5pH4UiI8Otz2VGE3rg+DjNkMwubRyf1Ft3PtiL0qvo5TJfNLGgcFch3dWJ/h6myhfnNY9kVGoQsuoe6TcX3Jc9tBiUEC+9mUxF6Uwc6TGIbf2galxw4WHhPUXpnDW7jVN3B744E8/l5IaqZj5X2PAb0GannnHZj4Lrzl34vUL1xj/4oUD0ATQRvCE4YcSBwzY6gfzSAuSEZRMuCny8xNHokcM1eoeD384GzH13mkbOaldFnDNDbnj7Ps90dp/+pIH2jc5g+fbouXbrUV9tcOW+LFi2ipqaGxnO/RMWbDzN58mRmzZqVtW1H5l567t+sr4Eq4XCYSCSStW366/F49tD2eDxOIpGAcAQS8Z6jJ9KzPj8RKhb9sujzWUSsD+wCBNXXrXxvM80zbySy6kXOHN6rS/V1T769kbre46C8N7Q2Ey4LFfVdaIon0FAZIAHptaGhULB6Ekr2Ta1NhMvKitNrbUuazC6r56BISq+RcFlxfV1SD0i0BNLXQe7+roCBdcMwjOBQFSu+ZAAwduxY1q5dC5E+hMNhxo4dW+pdOoaj+6dK/zfup7q6msrKyqxtZ8/+yNGfc10cuiNyh86/yfS6uV5XPJ+N0uH2Jc2JZuKnX4pEd5V6l46ydF8ZOwdMoO/rczl8zpdBhPMi2zm3anjW9l7fhTf3lvH2HiH8+r0cPuc6EGFmZCszqkb8TVs/en/ZHWb5PggvuofD510PIlwQqefsqpEF6S3cFWb1fiW06B4On3cjSIiLIluYVpUZdOJPb8HOctYfcJBFv+Tw+TeDCBdH6phaNbogvZe2l7PxUBss/DmHP3IriDA7sokPVWXvT7z0XtxWztaGBM7Ce5J6hKiObOKMAvWeqy9nd1sriYX3crgT+jp7cMwwjJITVByOcXxTWVlJdXU14XC4XdNQKoLeP9MzPaNncvTcKCujOrqFFTqGdYdK/3duaaoQ0w2ntDLn4gsJl4X4aHQri/UkNh3Jf//cQkw3nJJgzsWzCJeFmBXdxpt6sq+c10zcQkw3nZJgzuyLCJeFuCC6gze00lfOayYLd4VZ31DGTePbmDP7YsJlwvnRHbyupxRUsGnBznLePxLi5vFtzJk9m3BIOCe6m9e0ylfOayZuIaZbxjvMqa4mHBI+HN3DqzqBA9kHP9vlxW3l7G4JcdN4Pap3VnQfC3WCr5zXTJ6rL+dQIsQN40nqdUJfV/pviWEYPRoFHMRzMXoGlZWVRCKRLnuRH/T+mZ7pGT0T99yYWjWaa8Y2M39npKTm1TWt16UKMbn7d3bVSK4c3cwL2yJ5mdfM6sGu3oyqEb5yXjPJrB7s6p1bNdxXzmsmrmm9/uQWIqEP9GZWDS+o2rBrWt1CTK7ehVXDfOW8ZpJZPdjVu6hqKJecEOeRzdG8zKtrWt1CTK7eJeMH+8p5zcQ1rV8ce6xeR/d1ZlwNwygxYiOuhmEYRo9lSC9Kal4zTWsmI3uTl3n1irzxynnNxCvyxivnNZNM05pJvlE5maY1E6+c10y8Im9OH+DkZV4zTWsmXjmvmWSa1s7ErgYNwygpyTgc8VwMwzAMo7tSKvPqZVpd/JpXvzmtfs2r35xWv+bVy7S6+DWvXqbVxa959ZvT6te8eplWF7/mtZSmFaw40wcEXV1ZhOrp3wtUMvxPwf93JfZHA9dsdYIvtLN/Z7/ANVuGHQ5cs0+vAh468CAkwVf+PmtQXeCaxdBm99AMwzCMHo5rXh+riwJxJvZ3OvT9/JpWF9e8Pl0f5ZMj44zrc+z++TWtLunm9dOj4oypOFbPr2l1STevV45uZmTvY9f7Na0uVf0cLidpXq8a08zwjEtmv6bVJfn/mTSv14xtZkivY9f7Na0upw9I6j2yOcq1JzUzMKMwsF/T6jJ1YFLv4U1RvjSumf7lx64vtWkFG3E1DKPEKEJCyzwXwzAMw+judNbI63Mrt+ZlWl1yjbw+sXRLXqbVJdfI68Nvbc7LtLrkGnm9/6+xvEyrS66R11+89n5eptUl18jrj1/ekJdpdck18nrX/HV5mVaXXCOv3/nDmpKbVrARV8MwSowqtNlUYMMwDMMAjh15nVK7hwuqhgaq/9zKrTyxtD5v0+qSPvJ61pb9rNt5mBdWbcvbtLqkm9eztx1kWd0B/rh2Z96m1SXdvM7Y2cBr7+3mtdo9eZtWl/SR1/N2H+YPa3ayePO+vE2rS/rI6/n7G3lqWT2rdzTkbVpd0kdeZx5sZt5bm9i4tzFv0+qSPvJ6weFmfvFajF0NLSU3rWDG1TCMLoA9w9qz8Aogv79u8THZcdlwHIdQB/0FDXr/TM/0Snk+G6Wj2HPj3H2N/MOzKwECM6+uaX3gqjMZVBFpt63X/s3Y2cDtz60iUhbi0S+eRf9ocXpnbzvIP/32XXqHy/j1tdPpE2nfpnjpnbVlP//r2VX06RXmsS+cRbQIvdnA1I17ufU3KxkQDfPrL55NxMO1eulNqd3DDU++w5CKCI988SzCHn2Al94Z63bx5ceXcWK/Xjz4+WlF601avZ0vPLqM0QOizL3qTM8+qjP6OuslDcMoKYrgaMhzMYx0uvpFftD7Z3qmZ/Q8Thpcwc8+PYWfvvoer9fuKVovH9Pqh+VbDhAtD+EAtbuPFK23rO4AvcNlJFSJ7Sleb8nm/fSJlNHa5rBpfwFBrxksrTtA315hmhMO9fsbi9ZbvGkf/aNhjsQTbD9YQHBspt7mfQzsXc7B5lZ2NxRfc2Xxpv0MqihnX2OcvY3B1HAptq+zntIwjJLThnguRvfAcYIpNuLqmJ7pdSc9o/sQ1P/pmIHRQMyra1rv/+wUBlVEit6/J5Zu4YVV25h39TT+44oz+Lc/rmP5lv0F6z381mb+uHYnj3xhGnddPolv/34NNdsOFqx3/19jvFa7h0evmcZ350zkjt++y7qdDQXr/eK191m8eR+PfeEs7pw9gdufryG2u/Ainz9+eQOrdzTw2BfP4vaPjufrz6xkSxFm+K7569i4t5FHvzCNr37kFG59ekVRZvg7f1jDroYWfn3NNK4/bxw3PbWC3YeLN9fFnnc2VdgwjJLixuEYPYNQKMSCBQvabROPRz3buFPw/Oj5IR+9oPfP9EzPa0qpcfwR5Lnhjrx+9allrFyZf7Xh9OrBQ/pGi96/9OrBAyt6MbCiFz+64gy++eyKrNWGvfTSqwf3i0aYPDLC9y+fxJ0vrMpabdhLL716cEU0wrQxEb47ZyLffHZF1mrDXnrp1YOjkTDnnjyEO2ZP4Ou/eSdrtWEvvfTqwZFw+Og08FueXJa12rCXXnr14Eg4zCUTTwDghseXZK027KWXXj04HA5z2ekjALju0SVZqw176aVTbF9nI66GYZQYqypsGIZhGO1x0uCKgqoN5xt540WuyJuJw/v5ynnNJFfkzeSRA3zlvGaSK/Jm2phBvnJeM8kVeXPuyUN85bxmkivy5oKqob5yXjPJFXlzycQTfOW8ZpIr8uay00f4ynntaMy4GoZRUtyqwl6LYRiGYfRk8o3K6SzT6pIrKicXXjmtuaJycuGV05orKicXXjmtuaJycuGV05orKicXXjmtuaJycuGV05orKqczMeNqGEbJseJMhmEYhuGNX/Pa2abVxa959TKtLn7Nq5dpdfFrXr1Mq4tf8+plWl38mlcv0+ri17x6mVaXUptXuxo0DKOkJKsKey9+EJFLRWS9iNSKyJ1Z1k8UkTdFpEVEvpWxbqCIPCMi60RkrYicG9AhGoZhGEZgeJnXUplWFy/z6te0uniZV7+m1cXLvPo1rS5e5tWvaXXxMq9+TauLl3n1a1pdSmlezbgahlFyHMRz8UJEyoC7gTnAJOAqEZmU0WwfcBvwkywSPwP+pKoTgSnA2mKOyTAMwzA6ilzmtdSm1SWXec3XtLrkMq/5mlaXXOY1X9Pqksu85mtaXXKZ13xNq0su85qvaXUplXktqXH1MToiIvLz1PpVIjItj22/JSIqIsEkNhuG0SEokHDKPBcffBioVdWYqsaBp4Arjnkv1V2qugQ4ppsVkf7ABcBDqXZxVT1Q/NEZ+RKLxYjH48RiscD0Fi1aFKhe0PtneqZn9DyCODfSzetrtbt58u2N/HV3KBDTGovFaG5t4+09krdpdUk3r2/W7qS5tY3l+8jbtLqkm9fFtdtpam1j9X7N27S6pJvXJbXbaGptY/0BJ2/T6pJuXpfXbqWptY2Nh9ryNq0u6eZ1RW09Ta0OWxsSeZtWl3Tzuqq2jqZWh91HWvM2rS7p5vXd2rpO6etKZlx9jo7MAcanlhuBe/1sKyJjgNlAXQcfhmEYxeJjmrDPqcKjgC1pv9enXvNDJbAb+JWIvCMiD4pIn/wOxCiWWCzG/PnzSSQSzJ8/v+g/gK5eTU1NoHpB75/pmZ7Rs4jFYvxxwQISbU7R58aQXnCh1PJW03DqoidT/vpcdtYVf+7+dvUuHAkRfn0uO4rQG9kbzpcYrzeNTOotup9tReiNqXA4VzayqGkkSojQovuo31S43rg+DjNkMwubR6OEkEX3UFeEXlU/h+mymQXNY1FCsPBuNhWhN7G/w1TZwvymscn4wIX3FKV3+gCHD0k9f2walxw4WHhvUXpTBzpMYht/ODyyU/o6UdUOE2/3jZPPj31PVatTv/8zgKr+e1qb+4FFqvpk6vf1wCxgXHvbisgzwP8FfgtMV9V2E5sH9Bmp50y8IcjDAwm+Cur7/xR87G5if47wqSIYOLrwwOhc7N/ZL3DNAcMKD47ORZ9eedQc98nQ3kcC1zxrUPD3dP5t8ovLVHV6vtsNmniCfnTe33u2e+78ezcD6d/luao61/1FRD4DVKvqV1K/fwH4sKp+PVNLRL4HHFbVn6R+nw68BZyvqotF5GfAIVX913yPp7MRkUtJTnMuAx5U1R9mrJfU+o8DjcCXVHW5z22/BfwYGObVj06fPl2XLl3qa59z5bwtWrSImpoaGmd9DVQJh8NEItkD6NJfj8ezf+/i8TiJRCLZHwepF45AIt5z9s/0itMToWLRL5k8eTKzZs3K2tZPtqGIFNTHdhe6W1+3csNGmi+4BRIthENS1LnWFE+goTJAgtVz2gL5LjTF29BQKLl/rc2Ey0IBfLcciEQD0WtqbUuaTAlm/47VayJcVlaknoMCSKhr6yVaAunrIHd/F7wT8k+20ZEZPtqMam9bEfk7YKuqrpR2zKOI3EhyFJdoZEBhR2AYRiD4HFHd43HRVg+MSft9NLDN5y7UA/Wqujj1+zPA3zyC0NVIm30ym+QxLBGRF1V1TVqz9JkrM0jOXJnhtW0pZq6MHTuWtWvXgir937if6upqKisrs7adPfsjR3/OdXHojngdOv+mLq2XSCQIh8Nddv9Mr3i9cDjM2LFjs7YzvOmufV1zaxOIMC2ym4uqsj/Z5nWuLdlXxhu7Q5S/fh+Hz/kSiDA9sosLq4YVpPfm3jLe3iOEX7+XwzO+VPR34S+7wyzfB+FF99Daqx8t0z/LeZHtnFs1vCA9SPtuzbwFRJgZ2cqMqhEF6S3YWc76Aw6y6JccPu8mEOGCSD1nV40sSO+l7eVsPNQGC3/O4Zm3goS4KLKFaVXZJ4B56b24rZytDQmchfdw+CO3gggXR+qYWjW6IL3n6svZ3dZKYuG9R/VmRzbxoars/ZOX3tNbIhxqa6Fl4X0c7oS+rpTPuGa7Us0c/s3VJuvrIlIB/AvwHa83V9W5qjpdVadHwhWeO2sYRsegENRU4SXAeBE5WUQiwOeAF33tg+oOYIuInJp66WJgTTubdBU8n+tN/f6oJnkLGCgiI3xs+5/AP/G3/XKHUVlZSXV1taeJ6256kydP7tL7Z3pdQ6+H0z37urIy5kTrWKWjWX0w/0vyJalCTDec0sqciy8kXFZGdbSeFTrGV85rJm4hphtOSTDn4llFn7tuIaabTkkwZ/ZFTB13Ah+NbmWxnuQr5zUXH3x+IWZFt/Gmnuwr5zUTtxDTzePbmDN7NuGyEBdEd/CGVvrKec3ELcR0y3iHOdXVhMuE86M7eF1P8ZXzmolbiOmm8ZrUCwnnRHfzmlb5ynnNxC3EdMN4jup9OLqHV3WCr5zXTJ7eEqHFgevGS1KvE/q6UhpXP6Mjudrkev0U4GRgpYhsSr2+XERODHTPDcMIlCCMq6omgK8B80lWBH5aVVeLyM0icjOAiJwoIvXA7cC3RaQ+VZgJ4OvA4yKyCpgK/CD4Iw0cP8/15jNzZRQcO3Ml6B32orKykkgkEtgfvuNBb9asWV16/0yv6+j1YLptX/ehqrFce1IzL++K5GVeXdN6faoQk6s3tWq0r5zXTDKrBxd77mZWD3b7urOrRvrKefXC3b8ZVSN85bxmklk92NU7t2q4r5zXTDKrB7t6M6uG+8p5zSSzerCrd2HVMF85r5lkVg929S6qGuor5zUT17R+fkz8GL2O7utKaVz9jI68CHwxVV34HOCgqm7Pta2q1qjqCao6TlXHkeycpqVGUwzD6IIoQkJDnosvLdWXVHWCqp6iqnelXrtPVe9L/bxDVUeran9VHZj6+VBq3YrULIwPqeonVXV/hx10cJR05oqI3CgiS0Vk6e7duz131jAMo0C6dV83MEJe5jXTtGbilfOaSaGRN7nwirzxynnNF6+c10y8Im+8cl4z8Yq88cp5zcQr8sYr5zUTr8gbr5zXTDJNa2dSMuPqZ3QEeAmIAbXAA8Ct7W3byYdgGEYQaGBThXsiJZ25kv7IxbBh2Z+nMgzDCIBu39f5Na9eptXFr3ntbNPqUirz6jen1a959ZvT6te8+s1p9Wte/ea0+jWvpTStUOIcVx+jI6qqX02tn6yqS9vbNov+OK/qcIZhlJYAn3HtidjMFcMwegI9oq/zMq9+TauLl3ktlWl16Wzz6te0uniZV7+m1cXLvPo1rS5e5tWvaXXxMq+lNq1Q2qrCXQcFnGAlRQMW7CDCg5oDj8TZvyP46JpBJzYErhkpawtc84SK4CN2OsK0HW4LPgapGMyYFoaqJkTEnX1SBsxzZ66k1t9HcubKx0nOXGkEvtzetiU4DMMwjHbpSX2da14f2RwF4rjhIc+8U5+XaXVxzetjdcfqPbF0S6Cm9eG3NudlWl1c8/p0fZRPjiw+UjDdvH561Ad6v3jt/bxMq0u6eb1y9Adu88cvb8jLtLpU9XO4nKR5vWrMB3p3zV+Xl2l1mdjfAZLm9ZqxH+h95w9r8jKtLqcPSOo9sjnKtSd9oHfni++W3LSCGVcD2HTTtwLVO+mh/whUz+jeKDaiWgyq+hLJC7b01+5L+1mBr/rdNkubccXvpWEYRnH0pL4u3bxOXr+L/Y1xnlxen7dpdUk3r1Nq91B/oIkXVm0L1LT+ce3OvE2rS7p5PWvLfqaNGVTU/qSb17O3HWTRe3tYvHlf3qbVJd28ztjZwO9qtrN6R0PeptUl3byet/swTy6vZ+PexrxNq0u6eT1/fyMP/M8mdjW05G1aXdLN68yDzfzstVoa420lN61gxtUwjC5Am8/iS0b3wCuA/P66xcdkx2XDcRxCqb+gx7ueH7rT8Zpe+3pG96HYc2PmwWauf2I5ZSHh0S+cxaCKSFF65+9v5Kan3qG8LMSvv3gW/aPF6QH86s1N/GndLuZ9fhp9IsXZihk7G7jjt+/y3TkTmTZmUNGf39nbDvKPL7xL/2iYx754NhEP1+qld9aW/Xzj2VUMrijn0S9OJ+zxnW1PbzYwdeNebv3NSk7o24t510wrWm9K7R6+8uQ7jBoQ5cGrzvTsU7z0zli3iy89tpSTh/ThniunFKXnUmxfZ72kYRglRa04k1EAQV/km57pdSc9o3vwRmwPvcJCSGD5lgNF6/3l/b1Ey8sAWFF/qGi9h9/aHJhpBZg4vB8/uuIM/u2P61i+pfjC/ove20P/aJiWhMP6XcU/cvbK+t0MrCjnSLyN2t1HitZbuGE3gyvKOdjcSt3exqL1Xl6/i2F9Iuw7EmfrwQKCYzP1NuxieP8oOxua2dlQ/DRuKL6vs57SMIySoyqei9E9cJxgnv93dbq6XtB09eM1veL0jO5Dsf+nz7xTz5PL63nwqjO577Nn8svXY7yyflfBek8s3cILq7Yx7+oz+eVnpvDTV9/j9drC65e604MfvGpqIKbVJSjz+ovX3mfx5n08es1ZfP/ySXz792uo2XawYL0fv7yB1TsaePSaaXx3zkTu+O27rNtZuBm+a/46Nu5t5OFrpnHn7Anc/nwNsd2F10n5zh/WsKuhhYc/fya3f3Q8X39mJVv2F26G73zxXRrjbcy7aipf/cgp3Pr0CrYHYIaL/V7YVGHDMEqMjaj2JEKhEAsWLGi3TTwe9WzjTiHr6npB09WP1/SK0zO6D8WcG+nVg4f0TRZTvOfKqdzw+BJqampSzyD610uvHjywohcDK+AXfz+FW55cxsqV8dQzkv710qsH9/OYblwIrnn95rMr+OTIOOP65Ld/6dWDo5Ewk0cO4PuXT+LOF1bx6VFxxlTkp5dePTgSDjNtzCC+O2ci33x2BVeObmZk7+zHkUsvvXpwJBzm3JOHcMfsCXz9N+9w1Zhmhueon5lLL716cDgc5oKqoQDc8uQyrhnbzJBe+emlVw8Oh6dwycQTALjh8SVce1IzA3P8l3dGX2cjroZhlBwbcTUMwzCM3JE3IwZEfeW8ZpIr8mbMoApfOa+Z5Bt5UygTh/crKConV+TN5JEDfOW8ZpIr8mbamEG+cl4zyRV5c+7JQ3zlvGaSK/LmgqqhvnJeM8kVeXPJxBN85bx2NGZcDcMoKZbjahiGYRjeOa1eOa+ZeOW0euW8ZtJZptUl35xXr5xWr5zXTLxyWr1yXjPxymn1ynnNxCun1SvnNROvnFavnNfOwIyrYRilRaFNxXMxDMMwjO6Kl2l18WtevUyri1/z2tmm1cWvefUyrS5+zauXaXXxa169TKuLX/PqZVpd/JpXL9PqUmrzasbVMIySothUYcMwDKPn4te0uniZV7+m1cXLvJbKtLp4mVe/ptXFy7z6Na0uXubVr2l18TKvfk2ri5d59WtaXUppXs24GoZRYrynCdtUYcMwDKM7kq9pdcllXvM1rS65zGupTatLLvOar2l1yWVe8zWtLrnMa76m1SWXec3XtLrkMq/5mlaXUplXM66GYZQcVe/F6BnEYjHi8TixWKxH6AVNVz9e0zOMJLFYjObWBG/sDuVtWl3SzeurtXtobm3j7T2St2l1STevr9Xuprm1jeX7KLlpdUk3r2/W7qSptY31B5y8TatLunldXLudptY2Nh5qy9u0uqSb1yW122hqddjakMjbtLqkm9fltVtpanXYfaQ1b9Pqkm5eV9TW09TqcKixJW/T6pJuXlfV1nVKX2fG1TCMkmNThQ1IXsjNnz+fRCLB/Pnzi/4D2NX1gqarH6/pda3zxSgdsViM3/9lKY6UUf76XHbWFX5uDIzARbKBt5uH4UiI8Otz2VGE3pBecKHU8lbz8KTeovvZVoRe0IzsDedLjNebR6CEkEX3ULep8P0bU+FwrmxkUfMolBAsvJtNReiN6+MwQzazsHl0svjkwnuK0qvq5zBdNrOgeQwKJBbeW5TexP4OU2UL85vHokDLwvuK0jt9gMOHpJ4/HhnZKX2dqA1lMKBipJ5z6g2BakoHfK61/zv4rCyA2iu/HajeSQ/9R6B6AINOLDzkOReRsrbANUf0PRS4ZkdMkz21f+Eh5rn4f1OfXqaq0/PdrnfVSK36qff3790r/k9B+kbnMH36dF26dKmvtrly3hYtWkRNTQ2Ns74GqoTDYSKR7P1e+uvxePZ5SvF4nEQiAeEIJOLB6YlQseiXTJ48mVmzZmVt25G5nMf959fT9AI6X0TE+sAuQFB93cr1G2m+8ObkuRaSos61pngCDZUBAomWAPTa0FAIECIrf8uZw3t1qb7uV8t2sqtsMET7QWsz4bJQccfb2pY0rSIB6TkogIQ6QK+JcFlZl9JrTCg4DrTFA/vbmKu/6wID/4Zh9HTaHBtRNWDs2LGsXbsWVOn/xv1UV1dTWVmZte3s2R85+nOuixt3xOvQ+TcFrhcOhxk7dqzfQ+sUjqfPr6fpdcXzxSgd7ne1ubUZEKaU7+WSqsFZ23qda2/uLePtPUL49Xs5fM6XQYRpkd1cVDW0IL2/7A6zfB+EF93D4fOuI356NRLdnecRdhwLdpZzpO9I+i66h8Pn3QQinBfZzrlVw7O29zrel7aXs/FQGyz8OYdn3gIizIxsZUbViIL0XtxWztaGBM7Ce47qXRCp5+yqkQXpPVdfzu62VhIL7+XwzFtBQlwU2cK0qlEF6T29JcKhthZaFt7H4Y/cCiJcHKljatXogvSeqIvQx2mi5dW5ndLX2VRhwzBKjk0VNgAqKyuprq4mHA63axq6i17QdPXjNb2udb4YpePouVFWxmW961jNSFYcyP+S3C3EdMMpCeZcPItwWRlzonWs0tG+cl4zcQsx3XRKgjmzLyJcVkZ1tJ4VOsZXzmtH4xZiunl8G3NmzyZcFuKj0a0s1pN85bxm4hZiumW8w5zqasJlIWZFt/Gmnuwr5zUTtxDTTeP1qN4F0R28oZW+cl4zcQsx3TCelJ5wfnQHr+spvnJeM3ELMV03XpJ6IeGc6G5e0ypfOa+ZPFEXQYDrJpR1Wl9X0rNQRC4VkfUiUisid2ZZLyLy89T6VSIyzWtbEfm/qbYrROTPIpL9FodhGF0Cxdu0mnHtOVRWVhKJRAL7w9fV9YKmqx+v6RlGEvfcOKNqLF8+qZnXdkfyMq+Z1YNdvQ9VjfWV85pJZvVgV29q1WhfOa8dTWb1YHf/zq4a6SvnNZPM6sGu3oyqEb5yXjPJrB7s6p1bNdxXzmsmmdWDXb2ZVcN95bxmklk92NW7sGqYr5zXTFzTetXY5PThzurrSnYGikgZcDcwB5gEXCUikzKazQHGp5YbgXt9bPtjVf2Qqk4Ffg98p4MPxTCMIlEfi2EYhmF0R/pHyMu8ekXeeOW8ZuIVeeOV89rReEXeeOW8ZuIVeeOV85qJV+SNV85rJl6RN145r5l4Rd545bxmkmlaO5NSjrh+GKhV1ZiqxoGngCsy2lwBPKpJ3gIGisiI9rZV1fTqOH2wa17D6NpocFOFfczimCgib4pIi4h8K2PdJhGpSc3W8Fd5wzAMwzACwK959ZvT6te8+s1pLZV59ZvT6te8+s1p9Wte/ea0+jWvfnNa/ZpXvzmtfs1rKU0rlNa4jgK2pP1en3rNT5t2txWRu0RkC/B5bMTVMLo86ojn4oXPWRz7gNuAn+SQuUhVp1rlTsMwDKOz8TKvfk2ri5d59WtaXTrbvPo1rS5e5tWvaXXxMq9+TauLl3n1a1pdvMyrX9Pq4mVeS21aobTGNduVaOboaK427W6rqv+iqmOAx4GvZX1zkRtFZKmILI0nGn3usmEYHYGq9+IDz1kcqrpLVZcArYEfhGEYhmEUSS7z+sTSLXmZVpdc5vXhtzbnZVpdOsu8/uK19/MyrS65zOuPX96Ql2l1yWVe75q/Li/T6pLLvH7nD2vyMq0uuczrnS++m5dpdcllXm9/blXJTSuUNg6nHhiT9vtoYJvPNhEf2wI8AfwB+G7mClWdC8wFGNBruIb2B5u/6QwbGKgeQGtD8Dmu5f3iVD39/UA1JVweqB5AeSj4zNXyDshx3dtcEbjmKf33Bq65u6Vv4JqFohBU8aVsMzFm5LkrfxYRBe5P9RGGYRiG0am45vVXm6NMWr2dg00JXli1LW/T6uKa10c2R5m8fhdb9jfxx7U78zatLq55fawuypTaPVyQI3qnUH7x2vss3rwvb9Pq4prXp+ujnLVlP6+s383qHQ15m1aXdPN69raDvFiznY17G/M2rS7p5nXGzgaeWLqFXQ0teZtWl6p+DpeTNK/n7T7M3Dc30Rhvy9u0ukzs7wBJ83r+/kb+89VaQiIlN61QWuO6BBgvIicDW4HPAVdntHkR+JqIPEXyAvSgqm4Xkd25thWR8ar6Xmr7vwPWdfyhGIZRMAr4M65DM549nZthLv3M4miP81V1m4icACwQkXWq+noe2xs+8Qogv79u8THZcdlwHIdQ6i9yV9cLmq5+vKZXnJ7RfSj23JjZ0Mx1jy+jLBTisS+eRf9o+wMYnnoHm7n+iWVEwiEev/Zs+kTatwFeeufvb+Trz6wECMy8uqZ13tVnEfFwrV77N2NnA994dhUDK8p57IvTCXt8x7z0zt52kH984V2G9inn4S8Ur3fWlv38wzMrGTEgyryrp3n2Ae3pzQambtzLLU+v4KTBvbnvs2cWrTeldg/XP7GcCSf04ZefOROYXLCeS7F9Xcl6SVVNkJzGOx9YCzytqqtF5GYRuTnV7CUgBtQCDwC3trdtapsfisi7IrIK+BjwD511TIZhFIbPqcJ7VHV62pI5IupnFkc7+6DbUv/uAp4nOfXY6KIEfZHf1fWCpqsfr+kZBryyfjfRcBkhgb+8X/zsq/lrd1IRKQPgrY37itYbM6iCX/z9FH766nu8XrunaL18TKsfflezncEV5TTF21i19WDRei/WbGdon3IaWtpYu6OhaL0XVm1neL9e7G9sZcPuI0Xr/bZmOyP7R9nZEGfT3uIfg3xh1TbGDOpN/YFmtuwP5rHKYvu6Uo64oqovkTSn6a/dl/azAl/1u23q9U8HvJuGYXQ0wdT+9jOLIysi0gcIqWpD6uePAf8nkL0yjiGokSVXx/RMrzvpGd2HYv9Pn1i6hRdWbeOhq8+kpU255b9XAHDZ6SMK0nv4rc38ce1OfvX5aRxucbj16aTexaeeUPA+AowaEOUXfz+l6JFX17Q++LkziYSL/279+OUNrN7RwMPXTCO2t4k7fvsu350zkWljBhWkd9f8dWzc28i8z09j/a4jfPv3a/j+5ZOYPHJAQXrf+cMadjW0MO/qM1m1vYE7fvsuP7riDCYO71eQ3p0vvktjvI0HrprKki0Huf35Gn76qclUDivs0bDbn1tFSIQHPncmf43t4+vPrOQXfz+FMYOKeySu2P/XkhpXwzAM8Fc12AtVTYiIOxOjDJjnzuJIrb9PRE4ElgL9AUdEvkGyAvFQ4HkRgWS/+ISq/qnonTL+hlAoxIIFC9ptE49HPdu4U/C6g54futPxml5uPaP7UMy5kV49eGBFLwDu/exUrv/1EtasWcPUgU5eeunVg/tFI/SLwj1XTuWGx5dQU1PD6QPy00tn9uzZR0deb3lyGStXxlPPSPonvXpwNDV9uZjPL716cCQcZuLwfvzoijP45rMr+OTIOOP65He86dWDI+Ewk0cO4PuXT+LOF1bx6VFxxlTkp5dePTgcDjNtzCC+O2ci33x2BVeObmZk7/yON716cDg8hXNPHsIdsyfw9d+8w1VjmhkezU8vvXpwKDT56M2IW55cxjVjmxnSKz+9dIrt6+z2nmEYpSXAHFdVfUlVJ6jqKap6V+q1+9yZHKq6Q1VHq2p/VR2Y+vlQqhLxlNRyurutYRiGYXQmuSJvhveL+sp5zSRX5M2IAVFfOa9+GTOooqBqw/lG3niRK/Jm4vB+vnJeM8kVeTN55ABfOa+Z5Iq8mTZmkK+c10xyRd6ce/IQXzmvmeSKvLmgaqivnNeOxoyrYRilR30shmEYhtGN8cpp9cp5zcQrp9Ur5zVf8o3K6SzT6uKV85qJV06rV85rJl45rV45r5l45bR65bxm4pXT6pXz2hmYcTUMowsgPhbDMAzD6J54mVYXv+bVy7S6lMq8drZpdfFrXr1Mq4tf8+plWl38mlcv0+ri17x6mVaXUptXM66GYZQeG3E1DMMweih+TauLl3n1a1pdOtu8lsq0uniZV7+m1cXLvPo1rS5e5tWvaXXxMq9+TatLKc2rGVfDMEqPGVfDMAyjB5KvaXXJZV7zNa0unWVeS21aXXKZ13xNq0su85qvaXXJZV7zNa0uucxrvqbVpVTm1YyrYRilRUEd8VyMnkEsFiMejxOLxXqM3qJFi7r0/ple19Ezug+xWIzm1jbe3iN5m1aXdPP68nv7aG5tY/k+8jatLunm9dXaPUWfu+nm9bXa3fxq2U7WH3ACMa2xWIym1jY2HmrL27S6pJvXN2t30tTqsLUhkbdpdUk3r4trt9PU6rD7SGveptUl3bwuqd1GU6vDocaWvE2rS7p5XV67lcaE0tzclLdpdUk3rytq6zulrzPjahhG6bERV4Pkhcj8+fNJJBLMnz+/6D+Ax4teTU1Nl94/0+saekb3IRaL8fu/LMeREOHX57KjrvBzo38ELpYNLGsZikOI8KL72VaE3sAIXCQbeLt5GAnHKfrcHdILLpRa3moezq7wUGTRPdRtKv679dwmByUEC+9mUxF6I3vD+RLj9ZYRKOAsvKcovTEVDufKRha1jEKBxMJ7i9Ib18dhhmxmYctoFGhZeF9RelX9HKbLZha0jAXHoeWVuUX9/07s7/Ah3cL8IyM6pa8TVbsiHNBruJ434upANZ1hAwPVA1h3c45gpyIo71fYXZb2SDSVB6457ISDgWtGwm2Ba4oE/306pf/ewDU7gkdnzFumqtPz3a7XuNF64rf/wbNd3Q3/VJC+0TlMnz5dly5d6qttrpy3RYsWUVNTQ+Osr4Eq4XCYSCSStW366/F49n4sHo+TSCQgHIFEvOvqifSs4+1peiJULPolkydPZtasWVnb+sk2FBHrA7sAQfV1K9e/T/OFt0JbK2GhqHOtKd6GhkKAQKKFcEiK15NQsm8KQq+1LWkyO0KvtYVwWbF6TvL+uISgtZlwWahb6zUmFBwHQmXQ2kS4rKxgPceBZiel1xYPpK+D3P1dARMJDMMwgqUD/L5xHDJ27FjWrl0LqvR/436qq6uprKzM2nb27I8c/TnXxaE74nXo/JtMz/RKqhcOhxk7dmzWdkbPw+3rmuNNiAhnRA9SXTUwa1uvc+0vu8Ms3wfhRfdw+LwvAyGmlO/lkqrBBekt3BVm9X4ltOgeDp/3FRBhWmQ3F1UNLUhvwc5y1h9wkEW/5PB5N4II0yO7uLBqWEF6L20vZ+OhNlj4cw7PvBkkxIzIdmZWDS9I78Vt5WxtSOAsvIfDM28BEc6LbOfcAvWeqy9nd1sriYX3HtWbGdnKjKoRBek9vSXCobYWWhbed1Tvgkg9Z1eNLEjviboIfZwmWl6dy6GZt4KEuCiyhWlVo/LWcxx4bEsEbWmk8dUHOqWvs6nChmGUFj/ThM3Y9ggqKyuprq4mHA63axpMz/R6op7RfUg/Ny7vXcd6OZFl+8ry1nELMd10SoI5sy8iXBbmst51rGGkr5zXTBbuCrO+oYybxrcxZ/bFhMvKmBOtY5WOLqhgk1uI6ebxbcyZPZtwWRnV0XpW6BhfOa+ZuIWYbhnvMKe6mnBZGbOj9SzVk3i/IX89txDTTeM1pRfio9GtLNaTfOW8ZuIWYrphPEf1ZkW38aae7CvnNRO3ENN14+Wo3gXRHbyhlb5yXjNxCzFdN6Esef6VCedHd/C6nuIr5zUd17T2DsG1E8Kd1teZcTUMo8QIOD4Wo0dQWVlJJBIJ7A+f6Zled9Izug/uuTGp6iSuG9fMG/vK8zKvmdWDXb0zqsbypXHNvO6R85qJa1qvP7mFSOgDvQ9VjS2o2nBm9WBXb2rVaF85r5lkVg929aZVjeKqMc38bkckL/OaWT3Y1Tu7aqSvnNdMMqsHu3ozqkb4ynnNJLN6sKt3btVwXzmvmWRWD3b1ZlYN95Xzmk66af3MmGP1OrqvM+NqGEbpsRFXwzAMo4fSN0xe5tUr8qZ/OXmZ10zTmkm+UTlekTdeOa+ZeEXeDI+Sl3n1irzxynnNxCvyxivnNROvyBuvnNdMvCJvvHJe08lmWjsTM66GYZQeM66GYRhGD8avefWb0+rXvHqZVhe/5tVvTqtf8+o3p9WvefWb0+rXvPrNafVrXv3mtPo1r35zWv2Y11KbVjDjahhGqVFAxXsxDMMwjG6Ml3n1a1pdvMyrX9Pq4mVe/ZpWFy/z6te0uniZV7+m1cXLvPo1rS5e5tWvaXXxMq9+TatLe+bVcZySm1Yw42oYRhdA1HsxDMMwjO5OLvP68Fub8zKtLrnM6/1/jeVlWl1ymddfvPZ+XqbVJZd5/fHLG/IyrS65zOtd89flZVpdcpnX7/xhTV6m1SWXeb3zxXfzMq0uuczr7c+tysu0umQzr47jcNuzNSU3reDDuIrI10RkUEe8uYhcKiLrRaRWRO7Msl5E5Oep9atEZJrXtiLyYxFZl2r/vIgM7Ih9NwwjQGyqcMFYP2oYRk+gJ/V16eb1+ZXbePitzfxx7c68TatLunn9w+rt3P/XGK/V7snbtLqkm9dX1u/iF6+9z+LN+/I2rS7p5vX12j38+OUNrN7RkLdpdUk3r4s37eOu+evYuLcxb9Pqkm5el2/Zz3f+sIZdDS15m1aXdPNas+0gd774Lo3xtrxNq0u6eV23s4Hbn1tFSCRv0+qSbl5rdzVw27M19I+GS25awV+O64nAEhFZDswD5qtq0ZeRIlIG3A3MBupT7/Giqq5JazYHGJ9aZgD3AjM8tl0A/LOqJkTkR8A/A3e0uzNlZeiAvsUe0rHH1xz8f+5p/xW85rp/7B+4ZijSFrjmgcMVgWtOGrEjcE2nA6a0HmqNBq6ZcLrWZAsbUS2MLtWP5oFXAPn9dYuPyY7LhuM4hFJ/4U3P9LqTnvG39NS+7sIjcb7w66WEQ8ITXzqbPpH2L9u99C443My1v15Gr3CIJ689m2iRejMPNnPd48voEynjiS99mIiHa/XSO39/Izc8+Q79o2Ge+NLZhD2+E1565+0+zK2/WcnginIe/eL0ovVm7GzgH55ZyfB+vXj4mrM8v7NeemdvO8i3nq9h9MDePHDVmUXrnbVlP7c9s5JThvbh3s+eCUwuWG82MOX9Pdz6m5WcNrwfP/jE6cDpRe0fFN/XeW6pqt8m2Qk8BHwJeE9EfiAipxT8rkk+DNSqakxV48BTwBUZba4AHtUkbwEDRWREe9uq6p9VNZHa/i1gdJH7aRhGR2PPuBZKj+1Hg77INz3T60563ZAe2de9WLOdivIQZSHhz2t3Fa333Ipt9EsN2b7y3u6i9Z5ZsZWBFeUkVPnL+3uK1ntqWT1DKiLEEw7/E9tXtN6Ty+s5oW8vjsTbWFZ3oGi9J5ZuYcSAKAebE6zYerBovceXbmH0wN7sORJn9Y6GovUeW7KFkwdXsO1gM+t2FqfnOA5PLN/KKUMq2Lyvkdjuw0XvHxTf1/naOjXCuiO1JIBBwDMi8h9FvPcoYEva7/Wp1/y08bMtwHXAH4vYR8MwOho/04RtRDYXx10/6jhOoDqmZ3rdSc/ISY/r69zpwfM+P40Hr5rGY0vqeH7ltoL13OnBv7rqTOZedSYPvbmZP6zeXrCeOz34V1dP494rz+SXr8d4ZX3h5tqdHvyra87kF5+Zwk9ffY/Xaws3w+704Aevnsp/fmoy//7n9SzeVLgZdqcHP/i5qfzoijP4tz+uY/mW/QXrudOD7//sFL5/+SS+/fs11Gwr3Ay704Pv/exUvjtnInf89t2Czav7TGv/aJi7r5zKHbMncPvzNYGY12K/F55ThUXkNuBaYA/wIPCPqtoqIiHgPeCfCnzvbEMomZenudp4bisi/0LSZD+e9c1FbgRuBIiWBz9d1jCMPDBjWihdph8dO3as174CybutCxYsaLdNPB71bONOwTM90+tOekZOelRfl149uF80AsADV03j2kcXs37dOs4anP2RrFx66dWDK6IRKoD7PzeV6x5dwpo1a5g6MLuZyKWXXj04GgkzIhLmniuncsPjS6ipqeH0AfnppVcPjoTDjBkU5hd/P4VbnlzGypVxJvbPTy+9enAkHKZyWF9++qnJfP037/CJE+Oc0i8/vfTqweFwmInD+/GjK87gm8+u4JMj44zrk59eevXgcHgKk0cO4PuXT+LOF1bx6VFxxlTkp5dePTgUmsy0MYP47pyJfPPZFVw5upmRvbPKZdVLj7y5aGCcUOh0zj15CHfMnsDXf/MOV41pZniOJ9g6o6/zM+I6FPj/VLVaVX+jqq0AquoAlxfx3vXAmLTfRwOZt5JytWl3WxG5NrVvn8/1PK6qzlXV6ao6PRLuU/BBGIZRPFZVuGC6TD86bNiwgg/CMAzDgx7T1+WKvBncJ+Ir5zWTXJE3w/pGfeW8ZpIr8mbEgKivnNdMckXejBlU4SvnNZNckTeVw/r6ynnNJFfkzcTh/XzlvGaSK/Jm8sgBvnJeM8kVeTNtzCBfOa/ptJfTeu7JQzxzXjsDP8+4fkdVN+dYt7aI914CjBeRk0UkAnwOeDGjzYvAF1OV4s4BDqrq9va2FZFLST5Y/3eq2ljE/hmG0VkENFXYR9XJiSLypoi0iMi3sqwvE5F3ROT3hR9Mp2L9qGEYPYEe0dd55bR65bxm4pXT6pXzmolXTqtXzmsmXjmtXjmvmXjltHrlvGbildPqlfOaiVdOq1fOayZeOa1eOa/ptGdaXdrLee0sSlYNIPUw/NeA+cBa4GlVXS0iN4vIzalmLwExoBZ4ALi1vW1T2/wS6AcsEJEVInJfZx2TYRj5IwrieC+eOh9UjpwDTAKuEpFJGc32AbcBP8kh8w8k+5TjAutHDcPoCfSEvs7LtLr4Na9eptXFr3n1Mq0ufs2rl2l18WtevUyri1/z6mVaXfyaVy/T6uLXvHqZVhc/5tWPaXUptXktIA0qOFT1JZIdTfpr96X9rMBX/W6ber0q4N00DKOjCaZq8NHKkQAi4laOPBqXoKq7gF0iclnmxiIyGrgMuAu4PYgd6gysHzUMoyfQnfs6v6bVxTWv8zYlHzbMfObVr2l1cc3rw5uiQPxvnnn1a1pdXPP6yOakXuYzr35Nq4trXh+rS+plPvPq17S6uOb1yS1RPsHfPvPq17S6uOb16fpo1mde/ZpWl3Tzmu2ZV7+m1SXdvGY+85qPaXWp6udwOUnz2t4zrx2B1V83DKP0BDNV2G/lyFz8F8lic1be0zAMw+gU8jWtLrlGXvM1rS65Rl7zNa0uuUZe8zWtLrlGXvM1rS65Rl7zNa0uuUZe8zWtLrlGXvM1rS7ZRl61ANPqUqqRVzOuhmGUHJ/FmYaKyNK05cZMmSzSviyviFwO7FLVZcUdiVEssViMeDxOLBYzPdMzPaPbEovFaG5tY/k+8jatLunmdf57B2hqbWP1fs3btLqkm9eX39tHU2sb6w84eZtWl3Tz+mrtHppa29h4qC1v0+qSbl5fq91NU6vD1oZE3qbVJd28/rV2J02tDruPtOZtWl3SzeubKb1DjS15m1aXdPO6uHY7jQmlubkpb9Pqkm5eF2/YRpOjaEtj3qbVJd28Lq/d2il9nRlXwzBKj78R1z1uVcfUMjdDxU/VyVycD/ydiGwiGU7/URF5rLCDMQolFosxf/58EokE8+fPL/oPoOmZXnfSM7oPsViM37+xHIcQ4UX3s62u8HOjbxguYT0rmgehhAgtuo/6TYXr9S+Hj8oGljUPRQkhi+6hrgi9gRG4SDbwdvMJKCFYeDebitAb0gsulFreahmOAs7Ce4rSGx6FC+R93mgeiQKJhfcWpTeyN5wvMV5P6bUsvK8ovTEVDufKRha1jAbHoeWVuUX1JeP6OJytm1nUOgYch8ZXHihKr6qfwzTdzILGEzulr5Mclb97FAMqRuq5468PVvQ4CRNf94/BZ9iGyrPnixVDWTj4z3PSiB2BazrBPKt5DOFQ8MeecIK/Z/X7C365TFWn57tddNQYHXur9yOl73379nb1RSQMbAAuBraSrCR5dVoRjvS23wMOq+rfFGkSkVnAt1S1mLivHsf06dN16dKlvtrmynlbtGgRNTU1NM76GqgSDoeJRCJZ26a/Ho9nv1scj8dJJBIQjkAibnqmVxo9ESoW/ZLJkycza9asrG39ZBuKSEF9rBEsQfV1K9e+R/NFX4O2BGHRos61pngbKiEQgbY4YaE4vda2pMkUgUQL4ZB0MT0neT9bQsHrtbYQLgtSr5lwWagovcaEJn1FqKxoPceBZqcj9NqgrTWQvg5y93clLc5kGIYB+I67aVdCNSEibuXIMmCeW3Uytf4+ETkRWAr0BxwR+QYwSVUPFb8HRrGMHTuWtWvXgir937if6upqKisrs7adPfsjR3/OdXHojngdOv8m0zO9kuqFw2HGjh2btZ3R83D7uuZ4EwKc1ruBj1cNyNrW61xbuCvM6v1KaNE9HD73ekSEM6IHqa4aWJDegp3lrD/gIIt+yeHzbgBCTCnfyyVVgwvSe2l7ORsPtcHCn3N45s0gwrTIbi6qGlqQ3ovbytnakMBZeM9RvemRXVxYlT1f10vvufpydre1klh4b0ovxIzIdmZWDS9I7+ktEQ61tdCy8D4Oz7wFRDgvsp1zC9R7oi5CH6eJllfnciilNzOylRlVI/LWcwsxaUsjja8+cFTvgkg9Z1eNLEjvkbpeDIk30PDqQ53S19lUYcMwSo7PZ1w9UdWXVHWCqp6iqnelXrvPrTypqjtUdbSq9lfVgamfD2VoLLLR1tJQWVlJdXU14XC4XdNgeqbXE/WM7kP6uXF5RR3vy3De2uudy5qJW4jppvFtzJl9cVKvdx3r5URfOa+ZuIWYbh7fxpzZswmXhbmsdx1rGOkr5zUTtxDTLeMd5lRXEy4rY060jlU62lfOayZuIaabxutRvepoPSt0jK+c10zcQkw3jOeo3uxoPUv1JF85r5m4hZiuGy8pvRAfjW5lsZ7kK+c1E7cQ03UTypLnS1mIWdFtvKkn+8p5TSe9evC1E8JH9S6I7uANrfTMec2m90hdLwaWO1wzIdJpfZ0ZV8MwDKPLUFlZSSQSCewPn+mZXnfSM7oP7rkxqWoc149rZsn+8rzMa2b14A/0TvKV85pJZvVgV++MqrG+cl4zyawe7Op9qGqsr5zXTDKrB7t6U6tG+8p5zSSzerCrN61qlK+c10wyqwe7emdXjfSV85pJZvVgV29G1QhfOa/pZIu8cfXOrRrumfOaTc81rZ8a1XqMXkf3dWZcDcMoPcHE4RiGYRjGcUdFmLzMq1fkTa6onFx4Rd7kisrJhVfkTa6onFx4Rd7kisrJhVfkTa6onFx4Rd7kisrJhVfkTa6onGz4yWnNFpXTnl6mae1MzLgahlFafEwT9jtV2DAMwzCOR/yaV785rX7Nq9+cVr/m1W9Oq1/z6jen1a959ZvT6te8+s1p9Wte/ea0+jGvfkyrix/zWmrTCmZcDcPoCjg+FsMwDMPoxniZV7+m1cXLvPo1rS5e5tWvaXXxMq9+TauLl3n1a1pdvMyrX9Pq4mVe/ZpWl/bMq+M4vk2rS3vm1XGckptWMONqGEaJEWzE1TAMwzAgt3m9/6+xvEyrSy7z+ovX3s/LtLrkMq8/fnlDXqbVJZd5vWv+urxMq0su8/qdP6zJy7S65DKvd774bl6m1SWXeb39uVV5mVaXbObVcRxue7YmL9Pqks28Oo7DLU+vLLlpBYvDMQyjK2DG1DAMwzCAD8zrQ5uiPLWsnoNNcV6r3ZO3aXVxzeu8TVGeX7mN+gNNLN68L2/T6uKa14c3RZm0ejtrtjewekdD3qbVxTWvj2yOMnn9Lt7atI+NexvzNq0urnl9rC7KlNo9vLx+F7saWvI2rS6ueX1yS5QzN+3j+VXbaIy35W1aXVzz+nR9lLO27OexJVsIieRtWl3SzetZ9ft54M06+kfDXDSwML1083r29oP87LUYI/tHOW/InoL0gsSMq2EYpcVGVHscXgHk99ctPiY7LhuO4xBKXTGYnul1Jz2j+1DsuXFhY5zPP7qUcEj47y+dTTTS/mW7p96RONc8uoRoOMRTX55BxMO1euldcLiZLz66jL69wjz55bMJe5zDXnozDzbz5ceXMbB3OY9dO71ovfP3N/KVJ99hWJ8Ij37hLM/vmJfeebsPc8vTKxg5IMpDV08rWm/GzgZue2YlJw+u4P6rpgGTi9I7q34///jb1Zw6rC8/+MTpwOlF6Z25eR/feK6GD40cwHc/fhpwWlF6UHxfZ8YVQBVpbQtWsjz//Cxv0eCv7st7Bz/k35YI/o+v40jgmmt3Zg+DLoZThnXA3agOeL5zf0vv4EWLwYyrkSdBX+Sbnul1Jz2je/Dfy+vp16uMhKO8ULODz501uii9x5duYUDvcuIJhz+s3sGnpowsSu/ht+oY2jfCkZYE89fu5LLTRxSlN++tTZzYrxcHmlt57b09XHzqCUXpPfA/mxg1IMq+I3H+GtvHBVVDi9Kb++YmThrcm50NcZbUHWDGuMHF6b2xkVOG9mHbwWaWb9nPtDGDCtZyHIcH3qzj1GF9qTvQRM22g0weOaBIvc1MGt6P93YfZt3OBiYO71ewnkuxfZ0ZV8MwSo5Y8aUeQ1AjS66O6Zled9Izug/F/p/e/9cYr9XuYd5VZxJ34IYn3wEo2Lz+4rX3Wbx5H7+6ehqNrQ43PLkcoGDz+uOXN7B6RwMPXX0mB5sT3PTUCoCCzetd89excW8jc6+ayt4jCW59OqlXqHn9zh/WsKuhhbmfncL2hjhff2YlQMHm9c4X36Ux3sY9n5lC3f5mbn++hn/+2KkFm9fbn1tFSIS7PzOFDbuPcMdv3+W7cyYWZF7dZ1r7R8N8/7LTWL2jgW//fg3fv3xSQebVfaZ1ZP8o/3rpqazYepA7fvsuP7rijKLNq424GoZx/GMjrj2GUCjEggUL2m0Tj0c927hT8EzP9LqTntF9KObcSK8eXBGNUAE8cNWZfPGRxbz33gbOGZJ9lmAuvfTqwdFImGgEHrhqGtc+upj169Zx1uD89NKrB0fCYYb1DXP/56Zy3aNLWLNmDVMHZr8bnUsvvXpwJBxmxIAw91w5lRseX0JNTQ2nD8hPL716cDgcZsygML/4+ync8uQyVq6MM7F/fnrp1YPD4SlUDuvLTz81ma//5h0+cWKcU/rlp5dePTgUmszE4f340RVn8M1nV/DJkXHG9fGvlx55c9HAOKHQ6UweOYDvXz6JO19YxadHxRlTkZ+eWz34vCF7CIVOY9qYQXx3zkS++ewKrhzdzMgck/Y6o68r6e09EblURNaLSK2I3JllvYjIz1PrV4nINK9tReQzIrJaRBwRmd5Zx2IYRoGoz8UwDMMwujm5Im8GVkR85bxmkivyZnCfiK+c10xyRd4M6xv1lfOaSa7ImxEDor5yXjPJFXkzZlCFr5zXTHJF3lQO6+sr5zWTXJE3E4f385Xzmk57Oa2TRw7wzHnNppcr8mbamEGeOa+dQcmMq4iUAXcDc4BJwFUiMimj2RxgfGq5EbjXx7bvAv8f8HpHH4NhGMFgcTiGYRhGT8crp9Ur5zUTr5xWr5zXTLxyWr1yXjPxymn1ynnNxCun1SvnNROvnFavnNdMvHJavXJe02nPtLq0l/OaTc8rp7W9nNfOopQjrh8GalU1pqpx4Cngiow2VwCPapK3gIEiMqK9bVV1raqu77zDMAyjaGzE1TAMw+jBeJlWF7/m1cu0uvg1r16m1cWvefUyrS5+zauXaXXxa169TKuLX/PqZVpd/JhXP6bVxY959WNaXUptXktpXEcBW9J+r0+95qeNn20NwzhOsBFXwzAMo6fi17S6eJlXv6bVxcu8+jWtLl7m1a9pdfEyr35Nq4uXefVrWl28zKtf0+rSnnnNx7S6tGde8zGtLqU0r6U0rtnyTTIvT3O18bNt+28ucqOILBWRpfFEYz6bGoYRJEoy8sdrMQzDMIxuRr6m1SWXec3XtLrkMq/5mlaXXOY1X9Pqksu85mtaXXKZ13xNq0su85qvaXXJZl61ANPqks28agGm1aVU5rWUxrUeGJP2+2hgm882frZtF1Wdq6rTVXV6JFyRz6aGYQSI+FyMnkEsFiMejxOLxUzP9EzP6LbEYjGaWttYvV/zNq0u6eb1pfcO0tTaxvoDTt6m1SXdvM5/7wBNrW1sPNSWt2l1STevL7+3j6ZWh60NibxNq0u6eX21dg9NrQ67j7TmbVpd0s3ra7W7aWp1ONTYkrdpdUk3r3+t3UljQmlubsrbtLqkm9c3NuykyVG0pTFv0+qSbl7f3LCdJkcpjzfkbVpd0s3rktptndLXldK4LgHGi8jJIhIBPge8mNHmReCLqerC5wAHVXW7z20NwzhesGdcDZIXcvPnzyeRSDB//vyi/wCanul1Jz2j+xCLxfj9GytQQoQW3Uf9psLPjYowzGYdNS0DUELIonuoK0KvbxguYT0rWgahCCy8m01F6PUvh4/KBpa1DElOsFp4T1F6AyNwkWzg7cakXmLhvUXpDekFF0otbzWfiAItC+8rSm94FC6Q93mjeSQ4Di2vzC3quz+yN5yrMf7aOgoch8ZXHihKb0yFwwzdyOvx0eC00fDKQ0XpjevjcLZuZuGR4Z3S14lq6a4IReTjwH8BZcA8Vb1LRG4GUNX7RESAXwKXAo3Al1V1aa5tU69/CvgFMAw4AKxQ1er29mNA7xF63slfDvTYtNx/aXH/osH/X73/r9HANdsSwd8PkVDwx14WDn7+6SnD9gSuGZbg93N/S44QriJ4Y/aPl6lq3hFUFcPH6Pirbvdst+pntxekb3QO06dP16VLl/pqmyvnbdGiRdTU1NA462ugSjgcJhKJZG2b/no8nv3uczweJ5FIQDgCiXjX1RPpWcfb0/REqFj0SyZPnsysWbOytvWTbSgi1gd2AYLq61auXk/zxbdBW4KwaFHnWlNrG0oo2Ze0tQanp22BfBeaWp3k/WeRpF5IgvluRSog0VK03gf7FwpErzGhyYdHQ2XQ2kK4rHA9x4FmJ12vmXBZKAC9NgiFg9NrawOnNZC+DnL3d2FfW3cQqvoS8FLGa/el/azAV/1um3r9eeD5YPfUMIwOxUZUDWDs2LGsXbsWVOn/xv1UV1dTWVmZte3s2R85+nOui0N3xOvQ+Td1ab1EIkE4HO6y+2d6xeuFw2HGjh2btZ3R83D7uuZ4E6LKhIojfKKqf9a2Xufan3eWs+GAgyz6JYfPvQFBOa33YT5eNaAgvZe2l7PxUBss/DmHA/guvLitnK0NCZyF95AIRWk+78tMKd/LJVWDC9KDtO/WzJtBhGmR3VxUNbQgvae3RDjU1kLLwvs4nNKbHtnFhVXDCtJ7oi5CH6eJllfnpvYvxIzIdmZWDc9bzy3EpC2NNL76AIdm3gIinBfZzrkF6j1S14sh8QYaXn3oqN7MyFZmVI0oSG/e5l6c0HqIA6/O65S+rpRThQ3DMJLYVGEDqKyspLq62tPEdTe9yZMnd+n9M72uoWd0H9LPjb/rs4U6OYG/7sl/LOnPO8uJHQlx8/g25syendSr2EJMhvvKec3ELcR0y3iHOQGcu24hppvGK3Oqq5ly6slc1ruONYz0lfOai6OfX1kZc6J1rNLRvnJeM3ELMV03XpLHW1ZGdbSeFTrGV85rJm4hpusmlB3dv9nRepbqSb5yXtNJrx587YRwSi/ER6NbWawneea8ZtNzCzFdMyFyVG9WdBtv6smeOa/Z9OZt7sXwXg5XTejVaX2dGVfDMEqLgjjeix9E5FIRWS8itSJyZ5b1E0XkTRFpEZFvpb0eFZG3RWSliKwWkX8L7gCNfKisrCQSiQT2h+940Js1a1aX3j/T6zp6RvfBPTcmVo3j+nHNrDwQzsu8uqbVLcSUrnfduGaWeuS8ZpJZPbjYczezerDb151RNdZXzqsX7v59qGqsr5zXTDKrB7t6U6tG+8p5zSSzerCrN61qlK+c13SyRd64emdXjfTMec2ml1k92NWbUTXCM+c1m55rWj8x8li9ju7rzLgahlFygshxFZEy4G5gDjAJuEpEJmU02wfcBvwk4/UW4KOqOgWYClyaKghnGIZhGB1KNFUd2K95zTStmVSkqgP7Na+FRt7kwivyxivnNV+8cl4z8Yq88cp5zcQr8sYr5zUdPzmt7eW8ZtPzirxpL+c1m16mae1MzLgahlF6gpkq/GGgVlVjqhoHngKuOOZtVHep6hKgNeN1VdXDqV/LU4tNUDYMwzA6Bb/m1cu0uvg1r51tWl1KZV795rT6Na9+c1r9mFc/ptXFj3n1Y1pd/JjXUptWMONqGEYXIIgRV2AUsCXt9/rUa/72QaRMRFYAu4AFqro4j0MwDMMwjKLwMq9+TauLl3ktlWl16Wzz6te0uniZV7+m1aU98+o4jm/T6tKeeXUcx7dpdWnPvCYcp+SmFcy4GoZRavyMtiaN61ARWZq23JihJDnU/e2GapuqTgVGAx8WkTPyPBLDMAzDKIpc5vXni2rzMq0uuczrj1/eEKhpvWv+urxMq0tnmdc7X3w3L9Pqksu83v7cqrxMq0s28+o4Drc9W5OXaXXJZl4dx+GWp1fmZVpdspnXhONw01PvlNy0QonjcAzDMATfxZf2eGQY1gNj0n4fDWzLd39U9YCILCKZH/1uvtsbhmEYRjG45vWhTVEeXbyZA02tvF23P2/T6uKa13mbojy1rJ4t+xtZvaMhUNO6cW9j3qbVxTWvD2+KMmn1di47PXs0i19c8/rI5iiT1+9iwfpdNMbb8jatLq55fawuypTaPbywahshkbxNq4trXp/cEmXKxj08vnQr/aNhLhpYmJ5rXp+uj3Lm5n088OZmRvaPct6QPQXppZvXM+v388vXY1QN7ct02VeQXpCYcTUMo/QE8zTpEmC8iJwMbAU+B1ztZ0MRGQa0pkxrb+AS4EeB7JXxN3gFkN9ft/iY7LhsOI5DKHUFcrzr+aE7Ha/pta9ndB+KPTc+Gk9w5by3KQ8JT183g4iHa/XSu6g5zud+tYRoeRlPX/dhwh7nnJ9z964/rWPjvkbu+9xUTz0vLjjczE1PrQDgstNHFP35zTzYzJceW8rw/lEe/vw0z++Yl975+xu5/onljBnUm4euPguYXJTeObsauPU3KzllaAU/+MQU4PSi9M7efpBvPFfDpOH9+O7HTwNOK0rvzPr9/NNvV3PmqAH888dOBU4tSg+K7+uslzQMo+SIqufihaomgK8B84G1wNOqulpEbhaRmwFE5EQRqQduB74tIvUi0h8YAbwqIqtIGuAFqvr7DjpcIwCCvsg3PdPrTnpG9+Ch/9nEwGiYSDjEU8u2eG/gwf1/3cTQPhFCAs+8k/eEpL/hrvnBmVaAYX2j3P+5qTz05mb+sHp70Xo/e62Wk4f04VBzK6++V9joYzr/+WotE07ow94jcV6vLU7PcRz+67UYpw3vx/aDLSzeVNxopuM4/Oy1GB8aOYCN+xpZvmV/UXoJx+GXr8c4c9QA1u86TM22g0XpuRTb19mIawoty/Z4XBFIwHqQLOcVMKf8nybe/07vQDWdhvJA9QC0LPgCr20dcJ2wrvnEwDUrR+4OXLNPeWHTUToE/1WDvaVUXwJeynjtvrSfd5CcQpzJKuDMYPbCaI+gRpZcna6uFzRd/XhNrzg9o/tQ7P/pzxfV8nbdfh66ehptwHWPLQPgizNOKkjvxy9vYPWOBh68+kyaEw7XP/4OAJ87K9ufRG/c6cH3XPmhQEyri2te00deC+HOF9+lMd7GL/9+MruPJLj16aTexaeeUJDe7c+tIiTCzz89ha0Hm/n6MysBuKBqaN5a7jOt/aNhvn/ZaWza28jtz9fwzx87lRnjBhekd8vTKxnZP8q/XnoqG3Yf4Y7fvst350xk2phBeeu5z7RWDe3LHZeMZ/WOBr79+zV8//JJTB45IG+9zH0t5nthxtXgvc98O1C9cXN/HKie0f3xWTXY6AaEQiEWLFjQbpt4POrZxp1C1tX1gqarH6/pFadndB+KOTfSqwdHI8lL9XnXnMXnH3qT92MxZg5N5KWXXj04Eg4TCcNDnz+TL/xqMe+9t4FzhrTlpZdePTgSDt5KuOb1ukeXsGbNGqYOzD5wk2v/0qsHh8NTGDEgzD1XTuWGx5dQU1PD6QPy00uvHhwKTWbMoAp+8fdTuOXJZaxcGWdif/966ZE3Fw2MEwqdTuWwvvz0U5P5+m/e4RMnxjmlX356bvXg84bsIRQ6jYnD+/GjK87gm8+u4JMj44zrk5+eWz14uuwjFDqVySMH8P3LJ3HnC6v49Kg4Yyry+/zSKbavs9t7hmGUnmByXA3DMAzjuCZX5E2fSNhXzmsmuSJv+kcjvnJeM8k38qZQhvWNFlRtOFfkzYgBUV85r5nkirwZM6jCV85rOu3ltFYO6+uZ85pNL1fkzcTh/TxzXrPp5Yq8mTxygGfOa2dgxtUwjJIjjvdiGIZhGN0Zr5xWr5zXTLxyWr1yXjPpLNPqkm9UjldOq1fOayZeOa1eOa/ptGdaXdrLec2m55XT2l7OazY9r5zW9nJeOwszroZhlBZNThX2WgzDMAyju+JlWl38mlcv0+ri17x2tml18WtevUyri1/z6mVaXfyYVz+m1cWPefVjWl38mFc/ptWl1ObVjKthGKXHpgoXjIhcKiLrRaRWRO7Msl5E5Oep9atEZJrXtiIyWEQWiMh7qX/zr+5gGIYRIN25r/NrWl28zKtf0+riZV5LZVpdvMyrX9Pq4mVe/ZpWl/bMaz6m1aU985qPaXVpz7zmY1pdSmlezbgahlFSBBtxLRQRKQPuBuYAk4CrRGRSRrM5wPjUciNwr49t7wReUdXxwCup3w3DMEpCd+7r8jWtLrnMa76m1SWXeS21aXXJZV7zNa0uucxrvqbVJZt51QJMq0s286oFmFaXbOZVCzCtLqUyryU1rt357plhGHmg6r0Y2fgwUKuqMVWNA08BV2S0uQJ4VJO8BQwUkREe214BPJL6+RHgkx18HEeJxWLE43FisViP0Auarn68pmcUSLfs65pa29hwwMnbtLqkm9ffvXeIptY2Nh5qy9u0uqSb15feO0hTq8PWhkTJTatLunl9+b19NLU6HGpsydu0uqSb11dr99CYUJqbm/I2rS7p5vXVDbtpchRtaczbtLqkm9e/bNhJk6OUxxvyNq0u6eb1jZRen9ZDeZtWl3Tzurh2e6f0dSU7Dbvz3TPDMPLDRlwLZhSQnkpfn3rNT5v2th2uqtsBUv8WFnyXJ7FYjPnz55NIJJg/f37RfwC7ul7QdPXjNb2udb4cZ3S7vu6l195CEWTRPdRtKvzciIbhYtaxpnkAisDCu9lUhF5FGC5hHTVHKlDAWXhPUXpB078cPiobWNY4EAVaFt5X1P4NjMBFsoG3m4eD49DyytyivqtDesFHtJa34yeC49D4ygNF6Q2Pwkx9n/9pHQlOGw2vPFSU3sjecK7G+GvrKHDaOPDKvKL0xlQ4zNCNLGo8oVP6ulLmuB69AwYgIu4dsDVpbY7ePQPeEhH37tm4dra9ApiV2v4RYBFwR0cfjGEYBaIg2SPkDG8ky2uZNj9XGz/btv/mIjeSvKnI2LFj89k0K3V1dSQSCRDh0Pk38XxzmEhtJGvb++sWH/05Ho9mbROPV5E4f1zwevEjJBIJ6urqqKys9HdwnUCHfX7hiOkVoyfSJc+X44xu19fp4b2QaOHwuTcUfa41tY6HcAgSzRwO5NythFACjuzF6YLn7p76GNENr9B8wc0c/sitPN8sRR1vY2I8hBwIlXGoSD3HgWbnlID1KpPxCqEyDs0MQu9koA1CYQ7NvIXnm0NF6o2DsjZwWju8ryulcc12B2yGjza57p652x5z90xEOuXumWEYRWAjqoVSD4xJ+300sM1nm0g72+4UkRGpPnQEsCvbm6vqXGAuwPTp04v+Xxw7dixr164FVfq/cT/V1dU5//jNnv2Roz/nCjxPH/EKh8OB6wVxARskHfX5HTr/JtMrUq8rni/HGdbXkf1ce2l7ORsPtcHCn+P0sL6uubUZEKaU7+WSqsFZ23od7xN1Efo4TbS8OpdDM28GEaZFdnNR1dC89dxCTNrSSOOrD6T0QkyP7OTCqmEF6T1S14sh8QYaXn3oqN6MyHZmVg0vSG/e5l6c0HqIA6/O49DMW0CE8yLbObcAvYQD8zb1YkTiAHtffbhT+rpSzlgv+d0zEVkqIkvjbY35bGoYRsDYVOGCWQKMF5GTRSQCfA54MaPNi8AXUzUDzgEOpm7utbfti8C1qZ+vBX7b0QcCUFlZSXV1teeFV756kydP7pJ6QdNRn5/pdQ29Ho71dVl4aXs59U0hbhnvMKcn9nVlZVzWu47VjPSV85rJE3XJUcbrJpQd1ZsTrWOVjvaV85pOevXgayeEj+pVR7ewQsd45rxm03MLMV0zIXJUb3a0nqV6kmfOazY9txDTVRN6pfRCfDS6lcV6kmfOayauaR1T4XDlhN6d1teVcsS1y9w9G9B7hF0WG0apUKz4UoGoakJEvgbMB8qAeaq6WkRuTq2/D3gJ+DhQCzQCX25v25T0D4GnReR6oA74TGcdU2VlJZHaSGB/+CorKwP9Ixq0XtB0xOdnel1Hr6difd3f4prWr6QKMfXUvu6MqrGMjTfzq81RIM7UgY6v7V3TenWqEJOr96GU3iMpvdMHeOtli7xx9aZWjWZMSzOP1SX1Jvb3p5dZPdjVm1Y1ilHNzTy5JconiHNKP396mdWDXb2zq0YyqqmZp+ujfHJknHF9vPXSTeucE4/V6+hzppTG9egdMGAryTtgV2e0eRH4WuoZ1hmk7p6JyO52tnXvnv2QTrx7ZhhG4diIauGo6kskL9jSX7sv7WcFvup329Tre4GLg91TwzCMwrG+7gMyTWtPp38EvnySf/OaaVozcasN+zGvfnJa3WrDfsyrn5xWt9qwH/PqJ6fVrTbsx7xmM62dSclOd1VNAO4dsLXA0+7dM/cOGslOJkby7tkDwK3tbZva5ofAbBF5D5id+t0wjC6KkKw54LUYhmEYRk/HTGt2XPP6WkbOayZeptUlV85rOn5Mq0u2nNdsen5zWrPlvGbT85vTmi3nNZNSm1Yo7Yir3T0zDMNyWg3DMAzDB2Za28dr5NWvaXVpb+TVcRzfptWlvZFXx3F8m1aX9kZeE47j27S6tDfyGk84JTetUNriTIZhGIAVZzIMwzCM9vjxyxvMtPog18jr7c+tAvybVpdsI6+O43DbszV5mVaXbCOvjuNwy9Mr8zKtLtlGXhOOw01PvZOXaXXJNvIaTzjc8OTykptWKPGIq2EYBmBxOIZhGIaRgx+/vIHVOw6ZafVJ+sjrpNXbeWX9bkQkb9Pqkj7yevraHfz23Z30j4a5aGBheukjr5M37OLJ5VsZ0T/K+UP2FKSXPvI6eeMe5r25maqhfZku+wrSSx95nbJxH3f/NcaUUQOY3La/IL0gMeNqGEbJsRHVnsXs2bPbXX9/3eJjsuOy4TgOodQVnJeeHzpSL2g6+/Mzvc7VM7oPQZwbP355Pat3NPDg1dMIB3CO9KS+bmZDM198dCkjBkR5+JrpwOSi9M7b38iXn1jOuMEV/OATU4DTi9I7Z+9hbnxqBROG9eV7Hz8NOK0ovQ/vauCrv1nJh0YM4J8/dipwalF607ce5BvP13D22EHc/tHxwPii9KD488V6ScMwSosCjnovhpFG0BdKXV0vaLr68ZqeYbgjrcGZVuhZ5+6PFmxgwgn9ONSc4A+rtxel5TgO//7ye5wxoj+7D8d5ZX3WtM389Ba8x9RRA6g/2MTrtYWNtrokHIcfvbyBD48ZxPt7DrN4U2GjrS7xhMN/LHyPc8YNYvWOQyzfEsxoa7Hni424GoZRcqxqcM8hqLvzPXWEKujPz/S6lp7RfSj2/9SdHjz3c1MDM63HE8V+frc/twoR4WefPoPdR+Lc8t8rALjs9BEF7cttz9bQPxrm+5edxs6GOLc+ndS7+NQTCtK75emVjOgf5TuXnsqWA838w7MrAbigamjeeu4zrVVD+3LHJePZtLeR25+v4Z8/diozxg3OW899pnXKqAF8Y9YpbNh9hDt++y7fnTORaWMG5a2XTrH/r2ZcARQk3hawaBvaOxKw5vFBZE/wp1V8cND/Px2DxoP/47JpZ/6dmBcTR+4IXLMoAqoqLCKXAj8jGTL/oKr+MGP9ROBXwDTgX1T1J6nXxwCPAicCDjBXVX8WyE4ZxxAKhViwYEG7beLxqGebIKa4HY8E/fmZXtfSM7oPxZwb6dWDI+GeealezOeXXj04FJrM8H5R7v3sVK7/9RLWrFmTM+c1m1565M1FA+OEQqczYkCUe66cyg2PL6GmpiZnzmsuPbd68PlD9hAKncZJgyv42aen8NWnlrFyZe6c11x6bvXg6bKPUOhUKof15aefmszXf/MOnzgxd85rNr30yJvJbfsJhcYzcXg/fnTFGXzz2RXt5rx2Rl/XM78NncSfVvyfUu+CYRwXBPGMq4iUAXeTzG+uB5aIyIuquiat2T7gNuCTGZsngG+q6nIR6QcsE5EFGdsahmEYRodikTfFkSvyZni/aLtROdloL6d1xIBozqic9vRyRd6cNLgiZ1ROe3q5Im8qh/XNGZWTi/ZyWicO75czKqczsa+EYRilRX0u3nwYqFXVmKrGgaeAK455K9VdqroEaM14fbuqLk/93ACsBUYVflCGYRiGkR9mWovDK6c1V1RONtozrS7ZonLa0/PKac0WldOenldOa7aonFy0Z1pdskXldDb2tTAMo6QIIKqeiw9GAVvSfq+nAPMpIuOAM4HF+W5rGIZhGIVgprU4vEyrix/z6se0uvgxr35Mq4sf8+rHtLr4Ma9+TKtLqc2rfTUMwyg9jo8FhorI0rTlxgwVyaKc1yRkEekLPAt8Q1UP5XUMhmEYhlEAZlqLw69pdWnPvOZjWl3aM6/5mFaX9sxrPqbVpT3zmo9pdSmlebWvh2EYpUVBHPVcgD2qOj1tmZuhVA+MSft9NLDN726ISDlJ0/q4qj5X7GEZhmEYhhdmWosjX9Pqks28agGm1SWbedUCTKtLNvOqBZhWl2zmVQswrS6lMq/2FTEMo8Rosqqw1+LNEmC8iJwsIhHgc8CLfjYUEQEeAtaq6k8LPhSjaGKxGPF4nFgsVupdOS4J+vMzva6lZ3QfYrEYTa1tbDzUZqa1AGKxGI0Jpbm5KW/T6pJuXv+8fh9NjqItjXmbVpd08/rKhj00OUp5vCFv0+qSbl5f3bCbJkfp03oob9Pqkm5e/7JhJ02OMjBxIG/T6pJuXt+s3dkpfZ19TQzDKDmi3osXqpoAvgbMJ1lc6WlVXS0iN4vIzQAicqKI1AO3A98WkXoR6Q+cD3wB+KiIrEgtH++gwzVyEIvFmD9/PolEgvnz59vFfp4E/fmZXtfSM7oPsViM37+5CkVg4d1s2mTnRj7EYjGe2dkfHIeWV+YW9d3qH4GLdAPvJIaB49D4ygNF6Q2MwIW6gaWtw8FxaHjloaL0hvSCj2gtb7eOAKeNA6/MK0pveBRm6vv8T+soaGtj7ysPF6U3sjfM0BivNw7tlL7O4nAMwyg9AeW4qupLwEsZr92X9vMOklOIM/kr2Z+RNTqRuro6EokExI+QSCSoq6ujsrKy1Lt13HD08xPh0Pk38XxzmEht9jzx++s+qD0Wj0eztonHq0icPw7CEdMrRk/EzmfjGOrq6tADW0Gh6ZQL7NzIkz8dPhFohFCIQxd8leebKfi76jjQ7IwHcSBUxqGP3MrzzdLF9E4B2iAUDkivMqlXFubQzCD0ToayBDiJDu/rzLgahlFaNNm/G8bYsWNZu3YtRPoQDocZO3ZsqXfpuOLo56dK/zfup7q6OufFw+zZHzn6c67AeHfE8ND5N5lekXp2PhvpuN/V5kQzzgnj2VsxrtS7dNzwRF2EaLQNeeMRDp1/EyLCGdGDVFcNzNq+ve+qW4hJWxppfPUBDs28GRCmlO/lkqrBBek9UteLIfEGGl59KKknwrTIbi6qGlqQ3rzNvTih9RAHXp2X0gsxPbKTC6uG5a3nFmIakTjA3lcfPqo3I7KdmVXDC9J7cFMvRif2sevVRzulr7OpwoZhlB5HvRej21NZWUl1dTXhcLhd02BkJ+jPz/S6lp7RfUg/Nz7Zt57dZYN5eWd5qXery+MWYrpuQtnRz+/y3nWslxNZtq8sL6306sHXTkh+R8NlZVzWu47VjPTMec2m5xZiumZC5KjenGgdq3S0Z85rNj23ENNVE3od1auObmGFjvHMec0kvXrwlRN6H9WbHa1nqZ7kmfOaTe/BTb2o6uPw6Ql9Oq2vM+NqGEbJCSjH1egGVFZWEolE7CK/QIL+/Eyva+kZ3Qf33JhQVclXTm6h9nDIzGs7ZFYPdj+/SVUncd24Zt7YV+7bvGaLvHH1zqga65nzmk0vs3qwq/ehqrGeOa/Z9DKrB7t6U6tGe+a8ZpIt8sbVm1Y1yjPnNZuea1ovGX6sXkf3dSUxriIyWEQWiMh7qX8H5Wh3qYisF5FaEbnTa3sRGSIir4rIYRH5ZWcdj2EYRRJMVWHDMAzDOO4IhzDz2g5ekTd9w/g2r35yWtvLec2m5xV5017OazY9r8ib9nJeM/GT09pezms2vUzT2pmUasT1TuAVVR0PvJL6/RhEpAy4G5gDTAKuEpFJHts3A/8KfKtjd98wjMBQwPGxGIZhGEY3xcxrdvzmtPoxr35Mq4sf8+rHtLr4Ma9+TKuLH/Pqx7S6+DGvpTatUDrjegXwSOrnR4BPZmnzYaBWVWOqGgeeSm2Xc3tVPaKqfyVpYA3DOA4QvKcJ21RhwzAMo7tj5vVY/JpWl/bMq+M4vk2rS3vm1XEc36bVpT3zmnAc36bVpT3zGk84vk2rS3vmNZ5wSm5aoXTGdbiqbgdI/XtCljajgC1pv9enXvO7fbuIyI0islRElsbbGvPd3DCMILGpwoZhGIZh5jXF7c+tAvybVpds5tVxHG57tiYv0+qSzbw6jsMtT6/My7S6ZDOvCcfhpqfeycu0umQzr/GEww1PLs/LtLpkM6/xhMN1TywruWmFDozDEZGXgROzrPoXvxJZXgvs6lVV5wJzAQZER9hVsWGUCgXa7CtoGIZhGPCBeX1wYy/ufv19vnrBKaXepU7l9udWISJ5m1YX17zO2xTl2XfqebV2L/2jYS4aWJiea15/tTnKae9u43fv7mRE/yjnD9lTkJ5rXh/ZHGXS2h389ztbqRral+myryA917w+Vhfl9HW7eGRJHVNGDWBy2/6C9Fzz+uSWKGe8v4f73tjIueMGM6HlQEF6QdJhxlVVL8m1TkR2isgIVd0uIiOAXVma1QNj0n4fDWxL/exne8MwjhNsKnDPYvbs2e2uv79u8THZcdlwHIdQqGcWxg/68zO9rqVndB+KPTcuTjh8+fFlAD3GvLqm9f99ajIwud22Xp/fRxqa+fyjSxk1sDe//MwU4PSi9M472Mi1jy2nckgF3/v4acBpRemds7+R659YzmnD+/LPHzsVOLUovbN3H+bm/17B1FH9uf2j44HxRelN39HA159ZyTnjBqXOv/bPwc7o60rVS74IXJv6+Vrgt1naLAHGi8jJIhIBPpfazu/2hmEcL9hUYSNP7CK/OIL+/Eyva+kZ3YNIOMSvPn8Wb27cx92vv1/q3elwjjWtxeE4Dt/703omjxzAweZWnl+5zXsjL70/rmfamIHsOhznD6u3F6WXcBy+98e1nDNuEHX7m3llfXFjcPGEw//50zpmVg7hvT1HeL22sNHgdL3v/3kdF40fSs22QyzeVNhocCbF9nUdNuLqwQ+Bp0XkeqAO+AyAiIwEHlTVj6tqQkS+BswHyoB5qrq6ve1TGpuA/kBERD4JfExV13TOYRmGkT9mTHsSQY0suTqmZ3rdSc/oPgT1fxoOwbzPnxXYyGtX/S64pvXHV5x+jG6h+3TbszX0j4b5/mWncaApwQ1PLgfgU1NGFqR3y9MrGdE/yncuPZXdR+Lc8t8rALjs9BF567nPtFYN7csdl4xnZ0OcW59O6l18at5le44+0zpl1AC+MesUthxo5h+eXQnABVVDC9K77ollnDtuMLfMPJlNexu5/fka/vljpzJj3OC89dIp9jwpiXFV1b3AxVle3wZ8PO33l4CX/G6fWjcusB01DKPjUcy49iBCoRALFixot008HvVs407B86Pnh+6kF/TnZ3qdp2d0H4I8NyIh+NXnz+KqB/9KXd2WogrkdMW+Lr16cCg02bdets8vPfLmooFxQqHTGdwnwgNXTePaRxezft06zhrclpeeWz34/CF7CIVOY3i/KPd+dirX/3oJa9asYerA7Jl9ufTc6sHTZR+h0KmMGBDlniuncsPjS6ipqeH0Af710iNvJrftJxQaz0mDK/jZp6fw1aeWsXJlnIn989NzqwdPaDlAKHQKlcP68tNPTebrv3mHT5wY55R+/vUyKbavK9WIa9eiLQH7DgQq6Rw+QnXvLwSr2XJ8pPyc1AGau247L3DNhsrgw0GdaPCabYeCryq4uml04JpFYTmthmEYhpGTSDh0tGATlJe8umtQ5Bt50x7t5bQO7hM5WrAJyGleM/VyRd4M7xc9WrAJ4jnNa6ZersibEQOiRws2QTyneU2nvZzWkwZXHC3YBLnNa6ZersibymF9jxZs+gS5zWtHY/NSDMMoOeI4nothGIZh9GS6W1ROZ5lWl/ZyXrPpeeW0tpfzmk3PK6e1vZzXTNozrS7t5bxm0/PKaW0v57WzMONqGEZpUcBR78UwDMMwejjdxbx2tml18WNe/ZhWFz/m1Y9pdfFjXv2YVhc/5tWPaXUptXk142oYRonxUVHYnoE1DMMwDOD4N6+lMq0u7ZnXfEyrS3vmNR/T6tKeec3HtLq0Z17zMa0upTSvZlwNwyg9ZlwNwzAMwzfHq3kN0rRqAabVJZt51QJMq0s286oFmFaXbOZVCzCtLtnMqxZgWl1KZV7NuBqGUXrMuBopYrEY8XicWCwWmN6iRYt6lF7Qn5/pdR09o/sQxLmRbl6f3XCky/dN96xqpLm5KRDTWlsbo8lRtKUxb9Pqkm5e/7j+AE2OUh5vyNu0uqSb1z+v30eTo/RpPZS3aXVJN6+vbNhDk6MMTBzI27S6pJvXhRt20+QowxL7Ci70lW5e/1q7s1P6OjOuhmGUFlVoa/NejG5PLBZj/vz5JBIJ5s+fX/QfQFevpqamR+kF/fmZXtfQM7oPQZ4b4RB8VNcSO9jGyrXvddm+6Q+LV3Ok4RAtr8wNRO+lZRvAcWh85YGi9PqG4RLWs6qpApw2Gl55qCi9/hG4WDbwTlNfcNo48Mq8ovQGRuAi2cDSxv7Q1sbeVx4uSm9IL7hQalnSOBDaEux65dGi9IZH4QJ5nzf3lndKXydqIxkMKB+m5w38dKCazuEjgerB8ROH0xH05DicDqE8+O/95uvuWKaq0/PdbkCv4XreiKs92/1p838VpG90DtOnT9elS5f6apsr523RokXU1NTQeO6XINKHcDhMJBLJ2jb99Xg8+932eDxOIpGA+JGepScCqqbXVfTiR6h482EmT57MrFmzsrb1k20oItYHdgGsr+tCel39u9/T9ALq6yB3f2c5roZhlBa3qnAAiMilwM+AMuBBVf1hxvqJwK+AacC/qOpP0tbNAy4HdqnqGYHskJEXY8eOZe3atVS8+TDhcJjq6moqKyuztp09+yNHf851cZg+qmF6pldqvbFjx2ZtZ/Q8rK8zve6s15F9nRlXwzBKTwAzP0SkDLgbmA3UA0tE5EVVXZPWbB9wG/DJLBIPA78EHi16Z4yCqKyspLq6mrq6OsaOHZvzD6npmV5P1DO6D139XDM90yulXnuYcTUMo/QE88jCh4FaVY0BiMhTwBXAUeOqqruAXSJy2d/ugr4uIuOC2BGjcCorKwP9o2d6pted9IzuQ1c/10zP9EqplwsrzmQYRokJLMd1FLAl7ff61GvdEhEZLCILROS91L+DcrS7VETWi0itiNzptb2IzBaRZSJSk/r3o511TIZhGJlYX2cYhosZV8MwSovit6rwUBFZmrbcmKEkOdS7K3cCr6jqeOCV1O/HkDZ9eg4wCbhKRCZ5bL8H+ISqTgauBX7doUdhGIbRPtbXGYYBmHE1DKMr4G/EdY+qTk9b5mao1ANj0n4fDWzrrEMoAVcAj6R+foTsz+0enT6tqnHAnT6dc3tVfUdV3c9tNRAVkV6B771hGIY/rK8zDAMw42oYRsnRZFVhr8WbJcB4ETlZRCLA54AXO3TXS8twVd0OkPr3hCxt2ps+7Wf7TwPvqGpLYHttGIaRH9bXGYYBWHEmwzBKjYJq8fm3qpoQka8B80nG4cxT1dUicnNq/X0iciKwFOgPOCLyDWCSqh4SkSeBWSSnJNcD31XVh4resSIQkZeBE7Os+he/Elle83UXQEROB34EfKydNjcCNwIW9WEYRsFYX2cYhh9Eg6nmmd+bigwG/hsYB2wCrlTV/VnaZc1kzLW9iMwGfghEgDjwj6q60Gt/BpQP0/MGfrro40rHOXwkUD0Ap6U5cM3jhV23nRe4ZkNl8WYpEycavGaHUB78937zdXdkDYv2YkB4mJ7b/5Oe7ebvf7Ag/e6KiKwHZqnqdhEZASxS1VMz2pwLfE9Vq1O//zOAqv57e9v//+3da4xdVRXA8f+qpCJQ+rAtlEB4SHgkmjRYSjCCUJRgMWji44MamkZDMJHoB8IzJBpJLGBCIH5QgtEmxhhsQEpAKA8lRkOxhZZSoQFkeBXBChWNEYKz/HD2yDC5c3tnuOfec2b+v2Tn7rnn7DNrdc7s6b7n7H0i4nDgAWBtZv6hl3hWrFiRW7Zs6Vt++zI6OsqcOf27acjjebymHy8iZmUfaF/X/nPX43m8qR5vsv5uWLcKO9FeUiWz18WZ9G4bqfo5yuvtHfbpdvt0x/YRsQC4E7i81//IDUM//5B6PI830443w9jXeTyP5/Gq9n2KY6qcaC/pHf15HM5ssw74VEQ8BYzdbUJEHBYRd0F1+zQwdvv0E8AtmbmzW/uy/7HAVRGxrZROc8IkaRDs6yQBw5vj+q6J8pN0FJ0m2p8yhfZOtJdaIkdbcot1g2Tm34GzOry/G1g97uu7gLum0P5q4Oq+BitJ02RfJ2lMbQPXNk2033/OQT2GJKn/vKIqSZKk7mobuGbmJyfbFhGvRMSycRPlX+2wW7dnMk7avky0vw04PzOf6RLfTcBNUC3O1Gtekvos6fVxN5IkSZqlhnWr8NhE+XX0MNEeeIlqov2Xu7Wf7kT7N97es+fuPT9+blqZNMdiqsWp2q5zHjdsGHwk781M+XlA77kcOe3v0IfH4UiSJGnmGtbAdR1wS0R8DXge+CJUE+2pHnuzerJnMnZrz7sn2l9V3js7Mztd0f2/zFzSx9yGIiK2zIRl8s2jeerOJTNJVw2WJElSF0MZuDrRXtJ46a3CkiRJ6mJYV1wlCYB/8vo9943esriHXWfKrdcz0tatW/dExGRTLtp+67zxD5fxV6Y/HUN9Y1/XaMY/XP2Mv2N/58B15rhp2AH0iXk0T625ZOY5dR5fg9FtykXbb503/uEyfjWJfV1zGf9wDSL+OXUeXINTVkluPfNonpmUiyRJktrJgaskSZIkqdEcuDZQRIxExI6I2BYRWzpsnx8Rd0TE9ojYGRFrp9D24ojIiOhlTmEj84iIiyJiV2lzbd151JVLRCyPiIfG3o+IlQ3PY0FEbIiIJyPiiYg4tby/KCLujYinyuvCuvNQ67T9qr3xD5fxqy3a/rM2/uEy/n2ITFfzbJqIGAFWZGbHCc4RcQUwPzMvjYglwC7g0Mx8q1vbiDgCuBk4AfjoZMfvlzryiIgzgSuBczPzzYhYuq/HHfVDTblsAq7PzN9ExGrgksw8o8F5rAd+n5k3R8Rc4IDM3Fs+PHgtM9dFxGXAwsy8tM48JEmSNLt4xbWdEpgXEQEcBLwGvN1Du+uBS0r7JphOHt8A1mXmmwCDGLT2aDq5JHBwqc8HdtcXXs865hERBwOnAz8ByMy3MnNvafNZYH2prwc+N8iAJUmSNPM5cG2mBDZFxNaIuKDD9h8CJ1INdHYA38rM0W5tI+I84KXM3F5z7OP1PQ/gOOC0iNgcEQ9GxMl1JjBOHbl8G7guIl4AfgBcXlv075huHscAfwN+GhGPRsTNEXFgaXNIZr4MUF6X1p6FJEmSZpfMtDSsAIeV16XAduD0Cdu/QHX1NIBjgWeBgydrCxwAbKa6BRRgBFjctjzK148DN5Y2K0ubaGkuNwKfL/UvAfc1NQ9gBdUV5FPKfjcA3yv1vROO8XrdeViGV0r/sQPYBmzpsH0+cEc5v3YCa/fVFrgOeBJ4DLgNWNCm+Mdtv5jqw6Ha+te64gcuopoasBO4tk3xA8uBh8beB1Y2NP4FwIZyrj8BnFreXwTcCzxVXhfWFb9l6Oeqfd2Q48e+bhDxL6Cmvq6WZC19PXG+A1w84b07gdPGff1Ap5N3rC3wEeDVchKOUA1Anqeau9iaPEr9buCMcdueAZa07WdS6v/gnXnmAbzR1DyAQ4GRce+fBtxZ6ruAZaW+DNg1yDwsgy3s44Mv4ArgmlJfQnW7+dxubYGzgf1K/Zqx9m2Jv2w7ArgHeK7b8ZsYP3AmcB/w/vL10pbFvwn4dKmvBn7X0PjXA18v9bmUQQtwLXBZqV9W5/lvGdjP2r6ugfHb1w0s/tr6Om8VbpiIODAi5o3VqTq5xyfs9jxwVtnnEOB44C+Ttc3MHZm5NDOPysyjgBeBkzLzr23Ko7T5NbCqbDuO6hei7kWm6splN/CJUl9F9QlUI/Mo58oLEXF82e8s4M+lvhFYU+prgNtrS0JtkExxvndmbsrMsX0eAg6vN8Suphx/cT3NWENgOvE3ae2A6cSfNGe9gI7xu07AjGRfN1z2dbOxr6trpG6Z9iccx1Bddh+79H5lef9C4MJSP4zqU5cdVAOPr3Zr2+F7jFDzrcJ15UE1UP152f8RYFVbfybAx4GtZdtmqpWeG5lH2bac6taUx6g+QFhY3v8gcD/VwPt+YNGwf48stZ5Hz5bfva3ABR22zwN+C7wM/ItqBfCe2pZ97hh/3rUhfuA84IZSr7V/rSn+bcB3Sz/0IHByy+I/kepDtxeAl4AjmxZ/6T8fBn4GPEq1wv+BZdveCcd4va74LcM9Vye0t68bfPz2dTXHX3dfV0uyFovFYpmZhRrme49reyXVvK/a5q33O34GvIZAHf/+DHDtgJriH9h6AdONH9cJaF2xr7Ova2D8s76v81ZhSVLPMnN3eX2V6j9eKyfssha4NStPU/0xO2FfbSNiDfAZ4CtZ/qK1JP4PAUcD28tzkg8HHomIQ1sSP1TTR8baPAyMAotbFP8a4NZS/1WHYzYh/heBFzNzc9lvA3BSqb8SEcsAymtTHvM2q9nX2dc1MP5Z39c5cJUk9aSu+d4RcQ5wKXBeZv67TfHnANcQaPvaAW1fL8B1AmYP+zr7uobGb1831Uu0FovFYpmdhfrmez9NNWdnWyk/alP8E77HCDXdPlfjv/9A1g6oMf6BrBfwXuIv25bjOgGtKDWeq/Z1w/33t6+rOf6ybTk19XVjj+KQJEmSJKmRvFVYkiRJktRoDlwlSZIkSY3mwFWSJEmS1GgOXNVoEXFyRDwWEfuXVc52RsSHhx2XJEmSpMFxcSY1XkRcDewPfIDq2VDfH3JIkiRJkgbIgasaLyLmAn8C/gN8LDP/O+SQJEmSJA2QtwqrDRYBBwHzqK68SpIkSZpFvOKqxouIjcAvgaOBZZn5zSGHJEmSJGmA9ht2AFI3EXE+8HZm/iIi3gf8MSJWZeYDw45NkiRJ0mB4xVWSJEmS1GjOcZUkSZIkNZoDV0mSJElSozlwlSRJkiQ1mgNXSZIkSVKjOXCVJEmSJDWaA1dJkiRJUqM5cJUkSZIkNZoDV0mSJElSo/0PZGKBUeQImgYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "f,ax = plt.subplots(1,3,figsize=(4*4,4), subplot_kw=dict(aspect='equal'))\n", - "da_s.where(da_s.values>da_s.attrs[\"nodatavals\"][0]).plot(ax=ax[0])\n", - "ax[0].set_title(\"Sliced raster\")\n", - "splot.plot_spatial_weights(w_rook, da=da_s, ax=ax[1])\n", - "ax[1].set_title(\"Rook contiguity\")\n", - "splot.plot_spatial_weights(w_queen, da=da_s, ax=ax[2])\n", - "ax[2].set_title(\"Queen contiguity\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `higher_order` neighbors\n", - "\n", - "In some cases `Rook` and `Queen` contiguities don't provide sufficient neighbors when performing spatial analysis on a raster data, this is because `Rook` contiguity provides max 4 neighbors and `Queen` provides max 8.\n", - "\n", - "Therefore we've added `higher_order` functionality inside the builder method. We can now pass `k` value to the weight builder to obtain upto kth order neighbors. Since this can be computionally expensive we can take advantage of parallel processing using `n_jobs` argument. Now lets take a look at this functionality." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# Building a test DataArray \n", - "da_s = raster.testDataArray((1,5,10), rand=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below we can see that builder selected all the neighbors of order less than equal to 2, with `rook` contiguity" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/magito/anaconda3/lib/python3.8/site-packages/scipy/sparse/_index.py:124: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.\n", - " self._set_arrayXarray(i, j, x)\n" - ] - }, - { - "data": { - "text/plain": [ - "(
, )" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAFPCAYAAACcQ8AlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABD4UlEQVR4nO3de3yU5Z3//9d1M5kM52M4JSRhOCggCoLnE1pjtNbzCV0VbLtqt/a0/T62dvvtbne7/Xbr/trudtsqdrcCWk9UPKJi1KKltSoqiIAgBjKEcD4FApPJ5L5/f2RiY0wgydwz99z3vJ+PRyC5J5n5XHMf5jPX3PMe4zgOIiIiIpJ5ltcFiIiIiOQLNV4iIiIiWaLGS0RERCRL1HiJiIiIZIkaLxEREZEsCXldQFcNGzbMKS8v97oMERERkWN65513djuOU9R+uW8ar/LyclasWOF1GSIiIiLHZIyp6Wi5XmoUERERyRI1XiIiIiJZosZLREREJEvUeImIiIhkiRovERERkSxR4yUiIiKSJWq8RERERLJEjZeIiIhIlqjxEhEREckSNV4iIiIiWaLGS0RERCRL1HiJiIiIZIkaL/EF27a9LqFH/Fp3PvLruvJr3d3h1zF2VHeQxiI9E/K6AJGusCyLqqoqr8votoqKCq9LkC7SNpa7grRugjQW6RnNeImIiIhkiRovERERkSxR4yUiIiKSJWq8RERERLJEjZeIiIhIlrjSeBljfmuM2WmM+aDNsiHGmCpjzEep/we3uey7xpiNxpj1xphKN2oQERERyXVuzXjNBy5ut+xu4BXHcSYAr6R+xhgzGZgNTEn9za+NMb1cqkNEREQkZ7nSeDmO8zqwt93iK4AFqe8XAFe2Wf6o4ziNjuNsAjYCp7pRh4iIiEguy+Q5XiMcx9kGkPp/eGp5MbClze/VppaJiIiIBJoXJ9ebDpY5Hf6iMbcbY1YYY1bs2rUrw2WJiIiIZFYmG68dxphRAKn/d6aW1wJj2vxeCVDX0RU4jnO/4zgzHceZWVRUlMFSRURERDIvk43XM8Cc1PdzgKfbLJ9tjCk0xowFJgBvZbAOERERkZzgyodkG2MeAWYBw4wxtcA/A/8OPG6M+RIQA64DcBxnjTHmcWAtkAS+6jhOsxt1iIiIiOQyVxovx3Fu7OSiz3Xy+z8CfuTGbYuIiIj4hZLrRURERLJEjZeIiIhIlqjxEhEREckSNV4iIiIiWaLGS0RERCRLXHlXo4hfVVdXE4vFKC0tJRqNel2OBJC2sdwVpHUTpLEEnWa8JG9VV1ezdOlSVq9ezdKlS6murva6JAkYbWO5K0jrJkhjyQea8ZK8FYvFaJhYQfOwcvq8fi+xWEzPFMVVsViMZDLJ4TPm0ueN+drGckgsFuPI8Ek0TaqAZCNPxkOEN4ZdvY15sTc7XJ5IRFy9ncbEeJpnHQ+OQ+SVn2k7y3FqvCRvlZaWsuaV1zhUfALOyOMpLS31uiQJmNLSUtatWwf9hhEKhbSN5ZDS0lLWrFtK05SLCW9fyxXj+7jerFRUnNPh8qqqKldvZ/6GJLt31dE8uITE6bdSOnSPq9cv7tJLjZK3otEol3zuPACSJ15KZNQ4jyuSoIlGo1RWVgKGyspKzULkkGg0yiWVlQBYZdPYP3iCxxX1zIvbC7AL+nLliMOEsBkyoD8rw8d5XZYchRovyWvRaBQMXF2SZFFtIQcSXlckQdO6janpyj2t6+aL45L8cXcBGw/66yHxjT29qG6wuLWskfHjo4TDYW6bYLEnYfHKTr2glav8tZWJZEh5X5sLihIsjEWIJ72uRkSyqX8IZo+J89z2MNvjXlfTNWvrLd7eV8DcskZCbR7JLQvmlDfyYX2IFXt7eVegdEqNl0jK1EE20wcleaCmENv2uhoRyaYREbhsVILHtkSob/K6mqOLNVi8tCPMzaVx+nQwsRW2YE55nD/tKWCDz2bx8oHWiEgbZw9LUtrHZmGs0OtSRCTLxvWzOa+oiQU1ERI5+uRrbwIW14W5pjjBkKO8CbNfCG4aE+f57WHqjmSvPjk2NV4i7Vw6qomw5fD7WnffWi4iuW/aoGamDkjywObcm/k+nISHYhEuGpFgTJ9jF1cUgStGJ1hUG9H5qzlEjZdIB2aXJNiXMLy8o8DrUkQky2YNTzKq0OahLbnz5Ctpw/yaQk4Z3MTkAV3vCMf2tZml81dzihovkQ5YFtxW3sj6g714WyeoiuSdy4ubsICntnr/5Mu2YWFNIdG+NmcMbe723580yGbawCTzY7k3i5eP1HiJdCJkwdzyOH/eU8B6naAqknduGpNgZ6PFHzyOZli0NUy/kMPFI3t+1v85RUmKIzYLY7kzi5ev9GgichR9UyeovrA9TN0R43U5IpJFlgVzyxtZUx/i3X3ezHy/uL2AhqTh2uL0T9K6bHQTBRYsrvV+Fi+fqfESOYaiCFw5OqGAVZE81BrN4EXAatuAVMulm76xJKGAVY+p8RLpAgWsiuQvLwJWOwtITZcCVr2nxkukixSwKpK/shmweqyA1HQpYNVbusdFukEBqyL5KxsBq10NSE2XAla9o8ZLpJsUsCqSvzIZsNrdgNR0KWDVG2q8RHpAAasi+SsTAas9DUhNlwJWs0+Nl0gPKGBVJL+5GbCabkBquhSwml1qvER6SAGrIvnNrYBVNwJS06WA1ezRo4VIGhSwKpK/3AhYdTMgNV0KWM0ONV4iaVLAqkj+SidgNRMBqelSwGrm5ciqFvE3BayK5K+eBKxmKiA1XQpYzTy1tOIbFRUVGbnee9Yvd+W6K4Chb9bw2Ic7mX/LDEKWhW3bWLnyVFaOKde3sY7kyzbmh3UzsWYv/++l9fzmxukU9Yt0um5GTjmVXz23lntnn0TJ4D6u3DbAvNibVFSc48p1ndGQ4EsPv8u5p4znrOiwvNnOskH3ooiL5pxWxonFA/naolUAOlBJxmkbyx2nlg3hb88o5+8eW8XhRLLDdVO77zDff24tP/zCZFebLrcN6Rvm51dP5Z6XP+LDHQe1nblI96SIy/7hwon0CYf4/nNrvS5FRLLs0hNGUTlpBHc+upJku2yG+niCbzzxPt+YNY6powd6VGHXlQ/ty/cvPp67n/mA7fVZ+pDKPKDGSyQD/uOKKdTuP8KvXv/Y61JEJMu+fGY5E0f045tPrP5kWSJpc/ujK7l2WjHnTxzuYXXdM7N0MHecOZa7Fq2iIaETWN2gxkskAyzLYt7s6by+cQ+/f6/W63JEJMv+b+Xx9DLwry+sw7Ztvvr4Sk4rG8KNM8d4XVq3XTJlJF+YMpI7Hn3vM7N40n1qvEQyJByyuG/2NH63opbXN+72uhwRybKfXz2Vj3c3cMuD7zC0X5hvnT/e65J6bO7pZZwwagBfX/S+16X4nhovkQwa3KflBNWfvvoR67bXe12OiGSRZVmcMKo/uw81clrZIK/LSdvdFccRKbD4pyU6fzUdarxEMqx8aF/++ZLj+e6za3SCqkgeeXjFFt6tPcD8m2ew8K1a3ti0x+uS0vb/XXkCsX1HuHd5tdel+JYaL5EsOHnMYL5ydlQnqIrkiVc37OSJlVuZN3saowb25qdXnsC/V21gw86DXpeWFsuyuO/6k1i2YTeLV231uhxfUuMlkiWVk0Zw2QkjueMRnaAqEmSr6w7wi2Uf81/XnMiASMuHTkeL+vG9yuP4h6c/YNchf898R8Ih7r1hGg++tYU/Vev81e5S4yWSRe0DVkUkWI4WkNo+YNXP2gesStep8RLJMgWsigRTVwJSjxaw6jcKWO0ZNV7iC7ZPD1Ad1W3bti8DVv26DrrKr+Pza93d4YcxdhSQ2tn+31HAaq7rbCx+DFj1envSh2SLL1iWRVVVVUau2yGSsevu6MN3W8dyfRHMW3OYA9tqOGVIc0Zu302Z+pDiXBGkbSxocn3d2DbMrymkuLfNsH0fUlX1IXD0/f80Cx46EOar85dxZXFTWrffKpHw5lgWAib3DnHrA3/m9vJGcv1jHb3eZ3L87hEJrpAFc8vj/HlPAesPalcU8atFW8P0CzlcPLJ7DdRNYxLsbLT4w07/z4GcU5SkOGKzMBb2upScp6O9iIf6huCmMXFe2B6m7ojxuhwR6aYXtxfQkDRcW5zo9t9aFswtb2RNfYh39/XKQHXZddnoJgosWFxb4HUpOU2Nl4jHiiJw5egEi2oLOdD9Y7eIeOSNPb2obrC4taznL6+FLZhTHuePuwvYGICZ7xtLEuxJWLwSgFm8TPH/WhYJgPK+NucXJVgYixD3x/mpInltbb3F2/sKmFvWSCjNR9L+IZg9Js5z28Ns9/mbAy0L5pQ38mF9iBV7/T+LlwlqvERyxImDbKYPSjK/phAfvIlLJG9tOWzx0o4wN5fG6ePSxM6ICFw2KsFjWyLUu3OuvWdaZ/H+tKeADQGYxXOb7hGRHHL2sCRj+ugEVZFctTcBT2wNc01xgiEu76bj+tmcV9TEgpoICZ8/+eqXOn/1+e1h6o54XU1uUeMlkmMuHdVE2IIndIKqSE45nISHYhEuGpFgTJ/MdEbTBjUzdUCSBzb7f+a7KAJXjE6wqDZCvc5f/YQaL5EcNLskwd4mi5d3qPkSyQXJVFbXKYObmDwgsx3RrOFJRhXa/G6L/2e+x/a1mVWUYIHOX/2EGi+RHGRZcFtZI+sP9uJtnaAq4inbhoU1hUT72pwxNDthx5cXN2GAp7b6/8nXSYNspg1MMj/m/1k8N6jxEslRClgVyQ09DUhNlwJWg0lHc5EcpoBVEW+lE5CaLgWsBlPGGy9jzGZjzGpjzEpjzIrUsiHGmCpjzEep/wdnug4Rv1LAqog33AhITZcCVoMnW2vxfMdxpjmOMzP1893AK47jTABeSf0sIp1QwKpIdrkZkJouBawGi1eb0xXAgtT3C4ArPapDxDcUsCqSHZkISE2XAlaDIxsjdoCXjDHvGGNuTy0b4TjONoDU/8OzUIeI7ylgVSSzMhmQmi4FrAZDNhqvsxzHORm4BPiqMebcrv6hMeZ2Y8wKY8yKXbt2Za5CER9RwKpIZmQjIDVdClj1v4w3Xo7j1KX+3wk8CZwK7DDGjAJI/b+zk7+933GcmY7jzCwqKsp0qSK+oYBVEXdlMyA1XQpY9beMNl7GmL7GmP6t3wMXAR8AzwBzUr82B3g6k3WIBI0CVkXc40VAaroUsOpfmZ7xGgEsN8asAt4CljiO8yLw70CFMeYjoCL1s4h0gwJWRdzhVUBquhSw6k8ZPVo7jlPtOM5Jqa8pjuP8KLV8j+M4n3McZ0Lq/72ZrEOkM9XV1eCk/vehtgGrb2+sY9myZb4dS1D5fRsLstZ1s+9wwpOA1HS1DVh96aN9JBIJX29nrQGrD25IBPpYpqfJkreqq6t54bU3AIelS5f6dicvisBppoZX46N5b32Nr8cSNNXV1bxQ9Qp+38aCqLq6mqfXtLxpq/nVeWze7M91E7ZgFht4r3EwyWb/b2enJT5k26Fm3q3v7fuxdMb/85MiPRSLxTgyZgZgqD/rDp6MhwhvdHeae17szQ6XJxIRV28nniiGUIjEubdjvfoLYrEY0WjU1duQ7tsci9Fwys2A4ciYGVovOeTdnU0kyk4B4ND5X2dRwsB6d2/jnvXLO1zu4O7+jzPxk0fz+vO/xaIEPh7LZOjj0DT2VApq3grkPqPGS/JWaWkp65Yupb5kGqEDW7mquMn1Hbyi4pwOl1dVVbl2G9uOwCOxMJG/LOTwabfSeNZtlPSrde36pec2jToXa+dWmvsMoqnsFJzee7wuSWgJSI0NPoG+f15Awxm3MeAP/0llZWUG9v+KDpe7uf/Hk3DvxwVYa17CjjeQOPELXBqJccL4UtduA7IzFmiZiVy6dCn1Z91BKBSitNTdceQCvdQoeSsajVJZWQlAZHgZm/tN9Lii7qtPwOO1Ea4qSXLpOS2fyFXax2Z56HiPK5Nn6woIFUa4urgJMFzSu5ZVTgmxBh12vdQakHrdmGY+f97pgMlI05UNSRseqCnktGE2l00rY/rofpxcuJc/MNG3Aautx+VQKOTb9XIsOgJIXotGo2DgbyfYrK0P8c4+/0QzxJOwIBZhVlGCsX3tT8Yye2JEAasee31XiK1xi1tKE5+slxPHj+Ha4kYW14XZ0+h1hfmpfUBq67rx44O7bcODNYWU97E5c2gz0WiUWbNmUTFhiO8DVqPRKOFw2JfrpSvUeInQcoLq3PI4y3cX8JEPohlsG+bHCpk2MMlJgz57dFXAqndW7bdYdSDE3NJGrHabUkkfh4tHJPhdLMLhPAmLzBV+CkjtiifqwvQOOVwy6rMRGEEKWA2i3H+EEcmSfiGYPSbOku1htse9ruboHoyFKY7YnFPU8aO3Ala9sanBYtmuMHNK40Q6OYP2+AE2pw1pYn5NIUn/P/77gh8DUo/mpR0FHGgyXH+UCIzWgNWnAxCwGjRqvETaGBGBy0cneGxL7n522OKtBYSslsybo2kbsLrBB7N4frcrDk/Xhbm+JM6AY0w0nDa0mXH9bBbU+PflID/xa0BqR97a04uPDvZibtlnZ1Tbu2lMgh2NFssCELAaJDoai7QT7WtzXuqzw3LtBNVXdobY02hxY0nXusLWgNXnt4epO2IyXF3+OpSEh7dE+PzIBKN6d+1vKkc0MSDksGirXg7KpBe3F9CQNL4MSG3vw3qLN/YWcFt5nFAXHr1bA1Y/qA/xro/OXw06NV4iHZg2yObEgUl+m0MnqL6ztxfr6kPMKT/2M922iiJw5egEi2oLOeD/x56ck7Bh/uYIZw9tYmL/7m0s1xQnaEgaXtiul4My4Y09vahusLi1C7NDuW7rEcOLO8LcXBqnTzcmsMIWzCmP88fdBWzUzHdO0FoQ6cR5qc8OeygHTlDdcNBi+Z4C5pbHCfdgry3va3N+UYKFsQhxndTtGtuG+ZsLmTQgyYwh3T93yLLg1rJGNjVY/HmPZiTctLbe4u19Bcwta+zS7FAu25eARbWFXD06wdDC7v99/9T5q8/54PzVfODzzVEksy4b3YQFPOnhCarbjsDz28PcNCZOvzRO1ThxkM30QUnm67wi1zxSG6ao0OZzw3vezYYsmFvWyIp9Baw5oEOyG7YctnipB7NDuSiehAdjESqGJyjt2/Mdd0QELhuVOn/V/6e6+Zr2cpFjuGlMgl2NFq96cIJqa0DqFaMTFLnwyRxnD0sypo/Nwpj3s3h+92xdAUkbripO/1GsTwhuKY1TtTOsgNU0tQakXlOcYIjPN/PWgNSZg5uYMjD9Z0vj+tmcW9TEgprcO381n2gPFzmG1hNUsx2w2j4g1S2XjmpSwGqa2gakumVwGAWspql9QKqftQ9Idcv0Qc2+D1j1OzVeIl2Q7YDVYwWkpksBqz13tIDUdClgtefyKSA1XQpY9ZYaL5EuymbA6rECUtOlgNWe6UpAaroUsNp9+RiQmi4FrHpHjZdIN2QjYLWrAanpUsBq93QnIDVdCljtnnwNSE2XAla9oaOtSDdlMmC1uwGp6VLAatf0JCA1XQpY7Zp8DkhNlwJWvaHGS6QHMhGw2tOA1HQpYPXoPglIHdb9gNR0KWD16BSQmj4FrGaf7mWRHnIzYDXdgNR0lfe1uUABq5/RGpA6eUCSGYOzf+6QAlY7p4BU9yhgNbt8vrmKeMuNgFW3AlLTNVUBq5/RGpB6QRoBqelSwOpnxRoUkOo2Baxmj/ZikTSlE7DqdkBquhSw+lduBqSmSwGrf7U3AYvrFJCaCQpYzY783oNFXNDTgNVMBaSmSwGrmQlITZcCVhWQmg0KWM08NV4iLmg9QbWrAautAaknZSggNV35HLCayYDUdJX0cbgoTwNWFZCaPQpYzSyfvzou+aSioiIj13vP+uWuXfe0XYf41pOrufDsE5g4vD+2bWN18Oj99IEiZo7tzXcvOs6V223l5ljOT9rcsnAFB4aN5trpJZ2OJUgGHzeT5Us/5Dc3T2dEf/de+3VzvVQAI9+t5ZH361h488y8WC+2bbN4z1DOPW4A3zp/vKvX7ea6aa+zdbOuYCzNhQf4zezpObvuKoBv/H4Vf2kO8/2LJ3U6lkzdd/Nib1JRcU5GrtvrfSY317iIT0WL+vH9yuP5h6c/YMfBeIc79z8/v5bCkOV60+W2cMjivtnTePidWpZ/vDtnHyDcsmlPAz988UPuufwEV5uuTLjh5BLOKB/C3z2+0utSsuK7z65lWL9C15uuTOton1n0Xi1/3rSXe6/P3aar1c+vnsrGXQ385k+bcr7W7vB6LMG5J0VyxMyywfztmeXc9fgqDic+/XrQfcurqdl7hJ9eeYJH1XXP4D5hfnbVVP7jlY/4cMdBr8vJmL0NCf5+8WrurpjIxBH9vS6nS74xazzD+xfy3WfXel1KRv3s1Y/YezjBj74wyetS0vb6xt088k4t990wjbAPMjAsy2LeDdOoWr+TZ1Zv87qcwMj9NS/iQ5dOGcUlU0Zwx6MrSabOUH1yVR1/2LCb+64/yfNnXN1RPrQv/3zJ8dz9zAdsrw9eyE88keQrj61kzmmlnDF2qNfldMu/XTqJfYcT/OzVj7wuJSMeXrGFt2P7+NV103y1z3RkzbYD/PTVj/iva05kUB//nDsVCYf49fXTeOAvNbyxaY/X5QSCv7dkkRz2xdPLmTSyH9984n3+VL2bhW/FuPeGaUTC/ju18uQxg/nK2VHuWrSKhkRwzuq2bZs7H1/J+ROHceWJo70up9ssy+KX103j7dg+fvf2Fq/LcdWrG3byxMqtzJvtj9mho9m6/wjfe3Yt//L5yYwZ3MfrcrptWL9CfnrlCfx71QY27AzuzHe2+HtrFslx/3jR8SSSNv/6wnp+dvVUhvT1zzPd9ionjeCyE0ZyxyPvfTKL53fffuoDyof05c6zo16X0mPhkMW82dNYvGorr6zf6XU5rli19QC/WPYx/3XNiQyI+HefATgUT/L136/irnPHMa1koNfl9Fi0qB/fqzyOf3j6A3YdCt7Mdzap8RLJoB0H4+w4GGdwnwJeWrfD63LSNue0Mk4sHsjXFq3yupS0/fil9TQmbX7wef+fOzQgEuYX157Ef7/2Mau2HvC6nLTU7jvMPy1Zyw+/MJkSH84OtZVI2tz+6LtcddJoLjx+uNflpO3UsiF8+Yxy/u6xz56/Kl2nxkskQxoSSb76+CruPCvK/L85mVc27OKp9+u8Litt/3DhRPqEQ3x/iX9P6n7gL5tZs72eX1x7oteluKZ4UG/+7QuT+acla9my77DX5fRIfTzBN554n2/OGsfU0f6dHYKWl7G/tmglM8YM5uZTSr0uxzVfOGEUlZNGcOejK7EDMvOdbWq8RDIgadvc8eh7XDplBJdMGfnJCaoL3owF4gTV/7hiClv3H+FXr3/sdSnd9sKa7SxZs4N5s6cT8vkJ2+2dMHog35w1jm888T77D+dO6n5XtMwOreS66SWcP9H/s0PfX7KOAb0L+PbnJnhdiuu+fGY5E0f04xtPrPa6FF8K1lFHJEd8/ffvM2XkAG47vfyTZUE6QdWyLO67YTqvb9zD79+r9bqcLlsR28e8P2/iV9efRF8fvsmhK86fOJwbTi7hzsdXkkj6Y0bCtm2++vhKTi8fwuwZJV6Xk7ZfLNvI9oNxfnL5FK9LyZj/W3k8loEfvrjO61J8R42XiMuOFpDaPmDVz9oHrOY6PwWkpqttwKofXg5qDUj95ix/BaR2xE8BqelqG7AqXRfsrUIky7oSkHq0gFW/8UvAqh8DUtPll4BVBaT6lwJWeyb4W4YEgh+etXcUkNpR3bZtdxiwmus6G0uuB6x2FJDa2Vj8qLO6bdvO+YDVjgJS/bpuOgpI9UPd6bBt25cBq16vF+M4jqcFdNXMmTOdFStWeF2GeKiqqioj1/uT9RG+c1x6DcOGgxYvbA/zpbFx+rU5daizD5BtHcuzdQXsazLcWubOidBujKUzxxrL6v0Wy3aH+dvyOJEcOX3KtuF/Nhcyvl8zFwz/6+ziscbiNi/WC7SMJ2nD/ZsKmTYoyZlDmzNSQ0+sOWDxyq4wXy6P06cb+4zb3Fg3+xKwoCbC1aMTlPb964N6pj5AOpe0rpcdcXhkS4TZY+KMdOGV/P/eGOFr47O/z7jJGPOO4zgz2y/XjJdImrYdgee3h7lpzKebrq64bHQTFvDk1oKM1JZNUwfZTB+UZH5NIbnyRP+R2jBFhfanmq58E7JgblkjK/YVsOZAbhzyYw0WVTvD3Fz66abLj+JJeDAWoWL4p5uufDMiApeNSvDYlgj1TV5Xk9tyYy8U8an6BDxeG+GK0QmKevgs76YxCXY1Wry60+ePQMDZw5KM6WOzMOZ92vizdQUkbbiqWI8CfUJwS2mcqp1hYg3eHvb3JmBxXZhrixsZ4v1mkpakDQ/UFDJzcBNTBuZv09VqXD+bc4uaWFATIaG7o1NqvER6KJ6EBbEIs4oSjE3jma5lwdzyRtbWh3hnXy8XK/TGpaOaCFvwRK13s3iv7wqxNW5xS6m/sqwyaXAYri1uZHFdmD2N3tRwOAkPxSJcNCJBSR9/nObSGduGB2sKKe9j59RLuF6bPqiZqQOSPLA5d2a+c40aL5EesG2YHyvkpIFJThqU/tElbMGc8jjLdxfw0UH/75azSxLsbbJ4eUf2m69V+y1WHQgxt7SRgL+bv9tK+jhcNCLB72IRDmf51dekDfNrCjl1cBOTB/j/EfmJujC9Qw6XjNKManuzhicZVWjzuy0+n9LMEB2WRHrgwViY4ojNuUXuPXr1D8HsMXGWbA+zPffeHNgtlgW3lTWy/mAv3t6bvVm8TQ0Wy3aFmVOaOyf455rJA2xOHdLE/JpCspWvatuwsKaQcX1tTg/A7NBLOwo40GS4vlgzqp25PPUS/9MBOH/VbWq8RLpp8dYCQlbLifFu+9QJqj4/pocsmFse5897CtiQhVm8XXF4ui7M9SVxBuiJ9lGdPrSZcX1tFmTpjRCLtobpF3KoHOn/2aG39vTio4O9mFumGdVj+ZsxCbY3WiwLwPmrbtJmI9INr+4MsafR4saSzHVF4/rZnFeUYEHM/yeo9g3BTWPiPL89TN2RzN3OoSQ8vCXCpSMTjOqdudsJksqRTQwIOSzamtku9cXtBTQkDdcGYHbow3qLN/YWcFt5nDzIR02bZcFt5Y18UB/i3QCcv+oWbToiXfTO3l6sqw8xpzzzz3SnDbI5cWAwTlAtisCVoxMsqo1wIAOPvQkbFmyOcPawJib09/mdlWXXFCdoSBpe2J6Zl4Pe2NOL6gaLWwMwO7T1iOHFHcGIwMim1vNX/7i7gI0BOH/VDboXRLpgw0GL5XsKmFMeJ5ylvea8oiSjIzYPBeAE1fK+NhcUJVgYixB38aRu24YFmwuZNCDJjMH+P3co2ywLbi1rZFODxRt73J2RWHPA4u19Bcwta/T97ND+BCyqLeTq0QmGFnpdjf+0nr/63PYwO3x+/qobfL47iGReOgGp6VLA6tE9UhtmWJ4HpKarNWD1bRcDVoMWkLpQAalpaz1/9VEFrKrxEjkaNwJS06WA1Y4pINU9bgasKiBVOqOA1RZqvEQ64VZAaroUsPpZCkh1nxsBqwpIlWNRwKoaL5EOuR2Qmi4FrP6VAlIzJ52AVQWkSlfle8CqDlsiHchEQGq6FLCqgNRs6EnAqm3DAgWkSjfkc8CqGi+RdjIZkJqufA5YVUBq9nQ3YHXR1jD9FZAq3ZSvAavarETayEZAarryMWBVAanZ19WAVQWkSk/la8CqNi2RlGwGpKYrnwJWFZDqnWMFrCogVdKVjwGrno3SGHOxMWa9MWajMeZur+oQAW8CUtOVDwGrCkj11tECVhWQKm7Jt4BVT3YXY0wv4FfAJcBk4EZjzGQvahEB7wJS0xX0gFUFpHqvo4DV1oDUWwIyO6SAVO/lU8CqV89TTgU2Oo5T7ThOAngUuMKjWiSPfbAxBg6camo8C0hNV2vA6pMfHQIHqqurvS6px1oDVv/nI/if9/bScKTR9wGp1dXVvl8vbQNW/7BhF4/HLM40mxjs88nWjRtb1k3U2amA1BzQGrD62+oQiUTC1/vM0XjVeBUDW9r8XJtaJpI11dXVvLC3PwCrqhb7die3LJhlr2NDfctLQUuXLvXtWAAmHVnPvobD7KEPTa/e5+uxVFdXs+TNNYDj+/UyOAxnmk28fWQwvVa/wDtVT/l6PNXV1SxZHQNgy8u/8/VYgmTg3o9wNr9L0jG+32c6Yxwn++nCxpjrgErHcb6c+vkW4FTHcb7W7vduB24HKC0tnVFTU5P1WiV3VFVVuXp9y5Yt471tDSSmXwM4gAHj6k1gOrlCB5f3O6f1nza35/JYOr/CTIylizfdY/kwls4KSEPr1TlO6mYDsM/YzfR55edMnTqVWbNmuXoTFRUVrl5fLsrEcXn16tU0Hn8hhR++7Ov1Yox5x3Gcme2Xe/XqfC0wps3PJUBd+19yHOd+4H6AmTNn+vvzJyTnlJaWsm7dUpx1VSTHncmVfWqYOD7q6m10toO7fbCqrq5m6dKl1J//LUg2cmGklhnj3Z1EzsZYNjVYPFnbi8Llv+XQKX/DgD/No7KykmjUf+ulIQn3f1xAr/efx2z/kFAolNWxQOa2s2QymfXxZHospaWlrl6/9EzLcXkdfPhyYNeLV43X28AEY8xYYCswG7jJo1okT0WjUSorK4nFYuzrfYRl1iTG2/58W3zrWBYl4OzIdpY745iQ8FfQaGtA6o2lcY6cfxZPxjPzwJ4NSRvmb45wVlETw2aMIxYroLS01JdjaavtPuP38QRpLEGSD+vFk8bLcZykMeYuYCnQC/it4zhrvKhF8ls0Gv1kx35qq83DW8LcXObPIMhoNArr4azxI+i7vyVg9Y6oP+IxPhOQGo0S3hj25UHXTn1m4cT+zZw6pBmGRH05js603Wf8LkhjCZKgrxfPDsmO4zzvOM5Ex3HGOY7zI6/qEGl1ZXETNvBMAKIZ/BSwGrSA1MdqwwwqcKgY4e93Y4pIZvjgubBI9tw8JsG2RovXAvDZYX4IWA1aQOqSbQXEbcPVo/05ayoimafGS6SN1s8Oe78+xMr9/v/ssFwPWA1SQOry3SFihy3mlPrzPEERyQ4dHkTaCVswpyzOa7sK+PiQ/3eR1oDVV3NsFu/ZugKSNr4PSAVYfcDi3f0hbgvAZxaKSGbpECHSgQEFcMOYOM9u8/9nh1kWzC1vZG19iHf35cYs3uu7QmyNW9xS6v+X5GoaLF7dGebW0jiR3OptRSQHqfES6cTICHxhZMtnhx30+SthYQvmlMf54+4CPjro7W6/ar/FqgMh5gbgJbk9jfBkXZjrShoZlLun0olIDvH5YU8ks8b3tzlnWBMLNkdI+PwNd/1DMHtMnCXbw2z3aBZvU4PFsl1h5gRgdqghCQ/FIlwyMsHo3sp3FpGuUeMlcgwnD25myoAk830QzXAsIyJw+egEj22JUJ/lV/laA1KvL/FXsGtHWgNSzxjaxHEBiMAQkexR4yXSBecPTzK8sCVg1e+ifW3OK2oJWM3WLN5nAlJ97DMBqSIi3aDGS6SLFLDaMwpIFRH5KzVeIt2ggNXusW2Yr4BUEZFPqPES6QYFrHbPI7VhihSQKiLyCR0+RLpJAatdo4BUEZHP0iFEpAcUsHp0CkgVEemYGi+RHgpqwOrGNANWFZAqItI5nx8WRbwVxIDV59IIWFVAqojI0anxEkmTAlZbKCBVROTY1HiJuCDfA1YVkCoi0jVqvERckq8Bq4nU7JACUkVEjs04jj/OXZg5c6azYsUKr8sQOaqkbfPFh97lvAnD+NIZ5di2jZXFM8wv/OVyXr7rbNeu7/+99CF1B+L88rppHY7Ftm2++PC7nF4+hDvPjrp2uwDX/u+b/P5Lp7l6na06Wy/3vLyB6t0N/Pr6k7K63tKR7W0s04I0niCNJUiytV6MMe84jjOz/XJtESIuClkW982exotrd7Dkg22+P+j+40XH08uy+Jfn13U4lm8/9QHlQ/q63nRlWkdjefCtGlZtPcAvfdR0Qcdj8bMgjSdIYwkSr9eLtgoRl/UJh/j1DSfxmzc281bNXq/LSdvPrzqB6j0NzFte/anlP35pPYmkzQ8+P8mjytzz0rodPLV6G/NumE5ID5YikkE6wohkQFG/CPdccQI/Wrqe6l2HvC4nLZZlMe+GabyyYRdPv18HwAN/2cya7fX817Unelxd+t6r3c+vl1fzy2un0c/vGRgikvPUeIlkyMTh/bm7YiLffuoDdh9q9LqctETCIe67YTrz34zxy9c+ZsmaHcyb7f/ZoZq9h/nB8+v48WVTGDUw4nU5IpIH/H3UFMlxZ4wdym2nl/F3j68knvB3vP2QvmFuO62Up1Zv4/9cMJ6+YX/PDu07nOBbi9/n2xdMYNLIAV6XIyJ5Qo2XSIZdPnUUFx43nDseW4nt44TVTXsa+N+/1HDXOVH+/eUN7Djo3w+pTCRt7nxsJTfNKOHc8cO8LkdE8ogaL5EsuP2ssYwb1pdvLV7tdSk9srchwd8vXs3dFRO58qTR/O2Z5dz1+CoO+3AWz7Zt7nzsPc6JDuXa6SVelyMieUaNl0iW/NMlk2h24N+Wfuh1Kd0STyS587H3mHNaKWeMHQrApVNGccmUEdzx6EqSPpvF+84zaxg9MMJd543zuhQRyUNqvESy6D+vmcqGHYf43zc2e11Kl9i2zZ2Pr+SCiUVceeLoT132xdPLmTSyH9984n2Pquu+e17ewMF4kn8NQASGiPiTGi+RLGofsJrrjhWQ+o8XHU8oFbCa6/wakCoiwaKjTxt+PfG5o7qDNJagiYQsXwSstg9I7Ww7+1knAau5pH1Aaj5sZyKSm/RZje1UVVVl/DbcVlFR0eHyII0laKqqqtgeh0e3RLhxTJwRLkVI/WR9hO8cl/67DV/fFWLtwV7cXt5I6+TQ0bazhA33V0c4c2gTJw9uTvv2Af57Y4SvjU9/LDUNFk/VhZlTFmdQuGVZvmxnIuIdfVajSI4ZGYEvjEzw6JYIB3PozYGr9lusOhBibulfm65jCVswtzzOH3cXsPFg7hxW9jTCk3Vhritp/KTpEhHxUu4cIUXy0Pj+NucMa2LB5giJHHj1q7rBYtmuMHNK43T303P6hWD2mDjPbQ+zPQcivhqS8FAswiUjE4zu7Y+ZfREJPjVeIh47eXAzUwYkmb+5EC9PPdoVh2fqwlxfEmdAD2eHRkTg8tEJHtsSob7J3fq6I2nD/M0RzhjaxHH9c6CjFRFJUeMlkgPOH55keKHNw1u8eT3sUBIe3hLh0pEJRvVO77qifW3OK0qwoMabWTzbhvk1hUzs38ypQ9w530xExC1qvERyxJXFTdjAM1sLsnq7idTs0NnDmpjg0uzQtEE2Jw5M8oAHs3iP1YYZVOBQMcLDKTcRkU6o8RLJITePSbCt0eK1ndn5AGrbhvmbC5k8IMkMl96N2Oq8oiSjIzYPZXEWb8m2Ahptw7UliazdpohId6jxEskhlgW3lTfyfn2Ilft7Zfz2HqkNU1Roc8HwzLyt8rLRTVgGnszCLN7y3SFihy1uLW3M+G2JiPSUGi+RHBO2YE5ZnNd2FfDxocztos/WFZC04arizL4kd1NJgl2NFq9mcBZv9QGLd/eHuK2s6xEYIiJe0CFKJAcNKIAbxsR5dluYHRmIZnh9V4itcYtbSjP/kpxlwdzyRtbWh3h3n/uzeDUNFq/uDHNrDyIwRESyTY2XSI7KVMDqyh4EpKYrUwGrCkgVEb9R4yWSw9wOWK1usHithwGp6XI7YFUBqSLiR2q8RHKcWwGrbgSkpsutgFUFpIqIX6nxEvGBdANW3QxITVe6AasKSBURP1PjJeITPQ1YzURAarrSCVhVQKqI+JkaLxEf6W7AaiYDUtPVk4BVBaSKiN+p8RLxke4GrGY6IDVd3QlYVUCqiASBGi8Rn+lqwGq2AlLT1ZWAVQWkikhQ6BAm4kPHCljNZkBquo4VsKqAVBEJEjVeIj7VWcCqFwGp6eosYFUBqSISND45LPtbdXU1y5Yto7q62utS0haksQRB24DVDRurwYFXd/TyJCA1XW0DVt/ZuJVEIsHCzQUKSBWRQFHjlWHV1dUsXbqU1atXs3TpUl83LEEaS5CcPLiZYmc3Tx4sAaDgrUfZXevPdTMiAqeaGl6OF5O0CjAbllOwa6PXZYmIuMZnz4n9JxaLkbAhfv43wE7yZDxEeKO7r5nMi73Z4fJEIuLq7SQS40meVQ69woTfW0QsFiMajbp6G9Izfbe9D0POAuDwSVf5ejtrTIyCUAE0HqHX5reI9Z+q7UxEAkONV4aVlpaybt06mjf9hWTpdK4Ib2b8eHcfRCoqzulweVVVlau30zrjVX/2V0hMu5pBkS2uXr/0TMKGdSPOpXD96zROPJ8Bf5pHZWWl681Ktraz325oZu/OLRS+t5hQKERpaamr1y8i4iW91Jhh0WiUyspKTu5/mPLeSV7vNSmtz9vzUutYQr0sTo/s5DVnPIdzMx4qb7QGpE4dDJefMBIwGWm6smXJtgKscB+uHt3I1KlTfT0WEZGOZKzxMsb8wBiz1RizMvX1+TaXfdcYs9EYs94YU5mpGnJFNBpl1qxZXD+xN31DDr/f6t+3Z0WjUcLhMOeNL+L0IU08sDlC0qeNZBC0DUiNRqNg8G2j0jYgtXWf8etYREQ6k+kZr587jjMt9fU8gDFmMjAbmAJcDPzaGHPsCO6AuK44waGk4cXt3fu8vVx02tBmJvRvZn5N9z9vT9Lnl4DUrlBAqojkCy8OcVcAjzqO0+g4ziZgI3CqB3V4wrLg1rJGqhss3tjj/37zohFNDCxweNzHs3h+5KeA1GNRQKqI5JNMN153GWPeN8b81hgzOLWsGGh7VnZtalneCFkwt6yRt/cWsLbe/0/vrxmd4EjS8MI2/8/i+YEfA1I7o4BUEck3aR22jTEvG2M+6ODrCuBeYBwwDdgG/LT1zzq4qg7TEY0xtxtjVhhjVuzatSudUnNOnxDcXBbnpR1hthz296OnZcEtZY1sPmzx5wDM4uWy6gaL13aFfRmQ2l5DEh6KRRSQKiJ5Ja1Dt+M4F3bl94wxvwGeS/1YC4xpc3EJUNfJ9d8P3A8wc+bMwB2Zh4ThmuIET2wNM6cszmAfP+MPWXBbWSP3b44wMOQwZaBO+nLbrjg8UxfmhpI4A3y8rQAkbZi/OcIZQ5s4rr+2FRHJH5l8V+OoNj9eBXyQ+v4ZYLYxptAYMxaYALyVqTpy3Zg+NheNSPBgLOL7aIZICG4pjVO1M0yswd+zeLnmUBIe3hLh0pEJRvX2upr02DbMrylkYv9mTh3S7HU5IiJZlclHx3uMMauNMe8D5wPfAnAcZw3wOLAWeBH4quM4eX30nTzA5pTBTcyvKfR9NMPgMFxX0sjiujB7Gr2uJhgSqdmhs4c1MSEAs0OP1YYZVOBQMcL/78YUEemujDVejuPc4jjOVMdxTnQc53LHcba1uexHjuOMcxznOMdxXshUDX5yxtBmon1tFgYgmqG4t8PFIxI8FIBZPK+1BqROHpBkxmD/Pz9Zsq2ARttwbYn/340pItITej0oh1w8ssn3Aautjh9gK2DVBW0DUv2ubUCqiEi+UuOVYxSwKq0UkCoiEjw6BOYYBawKKCBVRCSo1HjlIAWs5jcFpIqIBJfPD+vBpYDV/KSAVBGRYPP3I3rAtQ1Y3efzV5xaA1ZX7CtgzQFtdh1pDUi9XgGpIiKBpUfAHKeA1fyggFQRkfygRz8fUMBqsCkgVUQkf6jx8okgBqz+LgCzeOlSQKqISH5R4+UjClgNHgWkiojkFzVePtMasLo0AAGrp+Z5wKoCUkVE8o/P37DuvoqKCq9LOKbzkza3PrSC3YNHcePMMdi2jdXBo12mxjIv9iYVFee4cl0VwD8+u4ZX4g73XHFCp2MJmtr+E9hrdjH/SzMIuTjee9Yvz9h672zdDJt0Cq+/sI77b5rOqIGRjNy22/JlOxOR3KMjjw+FQxb3z57GopVb+cOGnb5/APm3Sydx4HCCn77yke/H0hVL1mxjyZodzJs93dWmK9M6Wjc1ew/zg+fX8ePLpvim6YKOxyIikg06+vjUgEiYX1xzIv+17GNW1x3wupy0WJbFf183jXe27OOht2Nel5NRK2r28Zs/b+ZX159E37C/J5z3HU7wrcXv8+0LJjBp5ACvyxER8QU1Xj5WMrgP/3LpZL7/3Fq27j/idTlpaZnFO5knV9Xx8oc7vS4nIzbtaeCHSz/knstPYER//8wOdSSRtLnzsZXcNKOEc8cP87ocERHfUOPlcycVD+Rr543j679fRX3c32/h7xcJ8YtrT+KXr3/Mylp/z+K1t7chwd8vXs0/XDiBiSP6e11OWmzb5s7H3uOc6FCunV7idTkiIr6ixisAPnfccK6ZVswdj64k4fNshuJBvfnRZZP55+fXsmXfYa/LcUU8keTOx95jzmmlnBX1/+zQd55ZQ/HA3tx13jivSxER8R01XgFx08wxnFI6mK8uWont82yGKaMG8u0LJvCNJ95n/2F/z+LZts2dj6/kgolFXHniaK/LSds9L2/gYDzJD78w2etSRER8SY1XgPz9BRMY0ifM955b53UpaTt3/DBunFHCnY/5exbv2099QPmQvtx5dtTrUtL24Fs1rNp6gF9ef5LXpYiI+JYar4D58WWT2X2okf9cttHrUtJ23fQSzhw7hK88/p4vZ/F+/NJ6GpM2P/j8JK9LSdvSdTt4avU25t3grwgMEZFcoyNowFiWxa+un8ZfNu/lkRVbvC4nbV+fNZ4R/SN855k1XpfSLQ/8ZTNrttfzi2tP9LqUtL1Xu597l1fzy2un0S/i7wgMERGvqfEKoPYBq373b5dOov5IEz995SOvS+kSvwakdsSvAakiIrnK348K0ikFrHpDAakiInI0arwCyrZtXwasdnYuV8gi5wNWOwpI7Wg8fjhfraOAVD/UnQ6/jq+zuoM2nqDw6/j8WncuMo7jeF1Dl8ycOdNZsWKF12X4SlVVFQBrDli8sivMl8vj9HFhEua/N0b42vh4+lfUgaN9wHNVVRX7EzC/JsLVoxOU9s2dA8GhJPzvpgiXjEwwsf9f6+psPK3rxm0/WR/hO8elt25sG35bU0hZH5uKEU2fLPfDB8inK1PrJZOOtc/4jbaz3JQP68Vtxph3HMeZ2X65ZrzywJSBNqcMbmJ+TSE+TmYAYFAYritpZHFdmD2NXlfTImHD/M0Rzh7W9Kmmy68eqw0zqMD5VNMlIiLuUOOVJ84Y2ky0r83CmkL8PmNc3Nvh4hEJHopFOJz0thbbhvmbC5k8IMmMwc3eFuOCJdsKaLQN15b4O7hWRCRXqfHKIxePbKJvyOH3W8Nel5K24wfYnDGkiQc2RzydxXukNkxRoc0Fwz3uAF2wfHeI2GGLW0tzZCpRRCSA1HjlmeuKExxKGpZuL/C6lLSdOrSZCf2bme/RLN6zdQUkbbiq2P8vya3eb/Hu/hC3lTXi8wQMEZGcpkNsnrEsuLWskY8bLP6yp5fX5aTtohFNDCxweDzLs3iv7wqxNW5xS6n/X5KrabB4dVeYW0vjKB9VRCSz1HjloZAFc8saeWtvAWvr/b8JXDM6wZGk4YVt2ZnFW7XfYtWBEHNL/T87tKcRnqwLc11JI4P8/wq0iEjO8/nDhvRUnxDcXBbnpR1hthz292ZgWXBLWSObD1v8OcOzeNUNFst2hZkTgNmhhiQ8FGuJwBjd2x+xMiIifufvR1xJy5AwXD06wRNbw+zz+StmIQtuK2tkxb4C1hzIzGa9Kw7P1IW5viTOAJ/PDiVTERhnDG3iuABEYIiI+IUarzxX2temYniCB3MgmiFdkRDcWhqnameYWIO7m/ahJDy8JcLnRyYY1dvVq84624b5NYVM7N/MqUP8H4EhIuInarxEAavH8ElA6lAFpIqISHrUeAmggNXOtAakThqQZEYAZoeWbCsgbhuuHu3z15ZFRHxKjZd8QgGrn9UakPq5AAWkzgnAuzFFRPxKh1/5FAWs/pUCUkVExG06BMunKGC1hQJSRUQkE9R4yWcEMmC1uesBqwpIFRGRTPH5w4pkSuACVku7FrCqgFQREckkfz+iSkblW8CqAlJFRCTT1HjJUeVLwGrQAlIfUECqiEhOUuMlxxT0gNUgBqQOVkCqiEhOUuMlXdIasPo/H0EikaC6utrrknqsbcDqBxs2c++6ZkY7e3wfkFpdXQ0O1B9JKCA1h1RXV7Ns2TJf7zNtBW08QaH14h9qvKTLJh5ez6E920lisXTpUl/v4McPsJnIDpYkxpLYs5UdLy/09Xiqq6t57p2PAUi+ei+bN/t3LEFSXV3N0qVLWb16te/3GQjeeIJC68VffP6+LcmmWCxGwerVNM+6i/rzv8mihIH17t7GPeuXd3qZQ8TdG3MiEHKwiyZkfTzuj2UyTJ0EdhI7mSQWixGNRt29Dem2WCxGMpmk8fgLOTziOJ6MhwhvdPedG/Nib3Z6WSLh7naWSIwneVY5vXashw9f1naWI1q3M4Ck9v+cp8ZLuqy0tJR169ZhLfsloVCIyspK13fuioqKTi+rqqpy9bZanyUmk8msjyfTYyktLXX1+qVnWvcZPnyZ0MZlGdrGzun0Mm1n+aF1O9N68Qc1XtJl0WiUyspKYrEYpaWlvn9GFaTxBGksQRK09RK08QSF1ou/qPGSbolGo4HaqYM0niCNJUiCtl6CNp6g0HrxD51cLyIiIpIlarxEREREskSNl4iIiEiWqPESERERyRI1XiIiIiJZklbjZYy5zhizxhhjG2Nmtrvsu8aYjcaY9caYyjbLZxhjVqcu+4UxxqRTg4iIiIhfpDvj9QFwNfB624XGmMnAbGAKcDHwa2NMr9TF9wK3AxNSXxenWYOIiIiIL6TVeDmOs85xnI4+ZOUK4FHHcRodx9kEbARONcaMAgY4jvOG4zgOsBC4Mp0aRERERPwiU+d4FQNb2vxcm1pWnPq+/XIRERGRwDtmcr0x5mVgZAcXfc9xnKc7+7MOljlHWd7Zbd9Oy8uS+uwpERER8b1jNl6O41zYg+utBca0+bkEqEstL+lgeWe3fT9wP8DMmTM7bdBERERE/CBTLzU+A8w2xhQaY8bSchL9W47jbAMOGmNOT72b8Vags1kzERERkUBJN07iKmNMLXAGsMQYsxTAcZw1wOPAWuBF4KuO4zSn/uwrwP/QcsL9x8AL6dQgIiIi4hfHfKnxaBzHeRJ4spPLfgT8qIPlK4AT0rldERERET9Scr2IiIhIlqjxEhEREckSNV4iIiIiWaLGS0RERCRL1HiJiIiIZIlp+cjE3Ddz5kxnxYoVXpchGWbbNpYVnOcDQRpPkMYSJEFbL0EbT1BovXSfMeYdx3Fmtl+ue1FyStB27CCNJ0hjCZKgrZegjScotF7co3tSREREJEvUeImIiIhkiRovERERkSxR4yUiIiKSJWq8RERERLJEjZeIiIhIlqjxEhEREckSNV4iIiIiWaLGS0RERCRL1HiJiIiIZIkaLxEREZEsUeMlIiIikiXGcRyva+gSY8wuoCZDVz8M2J2h6/YDjV/j1/jzl8av8Wv8mVHmOE5R+4W+abwyyRizwnGcmV7X4RWNX+PX+DV+r+vwisav8Wd7/HqpUURERCRL1HiJiIiIZIkarxb3e12AxzT+/Kbx5zeNP79p/Fmmc7xEREREskQzXiIiIiJZosZLREREJEvyqvEyxvyHMeZDY8z7xpgnjTGD2lz2XWPMRmPMemNMZZvlM4wxq1OX/cIYYzwp3gXGmOuMMWuMMbYxZmab5eXGmCPGmJWpr/vaXBb48acuC/z6b8sY8wNjzNY26/zzbS7r8L4IGmPMxakxbjTG3O11PdlgjNmc2p5XGmNWpJYNMcZUGWM+Sv0/2Os63WKM+a0xZqcx5oM2yzodb9C2/U7Gnzf7vjFmjDHmD8aYdalj/zdSy73dBhzHyZsv4CIglPr+J8BPUt9PBlYBhcBY4GOgV+qyt4AzAAO8AFzi9TjSGP8k4DhgGTCzzfJy4INO/iYfxp8X67/dffED4P90sLzT+yJIX0Cv1NiiQDg15sle15WFcW8GhrVbdg9wd+r7u1uPi0H4As4FTm57fOtsvEHc9jsZf97s+8Ao4OTU9/2BDalxeroN5NWMl+M4LzmOk0z9+BegJPX9FcCjjuM0Oo6zCdgInGqMGQUMcBznDadlrSwErsx23W5xHGed4zjru/r7eTT+vFj/XdThfeFxTZlwKrDRcZxqx3ESwKO0jD0fXQEsSH2/gABt447jvA7sbbe4s/EGbtvvZPydCeL4tzmO827q+4PAOqAYj7eBvGq82vkiLTMY0LIitrS5rDa1rDj1ffvlQTTWGPOeMeY1Y8w5qWX5Mv58Xf93pV52/22bqfbO7ougyZdxtucALxlj3jHG3J5aNsJxnG3Q8kAFDPesuuzobLz5tE3k3b5vjCkHpgNv4vE2EHL7Cr1mjHkZGNnBRd9zHOfp1O98D0gCv2v9sw5+3znK8pzVlfF3YBtQ6jjOHmPMDOApY8wU8mf8gVn/bR3tvgDuBX5Iy3h+CPyUlicjvh5zN+TLONs7y3GcOmPMcKDKGPOh1wXlkHzZJvJu3zfG9AOeAL7pOE79UU7Vzcp9ELjGy3GcC492uTFmDvAF4HOpl4+gpasd0+bXSoC61PKSDpbnrGONv5O/aQQaU9+/Y4z5GJhInoyfAK3/trp6XxhjfgM8l/qxs/siaPJlnJ/iOE5d6v+dxpgnaXkZZYcxZpTjONtSL6/v9LTIzOtsvHmxTTiOs6P1+3zY940xBbQ0Xb9zHGdxarGn20BevdRojLkY+A5wueM4h9tc9Aww2xhTaIwZC0wA3kpNQR40xpyeejfbrUBnsya+ZYwpMsb0Sn0fpWX81fkyfvJw/acONq2uAlrf9dThfZHt+rLgbWCCMWasMSYMzKZl7IFljOlrjOnf+j0tbzb6gJZxz0n92hwCso0fRWfjzYttP5/2/dRx+3+BdY7j/KzNRd5uA16/6yCbX7ScKLcFWJn6uq/NZd+j5R0M62nzzjVgJi0b5sfAL0ml/fvxi5adrJaW2a0dwNLU8muANbS8m+Nd4LJ8Gn++rP9298WDwGrgfVoONqOOdV8E7Qv4PC3vcvqYlpeiPa8pw+ONpvbxVan9/Xup5UOBV4CPUv8P8bpWF8f8CC2nUjSl9v0vHW28Qdv2Oxl/3uz7wNm0vFT4fpvH/c97vQ3oI4NEREREsiSvXmoUERER8ZIaLxEREZEsUeMlIiIikiVqvERERESyRI2XiIiISJao8RIRERHJEjVeIiIiIlny/wN+/b2x+OpvxgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "w_rook2 = raster.da2WSP(da_s, \"rook\", k=2, n_jobs=-1)\n", - "splot.plot_spatial_weights(w_rook2, da=da_s)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Few times we require the kth order neighbors for our analysis even if lower order neighbors are absent, hence we can use `include_nas` argument to do the same.\n", - "\n", - "We can also look in both the examples we used `n_jobs` parameter, and assigned -1 which equats to all the cores present in the computer for multithreading" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(
, )" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAFPCAYAAACcQ8AlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABIGUlEQVR4nO3de3yU5Z3//9d1M5kMhDOEQxJCGA7KSUGp5wPaxmit5xO6KtiDulu3h+330W2332672+23XffX7m63rWK3FdBWhXoWFaOWWlqronIQkIORDCEcwjEQmEyG+/79kYlNYwJJ5p65577n/Xw8AuEOmflccx/mM9d9z3uM4ziIiIiISOZZXhcgIiIiki/UeImIiIhkiRovERERkSxR4yUiIiKSJWq8RERERLIk5HUB3TV8+HCnoqLC6zJERERETujtt9/e4zhOccflvmm8KioqWLlypddliIiIiJyQMaa2s+U61SgiIiKSJWq8RERERLJEjZeIiIhIlqjxEhEREckSNV4iIiIiWaLGS0RERCRL1HiJiIiIZIkaLxEREZEsUeMlIiIikiVqvERERESyRI2XiIiISJao8RIRERHJEjVe4gu2bXtdQq/4te585Nd15de6e8KvY+ys7iCNRXon5HUBIt1hWRbV1dVel9FjlZWVXpcg3aRtLHcFad0EaSzSO5rxEhEREckSNV4iIiIiWaLGS0RERCRL1HiJiIiIZIkaLxEREZEscaXxMsb8yhiz2xjzXrtlQ40x1caYzam/h7T72TeNMVuMMRuNMVVu1CAiIiKS69ya8VoAXNph2TeAVxzHmQi8kvo3xpgpwBxgaup3fm6M6eNSHSIiIiI5y5XGy3Gc14B9HRZfBSxMfb8QuLrd8kcdx2l2HOdDYAtwhht1iIiIiOSyTF7jNdJxnB0Aqb9HpJaXAtva/b+61DIRERGRQPPi4nrTyTKn0/9ozJ3GmJXGmJUNDQ0ZLktEREQkszLZeO0yxowGSP29O7W8DhjT7v+VAfWd3YDjOA84jjPLcZxZxcXFGSxVREREJPMy2Xg9A8xNfT8XeLrd8jnGmEJjzDhgIvBmBusQERERyQmufEi2MeYRYDYw3BhTB3wH+CGw2BjzOSAG3ADgOM46Y8xiYD2QBL7oOM4xN+oQERERyWWuNF6O49zcxY8+2cX//z7wfTfuW0RERMQvlFwvIiIikiVqvERERESyRI2XiIiISJao8RIRERHJEjVeIiIiIlniyrsaRfyqpqaGWCxGeXk50WjU63IkgLSN5a4grZsgjSXoNOMleaumpoZly5axdu1ali1bRk1NjdclScBoG8tdQVo3QRpLPtCMl+StWCxG06RKjg2voN9r9xGLxfRKUVwVi8VIJpMcmX0POA5PxkOEt4RdvY/5sTdcvb1clUhEXL69CSTPHw99wtByNKvrxu2xxBMTsGefDI5D5JUf61iW49R4Sd4qLy9n3Su/53DpNJxRJ1NeXu51SRIw5eXlbNiwAQoiDPzdf1FVVeX6E2Jl5fmu3l6uqq6udvX2ampqeGHZMg5f9FXCO9dz1YR+WVs3bo9lwaYkexrqOTakjMRZt1M+bK+rty/u0qlGyVvRaJTLPnkhAMlTLicyerzHFUnQRKNRqqqqAJORpkt6LxqNcllVFQDW2BkcGDLR44p658WdBdgFRVw98gghbIYOHMCq8ElelyXHocZL8lo0GgUD15YlWVJXyMGE1xVJ0LRtY2q6ck/buvns+CR/2FPAlkP+ekp8fW8faposbh/bzIQJUcLhMHdMtNibsHhlt05o5Sp/bWUiGVJRZHNxcYJFsQjxpNfViEg2DQjBnDFxntsZZmfc62q6Z32jxVv7C5g3tplQu2dyy4K5Fc283xhi5b4+3hUoXVLjJZIyfbDNzMFJHqwtxLa9rkZEsmlkBK4YneCxbREaW7yu5vhiTRYv7Qpza3mcfp1MbIUtmFsR5497C9jks1m8fKA1ItLOecOTlPezWRQr9LoUEcmy8f1tLixuYWFthESOvvjal4An6sNcV5pg6HHehNk/BLeMifP8zjD1R7NXn5yYGi+RDi4f3ULYcvhtnbtvLReR3Ddj8DGmD0zy4Nbcm/k+koSHYxEuGZlgTL8TF1ccgatKEiypi+j61RyixkukE3PKEuxPGF7eVeB1KSKSZbNHJBldaPPwttx58ZW0YUFtIZ8Y0sKUgd3vCMcV2czW9as5RY2XSCcsC+6oaGbjoT68pQtURfLOlaUtWMBT271/8WXbsKi2kGiRzdnDjvX4908dbDNjUJIFsdybxctHarxEuhCyYF5FnD/tLWCjLlAVyTu3jEmwu9nidx5HMyzZHqZ/yOHSUb2/6v/84iSlEZtFsdyZxctXejYROY6i1AWqL+wMU3/UeF2OiGSRZcG8imbWNYZ4Z783M98v7iygKWm4vjT9i7SuKGmhwIIn6ryfxctnarxETqA4AleXJBSwKpKH2qIZvAhYbR+Qarl01zeXJRSw6jE1XiLdoIBVkfzlRcBqVwGp6VLAqvfUeIl0kwJWRfJXNgNWTxSQmi4FrHpLj7hIDyhgVSR/ZSNgtbsBqelSwKp31HiJ9JACVkXyVyYDVnsakJouBax6Q42XSC8oYFUkf2UiYLW3AanpUsBq9qnxEukFBayK5Dc3A1bTDUhNlwJWs0uNl0gvKWBVJL+5FbDqRkBquhSwmj16thBJgwJWRfKXGwGrbgakpksBq9mhxkskTQpYFclf6QSsZiIgNV0KWM28HFnVIv6mgFWR/NWbgNVMBaSmSwGrmaeWVnyjsrIyI7d778YVrtx2JTDsjVoee383C247nZBlYds2Vq68lJUTyvVtrDP5so35Yd1Mqt3H/3tpI7+4eSbF/SNdrptRU8/gZ8+t5745p1I2pJ8r9w0wP/YGlZXnu3JbZzcl+Nxv3uGCT0zg3OjwvNnOskGPooiL5p45llNKB/H3S1YD6EAlGadtLHecMXYoXzi7gr97bDVHEslO103d/iN8+7n1fO8zU1xtutw2tCjMf147nXtf3sz7uw5pO3ORHkkRl339U5PoFw7x7efWe12KiGTZ5dNGUzV5JHc/uopkh2yGxniCLz++hi/PHs/0kkEeVdh9FcOK+PalJ/ONZ95jZ2OWPqQyD6jxEsmA/7hqKnUHjvKz1z7wuhQRybLPn1PBpJH9+crjaz9alkja3PnoKq6fUcpFk0Z4WF3PzCofwl3njOOeJatpSugCVjeo8RLJAMuymD9nJq9t2ctv363zuhwRybL/W3UyfQz86wsbsG2bLy5exZljh3LzrDFel9Zjl00dxWemjuKuR9/92Cye9JwaL5EMCYcs7p8zg1+vrOO1LXu8LkdEsuw/r53OB3uauO2htxnWP8xXL5rgdUm9Nu+ssUwbPZAvLVnjdSm+p8ZLJIOG9Gu9QPVHr25mw85Gr8sRkSyyLItpowew53AzZ44d7HU5aftG5UlECiz+eamuX02HGi+RDKsYVsR3LjuZbz67TheoiuSR36zcxjt1B1lw6+kserOO1z/c63VJafv/rp5GbP9R7ltR43UpvqXGSyQLThszhL89L6oLVEXyxKubdvP4qu3MnzOD0YP68qOrp/HD6k1s2n3I69LSYlkW9994Kss37eGJ1du9LseX1HiJZEnV5JFcMW0Udz2iC1RFgmxt/UF+svwD/vu6UxgYaf3Q6Whxf75VdRJff/o9Gg77e+Y7Eg5x300zeOjNbfyxRtev9pQaL5Es6hiwKiLBcryA1I4Bq37WMWBVuk+Nl0iWKWBVJJi6E5B6vIBVv1HAau+o8RJfsH16gOqsbtu2fRmw6td10F1+HZ9f6+4JP4yxs4DUrvb/zgJWc11XY/FjwKrX25M+JFt8wbIsqqurM3LbDpGM3XZnH77bNpYbi2H+uiMc3FHLJ4Yey8j9uylTH1KcK4K0jQVNrq8b24YFtYWU9rUZvv99qqvfB46//59pwcMHw3xxwXKuLm1J6/7bJBLeHMtCwJS+IW5/8E/cWdFMrn+so9f7TI4/PCLBFbJgXkWcP+0tYOMh7YoifrVke5j+IYdLR/WsgbplTILdzRa/2+3/OZDzi5OURmwWxcJel5LzdLQX8VBRCG4ZE+eFnWHqjxqvyxGRHnpxZwFNScP1pYke/65lwbyKZtY1hnhnf58MVJddV5S0UGDBE3UFXpeS09R4iXisOAJXlyRYUlfIwZ4fu0XEI6/v7UNNk8XtY3t/ei1swdyKOH/YU8CWAMx831yWYG/C4pUAzOJliv/XskgAVBTZXFScYFEsQtwf16eK5LX1jRZv7S9g3thmQmk+kw4IwZwxcZ7bGWanz98caFkwt6KZ9xtDrNzn/1m8TFDjJZIjThlsM3NwkgW1hfjgTVwieWvbEYuXdoW5tTxOP5cmdkZG4IrRCR7bFqHRnWvtPdM2i/fHvQVsCsAsntv0iIjkkPOGJxnTTxeoiuSqfQl4fHuY60oTDHV5Nx3f3+bC4hYW1kZI+PzFV//U9avP7wxTf9TranKLGi+RHHP56BbCFjyuC1RFcsqRJDwci3DJyARj+mWmM5ox+BjTByZ5cKv/Z76LI3BVSYIldREadf3qR9R4ieSgOWUJ9rVYvLxLzZdILkimsro+MaSFKQMz2xHNHpFkdKHNr7f5f+Z7XJHN7OIEC3X96kfUeInkIMuCO8Y2s/FQH97SBaoinrJtWFRbSLTI5uxh2Qk7vrK0BQM8td3/L75OHWwzY1CSBTH/z+K5QY2XSI5SwKpIbuhtQGq6FLAaTDqai+QwBayKeCudgNR0KWA1mDLeeBljthpj1hpjVhljVqaWDTXGVBtjNqf+HpLpOkT8SgGrIt5wIyA1XQpYDZ5srcWLHMeZ4TjOrNS/vwG84jjOROCV1L9FpAsKWBXJLjcDUtOlgNVg8WpzugpYmPp+IXC1R3WI+IYCVkWyIxMBqelSwGpwZGPEDvCSMeZtY8ydqWUjHcfZAZD6e0QW6hDxPQWsimRWJgNS06WA1WDIRuN1ruM4pwGXAV80xlzQ3V80xtxpjFlpjFnZ0NCQuQpFfEQBqyKZkY2A1HQpYNX/Mt54OY5Tn/p7N/AkcAawyxgzGiD19+4ufvcBx3FmOY4zq7i4ONOliviGAlZF3JXNgNR0KWDV3zLaeBljiowxA9q+By4B3gOeAeam/ttc4OlM1iESNApYFXGPFwGp6VLAqn9lesZrJLDCGLMaeBNY6jjOi8APgUpjzGagMvVvEekBBayKuMOrgNR0KWDVnzJ6tHYcp8ZxnFNTX1Mdx/l+avlex3E+6TjOxNTf+zJZh0hXampqwEn97UPtA1bf2lLP8uXLfTuWoPL7NhZkbetm/5GEJwGp6WofsPrS5v0kEglfb2dtAasPbUoE+liml8mSt2pqanjh968DDsuWLfPtTl4cgTNNLa/GS3h3Y62vxxI0NTU1vFD9Cn7fxoKopqaGp9e1vmnr2Kvz2brVn+smbMFsNvFu8xCSx2zfb2dnJt5nx+FjvNPY1/dj6YpxHMfrGrpl1qxZzsqVK70uQzxUXV3t6u0tX76clclRHCubAYkjhEIhwmF3p7m7ur1Ewt1X1/FEEttKnW7I8liCxP31ksA2BWAMHGshZBytl17KzD7TBzC0ph6Z1m9dZLq4QQeXn3c7uzlfj8WBljj9lv+U6dOnM3v2bFfvorKy0tXb64ox5u12wfEf8f+JYZFeKi8vZ8OyZTSWzSB0cDvXlLYQjUZdvY/KyvM7Xe5mE7njKDwSCxP58yKOnHk7xk5yVXgrEyZkZyxB4nZz/8uNNvt313KseALYSU7ru5eLJgx39T7yYb2Au+tm2xGLJdv60PdPD9J09h0M/N1/UVVVlYH9v/MneDfHEk/CfR8UYK17CTveROKUz3B5JMa0CeWu3QdkZyzQOhO5bNkyGs+9i1AoRHm5u+PIBTrVKHkrGo1SVVUFQGTEWLb2n+RxRT3XmIDFdRGuKUty+fmtL6zK+9msCJ3scWXybH0BocII15a2AIbL+tax2ikj1qTDrpfaAlJvGHOMT194FmAy0nRlQ9KGB2sLOXO4zRUzxjKzpD+nFe7jd0zybcBq23E5FAr5dr2ciI4Aktei0SgY+MJEm/WNId7e759ohngSFsYizC5OMK7I/mgscyZFFLDqsdcaQmyPW9xWnvhovZwyYQzXlzbzRH2Yvc1eV5ifOgaktq0bPz652zY8VFtIRT+bc4YdIxqNMnv2bConDvV9wGo0GiUcDvtyvXSHGi8RWi9QnVcRZ8WeAjb7IJrBtmFBrJAZg5KcOvjjR1cFrHpn9QGL1QdDzCtvxuqwKZX1c7h0ZIJfxyIcyZOwyFzhp4DU7ni8PkzfkMNloz8egRGkgNUgyv1nGJEs6R+COWPiLN0ZZmfc62qO76FYmNKIzfnFnT97K2DVGx82WSxvCDO3PE6kiytoTx5oc+bQFhbUFpL0//O/L/gxIPV4XtpVwMEWw43HicBoC1h9OgABq0GjxkuknZERuLIkwWPbcvezw57YXkDIas28OZ72AaubfDCL53cNcXi6PsyNZXEGnmCi4cxhxxjf32ZhrX9PB/mJXwNSO/Pm3j5sPtSHeWM/PqPa0S1jEuxqtlgegIDVINHRWKSDaJHNhanPDsu1C1Rf2R1ib7PFzWXd6wrbAlaf3xmm/qjL7y+XjxxOwm+2Rfj0qASj+3bvd6pGtjAw5LBku04HZdKLOwtoShpfBqR29H6jxev7CrijIk6oG8/ebQGr7zWGeMdH168GnRovkU7MGGxzyqAkv8qhC1Tf3teHDY0h5lac+JVue8URuLokwZK6Qg76/7kn5yRsWLA1wnnDWpg0oGcby3WlCZqShhd26nRQJry+tw81TRa3d2N2KNdtP2p4cVeYW8vj9OvBBFbYgrkVcf6wp4AtmvnOCVoLIl24MPXZYQ/nwAWqmw5ZrNhbwLyKOOFe7LUVRTYXFSdYFIsQ10XdrrFtWLC1kMkDk5w+tOfXDlkW3D62mQ+bLP60VzMSblrfaPHW/gLmjW3u1uxQLtufgCV1hVxbkmBYYc9/f0Dq+tXnfHD9aj7w+eYokllXlLRgAU96eIHqjqPw/M4wt4yJ0z+NSzVOGWwzc3CSBbquyDWP1IUpLrT55Ijed7MhC+aNbWbl/gLWHdQh2Q3bjli81IvZoVwUT8JDsQiVIxKUF/V+xx0ZgStGp65f9f+lbr6mvVzkBG4Zk6Ch2eJVDy5QbQtIvaokQXEk/ds7b3iSMf1sFsW8n8Xzu2frC0jacE1p+s9i/UJwW3mc6t1hBaymqS0g9brSBEN9vpm3BaTOGtLC1EHpv1oa39/mguIWFtbm3vWr+UR7uMgJtF2gmu2A1Y4BqW65fHSLAlbT1D4g1S1DwihgNU0dA1L9rGNAqltmDj7m+4BVv1PjJdIN2Q5YPVFAaroUsNp7xwtITZcCVnsvnwJS06WAVW+p8RLppmwGrJ4oIDVdCljtne4EpKZLAas9l48BqelSwKp31HiJ9EA2Ala7G5CaLgWs9kxPAlLTpYDVnsnXgNR0KWDVGzraivRQJgNWexqQmi4FrHZPbwJS06WA1e7J54DUdClg1RtqvER6IRMBq70NSE2XAlaP76OA1OE9D0hNlwJWj08BqelTwGr26VEW6SU3A1bTDUhNV0WRzcUKWP2YtoDUKQOTnD4k+9cOKWC1awpIdY8CVrPL55uriLfcCFh1KyA1XdMVsPoxbQGpF6cRkJouBax+XKxJAaluU8Bq9mgvFklTOgGrbgekpksBq3/hZkBquhSw+hf7EvBEvQJSM0EBq9mR33uwiAt6G7CaqYDUdClgNTMBqelSwKoCUrNBAauZp8ZLxAVtF6h2N2C1LSD11AwFpKYrnwNWMxmQmq6yfg6X5GnAqgJSs0cBq5nl87Pjkk8qKyszcrv3blzh2m3PaDjMV59cy6fOm8akEQOwbRurk2fvpw8WM2tcX755yUmu3G8bN8dyUdLmtkUrOTi8hOtnlnU5liAZctIsVix7n1/cOpORA9w79+vmeqkERr1TxyNr6ll066y8WC+2bfPE3mFccNJAvnrRBFdv281101FX62ZDwTiOFR7kF3Nm5uy6qwS+/NvV/PlYmG9fOrnLsWTqsZsfe4PKyvMzctte7zO5ucZFfCpa3J9vV53M159+j12H4p3u3N95fj2FIcv1pstt4ZDF/XNm8Ju361jxwZ6cfYJwy4d7m/jei+9z75XTXG26MuGm08o4u2Iof7d4ldelZMU3n13P8P6FrjddmdbZPrPk3Tr+9OE+7rsxd5uuNv957XS2NDTxiz9+mPO19oTXYwnOIymSI2aNHcIXzqngnsWrOZL46/NB96+ooXbfUX509TSPquuZIf3C/Pia6fzHK5t5f9chr8vJmH1NCf7hibV8o3ISk0YO8Lqcbvny7AmMGFDIN59d73UpGfXjVzez70iC739mstelpO21LXt45O067r9pBmEfZGBYlsX8m2ZQvXE3z6zd4XU5gZH7a17Ehy6fOprLpo7krkdXkUxdofrk6np+t2kP9994quevuHqiYlgR37nsZL7xzHvsbAxeyE88keRvH1vF3DPLOXvcMK/L6ZF/u3wy+48k+PGrm70uJSN+s3Ibb8X287MbZvhqn+nMuh0H+dGrm/nv605hcD//XDsVCYf4+Y0zePDPtbz+4V6vywkEf2/JIjnss2dVMHlUf77y+Br+WLOHRW/GuO+mGUTC/ru08rQxQ/jb86Lcs2Q1TYngXNVt2zZ3L17FRZOGc/UpJV6X02OWZfHTG2bwVmw/v35rm9fluOrVTbt5fNV25s/xx+zQ8Ww/cJRvPbuef/n0FMYM6ed1OT02vH8hP7p6Gj+s3sSm3cGd+c4Wf2/NIjnuny45mUTS5l9f2MiPr53O0CL/vNLtqGrySK6YNoq7Hnn3o1k8v/vaU+9RMbSIu8+Lel1Kr4VDFvPnzOCJ1dt5ZeNur8txxertB/nJ8g/47+tOYWDEv/sMwOF4ki/9djX3XDCeGWWDvC6n16LF/flW1Ul8/en3aDgcvJnvbFLjJZJBuw7F2XUozpB+Bby0YZfX5aRt7pljOaV0EH+/ZLXXpaTtBy9tpDlp891P+//aoYGRMD+5/lT+5/cfsHr7Qa/LSUvd/iP889L1fO8zUyjz4exQe4mkzZ2PvsM1p5bwqZNHeF1O2s4YO5TPn13B3z328etXpfvUeIlkSFMiyRcXr+buc6Ms+JvTeGVTA0+tqfe6rLR9/VOT6BcO8e2l/r2o+8E/b2XdzkZ+cv0pXpfimtLBffm3z0zhn5euZ9v+I16X0yuN8QRffnwNX5k9nukl/p0dgtbT2H+/ZBWnjxnCrZ8o97oc13xm2miqJo/k7kdXYQdk5jvb1HiJZEDStrnr0Xe5fOpILps66qMLVBe+EQvEBar/cdVUth84ys9e+8DrUnrshXU7WbpuF/PnzCTk8wu2O5pWMoivzB7Plx9fw4EjuZO63x2ts0OruGFmGRdN8v/s0LeXbmBg3wK+9smJXpfius+fU8Gkkf358uNrvS7Fl4J11BHJEV/67RqmjhrIHWdVfLQsSBeoWpbF/TfN5LUte/ntu3Vel9NtK2P7mf+nD/nZjadS5MM3OXTHRZNGcNNpZdy9eBWJpD9mJGzb5ouLV3FWxVDmnF7mdTlp+8nyLew8FOffr5zqdSkZ83+rTsYy8L0XN3hdiu+o8RJx2fECUjsGrPpZx4DVXOengNR0tQ9Y9cPpoLaA1K/M9ldAamf8FJCarvYBq9J9wd4qRLKsOwGpxwtY9Ru/BKz6MSA1XX4JWFVAqn8pYLV3gr9lSCD44VV7ZwGpndVt23anAau5rqux5HrAamcBqV2NxY+6qtu27ZwPWO0sINWv66azgFQ/1J0O27Z9GbDq9XoxjuN4WkB3zZo1y1m5cqXXZYiHqqurM3K7/74xwj+elF7DsOmQxQs7w3xuXJz+7S4d6uoDZNvG8mx9AftbDLePdedCaDfG0pUTjWXtAYvle8J8oSJOJEcun7Jt+N+thUzof4yLR/xldvFEY3GbF+sFWseTtOGBDwuZMTjJOcOOZaSG3lh30OKVhjCfr4jTrwf7jNvcWDf7E7CwNsK1JQnKi/7ypJ6pD5DOJW3rZVccHtkWYc6YOKNcOJP/P1si/P2E7O8zbjLGvO04zqyOyzXjJZKmHUfh+Z1hbhnz101Xd1xR0oIFPLm9ICO1ZdP0wTYzBydZUFtIrrzQf6QuTHGh/VdNV74JWTBvbDMr9xew7mBuHPJjTRbVu8PcWv7XTZcfxZPwUCxC5Yi/brryzcgIXDE6wWPbIjS2eF1NbsuNvVDEpxoTsLguwlUlCYp7+SrvljEJGpotXt3t82cg4LzhScb0s1kU8z5t/Nn6ApI2XFOqZ4F+IbitPE717jCxJm8P+/sS8ER9mOtLmxnq/WaSlqQND9YWMmtIC1MH5W/T1WZ8f5sLiltYWBshoYejS2q8RHopnoSFsQizixOMS+OVrmXBvIpm1jeGeHt/Hxcr9Mblo1sIW/B4nXezeK81hNget7it3F9ZVpk0JAzXlzbzRH2Yvc3e1HAkCQ/HIlwyMkFZP39c5tIV24aHagup6Gfn1Clcr80cfIzpA5M8uDV3Zr5zjRovkV6wbVgQK+TUQUlOHZz+0SVswdyKOCv2FLD5kP93yzllCfa1WLy8K/vN1+oDFqsPhphX3kzA383fY2X9HC4ZmeDXsQhHsnz2NWnDgtpCzhjSwpSB/n9Gfrw+TN+Qw2WjNaPa0ewRSUYX2vx6m8+nNDNEhyWRXngoFqY0YnNBsXvPXgNCMGdMnKU7w+zMvTcH9ohlwR1jm9l4qA9v7cveLN6HTRbLG8LMLc+dC/xzzZSBNmcMbWFBbSHZyle1bVhUW8j4IpuzAjA79NKuAg62GG4s1YxqV65MneJ/OgDXr7pNjZdIDz2xvYCQ1XphvNv+6gJVnx/TQxbMq4jzp70FbMrCLF5DHJ6uD3NjWZyBeqF9XGcNO8b4IpuFWXojxJLtYfqHHKpG+X926M29fdh8qA/zxmpG9UT+ZkyCnc0WywNw/aqbtNmI9MCru0Psbba4uSxzXdH4/jYXFidYGPP/BapFIbhlTJznd4apP5q5+zmchN9si3D5qASj+2bufoKkalQLA0MOS7Zntkt9cWcBTUnD9QGYHXq/0eL1fQXcUREnD/JR02ZZcEdFM+81hngnANevukWbjkg3vb2vDxsaQ8ytyPwr3RmDbU4ZFIwLVIsjcHVJgiV1EQ5m4Lk3YcPCrRHOG97CxAE+f7Cy7LrSBE1Jwws7M3M66PW9fahpsrg9ALND248aXtwVjAiMbGq7fvUPewrYEoDrV92gR0GkGzYdslixt4C5FXHCWdprLixOUhKxeTgAF6hWFNlcXJxgUSxC3MWLum0bFm4tZPLAJKcP8f+1Q9lmWXD72GY+bLJ4fa+7MxLrDlq8tb+AeWObfT87dCABS+oKubYkwbBCr6vxn7brV5/bGWaXz69fdYPPdweRzEsnIDVdClg9vkfqwgzP84DUdLUFrL7lYsBq0AJSFykgNW1t168+qoBVNV4ix+NGQGq6FLDaOQWkusfNgFUFpEpXFLDaSo2XSBfcCkhNlwJWP04Bqe5zI2BVAalyIgpYVeMl0im3A1LTpYDVv1BAauakE7CqgFTprnwPWNVhS6QTmQhITZcCVhWQmg29CVi1bViogFTpgXwOWFXjJdJBJgNS05XPAasKSM2engasLtkeZoACUqWH8jVgVZuVSDvZCEhNVz4GrCogNfu6G7CqgFTprXwNWNWmJZKSzYDUdOVTwKoCUr1zooBVBaRKuvIxYNWzURpjLjXGbDTGbDHGfMOrOkTAm4DUdOVDwKoCUr11vIBVBaSKW/ItYNWT3cUY0wf4GXAZMAW42RgzxYtaRMC7gNR0BT1gVQGp3ussYLUtIPW2gMwOKSDVe/kUsOrV65QzgC2O49Q4jpMAHgWu8qgWyWPvbYmBA2eYWs8CUtPVFrD65ObD4EBNTY3XJfVaW8Dq/26G/313H01Hm30fkFpTU+P79dI+YPV3mxpYHLM4x3zIEJ9Ptm7Z0rpuos5uBaTmgLaA1V/VhEgkEr7eZ47Hq8arFNjW7t91qWUiWfP+lq0sbWrd7FZXP+HbndyyYLa9gU2NfQCHZcuW+XYsAJOPbmR/01H20peWV+/39VhqampY+sY6grBehoThHPMhbx0dQp+1L/B29VO+Hk9NTQ1L18YA2Pbyr309liAZtG8zztZ3SDrG9/tMV4zjZD9d2BhzA1DlOM7nU/++DTjDcZy/7/D/7gTuBCgvLz+9trY267VK7qiurnbttmwb/nuDQ3L3VuzRkwEHMGBcuwsATBc36ODyfue0/dHu/lweS9c3mImxdPOuey0fxtJVAWlwOn4TgH3GcaAlTigUIhx2dwrP7dvLRYmEu+9mTSQSJJNJSDTR7/UFTJ8+ndmzZ7t6H5WVla7eXleMMW87jjOr43Kvzs7XAWPa/bsMqO/4nxzHeQB4AGDWrFn+/vwJySkPxcKMKjjEgfdfpHHEeMyxFq7uV8ukCVFX76erHdzNJhJaX70vW7aMxou+CslmPhWp4/QJ7k4iZ2MsHzZZPFnXh8IVv+LwJ/6GgX+cT1VVFdGo/9ZLUxIe+KCAPmue5+hJn8z6WCCD29m5d/l63cBfxpJMJgmFQhkay/mu3l4uyvR6KS8vd/X2c4FXjddbwERjzDhgOzAHuMWjWiTPtAWk3jypkJpQFU/GIdr3KMutyUyw/fm2+Gg0SlVVFUsScF5kJyuc8UxM+CtotC0g9ebyOEcvOpcn45l5MsyGpA0LtkY4t7iF4aeP9/VY2mvbzoIwnraxxGIxysvLfT2WIMmH9eJJ4+U4TtIYcw+wDOgD/MpxnHVe1CL5pS0g9XMVrZ8CHI1GCW8Jc82E/jy13eY328LcOtafQZDRaBQ2wrkTRlJ0oDVg9a6oP+IxPhaQmlovfjzo2qnPLJw04BhnDD0GQ/07ls5EfbxuOopGo4EYR9AEfb14dkh2HOd5x3EmOY4z3nGc73tVh+SPEwWkXl3agg08E4BoBj8FrAYtIPWxujCDCxwqR/r73Zgikhk+eC0skr7uBqTeOibBjmaL3wfgs8P8ELAatIDUpTsKiNuGa0v8OWsqIpmnxksCb8fR7gektn122JrGEKsO+P+zw3I9YDVIAakr9oSIHbGYW+7P6wRFJDt0eJBAa0zA4roIV5Ukuh2QGrZg7tg4v28o4IPD/t9F2gJWX82xWbxn6wtI2vg+IBVg7UGLdw6EuCMAn1koIpmlQ4QEVjwJC2MRZhcnGNfDjwIZWAA3jYnz7A7/f3aYZcG8imbWN4Z4Z39uzOK91hBie9zitnL/n5KrbbJ4dXeY28vjRHKrtxWRHKTGSwLJtmFBrJBTByU5dXDvLtgeFYHPjGr97LBDPj8TFrZgbkWcP+wpYPMhb3f71QcsVh8MMS8Ap+T2NsOT9WFuKGtmcO5eSiciOcTnhz2Rzj0UC1MasbmgOL2OacIAm/OHt7Bwa4SEz99wNyAEc8bEWbozzE6PZvE+bLJY3hBmbgBmh5qS8HAswmWjEpT0Vb6ziHSPGi8JnLaA1CtK3Ll26LQhx5g6MMkCH0QznMjICFxZkuCxbREas3yWry0g9cYyfwW7dqYtIPXsYS2cFIAIDBHJHjVeEihtAak3l7nbVVw0IsmIwtaAVb+LFtlcWNwasJqtWbyPBaT62McCUkVEekCNlwTGiQJS06WA1d5RQKqIyF+o8ZJA6G5AaroUsNoztg0LFJAqIvIRNV7iez0JSE2XAlZ75pG6MMUKSBUR+YgOH+JrvQlITZcCVrtHAakiIh+nQ4j4VjoBqelSwOrxKSBVRKRzarzEl9wISE1XUANWt6QZsKqAVBGRrvn8sCj5yq2A1HQFMWD1uTQCVhWQKiJyfGq8xHfcDkhNlwJWWykgVUTkxNR4ia+8kqGA1HTle8CqAlJFRLpHjZf4RqYDUtOVrwGridTskAJSRUROzOdXYUi++GPNHt5o7MeDt5/G0CJ3Z5Xmx96gsvJ8V27rItvmsw+/Q6z/cD53dgW2bWN10iVWVla6cn8d/fvGFa7ddiXw/156n2cPxvnpDTM6HYtt2yxpGMJl04dy93lRV+63jZvrpaOu1su7ZizhoiZ+fuOpnf68t7wYC2RuO/NiPJkaSyYdb90EhdZLzwV7i5BA2LTrEPe+vJkfXzvd9abLbSHL4v45M3hx/S6WvrfD9wfdf7rkZPpYFv/y/IZOx/K1p96jYmiR601XpnU2loferGX19oP81OWmK9P8VGt3BGk8QRpLkHi9XrRVSE7bdSjO1595j29fejLjhhV5XU639AuH+PlNp/KL17fyZu0+r8tJ239eM42avU3MX1HzV8t/8NJGEkmb7356skeVueelDbt4au0O5t80k5CeLEUkg3SEkZzVlEjyxcWrueucccwqH+J1OT1S3D/CvVdN4/vLNlLTcNjrctJiWRbzb5rBK5saeHpNPQAP/nkr63Y28t/Xn+Jxdel7t+4AP19Rw0+vn0F/v2dgiEjOU+MlOSlp29z16Lt8ZuooLps6yutyemXSiAF8o3ISX3vqPfYcbva6nLREwiHuv2kmC96I8dPff8DSdbuYP8f/s0O1+47w3ec38IMrpjJ6UJY+c0pE8pq/j5oSWF/67RqmjhrIvLPGel1KWs4eN4w7zhrL3y1eRTzh73j7oUVh7jiznKfW7uD/XDyBorC/Z4f2H0nw1SfW8LWLJzJ51ECvyxGRPKHGS3LOd55fT2HI4puXnOR1Ka64cvpoPnXSCO56bBW2jxNWP9zbxC//XMs950f54cub2HXIvx9SmUja3P3YKm45vYwLJgz3uhwRySNqvCSn3Leihtp9R/nR1dO8LsVVd547jvHDi/jqE2u9LqVX9jUl+Icn1vKNyklcfWoJXzingnsWr+aID2fxbNvm7sfe5fzoMK6fWeZ1OSKSZ9R4Sc54cnU9v9vUwP0+ezt/d/3zZZM55sC/LXvf61J6JJ5Icvdj7zL3zHLOHjcMgMunjuayqSO569FVJH02i/ePz6yjZFCEey4c73UpIpKHgvfsJr70x5o9LHozxv03zSTi82uHjue/rpvOpl2H+eXrW70upVts2+buxau4eFIxV59S8lc/++xZFUwe1Z+vPL7Go+p67t6XN3EonuRfAxCBISL+pMZLPOengNR0dQxYzXUnCkj9p0tOJpQKWM11fg1IFZFg0dGnHb9e+NxZ3X4ZS8eAVL/UnY5IyPJFwGrHgNSutrMfdxGwmks6BqTmw3YmIrkpuOd0esGyLKqrq70uo8c6+6wsP4wlnoRfbI1wwfAE+zeupHqjPz/3q6csy2LV63/gulHwL0vXcfOYOCNdi5CKuLLeX2sIsf5QH+6saP7o9o63nd04Ah5Ye5QD9Vs5bcixtO8fIJFwZyy1TRZP1YeZOzbO63/4HZAf25mI5CbNeIknbBsWxAqZMSjJqYPzc/ZhVAQ+MyrBo9siHMqhNweuPmCx+mCIeeXNdPeMXNiCeRVx/rCngC2HcuewsrcZnqwPc0NZM4ODfRZbRHwid46QklceioUpjdicX5xDHYcHJgywOX94Cwu3RkjkQP9Z02SxvCHM3PI4Pf30nP4hmDMmznM7w+zMgYivpiQ8HItw2agEJX0dr8sREQHUeIkHntheQMiCK0pavC4lJ5w25BhTByZZsLUQLy89aojDM/VhbiyLM7CXs0MjI3BlSYLHtkVo9HD1Jm1YsDXC2cNaOGlADnS0IiIparwkq17ZHWJvs8XNZQmvS8kpF41IMqLQ5jfbvDkfdjgJv9kW4fJRCUb3Te+2okU2FxYnWFjrzSyebcOC2kImDTjGGUPdud5MRMQtarwka97e14f3G0PMrej+tUP55OrSFmzgme0FWb3fRGp26LzhLUx0aXZoxmCbUwYledCDWbzH6sIMLnCoHKkZVRHJPXr6k6zYdMhixd4C5lbECWur69KtYxLsaLb4/e7svOHYtmHB1kKmDExyukvvRmxzYXGSkojNw1mcxVu6o4Bm23C9ZlRFJEfpKVAybsdReH5nmFvGxOmvAJPjsiy4o6KZNY0hVh3ok/H7e6QuTHGhzcUjMvMmhytKWrAMPJmFWbwVe0LEjljcXt6c8fsSEektNV6SUY0JWFwX4aqSBMWuZVUFW9iCuWPj/L6hgA8OZ24Xfba+gKQN15Rm9pTcLWUJGpotXs3gLN7agxbvHAhxx1idxhaR3KZDlGRMPAkLYxFmFycYV6R3lvXEwAK4aUycZ3eE2ZWBaIbXGkJsj1vcVp75U3KWBfMqmlnfGOKd/e7P4tU2Wby6O8ztvYjAEBHJNjVekhEKSE1fpgJWV/UiIDVdmQpYVUCqiPiNGi/JCAWkusPtgNWaJovf9zIgNV1uB6wqIFVE/EiNl7hOAanucitg1Y2A1HS5FbCqgFQR8Ss1XuIqBaRmRroBq24GpKYr3YBVBaSKiJ+p8RLXKCA1s3obsJqJgNR0pROwqoBUEfEzPT2KKxSQmh09DVjNZEBqunoTsKqAVBHxOz1FStrqFZCaNT0NWM10QGq6ehKwqoBUEQkCNV6SlsYELFFAalZ1N2A1WwGp6epOwKoCUkUkKHQIk15TQKp3ThSwms2A1HSdKGBVAakiEiRqvKRXFJDqva4CVr0ISE1XVwGrCkgVkaDR68csqKmpIRaLUV5eTjQa9bqctLSNZdPoCykdoIBUr00YYHN+sjVg9RLWgzOFV3f14fPj/Dc71Baw+si2COfv+oDmxBgWbS3g0yUKSBWR4PDJ62H/qqmpYdmyZaxdu5Zly5ZRU1PjdUm91jaWt6zxHNy/l6nxjV6XJLQGrJY6e3jyUBkABW8+yp46f25nIyNwhqnl5Xgpx6wCzKYVFDRs8bosERHX+Ow1sf/EYjESNsQv+jLYSZ6MhwhvcfecyfzYG50uTyTcvdo9kZhA8twKCPeFlmaejI/I2lgy6eDRFq7/ZXbv1+11E2+xoG/rOwOPnHqNr7ezeGI09CkAB0zsHWIDJvt+plhEpI0arwwrLy9nw4YNHPvwzyTLZ3JVeCsTJrj7JFJZeX6ny6urq129n7YZr8bz/haM4ZPhGDMmlLl6H12NJZOu/+Ub/PZzZ2b1Pt1cNwkb7tscwtn4O5onXcTAP86nqqrK9WYlW9vZrzYdY9/ubZjGBprP+SxlA7a7evsiIl7SqcYMi0ajVFVVcdqAI1T0TfJan8lpfd6el9rGEupjcVZkN793JnBEl3h5qi0gdfoQuHLaKMBkpOnKlqU7CrDC/bi2pJnT+x2grAj+VHCy12WJiLgmY42XMea7xpjtxphVqa9Pt/vZN40xW4wxG40xVZmqIVdEo1Fmz57NjZP6UhRy+O12/749KxqNEg6HuXBCMWcNbeHBrRGSPm0kg6B9QGo0GgWDb5uu9gGpbfvMLZMKux2wKiLiB5me8fpPx3FmpL6eBzDGTAHmAFOBS4GfG2NOHMEdEDeUJjicNLy40/9PJGcOO8bEAcdYUNvzz9uT9PklILU7jheQ2p2AVRERv/DiVONVwKOO4zQ7jvMhsAU4w4M6PGFZcPvYZmqaLF7f6/9+85KRLQwqcFjs41k8P/JTQOqJnCgg9UQBqyIifpLpxuseY8waY8yvjDFDUstKgW3t/k9dalneCFkwb2wzb+0rYH2j/y+zu64kwdGk4YUd/p/F8wM/BqR2pbsBqV0FrIqI+E1aRzBjzMvGmPc6+boKuA8YD8wAdgA/avu1Tm6q03REY8ydxpiVxpiVDQ0N6ZSac/qF4NaxcV7aFWbbEX8/kVgW3Da2ma1HLP4UgFm8XFbTZPH7hjBzA/DxOU1JeDgW4bJR3QtIbQtYfW5nmJ2dfEySiIgfpPWM7zjOpxzHmdbJ19OO4+xyHOeY4zg28Av+cjqxDhjT7mbKgPoubv8Bx3FmOY4zq7i4OJ1Sc9LQMFxXmuDx7WH2+/yMUciCO8Y2s3J/AesO+ruRzFUNcXimPsyNZXEG+vzMbtKGBVsjnD2shZMGdP8CwZERuLIkwWPbIjT6/9I2EclDmXxX4+h2/7wGeC/1/TPAHGNMoTFmHDAReDNTdeS6Mf1sLhmZ4KFYxPfRDJEQ3FYep3p3mFiTmi83HU7Cb7ZFuHxUgtF9va4mPbYNC2oLmTTgGGcMPdbj348W2VxYnGBhbYSE3tQhIj6TyWfHe40xa40xa4CLgK8COI6zDlgMrAdeBL7oOE7Pj74BMmWgzSeGtLCgttD30QxDwnBDWTNP1IfZ2+x1NcGQSM0OnTe8hYk9mB3KVY/VhRlc4FA5svdTVjMG25wyKMmDW/WOWhHxl4w1Xo7j3OY4znTHcU5xHOdKx3F2tPvZ9x3HGe84zkmO47yQqRr85Oxhx4gW2SwKQDRDaV+HS0cmeDgAs3heawtInTIwyelD/P/6ZOmOApptw/Vl6Z9bv7A4SUnE5uFtPj/vKiJ5ReeDcsilo1p8H7Da5uSBtgJWXdA+INXv2gekuuWKkhYFrIqIr6jxyjEKWJU2+RKQmi4FrIqIn6jxyjEKWBXIr4DUdClgVUT8RI1XDlLAan7Lx4DUdClgVUT8QkeoHKWA1fyUzwGp6VLAqoj4gb+f0QNOAav5RQGp6furgFWf7zMiEkx6BsxxCljNDwpIdc9HAasxBayKSO7Rs58PKGA12BSQ6j4FrIpIrlLj5RNBDFj9dQBm8dKlgNTMUcCqiOQiNV4+ooDV4FFAamYpYFVEco0aL59pC1hdFoCA1TPyPGBVAanZoYBVEcklOhJ1UFlZ6XUJJ3RR0ub2h1eyZ8hobp41Btu2sTp5tsvUWObH3qCy8nxXbqsS+Kdn1/FK3OHeq6Z1OZagqRswkX2mgQWfO52Qi+O9d+OKjK33rtbN8Mmf4LUXNvDALTMZPSiSkftO14WJJLc//DZnjRzDVaeU5M12JiK5R0ceHwqHLB6YM4Mlq7bzu027ff8E8m+XT+bgkQQ/emWz78fSHUvX7WDpul3MnzPT1aYr0zpbN7X7jvDd5zfwgyum5mzTBRAJh7j/ppkseCPG6x/uzYvtTERyk44+PjUwEuYn153Cfy//gLX1B70uJy2WZfE/N8zg7W37efitmNflZNTK2v384k9b+dmNp1IU9veE8/4jCb76xBq+dvFEJo8a6HU5JzS0KMyPrp7GD6s3sWn3Ia/LEZE8pcbLx8qG9ONfLp/Ct59bz/YDR70uJy2ts3in8eTqel5+f7fX5WTEh3ub+N6y97n3ymmMHJC7s0PdkUja3P3YKm45vYwLJgz3upxuixb359tVJ/P1p99j1yHF24tI9qnx8rlTSwfx9xeO50u/XU1j3Pu38KejfyTET64/lZ++9gGr6vw9i9fRvqYE//DEWr7+qYlMGjnA63LSYts2dz/2LudHh3H9zDKvy+mxWWOH8IVzKrhn8WqOJPz/blIR8Rc1XgHwyZNGcN2MUu56dBUJn2czlA7uy/evmMJ3nl/Ptv1HvC7HFfFEkrsfe5e5Z5ZzbtQ/s0Nd+cdn1lE6qC/3XDje61J67fKpo7ls6kjuenQVyXx8S62IeEaNV0DcMmsMnygfwheXrML2+RPJ1NGD+NrFE/ny42s4cMTfs3i2bXP34lVcPKmYq08p8bqctN378iYOxZN87zNTvC4lbZ89q4LJo/rzlcfXeF2KiOQRNV4B8g8XT2RovzDfem6D16Wk7YIJw7n59DLufszfs3hfe+o9KoYWcfd5Ua9LSdtDb9ayevtBfnrjqV6X4pp/uuRkQpbFvzzv/31GRPxBjVfA/OCKKew53Mx/Ld/idSlpu2FmGeeMG8rfLn7Xl7N4P3hpI81Jm+9+erLXpaRt2YZdPLV2B/Nv8lcERnf8+Jpp1OxtYv6KGq9LEZE8EKwjqGBZFj+7cQZ/3rqPR1Zu87qctH1p9gRGDojwj8+s87qUHnnwz1tZt7ORn1x/itelpO3dugPct6KGn14/g/4Rf0dgdMayLObfNINXNjXw1Jp6r8sRkYBT4xVAHQNW/e7fLp9M49EWfvTKZq9L6Ra/BqR2xi8BqelqC1hdmApYFRHJFH8/K0iXFLDqDQWk+pcCVkUkG9R4BZRt274MWO3qWq6QRc4HrHYWkNrZePxwvVpnAal+qDsdtm37MmC1q/Xi1/Xl17q7y6/j82vducjfL8mlS5ZlUV1dDcDsoRZ3P7KSz1fE6efCGk8kIh/dttu6+oBny7J4/Q+vMGc0/OerG6l9fy3lRe4cCNwYz+Ek/PLDCJeNSlC75s/UppZ3Np7268ZtDumPxbbhV7WFjO1nM2jPBqqrW9/x54cPkE9H+/Vy7mCLLzz8FndF44RdeHnq1T6Tqfv0YjxBkcn1kklBXy/ZpBmvPDB1kM0nhrSwoLYQHyczADA4DDeUNfNEfZi9zV5X0yphw4KtEc4b3sKkAT5/gIHH6sIMLnCoHNnidSmemTHY5pRBSR7cWohe6IuIm9R45Ymzhx0jWmSzqNb/TySlfR0uHZng4ViEIx5/4ottw4KthUwZmOT0Ice8LcYFS3cU0Gwbri/zd3CtGy4sTlISsXl4W9jrUkQkQNR45ZFLR7VQFHL47Xb/P5GcPNDm7KEtPLg14uks3iN1YYoLbS4e4f/P/FuxJ0TsiMXt5TkylZgDrihpwTLw5PYCr0sRkYBQ45VnbihNcDhpWLbT/08kZww7xsQBx1jg0Szes/UFJG24ptT/p+TWHrB450CIO8Y24/MEDNfdUpagodni1d26JFZE0qdDbJ6xLLh9bDMfNFn8eW8fr8tJ2yUjWxhU4LA4y7N4rzWE2B63uK3c/6fkapssXm0Ic3t5nADmo6bNsmBeRTPrG0O8vd//+4yIeEuNVx4KWTBvbDNv7itgfaP/N4HrShIcTRpe2JGdWbzVByxWHwwxr9z/s0N7m+HJ+jA3lDUz2P9noDMmbMG8ijgr9hSw+ZDPV7qIeEpHkDzVLwS3jo3z0q4w2474ezOwLLhtbDNbj1j8KcOzeDVNFssbwswNwOxQUxIejrVGYJT0dbwuJ+f1D8GcMXGW7gyz0x8RXyKSg/z9jCtpGRqGa0sSPL49zH6fnzELWXDH2GZW7i9g3cHMbNYNcXimPsyNZXEG+nx2KJmKwDh7WAsnBSACI1tGRuDKkgSPbYvQ6PN9RkS8ocYrz5UX2VSOSPBQDkQzpCsSgtvL41TvDhNrcnfTPpyE32yL8OlRCUb3dfWms862YUFtIZMGHOOMof6PwMi2aJHNhcUJFsYiJNSzikgPqfESBayewEcBqcMUkCqtFLAqIr2lxksABax2pS0gdfLAJKcHYHZo6Y4C4rbh2hKdJ0uXAlZFpDfUeMlHFLD6cW0BqZ8MUEDq3AC8GzNXKGBVRHpKh1/5KwpY/QsFpEp3KGBVRHpCh2D5KwpYbaWAVOkuBayKSE+o8ZKPCWTA6rHuB6wqIFV6SgGrItJdOkJIpwIXsFrevYBVBaRKbylgVUS6w9/PqJJR+RawqoBUSZcCVkXkRNR4yXHlS8Bq0AJSH1RAqmcUsCoix6PGS04o6AGrTgADUocoINVTbQGrv1LAqoh0oMZLuqUtYPV/N0MikaCmpsbrknqtfcDqe5u2ctR2KHH2+j4gtaamBhxoPJpQQGoOuLA4SWnE5pebHd/vM+3V1NQEajxBUVNTw/Lly7VefECNl3TbpCMbObx3J0ksli1b5usd/OSBNpPYxdLEOLBtdr28yNfjqamp4bm3PwAg+ep9bN3q37EEydT4Rg7s30fSMb7fZ6B1O1u2bBnJZDIQ4wmKtvWydu1arRcfMI7jj3c7zZo1y1m5cqXXZfhKdXW1q7e3fPlyVq9dS3z2PVAQAQwYV+8Cc5wbdHB5W3U++uOje8/WeDI2FseBljihUIhw2N13CLh9e7kokXB3pjCRSJBMJsEYcJysr5egjScoMrVe+uzaSOH7LzN9+nRmz57t6n1UVla6env5wBjztuM4szou9/kb5iWbysvL2bBhA9bynxIKhaiqqiIajbp6H8fbud1uJNu/es/2ePw5lvNdvb1cFLT1ErTxBEWm10t5ebmrty/uUuMl3RaNRqmqqiIWi1FeXu76ATfbgjSeII0lSIK2XoI2nqDQevEXNV7SI9FoNFA7dZDGE6SxBEnQ1kvQxhMUWi/+oYvrRURERLJEjZeIiIhIlqjxEhEREckSNV4iIiIiWaLGS0RERCRL0mq8jDE3GGPWGWNsY8ysDj/7pjFmizFmozGmqt3y040xa1M/+4kxxuXIShEREZHclO6M13vAtcBr7RcaY6YAc4CpwKXAz40xfVI/vg+4E5iY+ro0zRpEREREfCGtxstxnA2O42zs5EdXAY86jtPsOM6HwBbgDGPMaGCg4zivO62fVbQIuDqdGkRERET8IlPXeJUC29r9uy61rDT1fcflIiIiIoF3wuR6Y8zLwKhOfvQtx3Ge7urXOlnmHGd5V/d9J62nJfXZUyIiIuJ7J2y8HMf5VC9utw4Y0+7fZUB9anlZJ8u7uu8HgAcAZs2a1WWDJiIiIuIHmTrV+AwwxxhTaIwZR+tF9G86jrMDOGSMOSv1bsbbga5mzUREREQCJd04iWuMMXXA2cBSY8wyAMdx1gGLgfXAi8AXHcc5lvq1vwX+l9YL7j8AXkinBhERERG/OOGpxuNxHOdJ4MkufvZ94PudLF8JTEvnfkVERET8SMn1IiIiIlmixktEREQkS9R4iYiIiGSJGi8RERGRLFHjJSIiIpIlpvUjE3PfrFmznJUrV3pdhmSYbdtYVnBeDwRpPEEaS5AEbb0EbTxBofXSc8aYtx3HmdVxuR5FySlB27GDNJ4gjSVIgrZegjaeoNB6cY8eSREREZEsUeMlIiIikiVqvERERESyRI2XiIiISJao8RIRERHJEjVeIiIiIlmixktEREQkS9R4iYiIiGSJGi8RERGRLFHjJSIiIpIlarxEREREskSNl4iIiEiWGMdxvK6hW4wxDUBthm5+OLAnQ7ftBxq/xq/x5y+NX+PX+DNjrOM4xR0X+qbxyiRjzErHcWZ5XYdXNH6NX+PX+L2uwysav8af7fHrVKOIiIhIlqjxEhEREckSNV6tHvC6AI9p/PlN489vGn9+0/izTNd4iYiIiGSJZrxEREREskSNl4iIiEiW5FXjZYz5D2PM+8aYNcaYJ40xg9v97JvGmC3GmI3GmKp2y083xqxN/ewnxhjjSfEuMMbcYIxZZ4yxjTGz2i2vMMYcNcasSn3d3+5ngR9/6meBX//tGWO+a4zZ3m6df7rdzzp9LILGGHNpaoxbjDHf8LqebDDGbE1tz6uMMStTy4YaY6qNMZtTfw/xuk63GGN+ZYzZbYx5r92yLscbtG2/i/Hnzb5vjBljjPmdMWZD6tj/5dRyb7cBx3Hy5gu4BAilvv934N9T308BVgOFwDjgA6BP6mdvAmcDBngBuMzrcaQx/snAScByYFa75RXAe138Tj6MPy/Wf4fH4rvA/+lkeZePRZC+gD6psUWBcGrMU7yuKwvj3goM77DsXuAbqe+/0XZcDMIXcAFwWvvjW1fjDeK238X482bfB0YDp6W+HwBsSo3T020gr2a8HMd5yXGcZOqffwbKUt9fBTzqOE6z4zgfAluAM4wxo4GBjuO87rSulUXA1dmu2y2O42xwHGdjd/9/Ho0/L9Z/N3X6WHhcUyacAWxxHKfGcZwE8CitY89HVwELU98vJEDbuOM4rwH7OizuaryB2/a7GH9Xgjj+HY7jvJP6/hCwASjF420grxqvDj5L6wwGtK6Ibe1+VpdaVpr6vuPyIBpnjHnXGPN7Y8z5qWX5Mv58Xf/3pE67/6rdVHtXj0XQ5Ms4O3KAl4wxbxtj7kwtG+k4zg5ofaICRnhWXXZ0Nd582ibybt83xlQAM4E38HgbCLl9g14zxrwMjOrkR99yHOfp1P/5FpAEft32a538f+c4y3NWd8bfiR1AueM4e40xpwNPGWOmkj/jD8z6b+94jwVwH/A9WsfzPeBHtL4Y8fWYeyBfxtnRuY7j1BtjRgDVxpj3vS4oh+TLNpF3+74xpj/wOPAVx3Eaj3OpblYeg8A1Xo7jfOp4PzfGzAU+A3wydfoIWrvaMe3+WxlQn1pe1snynHWi8XfxO81Ac+r7t40xHwCTyJPxE6D13153HwtjzC+A51L/7OqxCJp8GedfcRynPvX3bmPMk7SeRtlljBntOM6O1On13Z4WmXldjTcvtgnHcXa1fZ8P+74xpoDWpuvXjuM8kVrs6TaQV6cajTGXAv8IXOk4zpF2P3oGmGOMKTTGjAMmAm+mpiAPGWPOSr2b7Xagq1kT3zLGFBtj+qS+j9I6/pp8GT95uP5TB5s21wBt73rq9LHIdn1Z8BYw0RgzzhgTBubQOvbAMsYUGWMGtH1P65uN3qN13HNT/20uAdnGj6Or8ebFtp9P+37quP1LYIPjOD9u9yNvtwGv33WQzS9aL5TbBqxKfd3f7mffovUdDBtp9841YBatG+YHwE9Jpf378YvWnayO1tmtXcCy1PLrgHW0vpvjHeCKfBp/vqz/Do/FQ8BaYA2tB5vRJ3osgvYFfJrWdzl9QOupaM9ryvB4o6l9fHVqf/9Wavkw4BVgc+rvoV7X6uKYH6H1UoqW1L7/ueONN2jbfhfjz5t9HziP1lOFa9o973/a621AHxkkIiIikiV5dapRRERExEtqvERERESyRI2XiIiISJao8RIRERHJEjVeIiIiIlmixktEREQkS9R4iYiIiGTJ/w+i7TQoMJn7fQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "w_rook2 = raster.da2WSP(da_s, \"rook\", k=2, n_jobs=-1, include_nadata=True)\n", - "splot.plot_spatial_weights(w_rook2, da=da_s)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Additional resources\n", - "\n", - "1. [Reading and writing files using Xarray](http://xarray.pydata.org/en/stable/io.html)\n", - "2. [Xarray Data Structures](http://xarray.pydata.org/en/stable/data-structures.html)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/docs/_sources/notebooks/examples.ipynb.txt b/docs/_sources/notebooks/examples.ipynb.txt deleted file mode 100644 index 2c7203878..000000000 --- a/docs/_sources/notebooks/examples.ipynb.txt +++ /dev/null @@ -1,1092 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Datasets for use with libpysal\n", - "As of version 4.2, libpysal has refactored the `examples` package to:\n", - "\n", - "- reduce the size of the source installation\n", - "- allow the use of remote datasets from the [Center for Spatial Data Science at the Unversity of Chicago](https://spatial.uchicago.edu/), and other remotes\n", - "\n", - "This notebook highlights the new functionality" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Backwards compatibility is maintained" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you were familiar with previous versions of libpysal, the newest version maintains backwards compatibility so any code that relied on the previous API should work. \n", - "\n", - "For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from libpysal.examples import get_path \n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'/home/jovyan/libpysal/examples/mexico/mexicojoin.dbf'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "get_path(\"mexicojoin.dbf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An important thing to note here is that the path to the file for this particular example is within the source distribution that was installed. Such an example data set is now referred to as a `builtin` dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import libpysal\n", - "dbf = libpysal.io.open(get_path(\"mexicojoin.dbf\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['POLY_ID',\n", - " 'AREA',\n", - " 'CODE',\n", - " 'NAME',\n", - " 'PERIMETER',\n", - " 'ACRES',\n", - " 'HECTARES',\n", - " 'PCGDP1940',\n", - " 'PCGDP1950',\n", - " 'PCGDP1960',\n", - " 'PCGDP1970',\n", - " 'PCGDP1980',\n", - " 'PCGDP1990',\n", - " 'PCGDP2000',\n", - " 'HANSON03',\n", - " 'HANSON98',\n", - " 'ESQUIVEL99',\n", - " 'INEGI',\n", - " 'INEGI2',\n", - " 'MAXP',\n", - " 'GR4000',\n", - " 'GR5000',\n", - " 'GR6000',\n", - " 'GR7000',\n", - " 'GR8000',\n", - " 'GR9000',\n", - " 'LPCGDP40',\n", - " 'LPCGDP50',\n", - " 'LPCGDP60',\n", - " 'LPCGDP70',\n", - " 'LPCGDP80',\n", - " 'LPCGDP90',\n", - " 'LPCGDP00',\n", - " 'TEST']" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dbf.header" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## `available` is updated" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The function `available` is also available but has been updated to be more informative:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Description Installed\n", - "0 10740 Albuquerque, New Mexico, Census 2000 Tract Data True\n", - "1 AirBnB Airbnb rentals, socioeconomics, and crime in C... True\n", - "2 Atlanta Atlanta, GA region homicide counts and rates True\n", - "3 Baltimore Baltimore house sales prices and hedonics True\n", - "4 Bostonhsg Boston housing and neighborhood data True\n", - "5 Buenosaires Electoral Data for 1999 Argentinean Elections True\n", - "6 Charleston1 2000 Census Tract Data for Charleston, SC MSA... True\n", - "7 Charleston2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "8 Chicago Health Chicago Health + Socio-Economics True\n", - "9 Chile Labor Labor Markets in Chile (1982-2002) True\n", - "10 Chile Migration Internal Migration in Chile (1977-2002) True\n", - "11 Cincinnati 2008 Cincinnati Crime + Socio-Demographics True\n", - "12 Cleveland 2015 sales prices of homes in Cleveland, OH. True\n", - "13 Columbus Columbus neighborhood crime True\n", - "14 Denver Demographics and housing in Denver neighborho... True\n", - "15 Elections 2012 and 2016 Presidential Elections True\n", - "16 Grid100 Grid with simulated variables True\n", - "17 Groceries 2015 Chicago supermarkets True\n", - "18 Guerry Moral statistics of France (Guerry, 1833) True\n", - "19 Health Indicators Chicago Health Indicators (2005-11) True\n", - "20 Health+ 2000 Health, Income + Diversity True\n", - "21 Hickory1 2000 Census Tract Data for Hickory, NC MSA an... True\n", - "22 Hickory2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "23 Home Sales 2014-15 Home Sales in King County, WA True\n", - "24 Houston Houston, TX region homicide counts and rates True\n", - "25 Juvenile Cardiff juvenile delinquent residences True\n", - "26 Lansing1 2000 Census Tract Data for Lansing, MI MSA an... True\n", - "27 Lansing2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "28 Laozone Ozone measures at monitoring stations in Los ... True\n", - "29 LasRosas Corn yield, fertilizer and field data for pre... True\n", - "30 Line Line Shapefile True\n", - "31 Liquor Stores 2015 Chicago Liquor Stores True\n", - "32 Malaria Malaria incidence and population (1973, 95, 9... True\n", - "33 Milwaukee1 2000 Census Tract Data for Milwaukee, WI MSA True\n", - "34 Milwaukee2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "35 NCOVR US county homicides 1960-1990 True\n", - "36 NDVI Normalized Difference Vegetation Index grid True\n", - "37 NYC Demographic and housing data for New York Cit... True\n", - "38 NYC Earnings Block-level Earnings in NYC (2002-14) True\n", - "39 NYC Education NYC Education (2000) True\n", - "40 NYC Neighborhoods Demographics for New York City neighborhoods True\n", - "41 NYC Socio-Demographics NYC Education + Socio-Demographics True\n", - "42 Natregimes NCOVR with regimes (book/PySAL) True\n", - "43 Nepal Health, poverty and education indicators for ... True\n", - "44 Ohiolung Ohio lung cancer data, 1968, 1978, 1988 True\n", - "45 Orlando1 2000 Census Tract Data for Orlando, FL MSA an... True\n", - "46 Orlando2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "47 Oz9799 Monthly ozone data, 1997-99 True\n", - "48 Phoenix ACS Phoenix American Community Survey Data (2010,... True\n", - "49 Pittsburgh Pittsburgh homicide locations True\n", - "50 Point Point Shapefile True\n", - "51 Police Police expenditures Mississippi counties True\n", - "52 Polygon Polygon Shapefile True\n", - "53 Polygon_Holes Example to test treatment of holes True\n", - "54 Rio Grande do Sul Cities of the Brazilian State of Rio Grande do... True\n", - "55 SIDS North Carolina county SIDS death counts True\n", - "56 SIDS2 North Carolina county SIDS death counts and r... True\n", - "57 Sacramento1 2000 Census Tract Data for Sacramento MSA True\n", - "58 Sacramento2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "59 SanFran Crime July-Dec 2012 crime incidents in San Francisc... True\n", - "60 Savannah1 2000 Census Tract Data for Savannah, GA MSA a... True\n", - "61 Savannah2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "62 Scotlip Male lip cancer in Scotland, 1975-80 True\n", - "63 Seattle1 2000 Census Tract Data for Seattle, WA MSA an... True\n", - "64 Seattle2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "65 South US Southern county homicides 1960-1990 True\n", - "66 StLouis St Louis region county homicide counts and rates True\n", - "67 Tampa1 2000 Census Tract Data for Tampa, FL MSA and ... True\n", - "68 arcgis arcgis testing files True\n", - "69 baltim Baltimore house sales prices and hedonics 1978 True\n", - "70 berlin Prenzlauer Berg neighborhood AirBnB data from ... True\n", - "71 book Synthetic data to illustrate spatial weights True\n", - "72 burkitt Burkitt's lymphoma in the Western Nile distric... True\n", - "73 calemp Employment density for California counties True\n", - "74 chicago Chicago neighborhoods True\n", - "75 clearwater mgwr testing dataset True\n", - "76 columbus Columbus neighborhood crime data 1980 True\n", - "77 desmith Small dataset to illustrate Moran's I statistic True\n", - "78 geodanet Datasets from geodanet for network analysis True\n", - "79 georgia Various socio-economic variables for counties ... True\n", - "80 juvenile Residences of juvenile offenders in Cardiff, UK True\n", - "81 mexico Decennial per capita incomes of Mexican states... True\n", - "82 networks Datasets used for network testing True\n", - "83 newHaven Network testing dataset True\n", - "84 nyc_bikes New York City Bike Trips True\n", - "85 sids2 North Carolina county SIDS death counts and rates True\n", - "86 snow_maps Public water pumps and Cholera deaths in Londo... True\n", - "87 stl Homicides and selected socio-economic characte... True\n", - "88 street_net_pts Street network points True\n", - "89 taz Traffic Analysis Zones in So. California True\n", - "90 tokyo Tokyo Mortality data True\n", - "91 us_income Per-capita income for the lower 48 US states 1... True\n", - "92 virginia Virginia counties shapefile True\n", - "93 wmat Datasets used for spatial weights testing True\n" - ] - } - ], - "source": [ - "from libpysal.examples import available\n", - "available()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We see that the new column `Installed` is added to the tablular output of `available`. This tells the user whether the dataset has aready been installed on the local machine. All the builtin datasets are by defninition installed. The interesting cases are the remote data sets that are new in this release. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Remote datasets\n", - "\n", - "The listing from `available` above shows that the dataset `Tampa1` is avalable, but has not yet been installed." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from libpysal.examples import explain\n", - "explain('Tampa1')" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from libpysal.examples import load_example\n", - "tampa1 = load_example('Tampa1')" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Description Installed\n", - "0 10740 Albuquerque, New Mexico, Census 2000 Tract Data True\n", - "1 AirBnB Airbnb rentals, socioeconomics, and crime in C... True\n", - "2 Atlanta Atlanta, GA region homicide counts and rates True\n", - "3 Baltimore Baltimore house sales prices and hedonics True\n", - "4 Bostonhsg Boston housing and neighborhood data True\n", - "5 Buenosaires Electoral Data for 1999 Argentinean Elections True\n", - "6 Charleston1 2000 Census Tract Data for Charleston, SC MSA... True\n", - "7 Charleston2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "8 Chicago Health Chicago Health + Socio-Economics True\n", - "9 Chile Labor Labor Markets in Chile (1982-2002) True\n", - "10 Chile Migration Internal Migration in Chile (1977-2002) True\n", - "11 Cincinnati 2008 Cincinnati Crime + Socio-Demographics True\n", - "12 Cleveland 2015 sales prices of homes in Cleveland, OH. True\n", - "13 Columbus Columbus neighborhood crime True\n", - "14 Denver Demographics and housing in Denver neighborho... True\n", - "15 Elections 2012 and 2016 Presidential Elections True\n", - "16 Grid100 Grid with simulated variables True\n", - "17 Groceries 2015 Chicago supermarkets True\n", - "18 Guerry Moral statistics of France (Guerry, 1833) True\n", - "19 Health Indicators Chicago Health Indicators (2005-11) True\n", - "20 Health+ 2000 Health, Income + Diversity True\n", - "21 Hickory1 2000 Census Tract Data for Hickory, NC MSA an... True\n", - "22 Hickory2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "23 Home Sales 2014-15 Home Sales in King County, WA True\n", - "24 Houston Houston, TX region homicide counts and rates True\n", - "25 Juvenile Cardiff juvenile delinquent residences True\n", - "26 Lansing1 2000 Census Tract Data for Lansing, MI MSA an... True\n", - "27 Lansing2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "28 Laozone Ozone measures at monitoring stations in Los ... True\n", - "29 LasRosas Corn yield, fertilizer and field data for pre... True\n", - "30 Line Line Shapefile True\n", - "31 Liquor Stores 2015 Chicago Liquor Stores True\n", - "32 Malaria Malaria incidence and population (1973, 95, 9... True\n", - "33 Milwaukee1 2000 Census Tract Data for Milwaukee, WI MSA True\n", - "34 Milwaukee2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "35 NCOVR US county homicides 1960-1990 True\n", - "36 NDVI Normalized Difference Vegetation Index grid True\n", - "37 NYC Demographic and housing data for New York Cit... True\n", - "38 NYC Earnings Block-level Earnings in NYC (2002-14) True\n", - "39 NYC Education NYC Education (2000) True\n", - "40 NYC Neighborhoods Demographics for New York City neighborhoods True\n", - "41 NYC Socio-Demographics NYC Education + Socio-Demographics True\n", - "42 Natregimes NCOVR with regimes (book/PySAL) True\n", - "43 Nepal Health, poverty and education indicators for ... True\n", - "44 Ohiolung Ohio lung cancer data, 1968, 1978, 1988 True\n", - "45 Orlando1 2000 Census Tract Data for Orlando, FL MSA an... True\n", - "46 Orlando2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "47 Oz9799 Monthly ozone data, 1997-99 True\n", - "48 Phoenix ACS Phoenix American Community Survey Data (2010,... True\n", - "49 Pittsburgh Pittsburgh homicide locations True\n", - "50 Point Point Shapefile True\n", - "51 Police Police expenditures Mississippi counties True\n", - "52 Polygon Polygon Shapefile True\n", - "53 Polygon_Holes Example to test treatment of holes True\n", - "54 Rio Grande do Sul Cities of the Brazilian State of Rio Grande do... True\n", - "55 SIDS North Carolina county SIDS death counts True\n", - "56 SIDS2 North Carolina county SIDS death counts and r... True\n", - "57 Sacramento1 2000 Census Tract Data for Sacramento MSA True\n", - "58 Sacramento2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "59 SanFran Crime July-Dec 2012 crime incidents in San Francisc... True\n", - "60 Savannah1 2000 Census Tract Data for Savannah, GA MSA a... True\n", - "61 Savannah2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "62 Scotlip Male lip cancer in Scotland, 1975-80 True\n", - "63 Seattle1 2000 Census Tract Data for Seattle, WA MSA an... True\n", - "64 Seattle2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "65 South US Southern county homicides 1960-1990 True\n", - "66 StLouis St Louis region county homicide counts and rates True\n", - "67 Tampa1 2000 Census Tract Data for Tampa, FL MSA and ... True\n", - "68 arcgis arcgis testing files True\n", - "69 baltim Baltimore house sales prices and hedonics 1978 True\n", - "70 berlin Prenzlauer Berg neighborhood AirBnB data from ... True\n", - "71 book Synthetic data to illustrate spatial weights True\n", - "72 burkitt Burkitt's lymphoma in the Western Nile distric... True\n", - "73 calemp Employment density for California counties True\n", - "74 chicago Chicago neighborhoods True\n", - "75 clearwater mgwr testing dataset True\n", - "76 columbus Columbus neighborhood crime data 1980 True\n", - "77 desmith Small dataset to illustrate Moran's I statistic True\n", - "78 geodanet Datasets from geodanet for network analysis True\n", - "79 georgia Various socio-economic variables for counties ... True\n", - "80 juvenile Residences of juvenile offenders in Cardiff, UK True\n", - "81 mexico Decennial per capita incomes of Mexican states... True\n", - "82 networks Datasets used for network testing True\n", - "83 newHaven Network testing dataset True\n", - "84 nyc_bikes New York City Bike Trips True\n", - "85 sids2 North Carolina county SIDS death counts and rates True\n", - "86 snow_maps Public water pumps and Cholera deaths in Londo... True\n", - "87 stl Homicides and selected socio-economic characte... True\n", - "88 street_net_pts Street network points True\n", - "89 taz Traffic Analysis Zones in So. California True\n", - "90 tokyo Tokyo Mortality data True\n", - "91 us_income Per-capita income for the lower 48 US states 1... True\n", - "92 virginia Virginia counties shapefile True\n", - "93 wmat Datasets used for spatial weights testing True\n" - ] - } - ], - "source": [ - "available()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tampa1.installed" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['/home/jovyan/pysal_data/Tampa1/__MACOSX/._TampaMSA',\n", - " '/home/jovyan/pysal_data/Tampa1/__MACOSX/TampaMSA/._tampa_counties.sbx',\n", - " '/home/jovyan/pysal_data/Tampa1/__MACOSX/TampaMSA/._tampa_final_census2.sbx',\n", - " '/home/jovyan/pysal_data/Tampa1/__MACOSX/TampaMSA/._2000 Census Data Variables_Documentation.pdf',\n", - " '/home/jovyan/pysal_data/Tampa1/__MACOSX/TampaMSA/._tampa_final_census2.sbn',\n", - " '/home/jovyan/pysal_data/Tampa1/__MACOSX/TampaMSA/._tampa_counties.sbn',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.geojson',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.gpkg',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.xlsx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.mid',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.spx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbindexes',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByDestItemTypeID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000002.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.CatItemsByType.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/gdb',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000002.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByForwardLabel.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByBackwardLabel.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByParentTypeID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbindexes',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbindexes',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbindexes',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.spx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbindexes',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.FDO_UUID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByOriginID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbindexes',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.CatItemsByPhysicalName.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByType.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbindexes',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByUUID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByUUID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.spx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.FDO_UUID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByDestinationID.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbtable',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/timestamps',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByName.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbindexes',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByName.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.TablesByName.atx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbtablx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.sbn',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.xlsx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/2000 Census Data Variables_Documentation.pdf',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.mid',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.dbf',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.gpkg',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.mif',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.kml',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.sqlite',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.dbf',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.prj',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.mif',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.shx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.geojson',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.shx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.sbn',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.sbx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.prj',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.shp',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.shp',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.sqlite',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_final_census2.sbx',\n", - " '/home/jovyan/pysal_data/Tampa1/TampaMSA/tampa_counties.kml']" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tampa1.get_file_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "tampa_counties_shp = tampa1.load('tampa_counties.shp')" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tampa_counties_shp" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "import geopandas" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "tampa_df = geopandas.read_file(tampa1.get_path('tampa_counties.shp'))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMcAAAD4CAYAAABYKfK+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2dd3xc1Zm/n3OnqldLsootd8u9yAabalOWTiBAIEvbDWGTkAK7bAIkvw0hIbsJJFnCJqFDCgFCCxCqTTHFYCPZxnKVLVtWtXqXRtPO748ZyZKtUZk7VXOez0fWnXvvuffV9bz3tPe8XyGlRKFQnIgWbgMUikhFOYdC4QPlHAqFD5RzKBQ+UM6hUPjAGG4DRiIzM1MWFhaG2wxFDFBaWtospZwy0rGIdI7CwkJKSkrCbYYiBhBCHPF1TDWrFAofKOdQKHygnEOh8IFyDoXCB8o5FAofKOdQKHygnEOh8IFyDoXCBxE5CRhtvLKjlnf2NDCwNmZgiczgb47td4+4fGZ4uYE9g9fzcczpkrikHCgOYtgvNCH44YVFLMpL0fHXxS7KOXTSa3fyny/sxO50h9uUEWnvdYTbhKhFNat04HC5ufXZHRHrGICnZlH4hXIOHRxp6aWstiPcZoyKyx25jhvpqGaVn3x2qIX73t5PfYct3KaMikv5ht8o5/CTRXkpXLEynyMtvTR394fbHJ88tfkwG/YcRRMCIQA8vzXh6bC7vR17h0vicLkHf+wuicPpxu5y43S5BwcSJCcOOggBJoPGPZcuZEl+alj+zmCgnMNPEi1G0hPMJFgMNHeH2xrffHKwJej3WDMzg2+tm8XiSTYqpvocOqhr7+NIS2+4zQg7rT12VhWmI4QY++QoQtUcOthb3xluEyKC/Q1dXP/EVs5bmENWsoWLluSG26SAoGoOP+izu/j5G3v5W0lNuE2JGLYebuWef+yZVPMqyjn8YH9DF2tmZYTbjIhk6STqkCvn8INlBamsm5dFRoI53KZEHDc8uZVXv6ijvqMv3KboRjmHn1S39tJlc4bbjIijtcfOd5/ZzgMbD4TbFN0o5/ATs1EjyarGM3xR3tBFdWt0j+SN6RxCiAIhxPtCiL1CiN1CiO959y8TQnwmhNghhCgRQqz2UT5VCPGCEGKf9xprAv1HhJrufifPl1TT0mMPtykRy7aqdv7y2RFsDle4TfGb8bz6nMB/SCm3CSGSgFIhxAbgl8BPpJRvCiEu8H4+c4TyDwBvSSmvEEKYgfgA2R4W+p0uHt5Uwf+9fzDcpkQ8D394iOZuO7+6amm4TfGLMWsOKWW9lHKbd7sL2Avk4VlFkOw9LQWoO76sECIZOB143FveLqVsD4zp4UFK+MqqAlYVpofblKjg44NNdNmic3h3Qn0OIUQhsBzYAtwK3CeEqAbuB+4cochMoAl4UgixXQjxmBAiwce1b/Y2z0qampomYlZIsZoMpMabWauGcsdFQ2c/K3+2kff2NYTblAkzbucQQiQCLwK3Sik7gW8Ct0kpC4Db8NYOx2EEVgB/kFIuB3qAO0a6vpTyESllsZSyeMqUEVOXRgyJFiOrC9N5//YzKUiPC7c5EY/d6eaWp7fT74yu/se4nEMIYcLjGE9LKV/y7r4BGNh+HhipQ14D1Egpt3g/v4DHWaKetbMz6bU7SbSYwm1KVNDncLG9Krpa1OMZrRJ4aoW9UspfDzlUB5zh3V4PnDCwLaU8ClQLIeZ5d50F7NFlcQRR2dyLNrli7YLKrzeUE00alOMZrToFuA4oE0Ls8O67C/g68IAQwgjYgJsBhBC5wGNSygu8534HeNo7UnUI+JcA2h82fvf+QR587wA2h1pNNF62Hm7lv17ZzXfPmoPN4eKPmytZMT2Ns4qysBgNw85t7u4nM9ESJks9iEj05OLiYhnpEgTPbq2ivKGbJz45HG5Top5b1s1iZmYiJ81MJzPRwicHm7nzpTJS403cc+kiTp4ZvMEPIUSplLJ4xGPKOfxnc0UzX310y9gnKsbNzMwEqtt6cbg830uDJpiXncSL31xLnNkwRumJM5pzqPARHby+sz7cJkw6DjX3DDoGgMst2VPfya660CeyUM6hg9IjbeE2IWZ49MNDIb+ncg4dfO+sOUyylaERy6byJt7bdyyrZEdf8GfdVVipDlp77URgl21S0u90869PlbA4L4X5OUm8uK2Gv9x0EmtnZQbtnqrm8BO3W/Lguyr4MNSU1XbwfGkNbglPflKJe+TkwwFB1RwT5M+fVtJpc3LG3CkhqdoVvtmwp4Fbn9vBb69ZjpSSTw+18NGBZt4sq2d2ViI//dIipqb4H96jnGOCzM1O4quPbeG+t/eH2xQF8NrOOnJT4+jpd/Lnz46pJle29LLl8If89aaTWZzvXz4t1ayaAC63ZFpGPI9ct5LcFGu4zVHgWULw0KaKYY4xQJfNyVu7/R9uV84xAQyaYGpKHGcVZTNzSmK4zVGMA4Pm/1dcOYcfvL+vkY8PNofbDMU4MOmIDFXOMUGau/t58L3oz6wRK2jKOUKDlJK7XipjW5StS4hlTAblHCFjTrbqa0QTmo4QBuUcE0AIwfr52eE2QzEBjDqaVWqeYwJ09zv5yWu7w21GxLM0PwWryXC8yO0wjj829LMc8ttX+fGSYPH/K66cYwJoAmraoj8HbLAxGTS2HG4NtxkAXLRkqt9llXOMg4qmbl77oo4NexpoVVkOowo9gjqqzzEO2nsdlFS2KRWnKETPkgLlHONgWno8j15fzOvfPZXzF+WE2xzFBBA6eiyqWTUOpiR5smAkWowYDep9Ek2omiMEDKxA+/hA5KYqVZyInpEu5RzjRAjBHz6ooMceXSktFf6jmlXjZE9dB2nxJlZNT8PhGpLITQiQQ8Trvf8MXZ822ttroNofWG4rxDHh+4Hxfs81xOA9xmLo0l3p3SGHfh7hfCklUoJbSiQSz58occlj9oxUWA69iNfYA41d47IzFOhZJ6icYxz8raSa/3pll8puGIUY1Ax54HG63PxqQznxJgN/2XJEOUaUEtTYKr2yZ95zDV59jn/4bWmIMRo0LlueR0uPnYbO/nCbo/ATPR3yUMieAXwPjyJUso/jEcmsKYmkKznlqEbPUO6YziGlrAfqvdtdQohxy555jBP5wIXAvcC/+29qaNmwp4GHN1VQorIaRjVBdY7hNxKFDJc9e1sIcT+e5tlaH8X+F/g+kDTGtW/GK2Mwbdq0iZgVcLYebuWul8to6lLNqWhHzwx5UGXPhBAXAY1SytKxrh9JsmefVrQox5gkBH2GXIfs2SnAJUKISuBZYL0Q4i/+mxsaatpUgOFkIahRuTplz+6UUuZLKQuBq4H3pJTX+m1tiDhldvDyrypCix5ZulDInkUdKfFKBHOyENSoXCnlx/geLl45wvl1wAmOIaX8APhgYuaFHqfLTUllZKxiU+hHReUGkOq2Pp77vCbcZigCRLAnAWOG5z6v4sXSWpq71UjVZEHVHAGip9+lK1BNEXmoNeQBwOZwsXZ2hkqgMMlQi50CgNVk4P6397O/IXLWIij0ozIeBoBXdtSycW9juM1QRBDKOYA9dZ384MWd4TZDEQRUh1wHfXYX1zz6mVrMNElRzqGDA41dSvhyEhOSqNzJSqXKYji5UTWH/2w93BJuExRBRI1W6UCPTrVichPzzlHfoSQFJjN6Ah5i3jmuKi7ghxcUkWxVYWaTEakjq1vMO8eUJAtv7T5Kp80ZblMUQUAldfODLpuD/3vvII1d/WpZ7CRGxVb5gdsNqwrTmZpi5ff/vFJX21QRwYQqNc9koqnbxk1/KkEI+P0HFeE2RxEk1CSgH2wqbwb0ddgUkU/IkrpNBpq7++mzu6hu7eXcBdmUHGlTaziilJtOncH6+Vkn7B/6vivK8T8Dbcw5x86adlq67Ty1uZK0eJOKq4piZkxJYG0Q0yjFXLNq/fxs8lLjsBg12noduFWzSuGDmKo5fvvuAfYd7eTD8mb6nSpEXTE6MeUc7+5t4IuajnCboYgSYqpZdcu62awuTA+3GYoAEeyRxphyjpQ4E3vqO8NthiJABLu7GFPO8asN5XT3qxiqyYI7yKMpQdUE9FU2HGzY08A2pdI0qXAG2TmCrQk4Ylkp5Z4A/g0+6ehzcPGDH7OqMJ13dh8N+sNUhBYZ5E5HUDUBRykbEufYdqSNqtZeqlpV1K1i4oRCE3CksiMdD6gmoJSSJz45rPs6isglYkar/NEEHKXsCQRSE/CtXfVc8dCnfHSgWdd1FJGNK8jeEWxNQF9lg4bbLfnR33dTqjrfk56w1xx6NAFHKRs0NE3wxndP5bQ5StdvsiODPNMRbE3AEctKKd8I4N8wjF21HWwqb6IwI55+5/DZ8IHRDSGEZzhBAPLYIxYIJHLw+MARTQg6+hzEmTQMmkafw0WixYgmwOUeOOvYwgHhLXlsoY3nsybE4G0HbRos49l2ud209jhITzAjBBxq7KEwM35wLbTDKdE0z7nSa6OUnnUL0g1OtxuHSzLk1p57DJzkvZfTLWnustHV72JqipVEi9H7t3pOc7okBk3gkpKDjT3MmpKAyaANPo+Bv2q0xURCHDuuCc+1dtd1UpgRT2qceciTOW5CT4JBG3of77MUEqTAjcTtlnT1OXl/33HJv8Xw57u8IM1vjUcR7OEwfyguLpYlJSV+le21O/nBi2W89sUJg2cBJyfZytFOW9DvE06EgPk5SZQ3dOPSORRu1AQL85LZV98VssDPF7+5lpXT03weF0KUSimLRzo26WbI40wGzl2QHZJ76VllFi1ICXvru3Q7Bnhqqy+qO0IaEa3yVnnZW99Ja4+d9fOymJGZEPT76Uk1qYh8JpVzzJqSSLLViEtKHrh6WdDvF2c2BP0eCn3oqe8mlXOYjRomo4HkOBOaEMyaEtzaI83Pjp4idKi8VSOwKC+Fs4Pc9+iyOWOi3xHNKDVZH3zj9FlBvb5BEyq1T4Sjag4faEIQH8R+gdIsj3yU7JkPbE4Xly7LC9r1DapNFfGojIc+yEgwU1LZGrTra6rmiGiEgMwks9/lJ7VzGA0a91y6iLNGyIoXCFTFEdkIoKff5Xf5Se0ch5q62X+0U9eIxWgo34hs3BJq2/1X7prUzlGYkcDWylY2lTeOfbIfBMvpFIEjI0E1q0ZE0wQHGro9UapBQLnG5GZSO0e/08Wh5p5wm6EII2aj/1/xqHaOu1/dTc8oeahKj7QFJJpUEb04dbQaoto5GrtsxJl8T/KtnZXJ27eeTkKQJgLdano84nG4/A+Pj1rnONzcg8mgjTrX4HZL/vDBQXrs/g/nKaKbmIzKdbkle+o6aerq93nO86XV/H1H8FcEKiITs0FjXnaS3+Wj1jlmZyVy72WLueGJrdz96m427m2gpXu4o5y3cCr3XLowaDao7kxkY3e52VXnv+REVOtzrJ6RzgNXL6OiqZvT50yhrddORVM3+alxVLf1cqiph4c3HQra/VX0SOSjJ9l0VDsHwJzsJJKsJsxGjexkK5luidPlxuZw85fPjuiaIVVEPzHZ5xjKwcbuwW2DJrCYDMzJTmTL4eAFHSqiA7uOZA5R7xwOl5v73tl/wnxHU1e/7pRfl6/Iw2LUMBs0kqwnVrIqfCSy0YRHsMhfor5Z9fGBZpq7+imr7eDkmRmD+/+6pUrXWwM8aX6euHEVHx1o5uyiLLZVtfHHzceaaso1Ihu3hNZe/zXmo945ntpcSV1HHznJ1mH76zv0J1t7eksV83KSuOP8+QAUF6YzPSOBf/tzKaAmAaMBm445rqhuVvXZXZTVdjB7SiKFx+WpykqyBOQeP/vHXvYdPZYYfmj/Rm/NpAg+eobbgyp75j3vPCHEfiHEQSHEHf6beiJxZgN3XVDEimnD0z322p28sas+IPewu9w8s6Vq8PO+o10A/Pqqpbz8rbXsvPtc8lLjAnIvReDRU7uPp+YYkC4rAk4GbhFCLOCY7Nky4L+8n4chhDAAvwPOBxYA13jLBoTSI22cPieTn35p0bD9DqekL4AhI3/89Ah/3FwJwL+fMxeAeLMBTdNItppYMytjlNKKcBLUoVwpZb2Ucpt3uwsYt+wZHs2Og1LKQ1JKO/AscKkOe4fhlpLfvX/whLDkRKuRfkdgmzwDMVz9ThcJZgNzh4Ql/OxLi/jGGbPITAxMU04ROKyhClkfQfbsPiFENXA/cOcIRfKA6iGfa7z7Rrr2zd7mWUlTU9O47NGEYGdtB6VHhs9n7K7roCuAksrnLMjm2pM8UmyzpyTy+Y/OHpaL12oycMf58/n8h2dRNDXZ12UUYSAkSd38lD0bybIRazp/Zc9mZCTwQknNoPaGlJKDjd0YAxTboQm48/z5gw/ZaNCINxtHfOhCCO6+eAH3X7mUy1fkqQQMEUC/M8ijVTpkz2qAgiGf8xm5+eUX3f1OMhLNTEky82lFC+CJ1v3lW/uZP9X/aMwBEi1G3rntdGZOSRx3mZNmZnDFynzuuqAoJJneFaMz2nqfsQiq7BnwOTBHCDFDCGEGrgZe9dva46ht6yMjwUxpVTvffmY7breko8/B0U4bu2pH1OWcEBctmcrsLP+cLDPRwl9vOpkrV+ZzyuwMVk5PIzPR/8X+Cv/QMxUVVNkzKaVTCPFt4G3AADwhpdztv7nD2VvfyYKpyVy6LI9VhZ5Z6+dLawJ1eTRNUFLZSnFh+tgnD6HP7qKh00ZDp43zFuVgNGhMT48nzmygp9/J5ooWfvT3XQGzU+GbPof/zaoxnUNK+TG+IyVWjnB+HXDBkM9vAEHRAMxJsXKgsZtzFmRTPD2Nhi4bZTX+x+8PkGgxcsHiHASwfJpvyayR6OhzUN3aS4LFyMrpaRgNxyrn2vY+Kpp6+PRQCwXpcRg1jZbufjptgRs8UAxHzzxH1IaPuN2SnGQrywpSyU21Mj0jAZvDFRCJZbeUvFBaw6+vWkZtWx8Wk0Z6gnlQMHI0UuJMpOSljHgsLzWOeJOBF0qr2XDbGVhNBqpaernkdx/T3uvQbbcisEStc2ia4JEPD3Huwmz+49x5ABxp6fVbwFIT8PXTZ2IxGrhseR4FaXHD3vqBIi3BzMPXHdNnnJYRz08vXcR3ntke8Hsp0JWzLGqdo669j4V5yXzvrDmD+57ecsTv6/3kkoVct6YwAJZNnNlZiaTFm2gLQu1xz6UL+cWb+2I2yURMZh95d28D/3354sG3+0cHmvjTp/45h8Wokawj7l8v87KTuHxFfkCveePaQlZMS+Wd3Q1BV7iKZEbLazYWUVlztPbY2V7VPuxNv7fe/6HbBItxWLRtqOjoddBjd9LQaSPRYmT5tFQON/fo7n9cviKPuy9ZSGOXDbvTzY1Pfh4gi6OP8fQTfRGVNcdbu44yJzuRjj7Pl8jpcvPStlq/r1c8PY299Z18dGB42EpHEDvJLd39aBrkpsaxfFoat50zl7/edDKnzs4c98z62UXZ/Paa5SfsT4/3zKdkJVnJSbZSH8Pr6PWob0Wlc5TVdpCeYMZi1Kht7+OpzZWDoeT+8M6eBjbubeT6J7bywMYDNHZ5OvUvb68J2pqNjEQLSdbhTTm3lDR29Y+pGJWbYuXvt5zCYzcUYzVqWE3D/xur23o50NDFkZYe+p3usDYZw42eqNyoa1b1O1209PSzZmYmVpOB17+o4+dv7gvItaWE32ws55mtVVy9uoCSyjYSLEauLC4Yu3AA6LI5SbQYR/0Pvfn0mdx69hzizZ7/uoNN3diOi0B+e3cDZ87LYml+Kuf8ZoNalOUnUecce+o6sRo1LCaN9p5+2vsC3/Q52mnjfzd6omH6HC7Wz88iJc4UlKHdoXTaHOyr7/SZ/PqbZ87iB+fNH7bPpB2zKclqpMs7oeh0S1p77DHvGE4do1VR5xxbD7dy/ZpCspOtPP7RIT491BLU+5UeaWPVvRuZn5PMFSvzsZoMXLh4KkaDIMES2Mc3NzuJnBQrdT7Wv6fFn9g8So7z2HDK7AzOXzSVN8rq2VzRQrLVyF0vlwXUvmhEz1Bu1DnHJxUtVLb0cLCxm501HWyvag/6Pd0S9tR3cs8/9gDwk9d2s7QgldvPncfqGROLuxoLbZT+xo7qE//WdfOzeOWWU8hJseJwuVk5PY0/bq4k0WIkN9WTdKK730lbrz0mNdP1TAJGVYdcSsmRlh4W5qaQZDXy5q6jYbGj3+lm6+FWHni3fHAdSSB4eFMFJaOEv9S2nTjqlJVkZWlBKtnJVvLT4imamszC3GTKajs4uyibK1bmE2cyjOp0kxk9+hxRVXO09tipbu1FSkmCxYhdR5UZCOxON7//oIJb1s3Wfa3GLhtrZ2WyfFqqz9qwvKGb6tZeCtLjR73WpcvzSB4yEuZySx54d6QVBZMflztGZsgPNHaTlWQlzmzg9ud3htscDjR2Uzw9jV21HZQeaeNIi/8Sa2+WHeWhTRWjvun6HC6uf2LrmBOeyccNEX9r3SyWFqT6bVs049CRmyeqnKOh00ZuqpUXSmto7vatyxEq2nsdfPWxLVz04Mdc8+hngyNF/lA0NZmrVhWMmebncHPPhHXuLEYDP710YUymELLpWM8RVc6RYDZiNmp8dihyEkQPDLvanW7+Z4T5li6bgw/2N/JhedOocT6rZ6Rzxtwpg6NPvlgwNZmZfiy/XZKfyqmzMydcLtrp1zGUHVV9juxkK/063gTBZuvhVk75n/cwGzWuKi5gdlYiyVYjJ83IIG4cuoQut6SypdfncbNR409fW+1XRo2eficvbAvcKsloIWayrE9Lj2ehj4VEkYDd5aa2vY/DzT088G45KXEmTpo5PsdwuNx8+6/b2DqKbEJ+WpzfubESLEamjdGRn4zEzDxHSrwJTQjMRi3iZ35tDjfv7Wsccx7kzbJ6frOxnLR485h6IpXNPRxo6GKOHzp3Ukry0+I4HGO67EYthqJyk62mwZSckciVK/O5cW0hZqPGJwebx+wQ7jvaxYWLc1mSnzLiDPhQ3BJufPJzv9Sqatr6ONTkcYzcFCsWHZkAowk90ztR94TOXpB9gjBmpLBiWiq/+PIS/t9FC/j2utmU1XbwYfno2Rt7+p2snZ3BRweax7USsLa9j+se28LnlRMblChIj+fD76/j8uV5rJiepqujGk1M0ZFtP+qcY1lBKr12F0vyI6/vsa2qnWsf38I7u49SVtuBURNjzuL/8MIiVhWmc+vZc8b9ljvU3MNXH/2MmjbfnfeRMGiC9UVZvF4WmAz00cBoUtxjEXXOAXD9mkLmZSexfn4WZxdljfql+taZs06YF9CzAGYsyhu6+ObT24gzGXj0+mJq2/tGVTQdGHk6b9FULls2/hSiDpekrn3iySRae2IzxsofotI55uUkMTsrkZXT0/jxxQv5+AfruXDx1BHPbem2840zZnHx0lwA5mYn+gwJDwTN3R6ZrUPN3cyfmsTyaamDGdrH4p8W5fDW907nF19ezPyc0TvdQsCC3IknrW7t8V8GLNaISucA+NdTZ3CoqYdrH9/Cc59X8+A1y/n+efMwGYZ/EZ8rqebxjw5xy7pZ5KZY+dWVy0JmY1aSldNmjz8p9j8tzGFeThJfWTWNt249nb/92xpuOnUGSwtSSfSGxw/UgnOzkgb3TYRFuZHXHA0mwU4HGpGYDBpfXpnHa1/U8dCmCq5eVcBXigv4w/sVSOnCOaR2sDndWIwGnvyX1Wyv0p/0bTzsqu1k2T3vsDgvhcPN3VxZXIB1gkmNV89IHxwKllLS0NlPn8PFU58c9nu+Z9WMdH55xRLufX3v4Bp8xcjokT17zit5tkMIUTkkj+7x5W/zltslhHhGCGEd6Tx/WDsrk4euW8H8nCRueGIrr31Rx5++tvqEqFWXW3LbczuYm53Iq18ELMn7mHTZnJRUtvHfb+6junVinefjEUKQk2JlRmYCP7l0EVf5sXS3z+6irKaDX7y5TznGOBhPzTEge7ZNCJEElAohNkgpvzJwghDiV8AJSWqFEHnAd4EFUso+IcTf8GRafyog1gPr52eTmWjhP5/ficGgsSg3mR9fvIB7XtvDsmmpvLKjDpdbctb8LD4ob6KsVn8u3YnwwNXLWF+UhcXofyp8vby+s56Xt9eyraot5vocZmMQs4+MInsGDEoUXAU84+MSRiDOm409ngDqcwywJD+Vl29Zy566Dm7+cykHGrp5+qaT+Pa62Txy3UpS401Mz0xg3bwsTgrwyr3RuGZ1AectygmrYwDsqe+gtr0voAuzogU9M+QT6nMcJ3s2wGlAg5TyhNU0UspaIcT9QBXQB7wjpXzHx7VvxitjMG3atImYBUC82cjPL1vMs59X8/rOegyaoK69j4uW5vLszSeT5s3lFKo0NRajxh3nF+mS3QoUWUlWFuUmY9QEbb2hrTnDTUiSuo0gezbANfioNYQQaXgEMmcAuUCCEOLakc71V/bsuPtxzepp3HH+fDbubcBgECRbjczPSSY72dPVWRACzb7p6f4HCAYSm8PFG2X1pMabSIkzcaDR/9xe0YopmM0q8Cl7hrepdDnwnI+iZwOHpZRNUkoHHpm0tX5bO04W5aXw0y8tYtP+Ju+kl6SqpReXW3LmvCxdUlhj8fgNxbx8yym8d/sZpIQxmZrLLfn5G3up77DR3e9kV13HCfmtYgGLjppjzGbVKLJn4Pny75NS+looUAWcLISIx9OsOgso8dvaCTBrSiI/vnghv/+gAotRQwi4eEku5y3K4VtnzuJXG8oDfs+MBDNrZ2WOK0Q9mNidbn6zsZw+u5Mvqtt5a/fRiI9iDhbBblYNyJ6tHzJ0O6DcdDXHNamEELlCiDcApJRbgBeAbUCZ936P+G3tBFlWkEpVay8fHWgmNyWOI629tPbYuX5NYcCbV9Mz4rn1nLkREe366w3lzMlKJM5spMvmoHh6KhkJsalHaDD436zSJXsmpbxxhH3Hy579GPix3xbqIM5s4JHrVvKdZ7ZT3tjN8umpfLC/iQSLgTPnTWGPjszsxzMnK4k+u5Nuu/OEBAeh5vIVefx1SxVGTcPllqTFW5B0MzMzgUMxtp7DpkOXJPyvuSAzc0oiT990EqlxJt4sO8qeug7aex302l1k6QhnPp6dNe0893k1iebwBr4v93cAAAp1SURBVB1IKdl8sJkum5PNFc0cae1ly+EWWnvsVLX2Yg5yStNI4wsdGpFRGz4yEVLjzZw6O5MOm4M4k8YH+5u4Zd1s9tR10qgjpHmA+TlJXL4ijznZSeMOMgwGHb0O7nhp52CY/NDcuYA3pCa25jqqdEQmxMxr5JJluRxp6eGjA81cviKXiqYuymo7uHx5nu72+L6jXTy9pYrTwpTdo7a9j8t+/wn//Phnw9aP6EkVNFlYPs3/fF0xUXMAWE0G5mQlUd7QzcHGHlLjTdx9yULSEkxYTBrPbK3Wdf36DhtPba7ka6fOCPrE3976Tp77vJoth1vpd7po73XEXFjIeJmRMfE0RgPEjHMAXLw0l911Hdz3zn7uPH8+ZxVl0e+Q3H7uPHbXddLvcLO/4dhEmdWkjWtuYGl+Cv9x7jz6HE7cEnQMkIyLH7y4k50B0FtXjE5MOUd6gpnbzpnL9qp2NpU3saeuk+kZCdx2zlz+9m9rKD3Sxj921jE/JxmLUSPeYuS745BA/tppM/ntuweYm5PEPy0cedFVIPn6aTOVNPM40bOuLaacA2BqShx//tpJfOl3n+BwSe68oAjwNLtOmZ3JKUP6DbtqO8hNsdLe5xnd8sVzW6soOdKGMdhVhpcV09NCcp/JgMUUQ6l5AkFOipW7L1nIyulpCMGICaDdbsmm8iaMBo2ZU0Zvt+6u62DNzAyKQhC3BbBp/+gZTRTHmOdHjq8BYq7mGODcBdnc/85+XG43N64tHHas3+li88EW7nt7/7iuFW828u31s8kNQaJml1vyQqm+wYNYoqKpm3Xzs/wqG7POoWmCCxdP5dUv6mjutvOtM2fzfGk1de021s5Mp6K5h6tX5fN8ae2YCRnqOmy8v6+RH120IKg2u92Sl7bVcNSHLJriRDp1DGfHrHOAV4Mv2cqKaam8UVbPw5sO8f3z5lGYmYjN6aZoajaXLc+ntKqN32wox+WWI3bwzi7K4qbTZgbV1g/Lm7jv7f3sb+iK2SBCf9AzJxvTzpGZaGZRbjJlNR1cv6aQxXkppCeYWVqQyppZGYPnrZ6RjsVooHh6Gtur2nhz11G2V7czJdHCSTPS+frpM8lJCdjS+GEcaurm3tf38u6+xqBcX+GbmHYOIQQNXf18pTifBbnJmBu7mT7CpJEQgiSLkaUFqSwtSOXGU2YMLjkN5oRfdWsvl/9hM+3jSBOqCDwxOVo1QJfNwQ1rp/PIR4c5+9eb6He6faomXbEyf9hnIURQHeOVHbVc/chnyjF0ouY5/KTT5mBRXgqlR9ro7neOmooz1AGFXTanX9nUFcehI6lETDvHOQtyiDcZMGgCi1EL+7rvgabap4dauLI435NnV0rWzMzgv9/YNyy0RTE+9MQgx7RzJFqM9DtdTEuPJ85sCOuab4D39zdS127j4Q8ruPak6Xxn/WzueqmMW57eRo+ORTuxjJ68yDHtHOBRWo03G7h4ae6E03UGkurWXr737I7BMPOHNlXw7t5Gtk5Qh0MxHD01R0x3yAe4cW0hnbbwdXydLjdPfHJ42PqLtl6HcowAMJr8w1go5wDOXzyVs4uy2VnTHpb7P/rRYV7ZUUd6jCZBCCZuHR1y5Rxe5mYnhaXP0dpj58H3DtDaY5+0C5bCmfkkJiUIAsHuug6KcpIHh2k3V7SQGmcmZQzhykDyaUUL6+ZlDb7hLEYNu8tNn92FQfPk29KER41KCIFBCDQBRoOGwCNiI6XnuNEgEAjv+RpGg8DllmjC07cakGWwmjTSE8yDmd81IbA5XKTEmzFpAolnvfnxo9eaEFS29NBlc5KZaCEv1YoQAofLjdMl0bRj9oGnvS8lXLUqnx1V7exv6Br2ZZUw+O0d2C0lSO8nt/S8+TUhkN7tth47VpMBk8HzbAZMFOLYhKxnv0AiWV3of27kmHWO7n4nX/9jCXNzknjwmuUkWU2YDRotPf2kxJtwutwYQ5Cp48IlU7lwSfAXSIWbqYvjON+H+lakErPNqgSzgQe/uoKLl+SSZDXx3r4GuvudgzrdoZYqUEQeMescQgjmZCeyuaIF8PQ5vqhpp2hqMk99cpi8tOCvzVBENjHrHABJFiO76zqwOVwYNEF7r4O7X91N0dRkspKCE2WriB5its8B0O90U9Xay6qfbeTLK/P593PmsshPrT3F5GM8WdYLgD8BOYAbeERK+YAQ4jlgnve0VKBdSnmCVKsQIhV4DFiEZ1DiX6WUnwbIfl3YHC4uW57H7efOI03NMSiOI6iagF4eAN6SUl4hhDDjkT6LCFLjzdx72eJwm6GIUIKqCSiESAZOx6PvgZTSLqUMzzQ0cO/re+hQ6yMU42RCHfKJagICM4Em4EkhxHYhxGNCiBHz3AghbhZClAghSpqagpN65u876rA5VXSrYnwEVRMQT7NtBfAHKeVyoAe4Y6QTA6EJOBp2pxsBg9qACsVYBFsTsAao8So8gUflaYX/5vqP2aixJN//jNuK2GNM59CjCSilPApUCyEGRrXOAvbosFcX162Zzu46NfOtGB/jGa0a0AQsE0Ls8O67S0r5Bj40AYHHpJQD0mffAZ72jlQdAv4lIJb7wRlzA99cU0xeQqEJuAMo9t9EhSI8xHT4iEIxGso5FAofKOdQKHygnEOh8IFyDoXCB8o5FAofKOdQKHygnEOh8IGQehL7BAkhRBNwRMclMoHmAJmjF2WLbyLBnulSyhFDJyLSOfQihCiRUkbErLyyxTeRZs/xqGaVQuED5RwKhQ8mq3M8Em4DhqBs8U2k2TOMSdnnUCgCwWStORQK3SjnUCh8ELXOIYRYJoT4TAixw5u1ZLV3/zlCiFIhRJn39/qJlA+HLd5zvyOE2C+E2C2E+GU4bfGef7sQQgohMv21JRD2CCHuE0LsE0LsFEK87E0SGBqklFH5A7wDnO/dvgD4wLu9HMj1bi8CaidSPky2rAM2Ahbv56xw2eI9XgC8jWciNjPM/0/nAkbv9i+AX4TqOxa1NQee1KLJ3u0UoA5ASrldepbqAuwGrEKIkTSURywfJlu+CfyPlLLfW64xjLYA/Ab4Pvr0JgNij5TyHSnlgFjiZ0B+AGwaH6HywkD/AEVAFVAN1OIJAzj+nCuAjf6WD6EtO4Cf4EmWtwlYFUZbLgEe8G5Xor/m0GXPcee9Blwbsu9YqG7k54PdCOwa4edS4LfAl73nXXX8wwUWAhXALB/XHrV8iG3Z5b2GAFYDh/EOs4fSFjx5jLcAKd7P43KOYD6bIef9EHh5tOcSU84xxsPq4Ng8jQA6hxzLB8qBU/wpHwZb3gLOHPK5ApgSaluAxUCj1ykq8SQRrwJywvVsvOfdAHwKxIf0OxbKmwXUcE9C6zO922cBpd7tVOCLgbfVRMuHyZZvAPd4t+fiaYL49YbUa8tx16pEf7NK77M5D08iQL9eFrpsD/UNA2Y4nAqUeh/wFmCld/+P8OTk3THkJ8t77DGgeLTyYbLFDPwFT1NkG7A+XLYcd61AOIfeZ3PQ+7IYOOehUH3HVPiIQuGDaB7KVSiCinIOhcIHyjkUCh8o51AofKCcQ6HwgXIOhcIHyjkUCh/8f5RP39wqIYt6AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib inline\n", - "tampa_df.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Other Remotes\n", - "\n", - "In addition to the remote datasets from the GeoData Data Science Center, there are several large remotes available at github repositories. " - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Rio_Grande_do_Sul\n", - "======================\n", - "\n", - "Cities of the Brazilian State of Rio Grande do Sul\n", - "-------------------------------------------------------\n", - "\n", - "* 43MUE250GC_SIR.dbf: attribute data (k=2)\n", - "* 43MUE250GC_SIR.shp: Polygon shapefile (n=499)\n", - "* 43MUE250GC_SIR.shx: spatial index\n", - "* 43MUE250GC_SIR.cpg: encoding file \n", - "* 43MUE250GC_SIR.prj: projection information \n", - "* map_RS_BR.dbf: attribute data (k=3)\n", - "* map_RS_BR.shp: Polygon shapefile (no lakes) (n=497)\n", - "* map_RS_BR.prj: projection information\n", - "* map_RS_BR.shx: spatial index\n", - "\n", - "\n", - "\n", - "Source: Renan Xavier Cortes \n", - "Reference: https://github.com/pysal/pysal/issues/889#issuecomment-396693495\n", - "\n", - "\n" - ] - } - ], - "source": [ - "explain('Rio Grande do Sul')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that the `explain` function generates a textual description of this example dataset - no rendering of the map is done as the source repository does not include that functionality." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "rio = load_example('Rio Grande do Sul')" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Description Installed\n", - "0 10740 Albuquerque, New Mexico, Census 2000 Tract Data True\n", - "1 AirBnB Airbnb rentals, socioeconomics, and crime in C... True\n", - "2 Atlanta Atlanta, GA region homicide counts and rates True\n", - "3 Baltimore Baltimore house sales prices and hedonics True\n", - "4 Bostonhsg Boston housing and neighborhood data True\n", - "5 Buenosaires Electoral Data for 1999 Argentinean Elections True\n", - "6 Charleston1 2000 Census Tract Data for Charleston, SC MSA... True\n", - "7 Charleston2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "8 Chicago Health Chicago Health + Socio-Economics True\n", - "9 Chile Labor Labor Markets in Chile (1982-2002) True\n", - "10 Chile Migration Internal Migration in Chile (1977-2002) True\n", - "11 Cincinnati 2008 Cincinnati Crime + Socio-Demographics True\n", - "12 Cleveland 2015 sales prices of homes in Cleveland, OH. True\n", - "13 Columbus Columbus neighborhood crime True\n", - "14 Denver Demographics and housing in Denver neighborho... True\n", - "15 Elections 2012 and 2016 Presidential Elections True\n", - "16 Grid100 Grid with simulated variables True\n", - "17 Groceries 2015 Chicago supermarkets True\n", - "18 Guerry Moral statistics of France (Guerry, 1833) True\n", - "19 Health Indicators Chicago Health Indicators (2005-11) True\n", - "20 Health+ 2000 Health, Income + Diversity True\n", - "21 Hickory1 2000 Census Tract Data for Hickory, NC MSA an... True\n", - "22 Hickory2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "23 Home Sales 2014-15 Home Sales in King County, WA True\n", - "24 Houston Houston, TX region homicide counts and rates True\n", - "25 Juvenile Cardiff juvenile delinquent residences True\n", - "26 Lansing1 2000 Census Tract Data for Lansing, MI MSA an... True\n", - "27 Lansing2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "28 Laozone Ozone measures at monitoring stations in Los ... True\n", - "29 LasRosas Corn yield, fertilizer and field data for pre... True\n", - "30 Line Line Shapefile True\n", - "31 Liquor Stores 2015 Chicago Liquor Stores True\n", - "32 Malaria Malaria incidence and population (1973, 95, 9... True\n", - "33 Milwaukee1 2000 Census Tract Data for Milwaukee, WI MSA True\n", - "34 Milwaukee2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "35 NCOVR US county homicides 1960-1990 True\n", - "36 NDVI Normalized Difference Vegetation Index grid True\n", - "37 NYC Demographic and housing data for New York Cit... True\n", - "38 NYC Earnings Block-level Earnings in NYC (2002-14) True\n", - "39 NYC Education NYC Education (2000) True\n", - "40 NYC Neighborhoods Demographics for New York City neighborhoods True\n", - "41 NYC Socio-Demographics NYC Education + Socio-Demographics True\n", - "42 Natregimes NCOVR with regimes (book/PySAL) True\n", - "43 Nepal Health, poverty and education indicators for ... True\n", - "44 Ohiolung Ohio lung cancer data, 1968, 1978, 1988 True\n", - "45 Orlando1 2000 Census Tract Data for Orlando, FL MSA an... True\n", - "46 Orlando2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "47 Oz9799 Monthly ozone data, 1997-99 True\n", - "48 Phoenix ACS Phoenix American Community Survey Data (2010,... True\n", - "49 Pittsburgh Pittsburgh homicide locations True\n", - "50 Point Point Shapefile True\n", - "51 Police Police expenditures Mississippi counties True\n", - "52 Polygon Polygon Shapefile True\n", - "53 Polygon_Holes Example to test treatment of holes True\n", - "54 Rio Grande do Sul Cities of the Brazilian State of Rio Grande do... True\n", - "55 SIDS North Carolina county SIDS death counts True\n", - "56 SIDS2 North Carolina county SIDS death counts and r... True\n", - "57 Sacramento1 2000 Census Tract Data for Sacramento MSA True\n", - "58 Sacramento2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "59 SanFran Crime July-Dec 2012 crime incidents in San Francisc... True\n", - "60 Savannah1 2000 Census Tract Data for Savannah, GA MSA a... True\n", - "61 Savannah2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "62 Scotlip Male lip cancer in Scotland, 1975-80 True\n", - "63 Seattle1 2000 Census Tract Data for Seattle, WA MSA an... True\n", - "64 Seattle2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "65 South US Southern county homicides 1960-1990 True\n", - "66 StLouis St Louis region county homicide counts and rates True\n", - "67 Tampa1 2000 Census Tract Data for Tampa, FL MSA and ... True\n", - "68 arcgis arcgis testing files True\n", - "69 baltim Baltimore house sales prices and hedonics 1978 True\n", - "70 berlin Prenzlauer Berg neighborhood AirBnB data from ... True\n", - "71 book Synthetic data to illustrate spatial weights True\n", - "72 burkitt Burkitt's lymphoma in the Western Nile distric... True\n", - "73 calemp Employment density for California counties True\n", - "74 chicago Chicago neighborhoods True\n", - "75 clearwater mgwr testing dataset True\n", - "76 columbus Columbus neighborhood crime data 1980 True\n", - "77 desmith Small dataset to illustrate Moran's I statistic True\n", - "78 geodanet Datasets from geodanet for network analysis True\n", - "79 georgia Various socio-economic variables for counties ... True\n", - "80 juvenile Residences of juvenile offenders in Cardiff, UK True\n", - "81 mexico Decennial per capita incomes of Mexican states... True\n", - "82 networks Datasets used for network testing True\n", - "83 newHaven Network testing dataset True\n", - "84 nyc_bikes New York City Bike Trips True\n", - "85 sids2 North Carolina county SIDS death counts and rates True\n", - "86 snow_maps Public water pumps and Cholera deaths in Londo... True\n", - "87 stl Homicides and selected socio-economic characte... True\n", - "88 street_net_pts Street network points True\n", - "89 taz Traffic Analysis Zones in So. California True\n", - "90 tokyo Tokyo Mortality data True\n", - "91 us_income Per-capita income for the lower 48 US states 1... True\n", - "92 virginia Virginia counties shapefile True\n", - "93 wmat Datasets used for spatial weights testing True\n" - ] - } - ], - "source": [ - "available()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Grabbing all the remotes\n", - "\n", - "All the remote datasets can be downloaded with:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AirBnB\n", - "Already downloaded\n", - "Atlanta\n", - "Already downloaded\n", - "Baltimore\n", - "Already downloaded\n", - "Bostonhsg\n", - "Already downloaded\n", - "Buenosaires\n", - "Already downloaded\n", - "Charleston1\n", - "Already downloaded\n", - "Charleston2\n", - "Already downloaded\n", - "Chicago Health\n", - "Already downloaded\n", - "Chile Labor\n", - "Already downloaded\n", - "Chile Migration\n", - "Already downloaded\n", - "Cincinnati\n", - "Already downloaded\n", - "Cleveland\n", - "Already downloaded\n", - "Columbus\n", - "Already downloaded\n", - "Denver\n", - "Already downloaded\n", - "Elections\n", - "Already downloaded\n", - "Grid100\n", - "Already downloaded\n", - "Groceries\n", - "Already downloaded\n", - "Guerry\n", - "Already downloaded\n", - "Health Indicators\n", - "Already downloaded\n", - "Health+\n", - "Already downloaded\n", - "Hickory1\n", - "Already downloaded\n", - "Hickory2\n", - "Already downloaded\n", - "Home Sales\n", - "Already downloaded\n", - "Houston\n", - "Already downloaded\n", - "Juvenile\n", - "Already downloaded\n", - "Lansing1\n", - "Already downloaded\n", - "Lansing2\n", - "Already downloaded\n", - "Laozone\n", - "Already downloaded\n", - "LasRosas\n", - "Already downloaded\n", - "Liquor Stores\n", - "Already downloaded\n", - "Malaria\n", - "Already downloaded\n", - "Milwaukee1\n", - "Already downloaded\n", - "Milwaukee2\n", - "Already downloaded\n", - "NCOVR\n", - "Already downloaded\n", - "NDVI\n", - "Already downloaded\n", - "NYC\n", - "Already downloaded\n", - "NYC Earnings\n", - "Already downloaded\n", - "NYC Education\n", - "Already downloaded\n", - "NYC Neighborhoods\n", - "Already downloaded\n", - "NYC Socio-Demographics\n", - "Already downloaded\n", - "Natregimes\n", - "Already downloaded\n", - "Nepal\n", - "Already downloaded\n", - "Ohiolung\n", - "Already downloaded\n", - "Orlando1\n", - "Already downloaded\n", - "Orlando2\n", - "Already downloaded\n", - "Oz9799\n", - "Already downloaded\n", - "Phoenix ACS\n", - "Already downloaded\n", - "Pittsburgh\n", - "Already downloaded\n", - "Police\n", - "Already downloaded\n", - "Rio Grande do Sul\n", - "Already downloaded\n", - "SIDS\n", - "Already downloaded\n", - "SIDS2\n", - "Already downloaded\n", - "Sacramento1\n", - "Already downloaded\n", - "Sacramento2\n", - "Already downloaded\n", - "SanFran Crime\n", - "Already downloaded\n", - "Savannah1\n", - "Already downloaded\n", - "Savannah2\n", - "Already downloaded\n", - "Scotlip\n", - "Already downloaded\n", - "Seattle1\n", - "Already downloaded\n", - "Seattle2\n", - "Already downloaded\n", - "South\n", - "Already downloaded\n", - "StLouis\n", - "Already downloaded\n", - "Tampa1\n", - "Already downloaded\n", - "clearwater\n", - "Already downloaded\n", - "newHaven\n", - "Already downloaded\n", - "nyc_bikes\n", - "Already downloaded\n", - "taz\n", - "Already downloaded\n" - ] - } - ], - "source": [ - "libpysal.examples.fetch_all()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Description Installed\n", - "0 10740 Albuquerque, New Mexico, Census 2000 Tract Data True\n", - "1 AirBnB Airbnb rentals, socioeconomics, and crime in C... True\n", - "2 Atlanta Atlanta, GA region homicide counts and rates True\n", - "3 Baltimore Baltimore house sales prices and hedonics True\n", - "4 Bostonhsg Boston housing and neighborhood data True\n", - "5 Buenosaires Electoral Data for 1999 Argentinean Elections True\n", - "6 Charleston1 2000 Census Tract Data for Charleston, SC MSA... True\n", - "7 Charleston2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "8 Chicago Health Chicago Health + Socio-Economics True\n", - "9 Chile Labor Labor Markets in Chile (1982-2002) True\n", - "10 Chile Migration Internal Migration in Chile (1977-2002) True\n", - "11 Cincinnati 2008 Cincinnati Crime + Socio-Demographics True\n", - "12 Cleveland 2015 sales prices of homes in Cleveland, OH. True\n", - "13 Columbus Columbus neighborhood crime True\n", - "14 Denver Demographics and housing in Denver neighborho... True\n", - "15 Elections 2012 and 2016 Presidential Elections True\n", - "16 Grid100 Grid with simulated variables True\n", - "17 Groceries 2015 Chicago supermarkets True\n", - "18 Guerry Moral statistics of France (Guerry, 1833) True\n", - "19 Health Indicators Chicago Health Indicators (2005-11) True\n", - "20 Health+ 2000 Health, Income + Diversity True\n", - "21 Hickory1 2000 Census Tract Data for Hickory, NC MSA an... True\n", - "22 Hickory2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "23 Home Sales 2014-15 Home Sales in King County, WA True\n", - "24 Houston Houston, TX region homicide counts and rates True\n", - "25 Juvenile Cardiff juvenile delinquent residences True\n", - "26 Lansing1 2000 Census Tract Data for Lansing, MI MSA an... True\n", - "27 Lansing2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "28 Laozone Ozone measures at monitoring stations in Los ... True\n", - "29 LasRosas Corn yield, fertilizer and field data for pre... True\n", - "30 Line Line Shapefile True\n", - "31 Liquor Stores 2015 Chicago Liquor Stores True\n", - "32 Malaria Malaria incidence and population (1973, 95, 9... True\n", - "33 Milwaukee1 2000 Census Tract Data for Milwaukee, WI MSA True\n", - "34 Milwaukee2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "35 NCOVR US county homicides 1960-1990 True\n", - "36 NDVI Normalized Difference Vegetation Index grid True\n", - "37 NYC Demographic and housing data for New York Cit... True\n", - "38 NYC Earnings Block-level Earnings in NYC (2002-14) True\n", - "39 NYC Education NYC Education (2000) True\n", - "40 NYC Neighborhoods Demographics for New York City neighborhoods True\n", - "41 NYC Socio-Demographics NYC Education + Socio-Demographics True\n", - "42 Natregimes NCOVR with regimes (book/PySAL) True\n", - "43 Nepal Health, poverty and education indicators for ... True\n", - "44 Ohiolung Ohio lung cancer data, 1968, 1978, 1988 True\n", - "45 Orlando1 2000 Census Tract Data for Orlando, FL MSA an... True\n", - "46 Orlando2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "47 Oz9799 Monthly ozone data, 1997-99 True\n", - "48 Phoenix ACS Phoenix American Community Survey Data (2010,... True\n", - "49 Pittsburgh Pittsburgh homicide locations True\n", - "50 Point Point Shapefile True\n", - "51 Police Police expenditures Mississippi counties True\n", - "52 Polygon Polygon Shapefile True\n", - "53 Polygon_Holes Example to test treatment of holes True\n", - "54 Rio Grande do Sul Cities of the Brazilian State of Rio Grande do... True\n", - "55 SIDS North Carolina county SIDS death counts True\n", - "56 SIDS2 North Carolina county SIDS death counts and r... True\n", - "57 Sacramento1 2000 Census Tract Data for Sacramento MSA True\n", - "58 Sacramento2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "59 SanFran Crime July-Dec 2012 crime incidents in San Francisc... True\n", - "60 Savannah1 2000 Census Tract Data for Savannah, GA MSA a... True\n", - "61 Savannah2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "62 Scotlip Male lip cancer in Scotland, 1975-80 True\n", - "63 Seattle1 2000 Census Tract Data for Seattle, WA MSA an... True\n", - "64 Seattle2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "65 South US Southern county homicides 1960-1990 True\n", - "66 StLouis St Louis region county homicide counts and rates True\n", - "67 Tampa1 2000 Census Tract Data for Tampa, FL MSA and ... True\n", - "68 arcgis arcgis testing files True\n", - "69 baltim Baltimore house sales prices and hedonics 1978 True\n", - "70 berlin Prenzlauer Berg neighborhood AirBnB data from ... True\n", - "71 book Synthetic data to illustrate spatial weights True\n", - "72 burkitt Burkitt's lymphoma in the Western Nile distric... True\n", - "73 calemp Employment density for California counties True\n", - "74 chicago Chicago neighborhoods True\n", - "75 clearwater mgwr testing dataset True\n", - "76 columbus Columbus neighborhood crime data 1980 True\n", - "77 desmith Small dataset to illustrate Moran's I statistic True\n", - "78 geodanet Datasets from geodanet for network analysis True\n", - "79 georgia Various socio-economic variables for counties ... True\n", - "80 juvenile Residences of juvenile offenders in Cardiff, UK True\n", - "81 mexico Decennial per capita incomes of Mexican states... True\n", - "82 networks Datasets used for network testing True\n", - "83 newHaven Network testing dataset True\n", - "84 nyc_bikes New York City Bike Trips True\n", - "85 sids2 North Carolina county SIDS death counts and rates True\n", - "86 snow_maps Public water pumps and Cholera deaths in Londo... True\n", - "87 stl Homicides and selected socio-economic characte... True\n", - "88 street_net_pts Street network points True\n", - "89 taz Traffic Analysis Zones in So. California True\n", - "90 tokyo Tokyo Mortality data True\n", - "91 us_income Per-capita income for the lower 48 US states 1... True\n", - "92 virginia Virginia counties shapefile True\n", - "93 wmat Datasets used for spatial weights testing True\n" - ] - } - ], - "source": [ - "available()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/_sources/notebooks/voronoi.ipynb.txt b/docs/_sources/notebooks/voronoi.ipynb.txt deleted file mode 100644 index 75d7263d3..000000000 --- a/docs/_sources/notebooks/voronoi.ipynb.txt +++ /dev/null @@ -1,478 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Voronoi Polygons for 2-D Point Sets\n", - "\n", - "Author: Serge Rey (http://github.com/sjsrey)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basic Usage" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "import os\n", - "sys.path.append(os.path.abspath('..'))\n", - "import libpysal" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from libpysal.cg.voronoi import voronoi, voronoi_frames" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "points = [(10.2, 5.1), (4.7, 2.2), (5.3, 5.7), (2.7, 5.3)]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "regions, vertices = voronoi(points)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[[1, 3, 2], [4, 5, 1, 0], [0, 1, 7, 6], [9, 0, 8]]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "regions" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 4.21783296, 4.08408578],\n", - " [ 7.51956025, 3.51807539],\n", - " [ 9.4642193 , 19.3994576 ],\n", - " [ 14.98210684, -10.63503022],\n", - " [ -9.22691341, -4.58994414],\n", - " [ 14.98210684, -10.63503022],\n", - " [ 1.78491801, 19.89803294],\n", - " [ 9.4642193 , 19.3994576 ],\n", - " [ 1.78491801, 19.89803294],\n", - " [ -9.22691341, -4.58994414]])" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "vertices" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "region_df, point_df = voronoi_frames(points)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import matplotlib\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAC/CAYAAADXXJbLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAYU0lEQVR4nO3da3BT95kG8Oe1jS3LsmxjyxCuhnAJVzuJQy6ESy40gWZ63Z22QzOd3TT0ktntZXc6m82HnX5gZndmP7QfMjvjXrbdlrbbbZvZTpswoUlJmmwL2AkmBkMgGDAXY4MtyUdHthB694ME4WKwbEv6H53z/GYY2wfFfmycx0fH//97RFVBRETOVWI6ABER3R6LmojI4VjUREQOx6ImInI4FjURkcOxqImIHK4sH++0oaFBm5qa8vGuiYhcqaOj44Kqhsb6u7wUdVNTE9rb2/PxromIXElETt7q73jpg4jI4VjUREQOx6ImInI4FjURkcOxqImIHI5FTROzYwfQ1ASUlKRf7thhOhGR6+VleR651I4dwLZtgG2n3z55Mv02AGzdai4Xkcs5tqhHR0cxMjJiOsaUqSpSqRRKS0tNR5my6uefR8mVkr7CtpF6/nkMP/WUmVAel0qlcPnyZUybNs10FM/y+XyoqKjI68dwbFG/+WYHjh4dKfqCC4cHcebMcaxY0Wo6ypRt6z095nHpPY1f/GJ/gdMQAAwM9CMSGcCiRStMR/GkZDKJFSuqsXHjmrx+HMcW9eioora2BdXV001HmZLa2hgOHXoRs2ZtMB1lyuKhefAP3Lx5Kh6a54rPrxidP/8WKisr+fU3JBzux6VLPXn/OPxlYp75/VUASmHbUdNRpqz76e1IVvivO5as8KP76e2GElEsFkZVVa3pGJRnLOoCCAQaMDR03nSMKTu7cSs6n2uDHZoPFYEdmo/O59pwdiN/kWjKyEgUgUCd6RiUZ4699OEmVVV1iEYHMHv2YtNRpuzsxq0sZgex7TACgeK+PEjj4xl1AVRX1yMSGTAdg1xGVRGPRxEI1JuOQnnGoi6Ampp62HbYdAxymXg8htLSUpSXl5uOQnnGoi6A2tp6WBaLmnIrGh2C3x8wHYMKgEVdANXVdYjHbSSTSdNRyEUsK4LKymrTMagAWNQFUFZWhsrKGkQi/aajkIvEYlEWtUewqAskEGhgUVNO2XaES/M8gkVdIIHAdK78oJyy7Qg3u3gEi7pAgsF6WNag6RjkIrYdKfoRC5QdZxb1jh149G8/jc9tbcBjzzRh1u7in3lcUzMdsRhXflDupNdQs6i9wHk7EzMzj/2ZcZr+gZNofjE987iYd8TV1DTAsiKmY5BLxOM2RBQ+n3/8B1PRc94Z9QsvfDiYPqNs1Mayn7xgKFBuuGk4E5lnWeHM9xR5gfOK+tSpMQ9XXhj7eDFxy3AmMs+yoqis5GYXr3BeUc+bN+bheMPYx4vJleFMRFNlWRH4/UHTMahAnFfU27cDfnfOPOZwJsqVWCwKv7/GdAwqEOcV9datQFsb7NAMKNw185jDmShX4nGON/US5636AICtW/F6TROi0WWuWifK4UyUK7FYBFVV3JXoFc47o3YxDmeiXInHI6iu5hxqk2bt3oFPfuNePP7Eg0BTU3ppcZ6wqAuIw5koFxKJUahe4ohTg2bt3oHmF7chcPE0RBU4eRLYti1vZc2iLjAOZ6KpGh4Ow+fjGmqTlv3kBZSNXr/fA7ad3geSB1ldoxaREwCGAVwGkFTV1ryk8QAOZ6Kpsqwwqqo43tSkW+7ruMU+kKmayBn1I6rawpKemvRwpoumY1ARs6woKipY1Cbdcl/HLfaBTBUvfRRYejgTZ37Q5MViEQQCHG9qUvfT25GsuGHOit+f3geSB9kWtQJ4VUQ6RGRbXpJ4BIcz0VTF4xEEAtzsYtLZjVvR+VwbrPo5UBFg/nygrS29DyQPsl1HvVZVz4pII4BdInJYVd+89gGZAt8GAPPydPrvBtcOZ+IWYJqM9J1d3LO/oFid3bgVh1o2YebMHmzadH9eP1ZWZ9Sqejbzsh/ASwDWjPGYNlVtVdXWUCiU25Quw+FMNBUsau8Zt6hFpEpEqq+8DuAjALryHczN0sOZuESPJi6RSCCZHOGzMY/J5tLHDAAviciVx/9MVXfmNZXLpYczXTAdg4pQLBZBZaUfJSVcB+Al4xa1qh4H0FyALJ5RU1OPwcFjpmNQEbKsKHw+7kj0Gv5YNoDDmWiy0ptdeNnDa1jUBnA4E01WLBaFz8ei9hoWtQEczkSTFYtFXDX6l7LDojaEw5loMuLxCKqquCvRa1jUhnA4E01GPB7mHGoPYlEbwuFMNFHJZBKJhM05Hx7EojaEw5loomx7GOXlPq6h9iD+ixvC4Uw0UcPDnEPtVSxqQ64dzkSUDcuKoLKSm128iEVtEIcz0URYVgQ+H8ebehGL2iAOZ6KJsO0Iqqv5i0QvYlEbxOFMNBG2HUUgUGc6BhnAojaopqYesdiQ6RhUJOLxMOdQexSL2qDa2nou0aOspFIpjI4Os6g9ikVtEIczUbZisWGUl1egrCzbu+eRm7CoDeJwJsqWZYVRWVllOgYZwqI2jMOZKBuWFUVlJcebehWL2jAOZ6JsWFYEfj93JXoVi9owDmeibMRiYS7N8zAWtWEczkTZGBmJcg61h7GoDeNwJsqGbUe4NM/DWNSGcTgTZSMejyAQ4A0DvIpF7QAczkS3Y9sWSktLUV5ebjoKGcKidgAOZ6LbiUaH4PdzvKmXsagdgMOZ6HbSc6i5NM/LWNQOwOFMdDuxWJRF7XEsagfgcCa6nfSKD66h9jIWtQNwOBPdjm1HuIba41jUDsDhTHQ76Tu7cA21l7GoHYLDmehW4vEoN7t4HIvaITicicYSj9sQUfh8ftNRyKCsp5CLSCmAdgBnVPWp/EXynkRiFENDF9Hb+w4ikWEEgyHU1aX/BIN1KCnhz1OvsqxwZvcqedlEbhfxNQDdADgUN4d6ez9Ae/vLqK9vxJYtz8K2wxga6sPx48cxPDyERGIUVVX1CAZDqKlpRG1tA2prQwgG+cslL7CsKMebUnZFLSJzAHwUwHYA38xrIo+w7Rja2/+AwcEetLY+gblzl435uERiBIOD5xAO9yES6Ud/fzeGh8O4dOkyqqtDCAYbUFPTePUMnDvY3IWbXQjI/oz6OwC+BYDfMTlw7FgXOjt3Yc6chdiy5csoL/fd8rHl5T7MnLkAM2cuuO64bVsYGjqHcPg8otHTOHOmE9HoEETKEAw2oro6lDn7bkBdXSN8vsp8f1qUB7FYFH4/nz153bhFLSJPAehX1Q4R2Xibx20DsA0A5s2bl7OAbmJZUezZsxO2fR5r137ipvKdCL8/AL9/MWbPXnzDxwhfLfDBweM4cWIfotEwyssrEQzOQHV1A2pqGjB9eiNqaho46Mfh4vEwGhsXj/9AcrVszqjXAviYiGwB4AMQFJGfqurnr32QqrYBaAOA1tZWzXnSIpZKpXDkyLs4eHA3FixYgQ0bPpW3u0kHArUIBGqvu5SSSqVgWYMYHOzD0FAf+vq6cfTo25mtyTWorg6hujp97Xv69BCCwXre7dohYrEIqqq4K9Hrxv2/UVWfB/A8AGTOqP/xxpKmWwuHL2Lv3leQTFp45JHPob5+VsEzlJSUIBhsQDDYgKamlVePp1IpRCL9GBrqw+DgOfT27kd39xBs24LfPz1zDZwrUEyKxyOoruYcaq/jaVOeJJNJHDy4B8eO/QVLlrRixYp1jiu5kpIS1NXNRF3dTCxc2HL1eDKZRDjch3C4jytQDEokRqF6ib8gpokVtaruBrA7L0lcZGDgLPbseRkVFYJNm76AYLDBdKQJKSsrQ0PDHDQ0zLnuOFegFNbwcBg+H9dQE8+ocyqRSKCz8084dWo/Vq5cj6VL7zMdKaeyXYFy+vR+DA+HuQJliiwrjKoqLrQiFnXOnDlzAu3tryAYDGLz5mfh93tnXxBXoOSHZUVRUcGiJhb1lI2MxNHR8Tr6+w+jpWUTFixYbTqSY3AFytTEYhEEArz+TyzqKenpOYx3330VM2bMxubNX+HgnCxMZQVKTU0ItbXeWYESj0cwffp80zHIAVjUk2DbFvbufRXR6Cncf/9Hb3rKTxPHFSg3S9/ZhUvziEU9YUeO7EdX1x8xd+5iPPTQV3ldNc+8vAKFt+CiK1jUWYpGh7Bnz06Mjg5h/fpPIxTiNnmTJrMCpaamEYFAcaxASSQSSCZHPPVLabo1FvU4UqkUurr24f3338KiRS1Yvfozrr82WszcsgIlFougstLP7zUCwKK+rcHB89iz5xWIXMLjjz+N2tpG05FokrJdgXLs2NuwLPMrUCwrCp+v+C7XUH6wqMeQTCbR2fk2TpzYh+XLH8TSpQ/yzMaFJrsCJRgMobo6vzNQLCuCqipe9qA0FvUN+vp6sW/fK/D7fXjiiS9yHasHOWEFSiwWgc/HoqY0FnVGIjGKjo7dOHu2C83Nj2DRontMRyKHmcwKlPTZ98RXoMRiEdxxx+x8fSpUZFjU+PC+hQ0Njdi8+UtFuZSLzJnMXXjGW4ESj0dQVbWi0J8KOZSnizrb+xYSTUa2K1B6evbBsiKYNs13dQXKwMBpzqGmqzxb1BO5byFRLmWzAiWVSuDixdMIBqcbTEpO4bmizuV9C4ly5cYVKLW1c3Dw4B8wf/5KrjgieOY7IJVKobu7Azt3fg91dTXYvPkrLGlyrAUL7kJZWQDHj79jOgo5gCfOqJ1w30KiiVq1agPa23+LpqYWz456pTRX/+snk0m8996fcfz4XixZch9WrHiYTyOpaMyevQCHDjXi/ff3YPnytabjkEGuLepiv28hEQCsXr0Ob7/931i06D7j80fIHNcVtdvvW0jeMmPGHNTVzUd391tobn7UdBwyxFXXAc6cOYFXXvkBLKsPmzc/y5ImV2hp2YBjxzowMmKbjkKGuOKMemQkjvb21zEwwPsWkvvU1YXQ2HgXurp2o7V1i+k4ZEDRn1H39BzGyy9/DyIj2Lz5KyxpcqXm5nXo6TkI246ajkIGFO0ZtW1b2LNnJ4aHT/O+heR6wWAt5sxZjQMHXsMDD3zSdBwqsKI8oz5yZD9efrkNVVU+PPnkV1nS5AnNzWvR2/sBotFB01GowIrqjPra+xZu2PBXvG8heYrfH8CCBfeis3MX1q37jOk4VEBFcUadSqVw4MAevPrqDxEKNWLLli+zpMmTVq58AOfPn8HFi2dNR6ECcvwZNe9bSPQhn68SS5Y8iAMHXscjj3zedBwqEMcWtWoK7733Z5w71837FhJd46677sXvf78P58+fxIwZ803HoQJwbPOdOnUSw8Pn8MQTX8SyZWtZ0kQZ5eXlWLp0LQ4ceM10FCqQcdtPRHwisldEOkXkoIh8uxDB5s1rwkMPfYo3lyUaw5IlzYjHR3DmzBHTUagAsjlNHQXwqKo2A2gB8KSIPJDfWICI5PtDEBWtsrIyLF++HgcOvG46ChXAuEWtaVbmzWmZP5rXVEQ0roULl+Py5Wno6TlgOgrlWVYXfkWkVET2A+gHsEtV9+Q3FhGNp6SkBKtWrUNX1xtIpVKm41AeZVXUqnpZVVsAzAGwRkRW3vgYEdkmIu0i0j4wMJDrnEQ0hvnzl2LatBocO9ZhOgrl0YSWUqhqGMBuAE+O8Xdtqtqqqq2hUChH8YhoPM3NG3Do0NtIJpOmo1CeZLPqIyQitZnXKwE8DuBwvoMRUXbuuGM+AoGZOHz4/0xHoTzJ5oz6DgB/FJEDAPYhfY36d/mNRUQT0dy8HkeO7EMikTAdhfJg3J2JqnoAwN0FyEJEkxQKzUJ9/QIcPPgG7r57k+k4lGPc7kfkEi0tG/DBB528ZZcLsaiJXKK2th4zZy7jJhgXYlETuUhLyzqcOtUNywqbjkI5xKImcpFAIIg5c+7mWbXLsKiJXGb16gdx9mwPwuF+01EoR1jURC7j91dh4cI16Oz8g+kolCMsaiIXWrlyDS5cOI8LF06bjkI5wKImcqHy8gosXvwQOjt5cwE3YFETudTy5fciGo2ir++46Sg0RSxqIpcqKyvDXXc9zLNqF2BRE7nY0qXNGBlJobe323QUmgIWNZGLlZSUYOXKh3HgwB+hyhszFSsWNZHLLVy4HEAFjh/fbzoKTRKLmsjlRASrV2/EwYN/4i27ihSLmsgD5s69ExUV03HkCG93WoxY1EQe0dy8AYcP/4W37CpCLGoij5g5cy5qambj0KG3TEehCWJRE3nI6tXrcfRoBxKJEdNRaAJY1EQe0tAwEw0Nd6Kr6w3TUWgCWNREHtPcvA49Pe/Bti3TUShLLGoij6mtrcesWSvQ1cWbCxQLFjWRB61atRYnT77PW3YVCRY1kQcFAkE0Nd2N/ft3mY5CWWBRE3nUqlUPoa+vl7fsKgIsapeZtXsHHnumCU99vASPPdOEWbt3mI5EDuXzVeLOO+/jWXURYFG7yKzdO9D84jb4B05CVOEfOInmF7exrOmWVqy4HxcvDmBg4JTpKHQbZaYD3IrfX4re3r2IRvmzJFsbf/RNlI3a1x0rG7Wx5EffxL7FIUOpyOkWLpyODz74HRKJRaajFB3VFHy++rx/HMnHjNrW1lZtb2+f0vu4fPkyLl26lKNE3lDh90PG+PdUEYza9hj/BVGaqkJETMcoStOmTUNpaemU34+IdKhq61h/59gz6tLS0px88p4ybx5w8uRNh2XePPh8PgOBiCgXeF3BTbZvB/z+64/5/enjRFS0WNRusnUr0NYGzJ8PiKRftrWljxNR0Rr30oeIzAXwXwBmAkgBaFPV7+Y7GE3S1q0sZiKXyeYadRLAP6jqOyJSDaBDRHap6qE8ZyMiImRx6UNVz6nqO5nXhwF0A5id72BERJQ2oWvUItIE4G4AvPEaEVGBZF3UIhIA8GsAX1fV6Bh/v01E2kWkfWBgIJcZiYg8LauiFpFpSJf0DlX9zViPUdU2VW1V1dZQiLvgiIhyZdydiZLervRjAIOq+vWs3qnIAICbd17kXwOACwY+bjacnA1gvqlivslzcjagcPnmq+qYZ7nZFPXDAP4E4D2kl+cBwD+r6ss5jZgDItJ+qy2Ypjk5G8B8U8V8k+fkbIAz8o27PE9V3wLAIQBERIZwZyIRkcO5rajbTAe4DSdnA5hvqphv8pycDXBAvryMOSUiotxx2xk1EZHrFH1Ri4hPRPaKSKeIHBSRb5vONBYRKRWRd0Xkd6az3EhETojIeyKyX0SmdseHPBCRWhH5lYgcFpFuEXnQdCYAEJGlma/ZlT9REclqCWuhiMg3Mv9fdInIz0XEUYPJReRrmWwHnfC1E5Efiki/iHRdc2y6iOwSkaOZl3WFzlX0RQ1gFMCjqtoMoAXAkyLygOFMY/ka0nNSnOoRVW0xvQzpFr4LYKeq3gWgGQ75OqrqkczXrAXAvQBsAC8ZjnWViMwG8PcAWlV1JYBSAJ81m+pDIrISwLMA1iD97/qUiCw2mwo/AvDkDcf+CcBrqroYwGuZtwuq6Ita06zMm9Myfxx14V1E5gD4KIDvm85SbEQkCGA9gB8AgKomVDVsNtWYHgPwgaqa2Oh1O2UAKkWkDIAfwFnDea61DMBfVNVW1SSANwB80mQgVX0TwOANhz+O9KY/ZF5+oqCh4IKiBq5eVtgPoB/ALlV12tCo7wD4Fj7cMOQ0CuBVEekQkW2mw9xgIYABAP+ZuXT0fRGpMh1qDJ8F8HPTIa6lqmcA/DuAUwDOAYio6qtmU12nC8B6EakXET+ALQDmGs40lhmqeg5ITxMF0FjoAK4oalW9nHn6OQfAmsxTKkcQkacA9Ktqh+kst7FWVe8BsBnAcyKy3nSga5QBuAfAf6jq3QBiMPDU83ZEpBzAxwD8j+ks18pcS/04gAUAZgGoEpHPm031IVXtBvBvAHYB2AmgE+n593QDVxT1FZmnxLtx8zUmk9YC+JiInADwCwCPishPzUa6nqqezbzsR/oa6xqzia5zGsDpa54l/Qrp4naSzQDeUdXzpoPc4HEAPao6oKqXAPwGwEOGM11HVX+gqveo6nqkLzkcNZ1pDOdF5A4AyLzsL3SAoi9qEQmJSG3m9UqkvzkPm031IVV9XlXnqGoT0k+PX1dVx5zViEhV5s49yFxS+AjST0kdQVX7APSKyNLMoccAOO3uQp+Dwy57ZJwC8ICI+DPD1R6DQ34Re4WINGZezgPwKTjz6/hbAF/IvP4FAP9b6ADZ3IrL6e4A8GMRKUX6B88vVdVxS+AcbAaAl9L/H6MMwM9UdafZSDf5OwA7MpcYjgP4G8N5rspcW90E4Eums9xIVfeIyK8AvIP0JYV34YBddjf4tYjUA7gE4DlVHTIZRkR+DmAjgAYROQ3gXwD8K4BfisgzSP/w++uC5+LORCIiZyv6Sx9ERG7HoiYicjgWNRGRw7GoiYgcjkVNRORwLGoiIodjURMRORyLmojI4f4fugsxzVab6P8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "region_df.plot(ax=ax, color='blue',edgecolor='black', alpha=0.3)\n", - "point_df.plot(ax=ax, color='red')\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Larger Problem" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "n_points = 200\n", - "np.random.seed(12345)\n", - "points = np.random.random((n_points,2))*10 + 10\n", - "results = voronoi(points)\n", - "mins = points.min(axis=0)\n", - "maxs = points.max(axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "regions, vertices = voronoi(points)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "regions_df, points_df = voronoi_frames(points)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAD4CAYAAADIOotxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAdJUlEQVR4nO2df6hlV3XHP2smM4VHqCZvJio2775SatFa0eQpQm0ak6akoahtaYu8loFGBl9EVLQ2JdBiYUBjUeo/hgFDAu81oBh/tNDWGPzxT015ExI7NtpYOjOJTp0YWyoESpJZ/ePcl9y57/zY55y991n7nP2Bw7v33HfPXWef/V1r7X323kdUlUwmMw0ODG1AJpOJRxZ8JjMhsuAzmQmRBZ/JTIgs+ExmQlwW88eOHDmi6+vrMX8yk5kkp06d+rGqHl3eH1Xw6+vr7O7uxvzJTGaSiMjZsv05pc9kJkQWfCYzIbLgM5kJkQWfyUyIRsGLyNUi8jUReUxEviMi75vvv1JEHhCRx+d/rwhvbiaT6YNLhH8O+KCqvhp4M/AeEXkNcDvwoKr+IvDg/H0mkzFMo+BV9byqPjx//VPgMeCVwNuBe+f/di/wjlBGmmRnB9bX4cCB4u/OztAWZTKNtGrDi8g68AbgIeBlqnoeCqcAXFXxneMisisiu0899VQ/a62wswPHj8PZs6Ba/D1+PIt+KLLzdUdVnTbgcuAU8Lvz9/+z9Pl/Nx3j2muv1VEwm6kWUr90m82Gtmx6bG+rrqxceh1WVor9EwbY1RINOkV4ETkEfB7YUdX757t/JCKvmH/+CuCCV09kmXPn2u3PhOOOO+CZZy7d98wzxf7MPlx66QX4DPCYqn5i4aMvA8fmr48BX/JvnlHW1trtz4QjO99WuET4XwX+GLhBRB6Zb7cAHwVuEpHHgZvm76fBiROwsnLpvpWVYn8mLm2d79Tb+2V5fqitdRt+e7toF4sUfy21yyzbNiWa2vCL12l1VfXw4Um096low9sVfO6MybhS5XzL6pCPztYEnH16gp9yT3gCFSoJqurQ8ibifsytreL/jQeiKsHbHUs/1c6YKdzjj9WOdq0rrp2tOztw113FdVkkpbsCZV4g1JYjvANjP++YTTWXCN/mt+uO1yZLiADJRXhrPeG33QaXXQYixd/bbgvzO2PPbGLeNy+rQ4cOwepqcR1nMzh5EjY33Y5Xdw0SuSVrV/Cbm8XFmM26XRyf3HYbfPrT8Pzzxfvnny/ehxD92O/xh3BoVU2Esjr0rnfB5Zd3+52qayCSzi3ZsrAfakt2aO3Bg+Vp3MGD/n9r7HcnfDdZ2pRX37It+75I0ZFnDJLrpbdEXRswBGPupfft0No4EB/OJpFrkwXfh74RPpFK8gKh7fV5/OVbZHWdaG3+N3HSE7yvSuHjOFtb5RXFJZVLLUVPzd4c4UtJS/C+Kp3Pyru19WKkP3jQvd2W2m221Owdug1v1BmmJXhflc5C5U0tjUzNXtV2UbdPhLZQnxxJS/C+Kp2FyptQJVHVuPYmkh6/gIX65EiV4G3eh/d1L9rCPe2qAUS33GJzmmasAU8pDiG2UJ/6UuYFQm1Jt+H7sBzJtrZs2FVFjMibWuajaqc+OUBSKb2qrV5636RY2X2TUHp8CRbrUwlVgpfiszhsbGxofnosRRpfVu4icPFifHuGYH29SOOXmc3gzJnY1rzIzk4xrv/cuSJVP3FimOHcPRGRU6q6sbzfZhveAiGncI6hLdgXa5OjoF+/QipLZ5WF/VBbMiPtQrfVEmoL7sNnSmstPe7a1DJ4PUmuDT8kMdrY1iq7CxYqdshy69qvYLBPJgu+Dal2KIVm6Iod2uF0Pb+Q9aWjg8uCb8PQFdsqQzvC0Nelq0MJZVcPB5cF3wYLqatFhnaEMRxOl4gaqr70KO8s+Lak2MYOzdCOcGiHU0eI+tLDwWXBT5mx9KwP7XBikyP8hPA50nBMIplS5pXb8BPBp0gtp8GZZjz30ueRdntYGinlcynnsuGrdfv7YKkMx8LmZjHU+OLF4m/PYb6XeTEqdfaGVO6JbG9IJQwzjtrnUs4HD764vPbyfp9YK8NMKXnyDNibyOHTHpHqz3xee2tlOHE6T54RkbtF5IKInF7Y93oR+db8WfG7IvIm3wZHxdrTXnxOLJnN2u3virUytISlpk5Zw35xA64DrgFOL+z7CvBb89e3AF9vOo527bQb62IMTee19zm8uHhml/OP1UufOwfLGeguCX166YH1JcH/E/CH89fvBP7W5TitBR+rsHz+jouDcv29tnZV/XYMp5nS7b+Yt/YGcoS+Bf9q4BzwBPADYOZynNaCT21BRddK73pebc7fguBSuEceu5wGmn/gW/CfAn5v/voPgK/WfPc4sAvsrq2ttbN66MkabXEVqOt5tTn/nFK7sboat5yMRfiu9+GPAffPX38OqOy0U9WTqrqhqhtHjx5t9yuprQzj2nHlel5tzj93mjWzswNPP13+WVM5de14s7ayT5kXWN7YH+EfA66fv74ROOVyHNNteB+pqKs3D9GGzxG+maoyaionH0+sidzUoWtKD9wHnAeeBZ4EbgXeApwCHgUeAq5tOo52Ebxq+MLy3WHX5rFHLufV5v+GbsNbp6qJBPXllKAz7Sx4n5vJsfS+L+bQs8msd5oNSdW1Xl2t/15qfUk6dcHXCaHO62fRjAtrK9oEZLqCb7rIde26nBaPD0sr2gRkuoJv8s5lFzMhT54UKTc5ErO9SvDjnzzj8pSXvaeNVE0ZndITYUKxPJsOittTJ0/m2XQBmO6TZ1zuZe/NOa6aUGL1vn9K+Jzjn+nM+AXfZuBD20ESlmZBWSfEwKBc/u0py/NDbSZ76bv+b2odOUO3QUPc/rRa/kOXtU650y4UdRXYwAW/BAvi8G1DXwcS6hr1OU+PNmXB+6bu/v3Q4lrGyn1k1zUAXLKrqrJ3GQwT0gF2LWvPNk1X8KE8edWF3Vuswqe4+p5DCiPF+swvaFvOIR2gkQdSjlvwdQs/hPLkVcfuE3na/E6bc7AS4evou0ZAm3IJ6QC7lrVnm9IUfN/VY0JX9DL7fP+mj+NZaMM30XeNAHA/n5D1wsjw3fQE72P1mCFSWRe726Tovs7BWkfiMiFWAaoitAM0MHw3PcH7WD1mqFS27oK3vbAppOM+CLFGQNPv+XSAPo436V5618jWdHtsuXIcPlxMh0zlfnQK6bgvfK8REAuD1yg9wbsKo6mwFyvH6qrqoUNxL8xy5axqf9al6Nvbl67Ftro6fCUfE30diMEsLD3Bt/Garhcs9oUpO4eqzKXOBoMRZDT4KNuQfUUdnVF6gu9xspXE7sSrcjDLdjRVMIMRpBPWUnFVP2Ub6vr0cEZpCt43sYXTtJqOa8WP6agsDjkNiY+yDXVuPeprFrxq/Erny8HEclR9y6fOWfQZchoyK/BVtiHs7OGMsuD3iJlW1gmojR2xHFWfyt9kY5fKG+O8rWYeqjnCJ0mZsLtUshiOqk9621Q5u1ReX4NsXEZrWuhbWLZjayu34UeB1U64PnY1OYsuTq5v+9py9F6mytatrQn10o8Vq7PX+gjExVk0RdLlz/s+B86qYy1j8mPpx0yX0XYx+x26/JaPDr+yUZF9BkpZdaxl5NlyI6btoKKU0tKujqnKCa6u+j9mShG+6ak4FaQreCsdKr6xOjpwKEJE49Sc5XI2s5fldLA3TcFvbxcn7KEAksXgsM0ghBytZuUcm/D47Po0BV9VAB3TnCQxOGwzCNbsGQKPzr1K8LbXpX/66Xb7U6VuffW2a+U3HW8Paw+G2NwsnkIzmxVP+pnNpvdUGpeHpvSlzAuE2lpH+DJvt7fFInRK6BLZQozKS6kHeyp4zHLomtIDdwMXgNNL+98LfA/4DnBn03E0xZQ+RprpO2V3Pd5UOgNTw1OA6SP464BrFgUPvBX4KvAz8/dXNR1HXQRfNrRwuefy0KF47boYovAdaV2PF8qZpdRJNmI6C774LutLgv8s8Bsu313cagXveWihF2KkvUNFeFX/4swdb2bwLfhHgI8ADwHfAN5Y893jwC6wu7a2Vm2hxRQzxq0i38tuDSk6i9dwovgW/GngU4AAbwL+E4pnzddttRG+TTSNlTaGEE/VEFKfC2vGTqv3fq+qg7XtYhK5SdAb34L/R+D6hff/ARxtOk6t4F2jQ+wI5rsCji0Kll2PrueWmwTe8C34dwN/NX/9KuCJ3hHe9WKnLpix3Q6ri+xtBTvktR1ZZtGnl/4+4DzwLPAkcCtwGNiep/YPAzc0HUebBK/qVuh168RZuVh155G6w1qmad2+NtdiKGc4wsyiV4T3tXmZLdcUUYa+WE2VZ2yVy6cDG8oZjs0J65gE79JmHPJi+VgIIiV8OrChnOHYmlk6JsGrXiqYuvR+CEZYeRrx6cCGcIY5whsX/CLWLpYle8aUSYRkbM0sHbPgrV0sK/ZYsSMVRuYcxyt4VXsXy4I9ljKNTHSqBC/FZ3HY2NjQ3d3daL83aQ4cKCS+jAhcvBjfnsx+dnaK9QfOnSvmvJ844W3+v4icUtWN5f22F8DIdKfPYgouC2hk+rGzA8ePw9mzhWM+e7Z4H7isxyn4XGG7rZQDg1XEyTHUikNleX6oLcoy1W2XgB66rR2SLueX2/7hiHg7mVF32i1idRJOKlgYRzBGRxx5wNh0BO9aYXMkK2fochmrI+47JLylE5yO4F0rrIVIZpGhBTe0w9nDd5bRZ9JXh2syHcGPfZptjHR3yJTagiPu6vRCzZLs8N3pCF7VrcIOHcm6kKLNbamr3LEcURdxhpwl2cEJTkvwqu6iT6lzKNWspA1Vwrjxxv0VP5Sz65JlhJwlmSN8A2ONhBbS3RgsC2Nrq/rcQzi7Lo419DMAcxu+hrFGQgvp7hD4WiDTlS4BI3Sdy730NYw1ElZVxK2tcWY0ezQto9WXMjGVZRl1gjOWVU5L8GON8KrllXPM56tafX4i/QXlIlRXMRvKsqYleGPeNjh9MhpDlbSSsuspUkTdvrg4ywQd6rQEr2qjIlu+jbRnXyqOMVRZujjLBJuI0xP80MQUU9ff8hW5LDjXruQInwXvhdiVpIvofESulLKEMny24Q2RBR+bFNLAtk5prB2GIQZpDZz1ZMHHJgUhtF07oOx/y87RmmOLjcsw28DOIAs+Nqmkga6Vr8qBHTxo37HFpmmAVIR6kQU/BCl3Zi1TN/glBccWk7rmXKTMr0rw41zTzgqbm3DmTLFK7Jkz3VYktbI+X9Xil7MZnDxZ/BV58b2n1VeTpG4B0XPnyj+r2u+bMi8QaptchO9L3VDakJlD1VDTFCK5hayqrqwGjvDjFryFi9+WRZur2sd9p4nWlUtdZY1dnl16xq04pSrbcxs+EJYuvitlNrturhGiqVzqOudilp3FGWu+sNxLD9wNXABOl3z2IUCBI03H0diCT+XiL1I3DbRpc70N1lQuTZ1zsURvbU56YlQJ3qXT7h7g5uWdInI1cBMQqbehJUN3jnTBxTaR8v0uT5Sp+429/XXHifGghGV7XPdDv6ftTIRGwavqN4GflHz0SeDDFBHeHile/CrbDh58sQf83e/u9kSZpt/Y21/2xJpFYjnMLtev69N2pkRZ2F/egHUWUnrgbcDfzF+foSalB44Du8Du2tpavJxmLG143/OuXceODz2gpuv1S7GjNgD06bRbFDywAjwEvEQdBL+45V56B2LY7Dp2fGiHGWv8uuv3EqpPPgX/KxSdeGfm23MU7fiXNx0n34dPgMVKvbpabAlU8F4ZgWtWNbQDbIE3wZd8ZjfCZ9qRWKW+hK53ZVy/F/quj+fsobPggfuA88CzwJPArUufZ8H3xUqqaP1WZl05db0l5/o9Y8tQN9ErwvvasuBLsBRVLd/H7jpgKIUIH+DYWfCh6BudLUVVS7Ys02RbmUNwWejSQhs+gKMdh+CtpL6L9vStBJaiqqVsYxmXcip7Qo3PW3mh6l+O8CVYrIw+LpS1qGrNqe7hUk7WytKV3IYvweLFzItAxsOlnCxlS22x0kvvc+sl+KbHDQ0RkXw5IatR1RpN5RQ7KBi+bukLvupixnqEcBk5Otsi5vUwfu3TF3xVL+zQab5hL+9E6vYvE+t8LDYxF0hf8Kr7L2ZVip9Cm80CxqOUaYz3F1QJ3u4ilmWLNy4vCjmblX/3wIHhF32MQd8FLu+4o5jjvkjMOe9lWFm0s4mu06+HPr8yLxBqc47wfQZDLG9jjVhjGwOgmlbG0cXWiOdHUil9m/bRYpo/9BzumIxxDIA1e5po218Q8fyqBC/FZ3HY2NjQ3d3d5n88cKAoimVEinTe9/dSxMe57uzA8eOXpvUrK8OtKz/26xfx/ETklKpu7DPB66/4omv7KOSyVkO3vZbxca6bm7YeIpHismRtsHB+ZWE/1Oa9De/re6HsCYlFm/oyxnNaJLfhawi9XFEbura9Qt8THts9dNVxntMikc6vSvA22/DW6NL2stY+zkyKtNrw1ujS9vJ1j9ta30HGHYvXrizsh9qSXQCjS9srz6SbNgNfO5Jrw1tjiHuuVvsOMtXslX3VQLBIYwqy4H3TJKqhRsLlrGA4XEZ+RhrFmAXvkzZDf9tG2r4jB1MbrdYXS9lMXWTPET5h2oqqzZppfecGWBsfHxJr2UzdIi25DZ8wbUTVplJWOZKDB02O1x4Ey3MnmtruER1RFrxP2oiqzf/mnv16XDKgIbMZQ2WfBe+TNhe2jYjzGnn1uLSRh85mjJR9FrxvFi9s3UMX2071NRIhTNLURs7l9QJZ8KFoEmlbERuJEOZsUe3Xx2HtXAKTBR8KlwieYmWzmG1Ym0VpmCz4UIz1NljM3v42DrGL8xz7nYsSqgSfZ8v1ZX0dzp7dv382KxbaTJVYq7PEmFU49pV0Ssiz5brgMtvpxImigi6yslLsT5lYq7PEWDnXwkozVigL+4sbcDdwATi9sO/jwHeBbwNfAF7adBxNLaVv0+7r00a32r4PuXpQ7GcL5Da8exseuA64ZknwvwlcNn/9MeBjTcfR1AQfo93XtyKmtqJO2fnGenpQ33Ox6pgr6Cz44rusLwp+6bPfAXZcjpOU4GN0xvVxKlajVp0wqs7Xx/MBQwhycarrkM8w7EBIwf8d8Ec13z0O7AK7a2tr0U64NzEifB+nEtK+PusJ1jmhUE8ADuH8XIbxGu7lDyJ44I55G15cjpNUhI8RQfuINlQG0ue8m84nhJPa3g4zicZlGK/hW6/eBQ8cA/4ZWHE5hqYmeNU4beRQ4upKSCfk24k2ReE+gnQZxjuVCA/cDPwbcNTl+3tbcoKPQaj0uSsumUOVzbFHHTZFYde+kDbn4rOsAwaUPr309wHngWeBJ4Fbge8DTwCPzLe7mo6jWfD+CVFhmkRb52hidyTWRWHXIbeHDl36vUOHqs9l7/dC3bHwWFa9IryvLQu+AQu3fpoqootDiHUOdZNpXH53dbX8+6ur4c8lcKdwFnwXYlZeF48fy56637E0d6BvlKxL2UMTot/hksNnwbcjdnraJ5WOSd/IFGIwT9fjDSX47e12A446nGMWfFtiz7BqipxWZnz1cTxWnNYeTSm9TxZFW3UbUWR/WXQssyz4tsROXZsEbS2Vboo4Zf9jxWkt2rgsPtf2f9vfcVmLryyz6FhmWfBtiV05+3aWWaLqXNq0W2P0V2xvqx4+fKkthw/3H6Hn6uhcrmVHR58F35YhJrbUfcdaOlxHXe951f7Fc451rr6daFtH53J+OcJHxNqgGAu37Vxouj/eVPGr2ta+sxnfzaS+jq6M3IY3RJ8RZ2Om7vxdOq/apP6h7OxCG0cXOFvMgvdNnee11ME2BK5RyWW8ekiH6TsTc3V0EbKzLHjf1F3cqUd4VbcKXlVOq6vx+it8CtFQP0tagk+hrVoXxQ1deNM0jcu3XgfKMGJ3OoJPRSyWxpSnTC6nIKQj+FTS4VQcU6adUxmJA0pH8Cl1eI2kcoyaNo55RE48HcGnEuEzfgjtNNvUpxHVvSrB23sQxVgf7JDZz95TZ86eLaR19mzxvuyBH105d859f5v/TRR7gt/cLB4zNJsVjwKazfw+dmhKuDw5Z0isPXVmCk+oKQv7obZR3Ye3Tgrt0Rj9NbkNb7wNP1Zid/Cl0B6NZWPupc+Cj8oQkSOFux0jiqjWqBK8vTb8GInRVl3GUnu0qi8h99fEp8wLhNomG+GHiLZWoqcVOyYGOcIPyBDR1kr0HCK7GZq+d0dC3l0p8wKhtslGeN9RLqWOpRT6EnziY6UkD3WF5DvtUqrkZfiyP7UUOYW7BT7pe76eyittwadWyUPiU0CxFoqc0rXrm9F4yojSFnzoKJFS9uArRS4Tos9npy3/Virl25e6de1czjtHeA3bDkwtAvlyfk1LJ1suA8uU1ac2ZZrb8Bo2wqfWxvTloBJ//rlptrerF+h0KVMPGVHagg8ZhVPsRfaRIrs8HMFyGVhn4HpVJfg07sPX3VPue8/S0og0VzY34cwZuHix+Nvl3vqJE3DoUP3/WC4D61itV2VeYHED7gYuAKcX9l0JPAA8Pv97RdNxtE+Er8JH5E+tDe+Tqgc+TKkMQtF2lp7nTk26pvTAdcA1S4K/E7h9/vp24GNNx9EQgvfV/p5SL/Iide34qZRBSFzqVaCAUyV4KT6rR0TWgb9X1dfO338PuF5Vz4vIK4Cvq+ovNR1nY2NDd3d3XZOPZg4cKIpov8FFupupZ329WGVmmdmsaCpkwhPoGojIKVXdWN7ftQ3/MlU9DzD/e1XNDx8XkV0R2X3qqac6/lwFVttJqZCXExueyMtqBe+0U9WTqrqhqhtHjx71e/BcYfthZYLNlIkctLoK/kfzVJ753wv+TGpBrrD98dHjn+lO5KDVVfBfBo7NXx8DvuTHnA7kCptJmchBq7HTTkTuA64HjgA/Av4S+CLwWWANOAf8vqr+pOnHvHfaZTKZUqo67S5r+qKqvrPioxt7W5XJZKKSxki7TCbjhSz4TGZCZMFnMhMiCz6TmRBOQ2u9/ZjIU0DJOMJ9HAF+HNicPli2z7JtkO3ri6t9M1XdN9ItquBdEZHdslsKVrBsn2XbINvXl7725ZQ+k5kQWfCZzISwKviTQxvQgGX7LNsG2b6+9LLPZBs+k8mEwWqEz2QyAciCz2QmxOCCF5G7ReSCiJxe2HeliDwgIo/P/15hyLaPi8h3ReTbIvIFEXnpELZV2bfw2YdEREXkyBC2zW0otU9E3isi3xOR74jInZbsE5HXi8i3ROSR+UpNbxrItqtF5Gsi8ti8nN43399LG4MLHrgHuHlp3+3Ag6r6i8CD8/dDcA/7bXsAeK2qvg74d+DPYxu1wD3stw8RuRq4iWLq8pDcw5J9IvJW4O3A61T1l4G/HsCuPe5hf/ndCXxEVV8P/MX8/RA8B3xQVV8NvBl4j4i8hp7aGFzwqvpNYHku/duBe+ev7wXeEdWoOWW2qepXVPW5+dtvAT8X3bAXbSkrO4BPAh8GBu2RrbBvC/ioqv7f/H+GWS2JSvsU+Nn565cAP4xq1J4RqudV9eH5658CjwGvpKc2Bhd8Bc6LZA7MnwD/MLQRi4jI24AfqOqjQ9tSwauAXxORh0TkGyLyxqENWuL9wMdF5AmK7GPIDA54YdXoNwAP0VMbVgVvHhG5gyLtavmom3CIyApwB0UqapXLgCso0tQ/BT4rIjKsSZewBXxAVa8GPgB8ZkhjRORy4PPA+1X1f/sez6rgbSySWYGIHAN+G9hUWwMZfgH4eeBRETlD0dx4WERePqhVl/IkcP/8eQn/AlykmBBihWPA/fPXnwMG6bQDEJFDFGLfUdU9m3ppw6rg7SySuYSI3Az8GfA2VX1maHsWUdV/VdWrVHVdVdcpxHWNqv7XwKYt8kXgBgAReRVwGFuz034I/Pr89Q0Uj1OLzjzr+QzwmKp+YuGjftooexxNzA24DzgPPEtRQW8FVil6IB+f/73SkG3fB54AHplvd1kqu6XPzwBHLNlHIfBt4DTwMHCDMfveApwCHqVoM187kG1voehA/PZCXbulrzby0NpMZkJYTekzmUwAsuAzmQmRBZ/JTIgs+ExmQmTBZzITIgs+k5kQWfCZzIT4f25kFN7jUerHAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "points_df.plot(ax=ax, color='red')" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP0AAAD4CAYAAAAn+OBPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9eVhb5533/ZEQAoQQq9j3fTUYbGODsbFxbGNnsRO32Zo2TRo3bWauttPOMzNv5+rMPM+knafvzLydTtNp0yZNmn13Fsc2Nt4xttkxqzH7DmITQgghpPcPGdlCCxK2szR8r4sLOOc+9znnPvfvvn/7T2AwGFjFKlbx1YHw836AVaxiFZ8tVol+Fav4imGV6Fexiq8YVol+Fav4imGV6Fexiq8YRJ/lzQICAgzR0dGf5S1XsYqvJKqqqhQGg0Fu7dxnSvTR0dFUVlZ+lrdcxSq+khAIBN22zq2y96tYxVcMq0S/ilV8xbBK9KtYxVcMq0S/ilV8xbBK9KtYxVcMq0S/ilV8xbAs0QsEggiBQHBKIBA0CwSCRoFA8IPrx/0EAsFxgUDQdv23751/3FWsYhW3Ckd2eh3wY4PBkAJsBJ4RCASpwN8DpQaDIQEovf7/Klaxii84liV6g8EwaDAYqq//PQ00A2HAfcDL15u9DOy7Uw/5hcVrr0F0NAiFxt+vvfZ5P9EqVrEsnJLpBQJBNLAWuAQEGQyGQTAuDEDg7X64LzReew0OHoTubjAYjL8PHlwl/M8aqwuv03DYDVcgEEiB94AfGgwGpUAgcPS6g8BBgMjISKcebnp6GqVS6dQ11qDT6RAIBLi4uFic02q16HQ6JBKJU30G/d3fIVKrzQ+q1ej+7u8YLiy0e+3CwgIGgwGR6LPxgp6enkYikVh9/1uBwWBgfn4esVh8W/udn59Hp9Ph4eFht53HBx/g87/+F8LZWeOB7m70Tz3F5MQEs/v3Mzs7i5ubG/Pz87i5uTl0b51OB/CZfRtb0Gg0uLu7A+Dv72/6+3bAoTcTCASuGAn+NYPB8P71w8MCgSDEYDAMCgSCEGDE2rUGg+F54HmAdevWOZWbq7q6hfp6LWLxrb1wQ0MFPj6+hIfHW5ybmBilrKyE+PgMQkIi8PZ2TB95sH/A6nGX/gE++WTI7rUtLXWIxUJiYzMcutetorr6PImJ6UilPre137m5WSorT5OXtxtHNwFHMDU1xrVrjeTkbLHb7pF/evYGwV+HcHYW1396ltfJoa6unLi4FHp72wgOjiMwMHjZe3d2tqLRKElJWX9L73ArGBsb5Nq1Rtav345GM8PevTMkJibetv6XJXqB8Wu+ADQbDIb/vOnUR8C3gH+7/vvD2/ZU16HXg7d3HL6+y38sWxgdHWB6eoYtW76Ju7vlbh4aCrW15Wi1ehoba5BK5YSGphAfn4ZEIrXZ76w8EsmoZUzDrDyS0NAcm9fp9XouXbrA5s33IZc7x/msBDqdjpmZ48TGbr0ju1ddXSUSSRS+vlYDulaE4GA9bW0tGAz+hIVF22wnnRi2ebyraxgfn1DS0opRKucQieR2v8sixsZ0iERDDrW9E9BqNVRUnCM9fS/h4en09bXe9ns4ItPnA48B2wUCQe31nz0Yif0ugUDQBtx1/f8vHGpqTpKSstEqwS8iOnoNISGp7Nv3I1JT1zM11cmnn/6WEydep6WlBo1m1uKa5seeRedm3qfOTULzY8/afZ7+/k5cXV0+E4IHmJgYQSKR3jF21dc3iJGR/tvap1AoJD4+h6tXK+y2mw2wPoZK7yCmpwfYuPF+AMRiD+bmLL+h1T5nVbi52V7s7zQuXHiPgIAEEhLS79g9lp0JBoPhPGCLdyu6vY9jG6GnXyPllZ/ioehhNiCS5seeZaDwUbvXdHa2MDc3QXLyI/b7Dk3g2rUGMjM3ERmZRmRkGlqtlp6eBrq7r1Bff5yAgBgiI1OIjExELBab7u3MM42PD3Pq1NuEh8c6PwArxNjYMD4+AXesf3//MBSKAZKSsm5rv/Hx62lq+jWTk2P4+PhbbdP82LNkPncQ0dwN3cq82IM3MrbxmIuI7O8l4qHoYYt3IE2x68j87beW/VZzcyq8vVfOWd4KmprKUKlm2bnza3f0Pp+vtsJBhJ5+zezjSka7yXzuIIBNItPpdFy5cpK1a3cgFNpnaMLCEqmoOIpWqzUppcRiMfHx2cTHZ6PRqOnuvkJn52Vqao4RHBxPVFQq+i0PL7vwLKKxsYLm5rOkpa2ls7MRlUqJVCpzdAhWjImJIXx87twklsuj6Ooque39isViIiOTaW6uZNOmXVbbLF14Z/zCeDV1K/HxWWx88Uem+eI9OczG6sOmncve/Onv72RkpAuBwIPY2FQzDmklG4+jGB3tobn5IkVFj992xehSfCmIPuWVn5qt5gCiOTUpr/zU5qA3NVUhkXgQEZGybP9isTs+Pn4MDXUTGZlgcd7dXUJSUi5JSbmo1Ura22tpbDzJ5cufEBaWTHR0KkFBEVYXF7V6hosXj6BWj1BU9Ci+vsHo9XoqK09SWHjnXRumpoaJjMy/Y/37+4cxMzOGVjuHWOyYhtxRpKZu5pNPfkdUVDISiRSx2B13dw+zcR4ofJSBwkfRarWUlLxCVFQceb963GK+LGVVbc0fsVhAUlI23d1V1NefIDIyk+TkbJKrPyXr10/gotMCxoUj69dPmJ7hVqDVarhw4X3WrNllk6u5nfhSEL2Hosep4xrNLG1tZRQWPuTwPeTyKAYGOq0S/c2QSGRkZGwhI2MLk5MjdHbWUVn5EQsLEBycRGRkEsHBxgWgv7+TS5c+Jiwsmi1bDpp2jczMHRw+/Bz9/V02FVW3Y1fR6/VMTY3g7x/m1HXOQCQS4ePjx+joAGFhMbe1b6nUB4NBR1nZO7i6itDptMzP63BxccXV1R1XV3fc3DwQidwZHx/F29uDjIxCm/NiKZa202rnmJ+fJSUln7S0AiYnR7h69SIlJS9w39v/20Twi3DRaUn/ww9umejLyt4jICDxjsrxN+NLQfSzATY05TYUOXV15wkJicbfP9The4SHJ1Fe/qlTz+XjE8jatXexdu1dVFSUUlt7hM7Oy4jFnri6erOwMMG6dcVERqaaXScWi8nI2EpNzQlCQp6w4BBWIs5Yw9TUGO7uYrtKzNsBb2+jMs9RondmQXN3l1BU9AQymdHcqNfr0Wo1aLVq5uaMP1qtBr1ei1I5hFqttDlflmLp/JmaGkMq9TJ9Dx+fQDZsuJesLC2ef/5bq32Ip8ccemdbaGg4z8zMLAUFD95SP87gS0H01hQ2tjTlExOj9PXVUVz8tFP38PcPR6tVoVROIJPZttUvnbB1D/6Md1xlKJUD3HvvXxMUFMXk5Ajvv/8f7N//E5umrPj4bNrba2hqqiQ9fYPZuZWIM9YwNjaMTHbnlHiLCAyMoqvLMdOSMwuaVqtlbk5rpvsQCoW4u0ssFrLY2Cyqq89RWvoykQ/+jPV/+GuzMTRgzuJrXd04UvBNrlSdQa9fQK/XMz4+jF5vqbO+UzL26GgPLS2X2LHj8c/UGehLEVo7UPgodc88j1oehUEgQC2Pou6Z560SQG3taRISsu3a2K1BKBQil4fS399hs03o6dfI+vUTSEa7ERgMSEa7Wffbg2zqvMjevd8nKCgKMDqtBAbGL2u7XreumJaW86jVM2bHnRVnbGF8fAgfnyCnrlkJAgOjGR93zGxnb0FbiulpBZ6e3nYVsaGnX6PoyWjuvk/I3z73GHeNDvBnnYbKg78xzhcEjEl9qQ+MZUEgxAAsCIRUZWynLm0jAoEGkWgBDw8hUqkIg8H6vbRe1mXtabGEw4f/SEtLDVqt1moba9Bo1JSXv09W1mcjx9+ML/ROPzMzQ0PDGXx9Q+iMyqDm52fw9PRGIpFZnQj9/Z1MTfVTULB/RfcLCUmgv7+DlBTrjhnpf/iBhVznql/g3tKXKHni303HBgevERAQvez9/P1DiYiIo7r6NJs37zUdd1acsQWlcoT4+DVOXbMSSKU+uLgY7JrXFuHMgqZUKvD09LPZlzWuYf+RX6Pf9QwvhUTj953/ZGCgmwNaDbvf/1dcDHoAXAx61jeeQXxdCbgIrVbLu+/+kpGRAaRSbyQST9O5hqf+i6z/+jYuC/OmYwsurlx95vdkxK2lra2SxsZThIVlkJycbXMc1GolHR311NefJCgoifj4z0aOvxlfaKLXaGbR68VMT88wOjqMWj2FRjPN/LwGNzc3PDw8cXdf/PHi6tV6srMLV8wqhYcnUV9/Fp1OZ7UPW/Lb0uMKRTdxcXkO3TMz8y4OH/4fhoczCQoKB5wTZ+xhcnKQgIA9Tl2zUvj4BKFQDC5L9M4saNPTCiQS20Rvi2u4p/wtjt39M4aHBykuPsj2v05zSFwSi8XMz6s5d+4NDIYFdDo9bm4S3N1luLl5cm3vD9l15s94T40w7RtC9QP/wHDuPsLdJURGpqFUKmhtvUxp6Ut4e4cQF5dNVFQiGo2Kjo56+vtbmJ6eIiAgDoHAk7S0z8fV9wtN9P7+AaxZE2HhhqvT6VCrVczMTDEzM83s7AyTk6OoVAri47NXfD+JRIaHhwejo/2EhESZnVOrVQ71odPpGB9XsHmz+fW2lFfu7hLS0jZTUXGMPXu+jVAoXJHjz1IolZMIBKzI334llgM/v1BGR3uX3bkcWdDUaiUKRS8tLZdJStpqsy/bXEMvYWFRiMUCJBJPh7kLtVqFROLP/v0/QigUotVq0WiUzMxMMTs7TUdgEP+xppC5uWk0mhm02llmP/0fFhZ0iMUSxGJPPDy8kMvjmJgY5PjxP6LV6pDLQwkKSiQxcTMREfGIRCLeffc/kMk+n8DULzTRL8LWJFzU6ILxgw0Ptzjdx1IEBkbT19dhRvTXrjVQV3ecuz288JydtrjmZnlveLgTL68A3N1vRIgtp7wKDIyitPRVjh37M9nZOwgKCjfZn1eKsbEhZDLbu6QtrNRyMDenoa2tgpycbXYDpJYuaGr/MM4V/xUXvQJQnvozk5Oj6HRGiwCIUKlsa8ftcQ0Gg2PtbsbISBfe3kEm0VEsFiMWByCTBVifP3cZ7fQ6nY7Z2WnUaiVq9RQq1QQ9PTW4ufmzefMuEhPXmHGOavUMBsOC03qn24UvPNFHX3ifzJf+dtlJKBS6oNcvWO3DmYkcGppAXd0ZYBtqtYpLl44yPT1Afv4+WvwDrcp1DU/9l+n/oaFrBASY7/L2lFfXNtzD2bNvsn374wgEOi5ceAs/vzjWri00W9ScRV9fB25u9kNTrcFZy4FGo+bSpUNMTU0TEBDD2bNvUFj4mFXxSKkcZ2ysj0qpH68++i9MTCgwGMDbOwQfvSsREdnk5ISZrCdqtZLDh59HoykyW0QXYY9rMBKuYdl2N2N0tBdfX0ufhuXmj0gkwsvLFy8vX1SqSZqazhMenkle3t1WNf/T0xOfG8HDl4Dos9/9hUOT8OaPvBTOTOSgoBiGh//M2bNHGBpqJCYmmYKC7yMSiRgIjjH1Z4tjGB3tJS3NPCTBHnt58uSrREbmmJSHsbGZXLlyipKSPxIVlUNmZp7Tnm5NTVX09tYgEMCVK2fJyLAfourosy7F4GA7Fy9+SHBwCrt3H0AkEnHy5NuUl79PZuZ2FIo+xsYGmJoaYnJyDIFAhI9PCN7eQcTE5LJuXbDdhU0ikREYGEJ7e4NV+deuGFRx0rF219HW1kB9/Vl8fSNYu7bAbNFydP4MDrZTXn6I2NiNZGXZ9oKcnp7E09Pb5vk7jS880XuOWTcFLZ2EQqELBoN1ondmIvf2NuHqKmZ8vBWtVsXY2BgtLdVERycjlcrsst1arZapqQmCgiLMjttiLyekfvj6RpGdXWA6Jha7k5NTTEJCLnV1JRw+/DuSk7eQlJS5bAwBQFXVGfr7a9iz5ynAhfPnD6FQ9JKf/4BDeQkcYYV1Oh01NSX09Fxl3bq9REUlmc5t2bKfd975NV1dvyEsLAVv72Di4vKQy0MtYg0cEbni49dRU3PWptLL3vcwXNfW22un1Wq5fPk4Y2Nt3H33d2lpucCpU++wbdvXTITvyPxpaiqjqekSGzbcu6xX59TUBJ6en18e2S+8nX7GhgvpUnlMKBSysGCdvbdl6lp6XKvVUFt7gm3bvsG+fT/koYf+keTkHCYnOzly5HccPfoyDQ2XUamsZ/MZHm7H2zvYgqWzFoarFYlpiMrmZy9+n7vvE1L0ZDShp2+kepLJ/CgoeIi8vH10d1/m009fpL+/0+p9weipdv78YYaHG9mx4wl8fALx8fFn9+5v4ebmy5Ejv0Oh6LN5vb1nvZkVnpwcoaTkD0xNKSku/o4ZwQOIxW5kZ28nMjKR7dsfJCdnKzExyVYJPvO5g2Y+D5nPHTQbA4CgoDj6+lr49NOXaWmpsfBpsI3lk3ooFEMcPfon9PppioufJigomoKChxCLDZw69Y7J7m5v/uh0Rjfh9vZGduz41rIED6BWj+PltUr0NlF94B8cilsXCoUIBEL0ej1L4Wjse13dcfz8Yk3upCKRiOjodDZvfpD9+/+G5OQcxsc7bC4AQ0PtyOXRFvdf6lw06R3IhcR88q6WIRntWWbSR7F793dJTV1HRcWHnDr1DpOT5sotrVZLaenbaDQj7NjxBBLJDQITiUTk5e0hOXk7p0+/RXPzRYvns/esNztCNTeXU1r6CpGROezY8ZBNuTQsLI7R0X6r32IRjjrpXL1aR2RkPImJGQwNNfHJJ89x/PhrNDdXOWxRsYbGxgpOn36NpKRstmx5yMQFCYVCE+GfOfMeWq3W5vyp/dpPKSn5I3NzAnbt+pbDTjYzM5N4ed15T0lb+MKz91159+Pp6e2Q5l0oFKLT6Sx2WkdkurGxAXp6rlJc/F2rz7G4AERHp6PT6ejra6Gnp4GWltNIpUGEh6cwONhBTs69Vq9fZC+bm8u5erWW//rwF4i0jivMYmOziIxMp6npLKWlfyIwMJmgoCjm5+doaionKCiQvDzrCjSApKQ1yOVB19n9bnJz99t0L13KCqvVKi6depWZGQ3btn0DPz/7Xn4ymQ9ubl6MjvaavBSXwhGWWaudo7n5LFu2PIBcHkl8fDZarZa+viZ6e5tobCzFyyuU8PAkoqOT8fT0svtcYPT9uHDhMGr1CDt2PIaPj6XZbJHwz559kzNn3oOtxvj2m+fPxXt/yKuzSqKiNpCVle+Q6LWImZlxvL1vX6YhZ/GFJ3qwL7fdDIFACFjfXZbro6LiY5KTtzikVbW1AHR3X6Ow0LaCpru7gaamixQVfRPJi89YbWPP1VYkEhEfn8vo6BitrWfQaFLR6eYALVu2LB+w4ecXxO7dj3PhwhGOHfs9mzd/bdlUZH19LVRUHCYkZA0FBdscdnySy+MYGLhqk+gd0R3U1V0gMDDULMuQWCwmNjaL2NgstFot/f0t9PY20tx8Ci+v4OuhzskIBOYyPcDgYDfl5R8RFhZpFvUI1vULW7Y8bEb4i/OnubmcxsYL5OTsJSYm2aHxWIRWO4dON2fGjX3W+FIQvaMQCl1syvX20NJyCYNBbNX9djll080LgFjsRmtrNevXWyYUGh7upqLiGJs3fx0fH3+nXW31ej1NTZW0tJwnIiKOb3zjX3B3l6BQ9FFeftjhdxWL3Sgs3EdzcxWlpa+RmbmNhARLhyadTkd19af093exbt0+IiLiHBqPRYSFxdLYWGrzOZYzoymVk3R3V7F793fsvIuYmJg1xMSsMS2+vb2NtLScRq3WERVlFNP0ej21tWV0dl4mJ2cX0dHmDkT2THKLhH/69DsUFOynpuYoCsUwRUXfNMVWOOPMpFRO4OkpdYozuN34iyJ6EGIwOEf0Go2axsbzbN784C2HuKamFnDs2MtkZOSZ2ZUnJ0coK3uXdevuJjjYqNl3xtW2v7+LmpoTuLoK2LbtIbOQYbFYgk6nceqdAVJScggICKGs7BCjo11s2HCvaecbHx/kwoX3kEiC2bXrSZMPujPjERQUQXn5JBqN2mpo73IiV13dGWJi0hz2KFzKfbW1VVNXV0pHRx3Xrl3BYJhl164nrfa3nEluy5aHOHPmDV5//VmiozPZufNx0/d1do4oleN4en5+uzx8CRR5zsDFxbYG3xYqK48QGppq8nu/Gc5EhAHIZAEEB4fR2lptOqZWqzh79nWSkwuJjr6h6XYkclClUnL69CEuX/6A5ORsdu160iJHgLu7BK12zql3XoRcHsru3d9Go9FTUvIHlEoFDQ3nOXnydeLj89i+/YBZ0Ikz4yEWi/H3j2Rg4KrN+w8UPkrpC1188qGe0he6TO8+PNyHQtFORsY2s/Y3R9QttXaYPZNIRErKBvLyDvDxx38gIEDOXXdZJ3hYXr8gFApNi+K2bQfMFnRn54hKNYWHx+dno4e/sJ1eIHBupx8a6mR0tI/i4oNWz68kxDUlZTNnzrxLWlouer2e06dfJSQkk9RUS9HBlp5Bp9PR2HiJa9cuEhmZQl7eMzaVbmKxO3q9zmaQ0HJwd/dg+/YDXLlykbfe+r/I5XHs2PG4VU20M+Oh0+nQag3U1BwnPDzVqZj0urrTJCdvMvMrWIl7cGRkAuHh8cTHr7PLTjsiai0szOHtLbfox9k5olJN4O1tX8t/s7ig8g1Bpf4b+PGP7V7jDL6URK/ValGrp5mZUTIzY/yt0UwzMjKIQuFY4giFoo8TJ14mPDwDkcjVapuVhLgGBITj7S2jquoc09NdeHmFsH79Npvtl6Knp42amhNIpRKKiqxrl5fC1VWMVjt3S4kYMjI2olQO4OrqY9P05LgPez+XLx/BzU2Aj08kJ068SGHhIw4prxYzGCcl5ZodX2liEU9PX6anx5HJbBOaI6LW3JwaV1dLz0hn54hKNU5EhO0MQ0sXN6/xATz/8R8hOBgevT1JOL/QRK9UTtHUNAIYUKun0WiUaDQqFha0SCQS3NyMYbUSiRdeXjJycgqorj7C1NQ4mZnWzShKpYK6uhOMjAwSFpaNVqvk0KFfER4eR1zcOuTyG950KwlxVatnmJ6epbv7KFrtAlu3Poxer19WcTM5OUZV1QlUqkHWrr2LyMg0h8dJLHZFq9WYseIrQWLiOsrLPwG2Wz2/3HhotVrq6s7R01NLRsYWEhONXnTV1ec4duyPFBR8nYAASzHK1JdOR339KdauLbrlHXURbm6eTE4OEhZm22nGEZOuVjuHi4sl0Tunm2mls7OWjIxNNp/F2uIm1Gjgpz/9ahC9VjuPQDCHr28Q4eHReHr6IJH42DWrJSZupKzsXY4f7yE//x6TJ5haraS+vpS+vg5iYtZzzz37TT7tSuUEbW31nD9/CLHYhcjIdBIS1jkd4qpUTnDq1JuEh8ewf/8zDA11UltbQkdHDZmZ20wacPN31FJfX0Z3dzVxcVls3fqA0zu2q6ubw8Uc7EEuj8RgmGd0dAC53DK/oL3xGBjooqLiCDKZjOLip8x29ezsAmQyX86ceYvs7LuIibGe2KOlpRqJRGyRUxBWxnXpdDpGRjro6WlgfHyI1NTNNvMmLmfS1WpnrcZAODJHhoe7qa8vRa3WEBe3kfr6UwQFxVjdCGwuYj3OZU2yB4Etf/U7gXXr1hkqKysdbn/qVAW9vZbx9MvBaKI5TmdnE1lZO5ic7KOjo4HIyCwyMjbZXDT0ej39/Z20t19hdLQNuTyUuLhswsKSlt2pR0cHOHfuXRITs0lP32x2rqOjlnPn3kWvFyKVGtM/CYUuuLiI6O/vISEhhY0b71txrbmjR/9AaupWIiOt1ztzxqRUUfEper2Y3NwdDt1bq52jquokQ0NNZGXZJmgwKujKyt4nNjaNrCxzs6ZGM8vhw79j69avWeUGlrK9YNxRbaVNA7h06UNmZubZuLGY1tZqOjqq8Pb2Iikpz6HU6Dfj6tUKBgf72brV8bTlExND1NaeYHJynKSkfBITjfETJSWvEhYWSUZGocU1RU9GW0/qGRUFXV0O31sgEFQZDIZ11s59oXf6lUIoFJKdvYuQkHg++ug3xMTksmvXd+wmvFy8LiIijoiIODSaWdrbG6ivL6Oq6igREckkJKy3qi/o7++kvPx91q4tIi7OstJLbGwWExPDzM8LyMrabFK86fU6rly5jE43YZXgHSFWvV6PQtHHpUvH8PMLtunjbk8BplJNMjTUgULRw8DANRSKSXJyls9A1NPTRmXlUQIDgyku/t6yWXeDgsLZufNxTp9+G6XyLfLybnA19fVlBAWF22T/neW6uroaGBjoobj4O7i7e7B2bQEZGZtob2+gtvYcdXUnSUhYR1xcjkOclVarcTjaUaWapLb2OMPDvcTH55Kf/3UzRebGjXs5ceIlQkMTLTgPa+KC3t0d4bPOZU2yh7/Ind68j1eJiMi6pVxkCsUgbW319Pc3IpN5ExubSWTkGsRi8fUEG0fZuPE+u3JjS0s5o6OjFBSYu+nqdDqOHHmRxMS1JCXdiCRzdGe7erWSjo4GgoJC6exspaDgATPW3NbOofaQ8c9/9XvGx4eYn1/Azy8cP79wgoLCqa09RkJCns0xU6tnqKw8wfh4Jzk5u5zeNbVaLefPf8Tc3Bhbtz6KTjdPSckLFBc/dVtCTlWqSY4de4G8vAMWGZAW0dvbTmvrJZTKQWJi1pCSkm9z0dJo1Jw//xYCgTdFRffbvK9araKh4STd3VeJjs4mI2OT1TwAAM3NNbS3l7F799MWi46F9v7/+RtCnNTef+V2+pshkchQqaYcbm9td6XwUQICQtDpiujqaqGrq57a2pO4u3szNzfF1q2P2FVQAXh6+tDT025xXCQSsWnTvZw58yohITEmTmI5bbVKNUlj41mqq0+xZcuDpKVtxMtLztmzb7B2bTGxsUa52KYCbFZJQW87E8UH8fb2NxNfNJqNNDdXWCX6jo4m6uqOExoazZ49T5vMas6IEGKxmMLC+6mqMuYNcHPzJTY247YQvF6v58KFd4iJ2WCT4AETR6dQDNHcXMEnnzxHaGgcqamb8fEJRKWapKengYGBq4yPK5BK5czOdnLkyEukpeWbRdNptRoaG8/R0VFHaGgaxcUHly1ZlpKyloGBNmpqSli/3iQVl7QAACAASURBVDyP4c36hb6+VoqKBITcwpgsxV880YtEIvr7O+0mNViEIxlS4uPTiY9PR6mc5N13/4O9e59cluABpFJfNBrrIbkBAcEkJORz4cJ77Nz5FEKh0DaxjvZw4cL79Pd3EBmZSVBQjMmxKD5+Ld7e/pw79w5NTRcQiRbY6OGNXD1p0Y8AKCr9A6WPWDqRREWlU19/isHBbhPhqFRKKipKrleDvZuQkBtKyZXY0IVCIevXF+Hp6UNp6Uts3/7/2hg551BXV4rB4OHQ9wbj2BcU3INKtZXm5ipKSl5Gq1Xi7u6DXB5HbOxGtmyJQyx2Q6/X09FRS13dURoby0hJ2YRKNUxrawX+/nEUFX3bqXTWmzbt4ciRPxAenmQ2nncaf1EeedYwMtLD5GQnZ84cWjYvuTPeVVqtBn//AIKCoh16Dk9PHzQa26Gg6em5CIWe1NefAmxrpcc8vXF19Wbv3qfJzb0LvX4eieSGPkAuj2TnzicZHW3DwyOEju/8ykY+IdtcgFAoJC4uh5aWywC0ttZy7NgfkUol7NnzfYsJ6qxX2s1ITc0hJmaNw3nz7WFwsJ2Ojgby8+912rddKpWxfv02srJ24esbxr59P2Dr1n3ExqaaZHljCe1s9u59hoSEDM6ceZnm5its3foohYX7nM5fL5FIyc4u5tKlj9FqnXelXimWHRmBQPCiQCAYEQgEDTcdyxIIBBev16qvFAgEG+z1cbvgqBvmIgYH25mbW+CBB34CzFJS8meUSstdbxHO2IL7+zvNbPrLQSx2RyDAaq17ME6ojRvv5tq1WhSKPqsx3AbAS+jCfTNDSCRStFrtdZ8Fc2uEVOrDvn0/QqFooyZli81CDfbMXYmJGxgZaefw4Ze4du0CW7d+nfXr91hVet1qcQ4XFzdqakrsxt8vB7VaxdGjLxAbu/6WqgGPjRlt+vaUe0bizyE//wC+vn4EBFjXOTkyX2NikvH3j6Oi4uMVP7OzcGQ5fAnYveTYL4F/MRgMWcDPrv9/R+FoppWbceXKaZKSjMEvW7c+TFRUPMeP/8lmBhpHM+wAjI52EhIS79Q7uLtLzPQLSydFcvVhMjLuorz8AyoScnlj22MoxRLTTi0A3KbHTO+t0cxYuKou9nfgJxv5hhDKyz/g0iP/6lASkZshFouRSgNxddWze/d37YowzozbzVAo+jh69PfMz2uYn3fh1KlX0GjUdq+xBo1mlpMn38THx4+OjkucOvUuCsWQ1bbLEeLERK/D3FtkZCrj471WYx+cma+5uTsZHR2hq6vB4tydwLJEbzAYzgLjSw8Di8upNzBwm5/LAs6ykP39bajVGhISMkzHMjIK2bBhNxcvvk99/SWLaxzNsGPMbd9nk+htTSyJRMrMzJSpjbVJsW3wCq6ufhw+/Hv6tjyBiyzAZpnlmRklHh4Sm/0Vvv4zDmineXl+gYqn/tuhsmA3w8vLl9jYNbi4uNht5+i4LUKjUXPx4gecOfMOUVHruPvu77B37xNIJIGUlDzP2Jjj00mrnePkybeQy+Xs3/8T7rnnr/H3D+DMmVc5deodRkdv9LUcIWq1c0xPjyGX21YA3gyx2B0/vwD6+iwVtM4FJ7mxfv1eamqO3VI2IEexUkXeD4FjAoHg3zEuHDbLuQgEgoPAQYDISOfKMt0MZ1nIxsazpKTkW7BpEREpeHvLOXr0Ra5cOUNISBQeHjI8PGRcC89k6hu/IPfDf0cy1mdTCz042I2Xl7dVE489pZabm6fpo9qbFEF/9Sr+/j6kp29AMtZr871nZqZxd/e0219R6Z+oePq3vDqmYOj315zy9puf1+LisnygjKM2dL1eT2vrJZqaLhASkkJx8UGT67BQKGTTpmJaW8M4deoNMjO3kpBg1eIEGBfemZkJLlz4FJnMk9zc+wAjh7JmTSHJyXlcvXqR8+ffQCYLJz09n6JlLCKjowN4e/s4NUYhIYn09bWZrCWLcHa+hoVFExqaycWL77N9+zcdvv9KsFKi/x7wI4PB8J5AIPg68AJg1YXLYDA8DzwPRjv9Cu/nlBtmf38bGs0cCQnWvcNksgDy879GWdnbxMSkMDMziUqlYGKikzaxmD/v/QHz8/PGijfzBtzPfYRe74JAsMDMzDiDgx2EhFg3otgjZo/v/96UU8/epHBxcUGrXVj2vY2x6p7L9peTs5uzZ9+grOwTpzzKdDqtww4py7mxDg93U1V1BIHAnS1bHrbq5gvGtF7+/oGcP/8eg4NtBAfHXy8ioWRuzljNaHZWjU6nBURMTQ3z6KM/s+hHLBaTnr6F5OQ8Wlouon/17/GwUb56ceyGhvrw9TX/rsuZIiMj02huftEivmIlbsM5OYUcPfoSLS2XSE7OtdnuVrFSov8W8IPrf78D/PH2PI5tOBPY0NBglOXtaXBDQqJwcRHj6xts1XVUq9UyMzOOSjVBa2s1vb3111NTp5GTcxdnzrx23UvLPK20PeKTSn0YHjbKmvYmhTGd98Ky7z07q8LNTepAf0Ly8r5GaemLVFWdISfHdqmom6HXzyMSLZ822x7UahXV1UcZHu4lPX0bCQlrltWsBwQEs3v3E7z66v9GqxXg5RWATBaGRCLF01OGp6cMicSYfaaiopTy8nfYvv3bVvsViUTsVHSTefEDm/lxFwlxfNy8LJcjpkgvL188PDwYHOwhLCzadO1KgrVEIhFhYUmUlr5Of38nPj4hgA6d7nZa6VdushsAFmfOdqDt9jyOnRs6WK66v7+Nubl5m7v8IoRCIcHBSfT03FCe3CyLF38vkbS6UsRiLyYnh7jnnr9izZpCQkLiCAwMIyAgltbWyxb92lNqSSQy5uaMZbHsycECgYCFBf2y763RTJsCW5aTq8ViMVu3PkJvbw2trfXm7XQ6ZmfVKJUTKBRDDA5209PTxuTkGK6uK6vNrtfraWw8z5Ejv0MkkrF379MkJWU5bEqbn9eysGCgsPAAubk7SE/fQGysMdmJVHqjanFOzjYWFtypqvrUZl/WuC/TfcQeND/2LHq9nsnJQTMlnqNyeUhIHL295iTgTHl1gPHxYUpKXqOvr5bdux8nJiYZvX6G0dFrTE7atjitBMvu9AKB4A2gEAgQCAR9wD8BTwH/JRAIRICG6zL7nYYjCTIbGk6TnOxYdtLIyCQaGk6wZs1266v6b56iMvcAOQd+QkCAuXkuOXk9ly8fIi1ts9m97K3wUqkvs7NK07uAdTnYpaXGoUINGs2MiegdkaslEhnp6YWUlLxMU1P09RiAOfR6Pa6uIlxcXBGJXHF1FSMSuaLTKenoaMXPz7mdZnCwnaqqI4jFPmzd+g2bJi1b0Ov1lJd/jFC4gEajtmuCM2au3cexYy/i719LbKxl7IMt7ssAvLTpAWo1C4Q3VeHmJjKLDnRULo+MTOXChY+Bu8yOOzJfNZpZamvP09dXR1LSBtLSHjbNp9jYLPr6WgkIWD6HvzNYlugNBsPDNk5ZL+L+OaK/vxWNZp74+Ayr55fKZ42P/h8uqlSoVJPWV3XtLAfPvcJsy1kLAgoJiWJwsJdPP/0fEhLWEROzFrFYbJf4PLVaZmdvaGdtTQpjXb7lbdbGnf6G66q9SabRzFJXZ5xc+fl7iYpKRyx2RyRyt5nVZtGHPSwsxq5L6yLUaiWVlUdQKIZZs2b7iuMdqqrOIBTOER2dwujowLJ2d4nEk7y8/Zw79xa+vsEWsRo2RR95FIE/epn4jmoqKo4gkfg7dt0Sbs7d3Zve3qscPfoq4eGJREYmLBvcpdfraWurp6HhNEFBYezZc/Azy5D7F+WG29BwhpSUzVZ3eWs7+dr/eZpdRQfp6WmwuaoLsC7L9fY2ExaWQGrqFjo767ly5QzBwTHEx68DG8QnFotxcTEGrNhLeCEUCjEYdMu+79ycCg+P5SdKa2s9TU2nkMtDKS5+2uHiiVKpD9nZd3Hp0ifs3v2EzeARnU5HU9N52toqiYxcy91373O6/t4ienra6OurZteup2huLkehGHAozXRQUDjp6ds4e/ZtiosPmulalit0GR+/DrV6GrV63qxPR+RyjWaWU6feJDd3F35+IfT3t9Laeg43NylBQfGEh8cTFBRhNidHRweorCzBYJhl8+b9NtOE3yn8xRC9cZfX2dxdbMln95S/xT/GZdhc1W9ue3Nqpqam8yQlbSI2NoXY2BRUKiVtbVe4fPkIAsECUVFpxMevw91dilptrHGuVhvrnI+M9BIdbXsi26vAC8ZdYm5Ow/z8nF0CViiGqKwsQadTsWnTvQQH207TZAsxMWsYGGjj0qVjVjX//f2tVFeX4O4ewPbt3zKlhV4KRwJylMpJKio+IS9vHxKJDLk8nJaWGoefNTk5m7GxQcrK3mHbtsdMxx0RfRYWdLi4mJPDctdptVpOn36HwMAg1q0rBowsuV6vZ3S0l76+JqqrDzM7O0tAQBxyeRgTE8MMD7eSmppHUlLu55IK+wtN9AsLC4yNDSAQCBGLJbi7SywGSaNR09p6kcrKo4SEZNpMTWVrJ/eaHGJiQkH9Q//Euuf/yqbC5+Y+hoY6Uas1ZrZZqVTG2rX5rF2bT39/Fx0dV3jppX/Gx8cPNzdP3NykSCQy/P1jqaz8iNHRQasVafV6PYODPXR0tKBW/4GFhXkWFnTo9Qum33q9DoFAwPj4MHV1ZaSl5ZrZlhdZ+d7eOtLSNpGUtOmWJtf69fdw5MjvaG2tJynJqCBVqSapqDjMxMQ4WVk7iI21HV7riBZcp9Nx/vwhEhIyTb79AQFRTE0dcSjd2CJyc3dRUvIKtbWlZok6loo+SuU4410NTEwMolSO0N3dird3CHp9odm9bIlMer2ec+cO4e4uYv36e8zOCYVCgoKiTDu4SjVJb28jlZVH8fX1Ze/e5XMP3El8oYl+eHiYK1e6cHEx5oCbn9fg4uKCWOyGWCy+blabJCwsi127vktr63lOnHidzZv3WciB9uSzgIAYysKjmXn052S+9c/4z0xaNe8synJNTedISNho04kjLCwaLy8fBgcbuffeH1iwxSrVJDU1x/j449+SlJRPaGgEQqELGo2G+vpzaLWTbN16AB+fQFxcRLi4iBGJRAiFIkQisem+SqWCy5c/5siRRrKzdxIWFm3Gyu/Z4zgrbw9isZj8/Ps5ffot5PJgenqu0N5eS3T0OvLzv7ZspltHklpWVZ3CzU1glvZaIpEiFouYmhqzyUEshUgkYvPm/Rw//ifk8nDk8hgmJgaZmBhgYmKI6ekxpqbGEQpdkcmCkMkCCQnJIDl5KzU1pZSXf0Be3v0IBPaVZ2VlhzEYZti8+bFlFySp1IeUlHwUCgWBgcGfK8HDF5zoQ0NDKSzMNSlm9Ho9Wu0cWq2G2dkZ6urKCQ1NZMOGPdfbx1Bbe5zjx19i48b7zJRP9uSzsJAErl69wJUFPa2/vEBue7XNtmNjA0xMjLF5c+aN57TCulZ5hRMenmhVDpZKfSgoeJChoU4++ODX+PuH4+7uwdBQD0lJWezY8T2HdjaZLIAdO75NR0ctly69z8zMPL6+Xitm5e0hICCc+Pi1vPnmL0hK2khRkfU02dawnBa8o6OJwcFGdu8+aEFsUqkPvb0dDhM9GGvpbdy4j0OHfoW/fxBSqRyZLBAfn2DCw9fg7x9kdTHcvv0hTpx4g4sX32fTpgds9l9RUYpK1U9R0RNOejhqEIut60U+S3yhiX4phEIh7u4euLt7IJP5EhAQjF6vMjufnb2LgIBwLlx4G3//FGJiEvD2DkC32VjrzZp8FqWZpaTkRbZsuZ+IiBQGrmeCsda26dybxMauM+1utljXqo0P4Pqtn9t9n5GRbuLjc7nrrocAqK0tY3Z22GlWPDY2i5CQBN5+++fs3PkjmzuvM4kurMFgWECn05KdvdWpMFJ7XNbk5BjV1UcoKDhgdQcUidy5fPljYIH09I2msVnuXfz9g/HzC+TAgf/lMGGKxW5s3/4gJ0++yaVLH5pce2/GlSsXGRw0lgNfOs7LPZPRmWuV6G8JIpEIjWbe4nhkZBpubhI+/PA55udHrufFn0Ui8cbzkX9DIvHFy8sXmcwX2eQYMpkvQUHhJCXdiBC2JssplWMMDfVzzz03JoMt1vWBqsNc+PGfbT67Wq3i6tVKtm+/oXCKjIzn7FlLhx9H4OHhia9vBErliEOJJR1JdLEIrVZDWdk7zM7qyMv7GmVl77N790GHickWl3Xl4X/h/PkPSE7OtV3d1kNGSkouQ0NN9PVdZdOmvaTVlTiQ928KqdTbbioqa4RpLP7xECdOvM7lyx+xYcON9GatrfW0tV1gx47HLTgFR8Z3fl6Dm5uHxXW3shCvBF9qondxEaHTWTdtBQXF4OsbSH7+15FIpOh0OqanFUxNKZieVjA52cvAwBVmZpRotRpGRvpQq6fsylsNDWeJjs4yY9ltsa5+qnGKnoy2+THr648TFpZmVvbZ+LcYhaLPoWw8SyGTBTIxMWj12pUWi5iYGOLs2beRy+MpKNiJSCSipGSA48dfZdu2B22a8W6GLS34+yIfvFynSE/fbHPyCwR6PD392LRpL01NF1D/8QdknX8LlyUVaZe+y8zMFB4ezhMmGAl/x45HOHHiNSoqDrN+/V66ulppaDhOYeHDyGR+KxpfnU6Du/uNZ7qVhfhW8KUmepHIlYUFy51+Ed7e/igUg0RGJhB5/i3LSbXzSQDm5+c5e/YQR468yK5dT1r1IFOrlQwMXGPPnu+ZHbdt6hOYji/9mBMTw/T3d1Bc/LTFVUFB8fT2NlsQriM7gkwmZ3Jy2OpYrCTRRVtbNfX1p0hPLyIp6YanW2zsGsrK3uCTT54jIiKLtLQNyzrQLOWcWltrGW89y+7dB+1OfoPEWHNeKBQafegvHbIgeGvvolIp8fAwr1fvzMJn3PEf5vDh33P1aj1TUwrkcjm9vc24urpbEL4j46vVziEW39hUVroQ3yq+1OmyjDu9PaKXMzY2vGwc9cBAB5OTPURGJnDmzCuUlx+1yHDT2HiekJA0C7bOVoYbwZIkVTf7bFdXG7PNWnPQCQ+PZ2iow+yYowkZfH3lKJUKq2PhTKILnU7HpUsf0thYzpYtD5sRvPH8PLGxa9i58wkMhmmOHv09ZWWfolROWL3HUoyPD3PlSin5+QcQi93tTn693mCS41Ne+Skire2iHje/i1o9beHh5szCp1D0cfnyh8zOqpiYGOTxx/+FvLyHUKk0lJT8iaNHn6eh4bwpVHq58TVypAtmeoBbzTi0UnxpiN5aYgpXV1cWFnQ22+R11TE1NWJ3UrW0VFNZ+Qn5+fdTUPB1iou/h8Gg5vDh39HcXHXdYqChp6fJajmipYEVCqlt90sPRQ/9/a1MT0+TmrreapuQkChmZlSo1TeSaDoa+GEkeuuE52iiC5VqkhMnXkCpnGX37ieshsAuRhfKZH5s3LifPXu+i1gMx4+/wOnThxgbs85tGK+d4/z5Q2RkFJhyvtub/AKBsTCpvXYAuuuBM4tQq5V4eprXEnBk4evtbeb48Rc5d+59/PxiOHDgxwQEhCAWuxMWFs3mzXvZt+8HpKRsRaFQcPjw/3DixEuc2vEkOrHt8dVqNYhEYpv3tXVcrVai0dze/HlfCvbeFvs38ciztHpKbbbZ+c4v6M/7ut3Msi0tZ80KRUokUvLy7keh6KOq6gjt7TV4enrh7x9v0596kXXt7++iuvpjfnXoP2xoqyOoqTlBevpWRCKRTZY9ICCanp5GkpONi4wjO4JGo2ZqapCxsUFmZpQWNdAd8UobHGzn4sVDREVtICvLdtDS3Jy5FloikbF+/R4yMgppaSnn1KmXmZ8XI5cHA3qMpRWuRw0OdOPv72umNLWn3b858MhWO71AyB9z9zHmF0v6dUee2dkpPD3N6wHaUig2feNfuXatkpaWixgMriQm5hIXl25SAhqTn0ya0pOLRCKiopKIikpCq52jp6eN4wIPutffw0P1J/CdHmdWHkHzYz83je/c3KxFxKI9M7JWq6Gm5hjd3VcpKHAsFNpRfCmI3tZOl/vhv/P+g/9ou412ln2XP0TtH46nwjIDzbjUh507n7Aa6BAQEM6uXU9x7Vo1J068yvbt3172Odvb64iOzrD6MefF7ry5pojJySni49PtyrGhoRn09dWaiN7WZJ/2Caa8/APGxwdRqabx9Q3FxyeaK1dOs3HjvRbt7QXkXLlymqtXa1i//l6znO7WoNNpLJRkYMwBmJVVRHJyPm+//XOiojbj5uZh2qmFQiFRUWk0NJyjvv4ka9YYC2Xam/wGg8Fku7fVru6Z5/HK3sWVCx/Q19fKpk17mZ1VWlQNWrrwqf0jOLHtm3w0NYqHFjIy7iIiIsFisTNWvh2zWt0o+sK7FJv6C+fknh9yLCCK6elBgkViYvpbCQlJQKNRWxC9rYW4LCqD2sO/JSAggezsInx8bt3B6mZ8KYje1k4nHR8wsfe22gSoJyl98J8ofN18UdAJRXgi4OsP+9g1lcTHZ6PVztLT00hiovXoPTC6vg4Pt7Fu3dMMXK9RlvTy3+E5NsCYpzcf5j5AX8HjuLVfYnS0x27qpmv/3Uht7VFTzfnmx54l8zdPmcmzcy6uHNpwPx4egWRnZyOXhyESiVCplBw9+gcmJ0ccKnNtNMe9x8yMhrvuenzZ6LDFa9zdbTvLuLu7ExKSjEgktlp9NzQ07nppqzE2btxvlwtZOP+eiejttZMBO3c+SVPTBY4ceZ7BwT6Sk3vx9PQ1M9sNFD7KtQ330NR0nq6uJvz9o9mYkktwsO3Mxu7uMlQqy5j2pQu3p6KX4kO/IPSZ52nZdJCurmbq6s5x+fInuLl5Y83J7+aF2Oja/AnK+jI2bNhPWFgMfX2tNp9rpfhSEL2tnW7GP8xksrPVZlIWwOX4Tfg+8zzJf/4HJIpe1B5euGs1uKuM+T6XM5UkJubS2noRhWLIZmx4e3sDcnkIer2OurqTHJ6ZZP6+vyM8PJ2ioWYe/uCXeJx6EaV3MO8NNNpl2SUSTzw9/Skvfxe93sDY+BC5uffzjcsf4jl33RlJIiMtbRO+S4o6SKUyEhPzqKw8zI4d9rmTiYkhzp17Gz+/OHbv3uWw3d1YwdW+qU4uj2J4uN1qViKpVMbOnY9x/vzHlJa+SEHBI1a5kP7+Vtrbq5DLxwkLi8LHJ9AutyIUCvH09EcodCE/fzd9fbW0tJwnLm49iYlZaDTTNDaeY3Cwk9DQVHbs+DaptUdJ+WmBXauIp6cPKtXS3LDLa9/XrNnEmjWbmJgYpb7+EgMDtVafezHhSGtrBTEx6ygosMzteDvxpSB6e84dC9MTdtuc3/MMExPDNGbu5Lf3ThIVFc9PfvNdXJYsEPZMJSKRiNjYtTQ0XKSw0DLSzPjRTgMLHDnyAiEhyWRl7SUkJJLws2+Q+fLfmp7Le3KQR8+8xqy7F5JZy4o3i0ockUjI2NgMycnZZGbuJNUvGPfLN1I+LabCBsuFKjV1PV1d9XR21tusItveXktNTSnp6dtITs622sYWdDqNmenJGkJCorh82XaEnFjsRmHh/VRUnOT48T+yZctD+PoGo9PpaG+voq2tkoUFEWvX3sfcnJoTJ17F3z+Q1NQCm4489fXltLdfoKjoEeRy4ziOjvbS2HiO11//CLFYSlJSHnv27EIikTpsJ5dKvRkZGbS4n6Pad19fOQUFe3jllTqOHn0JNzdzq01/fzP+/pEUFX3T5G5s0veM9qALDYFf/vKrUZ9+ETbZurwDLBz6ld02wymbGTz9PqOj7aSmbiQlZdOKTCUpKXl89NFvmJwcM3NBNUaHvYVWK2DjxruJjk42W6Wt7QZuOi3TLiJ0Yg8zlt1c2zvDpk37TCWrnLHpikQi1q7dQVXVx0REpJo9j06no6rqMIODfWzdajtBpT1Y8yxbCrk8lLm5OdRqJRKJzKbSMjd3By0tfpw8+QpyeQSjo/14e4eyZs0uIiLiTKx9ZmYera21lJd/hEQiISXlRrlpvV7PpUvHGBtrp6jo22Y2dLk8gsLCR4iKqqem5gyZmfkms5mjYyqVetPdbZma2pnklyrVFG5uwusKQuP9F5WUavUYHh7eZgR/82LkOjAAB68np7oNhP+lIHqwroRyWVhgYWHBbhvpzDQjI23cd98zJvlyJZlKxWJ3oqNTaWq6RF6eMcBHrVZx9uxruLvLeeihHzpV/UU6N8ufip7ggapPkU0OMSmT8+nmh7ig0TH34XP09LSxc2fAsv3YOh4REce1a+HU15eSnb3r+vMqOXv2LUQiL5tJMRxxAtJqNbi52d/phUIhfn7hDAxcY0tfs90dNTk5m9HRLvr7e9m58xtmXoqLEIvdyMjIJSUlh46OJmprz1FfX0pMTDb9/d2Amp07v2ORqHQRMTFr6Oqqp7HxEmvXFtgdu6XHvbx8mJmZtmjnTPLLK1fKiY/PtJrWOzw8lZKSP3LlykUyMjZaz+mnVsNPf/rVInprcHFxQSAQmhRe1jA42E1qaq6ZQmklmUoBxGIPLlx4H6WyDx+fYAYH2wkPzyInZ6tN85atBUbpE8xH0gBanvpPxGKJMd22h5QMD28kEi8qKw/T2dlMcvJau/3YT6lcxCef/DdCoYi5OTUtLRdJTd1OTs42h7MLWWN3jdFiEotrly4WAQHxDA93Lruj6nQ6BgevIhAI8fGR2+1zoPBREhPXkJi4hu7uVk6ffhe53I+dO59aVg7OydnNsWMvExeXgUzm4/CYSiRezM1pLOaZo/n+VSolAwON7N1r7s25CLFYzJYtD3H8+J/w8ZHb5jh7bo/TzhfeOUen06JWK1EqFYyNDTA83EV/fytdXQ1cu1bF7Ow0s7OWq/AientbCAtLNDvmbKZSnU5HWdk7dHVd5aGH/p7U1G1MTIyjVs+TlrbBblScVacYsQevpxfyQ3ko//zS3/N/fr6PH/7qcbb0tRIWKkygAwAAIABJREFUloCvbzDJyXlcu1Zlvx87C5Ver6e9vZKFBRdOnnyP+XkhAQGRDAy0MThoffI44gSk1c7h4iIym/y2PAbzu6sYG+tfdke9fPlDAgLi8fMLp66u1G6fN3shRkUlER1tzFDkiOJLJgsgNjaV6urTgONjKhKJTLb6pRgofJTSF7r45EM9pS90WZ1DjY2XiIpKspvbwOjodA+XL3/EjF+Y9Ua3UCzmZnyhd/qurk5OnjyJi4vr9UytxiytQuHi3yJkskhKSl4gM7PQmJ/uJmi1WkZHO8nNXVqKz7FMpWBMVHH27Nt4egaxe/fjpkw3kZEJVFR8ypkz71BU9IjNcFZrtuE3Mu4iNCCUza/8g81dNSwsiYsXP+Ty5U8JDo5mLGMbuu8+R8Yb/7xsRJZSOU5Z2Tu4uEjZv/+vOXPmbeLikgkJ2UtnZz2XL7+HXJ7MunXbHQoeMncCmsXV1dXsvK3FYsOh/8ufin+A2j8MT0WfRb+zAZG0tlYwOjrCrl2PMz+v5dixFwgPT1q2Gs0i5uc1NoOkrHEK2ryvcfjwcwwOdoODOzXYt9Xbg1qtore3jt27v+PQMwYXPsaba3bxeNkbiLQ3vb9EAs/a50QdxRea6KOjY9i5c4tFdtOlGBzspqrqONeuVbFu3V5TsMrAQCfe3r4rzh7T09NIRcVREhPzycjYaHF+/fo9nD37JmVlH7J16wM2d/ybF5iysk+Zn5/gkWUmtVAoRCh0ZWxsgqmpSWZnpzgxO41L8ffx8PDEw0OKh5sHHrWlSKXeeHr64unpy8hIJ3V1p4iLM5qLhEIhcnk0/f1thITEEROzhpCQeKqrj/Lpp8+zZk2RKa+gI+yu0QXXfIGzvVj04u8fyemdB9n13r9ZiFOX9/2YK1fOsm3bo6Y8CZmZO7lw4RDfdlDenp9XIxZbxjDYE1UyMrZSVXWcPXuecHjx9/CQMT1tabZbDo2NlwgNjbVwFLL1jHd/9J+8XfRt3ix6ivsrD5m0965fNe39cggJiWLPnicoKXmb1157lrVrt7BmTRG9vVedriwLRtbY6ALZRl7eAbvpn/PyDnDq1MuUlx8lP3+P3X7b2hpQKK5SXPw0Hv/fY1bbLE5qhaIPgcCVXbseNltM1OoZZmamUKmUzMwYyz319fWg0TSgUPQzNzfD3Xd/36T1BwgJiaGxsdT0v7u7hLy8+xka6qSi4hO6uhrY8P+T995hbaZ3vvdHQgghQIjeQfRiqjEGG2zA2Ngee3oyzTOTmWR3UrbvSbLnXNl6TrJvzp49726uM9kkM5nZyZRM9xSPewUbm47BVNN770JIQkjvHzIysiqY7HH2/V6XL9t6Hj26n+e5f/f9q9/fzkNO+TqM6aTmvH72FovAwCjKXQ0E/9FrZjta0zN/x3vL82RkHMTPL9i04x2dGmDW048lN0881ZZm2732tkajsrrT2/UjvNFHd3cd7e0NpKQ4x+QulcqtJujYg1q9TH9/A6Wl37R63NYYH6n6nOcLjlHz7P8gPDyORx/1IyEhweo1NoMH3qZ3BsvLKsrKjqPTTfH003+Fl1c4Fy68S2vrFaKiNsa9rlIpuXjx35mamubQoW865HsXiUQUFh5jbq6PhoarNs8zJmicNVWWOSq26O6uIyIizYwppuRbCp561otn/utu8vvrSE3dyc6d+ykqeoJDh14iMDCKwsInzAQeICgogvn5WbRardnnwcHRHD78Xfz8/Dh//g3O+MZx83u/suvr0GiWLQpH7NnGISGRTE8PW9i+H7q4EBCQSHx8qoX97rs4hZtWhe4edlpr9rZWu2xWo74GR6ZKdvZh2trKLaopbcHT05vl5XnHJ65Da2stQUERVuvv7Y3RY3qYYwIXvLyCuXXrOlNT1isnN4vfe6EfHu7l9OlfI5W6cujQdwgOVpCVtYejR79LQEAC/f3O9/weH+/n7NnXkMmiOHDgOafNArFYQnHx8/T313H7tmXWlVar5dq1z0hJ2W0yPewJikajob+/zVTS6oxTa2pqjKWlcRQKyw4vYrEYb+9gxsctWyobY/oHKCl5gbGxW7y+pOGDn1636Zgy1oSbh8XsOUZ9fYPQ6QxmJb83b15ErdaTk2PsCGNtx3PVr7IsErPkH2FzAdLpdBgMOqs7vaNF1d8/nODgSBoayq2edy88Pb1ZWrJMprIFrVZDT0+NGdGns2MUAI+f/hmPL0+Qm3sYHx/HqdEbwe+N0N9bNht86R1qai5SXX2cnJwD5OY+aubBNZIgfI3bt+uYnR1zeP22tgquXv2EjIxD5Obu3zBPnVQqo7DwGW7dusjAgHlfs+rq83h5eZKcfLc0915BWfKP4PzXf8RvEfDpp//E/LzSNJmd8aq3tdWgUKTb9GIHBCgYHTUf1/pn+uR/2clLYnfi4lIpL3+fqqoLFpoBGG16V1fLWLg9L7a/fzSjo8YFZ3j4Nt3dTRQUPGYaq71chr9/6Z9sLkBqtcpC6zA9Dyc881lZBxkZucXMjO1S4DV4eclZXl5yeN4aWltr8fcPtln/oNVqOVf0AhoXV6vH196vUOiCi4uL07/rDH4vhN7aTrfjX19k/+c/4eDBb5sys+6FXO5HUFAyX331C5svVqvVUl7+AV1dLezf/5JFn/GNwMcnmN27H6Om5kvGx43e6o6OJqanu9m9+wmL82/vOMKr33+PP/+TN/nu4T/mtI+CgIB4Hnnkz0hKSqWx8RrgWFVVqZYYH+8gMdGy3n8NoaEKJifvetBtaQ/7xro4fPgVNJpJTp163WIBu7es9l7odDqUygWmpsYYHu6lu7sFjWaFjo565ueNlN07dz6CTHbXsWVrx1P5RzA7O0tPj/WcdbVahZub9U46zoRlpVJPEhJ2Ult7wep9aLVatFoNavUyQqELy8tLNunZ1kOr1dLdXU1qqmVJrEq1QE3NKU6c+BllYelc+8b/wlb/9t8VmcbvhSPP2k4nAPbcukJ99RdWva9K5QK1tReZmelFr3fj00//maSkHSQn55tU7Lm5Ca5d+whPz3AOHnzCIX+7MwgJiSUrq4SvvnqN0NBk+vvrSU3NYWCgFS8vPwQCY2fd8fFuFheVBATEolDsYO/eeLPGF1lZhzhz5g3i4zMdetU7OuoJDo6ya44EBISxtLR0p6e91GHCzN69zzI42EZd3Ul6exXk5OxHKvVkbKwftXoGrRa0WhVa7TJarQqNxvjv1dUVxGI33NzcEIsliMUSJBJXlpaWef/9fyQ9/RAREbFmv2vLgdj+4j+Sm7SXioqPCAxUWHjANZplmxl44FxY1tc3hKtXP2F8vBuxWIzBoEev1yMQCBEKBQgELggEIBQKmJub4Pr1r8jLO2y3bdft2zfx8fHD3/9uvH12doyWlgrGxozFPiUl30Qu90MFLJ/4lw0nXt0PHmih12g0zM3N2OkzZ7CI2+p0OlpaqujsrCQqKpnExCe4fv1T9u37IX197ZSXH8fLyxMfnxD6+1tISipk2zbrLDbrsRHWUqVSg7+/Lysri4jFrri6+jAw0I1KVUdv7y0UilQyM/cTEhJlUnGtXb8nIYuamvOk2PGq63Q6ensb2Lv3riZha6w+PmGMjnYRHZ3uVEw+IiKZoKBYGhvPcfr063h6hjIx0c3KiorAwGCCg2Nxc/NAIln742mXWLS+/gITEyMWHWvsZbYFA1FR26ms/MyialCtVtkVentQq1XU1Z1mfHz4jrYYi1AouhMqta4Aa7Vqqqq+4PTpN8nNPWq1HFen09HZWcnu3UbG5NHRbtraKpiZmSI6OttU7LMem80Q3SweaKEfHx+luvoas57++C5OWj1n/SQdHOymvv4cnp7u7N//AjKZP2fPvkNKym58fALw8QkgLW0X3d0tlJe/T2HhMbs18mvYCGvpwsIsnZ3XKCl5AYnEixMnfk5aWq6JqGNsbJCKik9YXJww7Xi2rq//7i95XT3LjYSDcE/Ia00o+rqa8fT0MGkv9sYaEKBgbMwo9M6moIrFYnJyjiKVllNbe4lnn/0B4+MjNDScJCkpf0PNFzMz93H27K/o6GgkOTnL7Ni9u7JWq0W9MItKpcTXN4i2tmquXv2MjIxik2lgDB9unEe+p+cmjY0XCQpK5qGH/tApRl8wOmz37Hmanp6bVFR8hEKxg4wM8zLYzs5beHp6sLQ0y+nTZ9BoVomPz6GgIMPpBC6zTeX/Rj29QCB4EzgKTBgMhtR1n/8J8MeADjhpMBh+uKUje+89nvrh93lxYpxFV8kdsklLLPtHsrAwR13dBebnh8jM3I9CYRxmR8dNDAYViYm5pvNFIhGJiRnMz/czP+9cKGQjFW5VVWeIjc00OXBCQ1Nob79hKnoJDo6gpORFyso+Ymlplpych2xef9t7f0Pm35+mvv4iYUdesapZdHbWkJR0V1OxN9bGn17nxo16YOO7y8hIF3l5xsaS0dEyhEIB1659Qn7+E0530xEKheTkPMy5c2+j0xmdhGr1Elqt6s7fS2g0RlNBINCvMw/cCQ8PY3FxlHPnXkcs9sDfX8Hi4iJyufMtohYWZqip+YqlpWXy8uznX9hDTEwmgYEKKis/49y5HnbtOoqPTwCrq6vU1Z1BINCysuJCUtIeFIokp5zCziYJbQWc2enfAl4FTJ0bBAJBMfAokG4wGDQCgcAxRctG8N578MoruKuME1K2sowOcMFc8HVuUk7veZFz535NTEwae/b8sWnVVauXaW6+zN691jPlYmK2c+3aF3aLZdbgbDVWR0cTGs00qalfN32WmLidq1ffIz29xDQ2udyPAwde4MqVjykv/4Cjdq4fEZHM7ds13Lp1w1QdtoaxsUE0mnmzXAR7Y/XzC0aj0aJUzjldLALGRCGlUkls7N3fiYpKRCAQcu3acfLzHyMkJNYpE8jfPxypVEpfXx2BgWGIxVK8vPyQSBRIJB5IpV5IJDKbu6Jer2dmZoSRkS5GRjrQaOz3nFv7TkvLNW7friE6eieFhbvum6TC01PO/v0v09x8jYsX3yY5eS/Ly8vAKvv2vbTpBeU/Ag7v3GAwlAsEAsU9H38X+KnBYNDcOWdiS0f1ox8ZSwnXQQQsiN3BQ47X3BiL8hA+TD9Aa2QcpTsessiJbmi4QkhIlIlM4V74+4fj4qJnfHzQ4QtyRhVWqZZobr7I3r1Pmk0of/9gpNJA+vqaiIu7S1YhlXqyf/8xrl37nFlPH3ytpHiuXT8n5yHOn/8N8fEZZvzy7e01xMZmmi1a9sYqFArx84tkbKyLuLgdTu8uzc3lREdnWwhKZGQ8AsFjVFR8zgsuAjJ++zdON27Ys+fpDbXGWoNQKMTfPxx//3BSUgo4d+4dmpuvkZpaYPV8I5X1lwiFnuzb9+KGeuI5g9TUAsLD4zlz5jVGR8cJCgrm9u1rzM+PEBaWhJfX1sbYtwKbDdklAHsEAkGVQCAoEwgENj1hAoHgFYFAUCsQCGonJ63b5RawUULopVXzR0f+nFe+9Tp/+cQPWHnqr9i370ULgZ+cHGFkpJXt2y0LbdYjPDyF3t4Wh8NxJuZbU3OeiIhYq4tMbGwW3d11Zp+FXnmPw99N4P/92TO46XSsCMxfxfrry2T+KBQp1NZeMh1XKheYnOwmPn6n2fccjTUwMIrRUXNefXtYWJhhamrEJrtOREQsxwRCit/6vlM03VqtGo1Ga5WLzxrNuT2IRCJ2736E9vYqpqdH7vkd7Z2CqA+Jjt5FaenzWy7wa5DLg/DxCeHxx/+YRx75U4KDtzE+Ps7Zs//OiRP/h6qqLxgYaLGa9/B/A5vVcUSAD5AH5AAfCQSCGIPBYBFyNBgMrwGvAezYscNWSNIckZHQb2W3CogkKCiRpaVhSkv/2CqNdOvzP+bUso6UlN0OWwLHxmZx9uy/o9OV2lX3HKnC/f0dzM72sWvX96x+X6FIoqnpkqldlQWh4vICOhdXFlwkeGmXWQ6wVI3T0ko4efLnDA/3ERamoL29joiIOIt7dDTWsLBoOjsr7D6X9Whru0pERKZNZ1folffI+OCvcbF89YCluTEzM4pM5m9hUm22xZNc7kdqajE3bhzn0KHvIBKJGB7uoK7uNDJZJIcOvYKHh5fN728FtFo18/MzhIbGIBaLSUzMJDExE71ef2cD6qO1tZbKypP4+voTEKAgLCxhU63LtgKbFfoh4PgdIa8WCAR6wB9wcit3gJ/8xEgPpDJ3MrU+/2NmZwcoKHjcJPAWE+XVPyRn77P4HXrR4c/IZL54e8sYHOwiOjrJ7rm2VGGtVkN9/Tl27jxs0w4ViUQoFFl0dFTh7x9u3dm2ugIyf15+9h/Iy3uYsLBEs+NisZi0tEIaGi4QEPACfX0N7N///IbGCuDh4Y1avcz09Iip2YQtqNUqBgZuc/DgH9o8xyrLyzrcGw2YnR3B09OyPPV+WjwlJW1nZKSHysrPMRhWmZqaYPv2w0RFJdr9HmxNA8n+/lsIha4W718oFBIUFH6nFqIArVbD8HAvo6M9XLv2BQaDhoCAMIKDYwkNTdp0NehGsVmh/xzYB1wRCAQJgBjYuqqAOyWEy3/5fSQT46adrz6xAJfaL00rpNWc7RU1L11+G8Glt5x6iZGRqfT1NTsUeluoq7uMv3+QhZDeO5n8nvobfrU4g1qtsuls85obIy/vSSorj5OevmhBrRQXt53u7gbOnfsAHx8/uxTXer0epXKG6ekRZmdHmZ+fZHFxmuVlNQaDiHPn3iI5OZeUlHyzWLder2diYpjBwU46OytZXcXuZLTbdcZKNGB+fgK53HKxud8WT3l5h/nNb/6B1NQ9HDnyit3kmTVsVQPJ3t4mFhZmGRxss5kdCkbKr+joJNNcm5ubZni4h4GBHurrL+Pl5YW/fyShofEEBUX/zhhxnQnZvQ8UAf4CgWAI+DvgTeBNgUDQDGiBb1hT7e8Lx45RGZrA4GCEqZ6+78ZpwsPvCqetCSHUG3nznHmJrq6eNDdfYXVVx7ZtuzbkdR0d7WdsrIXDh81pkKxNpp2//lN69r1CZ2e1XWdbWFg0xcXPU1b2EUrlHFlZ+83O2bHjML/97U94+OG7v6nVqpmeHmZmZpS5uXGUymnm52dxdZXg7R2El1cgERGZ+PoGIJP5IRKJmJkZp6mpghMnfk50dDre3qGMjPQwMdGFWCwiODiWoqKnaGkpo7LyLAUFR6w+A1v3sioQcOGpv2Xlnuc+Pz9NWJglQ+9m6MDWQyr1IDAwhOzsQqcEHramgeTs7BiLiwuUlr5EZeVnuLpKnA5hyuV+yOV+bNuWg06nY3x8iJGRXhoby1CpPsPPLxitVsuuXZa8evcDZ7z3z9o4ZF23/B1Bp9MxPNxGaeldtd12x9i7sPcSlcoFbt68wKOP/hFK5QxVVZ8hkfiSkrLLiS4vOmpqzpCWVmxhV9uaTI9WfcxfhCpoff7HZP7bt23GyH19gzhw4BtcufIRKtWn7Nr1uMkG9vMLxdc3iJGRTnp765mfn0Gr1eLl5Y+XVyByeQQKRTZ+fkF2k058fYMoKnqCmZlxTpx4Ey8vEfHxuWRkvGDmGPX3D+fChX+nrq6M7GzLXHJb8f7y53/KBzod2++h4VYqZ/HzsyS+3IqsNJ1uBZHI+Qy9rWggWVv7FZGRmYSHx5CT8zAVFccpKnrWoel0L0QiEWFhCsLCFEAxKtUSXV2NXL9+HJVq8/UgVn9rS6/2O8TwcDceHh5mE9LaRLEGay9Rr9dTUXEChSKJyEijSpaUtIuennqams7R1FRGUlIeMTEpVuP4jY0VeHi4m4Xh7P0egOfsCC4uHlTHZSOwkWFnOvdOQ4iysuNcvvwOe/YYyTRaWqqYnp4jIcGH4OBEfH2DkMl8NlwVuAZf3yB8fX3JySm1ukOJxRKKio5x/vybeHh4WXjxbTkOl4qOsXdyhPLyD9Hr9cTGZqJUzmEwuFg1FzaSN2ANer0evV63ofqJ+9UuOjpq6O3tICvL+NyiohLQaEopK/uA/ftfsllH7wykUg/U6inCw5Pw998YRZcj/N4IfV9fGxER5i2S1iZE3Js/QDY3ikHoYlLt12P9S9Tr9Xe8uxfRahc4cOCuIiMUComL20Fc3A76+pppb6+gtbWc+PhdxMenmWysmZlx+vpqOHjQOu+ZvckUG5vN7dvVRJR8w+GEFovdKC7+OjdunOSTT/4X7u7eSCSuBAcHIJP53ldF4BqUygXU6nkCA22bNcay4ee4ePEd3N09LBxkthyHAQGh7N37DOXlH6DX65FI3JHJbIfN7icrTamcZ3V1YyGx+9EuBgfbaG6+Rmnpy9TWnmbbtjykUg8SEtLQaJa4fPltDhz4g00751QqJQMDHaSn267H3yx+L4TeSHDZRU7OPotjPXlP8H+mJ9i790kyWq7afIlqtYrOzmp6ehoRiaQIhZ5ER8fa3CEVilQUilRGR7tpaSmnvf2qqT1SZeVpUlJ2WeU9A/uTKTZ2G62tl1lYmHKKZFEkEiGReKHTqcjNfZrQ0Dimp0e4cuW3yGTedn0Qznimh4d7CAgIc6gpyOWB5Oc/wbVrx3Fzk9rt/bYeAQEhFBY+S1nZ+0gkEnx9Y5z6niNotVrUaiUzM8P0999ifHwItXqFoaF2M7+PPWxWu5iaGqKq6hT5+cZU3pGRdpqarpOXZyQFSUvLQ61e5tKltykt/eamioLa2q4SHJyCVLr14cbfC6EfGLiNXO5vtbtsXd1lU+adtZdY/dh/4YyrhJETPycwMJ6dOx8jJCSKa9e+Mstus4WQkFhCQmKZnBygpeUqH3xwFi8vb7u16/YmkxgID0+nre0GubkP2/1tnU7HjRunUSqH+drX/ptp1/DzC2XnziNcv37cZtNJZz3To6N9BAc7J4jBwdHs2HGQiopPKCl50emMOn//YIqLn+Pjj39GcLC5QGq1atRqFRqNMQd/eXmJlZVl1Oq1st1ldDoNWq2alRUtGo0GnU6LQOByx1xwIzf3MDk5jzI9PUZNzef4+oY7vcM6q12sOdpGR3tparrI3r3PmBbczMz9nDz5K1JSdpjeRU5OMRUVy1y+/C4lJS9tyBOv1arp62uhpORllMqtpcqC3xOh7+9vsdr9dHx8iLGxNrMmAiNFxxgoeJq+via6umpYXtYQ5R7IQw+VmiVprKwsI5E4X68cEBBJUdGxOxVaZQ7PtzeZEhOzuHjxTbKyDtq0QbVaDWVlxxEKtZSUfNPivIiIZObmJrly5SNKS1+0cNo545nW6/VMTfWyffteh/ezBoUiFZVqkbKyDzlw4EWnhcvXN4jg4Fi6uq4zMtKMVqs1Ca+rqwSx2B2x2B2RSIKrqztubu64uwfg7S3Bzc0dsViCu7vxHDc3d6amBrh+/UuzRU8qjWVkJIPKyuPs2+c4T8MedDodk5PDjI0NMjnZx9zcCJ6eMjw85EilMhODsPF3ZcTEpNLYWM6ePY+aPt+16xBlZZ9x9aqxonM936E97aKlpQI/vzjkcr//fwr98vIS09P9Zg8TjBO2ru4827YVmLznSuUcHR036O9vxdMzkISEPURGJlhdZdXqJSQSS+pkR4iJyaSrq4aurmYSEqw3h3QEudwPmSyC3t4GswrANahUSi5d+hC5XMbu3U/bVL3T0vaiVE5y9ernlJSYn+eMZ3p6egw3N5GFw8nRpExJ2cXy8hxXrnzM/v3PORUiGxzsRq2eJC/vSby8fBCL3ZFIpJuKRSuVc1RWfk5OziMWWk52dhFnzrxFW1sFycn5Nq5gibXsudHRfqamBpidHUIq9cDfP4yEhExCQp7Ezc2diYl+lErLvnZpacWcOPFzs87GQqGQPXse5fLlj7lx41Py87/uUAPTarX09NyksPB3V3H3wNNl9fd33KnGMreLOjoaEQq1JCTkMDzcyZUr73HmzK/RaqGo6HlKS1+gYKCBg9+Os5rLrdEocXffnL2UkrKHtrYb6PX6Td9XYmK2WQebNczNTXP+/DuEhIRSUPB1h7Z2bu7jgIqqqvNmnzsihgRjX4CAAPNUUGdIOMHIJiuTeVJe/plDCim1epna2pPs3v0oUVFJ+PoG4ekp25TArzUMjYraaTWsKhKJyM9/lJaWSrvciEYtZ4ympiouXfqITz/9F6qrP0etniAmJoWjR7/HkSPfIzf3URSKVFPDTo3GOnGHWCwhMTGHhoYrFuMpLHyC+XklNTWnHPIddnRU4usbabMl+lbggRf6sbFuoqLMd1SVaommpvN4eQVw6tQvqKu7iL9/PEeP/hG7dh3G1zfI4eTVaFQmH8FGCz3Cw5MQiw309LRu+r7Cw2NZXYWxsV7TZ+PjQ1y69A7x8RlkZx926jrG3eRZJic7aGmpMX3uTJHQ+HgvwcHmguMMCeca8vIex2BYprLyjN0xVlaeJjQ00m62mrOorT2Bq6sPmZm2d3EfnwC2bSuiouITswVpdnaSlpYaLl/+hOPH/5WKig9ZWBgiMjKOI0f+kIcf/mPy8h4nJiYDd3frWqCRAty6Yy4paTdLS2MMD/eZfa64/gn//Mnf8Q//4wjuNvJK3KcG0Ol0dHXVkZJi21+0FXig1XuNRs3q6rLZZNFqtZw69Qazs5MEBkaTkWHJuQb2J2/f7q9jMKwiFks2nYq5bdseGhsrbMbxHUEoFBIdnU17+w2Cg6MZGOikuvpLduwoRaFwzOazHhKJlMLCZ7lw4W1kMl8iImIdeqa1Wi1zcyOEhn7N7FobSVgx7mLPcuHCmzaTdzo7m1lcHGb37m87dS/2TIuOjhrGx8c4ePAlh888OTmb7u4G3nnn75DL/ZmaGsPHx5/g4EjCwmLIydlvM/piDysryxbNO9cgEolITS2gsfEyYWEvm+7HmVySZf9Iurrq8PIKsuhbsNV4oIV+cnKK4OBYkxo4NtZLVdUX+PlFcODAMby9bXuP7U1etXoJNzfjar3ZVMzIyG20tJTT19e+oXi5TqdDpVpkcXE3fxt8AAAgAElEQVQeoVBId3czLi6fMzHRTUGB8yw098LbO4Ddux/j+vXP8fAwtnu250wcG+tHLve1UFU3mrBiTN55nrNnX2dxcZGAAGO2ncFgQKdbobW1jAMHnncqacbeAtyUWkhzczmFhcecpreSy30ICIgmOjqJtrZa5uZ6SUzcZZNjwRk44uWLidlOe3slPT2txMSkOCxIgrvFZLdv3yA7+67vKvTKexS99UM8/2jUWHn6k5/8529V7eIiRKFIYWVlhYaG0wwOdpOVddApIbM3eVUqpWni3E8qZlJSAS0t103j0Wq1qFSLLC0tsrRkbDulVi+iVitRqeZRqxfR6dSIxRKkUg/c3DyIjEyhs7OB/PzDmxb4NYSExJKUlMvnn/+S/PxHiY5OtulkGxnpIyDAMsa/mYQVjUaFXq9jYWEAkUhzh0UWtNoVdLplPDyc21FtLcBJb/83fvnYX5KefnBDtu7S0iwpKZkEBoYRGBhGZ2cz5eUfk5iYa5N0w5ET07jT295shEIhGRkl1NeXo1Ak2ZxHxkIVgamY7Gp4MuKuJsLCok3jMHsP/f3GylO4b8F/oIU+JCSU0dE5Tp/+BTJZOIcPv4JU6pzH3erkFbtT+chf0tnZbHLC3U8qZnR0GjdufMbHH/8rAoGe1VUNbm7uSKWeuLkZqZ+8vGQEB4chlXrj5eWDROJpoZo2N1czOtpJYqJlk0xrsDcxJyZ6CQqKYni4iVu3LhAUFE9MTDohIVFmvzs52U1urqXfYKMJK4ODbVRXnyQ1tZTExCyL4zU1/lRVnaC42IkmkTYERDo1SFDQNuLjN9qibMFMG4yPTyUgIIRr1z5jcrKXXbueNKubcMbUW1nRIJNZqvf3vhNp5gE6OnbanF+LPqH86SN/SWHh0/j7h9Nx8lVSUw+YjlvVEFQqI6vUf2ahHxsb5datbjIyDpjFRe3BWFK6wGBsHoOP/JDCsz9HvjDJtIcPH2WWcstVjJt2kpmZCRYWZu4rFVOlWsDFxZW8vIfw8wvB3d0TgcAxZ9u9iItLo62tHJVK6TDubW9invQOZHlZx8GDLyASiVCpFujurqeh4RTV1XoiI9OJiIijq6uJ3t5mvL3laDQqwsISLSipnaPRukZHRw15eV+7UyhiiYyMPZw+/Tp9fc0mwlJbsCUgM55+PLo0xrZvKZzOnNNoltFqdRYJWHK5H4cOvURNzXnOnHmNXbseNzH6OjL1dDod/f1t+Pqa36u1d3Ks7D3e1Gi49ew/kP2r71nMr86X/4mM8AzKyz8kPj4Hg0Filt5sU9O0wSq1EQi2uiLWHnbs2GGora11+vxTp8oYHY0mMNBy19XpdCwsTDMzM8n8/CxK5TRK5RRLSzO4uopM7Zvzum+y7+IbeM6MmjHSNDRcZWrqNgcOfGvTRArV1V+yuurGrl0HN/QcrOHq1S/w9vYiPd0y1Xg9Sr6lsCoYCz4h/Nmj/5XS0pesZhpOTQ3S3V1HdfUlsrIKSEzMZ2xsiIGBW2i184SGxqFQZDpFaa3X66mq+pzJyUn27v2aw8y8oaEeqqs/5+jR79m1h605vdQuIqYTdhHadg3Bul4wOjepRcea9Rgf76e29jxHjlivjwDo6mrm5s2zJCRkk55exNFHhQisyINBIOCdt0aoqDiOSrWKXC6ltPRbpuO23smMlx+vfv8zjswP2Jxfra11XLnyGw4ceMVMk7F1TaKioK/P5j2tQSAQ1BkMBqs1uQ/0Tu/uLkWvX2V0tJ/5+RkWFqZZXJxmaWma5eV5pFJPPDy88fLyIyQkDG/vLOTyQFNMNfTKe2R8+b+t7oq6gqc5c+Y27e2VsIlCD5VqgYGBDg4dcs4r7QhxcZlUV3/pUOhtEnDMjrJr16M2U4v9/SNwc5MxONhJQcFTgLHrTVpaLrOzk/T0tFJVdRKDYYXw8ERiY7dbJelQq1Vcvfo+ILWaCWgN4eEx9PbG09BwltzcR22eZ2ZaTA4w7eFNa0wue26dtaA/d+RsnZ+fwMvL/mIUF5eKv38I1659ztTUAPv8wvGYGrQ4b8E7kIsX3yMlpYiEhAxOnnzNjDDD1jvxWZyhp6earsPfsTnO5OTt1NaeICrKvBW11QpSqdTozLtPPNBCPzIyQlnZBby8fPDykuPp6UdMTDJyeSBeXv4OkzscqWt5eUcoK3uX8PCkDYdvmpvLCQtLdSp/3xmEhEQhELgyPNxJWJjtWn6bPgh3Gc//daFdbWV8fBAfH0tB9vEJIDu7kOzsQsbHh+jtbeXixfeQSiWEhSUTE5OJTqfl9u1KWlur8PAI5MknX95QqDI7ex+nT7+GQtFvV5sYKTpGTfwObtz4ioKCpzj2oz1W+x2AfWfr/PykVVque2FU979BXd1l3k3ZwzcrP8NVe7d9tVYk5uOso+zbZ4yIAKSlFdHYeNFkFtl8JwGRBAcruHXrBrm5+y2OAywvLyKVWlJ+r727hLd+iOfsKIIt9N4/0Mk5ISEhlJa+zEMPfYc9e54hK+sA0dHp+PgEO5XN5cgz7+8fjEKRQ1XVFxsal7HssY1t27Y2iSI6OovOzhq751hNuhG44LaidphFNz09iq+vfXKHoKBw8vJKefzxPyM1tZT5+QU++eR/88UX/wZIyc19End30Sa6+nqQnn6AmpoTdjP4Rke7uXHjK3btepLg4Ai7gm3P2apUzlgtRLoXoVfe4+C34/gf/3iQZ29doSw6kznvQAwImPLwoS69lOeaz/PiyyGmxK2YmBRcXDxNGZX2EqEyMkoYHGxgYWHO6u8vLs4ikVjPDB0pOsa7P75EZ3u7UaXfAoGHB3yn34xTbD2c8cxnZORz+nQHnZ21Fpx0ttDSUk5o6DazzqtbgdjYVDo6rpqaTFrDvSrwjKcvngJwW5w2O8+a+jszM0x6unP56EKhkIiIWCIiYpme7mHXrq8RFBSOXq+ns7OSsbHeDYcY4+NT6eu7RXNzGZmZJRbHx8Z6uX79c3JzHzM5Bm29QwPwyfZDMDtmolNbD6VyDrnc/k5/rw9BNjtC0dIsb+Q+zRm/EL4j86Xkw7+zah5mZhZTWfkpMTFZdiMeIrUKb29fLl/+lISEbSwvL7C8PM/y8iLLy0vMzU2zsrLC3NyEXc7DrcQDvdPfL5xJRRWJROzc+RBNTWWoVAsOr7m8vERfXwupqVufKimVeuDnF0Njo2Xr5PUYKTrGm3/7Fd986V8591oPYqVlowww13SMjs9xi9i8oxTkyckBBAKxKUtMKBQSGZlBV5fzDtn1yM09RFfXTebmzPujTE4OUFFxnJycR8wyLK29QwMCeg59h8E93+Dixd9SUfGp2bvr6qq3aLFtDVbNP+0yz9w6Q0JCFntOv2rTPAwJicLbO4KWlnLA+E7Ov97Db94c4uc/eJ+PRGJOnHiVEyd+zuqqC/39Ddy+3Yxe74qvbwwJCXvIz3+Kp5/+b+TlPcHFi+8wOtrt3EO8TzzQO/39wtmYc1BQOJGRmVRVfUlxsX3qv5aWMkJCUpxSHWHjFMta7Rz19ZUMDXXi7x9MYKCCkJA45PK7vHJzcxPU1p5h9+6v4+kpc0qjmZwcxtPTy8x2dCYu3dfXRGioOVOO0Zl13a5GYgsymQ8JCbuprv6S0lKjZ31qaojy8o/Zvv2IRRGNvXeYDsTFpdPUdJ1Tp35FcHA0y8sLqNU6MjNLuH79C7vORlumg2xuHFdXN4fmYVZWESdP/oKlpXmWlmaZn59CLPbExycMX18FiYn5+PkFo9frmZ8f4/DhF6wmS6WkZOPpKeP69c9JTy8mPt56Y5Gtwn9qoQfnY85ZWYWcOvUG3d0NxMZaJpmA0XPd19dMaaltHvj12Ghe/9TUEHNzU4SFRVNUdIypqTHGx/tpb68DVvD1DcHfP4Lbt2tJTi42kTg4k2swMTFickStwZkU5OHhLvLznzI7Ryr1JCAglq6uelJTCza8sKWm5jIw0EpTUxleXnKqq0+xffvDNmnI7b1DqdSDvLwD1NWJqas7RXb2Q6ZOslVVX1BWdpySkqet+oBsLZbz3gGIxe4OF1MvLx8EAlcMBlcSEvIJCAi3mjw2OTmIh4eP3RLkyMh4pNJjlJcbG5taM3+2Cv+p1fuNYE3Nv3nzEiqVZb00GHf5oKBkp3f5jVSsGWPfX5KefoCgoHjGx7tJTMxk795HefzxP6W4+CWCgpIZGupjdnbGjFF2pOgYjX/0GqqAKAwCAaqAKIsY9szMsIVq72gnm5wcQCgUExBg6fyLjc2gr6/R6VLc9RAKhSQn53Dt2pfU1l5Ap9PT0HCa8+ffpabmEj09rTYdX/dCpVri0qVPGB29xRNP/AnZ2YUmAc/JeRhX11WbVYC2zL+zhd/A1dXNoXnY09NKQEAg+flHiYpKRCr1sGouTU724+MT5vBe/P2DKS19iaGhXioqPr2v0m17+E+z0+t0OnQ6LXq98e/V1bt/r66uoNOt3Pls5c45d/9eXdXd+beO5WUNJ0++SnHx82Zth9RqFb29Lezf/7LTY9pIXn9j40XEYh+Sk7Pw9JTR2HiGlJS7Trc1jvSkpCx6e5s4ceJXJCfnk5yc5bC4BmBubpjs7CKzzxztZL29TYSE3K1wNN/RI3g3pZiEWxc2VbA0MzNATs5D5OQYdzSVSsnUVD+Tk0P09tbQ0DAFCJHLQ5HLQwkICMbfP9RsJ+3tbefmzbOEh8eyd+93LHZzoVBIQcFTnD//JjdvVliU49oyHepcPAl0dXNoHnZ2VpGWttvs+VjT7DpKXmK4yHaS0HqsZ0G+dOk3xMZuB5wrMHIWD7TQ9/X1cuXKReTyQHQ6HQaD/s7fq6yuGv/o9ausruoRCEAodEUodMHFRXTnj6vpM5HIFYHABZFo7XMXXFxcEQjcEIk8EIlcEQqF7NgRw+zsFFevHkcicSM2djsxMVm0tl4lMDB+Q51Wnc3rn54eoaeniQMHjFleYWHR1NUZs8qsxbQVijQ8PL7CYFjiypV3cXf3ITIyjdjYVKv268TECJOTw8zPTyKVyk3CYc8sUKmU3L5dazJlLCf0AC9d/wDXFY3Ve3dUsDQ83EVBwTOm/0ulnkRGbjOjRTM2zxxgenqI9vbbzM9P4+rqgVwewtLSEisr0+TlPUxIiGVp9RrEYgmFhc9x/vybeHn5EBtrXqxlbbHUXf4Ysdjd5nEwMgHp9Wqz8drS7ErL3ufU03/vtBm0xoJcVXWWurqz7N5tP2Fro3ighV6vX2VxcZnQUH+iotJxcTEKr1FA1/4tMgns1v52Cf39t+nurqex8RJK5SyPP/6DDV3DGVt7LaU1JaXIFAIUCoVERWXQ2VltVejn52dwd3enoOBJE6V3T08DbW1X8POLJiYmjYiIeIRCIePjQ1RUfEpsbDYtLdXcuHGCgIBggoNjUe44Avfw77c+/2PO+UVw+/QvEQjEdHY2EhgYZnVCi1c0rAoEVptX2ouhj431IBRKHFbMyWS+d6i+M03Pan5+gtHRbq5f/4wXX/yxU0yznp5yCgq+Rnn5x3h6yhzWq6+sqB1SgHV0VJGQYN4x2NZC57c0S8rNs2Ssa3DiyL9jZAA6QmWlCFdXV7tj2SgeaKGPiYlj9+4EmpvLCQgIdTqOvhUwklwY+47NzExw4sQvnK7wW4Mz0YPm5iuIRN4WFWqJiZmcOnUDrVZtMbGnpkbx9g4wjTMiIpmIiOQ7JohR+GtrTyGVBqJUjrBjx0FTlxmVaomRkV6GhrpoaXmDKxIJQd/5N8LDE1ld1dHQcA63FQHFxS/g6enN2bOv09xczVFbLcQMBlZc3cx2fEcFS319jYSHWxKdOoJQKMTHJxhPTz9u3SrfELV0QEAk2dkHqag4zv79L9rNsVhZ0Zh2emuYmhpjcXGU2FhzB6ctzW7Wy5+Ud/96U2ZQeLgCd/f7y1e5Fw+00AMEBoZRXPwcZWUfotGobdZB/y7h6xtISEgsw8O3zVo0OQN7tvbs7BidnQ0cOPBNC01FKvXEzy+arq469k/0mS0cy7ufYXH7AYvrSSTSO3Z+PnNzE5w//y5JSTlmY5ZKPYiLSyUuLhW9Xs/4+CBDQ93cuHGSqalh9u//hhlfQWHhs1y8+DaL8hBksyMWv7noE8rHWQd49tYVp7z3Rs2kh5IS5xl474WLiwurq5ZNTRxBoUhlcXGKsrKP2L//edzcJGbOsrV/a7XLuLraXlDa2qpQKDItfAjWNDutqxuXD3ybJz77R6vX2kgLra3CAy/0YKRPLil5gUuXfotOp9lwOGMr2hG7uHhRXv4Js7PzxMSkbMi2twajWv8FiYl7LKIBa+M9OjmA0k2KVKfFZXUFMKqFj578F5JnB4h99Vs270kuD8THJ8SkEVi7vpnzatcRGhuvEROTYnE8+OE/472UQv6g5nOzvHSdm5TbL/1Prs/PITj2351ipBke7kAq9XH4/Oy9M6FQiFAoRK/Xmy2WzrzntLQienpu8vbb/4BM5n3nend3UoMBJidHqKk5SXx8LgKBCxqNkXdfo1lGo1HR3l7Bc8/9jcWYrWl2H2XuR1XyMstX390Ub4PBYGCrC2F/L4QejEkd+/e/wOXLH7CyskxOzlGnvrcV7Yh1Oh3z8/3s3HmIhYUJLl16C4nEm7CwZKKjN5eO29xcjlDoQUqKucly73i9NEsW33XTaUkt/8BUamrrnlZXdbi4mBdy2Hoeiy/+lFrEVo8XvvsjWrIO82r6QV66fR354qRJqEaLjhHVcJWOjmqnhL6vr4mwMPuqvTPvTCAQodPd7V3n7HvWatXodCs89dT38fGx3mJLq9VQU3OJs2ffIC4uDZHIDTc3CSKRBC8vd8LCErl27X327HnOgv9gvWan1+u59Ok/83BA6IZ5G6amxujqamJoqJn09J0kJiZaPW8zcKZV9ZvAUWDCYDCk3nPs+8D/AgIMBsPWs/LfA09PGSUlx7hy5SOuXz9OXt5jjgkSt6AdcU9PC56eHiQnG8Mzer2e0dFOenubOX/+Oh4egYSHJxMTk+JU84e5uQlu365j/35LgkdnONUAs9pyW/ek16/g4mL+im09jx3H/4m3H/k+ye/8P1ZTU/+k6jgq/whOFj3HSXk4sbE72bYtFzEQH5/BmTO/tOp/WA+dTsfYWD9ZWfaZfp15Zy4uLuj1OkDs9HcA2tqu4+cXZ1Pgweg9Dw+PQaNJZ9++b1gc37ZtL3V1lzl37tfs2fOUzQ61MzPDSCQyJBJ3p/w7KtUSPT0t9Pc3sbKySEREEqmpuwgMvD+t8l44s9O/BbwKvL3+Q4FAEAEcAP5DjRKp1IP9+5/j8uWPuXr1Q/Lzv2634m4r2hF3dFSRmbnH9H+hUEhYWCJhYYnodDpGRjro67tFe/sVZLJQIiO3oVAkWQ2f6fV6Kis/IyGhwKqKez823r3fNbZudrV7zho8ZoZZWdHaPC4APKYGeeLsa4S8/M98NtfPyZM3SUkpJD4+FT+/aLq7600LozUMDrYik4U4LEd27p0J7gi989/RarV0dTU41UhCo9Hg6mrdgy8UCsnJKUEmC+Dy5ffZseOgVVag8fF+fH3vRgqs+Xf0ej1DQ9309DQxNWXsK5ienm8q2x0a6nA41o3Cmf705QKBQGHl0L8APwQ2Vpe6BTDGMZ+irOw45eW/Ze/e52wK/v22Ix4Y6EQgWLHJ2S4SiUzxZa1Wy9BQK/39LTQ1ncfPL4qIiGQUikTEYjdUqgWuXfuQ4eFR0tKss+3YGu96GMBqjfm996TX6xCJxBbnWH8eEayurrDsH4F00vbCI9KoyP70fzL3Rh+jo93cvHmezs4aAgMV9PbetCv0/f23iIy8P1LTNdzrzHPmO7dvO99IQqNZtin0a0hMTMfb24fr1z9jYWHCggBlZmaIgADravnc3DSdnTcZHGxBInFFoUgnL+/whmsZNoNNBbcFAsEjwLDBYGjc4vE4DbFYTHHx1xAKPbl48S20WrXV85yptLOH9nbLeKy9McXEZFJcfIzHHvtToqJiGRxs4PPPf8bx469y4sQv8fKKICtrN3V1X/Lll//GzZsVKJV3K8SsjXfVxZVFNykGgYBpTz9aCo85dU+rq5ZCb/t5/CMrKzou7PtDVuyEq+Du7hkSEsvhw98hKSmLkZEm+vt7GBxst/odrVbNxMQwUVGOO8o6emdTU0P099/m0qXfcPnyu1RXf8n54hdZucfjvv47Op2Ozs4apxtJaLVqXF0dC2BwcAT797/IwEAPV69+eE9zjXECA++q/lqthvb2Bs6c+Q0XL76FwbBEYeHXeOih75KSkv8fIvCwCUeeQCCQAj8CSp08/xXgFYDIyM3zjVuDSCRi797HuHHjNBcvvkVx8YsWD26z7YjB2HFGpZokJuYZh+feC7FYYup1r1ar+OqrV9mx4wixsUYn1vbtpYyN9dLVVcuZMxX4+EQRE5OBruBpi/G2Pv9jfjE/z86dh7h69RMef/wv0GQfdnhP1oTe1vM4LgkEWrkSmsL4rid4pOpLAtWLTmkUcXHbUSjSqaw8SWXl53h7/4FFG+7+/lv4+UU5letgbYyNT/81l3zDGPjq52i1q7i7e5CZeYiVFR1K5TyVMXnMFX+To9c/wEc5w4yHnC/zHqdVAO7VJ1hYmEYqDbFIzLHl8ddq1Xh5OZf+KpPJKS19kYqKL7lw4Q327n0WEKJWa5HLAxge7qOnp4mxsdv4+gaSmJhFRETKptp6bQU286uxQDTQeIfkIhyoFwgEOw0Gg0XzMIPB8BrwGhiJMe9jrFYhFArJzz9CVdUFLlx4k337XrRoae1spd29aGurJiYm675fjkQiJSgoEp1uxezz4OBogoOj0WrV9PY20tFRTn39acLD02j55xozZ5PiZgUNDeeQSj0Qi8VO3ZNev4JQaDn2e79bV1fG1OgtnnrqR8RUfkZy6zXc1UqUbh64r2gQrbOdbWlJIpGIgoJHaW4O4dKld9m370Wzxpj9/S0oFM4nV611Hx4cbKW39yYzMxMEuc+TlfUQISFRlJV9ysqKkrg44zVDr7xHcsNJ3JdmWQ6I5PZTf8tqRilhynkWF+eYmGgmNdVc/bbn8V8RShGLfe9e28ECKxaLKSx8goaGq5w9+2siIpLRaHR8+eUvcHHRo1CkkZ39itV26//R2PBsNhgMtwATxYdAIOgDdvxHeO/tITd3P/X1bpw//ybFxS9adGLdKBYWZpma6mb37oe2ZHxubjKUykWrx4zND3NJTMy9k7BTy6VLb+Ph4Y9CkU5MTAoJCRnU158mOjrB6jXuhV6vZ3VVZ8G9di+amm4wNHSTAwdeJqbyM4twoU7owqKbFE/NMssBEbS98I8OymZ3YjDouXz5bUpKXsLTU45KpWR2dpK9e21z/63H5OQA3d11DA114eUVjEKRTkGBeeOO4OAYhodvExe3w2pdwM5f/ylu6yoNVapxXFwcR0rWPP7aZ3+KRCLdUMhXKBSSnV2ITObHiRP/SkJCLjk5pTY5Abcif2QzcCZk9z5QBPgLBIIh4O8MBsMbv+uBbQbbt+9BLBZz4cJb5Oc/TlDQ5jvGtLRUERmZvKFUT3vw8vJmenrW4Xk+PsHs3HmU7dsPmXa55uaLBAcnotdLEIud6wev0+kswnX3orW1jp6eKpN2ZFUI9KsIPH35i+/8mKUlNTmJBYQ4+O20tDwMBgMXL75FSclLDA62EBAQazefXaVaoKurlv7+FlZXhURGplNaWmRKXLpXQHy+9iNeX5pDr9c7Fa4zGAxotebFQfY8/sb8e+mGQ756vR6RSI+7u4z9+5+3SeCxFfkjm4Uz3vtnHRxXbNlotgApKTm0tFRx6tTrREUlkZJSQHBwzIauoVItMTzczKFDzpVDOgN3d2/Uakt65TVYW/VFRceIjk5HpVqgo6MGkUiLUul44QBjuM5eDkNHRxMdHVcoLn7BpBXZC+eVlHyDnp6bVFZ+QlBQMtu3F9ulv05P34Ver+f8+TdRqZYICEiiq6sZudwfmcxIKKHT6RgYaKa3t5HZ2UmCghLZvv1hQkIiLTLt7hWQvDf/nPbdTzM5OWhbeCcHuHHjLJOTvUxO9hAenm123J7Hf2VFhZubu9MhX7VaRWdnNd3dN3Fz88bfP4Tx8QGzBhbrsRX5I5vF701GnrPo6GjEy8uVxx77W7q6blFZeRqJRERSUj6Rkc51mG1vryc4OGpTXU1twdNTzvLyvNVjjlZ9qVRGVlYJ27YVcObMW7S1VZCcbKwNX2uIaeydZyRbVKkWUSpnmZ6eQKlcMIuLGxNAWmlvv0xx8fNmZIyOwl4xMZmEhiZQX3+G06dfIy2txG7noczMfLq6GnFxWcLLS8zAQD1tbQuoVEpcXd0ZHe0hLCyZlJTd7NmTaFMTsCUgT9ad5Gd7n7Y57iWJB+7uInbtegiJxIuzZ99Aq9WYfsdelpx2ahw3Nw+Hz2R2doy2tuuMjHTj7x9PXp6Rxbe5+Rp9fW02hX4r8kc2i/9UQq9SKWltvUxh4VO4uUnYti2H5ORsenpaaW6upLLyCyIiEvD1DcPLyxeZzB8PDx9cXFxM19BqtfT21rJvn10FxwzO2Gaenr4sL1sn3nR21ReL3di792t8+um/0tFxE51Og06nwc1Ngru7FDc3D9zdPZBIZPj4KHB3F3HixC/x949hdXUJpXIa0LG8rMTFRUxPTxuurlJTGrEzqaISiZTdu59gdLSb2tpT9PU1s3PnIaupyAMDnYhEWh555K/MfAvG1mNztLdfZ2Cgg8XFWaxnHhhhSxDkC5N0dt7k0+xHeObcv+GqNy/CcV/R8NDcGCN3ajV8fALp6WklKclY0WgrkjG091lWPvwpYrG7zWdy7aHvcuHCvzM/P0dUVCaHDn3bbHGNiEimvPwnBAZGkZiYYbHZ3G/+yP3g91borQnab/EgMjLBjPFGKBQSF5eKu7sHV668h6urLzMzMwwMdKNSzaLVLuHm5o6Hhwx3d7XIb1sAACAASURBVBmzs9PIZN5WaZVtjcMZ20wikWIwrKJWL1uoxRtZ9efnp/Dy8iA39xDe3gFWG2KuISEhB5HoPMPDTezceRS5PBgPD2ORydzcBB0dNzh79jX8/aNJSNgBGwhvGmP03+XWrcucP/8G8fEFpKbmmMai1Wqprz/H9u0HLJyJQqEQmcyXnTuPkpS0m/r605w69ToZGSVWefJs7uR+YahU80weeIHVa+/heg8rsMvqitnCGRu7nba2GpPQg/XIjla9fIe7QWSxMCx4B/JRRim1bn7ER2RRVJRqNbozMzNJaGgk/f3VdHfXkZVVYupIC5vrDrxVeMCF3sDKitbiU2uClv5//oC63U/i9ydvWpyvVC5QVfUFe/c+aZFZp9MZ47yLi3PGhpZtzej1czQ1XSElpeC+u+ish7u7ByrVgoXQO7vqa7Ua6uvPkZ//uF22mPUICopkcXGYsDBzNVMuDyQ391GystR0ddVRX/8V9fViYmN30PeLDockEmAM0xkbkGRQXf0lAwPN5OYeJiAglMbGq8jlPmbMMtYgk/lSVHSM4eEO6urO0tV1k5ycA2YpyrYE5Erpd4kLUxAfn4PbknVfx/qFMzIyhfr6s0xNjdnNyjMm5txdqNq3H+Qzd08GBzvw84shIWEHR2007FzD0FAHsbHbSUvbS0/PTWpqvqCjI4zt2/chl/vdV/7I/eKBFvqenm6uXCkjJ8ecKdWaoLmuqPmDq+8jKP+t2QPU6XRcvXqc6OhUq6m0IpHIxD8HsfT23iQu7gijo32cOPEzEhPzSEjItSn8G9mlpVIPlMoFC1ZaZ1f92tpLBAQEWwiwPXh4eKNSWQ8VgjFcmJKST0pKPsPDHXR0VNHScoWIiHSSkrY7VUIslwdSWvoHdHRUU17+Pr6+sUxN3ebIke84Pc6wsESCgmJpaSnnwoW3iIrKJCOjALHYNlfdVZEPvnJjNMOZhdPISJRCZ2ejXaE3puCKGR7uoL29itnZqTvRhFeQyeRGLfNvi2wKq7GwqIusLCP9WUxMJpGRqTQ3l3Hx4r8TFpZBZmbBpvNH7hcPtNDHxMQxPR1FY+MZhoe72blzP2KxbT5y4R0ShPUq9qduvri5CZ2qwddqtahUM8TFZZGUlMPY2CC3bl2js7OWbdvyiYnZfl+2mbu7F0tLlna9M6v+8HAfY2OtPPTQdx3ex3rIZD6oVJbludawVkS0sDBFe3slFy++iUwWQWJiNuHhsQ6doImJO4mISOGTT/4niYn5G05EEYlEZGTsIzZ2Ow0NZzh58lekpe0jLi7VqoDMffU68fHGxFBnF874+BzOnXsbna7E5kI+NzfB4GA3BoOI2Ngd7NmTtqES3tHRfry8PM0cwSKRiMzMEhIScqivP8vJk78kKamA5OTsLad6c4QHWujBmIQRG7ud6uoTnDnzBjt3PuxUUYpIoyLuzR8w8eQPOXjwFadaZM3MjOPh4WWaDMHBEQQHP8vwcC9NTWW0td0gNbXQjIlmI7aZROJllme/HvZWfa1WS23tabKyDmw4P1ssdsPFxRWVSmm17Neab4SiY+zceZTMzFJ6eupoajrHzZsCYmJ2kJCQYVf11+t1SKXeZGUVb2ic6+HpKWfPnmcYHe2mru40PT2N7Nix30xD0mo1LC1N4+dnpJZ2Vl2Wyfzx9pbT19duNfKg0+lob79KTs7j7Nixx+K4M+bcwEAHwcFxVu9NKpVRUPB1pqaGqKs7S09PA5mZJWZdfX7XeOCFHowqaEHB1+ntbaKi4iN89zzPoyf/xWHduWxulPz8rzstKNPTY1aZZsLCogkLi6a/v4Nbt67S1lZBWloRERHJTk82nU7H4uIMc3MzZGYWbIjssLHxKjKZbMNUXWtwd5extDRjIfSOdi2xWExS0i6SknYxOtpNR0cl7e3lhIVtIylph9Wa9M7OGkJDU5zyCThCSEgsDz30PVpbK7h06R3Cw41qsUTizuTkCHK5r9lu7ay6HB2dSU9Pg1Whv3XrMhKJv1WBB8fmnF6vZ2zsNiUlz9kdg79/OAcPfove3iYaGk5w+3YI27fvs1vnv1X4vRD69buRyi+cT7MP8XbBMR6v+QL5wgQGoQtCvSVn2rLUm6f/Kt9pR8nMzCj+/ra7ukZFJRIREU9PTyv19Vdobb1mLKe0M9mMO0clXV21SCR+SCQ+nD79c7KyDtos112PyckRBgZucviw9a46zoQLJRIZSuWcBbPNRpyQISGxhITEolTO0dZ2nUuX3sbbO4T4+GwT865er6evr5mCO0VDm4G1+xEWHSMmJoP6+rOcPv0aKSnFqFQLeHsHObyeNSgU6dy8eZG5uWkzn8X09Ajd3U2Uln7L5ncdmXPj44NIJK5m+Q/23lF0dDoRESm0tl7j0qXfEBqaRlbWXruJT/eLB17oFdePk/HWD0yT02Pq/2vvvcPiOs/8788ZhgEGREf03kURCFCXQCDUJTvujtzikjj2ZrO72Xdb8tvs7rvO5s2W7G83cWInTtxkW5G7VVEDhIQEovfee0cwwDDMef8YMWKYioRt2eZ7XVzAmVPuc+bcz3M/d/neHXw7+wgnDv2IRzY+yP33/4ikuiv6JraVFJsZBVYKTUKMJWmOY2N9RESsNSnPfAgwJGQN9fXlXL16klWrHFi7NkNHqZTKaWpqrtDcXIKjo582aQOgra2OoqJzNDeXkJJywODad3x8mNraK5SWXsbXN9DgPpaGC+VyZyYMNLm8nQQRBwdnUlL2kZi4i+bmEqqqLlBSco6QkHXY2cmQyRwNdsSxBObuZ+vWB+ntbaW4+BTd3V1s23botq6j4UCIpKGhVNtsY56zMCYmzST9mbnlXHt7vU4GqCXfkVQqJT4+jbCwZEpLszh+/DdERW0lKurz6Wl317e1Wve+AfqmGQWZ2W+SkJBKb2+nblsnBIYcXJmTO2rJJBceZ6ilFNxy4s2vEc1BIpEQFZXAwYPfx8srhry8j8jOPkJvbwvFxWf47LP/ZWRklG3bDpOR8bBW4UFjMezb9xxyuScnT75KTc1lLRNrV1cDFy++TVbWHxFFG+6550UkElsuXz6m1+bI0rZZ9vaOKBT62YDGEkEsSRCRSqVERKSwb9/32bhxH8PDLZw79za+vuatF2Ow5H68vILYs+d7BAaGMDjYv/gUFiM8fD3t7RXa+vfy8otYWTkSHZ1k8jhzLcR6euoJDIxb0j3NQy53YPPm+9ix4xF6eio4efI1entN+65uB3f9TG8/1GVwu91gO1FRm7h06UPi4jbRnXaYqyEbKCr6hMzMZ3jksOEqO2Oz2GInnqWQSqXExq4nIiKBmppCjh37L+LiMkhPf8oMD5uMlJQMgoNjKCg4TU3NVaysrBAEW0JDk9iy5UHtujgj41EuXnyfS5feZcuWW80YLZ2p5fJVDA7qt25ergSR+RJhhWJchzRiqbD0fjTl1A9x6tRvGR/fYnFvwYVwcfHC3t6Ojo5GnJ2daWoqJTPzaYuONeY7qKoqYnCwXccqux1rys3Nh8zMZ2hvr6K09Bz9/XIiIiyrrrQEd/1MP2lk5p1yD8Dd3Q+53I7W1lrGx0coLPyMjRvv1eS5L3EWW9hAwhSM9XOXyWSEh6/F0zOAtLR7LXbIuLt7sWfPE4AV/v5JHDjwXWJiUnQcYTKZDRkZD6NSWZOTcwSlUmnyXhZu18SM62ltrWJ8XLf62ZLGl0vB3NzsHa1Fl/KdyeUO2NjY8fHHvyE39xMqKq7R3d2qV0lnCiEh62hsLOHq1Y+Jitp+W4MHaOoZcnI+pr7+EiEh6zl16lXKy7NRq9V3ZE0FBMSwbt0eVq9ebXbfpeCuV/riB/7eJHVSeHgK9fWF5OZ+SHh4ojZTbak0WSMjvUZZTedhrkPryEgXjo5L/4IkEglyuZ1eddlCSKVSUlPvQyp14uLFNzQ+AzP32NXVwMmTLzMzoyI+fj/nzr1Bb2+Lzv7daYc5/1orxz9Rc/611ttS+JGRXgoLT9LZ2YxKtfQmFPNYyndWUnIWtVrKjh33s3r1am7c6KK8/AwfffRLPv30ZXJyPqa8PJ+urhamp6f0jp+dncXOzoHKygvMzAhmzXpjaGmp5cyZ32NrK7B//wukp99PevqT9PZ2cfLky1w58IM7omv7PHDXm/etm+/D3t7JqPczKCie7Oyj+PmFER+fpj1uqWmOY2O9REaaduKZ83YPD/fg5KSr9JYSJfT19TA9bZjnT3stqZRt2w6Rn3+Ks2f/QEbGUwbvsXH9Qa7nvsfQ0AAJCbu02YweHp5cvvwhCQkZhIYmmLyWOSgU4zQ1ldLZWcX0tBJf3xji47dTUXGJjIzb895b+p0VF5+hs7OV9PRH9Zh11Wo1w8PdDA11MTLSTXd3BePjw9jaOuLg4MHc3Awq1SQ3boyyapXHTTqzCQYGus32uJuHpiS4gbKyS4yNdbF79xM6adEuLh7s2nWYxsZK3qm4SF/GU9xb8Cnyoa4vNN3WGO56pQfT8VcNHXUw4eH6hIeWxm2VSiWTkyO4upp24plan6lUKhobKwgKulXMYal3va+vEysrkaKi49ja2uLtrcu0snjg8Hv8JT5yj9DSgy1srlBXd5XqU6/i55fA/v3f0lkmaHqor+LSpfe5cWNoyZ2ClEol7e2VtLVVMDIywOrV4cTG7sLXNxiJRIJKpeLkyV/R1lZntKTUHMx9Z0VFp+jqamfnzsMGk40kEgnu7n46RVdqtZqRkV7y8z9idtaW9et34eHhq82ya2kp59Klo2zYcK/JJJmhoT4aGsrp6qpk1SoHwsIiaG6eor29xWAtRFhYLAEBEZSVXeYF9xDCwxOJidn+pXHjzeMrofTmYGMjZ25ObX5HIxge7sPBwbwTz1iMdsLFh5MnX0OlmqSnp5HERE2/PUvj4PX1JcTEbMfd3YfLl99n/fpDBARoqKWMDhwvvspxn7VaejClUkFBwXHAltTUx4zmlnt4+LBr11NkZx9jYuIYGzd+y+R9axp7NNHSUkpvbwtOTn4EBiYarH/XFODsprj4PL6+ocv6co+PD5Kf/wmNjWU8+eS/WtRUZB4SiQRraxnT09Ps2fO4nnUQHByPra09V658jEKRSWTkrSSo6ekpmpo0A93MzAj+/tFkZBzWxuHDwlLIzn6LvLwZNm/ei0Qi0Rukgx5/ieqdT1FYmEVb28skJe1eUv3EcuNrofQSibVeOGsp0DjxzCd6GGxQKLXhnZjtxMZuICgonlOnfktjY6WmnNcCz61CMUlfXx1JSc8jlztgbW3L5csfolTuJiws1vTA8Vor1tbWfPjhfyGXOxIXl2mwdnsxHBwc2bXrMS5d+oTz518nNfXbelmLIyO9NDYW09VVh7W1A/7+sSQk7DbbqMLfP5r6+kIKC8+RkrLzjhVfpVJRUXGR5uZyQkLWMzsrMjzcgYPD0rreFhefISRkvVH5vb1DSUt7lJyc95iZmcDFxZPm5goGBhrx8PAmLm6TtgHFQtjZ2ZOR8RQ5OUfIzv6QbzPF2t88b3CQds48TEtLLYWFZ2louM66dXvvmMvxdvC1UHorKwlqAxl5lmJkpBd3d3PMb4vWnAPtDNk7c3bHY7g+8XOt0qxbt5urV08SEBBhMntLoZiko6OBysp87OyctDOXl1cwqakPk5t7FKVyxmiL6PmBIy5uI5WVOezY8W08PG6ZtOZ8CZqGIQ9QUHCeM2d+T2rqI8hktjQ2ltDZWcXMzCy+vjFs3fqoRc0hFsLfP4rs7I/o6qpg9WpfvL0j8fQMXvILrglZnWXVKl8yM5/B0dEZOzsHGhqKzJbsLkRPTxMjI0Ns3vygyf3c3HzYufMpjh9/GZVqhsTETFJSnjdrVchktjxuJSP0tedxuTGkRwey0LoLDo7C1zeEiop8zp79I6GhCcTGpn6hJv/XQuklEms9eumlYGysh6goyxxbjevv5aiVA0NDLSQl7WZDUzHRL67RUa5aZ1cqKvIJMti62JY/Jezl/PFf4+Hhg4uLPdbWTjrXcHf3Iz39cbKz32HMcTXOY316csyHfKamFFhZoRN5sNSXIJFI2Lgxk6oqZ44d+w+cnNzw8ooiLm63dp1+Oxgb6ycpaQ+hobHk5x8nJ+cTXFxcUKtncXR0xcnJDWdnL1xcfHBx8dYj2RgfH+L69RNMTEyQkLBfu9QBCAlZQ2XlBSYmRi2iM1Or1ZSUZLFmTZpZZmDQ1PcnJu6lv7+OuDjL2mn7ZB/Rmd0NYaF1J5PJSEpKJTQ0lqKic5w48SvWrbMsLXs58LVQ+juZ6eedeC4u5pNKGhsrKSs7i59fCPv2vUDQlWMGlWvq6V/yu6FCanc9y+RT/0n8e/+E01gfQ/bOZKUdZnzXd7nXNwqZTEZ7exV1dbqNgnyyj5Dx1o95bKCdCRs7VFZSpHOGueeHh/txcnLRUdClki6uXu2Hk5Mbhw79+bLkfA8NdRMTk4GzsxsZGY9y4sT/smnTAzg6ujA01MfIyAADA300NVUyMTGMnZ3tzeo3DyYnx+jtbSc0dD3bt2/SmwFlMht8fddQV5fPwRvDZj39zc3FgC3h4ca5/PSfhw8XL75BWFgKvr7mabstaTpqKC6veT4Pa9OyGxoKSU7ep9coZLnxtVD6+bbFt4OBgW6srWU3mz0afhwa5p3TKBR9bNlyL15eGtojY8q17v2f4f30f/CnP/0Xbm5OeH7/ZXb0NLH15K949OTLTBUc176gcrkT09O3SC70W1UrmBUkTNo5Ip++ofdyDw/3sWqV7kuy1Cyw2trrhIcnL4vCT0yMU19fxZYtmrCdTCYjOnorpaUX2bPnCeRyBx0PuUqlYnx8iOHhAQYHe6muLmLfvmfx8zNcmgoQHp6I8vW/Yu21T0xaM0qlkoqKXDZuvH9JVkt/fzO+vnFcvXqciIhE4uLSTO5vjszSXFw+MDASX99Qysvzycp6nZCQOOLjjdf73ym+FkovlVrfltJPTIyTn3+cqalRPv30f5BIpDfX1844OLji4ODE5OQEra3XCQmJvZkcc+uRmVIuFxcvQkJE0tLuxy/3Xda+908GX1DF+nuYnp7QHmuQFUhUM24l5R//8n22bj2kI8PYWD9ubrpOyKUQeygUE/T11ZKS8qK5x2URiosv4ujoQF9fB6tWaZYtEREpNDQU0NJSq8eBJ5VKcXX1xNXVk7CwWKytrWlpuW5Q6Rf6KdQIWIm6ztvF1kxVVQ7OzgF6IVBz6OioJj5+G25unuTmfsDwcDebNj1gdHlg7HmLwJC9C+WP/DOTZkLHUqmUdeu2ERamMfmPH/8VCQk79boOLwfu+ow8S3CrV7nlGBzsJSvrDcLConn88X/hoYf+ln37vkdycib+/kFIpXMMDTVRXn4SOztnIiL0TU1jqZSjq9y5evUkc3MzSCQSk+a2XO6AWq3UptYaG0hcJ0dQqyfIzn5fuy/A+Hif3tJkKZltNTVFeHuHLEvzxJ6eNoaGGklK2q3TyFIikbB2bToVFTk6nWYNIS5uI3193QwNdetsX5wNuVjh5zH//BSKcZqby5dM5jExMcrY2Dj+/mE4Orqwa9cTSCQOnDnzCqOjhgt8jD3v4r96m3d+ls0bs0q6uloMHrsYjo4u7NjxILGxO7l48X2ysl5jYGBgSfdgDl8TpZctSek7OprIzj5CXNwWnQQVudwBT89AwsKSSUzMZOvWh3jiiZfw8vLhzJnfUVNTonMeQ1/2jJU159KfZdeuZxkd7UGhGDdrbtvY2Gl57EzlaqelPYZMBhcuvMf09NRNKukhXF11Iw+W5tSrVCpaW4tZs2aLBU/NNNRqNUVF54iNTSU0dB0DA806g1NAQAw2NlLq6kpNnkcmsyEiYhOlped0tluyboZbz6+4+Ax+fmst4vhbiObmUry8IrQDvEwmY9u2Q4SEbOT8+Tdpba3UO8bU8w4OjmfTpkNcvfoBTU3VJq+tVqtpb2/g4sX3KS09RVBQOBERG3F2Xr7+C/A1Me+trKwsNu9raoqors5my5Z7LWKUlUqlJCXtJTAwjoKCz+joqL7J8+5CYXgyNelPsSf3HdwmRxElVsjmZtl/+R1qQmLo8IunouIiB82Y23Z2ciYnb+Ds7Gay8k0ikbB160MUFHzC8eOvYW+/ir6+TkpLzxEbu12nusuSbMSmpkqcnJyN0n0vpddaXV0ZUqmK8HBNQ0lnZze6upp1zPl16zLJy/uIsLBYk8w6UVFJNDYW0tfXpu0DZ0kTiPnnNDjYSV9fJ/v3HzB7zEKo1WrKyi6wdq1+/8KYmBTc3Dy5cuVjhoY6SEzcreMnMPW8fX3D2b79IfLyjjE7O61XJz8+PkJdXSkdHRXaXvWaBh1yOjvrsLY2T/W2FHwtZnqp1BpRNK30arWawsLz1NdfIiPjcYsppOfh7u7Hnj3fw8vLlxMnXua9935GaWkuHduepOE7/8mcjRyJeg6BW2v2A2MddHQ0UPrgj42a29PTCvr62qmqusrAQLfZWVoikeDiEsrkZA++voEcPvx/mJuz4uTJV7h27RMmJkYtvqfGxkIiIzca/MxccdFCTE9PUV2dTVLS3lvH+0TS0VGns5+HRwCurh5UVFwzKZeGpmsL5eXntduMWUBzgqD3nIqKzhAVtVXrmDRWGbkYzc2lqNUSBo0MMF5eAezZ8zQDA4NcuPAG09PmLY95eHgEsGPH49TW5lJaehmlUkljYyVZWW9z9uzvUavH2L79vi+kV/3XYqaXSKQm14oqlYq8vE+Znh4gM/PZJaVw6l5HQnx8Gq6uXuTlfUpm5pPIZDLW/vIhg2v2hGP/it9zv+cz9Tg2L76qN2sWhq+n4NRvCQnZiJ2dlMuXj2Jj40RwcCKtv6k36DgqL8+nqSmfQ4d+oJ2hN23ay8TEFiorr3H69O/x9g4mLi7VZOinq6uFubkpo7HhpYT9ysry8PIK0GEOCgqKpbb2NVQqlY4vJDFxF1lZrxMVlYi9/Sqj8kVErKWx8RpdXXX4+kYatYDe3v4EI3ufIyxMM3u2tlYyM6PSVs1ZmrOgUqmors5l+/aHKS4+ycjIgMHyaLncgZ07H6Wo6CKnT7/K1q0P6OT5m4Kz82pSUx/lww9/SWnpWXx9AwgJSSAo6BGjnvqpKQUTE8vb4f1rofRWVlKja3qFYpLc3A+wtbVi585nliUM4ucXhYdHAbW1JcTHbzC5Zo+P38SJE7+hdvfT2pdMpVJRXHyazmunSE4+qE0+SUzcRXt7NU1NRVRWXsDXdw3h4Ym4u3uhVqspKDjPwEAtmZlP6yWmODg4snFjJgrFZqqqCjhz5g28vPyIi0vD2Vk/xbimpoCwMOPlpJaG/YaH++jsLGPvXl2OewcHZ+ztHejpadMJ0Tk6ut8sQrnE5s37jC4hpFIpa9Zsp7z8Ir6+kUYr8Eb81lJfn4ednT2jowNcu/YpO3Y8rTW9LR28GhoKsLX1IDg4mpGRdqqrr7Fli+HlgVQqZcOGTBoavMnJOUps7HYiI1OMPkvQWJoNDdeprr5ESEgKa9du1et/YAhNTeWsX7+8TLlfC6WXSq0NKv3o6BA5OX/Cx8efpKR9t51hZujFXLs2nZycY0RFJZoMkcnl9gQFJVFefp6tWx9kdLSfK1c+wMbGjT17ntaxOiQSCUFBsQQFxTI+PkxDwzUuXTqCnZ0bCsUMcjlkZj5j0vSTy+1JSdlBXNxGqquvc+7cEdzdPYmNTdXOSA0N16moyGVqKpLJyTF8fMLx9AzWGRAtDftdv36OiIj1Bq0nX99w2tvr9CrX4uN3cuLEyzidaGft6z8yOguHhKyhtvYqLS3lBAfH662bJybG6S3NpaWlBkGwxclpNW5ukXR3V2h9CZYMXkqlkpqafG1uQVTUFk6c+A0TE9tN1hqEh8fi4uLO5csfMTLSSXLyQYOTSk9PE6WlWYAdmzY9pEOdZgqDg72Mj/fg4WF4CXa7sKQ//R+AA0C/KIqxN7f9O3AQUAJNwHdEUbR8MWkh1Oo5hob6mJvTKLbuzy3RNea9rtL39LRx5cqHREdvZM0a/bJbS2Gqyq3CdTXV1YUG020Xhsji4jby2WcvU1R0mpaWKqKjtxMTk6JzDUPc80lJe0lM3E1NTT4lJWc4cOAnFqWSAtja2rFu3TZiY9dTW1tMTs4xXFzccHT0pL29hsce+wkqlZLOzmbKyy8xOfkRrq5eeHuHmjSnF4b9mpurmZkZJibGcLPPgIBYzp8/glq9Rzvgzt/rAwPtqAXTsXaJREJs7FYqKs4SGBirPcf09BQVFVdoayshICCC73znJe2go1TOkJX1FuXlF4iPT7do8KquvoSLS6C2nl4udyAgIILq6gLWr99p8jm7u3uxe/dTXL78GefOvcbWrQ9rrbDx8WGKi08zMjJITMwOwsJiljTx1NeX4OTkZlHPhqXAkpn+deBXwJsLtp0F/l4URZUgCP8f8PfA3y6rZEBvbx9lZY3IZDbMzamYm5vT/hYETc69lZWUublZxsZGqaoqJDQ0ls7OJkpLz7Bhw747zmc2ZR7G/+IKFy++R+uhF7X7GvJ029ra4eQUSHV1Ifv3f1fHrDO35pRIJLi6+uHu7qun8JZ412UyG+LjNxEVlURdXTE5Oe/x7W//vVYGTeLKDhSKSbq7W+jubqK6uoAcmZSdu7/LnktHWTXaq3d+pVJJael5NmzYZfRFdnZeja2tjL6+Dry9A/Xu1Uo0vFZdOAsHBUVRU3OViopcZLJV9Pa2UFNzlYiIWPbseVZvmTPf2ffcuTdZtcrd7OA1MNBNWdklDh3STU6Kjt5GVtYf2D/WQfx7/2yGYtyOHTseoLT0MllZr5GSso/+/lZaWqoIDk5h82bjiT3GoFTO0N1dRXy8Zfn/S4FZpRdFMVcQhKBF27IW/HsVeGB5xdLAx8eH9PQNBkNKKpWKublZVColKpWSoaEuOjqqKSk5hUql5MCB5y12sJiCKfPQ9WSOgAAAIABJREFUzc0Hd3cvqqoKkJkJkalUo6SnP6S3jrNkzTk9PYW1ta3OPpY6qOah4fCLp7b2ssG1pFxuT1hYLGFhsajVaoaGeqntbOZSwDpGR3twcXHH09UX74EOBgb6qajIRqEYxdvbdG66t3cYbW31eHsHLjnWrr1XnyiuXTtGVFQKvr6huLq60txczXw1taHBb2rLfVy6dBSH1AfBgBO1PvkgJZc+o7e3FlDrFGzN1z58+6aFMD/PmnrGEomEdeu24e7uxaef/pqoqC3s2vWsSTptU2hoKMfNzQu53Mn8zkvEcqzpnwaOGvtQEITvAt8FCAhYvt7bUqkUqVSKjY0mLOPk5EFISAIjI4OcPfsaMtnyhDzMmYcJCTs5f/5toqON564PD/cxMzNmUEEsWXPOzEzpreOXWlQDMD09oTd4GIJf7rtkLlCS8kd+SkHYJrq7m7l8+X/w9fVn+/Z7KSnJorm5WqdTzGIFXHXvj3hrDiBzSbH2hejpqSc9/bDWQw8gCALZ2Ud52taatb/7gcHl10TiXi5dOobdrmd0BtCKiiu0nX6VwMA1HDz4Io2N1ykry2Xnzkf0BtPFMPeMnZ09cHFxZ8eOpeX7L0ZzczHr1qVhxBi6I9xRnF4QhB8DKsBw4BMQRfFVURSTRVFM9vD4/Fv2uLi4Exq6kZKS08tyPnMprc7Oq1m92peqqgKj52hqqsTHJ8LgS2AqA0+tVtPRUUNR0SkmJyd0Pr8dauWZmSntIGkMhuLzya/+GVvaiggNjcPLy4d9+17A2zuUtWt3UlmZo02MMnTs1jf/jo3NBQwMdJuItUuMZg729LQxPT1MSIhu6XN8/A58fQOIWNAIZR7zihkauobg4PXk5LzD1JSC8vJrnDjxW2Zmhtmz51lSUjQJMFFRm5mY6KWnp80ia8TUMy4vv8zExAidnbVG9zGH7u5WRHHmc2PXuW2lFwThSTQOvsOi+HmMR7ePuLiNDA0N0td3540CLElpXbs2g+bm6wa7w6rVajo7qwkNTdT7DIwMKjI7stIe47PP/pfy8jxiYtJoa2ukouKqVsFuh1p5Zsb8TG/KgqiouExk5HqtE9XXN5xVqxyori4yeewDJWdoba0zOoC+nfk0P3/pqkE23urqq4SHJxscMA/eGMbVQOceuKWYiYnbkMu9efPNnzIwUEta2sNs3fqgXkfZqKhNlJXlWGSNGHvGLS11dHVVsnv3cxQUnKKrS7/XgCWory8lOPjOiEtN4bbMe0EQ9qBx3KWKomh5WtIXBJnMhujobVy79gnbtj2k3b6YUks0UrSxeHtf9FZKfpaj+/kCKmlRVGNvL6ekJJstW/Zrt4+ODlFVVcDMzIRR/8JiNp5RRzfei9tJo38y6yMTtRVidXV5tLUVU1+fT3BwMu4P/yMpC8xaMF/CqVROIZOZnumNWhAD7UxM9BARoeu+SUjIJDv7KBER8UaPdR4bpLe3ju6Dz9+61wXra3VsKnU5xwgLi9NZIjU1VTE42My2bd/SO+e8VWHMr71QMT08fBHFONLTn9A7x7wsGe7+HIlJ5YazN44j3YtPp4WxZ9zYWMnly8dwcfEhMDAKKysZ+fkfsW3bA9pUYkPXXewcVCgmGBxsYOPG5al6NARLQnbvAmmAuyAIncBP0XjrbYCzN8MJV0VRfN7oSb4EREau5erVD8jKehs7O3sAbkU+dGcNQRD0wiKiiN42/f0E5t08c3NSamsLuXGjDxsbZ0ZGOhGEWVatcsPGRsbFi++zYcMevXi2SqUi1y+aPz70YyYnpwgKSiQiYi1pC+LDarUaUZxjz57vMjbWT03NZX47Pkxr5vc5mH8U+2HLqJWnpxVmZ3pjPoyRVW5ERq4nIO+o3gtbvdqHiop89hvzf3j4MzY2wOXLp5E7BXLiz95GEAQkEivNM+3tRhRF8vJOkpycRnt7Pe3tlUxODjI7q+TGjUG9ngSmzPDFitnSUo1EoqCjowZPz1BkMhkxv3mB4FO/RUBjpMoH2nnq8jEuhW1ku2JU59zzZuyUR6ARSu5LtLYWkpn5OHl5H6JQTOLnF0JS0n7y8t4nLe1RrfzmHLB1dSV4eQV9uWm4oigaCsK+9jnIsqyQSCSsWbMea2sX1q0z3HZ4uTE+PsLRo79g8+Z9JCZu1TKmqlQqSkpOc+rU70hM3E1IyBomJkapr79Ga2slDg6rCQ3dRFBQlEapfvi4jlLVJR3AxsYGqVSKm5sPW7c+iEIxTm1tPn/m5o2jow9RUevN9jifmZky6+A0FOKaldnx/rrdpPc2GyR9nHnmv3mlr4PSB3/C+td+qGd9XNz5fSSiEqlUiUo1DqgRRTWiKGp/e3h4091dwzvvXCE+fiOJiWl4e4fS0FBJTs577Nz5lA7HnjGrQgRKX3iFngWOu9HRdkJDU6iqKuDKlU/J6Ksn+Nwf9KwE69lp1naUkfXAP5KW9Rvtd1D92L/yyo0hkpLuwdc3SLu/UqkkP/8kExPd7NqlyZL09PSlra2W6OgkgoOjUKlU5OS8S3r64zg7rza5fOrc/ihtbaVs2XKPye/oTvG1yMgzBh+f8JsOtjtTekurzSoriwkMDCUmRvd6UqmUlJQD+Pk1UVDwKYWFJ7CyEvDxWUNq6mHc3Ly01zE0C4w99m/Y3FwLL5al6vD/S45vCGVlpyktlRIWtp7Q0BiDceHZWQX29qZDSIbSXY8lHmB4xyPE/NdjRmoMXiLge7/i01l0agwUbr6c3v44H1vB7oxnzXYQKi09z9SUik2bdmu3RUbGMzMzSU7OEZ1sRGMWybCDKx/ZeTKfw9bWVoevbxCbN2uKgZRKJZnPBRtdFrhOjPKhrTOzv2vW8SOE1+RTU3NVq/QTE+Pk5n6Avb0NmZnPap93QEAc9fVl2tz/8PBYVColR4/+G4mJOzkwYNwB29ZWj42NTK+l+HLja1FlZwxeXmGMj/cZbGtkKSytNuvoaKKuLhsrK+NJGN7eoezd+yJzc9MkJu5l8+Z9WoUH446w5A9/jlzuYFCWxN88z46eRg4ceJHExFS6ukr57LNfU1SUg0Kh6/FXKmfMeu9Bt9XVOz/LI8c3hMjIjWZqDNLp6anmlIsP//yd/+S5p3/JC/v+go/l3jg6uuuYt4Yq3hSKCUpKzuLqqh/hiY/fhIdHFNnZb2lr9I05BRu+8x8MDtZRXHwJ0LDgBATcCinKZDJWjfYYvfdBuRO9vfWUlFzR2R4ensL4eBeDg70MDHSTlfUG3t4+pKZ+W2eA9fdfw/h4DxMT49pt0dHr8PIKZmBgmBtGfCpT7gE0NpYQGrpO5zk9/0I0wTt2wBGjAbIl42s901tbW+Pi4k5PT5seTZOlsCQe3tfXSUHBx6Sk7KWlpdjk+WQyGevX76W+vpDQUF0aZ2NKtWqkFzu7VUS/+kOTsvj5ReHnF8XISC/V1Zc5efI3eHpGER2dgru7F7Oz09jYGK9jN4SKijzCwzUee1M5C7a2cqysrKmvryIyMoWoqC24uq5GqZzhs89eZnx8mKjiUwYtmdlZJX+cmcLa2g0wzGq8fn0GubmT5OW9R1raY0YLcAbSDpOuGOfs2T+gUs3Q3V1HbOwmxscHkcnkWFvbmKC3Emh+9r/Z5hNNRUU2UVFrtZWAUqmU4OAE8vI+Q6UaZ+3aHYSH6/ePl0qleHkF0txcQ3z8Bq1ldmCgnUkbB+Qqpd4xKokV+Qf/grGxTkJCHtSz+Ky7u+G7mnU/h++8HdbXWukBVq8Ooqen+baV3lw8fGRkkLy8Y6xbl0lgYCw1NZeZnlaYdMSEhKyjuvoKHR1NOutwYy/jqKMHdnarLI7Nu7h4sWXL/SgUE9TV5ZObe4RVq7wYHu4nJsZyB1FfXyc3bnSRlqbx2JtKaW1uLsPKSs7Bg5pKxoXLkJ2OHpwd7yL6yocGB63wP/41bj94B29vuV5n3XloCEQOcPHiMfLzP2DLlgeNElfI5Y7s2PEEb7zxD8jl3hQVnUOpnGJubpbZ2Rm6Izbw3GAH1guiNCJwJWEnJx0csZocQioVuHDhHfbvf05r5js6utDXV8e99/5AzyO/EEFB8VRW5rNnuFHneTnM3DC4/7RMzv8ODREQoCl6MuikVCjgxz9eFqX/Wpv3AL6+EfT3W8ZPZgim4uETE+Pk5BxlzZqNBAfHI5FIcHLyNns9jZNxM1VVl3W2GzNZT2x5BLl86e235XIHEhMzOXToh/j7h9Hb28LQkD6HvjGUl+cRHr5BG5c3lrPQuvl+ysrOkZS0W6vwC5chLmP93HP8V9gZGNAAXCdG2LRpN05OLkxMjACGlwHznXtHRsYpKjplUna1WoW3dwSHD/8N+/c/x7e+9ec88MCPePTRf9BUXFrpzndzVtaMRKdhb++DlZUDPj4JKBRKsrJeY2JilJGRXkpLL3DPPX9uUOEXyvvUP+0hvvIckW/8nUVpx/YzE0REpODrq+lBbzRXoN18DoEl+NrP9O7ufszNTTM6OrRkvjQwPruVP/JTsrP/RGBgBNHRt6r4XF196etrIyAgxqQDUDPb59HV1YKvr4ZS25jJemVqlgR7J4sq3wxBqZymq6sWX98oamouMjraS2LiDuRye6PH9PV1MjHRRVSUblze0Oxacu0T3N0jtE4uQzOVzdwsc4LEIKGlKJFw4B4Jk64+HF27Ex9BMBnWSk9/mLNn38LGJo/Y2K0G7/fy5Q8ICFhrMDU67t2fYrXIzJbOzZJ+7lXER/9Bu23DhgxKSy/z6af/w8zMNJs3P4SXl/4Aq++AbefpkT6sVTN6+xrClHsAc3Oz2siKMYuPZUpj/9rP9KBJzujpab2tYw3NbkXfe5m35qxwd3cjMTFTZ//Vq/0YGekx6wCUSCRERW3Rm+0N9Yufnh7D3t7FYsJLnfN1N3LmzKs4Ovpx770vcujQD5BK5zh16lWqq4uM9gCsrLysM8sbw+BgJx0dTSQlpWu3GZupJKJaz5IRQUMzJoo4DHXxWM47xP7uz436LkBjwezY8Qj19cU0Nd0i2lQqlZSVXeCzz37NjRs3aG+voKurVU8OS5dJSuUMarWKqakZlEoloaGGG2YYGuRkqhnUgnn1mh+0Z2dntLyBhiw+5HJ4aXl62n/tZ3oAH58w2tubtWGUpWLh7KZWq8nO/hA7OyXr12viqQtndIWbH29Gbia6Pt+sAzAsLImamit0dbXqxH8XQq1Wo1QqtKSXlrbfVqvVlJaeo6WlipSUgwtaQ0nZsOEeQkM7uX79BK2t5aSk7MbD41Y4ra+vk7GxTlJT7zd7jYKC48TE6FoNxhN83Mnd8322n34ZlxvDiBIJkkWdiWzmZhFvmE6tBc36etu2B8jJeReZzIaxsQEaGgpxdg5kx47HcHX1pKOjhqtXPyA8fDPx8besMXNFVEqlktraIurr8/H09OXBB39EQcEn1NeXsWaN/jtkcpCT2SFV3ooeqQQrZmwdkE+P61h/qlN/0M70i7M0VT7eWP/iF8uynodvjNJHUFKSg1qtvqPKJ4D8/FPMzY2xffuT2rbEC007+8EOnh79CJkBLy3oviCa2X4jVVWXjSq9QjGBTGazJJqvyckx8vKOAbbs3v2MQfYXd3c/du16jvr6QnJz38XHZw2JiWnY2tpRWXmZiIgUs9esq8tHIpETGblWZ7uxZUjxAz/m9/3tXPzOr0lLu597719ajfli34WHhw/r1x/iww9/SWxsKlu3PqozePn7R+Pk5MmlS+8xNNTFpk37sbW1Mypf9WP/Sk1NCbW1l3B0dGbHjke0ocaYmO0UFp4hKipR7x0y5YA9l/4c+y8f0S7Xrh76S94VrDl06AWdfWdndcOp84N7Z2cdGRkCERERS3pWpnBXm/erz53mvr9KMctiag5yuSN2drb09XXckTyFhRcZG2sjNfWwViEMrl9VSkQjpt3iFzc0NAmFYoCeHsNOromJsSWlZHZ01JCV9Rru7uFkZn7bJN2TZtDZwP7930etVnDixG+5du0C4+OdREVtNnkdhWKc6up8kpP1STSMLUPG9r+AXO6s7RRk1DEpd7K4Wcfk5ATR0UlkZDyso/DzcHR0Zffu72JjI+HMmdcZHOw1KN/ZB3/KKzcmaW+/zqZNB8nIeEInmcjbOxSZzIrmZn3uemMO2LKHfsJpVx+d5drkPT8E5vS+79nZaYvKnpcDd+9Mf+QIUf/5M6xmpgHzJBHm4OHhT3d365JbHM2jsrKA7u4yMjOfRia79eUYM+2Em+tXc043qVRKZOQGKiryDMqmUNzA1tY8e+/c3BzFxafp6Ghiw4ZvaZ2DlsDWVs6WLffT19fGhQvvYG9vb3aWLyo6iZ9fgtE21oaWIeODnTg7e2JtrWnVZGjGVVrbcDzzGUJD15nNglSr1dTXF5CcnGZSVqlUyubN91FfX3izyUkm3JSvq6uFsrJs1OopEtduN8m0FBW1hcrKqzr8AfP3CvoO2BtphxE++b/09nbo8OL5+0fR0lKl833PziqXjQPCHO5epf/xj7UKPw9zBAam4OMTTmXlNSB1ycc2NlbS0HCJjIwndRpKgHHTbsjehbbv/a/ZF3d6eorZWYHGxuvY2jqRkLAFR0cX7eeTkze0BUPGMD4+zJUrx5BKnfTINpcCT89A7r//r8jKeouSkrN6Tsp5dHXVMTg4wP79+tVvptDe3khvbzsXLx7D2toOmdyTtgN/Tcb5V3Ec7WPC1ZustGe47BeCnQW+i46OBqTSOYvrziMiUnBz8yEv7xhdXY2oVFNMTQ0SE7ONbR3VrPmnvSa/q6CgWCorc2hvb9Bpnw3GfS1+fhG0ttbqKH1oaBJZWX9EpdqFVKppviqKc0um1Lpd3L1KbyQmaUm9syE4OXlSX38NKyspHh5B+PgE4eHhY3aN39nZTFnZaVJTHzHII29sfXgscQ/OyfsNvghqtZqurhaamsoYGGjCw8OHXbseY3i4i6ys3+HuHkZUVApeXv5MTo6bpExqaSmnuPgsYWEbiYvbdMc+C5nMhrS0hzh79k0cHFy0HWu096ZSUVR0hoSEXSa71CxGWdll2tqK2b79ENbWNiiVU0xPKyhdk0JBWCxK5TSzszOahppN5fj5Fet1glmM2tpCIiPXG/3cGOHo3r3Pc+zYfxIcHE16+osE5B1l7cvfs4h6LCpqA9XV+XpKbwwhIYlkZx9Frc5YkOTjiqOjM62ttYSFxaJUznwujSqN4e5V+oAAaLOs86opKBTj1NVdo7w8l7CwZCIiEujpaaCgoJSZmRlcXQPw9NQMAoubGwwMdHPt2kds3HiPZfXwCznY1FKC+ltxcLhFhjA6OkRDQzkdHRXY2EgJDIxn48Y9C9bsSSQk7KKu7ipXr36Ara0rIyMDhIVF0tXVgFI5xezsjPZ3T08zk5MKtm2znFbZEjg4OJKa+iCffvoyY2MDJCRkas39ioqLODh4W5zhaIqv32Aew65nGRrqJj//Q3p6mtmwYa/BfIK+vk6mpgYICnrE4HXNlbD6+ETg7R1mNAPOmFUZErKOyso8enraLFoqurh4YW0tpaenTWfJFRgYS1tbFT4+QdTVlTI+PkhVVR6urt64ufnqLCGXG3ev0r/0EnPPPKtj4luSiALzM2kdjY1FDA314uUVjYdHBCEhYVpeedB0KO3paaCvr5n6+kuIohQPj0A8PYNxcHDk2rVPWLcuE19f06O6IdPOpSSPgYE2/PyiaW6uprW1nMnJQfz8wti+/T6jg4hMZktcXBoxMdtpbi7lk09+zdzcNMPDI0ilMmQyW6RSGVKpLdPTSry8QpZV4UHz/OrqSnF0dGJwcICjR/+VkJAEfH0jaGoqZ9euZ0wePz09xchIP8PD/TQ0lGNlNaXH129KKUk7zJ49z1NUdJIzZ167WaEYonONmpoCQkISjfoezCmyRGLN7KwmeWYp1GMSiYSIiBQqK/Mt9g/5+kbR2lqto/TW1jZUV+cyNNSMu7s/sbEZjI6O0t5ez40bA9ja2uLo6I5EYsWWLWssuo6luHuV/vBhaqubCXzlVYtJIiYmRmloKKS1tRKZbBXBwYls2fIgMpkN58+/h62tbhslBwdnwsNTCA/XcNCPjvbT1VVPV1c5zc2VODh44O9/ew/c1dWT8+fP0N7egKvraiIjE/H3X2Nx6E0ikeDnF4W/fxT33feXBo+Li9vAiRO/oa+vU8vZfqdQqVRcuvQJMzND7Nv3PNPTExw//ltmZwXOnn0TV9cwbURArVYzNjbE0FAfo6MDjI/3Mz7ej1I5iaOjCw4OrtjazjE5qWJiYlxH6c0ppaaLzCE6OmooLPyIrq61JCWlIZVKGR8fYXCwkc2b/9zofZhTZGtrmVbpLW3sMY+IiA1UVV2mtPQKNjY2zMxoliYq1Qyzs5q/NT/TqFTTTE6OMzLSx40bg9jZOXHjRhdqtcCuXc8RGhqr992q1WpGRwcYHh6gs7Oe6elpg3LcLu5epQf6d+6hKPI5o11VYZ6DroaGhiJGRvrx8VnD1q364Zvp6Qns7Iz3TgMNyaWz82piYrayaZOCK1feJyvrLbZuvVfHuWYOGsbVHPz8gtm69QE955+l6OlpxMXF1+hAYWsrJz4+lcLC0+zZ85TB/ZbSeXZ6eors7GM3W4A9jVQqpbDwU9as2cG6ddvYuHE3OTlHOHr0f3B0dGBiYgg7O1tWrXJh1SoPgoIicXXdcXOGuuVbaGgoJjv7CJs23aed7SydXf39o3Fz8+fq1Q85ffp1tmy5h7q6EgIC1pg0gc0pslR6S+mXmt4skUgQRRUdHWW4uLhjbW2DTGaHnZ0DMpk7MpkdNjZ2N7fLtXIODLRRVHQaB4dA0tPvNep/0fQ68MTV1RNbW2ucnb/4Zhd3JW7cGKGhoYD29mpt08dt29YYdS4plZPY21vOIW5rKyc9/QkqKrLJyvojSUn7LFrHKpUzXLhwFHd3NzZuXJp3ezF6exvw8DBtQoaHJ9PWVkZ1daFO1hksjRt/fHyUnJw/sXq1JykpB5FIJIyM9NLX182BA5rMQ5nMlh07nuTdd18iImI7gYGmFe+WjOuQy+25evUD1q7dQ1hY7JJmV7ncgfT0J6ipucLZs39kamqK++//oclrmlNkqdQGlWpC51lYOjhWVeXh5BTA7t2Pmb33hfD3j6anpwFbW487drjeCb5SSq9Wq7UNHkdGBvH1XcPWrY8ajRUvPE6pVFgU716MuLg0PDwCyc//iL6+DpKTdxideZVKJRcvHsPJyYENG+41uM9SZt6BgW42bTLfkis5+SDnz79FUFCUjkViqYNqcLCX3Nw/ER4eT1xcmnZ7WdkFQkNTdIpWpFIpAQFrmZubWZKzydc3ktRUe3JzjzI1NYHPbRQPRUdvxtbWgcLC03qdbRbDnCJbW8tQKJQ6+1sSClYoxqmvL2DHjsfN7msIoigiWJCT/3niK6H0880c29ursbNzIzg44easbllcc3p6Cisr6yWlsi6El1cwe/c+z+XLx8jKevumua/70s0rvFxuzaZN9xnsP7aUmXdiYpSZGaUOs44xODuvJjQ0gWvXzpCZecubbYkJ3dXVQn7+h3qkEEND3QwN9bF5s37+vadnIP39NURFLa1HoLu7Hzt3foeLF9/mI681iC+8wpq3f2LRADgPFxcvi5NYTCmyJj5uOFXaFIqKTuLvn2BRx1lDUKvFZe9Nt1Tc1Uo/NTXF1asfMzmpwNc3hm3bDpud1Q2ht7cJheLO+mva2srJyHiS8vILnDunMfcDAzVJIRryww+xtRXYsuVBo6bbUkJD3d0NuLkFWGwGxsamcvr0b2lsrNRmjJkzoRsaKikvP8OmTYf0IhTl5RcID99ocLnk4xNEVdUFi+QCfesm9JGf8tZIE+/ZebLllcYlDcYymd1tKetiWFvbMDu7tPN0dTUwONi/5KSkhVCr5750pb+rc+8VCgWrV4dz6NCfsWnT7ttS+L4+jfNEFK20/Gp3gvj4dDZvvoeiohNcu3YOpVJJbu7HSKWzbNnykEklXUpoqL+/GU/PIIvlkkqlJCfvp6LivJYT0FR3noqKq1RWniU19WE9hR8c7GR4eICoKMNViY6OLkiltgwNGeeHn4exjjlPSG2ZmxvnwoWjKJWW1Z3Dciq9tV6nY1NQqVQUF59m7dqdS0pK0ocaK6svd669q5Xezc2NkBDDzK6WoK+vjby8Y6xffw+rVwczYIS5Zanw8gphz57vcuNGJ0eO/Jy5uXG2bXvU7Iy1FOabgYFufHyCDO5vjFzSyysYT09/rl/XzMKGCktKX3iFD21X09paSEbGkwbzBcrKLhAevtnkc3d3D6Snx3wHF2PWTdy7PyUt7TEcHOzIynpLh0jSFKRSKYIgajv93C6kUhvm5gzz8RlCdXUutrbuhIQYD+Ea+14WQq1WG136mTt2uXBXK70xWPKANAr/PsnJBwkMjMTNzY/e3uZlk2Heo+zs7EpwcIJFJqq5vnjzGB3tByR6GYJgnp133bo9DAzUaqu4FpJynHmlkXcFOaOjrWRmPqPDIz+PgYF2xsZGiYoy3IZrHp6eQfT3mx9ETVk3EomEzZvvw9c3kHPn3mJkZMDs+UCj+EuxDoydw1KLQdOjoISUlF1G97GUNVmlUuk58iw9drnwlVN6Sx7QwEA7eXnvs27dfu2629PTn6GhzmWVRZOdtYHu7nqL9reU+aanpwE3tyCD5zDlFwCN72Ht2gyuXz+tMxtOT09x4cJ7iOIUO3d+R5sos3gAlf7pJSIiNpq1rnx8ghga6jXKvDMPS6ybxMRMoqOTuXDhbXp7zZc/W1lZo1TeWcKKTGaj057aFK5fP0FwcLJJujVT38v4+Ajl5dfIynqLmpqregOWue90ufGVU3pzD2hgoJ3c3GOsW7dfJ67u6RnA6OiQSbPwdkyswMBI+vvbLTY3DdFhLUZfX6tRtlVL/AIhIQnI5bZUVOQDmsYMZ8++hZPTKlJTby1KNkOdAAALwElEQVRDDA2gD5/7Izv768zeh1zugJ2ds9nZ3lLrJjJyAykpu8jL+xNtbaavvzCx5nZhbW3D3Nyc2f06OmoYHR0lLs50pMJ4D8A2zp79A+Pj7UREJLJ9+0OMLOqVdzsdiO8EXzmlN/WABgc7yc09RkLCXr1EGltbO+ztXRgcNDyT3K6J5eDgiL29O729jbd3Q4ugVqsZHOzG2zvI4OeW+gVSUg7S3FxAS0stWVlvEBgYxoYN9+g4Go0RWCb/9xMWDXru7sH09Ji+76Xw+gUExLBt2wNcv36cmhrj/QNkMtkdO2U1abimZ3pNO7IzJCbuNGv5TLkbr3/4M1dPtm59kKCgWNzcvKmuzqempuSOOhDfCb5ySm/sQUy6+pCTc5SEhL2Ehhp2tri6BtDTY3hdfycmlpdXBO3t+owqt4Ph4W5kMnu9PIB5WDpzOjq6Ehy8llOnXiEubhPx8ekshlECELBo0PP2DmDASJumhbDEupmHp2cgGRmPU1eXS1FRrsF9pNI7N++trWVmZ3pNRaGvdom4GErlDM3N1eTmfsIbkVsw1K9dANa8/RPt/21tFYSExNPVVcJnn71MeXk+FY/+s8VMQcuBr5zSG+vn/vaa7axdu9uowsP8ut7wTH8nJlZQUCR9fS2IoqGvfWno7m40up6Hpc2cbm4BBAdH6NXEz8PcTGJu0PP2DmJ0dPCOPemL4ey8ml27nqanp5LLl0/o+Q2srGRLjrEvhkQiQSKRGrUYxscHaWoqJzl5p852hWKC2toSLlw4yscf/1+am6/i5uaG8wsvG73W/DukUEzQ2dnIpk0H2LnzabZuvZeRkRZeHh3i431/waS7v8Usx3eCuzo5xxAWp1dOuvrw9prtTH3rH9jeWUb0vx0wmuHl5RVIUdFxgwSZS620WggXFw+srOzp72832fnEEgwMtBEYaJq11/KU0RusWqVL/DExMUp/fysDA22s8ggkdaDNaDNHMD3oyWQ2ODp60tfXZDF7jaWQyx3ZtetpcnKOcPHi+2zbdq/WxNYk1tzZmh40FoNKNW3QdC8sPEFo6HocHV0YHR2ivb2e7u56Jib6cHf3JSAgks2bD+pUDk55BJp8h6qrL+HtvUZbpejhEUBq6rcZHe3netUlPlvlgq9vDDExG5dU4LVUWNKf/g/AAaBfFMXYm9tcgaNAENAKPCSK4sjnJuUizL/0Q0Pd5Oa+R2zsLlI7y8ymuMrl9tjaOjI01KnXGfR2G0nMw9s7nPb2qjtSerVazfBwH5s2Bd32ORbixo1xVKpZqqvzGBrqZHi4l9nZOVxd/XBx8SOpt8mkwoP5Qc/NLZDu7uVXerhV4HPlyvucP/8OqakPIpfb31yP33mCjpWVDKVyWq8KsrW1gv7+PhwcfDl+/BWUygk8PYNYsyYFH58Io+FZU++QUjlNW1sVGRnf0X62OFOx7OGfcEoqcvbsa7i5hREbu9HQZe4Ylsz0rwO/At5csO3vgPOiKP5cEIS/u/n/3y6/eMYxNNRNTs67xMXtJjw8luifH7AoxdXVNYDe3mY9pV9qpdVi+PtHUFDw8R3dU39/G3K5y21z3C1GV1czCkUPVlYOeHhEEhubgZOTm9bKcRgxnVFnyaDn4xNERUXWsshrCFKplO3bH6Gg4Djnzr1JWtojSKVLT6E1BGtrmV6sfnp6iqyst3B2dkEimSE5eRerVwdalA5t6h2qKbuAm1uINuxnqA4j5Xc/RPbiq7QceJGamitcunQEsCM5OeWO73UhzCq9KIq5giAELdp8D5B28+83gGw+J6UfGupCodDN1lKpZrl27VO8vKKQy2V0ddVjZ6zv90A7XV234ugymTU9PQ24uurTJXeFp1D4L4te4C7LYvBqtZqZmRkaG4vM1u0bQ3NzGba2jjry3i5EUUSpHGT9+r3I5Rp5FIoRFIpbBtmEizerhvUVX0TT573kwX+gMTzF5DNQqWYZGxuhra3qc+V58/WNQKEY5+zZN/Hw8GJ2ljt+Tmq1mt7eZmYWTBY1NUUEBkYQG7sdgLm5WbMRioUw9A6JnXXU1V0jOnqrVua01//G4CQV8frfUBiegoeHP66u3jQ1leDgsDyTwDwES5xPN5X++ALzflQURecFn4+IomhwESIIwneB7wIEBAQktRngvTOGgYEBhocNdzvp7e3Fy+tWLn5Ierqmpe8izPr40HzhVnHI7OwsY2NjuLvrk1zeKUZGRrC3t7/ttOGxsTGsra2Ry5eHCnl8fBxHR+MEHqs++wyv//N/kCxgZlHb2tLzL/9C4/r1eHp6WlQc0t/fj7u7+xdSIz48PIwgCAiCgLOz6fJacxgaGsLR0VFLyQ2f372MjY3h5HSLzyEiOhrBgO6JgkB9TY3ONm9vb5PfoyEIglAkiqJhD64oimZ/0KzdKxf8P7ro8xFLzpOUlCR+bnj7bVGUy0URbv3I5ZrtKzCOt98WxcBAURQEze+V5/XFIDBQ912d/wkMXJbTA9dFI3p4u8NZnyAI3jdHFG+g/zbPs3w4fBhefRUCA0EQNL9ffXXZ+n99bXH4MLS2glqt+b3yvL4YvPSSpinlQixjk0pTuF2l/xR48ubfTwKfLI84d4iVF3gFXxV8iZOU2TW9IAjvonHauQN9wE+Bj4E/AQFAO/CgKIqGF98LkJycLF6/fv0ORV7BClZgDqbW9JZ47x818lHGHUm1ghWs4EvBVy4NdwUrWMGdYUXpV7CCbxhWlH4FK/iGYUXpV7CCbxhWlH4FK/iGYUXpV7CCbxhWlH4FK/iGwaKCm2W7mCAMAEsln3cHBj8Hce4Ud6tcsCLb7eBulQtuT7ZAURT1OdT5gpX+diAIwnVjmUVfJu5WuWBFttvB3SoXLL9sK+b9ClbwDcOK0q9gBd8wfBWU/tUvWwAjuFvlghXZbgd3q1ywzLLd9Wv6FaxgBcuLr8JMv4IVrGAZsaL0K1jBNwx3jdILgvAHQRD6BUGoXLDNVRCEs4IgNNz8/fl1AFi6bP8uCEKtIAjlgiB8JAjCnbE0LqNsCz77a0EQREEQlp8F9DblEgThB4Ig1AmCUCUIwi++aLmMySYIQoIgCFcFQSgVBOG6IAjrvwS5/AVBuCgIQs3N5/PDm9uXVQ/uGqVHw6+/Z9G2eX79cOD8zf+/DLyOvmxngVhRFOOBeuDvv2ihbuJ19GVDEAR/IBMNs9GXgddZJJcgCDvQ0KfHi6IYA/zHlyAXGH5mvwD+WRTFBOAfb/7/RUMF/EgUxWhgI/CiIAhrWGY9uGuUXhTFXGAx5dY9aHj1ufn73i9UqJswJJsoilmiKM43cbsK+H3hgmH0uQH8EvgbMNhX8XOHEbm+D/xcFMWZm/t8KYSqRmQTgXmeaSfAdCeQzwGiKPaIolh88+8bQA3gyzLrwV2j9EbgKYpiD2geCLD6S5bHGJ4GTn3ZQsxDEIRDQJcoimVftiyLEAFsEwThmiAIOYIgLG/rljvDXwD/LghCBxoL5Muy3ABtr4lE4BrLrAd3u9Lf9RAE4cdozDLTzdy/IAiCIAd+jMZEvdsgBVzQmK7/D/AnwZJuGl8Mvg/8pSiK/sBfAq99WYIIguAAfAD8hSiK4+b2XyrudqW/+/j1F0AQhCfRNPc8LN49CQ+hQDBQJghCK5plR7EgCF4mj/pi0Al8eLMfQwGgRlNMcjfgSeDDm38fA75wRx6AIAjWaBT+iCiK8/Isqx7c7Up/d/LrA4Ig7EHTv++QKIoKc/t/URBFsUIUxdWiKAaJohiERtHWiaLY+yWLBhrq9HQAQRAiABl3T2VbN5B68+90oOGLFuCm1fMaUCOK4n8t+Gh59cBY65sv+gd4F+gBZtG8qM8Abmi8lQ03f7veRbI1Ah1A6c2f394tsi36vBVwvxvkQqPkbwOVQDGQfrc8M2ArUASUoVlHJ30Jcm1F41AsX/Be7VtuPVhJw13BCr5huNvN+xWsYAXLjBWlX8EKvmFYUfoVrOAbhhWlX8EKvmFYUfoVrOAbhhWlX8EKvmFYUfoVrOAbhv8f6mB+c3DciQEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "regions_df.plot(ax=ax, color='blue',edgecolor='black', alpha=0.3)\n", - "points_df.plot(ax=ax, color='red')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Trimming" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "points = np.array(points)\n", - "maxs = points.max(axis=0)\n", - "mins = points.min(axis=0)\n", - "xr = maxs[0] - mins[0]\n", - "yr = maxs[1] - mins[1]\n", - "buff = 0.05\n", - "r = max(yr, xr) * buff\n", - "minx = mins[0] - r\n", - "miny = mins[1] - r\n", - "maxx = maxs[0] + r\n", - "maxy = maxs[1] + r" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAEICAYAAAB735ncAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9d3xj13nn/b0gCIBgAwsKK9j7kBy2IYfTR9KoucRO4iRK31hOYu96N443fqNN7GQtR4mTzTpZJ47f5HXyJorTnLjIliVZoxlNIWdIDsuw994LAIIgAIK4+wdADkB0zow0tvj7fPAheM8t5x6c5zzPeaogiiJHOMIR3huQvNsdOMIRjvDO4Yjgj3CE9xCOCP4IR3gP4Yjgj3CE9xCOCP4IR3gP4Yjgj3CE9xDe8wQvCMKkIAiPHfLaGEEQviMIglEQhH91H/u8IAirgiAsPtieHuEI94/3PMHfJ34c0AIpoij+hCAIWcCngDJRFHUP44GCICQLgvAfgiBsCYIwJQjCz4R53WVBEERBEKQex0rdx42CIIwKgvBjB675FfdxsyAI3xcEId2j7dOCIPQKgrApCMKEIAif9mjTCILwdUEQ5t33viEIwgmP9nOCIDjd9937/ML9jUx4CNZvd3uOIAhvCYJgEQRh8CAzEAThZ9zjviUIwjcFQUh+J/r9oHBE8PcHPTAsiqLD4/81URSXI72R4EI4v8eXATuuheY54C8FQSgPce/nAOmBY1LgW8ArQDLwPPAPgiAUudvPAl8APuBunwC+7nkL4OeBJOBJ4BOCIPyUuy0OaANq3df+HfBdQRDiPK6fF0UxzuPzd2G8+4NAsH6D6x07gRTgBeDfBEFQA7jH+a+An8M1/hbgL96hfj8YiKL4nv4Ak8D/A/QDG8DXAIW77ReB6wfOF4EC4PdwEd4OYAY+BmwDTvf/f+s+vxG4CRiAbuCcx72uAC8CN9zXFoToa6z7mUUex/4eeCnINYnAsLsfIiB1H69w91PwOPd14H+6v/8x8GWPtnT39fkBnvNnwJ8H6YcJqHV/PwfMHvL3ynH34xeAaWAVeOE+fv/9fgNFgA2I92i/Bvyq+/sXgH/0aMt3/x7xh33+O/054vAuPAdcwvUDFgH/I9QFoih+FtcE+GfRxaH+CniKe5zrFwVByAC+C3weF6f7TeAbexzDjZ/DxV3jgSlBED4jCMIrAR5bBOyKojjscawbCMbhvwD8JXBQpyD4OVfAtRDsfRcOtOHRfq9BEATgNNDnrwOCIFQDMmDU47BGEIQlt1j9p4IgxAZ5B384BRQDF4HfFQSh1P2sU4IgGMK5gZ9+lwPjoihuepzmOb7l7v8BEEVxDPcCHGHf3zUcEbwL/0cUxRlRFNdxcdyffkD3/Vnge6Iofk8URacoim8A7cDTHuf8rSiKfaIoOkRR3BFF8SVRFJ8NcL84wHjgmBHXYuEDQRDqgGbgz/00DwLLwKcFQYgWBOEJ4CygdLd/D/hJQRAqBUGIAX4XF2dV+rnX53DNpa/56UMCLink90RR3Ov7IFANpAEXcIn+/8vfOwTB74miuC2KYjcuIqwCEEXxuiiKqjDvcbDfocY3ovF/FHFE8C7MeHyfwiW+PgjogZ8QBMGw98HFmdICPDsUzEDCgWMJwObBE936gL8APine0zHsQxTFHeCDwDO4uP+ngH8BZt3tbwKfBb6Ba0wm3c+ZPfCcT+DaEz8jiqLtQFsM8B2gVRTFP/B49qIoiv3uRXAC+O+4FKCRwFNiseAixrARoN+hxjfs8X9UcUTwLmR5fM8G5t3ft/DgaIIgRKp5nwH+XhRFlccnVhTFlzzOiSRccRiQCoJQ6HGsCv+idAJQB/yz20TY5j4+KwjCaQBRFHtEUTwrimKKKIqXgDzg9n7HRPHLoigWiqKowUX4UqB3r10QhF8GPgNcFEXx4EIgB74JzOHSbwSDiP8txkNBkH73AXmCIHhybM/x7XP/v3efPECO63f54cC7rUR4tz+4ONddIBPXPvsa8AXRW4lTDSiAr+BW2rnbPwf8g8e9zuGhjMK1kCzi0g9Eue9xDsh0t18BfiXC/v4TLk1yLC5x3QiU+zlPAHQen3p33zMAmfucSneflLj0CxOA3N2mwLVfF3Atglf2xsXd/pz73Ur9PDsaF2f/Jm4l4YH2c+57Cu4xegv4mkf754ArAd4/Bw/lY6TjGKzf7vZWXApLBfBjuJStandbOS7l42n3+P8D8E/v9hyOaP682x14tz94a+kNuExISo/2F3Bpgmdw7cnDJnj3sRPAVWAdWMGlxMt2t/lMVOC3gVeD9DfZTUhbuLTUP+PRlo1L7Mz2c50/QvkiLsuEGXgVDysBoAJ63M9ZBP4AiPJon+CehWLv8xV321n3sywH2k+7238DF+e3uMf1z/HWjP8N8GKA9w9K8G5iNAcZv4D99rj/FVxWkyHgsQPX/4x73LdwmTWT3+05HMlHcL/EEY7wyEAQhC5c4vbau92XHzUcEfwRjvAewpHS7ghHeA/hiOCPcIT3EI4I/ghHeA9BGvqUB4fU1FQxJyfnnXzkEY7wnkRHR8eqKIrqg8ffUYLPycmhvb39nXzkEY7wnoQgCFP+jh+J9Ec4wnsIRwR/hCO8h3BE8Ec4wnsIIQleEIQsd8qfAUEQ+gRB+KT7eLIgCG8IgjDi/pv08Lt7hCMc4X4QDod3AJ8SRbEUV9aUjwuCUIYr2uhNURQLgTfd/x/hCEd4hBGS4EVRXBBF8Y77+yYwgCvi6gO4Ak1w//3gw+rkI4mXX4acHJBIXH9ffvnd7tERjhASEe3hBUHIAY4DtwCtKIoL4FoUAM2D7twji5dfhuefh6kpEEXX3+efPyL6dwtHi2/YCDt4xp1x9CqusMV/FwTBIHqkEhIEYUMURZ99vCAIz+PK2UZ2dnbt1JRf8+A+dnd3sdlsQc8JF06nE4nE/5q2u7uLRCLBldYsMihKSpDM+CaqcWZlYR0cPHSfHhYcDgdS6cNxuXhY7+N0OhEEIeTvE/XP/4zs4x9H2N7ePybGxGD/8pfZ/chHgHu/tSiKYfd1d3eXqKiow7/AA4TnGMfExIQ1ZwVB6BBFse7g8bBmgSAI0bgynrwsiuK/uw8vCYKQJorigiAIabjyo/lAFMWvAl8FqKurC7m6TE3NMTBgJCrq/ibo7q6D0dFB8vNL/E72paU5lpZWyMzMJCkpmfAyRLtwaXbW73Fhdpa33w6+oI2PD5ORkYVcHhP28+4Hm5sm1teX0OsLQ598CAwO9pCXV4xMJn+g911dXcJms5ORkRX0vLOfecGL2AGE7W2cn3mBt9MaWVlZYmNjFa02nfX1VXJzwxuH2dkpEhMTiY8PNz3ew8Ha2jIrK8uUlFQANpqacklMTDz0/UJSlTuz598AA6IoeiYa/DauVMEvuf9+69C98IDTKaJQpKFSpd7XfYaH+1AoUkhLO+a3PTY2m8HBl4mONjIzs4ZOl0V6up7k5NDPtWuzkS/6ErZdm41aXRrwOrN5k83NfnS6yofGcQ/CYOhHJiNov+4HExPzSCQpqNXBCTNSxMfruXbtVcrK8pHJZAHPU6z4L/CjWFkkOlrD/Hw/9fUXAJibawl7HKan15DLdajVuZF3/gHBYjHT3T1AdfVZUlM1rKyMcb/h7OGwtWZcqZQvCILQ5f48jYvQHxcEYQR43P3/IwGr1cLMzBAlJT4SzT6Uylh0ukxKS+toaDhHVJRAT88N3nrrOwwM3MVkOpic9B7mPv4iuwrv5K27CiVzH38xaL9mZyfQajPfMWIH2Nw0kJj48IqjJCamsLGx/sDvq1AoSU5WMz09FvQ8uzbb73GbJpPOzhuUltaQmJiMXK5gZyf8raLdbn3HpDB/cDqddHZeJzu7mNTUB6ceCznzRFG8TuAEgxcfWE8eIIaH+9DpsoiLO5hg1BspKTpWVpYoK6siIaGG0tIaDIZVZmcnaGt7E7lciUaTRWZmDkrlvbTpG089B0DGl19AtjSNXZvN3Mdf3D/uDyaTgd7eDs6ffzrgOQ8Dm5sb5OeXPLT7q1SpjI0F11scFvn5ZXR23iQvrzjg3nvu4y+if/F5oqyW/WO7CiVvP/mzaDTpVPTcJONj55EtTVOekIKt/Qeorn8v5O9ms22/qwTf39+BTKakqChoUaGI8Y4Gz0SKpFdfjoioAIzGDZaXpzlz5n0h769WpzMw0IVHIlJUqlRUqlTKympZW1tkbm6Cmze/j1KZSFqanrS0LBQKBRtPPReyL3sYHx9hfLyHlJQk5udnSUnRhnXd/cLhcGCzbT3UfWhSkobNzZaHorxTqVKRy2UsLMyQkaH3e46/xffWBz7KyLETPDk1iP4LH9tfDFTGVcR/+8t97iVfnEL/4vNe99nD0tICS0vzxMTEvqMSGcDi4jQrKws0NT3xwO/9yBJ80qsve63cwX4cTwwMdJObWxJ037eH5GQNVqsZq9WC4oCILpFIUKvTUavTcTqdLC/PMj8/yehoNyqVGp1Oj1abHvQ5VquVu3fbsFpNNDRcRCZTcP36d8nOziMx8eE7JhqNG8TExD1Uq4BMJkOhkGMybaBSpTzw++fmlroVnf4JHvBafGdmJhkb66ax+hSZP17ixfnBV1SNslrI+PILXnPKarUQG6tkY2ORyckBdDo92dkFJCS4lGWHYUThwmIx09vbRnX1aRQKxQO5pyceWYLP+PILPj+Wvx/HE4uLs9hsJnJzz4T1DIlEgkqVwtLSInp9XtDzdLpsdLpsHA4HCwtTLCyMMTDQQXKylowMPVpthhdhraws0tt7G40mjdra5v22vLwy+vvv0NQUeDf0oCaUyWQgPv7wGt1woVK59vEPg+C12iyuX/8+r7/+DZTKWKTSaKKj5UilMqRSOdHRUqKjZchkMuz2HcbGuqmvP49CoUC2NB3WMw6et7lpIjk5lfr681gsZqanh2lre5PYWBWN473k/PmnkezYARcjyvn9XwaCM6Jw4Nq3X0OvL3ug+3ZPPLIEH+jHCnTc6XQyNNRDcXF1RBxNo0lnbS04wXtCKpWSlZVPVlY+VquVhYUJOjuvYTAYKS4+RkqKjq0tMwsL41RU1KPTeWuvc3KKmZ8fZ2ZmkqysHJ/7H1ay8QeTaeOhKuz2oFKlsr6+BoRn8opkQZNIJCQkJFFXdwaJRMBms+Jw7LCzY8Nut7Ozs832toGdHQfLywtIpRJiY126m0DWlIM4qPgzmzeJjXXVolAq4ygpqaGoqJq5uQnKfuvH9ol9v487drL++JP3TfADAx3IZLEUFj4ciwo8wgQfzPTlD5OTY8jlUnQ6/+2BoFZnMDzstwaiF/xN0rmzH2RpaYn4+ETq689hsWzR13cLQYjm/PlnfbYJ4JrAJSW19PTcIi3NV2N/GMkmEDY31/0uKg8aKpWa8fHwiq9EuqBZrVYkkiiSk32St/hFZ2cr7e2Xqau74Fehd7DEza5cyeTzn8NqteB0ijidTtbWlklM9Fb4SiQSsrLyUWyZ/D5Xary/jNoLC1MsLz+cfbsnHtnw2EhMX3a7nbGxu5SWBjbDBYJSGYdMJsVgCPyDJb36Mjm//8vIF6cQRNE1SX/vlzB8+QWSklQ0Nz+FWp2OXl+ITpdFWVmNX2LfQ2qqDpUqiaEh34UmUskmEJxOJ1tbmyQkPHwOHx+vYmfHhtVqDXlusAXNHywWEzEx4ReWrapqIDo6ls7Oq6xd+mmmXvgqNp0eURAwJKbQcvwchsRURASMqlReef+v8E1lPNevf59bt96gvf0tJicHcDh2w37mHsbHR7Db7aFPPACLxUx/fztVVScfyr7dE48kh9/ZsUdk+hoZ6UOt1h5afE1O1rK0tBBwD5r1x5/0EeOiHDtcevXvufvp/+11fGNjlaKi4yGfWVZWx/Xrr5KVlbOvDILIJZtA2Nw0IpfL3xENs0vsTsRgWEWnywx6bqQL2tbWJjExwetEHpS+kn/987yequfOnbepfvwjtOaVMzMzTm5uOTUDt4n5yu+AaQ2FIpZjlQ1kPvZhr/tNTQ2xtuafATgSUog2+bbtxKvY2JhjdLQHnS4bvb4gLMWsxWKmtfUN9PqysJy+7hePHMEbDAbu3BkCQB4Tj/yFryKXK5DLlSgUMSgXppDLY9ycWYHFssXi4jjNzU8d+pkaTYbbluxT+hwILK5Fm7wdTkwmAxKJlLi40NWDFQolOTnFDA520dBwdv94ILtyKKeegzAYNkhIeOfcQlWqFAyGjZAEH+mCZrFsEhMTeDz9bRFyvvAxHv/MV/h+Sjrf+tbXyM4u5uTJS2Rc/Sb6l3415HZCpdLQ2noFUXQil8cgkymQy2NQKBQMf/wLlP7RJ5Ds7uyf75RGM/vf/w+1teewWi1MTg7T3v4WMTGJZGXlk5GR7aVXsljMzM1Nsrw8w8bGOk6nk4KCh7dv98QjR/AqlYoTJy4QF6fCYtnCZtvGYrFgs22ztWVhY2Mdq3ULm83Kzo4Nk8lEUVFFUBE6FFJSdHR13cRut4dlzguEtbUFEhPD167m5ZUxP/8KCwszpKW5lHuHcerxh83NjXdEnN+DSpXK5ORIyPMiXdAsFjPJyYGL9gbaImR95Xco/NvbmM0G6uvPBD33oH5kZ8dGSooGrTYdq9WC1WrBbF7DZrMykKJj9EO/xtnX/5FE4xqbSWpuf/BjzGQUIR/qRaFQoFKlotFksLGxzMzMIMPDXaSmuky46+sLbG9vk5qaSUFBFVarldXVSCqG3x8eOYLfg1QqdYu6gc1KTqeTtra3UasDT4hwNMJSqZTExGTW1pb2CW8PU1PjlMbEodw2+9zbkeC9BVhbW/brUx6oDxKJhKKialpa3uLixQ/si/aROPUEgsm0gVZbdqhrD2MWVKk0GAy3QjrgBFvQnE4nm5sGDIY1TKZ1TKZ1JiaGOXv2/QHvF2yLIJFIiImJCetcTxgMq6jVmWRm+lpukl59mYxr30JmWsOmzWTyFz/DdvPTxG67mNPamoGdHSs2mxW73WVJWF9fYX5+hoKCSgoKqlCrdftjNDTUG5GO4n7xyBJ8OJNOIpEQHS3D6XQGvEe4GuHUVB0rK4v7BG+1Wujpacdu32Tiv/4JpV/8BBKHtxg38+kved3DYFilrMxbcRiqD/Pzk8TFxdHW9gM0mhwKC8sfiOLGbDYSHx85hz+MWdDhcDA42MHGxiqDg52UldUGfcbGU8+xdumnMZnWMRrXMBrX2bzxKltbm8jlscTHJ5GQkIROp0ejyWJxcZasLP9BLMG2CBKJEPa5njAY1gIu3J5jo1iaofxLnyYuLtHv2FgsZtrbr5Camkl19Qm/0qNLgnnnssM9kgSvffPf0P/pp8KadIIgCUjwkZi4NJpMOjreBlxcfWSki6ysPAoLT2GVSJhUxgZdgIzGdaKiZF4+96H6cD27mO1tG+fPvx+Hw8HQUCc3bnwPvb40qP94KExNjbO2No/Vao548YjULLi+vkxPTwsJCVre976fpa3tKjExA+Tm3tuTOhwOL+I2m41YLGYUing3cSeTnp6PSpXso2RMSkrlrbe+6dcbEkJvETyDy8LZTrh8K2bIy/P1YY9kbFZW5unpaUWvLw26P7dazSiVkSlk7wePJMHn/82LYQ+siyj8E3wkGmGFQsns7Djf+MbfERUF9fVnycjI2W8PJWavri6QkuK7tQjWh9XVZU6cuIBUKkUqlVJV1YTJZGBoqIOrV8coKany2WKEwtjYEBMTfdTUnKOj4yq5uWXk5YWvEAp3zJxOJ8PDPczOjlNaWrvv+lpff5bW1h9gMq3jdIpsbhrcxOoibpVKQ3Z2MQkJqrAsCFKpFK02g6mpcYqLfZWqQXUeB0ytofQjq6vL3L3bSlSUQH9/B3V1Z70WzHDHZmysj4mJIY4da0SrTQ/6fltb5nc05v6RJHjFypzf4/4GXBCEgBw+Eo3w0FAnFRWNaDRaVlcXGBy8w8TEIBpNFunp2SE172tri2RkFITdB1NiKrW1vv7SCQkq6usvsrQ0y9BQF5OTI5SWVoXlttrX183a2hSNjY8RF5dAWlo2XV03MRhWqKw8GRaBhTNmFouZzs7rSCQyTp685CXVxMXFU1JSw61bb1JTcxq9viQgcYerK8jOLqSj4zo5OYXI5b6JNoItxqLoDHmu0+lkZKSfmZlhKirq0Omy6etro739qhfRhxobh8NBT08rZvMmjY2Ph5wzDoeD3V37fSmcI8Uj6XhjVWf4Pe6PUIOJ9OE67xgMqywtLVBaWk1GRi5VVSc5f/6DFBdXYrWaaG19nevXv8/wcB9m86bPc5xOJ0bjht8oOH992ImWYTrzLI0/dYyaegkVz+aQ9Kp3HjatNpNTp55Gq02jo+MqnZ2tWA9IPZ7Pv3OnFYNhnoaGJ/bDghMSEjl58nFAxo0b38NkMvi9PpIxm5kZo6XlNdTqLE6cOOezhQFIT88iPj6RtLQMkpNTAxK7/sXnvZ2ZXnzeZxwAZLIYlpfnuXLlm7S1XWVqavyBpUGzWi3cunWF9fV5Tp16ct9Ts7y8nqSkZNrbr+47FAUbG4vFzK1bb+B0Cpw8GZrYweVjoFC8syG4jySHH/tPL1DqsYeHwKYbQZAEzAISjonL6XTS13ebwsJKL257MFpubW2RhYUpWltfR6GI9eL8BsMqcnms3/3ywT6YElPYOPkUWa//c0gdhUQiIS+vlMzMfEZGetyOOsVeabvsdjt37txEItnlxInHfYhLKpVSU9PI1NQYt2+/SXFxNVlZ+QHHPtCYLV38CXrvvM3mppna2nNBJQ6JREJKipalpbmAqbUi2Q8PDnZz/HgjeXkVLC3NsLg4xdDQHRISUklLy0SrzfQ79qFyvy0uztLb205WVg6FhZU+OpPy8nr6+tpoa7tKff3ZgGMzUn+R7pbXycoqjih+3WIxh3QqetAIO4nlg0BdXZ0Yqpjk6OgUU1Ox5La8Fpa419fXTXS0QFFR5aH6ND4+wMLCPM3N4eXy8CT+5eV55PI4nM5dVCo1VVX1Aa+zWi20tLxBXl4Fz3z8ol/R0KbT0/vKZMB7mM0mhobusLS0iFqdSVSUlOnpEXJz8zh2rCmkks9o3KCz8wZJSUmUl58I2wtvdXWRu3dbSEnJpKzseFjXTU2Nsro6S23tOb/tNfUSBD9zTxQE7rTdk9jW11fp7Hybs2ff7/Vch8OxT/zr66skJKSg02V5Eb/RuEF39w3OnHnW6xlOp5P+/k5WVqY5dqyJ1NTAZl2Avr421tfXqa8/67OwTEwMMD4+QEVF6P36QYyM9GOzbVFREXjeeGJlZYzGxhRUqtB7/vtKYvluIFxbtCsbaeR+z+AiwomJfurqLoR9jT/O393dgsPhCHjNzs4O7e1vkZ6ej16ff2h/+d3dXXZ2nERHS4mPVxITE8/s7BDl5SfC0ugnJiZx8uQT9PS00dLyGsePnw6aFcilmOtibm6asrK6iBSIWm06IyPdAe3y4epXBge7KSgo9yu5ZGTkkpGRu0/8S0szDA93ER+fhFab7Xe7YTZv0tV1E7k8mqamp3wI2J9eofyp5+jra+f27Ss0NJxDoVDgdDq5e7cFo9HEiRPhifAHsbVlJjEx8uvuB4/kHj4SSCSBlXah0N/fjlbrPxlF0qsvU/FsTsA9tuvZLuI/deoptxnMN3jEtb++Sny8el/LHMiNNOBxu53e3g7a2y+jVmu5ePFDlJTUoNcXEhsbj8MRfsCGTCajrq6Z9PQCbt16g4UF/+GjZrOJlpbXMBhMNDc/sU/s4YwLuKweMpkSg2HVb3s4+pW5uSkcjm2ysoKH3e4Rf03NGc6f/yB6fQEbGwt0dFxheXlhfzGenp7g1q3XycjIpr7+gl9iD6RXKC+vIyUlldu338JgWKel5TXsdieNjRf3iT3csdnD9vYmSuU7S/CPLIcPF4Ig+Ghiw8HKyjxGo4HTp0/6tEXqfKJQKNFodExMjFBa6p0lt6vrJhKJjGPH7klXkbiXTk2NMzraQ2qqmubmZ3wmqVQqxWazRazpzc8vJikphe7um6yuLlJeXr/PiaemRhgd7SEnp4L8/OJDj4srZ+A8ycm+7sah9Csu6eIuZWWR5TeQSqXuVGR6dnd36ei4QXv7FWSyWDY3V6irOx8wyCqUXqG8vI67d2/z3e/+I3V157zMhIdxWLJat/Zj998p/Ahw+MBKu0BwOp0MDLRTUuJ/PxppCCdAXl45c3MjXqL94OAdtra2OH78pNek3XjqOa+wTZtOz9QLX/WaGOvrq9y48Qazs0PU1p6iqqrZr2JKKpWzs7PjczwcJCen0tT0BFarzc3N1+jouMLU1Ch1dRe8iB0iHxeNJo3V1YWAz9946jl6X5nkTpuT3lcmvd5/YmKYuLgYtFrvYJxIuGhUVBR1dacwGIyYTCs0Nz8dNKIynK1Wbm4JGk2Gj09ApGPjdDqx2bZRKt9Zpd2PAIcPbJYLhJGRXhQKVcA96WH22AkJKlQqFVNTY+TnFzM5OcTi4jyNjRf9LiqBdBRWq5XBwR5WV2cpLDwWsoBEdLQ0IpH+IBQKBfX1Zxge7uM733mZysomTp485bfPkY6L1WplcnKM/PzpiBKTWK1WJib6qa8/53X8MFxUIpGQm1uMw2ENqWwMR6/gcNj9mtIiHRuz2WWSCyW9eOoUrOo0nJ//HHz0o0GvCYYfGg5vtVoxGNZYXJxlYmKEwcG7dHa2Mjray8LCbFCl2R6cTicTE4N0d99EpVIFvCbSPfYe8vIqGB7uYXx8gLGxAWprz4RtZ3U6nYyNDXHjxveIihI5c+bZsKrFSKXR2GyHJ/g9FBWVU1JSgUqVEpAwwh0Xq9XC7dvXmJjooanpMfr67jA62ht2X8bGBtBo0ny48WEkL3AlOQnkw+CJcPQKOzt2pNJon2sjnTOusN/g27CDOoWY5XmUn/zkfdXOe+Q4vMViYXx8DhjGZrNgtW5js1mQSqXIZHIUihjkcgUKRSzJyUnodOnMzY1z48brVFU1olL5F9kWFqYYGblLVFQMFRVNbGyscfXqt0hNdWWq8ax0c9iY9JWVZWy2TTo63katzsbpDM96sLKyyMBAJzJZFHV15yJK5CGTyXE4DifSH4ROp2d+fjpgfsTt1GAAACAASURBVL9wxmVqaozR0W4yMnKorT1JVFQUOl0W7e1vs7VlDGk+NJs3WVgY59Qp3/wGh7VuxMQoMflJWnEQ4fhtOBw7SKW+QTCRzBmLxczgYBeuSuyB4W+BE7a34YUX4LnDRVM+cgTvdDqJjo5CpUpFoYghJiYOhUIZVBxLS8tmZmaMjo63fBRNq6uLDA934XCIFBVVeyVosFi2mJmZoLPzJlJpFOnpOWRk5Ecck+50Ount7cBkWubJJ38KmUzBxMQAbW2XSU3NoqTEf7y+xbLF4GA3RuMSRUUuL79IERUV/cAIPi1Nz+BgJ1arNSwnIs9x2doy09vbjt2+RW3tGa8FVKmM5eTJx7lzp4Vbt37A8eNnAgb1DA11k5mZ73e8DpsNaGVljpWVNa5e/TY5OcVkZOQHnE+hzMF2u38OH86csVqtjI3dZWFhGq02h8XFKVZW5lGr/dvvAy5k05GlO/PEI+t4c5jacmazia6ua8hkCeTmFjAx0c/W1hZ5eRVkZeUE5SwrK4vMzLiizJKTU8nMLECtTg+5x3I4HHR2trC7a6Wm5qxXCKTdbmdkpIf29htotWlERUUhkUS5vQOdrKwsUlVVT2Fh1aFTUY2M3GVry0p1dWDnjUji2zs6XOGcer1vXIA/uLZJI0xM9JKVVUhhYUXAMXMpS7tZXp6mtvasT0YeV/DKTU6ffjaoO+5BLnpQ4emJ9fVl7ty5zsmTlzCbTUxOjrC5uUpGRh45OSURRxOOjfWxvW2loiJ4CLAnHA4Ho6O9zM2NoVZnU1RUjkKhZHFxloGBNpqbn/EbOlvxbI7/rLt6PUxOBn3mD53jzWEQF5fAyZNP0dV1nTff/Bb19eepqysMy6yjVutQq3XY7Xbm5qYYGemjv78dnS6brKwCvw4qdrud9vZrKBTR1NZe9HmOTCajvLyOhYUpGhoec1dYdeJ0OtnZ2aGnp82dY/3wgSWbmxuMjY2Qman3m8s8HEWXxWJmY2OF9fVlVlcXWFxcCYvgTSYjvb3tiOIODQ0XQ6bUkkgklJcfJy4ukdu33+TYsRNeWvihoW7y8nydbPYQqeRlt9vp6blJeXk9SmUsSmUsGk0aRqOBiYlh3n77FXS6DHJySsNOB+Zw7CCRhEc2rsVwgMnJIZKSdJw48YSXg45Ol8ny8gJ9fbc5fvyUz/V+s+7GxCC8GFm6M0/8SBE8uCZVWVkD6+urPmalcCCTycjNLSQ3txCjcYOZmXFaW39AXFwcGRn5pKXpkUqlWCxbtLe/TVJSMseOnQh6z5gYJXa7zStZJcDx403cuvU6anW61749XG201Wpxh9ieprv7GgUFx33234EUXdovfZo3tVkYjevs7jpRqdSoVKnU1l7k7t0bGAxrAf3l96LLZmeHyMsr84p9Dwd6fR6xsXF0dd3EYtkkN7eU2dlJRNEeUlEZSTagnp6bJCVl+FhjEhNVVFc3YLVWMDk5yq1bl0lMTCQ3tzSgeA0uTr2+vkxsbPDIRafTyczMGOPjvcTFpVBbezbgWJaVHefate8zNzfhs6U7uMDtaeljD7l/hx9BggeXqWl314HD4QhbVPbHUXnqORITaykrO87CwgyzsxMMDnaSlJTKxsYaen0RRUX+y1F7Qi5XYrNt+xyPi4snP7+K7u4bnDr1zL6EEMoBxOl0Mjc3wd27rcTFJZOdXYRKpeHOnauYzZuUlh7bv5csQCEG5eoCKSnpFBRU+SxEWVmFjI8PUVPj65RkMKxx9247MlkUTU2XvOzIkWwdUlM1NDZe5M6daxiNG6yvr3DsWHg+5eFgcnIIi2Wbkyd9OeceFAolJSWVFBSUMTMzQX9/FxJJl3ufn4tEIsFms7G4OM3y8iwGwxpRUTKMxlFsNgtFRRU+XpqeyuFjx5pDVpBx5UFopLPzbVJStD66C88Fbs+X/n7wI0nwLjgxGNbDKtkTiqNKJBIyMvRkZOixWLa4ceNN1GpdWMQOIJcr2N72bxbKySlgeXmBgYE7lJe7tlzBtNFTU0NMTAwSHR1HQoKGtDQXR0pIUNHYeImurrdpaVklLk6J2WzguCBB8OeJKIkKKLZnZxdx9ep3sFi29v3RXRl5+lhYGKWwsNKHEx/GRh4XF09j42Ncv/4GNtt2UO4aCUwmA6OjvTQ0PBZ2ko09qW5xcZbJyWEGBjqQSqPZ3XWSlKRBo9Fz7FgTCoUCh8PB1NQQbW1vkZiopqiogp0dG0NDnezu4qMcDoXk5FQyMgro6WmhoeHhFmT+obHDRwJXltEtOjuvsba2EvL8SOy7SmUsEonTbwqkQIiJiQ1qB66srGdxcZbV1UUgsNbZlJjK4uICFRVNNDdfJCYmxosjKBQKGhoew+GwMDU1QWFhtX9iBwhiMpTJZOh0mUxMjAIuZdqNG69jtW5w6tRTfsXuw9rIXb79p/wmtjgMHA4HXV3X/Uou4UCny6Sx8QJJSZnExydz/vwHqKs7jV6ft6/gk0ql5OeXc+7c+0lKSuLKlW/S0nKZ7OxSTp26FBGx76GoqAK73cH4+EDE10aCkAQvCML/JwjCsiAIvR7HqgVBaBUEoUsQhHZBEBoeVgcjDUgAl/KnpKSGY8fq6ex8m8nJ0aDnR2LfNZmMCAIR5XyPiYn1K9LvQaFQuP20W1xKQ39JM2Rypj/2+5w4cW5farFaLT41zCUSCadPP4NancrKyiJ2nf+qq4GO7yE3t5S5uRG6u9vo7r5OQUEptbXnAvrs30/FnISERKxWG4uL95+uubPzGlFRCnJywrMyBILdbiYnpzCohCCVSikoqKCh4QIpKdqAlqBwA7EqKxsZH+/HbPZfzupBIBwO/7fAkweO/RHwe6IoVgO/6/7/gSOSrCh7sFjMLC3Nk59fik6XTUPDRaam+unpaQuaCivc4ysri6SkhFfnbA/+OPzBSVDaeZWUlEz6+m6zdPEnaPmlFzCqUhEBpyQKqd1G0d+95PXudrs1YP2648fPsLY2Q/dH/kvYJbs8EReXgCiCybRMc/PTIX0EDuudaDSu09r6OoIQRVfXTRYXD29jHh7uY35+EpNpla6u236zE4UDh8PB1paBpKTwagyo1RlsbW34jZaMZA4nJCSSm1tBd/eNQ0eAhkJIghdF8W1g/eBhYM9OlQjMP+B+AYcTE0dG7pKefk/8SkhQ0dT0JDbbJi0tb/kVrSOpY7e+vkhqauC9pr/VXKFQej030CQ4PT3I4uIC3/3u3zNYc4HZX/8DnAolEucuAvhMFptt24vgPZ9d9+MlXFpb5kp6Dj2f+MOggTqBkJyspqCgIixbdSRjCC6TmStv3BU0mlwuXfowDQ0XGRjoYnDwTsQTfnx8mPn5US5d+gjnz38QhULKrVuv09nZ6kP4oTiuwbBObGx82ApfqVSKSpXC8rJvoFCkczg/v5ioKAXDwz1hPTtSHFZp91+B1wRB+GNci4avOtcNQRCeB54HyM6OLB1vpGKixWJmeXme06ef8T5fJqO+/gJDQ11cvvxtMjLySUhQERMTQ0xMLI7HPwKEtu86nU4MhtWAZrhAiitRFNmRRO8ngwhWLSXrpX9HEByUlzdQ8Ds/FXCyLJz/MFFRUfuT0t+zi//kk+z8ly/ymjqdjZc7w6p15gmXlcPXq8wfIrGRT02NMDJyl9TUTJqbn95fUFzRe4/R1dXK7duXqa4+FdZiMzU1ztRUvzvG3bXolJTUkJdXwdhYL7duvU5SUgYFBaXob7wSUrm4vr4ScdUejSaTlZU5srO9JaHDbHUqKxtoaXkNnS7zUA5owXBYgv814L+JovgNQRB+Evgb4DF/J4qi+FXgq+DytIvkIZG6Uo6O3iU9vSDgJCkursZkMrtL+9hZXt7GarVgs1kRpAoUv/UVYmJiUSiUKBRKYuZcdex2dx1sbhpZXV10c1X/9w9EyJl/8T+Q/cb/xmrdRqmMDVEt5R4RBzvPZtv28s4K9OyS//+PGP+LN7lz5xpNTY9FFDe/u7tDVFT4UySUjdxgWKW/vx1RjKKm5ozf4okKhZKGhnMMDHS7s/I0o1QmsL1tdpd92sJq3d7/a7GYWViY4amnftrHOUomk1FaWkN+fgXj4/3cvv0DGl/6eMhcekbjKunpkTEnrTaL4eEenww/h3EHVipjKSqqobv7Js3NTz/QgqCHvdMvAJ90f/9X4K8fTHe8EWlAwsrKPM3Nz/i0eSIvr5i+PgNVVc1ex61WK1arGYvF9dneNrG8PM3ExDAZGTmkpGhQqzVsbCwFLIoQjEDlcvm+mSt4tZR7KbuCnWe1biOXh5czPTs7H4vFSEfHDU6cOB/2BNrd3fUbKBIprFYrw8OdLC8vUVBQEVKhtueRp1Il8+1v/wNabToKRSxyuRK53CWVJSZq0Gpd30dHBxgf76e29ozf+8lkMkpKqqkf6UaxZfR/jsf4GY1rPj4BoXwMFAoFsbGxrKwseuW2O2wgVlZWDjMzY9y48X2KiqoeWO76w5rl5oG9kqcXgNBVBA+BcBJF7GF09C46XWDuvoeUFDV2u4tj7yHp1Zep+/ESLjyu4Ynnz1E/0k15eT2iKKW6uolz597HsWMnyM8vJz09n8nJQb/3Dqa4UiiU+7b4YPtdQRDY3XWEPM9qtSKT3WsLpTQrKakhJkZOV9etYMPjBVdk2OG5i9PpZHJyiOvXv4soSjl16smItOdJSSmkpOi4dOknOXv2GRobz3P8eCMlJcfIySlEp8skMTGJqqoGtre3GRvrC3o//V99lkB5bPfGyWQyEhUl8dGNhKN4S0lJZ2nJu6ZCJHN4DzabjZ6edszmdRQKBTMzw7S2vsHdu+1YLKHDfIMh5K8pCMLXgXNAqiAIs8BngY8CXxIEQQpYce/RHwbCcaUMl7vvQaPJYH5+iuLiyoD77snJURQNZ/edYfaQm1vE7ds/oKCg0ocYgq3mnt52wfa7kpF+HA4x5Hm24T4vDh8OJ6msPElr62vcuHGZ1FQNDscODseO2ytxh93dHXZ2XH93dx3Mz0+zvW05VFaW9fVl+vraiIpSUFcXPK11IPT3d2Ox+BbxPAhXKu5T3Lz5OgkJSRFHn4nA20/+HMLGGibTRkRx+J5zMy0tm7a2K4C3dBCuO7DT6WR6epzR0btoNDrOnHmfFwNbXBxGqby/ohUhCV4UxZ8O0BR+uNBDRrjcfQ9abQajo90UF1cG/DHr/v3LxH7UV5OakJBIVJSc7u4blJfXe3GCYASqGO310tQHmgQSSZSXhjrQeTabFaUyxuu8QM8G12SanZ1ka8uCQuHE6bQjl8tQKhVIpTKio6ORSmXuslcypFIZS0sz9Pa209z8RNic3pWxp4O1tRWKiqrJysoJ67qDmJoaZ2trDZVK5eXxFwhKZSzHjp2gp6eV5uYnIwqvdSQks/HUTzHV+TabmxbKyqq82sNVvCUkqNjZsTI01IteH/58BFdKs76+DqKiROrqTvtV1kVFRYV9v0D4oXetDYe7H9x/qX798/REx2C1WgL+mPEbK1R/sMCvplkQdrFY7Fy79ioqVTJZWfloNJlIJJKABBoTE4vBsBHyfVx7+NAmKZttm+Rkb04U6Nnr66v0999BInFy4sSFsLmtXl/I2toC/f2dVFYG93O/Fxk2iE6Xx+nTT/sN+QwHRuMGIyOd1NefZ3Cwk42N1ZAED67U2EZjMR0dV2lquuTjBBNICpr59J+Rn19Obm4pb775rz6ZZMNVvE1PTyKKTgyGRaanB4mNVZGamoZWmx7QQmK1WhgY6GF9fZ6ioqqgRUIeBH7oCX5kpJu0tMCrqT+RPecLH6PhuU+zUFAW8Mf0tHvDPQ66tDSLRCLj9OnHsdvtLCxMMzY2RF9fO2lp2WRmFvj1wgvlbbeHcNNu2+3bPl52B2G1WhkacuXHKygInR/PHyoqGrl581UWFmYC5gBcXV2kv78dmUxJXd2FiM1/nrDb7XR1tVBYWEliYjIqVQpGo2G/WGUoFBWVYzCsc/fuLaqqmrzaQklBEomE2NhEn3ENZ7u0uDjL8HAHzc1Pk5DgSp+2trbI8vIcd+5cBSQkJ6eh02WQkqJBIpEwPj7E1NQAOl0Wp08/e+gFMhL8UBP84uIMU1MTPPHEjwc8J5DI3vjtv+Zrx0/6/TEPnuu5Vxsf79sPB5XJZOj1Bej1BZhMRqanx7l9+zIxMQpUKpc3ns22jc1mxWw2srS0RFpaLjk5+UFi9AU2N40sLMzgcOzidDpxOl1/d3cd7v+dLC7OUVDgW011D5OTo4yO9qDVZtzXZJLJZFRWNtHZeZOkpBQvUdlqtdDX147JZKCoqCokUYYTTdfT04ZKlbi/OKlUqUxMDEXU5+rqE7S0/ICpqRGfRS6QFHSvpPW6TxbkUAvF+voqvb23qKk5vb/Yu6reZu7H+xuN6ywuzjI21kNXlxGLxUp6egb19RcictO+XzxyBG+xWLh79y6xsQlER8uRyeRIpdHIZAqio11/t7ZMzM6OsrXlynU3NNRDeXlNRJlWY1bn2dzcZOH8h3HuOtF86TeJ31j2q8Xdu8fa2hJWq42MDF+NeEJCIhUVxykrq6K9/TpTU2MUFBwjIUGNQqFALo9hZ8fKyEg3MzMjlJRUodV6F81cWppjcLATUXQwMzNKVJQEiSSKqChXlhzXdwlSqZTs7Bx6em6SlVVMYWHZ/gKyvr7KwEAngrBLXd2ZB+K4kZysITMzh66uVhobL+B0Ohkf72dqagidroCqqtCVacOJppuYGGF7e4Pq6nue3ImJqWxu3gpYwcYfZDIZx483c/v2D0hMTPIZA4vFjNHoUtCZzUY2N43YbDZiY+ORSJQMDXWQlOSttwi0UJhMRjo7r1NRUe83//6990h2KwMrWV1doqPjLU6c8Ou68lDxyBG8VBqFRpOFQhGPw7GD3W5ne9uK0WhkZ8eG2bzJ+voSJ0+6qqE4HA7u3r1Ja+ub1NSc8tnrBdt/JSVpXIopXR6SP/xXfv53fz7oXm1srBe9vjToxJNIJNjt29TWNqPVHhSBE0lJeYKFhSmGhjro6bmNWq1GEKJYX19FFHeoqTkZdpioxWKmv/82165NU1hYwerqEisrM4cW34OhsLCSlpbXaW29jN1uRqFIpKHhceLjwyukEErTvb6+yvh4j09BTIVCgVQazeamMaKtQkJCIqWldbS3XyUvrwSzeZPNTQMWixmJREpsbCIJCcloNHoKChKJj0/c/13v3Gmlre0y9fUXgi5kFssWHR1XKSioiCgNNwjExUUeyfcg8MiFx8pkcrTaDPT6PPLziyktPUZFRS01NSc5ceI8tbXN6HTpZGTokUgkyGQyamvPodNl0NLyBktL3m79wWzZanUG3d2t2GybVFaeDHqu0bjO5uaml+ukP59sg2GNnZ1t1AFKXoMrWaReX8rOjp2kJB0JCanY7XZKS2sjiglXKuOoq7tAcXEFN268zva2idOn/ae3PkzUoSckEgnHjjXS19dGQUE1DQ1nwyZ2CK7pttvtdHffpKSkxm8qsagoCUNDvT66jVDv5JojCsbHh1EqEykqqub06We5ePGDNDaep6ysiqysHBITk7wW8erqBhSKBNrbLwdMZW61Wmlvv0pWVl7Y+f/24HDYiY5++Pt1f3jkCD4UJBIpu7u+sdwFBRVUVjZw8+ZrXL78Cp2drQwP99FbeYqB//a/sOmyfRwfNBod29ub1NaeQyqVBnWSGB11JWk86Lt+0BlD+i9/SVqaPqgU4HA4GB/vo6HhPHp9gTv5Qsl+PHyk0OmyKSqqRKNJ97tXP0zU4UFYLGbu3m0hKUnL5mboOvMHEcwxqKurldRUbcCIvNjYeNbW5rhx4w2Mxo2I3kmhkFNd3URBQSlqtS4sU5lEIqGqqgGZLI729is+RO9wOOjouEZKisavHiXUQmSz+c98+07gh47gpVLpvifaQajV6RQXV6BUunLWOxzbzM+P84Y6gz/5z1/kiy/9O1/97b/mSnohw8N9LC/PExub6DUJ/JU/MptNbGyskpNzj3MGElGr/+VL1A51Bv3BR0f7SEhI9crGo9WmBy3LFApxcYkBCfGwySn2sLw8R0vL66jV2Tz55E8wOzvKxkboxCKeCCQ9dXzo19jZ2aK8PLDZTyqVUlZWR3Z2Hm1tlxka6iXjy78d1jvZbP4dh0IRpUQiobq6Eak0hs7Oq/vShdPppKPjOjExMT5OWXv3DbUQORw7fjn8/Uph4eCR28OHwkHHlINIStKwtWVBr/dNYGmxmNnaMmE2G92ZWhfZ2tpkfX05qMJlfLyP9PR8L+4ZSERNMKwS98X/HFA5ZbVamJsb5cSJJ7yuc+1PJRiN6xEVoth/bkIiS0sTftvuJznF0FAPMzPjVFWdRK121VHPz6/ijTe+SV3dObKzc8NyyvGn6R78+d/iWrKGk8dPI5FIAmrx97Tmen0hWm0Glr/+PLIAcfOe77RXv+2gE0646bgkEgk1NU10dNygo+MKx46dpK3tOoKwQ339Jb/PD8crz18xi8OkCDsMfkg5fOD0TImJKZhM98Q+zxUz4+q3UKvTyc0tpby8nvr682g02Vy+/C3Gxob9LiRWq4XFxTny8rz3xYFEVFESFZTzDA11otPl+a0nrlZnsLQ063M8nJU/Pl7F1pZ/N9TDJKew2+20tV1mdXWJkycf3yd2cC0uSUkq1tamuXLlFYaH+7DbQ5e78pSe2v+tn9dS0qioqEepjAvKGV307pqqaW/9Bxf+6UshfeIBrNZtoqOjfbZXkUg8Lt1FPTMz03z963+G1WrCYtmitfV1JiYGfJJehLO47uzYfDj8/Uph4eKHkuBB9CJOT4Jo+MkKijsuE/ftrwUVrVwFJG6iUEg5d+59rKxMcv36a6yseO+jx8f70Wr1PlzCbxqqaDlCgFxxsqVpjMZ1VlaWKCz0nw9PrU5jZcU7+CL8vaoCiUTq1/c80uQURuM6N268ikwWT1PTRR/Lx86OnYSEJOrrL1JffwazeY1r115hcLDHb9aXg3A6nXR1tZKenrWv3Q53wvs7L9A7WSxb91X40WIx09fXxo0b3yU1NZ3MzDwef/xDPPbYh8jLq2BjY4Nr177L7dtvMjMzht1uD2tx3dnZITraO4ff/UhhkeCRJvhAnE0iidpXpPgjiKf/46vk/umnAk4gq9XK7dtXEUUHJ048RmqqjsbGJ8jPL6G3t4WOjutYLFvY7Xbm56fIzy/x6dtBBZ85JY2WX3ohcA45bTYDA3fIzS0P6ASjVuvY2rJ4EU0kK39cXCIm08HkRJFFbE1Pj9HW9hb5+VVUVdX7VT56lltKTEympuYMJ048ht2+xbVrr9Db24HFsuX3HQGGh3sRRQfFxcf3jwWb8KJ4zwYfLACm9Zd/l7VL90I/trf9hzGHIkqjcZ3Ozutcv/4aIKWp6UkaGs4gCC65QiKRoNNlUlNzkvPnP0BaWj6Li7NcufJtrj/9szgOeOodXIgcDrvPHAjVJ4fDwfLyHDabze954eKR3cMH29NIomNwOh2AzC9BRO/YEHf8D4xsaZrbty+TkqL2URRlZOSi1WYxNtbLzZvfJzpaQXJyml/xG+45YzidTt5669vU159jLivPrxtm/3O/gc1mJze3MOBeVSKRkJKiZWlpZt+0Fs7KbzSus76+xNraMtHRUr824VARW06nk7t3b7G+vkZ9fXD3WH970Li4BCorm7BaLYyO9vHtb79MfHwcMpncKzZgd9fBysoiTzzx4QgSRQghz7Nps+gur8N+4w0qKxtITEzCZttGLvcl+ECusoM/95vcvv0mJtMm2dmFlJc3eBGm0+nEbvcmVqlUSlZWDllZOVitVhYKq/jBjpOm7/y/JBjWsGrSmf/ESxi8ClL6aumDue8uLk4zMNCBUulyPrsfPLIEH4yzRX3qz/Y5fKQijykxlYwMPfn5/sVqqVRKcXE1WVkFXL78TTSa0A4VS0tzKJUKEhJUfqqFZHDrA/+J70miqdSkkfLa14MqZ1JT01lenton+EAT3JKi4/btNzEYNoiOlpOU5DIRTU72B0zQEQgWi5nOzmtER8fR3PxESDdcu90WcOIpFEoqKupxOiVIpU4KClyRZ3vELQgCS0tz9Pa6koqmp+cAwSe8i8MLQc+b/8QfcOLERaamRmhru0xWVjFW6zZxcb7jcPA32k5N4+0nn6Nfl0eOVk9NTY5fRaRcrmR724xM5l+pmvbWN6hz39OmyaTl439IW+ExbDYL2t7bpKfnkJysYWdnB5nM2zzoT6k5+fxnuarJYHOwh7KyE0gk22F7GwbCI0vwodJA7ZnmAhHEdkw8cnHXa2LsRMtZa3qCD3zymZB515TKOE6efILu7laKi8uDDvTs7DgZGfecL6aan+FmTimLizNIJNGkpelpUigZG+sOak7aeOo5tNp0hobu7FfNmfnV/0nOH3wMqUfgzU60nI4P/ToZGQVUVqq9iHtnx87AwB2/tcr8YWVlnp6eVrKyiikqCi/XvsOx4xWL7w8ajZbJyX6/i0d6ejZKZSydnTfY3DRRXFwZ3F+94+r+taH82vX6QtTqNNrbrzIw0EtxcQWJiWqfgiQrj3+EjuIapqaGkcmU5OWVcDZAcNAeYmLi2N42+7WiHJRIFUsznPibz6F74atMNT/L3Nw03d23gV3W1lYCVqC9F7MxwMREP+nKJKqqTiGVSllZGQvav3DwyBJ8MBEvKirKKyuMvxX/jWd/gdKyOvR/9VlkS9OYElMwnHoG/Q/+NWzTR3Kyxp1xZDJgzXSLZQuTaZWyslrGxvpYXJxme9tGWpqe48dPkdvyfTJ+49eRLU1jTtIiW/fvXLO3wLn87pW0tV3G6dxlSyan5iOf5Ow3/hL5XnomZRyZWbnE+glWKSws59q174U0NYLL5DY7O05l5UkvLXwo2O02v5zTE8nJGnp6bgYs96VSpdDU9Bjt7dfY2jJRXX3SZ9tht9uZGetjfHwQi2ULXnHZHwAAIABJREFUuVxOaqou5PbEYrFgt+9w7twloqPl3L3bsk/UKlUqU1NDzM6OkZio4dixJlJTNa5t1keDB/YoFEq2tvynvg5ljktIOEZp6TE2NlZpaXmTzU0DsbG+W0WjcZ3e3lsIguy+Iw/94ZEl+GAinqsEkIvgA634UwnJyIuO01Fcx+zsMHV15zn5M9VhZS7xRF5eGYODPQEJfni4F5PJyI0br5GamkZBQRVqtW7fruz5DvHriwTK4umptImKEhAEBUVFRSQlpaLe3SF6d2d/JxttXAu4UMlkMgoKKunra6O5+amASrfu7uvY7bs0NT0eVqy5J3Z3fbXMByGTyYiNVbGxsRzQXVihUNLYeJHOzhZaW1+npuYcCoUCi8XMxMQAi4vTJCZqOXfuA2xubnL3bjsKhZScnFLS0vwrR2dmJhka6vCqTJuTU+yu+dbN9PQ4ZWUNNDQ8tl+ZJlwbuKu+gH9lZLha9qSkVPT6Elpa3txfZAXB9RtZrVuYTEaqq5vJzb1nBvbU+TgzMuCll+CQBSUfWYIPJrpFtV318rbzt+LHdd+ks/MWCoWEkycvoVAoD2X60GozGR7u8RsPPjLSu88h9foCH07mb9UXcGmUPe3IB7W4Vus2jY2n9pWF4aZY2oNen8fc3ATT0yPk5Hg7ILk00NdITk6ntrb2UHvCnZ3wfMGTkrSsrS3uE3wgZWV9/Wn6+rq5fv0VEhKS2Nw0otXm0tT05P5ipFbryMnJZ2FhhtHRQYaHu8nJKSUr616o8chIH7Ozw9TXn/cSu121AXPJyMjl5s3vo1KleJWhCnd8lcpYjEb/HoaRZKc1mdYoLj6GTuc9nxyOHXp6Wr22QQcXo6jZWXjenVHuEET/yBI8BE8DFcz5BsDplLC7a6Gx8cP7A3iYlMEAeXmljI8P7hO8S6PditFo5MKF9wfkkMEWks1kLXEby2wl67j9wY8xmJyO7e1XsVrNrK4ue93zMAtVWVk17e1XSU/P3X//mZkxhoa6KCz0LSu9h3Bi1sMl+JQUNaOjPfv3DcZFy8urmJsbRhBiOHv2rN9tgGdRz+XlBSYmhhgdvUtWVgEm0yZWq4GmpktBFZbl5Q20tV0hPT1r36U63PENxuHDzU67vr6K1WrkxIlzfhfburqztLdfJS4ugcTEJP9+BxYLvPDCjx7BB4IgSANGMe1he9vM8ePNXqvlYVMGR0VFMTExgM1mJjU1HZNpnejoGBobLwbVaAdaYDaTtPz5b3yJ9HQ9crkChSIGvTxmPx9+Z+c15uam9/PBHWahUqlSSE3NoOX/cvfe0W2m953vByAIgiAINrCCJMDeOymRFFWnaOQZz9hOso4zKXc3ieM45R4nsb1rb7kp9ibZbJzsJHt3vec6jrOzTrFjz4xnpKkqlChR7L2CnQQIggUgCIIgCNw/QEIEgReFUnyUfM/BEYXy4sH7vr/neX7t+71/g9zcEubnJ9jdtdPa+pygXxju1tbp9I8yH33++GSR8LnfZ0Aag9PpDLmKWixbmM0bqFQZPsYuNAGlpWWSlpbJ1tY6XV13cbnsPPPMT4Qs801ISCY9Xc3k5JCXtivc8yuXK7DbA7MWhSvEodONotGUCu6sEhNVFBfX0td3j+bmZ4Un9YXTFeQ8lYU3R/lOjwqs5TDPbGR1dQm9fp7t7Q3BmRY8rYs7O1t+klCnoQyemOhnZKSXq1f/FXV1FxCLJej1yxQUlIdMXwWqcHPGyGi/9iqfdjr4ma/8NJ/52Xpe/LWrlPW1k5ioQiaTo9WWsrAwFfQ4oSYqs3mDzU0DS0sGJiYGSUrKQCqNYnZ2SrB4I9wiH6dzT7AW/HgBVN4ffo66sT7W1w1BV9EjxdeamjY2N9dZW1sRPObJKsPExBRycwvIySkIm2izqKgGo3HB23kX7vmVyWTeezMQAjVeHcfW1joWi4nc3OBcBbm5BaSmptPf/wCHH6eC901BjyGEp26FNxqNPHyoQyyOOmR4kRAVFU1UVNThQ4JYHI1ON4bT6aSkpNbvQq+uLpGcrAp4A4RLGWy32+nvv4vLJeLcuee928SkpBRUqlT6+zs4c+ZyUEniQDn59y9/igJtKXl/+DnBlTQ9PYehoQdMTAyQkpKO7eIruN1uj4JNiHQigE43wtzcOIWFdZSVNTA7O0pNzRkcjlomJvpob79+WGug9flcOFvbI4qtk5Od0GTR9s5f84PnfiLoKjo42IFCoaK4uIKEhCSGhzs5d+7FsH3r/f29oJyGgVbd/PxyRkf7aGm5EpFMVqhcfDBMT4+h0RQLTkzHx1qZnsPtq5/h4Sc+R+u3/8D3PMjl8LXgu1IhPHUGn5aWRnNzXkhqpiO2z9u33/Rj+zQal/0CIpFga8tEX187aWlayspq/LZfGRke5ZeennZaWq4E9RmPJpj9/X06Ot5Hqy2i8NeeC3oji8VixGIJq6srmEwepZt9cTQxv/1nhy6AnJgYOfLZsWPSWJ4W0KGhe+ztOTl79nkUingcDoc3PSaVSqmqOotabWR4+CErK/NUVTV64wXhbG09ZbXhU4nFbRjY3FwTdKd6f/JXsVp3aG31yBOmp2dhMGQzPNxJc5i+tcOxF5CMI5iLor36GZaWdCwvz6NWa8JeCORy4Vx8MFgsZra2VqmtbQ74uv9YF3jmb1/j+qd+hd7PfY3qv/0zb5Q+6l9ilD4UZDI5dXXN6PVLtLffYGysi5qaNpKS0tjcXPNjLA0Xc3MT6HTDlJY2BiVl1GpL2Nvbpbu7nTNnLofc3g8NPSJnDLWSms0biERRtLU9olp2uVzs7tqOPXbY3vYE+HZ3PZprBsMC9fVXaGioflR7LpUSH5/M+rrBm6ZKTk6jre1jTE15Soi12nLy80vCinE4HHsBi0aEJ4scrFYrq8/8FOC7ik7+wpe5k5ROc72nsORohatfXcCSoMKhSCAmQI//Sd96f3+PmBj/NGGoHUJ5eSNDQw9JT1eH7Q7ExAjn4oNhenrMh0AlrLHu2bjywd/xu//6PzL/2nXkcgmtrakkJp6e9PKfrcEDGI16xsZ6qKioQalUMT4+iM22TXx8fMQsrU6nk8HBB1itFpqang26VT9CSUktdvs9ens7OHPmgmAgZm5uGqt1g9ZWDzljqJV0aUlHZmae93jhRM4XF+eIj4+nsrLW77iJiek+Bg+eiHdJSTVqtZahoQfo9QtUtbwAX/1m0O/ykDf4G7zwZPF1EhKS2dgwID22itrtdu7fv05FaSMKRbzfCpewtYYzSoIrKhrxwf6JY/puZ4WCiKEmVpUqA6VSyfT0KKWl1QHfexJHK3wksFq32dxcprLy44LvESRbXdNTVFSL0bjK7u6aoH5euHgqg3ah4HK5GBnpY2joPhUVDVRUNJGTk8f58y+g1ZZjs22HjOIfh9VqoaPjOiCmtfX5sIz9CFVVLURFHdDf/zDg62bzJtPTA9TWtnln92BBIpfLhV6/QG6uJ20WbnusJ+fu39UHoFKlCjLUKBRKWlqeJzc3n+7uW9zNLaf/h9OCgSeHwy5YFioUEE1KSsdkWvW+19Mee4e0tHxvqjPQCic5cLIniw0ZZN3f3wto8OG0qpaVNbK0NBW0u+84YmPlERu8TjeGWp0XMqMTEGIxVwzTnD17icLC8sdunnmqDT5Qe6ynqu19bLZNzp37mN+qVVZWRWqqhrGxnrC+w2BYoLPzfdTqYurrQ9Mtn4RYLKau7iK7u5uMjQ36vOZwOOjtvUdJSa0P93gg4xj/wjd4kF/BBx98D6vVFlbRzRE2Nkw4HLYALLkeJCensrNjDUpSodEU0db2Int727S3v4PB4E/EAbC/7xSsshOKUqekpLG19WjCGRvrBSSUlVV5nxNa4WQ727z12g3BCQg47GDzN/hwou9yuYKcnALGxvoCfv9JhCsocgSbbQejcQGttlzwPU6nk96f/FX2A5xXkevAO8HHxMgeu3nmqTX4gGme//BzKL/yadTqXJqarghGZisq6llYmPVJbZ2EZ5fQzdhYP3V1Fyko8KfEChcSiYSGhssYDLPMzj76zsHBLpKTkwLKB61f/Qy3vv2A7/xVJ6/99p9zPTmD/f0D6uoukJqawvz8DBBe5Hx2dpzc3ELBmyEqKoqEBBXr676ceScn1Myb36e+/gLl5fWMj/fQ29vho4cHkSvKeowxhs3NTWw2G3r9PEbjCrW1rX7tsYFgT8tGpxvBarUEfN2TNXAGXD3DTcMWFFRisaz5kZ8EQrBcfCDodONkZmoC3qt2u43R0W5u336DwcpzjP/Wn+EW++vHPUnmm6fWhw9cluqm/sF7JE30splfFvBzNtsOY2N9REXBzZs/oqSkguLiWp9GEk/K7Q4ecoPnIxL9E4JMJqOp6TL37t3AarWwt+fAZFqgufmqV0TB6XSytraMwbDI+voqMlkcqanZ1Nef94n6RkU10tfXQWZmdkh/32bbYWPDQFXVmaDjS0pKw2QyeGvQg0WwufYqKSkZTEz0c+/eDQoKqr0yz7u7NnZ2tjEYltjbc7C/v4fD4fn36OFweP51OveJiooiOlqK2+3k1q03cDqdtLVd8zvnQjEA/W/8Z/LyKhkYuBdQL07IxThCONF3iURCZqaWW7feJjc339u/73K5cbtduN0un7/1+kUWF2fJyQnMsnsEDz3aLOfPf8zneYtli5mZEdbW9KSlaR5lVBrb4I8/H/BYT4r55qk0eJfLJfgDRbgD1pC7XC6mpkZZXJwgJ6cApbIGhUJJaqqGgYFOpFIJWm0pMTGxDA3dJy0tn7KyqsfeIh2HXK4gOlrG2toSOt04eXml9PbexeHY5eBgn50dKzk5haSl5VBSUudNhwUKys2la5iaGiE9ROR8bm6ajIwcv/rrk8dTnb3K8PAjkstQEWyJREJFRSNqtZaRkYcYDAuo1fkMDj7EZtvk4GAfuVyJVOpRB4qNjUcqTT38v4yYGBlSqe8WdGNjlY6O9wVjAEfjOhkwLADW1paZmhqmpMQ3uLa3t/dYmmwOh4OJiT6MRj21tS3ExysOVX7E3n+P/gZPo0tpaS1jY72YTKtUVNQLfr9ON0VamtqbtjWZDMzOjmA2m8nJKeb8+Qa/ie+05d/h4qkzeJNpje7uedpS1cQaA/uRJycDg2GJ8fF+FAo5zc3PIZFIuXfvHRobL5GQkExeXtGhrtc4CwuTXLnyiqAw4kmEEyE/wszMBHK5jObm50lOzkQul1FcXI3L5cJq3WZ4uAuJRIxG86gqTGilvfClv+CNOCXz514SjJw7nU5WVnQ0Nz/rM95Ax3N/5X/Sc6iYG0kjUWKiipaWFxgf7+XOnbe5cuUltretLC9PU1paF5F2fHJyOuXl9QwNdXPu3DN+rwdbjaurz9Le/g4qVTopKene54ORcYTCEZNMQkLmocR0eDs9pdKjCjs62sW9ezeoqjqLSpXu8x673Y5e77k2y8uzzM2N43AcoNWWUFcnzPR72vLvcBHS4EUi0beAlwCj2+2uPPb8bwC/DjiBt91u95eexIBUqlQ0GglvnHmeT//oWwHZSY9mO6t1m7GxPnZ2NiktrfNSO/X3PyQtTe3dJovFYrKycsnKyuXmzZ2wb9JIqIOt1m3m5kZpbn4OAK22gL6+dgoLKxGLxSiVCTQ3X6G//wGdne/T0HAZmUwmuNJqv/m7aP7sR4yN9aEUMITl5TkSEhJ81FqEjpf93/89Sf/P37C2picnpyCilcQjYe2mtraVzEwNmZmele7hww85c+aZiIxeqy1Fr59nbm6a7GwtdvsuDsceDoedvT07e3uev4/cgr09z99Op+fvmzffJD09h5SUTFJSUrHb7X5lvqHgEcF8yPa2lcrKloi4AI4gkUiorm7BYFhgYOAeGRl5PkVas7NTOJ0OurpuIpXGkZ9fSXq6OuSOMmjV34+JAOPbwF8A3zl6QiQSXQZeAardbveeSCQKzrQQLl5/Hc2XvkyBfgV7qprZgirydMOIjnWRH8jkLH7u9xkfH2RpaYqcnCIaGtp8xBTX15c4f/6lgF+Rnp7D8vJCWMQCkbSljoz0kJtb5DW+xMQUpFIFq6uLXr/Zw3PeysjIAPfvv0tT0+WgK21+fjkrKz8SlGqen5+ipKTK73NCx0tKSmN93UBOTkFEK4nD4WB5eZ62tmve54qKPBp7nZ3v09T0jPd3h9oRefL/dbzzznfJyFATHS1FKo0hOlp6KB4qQyaTkZCQiFQa460sPHIPXC4XGxtGTKYVdLpBDAY9iYnhS17NzIwxMzNKVlahl0nmcZCRkUtiYhpDQx3cvfsuNTXNxMTE0td3F622iOLiaj+2nVAIt+rvNAj5a91u9x2RSKQ98fSvAn/odrv3Dt9jfOyRvP46fPazRNs8N2CscQmNeZ3e5ucpnxlBtraMIz2XkVd/i4/iElDubNDaetVndfFE3nsoLq4R9KvU6nx6e+9SXl4Tckjhbnvn52fY39+hsNC3KCI3t5D5+Qk/soaKihrkcjkPHnzAGQHXxZGee2gc9YyO9pOamulzc3oiygc+acmjzwmt3CpVGgsLHunlSOrH5+bGUamy/NqACwpKEIsfrfQ57W+FLfCg1ZZy4cI1IoVYLEalykCl8qzKu7u7dHS8i8GwEFTQ0WLZYmjoARAVkqQzUngCtleYn5/iwYP32N7eIzFRiUZT8GOVgg4Hp53eioHzIpHoa4Ad+B23290V6I0ikeizwGcBcoN1+Hz1q54+32OI2tulTDfMa7/z3ygvb2JhQcfenoXKssaALCpzczrEYnfANNgREhKSkUjErK0ZQm7lwtn22u02pqb6aWz0r7RTq3OZnOzHYtnyXvjj5aO7qixGCyqpMa/7cNYdX2nT07NZWJhEpxunpOSRjtnc3GRA0chgK3dCQhIHB052draJi4sPayVxuVwsLk7T2Hg54OtHzCxdXR9y9i/+XVg7ou3tTRSKJ2NwsbGx1NS0MjBw19tteHL8k5P9LC3NUVBQhUZT8EQDtceh0RSxvb3F+roJtTqPlZUFRkd7kcvlpKSkk5qqJikp9Z/s+8PBab9ZAiQBzcAXgb8XHZF2n4Db7f6m2+1udLvdjampqcJHFOjvjTWtoNGUcPPmG6SkqGhre4ni7pt+BTl2u53Z2SEqK4OnpwAyMrQsL4dOc4RTuDEy0ktmZm7AZh8PYUM+s7NjgH9tgXxtmdq+OwzUXWRHlSmYK66oOMPi4oS3Gsxq3cZsXkOt9p/YQuWek5MzMJlW/D4nhMVFHQpFctAVsX78Ib/6R79OzOpiwNdP7og8E2DgasbT6KupVGlkZRUwOHjf53mTycDduz9ie3uH1tar5OUV/ZMb2/b2JiUlVRQWltLUdJFnnvkkxcV1HByIGBnp5cMP/5GurlvMz08EFA35p8ZpV/gl4B/dHtGvhyKRyAWogMgUBo8jNxfmA6+mBwduKioaKCysFAykzc/ryDh/LawuppycfNrbr+N01gf14UJtew2GJba316mpeVHwGFptIe3t7+BwOAQaJHapmB3hL//tN0lNzQgoUHi8GqyhoY25uUmysjSCYw+2cqekpLG+vhJQey8Q5ubGKC31H9MRTl6PQDgZCNzZMZOW5h+TeBx9tZKSKjo6PkCnGyEnp4ixsS5MpjXKyxvCzsg8LpxOJ9vbW153AzyTfmpqhnc3abfbWF01sL5uYHJyhOhoyeHqn4lKlfXYMYVQOO1090PgCoBIJCoGpIDpsUbyta95+nyP4TgRf3a2p7ZcKJBW/73XKCoK7ZeDp9MuPj6e1dXlkO8VKhd1ODx00BUVTUEvkkwmJzk5g6UlnWBMIMa4RHPzs2xtbdLbeyegxl1BQSVm8xp6/SKrq/OCdfOB4HA4DnPAY6yuzjM97WHXDfWZkZEenE436enCmvXBpJ8gcCDQat0mIcHft30cfTWPxHMzY2MDfPTRPyISSTl//mMRpV8fV7l1ZWWWjQ0TTqdwCbNMJkejyae+vpXnnvsUtbXniIlRMDc3xUcf/SMPHrzHxMQgW1uPZ05CCCct913gEqASiURLwH8CvgV8SyQSDQMO4BfcRxKfp8Vhf+/+l76MRL/iXU1nW17A1dfuzb0GU21tPicLmSs/QlqamrGxQZKSVBGztgKMjw+QnJziF0sIFKXObXyGsbGHQWMCMpmMs2cv09d3n87OD2houOSncFJWVk9n503U6uyAqTBPvt/C9vYm29ubmM2b2Gzb7O/vExeXQFxcIipVDikp2UxOjqDTjVBYWOUN/NlsO+j1S6ytrWCxrBMTI2Vvz4bZvCm4pQ8m/WRPy0b/G3/ocy08pbqigBwCj6uvFh+vJDExDZVKRWmpf9egEJ6Ucuvi4jS5uSV0d9/kzJnnwioISkxMITExBajA4XAcMjvp6eu7j8u1T1JSGqmpmaSmqsMeRzCEE6X/jMBLP/tERnAcr77K/Nk25ufjvD7x0nCfTyRayGhEnsGGdbFcLhcrK3oODmzcv3+D5GQ1BQVlYXfJmUxG1tYW/VJ/gjfOV7/JWFwy4z/3O1S+9mXBVJinJv8co6N9PHjwHo2Nl3wMOzNTQ1QUpKdrsNvtbG9vYLEcGbYFm82KVBqLQpGIQpFIbm4x8fGJAaWyCgpKWF6eZ3x8kP7+DmJj43E4bKSkpKPR5JOaeh6JRMLCgo7e3nbOnvUXlYQgQiCpal77rT+nsfECx9dys3kDhSLweX4SVWYxMdERR+AjZQUOBJNJj8NxwKVLVxgc7Kan5xZNTVci2qJLpVIyMrLJyPDc71brNmtrBlZXVxgZ6WF720h19aceqx/+qW2eOYLRuEB29qPgVKBA2kmE2gZOTg4THQ1Xr36a8+c/TmysjIcPP6Crq52NjeBbKafTychIN6WldWHTPKn/8qvk5BRyP78iZDOHWCymsrKBzMwCOjs/wGxe9zmeWCxiaKiT9va3mZ4exWq1HVawneHSpU9w6dLHaWw8T2lpFZmZOYK6eABqtYbz51/AbrdTUFDKlSufpK6ujczMR/GB3NwCsrPz6e6+E7DbTiiwafjNP6KsrIGenjs+29Pt7S0UisA37Gm4+07i4MAZtLY+EB53Z+FyuejpuUNSUjoikYiamiaio+Po6wvsnoULhSKevLwiGhvPk5dXQkZGDnJ5+BJigfDUldYex9qaAYkkCqXy0YztE0gzLADugNV4QhdreXmOhYVJLlzwNDRIpVJKS2spLKxkfn6CgYG7yGRKCgvLA6btpqdHkctlqNX+jRPBbpycnDx0uiGWL74S1qpRVFSGXC6nq+sWVVVniY6WMTU1zNraOi+99DMRF3MIYXvbjFKZEPD3PBpLJXb7Dj09d/3olYMFNtV4JrCentvU1Z0nOTkNi2WLlJTA6dBIagOE4JFijqzy7nF3Fv39HYjFUra3H03O9fUtPHx4h6Gh+9TUnItoPCfhdDpZWtKh1QozMIWLp3qFX14OXEyxee1Vbn37IX/8h99jLwySAw+pxDwPHrxHe/s7aDRFfj6kRCKhoKCCixdfJisrh7Gxh9y79z56/aNUk9m8ydLSFFVVgXnJghEuSCQSMjI0zM2Nh/zdR1CrNVRVtXDz5lv097ejUqVx9uxFxsf7wiL4CCcQZTQaSEkJPXlUVDQhlYrp7b3v91owttbMzBwqKs7S19fOxoaRnR0L8fHCW9JQzK9CcLlcGAwLrK0tRbyqPs7OYny8l93dXS5f/jhisZvFxTnAM9E1NrZhtdoYGemOaDwnMT8/gVKZ+kSKeJ5ag3e5XJhMS97o/MnXxsb6KCmpYeXXvy54sez2XSYm+rl9+01mZ6dRq4vJySnwab44CbFYjEZTxIULL5OfX4xON8jt2+8wP69jeLiLwsJKQdLKUDdObm4hKyvzYbPx2O12pqdHKCgo4+LFlykoKKesrO5QiNHf8I4jXKac48owweCJgrfhcGwzMhIeWcQRMjKyqag4S09PO+vraz61/5Fgb28Pq9XipSxfXNQxPT1MZ+cHfPTRD9HpJsjIyGdyciCi456Gvhw8/IcGwwoNDZ54R3FxDdPTw94JxxOTOc/6upGpqeFT/WaXy8XCwhQFBYHbwSPFU7ul90gwywNGo2dnp4iOFpGTU8DmYVXdSXLE+2k5rN95h7S0HOrqzh9GQkGnGwrIjhIInkYRDaurS4yN9bC5ucm5c88Lvj/UllSpTCA+PoXl5dmAVXLHYbVu09PjWdVP5uZra1t58OA9RkYGqKgInIoMJxDldDqxWNZISQlvyymRSKivv0Rn53tMT8soLAz/JszIyMbpdNLR8Z43m+BpkrGzv79/+O8e+/v73l76/X0H+/v7HBzss7/vJCpKgkQiJTo6mujoGKKjY9Dr55FIYmlpeQalMgGXy8X9+zeZnh6msLAy9MAOEU7V4VEU3WRaY2Njhfn5WT7xiZ/3dtmlpmYhl48yOzvlJVSRyWQ0Nl6ks/NDpNKYkNf9JBYXp5DLE0lOVrG2Zo7os4Hw1Br88vJ8QMFAu93G3NwIjY2XvM9tXnuVtec+zfKyjsVFHfv7LrKVqVRVNfsF1hwOR0Ta6eApb01NzeL27TfZ2DCRnCxMoR3qxtFoCtHphoJe+K2tdXp62tFqiwLq2HuacC7x4MG7zM/HB5SNCicQtb5uRKFQRtRPflQ33tn5AbGx8qDMvichkURjt9tob3/b2ywjkUQfNs3EEBUlRS6PO2ymkSCVypBIog977KV+VXLLy7OYzSYfEhMP5Vgz9++/i0qVEZLuPBicTifr60bW19fY3FxlZ8dTIp2UlIZGU8TBwYEfPXZJSS09PXfJyXnEYSeXx9HQcPGwc07qQ0ISLF7hcrmYmRmnsvLsqX/DSTyVBu+ZSVeprPSv8BobGyQjI8dbUWe1Wg63VgskJKRSVFQrWCjidDoF6ZBCwbPVL0GnGyU5+fTMoWlpWYyN9QrKOa+urjA09ICysrqggTSZTEZ9/UW6uj62Yl+vAAAgAElEQVQkLk7hF8QLJxC1trYaMIAW6kaUyxXU11+gu/smUmlMWO2lnkKlHp5//lNBm1zChcWyxfh4Lw0Nl/z62OXyOIqL6xkc7KC19WNhp8acTiebmyZMJo+BW60bKBRKkpPTKC6uJCkpzXusjQ1jwJ1iYqKKxMRkZmcnfXoflMoEGhrO09NzC4kkmuLumyFz/ysrc8TEKE7VviuEp9KHX11dJjEx0e9CmkxGNjZWKCqqwWBYoKvrQx48+ACQ0Nz8PE1NF0hPzxIMVjkce0ilwWWOgyE3twiLxcTW1nroNwtALBaTnV3I/Pyk32sLC3MMD9+ntrY1qLEfQalMpLLyLAMDHVitvlzp4QSiNjb8/fdwff+EhGSqq1sYGOjwSjYFw/BwL8nJKU/E2B0OB/39dygsrPO6aieRk6MlPj6NkZFOweN44kRGJiaGuX//Qz788AdMTvbhdu8dpik/RWvrC5SW1pOa6lv2Goxaq6SklqWlCex2u8/ziYkpVFefY3DwPpmv/duQVYUzM6Pk55+eazEQnsoV3mRa9fMPXS4XAwMPiImRce/edaKjZeTkFFFXl+snPig0c26cvRqSCirYdlwikaDVljA1NUpT0/lT/z5PLf8odrvdO6lNTY2xtDROY+PliFRN0tOzsdm26e1t94gPHv6+UPEEu90jXnFyyxtJEUpqahYlJTVBC3PA455ZLKu0tQn3HEQCT2dcpqAC7hEqKuq5d+89lpdnUavzcLlcbG1tYDKtsrFhxGLZIDY2lqSkVPLyikhOzgh79+dJ/wVePBQKJWlp2UxNjVBV1eB9Pun661T+5Ve5uroAAoWpRy6XwbCAWBztLcJ5UnjqDP7gwMn+/q6P/+50Ounr68BgWKSsrA6ttljQjw52w47VXfSu8Kctp9RoSpibezNouWkoyGQyVCpP22txcTXDwz1sbOg5e/a5iNhjjpCXV8b2ttlPECNYPGF11UBysn+rZqRFKDk5Bdjtu3R33wmopuuRBOulvv5c2FvrYBPxxMQgDscBDQ0NIY7iqbGoqKjn+vW/Jz09k/V1EwqFgvz8UjSafJKSWk5NYBqKPLOoqIa7d98mL684oNCG4HEPXS6dboS8PGFq69PiqTP4ra0tVKp0H19paOgBcXHJfOpT/xexscHr3oPdsHt7du+sfNpySolEgkZTzPT0CA0NbWH/riM1XI8slA2X64ChoYfo9UtER4tpbn7+scgYKyvP8PDhR4yM9PmsKkLwpOP8fcPTFKEUFVVis23z0UdvkZNTePisJzW1uDhLbm5uwHhFIASbiCcaLrG4OENr63Nht7mKRFBcXMnZs1fY3t5iYKCT/f09VKqsxxJ18CjwCE8WMpmM7OwCJieHqK9vDdlkBI9crrW1FZxOt0/jT9L11yl/7UvI1vSeztKvfe1U+nJPnQ8vlUrJytJ6eeN7e++Sn19NY2NbSGOH4MUvHoZTz0V6nHJKrbaUzc1VLBZPmmRvbw+zeRODYYn5+WnGxobo63tAZ+dNbt9+m/fe+x63bv2Qvr47zM6OsrFhIC4ulqKiatbXDVRW+mcTIoUncn+BmZkhOjo+DMmx7jF4/4aM0xSh2O02trc3iYmREh0tOnxEIZVKiI6WIECVEBBCE3HWX/w7Bgc7qalpjqjZyWo1I5crEYvFJCQk09r6HFFRMu7fv47ZvCH4uVBFSx7yzODrZWFhJZubBra21oM2GbkRsZeR6839T08Po9U+0pA/mgRjjSuI3G5PG/lnP+thiYoQT90KHx+vxG7f5e7dd5DJEmhreyGiNFpAxpeYWIZ/5gssL8+Tnu5ZaR6nnFIikaBSZfDBBz9AoYhDJBIRExNDTEys95GcnIRMlo1MJic2ViFo0CJRFMvLMyiV9WH9vmDbXYNhEYUiiaSkFMbGuhkedpGZmU92tsanpn5ra53oaElA9yHS8tatLRO9ve2o1UU+Uekj5OQUcPfuDbKy8sKKTQi2EK8uodWWRRyx3t62EBf3KHUmkUioqTnD4uIc3d03ycsrJ/+ExkE47t7+/j5Kpb8Pf/L6uH/q1+iJS6ZN6H7L0PCd3/tbDg52aGi4zNaGEbvd7iPlHXB3YLN5WKIiXOVFj9vVGgkaGxvd3d3Bywy7uwf44INpSksb/PTLg8HhcBy2hlpQvfd31P3Dn6PYMGJOSOHeiz/P4vmXcDoP2N3d5tKlV0h597sBqaDCqbACuHfvOpmZeWRn5z/W6mw2b9Lbe5uLF18OuU0N5AcejXm25Srd3bd9+Nq2tkwsLupYXV1CoUgkMzMPmSyGgYGHbG+vUVJSR3Z2aGluIej184yMdFNWFlxpd2ZmCr1+OqCQxElUvqQNaBjbyemsfeG/Rlxn//Dhh+TmlgQMflksZvr7O5DLY6mubvVeR6Ex7GVoGP7RHE6nkxs3vkt1dQu5uYXe14Wuz41P/grZ2YVUvvbFgNdu/epn6Om5S1SUx1VQqXLJz39Up1HfJPas7CchEoFAGbFIJOpxu91+ee2nboWPi5NTW9siWO5ps+2wvW3Gat1mZ8eCzWZhZ2ebgwMHsbEK4uIU2C+8iEIhp+xv/oSEtWWe/ej7LJfVs3ntVbq62pmc7Kf0MRo1VleXcDrdaLXFj02ZlJCQhFQah9G4FDJlFWy7+/0YOWVljT6BRE9OWEVFRROrq4tMTAywvm6kufkZ4uOTWF6ep6+vA7HYw76qVueHXfY6MTHI0tIM9fUXgxYiAeTnF6HXLzA7OxawkOg4Au3QHBIpzvxy8v7Dz3kZjMMNstpsO8jlgTsGlcoEWlufY3S0j46O69TWniMxURXU3TObN+jvv0tMTAIrK3M+Bi90fS5/8Hd88yvfIl5AX0AM1NW1cu/e+2xsGKmvv+hzDKHdKME4IgXw1Bl8dLQUsTgKs3kTq9XiY9g22zZRUVHExSmQy+OJi1OSnp5JfHyiz/Y06frraP7yKwG3ZFWXP8m9ezc8xnVKOuDp6SHy88ufGD9adnYei4u6kAYfbLubnp4vuMqKxWIyMzWYzRbS0tTeHL9SmUhZWQ0mk5Hl5Xnu3/8AuTz20PgLAkawPcqvHdhsO7S0PBe2P11V1cjDhx+QmakJmok46VJYElKYrzpHVfsbfl2RoYKsTqcTu303aIuwh1++ieXleXp67qDVllApYGC2lAy6um5RUlKPWp3LnTvvsLq65OVrEJR8NukRiZwMV7ex+aM5wXFoNHnIZHK/bEagSRC53BO4ixBPncFbLBa6uu4TGytHLo9HLo8nJSUVrbYQhSIxrO1zqAh8YWEtw8OdtLZei9hoj1Z3tfrJSP8AqNVaJicHvKowQhCa6a3JaZybHyL7y68E3a1sba15NeKOQ6VKQ6VKw+VqwGhcYWVlAZ3ubRISEsjI8PQTuFxOFhammZ4e5uDAzbVrn46I3EGpTCAnp4SRkU6amvxVZ45j89qrDFQ0MzU1RFPTZVp/piZgCzQED7Lu7FiIjVWEdY3Vag0JCcn093dw92M/y6XXv0HU3qN7aF8aQ/u1n6e5+TnvBFJcXM3ERL/X4IPFhYqKahgd7SczM0dwPHt79oCdhEfXMfMwSi/6lxSlj4+P58yZK1y8+DJNTZepqGhEoykiOTktbF85VAReo8knOlrB1NRgwPcFg043/ERXd/DM7unpuczN+VffHUegCPp+dAzWS6+g/fqvBK2Oc7lcWCybJCYKp8fEYjEZGdnU17dy5corZGUVsrqq5/r17/Luu/+AzWanouIsCkXcqX5/UVE5Ntsey8uzQd+3vDzL1NQQjY0XUSoTghp1sCCr1Wr2CdgFQ9L112n+6Sp+8wvXOPvG/8dg/QV207Jxi0SYE1VMt73M5fe/y4XLCd6ofVZWLlFRMczPexSDg2U40tOziY2VMTcnrB5jt+8QGxt4wt+89iq3//oO5o0NmJs7lbHDU2jwIpHosY0pWGruCFVVjSwtzQRNzZzE2toKe3vOJ7q6HyE3Nx+9fi5oL/fJNk5zoorJ3/lvJHe8G7JMc3vbTExMdNiFJhKJhJwcLWfOXCA+XklLy/PU1p5BoylAKpVjFND9CwaxWExFRSPj432CWvUevbc+GhrOe+MRQtfTDdx78ecE6Z6tVjOxsaEN/mQ5sWLdQFXvbX7U+iJf+73/w9wv/y7FHW8TY1jwm1BLSmqYmRnx1OGHaLPVaksZH+9hdXUZvX4enW6E4eEuurtvc/fuO4yNDbK5+fiaLsHw1Bn8k0A4uWS5PI6CgmqGhzvDJkyYnn7yq/sREhNTiI6ODWlIm9depft74/zJH32f23/djf0nPhtWTcHGhon4eP+0WKh8s9m8gUgURVpapve57Ox8FhdPp3OmUqWRmprD2Ji/bsnq6hIjI93U11/wqZEPdD3diDB86rPoL/8UHR3vMjzc5TOJ2O125uYmOTjYDzmmQC6gZG+XF+78kJKSakr/5o8FJ1SVKg2FIsVLbHJE4NHd6eTu/+6mt7Sevr673Lz5BoODnezsmLl580csLS2wu2tHJlOQmamlvPwM1659mp0dKwMD9x6LGisYnjof/kkg3FyyVluIXr/A9PQwxcXVgQ7lxdqaHrvdEVGqMNJa/YMDJzdu/AOlpVUkJaWRkpJBcnKazwTjcrno67vjE6QLp6Zgc3OdpCTfRpNw8s0rK3OkpvpSPWdlacKKOQihtLSG9vZ3MJkMXg73tbUVhoY6qa097xf1D3Y9S/Fcx/HxYe7ceYu8vFKioiRMT4+QnJyBwTCPRlMQtAxaaMJUbBiJiYkNOaGWlFTT0XGD6GjpYWp4A4tlC6k0joSEFJKTM8jPryA+PoHR0R6kUjnFxYGzFWfPXmZg4AEPH35Eff2Fxy7IOol/kQYP4QvyVVU18eDBe2Rk5AalENLphsjPLw17dY+0Vt9i2cJqNZOZmYtGU8b6uonx8X52d63Exyce0hVnsLQ0g0Qio6zskYhkOMKQ29vrFBQU+3xnOOXFRuMSVVWtPu+Jjo4mLS2X+flJSkpqI57YpFIp5eUNjI4+5Ny5F9nYMDIw4OF+E+LqC3Y9ZTI5tbVnWF3Npr39BgkJiTQ2XiQpKYXFRQ/rbkvLs4KTk9CEuZ2UikQSHXJCVSoTEImkTE2NkZ2dT15eJUlJqoDGajabKC6uC3puGhraGBrq4cGDd2lsvHyq/goh/Ivc0kcCDzNoJcPDDwS3USaTgd1dOzk5wbuzjiMSUQWXy8XQ0H3KypqQyeKIjo6msrKOtrYXOH/+JTSaEhyOffr7HzA01E1Bga9bEcp3tNvt7O3t+kWAQ61cZvMGLhcB8+waTT4rK7Nht9OeRGZmDvv7It566zu8997fs7e3z8LCNJOTI6ytGQR9fCEsL88zNPSAyspannnmE97dTE5OAVlZufT03BOkFhNyATte+tdER0tDuohm8yYSiZsrVz5OaWkV6elZAY3dw/SzTVJS8LoFD51YE5mZhXR2fvBERSn+xa7wR/CQXrhwuZx+fx8cOHG7XchkUjY3PeqiVVXNfqv4aSLzkdTq63SjiMUx5OcX4Xa7WFiY9G51ZTIZmZk5h40UDczNTfDgwYeUlNSi0RR4U2PBVsCtLRNKpdJv/KFWrkDb+eOreVNiKjFOx6k53aOj4cyZZ8nKysFqtbC5ucbWlompqUWsVot3S6xUesqFlcpEv1Sgw+FgeLgbq9VEfX1bwCadkpJadnbuMDDwIGDDk5DLMCpPpE4iDeki6nQT5OQU+pzfQLse3dnniI2NDzudecRc3NNzm4qKJqKiwvpYUDx1Br+3t8fc3BLx8ascHBzgdrsODfUAl8vJwYEbt/vg0FjdOJ0H3v+7XOByHRm15yESiYiKkiASRREVJUYsjkIsjiIqKgqxWExUlASxOAqVKhOj0cjNmz9Erc5Hqy1GJpOzsWHEZrNFtLpD+LX6FssW8/MTNDd7uPLUag0zM0M+vfLHodWWsLAww8zMIDMzw6Sm5pCdrQ1KW726qg/IzhLKFVhZmaeu7lHf/0k3RblpRKgwO1QTktm8idPpJivLM6EoFEoUCqVX+fcojWg2m9jcNKHX67DZrMTGKklISCEhIQmRKAqdboiUlLSQzDa1tW1BeQADTZjOD3/owy8QaAKz2XZYX1+msvLj3ueE3LnVX/qPJNZficgFUqs1xMTEMjDQQUqKAghM+BEunjqDNxgMjI0NkZdXTnx8IlFREqKjow8N1POQSDzG6jFcideQPSSHUYAYiURyKmE+s3mT+flp7ty5TkpKCtvbW2g0FRFH5sPxq4+28gUF1d5iDplMRkpKFouL0xQVBSZh3N/f49w5T9HQwsI0IyMPcLnEZGVpycnJ86l+MxiWWFz05Im3t99EpcokLU1NSkqG4Mo123KV4bvXMRiWcTj2vMcK5KYIFcSEakLS62cDCkoeQSwWe2WYjoQvnU4nZvM6W1sm1tdXGBnp57nnPhEWi84RD+D9++8SFxcXsADpJA4O9pFIggfNZmYmyczM8dnCC7lzlf/nG0RFSdH8z38fEQ+Dh578Gbq732Nvby/ge8LFU2fwGo2GyspYjMZFSkurHouE8DRISEiiurqJ0tIalpbmmZoap7n5asTHCSdTMDMzSlRUjFdj/Qi5uYWMjDwIaPB2uw23+8AbyCkurqa4uJqNDSNLSzo6Om6gUCSRmanF6dxnbm6E1tZnSU5OY2trndVVPZOTw9hsHSQmppBW3oj+e6PIZHLsdjuTk30Yu+9QWFhNSUktg4P3iY297Kn5D9Liedzww+F01+sXqasLn08APLUBKSnpXppxk2kVlSo0xfYRZDIZDQ0XefjQwwMYrPPOs0M8CLpoOBwOVldnaWnxZTIOFvWv+u43TuUCKRTxVFTUEhNzeoo2eAoNHiAnJw+VKoOentuHkdsnR+IXLqRSKfn5RaytLbG+bgiLY+4kgvnVR+SbR1v54/BszyWsra1Q3H3TZ9IYefW3UAZoQElOTiM5OY2DgwMMhgVmZsbR6+e4du1niI/3aLkdrZglJZXY7XZWV1cwmVYOpbckbG9b0GrLaWv7mNedKCysprf3Hi0tzwrryMnjiVImhx2l39gwAlGCfHThQiQSR5yvVioTqalpYXCwg6amZwT1BPf394mKCm4eCwu6QzFS3yi60HmyJKagXAtcZxGurNXj4qk0eOCw5jiK/v57VFWd9RGU/HEiMTGV8fFBEhJUQZswIsXAQAd5eZWCx8zOLkD6vf8Xzet/6rP9q37ty8jPv0Te7/1iQAOLiopCrc4jJiaOqCiR19hPQiaTodHko9Hk43K5GBzsJD4+haqqBh8fszI9l65P/BI90lgyPv8HaL/+K35uyu1PfQ73Z34z7Gu0sjJHRsYTkE0Si3G5nHjUyj0Ixz9OTc2isLCKW7feIju7wEvQ4elA9VBSOJ37bG6asFi2fNK1LpcLh8PO3p6D2dlRmpp8O9sgsDvnjIml65O/wvnr//uxBTMfB0+twQOkp2chkVygv78dp3M/4lU20vxwIOzu2nC5HHR2vo9UGnfYSZZ7KonpI+h0I0C0V6wg0JjrVxdwI0Ls9l3BJA47JR9+P2Sb6MGBU3CFCnReksob2dw0Bww4tXz7P7P+8X/D39c9y8tf+AaFf/V1n8/ulJ5hY2k6LIN3uVysri6FbKARGqev8GaUzwofSe1DXJwnWp6cnHRo8L4xGrFYjEwm5/7993E4HMTFxeN07uFyuQ7jQ9FsbhqxWMx+bmcgd67zlV/EeOGTLOeXhYztBMLGhomVlSX29h4vJ/9UGzxASkoqjY2X6e6+zf6+A602PNreJ6H5bbfbMBoXuHDh40ilUtbXDSwvz9LRMYpcnnCoTKOOqNrMarUwOzvOmTPPhhyzSCAGfvL5QD6gy3WASOSfxxE6L5uf/xqmkkbBgNOl9/+O7Zf/DW+vHJD8+39LSUmVd9JTOxxMTw+GVXm3vm4gJkYeUpo7vOsn8jH4SHgKp6eHDxuzhIN3OTkFh5maFaqrW5BIpD7BOQ95yT22tzf91IFOunP9925QmJgcEaOQ3W5jcXEevX6OgwMHycnxj8XDB2EU3ohEom+JRCKjSCTyE8cSiUS/IxKJ3CKR6J80spaQkERT02VmZycOV8fQiKTwRQhzc9NkZKiRyWSIxWJSU7OorT3HlSufJD+/mM1NPe3t79DZeZP5+emwikWGhx+g1ZYHvOHDIToUwkkf0OkMHHASOi9lf/Mn7O/vC/qSyq01fuqLn+QTtm1iYiR0dNxgdHQAh8OBVColNTWHhYXpkONcXg4enQ81zuPXz7Olf2Tw4dY+bGwY2d0NL9XqdDpJSkpFLvenKUtISKKl5VnMZjNdXR8JXn+Xy8XOjsVbcBNMMNMjfLpIV1c77e3vYLWuU15ey+XLr5CVpXnsPo5wPv1t4IWTT4pEohzgOeDHEm1QKhM4e/YZFhdnmZjoD/n+x9X89kj0TpOfH1jqKSMjl/r6C1y+/Amys7UYjYvcuvUmXV13WFycC1jVNTHRj9PpFhQXCGdsQnnvkz6gy+UMeHMIkzSscHCwL+hLivCssgV/9HnOzU/Q2nqVvb1t2tvfYWZmiuxsbci2V4/wg4HsbG3Q9wUb5/HnRSIxbveB9//hdEmCx6XKzS0Jy3j29x1BxUtkMhnNzZeRShU8ePBuwM49i2UDmSw+aF282bzJ8HAfN2++yezsCGlpaVy8+DJ1dW2oVJmCn4sUIX+x2+2+AwTqIf0G8CWE78EnDrk8jubmK6yu6hkefhj0veFefCHMz+tISkoKSfkkkUhQq/NoarrMpUsvk5aWiV6v4+bNN+juvotev8j6+ioPH37I8HAPVusWw8M9AdVrhMbmEotxi0RYUzKZfPanwmKVdToPAt7QQt9hT1XjdO4HLCM9jqNVVi5XUFfXRkNDG0bjLCMj3dhsu6ytrQh+1mhcQi5PCCv+Ec71Ozhwsr6+ys7ONi6XK6wuSbN5A7PZjEZTEHIMAE7nXshcvKcU9gxqdTH377+HyeTLGLy+vopS6Z+RcDgczM5Oce/ee3R330QsPqCp6RKtrS+g0ZQ88cYZOGUtvUgkehlYdrvdIXV5RSLRZ0UiUbdIJOpeW1s7zdf5QCaT09z8DGazOWgb4eNofnskeifIywvOv3YSUqkUjaaIM2ee4fz5F1GpVOh0A7z33g9IScnmlVd+gQsXXkQqjaav7w537lxHp3skSRRwzDFy3vrJX6ej3cZf/+7foPvCn4YlbexyHQQM2gmdl9Gf/SKLizreSUzno5/+bbYSUsKqoktMVNHc/DwlJZWIxW66u28J1qyvrMwFFAgNhGDXb2PDyODgfSYnB1hY0PHw4U3ee+8f+EdZHB/8q99gOzkdNyJ2VFkM/8YfsXzxFe99Mj09iFZbEnZR1v7+ftjyZAUFJVRWNtPf38Hc3IT3ebN5naSkR63Jq6sr9PZ2HIqTLlNYWM7ly5+gvLzxiWjAB0PEQTuRSCQHvgoI6yYfg9vt/ibwTfCw1kb6fYEglUo5e/Yy3d136O29Q339Bb/VLFK65eNYXl4gJkYatnhCIMhkMrTaUjIyctndveGNyEskCkpLayktrWVtbYXFxWl0uiGSkzPIqb8MX/km6v/uO+a1jAJsC1NYLFskJKjC6gR0uVxEBSi+DnReJn/h3/JBUhoXS6qRyeSsq9L4HyU1fP6PP48yACFDoNU3IyOX559X09t7n76+2zQ0XPa5Jk6nE5PJSHn5mbDO38lx7qVl0/sTv8oDeTwMdZGZqaW0tJ7S0mrS07NxuVzEvfFX5N14HdmmkZ2UDB6+8suM5pay++AjHI5doqLEmM0WXn651e/7hDICTuce0dHhr7Tp6VnExj5DT087OzsWysoasFi2yMrKZ2xsCINhluhoCZmZGsrL60+tfHNanCZKXwDkAQOH+ctsoFckEp1xu93B1Q+eICQSCY2NF+jru093903q6y/6zdrhtsiexPz8BIWFT0bmRyqVcXCwj8vl8puUUlOzSE3NwuFwsLysY2qqn9HYeDL+y1toNPnerW+OyUhX14fExsaFfYM4nQeCQgnHz4vZvElX100qKxvJyMj1ufH34pQ4oyRIDh6t2MF2SVFRUTQ0tNLTc4+enls0NFzy/maDYQGlUhXRDb723KcZrGxmeXmWnR0Lqak5VGXnebv33G43RuMy6enZHtrx//qb3kCfYl3Pxdf/C1ptEZvXXsXlcmE0LjM62ue3VQ6WEdiXKb19COGmeZXKBFpanqW/v4Pbt3/I4uIiTuc+6enZ1Ne3RaQd+KQR8Zbe7XYPud3uNLfbrXW73VpgCaj/cRr7ESQSCQ0N55BI5Dx8+EHELZWBsLZmwOXaeyIqp+Dx72JiYrDZdgTfI5VKycsro63tY9TVteJ02ujouEFn500WF+dITExmf9/NwUH4v8/lcgZc4Y/DYjHT3X2bsrI6r7Efb3WVWc2IEbEbp8SNiN207JC8/WKxmIaGc7jd0fT03PJupfX6eTIzwzunJpOBgYF7fPTRD1leXiQ7u5CLF1+murrJp1XXoxe3CoSO6ovFYhSKBAKJ4AT7rNPpQCKRRtwGLJPJOHPmEvv7boqLa7hy5ZNUVZ0VNPZQzENPCuGk5b4L3AdKRCLRkkgk+sV/kpGcEp6miBbi4lK4efMHfgGTSKHTjXubNZ4UYmJk7O4KG/xxJCaqqKo6y6VLr6BWa1henubWrTcRiaJISgrfxQhVB26z7dDTc5uCgjJvQVOgG198sI84Pom33tDx2m//ObfVxSEnVrFYTGPjOUBCb+8d7HY7W1vrZGYKF+bYbFYmJvq5desNRkZ6iY1N5MKFj9HcfInsbC0SicTPKPLu38DpdHpaaUNE9R0OB5uba5jNW4LvCfT8wYETqVQacZrXbrcxOdnP5uYqKlVG0IzAaTkFToOQW3q32/2ZEK9rn9hoHgNxcQr2950MDXUjlUaRn18edoDoCGbzJl171U4AACAASURBVDs7G+TkXHiiY5PJ5Nhswvl1oa1idnY+2dn52GxWhoa6WV1dEmybPYmDAydiceDLa7fb6Oy8SW5ugU8hU7AbX63OIzVVzdhYF+3t71BaWhdUbUYsFlNX10pPz13efvt1Dg7cDAx0IpcrkMsVKBTxxMTEYjabfLbs1dXnAhJuCG27m179EmsFZYL167aUDDo6PsBq3UCpTEQsdvkp/wp9di8t29tGHUmOf25uHJNpjYwMDVVVzWxurgGlgufqtMKmp8FTX2kXDmy2HebmRrl06ePI5Qr0+kWmp8eZmhpAoykhJ6corJyrTjfmR2QQCuH4dTExcvb2dgU/H6qiTC5XcPbsJUZGBujvv0NDw2X29uzY7bvs7trY29tlb8/O3t7R3570mMWyRWamBolEgt1uP+RbMzM21k9OjsZPBSZUD79UKqWm5hwmk4GRkYesrCxQUVEvmGaTSCSkpqpZX1+huflZdnd32NnZxmIxotfPsLamx+E4oLr6LI2Nl4LuSISMovnN/8VfN7R56tf/4JeJOnae3cBCVSsFBaWkpGQgkUgYG+tlYWHGR2FXqJV55pf+kzclF+zcuFwulpdnWViYxOE4IDu7wCsQ6nA4uHnzDW+BUiA8bs1IJPhnZfBCxjU42EVOTpE3Z65Wa1CrNaytGZicHOL+/Q/JyysmNjbuUNxCcfhQei+CzbbDxobeh8ggnPGEU74bGyvHag28pY9kdi8rq+L69XHeeus7JCWlIJXGIpPJkEplxMbGoVRmIJPFEhurQCKRMjrazQ9+8B0SExMAN3J5HDJZHHJ5DHr9Avv7LrTaQu+KGk4PP4BKlcH58y8xNTXI/fs30Gorycvzn1TtdjszM0O0tj4fsM3Z5XIxOzvG7Ow4Tuc+RUUVERtFrGmFhYVZvp+cypW6C9Q/eNfbqisCiu9fJ6b3k95zqdF4cuVOZ40PW9DRtTh+by2fvUr06EPhcxMTS9cnP0vHzR8SF5dIfn4l6elqn/NwZPS3bv2IurpzpKam+/2GxxE2jRT/bAxeyLjW19dw5BZSVOS/DU9JSUMiiaakpIbMTA07Ozvs7trY2lrEZrNit1sPg2qxmM1bqFSpERU7hGussbFxrK8HrkGIZHY3GleIi5Nx9epPhJVHrq9vw2hcpqHhvF+K0W63s7g4xcBAO1KpgtzcIlxXP+P9XaEi0WKxmJKSWjIztYyMdGIwLFBR0UBi4qOg1NiYR2lFiNNALBZTUFCBWp3H6Ggv7e3vUFxcG5AZONi2OyYmhvr6Nir/9P8OKUflcSeU6PVLPt8TKKOzv7riXeFPTgrWpDQ+evbTmBqepTGvSJAV1263ERMTQ2lpNcPDHcTHp1JaWuPTJRnuRPsk8NQZvMvlYnvb4neTCBlX8be/ztbfDwfcho+NDeF2O6ip8c/TH8Fut2OzWbl580esrCwyMHCPoqKasJhCwzXW2Ng4dncD+/Dhzu4Oh4OxsV7KyxsiYvKJj08KWJwkk8koKqqioKCC1dVF5uYmmJjoR62tJu+QECMcKJWJtLRcZW5ugu7um2Rk5FNaWsXmpomtLT3nz4feMclkcurr29jYMDIy0sXioo6KinofIxIyirGf/SIqVTqJiSlhX4/s7AIWF3UhKccdDoe3WcXlcjFc3co7X/0f2O0O1OoCcnMLyA4RT9Hrl1Gp0sjNLSQrS8v09DCdne+RkVFIUVEZUmlozrwniaeOtXZra5OxsW5GRgbCaoxQbq3x7NUMv1SGXr+I0ThDba2wsYPnxk9OVpGYmMjly68gkSjo6HiXoaFO7CEaWcIt35XJFOztBT5WuBWBY2MDJCWlRMwLEBurCJohOBKabGl5/jCNZKW9/R16eu5iMoWvgqLVltDW9jFvfX13dztlZZFNTsnJaZw7d42MjCy6uj5iaKjHmxEQYuYdrbuEUunZVYR7PTIzNVitW1gs5qDjcTr3ATeTk4Pcvv0m8/Mz5OaWcfHiSxQXV5B58/shU2lG4xLp6Z5mIYlEQmlpLefOXcPh8JynublpXC5X0IaaJ4mnzuCTk1OoqWnFZlvn7t13MZs3AeGLKQK/VIbVus3oaBc1NefCimgf0UYlJaVQUVFDW9s1QMK9e9cZHe0WTEOFa6wymQyX6yBgyWkoimkAk8mIybRIeXlTyN9yEjExcdhs22G9V6lMpLq6hYsXXyYxMYnh4fvcvfsu8/MzguWyxyGTxdLQcIHk5FSioiSnqmUQi8Xk55fR1vYibrfDaxQQuMvMbDaRkuJxV8K9HkfNT4uLc0HHsra2wszMFDs7NurqztPa+gxqtadjLZxUmsPhwGxe9xr8o/Mk9/YhrKxMc/fuu6yt/XjKWJ46gwdP3rqp6Qq5ufl0d3+ETjcRsqkDjvy1r9Dbe5f8/LKwS2M3N9dRKB61q8pkcqqqGmhpeQGHw0V7+1uMjw/43fThGOsRpFKZYPFNsNnd6XQyMtJNeXnDqZop5HI5drvwCh+o4EMqlVJQUMGlS69QWFiGXj/DrVtvMjo6ELSA6AhW6xbV1ZFPTschk8morm6hoaGN5eUp7t17n81N/4Yji2XDK5AZyfXIzS3CYJgV7MWwWi2YzWs899xPUlfX7EfHFU5eXq9fIikpRXCXk5ioorX1BQoKShkZ6aSrqx2rNbzJ+bR46nz449BqS1CpMhkYuMf1pCye+eJfkPe/fhepYQGPupg/pIbFQ3GJsrC/x2zeClgBJZfHUVt7BoulhOnpEW7ffhOttgSNpoRw+OCP4NG532R5eQalUlh1JBAmJkZQKOQR1xQcITY2FqPx9CnBjIxcMjJyvXTad+9eJykpHa22KCAJpNm8gcOxT1pa+OSSwZCYqOLcuWv/f3tvHtZWft/7v44QQggBQogdse+rwYDxbs/YnvFkxknapG3q9qZN27RNbtukvfd2mV/XJ0nTtPe2vW1/v3b6a27aJk2XpMlMJjOZxeMFG2N2MPsudrFKAoQQQuf+IZAR2oGZsTO8n8cP+CAdfc/R+Xw/+/uDTjdIS8tt4uJSyc8vQy6XYzIZCQ11HZAZaDl1VJQKhUKOXj+1zfnvio6OerKySlGpPAfjAokXzM9PER/v3wVLSckkIUHLyEjPtn+f5TNjcRA8lhoeHmmecxdV/OIf/xLHeu7zckQ03/nz7/OVL/8HGwmeSRQsCiX/5feuB1WiuLKy5JNQMSoqmsrKU1RVXWRxcZG6ulfR6fr9EigajUu0tNyhoeFttNpC5udnefDgbVZXTX7XBGAwLDI7O0RxseeGk0DKMcPDI7zGIoKpHouKUm1XAF4jNlZDb28jd+68jk435GL5jI31k5ycdegDN9PTczl37nkkEpF79xw9+MvL8wfqLktOzmZycsTt+PBwN4IQSlZWnod3OeAvXmCz2VhamnMz5719Z1KplLy8Mk6fvsrmppk7d77PyMjgoQ+VfCwFPuHGt/b4R+PUfvWLPLesp6vrAWp1ItP/9Y/dTHxbiJSwDYvHsb6+YDItER3tn0E1OjqGmppzlJefYWZmitu3v+dxiqrBsEBz8zs0Nd0iMjKWc+ee59ixGs6ceYaYmCQaGt6iv7/T65dpNq/S09PMW299h9DQMI8R80DLMcPDI9jYsHj8nP0UfDjYfAs5d+4a+fmlzM1NcPv2K3R1tWE0LqPXT6HVBs/wu/u6vG1iMpmM0lJHkc7c3ChNTXUoFIHNf/eElJRMTKYFFzdlh4KspKTKSW7pCf7iBXr9FFFR0S7WRyDfmWNO3mmqq88zNzfK3btvoNd75xgIFo+lwGf/wxc9p+D+8U84efISZvOqh1npcWwplEj2jAf2R2tlNq8hivagBvap1Rpqa5+ipOQE4+Mj3LnzKjMzOhYWZmloeJu2tnpiYlK4cOEaeXmPTDOJREJeXjGnTj2L0Wigru5Vl9r/+flpmptvUl//Jna7wOXLHyUkJJzW1rtum0Og2tnx2SHOnvvdOChJSEJCKtXVFzlx4hJg49atl5FK5fsm+Ax0E4uOVlNbe4WcnFyPtfGBQiqVotEkMzHxiKnHFwXZbviLF+j1UyQkpLi8JxiLaucac3OL6OlporHxTkDxE394LH14+fyUx+My/TiJiWn09bU5UkZXr7P4zCdoaLhJbKyaT/zUca/v8wajccklYBcM4uISiYtLZHZ2kpaWOux2kbKyGrRa3yatQhFBTc05pqZ0dHQ0IJeHbY/OCkGrzaWs7LRzkzhx4jzNzXdpa7tDRcWjFGMw2tlh1q+6ZSwOq+BDqYyipKQaqTQUm23/JmiwNeUlJbXcuvWKx1HYgSIjI5/W1rvk5hYxNtbP1pbglYJsL7zFC4xGAyMjPTz11DWX4/uxqJKS0p3+/dhYL+vrcahU+3djHksNb4lL8Xh8R/NotTlOwsTe3g5CQyE/v2JfGstoNLhUh3mDL1MzMTGVpKQUyspqSU8PvBY/JSWds2efY35+joyMEs6ff46srFyXYI1UKqWm5hx2ewiNje84/eVAr9VsXsVgWPRIMBlMVDsQbG0Fzg7jCcEKhENDJ3Dnzut0dDSh041gNC4H5fdGR6sJDZWi0w0yOtpDaWnNvuMPdrudoaFemppukJycSWtr3TaPYXDf2V5IJBJyckooLKwgPDx8X2tznutA736XMPxzL/r0j7TaXBYXpxke7mNubpzS0tPA/mitVlb8+++BmJoONprgLQWZTEZERATx8d6JCnd6zGUypbPv39+1Oh6+Lurr3yAjo4Dl5UW6u5vchOEwCj4cTKs6xsYG2Nz0n6/3hmAFYnZ2nMVFPeXlNUREhLO4OEl7ex1vv/1t7t17k87OJnS6IQyGRa+bgN1uJzIyhjt3XkerLfBrynuDyWSkoeEmc3M6amsvc+rU05w69SwrK6vcvft9ZmfHD0S7BviMKQSKx9Kk1z/9MRSKSK+lhjKZDLU6jra2e1y69GGnqbqfEkWDYZHiYs+uwA78mZo2mw2r1UJUlOcUji/Y7XaWl5f8ahVH338tHR1NNDa+RdXFH3Wube+1Li3N0dXVSFiYktraKyiVkVgsFtra6mlpuUVFxbl9DdrcC8c8uxHm5qYID1eh1eYyN6cjP794X+cPxsWYnR2nu7uZiopzbu20m5ubGI2LGI2LLC3NotP1YbGYUSiiUCrVyOXh2O0bGI1LrK6akErlKJUKzOZVj8xEvrC6ukJ/fzdTU4MUF1e6dCAqFBFUVZ1Br5+mr6+d8dhEzv/GX5L9D19410toveGxFHjwn0+Ni0tmfd3icepHoDfQbF5DEES/ATt/pubCwiyCEOr2oATSOqvXTyGVSmhquk1V1Tm/wwLLy6vp7u7gwYM3OXHxoy7ns1gs9HfcY2Fh3q0JRS6Xc+LEBdrbG2loeIOqqotBDdDYwdraCpOTw8zOjjsn1u5sKgAtLbcYGuqhoKAs6HMHumHPzo7T1dVMZaW7sAOEhoai0SS6zCS02WyYTEssLMzS3n6X3NzjZGYWoVI5aLesViutrXdoablHRcVJnxuWzWZjamqcqalRzGYDanU8CoWcrS3Pr09ISCYuLpGhoV5eXTGQ8mf/SU5O2aFsusHisRV4f5DJwjzOPA8GRuNSQHlc7w0uWoaH+xgcbGdjw+oyeSXQ1lmdbpjq6ouYTEs8ePAONTXnXQTR06ZRfPU6AwNSGhreoqrqIkplFDrdIENDD9FotJw9+5zHoo0dK2FwsJv799+gsvJ8QPxqVquVmZnR7Qfc7OCWKz3lUdgKC6u4f/8NUlMz9zWLz9eGbbfb6e1to7OzgWee+XGPn+8NjrFS8czNTZKTU05FhWttg0wmo6bmKdrb79LYeJuqqrNu93BhYY6pqTH0+gliYtRkZuaQkKBFIpFgsZhpbHyHzU0rxcWO4qq9313sZ79I6vmP0NvbRl3d9ygoqNx3QdV+8cQKfEiIdHuQ4P5hNBoCMsO99ULfvPwJ5ufHOXPmOXS6AXp7O6moqAUCizibTEZWVxdJSTmHVptNf387DQ3vUFV1HqUy0uemkXf1OqGhMu7ff3PbpQn1aN56Qm5uMQqFkubmmxQXV3useXfMgJtgenqUxcUFYmMTycwsduv33guFQolWm0tPTxs1NYfHHKTXT9Lb20JEhHp7RHTw2QCzeZXJyVFOnXKbqwLsbIjn6O5uoqHhBlVV55BIBMbHHZudRGInJSWLc+euullHcrmCmppLtLTcpKOjkfNTA6TvGry5+7tTXL3O/PwsPT2tjI8PUlj47tNT7+CJFfj9jAreC6NxgbQ0/+OG9pqa5thE3nn641he+CS1WY4S3tzcMurqXmVpaQG1WuPXDTAal2lvbyQ+/pEA5ecfQyYLo7HxJsePn6XEz6aRmZnLzMwkUqmw/XA6zhOIK5GSkk54eAStrXdZW1tx+p5LS3NMTAwzPz9NeLiK1NR0SktPBVXmmZNTwje/+VesrCyQlpZHcnI6ERH7m7xrNq/S3d3I6qqZwsLjJCamMjTUi043EDSNeF9fK6mpuX7rBIqLqxkc7OK11/6ViIgIkpK0lJfX+P08h9t0mebmW8T/xX/z+d3FxSVy9uyzjIz009T0DomJaeTnH3vXzfwnVuClUil2uxenKUCYTMsBVdiBQ+iHTzxDV1cT4eEyLkzryPzVqy5ClVNUQ29vG6dPX/bqBqypE7l583uAyPq6ya0qLTOzkJAQGc3Nt7kYQJpKIrGTnp7vIuyBDtF0FBA9TWtrHZOTjopBT355sNjYWCchQUtZ2SnGx4epr3+JpKQ0IiNVzn/R0TFERsZ4Zda12+0MDnYxMTGIVptPRUWBUxhSUzO5c6c7YH4/cGxky8tLlJW5c9J7Qm5uCXNzs6SkaAMeYAqO5/LZpVmUS3qPf3f97iTk5BSSmppOT087dXWvkpdXHvSU5GDwxAq8IEjY8hYlCQCBBuzAEaTp73cMEcjPP0bpw/uk/+mvuAvViy8xGaVGpxshxoMbsBkaRvvHP0tFxSlUqli6u5u3e64fIeb1b1CyrZ1FBI8TZHenqRzpwEd+eLDFK0plJDk5JbS13eXkyStB+cXesLQ0h0oV5yxMEoQtQkLkJCSkYDIZWFycR6cbwmJZISwsnMjIaJRKFVFRKqKjYzGZlunra0WhiPG48cjlcjSaZKamht14+byhr6+VnJySoDRofHwyo6M9pKUFxokI2xvul37RY2MXeE4xOghATrGwMEdPTwsTE4MUFdW8K2b+EyvwDh9+/yZ9oAE7vX6anp5WoqOjOH36OeRyOSm/9JRXoSr8p0bq699iPjGdxGs/z8W3/pXI5TlESQjSzQ2qv/v3TKVksHz1OnJ5OKurj87jaVy0CC4Pz+40ldm8hkSCiz+5n2quyckxSkqOH4qwA0xPj6NUPtqECgoqqa9/g/z8EhITHxVV2e12TCYDRqOB1VUjOt0wCwv1rK4aOH/+eRITvXeapaXl0N3dQNVAu1/3ZWpqlK0tApoWuxubm+uYTGs0Nt7g2LGzAVkTviYA+8u5azTxnDnzDKOjgzQ2vkNSkpbc3PJD7Zp7YgX+ICa93W6nr6+LlZV5WlruIpcrUSgiUCgiiIiIRKGIwGaz0dPTzvLy1Lbv+Ghn9iVUDj9PJDJSieZX/5iF0hoivJjY8rJTLC8/mtPp6WERALsgQUB0e6BNpmUiI10LRYIlRDSZjKysLFBZGZip6w9m8xo6XT9paY8m9ygUShIT0+jv76K8/FF0XCKRoFKpXSod7XY7t2+/6lMT71hBV2Z1sMsK8uS+2Gw2Bgc7KS4+EXQF3fz8FKdPX2Fubob791+nouKsV36+HXh7NkSg79f/EouflLGD5y+flBRXM1+rDWz4pT88sQIPkn0JvCPfepeICBmlpVfY2Fh3Uifr9Wusr1vY2FhncXGR1NR0Tp/+kNsO6ytNNzk5gtm8Qm5uGRKJxKeJPfxPjS701d4eFgGR//mVb5OWVuScUQcOYd3bBxBsffzY2AApKRmHFizq6WkjM7MAg2HB5XheXjl37nwPkynfZzWbg/GmhIGBdjQa92j6Xito7/Dive7L2FgfERFqj737vmAwLGC3O7SuRhOPShWzPbijxKdP75UfX5PMq1EaKreDuv4gl8uprKxlaWmB7u4WhoYeEhenYmvrYGb+Y1laGwikUimiGJxJbzav0dDwNhEREVRVXUSjSSQlJZO8vDLKy09TW3uFixevceXKx3n66RcQhC06O9257TyVSNpkct44/xEmJ8eIjo5Hr58AfFsDcrnC5dy+SktPnLjMxEQf/f1dzuMrK8sola4PQDD18RaLhdnZcTIyvA9JCAbz87OYTPOUl59CKpWwtPRI6GUyGRkZ+fT1+R04jFabweamndlZ93vny2R2ftb2PbdYLOh0/eTnB18END09RkLCoxx5cnIa1dWX0OmG6eioD3pqsf7XvkJxcQVtbbcDprOy2+2sr68RGipjeXmJpaXlgKjGfOGJFXiJJDgNbzAscv/+W6SkpFNa6tu8c3CeaTl16jkiIhTcu/cDdLpHfe/LV68z9D/+hjVNEiIC5vBIbDI5L/z7X/HzX/gUV5emGRx8CPgWYrlcwebmhvPh8VVrrVAoqa29jF4/SldXCyaTkdHRfo+z0gKtjx8fHyYuLmFfFXd7sVMUU1hYiVQqJT4+lenpCZfXZGUVsba26PeBd7QRlzI42OX2t0CGM+zc84GBNhISMvZVHz82NkhKiut3tzMk0mrd4v79NzCbV93e52vDTUpKp7z8FJ2d95iZmXB77w6MxmW6u1u5ceO7TEz0k5ys5dq1/0JhYZnfSkx/eKIFHoSAAnczMxM0N9+iqKgi4KguOKyIwsLjHD9+nvHxPhoabm5TLd3iO+FK/uVL36Lzv/81YeIW8lWDs7Gm7G9+i8K2u0xNjfoUYonEkWlYW3M8OP60s6O44zKDg5288853yMzMY2Cgm6ammywtBc4wC2xPSxkmM9O7dg9mwOHo6CChoSHOyrGkpDTm5yddXuNIQ5UxMPDQ7/octFMhTE2Nuhz311m2c2+NxiXm5mbIyXn0fQd6PVNToywvL3rMAslkMqqrzxIXl0Z9/ZvMz7uTU/jacDWaJI4fP09PT5OTnBMcrqZON8S9e2/R3HwTQbBz8uQlamuvkJaWc2gu1xPswzseIJvN5jOKOTzcz9hYN5WV7sMYAoVKFcvp01fp6Wmhvv4tamqedhajFPzeT3r00c/94Ov8XcUpkrwMd5i//OP0dN7HYlnn/v03iY9PcxQB+SgttdlsdHY2kZSkpaLiLGFhYdhstm0zswGFQkF2dolLDbk3zMxMEB4u9xqECiafb7FYGBvrpqrq4q57pgFEtzluWm02Ol0fU1M6n7PpAPLySunvbyYpKd1pkXmKUex48dbEdGdQs+/B22RmFjsj64Fej91uZ2Cgk7y8UoaHe1Grz3pZWzHR0TF0dDSSkZFDTk6Jz2vZDZVKw4kTl2hquoHBsIwobrGwMIVKpSY7O5/4+NRDpwjbwRMv8L7aHnt62lhcnOLkyStBMdp4+6ySkmrW1oyEhIQ4NxlfI5Ck0ggmJoaR7BFig2GBjnuvERmp4YUXfhq73cb4+BAdHXeRSsPRarNJTk5z2cisVivNzXXI5aEcO/aU84GQSqVkZ+eTmZnLxMQIDx82ExYmJTu7xCeH/djYgE+ih2Dy+f39ncTHp7hNX4mLS2J6etLteH5+BV1drSQlaZ2Uz55SawkJyYyMKJmYGHRO9PXUYNP+Y79CW2El1dWODccxdHODzMzcoK9nbKwfhSKaiorT3Lr1MiaT0atLkJCQTGTkZVpb72IwLHDs2JmANbEoisjlCoaHOykrO0Fh4XPI5b573aemJllbkx+IAOMJF/gQj368zWajtfU+dvs6J08+e6h5zNzcMjo6GkhLc7Da+EqD5eYW0939AK022ymgQ0Nd6HQD5OVV7upmk5GXV0ZeXhl6/STj44MMDnaQkODQ+jKZnObmO8TGaigu9kz/LJFISE/PQavNYmpqnL6+ToaGHnqcojs7O8n8/ARlZZ7JMSHwfL7BsMjCwiRnzz7v9trERC09PW0UFpa6HI+LS0ap7GV0dJCqgWafmjcvr5TOznukpGR7ZQq2WdaZeO1fEcV3sFotTEyMUVhY6TrjLYDrsdlsjI72OtuHU1IyGRnp59gx7/dJoYigtvZpurpaqa//AceOnfFZ32G1Whkc7GB2dgKtNp8TJy4HpM1XV1dYXtYTHl7q97W+8MT68PDIpN8Ni8XM/fs3kEoFamouHUjYPfl8anU8SmUEY2OOIJ4vHz0uLhG5PJKJicHtEc1vMzen58SJy17HHO3wxJ09exWZLJS2tju8/PI/k5iY6lXYd0MikaDVZnD+/HNkZBQxPNzHnTuvMjXl4GA3Gpfo7m5ErU7lwYMb3Lr1Cg8fOmbD7b6XgZJRdHe3kp3tmVJZo0nEal33OOElL6+C0dFukv/6d3zyvMXGxhERoUan63c7h91uR6cb4v79t4iNjUOj0VJUVMOzz/44i4vTLv51INczMtJDdHS8M22WmVnE3Ny43wlEUqmUY8dqSE8voKnpBjMz7grAbrczMtJLXd2rbG6KnD79LHl5xQGb7mNjQ0REKA9s6vvV8IIgfBV4HpgTRbFk+9ifAi8AVmAY+FlRFPfPJrgLjh1wHIVCSUiIFIlEQkiIFKk0BIlk52cIISFStrY2EcVHGt5oXKa1tY7kZEcjwkHgy+fLPfkMLS13SUvL9NvDnZdXRkPDGwwOdqHV5pObW+TypXkzZ+VyBQUFx9Bqc6ivf528vOB39p0purOzkwwP99Lf38rGhpWyslNO/9lgWGRubpaRkQE6OxuIilKj0SQi/9SLFPyvz/nM5+t0I9jtVp956fj4JGZnJ51m8e7rrY6JJyyAmvP8/FKam2+SlpZHaGgoNpuNiYkxxscHkMmklJfXusVnyspO0dFxj5qap4mKUvmtvJi8iQAAIABJREFUT7BarUxMDFJdfcn5d7lcTlKSluHhQYqLy/3e7/T0HCIjVXR01GM0LpKXdwyJRML8/DS9va2EhIRz/Ph5n5TonmCz2ZidHSUnJ7hKQU8QRNG9VtvlBYJwDlgF/mmXwF8B3hFF0SYIwp8AiKL4m/4+rKqqSmxubvb5mo6OHpqbl1AqVWxt2djasmG3b23/bnf+32azbXd0RZOSkkVkZDSDg+3k5paRnp4T4OV7R8nzGZ6nlSam0/XqGM3N76BSJZGT43vghc1m4+WXv86ZM1dISHAdzuBeROJ4CHdH5g2GRR4+fMDZs8+5nTuQrrjd6OhoYGPD6rVt1Wq1srioZ35+lsXFGfJbbnLhzW+iXJ5jI17L9H/9kktrb13d65w8+ZTPYKheP8nQUA+nT1/xeL17S4d3sHOfd9DSco+VFSNhYWGsrCyyvLxAdnYpVVWeg2rg0Iqjo92cPPkMcrnc6/0yGg00Nd1CKg3jwoWrLucwm1epr3+Tj66vkP53vx/Qvd5hF9ra2kAmk7K2tkFeXqnfIKU36HQjzM6OkJWVSW1tbEA+vCAILaIoVu097lfDi6J4RxCEjD3H3tz13wbgY35XECAiIiLIyIj3W8K4A5PJwOTkEPfvv0FNzflDEXbw7/Pl5h6jufkOGRm5PgM1ev0UKSnJbsIOgQWSNjY2PJrLwUTRd+CYJe+9NVQmk5GUpHVOYjEdP8/rH/0lFhamMRoXUCojiepqYn3dzPLyPFarGanUNS+8V6hUn/kCD2XhmM1rHtt9BdyF3lNloEymYHNzhoKCEtTqs9hsVh48eAudboT09CyPwszV66ytrdDWdocTJy65+f4Wi5m+9kYWFiZISkpjenrcpQNvp4T3zPbGv7NGf/d6h13ojTe+S1xcHGfPXjxQWm1ycni7wnLT72v94TB8+E8Br3v7oyAInxYEoVkQhOb5ec8z0g+CqCgVRUVV1NRcYm5u0v8bAoQ/ny86Wo1KpWJkxN233I2ZmXGSkjy3OwYSSFpfXyckxP1hCYbj3Ll26wYyWajP9cKj2MWFp2P48K89w7NL0zz11EfJzi5jaKiPkBAJFy5co7S0hv7+Tpf37SX7zPjSL1I92MHMzKTPopn1+FSvlYE2mw29fpQTJy6RmOjIXigUSo4fv8jgYDv8y196JRktKjpGSEg47e31u+6DlZ6eDu7efZ3QUAnnzr1AcXE18fGJDA/3u18L7laIv3ttt9sxmw0UFJQfSNgNhkWs1rWARlYFggMJvCAILwI2wGtFhiiKL4miWCWKYlVcXNxBPs4nMjKy2diweSzH3A8CYRjNzT3G+Hi/1+myFouFpSW9VxojX5uK2bxKX18r7e11mEzLbq/ZT1fc5uYGUqnvIKY3ht64t/4NALU6msrKs9ulsgWsri46x0p724RqX/kq8/OTXq/XrEniH//wG14rA3W6YVQqlVv0OypKxYeMc1T8+a973fwEQaCy8iRm8xp9fe0MD/dz+/arbGyscOrUMxQXVzktqNzccmZmhrBsvzfQEl5PGBrqISQkhK6uxgN1dY6NDZOScniju/Z9FkEQPokjmHdd9BcIeA8gkUjIzy+jv7/9UOZxBVKTHhWlIiZGw+jogMdzzMxMEBsb5zVT4LEmPyycu89d5969N9jcFLl48cMYDCvU17+NwfBoeup+OM5ttk3CwnwLvC/LYWiom+zsR8FDqVRKVlYx/f2OyjlfNQkrK8uMffoPPG6is7/6FdbWlj2W3NrtdsbH+8nKci9siXn9GxT++W8g8dJTsbMeqVRKVdVZ2tsbmJ4eoqbmAhUVZ9xqMxQKJUlJaQwMdAdVwrsXMzOT9PW1ceXKjxIaKqel5da+nkmr1crc3ARpaYfjpsI+8/CCIDwL/CZwXhRF39vge4jExFSGh/tparpJaqojounrRvv+Euzoiqpo/5s3XA/r+hFFkZ09LiwsjN7eRlJTHTROjh7vZRYX5+noaKCoyPu02J3NI/mvf4ewuQlWVBrqrn6S9as/w/mUdOdGERMTQ0SEgra2OsLDo0hPz/VIsOGv33pz00poqO9abF+Ww9bWOklJ6S7+ckmClhtPf5yZrDyfNQlqtYZuzTFCX3zJzdc2XL1O7tQofX0dLl1tFouF7u5WJBLRY2DQnxbeLZASiRS1Ws3Jk8+4mNh7fX/lp/+AlyMi2YhPRa73Xu/u7V7rdCP09jYREiJBJpNTUXGKpqY7tLffo7LSNcDoL+g6MTGKRhN3KL0OOwgkLfdN4AKgEQRhEvh94LeBMOCtbXL8BlEUf+nQVnUAZGfnU1f3A7dgEgheifwFQcKOjbL3JRKJ978JgoAoSoiJSeXmzVeIiophY2Od0NBQ1Oo4iouPMTk5jM1m8+jLmUwGHqbmMPu5/4lanUhaWg6JHto4NzctFBZWIZVKmZoaZXi4kz55NKd//o+o/Nb/RqafCChKv7m5SWiobw3vTWhXVHFkZhYT+8Y39wQLx7nyrf+XN0SByc98gYxdxI3wSDCiozW0tzeyqM2EP/oXQEJIyLaB2dGEIDj6z9vaGomLS2BmZpzlZT0REZFYLBssLc25Cb0vLbxXIGdmJlleXqS/v43Y2ATU6kQSbvwHGX/4s0i2WYfCZnXkfunTnPqF36f++Z/j/De+siej4Agx7i7h3YGjeaiD+flxTp16hp6e5u2AbTrHj5+hsfE2HR33KS8/CQQWdJ2cHKa4uNLn9xUs/KblDhOBpOWGhnTodBEBR+n3wm6388473+HMGXdm0XcT9fU3CA8Po7Cw0uVzHVqqkdXVVUpLa1Cp1Oj1E4yN9WM2m0lJySItLRuFIsLjjq9/+uPcvv0Kly+7JkIWFmYZG+vBaDSQmJhNZmaOX3LGt9/+NmfOfMgnc4un1JktLJw3fvSXif/cn1J2LcvjhmCKiefNl+5S2dfodg1T5z9CQ8PbxMUloFLF7bKs7M7f7XY7VqsFnW6AzU07ZWVVJCVlIpPJmJmZoLu7idraSyiVj6bFekud2gUJA//P37P24U85jzU33yUkRIJCEcXSkh6TaYnPffHnUJhX3N5vjVLz57/zEs8bF8n5P19yXsvkZ77AdxWRlJScRKN5tPlYrVba2xvY2rJQUXEOuVyOTtfP3Nwc1dVnna9pbLyFShVDSUm137Tv/Pwsvb3NnDv3qIJxfn743U/LPWlwsKho0OtnSU8/WKFCoHluk8nAzMwYL7zw027+ulwu5/jxc0xNjdLQ8CZbW/ZtbZ5HSkqaX/LJdfMaMk2S1/VMnH2B0dFe7t59HY0mmaysfK+FHf4ajcBzrfrNyz/B5o/8AhKJxKtWjTTMMzLSjfbyjzvPYbGYWViY5eHt75GTU0Jurv8GE6NxmfT0fGdqEBydcxsbGzQ336S29rJzQ/VWTNP4879HfXQ8tdtzAqxWK0tLes6d29nsSrDZbIS/+GMe1xBqWiI1NZu66Hgsu2oBADJ1/YyO9jkF3mxeo7n5DtHRUZSWXnJ+n0lJmQwMPMRqtSKTyZDJZFRVnePNN7/F7KyOSj9BV51u8NBYbnbjiS6t9Ya4uEQWFwMjGfCGQEcXWyxmWlruAL5HFKWkZFJbexmpVEp19Tm02gyX13sLlmX+/3+EXB7udT3auu9RWnqCCxeuERUVRVtbHffu3WBmZsIlRmG1Wp2Vi/6wu73zxj/U03PslJNJ1VewUKWKoa3tHp2d97l9+xXq6l5namqczc1NkpLSnPfVW4vq/Pw0AwNdxMS4Z3MyMnJISsqmqemmMyviLbAq+5nfJCkplcbG29tDNCaJiYlxsWz8pcpGR/sYGGhndtZ1knFKSjZG4wJG4zILC3PU179FSoqW8vLTrrX7MhkqVSwzM49SxXK5nGPHahFFKRaFZ0Zga0IaFouZ5WU9KSnZLvfsmedyiSwthW94b1P2hx86DQ8QF5fC4GD3gc4RSFHMTgdbUlIqMpmc5eU54uLcC2x2oFbHkZiYyshIn9soJl8Rbrk83O96ZDIZOTklZGUVMTOjY2Ski76+DtLSctFqM7FaLX5Tcp4wPNxLVtajmm9fJarh4UoGB3spLj5OWloeUVExSCQS+vo6GRnp5vzUiFe/dbD6aTo67qPRJGG1eqafzs8vwWJZp7X1FjU1Dm3qbVJNfv4xbLZNmpocQh8fH4/RuIRUGkpISCgymQxbdCyhxkW399qiY7l8+WMMDj6kr6+N+Pgkl+7EtLQcmpvrAQslJZ4HeQAkJqYxNTXuUhhUqR9nXR5BmNXi/rkhIXRf/zxDQwMkJKQgk8ncLL+QyUn4tOOecT34mXQ/lBpeoVASGip1SWMFC395brvdTmvrXSIjoygoqCQ6Os6F0skbcnPLmJoacsvde9Oca+pEwsIUAefdJRIJKSmZnD59lfLyGgyGGerqXqW7uy3oXK5eP43NtubCk+5Nq06d/zAzM2NcvPgCOTmFqFSxzs/LyMhhdnaK5L/+bY+bVtJf/RYdHfcoLT2JRpOI2WzyuqbS0uOEhipobb3jd/3FxdXYbOuMjPRiMBjo6HhAY+NN6uq+z5tv/gevXfkEW3sisXZBoO5jn6G3twUQMZsNtLbec3mNTCbHYJimquqiV2EHx2z3lZUFlK98zcU6U6yvItlyp6raUkRxP7OE1tZbaLWOVJzHTITZDC96L/rxhR9KDQ+gVicwNzcbdKPCDnylmBzCfh+pVKC09MT258UyOTno97xKZRRqdTyjowPk5z/yab36ox/5RcLDFUGz0TrWFI9aHY/ZvEpHRz3T09NOnzIQDA31kpnp3tHlSav2ttwiJSXXY5OMNSGNzec/RZjecyWkfG6KoqIaEhKSmZ+fYXXV5PEcOzGU8vJampvv8PDhA+f99wapNJQrVz7msTsx2mZF+O5LsPlo8xVDpCiVMSgUKmy2TVJS8pmeHqO19Q4lJbWYzSaGhh7y9NM/4nUu3+51F8XEI9vc8FvEAyBbNVBb+zTLywtERjo4BLxmIsb3V2D2Q6nhwUG+sLS0fz/eV6Xdw4ctbG6ucezYWacwqNUajMZHlNO+fNXc3DImJwdctLw3zdlbcQ65POJAs8VXVgysrq4QHx9PXd1rTE66bxx7oddPs7W1FtAUlNnZcVZWVsnJKXJe+954w9l//jLr4Z6zCKJEwoeupVPyfAYFrbdYW1vxGUORSqVUVp5heXnJpbR3L0ZGetjY2CQ11XOlo/ZvfxfJpqulFWLbpPzf/pLs7Hzy80soL6/m8uWPEhIi5513/pM7d75PYWGVV0Wyd92RS3pkK4E1ku4oE0F4FGPwuqGn+ab68oYfWoHXaJIxmRb3zfLpTQAbssoxGmc5fvyCS+BHLlcQGirHZDL4DfgplVGoVO4Vep640DY2zISHRwTFRrsDu91Od3czXV3NHDt2mqef/jDl5bWMjDzk/v2bHvvUd+BNu++FzWajt7fFSV4JXuIfG+sIkhBseyb+ioDEvuW8T8f/7ndJvfOy314Bx7TX80xPj6HTuVpWCwuz1Nf/gIGBh5jNJkZGPFdCBuom2e12wsLkGAwGNjftPrvevM0W8Iedzdtqtbo8V542ehQK+KL/jd4TfmhNeqlUSlSUioWFWZ8TTHxhr+mq0w0xM9pNbe1lZ0Blt8lp/NDPsJyZx6kAAn65uWU0Nr5DZmaeTxN7Y8OMXB7hcT2+YDav0tZ2l5AQOadPP+sMgmk0iZw58xyjo700Nb1NYmIO+fnFLg/Z/PxswNq9v7+d6OgEl25Ab4IkN5v4/k/8Gpfe+TZh+klEiQTJHsYi6cY6J17+KjKj53jI7nPL5QqOHz9PY+NNwsIc48MHBjpZX7eQlVVEbW0GZvMq7e11LC8vUFZW7Uob5sdNstlsjI0NMjbWS2xsPNeu/RQtLbfQ66c9dj/6uva9HYH2kFAsYXLC11dd3BXb6gpS6aMGp71pUntKCiFf/vK+AnbwQyzwAGp1IgsL+n0L/G7MzEwwNNTJiROXkMsVHvPm5/75T7griAFpjqgoFWq1hrGxQfLyPDPpOkx+IWjWnpkZHd3dzaSlFXg8t2O6STEpKZl0dzdTV/caBQUVztz3wEB3QNrdaFxidnac06ddB0b4EqT+45d4kF1OeflpfvTHPBNnRBkWsCZqCfPQCLXXxI2Kiqay8gxvvvkfxMcnk5FRREbGI0oxpTKK2tpn6O5+wP37b1NRcdoZZ/AWN5n8zBfQ6YYYGekhMlJJdfUFp7+ekVHI8HCvV4H3du3rikhCotQu8YhXo9RkZ5e6PJ82m9UtZbiz0QdTeOMNP7QmPTiGAR40Hw9sD/lr5Pjxc85KL0+mm9RqoeJb/1/AjS05OWWMj/d7dTvW19f8Nrvsht1u5+HDB/T1dXDs2FmvG8kOHBryHCUlVQwOttHYeAedbihg7d7V1UhmZqlbRaNv2q/47crAXK/3aSVGw9DPvhhwzEIqDUWlUnPmzFWystwHP0qlUsrLT5ORkUtj49tMTIwBnt229s98iZcj1ExPj1BeXktV1VOuwzpTMtnYWHV2CO6Ft2u/8cKnaPjXhy7uWnJyBpOTYy6v3dzcfFdHRj92Aq985buc+smKgLjQ/SEqSs3mpgWzeW3f53DMcb9LWdlJl3Jfb1o8yrDgtSts78Pq6LZTe+2pX19fC7g8eHXVRH3966yvWzl58opL6ac/xMUlc+bM86hUKu7ff5uYmHi/2l2nG0QUBTIy3KvBfMUbbDYrCQmOfgFvwtH4kV9i9NQzAccsRkb6ycjI92sJpafnUlV1nuHhDh4+bMFutzvjJm+8Ns3f/fbfU6fNpaCgbHuSrvs9dJCF5jE62ufxM7xd++Kzn2BqylXzJyVlsrw86xK83dy0EhLin7Ngv3i8TPpvfIP4F38bicUxby0QFhdfkEgkxMTEMj+v31eZ7erqCs3NtyksrHArqPHaZBITx1DNUx67wjxdQ0xMIm1t94mOVpGQkOLyt40NC2FhvqmLASYnR+jvbyMjo8Rl9lwwcEx7KUOtTqS9vY6UFPdmlR1YLBYGBzupqrrgdWPwFm+YnZ1iddUxbUdadBLjZ79MwT9/Bfn8FBvxqUx99ktMpxcTumIMKGZhsZiZmxt3qTn3BZVKw6lTV+noqOP+/RtkZRVuj642kpNT6uyy9IW0tFxGRnrdOPd9XXvSwizd3a0uqVi5XE5MTCwzM+NOpiaHhv+gCPyLLzqFfQe+ZpsHgqgoNR0dD7Dbt4iLS3SbNe4NFouF5ubbZGTkejRvvfl/nT/xeRYX53w+rKurK0xMjDE7O4pUKiEzM4eBgTb6+ztJT893lt2ur6/7FHibzUZ39wOWl5c5fvzCvmsOdkOjiae4+AStrXfdmlV20NfXQkJCRlCfZ7fbaW9vQCoNISYmCrPZwObmBvrsIupefInNzU02N61sbW2xPtCBTBZGWlqOXwtnbGyIhIQUvw1Bezff6qvX6epq4tatVzhx4iIZGed8cuTvxk613fBwb8BTdzWaROx2q9smkZKSxcjI0C6Bt36ABN5LMUEgZAR7YbfbncGrxMQMDAY9IyMPEQQpanUCsbEJxMXFe3ygHCWzt0lMTPY6msobW62p8iIro+4z0Ww2G1NT40xPj7G2tkxCQioVFadc3AS9fpKxsT6GhjrRanMxmQwkJMQ7r8dqtWKzWdna2mR11cTg4EOiojScOnXlULn3k5JSsVjWaWh4k5qaSy5MMwsLsywuznsk1fQGx8Tee4SEiJw//2GfPqrdbmdjYwOdro97996kqOi4SyPNbthsNiYnh6itveTx7+C7DTXj7DXm56fIyir0+9q9Qp+RUUBd3fdYXV0JWIkkJKQyNTXuIvAJCVq6u5ud51lZMWG1rrlw6x0mHi+BT0sDXXDVZHthMhkYHx9kdnYcpTIGCKGi4rRzCJ/JZGBxcYaZmVH6+poJC4tArY5Ho0lArY5HKpXS1lZPZKSSggLfvcietHiM1Up7uwG73dFMs7Awx+TkGPPzE0RHq0hLyyIpybMpnJCQSkJCKkbjEiMjPbS33yUuLp7+/g7sdjshIaHOWvD19RVEMYQLFw5nrvtehISEsrq6yt27r5OUlEJ6uqNctqenmYKCioA2GJvNxvLyIn19rURHqygpcR/i6U2jFhRUoNEk8fDhA+bmZigurnTbKHaorzxZITvwlc+fufijLvPjgpm2I5PJSE7OYGSkj7Iy//MCAJKTM2hrq6eo6BHltUQiISoqhlu3XiM8PIytLRsyWRi3b38PmSwUpTKayMhooqNj2dpa93H2wPB4CfwXv4j953/BxawPpJrMZrMxM6NjamqYtTUzSUmZ1NZeQS4P5+23v+0ycTMqysGNlplZiN1ux2BYYH7e0Vve2VmP1bpFWFgo1dU/sq9LkMlkhIWF09HxAINhEYnETlJSBmfPBt6fHx2tprz8FDMzjpRXeLjSfUa91cq9e6+xsDAXVIAuEAwO9jI52cfFi9eQSKS89to30ev1WK1rRETEeiw8WVtbxWRaxmQysrpqYHXVyMbGGqLoCCgWFh73KOy+NKpGk8jp01fp7m7k3r03KS8/4XQjHNRXA5SX+y6t9ZUilUqlLhmSYHkCMzOLuXPn1e2BElJsNodbsrm5ic1mZXPTtuuYDZvNyvz8DG1tTSQlJSGVShkd7cFoXCYjI4eMjFyXzWt1dQWjcQmj0cjk5Bjr6wtUV6t/iEZNXb/OnH6B6D/5M+TzU35ZXEwmAzpdP3r9JEplLFptvnNeGTh6lX2N15VIJM56cyjbNhGHGRzsZHCwx21oRCBwfElGwsPllJfX7HuA5dLSHFFRaq/12jKZjIKCCrq7mzl79lmP6wyWt14URbq7W1lamuHEicsoFEr6+trJzS2lsvIU09M6ursb6e5uR6GIYGXFwNqakZUVIyEhApGR0SiV0cTHJ5GTU0RkpAqJRIJeP0lHRx1FRTUu5nkgGlUmk1FRcYaJiWGam2+RllZATk4hMzMTyOWhfu+vr5qAHYthxxoLtl9BLpcjlUp59dV/ISoqantgihSp1NGNFxIi2z4WSmiog2m3quo8VquZkZFuRkYGqK295BxttRdKZSRKZSQp27Hc+flhFIqDkbo8XgIPrF77CN3l170y3jh84VGmp4cxmy1Obe7Jj7JY1pHJAp+nLZVKycjIJzFRS2vrHQyGBcrLawP2pczmNZqablJWdpzMTN8DKvxhcXEWlSrB52uSktKZmhpmcLDHJfoLwfPW22w22tsfsLm5Rm2tIyZgtVqZmhp2TmNJTk5HpYrl+9//F9LTs4iNTSIpKYXISLXPe5SQkEpYmJyWljtYLBbnkMdgNKpWm01sbALt7XdZXNRjtVr81hmA73ZegJAQqZMYxN9r98JoXMJut/OhD/0k4eHBCaLFYmF9fc3vIJPDxmOXh/cGo3GJhw8fcPv2y8zNTZORUczFi9coKir3GjRx8MsFH8ySyxXU1l4hMjKSe/d+4JFNdS8sFjONjTdJS8v2KOzBzFoHWF6eQ6PxT+tdVFTD5GS/W118MLz1Dvql28AmJ048msc3OtqDWp3iMj1VoVBuT6bVkp1dTFxcckAb4s6I5LGxHnp6HA0vwTLvKhTK7c1diV4/QUKC52DebvjrQZBIQrDZfBNqeLOKursbycoqDVrYHRCdXInvJR47Db8bO9p8cnIIi2WDlJQsTp581i932w4sFgthYfuLdEokEoqKjhMbm0BnZz2pqXluWvTR55h58OAWSUlpHqP6+9G2JpOB2FjfGh4cQpCRUUBPTwu1tU85jweqPXcommJi1C6tphsbG0xODnPixBW3c8TGJrK4OOkc4RwolMooTp58hpaWm7S2mlH5IL30BkdZcBFzc9MBu1u+UqRSaaiLHx9ov4JON4jdLvFYeBQYRAThvde3j6WGN5mW6ei4z82bLzM3N0NWVgkXL16joKAsYGEHR6XafjT8biQkpHLy5BUWFydpaLiFxeLKVGKxWGhsdKTw8vPLPJ4j2Ckxi4uzREaqCQ0NLB+bmVnI1tYGY2NDzmOBaE+jcZkHD26QlKR16ysfHe0mNlbr0XqKi0tgaWl/U4QcY5gus7W1xltxaYz+1t8G1QEIIJXKXKLrB0FIyCMNHyisVitDQw8pKXEPRAaKnbjBe43HTuCNRiP9/Z3I5ZGcPv0s1dXnXAJxgWJ11cTAQDtm88Fp83dMychIJffvv+mso7ZarTQ13SY2Ns7ntNpgo7+B+O+7IZFIKC6uZmio07kh+eufn5+fpanpJjk5xW7kkhaLhcnJUa8+skIRQUiIzKX/3x92uzTHPpLD5fkZQkND+L4qgeZv9XmdOuMJoaGhbG0dfM4aODT8lgf2GV/o62shLk57oEInB99gII2zh4vHTuCjoqI4fvws+fklQWnz3VhdNdHUdAOttgCr9eC5S9gRqioKC4/R0XGX3t6HNDXdRq1WU1zsxgbsgmB91eXl+YD8991QqTQkJWnp6Wl1nMOHPzo1paOz8x7l5bUemVGHh7uIj0/zef/V6gQWFmYCWpu3mXMXZ8bQaDTcv/82q6vudNHeIAgCISEhXkd8BQNH0C7wzcORxtVTUOB7fLS/mI2jruJIwyMIwoFMnR1hz8oqpby8itVV075JMDwhMTGNkyevMDrazeamheJi/0UXwbDVWK1W1tZWiY31nm7y9jDl51dgMOjR66cBz4QaQ0O9DAy0UVV10SPhpsViYWZG52Sv8QaNJiHgTkRfLk1BQSUZGdk8eHAjKA5Chyl+cC0fEhIa8PPhIBRpIienzGfhUSCMx6Jo9xq0CzbAGwweO4H3hkBuwuqqicbGG2RklJCenoNUKiUiQsXysudWxv1CoVBSWXkmoEmsEFz0d3FxhuhojddNzx/1U1HRcXp6Wj0+xN3dbUxNDXLixCWv+f3h4YckJGT4ta5iYxMwGJYDmpnmz6XJzCykqKiC5uZbzs3KH6RSKZubh6XhAzvP2FgP5zhQAAAMRElEQVQ/giDz24jlL2bjoM6eYGPDnbk2UHr0/eKJEPhAbsKOZs/MLHHmeQFiYhJYWjpcgQdHM8Ta2ppbEM8bPGlbT1hYmCUmxrt29/cwJSamERWlpL//EU233W6npeUeRqOeEyeuOIco7t1Ela/8H6amdOTm+s8Ny+Vy5PIIDAb/TL2BuDRJSekcO3aarq4GdLoRv+d0+N4HD9yFhAR2HovFwshIT0Cjn3xtcE1Nt7l9+xUWFqawWCxuG+Z+xoAHgydC4P3dBLN5laamG6SnF7sIOzjYZP1p+P2YUFKpowlHr/dPCBkMHP6794BdIAHA4uIaZmeHMBqXsVqtPHhwC9ikpuaSM2fuaRPN/vJnOD3WF3AJsFqdyPy8f40cqEuj0SRSXf0Uw8MdDAz4nisQEhJ6KBreUV7r/zx9fS0kJmZ4bIfdC28bnEURRWJiKufPX+PMmedQKpUYDK6Bz/2MAQ8GT4TA+7oJZvMqDx7cIC2tiKysPLfXqNXxGI0Gr6bnQUyo+PhU9F6ol/cDi8XMxsYGKpVncxsC05ZyuYLs7BLa2xtoaLiBUhnhVr7pjbHn7Eu/G/Cmp9HEBWQ9BePSREWpOHXqGWZnR+joaPL6vTny5wf34R0C71vD73QI5uWV+nwdwNLSAo0f+UVsIe4lLmEbZsq6Gpz+v8WyQkPD2/T3dzkDkPsZAx4MngiB93axG/GpNDbeIC2twCvxg0wmIyIiyqvpeRATKiEhGYNh+VCixQDz8zN+2WYC1ZYZGfkYjQtERERQWurepeZtExUg4E1PrY5nZcUQUNArUJcGdiodn8FsXqatrd7j+aXSwwraSdna8v792e12enqaycs75jFQZ7fb0eun6exs4saN7/LwYT1jpy5j9zBKSmLbdD5X8/PTKBQxnDp1BbPZwK1b36O7u42xT//+vunIA8ETIfAeH/KwcG489TFSUvL8sryoVHFey2MPYkLJZDKio2OZn5/y+9pAsLjo23+H4LRldLSa3FzPxUD+NEYgm55MJiMyUn0ovIGezn3ixCVE0eacEeeyvpBQNjcPQ8OHsrXlPfA4OtqLTKZwGWRhtVqZmBijufkuN258h6GhTsLDw6muvsD589coKqoidNUzF/3OczU83ENmZj4qlZqKijOcOfMMdruV74RHcuenfpP1eG1QxUgBX++hnOVdxl6yiY34VN5+6mOsXvsFaoZaSfn8VZ8dYWp1nNepMPuZ6LIbDrN+IiDSR38wGBbJzPSdDoPAyz8tFrMzQGe32zGZllhenmd5eZ7pCx/l6r//FVK7d3M2kE1PpXKk5xISDs4MvBcSiYSqqgt0dzfR0HCDqqpzzuzBYQXtHJaCZw1vsZgZG+ujuvoSFouZmZkp5uYmMRoXUaliSEhIpaSk0jOJio/nymBYYG1tFa32UbRfoVBSWnqC3NxyxrQ5/O+cYqKj48nOLkSt3t/odI/X6+8FgiB8FXgemBNFsWT7mBr4NyADGAN+TBTF5UNblQfsPOQWi5mGhrdITs7hxFBrQDXqanU83d2NHssZg+2Q2oukpBSGhjoOXCq5umpia8seUFAoEFgsFjY21hke7sJgWMBoNCCThRMTE0dsbArKT/8B4uv/DB6GKe4gkE1Po4ljYKDtUNbsDcXF1QwOdvHgwQ0qK88SHR1DaKgMi+VwNLzdy6bX3l6P3R7Kw4cPMJtNxMbGk5qaQUXFab8EIL6eq+HhLtLT811Ghe9uY0767BeZv/zj6HT9dHTcRS6PIiurgMOoxA1Ew38N+Gvgn3Yd+y3ghiiKXxYE4be2//+bB1+Obzg60t4mOTmHvLxiUn79QwExlMjlckJDwzGZltzabr1RVQVqQsnlChSKKObnpw+k5RYXZ/ya88HAYFjc5ogTSE8vQKXSuHW1SU3eS2O3wgLb9GJj41lbWw1qZt1+kJtbQlhYOM3NNykrO01oaChrawcvm95pj92LmZkJRkZ6KS6uIjk5ndjYxKA2dG/Ple70h1hufIfy8jOA78Yq6dXrZGYWMjExzMBAK7DJ8eNnDnS9ghhAj54gCBnAq7s0fD9wQRTFGUEQkoBboij6bZ2qqqoSm5ubfb5maEhHT4/nPvbu7iaUSjXp6Y5y0Geey0bwsH5REHjjtWGXY+PjI8jlcuLjvY9z3i9mZqbY2toIiPHUG8bHBwkPjyQuLvFQ1jQ9PYHVuk5GhnvmYgfnP3mG8Dn3tJpdIuHtn/489p/4bECfNTjYQ0JCElFRh2Od+MLy8jyTkzpiY+OxWDbIysr1/yYfsFjWGRvro6CgwnnMbt+it7cDrTaDqCjvGZP9YHJyBJvNTkaGg7TS23ewHp/M7X+863JsdXWOS5fyA2K8EQShRRRFt5rv/Qq8QRRF1a6/L4ui6PHbFgTh08CnAdLS0o7rPHDW7YbFYvHa8LK+vk54+CMW1+jycse87D3YSk3F2NHhcmwn6PNuaKEd4sXdawsWDobasEProNra2vJbpiz71reI+NznENYf9RuI4eGs/cVfsHz1KhERgbchO5he3puQkMViQRAE7Hb7ge75DtbW1lyuVRRF1tfXD8wu4wk2m83ZCwAQo9F4VVrLC+6ZpejoaOd7fcGbwCOKot9/OHz1rl3/N+z5+3Ig5zl+/Lh4qPj610VRoRBFePRPoXAcP0Jg+PrXRTE9XRQFwfHz6N69t0hPd31+d/6lpx/otECz6EEG96tO9NumPNs/D792NRBcvw4vvQTp6SAIjp8vvbTvQXsfSFy/DmNjYLc7fh7du/cWX/yiYxrsbhxgOqw/7FfgXwE+uf37J4GXD2c5+8DRA3uEJxnvsdLy68MLgvBN4AKgAfTA7wPfBf4dSAPGgY+LouiXDSGQoN0RjnCEg8ObD+83yiKK4ie8/OnpA6/qCEc4wnuKJ6K09ghHOMLh4Ejgj3CEDxCOBP4IR/gA4Ujgj3CEDxACqrQ7tA8ThHkgEIoYDeCfO+n9w+O8vsd5bXC0voMi0PWli6LoRn38ngp8oBAEodlTSuFxweO8vsd5bXC0voPioOs7MumPcIQPEI4E/ghH+ADhcRX4l97vBfjB47y+x3ltcLS+g+JA63ssffgjHOEI7w4eVw1/hCMc4V3AkcAf4QgfILyvAi8IwlcFQZgTBKFr1zG1IAhvCYIwuP3z3edNCm59fyoIQp8gCJ2CIHxHEAT/fEPv4fp2/e2/CYIgCoJweJSnQcLb+gRB+BVBEPoFQegWBOErj9P6BEE4JghCgyAI7YIgNAuCUPM+rU0rCMJNQRB6t+/Tr20fP5B8vN8a/mvAs3uO7RBk5gI3tv//fuFruK/vLaBEFMUyYAD47fd6UbvwNdzXhyAIWuAyjtbl9xNfY8/6BEG4CHwYKBNFsRj4s/dhXTv4Gu737yvAH4qieAz4ve3/vx+wAb8himIhUAt8VhCEIg4oH++rwIuieAfY20f/YeAft3//R+Aj7+midsHT+kRRfFMUxR2a0wbg8AnZA4SX+wfw58D/AN7XiKyX9f0y8GVRFDe2X/P+sCXhdX0iELX9ezQQ2DjbQ4YoijOiKLZu/74C9AIpHFA+3m8N7wkJoijOgOOigcPjbj58fAp4/f1exG4IgnANmBJFscPvi98f5AFnBUF4IAjCbUEQqt/vBe3B54A/FQRhAof18X5acICTRLYCeMAB5eNxFPgnAoIgvIjD7Dqcwd2HAEEQFMCLOEzRxxVSIAaHmfrfgX8XBEF4f5fkgl8GPi+Kohb4PPAP7+diBEFQAt8GPieKoumg53scBf7xIMj0AUEQPoljGs918fEqZMgGMoEOQRDGcLgbrYIgHA7Z/eFgEvjPbXLVRsCOoyHkccEngf/c/v0/gPclaAcgCEIoDmH/hiiKO2s6kHw8jgL/+BBkeoAgCM/imLJzTRTFg48+OUSIovhQFMV4URQzRFHMwCFclaIoHv60x/3ju8BTAIIg5AEyHq/utGng/PbvTwGehxK+y9i2ev4B6BVF8X/t+tPB5MMTd/V79Q/4JjADbOJ4OH8OiMURfRzc/ql+zNY3BEwA7dv//vZxWt+ev48BmsdpfTgE/OtAF9AKPPWYre8M0AJ04PCZj79PazuDI4DYuetZe+6g8nFUWnuEI3yA8Dia9Ec4whHeJRwJ/BGO8AHCkcAf4QgfIBwJ/BGO8AHCkcAf4QgfIBwJ/BGO8AHCkcAf4QgfIPxf/E4F+C0qQ4IAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots()\n", - "regions_df.plot(ax=ax, edgecolor='black', facecolor='blue', alpha=0.2 )\n", - "points_df.plot(ax=ax, color='red')\n", - "plt.xlim(minx, maxx)\n", - "plt.ylim(miny, maxy)\n", - "plt.title(\"buffer: %f, n: %d\"%(r,n_points))\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Voronoi Weights" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "from libpysal.weights.contiguity import Voronoi as Vornoi_weights" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "w = Vornoi_weights(points)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "200" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2.685" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.pct_nonzero" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(1, 1),\n", - " (2, 6),\n", - " (3, 17),\n", - " (4, 34),\n", - " (5, 41),\n", - " (6, 63),\n", - " (7, 24),\n", - " (8, 7),\n", - " (9, 5),\n", - " (10, 1),\n", - " (11, 0),\n", - " (12, 1)]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "idx = [i for i in range(w.n) if w.cardinalities[i]==12]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[16.50851787, 13.12932895]])" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "points[idx]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/_sources/notebooks/weights.ipynb.txt b/docs/_sources/notebooks/weights.ipynb.txt deleted file mode 100644 index 3f867ad7b..000000000 --- a/docs/_sources/notebooks/weights.ipynb.txt +++ /dev/null @@ -1,1313 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "import os" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "sys.path.append(os.path.abspath('..'))\n", - "import libpysal" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Name Description Installed\n", - "0 10740 Albuquerque, New Mexico, Census 2000 Tract Data True\n", - "1 AirBnB Airbnb rentals, socioeconomics, and crime in C... True\n", - "2 Atlanta Atlanta, GA region homicide counts and rates True\n", - "3 Baltimore Baltimore house sales prices and hedonics True\n", - "4 Bostonhsg Boston housing and neighborhood data True\n", - "5 Buenosaires Electoral Data for 1999 Argentinean Elections True\n", - "6 Charleston1 2000 Census Tract Data for Charleston, SC MSA... True\n", - "7 Charleston2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "8 Chicago Health Chicago Health + Socio-Economics True\n", - "9 Chile Labor Labor Markets in Chile (1982-2002) True\n", - "10 Chile Migration Internal Migration in Chile (1977-2002) True\n", - "11 Cincinnati 2008 Cincinnati Crime + Socio-Demographics True\n", - "12 Cleveland 2015 sales prices of homes in Cleveland, OH. True\n", - "13 Columbus Columbus neighborhood crime True\n", - "14 Denver Demographics and housing in Denver neighborho... True\n", - "15 Elections 2012 and 2016 Presidential Elections True\n", - "16 Grid100 Grid with simulated variables True\n", - "17 Groceries 2015 Chicago supermarkets True\n", - "18 Guerry Moral statistics of France (Guerry, 1833) True\n", - "19 Health Indicators Chicago Health Indicators (2005-11) True\n", - "20 Health+ 2000 Health, Income + Diversity True\n", - "21 Hickory1 2000 Census Tract Data for Hickory, NC MSA an... True\n", - "22 Hickory2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "23 Home Sales 2014-15 Home Sales in King County, WA True\n", - "24 Houston Houston, TX region homicide counts and rates True\n", - "25 Juvenile Cardiff juvenile delinquent residences True\n", - "26 Lansing1 2000 Census Tract Data for Lansing, MI MSA an... True\n", - "27 Lansing2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "28 Laozone Ozone measures at monitoring stations in Los ... True\n", - "29 LasRosas Corn yield, fertilizer and field data for pre... True\n", - "30 Line Line Shapefile True\n", - "31 Liquor Stores 2015 Chicago Liquor Stores True\n", - "32 Malaria Malaria incidence and population (1973, 95, 9... True\n", - "33 Milwaukee1 2000 Census Tract Data for Milwaukee, WI MSA True\n", - "34 Milwaukee2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "35 NCOVR US county homicides 1960-1990 True\n", - "36 NDVI Normalized Difference Vegetation Index grid True\n", - "37 NYC Demographic and housing data for New York Cit... True\n", - "38 NYC Earnings Block-level Earnings in NYC (2002-14) True\n", - "39 NYC Education NYC Education (2000) True\n", - "40 NYC Neighborhoods Demographics for New York City neighborhoods True\n", - "41 NYC Socio-Demographics NYC Education + Socio-Demographics True\n", - "42 Natregimes NCOVR with regimes (book/PySAL) True\n", - "43 Nepal Health, poverty and education indicators for ... True\n", - "44 Ohiolung Ohio lung cancer data, 1968, 1978, 1988 True\n", - "45 Orlando1 2000 Census Tract Data for Orlando, FL MSA an... True\n", - "46 Orlando2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "47 Oz9799 Monthly ozone data, 1997-99 True\n", - "48 Phoenix ACS Phoenix American Community Survey Data (2010,... True\n", - "49 Pittsburgh Pittsburgh homicide locations True\n", - "50 Point Point Shapefile True\n", - "51 Police Police expenditures Mississippi counties True\n", - "52 Polygon Polygon Shapefile True\n", - "53 Polygon_Holes Example to test treatment of holes True\n", - "54 Rio Grande do Sul Cities of the Brazilian State of Rio Grande do... True\n", - "55 SIDS North Carolina county SIDS death counts True\n", - "56 SIDS2 North Carolina county SIDS death counts and r... True\n", - "57 Sacramento1 2000 Census Tract Data for Sacramento MSA True\n", - "58 Sacramento2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "59 SanFran Crime July-Dec 2012 crime incidents in San Francisc... True\n", - "60 Savannah1 2000 Census Tract Data for Savannah, GA MSA a... True\n", - "61 Savannah2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "62 Scotlip Male lip cancer in Scotland, 1975-80 True\n", - "63 Seattle1 2000 Census Tract Data for Seattle, WA MSA an... True\n", - "64 Seattle2 1998 and 2001 Zip Code Business Patterns (Cen... True\n", - "65 South US Southern county homicides 1960-1990 True\n", - "66 StLouis St Louis region county homicide counts and rates True\n", - "67 Tampa1 2000 Census Tract Data for Tampa, FL MSA and ... True\n", - "68 arcgis arcgis testing files True\n", - "69 baltim Baltimore house sales prices and hedonics 1978 True\n", - "70 berlin Prenzlauer Berg neighborhood AirBnB data from ... True\n", - "71 book Synthetic data to illustrate spatial weights True\n", - "72 burkitt Burkitt's lymphoma in the Western Nile distric... True\n", - "73 calemp Employment density for California counties True\n", - "74 chicago Chicago neighborhoods True\n", - "75 clearwater mgwr testing dataset True\n", - "76 columbus Columbus neighborhood crime data 1980 True\n", - "77 desmith Small dataset to illustrate Moran's I statistic True\n", - "78 geodanet Datasets from geodanet for network analysis True\n", - "79 georgia Various socio-economic variables for counties ... True\n", - "80 juvenile Residences of juvenile offenders in Cardiff, UK True\n", - "81 mexico Decennial per capita incomes of Mexican states... True\n", - "82 networks Datasets used for network testing True\n", - "83 newHaven Network testing dataset True\n", - "84 nyc_bikes New York City Bike Trips True\n", - "85 sids2 North Carolina county SIDS death counts and rates True\n", - "86 snow_maps Public water pumps and Cholera deaths in Londo... True\n", - "87 stl Homicides and selected socio-economic characte... True\n", - "88 street_net_pts Street network points True\n", - "89 taz Traffic Analysis Zones in So. California True\n", - "90 tokyo Tokyo Mortality data True\n", - "91 us_income Per-capita income for the lower 48 US states 1... True\n", - "92 virginia Virginia counties shapefile True\n", - "93 wmat Datasets used for spatial weights testing True\n" - ] - } - ], - "source": [ - "libpysal.examples.available()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mexico\n", - "======\n", - "\n", - "Decennial per capita incomes of Mexican states 1940-2000\n", - "--------------------------------------------------------\n", - "\n", - "* mexico.csv: attribute data. (n=32, k=13)\n", - "* mexico.gal: spatial weights in GAL format.\n", - "* mexicojoin.shp: Polygon shapefile. (n=32)\n", - "\n", - "Data used in Rey, S.J. and M.L. Sastre Gutierrez. (2010) \"Interregional inequality dynamics in Mexico.\" Spatial Economic Analysis, 5: 277-298.\n", - "\n" - ] - } - ], - "source": [ - "libpysal.examples.explain('mexico')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Weights from GeoDataFrames" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import geopandas\n", - "pth = libpysal.examples.get_path(\"mexicojoin.shp\")\n", - "gdf = geopandas.read_file(pth)\n", - "\n", - "from libpysal.weights import Queen, Rook, KNN" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO2debgddXnHP1kgEAhhDXsYEEjYZDdsAVQUdSooijuLCwpVXKrWoVixdRtba6mtQlHcwApWUJZRa6GakLCEPSQhBAjDHiAkJGQjIUn/+M7xnHvuOWf2Oefc+36e5z7JPWfmN79zk/udd951xMaNGzEMwzCqYWS3N2AYhjGcMNE1DMOoEBNdwzCMCjHRNQzDqBATXcMwjAox0TUMw6gQE13DMIwKMdE1DMOoEBNdwzCMCjHRNQzDqBATXcMwjAox0TUMw6gQE13DMIwKMdE1DMOokNHd3kBSHC8YDWwDbBd9LQx999nu7sowDCMdXRFdxwvGADsAE6I/a0K6bcPfm78f37DE3cBxFW7ZMAyjEEoTXccL3gS8EYlqo8DuAIzLufzvQt9dk3MNwzCMyinT0j0E+FIJ694NfNrxgr2BG4E/hL67pITrGIZhFM6Issb1OF6wGTAb2KfAZR8B9gRGNby2AZiJBPhG4MHQd20GkWEYPUlpogvgeMF2wE+Atxe05Ezg2JhjFlIX4Omh775S0LUNwzByU6roAjhecCwwo6DlkohuIyuAPyIB/l3ou88VtA/DMIxMVCG6mwAvkj94BnALMDXH+bOQAP8WmGNuCMMwqqZ00QVwvGBb4E5gr5xLXQOcxMD0sawsROL7W+DW0HfXF7CmYRhGRyoRXQDHCzYHLgXOzLnUfwHLgXMYGFDLwwvADUiAbwp9d3VB6xqGYQygStGdBFxOOp9sOy4Dvg0cCHwKeFMBa9ZYBfwBCXDQy+lojhdMRe4SgI0xfwKMaPoTdAO7Hvi70HdfLmOfhmHUqbIibQEDf9nzcFDouwuBhY4X3AC8F7gY2DF6fyNwH8oVTnvNscBp0dd6xwumIQG+LvTdJ4rYfIFsBmyVc42t0Y1rNHBe7h0ZhtGRKi3d0Shvd78Cljsl9N0bmtbfGvgG8AHgGeAIYHfgb4CzgTEFXPce6n7grgfiHC94K/C7Apc8KfTdmwtczzCMJioTXQDHC3YHvgaclXOpXUPffabDdUY0CqLjBZcA5+a8ZjO1QNxvgNu6EYhzvODtyDVQFEuR6+by0HcfLnBdwzAiKhVdkCAC1wLvyLHMmNB316a45knAPwBHUU47y+eQAM9F7ozGL1q8NrLFa62+aixDboBmJgPvKfajAKry+3Douz8vYW3DGNZULroAjhdsA9yPHv/Tsiz03VYClOS626KUs9HAJ4Djs6xTMa+iPOcd4w4smI3AOaHvXl7xdQ1jSNMV0QVwvOAbwN9lOHU5MDH03WUF7OEO4HV51ymZjciXfHiXrn8p8I3Qd5/q0vUNY0jRzckRyzOetxX5c31xvGAP1Dyn1xkBHNTF658LzHO8oGpL2zCGJN0U3RuAuzKee6HjBXl8wiDx3iHnGlWxKXIxdItxwK2OF/SDO8YwepquiW7ou/NQUcMPGJjAn4Qdgffn3EK3HtezsrjL198LuN7xgjOjLBTDMDLQ1cGUoe++FPruJ1H6VVq2yHv5nOdXTVZ3TJGMB34GPOF4wTcdLyiqDNswhg29Mg04S/nprjmvOQ3l2PYLq7q9gSYuQOL7mm5vxDD6iX4W3UMcLzgs6wWj4omzgYeyrlExx6F83V5iF+Auxws27fZGDKNf6BXRvRaN4knLoXkuGvrucqIeC3nWqYhRZHPDlM3WqPGQYRgJ6BXR/R4S0D+lPO/xvBeOAnr35V2nInrBr9uKy6LWnYZhxNATohv67obQd1eQvo9AbtGN+DLQD7PUNuv2BtpwOPDLbm/CMPqBnhDdBu5NefwJRVw09N0/AP3Q4KWXU7VONWvXMOLpNdFN237xm1FLxyJYUdA6ZbIL3c/XbccSm7hhGPH0mug+DzyQ4vgdUPT8uAKunSWQ1w169eawreMFeRuqG8aQp2sNb9rheMEpwHUpT7st9N1jCrj2NSiboZdZTv5pEWVxHfDu0HdfLXphxwsuQ6XQV6DCls2BEaHvLo7eH2XDRY1+oBdFdxf0i/WGlKfOQn7Zj6Tptdt07SnA7VnOrYg19G4wrcbJoe/+Me8ijheMAb6I/h+MBw6mPoj0FdSecz3wGGoTOhlN8/hg3msbRpn0nOjCXxqdX4y6iaX12V4NfDCr1eN4wWeia/ciTwG7dXsTMdyLxinlagXpeMGFwNcznPpt4FtFtP40jDLoSdGt4XjB9mjiw7mk8z//ETgr9N1F0ToT0NDF74S+uzLBdb8SXbfXmEN/FCIsAi4EfhWlAqbC8YKdUCFIlmyIDcDfAv+e9YnHMMqk1wJpAwh9d3HUEOd04EGSdyN7M3C/4wUnR9/vDHwVmOl4QZLP/Pu0e62ADWQrl+4GOwGXA49lDK5NIZvggv5Pfwd40fECczUYPUdPW7rNOF4wHjgfDbdMigf8Eyq8OAlVvoWh767pcJ1jAB+1M8zbWKcoHqC7zcyzMh9Zvf8X+u5LcQc7XrAZsIBicpKXAn8NXN3tyc2GUaOnLd1mQt9dFvru19GY9aSPjj7wGuBU1BnrQeLLfucAPwb+LeNWy6BfJzdMBq4BljheMDu6oXViH4r7rNugSrnfO14wuqA1DSMXfSW6NULf/SXwKSDWPxvxE2CL0HcvRsK7ueMFm7Q6MKqqeiI6535gXf4dF8IElL3Qr9TGDt3seMGfHC84v/mAyB0wG03KKJKTgS9FAVrD6Cp9e/cPffeHjhfsiUQ0juNQAOq20Hd9xwuejV5r1WDnYJSiVPv7StJnUJTF08hq72c2A04ETnS84LXATaiv8WTghyVe9+vATODPJV7DMGLpW9GN+HsUcPkI8QUDezhecALwH6Hv/qzDcXs1/H0isqgvBbbMs9GCWEL/i24jH0M3w58jK77s3g2vw0TX6DJ96V6oEfru+tB3P4f8tXFcAXwTeJPjBUd0OG4kCv4A/CL03V8ArwfuIP0st6IZar0NVgN7IHdCFVV2387T+N4wiqCvRbdG6Lt/RoMqN3Q4bDTyK14L/KFd6ljou1cCB6C0sznRa3cB36X7KVtDrYvXLJTOVyXnVHw9wxhAX6WMxeF4wSEoNSxJutFBoe/OSbH2CFTt9MWM28vLOlT+2gtujiJ4EmUpVD3qZwUqVb614usaBjBELN0aoe/eB3w44eGpevFGeZ5fIn2j9aLYhMjyHiIsonrBBd20fuF4wXZduLZh9H0grRVPJzzuS44XjEXtJK8KfTd2ckTouxujVKcngHdR/aPxUOmidTdwZBev7wCHAf/bxT0Yw5Set3QdL9jM8YJPpDjlbxIetzuqVPsp8vUmIvTdJ0LfPR81npmeYl9ZabwZHEBnv3U/sA7oBSszSaqhYRROz4su+iX9huMF4+IOjNoBvj3DNU5Ke0LouxvQL25ZxRMPAc+haRrzkcDPofsZFHm5FVma3eZExws+2+1NGMOPfhDd85FlNCHuwMhF8P0M18jUyjEKxnwqy7kJWES9HHYycDwq6BjV9oze5zmgU7pelYwA/tXxgpujbnaGUQn9ILo/RQ1TFsYd6HjBrshtsL7N14Y2X9tk/cULffcy4J+znBvDEUh4hxKPAlt0exNNvAG41EqEjaoYMiljjhc4aOrD1qQfcAnw8dB3M5ehOl5wDjAW+AIQAGdE3+fhNuDonGv0Cr3eJe3Hoe9+tNubMIY+fSW6jhecjbqLPQfMqGUcOF7wV8C2wEUMLONNw+mh7/66gD0eAcxFTxFvAz6N3AJZuQ84JO++eoAZ5Ps5lM0KYMfQd1d1eyPG0KbfRPfzSFjHoUY0tyIf5xuQdXkTMBV4HPhcyuVD4KjQd58rcL9HRHts2dEsIc8hN8PBhWyqe8wEju32JhpYgyriRqOb2lhUrfj50HfDLu7LGOL0lejCXwZX/oD2/RZqftosOcjzUWDsz0VMlnW84KPAj/KuQ3/MRovjOXqrJ/B0FJwExQsWAUch4f0/4Noib8CGUaMfAmkDCH33GTS+51pa56yOJHvRx2RkLd/reMGkjGs0cnMBa4AEdxYav96v7IgCab3CTg1/3wvlQM8B3o1u6n/XjU0ZQ5++E12A0HfXhb77LjRlIG4KRBYOAnLP14oeU5/PvRvxOtTasZ9JWi1YNguAfZteG4XG+zwRff9Oy2gwyqAvRbdG6LsLyTamOwmnFDTi5RSKE8vFBa3TLbrZJW0VcAsKxDYLLqgnwwnAY9H3N9tcNaMM+lp0I24FHilh3YNRYUZe7kNpZK8WsFa/i8D+FPNzSMsTwIsoyBrXZKc2JeRMxwveUequjGFJ3wXSWhEF194TfftRNI2gCF4Gfg1cCUzLE1xzvOBtwFnoFz9ro5x5SLj6mdnAayu+5lzks03CIur+3n8MffeicrZkDFeGRJexKLh2MYDjBZeiooIiclvHoVaRDnAv8vllIvTd3wG/i/yEo1CwJm1D7VXR14so4r4b/Te+J/PPMAe7AneiSRW70TmXezF10Y3tPGcYaRkK7oUBhL67Bg0+3Ab4VpvDlpIus2ArYE0RgZXQdzeGvvsqMC3D6UegDIYRyP84GhUdzM67rwrpRoexrVEryeNR8/ROrKTeQvMbjhfsU+bGjOHHkBNdgNB3l4W++xLwZeCahrfmRX/OYmDKUByHo/4KVzteMLWYXXI9yl1NywjqObt7oCqvomenPV7weo3sR/fHHnViChLeZ6Pvb3O8IMkkEsNIxJAU3RpR+8X3oB67Z6Dg2CmoHWNSH1+N7ZFoT3e84HLHC3JF4kPffRn4LIqmA9yIXAeduI/W/2ZTUECxCGYgy/5e4Jmca4XIop+O9vcAumk8mHPdrMxFoh/HGuo35e0or5OcMQwZEoG0tESpYKegCcFpmtKcjfopvAfYJ/Td3FkTjhfsBixDroLzUApcsxtjI/UKqnYujnWo+GByzi09St1PvAKJLygAmIbnoz3t2vT6kmjNmnukbF5GlYbr0BPCxATnPIOqANeh0uWlwG7Wl8EogmEpujWizmQ/AN6a8JS1yHJ7E/Ad4Ouh7y4reE9vQa6HWr+GxcgPeWiC06eRcvZbE0uQldsshhtR74Q9kYiuRPms7bJEXkaP563yYWvcA0yi3FaPC9GTgZPx/NXo32E0cGbou1cUtC9jGDOsRRf+MuX3fcB/ZTh9l9B3n40/LB2OFwTIor4PidwOCU+9hfQWaSNxov0qslInIXG+DwnyuujrKFSaPZdk2SPzkdumjCbid6CbQh5Rvx19JpD//WDgeSuaMPIw7EW3huMF7wM+hsQiaYT94tB303YzS7KXL6Bf8A+SYn4bEsQkFnEzM4Dx5O93OxuJ7+EpzplDcXnVNV5EPZXzjqtfjVLNDkE3GVAhzj2AF/ruY+1ONIx2mOg2ETW62Z1kk2LvDX33sBKufwXwPyj7Ig1PM9iHmoRuFCzUWI2qxIoeQzQL9asoguXIVdFovT8D/BCJ8i2h7/ZzMyKjQkx02+B4wQLUUCeON4e+W8go78jVEQAnkz2z5GnkA34FWWcHEt/PdwOK2OeddJGFuyhvbtoMVMG3bQFrNbaCbGYp4AG/CH13ZQHXMoYwJrptcLxgX+AGOgeDQBkNvwfOCn0316w0xwtOBX6bZ40WxDUPfxbl5R7V4ZgyyRv8i+NOVBiRl5dRlsnjKLC2Brl+DkKFOAB/Rulwy1E146ro+2mh7/ZSW0uji5jodsDxgpOIdzMcjoT5MWBWniCL4wVfBr6W9fw2PIgCX+0s504WXBWULbrLkOVftN+4xq3AMTHHPAm8PvTdRx0veD3q2fsvUZc8Y5gxJHovlMjNxPsGPwDcGvruHQVcr1VT9rzsR+f5ZN2+65bds3Y8CtaVRRI30O7AbMcLvo/6bWyNGimZ6A5DhnRFWl4iq/XnMYedSXEVVo8jl0Yj64jvFxDHcbSuWHsclRJ3kypEf6v4QzKT9HdoLPBF6q0jzeAZppjoxjOfzhboDsD3C7rWfwP/BvwYBWceAf4J2KWAtbdCvsZFyBVyO/JFOgWsnZWFlBdEa+Qg5MYoo2tYlqyL1SjtzBiGmE83BscL9gPuJz4D4HLg30Pfvb+Aa45FvuLPI3/hD6O/j8mxbGOf2F5hIZ3bLBbNdPRzLbIK7g7U+yINl4a+e16BezD6CLN0Ywh990GSPQJ/FPXeLeKaq5Af9ivAG0LfvZD80zGKmtVWJFVPkdgEFU4UyRQk5knZQNT72RiemKWbAMcLVgObJTj0eeCA0HcLn2XmeMHeqCHO32RcIi51rBt0I3PiJeSDH4fysPM8PYDcFseS3Ef7vdB3P5PzmkYfY5ZuDFET67i5WjUmoD4OhRP67iOh734eBb4uBf6Ycoleu7u+Auxd8TWXorzk/VAK2V051lqOXAtpuqU9C/x9jmsaQwCzdDvgeMEY4LvAX6c47TbguKiXbyk0+HwPB/6WZDPXulnq244FyOJst//aQMnV1F0Ru6NuZ2lprHx7GVm7h5D8hgq6UYxBwdUtor2k4f2h716V8hxjiGGi2wHHC04ETiP9VOD/RsGvE4CvlCHAjhfshLpzjQQ+jXzKcfTiYMsVqHR5UtPrS1HT81buhxAJ8s4kK9V+OOFxnZiNMlWeQdkQacQa1DZzx2hUkzGMMfdCZyaTLfByOnIzHEu6jluJCX13EWo3eAXK5U1CLw5a3JLWQb6FyAXQ6ufvIDHeETUbj2Mfss2ka2QdEvnDSS+4AIEJrgEmum2JLMm3IyvsGdJXi70beCPqLVsKoe++gPy7SRupHwrcXdZ+crAf6gUcRt/fjsRtW+ChDudthaz92xtea3VjWU/+IGLe1Lbrc55vDBFMdNsQWZLnokquLyBxS8MiYETZI15C372EdGWueyOrrzSfcwa2R83XHSSyjcIZ19t4M2QRT0OBrdrUikaxXkS2CrA7UaP2JRnPr7GRZK1CjWGAiW5nngYmhb77S+AzqJtYUn4e+u76+MMK4X70OJ5ESMcjX/PtcQd2iUkMbICT5JF8y+icKUjAd0Z9hWvz3Zak3MMTKE/6SBRs2xYF/LIyp+ixTkb/YqLbgSgA9nA0S+0dKE3rc8D/JTi9KsEl9N0HkEAchVKZ1hM/3v0Y8vs5qyCrRb4lCni9gMqek67zJOqT0K5BUBZuK3Ato88x0Y0h9N051HuonoqajF9AvKilLQ3NRei7S5DFey5wEfDOBKcdQH0EfLe4I/qawcBx7dOj7/NYiKNRWtopqDgkCbsh4S0y6NWq2ZAxTLGUsRQ4XjABOC303UsdL9gODbN8c5vDXwYOqfVMjY5/Y+i7v4q+3zr03ZdK2ufewEnAJQkOr7V9vAf5UvehnEGRzTyKrPIsM92SMgelyNWMizQVcEXmNU8OfbdTQNAYRpjo5sDxgi1QDu/fUp8e0MhC6u6Iscg6Pg/4T2AisHPou6X4VqPRP2ejjmWdeBVlZ0yMvl+MLPtSUt0iHkEFDkXPRWtkDQqgOU2vL6X1v1XzMeMorv3imNB3u/1EYfQI5l7IQei7K0Pf9ZGA/CNK9G9kL+A65Fe8CEWxLwH+K/Tdx4nvXJZnbxtD3/0JarL+codDR1MXXJCVuz+DP0tRLEA/jzIFF9R83mnxepK83hcpTnBXmOAajZilWyCOFxyIgm1JynLfBawLfbe5aXnhOF7wGuAq0vWu7TRtIitVNbjpNALoedQjoxMr0c2hCNfHE6HvdrtRvNFDmKVbIFHQ7TgULY/jGuC95e5IREMRjwX+JcVpccKUhSp8xZ0E9xWSWbBboFSxIoZJFt1K0uhzTHQLJgqcHYf6HMTxdscLirYmWxL67trQd79A8p6/ZYy4KXNsznKUmtVpyOUYlHud5HH/NpI9scRhomsMwES3BELffQY9Rt8Sc+hWFDfqJyk/Q5VWcWxHvnStVpTVSH0O8lsfneDYg2hfGDKbetraISj4mYeNwLU51zCGGCa6JRH67ovI6noH6pbVjj0dL3i74wVlB5Zq+9qIRv/EWXubIBEqisUJrpmF+ah3w64pzmn1/34FmkV3Arph5hVc0KTjAwpYxxhCmOiWSJRBcB2ymi5oc9g41AzlsSjgVcW+bkH5xXF5wschUcvLKygN7agC1mpcczrqaZv2htXq+Lspx+e8soQ1jT7GRLcConLi76J82HbsjmaiVULou7UxM090OGwEylnNy4MUm/e7At0MjifbkMlWFneScUxZeLakdY0+xUS3IqJczQ/QuQdApVZR6LvziM+gSPPY3o6DC1gDZJk/gFwVRa0JSo+L62aWFRNdYwAmuhUSWZezOhxSxKN8KqKKuE4NWSYSHxDsxDJkMRfBXBQIcwpYayH6XDPRjbCseW1JG8wbwwQT3epp11f1f4EfVbmRBt6PshraMRVF9bM0QC8yGFdU57YTkDtnKnKxjC9o3VaUubbRh5joVs9NTd+vRR3BTi674Xk7opLkD6NS5nacgPrSzkQpZ0kKQJ5AwlYUecelN9JYgv1ayusvvHVJ6xp9SlH15UZybkOPyQeghiyfCH2366NcQt/d6HjBV1El2rltDjsI2Knh+7uQEB7U5vglDOzr0KuMoLxJGmbpGgMwS7diQt9dh2anvQNwekFwa0Q5vOcDP2/x9iwG564eQecqs6It9ykoE6Jo7iVdX4o03FjSukafYg1vjEFEbSH/HviHhpfvAQ5rcfidaGpFK2oNbp5HQcIdUCFDHp4FVpN/UGQjryKrfRP0GUdEr+V9Erwy9N0zcq5hDDFMdI22OF7w19TLlNcgsWvsRbsIuSPuQeluhzLQ8q01n1mIRHIlKkzImxO7NLp2o4CvR0KZ1+/7LOowVmM8Km7JwjtD3/1tzv0YQwxzLxid+E/qfRoWoaYyjWyK8maPQOJ6X9P7jZZiGB07i/zja7YBNke9DYiuuxoJet65bzujz1L72iFaOwtF5hIbQwQTXaMt0TTjz6MWhw7Q3Bd2WwYKi4PmtC1A0yFqFu1eqAx4a5QpUMtdfQ6J+gsJtnMHA1PGHOBhVNgwGQ2iHE3xRQ67Iku+uZpwI7KKH0Ad5ZahzI65DcfsX/BejCGAia4Rx0ySFzdMRCK8LxKkvVEq1jSUF/sSEt6aC2BblMXxKnWrtZmV0flTkIW8uOG9fVF/iEZ3RRkTL45FzXAejvYyDbWI3Bl9JgeVIx8b/f0WdPM5qapGRkb/YKJrdCTqG3FzhlPXICE9Cj2m70U9N7YWBLsTZUTsjKze5taP05D1WuuROxVZxZ2q+socjbMPdbfDbk17ejz6fovotW3QE0JZlW5Gn2KiayRh8wznTGJwYcBhyDKcgAonGvN7n2XgtIoN6PG8OTC2HxL0Zv9yjW5EhicwOJ1uIsrqiBuCaQwzTHSNJGyZ8vh2j/gjkBA/jnyl4xreay5OmIGCWK04Hglvqw5p3Xicn0X7KROnVLkRo/cx0TWSkLbnwpbIz/pIm/f3QOK4GrkQ7mJgkG4W8eXDq9Cj/N3US5KnU/wwzTimA8d0eH+K4wXjOrxvDDNMdI0k+Ehc0jABNQVvV0G2HgnmCSjlrLGB+Fo6B+9uRS6P7VCf3t2BG1AK23SKr4TrxOiY6x0OHOZ4wSYdjjGGEVYcMYyJIusbovLfuGP3QEUOaW/UD9K6Cq3TiPfnkPW6FmVDNPYvmIv8pc3W45NIfEEBrKeQcO8O7Jlyz2l4Ek2x6BQwOww4EfhelIZnDGPM0h3efAf4VZIDo05kWbIY2g2j7OQn3hFZkMcj4bwLpWHdgnJyWz2uN+bRvob6rLMJKMe3kdnRWoti9l6j3Sj2u5GPOi5DYT/gauDrjhdkCUoaJeN4wRjHC4rsYtcWs3SHMY4XTAU+A5ye0NqdAFwEvA/l2MaxGnUaa54+sRF1W+vkC30mOvfABNeZg/J9O7kkbkGpaouRCG6KcoDvYmDhR4h8xbUg3nRkqT6FBL+RJUiQ2/WeqPFItL/tgS+Gvvu5mOONDDhesClwGvr3WIOKcM5CN95ngT8C30ZPJi+i/PDTkPF5GPBR4NTQdzs19c+Nie4wx/GCHdBgzC+HvpvIknW8wCFZP11QhsFS6pVrtcYySUpk55BMdB+gfXvJpNyDfgnHoZvCq2jftRzhaQ1/b+R+kn2WB1Afi8kmusXieMFmwNHAV9HTTSdeRT74+egJaD5yZ30MeAuqLnxf6LudJnjnwvrpDnNC330B/YdNw6kpjp0Yfd2Ngkoj6CxSy1GxwVMkb4C+P7Js8jTSqXVQW0JrK36XFq+tQelxLxJffnwQmpH32awbHM44XrAlchvVvvZu+PtEkrtKR6OmTKNQG9Nm9gd+T734pXBMdI0sLEt5/ELqc81WMzDo1chMVFRR+2VKwlpUahxn4SRlLq3Ffh8gQJZw7VoLUenvk+gX+VViCklC3723oH0OaRwvGIvGSH0IuYN2rPDypTaeN/eCkRrHCz4J/EeCQ+9GFuAe1P2tG5Ev9dnoa0vkQtgU+Vu3H7xMW+5CFslOcQfGsAC5PGpukMYCi1XIv/wcsoD3QyK7Mbr2SOQGWYoKPF5HZ+E9MvTdu3Lud8jieMEUZIH+FeWKX+3Jqx0fD333h2Vc2CxdIxWOF2wLvKvFW6sZLDbrGDy5dwQS2n2iL5AI30e6ce/LkfWTV3BBpcmvo3Vq2d3I8m3MUGi20hv9zrXG7e34KhIUowHHC7ZD2TRnV3TJOGvzlbIubCljRmKiBP8bgdej/7QhGnXzAHq0vpuBvWdfTbj0Fkj00ojuAlq7KJLwIArwraYuuO1II+oLiHdzuJE1ZwzkW1QnuND5/+b/hL7bamRVIZjoGomIRvh8i3rQbTqyYg9FQaJx6HFtMQpGQToRTcM0ss80C5GFPRFZ5p2Cb9OpW+NxzETukiR8NeFxwwLHC7ZAvvyquA91v2vHNWVe3ETXSMqeyA3w7yhw1Sp9CmR9rkdtG8sS3aRC2IoXGOhWaye6j5EsOLcCfdZjGfwzmU3rSRZvidw0hphCve1n2ayndXFNjQwMEe0AABEeSURBVN8Cl5e5ARNdIxGh7y4MffciVEzxXMzhO6AE9U1L2k6r7mJJ2EByl0e7SrpmtmRgh7QnkMvlFvQEsDmt21CelXD94cAZVNMdbh16ImmXGXMP8KGoh3RpmOgaadmXwWN7qmY8g1tBJmEkco+0S3l7Ff1SLkDWVxJubzj2UWQ5r0AiMgL5i8cwuJjkXxwv+FDinQ9tJqPUv7RNldJwH8r9bvf08lMUq9je8YJPOV5wUlkbsewFIxbHC85GFq7D4MbkVbMaWdJ5DIbHaD3h917kJkjDK0hk5yC/5LjotTdG79cq3ZpHxo8Afup4warQd69Nec2hxkuoGmw1ekLYgH6WRWSmPI9uhp0KgC6uVQk6XnAlihe0atJUCGbpGkn4JBKpbgnuPOQ3vQOJ2EtI5GpsQI/1SYs22rViTOp6aGQKmp12FHI1zAROop6XvApZu63yj0cBVzle8NYM1x1K1NxVm6P0vBOi1/IUEWxAlvPmdBbcOcAF8JfsnDehHN20BUCJMdE1knAG1faorfEoami+P/IRT0GW6N6oGKHGLSgb4f6E6x7J4DHwc5Bopx1suRnK4CBaszmY1tjK8XbU6KdRTDYBrnW84MSU1x1KtEr9O5js7oY5qMnQ8XQOmq0FPhj67hqA0HfXAVND370x43UTYRVpRiIcL/gVcHoFl7oTCdVkOlvWr6DH0TXIx7s5snYnJrzOIuAh6iI5C1mkj6FH0u3INlSyudJpTbT2a5BbZNPoGssY6OJYCZwQ+m7aKR19j+MFC2idkbIe5VQnaXoESlWcR/LpIVeGvntGwmMLwyxdIykzS15/Pep7cCR6VI9zZYyJjtmJeiXcOJSmNQu5IqbTftTQI+hR9lFUTlzL+90TWdQ7MvjxdkGyjzKAzZDFtSv1bI5dGFy9twVwTVSZNdxY0+b1UWiwZ7shpDU2oqedkaQb1zQvxbGFYaJrJOVy5Lssi1HIUplDNt8q6Bf0tchinYLEbjdUMTcNifAC6rPURqKI9iQG/y4sbdjHo8DTKHNjRofrryZZY5a7aF0MsAdwpeMFw+33cm6H93aNeX8+soankj7mkOVJJjfD7R/XyEjouytQa8KsgpiEY9Gj5BpkuRTBjihftjZJYl8Gpg3tTus6+4kozQjkbqgVeoxDvtk7GWyhzSK+JeByOmdIvAX4dMwaQwLHC0Y4XvAF1BS/E0cz+ElrOfo/Mgn5/LPQbnBqqZjoGomJumNdWOIlav8fHyN/U/KkvED7zmZHol/Mxuj3ZOT+OBJZwI03ob2Rb7YTWxEfrDsz5v2hwn8C/5zw2ENRCTcoYLkWWbedpoW0Yz16Gro4w7m5MdE10vIdVApcJlvROepcJHGFHs2PoI1ztF5BbR8fR4G59cg6nk578b2TzvPhAA6NBoEOdd6R4tix6GZ1PxrzlKYFaCMLgPeEvnsnqlCrHMteMDLheME7gTKT+u+hPs2hTOaR7PF0JQp21ViHgna1TIXm6RGLkV94n6bXXiKZL/Ezoe9+L8FxfUk0by+unLyZ58jfzHwVmoW2NTI6L0kyH7BIzNI1svJb6o97nbgFBatmoIT1ObRuAtPMGOrpY2WyOMExtWkXjQMLN4nOvRX5dpuzDrZHVvCCpteeTrivNFZgP3JAhnOKEMexwC+B7wJbVS24YKJrZCT6z3omndN5HkEWxW4oW+AlFCg7gfjE9wOAncnWYyEJG5H4Hxpz3AMokDYZ5QM3+nDHo0fd5hHvNU5An70x4+EQkt10jh/i6WPdEl2AK1He9HcKWi8VJrpGZkLfrUWPz6NuMc5DojIHPUY3BsQa2xk6nZZGVu5TlNfybym6ESTxHdf8q/ujdK8atayH4xlc4Qb6DPMY+FnHIzFewUDLuZlRwPWOFzSPfe97HC+YCnwlw6lF3YCnA1eT3S+cC/PpGoUQNaL+CvBOkvW7beezvZ3ODaaLYDXKkEjiy30FuQj2Qj7dxlHsjX9fjwR5Cvql3gRZ6k6LNWcg8d2Z+F/8VcA2oe+uTbDXnsfxgnPQKPosN9OnKG5K76Wh755X0FqpMEvXKITQd1eGvvsl1J3pMOCimFNqvtrFKMH9FfJNhEhKza+cNLdzPrLWRyOx3IgyFWBgutIoFFRbjizfo2lvzW+M1kxiaY0FfuR4QdZc1J7A8YKdHC/4NXAZ2Z9eirQQ/1zgWqmw1o5GoYS+ux641/GC+ai3wYdQwn/z/7UdkMhOQG6I2bSfRlEkt5KuVLSWUzum4bzVyDXQ/JlGo3S3ONI+Jp8RnXN2yvO6juMF+wIfBD5Lsp9NJ4oU3SR+9VIw94JROo4X7Aj8DDg5emk2qvCqMlD0FHqym4eaVSeZVDCT9tVji1Ha2M4p97ER5fLGBfCaeR6J701lTzYogmim3kWoiOStZCtiaCakcyygHU8ysJPZ/NB3S+uXG4eJrlEJjheMAr6BLN81tB+ZUhZ3I4t6PAN9sc1sROW8R6KbQ6tm50TvHUR6Mcnjs/4+ygdeiIYnrgHWdyPtqRHHC8YCI0LfXel4wWjUk3YE8D/A21B6VhF9DkLSi+5vgH9iYNDym6HvlllZ2RETXaNSHC/4CCUP/mtDo9A2t19choJlNQtyCnKNbEn74ZozUClp2jlwa5CfeByDbzyzUG+IuMYty9DNo8Y69DO9MPTdJa1PyY/jBbsgX/hEZKlPQql0u6ObycdQwPGF0Hdvj84ZgX5WxxSwhYUMnsARx5vQz/V56mOTJnczMGk+XaNqrgI+QvqxOK24FaVzrUWVSmNRIGsVg0e9NAZvJqFA3ihkPe2BLFuajnkECdwoJJaNgS+HbIM3N0PW8zLkotgWBfZei3zFI+lsicNAwQV9tnOBIx0v8JEL5cGiLOBIOD+EGtO8DYloo1/8fuAmlGVxQ8N5+yCXSBGCC+l9ugFwM+BRL9+e2+1MELN0jcqJWhf+GqWX5SGk/rj5FLJmDkIitAJZrvci0dwWCV2tec10JKwv0brNYo15SNS3QhbeelQMsQnqvZtnjtcjqB3lduhR/BDqZa5ZrLpGzg5992dJD47KcsehG9dY9HOZgG40n0E3gWep+7A3IBGcQf0G8RN001uGKu8uIJsPth2PkMxN8dno+n8KffdFxwt2RemMHwd+EPruJwvcU2pMdI2u4HjBDsjCm5BjmaR9E0ApaXdSt9BWIjHdJsX1fof8sdvGHdjE88R/zmbr9nZkfWcdTb4MOCD03bZlx9HNbxJ6BP8suonUmI5uUHHpXY37XkF8M588PEx8DvgfQ989ufnFKKbwHPC20HdnlbG5pJjoGl3D8YJtgDcDf4Ui3GmyGeYiq7DKqqJbkeimyW+fhizIds17alMPDmVwdVycmyGO3wNuo5shEp+pwPtR0/h3ky/IlXePaViAfN7tWA+cGPpuy0bzjhecE/ruD0vZWQpMdI2eIBKDY1BJ8em0jzfMQJbmZLpT3PMAyjFO6lZYjFo/1gJ3z6NJByCRXUX7vOEl0fVGUp/ZltaPfDXwv9SbfU9EwjWm00kpuAWJeBU8RGdX0CmNPuVmHC8YFeWRdxUTXaPncLxgN+As5OPcH1W51VKzqmr52IllyEJtlWWwFPk1N0cuhVqK2AzU5OVVJNpZmEPyIY2deIyBroS8zECukJqQv4RS29aj6r19yef7rjEf3Wxb8TSwd22yby9jomv0PI4X7Ay8C3gv+kW+FFl9F6CgTzdYTH3cy3p0I1iEhHaL6P3H0P5qHbUWkU98VlHM553OwJFFjbyMrOsRKF0u6XTlp1DwbxS6sTS6HF5GGQ7r0b9buzS8OBp9+A8Cn0DVbqcAx4W+uzDjupViomv0LdF0hZupvtCiFX9GQlNE5VU7ivKfzkSP6a384XcyMH1uLfEujZnIVbIONaTp1Gh8FnpyqdH88xrR4b2HqFu6vwl994MAjhfsHvrukzF77BlMdI2+xvGCw1C1UZac2SJpzl0tmpXoM7bKJkgijM3cjdwczZZso7Avp32/hKUomDkGuSpqAt5ceNLM1HaBruGCdRkz+prQd+9BlVAvdXkrWR+Zk7IFg5ulP4+szAWDD4/lcGAXBjeTb0yhG0vr5jyLkcvgOGQVN1rMhyPhNdpgomv0PaHvXoEyGn7Z7b2UzB7oEX4dekzfDFX2Za2wGo2EcyH1SRoHNr1/V9M586Prd/L1rurw3rB/tDbRNYYEDeODzkYiUjVV+BR3R+XII1Dfh9qj/2HEjz9qx0gUBLsFuRWaNeF11JvF3IYqzOI6q02Kjm1lJQ970TWfrjHkcLxgE9Tf4RLKDWw18jLVjY1vxVqUTpelg9lS6v0rWrEc+W+PbvN+Ox5A2QqbN7x2bOi7rUYbDRtMdI0hi+MF5wNfIHnaU16SlPuWzVzSDX0Mkai+toS9PIlyi9ciC30N8LXQdx8t4Vp9g4muMaSJ+gtMRV2yTmdwh64iWY767JaZxZCEtaiabTnKeliDcmdrj/sjUD7tavSzKao6rRV/AC4Jfff6Eq/RV5joGsMGxws2Q30ezkAtCstqbdqp+KCXmIV8tmWzBDg89N2wgmv1PCa6xrDE8YLtgfcAb0C+yl0KXL7snN0iWIl8rVUF09cBk0Lffayi6/UsJrrGsCcKvH0SNQLv1FAlKbdSXOPusqiyUU2Nh1DP3X/tdiPxbmKiaxgRjhcch/o6pAlENfMi8qmmHVhZJd2+KawFLgp91+/iHrqGia5hNBAF3vZHwntgw5+vIf5RfDbKY807arxsesX9cepwDLCZ6BpGAhwv2Bw4GPgwshK3Z2DHsMdR/4NetnBBvtWnKXaMTlYuC333E93eRNWY6BpGBhwvmITKZmsFBbeRvnigLDbSvihkKSri6IWhtCuA64F/DH33oW5vpiqsDNgwMhCJxBtQFdgd9IblCPCvqNDhBZQj21yKuw2D+yl0iy2BDwDzHS/IM4SzrzDRNYyMhL47D3gjcDnqp3svKjjoFvehvhPjUTHI11DQ6jHgy9ExG8jeIKcsbuiXBuRFYO4FwygQxwt2Aq4ATqrwso8A30VpYJsg3/KTqO/BeDRf7WHABS4DfoAGgfYKPwt99+xub6IqTHQNowQcLzgauIry+z78Ajgn9N1YC9vxggmoIm8kEuir0By6IpkJ/CrlOQ+EvvungvfRs5joGkZJRMG2D6Msh9rXzmhiQ97uZ3cB1wHfC313ecp9jUQBwItRVV5RrAMODH03S1P1YYOJrmFUjOMFo5HF+TWST/d9Bc2Dux64MfTdpwvYxwjgNODfKGbyhR/67gUFrDOkMdE1jC7heMEoNOH4IjSmvBVrge8D3wx9d3FJ+xgHfBP4VI5lngYmh767ophdDV1MdA2jy0QW5x5o9M6xwDMoFW09MK+qSbeOF7wXZWJskeH094e+e1XBWxqSmOgahvEXHC84EPgNynxIyjTg9dHIJCMGE13DMAbgeMHWKEiXpCfweuDQ0HcfKHdXQwcrjjAMYwCh776EAn1JZpn9hwluOkx0DcMYROi7L6MCiptiDv3nCrYzpDDRNQyjJVH+75uBd9J+xPx3o0CgkRATXcMw2hIFx64DbmhzyGmo/7CREBNdwzA6Egnv+ahvQzM/DX13bsVb6mtMdA3DiCX03Q3AecCPmt66pwvb6WtMdA3DSEQkvJ9ABRQ1nu/SdvoWE13DMBITCe/HgR9HLxU5un5YYKJrGEYqIuE9B7gQuLrL2+k7rCLNMAyjQszSNQzDqBATXcMwjAox0TUMw6gQE13DMIwKMdE1DMOoEBNdwzCMCjHRNQzDqBATXcMwjAox0TUMw6gQE13DMIwKMdE1DMOoEBNdwzCMCjHRNQzDqBATXcMwjAox0TUMw6iQ/wfxzPa2QA8D1AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot()\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Contiguity Weights\n", - "\n", - "The first set of spatial weights we illustrate use notions of contiguity to define neighboring observations. **Rook** neighbors are those states that share an edge on their respective borders:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "w_rook = Rook.from_dataframe(gdf)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "32" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "12.6953125" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.pct_nonzero" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydeVwVdffHP9+Zu7EqIgiIiAuogLikKIp6lTT1STMrNbdKe/pVZk+bqWVOU5pmq/Vk5VY+mpqZS2rubOGCIi6oqCziCsq+3zv3zszvjy8QywUui2vzfr14IbN85zsXOXPmfM/5HCLLMhQUFBQU7g7MvZ6AgoKCwj8JxegqKCgo3EUUo6ugoKBwF1GMroKCgsJdRDG6CgoKCncRxegqKCgo3EUUo6ugoKBwF1GMroKCgsJdRDG6CgoKCncRxegqKCgo3EUUo6ugoKBwF1GMroKCgsJdRDG6CgoKCncRxegqKCgo3EVU93oCFeF5ngHQHIAzgBal350BtCCEtNRoNB4Mw7gRQlzMZvPVuXPnPn0v56ugoKBQX+6o0eV53gaAS9UvlmXd1Gq1J8MwrWVZdpEkyUkURQcANiqVyqTVak02Njaira0t7OzsWDs7O42dnZ3G1tYWNjY22LNnj0mSpG13cu4KCgoKdwJyJ0TMeZ63ZxjmuizLDlqt1mBjY2O2s7OT7e3tWQcHB42Dg4Om1KDC1tYWZcbUxsYGDFNzxEOSJOzcuROnTp2SZVl+BMApjuMUFXYFBYUHhjvl6cqEEO1rr73GODk52TbVoFFRUUhKSpLbtGkjZ2Vl/WUymUoWLVq0TRCE3wFEcBxnaKprKSgoKNwJ7oinCwALFy78wM3Nbe7EiRNtbGxsGj2eJEn48ssvpQEDBpA+ffoQWZaRkZGBS5cuyefOnSvIyMjQqNXqQwaDYQOAPzmOS2v8XSgoKCg0LXfM6PI8r9FoNMtYlp30xhtv6DQaTaPGS0xMxG+//YY5c+ZYDEEUFxcjKSkJCQkJhcnJyWqWZa+YTKZfRVHcDuAkx3FSoyagoKCg0ATcMaNbxpIlS048+eSTPX18fBo1jiRJWLx4MV5++WW0aNGi1mNFUcS1a9dw4cIFU0JCgrGkpMTMMMwuo9G4CcBBjuOKGjUZBQUFhQZyx1PGjEbj9piYmEBPT09VY8IMhBDIsgxrPGaWZeHt7Q1vb2/18OHD1VlZWUhMTJx07ty5UWlpadpPP/30qMFgWAtgB8dxtxs8KQUFBYV6csc9XZ7nXVQq1U/u7u5DxowZY1OXl1oTJSUl+OKLL9CjRw/zkCFDGmzADQYDEhMTce7cuaLk5GSVSqW6aDQa18qyvI3juKQGDaqgoKBgJXfc6AIAz/NalUr1gSRJc2bNmsXqdLoGjXPmzBns2rXLDACDBg1ivL29mVatWoFl2QaNZzabcfnyZZw/f96QkJAgA7gtiuIGs9m8GUDc/Z6OxvP8EADdSn+U6/gOAKTKdwAoBrCb47jrd2SSCgoKlbhbRpcAkABg/vz5IITUcUbNZGRk4IcffjCr1epIAD46nc55zJgxdt7e3uXHiKIIURStCkWUIcsyrl+/joSEBNPZs2eNBoNBIIRsEQThVwCRHMeZGjzpO8SSJUtOeXl5+Ts6OpYvEsqlv9AKv9dKRrfqZ19UVGROSkpiCSFfzJ07d96dnrOCwj+du2J0AYDn+ZdcXV0/f+WVVxwaM44sy/j+++8LMzIyJgP4gxAyRqVSrejUqZPd8OHDdXZ2dti6dSvOnDmDkSNHyt27dydqtbre18jMzMSFCxek+Pj4wuzsbJVKpdprNBrXA9jDcVxhY+6hqViyZMnZCRMm+Ht5eTVqnMLCQnz77bclgiAM4jjueBNNT0FBwQJ3zeh+9NFHPMuyH7z77rv1NoIVSU1NxYYNG24IgtCe4zgBAHied9BoNIsATOvatStz4sQJLQDodLoDkiSFhIaGqoKCghq8aJifn4+LFy8iPj4+/+bNm1q1Wh1TYSHuVoNvppEsWbLkwsSJEzt5eno2eqz4+Hjs3LnziiAIfe7lPSkoPOzcTU9Xq9VqfwHwr8mTJ+saaihiY2Nx8ODBX2bPnj3ZwjW6AggFUALgZ47jjDzP91CpVEffe+89TWPCGmVYWIi7ZDQaf5ZleQvHcamNvoAFSsMz1dDpdElTpkxp7+Hh0ehryLKMffv2GWJjY4lKpYowGAyvcxx3qdEDKygoVOKuGd0yPvroo7G2trZrZ8yYYduQDITIyEhERUUt/uCDD+ZaczzP880A5Lq6uhZ27drVzsPDgxQUFCAwMLBRsWWALsSlpKTg3LlzJRcuXCCSJEmlnydB5cUqUmV7xZ+r7keVc8GyrCyKYrXJEkKk1157jWloRogljEYjYmNj5cjIyFyTyTSA47hzTTa4goLC3Te6ALBo0aIfOnToMGXcuHH11mX4888/hePHj8/hOO4ra8/hed4WgF6j0TwhCMJLZdufeuopBAQE1HcKFpEkCQYDlX4oM+YVjXrFbVX31/b9l19+kZOSkshbb70FB4dGhcPrxZkzZ+SdO3fmm0ymIRzHxd21CysoPOTcEz1dQRBmX7p06QWTyYT6xncJIVCr1b71OYfjuGIAf5Z+/R/P880BJB89elQVEBDgWK8J1ADDMLC1bTJtn3I8PDyQlJSExMRE9OzZs8nHr4nAwECiUqmabd++PXrx4sW7jUbjSxzHZd21CSgoPKTcq84RRbIskzLPsD4EBwdrzGbzdJ7nG2wsOY7LBdCiqKjIrqFj3C0GDx5MWrduLRcV3f3KZT8/P7z11ls2Pj4+o9Rq9Uqe5xsnoKGgoHDPjK5apVKdXLt2bXFxcXG9TmzWrBm6du1qVqlUKaXx2gahUqlSevTo0bCqirtMs2bNSHZ2tngvrq3VavH444+rPT09h2k0mgSe593vxTwUFB4W7onR5TiuRBCEvnl5eSuWLl1akpSUZHVgmRCCJ5980sbW1lYDoHVD50AIcfL392/o6XcVJycn5Obm3rPra7VaTJkyxbZ79+6tGYZJWbhw4V88z/e6ZxNSUHiAuWeNKTmOk+fOnfuGIAhvnzhxot7vziqVSgLQ4CAqy7JpWVkPRojSxcUFeXl5jc93awSEEIwYMUI7ZcoUXb9+/ULUanXkRx99NK8xbxsKCv9E7oduwDeNRmPdWreyTL9Ksbe3ZwC0b+hFjUbj+9u3by+pb3jjXuDh4YH8/HwmJyfnXk8F3t7eGDx4MF588UVbFxeX+Wq1ejfP8073el4KCg8K94PRLbh8+bLjzZs3az/q558BnQ64fRvYtAlDU1MddDrdOw1Ntp0/f/42k8n046+//losSfe3vrmLiwvc3d1x6NChexLXtYSrqyteeukldYcOHXoxDPPmvZ6PgsKDwv1gdG8DwIoVK1CrJzdwIDB9OpCbC6SkoGVaGmRB6AigAIQMBSEBIOTD+lzYZDLNSk9PPxMTE3N/W10A/v7+uHr16j0NMVSFZVkEBgaqWZYdX9r5WUFBoQ7uudHlOO4sgEuEkOj//e9/Ncd2O3QABgwAfv8dePdd3Hr/fTBa7Q0AQQCOAPAC0A8AQMh5ELIQhDiWfrcY++U4ziwIwpKoqCjpXhSJ1Ac/Pz9kZWUxonjfOLsAgA4dOkClUrVnWXbhvZ6LgsKDwD03ugDAcVwnWZYHFRQUsLXGWMeNA9LTgYMHy1bzUyHL5yHLhZDlPyHLw0qPHAXgewDNAfwLAANCfgEhewAAhLwPQsoyH1JMJlPR0aNHzXfo9poER0dHaDQaOSMj415PpRIajQYvv/yyysbG5v94nh9xr+ejoHC/c18YXQDgOE7SaDQX09PTaz6IZYEZM4D//Q/usgyTyTTQ4uq5LCdDlq9Dlq9ClrtDlgsBzAIwB4SwAJ4G0BqETOc+/HCrKIrTsWqVgOP3t6qhnZ2deOPGjXs9jWo4OjqiV69etizLDqv7aAWFfzb3jdEtRaNS1VGZ7OsL9O4N13374Neli0alUn1nVaWULN+ELJ+CLIuQ5R6Q5WMAfgfwEoAiz5gYNSIigEuXADc3ICMDiIgA/vyz8XfVRLRq1Up19erV+yu+UEp+fr5RFMXUez0PBYX7nfvK6JrNZmnPnj11ZxPMnAlERWGEg4OuTZs2T5ZWStV/IUeWcyHLBwAUrJ882Xz56aeBtm2Bb78FnJ2B3btp1oQkAa1bUyOcmgqsXduAu2s8dnZ2KCkpuS+Dz05OTlqVStXjTo3P83xfnudd7tT4Cgp3i3uiMlYTPM8zWq328pQpU7xat66j2CwzExg4EHJsLFasW5eflpa2FMAujuNiGnBdNYB/29vbL3nzzTftGKbKs0iS6ALekCHAwYPAxx8D8fF0YW/kSOA//wE2bQImTgTq0SKovmzcuBGOjo7iyJEj77vy5fz8fCxfvrzYYDC8PG/evCZ5KpUa2WEA2rIs+yEhRFKpVIfMZvNphmGay7JsbzKZogAcAvAWgM2gnT2MTXF9BYU7wX1ldAHg008//Umn0z0zfvx4Ozc3t9oP/vNPYONGXF2wALt37y7MyclRm83mOfPmzfu6IddevHjxqWHDhnWzWs1r927AwwNwcKApbfHxAMcB588DY8YA3bsDwcE0Ft0ErFy5UurcuTMTEhLSJOM1NSkpKdi0aVOS0Wj0bWxTz4ULF75jNps/YxhGbtOmTUGPHj3sO3fuzCQkJCArK0tUq9UkKysLxcXFxenp6SgsLLQvPfUNjuOWNsHtKCjcEe47o1vaJeFFtVr9Tbdu3cjgwYO1NUomCgLw0UdA167A+PHIzc3F8uXLS4xG4+sffPDBygpjdgGQz3FcratQPM8HqtXq6HHjxjl07NixYTdw7BiwcCGQlgb4+AA5OUDnzkDPnoDBQI1wp05AXbFrC/z3v/81h4SEqLp3796wud1hJEnC8uXLi3Nycg4IgvBsqaRmveF53lOlUl2cNm2arbu79fo6ycnJWLduHQDkchynVMkp3JewH3744b2eQyX0ej30en1cWFjY75mZmQ4xMTGd7e3tVe7u7tULA1gW8PQE1q8HgoKga9kSvr6+6gsXLjwaERHRNSwsbK9erxeio6O3yLK89PDhwzZhYWERer3eYtBYr9ffCgsLi7hw4cIEHx8fjb29vaXDaqd1a+CZZ4AbN4D33wemTQO8vak3fOoU8PnnQEoKsHcvcPEiPc7Ghu6vGtaoQnR0tNy1a9cm7RTRlBBC0K1bN3VmZqZXTk7Of/766y/XsLCwGL1eX6/X/aNHj37Xp0+fboGBgfVac2jRogXMZrN87do1m7/++ouJiIhI0+v1D4bAhsI/hvvO060Kz/Nd1Wp1mJeXl9bb29ve19eXuLq6Vj5o3TogOZm+2gMQBAE7d+40XLx4MVMQhNE6ne7bPn369L9w4ULx7du3X5s/f/5PtV1zyZIlMaNGjQrq0qVLwydeXAx06wb8+iv1cqvuS0oC8vOBlSuBvDzqAV+/DrRsCQwfTo23hwdQWuW8c+dO+fTp02T69OmoM+xyH5CRkYG9e/cKV65c+dVsNk+3toU9z/NajUaTMnXqVI864/oWkGUZKSkpuHTpkikuLq7IbDa35zju3otWKCiUct8bXQDgeb4VgMFqtXoAgOeeeOIJu0qyjAYD8MknNK766KPlm+Pj47Fjx44ik8n0nr29/SJHR0eb27dvJ8qyvF0UxaU1hRs++eSTZJPJ1N7f37947NixttUW1qzlp58AUaTebl1jFBQAiYnAhQtAbCwtd27Xjqaw+ftjdW6u2Nrfn3104kSwTRQjvtMUFRVh06ZNRenp6fmyLP9hMpmiARzmOC6lpnMWLlzIt2nT5t3JkyfrGvy5l1LaaLPIbDb/W5blbY2NMysoNAUPhNGtCM/z3dVq9cHQ0FDHPn36/B0YPXyYLmy98QZN9yrffBiRkZGHBUFYDWBl165dkZaWZszMzHyB47gNFsZ3VqlUX0iSNE6WZd2sWbNIQxpolrN8OTWkX35Z/3Pz84GzZ4EDB3Do1CnJB2Bc3dyogR4+HOjVC3B1BZzu3/ClLMu4ceMGrly5Ih84cKAsRDQMwFGO4woqHsvzfCCA0z169JBGjx7dJOmMly9fxrZt24oLCwvnfPDBB982xZgKCo3hvovp1oVer08PCwv7NTU19SW1Wo02bdpQt69NG+DQIZpKFhhYfryzszPOnj3rLElSvCiKc3Jycp4VRVErSVLcoEGDoquOf+jQofnt2rV7uVOnTtpbt27laTQatZeXV8MNgJcXsGAB8PTTQH17qGm19L4GDUKUyUTyBwyQOr7wAoFGQ+PCt24BP/xADfvNm1SBjWFojPgOpq7VB0IIHB0d4eXlRQYMGABCiNlgMIwxGAxzw8PD/4qMjLyq1+vB87ybWq0+NnjwYJvg4GCiaaL5Ozk5wcvLS33mzJmB4eHhRwcNGnS5SQZWUGgg91VxhLVwHHfFbDb3DgsLkyppEcyZA6xeTb3DUmxtbTFixAhblmVHALhkMplGlpSUMJIkfWJpbLVaPbhXr16q4OBgmEwmu6tXrzZOgczFBThyBPi//6OLZg2kZcuWyMjMlOHoCDz1FDB3Lh1zzRp6z+3a0cKNqCiaT9y3L7B5M7BjB/W07wOhHJZlodfrVS+//HKz8ePH6zQazV4A0scff7xSo9HsDg4OdgwJCUGDFjBroXXr1njiiSfstFqtkkqmcM95II0uAHAcd0EUxbnLli3Dnj17BEmSALWavsbPmkXjvKWUVnL1AZCt0WgGALCHha4TPM+7mc3mjlqtFjqdDgzDIDk52bhv3z6hUWEYrZamiX32WYOHcHd3R3Z2tuUMDg8PmjHx5pvAv/9NQy3Ll1OPNzmZGl53d7pv5076dfFiw++nCfDx8cGMGTN0AODu7j6tV69eXfR6/R3rTu3l5QWTydSR5/n7M99O4R/DAxdeqEhEREQMgC23b98eZW9v39zd3Z3qJty6BURGAoMGAQAcHByg0+kkFxcXcv369V5arfYJs9m8U6/X51UcLzIy0o9hmKnZ2dnitWvXNNnZ2Qkmk6n77du3R4eFhbm6urrKLi4uDdO0DQkB7O2pQezatd6na7VaHDp0qOwVvfaDGQZo1YrqVPTtC/TvD7z2GjW8AC3i2LSJljtfuACEhQElJTSvuGGa8A1i/fr1kpubmzR16lSmQ4cOqgbq0VuFVquFSqVS3bx5s0dISMjKus9QULgzPLCeLkD7rHEcd8ZkMo3avXt3zp49e2SDwQC8+ioQE0OzAErp27cvM2jQIAwdOtTRw8OjKyHkaQvjHTObze5Xrlx58/z589dkWd7AcVyWIAhjASAyMrLh7q5WS0MNn38OXLtW79Pj4uLQqDinjQ1NSwsNpW8C69bR8EPr1tQD5zi6cPfSSzRefIdJTU1FWloaczdLmoOCgiBJUjee5xvc5klBobE80Ea3DI7j4s1m8xNxcXHnt23bVgwbGxpmeO+9SmEGnU6HPn36oEePHmqdTjeyhrEM8+fPXzF37lyvuXPnflK67RIhZHRubq7h6tWrDZ+ovz81dtHRtJquHty4cUPy9/eXmtQbdHamceDRo+linyDQz+vKFeDTT2k44g5lt2zdulXs37+/5OjoeEfGt4RKpUJQUBCj0Wh28zzvWvcZCgpNz0NhdAGA47i/TCaTPiUlJevkyZP01XrSJGDx4mrHtm3bFiaTqQ/P81anE8yfP3+HyWQa/9tvvxWbzY3QO+/SBdi1i5Yv14OePXsyCQkJTZ/iZ28PfPUVsG0bTT373/+AwYOBoCBa7XfjBi1jPnAAMFlV31AnUVFRkCSJ6d+//13//zdkyBCNjY1Ne5Zlt97taysoAA+A0eV5nuV53sOaYzmOy2RZ9mJ5Uv3o0XShKbpyZpiDgwM6deoElmWzFi1alLFw4cI3rBl//vz5O81m864lS5YYfv/995LU1NT63QxAY6ZffEHjzRcuWH2an58fBEEgmZmZ9b9mTdy4QTUiPD2pfvAff/y9b/BgGnJwd6daEt7ewIsvAgEBNBOigR6/IAg4dOiQPGrUKFKndvIdgBCCYcOGqSRJslLVSEGhabnvja5KpXoXwA2e5+vUauV5vpcsy/19fX3pBicnoF8/qkZWpQ3Q008/bffWW2/pHnnkkZayLFtdbzp79uxxJpOp49mzZ7du3LjR3CDPs1Ur+n3GDFp5ZoGbN29i1apVWLFihbxnzx4IgoDmzZuLFy9ebDpX9+ZNakwZhr4RdOhQ/RiWpSlqHTsCP/5Iq+zS06kn/NNPwLlzVFXNSjZv3iy5u7vLPj4+TXYb9cXX1xcODg4Sz/PP3bNJKPxjue+NriiKdgCgUqmm1XUsy7KjPT09mUoVZKGhgJ0dsH17teNtbW3h4eEBhmEm8zxvtaBBafnwv2VZvnz06NGGJcAOHQo8+STVW6iC2WzGunXrpJKSEnTq1Ilcv35d+uKLL5CTk8M2a1a9O1GD+frrvzMp2rQBxo+nMd6a0OmA3r3p4tuVKzRNbcsWYNgwGg9etIgWaNRAWloaLl++zIwaNYq5k5kKdaFSqTBixAgbQshKnucn8Dx/3/8dKDw83Nf/2Xie95Jl+X1fX1+oVCrvuo4XRfHT5ORkTbWY60svAXv2AAkJ1c4JCAhA27ZtHQA8Wm1nLXAcVywIwtDw8PCilIau9r/2GvDKK9U6UeTn58NoNDJTp07FwIED8eKLLzIzZszA888/j65duzaNtTKbaRbFwIH0ZxsbYOpUGm6wBq2WxoM/+ICGGvLzaerZvn00HY3jqhVkbN68WezVq5fkXKFM+17RuXNnMmHCBJWTk9NKjUajpJAp3DXu6zzdyMjIFizL+mdmZrY3m82f6/X6uJqO5XnelhCSCMAxNTUVJ0+e/Pvr0iVkZ2Yif/Nm7CkoQNyZM5X2p6amahiG8Rs0aNB39ZmfXq/PCwsLi7lw4cIznp6earVaDQC4ffs2HBwcrBuka1faBmjIkHJRHBsbGyQnJ0tXrlyRAgICGIBmXlg9pjVcukTlJCsKonfvTo3ok0/WL1+XEFriPHUqLcFOSqL3NHw4FSDq0AHHMzKQmJjIPPvss+R+EexxdnZGt27dNCdOnOi0f//+PL1ef393JlV4KHggBG9K+58ZANhxHFdoYb+9SqWKFEWxp729PXr16mVxHJ9PP0VWcDCyBgyotD0vLw8nT54Ex3EN8iJ5ntezLLtTkiSdLMssADzyyCNmNzc3lbu7O+qUKDx0iKZs7dxZ3mWisLAQ33zzDSZOnAhvb++GTKt21q8HsrOpt12Rxx6jlW3Dhzf+GgYD8O23MPfti+MffIDAvDzYHTtG2x9ptY0fv4lIT0/H6tWrBZPJ1JPjuHP3ej4KDzcPhNEFAJ7nRwH4Q6vV3iKEZJlMpi2iKO4DYK9Wq1eZTCZ3X1/fonHjxtkVFxdb9goNBuCRR2i1WsuW5ZuvXr2KNWvWGCRJasVxXH4D52cHgAWQBwAqleozs9k8CwBmzZqFGrtfANQIjRlDvczevcs37927FxcuXJBfffVVUuZFNxmzZ9P+bqVVe+Vcvkzjsn36NNmlrl69iq3ff4/XAwJARo6kC3affw7861/UQ25KD74eJCQkoKSkBD179sTevXtNMTExO2VZfr6h/wcUFKzhvo7pVuEkADg5ObkMGTLELygoaLaLi8sOFxeXjSNHjnTXarXCpUuX7BYsWIAvv/wSSUlJ1UfQ6Wh334kTKyX9e3p6ol27dpJKpfqN5/kG5TFxHFdU+seqAaB+//333wUAhmFqN7j0ILrQ9/PP1OstZejQoWBZVlq2bJlcUlLSkGlZJjeX5t1W8fgBAC1aAC+/TDMUmghPT08UOTgge/hwmlFy+jQwYgRVSPP2BoxGmidcoZDlTvPbb7+J27Ztw/79+/Hzzz9LkiSpGYZ5Uq1WH2jo/wEFBWu4r2O6FdHr9fmRkZG/FxYWvpyYmMiMGTOGHTRokK53795aNzc3PPLII6xarYadnZ3csWNH2dfXl+h0uuoDeXhQg3LsGC2LBc3d7NixozolJcVDEITnw8PDjREREadrautTxzwlvV4vlYZE3h84cKB14QFCgMJCWgn2/PPl8+rVqxcTExMjMQzDeHl51Xc6lomMpItgen31fTod1ev19KRavU0AIQSnT58WbW1tmdatWwPNmlHvVq+nBt5spvHgwkL6OYSF0Vh3I0XMa6K4uBi7du1iXn75ZQQHByM+Pl5OTk4mrq6ucl5eXmuVSvX2kSNHvEJCQnbekQko/KN5YIwuAOj1+tuRkZEfsyxbePbs2f6EELW7uzthGAZqtRre3t7w8/MjHTp0sGxwAfpH3b49baneoQPVQwCgVqsRGBiobtOmjVNmZuZgQRCGhISErGnEXM1Hjx7t3alTJ1+r284EBNDwwsqV5V4oIQT29vbM/v37ZbPZLLZr167xlujMGap61q6d5f0dOwKvvw5MmNBkAjiZmZnM1atXxW7dulWev05Hv155hS7qHT1KU9mee4523PD0pClqTcj+/fsBQOzfvz+j0WjQo0cPcvHiRbGwsJBMmzaN9OvXT3PkyJFu4eHhO/V6fdO5/AoKeLDCCwCoyI0oil8UFRWNioiIiFi5cmWxWF+tWHd3ukL//feV0prUajXat2+P5557zs5sNofwPN8oYVej0fhnbGysWaiPzoKXF3DwIEANAwCa1hYYGEjSrE3nqg1ZpsUitXXZdXWli2zHjjX+eqU88sgjuHbtGitJtbw8EEJzhWNj6TybN6dVcytWUBH44gY1Fy4nPj4e69atw5kzZ+SgoKDyFApCCAghyM/PJ3v37hWbNWuG0uaffRt1QQUFCzxwRhcoVxcLFwQhNDc3N6eSkLm1DBtGDdyvv1bbpVar4e7ubmQY5oVGTvXw7du3VT/++KP1YQoHB2DVKmpgbt4s3+zi4oKMjIzG51plZAAnTlBPtyYIATZubNIYa6tWraBSqeSbFe6pVmxtqfTkk09SD7hTJ2qIPTyAceNohxArEQQBP//8s7Rz5064uLjIAwcOJFWbjr7wwgvs3LlzceXKFba4uBh5eXkSgMR63KKCglU8kEa3jNJGg2Fbt241FhQUoLyND/YAACAASURBVKioyPqTGQYYO5a+altYdHv88cftJUn6huf54EbM7xTLsouzs7OZY8eOWW94vb3pvF5/vXzBT6VSgWGYxqea7N1Ly4/rChvY2tIMh+zsRl+yDCcnJzkpKan+99ClC9V/IIRWwf32GxAebvXpy5YtEwkheO211/DYY4+Rfv36oaruA8Mw0Gg00Ol0Unp6Oh599FGNWq1er1SrKTQ1D/x/KKPR+O+8vLwtX3/9temLL74QV61aVVRQUFD3iQCN6fr40Gq1Kq+9rq6u6NOnj6DVag9+8sknVxYsWDC6IfObN2/eXAAd9u/fn/nll18WbtmypSQiIgLJycm1nzh3LvDCC+WawNnZ2ZX0dAsLC1Hrq3pNJCZa1lioirMzVWnLb7rsqc6dOzMN1o44dIgWXrz9Ni05HjOGtrivEIapCUmSEBwczFgThrKxsZFzcnLwyCOPELPZ7AyaBqig0GQ8UAtpltDr9WJISMjvERERnwBYWFRU5JicnNxDEAS1Wq222G/LYDBAEASo1WqgRw+6cOPiQj3MUkozGtjg4GB1REREM41Gcz0kJKTuv3DLc8wJDw//UhCEHbdv375w9erV5DNnzvTp169fze3UyxpMvvAC0Ls3PHr2RFhYGPLz8+Vdu3bJUVFRJDY2VvL29iZ2dnZ1d5MAqDTjiRM0XcuaJpmurlRTd8qUJllQc3Z2RlhYGOnbt2/92sgfOECzLXr3pp03YmJoyEEU/w471JLrGxsbi+PHj5OYmBhcuXJF7N69e43ORnR0tBwYGMjY2tri8OHDIoCNer2+CaXdFP7pPPBGtwy9Xi/r9XopPDz8oMlkapaamppw8uTJzj4+Puqqhnfbtm3Ctm3bWL1eT41JUBCtwnriCbqSXgFCCM6fP19cVFR0Ljw83DUyMvJsA1PJZL1ef1uv18dGRETEAZil0WjQtm3bmk9q1ox6nCoVVB4eaO/rS/bv3w8XFxfy6quvkitXrkhRUVFMdHS0HBwcTJi6UqwSEmgjy2l1agf9ff2vvqIyjxWKSRqKRqPB8ePHxVatWjFW6y989x2wZAmtnOvVi2Y3MAxN9wsKog+Grl3pm0q/fhaH8PX1Jba2thg0aBCioqKY2loeRUZGErVaTdq1awdBEJiMjIx+YWFhG/R6ff1U5xUUauChMbpl6PV6ecCAAfsHDBiwIzw8PDUhIWFE+/bt1fHx8Vi9ejVKPRi29Fh6UrNm1PiuX0/LXyv8QRJC0LlzZ/Xhw4eDAIzRaDTPhoWFxej1+ga39tXr9UWHDx9urtPpuvv5+akAwGg0VoszAqDxzE8/BY4cATNsGOLi4uRu3box3t7eCAwMZAYMGIDjx4+DZVni6elZ+4VXr6YLUWUiNxZITEzEqlWr5Pz8fNKhY0eQ0aOp7m8DpBglSYLJZKrk1SYnJxODwSD7+PjU7jqnpf3daPOll+jDB6CGtqJxZRjg2WdppeH69fT+qjxkbWxs0LZtW8iyjOPHj6N///41etqiKJIzZ87I165dk8eMGUMyMzNb5OXlBYSEhFRfcVVQaAAPndGtyKBBg+IPHDiQeurUqREpKSmCLMuJSUlJrgDw+OOPo3nz5igvr/X3BzZsoK/0VQxMaVNIsyRJzKBBg5xv3rw5+a+//sofMGBAg3OqwsLCjuTk5MyUJEl9+PBh5o8//kB2dra5S5cu1d3VoCDkrl2LH1JS5HY+PvKQIUOYikajefPmZPfu3Wjbti1qlX7cto22ba/hmPPnz+PXX39FmzZtcP36dcTExMieLVoQ29mzwYwfXy+9BEEQsHTpUiksLIxER0fj8OHDckxMjGw2m0l6ejrp169fzUZXEKiHW1BAc4Xt7Oh2Waa/nylTaDpZGfb2dPucObSEuUrRx/79+3H16lVs375dDggIEP38/Gp8JfD29sbJkyclNzc31tvbGz4+PqpDhw61Dw8PX63X661cLFBQqJmH2ugC1PCGh4cvk2V5McdxSyMjIz9iGCb/4sWLj6Wnp4v+/v4MwzDUY+rfn67sP/kk/SOuQIsWLZiEhARcvnwZISEh6rS0NKF///4bGzovvV5vDA8P35yenu6RnZ19QpKkbrdv32acnJxkNze3Sgbpj4MH5XCDgbyyfj3pxvMMW8Vouri4gGEYac+ePXL//v0tG7OsLGD3brr6X4OXFxsbC5VKJU6ZMoXp3bs3KSgokPdER5OC3FwYPDzQypoFOFAPd9myZaKLiwuZMWMG6dOnDwIDA4mXlxcRBEFKS0tj0tLSZH9//+pz3bqVfv4//0yzS6qGTEJD6QOyaniAEGqMBw4sV0kzd+6MVatWiVeuXCHXr18nHh4e0rhx4+rsOnz48GGkpaXh8OHDxN/fH2azWczIyBAHDhx40KoPQEGhFh4YwZumhud5D61Wu1Kj0QwaM2aMbfv2pQ1id+2iHuGKFdXOOXr0qHjgwAEyZswYZvv27UaWZT+dM2cO14Rz6qpWq3eHhoa69enThy0sLMTPP/8sms1mZuLEicT1q68APz9qXKpgMBjw2Wef4f3334fF2G58PF2QevPNGq+/bNkyMSAggBk4cGAlq5S8dausevttsvX118U+ffqw58+flzIzM0lQUBCxsbGBwWD4O1QDYOXKlaIoimTatGmMJaGenJwc/Pzzz3KzZs3k559/nj70ZJkukN24QT3Xxx6rPsETJ6h4+tixtXyKAL75Bnk2NliTni45eHpiwoQJDACwLFuvjsrff/+91LlzZ9KxY0eyZs2aQlEUO3EcZ2WisYKCZR56T7cm9Hp9QUhIyC/79++PP3PmzDOyLDPe3t40gyEpiRYm+PtXOsfT05MZOHAgcXV1BcuyqtTU1MIBAwasb8I53Q4LCzuWkZExXqPRaDZs2CC3adMGU6ZMYRwdHamXFxkJxMVVUiMDaB7v4cOH4ePjY1lh7euvaVy0ynmSJOH06dNISEhAYmIi88QTTxBtlTBCCx8f4rh8OVRPPUUOnz2Ltm3bygEBAUxcXJx869YtOTU1lURERCAzM1M+ffq0nJ2dzUyfPp2pOk4ZNjY2CAwMJHFxcTh27JjUs2dPhnnnHfqgW7y45sKNtWtp+fbkybV+jvG2tvjl1Cn836pVpHezZkQzahTUanW9MiYkScLevXtJjx49iI+PD27evCnn5ub2Cw8Pd4yMjBQiIyMzG7KgqqDwj/V0K8LzfJBard5tb2+vadWqlaaPjY2mbVQUyKxZf/czq0JGRgZWrlxZIgjCIxzHVW9J0fC5PA5gBwCEhobK/fv3J5Veh8+coSGCU6eqhUCWLVsm9erViwkKCqo8qCzTnNZ9+wC3yl2Jbt26hR9++AGurq7SgAEDmICAAMsTu3KF5gw/9VS1XYIgICsrC5s3b5aNRiN58cUX0bxizLUGBEHApo8+kvslJZH2H39MNRasSWWrg6VLl0qtWrUiEwYOJCgooC2ROnWiOg71YN26dWJKSgrbtWtXyc/Pj8nPz8f58+eLb926RURRPCQIwlMAijiOa1jLJoV/JA98cURTwHHcMZPJ1CEnJ2dsSkrKyfVnz6alqNW07UwNuLi4wM3NzQSga1PNg+d5glKDCwD29vakWvwxMJB2N37vPSqJWIGWLVtKsbGxOHfuHCrpPaSkUOUyCw+QVq1awdbWVgoNDa3Z4ALUcH/9NWBBYlKj0cDd3R0zZ84kb7/9tlUGFwA0LAv9kSMoyc2V0bFj3Qa3b1+qQFYHEydOZC5fvoz4rCxqbL/9lhZV1JPJkyezM2fOxPXr17F//36pd+/eeO6552zffvttm/bt2/cnhOSq1eqrCxcu/JHn+cbn1Cn8I/jHhheqotfrDXq9PmXAgAErw8LCbl2xsxvd+9IlhnFyohoNFrCxsdEmJib2HjBgwFKe5z0jIyONer2+wV5PVFTUKADP+vn5yY899hjp2LGj5VdiW1uaaZGYWEkT18nJicnMzDSfOnWKhIeHk2PHjkn5+fmyz7Vr1OMLtlzRnJCQQEwmk1RrGlfz5jR7wdu7moddEasbTi5bBvznP1gzdqzc6vnnGauU2NLSaFujOppz2tnZwdnZmWzfvh35+fmizwcfMGT0aGDePCrS/sgj1s0RNBTSo0cPEhYWRnQ6HWxtbaHT6eDv768OCQkhbdq0cSguLg7MysqaEx0d7RMeHn4oMjLSLjIy0jYyMpJR8nsVqqKINVvmQJEoJu1t2dJ7xO+/64ifHxX3roKLiwtkWW62aNGinwE8B+DfABrU5JDneUatVi8fP348OnToULvlIgT48ku6OHb4cHneqoeHB8aNG1ee93v58mVmy5YtGNasGdgavNjvvvvOXFRUpHr88cfrfuvx8qJiMwcO1Pf2/kaSaJGGwQB8+ilyIiOZrl2teFkoKaHVeVaGCPz8/NCyZUusXr2aCQwMhJeXF53/9ev0DaEe6W+lRSzmQ4cOkfDwcJZhGBQXF0OlUqFXr17mZ599Vn306FH89ddfzxQXF08CALVabRBFUfXJJ58UsCx7xGAwPMNxXHGpzrIDgCwlLPHPRDG6FuA4Lp3n+YAzDg6X+mRnt3c+cIAamyrcunULKpUqoaSk5LnSTY3SHjSbza5W90Nzdqa6CJ9/DuzYUc3702q16Ny5M1yaNZOM8+czthZavQNATk6O6s0334RdWS5sbQQF0TzYnBzaAaIhPPMMzb/duxcgBCQqyjoNiV9+oZ5qPTpauLq6wtXVVdy+fTv76quvEvbVV+mOMWOo0bWgMFcTkydPVgFAWFgYGIbBwIEDER8fj3379rGPPfYY+vbti759+2okSYIgCNDpdDpZlpGbm+u0evXqxwgh13meH0sI2SnLsp2Njc0WANUD5AoPPUpMtwY4jhONRuN7vwUGFsrPPGPxmLZt26KkpKSsPGoax3GNyWTQyrLMVNXelWUZ587V0Ctx9Gja6vzUqRoHHefpyZz39UX40aPV9pnNZoiiCJtawgWVZ6ilce7du607viKnTtGQwnvv0QacpWEIlmVhsEZCcvp0i2pwdfH888+rCgsLSX5F4Z5vvgFefRU4f76SfKY1DBkyBHq9HgzDQKfTVQv/lG0HaKjFyckJM2fOZPv3728PINzPz089hab8WZf0rPDQoRjd2tl86/Zte4v91kBjh927dzdoNJpYAI1NHZMBYMmSJbh06RLdIMvYsGGDvHnz5prPGjCAGt7//c/i7maShDavvYYjR45UWlzLycnB0qVLpbZt20p1ajZU5bvvaNWYtUgSbcuTm0vjqaW5skVFRZAkCVZl0PA8cORI/eYJagRVKpV040aFqm0vL9qQc+lS6vU2EEEQwLJsnZPXaDQIDQ1Vv/feexg7dqym1FA3cadRhQcFJbxQCxzHiTzPY/PmzZg7d67FY0aNGqW7evVq5+zs7H8B2NKIaxl4ngcAbNiwAS1atJCys7MZAKRfv34yAMtxXo2GZhVcv05f/av2NTt8GK2efRb2WVnSd999B41GI4uiKBcVFam6desmDx8+vH7ShZ07A+++S0Mb1ojgfPwxcOkSEBVVbmwBmge7ceNGyd3dHc7OznVb/cuX6bUbQGhoKPPHH38gIyNDGjx48N/X+vFHeh9r1wJ5edXb0ddBVV2JuigrFElKSjKLolj/J4jCQ4Hi6VpBba/fDMNgxIgR9lqt9pfFixfHNLKTbEsA3QGg1OACAA4fPkyio6PNNZ7VvTs1uK+8Uqn9EIxGWkgRGAiWZeW2bdsywcHB7JAhQ1STJk3CyJEj2Xp7uQANDbxQR1MNkwlITaXlx6+/XsngAkBcXByys7Px3HPPWTeBNWuoDkMD6NmzJzw9PREVFcXs27evcgDZ0ZEWnLzzDn041AOz2Yzi4mImIcH6NG2TyYRjx46ZBEH4tF4XU3hoUIxu3azx9/evdZW5Y8eOmDVrls5sNvcA0MAVJoDjuCyO405zHEcIIY8RQsoW5vYdPHhQVavw+dSptLigYoxyyxaa26pSwWAwoHv37ujZsycCAgLQqM7CQ4bQxbSaepaZzbQd0kcfUS+8ShUcQB9WsiwTs7nmZ0k5Fy/WmSZWFz6lIkbHjx9nqsWQFy4EfvqJZmWssb4XaWBgIJydnVFr+KcKcXFxMiHkCMdxSiugfyiK0a2bBNmKoCPLsvDz8xO1Wu3Cprjo/Pnz982fP9+O4zgC4DMAWLduHbZv346CggJU64KgUlHt21GjaJcFgEoyhoQAAARBYK0tWqgTe3t6LUvFIzExtPHlvHnA8uU1DtGmTRuUlJSQdGuyETw9gXXrGjFhIDg4GHPnzkWLFi3Eb7/9FitXrhT//PNP2WAw0AW1gQPpZ/XZZ8CtW1aNGR0djVu3bmHYsGFWlXUWFhYiLCzMYDQa32jUzSg80ChGtxZ4np+kUqkW29vbWxW4Gzp0qM5sNk/ieb5JW7xwHHcANLfzhYSEhK1ffvklFixYgGoGi2WpvOGOHXTxysEB6NkTAF2Us6jX21DUahoTreipGo3AxIm0+WVoKH0Q1MDJkydlrVYrW+Vxx8cD7do1rD0RaPz44MGDWLVqlWgwGCCKIoxGI3v8+HFy9OhRGlpYt45W+508SePQS5fWOJ4gCFixYoV48uRJTJ06FX369LGqImTPnj0lsiz/yHFcfINuROGhQNFeqAWe5+MJIQFz5syxWp3q+++/L8zIyHhDluW1AFreCVUqnufLf2leXl7C0KFDNZUEzPfupYtDJlN5Lurnn38ujRo1iulUWxfg+hIWRlXPWrWiTSwdHGi5rRX6CWazGatWrZJKSkowadIkxsXFpdL+1NRUbN26VRRFkTz+88/EoFaTHWPHwsHBQWzfvj0bHByMqufUxB9//IGkpCS5X79+xMnJCYmJiVJiYiKxs7Mjw4cPrx5quXiRLqqtW1deOp2fn4/169fLXbp0ITExMZKbmxueeeYZxtp0u6tXr2LdunWZJpPJm+O4enRQVXjYUIxuLZQZt5kzZ6KFhYo0S6Snp2Pt2rXFJpOJMZlMOkLI+Pnz59cs4tCweWkIIRdkWW5Xtu2tt976W10sP5+2sDEa6SLWo48i+csvccbTUxrTuzdDrl6lC2Fbt1LBdm9vWiXWvTs9t7iYKqylp9MiCFtbunhWddHtp59oKOGrr6i3uGAB0LGj1fdhMpmwb98+KSEhAe+8806lwb/55hsxJyeHffbZZ+Hs7Ax7e3uIoojExETEx8eLV65cYbVarTR9+nTGqY5Cjc8++0zq168f079//+o709Ko/q6FPGY8/jgQFARh9mwsWrwYtra2sLW1lbp164b+/fszVpc8A9ixY4fx1KlTH37wwQeLrT5J4aFECS/UAM/z5eowR48erR5DrQE3NzfMnDnTlmEYFgC0Wu07TT03juMEWZYrJddXWmRzdKQFAEVFgK8voNWinZ8fCktKyO3z56lmQ3Ex9VSjoqhO7YoVNNOB52n7m6Qk2rro1VfpQlPXrsDmzbRPmbs7cPYs8MMPwB9/UH3fjRvrZXABmkI1aNAgxmg0MoWFheXb//zzT5jNZsbZ2Vk6d+6c6BwaCm1hIWxtbdGtWzdMnjyZnT17Nnx9fbFq1SopNjYWtS3Ide/enTlw4ABSU1Or7xRFoCahn2XLgNxcxG/eDEcHB3nWrFmYMWMGExISUi+DK8syEhISREmStlp9ksJDi+Lp1sDixYt/MRqNE8t+9vHxwcSJE2s7pRK7du0SYmNjN6tUqivvv//+e3dijqUPhnQAmDRpEjpWNXqSRPN3RRFo1w4HDhxAfHy8PG3aNFJrWx9LlD108vOpMXd2pgt1//oXXbz74QfqWVdp7FkXsixj69atYkJCAmtvby96e3uz58+fx6RJk9C8eXN8t3Qp/hMbC9utW6t52qIoIiIiQoqNjWXc3d3h4+ODuLg4uXnz5uTJJ5+EbWmYY/Xq1XBwcMCYMWNQTVTdZKKxZwtGVBAEHIuJQevnnkOJr6/st3s3aUhX5LS0NKxZs+bmnDlzrFD1UXjYUTzdGjAajRsq/pyYmIjMTOs7cWdlZZkYhom6UwYXADiOuwVgPADk5eVVP4BhqKc6axYAWsLq6Ogofvvtt4iLi6vf05Zl6ZeTE80msLGh7evnzaPC459/Tpto1hNCCMaOHcu+9tprGDx4MJuWliYJggC1Wg1HR0c4aLXmax9/XD20AZoxEhoayvTt21e8fPkyoqOjYW9vD5PJJP33v/+Vyn5fxcXF5o4dO1Y3uABd8LPQiSIuLg5ffPGFfCY+Xjo2e7YsBgTI2L27ch60lSQnJ8uSJG2v94kKDyWKp1sLPM9/A2AmgG4sy/bWarX/nTJlik6j0dQa4zWZTFi8eLFZkiQHjuOsEBZoHIsXL44xGo1BgYGB8qhRo0ilLAWzmRqshITyThhJSUnYtGkTRo8ejVo1dK3hzTdpxoSLC72Glxc1wKXVdfVFkiScOHECAQEBsLGxwZngYNk3P5/oatKfsIAsy9i/f7904sQJ0rFjR5KcnIxnnnkGHSz1eCspoV+lv8/CwkIsX75cLCwsZMeNG4fOZVVwZjMVcG/VqtZUOEusXbs2PyUl5UWO436r14kKDyWKp1s77wIAy7JHWJb9uLi4WPfjjz9i+fLl5toeVqWpTTIAKzL/G4/RaBwGAGfOnCELFy7E1q1b5a+//lo0m8301VmWqfxjqQB4x44d8eSTT2L79u0oKmrkQvr+/TRFjGGoUY+PB7Zvt9ojNBgMOHv2LG7cuAGDwQCGYdC7d2+wLAuz2YyIJ56Q0n/6qV5TIoRg2LBhzGOPPSZnZmZKsiwjKyvL8i/sww8rNepcvny5ZDAY2FmzZv1tcAH6OW7cSBcgP/vMopi7JWRZxvXr1zUAlLJfBQCK0a2VUi+1uSiKb0qSZAMAKpXqrCzLiVu2bDGU1PCHp9Vq4eDgYADQraaxeZ5vfF+av+eZV1rFth6gxjcvL4+9cOECPYBlaaXakCHAtWsAgC5dusDJyUk8duyYBND4ZSVRGGvZs6dyT7N+/aiiWFoa9R5zciyeJkkS9u/fj6+++kret2+fvG7dOixZsgQLFizA4sWL5cWLF2PhwoXo9uefrG0D38YcHByYnJwcpmfPnjhw4ACpVtEnSbTAo0LYoUuXLsRkMlkOv9jY0Lzn+HirO1FkZ2dDluVijuMsa2sq/ONQwgtWwvN8M41G86MgCOMB9CWErJdluf0zzzwDPz+/ascfOHBAOH78+F+CIIzkOE5YvHjxV5IkTTWZTKM5jjtUmo42neO41U08Tx8AlwDAy8sLL1TUSNizBxg/nhpChsGFCxewbds2DBs2DFFRUXJhYSHp3LmzNGrUqBqbSlbDy4t2ULYkRP7rr/R6v/1GX81L47KJiYnYvn27pFaryahRo0hZJ2ZZlmEwGFBcXAytVgt7e3vIPXuCrF5N09nqgSAI+Oqrr+TBgwcjKCiIHDt2DAcPHsT06dPhWlUUqAphYWG4ePGi9Morr1h2Skwmmsu7aBGwcmWtnTROnz6NvXv37n733XdH1usGFB5aFE/XSjiOy5s7d+4EAHYcx8XIstwLgPm3337Djh07jAUFBZWOHzx4sKZNmzbBGo0mZcGCBZuMRuMbrVu3bqFWq//86KOPngINP6wq7YvWlPNMBP29Pn/z5s38kydP/r1z+HAgOZnKMhYVoXPnzvDx8ZEPHTpk9vX1JW+88QZu3bol//e//5Vzc3Otu2DfvjRFzRLjx1MD9eqrtNKrlB07doiBgYHMzJkzyw0uQMMCNjY25Xm5AEDi4uptcAFg48aNkqurq9y7d28CAEFBQWjdujWOHj36d9xj4UKai1uFixcviv7+/jX/Xso84w0baHpdLeTl5cFoNCoVaArlKEa3nnAcV1z6PYfjODUA1/j4+OXffPON4cCBA0JZqSrLspg0aZLthAkTWoui+AwABAYGypMmTXK0sbH5H4CyrIb6JbdaN0eZ47g1ZrN50O7du7P37t0rlOcZt2xJvc7x4wEATz31FJk5c6Zq5MiRsLe3x4wZM1gHBwf50KFD1tXcTp1aexcJtZoqoD3yCPICArDthRckk8nE9ujRA3UqnK1dW17GXB9OnjyJGzduME899VSlfFpvb+/KpdMjRwLTplU7XxAEuWXLljUb3c2baW5vWBiwuvYXlaKiIpMkSRn1vgmFhxbF6DYSjuMy3nvvvdfNZnOH48ePn9m8eXNJmYEjhKBdu3aYPXs2pk2bhh49epC2bdtiyJAhtizLzmUYpgg16eQ2zdxOmUymTidPnoxevnx5UU5ZfHXNGmD9etqnzAL/+te/mNOnTzM3remq8MkntNtwbRCCixcvIs7DAz6TJzPvPPEEXKzJE+7fn2r31oOYmBjs3r0bTz31FByreOC3b99Gy4oawCxLDW8VnJ2dyb59+2SLKYJXrwIvvQRkZwN6PQ3ZfPVVjfMpKioSAGTV6yYUHmoUo9tEcBx3UxCEgcnJyUfWr19fbDKZyvfpdDq0adOm/OeePXti8uTJjoQQLaiQzZ2cV6bRaHw0Kytr/vfff19y9uxZ6u3a2wNubjT7oAqtW7eGra2t2WLub1VefRVo27bOw27evInLEyaI/qGhYJ99FnjrrbrHzs2lEpFWEhYWhoMHD2LChAnw9fWttj8/P182mUx/r2OEhtKKuipMnjyZZVmWbNiw4e8FD0GgmQtublQjuCxlMCOj1r5tRUVFZgDZVt+EwkOPYnSbEI7jSgRBGH79+vU9a9asKTYajRaPI4TA29sbQUFBkkaj2cjzfIM1eK2clzxv3rwvTSbTgD/++CMnNTWVLmpFRgKPPmoxvUutVpPimvRyK3L4MFChhLcmCgoK/m5+GRNDdXaXLqVx1ZqYMIEuVNWBwWDA8uXLxdjYWEydOhUV48QVefrpp0lqaiqJjo6moZOMDNooswKSJOHGjRvIy8uDj4/P30a3pITmIefmVq5e+89/1IRP9QAAIABJREFU6IKahbeC27dvIy0tzRaKp6tQAcXoNjEcx5kEQXgmIyNjw/Lly4suX75c47FDhw7VuLq6ugEYfJfmdsJkMs3cs2dPoSzLQLduVLi7VSuaPlUBOzs7cu3atbrjuhERNGZbBy4uLrh58yYjiiLtIqFS0ZJhrZYafUv5whcvUiGdWkhNTcXSpUtlOzs7MnPmTHjW0qLd0dERkydPJpGRkUxeeDiNR5ca0NzcXCxevFhesGABfvrpJ4SEhIjDhw9nUFhI84+zs6kojqXMh9mzgcHVf4XHjx+H0WhUA7C+37vCQ49idO8AHMdJgiD8Ozs7+6WNGzemrVq1qvBaaX5sRQghaNu2rUaj0Xz70UcfvcHz/B0NNZSyIScnJz06OlqUZZm+Ym/aRI1PhfTBUaNGMefOnWPqFBk/cKBmwZgKnDlzxpyfn1+5K+///R81qh9+SEuKK3LtGjBihMXy3zJSU1Px66+/ysHBwZg4caJVMosmkwkqlQr2anUlj3Xz5s2ir6+v9N5772HevHnQ6/UsRBGws6P6Eq1rkU34+GMqAFSFIUOGlP1TydFVKEcxuneI0gyC9YIgtL1x48aba9euLbJkwEJDQzUTJ070aNeu3SKtVvv7XZiXJAjC4Ojo6Ku7du0ySgAtmpg0qTyjAQCcnZ3RpUsXefv27VKtudyhobRYoAYkScK6deukgoIC1bvvvguLMow8D+zbR1/3yxbODIZaW/T88ssv0vr169GzZ085JCSEWKv6VVJSAo1GI7MhIeWtefLz85GWlsYOHTqULS+hFgQq6hMXByxZUq3HWyV0OtqWfsSIKpt1IIRIAKo/cRX+sShG9w7DcZxp/vz5KyVJWhQZGVlS1YCVert49tlndYSQEJ7n668aU/85XRcEoUd8fPypDRs2lEiSRI3d/PmVjhs9ejTJzs4mt2prXzNgQK1dgffs2YOsrCzy0ksv1dzgk2Gopu/587TVkCzTn0sF2Mu4ceMGoqOjsWLFCikzM5PMnDkTQ4cOZerTXNPHxwdFRUVE8vcH3n+/vKuELMsoz01OSaFGdutW2jLeGrp0qXZsaVmzUJZmqKAAKEb3riGK4jcpKSnpJ0+etOg2qlQqSJJEcJdWujmOyxMEYeC1a9dSEsoEzP38qLGLjCyfk52dnZiWllbzQMOG1VwcAbqYFBgYSKqmb1lk0CBqdBMTaaw3OLhSrHnLli3SwYMHodVq5X//+9+kXLS9HpTp7pp/+w2YMQPx8fE4c+YMvLy8xPz8fBpf7taN5uBaiNPWiI8PfWhVyIYoLCyESqVSMhcUKqEY3bsEx3EFgiDMjIuLK7C0Py8vD6IoEgB1r0o13ZwEo9E4f//+/YbCwkLqcc6bR4XKS/Hz81Pt2bOnZl2GpUup4HkNlJSUiNa2tAEA3LhBF60Yhi6ujR4NzJ+P8z/+CObGDebtt9/G1KlTWVsrWgJZoqioCEQUcYrnpcVr1mD37t3Q6XR4/vnnWf/YWBpWKNOpqC/R0TSHtxRRFEEIuSuiRwoPDorRvbtEpaen6yrm8AJUavGnn34qJoR8xnHc3RbD2G4wGA589913JdevXwdefJGW7AYEAJKERx99FH379sVPP/2Ezz77DNXKg995h3p5FoiMjEReXh7brl07i/srIcu0g8XkycDBgzRjYNkyWmrbrx9aMAwe27IF6qFD6f6EhEoLf9bi7OyMfl5e6LpvHzP1uefg7u4Og8GAzIwM2jI+PJz2emsIQ4ZUytnV6XSQJMm+YYMpPKywH3744b2ewz8GvV4vHD169BkPD49WZXq8hw4dEv/888/bJSUlz0uS9KNer7/bc5JDQkI2hIWFnY6Pjx/j5eWlbt6xI1BQQNuSl1bVOTk54fz58zh58iTi4uKkixcvSg4ODkzzFStAevX6u1igAtu3bzeHhoYy1TpaVOXqVeCVV2hoY+JE+oo/diwwYwYt0w0IgG2PHliRny93njqV2J87R+OtCQnAtm1UcMbTs9ZMh4q069ED6jlz4ODggFatWsH3s8/k/UlJxGfTJmhKNYcbzMWLVHXtzTcBlsWhQ4eYgQMHLmjcoAoPE4qne5cRBGFVRERE8ZUrV7Bp0yZDZGRklslk6jd//vw/7oGXW878+fN3ms3mJzZs2FCSVVJCwwxz5pRLGJYWN0hjx47F4MGDGXt7e3bTpk1yzq5dKLaQDgcAJpOp9qaRZdKKERFUY2H4cOrh7t9Pjfhzz9FebqXILAujjw8tSFi5Epg+ncaiFy0C3nuPliRHRAB1VdK98055/q+7uzs87e0JU1SEQiuKPOqkUyfgu+8AtRpmsxmiKGp5nq+5F73CPw7F073LhIeHxwqC4HP27FmnjIyMpWaz+VmO4+5aHLc2Bg0alBIREZERExMzSqfTwdPREXBzQ3H79ti8eTNatGghhYaGMq1atUKXLl3Qr18/sra4WLTx82PcLBQlREVFoW/fvkT3/+ydd1gU5/bHv+/MNmCp0hVFUAQjWAAVRIMldrGLvcUSjbnmmpti9GYzRmPUaIzX2JJYYozdYO9iQbGggoCKoiIiIEiVsuzuzPv74wUVAUGjyS9mP8/Do+zOzs4McPbMeb/ne0rnppWTdRkMwHvvAefPAx9+yBbkeJ7ZTsbEsIy3sJANzmzVCoQQ5ObmkosXL0rNmzcnHM8zDa2PD5O7NW3KZrQVFrIus1OnADc3VqO1sip/YI8escx4/HgYOA7fqNVwatkSrUrf5w/j6gp8+inO29igtDlGCA4ONnqoGgFg9NM1UgmCIMyUyWQz+vXrp/Jq1AgFAQHY0Lo1Qj77DE5OTo+3u3XrFszatkXBN9/AqX//J22+pcyePRsfffQRdu3aJSUmJnIODg5S7169OLsdO9j04W3bmB/v0+OF5s5ltdrPP2e12+nTWWAGUx4sXbpUUqvVGDFiRNWev3o9Ux8kJ7OW41q1mOa3Tx/A05MZrDs5sbE7PXtix/nzUkJCAjExMUGrVq3QtGlTEhERQZs2bUrMzc3xwot2Oh1EHx8sDAlBsZlZH41GY5yPZuQxxkzXSAWCg4NPhoeH779x48aQ+m5uSpvr15HfrBk9fe2a5O/v/7gktWHDBtE+L4+LVKnooQsXiCRJhvr163MA06hGRESgY8eOuHjxomRjY8MVx8YSnDiB2pmZ4OfMYbfiz9ZhP/iASa9sbQEXF6YDNjcH5HJwHAc/Pz9y4cIF6dKlS6R58+aE4zgUFhYiMjKS3rx5E6ampsTc0pKNg/f1ZX65Pj5smsWiRaxc8c47wJ07zPfBwgJeXl6kTZs2hBBCoqKipOPHj3PJyckkKioKZ8+eRZs2baq3oXwankdCx46Ij4+HxPPTg4ODa2hObOSfgLGma6RSNBrNJVEUP9+0aZM+etIkZGVk0A4rVpT7feF5HnetrKiXnx8ZM2YMzpw5IyvTwWZkZJR1ZMFQUkIyz59H//XrUXDzJhY6O6Oofn3k5eXhxo0bT3YYH8/qtWUOYXI5qymHhaHsjkwmk2HixIm8VquVTpw4gQcPHuDHH3+kcXFx9P79+1izZg0ynvaC4DjmDDZ9OpN0lRmiHz1aTv3AcRxat26NDz74gJ8yZQoCAgIwatQoqNVq6cSJE9V6UBgMBiQnJ0NbapdpY2GBT+fNw8Tlyx1f/OobeZMxFviNVIkkSStKSkrmHzp0SNbCyYlzc3RktdjScsCECRN4fssWEFtboE4dmJmZicuXL+fUarWUnJzM29jYSEhM5EYfPcodycvD2tGjoXZ1FQ3Z2TwAHDlyRIyPj+cbN24s9urVi1ceOcI6wZ6uqw4bhpzCQiyZNQtBQUHo0KEDOI5Djx49+L1794rnzp3jXVxc6IgRIzitVovvv/+eZmZmkipH8uzdCyxcyBpApk1jngrPmOpYWVmhc6mlZGhoKLdmzRo8fPhQfOutt/gyJcaVK1dobGyslJqaypuZmYmiKHI6nY7IZDI6dOhQ4uLiglWfflqYplAUaV71D8bI3xpjTdfIc5k1a9bkBg0azB86dCgr2K5bxxasypoAjh5lygNra0iShOPHj0On0+HiuXPwO3MGeW5uVJ2cTC74+QEcBw8PD6SlpdFp06aRw4cP08TERPro0SOiUijImIICmA8YwOquANLS0hB/5oyk+uEHLiokBHl5efD09JT69+/PlRszX8r169exe/dufPTRR5WXAyQJmDKFTc54/332AVK/PrB7N8uqn5oK/DRpaWk4c+YMkpOTxcLCQp4QArVaLarVaj4lJQUODg5wc3Oj/v7+JDo6WoyMjOQJIdTW1lbsO336bdusrF6g9EalOzfyj8OY6Rp5LpTS3cnJyd8+fiAlpbwN4+rVzBrS2hocx6FDhw54dOcOVPPnw6GggJK+fYlru3YwHDqEK1eugOd51KtXTyoqKuIvX75MAgMDCc/ziNuwAcWHD8N85kwATKK2evVq1HZ0JIPT0hA0aBAy5XKsWbMG8+bNw7Rp0yp4OdjZ2UGv11ddf42LY6OFOnZkXhPt2gFLlzJv3507mdysksU5Jycn9O/fHwD4goIC6HQ62NjY8ACQnp6ODRs2SHfv3kXnzp1J+/bt+bfffhurVq1CWlqaLM3FxcE2K0v1h34IRt4ojDVdI9WhlMlkT1zOZ8xgC1CffMLadePjy49ZX7AANCgI2X37il7nzhHPzp2hUqnQoEEDNGzYkD58+FAURZHfuHGjZG1tLQYFBSEgIAA+sbFUHDz48W6uXLlCraysxNHvvktUv/wCmJnBzs4OI0aM4AwGA44fPy4+29lnbW0Ng8GAZx9/zK1bT+rFZmYs4CYnM++ICRPYeURHP/diqNVq2DzVCOLo6AgbGxuo1erHt4wcx2HUqFEkMDAQuwYMKACgByE1MJ8w8k/AGHSNVIdaLpdXXEg6dYoF3F27mFdDdDRrpnBxwf5//UvMNTMjesMT24HGjRsjNDSUtG/fnk9NTRWVSiUZMWIEn5aWhksXLqBYqURx794A2CLcyZMnSVBQELvf37OHjQUC4ODggG7duuHq1atk9erV9ObNm48X2SIjIyGXy1FpyYxS4JtvgKAg9n29emzqxapVgLs7M/uJjGQNGk97/j4HnU6H06dPIzU1levevXu52oSJiQkcHBxgMBhqG3j+GIARNdqpkTceY3nBSHVkFBYWyjIzM2FnZ8ceIYQFqPx8wNubaWvnzmXKg9BQ9NXr+RUrVohr166VRo4cWU5P6+XlBS8vLx4ANm/eLCYmJvINsrOl1oSgXosWxGAwYN26dfD29qZNmzZlK2oPHrCgCJZFNm3aFNHR0cjNzcX27dupo6MjbdCgAXfy5EkMGzYMisq8b0+dYvVbd3f2fatWwMqV7Bzy8wGNhml7r14Frl9nZZNly57bWnzgwAFcvnwZgYGB1NLSskJXRZMmTbBjxw7MmTHDERy3zLigZgQwZrpGqkGj0aRKkvThxo0bCyvcticmslE9K1cyk5xx4wBCoFAoMGXKFF6v19Off/6ZFhcXl3uZJEnYsmULvX37Nj9lyhSEdu/O1Rs1igOYHWJJSQk6depEaF4e6zabPZuVNcDc2BYtWgS9Xk+nTZtGpk2bRiil5Pjx46CUYv369Thy5IhkMDxj7hUXx46vDEKArVtZiWHgQOaWduwYq/nWrs3sJR8+ZLPRqsDf3x8AYDAYKpWUEULw1ltv6cFxmLRs2XUQMqNmV93Im4wx0/2HIgiCjOO4SZIkPdRoNBuft60oij8VFhb2i4qK6hIQEPAko2vRgt2iz5nDxvZ07fr4KY7j8N577/ELFiygSUlJ8PJ64s2u1Wpx7do1MnjwYFiamzOzm1OnAACWlpZo2LCh+P333/OuMTF4OzGRGoqKiFVBAbRaLTZt2kQdHByksWPHPr6dt7S0JJRSqWXLlpyZmRl27NiBM2fOgOd51K5dWxrYty9ndusWG7vzNGPHMtMcgLUR9+rFbB0nTGCqjIgI5v9w/Dhr1HiGpKQkAMDdu3erTF5cXV3l8fHxONGunQdHCN//eRfayD8CY9D952IrSdISMzOzIkEQ0jUaTXhVG2o0GioIwoLz588HNW/eXF3mpQCAzTabO5cF3XXrWJAqpaCgAHq9nri6upbbn6mpKczMzCSVSsXh5ElmI+ngAIBlh4EBAbzbokWw//hj7MnJkXI2byY6nY6TJAleXl7o169fufqpo6Mjbt++TZqUzmr76KOPOEmSkJOTg507d+K3r7/GkLw8qOvVQ15eHtatW0eLiopI/fr1xb47d/IKCwtmoL5kCRsZdPcuq/kGBaF4xgxsDguT2isUXL2JE8udR3h4OOzt7TF27NgqDRtq164NuVyefd3HJ6vuzZvC3j59PKKaNx/xV5obvekIgmAJoBhAHQA/A7gD4ASAMwASn772giDUA8DzPD8GQIkoiis0Gs3D13l8xqD7z+WBXC6/q9Vq6wAYLwiCRTUeAceLi4u3f/fdd4OaNGnCvfPOO8rHwbfMT3fKFNZ+26YNADbHTBRF7uka62Y2goeKosjVqlWLTYoolYmVYVtcDNPMTKyLiaHTvvrqcYCVJAkcx1UIcBEREVKnTp3KPc5xHGrVqoWxY8dyiSNG4Ex2Nh7+9puYmZnJ1apVi/bv358cPHiQXE5KgnzpUsmyTh3O1cMDpxYtoo0uXoTj6dPkTloaNty/D5usLK7WL78A/v4suy/FxsZGLCgo4PV6feV1ZDC5mYuLizIpKWmvf1TUu7lWVsMA/AAg8jnX2sgLIggCkclk73McN5PneRtJknhKadkdSHCjRo0GJiQkqEu3BYA9AC4B+AJghvMWFhaSVqsdJgiCt0ajeW3m88bmiH8wgiCY8jx/XhTFMhNZXqPRPLflVRCExjKZbMM777zTrGXLluWfzMpi9oqensD48UhLS8PGjRtFnue5gQMHEmdn57JfeLz//vuwtbQExoxh5Yl69dg+vvsOMDFBQnAw9uzdK3300UfVrjssXLhQCgkJ4RpWZqZuMAD+/sjfuROHzp+HUqlEjx49Hmt5C7KzEb14MU6bmlIQQiBJtNWJE7jr7497SiVp2bIlAgMDseybb/Cvd9+F6sMPWUZf6lz27bffSv379+eeZ9SelZWF5cuX09LJIFBotQ2mz517q7rzMlI5giAQAE4A3AG48zzfWC6X9zQxMak7YMAAszJTJlEU8XQTTWpqKsLCwpCZmQme5yGKT5SQJiYmJe+9955y69athRkZGTd1Ot1ojUYT8zqO35jp/oPRaDRFgiAEAWgM4E51AbeUBEmSGnuU6V2fplYt5pUweDDg6wun5s3x4Ycf8tu2bcPWrVvp1KlTiUqlooMHDya2trasflq3LlCvHiiluHL5Mur+9BM9GxIiXdq+nW/RokWNfBYtLCy4O3fuSA0bNqwYoKOigDFjYFG3LgbUrVvhabW1NYIOHULgggVkdUICzM3NJZ8JE3jfgADg889hXtoOLK9VS7yYlMQ3FUWob90CPD0ReeWKpNPpuCtXroj169evvJ0NbFpFt27dyJ49exC6fXumZ2zsOsydG1STc/snIwiCAkA7AA1lMpmnXC73ppS6cxznJJfLDZaWljpbW1ve3t7ezMXFhdStW7dckH22a9HZ2RmTS6WHCxYskEJDQzkbGxsUFBTAzs5OyfM8hg4darZlyxavpKQkfwDGoGvk1aPRaHLBal013V6cO3dugSRJFUdFAICzM1MBDBuGh40b42yLFrh7967k6elJr127xmu1WnLq1CmxoKCAb7h4MRSlwx8zf/0V0uLF2Dh5suhav75sckAArK2tnxt08/PzERYWJj18+JDr3r175RlxTAzzzq0KQpA9fjxi4uJgaWuL69ev8yEhITD5+Wc2uqfUa6JZs2b8ybNnEd66NbpkZKBZly5IDQ0lZh4eyM3NJZcuXZJKSkpoQEBApcG3efPm2LNnD077+2/wjI39+nnn9U+mNIttJJPJRstkskk2NjZwcnKS29nZmVhbW8PGxgbW1tZQKpVyAC8wfK8iHMdBrVZDrX4yUalUX80lJSU9x33/j2EMukZeiNLambKqGiYAZojz44/Iat0anCiKbbt141q2asUVFBTA3d2d6nQ6HNm/X7QPC+N3ublJ9Y8dI/W3biUFrq7S5Pffr9HvZFFREZYsWQIPDw86YcIE1KpVq+JGBgOTin3yyXP3tSklReq1eTMX/957UufOnYlKpSJo2xaFjx4h08cH20aNknSiyOn1enTr1g2RZ8+KyYMHQ/Tw4IbJ5fg5JYUkJSURANBqtVL79u0rfABwHIc+ffpg//79b0vAUY6QVqD0vzU5138KgiD4KZXKNRzHuTVp0kTm7++veKwN/xNxdXWVX7hwYbYgCL9rNJqqp66+JMaga6TGCIJAlErlEoVCwZUZlkuShMOHDyMlJUXq27cv97hF1sICYaNG0anh4bxKoQBatYKFhQWGDx9OAPCIioLexQVNTUw4xylTsDU0lEpqNdrW8FjWr18vurq6YtCgQVXe1iMqiultK5F7lXH06FEUmZpytSnFlC5dODRq9Pi5pDp1wFGKTg4OnGPXrnB0ZC6NLVu2ZO9ZWAgEBOA/48eTB/374/Tp0zh58iTXpk2bShfWvL29cezYMY84b28/n9hY2xqe6j+Cb775ZrFSqZzQtWtXk6ZNm76aCR7PgVJa5RsQQsBxXIkkScmv472NQddIjeF5/n21Wj1m7NixJuHh4TQuLk4sLi7m1Wo1dXR0JKtWraIODg502LBhXOl8MPJoxQqoli1jTl49ejyZEnHgAOT168NPrwfatMG/NRoiSVKN/tL27duHgoICbtSoURW3NxhYU0NeHlNFlMnVTp0C7OyQpFTi0MqVYrGDA0zVapKdnU3atWtHuDFjmA/DU9y8fRs5H38sjjlzhkedOsyX92nMzIALF8CLIpxDQ6FzcxPb9OrFV3UXwHEcOnbsaLavpKTv7yUlzTSE1AWlr+UP+++EIAg+AKa+//77sLV9/Z9FkZGRIIQQh1KZ4rMcOnTokcFgGKvRaHSv4/2NQddIjRAE4QOZTPZtaGio4saNGzh79izp2rWrzNLSEm5uboQQghs3biAiIoKuWLFCcnZ25mrXri3aubrymDsXGD2aaXkXL2bdYNnZrLFi9mw2ugeofjoDpUiMjETy4cMY1bUrUe3fD1y6xBbwSkpYC++ePcCQIYC9PWtuePSIvXbWLKBZM4TZ2Yn/WrCAv75/P9S//Qa7fftQMnEia47IzWUfDj4+OB0fj2vXrmHkyJE8bGyYwqJTpwqHJMnl2LV/P+zy8mB6/z7fzM0NAFBcXIy4uDio1Wp4eno+ztyaNGmCY8eOuQ/48cfFAAaBrcL/04kBmGHR68ZgMODEiRM0JCSEyOXyCs+np6cjPz+fAAh7XcdglIwZqRZBEOQAHn/qy2Qy9O/fH56lvrdPU1JSgt27d4vx8fF8YGAgfeedd1i00WqBjRtZ80HDhk98eX//HVCpmCFNYSFTNDx6xPwQoqOZ74KNDctcDx5EZkEB7nl60hYdOxLk5wN2dmwcj4UFm4Pm6Mh8cR8+ZP65T5mZnzx5ElFRUXTq1KmE53l2THl5LPivXcuMzVetApYuRZxeT/HFF6RJ2cDMxEQ25XfhwnJ+DCtXrpTS09O5oUOHQimXw6VTJ5AxY3C5e3fs378fBoMB06ZNK7dYc+bMGZw6evTnT7/4YjIofS3Z1N8FQRA4ACIAaDQv6E6Rmsrkie++y6SGNWDLli300aNHdOzYsdyzJYyCggKsWLGiqKioaNwXX3zx3C7NP4Ix0zVSLRqNRg+ACIKgBNAfwC+enp6V1lKVSiUGDBjAN2vWDObm5k9+q1Uq5qMwYwYgCGx+mbc3M5pRq9mt/YEDQPfugJcXYGoKiCLQvj3zQrCyAmbOhIko4sCSJcSqRw+4lWaVFbh5k7mJJZZfA8nJyaEGg4FkZmay+izHsSxbpQLmzwciI6Hr1AmHDQZk799Pui1ZAmzaxCYT16nDjHDCwoB+/R7v08TEhAOAsq67sPfeE7Pu3eNN589Hu4ED6Ylr10h4eLgUFBT0eBy9u7s7jh8/Hhrj4xPelJApoDTgJX80bwL1AMDExETCi3jBFBayKSPLlrFJ0tWg0+mwfft26c6dO9z48ePJswG3sLAQ69evL9LpdIsopZsEQWgC4KZGoyl5obOpAcaga6RaBEEwB/AOgLpKpbKvjY2NFoDZ815TNtamHAoFu01fvJh5HowcyYKvjQ0LqqVlhudSUACe52kO8/CtvAZsYsIMbMzNyz3cu3dvsnbtWkRFRUk9/fw4/Pwzy3b/9S/AwgLxixbRyxERpCQgQHpbo+Fqubsz9UN6OhuWKZMBN26wzDgwEAUFBUhJScHw4cMhSRJ++eUXqVihQI6NDQYfOIBGPE/qzJ6NPXv2kNzcXHHEiBE8wOwpe/bsaXa4qOh/rnfubLes/qzfZBqZmprqi4qK5IIgoHHjxvDx8UHt2rXL3R1UYMAA1jq+di37INy/nxkvVcK5c+cQHh5OHRwcMHHixApKl9u3b2Pr1q3Foiiu4DjOG0CZXt0DwM1XcZJPYwy6Rp6LIAh+MpnsqLOzM7G3t1c4Ojoqm5UNd3wZCgqA4GBg+3bg9m32xzJ9eo1fvm7dOkmr1XKVSsQA4MIFNvV3Y+V3hx4eHkjfuZONf+/Rg43uKS0XGKKj0dXbG7bvvvsk4/L2Zl/BwSyD7tz58Vj4kjp1QCnFtWvXpB07dnBqtZoqFAoOABIXLqRO/v4ku2dP1Hd0JIanHc4A+Pj4EL1eb7lcoeg9yskpxiktbWmNL8KbRb6JiUnxv/71L/m5c+fEiIgI/urVq7CwsJCmTp3KVVrnz80F/vtfVocH2OToStQODx48wJYtW8Ti4mI+JCSEeHl5Vchwc3NzsXnz5mKdTtcLAFGr1TttbW26ofkfAAAgAElEQVR1GRkZ6z7//PNXHnABY9A1Uj0Nzc3NFaNGjVK90BjyqsjMZMYyFhYsizx37rmbnzhxAlFRUZIkSZAkiRBCOABYt27d4xrgwYMHpYSEBMnMzAzvcpzs2Qz3aZpeuYKC6GguqV8/uA4cWO65w927Y+Tw4ZW/UC5nNeOwMBao589Hrfh4DHRxkTbq9Vy3bt1wJymJJCYmktGjR6NevXrk/v37SK1fH60dHGDRujVPJQkg5PGimq+vL0du3bKxys39fuXEiTsnrlx5r8bX8c0hvaioiFcqlWjXrh0fFBSEgoICrF27luzevZv27t27fJTcv5/VcO/ceTJaKSiI+SNv3gyEhsJgMOD333+nN27cIL6+vujQoUOlEj5JkrB169ZCSZLmajSao1999dVsg8FgmpGR8UCv1//7dZ2w0U/XSHVsLioqunjy5MkqZuC8IN9+C/zyC/v/8OEsiK1fz5zGwP4QYmNjsXHjRixatEiMioqiXbt25YYOHcqNGjWKfPTRR/jwww8BAKtXr8a2bdsQFRXFtW3bVqa9dk2Wbm3NFsOehVJAEGB2+zb0XbpIv2Zm4uLFiwDYAsq8efOo040bhHTogApevABb9AsNZbXns2eZ9nfUKHisXMlpPDzgHxqKm7GxXJMmTVC3tN1YrVYj2scH0GggjR2L240bY8GCBTh//jwte48Wgwbx5w8ckLJdXU8KgvBP1O7WMTc3f3zBOY6DhYUFBg8eTOLj40ni03X5khJmZv/LLxVn2eXkAO+9h5jwcCxcuJDm5OTQ8ePHo2vXrlVK+CIjI8WsrKxrBoPhGwCQJOmIVquFXq9vo9FoCit90SuA//LLL1/Xvo28AQQHB9OjR49ezM7OHhkQEFBxauOLYm/PBkI+LQ+qVw+SvT123LiBMz/9RK+yhS7avHlzvmfPnsTR0REWFhZQq9XgOA4qlQpmZmZiafYrNW/enPr5+XFO06dTXUICMQ8NRWxsLORyOUxNTZkRz5gxLCMaOxYe7duTyMhImpCQQJycnJCSkoL79+9j2KRJJC0igq5OT8f58+el+vXrc+ZlWXN2Nqv/jh3LsvSjR1nGPn060LQpSMOGyKxVC8ETJiBHpYJ569ZQqVRITU2VDh06RKLs7MB5edHA2rXJlfBw6dCVK1xAQAA4jkM9S0suoE8fqzg/vx4HIiJ+Dg4OFiu/eG8eJ06cCKpTp06vJk2alPvdMjMzg1KppPv27YOfnx+RSRLQsiXw1ltAt24V9pNdUoI1dnZiQkIC16VHD9K9e3fyvJowpRSbNm3SarXanhqN5gEABAcHJwUHBwvBwcE5Vb7wFWAsLxipCXFFRUWy/Px8WFj8gfmKWi3Ty+7eXf5xKyuEmZpSunMnGRsWRricHJBKLByfxt/fv7x6orgYCVOnSrF37nAl334LhUKB4uJiUis7mw6/cYPQ7t2RFxiIOpaWOH/+PCRJIm3btqVhYWHUYDCQrl27wszNDY2GDSOj27XDiYsXucOHD9ORI0eSgm3boP/4Y6yZMkVssGcPHxISwtQOlpZsUVCjAUJC0EOrxZ6dO6mftzfBwoXAsWMYvHcvl5GRgSNHjqBN9+7E6ocf4LBlC79pxgyprGBJrK3Br1+PWoWF9QtTUn4AMK6yc35DEbVabaVP+Pv7kxs3bkjr16+Xxg8bxmPo0AoBV5Ik7Nq1i169epV4e3ujx7x54GxsgGrWHfR6PbRarQLAtVd1IjXFWF4wUi0ajUbkOO7733//vegP6bpv3WJffEW1mbW1NYl3c8P/Pv0Up/bupUVDhjCdbU3p3RsdsrP5HkOGkKFDh5Jp06aRzxs2RO/Dh7HB1RXfZ2Xhl19/xcKFC6UjR45g0KBBaNOmDTEYDJyHhweaN29OAIBbvRpO9+/DYDBIxcXFkCQJ53/9lcZ16SIFBAbyV65cefKeo0cz3e78+QCATZs2Sdpu3STXDh2ALl2Y/O3RI9j36YOhvr6wsrLCmfbt8dOkSRiVl8eRKVNY2QMACQlB6IkTpiY8P2TWrFlVFJbfSNIePHhQsUsBrB23X79+nOe2bXxmt27Ap58+6WgEEB8fj4ULF0qpqal0zJgx6NWrF8/t3QuMH1/tm2q1WlBKZQD+wKrwy2HMdI3UCL1e/0VqamqPs2fPvhUQEPByH9b29myWWiW0b98eGRkZlOM4knz2LOqdOYPaOh1kSmWlK9PloBRo0wbcsGHwsLNjwfqbb0CKi2Hz22+kg1KJunXrgud5XL9+nTM1NYWbm1tZ7ZbqdDqKMvnZwoWAhwd6NmvGr169ml7t0AEPGzQg/X/4gdy5cweiKOKbb76hHMfR2rVrY8i8eRx3+zaKrl9HcnIyN2XKFHZMTZqwL60WaN2aydfmzAGJipJaTZvGmajVwPLlrBFEJgNMTSGLicGwUaNMV508uVIQhJ0ajebRS13nvwmzZs3qK5fLf+nTp4+qqm1MTU3h1bYtDt6+jU4PHsDBwQH5+fnYuHGjmJ2dzb/zzjvE19f3iSrBxwdYsIBN/1hauSDEYDDg0qVLZd82BnDx1Z7Z8zFmukZqhEaj0et0uj7h4eHF6enpL7eTKVOe2zkUGhpKBg4ciHtqNS4tXizx9+6xjrPqRqJPm8YaGMoC7pAhbKDkv/8NZZMmaNiwIZRKJWQyGZo0afK4qeLatWtQKpUIDQ198ncQGwusWgUrKyv08PcnzjdvImDKFPA8j3r16qFNmzZ06NChZOjQoVx2djbZZGlJceYM5P37gxCC8PBwevv2beh0pY1mKhWTsDk7A7a2UCgUnC4pScLSpSzA//gjm0ah1QIXLsCuaVM4OzkZAHSt5EzfGARBaKlQKDaMGjVK3egpk6FyZGQALVrAdvJkOAwdKq1fv17au3cvli5dCjs7O0ydOhV+fn4VZGBo1AiozO8ZLMM9cuQIjYiIKPsl/u3VnVXNMAZdIzVGo9HcNhgM49asWVMcFxf34jt45x0maq8GlUolOTo6EuLuDvzvf2zh6sKFyjfOyQF27GABNzkZCAgAJk5kzQyl0x2q4ubNm6hbt65UTgpXUsJKIBkZaLRvH2ySk+FSWh+Uy+Xo1KkTqVu3LtRqNYqKisjdu3fJD127igVpaWggirh79y5Zv3495s+fj/xnPizONWuGQ82aUTcXFw5377IHRZE1Z6SksPNwcUFQVpaFUqkcVu2F+nvT0svLi9SuXbvqLdLSmBTMxgbt27fnCCEkMTGRjhgxAv369eNNTU0rf11ICDBiBLuTeIaNGzcWnTt3joiiOBrAXQCtX8XJvAjGoGvkhfjiiy826XS6drt3735w/fr1are/dOkStm3bhqKMDCA1FVLDhsjNzX3uawICAvgLFy4gKTkZhoEDmY9CcDBw/37FjePiWJC8d4/pZ//3P6BDh0rrxs9iZWWFvLy88g9OnMgy59mzmWKB5yFJEpYvXy7FxDwZJLBp0yaq1WrRuXNnBPTowZ+ZNUsa/PXXmNatG9599104ODjQxYsXl9v14cOHodPpSP3gYGb+Y27Oyi06HRAZyUbEnzsHx/feg8Fg6Fw6OeGNRKlU+jk6OlZZVsAHH7AP0dLAyfM8TExMpKCgIOLyHKtOlJQwtcrgwexn+AyNGjUqK6keAGtBft5cwNeCMegaeWE0Gk2UTqf76sKFC8XPW1grKCjAnj17UFRUJO36+GM8XLMG3377rbRkyRIcPXq0ytd5eHigsLAQGzZswPnz5ylsbVkXkpMTKx08eMA2jIxkGc333wPvv89kXM/ObXsO9vb2SE9P58udQ04OC9rjxgELF6Lg5k1s/uYbKSs1lbuyYAFy4+OBmzcRmp1NTAlB9uzZsA4Lk3oMGMARBwdg1CjUqV0bPXv2JJRSfPvtt9KD0uP97LPPwHEcsrKynrzfxo3Ahx+yVmgHB+DePZjXrg2/mzclAG/X+GT+ZnAc18L+KTOichgMzOfimblzlNLKfXYfPGAfuoLA9NOUMs+Os2crbBoQEKBo3Ljx0w+9VWGj14wx6Bp5WVanpKTc37t3r+7evXvQ65/0TqSkpODIkSNYuXKlZG5uTocPH869PWsWLsyYIfbs2ZN79913cf78eURFRVW6YxsbG0yfPp2YmZmJtCwiyuUsI0xPZwtrlLL5at26scxmzx5Whnia3NwnmQ+bQgysWQNs2ICju3dTk7590d7WViRbtjC3KoDZN6ansxbT9u1h8PND9++/56a1b4/uR48iYflyipgYKHbuhBml1EsuR/KZM9zD7GygVy8WAD78EE5OThg8eDAcHBzIihUrEBsbC5lMhrp16xpWrFiB8PBwREdHQ5IktpimUrFjnDMHePQIXX75xcw+J2eyVqm0eO2O3n8ygiCodTpdg0qDbmQk8NlnwOHDjxtmnoI+vhSJiSwLTkxkU5p37WIfyNHRrC34s88qNa/X6/W4devWY41amUb3z8SoXjDyUmg0mmJBEALj4uIWXbx4cbiFhYXUq1cvbtu2bbSkpIQ4OjpKHTt25Ly9vcFxHJwmToTT6NE8SrMMV1dXMS0tjdUARBEwGCDl5OD0pUu4ERkpktxcjrO15VsVF7NWYbWa+eUuWwbs28fKAHo9+7d/fzb2/cwZYMIEZvl3/Dj741u7lv378cdsu7g4SKamiLO0pJ6NGyOwSxcehDCtLcA8Gdq0YVONb9zAo4cPYc/zUE6ZAr5uXeivXycYMQJ09mzknzpFam/ejMt79tDVe/aQcbNnw6ZtW9Dx45H6wQcICwsDIYRaW1tLjRo14gFg1KhRsjO7duHS3r1ofOkS8s3NYeXlxTLsAQOAr74CDAboduyA2KDBO0VmZqlEks4ogc4gpD4ovfNX/LxfFYIguCoUiiNeXl6kbPpIOQ4dYj/XSlDl58Ppf/9j12nPHvZzHj2aZcVV1XefISsrCyUlJVWXNf4EjH66Rv4wgiC0lclkA0RR/EClUqFdu3bEzs4Obm5uT5K0Tp1YdtqtG3D2LDLOnUP2p5+i0dy5gJUVyIQJyFq7FjEuLmiRnw+VVovCmTNRa+VKNv0hMJAF1R492L8XLzIryGXLgD59gF9/ZSWG+/dZJuzmxt6vkiRx3bp1YkFBATdu3DiifLadtIxr14Du3bFx8GCabGVF/G/ckNyaN+eOR0VhpL8/SHg4tvI8BiQkgGveHIf8/enDuDhSv3dvpK1di8DwcPz20Ufihx99xHO5uWxyRVERCrdsQWZ0NOJ79pTqP3oEz3ff5bi2zwwp2rwZsLCAPiAAYp062Nut28/9t23TALgDwAqAG4B7oDSv4oH//0UQhM5yuXxLhw4d1K1ateLLJfCSBHz5JavllhnYSBILwAsWALt2YW2PHoZely/LagnCE7ObF4RSisuXL2M3a9Bx1Wg0d1/Fub0IxqBr5JUhCEIjQkgflUrVQ6fTtRo2bJjC1dWVBd7MTLZC7+wMEIKVK1ZQrzZtSHxsrPhIpyP29vYkNTWV9OzZU/Lx8alZ2Ss/n2XAEyaUH83zHMLCwuitW7cwceLEyttEP/2ULcxt2wacOoUfjhyR/Bs25By3bUOMTIY4X1+YmZmJLVq04E8dP47pPXuyW1wTE6QsWEDTzc2pe1YWZ3X2LEj9+qxW+/nnwMGDQFAQMr298fPu3fhs5syqD3LkSOYhPHcuHqSnY/Xq1brxixfrbDMzB4LSAyDkAIAcAEMBhALYjP/Hf8iCINRVKBTz5HJ5SP/+/U3rP1OrBcDuYvr2BU6eZBmsXs+MbT78kOm7VSosvX7d0LZdO1nTlwy4ZTx48ACrV69Onz59+l8ytcNYXjDyytBoNAkA5gGYN3fu3MmbNm360sTExMTX19fU39+fUzVvDoDd4kl2dgiPiIC9vT0J8PXFyZMnycSJE2Fra1vzdQYLC7bokpLCFA4uLs9VLWi1WsTFxZGxY8dW7dXapw/bF4CLpqawu32ba75mDeQTJ6Jufj66fPQRTp06RY4ePQpzc3MmVbt5E+jeHXWmTyd1AgMJ6tVjqoTkZGDFCqBjRxZQAJgVFUFfXXz86afH/3VwdMTHn3yiOHP8OEm1ts4ZTIgXgB5gnq/uAH4AsB2E9ABwF5RW3n3yFyAIQhsAEQDg5eWl79atm7zSO4u9e1ktd+dOoHdvZrV54ABbZHyqrkuvX3+p8vazC3BJSUkghFS9kvuaMS6kGXktTJ8+fZlOp3PIy8vrGhERsWP58uVFmZmZEEURP/74I0pKSuj06dMxadIkrm3bttxnn332ckMJZTL2B+rry0oKa9dW2CQ/Px+zZs3C999/T3meZ4qI5+xPevtt6HQ67N+/Hz4zZkAeFsYaGOztobh1Cx2bNOHe3bCB+mZmSvjlF1b/Lbs9/vVXtnhXXAzExDAlxFPtzEePHqVqtfr5UXfUKHZLXQrP8whv00ae0Ljx2Xxz8zM6uXwuKKWgNBGU1gKlegDDAAwEIQoQ8h0IqV4z95oQBIEXBGEESgOut7c3+vTpUzHg3r37RHny++/szuX4cVY+srCobCHthYNuYWEhli1bpk9JSXn8WGJi4qOSkpL9L3xirwhjpmvktaHRaCiA0wBOf/XVV2N+/PHHHyilJnK5XJo8eTL3tOUeXwNd7XMhhFn+NWkCHDsG+Pk9VjMkJCSAUgofHx/prbfe4tetW0e6du0Klarieoo+OBgbBw9Gga8vtbKyop6eniwx6dQJOH0a2LUL0oEDuF63LlE2b04waBDT9b73HhtFtHUrW00HmA3h2LFskez33wEAsbGxZNCgQRXel1KKkpISdkyBgeXkUoQQdOnSBQcPHsTiqVOtKMd93DUgoLeipOTert69IwDo8eWXszUaTQwIaQygPQAJhHwGIA6U7vljF7cipTaUngAayWSyJoSQHL1ev5AQ8g2A0l5o3OU4zq6goAAAnqx0HTjAGkH8/NidypkzrOxUDVVKxqpg165duMzazuXJycmoU6cOcnJycPfuXRmA8Brv6BVjDLpG/hT++9//rhEE4YZcLj/Wp08fRVUepzVFkiScPn0a2dnZEEURXbt2henbpbLWzz5jGeY33wBgo4N4nkfXrl15QgisrKyk2NhYzt/fHzdv3sTRo0fFvLw8jlIKxcyZpEefPgg/cQJarZZIkgSOEKYqyMlhJjaShNNt26KFiQnFvXsEej2QlMRkX61alT/Q6dNZZ1Upzs7O0u7du4mVlZUUGhr6uKvqwYMH+PHHH9GsWTOxQ9OmvFmpJ28ZrVq1QklJCTiOw7Fjx5Blbe3RwNPTIzgwsKO+qEi6cPXqjLlz567RffnlFI1Gw1roCKkHIB2E2ANYC6DHy9Z+BUHwlMvli2QymavBYPCSyWQ6a2vrYnt7e1lGRoZZZmYmeJ6fKYpimXmNL4BoSZK+unPnzufHd+9GcNlw0qZNWbmlQ4eKvrivkNKAC57nt2u12j4A+AMHDhRKkvS1RqNJfW1vXA3GoGvkT0Oj0ZyeM2fOvJ07d346cuRIhYODw0vv6/Tp04iMjET9+vUNWVlZ/Jo1a6ivry8XExMjGkaOhLWlJd+iSxdY+vkBU6aA4zikp6fDyckJDRo0QHx8PHx9fbFr1y6pUaNGfK9evaCMioLlli2QT58O94YNyZo1a6TVP/wgDZg3j987bpxh4OefyxQAbt26BXNzc7FxfDyPceOAhASmK62Mhg3ZQlCjRsDJkxg6dCh3/vx5REdHk927d0t16tQhV65coX5+fpwkSbh37x65+/nnsOvVC3Zff/14N4QQvF36odL2KbWDx7//DRw+zAWeP2+ydu3a0fn5+X3mz58fp9VqZ39B6aTSF3sCyCtNFdcCOApK19fkOguCQAAMALBFr9dj6NCh2LRpE+zs7BRyuVwBAJmZmQCA0oDbGmykurdMJou2SE/3DnzwAF5qNZN2ffYZuxN4BbXZqsjNzcWjR49gamqqLSoqmkIpXdakSRMeAB4+fCiKonjwhd/8FWIMukb+VAwGg0YUxZT169d/98EHH5hWKdmqhkePHsHFxcUwcOBAWWFhIXbt2iVFRUVJTZo04czNzUlGRoZU5OyMa/Hx3LWlS6HneaxatQoffPABfH19uVWrVuG7776TzMzM0LlzZzbOJSHhceYlk8kwYsQI7tfFi+nNunVR7OzM/frrr5RSCnV4OGkfH89HT5kiukdH89V5PMDSki3QUQqFQoGgoCD4+PhwK1eulLKysiQbGxt+3759sLa2Ft977z3+dGEhrhMi9gOqr7ksXAjcvw/Thw/x3q1bppmffGKanJzsfPjw4ZaCILhrNJpsUHodwJDSV9wEcA+ENAOwbtWECb5pzs4zCSHDVSpVLAA1AMvi4mJ/AKJSqUwzNTW1dnNzw8WLF+Hq6opBgwbhzh0mF46IiMD777+P06dPIzo6GgDOEkpF55QUvuX58/AMCYGiSROgZ0+myPiDVBd0Y2NjsXPnzmKe5x/JZLL/Adgol8u7/vzzzz2HDx+uevTokRLAXzoWyRh0jfyplNZ5V82dO7fNjh07Qjt06KC0t7d/4QUSlUqF9PR0ArApA0OGDHk2QHHo1g2u2dnoM348cpOSsCQkBFlZWWjYsCE6dOggZmdno0uXLrxcXnpHHBTEbnnL3mP2bLxrbU1oRARcs7K4n5cuRTNnZ/Ftb2++xNERtXv25FFNtn7s2DHExsaKY2bM4C1272ZliBkzYGFhgY8//pgDWGkhISEBY8aM4TmOg19JCbbevctHRUVRPz+/518YjmOqjaNHwcXEwMHeHg62tsjMzDS9cuXKjwD6l9ue0jkAcDw4uA0lxCPN2Vk/9qefEN20KerOmeMul8tRUlKCXbt2ged5fuTIkXUcHR1BCIGvry8AwM3NDW5ubqCUIiIiAra2tujduzek3FyD1507Mg8HB148dgwln34KxaBBrJvwFVBdpkspxbFjxwpFUew3c+bMQ089NXDWrFn/Xb169SyFQpEIIPOVHNBLYgy6Rv4SdDrd+0lJSYWrV6/uz/O82tPTk/P09FQ1aNAAzxuAmZaWhmvXruH8+fO0SSWr289iY2MDrFsH6wcP8HlWFuRXrwINGyIwMLBiFunnx7rWyrrT8vNBWrUC4TjY2dlhzKpVeNSwIS8/dgwmsur/dO7fv4/IyEiIoshfu3YNrTgOuHsXOTk5MDExgUqlwv79++mlS5dIu3btRHNzcx4ATMLD0e3tt7Fi/35Sr1492NnZVfte6NiRfcXGAkFB6HTvnuL69etdBUEYpNFotgiCoAbzjh0pl8u76du3dyt7qemMGejSti0UN28yx7PkZLi5usLc0rLcz8LJqbysVZIkFgTv3QOWLkVfGxsZRBHw9QU3aRJeTagtT1VBl1KKU6dOScXFxfcAVKj1UJbtQ6fTzSj94P/LMDZHGPlLKa0ZehJCeiqVypEcx7kFBASofH19ORMTk3LbZmRkYOXKlXB2dhabN2/ONW/evKKX6vNYuJBpQU+erPz5mBhmOmMwsNrjmjWsq+3dd4GQEKS5umJLRAQVKaUjRozgqguGmzZtAsdx0v3790mDBg1I+/btse6nn8TGe/bwp4OCoDQzkwwGAzdmzBg4Ojo+eaFeD/A8fvz5Z0NqaqpMoVDA3t5e9PT0JIGBgVy153z0KNCxI3LmzMGPPF9skCSdKIpmVlZWRTqdzpzneXzwwQdEp9NBpVI9CWSFhUyy1aMHUKcOa+qYMIFJ3p5d+JQkiKdPY8+iReh49SrU06YBgwYB1ta4f/8+4uLiQAiBt7d3hWD9sixevFjs2rUr71nmk/EUt27dwpYtW1J1Ot3bGo0m8dnnBUGQgQXjUI1Gk/FKDuglMQZdI/+vEATBV6lUTtfr9SFqtVprb28PNzc3dePGjUlCQgIuXLgg9e/fnzM3N0elvfs1Yd06FlDDw58s6Oj1zGD9449Z99iyZcyT18sLmDyZZb9ubsjIyEB4eLiUlpaGzp07cwCg0+nQrFkzZGZmYtu2baLBYKAcx5GWLVvyJ0+epMOHDydr1qwBIYTWrV2bDv7qK6546VI8bNQItWrVqngebduyQZpjxyIpKQlyuRyl5067d+9OvL29qz/H/HzA0xPiyZPIr1ULlqVZa3R0NI4dOyZOmzat0nqxwWDAzZs30QgA5+jIOvM+/5x1FKanA2ZmwJYt7HqdPo0Mf3+sKSqCg6MjHTRoEDE1NcWKFStESZI4U1NTKTU1lTczMxNDQkJ4a2trqNVqyGpwl1AZ3333ndi9e3e+UaNGkCQJiYmJqF27NlQqFTZu3KhNSkr6dubMmf99qZ3/iRiDrpH/lwiCoATQEMBbSqUyRBTF3gaDwQwA5HL5Q0qpWatWrWRvv/22XP6iNcPkZKannTqVdbO5urJW3jZtWIbbrRtzNOvShRmwPBPkiouLcfDgQfHWrVscz/MoKSkhcrmc6vV6eHh4wN3dncTGxkpJSUmcubk5nTJlCsnIyMC+ffvokCFDiIlKxaYipKYCpV165fj2W1ZbbtGi3MPLly+XvL29uaCgoJqfK6VMObFsGdCpE/Lz87FkyRLMrKINefXq1eL9+/d5mUxGzczMxJYtW8paOzszRzcbG8DEhJkMDRkCNGgAEIK4uDhs374dAFuAlCQJoaGh8PDwgF6vx5EjR8SYmBjeYDBArVaLH3744UuJsr/77juxR48evIeHB9atW1eQmpr6gBDiTClVAQjX6XTdNRpNycvs+8/EGHSN/C0oNfQOBTN7mQvAVqFQrHF2dg4aOXKk6Uu5H/7+O2teyMxknW0lJayrzcqKCfZFkQWaasjLy8PixYvh5+eHbt26geM4UEpx48YNuLu7V57ZzZkD/PYbEB9f8blDh9io8adW+2NiYrB3715MnjwZVtWpJZ5l2TLmxhUTg+x69bBi7VrUqlXLMHHixAoHNn/+fGnIkCGcQqHAqVOnkJubS8eNG8cu7vbtrHusdFyTwWDAqVOncM+gfaYAAA65SURBVLK0XKNSqaBQKKTRo0dzVlZWFeqvt2/fxrZt26i3t/fTNmIVSkRPfU8APA5QV65ckbm4uFAbGxvp4sWLkk6nawHAlOO4rZIkBWk0mhT8DTAGXSN/WwRBkCsUiovt2rVr3KZNm5draSv1WUBgIHO3WrQIOHEC+OSTGmtJk5KSsHHjRnz66afPXQQsB6WshpqXV1FK1aEDK2k8NdpoxYoVUr169Ui3bt3KHZROp8OpU6do48aNSbW108aNgaFDof3Pf7BkyRJIkkQ7duxI/Es76Mqy4OnTp4PneezZs0csKCjgBw8e/OSYCYFWq8XatWvFrKwsXqlUwt3dXQwJCeFv376N3377DSEhIWheSQZ/+/ZtbN269Z5Wq316pMazF5k85zl3AGkAigHoASzXaDSVz2//f4xRvWDkb4tGo9ELgtDr+PHjMZmZmSatWrVSvPCija0tKy2kpzPjmpYtmcvY5s1s5EsNuHr1KlxcXESO42oe+AlhHWyursDq1WyuVxlff81u3Z+iXbt23K5du9CpUyfI5XIUFxdj//794s2bN3mtVkvMzc2rX7CKjQU4Dqpp0/ChhQVOBwfjyJEj4HkeLVq0QFRUFOzs7CSe5zkAMDEx4R6WfSgBgChC8vXFj2PHiipTU27SpElMHVKqJ65duzaCgoJw6NAhWjbS/mlKJV8PNBrNohpfpzcQo+GNkb81Go3mrsFgaBwTE7Ng/fr1xWlPtdzWmAYN2JSJq1eZ7jUujikZADbHLD6eTSRYsaLKXbzUHaNMxkbKdO/Oashl/PprhXlwjRs3hlKpFPfu3UuPHj1Kly1bRjMyMtCrVy/I5XJamY9EBXieBXtvbyjeegvtW7YkHX196bFjx6SDBw/Ss2fPlut2K7XbREREBAAgLTMTScXF1N7KCqNGjSI2z5ReTE1N0bJlS+j1epKQkMCmYlTkH39rzX/55Zd/9TEYMfKHCA4OfhQcHHwsPDw8NSYm5u3k5GTRwcFBUaV9Y2UQwmwaAWZuU2a63qoV0+8ePMgW30aMAHx82PZvvQUsWwaLzp0RHh7OeXp6vriiwsYGWLoUmDSJmeYQwtzKWrcG3N3Lberi4sJFR0dLhYWFpGnTpqRfv36cnZ0dzMzMyP79++Hj41OpiU8Fmjdnxz5tGhxXrSLHPDxIWloaGTt2LNzc3B5nqPb29rC0tMSRI0cAADt37oTVmDG0e+/evKwK7wye55GVlSWeOXOGS0hIgI+Pz+OSS05ODq5du3a/TZs2P1X64n8IxpqukTcKQRBMeJ6fzHHcF927dzdv1qzZq58vdvgw4OHBsuOQEODuXSS0bk0tnJ2J044dLDj36FHjETLIz2fOaH36sO9zc5k5+wtIqzZs2CClpaWRvn37EvdngnWVSBJoTg7WzJ2LwHPnqOepU5VeqyNHjohRUVF8nz594NmhA7NjHDjwubvOyMjApk2bqLW1tTRixAgeYFra7du3n//kk09aPffFbzjGoGvkjUQQhKY8z0c2bNiQtmjRwtTd3b3mi1wvweGZM6HX62nwF18Q09q1Wf10/34gLIzNdDt3jml+nx2eWQalzBP4u++YQmDJknItydUhSRK2bt2K9PR02qJFC2Jqaopnv5RKJXief6wOyM3NRVhYmKSIiCB90tOJ6Z49rMzxPAe4ixdZOcbSstpj2rx5s3T9+nXOysoqXxRFotPp5AAiPvvss3dqfGJvIMaga+SNRRAEW0JIqFKpnEQpdfPx8eGbNm2qcHZ2fuUDdgsKCvDbb7+J2dnZfO/eveHl5cUC1MWLrKurQQPWYtuzJ+vciopiJt52dk8y4nnzWIYcFsaMzCuZZvs8dDodwsLCkJ+fT0tKSiS9Xk8NBgMniiIxGAxEFEUATEsrk8mg1+tRt25dKTQ0lHkbX7jARpdnZ1cdePfvZyWRZy0sKyE5ORnbt28vLioqKjEYDF0AZADI0Gg0RS90Ym8YxqBr5B+BIAgNeJ4fxfP8OJVKpW7RooWpj48PZ21t/UrfJzo6Gvv27cO4ceNQ6Yjxu3dZFrtwIfDOOyzg7tzJutA2b2aLeHPnMk1sDTTCL4pOp0NBQQEOHjyIlJQUfPzxx+U3uHwZaNYMmDWLmbI/W+Lo25eVVubNq/F77t69uyQ2Nva8Xq8f+nfR0r5OjEHXyD+KUq+H1gqFYpwkSYNMTU2pi4sLHxAQYPoqMmBJkjB37lxMnjwZNQroksRKCwMGsKA7cSJrUx4+nD22axebTHHnDtuua1fmDVGTBbPnsGrVKkmtVnNDhw6t+GRODvO8PXUKeAW+CXq9HgcOHJBiY2PP6PX6uRqNZt8f3unfGGPQNfKPpbTLzYPjuO6SJM0DAE2Zw9hLkpCQgN27d9P//Oc/Lx+9MzJYN1xODqsHDxgAzJ8P3L7NpmH07s1UFI6ObAFu0SJg925mUtO5MysP1K7N5G+VcOjQIURFRWHAgAHw8PCo+jgkiZU4fv2VlR0A4IcfmMxtfY080B+j0+mwatWqkqysLCXHcV9LkvSrRqO59kI7eUMwBl0jRgAIgtAcwKW6desW+Pv7q+3t7VGrVq0Xmt12+vRpREVFSc7OznTgwIGvbzCkwcAWvFJSgIgIZkf5n/+wRbru3YF//5sZ5ty7x+q0v//Oxg21bw8EBGD1V18heNIkuL31VvXvtWkT2/+RI6wEEhnJSiD//vdLHXpqairi4+PFCxcuaPV6fReNRnP6pXb0N8YYdI0YKUUQBAUhZLRKpRokSVJjvV5vb25uXujo6EicnJzUjo6OpCovBa1Wi3nz5sHBwQFjxozBy07EeGVQyox9oqOZz65GAzRoAH2tWnjwn//A6uuvof7tN1a2OHGCGf2EhDCFRVISM/8xNX2SLTdpAowbx9qTMzJYVv0HuHHjBrZs2fJIFEXLv9rf9s/GGHSNGKkCQRBMwCbevsXzfDO5XB4sSdJbTk5Oemtra75Xr16mZTK07777TrS3tycDBw7k/ujQzdfJxo0bpZKSEowaNYojmZksG3Z3B5YvZ4E1Lw/4+We20NevH5OGbdzIgvbIkWyBLTYW0P4xywODwYA5c+YAwCcAvv0nBV5j0DVi5AUQBMEDgK9SqZzs7u7u169fP1VcXBz27t2LCRMmwNbW9i89vpycHMTFxdE2bdqQynTJK1asED09Pbng4ODqa85aLasry+WsRNGsGbBqFStvrFnzh4915cqVUnp6Osfz/B1RFIdqNJqzf3infwOMQdeIkZdAEAQTuVwezvN8S0opqV+/vti7d2++Rm24r4mrV69i586dxXq9XpLJZKYqlaq4S5cuKnd3d66wsBC1atXC5cuXcezYMTpt2rQXm7rxmtDpdJg7dy4AQKPR/PUH9CdgdBkzYuQl0Gg0xYIgvEMp3Q6gdUpKCvntt99oQUGBOiQkhLi6uv6px5OYmIitW7cCgAnAZFp6vd40NjZWOnnypC4jI0PRoUMHaLVaWlRURIqLi2Fa0zbl18hTBvQ1s3R7AzBmukaM/EFK5281ANAWwCoAGDBgALy8vF5r6zHADNT37NlTmJiYaKZSqY5rtdogPJVMqVSq21qt1u3Z1/Xu3RuNGjXCs3Po/iiiKEL3tGNaNVBKsWDBAgB4W6PRVDG87s3CGHSNGHmFCILAA+gll8sXOTk5OY0cOVL1IrKzFyEnJwfLly/XUUq/NhgMizUaTd5zjqsPgJ8BlLW5USsrK93UqVNfmcxCFEX88MMPRfn5+eUmPtTgdaYA/q+9+3lp5IzjOP6dTB6TNT9OtrauUlw8SJGCF6G0l3rwYOlBilIoll1z6v4DGwSfp4+U9g/YVFihmqLS3bT0UNq9FBTsUAj1IsqCIIiU1h9Q/JHJj3kmmemhra2trcaNMzu7nxfklDD5nt48TJ7Mc10I8UujZnmSIboAV0BKmYhEIt/Ytv1aNBqtxGKxaiKR0JLJJEsmk9c6OzvpMrcgDg8PaWNjg9bX1493dnYi4XD443Q6LeuZi4g+1HV9uFarvTg6Oko3bvxrIXwphmHUDMP4Pp1Ov9GQCz6lEF2AKySlbCaiViJ64c+XpmnXGWOp1tbWxMDAQKz9nD2vpVKJ8vl8bW1trVQoFEjX9YeWZd0nou+EEMXLzjY5OflWOBz+tKurKz44OHitrucP/8Px8TFlMpmybduvnHUEOvwF0QXwgZSShUKhMV3XP2pvb4/09PTEOjo6qKWlhY6Ojsg0TXJdl7a2tmqGYdiapuWUUveIKC+EqDVwjhhjbFLTtNtDQ0PR7u7uS10nl8uVNzc3746Pj99p1GxPK0QXwEdSyigRvRuNRt90HOd113WTrus6jLGfiKjmOM4jy7LSV716lFL2McYe9vX1Jfv7+1k9PwBub2/TwsLCr7Ztv/Q4K+9nBaIL8ASRUrYRkSaE+PncDzf+u59vamr6tq2t7eWRkZHmi+xscByHMplM8eDg4JYQ4gsPxgw8RBcATkgpw4yxu/F4/L1UKtV83plv+XzeWVpa+tGyrFefpb/yPg6cBgwAJ4QQVdu2b5um+cnMzEypVPrvQx6KxSItLi5almWNIbgXh+gCwClCCNe27TuFQuHe9PR0cXl5mSpnPOBmdXWVXNf9QQjxyIcxAwu3FwDgTH+csjFMRA+IiDjnp07WME2TpqamypVK5R3O+dc+jRk4WOkCwJmEEK4QIqdp2ttEvz+A/O/i8Tj19vZGGGMf+DFfUCG6APC/OOdfhUKh4bm5ufLu7u6p91ZWVpRS6qY/kwUTogsA55qYmPhSKXUzm82ehHd/f58cx7GJaMvf6YIF0QWAC+Gc55RSt7LZbHlvb48cxyFd1w+FEAW/ZwsSRBcALoxz/kApNTY7O1suFotUrVaf83umoEF0AaAunPP7SqnU/Py8wxj7zO95ggbRBYC6cc4/J6KOSqXyvt+zBA326QIAeAgrXQAADyG6AAAeQnQBADyE6AIAeAjRBQDwEKILAOAhRBcAwEOILgCAhxBdAAAPIboAAB5CdAEAPIToAgB4CNEFAPAQogsA4KHfAACe7PcPYYjvAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_rook.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
POLY_IDAREACODENAMEPERIMETERACRESHECTARESPCGDP1940PCGDP1950PCGDP1960...GR9000LPCGDP40LPCGDP50LPCGDP60LPCGDP70LPCGDP80LPCGDP90LPCGDP00TESTgeometry
017.252751e+10MX02Baja California Norte2040312.3851.792187e+077252751.37622361.020977.017865.0...0.054.354.324.254.404.474.434.481.0MULTIPOLYGON (((-113.13972 29.01778, -113.2405...
127.225988e+10MX03Baja California Sur2912880.7721.785573e+077225987.7699573.016013.016707.0...0.003.984.204.224.394.464.414.422.0MULTIPOLYGON (((-111.20612 25.80278, -111.2302...
232.731957e+10MX18Nayarit1034770.3416.750785e+062731956.8594836.07515.07621.0...-0.053.683.883.884.044.134.114.063.0MULTIPOLYGON (((-106.62108 21.56531, -106.6475...
347.961008e+10MX14Jalisco2324727.4361.967200e+077961008.2855309.08232.09953.0...0.033.733.924.004.214.324.304.334.0POLYGON ((-101.52490 21.85664, -101.58830 21.7...
455.467030e+09MX01Aguascalientes313895.5301.350927e+06546702.98510384.06234.08714.0...0.134.023.793.944.214.324.324.445.0POLYGON ((-101.84620 22.01176, -101.96530 21.8...
\n", - "

5 rows × 35 columns

\n", - "
" - ], - "text/plain": [ - " POLY_ID AREA CODE NAME PERIMETER \\\n", - "0 1 7.252751e+10 MX02 Baja California Norte 2040312.385 \n", - "1 2 7.225988e+10 MX03 Baja California Sur 2912880.772 \n", - "2 3 2.731957e+10 MX18 Nayarit 1034770.341 \n", - "3 4 7.961008e+10 MX14 Jalisco 2324727.436 \n", - "4 5 5.467030e+09 MX01 Aguascalientes 313895.530 \n", - "\n", - " ACRES HECTARES PCGDP1940 PCGDP1950 PCGDP1960 ... GR9000 \\\n", - "0 1.792187e+07 7252751.376 22361.0 20977.0 17865.0 ... 0.05 \n", - "1 1.785573e+07 7225987.769 9573.0 16013.0 16707.0 ... 0.00 \n", - "2 6.750785e+06 2731956.859 4836.0 7515.0 7621.0 ... -0.05 \n", - "3 1.967200e+07 7961008.285 5309.0 8232.0 9953.0 ... 0.03 \n", - "4 1.350927e+06 546702.985 10384.0 6234.0 8714.0 ... 0.13 \n", - "\n", - " LPCGDP40 LPCGDP50 LPCGDP60 LPCGDP70 LPCGDP80 LPCGDP90 LPCGDP00 TEST \\\n", - "0 4.35 4.32 4.25 4.40 4.47 4.43 4.48 1.0 \n", - "1 3.98 4.20 4.22 4.39 4.46 4.41 4.42 2.0 \n", - "2 3.68 3.88 3.88 4.04 4.13 4.11 4.06 3.0 \n", - "3 3.73 3.92 4.00 4.21 4.32 4.30 4.33 4.0 \n", - "4 4.02 3.79 3.94 4.21 4.32 4.32 4.44 5.0 \n", - "\n", - " geometry \n", - "0 MULTIPOLYGON (((-113.13972 29.01778, -113.2405... \n", - "1 MULTIPOLYGON (((-111.20612 25.80278, -111.2302... \n", - "2 MULTIPOLYGON (((-106.62108 21.56531, -106.6475... \n", - "3 POLYGON ((-101.52490 21.85664, -101.58830 21.7... \n", - "4 POLYGON ((-101.84620 22.01176, -101.96530 21.8... \n", - "\n", - "[5 rows x 35 columns]" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gdf.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 22]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.neighbors[0] # the first location has two neighbors at locations 1 and 22" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 Baja California Norte\n", - "1 Baja California Sur\n", - "22 Sonora\n", - "Name: NAME, dtype: object" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gdf['NAME'][[0, 1,22]]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So, Baja California Norte has 2 rook neighbors: Baja California Sur and Sonora." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Queen** neighbors are based on a more inclusive condition that requires only a shared vertex between two states:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "w_queen = Queen.from_dataframe(gdf)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_queen.n == w_rook.n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(w_queen.pct_nonzero > w_rook.pct_nonzero) == (w_queen.n == w_rook.n)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd3gU5fbHv+/M1jQIISEJIYSSAEkIRVogwAKCwBUElCJNRS8/FfHaUFFk7iAoYkWvqDRBkaJIV3qaoQRCgAQIkEIIJUB6353dmfn98YaYskk2hep8nidP2J2Zd97ZsGfOnPec7yGyLENBQUFB4e7A3OsJKCgoKPyTUIyugoKCwl1EMboKCgoKdxHF6CooKCjcRRSjq6CgoHAXUYyugoKCwl1EMboKCgoKdxHF6CooKCjcRRSjq6CgoHAXUYyugoKCwl1EMboKCgoKdxHF6CooKCjcRRSjq6CgoHAXUYyugoKCwl1Eda8nUB6e5xkATQG4AGhW+tsFQDNCSHONRuPJMIw7IcTVYrGkzZ0796l7OV8FBQWFunJHjS7P83oArpV/WJZ1V6vVXgzDtJRl2VWSJGdRFB0B6FUqlVmr1Zr1er1oZ2cHe3t71t7eXmNvb6+xs7ODXq/Hnj17zJIkbbuTc1dQUFC4E5A7IWLO87wDwzBXZVl21Gq1Rr1eb7G3t5cdHBxYR0dHjaOjo6bUoMLOzg63jalerwfDVB/xkCQJu3btwqlTp2RZlh8BcIrjOEWFXUFB4YHhTnm6MiFE+8orrzDOzs52jTVoZGQkkpKS5FatWslZWVl/mc3mko8//nibIAi/AwjnOM7YWOdSUFBQuBPcEU8XABYtWvSBu7v73MmTJ+v1en2Dx5MkCV988YXUv39/0rt3byLLMjIyMnDx4kX57NmzBRkZGRq1Wn3IaDRuAPAnx3HpDb8KBQUFhcbljhldnuc1Go1mGcuyU1577TWdRqNp0HiJiYn47bff8O6771oNQRQXFyMpKQkJCQmFycnJapZlL5vN5k2iKG4HcJLjOKlBE1BQUFBoBO6Y0b3NkiVLTowdO7a7r69vg8aRJAmLFy/Giy++iGbNmtW4ryiKuHLlCs6fP29OSEgwlZSUWBiG+cNkMv0K4CDHcUUNmoyCgoJCPbnjKWMmk2l7dHR0kJeXl6ohYQZCCGRZhi0eM8uy8PHxgY+Pj3r48OHqrKwsJCYmTjl79uyo9PR07SeffHLUaDT+DGAnx3G36j0pBQUFhTpyxz1dnuddVSrVjx4eHoPHjBmjr81LrY6SkhJ8/vnn6Natm2Xw4MH1NuBGoxGJiYk4e/ZsUXJyskqlUl0wmUw/y7K8jeO4pHoNqqCgoGAjd9zoAgDP81qVSvWBJEnvzpkzh9XpdPUaJy4uDn/88YcFAAYOHMj4+PgwLVq0AMuy9RrPYrHg0qVLOHfunDEhIUEGcEsUxQ0Wi2UzgNj7PR2N5/nBALqUvpRr+Q0ApNJvACgGsJvjuKt3ZJIKCgoVuFtGlwCQAGD+/PkghNRyRPVkZGTg+++/t6jV6ggAvjqdzmXMmDH2Pj4+ZfuIoghRFG0KRdxGlmVcvXoVCQkJ5jNnzpiMRqNACNkiCMImABEcx5nrPek7xJIlS055e3sHODk5lS0SyqV/0HJ/1wpGt/JnX1RUZElKSmIJIZ/PnTt33p2es4LCP527YnQBgOf5mW5ubp+99NJLjg0ZR5ZlfPfdd4UZGRlTAewghIxRqVQrOnToYD98+HCdvb09tm7diri4OIwcOVLu2rUrUavVdT5HZmYmzp8/L8XHxxdmZ2erVCrVXpPJtB7AHo7jChtyDY3FkiVLzkyaNCnA29u7QeMUFhbim2++KREEYSDHcccbaXoKCgpWuGtGd8GCBTzLsh+8/fbbdTaC5UlNTcWGDRuuCYLQluM4AQB4nnfUaDQfA5jRuXNn5sSJE1oA0Ol0ByRJChkyZIiqV69e9V40zM/Px4ULFxAfH59//fp1rVqtji63EHez3hfTQJYsWXJ+8uTJHby8vBo8Vnx8PHbt2nVZEITe9/KaFBQedu6mp6vVarW/APjX1KlTdfU1FDExMTh48OAv77zzzlQr5+gMYAiAEgBrOI4z8TzfTaVSHX3vvfc0DQlr3MbKQtxFk8m0RpblLRzHpTb4BFYoDc9UQafTJU2bNq2tp6dng88hyzL27dtnjImJISqVKtxoNL7KcdzFBg+soKBQgbtmdG+zYMGCcXZ2dj/PmjXLrj4ZCBEREYiMjFz8wQcfzLVlf57nmwDIdXNzK+zcubO9p6cnKSgoQFBQUINiywBdiEtJScHZs2dLzp8/TyRJkko/T4KKi1Wk0vvlX1fejkrHgmVZWRTFKpMlhEivvPIKU9+MEGuYTCbExMTIERERuWazuT/HcWcbbXAFBYW7b3QB4OOPP/6+Xbt20yZMmFBnXYY///xTOH78+Lscx31p6zE8z9sBMGg0micEQZh5+/0nn3wSgYGBdZ2CVSRJgtFIpR9uG/PyRr38e5W31/T7l19+kZOSksgbb7wBR8cGhcPrRFxcnLxr1658s9k8mOO42Lt2YgWFh5x7oqcrCMI7Fy9efM5sNqOu8V1CCNRqtV9djuE4rhjAn6U//8fzfFMAyUePHlUFBgY61WkC1cAwDOzsGk3bpwxPT08kJSUhMTER3bt3b/TxqyMoKIioVKom27dvj1q8ePFuk8k0k+O4rLs2AQWFh5R71TmiSJZlctszrAvBwcEai8XyPM/z9TaWHMflAmhWVFRkX98x7haDBg0iLVu2lIuK7n7lsr+/P9544w29r6/vKLVavZLn+YYJaCgoKNwzo6tWqVQnf/755+Li4uI6HdikSRN07tzZolKpUkrjtfVCpVKldOvWrX5VFXeZJk2akOzsbPFenFur1eLxxx9Xe3l5DdNoNAk8z3vci3koKDws3BOjy3FciSAIffLy8lYsXbq0JCkpyebAMiEEY8eO1dvZ2WkAtKzvHAghzgEBAfU9/K7i7OyM3Nzce3Z+rVaLadOm2XXt2rUlwzApixYt+ovn+R73bEIKCg8w96wxJcdx8ty5c18TBOHNEydO1PnZWaVSSQDqHURlWTY9K+vBCFG6uroiLy+v4fluDYAQghEjRminTZum69u3b4harY5YsGDBvIY8bSgo/BO5H7oBXzeZTLVr3coy/SnFwcGBAdC2vic1mUzvb9++vaSu4Y17gaenJ/Lz85mcnJx7PRX4+Phg0KBBeOGFF+xcXV3nq9Xq3TzPO9/reSkoPCjcD0a34NKlS07Xr1+vea81awCdDrh1C/j1VwxNTXXU6XRv1TfZdv78+dvMZvMPmzZtKpak+1vf3NXVFR4eHjh06NA9ietaw83NDTNnzlS3a9euB8Mwr9/r+SgoPCjcD0b3FgCsWLECNXpyAwYAzz8P5OYCKSlonp4OWRDaAygAIUNBSCAI+W9dTmw2m+fcuHEjLjo6+v62ugACAgKQlpZ2T0MMlWFZFkFBQWqWZSeWdn5WUFCohXtudDmOOwPgIiEk6qeffqo+ttuuHdC/P/D778Dbb+Pm+++D0WqvAegF4AgAbwB9AQCEnAMhi0CIU+lvq7FfjuMsgiAsiYyMlO5FkUhd8Pf3R1ZWFiOK942zCwBo164dVCpVW5ZlF93ruSgoPAjcc6MLABzHdZBleWBBQQFbY4x1wgTgxg3g4MHbq/mpkOVzkOVCyPKfkOVhpXuOAvAdgKYA/gWAASG/gJA9AABC3gchtzMfUsxmc9HRo0ctd+jyGgUnJydoNBo5IyPjXk+lAhqNBi+++KJKr9f/H8/zI+71fBQU7nfuC6MLABzHSRqN5sKNGzeq34llgVmzgJ9+gocsw2w2D7C6ei7LyZDlq5DlNMhyV8hyIYA5AN4FISyApwC0BCHPc//971ZRFJ/HqlUCjt/fqob29vbitWvX7vU0quDk5IQePXrYsSw7rPa9FRT+2dw3RrcUjUpVS2Wynx/Qsyfc9u2Df6dOGpVK9a1NlVKyfB2yfAqyLEKWu0GWjwH4HcBMAEVe0dFqhIcDFy8C7u5ARgYQHg78+WfDr6qRaNGihSotLe3+ii+Ukp+fbxJFMfVez0NB4X7nvjK6FotF2rNnT+3ZBLNnA5GRGOHoqGvVqtXY0kqpui/kyHIuZPkAgIL1U6daLj31FNC6NfDNN4CLC7B7N82akCSgZUtqhFNTgZ9/rsfVNRx7e3uUlJTcl8FnZ2dnrUql6nanxud5vg/P8653anwFhbvFPVEZqw6e5xmtVntp2rRp3i1b1lJslpkJDBgAOSYGK9aty09PT18K4A+O46LrcV41gH87ODgsef311+0ZptK9SJLoAt7gwcDBg8CHHwLx8XRhb+RI4D//AX79FZg8GahDi6C6snHjRjg5OYkjR46878qX8/PzsXz58mKj0fjivHnzGuWuVGpkhwFozbLsfwkhkkqlOmSxWE4zDNNUlmUHs9kcCeAQgDcAbAbt7GFqjPMrKNwJ7iujCwCffPLJjzqdbvzEiRPt3d3da975zz+BjRuRtnAhdu/eXZiTk6O2WCzvzps376v6nHvx4sWnhg0b1sVmNa/duwFPT8DRkaa0xccDHAecOweMGQN07QoEB9NYdCOwcuVKqWPHjkxISEijjNfYpKSk4Ndff00ymUx+DW3quWjRorcsFsunDMPIrVq1KujWrZtDx44dmYSEBGRlZYlqtZpkZWWhuLi4+MaNGygsLHQoPfQ1juOWNsLlKCjcEe47o1vaJeEFtVr9dZcuXcigQYO01UomCgKwYAHQuTMwcSJyc3OxfPnyEpPJ9OoHH3ywstyYnQDkcxxX4yoUz/NBarU6asKECY7t27ev3wUcOwYsWgSkpwO+vkBODtCxI9C9O2A0UiPcoQNQW+zaCv/73/8sISEhqq5du9ZvbncYSZKwfPny4pycnAOCIDxdKqlZZ3ie91KpVBdmzJhh5+Fhu75OcnIy1q1bBwC5HMcpVXIK9yXsf//733s9hwoYDAYYDIbY0NDQ3zMzMx2jo6M7Ojg4qDw8PKoWBrAs4OUFrF8P9OoFXfPm8PPzU58/f/7R8PDwzqGhoXsNBoMQFRW1RZblpYcPH9aHhoaGGwwGq0Fjg8FwMzQ0NPz8+fOTfH19NQ4ODtZ2q5mWLYHx44Fr14D33wdmzAB8fKg3fOoU8NlnQEoKsHcvcOEC3U+vp9srhzUqERUVJXfu3LlRO0U0JoQQdOnSRZ2Zmemdk5Pzn7/++sstNDQ02mAw1Olx/+jRo9/27t27S1BQUJ3WHJo1awaLxSJfuXJF/9dffzHh4eHpBoPhwRDYUPjHcN95upXheb6zWq0O9fb21vr4+Dj4+fkRNze3ijutWwckJ9NHewCCIGDXrl3GCxcuZAqCMFqn033Tu3fvfufPny++devWK/Pnz/+xpnMuWbIketSoUb06depU/4kXFwNdugCbNlEvt/K2pCQgPx9YuRLIy6Me8NWrQPPmwPDh1Hh7egKlVc67du2ST58+TZ5//nnUGna5D8jIyMDevXuFy5cvb7JYLM/b2sKe53mtRqNJmT59umetcX0ryLKMlJQUXLx40RwbG1tksVjachx370UrFBRKue+NLgDwPN8CwCC1Wt0fwDNPPPGEfQVZRqMR+OgjGld99NGyt+Pj47Fz584is9n8noODw8dOTk76W7duJcqyvF0UxaXVhRs++uijZLPZ3DYgIKB43LhxdlUW1mzlxx8BUaTebm1jFBQAiYnA+fNATAwtd27ThqawBQRgdW6u2DIggH108mSwjRQjvtMUFRXh119/Lbpx40a+LMs7zGZzFIDDHMelVHfMokWL+FatWr09depUXb0/91JKG20WWSyWf8uyvK2hcWYFhcbggTC65eF5vqtarT44ZMgQp969e/8dGD18mC5svfYaTfcqe/swIiIiDguCsBrAys6dOyM9Pd2UmZn5HMdxG6yM76JSqT6XJGmCLMu6OXPmkPo00Cxj+XJqSL/4ou7H5ucDZ84ABw7g0KlTki/AuLm7UwM9fDjQowfg5gY437/hS1mWce3aNVy+fFk+cODA7RDRMABHOY4rKL8vz/NBAE5369ZNGj16dKOkM166dAnbtm0rLiwsfPeDDz74pjHGVFBoCPddTLc2DAbDjdDQ0E2pqakz1Wo1WrVqRd2+Vq2AQ4doKllQUNn+Li4uOHPmjIskSfGiKL6bk5PztCiKWkmSYgcOHBhVefxDhw7Nb9OmzYsdOnTQ3rx5M0+j0ai9vb3rbwC8vYGFC4GnngLq2kNNq6XXNXAgIs1mkt+/v9T+uecINBoaF755E/j+e2rYr1+nCmwMQ2PEdzB1rS4QQuDk5ARvb2/Sv39/EEIsRqNxjNFonBsWFvZXREREmsFgAM/z7mq1+tigQYP0wcHBRNNI83d2doa3t7c6Li5uQFhY2NGBAwdeapSBFRTqyX1VHGErHMddtlgsPUNDQ6UKWgTvvgusXk29w1Ls7OwwYsQIO5ZlRwC4aDabR5aUlDCSJH1kbWy1Wj2oR48equDgYJjNZvu0tLSGKZC5ugJHjgD/93900ayeNG/eHBmZmTKcnIAnnwTmzqVjrl1Lr7lNG1q4ERlJ84n79AE2bwZ27qSe9n0glMOyLAwGg+rFF19sMnHiRJ1Go9kLQPrwww9XajSa3cHBwU4hISGo1wJmDbRs2RJPPPGEvVarVVLJFO45D6TRBQCO486Lojh32bJl2LNnjyBJEqBW08f4OXNonLeU0kqu3gCyNRpNfwAOsNJ1gud5d4vF0l6r1UKn04FhGCQnJ5v27dsnNCgMo9XSNLFPP633EB4eHsjOzraeweHpSTMmXn8d+Pe/aahl+XLq8SYnU8Pr4UG37dpFfy5cqP/1NAK+vr6YNWuWDgA8PDxm9OjRo5PBYLhj3am9vb1hNpvb8zx/f+bbKfxjeODCC+UJDw+PBrDl1q1boxwcHJp6eHhQ3YSbN4GICGDgQACAo6MjdDqd5OrqSq5evdpDq9U+YbFYdhkMhrzy40VERPgzDDM9OztbvHLliiY7OzvBbDZ3vXXr1ujQ0FA3Nzc32dXVtX6atiEhgIMDNYidO9f5cK1Wi0OHDt1+RK95Z4YBWrSgOhV9+gD9+gGvvEINL0CLOH79lZY7nz8PhIYCJSU0r7h+mvD1Yv369ZK7u7s0ffp0pl27dqp66tHbhFarhUqlUl2/fr1bSEjIytqPUFC4Mzywni5A+6xxHBdnNptH7d69O2fPnj2y0WgEXn4ZiI6mWQCl9OnThxk4cCCGDh3q5Onp2ZkQ8pSV8Y5ZLBaPy5cvv37u3Lkrsixv4DguSxCEcQAQERFRf3dXq6Whhs8+A65cqfPhsbGxaFCcU6+naWlDhtAngXXraPihZUvqgXMcXbibOZPGi+8wqampSE9PZ+5mSXOvXr0gSVIXnufr3eZJQaGhPNBG9zYcx8VbLJYnYmNjz23btq0Yej0NM7z3XoUwg06nQ+/evdGtWze1TqcbWc1Yxvnz56+YO3eu99y5cz8qfe8iIWR0bm6uMS0trf4TDQigxi4qilbT1YFr165JAQEBUqN6gy4uNA48ejRd7BME+nldvgx88gkNR9yh7JatW7eK/fr1k5ycnO7I+NZQqVTo1asXo9FodvM871b7EQoKjc9DYXQBgOO4v8xmsyElJSXr5MmT9NF6yhRg8eIq+7Zu3Rpms7k3z/M2pxPMnz9/p9lsnvjbb78VWywN0Dvv1An44w9avlwHunfvziQkJDR+ip+DA/Dll8C2bTT17KefgEGDgF69aLXftWu0jPnAAcBsU31DrURGRkKSJKZfv353/f/f4MGDNXq9vi3Lslvv9rkVFIAHwOjyPM/yPO9py74cx2WyLHuhLKl+9Gi60BRVMTPM0dERHTp0AMuyWR9//HHGokWLXrNl/Pnz5++yWCx/LFmyxPj777+XpKam1u1iABoz/fxzGm8+f97mw/z9/SEIAsnMzKz7Oavj2jWqEeHlRfWDd+z4e9ugQTTk4OFBtSR8fIAXXgACA2kmRD09fkEQcOjQIXnUqFGkVu3kOwAhBMOGDVNJkmSjqpGCQuNy3xtdlUr1NoBrPM/XqtXK83wPWZb7+fn50TecnYG+fakaWaU2QE899ZT9G2+8oXvkkUeay7Jsc73pO++8M8FsNrc/c+bM1o0bN1rq5Xm2aEF/z5pFK8+scP36daxatQorVqyQ9+zZA0EQ0LRpU/HChQuN5+pev06NKcPQJ4J27aruw7I0Ra19e+CHH2iV3Y0b1BP+8Ufg7FmqqmYjmzdvljw8PGRfX99Gu4y64ufnB0dHR4nn+Wfu2SQU/rHc90ZXFEV7AFCpVDNq25dl2dFeXl5MhQqyIUMAe3tg+/Yq+9vZ2cHT0xMMw0zled5mQYPS8uF/y7J86ejRo/VLgB06FBg7luotVMJisWDdunVSSUkJOnToQK5evSp9/vnnyMnJYZs0qdqdqN589dXfmRStWgETJ9IYb3XodEDPnnTx7fJlmqa2ZQswbBiNB3/8MS3QqIb09HRcunSJGTVqFHMnMxVqQ6VSYcSIEXpCyEqe5yfxPH/ffw8UHh7u6/9sPM97y7L8vp+fH1QqlU9t+4ui+ElycrKmSsx15kxgzx4gIaHKMYGBgWjdurUjgEerbKwBjuOKBUEYGhYWVpRS39X+V14BXnqpSieK/Px8mEwmZvr06RgwYABeeOEFZtasWXj22WfRuXPnxrFWFgvNohgwgL7W64Hp02m4wRa0WhoP/uADGmrIz6epZ/v20XQ0jqtSkLF582axR48ekku5Mu17RceOHcmkSZNUzs7OKzUajZJCpnDXuK/zdCMiIpqxLBuQmZnZ1mKxfGYwGGKr25fneTtCSCIAp9TUVJw8efLvn4sXkZ2ZifzNm7GnoACxcXEVtqempmoYhvEfOHDgt3WZn8FgyAsNDY0+f/78eC8vL7VarQYA3Lp1C46OjrYN0rkzbQM0eHCZKI5er0dycrJ0+fJlKTAwkAFo5oXNY9rCxYtUTrK8IHrXrtSIjh1bt3xdQmiJ8/TptAQ7KYle0/DhVICoXTscz8hAYmIi8/TTT5P7RbDHxcUFXbp00Zw4caLD/v378wwGw/3dmVThoeCBELwp7X9mBGDPcVyhle0OKpUqQhTF7g4ODujRo4fVcXw/+QRZwcHI6t+/wvt5eXk4efIkOI6rlxfJ87yBZdldkiTpZFlmAeCRRx6xuLu7qzw8PFCrROGhQzRla9eusi4ThYWF+PrrrzF58mT4+PjUZ1o1s349kJ1Nve3yPPYYrWwbPrzh5zAagW++gaVPHxz/4AME5eXB/tgx2v5Iq234+I3EjRs3sHr1asFsNnfnOO7svZ6PwsPNA2F0AYDn+VEAdmi12puEkCyz2bxFFMV9ABzUavUqs9ns4efnVzRhwgT74uJi616h0Qg88gitVmvevOzttLQ0rF271ihJUguO4/LrOT97ACyAPABQqVSfWiyWOQAwZ84cVNv9AqBGaMwY6mX27Fn29t69e3H+/Hn55ZdfJre96EbjnXdof7fSqr0yLl2icdnevRvtVGlpadj63Xd4NTAQZORIumD32WfAv/5FPeTG9ODrQEJCAkpKStC9e3fs3bvXHB0dvUuW5Wfr+39AQcEW7uuYbiVOAoCzs7Pr4MGD/Xv16vWOq6vrTldX140jR4700Gq1wsWLF+0XLlyIL774AklJSVVH0Olod9/Jkysk/Xt5eaFNmzaSSqX6jef5euUxcRxXVPpl1QBQv//++28DAMMwNRtcuhNd6Fuzhnq9pQwdOhQsy0rLli2TS0pK6jMt6+Tm0rzbSh4/AKBZM+DFF2mGQiPh5eWFIkdHZA8fTjNKTp8GRoygCmk+PoDJRPOEyxWy3Gl+++03cdu2bdi/fz/WrFkjSZKkZhhmrFqtPlDf/wMKCrZwX8d0y2MwGPIjIiJ+LywsfDExMZEZM2YMO3DgQF3Pnj217u7ueOSRR1i1Wg17e3u5ffv2sp+fH9HpdFUH8vSkBuXYMVoWC5q72b59e3VKSoqnIAjPhoWFmcLDw09X19anlnlKBoNBKg2JvD9gwADbwgOEAIWFtBLs2WfL5tWjRw8mOjpaYhiG8fb2rut0rBMRQRfBDIaq23Q6qtfr5UW1ehsBQghOnz4t2tnZMS1btgSaNKHercFADbzFQuPBhYX0cwgNpbHuBoqYV0dxcTH++OMP5sUXX0RwcDDi4+Pl5ORk4ubmJufl5bVUqVRvHjlyxDskJGTXHZmAwj+aB8boAoDBYLgVERHxIcuyhWfOnOlHCFF7eHgQhmGgVqvh4+MDf39/0q5dO+sGF6Bf6rZtaUv1du2oHgIAtVqNoKAgdatWrZwzMzMHCYIwOCQkZG0D5mo5evRozw4dOvjZ3HYmMJCGF1auLPNCCSFwcHBg9u/fL1ssFrFNmzYNt0RxcVT1rE0b69vbtwdefRWYNKnRBHAyMzOZtLQ0sUuXLhXnr9PRn5deoot6R4/SVLZnnqEdN7y8aIpaI7J//34AEPv168doNBp069aNXLhwQSwsLCQzZswgffv21Rw5cqRLWFjYLoPB0Hguv4ICHqzwAgAqciOK4udFRUWjwsPDw1euXFks1lUr1sODrtB/912FtCa1Wo22bdvimWeesbdYLCE8zzdI2NVkMv0ZExNjEeqis+DtDRw8CFDDAICmtQUFBZF0W9O5akKWabFITV123dzoItuxYw0/XymPPPIIrly5wkpSDQ8PhNBc4ZgYOs+mTWnV3IoVVAS+uF7NhcuIj4/HunXrEBcXJ/fq1asshYIQAkII8vPzyd69e8UmTZqgtPlnnwadUEHBCg+c0QXK1MXCBEEYkpubm1NByNxWhg2jBm7Tpiqb1Go1PDw8TAzDPNfAqR6+deuW6ocffrA9TOHoCKxaRQ3M9etlb7u6uiIjI6PhuVYZGcCJE9TTrQ5CgI0bGzXG2qJFC6hUKvl6uWuqETs7Kj05diz1gDt0oIb49g2zDn9zQRCwZs0aadeuXXB1dZUHDBhAKjcdfe6559i5c+fi8uXLbHFxMfLy8iQAiXW4RAUFm3ggje5tShsNhm7dutVUUFCAoqIi28WN43oAACAASURBVA9mGGDcOPqobWXR7fHHH3eQJOlrnueDGzC/UyzLLs7OzmaOHTtmu+H18aHzevXVsgU/lUoFhmEanmqydy8tP64tbGBnRzMcsrMbfMrbODs7y0lJSXW/hk6dqP4DIcCECXTR7YcfbD582bJlIiEEr7zyCh577DHSt29fVNZ9YBgGGo0GOp1OunHjBh599FGNWq1er1SrKTQ2D/x/KJPJ9O+8vLwtX331lfnzzz8XV61aVVRQUFD7gQCN6fr60mq1So+9bm5u6N27t6DVag9+9NFHlxcuXDi6PvObN2/eXADt9u/fn/nFF18UbtmypSQ8PBzJyck1Hzh3LvDcc2WawNnZ2RX0dAsLC1Hjo3p1JCZa11iojIsLVWnLb7zsqY4dOzL11o44dIgWXrz5JlVo8/amLe7LhWGqQ5IkBAcHM7aEofR6vZyTk4NHHnmEWCwWF9A0QAWFRuOBWkizhsFgEENCQn4PDw//CMCioqIip+Tk5G6CIKjVarXVfltGoxGCIECtVgPdutGFG1dX6mGWUprRwAYHB6vDw8ObaDSaqyEhIbV/w63PMScsLOwLQRB23rp163xaWlpyXFxc7759+1bfTv12g8nnngN69oRn9+4IDQ1Ffn6+/Mcff8iRkZEkJiZG8vHxIfb29rV3kwCoNOOJEzRdy5YmmW5uVFN32rRGWVBzcXFBaGgo6dOnT93ayB84QLMtevaknTcIoeXK/ftT2UlZrjHXNyYmBsePHyfR0dG4fPmy2LVr12qdjaioKDkoKIixs7PD4cOHRQAbDQZDI0q7KfzTeeCN7m0MBoNsMBiksLCwg2azuUlqamrCyZMnO/r6+qorG95t27YJ27ZtYw0GA/0C9+pFq7CeeIKupJeDEIJz584VFxUVnQ0LC3OLiIg4U89UMtlgMNwyGAwx4eHhsQDmaDQatG7duvqDmjShHqdKBZWnJ9r6+ZH9+/fD1dWVvPzyy+Ty5ctSZGQkExUVJQcHBxOmthSrhATayHJGrdpBf5//yy+pzGO5YpL6otFocPz4cbFFixaMzfoL334LLFlCK+d69KDZDbflOsePp4a4c2f6pNK3r9Uh/Pz8iJ2dHQYOHIjIyEimppZHERERRK1WkzZt2kAQBCYjI6NvaGjoBoPBUDfVeQWFanhojO5tDAaD3L9///39+/ffGRYWlpqQkDCibdu26vj4eKxevRqlHgxbui89qEkTanzXr6flr+W+kIQQdOzYUX348OFeAMZoNJqnQ0NDow0GQ71b+xoMhqLDhw831el0Xf39/VUAYDKZqsQZAdB45iefAEeOgBk2DLGxsXKXLl0YHx8fBAUFMf3798fx48fBsizx8vKq+cSrV9M85dsiN1ZITEzEqlWr5Pz8fNKufXuQ0aOp7m89pBglSYLZbK7g1SYnJxOj0Sj7+vrW7Dqnp//daHPmTHrzAegNsl8/Oh9PT1rM8fTTtNJw/Xr6XqWbrF6vR+vWrSHLMo4fP45+/fpV62mLokji4uLkK1euyGPGjCGZmZnN8vLyAkNCQqquuCoo1IOHzuiWZ+DAgfEHDhxIPXXq1IiUlBRBluXEpKQkNwB4/PHH0bRpU5SV1wYEABs20Ef6SgamtCmkRZIkZuDAgS7Xr1+f+tdff+X379+/3jlVoaGhR3JycmZLkqQ+fPgws2PHDmRnZ1s6depU1V3t1Qu5P/+M71NS5Da+vvLgwYOZ8kajadOmZPfu3WjdujVqlH7cto22ba9mn3PnzmHTpk1o1aoVrl69iujoaNmrWTNi9847YCZOrJNegiAIWLp0qRQaGkqioqJw+PBhOTo6WrZYLOTGjRukb9++1RtdQaAebkEBzRW2t6fvyzL9+0ybBjg5UXnMl1+m/9brgXffpSXMlYo+9u/fj7S0NGzfvl0ODAwU/f39q30k8PHxwcmTJyV3d3fWx8cHvr6+qkOHDrUNCwtbbTAYbFwsUFConofa6ALU8IaFhS2TZXkxx3FLIyIiFjAMk3/hwoXHbty4IQYEBDAMw9AYar9+dGV/7Fj6JS5Hs2bNmISEBFy6dAkhISHq9PR0oV+/fhvrOy+DwWAKCwvbfOPGDc/s7OwTkiR1uXXrFuPs7Cy7u7tXMEg7Dh6Uw4xG8tL69aQLzzNsJaPp6uoKhmGkPXv2yP369bNuzLKygN276SN5NV5eTEwMVCqVOG3aNKZnz56koKBA3hMVRQpyc2H09EQLWxbgQD3cZcuWia6urmTWrFmkd+/eCAoKIt7e3kQQBCk9PZ1JT0+XAwICqs5161b6+a9ZQ7NLKodMhgyhN8imTWkmRr9+tLSYEGqMBwwoU0mzdOyIVatWiZcvXyZXr14lnp6e0oQJE2rtOnz48GGkp6fj8OHDJCAgABaLRczIyBAHDBhw0KYPQEGhBh4YwZvGhud5T61Wu1Kj0QwcM2aMXdu2pQ1i//iDeoQrVlQ55ujRo+KBAwfImDFjmO3bt5tYlv3k3Xff5RpxTp3VavXuIUOGuPfu3ZstLCzEmjVrRIvFwkyePJm4ffkl4O9PjUsljEYjPv30U7z//vuwGtuNj6cLUq+/Xu35ly1bJgYGBjIDBgyoYJWSt26VVW++Sba++qrYu3dv9ty5c1JmZibp1asX0ev1MBqNf4dqAKxcuVIURZHMmDGDsSbUk5OTgzVr1shNmjSRn332WXrTk2XawfnaNRoeeOyxqhM8cYKKp48bR19fvEizGp6rlE799dfI0+ux9sYNydHLC5MmTWIAgGXZOnVU/u6776SOHTuS9u3bk7Vr1xaKotiB4zgbE40VFKzz0Hu61WEwGApCQkJ+2b9/f3xcXNx4WZYZHx8fmsGQlEQLEwICKhzj5eXFDBgwgLi5uYFlWVVqamph//791zfinG6FhoYey8jImKjRaDQbNmyQW7VqhWnTpjFOTk7Uy4uIAGJjK6iRATSP9/Dhw/D19bWusPbVVzQuWuk4SZJw+vRpJCQkIDExkXniiSeItlIYoZmvL3FavhyqJ58kh8+cQevWreXAwEAmNjZWvnnzppyamkrCw8ORmZkpnz59Ws7Ozmaef/55pvI4t9Hr9QgKCiKxsbE4duyY1L17d4Z56y16o1u8uPrCjZ9/puXbU6fS19nZwLx5VKui3I0m3s4Ov5w6hf9btYr0bNKEaEaNglqtrlPGhCRJ2Lt3L+nWrRvx9fXF9evX5dzc3L5hYWFOERERQkRERGZ9FlQVFP6xnm55eJ7vpVardzs4OGhatGih6a3Xa1pHRoLMmfN3P7NKZGRkYOXKlSWCIDzCcVzVlhT1n8vjAHYCwJAhQ+R+/fqRCo/DcXE0RHDqVJUQyLJly6QePXowvXr1qjioLNOc1n37APeKXYlu3ryJ77//Hm5ublL//v2ZwMBA6xO7fJnmDD/5ZJVNgiAgKysLmzdvlk0mE3nhhRfQtGnTWq9VEAT8umCB3DcpibT98EOqsWBLKlt5du6kqWPlzrd06VKpRYsWZNKAAQQFBbQlUocOVMehDqxbt05MSUlhO3fuLPn7+zP5+fk4d+5c8c2bN4koiocEQXgSQBHHcfVr2aTwj+SBL45oDDiOO2Y2m9vl5OSMS0lJObn+zJn0FLWatp2pBldXV7i7u5sBdG6sefA8T1BqcAHAwcGBVIk/BgXRdKn33qOSiOVo3ry5FBMTg7Nnz6KC3kNKCvUGrdxAWrRoATs7O2nIkCHVG1yAGu6vvgKsSExqNBp4eHhg9uzZ5M0337TJ4AKAhmVhOHIEJbm5Mtq3r93g9ulDFcjKc/06LZgox+TJk5lLly4hPiuLGttvvqmyjy1MnTqVnT17Nq5evYr9+/dLPXv2xDPPPGP35ptv6tu2bduPEJKrVqvTFi1a9APP8w3PqVP4R/CPDS9UxmAwGA0GQ0r//v1XhoaG3rxsbz+658WLDOPsTKufrKDX67WJiYk9+/fvv5Tnea+IiAiTwWCot9cTGRk5CsDT/v7+8mOPPUbat29v/ZHYzo5mWiQmVtDEdXZ2ZjIzMy2nTp0iYWFh5NixY1J+fr7se+UK9fiCrVc0JyQkELPZLNWYxtW0Kc1e8PGp4mGXx+aGk8uWAf/5D9aOGye3ePZZxiYltvR02tao/EJis2bATz9RacjSc9vb28PFxYVs374d+fn5ou8HHzBk9Ggairh0iaaX2Yher0e3bt1IaGgo0el0sLOzg06nQ0BAgDokJIS0atXKsbi4OCgrK+vdqKgo37CwsEMRERH2ERERdhEREYyS36tQGUWs2ToHikQxaW/z5j4jfv9dR/z96Ze7Eq6urpBlucnHH3+8BsAzAP4NoF5NDnmeZ9Rq9fKJEyeiXbt2NVsuQoAvvqCLY4cPlxUFeHp6YsKECWV5v5cuXWK2bNmCYU2agK3Gi/32228tRUVFqscff7z2px5vb6p9cOBAXS/vbySJFmkYjcAnnyAnIoLp3NmGh4WSErpgVjlE0LYt8NZbdBGuz9+iYP7+/mjevDlWr17NBAUFwdvbm87/6lX6hFCH9LfSIhbLoUOHSFhYGMswDIqLi6FSqdCjRw/L008/rT569Cj++uuv8cXFxVMAQK1WG0VRVH300UcFLMseMRqN4zmOKy7VWXYEkKWEJf6ZKEbXChzH3eB5PjDO0fFi7+zsti4HDlBjU4mbN29CpVIllJSUPFP6VoO0By0Wi5vN/dBcXKguwmef0bhmpTQyrVaLjh07wrVJE8k0fz5jZ6XVOwDk5OSoXn/9ddjfzoWtiV69aB5sTg5N06oP48fT/Nu9ewFCQCIjbdOQ+OUX6qla62iRkkI7b/SpqMTo5uYGNzc3cfv27ezLL79M2JdfphvGjKFG14rCXHVMnTpVBQChoaFgGAYDBgxAfHw89u3bxz722GPo06cP+vTpo5EkCYIgQKfT6WRZRm5urvPq1asfI4Rc5Xl+HCFklyzL9nq9fguAqgFyhYceJaZbDRzHiSaT6b3fgoIK5fHjre7TunVrlJSU3K49ncFxXEMyGbSyLDOVtXdlWcbZs9X0Shw9mrY6P3Wq2kEneHkx5/z8EHb0aJVtFosFoihCX0O4oOIMtTTOvXu3bfuX59QpGlJ47z3agLM0FMCyLIy2SEg+/7xVNTgAVIN3/HjagaISzz77rKqwsJDklxfu+fprWlRx7lwF+UxbGDx4MAwGAxiGgU6nqxL+uf0+QEMtzs7OmD17NtuvXz8HAGH+/v7qaTTlz7akZ4WHDsXo1szmm7duOVjttwYaO+zatatRo9HEAGho6pgMAEuWLMHFixfpG7KMDRs2yJs3b67+qP79qeH96Serm5tIElq98gqOHDlSYXEtJycHS5culVq3bi3VqtlQmW+/pVVjtiJJtC1Pbi6Np5bmyhYVFUGSJNiUQcPzwJEj1re5ulJDauVzYhgGKpVKunatXNW2tzdtyLl0KfV664kgCGBZttbJazQaDBkyRP3ee+9h3LhxmlJD3cidRhUeFJTwQg1wHCfyPI/Nmzdj7ty5VvcZNWqULi0trWN2dva/AGxpwLmMPM8DADZs2IBmzZpJ2dnZDADSt29fGYD1OK9GQ7MKrl6lj/6V+5odPowWTz8Nh6ws6dtvv4VGo5FFUZSLiopUXbp0kYcPH1436cKOHYG336ahDVtEcD78kBYxREaWGVuA5sFu3LhR8vDwgIuLS+1W/9Ileu7qGDmyWk94yJAhzI4dO5CRkSENGjTo73P98AO9jh9/pCGPV1+t/XrKUVlXojZuF4okJSVZRFGs5g6i8LCjeLo2UNPjN8MwGDFihINWq/1l8eLF0Q3sJNscQFcAKDW4AIDDhw+TqKioqs/Ot+nalRrcl16q0H4IJhMtpAgKAsuycuvWrZng4GB28ODBqilTpmDkyJFsnb1cgIYGKleBVcZsBlJTafnxq69WMLgAEBsbi+zsbDzzzDO2TWDtWqrDUB0vvkizOqwI2Xfv3h1eXl6IjIxk9u3bVzGA7OREq/Ref53eHOqAxWJBcXExk5Bge5q22WzGsWPHzIIgfFKnkyk8NChGt3bWBgQE1LjK3L59e8yZM0dnsVi6AajnChPAcVwWx3GnOY4jhJDHCCG3F+b2HTx4UFWj8Pn06bS4oHyMcssWurikUsFoNKJr167o3r07AgMD0aDOwoMH08W06nqWWSy0HdKCBdQLr1QFB9CblSzLxGIlDluFCxeqFempQGwsXVCzgm+piNHx48eZshhyVBStatu0iSqwHThAjbuNBAUFwcXFBTWGf6pMMVYmhBzhOE5pBfQPRTG6tZMg2xB0ZFkW/v7+olarXdQYJ50/f/6++fPn23McRwB8CgDr1q3D9u3bUVBQgCpdEFQqqn07ahTVIwCoJGNICABAEATW1qKFWnFwoOeyVjwSHU0bX86bByxfXu0QrVq1QklJCblhLRuhMl5ewLp1te/32mu0eMQKwcHBmDt3Lpo1ayZ+8803WLlypVg4cSLMq1dTL/zRR+ln9emnwM2btZ8LQFRUFG7evIlhw4bZVNZZWFiI0NBQo8lkes2mEyg8lChGtwZ4np+iUqkWOzg42BS4Gzp0qM5isUzheb5RW7xwHHcANLfzuYSEhK1ffPEFFi5ciCoGi2WpvOHOnXTxytER6N4dAF2Us6rXW1/UahoTLe+pmkzA5Mm0aeSQIfRGUA0nT56UtVqtbJPHHR8PtGlTe2pZYCAVyqnU102SJBw8eBCrVq0SjUYjhv76K5omJLBfvPACDvXoQfN8162jBvvkSRqHXrq02tMIgoAVK1aIJ0+exPTp09G7d2+bKkL27NlTIsvyDxzHxduyv8LDibKQVjPviqKIHj162PSlcnR0hIuLi5SRkfEsz/M/A2jeWKpUHMcVAlgDYA3P8zIA/PDDD/D29haGDh2qKRMwnzSJ5tBOn07jqm+9BQDQaDRSeno6Fc5pDLp2pc0iMzNpefE771AjHx9vk37C4MGDyaVLl6Svv/5anjJlCuPq6lphe2pqKrZu3SqKokgeX7OGGNVqsnPcODg6Oopt27Zlg4ODUfkY6HQ0m+PMmQpC7bt27UJSUpLct08f1rlZM9hv3y5fMJng3qEDadu2LVUvu41aDcyeTTtVTJpUVjqdn5+P9evXy506dSLR0dGSu7s7eeWVV2xOt0tLS8PFixeLzGbzPJsOUHhoUTzdmgmUZRmFhYU2HzB27FgHvV7/tVqtzgNwbcGCBVWrKhqOlhByCQDS0tI0q1atQoVmnMHBwF9/UUWyjz4Cjh3D2JgY5tyKFZK8aRN9hM7MpKpe4eF0wWv3blpme+EC9fYEAUhLo6v6olilcScAKoIzezaVY0xLox0cbBSsUalUmDFjBuPr64u1a9dWGXzHjh1ifn4+O3r0aMY1IoJ0OnoUb775JgYNGsTm5+eLy5cvx2effSbl5ORUPPCbb+g1lOPChQtS7169SJ+pU9HhxAl4hYeTif/7H5k5cya81eoqRRXo0IE2vHz+eWDBAggmE7788ksUFBSQM2fOSH379sW0adMYm/ObAZw+fdokiuLnHMfVoWW1wsOIYnSrgef5MnWYo0ePVo2hVoO7uztmz55txzAMCwBarfatxp4bx3GCLMsVkusrLLI5OdG81aIiwM8P0GrRxt8fhSUl5Na5c1SzobiYisdERlJPb8UKuhDF89R4JiXR1kUvv0w92s6daR5sjx6Ahwf1Jr//Htixg+r7btwItG9fp+tQq9UYOHAgYzKZmPI3tj///BMWi4VxcXGRzp49K7oMGQJtYSHs7OzQpUsXTJ06lX3nnXfg5+eHVatWSTExMShbkNPp6KJYuRBDiIMDc3DfPtycO5cWUZRHFGlYwhrLlgG5uYjfvBlOjo7ynDlzMGvWLCYkJISxWWMCNLSTkJAgSpK01eaDFB5aFGnHali8ePEvJpNp8u3Xvr6+mDx5ck2HVOCPP/4QYmJiNqtUqsvvv//+e3dijqU3hhsAMGXKFLSvbPQkiebviiLQpg0OHDiA+Ph4ecaMGaTGtj7WuH3Tyc+nxtzFhS7U/etfdPHu++9pTLdSY8/akGUZW7duFRMSElgHBwfRx8eHPXfuHKZMmYKmTZvi26VL8Z+YGNht3Vqli4QoiggPD5diYmIYDw8P+Pr6IjY2Vg5MTiY9//Mf2LVuDYgijE5OOD57Nvp8+CGqiKqbzTT2bMWICoKAY9HRaPnMMyjx85P9d+8m9emKnJ6ejrVr115/9913bVD1UXjYUTzdajCZTBvKv05MTERmpu2duLOysswMw0TeKYMLABzH3QQwEQDy8vKq7sAw1FOdMwcALWF1cnISv/nmG8TGxtbtbsuy9MfZmWYT6PW0ff28eVR4/LPPaBPNOkIIwbhx49hXXnkFgwYNYtPT0yVBEKBWq+Hk5ARHrdZy5cMPq7btAc0YGTJkCNOnTx/x0qVLiIqKgoODA0pUKunGo4+iZMYMIDMTP374ocVh4sSqBhegC363O1GUIzY2Fp9//rkcFx8vHXvnHVkMDJSxe3fFPGgbSU5OliVJsp7LpvCPQ/F0a4Dn+a8BzAbQhWXZnlqt9n/Tpk3TaTQaNLOiOnYbs9mMxYsXWyRJcuQ4zgZhgYaxePHiaJPJ1CsoKEgeNWoUqZClYLFQg5WQUNYJIykpCb/++itGjx6NGjV0beH112nGhKsrPYe3NzXApdV1dUWSJJw4cQKBgYHQ6/WICw6W/fLzia46/QkryHl5KA4MRA4hOPvqqzhpsWD8+PFoZ63HW0kJ/Sn9exYWFmL58uViYWEhO2HCBHS8XQVnsVAB9xYtakyFs8bPP/+cn5KS8gLHcb/V6UCFhxLF062ZtwGAZdkjLMt+WFxcrPvhhx+wfPlyS003q9LUJhmADZn/DcdkMg0DgLi4OLJo0SJs3bpV/uqrr0SLxUIfnWWZyj+WCoC3b98eY8eOxfbt21FkpYKrTuzfT1PEGIYa9fh4WqBgo0doNBpx5swZXLt2DUajEQzDoGfPnmBZFhaLBeFPPCHd+PFH2+dTUgLSpQvsP/oIJXPnSin29pIsy8jKyrL+B/vvfys06ly+fLlkNBrZOXPm/G1wAfo5btxIK/E+/dSqmLs1ZFnG1atXNQCUsl8FAIrRrZFSL7WpKIqvS5KkBwCVSnVGluXELVu2GEuq+eJptVo4OjoaAXSpbmye5+vYl6bGeeaVVrGtB6jxzcvLY8+fP093YFlaqTZ4MHDlCgCgU6dOcHZ2Fo8dOyYBNH5ZQRTGVvbsqdjTrG9fqiiWnk69x8rZBaVIkoT9+/fjyy+/lPft2yevW7cOS5YswcKFC7F48WJ58eLFWLRoEbr8+SdrZ+vTWGoqDXvMmQPo9XDfvp3JyclhunfvjgMHDpAqFX2SRAs8yoUdOnXqRMxms/Xwi15P857j423uRJGdnQ1Zlos5jrOuranwj0MJL9gIz/NNNBrND4IgTATQhxCyXpbltuPHj4e/v3+V/Q8cOCAcP378L0EQRnIcJyxevPhLSZKmm83m0RzHHSrNtX2e47jVjTxPXwAXAcDb2xvPlddI2LOHyiDm5AAMg/Pnz2Pbtm0YNmwYIiMj5cLCQtKxY0dp1KhR1TaVrIK3N+2gbE2IfNMmer7ffqOP5qVx2cTERGzfvl1Sq9Vk1KhR5HYnZlmWYTQaUVxcDK1WCwcHB8jdu4OsXk3zgmuioIA++h8/DgQEQCgowN4XXpBbvPYaegUHk2PHjuHgwYN4/vnn4VZZFKgSoaGhuHDhgvTSSy9Zd0rMZpqW9vHHwMqVNXbSOH36NPbu3bv77bffHlnzBSj8U1A8XRvhOC5v7ty5kwDYcxwXLctyDwCW3377DTt37jRVyJMFMGjQIE2rVq2CNRpNysKFC381mUyvtWzZsplarf5zwYIFT4KGH1aV9kVrzHkmgv5dn71+/Xr+yZMn/944fDiQnExzcIuK0LFjR/j6+sqHDh2y+Pn5kddeew03b96U//e//8m5ubm2nbBPH5qiZo2JE6mBevllmvtbys6dO8WgoCBm9uzZZQYXoItqer0eLi4ucHBwoO/FxtZscCUJ+OADqvV75UpZ3Hrj1q1S6/x89IyMJADQq1cvtGzZEkePHv077rFoEfD441WGvHDhghgQEFD93+W2Z7xhA02vq4G8vDyYTCalAk2hDMXo1hGO44pLf+dwHKcG4BYfH7/866+/Nh44cEC4XarKsiymTJliN2nSpJaiKI4HgKCgIHnKlClOer3+JwC3sxrqltxq2xxljuPWWiyWgbt3787eu3evUJZn3Lw59TonTgQAPPnkk2T27NmqkSNHwsHBAbNmzWIdHR3lQ4cO2dZefPr0mrtIqNVUAe2RR5AXGIhtzz0nmc1mtlu3bqhV4eznn8vKmKslN5eGCG7domlsAE6ePIlr164x7aZNIyT+b3vn4+NTsXR65EhgxowqQwqCIDdv3rx6o7t5M83tDQ2lOcE1UFRUZJYkKaPmi1D4J6EY3QbCcVzGe++996rFYml3/PjxuM2bN5fcNnCEELRp0wbvvPMOZsyYgW7dupHWrVtj8ODBdizLzmUYpgjV6eQ2ztxOmc3mDidPnoxavnx5UVn11tq1wPr1tE+ZFf71r38xp0+fZq7b0lXho49ou5yaIAQXLlxArKcnfKdOZd564gm42pIn3K8f1e61xs2bVF/XYqGP+qVl0NHR0di9ezeefPJJ2D/9NPDEEzRXGcCtW7fQvLwGMMtSw1sJFxcXsm/fPtlqimBaGjBzJi2+MBhoyObLL6u9hKKiIgFAVu0Xq/BPQTG6jQTHcdcFQRiQnJx8ZP369cVms7lsm06nQ6tWrcped+/eHVOnTnUihGhBhWzu5LwyTSbTo1lZWfO/++67kjNnzlBv18EBcHen2QeVaNmyJezs7CxWc38r8/LLQOvWte52/fp1XJo0SQwYMgTs008Db7xR+9i5uVQisjI5OXSRbty4CkLqoaGhOHjw9SKCjgAAIABJREFUICZNmgQ/Pz9a8HDoUFkvtPz8fNlsNv+9jjFkCK2oq8TUqVNZlmXJhg0b/l7wEASaueDuTjWCb6cMZmRY79tWSlFRkQVAdrU7KPzjUIxuI8JxXIkgCMOvXr26Z+3atcUmk8nqfoQQ+Pj4oFevXpJGo9nI83y9NXhtnJc8b968L8xmc/8dO3bkpKam0kWtiAgqaWglvUutVpPi6vRyy3P4MGCDNkVBQcHfzS+jo6nO7tKlNK5aHZMm0YWq8iQmUt3gwkLqZTMMjEYjli9fLsbExGD69OkoHyfGCy/QhpoAnnrqKZKamkqioqJo6CQjo0pZsCRJuHbtGvLy8uDr6/u30S0poXnIubkVq9f+8x+6oGblqeDWrVtIT0+3g+LpKpRDMbqNDMdxZkEQxmdkZGxYvnx50aVLl6rdd+jQoRo3Nzd3AIPu0txOmM3m2Xv27CmUZRno0oUKd7doUUXQxt7enly5cqX2uG54OI2n1oKrqyuuX7/OiKJI9WtVKloyrNVSo28tX/jChTKVNEgS8N13gK8v1X0ojSOnpqZi6dKlsr29PZk9eza8KrdoDwykimFnzsDJyQlTp04lERERTF5YGI1HlxrQ3NxcLF68WF64cCF+/PFHhISEiMOHD2dQWEgX57KzgaNHq7ZDAqjC2qCqf8Ljx4/DZDKpAdje713hoUcxuncAjuMkQRD+nZ2dPXPjxo3pq1atKrxSmh9bHkIIWrdurdFoNN8sWLDgNZ7n72iooZQNOTk5N6KiokRZlukj9q+/UuNTLn1w1KhRzNmzZ5laRcYPHKheMKYccXFxlvz8/Ipdef/v/6hR/e9/aUlxea5cAUaM+Lv898wZ6tkWFQGlnmxqaio2bdokBwcHY/LkydWrfoWElMk3ms1mqFQqOKjVFTzWzZs3i35+ftJ7772HefPmwWAwsBBFwN6e6ku0rEE24cMP6fwqMXjw4Nv/VHJ0FcpQjO4dojSDYL0gCK2vXbv2+s8//1xkzYANGTJEM3nyZM82bdp8rNVqf78L85IEQRgUFRWV9scff5gkgBZNTJlSltEAAC4uLujUqZO8fft2qcZc7iFDaLFANUiShHXr1kkFBQWqt99+G87WMh14Hti3jz7u3144Mxppi56EBGo0O3akhrg0RPHLL79I69evR/fu3eWQkBBSo+rXZ5+VdS8uKSmBRqOR2ZCQstY8+fn5SE9PZ4cOHcqWlVALAs2GiI0Fliyp0uOtAjodlcYcMaLS2zoQQiQAVe+4Cv9YFKN7h+E4zjx//vyVkiR9HBERUVLZgJV6u3j66ad1hJAQnufrrhpT9zldFQShW3x8/KkNGzaUSJJEjd38+RX2Gz16NMnOziY3a2pf079/jV2B9+zZg6ysLDJz5szqBb8ZBvDxAc6dowtfskxfr11Lx/b3B9RqXLt2DVFRUVixYoWUmZlJZs+ejaFDhzK1pp5ptTRbIz4evr6+KCoqIlJAAPD++2VdJWRZRlluckoKNbJbt9KW8bbQqVOVfUvLmoXbaYYKCoBidO8aoih+nZKScuPkyZNW3UaVSgVJkgju0ko3x3F5giAMuHLlSkpCQgItQPD3p8YuIqJsTvb29mJ6enr1Aw0bVn1xBOhiUlBQELGpY8XAgdToJiZSo2dvT73d5csBQrBlyxbp4MGD0Gq18r///W/i6GhjNIZhaLaEo2OZ7q7lt9+AWbMQHx+PuLg4eHt7i/n5+TS+3KULzcG1EqetFl9fetMqlw1RWFgIlUqlZC4oVEAxuncJjuMKBEGYHRsbW2Bte15eHkRRJABqX5VqvDkJJpNp/v79+42FhYXUOM2bR4XKS/H391ft2bOnel2GpUup4Hk1lJSUiHXpsIBr1/4WILezo2lh8+fj3A8/gLl2jXnzzTcxffp01s7GDhVl+PsDTz6JosJCEFHEKZ6XFq9di927d0On0+HZZ59lA2JiaFjhtk5FXYmKojm8pYiiCELIXRE9UnhwUIzu3SXyxo0buvI5vACVWvzxxx+LCSGfchx3t8UwthuNxgPffvttydWrV2mK1cmTdHFMkvDoo4+iT58++PHHH/Hpp5+iSnnwW29RL88KERERyMvLY9u0aVP7LGSZLnZNnQocPEi1HFasoDHjvn3RjGHw2JYtUA8dSrcnJFRY+KuVtm0BQYBLcTH6enuj8759zPRnnoGHhweMRiMyMzJoy/iwMNrrrT4MHlwhZ1en00GSJIf6DabwsKII3txllixZcnrcuHFBt7s8HDp0SIyIiMiwWCz/J8vyzntgdAEACxYseFylUm2aMmWKXWtXV+CLL4D33y9b4Y+Pj8eOHTugUqmg1+ulpk2byiEhIWybhQtB3nvPaquepUuXWgYMGKDqVjkzoTJpaTTtavJkoE0b4OxZqs/70ktUu2HfPkht22LJRx/Jz/bpQ9zPngXi4qixz8ykVWd9+1aQaLTKpUu020W5Ba/09HQUTJokR3XvTiZ8+GGZ5kO9uXCBziU9HUZJwmeffWaaN29e3dppKPw/e+cdFsXZtfH7mdkGLFU6oghKC2ABVBAVrGDBLsaG3WjMa2KqiXEzpphYojHGltg1doOCvWDBjgYFVKyICAhSRMqyuzPz/fEAiqCg0eSL2d91cam7s7Mzg3v2zHnuc583Gn2m+zej0WiWHzlypOTOnTvYvHmz+ujRo7larTZw+vTpO/+pgAsA06dPj9HpdL02bNhQmltaSssMn31WaWFY3twg9O3bFyEhIYxSqWQ3b94s5u/ahZIa5HAAoNVqmRrVChVUWCseOUI9FkJDqSb2wAHa8TVmDPXmLR+QKbIsypo0oQ0Jv/1GB0c2a0abEz7/nErKjhwBntVJl5sLzJ1Lz6lc/2tnZ4f6SiVhiotfaADpM3FzA375BZBKodPpwPO8nOM4/dRtPZWwX3311T99DP8pYmNj4zUaTZOkpCTznJycn3Q63dsqlepvq+M+j/bt2986cuRIzpkzZ3oqFArUNzEBbG1R4uyMrVu3wsLCQujYsSNjY2MDDw8PBAYGkrUlJbyBpydj+3RTAoBjx46hdevWRFE+N62KrEunA955Bzh7Fnj/fbogx7K0xffiRZr1FhcD8fHA7t0ge/agICSEnD9/XmjevDlhWJYutPn4ULlb06Z0RltxMe0yO368sqQAMzP6nnZ29PkmTagl5dix0DEMvlcqYdeyJVq1aoUXGTj5TJycgE8/xVkLC5Q3x3DBwcH6W0o9AAD9N/DfjEql4gFE/tPH8SymTZu2jOM460OHDn1h2revwsPNDUJAAExbt0bosGFV7t9v376NXsuWsUXOzij28nrc5luOTqcjRkZG2LJli3Djxg3GxsZG6NWzJ2O1fTut127dSoPfk+OFli6lvhCE0CC8bh2t4d6+jTC5HAtv3sSqVauEYcOGVfX8tbamZQYACA+n6oM//6Qtx/XqURVE795UFXHgAFVEPHgASefO8D57VkhJSSE//fQTWrVqhaZNm5K4uDixadOmxNjYGC+8aCeTgd+7FyepAqO3SqWqm2Obnv8E+pqunhrhOK6FVCqNHT58uIk9xyHW31+8xvPChAkTKgPvzz//zAfHxLDn/P3Fe3I5CQoK0oWEhEgAqlGdNWsWvvzyS6xZs4aXSCRs4YUL8NTpECiKkI4fX+l9W4VmzahBjZsbredeu0Yz1uvXgYgI6A4cwK/R0bwoisy4ceOIRCJBcXEx4uPjRY1GAy8vL2JnZ/d4f4JA25RXrqRm625u1I5x2DBgzZonNhNw9uxZnDt3jn/48CFb4RTHMAymTp2KKnPn6sCVK1ewfd066GSyRiqVKvWFXqznjUZfXtBTI8HBwZlHjhx5lJKS0tlg4ED2XkKCGLBmDWM5YULl/ff58+dF3L9PGnTtStp3746YmBgmMDAQDMMgIyMDV69eRVBQEM6fPYv8hAQSsX49UhUKRHl5oUVoKEpKSpCWloZ65T64SE4GHB2pYqEi0x0+HFAoIHbsCFKvHhhHR/iGhDBxJ04IarWaMTIywurVq8Xc3FxRrVaT48ePEzc3t8dZNyE0cw4IoO28t29ThcKDB1S7W15OIISgfv36aNWqFePj4wOGYdCxY0fcunVLUKvVorOz83PrDjqdDunp6ZDL5VRzrdGgc//+8Lx8eZPyo4/0bcB6KtGXF/Q8E0EQlpSVlc3av3+/pIWdHeNsa0trseVZ37hx41h282YQS0ugfn0YGRnxixcvZpRKpZCWlsZaWFgIuHGDGXHoEHPw4UOsGjECSicnXpeXxwLAwYMH+eTkZNbT05Pv2bMnKz94kN7+P1lXHTIE+cXFWDBjBoKCgtBh0iQwgYHo3qcPu2vXLv7MmTOso6OjOGzYMEatVuOnn34Sc3JySLWRPL17U6cwf3+6mHb0KA26Dg6PTXXKMTMzQ5dyS8mIiAhm5cqVePDgAf/WW2+xFaqTS5cuiYmJiUJGRgZrZGTE8zzPaDQaIpFIxMGDBxNHR0cs+/TT4kyZrET1un5Bev6V6MsLep7LjBkzJjZu3HjW4MGDaeq4ejVdsKpoAjh0iCoPzM0hCAKOHDkCjUaD82fOwO/kSTx0dhaVaWnknJ8fwDBwdXVFZmamOGXKFHLgwAHxxo0b4qNHj4hCJiMji4pg3L8/9VkAlXMlnzwpKH75hYkPD8fDhw8RIJMJHQWBYT//vGpwBnD16lVER0fjww8/pFMpBIGO0+nVi2pozc3pyPh+/YB336VfII0aAdHRdMLFMyRnmZmZOHnyJNLS0vji4mKWEAKlUskrlUo2PT0dNjY2cHZ2Fv39/UlCQgJ/6tQplhAiWlpa8n2mTr1lmZvbE6J47fX9lvT8m9BnunqeiyiK0WlpaXMqH0hPr2rDuGIFtYY0NwfDMOjQoQMe3b4NxaxZsCkqEkmfPsSpXTvo9u/HpUuXwLIsGjZsKJSUlLB//vknCQwMJCzLImn9epQeOADjadMAUInaihUr4GBrSwZlZiJo4EDkSKVYuXIlbt2/j7Ht24M9dKjKJF8rKytotVoacPfto228Dg600cLWlmp7zc1p+eKTT4B27YCFC6m3744dVG5Ww0BOOzs79OvXDwDYoqIiaDQaWFhYsACQlZWF9evXC3fu3EGXLl1ISEgI2759eyxbtgyZmZmSTEdHG8vcXL1OV08lep2untqQSySSxy7nX3xBjcc/+YS26yYnVx2zPns2xKAg5PXpw3ucOUPcu3SBQqFA48aN0aRJE/HBgwc8z/Pshg0bBHNzcz4oKAgBAQHwSUwU+UGDKndz6dIl0czMjB8xejRRrFkDGBnBysoKw4YNY+6bmuJBWZmofcrdzNzcHDqtFtpbt2hn2/XrtMmjYlLxzZuAqyv9u5ERDbhpadQ7Ytw4eh4JCc+9GEqlEhYVUyMA2NrawsLCAkqlsvKWkWEYREZGksDAQOzs378IgBaE1MF8Qs9/AX3Q1VMbSqlUWl3ydPw4Dbg7d1KvhoQE2kzh6Ig9//sfX2BkRLS6x7YDnp6eiIiIICEhIWxGRgYvl8vJsGHD2MzMTFw4dw6lcjlKyyVf2dnZOHbsGAkKCqL3+9HRdCwQABsbG4R17451AweKF2bMEO+uWYOKEtmVefMwed48iJaW1D/hSXWEKALff09tIgE6YujkSSodc3Gh3gynTtEGjSc9f5+DRqPBiRMnkJGRwXTr1q1KbcLAwAA2NjbQ6XQOOpY9DGBY3S63njcdfXlBT21kFxcXS3JycmBlZUUfIYQGqMJCmkXOnEl/Jk8GIiLQR6tllyxZwq9atUoYPnx4FT2th4cHPDw8WADYtGkTf+PGDbZxXp7QmhA0bNGC6HQ6rF69Gt7e3mLTpk1p0TYnpzKAMgyDpk2bIiEhAQ8BWH3zDWJu3BDcBIE5rNFg0HffwbQmR7Pjx2n91sWF/rtVK6oJLiykPyoV1fZevkxbhVesABYtemyiXgN79+7Fn3/+icDAQNHU1LSausHLywvbt2/Ht198YQuGWaRfUNMD6DNdPbWgUqkyBEF4f8OGDcVPG/Xgxg2qgV26lDYijBkDEAKZTIZJkyaxWq1WXL58uVhaWlrlZYIgYPPmzeKtW7fYSZMmIaJbN6ZhZCQDUDvEsrIydOrUiYgPH9Jus6+/pm2+oG5sP/74I7Rardhh0yZSPyoKvps3MyW7d6PQ1BRL8/Jw8OBBQad7ytwrKYkeXwWEAFu20BLDgAHULe3wYVrzdXCgpYkHD6ji4Rn4+/sDAHQ6XY3ND4QQvPXWW1owDCYsWnQVhHxRt6uu501Gn+n+R+E4TsIwzARBEB6oVKoNz9uW5/nfiouL+8bHx3cNCAh4nNG1aEFv0b/9lo7tCQ2tfIphGLzzzjvs7NmzxdTUVHh4PPZmV6vVuHLlChk0aBBMjY2psc3x4wAAU1NTNGnShP/pp59Yp4sX0f7GDVFXUkLMioqgVquxceNG0cbGRhg1ciQLDw8gLAxGJSW426+f0KtXL8bIyAjbt2/HyZMnwbIsHBwchAF9+jBGN29Sne6TjBpF3coA2kbcsyctS4wbR1UZcXFAZCRdYHtimnMFqampAIA7d+48M3lxcnKSJicn42i7dq4MIWy/511oPf8J9JKx/ygcx9kCyDQyMiopLi7uoVKpYmvZvoOZmdmO8ePHKyu8FCq5fp0GXUNDGqTKKSwsxIIFC/Dhhx9WmxoxZ84cYcCAAUzD27eBBQuA7dsrn7ubloasAQNg/fHHOJCfz+cXFBCNRsMIgoC3nJ3F3tHRhPnuOzqZ18cH8TExSD56VIycNo2gvNFCEATk5+djx44dAp+Swrydmwvlb7/h4cOHWL16tVhSUkIaNWrE99mxg5WNH08N1K9coaWMhg0rx8qXrliBTcXFQohMxjQcP77KOXz33XcwNzfH6NGjIXvGOJ/MzEysXLkyj+f53AbXrzexLCxcH9+8+bB/0tzoTYfjOFMApQDqA1gO4DaAowBOArjx5LXnOK4hAJZl2ZEAynieX6JSqR68zuPTZ7r/Xe5LpdI7arW6PoCxHMeZqFSqHc/Z/khpaem2efPmDfTy8mI6d+4srwy+FX66kyZRi8c2bQDQOWY8zzNPBqRNmzYBgMjzPFOvXj06KaJcJlaBZWkpDHNysPriRXHK119XLlAJly6BadSI4PffqbSrRQsAwOFr14QR9+4RjB1bGbwZhkG9evUwatQo5sawYTiZl4cHv//O5+TkMPXq1RP79etH9u3bR/5MTYV04ULBtH59xsnVFcd//FF0O38etidOkNuZmVh/7x4scnOZemvW0MaK8vcEAAsLC76oqIjVarXPDLp2dnZwdHSUp6am7vKPjx9dYGY2BMAvAE7V+hvSU2c4jiMSieRdhmGmsSxrIQgCK4pixR1IsJub24CUlBRl+bYAEAPgAoDpADWcNzExEdRq9RCO47xVKtVrM5/XZ7r/YTiOM2RZ9izP8xXL/Gxt5iwcx3lKJJL1nTt3btayZcuqT+bmUntFd3dg7FhkZmZiw4YNPMuyzIABA4i9vX3Ff3i8++67sDQ1BUaOpOWJ8swS8+YBBgZICQ5GzK5dwocffkg/ODt3UivHW7eqmYzPnTtX6NW1K9M4P58ulj3peKbTAf7+KNyxA/vPnoVcLkf37t1RMVetKC8PCfPn44ShoQhCCARBbHX0KO74++OuXE5atmyJwMBALPr+e/xv9Ggo3n+fNoiUO5fNmTNH6NevH/M8o/bc3FwsXrxYLJ8MApla3XjqzJk3n3ed9TwbjuMIADsALgBcWJb1lEqlPQwMDBr079/fqMJ7g+f5Kp4ZGRkZiIqKQk5ODliWRYW/BgAYGBiUvfPOO/ItW7YUZ2dnX9doNCNUKtXF13H8+kz3P4xKpSrhOC4IgCeA23V0w0oRBMHTtULv+iT16lGv2kGDAF9f2DVvjvfff5/dunUrtmzZIk6ePJkoFApx0KBBxLJC1tWgAdCwIURRxKU//0SD334TT4eHCxe2bWNbtGhB8NNPwN69QEwM1dnWMNXBxMSEuZWRITR2d2fQvj0tdVQEwfh4YORImDRogP4NGlR7rdLcHEH79yNw9myyIiUFxsbGgs+4caxvQADw+ecwLm8Hltarx59PTWWb8jyUN28C7u44demSoNFomEuXLvGNGjV6poN6vXr1EBYWRmJiYhCxbVuOe2LiasycGVSHa/2fhuM4GYB2AJpIJBJ3qVTqLYqiC8MwdlKpVGdqaqqxtLRkra2tjRwdHUmDBg2qBNmnTYrs7e0xsVx6OHv2bCEiIoKxsLBAUVERrKys5CzLYvDgwUabN2/2SE1N9QegD7p6Xj0qlaoAtNZV1+35mTNnFgmCYFHjBvb2VAUwZAgeeHridIsWuHPnjuDu7i5euXKFLTel4YuKitgm8+dDVj78MWfdOgjz52PDxIm8U6NGkvcYBiZ2dgQsS6dIsGy1AZiFhYWIiooSHjx4wHTr1o2BgwMd567T0QGTLEu9eWvw+q2EEOSNHYuLSUkwtbTE1atX2fDwcBgsX06Nccq9Jpo1a8YeO30asa1bo2t2Npp17YqMiAhi5OqKgoICcuHCBaGsrEwMCAioMfg2b94cMTExOOHvv949MfG7ul7v/xrlWaybRCIZIZFIJlhYWMDOzk5qZWVlYG5uDgsLC5ibm0Mul0sBvMDwveowDAOlUlllWki5vppJTU19jvv+X0MfdPW8EOW1M/mzapgAqCHOr78it3VrMDzPtw0LY1q2asUUFRXBxcVF1Gg0OLhnD28dFcXudHYWGh0+TBpt2UKKnJyEiePHS8CytHY6YEClVOxpSkpKsGDBAri6uorjxo177FQ2dCg1Rzc3p1KzpCTaPfccNqanCz03bWKS33lH6NKlC1EoFARt26L40SPk+Phga2SkoOF5RqvVIiwsDKdOn+bTBg0C7+rKDJFKsTw9naSmphIAUKvVQkhISDU1A8Mw6N27N/bs2dNeAA4xhLSCKH5Z1+v+X4DjOD+5XL6SYRhnLy8vib+/v6xSG/434uTkJD137tw3HMf9oVKpnj119SXRB109dYbjOCKXyxfIZDKmwjpREAQcOHAA6enpQp8+fZjKFlkTE0RFRoqTY2NZhUwGtGoFExMTDB06lABgER8PraMjmhoYMLaTJmFLRIQoYVm0dXEBFi+mQyqf05iwdu1a3snJCQMHDqyeWU6cCCxfTksL16/XKPeq4NChQygxNGQcRBGTunZl4OZW+Vxq/fpgRBGdbGwY29BQ2NraAgBatmxJ37O4GAgIwEdjx5L7/frhxIkTOHbsGNOmTZsaF9a8vb1x+PBh1yRvbz+fxETLWi/4f4jvv/9+vlwuHxcaGmrQtGnTVzPB4zmIovjMNyCEgGGYMkEQ0l7He+uDrp46w7Lsu0qlcuSoUaMMYmNjxaSkJL60tJRVKpWira0tWbZsmWhjYyMOGTKEKZ8PRh4tWQLFokW0lbd798dTIvbuhbRRI/hptYCfHz7IySHC3LkEHh5U7/ucgLt7924UFRUxkZGR1T84Oh2dItG/P91P79708ePHASsrpMrl2L90KV9qYwNDpZLk5eWRdu3aEWbkSOrD8ATXb91C/scf8yNPnmRRvz41zXkSIyPg3DmwPA/7iAhonJ35Nj17ss+6Cyj36DXaXVbW54+ysmYqQhpAFF/LB/vfBMdxPgAmv/vuu7C0fP3fRadOnQIhhNjY2NT4/P79+x/pdLpRKpVK8zreXx909dQJjuPek0gkcyIiImTXrl3D6dOnSWhoqMTU1BTOzs6EEIJr164hLi5OXLJkiWBvb884ODjwVk5OLGbOBEaMoAtc8+fTbrC8PNpYMWUKbR/+4AMwZWXUdvFZiCJunDqFtAMHEBkaShR79gAXLtAFvLIy2sIbE0PtHK2saCZa0fwwYwbQrBmirKz4/82ezV7dswfK33+H1e7dKBs/njZHFBTQLwcfH5xITsaVK1cwfPhwFhYWVGHRqVO1QxKkUuzcswdWDx/C8N49tpmzMwCgtLQUSUlJUCqVcHd3r8zcvLy8cPjwYZf+v/46H8BA0FX4/zoXAWpY9LrR6XQ4evSoGB4eTqRPONRVkJWVhcLCQgIg6nUdg14ypqdWOI6TAqj81pdIJOjXrx/cy31vn6SsrAzR0dF8cnIyGxgYKHbu3JlGG7Ua2LCBNh80aUJlV4mJdMGLDm+kQTIjA3j0iPohJCQA9+/TycAPHwL79iGnqAh33d3FFh07EhQW0uDq40MX2UxNaTbKsrSFVxBo1lvOsWPHEB8fL06ePJmwLEuP6eFDGvxXraLG5suWAQsXIkmrFTF9OvGqGJh54wad8jt3bpUsfOnSpUJWVhYzePBgyKVSOHbqBDJyJP7s1g179uyBTqfDlClTqizWnDx5EscPHVr+6fTpEyGKryWb+rfAcRwDgAcAleoF3SkyMqg8cfRoKjWsA5s3bxYfPXokjho1inm6hFFUVIQlS5aUlJSUjJk+ffpzuzT/CvpMV0+tqFQqLQDCcZwcQD8Aa9zd3WtcpZfL5ejfvz/brFkzGBsbP/5frVBQH4UvvqA/9etTv1sTE+Cbb+it/d69QLdugIcH7W7j+ceeuGZmwLRpMOB57F2wgJh17w7n8qyyGtevUzexG1XXQPLz80WdTkdycnJofZZh6IBMhQKYNQs4dQqaTp1wQKdD3p49JGzBAmDjRjqZuH59aoQTFQX07Vu5TwMDAwYAnJycAABR77zD5969yxrOmoV2AwaIR69cIbGxsUJQUFDlOHoXFxccOXIk4qKPT2xTQiZBFANe8lfzJtAQAAwMDAS8iBdMcTGdMrJoEZ0kXQsajQbbtm0Tbt++zYwdO5Y8HXCLi4uxdu3aEo1G86Moihs5jvMCcF2lUpW90NnUAX3Q1VMrHMcZA+gMoIFcLu9jYWGhBmD0vNdUjLWpgkxGb9PnzaONFIGBgK8vzWTNzGgArI2iIrDqBfokAAAgAElEQVQsK+ZTD9+aF0MMDKiBzVOa3l69epFVq1YhPj5e6OHnx2D5cprt/u9/gIkJkn/8UfwzLo6UBQQI7VUqpp6LC1U/ZGUB06fTevS1azQzDgxEUVER0tPTMXToUAiCgDVr1gilMhnyLSwwaO9euLEsqf/NN4iJiSEFBQX8sPJpyjY2NujRo4fRgZKSn51u395mWvtZv8m4GRoaaktKSqQcx8HT0xM+Pj5wcHCocndQjf79qXn+qlX0i3DPHmq8VANnzpxBbGysaGNjg/Hjxz9WupRz69YtbNmypZTn+SUMw3gDqNCruwK4/ipO8kn0QVfPc+E4zk8ikRyyt7cn1tbWMltbW3mzZs1efodFRTR73baNdpft2QNMnVrnl69evVpQq9XM0x+cSs6do8blG2q+O3R1dUXWjh10/Hv37rSGXF4u0CUkINTbG5ajRz/OuLy96U9wMM2gu3Shx3v2LMrq14coirhy5Yqwfft2RqlUijKZjAGAG3Pninb+/iSvRw80srUluicdzgD4+PgQrVZrulgm6xVpZ3fRLjNzYZ0vwptFoYGBQen//vc/6ZkzZ/i4uDj28uXLMDExESZPnswwNS2oFhQAX35J6/AAYGlZbXQTANy/fx+bN2/mS0tL2fDwcOLh4VEtwy0oKMCmTZtKNRpNTwBEqVTusLS01GRnZ6/+/PPPX3nABfRBV0/tNDE2NpZFRkYqavwAvCg5OdTgxsSEZpFnzjx386NHjyI+Pl4QBAGCIBBCCAMAq1evrqwB7tu3T0hJSRGMjIwwmmEkNXWtVdD00iUUJSQwqX37wmnAgCrPHejWDcOHDq35hVIprRlHRdFAPWsW6iUnY4Cjo7BBq2XCwsJwOzWV3Lhxg4wYMQINGzYk9+7dQ0ajRmhtYwOT1q1ZURAAQioX1Xx9fRly86aFWUHBT0vHj98xfunSu3W+jm8OWSUlJaxcLke7du3YoKAgFBUVYdWqVSQ6Olrs1atX1Si5Zw+t4d6+/Xi0UlAQ9UfetAmIiIBOp8Mff/whXrt2jfj6+qJDhw41SvgEQcCWLVuKBUGYqVKpDn399dff6HQ6w+zs7PtarfaD13XCej9dPbWxqaSk5PyxY8e0tW9aB+bMAdasoX8fOpQGsbVrAS8vAPSDkJiYiA0bNuDHH3/k4+PjxdDQUGbw4MFMZGQk+fDDD/H+++8DAFasWIGtW7ciPj6eadu2rUR95Yoky9ycLoY9jSgCHAejW7eg7dpVWJeTg/PnzwOgCyg//PCDaHftGiEdOqCaFy9A1REREbT2fPo01f5GRsJ16VJG5eoK/4gIXE9MZLy8vNCgvN1YqVQiwccHUKkgjBqFW56emD17Ns6ePStWvEeLgQPZs3v3CnlOTsc4jvsvanfrGxsbV15whmFgYmKCQYMGkeTkZHLjybp8WRmd8LFmTfVZdvn5wDvv4GJsLObOnSvm5+eLY8eORWho6DMlfKdOneJzc3Ov6HS67wFAEISDarUaWq22jUqlKq7xRa8A9quvvnpd+9bzBhAcHCweOnTofF5e3vCAgIDqUxtfFGtrOhDySXlQw4YQrK2x/do1nPztN/EyXegSmzdvzvbo0YPY2trCxMQESqUSDMNAoVDAyMiIL89+hebNm4t+fn6M3dSpoiYlhRhHRCAxMRFSqRSGhoa0fjxyJM2IRo2Ca0gIOXXqlJiSkkLs7OyQnp6Oe/fuYciECSQzLk5ckZWFs2fPCo0aNWKMK7LmvDxa/x01imbphw7RjH3qVKBpU5AmTZBTrx6Cx41DvkIB49atoVAokJGRIezfv5/EW1mB8fAQAx0cyKXYWGH/pUtMQEAAGIZBQ1NTJqB3b7MkP7/ue+PilgcHB/M1X7w3j6NHjwbVr1+/p5eXV5X/W0ZGRpDL5eLu3bvh5+dHJIIAtGxJJ4iEhVXbT15ZGVZaWfEpKSlM1+7dSbdu3cjzasKiKGLjxo1qtVrdQ6VS3QeA4ODg1ODgYC44ODj/mS98BejLC3rqQlJJSYmksLAQJjWNwqkrajXVy0ZHV33czAxRhoaiuGMHGRUVRZj8fBCGeW5Lkr+/f1X1RGkpUiZPFhJv32bK5syBTCZDaWkpqZeXJw69do2I3brhYWAg6pua4uzZsxAEgbRt21aMiooSdTodCQ0NhZGzM9yGDCEj2rXD0fPnmQMHDojDhw8nRVu3Qvvxx1g5aRLfOCaGDQ8Pp2oHU1OqO1apgPBwdFerEbNjh+jn7U0wdy5w+DAG7drFZGdn4+DBg2jTrRsx++UX2GzezG784guhomBJzM3Brl2LesXFjYrT038BMKamc35D4dVqdY1P+Pv7k2vXrglr164Vxg4ZwmLw4GoBVxAE7Ny5U7x8+TLx9vZG9x9+AGNhAdSy7qDVaqFWq2UArryqE6kr+vKCnlpRqVQ8wzA//fHHHyV/Sdd98yb9YaurzczNzUmyszN+/vRTHN+1Syx5+22qs60rvXqhQ14e2/3tt8ngwYPJlClTyOdNmqDXgQNY7+SEn3JzsWbdOsydO1c4ePAgBg4ciDZt2hCdTse4urqiefPmBACYFStgd+8edDqdUFpaCkEQcHbdOjGpa1chIDCQvXTp0uP3HDGC6nZnzQIAbNy4UVCHhQlOHToAXbtS+dujR7Du3RuDfX1hZmaGkyEh+G3CBEQ+fMiQSZNo2QMACQ9HxNGjhgYs+/aMGTOeUVh+I8m8f/9+9S4F0Hbcvn37Mu5bt7I5YWHAp58+7mgEkJycjLlz5woZGRniyJEj0bNnT5bZtQsYO7bWN1Wr1RBFUQLgL6wKvxz6TFdPndBqtdMzMjK6nz59+q2AgICX+7K2tqaz1GogJCQE2dnZIsMwJO30aTQ8eRIOGg0kcnmNK9NVEEWgTRswQ4bA1cqKBuvvvwcpLYXF77+TDnI5GjRoAJZlcfXqVcbQ0BDOzs4VtVtRo9GIqJCfzZ0LuLqiR7Nm7IoVK8TLHTrgQePGpN8vv5Dbt2+D53l8//33IsMwooODA97+4QeGuXULJVevIi0tjZk0aRI9Ji8v+qNWA61bU/nat9+CxMcLraZMYQyUSuox8egRDSSGhpBcvIghkZGGy44dW8px3A6VSvXopa7zv4QZM2b0kUqla3r37q141jaGhobwaNsW+27dQqf792FjY4PCwkJs2LCBz8vLYzt37kx8fX0fqxJ8fIDZs4E7d+j8uxrQ6XS4cOFCxT89AZx/tWf2fPSZrp46oVKptBqNpndsbGxpVlbWy+1k0qTndg5FRESQAQMG4K5SiQvz5wvs3bu046y2kehTptAGhoqA+/bbdKDkBx9A7uWFJk2aQC6XQyKRwMvLq7Kp4sqVK5DL5YiIiHj8OUhMBJYtg5mZGbr7+xP769cRMGkSWJZFw4YN0aZNG3Hw4MFk8ODBTF5eHtloairi5ElI+/UDIQSxsbHirVu3oNGUN5opFFTCZm8PWFpCJpMxmtRUAQsX0gD/66/UUU2tBs6dg1XTprC3s9MBCK3hTN8YOI5rKZPJ1kdGRirdnjAZqkJ2NtCiBSwnToTN4MHC2rVrhV27dmHhwoWwsrLC5MmT4efnV00GBjc3oCa/Z9AM9+DBg2JcXFzFf+LfX91Z1Q190NVTZ1Qq1S2dTjdm5cqVpUlJSS++g86dqai9FhQKhWBra0uIiwvw88904ercuZo3zs+nI3qsrKiyICAAGD+eNjOUT3d4FtevX0eDBg2EKlK4sjJaAsnOhtvu3bBIS4NjeX1QKpWiU6dOpEGDBlAqlSgpKSF37twhv4SG8kWZmWjM87hz5w5Zu3YtZs2ahcKnvizONGuG/c2aic6Ojgzu3KEP8jxtzkhPp+fh6Iig3FwTuVw+pNYL9e+mpYeHB3FwcHj2FpmZVApmYYGQkBCGEEJu3LghDhs2DH379mUNDQ1rfl14ODBsGL2TeIoNGzaUnDlzhvA8PwLAHQCtX8XJvAj6oKvnhZg+ffpGjUbTLjo6+v7Vq1dr3f7ChQvYunUrSrKzgYwMCE2aoKCg4LmvCQgIYM+dO4fUtDToBgygPgrBwcC9e9U3TkqiQfLuXaqf/flnoEOHGuvGT2NmZoaHDx9WfXD8eJo5f/MNVSywLARBwOLFi4WLFx8PEti4caOoVqvRpUsXBHTvzp6cMUMY9N13mBIWhtGjR8PGxkacP39+lV0fOHAAGo2GNAoOpuY/xsa03KLRAKdO0RHxZ87A9p13oNPpupRPTngjkcvlfra2ts8sK+C99+iXaHngZFkWBgYGQlBQEHF8jlUnysqoWmXQIPo7fAo3N7eKkupe0Bbk580FfC3og66eF0alUsVrNJqvz507V/q8hbWioiLExMSgpKRE2Pnxx3iwciXmzJkjLFiwAIcOHXrm61xdXVFcXIz169fj7NmzIiwtaReSnR0tHdy/Tzc8dYpmND/9BLz7LpVxPT237TlYW1sjKyuLrXIO+fk0aI8ZA8ydi6Lr17Hp+++F3IwM5tLs2ShITgauX0dEXh4xJAR533wD86gooXv//gyxsQEiI1HfwQE9evQgoihizpw5wv3y4/3ss8/AMAxyc3Mfv9+GDcD779NWaBsb4O5dGDs4wO/6dQFA+zqfzL8MhmFaWD9hRlQFnY76XDw1d04UxZp9du/fp1+6HEf106JIux5Pn662aUBAgMzT0/PJh96qttFrRh909bwsK9LT0+/t2rVLc/fuXWi1j3sn0tPTcfDgQSxdulQwNjYWhw4dyrSfMQPnvviC79GjBzN69GicPXsW8fHxNe7YwsICU6dOJUZGRrxYERGlUpoRZmXRhTVRpPPVwsJoZhMTU22cDwoKHmc+dAoxsHIlsH49DkVHiwZ9+iDE0pInmzdTtyqA2jdmZdEW05AQ6Pz80O2nn5gpISHodugQUhYvFnHxImQ7dsBIFEUPqRRpJ08yD/LygJ49aQB4/33Y2dlh0KBBsLGxIUuWLEFiYiIkEgkaNGigW7JkCWJjY5GQkABBEOhimkJBj/Hbb4FHj9B1zRoj6/z8iWq53OS1O3r/zXAcp9RoNI1rDLqnTgGffQYcOFDZMPMEYuWluHGDZsE3btApzTt30i/khATaFvzZZzWa12u1Wty8ebNSo1ah0f070asX9LwUKpWqlOO4wKSkpB/Pnz8/1MTEROjZsyezdetWsaysjNja2godO3ZkvL29wTAM7MaPh92IESzKswwnJyc+MzOT1gB4HtDpIOTn48SFC7h26hRPCgoYxtKSbVVaSluFlUrql7toEbB7Ny0DaLX0z3796Nj3kyeBceOo5d+RI/TDt2oV/fPjj+l2SUkQDA2RZGoqunt6IrBrVxaEUK0tQD0Z2rShU42vXcOjBw9gzbKQT5oEtkEDaK9eJRg2DOI336Dw+HHisGkT/oyJEVfExJAx33wDi7ZtIY4di4z33kNUVBQIIaK5ubng5ubGAkBkZKTk5M6duLBrFzwvXEChsTHMPDxoht2/Px0xpNNBs307+MaNO5cYGWUQQTgpB7qAkEYQxdv/xO/7VcFxnJNMJjvo4eFBKqaPVGH/fvp7rQFFYSHsfv6ZXqeYGPp7HjGCZsXPqu8+RW5uLsrKyp5d1vgb0Pvp6vnLcBzXViKR9Od5/j2FQoF27doRKysrODs7P07SOnWi2WlYGHD6NLLPnEHep5/CbeZMwMwMZNw45K5ahYuOjmhRWAiFWo3iadNQb+lSwMmJOpKdPElNak6epON89u6lQbh3b2DdOlpiuHePZsLOzvT9akgSV69ezRcVFTFjxowh8qfbSSu4cgXo1g0bBg0S08zMiP+1a4Jz8+bMkfh4DPf3B4mNxRaWRf+UFDDNm2O/v7/4ICmJNOrVC5mrViEwNha/f/gh//6HH7JMQQGdXFFSguLNm5GTkIDkHj2ERo8ewX30aIZp27bqe2/aBJiYQBsQAL5+fewKC1veb+tWFYDbAMwAOAO4C1F8WP3A///CcVwXqVS6uUOHDspWrVqxVRJ4QQC++orWcisMbASBBuDZs4GdO7Gqe3ddzz//lNTjuMdmNy+IKIr4888/EU0bdJxUKtWdV3FuL4I+6Op5ZXAc50YI6a1QKLprNJpWQ4YMkTk5OdHAm5NDV+jt7QFCsHTJEtGjTRuSnJjIP9JoiLW1NcnIyCA9evQQfHx86lb2KiykGfC4ccC0aTQ410JUVJR48+ZNjB8/vuY20U8/pQtzW7cCx4/jl4MHBf8mTRjbrVtxUSJBkq8vjIyM+BYtWrDHjxzB1B496C2ugQHSZ88Ws4yNRZfcXMbs9GmQRo1orfbzz4F9+4CgIOR4e2N5dDQ+mzbt2Qc5fDj1EJ45E/ezsrBixQrN2PnzNZY5OQMgintByF4A+QAGA4gAsAn/jz/IHMc1kMlkP0il0vB+/foZNnqqVguA3sX06QMcO0YzWK2WGtu8/z7VdysUWHj1qq5tu3aSpi8ZcCu4f/8+VqxYkTV16tR/ZGqHvryg55WhUqlSAPwA4IeZM2dO3Lhx41cGBgYGvr6+hv7+/oyieXMA9BZPsLJCbFwcrK2tSYCvL44dO0bGjx8PS0vLuq8zmJjQRZf0dKpwcHR8rmpBrVYjKSmJjBo16tlerb17030BOG9oCKtbt5jmK1dCOn48GhQWouuHH+L48ePk0KFDMDY2plK169eBbt1Qf+pUUj8wkKBhQ6pKSEsDliwBOnakAQWAUUkJtLXFx99+q/yrja0tPv7kE9nJI0dIhrl5/iBCPAB0B/V8dQHwC4BtIKQ7gDsQxZq7T/4BOI5rAyAOADw8PLRhYWHSGu8sdu2itdwdO4BevajV5t69dJHxibquePXqS5W3n16AS01NBSHk2Su5rxn9Qpqe18LUqVMXaTQam4cPH4bGxcVtX7x4cUlOTg54nsevv/6KsrIycerUqZgwYQLTtm1b5rPPPnu5oYQSCf2A+vrSksKqVdU2KSwsxIwZM/DTTz+JLMtSRcRz9ie0bw+NRoM9e/bA54svII2Kog0M1taQ3byJjl5ezOj160XfnBwBa9bQ+m/F7fG6dXTxrrQUuHiRKiGeaGc+dOiQqFQqnx91IyPpLXU5LMsitk0baYqn5+lCY+OTGql0JkRRhCjegCjWgyhqAQwBMACEyEDIPBBSu2buNcFxHMtx3DCUB1xvb2/07t27esC9c+ex8uSPP+idy5EjtHxkYlLTQtoLB93i4mIsWrRIm56eXvnYjRs3HpWVle154RN7RegzXT2vDZVKJQI4AeDE119/PfLXX3/9RRRFA6lUKkycOJF50nKPrYOu9rkQQi3/vLyAw4cBP79KNUNKSgpEUYSPj4/w1ltvsatXryahoaFQKKqvp2iDg7Fh0CAU+fqKZmZmoru7O01MOnUCTpwAdu6EsHcvrjZoQOTNmxMMHEh1ve+8Q8cQbdlCV9MBakM4ahRdJPvjDwBAYmIiGThwYLX3FUURZWVl9JgCA6vIpQgh6Nq1K/bt24f5kyebiQzzcWhAQC9ZWdndnb16xQHQ4quvvlGpVBdBiCeAEAACCPkMQBJEMeavXdzqlNtQugNwk0gkXoSQfK1WO5cQ8j2A8l5o3GEYxqqoqAgAHq907d1LG0H8/OidysmTtOxUC8+UjD2DnTt34k/adi5NS0tD/fr1kZ+fjzt37kgAxNZ5R68YfdDV87fw5ZdfruQ47ppUKj3cu3dv2bM8TuuKIAg4ceIE8vLywPM8QkNDYdi+XNb62Wc0w/z+ewB0dBDLsggNDWUJITAzMxMSExMZf39/XL9+HYcOHeIfPnzIiKII2bRppHvv3og9ehRqtZoIggCGEKoqyM+nJjaCgBNt26KFgYGIu3cJtFogNZXKvlq1qnqgU6fSzqpy7O3thejoaGJmZiZERERUdlXdv38fv/76K5o1a8Z3aNqUNSr35K2gVatWKCsrA8MwOHz4MHLNzV0bu7u7BgcGdtSWlAjnLl/+YubMmSs1X301SaVS0RY6QhoCyAIh1gBWAej+srVfjuPcpVLpjxKJxEmn03lIJBKNubl5qbW1tSQ7O9soJycHLMtO43m+wrzGF0CCIAhf3759+/Mj0dEIrhhO2rQpLbd06FDdF/cVUh5wwbLsNrVa3RsAu3fv3mJBEL5TqVQZr+2Na0EfdPX8bahUqhPffvvtDzt27Ph0+PDhMhsbm5fe14kTJ3Dq1Ck0atRIl5uby65cuVL09fVlLl68yOuGD4e5qSnbomtXmPr5AZMmgWEYZGVlwc7ODo0bN0ZycjJ8fX2xc+dOwc3Nje3Zsyfk8fEw3bwZ0qlT4dKkCVm5cqWw4pdfhP4//MDuGjNGN+DzzyUyADdv3oSxsTHvmZzMYswYICWF6kprokkTuhDk5gYcO4bBgwczZ8+eRUJCAomOjhbq169PLl26JPr5+TGCIODu3bvkzuefw6pnT1h9913lbgghaF/+pdL2CbWD6wcfAAcOMIFnzxqsWrVqRGFhYe9Zs2YlqdXqb6aL4oTyF7sDeFieKq4CcAiiuLYu15njOAKgP4DNWq0WgwcPxsaNG2FlZSWTSqUyAMjJyQEAlAfc1qAj1b0lEkmCSVaWd+D9+/BQKqm067PP6J3AK6jNPouCggI8evQIhoaG6pKSkkmiKC7y8vJiAeDBgwc8z/P7XvjNXyH6oKvnb0Wn06l4nk9fu3btvPfee8/wmZKtWnj06BEcHR11AwYMkBQXF2Pnzp1CfHy84OXlxRgbG5Ps7GyhxN4eV5KTmSsLF0LLsli2bBnee+89+Pr6MsuWLcO8efMEIyMjdOnShY5zSUmpzLwkEgmGDRvGrJs/X7zeoAFK7e2ZdevWiaIoQhkbS0KSk9mESZN4l4QEtjaPB5ia0gU6UYRMJkNQUBB8fHyYpUuXCrm5uYKFhQW7e/dumJub8++88w57orgYVwnh+wK111zmzgXu3YPhgwd45+ZNw5xPPjFMS0uzP3DgQEuO41xUKlUeRPEqgLfLX3EdwF0Q0gzA6mXjxvlm2ttPI4QMVSgUiQCUAExLS0v9AfByuTzT0NDQ3NnZGefPn4eTkxMGDhyI27epXDguLg7vvvsuTpw4gYSEBAA4TUSRt09PZ1uePQv38HDIvLyAHj2oIuMvUlvQTUxMxI4dO0pZln0kkUh+BrBBKpWGLl++vMfQoUMVjx49kgP4R8ci6YOunr+V8jrvspkzZ7bZvn17RIcOHeTW1tYvvECiUCiQlZVFADpl4O233346QDEIC4NTXh56jx2LgtRULAgPR25uLpo0aYIOHTrweXl56Nq1KyuVlt8RBwXRW96K9/jmG4w2NydiXByccnOZ5QsXopm9Pd/e25sts7WFQ48eLGrJ1g8fPozExER+5BdfsCbR0bQM8cUXMDExwccff8wAtLSQkpKCkSNHsgzDwK+sDFvu3GHj4+NFPz+/518YhqGqjUOHwFy8CBtra9hYWiInJ8fw0qVLvwLoV2V7UfwWAI4EB7cRCXHNtLfXjvrtNyQ0bYoG337rIpVKUVZWhp07d4JlWXb48OH1bW1tQQiBr68vAMDZ2RnOzs4QRRFxcXGwtLREr169IBQU6Dxu35a42tiw/OHDKPv0U8gGDqTdhK+A2jJdURRx+PDhYp7n+06bNm3/E08NmDFjxpcrVqyYIZPJbgDIeSUH9JLog66efwSNRvNuampq8YoVK/qxLKt0d3dn3N3dFY0bN8bzBmBmZmbiypUrOHv2rOhVw+r201hYWACrV8P8/n18npsL6eXLQJMmCAwMrJ5F+vnRrrWK7rTCQpBWrUAYBlZWVhi5bBkeNWnCSg8fhoGk9o/OvXv3cOrUKfA8z165cgWtGAa4cwf5+fkwMDCAQqHAnj17xAsXLpB27drxxsbGLAAYxMYirH17LNmzhzRs2BBWVla1vhc6dqQ/iYlAUBA63b0ru3r1aijHcQNVKtVmjuOUoN6xw6VSaZg2JMS54qWGX3yBrm3bQnb9OnU8S0uDs5MTjE1Nq/wu7OyqyloFQaBB8O5dYOFC9LGwkIDnAV9fMBMm4NWE2qo8K+iKoojjx48LpaWldwFUq/WINNuHRqP5ovyL/x9D3xyh5x+lvGboTgjpIZfLhzMM4xwQEKDw9fVlDAwMqmybnZ2NpUuXwt7enm/evDnTvHnz6l6qz2PuXKoFPXas5ucvXqSmMzodrT2uXEm72kaPBsLDkenkhM1xcSIviuKwYcOY2oLhxo0bwTCMcO/ePdK4cWMSEhKC1b/9xnvGxLAngoIgNzISdDodM3LkSNja2j5+oVYLsCx+Xb5cl5GRIZHJZLC2tubd3d1JYGAgU+s5HzoEdOyI/G+/xa8sW6oTBA3P80ZmZmYlGo3GmGVZvPfee0Sj0UChUDwOZMXFVLLVvTtQvz5t6hg3jkrenl74FATwJ04g5scf0fHyZSinTAEGDgTMzXHv3j0kJSWBEAJvb+9qwfplmT9/Ph8aGsq6V/hkPMHNmzexefPmDI1G016lUt14+nmO4ySgwThCpVJlv5IDekn0QVfP/ys4jvOVy+VTtVptuFKpVFtbW8PZ2Vnp6elJUlJScO7cOaFfv36MsbExauzdrwurV9OAGhv7eEFHq6UG6x9/TLvHFi2inrweHsDEiTT7dXZGdnY2YmNjhczMTHTp0oUBAI1Gg2bNmiEnJwdbt27ldTqdyDAMadmyJXvs2DFx6NChZOXKlSCEiA0cHMRBX3/NlC5ciAdubqhXr17182jblg7SHDUKqampkEqlKD93sVu3bsTb27v2cywsBNzdwR87hsJ69WBanrUmJCTg8OHD/JQpU2qsF+t0Oly/fh1uABhbW9qZ9/nntKMwKwswMgI2b6bX68QJZPv7Y2VJCWxsbcWBAwcSQ0NDLFmyhBcEgTE0NBQyMjJYIyMjPjw8nDU3N4dSqYSkDncJNTFv3jy+W7durJubGwRBwI0bN+Dg4ACFQoENGzaoU1NT50ybNu3Ll2taqQUAABC1SURBVNr534g+6Or5fwnHcXIATQC8JZfLw3me76XT6YwAQCqVPhBF0ahVq1aS9u3bS6UvWjNMS6N62smTaTebkxNt5W3Thma4YWHU0axrV2rA8lSQKy0txb59+/ibN28yLMuirKyMSKVSUavVwtXVFS4uLiQxMVFITU1ljI2NxUmTJpHs7Gzs3r1bfPvtt4mBQkGnImRkAOVdelWYM4fWllu0qPLw4sWLBW9vbyYoKKju5yqKVDmxaBHQqRMKCwuxYMECTHtGG/KKFSv4e/fusRKJRDQyMuJbtmwpaW1vTx3dLCwAAwNqMvT220DjxgAhSEpKwrZt2wDQBUhBEBAREQFXV1dotVocPHiQv3jxIqvT6aBUKvn333//pUTZ8+bN47t37866urpi9erVRRkZGfcJIfaiKCoAxGo0mm4qlarsZfb9d6IPunr+FZQbekeAmr3MBGApk8lW2tvbBw0fPtzwpdwP//iDNi/k5NDOtrIy2tVmZkYF+zxPA00tPHz4EPPnz4efnx/CwsLAMAxEUcS1a9fg4uJSc2b37bfA778DycnVn9u/n44af2K1/+LFi9i1axcmTpwIs9rUEk+zaBF147p4EXkNG2LJqlWoV6+ebvz48dUObNasWcLbb7/NyGQyHD9+HAUFBeKYMWPoxd22jXaPlY9r0ul0OH78OI6Vl2sUCgVkMpkwYsQIxszMrFr99datW9i6davo7e39pI1YtRLRE/8mACoD1KVLlySOjo6ihYWFcP78eUGj0bQAYMgwzBZBEIJUKlU6/gXog66efy0cx0llMtn5du3aebZp0+blWtrKfRYQGEjdrX78ETh6FPjkkzprSVNTU7FhwwZ8+umnz10ErIIo0hrqw4fVpVQdOtCSxhOjjZYsWSI0bNiQhIWFVTkojUaD48ePi56enqTW2qmnJzB4MNQffYQFCxZAEASxY8eOxL+8g64iC546dSpYlkVMTAxfVFTEDho06PExEwK1Wo1Vq1bxubm5rFwuh4uLCx8eHs7eunULv//+O8LDw9G8hgz+1q1b2LJly121Wv3kSI2nLzJ5znMuADIBlALQAlisUqlqnt/+/xi9ekHPvxaVSqXlOK7nkSNHLubk5Bi0atVK9sKLNpaWtLSQlUWNa1q2pC5jmzbRkS914PLly3B0dOQZhql74CeEdrA5OQErVtC5XhV89x29dX+Cdu3aMTt37kSnTp0glUpRWlqKPXv28NevX2fVajUxNjaufcEqMRFgGCimTMH7JiY4ERyMgwcPgmVZtGjRAvHx8bCyshJYlmUAwMDAgHlQ8aUEADwPwdcXv44axSsMDZkJEyZQdUi5ntjBwQFBQUHYv3+/WDHS/knKJV/3VSrVj3W+Tm8gesMbPf9qVCrVHZ1O53nx4sXZa9euLc18ouW2zjRuTKdMXL5Mda9JSVTJANA5ZsnJdCLBkiXP3MVL3TFKJHSkTLdutIZcwbp11ebBeXp6Qi6X87t27RIPHTokLlq0SMzOzkbPnj0hlUrFmnwkqsGyNNh7e0P21lsIadmSdPT1FQ8fPizs27dPPH36dJVut3K7TcTFxQEAMnNykFpaKlqbmSEyMpJYPFV6MTQ0RMuWLaHVaklKSgqdilGd//ytNfvVV1/908egR89fIjg4+FFwcPDh2NjYjIsXL7ZPS0vjbWxsZM+0b6wJQqhNI0DNbSpM11u1ovrdffvo4tuwYYCPD93+rbeARYtg0qULYmNjGXd39xdXVFhYAAsXAhMmUNMcQqhbWevWgItLlU0dHR2ZhIQEobi4mDRt2pT07duXsbKygpGREdmzZw98fHxqNPGpRvPm9NinTIHtsmXksKsryczMJKNGjYKzs3NlhmptbQ1TU1McPHgQALBjxw6YjRwpduvVi5U8wzuDZVnk5ubyJ0+eZFJSUuDj41NZcsnPz8eVK1futWnT5rcaX/wfQV/T1fNGwXGcAcuyExmGmd6tWzfjZs2avfr5YgcOAK6uNDsODwfu3EFK69aiib09sdu+nQbn7t3rPEIGhYXUGa13b/rvggJqzv4C0qr169cLmZmZpE+fPsTlqWD9TAQBYn4+Vs6cicAzZ0T348drvFYHDx7k4+Pj2d69e8O9QwdqxzhgwHN3nZ2djY0bN4rm5ubCsGHDWIBqabdt23b2k08+afXcF7/h6IOunjcSjuOasix7qkmTJmKLFi0MXVxc6r7I9RIcmDYNWq1WDJ4+nRg6OND66Z49QFQUnel25gzV/D49PLMCUaSewPPmUYXAggVVWpJrQxAEbNmyBVlZWWKLFi2IoaEhnv6Ry+VgWbZSHVBQUICoqChBFhdHemdlEcOYGFrmeJ4D3PnztBxjalrrMW3atEm4evUqY2ZmVsjzPNFoNFIAcZ999lnnOp/YG4g+6Op5Y+E4zpIQEiGXyyeIoujs4+PDNm3aVGZvb//KB+wWFRXh999/5/Py8thevXrBw8ODBqjz52lXV+PGtMW2Rw/auRUfT028raweZ8Q//EAz5KgoamRewzTb56HRaBAVFYXCwkKxrKxM0Gq1ok6nY3ieJzqdjvA8D4BqaSUSCbRaLRo0aCBERERQb+Nz5+jo8ry8ZwfePXtoSeRpC8saSEtLw7Zt20pLSkrKdDpdVwDZALJVKlXJC53YG4Y+6Or5T8BxXGOWZSNZlh2jUCiULVq0MPTx8WHMzc1f6fskJCRg9+7dGDNmDGocMX7nDs1i584FOnemAXfHDtqFtmkTXcT77jtq8l0HjfCLotFoUFRUhH379iE9PR0ff/xx1Q3+/BNo1gyYMYOasj9d4ujTh5ZWfvihzu8ZHR1dlpiYeFar1Q7+t2hpXyf6oKvnP0W510NrmUw2RhCEgYaGhqKjoyMbEBBg+CoyYEEQMHPmTEycOBF1CuiCQEsL/fvToDt+PG1THjqUPrZzJ51Mcfs23S40lHpD1GXB7DksW7ZMUCqVzODBg6s/mZ9PPW+PHwdegW+CVqvF3r17hcTExJNarXamSqXa/Zd3+i9GH3T1/Gcp73JzZRimmyAIPwCAqsJh7CVJSUlBdHS0+NFHH7189M7Opt1w+fm0Hty/PzBrFnDrFp2G0asXVVHY2tIFuB9/BKKjqUlNly60PODgQOVvNbB//37Ex8ejf//+cHV1ffZxCAItcaxbR8sOAPDLL1TmtrZOHuiVaDQaLFu2rCw3N1fOMMx3giCsU6lUV15oJ28I+qCrRw8AjuOaA7jQoEGDIn9/f6W1tTXq1av3QrPbTpw4gfj4eMHe3l4cMGDA6xsMqdPRBa/0dCAujtpRfvQRXaTr1g344ANqmHP3Lq3T/vEHHTcUEgIEBGDF118jeMIEOL/1Vu3vtXEj3f/Bg7QEcuoULYF88MFLHXpGRgaSk5P5c+fOqbVabVeVSnXipXb0L0YfdPXoKYfjOBkhZIRCoRgoCIKnVqu1NjY2Lra1tSV2dnZKW1tb8iwvBbVajR9++AE2NjYYOXIkXnYixitDFKmxT0IC9dlVqYDGjaGtVw/3P/oIZt99B+Xvv9OyxdGj1OgnPJwqLFJTqfmPoeHjbNnLCxgzhrYnZ2fTrPovcO3aNWzevPkRz/Om/7S/7d+NPujq0fMMOI4zAJ14+xbLss2kUmmwIAhv2dnZac3NzdmePXsaVsjQ5s2bx1tbW5MBAwYwf3Xo5utkw4YNQllZGSIjIxmSk0OzYRcXYPFiGlgfPgSWL6cLfX37UmnYhg00aA8fThfYEhMB9V+zPNDpdPj2228B4BMAc/5LgVcfdPXoeQE4jnMF4CuXyye6uLj49e3bV5H0f+3dW2gUVxwG8P/s7EkmyWYRTJsmJtRowFik6EtoiaU2UAWLplKV0mJQA0J9EXwxCM7pCcU8CKVgoiagSfFSTdqCJelLISnpUhoqiGQJCEuD1NYYKJvLXmZndub0IWoTG81uLrNu/H6Qp+xOvqePw8mZ8w8Gqbe3l44cOUJFRUUZzRcOhykYDMqamhplrnPJFy5csKuqqjzbtm2bf8/ZMKb3lRmb3qLYvJmovX16e6OjY9FZ29ranNHRUY+qqiO2bX/COf9t0Q/NAihdgAUQQuQxxvpVVa2WUioVFRV2XV2dmtJruMtkeHiYbt68Gbcsy/F6vfmapsV37NihrV+/3hONRmn16tV0+/Zt6uvrk8ePH09v6sYyMU2TmpubiYiIc575QC7ALWMAC8A5jwsh3pdSfkdEb92/f1+5du2ajEQivt27dytr1651NU8oFKLu7m4iojyi6WNalmXlDw0NOQMDA+bY2FhObW0tGYYhY7GYEo/HKT/V15SX0YwL6FO70m0FwEoXYJEezd+qJKJ3iKidiGjv3r20cePGZX31mGj6AvWenp5oKBQq0DTtZ8MwttKMxZSmaX8YhrHu6e/V1dXRhg0b6Ok5dItl2zaZM29Mm4eUks6cOUNE9C7n/BnD61YWlC7AEhJCqES0izH2ZUlJSUl9fb2WzrGzdITDYTp//rwppTydTCa/4pxPPCfXh0R0kYgev+YmV61aZR47dmzJjlnYtk2tra2xycnJWRMfUvhePhGt4Zz/vVRZXmQoXYBlIIQozM3N7bEsq0bTNKOgoCBZWFio+P1+5vf78yoqKmghWxDj4+N09+5dCgaDkw8ePMj1er3NjY2NIp1cRPSFqqr7bNsuOXDgAK1b97+F8IIEAgE7EAj80tjY+N6SPHCFQukCLCMhRD4RFRPRa49/FEVZwxhrKC4uLty+fXtB2TxnXmOxGA0ODtpDQ0OxqakpUlX1x0QicZ2IfuKcRxearampaZfX671YWVnp27lzZ15a9w8/ZXJyklpaWuKWZb051wh0+A9KFyADhBDM4/EcVlX1dFlZWe6mTZsKysvLqaioiCYmJigSiZCUkkZGRuxAIGApitJlmmYbEQ1yzu0lzFHAGGtSFOXonj17tKqqqgU9p6urKx4Khc6ePHnyxFJlW6lQugAZJITQiOhTTdM+cBxnq5TSL6V0GGN/EpHtOM5wIpFoXO7VoxCimjH2Y3V1tb+2tpal8w/Ae/fu0dWrV/+xLOv1xay8XxYoXYAXiBCilIgUzvlf83546f/2qzk5Ob2lpaVv7N+/Pz+Vkw2O41BLS0s0HA4f4px3uxAz66F0AeAJIYSXMXbW5/PVNzQ05M83821wcNDp7+//PZFIvP0yvcq7GJgGDABPcM6TlmUdjUQirZcuXYrFYs8e8hCNRqmvry+RSCQOo3BTh9IFgFk459KyrBNTU1Nt7e3t0YGBATLmuODmzp07JKX8lXM+nIGYWQvbCwAwp0dTNvYR0Q0iIl3XZ03WiEQidO7cubhhGB/ruv5DhmJmHax0AWBOnHPJOe9SFOUjoukLyGfy+Xy0ZcuWXMbY55nIl61QugDwXLquf+/xePZdvnw5Pjo6Out3t27dMk3TPJiZZNkJpQsA8zp16tS3pmke7OzsfFK8Y2Nj5DiORUQjmU2XXVC6AJASXde7TNM81NnZGX/48CE5jkOqqo5zzqcynS2boHQBIGW6rt8wTfNwR0dHPBqNUjKZfCXTmbINShcA0qLr+nXTNBuuXLniMMa+znSebIPSBYC06br+DRGVG4bxWaazZBuc0wUAcBFWugAALkLpAgC4CKULAOAilC4AgItQugAALkLpAgC4CKULAOAilC4AgItQugAALkLpAgC4CKULAOAilC4AgItQugAALkLpAgC46F9Kl8D7R8TGAgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_queen.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(1, 1), (2, 6), (3, 6), (4, 6), (5, 5), (6, 2), (7, 3), (8, 2), (9, 1)]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_queen.histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(1, 1), (2, 6), (3, 7), (4, 7), (5, 3), (6, 4), (7, 3), (8, 1)]" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "c9 = [idx for idx,c in w_queen.cardinalities.items() if c==9]" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "28 San Luis Potosi\n", - "Name: NAME, dtype: object" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gdf['NAME'][c9]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[5, 6, 7, 27, 29, 30, 31]" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_rook.neighbors[28]" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[3, 5, 6, 7, 24, 27, 29, 30, 31]" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_queen.neighbors[28]" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([-105., -95., 21., 26.])" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAACdCAYAAACw0KL4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd1gU1/rHv2dml46ANAUVxY4NiIoGezdq7NHYEks0wcRfmtHcFGJyk1xvjCbWWG4MscUao7EQeywRFUtU7CBVUEDK7sKWmfP744CiwvZCdD7PwyOyM2fOws6Z97zl+xJKKSQkJCQkJCQknmY4R09AQkJCQkJCQsLWSAaPhISEhISExFOPZPBISEhISEhIPPVIBo+EhISEhITEU49k8EhISEhISEg89UgGj4SEhISEhMRTj2TwSJgMIaQ+IYQSQmSOnouEhISEhIQxSAbPUw4h5DYhpIQQoiCEZBNCfiKEeDh6XhISEhISEvZEMnieDQZRSj0AhAOIAPChg+cjISEhUSmEkFcJIRcJIaqyTdpSQoiXo+cl8c9HMnieISil2QDiwQwfEEK8CCE/E0LuEUJSCSEfE0K4ste4sv+nEkLulh1X6aJDCBle5klqab93IyEh8bRBCHkPwFwAMwF4AegAoD6APwghcgdOTeIpQDJ4niEIIXUA9Adws+xHi8AWlVAAXQFMADCx7LVXy766l73uAWBxJWNOBFugelFKL9lu9hISEk8zhJAaAOYAeItSupdSqqWU3gbwEoAGAMaUheT/XeGcboSQjAr/DyKEbC3bxKUQQmZUeI0jhMwmhNwihOQRQjYRQmqWvVael/gKISSNEJJLCPnIXu9dwj5IBs+zwXZCSDGAdAB3AcQSQngAowB8SCktLltYvgUwvuycsQDmU0qTKaUKsDDY6McSld8G24l1o5TehISEhIT5PA/ABcC2ij8sW3/2AOij7+Qy7/ROABcABAPoCeBtQkjfskNmABgCtrkLAnAfwJLHhukEoGnZuZ8SQppb8H4kqhmSwfNsMIRS6gmgG4BmAPzKvpwApFY4LhVsoQDYgvD4azIAgRV+NhPAEkppBiQkJCQsww9ALqVUV8lrdwD4Gzi/HQB/SunnlFINpTQZwEoAo8tenwbgI0ppBqVUDeAzACMe28TNoZSWUEovgBlObSx4PxLVDKms+BmCUnqEEPITgHkAhgPQAggBkFR2SD0AmWXfZ5W9hgqv6QDkAKhT9rM+APYSQrIppVttO3sJCYmnnFwAfoQQWSVGT20A9wycHwIgiBBSUOFnPICjFV7/lRAiVnhdwKObuOwK36vAQvkSTwmSh+fZ4zsAvQG0ArAJwJeEEE9CSAiAdwGsLTtuA4B3CCENysrYvwKw8bGF6DKAfgCWEEJetNs7kJCQeBr5C4AawLCKPySEuIPlHh4BoATgVuHlWhW+TweQQin1rvDlSSl9ocLr/R973YVSmgmJZwLJ4HnGoJTeA/AzgE8AvAW2gCQDOAZgPYAfyw79EcAaAH8CSAFQWnb84+NdADAQwEpCSH9bz19CQuLphFJaCJa0vIgQ0o8QIieE1AewGcz7sw7AeQAvEEJqEkJqgeURlnMKQBEhZBYhxJUQwhNCWhJC2pW9/gPYBi8EAAgh/oSQwfZ5dxLVAUIpdfQcJCQkJCQkAACEkMkA3gHQCIAzmGdnDKU0ixDiAiAOzONzG8BqAO9RSuuUnRsEVnzRvezcawA+ppTuL0tqfhsslycIrIBjI6X0X2WGVQoAebkXmxByGMBaSukqO7xtCTsgGTwSEhISEtUSQsgkMK9PNKU0zdHzkfhnIxk8EhISEhLVFkLIeABaSukvjp6LxD8byeCRkJCQkJCQeOqRkpYlJCQkJCQknnokg0dCQkJCQkLiqceQ8KDj4125uYBcDixbBsye/cTLgiDgyy+/xKeffmqf+XzxBRAVBfTRq3Juc5YtW6ZzdnbmXn75Zc7V1VX/wUeOAB9+CBw9CnAcQIh9Jmkk8fHxVKPRYNCgQZVOTKfTYe7cuXjzzTfh5WX9psm3bt3Cxo0b72q12hmxsbEbH399zpw53nK5fDGlNFen090BcCU2NnaH1SciYQscu4bl5gJ+fsDXXwPTpwM1ajxxyPr163U+Pj6y/v3toOrw55/AH38A//634WOrYvt2wNUV6NvX8LFVkJCQgEOHDuHll19GSEiI/oPVaqBnT2DBAqBt22q3fqWlpWH//v10xIgRpEYlf18AWL58OW3evDnp0qWL1a+v0+nw3XffqZRK5XwAC2JjY/MfP+brr7+eSSkN02q1qWACjj/HxsYWW30y1Zzq7eH5+WegeXO2SFRi7AAAx3GglEKnq0yN3MpQCvzf/znc2AGA1157TabT6eiyZctoQUGB/oO7dgVOnAD27AHCwwGNxj6TNJK+ffuSqowdAJDJZCCEgONs83Ft2LAhWrZsGQDglzlz5jQr//mcOXPIF1988YaLi8shrVY7tlu3bv/XsWPHfwP4bc6cOR1sMhmJpweNBggJARIS2IajioehTCaDVqu1z5zCw9mmzRJ69QKmTWOGiJlERUUhOjoaa9euxYULF/Qbpc7OwLFjQOvWQKNGbONWjahXrx4mTZpUpbEDABzHUVutXzKZDGPHjnUD8DGAf82ZM+fBWjpnzpz2//nPfzZrNJr/tmjR4tUuXbp86urqusjFxeWJRtDPAtXT4MnOBlauBMaPBy5c0GvRlz8INfZ4iN+4Afj7M8PHwchkMkydOpWXy+X06tWrxp3UrRswYQLA80DGP6v9lSiK4HneZuMPGDAAvXr1EuVy+bmvv/56+Zw5c3wB+BNCvh88eHD47NmzER0djT59+siCgoIKAbjbbDIS/3zmzWP32fXrzCOsB7lcbj+Dp1UrYP58y8bw8AA6dWKeIgvo3LkzunXrhj///NO4BdXZGXjvPaBpUyDtn1WhLooilcls18mpdu3aePXVV+Hr6/u6s7PzhTlz5kQBgKur6/eRkZEjZsyYgcGDB6N79+6kd+/eBM/o+lU9DZ4//mAGDyFAUJDBw3meR2lpqe3n1bAhcO1atXKpenp6ciqVyriDPTzYgnHwINCyJWDsedUASilsuWDwPI/o6Gju//7v/1xatmz5ikwmS3Vyclrl5uamadasGZydnR8cW7ZTs531JfHPRqUCFi8Gbt4EgoMNHu7k5ETs4qEGmLfp9dctH+fjj4GiIouHCQ4ORmlpqfHPoZgYoGZN4LnngLVrDR9fTRAEgdpywwYAISEhiImJce/Xr18rFxeXQ3Pnzj2g1Wqbh4WFwcfH58FxHMeBEPJMrl/Vq3loXBywZQuwcyfzRBgJx3FQW+BeNZpt2wAnJ6B+fdtfy0jc3d2hUCgEmPIA7t0buHyZuaSXLAFmzrTdBK2ErT085bi7u2PQoEHOHTp0cE5NTR1Us2bNJ44pM3iq170j4Xju32fh4/h44PZto0+Ty+XELh6eu3eB779n+USW4u8PbN0KDB7MNlJm4uPjY/raLZMBly4Bvr7MkzZhAhAQYPYc7IEoijbdsJXDcRzCw8MRFhbmmpSU1EMURdSqVeuJYwDIbT6Zakj18fAoFCy+3K2byafyPE/tYvAcPcpyYaoRZQaP6TG24GAgKwtYvtwqOzVbUr77tVUMvDL8/f3Rtm1bhIaGPvFameElGTwSD1EoAC8voHt3oMJu2hjkcjlnFw/P7dsWh6Ee4OvLvCx5eRYN4+npCVEUIQiCaScGBrICjF9/ZQZmNcdeG7ZynJycEB4ejsjIyCcMLcngcTTvvAN07Ai0acNCLiagUCig1WqJPaxnLFwIzJ1r++uYQEBAALKysnizQnotWjC3e1YWEBFRbQ2f0tLScjeso6cCACBsIs+kS1iiEjIymMcjL495UFxcjD6VUoqcnByR53nbJwa2bw8kJlpvvOeeq7KYxFg4joNcLqfJycnmnAwcPw6MGwd06cI8TtUUe3l4jOFZDsk71uC5cQPYt49VDezZY/LpgiBgw4YNYlBQkFinTh0bTPAxAgOBO3dsfx0TaNu2LTw8PMRffvlFFEXRvEFCQphnzcWFueWrGRqNxq7eHUMoFAoC1mVe4llGFIFVq4A6dVhxhb+/yUOcOXOG3r59mwwdOtT21vyQISz3xlo8/zwzoBQKi4bp2bMn2bJlC3Jzc80bgBD23urXr5brFwBQSok9PTz6KC4uBqW0eu5ubYxjnyKLFjGviYcHWzRMJD4+XiguLsaECRNs/z4EgXmiAgNtfilTmTJlCp+Xl4e9e/ea6Bcuw9WVaVykpjLjJyvLyjO0DLVaXW0MnszMTNy/f18N4KCj5yLhYG7eBD75BCguBpo0Mfn09PR07Nu3j4wcOZJ4WJAHYzSvvQYMGmS98WrUYDmAf/9t0TDt27dH8+bN6c8//0xLSkrMG+Tdd5nHqW1b4PPPLZqPLbB10YUp8zhx4oSitLR0kaPn4ggc8xT58kvggw+YsbNzp1lDXLx4ERcuXOAmTpzI2eVheOcOMGIEc6NWM2QyGSZNmsRduHCBW7NmjbBjxw5BqTTDAdG4MfDXXywB8H//s/5EzUSr1do1/q2P48ePq0RRnBsbG2unshqJase1a6wsu359ti54epo8hEKhwIYNG9CxY0c0bNjQ+nOsDB8foF07646pULA8GgsZMmQI8fDwEFeuXEm3bNmiu3HjhnkhvqNHgTffZHOqRhs3URSrhYfn5s2bKC0tzQZw2NFzcQT2fXqL4kMxrqZNzR4mJycHO3fuxODBg4mPiQmCZvPtt8Do0fa5lhn4+PjglVdeITVr1uSvXLnCpZmrU9GiBavmmDULmDGjWmgOqdVq2CXHwQCFhYW4ceMGEQRhpaPnIuEgNBrm5W3ShFULmYEgCFi/fr0YEBAgdu/e3coTrILyCjJzw95V0bs3oNVaZdxJkybxYWFhJDc3V/bXX3+ZN2BQECtbnzOHGaXZ2RbPyxpUFw/P0aNHFWq1+ovY2FiHr6eOwL4Gz4ABwMsvsySzyZPNHmbLli1iy5YtERYWZsXJGWDBAqZhUY0JCgpCaWmpWFpaSjZt2oTff//dvBBXUBDzZl25Anz0kZVnaTparRaUUhQXO1YJPSEhQUsI+Sk2NrbQoRORcAwHDjDvp6cn8OOPZnt7z5w5g6KiIvuE4svx8QFKS8020qrEw4ONGRdn8VAymQyhoaEoKCigKSkp/PLly8X8/Ce6JBhm925g7Fi2WZs9G8jJsXhulkIpRVFREczOs7QCOTk5yM7O1gH4xWGTcDD2ueESE1m8e/FiJihoISqVirRu3doKEzOB0aMtjlXbg2vXrnH16tUDACQmJprvQ23dmiWTN27MdHoceKMGBgaC53lx4cKFmDdvHj1y5Ijdw0kajQZnzpwRtFrtN/a+toSD0WqB334DevRgRo+FoQmVSgU/Pz/7hOLLWbrUOvo7ldG7N/v9WIFDhw6Jbm5uxNfXl2ZnZ3MG2+Y8zrx5wFdfMYmTjz5iOkH//jeQnm6V+ZlLrVq1xB07dtCvv/4acXFxgl2Ech/jxIkTJaIoLoiNja1evYXsiH3uuJkzWYJyw4bM3WghTk5OuH79uhUmZgI6HUvureY0aNCAZmdnw9fXV3zhhRfMG4RSVj0XHg6MGgV4ewNvv+2w8Javry/eeecd/sMPP0SnTp1IQkKC3X3D58+fpxzHHY6NjU2x97UlHMyuXcBbb7Hvn3vO4uGcnJxw//5986sqzYEQiw21KunWDRg6FLh3z+Kh2rRpw2m1WkGhUJDWrVtTo6tvc3KAiRNZFGHXLiZMWK8em1fXriyqYKrxZEUmTJggmz17NnnttdeQk5PDZds51KZQKJCUlEQEQVhq1wtXM2xr8Lz1FvDLL2xX9P33Vht22LBh5MyZMzh37pzVxtSLKAKbNwPNmhk+1sG8/PLLZObMmQgLC+P2799P9+7dK5i8sGZlMW0RFxfAzY1pIz3/PDB1qkMbj3Ich5KSEvs0iq2ARqPBkSNHStRq9Ry7XljCsRw7xkLwQ4awCkYr6UC1b98erq6uWL16tXkhZ3OYOpU1MLUFzs4s/L1/v8VDtW3bFu+99x4/fPhwpKWl0RUrVtAiQ/pgajVLOfDyYh5pLy/g8GG2SQVYeP6774Dhw4HMTIvnaAmUUgiCYJ/ejxX4888/NRzHrY+NjTWz9v/pwDYGjyAwb4CnJ/OKWFkwrm7dunjxxRexd+9e+7gcVq0C6ta1y6WsgUwmQ48ePTB16lRy6dIlsnbtWsEkJWoXF1ZuWvH/w4YBDRqwMlx7qFo/hk6nw08//SSeOnUKY8aMseu1Dx06pBEEYXdsbOxJu15YwnEIAlu/3NzY/624hsnlckyYMIHLzc3l7bZp8/ICzp613fh9+wLmlpRXQuPGjfHWW29xPj4+9IcffkBmVYbKjh2sIers2cyoKc9R+uADoHPnh8dFRLBE5v79mYyAA0hISMD//vc/tGvXjjZq1Mhu171z5w7OnTun1mg0H9jtotUUQvWHKcwzKFq2ZKGQTz4x63RjOHHiBBISEoR33nnH9rV+xcVASgrLa/mHodFosGrVKkGn03Ht2rUjHMeB4zi4ubmhadOmlVcOLFrEem398MOjP9fpgDVrgJMnWazcjHJcc8jJycGaNWtEb29vjB49mrOLZkmFa69atUqh0+kaxsbG3rXbhSWshelr2MKF7OvmTRtMh1FQUIDFixcjJiYGlfVrszonTzKNGltVClHKjIo9e4Data069MGDB3Hy5El07NgRrq6u4DgOPMehaUEBPNLSmIZbnz4PT8jLY+H4tLQnDdW0NBb22raNeYPsgCiKWL9+vZiRkcGNGDEC9jR2RFHE8uXLlbm5uTM++eSTH+124WqKdT/9J06wD9rKlaxNhA0QBAF79uwRLl68yA0ePNg+wga///6PNHYAli/w+uuv87///ju9ePGiQCmFKIpUpVKRnTt38u3atRM7dOjAubu7PzxJpwM6dHhyMJmMNerLyACWLWNucm9vm87/5MmTOHjwIKKiotC9e3e7JnpSSrF9+3alKIofSMbOM4BCAVy8CEyaxNow2Ijr169j69ataNKkiVizZk3bf6AvXWIbtsruaWtBCDBwIGvv8OabVh26R48eqFWrFo4fPy6KokhFUUTU5s1cwY0bZNcXXwjRYWH8I5k+ublAVFTlXrl69dimbcoU1m3dxp77vLw8xMXFie7u7oiJiUGNGjVser3HSUxMpIWFhddFUfzJrheupljXwxMaCrz/PhATY9Gk9JGamoqffvoJr7zyCurbq2t5ly4slv/GG/a5nh0QRRHffPMNLS0tJd27d6ddunR5uDqsWsUWr8e67D6AUhbyunWLSdX7+tpkfuvWrRMzMzPtvisq5+zZs/SPP/64pFarw2NjYx1XpiZhCcavYZ9+yqqNLlyw3WQoxbfffovAwECMHz/eZtd5hCVLWA7i4cO2vU5qKnDoEPDqq7a9xvLlwIgR+C0piZ6/dYv4+vpi+vTpD3vt/fUXC6/16FH1OOnpwMiRwPz5LD/RBpw9exZ79+5FZGSk0Lt3b97ewoMKhQKLFi0q0Wg07WNjYy/Z9eLVFMs9PJSyHdF777HeWDb+o4aEhKBdu3bCli1byIwZMzgnJyebXg8A8Oeftr+GFVAoFEhMTER6ejry8/N1JSUlvCAIxMnJSXRzc6MdOnTgIyMjAbBQV2lpKQGAyMjIR7dC69axmHxVEAJMn87KXLduZaWfVmy5kZubi7i4ONHDw8MhuyIAUCqViI+PL9VoNBMkY+cpZ+tW4Px51pIgNtamlyKEYNSoUVizZg2SkpLsoyU2fTr7sjVBQSxU1KMH86SYiCiK+Pvvv5GcnIy7d+8KCoWCqNVqTi6Xiy4uLmJQrVr88K1bCalTB2KrVii6fJkAQMeOHR9tLLxnD/M86zN46tZlhtOyZWw969jR5Pnqex+bNm0SU1JSuGHDhqFZs2YOkVjes2dPCaV0uWTsPES/wZOVxT7EVVHuHVIqWZ6LnSzYfv368bm5ueLKlSuFN954g7dpmCM5mSW6XbsGURRx//59+Pj4VJveTuUcO3YMf/75J/z8/MS6deuiZcuWssDAQLi5uSE/P5/Lzs7G3r17cevWLeTn5wu5ubl8cHCwmJmZye3evRsvvfQSG0gUWTWDoXJQQoB//YtVR8ybx8rWg4Mtfh+JiYmIj49HZGQkdcSuqJz4+PgSAKtjY2PPO2QCEvaBUuYNUChsW7pdgbp162LQoEHYvn07fH19EWjr/nxdu7JeU4MHQ6FQPMjhszpyObvW3bsmGzw5OTlYv369IAgC16BBAzE8PJwPDAyEr68vFAoFp123jnOdORPL3npL8KtXj0uZPx88z6NmzZrk999/R2Rk5EOjp0sX4/KI2rRh/RE//ZSVtQ8ZYsabfpSCggL89NNPolwuJ6+//jrs1gngMZKTk3Hjxg2FVqu1YrfYfz76Q1oDB1L8/nvlr1HKHoorVrAkMDujVquxYsUKCkAcN24cb+kHKzk5GdnZ2SgoKEBRUREUCgUtLS0V5Lm5pOWxY9yRHj2ITqcDz/MghMDb21sICwvjO3ToABcXF+u8KTO5dOkSdu7ciZEjR+oN/WRnZ2Pnzp1iw4YNSUREROVtOU6cYC7wdeuMn8DixexhMWAA6y9kAFEUkZqaigYNGjzys4q7oqYWtB6xlNTUVKxbty5fq9XWj42Nday8s4Rl6HS0ykTdmBjmld63z75zKuPgwYPiqVOnSJ8+fUi559Vc8vPzkZKSgvv376OwsBDFxcW0pKRE0Gg0CI+P5682b4673t4EYF4md3d3ISQkhO/YsSNqWzPJ+MoVlsNz4IDRp5SH1yMiImiPHj24RwopKAWuXwfWrIE2Oho7VCpBq9Wiffv2fIMGDR717JQTHc1CePo26xW5eJGpM4eGsjCXEdy+fRt16tR5pOjjwoUL2L17N23VqpXYr18/3lGtJHQ6HRYtWqQsLi4e8+mnn+5wyCSqKfoNnqIiisrCCWfOMAGuHTvYQ85Bf1iNRoP4+Hjh4sWLfFRUFHr27GnWOHfv3sUPP/yAwMBA0dPTU/Ty8iI1atTgPTw8UKOkBG6+vnCvXRvu7u7geR55eXm4evUqvXTpEr137x7n4eEhNGzYkO/YsSP8/Pys/C4Ns2jRIiE8PJzr3Lmz5bWzy5YBp08z6XxTWLGCfS5mz2YLhx5Wrlwp3Llzh2/fvj3atWsHpVKJrVu3Cs7OztyYMWOIt40ToQ2xZs0aRXJy8v/FxsY+81UN/3hu36ZPGOF37zKPjlbLvDvh4Q6ZGqUUSUlJ2LlzJ3x9fYWxY8fy5npevv32W4Hnec7Hx0esUaMGvLy8eA8PD3g4OcFLpYJrs2Zwd3eHk5MT1Go1bt68iUuXLgnJycm8XC4Xa9WqRdq2bUuaNm1qmfdaEIDu3VnzYSOroI4dO4bExEQ6Y8YM8oQBM2UKcPUqawpqjDSASsXCVdnZzONkLNeuserUyEiWoqGHxMRE7Nq1C15eXsL48eN5nU6Hw4cP05s3b5LBgwejRYsWxl/XBpR9phJnzZrV1qETqYboN3hmz6bw9Hy0n5JOx5JUd+5krsNqQGpqKrZu3Urd3NyE119/3WTra9euXTh//jxmzJgBz8dLrbt2ZaGa9esrPVepVOLGjRu4ePGikJaWxjs7O4tBQUEkKiqK2KMLclZWFlavXo13330XrtZQgr54kWl2mBGDx/btzFiaMKHS5rB79uxBZmYmiouL6ZAhQ8iWLVse9Mlq06aN4MhdUTlarRZz587VCIJQOzY21oxGPhLVihEjKLZsefRnL77I/t1RPTa/SqUSO3fuFFJSUrjJkyeTgIAAk87Py8vDypUr0aNHD9q+fftHrYJt25jRUEVPKkEQkJqaiqSkJOHKlSu8TqejNWvWFFu3bs0/99xzMCtH8vhxptWlL4emAvPnzxe6d+/OR0REPPxhWhrzujRuzCqujJWiyM1lFWnmdIW/eZOJJ1JaaYHK5cuXkZSUhBs3bmDo0KE4c+aMkJaWxhNC4OXlJY4ePZrztUEBh6ls2bJFdfny5ZmxsbHPtKpyZeh/ujRu/FCtUhDYjbNwIZMQt0eysJGEhIRg2rRpZMGCBTJRFE3aoaSkpODChQvw9vamv/32Gx07diz3yC7jwAG2E6wCd3d3hIeHIzw8nNdqtUhJSeEuX74sbN68mec4Tpw2bRrn5eVlydvTy/Xr18HzPBQKhXUMnv/8h/UNM8fgGTKE7cLefptJEzyWB3ThwgUaHBxMhw0bxtWsWRMzZ86s+LJjknUeIzk5GXK5/OLHH38sGTtPA7Vrs7w0jmNJqt7ewJYtDvNKV4a7uztGjx7N/+9//xMuXbrE9zDSUABYOCguLk6sXbs29u/fzzVr1uzRJP+hQ1mvqyrgeR6hoaEIDQ3lBwwYgJycHHL16lUuMTFRPHDgANelSxd0MXVjy3Gs5NuI96HT6aBSqXi1Wk0BkLI3xXTcunUDpk0zTfQxPh44eNA8g6dRI+YVWrCArV+vvfbIy4mJiTQ/P58MHDiQNm/enDRv3rzimlUtkjpFUcT169c5ANXDmq9m6P8jTZ7MPBxpaczguXGDuYOrkbFTjpubGwghuH//vtHnlJaWYtOmTbRHjx508uTJJCMjgyQlJT160Lhx7L0bgVwuR5MmTTB06FB+1qxZaNq0KV29erVNe+Z069YNYWFhdNWqVUhOTrZ8wIAAy1z8gwcDX34JzJjBXNFllJaWQhAEMmjQIM4uQmtmkpSUVKpWq01IYJKo1vTpwxR4ARa2SE1l61c1KzoAgICAANy9a5rc04YNG0Q3NzeMGzeOCwoKErdv3y484rWfO5cZAEZACEGtWrXQrVs38uabb3Ljxo3DsWPHkJGRYdKcEBXFvCRKpcFDZTIZxowZg0OHDmH37t2C+NNPbMO1dy+rAjVV4drTkz2zzCUkhKk0KxTM8Knwu1QqlWJERITYunVr67YOsCJpaWngeT4jNjbWxD/as4H+u/6zz5il3bAhWyiOHWPfV0MIIfD09BRNuTlXr14t1K1bl0ZFRREXFxf06dOH7Ny5EyqVih2gVrOHthlxdeNkm5YAACAASURBVEIIBgwYwMtkMrJlyxabtsB48cUXSffu3fHLL7/g/Pnz5l+ruJi9Z0vFuCIjgVmzgJdeetBQ8NChQwgMDBQdnZ+jD0oprl27BkqptDt6WvjlF5ZXNnUq01z5oPqq6/v5+fGFhYVG99dKSEhAeno69/LLL3M8z2PMmDFcVlYWd+lShSrk27fNbupZv359dOrUSVy/fr1oUu8njmNl3gsWGHV4aGgoXp82jaSeOEFSly+n4tSpLKxuDleusPXHEoKCgLFjmdr8mjUApVCpVMjPz+cjIiKqn6VcgatXr2q0Wu0GR8+juqL/j+fpycJaguCQ/kmm4uvrS8+ePQtjPCq7d+9GSUkJN2zYsAchrMjISPj6+go7d+5ki46zM9PnMHM3WLZ7Ibdu3SIrVqwQjh8/bpOmcWlpaTh58qQAACqVynx3UlISE+SyBlFRzL3cpw/AYt9iVFRUtV4syozlu7GxsbccPRcJK+Hvz8LyWVmOnolBfHx8UFBQwOVXkW9TkZycHBw4cAAjRoxAecjcyckJ/fv3J7///jsUCgU78IcfWCqCmXTu3JkLCAjAwoULxR07dhjvgerQgd3/+oVtAQCiVov8AQNoj61buT9ff53qLMkN3bePhcQsJSCAyW1cuQIsWIAD+/YhKChIcIQmmLFQSnH58mWNIAi/Onou1RX+s88+q/rV55//DG3aMJn1Xr1YuV9IiMEqHEcRHBzMnT17lh4/fpy6ubkRPz+/SvN5srKysHfvXkyYMOGJiqDmzZtze/fuJQEBAcTvs8+YO9wCRVRXV1eEhYVBFEXy999/0wMHDpBz584JISEh3BMJ0mby66+/wt/fn5s4cSLq169vvlEhl7MWGoY0eIzF0xPo0QPimDE45etL+o0aVXnvrmrCqVOndBkZGSu7dOliedtniepBv36fwdkZ+O9/2df//sfyWqohPj4+KCoqEnft2sWpVCr4+/tXKXmxcuVKISIiAu3atXskvFKrVi1cu3ZNSElJoa1q1+bg58c8XGZu2gghCAsLIx4eHiQjI0M4ePAgl5CQIJaUlNDQ0NCqQzsBASzR2M0N0CcZkp6OnK1bcT4vjzSLi0PHrl2J2dpbosi8M23bWkdPycWFPftWrMCt5GSxQd++fLC11kYbkJubi1OnThWLovhet27dHD2daonhp4+3NzNwCAF69mRiTTdvMr2Vavbw8vX1xRtvvEH+/PNPeujQIbpz507i7u4u+Pv7c82bNyetWrWCk5MTCgoK4OrqSmvVqvXEDevm5oZu3bqRHTt2YOY777CcJSvMq2vXrqRr166kqKgICxcu5EtLSx855s6dO9i7dy+GDx8OmUyGS5cuoW3btkYlYCuVSqFVq1a8xarT8+axxSkqyrJxKnDH0xOev/2GsVFRyG3fHsGjR1ttbGtz+fLlUp1Ot83R85CwMq1aMWO+Sxf2QNRqWV5iNQvP8zyPAQMG8M2aNcPBgwfF06dPc05OTqK3tzdCQ0O5iIgIlFcBabVa0rJly0oXhzFjxvDff/89vZ2bi/rr1ln88HdyckJERAQiIiJ4nU6HzZs3k8dTB3Q6HbZt20ZDQ0NJZGQkLl68iIaXL8MjO5vl81WGRgP06wdNdDSyuncXfUNCLPMAX7zICiYuX7ZomIooOA7Fc+ei2cSJXOHSpSKee44zqdzdjly9elUkhPwaGxtr0xSKfzKGLZYdO4ClS4Fz54AvvmA/69KFVeR8/bWNp2c6PM+je/fuXPfu3aFUKpGWlsYnJycLx48fJ3/88Qfp378/CQkJgUqlqnJ30qZNG+zfv5/11DGhYsIYioqKwHEcQkJCoNPpoFAocOrUKZw5cwZ+fn50yZIlEEWRyOVynDp1Spg6dapBQ0atVlun/UJxscUNBkVRxMWLF3Hu3Dl69+5d6HQ6IooivEaNwrDFiynq1yc2bWJoJvn5+VAqlSKA046ei4SVeeUVJpfQpQv7WrSIJfOamoxrJxo2bIiGDRtygiAgMzOTS01NpTdu3BASEhL40NBQcdSoUZxcLqdFRUWViga6ubnBzc1NEP7+W2btjuAymQxZWVmIjo4moihCpVIhMzMTO3bsED08PMjNmzexf/9+yvM88SkooMPy80mlJQo//vigDPzvxER4FReLsLTS6d49q2gq5eTk4Pjx40hNTRWUSiXPcRxI164Y8OuvnPjrr+AGD2bpDtWMS5cuKTQazWZHz6M6Y9jgGTuWNZKsyNmzrNJh3jy2c/q//7PR9CzD3d0dzZs3R3n5YFJSEn777TfUq1dPFEWR02g0lepMaLVa5ll54w3g11+t2lyuVq1a8Pf3F//9739zlFLwPI8aNWrQ8ePHk+DgYJKUlIS6devC1dUVGzZsIIsWLRKnTZvGeejRodBqtdYpfY+OBl54wezTb926hS1btogymYy0aNGCdu/enatbty40Gg1u3boF9ciRBF9+ySrfRo2yfL5WJDU1FTKZ7MhHH30k9c162jhz5tFE/LfeYuJyGRnsHt++3W5tcUyB53nUq1cP9erVI507d+YLCgrwyy+/YMGCBSIhhBQVFVV5LqWU+G3YwLzwm637DIyOjsYff/yB+Ph4cBwHuVyO6OhoREdHk6ysLOh0OhISEoKzZ88ie+JE5K5diybjxrGTRZEZJqtXsxBj7dooKChAQECA5fl9Li6s3Y2ZlJaW4ueffxbu3bvHh4aGCr169eIbNWoEZ2dnZGRkIKt3b5Aff2TVfu+/D1hDBsRKaLVa5ObmugI46ui5VGcMGzyJieyGWbjw4c/K/9DlJYNaLfsgV0OrtyJhYWEICgrCxo0bIYoiioqKKlVG1mg0zODJybH6HGQyGSZPnszpdDrI5fJyafQH3qaWLVs+OHbcuHHcb7/9JixZskScNGkS5+/vX+mYWq2WWOzhKSlhnjwzQ067d+/G+fPn0bNnT9K+fXtSUTLVxcXlofro998DP/3EqmeqUXgrNTW1pLS09A9Hz0PCBrz9NlMCryjo5+4OZGayNYvjWAm1u7vj5mgE3t7emDp1Knfw4EHx+PHjXGFh4UPtmscQRRH3vvkGXnpazZhLhw4dSGRkJGQyWcWQOwcAdSrkuDz33HMke8gQ3Fq1Ctn16qFL27bM0PT3Z8rJZSgUCqFx48aWW5zr17PNqRlKxykpKdi0aZMYHBxMykRcH5lPmeHJcno+/hj4+WfmDDBWENHGZGVlwcnJKXnWrFkljp5LdcawwVNczBaGynjvPfbvO+8wgb6//7bi1GyDt7c3XnvtNe78+fOoyiui1WrR+OpVYNgwplRqZTiOM0rBlOd5DB06lD9w4IC4atUq+vLLL5P6j8nkl+/ynC01NjUa1jTUhPi0SqXCmTNncPHiRUGtVnMTJ04ktWvX1q9RERrKBL2++ooZlNXEO3j79m0dgL8cPQ8JG5CeXrl4aJMmTIQwO5vlJKans4dxNYbjOPTq1Ytr3LgxZDJZlfcapRR1Roxg3isj+tuZirH5grXefBPyGjWwcedO4PRp2qVtW4LXX3/kmNLSUmqVkHy7diZ740+fPo2MjAwkJSWhZ8+eJCoq6sn2FhXhOKYz9q9/MYmDuXNZcYaDSU9Pp4IgGCe49Axj2I3Yrx+wcaP+Y775hoV+srKYdk81h+M4REZGQl7Fw12j0UDt7k7RqpWdZ/YkhBD06tWL69mzJ9avX4+LFy8+eE2n0+HOnTtwc3Ojem9SYzh6lPWhMZL8/HwsWbJETExMpLVr18b06dOJ0U0I69ZluyQXFxYWdTClpaVQKBROAKq/xS5hOidP6m8kWasW26z5+7MHmRFl4Y4mJCQEwcHBVb5ORZHo6tdn782RBATA99gxTN20Cepjx8jaWrVEsUzXTBRF6HQ6aDQazmKDRxBYXpCRCvGiKGLt2rXiwYMHkZOTI06aNAkdOnTQb+yUQwgzep57Dvj8c6CgwLK5W4GUlBSFVqs97Oh5VHcMe3ji4phB87gC8SOjyFjFw549rBfJZ58x/QVLH8IOQqvV4n5QkEXxYGvTvn174unpiV9//RW7d++mOp2O6HQ6ODs7Uz8/PxGWtmZISDC6dDUzMxNr1qyhrVu3pv379+cIIaZfOziYJb4vWMDaWcyebfIQ1iIjIwNOTk5XPvjgg6p7iEj8c/H1ZUnLlfR3e0CTJswL9PvvLMfMx+cfu34BAK/VouCbb+BRRVm73VixAvDygmzWLHQYPx6rV68m33zzDRVFkWi1WshkMlBKLc9BvHWLbdiMqBwWRRErV64U1Go1FxMTA09PT9PzhziOheeWLmWhrV9/dVgHAkopMjIy5JA81IahlOr7ojQ1ldJt26hJnD9Pac2alJaWmnZeNeHy5cu00MeH0v/+19FTeYL8/HyanZ1NFQoFVavV9KuvvhIXLlxItVqtZQOfP09pZqbBw65fv06//PJLevToUcGyC5aRm0vpihWUfvwxpYJ1hjSVgwcPCl988cV/qf57Qfr6Z35RunIlpQoFNYnQUEpXrzbtnGrEyS5dRE3jxo6bgE7Hnh3h4ZQeO0Zp+/aU6nRUrVbT9PR0ev/+farVaunmzZvp559/TjONWHv0cucOpefOGTxMrVbT7777Trd8+XKhpKTEsmtSSqkoUnrgAKUDBlBaWGj5eGaQl5dHv/zyyzzq+Hut2n8ZtmzlctOT+Vq1Yu5FZ2fWRM6GvaRsgSAI2PjeeyJiYhw9lSfw8fFBYGAgXF1d8dNPPwk1atSAIAji1q1bH+2hYypvv81yGQxw9OhR6unpScPDw7nr16+bf71yfH1ZC4qSEibyaGTfMmuSnJysEARBqm54WvHyMt1bs2wZMGIEU+61lvq4HTnauzcKbJB/aBRFRawgYdMmVvQSHc0U+48cgZOTE+rUqQNvb2+cPXsW169fR5MmTbB27VoUFhaaf821a4F1hlvg3bp1C4WFhXy/fv24rKysh22EzIUQJl0yeTLQv7/eRtO2Ij09HTzPJ9j9wv9ADPv/9u1jiVmmiDlxHGsiWVjIEpo7d2YKzTYiPz8fmzZtEgoLCzmZTEZlMpno5OQEFxcXmYeHBzw9PeHt7Q1vb2/4+vrCx8cHMpkMoijijz/+gFKphEwmg1wuh1wuR3FyMtoePEjw0Uc2m7MliKKIH3/8UdBoNNzkyZMJpZQsXrxY3L9/v9i7d2/T3bOUssq75s0NHjphwgSybNkyYf78+TzHcRgzZgxCLVXe9vJiYdDly4HYWPa9nUQtRVFEdna2CyR38NPLG2+wHDUjPt8P6NOH/fvf/zL18W+/tc3cwD6Du3btwpUrV0RCCGQyGXVycqLOzs68m5sb8fT0hJeXF7y8vODr6ws/P78HCsyXWdsWyOVyyGQyODk5QSaToe3hw0TWs6fN5lwlKSms4q1hQ+DNNx+Gyd9555GeXomJidi/fz9Gjx6N0NBQbNiwQYyLiyNTp04lValL68XZmfXvMkDz5s0RHR2NuLi48v8LI0aMsLxCbOhQoEEDNoddu4DAQIuHNJbU1NRSqcLUOAw/VUaPBl580bzRvbzYh5xS5vVZsoQJf1kJnU6H7du302vXrpFWrVphyJAhpLS0lCiVSk6pVEKpVKKoqEjIzc3F7du3iUqlIqWlpQ9ixxzHUU9PT9SpU0fUaDRUpVJBq9XCKzOTNExPr7Z9n+Li4sSSkhJu8uTJxLVMImDixIncqlWraM2aNelzzz1n2nY2I4Mt8EboSshkMkyfPp0vKChAQkIC9uzZI8bExHAWJ017eAAxMcDMmaxsfcIEu8TE7927B57n8z766KNcm19MwjFcvaq/vYE+9u1j/777LktO/fFH680LwLlz57Bv3z7Rw8MDI0aM4JycnFC+dimVSigUCrGoqIjevXsXSqWSlJSUcGq1GhzHQSaTUVEUSVhYmCAIAkpLS6HT6ahWqyUDbt/m3BUK+yYh3bjBnhcffMDy8iri58eEa3v2xLlLlxAfH4+XXnrpwWZp1KhR3IoVK4T169eTV155hTO5vURJCfMkGUHPnj0REREBjuOwZMkSPicnB4HWMFDCw1n16aRJLPe1EskTW3D79m0NgBN2udg/HMMGz8mTwKpVTHfAXAgBXn4ZiIhg8t/Nm1u8gz958iSOHDlCa9asSadMmUICAwOrukOe+LkgCCgpKYFKpSK+vr7gK7u7Pv/covnZiq1bt9KioiIyZcoU4lahi7u/vz9GjhxJNm3aBC8vLzQyRX8jMdEkSQGO41CzZk307dsX8+bNw+XLlx/RDzIbV1eWxPzZZ2zB/OADVsllQ9LT00EIOWbTi0g4ljFjWA+tiuKDpjJsGAv5qlSsLUWzZhZNKScnB5s3bxaUSiXft29frk2bNqhi0/DExotSCrVaDaVSSZydneHh4fHk+jVxokXzM5mlS9m6vnw562X1OCEhQGAgshITsfvAAYwcOfKRNYrjOEyZMoVfuHChsH37dmHYsGG80ZsoSlnS8OTJRk+3Zk2m/9yoUSO6Z88e+uqrr1png9unD9N7Gj6chUXDwqwybFWo1WoUFha6ADhv0ws9JRj+I4uidfIq/vUvplcwdChzE5tJWloavvvuO+Ho0aMYNGgQmTJlCmeqdc7zPDw8PBAQEIBKdxKDBwMffmj2HG1FcnIyrl27RsaNG0fcK8mratSoEXr37o1NmzYh24h8nAe0amXSYlEOx3EIDQ3lLly4YL3EG7kcmDOHeQa3bGHucRty+/ZtVWlpqdQs9GlGp7M8j7BTJ5bTs3AhMGCA2cNoNBqsX79eXLVqFRo1akTefvtthIeHV2XsVAohBC4uLvD19UWlCuw7d9r8QfsAQQDOn2fKycHBlRs7ZYhDhyJ75kzauXNnsUmTJk+8LpPJMHXqVP7mzZvc4cOHjf+D6XRMz6usz5gp9O/fn6SlpXFaa+behIcDn3zCOtVbsa9XZWRmZsLZ2flabGysxqYXekowbPBERzNL1VokJTFj4l//elS92QAqlQqrV68W165di/DwcPL2228jLCzMpIXCaGJiql1HZVEUsXXrVrFbt27UV8+N3a5dO0RERODnn3+GPun5R/j8c6MSlisjPT1daNGihXV1+WUy1u/o77+ZJIKx78MMMjIydABO2ewCEo5n2zbAWl2uZ89ma9jVq0yjzIRCgUOHDuHbb7+lOp2Ovv766+jXrx9nsWBoZYSH22fDVlDAPBm3bgHHj7PSfj3szsigQRkZpFO7dlU+dzw8PPDqq6+Sv/76i5w/f964X258vNntM/766y8EBQWJVWmymU2vXiyq8dVX7HdjI7KysiDp7xiPYYNnyxYmp20tnJxYiMvXl8XVS0oMCt6Vlpbiu+++o66urnT69Ono1q0bZ/UPaEVcXJioVDVi06ZNtEaNGujQoYNBC69///7w9fWlBw8eNM7zcuuWWUl29+7dg0ql4pubkgxqCnPmsMqLd9+1zfgASkpKnABk2ewCEo6ncWPr7rSdnZmhU7s2W8vu3zd4yqpVq3Tnz5+nI0eOJBMmTOD1bVosJj+fGWO25NYtlqAcGso84gby7dLS0vD33bvE5fPPwSUn6z02MDAQw4YNI7t27SJGVZ5mZDzaNsQEkpKShLZt29omX7NjR/aMmzzZZuKExcXFWp1Ol2qTwZ9CDP+hu3e3TYXCe+8B48cDM2YYlcis0+nISy+9xFulSaY+ioqYdV6NSulv3ryJ5ORkMnLkSI4zUhywVatWJCsry7D7SxTZ38KICofHOXz4MBo1aiTYZJeq1QJHjrBwW/36TMXbylBKodVqnQFUf2ldCfNZvJg9mK1J8+YsjJOSwgwfA15IlUqFnj17EpNy68xlwgQm8WArTp9mycn5+cD8+QbzMUVRxKZNm8TOnTuL3jqdYeV+AM2aNQPHcbhvhDGJNm1YCMlEbL5hKyxkjbZHjWK5sDZAqVRqAOTZZPCnEONyeNRq281g2TLgt9+A69f1KhvzPG98iMYSatRg79eWHiQT0Ol02LZtm9i9e3danmhnDE2aNEF+fj5ncIeUksIWRzO6Refk5Ois0vTvyYGZlIG3N7B1K9s97rd+mk1ZtYs6NjZWZ/XBJaoParXtNjANGrC1y9OTlWFX0pZCFEXIZDL+/v37FghlmcCFC6wiytpQyiptXVxYcYGRZe/btm2j7u7uiI6O5jBgAHDzplHnubi4CDnGNHBesAC4csWoMSty/fp1+Pn5iVbfsFEKvPUWe54dP84S3nfsYP0KrYxSqdRB2rAZjWGD5+hRYNYs281AJmPJblevsuQ34EGS9J07d7B69Wrx22+/RXBwsFBZoq7VWbq0WlVobd68mfr4+BgVyqqIt7c3eJ43vEMixOwkTI7jIFhbKDAzk+UT9esHREWx+Y0dy0rVrXwtlUoFnueLrTqoRPXjnXcAA2EUi6hXjxlVf/3FkuzLPqcajQa7d+/GvHnzRJVKhfr169u+TLywEOjWzfptMShlbTc2bmRCtJ06GXXa7du3ce3atYfe6YAAoFEj1tTUAF5eXpxRxRdNmjCtJBNxdna2/vql07EqPpmMVZkSwjxQ+fmsQtnKlAknSh4eIzFcGz5iBOt5ZGtefJF9nTgBXf/++GHOHKFQqeRbtWpFBw0aBD8/P+t7EipDLrd5KbSxXLhwASkpKeSNN94wrqndY3AcR9Vqtf4TDTVW1INMJrNudcOVK8xV/t13jzahDQ5mu8mlS9nOyUqUlJSA53nHd/6TsC2ZmbbXdHJxYfIOlEKoXRvHhg8XjwcHc/7+/uLgwYO5xo0bw9hwtEUUF1u/D1heHusvNmcOsHs308wyApVKhU2bNoldu3aFn5/fwzffpg3ru2jgueLs7ExKSkpE6NuY37tndpd7FxcXWHX9EgSWxF2jBrBmzaOvffYZ8PrrwOHD1rsegJKSEg6SwWM0hu/A48eBkSPtMBWgqKgI844dE7e89BIi2rblZrq748WBA3k/Owk4AQBefdWhjSzLSUhIwK5duzBs2DD4mCGaVlRUBK1WSwIMJfMdO2ZSl/SKODk5cZmZmVS0RrjgxAn2UPryS5Y39jhjx1rdLVxSUgJI7uCnn969WZKtHVi7bp1u3YAByOvcmb4RGIjX+vblmjZtah9jB2DFB9ZsKZGRwXJ2wsJYIYeRxk5hYSGWLFkiNmjQAM8///yjb75XLxayVij0jpGbmyvUrVtX/y/u0iXm1TIDd3d3qFQqzqKWFuUUFLC1dPx4YOXKJ19v2pR5ocqFLK2EWq2WQ1rDjMbwXejmZpb1bA5Xr16Fs6sreWn5ckQ3aUKc5s4F7t61y7Uf4O0NnHJslfKRI0dw4MABjB49Gs3MFDi7dOkSfH19RYOKpZMmmV2C379/f6SlpdGVK1eKBZZUIVy6BLz2GgtlDRxY+TH16zPvz5Ej5l/nMcrcwfcMHSfxDycgwG45eenp6bK+X32FYaNH8z7r1jHFXXvy4ovMK28NDh4EXniBeVi//dboPL979+7hhx9+oM2aNcOIESOeLLTw8gL+/FOvt0MURSiVSr6OITmBRo3MTkEICQlB3bp1xaVLl+KKGTlAD6CU9dHavJn97iuLEBDCBDAvXDD/Ok9clkKr1TpBMniMxrDB06oV23XbgdzcXPj6+goPYr137jB57oYNgQQ79UY7epQpQjuI+Ph4nDhxAuPHj7eoR9XNmzdpgwYN9B9EKWvcaWbT0cDAQLzzzjucp6cnli1bhnRzmiwuX852er/9ZlgavlEjtkha0iS1AiUlJRAEwTwBIol/DosWsYe2jdHpdNBqtXhQcn7wIKsemjgRmDbN5tcHwFpfLFhg2RiiyMbx9WVJyq1aGX1qVlYWVq1aRSMjI+nAgQOrbjnTpw8rmKiCzMxMcBwHb29v/RecP5/p8JgBx3EYN24c17dvX2zfvp3Gx8ebntDz998sBP/zz+xzpo+ICOZptEbTZTC5Fo7jNFLRhfEYNnh27QK6drXDVFgTUF9f30fnJJOxvI2ICJZvorPh3/biReZtcFCF1vbt2+n58+cxceJE1LVEBh/A/fv3hZo1a+r/+xYVAbVqma1hAbBFY8yYMVxYWBj27dtn2oJx8yZbLLy8mDFjiM6dmcfv9m3zJvsYZb3TJA2ep522bYFz52x+mbt37z5o3vkIU6awnX9+PltfbMnPP5vfN6ycH35g+lf+/uyeM5KUlBTExcXRTp060d69e+vvrzdsGNvkVOEZvnHjBmrUqGE4Vi4IFmumRUZGYtq0aeT06dN8cbEJNQyUssa0ajXTejKUN+XsDERGmtTGRx9lOYh2KF1+ejBs8HTtypJF7UBxcbHg4+Pz5Jzefpvld4wezTwCtuL4cas3BzSWX375Rbxx4waZMmUKatWqZfF4UVFRsgMHDuDePT0Rmzt3WLNOKxAdHY2srCzeKN0MSpkU/KlT7EFkrA4Gx7H4/zffWDbZMpRKpZpSKiX8Pe2sWmVap3QzuXPnDjw9PZ98SEdHszyi775ja5itEAQWejLXA5qTw0JYPXsyY8SEYoYrV65gw4YN6NWrFzp37mz4ucJx7OG/a1elL7dt2xbFxcXk2LFj+o2e+vWB5583ep5V4e3tDQ8PDzExMdG4hMTt25mS8v79puV8jh0LfPSRwfwlYygzeKyQgPTsYPiDWVLCyuzsQGlpKfQKC968CUyfzlo/LF5s/QnYIIveEEVFRVi0aJGQk5NDpk6dCmspsHbo0AEtW7akcXFxVFHVzXXokFVkz3NycrBixQrI5XLcNZRzpdMBqalMnr9XL9Mr4oYPZ4aSHne4sUiiXc8Iqak20UB5nLt378Lb27tqa+Pzz5n0RkIC++xbKTT7AJ5nHtAaNUw/Nz+fqeq3acO8FUYmJ4uiiB07dtBff/0VgwYNQrt27YwvD3vllSqvU6NGDYwbN44cPXqUu1yVSnZBwUOdLgsQRRFLly4VVCoVl5uba/iE0lJmEA4Zwhoem4KbGwtv8lUQOgAAIABJREFUWkEYUqVSgRAirV8mYNjgSUy0jYhVJZQJdFV9QPlrjRoxy76oyOwKo0rp3JndQHbi7NmzWLJkCa1bty5iYmKItVWkBw0aRPz8/MS4uDiqqWzBj4xkrmUL0Ol0WLNmjdi+fXtx1qxZaNq0adUHl5Swir+tW1m1gjmhNJmMxe3XrjV/0mUolUoRksHz9PPZZ8CNGza/jEajgVwu12/FyGQshNuyJQuBmNnDrlL++1/zKmq3b2eaVyNGAF9/zbwvRlBQUIBFixYJKSkpmDJlClqZkOsDgK3h33/Pyt4rITg4GIMHD8b27duRVtWm+7XXjJ5vVezYsYMKgsC9//77GDFihP7BFi1iHqUffzTfWzdpEtu8W+jlKSkpAaVUKrowAcOflMGDbSvaVQEXFxcYVe3z7rusmmfaNKBvX+tNYOhQthDZmHIjIT4+HkOGDCFDhgzhbdUbbMKECbwoiuLGjRvFJ8rH58+3eHe0du1awdvbGz169ND/WSosZO0hwsKYJ80SWrRg7vc7d0w+lVKK06dPIyEhAfn5+VKFw7NATg7QoYPNLxMYGIj8/HzDa2qzZmyHf+kSU2pm8giW07Fj1VWOlSGKzKvj7s6EPU3op3fmzBksW7aMhoaGIiYmxrD8RWW4u7NGp3qUl1u0aIFOnTph/fr1yHvcMNq1y2K5gaSkJCQlJZExY8YQJ0Nr4fXrzIu2YoVlOkfe3qxE/fffzTo9IyMDR48exfXr1yEIghFS1BLlGBYe/PNP4NNP7RLqqVGjBp+Xl0cBGPdpWrOGuTXPnGEKoJbkdqjVzLhr2ND8MYwgMzMTGzZsEL28vBATE6M/hGcFOI7DtGnT+IULF4p79+4VXnjhhYe1pSdPsio4A+Tl5eHIkSNQqVQoLS2lGo1G1Gq1VKfTEZ1Ox8fExOjXGSkqYmWbAwdap+LP15d5p86dY32MTECn02H37t3l/3UFkGH5hCSqNe3bszweM9R4TaFOnTo4cuSI8e6Gli1ZuM3ZmfW/WrCAfbbNJTjYtEbPn3zC1KG3bWMPYSPQ6XRYt26deOfOHW7YsGGkadOmlgnCTpnC1u2oqCoP6dq1K/Ly8mhcXBxiYmKIS3kYPDHRqN+XKIo4ePAgcnNzUVJSArVaLZSvXyUlJfwLL7xA/f399T9zZs8G/viDaRKZ0YbnCXr0YCkFOp3BXmSPc/bsWXru3Lny+Vqvzv0ZwPDN6etrF68HwHQRLl26BLWxvbtkMvbAzshgapuA+VVce/eyag4bsn//fsTFxaFdu3aYPHkyZ/NGqGU4OTkhKiqKu3Xr1sObWqViBmNIiMHz165dKxQVFYn+/v5is2bNSFRUFN+rVy/Z0KFD+ZiYGHh6elZ98s2brPrtww+tK+jYtStzK5u4O5bL5YiNjUVUVFS5xKrlGY8S1ZvWrY3OSbGEoKAg6HQ63DLF6xAQwO7Fci+HJVWokZHsoWyI5GSmCfPqq8zLYKSxk56ejgULFog6nQ4xMTH6w9fGEhr6sJ2MHoYMGUJKSkrII/0UR48Gpk41eIkjR47g3Llz8PT0FEJDQxEREcF37dpVNnDgQH7SpEkIDw+v2tjRaIBffmH6Rn/8YR1jB2CerdOn2ZeJvPjii2TaQ5kDA7XwEhUxbFqGhrJeNHagS5cuSExMpFu3bhXHjBlj/CdryBD2FR/PMudzc02P6w4ezAwnG7Fv3z6cP38eEyZMQJ06dewku/qQCxcuCJGRkQ+vm5gIzJ1rsFP92bNnoVar+bFjx8LksFtJCfPszJhh1ZYQAJgnzt2deSDNCGvm5eWVf/bPWHdiEtWOWbPsosPDcRw6duyIjRs34q233tK/EaiIhwdTGqeUbeDi4kwLTZWTnW1YUqOkBFi4kN0/jRoZHZopLCzEmjVr0LlzZ3Tq1El/ybkpuLgA773H1l491akJCQnw9PR81BMzaxarINYjjKvT6ZCQkECHDRtGmjRpYrq1Ut6H7bffrN+eZMIEVnXcsaPJp1YQlK28zE2iUgw/eA8etG6eTBUkJiZi/vz5glqt5kJDQ827m3r3Zr1eCAH+8x/TOiR/+aXZAlaGUKlUOH36NEaOHAmDyqE2QKFQoKCggG/duvXD36tMxtyqehBFEQcOHBB79+5turGzaxfLCzh40PrGTjn/+Q/7u5nR2oLjuPLfhSQ8+LTTq5fNhUtzc3OxcuVK8a+//kLDhg0FvcUXVUEIW79eeIHdO6mpxp975gzw/vv6PRBr1jBv19dfs0IUE4yWjRs3Cs2aNRM6d+5sPWOnHFFkIUc9JCYmCm3btsWDa4siM5AaN9Z73o4dO6ivry9tbOC4J8jKYuvWzJm2MXYA9lwlhLWkMJEKBs9Oq87pKcewwdOpExOzsiFFRUXYs2cPunbtyr///vvo0KGDeR4QjmPJienpwLJlLHfEWO7cqVIEy1xEUcSJEyewdOlSMTQ0VKhfv75VxzeW06dPIyAgQHxkx3nlisEQ3uHDh+Hk5ETatGlj2gU1GtYpuFYtwEIBRb3Urs36blWh5aGPgQMHlquUltpgZhLVibVrWbjHhmzYsEHw8vLC9OnTMWrUKN7V1HLlcqKi2Dq2erVpSa35+VW34RFF1pJFq2XeIxPmlpGRgZUrVwp5eXl83759bdPAuWdPFtIrrfpWLCgo4Fu0aPHQ0rp5kylA6zEsFQoFrl69Sl544QXTjDRKWTVWaSlQr57tGs8SwsJyW7aYfGrNmjVRu3ZtBYBM60/s6cXwNqSwkGm1WEHcqTJEUcSGDRuEevXq4bnnnrPODVWv3kPtjeBg1pnXUMKilXV99u3bh3PnzlG5XI4ePXpwrW2cMKmPwMBAVEhyY+zbZ9AVfOrUKTp8+HBiUuPDBQtYNcOFCyYn45nFwIGsHQilJu1YS0pKIJfLpZLOZ4Hjx1lo3kZ5PCdPnkRRURE/ceJEeFjrGuU944YNY4b9kiX6j+/Th31VxtSpLCwTH2+0ivytW7ewe/duoaioiI+MjCQvvfQS3N3dTXgDJuDkxLqxr1nDyswrPcRJVCqVD/MeT5826AHbunWrGBoaSoODg41/riQlsVYgu3ax/FVre7Mep3NntlbeumVywYxarRYBmF6q+gxj+El244ZBd6O5lJaWYvHixQIAMnLkSOvvHpycmAZHy5bAgQNVJwTm5bFdj2B6K5XHEUURq1evFi9evEgHDx5M3n77bRIZGalfX8jGNGnSBEqlkjySDD59OvPeVcGJEyfg5uaGRsa0fCinoICFDiZMsI+xA7Cde1ISUJU4WRUoFApwHCeVdD4LrFxptXYkj7Nnzx4cOnQIY8aMsZ6xU5FZs5hAX0aG/pYErVoB8+Y9+rOrV1lIZsYMFioz0tg5e/YsNm7ciNatW3Pvvfce+vfvb/sCi0aN9CZcu7m50aysCl1gnn8eePNNvUNmZGRw3bt3N/65UlzMwkvDh7NcKlsbOwATIqxRg4X+TUSpVMohheRNwrDB07MncO2a1S9cWFiIxYsXi76+vmTSpEmc2S5gQ5QLU02cyLLtK8PDg3W6tTADXxRFrFixQlAqlWTatGmkadOmsHq82wxkMhlcXV3FO+W6NYWFrOpAzyLWsmVLFBcXE5Uxwo6Usnj3+PHsd2xGEp7Z8DyT7j9xwqTTynrmSO7gZ4Fbtww3pjWDDRs2iBcvXsSkSZNgsFGvuURFsVLzhQtZCXdVrFzJGgGXo9MxY8fDgxlDRiqaHzt2DHv37sWIESPQtWvXhyXgtqZDB7YmVRGWq1WrFp+WlvZwR/ruuwafSx4eHsLt27eNk7M+dIhVTg0ZwsLx9mTYMGbsmVBxKooiNBqNMwAD0vYSFTFs8Bw/bpPu4StWrBCbNWuGl19+mbOV6N4jpKYyt+mYMSy/pyIXLuitEDAGjUaDxYsXCxzHkSlTphCbuX/NxNPT8+EOKSuLLYJ6QlU1a9bE/7N33mFRXdv7f/c5w9B7VZCmqCA2VECxVzT2HlssuRpbEk1yb4q5au5Nbpop35+xJ7EksUSxxd4VLIjGhiAWVCx0pMMw5+zfH8uRNg1BxYTP8/AoU88AZ5+113rXu+zs7KSzZ8/qVwSr1dR23rjxc5u5VonXXiMTxRTjEzZ5eXkoKSm5/ewOqo5aQ8uW5DlVg0RERPDU1FQ2bdo0uFbBsO+p+fJLyp7u31+52aCoiMrInp70/fLllL3dsgWYP9/oTMWBAwdw4sQJjB07Fo0bN67hD2AAhYKytDu1a3AbNWqEe/fulX6Q7GyDguXQ0FDx5MmT4IZGeFy4QO///ffVGqT81Li4kBnljz8a/ZSCggKIolgwf/78EsOPrkOD4bqDm5vu2vBTIssyCgsLhfDwcP2GdTWJ5qQPDqYSV1oalbGsrGiByMsj80IjkGUZ586dg7W1NerVqwcTExMsW7ZMcnR0ZGPGjHk+AVwVcXZ2Fh88eCABEKFS0QKqhatXr2L37t2yjY0N7O3txTNnzqBTp05luwLKM3IkiSK3bXt2B28IQQDmzaPPtGiRUU/Jzc0tUavVz2dIXB0vlj59quQibAwPHz6UOnXqpHheXloAaA3z8iqdYH7nDn0fF0fZnHHjqLyblERaOj1i21u3biEnJweurq5wdXXFzp07eXx8PJs4cSLqVdHMs8Z45RWdo30aN26MHTt2CJxzsJIS2uRoaaZQqVRYsWKFWpZl5u3tLRYUFLBbt26hoS59zJYtZKy7d++zbbAwxMyZZOExdapRIunc3FwoFAojBn/VURbDAU+9ejThtQZ5rJ94MbqWt9+mfwcNohTi/v1ViqwBGpa5Z88eWFlZ8YKCAibLMpo0aYLhw4cLOgODF0xWVhZv2LAhRZfbt5O7awV307S0NGzbtg1du3YVVCoVj4uLk4uKioR79+7Bq6JBYXo6iSDfffeZGzYaRf/+lKlLTzfKPTo7O7sIdfXvvwfjxtX4zr2kpATPrAyvjyZNgIULaYBut26km2vdmjx4Ro6kjZvGmkMPW7dulQEwlUrFSkpKYGFhwaZMmQInI86dZ0anTiRcvnaNPmcZkpKSYGFhwRljDAkJVDp/7bVKL7Fq1SrJxsZGCAwMFOLi4iQA4uXLl3nDhg0r/0B++oneMyLixQY7ACUW3nmHOvOMmG+Yl5cHxlidBrGKGI44Tp4kHUwNTKfW8OjRIxicW/Ks2boVyM8HDh4ks8JTp0g4ZwT37t2DpaUlnzt3LuOcQ6VSQalUirVBr6OLR48eyU+6FZo313qC5+fng3MOPz8/ODs7s65du7KSkhLtgemYMTT8b8yY5yPuM4SdHaX09+whLZEBcnJy6joc/i4MHkxZ3F69auwlJUl6drpDYwgOptI0AHh4UElk3jwS8xo4H1UqFUpKSti4ceOYh4cH1I+bOV5kY8UTGjemgK1CwHPt2jW4u7vLAERYWpKwWAuFhYVo2rQpDwoKQlBQkCjLMmRZrvwD2biRZmKFhwP16z+LT1J1mjShQG7wYIPGuXl5eeCc143FqSKG60nt21MEXINkZ2fD1NS06m5xNYkgANbWwH//S1mBTp3I4nz3bvK00EFOTg4OHjzI+/TpwwCAMQZTU9NaIU7WxeMSovgkVb12rdaT3NvbG5aWllJyGZt3ExOT8p8tJgaYMYN2YsuX145gR0PPnpTO1+PnoaGwsJChbnDo34MtW2rcVkOtVrMXGvAA1HRw4watW4cOUVfWtWv6u7kArFmzRqpfv77s/th9WqFQ1I5gB6DshhZX7AcPHkheXl60Ydu7V2cXaIsWLcTbZTryKlUS1Gpg+nTa9O3ZU3uCHYAy5aamVJY0QGFhISRJqstQVxHDf+VpadTBVIPC5ZycHJibmxunnn9W/Pvf5M3z1luUDn7vPUp7L1xIu6U33iDl/owZT2bNPG45lwICAhAYGFg7a1c6EAQBhYWFsFIooD57Fr/t2iVxpZKbmJhoFjxmYmKCwsJC0U2XgJtzmvIcEFDjmogawd+fAtiTJw26SCuVSg7g2Q9YquPFs2ULMHkyefHUEJIkvdiA5+xZ6sxasoSytcHB1GW0fz/p2K5do4zPlCnlPMgOHz6MR48eibNmzaqdmzRvbzrmli3LZXlMTExYfn6+DEBQHz+OP52c5FiAa4I1zTp269YtITAwUPtGnnPyH9Non2pZYwkYo+vsTz9RE4YelEolRFE0bghaHU8wnOFJTibNRw2SnZ397EysDKFJAxcWUknL05NMverVI5+KM2fI1l0QqLMjJ4es3r/8En/GxCA3J0cMDw9/6YIdFxcXacOGDXz/jh38l/79YeviIrq7uyvs7e0VZmZmCgBienq6yDmHo7YJxH/8QZqfn34CPvzwuX8Go3n3XaMmsj++WNUtGH8Hdu4sHS5cA6hUKqjV6hej4VGrqRvRzIw2o7du0Tw5X1/yvxo9mjI+nJOe5+xZ6kodNQrIykL0yZO8V69eL+bYjUEQSJt0+XK5m0NDQ4Xo6Ghh9+7d8kZnZ37Zxweenp6is7OzaGVlJYqiKKpUKrG4uJh5enpWjuSysykDbGdHa1ltC3Y0DB8OHD1qUEJiZmYGxtgLFFy9nBjO8ISGVtnUTR979uzBhQsX0L9//+c+QBOcUxZg3Trgq69osQgLozLWxx9TYANQpB0SAuzYQc8ZPx5QKND6+nV4//ADTlpYSF3Dw0Xm40PGUS8BEydOFCMjIyH98os8PDWVWQ0aVOkxO3fuhImJiSQIQvmALiODFqB//vPZ2azXFK1aUXlSM5NIB+bm5iLqAp6/Bxcv1thLJSYm4vfff5d9fX25iYnJ89/4jB9PwVtkJOkQQ0Jo6vmlS2TExxitWTY2pc0Yt27R6BwTE8z56it29sQJFCxdCgtT0+cyVLXKzJxJmfVhw56UzJs1awaFQoHTkZFseEQEs4yPZxWdswsKCvDNN9+g0gifzEwKIAICSkd31FYYo7EW335L3ks6eOyPZP/cjusvguHffBXEvIY4duwYrly5gokTJ6LcIMtnTXIy+VKUlNAf/sCBdLuLC5XrWrWi+neylpIoYyRqHjECwpgxMP3tN/yZlyfkjhsHdO36dHO7XgAKhQJdu3ZFj969BSsdw2Dv3Lkj5efni3v37pUkjev0smUU9M6dS7uP2g5jtEPU49oKABYWFgrUBTx/DwICSONSTVQqFX777Td07NiRjR079vkGOxMmUGluxYryrrxffkkBT9u2ZA8xdSoNBi2Lry/wySeAlRVML11CSteu8pmFCzlv145MGZcuJS+a2oKDAxmK/vlnuZubNGmC1wYPZpbBwVrHhPz5558QBAG7du2S0tIeT41JTCSxemYmBRK1OdjR0KJF6bVKB3UZ6qfD8G/f05NOqBrg/PnzUs+ePVH/eQnFZJkyE87O9DmKi+lk0jBhAnU4MEYThA3tBBmDVffuaNiqFft91iwJx48DWVm004qOpizR/PnP9jNVF01qVwuBgYGinZ0dYmNj2e+//y7Jx49TTX3LFhLTvSx06EAaIz1OrBYWFqao2yH9PZgwoUb0O0eOHIGLi4vcoUMH9tz0L5rSjo8PlWOsrUuzrIsW0UbN3Jw0Snl5tI45OlKWRxteXugze7YQ2agRy7t4kc7vQ4doWOnhw8C0aVQSe5EwRoGbNpf327d1bry8vLzg6emJnJwc8eeff0Z2VBRdA958s0Y79J451takQYyJ0fkQMzMzyLL8HE2g/hoYDnjs7AwKQI2hoKAAeXl5YrNmzar9Wkazfj2NxhBF4Lff6A+p9IBoTpjGn8PU1KhdjizLuHbtmtyhQwcRZmYUje/fT0GERmR39ixljQ4epA6wGpjRVWNs304zY7TQtWtXjBo1CjNnzhTcV68WsidPBu/Y0fDg1dqGiQn9Xg8c0PkQMzMzZmJi8gJsVet47nTrVn6j85TEx8dLbdu2fX4pAkmi4P3UKWqm6NGj/P03bpT+39mZvm/UiC7uHTrQ8GQt7Nmzh/v4+EjWzs60Nm7eTC7DmsngnANt2lBZqaBA53rxTHF0pOxVxcDt2DGdXUweHh4YN24cJk6ciFamplw1bBjyr1zR6tdT6+nQgbRG2dla7zYzM4MkSbVUiFR7MXzy/vknCeGqSWpqKszMzPhz8d/55BOanTV2rG6x4r17JErWaHBatiytf+vh3LlzUCgUrEkFnwgAZHC2cCENtPz0U1p8Zs6k3WVhIXk/GNEy/Ux57TVAX9BZVASzxYsR9OmnbN3YsfzQ6dO1KFqrAiNHAps26ZxPY2ZmBlEUdY+Lr+Ovw7hxJOytJiUlJUyroL+mSUigtmlJog2Tttl0WVk0WHTaNPre2po8bFJT6V9PTypXVUCWZdy4cQNdunSpXJJr1IjKPh4epbO5jh0jZ/pjx6hrNT6+pj+tdgIDKSN/r4LVTPfu5WeGaSMiAr07d2ZnZ8+WVyYmcpWOwK9W4+5OOqzoaK13m5qaQpIki4ULF9bCVrvai96A59y5cyhp2VLvTtlYMjIyYGFh8Wxb0c+epc6FkJDScRi6SjHDhgG7dpV+7+UFrFkD3NU/bUAURUiSxGRZj42QKJJNurc3BTmnT9NC9P335F2zcSPtXkqe8xiU2Fh6X30dGosWAYcPw7JpUzRo1YqVm1D8MmFtTQGvjo6tx10Oz+HqVceLJCsriwTsFbMjT4FarX62M/KKiqis5OtL65cg6F6/vvySMjBlkSRaWxijfzdvpiyBFkoMrT1BQaRR7NuXMt/BwVT2mjyZtCXvvkvt3c8KxiigW7++/O1vvaU/Y56YCLz/PlBSgrBZs4S8vDymMVZ86Zg3j9yXtVxrFAoFGGMygJeja6aWoDfgOX78uLTiP/9B8r/+Ve1AJSsrC1ZWVs/WbHDyZNqZ9OlDQmNdcA588UVlC+9hw2hcgh6CgoIgiqIUExNj/M+kXj0KqE6epHqyiQkNZc3NBdq1ozLT89iF3L2r22I/PZ1q42PHAtu2IUeSkJCQwENCQl6qFvxyjBhBP+dHjyrdlZycjJKSEv8XcFR1PEeWLFmC+Nmz5eIayEyUlJQwKy1i2Rpj5Ury/1IoaOOhzwxw0qTKXi39+lEWRoOzM4mcyyAIAlq3bs327NkjGxyqqcHenjZJa9fS+cQYdW4mJZGJ3/jxFITU9AbO05MyS5oLPueUYfLw0P74Tz6hTe/Zs0BwMLZu3QpfX1/J4iXppK2EqyswZEjloA/kii/LsgJ1OsQqoTfgmTNnjtgvLAw8OpoZ3BEYIDs7G9bW1jWffpMkCibOnSPRsTEeMZ99Rh48FReU4cMpGDFAeHi4ePToUVZcXFz142WMAq3t26nTYPZsWpg+/phS0Y8eUc3+WWR/6tenLFNFJImEyY6OgKcnbiYlYcmSJbxp06ayn4GJxLUaBwe6gGjJUJ44cQJqtboW2azW8Sx46623YHXtGkuq0PFTVQoeC2ifSUl+6lQqNc+ebVzJ6PJl6sRq2rT87c2bU1ZGo7l54w0KeP7f/yv3sN69eyMvL4/FxcVV/VgZo8z1zz9T5+uECWTtcfUq0LAhlZETEqgNvro0akSjazRlrZwc0mI6V6hEc05C6127gJAQqMzNsWTJEunRo0e8b9++L++GDaDy3fXrlaQWW7du1fy3lvuE1C4Manh8Bg3CL3PmyPerqdzPy8uDra1tzf3xqdXAqlVUPvrXv0iXYmzL4cWL2gMKR0fgxAmtKcSyBAQEwNLSUoqKiqpexkqppAWjQwcKwtato9smTaIhp2fOkJdGTel+Vq2iz1eW69fJ3bNPH2DZMpw6cwYbN25Ejx49MGjQIPG5TbN/Vvj7UwBZJoOWWTo6JOuFHFMdzw0rKyuc+vJLdsnevlpatNTU1JofIfP771SCHzWqtDxlzPmWkED6looolfR6ZUdLWFiQG3MZLYggCOjQoQPbu3cv11uaN4b27Smwat6cskudO1PZvmVL6hr7z38q63CqQkoK8Msv9P8zZ+i1y6JW0xq6fj1w+jSybGzw/fffy9bW1mz69OnM3v4lT4AEBJBwuYKW52apPuv28z6klxnDZ1d0NGb+979CYmJitcpaBQUFUo2mgxMTKStSWEiLBRkxGSY9nXY8Y8ZUvs/dnSLpLMPXwQEDBoinT58WMvXM3aoSokjaIwsL2uV99x1le378kf4dNowCImPT0Nrw9S0/If3BA2rznDiRdm2M4dq1a7KdnR339fX9a4jhWrSgn22Z3Wx8fDwXRfEEgMAXd2B1PC8Gvvsu2I4d1YrcMzMzYWFhUbMl+f/+l8xNe/Qof14aomlT0uhow9+fgh4NNjYk2GaMdISPCQsLgyzL/NSpUzWnq2zYkKZ+L1pEGZeCAmp62bePApU33qDbqrKGDR5MZS3NZwkPL72vsJCCKUtLGkfBGJKTk1FUVCS0a9dOMDEiW1/rYYyMVK9ceXJTXl4eBEFQAegyf/78FzuT8iXD8CLg64sL4eE8OTm5Wj9YlUrFKwY8nHOcP38et2/fhtHloeXLqf3bz4/SplW1SP/4Y9LR6MLPD/j1V4Mv4+3tDX9/f75y5UpUN/ulFRMTyrqcPEkp3LAw2v2tXEmLY0ICLSrG7tBkmbI7mhJVVBR1PDRoQKaCjxk3bpxgbm4uL1u2DCtWrJAvXrxoWOBY23nlFbq4cI7s7GycPXu2QJKkL+bPn/+SKrLrqArpkyfjtoNDtcryjzWIla7UiYmJiIuLQ3Z2NozSxBQWUqk1Pp4yzVOmVO1ALl+mtnNdwt0OHWizVBZnZ9osTZ785CZBEDBkyBDh+PHjOHr0qPF6HmPRWENERNBnbNWKbisupjVn+XLSAWnz2imLry8FhMeP05rl40O35+cD/fvThnDZMtIZAfD390eXLl2wY8cO+euvv8bhw4f5Iy0avpeKwYNJinD/PiRJQmRkpKxUKvfPnz+/+q2HfzP0jpaQZRmrf/tNsre3F/r161etclRJSYlQscOhuLgYO3fuhIXxks2PAAAgAElEQVSFhVxUVCRYWlpyd3d3uWHDhmKbNm3Kp48PHKDSzujR1TMRe+MN/XNUOnSgVLMRDBkyhB0+fBhr1qzBqFGj0LBhw6c/Ln2IYmlQolLRAla/PnllNGpEJ3xMDC0AunY1d+6Qk7SJCaWe3d0p01VBB6BQKDBp0iRRpVLh6NGjwqFDh6Rdu3aJgYGBUrt27Uonrpd76TuwsbFBrU0fd+kCfP457m7ZgnXXrhUB+A7A3hd9WHU8e6KiopCYlITwiRNRnR3/Yw1ipduPHTsmPXz4UOCcM8YY3NzcJC8vL6Ft27bMxsam9IGPHtHMvo8+oot048ZPdyAeHlTi0SVo9vOjLHFGBpXoNXz9NWUJbt+mbC6Ahg0bYuLEiWzt2rXIzc2V+/fvLzwzQ8WQkNIsVkQEHePPP9OIn0uXyLOsWzft08tdXWlC+pUrVCp7+JC+Jk7U2pzSuXNndO7cWYiNjUVkZKR86tQp0c3NTQoNDRWbNGlSaTJ8Xl4ekpOT0aiGJgrUOIIAvPcepE8/xQ9NmxYWFBScLy4unvWiD+tlRFywYIHOO7///vt/u6WmskEbNgjmH30EgIKg7OxszSwPozl+/DhCQ0NZWcW8KIqIjIzEG2+8wbp16wYHBweWnZ0tnDlzhru7u1P9VZLoF/7113TRHjyYUqdPQ1QUid60lbM02NtTN1PbtkbV0318fGBqaoqdO3fCwcEBLrq6oGoKUaS0tVJJHj/9+pHh2Lx5pXPCrl2jYKgskkQjIuLjSR80bJjeNLooimjYsCHat28v+Pj4IC4uDidOnGAXLlzgjDHm4ODw5AKyfft26ciRI4Knpyfs7OyQmZkJExMT1Br9D2NAs2ZQbNqEKCsrQZblXvPnz39Je1XrqAq//vrrgn9s2QK3Dh1IDwEKXqr69xkdHQ1nZ2fBt8Jm6+7du9za2lqYNm0aGjZsCJVKJVy+fBlpaWlyQEAAvYEk0TyrefOoqykg4MmMqCozaRJpVnTJAwSBvpRKKi9pEEXSu3TrRmvG42DI2toazZs3Z/v27eP37t2T/f39hWd+3rq7U/anQwf6PHZ2tKG7fp3a8FeupLZ4TfbezY0yOr17U8DTowfdN2uW3jXaxcUFbdu2FYKDg5Geni6cPn1aOnHihJCbmyvZ2to+2YBfv34dGzduRElJiezr68tUKhXy8vKqfI17pvj5ge3ejXgzMymjpGT+/PnzTxh+Uh0VMTQ8lA2YN48J06aBc45r165h7969PDc3l/n4+Ejh4eGik5NxA1u1eVgwxmBubs6Tk5OZv78/AgICEBAQgMLCQpw7d07y9fUV0agReS8sXfqUH7EMsbG089GHrS1w/jwFDUa6QgcHB8PCwgLbt29HQUEBb9eu3fPRvwgCpcc7dqRWTIA8f27douDuo48oUGzWjDyGtm4l4fK2bVXKknl4eGDChAmCLMs4deoUO3XqlHTgwAGxUaNGUnBwsKhUKmFlZYVff/0V7dq1w+nTp9G6dWupf//+tadDIiAA+fn5cExJETJcXb8C8PaLPqQ6nj3jxo2DcsIEwNERmZmZOHDggHT9+nXR3Nych4eHs4CAAKOEyIWFhZK1tXWlv2dbW1sxNTWVC4LA3N3d4e7ujubNm7NVq1aJKpUKyv/9D9iwgTRk1W2Nz8qitclQJrWoiIaLtmpV/vYGDWg9UCop+Hmc6bC1tcXMmTOFZcuWyevWrZPHjBkjPBeDWADQXD807fTnztH6pVKRILp/f/L8Wb2a1rjvv6dOMH/jHSXMzMzQr18/9OvXT7x9+zYOHz7MVq1aBTs7OzkkJEQwMzODmZmZfOHCBaSmpsrZ2dksPz+fvfnmmzCtLSN1LCxQEhQE5507ze4EB68D8MuLPqSXEb0Bj7m5OVekprL8mTOxrn9/OTs7m4WEhLDg4GBs27aNLV++HGPGjIGPpq6qg6KiIsiyXClifvjwIYqLi1nZUtDly5dxPzGRD96zR8DAgaXDPasL59SyOXWq4cf6+NACVYUxGIGBgbC0tMSGDRtgYmLCW7VqpXMVVavVuH79Om7fvi0nJydzd3d35u3tLXh5eVX/BPvXv+jf/Hzyx3B0pB1ddDSVs6ysdPtYGEAQBISFhSEsLEzMyMjAwYMHhU2bNvGioiIxMDAQLVq0wLZt2+T27dsL0dHRYuvWreFeW6Yxm5rigqlpoXNqqnm6i0vQiz6cOp4PNjY2KJk7F6f8/aUTxcVigwYN2Ntvv42LFy+yP/74g1+7dk0eOnSowcC8uLgYFTdsnHNcuHCBBwUFPTnXs7OzsX37dqlNdLSo2rgRyrfeMuwMbCxZWbRpM1Saa9WKhMOztFQ9hg6lNdDKqpyPj4WFBd58801h6dKl0rp16+TJkyfrLW/dv38ft27d4omJibKVlRV8fHxELy8vOFR3hEebNhQgck4ZMVEky4zjxykIKiysUrBTEW9vb0yePFlQq9U4ceKEcOLECSknJ0c0NzfH7NmzhZ9++kkyNTXlsizj4MGDeOWVV2rNpu2qmxtXqlRM+TR2KHUAMBDwFBYWss3r18uhly4JHm+8IUydOvVJGnjMmDHCxo0bcf78ecnHx0fvH8XjsRKVdlIxMTGymZkZEwSBAcCmTZvku7GxQrdXXmENNm9m2xYvloo9POAtSSwkJKR6edajR6nme/u24XTyiBGkb6nidHAfHx+Eh4ez/fv3IzAwsFKtGCCH03Xr1skZGRlwc3NjHh4ewv379/nly5clzrk4adIk1Ih9vaZzAaAuCRsbEi5fuPDUAU9ZHB0dMWrUKCbLMmJjY+Hu7g4HBwe89957AkCTpSMiIviMGTOYKNaONSMnOFhutWgRUl1dN73oY6nj+XD06FE5IDJSyLGzw7QPPoCTk5MAUJdS48aN2YoVK0S1Wq31XC2LNtPBe/fuIScnh2k2fLdu3cLmn3+GX1AQutevj/j9++VYhUK2srJiPb29RfOqNlhUpG9fClJeeUX/41q3JnHww4dkelqRt9/W2pihUCgwffp08euvv+Y3b97UqWmJjo7mBw8eZE5OTnKDBg3E/Px8nDhxQtq9e7fYp08f3rZt2+pnuBmjz1lQQO7TSiV9pr17S8dpVAOFQoFu3bqhW7duYkpKCjIyMgQzMzPMmDFDBGgywPLly9GqVatas2kzbdIENjk58L179wUMN/troDeIyM/PZ7KPD3OJi0P//v0r1bzbt2+PhIQE0ZCXQ0ZGBszNzSs9qHPnzoKdnR1ftGiRfPXqVThdvy68/fnnaNOmDdv54YfSA3Nz0dzcXDx8+DA7ffp09drvAgKorGNM7dzLC8jM1O51YYDWrVtDoVBI58+fr9T2UFJSgrVr18p5eXl8zpw5wvjx41mvXr0wceJE9s4774iNGjXiK1euRLaOgXFPjVJJLamOjuSWOmyYzqF0VUUQBDRv3rzSzi48PBwqlUo+efJkrWmbHPL665b57u4lPQ4dcjP86Dr+CiQlJXGzvXvR/6uvKpXfnZ2dYWpqKt+6dcvg62grybu7u6NTp07ymjVrEBERwa2trTHrm2/QNzNTvPfee9jdrBmzsbFR3Llzh61du1aWqjNEmHPqNOzb17jHt2ype9p2QACZHHboQF45ZVAoFGjZsiU7cOCA1s4tTbAzZswYTJ06Vezbty+GDx+ON998U3z11Vdx4MABxMTE1Mw5v2YNZXNCQ6nVfvJk8uIZPpzGhdQQrq6uCHis79Lg6OiIFi1aICIiovpeRTWEv78/U06bho7Hj+fVrCHU3we9Ac9HH32EkU2bMmWDBlrv9/T0hCiK8l0D86d0tXTa2tpi0qRJwlATE5bz+usImjkTP8yciczsbCQkJIiDBw/GwIED0a5dO3bp0qVKz8/Pz8fy5cv59evX9X9KWaZW9CAjKxnW1iSMe8p2827duolHjhxh586dw4MHD6BWq58EOwUFBXzGjBmith3l4MGDmbm5ufpOTc+o6dWLFo+RI8m/SJYpRWyE39DTIggChg0bJp44cULIeobvUxZDC5Moijg7YEChT2LicDBWze12HS8Ds2bNEhv07q3Tt8bDw0O4cuWKwUhErVZXyvAIgoCuXbsK/xg5Eq0++giXYmKwfu5c6WzjxvzKlSuSh4cHXnnlFcyYMUNIS0sT8vPzK73u9u3bpX379kkG5z198QWtS8YKijt10n+/mxuNbrh4sdJdvXr1QnZ2Njt48CBu3rz5xGW6bLDj/bjTqyy+vr4IDQ1lFy9erF6P+9GjZMTasCF1dP3xB9CzJzWstGxJpa0tW57p+gUA/fr1e66bNlmWDa5hJYGBeOTg8AjAUL0PrEMrhkTLpGdZtEjn3Z6enmzLli28V69eLDAwEIIggHOO9PR03Lp1CwEBAcjOzka5Fk0NeXlgKhWc69VjObLMV6xYwe2aNkVSUpJgYmIi169fXwCA+/fvcx8fn0oR7bFjx6Tc3Fzh999/R4sWLaQ+ffqIWltP796lE7sqxoeZmSSkeyzuvXDhAr98+bIcFhYmVuzUqEjr1q3x4MEDnDp1SiooKBCKi4uZUqmEhYUFnz59utZgR4OFhYUiLS2NA6i5CH7yZNrV+fvTEMAlS+hn0aYNicH79KmxtyqLt7c3vLy85IiICAwfPlywtbV96teSZRkpKSnIyspC48aNn5Qg4uPjsXnzZmh2z66urtLUqVN1OkR7BwZaxAYG3m1z7tyrAH566gOq4+Xhf//TPnEcVNpas2aNaGFhIXfq1OlJ505BQQFu3boFc3NzuLu7a9UgAgDu3oWLjw8KGMPN8+d5pqWlGObszKOiosSRj7U7d+/ehYmJSaW29gcPHiA2NlY0NzeXr1+/zkeNGsWcK45N0HDoEFlQGIuLC/B//wcMGACAjBP37t0rubm5oXv37lRj3rAB+OkncjMuM1dQoVBg4MCBLDIyUr506RIvLCwUlUol1Gq1zmBHg6urK2JiYp6uhl1UROvul1+SY3NYGGXkraxok6bpMhUEyr4PHUrr86pVT9/1pgdBEDB06FBx/fr18PDwgJeXV7USK3l5ebh9+zY8PDxgZ2f35Pavv/5aLigoEDjnMDU15RMmTGD1tbXng9bUPaGhbgEXLw5ijEUYZ/5UhwbDAY8g0M5CB6NHj2YnT57Evn375MOHDzNPT0/5xo0boiRJ4JxDrVbzrKws5unpWfkK1KcP4OOD2+++i6gxY6Ti7GzFa6+9ht27d0vu7u5PHp+RkSGHhoZWOoliY2PF8PBweHh4YO3atViyZAkfPXo0c3V1rXygV68avzsCaIH87jtgyhScOXOGHzp0iNnY2IgXL16k7jEDvEJ1dhGgxfP27dto3Lix3mDn8OHDSE9PR79+/Wru7D17lgaUNmpE2Z3ffqMJvP/7H/lg2NlRK/urr+ofVviUjBgxQli1apW0ePFiWFtb88DAQDRp0oTVr19f5+KhUqlw+fJlxMbGSsXFxfzRo0eiSqVijDGYmZnxiIgIZmFhITk5OQnZ2dkICgri4eHhQklJCVavXs2WLl0qTZ8+XWvQ4+fnpzjcsaNvm3Pn6oExEZxXa+RAHS8BVlYkftVCgwYNMHnyZGzfvp2fP38e/v7+8oMHD5CVlSWYmprKSqWS9evXj2nTIGLHDmD8eKjT07Hu1VeZnY2N1CM0VLSwsGCMsSdu5VeuXIGHh4eaMVbuBIuLi4OjoyP/xz/+IWzbto2vXLkSvXr14m3btmXl3is9nSafV2XD0LQp+dukpCBdFPHTTz/BxcVFPHnyJLp161b6WczNaS0YMqRc0PC4Y1YAaLNx69Yt2Nvb69UXpqSkYMeOHbxNmzYyHq99RpOVRUHOsGE0E0tzLGo1NZBoTBNv3qRMzwcfkJ/RzZvA/v3UYFID2sSK+Pj4oGXLlvLGjRsZ55z5+flJAQEBYsOGDXXOVeOc486dO4iJiZHy8vJ4VlaWUFxczB7rwHh+fj5TKpXcxsZGdnJyEtVqtfDhhx9CFEVERUXxNWvWYOzYsczT07PSazs7OyPF29s03dHxrnNGRisA1RsS9zdDrw8PgAVISCAR7z//qfNBDRo0QPv27ZlKpWI5OTlC9+7dMWDAABQVFeHatWs8LS2NhYeHl6aEe/YEb9IEeVOmIKVrV5w7f55bWFiIOTk5CAoKwp49e4R+/foxOzs7qNVqHDlyRAgPD69kHJaamirdu3ePBQcHs+DgYCE9PR179uxhZmZm3N3dnc4YWaY0aKdO5P9gLJ6ewPHjOGVqKh+OjGRjxoxhZmZmmhkmzNLS0mifBhMTEzg7Oxv0/fj1118xYcIEeNTkifvPf9KCMHIktbOuXEndWy1a0MIycCDw3nu0yzOUBn8KRFFEu3bthA4dOkAURRYfH89Pnz6NqKgolpqaKjHGBBsbG4iiiJSUFBw+fFjaunWr8ODBA8nT01O0s7MT0tLSuJmZGSZNmsR69OjB2rZtC1dXV6GkpITn5eWhS5cugo2NDRQKBVq0aMFiY2Nx5MgRnpyczOzs7MrtrK2trbH3/HmrkKiomwpJeoQFC/TXY+t42VmAgQOpJbt5c60PsLa2Rrt27QQvLy/cvHmT+fv7s2HDhiEsLIwdPnyY3bt3T27WrBlv1KgRrSlLlgA//ojiWbOQMXIk4m/fRlJSErexsWH29vYsKSlJEgQBmk7NQ4cOSQEBAYqK57VCoUBMTAw6derE/P39mZubG3bv3o1bt27J/v7+whOx/8yZpFkZMsT4T80Y4OyMRzduYOWxY/D39+ejRo1iJ06cgLm5OQoLC0l317w5aWLWrqWSv5ZNCGMMDg4OMDR1/JdffpEaNmzIwsPDjTcwzMwkEbKbGx3HuHHlj+HUKbrtvffo+6QkMlD95hta2958k+Zoffwxmco+g0xP48aNWceOHZmHhweSkpKEc+fOSceOHRNu3LghlZSUCFZWVjAzM9PYqfDNmzfj4sWLsLGxYfXq1RPz8/ORm5vLXnnlFT5kyBDWsWNH+Pj4MFNTUyElJUUKCAiQGzZsKDDG4OnpyRQKBd+xYwe7efMmB8BcXFyeBKiMMaSkpqpV167dbnDvnhUWLDhV4x/4L4zhLb2/v1H+EYIgoEuXLuVuCwoKwunTpwU/Pz/J1dVVTN2zB5GFhZKXJAnR69axzHr1oFQqZVNTUz506FAxKSmJX79+nYmiKHt7ewsAkJCQAAsLC25hYVHpL7lVq1bi77//LgNggiBgwIABTNMqGhwcTI+XJHLzbNfOqB8IQBH6g+RkFKSnyzc2b2bj581jDRo0gKmpKaKiotipU6ekQ4cOicOHD0dNThMXRVGrm2u1qNiNMW0apYA//pgW7tOnycU6M5Mybl98UTM2ABVQKBQIDg5GcHCwAFBHS3R0tLhr1y6psLBQtLKy4gUFBax+/fps4sSJcHd3f7JD7N27t7B161a+YsUK9OzZk7dr1441adIETZo0qRRBKpVKTJw4UYiLi0NsbKz0888/iwqFQnZxcWF9+/Zlrq6uaNCgQfGfrVtnh545EwrGIuvSwn9xoqL0u6s/xtPTE2PHji13myiKcm5urtCpUycUxMbi4s2bPOPKFW5+965w8ssvoVQquVKplFu1asVSUlKEwsJCHhsbKw54XEoCgNzcXNZAiw6yQYMGYIyxq1evIiAgAH5+fpg5cyb79ttvxcLCwtIMwj/+QW7DVSA3NxcPHzzAg/370fytt7gma2xtbS1FRkaiqKhIaNGihdy3b19RMDenqer169MG6ClRKpWCra0tMyrYkWXquKpXj+Ygtm1LnaQVCQsrNwMMr71G+sqZMykjNHcu6RPnzgUWLKBN3Zw5T/0Z9OHt7a0p54k5OTk4ffq0eObMGenAgQOipaUlz8/PZ9bW1nJYWJjYtm3bJxvcHj16sKtXr2LHjh2Ij4+XBw8eLHh4eMDDwwNhYWGVMmHt27cXPDw8EBsby48cOYLdu3czW1tbqV27dmJwcDAaN25sfjA83K/DqVO2YMwWnNdwl8tfF8MBz4MH1N68f3+VX9zOzg6iKMLZ2Vn88auv5AkffijwRYsEs8WL2dgGDTS6nicXLUEQ+Pnz51m9evWenDFxcXHw9PTUmiLNysrinPNyZ9e9e/fkgoICYdOmTWo3NzdFs4gIOBrhg6FJQ165ckW6evWqKMsyb+vign7duzPHx4tVvXr18MEHHzAA4pEjR7B9+3Y+e/ZsVlPmVAqFQs7NzRXK1nerxXffUe1/587S29q0oQXC3Bz49lsqZzVuTLXwbt2ohd3dncZXPEN8fX3xWAslPnr0CNevX2ePO9wqBTGPBdDs+vXriIiI4FevXuXDhw8XdA2jVSgUaN68OZo3by5KkoSkpCRhx44dPDo6GgMGDEDTpk2tjwwe3CD0zJmuAHYCqKYjXB21mrffpjWsc+cqP9XS0hIODg7YtWuX1PnNN0XTgADu+N//Cr6+vuhGWVuGx2vTpk2bkJiYyCRJ4o0bN2YAkJOTA5VKJbi5VW4MzMvLqyRSjYuLA+ccO3bskFxdXQWvO3dYw3v3oFi40OCxPnr0CLGxsfzSpUs8MzNTqC9JUtemTUWfvn2frJFvvvmmCFAjybJly4QmTZpQ+/kff1AL+L17T10asra2ZllZWRIMlbMkiTZW27bR2rRihfbHqVQ0KuPPP8lgFaCRFN27UxA7fTqwZw/pkCZPpg62Tz8Fxo6lwOcZDg+1sbFB79690bt3b1GtVuPy5cvMw8MDzs7OWj97QEAAfH192dq1a+XFixdj2LBhekcRNWjQAA0aNBDCw8ORmZmJqKgo8cSJE1JwcLDo6+uLPEFopxbFDxWSNBfA/Gf1Of9qGBa1MAY85dC9Y8eOwf36dTSfOBE+QUECy8nBsDffZM2aNdMqYhZFkT98+BChoaFPTtCHDx+qtfn8ZGRkYO/evWzQoEHlAp5x48YJXbp0gampqeLs2bNQ//67Ue3lFy5cwPr163lWVpYwaNAgvP/++6znuHGC46pVWh8fEhICQRDkL7/8EkuWLJEPHTrEDXZaGMDExETOza1Bi4WOHSt7CdWvT4HNtWuU5nd1JSdTSQLef592SmFhtHA8J+zs7NCuXTuDXih+fn6YM2eOwDnH4sWLEW9E5lEURXh7e0OhUHBZlpGZmYkLFy7InPMhoIXio5r5FHXUWtRq3cM29SDLMnKzs4Xe77wDq7g4QfHnnwg6dEho3749XF1dK5Wozc3N8fDhQ7i4uHDNfZcvX4aTk5Nc0YuKc45NmzbJbm5uUtmW6DZt2mD48OFwdXUVHz58yO5s2oSi2FiDx1pYWIglS5bg4sWLcrNmzYT33nsPk/79b9Hn8GFq2qiAvb09vLy8pI0bN+Lrr7/mEadPS3lLltDYiqdMeNrZ2SE7O1v/k//zHxIfT59OQYu+zJUk0eiJimaGPXqQrsnEBAgMJC3VxYuku/zjD9rI9elTqeX+WaFQKNC6dWvoFJw/xszMDFOnThXDwsKwceNG7Nq1SzJmoK2DgwNcXV3BOWcqlQqRkZFgjJktnjXrPoBBYKyGdsh/fQwHPPXrU2tgVUlNReaOHZL3kCHcdepUdO/RAwoDxluCIHAzMzNetkyUl5cnVkwHS5KEDRs2cD8/P960wvBLGxsbtGvXDoMGDYJZbq78YNMmusAb4MyZM3JISAgbP348a9KkCd2omUquxbPGwsICc+fOFd955x0EBgYKkZGRTKVSGXwffZiamrK8mjpJ8/KA3FxKAVdEFKktHaCd0aRJ1LEB0CKyfz95dKxfb3gUx3NGqVRi0qRJQo8ePbBlyxbEGnExAIAhQ4YIV69exdKlS2FlZQXOuQrAcQC3wFjN1SXrqH0sW0bBfxW5+sUXsLKx4Y6zZ6PvjBnMUUuWpiwaY8F27do9WVdv3LjBtXV1RkVFyZmZmRg3bly5SEgQBAQEBKB3796wt7NDWs+esuUmwz6ZsbGxsLS0lGbMmCF27ty5tBw2YABlQbQwZswYxQcffIABAwawhIQEIXb4cCp1p6QYfD9tODo6Ijc3V/s15dgxCkzc3amUbkwG5sQJEidXxM+PxuSUlFBm+v33SeujWTsXLqSMXnw83V7LCAsLwxtvvIH4+Hi2fv16o1reW7duDQcHB3z55Ze4fv26bGpqWpJtb58K4N8Ahj3bI/7rYDjgSUioWjvkY4o+/hjtduwQg3v1Yvj3v416jkKhYGWHb6ampkKSpEqtmgcPHpSLi4vlYcOG6SwWR0VFoVdEBGupuZDrITMzExkZGULHiouiKFKm49o1nc+1sLCAiYkJnJycZEOiPkNYWlqKOTk5NaMnOXiQUrva6NWrdCI8Y7Tj2r6dngPQNOWuXWm3NHFijRxOTePk5ATGGLRpI7RRr149zJgxA7Nnz0bfvn0FxlgxOC8EcBNA72d6sHW8WNq3p+7EqnDnDvw++QQdW7Rg4rx5pTOf9GBlZQVRFNGszEiajIwM2cvLq9w6+/DhQxw/flwYNWqUoCurWVRUhKItWzDqhx8EZkR36dmzZ+UWLVpULqcY6L4UBAF+fn6QZZk1atKEhMvBwTSzq4o4OzsjLy+v/MHm55M+cMoU+nfyZOP1lGPHAidPVr69QQMgJ6d0XQ4NpQ7UTz6h75VKeu69ezQouqwGqJZgZ2cHzjmaNGlilMraxMQE48ePF6ZMmYIZM2YIlpaWBQBUAGIBtKzzFTMOw2eSpyeweLHxr9inD/Dxx/ijZ0+c+uwzqSpBwIgRI8QRI0aU0+84OjrKZUVwt27dwrlz54Tx48fr9FoBgOjoaIlPncoEjbpfDxcuXOBOTk6S1jZDtbp0MKcOYmNjZSsrK+H27dsoKioy+H66sLW1xeMaePUZPJj0V9po2JC6M048Hrjr7EzdDtnZpbs7xoBffqHujVdfpf/XIrZt2yZ17NhR1urvpANbW1tourlkWbZcuHChEsA+AK51aeG/MF9/TcZ1xrBxI3OHzJcAACAASURBVNCsGdItLfH1Rx+hmQ7/Hm20bdsWEyZMKFfqKiwsFMvaZKhUKmzYsIG3atUK2tqONRw9ehTFjRvLip8MW0VlZGQgMzNTCAsLq3ynkxMFDXoM7RISEkp9rmQZ/NtvaWp5FUv0rq6uKC4uLu0BuHqVOj8PHqRsS1U3T2lpurPzb79N+kMN//43bczLBkiDB1PgdvgwldCqKTmoSQ4ePAgTExNWlUHTJiYmqFevHhhjMDExYQBcwPlNAPcAtHxmB/sXwnDAwzkZQhli6VLSysycCUyZgluJiXJwcHCVvBhcXV1RVojavHlzZGRkCKdPn+bnzp3D6tWrpd9++w2dOnUyWC8NzswUUo4f59xABoBzjvPnz0Obzw8Aaml/9EjvawQFBQmFhYXS5s2b5a+++gr79+9/qqDF3t4e2dnZ1e+rzM6mVK8+7VKHDtShpaFjR/K7+Pzz0sWRMUo9jxhBwVFy8lPX92uS48ePQ5ZloUOHDk81X+2xpYASwChwngLAGkCPGj3IOmoPxcV6L/gASAOybx8QHg68/z4OHjzI/Ro3loy1ngBIy1ExiLG1tZV27twpX7t2Ddu2bZO+/fZbKJVKuV+/fnpfq2WzZmgZESGkGNEFqnfDpumC0uNK7ObmBg8PD75v3z5p6dKlWPzgAS/ZsIGChCqgVCohiiLyExNJC2RuThnykSOr7vHVty9NSNdF8+bAnTul+lJLS8rkffEFefNosLcHevemtevOnVpRoi8oKMC5c+cwcOBAZsiqRBfe3t42pqammnrfKQDTwVj15k3+DTD8A3rwgKJpXXBOi8miRSRCGzgQOQ4OKCwsFCrOnqkqDg4OGDlyJKKiouSoqCjJxcVFnDVrFjoZ4RfjnZjILJOSmKGO4xMnTsiyLPPmOjw60Lw5ZTnS0nS+RlBQEN544w3x3XffFWbMmIFz584JZ86cqXJkcP/+fW5cT6cBZJlSuvq6x0JDaREqK+b8179ocayoixk6FFi+nNpjhw9/oUGPSqXCyZMnef/+/ZkhkbMu8vPzkZeXZwJg9cKFCxmAbwB8XDef5i/Khx+S9YI2NH/LS5ZQxsDWFhg/HsnJybKtrW21LyCvv/66WFxczHfu3Cnn5+cLQ4cOxcyZMw1uBO1SUlA/KQm5BkStKSkpiI6OZp07d9b9mm5u5bMhFd/Lzg4TJ05kc+bMET/88EOYmprKW8zMZFmzthtJ4s2bcH34EOKuXWRW6+Ji/OyvirzyCg1B1YWrK2WPyo4Vat6cvIquXqUOLw0ODqT5iY0lwbOhUUTPmE2bNsne3t6SZujs0xAVFYXi4uLghQsXBoLzEwDcALSpsYP8q8I51/fFuSxzXljItXLnDuc2NpxnZ1e6a/fu3fx///sfv3fvnvbnPkMepaXxbz/8kCdcu6b3cefPn5c/++wz+cGDB/pf8L33ON+61ej3T0xM5J9++ik/evQov3DhAler1Qafc/DgQf7555/zzMxMo99HJ4cPc27Ee/KRIzm/fLn8bZmZnAcFcf7nn5Ufn5vL+Y4dnO/cyXlsbPWP8yn47bff5J9//lmSZblar7NgwQLNV3fOOTjwFgcmcv3nQ93Xy/fFeVGR7vOheXPOP/us0s1JSUn8s88+kw8ePFjtv7WnYe3nn6s3/Pab3pM4KyuLf/HFF3z37t36X2z/fs4nTTL6vSVJ4t9++620fuVK+VHbtvyRgXWUc85TU1P5lRYteG5AgHFrjz4uXOA8JcXw41as4Pz//q/y7RMncv7tt9qfs3075zdvcv7LL9U7xqfkzp07/L///S9/bKny1Jw8eZIvWLCA/+c//znHaf0K4MBv/MWfb7X6y/AOJjm5sgNvYiLNO/H0JDGgFh1F3759ERISgjVr1iAxMbGm4jOtXLx4EcuWLZOWL18u/fzzz4iaOZNPXrcOfo0b63xOQkIC9uzZw4YPH87q1aun+8U5p64lAx1mZalfvz5kWUZMTIx88OBB+fvvv+cJCQngXHtm5Pz58zhz5gzGjx8Pe3t7o99HK7JMnRlxcYYfGxRUKlTWYG9PO+IjR8iXoyxWVqWvPWTIc6uJnz9/Hhs3bsSGDRuQmJjIBgwYYLyTqw7Gjx+v+e+hx/8eBdClLi38F2TChPI+YrJMnT0qFXlVzZ5d6SkeHh6YMmUKi4mJYbt375Z0nbs1QUZGBtauXSsvXbpU+vHHH/mPK1ZgyKefioP8/XVmbQoKCrB69Wru6ekp9zWURbl4sXzGwwCCIKB58+a4lZrKkgF+4JNPcOjQIVlrF6paDdXcubg3cCDPmjtXtrp4UecYD6OZNw+YNcvw48LDKXNV8XejqTZoK18NHEglzq++Ku1UfcZkZmZi06ZN+P3337Fhwwa5U6dOcnW91kJCQgAAkiQFLVy40ANAAoCHYKxt9Y/4r4v+xX3QIKqRlumcQkkJCdC2bqXvaWaUVrp164bu3btj/fr1uKan0+lpiYuLwzfffCPt27cPAQEBQosWLUQfHx849OsHcx3+OQBw//59bN68GeHh4fqdkh89Aj76iEYwGDlgU61W45dffpHt7e2lOXPmCO+8844QFBTEIiIi+Jo1a+S0CqWxmzdvYu/evRgxYgR0DYyrEoJA7ZmBgYYfO306XQgqpq2HDaNSly6zs/feIyH3J59QG+szvBgAwIULF+T4+Hhcu3YNQ4YM4frm+RiLj4/PkwrWwoUL5wG4BOAigKBqv3gdtYfTp0mUr2meKCmhv9fdu2kd695d51BhFxcXTJs2jcXGxrKIiAjJ0CTrqlJQUIBVq1bJy5Ytg5WVFW/Tpo3YuHFj5lW/Pi9ZuBBmOhzPS0pKsHbtWtnKykoePXq0/jV88WL6jEuWGH1cMTEx/MyZM2zixIloEh3NuvbqheJ16/Ddd9/h8uXLpRu348ehjotD7NmzPG3oUB42YYJQI/P4du4EjGjFR4MG1HF69Gj52x0caPREjx7aW+z9/UmTaGtL6/oz1vWkpaUhLi4OV69ehaOjo9CxY8dqb6oEQUCPHj00f5BJCxcskAAcAGDEwv/3Rf8PvqiIdvHLltH348ZRt0Pfvkb7G4SGhqJfv37YsmULLl26VGNXxoKCAmzbto2HhoYKc+fORefOnVn79u3RtW1bhEZGMpMeujWox48fl/z8/BAUZODa9sknwMOH5EVkBLIsY9OmTXJ2djamTZv2pIusa9eumDt3LjMzM2MrVqzA43EKSE1NxaZNm3jv3r15jY2o6NGD/C6MwcaGhu7FxFS+b9Ysuljoys7Z2ACjR5Ntwf37lbNBNcigQYMEgNp+/f39a0RnwxhD9+7dNd/+Z+GCBR4AEgE8m9HxdbwY5syhoDw4mIZp2tnRmnbpEs2TM4CdnR1mzJghJCYmsg0bNsjVNRcty/r162WFQoFZs2Zh6NChYnBwMDp16oSely8z+9K/zUrcvn0bubm5mDx5sv5UysWLNEbGxUX72AYtXL16Ffv372ejRo2iid2MwcnFBf2iooRunTtjz5498srFi+WUo0fBX38de1eskM9PnMh7zJ1b7awrADIN1GWnoY2gICA6uvLtDRoAo0ZR1522QNXamta+Jk2AK1doRtczokmTJk+acSp28VWHli1bPnkhxtj/AYgC0BuM6TeM+huj/ye/bx+19fn4AGfOAJ99VurfUgVatWqFIUOG4I8//mDR0dE1EvRs3LhR9vb2ljt06FBevHr+PJ0AetKqBQUF0DpRXYMs0yL5+utke27gRC4uLsbRo0flb775hicnJ/Pp06dX8tdQKpUYPXo0mzp1Ku7evYtvv/0Wq1atQqNGjRAUFMQKCgoQFxeHqKgoVMvAsFs32sEYS5cu2ndBZmYk9Bw5Erh9W/tzAwJoQVm7lnaRejpBqoOtrS1EUUSnTp2QWoOeGi4uLjA3Nz8LAIyx2KsBAbsBdANj1U8h1VE72LqVzodBgyjAiYrSL+bXgpWVFWbNmiWkpKRg3bp12ks7VeTq1atISUkRhg8fLtiWnYLOOQUpejosCwsLYWZmJuu9cO7dS+Ldw4eNGhURFxeHVatWyVu3bsXAgQPLjz3o2xeIiUG769fxbps2wugvvxS2b92KL0eNQqyHhzB8+HABAJKSkhAVFYXk5GTDPwBdBAXRmmQsoaFkYKgtEH3/fVqTli7V/lyFAvi//6OfT/fuOg0aawJLS0vZ09OTp6amVhon8rRYWVnBxMSkmDF2hHM+a+GCBfVBY3Kq7rL5N8FQFxPH3r3kZ/DhhzDWQFAXiYmJ2LBhAw8LC+OdO3d+qjA3LS0NGzZskIqKisRp06ZVHlGRlkbeE3qClB9++EFu2bJlZaNBDTt20E5jxw7aCRhg165dUnx8POvdu7egs9urAl988QVnjEGWZajVagYAlpaWEgAmiiIbO3Ysq3Lp5tIlakfXkaLXSnw8la5+/ZXKYRXZsIGctvWlmGWZyn5ubmTypafM+bScPn0aBw4cgCAImD17ttbRJFXl0aNHWLJkySPO+S9qtXqWQqF4/6N5824A6APOp1b/qOt44UgSh78/GeDdv1+tl1Kr1Vi6dKmkVCrZa6+9JlSlZV2DLMvYunUrj4+PZ6+88grXTFR/QmYmrTl6XIijo6Nx5swZefbs2drX0IICstNYvNioUvyDBw+wevVqtG7dGt26dYPWz3X1KpWPpkwBgoNxyNwcp0+fhqmpqVxYWCgwxqBUKmUrKys8evRI6NevX+XPZoicHNpcGZF5K8eoUSQ90Pa8+/epLf34cUDfenr+PP3cd+6k7La2Fv9qkJOTg6VLl/Li4mLWp08fHhISUiOZ6uXLl2cnJyfPB/CdUqmM77dhQ2jLS5fOAmgJMlatowyGAx6AfA3MzalWOmZMtd7wwYMHWLt2Le/cubPcoUOHKqnbYmJisH//frRq1Urq0aOHWGloZ0EBCanj4vQOvzx37hzft28fGzRo0BNXVFmWwRgDW7WKnIZDQoxKAxcVFWHRokWYNGmS0RqcnTt38ps3b2LGjBlMqVQiOzsb5ubmUCqVTxbEhIQENmjQIHh7e8Pc3Ny4jumOHYGmTWmHWBXCwmgAn2akRlk4J8fl6Giag6OPI0coK3bsGFnI13CXt0qlwurVq2UnJyc+dOjQaiojqUPx008/LZEkaaggCNsByM7373d5Y/nyfwOYBs7vVP+o63jBcBQVUWn60CHylCqbUakisixj5cqVklqtZjNmzKhSGUelUuH777+Xra2tMWTIEEFrlrl/fwpW9Myyy8zMxI8//gh3d3d5zJgxT4IeWZYhXL9OGdf33qPynRFs3LhRkmVZePXVVyt/GFkma5IFCyiLMn8+0jIysHL/fowePRq+vr5QqVQoLCyEJlMVHx+PrVu38sDAQLlLly6ipaUlKs4S08ovv9BxP3xo1HE/4dtvKaCdN0/7/ampZKnxyy/6N7BZWRQ89elDMwVreP1Sq9WIi4vDzp078c4776Amhk7v2LGj6M8///ynUqn8WJZlJ8bYdx9+9NFtACI4/7bab/AXwziFWcOGZOM9bx55I1SlZFKB+vXrw8nJiRcUFFQ5w6Opg4aEhFQOdgA6IRctMjjpu02bNszMzAzbt29HSkoKJEmSY2JiBCeVik/4+Wdm8scfEIwIdtLT07Fhwwbu5OQk1a9f32i1XmJiohwaGipqjMLKprQ1k8HPnTuHnTt38pKSEibLMszMzGBpaSlbWVlxFxcXdO/evfLPIDLy6QTE8+dT6v/99yvfxxgFRD/8QLotfc6z3bpRlmnPHmDLFgqiqtDdpo+HDx/i3r17SE9PF1q2bFkjOWHGGOzt7QvT09MfKRSK9SqVamyau/uRi82bf9Ty8uUeAAzb3NZR+zEzI03Hli20jn311VO/lCAI6NSpk7hr164qP1dT5g4MDNRdUp88mTZbenBwcMC0adPw888/sxUrVkht27YVT506JWdlZQlvbNsGm0GDoDQi2FGr1di3b5908+ZNcebMmZUfIElU6nFyAjZvprXg+++hXLkSdlOnyr6+vgJA5fqypodNmzbF9OnT2dq1a3H58mWo1WqYmJjA3NycW1lZyba2tujQoYPo7u5e/v3GjauafkfD1Kn0PLVau8GhiwuVvj74QP/UAHt7ErNnZZHma8kS48dgGCA7Oxu5ubnYv3+/7OrqClEUa0TI4+bmZmZqatpGpVJN4JzvATBn1cyZy6f88MMjxpgSNDOwjseICxYs0Hd/6Z1OTjRk8v59csDs3Pmp3lCWZRw4cAA9e/Zk1kaUi8ri5OSEq1evcs458/LyqvyAr76ierMRpSAXFxe4uLhg//79UKlU8nBXV8E7Npb92qWLfOb+fVhZWTFbW1utE7w55/jzzz/5xo0bmbe3N8aOHStWZaeXn58vXLlyRdZnK16/fn107NiRde7cGSEhIfDx8YGjoyMzMTERbty4wc+cOcP8/PzYk9Edn3xCi5IBB1etCAKVrQYO1L6rMTen3/f69RTs6vu9KZWAlxdpCFq2BAoLjRZMaiMvLw9RUVGIiIjA7du3MXz4cLRs2bLGtl5JSUlSamrqeUmSPlYqlX5qtbpVsodHN8/bt02t3313NxYsePpZIXXUBhYAoL/x0aOBtm2Bd96hC1lVSr9l2LNnD/fy8pIbN25cpYsWYwxWVlYsMjIS7du3r/w3vGcPuaQbMejU1NQULVu2ZJGRkcLNmzflNn5+wuDjx7GjY0dpnyAIRUVFspOTEzM1NdWaHU5LS8Pq1at5eno6pkyZwsrZYRQXU4no4UPS8L31VqkmMiQEoqsrom7cYE1bt34yMLUiZmZmCAkJETp16oSwsDA0bdoU9erVYxYWFkJubq5w5MgRWFtbczc3Nzq4zEz63bzxhvbSuj6UShJoW1lRYKuNtm2pQ+/CBTIo1IUgkGuzWk3yCAcHCoSqQUxMDLZs2SKfPXuWBQYGyiNGjBCf1jS1IiqVCnFxceKHH374zvHjx6MBjM21tGxrm5/vaJeRcdNk3rwX67JYy6jaT93GhrIn69dTLVeff40OEhISIAiCfu8bPQiCwEVRrHwGSxJF76++avRrybIMc3Nzaerrr4to3Rr4178we/RoITIyEnv27JG3bt0qiKIIa2tr2d7enjs5OTEHBwfhxo0b8t27d9mwYcOMHv5Wls6dO+P06dNCWlqawREZAC0enp6eT2zre/bsKUZERPAVK1ZgxIgRaNSoEdCqld72ypKSEqSnp4MxBkEQYGpqWppZ8vGhUtjt26QB0oanJ3WrzZlDuh59AZ6lJbBmDZUQ3noL+O038ObNn8rI+I8//uD3799n3t7e8oQJE2qmE6QM9erVs0hISOjwwQcfrFi4cOF4pVLJCpycRiUEBPS50K7df/oBlU1a6ng5USjo4pWeTtmeGTOe6mWSk5O5XmdjPZiYmOju0omIoM1EqUeUXkxNTVFcXIx//OMfgstPPwGyjNc++EC8e+8e/vjjDx4dHQ1ZlmFpacltbW1lJycnODo6irIs88jISObv749BgwYJ5Y4nKorW9evXaUxQxXlfjMFk4ED8Y9o0JNjYyA7/+pfB6EShUMDV1bVcVuvatWuIiIjAgwcPpPDwcFEoKSFfHT2lr7S0NEiS9GQNc3BwKC2VdexIv1ddmJvTGvfPf1Kwa6grdsYMCvxatgTGjAH/+OmM2FNSUrB37144OTlhzJgxcHd3r3YpviwuLi5QqVR+CxcuNJ0/f/6eTz755BVBELYlBAU1ybOy+n9R778f+f7nn2fX5Hu+zBin4amILJPI9dQpKnVU4Q/h/7d35lFR1/v/f74/HxhGQXYQRBANQRYXDEFBBcXdcstMKbeO3VyvWaYe60qkXb3ZrbTrN02vlZqGaykmiiKiCKFCCKIECiibC8sM+zCf9/v3x1sUZYABh37lncc5Hs/5MPNZ5jPz/rzW52vXrl3M0tKSvvTSS2268Vu3bpW8vb1Fv6fDvqWlfLFoheV89OhRSX3zpjDlxg2CTz9tlNunlOLBgwfIz8/H3bt3UVxcDKVSKcnlcsyYMUNsS9EiwNMz3377Ld58803Y2bW9gzAxMRGnT5/G8L59qZ+Hh0CakCpXq9XYuXMnLSkpIYIgMMYYUavVxNXVVRo7dqxoYmLCByx26gS8/XbTB5QkXpxcVcW9ZS3I2bWLnbt5k3W/do0MPXCAtDYvvnHjRjp58mTBxcWlVe/TFqVSif/85z/VdXV1vUJDQ2+HhYUJMplsT5eysqnDDx4U982Zs62a0sWhoaG6FWHR80fReA1jjAuqTp/Oi/Gb69h8itu3b+OHH37AypUr29RenJycjLi4OLp48eIn36xS8QessbHWEY68vDzs2b2brVIqCaZO5dpbT6W5KyoqkJeXh8LCQjx48ABlZWW0traWjR49WnxCCoMxbnDVNzA0EwWhlOKXt96iNh4ezG/ZMrHVEZmHlJaWYufOndTc3BwhHh5Ch2bS5fHx8Sw6OpoYGhpSxhh56Kxi0qRJxNnZmdeZvvsuv4bm6oUuXgSSk7nDrsX6XXHrFmL37pUMLl4U+61dC9sXWze94cCBA6CUSq+99ppODZ2G7Nq1q+r27dsfffjhhxsB4OOPPx5nYGBwaM6338ojR4++fcfGJiA0NDSvvY7/V6Jt31RB4Bb1nTs8BKtl3cjdu3eRn58PLy+vNt18SikqKyuJoaYOhokTeYthK7C2tobz3r0k9fZtqtTwIBYEAba2tvD29saYMWPw+uuvY8GCBeLcuXPbbOxQSrF3717q5+dHn8XYAQBfX1/MnDkTlV9/Tap8fVGnYe4OYwwHDx6Uqqur2YoVK8iKFSuElStXkqVLl0KhUGDz5s24cOECqx49Gti+vfkDiiJvGz18WCsdptLSUuzNyyOu7u5Cj19/JYr9+1tVY0QphUqlErKysnSqf9IQU1NTDBw40NDIyOhLAAgNDaUqleqNAnPzQ1WWlqx3QcGbMpns57CwsLbdcD1/PgjhHYUeHlyDRcvvFqUUERER1M3NTWqrlkphYSE0DvncsQMICmpVOkcmk8EpPx8F+/bhd0nS2G5vYmKCXr16YdiwYXj11Vfx1ltvCYsXL37S2Nm/n2vSDB3Ku5la6DQ9fvw4snr3Ji+amop44w2tz/dpLCwssHTpUgF1dcxwyBDc//VXja+7ceMGzp49S2bOnIn69WvlypXE09OT7N27F+Hh4VKRsTF/FqWlNX/QQYOArCwusdICjDEcjI2leVZWQleFgtF332WtrZEsKyujDx48EIrbUdxw7NixHQkhoWFhYVYAsGbNml/UavXU8wEBtSOSkhwNDQ2Tw8LCtGsffs7RvobnaSwseMfWxx8D//0vHzDZjPeuVCrxzTffMB8fH9a/f/9Wz8iklGLr1q2SkZERGTlyZOPBkYLA8831NS0tUVcHx3XrhI5hYUhwcqKRJ08KjDForA3SIeHh4UySJEydOlUn6RkzMzPYTZpEvu3USToXGyuoVCpmY2ND6hfVqKgompGRQRYtWiQ2NBRlMhn69+8v2Nra4uLFizTm6lXBuqaGMRMTYtxMuLdSFJF48yYVSkqIqZubRi/p+vXr+O6779jFixeJi4sLHTt9Ogk3NJRkhoaky/z5BKNGadUpQwiBu7s7zp49Sy9dukS6devW6rovbXBwcBASEhKcz5w5cyooKKggKCiIRUdH/1RmYfFiv6Qkt9LAwB7lFRU0MDDwnM4Prqe9+UjjVkJ4R1RtLS+2nzixxVqzHTt2qNVqtTBt2jRBo9PVArGxsUhMTMSkSZNIo9EChobciWwqpawB4x9/hIejI7k+ezb75fx5kp6ervbx8dHeYrp+naedAf5Z9OvXYtQjJycHp0+fxqxZs4ipiwuP+E6c2Ppp6A8RBAH9fXyEE97e7Hh8PMnPz5fMzc0FU1NTEEKQn5+PH3/8EePHj4dbgy5SQgheeOEFeHt7Iz09HTExMeSBqSk1T0oiHUaObDL6xgD8JpOxopQUZmdhQYgGjaKqqips376dRkVFkZqaGsxfuJAU+PiQSFGEX1gYQW0toGWkx9vbm+Tm5iIqKorIZDLm4OCgk/nQDTE2NoZCoWDFxcWWQ4YMOQ4AgYGBmcd//TXV+s6dV7v6+Jjkq9UvDxky5H++a6vtBk89rq5Abi4Pp8rlTXoojDGkpqbSwsJCoUuXLo1/8E9RVlaGrVu3MisrK2JmZvZI/2LOnDmN9S9++okbOs1N132a/fuBxETIlyyBZ58+QmFhIS0vLyde2oxkeAZ++eUX9vLLLwu6GI8AAMjOhuH48fD9738FGxsbXL58mcbExAh5eXnS5cuXWWZmpjBv3jyhKd0aa2tr+Pr6Ch4eHshLTMTtM2cQWVLCDA0NibW19RPtpLW1tfjqq69QYmbGOh48SMzT0mA0btwThi6lFLt372b9+/cn06ZNg7e3NwGAGrVauJKTw3y7dCEwM+MhfC0+A2NjY/j6+gr3798nUVFRGPL0XDcdIIoiOnbsaJCbm+tz5syZ3efOnZNCQ0Pp1f3798uVytVyMzPxDiHHg4KCtJMX1/Nn4qNm/2pjw0exuLryVH0zDlNhYSHJzc0loihSR0dH0lKUZ+fOnTQ/P5+4uLjg7NmziI+Px8yZMxs7VWVlvP7w7be1Lw9QKIA5cyAsXIiu/v7E3t4ev/32GwICAlregSTxNu5x43ga+513+PVrwcmTJ2FtbU39/PwITE25oztjBjcALC21O/enGTMGrkFBpN/kybh58yY5d+4crl69yrKzs2lMTIwwcOBADGoi3SWTydCnTx8yaNAglCgUhB44wL5/8IBU19ZSKysr8vSz4ujRo1JiaipqSkvRedcumIweTZ42dGNjY+m9e/fY3LlzheDgYFJfgxR9/jzpM3Ik5FlZvDja3LzF+0UIgaenJ7Gzs8Px48dhZ2fXen01LejatatBQkKCZ3R09M/nzp17EBQUxAaP2A9ZHQAAGPJJREFUGJFxY//+AIuiohduOTgUDx48uHUpkOeQZzd4zMy4h/S3v/FBbtOna/wSGBgYwM/PT6ipqSEnTpxAaWmp5Ozs3EiRuCHR0dEkPT0diYmJzMzMDLNnzxY0hoNXr+b/a6vQGRbGf+Dvvw/IZGCMISIigowaNerZh3e2QFpaGpXL5aRbt266MfNLS7nOxOjRsLa2xoABAwQvLy/k5+cL1tbWwvjx44m1tXWLu+nYsSOc3NxId5WK1PTpQxISEqTY2FihoqJCsrKyEjp06IDExER27949umTJEvGmvT2Kf/4Z5u7uMHroJVVUVODSpUu4c+cOCwkJIQ3vlZ2dHaKjo0m/d96BkbEx17qwtdVq5hchBD179kRMTAwCAgJ0Js3ekM6dO5OMjAzTysrKNQD+ERMTc1ZhYTHOyMBgtI1Sqb5pbv5dUFBQus4PrKe9+ajFVwweDFy7xiMVEyY0qV/j6upKunfvjqioKJacnAwnJydi0kyn14ULF2h2drZw6dIlmpeXR2bPno2umlSPT5/mUfL587W7org4rh586NCjrqRLly5RxhhpUezv3j1u6Ny/zxsLtJwRWI8kSUhJSXncZSYIXJG9qqrtLdxJScCYMTCys4OXlxcZNGgQqa6uJpIkCf7+/vD19W1xF4IgoFvv3uhcWkoc/fxw+dYtGhMTI2RnZ0vGxsaCpaUlysvLERERIcyfP5+4BAWRK2fOALW1sPLxIRAE1NXVIS8vD5GRkWTSpEmCg4PDo0JlQgjS0tIkuLgQp9mzCWbO5E5zE8+7p7GyssLVq1clW1tboa0NO80hk8lgZGREsrOz32aMfRQfH28VHR2tUNjbL3avrDQtlMnSB4wY8T8vs9G2omVNKJVceK6+46cZpcqysjL88MMPUlVVlThlypQnZcwb8Nlnn9Hhw4cL5eXlLCAgoHEaC+Dzvhjjx9NG3Co7my9sJ08+6jIrLCzE999/z1atWqXbWKMGzp49i6ysLOmtt97STRFbejqvRdAVwcF8MXV1rQ9f07t37wr29vbS/fv3xXHjxqFeTfqnLVuo78aNQvKSJVI6pUJtbS0xNjaWhg0bJvbTMPjwq6++kgYOHCgOGDCA59EZ4wWS772nlaL1J598gr///e9oj7RWQz7++GPGGCPdu3evGOjtbUKmTqWlZma+vomJV9r1wHraA+3XsMOHueaUQtFsxONhLQ9LTU0lAwcOpIGBgRodt0OHDqGurk5ycnISXnjhBdKk9o5CwYuVtU0LDR/OO7nmzn206csvv2SBgYHEu6kod3U1bzWfO5fXubz6apvSUGq1Gv/617+eVDunlM/ju3VL62aGR/z+O39mtCFFqJHPP+fPgsWLUVVVhaioKGRkZLD6ri61Wk3/9re/iQCQmZmJuilTUDt4MI3z9ERpaakgl8upo6Mjmz59eqP1+cKFC7h69SpduHChAJWKD1DOzORSHS1oJwHA9u3bqYeHhxAQEKCba22C5ORkHD16FJ06daoICAgw7vDpp+rKoqIfB8XFzWrXA/8F0J2rbGrKDYk1a4CpU5t9qbm5ORYtWiQOHDgQ4eHhOHz4sFSrYXaMubk5FAoFCwwM1GzsAFxocNw47YydAweAvXv5j/OhscMYw9WrV5mlpeUf0oXz4osv4u7du6KmAuNWo1DwvLsuZ1iNGvVoXpqzszPmzZsnvPfeezA2NhYppWg4OmPCggVCwYQJ6JKTI04eO5asXr0ay5Yt02jsAECvXr3ElJQUCQDg4sLb3FNSgE2bWixmLi4uhiiKOp2l1RQymYwBwKxZs0yKSkulUhubq76XLrXvKqXn/z9TpvCH2JgxvIurCQRBwIQJE8ibb76Jq1evsi1btrCCgoJGr/P09EReXp7g7+/ftLFTVsaV3SsrWz6/vDxuqBw69ISxU1hYiMrKStK3b1/N70tP59PBc3N5Cm/GjDbX3BgYGMDExES6devW442CwH+/K1a0fojwa6/xlJqumDaNO2yMoWPHjpg4cSKWL19OgoODSVFREQICAh49KHr27An6+ecwT0sTBrm7C++99x7ef/99QZOxA/AmkdLSUqG8vJwbVfXG8bx5LRa+q9VqqFQqUlhYqLMB2k1Rn8YLCQkxcXV1Jed69Kjzi4/v2aa++ucM3ecGDhwA/vUv/n9JSbMvHTJkCBYvXozMzEzh2rVrjf5eU1PDWuyGGjaMp6haQq0G1q0D8/MDZDJUV1cjPj6eff755+y3335DYGBgu7UNNsTU1BRyuZzm5upgaoGZGffcdJmGmzePey0NDBC5XI6JEyeirq4ODSOCgiDAZ/NmeJuawuXIkRZTTYMGDUJRUZFYXf1wxIuxMfeqlyzhc3CiojS+LykpiW3btg2dOnVihw4derbhqlrg4eGhAoD8/HzEx8erogcPng1gJghpWTRJz1+bl17iNYHFxbyFuRns7e2xdOlS0dramkRERDRymIqLi1seHyBJ0CSJoZEdO8C6dAEsLMAYQ2ZmJr777jtp586d6NWrl+bOsU8+4YbcgAHcUHrGzlAAcHR0FDMyMqQnNvr5cefl5El+TdqSnNzq7tpm6dqVR78aTFAXBAHe3t4wMTGRnh7c6TVyJLpv24YX//EPdKxpXmNUJpPB1NRUysjIeLxx6VLgyhXeEr9smcbJ7Pfv38fXX3/NampqWGZmJp54fztQn2ZNTk6ui4+PV5VbWHwjMPYzgLYJTz1H6N7gMTTkKa0ff+RfhhYwNTWFIAjs6UKuiooKKBQKsXfv3k1bpfXzcZpRfX7w4AF+378fddOnI3LtWmntxYvYsGEDPv/8c1y+fJkGBQWR999/n7hpmiPVDtS3V9+/f//ZdzZiBFcO1SWWlryY+OrVJzbL5XKIooiKiorG71m1iisra5q63gATExMYGxtLmZmPxT+rqqtBO3Xi4fbbt3ktRQOjqrS0FCdOnCCTJ0/GokWLSF1dncb2e13i7+8vB4C9e/cyAL+t2rDhKoAtAOY2+0Y9zwd9+vARFK+9xguam6FexNPa2rqR556UlCQNaKmuZccOHlFqAkopriQmomraNNzx8cEGW1usW7cOGzZswJEjR6ilpaW4bNkyvPLKK086bF99xSPtISE8aqVDp+hhpLXxs8PMjBsvGzZot6O1a/nvXpvofGvo1g3Q0OIul8sFhUKDBp+HB3ecIyJajDS7ubk9jlKDr+e1jHGnTa3m4q1K5RPvOXjwILWyssKyZcsEKysr2p4t6gDQtWtXyGQyKTEx0TA5OZnW1dX9G8BBAKNAiG4knv+itM/FE/I4wrNqFbBgAf8SaiAhIQEqlUp4WpMmOjoaXbt2lUxMTJr+NURGAqdOAf/4R5MvOX78uOS9ebN41sYG6VlZZOHChairq4NMJoOVldUfEtWpp37asoWFBfHx8Xn2HTo5Nfm5thlCuLdWVMRVRhtgZmYmRUZGkkYt9Z068fsQEMDl8ZspyuvVq5d44sQJZGVl0dzcXKJUKsnIkSOZ//TpBGo190QDA4EvvwTAByXK5XLJ3d1dVKlUkCSpSTl7XWFtbQ07O7u6oqIiQwD14cMoAG+CEBMw1vxTUM9fnylTuC7OiRP8N9FEmr6srAw3b95ko0aNemItUSqV9Q5b08dQqXh0pxll5evXryNj2zaYp6TgwJUrGD5mDNzc3KBUKuHk5NTY6MjIAMrL+cDPuXN5fYwOOXv2LNLT0zFnzhxNwmV8QCelPH3W0trk7MxlAXSNnx+P0lH6RNewp6enEBcXh759+zauA1y3jqfWCGn2fvj7++PLL78Uw8PDqVKpZEVFRaKFhQVbtGgRIV99xfdz6BAfoPywxkmhUAgTJ06EIAiora1lzRW66wJCCKZNmybu2bMHoiie+uCDD/IQGgoQchxAAID/WXkN3Ud4Hu1Z4JGCgoImp3efPXsW0dHRCAkJaRT6zcjIoL179xbj4+PZt99+S0s11am8+ioQHd3kKZTk5GDQ+vWiy759GB4RgXfeeUewtraGvb092qM1sDlSU1OxadMmKpfLyaxZs9qk4/EEt27xz1WLDqxW06sX9xCf8nZCQkLEGzduaEw/wtiYy7G3kF4cO3Ys+vXrhxs3bpDhw4eTKVOmIDY2lqhUKl5XcO4cH6D4ySdg6ekoKSmBkZERA3jUjxCChvVe9+7dQ2xsLNN1mmvq1Kn1N4jHxhnLB0AABOn0QHr+vFha8u9kaKjGGo179+5h27ZtzMvLiz5dt3b69Gk4OTlJBQUF2L17t5SUlNQ416FS8Sh1ly5NnkLlqlWst5UVuqelYfkHH8DPzw/m5uaPxsw8Qq3mDubIkbxGcf16YPz4tl23BupVkRMSEjBr1iw02Wnk4MDrhV55hTeUNL1DXns5b57OzvERPXpwfaAbN57YHBAQACMjI3b48OHG94IQnpFYv77ZeioTExO8/fbbyMrKIvb29uKSJUtQWVn5OE314Yd8+kBCAvDjj6itrYVKpYKtrS0AQK1Wk4YiqpRSnDlzRue1iT169ICRkZFUW1sb22DzLQDD/pdredo3vEUIb31UKFATFISLM2fiFmOsvLycVldXi4IgYNasWRpbNUVRZBERETA3N6fGxsbC999/z7p27UoppXB3dxddDA3Rwd+/2eLCvE2bqNzKinTs2bPVIw10RXp6Ok6ePCmpVCoxMDCQ+Pj4NF2A3RqCg4HZs4HmZQXaRIaREczS0hC5cqUkubkJjo6OxMjICBcvXmQuLi60R48emiNj8+bxVs316/lkYg1QSiHjUgCPiiwvXLig3rhxo4GLi4vk4OAg3i0qknrExAgdf/iBnJw+HV59+ogAnxJtZ2cn7dmzh8ydO1cwMDBAZGSklJOTI1JKWVBQkM5uspWVFby8vGpu3LixHMAHDzefAvASCIkEY+0j/aznz8XkycCECZA+/BC3qqvxq48PSkpK1NXV1aJKpSL+/v5s+PDhjYYHy2QylpOTIxYVFVFnZ2cxMjISd+7coUqlknXv3l1wc3Mj1uPHg8yfzw18DRSlpaHb5cvE6osvIBgaNu2dZmTwUQkrVvBUtBaT0rVFoVDgp59+onl5eYK7uzubPHlyy9Id06dzZ6m6umkhw82b+RDq7GydnWs9VVVVSOvShdElS5D0yivUzs5OdHJyQnx8vKRWq4WgoCDNH2WPHrwGacYMnqFoov5KpVKBEAIPDw+Ym5tj0KBB5ODBg7C2tqaenp5CRUUFpefPs0Hbt4s7r1yBSefOkoGBgQgAQ4cOFSMjI2Fvbw97e3tcv34dcXFxSElJYe+++67O1q/6KE94ePi7YWFhm0JDQ9UAzgKYA8ABwP/kqAndtaW3QPLQobTE1ZUYhISgc5cuxM7ODmZmZk0am5RSVFVVwcTEBJRSHDt2DJIkgTGG27dvS6SwUOxXUMDEt9+Gm5sbsbGxebwvxoAFCxBtaUkrfH2FCZMm6eoytKampgbffPONVFVVJQ4dOpQNGDBA80iMtkIp/6ejqbsN+fTTT+lwQOhaXY3rQ4fi9u3bkkKhEEaMGEE8WmqBLyp61CmRrFKhtrYWvr6+UKvViIqKwrVr15harSZ1dXVYs2bNo3t29+5dnD9/HiUlJdTKykpwcHBA965dYTtnDsjIkcDKlQ8vm2Lz5s20Y8eOsLGxYenp6aIoiszd3Z3IZDJp5MiROptEXFJSgq+//rpSrVY7hoaG8hAjIccAfArGzuvkIHraG52sYcnr1sFo/37kfvIJtXd0FDp37gwbGxs0911TKpUwMTGBIAhISUlBWloaLCwskJubK5WVlYm+8fGsbsYM5jJggODs7Pzkvo4cQdmBA/ivt7f03vvva3YwlEqeEnvzTZ5Sbo1woRb89NNP9Nq1a4Krq6sUHBwsWrZGWJAxPq5i7Voe7dFEXZ3u2tEbEB4ejurCQjb54kVyY9ky3MnPlwoKCoiLiwsbMWKEqFHLreF5r1kDUArFihWIjY1FcHAwOnbsiNTUVMTExEjl5eViXV0dpkyZ8qhrtaamBvHx8cjMzKTGxsaCvb09unXpAue4OIjHjnGNuodptKioKCQlJcHNzU26efOmoFariZmZGXNwcGADBgxoVN7RVhhj2LFjR0VBQcHi0NDQ7wEAhEwHEAjGFujkIH8x/jCDZ8uWLdJgFxex79KlvDjsGYdB1q1di8t9+yKloEAqLS0VDAwMiJubm+Tu7i46V1XBcPFiJH70ES5nZEgLFy78Q2t1AF6blJiYyObPn0+a/YG1hQ8+4EWIy5frdr/g3tG///1vrJo0CYZbt3IF2FYuouXp6ahauxb7XniB1ZmZEcYYVavVgo2NDQ0MDBR69uyJ+/fvPwrzNktCAhdmmzyZTziWyVBTU4NTp06htrYW3bt3R2RkJExNTSVJkoiFhQXeeOONZgUtW8ORI0dqrl+/vmn16tWrAACE+ABYB8aarjTV82dCJ2tYQkICkpOT6YLjxwUEBDQZwdQWeuwYbt+/jwsyGSsqKmK1tbWCo6Oj5OnpKfZ0cYHp5MmoWbgQn924gVWrVjU2rIqKuFhhSgrwzTc6jerU889//rPJCLxWHDvGU22TJj25hmRk8PR3/VgLHbNp0yZ1YGCgQb8ffuDRmv79W/V+WlaGvK1bkZ6dTdN69hRUKhUeDi0VAgIC2Isvvkiqq6thbGyseS5aQ2pq+Hfl73/n3WsPn3sXL15EQUEBjIyMkJeXRysqKmBhYSE8ePAAc+bMeaah0g3JycnBvn37ilQqlWNoaKgahBgCiAUwA4zl6OQgfyH+sIptuVwuKDp04N6IQsH1J9r6Iy0rg+EXX2DQnTsY9FAf5vfff8eVK1eE28uX0/zKSiFn7lzJtrZWLC8vb786pSZQq9WIi4uj/fv3ZzKZTPfGlp1duyxwlFLs27eP2trawtDLS4CFBa/BcnBo1X6OXL7M7MvKyCvx8XCIisLvv/8umJqaokuXLo/uhVbGDgAMHMj/hYQA+flATAzkcjkmTJjw6CUPC8BFtVqNLVu2SPv375dCQkJ08rkHBQXJ09PTl4SFhW0MDQ0tBpAM4AwIGQjGEnRxDD1/fiwsLFBdXU2wciXvAHqW9QuA8MUXcB43Ds7LlxMApLi4GAkJCeL1gwcly/Bwcc/ChdTNwoKIokgyMjLg6en5+M2zZ/PuzKQk3Xc4PeTYsWOsQ4cOcHBwaHvI6OWXeWPJq68CBw8+3q5WA+3UFXvp0iVUVFQYODk58QaINtTG5CmVOJGdjfGxscKgpUtRY2WF4uJiwc3NDaIoEuCx1k2LyOXAF1/wCNyyZUB4OODlBX9//4averQunjp1Ct999x0WLVqkE4FVZ2dn2NramuTn588CsBOM1YGQ1QCmAvjsmQ/wF6PVxkBZWRkyMzNbrYViYmJCFAqFhBUrgA4duNWd3kalfpmMF/sZGwPgraG9evXC61OnkuCiIsH7ww9ha2cn3rx5sxWCELpj165d1MzMrH20fYqLudHYTCdBW9m3bx9VqVTk9ddfF0AIX0yPHm31fsaOHUsSfX3RecECIhw+jF69eqFLM4WZWrFnD184duzgeXYN1PAiSbG6ulpncX0LCwt4eXkJhoaGPMLDmATgBoBgXR1Dzx8HpRTXr1+H8qnW4ZawsbHhBs+QIVwZPDCw7fVztbW8+6uB4J6VlRXGjx+PNwRBdJo3Dz5DhwrZ2dlMEARWXl7OUy1ffAFs3MhTV+fPt5uxk5qaitTUVPL6668/+6DLgQN56q1h04mZGfB///ds+9VATk4OTp06hWnTpsHS0pJ3ma5fr1EbpzmcnJxQ6eZGy5cvh9mpU+hsZQUPD48n5gq2mlGjuKq8IPDGjiYyKw87udBC5qVVjBgxwsTQ0HB9WFhYff4wDYAjCNHS63x+0NrgqaiowO7du+mWLVvw888/s88++4xlZWVpfSBTU1MolUp+Fz08eO7ZwoJLi7cWX19uMTfk9GneOhofD7OgIIwbNw5LliwRV65c+YdWK585cwbFxcXCjBkzhPaY+YTQUH797cDdu3dZcHDw4/lAs2YB27e3ej9FRUUw6tSJGfbpwz2alJRnPzlB4EZyhw48lVcvXtiAXbt2SVVVVRg2bJhOP/jAwEA5Y2xhWFhYfUvcGQAmIEQ3cWc97Q6lFLGxsdi4cSM7duwYNm/ejCNHjmj9VDE3N4ckSVxHixAesRg8mI9paC0ff8zrWhqmqaqquB7PzJkQV6+Gr68v5s2bJ6xcuZIMtLTkbd5RUVz6wd+/xcnubaWkpAQRERFswoQJ2kdhm8PcnDsoq1YBqalcq0tbZelWkpqaCmdnZ6lnz558g5sbNwpbqVVGKYVKpSLGwcH8+bRxo25OsF8/buydPg3Exjbq/Pv1118RFxeHAQMGqJsa9twWunXrhs6dOxsTQuYAABi7D+A6gCakuZ9fWqrh0aNHjx49evTo+cvzh9e36NGjR48ePXr0/NHoDR49evTo0aNHz3OP3uDRo0ePHj169Dz36A0ePXr06NGjR89zj97g0aNHjx49evQ89+gNHj169OjRo0fPc8//AxbghvG6iqaoAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "f,ax = plt.subplots(1,2,figsize=(10, 6), subplot_kw=dict(aspect='equal'))\n", - "gdf.plot(edgecolor='grey', facecolor='w', ax=ax[0])\n", - "w_rook.plot(gdf, ax=ax[0], \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax[0].set_title('Rook')\n", - "ax[0].axis(np.asarray([-105.0, -95.0, 21, 26]))\n", - "\n", - "ax[0].axis('off')\n", - "gdf.plot(edgecolor='grey', facecolor='w', ax=ax[1])\n", - "w_queen.plot(gdf, ax=ax[1], \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax[1].set_title('Queen')\n", - "ax[1].axis('off')\n", - "ax[1].axis(np.asarray([-105.0, -95.0, 21, 26]))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "w_knn = KNN.from_dataframe(gdf, k=4)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(4, 32)]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w_knn.histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd1gV19bG3z0zp1AVEQRsWLBi7w1Bo0YTNcUWezRdvV8SY010HEsketWrSUyCJfYSNWqisUSJYolYo6iggmKhKE0RDqfN7O+PDUrnUKyZ3/PwAHNm79mHsmbN2mu9i1BKoaKioqLydOCe9QJUVFRU/k2oRldFRUXlKaIaXRUVFZWniGp0VVRUVJ4iqtFVUVFReYqoRldFRUXlKaIaXRUVFZWniGp0VVRUVJ4iqtFVUVFReYqoRldFRUXlKaIaXRUVFZWniGp0VVRUVJ4iqtFVUVFReYqoRldFRUXlKSI86wVkR5IkDkB5AK4AKmR+dgVQgRBSUavVenEc50EIcbNarbemTJnS71muV0VFRaW4PFGjK0mSHQC33B88z3toNJoqHMdVppS6KYriIsuyEwA7QRAsOp3OYmdnJ9vb28PBwYF3cHDQOjg4aO3t7WFnZ4e9e/daFEXZ8STXrqKiovIkIE9CxFySJEeO4+5QSp10Op3Rzs7O6uDgQB0dHXknJyetk5OTNtOgwt7eHlnG1M7ODhxXcMRDURTs2rUL//zzD6WUtgDwjyiKqgq7iorKC8OT8nQpIUQ3duxYzsXFxb6sJg0JCUFkZCStWrUqTUpKOmKxWDLmzp27w2w2bwNwSBRFY1ldS0VFReVJ8EQ8XQCYM2fONA8PjymDBw+2s7OzK/V8iqJg4cKFSqdOnUibNm0IpRQJCQm4evUqvXTp0sOEhAStRqM5ZjQaNwL4QxTFuNK/CxUVFZWy5YkZXUmStFqtdinP80M+/fRTvVarLdV8165dw5YtWzB58uR8QxAGgwGRkZEIDw9Pi4qK0vA8f9NisWyWZXkngHOiKCqlWoCKiopKGfDEjG4W8+bNO/Pmm2829/HxKdU8iqIgMDAQH330ESpUqFDoubIs4/bt24iIiLCEh4ebMjIyrBzH7TaZTL8AOCiKYnqpFqOioqJSQp54ypjJZNoZGhrauEqVKkJpwgyEEFBKYYvHzPM8vL294e3trXn11Vc1SUlJuHbt2pBLly71jouL033zzTcnjEbjWgC/i6J4r8SLUlFRUSkmT9zTlSTJTRCEnz09Pbu88cYbdkV5qQWRkZGBBQsWoFmzZtYuXbqU2IAbjUZcu3YNly5dSo+KihIEQbhiMpnWUkp3iKIYWaJJVVRUVGzkiRtdAJAkSScIwjRFUSZPmDCB1+v1JZrnwoUL2L17txUAOnfuzHl7e3OVKlUCz/Mlms9qteLGjRu4fPmyMTw8nAK4J8vyRqvVuhXA2ec9HU2SpC4AmmR+S4v4DAAk12cAMADYI4rinSeySBUVlRw8LaNLACgAMH36dBBCihhRMAkJCfjxxx+tGo3mMAAfvV7v+sYbbzh4e3s/OkeWZciybFMoIgtKKe7cuYPw8HDLxYsXTUaj0UwI+dVsNm8GcFgURUuJF/2EmDdv3j/VqlVr6Ozs/GiTkGb+QrP9XnMY3dw/+/T0dGtkZCRPCFkwZcqUr570mlVU/u08FaMLAJIkfeDu7v7fjz/+2Kk081BK8cMPP6QlJCQMBfAbIeQNQRCW1a1b1+HVV1/VOzg4YPv27bhw4QJ69epFmzZtSjQaTbGvkZiYiIiICCUsLCwtOTlZEARhn8lk2gBgryiKaaV5D2XFvHnzLg4aNKhhtWrVSjVPWloavv322wyz2dxZFMVTZbQ8FRWVfHhqRnfmzJkSz/PTJk6cWGwjmJ3o6Ghs3Lgxxmw21xRF0QwAkiQ5abXauQBGNWrUiDtz5owOAPR6/QFFUTp27dpVaN26dYk3DVNTU3HlyhWEhYWlxsbG6jQaTWi2jbi7JX4zpWTevHkRgwcPrlulSpVSzxUWFoZdu3bdNJvNbZ7le1JRedl5mp6uTqfTrQfw2tChQ/UlNRSnT5/GwYMH10+aNGloPtdoBKArgAwAq0RRNEmS1EwQhBNTp07VliaskUU+G3FXTSbTKkrpr6IoRpf6AvmQGZ7Jg16vjxw2bFhNLy+vUl+DUor9+/cbT58+TQRBOGQ0Gv8jiuLVUk+soqKSg6dmdLOYOXPmW/b29mvHjBljX5IMhMOHDyMkJCRw2rRpU2w5X5KkcgDuu7u7pzVq1MjBy8uLPHz4EI0bNy5VbBlgG3HXr1/HpUuXMiIiIoiiKErmz5Mg52YVyXU8+/e5X0euseB5nsqynGexhBBl7NixXEkzQvLDZDLh9OnT9PDhw/ctFksnURQvldnkKioqT9/oAsDcuXN/rFWr1rABAwYUW5fhjz/+MJ86dWqyKIqLbB0jSZI9AH+tVtvXbDZ/kHX87bffhq+vb3GXkC+KosBoZNIPWcY8u1HPfiz364V9Xr9+PY2MjCSff/45nJxKFQ4vFhcuXKC7du1KtVgsXURRPPvULqyi8pLzTPR0zWbzpKtXr75rsVhQ3PguIQQajaZOccaIomgA8Efmx4eSJJUHEHXixAnB19fXuVgLKACO42BvX2baPo/w8vJCZGQkrl27hubNm5f5/AXRuHFjIghCuZ07dx4NDAzcYzKZPhBFMempLUBF5SXlWXWOSKeUkizPsDi0a9dOa7VaR0uSVGJjKYrifQAV0tPTHUo6x9MiICCAVK5cmaanP/3K5QYNGuDzzz+38/Hx6a3RaJZLklQ6AQ0VFZVnZnQ1giCcW7t2rcFgMBRrYLly5dCoUSOrIAjXM+O1JUIQhOvNmjUrWVXFU6ZcuXIkOTlZfhbX1ul0eP311zVVqlTprtVqwyVJ8nwW61BReVl4JkZXFMUMs9nc9sGDB8sWL16cERkZaXNgmRCCN998087e3l4LoHJJ10AIcWnYsGFJhz9VXFxccP/+/Wd2fZ1Oh2HDhtk3bdq0Msdx1+fMmXNEkqSWz2xBKiovMM+sMaUoinTKlCmfms3m8WfOnCn2s7MgCAqAEgdReZ6PS0p6MUKUbm5uePDgQenz3UoBIQQ9e/bUDRs2TN++ffuOGo3m8MyZM78qzdOGisq/keehG3CsyWQqWutWUdhHJo6OjhyAmiW9qMlk+nLnzp0ZxQ1vPAu8vLyQmprKpaSkPOulwNvbGwEBAXjvvffs3dzcpms0mj2SJLk863WpqLwoPA9G9+GNGzecY2NjCz9rzBiA54F794AZM9Dr5EknvV7/RUmTbadPn77DYrH8tHnzZoOiPN/65m5ubvD09MSxY8eeSVw3P9zd3fHBBx9oatWq1ZLjuM+e9XpUVF4Ungejew8Ali1bhkI9ubFjgb59gZQU4NQpuNy+DZKRURuADEJ6gZCeIGR5cS5ssVgmxMfHXwgNDX2+rS6Ahg0b4tatW880xJAbnufRuHFjDc/zAzM7P6uoqBTBMze6oiheBHCVEHJ0zZo1Bcd2GzYEBg4Efv4ZMJkQ9+23gJ1dDIAAACEAGgNoBwAgJBWEBIEQLxCyHoTkG/sVRdFqNpvnhYSEKM+iSKQ4NGjQAElJSZwsPzfOLgCgVq1aEAShJs/zc571WlRUXgSeudEFAFEU61JKOz98+JAvNMY6YACQkQFMnIgHiYnos369I4CzoDQNlH4DSrPSEXoDCASL+XYDwIGQf0DIOQAAIctASJY013WLxZJ+4sQJ65N6f2WBs7MztFotTUhIeNZLyYFWq8VHH30k2NnZfShJUs9nvR4Vleed58LoAoAoiopWq70SHx9f8Ek8z2K7a9fCg+MQUa9epcBJkzgQ4prjPEoPg9LroPQoKHUHpWkA3gMwHoToAAwA4AlClogzZgTLsjzabv58K44ceYLvsPQ4ODjIMTExz3oZeXB2dkbLli3teZ7v/qzXoqLyvPNMyoALQSsIRSypTh2gVSu4HzwIOmgQkS9f/p4CtQghw0Bpwe12KD2d7TuW5kTIfQD/AEj3CQ7WoVYtwGRisePoaODQIYDjgLffLuXbKhsqVaok3Lp1S27RosVzV9SRmppqkmU5+lmvQ0Xleee58XQBwGq1Knv37i06m2DcOCAkBD2dnPRVq1V7c97Mme7SjBkxIGQYCLFdl4HSK6B0JYCH302ZYrzxySeAry8wcSLg6gosWgTMnw9YrYC9PXDgAHDhAhAUVLo3WkIcHByQkZHxXAafXVxcdIIgNHtS80uS1FaSJLcnNb+KytPimaiMFYQkSZxOp7sxbNiwapUrF1FslpgI+PmBnj6NZevWpcbFxS0etno1at64sQJAHAALbHxzkiRpALzv6Og477PPPnPguFz3IpMJmDwZ+OorYMYMYNMmICEB8PZmm3tTpwIbNwKjRgHFaBFUXDZt2gRnZ2e5V69ez6Oni6CgIIPRaPzoq6++WlsWc2Ya2e4AqvM8P4MQogiCcMxqtZ7nOK48pdTRYrGEADgG4HMAW8E6e5jK4voqKk+C58roAsA333zzs16v7z9w4EAHDw+Pwk/+4w9g0ybcmj0be/bsSUtJSdFYrdbJX02bVhHAbVD6U3GuHRgY+E/37t2b2KzmNXky8NprLI2tf38gPh545x3gzh3ggw9YxoW/P4tFlwHLly9X6tWrx3Xs2LFM5itrrl+/jl9++SXSZDLVKW1Tzzlz5nxhtVrncxxHq1at+rBZs2aO9erV48LDw5GUlCRrNBqSlJQEg8FgiI+PR1pammPm0E9FUVxcBm9HReWJ8NwZ3cwuCe9pNJolTZo0IQEBAboCJRPNZmDmTKBRI2DgQNy/fx9BQUEZXErK518EBq4B4AmgkjRjRgqAVFEUC92FkiSpsUajOTpgwACn2rVrF2/hlAKEsHDEjBlAz57Arl1AQABQoQLg5QXUrQu0aQPUrw8UFbvOh++++87asWNHoWnTpsUe+zRQFAVBQUGGlJSUA2az+Z1MSc1iI0lSFUEQrowaNcre09N2fZ2oqCisW7cOAO6LoqhWyak8l/AzZsx41mvIgb+/P/z9/c8GBwdvS0xMdAoNDa3n6OgoeHp65i0M4HmgShVgwwagdWvoK1ZEnTp1NBejoroc6ty5XqPTp+/oTaZaR7t2/YoqyuLjx4/bBQcHH/L39883aOzv7383ODj4UERExCAfHx+to6NjfqflT1ZhnNUKjBwJjB8PfPwxMGLE4/Ll5GTg3XeBmzeBPXuALVuYsdbrAWdntmlXCEePHqWNGjUq004RZQkhBE2aNNEkJiZWS0lJ+b8jR464BwcHh/r7+xfrcf/EiRPft2nTpknjxo2LtedQoUIFWK1Wevv2bbsjR45whw4divP3938xBDZU/jU8d55ubiRJaqTRaIKrVaum8/b2dqxTpw5xd3fPedK6dUBUFCCKAACz2Yxdu3YZr1y5kmg2m/vUvX17VcDNm423v/224d69e2OnT5/+c2HXnDdvXmjv3r1b169fv/gLHj4cePVV4I03gJYtgZMngezG22gELBbgyBFg3z7gwQOWJdGpE1C+PHD7NgtbVK3KvONMY75r1y56/vx5Mnr0aBQZdnkOSEhIwL59+8w3b97cbLVaR9vawl6SJJ1Wq70+fPhwryLj+vlAKcX169dx9epVy9mzZ9OtVmtNURSfvWiFikomz73RBQBJkioBCNBoNJ0AjOjbt69DDllGoxH4+mvAzw945ZVHh8PCwvD777+nKxkZX3parXOVGjX0dqGht6Nr1Ngsy/LigsINX3/9dZTFYqnZsGFDw1tvvWWfZ2OtIGQZ+PVXoEcP5rmaTIBOxzzdwubIyGDG9/p1QJJYLDg0lHnAXl6AIGBduXKyW4sW/CuDB4MvoxjxkyY9PR2//PJLenx8fCql9DeLxXIUwHFRFK8XNGbOnDlS1apVJw4dOlRv88+9ADIbbaZbrdb3KaU7ShtnVlEpC14Io5sdSZKaajSag127dnVu06bN48Do8ePskf3TT1m616PDx3H48OHjZrN5pVNq6vIBJ05g56BBpsTk5HdFUdyYz/yugiAsUBRlAKVUP2HCBGJzA80VK9g6Vqx4fCwoiG2wTZ9evDeang7ExTGBn88/xykXF6W20ci5xMUBrVqx+LCfH4tnuzy/4UtKKWJiYnDz5k164MCBrBBRdwAnRFF8mP1cSZIaAzjfrFkzpU+fPmWSznjjxg3s2LHDkJaWNnnatGnflsWcKiql4YUzugAgSVJ1QRAudunSRduuXbvHOVqzZgE1agBDH3dnNxgMWL58uSE9PX2e2Wzeq9FoDuoptRv83XeXPeLj24PSHP/4c+bMmVujRo0v3NzchNOnT9/38/Nz6tChg22u5f/9H9CkCUsdy+L+fRZ7LmVTyXXr1qGSk5PSrVo1DtevA8uXA/XqMYO+fz/LLXZxAWrVAtq2BRyev05EsizjyJEj1oiIiPTExESdLMs9ABwRRZFKkuSh0Wgu+fn5VWjatCmKFU8vgpiYGKxevTrdarX2mT59enCZTayiUgKeq+IIWxFF8abVam0VHBys5NAimDwZWLkSuHjx0SF7e3v07NnTnuf5ngCuWiyWXg8tFm5fjx6+oPQhCKmRXR5So9EEtGzZUmjXrh0sFovDrVu3bFMgS01lBvfdd3MeL1+ehQn69wdKIZpesWJF3H34kKJZM1Yht2cPK974+WdgzRqgZk3g6FFmjLt0AdzdgZ9+AjZvBvbuZaGPZwzP8/D39xc++uijcgMHDtRrtdp9AJRZs2Yt12q1e9q1a+fcsWPHMjW4AFC5cmX07dvXQafTqalkKs+cF9LoAoAoihGyLE9ZunQp9u7da1YUBdBogIULgQkTWJw3k8xKrjYAkrVabScQ4hhdo4Z9prFdhkwxdEmSPKxWa22dTge9Xg+O4xAVFWXav3+/ucgngt9+Aw4ffpzFkB2NhlXRlSIM4OnpieTk5LyT6/UsV7h/f2Z8N25kIY65c5nhDQ1loQ1PT+YBz5vHUtn272eZE88IHx8fjBkzRg8Anp6eo1q2bFnf39//iZWlV6tWDRaLpbYkSc9nvp3Kv4YX1ugCAKV0MYAmZ8+ejfvnn3/YwaZN2Wba/PmPzvPy8kKPHj2Utm3bQpbliXq9PgSAe2bFWjdQGgVCPvUPDu5CKeUPHTqUvnv3bgiCcEWWZe8zZ85cmzlzJi5fvlywlapfH/jww4IX6+fHMhk25gkj20S1atXw8OFDzqZwEM8Do0cDb77JbkInT7I0tdGjWVbEuXPAoEHMI+7fn4Vjbtwo0bpKw7Zt25S6devK7733HunWrZuuhHr0NuHk5IQuXbro9Xr9j0/sIioqNvBCG11RFKkoihcsFkvvPXv2pOzdu5cajUbgk0+Yh3f6scZN27Ztuc6dO6Nbt27OXl5ejQgh/QAgW6nw9c4hIQdf37LF505U1OeXL1++TSndKIpiktlsfgsADh8+nL/Fu38f6NcPaNGi8AWXK8fCDSXg7Nmz0JamxNjODnj/fVYxN20ayxlu1YrlFW/ezAR+UlNZXPwpEB0djbi4OO5pljS3bt0aiqI0kSSpxG2eVFRKywttdLMQRTHMarX2PXv27OUdO3YYYGfHPLypU3OEGfR6Pdq0aYNmzZpp9Hp9rxyTUPobKL3b5Pz5/3w5axY/ZcqUalOmTPk6c/6rhJA+9+/fN966dSvvAs6eZUI5Ol3hC61fn+XwbtrEqumKQUxMjNKwYUOl1N6g0cgKN6xWVqpctSrLtggIYCluWbmxCxawcMkTYvv27XKHDh0UZ2fnJ3aN3AiCgNatW3NarXaPJEnuRY9QUSl7XgqjCwCiKB6xWCz+169fTzp37hyTgBwyBAgMzHNu9erVYbFY2kiSlF99sQRgOQhpDEIeGebp06f/brFYBm7ZssVgtebSO09KYhtatnL2bLE31Zo3b86Fh4eXPNvk9m1WhKHXsxuExQLUrs3izP7+LDTi4vI488Lfn2VC3LkDdO3K4r8Wm+obiiQkJASKonAdOnR46n9/Xbp00drZ2dXkeX770762igrwAhhdSZJ4SZK8bDlXFMVEnuevPEqq79OHxTePHs1xnpOTE+rWrQue55Pmzp2bMGfOnE8fvUipDEotAOwyPwBCBACYPn36LqvVunvevHnGbdu2ZURHR7N82kWL8t9Ayw9C2GZW+fJARIRtY8Da9ZjNZpKYmGjzGABATAxgMLCc36y497vvsnBDTAw7XqUK83Sz30xatGDHPT2BH39k6x4zhnnplLKxJcBsNuPYsWO0d+/epEjt5CcAIQTdu3cXFEWxUdVIRaVsee6NriAIEwHESJJUpFarJEktKaUd6tTJlNR1cQHat2dqZLnaAPXr18/h888/17do0aIipTRvvSmloaB0GwhpD2Bz1uFJkyYNsFgstS9evLh906ZNVpqRwWKlrq55piiUY8dYelcBxMbGYsWKFVi2bBndu3cvzGYzypcvL1+5csU2VzcrfDFtGottt27NCkdyXoTJU3Ic21jLz5DyPODjw75eupSVN8fGss+UApcuAXfv2rQkANi6davi6elJfbLmfAbUqVMHTk5OiiRJI57ZIlT+tTz3RleWZQcAEARhVFHn8jzfp0qVKlyOCrKuXVmhwM6dec63t7eHl5cXOI4bKklSQYIGfwP4GIQIIKQvCCGZ5cPvU0pvJL7zDoWXTY54Tl55Bfjvf/MNM1itVqxbt07JyMhA3bp1yZ07d5QFCxYgJSWFL1euXNFzp6SwnGGLhcVr/fzyP+9//2MVbQArRR4wIEcMPA+CwMITlSuzjAhCWA7wyZPMS16+vNA0tLi4ONy4cYPr3bs39yQzFYpCEAT07NnTjhCyXJKkQZIkPff/ByovD8/1H5skSdUopV/WqVMHgiB4F3W+LMvfREVFafPEXD/4gBmH8PA8Y3x9fVG9enUnAK/keRFg2Q2U3gOQJahNAEAURYM+IeFV3cmTiLbFEBZEv37MW8xGamoqTCYTN3z4cPj5+eG9997jxowZg5EjR6JRo0YFW6udO5kGhYsLcOIEyw8uyLhZrSzOm2WQ7eyAM2eYUbWFrHnHjwd692YZHDdusONbtjBPPhdbt26VW7ZsqbgW96ngCVCvXj0yaNAgwcXFZblWqy34kUNFpYx53nqk5Ybnef7A1atXXwHwW2EnSpJkTwi5Sikla9asyfN6dQcHuE6YgH9694ai0eR47fbt2w4cx30JYF2BF6A0DsAYEGIHQv4A0OczoFywv/9HoX/9tWhQpUr2bm5u0Gq1SEpKgs06sPv2sW4TsvxI7LxChQqoXLmysmfPHjpw4EAeAMqXL4/yBaWb/fe/LNe2dWugcWN2rKgbQWQkMHhwzvMePmQbauvWFSkzmYeKFYE5mV3YXVxY2fPDhyw3eNMmnDpzBhkZGXxAQEDx5n2C1KlTB9WqVXP47rvvBkqSdEYUxe+f9ZpUXn5eCO0FSZLsABgBOIiimJbP646CIByWZbm5o6MjWrZsme88Pt98g6R27ZDUqVOO4w8ePMC5c+cgiqJtz7yENAKlYSBkC4AD0owZV3ie36Uoip5SygNAixYtrB4eHoKnpyeKlCg8doxtxm3d+uhQWloalixZgsGDB8Pb2zvvGIOBbRB27w6sX8+yDYojhbhhA8vVHTs25/E9e9icZaFkZjQCx4/D6ueHk927o0r37qg2efJj9bXnhPj4eKxcudJssViai6J4qegRKiol54UwugAgSVJvAL/pdLq7hJAki8XyqyzL+wE4ajSaFRaLxbNOnTrpAwYMcDAYDHDKT2DGaGS78ocPM88sk1u3bmH16tVGRVEqiaKYatOCWFDyDID3QekZSZIcAPAAHgCAIAjzrVbrBACYMGECCux+ATDpx4QEoFKlHIf37duHiIgI+sknnxBNlneekcEyJgBg0iQWRy1JfHTSJKBXL6Bz55zHZZllORRV6FEMbt26ha3LluGz//s/EJ4HmjdnnnZiIpPAtFXFrYwJDw9HRkYGmjdvjn379llCQ0N3UUpH2vw3oKJSAp7rmG4uzgGAi4uLW5cuXRq0bt16kpub2+9ubm6bevXq5anT6cxXr151mD17NhYuXIjIyHy6sev1wKpV7LE6282mSpUqqFGjhiIIwhZJkmwNubwN4CgoPQNCZokzZjTM/GfVAtB8+eWXEwGA47jCDS47iRncMWNYDm8m3bp1A8/zytKlS2lGWqaD//33wNq17KaxYkXJDO79+6yzcS6PHwCQlgZMmVKmAjlVqlSB0c4OyYSw0MPly8yTXrmS/T4oBQ4efNxh4ymwZcsWeceOHfjzzz+xatUqRVEUDcdxb2o0mgPF+BtQUSk2L4ynCwCSJPkC+AcAP3bsWGTfkMnIyMDJkyeRkJBAnZ2daZs2bbh8d/opZboMggB8/vmjwwaDAevXr89ISkqKs1gs8xRFWSGKojXvBJkQEgQgDJR+C0I6ALgEFiN/CEpNmSERQ+fOneHv72/bGzx7FmjQIMdmlqIoWLJ4sTxqxQre+bffmHRlaXf+9+17LITzlPjuu+/k1q1b861bt8774oMHLPabtQFnb8+84SeEwWDAokWL8PHHH0Or1WLz5s3KvXv3uIoVK9LY2FgiCEK6IAjrJk2a9NETW4TKv5YXydOFKIoXAWh4np/w888/p//99980K1PBzs4OnTt3Rr9+/Uj37t3zN7gAM1jDhgFXrjCPKxN7e3uMHDnSbsCAATU9PT0X6HS6/QUuhBA9gN0AWLdhSo+B0vsAPgYwMnOtGTqdbrdDcXRtmzdn+rhz57Lvr1wBN24cXunWjf+5b1/6182b1lIbXICFJ/LzcrO4e5cVlpThDblmzZp8RERE/u5zuXIsnk0IC7MkJ7PsivHjy6wKLjuHDh2Ch4eHXKFCBTg6OmLUqFGcm5ubnJaWho8//hhjx451sFgso2zJDVdRKS4vlNEFmMiNLMsL0tPTex86dOjQ8uXLDXJxH4U9PZkC1w8/5HiM1mg0qFmzJkaMGOFgtVo7SpJUkLDrqwCGgtLcAgqzASwDIe1AyGCTyfTH6dOnrebi6Cy4ujKjExrKChcGDICvry9qt29P4uLiivc+84NSVqONxZ0AACAASURBVCxSWHaFuzvTrShDWrRogdu3b/NKUSGEN99kOcxmM9Oq0GhY3Hrz5sLH2UBYWBjWrVuHCxcu0NatWz/aKSSEgBCC1NRUsm/fPrlcuXLIbP7ZttQXVVHJxQtndIFH6mJ/mc3mrvfv30/JIWRuK927A9Wq5fvPrNFo4OnpaeI47t18RgJAAoC8Ygssp1cBkArgHifLx1Pu3BF++umnooOVWXFNR0dWknv0KCucyNzocnNzQ0JCQulTChISWD5u3boFn0MIK64ICSn15bKoVKkSBEGgsbGxtg2wtwfee499HRDAmnwaDCz8MnUqyzG2EbPZjFWrVim7du2Cm5sb9fPzI7mbjr777rv8lClTcPPmTd5gMODBgwcKgGs2X0RFxUZeSKObRWajweDt27ebHj58iPSsXX1b4DjgrbeACxfYTnouXn/9dUdFUZZIktQuxwuE2AFYCKDgti+UXgKlB6bNmuUw6uefryUnJ3MnT57M3/BSygyhogDLljFD26sXS6nKVl4rCAI4jiv98/6+fWzDrqgwhcHAOk+UYYjBxcWFRkZGFn/CWrXYB8B0I+bOBb77zubhS5culQkhGDt2LHr06EHat2+P3LoPHMdBq9VCr9cr8fHxeOWVV7QajWaDWq2mUta88H9QJpPp/QcPHvz6v//9z7JgwQJ5xYoV6Q8fPix6IMD+kX18WLVarsded3d3tGnTxqzT6Q5+/fXXN2fPnt0n86X2AFJBaSH1splQeswjLq6Z+9279ZNnzUpf+N//pv36668Zhw4dQlRkJDNohw4xI8jzTEwmK5Vt7FhW6HDqFAAgOTk5h55uWloainxUz49r1x4bsMJwdWW5vGVYrluvXj3OZu2I3Bw7xn4eAweyPN/Zs9mmYj6FMLlRFAXt2rXjbAlD2dnZ0ZSUFLRo0YJYrVZXsDRAFZUy44U3uqIomiZPnjxYURQ7Sqk+Li5u6fr16w3Hjx9HfHx8vmOMRiMMWQI4o0axf+hcj9KEELz66qvaCRMm2FkslmqCIHTMfEkGMNzmBVKa/vEPPyT32L17YXpqavtL//zzRUhIyJKEYcNg2byZFTUU1E0iNhb45huAUnTs2BFJSUlk9+7dyqJFi5RFixZh4cKFSmxsrO3G12JhOhRZVWtFceMGC8OUEc2bN0dCQgJXrBg3wNLbdDr2s4iLA8LCWKy3bVt2syoiZKHRaMjGjRuxePFirF69ulDLazKZ4OzsDCPToFAA2HCHUlGxnRfe6GYhiqIsiqJVluXJKSkp3x86dGj5ypUrDfkZ3l27dpnnZ7XzIYT9M8+cyfJXc8FxHNzc3AxWq9U+cMqU0RT4GsX9uVF6jyjKjGmzZsVMmzVrVodDh74/1r49TlSqxK5fUPVX1apsVz81FXoAI0aMIGFhYcTFxYVMnjwZHh4edPXq1QgMDKR59Cby48oV1j/NVu2D6tWL9RhfFI6OjrCzs5Ojo6NtH/T996zTcfXqrCFnfPzjsMvGjUwdrX599rRQAEOHDuUCAgIwYsQI3Lx5s9DNPLPZzF27dg2EELRs2VLQaDTrJUkqXStnFZVs8DNmzHjWayhT/P39aadOnf7s1KnT73/99Vd0eHh4z5o1a2rCwsKwcuVK2Nvb4/jx43zmuWxQuXLM+G3YwDo7ZHukJoSgXr16muPHj7fWmkx9iFZr//PIkb/7+/vbLihLSD1IUltQeh6SlFAzOjokxcOjQWr16jXrN2okAMzDKlBfduJEwGgE5+uLs2fP0iZNmnDe3t5o3Lgx16lTJ5w6dQo8z5MqVaoUvo6VKwEvr4JVxwBcu3YNK1asoKmpqaRW7dqsguyvvx7LOxYDRVFgsVjAZ7upREVFEaPRSH18fAqPW8TFAZ99xmQzP/jg8Y2iXr2ca+E41hevVy92g6pShW1GZsPOzg7Vq1cHpRSnTp1Chw4dcqwpO7IskwsXLtDbt2/TN954gyQmJlZ48OCBb8eOHUufPqGighesOKIkzJw5czDP88sopVSW5WgADQHg9ddfR/369R9Xi1mtwMiRrFqtV68888yZM8casHu34NS/P3abTBmU0klTpkz5ttCLE+ILIBrsEbUpKF2deZxYBGHVj59+2rfRa685xsbG8teuXUOjRo2sb731Vl7La7UiIjISO7dto7Xq1lX69OnDZ4/vhoeHY/v27Rg6dCiqVatW8Hq++AL4v/9jHnQ+XL58GVu2bEGNGjVocnIyANB+HTtybj//DN33xdOCMZvN+Pbbb5W0tDSO53kIgkA1Gg3V6XTEZDJh/PjxBRtds5kVsNy6xTzdrJsRpSybY/duJqiTHUqZ9oS/P7t5ZuPPP/+EIAgIDQ2l9evXl/v27Vtoxdn3338ve3t786+88goopViwYIHJarXWFEXRxtQLFZWCeWnCCwUxffr0DVartbIsy+6iKPoC4DiOG79r1y5s27ZNfvRYLgisL9js2SxPNhd9X39daHD5Mg5GR6Nt27Z2PM93LfCihGRVZnwAoCEoPf/I4AIApVRjsYxIdnRs4TFu3HXtrl17ACAsLEw4f/58nrvgb3/8QfeuXYtxa9aQfm+8weduUFm/fn107txZ2bx5c8HPzUlJTPUrl75Ddm7evInq1avLQ4cOJWPHjiX169fHmv37Mc/DA2fPnClwXG4URcGPP/4oV6pUCV999RXGjx+P999/n/Tp04erWrWqYjKZyC+//JL/3X77dqBhQya4/tNPjw1uFgsX5vFkAbCnk7AwVlbcrRuwbh2sViuWLVsmnz9/np48eRJeXl5Knz59iizxtVgs5OLFi3ThwoVITU1F48aNIQjC2KLGqajYwkvv6RaEJEleOp1uuVar7fzGG2/Y16yZ2SB2925gxw6WvpWdyEhcOH5c/u3WLfLGG29wO3fuNPE8/83kyZPFHOcRUhHAEQCNQGnRgVZCGoB5wxVXjRzpFevjs7Vr164ebdq04dPS0rBq1SrZarVygwcPJu4cl0OoJztGoxHz58/Hl19+CS4/WcawMLYh9dlnBS5l6dKlsq+vL+fn55fDC43avp1yEyeSnWPGyG3atOEvX76sJCYmktatWxM7OzsYjcYcpc7Lly+XZVkmo0aN4jS5ZDQBICUlBatWraLlypWjI0eO5DiOY55qaCjrXuHoCPTokXeBiYk5m2cWRMeOSGvdGitdXBSnKlUwaNAgDgB4ni9WR+UffvhBqVevHqlduzZZvXp1mizLdVVvV6W0/GuNbhYzZ87sDeBXPz8/wd/fnz3aLl7MqsH693984qefssfy8eMBAMeOHcPhw4d3T5069XUAACHvAKgPSqeDEG0+1WqFQ8gXAJKkGTOulStXbo+fn5/j/v37aa1atWjfvn25R8ZiyRKmzDVyZJ4p5s6di5EjR+av5TtlCisG+fjjHIcVRcGFCxeQkpKC48ePY9y4ccjToVeWYY6Px6noaHry5EnUqVNHcXd350+cOEF5nqfp6emc2WxG/fr1qdlspvHx8eTDDz8kdoWoh6Wnp2PNmjVUlmXlo48+4oUJE9gm35EjTF84P3buZCl0s2cX8oMEwi5cwK7du/F/ixdD/9pr4FasKPT8/FAUBXPmzEHfvn3RqFEjbNq0yRQVFXVKluWtAEIAhBWqzaGiUgD/eqMLAJIktdZoNHscHR21lSpV0raxs9NWDwkBmTDh8eN4YCCL92bGTBMSErB8+fKMj+fNW1f+/v1ZADIAKKA0b2yiGPzdrt20JFfXmWdatULXrl1phw4dSI7WNjduMKObTwbC0qVLlZYtW3J5RGUoZRVm+/cDHjm7Et29exc//vgj3N3dlU6dOnG+vr75LywmhnWjePvtPC+ZzWYkJSVh69at1GQykffee69gwfVc436ZOZO2j4wkNWfNYh5sUYpsNrB48WKlUqVKZNDVqwTNmzPpyLp12SZbMVi3bp18/fp1vlGjRkqDBg241NRUXL582XD37l0iy/Ixs9n8NoB0URTLTpJN5aXnpY/p2oIoiictFkutlJSUt65fv35uw8WLcdc1GuCXX9gJwcFAauojg4uUFLgFB8PDw8MSXr9+EgADKE0srcGVJImcaNt2ZpynJ6AoKGexkDy9xGrUYDmrn332uPlkJhUrVlROnz6NS5cuIUcu7PXrzDPOJ55bqVIl2NvbK127di3Y4AJMoyIqKt+XtFotPD09MW7cODJ+/HibDC4AaHke/n//jYz79ylq1y7a4M6fz1rCF8HgwYO5GzduIOzNN4HXXwc++YRVshWToUOH8uPGjcOdO3fw559/Kq1atcKIESPsx48fb1ezZs0OhJD7Go3m1pw5c36SJCn/uI+KSi5UTzcfJEkaWk6n+3ncjRsCP2wY06/18WH/uEYjMw6BgYgYORLbd+yInjJlSg1JkqoASBBF0VTS686cObM3pfS3Bg0a0HYA8Vq/HtyOHXlPpJS11HnnnRwbTbGxsTh69Kg1JiaGT0tLI3q9XvH19UVPg4HD7dt5uwFnsnz5cnh5eSm9evUq+iZssbDChNKydCmwZg2+HThQaduxI9eqVauix6xdC7z2GsDEaArl8uXL2L59O5o0aSK/Vr48T+rUYW2NfHxYGloxMJvNmD9/Prp16wYfHx9kKdgpioJbt24hNDTUcvXqVQ3P8+tlWR4PgGZ+ZOTX6UTl341qdPNBkiQPQRD+amYwePdMS9OTTp3Yxs6KFWyTJ1OIJSkpCT/99FMKIeQ3s9k8AsD7oiiWqMmhJEmcRqOJGThwoEetrDJdq5V1iliyhMVkc2+QnTrFjGD79nnmM5lMuHHjBn799VdMKlcOfN26TL0rF99//701PT1dGD58ODw8CmqInMmRI8C8ecDvv5fkLTIUhTUI3bcPaNECMw8fxsSJE6EvqiFm1t9pMcqS7927h5UrV9LBgweTatWqMenMRo2AoKBitwtat26dNSEhgZjNZp7jOBgMBgiCgJYtW1p79OghnDhxAkeOHDEbDAYtAGg0GqMsywLP8w95nv/baDT2F0XRkKmz7AQgSQ1L/DtRFfLzQRTFeEmSfC84OV1tFxVV02XgQLYBlZU7SilACO7evQtBEMIzMjJGZA41lOa6VqvVPUc/NEFghrdCBWZwjcac3XqTkgrUm9XpdKhXrx7cypVTTNOnc/YFPJanpKQIn332GWzS/W3X7nHIpaT0789S1/btAwgBCQmxrYw5JIQZ/N27bb6Uu7s73N3d5Z07d/KffPIJ4ffvZ7Hw7t2B8uWZaLqNDB06VACA4OBgcBwHPz8/hIWFYf/+/XyPHj3Qtm1btG3bVqsoCsxmM/R6vZ5Sivv377usXLmyByHkjiRJbxFCdlFKHezs7H4F6z6i8i9DjekWgCiKsslkmrq5c+c0GhTEqp6uXGGFE6tXA0FB8Jk7F8a0tPblkpPBWa2jRFHcUPTMBaKjlObRJaDly+OSnx/zeFu0YAYri1dfZe3PjxwpcNIBVapwl+vUwV8nTuR5zWq1QpZlFJZlkANBYDedDSV4m//8w0IKU6cCu3Y98lh5ns/SOSgcP78SaeqOHDlSSEtLI6mpqSzdjhBWWBEQwETsbZWazKRLly7w9/cHx3HQ6/V5KtuyjgOsmtHFxQXjxo3jO3To4AjgrwYNGmiGDRsGqJoO/1pUo1s4W+/eu+cY6efHQgpNm7LNpGHDAB8faDw80MzX1/jhsmXWqV9/3QKEBICQH0GIJwipgDy7YIVCAWDevHm4evUqO0ApNm7cSLdu3cp24I8fZwbjl1/Yxh7ANtP+9z8gJSXfScspCqqOHYu///47x+ZaSkoKFi9erFSvXl3JN6+3ILK87+KgKMBHHzFtixYtHqWEpaenQ1EU2BTiOnaMtfUpJhzHQRAEJSYmW9X2tm1sc+2zz1iMuISYzWbwPF/k4rVaLbp27aqZOnUq3nrrLW2moS6DwLjKi4gaXigEURRlSZKwdetWTJky5fELPM88pYAAvKYo+u/v3k0z3r4dMmH+/AQAZjAlsoMAzCCkP4CpAL4FK4Iw5GdlRFE0SpIEANi4cSMqVKigJCcncwBI+/btKQCCcuVYaOPMGVbu6uTEDNi2bcz43rvHuj5k5/hxVHrnHTgmJSnff/89tFotlWWZpqenC02aNKGvvvpq8aQLa9UCatZkHnd+HZdzM2sWcPUqCw9ky79VFAWbNm1SPD094erqWrTV//tvNr44beYz6dq1K/fbb78hISFBCQgI4B7FhQMCWKx+1Sp2E/vPf4o1b25diaLIKhSJjIy0yrL8d7EupvLSoHq6NlDY4zfHcejZs6ejXKHC6sC5c1dIM2Z8DkrvgdJmALqCGWAzAEcAiwAkghANCPkBhPiBEG02j7gigKYAkGlwAQDHjx8nR48eZe5lliqauzvLpjh8mJ20fj3bcMuOycSaXTZuDJ7nafXq1bl27drxXbp0EYYMGYJevXrxxfJys9i1q1BVLwAs1hwdzeLO//lPnoKHs2fPIjk5GSNGjLBtARMmAPk1tbSB5s2bo0qVKggJCeH279//OIA8eTLQrBnw5ZesJX3mE4atWK1WGAwGLjw83OYxFosFJ0+etJjN5m+KdTGVlwbV6BbN6oYNGxa6y1y7dm1MmDBBb7VamwFwefQCpWmgNAaU/geUhoLSDwDUBRPGpgCqABgN4CYIqSfOmDFcnDHDV5wxg+co7UEIydqY23/w4EEhKnee7KxZLHMhIoJ5bLNm5czd/fVXpjkrCDAajWjatCmaN28OX1/fwoVxiqJnT+YdFoTVyjarZs5koY980sE4jgOllNgkSZmYyNLjSoFPpjLZqVOnuEcx5MhIFpb573/Zptq+fSxebyONGzeGq6srtm7davOYs2fPUkLI36Ioqq2A/qWo4YWiCac2BB15nkeDBg3kq1evzgETuskfShMzv/rk0TFCfgdwF4AbAHcAbaZJUhCAIQBM1729X1s3fHj3dWvXommzZujSpQvs7e3BZ6mFBQezXfl+/ZiR3bWLSThGRAAdmfa62WzmbS1aKBJBYOlqly7lLUcODWV6t1999ai/W35UrVoVGRkZJD4+HjkyNvLD3p7FYEtBu3bt0KJFC6xYsUL+9ttveRcXF7lzcDBfvV8/aDt1epzVEBvLNigLEQbK4ujRo7h79y66d+/Owj9FkJaWhuDgYKPZbM4/YVrlX4Hq6RaCJElDBEEIdHR0tClw161bN73Vah0iSVLx4qSU3gGlFlA6FZROAaV/A+gM4DAA95rR0TU7hoS4fzl7drrXvHmX1k2ciL29e+PutUxn6ZNPWBubnTtZN10vL7Z55eTEclPBNuUK1OstCeXL5zVMJhMrlU5IALp2zasQlo1z585RnU5HbfK4MzKAli1L1p4ILH588OBBrFixQjYajWh44gQcr1/nN9Sti+MVKgBff81iztu2sRziCROYh14AZrMZy5Ytk8+dO4fhw4ejTZs2Nm2Y7t27N4NS+pMoimEleiMqLwWqp1s4k2VZRsuWLW36p3JycoKrq6uSkJAwUpKktQAqlliVitKbmV+tBrC6CwAQ0qjV8ePy5dq1b9aLiMCGpUsx7NdfqX2TJsR+xQr2uOzvz1qsr1rF4r9ffAEA0Gq1SlxcHJdHzKak+PiwkuSEBJaKNWkSM/JhYTbpJ3Tp0oXcuHFDWbJkCR0yZAjn5uaW4/Xo6Ghs375dlmWZtNq/nxi0WnK6TRs4OTnJNWvW5Nu1a4fcYwpi165diIyMpO3btuVdXF2RmpysxCsK8fT0JDVr1mSpbNmJi2P96t5559GNJTU1FRs2bKD169cnoaGhioeHBxk7dqzN6Xa3bt3C1atX0y0Wy1c2DVB5aVEr0gpBkiQKAOPGjUMFG0pPASA+Ph5r1641WCwWzmKx6AkhA6dPn17KioI869ISQiIopTXKJSdDbzRi6IcfwnHKlMc6tPv3A25uwIcfAq+8gqiFC3GhShXljVatOHLrFtuE276dGU9vb+bhNW3KdvENBqZpGx8PuLgwI0pI3oq4tWuB06eZZ/jFF0z9q3Ztm9+HxWLB/v37lfDwcHzxxRc5Jl+yZImckpLCv/POO3B1dYWjoyNkWca1a9cQFhYm37x5k9fpdMro0aM5FxeXgi4BAJg/f77Svn17rsPy5cDQocwLzyItDVi0CJg27fGxzOIXtGwJdO8OsyhibmAg7O3tYW9vrzRp0gQdOnTgipMR+Pvvv5v++eefGdOmTQu0eZDKS4kaXigASZIePTufOHECtnSSBQAPDw+MGzfOnuM4HgB0Ot0XZb02URTNlNJaAPCgQgXc9fJCJMexjaCePYEffmAZDh4erL2NTocaDRogLSOD3Lt8mXUENhhYLDgkhKWgLVvGMh0kiXl4kZEstvnJJ8CcOax8dutWZog8PYGLF9l1Nm8Ghg9nnmExDC7AUqg6d+7MmUwmLi3tsUTBH3/8AavVyrm6uiqXLl2SXYOCoANgb2+PJk2aYOjQofykSZNQp04drFixQjl9+jQK25BrV6kSd3DfPtx+/332JJAdqzWvRnGWMe3QAbh3D2Fbt8LZyYlOmDABY8aM4Tp27Fgsg0spRXh4uKwoynabB6m8tKiebgEEBgauN5lMg7O+9/HxweDBgwsbkoPdu3ebT58+vVUQhJtffvnl1CexxswbQzwADBkyBLXzM3p37zKBmgoVcODAAYSFhdFRo0aRLNEWm8m66aSmAunpbOMpIgIYPRro1InFQE2mnGXKNkApxfbt2+Xw8HDe0dFR9vb25i9fvowhQ4agfPny+H7JEoy5fx/O8+fn0V2QZRmHDh1STp8+zXl6esLHxwdnz56l5cuXJ2+++eajVkxRbdsiuk8f+E2YgPxE1QvCbDbjZGgoGr3+OhIaN6a1Q0JISVrSx8XFYfXq1bGTJ08ufpKxykuH6ukWgMlkytEX/dq1a0hMTCzo9DwkJSVZOI4LeVIGFwBEUbwLYCAAPCioWmvZMhbjBSthdXZ2lr/99lucPXu2eHdbnmcfLi5Ml9bOjuW4nj3LRN//+1/WlbeYEELw1ltv8WPHjkVAQAAfFxenmM1maDQaODs7w87R0Rr73nv5Ct3wPI+uXbtybdu2lW/cuIGjR4/C0dERFotF+e6775SHixYBCQnYM2SItULPnvkb3OnT88Z0wfKIFyxYQC+EhSnnRoygxhYtKHbtenzzKQZRUVFUUZSdxR6o8lKierqFIEnSEgDjADTheb6VTqf7btiwYXqtVltojNdisSAwMNCqKIqTKIo2CAuUjsDAwFCTydS6cePGtHfv3iRHlkJWfPLWrUd6wJGRkfjll1/Qp08fFKqhawuffcaKDNzcWFy4WjVmgDOr64qLoig4c+YMfH19YWdnh/2DBiktXF0512I0xqSU4s8//1Tod98RS8+e5OKDB+jfvz8eqbdlx2hkhRyZ1XVpaWkICgqS09LS+AEDBqBevXrsPIuFhVUCAoollAMAa9euTb1+/fp7oigWb6DKS4nq6RbORADgef5vnudnGQwG/U8//YSgoCBrYTerzNQmCuCptHMxmUzdAeDChQtkzpw52L59O/3f//7Hmm4Swryzd95h3R/AijnefPNN7Ny5E+np6aW7eEAA22jjOLb5FhbGUtds9AiNRiMuXryImJgYGI1GcByHVq1aged5WK1WRDRtSh/m05qoQCgF6dcP3atX59xmzKC3AYVSiqSkpPx/YYcP55B5DAoKUoxGIz9hwoTHBhdgIZqTJ9lNZsoUFhO3aTkUd+7c0QJQy35VAKhGt1AyvdTysix/piiKHQAIgnCRUnrt119/NWZkZOQ7TqfTwcnJyQigSUFzS5JU+r40j9f5QBRFQgjZADDj++DBAz4iIoKdwPNMiaxyZZbiBdZB2MXFRT558qQCsPhlDlEYW+nTJ6cGQ/v2TFEsLo5JUhYgxKMoCv78808sWrSI7t+/n65btw7z5s3D7NmzERgYSAMDAzFnzhw4XLvG623MHEF8PLvJSBLg4wMnJycuJSWFa968OQ4cOEDyVPRRCvz4Y47QRf369YnFYsk//FKzJst7Xr36kaZyUSQnJ4NSahBFseiWFyr/CtTwgo1IklROq9X+ZDabBwJoSwjZQCmt2b9/fzRo0CDP+QcOHDCfOnXqiNls7iWKojkwMHCRoijDLRZLH1EUj2Wmo40WRXFlGa/TB8BVAKhWrRrezd6m5vx5YOJEluUAICIiAjt27ED37t0REhJC09LSSL169ZTevXtzOltFvn18WMw4s8w2B5s3s6KNLVtYb7XMlLNr165h586dikajIb179yZZnZgppTAajTAYDNDpdHB0dAQdNgwkMLBooRtKWfXdunVAjRowm81YtGgRDQgIQOvWrcnJkydx8OBBjB49Gu65RYFyERwcjCtXrigff/xx/k6J2cx0GsaMAfbsKTQv+fz589i3b9+eiRMn9ir8Daj8W1CNbjGRJMk+swOAC4B7AITmzZub/P39dU7ZPD5ZlrFx40bD7du3U2RZPi7Lcn9vb2/ExMSkWq3WUZTSLWClo5woimX6S5AkiQAYLgjCkl69ejk3a9bs8YsWC6tWAwCdDtu2baOxsbFyrVq1BD8/P6xevVo2Go3c6NGjiU1lw0V1dLBYWIXc3r1M1hHAwoULZV9fX/6VV17Jv118caCUif0MGMCMemY8e82aNYosyxg5cuSj9K41a9agfPnycp8+fVjF4IEDLANj7NgcU/7www9yw4YN87Siz8HNm6w4ZO9eVj5cACEhITh8+PC8adOmTSrdG1V5WVDDC8VEFEVD5ucUURQ1ANzDwsKClixZYjxw4IA5q1SV53kMGTLEftCgQZVlWe4PAI0bN6ZDhgxxtrOzWwMm9wgAxUtutW2NVBTF1VartfOePXuS9+3bZ36UZ6zRsLzblczBfvvtt8m4ceOEXr16wdHREWPGjOGdnJzosWPHbKu53b07p7B6bjQaJjnZogUeook10QAAIABJREFU+Ppix7vvKhaLhW/WrFnRBvf8eWDu3MLPoZTFkR88eGRwz507h5iYGO7tt9/OkU/r7e2N+Pj4x2N9fFg3jFyYzWZasWLFgg1uRARQvTorLsmnVVJ20tPTLYqiJBT+JlT+TahGt5SIopgwderU/1it1lqnTp26sHXr1owsA0cIQY0aNTBp0iSMGjUKzZo1I9WrV0eXLl3seZ6fwnFcOmwQSinF2v6xWCx1z507dzQoKCg9JSu+OnUqq1Qz5d9D87XXXuPOnz/PxdrSVSE4mFV1FQYhuHLlCs56ecFn6FDui7594WZLnrC7e75GEQDzoPv3ZzHjb75h2RMAQkNDsWfPHrz99tvIXfJ87949VMxeCFG+/CNtiuy4urqS/fv303xTBJOSgA8+YDcbNzeWOlcI6enpZgBJhZ6k8q9CNbplhCiKsWaz2S8qKurvDRs2GCzZepfp9XpUzVIEA9N3HTp0qDMhRAfWpPBJrivRZDK9kpSUNP2HH37IuHjx4uMChvbt821pXrlyZdjb21sLzP3NzsKFLHxQBLGxsbgxaJDcsGtX8O+8A3z+edFzOzvnr1SWmso86LFjc3QGDg4OxsGDBzFo0CDUqVMnn2Gp1GKxPA6p9enDvOlcDB06lOd5nmzcuPFx2EeWWRijQgWW8RAczPrmFXDjyiI9Pd0KILnoN6vyb0E1umWIKIoZZrP51Tt37uxdvXq1wVTAPyQhBN7e3mjdurWi1Wo3ZcaHn+S66FdffbXQYrF0+u2331Kio6NZ/PPgQVbokE96l0ajIQZb0qI++QS4fbvI0x4+fPi4+WVoKKtgW7yYhToKYtgwpiGRnYwM5v0+eMAMMiEwGo0ICgqST58+jeHDhyNrYy43/fr1I9HR0eTo0aMsdHL4MNAkZ4KJoiiIiYnBgwcP4OPj89joGo1MztJoZPHrBQuYwS5kE+3evXuIi4uzh+rpqmRDNbpljCiKFrPZ3D8hIWFjUFBQ+o0bNwo8t1u3blp3d3cPAAFPaW1nLBbLuL1796ZRStnj9YULrNlmLhwcHMjt27eLjuv278/mKQI3NzfExsZysiyzLhKCwDxunY4Z/fzyhbdtA7p1Y19TyrIk7OyYyE5meCI6OhqLFy+mDg4OZNy4cahSpUqBa3B2dsbQoUPJ4cOHufvh4cxzzYz53r9/H4GBgXT27Nn4+eef0bFjR/nVV1/lYDQyESFFYTcKOztg1CjWhj6wcO2aU6dOwWQyaQAUr9+7ykuNanSfAKIoKmaz+f3k5OQPNm3aFLdixYq02/l4g4QQVK9eXavVar+dOXPmp5IkPdFQQyYbU1JS4o8ePSpTSpmQzapVzKhly2Tp3bs3d+nSJS7HxlN+tGljk5TjhQsXrKmpqawrbxYffsjUyWbMYCXF2Xn4kOXDZm22paezhpwGw6M4anR0NDZv3kzbtWuHwYMHc7bILFosFgiCACdByJFDvHXrVrlOnTrK1KlT8dVXX8Hf358Hpeym0Lp1zvcYGMgU2YqIS3fp0iXrSzVHV+URqtF9QmRmEGwwm83VY2JiPlu7dm16fgasa9eu2sGDB3vVqFFjrk6n2/YU1qWYzeaAo0eP3tq9e7dJoZSVt86bBwQFPTrP1dUV9evXpzt37lQKTSvs3Jm1pi8ARVGwbt065eHDh8LEiRORrwyjJLEwQkICyyMGmJG9fZt1EP7oI+Ydr1r1yPitX79e2bBhA5o3b047duxIbFX9ysjIgFarpbyPz6NUsdTUVMTFxfHdunXjH5VQWyxAly6sVdDgwazABGBVaampQNWqLKZbCHq9HoQQBUDR8ReVfw2q0X3CiKJomT59+nJFUeYePnw4I7cBy/R28c477+gJIR0lSSq+akzx13THbDY3CwsL+2fjxo0ZiqKwtjtDhuQ4r0+fPiQ5OZncvXu34MlOnQLyKQ7JYu/evUhKSiIffPBBwYLfHMc0fS9fZq3WKWXi4RMnss20Hj0AjQYxMTE4evQoli1bpiQmJpJx48ahW7duXHFyfX18fJCenk6s48YBe/6fvfMOi+Ls2vj9zGwDFqRIVUFAaQIKWAARsWNvMdZYk5hYotE0E+NmTTFR38SYaMyrEY1RjBpjbyioKCoWRFEkIAIqVWlSlt2deb4/HkCpmrwpX5L9XReXyM7uzszCmTPnuc99DtdOlaCUori4mG1Us1D3zTe1qohakpKA9HR2kZgxo9n3qm5r1tbIDA0YAAxB909DEITV6enpuQkJCY2mjRKJBKIoEvxJK90qlapEq9WG3r17Nz05OZkFOWNjYPDg2oUxiUQCExMTIScnp+kX2rULKGx6l/Pz8+Hr60ueaWJFz54s6KamsszWwYH53Y4cCRCC3bt3iydOnIBcLqcvvfQSMX2WEfD1qPHdFRcsAIKCcP36dVy7dg2Ojo5CaWkpq9326sXOwZPeCzVMn86aIXr0eKqGuKysDBKJxKBcMFAHQ9D9k1CpVI+0Wu3cK1euNNpJUFJSAkEQCFiX25+1T9qqqqolUVFRmrKyMpZxLlvGFA3VeHl5SY4cOdK0L0NSUrPmL5WVlcKzjrQBwEx5iopYvdTFBRg1CliyBDe//Rbc/fvcwoULMXnyZN74GerIjVFeXg5CKY5u3Ch+um4dDh8+DIVCgalTp/IdamR+Z86w8kF9Vq1iUyYAVgppwnujBkEQQAj5U0yPDPx9MATdP5fTubm5iic1vACzWoyIiKgghKz4vVuCn4G9Go3m+Jo1ayrv3bsH+PqyGu306QCAvn37IjAwEBEREVixYsXjW/AaPvigTpB+klOnTqGkpIR3dnZ++l5QyiZYTJrEFBWZmSzIRUYCwcGw5DgM2L0b0n79mNQtObnOwt+zYmVlha5ubui8bx83efJk2NvbQ6PR4EFBAZOvpac33fDw8suPSzAnT9Z6WDSFQqGAKIrKX72TBv7RGLwX/mSWL1+eOGrUKN+aKQ9nz54VTp06VaDX62dSSvf/BUEXALB06dIhEonkx4kTJxo7OTiwABgYWPv49evXsW/fPkgkEhgZGYnm5uY0JCSEd/7oI5B33210VM+XX36pDw0NlfjVVybUJyuLDbacMIH5GXh7syyySxdWbmjRAqIoYvknn9CpgYHE7sYNFpjbt2cLXcOHs0YP/tcNYQbYVIe0Dz6gCQ4OZPrChVAqm4iRd+6wLLx6pP2zoNFosHLlyqrFixf/unEaBv7RGKYB/8lotdrvTp48uUwqlRpfuHBBk5aWVqrT6YJVKlXTgt4/gSVLlhxYunTp8MjIyH0vvfSSkVVgIBARASiVwJgxNc0N4uDBgzmNRsOlpqZix44d1MXKCoNNTYlJI6+p0+maHxopiqwmrNGwdtzwcLaABbBsc8oUVrqolmZRnkdV+/ZA374sy33wgGWby5Yx6VuLFiz4+vk1L+fau5eVUoYOhb29PYytrMjVsjKUlZU1HXTv3WOllJqgu349e5/OnZt8G71eD0EQ5Gq1WqJSqQxlBgMAAP6DDz74q/fhX0VMTMwlrVbbPikpyaKgoOBLvV4/XqVS/Wl13Obo2bNn+smTJwsuXLgwVKFQoLWzM+DsjAqZDLt27YKlpaXYp08fztbWFp6enggODiax8fGisbU1Z9eI9eLp06cRGBhIFNVtx3VkXXo9k4LFx7Pmg/79G2aq5eVscGa3biCEoLi4mFy+fFn08/MjHM8DJiasHDJxIussq6pizxkzhvkHu7gwG8b6zRtlZUwVsWYN9FZWWJGWBidfX3Srfp8GUMoMbrp0efyzwkK20NeM1298fDyqm2PUYWFhhltKAwAM5QUDjaBWqxdLJJL3Ro0apfB0d8eDqVPxQ+vWGDt3Luzt7Wu3u337NvgBA1D12WdoHR7+uM23mo8++ggLFy7Evn37xLS0NM7W1lYcPnQoZ717N8sUd+1i430kTdxwnTjBpjTExwNgmePXX38tKpVKvPDCC017/up0zBshK4u1HFtZscx3xAimSBAEllFHRwOdO2P38eNiSkoKMTIyQrdu3dCxY0dy5swZ2rFjR2JqagrjS5eYfCwysvH3a4SioiKsXr0aAEaoVCrDfDQDtRiCroFGUavV/lKpNGby5MlmDnFxOMxxNKugQHz11Vdr09GvvvpKMDY25ktLS2lZWRkJCQnR9+rVSwKweuby5cvx/vvv4/vvvxckEglfeuUKvPR6BFMK6cyZbLxPc+h0zCzcxaV2cUuv12P9+vUCpZR7+eWXiUQiQXl5OS5dukS1Wi28vb3JkxcGiCKzloyIAA4cAFxdmbl6ZCRTRtRuJiI+Ph4XL14USkpK+BqnOI7jsOittyB58KCukbq/P3sNd/dGdz05ORk7duwAAGeVSpXxK069gX84BvWCgUZRqVRXBEF4d/v27bqr7dqhND2ddjh4sM7vC8/zsD12jAY6O5Np06YhLi5OUqODzc/Pr+nIgr6qihTEx2P0li0oS03FfxwcUOHsjJKSEvzyyy9N74RUCixcCOzZg5rkQCKRYObMmbxGoxFPnTqFvLw8rF+/niYlJdH79+8jIiIC+flPVGs4jmXKV64w/9vqrLl+QwfHcQgMDMTcuXP5OXPmICgoCFOmTEELuVy8tXQpbTC54syZOouHer0eWVlZ0GjYHNInBpcazG4M1MFQ0zXQJCdPnrxCKX37zp07EidHRy64VSsi7dKl1iTGz8+Pc7t3jzj27w+z1q1x5coV4fLly+TmzZviqVOnODMzM7GblRXpuGEDeXT/Po4OGIDKrl2F8vJyLigoCMeOHRNiYmK4goICwdXVlZM0VmagFEWVlVh+4AAEQYCzszM4joOlpSUXGxsrXLx4kbOzs6Mvvvgi5+HhQeLj46mjuTmxFkU2IqjGntLEhLX15uQAkyc3O+1BoVDA1dUV5ubmcJLLSc6GDeScsbEAgDMzM4Nep0P62rV0z61b4sGDB7nLly8LcXFxJCEhgVy8eJE6OTkRBwcHXL58uVyr1e4OCwtrpqXPwL8NQ3nBQLMsXbp0Vrt27ZZPmDCBFWyPH2e3+t27N9hWFEWcPHkSWq0Wly9cQOe4OJS4uFBlVha52LkzwHFwc3NDTk4OXbBgAYmKiqJpaWn00aNHRKFQkHHjxtWZX5aTk4MbcXGiYs0a7tKwYSgpKYGHh4c4evTohgE6MRFpxcWoeOMN+Ny9C5KWBmzfzma01XSuiSLzW3j7bdbk8Pnnjw11moJS5OTmIi4uDllZWUJ5eTnPiyLG/PQTPfXaa+TevXuwtbWFi4sL7dKlC7l69apw7tw5nhBCW7ZsKWRnZy9WqVSf/U8fgoF/FIbygoFmoZTuz8rKevx7IoqPZ6wBzPP25k0A7Ba9d+/e6O7uju6nTsGxqIj6jhxJev/0E/wCAsDzPHieh5OTk1hRUYGEhATi4+PD9ejRg5SVlSEqKqr2hR89eoSNGzfiXnEx6ZyTg/nPP49Zs2YhMzMTn332GSorK5lCYc0a5v/w3HOwycrC6bAwkPR0JnV78cW6k4qTkgALC6ZE8PVlCormKCkBfHxgb22N0aNH4/XXX+fnz5+PmXPmoF1iIpkxYwZmzpyJ8vJyMTMzk1pYWKBXr178O++8AwsLC+Tk5EhkMtmzjQ028K/BEHQNPA25RCJ57HLevz/Tqm7cyBoYFi1iQayGFStAQ0JQOHKk4HnhAvHo3x8KhQLt2rVD+/bt6YMHDwRBEPjIyEjRwsJCCAkJQVBQEHieFwMCAmp/H69du0bNzc2FqTNmEMX33wMmJrC2tsbUnj25gbt2IfGrrwThhx+AhAS2qJWSAuXEiSg0NYWuRutbn9u3gZqJEtOnNz/bDWCKh6NH66grlEolLEtKat3Q7OzsYGlpCaVSWXvLyHEcpkyZQoKDgyGK4q/ogTbwb8AQdA08DaVUKm1oZn73LnPjUirZLfrVq8A77wBt2uDwa68JxSYmRPdEJunl5YWxY8eSXr168dnZ2YJcLicvvPACn5OTgytXrkAURSIvLweqqpCfkYHbW7aQkJAQHvHxrB3Y0xMIDkZLCwvYd+iA6yUlZIO/P019+21QjgM4DufOnYNUKkWjJTNKmQ9uTXNDSgowdGjzR759O8uM69OiBdCvH7RaLc6ePYvs7Gxu0KBBdUTGRkZGsLW1hV6vb6VWq7s9/TQb+LdgCLoGnkZ+eXm5pKDgiYG2hAAqFVucGjuW6V1feIGZxAwbhpHz5vEtEhLopk2bRG1S0uORO2vWwFMQMH/6dH5SZCTZu3evcHn2bOCNN6iPj4/gvGQJ9FeuYNfGjeiTnIyOHTsy85vERNZ95uUFzs0Nlt99B+rkhJKSEvz000908+bN4pkzZ3Dq1ClMmDABMpms4VHExrIWY1dX9n83N6ZAaApBYON8GlvcMzMD+vTBkSNHcPz4cXTt2pW2aKQDztvbu+bb82q1+g8bQGrg74Uh6BpoFpVKlS2K4vzIyMjy+kY9KCpiaoApU9htfmIicOgQZHI5RiUl8fqqKrrv+++pNj2dbe/kBCiVEI2MEN21K01PT+d7rFkD/wMHyJAhQyQ4eBBlnp4olMlgdfQoaEkJmx5x8iRz9VKrUfnhh4h4913odDq6YMECsmDBAkIpJSdPngSlFFu2bMHx48dFff16bVISq/HWQAjb34iIxg+c41hDRGMBfPt2YMYMdKnuUNPr9Y2ONSKEoEOHDjr2ctySp59tA/8GDJKxfylqtVoSGxs7++TJk65hYWFJzW0bExOTIIpiD5lM5tqmTZvHGVuLFiwDffCAmZC//jrTvxICMnUqAjp35g4kJMBmwABibW3Nsktzc1RWVSEyLo6MGTMGrdq2fey3AEAulyM3N1c4evQod/+77+B69CiK/P1BXV1RSilyVCraprgYg7/6iuOqF+bu3LlDpFKp2KdPHxIQEICTJ0/S6OhocubMGaSnp4vtnZ2JbM8eNgvuyZbg8nLm7dBYg0NoKCtFWFk1fMzXFxg+HElJSbh9+zb0ej3p3Llzo5lsRUUFn5qaCkppWGxsbHbPnj2vNP/JGPinYzC8+ffSUhTF1SYmJhVqtTpXpVLFNLWhSqWiarV6RXx8fIifn5+yxksBAFuQOnGCLVJt3syy3mrKysqg0+lI27Zt67yesbExTExMRIVC0eBOixCC4KAg3uXzz2Hz5pvY6+Mj3L95k2iSkjhRFOH51lsYNXw4Qb9+zGNh5kzY2dkhPT2d1NzOL1y4kBNFEUVFRdi7dy+2ffIJxpeUQFldkti8eTOtqKggzs7OQni/fnyLsjJWm36SnTsBGxuUlZVh+/btYnBwMOdV01Bx8SJgZISYmBjY2Nhg+vTpTZYOWrVqBalUWigIwkNRFP/78ccfO+v1+vf+Kje5fwNqtboFgEoArQF8B+AOgFMA4gCkPXnu1Wq1EwCe5/lpAKoEQVinUqke/JH7Zwi6/17ypFJppkajaQ3gJbVabfYUj4CTlZWVP33xxRfPe3t7c/369ZMrFArWolvTprttG+vSqtbwbt26VRQEgXuyxvrjjz8CABUEgbNqLIsE0LKyEsb5+bi5di0dd/AgX9MCLIoiOI5jAe6VV5ik6949nImNFfv261cn8HEcBysrK0yfPp1Le+EFxBUW4sG2bUJBQQFnZWVFR48eTY4ePUoSnn8epi1biuYff8y1bdsWmzdvFt1u30b3V17h7mRkYOvWrQDAnTt3TvDy8mKLZbdvA+bmsLS0FMrKynidTtd4HRmAvb092rRpI8/IyDjIcdxQvV6/CMB+AOee8vkY+BWo1WoikUhmcxy3mOd5S1EUeUppzUU9zN3dfUxKSoqyelsAOADgCoAlADOcNzMzEzUazUS1Wu3zR7rCGZoj/sWo1WpjnufjBUGoMUHgVSpVs2PX1Wq1l0Qi2dqvX79OXbt2ZT88c4Ytls2bB3zyCTOVeekl5OTkIDIyUuB5nhszZgxxcHCo+YXH7Nmz0bJly4Zv8MUXgJERfgkMRO7ixTR0/36C5oZOBgXhplZLpdu3k/bt2zd8XK8HunRB6d69OBYfD7lcjsGDB6NmrlpZcTGORUcjNTWVAiAAaJdTp5Dt748MhYJ07doVwcHBWLVqFd544w3UyfIBrFy5Uhw9ejTXnFH7w4cP8c0339DqySAA0E6lUt1u+qAMNEf1oqQ9AFcArjzPe0ml0iFGRkaOzz33nEmN94YgCHiyiSY7Oxt79uxBQUEBeJ5Hjb8GABgZGVW98sor8p07d5bn5+enarXaqSqVKvGP2H9DpvsvRqVSVajV6hAAXgDuPC3gVpMiiqKXW43eFWDGNfv3M2vGhQuBceOAgADY+/lh/vz5/K5du7Bz5046b948olAo6Lhx40j9gEspxbWEBDhu2EDjBw0SU1NTedfZs9FswAWAqCjcXLmStPv+exETJnDwrDfX89IlYNo0mDk64jlHxwZPV5qbY1R5OcRBg8jGCxdgqlSKnX74gZfdvIlBXl61HgomJibCpUuX+FatWsF53Trg+edxTqsVtVotd+3aNcHZ2blJB3UrKysMHDiQHDhwAAqFIv7tt982BNxnQK1WywCEAmgvkUg8pFKpD6XUleM4e6lUqm/RooW2ZcuWvI2NjUmbNm2Io6NjnSBbv2vRwcEBs2bNAgCsWLFCHDt2LGdpaYmysjJYW1vLeZ7HhAkTTHbs2OGZkZHRBYAh6Br4/VGpVMVgta5n3V5YtmxZmSiKj41kLSzYAlWNyXd0NDBxIh54eeG8vz8yMzNFDw8PmpyczGs0GhIbGyuUlZXxjo6OqBkuWfDDDxBXrULkrFlCx6oqyUvnz0M+cGCzEbe0tBR79uwR78vlXHhyMofXXweOHKm7UWJik+OEaijUapF45gxatGwJ5xUreBNRRMiECXW26dSpEx8bGwtBEDDM0xNcWRnir14lJiYmKC4uJleuXBGrqqpoUFBQo8HXz88PBw4cgEajOdzszvzLqc5i3SUSyVSJRPKqpaUl7O3tpdbW1kYWFhawtLSEhYUF5HK5FMD/1HjCcRyUSmUd4/pqfTWXkZHRjPv+/4Yh6Br4VVTXzuQNapje3sBPP7GgK5EA69fjYWAgOEEQegwcyHXt1o0rKyuDq6sr1Wq1OHbsmFBeXs6bm5uLXl5exHnnTlLWtq04a9YsCQh56vyziooKrF69Gm5ubvTll1+G0sqKGZbPmcOUFG+8wUoLSUm13WNNEVFcLJrL5aQyN5e2Xb6cyPz9CcCC+ubNm6lGo6E6nY7T6XQYOHAgLkRFCZXFxdTC0pLv3bs3tm7dSjIyMggAaDQasVevXg0WCDmOw4gRI3D48OFharVabVhIa4hare4sl8sjOI5z8fb2lnTp0kVmbW39p+9H27ZtpRcvXvxIrVb/rFKp0n7v1zcEXQPPjFqtJnK5fLVMJuNqDMtFUURUVBTu5eWJU44c4SRvvskmKpiZYc+UKXReTAyvkMmAbt1gZmaGSZMmEQA8AGi1Wlw7coSzmzMHO8eOpaJSiR4ffcSeP2NGs/uyZcsWoW3btnj++ecfZ5YyGdCvHxAXBxQXs+GVqamNT/at5sSJE6CUctMiIsAtWkRgZsaaHwDcvXsXhYWFpG/fvsTV1RV2dnYAgK7Tp/OIjgaqzXkWLlxI8vPzcfbsWZw+fZrr3r17owtrPj4+iI6OdquqquoD4Pizn/l/Pp9++ukquVz+cnh4uFHHjh0bn+DxO0IpbfINCCHgOK5KFMWsP+K9DUHXwDPD8/xspVI5bfr06UYxMTE0KSlJqKys5JVKJbWzsyMHOnWiNu+8g84bNpDq+WDk0bp1UKxdy2q+gwfX6fCSyWTorNMB3bvjdZWKiKJIUFbGMtZmOHToEMrKyrgpU6Y0/MMZPpx9Pf886yirafWNjQWsrZEhl+PYt98Klba2MFYqSWFhIQkNDSXca6+x0kR2NvNyAJCamgpHR0ehe/fudUsGSXVlzRKJBA4ODrh7967QvXt3viklA8dx6NOnj8mhQ4f+o1arOxmyXYZarfYFMK/JxdXfmXPnzoEQQmxtbRt9/NixY4/0ev10lUrV/C/ib8QQdA08E2q1eq5EIlk5duxY2S+//ILz58+T8PBwSYsWLeDi4kIIIbhjbIzSr76i6775RnRo1Ypr1aqVYN22LY9ly4CpU5kt5KpVbMFNEJjOdvFiNroHAPfNN8CwYc1mpikpKbh69SpmzJhB6isJ6rByJWvUuH6d/X/pUqBTJ+yxthZeW7GCv3X4MJTbtsH60CFUzZwJdO3KJGgbNwLFxTh74waSk5MxefLkugG3spJ1sVUvyIiiiH379uHGjRsQRZHv2LFj9WaVSEpKglKphIeHR23m5u3tjejoaNeqqqq+AKJ+26fxjyMRAJodYtoUovh0e84n0Ov1OHXqFB02bBiRNmKMlJubi9LSUgJgz6/fmWfD0AZs4Kmo1WopgNV6vV62du1aHDx4EKNGjYK/vz9cXV1rA4pzeDg6tGtH2vM8vXHjBhwcHNjvF8+zwOrvD/znP2z67507LIDVm+BQx4qxEa5evQp7e3uxqSylFmNjID2dzUgDgKgonB46FKJEwlGtFl79+8Nx3ToYXb8Oc3NzJlUrKwMyMoBhw9DijTfo0E6d0Kq6pFCLTgfk5tb+d/369WJiYiKef/55TJkypTZTu3XrFqKiorBz506Ul5fXbs9xHLp27Woik8nGNn8A/w7UanVtDOLrDyZ9Gjt2sN+tefOe+Sm7d++m1tbW1LO+ygWsmeeHH36oEATh5T9Sp2sIugaeikql0qlUKgJAAWAiAMHDw6PhhoRA4uSEgUZG/MSJE+Hr6/v49l+hYFN7CwqATp3Yotvhw+znAPPknT274eTeegwePBg5OTlceo2fQ2OkpjIZm1Hdxe2ioiKq1+tJrXmPQgHUBO9evYCCAmjHjcPBmTOR0K4dsVu9mnXcHT3KXhNg9d6lS2tf08jIiAOAtm3bwt7eHj9JwuXbAAAgAElEQVT88IOwbNky7Nu3D0FBQZTnecTExIhFRUW1z3F1dQWldKxara51xPkX4wQARkZGzyJXZGg0wPnzQFgYM6R/772nPkWr1SIyMlJMS0sjw4YN4+rXjMvLy7Fly5YKrVb7OaV0u1qt9lar1U1MPv3fMARdA09FrVabqtXqUQBelcvlM62trTVNbjx1KvDpp2jn4oIG2ahMBnz8MctyN2x4/POHD4FXX326qXg1PM/ToqKipuuhRkbAl182yJqHDx9ObGxscOnSpUb/wG/MnEkL3Nygv3VLDFKpYHXoEFNBcByzrXzuOVZaqF7kKysrw7179zBp0iSIoohNmzaJRUVF0Gq14DgOvXr1IhMnTkRmZiY5cOBArRLf1tYWQ4YMMZFKpafVanUjHR3/KtyNjY11lZWVnFqtxs6dO5GSkoKysrKmn3HlCtCnDzBzJrPrjItj3zfBhQsX8Pnnn1ONRoOZM2eiviIiPT0dX3/9dWVRUdE6juN8AIgArgNoKOz+HTDUdA00i1qt7iyRSE44ODgQGxsbmZ2dnbxTp05NP8HKimWHx44B4eENHy8rY2YyP/3EPHgPHWJG6KdOPdP+bN68WdRoNE22EOPiRTaGp4lx6W5ubrh27VqjjyXIZDRo1SoyfPTox8mIjw/7Cgtj2e6QIay8sHYtqh49AqUUycnJ4u7duzmlUkllMhkHAP7+/rS0tJRs27aNCoJA2tSrU/v6+hKdTtfi6NGjZ9VqdReVSpX5TCfgn0epkZFR5WuvvSa9cOGCcObMGf7mzZswMzMT582bx3FP1mtjY1mNfsIEYPVqtiYAAC1bNtpEk5eXhx07dgiVlZX8sGHDiKenJ6mf4RYXF+PHH3+s1Gq1QwEQpVK5t2XLltr8/PzN7777buofccCGoGvgabQ3NTWVTZkyRcE964JFt27M6rGxoFtQwP5gzMyYCmDfPuD+fTZ2pxFOnTqFS5cuiaIoQhRFQgjhAGDz5s1QqVQAgKNHj4opKSmiiYkJZnCcpLm6sJeXF44fP84lJSU96XcLALjn4EBM/f2BH35g9ecn681SKXNV8/FhzSCffgqr2Fh07t1bOH/pEj9w4EDcycggaWlpZOrUqXByciL3798Hz/Nk9OjRcHZ25mta7mv+8AMCAjitVmsZExMTp1arO6tUqpxnO8H/KHIrKip4uVyO0NBQPiQkBGVlZdi0aRPZv38/HT58OIEoMkWLkxPw1VfAu+8CeXmAvPruPySE/c79+CMwdiz0ej1+/vln+ssvv5CAgAD07t27UQmfKIrYuXNnuSiKy1Qq1YkPP/zwI71eb5yfn5+n0+le/6MO2BB0DTyNHysqKmafPn26a1hYWBNzcOrh7w8cOMAmS1RrXmtZuZJlJsuWAZMmsZbhNWtYc0VSEkRRxI0bN5CUlIScnByBUsqFh4dz5ubm4Hke1tbWKCsrw6pVq7Bx40aYmZkhJSWFGzRoEBe3dStyQ0Jg99//Nrlr5ubmcHNzE/fs2cNVVVUhICAAZWVlWLNmDbX75RdSNXQohCVL0GBJp6qKGbbPns0MfY4eBd55BwN69+YH7N4NumULDltbc506dYJjdbuxUqmETqeDlZUVSkpKsHHjRhBCEBYWRv39/YlEIkFQUBCv1Wpt4uLi4qoz3j/U4er/Ia1NTU1r60ocx8HMzAzjxo0jGzZsQIcOHdDu4EH2u/TWW8D8+Ux6KK9Xbi0qAl55BYk2NjgSH08tLCzoSy+9RGxsbJpcnTt37pzw8OHDZL1e/ykAiKJ4XKPRvAegu0qlKm/qef8rBj9dA80SFhZGT5w4cbmwsHByUFDQsy0sKBQsg7WyYt1hT2Jjw8oLFhbMPrGiAujTB6KNDXb/8gviNmygNwsKYGdnR/38/PghQ4YQOzs7mJmZQalUguM4KBQKmJiYCNXZr+jn50c7d+7M2S9aRLUpKcR07Fhcv34dUqkUxsbGDXbP29ubnDt3jqakpBB7e3vcu3cP9+/fx+TFi8k+MzPx2N27uJKSIra1tuaUNbrRwkJWGnn7beD999kf+a5dbKy7ry9Ily54WF6OzgsXoiA4GJatW0OhUCA7O1s8duwYuXLlCuzt7WlQUBA5ffq0eObMGS4oKAgcx8HJyYnTaDQmeXl5g6OjozeGhYUJDXb6H8qpU6dCWrduPdTb27vO75aJiQks7tyhpw4dgvfcuUTi5MQuzP36sYtfPQqrqhBhbS2kpKRwAwYPJoMGDSLK+nadT0Apxfbt2zUajWaISqXKA4CwsLCMsLAwdVhYWFGTT/wdMGS6Bp6FpIqKCklpaSnM6meuTTFhAls069nz8c80Grbyv38/+79SyaRd5ubYY2xM6d69ZPqePYQrKgKpsXBsgi5dujTQz6bMmydev3OHq1q5EjKZDJWVlYTjODp+/HhiamqKyspKtG7dGvHx8RBFkfTo0YPu2bOH6vV6Eh4eDhOlElMp5fKeew6Fb77Jp9++Te02bCBlu3ZB9+ab2D51qjCgRw/excQEGDiQycuOHwdGjgRsbTF42DB8f+4c7W1lRbBuHWBsjHGTJ3P5+fk4fvw4Bg0aRMzNzXHjxg1SXl4u1hQsCSHo27evND8/3zUrK2sNgH/TBGFBo2l8XbZDVRXJB8QtO3eKL40ezWPYMGZE/wTVOml68+ZN4uPjg8GffQbO0pIpZJpBp9NBo9HIACT/XgfyrBiCroGnolKphE8++eTLn3/++bXJkycbP1OLZrdugJ0d856tmUt2+zb74nm2IDJgQK2w3cLCgpx2ccG9t9+G/8GDtPO2bcR469ZnF74PH47egwbxjuPHQ6FQwNHREZRS7Ny5U9y6dStPKQXHcZDL5WJVVRU3duxYODk5kbi4OOLm5kb9/PwIAHD378PezAwnRo0SyisruUBRRPwPP1DpgAE0pFUrPsbRES417zlpEvuysgJCQ7F9+3bROCCAtmvXjnkAa7XAo0eweeMNTIiIAHgecXFxyM7O5l599dU6ra6EEIwePdp47dq145cuXXpyyZIlPzzr5/M3JycvL69u2erdd4E+fUBeegmBZWWcm7c3Hm7cCKtzdS2Ib9y4gUOHDokmJiaYNm0asbe35+Hk1PgkkHpoNBpQSiUAOgG4/Dsez1MxBF0Dz4ROp1uSnZ09+Pz58x2CgoKeHgklEibrOX/+cdC1sWELbJSy2/Rvv63tPuvVqxfy8/Mpx3Ek6/x5OMXFoZVWC4lc/nR7R0qB7t3BTZwItyfkQIQQDBs2jL979y4cHR3B8zxu3brFGRsbw8XFBdVz1KhWq63x0gWWsFFmQ4YN40+9/jrNXbkSD3r2JKPXrCEVw4YhX6PBp59+SjmOo61atcL4117juLNnUdGuHbKysrg5c+awN2/Viv2r0bCsn+eBdeuQk5EhBg8ezDV2x6BQKDBx4kTjDRs2fKtWq/eqVKqnzIj/e7N06dKRUqn0+xEjRjCxdk4O002PH19bljI2MYG+WzccVCjQOy8Ptra2KC0tRWRkpFBYWMj369ePBAQEPFYl+PoCK1YAmZnA1183+r56vR5XrtROTfLCnxx0DTVdA89EWFiYGB0dfTQrK+ul9u3by5qrl9VCCAu6PXqw76dPZxrdkBCWIdaboOvt7U06dOiAg/Hx0E2aRL0UCkLc3dmUiPoLJ0+yYAF77UbahyUSCaysrCCRSMBxHGxsbGrbTW/cuIHMzEy8+OKLj8XyERFAbCwUPXtCptWSFnv2wOarr2Du4ADOzw/327aloeHhxNfXlyQkJCBdFOHz4AHRX7iAcxIJysvLqUKhICYmJqzDSiJh0zQAoLAQKZWVRKLVii4nTxIEBjbYX6VSidu3b1eWlJTcDAsLu/n0k/z3RK1Wd5XL5fsnT55sUmsAP3kyO1d+fuzz/u47YOxYyPfsQZ6NjXjs2DFaVFRE9u/fDycnJzpp0iTOycmpgQwMDx+yi1y3bg3eV6PRIDo6mp4/fz6PUqoEMCYsLOxP9cAwNEcYeGZUKlW6Xq9/MSIiojIpqdlZlgxvb2YinlktQe3XDwgOZkG3GetGhUIh2tnZEeLqyiRCZmZMf9sYRUXA7t3Ab7AArDa0EetI4QYMYPrP/Hy4JCSgxbVraKPXAwUFkE6YgJ6jRxNHR0colUpUVFSQzMxMssrYWMjfuhWuHIfMzEyyZcsWLF++HKWlpXXe70KLFrhVWUldHB252oGXW7Yw+dMT+Pj4mMnl8om/+oD+XnT19PQkrRwcmITw0SO2MFk9YRkAC5x+foClJXr16sURQkhaWhp94YUXMGrUKL6xRVIAzL/jhRfYNOd6REZGVly4cIEIgjAVQCaAhle+PxhD0DXwq1iyZMl2rVYbun///rxbt241vzEhyPLwwK3581GRnw9kZ0Ps2RMlGzY0WzIICgriL168iIysLOjHjGHThsPCmJ63PklJtTPLfi3m5uYoKSmp+0Nra2YL+dFHTLHwyy8QDx3Cj6tWiaXGxrX7vX37dqrRaNC/f3+E9u7NJyxZIo7ftg0LZszAjBkzYGtrS1etWlXnpaOioqDVaolzz54s0weArCyWDaelAWfPAgDc3d2h1+v7V09O+Ecil8s729naKkAIMz+qrGRBFmBlhtBQVivfsQMA82UwMjISQ0JCGjSa1KGqimW63bqx6dT1cHd3rympHgFrQW5uLuAfgiHoGvjVqFSqS1qt9sOLFy9WNjdjr6ysDNs4Dqbp6TiwYAGKv/kGBydNol/u2oUTJ040+Tw3NzeUl5dj69atiI+Pp2jZkgVCe3tW76vJDM+dY7ekOt1vOg4bGxvk5ubydY6htJRJkl59FfjiC5Q5OiKiZUvxQWEht9vNDUVFRUBqKka6uxOZTIbsFSsgvXNHGNG2LZNbhIWh9ebNGBoWRkyLinBg4kSal5cHxMbinREjwHEcSrdsYS3PBQUsK7OyYncEl1lp0fSnn9DS1FQHoGdj+/1PQCKK/h1feYVdUF9/vdabGAA7Nw8fAvXmzlFKG/fZzctjd1MffACYmLDOwfBw1plYj6CgIJlXXZOlDg02+oMxLKQZ+K1svHfv3vyDBw86duzYUWZnZ4caq7x79+7h1q1bSExMFOXW1sR+8mTSu3VrXG/fXvBt1Yr3HzgQ33//PVq0aIHOnTs3eGFLS0ssWrSIrFq1Sqg2myaQStmiVG4uaidL+Pqy0oJRE1NbNBqmGS4sZF/t2rH2ZA8PnEhMpIqVK0mX994TyIEDPNLS2B//lCksc+7TBxg6FGX79sG3Rw8EHDmCR1Ipznl70/DkZGJ6+TLahIbS8IMHSXZ8PF86axbMNBqWsaakwM7BAcMHDkR+ZCTWrVuH6TyPNqGhcHR01N9dsUJSYGODVjk5aJeaCtK2LfDzzyyb79MHiI7GSxxn9s2CBa8WWlqesiwq0uEfNEG2wNq6u2bevHbitm2sUaYGStmMPb0euHGjsafS2qCblsZayAcNAgIDAU9PVgMuKGDtwqtXN/reOp0Ot2/f1oCZN6FGo/tnYgi6Bn4TKpWqUq1WByclJX1++fLlSWZmZuLQoUO5Xbt20aqqKmJnZyf26dOH8/HxARcVhZZz5qDH++/zmDIFANC2bVshJyeH3U8KAqDXQywqwtkrV/DLuXMCKS7muJYt+W6VlcyeUalkTmRr17I/tldeYT+7e5d5OOzbx5QHb73F/ghHjmQZZHExqwefOsUmFScnQ2zZEkkpKXRQp05o378/j3v3gJpBm99+y7Kk9euBuDikdupE23XpwnGxsVBYW8Pzm28IVqwAcXVFUUEBkeTmgh80iOZ/9x3RX7wIy7Iy6J97DvmpqdiZkADi6UktFArR9pVXeMhkmBIaKomzsEBSVBTEK1dgbWoK848/ZuWRdu1Ytvb++9BdugQoFP2zXF3T+ZSUbS2At0BIC1Ba0sRH8rfgx3HjvANNTaN827cnxvVtPQWBfZaNOdgBUJSWwn71avb5nDwJbNvGavA3bzLtd1UVMzpqxiLy4cOHqKqqasaI+Y/HMILdwP+MWq3uIZFInhMEYa5CoUBoaCixtraGi4sLux0sLWVSIHd3Vss8fx75Fy6g8O234b5sGWBuDvLyy3i4aRMS27SBf2kpFBoNyhcvhtW33zL5UHAwc5MaPJj9e/06G+vz2WdAeTnwyy9MJZGTw4KxqSnLnBq5Hd28ebNQVlbGvfjii0TelCoiORkYNAiR48ZRq+Rk0ubBA8ovWECio6Lw8po1wNKliDlzBj0++QSyRYtwdPRompqfTzp37Qrtf/4Dn4QERLz3njD/9dd5rriYZV8VFSjfsQMFV6/ixpAhovOjR/CYMYPjevSo+94//giYmUHXqxceBATQY4GBa6ds3PgGgJtgt8MmAMpAadNub//fIMQm19b264g5c/r36ttX2a1bN75OqSAqCtizh110agxsRJGVjlasAHbuxKYRI/SjDx+WmLZpwwyTKiqYjluhAPbuZRfORnxyn4RSioSEBOxnDTpt/wqjIUPQNfC7oVar3QkhIxQKxWCtVttt4sSJsrZt27LAW1AA3LvHAiUh+HbdOurZvTu5cf268EirJTY2NiQ7O5sMGTJE9PX1/cPWGvbs2UNv376NmTNnNt4mGhXFsuMxY4DYWKw5flwMtLfn7HbvxhUzMyQFBMDExETw9/fnXceOhf28eazMER6Oq/PmUW1GBpXNmMF1nDIFpEMHln29+y7zaggJQYGPD77bvx/vLF7c9E5Onsx0vsuWIS83FxsjIrT9DhzI6RwXNwSUJoGQ1wHwoHQlCPEBkPT/ufwQMX16+wJn5w87JCeP8ProI7mzi0vDjT75BFi3jt2VZGezYDt1Kqvhd+oEqFTYMniw3nfUKEnHTp0eX0z79mV+Hk/pQHuSvLw8bNy4MXfRokX2v88R/joM5QUDvxsqlSoFwGcAPlu2bNms7du3f2BkZGQUEBBg3KVLF07h5weA3eKJ1taIOXMGNjY2JCggAKdPnyYzZ85Ey5Yt/7CAq9FokJSURKZPn44mdcY2NmwxBsBlY2N0iIvjfJOSIJ0zB61KSzHgtdeg6dSJP+znh/gFC7Bg3DiWeVOKTjExBEOGsPqzhQVbGPvmGzazbeRIAIBJRQV0T4uPT3gN29rZ4c0335TtSUmxS2rfXj6VEAsAXwKgIMQUwFoAvUGIC1j224jE469BrVZ3t8nLOxMeE4PEYcN0fd96S9rgzuLhQyYL1OtZvX34cCYfi45m9d1bt9icu6FDUfzVVyA8zzLgLVuYLGz37oamSvWovwCXkZEBQkjTK7l/MIaga+APYdGiRWvVavU3Wq02+MyZM/MvXbo0aNKkScaWlpZYv349FAoFXbRoEanxnw0ODv7141qekdLSUqxatQpyuZzyPE/i4+PpiBEjGtes+fhABKDXanH48GHM6NED0kmTWDA+cACyO3cgmzQJIZs30zRXV4rvv+ewYwcwahTL1o4fZzKw9HQgJoZ5TzyhAz5x4gStDvhNa+amTGEa5+qJCDzP44azsxzApWRPz5uOmZkrTMrLNwF4BIDVJggJA1AKQrYDGA3gZ1D6lxjnqNVq3jov7yWnyspvMtu2xfUPP8SIESMaOtRlZrLy0HffMdtGOztWq33rLTavrpGJ0ARgWW5yMtvG0rLZfSkvL8emTZt0w4cPl7Zu3RoAkJaW9qiqqurw73CovwlD0DXwh1E97fYsgLMffvjhtPXr16+hlBpJpVJx1qxZ3JMep39UwAXYMEtKKXx9fcUOHTrwmzdvJuHh4WhssOWjtm2xecwYcK6utKWREbVfuJBFzKlTgc2bgQsXIMbGIjk2lsj9/Aief56ZsH/0EatXDxjweOJxr14soGzZwoIJgOvXr5Pnn3++wftSSlFVVcX2KTi4jlyKEIIBAwbg6NGj2Pncc16UkAj3iRNnmpWU3LnYpcsvAHT44IMDKpUqESwT7g/gJxDSE8BDUPoMnSy/DrVa3RKABwB3iUTiTQgp0ul0/yGEfApgDi+KaJeWVnzXxUVWLIoA8LiT4cgRlqFKpezf994DRo9mi2EKRZPKA/mjR3CdNIndQXz22VP3cd++fUhISAAAaVZWFlq3bo2ioiJkZmZKAMT8zyfhN2IIugb+FN5///0ItVr9i1QqjR4xYoSsqTHlz4ooijh79iwKCwshCALCw8MbtXEEgHbt2oHneYSHh/OEEJibm4vXr1/nunTpgtTUVJw4cUIoKSnhKKWQvfoqGTxiBGJOncKgdes4MSwMnL8/sGkTGw1z9y6wYgXO9ugBfyMjinv3CFq3ZubmRkYskDxJWBhbla/GwcFB3L9/PzE3NxfHjh1b21WVl5eH9evXo1OnTkLvjh15E8e6k2K6deuGqqoqcByH6OhoVMjlgV69egUa+/tDV1kpXkpMfG/ZsmUR2g8+mKNSqV4GABBiD1aGkAFYAOCz31r7VavVHlKp9HOJRNJWr9d7SiQSrYWFRaWNjY0kPz/fpKCgADzPL3ZOTpba5+YiNjQ0INfe/ipE8cM7d+68e3L/foRpNGyiR5s2LPs/fpyNQJowgSk3OjQhmdVogMuXoVEqcXfFCrg3MsW3MaoDLnie/0mj0YwAwB85cqRcFMVPVCpV9m85D78HhqBr4E9DpVKd/fjjjz/bu3fv25MnT5Y9daJvM5w9exbnzp2Ds7Oz/uHDh3xERAQNCAjgEhMTBb1eD3Nzcx4A/P39YW5uDo7jkJubC3t7e7Rr1w43btxAQEAA9u3bJ7q7u/NDhw6FpKAALe7dg8LTE67t25PvRVHUxcfTodOmcTHPPSeMeecdiUwiwf327WGanS24aDTMbjA6mtUiG8PVFXBxYTXdzz7DhAkTuPj4eFy9epXs379fbN26Nbl27Rrt3LkzJ4oi7t69SzLffRfWQ4fC+pNPal+GEIKe1TaZPZ5UOxw4AOzezXX/+mujTZs2TS0tLR2xfPnyJI1G89ESSrdXP9kSQFV1cXMigNug9PyznGe1Wk0APAdgh06nw4QJE7B9+3ZYW1vLpFKpDAAKCgog0enAV1ZKCRDe8erVnNjQULlEIrlqlpvrE5yXB0+lkqky3nqLKUu+/pqNPvr004YXqvpkZQFbtoB6ekJfXSJojuLiYjx69AjGxsaaioqKOZTStd7e3jwAPHjwQBAE4eizHPsfhUG9YOBPRa1WE0LIS8bGxl/MnTvXuEnJ1lM4dOgQSkpK9OPHj5eUl5dj3759wsOHD4m3tzcxNTUl+fn54qNHj5CcnFxnYW7u3LnQ6/X473//CyMjI9HExATTp09npY7ERHbr+9ZbwGuvQbNoETbs3k1ld+4QzsND5HieUEpRcesW6X78OFpptdQ2MZHUlhOa44UX2MJQ9Sp7aWkpvv32W9HExIRaWlryKSkpsLCwEObMmcOf/c9/UECIMOqNN55ec6GU+U8YGUE4fBgPundHVlYWoqKiinU6natKpSqssz0h/QDcA5AL4JP/vvzy3BwHh8WEkEkKheI6ACWAFpWVlV0ACHK5PMfY2NjCxcXF5PLly1CpVEhPT8edO3cAAGfOnMHs2bOR+9ZbyLl3D3Hdu4NQKjjcu8d3jY+HR3AwZOnpzEgoMRHo2BF4+WUgIIAZFTXXvn38OLugVV98vvzyS32/fv0kXvX1vU9w/fp17N27t5Ln+UcSieSrioqKz+Vy+WZK6ZBJkyYptmzZUqXT6RxVKlX+U8/tH4Qh0zXwp1Jd5/3vsmXLuu/evXts79695TY2No23dzaDQqFAbm4uAdiUgfHjx9cPUBwAFBYWwsLCAmfOnBGjo6O5hw8fon379ujdu7dQWFiIAQMG8DWddOjYkX0JAhAcDEVMDGZzHKErVuDhw4fcd2vXopOdnRD89tt8lYcH6ODBBJQC06YB//lPo4s60dHRuH79ujBtzRrerKgIWLUKmD8fZmZmePPNNzmAlRZSUlIwbdo0nuM4dK6qws7MTP7SpUu0c+fOzZ8YQtj73rkD/uJF2I4cCVsbGxQUFBhfu3ZtPdii2mMojQKAyAkTfDlRfCHHweGVHqdOIcvREX6vv+4qlUpRVVWFffv2ged5fvLkya3t7OxACEFAQAAAwMXFBS4uLqCUIiciAi3v30fL9euRumWLfmxGhsTN1pan332HqmnTIHv9dTa9t1UrpjLYv581L0yb1nTALSpiUrvOnR9bZKKZNuAnHo+Oji4XBGHU4sWLjz3x0JilS5e+v3HjxqUymSwNQEGz5/QPxhB0DfwlaLXa2RkZGeUbN24czfO80sPDg/Pw8FC0a9cOzQ3AzMnJQXJyMuLj42n9wZKNYVkdCHv06MEFBgbWtioHBwc3zCLfe49NhJBK2ey23FyQ0lIQjoO1tTXap6bCMT6eN54xA2Y1K+uUsrqkhQVrTXV2ru2Iun//Ps6dOwdBEPjk5GR0u38f2LkTRVOmwMjICAqFAocPH6ZXrlwhoaGhgqmpKQ8ARjExGNizJ9YdPkycnJwajAxvFGdnNneusBAYORJ9Dx6U3bp1K1ytVj+vUql2qNVqJZh37GSpVDpQ5+5eK5btsGgRQtzdIRMEln3+/DNcnJ1hamZW57Owt39C1kopRFGETK9nSo2tWzFSECTYtw/YuhU4dAjGTk4s0Pbpw54TGckWIzdvbuCrUIdNm1h9/JVXGgTmpoIupRSxsbFiZWXlXQBRjTx+CwC0Wu171Rf+vwxDecHAX0p1zdCDEDJELpdP5jjOJSgoSBEQEMAZ1fNUyM/Px7fffgsHBwfBz8+P8/Pza+il+r9w7Rogk7Hhh66uLCuVStngTFtb3A8MxK5du6ggivSFF17gGgTDceOAN95gGRqA7du3g+M48f79+6Rdu3akV69eiIiIEMwTEvi7bdpAqlSKer2emzZtGuzs7B6/jk4H8DzWf/edPjs7WyKTyWBjYyN4eHiQ4OBg7qnHnJwMeHoi78ABbL5xo1IvCFpBEF9nE9wAABOPSURBVEzMzc0rtFqtKc/zmDt3LtFqtVAoFI8DmU4HpKQwudrUqUyN0acP08XWV5fMnAmhbVsciI/HoOhoSCdMYKOYSktxX6FAUlISCCHw8fFhwTo+np3Xd99ltdzG+OIL1sIdGNhoJ+GqVauE8PBw3qORNuHbt29jx44d2VqttqdKpUqr/7harZaABeOxf2VpATAEXQP/z1Cr1QFyuXyRTqcbplQqNTY2NnBxcVF6eXmRlJQUXLx4URw9ejRnamoKk+omht8FUWQdc23asODz88/MA8DLi7UYW1kBdnbIz89HTEyMmJOTg/79+3MAoNVq0alTJxTk52PXTz8JXtHRpMzKCjYzZnCnT5+mkyZNIhERESCE0DZt2tDxb7/NVS1ZgvwBA2BlZdXwOHr0YLff06cjIyMDUqkU1cdOBw0aRHx8fJ5+PHo9MHIkhP/+F6UKBVq0aAGO43D16lVER0cLCxYsaLRerNfrkZqaCncrK3DGxsz8Z/58pjmuqGByratX2Xy4iAjkf/ABthcUwMzZmT4/bhwxNjbGunXrBFEUOWNjYzE7O5u3FgRh2po1fEVEBIz79YOkfg38wQN2fmNjmYrBwaHRQ/riiy+EQYMG8e7u7hBFEWlpaWjVqhUUCgUiIyM1GRkZKxcvXvz+00/OX4sh6Br4f4larZYDaA+gg1wuHyYIwnC9Xm8CAFKp9AGl1KRbt26Snj17SqXPKCFqltxcNtnXxITpaj08WJPCG28wOdgTVFZW4ujRo8Lt27c5nudRVVVFpFIp1el0cHNzgxelJDkrS0x9+JCzlMnotPfeI/n5+Th06BAdP348MZLLmWQqL495UtRn5Uq2L/7+dX78zTffiD4+PlxISMivO7Z589ituqcnSktLsXr1aixuog1548aNwv3793mJREJNTEyErl26SAIdHFjzgosLC7b9+zMtbatWgIkJkpKS8NNPPwFgkzpEUcTYsWPh5uYGXWoq8l59ld7mOBLboweUpqbC/Pnz6wb8vn1ZlvuUi8kXX3whDB48mHdzc8PmzZvLsrOz8wghDpRSBYAYrVY7SKVSVf26k/PnYwi6Bv4WVBt6jwXgAmAZgJYymSzCwcEh5JmHZT4NUWQB79Ah5lr2jJOPS0pKsGrVKnTu3BkDBw4Ex3GglOL+unVwSE0F14ivK7ZtA+bOZW2w9Tl2jGlWn1hESkxMxMGDBzFr1iyY/1rD9pMn2S17UREKeR7rNmyAlZWVfubMmQ3WdJYvXy6OHz+eM9u7FycsLWFy/jwdUFBAEBnJjGdWrADy2d25Xq9HbGwsTp8+DYAtbspkMnHq1Kmcubk5K1v4+bGyy+uvI/3ePezatYv6+PjoiF4Pl127+DujRongedAnst8nPksCoDZAXbt2TdKmTRtqaWkpXr58WdRqtf4AjDmO2ymKYohKpbr3607MX4Mh6Br426JWq6UymexyaGioV/fu3f+3lrYVK4ATJ5hk7NIlJml6xkCekZGByMhIvP322w0XASllc+GWL2c+DDWvSSkzAWrZsuHE4969gVmz2AJdNevWrROdnJzIwIED6+yUVqtFbGws9fLyInUWuhrjtdeAsDBoBg3C6tWrIYoi7dOnD+ni6gpYWqJi61bEbtuGvvv2gV+yBFHu7sJDiYQfN378Yw9jQqDRaLBp0ybh4cOHvFwuh6urqzBs2DA+PT0d27Ztw7Bhw+Dn4cFkYhcvMjNxCwukp6dj586dd2lx8VdamUwYvndvjxN9+lx8ZGb2ZHZKmvgeAFwB5ACoBKAD8I1Kpfr7OK1VY1AvGPjbolKpdGq1eujJkycTCwoKjLp16yZ7auBpisxMZhdJae1C2LNy8+ZNtGnTRuA4rmHgJ4RNvBg37rFngKcn+97GhtkRzprF6qY1fPLJ42GW1YSGhnL79u1D3759IZVKUVlZicOHDwupqam8RqMhpqameOqxr1oFEALFkSOYr9Phqq0tYo4cQcc1ayDLzEQCx6EwMFDkeZ7Dxx+DO3GC09y9+/hCIQgQAwKwfvp0QWFszL366qs16hAeAFq1aoWQkBAcO3aM+u3YQXD5MvMlrh4ESimF8tGjh7M//fQFAP6g9POOv+pM/zMwjOsx8LdGpVJl6vV6r8TExBVbtmypzMnJ+W0v9PXXbAbbbyxTNHvHaGTE2oHLy1ljQHn548e++47VW5/khx8azIPz8vKCXC4XDh48SE+cOEHXrl1L8/PzMXToUEilUtqYj0QtpaVsESw7mwV/KyvIKEVXZ2fSMzSUrl64UDx68iQ9decOOo5+LOutttvEmTNnAAA5BQXIqKykNubmmDJlCrGsp0s2NjZG165dYXXnDimPjYW4ZAmrBQNAYSGMo6JQbmamAxAKSvVN7/A/G8MIdgN/e8LCwh6FhYVFx8TEZCcmJvbMysoSbG1tn21M/O+AmZkZYmJiOA8Pj+YVFTIZUyVIpSzQenmxDrWzZ9mstJkzWdD/4ANWg3V1rfP0Nm3acFevXhXLy8tJx44dyahRozhra2uYmJiQw4cPw9fX97GJT2Ym6+by9GQLgjY2TArm6MheOzQUSEyEzfbtJMbUlOTk5JDp06fDxcWl9qpjY2ODFi1a4Pjx4wCAvXv3wnzaNDpo+HBe0oR3Bn/jBrzfeAM7+/fHZakUvr6+4Kr9lHV79+JKixb3u0dFff2/nfG/N4aga+AfQ2ho6NXo6OjVJSUl5VevXg00NTWV2dnZ/Y5C3sZRKpW4efOmIJVKuWYn1QIsqBLCplv4+LDg2Lo168Cq9lbAmDFsyka9Wq+ZmRkCAgK4Tp06EccnDHHsLS2Rd/OmGH3hAnw/+ojIundnsreEBDYVd/RopjzgOCaJq8HDA1zfvrh24QK6ZGSIPhMn1jlXhBDY2dmhqqpKuHDhAjdy5EgEjB5NiLNz4+Y0RUXg5s6FZOZMOMyejYSEBKrZsYM6HzpEMH48st3dkZycfL979+4bGj7534Mh6Br4RxEWFqYPDQ09Fx0dfTgtLW1qTk6OTi6XSy0sLH51q/GvISUlhcvPz6fu7u7kmSRsNZ1ry5cz1cTLLwOzZzNbyHHjWBbcXNeWXs9qtIGBwA8/wPPOHXLPzY0kCwIttbAgBRyHEnd3VFRUQFc9LZnjOBBCas9DcUkJfvz5Z1G8fx/9zcw4RU0jRL3z5OLiwoWEhKBly5asTNKlC7NgfBJBYBeRqVOBWbNg8vAhClJS6CWtlksxM3t06vJl7fXr1ymlNDUkJGTL/7V3t7FRVWkcwP937tz2djrtQsC+SbHQBsGXsrgrQnBdJEGUTa11KZAqVKRR5IMa32hMmLOHLDTEdbuJLcoYgQ0UZNjd6PLiW1LWbmvs0qya1m4gzTYoItalpe283jv33v1wWqC8lE47nXHg+SV8oTPTJ/Phz+Hcc54ngq/2ukOnF8h1i3M+WZKkFcnJyc9YljW9sLBQnj17dlJOTk7UA9jr9WLv3r1Gd3e3XFxcjFnXmNV1GY9HjKt5/nlxM668/MKq1DRFp628PDFlISUFqKgQgzgrK4GB9pCapuG9995DX1+fFQqFTF3XrXA4bDMMQwqHw5Ix0GLSbrfDbrdD13VMnTrVXLFihWj48+OPYgZdU9PVO3998IHo9XDPPRf+TtcBzkXPhOpqsY3iduN/gQB2m2bA7/eHwuHwEgBdALoYY/7IvpzrC4UuuSFwzgtkWS6XZblCVVXnXXfd5SgsLLRNHHiyHi1ffvkljhw5goqKCmRkZIz8jadPi9DKyhLXb+vqxJ7snXeKp/9FRcDnn4t+vg7H0NHlEdA0DV6vFx999BFOnTqFl19+eegLvvlG7PvW14tV7aXH2UpKxImLi5uIr1olet663aLxz/33X+i3AODgwYOh1tbWf+m6XpYoZ2nHE4UuuaEM9HqYl5SUVGGa5nKHw2Hl5ubK8+fPd0RjBWyaJqqqqrB+/XqMKtD37xdNvdvaxMmGm24CNmwQ54fnzRN7wYYBjLIl5iC32206nU5bWVnZ5T/UdTEcc9u288e9ruqTT0TYlpcDS5eKuvPyhlws0XUdH374odna2vqZrutVjLEjYyo+wVHokhvWwC23GTabbalpmlsBgDE2ps88fvw4Dh48aL300kujT+9gUOyZtreLB2xz5ojuXy++KLYA1q0Tq96aGnFrraREDLMsKxPnjAOBYVfCH3/8MVpaWrBs2TLMmDFj+FrKy8U4osEmM7W14nfv3i3+IVi3TvSpYEw0JL9Kr1tN0+B2u0Nnz55NttlsW0zT3MMY+89ov6JERqFLCADO+RwA/546dar37rvvdmZkZGDSpEkRzW5rampCS0uLmZOTY5WWlo7f0LeBm2E4cUKseG+5RfSI2LwZaGwU53x37hRB/dBD4obbpk3iKFpXF2pffx0PPv008i85knZFx46J0P/2WxHwn34qVrOPPSZWw5omrkynpo7ojPPp06fx9ddfG8eOHQvqur6EMdY09i8ksVDoEjKAc54kSdITqqouN03zNl3XM9LS0nxZWVlSdna2MysrS8rPz7+8SxbEePetW7ciMzMTa9aswWgnYkTVyZPiv/kpKaJBzSuvQPd40PT225jt8WDi44+LB2B5eeKq7pYtorWjLIsbcaZ5YU/32WeBBx8UzWk6O4HFi0WQOxzAI4+Ih2cROHHiBDweT79hGD+Ld3/bWKPQJeQqOOcpEBNvb5dl+eeKoiw0TfP27OxsfeLEiXJRUZFjsNdCdXW1kZGRIZWWltrGOnRzPO3bt88MhUIoLy+3Sd3dYo84EBBbBStXilWyJImVbEGB6Efh84nthKoqsd1QVyf2er/7LuKwHRQOh7F582YAeAXAH26k4KXQJSQCnPMZAH6RnJy8Pj8//5ePPvqo2tbWhsOHD+Opp54SZ1njqKenB21tbdaCBQukK03geOutt4yZM2faFi5ceO29gIFm6ujuFvvL990HbNwo2mBWV4vAHoPt27ebZ86cscmy3GkYRhljbETDMhMdhS4ho8A5T1EU5agsy3Mty5KmTZtmFBcXy8P2QBhn7e3teP/99wO6rpt2u92hqmpgyZIlan5+vs3n82HSpEn44osvUF9fb73wwgvRnboxSpqmoaqqCgDAGIt/QTFAXcYIGQXGWIBzvtiyrL8CmHfq1Clp7969ltfrdT788MNSXl5eTOvp6OjAgQMHACAFEMe0dF13tLa2mg0NDVpXV1fSokWLEAwGLb/fLwUCATgGLlXE00W391bGs45YopUuIWM0MH+rAMCvALgBYNmyZZg1a9awQzajobe3F4cOHfJ1dHSkqqr6j2AweC8uWkypqvrfYDA4/dL3FRcX49Zbb8Wlc+jGyjAMaJo24tdbloXXXnsNAH7NGGuIajE/URS6hEQR51wGUKQoyh+zs7OzV69erUZy7CwSPT09ePPNNzXLsraEw+E/McZ6h6nrEQDvABjsx2hNmDBBe+6556J2zMIwDNTW1vr7+vqGTHwYwfscAG5mjJ2OVi0/ZRS6hIwDznlacnLyIV3XF6iqGkxNTQ2npaVJ6enpSnp6esq0adMwmi2Ic+fO4fjx42hra+v7/vvvk+12e1VlZSWPpC4Av5dludQwjOxVq1Zh+vTLFsKj0tjYaDQ2Nv6zsrLy/qh84HWKQpeQccQ5dwDIBJA1+EeSpJsVRVmbmZmZ9sADD6ROmTJl2M/w+/1obm42Wltb/f39/ZBl+UgoFHoXwCeMMd+wbx7Gpk2biux2+zsFBQXOpUuXpoyl/3BfXx9qamoCuq4XXmkEOrmAQpeQOOCcKzab7UlZlrdMmTIl+Y477kjNzc3F5MmT0dvbC6/XC8uy0NnZaTQ2NuqSJHk0TdsOoJkxZkSxjlRFUTZJkrS+pKREnTl43TdCHo8n0NHR8carr766IVq1Xa8odAmJI865CuAxVVV/Y5rmvZZlpVuWZSqK8i0AwzTN9lAoVDneq0fO+VxFUY7MnTs3fdGiRUokDwBPnjyJurq6s7qu3zKWlfeNgkKXkJ8QznkOAIkx9t01Xxz9352RlJR0OCcn57bly5c7RnKywTRN1NTU+Hp6etYwxg7EoMyER6FLCDmPc25XFOUNp9O5eu3atY5hZ74BaG5uNo8ePXosFArNv5Gu8o4FTQMmhJzHGAvrur7e6/XW7tixw+/3X33Ig8/nQ319fSgUCj1JgTtyFLqEkCEYY5au6xv6+/u3u91uX0NDA4LB4GWv++qrr2BZ1meMsfY4lJmwaHuBEHJFA1M2SgHsBwCXyzVksobX68W2bdsCwWBwpcvl+nucykw4tNIlhFwRY8xijHkkSfotIBqQX8zpdGLOnDnJiqL8Lh71JSoKXULIsFwu199sNlvp7t27A2fOnBnys5aWFk3TtCfiU1liotAlhFzTxo0b/6Jp2hO7du06H7xdXV0wTVMH0Bnf6hILhS4hZERcLpdH07Q1u3btCvzwww8wTROyLJ9jjPXHu7ZEQqFLCBkxl8u1X9O0J3fu3Bnw+XwIh8M3xbumREOhSwiJiMvlelfTtLV79uwxFUX5c7zrSTQUuoSQiLlcrn0AcoPB4DPxriXR0DldQgiJIVrpEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDFHoEkJIDP0fG0H2/yWdIfIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_knn.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Weights from shapefiles (without geopandas)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "pth = libpysal.examples.get_path(\"mexicojoin.shp\")\n", - "from libpysal.weights import Queen, Rook, KNN" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "w_queen = Queen.from_shapefile(pth)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "w_rook = Rook.from_shapefile(pth)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jovyan/libpysal/weights/weights.py:167: UserWarning: The weights matrix is not fully connected: \n", - " There are 2 disconnected components.\n", - " warnings.warn(message)\n" - ] - } - ], - "source": [ - "w_knn1 = KNN.from_shapefile(pth)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The warning alerts us to the fact that using a first nearest neighbor criterion to define the neighbors results in a connectivity graph that has more than a single component. In this particular case there are 2 components which can be seen in the following plot:" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydeVwVZfv/P/fMnHNYDggqKIgIIoqIqKi4gHrENLUs28xc25+e0t/TalnmNJZl9i3TbNOsTE0ryzRzl0URxQUX3EFEXADZZDucM+fM3L8/BgyR5Rw2l+b9evFCz9xzzzUK19xz3df1uQilFCoqKioqzQNzqw1QUVFR+TehOl0VFRWVZkR1uioqKirNiOp0VVRUVJoR1emqqKioNCOq01VRUVFpRlSnq6KiotKMqE5XRUVFpRlRna6KiopKM6I6XRUVFZVmRHW6KioqKs2I6nRVVFRUmhHV6aqoqKg0I6rTVVFRUWlGuFttQGUEQWAAuAFoBaBl+fdWAFoSQlprtVpvhmHaEkI8rFZrxsyZMx+9lfaqqKio2EuTOl1BEBwBeFT9Ylm2rUaj8WEYph2l1EOWZXdJklwAOHIcZ9HpdBZHR0fJyckJzs7OrLOzs9bZ2Vnr5OQER0dHbNmyxSLL8p9NabuKiopKU0CaQsRcEAQ9wzCXKKUuOp3O5OjoaHV2dqZ6vZ51cXHRuri4aMsdKpycnFDhTB0dHcEwNUc8ZFnGxo0bceTIEUop7Q3gCM/zqgq7iorKHUNTrXQpIUQ3bdo0xt3d3amxJt21axdSU1Np+/btaV5e3m6LxVL20Ucf/SmK4u8AYnmeNzXWtVRUVFSagiZZ6QLA3Llz323btu3MCRMmODo6OjZ4PlmW8dlnn8mDBg0i/fr1I5RS5OTk4OzZs/TEiRPFOTk5Wo1Gs8dkMq0GsInn+cyG34WKiopK49JkTlcQBK1Wq/2KZdmJL7/8soNWq23QfCkpKfjtt9/w1ltvVRuCMBqNSE1NxalTp0rOnTunYVn2gsVi+UWSpPUADvM8LzfIABUVFZVGoMmcbgXz588/9NBDD4UFBgY2aB5ZljFv3jy88MILaNmyZa1jJUnCxYsXcfr0acupU6fMZWVlVoZh/jabzb8C2MnzfGmDjFFRUVGpJ02eMmY2m9cnJiaG+vj4cA0JMxBCQCmFLStmlmXh5+cHPz8/zciRIzV5eXlISUmZeOLEiTGZmZm6jz/+eJ/JZFoB4C+e56/W2ygVFRUVO2nyla4gCB4cx/3g5eUVNXbsWMe6Vqk1UVZWhk8//RS9evWyRkVF1duBm0wmpKSk4MSJE6Xnzp3jOI47YzabV1BK/+R5PrVek6qoqKjYSJM7XQAQBEHHcdy7siy/9cYbb7AODg71mufYsWP4+++/rQAwZMgQxs/Pj2nTpg1Ylq3XfFarFefPn8fJkydNp06dogCuSpK02mq1rgWQdLunowmCEAWgR/lfaR3fAYBU+Q4ARgCbeZ6/1CRGqqio3EBzOV0CQAaA2bNngxBSxxk1k5OTg2+++caq0WjiAAQ6ODi0Gjt2rLOfn9/1MZIkQZIkm0IRFVBKcenSJZw6dcpy/Phxs8lkEgkhf4ii+AuAOJ7nLfU2uomYP3/+EV9f326urq7XNwlp+X9opf/XG5xu1X/70tJSa2pqKksI+XTmzJmzmtpmFZV/O83idAFAEITnPT09/++///2vS0PmoZTi66+/LsnJyZkEYAMhZCzHcUu7dOniPHLkSAdnZ2esW7cOx44dw+jRo2nPnj2JRqOx+xq5ubk4ffq0nJycXJKfn89xHLfVbDb/DGALz/MlDbmHxmL+/PnHx48f383X17dB85SUlOCLL74oE0VxCM/zBxrJPBUVlWpoNqc7Z84cgWXZd2fMmGG3E6xMeno6Vq9efVkUxY48z4sAIAiCi1ar/QjA0927d2cOHTqkAwAHB4cdsixHDhs2jAsPD6/3pmFRURHOnDmD5OTkoitXrug0Gk1ipY247HrfTAOZP3/+6QkTJnTx8fFp8FzJycnYuHHjBVEU+93Ke1JRudtpzpWuTqfTrQJw36RJkxzq6ygOHjyInTt3rnrzzTcnVXON7gCGASgD8CPP82ZBEHpxHLfv7bff1jYkrFFBNRtxZ81m84+U0j94nk9v8AWqoTw8cxMODg6pkydP7ujt7d3ga1BKsW3bNtPBgwcJx3GxJpPp//E8f7bBE6uoqNxAszndCubMmfOwk5PTipdeesmpPhkIcXFx2LVr17x33313pi3jBUFoAeCap6dnSffu3Z29vb1JcXExQkNDGxRbBpSNuLS0NJw4caLs9OnTRJZlufzfk+DGzSpS5fPKf696HFXOBcuyVJKkm4wlhMjTpk1j6psRUh1msxkHDx6kcXFx1ywWyyCe50802uQqKirN73QB4KOPPvomICBg8rhx4+zWZdi0aZN44MCBt3ieX2DrOYIgOAEwaLXaB0VRfL7i80ceeQQhISH2mlAtsizDZFKkHyqceWWnXvmzqsdr+75q1SqamppKXn31Vbi4NCgcbhfHjh2jGzduLLJYLFE8zyc124VVVO5ybomeriiKb549e/Ypi8UCe+O7hBBoNJrO9pzD87wRwKbyr/8IguAG4Ny+ffu4kJAQV7sMqAGGYeDk1GjaPtfx9vZGamoqUlJSEBYW1ujz10RoaCjhOK7F+vXr4+fNm7fZbDY/z/N8XrMZoKJyl3KrOkeUUkpJxcrQHgYMGKC1Wq3PCIJQb2fJ8/w1AC1LS0ud6ztHczF06FDSrl07Wlra/JXLwcHBePXVVx0DAwPHaDSa7wRBaJiAhoqKyi1zuhqO4w6vWLHCaDQa7TqxRYsW6N69u5XjuLTyeG294DgurVevXvWrqmhmWrRoQfLz86VbcW2dTof7779f4+PjM0Kr1Z4SBMHrVtihonK3cEucLs/zZaIo9i8sLFy6cOHCstTUVJsDy4QQPPTQQ45OTk5aAO3qawMhxL1bt271Pb1ZcXd3x7Vr127Z9XU6HSZPnuzUs2fPdgzDpM2dO3e3IAh9bplBKip3MLesMSXP83TmzJkvi6L42qFDh+x+d+Y4TgZQ7yAqy7KZeXl3RojSw8MDhYWFDc93awCEEIwaNUo3efJkh4EDB0ZqNJq4OXPmzGrI24aKyr+R26Eb8BWz2Vy31i2lylc5er2eAdCxvhc1m83vrF+/vsze8MatwNvbG0VFRUxBQcGtNgV+fn4YOnQonn32WScPD4/ZGo1msyAI7rfaLhWVO4XbwekWnz9/3vXKlSu1j/rxR8DBAbh6Ffj1VwxPT3dxcHB4vb7JtrNnz/7TYrF8+8svvxhl+fbWN/fw8ICXlxf27NlzS+K61eHp6Ynnn39eExAQ0IdhmFdutT0qKncKt4PTvQoAS5cuRa0rucGDgWXLAA8PIC0NrTMzQUWxE4BiEDIchISAkPfsubDFYnkjKyvrWGJi4u3tdQF069YNGRkZtzTEUBWWZREaGqphWfbx8s7PKioqdXDLnS7P88cBnCWExP/00081x3YDAoAnngBWrABmzED2O++A0ekuAwgHsBeAL4CBAABCToKQuSDEtfx7tbFfnuetoijO37Vrl3wrikTsITg4GHl5eYwk3TaLXQBAQEAAOI7ryLLs3Ftti4rKncAtd7oAwPN8F0rpkOLiYrbOGOvRo0BRUcVufjooPQlKS0DpJlA6onzUGABfA3ADcB8ABoSsAiFbAACEvANCKjIf0iwWS+m+ffusTXBrjYarqyu0Wi3Nycm51abcgFarxQsvvMA5Ojr+RxCEUbfaHhWV253bwukCAM/zslarPZOVlVXzIJYFPv0UIARelMJisQyudvec0nOg9BIozQClPUFpCYA3ALwFQlgAjwJoB0Ke4d97b50kSc9g2TIRB25vVUNnZ2fp8uXLt9qMm3B1dUWfPn2cWJYdUfdoFZV/N7eN0y1Hy3E2VCYvXw7PPXsQHBys5TjuS5sqpSi9AkqPgFIJlPYCpfsB/A7geQClPomJGsTGAmfPAm3bAjk5QGwssGlTw+6oEWnTpg2XkZFxe8UXyikqKjJLkpR+q+1QUbndua2crtVqlbds2VJ3NsH06cBLL+HeIUMc2rdv/1B5pZT9GzmUXgOlOwAU/zxpkvX8o48CHToAX3wBtGoFbN6sZE3IMtCuneKE09OVuPItwNnZGWVlZbdl8Nnd3V3HcVyvpppfEIT+giB4NNX8KirNxS1RGasJQRAYnU53fvLkyb7t2tVRbFZYCAwYAHroEJauWFGUmZm5EMDfPM8n1uO6GgDP6fX6+a+88oozw1R5Fsky8PvvQFQUsHMn8P77QHIyMGgQMHo08L//Ab/+CkyYANjRIshe1qxZA1dXV2n06NG3XflyUVERlixZYjSZTC/MmjWrUZ5K5U52BIAOLMu+RwiROY7bY7VajzIM40Yp1Vssll0A9gB4FcBaKJ09zI1xfRWVpuC2croA8PHHH//g4ODw2OOPP+7ctm3b2gcXFQGursjIyMDmzZtLCgoKNFar9a1Zs2Z9Xp9rz5s378iIESN62KzmtXkz4O0NuLgoKW3JyQDPA2fOKMeqOu8G8t1338lBQUFMZGRko87bWKSlpeHXX39NNZvNnRva1HPu3LmvW63WTxiGoe3bty/u1auXPigoiDl16hTy8vIkjUZD8vLyYDQajVlZWSgpKdGXn/oyz/MLG+F2VFSahNvO6ZZ3SXhWo9Es6tGjBxk6dKiuVsnE//s/oH174PHHce3aNSxZsqTMbDb/v3ffffe7SnN2BVDE83ytu1CCIIRqNJr4cePGuXTq1Kl+N5CQoKS2HTsGtGjcCtnFixdbIyMjuZ49ezbqvI2FLMtYsmSJsaCgYIcoik+US2rajSAIPhzHnXn66aedvLxs19c5d+4cVq5cCQDXeJ5Xq+RUbkvY995771bbcAMGgwEGgyEpOjr699zcXJfExMQgvV7PeXl5VV8Y4OEBdO8OODrCwcEBnTt31pw+ffqe2NjY7tHR0VsNBoMYHx//B6V0YUJCgmN0dHSswWCoNmhsMBiyo6OjY0+fPj0+MDBQq9frqxtWO2lpwLhxQGCg/efWQXx8PO3evXujdopoTAgh6NGjhyY3N9e3oKDgf7t37/aMjo5ONBgMdr3u79u378t+/fr1CA0NtetVoWXLlrBarfTixYuOu3fvZmJjYzMNBsOdIbCh8q/htnO6FRgMhtxBgwZtiI6O3pCWljbuwoULUlFRkdbBwYE4O1eSwW3VCigpUTa/IiPh7OyM3r17a/Lz8ztdu3bt6ejo6FidTndfRESEb2lpaZjRaLw8ZMiQI7Vc99LevXsf9PX1befhUY99m9mzgdatlQdBI7Jx40Z66dIlpn///qjXw6CZYFkWwcHBmqCgIIfc3NzexcXFvjExMRtretBVRRAEHcuynw8bNqyFq6v9ksn+/v6kffv20Ol0A7Ozs6fGxMQsMRgM9gs3q6g0Ebet063AYDBcjY6O/qmgoOD4pUuXriYlJQW3bNlS6+np+c8glgWOHwf69AEIAcuy6Nq1K+fm5uaampo6SRTFRXl5eUMcHR0dy8rKgnft2uUbExNz0mAwFFd3zbi4uJnJycnuubm5xqCgII3N8g6SpGy6jR4N6HSNcfvX2bhxoxwcHMz07NkTN2303YY4OzsjICCAzcjI6FRWVvbi7t27A6Ojo93i4uJKDAZDjfXee/bsme3j43NPREQEVx9ZDUIIWrZsicDAQNZkMiE7O/uFmJiYlNjY2DMGg6Eht6Si0ijc9k4XAAwGQ6nBYDg+aNCgTdHR0ZtSUlLGabVajY+Pj+J9OA4IDwcSEwFHR6A8BtymTRuwLKu9dOlSi7Kysg+Li4sf7NatWyur1drHaDQeMRgMx6teSxCEVgzDBAHokpOT49ivXz/bW8b/8AMQE6OEFxqZw4cP06CgIKYx2q03F1qtFj179tT6+/u7uLm59U5LS3sYwP/i4uIS4uLicgwGg1h5vCAIobIsr/H392eCgoIarDMREBDA+fj4OJ0/f36MxWIpGjJkyP6Gzqmi0lBu/yVTFXieP2KxWMJ27Nhh2rt37w2/tNi+XSluqETPnj3h7OzcU6vV+gDof/r06dLS0lINwzB+1c3Pcdzr/v7+E/v37++o0WgKk5KSbC9GOHYMiIiw+55swdXVlc3Ly7vthXmqQgiBj48PIiIiyKxZszBkyBBrmzZtfmNZ9qogCIMr2ssLgtBWo9HEDBs2DFFRUY32c+nv749x48Y5sSz70Zw5c6Iaa14VlfpyxzldAOB5/oLVau0bHR0t36BF8O67QP/+QCWZSCcnJ4waNcqJZdlRAM5aLJbRZWVljCzLH1Y3t0ajGdqnTx9uwIABsFgszhkZGbY5uqIioEcP4KmnGnRvNdG6dWvk5OTcXqkmdsKyLAwGA/fCCy+0ePzxxx20Wu1WAPL777//nVar3TxgwADXyMjIRo9Zt2vXDg8++KCzTqdTU8lUbjl3pNMFAJ7nT0uSNPOrr77Cli1bxOtVbEePAs8+e8PY8kqufgDytVrtIAB6VNN1QhCEtlartZNOp4ODgwMYhsG5c+fM27ZtE+tMrduwAYiLA+on71snXl5eyM/Pv62kHRtCYGAgXnrpJQcA8PLyerpPnz5dDQZDk3Wn9vX1hcVi6SQIwu2Zb6fyr+GOdboAQCldCKBHUlJS5pEj5QkJPXsCf/2lbGqV4+3tjXvvvVfu378/JEma4eDgsAuAZzVT+lJK2djY2NK///4bHMedkSTJ79ChQylz5szByZMna/a8XbsC//lPo97fDYb5+qK4uJhp9Lxqsxk4f75x57SR33//Xe7SpYv07LPPkuHDh+vqqUdvEy4uLoiKinJwcHD4pskuoqJiA3e00+V5nvI8f8xisYzZvHlzwZYtW6jJZFKyGcaOBQ4evD62f//+zJAhQzB8+HBXb2/v7oSQR6uZb7/VavW6cOHCKydPnrxIKV3N83yeKIoPA0BcXFz1Hu/aNeDRR4HevZvqVpGUlARtU5QYJyQAoaFKWXUzkp6ejszMTKY5S5rDw8Mhy3IPQRDq3eZJRaWh3HYVafVFEIRBGo3m644dO/qPHz/eCZmZilpYNaun48ePY9OmTdEzZswYZuv8c+bMGaPRaNZMnDjRydfX98aD0dHAggXKCruJ+Omnn+TWrVtj9OjRjfugfO01JRY9ZUqjTlsXCxYskMLCwsiQIUOa9cG/c+dOcf/+/emiKA7ief5qc15bRQW4w1e6leF5frfFYjGkpaXlHT58GPDyAvbvB6pJievQoQMsFks/QRBs7iY8e/bsvywWy+O//fab0Wqtoneel6ekizUhYWFhzKlTpxr/IanXAwaDEhqpel9NxK5duyDLMhMREdHsP39RUVFaR0fHjizLrmvua6uoAHeA0xUEgRUEwduWsTzP57Ise+Z68UDnzsCIm3W1XVxc0KVLF7Asm/fRRx/lzJ0792Vb5p89e/ZGq9X69/z5802///57WXp6OlBaqqxymzAeCSjtekRRJLm5uY036eXLQGYm4OMDDB3aLE5XFEXs2bOHjhkzhtikndzIEEIwYsQITpZlG1WNVFQal9ve6XIcNwPAZUEQ6tRqFQShD6U0onPnzsoH7u7AgAHAl18CVdoAPfroo86vvvqqQ+/evVtTSuvQkfyHN998c5zFYul0/PjxdWvWrLHSsjLgueeUcuRG5MqVK1i2bBmWLl1Kt2zZAlEU4ebmJp05c6bxlrpXrgB+fooa2vjxihNuYtauXSt7eXnRwCbQprCVzp07w8XFRRYEYeotM0LlX8tt73QlSXIGAI7jnq5rLMuyD/j4+DCOjpX0zAlRVqPFN1f8Ojk5wdvbGwzDTBIEoQ4dyX8oVyt7jlJ6PveJJyi8bVqI24zVasXKlSvlsrIydOnShVy6dEn+9NNPUVBQwLZoTOWyzz//RyOirEyppDM1nUxBZmYmzp8/z4wZM4ZpykyFuuA4DqNGjXIkhHwnCMJ4QRBu+98DlbuH2/qHTRAEX0rpO507dwbHcX51jZck6eNz585pb4q5zpihaCGcOXPTOSEhIejQoYMLgHvssY3neaNDTs5I3f79SG9kCceioiKYzWZmypQpGDx4MJ599lnmpZdewpNPPonu3bs3jreyWoGLFxUdYEApnz50CHBwaJTpq2Pt2rVSnz595FaN/FZQH4KCgsj48eM5d3f377Ra7Xd1n6Gi0jg0f1DNPliWZXecPXv2HgAbahsoCIITIeQspZT89NNPNx3vcPAgWly9imOjR9907OLFi84Mw7wDYKU9xr2yYEGLaIPhhcSYmAXj27Rx8vDwgFarRV5eHuzRga1Ky5Yt0a5dO3nz5s308ccfZwHAzc0Nbm5u9Z7zJlJTlU4XlR8YxcXKhtrKlY0uwH7gwAGUlZWxQ4cObdR5G0Lnzp3h6+vrvHjx4scFQTjE8/yXt9omlbufOyJlrLz/mQmAM8/zJdUc13McFydJUpher0efPn2qnYdSCra0FFJlaUgAhYWFOHz4MHiet28VScg3AA4J772XwrLsRlmWHSilLAD07t3b2rZtW87Lywt1th6qhpKSEixatAgTJkyAn5+f3efXyc8/A/n5wLRpN36+ebOy+cg2Xvqs1WrFp59+SkePHk26N7LkZWOQlZWF77//XrRYLGE8z5+41fao3N3cEU4XAARBGANgg06nyyaE5Fkslj8kSdoGQK/RaJZZLBavzp07l44bN87ZaDTCxcXl5klEEejVC4iPVzbZysnIyMDy5ctNsiy34Xm+yGajCPkPgD9AaY4gCM4AWACFAMBx3CdWq/UNAHjjjTdQa/eLGti6dStOnz5NX3zxRduVzmzlzTcVCcohQ278XJKAI0catdAjIyMDK1euxMyZM3ErY7lVOXXqFMrKyhAWFoatW7daEhMTN1JKn7TrZ0BFxU5u65huFQ4DgLu7u0dUVFRweHj4mx4eHn95eHisGT16tJdOpxPPnj3r/MEHH+Czzz5DamrqzTNotUrc0t0dqPSw8fHxgb+/v8xx3G+CINgWclEq2rqB0hwA4Hm+tPyXVQtA884778wAAIZh6uVwAWD48OFgWVb+6quvaFlZWb3mqJZr14AdO5TGmlUpKQFmzryhjLqhVMhR5ufnN9qcDeW3336T/vzzT2zfvh0//vijLMuyhmGYhzQazQ6bfwZUVOrBHbPSBQBBEEIAHAHATps2DZU3ZMrKyrB//37k5ORQV1dX2q9fP6bGnf5vvlFSyF599fpHRqMRq1atKsvLy8u0WCzzZVlexvN8zYmrhCwBkAxKv6jBVkcAxiFDhqAh4tmyLGPRokVS37592YjGko3culXRHp49u3Hms4HFixdL4eHhbHh4eLNdsyaMRiMWLFiA//73v9Bqtfjll1/kq1evMq1bt6ZXrlwhHMeVchy38s0333zhVtuqcvdxR4iYV2AwGK7GxcW9z7JsyfHjxyMIIRovLy/CMAw0Gg38/PwQHBxMAgICiENtu/Dt2imi55XGaDQahIaGatq3b++em5s7VBTFqMjIyOXVnk+IAwAZwBq89161S0KDwWDdt29f3y5dunSuT0z3n0sR6PV6Zvv27dRqtUr+/v4Nfzs5dgzo0gXw96/+eHa2ssk2fnyjFX3k5uYyGRkZUo8ePW7529X27dsBQIqIiGC0Wi169epFzpw5I5WUlJCnn36aDBw4ULt3794e5W2Gsm61vSp3F7f8F8BeeJ6nkiR9WlpaOiY2Njb2u+++M0r2vgp7eSnO5NVXb3iN1mg06NixI6ZOnepstVojBUGoSdh1JIBJoFSs4TgAwGw2bzp48KBVFGsdVichISEIDQ0lmZmZDZoHgBJW2bRJ+TeoCU9P4O23G36tSvTu3RsXL15kr0tw3gKSk5OxcuVKHDt2jIaHh1/fKSSEgBCCoqIisnXrVqlFixYob/7Z/5YZq3LXcsc5XeC6uliMKIrDrl27VnCDkLmtuLgoMpDVhFc0Gg28vLzMDMPUpEieA8AWsYWEq1evct9++22DPY2HhwdycnIanlKQk6PEtbt0qXkMIYoIzq5dDb5cBW3atAHHcfRKJYH5elFaCvzyC2BHObQoivjxxx/ljRs3wsPDgw4ePJh07dr1hjFPPfUUO3PmTFy4cIE1Go0oLCyUAaQ0zFgVlZu5I51uBTzPUwDR69atMxcXF6O0tNT2kxlGUdY6cEDJWa3C/fffr5dleZEgCANuOECII4DPAETbYN8RlmXn5efnM/v372+Q4+U4DgzDNDwAv3Ur8NJLdYcNjEbg22+rfSjVF3d3d5qamtqwCbduBWbNUnrR2chXX30lEUIwbdo03HvvvWTgwIGoqvvAMAy0Wi0cHBzkrKws3HPPPVqNRvOzWq2m0tjc8T9QZrP5ucLCwj8+//xzy6effiotW7astLiakt8aOXkSyMi46WNPT0/069dP1Ol0Oz/88MMLH3zwwQPlhwYCKAKlNtXLzpo1ayaAgO3bt+d+9tlnJX/88UdZbGwszp07Z7uNUHb+K+vplpSUoF6v6ikpQEBA3eNatVJyeRsxxSsoKIipt3bE3r1Kd46HH1YqC8eOVVbjSny2VmRZxoABAxhbwlCOjo60oKAAvXv3JlartRWUNEAVlUbjjne6PM+b33rrrQmyLDtSSh0yMzO/WrVqlTEhIQFZWdXvgZhMJhgrBHCeeUZR2Eq58U2SEIKRI0dq33jjDUeLxeLLcVxk+SEJgF3iszzPp1mtVq/i4uKBycnJr+3atWvRypUrYU+sNzIyEnl5eeTvv/+WFyxYIC9YsACfffaZfOXKFdudr8UCODsrouW2cP58tSpt9SUsLAw5OTmM3TFuSpV0v4pcZYZR/lwhNFRHyEKj0ZDVq1dj4cKFWL58ea2e12w2w9XVFSZFg0IGYMMTSkXFdu6o7IXaMBgM1GAwyDExMTstFkuL9PT0U4cPHw4KDAzUVG10+Oeff4p//vknez2V6+JF5Rd4ypSbVnaEEJw8edJYWlp6ImHzZq+I+Pg3CLAW771nx3L6un1XDQbDwdjY2CQAb2i1WnTo0MGm8zmOQ8eOHcn27dvh4eFBXnzxRXLhwgV517oFikcAACAASURBVK5dTHx8PB0wYABh6irdPXUKWL4ceLpO7SCFFi2URp+NpJWg1Wpx4MABqU2bNozN+gvffAPExiqdOaoqk4WHK5t+3bsDsgwMHFjtFJ07dyZOTk4YMmQIdu3axQwaNKjGIo24uDii0WiIv78/RFFkcnJyBkZHR6+u2i5eRaW+3DVOtwKDwUAHDRq0fdCgQX/FxMSknzp1alTHjh01ycnJ+P777+Hk5ISEhAS2fKxyUosWisO1WJRVVKVfSEIIgoKCNAkJCeFas/kBotU6/fDkk38ZDIZ66yAaDIbShIQENwcHh57BwcEcoKyw6tKXZRgGSUlJtEePHoyfnx9CQ0OZQYMG4cCBA2BZllQUIdTI998D3t7/iNxUQ0pKCpYtW0aLiopIQKdOICyrxE/rIcUoyzIsFgvYSiXF586dIyaTiQYGBtYetygoUBTPgoOV6rjKynGVYRjgiSeUMT//rNxflYeso6MjOnToAEopDhw4gIiIiBtsqowkSeTYsWP04sWLdOzYsSQ3N7dlYWFhSGRk5C/23b2KSvXcdU63MkOGDEnesWNH+pEjR0alpaWJlNKU1NRUTwC4//774ebmhuvltYQo7dMdHW9yMDqdDnv27LEO2bmTcX34Yac0YNLu3buLBg0atL++tkVHR+8tKCiYLsuyJiEhgdmwYQPy8/OtXbt2rXa5evr0afz000+0Y8eONCoqiqnsNNzc3MjmzZvRoUMH1Cr9+OefiqBNDWNOnjyJX375Be3bt8elS5eQmJhIfVxciO7XX8Hdd59d9yeKIhYuXChHR0eT+Ph4JCQk0MTERGq1WklWVhYZOHBg7U53wQLgwgUgMrJmh1uBXq+Meest4OpVpRNGJbZv346MjAysX7+ehoSESMHBwTW+Evj5+eHw4cNy27ZtWT8/PwQGBnJ79uzpGBMT873BYLDr7UZFpTruaqcLKI43JibmK0rpPJ7nF8bFxc1hGKbozJkz92ZlZUndunVjrr+WGwxASEi1m0ctW7RgAj75BOv8/NBn+HBNZmamGBERsaa+dhkMBnNMTMzarKws7/z8/EOyLPe4evUq4+7uTtu2bXuDARs2bKBxcXFk5MiRGDZsGFN1lebh4QGGYeQtW7bQiIiI6p1ZXp4iZvPYYzWK2Rw8eBAcx0mTJ09m+vbtS4qLi+mW+HgS7+wMF70eXjbqBsuyjK+++kry8PAgL730EunXrx9CQ0OJr68vEUVRzszMZDIzM2m3bt1utnXLFiUtzN5Gn4QAkycrq/iHHgIIgTUoCMuWLZMuXLhALl26RLy9veVx48Zxdek/JCQkIDMzEwkJCaRbt26wWq1STk6ONHjw4J22G6SiUj13VBlwYyIIgrdOp/tOq9UOGTt2rFPHjuUNYo8fBxYuBJYuvfGE1FQcS0iQNmRkkLFjxzLr1683syz78VtvvcU3ok3dNRrN5mHDhrXt168fW1JSgh9//FGyWq3MhAkTiKdndV3jFUwmEz755BO88847qDa2m5ys6C288kqNc3z11VdSSEgIM3jw4Bu80rl16ygzYwZZ/9JLUr9+/diTJ0/Kubm5JDw8nDg6OsJkMt1Q6vzdd99JkiSRp59+mqlOqKegoAA//vgjbdGiBX3yySeZG+z9/XelYrB/A+oSFi1CoaMjlmdlyS4+Phg/fjwDACzL2tVR+euvv5aDgoJIp06dyPLly0skSerC83wDE41V/u3c9SvdmjAYDMWRkZGrtm/fnnzs2LHHKKWMn58f4Oam9AyrWro7Zw7acBwz+K23iKenJ1iW5dLT00sGDRr0cyPadDU6Onp/Tk7O41qtVrt69Wravn17TJ48mXF1da31XI7jkJCQgMDAwOoV1j7/XNkQ69v3ho9lWcbRo0dx6tQppKSkMA8++CDR6XQ3jGnZuTNxfvRRwNmZJCYmokOHDjQkJIRJSkqi2dnZND09ncTGxiI3N5cePXqU5ufnM8888wxTdZ4KHB0dERoaSpKSkrB//345LCyMYWbNUnKDx45V/v0bQLKTE1YdOYL/LFtG+rZoQbRjxkCj0dQYx60OWZaxdetW0qtXLxIYGIgrV67Qa9euDYyJiXGNi4sT4+Licg0Gw60rr1O5Y/nXrnQrIwhCuEaj2azX67Vt2rTR9urVSxu4cSPIxIlAmzbKoHnzFD2C8vbrOTk5+O6778pEUezN8/ypRrTlfgB/AcCwYcNoREQEsVUO8auvvpL79OnD3CQqQ6mS07ptm9KWvhLZ2dn45ptv4OnpKQ8aNIgJCQmpfvLLl4F9+4BHHrnpkCiKyMvLw9q1a6nZbCbPPvusTYLroihixaefUt+ePcnwzp2V0uR6KrJVZuHChXKbNm3I+MGDCYqLgUuXlAo8O535ypUrpbS0NLZ79+5ycHAwU1RUhJMnTxqzs7OJJEl7RFF8BEApz/ONJ8mmctdzx+fpNgY8z++3WCwBBQUFD6elpR1eu3ZtZlpBwT/dcaOjgaKi6w4XUOKobdu2tQBoNFVuQRAIyh0uAOj1epsdLgC0bt1aPnjwIE6cOHFjDnBaGvDkk/88QCrRpk0bODk5ycOGDavZ4QKKRkUNBR1arRZeXl6YPn06ee2112zucKHVanFvdDQQHU0RENAoDhcAJkyYwJw/fx7JeXmKs/3iC+C11+yeZ9KkSez06dNx6dIlbN++Xe7bty+mTp3q9Nprrzl27NgxghByTaPRZMydO/dbQRBaN4rxKnc96kq3GgRBmKTX63/4f1OmcJrz54Fly5SMhtdfv2Hc6dOnsW7duvSZM2f6C4LgAyCH53lzfa87Z86cMZTSDcHBwTQsLIy0b9/erhjklStXEB8fb718+TJbUlJCHBwc5JCQEIwyGhlcvAi8XH2n+e+++w7e3t7y6NGj634IWyz/FCk0hN9/BwYPxherVsn9IyKYvlXCHg3l5MmTWLduHXr06CHdd999LBFFgOeVarznnrNrLlEU8cknn2D48OEIDAy8niEiyzIyMjKQmJhoOXv2rIZl2VWSJL0GgJZ/lVXX6UTl340q1lw9O0wmU+r2zz/3GwU4kAkTgLCwmwZ5eHiAUtrio48++hHAVADPAahXk0NBEBiNRrPk8ccfR0BAQL1qb729vTFu3Ljreb/nz59n/vjjD4xo0QJsDavYL7/80lpaWsrdf//9dTvc3buB+fOBv/6qc2idXLgA5OaioKiIaYoWPsHBwWjdujW+//57JjQ0FL6+vsqbyqVLgNmsNCq1kfIiFuuePXtITEwMyzAMjEYjOI5Dnz59rE888YRm37592L1792NGo3EiAGg0GpMkSdyHH35YzLLsXpPJ9BjP88ZynWUXAHlqWOLfiep0q4Hn+SxBEEKOubic7dqrV0f/Z59V4qEcp6h0lYcZsrOzwXHcqbKysqnlpxobcl2r1erZWP3QdDodgoKC4NGihWyePZtxunSp2nEFBQXcK6+8AucqfeOqZcAA4NdfG2bYM88oK+5yAXlCSP00JGzA09MTnp6e0vr169kXX3yRsC++qBwYO1Zxur/YXu8wadIkDgCio6PBMAwGDx6M5ORkbNu2jb333nvRv39/9O/fXyvLMkRRhIODgwOlFNeuXXP//vvv7yWEXBIE4WFCyEZKqbOjo+MfAG4OkKvc9agx3RrgeV4ym81vbz1/voQuWgS0bq0IrVR0m1i6FP4XL6KsrGygS2EhiCw/zfN8QzIZdJTSm3QJKKU4caL+vRLH+fgwJzt3Rsy+fTcds1qtkCQJjnUVH1TAcYo40M/1uM2KVj0vvniDrCTLshU6B03Ck08+yZWUlJCiokptzxYtUuw4ebJO3YaqREVFwWAwgGEYODg43JQRUfE5oDxQ3N3dMX36dDYiIkIPICY4OFgzefJkQNV0+NeiOt3aWZudna1P7dTpH/3dtWuVI8HBcAwIQFjXrqZnfvjBHJiSsgaEDAUhTwAACGlpZxdGCgDz58/H2bNnlQ8oxerVq+naimvWgxayjPbTpmHv3r03bK4VFBRg4cKFcocOHeQ6NRsqw3H/bDDaCqXK6vLMGaXgoTxOXVpaClmW0ZT7CgzDgOM4+fLlSlXbvr5KQ86FCxW76okoimBZtk7jtVothg0bpnn77bfx8MMPa8sddSN3GlW5U1DDC7XA87wkCALWrl2LmTNn3niwvF/ZfR07OnyZnV2Sn58/CsBZAJbyEesB/BeEFAF4FJR+BkKcARir8zI8z5sEQQAArF69Gi1btpTz8/MZAGTgwIEUQP00FhMS0OaJJ6DPy5O//PJLaLVaKkkSLS0t5Xr06EFHjhxpn3RhQADQsSNQXKw8iOri99+BMWOUwoxKm4KyLGPNmjWyl5cXWrVq1aQP/2HDhjEbNmxATk6OPHTo0H+u9e23SlbKihVAYeHN7ejroKquRF1UFIqkpqZaJUnaa9fFVO4a1JWuDdT2+s0wDEaNGqXX6XSr5n300TLhvfeU93hKBwE4AUUKsmKZ9X8AJoEQBoS8D0JYEKKttCJuDaAnAJQ7XABAQkICiY+Pt3N5CWXDKCkJCA0Fy7K0Q4cOzIABA9ioqChu4sSJGD16NGvXKreCjRsVIfS6kGVgzx6lBLlKFkZSUhLy8/MxderUJv8ZDAsLg4+PD3bt2sVs27btxgCyq6uycv/iC6D8DcNWrFYrjEYjc+qU7WnaFosF+/fvt4ii+LFdF1O5a1Cdbt0s79atW627zJ06dcIbb7zhYLVaewFwv36AUgpKL4PSX8r//l8Aq6C0ab8GSiUAzwD4FAD49957hH/vvWz+vfdYhtJ7CSEVG3Pbdu7cydkrfI4//lDKaTkOJpMJPXv2RFhYGEJCQpTd/PoyahTw4481H7dagYkTFWf72WfV9mNjGAaUUmK1N1RRTwLLRYwOHDjA3BRDfuopIC5OWY0vr74XaXWEhoaiVatWsCf8k5SURAkhe3meV1sB/UtRwwt1c4raEHRkWRbBwcHS2bNn5wJ4vsaBlMoATCh3tKD0axBSEd9zhhKe6PeuIMwApc4gZNTmkSO99/fvP2LlihXo2asXoqKi4OTkVPer7enTikoXAFEUWVuLFuqE45Q2RydOKEUXlakIOzz9NKA0d6yW9u3bo6ysjGRlZaGxMjZqY8CAAejduzeWLVsmffHFF6y7u7vk7e3NREVFKZ2j27ZV/q0mTABGjqy2kKQq8fHxyM7OxogRI2wK/5SUlCA6OtokimL1CdMq/wrUlW4tCIIwkeO4eXq93qbA3fDhwx2sVutEQRDsi5NSain/vgCU5oHSvQAq2gO5j9qy5ejA+HjPmR9+WHD6xIl1K2fMwPLnnquxMwYA5dXexeV6fjGltE69Xrtwc7vZMZnNSlrZtWvAsGE1qpkBwOHDh6lOp6P2rLjrm1omyzJ27tyJZcuWSSaTCZIkwWw2swcOHCD7Kmd1hIYChw8D77+vbLLVgCiKWLp0qXT48GFMmTIF/fr1synevmXLljJK6bc8zyfX60ZU7grUlW7tvCVJEvr06WPTL5WLiwtatWol5+TkPCkIwgoAreutSkWpsfz7zwAwHAAICXjz7bcLlk+dSp2MRnz77bf4z6pVFMuWkbZBQUBiInD//cr56enKarS8ik6r1cqZmZl1CufYTGAg4O+v5C23bq3IRo4eDezfb1M5b1RUFDl//ry8aNEiOnHiRMbDw+OG4+np6Vi3bp0kSRKxWq3EYrEQAHBxcZE6duzIDhgwAFXPqYmNGzciNTWVDhw4kHV3d0dKSoqckpJCvLy8yHV1uQo0GmD6dGVTbfz46w+WoqIi/Pzzz7Rr164kMTFRbtu2LZk2bZrN6XYZGRk4e/ZsqcVimWXTCSp3LWoZcC0IgkABYPr06WhZy6tyZbKysrBixQqjxWJhLBaLAyHk8dmzZzewouAmu7SEkNOUUn+nkhKUOTri1bFjod+yBXj7beB//1M6KmzerHTEuOcenPvsMxzz8ZHH9u3LkIwMJY65bp3iPP38lFY+PXsqu/lGI9CtG5CVBbi7K06UEGXOyqxYARw9CgiCkvf61VdKDzYbsVgs2LZtm3zq1Cm8/vrrN0y+aNEiqaCggH3iiSfQqlUr6PV6SJKElJQUJCcnSxcuXGB1Op38zDPPMO7u7jVdAgDwySefyAMHDmQiyjNObOb++4HwcIhvvomP5s2Dk5MTnJyc5B49eiAiIoKxJyPwr7/+Mh85cuS9d999d559RqjcbfxrpR3rQhCENgBeB5RX844dO1avU1sFvV6P3r17axITE6kkSayDg4NfZGTk0jpPtAODwSDFxsYuAsBbtFqAYeDZtSvaPvaYMqBvX0XM29lZWY16eMAtPx+Hrl1D29JSor9wQQkDLF2qOFirVdkY8/JSdvEXLwaGDwceeEB53T5xQslWaNNGceI8r8Q9eV5x0h4ewJtv3pShUBcsy8Lb25vs2bOHhIWFXdeZ2LRpE65evUpcXFyoyWSSw8LCGI7joNFo0LZtW4SGhjIDBw5Efn4+3bFjB9VqtcTT07PG/x+j0Uji4uLg5+dnsxgPACXGGxuLI9euIctioa+9/joJDw8nvr6+dgkRUUqxfv160WKxvGIwGPJsN0DlbkRd6dbAvHnzVpnN5gkVfw8MDMSECRNqO+UG/v77b/HgwYNrOY678M4777zdFDaWPxiyAGDixIno1KlTreN37NiB5ORk+vTTT5Na2/pUR0X78qIipbNDq1bKRl1qqpJ2NWKE4rztFMOhlGLdunXSqVOnWL1eL/n5+bEnT57ExIkT4ebmhsWLF2Pq1KloV1XfGIAkSYiNjZUPHjzIeHl5ITAwEElJSdTNzY089NBDcCoPc3z//fdwcXHB2LFjUZ2oek2Iooj9iYloN3Uqyjp3psGbN5P6tKTPzMzE8uXLr7z11ls334TKvw51I60GzGbz6sp/T0lJQW5urs3n5+XlWRiG2dVUDhcAeJ7PBvA4ABQWFtY5PioqCq6urtIXX3yBpKQk+562LKt8ubsrurSOjkCvXkr7n3vvVUIZz9ectFEThBA8/PDD7LRp0zB06FA2MzNTFkURGo0Grq6ucHJyshYXV9+ajGVZDBs2jOnfv790/vx5xMfHQ6/Xw2KxyIsXL5Yr/r+MRqO1U6dOdjncpKQkfPrpp/RYcrK8/803qRQSQrF58z8PHzs4d+4clWV5vd0nqtyVqCvdWhAEYRGA6QB6sCzbV6fTLZ48ebKDVqutNcZrsVgwb948qyzLLjzPN52wQDnz5s1LNJvN4aGhoXTMmDGkriyF1NRU/Prrr3jggQdQq4auPVCq6Cs4OSniQA8+WK9pZFnGoUOHEBISAkdHRyxYsEC6//772UA7uhFTSrF9+3b50KFDpFOnTuTcuXN47LHHEBBQt9xBSUkJlixZIpWUlLDjxo1DUFCQcsBqVQTc27QBliyx655WrFhRlJaW9izP87/ZdaLKXYm60q2dGQDAsuxelmXfNxqNDt9++y2WLFlire1hVZ7aRAE0S+a/2WweAQDHjh0jc+fOxbp16+jnn38u1VR40KlTJzz00ENYv349SktLG8cIQpSQQ1YWkJCgOGEbMJlMOH78OC5fvgyTyQSGYdC3b1+wLAur1QpKqV2ltoopBCNGjGDuvfdempubK1NKkZeXZ5NBS5YskU0mE/vGG2/843ABJTd5zRplA/KTT4CyMptsoZTi0qVLWgBq2a8KANXp1kr5KtVNkqRXZFl2BACO445TSlP++OMPU1kNv3g6nQ4uLi4mAD1qmlsQhMZpk6DYWcjzPCGE/AwozrewsJA9ffp0jed07doV7u7u0v79+2VAiV/eIApTX/z9gY8/VnJ1DQagimpaBbIsY/v27ViwYAHdtm0bXblyJebPn48PPvgA8+bNo/PmzcPcuXNRXFzM2qyCVgUXFxemoKCACQsLw44dO4gtFX1du3YlFoul+vCLo6OS95ycbHMnivz8fFBKjTzPV6+tqfKvQw0v2IggCC20Wu23oig+DqA/IeRnSmnHxx57DMHBwTeN37Fjh3jgwIHdoiiO5nlenDdv3gJZlqdYLJYHeJ7fU56O9gzP8983sp2BUIR34Ovri6eeeqrGsadPn8aff/6JESNGYNeuXbSkpIQEBQXJY8aMqbGppF2cOKGknh06pDir8k2olJQUrF+/XtZoNGTMmDHXc2UppTCZTDAajdDpdNDr9ZBl2aaskaqIoogFCxbQoUOHIjw8nOzfvx87d+7EM888g9q6KgOKZu6ZM2fk//73v9Vf2GJRFNPmz1cyQGr5tzp69Ci2bt26ecaMGaPtvgmVuxJ1pWsjPM8Xzpw5czwAZ57nEymlfQBYf/vtN/z111/mqps9Q4cO1bZv336AVqtN++CDD341m80vt2vXrqVGo9k0Z86cR6CEH5aV90VrTDtToPy/PnnlypWiw4cP1zg2KCgIgYGBdM+ePdbOnTuTl19+GdnZ2XTx4sX02rVrDTemWzclFjp7tlJEUc5ff/0lhYaGMtOnT7+hOIEQAkdHx+t5uQDq5XABYM2aNbKnpyft27cvAYDw8HC0a9cO+/btq3Mn7MyZM1K3bt1q/n/RaIAWLYBdu5SwQy0UFhbCbDarFWgq11Gdrp3wPG8s/17A87wGgGdycvKSRYsWmXbs2CFWlKqyLIuJEyc6jR8/vp0kSY8BQGhoKJ04caKro6PjTwAqshpqz/Oqn42U5/nlVqt1yObNm/O3bt0qSjXsuj/yyCNk+vTp3OjRo6HX6/HSSy+xLi4udM+ePY3TzoHjgL//Bjw9cWncOPwwY4ZssVjYXr161duh1sXhw4dx+fJl5pFHHrmhgMHPz6/20ulyRFGkrVu3rtnpnj4NtG8PHDtWa6kzAJSWllpkWc6pdZDKvwrV6TYQnudz3n777f9ntVoDDhw4cGzt2rVlFQ6OEAJ/f3+8+eabePrpp9GrVy/SoUMHREVFObEsO5NhmFLUVyfXNtuOWCyWLocPH45fsmRJaUFBgU3n3XfffczRo0eZK3Z2VaiNM2fOYJdejz6PPsq8PmUKPGys8LOXxMREbN68GY888giqljxfvXoVrVvX3bS3VatWZNu2bbTaFMG8PCU1ThSV/OQ6KC0tFQGoBREq11GdbiPB8/wVURQHnzt3bu/PP/9stFgs1485ODigffv21/8eFhaGSZMmuRJCdFCaFDalXblms/mevLy82V9//XXZ8ePH6zynXbt2cHJystqS+2srV65cgSkyUuoeHg72gw+A9Y2fthodHY2dO3di/Pjx6Ny5803Hi4qKqMViqXMfY9KkSSzLsmT16tX/DJQkYNUqRTktLs7m6rvS0lIrgHy7bkTlrkZ1uo0Iz/NloiiOvHTp0pbly5cbzebqu7ETQuDn54fw8HBZq9WuEQShdvGAhttFZ82a9ZnFYhm0YcOGgvT09DrP0Wg0xGhsUJ/NGyguLv6n+eWiRcBDDwFbtyo5vQ3EZDJhyZIl0sGDBzFlyhTcJGJTzqOPPkrS09NJfHx8jaETWZZx+fJlFBYWIjAw8B+nazIpAkImE2ytSrt69SoyMzOdoK50VSqhOt1Ghud5iyiKj+Xk5KxesmRJ6fnz52scO3z4cK2np2dbAEObybZDFotl+pYtW0rqWu05OzuTixcvNlqbXg8PD1y5coWRJEmJgxIC6PWKPoQs15haVhfp6elYuHAhdXZ2JtOnT4ePj0+NY11dXTFp0iQSFxfHVA21XLt2DfPmzaMffPABfvjhB0RGRkojR45kYDIp3YtlGfj8cyVtzEYOHDgAs9msAdAIqSAqdwuq020CeJ6XRVF8Lj8///k1a9ZkLlu2rOTixYs3jSOEoEOHDlqtVvvFnDlzXhYEoUlDDeWsLigoyIqPj5dqc7xjxoxhTpw4wdiy8WQLx44dsxYVFd3YlTciQvn64w9FGc1O0tPT8csvv9ABAwZgwoQJjC35vBaLBRzH3RTvXbt2rdS5c2f57bffxqxZs2AwGFhQqqSDhYfbJFdZlaioqIo/qjm6KtdRnW4TUZ5B8LMoih0uX778yooVK0qrc2DDhg3TTpgwwdvf3/8jnU73ezPYJYuiODQ+Pj7j77//NtckDN6qVSt07dqVrl+/Xm5ILrcsy1i5cqVcXFzMzZgxA9XKMD7yiFJQUVQE/GZbpeyqVavkn3/+GWFhYTQyMtJm1a+ysjJotVpaucqtqKgImZmZ7PDhw9nrJdQWCxAVBeTmKt0k7KyKA5RYPiFEBnDzE1flX4vqdJsYnucts2fP/k6W5Y/i4uLKqjqw8tUunnjiCQdCSKQgCF2bwaZLoij2Sk5OPrJ69eqymhzvAw88QPLz80l2dna9r7Vlyxbk5eWR559/vmbBb0KUTICrV5WiA6DaMuLLly8jPj4eS5culXNzc8n06dMxfPhwxp7Us8DAQJSWlpKKPmkVXSUopbiem1xUpOTifv21IltZT8rLmsWKNEMVFUB1us2GJEmL0tLSsg4fPlztspHjOMiyTNBMO908zxeKojj44sWLaTV1s+U4Ds7OzlJmZma9r3P16lWEhoYSmzpWdOoEzJoFZGcDAwcCP/xww+E//vhD3rlzJ3Q6HX3uueeIiy0t4KtQoUdR4aiTk5Nx7Ngx+Pr6SkVFRUrsduhQ4OJFoLL2Qj0oKSkBx3Fq5oLKDahOt5ngeb5YFMXpSUlJ1eoUFhYWQpIkAuBqM9okms3m2du3bzeVlJRUOyY4OJjbsmVLvXUZysrKJLu1E9q0UTQcvi+vkF6xAieXLUNpaSnz2muvYcqUKaxTPWKsAFBaWgpCCFatWiXPmzcPmzdvhoODA5588km2W0WaX3y8UvzQQCRJAiGkedodq9wxqE63edmVlZXlUDmHF1CkFn/44QcjIeQTnuebWwxjvclk2vHll1+WXbp0837PPffcg/79++OHH37AJ598AnvKg+Pi4lBYWMj6+/vbb9XSpcC88s423t5w9fOD3S9PvQAAIABJREFUprgYmuHDldBDaanNSmaVadWqFXr16gVHR0dMmTIFXl5eMJlMyM3JAebOBdLS7MpQqA0HBwfIsqxvlMlU7hrUdj3NiMFgEPft2/eYt7d3mwo93j179kibNm26WlZW9qQsy98aDIbmtolGRkaujo6OPpqcnDzW19dXU7Wljb+/P9zd3XHy5EkcPnwYSUlJ8pkzZ2QXFxfGzc0NNW1irV+/3jps2DCmro4W1SJJSrugiROBrl2h9/PD7n37aNCUKUQfEADMmaMI6vTrB+zerQir2xjb7dy5M0JCQoiLiwvatGmDFn/9RbefPk26ffwxtG3b2m9rLezZs4cZPHjwB406qcodjbrSbWZEUVwWGxtrvHDhAn799VdTXFxcnsViGTh79uwNt2CVe53Zs2dvtFqtD65evbosL+/mXP7y4gb54YcfxtChQxm9Xs/++uuv9Msvv6Q1afJaLJY6m0bWiKMjMHWq0sOtHMqyMFeImb//vtIM02gEPvpI+Sw+HoiNtesyXl5eCG3VipCSEtQUYqkvVqsVkiTpBEFQu26rXEd1us2MJElf5ubmrl29enXG2bNnP7RYLAE8z9dcQdGMzJ49e4fVan158eLF2Ldv3/XPjUYj4uPj0aJFCxoYGIju3bvj4YcfxowZM4jFYpFTUlKqnc9qtZIKecZ6pZ316HE9hYxhGISEhJBNmzbJVqtVyXjgOCV/dtMmJaXLalVSvSgFxo1TshBqyMwAALzzDqxHjuBznQ6effqgTXm79cbiyJEjFX9stCITlTsfNbzQzJS/zv8ZGRn5+eDBg3cZDIb6lWI1EYMHDz4UFxcnXbhwYaCHhwfn4eGBM2fO4NSpU3jssceYyhkDaWlpOHr0KOnSpQvR6/XXu/lWEBsbS4YMGYJ169bJ69evJ2fPnpXbt29PnG1t056eDixYADz3HAAgICAAe/fupSdPnqTdunW7uS2Rnx8QEKA43RYtgOBgJTa8di1wzz3AuXOAm5tynBCAEDDduiG/tFROTU3FoUOHQClFq1atSExMDNXr9YRhGLt6q1VQUFCANWvWAMBYnudrVpNX+dehOl2VmzAYDLtiYmI2nz179gl/f39dx44dUVhYSPfv3y/37dv3+tvRqlWrJDc3N+b06dM0Li6OyLJs9ff3ZwAlRzU+Ph7Dhg3DoUOH5JYtWzKZmZkkJycHNjeJbN8eGDQIcHEBNBowDIM+ffqQAwcOyElJSaRXr16EYRiUlpZi7969NCUlBU5OTsTF1VVJPyNEEU/v21epLHvwQaV1/IsvKnnB99wD6HTo2rUriYiIIIQQcvDgQTk2NpbJyMggBw8exL59+xAREWG3DGV6ejpOnDgBADMNBkMjiBOr3C2o4QWVauF5PkmSpLfXrFljOXLkCLKzs6nRaLxhx4xlWeTm5tLevXuTp556CgkJCVxFHuzVq1crKrJgsVhIamoqRFHEuXPnsGjRIhiNRhQWFuLs2bM1G6HRKG1x/vzzeniC4zj85z//YU0mkxwXF4fs7GwsXbqUHj9+nF6+fBk//PADrl6tlHXHMMrqlhBlw81sBjZsuCkljGEY9O/fH9OnT2enTZuGAQMGYOrUqdDr9XJcXFyd4QGr1YqMjAxUFF1Ualyqit2o3IAa4FepEVmWvzGbzfO3bdvGBQcHM48++ugNx59//nmWYZjrq0BnZ2fp66+/ZvR6vZyRkcG2bNlSBsBMmTKF+ah8s8vDw0PKz89n/3975x1WxZX+8e+ZuQ3upSpVKYoooKCIolivvaOx95rExMRk1/Tm7CS/XTermxg3xZjEssYSNUbFEkVBEQvYBVGUKBqkKgjC5bY58/tjAKUK2NZkPs/D8+iduTNnBu73nnnP+75fANi/f79w4cIFNigoSBgxYgRbo0XQlCkoKCnBso8/Ro8ePdC3b18wDINhw4axu3btEhISElgvLy9x2rRpjNFoxBdffCHm5eWRWi15WrYECgvrzHRwdHTEwIEDAQATJkxgVq1ahVu3bglt27ZlyzMxzp8/LyYlJdHMzExWq9UKgiAwZrOZKBQKcfLkycTLyws6na6kuLi4BYDzDbnvMn9s5PCCTK3o9Xrx4MGDd1q0aKEfO3asSqPRVNrOMEyldLHw8HDGYDAQW1tbJjs7GwaDgZw+fVqMiYmp2Kl58+aMyWQSe/XqRW7evElMJpOYk5PDnDt3jrRo0QL3x3uzsrKQkJ1NC1auJPnt2+PKlSvIycmhAQEBxNXVFREREUzPnj3Rvn17Akj5zleuXCGRkZE1p7FRKjXW6dYNePddYODAB7ZptLOzg7+/P27evMmcOXNGOHToEHPs2DHk5uZSlUrFFhYWwsnJiQkMDMSoUaMIy7J0165dTHx8vOjk5MTcvXv3d71ef6RxvwGZPyLyTFemTkRRjLpx48aS+uzLMAz69u2LoqIiJCYmwtnZmer1esbf3x/79u3D+fPnwbIsfHx8qMFgYM+cOUO6detGWJZFbGwsoqOj6ZQpUxhASlFbuXIlmrm7k4lZWegxfjzylEqsWrUKn376KRYsWFCtl4OLiwssFkvt8VeLRYrxOjoCISFStkM9mpF7eHhgzJgxAMAWFxfDbDbD2dmZBYDs7GysW7eOXr9+HQMHDiR9+vRhe/fujRUrViArK0uhUqmeB/Bpfe6fzJ8DOaYr8yDUCoXigWaO9xMdHQ0/Pz9h/vz5THBwMDQaDVq1agV/f3/x1q1bgiAI7IYNG6iTk5PQo0cPREREgGVZGhYWVvH3eP78edHR0VGYOWcO0fz3v4BWCxcXF0ybNo2xWq04ePCgULWyz8nJCVarFVVfr6CoCJg5U/r37NnA3RorsutEp9PdH6+Fu7s7nJ2dodPpKnLiGIbBjBkzSLdu3UApfTTlbTJ/GGTRlXkQOqVS2aA808LCQsFkMpH7xS8oKAgTJkwgffr0YTMzMwW1Wk2mTZvGZmVl4fTp06CUEnVJCWAyITc9Hb+tXUt69OjBIjFRytWdMQOgFG5ubhgyZAhSUlLIypUrxStXrlQssh07dgxKpbL2nODhw6W0MUDqZjZiROPuSBlmsxlHjhxBZmYmM3To0Eq9H21sbODm5gar1dqM5/kuD3UimT8UsujKPIjckpISRV5ePQxti4uB0lJMnTyZdThzRly9ejU1Jyffs+T56isECgL+Mns2O3XDBrJ9+3bh1CuvAG++KQYHBwstFi6E9fRpbFm5Ev0uXkT79u2BggIpJHDpEvDhh2AYBu3bt4ednR0KCwvx888/i2vWrKHx8fE4dOgQJk+eXC1fuILjx6U8XgBo3VqqYHsIfv31V+zfvx/h4eGig4NDte3t2rWrODPP84/NgFTm2UIWXZk64Tguk1L6lw0bNpTU+Nj+5ZeS+wMALFgA7NoFlVqN0cnJrNVkEnf897+i+epVabuPD6DTgdrYICY8XLx69Srb86uv0HHnTjJ8+HAFdu1CcWAg8lUqNNm7V5qxDhoETJwIJCYCr7yC0k8+war334fFYhEXLFhAFixYQERRJAcPHoQoili7di32799Py1PXKli+HLjflJMQ4Ny5au0jG0Lnzp0BAFartcYnAUII2rZtawEAhmEWNvpEMn8o5IW0Pyk8zysYhnmZUnqL47gNde0rCML3JSUlo0+ePDkoIiKi8owtPBzYvx/49VdgxYqKl0lsLOZSyi5evFj8rXdvBALS4z0Ao8GAwwCZOHo0HDw8Kh3OwcEB/v7+whdffMGazWaEhoYKHTp0YB0dHWFUqXArKkrsaW+PtkuWsOWZBw4ODkQURRoeHs5otVps3boVR48eBcuyaNasGR03bhyj9fCQqtTux84OqIcle22UG3xev3691smLr6+v8sKFC6CU/u2TTz7J/Oijj75r9All/hDIovvnpSmldJlWqzXwPJ/NcVxsbTtyHCfyPL84MTGxR2hoqK5S6lh4OLB4sSS8a9ZIsdcyiouLYbFYiK+vb6Xj2draQqvVUo1GU02sCCHo1q0bm5aWhvHjx+Pw4cPYsGEDNZvNDKUUgW+/jdEjRxIMGACMGwfMnQt3d3dcvXqVlD/Ov/HGGwylFAUFBdi+fTu+//e/MX72bHg0b47CwkKsWbNGNBgMpEWLFsLgAQNYh+JiySSzBoqLi7Fx40barVs3JigoqNK22NhYuLq6Yvbs2bWGDpo1awalUpkvCMJtSumKv//97y2sVusHT7O50R8dnucdAJQCaA7gBwDXABwCcBRA2v33nud5HwAsy7KzAJgEQVjOcdytxzk+WXT/vOQolcrrRqOxOYAXeJ635zhuex37HywtLf35888/H9+uXTtmwIAB6grxLe/89eqrUvltWbhh3bp1VBAE5v4Y608//QQAoiAITJMmTWo8UZMmTdCiRQu6detW8t5771UsUFFKwTCMJHAvvSQVOWRkIP7wYdp/wIBKwscwDJo0aYLZs2czadOmIWnuXMROmSLk5eUxTZo0EceMGUP27t1LzowfD7umTanj3//O+Pr6Ys2aNdTBwUEcPXo0e+3aNaxbtw4AmGPHjglBQUGVFsucnZ2F4uJi1mKx1BpH9vDwgJeXlzo9PX0XwzAjrFbrewCiAByr417LNBCe54lCoXiFYZgPWZZ1ppSyoiiWf6nr27RpMy41NVVXti8A7ARwGsBCQGo4b29vT41G4xSe54M5jntszefJw5gOyjzb8Dxvy7JsoiAIbcteYjmOqzNTgef5IIVCsW7AgAEdwsPDK2+8fRv4xz8km5sXXkBWVhY2bNggsCzLjBs3jnh6epb/weOVV15B0zoe7VNTU7Fz5076xhtv1L3uEBGBFLNZVG7cSPzLxb8Giu7cwb79+6FWqzFs2LCKXN7iO3ewLyYGV65cEQEQAKIoitBqtSgsLCTh4eHo1q0bli5dijfffBNVC0SWLFlCx4wZw9TVqP327dv45ptvxDJnEABoxXHcb3Vel0ytlC1KegDwA+DHsmyQUqkcbmNj4z127FitR1nIShAE3N8UKTMzE9u2bUNeXh5YloUg3MuEtLGxMb300kvqzZs3l+Tm5l4xm80zOY479zjGL4vunxye5x0BBAG4xnHcA83QeJ5nGYYxzJ8/X1W12TkAIDNTWvhauhQIDQUVRWzZsgVZWVni66+/Tj799FNx4sSJxMfHp9LbRFHE+fPnkZ2dLWRnZyMjI4Pt2LGjOGTIkLpX/YuLsWXJErQSBNph8mQGgVV8PY8fl7qVTZxY+zHWrgXt0AErExJgZ2cnDBgwgE1JSUFQUFBFTu7nn38udO7cmW3WrBnKBfbYsWM0NjaWadu2rTBy5Mg67YJPnTqFnTt3QqPRJL7zzjtyClk94HleBaAXAH+FQhGgVCqDRVH0M5vNHkql0urg4GBu2rQp6+rqqvXy8iLe3t6o1nmuFhYvXkwnTJjAODs7o7i4GC4uLmBZFqWlpdi0aZMpPT39VY7jvn8c1yWHF/7kcBx3B1Ksq777C4sWLSqmlDrXuIOnJxATA0yZgltBQTjesSOuX79OAwICxIsXL7JGo5EcPnxYKC4uZr29vVHeKjIjIwM7d+6Ek5OT6Ovrq4iMjISTk1OdgltUVIRt27bRm2o1M/jiRQZ//au0oHc/Wi1QSxijnHyzGefi4+HQtCkuXbrERkZGokePHpX26dChA3v48GEIgoB+/frB1tYWiYmJRKvV4s6dO+T06dPUZDKJERERNYpvaGgodu7cCaPRuKfOwfzJKZvFtlEoFDMVCsXLzs7O8PDwULq4uNg4OTnB2dkZTk5OUKvVSgAPVXjCMAx0Oh1098Xzy/KrmfT09EZ2338wsujKNIiy2Jm61lxYQGou/t13uN21KxhBEHoOGcKEd+nCFBcXw8/PTzSbzdi3b59QUlLCOjo60qCgIGIwGIijo6Mwb968ev1NGgwGLFu2DK1btxZffPFF6Jo0AcxmKa7s6wu8+aZU5uvnBwQH13msVXfuUEe1mpRmZ4sDBw4kGo2GAJKor1mzRjQajaLFYmEsFguGDBmC48ePCwBEJycntm/fvli3bh1JT08nAGA0GmmfPn2qhUQYhsGoUaOwZ8+eSJ7neXkhrTo8z3dSq9WrGIZp2a5dO0Xnzp1VLi4uT3wcvr6+yhMnTvwfz/O/cByX9qiPL4uuTL3heZ6o1eplKpWKKW9MQylFdHQ0MjIy6HPPPcdUlMja22PbjBni67GxrEalArp0gb29PaZOnUoAsIBU0XX69GkmKSmJ5ufnQ6FQ1LuAYO3atYKvry/Gjx9/b2apUgEDBgBHjwJ37gAXLwI8X332ex8HDhyAKIrMrFWrwGzYQNC6dcW233//Hfn5+aR///7Ez88P7mX+aeHh4ZVms2+88QbJzc3FkSNHEBcXx3Tv3r3GhbXg4GDExMS0NplM/QDsr++1/hn45z//uVStVr84ePBgm/bt29fqu/eoEEWx1hMQQsAwjIlSeuNxnFsWXZl6w7LsKzqdbtbs2bNtYmNjxeTkZKG0tJTV6XSiu7s7WbFihejm5iZOmTKFKfMHI3eXL4fm66+BqChg2DBpFlyGSqVC165d0bVrVwYAKKX1+qTt3r0bxcXFzIwZM6rvP3Kk9DN+vBRfjoyUXj98GHBxQbpajX3ffiuUurnBVqcj+fn5pFevXoR57bVqzW+uXLkCb29voXv37nXGaxUKBTw9PfH7778L3bt3Z2t7CmAYBv369dPu3r373zzPd5BnuxI8z4cAeP1Bi6uPimPHjoEQQmqzZ9q3b99dq9U6m+O4x+LqIouuTL3geX6+QqFYMmHCBNXly5dx/PhxMnjwYIWDgwNatmxJCCG4fPky4uPjxeXLl1NPT0+mWbNmgouvL4tFi6RGM/v3SwtsbM0aVh93htTUVJw9exZz5swhVTMJKvHdd9I5d+wA3n5bcg/u0AHbXFyE1xYvZi/t2QPd+vVw2b0bprlzgYgIqfsYxwEhIThy4QIuXryI6dOn1ym4lFLs2LEDZQUQbPv27QEApaWlSE5Ohk6nQ0BAQMXMrV27doiJifEzmUz9AUQ/8IL/HJwDpIZFjxur1YpDhw6JkZGRpCb3kuzsbBQVFREA2x7XGGTRlXkgPM8rASyzWq34+uuvoVAoMGbMGAQEBFTar3Xr1vDx8WGioqKECxcuoFu3bpKKsqwkghs2AP/+N/Daa0BdglkHZ8+ehYeHB3Vzc6tboS0W4Jdf7v0/OhpxcXGgJ08yotmMIJYFevUCCgth4+gofRn8/rsUloiMhIPFIo5YuJA0e4Al+3fffUezs7OZyZMnQ61WV8zULl26hOjoaFitVixYsKBisYZhGISHh2sPHTo0AbLoguf5it8jW8uXca1kZgJhYcDkydLfVT3YunWr6OLiIgYGBlZ7SiouLsaPP/5oEAThxceZpyv3XpB5IBzHWTiOIwA0AKYAEKoKbjlqtRpjx45lp0yZgpCQkHt/2BoNMGUKkJcntVVsZKrisGHDkJWVxVwt7+dQE0aj5K1WpXVjQUGBaLVaSUXzHo0GKH/E7NkTmDwZ5sGDseull3CmVSvivmyZNNa9e4FaHI9tbGwYAPD19YWHhwd+/PFHYdGiRdixYwciIiLEsl7BtKCgoOI9fn5+EEVxAs/z7Wo86J8LHwCwsbFpuGOyh4dUDfnOOw/c1Ww2Y8OGDTQtLY1ERkYyVWPGJSUlWLt2rcFsNn8miuJGnufb8Txfg5XJwyOLrswD4Xnejuf50QBeVqvVc11cXIwPek+rVq2qW5qrVMDf/w4cOCDNKBsJy7JiQUFB7aqt0UjNbe5zLgaAkSNHEldXV5w8ebLGD/iuXbvokiVLkF1aSiM4Dk1275ayIBhGcpoYOxY4cULqpgZpZpSRkYGpU6eCUorVq1fTgoICmM1mMAyDPn36kClTpuD69etk586dFZn4bm5uGD58uFapVMbxPF97Rcefgza2traW0tJShud5bN68GampqSguu8e18pe/AOfPA1OnSgunc+fWumtCQgI+++wz0Wg0Yu7cuaiaEXH16lV8+eWXpQUFBcsZhgkGQAEkAfB+6KurATm8IFMnPM93UigUBzw9PYmrq6vK3d1d3aFDh8YfsLgYaN8eaGT8bs2aNdRoNNZaQoz0dCljoZbuYa1bt8b58zVblqWkpOC5555DYGDgvclIcLD0o9dLs9133wV69ADefhsmkwmiKOLixYt069atjE6nE1UqFQMAHTt2FIuKisj69etFQRCIVxUjzJCQEGKxWBz27t17hOf5zhzHXW/43fhDUGRjY1P62muvKRMSEoT4+Hg2JSUF9vb29PXXX2dqjfOPH4+KTJOmTWu0XcrJycGmTZuE0tJSNjIykgQGBpKqM9w7d+7gp59+KjWbzSMAEJ1Ot71p06bm3NzcNe+//37NjzcPiSy6Mg/C387OTjVjxgxNQ23IayQvD/jii3rvfujQIZw8eZJSSkEpJYQQBgDWrFkDjuMAAHv37qWpqalUq9VizuTJCrzwQq3HCwoKwv79+5nk5OT7+90CAARBILWKuVIJBAUB//wnkJ8PQOoR4efnJ5w6dYodMmQIrl27RtLS0sjMmTPh4+NDbt68CZZlyZgxY9CiRQu2vPqz/IMfFhbGmM1m59jY2KM8z3eqT0XgH5Bsg8HAqtVq9OrVi+3RoweKi4uxevVqEhUVJY4cObKySsbHSzPcefPuvdajB9ClC/DTT8CECbBarfjll1/Ey5cvk7CwMPTt27fGFD5KKTZv3lxCKV3EcdyBTz755P+sVqttbm5ujsVi+evjumBZdGUexE8Gg+GVuLi4cL1eX325t6EsWSLNTMrcgatCKcWFCxeQnJyMrKwsQRRFZvDgwYyjoyNYloWLiwuKi4uxdOlSrFy5Evb29khNTWWGDh3KHF2/Htl798J91KhaT+/o6IjWrVvTbdu2MSaTCWFhYSguLsZXX30lmkwmsn37djpr1iym1nJSPz9JfMuYOHEiWz7uPXv2MB06dIC3t/RUqtPpYLFY0KRJExQWFmLlypUghECv14sdO3YkCoUCERERrNlsdj169OjRshnvY+1w9T9Iczs7u4pFK4ZhYG9vj4kTJ5Lvv/8ebdu2RbkDMwDAy0syGK1KQQHw0ks45+qKXxMTRScnJ/GFF14grq6uta7OHTt2TLh9+/ZFq9X6TwCglO43Go0fAOjOcVzJI7zGSshuwDJ1otfrxQMHDpzKz8+fHhER8fALC66uUtZAlfACpRRbt25FVFSUmJ6eDnd3dzE0NJQdPnw4cXd3h729PXQ6HRiGgUajgVarFcpmvzQ0NFTs1KkTUxQXR8n586TJ4MFISkqCUqmEra1ttSG0a9eOHDt2TExNTSUeHh7IyMjAzZs3MX/+fJKSkiLu27cPiYmJtEWLFozd/XFhSoHmzaVZVpWZEyEEt2/fxqVLl0Q3NzfSpEkTaDQaZGZm0n379pHTp0/Dw8NDjIiIIHFxcTQ+Pp6JiIgAwzDw8fFhjEajNicnZ1hMTMxKvV7fIE+6Z5lDhw71aN68+Yh27dpV+tvSarVQq9Xi7t270alTJ6KgVFoPGDTonvvHfeSbTFjl4iKkpqYyg4YNI0OHDiW6Wtp1AlKvj40bNxqNRuNwjuNyAECv16fr9Xper9cX1PrGR4A805WpD8kGg0FRVFQEe3v7xh/FaJTyZaOiqm3atm2bmJaWRiZNmkS8vb1RLfhWhc6dO1eewZSWwtS1q7j7wgVx15IlUKlUKC0tJQzDiJMmTSJ2dnYoLS1F8+bNkZiYCEop6dmzp7ht2zbRarWSwYMHQ6vVYubMmUx2djbi4uKY6Ohocfr06aSwsBDR0dG4ceOG4P/NN+yI+2zi72fYsGG4fPlypXzjiRMnMrm5udi/fz+GDh1KHB0dceHCBVJSUkLLA5aEEPTv31+Zm5vrd+PGja8APN/ge/vsIhiNNa/Ldu7cmVy+fJmuXbuWvjBtGgtHx2pfdmV50mJKSgoJDg7GsE8/BePsDDxg3cFiscBoNKoAXHxUF1JfZNGVeSAcxwn/+Mc/vvjll19emz59um2jSzR/+036qSEf08nJiRiNRmzevBlhYWFiQEAA8ajiKlEnH36IIUFBrP9zz0Gj0cDb2xuiKGLz5s103bp1rCiKYBgGarWamkwmZsKECfDx8SFHjx4lrVu3FkNDQwkgPd56enrCarXS0tJShlKK77//nrq6umKAvT2bGB0NjB5d4xA2btxIvby8xFatWlW6QFdXV0yePBkAcPToUWRmZjIvv/xypVJXQgjGjBlj+/XXX0/6+OOPDy5cuPDH+l/8M01WTk5OjWErQghGjx7N7HnlFSTqdAh/7bVK2y9cuIDdu3dTrVaLWbNmEQ8PDxY+PkCbNg88qdFohCiKCgAdAJx6FBdSX+Twgky9iImJiTMYDOMUCoWLl5dX41SXEGD+fGlRqgotWrRATk6O6OTkRK5evYr4+HjSo0ePelWpAQD69QNp1w5N3NxQbhJJCIGfnx/j5eWFoUOHomfPnnB0dCShoaHw8/MDpRRHjx4V7ezsxODg4ErX5O3tzSQmJuL8+fPEaDSSuXPnEnrqFDKuXMHuy5fFo0ePiunp6WK7du0IIQQGgwF79uwhU6ZMYWxsam9+tWvXLhoWFkZa39fjoRyFQoGWLVsqz549Ozg2NvY/er3+sZSh/q/w8ccfP6dUKjePHj3atrbyX6VSCdeUFBy8dAnNO3aETqdDUVERVq9eLZw9e5bp168fIiMj74WB3NyAzz+XCnGGDq3xmFarFQkJCbh+/ToAxOv1+prTWR4TsujK1Au9Xk9jYmL23rhx4wV/f39VXfGyWpk9G7h2TYrp1kC7du1I27ZtERMTg7Zt24pBQUEPijJILFwIeHvfK3S4D4VCgSZNmkChUIBhGLi6ulaUm164cAHXr1/H888/Xy1ZXqPRwMHBgWRlZQmRkZGMk5MTNO3b45aTk6jMlcDMAAAgAElEQVTX60lISAg5c+YMrl69iuDgYGIwGJCYmIiSkhJRo9EQrVZbY4XVpUuXCMuy1N/fv8YL0+l0+O2330oLCwtT9Hp9yoMv/tmE5/lwtVodNX36dG2tDeDv3AGOHIHtjBkoUCrpvn37xIKCAhIVFQUfHx9x6tSpjI+PT/W/kdu3paepLtXbFhuNRsTExIjHjx/PEUVRB2CcXq9/oj0w5OIImXrDcdxVq9X6/KpVq0qT73fWrS8DBkgFBg9Ao9FQd3f3+gkuIFm0e3o2eDhlDW1obbPpoKAgzJ49m/X29gbu3oWyZ0/079ePeHt7Q6fTwWAwkOvXr5OlS5cKX3/9tejq6orr16+TtWvX4l//+heKiooqHS8hIQG///676O/vX+fnLjg42F6tVk9p8AU9W4QHBgaSZs2a1b7H9etSihiAPn36MIQQkpaWJk6bNg2jR49ma1okBSA1OZo2Dfjmm2qbNmzYYEhISCCCIMwEcB1A14e+kgYii65Mg1i4cOFGs9ncKyoqKufSpUsP3P/06dPYsmULDLm5QGYmqL8/7jygGi0iIoI9ceIE0tPTUc1KvSqHD0sfsloWt+rC0dERhYWFD9yPUorla9bQS++8U5GEv3HjRtFoNGLgwIHo1asX6+/vL86ePRsLFizAnDlz4ObmJi5durTScaKjo2E2m+u0FQKANm3awGq1DixzTvhDolarO7m7u9fegOPoUSAkRGpABKkvg42NDe3Ro0e1QpNKmEzSTHfiROD//q/a5jZt2pSvY/0KqQS5Ll/Ax4IsujINhuO4k2az+ZMTJ06U1mX3VFxcjJ07d8JgMNAdb72FW6tWYcmSJXTZsmU4cOBAre9r3bo1SkpKsG7dOiQmJtZ+gtJSKe/XZGrUdbi6uiI7O5t90DX88MMP1JKaykQdO4byHgojRowgKpUKsfv3g7l9Wxg7diyjjI4Gdu5E8zVrMEKvJ3YFBdg5ZYqYk5MDHD6Md0eNAsMwKFq7VmqwnpcHJCVJJ0pPryiNtsvNhbOzswVA70Zd2DMAwzAdXV1da95otUoNbG7frvSyKIo199nNyZGaFfG8lMcrikCfPpJVUxUiIiJUVVyd21bb6TEjx3RlGsWhQ4eSS0pKphYWFupsbGxYW1vbihhmRkYGEhMTsWvXLqrRaPDiiy8yTcPCcLpZMyG8Xz82IiICu3fvho2NDTxrCAvY2NigZ8+e5PTp04Knpye8vb1rjjOwrNRhqoaFuQcRHR0txsTEkM6dOwutWrWqPPno3FnqD7F/P/auXw+No6M4sbSUiFlZND07G626dSPCiy/imr292N3dndh/8AEjTJwI7fXrUi6pvT10o0fDTa2GePEifkpLI343bsDJ1RXpomjVLVnCpLRqBcvp03COiwPp109aYDQYgMBAwMMD7HPPKa+VlqpjYmJ+1uv1Db6+/2V4nteJoriof//+ymqVYhkZ0u912jSgSvjgxIkT1Nvbm/Hw8ADS0qQKNCcnqSLNxUXqo/zaa1Jsv0cPoGxB9X4sFgt2795tFARBAQAcx731+K60ZuSUMZlGwXFcKc/z3ZKTkz87derUVHt7ezpixAhmy5YtoslkIu7u7rRfv35McHAwGIaBx9y58Jg5ky2v5vL19RWysrIklRYEwGoFLSjAkdOncfnYMYHcucMwTZuyXUpLgYQEQKcDUlKAdu2AkyelGWJCAnDoUIPHTilFcnKy2L17d+j1+sqrXQaDZPuzYAFw5Agcb9wQW6lUjPrECYQMH84cS0gQAUA1bRruHDtGQp9/Hjvd3cWLq1aR559/Hs6bN8M6bhxysrOx+cwZkMBA0UmjoW4vvcRCpcKMXr0UR52ckHD0KNRFRZh59SocAaB/fykubWMDlJSgtdXKHF29enhxcfFhnucncxz3WFwMnjQ8z/uqVKr9gYGBRFtTSGjdOklAZ8+utklTVASP//xHWhfYuVNq7ThzJnDpUjWBro3bt2/DZDI1rq/oI0IWXZlGw3FcHoBpPM+vMBgMY9evXz9fo9Fg0KBBcHFxYVq2bHnvcdBqlXrqZmQAx4+jX0ICm//OOxCbNQMcHUFefBEFq1fD4uWFMUVFrMZoRMmHH0LxxReS51m3blKcz85OajwjCMDKlY0a99q1awWVSsVERERUn0Hb2gLnzklWP//5DzImTsRRqxVhQUG0eYcOzAmTiQymFDZDhsB46hQsFgtGjBhBrFar+MMPP5CIiAjcDAhA0NixUE6dKvzlr39lGYYBUlOB06dxo3t3OHzwAQIGD6Zsz56i/ejRkujPmHFvDNu3Q2dvj7lz52p/+umnrteuXXsBwEeNutj/IXieH6hUKjf16dNH16VLl8pfdqIohQneeede209Kpb7IixcDO3aAHTYMyvx8oFkz4OuvGzUGd3d3jBgxAlFSgY7vQ11QI5Et2GUeGTzPtyGEjNJoNMPMZnOXKVOmqHx9fSXhzcuTBNfTEyAE3y5fLgZ2704uJCUJd81m4urqSjIzM8nw4cNpSEjIY1tr2LZtm/jbb79h7ty5NZeJRkdLsdVx44DDh/HV/v20s78/475lC84pFEgOC4NWqxU6duzIxsXF4f333694a1RUFM3MzBQ7hoSwnd5+G+Tll4Fly4AtW6T4c0ICcgYMwMqVK/Hee+/VPsgTJ6T2lMHByMnJwcqVK80Mwxx/5513nskYL8/z3iqV6lOlUhk5ZswY2xpTxC5elExFt2+XvlQtFmDOHKmFo6sroNHgy0uXrD179VKUu3M0lrJ7mv3ee+81oPrm0SHPdGUeGRzHpQL4FMCnixYtmrdx48a/2djY2ISFhdl27tyZ0YSGApAe8aiLC2Lj4+Hq6koiwsIQFxdH5s6di6ZNmz42wTUajUhOTiazZ89GrXnGrq4VmRCnbG3hcvUqE7pqFZRz58K7qAiD3ngDhw8fJgcOHJDs481mKYOiXz+MyM9nkJsrWf907SrNxv7zH+mLhmEAf3/YGQwPzsjo3Lnin25ubnjrrbdU//73vzvzPB/IcdwTL1ttLDzPdwcQDwCBgYGWIUOGKNXqGtp3ZGZKoaKvvpLCLAwjmYlu2CCFk8oQL11qlGFl1QW49PR0EEJqX8l9zMiiK/NYeO+9977mef4bs9ncLT4+/i8nT54cOnXqVFtnZ2d899130Gg04nvvvUfK+89269at4XYt9aSoqAhLly6FWq0WWZYliYmJ4qhRo2r+9AYHgwKwms3Ys2cPxn7wAZR//av06HvlClQZGejXrx+j+fJLapXcMxgsWyb12x02TBIMQHokTk2Ver7e94E/cOCAWCb4tavHa69JncxeegmAlC5lNBptAKTwPL8KwGscxz2gy/fTg+d5FsBkAP8FJBfkUaNGVV/tvH5dslT64QdpQSwoCDh48J6VU7vqxhoNFd2SkhKsXr3aMnLkSGXz5s0BAGlpaXdNJtOeBh3oESKLrsxjo8zt9giAI5988sms77777itRFG2USiWdN28ec//K9eMSXEAysxRFESEhIbRt27bsmjVryODBg1GTseVdX1+sGTcOjJ+f6OjoKAYEBEgqOnOm9NgfHw+6cSPOe3gw7UJDpQYs28tSPauWsrZpAxw5Iv28/TYAICkpiYwfP77aeUVRhMlkksb02WeVthFCMGjQIOzduxcAZgGY9cknn+wRRfGsKIpmABYAOzmOO/dQN6oB8DzfFEAAgDYKhaIdIaTAYrH8mxDyTwCvlu12nWEYlzIXiHsrXb/+CmzdKvmbffONJLo9ejzwnLWmjNXCjh07cObMGQBQ3rhxA82bN0dBQQGuX7+uABBb7wM9YmTRlXkifPTRR6t4nr+sVCpjRo0aparNpry+UEpx5MgR5OfnQxAEDB48uMY2joBkHcSyLAYPHswSQuDo6EiTkpKYzp0748qVKzhw4IBQWFjIiKII1csvk2GjRiH20CEYjUZCKQVDCLB6tRSXdnEBKEWumxvu2NiIqGvGKp280kzX09OTRkVFEUdHRzphwoSKqqqcnBx899136NChg9DXwYHVentLC4hldOnSBSaTCQzDICYmBpTSIX369BlCKYXZbKanTp36YNGiRavMZvOrj8Panef5AKVS+ZlCofC1Wq2BCoXC7OTkVOrq6qrIzc3V5uXlgWXZDwVBKJ/RhgE4Syn95Nq1a+8fjIqC3miUQgbt2wOjRgH9+klVirWVAT8kZYILlmV/NhqNowCwv/76awml9B8cx2U+lpPWAzlPV+aJodfrf4+Li1OlpaVFtGrVim1U/4Yy4uPjcezYMdjb21tv3bpFTp8+LVJKya5du4SEhATxypUrTHlPXYVCgXPnzsHf3x92dnbIz88Xr127RkJCQrBmzRrasmVLdtCgQSTM05P0tLGBe/fu6NChA0lJSRFPnTxJPefMITvy8oSA/v0ZlmWRlpaG9PR0ITg4mKkpz7gSOp3Ug3fZMiAwEEEdOxIA5Pfff0dGRoZYWFiIXbt2iTqdjly+fBlWqxXFa9YQG50O9vctGBFC4OvrCx8fH+j1euj1evj4+MDX1xd+fn4kLCxMeenSpbaCIMw7evTooAMHDlzv3bv3Q6eZ8TxPDh06NA7AIUqp/5QpU1wuXLgANzc31sbGRqNUKlXp6ekAAFEUWUhltfMBuCsUij2Oublj+127hg42NlAmJACvvy7lVv/0k1TQ0KdPjVY7NXH8+HHq5+fH1FpUUcadO3eQl5eH1NRUo8VieYkQsmDo0KFKrVaLgwcPGg0Gw0K9Xv/UXDrk7AWZJwrP84QQ8oKtre3n8+fPt61xYaUe7N69G4WFhdZJkyYpSkpKsGPHDuH27dukXbt2xM7OjuTm5tK7d+/i4sWLlRbm5s+fD6vVihUrVsDGxoZqtVrMnj1bCnWcOyc9+pa5yxqNRnz//fei6to1wgQEUIZliSiKyM7OJlarFW3atBHKnSMeyJdfSvmlZZbuRUVF+Pbbb6lWqxWdnZ3Z1NRUODk5Ca+++iq7a9cuFBQUCNOnT29QzEUQBNy6dQs3btxAdHT0HYvF4sdxXH5d7+F5XgHgQ0LIVI1GkwRAB8ChtLS0MwBBrVZn2draOrVs2VJ76tQpcByHq1ev4tq1awCkL79XXnkFR44cwdmzZwEARBQFz4wMNjwxEQGRkVB5eQHDh0upXoCUEpaXJ4VmHB3rfX1ffPGFdcCAAYoqFWWVSEpKwvbt20tZlr2rUCj+YzAYPlOr1WtEURw+depUzdq1a00Wi8Wb47jcep/4ESOHF2SeKGWPvisWLVrUfevWrRP69u2rdnV1bfACiUajQXZ2NgEkl4FJkyZVFSgGAPLz8+Hk5IT4+HgaExPD3L59G/7+/ujbt6+Qn5+PQYMGscryirb27aWf8nP88gteYRgiLl6M27dvMytWrEBQUJAwbtw4trCwEGq1+oGiGBMTg6SkJGHWrFmsPaVSfLd7d9jb2+Ott95iACm0kJqailmzZrEMw6B/UhI2p6ezJ4OCxE6dOtX7xrAsCzc3N7i5uSEvL8/2/Pnz3wEYU9O+PM+3hNRH1hGQ4qWDBg3yUyqVMJlM2LFjB1iWZadPn97c3d0dhBCEhYUBAFq2bImWLVtCFEXEx8ejadOmGDlyJOidO9bAa9cUrd3cWCEmBqZ33oFq/PjKFYNHjwIrVkjhmgbyoJiuKIqIiYkpEQRh9Icffrjvvk3jPv74449Wrlz5sUqlSgOQ1+CTP0Jk0ZV5KpjN5lfS09NLVq5cOYZlWV1AQAATEBCgadWqVZ09dLOysnDx4kUkJiaKVY0la8LZ2RkA0LNnT6Zr164oF9hu3bpVF8wPPpB6sHbvLv1frwcpKgJhGLi4uIBhGJSUlDC2trb1ctC4efMmjh07BkEQ2IsXL6KLUgns2YOCoCDY2NhAo9Fgz5494unTp0mvXr0EOzs7FgBs+vZFb6sV/92zh/j4+FSzDK8P/fv3V126dGkwz/PjOY7bxPO8DkAQgOlKpXIIgJbl+86ZMweurq6VzBtbtmwJOzu7Sr+Lqk3lKaWSCP7+O/Dll3jO2VkBQQDCwsC8/DKqpSuIIhAeLqXlNZLaRFcURRw+fJiWlpb+DiC6hu2XAMBsNn/wOGLeDUEOL8g8VXieJwACCCHD1Wr1dIZhWkZERGjCwsKqNQPPzc3Ft99+C09PTyE0NJQJDQ2tf/vH+nD+PODhAajVkgB/9lmlWdrNmzexZcsWURAEcdq0acyDxHDjxo1gGIbevHmTtGrVivTp0werVq0SSHo6e8fBAWobG2q1WplZs2bBvSzsAEAqDGBZfPfDD9bMzEyFSqWCq6urEBAQQLp161at929tZGRkYP369aVWq9UsCILW0dHRYDab7ViWxfz584nZbIZGo2lU7isohXDkCHZ+9hn6paRAt2CBZIvu5ISbN28iOTkZhBAEBwdLYl1cLKXU7d7dqI5wALB06VJh8ODBbICUqleJ3377DZs2bco0m829OY5Lq7q9LIwSDWDC0wwtALLoyvyPwfN8mFqtfs9isUTqdDqjq6srWrZsqQsKCiKpqak4ceIEHTNmDGNnZ4caa/cbC6VSxZy3t1Tw8MsvwIQJ1XbLzc1FbGwszcrKwsCBAxkAMJvN6NChA/Ly8rBlyxbBarWKDMOQ8PBwNi4uTpw6dSpZtWoVCCGil5eXOHHTJsb49tu41bw5mjRpUv06Ro+WUtQiI5Geng6lUomyaxeHDh1KgoOD631ZgiCgqKgIDg4OYBgGZ8+eRUxMjLBgwYIaQyNWqxVXrlxBmzZtan7iuHsX2LRJ+mI4cgS5nTtjlcEAN3d3cfz48cTW1hbLly8XKKWMra0tzczMZLVarRAZGck2yc6GbefOqNVp+QF8/vnnwtChQ9k2bdqAUoq0tDQ0a9YMGo0GGzZsMKanpy/58MMP/+fLpWXRlfmfhOd5NQB/AG3VanWkIAgjrVarFgCUSuUtURS1Xbp0UfTu3VupbESXsWpkZwMjRkir6506ATXMpsopLS3F3r17hd9++41hWRYmk4kolUrRYrGgdevW8PPzI0lJSTQ9PZ2xs7MTX331VZKbm4vdu3eLkyZNIjYajbRibzDUu1ELAHzzzTc0ODiY6VGPnNbaKCoqwrJly/Dhhx/WuH3lypXCzZs3WYVCIWq1WiE8PFzRtWtZn+9bt6Rsg3HjgEmTKtLhkpOT8fPPPwOQnDoopZgwYQJat24Ni8WCnGHDxAOtWpHfPT2h0+mEv/zlL41Kyv7888+FYcOGsa1bt8aaNWuKMzMzcwghnqIoagDEms3moRzHNa7P5xNEFl2ZZ4Kyht4TIMUiFwFoqlKpVnl6evZ4KLPMqvz4oxTTbUDuaGFhIZYuXYpOnTphyJAhYBgGoiji8uXL8PPzq3lmd+KEZDO0p4bCqH37gLZt7632Azh37hx27dqFefPmwbEBK/5Vyc/Px/Lly9GkSRPr3Llzqw3sX//6F500aRKjUqlw+PBh3LlzR3z++eelmxsVBbz4IpAlZVtZrVYcPnwYcXFxAKTFTZVKRWfOnMk4OjreC1tcugS0bImrGRnYsmWLGBwcbLnvlNVCRPf9nwCoEKjz588rvLy8RGdnZ3rq1ClqNps7ArBlGGYzpbQHx3EZjb4xTxB5IU3mmYDjODOAtfe9lMnz/PDMzMxTR48eDerevfvDlbRt2QJcvgzc18CmvhQUFEClUlUILiAJR5u6XGk7dQI2b5YWl6p+YZw7J/VruE90jx07RkNDQ4mjo2Olnc1mMw4fPiwGBQXVyz3Z2dkZCxYswLJlyxT//Oc/xX79+pHOZb0eioqKYDabGU9PT7AsC41GI+h0unv3dfhwICsLRqMRq1evFm7fvs2q1WqEhIQIkZGR7NWrV7F+/XomPT0doaGhwH//C+TmAm++WXEIURQzEhMT77fUqPptSerY5peampoFoBRSFd5vHMcZ8ZS6hTUWWXRlnlk4jrPwPD/i4MGD5/Ly8my6dOmiapBt+/0UFkqNVxpBSkoKvLy8BIZh6i/8hEiFE7NmSb1je/a8t+2t6n21e/XqxezYsQP9+/eHUqlEaWkp9uzZI1y5coU1Go3Ezs6uWnZBbWg0Grz66qtISEjA/v37wbIsOnbsiJMnT8LFxYWyLMsAgI2NDXPr1q17bxQE0LAwfDd7tqCxtWVefvnl8uwQFgCaNWuGHj16YN++fZKl/YgRwH0+cWUpXzkcx1Wuc/6TIdv1yDzTcBx33Wq1Bp07d27x2rVrS7OyGlloNGeOVMDQSBodpvvoI6kr2f0sWABUMf4MCgqCWq0Wdu3aJR44cED8+uuvxdzcXIwYMQJKpVKsqY9EXdja2qJPnz6kT58+YkxMDN27d694/Phx9LxP/MvabSK+zBwyKy8P6aWloqujI2bMmEHK0/HuP2Z4eDh0OTnk7uDBoPb2gI9P1VP/6eOZchmwzDOPXq+/q9frY2JjYzPPnTvX+8aNG4Kbm1vjbOIbgb29PWJjY5mAgICGZ1Q4OUn+aBwHDB4szYAdHaWYcpWUOS8vL+bs2bO0pKSEtG/fnowePZpxcXGBVqsle/bsQUhISI1NfOrCwcGBHD58mGRlZZHZs2ejZcuWFY/0rq6ucHBwwP79+wEA27dvh+OsWeLQkSNZRS29M1iWxc3iYuFMSQlzOisLISEhFSGXgoICXLx48Wb37t2/b9Ag/2DIoivzh6FXr15nY2JilhUWFpacPXu2q52dncrd3f0RJvLWjE6nQ0pKiqBUKpk6nWprw9ZWygcudwnW6SSHjCopW/b29ggLC2M6dOhAvL29K1738PDAjRs36KFDh+Dm5lZtBloXKpUKJ0+eRNOmTYXevXtXOiEhBO7u7jCZTEJCQgLz3HPPIWzMGEJatJAW+qoiCGDGjkXQvHlMM70eZ86cEdPS0mj79u0ZQBbdcuTsBZk/JDzPt2dZ9pi/v7/YsWNHWz8/vzor3R6WdevWwWw2ixMmTCC1dTt7IOvXSw3M586VCjM6dKj3Wyml2Lx5M7Kzs8WOHTsSW1tbVP1Rq9VgWbYiO+DOnTvYtm0bzc7OJlOnTiXl/Wbr5NQpKVWsBtNHAFJWRqdOACH46aef6KVLlxhHR8ciQRCI2WxWAoh/9913B9T7wv6AyKIr84eF5/mmhJAJarX6ZVEUW4aEhLDt27dXeXp6Nq4Kqw6Ki4uxfv16IT8/nx05ciQCAwMbfpCNG4GQEKCOhi51YTabsW3bNhQVFYkmk4laLBbRarUygiAQq9VKBEEAIOXSKhQKWCwWeHt70wkTJjD1brW5Zw/g7Ax06VL59b/9TXptyJCKl27cuIGff/651GAwmKxW6yAAuQByOY4zNOoC/yDIoivzp4Dn+VYsy85gWfZ5jUaj69ixo21ISAjj5OT0SM9z9uxZ7N69G88//zwe1IKwRkwmKb779tuSuD1izGYziouLsXfvXmRkZOCtGjIl6uS55yQ3jE8/rfz6pUuS9XkN9zMqKsqUlJSUaLFYJj8rubSPE1l0Zf5UlPV66KpSqZ6nlI63tbUVvby82IiICNtHMQOmlGLRokWYN28eGiXo2dlSj4KoKClX9zGxYsUKqtPpmMmTJz/cgWJjgf37gb//vdZdLBYLfv31V5qUlHTUYrEs4jhu98Od9NlGFl2ZPy1lVW6tGYYZSin9FAA4jnuoY6ampiIqKkp88803H/sCXmPZt28fTp48ibFjx6J169YNe/NXXwHHjwNry+pUioqAa9cqtcSsCbPZjBUrVphu376tZhjmH5TSH58lk81HiSy6MjIAeJ4PBXDa29u7uHPnzjpXV1c0adKkQd5tR44cwcmTJ6mnp6c4bty4x2f69pAsWrQI48ePh5+fX8PfHB0t5RBPnw68/LJUNt0A66XMzExcuHBBOHHihNFisQziOO5IwwfxbCOLroxMGTzPqwghMzUazXhKaZDFYnG1s7MrcXd3Jx4eHjp3d3dSWy8Fo9GITz/9FG5ubpg1axYa64jxuDGbzVi8eHHjwx9ms1Ta26wZEBcH9O7dqHFcvnwZmzZtuisIgsPT7m/7pJFFV0amFniet4HkeNuWZdkOSqVSTylt6+HhYXFycmJHjBhhW56G9vnnnwuurq5k3Lhx9c8EeAps2LCBmkwmzJgxo959eSsRHQ1ERgJnztTZie1BWK1W/F2KA78NYMmfSXhl0ZWRaQA8z7cGEKZWq+f5+fl1Gj16tCY5ORm7du3Ciy++iKZVbdifMAUFBUhOTha7d+9OaspLXr58uRAQEMDo9frGxZxNJqmf7oQJDQor1MS3335Ls7OzGZZlrwmCMJnjuOMPdcBnBFl0ZWQaAc/zNkqlMpZl2XBRFEmLFi2EkSNHsg0tw32UpKSkYPv27aUWi4UqFApbjUZTOmjQII2fnx9TUlKCJk2a4MyZM4iJiREXLFjwaF03GonZbMaiRYsAABzHPf0BPQHkLmMyMo2A47hSnucHiKL4M4CuGRkZZP369WJxcbEuMjKS+Pr6PtHxpKWlYfPmzQBgA0hpWhaLxTYpKYnGxcWZc3NzVX379oXRaBQNBgMpLS1FoyvnHiH3NaCf+DTH8SSRZ7oyMg9Jmf9WKwA9AawAgLFjxyIwMPCxlh4DUgP1nTt3lqSlpWk1Gs1Bo9HYA/dNpjQazVWj0diy6vtGjhyJNm3aoKoP3cMiCALMZnO99xdFEYsXLwaA3hzHxT3SwfyPIouujMwjhOd5FsAIpVL5mYeHh8f06dM1DUk7awgFBQX45ptvzKIo/sNqtS7lOK6wjnGNAvADgPIyN9HR0dH8+uuvP7I0C0EQ8NVXXxmKiooqOT7U4322AJpxHNe4hsbPGLLoysg8Bniet1Or1TstFkt3jUZj1Gq1Vjs7O2Jvb6+0t7e3adGiBRoTgrhz5w5SU1ORnJxclJWVpVYoFIveffddviHjAvB/LMuOEwTBY9q0aWjZstpEuFHEx8cL8fHxh99997P6GxwAAANmSURBVN0+j+SAf1Bk0ZWReYzwPG8LwA2Ae/kPIaSZUqmc4+bmZjdw4EDtg7p7GQwGJCQkCElJSYa7d++CZdndJpNpI4BojuNKGju2jz/+eIRCofihVatWuqFDh9o8TP/hoqIifPnll6UWiyWkJgt0mXvIoisj8xTgeV7JMMxslmX/0bx5c3W7du20Xl5eaNq0KQoLC1FcXAxRFHHt2jUhPj7eQgjZZDabvwWQwHGc8AjHoVUqlR8TQuY999xzmoBG5t5u2rSpNC0t7T/vv//+O49qbH9UZNGVkXmK8DyvATBFo9EMo5T2EEXRXhRFqlQqfwcgUEpTTCbTu4979sjzfLhSqdwdHh5u37dvX2VDFgCvX7+OdevW3bZYLD4PM/P+syCLrozM/xA8z3sCIBzH3XwK53ZVqVS7PD09g8aPH29bn8wGSim+/PLLkoKCglkcx21+AsN85pFFV0ZGpgKe5xVKpfI/Op1u+pw5c2wf5PmWkJBAY2NjT5hMpog/UynvwyC7AcvIyFTAcZzVYrHMKy4u/mrlypUGg6F2k4eSkhLExMSYTCbTbFlw648sujIyMpXgOE60WCzv3L1799sVK1aUxMXFwWg0Vtvv3LlzEEXxKMdxKU9hmM8scnhBRkamRspcNsYB+AkAFi5cWMlZo7i4GF9//XWp0WicuHDhwh1PaZjPHPJMV0ZGpkY4jhM5jttECBkDSA3I70en0yE0NFStVCr/9jTG96wii66MjEydLFy4cCvDMOPWrl1bmp2dXWnbyZMnzWazeebTGdmziSy6MjIyD+Sjjz7aYjabZ65evbpCeHNzc0EptQC49nRH92whi66MjEy9WLhw4Saz2Txr9erVpTk5OaCUgmXZOxzH3X3aY3uWkEVXRkam3ixcuPAns9k8e9WqVaUlJSWwWq0uT3tMzxqy6MrIyDSIhQsXbjSbzXN+/PFHqlQq1zzt8TxryKIrIyPTYBYuXLgBgJfRaHz5aY/lWUPO05WRkZF5gsgzXRkZGZkniCy6MjIyMk8QWXRlZGRkniCy6MrIyMg8QWTRlZGRkXmCyKIrIyMj8wSRRVdGRkbmCSKLroyMjMwTRBZdGRkZmSeILLoyMjIyTxBZdGVkZGSeILLoysjIyDxBZNGVkZGReYLIoisjIyPzBPl/0//yxVJMaGoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_knn1.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The two components are separated in the southern part of the country, with the smaller component to the east and the larger component running through the rest of the country to the west. For certain types of spatial analytical methods, it is necessary to have a adjacency structure that consists of a single component. To ensure this for the case of Mexican states, we can increase the number of nearest neighbors to three:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "w_knn3 = KNN.from_shapefile(pth,k=3)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADWCAYAAAByiFEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd1gVV/e2nz0zp9EUERRUxAIqKvbejhprojEm9hKjSd4k6u9Lea1Rx0liJPqq0SQm9tgTY2zR2FEQjRULKiqIXVBAlHrazP7+2KCAlEMRS+a+Li7gzJ49eyjrrFl7rWcRSilUVFRUVEoH7nkvQEVFReXfhGp0VVRUVEoR1eiqqKiolCKq0VVRUVEpRVSjq6KiolKKqEZXRUVFpRRRja6KiopKKaIaXRUVFZVSRDW6KioqKqWIanRVVFRUShHV6KqoqKiUIqrRVVFRUSlFVKOroqKiUoqoRldFRUWlFBGe9wKyIkkSB6AsADcA5TI+uwEoRwgpr9VqvTiOq0gIcbfZbDcnTZr0zvNcr4qKikpheaZGV5IkAwD3nB88z1fUaDSVOY6rRCl1VxTFVZZlZwAGQRCsOp3OajAYZAcHBzg6OvKOjo5aR0dHrYODAwwGA3bt2mVVFGXLs1y7ioqKyrOAPAsRc0mSnDiOu00pddbpdCaDwWBzdHSkTk5OvLOzs9bZ2VmbYVDh4OCATGNqMBjAcXlHPBRFwfbt23HmzBlKKW0C4IwoiqoKu4qKykvDs/J0KSFEN2bMGM7V1dWhpCYNCQlBVFQUrVKlCk1ISDhktVrTZ86cucVisfwJ4KAoiqaSupaKiorKs+CZeLoAMGPGjKkVK1acNHjwYIPBYCj2fIqiYO7cuUq7du1IixYtCKUUcXFxuHLlCr1w4UJyXFycVqPRHDaZTOsB/C2KYkzx70JFRUWlZHlmRleSJK1Wq13I8/yQTz/9VK/Vaos1X2RkJP744w9MnDgx1xBEWloaoqKiEBERkXL16lUNz/M3rFbr77IsbwVwWhRFpVgLUFFRUSkBnpnRzWTWrFmn3nrrrca+vr7FmkdRFAQGBuKjjz5CuXLl8h0ryzJu3bqFS5cuWSMiIszp6ek2juN2mM3mDQD2i6KYWqzFqKioqBSRZ54yZjabtx47diygcuXKQnHCDIQQUEphj8fM8zx8fHzg4+Oj6d69uyYhIQGRkZFDLly40CsmJkb33XffHTWZTKsB/CWK4v0iL0pFRUWlkDxzT1eSJHdBEFZ4enp26tOnj6EgLzUv0tPTMWfOHDRq1MjWqVOnIhtwk8mEyMhIXLhwIfXq1auCIAiXzWbzakrpFlEUo4o0qYqKioqdPHOjCwCSJOkEQZiqKMrEcePG8Xq9vkjznDt3Djt27LABQIcOHTgfHx+uQoUK4Hm+SPPZbDZcu3YNFy9eNEVERFAA92VZXm+z2TYCCHvR09EkSeoEoEHGt7SAzwBAcnwGgDQAO0VRvP1MFqmiopKN0jK6BIACANOmTQMhpIAz8iYuLg6//PKLTaPRBAPw1ev1bn369HH08fF5PEaWZciybFcoIhNKKW7fvo2IiAjr+fPnzSaTyUII2WSxWH4HECyKorXIi35GzJo164y3t3ddFxeXx5uENOMXmuX3ms3o5vzZp6am2qKionhCyJxJkyZNedZrVlH5t1MqRhcAJEn60MPD438ff/yxc3HmoZTi559/TomLixsKYBshpI8gCEtq1arl2L17d72joyM2b96Mc+fOoWfPnrRhw4ZEo9EU+hrx8fG4dOmSEh4envLgwQNBEITdZrN5HYBdoiimFOceSopZs2adHzhwYF1vb+9izZOSkoIffvgh3WKxdBBF8UQJLU9FRSUXSs3ofvXVVxLP81PHjx9faCOYlevXr2P9+vV3LBZLdVEULQAgSZKzVqudCWBk/fr1uVOnTukAQK/X71MUpW3nzp2F5s2bF3nTMCkpCZcvX0Z4eHjS3bt3dRqN5liWjbh7Rb6ZYjJr1qxLgwcPrlW5cuVizxUeHo7t27ffsFgsLZ7nPamovOqUpqer0+l0awG8PnToUH1RDcXJkyexf//+tRMmTBiayzXqA+gMIB3Ar6IomiVJaiQIwtHJkydrixPWyCSXjbgrZrP5V0rpJlEUrxf7ArmQEZ55Cr1eHzVs2LDqXl5exb4GpRR79uwxnTx5kgiCcNBkMv2fKIpXij2xiopKNkrN6Gby1Vdf9XVwcFg9evRoh6JkIAQHByMkJCRw6tSpk+wZL0lSGQAPPTw8UurXr+/o5eVFkpOTERAQUKzYMsA24qKjo3HhwoX0S5cuEUVRlIyfJ0H2zSqS4/Ws3+c8jhzngud5KsvyU4slhChjxozhipoRkhtmsxknT56kwcHBD61WaztRFC+U2OQqKiqlb3QBYObMmb/UqFFjWP/+/Quty/D3339bTpw4MVEUxXn2niNJkgMAo1arfdNisXyY+frbb7+NevXqFXYJuaIoCkwmJv2QacyzGvWsr+U8nt/ntWvX0qioKPL555/D2blY4fBCce7cObp9+/Ykq9XaSRTFsFK7sIrKK85z0dO1WCwTrly58p7VakVh47uEEGg0Gr/CnCOKYhqAvzM+/iNJUlkAV48ePSrUq1fPpVALyAOO4+DgUGLaPo/x8vJCVFQUIiMj0bhx4xKfPy8CAgKIIAhltm7dGhoYGLjTbDZ/KIpiQqktQEXlFeV5dY5IpZSSTM+wMLRq1Uprs9lGSZJUZGMpiuJDAOVSU1MdizpHadGxY0dSqVIlmppa+pXL/v7++Pzzzw2+vr69NBrNUkmSiiegoaKi8tyMrkYQhNOrV69OS0tLK9SJZcqUQf369W2CIERnxGuLhCAI0Y0aNSpaVUUpU6ZMGfLgwQP5eVxbp9PhjTfe0FSuXLmrVquNkCTJ83msQ0XlVeG5GF1RFNMtFkvLR48eLZk/f356VFSU3YFlQgjeeustg4ODgxZApaKugRDiWrdu3aKeXqq4urri4cOHz+36Op0Ow4YNc2jYsGEljuOiZ8yYcUiSpKbPbUEqKi8xz60xpSiKdNKkSZ9aLJYvTp06VehnZ0EQFABFDqLyPB+TkPByhCjd3d3x6NGj4ue7FQNCCHr06KEbNmyYvnXr1m01Gk3wV199NaU4TxsqKv9GXoRuwHfNZnPBWreKwj4ycHJy4gBUL+pFzWbzl1u3bk0vbHjjeeDl5YWkpCQuMTHxeS8FPj4+6NixI95//30Hd3f3aRqNZqckSa7Pe10qKi8LL4LRTb527ZrL3bt38x81YwYgCMD9+8D06eh5/LizXq//b1GTbadNm7bFarUu+v3339MU5cXWN3d3d4enpycOHz78XOK6ueHh4YEPP/xQU6NGjaYcx332vNejovKy8CIY3fsAsGTJEuTryQ0aBLz3HvDwIXD5Mlxv3QJJT68JQAYhPUFIDxCytDAXtlqt42JjY88dO3bsxba6AOrWrYubN28+1xBDTnieR0BAgIbn+QEZnZ9VVFQK4LkbXVEUzwO4QggJXbVqVd6x3Zo1gddeA/78E1i7FjE//QQYDHcAdAQQAiAAQCsAACFJIGQxCPECIWtBSK6xX1EUbRaLZVZISIjyPIpECoO/vz8SEhI4WX5hnF0AQI0aNSAIQnWe52c877WoqLwMPHejCwCiKNailHZITk7m842x9u8PxMYC+/ez3XxCroPSYFCaAkq/A6WZ6Qi9AASCxXy7AOBAyBkQchoAQMgSEJIpzRVttVpTjx49antmN1gCuLi4QKvV0ri4uOe9lGxotVp89NFHgsFg+I8kST2e93pUVF50XgijCwCiKCparfZybGxs3oN4Hhg9Gli1Cp6Uwmq1ts9195wZ4mhQGgpKPUBpCoD3AXwBQnQA+gPwBCELxOnTg2RZHmWYPduGQ4ee0d2VDI6OjvKdO3ee9zKewsXFBU2bNnXgeb7r816LisqLzgtjdDPQCkIBlcl+fkCzZvDYswf+depoBUH4ya5KKUpPgtIgUGoGpWVA6TEAPwEYByDVNyhIh23bgH37AEdHIC4O+OMPFs54QahQoYJw8+bNFyu+kEFSUpJZluXrz3sdKiovOi+U0bXZbMquXbsKziYYOxYICUEPZ2d9lSpV3sqolCr8Rg6ll0HpcgDJP06aZLr2ySdAvXrA+PGAmxswbx4wezZgswEODswgnzsHLF5ctBssJo6OjkhPT38hg8+urq46QRAaPav5JUlqKUmS+7OaX0WltHguKmN5IUkSp9Pprg0bNsy7UqUCis3i44H27UFPnsSSNWuSYmJi5gPYIYrisSJcVwPgAycnp1mfffaZI8fleC8ym4GJE4EpU4Dp04HffmOesI8PMGAAMHkysH49MHIkUIgWQYXlt99+g4uLi9yzZ88Xrnw5KSkJixcvTjOZTB9NmTJldUnMmWFkuwKoyvP8dEKIIgjCYZvNdpbjuLKUUier1RoC4DCAzwFsBOvsYS6J66uoPAteKKMLAN99990KvV7fb8CAAY4VK1bMf/DffwO//Yab33yDnTt3piQmJmpsNtvEKVOmfF+UawcGBp7p2rVrA7vVvCZOBF5/HUhMBPr1Y5t8gwaxz599BlSuDBiNLBZdAixdulSpXbs217Zt2xKZr6SJjo7Ghg0bosxms19xm3rOmDHjvzabbTbHcbRKlSrJjRo1cqpduzYXERGBhIQEWaPRkISEBKSlpaXFxsYiJSXFKePUT0VRnF8Ct6Oi8kx44YxuRpeE9zUazYIGDRqQjh076vKUTLRYgK++AurXBwYMwMOHD7F48eJ0s9n8f1OnTl2aZc46AJJEUcx3F0qSpACNRhPav39/55o1axZu4ZQChLBwxKxZwBdfMK+4Y0egXDnAywuoVQto0QKoU4cVehSSH3/80da2bVuhYcOGhT63NFAUBYsXL05LTEzcZ7FYBmVIahYaSZIqC4JweeTIkQ6envbr61y9ehVr1qwBgIeiKKpVciovJPz06dOf9xqyYTQaYTQaw4KCgv6Mj493PnbsWG0nJyfB09Pz6cIAnmfe5Lp1QPPm0JcvDz8/P82lS5deO3jwYP2goKDdRqPREhoauolSOv/IkSOGoKCgg0ajMdegsdFovBcUFHTw0qVLA319fbVOTk65DcudzMI4mw0YMoR5vBMnAgMHPilffvCAFXjcuAHs3Mk26igF9HrAxQXIGdbIQWhoKK1fv36JdoooSQghaNCggSY+Pt47MTHx/x06dMgjKCjomNFoLNTj/tGjR39q0aJFg4CAgELtOZQrVw42m43eunXLcOjQIe7gwYMxRqPx5RDYUPnX8MJ5ujmRJKm+RqMJ8vb21vn4+Dj5+fkRDw+P7IPWrAGuXgVEEQBgsViwfft20+XLl+MtFktvvV7/Q4sWLdpcunQp7f79+2OmTZu2Ir9rzpo161ivXr2a16lTp/ALHj4c6N4dGDw49+MmE2C1AocOAbt3A48eAQcPAu3aAWXLArduMWNdpQrzjjOM+fbt2+nZs2fJqFGjUGDY5QUgLi4Ou3fvtty4ceN3m802yt4W9pIk6bRabfTw4cO9Cozr5wKlFNHR0bhy5Yo1LCws1WazVRdF8fmLVqioZPDCG10AkCSpAoCOGo2mHYB333zzTcdssowmE/Dtt0D79qxqLYPw8HD89ddfqVardbKTk9NMFxcXw/379yMppVtlWZ6fV7jh22+/vWq1WqvXrVs3rW/fvg5PbazlhSwDmzYB3boxz9Ve0tOZ8Y2OBiQJqFsXOHaMecBeXoAgYE2ZMrJ7kyb8a4MHgy+hGPGzJjU1FRs2bEiNjY1NopRus1qtoQCOiKIYndc5M2bMkKpUqTJ+6NChert/7nmQ0Wgz1WazfUAp3VLcOLOKSknwUhjdrEiS1FCj0ezv3LmzS4sWLZ4ERo8cYY/sn37K0r0ev3wEwcHBRywWy3IAS+vXr4+YmBhzfHz8e6Iors9lfjdBEOYoitKfUqofN24csbuB5rJlbB3LlhX7PpGaCsTEMIGfzz/HCVdXpabJxLnGxADNmrH4cPv2LJ7t+uKGLymluHPnDm7cuEH37duXGSLqCuCoKIrJWcdKkhQA4GyjRo2U3r17l0g647Vr17Bly5a0lJSUiVOnTv2hJOZUUSkOL1xMtyCMRmNsUFDQ79evX/9Qo9GgSpUqzO2rUgU4fJilkgUEPB7v5uaG8+fPuymKEi7L8sTExMRBsizrFEUJ69ChQ2jO+Q8fPjytWrVqH9WqVUt37969R1qtVuPt7W2fAVi5khnERiWQrqrVsg24KlWA99/HAYAkdeig1Bg1iqBCBWDrVnavv/8O/Oc/7JyLF5kgUIUKzzR1rTAQQuDi4gJvb2/Srl07EEJsJpOpj8lkmnTgwIFDwcHBN41GIyRJqqjRaI537NjR0KpVK6ItofW7urrC29tbc+7cufYHDhw42qFDh2slMrGKShF5oYoj7EUUxRs2m61ZUFCQkk2LYOJEYPly4Pz5xy85ODigR48eDjzP9wBwxWq19kxPT+cURfk2t7k1Gk3Hpk2bCq1atYLVanW8efOmfQpkSUlAgwZso+wZUL58edxLTqZo1Ah4+23m1c+bB6xYAaxaBVSvDoSGAkuXAp06AR4ewKJFzCjv2sVCH88ZnudhNBqFjz76qMyAAQP0Wq12NwDl66+/XqrVane2atXKpW3btijUBqYdVKpUCW+++aajTqdTU8lUnjsvpdEFAFEUL8myPGnhwoXYtWuXRVEUQKMB5s4Fxo1jcd4MMiq5WgB4oNVq2wFwQi5dJyRJqmiz2WrqdDro9XpwHIerV6+a9+zZYykwDLNtGxAc/CSLoYTx9PTEgwcPnp5cr2e5wv36MeO7fj0LccycyQzvsWPAtGmApyfQsiVLZ9u+Hdizh2VOPCd8fX0xevRoPQB4enqObNq0aR2j0fjMulN7e3vDarXWlCTpxcy3U/nX8FxasJcUlNL5AILCwsK2eXh4VG3cuDHQsCHbTJs9G5g6FQDrvNCtWzfl0aNH3IkTJ8br9fq+JpOpL4AbOab0ppTyBw8eTC1btqyjIAiXzWaz8dSpU8H//PNP3X79+lF/f//crWqdOszbfEZ4e3sjOTmZo5QWrNvO88CoUezrt95in9PTWZaHkxNw+jTzkhs0AMqXB2rXBr7++pmtPS/+/PNPpVatWnTgwIE8AN2zvJazszM6deqkP3To0C8AWj7La6mo5MdL6+kCrM+aKIrnrFZrr507dybu2rWLmkwm4JNPmId38uTjsS1btuQ6dOiALl26uHh5edUnhLyTy3zHbTab540bNz67ePHiLUrpelEUEywWS18ACA4Ozt01fPgQeOcdoEmTZ3WrCAsLQ7HinAYD8MEHLH946lSWM7xxI1CjBvC//7HsiVLk+vXriImJ4UqzpLl58+ZQFKWBJEnP7t1RRaUAXmqjm4koiuE2m+3NsLCwi1u2bEmDwcDCDJMnZwsz6PV6tGjRAo0aNdLo9fqeecxlmjZt2pJJkyZ5T5o06duM164QQno/fPjQdPPmzadPCgtjQjm6Z+es3blzR6lbt65SxO5EuePmxnKGFy0CypRuf8nNmzfLbdq0UVwKk1pXTARBQPPmzTmtVrtTkiSPgs9QUSl5XgmjCwCiKB6yWq3G6OjohNOnTzMJyCFDgMDAp8ZWrVoVVqu1hSRJdncTnjZt2l9Wq3XAH3/8kWaz5dA7T0hgG1rPkMaNG3MREREln+Ln5MT0If7zH1ZNVwqEhIRAURSuTZs2pf7316lTJ63BYKjO8/zm0r62igrwEhhdSZJ4SZK87BkrimI8z/OXHyfV9+7N4puh2TPDnJ2dUatWLfA8nzBz5sy4GTNmfGrP/NOmTdtus9l2zJo1y/Tnn3+mX79+neXTzpv3zDbQMvH394fFYiHx8fElN+mdOywXuHJlphFRCkbXYrHg8OHDtFevXqRA7eRnACEEXbt2FRRFsVPVSEWlZHnhja4gCOMB3JEkqcDkV0mSmlJK2/j5+bEXXF2B1q2ZGlmONkDvvPOO4+eff65v0qRJeUqp3fWmEyZM6G+1WmueP39+82+//Waj6eksVpqlIKMkuHv3LpYtW4YlS5bQXbt2wWKxoGzZsvLly5dLztW9e5fJU3Ic04goha4UGzduVDw9Pamvr+8zv1Ze+Pn5wdnZWZEk6d3ntgiVfy0vvNGVZdkRAARBGFnQWJ7ne1euXJnLVkHWuTPrBLF161PjHRwc4OXlBY7jhkqSZLegQUb58AeU0mvxgwZReNnliNuNzWbDmjVrlPT0dNSqVYvcvn1bmTNnDhITE/kyJRl7/f57VtEGsOyG/v2zxcBLmpiYGFy7do3r1asXV6Kx6UIiCAJ69OhhIIQslSRpoCRJL/z/gcqrwwv9xyZJkjel9Es/Pz8IguBT0HhZlr+7evWq9qmY64cfsgKBiIinzqlXrx6qVq3qDOC1pw7mgyiKafq4uO6648dxvYQ3oZKSkmA2m7nhw4ejffv2eP/997nRo0djxIgRqF+/fslYK5uNieu0b8++NxiAU6dY3u8zYuPGjXLTpk0VtxJ+KigKtWvXJgMHDhRcXV2XarXapQWfoaJSMrzoebo8z/P7rly58hqAbfkNlCTJgRByhVJKVq1a9dTxqo6OcBs3Dmd69YKi0WQ7duvWLUeO474EsKYwi/ts3rwyQUbjR8cOHJg3sEIFB3d3d2i1WiQkJKAwOrA5KVeuHCpVqqTs3LmTDhgwgAeAsmXLomzZskWe8ymiopgSWtY3jORktqG2Zk2BMpOF5cSJE0hPT+c7duxYovMWBz8/P3h7ezv++OOPAyRJOiWK4k/Pe00qrz4vheBNRv8zEwBHURRTcjnuJAhCsCzLjZ2cnNC0adNc5/H97jsktGqFhHbtsr3+6NEjnD59GqIoFs6LJOQXAKek6dMjeZ7friiKnlLKA0CTJk1sFStWFDw9PVEUicKUlBQsWLAAgwcPho+PT6HPL5B161iu7pgx2V/fuRPo2rXEul0ALFwyZ84c2rNnT1I/M5zxAhEbG4vly5dbrFZrY1EULzzv9ai82rwURhcAJEnqBWCbTqe7RwhJsFqtm2RZ3gPASaPRLLNarZ5+fn6p/fv3d0xLS4Ozs/PTk5hMrIAhOJhVYmVw8+ZNrFy50qQoSgVRFJPsXhQh/wGwCZTGSZLkCIAH8AgABEGYbbPZxgHAuHHjkGf3i3zYvXs3Ll26RD/55BOiyeGdF5sJE4CePYEOHbK/LsvAmTMlWuhx8+ZNrFmzBpMmTSq4mq4UiYiIQHp6Oho3bozdu3dbjx07tp1SOqJQfwMqKoXkhY7p5uA0ALi6urp36tTJv3nz5hPc3d3/cnd3/61nz56eOp3OcuXKFcdvvvkGc+fORVRU1NMz6PXAr7+yx+osbzaVK1dGtWrVFEEQ/pAkyb6QC6toqwtK4wBAFMXUjH9WLQDNl19+OR4AOI4rksEFgC5duoDneWXhwoU0PT29SHPkysOHrLNxDo8fAJCSAkyaVKICOZUrVwYAPHjwoMTmLC5//PGHvGXLFuzduxe//vqroiiKhuO4tzQazT67/wZUVIrAS+PpAoAkSfUAnAHAjxkzBlk3ZNLT03H8+HHExcVRFxcX2qJFCy7XnX5KmS6DIACff/745bS0NKxduzY9ISEhxmq1zlIUZZkoinknrhKyGEA4KM1VozUjJJLWoUMHGI3Got0wWN+xBQsWyM2aNePbtGlT5HmysXv3EyGcUuLHH3+Umzdvzjdv3rzUrpkXaWlpmDdvHj7++GNotVr8/vvvyv3797ny5cvTu3fvEkEQUgVBWDNhwoSPnvdaVV49XiZPF6Iongeg4Xl+3IoVK1L/+ecfmpmpYDAY0KFDB7zzzjuka9euuRtcgBUxDBsGXL7M9GczcHBwwIgRIwz9+/ev7unpOUen0+3JcyGE6AHsALAon7Wm63S6HY6OjkW51cdwHIfXXnuNDwkJoQcOHCiZ6oXU1Ny93Ezu3WOFJSX4hly9enX+0qVLz19fEsDBgwdRsWJFuVy5cnBycsLIkSM5d3d3OSUlBR9//DHGjBnjaLVaR9qTG66iUlheKqMLMJEbWZbnpKam9jp48ODBpUuXpsmFfRT29GTqWz//nO0xWqPRoHr16nj33XcdbTZbW0mS8hJ27Q5gKCi15HcZs9n898mTJ20WS77DCqRevXoICAggMTExxZoHADOkf//NfgZ54eHBdCtKkCZNmuDWrVu8otgnT/wsCA8Px5o1a3Du3DnavHnzxzuFhBAQQpCUlER2794tlylTBhnNP1U1MpUS56UzusBjdbEDFoul88OHDxOzCZnbS9eugLc3E/nOgUajgaenp5njuLwUyeMA2CO2cOT+/fvCokWLim1p3N3dERcXV/yUgrg4lo9bq1beYwhhso8hIcW+XCYVKlSAIAj07t27xZsoJYXpBheiHNpiseDXX39Vtm/fDnd3d9q+fXuSs+noe++9x0+aNAk3btzg09LS8OjRIwVAZPEWq6LyNC+l0c0ko9Fg0ObNm83JyclITU21/2SOA/r2Bc6dYzmrOXjjjTecFEVZIElSq2wHCDEAmAsgyI71neF5PvDBgwfc8ePHi2V4BUEAx3HFf97fvRsYPbpgrYi0NKY+VoIhBldXVxoVFVW8Cf/4Axg5EjhwwO5TFi5cKBNCMGbMGHTr1o20bt0aOXUfOI6DVquFXq9XYmNj8dprr2k1Gs06tVpNpaR56f+gzGbzB48ePdr0/fffW+fMmSMvW7YsNTk5ueATAaYl6+vLqtVyPPZ6eHigRYsWFp1Ot//bb7+98c033/TOONQaQBIotatedsqUKZMA1Ni7d2/83LlzUzZt2pR+8OBBXL161f6bBNv5z6qnm5KSgiI9qkdGsvsuCDc3lstbgiletWvX5oqsHfHPP6w7x3vvsZLlPn2YN753b4GnKoqCVq1acfaEoQwGA01MTESTJk2IzWZzA0sDVFEpMV56oyuKonnixImDFUUxUEr1MTExC9euXZt25MgRxMbG5nqOyWRCWqYAzsiRrKFljkdpQgi6d++uHTdunMFqtXoLgtA245AMYHgh1xhts9k8k5OTW4eHh38REhKyYM2aNShMrIvO4w4AACAASURBVLdt27ZISEggO3bsUObNm6fMmzcPc+fOVe7evWu/8bVamQ5Flsad+XLtGgvDlBCNGzdGXFwcV+gYN6Ws0aZGw7Iuzp1jX2cKDRUQstBoNGT9+vWYP38+Vq5cma/lNZvNcHFxgYlpUCgA7HiHUlGxn5euG3BeGI1GajQalQMHDuy3Wq1lrl+/HnH69Onavr6+mpyNDrds2WLZsmULbzQamSfXvDnw2WfAm28+pT1ACMHFixfTUlNTLxzZudOzTWjoOAJsxPTpdrrT2dZ332g0njx48GAYgHFarRZVq1a163xBEFC9enWyd+9euLu7k08++YTcuHFDCQkJ4UJDQ2mrVq0IV1DpbkQE61g8skDtIEaZMqyvWglpJWi1Wpw4cUKuUKECZ7f+wi+/AAcPss4cvr4sHp2ezr5u3pxt+tWvz55UWrfOdQo/Pz/i4OCADh06ICQkhMvoSpzr2ODgYKLRaEi1atVgsVi4uLi41kFBQeuNRmPxdkNVVDJ4ZYxuJkajkbZr125vu3bt/jpw4MD1iIiIHtWrV9eEh4dj+fLlcHBwwJEjR/iMseykMmWY8V23DujePdsjNSEEtWvX1hw5cqS51mzuTbRahxUjRvxlNBqLrINoNBpTjxw5Ulav1zf09/cXAOZhFaQvy3EcwsLCaIMGDTgfHx8EBARw7dq1w4kTJ8DzPMksQsiT5csBL68nIje5EBkZiWXLltGkpCRSo2ZNEJ5n8dMiSDEqigKr1Qo+S0nx1atXiclkor6+vvnHLRITWQWhvz+rjstUjqtdO/taOI61IGrShP3+vLyYMHsWDAYDqlatCkopTpw4gTZt2mRbU1ZkWSbnzp2jt27don369CHx8fHlHj16VK9t27ZP77iqqBSBV87oZqVDhw7h+/btu37mzJke0dHRFkppZFRUlAcAvPHGGyhbtiwel9fWrcs66RoMTxkYnU6Hw4cP2zrs38+59O3rEA0MPXToUFK7du2OF3VtQUFB/yQmJo5VFEVz5MgRbtu2bXjw4IGtTp06ubqrly5dwqpVq2j16tVpp06duKxGo2zZsmTnzp2oWrUq8pV+3LKFCdrkMebixYv4/fffUaVKFdy+fRvHjh2jlZ2diW7DBgivv16o+7NYLJg/f74SFBREQkNDceTIEXrs2DFqs9lIbGwsad26df5Gd9484MYNoG3bJwaXUla2/M472VsjOTmxMRMnAvfvs04YWdi7dy9u3ryJrVu30nr16sn+/v55PhL4+Pjg9OnTSsWKFXkfHx/4+voKhw8frn7gwIHlRqOxUE83Kiq58UobXYAZ3gMHDiyklAaKojg/ODj4K47jki5fvtwtNjZWrlu3LsdxHPOY2rRhO/tvvfXkHz2DcmXKcDVmz8ZmHx807dJFExMTY2nTps1vRV2X0Wg0HzhwYGNsbKzXgwcPTimK0uD+/fucq6srrVixYjaDtG3bNhocHEy6d++Ozp07czm9NHd3d3Acp+zatYu2adMmd2OWkMDEbPr1y1PM5uTJkxAEQR42bBjXrFkzkpycTHeFhpJQR0c4OznB007dYEVRsHDhQtnd3Z2MHj2atGjRAgEBAcTb25tYLBYlJiaGi4mJoXXr1n16rbt2seKNvBp9BgQw4fWc4YHMopf27dnvjxDYatfGsmXL5Bs3bpDbt28TLy8vpX///kJB+g9HjhxBTEwMjhw5QurWrQubzSbHxcXJ7du332/XD0BFJR9eqjLgkkSSJC+dTrdUq9V26NOnj0P1zPbpO3Ywj3DJkuwnREXh3JEj8rabN0mfPn24rVu3mnme/27ixIliCa6pvkaj2dm5c+eKLVq04FNSUvDrr7/KNpuNGzx4MPHwyLuXoslkwuzZs/Hll18i19hueDjTW/jsszznWLhwoVyvXj2uffv22azS1c2bKTd+PNk6erTcokUL/uLFi0p8fDxp3rw5MRgMMJlM2Uqdly5dKsuyTEaOHMnlJtSTmJiIX3/9lZYpU4aOGDGCy7beP/8EKlViseScxMcDZjM7nh8LFuCRwYCVsbGKc+XKGDhwIAcAPM8XqqPyzz//rNSuXZvUrFmTrFy5MkWW5VqiKBYz0Vjl384r7+nmhdFoTG7btu3avXv3hp87d64fpZTz8fFhXlRUFNsRr1v3yQlffYUKgsC1nziReHh4gOd54fr16ynt2rVbV4Jruh8UFHQ8Li5ugFar1a5fv55WqVIFw4YN4wrqmisIAo4cOQJfX9/cFda+/55tiDVrlu1lRVFw9uxZREREIDIyknvzzTeJLkdX43J+fsTxnXcAR0dy7NgxVK1aldarV48LCwuj9+7do9evXycHDx5EfHw8PXv2LH3w4AE3atQoLuc8mRgMBgQEBJCwsDAcP35cady4McdNmcJyg/v0YT3bcmPvXtYBpFOnfH8W4Q4OWHvmDP6zbBlpVqYM0fbqBY1Gk2ccNzcURcHu3btJo0aNiK+vL+7evUsfPnzY+sCBAy7BwcGW4ODgeKPR+PzK61ReWv61nm5WJElqrtFodjo5OWkrVKigbWEwaKuGhICMGwdUqMAGBQYydTJvbwBAXFwcli5dmm6xWJqIovh0S4qir+UNAH8BQOfOnWmbNm2IvXKICxcuVJo2bco9JSpDKctp3bMHqJi9K9G9e/fwyy+/wMPDQ2nXrh1Xr1693Ce/cwc4ehR4++2nDlksFiQkJGDjxo3UbDaT999/3y7BdYvFgtVz5lDvhg1JFz8/VppcREW2rMyfP1+pUKECGdi+PUFyMnD7NqvAK2ijMQdr1qyRo6Oj+fr16yv+/v5cUlISLl68mHbv3j0iy/Jhi8XyNoBUURRfCE0JlZeDlz5PtyQQRfG41WqtkZiY2Dc6Ovr0uvPnY6I1GmDDBjYgKAhISnpscAEWR61YsaIVQImpckuSRJBhcAHAycnJboMLAOXLl1dOnjyJCxcuZM8Bjo4GRox48gaShQoVKsDBwUHp3Llz3gYXYBoVeRR0aLVaeHp6YuzYseSLL76wu8OFVqtFt6AgICiIokaNgg3u7NnMgBbA4MGDuWvXriE8IYEZ2x9+AL74wq41ZWXo0KH82LFjcfv2bezdu1dp1qwZ3n33XYcvvvjCUL169TaEkIcajebmjBkzFkmSVL7gGVVU/sXhhZwYjUaT0WiMbteu3dKgoKB7Nxwdeze7coXjXF1ZKlLlyk/lgRoMBl1kZGSzdu3azZckqXJwcLDZaDQW2esJCQnpBWCQv78/7datG6lZs2ahHoldXV25+Ph425kzZ8iBAwfI8ePHlaSkJOp76xbz+Fq1yvW8iIgIYrValXzTuMqUYRuNVmu+XSXsfpP480/A3R0rTSZas0cPzq7uGtHRLOSTY5MzJ46OjnBzcyNbt25FUlKS7Dt1Kkd69wamTGEFH4UQaDcYDGjUqBEJCgoier0eDg4O0Ov1qFu3rqZt27akSpUqzmlpaQEJCQkTQ0NDfQ8cOHA4ODjYMTg42CE4OJhT83tVcqKKNefOvlRZjtpdvrxPjz/+0JPXXwdy6e3l7u4OSmmZmTNn/grgXQAfAChSk0NJkjiNRrN4wIABqFGjRpFqb728vNC/f//Heb/Xrl3jNm3ahK5lyoDPw4v96aefbKmpqcIbb7xR8FPPoUPArFnAX38VOLRAbtwA4uORmJTE2dXCh1Jg6FC7y5L9/f1Rvnx5LF++nAsICIC3tzd7Url9m23G5RFvzo2MIhbb4cOHyYEDB3iO45CWlgZBENC0aVPboEGDNEePHsWhQ4f6paWlDQEAjUZjkmVZ+Pbbb5N5nv/HZDL1E0UxLUNn2RlAghqW+HeiGt1cEEUxVpKkeuecna+0io6u7vrhh6z2XxCYSldGmOHevXsQBCEiPT393YxT04pzXZvN5lFS/dB0Oh1q164N9zJlFPO0aZxDHo/liYmJwmeffQa7dH9btXoScikqo0YBn376WECeEGJfGXNICDP4O3bYfSkPDw94eHjIW7du5T/55BPCf/IJO9CnDzO6uSjM5cXQoUMFAAgKCgLHcWjfvj3Cw8OxZ88evlu3bmjZsiVatmypVRQFFosFer1eTynFw4cPXZcvX96NEHJbkqS+hJDtlFJHg8GwCcDTAXKVVx41ppsHoijKZrN58u/t26fQFStYT7XLl590m1iyBNVu3UJ6enpr50ePQBRlpCiKxclk0FFKn9IloJTiwoWi90rsX7kyd9HPDweOHn3qmM1mgyzLMBTwuP4YQQBu3mThlsKS2arnk0+yyUryPJ+pc5A/7dsXykhmMmLECCElJYUkJWVpe7ZgAVvHxYsF6jbkpFOnTjAajeA4Dnq9/qnwT+brAHtDcXV1xdixY/k2bdo4ATjg7++vGTZsGKBqOvxrUY1u/my8d/++U1TNmoCzM9CwIbBxIzvi7w9DjRpoXKeOadSKFWbfyMjfQEhHEDIIAEBIuUJ2YaQAMGvWLFy5coW9QCnWr19PN2ZeswiUURRUGTMG//zzT7bNtcTERMyfP1+pWrWqUqBmQ1YEAbAVsoEFpcy7vHyZxVMzcmVTU1OhKArsyqA5fBh49Khw1wUzgoIgKHfuZKna9vZmlW3z57N1FRGLxQKe5wtcvFarRefOnTWTJ09G3759tRmGuoQ7jaq8LKjhhXwQRVGWJAkbN27EpEmTsh/M6Ff2evXq+p/u3Ut58OBBDwBXAFgzRmwF8DEISQLwDiidC0IcAaTlZmVEUTRJkgQAWL9+PcqVK6c8ePCAA0Bat25NARRNY/HIEVQYNAhOCQnKTz/9BK1WS2VZpqmpqUKDBg1o9+7dCyddWKMGUL06kJzM3ogK4s8/gV69WGFGlsIERVHw22+/KZ6ennBzcyvY6v/zDzu/CO3sO3fuzG3btg1xcXFKx44dn1xr0SKWlbJ6NTPoOdvRF0BOXYmCyCwUiYqKssmy/E+hLqbyyqB6unaQ3+M3x3Ho0aOHk06nWxs4c+Yyafp09hxPaTsAF8CkIDPdrP8BGApCOBDyNQjhQYg2i0dcHkBDAMgwuACAI0eOkNDQ0ML3RzObgbAwICAAPM/TqlWrcq1ateI7deokDBkyBD179uQL5eVmsn07K5cuCEVhHmpCQjaDCwBhYWF48OAB3n33XfsWMG4cUxUrAo0bN0blypUREhLC7dmzJ3sA2cWFaQxPnQpkPGHYi81mQ1paGhcRYX+attVqxfHjx60Wi+W7Ql1M5ZVBNboFs7Ju3br57jLXrFkT48aN09tstkYAXB8foJSC0jug9PeM7z8GsBasTftDUCoDGAVgDgCI06e/LU6ffk+cPp3nKO1GCMncmNuzf/9+obDC59i0iZXTCgJMJhMaNmyIxo0bo169emw3v6j06MFa2eeFzQYMGcKM7dy5ufZj4zgOlFJisydUER/PlMSKgW+GiNGJEye4p2LIX3zBflb79jHpSzsJCAiAm5sbChP+CQsLo4SQf0RRVFsB/UtRwwsFE0HtCDryPA9/f3/5ypUrMwB8mOdAShUAJmQYWlD6MwjJjO85goUnWkyVpPGg1BGE9NjZvbvX8ZYtu65ZvRoNGzVCp06d4ODgUPCj7aVLTKULgMVi4e0tWigQQQBOnAAuXGBFF1nJDDuMHAmw5o65UqVKFaSnp5PY2FgUmLHh4MA2vopBq1at0KRJEyxbtkz+4YcfeFdXV9nLy4vr1KkT0ScnP9ENHjyYyXvmUkiSk9DQUNy7dw9du3a1K/yTkpKCoKAgk8Vi+bRYN6PyUqN6uvkgSdIQQRACnZyc7ArcdenSRW+z2YZIklS4OCml1ozP80BpAij9B0BmeyDXHrt2nW0dGuox6dtvEy9duLB5zfjxWPnBB3l2xgDAHu2dnYHGjTOmpgXq9RaKsmWfNkxmM0sre/gQ6Nw53yKK06dPU51OR+3yuNPTgaZNi9aeCCx+vH//fixbtkw2mUyQZRlms5k/ceIEOXr0KPDttywlLSAAOH0a+PprtsmWBxaLBUuWLJFPnz6N4cOHo0WLFnbF23ft2pVOKV0kimJ4kW5E5ZVA9XTzZ6Isy2jatKld/1TOzs5wc3NT4uLiRkiStBpA+SKrUlGalvF5HQB0AQBCakyYPDlx5bvvUoe0NCxatAj/WbuWYtkyUrF2bdbK5o032PnXrzNv9L//BQBotVolJiamQOEcu/H1BapVY3nL5csz2ciePYHjx+3ST+jUqRO5du2asmDBAjpkyBDO3d092/Hr169j8+bNsizLpNmePSRNqyUnW7SAs7OzXL16db5Vq1bIeU5ebN++HVFRUbR169a8q6srIiMjlcjISOLp6UmqV68OLFz4ZLBGA4wdyzbVBg58/MaSlJSEdevW0Tp16pBjx44pFStWJGPGjLE73e7mzZu4cuVKqtVqnWLXCSqvLKrgTT5IkkQBYOzYsSiXz6NyVmJjY7F69eo0q9XKWa1WPSFkwLRp04pZUfDUurSEkEuU0moOKSlINxjweZ8+cNq1C5g8Gfh//4+laW3bBnz4IfDaa7g6dy7OVa6s9GnWjCM3b7IGj5s3M+Pp48Na+TRsyHbz09JYuW1sLODqyowoIUxzOCurVwNnzwKSxB7/Fy5kPdjsxGq1Ys+ePUpERAT++9//Zpt8wYIFcmJiIj9o0CC4ubnByckJsiwjMjIS4eHh8o0bN3idTqeMGjWKc3V1zesSAIDZs2crrVu35tpkZJxkIyWFCaZPnfr0sTfeAJo3h2XCBMwMDISDgwMcHByUBg0aoE2bNlxhMgL/+usv85kzZ6ZPnTo10O6TVF5J1PBCHkiS9PjZ+ejRo7CnkywAVKxYEWPHjnXgOI4HAJ1O99+SXpsoihZKaQ0ASHNyAuV5RHEcM7gAMyD9+jEvrXZtQKdDNX9/pKSnk/sXL7Ld+rQ0JuQTEsL6ji1ZwjIdJIltWkVFsdjmJ58AM2awPmQbNwJNm7KNsfPngZ9/Zufv3Mk2oAphcAGWQtWhQwfObDZzKSkpj1//+++/YbPZODc3N+XChQuy2+LF0AFwcHBAgwYNMHToUH7ChAnw8/PDsmXLlJMnTyK/DbmGDRty+/btw/Xr158+aLMxTz03Fi4EHj5E+MaNcHF2puPGjcPo0aO5tm3bFsrgUkoREREhK4qy2e6TVF5ZVE83DwIDA9eazebBmd/7+vpi8ODB+Z2SjR07dlhOnjy5URCEG19++eXkZ7HGjDeGWAAYMmQIatas+fSge/fYI3O5cti3bx/Cw8PpyJEjSb5tfXIj800nKYl1dnBzYxt1X3zBuvIOHMgMWC6i5flBKcXmzZvliIgI3snJSfbx8eEvXryIIUOGoGzZsvhpwQKMfvgQLrNnP6W7IMsyDh48qJw8eZLz9PSEr68vwsLCaNmyZclbb70Fh4wwx/Lly+Hs7Iw+ffogN1H1vLBYLDh+7Bgqvfsu0v38qP/OnaQoLeljYmKwcuXKuxMnTix8krHKK4fq6eaB2Wxen/X7yMhIxMfH231+QkKCleO4kGdlcAFAFMV7AAYAwKO8qrWWLAH+/hsAK2F1cXGRf/jhB4SFhRXu3Zbn2YerK1NcMxiARo2YtzxoEPN2P8w7aSMvCCHo27cvP2bMGHTs2JGPiYlRLBYLNBoNXFxcYHByst19//1chW54nkfnzp25li1byteuXUNoaCicnJxgtVqVH3/8Ucn8faWlpdlq1qyZu8GdNi17TDeDsLAwzJkzh54LD1eOT5hA5Xr1KHbufPLmUwiuXr1KFUXZWugTVV5JVE83HyRJWgBgLIAGPM830+l0Pw4bNkyv1WrzjfFarVYEBgbaFEVxFkXRDmGB4hEYGHjMbDY3DwgIoL169SLZshQoZQbr5s3HQj1RUVHYsGEDevfujXw1dO3hs89YQ0gPD6av4ODAxNLffLNI0ymKglOnTqFevXowGAzYM3Cg0sTNjXP76Se756CUYu/evcqpU6dIzZo1ydWrV9GvXz/UqJGL3IHJxOQqM6rrUlJSsHjxYjklJYXv378/ateuzcbZbEzAvUIFYPHiQt3T6tWrk6Kjo98XRfGPQp2o8kqierr5Mx4AeJ7/h+f5r9PS0vSLFi3C4sWLbfm9WWWkNlEAha8iKwJms7krAJw7d47MmDEDmzdvpt9//71ss9mYwZVl5o1m6A/UrFkTb731FrZu3YrU1NTiXbxjxycbbW5ubPPtyBFm7O3AZDLh/PnzuHPnDkwmEziOQ7NmzcDzPGw2Gy41bEiTc+YCFwAhBF27duW6detG4+PjFUopEhIScl9QcHA2mcfFixcrJpOJHzdu3BODC7Dc5N9+YxuQs2ezNDY7oJTi9u3bWgBq2a8KANXo5kuGl1pWluXPFEUxAIAgCOcppZGbNm0ypefxj6fT6eDs7GwC0CCvuSVJKn5fmifrfCSKIiGErAOY8X306BF/6dIlNoDnmRZupUosxQtAnTp14OrqKh8/flwBWPwymyiMvfTunV2DoVo14LvvWK6u0QhYctfwVhQFe/fuxbx58+iePXvomjVrMGvWLHzzzTcIDAykgYGBmDFjBhwjI3m9nZkjOXF2duYSExO5xo0bY9++feSpij5KgV9+yRa6qFOnDrFarbmHXwwGlvccHm53J4oHDx6AUpomimLBLS9U/hWo4QU7kSSpjFarXWSxWAYAaEkIWUcprd6vXz/4+/s/NX7fvn2WEydOHLJYLD1FUbQEBgbOUxRluNVq7S2K4uGMdLRRoiguL+F1+oIJ78Db2xvvvffek4NnzwLjxwO7dwMALl26hC1btqBr164ICQmhKSkppHbt2kqvXr3ybCr5FL6+LGacUWabjQsXWOrZqVPMWGUYt8jISGzdulXRaDSkV69eJLMTM6UUJpMJaWlp0Ol0cHJyAh02DCQwsNBCNxaLBfPmzaMdO3ZE8+bNyfHjx7F//36MGjUK+XVVBphm7uXLl5WPP/44d6fEamWKabNmsZh5Pj+rs2fPYvfu3TvHjx/fs1A3oPLKohrdQiJJkkNGBwBXAPcBCI0bNzYbjUZd1i68sixj/fr1abdu3UqUZfmILMv9fHx8cOfOnSSbzTaSUvoHWOkoJ4piif4SMnqtDRcEYUHPnj1dGjVq9OSg1cqq1QBAp8Off/5J7969K9eoUUNo3749Vq5cKZtMJm7UqFHErrLhzL+fvHb1bTYW312xgsV9AcydO1euV68e/9prr+XeLr4EWLVqlSLLMkaMGPE4vWvVqlUoW7as3Lt3b1Yqt28fy8DIoS72888/y3Xr1n2qFX02bt4E/PxYCyEvrzyHhYSEIDg4eNbUqVMnlMBtqbwCqOGFQiKKYlrG50RRFDUAPMLDwxcvWLDAtG/fPktmqSrP8xgyZIjDwIEDK8my3A8AAgIC6JAhQ1wMBsMqAJlZDbnkeRV7jVQUxZU2m63Dzp07H+zevdvyOM9Yo2F5t8uZg/3222+TsWPHCj179oSTkxNGjx7NOzs708OHD9tXc7tjB9NbyAtBYGM8PHC7f3+sGD9esVqtfKNGjQo2uGfPAjNn2rWMrJw+fRp37tzh3n777Wz5tD4+PtlLp319c+0bZ7FYaPny5fM2uJcusU3Jf/7JVcwnK6mpqVZFUeIKfRMqryyq0S0moijGTZ48+f9sNluNEydOnNu4cWN6poEjhKBatWqYMGECRo4ciUaNGpGqVauiU6dODjzPT+I4LhVF1cm1b21nrFZrrdOnT4cuXrw4NTExkR2YPBn4z3+YVkIuvP7669zZs2e5u/Z0VQgKYlVdBXD58mWEODmh6TvvcP8dPhzu9sRpPTzybKaZF8eOHcPOnTvx9ttvI2fJ8/3791E+ayFE2bKPtSmy4ubmRvbs2UNzTRFMSGCpcTt2AFWrFtizLTU11QIgoVA3ofJKoxrdEkIUxbsWi6X91atX/1m3bl2a1Wp9fEyv16NKlSqPv2/cuDGGDh3qQgjRgTUpfJbrijebza8lJCRM+/nnn9PPnz8PZLSTQevWubY0r1SpEhwcHGx55v5mZe7cfB+vM7l79y5MbdvK9Zs3B//NN8BWO9JWXVxYhwc7CQoKwv79+zFw4ED4+fk9dTwpKYlardYnIbXevZk3nYOhQ4fyPM+T9evXPwn7yDKwdi1TTgsOtvvNJjU11Qbggd03ofLKoxrdEkQUxXSLxdL99u3bu1auXJlmzsOTJITAx8cHzZs3V7Ra7W8Z8eFnuS46ZcqUuVartd22bdsSr1+/znQU9u9nhQ65JPxrNBqSlmZHn81PPgFu3SpwWHJy8pPmlwsWAG+9xTb09uzJ+6Rhw/I/noHJZMLixYvlkydPYvjw4cjcmMvJO++8Q65fv05CQ0NZ6CQ4GGiQPcFEURTcuXMHjx49gq+v7xOjazIxASGTiXm3c+Y8znvOi/v37yMmJsYBqqerkgXV6JYwoihaLRZLv7i4uPWLFy9OvXbtWp5ju3TpovXw8KgI4On+7s9mbaesVuvYXbt2pVBK2eP1uXNMHSwHjo6O5NatWwXHdfv1Y/MUgLu7O+7evcvJssxS2AgBnJyYXoOi5J5a9uefQJcu+c57/fp1zJ8/nzo6OpKxY8eicuXKeY51cXHB0KFDSXBwMPcwIoJ5rhnhgYcPHyIwMJB+8803WLFiBdq2bSt3796dg8nEuhcrCvD99yxtbORI4MCBAu/5xIkTMJvNGgD293tXeeVRje4zQBRFxWKxfPDgwYMPf/vtt5hly5al3MrFGySEoGrVqlqtVvvDV1999akkSc801JDB+sTExNjQ0FCZUsqEbH79lWUhZMlk6dWrF3fhwgUuX81eAGjRwi4px3PnztmSkpKyd+Vt04Z9bNrElNGykpzMRHTy2Wy7fv06fv/9d9qqVSsMHjyYs0dm0Wq1QhAEOAsCkBnjBrBx40bZz89PmTx5MqZMmQKj0ciDUpYO1rx59nsMDASaNSvwWp06dcr8Us3RVXmManSfERkZBOssFkvVO3fufLZ6x4elUwAAIABJREFU9erU3AxY586dtYMHD/aqVq3aTJ1O92cprEuxWCwdQ0NDb+7YscOsUMp24GfNylbe6ubmhjp16tCtW7cq+aYVdujAclbzQFEUrFmzRklOThbGjx+PXGUY336bFVQkJQF/ZFTKpqbmG7ZYu3atsm7dOjRu3Ji2bduW2Kv6lZ6eDq1WS3lf38epYklJSYiJieG7dOnCPy6htlqBTp1Yq6DBg58Ish8/ztbp5FTgtfR6PQghCoCC4y8q/xpUo/uMEUXROm3atKWKoswMDg5Oz2nAMrxdDBo0SE8IaStJUp1SWNNti8XSKDw8/Mz69evTFUVhbXeGDMk2rnfv3uTBgwfk3r17eU924gSQS3FIJrt27UJCQgL58MMP8xb8JoRtmt2//8SAV6jwlMbtnTt3EBoaiiVLlijx8fFk7Nix6NKlC1eYXF9fX1+kpqYS29ixwM6dj7tKUErx8OFDNigpiaXW/fwzkFMo/fx5lptrBxllzZbMNEMVFUA1uqWGLMsLoqOjY0+fPp2r2ygIAhRFISilnW5RFB9ZLJb2t27dio6IiGBGzsEBeP31xx6mIAhwdHSUY2Ji8p5o40YmdJMH9+/fR0BAALGrY0XNmsCUKUy/wdMT+OijbIc3bdqk7N+/Hzqdjn7wwQfE2Z4W8DnI1N1VPv8caNUK4eHhOHfuHLy9veWkpCQWu+3Ykf0MsmovZDJyJNC1q13XSklJgSAIauaCSjZUo1tKiKKYbLFYxoaFheVaSfDo0SPIskzAqtxKa00Ws9k8be/evaaUlBQWP505k2U0ZODv7y/s2rUrb12G8+eZIHoepKeny/a2tAHARHlu3GDeb2Y61+rVuLhsGVJTU7kvvvgCw4cP5x3siCPnRmpqKgil2L18uRL4yy/YuXMn9Ho9RowYwdfNTPMLDQWypPg95vvvWZcJO5FlGYSQUhE9Unl5UI1u6RISGxurz5rDCzCpxRUrVqQRQmaXdEmwHWw1mUz7fvrpp/Tbt2+z5oyXLzOPDsBrr72Gli1bYsWKFZg9e/aTR/BMpk/PZqSzEhwcjEePHvHVqlUreBWUMo2GoUNZRkVUFPC//7FjXl5w8fGBJjkZmi5d2NjUVLuVzLLi5uaG5n5+aLptGzd8+HB4enrCZDIhPi6OVepFR7MMhdz48MOnQjD5odfroShKwcFflX8VqtEtRURRTNZqtZdu3Ljx+LXDhw/LGzZsiE1KShpks9mmPYc1yRMnTuxlNpv7r1q1Ku3GjRtAjRrZBMk7duyIN998ExaLBYsWLcKCBQuUVatWydHR0aAjRzIDmQtnzpyxdevWDRUKamd+8ybbrLp7F/jhB9aJguNY1dyjR0DnzvDq2BFWg4Emfv0184JnzmRjAaagVghx8a4DB8Lz7Fl4eXmha9eu6HT3Ll23cCFSVqxgIY7cuHaNtTMqQCwnK3q9HrIsF66Hkcorj2p0SxmLxbLs4MGDaTdu3MCGDRtMwcHBCVartfW0adO2PQcv9zHTpk3bbrPZ3ly/fn16QlIS0LIlE6nJyCbIKG5Q+vbti44dO3JOTk78hg0b6B9ubjQ1j9iq1WrNv2mkogAbNgAHD7Jy3O7dgUxRdYMBePfdbKELyvMwZ6qZff01K8xIS3uizxAayuYqiK1bgb/+AgB4enoiwM2NkJQUpORXYXb7NpN0LAQ2mw2yLOskSVK7bqs8RjW6pYwsyz/Fx8dvXL9+/c0rV658a7Vaa4iimHcFRSkybdq0fTab7dMff/wRR48eZbmozZohLS0NoaGhKFOmDPX19UX9+vXRt29fjB8/niS4uCiRN2/mOp/NZiNOTk5QFAVPpZ3ZbMyTXb8e6NYNGDfu6f5qDRo8Nvocx6FevXrk77//Vh6LswsC2/z7+2+W0mWzsVQvSoH+/VkWgpJLfUelSqx0+csvYTtzBt/rdPBo2jRvj5xSoF074OOPC/XzPHPmTOaX9okHqfwrUKUdVZ5CkqQpgiB82bdvX32dWrUQP2IE1lSujAFjx8Izi6rW1av/n73zDovi7Nr4/cxsY3fpUpUiICp2saFosPfee0tiYmKSzxRTjJPRNzGJKcbExGiiMcZu8lqCRlGIgqjYBQuKAhYQUBBc2Doz3x8PoFTBkryJ87surkt2Z6esy9kz5znnvi+D7d0b5k8+Qb0+fe6N+Rbzn//8B6+//jq2b98upqSkMB4eHuLggQMZt99+ozq0W7bQUVpFFYngvn3AO+/Q3ljQzPGbb74R9Xo9Jk6cWLXmrygCUVG0y2D5cloa+Phj4PJlKrIuCDTAR0cDbdrgt717xeTkZGJnZ4f27dujRYsWJC4uTmrRogWxt7eH9tgx2j62fn3lx6uEvLw8LFmyBACGcBwn+6PJlCIHXZlK4Xm+tVKpjJk0aZKDd3w8djGMdDUnR3zxxRfZkm2+/vprQavVsgUFBZLBYCDh4eG2rl27KgDao/rpp5/i/fffx88//ywoFAq24MQJhNhs6ChJUM6YQQXOq8NqBS5eBAICShe3bDYbVqxYIUiSxDz//PNEoVCgsLAQx44dkywWC5o2bUru/2KAKNKM19ER6NKFBvFRo4CffwaGDbtvMxEJCQk4evSokJ+fz5YoxTEMg3feeguKW7dqJaR+/vx5bNq0CQDqcxyXVuMXyvzrkcsLMpXCcdwJQRDe3bBhg/VUUBAKrlyRmkRGlvm8sCwLjz17pA7165OpU6ciPj5eUdIHm52dXTKRBZvZTHISEjB8zRoYLl3C597eKKpfH/n5+bh48WLVJ6FUUlucrVtLyxMKhQIzZsxgTSaTuH//fmRlZWHFihVSUlKSdOPGDaxatQrZ2fd13TEMVVV77jkqcJOdTTPdcgMdDMOgQ4cOmDVrFvvyyy8jLCwMkydPhqNaLV6YP196UMC12Wy4evUqTCbqQ3qfcaksdiNTBrnAL1MloiguM5vNn+7Zs0fR3M+PadOnzz13YQDPP/88yxiNYNq0AerVg06nE7777jtGr9eLV69eZV1cXESkpDBT9u1j9ubn46cpU6D39xdsubksAOzdu1c4e/YsGxISIgwcOJCttFwwfjzyCguxZP58hIeHo1u3bmAYBv3792cjIyOFI0eOsD4+PtLEiRMZk8mEr776Srqdmkrc3d2Br76iQXfWLCqcY7NRAfJvvql88KEYJycn9CoegBjVrRtz+fXXsXHjRqFJkyZsUHF3w5kzZ6TExEQxIyOD1el0giAIjMViIQqFQho3bhzx8fGBXq8vNBgM9QGcecz/NTL/YOTygky1zJ8/f2ZQUNCn48aNowXbvXvprX6nThW2FUURf/75JywWC44fOYI28fHIDwiQ9FevkqNt2gAMg+DgYGRmZkqzZ88mUVFRUkpKinT37l2i0WjImDFjyviXZWZm4mx8vKhZupQ5NmgQ8vPz0ahRI3H48OGMonwd+MoVpFy7hsj9+/HKqlUgKSk0q9Xr7xlniiLVW5gzhw45fPFFtYI6AABJQubNm4iPj8fVq1eFwsJClhACvV4v6PV69vr16/Dw8EBAQIDUtm1bcurUKeHQoUMsIUSqU6eOkJGRMZfjuE8e6T9B5l+FnOnKVIskSTuuXr36WekDoli2I2DiRFonDQkBwzDo1q0b7qamQvPpp/AwGCQydCjx79IFtj17cObMGbAsCz8/P7GoqIg9efIk6dixI2FZFjExMYiKihLHjx/PALRFbeXKlajr6UnGZGYifNQo5CiVWLVqFT755BPMnj0bdmYzlX+cPh349Ve4e3qiUKEAuXSJdjOUt9JJSgKcnanjQ/PmNPNVqaq++Px8oFMneJ06heHDhwMAazAYYLFY4OLiwgLAzZs3sXbtWjE9PR29evUiXbt2ZZ955hksX74cmZmZCpVK9SwAOejKlCLXdGUehFqhUNybPOjVCwgPpx5rRiMNuH5+97ZetAhSeDhyhw4VGh85Qhr16gWNRoOgoCA0aNBAunXrliAIArt+/XrR2dlZCA8PR1hYGFiWFUNDQ0s/j2fOnJGcnJyEKdOnE83PPwM6Hdzc3DBx4kSm9cGDOP3114KVYWhngiQBb74J/fjxsNlssFZ193b5MjWTBOjEXXXebgBdfNu9u0x3hV6vv79eC09PT7i4uECv15celGEYTJ48mXTs2BGiKNZiBlrmaUAOujIPQq9UKiv2mV67dk/ikGGAU6eAt98GfHyw65VXhDs6HbHa7skOhISEYPTo0aRr165sRkaGoFarycSJE9nMzEycOHECoigSdWEhYDYjOy0Nl9esIeHh4SwSEoBvv6WOwt26wcPDA37DhyMxP5+sXL9eujR5Mkqi3aFDh6BUKiv2BAM0MH/8Mf3CAOio88CB1V/5hg00M64Ci8WCgwcPIiMjg+nXrx97/3N2dnbw8PCAzWary/N8++oPJPM0IQddmQeRXVhYqMjJuc/QlhCA46jrw+jRtN914kQqEjNoEIa++irrePKk9NNPP4mWpKR7ljtLl6KxIOC1adPYCevXk23btgnHX3oJeOMNqVmzZkL9efNgO3ECW1auRPfz59GiRQsqNJ6ZSafBGjcGwzAInDABkp8f8vPz8euvv0qrV68W4+LisH//fowbNw6qykoGsbG0RzcwkP4eHEwn2KpCEGi3Q1U9xKCylXv37kW7du0kR0fHCs83LZmuAw7zPP/EDEhl/lnIQVemWjiOyxBF8bX169cXlhfqQV4erXtOnw6cPElVwXbuhEqtxrCkJNZmNkvbf/5ZspToz/r5AXo9RDs7RLdrJ125coXtvHQpWv/+OxkwYIACkZEwNG6MXJUKrrt3Q8rPp/20v/xCywjvvgvjggVY9e67sFqt0uzZs8ns2bOJJEnkzz//hCRJWLNmDfbu3SvabOXEvZKSgGefvfd7iYrZqlWVXzjD0IGIamq+bYvdI2w2W6UTZ4QQNGnSxEp3x/zluhoy/5vIC2lPKTzPKxiGeVEUxVscx1U7aiUIwg+FhYXDjh071jssLOxexubjA/zwAxUb37u3jPMEiYnBDFFkFy1aJF1+5hk0BoABAwAApqIixAJkzLBhcCy32OXo6IgGDRoIX331Fet/+jSeSUmRbEVFxEmjgUmlwq0dO6TODg5o8tlnbEnrmqOjI5EkSWzXrh2j0+nw22+/IT4+HizLom7duuLIoUMZ3eXLVCv4fuztgfst2e+nSxfgxx/v1YArIS0tDQCQnp5eZfLi7++vPHv2LERR/GDBggUZ77///ooqdyjzVCAH3aeXOqIoLtHpdEU8z9/kOK5Kp0WO4ySe5xclJCSEt2rVSq8psXAHAE9PKjqTmko9zSZPLn3KYDDAarUSf3//MvvTarXQ6XSiRqOpEKwIIegYFsYGfPEF3N98E7/n5Yl5GzcSi8XCiKKIxm+9hWGDBxP07ElNMWfMgKenJ65cuUJKbudff/11RhRF5OXlYdu2bVj30UcYm58PfXFJYvXq1VJRURGpX7++0KdnT9bRYKhov7N5M+DuDoPBgA0bNogdO3ZkQsoNVMTExMDd3R3Tpk2rsnRQt25dKJXKXEEQbouiuPzDDz+sb7PZ3vs7xY3+7fA87wjACKAegB8BpALYDyAeQMr97z3P834AWJZlpwIwC4KwjOO4W0/y/OSg+/SSpVQq000mUz0Az/E87/AAjYA/jUbjr19++eWopk2bMj179lRrNBo6onvoEHDpEu2BDQoq7eFdu3atKAgCc3+NdePGjQAgCYLAuLq6VnqgOkYjtDk5WH36tDR7wYLSBSpRFMEwDA1wL7xASxvXryMuNlbs0bNnmcDHMAxcXV0xbdo0JmXiRMTn5uLWunVCTk4O4+rqKg0fPpzs3r2bnBw1CvZ16ohOH37I+Pv7Y/Xq1WLw5cvo9MILTGpaGtauXQsAzKFDh4SQkJAyi2UuLi6CwWBgrVZr5XVkUBUzHx8fdVpaWiTDMANtNts7AHYAOFTNey1TS3ieJwqF4iWGYeayLOsiiiIrSVLJl3pEw4YNRyYnJ+uLtwWA3wGcADAPoILzDg4OoslkGs/zfDOO456Y+Lw8HPEUw/O8lmXZBEEQSkQQWI7jqlXE4nk+RKFQrO3Zs2fLdu3a0QfPnqUSja+8Anz0EZ32eu45ZGZmYv369QLLsszIkSOJt7d3yQceL730EupUdmv/5ZeAnR2SIyLwe2Sk+Prrr1e/7hAWhnMWi6TcsIE0KJF9vB+bDWjbFgXbtmFPQgLUajX69++PEl81w5072BMdjUuXLkkACACp7f79yGjdGmkaDWnXrh06duyIxYsX44033kCZLB/AZ599Jg4fPpypTqj99u3b+O6776RiZxAACOI47nK11yVTJcWLkl4AAgEEsiwbolQqB9jZ2fmOGDFCV6K9IQgC7h+iycjIwNatW5GTkwOWZSHcp8FsZ2dnfuGFF9SbN28uzM7OvmSxWKZwHHf6SZy/nOk+xXAcV8TzfDiAEACpDwq4xSSLohgSfH+t09ubSh+6ulKthDFjgNBQeLVqhddee43dsmULNm/eLL366qtEo9FIY8aMIeUDriRJOHPyJHx/+EE6PGiQeOLXX9nWrVs/eMU/KgrnPvuMBP38s4hx4xg0LufreewYMHUqHHx9McLXt8LL9U5OGFZYCLFfP7LyyBHY6/Viy19+YVXnzqFfSEhpT65OpxOOHTvG1q1bFyUB9tChQ6LFYmHOnDkj1K9fn62w82JcXV3Rt29f8vvvv0Oj0STMmTNHDrg1gOd5FYAuABooFIpGSqWymSRJgQzDeCmVSpujo6OlTp06rLu7u87Hx4f4+vqWCbLlpxa9vb0xc+ZMAMCiRYvE0aNHMy4uLjAYDHBzc1OzLItx48bpNm3a1DgtLa0tADnoyjx+OI67A1rrqun2wsKFCw2iKN6bEHB2pv2vaWmAvz9tIRs/HrdCQnC4dWukp6eLjRo1ks6fP8+aTCYSGxsrGAwG1tfXFyXmkjm//AJx8WKsnzlT8K9fXzEzLAzOzs7VBt2CggJs3bpVvKFWM33On2fwf/8H/PFH2Y1On67STqiEXIsFp+Pi4FinDuovWsTqRBHh48aV2aZly5ZsbGwsBEFA9+7dodVqkZCQQHQ6He7cuUNOnDghms1mKSwsrNLg26pVK/z+++8wmUy7qj2Zp5ziLLahQqGYolAoXnRxcYGXl5fSzc3NztnZGS4uLnB2doZarVYCeKTBE4ZhoNfrob+vnl/cX82kpaVVo77/aMhBV6ZWFNfO1BVqmFFR1LXh889pb+uKFbjdoQMYQRA69+3LtGvfnjEYDAgMDJQsFgv27NkjFBYWsk5OTmJISAipv3kzMfj7izNfeqlGn8mioiIsWbIEwcHB0vPPPw+9qytgsdC6sr8/8MYbtLSQlAS89Va1+1p1547opFYT482bkv+nnxJVcYZdUFCA1atXSyaTSbJarYzVakXfvn1x+PBhAYDk7OzMduvWDWvXriVpaWkEAEwmk9i1a9cKJRGGYTBkyBDs2rVrEM/zvLyQVhGe59uo1epVDMMENG3aVNG2bVuVm5vbX34e/v7+yqNHj/6H5/n/chxXuRfVIyAHXZkaw/M8UavVS1QqFVMiWC6KIqKionA9O1sc+t57TGn66+CArZMnS6/GxLAalQpo3x4ODg6YMGECAcACdKLrzB9/MJ4vv4zNo0dLol6PzjU8lzVr1gj+/v4YNWrUvcxSpaJqYvHxwJ07wPnzdIGvMmffYvbt2wdJkpipq1aBeecdAgcHoNgu/tq1a8jNzSU9evQggYGB8PT0BAC0a9euTDb7+uuvk+zsbBw8eBAHDhxgOnXqVOnCWrNmzRAdHR1sNpu7A9hbw0t9Kvj4448Xq9Xq5/v06WPXokULEPJkZ0kkSaryAIQQMAxjFkWxckuUR0QOujI1hmXZl/R6/dRp06bZxcTESElJSYLRaGT1er3k6elJ9s2eLdUVRbT54QdS7A9G7i5bBs2331JPsv79y0x4qVQqtLFagU6d8H8cR0RRrNFf2s6dO2EwGJjJkydX3H7wYPozahRw4EBpbzBiYwE3N6Sp1djz/feC0cMDWr2e5Obmki5duhDmlVdoaSIjg/q1Abh06RJ8fX2FTp06VVmvBWjt0NvbG9euXRM6derEVtXJwDAMunfvrtu5c+fnPM+3lLNdCs/zzQG8WuXi6mPm0KFDIISQquyZ9uzZc9dms03jOM7yJI4vB12ZGsHz/CyFQvHZ6NGjVRcvXsThw4dJnz59FI6OjggICCCEEKQ6OuJUfLy4bNkyydvbm6lbt67g5u/PYuFCYMoUOkCxeDFVABME2mc7dy617gFKOwqqIzk5GadOncL06dNJ+U6CMqxYQRf0kpLo7/PnAy1bYqubm/DKokXshV27oF+3Dm47d8I8YwbQvj3VZ1iyBLhzBwfPnsX58+cxadKkagOuKIrYvn07igcg2BYtWgAAjEYjkpKSoNfr0ahRo9LMrWnTpoiOjg40m809AEQ9+J1/KjgNANWamFaFKD5YnvM+bDYb9u/fLw0aNIgoy3vygarGFRQUEABba38yNUMeA5Z5IDzPKwEssdlsqm+//RaRkZEYNmwYWrdujcDAwNKAUr9HD/SbPp0J0Giks2fPwtvbm36+WJYGwdatac3XZKLDFEZjBQeHB3Hq1Cl4eXmJD7R1t1qBXbuAw4fp71FRODBwIESFgpEsFoT06gXfZctgl5gIJycn2qrGsnS0edAgOL7xhjSwZUvULS4pVMWKFSvE06dPY9SoUZg8eXJppnbhwgVERUVh8+bNKCwsLN2eYRi0a9dOp1KpRtfqwv+l8DxfGoNYttrvt4rExNCS0v/9X41f8ttvv0lubm5S4/JdLqDDPL/88kuRIAjPP8k+XTnoyjwQjuOsHMcRABoA4wEIjapwXlBv2IABKhU7fvx4NG/e/N7tv0YDjB8P5OTQ4BsZSYNiddlqJfTv3x+ZmZnMlRI9h8owmWgLWznpxry8PMlms5FS8R6NBigJ3hERwPHjsPTti8gXXsDJoCDiuWQJlYDcvZvWhivBzs6OAQB/f394eXnhl19+ERYuXIjt27cjLCxMKtYKFvPy8kpfExgYCEmSRvM837TSnT5d+AGAnZ1dzR2TTSb6Zdq0Kf0Sf+edB77EYrFg/fr1YkpKChk0aBBTvmZcWFiINWvWFFksli8kSdrA83xTnuercD59NOSgK/NAeJ6353l+GIAX1Wr1DDc3N1OVG7/+OjBlCoKCgipamqtUwIcfAlev0rayh4RlWSkvL6/qeqhGQ8sKJY4RxQwePJi4u7vj2LFjlf6Bn50xQ9r00ku4aTSKYRwH1507aRcEw1DZyhEjgKNHAYMBAM2Mrl+/jgkTJkAURfz0009iXl4eLBYLGIZB165dyfjx45Genk5+//330k58Dw8PDBgwQKdUKg/wPF/JRMdTRUOtVms1Go0Mz/PYvHkzkpOTYSh+jyvl5Emqbvfmm8Crr9KF0xkzqtz8yJEj+OKLLySTyYQZM2agfEfElStX8M033xjz8vKWMQzTDIAIIBFAxcbux4Bc05WpFp7n2ygUin3e3t7E3d1d5enpqW7ZsmX1L/ryS6BxY6BPn4rPGQxAx47UzjwvDzh+HOjRo8bns3r1atFkMlU5Qoy0NIDnq1QPCw4OxpkzlVuWnVSppPaDB5MGPXrcS0aaNaM/ERE02501C7h5EzhxAmazGZIk4fz58+Jvv/3G6PV6SaVSMQDQunVrqaCggKxbt04SBIH4lOugaN68ObFarY67d+8+yPN8W47j0mv8Jvy7KLCzszO+8soryiNHjghxcXHsuXPn4ODgIL766qtMmTp/bCyV+Bw3jn5+iuvnqFOn1LfvfrKysrBp0ybBaDSygwYNIo0bNyblM9w7d+5g48aNRovFMhAA0ev12+rUqWPJzs5e/e6771Z+e/OIyEFX5kE0sLe3V02ePFlTk4UuAEDXrsB9XmdlyMmhhpFaLbVXP3So2qC7f/9+HDt2TBRFEaIoEkIIAwCrV68Gx3EAgN27d4vJycmiTqfD9HHjFHjuuSr3FxISgr179zJJSUn3690CAK57e5NeJXq75VEqqZPEF1/QnmSVCq6urggMDBSOHz/O9u3bF6mpqSQlJYVMmTIFfn5+5MaNG2BZlgwfPhz169dnS0buS/7wQ0NDGYvF4hITExPP83wbjuMyqzzxfy83i4qKWLVajS5durDh4eEwGAz46aefyI4dO6TBgwcTiCLtwfbzo2WFkBC6JlBiZBoeThdCN24ERo+GzWbDf//7X+nixYskNDQU3bp1q7SFTxRFbN68uVAUxYUcx+1bsGDBf2w2mzY7OzvLarXWvFBcS+SgK/MgNhYVFb104MCBdhERERWXeyujZUuaFRYUlPa8lvLZZzQzWbiQbteyJe2n/eorYNkyiKKIs2fPIikpCZmZmYIkSUyfPn0YJycnsCwLNzc3GAwGLF68GCtXroSDgwOSk5OZfv36MfHr1uHm7t3wHDKkylNzcnJCcHCwuHXrVsZsNiM0NBQGgwFLly6VPC9eJOaBA2E7darCCCkA6jzRpQstOezdC2i1GDNmDAvQP+Bdu3YxLVu2hG/xuLFer4fVaoWrqyvy8/OxcuVKEEIQEREhtW7dmigUCoSFhbEWi8U9Pj4+vjjjfaIKV/+D1LO3ty9dtGIYBg4ODhgzZgz54Ycf0KRJEwRFRtLP0ltv0VbAVq3uBdwS8vKAF17AaXd3/JGQIDk7O0vPPfcccXd3r3J17tChQ8Lt27fP22y2jwFAFMW9JpPpPQCdOI4rrOp1jwr7wQcfPKl9y/wLiIiIkPbt23c8Nzd3UlhYWM0XFubNo7KP5QcT3N1p4Lq/PcjeHmKdOvjt6FFEbdwopdy4AU9PT6lVq1bsgAEDiKenJxwcHKDX68EwDDQaDXQ6nVCc/YqtWrWS2rRpwxQcOCCSM2eIa58+SExMhFKphFaqQBKJAAAgAElEQVSrrXBqTZs2JYcOHZKSk5OJl5cXrl+/jhs3bmDS3Llku4ODuGfPHiQkJIj169dnSsaUYbEA/foB3boBM2cC6em026HYH44Qgtu3b+PChQuSh4cHcXV1hUajQUZGhrhnzx5y4sQJeHl5SWFhYeTAgQNiXFwcExYWBoZh4Ofnx5hMJl1WVlb/6OjolREREUKFk/6Xsn///vB69eoNbNq0aZnPlk6ng3NqqrR/5040nTWLKMLDgQ4dgCZNgL59K+wn12zGKjc3ITk5mendvz/p168f0ZeX67wPSZKwYcMGk8lkGsBxXBYAREREpEVERPARERF5Vb7wMSBnujI1IamoqEhRUFAAh/KZa1UsXVrxMZOJ9svu2FH2cY0GW7OzpZwjR8iLe/cS1bFjICUSjlXQtm3bshmM0Qhzhw7SzrNnpcjPPoNKpYLRaCQMw0hjx44l9vb2MBqNqFevHhISEiCKIuncubO0detWyWazkT59+kCn12OKJDFZI0Zg//HjTFRUlDRp0iRScOYMbMOG4acXXxQaLFvGDtTpgN69aY/o3r2l5ZH+/fvj4sWLZfqNx4wZw2RnZ2Pv3r3o168fcXJywtmzZ0lhYaFYUrAkhKBHjx7K7OzswKtXry4F8CyeHgSTqfJ12SZmM8kGxDWbN4vPjR/PYty4CgG3uE9aOnfuHGnWrBn6f/IJGBcXegdVDVarFSaTSQXg/OO6kJoiB12ZB8JxnPDRRx999d///veVSZMmaWs8ovncc3TVv6ROevky/amkH9PZ2Zkk6nT4dtQotIqOllokJxPnmTMrXSCplLlz0TckhG0wdCg0Gg18fX0hSRI2b94srl27lpUkCQzDQK1Wi2azmRk9ejT8/PxIfHw8CQ4Ollq1akUAgLlxA14ODrDZbKLRaGREUcSKqCix3htvoKdCwSZERQHDhtFjFhZS54zwcECjwYYNG0QfHx8pKCiozAW6u7tjXLGATnx8PDIyMpgXX3yxzKgrIQTDhw/Xfvvtt2Pnz5//57x5836p2YX/48nMysoqW7Z6912ge3eQ555Dh6IiRjl0KHJ++QVu+/eX2ezs2bPYuXOnqNPpMHXqVOLl5cXCzw9o2PCBBzWZTJAkSQGgJYDjj/F6HogcdGVqhNVqnZeRkdH/8OHDTcLCwmq2ojZ9+r0+WICWFk6erHTTrl27Ijs7W2IYhlw6dgzq7dvR9tlnoShfu6uKTz4BY7Mh+L6+X0IIBg0axF67dg2+vr5gWRYXLlxgtFotAgICUOyjJlkslhItXVoWATBgwAB25cqV0ql+/eBTrx4z/PvvkfXDD9DcvYuPP/5YYhhGqlu3LsauW8cwRUUoysjA1atXmZdffrna0zxz5ozYsWNHprI7Bo1Gg/Hjx2t/+OGH73me38Zx3AM84v/ZzJ8/f6hSqfx5yJAh9D8tM5N+XsaOpaJFoC4jjTt3xu4rV9AjKwseHh4oKCjA+vXrhdzcXLZnz54kNDT0XldC8+bAokW0/PPNN5Ue12az4cSJEyW/huAvDrpyTVemRkRERIjR0dG7r169+lyDBg1U1dXLSqlbl1qz161LM9Zp0+iqc5culW7etGlT0qRJE+yJjYVm8GApxNeXkBEjgCFDaPdAVcybB/j6lg3wxSgUCri6ukKhUIBhGLi7u5eOm549exbp6el49tln7zXLr1oFxMZC88wzcHR0JBdNJqHDpEmMk6cnNC1a4JazsxQREUGaN29OTp48iStXrqBZZCSxXr6MQxYLCgsLJY1GQ3Q6XaUTVhcuXCAsy4oNGjSoNIXX6/W4fPmyMT8//1xERMS5B73F/1R4nm+nVqt3TJo0SVcqAD9pEnUeKVkoy84GOneG9uuvkV2njrhnzx4pLy+P7NixA35+ftKECRMYPz+/Cm1guH2b3k21b1/huCaTCdHR0dLhw4ezJEnSAxgZERHxl2pgyMMRMjWG47grNpvt2VWrVhmTSjQNHsTChUBWFv13z550wOABaDQa0dPTkxB7e+C992h7WXZ21S9o3ZoKqdeSYkEbsUwrXO/eVBMiLw8ha9ZgxNtvsz7NmgF370LZuTN6dO9OfH19odfrUVRURNLT08livV74qqhI8nR1RXp6OlmzZg0+/fRTFBQUlDnekSNHcO3aNalBgwbV/t01a9bMQa1Wj6/1Bf2zaNe4cWNS19ub6l3cvQts2QIUOywDoJlv+/aAiwu6du3KEEJISkqKNHHiRAwbNoytbJEUADBoEDBxInVzLsf69euLjhw5QgRBmAIgHUCHJ3Fx1SEHXZlaMW/evA0Wi6XLjh07si5cuFD9xoTgxLx52BIXh6LsbCAjA2KDBrhz5061LwsLC2OPHj2KtPR02Nq0oZ0DvXoBubkVN46NpX9kxVKTtcHJyQn5+fllH3Rzo7KQLEvHTAmBKIpYtnq1eGHOnNIa84YNGySTyYRevXqhS0QE29jbW3p26VLMfuklTJ8+HR4eHtLixYvL7DoqKgoWi6VyW6H7aNiwIWw2W69i54R/JWq1uo2nh4cGhFDxI6OxbK1/1iw6uVgcOFmWhZ2dnRgeHl5h0KQMZjPNdLt1A+bMqfB0w4YNS0qqf4COIFfnC/hEkIOuTK3hOO6YxWJZcPToUWN1HnsGgwG7tm5F2Pz5+H32bNxatQqfffaZuGTJEuzbt6/K1wUHB6OwsBBr165FQkKCBJWK2u64uAA//1w6hgujkfb9ms0PdR3u7u64efMmW+YaCgroiGleHjB+PAwGA3788UfRmpzM7Dh0CCUaCgMHDiQqlQoxUVFgbt8WhoSGMqRnT2DePNRbvRoDIyKIfV4efh8/XsrKygJiY/H2kCFgGAYFa9ZQgfWcHDphBdBJuuIvI/vsbLi4uFgBPPNQF/YPQCGKrVu88AJw6xYVrLl/mMZmAy5cAMr5zkmSVLnOblYWreF+8AF1db55k3Y5lHcRARAWFqYq5+rcpMJGTxi5pivzUOzfvz+psLBwQn5+vt7Ozo7VarWlNczr168jISEBkZGRokqrRY/nniOugwbhhI+P0K57dzYsLAw7d+6EnZ0dvCspC9jZ2aFz587kxIkTgre3N3x9fQkYhrZobd4MhIVRfQWWpSOh1dV7qyAqKkqKjo4mbdu2FYKCgu4lH1otHYKIjQXi47F73TponJykMXfuEFVqqnj59m0EnThBpC+/xE2lUpr844/Esm8fw/r6QrNnD71F9vSEfuxYeKjVkM6fx8aUFBJ49Sqc3d2RJkk2/WefMeeCgmA9cQIuBw6AdO9OM7uiIjo+7ekJ54AA5QVHR3V0dPSvERERD/3/9L9IjptbpyPt27/WYe5cpbK4z7mUQ4eAr78GfvmlwlTj0aNHRV9fX8bLywtISaHbuLrS8lJsLJUJHTWK/t6jR6Xi9VarFTt37jQJgqAAAI7j3nxyV1o5cveCzEPBcZyR5/mOSUlJXxw/fnyCg4ODOHDgQGbLli2S2Wwmnp6eYvfu3ZlmzZqBEQR4dekCr9deY0ukHP39/YXMzEwapQUBsNkg5uXh4IkTuHjokEDu3GGYOnXY9kYjcOQIzWDOnQMmTAC2b6fCOQ4OVICmloiiiKSkJKlTp06IiIgou9pVVAQ4OVFX44MH4XT1qhSkUjHqmBi00mqZm999ByxaBFWnTsjLySGay5eh7tdPyvniCyIcPAgXgwG2ESOQfekSNp88CdK4seSs0YgeL7zAQqXC5C5dFPHOzjgSHw91QQGmXLkCJ4AGCW9vwM4OOHAA3oQwDidPDjAYDLE8z4/jOO6JuBj81WwcM6ZpB3v7qOYNGhBtZbKee/ZQWc5K0BQUwGvJEqrp8eefwLp1tAZ/7hz9fGi1wP2GqZVw+/ZtmM3m2knbPWbk8oLMQ8NxXM7bb789EUCXoqKib9atWycxDIPevXujR48eTIsWLWj2azLRzGT5cloOGDEC3d96i22Qng6pbl1IzZsDy5Yhr29fWJctw/DYWHbc0aNkfGgoFF99RTOaM2eoE0R6Ot1Xu3bA2rUPdd5r1qwRVCoVCQsLq3ivqtVSM0sHB+Drr3G9ZUskxsbivKurlP7ee9jVqxfEIUOgtlgQkpgI69mzqKdQkMuzZknrlizB4aQkxNvbw65bNygVCuGNN95gXnnlFVaVmgqsX4+rV6/C8b330KioSAzq3FlweOMNetzJk+lCIwDcuAFtQQFmzJihq1evXgeGYaoWk/inQIj7TU/PTVeaNo3LXLdONXDUqLKBTxRpF8rMmVTovuQxsxn4z3+AFi3AmkzQnT0LbNpEa72ZmbQn192d/r/VAE9PTwwcOLDkV//Hdn21gFRXk5ORqQ08zzckhAzRaDT9LRZL+/Hjx6v8/f1pHS4nB7h+nWZzhOD7Zcukxp06kbOJicJdi4W4u7uTjIwMMmDAALF58+ZPLBnYunWrdPnyZcyYMaPyMdGoKFpbHTkSiI3F0r17xQ5eXoznb7/hhIMDkkJDodPphNatW7OBo0fD69VXaW9onz449eqrkiUtTSJz5jBtRo0CmTOHfjFs2ULrz0eOIKtnT6xcuRLvVKcBO2kSbbNbuBBZWVlYuXKlhWGYw3PmzPlH1nhXTZvWIKd+/QVNzp8fEvKf/6jrBwRU3OjcOWDoUPrFmpFBs90pU2jPbsuWAMdhTf/+tubDhilatGxZ86GZSih+T2++8847Xg9/VQ+PXF6QeWxwHJcM4BMAnyxcuHDmhg0bPrCzs7MLDQ3Vtm3bltG0agWA3uKJbm6IiYuDu7s7CQsNxYEDB8iMGTNQp06dJxZwTSYTkpKSyLRp01Bln7G7e2knxHGtFk3i45nmSUlQvvwy6hYUoPcrr8DUsiW7q1UrJMyejdmzZtF6IoCWrVsT1KlD0LEjlR18/32a3Xt7U03eBg1gX1RUMpRRNT/8UPpPDw8PvPnmm6rPP/+8Lc/zjTmO+8vHVh8Wnuc7uWdlxfWJicHpQYOsPd56S6mubNglMpLWcrdto/52d+9SveXXX6cLagMHAgMH4s7XX4OwbK0DbvkFuLS0NBBCql7JfcLIQVfmifDOO+98y/P8dxaLpWNcXNxrx44d6zdhwgSti4sLVqxYAY1GI73zzjukRH+2Y8eOtbdrqSEFBQVYvHgx1Gq1xLIsSUhIkIYMGVL5X26zZhAB2CwW7Nq1C9M7d4ZywgQajP/4A6obN6B64QX4RUeLnrduAQCDJUuo3m7//vf8uiIjqZ3MM8+U8fDat2+fVBzwq44ckyfTdrX33gNA26VMJpMdgHM8z68C8ArHcdWofP+98DzPumVlPednNH6X7u+PxAULMGTIkIqrnenpwH//S8sJKhUVSPrzT6omlp9PJxrLUVuX4MLCQvz000/WwYMHK+vVqwcASElJuWs2m3c91MU9BuSgK/PEKHa7PQjg4IIFC6auWLFiqSRJdkqlUpw5cyZzv8bpkwq4ADWzlCQJzZs3F5s0acKuXr2a9OnTB5UZW97198fqkSPBBAZKdezsJK/XX6cRc8oUunBz/jzEP/7AycuXmaatWtFgsa241bO8k23XrsCPPwJr1tBgAiAxMZGMGjWqwnElSYLZbKbn1LFjmXYpQgh69+6N3bt3A8BUAFMXLFiwS5KkU5IkWQBYAfzOcdzpR32vagrP83UANALQUKFQNCWE5Fmt1s8JIR8DeJkVRQSlpNy5FhCguiOKAHCv6PrHH8BvvwGhobRTZMUKICCACiFpNHRYohKqbBmrgu3bt+MkHTtXXr16FfXq1UNeXh7S09MVAGIe+uIfETnoyvwlvP/++6t4nr+oVCqjhwwZoqrKprymiKKIgwcPIjc3F4IgoE+fPpXKOAJAUFAQWJZFnz59WEIInJycxMTERKZt27a4dOkS9u3bJ+Tn5zOSJEH14ouk/5AhiNm/H/2WLWPEiAgwrVsDP/1EZ/rd3ABRRLaHB+7Y2d3TbKiKiAjanVGMt7e3uGPHDuLk5CSOHj26dKoqKysLK1asQMuWLYVuLVqwOt+yTjHt27eH2WwGwzCIjo6GKIp9u3bt2lcURVgsFvH48ePvLVy4cJXFYnn5SVi78zzfSKlUfqFQKPxtNltjhUJhcXZ2Nrq7uyuys7N1OTk5YFl2bv3z55VeN28itkuX0JteXqcgigtSU1Pf/XPHDkSYTNTxwceHfllNmUJ7ahs3puO/TR5vy2xxwAXLsr+aTKYhANg//vijUBTFjziOy3isB6sFcp+uzF9GRETEtQMHDqhSUlLCgoKC2BrpN1RBXFwcDh06BAcHB9utW7fIiRMnJFEUSWRkpHDkyBHp0qVLTImmrkKhwOnTp9GgQQPY29sjNzdXSk1NJc2bN8fq1avFgIAAtnfv3iTU25t0trODZ6dOaNmyJfmvSiUezcgQvadPJ9tzcoRGPXowLMsiJSUFaWlpQrNmzZjK+ozL4OJC+0aHDQNat0ZI584EALl27RquX78u5efnIzIyUtLr9eTixYuw2Wxw5nkCgwG67t1Ld0MIgb+/P/z8/BAREYGIiAj4+fnB398fgYGBJDQ0VHnhwoUmgiDMjI+P771v3770Z5555pHbzHieJ/v37x8JYL8oig3Gjx/vdvbsWXh4eLB2dnYapVKpSktLg8JqhcJkYp0KCvp0iotblNC+vVKhUOxyys4e0T01FS3t7KBcvhx44QW6OLZxIx2CePVV+h7VgMOHD4uBgYGMe1WuJMXcuXMHOTk5SE5ONlmt1hcIIbP79eun1Ol0+PPPP01FRUXzIiIi/jaXDrl7QeYvhed5Qgh5TqvVfjlr1ixtpQsrNWDnzp3Iz8+3jR07VlFYWIjt27cLt2/fJk2bNiX29vYkOztbvHv3Ls6fP19mYW7WrFmw2WxYvnw57OzsRJ1Oh2nTptFSx+nT9Nb3rbeAV16B6Z138MNvv0mq1FTCNGokMixLJEnCzZs3ic1mQ8OGDYUS54gHMnEiXRgq1nktKCjA999/L+p0OsnFxYVNTk6Gs7Oz8PLLL7MHP/8cOYQIw954o1Y1F0EQcOvWLVy9ehVRUVF3rFZrIMdxlcxO34PneQWAuYSQCRqNJhGAHoCj0WhsC0BQq9WZWq3WOSAgQHf8+HFwHIcrV64gNTUVAP3ye+mll3DzrbeQef064jt1ApEkwfv6dbZdQgIadewI1ZUrVEjo9Gm6wOjtTbtZVCraE11DvvrqK1vPnj0VIZX19xaTmJiIbdu2GVmWvatQKL4uKir6Qq1Wr5YkacCECRM0a9asMVutVl+O46oR83iyyOUFmb+U4lvf5QsXLuz022+/je7WrZva3d291gskGo0GN2/eJAB1GRg7dmz5AMUAQG5uLpydnREXFydGR0czt2/fRoMGDdCtWzchNzcXvXv3ZpUlE20tWtAfQQA6doQmJgYvMQyRFi3C7du3meXLlyMkJEQYOXIkm5+fD7Va/cCgGB0djcTERGHq0qWsQ14eXTR67TU4ODjgzTffZABaWkhOTsbUqVNZhmHQxmzG5vR09tixY1KbNm1q/MawLAsPDw94eHggJydHe+bMmRUAhle2Lc/zAaCShk4ArZf27t07UKlUwmw2Y/v27WBZlp00aVI9T09PEEIQGhoKAAgICEBAQAAkSULmqlWoc+MG6qxYgUtr1thGp6Upgj08WOnHH2GeOhWq//s/4MQJ2gJXty517n3vPVquqSUPqulKkoTo6OhCQRCGzZ07d899T42cP3/++ytXrpyvUqlSAOTU+uCPETnoyvwtWCyWl9LS0gpXrlw5nGVZfaNGjZhGjRppgoKCUJ0BZmZmJs6fP4+EhASpvLFkZbgU37p27tyZ6dChA0oCbMeOHSsGzPfeozP7SiUwZgxw8yZIQQEIw8DNzQ0Mw6CwsJDRarU1ctC4ceMGDh06BEEQ2PPnz6P9jRvA5s3ImzwZdnZ20Gg02LVrl3TixAnSpUsXwd7engUAu5gY9H3mGSzbtYv4+flVsAyvCT169FBduHChD8/zoziO28TzvB5UO3aSUqnsC6C0WXb69Olwd3cvY94YEBAAe3v7Mv8XXl73tbVKEkRRhMpmA65cAdauxVBBUGD7dtqbvHMntH5+dMikpEwiSXSo5QHlgeqoKuhKkoTY2FjRaDReAxBVyfMXAMBisbz3JGretUEuL8j8rfA8TwA0IoQMUKvVkxiGCQgLC9OEhoYydnZ2ZbbNzs7G999/D29vb6FVq1ZMq1atKmqpPgpnztBb3tdeo24XixeX0XW4ceMGtmzZIgmCIE2cOJF5UDDcsGEDGIYRb9y4QYKCgkjXrl2xatUqwenkSfaajw+Uer1os9mYqVOnwtPT894LrVaAZbHixx9tGRkZCpVKBXd3d6FRo0akY8eOTE2v+fr161i3bp3RZrNZBEHQOTk5FVksFnuWZTFr1ixisVig0WhqfZcBAJgxA4K/P35PSEC/6Ggox42jVkwFBbih0SApKQmEEDRr1owGa4OBttTt3PlQinAAsHjxYqFPnz5so0aNKjx3+fJlbNq0KcNisTzDcVxK+eeLyyhRAEb/naUFQA66Mv9j8Dwfqlar37FarYP0er3J3d0dAQEB+pCQEJKcnIyjR4+Kw4cPZ+zt7aF7yD/eShFFOjHn40OD3n//S9XGypGdnY2YmBgxMzMTvXr1YgDAYrGgZcuWyMnJwZYtWwSbzSYxDEPatWvHHjhwQJowYQJZtWoVCCGSj4+PNHbOHMY8bx6ye/eGq6trxevo3BmYOhWYNg1paWlQKpUovnapX79+pFmzZjW+LEEQUFBQAEdHRzAMg1OnTiE6OlqYPXt2paURm82GS5cuoWHDhpXfccTGUmH6tDRg1Spkf/ABNuTkwKF+fWnUmDFEq9Vi2bJlgiiKjFarFTMyMlidTicMGjSIdb15E9q2bSt3Wq4BX375pdCvXz+2YcOGEEURKSkpqFu3LjQaDdavX29KS0v7bO7cue8/1M7/QuSgK/M/Cc/zagANADRRq9WDBEEYbLPZdACgVCpvSZKka9++veKZZ55RKh9CZawCN29SDVadjvbVVpJNlWA0GrF7927h8uXLDMuyMJvNRKlUSlarFcHBwQgMDCSJiYliWloaY29vL7388sskOzsbO3fulMaOHUvs1Go6MJGVVanbBT77jJ5L69ZlHv7uu+/EZs2aMeHh4Q99mQUFBViyZAnmzp1b6fMrV64Ubty4wSoUCkmn0wnt2rZVdGjShJYJZs2imgc9etBe2rp1AZ0OSUlJ+PXXXwFQpw5RFDF69GgEBwfDarUiq39/aV9QELnm7Q29Xi+89tprD9WU/eWXXwr9+/dng4ODsXr1akNGRkYWIcRbkiQNgBiLxdKP47iH0/n8C5GDrsw/gmJB79GgtciFAOqoVKpV3t7e4bUyy6wOUQS++oraA5XTcq2O/Px8LF68GG3atEHfvn3BMAwkScLFixcRGBhYeWa3bh0NYrdvV3xuzx7as1q3bulDp0+fRmRkJGbOnAmnWqz4lyc3NxfLli2Dq6urbcaMGRVO7NNPPxXHjh3LOGzbhn0uLtAdPiz1zskhWL8e+Pxz4NNPS51AbDYbYmNjceDAAQB0cVOlUolTpkxhnJyc7pUtLlwAAgJw5fp1bNmyRWrWrNn9MmIVSkT3/U4AlAaoM2fOKHx8fCQXFxfx+PHjosViaQ1AyzDMZlEUwzmOu/7Qb8xfiBx0Zf6x8DyvVKlUx7t06RLSqVOnRxtp+/JLapr588+1fmlaWhrWr1+POXPmVLsIWAZJom1TdeqUGRMGQLPcmTPLWBstW7ZM9PPzI3379i0ToSwWC2JjY6WQkBBSZqGrGkwmE5YsWQJRFKXu3buTtoGBgIsLitauRey6deixfTvYefMQ1bChcFuhYMeMHUv1DiQJIAQmkwk//fSTcPv2bVatViMwMFAYNGgQe+XKFaxbtw6DBg1Cq1at6HuZnQ0UK6lduXIFmzdvvmYyme631Cj/bUmqeS4QQCYAI+gU3nccx1Xu3/4/jNy9IPOPheM4K8/zA//888/TOTk5du3bt1fVNPBUIDf3npdbLTl37hx8fHwEhmFqHvgJoav4wcE0wL722r3nPvqITmjdR5cuXZjt27ejR48eUCqVMBqN2LVrl3Dp0iXWZDIRe3t71PTaNRoNXmnVCmfS0xHzxx9osXQpVOnpOMkwyO3QQWRZlsGHH4LZt48xXbt2T2BGECCGhmLFtGmCRqtlXnzxxZLuEBYA6tati/DwcOzZs4da2g8cSJ04iilu+criOO6LGr9P/0JkPV2ZfzQcx6XbbLaQ06dPL1qzZo0xM/MhB40WLACotsFD8dB3jD/+SKe07ueXX4AbN8o8FBISArVaLURGRkr79u2Tvv32Wyk7OxsDBw6EUqmUKtORKKWggIqzX79eujioyctDu8BA0qVnT2nJ66+Lu//8U9qfmooWw++19RbLbSIuLg4AkJmTgzSjUXJ3csLkyZOJS7lJMq1Wi3bt2kGflUXu9ukD0cEBKO8McV+54GlFHgOW+ccTERFxNyIiIjomJibj9OnTz1y9elXw8PComU38Y8DBwQExMTFMo0aNat9R4ecHHDxIzTVnzKBZ5QcfAB060La1+/Dx8WFOnTolFhYWkhYtWpBhw4Yxbm5u0Ol0ZNeuXWjevPk9EZ/0dCqP2LgxVS1zd6fKZb6+tEOjSROgfn04OjqS2NhYkpmZSaZNm4aAgIDSW3p3d3c4Ojpi7969AIBt27bBaepUqd/gwayiCu0MlmVxw2AQThYWMicyM9G8efPSkkteXh7Onz9/o1OnTj9U+uKnBDnTlfnXMHfu3FVWq9U7NTWV+/HHHwtOnTr1l2RVHh4ecHV1FVJSKrSH1ozQUJqBltR29+yhCmXlqFevHp5//nl2ypQppFOnTqWPt27SBA0cHcUVK1ZIhn79aDuXxXIvW16/ng4oKBTUX+4+9Ho9tFotPD09hfLlCUIIWrRogXbt2uua5GQAAApbSURBVAkHDx7EsGHD0GX6dIZs3Vr5dQgCFCNGYHh4ONt/7lwUFRVJ69evFyrf+OlFznRl/lVERETYunTpcig6OnpXSkrKlMzMTKtarVY6Ozs/3BBADUlOTmays7Olhg0bklq3sKlUQJcuwEsv0cA4ZgwQElJ9B4XNRoc3OnQAfvkFjVNTyfXgYHJeEKQCZ2eSwzDIb9gQRUVFsBZ7jjEMA0JI6ftw584dbNy4USwoKMCwYcOYqqbsAgICmPDwcNSpU4eqprVtSyUYy8MwNDsPDoZOr0daWpp06dIl9vTp0wXx8fGWxMRESZKkS+Hh4Wtq9wb9u5AX0mT+lXAcd5rned/k5OTRaWlpL0qSFNC8eXO2RYsWKm9v78cegAcPHox169aJS5YsYQcPHozGjRvXficKBfUEGzMGaNDg3uOiCFy9Cvj7U6dcOzvg2WeprZDRCEyZAgJgqMWCrYSQC2lpkjk5WbRarZLNZmMEQSA2m40IxRKTCoUCCoUCVqsVvr6+mD17Nqmx1GZ2Ng347duXffyDD+hjffuWPhQWFsZkZGQYDQaDaLPZegPILv55qpFbxmSeCnieD2JZdjLLss9qNBp969attc2bN2ecnZ0f63FOnTqFnTt34tlnn8WDJAgrpaAAeO45OoQQHQ00awY4O1PLmsOHgWvXqAljecH0GmKxWGAwGLB7925cv34db75ZSwfyoUNpx8Unn5R9/MIFOuhRyfu5Y8cOc2JiYoLVah33T+mlfZLIQVfmqaJY66GDSqV6VhTFUVqtVvLx8WHDwsK0jyMDFkURCxcuxMyZM/FQAT0xkWaMx4/TzgY3N2DOHCo52aEDtRoXBOAhJTFLWL58uajX65lx48Y90n4QEwPs3Qt8+GGVm1itVvzxxx9iYmJivNVqXchx3M5HO+g/Gznoyjy1FE+5BTMM008UxU8AgOO4R9pncnIyduzYIb3xxhsPH71NJlozPXeOlhtatQJmz6Z6vDk5tMXs8GHgm2/o1NrQodTMctw4OsBgNFabCe/ZswfHjh3DiBEjEBwcXLtzW7qUHntNcVm2oABITaWSmNVgsViwfPly8+3bt9UMw3wkiuIv/ySTzceJHHRlZADwPN8KwAlfX19D27Zt9e7u7nB1da2Vd9vBgwdx7Ngx0dvbWxo5cuSTM30rngzDxYs04/Xzo1NfH34IxMXRPt9Vq2ig7tuXTrjNn0/rrtnZWPr55+gzYwYCy7Wk1YioKCApidrEv/giPVYtrJcyMjJw9uxZ4ejRoyar1dqb47iDtT+JfzZy0JWRKYbneRUhZIpGoxklimKI1Wp1t7e3L/T09CReXl56T09PUpWWgslkwieffAIPDw9MnToVD+uI8VhJT6dCNXZ2VKDmrbdg3bQJB1esQItNm+A8YQLA83SB7osv6CRccjLAsnQiThQrjihbLHQxrW5d4MAB6nb8EFy8eBGbNm26KwiC49+tb/tXIwddGZkq4HneDtTxtgnLsi2VSmWEKIpNvLy8rM7OzuzAgQO1JY3/X375peDu7k5GjhzJPKrp5pNk/fr1otlsxuTJkxmSm0trxEYjrRmPGUMzV0KA8eNp4N23DygspI9/9BFtU5szh1rvVKPE9iBsNhs+pHXgtwB89jQFXjnoysjUAp7ngwGEqtXqmYGBgW2GDRumSUpKQmRkJJ5//nnay/o3kpeXh6SkJKlTp06kMvGdZcuWCY0aNWIiIiIeXHMuFlNHbi6tL3fpAnz/PW1f47halRUq4/vvvxdv3rzJsCybKgjCOI7jDj/SDv8hyEFXRuYh4HneTqlUxrAs206SJFK/fn1h8ODBbLUaCE+Yc+fOYdu2bUar1SoqFAqtRqMx9u7dWxMYGMgUFhbC1dUVJ0+eRHR0tDR79uzH67rxkFgsFixcuBAAwHHc339CfwHycISMzEPAcZyR5/mekiT9CqDD9evXybp16ySDwaAfNGgQ8ff3/0vPJyUlBZs3bwYAO4C2aVmtVm1iYqJ44MABS3Z2tqpbt24wmUxSUVERMRqN0Gq1f+k5VsZ903tj/s7z+CuRM10ZmUek2H8rCEBnAMsBYMSIEWjcuHHN9XUfkvz8fPz++++FKSkpOo1G86fJZArHfcmURqO5YjKZAsq/bvDgwWjYsCHK+9A9KoIgwGKx1Hh7SZKwaNEiAHiG47gDj/Vk/keRg66MzGOE53kWwEClUvmFl5eX16RJkzS1aTurDXl5efjuu+8skiR9ZLPZFnMcl1/NeQ0B8COAEj1GycnJyfLqq68+tjYLQRCwdOnSooKCgjKODzV4nRZAXY7jMh7XufwvIwddGZknAM/z9mq1+ner1dpJo9GYdDqdzd7enjg4OCgdHBzs6tevj4cpQdy5cwfJyclISkoqyMzMVCsUioVvv/02X5vzAvAflmVHCoLgNXHiRAQEVEiEH4q4uDghLi4u9u23364okSZTihx0ZWSeIDzPawF4APAs+SGE1FUqldM9PDzse/XqpatXr161+ygqKsKRI0eExMTEort374Jl2Z1ms3kDgCiO4wof9tzmz58/UKFQ/BgUFKTv16+f3aPoDxcUFOCbb74xWq3W5pVZoMvcQw66MjJ/AzzPKxmGmcay7Ef16tVTN23aVOfj44M6deogPz8fBoMBkiQhNTVViIuLsxJCNlkslu8BHOE47rFp1PI8r1MqlfMJITOHDh2qafSQvbebNm0ypqSkfP3uu+/OeVzn9m9FDroyMn8jPM9rAIzXaDT9RVEMlyTJQZIkUalUXgMgiKJ4zmw2v/2ks0ee59splcqd7dq1c+jWrZuyNguA6enpWLt27W2r1er3KJn304IcdGVk/ofged4bAOE47sYDN378x3ZXqVSR3t7eIaNGjdLWpLNBFEV88803hXl5eVM5jtv8F5zmPx456MrIyJTC87xCqVR+rdfrJ02fPl37IM+3I0eOiDExMUfNZnPY0zTK+yjIHmkyMjKlcBxns1qtMw0Gw9KVK1cWFRUVVbltYWEhoqOjzWazeZoccGuOHHRlZGTKwHGcZLVa59y9e/f75cuXFx44cAAmk6nCdqdPn4YkSfEcx537G07zH4tcXpCRkamUYpeNkQA2AsC8efPKOGsYDAZ8++23RpPJNGbevHnb/6bT/MchZ7oyMjKVwnGcxHHcJkLIcIAKkN+P/v/btX+UiIEojuNDwmCzraWHyGHsV608RF68SUYS8A/iSfYO2yapBAkJzzDYCTa627xh4Ptpp/lVX14xu52rqurCe/+QYl+uiC6AP4nIe1EU113XLcMw/Ho7HA6qqvs0y/JEdAH8q67rN1XdhxB+wjtNk4sxfjnnjmnX5YXoAjiJiLyq6k0IYRnH0cUYXVmWH03TfKbelhOiC+BkIvKiqrdt2y7zPLtt2y5Tb8oN0QVwFhF5VtW7vu+j9/4x9Z7cEF0AZxORJ+fc1bqu96m35IZ/ugBgiEsXAAwRXQAwRHQBwBDRBQBDRBcADBFdADBEdAHAENEFAENEFwAMEV0AMER0AcAQ0QUAQ0QXAAwRXQAw9A3dQSBdlJaYIAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = w_knn3.plot(gdf, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Lattice Weights" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "from libpysal.weights import lat2W" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "w = lat2W(4,3)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "12" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.n" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "23.61111111111111" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.pct_nonzero" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: [3, 1],\n", - " 3: [0, 6, 4],\n", - " 1: [0, 4, 2],\n", - " 4: [1, 3, 7, 5],\n", - " 2: [1, 5],\n", - " 5: [2, 4, 8],\n", - " 6: [3, 9, 7],\n", - " 7: [4, 6, 10, 8],\n", - " 8: [5, 7, 11],\n", - " 9: [6, 10],\n", - " 10: [7, 9, 11],\n", - " 11: [8, 10]}" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "w.neighbors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Handling nonplanar geometries" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "rs = libpysal.examples.get_path('map_RS_BR.shp')" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "import geopandas as gpd" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/jovyan/libpysal/weights/weights.py:167: UserWarning: The weights matrix is not fully connected: \n", - " There are 30 disconnected components.\n", - " There are 29 islands with ids: 0, 4, 23, 27, 80, 94, 101, 107, 109, 119, 122, 139, 169, 175, 223, 239, 247, 253, 254, 255, 256, 261, 276, 291, 294, 303, 321, 357, 374.\n", - " warnings.warn(message)\n" - ] - } - ], - "source": [ - "rs_df = gpd.read_file(rs)\n", - "wq = libpysal.weights.Queen.from_dataframe(rs_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "29" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(wq.islands)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{}" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "wq[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "wf = libpysal.weights.fuzzy_contiguity(rs_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "wf.islands" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{239: 1.0, 59: 1.0, 152: 1.0, 23: 1.0, 107: 1.0}" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "wf[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAM9CAYAAACMlGBDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3hUVd4H8O+5905PhTRCGgkhIYUWkkCAUAVEelMEBBQRlVWUVVSU2QuyYl9YAQsKC1iowspKlSSUUAJBCITQQkJLD2mQmczMve8fJ4EAAfHd+Lru+/s8jw9m5s7MuXfC8/C953d+h6mqCkIIIYQQQgghhDQe4fceACGEEEIIIYQQ8t+GwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEIIIYQQ0sgobBNCCCGEEEIIIY2MwjYhhBBCCCGEENLIKGwTQgghhBBCCCGNjMI2IYQQQgghhBDSyChsE0IIIYQQQgghjYzCNiGEEEL+8GRZ1smyzH7vcRBCCCF1mKqqv/cYCCGEEPIHIcuyDoDDbDbbf++xzJkzZ7hOp3u7pqYmWFVVjUajyaupqRliNpuP/N5jI4QQQihsE0IIIeSBvPPOO2/b7faZgiCU2+32Tmaz+dzvNZZ58+bNMRqNLz/yyCOmgIAA6HQ6pKenY+fOnYdnzpwZ+3uNixBCCKlDZeSEEEII+UVz5859ymAwvPTyyy9LvXr1ctfpdCt+r7HMmTPnUb1eP+Ppp582tWrVCnq9HowxaDQaABB/r3ERQggh9VHYJoQQQsh9ybLsLQjCwscff9xoMpkQFxcnaDSaNrIsd693jPh/sWZalmUmSdIno0ePNjo5Od18/Pjx4+rmzZuvWyyWqb/1GAghhJAHIf3eAyCEEEL+m8iy7A4gCkCm2Wwu+b3H00hGhoWFwcvLCwAgiiIGDBhg+v777ze/9957R1VVbQ6ghUajKX/77bdnOxyOT8xm82+1Tk202+3u3t7eNx84fPiwsn379mKbzdbHbDZn/EafSwghhPwqtGabEEIIaSSyLMdKkrTL3d1duXbtGux2e5TZbL70e4/rTrIsCwD6AYgEcALAdrPZrNzjWEmn050YOnRoWHh4+G3PFRcXo7i4GCaTCb6+vigpKcGaNWuuV1VVLXvttdf+9FuNf/78+TsTExN7JiQkCDU1NXj//fettdf6XO2YDQDczWbz1d9qDIQQQsgvoTJyQgghpJHo9fo3HnroIafnnnvOpWPHjgaNRvPK7z2mhkiS9Jqbm9va2NjYvzZt2nStTqfbJcuypv4xsixLsiwHabXa73x8fPzDwsLueh8PDw+Eh4fD398foijCy8sLTz31lElV1cmyLAf82nHJsvzQO++8s3zu3LlP3O84q9X6+sGDB68DQGFhISRJulQvaDfTaDTnJUnKnjdv3ku/dgyEEEJIY6EyckIIIeQB1a5J7gZACyDFbDbb6j+vqmpMQADPmHFxcZrDhw8/Kcvym2azuaKB9zLodLoljLFQi8UyzWw2H/2/OAcA0Gg0j/Tv398UFhYGRVE0K1eujL18+bIZwJuyLAfrdLoPBUF4RKvV2sLDw4WHH35Yz9iDLcfW6XR1//urSudkWe5vMBjWdevWzbR3795RsiznmM3m3fc4/ERlZaVRVVU4OzvDbrf7yLIsAmA6nW5tbGysZ4cOHaTFixfPk2V5Nc1wE0II+T1Q2CaEEEIekFarXaDT6Z7U6/VKWVmZdc6cOcNnz569BwBkWQ6UJMnL1dUVAODu7o5WrVoJZ86cmQVgZv33kWXZV6vV/hgcHNyqZcuWhi1btiTJsuxnNpurGvrc2pAfBcAfQKrZbC77d85DUZSrFRU8/wuCgKFDhxo//fTTGe++++4IjUYT1LlzZ018fLyo1+s1v/BWd8nIyABjLPPXls9LktQ/ISHB1LlzZzDGjMnJyc8BuFfY9hdF0QFAdHV1haenJwoLC5eJohjq6+vbpmfPnpIgCGjfvr149OjRlwC8UnsN3QFc+w3XkxNCCCE3UdgmhBBCHoAsy4wx9uzzzz8vubi44OzZs85r1qz5UZblCLPZfEmn0y3q1KmTZDAYbr6mf//+hrNnz744Z86cHFVVPzObzYosyz00Gs33CQkJTomJiRJjDBkZGUJOTs4gAN/e8ZkaxtgknU73hiRJHm5ubo7CwkJVluWBZrN57wOMWQDAzGazo/7jVqt1RWpq6sNRUVEmg8EAV1dXvPjii/r8/PzwZs2a1Z+dvkVVAYcDkO79TwdVVfHTTz9dt1qtM+4xniAAWrPZfObO50RRdNNqtQCAkJAQJCUl9ar3OmcA/bVa7cOiKMZKktSyf//+Yt1s+5gxY5zS09PHOjk5Ce3atYMg8FVyfn5+2hMnTkQDgE6n22C32x8RRbFAluV+ZrM58z7XLQxAKwB7/t0bG4QQQv7/ogZphBBCyAOaP3/+rj59+vTo2LEjA4Ddu3fb9+3bly8IQq7BYGg/depUY11grJObm4vNmzffKC8vtyiKonU4HE4xMTEYOHDgzWNSU1ORkpKy8vXXX7+5VlmWZT+tVrvTx8fHr3v37qYWLVqAMYbz589j9erV1202W+d7dd6WZbmJVqt92+FwTFRVVdJoNCusVus0s9lsqX2eabXav5tMpkkNjfku1dVAmzbA1avAnj1ASAhQO4N/57l+++23F61Wa1D92WNZlpvodLqVAHrWPpRktVqfMZvNl+uOee+99w4PGzYsJjQ0FIqiYP78+VabzTZckqQEAC/7+vraw8PDnZs1awZvb2/Uv6nRkLy8PKxatepGdXX1RFVVzxqNxn0vvfSSMT09XU1KSjoyc+bM2AauW1+dTvcxYyzI09PTnp+fb7HZbCH3qjgghBBC7odmtgkhhJAHZLVatxYWFnYBX7ONbt26Sb6+vn4Wi8WvVatWaCi0BgYG4rnnnjNeunTJuH//fjUrKwtZWVnKwIEDbzYpjYqKQlJS0khZlp8FoDLGngKw0MfHR504cSKrv146JCQE3bt3N+7Zs2cmgHG15dFjAfgB2McYi9ZoNPOioqIMiYmJOo1Gg40bN47Nzc31rZ0RV8xmsyrL8p8YYxGZmZk927Vrd++Trq4GbDagVy+gXz9g717g/feBsWOBvn2B2nNWVRV79+6tttlsi+qCtizLzoIgTNJoNHJ0dLShX79+OlVVsWfPnr779+/Pmjt37kuKoiwF4CGKYpS/vz8AXto+YsQI3fbt279r1qyZ2Lt3b4O7u/sDf08lJSVYvnx5tc1mmzR79uy1c+fONbdp00YrSRJatGjBdu3a1fzO17zzzjsfm0ymKQMGDDCGh4dDEAR8/PHHgs1mCwXwf7aenhBCyH8PCtuEEELIHWoDbFcAdS24swBk63S6p0NDQ28masYYWrZs+YvvxxhDQEAA/P392dy5cxERESFUVFTAxcUFAODi4oKWLVuq2dnZ5xwOh3tgYKDNbrfj4sWLbO/evY5u3bqJ9d/P29ubCYLQqvbH3k5OTp9GREToDh06JKmqiqioKAwaNOjm8aNHj9YvW7ase1FR0ReyLE8xm80Os9mszpkzJ2/Tpk3IzMxUgoKChNDQUHh6et76oBs3gLg44NVXgc8+A954A5g1C+jTB7h4EejZE3jmGeCJJ7Bv3z77xYsXcxRF+bssy931ev1sURS7tGjRwt6zZ0+Tr6/vzbft1auXFBERIW3YsOHjioqK1xRFCTYajYper795TFhYGMLCwpwf7Bu73alTp6AoyrLZs2evAQCtVtvO29tbAoCqqioIglBad6wsy6IkSbOMRuOUqVOnGutmzCsqKnDjxg0BfGs0Qggh5FejsE0IIYTcQafTfa7T6cYEBgYyAGpeXp6joqJCGxISooSEhPxb762qKtLS0pCfn68+8cQTTJIkYPt2jPLwMBZ27250c3PD1atXdStXrgQAlJeX3/UeZWVlUFU1u3asT3bu3NmYkJDA/P391fPnz7PMzEwVABs4cCAEQYAkSRg/frzx22+/fSw/P7/fvHnz1tvt9iKNRhPftGlT6HQ64dixY8rOnTsFURQxcuRIhHl6AqIIzJwJjBnDP3jVKmDkSKBDByAiAvDxAZKTgQkTcEmSFIev7xCm0QzW6XRf9e3b1xgeHg6DwdDAAnDAx8cHU6dONSUnJwfv2bPn37qmd2KMgTEm1vvZpNHwXm+KoqCmpiZg7ty572q12giNRtPVy8tLM2rUKGP90vTq6mpIklQya9YsmyzL7fV6/VuMMQ+bzaba7fZvAGQCyDSbzSWNOnhCCCH/NWjNNiGEEFKPLMtNJEm6OmPGDF39mdbGkp2djaNHj+LECT5hOqZPH7Tq2RMIDgYyMwGjEd+PH68ERUcz17/9jX03ebLaIjOTBXTsiC4vvggA2LJ1qy0tLe0tVVU3ajSaoy+88ILByckJAFBTU4MPPvgANpsNd64NV1UVFy9exKVLl2CxWBQ3NzehQ4cONxuK2e12/Pjjj+rPR46wN1atgjRlCg/bt94AuHMLMFVF6bp1KJ85E02Lih7f9Oijn/eSZafmze+q1G7QjRs38P777wMAzGbzg19IVQXsdkBzd8P0wsJCLF26tNJms4WZzea89957LyU2NjYxISEBWq0Wp06dQnFxMVxcXODv74+mTZve9R7V1dX429/+ZhVF8YjD4Wjfq1cvA2MMW7Zsgbe3t01RlBvXrl0ziKJ40mq1jrtfw7X/K7V7pQcAuGw2m62/93gIIeT/O/Evf/nL7z0GQggh5D9GSkpKpJub29guXbo0OCP773J3d0dwcDD27dsHAPDz94dfQgJvQOblhbMDByKpqIgNeeghVpKVpXqNHcuCPvsMTa1WuPXuDbi7o6pfP5h++qnTsLVrp7dt2lTTtH9/hvPnAXd3iBoNOnbsCBcXFxw5ckRp06YNq1tLzhiDm5sbAgICEBwczHx9fVF/PbggCAjTaFjxyZOOjLAwZn34YVRdv85uhtHXXgNWrgSGDbv5mtJr1/DdoUPYHxqKUi+vwd2zs7V+er0ArRbw9v7F66HRaGC1WnH58mUkJCRAFMW7D6qq4qHabAYKC3mjtoQEQJaB48eB69eBAwd4APfwgMnVFaqqClevXp2wd+/ejlar9ZHc3Fy4ubnB19cXnp6eCAwMhI+PD4xG4z3H1aZNG6l58+b+/fr107Ro0QLNmzdHSkoKgoODxSeeeELfpUsXUVXVZvn5+a26du268kF/B34Lsiz31Gg0B/R6/Z8APLtr165FPXr0sP+eYyKEkP/vqIycEEIIud01i8XSQOJrPHq9Hm5ubqioqIC9sBDqkiVgaWmojo1FGWMIfuklVd+xIwvftInZ7XasmjlTuXr1qtDp2DH0On8e7by8xMDSUhf3H34A27yZB/UVK4CpU4HsbBjS0xH97beoMJuFHeXlGDZ7Nt+y685Z6TupKjB4MIYMHChu7NgRybt3K9evX2cTJ06Eh4cHjH36QM3PR0FeHjw9PSFJEs6cOYOioiIIgoAzLVtqLoSEYFrr1nCZORNo0QL4+GOgoa3E6gkNDcWBAwdwOScHwc7OPFi/9Rbw2GNASgpvyJafD1y6BISG8qD9/fdAUhKwaROg1wNFRfxmQGQkIElI9PDQRNhs3vnBwY8eKCrClcpKtGrV6r7juJOrqytc7+i6Hhsbaz98+LAEQBk+fLggSZKiqmph3fOyLIvg25tV/6oP+1+o7S3wsCRJ/XU63eRRo0YZPD09sXDhQhGABoDltx4DIYSQe6OwTQghhNyupbOzs+OXD/v3CIKgKorCUtPSECWKcGUMXwwerCQ6ObHH3N0Z7HZAkiBJEiZMmCCsWrUK6enpSq8zZwT24YdocvYsMGkSXzvdogUP2lOmAOfOAQcOwKDXo6PdjvQDB7B1xAj0y8oC+/xzYMcOwGoF5swBDh3i669dXIB9+4C8PGDPHkju7hhZO8ykpCQsX74cAOCk1cLv7FmcyckBYwxhYWFqZmYmAwBPT08UFBRA5+wMoUMHYN064OhRoGtXYMQI3kitfkfxq1f5nwUFCJ43D94hIdD07g14eAC7dvEScVdX4KWXeIjWaoFly269fscO/n6HDgETJ/JzWreOn8ulS0BpKTy++w4eqakwWiyoSE+HNS0NzhMnAgEBQFAQ4On5yzcg7vDwww9LTk5OSEpKEoYPH4709PTrVqv1CwCQZTlWkqTtiqI4zZ8/f85rr702t+51b7/99iSNRvO6oiiba2pq/mw2m5Vf+qy5c+cO02g0461W66tms/ncnc+LoviSs7PznOjoaH1MTIzo6uqKb7755jpj7GOz2Vz5q06MEEJIo6OwTQghhNSSZZnpdLpZMTExLr/1Zz377LNs9+7dOPzTTxD690dNTQ2uqargP24chLFj+Yztp58C4OXfww0GbD12TPikdWu19WOPqT0VRRBMJmD+fCA7GzhyhAfOF14AWrVCeXk5vuzfH1VVfIvo6kGDHMPi40VcvszD6OXLPMQOGQKUlQFLl/JGaCNH3jbOnj17IjY2FqdPnwazWtH2nXfA8vNx/MwZbNq0ien1esyYMQMLFy50ABA7derkcHJy4pUBXbsCP/0EfPgh8MknwM6dgMPBm6pFRADPPsu3EAsPR2BoqLp84kT21tzafPrFF/e/gOfP863IGAO++gpYvRpYswbw9QUGDeJhukMHAMDl5GQc9faGa34+RmZlwSkjg8+2//OffKZ87FjAaOQ3LWq3H7uX7OxsJCUlIS4uDgBQVlZmAHC0du/y1YMGDXILCAjA3//+9zdkWV5gNpsrZFmONxgMn4wcOdK4bdu2KUVFRacA3HaCsiyLGo1mtiRJQ1RVza6pqTknSdK0Nm3a6DMyMtxxa4/ymyRJiu3cubOpbizV1dXIzs6WHA7H+3e8d2sApWazueD+F5UQQkhjorBNCCHkv4Isyz46nW6DzWaLkSRpzuuvvz7vV7y2syAID+v1+v5OTk6RHWpD2m9JkiS0adMGx374AaU7d6rer7/ORFHE5bw8NP3hB+DKFeDdd4HJk4EmTWBKSUGC3Y7PbTZ20tMTqfPmITg4WB3Tpg0TDhwAFi0Cfv4ZGDECZ199FeuSkqDyLqjMx8cHmYWFYuCpUzDFxiJs3Dg+iAMH+J+vvgqEhwOdOgEZGUB09G1jdXJyQkxMDP/h0CFAp8OB2tcOHz4ckiRh+vTpYnJyMnbu3Cl26NABNzt7u7jwtdUvvwzs3s3D7JEj/PxMJn7M228jIjeXHcrJQUFBAbwfYK03xo0D6sYkisDjjwOpqXwmvFkzfg615euhYWFIPXBALTMY2Kl+/RAbG8tL5p95hs/oV1YCx47xbc2WLQPus51bXVl569atAQCBgYHWixcvvq8oyiWj0egVGRkJxhj8/PxsOTk5AwB8ByAyODhYDQ4ORr9+/Uxr1qx5RZblpfX2I9dptdq1Xl5evXv27GksKytrW15ejsjISDg7O+PIkSOdZVn2NZvNV+uPxWq1fpOWlvZIXFycMwAUFxdDq9XmvPrqqxV1x8yZM2ekVqtdoSiKKstyX7PZvO9e5ybLcjudTjdTUZQcm822BkCEXq9/TFXVEqvV+jWAnx5kRp4QQghHYZsQQsgfXm0H8RNxcXGu7du3l5YsWfKmLMurzGZz7i+8jmk0mn9JkvRwfHy8w9nZWYyOjoYoilixYoXjwoULYkJCgvrQQw/9ulrjB7R582aHRa8XTwYGsqNbt8LZ2VkNDg5m0Ot5KE1KAmbP5oF70SK4WywYevo0rly5oqalpbFz586x64MHw7lJEyAnB0hMROGmTbg4axb6TJsGbXAw27hxI0aMGIGlS5fihx9+gMlkUsLCwoSbg6iq4qF30yZevv3XvwIzZgAdOzY4ZmXNGhyvqkKByYTu3bsjNDQUAPDll1/aCwsLpfj4eIder7+15t1sBk6fBr79ls/CX7jAZ9Yffhh47jm+LhtAYGAgAODrr7/G9OnTb3ZIBwCLxYKioiJ4e3ujoqICGRkZ6DJ/PrT/+Mftg0tI4Gu8ly4FPviAn0ttMzrGGHvqqadwc79vxoCmTYHBg2+9Pjz8vmXlqqpixYoV0Ol0qp+fHwOA4cOHm3bs2DHe4XCo3bt3N9Y1nPP09NTl5OTUbS5ukCRJqDtPV1fX5uXl5ZfefffdNMaYqNFougQHB+tHjBhhlKS7/2mmKIoOwJU5c+Y4JEmqkCTpXE1NTQoAW1VV1c127E2aNIHdbg+UZbmj2Ww+zE+TtY+Li9NJkiTs2bNnJIAGw7Ysy0ZJknYnJiY6l5aWWs6dO/d806ZNERUV5VxdXa0ePnx4RHV19R4AA+7xegMAS90NBEIIIRS2CSGE/HcYHRwcbOjVq5cEAP7+/jXZ2dkdAdw3bDPGxtlstocZYzh9+jSKi4uxd+9eSJLkKCsrEwEgNTWVFRQUqOPGjWvUwG2xWJCbmys6W62IOnECy44dw5AhQ+Ds7MwP0GqBp5/ms8CtWwOVldDn5aFt27YIDAwUTpw4AYvFgqysLHSIjITy9dfYevmyeszDg4XExzu6v/uuKMyeja16vbp06VL25z//GWfOnMHatWuF9957T5kwYYLg7e0N/OlPQJ8+fK306NE85Ccn8/B+R0k5AFz4+WeU2mxoMWqU2q5du5vXJD8/X1IUBVeuXGHZ2dkI9vAAs1qBzp2Bdu14iBVF/lm7dwMffcTL13v3Bp56CnjsMQwfPhwbNmxAbm4uvL29ceLECRQXF+P48eOq1WplkiRBURR4NGmi+BQWCtvXrVO6du8u3Jx1B3iztOefrx3sBSAtDQYnJ1gsFmzcuBHTpk2795dy4QKfHX/33QafZoxBFEWIooi6UOzk5IRhw4YZ7jy2vLy8BsC12qUJY1u0aGEAAFEUMXXqVGNeXp6xsLCwuSAI8Pb2fqDZ/Oeff14URdG9sLAwNi8vr6Pdbkd4ePjN78BkMmHEiBH69evXJ8+ZM2fE7NmztymKsuv06dPTfH19NQ6H48x93t4EQNe5c2cwxvQA9ABQVFSE4uJiFhwcrM/IyLhryl+WZZ1Op/uGMTZUq9XulmW5j9ls/s17HhBCyB8BhW1CCCF/eHq9fkDr1q2NAOBwOFBQUCACuHq/18iybNRoNAvGjh2L8+fPq5IkCZcvX1YuX74sxMXFCe3atUNubi7Wr1+P3NxcpijKbbOt/66MjAwAQJ/u3SF9+y0AICIi4lagP3WKl0kXFfGfP/oI6oIFWPv++8rprCxBBfDII48gKSlJ2W6xCJO/+Qb5RqP62BNPsJYtW4rYtw+4eBHPu7iwDwsKcP78eYSEhMDLy0stLCwUvvzyS7VneDjrlJkJVrs2HAAPxy4uwCuv8JnfHj1uzvbW1NTg2/bt0S8+Hk/07XvbzYfmzZs7PDw8BADC119/jRfXroVrdDTwzTe3DhJFYPp0/v4tWgAAzl+8COmrr2DLzsb53FxFFxwsrF69WrXZbKxJkyaKwWBQg4OD0bdvX7G8vJzPgOfkCNczMuAXGIjNmzdj//79jmnTpt2aTWcMmDaNl8T//e+IjI7GYUFAy/uUhwPgNwV+/PG+h5SVlQHAL9546dixo9OFCxcWAphuMBhaRkZG1hseg6+v761Z9l9Q+52x1NRUDBo0CG5ubmjVqlWDYwgLC8O4ceNMy5Yt2zpnzpz3AcilpaVavV6vACitO06W5SAAJXWN1Mxmc9H8+fMLLl265B8QEACbzYa1a9dez8nJqZEk6bjNZkuz2+0L7vw8rVb7uZ+f38OjR48WFixYEAcgCsCxBzoxQgj5L0dhmxBCyB+ew+Ho4ufnBwAoLS2F1Wq1Azh1r+NlWWaiKM4NCAjQBgYGIjAwsC643PZnZGQkmjRpgvXr16sLFixQR40aJXh5eeHChQuorKxEhw4d/tcBvKKCL6v1iY6G6dNPYTh9Wv3kk0/Y+PHj4enpCTz5JC+L/vBD/oKXX4b6/POwfvYZXp03D4tffBHt27dHTEyMkJaWhksaDSZfuSKwukDZpQvQogU006ahR0kJXJ55BjqdDs8++yyrqqrC4UOHmGn6dHzcvz+cV6xQw8PDmYuLC9q2bcu3z1q1is/wHjwI/PnPgCRh8eLFSpvyctbxyScZLl++7XyefPJJHnbnz8eN3Fz1q6FD2ePPPYe75mtfeglYtAj2p5/Gki++cFy7dk10fuQRBGZlqd0OHxbiEhKgc3FhrkOGoK70uo6bmxv/n7NnYaqpwYgRI4SCggIUFRWJN27cuHvP7OhoYMUKNDt6FBMmTcK/SkpwISwMLWqD/l0SEnjDOEUBGvhe8/PzAaDhvcDvEBoaiqeeesrp008/baMoilpZWQn3+t3YH9C1a9dQWFjIAKBr164P9Bpvb2+Iogg3N7c/VVZWTnA4HHqTyVQDoBkAzJ8/f6FWq31aURSrLMtdzWbzCQCw2Wzvb9u27Z3Jkyebvv/+++rc3NyfbDbb6DfeeMPa0OfIstzFZDKNHDVqlMFiscBqtQoA7jd7Tggh/6+If/nLX37vMRBCCCH/ln379v0pOjraxdnZGQaDAcXFxUpJSclrqampU1NTU5kB080AACAASURBVAft3bt33K5du/6WnJzcLDU1dZhGo1nk7u7ebdSoUSbdffaAZozB2dkZERERzGKxYMuWLSw1NRWnTp1CVlYWIiMjYapr8vUAFEWB1WpFcnIyDh48iJCQELVTs2ZMO2sW2n78MUtOTkZaWhr83d1hePJJaIYMgc3huBnumCShoqZGSVMU4aqXFxJXrQKrrkbzvn3hGx0N9uOPQGwsUFeK7uyMK5GROHL6NKKXL4dhwADAaIRWq0XAvn0oSE3F8TZtEN66NY4ePcqysrKQnp7u6NixI+903qkTbxim1eKfR444cq5eFbuPHs08IyL4LHB9DgefUV64EDc8PHDSZGKRUVG3AnKtyspKiI8/DqVTJ+w4dUoAgFdffRURgwcz05QpcBZFGD/8EMLJk/wz7gzQ/IsBWrUC/P0RFRWFy5cvK/v372eRkZHQarW3H6vTQfD3BwQB6tGj6vEDBxiCg1UfH5+7Z4ZFka/zjo+/fZsyAMePH1dXrVrFBEHA+PHj7zqvO23atMnx448/CrxHHdjBgwfh7+//qwO3wWAAYww5OTno27cv2H3WlNvtdpw/fx7fffedKgiC+uKLL2p8fHxMx48fR4cOHcRLly65JScnu2o0mj9Pnz7d4OnpqTt37tzju3btKklJSclSVfVATU3NJG9v7yYpKSmC3W7/BEDi/v37JyUlJQUlJyf/3KNHj5sl4gcOHFiYmJgYFRQUxHbv3m3Ly8tb9tZbb22UZbllSkrK2H379o1LSkpqnpKScqpHjx72X3XihBDyX4DCNiGEkD80WZZ1giC8HhsbazCZTGCMISIiQtOlSxcxLCzMOSAgIKhZs2bB586dMzDGOrm5uXUcNWqUa69evbR6vf6BPkOn0yEkJIS5ubmhrKxMLS8vZwAv435Q586dwxdffKHu3r2bVVVVqbGxsaxbt25Mr6rAvn3Qjh2LhIQEKOXlasTAgWylxYKjV64oP/74I0tNTUXTpk1hNBqxbt06Ifaxx9CvXz8Yf/4ZaNOG70mdlgb4+ACFhXyNdy03Ly/8kJ4Ot/Jy+O3fDyQm8pnbEyfwnV4Pq8GAPn36sEceeQQxMTE4d+4cUlNTVZPJxLz8/YFhw2BdvhyVq1cLLUeNQrsePYDMTB7o6wKnqvLmYgYDMH8+0iwWpaCgQCgoKFB8fX3ZzXXoALZt26asadaMnSwtVRVVZS1btkRUVBQPkYzxcxg5kp9D3758Zn3AAKB+47CPPuJblyUmQqPRwNfXlx07dgyZmZlqTEwMY4xBURTs3r0bq1evVnft2sXSampQ6ObG+mzbhopdu5j7mDGoqKjA8ePHIUkSnJyc+Hvn5vLtwDw8bn5ceXk5li9fzry8vJQZM2awXwralZWV2Lx5szBw4EAMHjwY3bt3x9mzZ9W9e/cyT09PeHl5PfDvDQCsWLECAODl5XXf127ZssWxfft2ISoqio0dO5aJoghBEHDw4EHk5eWpwcHBTZ2dnXuMGjXK5OLiAm9vb+bn56evrKzsXVlZOV1RlH85HI4qk8nUvVOnTqKiKN1DQkL6tm7duqPdbu9RXV0d17Vr128A3pSQMfbpsGHDJI1Gg82bN9+4cePGtoMHD84RRfHtqKiovpGRkV1UVe1948aNsbt27fqiflAnhJD/DyhsE0II+UPbt2/fX4KCgrp16tRJU/9xQRDg5OQET09P+Pn5oWPHjhAEAadPn8bx48eRlZVl79ix4wPXgDPGUFNTg927d9+cWhRFERUVFfD09ARjDHl5eRBFEWfOnMHZs2dx7tw5bN26FSdPnsShQ4fUrl27Yty4cSw+Pp4FBQVBr9cDFgvfBisxEaIoIiQkhGkiI6F/6CHYbDY2fvx4HD9+3HHixAlhz549cDgcKC0tdcTExAjaAQP42uevvwY+/5zvW/2Pf/CQWi+cZmZlqWpCgtJ6zBgBPXoAhw+DFRcj8I03cOTIEQQFBcHHxwcajQaRkZGstLRU2bVrl5CSkoKjP//s2M0YC6yqYnFBQRAMBmDmTB6s4+KArVsBPz8eUIcNAyQJ4eHhQqdOnbBjxw6m1+vV4OBgdvXqVRw7dgwXLlyAp4cHGzdjBstp1gzZdju8vb156fytCwu4ugJPPMED+Lp1wLZtfG9uFxe+p3bbtvxGA3hjsKioKBw+fBh79+7FiRMn2I4dO1BcXKwOGjSIDRs2DAkJCRCcnLDDyQmCt7eqf+UVti03F+evX1cOHTrE8vPzHe7u7oJzcTFw9CgvKa/1/fffKyUlJWzq1KnsrpnzWtnZ2Vi1apVy6NAh9cSJEzAYDOqgQYOYRqMBYwwdOnRgKSkpuHHjBtrdWRXwC9LT0x1BQUFCYmLifZctqKoqnD17Vh07dizTaPhfh8rKShw/fhwWi4UNGDBAk5iYqK1fbu/u7o62bdtq3d3ddefOnRsnimLXuLg4Q2RkJIuKitK2bNlS9PPzQ1RUlObgwYN+O3fu/FePHj0Kdu/e/VSrVq16t2vXTgMAGo1GtFgssZ07dw4bNmyYJjIyUgoICECbNm206enpWovFsrVHjx737aNACCH/bShsE0II+cOSZbm5IAjfjhs3zvhLs9RarRbBwcHw8fFBRkYGqqqqhP3796uxsbGsoe2WGuLk5ASdTofExESUlJQoGRkZLDMzE8eOHVN3797NDh48iNTUVFy4cAGlpaXKpUuXmJeXl9qkSRM1KipKiI+PZ3eFpcuXeUB+7DEeXF96CZg3D15eXggLC4NGo4EoioIoinB2dkZsbCxqamrwww8/sOLiYiUiIoIhLg6YOBFYswaYN49ve/XGG0CvXkBSEs56e6vDp0wRhSFDgPJyYMUKwGpF2WOPoduECdjvcCiRXl6MzZoFccQItCooEEKbN4fo46O2b99eCGrRgrV//nloTp7koX7+fL622WoFunXj68PvCPiHDh3C+fPn4eTkpHp6erLPPvsMFy9ehNFoVOLi4oSUoiJc9fODotHg5MmTaNGixd2l2VotXz/evj1w+DAP+J9/zh8bPPi2EnOdToe2bdsyh8MBh8OhDB06VOjTpw/z8PC42UX89OnTSlF5uTL5L38RJJ0OnXftQsLMmSwsPh5nz55lycnJzHrhghKSk8MwbBgAvmZ6x44dbPz48fedVf7555+V8+fPCwkJCYwxxgYPHszu/J1MSUlBWVkZEhMT71sOfqfr168LR48eRWho6M19vhvStGlTnDlzRs3Ly2NhYWEA+I2Ibt264ezZs2pxcTGLiopq8LXe3t4sPDxc16FDB11Da9oFQUB5ebman58fkZycXKzRaD5++OGH3eq+M19fX6F9+/Y6X1/f29a0V1dXY/fu3aqiKHN69Ohx/V5jl2XZKSUlZXRKSorQo0eP/Ae7MoQQ8p+NGqQRQgj5w9JoNK+1b99evF8AuVN4eDhmzZqFQ4cOYceOHayiogIPWk4uiiISamc8CwsLma+vL/r3749Vq1Yxi8WCVq1aobi42NG/f38xNDS0LlUz3K97tZcXMGpU7ZGswf2tY2NjERsbCwCwWq3Yvn274FlQAKfKSj6rPGUK7/Kt0fAO5qdOAdXVwMKFgJMTOiuK8El+Pgb5+CDks8+AkhIgPh7+/v6wvv02CgsKhORt29CjuhoCAMyfD9+WLeH70UcMOh2Qnc27iq9ezUP8+PHAmTM8AF++DDSw7r1NmzbIy8tDWVmZsGzZMoiiiOnTp8PJyUkEgMiVKyG88grw0kuQFy/Gd999h/HjxzfcodvdnZ/j+vXAiRO8jPzrr/me2i+8wLdICwuDweFAr169GIAGO5hdunRJjY6OFgHA7emn+ZZj/fvDOygI4xYuZBfy8vDd558LPoGBqNq/H8XFxY6TJ0+KoaGhalBQ0H3TcZcuXYTLly879u7dy1599dUGp58nT56MjRs3qu+88w4zmUzKCy+8IDxIg71evXrhwIED+OqrrzBr1izc6+YQYww6nQ5ZWVkYXG//8JqaGhQUFLChQ4fe93Nuqy5ogE6n0yqK0tPX1zcmJibGOSgo6NaTdvvtpf61srKyIIpi6qxZswpkWXYVBGGaIAhedrs9GcAms9msyLKcqNVqv/X19XW5ePGiVpZlH7PZfO2+gyGEkD+AxtvDhBBCCPk/JMsyAzA+Li6u4bre+5AkCTExMdDpdFiyZAksFsuven1FRQWsViuLiYlB8+bNMWnSJDDGcOnSJQQHB4sbNmxQ7fYH7AdVVAQsXsyDbJMmwJw5DR9ntQKHD0M7aRJ6enlh4ObN8PvpJ0Ft3ZrPjE+aBDzzDA/AlZVAfj7w8MOA0YgWISFoER+Pr7/9FmlpaSqWLOHdzgHonn8egyZMwCFRxDcDB/LP+te/gAULeEfuCxd4oI+KAvr1A2pq+Hvb7Tz4RkXxcu7sbB56k5KA8+fhlJuLEcOGwd3d3V53fevf1BBEETh0CDhxAl27doXFYsFPP/2EK1eu1F1kYN8+4J13+PXp3Zt/hsnEZ9E/+ogfd/YsYLMBmzcDdXtVP/ssn30HeFf16mrk5eUhLy9PjI+Pv3VNBQH45z95Q7SlS9GisBDBbdsqPitW4MyePY6SkhI2bNgwjBo16henobVaLaKiokStVqve65jmzZvj6aefZhEREUp5ebnwzjvv4Msvv7y1jrmqCjh+HDh5kv/Mm6tBEAQMHz4cAG/Udr9xtGjRQqiursaNGzduPmaxWMAYQ9OmTX/pNO4rNzdXAYDx48e7dOjQgaGggN+E+cc/+Pr92bPveo27uzusVmuvuXPnvq/RaLIiIiLe6t69+wteXl4rADjmz5+fbjAYtg4bNsy3a9euTowxO4Caf2ughBDyH4LCNiGEkD8qX0EQtP/bAKHT6TCstlR49erV9w0w9WVlZWHRokVwcXFBdHQ0AN64KiEhAdXV1Thx4gQsFgur29rrF9lsfBb6gw940KpTWMhLpq9fB1q2BB5/HFAUXHJ2Vg5mZ2P55Mk4OG0avvvxR0Vt1+7mXtgAeIn1q6/ytdVeXkBmJoYMGYJhw4Zh27ZtrMJi4Q3IagNZSEgIEhIScOHCBaxZs+bWtWAM8Pfnoa95c96ZfPlyfmNgwABekt6pE59xNhr5+nFV5c8PGwbk5qL/yy9L444eVZsUFKBs7lzg4kV+TqoK7N0LdOwIgTForFY4du7Eltmzca5lS1T4+WH7N9+gukkT4KGHgKwsfvNg4ULg++/5DD4AbNkCdOgADB/OxwPw6oCICN4Ibto0oLoabP58PPXZZ3BxcQFkmQd5ReHjeOopoFkz4Mkn8WhsrODZtSsm9OkjTpw4Uagrx34Q58+edTQ3GkUoCr/pcOYMv1nx3nvApUvA4sXQTpuGYb17C69s2oSY1FQ03bxZVH18+Pr0bt34WvTaKgbExgK1s9ER8fHwKChA9l//yvJ8fVFeXs5f8+ijwFW+FLq6uhppaWlgjN12Y8PZ2RmSJOHyHdu1/VouLi7Q37iBgi+/BF5/HRg3jlc2tGkDTJ3KKyYOHLjtNatWrQIAdOnSZcbIkSN9RowYoevatSumTp3qFBkZqUqS1G769OmGwsJC2+rVq4sURRliNpvvWW5OCCF/JFRGTggh5I/KXa/X2wAY/rdvEBYWhoEDB2Lr1q3sk08+USZPnizcr6S8pqYGGzZsQFRUlNK5c2eh/trUli1bYt++fQCg9u3blzVp0uTBBuHnBzz/PA+LDgcPUF27Ateu8cA2ZAiffW3VCg7GsGzLFgEANJKE/Px82O12oaSkBE5OThBFERqNhs9KG408QFZW8tCWlobo6Gjs2rXL8fOFCyxxzBgBpaWA0Yiamhqkp6ejefPmOH36NFu3bp0ycuRIfkM+PZ3PLrdtC2zcyAN1QQEwaxYPuceP8/BsMPASc4CvFX/jDUBRYF+yBJl796pO5eVwOXOG4fx5XhJ+6BAP0L6+6NGlC9p7eUFwccGNnj1RkpCA9YqCi1ev4sT16+okDw/mnpvLZ+63beMdyxtSV8b81FO3HisrQ0VFBbK7dMFVRbGPBCRkZPCAmJnJtxez2/lscr9+wFdf8ceXLgXGjuVbjH33HZ9NP3+e31hYvJh/X+3a8cefew6YNw99V60S9Vu34mudTh0jy0x44gl+oyAtjd+ccHXlJfGZmTAOHYqe332H7cHBuNK3L/xcXfk1GTaMh26AB1dH7cT3v/6F0S1aIG3TJqQqCoKzs9FeEIC1a3mTvY0bUVhYiPLycgQFBSn169MZY/Dy8lLWr1/PXnrppQdfLF7Hbge+/hojDxwQMux2XNq7F65TpsDtr3/lN2QUBXBy4hUPX3zBf0dqqww8PT3ViIgIlpiYeNvnMsYQHh7Orly5YtdqtVJhYaFNUZTVqqru+tXjI4SQ/1AUtgkhhPxRlVksFs0vH3Z/MTExiIiIwNKlS9lXX32lTJ06tcF1tKWlpVi2bBm8vb2VQYMGCXc2uPL09IQgCLBYLCw9PV3p3LnzL1ePORx8ZnLbNr7m+soVIDCQb88VHs5npoGbwSW/rsS61qxZszB//ny1oKCALVmyBAAwY8YMGENCgPff543EBgzg4dhkgnXCBHhFR4snT55UEqdOBfbtgzp6NDZs2KBWVFSwyZMnIzMzU92yZYvQzmJBy9WrecO28eOBQYNuzZ4fPcqbrH3zDfDpp7xb+PPP32peVkcQsOzMGZRptQLz8sLfAgLUFzp3ZvqtW4HSUmDnTkAQwNzd4bZmDcAYXAD4AIgE35f822+/xaovvlCfGzSIiTt2AKGhSE5OVoODg1lAQAAAQFVVLFmyRDUajXBxcUHv3r1Z3Tp+VVWxatUqpaioSHAJDubfybp1t8ZYV4Hg48MbspWU8PM7epQH2U8+Af78Z+DFF/ks9Q8/8BL2o0f5GvmHHuLl6CYTatq0QdX58ziXk8MuuLmpIcHBDG5u/Pv78EN+g+Ldd/ma+uXLoenYETmnTiFLUZRXXnlFwNChwJtv3prZlqRbNxASE2HPy0NaSQn08fEY3qYNn5UvKQH0euDNN+F/+DCaDR+uqLWbe9fXv39/4fPPP0dBQQG868rt76ekBDh9mjftS07mv0djxsA7IAAb/vEPVPv6qg/V/iVYv3ixMuyFF4Qlf/+7PcThYF6PP872Dx6sKIKAqqoqsYHhAAAKCwuh0WhY7fiMxcXFk8rKyuJkWZ4FoFqn000TBKGtoijpVqt1ntlsPvXLAyeEkP8cFLYJIYT8UfURRbFRlkMZDAaMGTOGLVq0iJ08efJmebjFYkFVVRXKy8uxdu1alTHGOnXqdFfQLi0txaeffgpvb2/HE088IWq12vuP68ABPju6YgXfysrZmQesXbt4w697NKpq3rw5pk2bhk8++QQmk0kFwHQ6nZKamio6Ozsr169fF9avX68AUMedOyeyum2qnJxQnJ+PG7t3Q/H3V/sMHizcyMmBbu5cHAsNRXZ2NqZNmwYnJyfEubgwl0uXkHfwoNry8ccZunfnW3HV5+wM1G9kNnIkX7NbVQXlq6+gTpiAU6dOobS0FGVlZQCA4OBg1W63q5s3b2YuLi4wFBWhW0wMsHs3XzPdQHduQRCQmJjISgYNAlJTgY0bkZGRgZSUFJaSkgKNRgN/f3+1pKSElZeXM41Gg9zcXGRkZCAsLEx1cXHBpUuX1IqKCjaT37i4/XvJysK1Vatw0dcXoQsWwDh8OL/Z0aYN39Zs8WJejr56NS/Nt1h4eb+LC18j7ubGZ6rNZqBtW6SnpjpsgYGim5sbTB07Mnh78/OqquLVCXPmAMeO3TrX/v1Rysu+hYJLl+BdVsabvk2dCvz8813Xo7i4GAD/vSxaswZeksTHuHMnsGIFLBs2oOLsWaFFTg7s48bd1kitWbNmiI6Odmzfvp2NHz/+7t9PReF7jBcVAR9/zMc8bhy/DjNn8rXyALRlZRAEAbrapngVFRU4UVIiXJ4/H906d5ZYfDy8/vEPDL14USgaPx6MMTTU3fzUqVM4cOAAHn30UZH/ijphypQppvT09NhDhw6tt9vtrEOHDqaAgAAhNzc3bM+ePcPnzJkzcvbs2T/e9WaEEPIfisI2IYSQ/3iyLAsAugCIAWDQaDRBAKbcuHEDNpsNly9fxrVr1+Di4oKrV68q0dHRAsCbMz0oDw8P+Pj4KDk5OYJGo8GWLVvUioqKmwnwoYceQufOnRvcskkQBKiqioKCAnHBggXqK6+80nCp7owZvMTa3Z3PSioK367rz3/ma4/PnOGhrEcPPpvcwGc5OzsDAJo0aaIAEJs1ayacPn0aHh4egt1uR05OjqAoCv4WHq66iaJy/eOPBTtjuH79OuwTJ7JO8fFq84QEtrlXL5R27YrCjRvRKiKCNbFaeUn4qFG4FhGhnhoyRO02blzD5+HszBuj1denD46sXAlPsxl79u/HuebNAcZgNBrVbt26sfDwcPbPf/5TycrKgpvdjlFffIGkRx9Ves6ZI8DdnYfYBvaw/mH5cnj17o12b72FgoIC/PDDDxgxYgTWr18Pm82G7OxsBgDu7u7quHHj2Lp165SqqiohNzcXer0eYWFhwqRJk6DVavn1PncOts8/hxQWhvyVK9UrFgs78sgj6tahQ9mrixaBtWrFz23uXF4dYLPx2fovvuABdMYMPrAOHW4NcuRIAEDgY4+J3wEQKyuRNmiQOqhfP379li/nywEuXuRr4Ov93kydOhWffvopMj74AN6bNvHlAyEhDV726OhoGI1GrFq1CiUFBfCaMoWXpoeGAv7+YFOm4KEVKxD0+ef457Jl6vBJk1j9DuExMTHi6tWrlZvr1bt25TcWNm3iNxTefJOvzV+5kt/8qbe1GgDs2LEDqampYIzB1dWVXb16FStXrlQTjUale0GBKNRdkxYtgEWL0PzSJV4RcQe73Y4NGzZg8ODBCKl3roIgoGnTpkyv17P8/HxtUlKS6u3tXRkdHe3crl07w/Hjx8cDoLBNCPnDoLBNCCHkN1XbNdztXlv5yLKsBzAcwGGz2XymodfrdLqNer2+Z8uWLTU6nU4yGAxCZmYm8vPzsXjxYrWsrIwBQGRkpHry5EkhKSkJADBu3Ljb/jH/S9q3by/s2LEDmZmZaN++vRoXF8fc3NygKAoEQbjnWlc3NzcMGDBA3b59O7NYLGzDhg3qyJEj+fHZ2cBbb/EAU17Ow1tCAv+vTlERbzRms/FZxJ9/Brp3B95+m5eU16PRaGrfNlu8cOECRo8ezY4cOYKYmBhkZGTgzJkzGDRoEHbs2MG6Tpokprdvj5/790ePHj3QpEkTJCUlqbaRIxX/ESOEEZ99BtVohOTlxWcxH30UOHkS+xcuhM5uF9LT09Ghfqisc+4cX8s9ceLNhzZv3uw4kp0tRsoylF27MGrtWlx4803HI2PG3JwW12q1aOLkpHrabOreTp2EE66uQnejEfZp05D0ww/wCw+HTqdDenq6Wl1dzapOn1bHLl7MStavR7VOh1Vffqm2a9eORUVFobS0FP7+/jh27JhqsVjUxx57TACAKVOm1N9yjZdDl5Whevp0OLZuxa5p0+B0+DDO2WwoGzBAnTRpEut44ABbdPSo4+qrr4rNPT15IzgfH762PD6eN6jbtYuH5fJyXlY9ZEgDl+WcAkBwOBwoLy9XUH8LstdeA/Ly7nqNTqeD4fp1dPrySygzZ0Lw9b21TrsBLVq0gEtlJdxXruTd300mIDsb6unT+HzrVtViscDjww/VHq1aCQgM5Hugv/wyIAgIeOgh1LzyimBZuBB6Z2e+NvyRR3gZelgYr6rIzuZr1tu0uSts13YjF0aPHg2TyYTly5ejS5cuauKNGyLj/Qq4pk15yF67lt84iIi4+VR5eTl2794NSZLU6Ojo2/5OORwOfPPNNza73f4MgJ8AXM/Ly+tTUlIyRBTF6JqamqX3vDCEEPIfiN1rHQ0hhBDy75Jl2Vun022tqalpq9Vqd1qt1vFms7ngjmOed3V1/fDGjRsORVFeevPNNz+/4/nWBoPh8IwZM4z1G5IlJSVh//79anR0NEtPT4eLiwvi4+OxY8eO28bwzDPPwOdeDbXuYLfb8cEHH6gBAQHq6NGjhXvtZ3wvn3zyiVpSUsJ8fHzUsH/9S71uMqHbyy8LLrLMZ7DvCC83paTwRmlHj/IO4ePH8y28PvyQN+EaM4aXN9f67LPP1Pz8fDZw4EDE1HXlvsOCBQsU8exZ4ZFnnoFfePjNkH4bLy+grIxv3ZSQcPMzTp48ieTkZEiS5HjmmWfu3rP67FkgOxv23r2xZ88enDx5UikpKRE8PDwwbtw4rPzqK2Vkaqrg89xzPKjWzeaqKjBhAkpKStQlnTszo9Go+Pj4sPJDhxizWFAaEADGGBwOBxw2G0Z27oyIvDyoEyZgxYoVSk1NjTplypQG99C+SVWBjAw+Sy8IcCxYgD3h4eplRWEVzZvjetOmalxcHGvatCnCw8Mh2WxAYCDOh4SoVarKIkePhmQw8O3D6nTtym+GfPABcPAgD9onTvDy+nrVE3l5eVi+fDl69eqF27YYA/h4Fi3ia9zvqFjY8s9/4nRSEqa+8w70gsDL1Csq7prpv3z5MpKSkiBs24auGg0Cly3jT/Tpg9JWrfB3b28MGTIE7dq144+/9hpfn/7ppzx0HzqEZefPO5r7+Yl9+/a99cYnT/IO7YMG8b4BHTrwUvKPPuJd6wFcvXoVS5cuhaqq0Ol0KmMMdrud2e12mM3mhr+L1av5OvfnnuPnBF4+vmbNGvj6+jpUVUVoaKjYs2fP2q9OxZIl/8PemUdFcaV//3uruputgWZp9h3ZN2UXBNod3PfEGKNGo8ZJjJPdyUJ6sqhJJjGaRE1iJtG4xESjcY0K2IjsCgoIyCI7qOw73V1V7x8XUFwymfnNe97fvNOfczxHurqqblXd4vC9z/N8nx29XV1duTzPl4AumAhqtfoagJ/v/92hQ4cOHf/bYd95PFCIhAAAIABJREFU553/12PQoUOHDh3/n6BUKl1VKpWXSqVqUalUHmKxOC0iIsJtyZIl7MDAgPPt27cfS05O3qNQKPqG9lGpVNF+fn6T5syZY1BcXDwxJSXFMjk5+axCoRjaPsXOzm56cHCw3r3ncnV1RUxMDPHy8oKbmxsqKyu5pqYmISgoCIGBgaSsrAwA0NXVxdfV1fHl5eW8h4fH79ZSMwyD4OBgcvz4cdLf3y94eHj8U87NbmZmxPbdd3HV2ppENTaiXyRizovFfPjWrQQPE7tDHDsGnD1Lo9gvvEDdtF1cgPnzqah76y36s5kZYGAACwsLcvXqVXR2dvKhoaEPHaO/vz+5UFgIx02bkNTUJBTW1wsuLi5kqNYWAI1i1tbSNOjQ0GERaGVlhebmZr63t5f4+vqSgoICnDhxgj9//jwuXbqEtkOH0Hv8OPbcuYPW1lYEBASQhIQEolAowHEcki9cIE5r18Jaq6X9vH19ASen4f7chm+/TcYqFCgrK0NzczPmlJcT95QUTP/pJ4wbNw7R0dGw/egjQX3hAmw/+4wkJSXxFRUVWLt2LcveXz8OUIF97RptC0YIbffFcdCsXo3dPC/UWFtj0tq1ZOqiRYiOjiYuLi6wksvBPP00MGYMsHw5bl65Qs6EhCBUo4Fk6tS7PbsBmqY9fTp13HZwoJFiiYRek6XlcEq5vr4+Kioq0NTUJISEhIx8LlZWtM57/PiRIrqlBbbjxuHyhAmImTSJCvjnnqMLM/eJ8uPHj+NmaSmmnToF259/hmho8ebxx5FrZoa2tjZh1qxZZLjUwcAAGDsWmDGDmrm5uKCoqIipr68XwsPD6Zc4jtbDe3nR63jnHZo+D9CMi/Z2wMkJly9fRlVVFQICAvjZs2czQUFBJCcnB66urgjasYMu2CxadP8kpO7qSiUtleA4DHAc8vLy0NvbyxgbG5PCwkKSnp4ueHt7EyMjIwQFBYnNzMycHRwcQlxdXUNcXV1DDAwMxre2tm5ITU3tT0lJyVIoFLpIkQ4dOv4j0KWR69ChQ4eOfwubN2/+TCKRrJZKper29nZDlmX5+Ph4cXBwMAGAKVOmiDiOs7169eqPACbfs+utrq4utaWlpd6aNWsMv/322zUdHR1NAD4c3C6VSqW/G810cnLCunXrhr/T39+PiooKAEBpaSkzeJDh6PfvRaxv3boFiUSCuLi4Py60Dx0CmpthsWABhIEBwUgQiNn335Nj330njP8jruRubtQoLDSUOpMfPEhFKiE0wrp4MfD99+AOHUKWmRl/QSplAGDJkiWPPLZUKsXs2bNhcewYCqqrSQXLkpqaGjg6OsLQ0JBGuteto/24XV1p3+qEBLS++CIuX77M5+TkMGKxGB999BGkUqlga2srxMTEMDKZDOx334EdGMCcOXPg7e09XMdeU1ODvLw8Tk9Pjz1+/LgQ8Je/EGzeTIXjqlU0/bqoCNDTgxg0EqzRaMgPLi7wTkjgXBiGBeiih6efH9kHCAV796K2tpZZtWoVrbsGjYCS1lYqsp9/nhp7/eUvtJbczQ24fBk8z+PQgQO8mmWFDevXsyMc5gUBGBig/alv3ADefhsOO3fC4Px5rvjECdZv3bqR/eRiYmiKv5UVrakfO5Y6kJeUUBG7di207e0ofO011NfXY9WqVSPmjlqtxvHjx7kgtZpVr1/PF0ydKujp6SEgIIDlqqpQGxmJ5S+8cHeH556j92twwWkIjuN475ISxm78eOjf21+eZRE+bx5qX38dI66zoYGK5XswMDDgeJ6/+z4dPgzs20cXfDgOCAigfd+ffJJmV/z1r0BjI8SDhnh2dnawsrICALi6uvLNzc3A6tUMeh7RGvuFF2jqvZ4eYG8PhxdewOsbNoAnBAYmJqS7uxvbt28nSUlJmDZtGkxMTBAYGHj/UQxaW1tx6NAhZXt7+0ylUjklMTFR/fAT6tChQ8f/HnSRbR06dOjQ8W8hLS1t16JFiyzi4+P1oqOjmZiYGNbOzm6E6HBzc2NzcnKsz507l6VQKG4CgEql4vr7+9dER0dLxGIxPD09xZcvXx6XnJz8i0KhuKNSqUy1Wu2iiIgIvYef+UFEIhH8/f3h7e0NjuNQW1sLtVqNyspKyOXy4dZHHMfh/jZfR44c4T08PARfX9/fF9v9/bQtVlgYcPIk0NICMmcOjP70JxI5cSIMDQ1RWFgoNDU1kStXrggNDQ1ELpejubkZzc3N0Gq1IIRQ0evoSIX1UJ3sW28BLIt2R0fo6emBGBig298f+y9eBNvQICwuLiYdBgZC9WCv4kcN0draGuyTTyL5yhWIjI1RUFCA7OxspKamQi8vj3Pcu5fBmjXQarWoMDPDuZ4evuDIEcK1t/MTH3uMiYyMxMSJExETE0P8/f0ZS0tLSKVSGNnZwSA8HPKAgBGGcXl5eXxeXh4bExODKVOmECMjIyrkN2ygCwhaLRX3HAewLAoLC4XQ0FA8sXw58XvuOQYxMVQIT50Kbvt2SDw8SHZ2NiZPngxPDw8U//QTn/rZZ6Rx2zbIt2/HFbVaMHR3J+LXXgMbGUlF8WBa95kzZ7iKigry7LPPsiNS6Pv7acR19GgabS0tBYKDIU1IQLhczrQfPizs02jIqFGj0NfXh9raWlhaWtKIs7c3FcCE0H9GRoC+PgR7exxNTUVpXR3iTp/Gz21tuFFZKejr6xNLS0ukpqbiypUrjNjAAM7p6aRl8mSmu7ub5KWlCRbffEOy4+MxcfI960+nT9NsADe3+6ZcP+m4dAmyp56CbNSouxsYBg2FhbjMMCTy3uNkZtJxDkbeBUHATz/9xDg6OsLHx4cuIPz1r7QdmYUFXUDIz6fPzMKCOs6PGQN0d6Ni0yZUOzrCx9eXt7OzYwaPR2pqarhId3cGLi7DjuUAgGXLgHPn6LEnT6YLFK+8AjzxBEQ//QTxrFnASy9B0teHWx0dKC0tRXZ2Nvr7+x/qs2BgYIAxY8ZIioqKLHt6eq4qFIoH/B106NCh438bOrGtQ4cOHTr+LaSkpNwqKyub5uvrKzYyMnqka7epqamkvLx8XHJy8i6FQsGpVKoWABvc3d2NjI2Noa+vD0IIU1tbm5CSkjJeJBJtdHNzM87MzER1dTUxMzODVCr9Q2NiGAaurq5oaWkRmpubyahRo5CTk4Pa2louKysLJ0+eJB4eHtBoNOA4DhqNBr/99huZN28eMTAw+P2Dr15N+0pbWlIzrZkz6f/vuW59fX1kZWWRrq4ucufOHWRkZCAvLw8FBQXIyclBeno6rl69KnT39ED+3nukfepUSC0t0eXujpKGBuHQsWMkr6QEnZ2dfFZWlqC1sBAef/99RuzqCpfLl0nPiRMko7dX8AkNJQ+7362trQDPY/zjj2PsX/6CbpkMMpkMzc3N8G9vZwzb23He0JD75ZdfmPLeXt4xIICZl5uLwNpaxvK552BsbPzwLICffgLS0oBJk0Z8LBaLSU5ODqZPnw5LCwvao5rjaAp8bCy9Z6NG0RRtMzOcb2oiigkTiMzMjEb2w8JoLXh5OT64eRPFxcWwra6GxZ49uNHSwvu++y7TwXHIDQ1Fur8/yggh2f39uHjtGmJiYoYXTrKzs4WMjAzyzDPPMEPu7QBov3ETEyro582jQrC2li6aACDbtsEqIoLUOzjwSUlJJDc3FyUlJUJhYaEgEomIZXQ02Lw8KkA3bABYFv39/Th77Rqfr9WSQEdHOCQloTIkRHAuLibJlZW4kJaGxsZGxMbGYvKTT8KEYeA1ZQoCIyNJZEcHYfbsgWT9+pHtsSZPBmxtaTR4kI6ODpz+5BPEZGbC5cMPQe5Lp9cGBODmmTMImjXr7rt36hRNex80KCOEIC8vD93d3VxEeDiDlSuBJ56gQniIa9cAc3O6HwBYWoI3NUXHV18h1tkZXkuXMkNz/Pr168KNGzdY3xdegIFGAzJhwt3jmJoCQUHUB4AQKuwDA2m6emgoTTmXyQB7e3AmJuDd3bnxMTFMakYGP3bs2IfO56amJmRmZmp5nn9HoVC0P/AFHTp06Phfhk5s69ChQ4eOB3j33XcXZWVlHUhLS1uYlJR0RaFQ3P5H+8TFxRVeuHChMzc3V8GyLOPg4PBAP2oAkMvlqK2t1evu7nZNTk7+NTExUUhPT5/h5OTkPJSe6uDgwDAMI7t586aPmZmZpLq6mnR2dpJbt24hNzcXgYGB+IdieBBCCHx9fUlcXBwCAwPR1tYGjuMYPT09NDc3k5KSEly6dAkZGRnIyMiAXC4XYmNjfz+q3dND20Dp61OzrKoq6no9dy5NS3ZxAXp7YeXpSS5evAiJRIKEhASYm5tj6dKliIqKQmxsLNra2uDq6koKiop4vepqcvrOHZJXUiKoiouJ6/HjCG5qIllyObq6ugBAWLp0KSuWSABnZ4gTEiDr6oLj+++TfJ6HU2DgsDjjeR7p6ek4ePAgMrOy4LNxI0zGjYOXjw+8vLxQUVGBW6WlSPbyQn1DAyMSiTB58mQhJiaGMPPnU1fyTz4Btm8fbms1gtpaGgUNCxvxsbGxMXp6eri0H34gFpaWxFypBKZMARISqPlbVxcVWosXo9nODpLPP4f/hx+CefFFakL2449UmD39NEz/+ld4lZaCCAJkcjkyxGKiioxEk68v/+Jbb5Go2Fj4+vpCT08PtbW1uHLlilBeXk6uXr2K/Px8snjxYmJ3by/w/n76XEJDqcBkWdrGy90dmDiRfufAAWDpUvjFxZGwsDCEhoZCoVCQnp4ekp6ezldUVAijExIIvLzQ6eiIg/v3C+YWFuTMmTPEwcEBUkdH/pRcTiT6+mTpL78gOi4OPnPnIn7mTLi4utJz/vwzPZeHB2BggK2EoKW9HT4+PtDX10dDQwMMXn4ZzMGD9DkM0tXVhbpff4VNQIBgNWPGA/Oz/exZhH7wAeoWL4aZuTn9MCODXt89EXI3Nzfk5OSQKImEkKNHaRbFvQsqqal0DsfFDX8kGBpi761bcLe3h8UHH9D7ZWQEBwcHIpVKcUAmQ55MxvM8T5wuXKBR7S1bRpj6ISyMppMvWwaVgwOOpKRwmdnZwuXISL5MX58EZ2TA//33SVZMDK79+iv0bWzIvRko+fn5+Pnnn/s4jntSEIQslUoVqVKpfFQqVaNCodA+7DXVoUOHjv/X6MS2Dh06dOgYgVKpNGYYJmP+/Pl2dnZ2LlVVVcuSk5OTFApF/T/aNzY2Njs5OflAXV3dQltbWxPzoT/674EQAg8PD3FxcbGnRqPxS05ONiCEPDt9+nTRUBSVEAIbGxty48YNfjB9lFRXV8PGxgZSqRRBQUEYYfT1T+Dl5QV/f3+MGjWKZGdnCx4eHliwYAFpampCZ2cnWJYlY++N9D2M06fpv337qEDT1wfWrqV1rmo10NwM7NgBJCUhiGFQX1mJ8s5OfvGyZYRlWYhEIrAsC19fX7i6uiIyMpJxqKkhY4KD0SGXk4SEBHitWEHM6+rQ6uoqMPr6/KpVq0amQ7MsJGPHon7SJPTs2AGHy5dBDA1xqb4eBw4eFMrKyoYFWVhcHKTLlwMLF4IRiaC9dg3R27bhclSUwPE84TgOUqmU9/T0ZAYfABVghNAobmPjsJs0AFojLRaPaOk09Nw8GxuZoI0byWFBwKjvvoO+tzfdePIkrdeeNQswNcUPR46gyNwczmvXwszRkWYFnDsHZGWBLFwIEcvicni4UO7kRNi4OIyLjwdhGGHp0qWMRCIBy7IwNjaGu7s7ioqKOAMDA6a7uxuNjY0wNzfHpEmT7kZ4Dx6konPZMlqbPkR8PKo9PNDW2wszQmhUd/ZsQCSCSCSCnp7ecHaEq6sruXjxIomJjYV21CiUP/aY4Lt/P/lOJIJYLMaKFStgbW1NWJblK6uqSEZwMLq9vYWQzz4jZOtWWoMNULf5hgZ6rueeQ+DXXyM9PR05OTkoKSlBWloaigUB6uBgwWnIxAzA/q+/5qZ/9x1DduwgMkvLB6ak1s4OO9VqDIhE8B16LhUVVNQPLmIBgKGhIcpzcwXDzZshO3qUMPc+V4Au2Fy4MKI/9u3bt5F5+TKc4+IEO42G4MYNwMYGrLk57O3tEbNtG+rkcmSXl5OoBQvA2tggpbUVWq0WFvfWluvpAceOIU0mg9zBgRk3bhzj6uXFuPv4EJsFC4jxhg0IDAoiIY89Rq60t/NeUVFE292NL/7+977S0tJ8tVo9RxAEtUQiUUml0jUymWyhRqN5PDk5eYfivvp2HTp06PjfgE5s69ChQ4eOEahUKn+ZTPbktGnT9Ozt7YmVlZWktLR0fnJy8g8KhaLrD+wvY1l2hZ+f30PFNkBrqgMDA8X9/f2eIpFoakJCgpHVPYJg6DthYWFkzJgxxNzcHFlZWRCLxbxWqxXS0tJIZGQkHupM/QcRiUSIiYkhvr6+xMjICGPGjIFKpYKenh5kMhkKCwt5V1fXh0e4f/iBRve8vWlP4qYmYMIEWm8dGEhrgufNA2JioFdeDnFSEoSODuJ15gwVqtbWtL713vFfvAhReztGLVsGY2NjKmZdXeG5di05L5cz4bGxD71eM2tr7K2rQ4+xMW4eP85bHjpEgidPJgPW1kJzczPR09MTpiQkELJrFxAfD5iYwMHREQbR0YhZsYI0NDSgtbUVjY2NTGdnJ+fl5UUFt7097TG9ezc1aHvppbsp8qdOUcF4bw/wH38E1qwBNm7EzagoZN6+jaysLISHh9O69MhIICwMagMDfP7551xzczMTGxeHwAkTwNy8SZ2va2uh9fTENkKQptGgTaMhDMMIM2fOJM7OzvDx8SH3p7Xv2bNH29DQIJo7dy7i4+Mhl8uRm5sLd3d3mJqa0oh2QgK6Q0Jwy9oaBgYGqK+vR25uLs79+CNv+Pnn5EhPD26dO6ftyM4m+27fJsXFxdoxY8YMZ2ao1Wrs37+fd3Bw4O3t7ZmcnBxB1dpKbjs6YsJTT2HBwoXQ09ODkZER7ty5I1RUVBBBEHD7zh0S+7e/UQfy0lK60PDaa7Sf9YYNQEICDEaNQmxsLMzNzZGbmwue5zExNhYtx46RXK2WH+pFrfnqK6ZVq4XZ0qUwuV8gg9Y06331lWB/5QqRL14MAOA/+ggIDQWxtwdAa7Y/+OADhB47Ru6YmpLOkBCMiP4DVBAXFND5PEhVVRWKi4vh5e1N7BYtAniejt/JCXBxAbN3L3wXLyZhf/oTdurr84WGhrh58yauXr1KLly4gKqqKtqOTF8fWLwYPZ98AjtBgM+8ebC0tIRcLqelIQYGkBgaYqehIW8UEsL4HDkC8uKLSPL3F/wzMw+2ubrOF4lEf509e7Z8xowZktDQUL0LFy6YC4LwsUKh0CiVSlOVSjVTpVJ5q1SqeoVCMfDQ9/cPolQqRQqFgv+fHEOHDh3/3ejEtg4dOnToGIFKpRptbm6+ICQkRA8ALC0twfO8uLGxcVJSUtJuhULBK5VKkpaW9mxGRsaetLS019PT05empqZ+cPHixZdYln1p3LhxxqNHj2YflkY+hEgkgoeHh2j06NF6jxLlQ+jp6SEuLg7u7u4kNzeXqNVqREREDLtT/7tobm7mGxsbSVlZmVBZWcmwLMs7OzuPvIjKSupIvXEj/Tk0lNa8rltHBcrQmAgB9PVBIiNx1tCQ63R0hNekSUSr0UC8axcV7Hp6tPbZ0JAadtnYUJE7hEwGpqIC9Z2dvKGfH3lUpoCTkxMuNzby3kuWML5hYbC4fh2SI0dQLpeTAYYhvn5+kD7/PBWeRkbA8uU0RdnMDD4+PrC1tUVRURGampqY0NDQkfc1JARYsYK6Wq9fTwWjkRFNTba1pX2nS0rod729gfBwWLi6wtHREdeuXUNNTY3g7u5O9KuqoJkxA1sHBni5XI4lS5YwXl5eEFVWUifsoCDgzTfRHxkJ/V27oCEEet7e3PPPPz+y7vo+SktL0dbWRjo6Orienh4SHBxMWltb+XO//UYs//QnnL11C5dmzOCTy8tJQUEBVCoVCgoK0NXVJUR7eZExZ88S9rnnhKDiYtZm1CgSsGoVioqKSH5+Ph8aGsoAwHfffcfxPM8sWLCAaWhowMmTJ4lGIoG+pyc/LTGRoL6eCmrQ2uri4mICABKJBEYmJrD196eGYx0dNK1+0yZqXvbmm8PXYWVlhbi4OPT09Ag1x46R2WfO4EJICAoKCngfb2/m+nffIS84GLd6exEYGAie56FWq4dr6tVqNbIOHyaCRgO98eOxY8cOuB08iH0ch9yqKsHJyYlIpVJICwtR29wMq+eeQ/i9iyVDGBjQjI0JE4bLEqysrJCRkQF7e3s4OTlRQz8HB6C1lWYrvPceiJMTxFZWQFQUGhoa8PTTT5MJEybA3NwcmZmZuHz5Mpeeno5Lly4Jtvn5xLa7GyYLFz70maZnZSFwzBhit2wZyNq1cDY3Z0NfeSXae2DAO+6zz8S29vYghECj0SAtLY0HoFSpVGNEItFVJyenOaampnN6enpeSElJOaBQKDoeNXeUSqVIpVKZKhSK/vs+98zIyMjiOO6T9PT051UqVVtsbOyVR05CHTp06HgEutZfOnTo0KFjBBKJZIWXl9cIB7LY2FhReXm5R0NDwxoAXxBC5hkZGX08Z84cQ0NDQ9TW1jqcPHkSixYtgpeX1wMO3/8utFot+vpoi+4/apL2z7BgwYKhgZPU1FSkpKQwgYGBNEI6xOHDNHp9L/r6NMJdVESjwffB8zy53dHBfHzxIsRiMf5y4ABNNb99GzhyhLZH4nkq5PPzR6Zsf/opAqZMYdr37eORmPjQG+vi4oK1a9fSbaNHAwoFqktL8af9+3H7r3+FtVQK1NRQc6rqaiAnZ7iPtEgkGn5mPM9j27ZtiI6O5uPi4u6ey8KCXlt1NXUUP3KELib4+tLWZLNm0f7M99DZ2QkAYFlW+PLLLzFjyhTCmZsLTo6OxNbOjvniiy9g1tqKKVVVvO3EiYxpXBwwcSIGLl+GyVNPYYZSiT3m5uymDz7AmrVrqSP4Q1i0aBFTWVmJkpIS9vz58wgKCsLc2bOZsMBAmKWm4qatLQ9TU+Gp5cthZGQErVY7JFDJ4ENHrCAQvPce8O23gJ0dVqxYQb744gv2gw8+QEBAgMBxHHF1dYVUKkVZWRnHMAzr5+eHoKAgBr6+gI8PfX4MA39/fyKXy7Fz50709/fj2rVr3JgxY1hIJLRWfPly+uzb2oDiYrrvPUyfPp1sKSgQ6rOzyWpra7Jnzx5yYP16RDc1wfjVV5Fy4QI2bdoEjuMGH40FHxgYyNTV1XHd8fHsnWvXUHLgANRqNcRz5iBkxgxUNDfjm2++QYifH+f9449M9ahRQujEiQ9/SQmhfgQ1NYCfH/r7+/G3v/0NWq0W7e3twvB9mzCB1navX0/Nzr77DuSZZzAWGFGGERQUBHNzc2i1WpZhGFRXVyOltxdsdDQcNm2ikf77fl9IpVLhxIkTRCqVwsvLC86jRwNr1sDq1i3gu++AP/0JIATNzc3Q09Orfe2117gtW7Z8OmnSJJOQwTKB77//vquqqioMQM3QcTdt2rSZZdlwjuOqGIaJYBjGgxCCzZs3pwwMDMxOTEzsVyqVRCKRnJ44caJrWFgYaWpqsti7d+9WpVKZn5iYmKNUKgP09fX3CYJgqFarX3777bePPvQ+6tChQwd0YluHDh06/utQKpUGiYmJfY/YttDY2Hh6eHj4iL9+CSGIiYkxOnr06AqlUvl3iUSybebMmYZDDsqtra0AaCrrv1toa7VafPbZZ7xGoyH29va8o6Mj29bWxgH413PI/wDjxo1DSkoKGhsb74ptnqftkMaNG/llQoBLl8CXlKB/+3YUhIcLtbW1HABiYGDA1NXVMdbW1jzDMExfX5/Q09NDjCwtaZ2yRAIUFtJocV4e8N57tLbYz2/48PrTpkG6bRvDvfnmH0udNzBAhqcn0V+2DDFHj1LTq2efBa5epSIvP59G0wdhGAaPP/44Dh48CI1GgwsXLjC1tbXCzOnTiam+PnWSrqujqeIHD9J2UQxDI/G5uQ+IJQAoKioCACxfvpzJyckRjp46hWBzc9KYl4ea2lrBR18fkziOZBgZMckikbDOxoYMrF2Lbdu2AQCkzz+P6UeOCO0SCTrnziWPEtsANf1iGAY5OTkQ+vpAAgLguGsXkJSEGcCIwT3grh4VBURH0/s9mFJtaGiIl156Cfn5+Th16hThOI4AEDZv3iwMDAywtra2w7XccHenPbstLYGkJGDMGFhbW2Pq1Kn8b7/9xvSWlZGcV19FSHMzGHt7ajj397/T77q7077qU6eOGJLMzIw3iYxk9bOz8fTTTzNl/f1wmzwZ7OD4LC0tMXPmTMjlcpw9e5YpKiripFIp093dzT3544/steho/rHduxmzF1+EPDoa4YaG5M6dOzj15pusYGiIYnd3VGzdyr/88ssPf1lDQoDsbPA+Pti9ezev1WoZuVyOoqIiMn78eBgOzR1PT3o9v/0G7NxJFxOuXHlgwcnR0REANe77/vvvERISAi9vb1p2EB9PfQHuYdWqVcwnn3wi/PLLLwgLCyPju7vBfPop3ZieTo0I9+wBIQSCIEiUSiUxMDBgh3wctFot6uvrxQCyh46pVCptxGLxhhkzZuh1dXXBysoK9vb2YFkWhw4diqmqqvocwCoAkfr6+lZhYWGEEHJvzbkGAPT19b+KiYkJsLa2xo8//rhfqVT6JyYmVj70PurQoeO/Hp3Y1qFDh47/IjZv3vwpgA2bNm2qVKvV0xITE0uHtimVSn2xWLxz4cKFhvr6+g/s6+zsDIZh/BiGafPx8eHu7YXr6ekJANi3bx/eeOONf9t4eZ5HUlISuru7GQsLC6G2tpbVaDQAwJ46dUqYNm3a77uG/w9gGAZ+fn44cuQIAgICuOnTp7NMZiZte7VkyUP3Sfv+e8H3669J2muvCaM8PUVarRaNjY1CQkI4wBmkAAAgAElEQVQCUlJS0NXVBT09PfLpp5/CFhASmpuJTWYmmI8/pvWvZWVU/H31FRX08+cDDAPn9evxXW0tPyMxkbF6770/NH5jY2NBXyYj+OILKlCSk6mo//VXKrzffZeKPqkUGDsWHm+9hTeeeQZlBw9Cfvgwdjz7LDFavZqKoRdeoCnPH35IDb6MjYHOTiqSNm+mx8zMpOng4eGArS26u7uHo6BhYWFELBbD/OBBITQhgVjPmUOQmAiMH4+bbW2cm4sLe/LcOcHt0iXE/fnPRCQSoaSkhD82dSoz79o1wa22lkb7B0Xbw7Czs4MTIOz89lvy0htvgAymdf9D3nmHRpo7O0csGjAMg+DgYFhZWeHIkSMAAB8fH0EkEpHe3l6uvr6e+eSTT0hQUBCCgoJgtXcvTYXneUAQEOngwISXlOB2WhpzZsIE9EVFIWrlyrtiPz6e1qkvW0bv2z0CddGiRWzlV19ByM/nQw0MGN9t26DatYvLPnqUAUBcXFxga2sLAJg2bRpwd+GJxezZmGBlxUBfnzrkD7r2y1ta8Hh+PtL+/GdE29qSCxcukK1bt/JGRkZgGIYwDENYlgXDMLBraYFpSQly1Wo0NzczLMvCx8cH6enpSE9Px6Shlm8DAzST4vZt2uKtoICmyZeW0kUdDw9AJMK+ffu4zs5O0tHRwQiCAH19fVg6OND5XltLSxHuE+gLFy4kt27dwslff0XURx+hYd8+uA/6IODYMeD0adhMmQKRSCQbGBgI6+vr256ZmRno7+9vnJOTwzMMk5mYmFirVCpdAWgBNPM8z3Ech6CgIEgkkuGFwblz5xp8/vnnT7z77rsFhBArLy8vyVAJTFtbG9RqtQDg1uDQbFxdXWFpaQlBEBgAPX9sounQoeO/EV3Ntg4dOnT8F6FSqQ6vX79eIpFIZE1NTe7jxo3bf8+26TY2NgvGjx//UJtvkUiEyMhIUUREBBsQECC+tx6bYRhUVlZyWq2Wkclk6OvrG5l6/U+SmpqKc+fO4cKFC3x1dTVxc3PjVq5cycTGxqKxsVFoaWkho0ePJvb31jf/X8Db2xuurq44deoUY2pqCtuCAgy4uKDW0hI1NTW4fPkyb2dnRyQSCaqqqnC0qIgI69YJy6ysGO/wcPiGhSE4OJjY2toiKytLGBgYIC4ikfCMjQ1xOnSIlKjV/C/x8RgzZw4RGxnRGthVq2h69o8/UtHi5gZibIwblZXw/PvfYRAVRTAotB7FxYsXhZKSElJWVkYNytzcqIj/5BPqUF1fT03P9u+naeFjxwJ1dSBjx8I8JgYH79xBh5kZvL75BsZr1tCWWatXA66ud3skE0JN3KZNo1FhDw+6OGBmBhACt+efJzlBQQixtITE2Bg2jo4wHT+eSEeNotH7GTOARYtw+vRppqGhAb29vZj01VckIzpa8PDyIjY2NqSyrg413t58eGsrgw8+oO2ozMweuF6e51FWWIiYFSuIOiBAcHv1VXJ/H+pHYm5OFzd8famx3X2YmJggIiICISEhxNvdnXjq6cFv7FjGub2doKqKy6yuZow//1xwXr6c4Kef6L28eBG4fh3c3LnYJpejzdISVd3dqKio4ENCQu6+OEZGNCXaygpYupQazhkZQaPR4HhtLSwcHXnnzEwGdnbIksl4qVTKzps3D2PuiwSPgBD6fKZOBXbtotFjjgOOHYMoLAxuS5fCxcUF1dXV0Gg0CAwMZMzNzYmpqSmkUikMDQ0FCSBIm5oE9ZgxvEajYZYuXYqAgABUVlaivr5eiIiIoNfw0Uc09X4oQt3YCKSkACYm6IqMFCoPH8bPra1CS3k5GzlpEiktpWt7+vr6CAgIoGP99lvafuy550ZchqmpKezs7BAbG4vM2FjhXEGBEB0dTcAw9FxVVSCvvgohLo6tbm+3FAShQqPRzBo3bpx47969GrVaPevixYuLxGLxUYZh1jMM08Jx3Gfl5eXjUlNTzYuKirRDGTwikQje3t7impqacQAiJ0+ebDDkEyCVSiEIAlNfX78iOTkZhJBJISEhBuXl5aiqqsp84403tgOAUqkUq1QqR5VK1aVQKIQ/Nvl06NDx/zu6yLYOHTp0/IehVCpNAfgDyEtMTOz9Z/blOE7fyMgIo0ePJhcvXoxTKpVMYmIiDwBisTje29v7dwuhGYZ5ZH/ruro6VhAE/PTTTyCE4O233/5nhgaApn8mJycjIyMDADB16lQSFhYG9p7caR8fH1JTUyOMEC3/F1Cr1di+fTvf3d3NAMDZn36C/PBh/PDUU2AOHRJYlhXUajWTm5sLf39/lJSUIDw8HAkJCQRxcdR9e8uW4eOtWrSISVu5EtKuLiJ68kmIvv8ecW5uzLXt27mUlBQyJTqaEZ0/D7z+Ou1P/Le/0frUDz8Epk2Df2ws+bmyEstrayH29aV14g9BEASkpKQQgIoaQ0NDGoH+8ksqrj/9lNbj1tcDX399d8dBsy4GQOC6dag9eRLso3qZGxrSvsmZmbS+99ln6eeDqeNXT5zg2lxcWFYiEXoXLoTUx4dg/37q0N7cTFOO585Ff3//cK24g5MT6bp0CT1ZWfzRo0dZQRDg7OwMDw8P9qeqKoSvWwfn48dpJP7pp4eHUlxcjJtvvSUUeXqS4K+/5mMWLnxof/cRcByNqDY0UHO33btpZLWoiEaaT5ygCwLXrtEUfKmUps57etJU6aoqWP/wA6Z0d7N35s3jvL79lkVd3d1n0tEBxMdDtG4dXjx8GOW//oqykhI4JiQ8mLZtYEDT9Lu7gYYGaE1N8eWXXwrLTp6EDcuyYFngzTfBnzxJWltbkZKSgilTpuB+9/5hTEyomV1DAxAcTD/78Uf6rHbvHv5aa2srzM3N+ejo6PtXJQhaWgiOHUPA7Nl3HegBeHh4IDMzk7S3t0NmYkJF7+zZAAD1t9+ioroatUlJ/JSpU5mDr77KC2o1O6m/n7jv3Anmgw9QfukSV97VxRoaGt6t/X7xRSrWr14FAgJGliR0doJxdkbz5s2CVqsdee9mzAAqKhBsbMz2mJpOazA2nhQeHq6v1WohCIJILBaf4jjOOSIiAsHBwdi1a9cWAH/TaDTvANjb0tIi+vDDD3kjIyNeIpEw4eHhzOrVqx/6+y8uLk7k5ORkWVxc/J5cLhdZWVnhhx9+6Onv738TAJRKZaRYLD5OCJEyDHMWwOyHPxwdOnT8t6GLbOvQoUPHfxBKpdJRLBYXmJiYrNBqtetTUlJ+/D233fvJzMxc4erqKrOyssKVK1fUAwMDFxUKRY1SqbRmWfarKVOm6BsZGf1LYzMzMxNKSkqG/zLPycnhHR0dyR+JcNfU1OCbb77hL126hKqqKmJnZ8ePGTOGj4mJYe6vAS8uLha6urqE0NBQUltb+z+KoD8KrVaLTz/9VJDJZGTFihWEZVlE19RAZGSEgBdfxPTp00lUVBQJCwsDz/MoKSmBRqPBkiVLaJrwkiXA5MlU4NjYAN9+C/6ll1BgbY2SgACc02iQXVAAkUgkKBQK5vz588KFtDQirq8X6tzdSU1NDapra3nnuXMJDA2BzExY3biBDAsLXrp1K7FsbAQzceIjx69SqWDa1obYs2dhu3IlSGcnjWw7O9OU78mTqZgfO5aan92HpaUl8vPzkZ2djbq6Os7Ozo4xvKfGGxkZwJ//TF2rN2wAFi4cUQOeXVJCMvX1iZ+fH1G5uSFq61aCvj7qwt3dDWzdSlPbXV1x+84dNDc34/bt24h8/nnEfPYZEzl5MsrLy/mqqipSVlaG3t5eFHd28lEzZhC8+y41FbOyAlgW33/1lTB7714S+vLL8Jk3j7YGE4S7Ttnt7TTtuKCARrB37KBi+7XXaH3xpEnA2bM0Jfqxx2ikPzqaCuu4OOq6vXw5dRv38aEu9AYGdOHg8cdhZ2/P7NNo4KBUCibvvUfw9ttUwD/1FLBwIcReXtA/fRrIy8Ol3l74L16MpMpKPi89HVxyMmH9/XHk119xxtycv3zjBh8waxbT7OaGsI8/JoxWS03I5s9HX1+f0NDQgPr6elJSUsJHRUU9fEWBEDrexkZ6naNH0/m4axcgkw1/7dy5c5gwYQJjPWiUNwJDQ7rYMGcOcM/7paenh8zMTLS2tnIB+/czKClB76xZ2L17N38uJ4eoz55FyPbtxPTFF1FQWAhzKysSvXIlyPPPA/r6CJw5k+EkEiFPoyGGRkacnYMDfblFInrPJRK6iDOESIQ7RkY42dxMli1b9uC7HhkJcWkp3PfsEY1evlxP7u9PPvvsM66vr4/leV5GCEF1dTWmTJmCwMBAcUdHR+jAwMC08PBwEc/zYFmWaW5uZjQaDSksLERkZOSDNf2DmJmZwcPDg7W3tyctLS3IycnpePPNN59TKpWmIpHo8oIFC8wjIiJEV69eNRg3btzWhx5Ehw4d/3XoxLYOHTp0/AeRkZHxRWhoaOiSJUsMWlpamNu3bzfExcVl/tH9VSqVo6GhYYSrqytjYGAgrqiomJGSkhIhFos/HDdunNTX1/dfNh2ztrYmsbGx8PT0hK2tLUxNTXH8+HHS1dUFLy+v4e/xPI/09HTIZDIMGRrV1dUhPz+fLFq0iEREREChUBBXV9eHmjdZWFgQlUpFcnJy+OzsbFJUVMSFhob+42jmP8HHH38s9PX1kfXr1xMjIyO4u7vD/M4dmC5aBNN7atVFIhHc3d0xduxY5OXlCYQQ4uTkRPtnHzhAjZz27gVMTCD6+mvcdnZGF8D39/cTAJgwYQKxtbVFVFQUCQwKgvW775Jzjo5cQXEx093dTczNzXGT43CDEBjU1kJRVER+9fKCnZsbTBwcaO30fZDaWpSeOgWNRIKo3FyYbNhA61yHhIpKRdO/16+ngnDGjAeOw7IsoqKiIJVKkZGRwZSVld1NHQaosdeGDVSULV5MBeucOTQCDEAQBFJUVITJkycjLy+PxMXF0TZSTz9N24jJZMC8eci8cEEoVquJIJGAB+BdUQGzp58GY2KC0aNHk9TUVACARqOBo6MjAsePJ1i6lNbNf/458MknqAdQbWdH6jMzwaSk8KY//kiY9naa0n7lCjX7qqqi9d5D44yOptHUJ54ARo2CsGAB2sLDoe/kBBIbC0EsxtWGBiGjtlZwdnYmYnPzkT3R76Hh5k1UZmXBorGRWG/YAGJoSM8TEUFTuV1cwMXE4O9tbegXi1Hv4gL5+PHErLQUDvv3k508j8WbNsHDwQGOkyYxfH8//F9+mRhkZFDX+MceA1xcYG9vz4SHh5OoqCioVCqSn5+vzcnJ4aurq4mfn9/Iyb9zJ10MkcmA48eBDz54wPX80qVLmDJlyvA7+AA8T+eMgwMA4MyZM8KpU6cIQFO8A2/cIJg3DwczMri+vj6yatUqUqfRCEJNDckxNuZvlJUx3t7ecHFxoc+eEOD552EcE0Os9uzBqPfeY36wtBSC/fwIxGLg8cepT0FzM51HajXU69ZhK8tilKenEBMT8/AX3MsLkMsBtRqorobG3p5paGgQOI4jgiAgICCA8/HxYfT19eHr6yseO3asnqurK2NnZzc8v7RaLeRyORcSEsL8EQNCjuOQmZnJpqSk6Ekkkk8DAwMto6KiROXl5aioqFCNGzfu4D88iA4dOv4r0KWR69ChQ8d/CEql0lUsFi+IiYkRA4Cjo6P+jRs3wv7Rfvei1WpP3bhx45kJEyaYBAUFEalUavXDDz8skMvlsBt0Ov6fwDAM7O3tYW9vj3PnzhGWZXHlyhU4OTkhKCgIAJCeno6kpCScP38eMpmMW758OZuens5ZWFgwo0aNIv9INJuYmODxxx9Ha2sr4+fnh927dzPHjx9HeHg4uru74eHhgba2Npw9e1ZYuHAh6e3tBc/zkEqlyM/PR05ODtfe3s5wHEckEgm/dOnS4egez/M4dOiQ0N/fT5YvX343ylVWRs3ETpx4+HVnZcG+spI0NTbS2tO//pWKWoAaiolEwLlz8C8sRCbAaAcFTkZGBj/UbkwmkwHGxnh22TJ26/ffc3fu3GGPHDnCC4IAkUgEFcsyTmIxEs6dg42JCY1enjhBhTMA9PTQGuA//xnRpaU4vHAhepOSHnQKX7CARnm9vWm9bHw8TZV+SIZAcHAwzpw5g+Dg4AcfSlAQcO4cjTCvW0cjvt9+CwA4fPjw8P0EgNu3b8Oqu5u2TXvlFbS2tiJtyxbuWm4uu/76dZgMtU2Ljx8W/szNm9iwdCl27tyJqefOQfzDDwSvvEJT4A8cGBa/8/39SW1NDV8mkzHnRCIGJiZYu2gRyMqVd8f6O1kA3d3dOJSSwmszMphFR45gz+uvC90aDRGJREJfXx/j5uY2PHfvpzE1FdbTp0O7ciVOzJuHm8ePC/PmzSPQ0wPefpve1/BwGBkZwdDQkLe2tiaL33yTiKm4JNznn+Pl/n7oR0TA0t6eoL0dyM6m/dCfeYYK3uXLgW++oU7pISGQDAxg1VNP4U5Hh+jIkSNoaWl5cGBLl9LI/pkztB/6Q2rRAVpy8EhkMhodH6SqqgoajQbOzs7CExoNgzVrgDFjcCcnh4mPjycymQxzV6wgGe7uCHrjDeZGVBT87z+voSHkLi4wO3wYB7ZsgUwsFiCXExw7RuvVz5+n11tVBdy8CWRkQJg/H5MnT/79XwoJCcCFC8Cbb8L77beRolaT0aNH8+Hh4Yytre0fWkCcM2cOO6K//O9gbGyMp556Sr+srOxNKysr4jfYOaCgoKC7v79/uBWYUqkUA9AmJiYKSqXSGIACgBmAMgDZiYmJ3B86oQ4dOv5j0YltHTp06PgPgWXZp4KCgpihmunBVkgjnJKUSqWbvr7+3wHYaLXaO1qtdh+AA4mJie2DX7nW0tIyHMpyc3PDuHHj+GvXrpF9+/aRV155BSPShf8FeJ7HN998w3V2djIrVqwg2dnZwtmzZ4mxsTHc3NxQXl4OT09PwczMDFlZWeyOHTsEAwMDZs2aNf9QaA/h7u4Od3d38DwPExMTkp+fj8LCQjAMA0KI4O7uTkpKSsi77747vI9EIoGenp7g4eGBOXPmkP7+fpw6dYr57rvvhNdee43wPI/du3cLAwMDeO6552Bubn73hJWVNFopEtFaWEGgzt7vvUeF30svYbSxMU6EhQEff0y3VVRQh+uhOt7kZFgeOYKI+Hi4v/8+coODEfn00yOV8ObNgJ4eVq9ezdbW1sLLy2t4+/vvv4+ojRvhIBKBfPQRPXZNDY0yCwJgY4OuPXuwPSQEmsE+4A9NsWcYKmQAamy2bx/tmXzhwgMR7vT0dGg0GlRWVmLc/e3O7nWPXrGCivW33gL3zjswMTGBqamp4OnpSSQSiXD79m1iVVEBHD+Ogvh4HDlyBI6OjuSZ556DiVxOr+PkSRp19vQEioshTJ6MpokTeQNHR3gODDBqOzu6PTWVLmBcuAA8+yyY2Fg4BwUx9kVFGHPpEi66u2P/p58KT2zcSMjQQsR95OTk8HV1dYK1tTWbmZkJU1NTPP3FF2iWyTBJoSCsiQm8vLyYLVu2CFZWVg+flAUFsAwMRPVf/oIxUVECIQRXrlzhMeQMvngxvaYnngAOHAAhhNTV1ZHq6mq4ubnh+vXr8PHxgaGRETB9+t3jlpRQwe3sDHR1Abdu0VTy3Fw6D5OSYDN6NCx//RVPtrfj+qxZAjZsIHBxoSnYLS10IaS8nB4vMZGmZ9+HRqPB+fPn+fnz5z+8/ZeVFW33NoihoSGJioqCYuxYwvj4AMePQxAE6OnpCT09PcP3aGxsLCAW47WEBNoO7SGIRCI0isX8gthYBlevAra29H41N9OUf60WsLODpLAQrnv28CqViixcuPB3fzkcaGzk+qKjid333yOgr4/pcncXbH/HSFAqlcLa2prv6upCUFAQY2Nj83uHfwBHR0c4OjoOj6m9vR21tbUA8CMAvPfeewsZhvlBJBLd+fDDDytFIlGojY2NxtjYmG1qauJ7enq6lErl9MTExPx/6sQ6dOj4j0IntnXo0KHjPwSxWPyEn5/f8F/N9vb20Gg07kql0jQxMbFDqVQSPT29XyMiInwsLCyYX375xdPQ0HDswMDAp1u2bEnv7+8/SQgxNTQ0HI6mEELQ09MjdHZ2MgzDoLGxERcvXoSXlxfGjh37L42zs7MTt27dYtesWQMrKysoFApy7do17N27FzKZTOjr60NERAQZP348ZDKZIJFIiJ+f36PTWX+HHTt2CM3NzQQAVq1aBXNzc2zdupVcv34dAODi4oLx48fDwMAAgiBALpcTQggLAP39/ejs7MRQenR+fj4aGhrI+vXrYWZmRgUsz9O662XLaOpxZyd1rX79derCvXw5dcdOT8edS5cEgytXeFRWsmhqAn7+maa2+vsDN25g982b2rqAABFTXY3W4GDoSaWw+uQTKsx37aIp2R9/DPj6wtDN7W7qvSAAdXUwB4SWoiJCtFrgjTeAV16hKbQWFkBTE1BYCI2xMcTl5Rhsj4bc3FwkJCSMvGmOjrSWdwh/f2D7dmDmTFrPbWIyvGloweHmzZtDhlp39/v007tRc4ahgv2bb6BNTUVrayvCwsIIADg4OOD69euc/6JFLGbPhuVgtHREvXBBAa3ldnenbcYANF26hINffcVAEPDFihXo3bYNYrFY2PjVV4TY2tJ7f+0aja4/8QREDAOL/HxMPn4caZcuka4FCyB2dITB448Do0ejVa3GhQsXUFBQAACMq6urcOfOHd7FxYWZNWsWIxKJYPPRR7B56il6LV5esLS05I8cOcI8/fTTZIQx4PXrwIQJEGdkYNTGjbBoayM7duzA3LlzR0ZRJ08Gtm3Duc8+Q29vLxEEARcvXhSOHj1Kenp6EBAQwM+dO3dkCcSXX9I6659/ptkRjY3UJG+IQddu0bp1aDt+HC0NDTxGjWLBcVSMX7lC5+3339PvP2LxLCwsDLdv3350aNvOjkbnV60aPIwhMjMzUXHiBHqeeALdx44Bx46BEMJw3H0B2qE2cyUlNIPiPsrLy8HzPOPi4nJ3Dv3979R938xseNFHe+gQqsvLGb9HROaHuHLlCm7evMkuWLkSXEEBnN54Aw3Ll/9uRFsqlWL16tXM5cuXkZqaiszMTKxZswYPrWH/Aww+QxaAI4BSiUSyOiEhQWJqamrf09Nj7+joCKlUOjyJrl69anzq1KnjSqXSKTExUederkPH/6foxLYOHTp0/AegVCrNWJZ1dbynz7BYLIabm5v65s2bXyqVyg9EItE6mUzm4ufnx3z55Zfw9fUV5s+fz6jVar3S0tLx9fX10QMDA/y4ceOGbaz7+vqQl5fHAjQiferUKa61tZWtrq5GREQE7jcn+0dotVrk5+eDZVm0trbCysoKZmZmiIyM5DIzM9mOjg4SGhrKRUVFsQAQGRn5Pyq0XrBgAdm1axdef/11DKWAzp8/H5mZmfzcuXOZRzmn//zzz3xJSQlDCEF+WprQfPiwUCqXM0vy83mzr79mMH48rbf+29+o+Lt1i5qCGRjQyOFQXedgBBkAqm/e5BJOnxbB3Z26kA+JnLg4oK8PxsbGDADwIhGKBvdznTkT/jU1NP07JIS6WM+eTU28du4ETp8G6uqg9fNDYHAw8XN2psLc15c6Nx89SgU9ADg5wZwQvPzyy9i0aRM0Gg2am5vvuj4PYWVF073/8pe7keyoKJoGvmwZ3TbYXsvb2xvPPvssduzYge3bt2PlypVwGKzhRVQU7an80Uf0Z3Nz6p7+zjswk0hQVlaGyMhIxMfHk6+2bWM5Y2PcOH0ah5KSYGRkJJiYmBB0ddFU+MOHgZdfpj26B3u2W1lZwd/fH4WFhdAMDGDJ/v3ImDOHF8rLWTKU3s+yNLugrIzWoI8ZA87dHTkMg6sdHZC3tGDyxo0YaGtDoZsbCMvC3MEB8zduhJ2dHXng3gC0tdngYsWKFSvYnTt38ufOneNnzZrFQhCoudvKlWhPSUGnRIKsn37iWltbWZFIxPv4+DAAfa+6u7sxMDCAO5s2webZZ+Hi5YWb7u6oqakhAODj44OCggKmoKAAISEhMDUxQUBbG2T79tFab3d36iI/Zw6NWN+fyi6XA4GB6O7tpfXOQ8yZQxeFfviBOs7b2gKzZtH978n00NPTAyHk0SLP15fOA40GEIsxb948tJaWwiwhAeqzZyF2cwPDMNi+fbvWxMTkwb8nd+4EiouBpKQHNqWlpQn+/v48o1azeP99unDyyy90fM3NtDRCq0V3YSGcq6sx9bPPcIvjUHb6NCeprSX8pk1MpL09YG+PL3bs4Do7O9n4+Hh4enrS+RMfD48tW6jg37hxhKP6vaSkpGjT0tJELMvCyMiIH3pH/xVMTU1hZmamf+fOnRKlUrlILBYHW1tbP9I1PigoCCdOnJADsADQ/K+eV4cOHf+70Rmk6dChQ8d/ACqVarK9vf3MkJCQEf2e3N3dJe3t7W59fX0rPTw8QubOnWvI8zxycnKgVqvh7e1NWJaFqakp/P39WR8fH9G9buNisRgBAQG4fv06BEFAT08PAwCjRo1CamoqL5PJiOUjUkHv5fbt2zh06JDw22+/kc7OTl6hUBA/P79hsS6Xy5nMTOrjNmvWLOZ3HcQ1GuDgQeDVV4Enn6TC8+pVKjw2bqRGT62twKFDaHZ2Rsfp04Kou5tY+/sDOTkw8/BAgLc3Eff3U3EMUKdpADhxAh2HDyOpooKs3bcPMXFxkJWUIPzkScb//ffh1NlJytRqnOnvx1WGwW1LS9zy9hZuJCQQl5kzQSorgU8+QXdEBG5UV8PKygptbW1IPXcOjlu2MD3BwaiaPRtVTU0ghCA7OxvNHh449fPP3M3mZtbR0ZFfvnw5aWtr41paWpjQiAiYjR1LhXlcHK1ZnTePiqOpU2kU09QUGbGxSDcwQNzq1WBWrqSCOTaWCvOXXgL27KFiddkylN64gWvXriE8PBxTp04lD8ic16gAACAASURBVNShEkJFkI8PcG8U7/+w997hUZVr1/h69p6ZtEkhhVRSSA+BNEIIJPQSCAjSexcRVIoHj+LhYFAUPCgoKggoIKJ0FIQgoYZAeiCkk0ISQiqppE7Z+/vjTiVBPed7z+/z/V2zrosrmszs2fPsZ+ba617rXreTE6394cMUqNZqf9fT04NarUZhYSHu3bsHOzs7Uv6nTCGy3cmRkPH4Me5euoRRd++K/T76iOlSrzJyc3PVj0SRu9XcDJ7n4ebmxvrX1YHbsAEZRkbicUtLltLQIKiqq0WViQkz6t8fHMfBwsICCXfvQs/AQBymVDL/t97iWGfywhidq58fnQfPQ0tLC4MGDYKbnx/4vn1xWhSR4ewMUSZDr+pqBCUmwuTBA3A1NeBkMiKUnUOxAgLILbBtG9j48TA3N2cRERGcr68vGpOTIXv7bSS5uuLojRtITU1FRUUF19LSAsYYu3XrFiIjIxEdHY379+8jPT1dKCktVQuCwAXcuIFkb284OjlhzJgxGDFiBAYNGoS7d++iurgY/Xftwr26OpSuXIle7u6QSqX0+ZFIiLjOnNnto9Lc3Ix79+6xoKCgDjY5ejRZzletokLIokVUCBkwgIo506cDS5fi0aNHqKurE729vXsmmBxHLRN2doCRERhj0BVFcH37QjpiRFvLBuLj4wUbG5vuNuyxY+mcnz2j/V1fT+q1pyf41atZn5MnuVv29mrrb77htEJC6PHr11OLwNOnwPbt0Pb2hvm0aUjw8VGHZ2RwRpWVzNXAgLtcVQXv+fOhqq9HfmoqN+LGDURJJIK/iQmFrRkY0P7+9FMqVJiYvIhwcw8ePEDoxImYPnYsk5aUALGx1DO/fTt9rqqqaE/8+iv10f8Obt++Lerr6zMTE5PxXl5euv369Xuhui6KIm7dusVEUQwbMWKE6ncPrIEGGvyvhUbZ1kADDTT4XwCZTDbFzc3N4Pnf6+rqYvr06V1mdcnlcsyePRvHjx9nX3zxBQBKl/5H6xzl52FiYoJly5YhOzsbBQUFSE9PR0FBAZRKJXf79m2oVCq0BQD1hObmZhw4cAAcx7Fly5bBwsKi2827VCqFg4MDHj16hNjYWLz00ktdH6BWk/315k3qJ46NBaqr6W9lZUQ4BKHdMoz8fCg++wxHSkow79o1VpOYSKnaY8eSknbtGqnLVVV0493UBERFATEx0CkpQXOfPihZtAguM2ei/5tvMgDQAwBPT/yyc6fQ9OgRt/HiRcRxnJA2ZAi4mBj27NIlGJ48CVy8iKPffCOYpaZyiaGhePLkCRYdPy6m2tmxZDMz0SArS1QoFOz27dvMyspKHfT119xEtZrTvXoVxsbGXEtLCx4+fMgDQEtLC9nE33uPVMi0NCowyGTtyd4AYGlpCUEQxC+++ALLly9nBm1W74wMIumzZxOZaG6GbUUFAAq0et5CLooiSkpKoBMQgF5tinhnLFhAo7I++gjYvLn9HEaPHo2WlhbEx8ejqakJrS9ANuHWmdePHj3CyZMnMW79etg2NzN8+y3Z7QEs6dWLx65deNnGBndu3YLwr3+JV3R0mGhvLyY0NzMTExNYWVlxYkQEYs+ehdWMGThz5gyy09Lw9ief4Mflyxk7dKjLmrTDxYUCwfr0ofMGzRfX1taGubk5/Pz8IJPJUFFRgX379iHB3x8WJSWwuXAB41taIFm/HrC2JqLXSiwhl5Ol/t13YWtrC1tTU6HE15e7EhqKykWLIM/NVc+ZM4d3cXFBVlYWTp8+DUXreg4ePBijR49uC9fjAHDFxcWI6NNHeCM5mTN+7732UDtdXV1seeMNICMDQl4enrz0EqLu38etxEQAwLp162AweTKYQkHOiudaO3r16tURclZaSn3aJ07QuDlBINLd3EyFG4Cul78/wBhc9uxBfdsc7hdBpaK+bTs7eu6CBfTZ7ASe59vbFrpAKiUr++rVNGZtxgzg88+BiRNh/vHHiLt/H9UNDfxnM2ZgvqEhnAwNaU9Nngx88QVZ4l99FRYZGbCYMYMf8dJLUKlUTFdXF68rlbjk7a1OuXeP72VkhKZevdDMGJFhuZzcB2vX0n7YupXex44d9DMtjcj3hQvoW1qKpb6+4KZNg8LCArKZM4GKChrz5uzc3k4AxshJolQC779Px+whtdzKyopTKpXCwoULu31XPw9BENqunUVYWFi+xkqugQb//wT73SRKDTTQQAMN/hLYsWNH8vTp0wc4OTn96efU1dWB4zgcOHBAsLe3x8svv/yHFkmlUolPPvkElpaWoouLC+7evcuampqwefNmKBQKlJaWIioqCoaGhsjKyhJaWlo4URTh4OCgnj17Nv+iGbUAkJeXh6NHj8LLy0ucOnUqyUzV1XRjfOkSqbja2hREpq8P3L9PtuLnUFxcjAsXLojl5eWsf//+6uTkZB4A3nrrLejq6qKyshJmZmb04LIyCtR67TUis1paEEUR+/btE8vLyxkArFmzBp3V+8cLFyKa48Rca2s279VXYWdnhy/37BH9z51j9yZMUNWJIicrLeWW/PILMgIDRe/0dKbz9df45NYtODo5Yfr06V1PuKqKbsw7qfkpKSk4e/YsAKB3Q4MYkp7OHA4fpkCpV1+l4LI33+xymLKyMuzbtw+zZ8+GW1sfrL09Kf9tpDoiApgzBxf27EFSdjaGDRumjouL401MTARzc3OxrKyMlZeXc/3v3oVKWxs6K1aoQ0JCurIGQSBCYWgIrFnTrnCHhYUBANauXUvJ6V98AVy/jpYTJxAbGyvevn2bqdVqbN68GayhgcjO8OGkrPr50TWYN4/+394eSePG4UJ0NNqunVwuB379FWciItSpxsZ8/+RkuG7dCvfGRhxJS1M/fvyYnz59es+Fn7t3aUxWa793S0sLnjx5gr59+3Z52JUrV8SCggKmp6eH7OxsAMCEwYPh19QE/s4dUlS9vEjVnTyZiFm/fhCkUtQtXgzJ8ePQNTFpd2zU1NRgz549kEgkUKlUEAQB7T3/z0OtphCwkJD2AgVycqgnet06sn+DSFh9fT127drV/tRxDQ2wSE4We585wziex4MHDyAIAvLz88VHjx6x4cOHI/DLL8HV19OorzakptLork7ztdtQOXAgIqdOVb88ZgyPJ09I8X4eO3YQeV2zhloWIiKAr77q8pD9+/cLnp6e3JAhQ6iopaVFKvqmTWSFnzWLSO/8+d2PD2D37t2qcePGSTw8PEj5Tk2lglvv3kTuAwNfOHZNFEV8+umnUCgUWLlyJX2ORZEKRj/8QAW41hFxMDKifvj0dHLJAKiTSJAhleJuYiIcBwzoXgScM4eKE2+9RTPi8/Opj/7BA/pcP6fmHzhwAMXFxRg0aJBqwoQJfyhoRUZGKu7cuSOIolirVConbNmy5d4fPUcDDTT43wWNjVwDDTTQ4C+OsLAwX4lEsnHixInSf6eHWktLC0ePHlVXVVXxpaWlrG/fvjh//rw6Ly9PbOstfR6MMdy+fRtLly5lTU1NyMjIYFKpVFSr1ezHH39sv8mvr68XgoODWWhoKBs6dCh8fX25Pzq3Xr16wcHBAVGnT7NeKSkwO3OGenWdnICwMLJFe3p29DqPHUsEpFNgV3V1NQ4dOiRaWlpizpw5zMfHh7OxsUF9fb1w48YN8c6dO4iJiWFpaWlq58OHOX7TJvD79pGyBgCt1ld/f39mYGAgPHz4kCUkJAAA7Pv0AVpaYLhvHyxef51FFxcjICAAcrkcllZW7Fl1tRAUH8/3XrGCBYWGwnj5cvQ5coRJ8/Kg1tXFTY7DvHnzuge9SSREGmbMaA+DMjc3h5eXF/yTkuB98iT7ZuxY6JqZwdramsKxRBFwcGh/fFRUFH7++WcEBgaq/f39OwK11q0jBa4Njo7AmjWoy8vDwF27EKGry8mNjUVzc3OupaWFMzExYQsWLEBfQYBpaSnO19dzVlZWMDExAQAUFBRATy4HP2oUcPIkUFSECmtr7PzsMzDGIJVKERMTg8rKSqHaxYWVjRyJCxcuiEVFRaKjoyMrLy+HKIqQGxtDz9eXih2iSCp5aioR7cOHgVmzEJeWpq6qqmKbNm1i7WsWHg4PpZIbvHo1PN95B71Xr8ZjAwPU1NRwVVVVoqurK+uxB7b12uHcOeRbWuLw4cNiUlISs7W17UJ8o6OjBQsLC27atGlITEwUFQoFyykqQopCAdsVK6A/fTr1QufmUgDdqVPAhx+C9esH7WHDIDt/Hmz4cCKFEgla1GqU3biBeokEXh4esHdwgHu/fugxVZ/jSGEuKSEyWVlJBNzcnEh4Kxhj0NLSgoeHBxITExEcHIwbT55Ar7CQ/fbgAW4kJ6OyslL99OlTsampSTRrbITk+HGm2LQJvd96q6td+o03aP/179/tdGKcnFAmCKJPSgqHy5eJWIaHd91PUilw4wb1b+fkUBvHcyg+d45pGxvD9vRpOsbbbxNBHzuWVGFvb1rHadO6rwmAmJgYwdnZmTNNSaFixzvvkP18wgRyePj5kSW+B8LNGIO5uTnS09PF0aNHM47j6P3r6JD1WxDoO0ShIPfI5MmkVru7A+7uOBEbKySkpTE1z2Px4sXoNmM7JYVaOiZMoMT45GRy33AcYGtL310eHu0P9/HxQWxsLAoLC7mhQ4d2P95zsLOz44ODgyUmJiby7Ozs+devX48aMWJE4e8+SQMNNPhfBY2NXAMNNNDgL4SwsLBAiUQyg+d5I4VCkSOKYq5UKv0iJCRE+/dU4xfBxMQERUVFkEgkOHToEADwpqamPVqaVCoV4uLioKWlBX19fZw7d45JpVLIZDLcunULhoaG4qpVq5g2KZ3/XpBQYyNQUAD5mjWYkZsLk48/poCtgIDuc6ABurF+7TUiagBqa2tx4sQJ9dOnT3lnZ2dh2rRpfNuNrJOTExwcHLiff/4Zqamp8PTwEKp/+40/ZGAATJuGGUVF6BMRQf2rGRlobGxEdnY2PDw8OF9fX0RHRyMhMlI9/O9/55N8fcVrEyaILTExnIuLi9rCwoIHWsf8rF7NYeBAmDo7U2ryypWknvE8iuPj4fPjj6j7+GMYfPRRV8IjlQIFBUQkOvVI96qsJCJ04QJGFBcLMTEx4qBBg3jY2BC5aGpCSUAAzp49q25sbORnzZoFJyenrnfvvr6U/NxZuZTLYeToCF5fH7xSiSGursx37Niu6xscDMvoaAwePBinTp3C9OnToVarcfr0aVhYWAgTJ07k+uzejaqpUxF17RpYv34QOQ5KpRITJ05ETk4O9+j6dWHyZ59xhQcPYurUqVx0dDSysrLEqKgoVldXJ0yZMoXGOk2dSqRp/HhSO5uboaythXjoEG8/cSK45GRSG+fPJ9tzeDi0N24EyssBxnDs449FhULBPD09mUcnYvM8FBIJlDt24KeGBgweOpQxxnDmzBnxjTfeYM+ePUNmZqaYm5vLe3p6Ijw8HIIgsA0bNkAQBOzbt0/cv38/27x5MzgXFzqP116jMVSlpbRH794loqxQ0HWvrIShoyPm3riBk4MHw+3oUdiUlIB79Ij29bJlRFwPHiR19dAhKgiMGUOktHdvSnRfurTH9yORSMDzPEaNGoVRo0ZBHR6O4AMH0LxlC4xMTDr2wccf49GjR2KdRMIEUQTXee+FhFC/dg9oLwhs2kQ/KypIhc7PJ4XayopUcZ6n8WFyORWNAODOHSAxEVi1CuN27ULKpk0CVq/m2pLSsWhRxwv5+wMHDpCLpQfFXxRFOpO33wY2bKDPziuvUO/5/Plk6S4vp3PpAX379oWZmZn4r3/9C0qlko0ePRpDhw6lufPW1qRCf/QRFfQcHakw04pZs2ZxX331FRoaGvDTTz+pFy9eTOt66xYp2eHhdD6enuTSCAoi18f771NBplcv+h6QyYAvvwTHcQgICEBkZCRqa2vxZ/IuAMDDwwNaWlry48ePXwoLCxuwZcuWRwAQFhZmKZPJtgKYBOAHhULxtsZuroEG/7ugUbY10EADDf4i2LZt2xqZTHZ0yJAhwc7Ozr7GxsbDeJ6fMGrUKOMBAwb8R6ndbm5u3KBBgzB69Gg8efIEVVVVmDlzJjM0NOyivqlUKuzatUvMyspiL7/8MszMzNCnTx8oFArhyZMnHAC0tLSw6Oho3Lx5E42NjaKzs/Pvn5MokoX7zh2ynqamomX6dHxrbo5SY2N4hYa+MCUY9ILUpzpwIPbt26c2NTVlkydPZoGBgd1UdI7joK+vj3v37sHh/Hk2+to13B02DM0yGe7fv4+clhZB39+f1VtZ4cCBA8jJyRFjY2MZANG0ro4lZ2VxPGPiFWtrNiYkhE2cOBF+fn5dRzLp6REBuHiR/r39NtlRjY2h368fGnJywB8/jow+fWDLcV1nDL/6Ktmx28778mW6Sf/0U8DWFpaWluzatWvcgAEDoKOjAxgbIys5GUcSEuDi4iLOnz+f61HRjYigfu1OhRi1Wo2vDh7EAzc3yFpa8NJbb4EfM6YrWWEMuHABTm+9herqanVUVBTLy8sTvb29mY6ODrt27RoeZmeLV3V12YyHD6FobESpqSkWL1mCfv36oX///hjg78+0WlrgvmYNY4zB1tYWwcHBLC8vD0ZGRnBycmIwMKD+1qoqIquvvw7U16PexgY2W7fC7/33wV2/TrPKlyyhfzU11Fbw0ktAbi5chg1jTU1NyMnJEevq6gRnZ2eOMYaKigo8ePAAlZWVSE5OFs9ER7PsoCD1cm9vzm3sWNjb2+PBgwdCXFwci4yMZNXV1WKfPn2Yubk5bty4gfnz56N3797Q1taGtbU1S0lKgvnFi4KZoyPDxo10jW/cIHL8889kKZ8yhVobliyhUXAeHsgdMwaRhYUoHTtWiPDxYal5eUJNcLBgMWMGJ+vblwjfgAEUFGZoSMfbu5cU0Tt3aLTco0dE8Kqrad9oa6OmthYPHjxon2/OOTlB8tNP0A4IIKKek0O2+e3bcU5PT4yLj2eRkZGoqanpaDPgOFJnBw7stnXy8/NRXV0t+vj4cO37+913yVkybBipuLNmUcHhvfeAESNIcR44ELh9m67nnDk46+SEZhsbwdXLi2ufKd8ZMhld0+Zmcms8h5iYGLF/eTln+OabqPPxwYkTJ0TL/HxwHh5M4u4OFhJC3x+DB79Q3U5KShJramo4AOB5Xuyfmsrg40OFjLbX3LSJXAvPpbonJCTA3NxcLCgo4IKCgqhFIDOTiipjxtCDvL0p1V0mox70MWNI2WaMihD29lTU2L4dqqAgpKSmIjMzE35+fn+obrfB2NgYarVaUlJSYhwcHPxzWFhYH4lEkubn5+c/fvx4w4KCAm+VSuUWFBR07k8dUAMNNPhLQKNsa6CBBhr8BRAWFmYlkUh2rly5UruT7VXa+u//Crqttuy5c+fi888/Vx85coQHgEWLFsHBwQGCIOCrr75SNzY28p1HOzk6OqJv375cSkoK9PT0YGdnh2PHjon5+fksMTGRFRQUqAcOHMibmZnB3t6+64umpFCfY3Q0Ecr33gMcHdELwFATE0RHR4uNjY1M9wUzgAGQMnXoEJ5MmoSGhgY+NDSU+npfgCcFBfCLj4fR3/+OA1euQM0YdHV1hbVr13JRUVFc3IkTIjZtYoOXL8eoUaNYRkYGLp86hdWffw73kBDcGjAAaoUCtra26JKWXl1NCldbv3F6Oqm0gwcDR48CL78MTi6H75YtiJswAU/27xexfj3DxYtEqBgjpTo/n0h2ZiYRjz17iDQB+Pnnn9t7ydeuXct0J0yA7L33MHbhQnHIlCk9360LAqUlP2dbj27tgwaARrkcR155RXzF15fhn/+kPnBTUyJ9ffsCjY2YMmUKP2XKFKDTGKxhw4YhIiKCjRk7FibvvQcnX19Y2dmJ9nZ2HdUHHR0aFdbcjM4kq7a2VrCysuLa1chjxyiY6vPPiaQBuPHzz+rMjRu5dzw8GDw8yA6vUpFVt7GR5o2npaFh40ak+vkJuioV8/f3Z1EJCbyjoyOcnZ1x7Ngx1NbWAgBMTU2FWbNm8U46OjyCguh1bGywcuVK/vTp0yIA9ZtvvskDQFZWFvT09NTHjh3jBw8eDB8HBzjk5GBMWRn07tzhMG0azbXOyCDl0seH+tMPHqSihrc3sG0b9QODlFUjIyNRT09PnLt2LfLy8rj4+Hh14vHj8Pf3F4MmTiQ3SOee5Vdf7VC+y8vpX0oKXc/LlwHGoM3zGJ6SQmqqiwsRxW+/pd7qq1dp3JlCAUilWLZ8OQcA4eHhQnV1NdfpYtBIrVWrum2fHq3ubb9LSKAwsO3bgf37ScmvqyNVWC4nkt/aHy/T0kJLS8vvq622thSsNmpUl18LggBZaSnP79yJn1atEpiTE8vPz2fHjI3ReO8eZvXvDxdnZ5o5PmAAFWCeQ11dHZRKJZNKpVi0aBGsjIwYHBzounWe8R0Z2TEmrxUSiQQrVqzAzZs3xYKCAlb59CnM166l6xsS0vFAX19aE0dHypKIi6PPj7Y2Ke8AhTJeuQLDNWsgr62FSkdH3LVrF1uxYkV7m8YfQRAEURCEktZzW+3n56c3fvx4CQDMnTtXd8+ePdMBLPxTB9NAAw3+EtCQbQ000ECDvwZ6aWtrq3oMVvofAkc24PY77O+//x4LFizAhQsX1Hp6emzNmjV43qrOGMOA1pnQERER6vz8/PaZ3OXl5fylS5cAAA4ODhgzZgystLSAf/6TCGlAAPUpt7SQhbM1HGr48OEoKCgQv/jiC4wcOZIFBAT0fMJjxgBubgg/f14YOHAg5HL571rXB5WXg+Xl4XhuLlpayR9jjJPJZBg1ahQUZ86wmooK9G694Xf/7TeUGBuzQ6tWoUwmA69WUyp5W9r2uHEUDGViQir23LmUWP355/T/VVU0F7hPHyA9HeLp08hevlzQ691bxLVrPPT06GZ/714iJo2NtC6rV5OtdciQ9nMfOXIkXF1dcfXqVXb37l2MGTMGuZaWYv+oKIb163t+w2lptMaNjV1+XVNTIwDgXnnlFVRUVEAikTAIAqm0Pj6kzrbZorOziTw+B2NjY8yePbvjpTZsEDx27+bg49OlvxiDB9Pc707hWu7u7lxxWpqAqVM5pKWR8v7kCfVtX7sGjB6NiooKTiqVdswAFwQaXfb114BKBWVkJCJ0dJAwbRrsra05rwMHYHr9OnJDQ1G1ebPwmYMD19hphN2aNWs6ChJHj7bb6jmOw6xZsxiA9r+7urrC1dWVT7p2DbHXrgnOR49yhp6eMP7Xv3BNELBg5kxIOxNDY2OyNT98SAR72zb679OngREjwJuaIiQkhP3000+8gYEBfH194evry2dkZCAiIkJMTExk69evb58DD0Egdbgt7LB3b/rn6dmxtpWVqI6NhSIvT8TJkwymppTOrVIR6bWwIBvzc2nzDx8+7DpWz8+P1l0Uf99F8jwiIug12tLK+/YlW/XTp1RcUShI5QVlQzQ2NqKoqAimpqbQ7kndHjaMCm5r17ZnMjQ3N+OXX36BurERD6ZNg8XQoVxsbKwIAG/+8gtODxxIM6oZo+LJs2e0dhwHURRRVVWFa9euCRkZGRwAxqlUaAkNFXHjBkNrIn8X1NXR+ygt7VIcunTpkpCRkcExxvDLoUPquTk5vP7zLpLz5zvs53p6VEB0d++YMQ+Q62X0aJz/8kv1uj17eD4piR2IicHVq1eF2bNn/6m2m+bmZrVarTYKCwubIZVKX/X09Gz/Qr53755aIpGc/zPH0UADDf460JBtDTTQQIO/BjIaGhp0VCpVN8L7Pwm5XM61j24C8MMPP8DNzY17+eWX2R+9roODA5+VlSVWVlYye3t70dLSEmZmZuz8+fN4ev8+ks+eFWUVFcxgxQrIPvuMbkjHjSOLZUwMjRCaOBHce+9h8eLFXFxcnHD16lUWGxur9vDw4IcMGYIuSrdMBmH2bBj068f6TZ78YqbQ0gK8+Sa47dtRHB6OnO+/h1wuF9RqNZs+fXr782RffYXeABGP2lpg7170+/xzlMjlGPvdd/h1+HAEx8eLugcOsGcZGah2ckJhURG0ra3hnZ8PJgjgQ0PpRj04mA768CH9NDZGY3MzcnJyuPX79hERmTSJHiuKZMXNzaURVW+80YVoA0Dv3r0RExMjNjc3s+joaMTHx0Pt48OGenjQuvXUr+rqSgncz8HQ0FAEgG+//RabN2/u+MPt23QuHh6kcHt6Uj9rD2T7edi4unJXQkPheeMG9aDPmEF/yMvrNo7L4O5dlPftKyInhyzUAP1cu5aSsh0cUFxczACwH3/8UXRycmI+zc1oOHsWXxgZwbi6GssOHkTpzp3CrDlzOBcXFyR6e4tHrlxhpsXF0MnO5qylUkyWSqFydkZUazGoHYGBpBgfP95jmj2qq4GSEvi+/jp8163jPlqwANYuLuJihYLleHsjQkdHDLG2Zl3Ykbs7FYxGjKDrKopUiPngAyA2Fnfv3hWMjIwYx3Gs4ynucHd35z755BMhLi6ODRkyhAK8CgqosNCpQKFSqbBt2zbI5XJMnDgR7u7uaOjTB8ljxojDW0fTISuL7Njjx1NPdUMD7Skfn/b2BMaYWFVVxQ4dOgSe59HU1IS5776LQ0uWgHNwEGUymdA6ckpsbGzkmpub+f3796v19fW5uXPnMiQmEkHfuZMKQz/9RORaS4uKOqdO0Z62s6O9vGkTtCUSZGdnS7Kzs2FnZycYGRmJmZmZ/Lhx4+DbStZFmQyYORNs/35g3Trk5+fj+PHjsL9/HzNv3cLFrVuFFaNGcUFBQUylUoEbOhQFV692OEz09SEOHYqyGTMQ5+2tfvjwIadQKJi+vr7o7u6OjIwMcBIJxIYGlhobiwHPFSEAUNHkvfe6OTFkMhkHAJ7370ME+N/efVecYWDQ9fsmIoLWpa1g8s03QFMTHqek4LuzZyGXy9X6+vpMEARWVlnJP8vOxFSR3wAAIABJREFUhpG9PWa++iridXW5m+bm6hEjRvyhnzwwMFBWW1s7X6FQzB00aJCBTafPfXx8fHNLS8snf3QMDTTQ4K8FzegvDTTQQIO/CD788MPGt956S0dHR+e/cnyFQoGPP/64/f+HDx+O3r17o2/fvj2rUT1AFEUIgtDeh9hcUoK7K1dC1dICma4uYtzdodLTg4dMJr506hSTdCaDokg3radPk6o3ezYazcxw48YN9ePHj1l1dTVzcHBgAwYMgIGBAaysrJDx6qt4yPPilK+/Zi9MO09OJpvs9evYe/iwWF5ezlatWgXzTmFk7fDzAwoLydrcGnKFX38Fhg9H2UcfYf/lyxB4vjN5gUQiEZVKJTM1NcXKkSMh3bGD5gf3sDZbt26FTCbDu+++S6Tqk0/IiuvgQK/l50d21E4QBAFHjx5Vl5eX8+PHj0dUVBQqWpW5cZGRop6Bgci2buU8PT27Wn9zcigZecWKbueye/du1NXV4Z///Gf3NbhyhfpPIyMp6X3hH7tS7927h8uXL4vvLlzI8NFHZJ2dORPYt4+UvrZjNDej2dgY3y9ejJV793Y/0LFjaD53Dp+6uWFAQADq6+vVVUVFnDw3lxWamcHdywtpaWnob2IiTFu9mmu7Dmq1Gt99951QXFzMtS42QoqKhABDQw7BwbSnNmwg4skYjXry86NQq9Y1Tk5KgvuVK9D+5hvg7l0omppwOT0dmZmZ8KiuFkJPneIur1mDpMZG+Pn5wdbWFhzHQa1Wo6SkBAGnT0P/1Vfbx0YBACoqIG7ZgrTkZLFo7VoWMmtWt7f86NEjnD59WlAqldzcuXPhYG4O3LtHPd+dEBYWBgsLC5SWlmLdunXIzs5GXFycsPq11ziUlRHh//lnGsf1z3/S+3NxAZYvB9avR9mzZzhz9qyor6/P+vTpA5VKBbVaLfqHhbHS115DjaMjOI5r/9fS0oLm5mZIpVLcvXoV76xdS0Wd7GxS2t99l/ZqYCBZwMeN60gjLywkhfjaNSiPHcPxCRMENWNcoa4uxB4UdB0dHegVFGBcSgrSNmxAcnIyIIrwSUqC0sICU77+ukuR8f6CBUJ4nz7cxg8+QHJyMh4+fKhuuX6db5ZIoB8UJPr4+DA3Nzfqr25uxjNzcxQfOoRyMzMEBARAIpGgsbERgiDgyZMnKCsrw9OnTyFmZYny7GwhzdOTKZVKTq1WQ61WAwBmnDyJ2v79hSHHj3f/ounViwobxsZQKBSQSCRIW7cO8gsXkLJ7t+Ds4sJVVlaivr5edHR0ZM5tie5nziCpthax8fGYbmAA048/xr8zUaIzTpw40Zibm3tOqVQu3bJlizIsLKyfRCJZwRjjlErl6S1bttz+jw6sgQYa/FehIdsaaKCBBn8RfPzxx5WrV6827mID/R/G/fv38csvvwAANm3aBKn0P2wJVyqpvzQiAurhw3FDT09wHz2aO3jwIAAg+NYtKKRSjLpwocM+2wZRpH7lAweIrLm5QTQ2Rm5uLh48eKDOzs7mm5ubAQDyZ88wW19ftNmypfsdfFMTqYx79xLpAJCamoozZ87A09MTL7/8Mt3Y1teTAuvpSaqsIFDgko8P2Y3d3QGQrfXLL78UjY2NRalUymbPns1kMhmKioqQnp6O6OhoWD1+jBUJCWD373c7naqqKuzZswcBAQEICQmh9/nNN2RrDgujoLBZs6gXVColdRDAuXPnxMLCQixfvpx17klXqVQoiIxE1ZUruKWvL9q7uopTpkzh2q/ZyZNkY31O3VYqlTh79iwKCgrEtWvXsm6jyNpgakoK/yuvkNV4+3Yau6SvT1bfTqTgxx9/VCuVSrZ48WIO2dk0vmvQIOrJNzCg8KlNm5A3bRqOXrgAOwcHccmSJd2umaKlBZcWLoS1TCb4Hz3KgTFgwwY0Jyej4Ouv4ejoiEePHuHujh1YFBsLlpLS/tyoqCjh1q1bXK9evdQ1NTU8QHsY1dWkwAYGUiCWlxftq337yGbv44OiESNQ++wZbo0cCR0rK7FOLmcKhUIwlskwuLSUs1uyBHcuXRKzpVL06dOHlZaWqpuamkQArKmpiVMoFMyouhrzz53Dxfffh0QmU8vlcnh6evL2vXrhztSpGBgWBt3q6heOuNq7d6/o7u7OgquqwLKywN55B6WlpaiqqmqfX+/t7Y2UlJR2Aji0uFgY89tvHB4+RPGDB9CWy2F85w5lB0ilUCuVKMrJgfG2bWiMiMDh9evFSZMnsy6zyFNTaS/2MP4LAJRvvIGaEydgVl5OarmrK/Wnh4RQgJuzM/3s37/D+t4ZGRmAmRnEoUORb2yMO6NGqYcMH87XmpnhwYMH4HkeZmZmyEpPF/r9+iuX4umJWmNjjLx2De4TJ8LsnXe6HbJFRweZP/4I00GDcOTIEfTr1w+enp5wOHQInLMzZQUAQGUlipqacO+115Dk6wuZtrYoCAJTq9UQRRGMMcjlctHQ0FAwNjaGY24u7/rZZyiNjoahoSGkUinK8/JgevQoypcvxw/Hj8PGxgYTJ06EpaVl+/lERkYiKSlJrVAoWHNzMwcABlKpuKKqism3betQvHtAYWEhHvztb6JzcjLL271bmODhwbV99v8dtLS04MSJE41PnjypZIzdE0VxbEBAgEwikXBRUVHNSqVy4JYtW9L/7QNroIEG/1VobOQaaKCBBn8diIIgAAAeP36MmpoalJSUwMzMDCYmJtDR0YGZmdn/1Qv89ttvIgC2YsWK/4xoq9V0c71iBVmpv/wSvKkpxrSOAhswYIAqOztbwgkCsvv1w7gerOmCKKJ24UKUBgbC7sYN6O7bh4bQUBgNGwYfHx++qqpKKCkp4bS0tEQXc3PYfPklw+bNXUeECQIRRTMzdL5xNTc3J9UpJQV6Bw/CaNMmDP7hByAlBZVnz6LX4sXgliwhK/UXXxDhLy4GcnMR++QJGhoa2IwZM1jnwDcbGxvY2NjAxcUFp44cEffo6rLqsDBoa2sjNDQUbdb/iIgIyGQyMWjAAIZPPqFQtbVriXB7elIP8MOHZK9PSiK1EEBOTo44ffp07vnwN4lEAsdRo+B48iQ8jI3ZvoIC8dixY+LMmTOZnp4eEfdOSmpNTQ0iIyPFhw8fsubmZqjVapadnQ1PT8+uFyA/nwKefvqJUr9Xr6Ye3IICIlvvvEO91Y8fo2HECDyZNQtFhYW8YXU1sgYNgqu7O/VhHz9OvbgTJ9K++O035OjpwcrGRly0aFGPtv/frlxBmrMzQp8+5XDwIIWGvfkmtKVSuLZazh0dHXHC3BzqoUMhUSqpMAEgPT2dqVQqzJ07l29ubsb+/ftRWFgIW1tbeg+iSI6D334jR8Gnn1JBZskS8JMnw2HbNoRPnAinmzfZtIQEZISHcwGzZ4MVFaGlqgqJdnZs6Zw5bSSri+VXEATk5uaiJikJZrGxYom/P69Wq/HDDz9g5MiRiBw3Dg23bmHC1atkqx8ypJu93sjICLdv34YyMhLGVVVIMjVFWVkZ5HK5SiaTsd69e/MjR45EQEAA0ubPR4uWFp6NGMEdGzIEeTt2QBAE+BcWYqiODppCQ2Fubo6Cx4/x45kz0OrXT7AwM8PfJ03iMHMmKeCtBSiEh1MAW+f+YoCI8/vvQ/n3v+OwoSE2FhXRaLqvvyYV+5dfqIVh6FDg5ZfpemtpdRmdBaC9WMUyM1F5+TJsf/iB9T19Gjh5Ej4qFRXETEwwfvx4DhIJhpuaonb4cMiPHoVWJyt9G4qKivDtO+9gfv/+KC0thYGBgXpKW0igoSF9/wDUPmJjA8uoKFyYOBEoL4exsTEWLFgAbW3tdgWZkR2Eni+KwKpVsOtUTHLIygJu3oT+9u0IDQ0VL168yPbv3w8AmD9/Pu7du4eQZctQffAg5+TpyZycnFBfXw9DQ0MmaW6mz8Avv3QZ69cZtra2UO/YwcLDw6F//z6Nwisr6zqu709AS0sLCxcu1C0oKNCtrKzs4+bmBr3W3ILs7GxFUVGRDQAN2dZAg78YNKO/NNBAAw3+IoiMjHy7srJS98qVK+r4+HguPT0d1dXVKCgoEBMSElhSUhJ69+79p2e3Po/GxkZERkYynueRnJwMLy+vP20fhyiSpXTfPrqx/OILCnN6Lk3c3d2dq8rKEk3u3GGZXl6QyGSiRCJh5eXliImJEW/fvo0rV66whIQE5BUVCVEKBUsXBDy+fx8mH36I+w8figaDB3OTJk1CSEgIcx04kMHFhQh1G9luaCBV1deXgso6EfrG48fBR0TgsaUlZp46hd8Ywz1vbyHR25ulHj8OSWWlaPn22wy6umSFnjOHyJy7Owzd3ZFRUgJbPT30dnXttgRGRkYIkEhY/y+/xNMpU2BnZ4fIyEhkZ2cjNTUV8ooKrFWpmHZdHRHabdsoQKwtbKmmhgjQ5cukJp89C+U//oHrxsZs/PjxLy5+GBpCduYMPLduZYmJicLNmze5Z8+eqfucPMlJDx2C8NJLuHnzpnDy5EnW0NDAPDw8UFRUhGFUvOg+emjyZCLXr79OhYbz5+lazplDfa0vvwysWoUz586Jz2JjWa6eniB/8oTNOHUK9bNmwWTDBuoffuklSpxft44I2O7d6K2ri8SYGAiiiD4cxyCV0vWqqcGdpCQk3byJgYMHq52nTOGQkUHPl8mA1jnggiDgzJkzKK+qwqjXXyfLe6siq1AoWEVJiaDIyGBWDQ1QZmaKzYcOiWl37oiWW7cyrU8+oX1x8SLtiexs6s9duBD6Gzfifn4+6lxdxUnvvsvky5bBZsAAsLVrgfx8XFerxQqOY3lFRcK95GQhMzNTVCgUsLKyYgC1E5iYmMA4KAjO+fnMd906uHt4IDo6Gvn5+RAEASU8j+F799LaTppEWQVtdmIA/fv3Z8OHD4fjlClQhIYiOydHsLW1FZYtWybx9/fn/P39oXX2LOSurrB/+BA5KhUeGBuj0tgYurq6kEqlMEtNxQMAEfn5aGpqUhsaGnIFBQXqtzZu5L1CQlj7uLkhQ2hOeFMTqft6elRgSkig6/bKK9TaEBoKhbY27sbHI3DJEjxsaIDpa6+RFf/772l/TJxIx1y4kNoPnhud1Q7GUPD0KZIYEwO+/ZZBT48s79eukfshLg7o3x/cd99B9/FjSPbupZTy57D388/FN3buZMYffID7ycmCVCrl2wtGQ4eS1f3gQSK5y5ZBYWeHhIQEtSAITEdHRwwMDGQcx4Ex1j1xnTEqgF25Qu/r1ClqNXjzTYDjYGVlxUaMGIGGhgYUFxcjPT0d5eXlCJTLMWDLFta7tZinq6tLZF4mo5FtlpYUvtYDUlJScPz4cTQ1NaFfYKDQ9/PPORgakrPG0PCFjoOel5jByMgIVlZWXRxDjx49EqqqqmQ3bty4PmLEiJY/fUANNNDgvw6Nsq2BBhpo8BcBx3F1Dx8+NLG3t+fmz58PpVKJ1v5tBgB37twRTp8+zQ0aNAjjxo373WPl5uYiPj4eQUFBsLGxQXJyMi5evCja29ujpqYGNTU1bPfu3fD09FRPnz7994N7btwgi/HIkUQeP/jgd5ONhcJCocHUlFeIIqKionD16lXwPA9LS0vW0tIiuri4YBpZbTmFQoGGhgYYGhqCi4+H461bDL/8QkSgzcYZEUE9rhs3kiWc50nRbQspUyrphvnSJYgFBTB5+hS8VIrdGzbQ38vKOC8vL7VBVhYvGzSItbkHOI5rDx5LCg9H+MWLGJaRAbfTp4ks/fQTEc9OPfQSc3PIR47EvHnzAABDhw5FyvHjgtbBg5z5pEmQ6OiQ/bbN5toZvXoRSTUwoPVzcUG9sTGYKEKZn09kqCcEBwNlZTCIjcXq1av5kpIS/Prrr+xcdjZctLWF9B9+QHl5OcaMGQM/Pz/k5+cjLi4OZWVlaplM1nFtd+8mVTA8vEN1HTGCFODWlOc2xKWmIjUzkw0+fhxB1tbc+fPnxU9dXdmWwEDqjxcEUkafPiVyuWkTMGwY9OfNw3RLS5ZUUIDapCRUz54Nu/v30RQZiaT58/HGjz9COy2Nx6hRwIcfkjthyRIihhER2DFvHuZ+/z08Q0IE/PYbhzfeoNT18nL4PHiAQltbrl90NKp79xZf2raNPe3Vi6XJ5eL3PI+g6dPhNXIk9RN7elIvs5cXqYh5eSh56SWgokLUtrJi7fuX44CFC3EvIoJNvnABFhIJl/7VV0hMTERpaak48Pn51H37AiUlQFwcZAEB+Mc//oGamhokJCTgzp07qFUqYThgABWjBAH4xz9ovToH3E2YAPuVK7Fq1aqOBS8poZ9vvw24uID77DOw8HD0KS9XL1y4kOc4DjFXrsD+s8+wf+VKAIC3tzdfVVUFjuM6+gE5jooookjXp6WFeqvXrqVrNX8+kVRRbB+jxS5dgqy2Fp8vWQKlXI53AHIqbNxIe7YN9+71vD87oVevXqiuruZqmppgZGREhTlRpALI/v3Al18S+U5JoT3zHE6fPi0oW1q4IgcHVMTGCk+ePEH/58no0qUUuMgYEByM5qVLUTV0KD8SQGBg4B9Hrk+dSmvR1ERrdeFCR0GsFQ0NDWpdXV2+sbERWjIZUkaPFgM5rudvvaNHKQMiPh7w9+/2596txx45ciS8vb35OlGEAUCvPWoUFbsqK+l9/YcICQnRzcjImA8gDsCe//hAGmigwf84NGRbAw000OAvAp7nn8yYMcPB3d2dcRzXLZW8rq6OqdVq/N5s6rS0NERERAjNzc2cjY2NcOTIEU5LS0tobGzkgoODxZEjR7bf4O/atUtMTU3l3dzchH79+nVP7ampIeVm6VJK7505k+bM/g7UajXsfv6Zf9TaMxoYGMiuX7+O6dOnw41m3na5X5XJZB0KTUAA3ayePUukYPt2sqja2pLCplBQKNRbb1Gq8PvvU2LyyZOAszMU1dX4ycRErJkwgUGthr+/v5Cdnc3V1NRgTEAAz2dmYteIETi3bRvs7e3F2bNns4yMDHh5eeHmnTvqYWPH8sFbtxLRqK+nPmuZjJK0nzyhBG65vCMgKyYGhiUlCDp+nLvn5SX+oq2NNX/724uD3ABSWz/5hEiHtzfKNm6E/UcfQcvXF1HnzwtB48a9+MlffgmMHQtLS0u88sorXM3YsQiPiIBKpcLq1au5tn1x4sQJAEB+fj7/7Nkz6OvqErlIT+94D23o25fIwqVL7XOj6dd9oaOjI6SkpIjW1ta8kZFRx3UbPbrj+ffu0fovXkz927duwczCAvzVqzg3dizKy8sFxcCBnODriyVLlkBnTyceIJeT2vnKK0BFBa5bW0OpUMDg9ddhP3gwh8uXqZBy5AhiNm8W0pRKrtTeHpn9+oHjOLY5JAS9Q0LQG2DFx46pcysqeK/MTODQIbI8t7kTNm4Eiosx7uJFfPrpp9ylS5cQGhracR4rV+KtsDDEhoQg6/59tBw+LFrW1jLvbdu6cyueJ0W0tLT9V0ZGRpDJZAIA7uzZs6qlS5dKMHw4Ed2LF4lU7d/fQegWLOgYKyaK5Bb55z9pjxUWtheyamtrIZPJ2u3QgxsbgblzYWFtjZKSEuzfv79NYe2+ZxgjMltWRj3kxcXkMJDLKTyuDaIInddfR8CwYYh0dsa7b79Nv//pJ/p85eR0Pa69Pb2XFxT72kLLuuQ0MEZ7a9IkOp+qKiK6zzk5VCoV0tPTuenTpsFoxAici4riVCoVZrQl37et1/LlHePueB45VVUAAKtjx1CZkwOLffvIodEWIHj5ckcgoq8vnfvevbRfCwu7zakHgJEjR/IHDhxAcHAwEu7excB169jWigqEhoaiWwEGILv9d99RIeE5mJubw8jISH3z5k3++vXr4Hke7733Htjy5fSA1FTg8WMqOuXl/eF3bE/Izc0Fz/MP1Wr1oX/7yRpooMF/FRqyrYEGGmjwF0BYWBgnkUgGWFlZ9ZhW29TUhLi4OMYYw+DBg3s8xoEDB1RVVVWSwMBAFhgYCKlUytXW1iInJ4dzdHSEkZFRlwObmJigrq4OKpWq+8ESE+km/cQJSuEtLKQb1z+4EeRVKrgLAhx37sSD/fuRn58PAFAoFGJLS8uLw7rawHFECKdNo5v6b78l4i2RkPq3cydZnkeOJNLXOrYqae1a8dKxY0xfX1/YvHkz39DQAH19fe7Zs2eoqKiA3vnzwI4dWDx6NCIiIoSnT59yu3fvFpuamlh6ejqePXvGe7eNwOJ5CgnLyqL/372bCgBTpxIxfPSIZm/v2UOFiBs34PTsGYs9dkzYvn07k0gkgpGREbS1tTmO4+Dt7d3RNy2TofMMYDc3N9wODlZ/aWbGq27c4IKOHKH3/Ly9f+pUsgKXlLQr/kbLlmGulRWHH37o8tAJEyYgOzsbOTk5aGlshP60aVQwOHy45zWvrwd27SIS2br3TE1NYWpqympqakQAMDAwAID29oN2HD5MxQcDA+oJ9vaGZOdOCogDIAgCt3//fpSVlaFL8F99PV3n5cuRnZ2NkydPQqVWY8To0Wrjn37iERdHJD4/H/jsMzg8fcoNfP11HNqwQagxMmJq0Ni6OXPmMIlEgt48zxw2b0bS9OnwjY/v0lqA774DVCpoKxQYMGCAkJCQwFVXVwuTJk3ijIyMgHv3cOzMGTH/1i02aNAgYVBpKbPMzaUgrp4QEkJzsn192/uX23pnbWxsOl5YS4v2q1JJzzE3p/VSKknpnjGDbMSffgrMm9ctZCs3Nxfz58/v6jpZuBCzHByQnZ2NS5cuobGxEYwxThCEju8NUSRVfdgwavM4dYqU4Of7o/fsIQdAVhbu79snDvH07CgUBQfTPnwe//pXz+PUWlFTUwNBEKBUKrv/URSp4HDlChXRPviA9uWyZQCAY8eOCUZGRsypvp5pLV0K248+EgoLC7mKigoYGRlBsnYtkdHwcCLcdXXAnDng338fSEzEsfnz4ePjg5d0dakIZGVFx28Li9u/n4LlBIHGtvXt272Y0AozMzNMmDBBvHTpEjPQ11cn7tzJs5oaXLx4Efb29t1beTZupILTC9TttWvX8gCl+p8/fx4pKSkY0Dayrk3h/+gjKiK+8Qat8x99V3aCnp4eBEFwlclklz/55BOVIAgOSqXyjc2bN2vmcmugwf9jaHq2NdBAAw3+Arhz585mIyOj4GHDhvUYa9vc3IyUlBQwxsT2eb2dEBkZidzcXO7NN9+Eo6Mja+vT1dbWhpWVVY+92VpaWiwtLQ12dnawsbEhOe3qVeDVV8n6OmYM3VhzHN3Y/u1v1Lf5e8FqKSmQWFujvn9/xMXFYerUqbh//z4yMzNZVFQUBg4c2D2dvCcwRoQmOJiSkN94A/j8c1KdXV0pSTshASgsRE1pKRIPHGDjBg7E+F69OK6yElpSKVBUBK3mZvQyNgb79luw0FAYSKUwy8xkBTo6gsvFi5xMqURNeTkWJieLev7+THL4MKWGz59PVvZnz+jnkSNkSQ4LI7I8axY9rpV4amlpwc/Pj3l5ecHNzY21tLSIMplM1NHREa9du8bc3d0hl8up93zyZFL2Wm+mf/31V06ppYX1K1dCduQI2Xs5rus6cxyppOfOAW2q7Esv0X8/d22tra1x4cIFmBUV4VF4OFzmzcMpCwvx2q1bLC4uTigoKGAKhQKGhoZobGwEZ28P3tAQsLBo78EPDw/Ho0eP2OzZszkdHR307t0bmZmZSExMxIgRIzpeLCyM7MpeXkRkxo4F1q8npXzCBDDGcPfuXXVzczOXk5MjDBo0iPbZhg3Ahx/ijKkpbt26BSsrK3GVlRVz8vHh0KcPEUVrayLNrq6QW1ujeOZMRGZlsRXffMMMnzxh8aamzMXFBQbFxTCXy1l9drZ4xsKCBQwd2tUVwvO0f21t4fr++2zAsGGIi4sTb968yaysrGBw9Cjca2pYLM+jb9++woAVKzi2ZAmR4PffJyW6s4GY56lYkJwMBAUBAAoKClBZWSnMmzePA0ilvXnzJuzs7MAkEiK6jBFRfPdd2j8WFtSmYGPT7RpmZmYiMzMTkyZNor5jhYIS42fPhraZGaytraGtrY3m5mbU1dUhMjISiYmJQmV8PLN77TUwXV1wr71G59nS0jEXvTO2bgX69MFDPT2kpKRgzpw59L2iUpH9/ZVX6L12hrs7fQ4HD+4aWNiK6upqJCYmorm5uc3J0oEFC6h4t3EjEX1zcyA2Fo2jR+MMpeezZcuWMX1bW2DYMDiPHMkqKirUSUlJLPLSJRa8bBmtt7U1raWWFnD9Om5nZQmCvT2GBgWxmJgY2NraopeLC52fg0NHu8nSpVQgiYmh13Z2pu+QYcN6bIuxtLRk/v7+qC0v5/S/+gqWK1agrKxMbGpqEs3NzVmXEY2MUVFyzhwKD2wtvnSGIAg4cOAAACAwMJCKT4JAe8HMjIoRFy7QsZ49o4Len8znqKiowIMHD+Di4mI7ZMgQezs7O8PCwkKnoUOHHvhTB9BAAw3+a9CQbQ000ECD/8f44IMPVunp6W1dsmSJ3ouUXy0tLSQlJakbGhq4yMhINDY2om2Wa1VVFc6ePYvZs2f/W2nljY2NuH//PpydnZl5ZSX49HTqHTQzI+W4NR0aACXnOjiQMvV7c8DDwwGZDNm6unj8+LEwYcIElpqaqm5qauIAwMPDo10l/UPcvk2kbe5cusGfOpUsuV99RaTO1BRgDDIjIzzLyxPy8/JgkZjItEtKALUayZs3i8rDh6GXlsa4o0eBAQOAe/dgcPAg/A4eZBbff4+ylhZUGxtDnpfHfqmogLmLC+KLi8USCwvBdupUDuPG0Q36nDkUbtbYCEyYQOQoObnLzGXGGLS1tWFgYAAnJyfm6urKXFxcGAD1hQsXmJubG6WIT5pEffCtI6LawpgCR42CrLUfF9bWFHLVeUSQuzupvdOmEZHYv58UeCurbktXXVqqDt2xg3tqaopfdHXxtKaG6enpwdbWFiqVSoiOjuaio6PSwfhfAAAgAElEQVQRGxuLmJgYNCYlCfbff8+EWbMQERGBpKQkLFy4sH1WOWMMoiiKOTk5zNfXF+37dNIksv+3kRXGAMagMjXF6bg4WGpr405yMvfKK6/g9u3brLa2FrW1tUjs1QtNEyfi9r17EAQBMplMDNizhzEtLWDmTFTr6uLmzZtwfPddsAkToDQwwL7vvoOxsbHwyM1NbTR+PDfX1ha9WlPRZRMmoNfGjexWZCQMDAxg3XnvAlREGDsW8PCAjo4O/P39WU5OjjohIYFT3b4Na3Nz3NPVFYyMjODi4kIs0saGyJCnJ9mfOyvzgwbR+gcHA3p60NPTY5GRkVx2djYSEhJw7do1PHr0CAEBARR8J5NRO8QPP5Ca6uNDxZT+/bu7GAAcPXpUHRQUxGxtbWlhCwqo6LRoUftjbGxs4Ovri5qaGujcvYvxp0+zuw4OqGppwTm5HF5jx0Lr11/JUt15Nvj69aT87t0LeHnh+vXrajMzM87DwwPl5eWQ5eaC37GDHvc8GKNzGDWKigUgNbu0tBQtLS04duyYKJFIWGlpKVQqFRwcHDqe6+lJBTQbGyLe27cDCxYg39dX1M3OxsC//53ZtM35vnkT0mHD4OnpyQVeusQ8vvkGsu3bwXVOQmcMmDIFt+7exbLvvmOOb70FbVNT8fz588zKygrGxsbdzz81lSzl69cDU6ZQZsDOnVRYfK4I2D7b/eFDNvHSJdjs2gVXV1eWmJgoREZGcmlpaaKfnx9rD2GzsKD3aG3d43dkcnIysrKyMH/+fDgUFdF32bx55BgaPJhyJ6ZPp0KHlxc5TWJi6Dx/JyOjrKwMh1tdKzo6OsL48eNZcXExcnNz7wQFBZ1+4RM10ECD/0+gsZFroIEGGvw/RFhYmI9UKv1s0aJFOn9EQmtqavhZs2ahpqZGuH79OmsNUBOzsrJELy8vODg4/H7Q2XPQ1taGLs+LERcuMNuDB5Hn6AjHM2dg0XoT3Q11dWSVPP8CZ6Io0s3skiXIfvhQbWdnxwPAokWL+OvXryM5ORnffvvtH8/3rqggde2334jkWFgQ8V60iKyfs2cTyfvwQyAvD9yPP8Jr4kTuwIED+D/svXdYVNcaNb72OTMMDDAMvRfpIF0QpAgRNTaMLZYYY2xRk6iJqcZ7rxdTNTdNTW5ijIkxGss1xlix0JugiChFmqiAghRB6sCc8/vjpQomufm+7/n9cWc9D48CM+ec2Wfvw17vu9715jQ2YtOmTQCAE7dvs+7ubjg7O0Opra3mbG35yNBQyHv6+srj4tBy6BAabtyA1aFDeLB7N441NKDJzY3ZFhdDLyAAHoaGkDU2kpHY558T6e/qovr18nLKtDk7/+5mOCoqim9qahKOHDkirlq1isPOnX1Z6//85z+ora0FABQWFiIoKIiyYufPExH79FPKfNnYENl7/nkiKRs3UmDD2Jjq2AfegzfeQIAg8F+vXg2VTIbQoCBx3LhxvWqHvjZIjY2NkEgk6OjowNmjR1F1/jx+3bJFaOd5buHChbAZaOoFICkpifX0LaYf3LpF5x4giweA7uhovP/++4g+exbqt99G98sv96kZcnNzMfr6dXg0NwsnJ01ixkql+MK773KnX3gBH8+dK3IdHeh4990+E7uHnp5o+O03GNnZQSqVCi+++CIHgIMgkPy4sZFOeuQIhOBgAMDNmzfFvgz6QAQFUbZWrQa3ezfGjh3LHzhwAM3Llql3XLnCM0FgEwfWzNvZkUv1Dz8Ab71Fdbm981YqpePt3w+88gp0dHSgVCrF6urqvvOam5v3+ytkZ5PXwMcfkzxbpSIStW8f1fArFINMujo6Oni3gY74339P8/5RHDyISW1tiGcMJa6uWPfPf0KlViN361akvPceJn/2GbgB2en7NTW4UVyM5u5usennn1l5eTm6u7t5xhiuX78OURSh1dmJ4K+/RtRAafpAlJf33ctTp04Nkow7ODhg5syZaG5uxr59+1BdXS0sGD+e4yIjiTj2fqY7d3oOVY704GC2IDgYWkolzd+8PJK+v/IKUFQEtmED9j18iPZ//UuUSCQiz/OiSqXiLC0tmba2NtqMjSGdPRtobUWwjw8TBEH46aefOIVCodbV1WWRkZGcm5sbBcouXKC13FsO89RTQFERran16ykw0YMDBw6o29ra2KuxseDefRcAIJfLsWrVKl4QBLz//vssLy8Pvr6+/a7nUVEUFPvoIwoODoCPjw9kK1YItysr4bR6NcdGjKBgzldfUcmKiwu559fX0zMgPZ18FpYto3KFDRsGBWa6urpw+vRpdX19PYceL4zq6mpOEASo1Wqo1Wr32NjY1wGc0vTf1kCD//+gyWxroIEGGvz/hNjYWImWllby1KlTzQZlgIZBTU0NsrOz4e3tDR8fH1ZZWSnk5+dzlZWVTBRFbuHChdyQFk9/AN2mJoxes4Y1chwKVq2C0YIFcHV1HXaDLQgCdp06JVqcPs1SR4xQV9+7x2lra0NXV7d/o1leDnz2GRpefBFxcXHc9OnToa+vD5lMhrKyMlRXV0NLSwtjx44d2pIH6K81dXWlzNA//kFS6StXqNXP5MlkavT++yQvlsuJiLu4QOrsDJ3nnkPZ/ftibW0ts7Ozw+XLl8Xu7m7W2NiIaj09Tp6YCNe1a6G1fj3A82CMwc3NDampqZgyZQoaGxthbGyMpqYmsb6+nrtx4wZ8cnIgcXSEJCam3xiM58lteudOCjwcOUJZ0wHjVlRUhNu3b8PIyAgdHR2Qy+UsIyODSSQSxGVmCuKGDThx86ZQXl/PdXZ2QhRFBAQECCYmJjQwVlZ0vA0biIj5+RGh5ziS4S5fTrLY3rpPgAywGhqAffugXrUKWbdvE3nS0mJ99egDoKOjA5lMBl1dXXgHBLBSPT3B5epVzNyyhRkOdKHuQV5enhAQEMAce1sctbdTACAsbNDrDhw4gKamJni9+iqO6OhAWVeH0ceOQTVxohAUFMRCTUxgqq/PxujpsdFr1jDe2hpG8+axSzk5TCKRMCsrK9Hd3R1RUVHM/eRJ5Bsb41ZdHQCwgoICtXlBAWdw9ChlA7/6isiJszO4l15CvUqFO4zhVk2N6OXlxa5cuYITJ04gPj5eDA4OZpyxMe4ZGCCnuRlxcXEYO3asevLDh3zw1q3IGjOGXbt2TR0UFDR4Afj5UaCnpobIcnQ03QsLC6op9/SEVC5HSEgI8/Lygre3NxobG9VGRkach4cHyf+vXCHy9cQT9F6JhEoyZs4kwr1kCQVVmppwubQURUVFCA0NpfIPUaTzPv98vzt4XBygUODB8uW4UFODfH9/+L/4IiytrSGRSHA1OxtzP/wQqcbGGNFTY929YAHufPIJTkyYgLu6uqy1tRX+/v6Cu7s7Ky8vx9KlSxEVGYmQefOQJJNBy86uT9kwCK2tEIyNcUihEN38/dmSJUvg7e0Nb29vREZGMplMBoVCAR8fH2RlZSE7K0sItLHhWI/7OQC0bNwI1dat2N3aKo5++mnYTZ/OEB1NveffeYfm9/ffU3Dv7bfhGRYGFxcX5ubmxqysrLj8/HwGAI2NjeL4CRNgvWgRQ1kZMG4cbNevZw5eXrC2tuYkEgk7e/YsLl68KDR/9ZX4MDMTP9vaChkZGWJpaano7evLsbFjieRu3gwEBEA0MkJOTg4yMzO5V199lUlra+mZ9PrrfdfPGINcLsf58+fFlpYWwdnZubepN3kq6Oj0t327dg2YNw/s2WehLCtjqQ8fslpHR8F5zRrW98yoqCCC/dRT/TXfUik9B0aOpDp3S0saHw8PgDGoVCocOXKEEwSBiaIIqVQqOjg4CD4+PlxPoMdcqVRG1dfXr0hLS9MNDw8f6t6mgQYa/D+HhmxroIEGGvwfIDY21iotLe31zMzM7SkpKeMvXLiQEhUV1fLIawyTkpJWJyUlhSclJZVERUW1AUBycvIb5ubmUydPnqw1LPkcAD09PaSkpECpVMLR0RHe3t5cREQEtLS0xLCwMDasZPJxKCmhmuTZs8EHByPXwUFdXlHBKRQKuLu7D0uEr127hrziYpiGhzN27Rp3taNDyMrKQmFhIdzd3ZmWlhbVE3t7Y29RkWBlZYWQkJC+A+nq6qK2thaNjY1oa2uDlZUV2tvb0dLSQtm/sjLaZI4fTwRz/Pj+k+fkkOz6X/+ijK+TE5EOGxuSbfbAdNEiOL33HrROn2b7W1vh6uoqeHt7c01NTWJ7eztrMDKCUWSkYBUaytDdjS5RRHZ2NsrKyjB69Gj4+fnB3d0d1dXV7P79+zBqbYX/F1/g544O+C1ZgpqaGvA8D1EU8bNcLtbV1LBSExPIT51Cu60tdC0sIEgk+PHHH9WZmZlcUVEReqXahYWFUKvVuHnzJpycnMTQtDTOLCqKGz1/Pi5dugRtbW00NTWhsrJS6JMxM0YkzN+f6kpLSiijHhFBztW9NfXW1kSyo6OJxH36KXSsrTF27FjcvHlTqKioYEZGRsMTpx4wxmBlZsbM//Uvxp55Zlhpc1lZmZiTk8MKCgrUjY2NnF1jI3gHh0G9kg8fPoybN29CKpWKra2tcPfzEyybmkTn27c5l40bmYVKBc7enrL2S5aQN8CoUai5fx/Xr1/H22+/DT8/P+bs7MyMjIygu349Aj/+GApHR3ja28Ooro4zeecdiIsXQzZvHl3nlClEukeNgqy2VpSVlzNWUQG3qVPZrj170NzcjK6uLlZSUiIm3bwp5paXs5APP4TV+vVCaEQEDxsb8KNGwXfWLJw/f56rqqpCfn4+LCws+ozPoKdHjt6ff07SX4mE5uD3PebPPfXJcrkcBgYG4HmeJSUlsZFHj0I3JYVabw1jnAWep6DBokVAayvE8eNxNS8PEStXwro3AHf7Nvr6wt+5A1y6BHHdOnxbVobzwcEIXLECc+bMgWWPcR5jDB6enviXRIIaURSbGxsZ19yMlLIyodzNja3ZvBlPPPEEwsPD4eTkxNra2lBUVITJkydDRyqFlqUl0hUKtZ6+PjdcEHD/f/4jFAgCMx0/Xpg+YwYnkUigq6s72AAPVPoScPw4q87J4XLGjYOXlxcYY0hNTUVySgpuMQbjiAg2ceJEek5Mn07juHkz1cp/9RXwwguAtjZkMhkMDAxgaGiIgoIC3L59Gx0dHZg7dy7z9PSk91tbU1mFry+UAMydnODk5ISAgAB46egw919+Yerdu5mrpyenp6fHXblyhcvMzER6erp4T18fnm5uDJcv41Z1NY5evIgnn3wS9r1lHC0tg59JIG+E+/fvo7KyEkFBQf0PTU9Pysy/9BIFpHx96fk2cSLueHgg6dYthIWFsT6TtaoqKg9ZtozKRh59lhsZkc/DnTsUaDQ3B+RylNbUID8/H1OmTMHTTz+N8PBw5u3tzdG04mFtbQ1XV1fexsZGmp+fb3bhwoWdaWlp/0xJSQlMSEjIjIqKEqGBBhr8PwcTRc1a00ADDTT4K9i8efNUnucP+fj48CNHjpSVl5d3Z2Vl3e/q6grYtGnTPQCIjY1lWlpaBc7OziMkEgkKCgpEiUSSLAiCto6OTuCiRYvkxsbGwx5fFEU0NDRgx44diImJwalTpxAVFYXwHlOm/xr37pHLuK4ucOIEud/2yHuPHTuG3NxcrFy5clgZ+e3bt/H999/jeVNT2P/6K3D2LLq7u/Hll1+qHzx4wAcHB4vjS0pYq58fPo+Px8aNG4e0LgOA7du3qxsaGvpS8Lb37mGplhbw4YeU4Vu+fKgku6WFrlNLi+pMKytp0zncmF2+jPLcXMgCAmA1bhy2rFwJlY5Ob80x7OzsxKfi4pjy9m2ceucdoaCggIWHh7OQkJC+jL7Q3Axh1ixUrVyJ1NZWlPVkiAfC0tJSfOatt1jymDEonjhR9P7tN2ZdVYXTc+ZAamkpPvXUU+zgwYNiSEgIG3i/BrlGd3aiE8DevXsFQRCYrq4uSktL2RNPPIGxY8cO/mCZmfT5OY76Tu/fTxL2pUspa2pvTz20Z8wYYlyVmpqK+Ph4zJ8/HzKZrJ9ADIdLlyiT7uo65Fd3795FcXGxyPM8Ll++jEnffw+3p55iiI0FQOqLXbt2YcGCBdDX18dXX32F6dOnw7+3Xjg9na6ZMWpFBpDJlVyO7777TpBIJGzx4sWDb35zM83XGzco4xkWhriRI9UXL13iRVGEvr6+sH79eg6lpcCHH6JywwYc27YNT6lUsDE0xG2ZDN8DkOvqwt7eXpDL5aKzgwPvumEDuO+/7zeg2r4dwsqVePfDD/tObWZmhtWrVw8do8xMClZlZZEE+dAhIuED5q3Y1ISbMTFitqMjYt59l8kH1hr/DoouXsTJQ4ewIi0NCm1t6jG/ezdJ9Ssr6fvCQoAx/HvXLtTV1eHvf//74IMcOAC8+iqab9zAyZMn1SM//JA3aGrC8TfeEJcsWcJ6AwgqlQq//fabUFJSwsaNG8eCg4OBb78FgoKw5+pVCIIgRkVFMUNDQyiVSgiCgN27d6tbWlq4eZMnM8vDh6m++Pfw5ptosLbG9gcPAACrVq3C4cOH1ZaWlry/lhbMQkOh9+jzz9KSnlWFhaRuGTeOMr7Z2UBkJI5euIBrPZJ3Jycn4dlnnx084Y8eJUl4Tg4FRBobyQ3+0KFBHgiiKKKmpgY1NTX49ddfsXjxYjjcuYM7f/+7WBoYyJ7417/ohZ2dQG4ueRMMQFNTE7788ktxxowZzNPTk2Tq27ZRMCYwkObuf/4zqKXewYMHUVRUhDVr1vTXlL/3Hq1hGxtaI9nZjx9PlYrI+bRp6Fq6FB+0tODpp5+Gp6fnY9/S3t6Ozz77rANAtqWlZZBKpRIaGxurAWiJoijp6upa+I9//CPx8SfVQAMN/k+gyWxroIEGGvxFZGRknJ83b55JSEiIxNDQEI6Ojlx3d7fO3bt3p8THx++LiorqTEpKmqitrb0qLCxMJpPJuKioKGlXV5eTn5+f/bRp06T6+vpDjtvS0oKPPvoISUlJyO7ZeJWWlkIQBEyZMuV3+2wPC1GkDMuyZUQQNmwAnnxykNOwKIrIz8/H5cuXcf/+fdHOzo7JZDKIooiSkhKcO3dO7Orqwrhly5jUzg4wNwenrY2QkBDO2toaWfHxosFPP7G9jEFuYCCEh4cPm6oPDg7mbG1tUZ6aCr2HD7HUxwd8WRkZAwUGDl/7vHQpkJREGUwnJyJqpqZECh8Bs7KCUUAAFKamYHZ2sHrqKfi+9hqs79wBP306ykpL2VWFAvkKBe49eIAlq1YxNze3/mx+XR1YWxu4S5egfO01+AQGwtjYGIWFhX3n2LBhA0aPHs20li2Dy4oVCBkzhiEsDHcKCzHS01O0UCrFX5KSmLGxsXrmzJmDiEDfeSoqAAcHSDZuREBgIBs1ahR78OCBUFFRwbX19BAeZPJlY0Mk5L33qFY7IoJIiFxO2e4JE0hmP8z42dnZobKyUp2cnMzdvn1bDA4OfryMote46bnnhpB2fX19ODg4MDs7O6ZSqcT47m4uaO1a8D013IcOHRIcHR3FkJAQpquri+LiYnV3dzfc3d3pfEZG1L/ZzIzu6dtvA2++ibpnnoHD/PnsgZYW3EaPZti1q38uODmRoZiFBWXDly2Ds4sLFxoaCgsLC+Tl5TFnZ2foWFtDiI6GIioKDaGh6hO6ulxuczO0MzIwLiEBkrAw9fSlS3lXNzfOxMwM7JlnSJp76xbV3I8fD7ZoEXzGjkVYWBiMjY2Rm5s72Hm9F1ZWFPgIDSVSmJ1NY9UboGhpAVu2DAbjxrF4CwvW0Nk51Jl7GFTdvo2DR45gYkAAbC0swBYupODT11+TpHjLFqodl8kAnkdSUpIwYcIEWFlZDb6f7u7AmDGQWVjAW63mDJYvR8vMmYieOpXJZDI8fPgQgiAgPT1dKCwsxOrVqzmn3hrm558H/PzgHBODrKwsISsri8vMzERaWhoSExPR3d3NrV69mhnp6FD9+6pVw3cn6JVlv/cedMaMQVBQENLT09HR0YGmpiYYGhqKYxYtYlrR0dS7uxcPH9KXjg7w4ouU1be1BTo60Pj667hYVwfPb7/FE+fOoXXBAvXYb77h9E1MGGQyug9WVjRPRo2iLHd1NfkeTJ1K9dQD0FOnLp48eZIplUpx4sSJjDk4oLCpCXxlJbOtqyNVSVER9ebu7UHeg2vXruHGjRvM+dIl8d6OHdD28WE6n3xCr+3qIvn4d98NWpPOzs7IyMiAjo4OHBwcKJDo6UkmkNOn05j+nsqJ56HS1UWyoaGgbWXFXD77DDJRhGFU1GPfJ5VK4eDgIDE1NbWfOHGiJDAwUGpnZ2cUEBBg4Orqql9UVDQ3ISGhLDIyMv/xJ9ZAAw3+KjQGaRpooIEGfxGiKEra2togimIfiYqKipK0tLS45OXl3dqyZUsSx3FPdnR0aJ87dw4PHjxgMpkMgiCgtrZW8Pf372MzarUa169fx8WLF1FbWwsdHR1hwYIFXE5ODlpbW9XTp0/nOzo68Lgs+GPR2UmmYnPmUMbrMW23PDw8sHHjRtTX1+O7775jN2/ehI2NTXdlZaUEgGhjY4MlS5aQXDwhgYyGtmwBALi4uMBh3Diu/PhxcdLs2SwgIGAYVyWC0NWFn/buxYs//giThQvBVq6kVmO/h2efJXINEGG7e5dcnd96a9iXNzQ04OjRo7h37x64O3egN2UKdHheXO7lxYRly1B19SryCgsx+e23GadSkZkR0L+p/vXXQT2p1Wp13/91dXXRVxtvakrkxNUVju+8A8cDB4A9e1jd3/7GDObPF5e9887j/8Y6ONBnGJAx7+2DXltbi9OnT5NZ2qPYsYPan735JtVK799PhlLDBG0GYuHChfzWrVvFhoYGVlFRQRv94TB6NMle6+pIrjoMWlpakJSQwL124AAaXngBhw8fVuvr63N3797lYmJi+l7n6+vLJycn0zdnzpAsuLS0n8Tv3InkxEQkfPklgr28EPL88wy3b5N6Ye1acoG/d48yybGxg65HKpXCxcUFcrm8r50SACyZPx/j9fT4UkB8wHHs2ty5aJdKheiDB3ncvk2yZA8PevG5c+QR8OSTlIVkDL0CXqVS+fjB5DgigqWlFADasYMywtOmUS31+vXAmTNIq6gQH8THs3v37mHbtm3ddkolmzFrFo/6eiJhGzeSaVpXF7B5Myzc3BDwzDOiq40Nw+HDVCM8axbV/vr7kzP/qlUAaI50dHRwQ0j83/5GdfRvvEHS9awsaGdkYODd/vTTT/s+yZNPPtnfHaCzkxz2GYMeY1izZg0vCAJqampQXFyM3Nxc0draWpDL5TzkcgpUPA7XrpGXQY9Zoa6uLkaNGoWCggKR4zju6tWrmNHUNJQgpqfTmjh7lvrZf/ghBaaUSuxZulTd1NTEp02bhiUTJmCMjQ2vlZNDz7TsbDKa272bAkV6enRvNm2isZszh4h7UxMFI3oCBE1NTVAoFGJraytLTExEZGQkugIC2N3WVhGZmQwqFQWGMjMHX2dNDXw2b0a+vb3YffcuOhoaWIuxMQxPnybifOAAEefW1kFrU1tbG76+vmJiYiILCwuD5N136blz7BjNqVmzhsjVB6Krqws7d+5EfX09lwzANzJSPe3OHR7JyXTfh/FmAABbW1vYDlBXDFz/S5Yske/du/f7999/36u7u/sfmzZt0kheNdDg/yI0mW0NNNBAg7+IhISEvLKysuiKigqJu7u7VCKR9JpuSdzc3LTNzMzcQ0NDJW1tbWJlZSUzMjKCo6MjIiMjkZ6ezmpqalBeXi5IpVKWkZEhZGRkQCaT4cknn2QzZsxgCoUCiYmJahcXF97Jyem/z2gD1Cv49GkidmfPAj/+SIRyGHAcBx0dHSQmJsLS0hK3bt3iFAqFet26dZyPj09f724olUByMkk7e8Bv3QqTpUuZ5aPy54G4dw/M3x+2EybggLe3WOLmxiwsLPrdrQdApVIhPT0dgiDAsLiYNsy99bMjRxIhmzUL4HmUlJRgx44dcHFxQXFxMY4dO4aGhgZIpVJ0dnaiy8AAbXp6LGLmTLCQEBiMGgXXOXPAwsJImvzwIRmd+fsDY8bQ1wCYmZkhNTUVhoaGmD17NpRKZX+GurGRHJadnel7Pz/IoqPReuIEWq5eZRbjxj1+PFQqImc9G2Rzc3N248YNsaWlhQHAzZs31QMDMgNuFN3HkhIyTHr9dXJv/wODvFGjRrG0tDR0d3f/ruwUTk5EUh5xU+7Fhx9+CGl7O9yKi7FHW1t0cnJiOjo6gqurq+Dp6dl3vUqlEikpKRgdFATpP/9Jdck95+3u7kZycrKYmJTEPDw8EPP++9Czt6e624gIIk5btgB791Imd/ZsGusB9ay1tbW4cuWKOGLECObg4CDevXuX5TKGqpISTDp5ElFffcUiIiPhHBjI+MWLSeZ7+jQFi5RKyhpPmUKqib/9jbKMPfdi+/btAICsrCzx7t27rLS0tK8euw9GRkR+nZ2JcFdUkHR57Vpg/35ojxnD7PfvF4Lj43ErLIyfs2IFx5mYkBphz57+Fm6enoCfH25Mnoy4mhqW3tyMZFdXjAoMhCwigup1LSyAX36hNTxhAs7Hx+Pu3buY+Ohazs+nAEJWFpH5ZcsGKRTa29uRm5sLhUIBtVqNmJiY/r73zz9P4zNgXTPGkJiYKGZkZLCOjg42d+5cru85dPEiZZHffHMwaU5IoJ+vX9937kuXLonp6emss7OT8TwvBgUFqZ1u3ODw+ef9feM7O+mefPAB3R9DQ/Jk8PEBbt6Ec1AQl5OTA7mBgVAnimJ6djZL43moR4yAzcSJ4FevpoDMnDmk9AgNpc+jq0tjnJZGvcrHj6fM9/nzSGtoYCHHjrFuXV2x4coV1nXhglAkiqyrtVXwf/VVDrdukTljWhrdh3ffJbO6uXMhuXgRfn//O7Nevpz9dPcuIiMjIbt2jUwclyyh8TQx6V+KjTUAACAASURBVHdg74GbmxtLTk6GoaEhLGxtaR6YmJD83cuLgqOPQW+vewCYM2cOxi5dynEzZlC3hnXr6NkuldKa+ZPQ09ODj4+PtLS0NLCrq2ttSkrKOykpKevi4+NPRkVF1f3pA2mggQbDQkO2NdBAAw3+IiIjI8vj4+O3t7a2Ol66dMlVT09PamxsDI7joKenB0tLSxgYGMDT05NxHIeoqCgEBgbim2++gSAIaG1tFSsrK7m8vDw0NDRg6dKlLDIykpkNaAGUmJiI4ODgYd2h/xQuXSIDpunTqY1MXR0Zabm40IbT0rKvNzKA3npidV5eHieKIjo6OrikpCRcuXJFCA4Opp6yVlZEXDo76f+CQEZRy5ZRRulR5OeTNHnhQsDaGicY66598IBvampCVVWVGBgYOET/WFpaiuPHj+Pq1asI/+ADlLm743p9PVpbW2FgYQEJz0O9axfY5MnYsWMHACAnJwe3b98W/fz82OLFixEREQEbGxtcvXoVWlpaYnhEBOvbyE6ZQqZjKSlErk+epI3+5s2UiRIEyngHBYGlp8P+4UNk1tej8ehRNImi6ODoyNDSQmPb1kY1nT2EmzM3R0VZmeC0YweXoK8P4xEjIAgCGhsb0d3dTQ7TAHD8OI3b0qV9n3vkyJGsvLwcLS0tMDMzY97e3oPHpraW6u3/9jciOStWEMGLjKR7/DtGeRKJBDU1NUJhYSHr7OwUnJ2dh9edKhREtidOHPZ45ubmsNTWRnN4OEImT2YhISHM3d2dc3BwGBQY0NLSQsGJE2LAhg1McuRIX6/nu3fvYtu2baioqGAAMG3aNBgaGgIPHlA28+hRyjQ/8wwFQ9asISfwmBioLS3RYmOD48ePi2fPnmVaWlpswoQJCAwMZCkpKQCAJoUC0xhjMm/vvl7QACijHRlJwZW8PMqCWlqS/H7CBAri9NxDOzs7+Pv7w97enlVWVqoLCgo4xhjcHB2JZDY2Uhb4o49oLW3eDKSmkolVeDjw1VfQk8thFhDA5DY2zHHqVOxQKGD77LMw8PEhIqajQ9fk6gowBlMrK5iamqKoqAgBAQGCl5dXfw9nAwO6RgsLdE+dissqlWgXFib2SfQBCkw8+yxllU+cICfvAQGY+vp6bN++HXp6euqlS5dy48aN6yfaQL8JW4/RGgA0Nzfjt99+Y8888wxmzpzZbxgH0NofNao/0NSLadNo/YSGAgBSUlKExMRENm/ePGZhYYEbN26wyspKzpHn8eDiRSjmz4coirj55pvQcXSEZM4cNDQ0oKurC2onJ9xNToZucDC2cRy6OQ7m5uZiVVUV6+joYLNmzcLZs2dRUlKCkSNHUktBuZzIq64uEdeODuqrHRpK2WNTU2qjNnEifMLC0FBWJpQwxnm0tYn2mZlcoauretG//sVLrlwhlcennxKBDgigsfHxobkcEwPo66OlpQUZGRkYz3FgLS1k7gbQeR0dqQTkEbS2tqJr0ya03bsn1gQEMFNTU7Dp0/tbkj0GJSUlqK2tFY2MjMTg4GCm09vP29eXMvoFBUT07ez+8FgDIZPJMGrUKKm7u7tuSEiITmtrq3ZNTc2dqKio9D99EA000GBYaMi2BhpooMH/AaKiooSIiIhj586du1hRUeGRkZFhZGBgIDE3N+/bBDPG4ODg0LdRTUpKAs/zWLduHVMqlaiqqhImTZrUXzfZA0EQkJCQwMaOHQuO44Y1HPtDaGuTsY9SSVmT3vZVokgZpfffJ8K2bh2QmAhYWMDB2ZlzdnaGl5cXpFKpurq6muvu7mYRERH9Gd0zZ8gZPCaGWn61tREZGIjKStr8NTRQFnbqVMDXF8dPnOB6DcdeffVVVlRUhD179iA3Nxe2trbQ0dHByZMnRTMzM9bV1SVkOjiwMkDd9PAhCgsLhYSEBC7r3j04792LH5qa0M7zmDdvHmbMmIGxY8cyJycnMMZQWVmJvXv3QltbW5gxYwbX5/4L0HjI5bQR/u47urZly4hI+ftT8OHoUfr57t1QFhQg29QUC/fsgdLdnelVVNDnXbaMNt9791LtdI/cXcfZmcvw9ITtgQOo/OknHKypwdW8PKSnp6Ompy0VAgKIaItiX7BDKpVixIgRyMrKQkBAALMb4PQNgBQK27eT9F4ioQyWrS0RNj8/ul5Dw2ENzgCA53mWn5+PyspKNmw9Mr2IghEVFcAwbtSmpqaw2bsXNleuwHDp0uHbuAGAIKB1xw5Rb9QoptfTezkxMVE4duwYc3d3x8qVK3Hp0iXxUnY2s7e2hkFEBB5WVWGrkRH05s6FlrY2dL75Bvj3v8FeeAE/d3aKZwsLmcPatahsamL3TUzQ1dWFvLw8XLx4EY6OjkJDQwMTGUP71Klw+e03MtkKCRn82Tw8iJzwPAUt1q8ngmhlRWPX0QFDtRrKjg6Y/fILfIKDOb1t2xCwcyfqx42DbNky3Lx7F7dlMpgrlWAuLkTkSkpIIeHpSQTUxIQIV1ERZMbGCHjtNSi//Racjw9l7u/coa+8PMDQEEJ1Nb4/eBBObm6YOXMmGzKuPI9uMzP8WlIihBQUsJAxYzjm7EzZY0Gg+RgXR1n2554bItFuampCdnY2dHV1MWbMmMHHLyggx+wnnxxw+wRs2bIFoihi1qxZQ+8zYzR3v/mG1AiCQHNmwwYgLAyiKOLs2bNCVlYWW7x4MbO3t4euri6ysrIAALnNzci1tERyYiIunz8P9yNHsNvTE1nXriEjIwPp6enIzMzEtaoqZI8eDZVUisDsbNjNns2io6OZj49PXynB9evXxZSUFKanpycMqmGXy2kOREYOvnZ9fcDQEMzAAL/V1Ij1WloYs24ds9u4EYEREZzk7bdJDq6vT+Z0hYVUKuDh0V+G0IPy8nLcunVLDP3iCwZ7eyrFAOjel5TQXHsELi4uMDl8GFd0dcX4qirWVFYmuo0Zw9jf/vbY2uvdu3cLubm57Mknn2QxMTH9RLsXMhmRe09Puu6XXqL1OwzZHw6MMejq6kJbWxstLS38nTt32sLDww/GxsbaJCUluSclJbVERUV1/qmDaaCBBn3QuJFroIEGGvxfRGxs7GipVHp00qRJlgEBAcPumlQqFSQSybD9rAeitLQU+/btg0QigVQqxapVq6Cjo0PZmz+L5ctp8/fCC8P/XhDI3dbWljZlH39MpO3AAfS6TO/fv1+oqqrCmjVruL6sbF0dkWw/P6rNrKkBXnmFfqdW03EnTSIzrJ9/HnTKiooK7N+/H11dXfDw8BAKCws5juPAcRwEQYBCoRA7OjrEZcuWcUYPHgDPPgtuQM2kIAgoLy+HQ10dGuLicD0iAlFRUUPGMzMzU4yLi2OzZ8+G14AWYQDomleupM9x+zaRrby8YYeopqYGpaWlSEhIgFqthoGBAdatWwd29ixlYGtr6XinT5PM1McH6tmzkZOTg7qCAnXg99/zKdHR6mJB4FWMYfLkyf312NOnEzHudT4GcPPmTfz4448YNWoUpvU6GZeUAF98QUTqcRBFyrT6+RERb24m+fXgMUFcXBzmzJmDkSNHPv5YNTUkIz9+vN+xeyCuXKF/e53GH0V7OzBjBn50chL1xo9nSqVSzMjIYCYmJoKjoyM3oScw011ejpqxY5EREYGbtrZo6wlI6evrq1tbW3nnigro1daia8kSNWMMeXl5vHduLhyUSjjFxOCnzEyx1cSEtbe3Y9WqVTA3N0dWVhbOnj0LH8YQ+vPPMLp8GdzjZLWCQPfso49o/IqLKcMdFUVZ9Z9+ApYsQZdEgm927UK9iQm0dXSgVCqF+vp67pV9+yAPC6Oe6wCRskfIWC+++fprQaujgxvt64uRXV1EBAsK0Jmbi87Jk9H+4ovQbm6G3pYt4FNSSHnR2kqy4GnTUJaSgrNFRYLU0RHPPv00p/3ii1SK8PPPROxyc6m8oPdaBKG/vOC773DeykqoPnSIcykuhvybb+D75puU1V+wgBQAPE+f2d2diJuhIX4uK0PZvXt4e8OG4YN9aWkUqLt0iQJO69cDtbUQRBG//faburi4mFu2bBkb6DUhiiKOHj0qXLt2jVv/8ceoXLoUWhIJ6tRqUWfZMhw9epRZWVmJMTExrLi4WAgPD+eOHTumvnv+PP/s3r1I/PZbccrs2ezR6/nyyy9RV1cHhUIhhoWFiaNHj+agVtMz8IsvhhgqqtVqNDY2Qi6X49y5c6iurlavXr26XwqgUtHckMlI4bFixbBmcAkJCeg4eVKY/I9/cIPOcfgweSocPTp03FJSKLjj5ITGxkbs/uYbMUQUxbANGx77R2Hbtm2inp4eWzpACfNYCAIZ6xUXU0DUx6ff9+JPIDk5WUxJSbnN87xaFEUrPT09VXNzsxbHcTtUKtVbmzZtEv70wTTQ4H8cGoM0DTTQQIP/ErGxsXYAxgNQAsgCcG3Tpk1NALBp06as2NjY1VeuXPkxICDAYLj3az3GpOxR9BoX2dnZiWq1Wti+fTvf3d0Nb29v9axZs/ju7m6cOXNGzRjDlClT+GEzjOPGDepFPQQcR0QboEw0QAQrKwuiKKJ9yhToW1tzbba2KCkpgbe3N73GxISyZ/PnkwT75Zfp562tVK+5YQNlv4fZnDo4OMDc3FyorKzkCgsLOYAI9Ouvv466ujqUlJSwsWPH0ma6pmaQrJUumYOzszNgaAizL77AuMWLhzhnA4AoigwAjhw5AolEQo7Qly5R+7MVK/qztra2lPEvKurrl1xSUoIzZ84IRkZGXGlpKXiex9y5c3Hv3j0knT8P1tZGNbGLFpFzdloabcq7uoCHD3Hmu+/U7RcvMvXEifyR+fOFCfHx/JT2dki+/x6SgeT15ZeHkNnegMbly5fh6ekJR0dHyq6VlT3+PgKUEduwgf6/bRu1Opo2jYIiPQQwJCQECQkJYnt7++83djc3J6lza+vwZPvAAZJ3Dwe1msbY2hrdAQHCtWvXeIVCIcyZM4d3c3OjG3XnDhAbC8nWrbB+5x3MWbkS3aKI2tpaKBQK6Onp8U1NTci9cgUPbtxAfn4+Lwi0v7/m54eoNWtQPG+eMD8nh0v44gsxNCqK9fYRDwoKgra2No4ePYqrM2fijagoaO/aRST6UXAcSebb2igrbGRESozeedtTvy8FsOzjj6FSqahuOz6eS7h9W7jw2mtczPPP02ubm2kuXL8+rCLAydmZpaWloTo9HU6vvYaSkhIkdnaqGy0seDEnB1i+HO9s2AC+rY16cuvrk2FYaSkqL11C19atiOF5zmrCBHDPPQfMnElBHisrmh95eaRIcHenuezvD7i5of7LL2G4cSOuL17MLZk8GfpSKThf3z5zvz6zQZWKgj/NzSTn/+knhN68CVelEjzHkXQ+LIwyp6amNFZhYbSm2ttpLUybBrUg4NChQ+qqqiq2atUqpniE5DLGMHPmTC40NBSyOXPgoVQCX38NpxdeYLC1hbe3N3rT7hYWFhwAzJgxg28ZPx73XnkFJV9/zcr//ndonzkDuwH1zS+99BKam5uRkJDAzp8/z4KCgsB4ntZFRQURzgHIycnBqVOnYGlpibq6OnR1dfFtbW3kjSGKZAJZV0fGfl9/Te3nhnmWqjMyMPbHH7m+tdeLiROHn3OCQMHPDz4AnJxgaGiIxcHB7MwPP7DRXV3DBlO7urrg5eXFsrKyRAC/v3YBFBQVwX7xYlJTvfYaeQtkZVHA4Q+8HQBgzJgxTKlU2isUCtjb24Mxpv3w4UPs27fvxfv375cD+PcfHkQDDTQAoCHbGmiggQZ9iI2NNQDQsmnTJvVwv9+8efNCqVT6mZaWlr6jo6NaV1dXeuvWrY7GxkbtLVu2lHd0dBwC8C7HcR4KheK/SD/3QxRFtLe3QyaTwczMDK+99hq0tbWZRCLhT506Jebk5LAbN27wO3bsEOvr6xnHcbxUKsXkyZMhiuLQbHlBARGA/wKt48Yh18hIzPr8c4zu7ATv4IA3PDyYfNIkyoLX1FDGetEi2oAKAm34J0ygbM7OnUTyfydzX1dXx3l6esLY2Bjp6elQq9V48OABLCwsBrnmwtyczNCGg7ExZV972mg9it4azsrKShw7dkx0sLNj2unpJJdfuZJqMAHajAcEADduoNnKCocOHVLX1tby3t7enCAI6tmzZ/O9mfHijAys2LkT99RqWGRn03tTU/sdh7dswb1799C1di0/Mzsb/K5dQGMjh+XLSW7bS8R6+/1OnEhmWR4eVMMLwNLSEtbW1qiqqoJNXR0wdy5tlE+f/vM3ce1a+rp0iQhYSgrg5ITk9HQAYL9rkNaLGTMo89nb47sXokjkY+3aoe8RRSLhLi7A7t1YCvA9vcVph9/SQi7eV64QKZfJqI4WtCGxsrLqO5SBgQHGBgcD0dG4/tZbEGQycBwHKysrtSiK/KnwcE4aFATfn39mep98QkEiGxswxuDj44Pk5GTU19dDe9Ysyvj2uOcPixUrSII/nOdAD3R0dNAn3d26FXK1munExPTPc4WC5uJjMojh4eHM29sb33zzDXbs2IH29nZER0fzDg4OsOwJKDHGaKxHjaI3uboiOzsb586dQ9iXX4p2QUGMk0ppHerqUpCgV/WRl0c11z2KFGRno/bBA/z7q6+Al18Gx3EwWLCAMtkA/fvGG0Siv/iC7l1XF0npAWDZMuyJjYW9nh5GTZ1K9+ziRSLyNTX0bDE3J6J95Ah5MuzYgabvv0drRgYf/vTTUJSUkLSZ5+k5YWAAMAbGGCwsLGg+bNhAaoyedT9c0JAxBn19fejq6oKJIrolEpw6c0Zc9eKLg16sUCgQExOD4uJiYf/+/fD19eVGjh4NdubMILLd0dGB3raLNTU1UCgUor6+PiQSCR1v3z4KKB0/Tmv85Emq9ffyQkdHB3bt2iUGBwezoJEjcU8ux/GXXhLnGRkNvnK5nII1tbWDDcs6O6n/9oA1qExIQGhKChoaGmA+TBeAoqIipKamDmsm+Siam5tx+PBhmJmZiatXr2b45BMKpvz4IwWUPvtsiGnbo5BKpfB5JDihr68PZ2dnWV1d3Z9rGq+BBhoA0JBtDTTQQAPExsaO09LS2sPzvIUoivjoo48SOjs7X9q0aVNJ72vee++9Z+Vy+Tfz58+XW1tbD9wQanV3d+PAgQPu5eXl/wCwQUtLS/3EE09o/5VrOX/+vJCens4BQHBwsPjEE0/0ySUnT57M7ty5IzQ3N7P6+noWGBgIiUSCzMxMfPzxx/D19RUCAwM5Y2NjMMagUqmgdeHCY12lB0IQBJSWliIrK0tdUVHBK5VKISwsjA9ct44IfEsLufIClM2aOZPqvYOCKNvT1UUkUlv7d1vXALTRValUmDlzJrq7u5GTkyO2traynTt3Ijo6GmFhYQB6Nt0ffUQZ9wMHhj/Y5MlUj9lDtAZCoVAgMDAQAQEBqPD2ZlW//CI6XbzIhiOJgp0divbuxa/5+XBxccH8+fN7N7ZEEru7Ifz971BZWCApMhJFEgmeLS+Hk5MTOWgPcIU+ffq0oDtnDuMPHmRobqbrysigGsovvyT38DNn+jPGGzfSa3rr6QEolUqxqqqKHb50CQsiI/+w5OCxCAwkKam+PmBvD2HMGGHsK69wf8rZ3tyciNfly4Md2tXqoQSiF9XVRATff7/vRxzHEZHrLS0wNKT7tWTJH17CDwcOiLWvv85EHR1AEODr64vp06fze/fuFXmeZ10yGfLGjEGUri5d16uvUi9yXV2MGDEC9fX1qFm0CObV1WQe9uOPwweBGhqITP0RPviApNmnT6MrLU1MTUyEq6srM+o1kjMxoWzmnj1Dglza2tqQyWRQKBRiU1MTGzFiBHx8fCCXy4clmCqVCt9++y0ePHiA2bNnY5AZmoMDGco1N1N7LCcnylK3tQHz5qGurg53797FsWPH+ohqnyoFoPuxaRPVaIeEEHH38yN/h2++6XuZn7+/eOXKFdZsZQWFu3s/URdFOndSEnkVSKXkQv7wIYx++gkzlEqc2r8fnlevQvHyy6T8OHOGMvW+vhQUeO45MhMrKKBnlCD8boAOoLmk7ewsHJ43j3tOqWSwtaUs/ABJOcdxWLFiBXf69GmcOnVKyL55k4toaIBZczN0dXWRlpYmpKamchKJRNDV1WWMMdbR0YF169bR+Obl0fzcs6e/fvrAgb5g2OXLl1FfX88uXLgA0/XrxactLNgn/v64evUq/Aa23pJKAR8f1BQW4lBKihAdHc15enjQvNi5c1BtdsPLL+OAtjbe+Z12e6Io4uHDhyw2NhZz586FxzDlCoIg4OeffxZlMhnq6upYZWUlbGxsKDi6Zg0FyebOJXO/v4CbN2+2qNXq/NjYWKZpEaaBBn8OGoM0DTTQ4H8amzdvniiVSn97+umnjWfMmMGFhIRwUqnU8c6dO4vi4+O/jYqKageAjIyMd8ePH+/l5uY2ZGPcY14m5OfnM1tbW2716tXSP5OBGA7FxcWijo4OCw4OxsWLF8WioiLR1taWxcfHC3fu3GHFxcVsxowZbM6cOXB1dYWVlRWuX78uODk5sZycHHb58mUkJiYiOTkZKSkpyFcokFxbi061unvEiBFDdrINDQ1ITU0Vjhw5woqLiwVzc3N+wYIFiIiI4AYFFbS0KFsJ0GZtxAiSJqamkkz53XepPvhPmLhdvHhRrKurE0JDQ7nGxkakp6czgMi1VCpFZmammJycDAMDA2bq5UVEb0DGcxBkMpLQ1tUNXz/83XeAhQUOVlSgxMdHHD1u3LASzO9Pnuwe9d13nMennyI0PJwbJPWvr8fDzEzUb92KHEdHwXXRIna/rk68dOkSq6qqErUKCwWT1FQOMTEoLy/HxYsXsXTpUsZLJBR8eO45GrsnnyTp7YYNlCm7f58I0iuvDHEOdhYEFrliBVJGjxbTlErcv3+fubq6Pt6M7PegrQ1wHO64uiKttpZFV1VB+8gRClT80fFmzADi4/szrQA5qL/yCpnDDcT27SS5/fXXPmICgEjhxImUQd2yZej7HoP09HT1rVu3OPe0NNjL5eLsDRtYj8QYxsbGrLy8XO3l5cW1d3aK5xsbWWhgIPjDh4kI6uhA394ely9fxvX8fHTo6kLv4EHcl8uRUF6OIev4k0+ILM6b9/gLUqtJWuzmBnh7w9bWlrW0tIhnzpwRfX19qQc9Y9TLOSioP0M8AIwxhISEsIKCAtHc3Jz98ssvyM7OxpUrV9SCIHA2AwJGR48exa1bt7BgwQK4Pmp419lJGWylkoI4dnYU9Nm3D3j6afz755/FsrIy0c3NjXl6eop37txh9+7dE5qampiRkRHk//43lSUsX96vyli0iIJoPeNSWVmJCxcuwM/PTxg5ciQ3aLxUKpoDoaGUtT5zhrLk8fEQvvsOn06bhkYTE5RHRopBK1cyzJhBQSalkkonZs2iOR8RQWR56lQKxBQU/O68FAQBcXFxTBRFOEdEwMzDg+ZmQ8OgOaetrQ1vb2+EhYUxUSbDg6Qk4WBVFbt06ZJYXV2N2bNns5iYGBYaGsry8/MFmUyGwMBAhuxsCtjs2kUEtQf3vvgCTStWiId1dFBYWMiMjY3F5xYuZJmXL7PqKVNEj1GjWFxcHAICAgaVCXU4OWH/kSOioFBweXl54ig3Nya9e5fWwIDP+CA6WtTW0REdp00b9oPv2bMHWlpaUKtJdFVQUAAdHR3IZDLo0DXh5MmTQlJSEh4+fIjnn3+eFRYWCkZGRsza2poO0txM/ciff56e3/9Fe7BecBwnvXXr1tTu7u73MjIyno2Pj9+jMU3TQIPfhyazrYEGGvzP4v33339dJpNtnj9/vo59j6xXJpMhLCyM1dXV6RQUFOyJjY2dtWnTpi6VSpXT0NAwFb2ZzkfQ1dXFSSQShIWFDTHu+W8glUqZWq3G6NGjYWBgwB04cAA7d+6EjY0Nd+/ePZiamooeHh59GzK5XI5XX32VA4DJkyejtLQUubm5Qnh4OFdZWYng8eOxfcMGJCcnS0RRRFBQEGQyGQoLC5GZmSnU1dVxpqam4vTp0+Hh4fH4tFJFBUmgz50jcr18OUmvGxtpc7xmDTksD1ffOwDt7e04f/48mz59Og+Qs/Vbb72Fzs5ObNu2DTdu3AB6ahIvXLggeuroMISH//6gbdxIJOGJJ4bKyXftQm1DAxrt7MTg4GBu+/bt3SqVinV2dvIymUzN8zysrKy4uw8eSHRmzIDxlSuDie++fcAbb+D8e++pG995h1u9dCkHAKNHj2bHjx9HXl4eM+3o4Nx7Mk+nT58W/Pz8BpP1Xln866+TjLajg/olFxdTJrGmhsgHfXagqQlaXl7Ad9/huQkT2Ndff43c3FxER0f/KRnpcOjo6MD+/Hxx7IIFULa3M8TFEUH54QciF4/LKMrllNULCOjP1Lq6DiXM7e20kd+0qf9nDx5Qe7LNm0livHjxYBL+O1Cr1Th37hwPAKE1NXAcPZoN7HFtY2ODtWvX8jt27FDX19eTX4GpKdWpq1SAry8so6Ph9cQTwvXr17m07Gykx8Qg6MABiDIZEhQKcByHiIgISCQSVLz0EizMzHDrxg1YWlqiq6sL8fHxmDlzJhmDLVpE9+3w4b5rYIxh0qRJXHNzs3Dw4EH1smXL6NnwzjtkjAUM2zO5vb0d9+/fZ01NTX3ft7e383FxcTA0NERcXJzY2NjI6O2OgrOz8+CbIwgkB25u7pfG8zxw4gQEjkPprVvQvnuXrd66lfUoIlh4eDhu3LjBpaakCAVbt3Jt3t7iyNdeYza9RLv3Xk+bBuzdi+vV1Th27Bj8/f0xefLkwX4Q1dU0FunppNi4dq2fOM6ZgxP5+WpDfX1u/gcfsCurVw8mj4wNNioLDCQH95deQucPP6CzpASKL7+kzPInn5BKYMDc5DgONjY2QnV1NRefnCx6rV3LcP48rZ/GxmHrkQMmTAD+/W/O5amnUMtxzN3dfdAz2tvbm8XFaUlgCgAAIABJREFUxbH2oiLoHDlCgcMBPhGXL19GdlkZxnl4MGdnZ1hYWKhHmJryxuHhCN+3Dzvj4tiEnkBkRUUFvLy8+tqBmcTGil4mJojYuhWb//lP1vzKK5Bv2zZkvd0yMBDtIyKGXYTd3d2QSCRiZ2cnAwATExN0dHQImZmZ4unTp3me5yEIAkxMTFhQUBAbNWoUGhsb0drayvXVf58+Tdn0o0dJUaJUknHafwl/f3/e399fR61WY+vWrTYATAA0/9cH0kCD/yFoyLYGGmjwP4l33313pZ6eXuzSpUt1Bm7iezFlyhTt5ubmcZWVlRdiY2OnAbjX1NTUCWBY/a2VlRW6u7vRS9r/KqRSKevu7gZA7WEWL14MhUIBIyMjpKSk4Nq1a481yNHW1oaXlxe8vLw4AHCwsQE8PLDqtdeQmZWFtLQ0pKSkQCqVQltbW+3t7c0vWbIEWlpawzvm5OQQuXZ2Jrfs8HByGzYzoxrXSZPI6GrjRqrlnDeP5MMDWy09Ao7jwBhDL9HovW5tbW2sW7cO6enp4sWLF9nIkSNFqVRKZM3EpM+47DEHpbrkL76gesTubsrynTgBZGRAt6UFOt9+i9TUVACQuLq6iuPHj0dTUxPf3NyMlJQU0cDAQJQGBTFcv07HTE6m7POqVUBSEm4eP85FR0f3jbtEIsHMmTOhVquF0oQETnj4EAaZmWhtbcWTA9onDUKv1DwxkUhnbi7w1FM0XpMmUeb0wQO69rIyYM4cyLu60NHRAQB/iWhnZWUhNzdXkMvlsLa2RkhICAfGqKb+xg3KUsfE0Lnd3IaSbqmUyOPANdLcPLjN2/nzVL+dm0sKCJWKasXb2ujzSKU0jn8SvS78vbj//vsYNWnSsK/18vLiU1NTwRjDli1bIAgC7OzshGczMzlpTQ1mf/45N8PICKULF8LJxQWXvvwSge+9h10+PlBxHFJSUiCKIp44fx63ASQ8UgJRdPUqwtzcYOTvj7KODoy9fx+mA2qyGWMwNDREc/MjfOPrr0lq3+vQPwA6OjpYtGgRCgsLhdDQUE4qleLy5cvqxMRE/sCBA9DR0WEABaLmzJkzlIDt3Utk9D//GfRjYexY5M2cKeoWFWFxczPj3nuPVA2gdefh7g6P/HzuXleXuEdXl3WWlQEGBrCysiKpP2OAVIqcuDicuXkTDg4OuHr1KnN1dSVDQgA4dYoCbcnJdM99fYdkoUv09LiosWOZkVSK6FmzqHSis5OeHQNw8OBB4fbt2xwAPJ2QgEstLbjh4wPfkSMFU29vVJw9K04dN44vGDVKTBs/HgJjEASBdXZ2cmq1GpGRkXTi8eMpEKhW05p/6qmhE0Uuh1lZGcxmzhzyK2NjY9FGS0ssWbiQU02ZgoDwcAwc9JSUFLXMx4e3NzSE69ixAGM8KiqA6dNhFhQE5cWL4pkzZ5ipqakgCAL3ySefiO3t7czIyEg0mz+f+Ts7gzGGcFNTUbpjB/v0hx8ERxcXbuLEiZDL5Thy5IhYExnJFj9y3cnJyUhNTYVMJkNXVxdzdHQUysvLubq6OmzcuJGTSCRobm5GQ0MD7OzswHFc340wNDSERCJBXl6e6Ofnx1hCQn95T2QkUF8/dIz+JL766iuxvr6eAWCbNm0q/8sH0kCD/xFoyLYGGmjwP4fY2FiFRCL55Nlnn5UPR7QBMohZuHCh/MSJE6Pz8/OvA5C6ubk9ttDV1NQUPM+jlyj/VUgkEqjVagEAx3EcHB7J1KpUqj+vI+7oADZuhFxPD+PGjUNNTQ2Ki4t7e3zz/KNZIJWK2mAdOkRZVxMTysoGBFDNZS8Rq6+nutzGRvpijAjj5s2UOampGX7DC1IO2Nvbd6vV6iF/fxQKBSZNmsQuXryI/Px8BgBX58+HaWUlVoni70uo584l+fLWrUTQt23rkz7r6enh1VdfZd9++y2qq6vh5OQEU1PTPtLU16KtqoqkxNXVwC+/ECF2cEBBYSFUKhXchjEVmjNnDqdSKnF961bx+NmzLCoqivvD+uqoKPpqaqKAhkpF17x3L0k8i4qIcIPmQ3R0tHDhwgXu888/F1555ZU/Xbx9//59nDt3DhzHcXfv3sXKlSsHj6GbWz9JcXammuZ//nNodjAsjIIdmZmU8du4kcbZ1pbcynNyqLZeS4sCHStWUAuszMw/rN9/FG1tbTh//jwAwMjISDQ2NmbjKyupfvzGDbTLZNDS0kJnZycaGxsREBCApKQkAMDy5ctRV1eHX3/9lduyfTt8fHzU/pGRvE1KCtxEEcjORsi6dcCKFdiwdi1uPvMMbgJISUmBWXAwtGQyvPHGG/j/2Pvu6Kqq7eu5zy3pvVfSENKBEBIglNBb6CAgICAgRUDxqWALUURBfSgWQKRKEUQQUAg1hATSICTEhADpJCEhvbd7z/7+WKnkBvC93xjf8707x2Bocs89de+TPdeaay7WbOBVU1MDcexYVJ88iQMzZ4Ixhvs//shtbW3F2bNnS6RSaUvvamHevHkdLyQ8nDLQDQ0q5bpOTk5wcnJqfZZDhgyR3Lt3jz969IiJoojg9gqB9khKIqXBiROdPsrIyECeXI5Ra9cyWUAAPdtu3SjjzznVduvrw+DECVbfrJa4fft2S2tBUSKRwPu114Toq1fx0iuvwNHREXFxcTh27BgmOzpyt8uXGT7/nNQeY8fSXFHRw9nOzk48FxoqyXJ15VOsrBg4b6sv//lnYMkS5OXnIzU1VQAAFxcX6F+7hkmZmahycsLhkyd5iZcXMzc3l9z66CPIi4rYi3fvwuD+feR/8AGONL+LHj9+LHLOSd5ub09S9uXLyVH9yXfFokV071Sgu62t4GRhgXAjI0RIpYjctk00MTFhQUFBLCkpCdXV1ZJX1qyBRu/e9J6LiiK5e3O7PkNDQyiVSt6vXz/h9OnTkMlkzMfHRxw+fLggT00ln4AxYxA4cCB7FBsLj/R0PHz4UPz8888FExMTZX1+vuTNzZvB3nmnw3mlpKTwpqYm1qtXL9HFxUVwdnYWPvnkE/j4+LS2YdPX18eTbu8ABTD79OmD2JgYVjZ9Oow/+6ytDGjSJFIitbjo/0UUFRUxuVwOznnOv7QDNdT4H4OabKuhhhr/c5DL5Vt79OghmD2j76ggCAgKCtJwdXW145yje8ti5SloaU8EkHT35s2bUCqVSE9P53369GEdDHTagXPeWo8niqJK45m6ujooFApWWlqKVkOmpyEzk/oyT58OAHjxxRcRGhqK27dv4+DBg3zo0KGsm5ERGZDt3EnZyLfeohrO9etVO9Z+8QWR7rAw6v3cXk48cCCRxI8+IpOhDz5QeVoSiYQ9LSgxf/58aGhoQBuAjpsbtrz5Jk6ePAlPT09YWVmpzvAaGRFRzMmhDPu5c2SUlZREZGPDBgSam8NhxQpsEQTm+vHH0KupoXpkCwvKvpmaEok8fpyuDUT+Tp8+jREjRrDWHuNPQG5jg+7jxjFUVCA/P1+JLkoNOsHAgLKfjLW5NZ8+TZnk48fJWXvgQAQYGgpFDg5iVknJcxNtsbn9kpOTE3r27Mlyc3O5paWl6vOSSCi4UltL9bQpKZR9byEsWlqU/U5MJLK9bx+R75b+5MePUw3o6NEkm/7qK5Kp/oX68qrKStxOSID0m2+gMDeHhVKJV3fvZiw7u9XRmY8bh72ennhl3z5sXbsW+goFbwAY09MD5xwNDQ3w9vaGp6cnsrKycOPGDeFwXh638ffnL2VkCGzNGpJf29kBVlZw/OknOO7di2HDhtG1aGiQlBoAkpOhmZcHnDoFU2NjfNhcFpCens4uXbokHDlyRJw3b55w6dIlpY2NDbO3t+/4bBgj0mdg0CYpfwZmzZrFtm7dioaGBmzZskVcsWKF0GGsR0ZST+uIiA5yfM457t+/j+PHj8Nr/nwuGzSI4cABGsM3bxI5bFGpHDsGTVNT+Pj4iLdu3RJee+011NXVobGxUThy5AjyfvoJ644ehXTjRgCAb9++MFMq8WDjRkgaGrh5dTUz0tIisqaCaAPAhAkTJHl5ebhw4QK+++475Zw5cyRJSUnQPnIEbu+9h9u2tsi4fp1DLmcABZSMbW2B5cth7OuL1z78sPM4bWwEjh3Do6IirP76a0T1748oURQCAwPb+n+3dEvIzAQ+/7xjFwNzc5prT0IUgW+/Re3du4gYNAivvvoq0tLShIyMDPHrr79mADB48GBRT09PwA8/0LskPJzaG7Z7bmfPnsXZs2fRvXt3Pnv2bAY0J8cZo2x7UBCEV16BTUoKbJydBQAoLy9HamqqJCcrC7s//JAvlkhaJ0xtbS2KioqYg4ODOG7cOAEAGhoayFG+iwDxkxg7dixyfvsNtTExMLS1bcvWGxpSkDQjQ2WZgypwzpGWloaYmBgRgNCrVy8kJCQIISEhtsHBwbnPtRM11PgfhZpsq6GGGv9TCAkJ8dPQ0Jg9bty45yoeZYw9F8l+EpWVlThy5AgKCgpgYmLCnZyccOrUKTQ1NcHX1xcA8OOPP4qFhYWCUqkEb87cCoIAe3t7lSxl2LBhSE5O5j/88AObOHEintm+ydy8g+OzIAgYN24cLBQKlBw8yBKuXOHGDx4wvf79ydzsvfc6mAKpRFwc1d8C9J1DhzosPOHgQAvds2epl+x33wEyGR4/foz6+noolUqUlJRIjFSYR7XAsaVHcVkZMGkSRo4ejfDwcJ6UlMQAwMPDgwcFBbFO/cpffpmISGUlmXU1NtLvb94ETE3hIpMB8fHwffQIP9XVIWj0aNgBlBF3dSXSOWgQMGkSeHQ0kvLycKuykhsbG4t9+/btmkBnZ0MvJgarvvsO33//vaSgoAAWFhbPNjNraqLgxbp11P7qu+8o0KGr25Yxrq2FMjQUumVlwpw7d4jYfvQRZQidnCjTVlhIta9NTSgSRfwSHo4KOm82ZcoUQVNTE71Vmce1h0xGxPDjj6kk4P59Crzs3k0EY+tWOk8TE9rm0CHaZtYsMkVbvJjGxbhxKo3BWpGWRvfZ2JjGz6+/Qvnhh2j66SeErVmDl+Pi8GjAAIzesgWsV6+2fseXL4MFBcH0rbd4tY4OU2ho4JWvvmJgDF+98Qbe3LMHGv36AebmEB4+hJOrK5ycnFhWVhb279/PvtLX51NPn2bdGhpI+rxjB431devIYfzNNylgsGULnWdICBHa/fs71Gy4uLggPz+fhYWFsc2bN3OFQiGZpELFoVAokLZ0Ka7Hx/PRubnMtgti2h76+vp4+eWXsX//ftTV1QkNDQ1tgaWsLDrnAwdaAwI5OTkIDw8XMzIyBKlUCltbW0VQUJAUSUnAP/9JZLuggAJinJNPgEyGC+fPK3JycgQNDQ1uYmLSenlLly5FU0MDpO2z6jNmwKGwELonT7K9u3bxycOGITEgAJbvvMN7dlHOoq2tje7du8PR0ZHt3buXfffddzA3NxeVSiWu/OMfAr99G6u+/polTZmCeF9f5aBBg2huffkldT1QKDobLcrlwNy5cMjJwZHZs6HR0IBlSUmQBgWRa7ixMX2HMSLVWVl0zS1z0NmZfAWamtp6qAOk2ImPh97Bg7Ddt4+fOXOGL1myRAgICBDKysrQ2NgICwsL4qnJyaQ+2bSpQ023VCqFn58fUlJSuI+PT8d74uZGah8dHTJda/fOMjQ0hL+/P/rW1SH08GHW1NSE2tpaHDp0SBQEQRBFEYMHD+4QxFEqlSgoKOhqCHVEeDhG29pizyuv4IP2gULGSNLf1PRcuzlx4oQyKSmp5f0njBs3Dn379oVcLreLjo5O+/TTTw81NjYGq0m3Gmqohppsq6GGGv9VCAkJ8dPU1NzAGBPr6uqOAzgUHBzc2PxZX5lMdmHy5MlaXWUp/x0wxrBv3z6FXC4XCgsLBalUihEjRigHDhwoaWhoQHx8PM6ePYuamhoMHToUZWVlwpQpU+Dk5AS5XN6+vZPKDKZUKsW0adPY77//zn/99Vd2584d5axZs7omgRkZVPsLANnZtNiuq4PP0aMQAwLwi54e+8bGBoFBQbxXr15M62nmVdevkzT7559psdbYSA7Czf2nO8DEhLLLlZWoHjUKp+fOVT7IzZXo6OiIjDFwztEpE6gKTU3A2rXo5+2Nfv36MVEUERsbi/PnzzOJRMJHjhzJdHR0iOSZmVFG9eJFcvluHwBoX0fv6YmRnp7IzsnBnqtX8Y++faHTvq3Vp5+iuls3ZCxezC1v3WKV69aJryxZ8vRMtVQKGBvD2NgYNjY2ip07d0oBYPXq1VAZVBBFUhMYGhKBWriQggNz5lDGeP16Clg0m1cp587FjU8/hfD667BwdUVUUhKc/PxgYWpKJmeJiYChIereeQeyhw9hOnIk5mRnM/1+/ZiwfTttM2UKBR2sran2vraWyOaTpMbUlJ5rWVkbad6+nTLbublEHBgjkt2rF0nPW4zf5s+n7XmzMGPDBqrVjomhQE5yMrWOGjCAjL1MTABRRPSIEbimrY0hQ4bAITgYDi3n0r7Ou5k4Td+yhWWvXAmTP/7gCb//jsjz55lGQwPE2loaA+PHU8Dl7Flg1y44mJjgg2+/xe8bN7LoO3eU3WbPluDLL+nad+6krO/Zs6Qm0NMjMpWaChw5otJsCwD8/PxgYmICXV1ddvr0aZ6Xl8da+rDn5uYiNjZWmZSUJJFKpXC/d49VvfEGxy+/PDPNX1ZWhri4uFZPBhMTE/ogPZ0yyRs3IhnA8ZCQ1neFjY2NsHTpUlhYWEAQBHqYnp5ENnNyqJTkt99I9i2TQaFQ4NatW1JfX99OQcRWpc/p0/S8xo2jZ+jkBFMtLSydNImlnjqFCBsbDC0qYj2f5qMAel8tXrxYEEUREolE4JwjLCwMERER2L5+PWa9+CL6b94swdGj9H554QXg/ffpGWzdqnKf9vb2WL59O7744gseqqeH+draDCUlwODB9AznzKEA1LlzVNceHEyt67S06L/37rW9s/74g8ofwsIAiQR5eXlMW1ubZWVlwcHBoW3uKhRE1A8coADYhg00b7W0gBdfhPLwYfxRUMBdzM3RXansSPIlEsq4W1vTWFN1n5KS4JSRgTNnziAlJQVGRkbM0tKSOzg48PYdJORyOXR1dZGcnAxPT084OzujSzNOzoHXX4di/HgImppofgZtn+fnU2/0779/6jMEgBaiPW7cOPTu3bv1mMOHD5cPGDAAV65ceSkxMXHOZ5999ltDQ8PC4ODg+mfuVA01/oegJttqqKHGfw1CQkJcpFLplWHDhmnL5XLEx8cPKSgo2Lxx48azAAxkMtmoqVOnaj9rkfivgnMOf39/aWlpqdic7RA9PT0lANUqv/fee9i0aRPq6upw4cIFNDY2ory8HH+F+Nvb22PZsmUsJiYGFy5ckDx+/BjmqrLRnNNi6rffqJbxH/+gLNfw4cCqVRAYwwxRRHR0NKKjo8WLFy9Kpk2bBldXV9U9nW/fJtLasoi8do3IVlfZW7kcuRMnIjQlBdM3bZLUfPstbMaO/WvNog8epHO/cAEAZeb9/f1hYmKCs2fPit99951k7dq1kM6dS8QVIEfyIUNIEtzcr1sVHj9+jG7dukHjiXpaxZIl+GPgQJQGBfGFhw+zNUePSjB9OpHMroIR9vYkoQawcOFCaWVlJbZv345du3ZhzZo1nY6BTZsoy5WVRUGQFpSUUMYpI4Pu9+DBAGiRbW5uzqNu32aRN2+2bm6uUKBXr17oP306ysvL8f2sWRg4cCCfOWAAQ34+1WI/ekQZaJmM9nn+PBHtAweIAJSW0lhZtYrGi60tEdacHCIqSiU5cBcXU4upwkIiYW+/TYR0wQIiHgsWUKBjxgwi5TExRNrGjqXa+bfeopOOi2u73qNHwTlHXHo6tCwsMHToUJW3tyYlBRqzZ2NrSAgsLCzEzMxMAQC7GBlJGUMAaZGR1Efax4fk1rdvU7nD2bMQKisR9PHHiBk8WFIXFwet8HB6ngUF5Hadn0/Z81mz6HkYGHRJtAGay+7u7gCAoUOHsj/++IM7OzszS0tL7N69G926dRNmzpxJfb63b0fukSNs27ZtfOLEiexJD4YWVFZWIj4+HikpKQwA/FtMBouLgePHoZg+HfDywvHm/uUTJkyAnZ0dTLty/+cc8PKi3uF1dcA77wCennhw8CCW/vOfkH/yCfTNzOhaKyrI86C4mMoqpk6l7PmLL7YR048+gkFSEvyio1F4+jS/c+cOH9SFe3Z7MMZaSV58fDwiIiIAALUKBf588AB2X35JZQvZ2dRmrqWM4ylISkpCTU0Ny6ypQdSoUWJ/V1cBBw/Su2jmTBrfx48D/fpRAIgxCjq0BGI8PCjrf+AAKTSayWP37t1x//59nPzlF7wREEDEvKmJPCwmTqTvJSZSoCYri4IXpaUo/eADyAMD2QgAzN+f5nH37qSg2LKF7mv7gN6TWL0ap2pqoJGVhdGjR4u+vr4t97XDy5UxhqVLl2Lfvn38xIkTTBRF6OnpKRcvXizR1m5nJ6JUAj/8APH8eRzZuRODAgK4pJ1EHQD9HeiCaFdUVCA1NRXm5uYoLS0FACxcuBD29vadttXS0sL48eM1hg8fjh9//DGooaEhEMC5pz0/NdT4X4OabKuhhhr/NZBKpct8fX1lLTJtb29vnby8PJ2zZ8++XFZWxhcvXsyeq9b5OZGfn4+wsDBwzsE5hyiK8PLygqamZstiqcNilHMOc3Nz8c6dO4K+vr6oUCiEa9euwdbWVuVCpisIggBfX19ERkaKO3bsEN544w3oaWsTkamoIOJQVERkIieHSJSXVydiLAgCBgwYgAEDBkgOHDigOH78uFRTU5N7enqyluwd6utpAbtjR8de1/v3UyaqCxQUFOCngwfhNmqU0nD+fInhl19Sy5+nEOBOmDWro+t1M7p37w57e3tBa8cO8CNHiFi1QCqlVlaJiZRB7SIYEBAQgIiICOzdu1epqamJbt26CSYmJrx8xgxWq6+P5cuX07ObOpUIa1MTtToaPrzzzrKzqY5z4kQAJAd+5513sHnzZr5//37MnTuXaWtrE3keOpRq2d98s/N+zM2J/IaH0z7HjiVSqKmJ6dOns8jISNHKykqwtbXFlStXkJmZiQsXLqBHjx7YsWMHNzAwQEBAAINE0pbNd3Jqu+fta1hnziRCVlhI5NjCgozwqqtJ6n35MtW/7ttHslxPT/pOYSF9v7KSgi2nTpF839yc7tGOHa0EuMNzeYoZU0VFBYyMjFozumVlZThz5gwyMzMhlUrBGEPTO+9AizLmgo2NDZ8/fz779NNPYW1tjfz8fCK/DQ0kn37vPcrKM0b/OEdTXBxu7t+Psrt3MZYOSvfW0JCylXfukGT+SVfxZ8DDwwOVlZU4duwY9PT0oKOjIy5YsKB13tu88QYsFi9G/b597NChQxg4cCA3NTVl7u7uyMnJQVRUFC8vL+eFhYWCXC6HjY0NnzFjBtPV1UV8ZCTwwQfcxMeH7auvJ6d/UNszbW3trok2QNd95QqNt5oaGsfnzsElKgpRixbxhKwsBAUEsG4nTtBLats2UlwApGKwtSXyC9B9ra5u9WCws7NjWVlZnXwloqOj4eXlhTt37qBv374dsq7NnRA4AGZiYqKUSqXw9/eXQF+fMtE1NTS3hg6lGvcFC0hW3pLdbwcjIyOYmJgoS0pKJPn5+TTBW9rS7d1LAaXERPIfCA6mcb9xIz3v27fJvG/VKirbsLend9yjR9A+eRKT792DdPZszteuZayl+8LkyaSaAEgNIZdTRhxAblYW9i9dinfeeYeCpu++S9ulpLTJ4Xv16qiueRJDh8LLwACBR45AW1v7qQEMPT09rFq1inHOERMTg/Pnz0sSExPRvz2Z//FH4MgRFAUFQRTFNgPI9rC2pkBEcjIFnJpx6tQpZUJCggQgci+VSmFkZKS0t7d/pg9FVVWVACANAD766KO5MplsZGNj45rg4ODyZ31XDTX+m8E47/S+VEMNNdT4W2LLli23pk6d2qe1TU0zmhclcHV1RVNTE3r16gU3NzfU19ejrKwMoijCptn9+a/g3LlzSE1Nhbu7O2eMQUNDA4MGDWLPrNVtRkhICADA0NCQa2lpMRsbGz5+/Pjn+zLnwL17OB0czAPHjGF6H3xAi7q33qLMRt++RG5LS9uyvs9wyQ4JCcHw4cP55cuXGQD4+PjwCTY2DO+9R5LM9tm+ggLK9Kow6zl48KCYmZkp9OvXj48ePZqu5/FjqusNCKBzfJ579NVXRPJUENy7KSm4dOgQN8vIYFbLlolDhgzpeHErV1KWu9kcThWysrKQnZ2NjIwMMS8vTzA1NRUDz55llzw8MOvNN5lJ+4V+fDyRkKtX21x9W3DhAmVxv/22w6/Lysqw44svMP3oUXT/808iP336AJaWXV9zZiZl5U1Nidx+/TURAhX368svv0R1dTUACpysW7cOsvb1qP8XaGqiwIqXFxGU2Fiqf506lRbrqsoI/gIaGhrw2WefwdHRUTF//nxpQ0MDvvnmGzQ1NcHY2BheXl7QqayE52efgYWFtX5PoVBg7969vLCwkCmVSujr6yuXbdsm0Zo7F/XvvYfKAQOQZWMjXh4wgGlpaaGiooIBwNtvvw1NTU2qpxdFylA+eEBSX21tmi+bN1NrtGf1d2+HgoIC7N69GzY2NljwZGDh4EHgrbeQdOECoqOjxfz8/Nb+x3p6erxHjx4s6gmJMRNFeGRkwPrBA5wfMwZgDD169GjpQw8AMDAw4K+//vqzJ1JJCb0P/viD5uuePYgcMkQMj4gQFApFx6wl51A0NkIqCJS5jYyEdNEiIq/Nyo4rV64gOztbuXDhwtYXwp49e8SHDx+2zkFdXV2xmagJ+fn5vLGxkclkMjQ2NmLlypVtgQJRpLEdHk4O69u2UbuyhgZysr94kVQZd+/S3Pv+e5qLL7+Mqw0Nyrr589nYH34Q8PPPRBzv36fgYUMzAAAgAElEQVRShcRECpJ160Y16zIZlWps2EDvSamU3pODB1N7Ng8PZA4ciKqKClyur+f1cjlbt25dZ9+FujraZ1xcK4EOCQmBo6OjOG/ePEHluz83l+6diQlEUURMTAwYY9DS0kJdXR2kP/+MOIUCy7755tk+D+2wf/9+ZGVltRF9gO6NkRGgo4N6fX189913oqWlJebMmdP53DZtor8Rr70GgFz5r1y5AisrKyxduhSiKKpWOalAamoqTp8+Hf3222/3/+ijj4K0tbV/NjU1lebk5Gz48MMPP33ui1JDjf9CSDZs2PD/+xzUUEMNNf5thISESDjnW0eOHCl90jhLV1cXWlpaqKmpUVZWVrKYmBgWGxsrRkREsMTERNy8eRNyuRx2dnZ/6ZglJSUoKSkRX3zxRcHZ2Zl169btuYk2AHh7e8PHxwcRERGsuroaTU1N3N3dnakkTKJIztr5+WSqtXIlYGKC3Lt3YRUYyDQ/+4za2zg4kNFTi3RZS4syvAkJJKN8CsLDwzF37lxWUVGh1NTUFOy2bmV5nMP2hx86EvWcHKB3b8ogqrje06dPMxcXF0yePLntQx0dWjzfvUvS9kGDOtcLP4mNG4l0tmStWhAVBbPRo+F35gwTPDxw9uxZZmxsDDMzs7bFqpERZeIWL+6S2BsaGsLBwQG9e/dmUqkUaWlpbMKpUyzL3R2PGGMdWn1ZWbXVEA8cSIv0Fvl+aSllx/z82rYvLYVWeDiKLSxgduUK/rSyEu0nTWKsuQ67S6xdS1LXyZMps5+YSORh3rxO96u+vl7Z0qeYc47IyEgMGTLk6ft/XmRmknxWFCnDOHIk1dP26NEmM167FvD1JXKk3WVXvC7BOcfx48d5bW0tVqxYIUlISOC7d+9mBgYGytdff13w9fWFnZ0dLHR1wS5epPvQDEEQ4OPjw5KTk5U1NTWCVCoV4q2tkWxmJl6+cQMSAwNuNHSoUKmvj6KiImZqasrnzZvHDh8+LFZUVEBTU5Pp37lDgZyNG8mhvOXZhIVRQIExCjA8JWADAKWlpTh27JioUCjQkpXuAE9PYOlSWNjbw8fHh/Xp0wcODg4ICgqCv78/c3Z2hrm5OZqamuDn54fAoUPBd+2Cc2oqfp80Cd0cHFBRUYE5c+Zg5MiRGDBgAGpqapCdnc0SEhJ4Wloa9/Dw6Prdo6lJHgvjxtF42rIF9rNns0EzZiA+Pp5raGgwR0dHpKWl4dratTBdvhzfADwmMpI/PnGC5dvZiYK/PzM0NIQoivjtt9+UHh4ezMTEhB0/fhyhoaFiZWWlMHPmTLi7uyMgIACZmZm8qalJ0NbWVvr4+AiBgYGt799RFRUMUVFEenV06P2kVFKruKlTKUhWVUXEe8kSknv36EHvgp49gZ49oczIQJOTkxCRnc0G3rpFhPrXX0k+PnculZJYW9O74803aV/Ll9PcKimh+aylRUGVZcuA2bNh1LcvLAIC0H/oUBYWFoYBAwagU3tEmYzM2AYObA0+SqVSxMfHM3d3d+i0qDraIzER2LULGD0ae/fuFdPS0lBSUsIzMzN5UVERl0qlYr8FCwSTpykVVCA5ORlNTU0YNGgQ/aKykt7xbm5As7LAy8uLnT9/ntna2nbwj6iurkb03btiWn6+eDopiYWFhbH09HQ4OTnxBQsWsJb2d8+LZi8A/StXroRqamrumDhxorW7u7skOTl54PXr16dcvny5Jjw8PHno0KHqDJ8a/3NQy8jVUEONvz1CQkI0GGPrlUqlZnZ2Nrp3794hw2doaIjBVP8qAYDs7GyUlJQIpqamsLe3R2ZmJo4ePYrS0lJMmDDhuY9rYmKCmpqa51+RPIGWxc+4ceOUZ8+elZSVlQlffvklPli9msixnR1lYzQ1idDt2kUL1H/8g6TStra4WV8Pz759VWaYW7F9O5GH54QgCNCXSuFZW4vDVVVI2bNHsWjRora/F9XVtKAVBCQlJeHy5cviiy++KFhZWeHu3btgjKkmfWZmtLDdto0k12fPPrU2Fr/91pmQKxREavfsAWQyuLm5wcHBgZ88eZKJoghvb29aJA4YQFLPn3/uQNK6gp6eHmpra1GZlAQeGipyzjufmI5OWy2rREKkbNAgMhMrKqJtGhuJOPz8M7BzJ6YkJiKnXz9E/vSTcPXjj7Fq1aqnt20LDqb72wJfX7repiYKeLQb18OGDZMEBATgxx9/5EVFRR0z8f8qLl8mJcRXX1EAYdEiyjrGxVEWOz6eyMt331EA4KuvyLn7vfeoRvZpz/MJHD9+XLx//76wcuVKFBQU4I8//mC9e/fGiBEjJB0yahYWJAFWgV69ekkunDuHl7/5BgenTIFjnz5svJsbs7S0ZOzCBXiWlLCrgwcjLi6O7d69GxKJRMg8dgz6d+7A8vJlSK5coaBJWhoZ0y1bRvPF05MMrVrOoyXgMW5cp3PIzMxEfX091qxZo7o9HGOUQZ80CUhPV9kb2c3NrbW7gBgTA+f0dJyYOhUAoKOjg/fff7+V+EmlUowfPx6CIEBTU5PduHGDhYaGYpyKcwNA1/DOOzQ2p00jqXVdHdimTRg4YgS7efOmsq6uThIXFwdLXV1UvfoqZk+axCzmzmX8iy9wrqyMHzp0CPr6+kpbW1tJTU2NpKqqCv/85z9hbGzMfX19MXjw4A5Z0FdffZV+2LuXTrquDtNfflmy+a23UBsfD+2W8Xz3LgUIgbae7Pb2NMdsbOjZ3LtHY8DBoXXbTbW1EJvnSeO1a5DLZNQWbc0a2keLAkAUiVwbGVHZy4wZFCgbM0ZliQoANDY2gnOOo0ePirW1tWzevHmspSa6vr4eMS4u0Bg7Vnzg48PL7exQWloq6devn2hmZqY6DVxdDaSm4u7duygoKBCWL18OIyMj+rtRWUnn1uJp8Jxo7jPPbWxsWOt1ZmVR2UdzGRVAgWYTExPFqVOnJK+//nprQCY5ORkRBQXC2u3bYXD6NIqqq+Ht7Q1ra+t/6e+ZpaUlJk6cqP/rr7/erq+vh4GBAaysrPDmm29qPnjwwOfq1as7Kyoq/rFp06YYxhhrbGzcEBwc/OhfOZYaavzdoM5sq6GGGn87hISEsIiIiFUxMTHfhYeHb+GchxgZGfVzcXGRx8TEiFevXmWmpqYwNzeHQqHoJIUzNDSElZVVa79SIyMjuLi44OLFi0hOToaHh0fXLq/tIJPJcP36ddZM5P86RBG4exc2xcWCh4EBzHfuhG5lJZz374dw4wYtPisqaFE4ZQqR0x9+oDpcT09g+XJEx8Zyz969mY6ODrKzs1FbW4u6ujrI5fK2rIylJS3EfH2BV1/t2PqmHcLDwzF48GDU79rFzWJjBbsrV9Ddzw9hYWFCdXU1ampqUFBQAFl8POqGDEFobCyuX78ObW1tFhkZifT0dDE2NpYFBQV13S5NKiUi7OpK5GP4cMoUqYKxMZH6FmJSXU2Effp02kczPDw8WGxsLE9OTmZGRkawbJFp19SQCmDCBApYPAWnT59GVVUVhr/0Em4YGwsDJk5U7STOGBFsQ0N6Jo8eUZaLMap97N2bpKzBwZRJA2BgYICePXsiIyNDGR4eLkgkEpibm6uWfBsa0sLb2ZkIhkxGxOCHH0juunBhB5WBRCKBmZkZS0xMbHUn/suku7aWzM4MDCib3rcv1Z7OnNlGnh8/pmDDsGHA6tVEOs3M6Dl4egIPHxJZtbMjsvQcyM7O5hKJhPn5+WHPnj3c0dGRTZ06tfN9SU+nLKWKvu12dnZIT05W2hQVsTH79zMnFxemp6dHAZeffwYiImC/di0ePnzIx4wcyQa7usIpPx+1f/4J6xUrwFpaOIWF0TwbN46I3uLFJBOeNo0+j4yka01OpizqggXIzc1FWFiYGB0dzTw9PeHq6to1UTEzo/E7YMDTAxIXL4KtX49zS5fCyskJ5eXlKCwsRGBgYIfNBEFAjx494OzsjPDwcOTn5yM8PLz1nlpYWHTY/vHjx9DQ1sYlV1ecf/gQvfbvB37/Hb8ZGqKioUHIzc3F1KlTMQ6A8auvwrCiAtJHjyBbsQKubm6Cv78/Hj16hKSkJMY5R1lZGTw9PTF37lzm6OhIFG7XLno3nThBpHbVKuDDD6mV3fDhuCYIyASgNWYM7BcvphNrKXFpj+PHyYBx8mTK1Do4QOzbF0wQWtUjWVlZKC8vR0BAgLJ79+5da50ZazM2NDWlcggzM3qeVVX0Hur0FYaKigrU19ez3NxcFhgYiMuXL+PEiRP82rVrLDMzE+PS05mVj4+g7+8vVFRU8PT0dOHmzZvitWvX4Obm1rGzQ/fuECdPxqGjR0V3d3fRy8ur7Xw1NGiuPcffmxacOHFCeeLECaGuro6NGjWK5vv771M9+bvvdlLyuLm5CWFhYYxzjtzcXH737l3ExsYyv4ED8UJGBqwDA9F92DDoPUt18wyYm5vDy8sLsbGxCAgIgKamJgRBgJmZGfr06SM3Nja2tLa27iuVSnuXl5frDBo06I9/64BqqPE3gZpsq6GGGn87REREzDcwMPgqKCioW2BgoObIkSMFf39/uaurKwYOHMg0NDQQFhbGjY2N2fbt2xEXF4fk5GTR1taW6ejoqJTH6erqwt3dHX/++Sd/9OgRc1WxCHsSMpkM165dQ//+/TvLDVXhwQPKDJ4/T72KzczIXKqgAA+9vPi9ggJmPH06NN96CzrLloGZm1O20MaGSJeZGS1gAwPpvw4OcJ41Czwuju15/JgnxcXhTkoKv337NiIiIlhGRoaypqaG29vbCzA2pszWkCFdyqqvXbuGwYMHQ/nll6zMyorZTJwIDQ0N2NjYIC4uTszOzuY5OTncedMmdrWkBFUWFsqZM2cKw4cPR1RUFCorK5mfnx8GtCPCKsEYkac+fUgmOnBgmwFRCzhva1klCFQrqaNDdbQ+Ph02FQQBAQEBLC0tTZGZmcm6d+9Oi11zc5IG19URCewCKSkpiI+Px6hRo5AXGwuTefPQ62nuwXRQ6iPu70+EYPt2CgIsXEhk7Yl7rKOjAz8/P6GwsJDHxcWxW7duobS0VMzLyxO7desmtLREE0URVTt24NKff/Jz2dkoLy/nxcXFTLdfP2jq6hI5YKwDYdPX18e1a9fw+PFjJCUlITExEf369Xu2DPTePZKLf/MNtUqaP5+Ivptbx/O/e5dqtVuyhnPmEHFpIcUWFiTz1dIiU7WDB4mAP2Px3tTUxBITE0W5XI60tDQsWLCAqZxHuroUeFJF4ouL0ePWLWGHtTXT1dfnVlZWbXLqwYOBKVPACgvhOWAAM3rxRWhevAj++efYX1aGJoVCdHJyou1XrqR/lpYU6Pj4Y5I0t6C5fVN9WRlSk5LE/ZmZzPuVV1Amk3G/l19m/fv3f/rNZoyI4mef0XmpejapqRRU2bIF3mPGwM3NDc7OzoiPj4etrW2XiohevXpBX18flZWVyM/PZ3fv3kV4eDjCw8NRVFSEK1euiBERESwiIgK5hYWora2FYWwsLvj7wz4lBSMNDRG4bh3sJBIKgBUUkEHfli2t5ymRSODm5sYCAgIQOHAgAsrK0GPSJLD16+mcZ86k8R8QQPO6Vy/yNpgzB/D1RUZWFn6/cwd6+vpIT0/neXl5cHFxYSqDmhcu0NhpDmJG376NX0QRtbq6otPlywymppDb2CAlJQU5OTmCSrl3V1i3jgj+5MlUD56bS67hHR4VQ8+ePVFcXAzOuTInJ0e8deuW0NTUxIKCgjBq1CgYr1gBwz59YCuVot+IEczHxwdmZmasuLgYUVFRPDU1lcXFxSnT09OF+tpaWLzwApKGDsXMefOEDsHfP/6gVmeqjBe7wPXr11FVVcUA4N69e3yQiwuDmRkFgZ5QTAD0d6q8vJw/ePBALCsr4/fu3RM0NDT4Sy+9xNCnD5UmtS+Z+TegoaGB27dvizKZDPb29q2DXBAEmJubw87ODllZWU0FBQVhgwcPvvx/clA11PgPh9ogTQ011Pjb4ZNPPvm8X79+b4wcOVLlCkuhUOCTTz5Bz549UVRUJI4YMUK4c+cOT0tLY0qlElOnTuXu7u4qF8fh4eE8IiKCmZiYKJYvX/7MdMNnn33GlyxZ8nwS3oEDyfX4xAnKtPbp0+rcfObMGWV8fHzr9VhbW2Pq1KkoLy+Hs7MzEUZLS6qftbJqrb/+dtMmsbG8XBhiY4M+774LVlICNDbiUU0Nzp07h6qqKnHNmjVtq7v336f9NJvitMc3a9Zg5aNHuDB3rlhaXS3MmTNH9XWEhxPJbNfSSqFQICkpCWfPnsXixYvxZGatS1RVUdus+fMp695CQkpKSMbbIuu3saEs2auvdrkrURSxY8cOsba2VnjzzTeJbD56ROT30KFWwl1QUIAbN27wKVOmsOzsbBw5coSPGjUKpaWlvOzAAaFu0CDMX7Lk+WsWnZ2JtIaG0jHq6ynD/RSEhoaiuLgYBQUFolKpFMzMzJTV1dWSsrIyyKVSPsbFhQk9eyIuLk5ZVVXFGGPstddeY9LVq2kMRUZ22F9NTQ20tbVx7949nDx5Eo2NjXB0dORz585lHRb3nAOXLlHAwsODstRvvfX0bOvbb9P1/fIL/fzpp+QfcPhw523r68nE6sgRynT27KlSVaBUKpGbm4t9+/YBIBn1jBkzVB+/ro4I/JIlnT/75Rdg0yakHjmCEydOYO7cuR2d/bdvp7KL/fspY29tDVEqxaFDh3hubi6mTZvGXnB2pox9WBgFUZqaiGxbW3fo9V1dXY0DBw7w+vp6GBsbs5H378Nm1Soyx9u+nUo/ngaFAnBxIaM8J6eOn929S0Two486kb/t27fj8ePHAIDXX3+9VZGjCrm5uTh+/Djq6uogCAIEQUBtbS1ee+01aGpqQlNTEzU1NUhISODu7u7MuG9fMKWSyHXLfHnzTTLPcnCgAN3du3ROs2ZRC6sZMyggk5ND11xTQ875XaC+vh7V1dX48ccfuUwmY6NGjcLNmzfFwsJCJggC19DQ4IMGDZL06dOHvhAeTsEcd3c8ePAAP//8MwICAhB1/Trm3LyJ+qwsfnzCBKZhYIDa2lq8/fbb0OqqLd+TiI4mxcwLL9D5f/EFZbsXLepkIJmTk4ODBw+iqakJ3t7eSExMBEDEccmSJbBcupTGe3NrQgBoamrCjRs3RACCRCJBdna2mJeXJ4zJyhKdN2wQdJ5s03j4MNWRt+8U8AxUV1cjOjoasbGx6O/kxAM3bGA4doyu4znw+PFjGBoaQi6XU4u+b78lwv9/AIVCga1bt6K2thZvvPFGp3IJAPjyyy9rqqurXw4ODv71/+SgaqjxHw412VZDDTX+dggJCXlBJpMlvPrqq1pdkdyjR48qS0pKMGTIEIl7u9YmsbGxuHz5MhwcHBSNjY2straW+fv78969e0sAIgGpqak4d+6c+I9//OOZVqxffPGF2L9/f+HRo0fK8vJyBAYGSpy7qo++epXa9/z0E7WGGTasw8fp6ekwMTFBbm6ueOrUKUGhUAAAgoODadGrrU0L9u3bqc5v1qyO+8/KAhwcwB0c0DBlCjJefhlXQkP5a+vWtbHGL76gdjoLF3Y6vRPTpmGyjg4uvvSSWFRUJMydO7fzNfzyCzmTHzig8hJPnz6tzMvLw/Lly5+/eLekhBygW0zItLSAo0eBzz+neyaTkSrAze2ZjuoKhQKffvopvLy8lKNGjZJoaWnRNXt7t9ZoxsbG4ty5c7CxsRELCwuFwMBA7u3tzbZt24Y3vv4a2+fNA6ytsXr16mdnzO7fpyzcgweUiVu/niSw16/TIrrFvKgLiKKIrKwsXL9+HXl5eXjllVdgIpdDeOEFynQaGUEURXz99deihYUFC+zXj1kVFhIRtLbuEPBoQWNjIxISEnDu3DnY2dmJixYtElBeTuMjIoLqOo8cISO9Z7mXl5VRqyO5vG3bW7doDDxNGdfURAGdhw9pMe/oCJFzXLp0SZmamsoqKysFmUzG9fT0RF1dXcnEiRNhqEpSDFD20cMDKH+ig1B5OWXymsfE1q1blSYmJkJQUBAzMjIikn72LM2TVauoLVg7XLx4ESkpKXzFggVMtn8/BR7aH/Of/6Q67d69oVQqsXHjRgDA+vXr0cGE8fFjCgxNmkRZ/l27SI4uCKrHa3l5R/l0fj6RLnt7yhA/gcrKSmzbtg1KpRLLli17/kBWMzjnXQeOcnLo2c6fT8/V1JTG3YgRFNi7dYvq8QsKSKbs6tqacX5e7N27Fzk5OZDL5dzAwABLlixhgiAgPT0dnHNUVlbi4sWLsLKygra2Ntz37YPdnDkwmDcPZ86cQXx8PBYuXIiIiAhlWlqahIkiXjp4EJVmZjg9ZgwcHB1FT09PwdrauqX9Wtcn8/vvFDhatYp+Li2lwIKtLSkbnpgPxcXFePDgAfr3748tW7bwuro6JpVKMXz4cPh7e9P8ex7H7gsXKCj3F7wzVKGhoQF79+5FYWEhmCjiw0WLKHij4n3+XGhqopKXjz/+S34LqpCbm4tDhw7x+vp61qdPH+X48eMlqtzMm99NuevXr/9rjqRqqPE3hVpGroYaavztMHTo0JLw8PCye/fuBfbp00emihB5eHgIvr6+gvkTmQQbGxsIgoBHjx4JeXl5QnV1NbOyshIbGhqEI0eOiGlpaaKzs7Nw+/ZtFhMTw01MTJiqfrbnzp3DsWPHIIoiS0tLg7GxMTMzMxPOnTsHU1PTjs7YLXBwIAn4Bx9QS6eRI9scrQEYGxtDU1MT5ubmTCaTIT09HVKplBcXFzO7bt0g9/GhTGFqKvVSfbLFUPMC/oyFBU4XF0N5+jTm7NjB9llY8D+vXOHRf/4pxslk4s2qKi55/338UlGhjImJEaNv3BD1V61iCe7urO/33yM7OxspKSnMzMwMZk/KuyMiiPB3YS5kZmYmXLt2TfhLdeza2iRvDw2lPs1TptCidNw4MqYKDSXi9hyZZkEQ4OLigoiICB4WFiZIpVKuN2oUExYsQKKWFq7fv6+MjY0VAgICkJyczHR0dODv78/OnDkjampqcr+lS1mJmRmycnLQo0ePp9cxZmZSBrt/fzJsmz6dSMorr1DGvlcvIjHFxZTdVUFsGWMwMjJCTk4OtLW1lX5+fgLT1KTrd3EBNDTAGIODgwMLDw9nGbm5vN+0aQxz51JtqwrzN4lEAhsbG2hpaaEyLk706t1baJWLbthAteSmps+3uJ4zhwIeU6a0/c7amoILPXoQUVMFiYRapdnbU/Bh3z6kco6rd+6wESNGCGPGjMHw4cOZr6+v4O3tDZXGYi3Q16es75MYOZKy9M1u4VpaWkJiYiKMjY2Z1YMHJBV+7TVgxQq6jifGj6OjI2JiYnhVerrocu6c0OFe6utTHe2OHcCoUUi+fx8ZGRl83bp1nbsF6OjQvARoLAQEkMP5smVE4Csq2rL7nJP6oWdPun+VlbSttTWVlKiAhoYG+vTpg5s3b4IxBmtr6+dv8dbUBFZZSXXvlZU0fyMjycTv++8pm//oEQXRSkooS11RQf3Uu3envtfBwXTv+vZ9er/oJ3Dv3j3s2bOHV1dXQ6lUMlEU2euvv85kMhkEQYCJiQlMTU1hY2OD7t27o66ujtfV1YnSGzeEiKYmpFZUoLS0VKyurmaenp4YMmSIYGhoKKbev8/ynZzg6uQEVFaKVcXFQkJuLpKSknhkZCSLjIxEREQEiouLuZaWFusQxAkNJfl4i2pHS4ue1/HjQEYGBXXajWltbW3Y2dmhtrYWUVFRLW3mMH78eMi0tMgBfe7cpypuANDnZWX0/m8Pb296Vwwc+Mz7mZSUhMOHD6OsrAx2dnbwO3YMOlFR0Pr03+isJZGQMqOy8t9u47dnzx5lY2OjsGjRIvTt21d1GzRQvX1aWlr11atXER4eXjp06NCSf+vAaqjxHw61G7kaaqjxt4RSqdxeV1c3Izk5eWjvZ0h2n8Tdu3fFvLw8QRAEuLm5ibdu3ZLU19fD2tpaSE9Px9SpU6GhoYHa2lpWW1vb4btxcXG4deuWWFNTI3h4eIje3t5CRUUFvL29GQAoFAr+66+/suaseueD6+uT43NoKP08aRJliZ+QhpaWlooABIVCwZKSkpCSkoJXfvgBxzIylIKGBvquXCnpf/myylq/Jrkc9p6e4uh33xVuzZ2LnsbGzC8oiOW9/DJKpk6FtLQUPTIzodGrl8CNjaHx8CFslEpMXrECUqkUL7zwAktJScHly5eVrq6uHRlZjx6dSX4zOOeoqKiAXC4XATxfg9YWyOWUXQkLI5Lk7U335Jdfnp19fQI2NjZYu3atJCUlBb/88gsLDw9Hbycn0fH775li9Wph2bJlMDU1hYuLCy5duoS9e/fC2NiYL1++XIKZMzHh8GEUlZfzkydPYsWKFapbKjU2EmlKSaH/f7KeWE+PDLEYI5m8pia5q+fnkyS+HRQKBdLS0njv3r3b7pmLC2UWm3uxW1lZwd7evrWuWzhxgghRWBgZ37VvN6VQAA8eQD8iAmN37pRg+HCSnj/Zkup58NZbnSXPAMnyLSzIVf5pGDSISg5+/BGmeXkYEBrK3JcuhVSFvLRLFBcDo0aR30F7nD9P/Zib0atXL9yKioL20aO0/aZNbSQ4JIQyylu3tm6fm5uLxsZGhvJyjoqKzscdPpwy89u345apKYyNjZ9tnNjSmzskhLLiABHpkyeJrAoCZSJ79qRxExpKwaZnkDVdXV0EBAQg+vJl5F2/zl9ZtYohIYGIsrs7BTT09akOv6CAnsuHH9IY+eQTICYGSnd3xIeGwrp7dxRLJOhhbw9NGxuSH7u6UgZbIqGgnYcHBVRiYkgqLooUPHFwoPO1tqZ3wVOyugqFAnV1dQwA7O3tuaurqyiVSlVGeCwtLWFpackASBRnz0JvwgRk1deLlpaWbOTIkXB0dAQA6OjoCABQamCAU1pa4rSHDwXHkyfJuE5Li5WVle5hALoAACAASURBVKG2thbFxcVISEjAwYMH0bNnT25lZcVeeOEFmC1bRuS4PbS1ScXwwQfkX7B4MQWjmiGKIrZv3y42NjYKAFpN6xwcHCgY0dKJ4Gk4caLNqK09du4kRc8zUF5ejhMnTsDDwwNTpkyBoqEBMXv34pynp/Kl5i4b/zK8vSmg9qRS6jlx69YtXLlyRaytrZUsWrQINk+83zofzhuMMevHjx9vSk5O3vjZZ58lNTQ0zAkODk7/l05ADTX+w6Em22qoocbfFTqiKNo9j2v4k+jfv79w4cIFZWVlpSQlJUWYMWMGbG1tsXXrVvTv3x+ampoIDAzkYWFh3MXFRbh27RoYY6iqqkJiYiIUCoXAOYeOjg5zaGlb04ygoCBWVVXFr169ygYPHtw5u21gQBmUyEhafBsaUtshGxuqpW7G+PHjheLiYkVjY6N0xIgROHDgAB4bGaGyslIiSiR49PixEseOSRAT08nRl3MOXV1drq+vjwEtZCg/Hw6MwWHXLqoLLSqC+9WrlN0aMQK4dQv2OTlAcTG6iSKmFBUhVF+fY/NmIo2LF5PENSGBFu/Hj5Mc/eWXgdBQFJWW8rTyciatqUE/Hx8iKpqaJG+8epUWtJxTjeOwYUTWampovzduUB1lSQkt6gcMIKIgk1EvZxVS6eeBm5sbBg4cqLx+/brkvq8v9+zVS5hhYQFp80La3t4eCxYsQFhYGAIDA0nyGB4OiCLmzZvHNm/ejKNHj/IJEyZ07p08axad15EjRGjakb5WtDz78+dJrpmYSMSzqookzs2Ec9++fUo9PT3Wr1+/NuaiVFK5wYYNrfvx8vLCb7/9xj7++GMsXrwYMg0NmKxfj1p3d0ROny6aSKWsj5cXk86Zg+r8fJx+8UWM/PVXGLcQwL+KhQvJjVuV4d22bSS9fR7IZMDy5TAsKIDkl1+QO2IEZBs3wmbMmOeT4MrlVGPbAs7JgG3XLsokt/t930OHuGFjI/tMEDB35UoI+fkkT3d0BKurg4YoQhAExMfHIzQ0FP7+/nyoubmkS9XEtGkoXrMGGnV1sFqwgHHOkZ+fD319fWRmZiI1NVU5efJkifzJDL8gtJ1zTg6N73ffpXnz4AHVOFtZ0bj59ltqrdbQQOMkLY1KJnbvprn34ovAwYMY3NQEd1HE49xcVu3oCJ0TJ8BazOl0dCj44+lJhNnJiea1oSGNn+XLUV9Tg7MtwcOcHAAAKyyEY1mZaFhSglEzZggab7wBnDpFc3LyZFKcNDXRvC8pofkbH9/mmN+zJ73TKiooa+voCJiaIurPPxEdHS0CECwtLZGTk8MsLCyeKwAnLShA7wED0NvAoNP23bt3x+rVq5GTk4Nbt24JB2pq8M6NG9D88UcgPh5G27fDyMgINjY28Pb2Zvn5+bh06RKau1QIy318oLt6NX4NCVFWVFSwV199lTKwEgm91z79lOr7p09vzeKLooj6+npBIpFAqVQCQJvjv6kpkfe33qKyl65w/jyZEO7Z0/H3aWn0d6ALcM4RFxeHZsWUctq0aRKkp0MYNw6RU6fijXXr/j2iDZARoKYmzau/0FsbQKvM38DAQJgyZcoziTYAaGlpwY9c5TXGjh2LmJgY32vXroWFhIR4BwcHl/1rF6GGGv+5UMvI1VBDjb8dQkJCXORyeWRTU5Nzamoq8vPzubu7u+oMpAqYm5ujf//+QkJCgrKhoUGYMmUKNDQ0kJubq0xNTRUkEgn38vJi4eHhLDo6GvX19WJxcbEoiqKora3Np02bJgQFBcHJyUnlAd3d3VlsbKz48OFDrlAomKWlZUfSzRgtoEtLKdMmikTCXF0po9mMxMRE0d7eXujTpw9KSkqUJteuCY4rV/IHWVlM08FBUPTuDQ0LCxTX1uLq1av8zz//ZE1NTSgqKoJcLuc9evRoW6zKZCSL9fMjWa1USovlmzeJYC5YQKZZMhlJTw8dQpq9veitrS1AS4sylA0NVKPs5UXy2GHDADc31Do44OjDh6zH7NmwHDECLhMnMmnfvrRQd3WlbFifPkQEevQgEvLCC3Qubm5EOtzdSbZqZ0cO7D/9RERh5kzKHpub/6X2OC1wcnIS/Pz8UFFVhazwcCbbvRsp7u4wMTWFXC4HYwxOTk5tz+f11wFNTQgSCSQSCeLi4lhBQQFvUS60okcPkrkbGVHG9IcfupQBA6DFvKUl7V9Li0hKWRkuNTUh7d494eWFC1kHybqVFWU7a2paJcgWFhYYMmQIcnNzlVevXhVuJyQg0sEBaRIJd/v9d+b01VfscmoqLvv44JKHB2wdHeHq5dV1LfTTwDn1Y542rUOpQyvu3aPezc/Rw7z1FujqQjcoCGcYE+02bGClu3bxnyoqWHpODl544YWus8ZyOWWq20vNi4rIqKvlO8eOAUuX4pdhw1ichwcaBAG3b99GfHw8bty4gRvl5bj1+DFw5Agvc3Bgp0+fxrRp09CvXz/G7t6l6xk6tPOxNTQQlZrKdZKTmY2/P64lJvILFy6wqKgopKWlobS0VEhISODXr19n5ubmqh3DtbVpzo8YQc9UIqGsd4u5mLU1ydUfPiRSXl5OgQwzM5pDfn4kmV+wANKXXsK+mhpElJYi3MYGei+9BOt+/YiwubjQ96ytaYxpaXUgT5WVlUhISMD69ethY2OD9PR0GBsbQ0dHh+mcOcOqamq4zdSpDG5utI+GBuqnPngwkWgXFxq3AwfSdUyeTL+ztCSJdFwckceTJyHZuhWWDx+yoAED4O/sjEeJiXiQn88i4+J4r969WafgRAsUCvrn798l8dPS0kJFRQVu3LgBABgwbBhkbm6kGPLxocx+c0BNT08P3t7erH///iw9PV2MuHmT6RYXo6x/f1ZQUMDs7OzaZOYtbf3u3CH1gYUFYG4OQRAwePBgDB48GDk5OcrKykohOTmZ+/n50d+cpiYy4XvpJdXZa4Bc+jMzO/Zpr6lp83noIuh0/vx5fvXqVTZ69GhMnTqVNoqKQqOGBq5pa+PBgweiu7t759KGv4KdO6m0xNi4tbXa80Iul6O5dANjx47t1GbzWRAEAXZ2dqyqqkqrpKQkICAgYN9f2oEaavwNoDZIU0MNNf4WCAkJYQB85HL5alEUZwwfPlzOGOMpKSmSiooKzjnnEyZMEJydnaFQKNDlYq4damtrUVtbi/Y12d9//73Szs5OkpWVxcvLy1nfvn3FsWPH/rUVBIBHjx7h+vXruH//Pndzc+Pjx48XOiyIcnNJaiyVAjo6KLp4EYcvXYJHQgJu9uuHJg0NcM7h5eWFSZMm0XcGDUL9sWPY/MMPkMlk4LW1eO2bb3B4zhxwT09RJpOx/Px8ZmBgABcXF+WECRNasx6cc3DO2xZDSiVJRc3Nqf77ib7Y8fHxiIqKUqxcubKNAV25Qt95911yqG7O3CUmJuLy5cvKtWvX/ntZlpgYIiRFRR1rXHv1oqzZp58+vyGRKnCO1E8+4VFFRSzf3Bx9+/bF6NGj2z4XRQo2NGevADLd8vDwkIxsqVEvL6cFfVRUGwltaKDM1bMk1c0oKSnB1bNnkZOVJbomJgojr16FpLiYjt/+2pYvpyz4wYOdd6JUApWV4B9+CPbbb4CFBeomTsRRe3tkZ2fDxMQEurq6yM/Px4oVK/464T5zpq2fuCpkZFDda3T0X9tvM0qLi/Ho4EE0/PYbKjnHg9GjseTdd1VvXFhIMv2GBuoJHhxMhnqCQFLsxETgxAk0DRiATc1Sc0EQMHfu3FbzOaVSCbfcXD78t9/YN81O/OPGjRN9fX2F2uvXIb93D9JFizoduri4GDt37kSvGzegWV+PzBkzlJOmTZMYGBhAKpVCoVAgMTER9+/fR1paGpYvX44nfSI6oKCAzLK2biV5/J499C54800Kvm3ZQve9i9ZznHNERUXxixcvtjLR4ODg57rnoihiy5YtmDhxItzc3Dp8VjJ7Nq42NMBv2zbYtigWKipoztXUUOb2Ofunx9+8icvHjiFAT0/s7+YmoK4OyuhoVB88iJSePdF79GhoGhpSEGXgQCL2pqb0PLOzqQNBUtJTj3Hjxg1cvHgRAKCtrS2+9dZbNHEuXaI6/aNHO7m6NzY2Ii0tDT0vX4awbBl2HzgAFxcX1eU+v/5K7e6mTaPgXztwzrFp0ybY2tqKgYGBQqv7fUEBvRNUvZ9Ekch2O4O0xsZGSJqDeqqQl5eH/fv3Y8qUKWhtRfnGG1SqMG0amkt9UFVVhTFjxqDVzf15ERxMRo7z5pE53Pvvq/ZGeAZ2796tzMvLk7z77rvPLrPoAo2Njdi8ebPigw8++DeiBmqo8Z8JdWZbDTXU+I9HSEiIjoaGxjlNTc33/f39e0+ZMkXu5OTEbG1thd69e6N3795MoVDg/PnzLCYmRvzzzz+V/4+9946K6ly/x/f7nhkYekfpCoKKNAuIDRGNLXYTYzS2JBo1Xk3UtJv2JfeaqKk39psYozExGhJN7AUEFGk2pIgKAlKkShcY5pzz++Nh6KAm9/e5n89as9dimQzDzJnT5t3P3s9+/P39H8nIlEolDA0N2zymVqt5fHw8LCwsJE9PT15UVCT5+fnxe/fu4erVqzA0NERXs7pbw8TEBJ6envDx8WHh4eFyeHg4u3HjhpyYmCgnJCTICenpsvzJJ2jcuBHfazTyjeJiiSsU7NmMDDasb18MW7sW9+7dE62trbmrtmfW1hbc0xM3b99GdXU19IyM0GhoiOA5cxAyfz4rKCiQqqqqYGxszG7fvs1lWZYKCgqgVqvxxx9/yKdPn2YDBgxA1vr1MktPZ4Y//khWya1bSaVqhYKCAuTm5srN1ub790nJfuMNso9/9RVqR4xATGIioqKi4OXlxdzd3Z/Mg6hFRgYpe3PnUl+ogwNtT0YGKXvLl5Mt/Z//JEXtb397YrsjAIAxWHPOBp46BdVzz8mRFy8yURTRvH8liQjGxImt/oTxyMhIMMZkZ2dndj8zEw+LiiBPmQJJkiDLMi2WfX2p57WL7aqvr8f58+cRFhYmXbp0idU0NGDGnDlsyMsvQ5g5k/aptTUVM7T2Y3d3Urhbz8CtrKSfIUOA2lqwV1+l4seyZSjq0QNG778Pj1dewYxnn4Wfnx9ycnKk+Ph4KBQKZmxsDP3HseRXVZHKu2hR12TbwoJ6xQWheXzdk8DA0BC2gYGwmzkTQmwsiouL4VVYSIWV9uTDwIAImJ0dWZi3baPzQBSpOJOSAuzYAaFvX4wePRqurq64du0a0tLS4OPjg2eeeYaupaFD4bVrF4s5exaSIODOnTtMo9Egc/NmlMbGYk9eHpydnWFhYYGCggLs2rULMTExNHd5/nwE3b+PwcOGcSMfHwiCAMZYcxidj48P7t+/L0VFRTE9Pb2W0UqtIctELC0t6Xz/4APa17m5wM8/07nz2WekqDJG19uyZVRQaCrUqdVq7Nu3jwHUx61Wq+Hg4IDHGT1YW1uLmJgYTJkypQMpUhkbI83cHOcTEuDi4kLjxVQq2r9Dh1LuwP37HQO+2uHbb78VL1+5whv19DD7jTeY0scH8PEBnzwZvzk5ySkqFVNbW8Nt0CAqriUl0c9331G/9LFjFObm7t7Sb98JIiMjpfLyciYIAoKCglgz4XV1pW3lnIjpU081t6EIgkDBlS+9BEydipv374NzLnl4eHS8aD09qRjw738TgW56/crKSvz4449STU0NjIyM+KVLl9CnTx8KUnR2JgdAZ0FjDQ2AuzsuDhsmxcTGsri4OPne5s2scdMm/FhTI9+8eVOura1lnHOYmpqivr4eYWFhsr6+fkuxt6aGci3WrAHMzWFjY4OAgADIsowzZ86goqICaWlpqK6uhomJSdfX+h9/EMn+6SdyTyxdSsdgxw7KGuhqDnwnUKvVOHfuHBdFEWPGjHn8cYntUF1djcuXL9cGBQX9hbQ3HXT43wldz7YOOujwvx56enrbXV1dR8yePVu/MxVAX18fwcHBzMrKSs7KysKNGzcUGo3mT1XZR4wYgRGUDCtcu3YN6enprKysDD/++CPMzc3l2NhY1tjYiJdeeqlFAeoGZmZmWLNmDS8vL0d+fj4D0Lwa4Z6eyNi6VXZ0cODuHh4wNzeH4u23gfp6KIcORa+gIIhOraajLFsGnpiI559/Hjt37pTfeusteq1164CGBphaWTFRFFlxcTEcHBwQHR3NAUClUqG+vp4BwJYtWzArOpqVm5tL1oxx+PsTmS0ubmMXbgriarE+9exJKqaxMS24f/sNKZ99JsVbWXEPDw9MmjSpzSpLo9Hg3r17EEUR7u1U8zaQJFKxzp4l0ujtTY/PnduipDFGC9+PPiKlKTeXel5//72N7f6xMHIkcPgwHDUapqenh4bWvdayTHb3VggMDMTly5cRGRnJajdtAmcMqSEhUs0XX3BBEKBUKjF16lR4GhgQKeokVTs/Px/ff/89bGxsxBEjRghZWVnIzc2FkZERuELRQqbPnKHP//rrZO+/cIH6PG/epKLI999T6FdcHCl3fn5t3udsdLQ0taKCW7e6RubOncvPnj2LqKgo8dixYwJjDOvWret+PJJSSbbq9kn07bFhAymwr7/e/fOaoNFoIMtyc5J2Q0MDfjtxQr7t6soGm5kRaX73XWppaK28ajQUJObgQG0Jly+TxT0vj1L9WymYjLHmz9bY2IgTJ07A3NwcixYtop1SW4u/f/opiqKjEZOfL+fm5jJbzlHRVFT4oZN5w3379tWMDApSwMuLzksHh04J1fPPP89jYmJw4cIFKSkpCS+//HJLIvOmTdT77utLZEnb21pZSQRbO+f58GF6vLCQbMlKJRU1vL2BPXvAtm0D12ggKRSoqakBAPz0009Yvnw5bG1tUVdXh9LSUhgYGDQXBrUoKCiAUqmUVSpVW0Yky+Dvv49nT59G5I0bOHDgAN566y1UVVUhPT0dNjY2ODFjBsbIsuS5fj0ve/pp/DsuDrIsw9nZWWxyErHa2loUFBQIAPD22293IHvTpk9nn2dk4Gpjo/xUcDBrY9uPiaGiyty5pPCfPk1Fp7Fjqc9draZ2kldfBQDMmTOHb968GaIodjyX3d1JjZdlysbw82sbQrZtG2Bri6FDh+LQoUN8yJAhnY9TGz2aroGPPgJqa1EzfDh2794tW1lZ4a233mIKhQKfffYZjh49Ki9btowhI4MKKZ1BpQK+/x7nIyK40tAQjo6OrE9AAMyMjTF69GiWm5vLkpKSxAsXLgiNjY1oKozJCxcupPM2OZns3vHxbZRzxhhGjx4NpVKJs2fPwszMDMnJyTh58iSCgoIwpnVxpK6O7OwzZpArJTaWzq/Tp6m4VltLLpoXX3xsF8O+ffsktVrNBw0aJDLG/rSz6cKFC2rO+cE/+/c66PC/GTqyrYMOOvzXERoaOpYxNkaW5d8//PDDxHa/G66vr//s1KlTOyXareHt7c28vb1ZUlISMjMz0be1IvgnUF9fD4VCgSNHjoj6+vqCi4sL6uvrJVNTU2ZjY/PYJXyFQoFOx2gB+PHqVTz9yScwT0hoSd02MADeew88MhIGmZlEbgWBbOdNSqosyy3v7+wMnDqFoF27OGNMFEWRjR49mms0GuTn5+Po0aOiKIrCmFu3oExNxW/PPAPGGFd+8gm8vLzEqceOCTh/nvrIm9DB3qgdbwUi4lvc3DDrs8/48l9/hXlTn59arcaxY8eQl5enqampUSgUCjQ0NCAkJERbwGiLv/0NuHaNFsStR0sBpKa1cx2Acxq1JYq0WLSxoQThYcPa9kI+Ch9+CKuBA8GeeQYTW6nYqKwkG6U2RboJq1atwt27d8HS0+EwZAgmrlvHKyoqIIoi7t69iyNHjkDx9tuyR6tjcuvWLcTHx8sPHz6UKioq+LBhw+SQkBABAEaOHImdO3dKN2/eZE0JzARtUNK77xLBfviQnAQffkik47PPaKFsb98hnCwvLw8FZWXc+Pp1WlBPnQr8+isUenqYNGkSJk2aJHz99deSRqPhXSle9+/fR3ZUlDx42TKWfvo0zOvq4Nzdovu11zoNrxNFEffv30d1dTWUSiVMTExw//59HD16FJIkwdPTUxYEAcnJyQwA8/X1xfjJk+n8Ly6mhP7+/SkgjHMK5fr8c0qczs6mcL3duymQql3BAQAsLCzg5OSE3NzcZsK9cuVK+qWREdjNm+jp5obZTYWvKhMTnE9MlPr06cPy8vKgVCpZTU0N1q9fr3W+0FrJ0pLOj61bye7dSaL6iBEjMHToUP7pp5/KhYWFsLOzo4LSrl1UTNC6SbQIDqZRfj/+SHZl7T2rZ08qPgFkZ66uBoqKoPfFF3g/NRXFH32E9MREKDZuxNmzZ7Fz585OD5GFhYVsaWkpz5o1i2dnZ0tWVlYd71sVFVREs7SERqNBfX09du/eLd2/f5+bmJiIdXV13NzeXv6lsJDP4Fy2nzuXeb3zjuw9dSq7mpQkSJKEhw8foqioqHn/d3aOHT9+XALAR40a1bINDQ1EAp9+Gjh+nJT0wEAK4MvPpznpffqQCnvqFLVW9OgB/dBQvDR6NJI3bICis2vfyIiIY3Ex3Uv++U8qXgA04aCxEX3GjYOXl5e8Z88etmDBgs7DvTw9gc8+w8MFC3DGw0O2DAyUFi1aJGg0GuzatQsPHz7EkiVL6PNYWhJR7dGD7PftIJeXo2d1NSa8/DJdV/X1gL4+ejMGf39/ABA0Gg2+//57KBQKzJs3jze7I3btou+FLlpohg8fDltbW9jb20OhUCAqKkqKjo7mxcXF8rPPPsv4u+8CX31FgZQPHrR1rOTm0j3FxITcRCUllG7/GOMbLSwseEVFBVq3LD0JEhISNLGxsXUPHz4sUavVT+5h10GH/wPQkW0ddNDhv4rQ0NAegiAcCwgIUF2/fv31Tz755IharV7x4YcfVoWGhvYGEDN16lSo1WrU19fDwsLika85YsQI6ejRo3B3d+dPGtjSGt7e3jh37hyXJAkqlQqJiYnM0tKSLV++/E/3prVHvZkZJD09Sgdu1c+HOXOQ/fCh/PTGjRAjIyEcOEALODMzKIhstzx39WogLQ3s7FkEjR/fvOjR09ND7969sXr1amHzpk2Sp5sbTwVkAEylUqGuro5URlNT6tsOCelczayvpwVkk926rq4O5ZWVUH/5JczXrYPm/HmcOHkS6enpkpWVFYKCghQODg6wsbHBF198IQuC0HaBf/YsLUzXrOk8xRugJGxvb7KWtocgECEFiCBnZJD1ND//sRaIMDWF3syZGHLrFjIzM1uUdzMzGs/VCVx/+40IXlMBQNsDbWVlBRsbG4hPPcXKJ02ChZ8f0tLScOTIEQwcOFA2NzcXbG1tO4Tpubi48JycHBGdje2xtqa+XVEke3ldHRGQ+npaCNvbt3m6JEk4duyY7OHhAZVKxZpV0+JiUlAZQ1ZWFsrLy/kLL7zQ4dzV2lDj4uJgo9HIlZMmIf7MGQYQcfLx8ZGCg4M7Xkh9+lC40+7dbR7+6aefpLt373JjY2MRAKupqeEKhQKTJ0+Gqakpjh07JjPG4ObmxiZPntw2VKxHDxpndvEiqZyjRhFBKCuja2TePOqnvXix0+MkyzKuXr2K3Nzc5sfs7e3bjqJzc6NixOLFwOzZMM3IwPShQzlmzQIA/PzzzwAgdjqmKiSEyO/WrfTZO7HNKhQKODo6St9u3y68c+gQFLt3E/l7+eXO51RzTq6G6GhKWG8PPT06DwBS8wEk5OWBGxtj8sCB8A8Jwe9vvinnVlUxZWMjfOfORU5ODkaMGIGMjAyWkJDAzp8/L9+7d4/Z2tp23ODs7GYiGhQUBO1c7NmzZ8Pc3FwAgFu3brGff/4ZiR4e8tCTJ9nUb75huHIFvTZtwgOVCgcPHoQoihg9erTcdI9u8z61tbVIT0/nAFpm1+/fT/eAoiI6VwWBFO7586nwtHYtpf2bmFDbwCuvkFodHg5YWyPnp5/glZwMydiYer9dXWm6wo4dRHqtrcmtc/Ik/V1oKN1XSkpoBB+AadOmMVmWcfDgQXnFihXMoF3AmUajwa8xMeK9oCBhwenTzHbUKAGiiOrqahQWFgJAWwv/hAltpkq0we7dcLGyQvM4ST8/SgL/+OPmpygUCrz88stt/+7LL8k90jT+rCv0aeXyCQkJ4XV1dZLP3/7GS95+Gz0++YTupVoHRWuYmVGIpRabN5Pq3cU11hpPP/00Nm3ahIqKisf6bm6NiooKnDlzRhRFcQWAkx9++OGDJ3oBHXT4PwJdz7YOOujwX0V0dPSiPn36jJsxY4aev7+/sqKiwr2srOy1qKiocs75Gs65R2VlpXTmzBkWHx8PKysr2Nradtsb5uLiwlJSUuRz587hwYMHrLCwEA0NDW2C0B4HSqUSVVVVKCkpQRPhlh0dHSULCwtuYmLyp/vTWuN6UhLTzJ0Ll2vXiIC2UhyKiork45aWvLZ/f7ifPk2kZvx4SBYWuHjxYkuwD2OUoPvqqy1px61x4ABcN2xg6u3b4blwIQsODkZERARkWUZ9fT3TqFS4l58vpxYXi0n37klpaWnS3bt3WVVVFVepVJJ9fj7Hiy8CTb2Eu3fvFkVR5EZ9+sDKyQmp//iHdKtnT4wePZpPmjSJ2dnZwcjICLIsIzIykvXu3but5X7VKiLJzzzTedI1QOrm+PFENLrDpEmkXB09Skr56tW0mH7ETGkWFITq336TCg0MWG/tnPbycvp7rQKmRVYW7ddXX+10e8zNzXHnyBFZNW4cM7W3R1hYmDh48GA2btw47uTkBEtLyw7nSkJCAhQKhezt7d15NaixkSzz9fVEFmbOJPXzjTfocx4/TnZZxpCRkYHr169j8eLFTBAECt2bN49I4ZIlwAsvwMDICKmpqVJCQgILCAhotnLLsoz09HScPn0aPaursaKykvXZs4cFBwdDrVajuroaqampbNSoUR2ThpVKIpArV7ZRM8YuugAAIABJREFUuKurq1lxcbG0fv16Yfjw4SwoKAjDhg2Dk5MTrKysMGzYMBYYGMh8fHzQntw0v66bGym9Bw9S0cHbmz7Xs88CL73U5XGtrq7Gvn37AABLlizB9OnT0a9fv44Xak4OuSQcHMim3Ldvc0hgTk4OkpOT+cWLF3H58mXIsiwbGhqy5nyHwEAiSB4eXY4/83Zw4Jdu3IB5cbFsm5jI2MGDLS0SnWHGDOov3rePSNgj7i0H0tJQ4OiIkcHBUI4bB8/nnmPDEhMx5Phx9Nq8GT7bt8PCxwduw4fD1NQUFy5cYKIoyosXL2YdjuPx41SoCg6GIAjo168fPD09mapVS4S1tTWGDx8Of39/1sPOjq678nLg/n2c27ABGSYmcHVzk6ZPn87buDWaIAgC0tLS8PDhQwT8+98wT02lc1PrUBEEcrkcPEhFFhsbIq6jR1Prh9bmzRj9t4kJjiUlSZljx2L0U08xFhzckqS9YQMdoy+/pMT8996jaycxkXr+N26kY910j/Dw8EBSUpKUk5MjDxgwoNn6L8sy9u3bJ5WVlWH56tXcYulSsE2bgIcPYeDnh2vJyVJDQwOLiopCQ0OD2KdPHw4vL3Kk/P57h5YU9uKLSFKpxOzsbObr68swezY5GzppPWlGSgp9hldfffxshIoK8Hnz0NfQkJVVVyNXXx9On3xC11Nn59X69ZSJoC20jh9Px+bOnZYiTxe4ePEicnJyEBIS0mXQW1dQq9VITk5WKxSKKZIkvRkTE6M3atSo80/0Ijro8H8Af17y0UEHHXT4D0BfX/9v/v7+RgApsTNmzFC99NJLJj169Pi8T58+IQsXLkReXh7XqnG//fYbGhsbu31NzjmWLVvG586dy8rLy8XU1FT50KFDUKvVT7RtSUlJuHr1KkxNTcUZM2Zg4sSJ7ObNm8Lu3buRn5//Jz9xR8iyTH1zn3/e5vEJEyYIPoMHi42SRP2K168DW7dCKC8Hb/9Zxo0jwtlk5WxGYyPg7IzrgYGS1EoNd3R01Li6uoqCIIjx8fFSxaBBfOTGjQqVRqNQKpUKS0tLZmxszM6eOSM8nDIFNVFRAICIiAiIosgDAgLkixcv4t+ZmTB+8IAt8fJiAwcObEMqGWOYPn06oqOj8eUXX4jw9aUZtidPkq2zO/z4I+2Tx8WiRaTQFRcTcbp0idSsrqBSwcLVlVt+913Lk+rqKGW7NXJyiAjk5nZJ4CVJAmtoYHUFBdixY4dYXl4u+Pn5dcmWIiMjkZGRgfLycl5SUtL5k44cofddsaKlf/m112j7SkupKPD770BaGmozM6FSqcQOgVwBAUTcGhuhUijw6quvcisrK3Hbtm3NT0lPT8ehQ4fQq1cv+ZWBAykEq+kYjh8/HtO6S1jX06PtaZXeDgB+fn5oaGjgWnWZc/5Y0wE6wMWFCkxXrtA2nTtHn3nGDCJMMTE0wz07u/lP7ty5I9Om6cG0E5t3M955hwoEx46Rs6OV4txkuwdAfd/nzp1jO3bsaLnmFQoi6EuX0rFoj5oacCcnvD1tGqyzs1mWNnG7O3BOdvMNGx5LURzeNPv8xo0b1Auurw+EhoKnpdF5n5tLx+Wnn+C3cCHeffddvDF/Pld05vTx8moTCtgV2hxDQaBCi68vRpSXo+/Nm+ghSV3+rSCKmBYRIRtVVyPF2JjInaVl2/nphoZUTNHCxgbYvBn1334Lqbi4w2u6uLjI5eXlkCSJXBbe3jQ6MCaG+tzXr6d7qiiSdXzKFGrJcXAgYl5bC4DOz0WLFgnZ2dn80qVLzR8iKysLxcXF7NVXXxUMDQ3puB84QEWsf/0Li2bM4FpXRkJCQgvTjImh57XH119j0nffCXl5ebTN27d3PSqMNoAU+NjYR5JeAHTvO3aM/o2MBNLTcWjQIIRPnNg1oa+vpwyEzlquAgLo9bqBcdM9UaPRPHr72sHU1BRr1641fOONN4xef/11PcbY+tDQUN9H/6UOOvzfgs5GroMOOvzHERoa6gLAGMDNDz/8sMMKLDQ01ByAHwA7Q0ND597t7HE9e/bEsmXLmht2X331VRgbG+PEiRN48OCBVF5ezhUKBVQqFZRKZacLecYYevfujd69ewsAsGXLFjkiIoJNfIxFpRZqtRpWVlbiqlWrmhdSlpaW2LNnT7ONuLa2FmfPnhUNDQ1ZUFAQV3WnUnQCxhiR7e+/pyCorCyyC0oSsH8/Bn77Lc93cyMV7uRJICAAwnffYeXWrZAWLwbPziarrZ4eqeJDh1KwlpMT2XHnzQPu3kXq0KEY0GoxvGTJko73/6goTLGzIzUJNBrt4sWL2Pfii3IPgFlGReH69evw9/eXx44dywVBQJ8+feA4cybDsWO0OGvXqzlgwACYREVhf1mZ0KygPA7S02kh+CTgnIKQtHO5g4KIiGzahPz8fBQVFaG8vFyuq6uTGhsbUdWrFzfMz2d+GRm0WLezo4Vta7zyCpGCn37q9C2rqqpw/PhxeFdWIu7IEbjMno0FCxY0L0Lbo7KyEtHR0XB1dUVxcTE7duyYtGTJkrYM6McficQtXEgL99YESavs3b1LpOrll9Hr/Hn5yptvcqSktA3uMjWl3tfPPwd++w2K6Gi8+OKLwqeffgpJksA5R1VVFQBg0dSpDGVlHVT93377TQwMDOQdWgG0eP992qavv25+yNjYGMOHD5f27t3LDQwMpHnz5nG71gFVTwoLC7LAuroCX3xBir+ZGSV5R0YS+WmaS62vry+PT01ld8zN8c0nn+CNf/6zJQuhPfbsIUXXzq5NYYZzjoCAAAQ0jXx68OABtmzZgm+//Rbr1q2jY2tiQts0f35LUUiSaF+vWwckJoKvW4eSzZvx+82bGBAWBkEQpHHjxvE289Rbw9iY+tIrK7vtmb1161bzjOlO53ozRmo1QNeB9rMNHUrW+TVryAb//vtEmt97jyzWfwJqNzdsGz0ajvfuIXDrVgYLi7Yj8NRqICoK6oEDYZSSwvTs7VGjbQ9oj3feoX3XCln9+yMyLAwjhw9H9KJFUpm+Pq+rqwMA9OnTR6irq0NWVhb09fXRs2fPtt8FPXu2WLpjYmg/vP8+PVZYSPv6X/8C3n4bht7emD17NgsLC2ODBg2CgYEBJEmCUqmUOrQTbN2KinXrUPLOO2h0coK5oyPWrFnT8vulS+mnoqJtb7SfH1SSBHVVFctMS4P7N99QHkNXWLCA3A7jx3d7DFBTQ/f/zz+nlPvJk4H799GoUED98cdw7i7IMz+fUvHbq9KMEdE3NKSiRBequlKpBOf8L7dVGRkZYeTIkaqLFy+uA7DwL72YDjr8L4PORq6DDjr8R/HJJ598LQjC9yqV6kUAqyMiIk4EBwc3y3ehoaGBCoXimo2NzXNGRkZTp0yZYvyosTWGhoZQKBSQZRmXL19mCQkJSEhIwKVLl3D79m1IkiQ5Ojp267ssKSmRb9y4gZEjRz6R9zs+Pp4XFhaKAwYM4AAtvG/cuAEXFxc8fPgQe/bsgSiKyM/PR3x8PNMqTo+LpKQkmJmZobe7O6m+y5cTyfz6a6ChASmDBslZXl7Ma+VKCmfy8QEbNQo7i4sxaOxYKJYsoXRqe3tKkA4IIJVOlokk+vgA3t6IjY2V+/fvz7qdtzxhApGZiRMBzqFUKuH2zjswsLVl58vKkJOTA1EUMXHiRHbt2jU5MjKSZWZmyu7BwczwyhXqndaGfGlRXw/jyZOR2bs38ry85L6+vo+3/ydPJqL8Z2BiApkxyP37o8bBAae+/BLKjRsRa2mpqVeruSiKnDHGBQMDNs3CAopjxyigKTWV3lO74H/wgIoVs2d3XIwC+Oabb8SIiAiuVqth4OYmDX3hBTZ49GjenYp79epVFBcXi8uXL+cpKSlS3759uUvrPt7qaiJwa9eSK8HevvMRSIzRz/TpOGlnh/rr15nfunWMjR9Pi2NT0xaS7uVFhNPDA4JSibiEBLlXr17MzMwMx44dg0ajwciffiLV+Pnn27xNWlqanJubyxwdHZmZmVnH7bC0pH2jteI3oVevXszd3R0ajQaXLl2SmkfIPSm+/prC4aZOpYKItohRWUmBfuPHE4EcNw7o1Qu2AwYwZU4OTC9dgmFtLcSvvoJJdDTqzp+Hvla1LysjsjxlCimpqanU89sFoTAwMMCgQYMQFxeH2NhY+Pn5QaVS0XWm0VCC+Jgx9LovvQTMmUMW5kGD0HPpUqSnp0tZWVmsuLiYpaSkwMXFBV0SbqUSOHcO0qJF0KxcCaGTQoGxsTFiYmIAAKmpqejVqxc6PTYAnQc+PvTfr71Gluw7d8gZsHIl2YVPnqT9eOUK3UP09UntLCqie1FuLp1LRUXk/lAqKWtBECAolRBlGak1Neg7cyYzV6koiEs7m/rf/wY++ACJo0bhJyMj1Bsaory8HPX19VJsbKwUGRnJIiIimIu9Pcw2bCDy2aT2SpKE7du3o9LMDEY1NfC0tmaDZ85EQFAQevTogRs3bsiyLLMbN27g+vXruHLlijxw4ECm7Ky4Eh5O58s//kHFhTVrSDnPyaH3274dVnV1SFepxCtXrzIPDw+mUChw5coV1uE7gzHE6enhfnQ0Bicno+/8+bJ1u0wGJCeTWvzmmy33Djs7MM5RpKcnZeflwfeHH1hXgWeIiKDzesaMR4/h6t2blPsxY8gJs349oKeHxsZGxMTEwMzMTB44cGDnL5KYSFkII0d2/J1SSYW/iRPpc3QCxhgSExMxevTojm0mT4i7d+9Kubm5V0eNGvVHaGioYVxc3LGoqKit58+fPxMcHHz/L724Djr8F6FTtnXQQYf/GD766KPJRkZGL61cuVLfwMBA/+jRo4ZJSUkvAlgPAKGhoYKent5P06ZNMx4wYMATv76npyfi4uLk3NxcNmrUKJSUlODOnTuIjo7mQ7X9el1g/Pjx/MqVK7h79y6SkpIwcOBA9GodCtMJHBwcMH/+fPz888/Nq4hevXph3LhxCAsLk2VZZkOGDIGtrS0/deqU7OHh0XngVTfgnKO8vFwGwLB0KfVsZmXReBobG1SdPg1Ra1X19wcOHQJ694a6Rw9s3rkT837+GX2cncnut2ED9TwOH05EMSmpdcq3LHVj8wRAZKO6GvjtNyIMAGBriwHPPIMBAwfihx9+kO7evcu/oRAnNmvWLPzxxx9s2/bt+HDZMlIKb96kJOl792gBHx8P4cEDTC0txfbt25larZZnz579aML9zDNk9/zXv55kd2oLMvKpU6eYLMtgjGGApaXk3qcP91u1SoHPP2/b/9jYSD3kFRX0flqinZ1NJCUjo8u+ckNDQ+7k5CQtXLiQs+ef5+jfHxg8uNvtO3fuHMaMGSMAQENDgxwbG4usrCxx/vz5QnlmJqy//JJUOGtrIiwU1tUpRFFEaWkpJkydyj5NT0fJ5cuwdXam88TZGfjhB/p85uaktL30EnhWFnouWCBfvnxZysrKEoqKijBu7FgKTurEdr9w4ULh559/xsmTJ6Vly5ZxURRRXFyMS5cuISUlBbNnzZK97t1jEMU2BQnGGOzt7WFoaMiuX78u3Lp168mnA9TWUlhTa2Vv5kxSJd97jwpT27eTvbcVqbTYtAm1eXmQbt/GLzExMKivh0NeHuY2NtK1dfgwhfStWEHE88cf6TWWLKH99NVXRJZOn6bi0wcfwDQwEMueeQb3lixB5fTpMC8tpecsWkTq45491F+bkUGvs2gRFQAYw/LlyzlAVtuPP/4YN2/elOzt7btkJveHDsXeJUtg+dprqLSxwUM9Pbi7u4tz5swRJElCbm4uAgMDERcXB41Ggz179uDD7hRSLTgnIj14MGU8AGRPViopVMzHh9R5CwuaxaydC56VRUr0xo2koK5dS+FmogjY2iKwuBhVJiaw3rGDrhVtL3tgIJHG1asRyBgqqqvl+Ph4Zm1tjZKSEt6jRw/4+fnhzp078vEdO5jXK6+Ixjk5Qv2tW6irq8OFCxcAgNwEH3xABYzt24EvvoCdnR38/f1ZRUUFSkpKUFpaiuTkZPz666/SggULWvatWk1uldOnSdXWhiGGhdHjO3bQ/xcVAZcu4aXnnxeSdu6U95WVYdTUqW2DKAEUFRWhsLAQtQ8f4uqQIVA+eCBP3LaNwcWl7RhCb28KbWxdeKupAaZOhbRli+wVF8ebE9bbIyyMxo1dvNg10c7LozFyr7xC52tGBpHzVrZ0bSK8k5NT1/fb+vrux3w9/zw5ImS5023Rtlbk5+fDpbPwv8eEJEm4dOmSprGxcVNoaKiJnp7eSTc3t8E9evRQXbp0aTWAxX/6xXXQ4b8MHdnWQQcd/mPQ19dfERISYqgNPcrMzHwoimLrpq9nLC0tbTxbz9B9QowaNYqlpKQgODgYnHPEx8fjzJkzj/w7rfXw559/Ru/evcW9e/cKpqam4gsvvCB0NpJLC2NjY2g0Gnby5ElMmDABnHMEBgYiICCAAUSWN27cKAcHB7P8/Hx8+umncr9+/aQpU6YIDx48QHp6OoYOHdqlzc7GxgY5OTlEthkju3J1NZEtAIwx1rzg69evmSSuWbMGO3bskMvLyxn69KFU21mzSKnRkvMTJ4gA/PwzlIMG0es+Cu++S327skx27DVrmheoCxYs4Ldu3UJBQQEsLS3h7e0Ne3t7bN26lRblLi5E8KZPp3CgmTMBY2NUVVdj+/btAACFQvF4yvYrr5D62A2Kiopw584d9O7dG1euXEFhYaFUVlbGBUGQ58yZwxwcHNDUbkCL7/Jy2r+DB9MC08mJehmXL6dtPXSIyIIk0e/Cw7sOcAPw7LPPss2bN7OSkhLY2tg8UoGqr6+HLMvIycnBqFGjMGrUKOH+/ftISEgQwsLC0GfzZtT07Sv1NDbmqqa05NYpwXV1dUhJSYG7uzvMzc1x/Phx8dq1a4Ktra0EgJvb2dE2JCTQwj48nEjf7dtEtL78EkhJwciaGn7g4kXIggADAwOM2LGDyMHbHSfvcM4xadIkbNmyhX/88cfNeQnaMKQbycmy1++/M0ycSOSqHczNzTFlyhQ5LCyMDRkyBBMmTOh2HzVDlqnocOdOx77Wnj3JLpuZSYr6pk1tRr/p6+vDzc0N9vb2UKlUiI6Oxq3+/ek4A3SdSBIptpmZRG5u36b3lCT69+FDsqkDZLUtL0cJ5+hRWoqelpbkJklMpN75W7do/JyhIRF3Y2NKLW+n9JWXl0OWZRQUFKC+vh6dtZxoA948hw2TJm/fzusLC3HihReQl5fHdu3aJVdVVTHGmGxubi6HhITwiIgI/JnCJQDKeCgtpc8eHU3KqPZe+NRTHZ+/aFHH/1arkZeUhNQjR+D/1lswsrKiFoeLF0k55xxgDFVVVbhy5QqbMmUKBrcrSHl7e7PsyEiU37jBL1pYaPT09JhKpRK0LTbx8fGasWPHKrBmDRXDLl2iVhelEubm5jA3N4e7uzsyMzORmZnJt23bJq1YsYJzWSZV1tqaipCtr88ePdpavJcsAZYsAU9Lw0CViuVXVYmVa9YIfceMYZ999plUW1vLlUolZFmGqamp9ODBA25qagqD4GAJKpWAF16gAkRrwt2zJxUwDh+mwD8rK+DYMfTX1+fxUVHwnDIFHc6AvDwqsh040OloOezfTw6EJUvo+6Cmhs611r3uTWCMwdTUVI6Pj2eBgYGdt7b88AMVG7sC5/SZBg6k6+b999v8+sKFC+LQoUMFx+6s6o8JpVIpaTSa55VK5UJPT0/7qVOnqrKysiDL8qjQ0NA5SqVyBOfcWq1W7/3ggw8e/aWvgw7/S6Aj2zrooMN/DIyx5qRbWZbR0NCgYIy19oi7u7m5Gf6VFG93d/fmUU35+fmIioqShw4dKuERirKZmRlefvllGBsbw8zMTGhoaMAff/zB9uzZI/Xr149bW1ujuLgYISEhbYKVrK2tsWDBAhw+fFiuqalhzzYtalpb5iRJYlevXpXr6uqYn58fi42NFSZPnozDhw9L+fn5PCYmRlq5ciVvv9jJz89HcnIy+vfv3/KgkxMR1Q0bgMmTwTlvUVc+/bSZhKtUKujr68uiKLLs7GxS6SWJFnj795OqzTmpTE5OEJVKOIeEkGL85ptkO1y+vO2CEyDr4yuv0N9++CHZCzdsaPXrvm0USgMDA/jcuEEEb+JEWgR+9hmRlaZZs60D7bTHLjc3F05OTl0fsF69uuy1TUxMxKVLl+SKigpmbGwsh4eHMycnJ8nc3BwlJSVYv34979RKamFBIXMALVANDEjB8/EhonToEPWynjtHKm27kVbtoaenB0dHR/ncuXPyvLlzeXdpwWq1GpmZmQCAIU1Wez8/P/j5+SEnJ0cy+uEHnjJ4MMpcXVG9aRNeHDwYbPlyOHKO0tJSHDt2DDk5OQCoQBMcHIyUlBThb3/7Gw4dOsQBtBR0OKeF+rRpRAStrKgYsnw58OabcBg3DrMrKhD23HNYv349JWt3Q4ItLCywYsUK3LhxA66urnBxcQHnHNHR0bh9+7aMgwfpvO0Cvr6+zMzMDHv37sXAgQPx4MEDnDlzRhwxYoTQnng1Y/9+Ot+vXOn89woFnau7d9PYOlEkJbkVMTcwMMCYMWMQHR0Nj9ZBXNp95OJCPykpVHzR0yPiDVDxResK2b0bkiTh3FdfSYH79/Nezs60L5cvJ+fA//t/lBD/j3/Qft+yhbavHWxsbLBw4UIcPHiQ5eTktLmO6urqEBcXh5iYGNjb22umTZumwIQJMH74EHPu3kX9tGn8/PnzcHZ2xoABAxgAJooiMjMzpfz8fKjV6m7bFzqgtpZSrg8fpnvGjBlE3j7+mNLAHxM1ajWOXbgga/T02OGrV7Fq1Soq6n3+ObljBgwA/v53nFQqodFoMLBdu4EWvfr3R69589jAwMDmHVdQUIBffvlFvnjxomLQoEE0WurLL0nBvXiR7k+tvkuGDBmC6upqubioiEfOmyfZP3jAS2fNwi2VCs/X1aE5TR6g893fn1wSrUd1eXoC+/ZhYk2NkLdoEcwOH4bvqlXcztkZpYGBsLC0hLGxMde6ZqD93jl0iPbhN9+0uFsEgVoVWhVV8rZtk4q8vVm9hYWst2hR2y/C+nraZwsXthSGtNi9mxLgFQpyHt2+TXkFXeURNGH58uVs586d+OGHH6QVK1Z0dFM0NrYNqesKX3zRqWtHX1+fK5XKJ04ib4+mkDqD+Pj4dxwdHfX8/PyYNnfFz8/Poays7FtnZ2djQRBYeHj4s6GhoarO8mB00OF/I3Q92zrooMN/DBERET6WlpbDXV1dGWMMLi4uitu3b0+Jjo4eHB4efkxPT+/Fvn37+vwnquAAEBUVBbVajZkzZ/LH+bI3NTVtVpMUCgX69evH9PT0UFhYKKWlpXHGmBQZGQkHBwfWemaoubk5ysrKpIqKCnSWMm1lZYXGxkY2ffp0dvr0aWns2LFwcnJisiyzrKwsKBQKlpqaioyMDLi4uDTb+/bu3Sva2tqyCRMmcO1jYIwWfyoV4OaGu3fvssrKSvj5+ZEas2RJs+Jx+fJlKSMjg12+fJmlp6eLQzZv5rh6lWayDh9OlnR7e2DVKsTFx8tWH33ErWfNorTaHTtIvXrxRVK4pk4lW6WjY4ud/J13SO1qvYh//XVadB06BMyahYYVK2CwYQOsevak5xobU29kfT1ZNwcNglqtxrVr1+Dq6oqYmBjk5uYiIiICiYmJcmFhIbtw4YJYUFDAioqKWFxcHBobG8EXLwbi41E3cSJUKhUkSUJOTg5+/PFHMSkpiXt4eGDs2LGYMmUKGzZsGPz9/ZmHhweLiopCXFwcsrOz8eDBA7QP32vGggX0mcPCaJF84gSpkl98QcRx1Cg0z6vuBs7OzuzkyZNsUEoK9MvLW8YPtcMvv/yCCxcuwN7evoO6O0StZn1OnMDALVvgGxzMEhMTYRYWJt3NyGD2Tz+NkydPynfv3mW2traYPHkybty4Id+4cYNNnToVvXv3xs2bN2ULCwvJz8+v42LayIjOqeXLSZ3auROKU6eQ8Y9/wKOiAk5pabQfWgerdQIjIyO4urrCwsKiOXG+vr4eiYmJ3Pv+fRhs3twtSYuKihLLy8uZUqlkZ86cgYeHB28qmkiiKLI2FtSHD6nYMnVqt84CAHSMpkyhAs/WrURW2hGQ1NRUaDQaafDgwZ1X+Rij87qb5PVTp06hsrIS06ZNY833moMHaRTbjh1ky96zh1T2boouFhYWiImJQWBgIDM2NoYkSdi5cyfOnDmD/Px8uLu7iwsWLCDCqVCQDXr4cCgCAuA+fjxsW+0Pzjnc3d1ZREQEi4mJaRkF+Cg8eEAZBadOtViIBYHyFmxtyWremph2g5qaGly4cIF5e3tjzJgxMFMq6Rh8/DHdN6ytcU1PT0q8fp3pm5rKnWZm1NRQSNff/96GPJuYmMDa2polJycjICCgZUzchAmU1m9l1Wb0mrW1NfPv3ZsFWlnB5Pvv2QkfH6QIAqqqqxEXF4dbt27B19e3pVA6bx4VG9qP+gNwv6QEv9XUyCnu7syupERy3ruXmU+eDL3jxwFPT7D2hQ0zMypkzp1LbTTa83nsWAqq1Ggg29ig5K23WDbApv36K1OWlUHROrCztJT2/6JFLfuhspLaHT7/nBR9Q0NyH73xRqc5Eu2hVCpRWFgoZ2dnc1mW27ZO1dbSd8FTTz1eX3hWFrlXli5tvsYiIiJkV1dX5tydFf0xYWRkhL59+yrs7OyY9h7DGIO7u7vCx8dH38XFhUVGRtY+fPjw1/fee+/Xv/yGOujwPwSdsq2DDjr8R9DUjz3fzc2tecHv5OSE1atXG/7xxx+Tb9++fU+hUBj+actjJ6itrUVRURH75JNP8P777z9xQIsgCBg6dCgbOnSodtXCExIS5AMHDiAkJASBTbbY+vp63L59mzcpSh3g6ekJT09PFBQUoK6ujnt5eUGj0SA3N1dmjLHa2lrY29v6pQpMAAAgAElEQVRLjY2NbP/+/dLKlSuF+vp6VFRUCPPnz29W0u/cuYPLly+LM2fOFFSrVkEyMWkOQjpx4oQ46exZgWnnzYKcBHp6eqxXr17SzZs3hYaxY6E/Zgz90sCAFOw5c4Bhw2BtbS2fOHtWNnzmGebs50cWY4BsgSUlZKldvJhGcjU2kgXUwIAs5c89R/9GRxMhz88nguPpCUmScOiFF/CeNo137Vr6Ny6OegknToTQ2AhZlhEUFITi4mI5MzOTAYCtra1cVFQEQ0NDnpubKyclJTFJkpCeng7ruXPl8ooKJn71VUtie9NhW7JkCZydnZuPhbZQoVAosGrVKhQVFSEjI0OKjY3lVVVV8vTp0zseN85pgTxvHrkFjI2JeO/dS5+vm9aC1rC0tIRSqYTay6tlFnA7aDQa3Lp1C3369MH89gv77Gzg3j3wf/8bcHCAIYC///3vwOuv850aDb788ksAYEuXLoV90/iofv36saKiImgTvuvq6mBnZ9f9atnYmH7efBNsxAgM9/EhpR+g4/o46lY7uLu7Q6lU4mBSEhYqFGhNzyRJQlRUFDIzM/HgwQOpvr5eaOqnx/z589GrVy+Iooht27bxyMhIBLVO3l6+nLa1qfXgkWCMgrguX6Z+/JAQIlCMoaioCBUVFejVq1fXNwcjIyIydXVdjmIqKCiQfX19WRv1mHO6Dvbvp4LVqVOPJECiKEKj0bCIiAgYGxsjJydHLisrY5MnT8bgwYPBOW/7AmZmdC3Z2lKLSLu+WCMjI/j7+yMxMRHh4eEYM2bMo++Dr79O6mn7c3zECHLEBAaSavoYxSatWycgIACOjo5UYLOwaCk4PPccjn7wAV/31Vc4PWtW5y8SHU0Fxk4IX69evWBgYCCdPXsWzz77LOec0zH617+ol/+558iJA1BexPLlUM2di57Xr2Ml0Jy6n5qairCwMGzcuBHjxo2je/v333c5EkutVqOyspItWLAAR48elS/OmyfPrqlhzidPgqWmkm3b0ZFIqBZWVjQJ4umnaSzac8/ROfL118CECWBeXrjw7ruinkIhRM+ahZkzZrT87a5dlNORlNSyH86dI+dRUhIF7125QgWJ7saFtUNdXR1u3brFjIyMEBUVBXNzcyrcAmT3T0/v0O7QJTw86DuiaZ+lp6ejrq6OD2o3T/z/T1RWVooNDQ3f/I+9oQ46/AegI9s66KDDX0ZoaKiJQqH4u6WlpUX70DE9PT3Mnj1bVVRUpDI1NW1r5fuLmDVrFr777jsUFRXh119/FadNmyY0NDQgNTUVubm54s2bN4XVq1ejtUr9KAQEBDBra2scPHgQhYWF8vTp09mRI0dEhULBQkJCuiU0kZGRcHR0lO/du8fCwsJga2sru7q6Sunp6cLw4cN509gnWZIkXLhwAZIkQV9fHzU1Nbh58ybOnTsHAPzMmTPiNDs7gf/yC8ycnGRfX18WHx/Pfe/cwY2yMsnBxYXr6elBkiReVVUFz5oaLNuxA8qcHEBPD2lpaZAkCV5eXmQ/fOUVLDhwQHE2IgL79+/HoEGDxHHjxgkKhYIs61pkZFC/6tGjpDbV1JBSN20aqRoNDbTw18LGBnJlJTptCwgMpACppCQYzZoFx5AQODo64rXXXmOyLEOWZfC2rKDti2zZwhpsbFD2zDOorKyEgYEBrKysoFQqO+11BUgFsbKygpWVFTw9PXlAQAB2797NnJyc0OWCMDmZ1MOcHApJA2jxP3t2d4e6Gffv34csyzDjnBb7nYzp0dq/J7fqKwZASdavvEL9xq3Dw/LzgZwczPv+e4SFhclWVlawt7dv3j+cc7QepdWjRw+WkZHRceNqa0ktc3EhhW3bNiJRf/87qZuzZ5NC2Nms6McA5xzm5ubifXt74XB9PYy//14cNnmyYGtrix07dkilpaXcysoKvr6+vLi4WH7uueeYUqlsPl8EQcCcOXOwd+9ehIeHY+zYsfTCgYHU9/8kYIxswWZm1IPq7Ax4eqKxsREajQaZmZnYsGGDrFKp4O7uLk2bNk0AgIqKCly/fh2BV65A1c34Is45GhoaJAB0zi5cSPsxKIi29ZdfHkm0tYSPc47bt283b/lbb73V5TkNgI7fgQNUPMvI6DBeb/LkyTAxMREjIiKEixcvwsLCQtTX14dGo4EkSZg4caLg7u5O1/batUQU25+LWvj6Uvgc0OnIp127dknl5eVMFEUmCAJkWYaRkREctMS8sZEcNU2oqalB3wEDsG/hQhgPGkTE0bfdKGVb207zAgAqoHl7e/OEhATU19e3fH8oFNRvvGsXEBVF96yQEGpdaTXFQHuLGTBgAAYMGICIiAhERUXJAQEBjJuZUWFn9OgOKfy9e/fGgAEDxCNHjrDXXntNiIiIwIHISNl43Di8tHgxM/j0U7q3xsXRiCxt+rpKRWPXli2ja2zZspbCZl0d/A8e5MqsLDgPGACuHYPY0ED74Ntv6TyWZXJJbN4MBAdTK89rr1EIZnR0ty0fWjS1ceH69evQaDRYu3YtPvvsM/z++++IiorC8OHD4ZeVBWWr4ytJEk6fPg1/f39YN7UrtQHndG589BESr1yRTgwaxN3c3GSVSvXn+8KeECNHjjQ5derUvtDQUJ8PP/yw8n/qfXXQ4a9AZyPXQQcd/jRCQ0PHxMXFhcuyvMHR0XHwnDlzjDtbNDLGYGxsjE77aP8CtHOeq6urkZeXh5ycHKSnp+Py5custLSU29jYyCNHjmRP2iNuYWGB/v37IzIyEhcuXGDl5eVs6dKl3OARioKDgwMiIiJYenq6rNFo2Pz581lgYCAfOXIkLC0tUVxcjOzsbOn27dtITk5mAGBvb49Lly6J8fHxfOzYsVCpVEhKSuK2M2fCpndvFJWVSbWCwDnnUuDGjfy8vz/LzMoSk5OTWXV1NXN2dsbo/v1Z2p07cFm0CL/88oscGxvLUlJSMHLkSHB7e0oGP3UKbkuXol+/fjh//jwSEhLg5OTETNuH8KSlUZ9lRgaNBJo8mVTvn38mpWb4cFrs9+0LCALqyErcVpnUoskSrw4IQPS9exi2Zw/Qty9Yjx6dE/TWOH0aCkmCyaRJsLGxgbm5OfT19Z9onquxsTGsrKxw/PhxWFlZoTkIr6iIgt98fWlxfv068MIL9Lh2Zrmvb6d9t+1x584d5OXlySMFgeHOHepbb4eSkhKkpKRg/PjxLZ9blqn38qmnyHraen+cOQPU1UF/yhQMHDiQ9evXr9udZWFhgZtHjjB/b2+whw/pMyxfTgTiwAFSo2JjicSOG0e9uoyRKmdvT4R//Xpa1D/hNTp48GAeFBQEp82bUVhezmOqq6Xw8HBWXV3N1q1bh5EjR6JPnz7w9fVlgiB0OO7GxsYwNzfH2bNn0d/DA0bTptGx6cr+/yhYWVGLwOHDwJYt0Hh4oMrAAKWlpZAkiUmSxAoKCvj169cRHx8vRUVFsZycHNgcPIie69dT4FknSE1NZSqVSnZ3d6d55F9/Tdb7F1+kffuIgl5jYyN27doFABg1ahQWL16MK1euiGPGjOGPmooAgALsnnqKCI9K1UGNdHFx4aNHj4aXlxdMTEy4ra0td3Bw4EZGRjw8PFzW19dnJd99B010NKTVq6HqalQYAPj5kXK8eTM5PzhHTU0Ndu3aJZWUlPDJkyczNzc33Lx5E6IoNmdhiHl5qF28GOd795bziovZ1atXxVOnTvHa2lo5cPp0NnnsWAY/PyKmrY/vqlUtoYXtUFBQgKNHj+Kpp56SXbXjtdRqIrBeXkS233+fgvQ++eSRDg1HR0dERUUxfX19yoxITKQ5602FmfT0dNjY2IAxhr59+/Lo6Ghma2uLgIAAODs7s9jYWFZRWSl5vvoqw8qVpA7/7W9UZFCp6PzT06P75q+/UnFrxAg6p0NDYfnZZ+yORiMbHT/OMidORE8LC7qnzp9P+0U7CeLmTTqn9u+ndgrt+RUWRgXSzsLOmtDY2Ijff/9dPHz4MM/MzISNjY0mMDCQjxo1Cm5uboiNjcWdO3cgnTolNwQEMLWDAw4ePChGRkYiOzubXbt2DWq1Gq6urp2/wa1bSMrMRJ85c9i0adOe+Pv1r8DS0pLFxsaqRFH8MSoqqi44OLjx0X+lgw7/XeiUbR100OFP4R//+MdsfX39H2bOnGng5uYGhULxn2XSjwlzc3M8++yzuHjxIg/XKggA/P39xYkTJwp/dvantbU1VqxYwfbu3SvLsiybmpo+ckVhaWmJd955BwDYli1bxJycHKFnz57NBNHJyQmVlZWK8vJyODg4yIWFhayyslJyc3MT0tPTERgYiNDQUAYAf5w6BVVsrNSjtFRwCQuDjY2NUDx5MlaSlVjIzs7Gvn37MObrr2WLrVtZ+uzZUtzmzUwQBPbUU0/h/PnzkkKhoA//0kvUj3z0KGymTsXq1av5Dz/8gD179iAwMFAaM2ZMS8/7rFkUGLZlCxHCAQOIjE6ZQiFUa9eSfXL3bmDTJrDjx9EnPZ1SdJv6J4uLi3Hnzh2IoojGxkbU1dVJ1fr6HA4OZDNVKCjhtjsy+8EHf+q4tceAAQNw/PffkXzjBjy3biW1/uOPqSedc7KNr1hBhHTaNFJ558yhoKRjx6j/shvY2NigtraWaWbMgKKL8KfDhw+DMdbW3vvNNzTXun1KMkCzq7Wj1zrD0aNEvI4dA3buxKkFC/DcoUNg1takPA0cSGF5v7Zqa9y5s+PrVFZS/39DA43CWrq0rcL+mOCcw/LLL2F85w5Ks7I4ACxYsKDz9ONO4OXlhcjISPl2eDiz1dOj5Oa/itdeQ46pKa5s2wabigpUzpiByocPJX9/f65QKBAeHg4bGxtmaWkJOzs7Oby+ntl+8QXsuni5vLw8uWfPnvzKzp0YqFCAnzpFRYrdu7stUGjt9NHR0eCcY82aNc1tI7W1tUL140wI0MLbm4oldnak6rYDYwzW1tZtVElZlmFiYoI7u3bBs6BAvvD883L2vn3MyMhI6tWrlxASEgIAyMrKQmFhIdLS0qTZs2dzx7VrieBVVEBtYoIvvvgCsizzFStWQKVSadsbMHfu3OY+8qO//CJyV1fhWmoqc3R0hJmZmTBo0CCMHj26xX6fkUFTBnbuJNVXoyEFXasMt0N+bi5MKivh7OTEMGsW3YfMzKhgdP48ZVg0NNDjpqZE4s+ebZsK3g76+vrN0ykQGkqEubERaWlpOHLkCFxcXKSxY8fy+vp6qNXq5hnme/bsAQCYmppST4tKRX3uFy5QRsXMmdQDff483ds2biQ3yerV1GdtagqFnh4C8vLYx6amUJw6BTuNBrbBwWTZ/+EHOp969qRiTv/+be8NQ4cCV6/SOLXnn+/Udn/06FHN1atXFebm5li7di309PSgp6fXfKN1cnLCG2+8AYVCgbvPPisn3LrFsr79Fs7OzmzatGnc2dkZ5eXl2Lt3L2pqalBdXS2XlpZKQ4YMEUaNGkUvsmwZZFtbZvnGGyj+9Vf0+Asjv54U8fHxkizLxwA4Abj5z3/+c9l7772ns5Xr8L8aOrKtgw46PDE++uij55RK5Z5FixYZtLaz/jeRnJws2tnZCRUVFRg5ciQGDhz4p4m2FgYGBnj++efZ9u3bWXJyMry9vTs+SZLaqEyccxw8eFCura0V2isDFhYWmDdvHsrLy3Hy5Ek2fvx4nDlzhnPO4evrKwNgpqamYlVVldDQ0ICzPj6Y5+cHExsboKEB9sOGkd0Z1Mv4wRtvAJcvM7i64uWAAJ6fnw8bGxt8++23speXFwfI5tyjRw/8cf++xvOnn3gfLy9+LDlZzsvLYwBw+fJlHhMTg/cXLwavrSVbpLs79a/27k0EVLuoEwRSugCyz06cCI2JCQIvXqQwtTVrgH37kBoYKCfk5jIbGxsIggCFQsEHDx1KvYwAqb8NDbQo7Qrz5hHZP3Dgzxw6WvRWVgJlZVi9cSP+eO01CWPH8uZQpUOH6Hm1taQs+fuTGmpjQ5bOdeuAsrJOrbSt8eDBA8iyDHbtGlmy9+/v8Bx7e3uUlpbSeDeArOvu7pSs3Bkh/de/KAG+upq2aeFC6rOtriar6ZIl5Dro1w+YNAn6+vrY8eqrWLBgAVwVCrKgPg6USiJu+vpk762spGMTFtatctYpLC0x5I8/EOHtjVmzZnWtinUB85oayfrqVQGnTz/Z+3aChoYGhIeHy9fu32ezVq1C//37EaJSAVOncq16OnLkSKDpeIiiyM4YGclxhw5hiiAwpfY8bUJpaSk0Gg27dOkSpv32Gx66uMB461ayC3fR11xVVYWYmBgkJCQAINfLyy+/3OY5QUFBuHTpEoqLi6V79+7xtWvXNucPdImDB6kgVFraPJmgOzDGMNzLiw2/fBnYtYsNDAxkWVlZKC8vF5KTk8WvvvpKaHIeScbGxrJC8f+x991hUV3r12ufGYZeBKUjHemIShMLFrBrFEti7N1EU+6nuUm8iVfT1JjEmKgxxt41sYdYEVAYFQFBRJFeBKT3NjPnfH+89KYmuff3e75v1vPwKDCcOWefffbs9b7rXa9YdOTIEcHFxUWYtGoVp/D1xV1tbaHX5MmYP38+09HRAc/zkEgkUCgUrfJ3QYD3zp1c/hdfYOL06d3XjffqRc/VF1+QAiMvj2TtzQELhaLVnHHpUlj98gtcjh7FSRcXfoG7O8ecnUmh0VzmYWxMcv4lS2gtXrKE1q3Vq+lYHer+L1++rJDJZKKUlBTeyMiIs7e3h2TIEODLL3EuKwvNa9axY8cEkUjE9+/fnzMxMWGPHj0CQEEkGxub9vUCKir0df06Xc/ly+Sk//33tI5dvUqBhY8/Btatg0p8PD7t1w/3HRz48lu3OMPjx4lYe3lRGcq773a/5ixbRtfeu3enkpWsrCwkJCSIFy9eDHNz825rGjQ0NABBgKO/P+e4aBEEAwMwxlpumImJCRYuXIjdu3ejd+/esLOzE8XHx8uHDh3awhkmjB+Pkg8+wLHvv0fwmjWIiYnhe/XqxZmamr7ys/8q4DgOjDEfFRWVMQ4ODkhPT58MQEm2lfhfDaWMXAkllHglfPHFF++rqal9P3/+fI3/LUQbAKqqqtjTp0+ZIAhISUlBv379oKuri1u3bvFRUVG8m5vbn2Leampq4DgOoaGhvL+/f/tUQkUFbRjnzWvJ0sbExCAuLo4tW7asy7q3pkwawsLCMH36dDDGEBgYiEGDBjEA8PDw4Orq6mBvb4/ghQuZ2vHjVJM4fDiZ2TTXsp45Q5nNnTsBLa3m+lns3btXqKysZOrq6rhy5YpCKpVyhYWFwuOKCpEAMNW7d1Fmb89kCgW/atUqpq6ujszMTLjv3g127hyOi0TQ/eAD6Lm4EMkODCSjMyMjyri2vxjU1NXhIGMY+u231Jf4xg3kWFpi1I4dbKggoP/atXC3sIBDsykPQBvQYcMoi3PiBGXrOta7WlkRCW4yBXsplJaSa6+PD/1tWhqwcCEaJ03CxbQ0pufnB+O2vaB376Z79/PPRLJv36ZxNjamjW9aGmWQZs7s1pSovr4eSUlJGO7kRC2kOtQaFxUV4dq1a+A4jg0ZMoSCAG+9RdlnP7/OBzxxgurkjYxIEhscTLW6HEcbcjs7+t7MDDA0RL61Na5duwYAGDhwYEsW7qVw7BjNYSKeJM89f75LR+8Xguche/ddSH19MXHSpFcuGTHavZtVxsWxnwoL4eDgAO0X9FjvDs+fP8eOHTtQWloqjBs3jrn6+JAMt76e6l41NEi10AYcx8HIyIip/fADUm/dYvd0deHc5jXHjx9XmJubY6WREYswMxO0qqthsHQp6855PiYmBocOHcKzZ8/g6OgorFy5knXV4szKygqenp54+PAhysvLmY6OTosJXrfQ0Ggt4/Dz61J63Q5VVSTT3rGjpVa6V69eMDExQf/+/TlPT08MGjQIAQEBbMCAAZyXlxf09fVZREQEGzp0KI5lZCgMdHUR/N57XLP0nDEGf39/PHnyRLh9+zYbMmQIuIwM8Hv3spO2toKC51mP0ngNDboXIhHN76Iiams1axZJ15cupSDbqFHQnDsX1728kPTkCbNeuBB6HVzzs6KiUPvHHwgzNxds7e0ZFxBAz4pEQmNjZESKgIULAVVVREdHC2ZmZlxtbS2fmJiIyMhIhjlzhDxLS1ZWXo6SkhLMnTuXjR49mg0ePJhrLuHIzMxEamoq0tPTBSsrK9bt/NTWJmXQhAkUyPLyomdpyRIq1XBwALZvBxs6FOJr15gkIQGqV69C5O9PBH3ChPbdHzqC4+j4u3ZRPXfTunT37l3+/PnzrLmU4IUoLydlxocfdlnSo6WlBV9fX/j4+LDKykrk5eUJ3t7erZ+hIhE0Vq9GYUqKkLlrF0vgeZaRkYGEhAQMHz78xWVCfxIWFhbM3Nxcx9/fX2JoaIiEhAT1GzdufB8QECC8+K+VUOJ/Bn8t7aOEEkr8f4MNGzZYfvHFFz+pqal9vnTpUg3jtr1J/xdg5MiRbOjQoS0ZlXv37il++eUXhIaGcrm5uX+6CSjP88jJyRG6NFnT1SVH2xkzKAMKIDExUbC1tRX0OxLTNmCMQSQSQSaTYcSIEe3MrjQ0NDB58mSMHDmSrmX8eKpHVFGhbE8zoqOJQLRBY2MjCgsLmYeHh0JFRUUxduxY0WuvvYaCggJeW1tbUTNyJIofPxY0Dx7km+SF8HZ1xRxtbWGXry92jh+PCf/8J6L27+erq6tbD3zlCnD3brfj0wJHR+DAATSYmCB69mwiqnFxVGMYEtL6xXEkFX7tNWrzVFxMRLcttLRe3nX33XeJMMfHU1aprIz+f+AAoKkJjQEDEBAQIFy5cqX1ZMvKqE700KFWZUJ+fvta2OHD6d6Wl9N5dnHNly9fFjQ0NATY2VHgpQNqmuaFmZkZSWabCXyzOVIzGhtJHvrwIc2r5GSSw8bH0++DgjrVg8vlcuzZsweCIGD8+PH8y7Tfqa+vx4EDB3D8+HFkJSejoS0p0tGhvuOPH9OGXqF44fGacTYyEjuXLsXcSZNe3QTx8WMYbd3KnG7fhpWVlXDo0CGhqKjo1Y4BcvoOCQlR9O3bl1+zZg3n0WzExRgFX7ZupaBYs0qgDXR0dGATGsquBwVR7/Am8DyPoqIizktHh8OKFRhz9ixLVFeH0IWzdnl5OcLCwoRLly6B4zjMnj0bs2bNYj0pbLS0tLBw4UJmZ2eHJ0+evNyAa2tTiYCbG5VF9IRVq6i2uam/fedDaUNPT6/l+6ZaZchkMjQ2NiJLQ0Pk/N57HHNzozWnCRzHITg4mAFAQkICkJIC7du3Mfm111hUVBRq2zwvncDz9MwvWkSy8jt36Bn78UcgMpKe/dOn6bxVVfEgPl4ICgpCV/P717NnEe7oiNjYWHbhwoXWB3P0aAp8icXA66+jUVUVmUOGCKZHjnAeHh5YtmyZaO3atdz06dMRm5XFW86dC0VFBe/k5CR0FbDy9vbG+vXrYWtry3799VehTXeErmFhQQG8hw/JIf/GDVpboqMp2Lh8OQxlMmhyHHZ7e2Ofn59C/rKfqc7ORLT//W9UV1bixx9/FG7evMmCg4ObFRsvRmwsSfd7IMWqqqrgOA7W1taoqKgQ/fbbb8jLy2v3mkkNDWxcdja0tLR4AFiwYMF/jGgDND+tra1hYGAACwsLqKio6ANwfuEfKqHE/yCUmW0llFCiEzZs2KAbHh4+ISoq6h2pVLohPDz8a5FI9N6AAQM8p02bptbJVOt/AeRyOU6dOsWPGzeOVVRUyPPy8kRlZWVMU1MTffv2VTTLql8VSUlJiI6Oxrx587guHYMNDWnjvm0bMGMGevfuzW7cuMFEIhEMDQ27NfSKjIxEfX09HF7UcsnCgt7jxg2qp167lur/1q3r5EpbVlaG+Ph4YeHChZyzszNnaGgIjuNw79495uvry2Xn5PCVNjbQfvSImxwczESWlsCRI9D79ltm8913KHr2TGGqpsYeuLggLCKCicViMhGaN4+yqtnZ1IqmDaqqqhAfHw9fX19kZGTg+vXriqdPn3ISCwu4v/Yanf9bb5G08+hRkm8HBZEhkK8vZVcePaKa6cGDW1sArV5NxLmDSzB4nohvWBhtqBcsoM26szOR0UWLaLPegeBYWFgwqVTKeJ6HZbMR2kcfta9RTk6mLG8zWWSMvt+5k4jarFlIzcjAjz/+iNjYWN7FxYVdv36dBQcHM4PycsrUd6i11tPTQ3h4OBQKBfyuXydZ+Jdfdr7PkydT+6n166nP7rRpVDJw9Chw7x5lMTvMpS+//BI8z2PlypVwcHDocYcbHR2NX375BZGRkaioqEBJSQmEzEzcKimBND0d169fh4mJCQwMDIjMFReTg/kLUF9fjxs3biAmJgZzpVJYyuUUpHhZyOU0H3r1gsjPD25ubiwtLU1ISEgQvLy8XnrXnp2dje3bt6OiooKbNWsW67Je3NiYsp2xsaRqCApqF9ApLy+H7+zZ8Jg6lWk1uddHR0ej5MkTjPDxYZyrK1RMTXFBTw/3799n169fh0gk4k1NTdnvv/+Oc+fOITc3l40fPx6zZs3q2tG5C1RXV+Py5csoKSnhAgICXu6CLS1JhTB7NmWCu1pnNm0CRowg87+X6MncjJqaGkilUsTGxvI8z7PRkyaBmZlRprY5sw4KDJaWlgrS8HDm8v330Jw1C3369UN2drbi+vXrbNCgQazd+icIpMZZtYqO5eREGWdDQ1oDxo/vshVXeHg4mzBhAjoaVJaXl6Pw+HEMqa+HxvTpuH//PouOjgbP89DW1oaamhoEFRXc1dTEyZMnodbYyPsvWsT10dentWPZMhj07g3fwYM57du34ft//g9zeYGhpp2dHUJDQ5mxsTE9K11BoSCzxdJSeoZLSuja1dQoQPLHH0BFBdiPP0L1p59g5+WFe/fuMZlM1rMioAk8z6PaxgaSQ4dQIBIhrqQEay9ojXYAACAASURBVNasYYYv6knfFhkZ5MfRTRCmLTQ1NSEWi+UZGRmQSqXMzc0NUqkU5eXluFBUpAjt25cbo66OqatWMYOXbJn4d4AxhszMzIbS0tKYgICAhP/aGyuhxCtCWbOthBJKAAA2bNggBjBBTU1tuUgkGmlmZtbg4OCgY2RkhD59+kBHR+c/GrH+qzh79qygp6cHNzc3uLu7i5uzfoWFhRg2bNifzmw3NjZCJpOxhoaG7l+0dCnVAa9cCfMdOzBx4kSEhYUpwsPDRbNmzYJtF4ZP8+fPx4EDB+Dk5PTiGreqKjIUiooCEhIo+7hhQ6eXPX78WGjKMLRcb7OTd3h4OBwdHYUJEyaI5M7OUDlyhIx9PvoIWLAAZoxhTkWFCBs3YpWlJUtLS8Pp06cRFRXF8zyP2VFRnHlmJpmltUFzG6+ffvpJqKqqgo2NDTd8+HB4tG3v07yB/vxz+re8nLLKCgWNXXQ0XZtUSiT855+JZDbPt/p6qu8eO5bk03PmULZo61bKxm7e3PP4gTJxrq6ueHj1Kj/0nXc47N/fvs+wXE6mbKtXd/7j998H1NQgf/YMF86d4x0cHASFQsG+//57ALQBR3FxtyRz2rRpuLZvH4oA9GlypG4aPJK9JycToe/bF/jsM6CggL5/802S8d+8SRLgjRuJkDRJWNXV1VFdXd2uzvfBgwcICwvjR4wYwclkMjg7O+Ps2bNo2xpswIABsLOzg2FBAU4JAsrKygAAx44dA0COzboeHjBctgyeFy8icv9+WFlZwcLCAn/88QeSk5NhbGwsyOVyVlBQ0HJck08+oVr8V0F9PWU0mzJyIpEIU6ZM4X744QecO3cOr7XtRdwBgiCguLgYWlpaCA0NFYyMjDBmzBhm1E2/cwBEFtevJwLk70/z7733AMbAGEPo2LEInjy55eW5ubkIPnoU4pMngfnzIfroI6yqrmY7duwQeJ5nN27caDFm1NHR4d9///1XCupFRkY2t/zD0C6UET1ixgyat4JAX23X5/Pnaa1YuvTVSwIAuLm5CTzPcykpKUJDQwNTmzWLatQXLKD2U001xdOmTWMpFha4c/8+7h85AhMTE8HR0ZErLi7Gnj17BB0dHcx/802GDz+kgOHOnRQoDAig8718mZ7rkBAKWL73XrvAwe7duwWFQsHq26h4FAoFqqurceDAAdjU1cHIwwNmI0dCoVAgKysL0dHRfFhYGGdubs6rqKggKyuLCwwMRP/33hNJJBIKGo4ZQwG5adNIvn7qFBHQ7lBfD5SXQ9zYiEHFxYr4Tz8Vmc6cCa2SEuDpU5r3YjGtR/v20To1axatdTxPLuUBAa2tEwcPppKQY8dgMGcOXFxchIiICObu7o6uVFHFxcUoLS1Ffn6+IJVKmUKhgIaXl/D6hx8y+3/9ixeLxa/2GZeY+OIShDbw8/MT+/n5YcOGDfj+++/BGIOKigo8PT3Z5MmTYTJwIIOREV3zfxHm5uba6enp/QF0NstQQon/JWAvlMIooYQS/89jw4YNKhKJ5Kquru4gb29vLVdX1577vv6HIZfLwXEcpFIpvLy8IOmphg3A7du3ERERgfnz5yMnJwdJSUmCm5sbc3Fxwfbt24WgoCAMGDDgT0cKvvvuOyEoKIi5uLh0/6L6enLItbNrIWwRERGIjIyEh4cHP2bMmFbH7yaEhIQoUlNT2VtvvcX12NJKEMh8Z/t2IpgODq0ba7mc6oBNTXH2H/8Q9M3N2fC33qIM+L/+Bdy7B8X+/Sj7+WcYvP462NChtGG2s6MMcFYWbRDr6igLHR/fYvrU2NiIZ8+eISoqCuXPnyveXr1a1HHjXlhYiF27dkFdXV1455132CvPm+pqItvu7lRr7eFB/XL37iVitHUrkfCdO4k8FBVRYOMVze+ys7Nx8ocfsGLfPmj/9httfNu/gLKEHeXsbVAZEIDU2lo4hoVBXV0dKSkpSEtLU4wdO1bESkqA6dMp494GgiDgl3/8A5OOH4d2WBg0HR3pFwUFtBHftInadDXXkt++TZvzjq3Umk2jBIEysqNHY+M330AQBKxduxYaGhqIjo5GSEhIt+f/1ltvQV9fHy3zcOpU4OuvIdjaQiaT4auvvmr3enFjI2zS0vDU0RFinoe8zfzt16+fkJyczAAKHFlZWZHi4F//Ar79tttzaIfUVLrOJ09oDrbB3bt3hcuXLzMAWLlyJXR0dDqtSQ8ePMD58+cBAKqqqsJbb73VuZVdT8jJoTICPT1g6lRUamlhx9df4w2RCGd1dXme5zkhPx8z9fTQt6SEAiNt5l1jYyOioqIQERGBoKAg+Lb1A3gJ1NfXY+vWrRg+fDgcHBzQY5CgJ0ycSMqRH36g76OjSQ0xZkyPrtwvg82bN2PAgAEIDAykefn116S86NOnNVs+YwYe+Poi0ciIb2hoQGFhIWtsbGTGxcUYFBkJj/nzIeY4Op+OSp5Jk6j85LPPiIT37UtKmKZ1ZkNTUPHjjz9GTU0N9u3bB57nW8oz+icmwi04GDavv97usA8fPsSZM2egqanJDxo0iEtISFCUl5eL3nvvPbSbIxs3Up10cjIF8fbtozVQW5vWwfv3qZxj2DAyd+vTB8KdO7hRVwfvJUugIxa3dlfQ0iJfC23trtenjRvpNcOGkYt5aCgZnsXGQqitxVf79mHq1Klw6tABged5fPbZZ9DS0lJoaWnB399f5OzsjCdPnkA3KgpmFy9ScOVV8PHHtF41KTheFg8fPsSFCxcwf/58mJmZtQbgm41Cc3Loc+S/hMuXL8vv3bsXIQjCO+vXr3/0X3tjJZR4BSjJthJKKIENGza8aWxsvHvJkiWaHQnhfxvPnz/H/v37hcbGRiYIAuzs7IQ333yzW6LM8zy2bdvG+/v7cz4+Pti4cSP69++PpKQkGBoaClVVVczMzEwxffr0P31hmzdvhlgs5j09Pblhw4Z13+u5WUqso0MZJVBGYs+ePcKkSZNYR+OahoYGHD16lC8tLcWaNWt6Zo/r1pH8eMAA2kzr6lLdZm4utZaprkaKoyPK9PTwdPFi/o29e7nUTz9FTXo6et2+jasjRmCxkRHENjYkHzx9mjZGa9fS8YuKaJPYhtDIZDKEhITwjx494mbPng0rmYyygZmZgIYGKisrsX//fgVjjAsODmZm3TgzvxLkcnLDfvNNusZDh2gz/BdVFU/v3MGZs2dhV1LCv/bTT52DGxkZVC86Z063x4i9cgXFx44JQRs2MHSUe5aXE2F+8qTdj5/ExCBu61ao19XhtXPn6If5+RRQWLWKMvRtsX07Zb0GDeryHPhHj8CdPw/U1OD3p0+FGCcn5jFwIGpqahQpKSkiALCxsREkEonAcRyXlJSEvn37CmPGjGEmJibt1SmBgSRrb5JcFxYWonfv3iguLm5pI1VXV4f6t98Gf/Uqzqxfj9deew2qqqrQ1dVFXV1de2mvIBDpCwtDp/HpCo8f02tXruzy1zk5Odi3b1/L9x4eHvD29oaRkREEQcD27dsFNzc3Zm9vDx0dnS4zgi+EIJAp1+HD4MPCcPq33/gp777Lfb1mDWyqqvD67t0QTZtGZnJ/Iy5fvozo6GhoaWlh1apVr2wo1w4JCcCzZxSEKS+n0ot33211//+TEAQBn332Gby8vDBu3LjWXyxfTpncAwcowOLkRAS1ucTk0CHU7dyJPwYPhnZGhhB4+DB7KXf7xkYKVHp5UemKRII//vgDT58+FYYMGYIrV66wXr168Y6Ojpy5uTl0dHRQvXIl7hsYCJaLFzNzc3PExsYiJydHUVxcLAJIKaGqqgofHx9ERETgjTfeaK80EgRS2Njb07o2bRqpR2xtyZxRRYWuq4Nnx6ZNmwQTExM2Z84cvNRnZn09ra8SCUnYV66kjL4gkIO5hwd+mzFD0J46lQV1cBlXKBT48ssv8f7773dup8fz1L6wqqrbHvGdwPMU1Lx37+V9Mdrg6tWriI6OxqpVq9obMl64QPetrOwvr9cvi9zcXOzduxdisbiBMXZYJpNtWr9+fdp/5c2VUOIloZSRK6GEEgCgrq2tzf4niTbP8zh37pzw+PFj5uvryw8dOlRUUVGBX375pdu2W9nZ2Th06BB69+6N/k1u1xoaGnx+fj4LDAxkRUVFQl1dHT948OC/dGErVqxAcnIyFx0dzd+/f5+tWLGi6wyanh7V7C5YAAwaBLmbG+Li4iAIQpcmSaqqqpg5cyb3zTffoLq6uue+xAMHkhRxxQoioIsXU4ZETY3qlAGcX7JEcHNzY2l37nCbJk2C+OFDwcDAAOKxY1lBVhYSfXzQ390dAMD37g0WHU29j3ieyN3p0+363T5+/BjJyclYsWJFK5HZtAlpeXm4eu2aorS0VGRra4vg4GD2l8hCWyQmEvlZs4YySx2NxP4MFAo4LF+OmQMG4LCVFTdRLu8cMElNpexWD4jJzoZ6QACPceNEWLmy/eZWR4cyn23lvIIA/S++gEF1NaT+/sj+8kv+zfv3uSvq6nD//HO4NrcvaovTpym714Zs8zyP4uJiyGQy7DtzBmZmZhCnpvIGNTXc/IMHEZGRgQxra9GUadNga2sLiUTCVFVVGUDZUzU1tc47X5mMyEQbM7Pmms+2tZ8aGhrQ2LEDYUeOQFcQFIYSiQhNG+yONbRgjMoBuqtlbYu9e8ksrqv69SZYWFjA0tJSyMrKYowxFBQU8Hv27Gl5kLS1tYXAwMC/tqtnjBQp8+aBe/99zHRw4C4cOACt7Gy86edHtbd7/npnofr6emzbtk2QyWSs2WDvjTfeeLFnQ3eQyymzXFNDNc+2tlQHHRREa8S4cXSP/+RzWVhYiGvXrvESiYR1GuNPPiHX/OZWgSEhRFi//JKyvHI51Netw1Bvb/z8yy/MsawMFt2tbdu2Ub32nj1ERHftIjLP88CCBRgzZgwePnwoXLp0ifPx8cHYsWPbLaR6o0cjV0tLiImJEUJDQzlLS0uFpaUl3N3dERoainfffRfa2tq4efMmzxjj2hHtnBzK7q5eTa3+CgqADz+kjPMLauetra1ZWloaIiIi+BEjRvQcKH30iIwi792je7V5c2tQk7GWDHr6gQNs3kcfUd/vFSta/jwvLw8qKiqClpZW57nOceSt8OmntHa+jBN5bi51Q/gTRBsAgoKCEBMTI9TV1bF2ZHvyZApYNM/Nv9h680WIi4vDhQsXAAArV65UvXv37rwHDx7M2bRpU3hDQ8NJAEnr16/v2tlTCSX+i1AapCmhhBIIDw/PqKqqWsHzvIaurm7nTfR/AceOHVMUFBSwBQsWMFdXV04kEkFTUxN6enq4ePEiBEGApaVlu785ePCgwtXVFbNmzeKayV5mZibLzs5mHh4e8PHxYTzPc4Ig/LmsVxPU1NRgZmYGLy8vVlZWxl+6dInr6nwAUDZ23Dgo1q3D8bt3+Ry5HJMnT2aOzfLhDpBIJCguLubDwsJ4a2trTkNDAwcPHhSkUinv5ubWmoG1tKTs9sCBtMFtrhFet47qXVVUkJKSwvM8z1VXV/ODBg1i8+bNYwMGDGD9+/eHQqEQbt68yUpKSoSMjAzcPX2aCQ8fIsbQUIGGBo7T0wObNAniNpvz+Ph4oa6ujmtoaMC9e/eECxcusASRSNF73TpO4uTE1Pv2ZUFBQVyPQYKXBc9Tj+otW6iXsKkpff1VSWJjI4TMTJS6uiLM1FQoLStjAwYM6DzHExJQVVyMcwUFcHZ27tKf4NKlS5g4eTLXa+ZMkotWV7fWfTNGm83Fi1sJTm4uNG/cgM3x4ygMCwMrKmIa8fG4P2gQqnV04Orq2uKeX1painv37sHq7bdJedB033meR0xMDI4fP4709HTU1dWhtrYWpRzH8szNkWZjgyGRkQgSBFgNHgxVS8t297BbFUZNDQUXRox48RiqqKBBSwvm773H9G/eZHjzze5fu3079fmeOrXnY/78M5naddESqy0ePHiAiooKtnDhQowYMYKZm5tDLpejoaFBWLZsGfeiEpOXhrY2MHIk2LlzcMzPh9/mzRQ4OH+e/rWzI0VJWho9i9u3E0kqKyPZ/IgR1AP90SMiPHPmkAolKQlVy5fjp5ISPuDMGc6ouBgiT08s3rMHxrNng4WEELFasoTUDqmpJKu2saEx3LaNpMbvvEPlE3l59Fz07UtBvY8/Bv79b6p1/vBDcr+OjaWSjIAAev316/T7YcMoeHXxImVyV65sDZA0Kyo++gh8ejr2nzkDt+hoYdSUKZx2QQG1H7S3p7prDQ0yGPTwIKIdHU3GX5GRwNy5lB3u1w+aWlpQUVHhz58/z5qDCp3uV3ExEbPmNniMkbT855+BoiIwNzfckkqhUCjYokWLOj2X4unTYbVtG/MeNowNHToU7u7unIODA2dpaYk7d+4IHMcJ1tbW7MyZM8zd3R329vakBFi+nGre1dUpwPjwIdXyP3tGLuYzZ3Yyg2yLvLw8ZGdnIysri9nZ2aHH8oXAQApOXLxIa8SCBZ2UH3ItLYTeuoVhQ4ZA1dCQWvIlJkJhY4Ndu3bBxsZGcHV17TqwpKtL53r5Mt3DFwXNc3PpHrb11XgF8DyP8PBwNmzYsM594dXUKFD49Gmn7gl/N/T19XG7qeyntLRUmDZtmnjw4MFihUJhqaamNqaiomLuzZs3NyvbginxPw1lZlsJJZTA+vXryzZs2DBCKpWuu3379gSJRMIZGRkJgwcP1rL7izV/L4v8/Hw2efJk1qeDm6mbmxvU1dXx66+/QkNDA4OaMn6///47FAoFN2rUqHZZ49zcXB4Ad+fOHcXTp09Fjx49glwux6effvqXDd4YY5g0aZLIzc0NJ06cQF5eHj9z5kyuU9ba0BDXXFyECbt3cxoJCVB7QaZv8uTJ3PHjx/m9e/fCzs5OKC8vh1gs5k6cOMEvWLCAw+PHtCEsL6eNVHPWIyeHNsEVFcD587Crq+PSOQ4ffPBBp5TCqFGjmL29PS5fvixwHMcN9PKCmlyOgoICZrp5sxDm5ycUffcdFxgYyHt7e3MKhQKpqalCRUVFswkWmzt3Lk6fPi2SNDaiJDGRlYjFOHbsmGL16tV/TRJRW0uGb9XVJGvW0SG3aE1N2jz+FbzxBsoLCvBjUBDEYjFjjKGwsLBT8IXPyMC11FThiSCwXbt2Kfz8/ET9+/fHzZs3+cLCQtZc829iYkIb9OxskoPu2dNqjGZuTtlEgEjJhx8C9+6BnTiBoCNHhONTprDzTS2jMjMzERISAjc3N9y4cYN/9uwZBwBDJ04El5OD5xUViIuLQ0JCglBXV8cAcl82MDBASUkJjI2NBX9/f9anTx+ULlkC7fx8qjcNCaHgy4gRPUs5Cwt7rE/vCFtbW2yeMYOt+cc/oHrvHpHPrgJYI0aQHLgnHDhAY/MCqbkgCMjKymIAYGpqii+//BKKpnZkvXv3Rm1tbc9qkJeFTEakedcucqdft46yczo6RBrmzCHSumcPPWvDhpFhoasrzYWQEKrHTUkhEsMYUFGB0sJC/PHbbwrn4mKRh4cHnGUylEokiCktxSNLS8FHX59h0KCWkhN8+CER6d69KfBkYUEke+5c+v2DB/RMqKmRLJkxku2HhhJptbSkczx9mn6enk5BrPp6ItampnTeYjEFCubPp2soKqLgi7o6oKWF2IQEXk0s5rwMDGhlk0rpPQIDiZAOGkRzXhDI8yEwkAInO3Z0Glo/Pz/u7t27wk8//cQAYMaMGe16mGPUqM6kjzF6/letAqqrIeF5gVdR6awOqqqiIEk3veXnz5/P9u/fz+zt7VFdXQ1fLS1yAq+qotpxTU3wixeDa/awAGjckpPJSTwtjRQDXcDGxgZSqRR2dnY4ePAgli5dik5u4DxPgaezZ2msjh8nbwoLC1IHLFsGgMolrl69ymtqakJzxQoOHEf3cds2CDEx0GpogFgs7vnDa/hwqi3/5ZduyzJa8OABKTb+JLKyssDzfPdeKkePdjtufyfKy8sBUFvFESNGMIDKBkaMGKHS2NiosnnzZjkANQA99KFTQon/PJQ120oooUQ7bNiwQQTAGoC/RCL5wt7eXn/KlCnqf5tMuBt8/vnnePvtt9FlP2sAt27dQmxsLL969WqO4zh89dVXmDt3LszNzdu9Ti6XIzU1Fenp6UhOTuaHDBnCXb16Fe+++26njXlDQwMePHgAb2/vVybi5eXlOHTokKCrq8vPnz+/hWzm5+cjKysLYWFhwigbG3jt3Mlw/ny3G8JmKBQKbNmyBTKZDMuXL0dlZSV+/fVX4aOPPmKoqqINb4davnYIDkaBRILf3d0Viz09RS/MKiQmEtmaN48yaXFxCE9MxO3btyGXywGQ6VRz7TxALtXPnz+Hm5sbCpKSeGtAKLGyEtXX18vz8/NFAGBoaCjMnj276zZpXaG4mDI948e3d07+5BPAyIg23H8GPE8ZPk1N/HLtGl9aX89NnDix/Ua/5aU84iZNQrqZGSZs24YbN24oYmNjRcOHD4dUKoWDg4Pi6dOnosbGRqxevbqVqEdFEYGpq6O61a+/Jkl/r16UqfTxIQfnb7+FXCLB5sOHW8ZWRUUFMpms5V8A0BCLMe/kSRQcPIjzTWqOtlBTU8Ps2bOhr68PxljnftaCQM7lMTGUqVu5sjVj2BEREUSOTp586SH9+uuv+VmzZnF9g4Mp0NDBUK0F+/ZR3XBXCpmSEsqCRkW9kGxXV1fjm2++afezd955B4WFhbh8+TI0NDQEU1NTNm7cOPTUy7rLcwgJodrg9esp8/vZZ+SWv2kTkW1jY/qZlhZlQWNjW1pevSy+/PJL2Nra8tOmTeParp+1tbX4+uuvMXDgQAQEBEBLSws5OTkwMzN78XU0lymYmtL4T5hAxOn8eZJCq6pSVvjIEQrEveK6VlFRgR9++KHFTK9HxMRQ3b2TE43Zrl1EVjugqqoKZWVl+PXXX4WAgAA2oK0p16lTJONv4wReXV2Nc+fO8c/z84Uhly6JaiQSeOzfD4MOaz2Kiqjmf8aMbk/xxx9/FKz09Njj5GS8e/EiSvr1w53XX0dJSYnQ0NDAN6amilQbGmAwcCA/a/Hi1sH/9FPg3DnKgncAz/PYvHmzMHjwYAwdOpQdP35cqKmpwZIlS9oHBE6fJnfu1FSaV59/TjLyhAQi3E2fdVu3boWKigoWLlzYLkOenZUFo6wsiIODsev11/HW99/3PD/y8ojcT5nSs5x81Spam5qDOK+IXbt2KSQSCVvcdrw6IiuLVCvp6Z3MD/8uHDp0iM/IyOAGDhwIR0dHtE0MVFZW4ocffmhUKBRLBEE4sn79eiXZUeJ/DEoZuRJKKNEOAQEBQkBAQGlAQEB8aGjoTxUVFf1TU1P7urq6qvwna7qlUqng5ubWdX9cUCbrwYMHiIiIELKzs1FYWMgmTJjQafPBcRx69+6N/Px8pKamsoymTZyRkVFLNqw5Ip+ZmYmzZ89CX1//lZ2A1dTUYG5uzqRSKfz9/RkAxMTE4PTp0ygvL+fd3d0F/4kTOaaiQrWMs2b1uPHlOA4DBw6Et7c3DAwMoK2tjfDwcGZmZgaDrVu7Jy/NmDULfFAQMo4c4Zy3bAG3ahXJO01Muq6dS02lnrfu7iRD1dKClZUV+vbtCx0dHeTk5AAA43keenp6fH19PausrIS2tjacnZ1hsXkzs42LYyl+fiwjI4NbsmQJ8/DwYE+fPkVmZiZcXFxevMtPTCSp7BdfUO1k2/klElH2ydj4hYfpEl9/Tde1bh2SMzP5+vp6TJo0qdM57d27V3758mVOr6ZG8Fq6lOnb2KBXr17cw4cPhczMTDZ58mQEBARw/v7+sLe3h4GBQeucs7AgwrFwIUlff/kF6N+fggdz5tAY29gAkyaB09NDUVGRorCwkKM/teDlcjlbs2YNBg4cCE9PT0jq6uSPq6q4+5WV0NHRQV1dXbtz1dTURH19vaCnp8e67OHcnOn09aVz++YbIiOurp0lsYWFlJl+BSlpfHw8r6Ojw5mtX0/ZzN27iTB3JP3vvEMy546qGEGgrOG6dTQvXwCJRIIhQ4bg1q1bAMj13MTEBL1794azszOuXbvG8vLycPfuXcHV1bVrJ3y5vNVQcNYsIkCGhmR45uwMVFZS4EBVlSTWdXXkF+DsTM+GuTmN69ChRGKMjbsklF0hMjJSmD59Oqfd1KqtGSoqKrC1tUVISAikUimePHmC27dv48GDB7xYLO7eaPC330hqvmYNqRfGjKFgwKZNJA2ePp1eN3Agkal58yiI9QplQSdPnlTo6OjAz8+v5+e3qoqO/dlnNMfz8mgsnz+n8Wmz1jUb6qWlpQnPnj0TPD09WU1NDfLy8pApCGgYMQI69vaora3F4cOHhevXrzMDAwN+1OjRoj4zZ8IqIwN6MTFkztg26BsdTUGGSZO6PMX6ujpEnz7NXv/uOzzX0EDIqFHIdHLi1dTUeEtLS2ZiYsICzp2Dp6kp+72hgQ0ZMqT12Q4IoLUpJYWCfk3XU19fj6NHj/Icx7Fp06YxkUgEGxsbFhYWhvT0dEFFRYXJ5XLU/vYbGn18oD5xImXfv/qKzCg5jgJdxsaAjg7S0tIQExPT4rjfjOvXr+PCxYu4k5uLRAsLVOjrw331asiMjaHaRcAQAL1PQQFl74cO7br3OkCqm7lz8VKmdR2wc+dORU1NjWjx4sU9+3To6ZF6wsvrld/jZeHg4MD09fWRnJwsREVFsfT0dLmnpycH0Jyzs7MTpaenBwmCEHjjxo3fAgICXiC5UUKJ/wyUZFsJJZToFgEBAbLQ0NBTDQ0N/eLi4uzNzMxUdF+Qof0zCA0NRX5+Phs1alS3kXuJRAIvLy/Wp08flp2dzRsaGgru7u5dvvjZs2c4c+YMRCIRJBIJGhoaYGtri19//VWIiIhgd+/eFRISEoTY2FgmEonw5MkTiMVihYWFBVdTUwORSPRSmbLGxkZER0czHx8fhKH2QwAAIABJREFUlJeX48SJE5g6dSrGjx/PbGxsOMYYZfH09UkmPWlSj/V0KioqLTVwIpEIJSUlwtP79+G5bx/D++93v3lqgqqqKiKePRNyZ81izq6urRsuOzsiHW0zczk5lNHbtInIRhOp1dPTg7W1Nfz8/CCRSGBlZQUvLy8WHx8PADAxMVHExcVxyQ4OiHZ2ZvKGBoVILIaFhQXLysoSZDIZKyws5H18fDoNYHPLHgnHUf3i2rWU+e2weaytrUXV7t2oLiuDho/Pq8v/w8PJIGruXMSmpgpSqZRTKBRsWId2Wo8ePcKdO3e4qVOnwu/QIaa9aBGgq4vS0lLcv3+fCYKACRMmQCKRgDEGHR2dzvPCxobusURC2fTKSiJ0jx6RS/CQIS0b9fT0dIHneW769OkICAhggwcPBsdxUFVVhaamJqwyMjiXK1fAz5nDJyUltVz0/Pnzoa+vj7KyMj4tLY2Li4uDm5tb58x2MziONrrBwUQe168nabe6emuNeWwsqQpeYTOcnZ3NVVZWKpxdXGgQli2jDGvHLJq7O93Tjuf3889UY9zU1/plwHEcwsPDAQAODg5oLjNRVVWFr68vXFxckJiYyCIjI1FSUiL0MzVlrK6OlBGpqTTPdu0i6XefPpQF7d+f5r+vL92jGTOIqBYVtZoPhoVRH/qJE6mUQRAoG+/nR87bZ84Q+esGcrkct2/fZl5eXl16YOjq6sLMzAxGRkaCXC7nx48fz+no6ODq1avMzMysfVbZ25uMpxYtouvo27e1/V1cHJ3TjBntOgmgTx8ixDt3Ug31S453RkaGkJOTw9nZ2XUb+ARALbEKCiioxHE0z62sqG3XnTs0bh3es1evXiw8PJxFREQgKioKDx8+ROnz57zWwYPs4LNnuHPnDhoaGphYLBZWrFjB6evrQ0tHB6qjRtHzdOoUyc6b18EnT+h568rMLCQE4ilTEOPjo9BfupTz+/BDDA8IgJeXF3NxceEsLS1ZX3NzpvXsGZO/9RakMTFISkrik5KSWGJiIhIfPUJmURFsli8Hq6kBGzoUjY2N2LJlC6qqqtjixYtZ8/MnkUjg4+PDkpOTkZCQwD+IjcWod99laaGhyJg+XTCsrWWizz9vDRQEB1O5grMz6urqEBsbC0tLSzQH0Hiex5EjRzB06FCMHDkSpv37w93TE9kPH/LSnBzWGB8PM1VVmgMd4eJCQVRNza6DQjIZ1Y/PmPHCz5OOOHfunJCens4tX7685xr1Zri7U2Dt5MluAyJ/BSoqKjAxMYGtrS27e/cuampquLZrvLa2NgYNGiQpKSkxLisrmxAaGno0ICBA9refiBJKvADKmm0llFCiR6xfv54HMG/jxo0hhw8f/tHMzEwtMDBQ09TU9G97j3v37gkzZsxgPfaaBm28+/Xrh379+vWYYjczM8Ps2bORm5uL5ORkRUNDgyg0NJQ3NTUVVq9eLUpJSWEVFRXM2NgYqqqq2L17NwAgISEBZ8+ehYaGBtTU1KCuri4sXryYdUf2DAwMYGVlpfj22285hULBHB0dFc7Ozu3PjTHaIF67RiZE//jHS298VVRU+KLyclFFQgJ0X0KWnZKSgpKSEjZ69Ggi9VlZ5BL8738TicjOpppTXV2qCx0yhOTOTU7ubSGRSODfRCa+/fZbAQALDg6Gq6urKDExERcuXEDv7Gws2r9ftPmf/8SVK1dQWVnJALQQhcjISCgUCgwbNgy1tbXYvn27ICorYzMbGmBZXEyGSmIx6urqEBUVxdfW1grDhw8Xbd++HYNTUoT8/Hzmm57e0qpHLpcjMzMTVlZW3dcM3r5NWZs7dwBTUzy6epUB5CjfEZcvXxYAMDUVFbDERMDUFPn5+cjJycG6desgEolejugPG0bqhU8/pbrZU6doTDv8rUQi4bSaFARdwt0dWLsWurq6TCKRICAgQPD29mYikQhWVlYYNmwY19zqZvfu3VizZk3PPehFIjJ6mjKFAgAHD5Kkc+ZMImKvWBpibW2NyMjI1ouKjSUSumQJXX9zzWpNDUlVT5xo/eOGBgqADB78yi7FK1euxK5duzq1x1JTU4OJigrWammhwN4e+Rs2sLq5cxF36BCGyOU0nitWkHwXoGt/8IDqjx89ovZyly61nrMgUDBAV5cyw59+2vpmjLX2sd63j2T6PE/P9NtvdxrLsLAwqKmpCb169ep2Atnb28Pe3p4BEAGAqqoqE4lEMDAwgJCQAMWwYXh45Qo8t2yh+aSh0Z7gV1WRxP1f/yLy1hErVhBRDwykOfkSLvGvvfaaKDQ0lN+7dy+Cg4NZv66OC9C93bKl/c90dGidy8mhex0cjIa5c3E/JgbV1dVCXFwc8/f3h7+/Pw4cOICKigph+fLlHPvqK7j//jvkCgU0NTWxdetWdvLkSWHq1KlMIpEQKXznHQrWLFlCNf8iEWXRPT3bn8OBAxQEGDUK2LwZamVliKut5R3E4s6TbtYsYOlSaBkbY8mSJcjMzOQaGxshk8mE5ORklp2djczp01FbXQ3DTz5RNJiZiczNzfl58+ZxHVVeEokEs2fPZsjKEkEQwPfujXIjI6SfPi24HTnCJBkZFJAD2rUHbFZj9O3bt+VnKSkpAABXV9d2deD2p09z1gUFyJ45E9mHDgmxGzeyoMBAaHRUuWzZQs/ZkSMk8W+Ligoi4S9b5tMGPM8zAPjxxx9haWnJz549+8UGhf7+FPD7D0JPTw9GRka8ra1tp3ssEokwZcoUNZlM5pKWlvYdgGX/0ZNRQokuoMxsK6GEEi+F4cOHJ4aGhn5fWVlZkpCQEGBmZibprr76VXDmzBm+urqaBQUFddke68/CwMAA1tbWGDRoEDds2DD4+/szd3d3rrl/sJmZWUuPUKlUCltbW+7333+HpaUliouLoaWlJRQUFLCcnBze3d29E+GuqKiARCKBvb09Z2RkxBITE+Hr68uZdCWP5TjadNy7R9JHX9+XugYHBwdu4LRp+CM/n7cMCGA9bWzkcjn27duH0aNHw6NZGswYvffIkZStq6wkMthsnvXxx0QUupIkt4GnpyeTSqXIyMiAv78/+vTpA2NjY7iMHAnNCRPgPHYsoqKiwBhDr169YGJiwrm4uODUqVP806dP2YABA7Br1y6+b00N5xkRAQMTE2j9/HNLlv/y5cuKxMRELjs7m+vfvz+io6PRNzMTgqkpnCZMYOrq6oiKilKcOnWKi42NRWRkJKKjo+Hr69su01x7+TIqzcxQN3MmyjQ0UF9fj2vXrgEAxowZ09nJWCxmqamp0AdgNXAgKl1dsWfPHqSkpMDa2rpb/4B2EATqm71rF0mkRSKqnR01isieSEQGcFSXy0pKSuDZkSA0IyQEKCuD0dixbOjQobCwsOj0TOjo6CA8PBw8z6OgoEBwdXXtNhjU5kLpXNzdyYRu61Yi3r16UVbwJUm3trY2wsLC2stteR747ju63uaseV0d1Y42G38BJGnOySGi/wpQKBTYv38/6uvr4T9wILTu3yf56/z5pMoYNgw4dgxa/v6QTZuGg2Zm0Le2hu3bb1MGmDEKOlVXk+y6tpbKFoKD20vrv/oKuHu31VzKzIzIbP/+nTOAnp6ULS4sJPIXHEy1qZqaLeqRixcvKgYPHsx19JToCVFRUcKwHTuY/NIl/qBYjDw1NXa7ogJ2o0dDp6P5FkDzzsmp+6whYyTXLywk6bKPzwvvNWMMNjY2TFtbG+fPn2dxcXGK9PR0LicnByYmJhTcefCA5NsLF3YOnIhENK/MzaG4cgXHb9xAWna2UC0IqKioYJaWlnBwcIBEIsGjR4+Yf0AAxB9/DBWJBKqqqi0B1cTEROHKlStMKpUKiYmJglgiYcbjx5PZ2+efkxLhzBkK8Dg70/XxPHD4MK1xU6cCTk6wsbHhrly5wow0NdFbEGj9ffyY5uzFi2Qs5u4OHR0d9O3bF9bW1rC1tWWGhoZ48uQJ//6nn7JBOjpwf+cd7p6NDabOm8c6lgW0Q1AQsHEj2OnTsOzXD/oGBuxySQnKjYwUVlZWNFhjx5KBmIUFeJ5HUylSSzBJJpMhJiYGWlpaCktLS67t862lpQXdGTNQEBTEFMeOCSbLlzO2aBFEbVUIYjHNiy1bgNdea6+mun6dfB2aSw5eAf369YOVlRUGDBiA6Oho4fnz57yTkxPX4/pjb09fEybQdXenxvmLiImJEUpLS1lMTAyfl5fXLkjEGIOhoaH47t27/cPCwr4MCAjg/yMnoYQS3UBJtpVQQomXRkBAgGL48OHRoaGh99LS0qb7+fmp9PRBW1lZifz8fJSUlEBPT68d2amvr8eJEyeEJ0+ecDNnzmQGL9Ob9z8AiUSC5ORkPj4+nqmpqQmrVq1iAU1yQwMDA0RFRbHw8HDcunULYWFhiIqKQnx8PG7evImIiAhERkYiKSkJjDH0798fXdbS0hvRpuOrr2gj1F1dZhswAEXa2rgCsPSMDH7QoEFdDvbPP/8shISEMG1tbUVwcHCniMXz589xLSICBhYW0HzrLcpsuLpSneX06ZTxamjo1gBKLBajvLwcubm5GD58OBhjMDAwgK6uLsRWVtB87TVo+PpixqpVuH37Nurr61FbW4vs7GymUChw//59eJSWCgMiIpDv7c3Shg8Xrl27xtva2nIaGhqIjIwUHBwcuJKSEl4qlTKJRCLYJCczr0mTWK+mwMRvv/3GHB0dmba2NiorK9HQ0IC+ffuC53nk5+ejLjcXkrFjcb6iAqFFRbh//z5SU1Mhl8vRvME/duyY/OHDh4KTkxN3+fJlSKVS8DyPKc7OUI+MRJyJCZ4+fQoAGD58OK5fv66IjIwUzM3NOU1Nzc4DI5WSXLm4mO7p5s1EBDQ0iBD2708kfNEiYM0aqL/1FkpFIr7f6NGsS3XD9u1EBkeP7nZOHDx4EOXl5Rg+fDgSExNZZWUlHOzsiFiFhdG56OsT2QgMJFK9fDl9OTkREVq7luZhbi4FXo4codrbuXOJ8Ovrd7kplkgkkEqlQr9+/VolxhxHpEsioWNNnkxyYj8/2vSrq1NAIiaGiGkP7ZTaQhAEPAkNRejNm/DYuxfmeXlwUVGh7OaAAUR4Fy4kCf/06YC1NVR69cItqRTz58+ntSYvD4iPh+KNN3CnsBCnBg/mo4yMhF76+u27HpSXkyLiX/9qvW6Oo0y2nV339eVaWiSJ19MjT4Xbt4GJE1Gdn4/wu3e5UaNGvZxbenk5BEtL/Kary0o0NZFiYwM7Pz826p13UFNTg4iICKGwsJCXyWRcnz596NouXiRvgG+/7VkpwBhlOaurqZxgzJges5r5+fkoKipCYWEhVFRUMGDAAK6hoUGRk5PDbt26BX19fdanthbw98czkQjx8fGQSCTQaApuxcfHIyEhAVmM4Uh5OQY8eCDMvHePeW3dyp7m5CgeP37M9evXD0ePHoVYLMaIESPIm2H4cKqNBnkTeHp6Mk9PTzg5ObGIiAiWkpKC4QEBtG4JAqkOxo8nbwKZjGTrAwYQoVNXJ2XLuXNQKy3FoI0bobZvHyQODuDu3CFSXltLQSGJhAj7hg0UjGh6zisrKxEdHc0CAgIgNjODeNQo+EydCi1V1dYMdUc8fEhB1dGj6TxTU6G7cCHy3n4bkVIp5+3tTYT63j1SFfXpA4lEgry8PMXVq1eZo6MjA4A7d+6gsrIST58+5VxcXNBx7ZFIJDA0NEROr14slDE8SE3lB/3znwz+/q0BL0tLCrL88Uf79n7nz9M68IKWe11PJQqm6urqwtXVlV25coWpqqrCzMys52gfY2Q2N3LkSz//rwobGxtWWlrKp6amcgUFBRg8eDDaqg+uXLlSV1xcfEUQhGMBL+ihroQSfzeUMnIllFDiz0BaV1cnkcvlnaSdbbF///6W9hzq6urCBx980PKh/M0330BVVZUtW7YMXWaD/4swNTXlnj9/Dn19feTm5rY4nLu5ucHa2hqxsbG4ffs2tLS0oK6ujufPn2PEiBGwsbFBVVUVLl68KEyaNKnbXtotMDQkk6PFi4H33++x5hMAsj/4QLhaU8OM3N35gQMHdruj5nlecHR0ZFOnTu0kr8/JycHhw4cFVVVVJjp0CAH5+dC5c4eyYbq6JD/96SfKghQV0SZ2zJhO5zZu3DgkJiYiMzMT1h1qATl3d/j4+QESCYKDg/H06VM+JSVF8PX1ZY42NlzZTz8JDhkZ3IO33xakqakQPX7MZDKZKDw8HFOnTkV5eTnn7e2NwMBATi6XQywWsz/y8xXnnjzhJhQWMkNDQ2hqagpJSUlMLpfDxsaGf/LkCXfixAkwxtC3tFShkMuZ/KOP+AUffCAGgIMHD8oLCwvFcrkcGRkZOHr0KPLy8sRGRkbCli1boFAoYGJiwufn53MRN2/yw9TVOQcHB1y5cgUaGhr89u3bOQAiVVVVnDp1Sli4cGFLjSZu3CDzsbffpnH096fNs50dEdevviIiCFAWdeNGQC4HLxZDXFPDsGsXEfO4OMrIOThQdm7Tps5mVrW1VCs8ejRw4AAsr1yBeOJEPmDlSq7X++/zafv2cfLgYIgbGuicHBxa5b0KBd3LZtl6VlbbidFa86mmRrXXgkBy3ffeo9rPDz6gLNjjxzR3LS2hoaGhKCgoEHcyFNTUpPdu9nT45BMi+0uXUjZ7xw56j+4gCNRuaf9+wMkJ8t9/h9GJEyiYOxfGWlqwXLqUZN9vv93tITiOg0KhQHFuLgy//x44cwZPjx7FpalTYejoqAh0dxdJpVKEhoYKTk5OzY5XlP3btKmzzHrIEDqvFyAqKgqREybwpkZGbMiOHcz4o48gfPABDF8UQFy3DnxSEs7OmSOoenkxpq0tjHnvPdanT5+WkprJkydDKpWyZ8+eif744w8+PT0d4wIDOYlIRMGZl6m7be5dHR1NsvnmZ78D0tPTcfjwYYjFYojFYkEmk3H19fX8ggULRIIgIDIyEiGnTglmJ0+yxH//WxF+86aoV69eQlhYGBOJRC2u+hKJRNDQ0BC8vLw4/08+YSwjA4qTJzErPFz0s51dS9nOG2+8QW/8+utdSty1tbVRVFQExhjebr7vHEfz6eFDum+qqtSKzMyMyOWvv1KwKDCQzP9cXHB+7Vo8razEP19/HSI1NSoZWLeOylgYI1VCeTkFHBctAry8UNMUVGzBoEE09x49oqBWR1y4QAGuuLhWcpuRAbi5QU1TE7q6uoK6ujodcNu2diUmEyZMEG3btg07duyAioqKIJPJmJ2dnWBpaQkDA4MuiaxMJkNYWBhgYgLW2MjJhg6FSnN7MW9vypzPm0djFB/faoRobExBib8IHR0d+Pj4sOjoaN7b27tnss1x9Ln38CGtTR988JffvyP09fUxbtw47sGDBxgxYkSn8hobGxtJenr6SJlM9nDDhg3j169fn/23n4QSSnQDJdlWQon/h7FhwwZDANNUVFQ8FApFEc/ztwDcWr9+ff1fPPQUCwuLOhUVlW71dDExMaitrcXq1auRkJCA8PDwdh/ITk5OyM3NFfT19V/R/ervx/jx45Genq4oKCgQ7d27F25ubopp06aJAJLtDRs2DG2NVx4/fox+/fq1SGlbNu4vA11dyjDNmkUZjh4yXxqXLqHf6NEYumJFt0Q7KSkJpaWlnIeHB+rr69ttMq6EhPCxMTHc+zt3MrWdO/FrUZGQYmDABgIkt2zG2rVEsuiAlJGNiABmz6Zes4mJkJiYQBAEZGRk8NbW1u3P57vvqJ3NlSuwHTMGLbVzeXnAiRMwqalh2L8ftjIZMzh+XCgqKmIAkJiYiMTERKipqaE5UNFMMsaWlIgiNTSEY8eOCU2t2ZhMJhMUCgVTaeq5u3LlShjo6wOOjiKsWAG8/37LeVlYWLDi4mLBysqKZWZmoqioCADQt29f4fnz5wwAFixYwNXU1CDln/9kcdnZSPvtNxgZGfErVqzgoqKicO3aNZibmwsFBQVCWloac6uspM30o0dkDjZ2LEk0i4uJrGlqEjHuCJEIEImQtW4dsh884LFkiQju7pRl3r2bslDNbbpcXIgUmZoSIfD2psxtaSkqkpLA5eVh6NChHJYuhcfEidzFnBw8dnSE1dGjguO//80GNmesLl5sff/mnreMEZGOjycS3QwPj9bNeGoq/ZufT1JpTU0KwGhpAT/+iNnbtomTVFV56OpyLS3P6MZRFj0xkbKMP/9MpOfxYyJBHV3lKyspaOHhQZ4CV68S+UlIQG7v3sJhXV3WuHo1BgwahMFff91zbToACAKy4+KENw8fZmoPH+KSjw8ezp4NhIcjaOpUYeDAgSIAuH37Nm9hYdE6f2NiyOSuq9IOa2si/z1kASsrKxERESH069ePU1FR4c+UlEC2ejWbOWsWmJEROdRPndr6BwoFBbguXYJizBgcy85GZlISC96yBeMdHTuVDXAc1+KdkJOTw+3btw/OmzcL9osWMSxZ0vOYtAVjpF748UdyM//mm04tmfLy8gCQv4GBgQFXX1+PrVu3cllZWbC0tIS/vz+MCwpYxrVruJmSIgoKCoK3tzeTy+UICQmBiYkJZDIZBg8ezEDCHIKtLa4bGeH/svflYVWU7/v3O3MW9lVFZJNVUXbBNVBRKnFJ3DXLXFvN1MzK6nRcSstyqSy3XDI1s9xyQQVBwxVE3BAEUZBFQET2s838/ng47CD2qc/39+nivi4u5XDOnJl33pl57+e5n/uxzMiAmYUFuhoaYujXX9eWIkye3KxjuomJCXieJ0MunY5MHyMjaf4AFDD6/nvKcFtY1PSurnY2x6PkZFGlUrFRY8aIBgYGtE+7dhG51hNeFxd6DaD5KJXC6dYtTNixA8cdHPCsPnD25Zc0X/S+F3pkZFBWfOrUWrPHykqa9z/+iKTVq3UhISF8DXk3N6ea96FDq381x6hRo2BkZIQdO3YwjuMwYsSIFuXqMpkMoaGhiI6OhsjzKPvgAyp7+egjqptfvZpUGlu2UJBg505yKz9/npQOfwNyc3NrFA2tavV48ybdd/4Bsg3QmAwfPhwnT54UQkJC6l1Ifn5+vK+vr/GZM2e6xsXFnVEqlUEKhSL/H9mRNrShAdr6bLehDf9SKJXKbhKJ5IKHhwdvZ2dnWFFRoUtLSysvLCyUyWSyuKqqqihRFG8ByAGgA6AB8AhAnkKhaLFFxooVKy4OHTo0yKvahVitVuPYsWPo0aMH7OzscPfuXWzbtg0+Pj6IiIioyZj07dsXYWFhAMhxdf369Tq1Ws0NHjyYde/e/R8dj9YgNzcXGzZsQEREhNCc0/nfhpwcyjr88UetsVRdVFVh35Ejws3kZK5bt25CZmamaGxsjAkTJvCxsbFiUlISk8vlusrKSh4ATE1NxbKyMhbg5oZKnQ42O3cKXqdPc0VJSXC+dAnasDAsW7sWdnZ2wowZM558bGVlUO3bh60VFbrBX33FV8rlODh8ON6IjobFwYMkV6yb+Xn1VcoY7dhBv587R4s+Cwtg9uya98bExIj6wIuxsbEwZMgQzsrKqrG6YfhwCK+9hh9zc7UVFRXM1taWHzx4MCoqKrB161ZotVqYPXqEAYaGov/ChayhPPGnn37SWVhY8ABw+fJlSCQSCIIAQagt11u4cCEtEr/6CjcKCrDX0BBBQUEIDw+vPgUUvPh97lydf/fuvOuWLRSU0GfkACKXkyYRCX9Ca7zExETExcVp33rrrcaB7oICykB7ehI5GzaMMuV1JKSbN28WraysEBERUTPwGo0Gn332Wc17FApFi/uAvDwgNZVqnZ8WpaW4M28e4rp00b1UXMxj924i5/37k1JjwADKnkdF0ZgsXEiZ9QkTqJ7d0ZHIkExGcvMNG+g9lpaU2bS3R0lJCVatWgUnJydMmjTpySQbAE6fhu7DD7G9WzfY63QIXrkSX3zzDURRxPz58+tJuSMjI4X4+Hhu0aJFRJyWLCGJa1O4dYvmdbUbuh537tyBiYkJLCwssGHDBp2dnR2aUpUgMZECHQoFsG8fHf/p00Tapk7F1Zwc7Nu3D0Arzls1LsXEwPLVV+EaGwv2V9riiSLwwQd0/oODiYBVIzY2FjExMZgyZUqNid8vv/yCO3fu4LXXXsPBgwdF31Wr2MVhw5ArlWLEiBHN+w80wPnz5xEZGYnX+vaFzaefknnb5Ml0X+jRg7LVCxfW/5AgAByHi4MHi26CwKyio+kzixdTIESlos/Z21PgMj4eAPlX/Pzzz7h79y4MDQ1RWVmJnj17imFhYaQYSEyk427Ymg70XLpx4waidu9GjzNnUPX222LYypUML7wAvP8+jZ+zM+3DlCnU5cHIiIh2dcYeAJ3j48eBEyewbNkyjB07Fh4eHvS3e/co+NRE2Y5KparpftASRFHE4sWLIZfLMWnSpHoGaxBFCtTt3UvBri1bKKv89dekkDlx4qmdyJvClStXcODAAQDAnDlzYNFaifgvv5CB3j/Qf1sQBKxZs0b09/dnzcnFY2JiNGfPni3RaDR9FQpF6t++E21oQwO0Zbbb0IZ/KeRy+ad9+/Y1DAkJ0S8C+cGDB5tVVFQgLS1tUG5ubsiDBw8qS0pKRFEUIQgCq6qqkqhUKoMVK1ZcV6lUi0VR/F2hUNSLyCmVym5yudzLs47L6b1795CYmIikpCQwxqDT6eDg4CAOGTKEAYCLiwvCwsLEEydOsLKyMkRERIDjOLz66qv877//jmPHjomt6sv8D+LatWv4/fffERISovPx8fnnGorr0akTGZRNnUpZyIZ1lxERcHr0iLs6ZAiuXr3KPffcc8jIyBBWr14NjuPY2LFjIQgCX1hYiIBu3WCYmsquy+Xo0qsX4mbNEvhZs9jjDz4gybezM6DVgud5jBw5snVBBBMTRFlbQ1dayhmfPo0d69ejj6cnLO7cIdmxvo/0hQuUWVq8mGoui4upTvDaNVrQP/98vc3279+fGRoa4tixYwgNDeX2B67GAAAgAElEQVSaDbK88go4b2/MGDq03nPK0tISs2fPxuHDh8UeX3wBK3v7RkQbADw9PbkjR47A2tpaGD16NLO2tmZbtmyBpaWlqNPpMGPGjNq+zO7u6B4WBk8vr3qGawZZWcCvv8Lv9GlO5+1NmdeG5yk9nUyR9ETbw4PGYsKEem/Ly8tDdHQ0TE1Nm57nHEfuylVV9D3TpwNr1tST81dVVQmOjo715qZUKsXcuXOxatWqpsexGspPPsGbW7eicO1amPXsib/US8DUFMZLlyJr82ZeXLIEbOlSWtg//zwFCs6epUBEVhZJaS9fpqDL0aN0TD/+SOMTGEj1tnUzvtW4fv06TE1NhZdffplr0TBRFElGfekS8PrriPP2RmaHDihv31534bvveMYYRFHE5s2bhTlz5tRsqHv37tz58+eRmpoKw+nTkT1wIDplZsLe3r5xWzcPD1IclJbWkNIffvhBm5+fL9EHb3Q6HT9p0qSm99Hfn85n375U/21uDrzzDkonTcLqdesgVCc7eJ6HIAhPbjeYk4OgNWuwfOJEjC4thftfINs6QYC4dCkkn3xC9fkrVtQEdIKCghATE4Nt27bh5ZdfhrOzMwoKCkS1Ws3Wrl2LTvn5zKyiAlXW1ujh7t5qog0AgYGBiIyMxLGcHEw5fJjUIIGBRAAPHKjNFKvVlBHu0IHGPDUVD3v1ErUSCesLUDAvLIxUEx99RIGjjh2Bb76BUFiI0kWLsMndXSwrL2cA8N577yEjIwO//fabmJqaisHt27OuS5aAv3FDbzKIO3fuiNevXxeLioo4gAJYvKEh+sXEgOM4BhMTMpbbto3m3OrVVJN9/z7t5+TJFDjVQxBIjj5+PABAJpMJSUlJzMPDg679Awfo/tBEkFXejG9GQ1y4cEEAwGk0mvpEG6AAxtKl1N7r1i0as+efpzZwnTv/50RbrQZUKvh16gTzZ57BiT17YJSaSt+bn08BPWtrel9eHgXanJ1pDNPT6Xlhb0/PCGPjVnfnaA04joO3tzfLyMhAc2S7f//+0mvXrhkWFRV1B9BGttvwj6ONbLehDf9CLFmyZIyBgcGwoKCgRqTRyMgIPj4+8PHxkQJoVHCt0+lw+/Ztn8jIyG2VlZVjAEys+3e5XP5Jnz59ZBqNBn/++SdiY2OhV8gsWrQIOTk5kMvlaN++fb0naN++fZmdnR22bt2Kdu3aITg4GBzHwd7eHgUFBSLqyg7/D6BWq/WGPf880dZj5EjK/I4ZQzK/ulI8pRJl167pLMvL+alTp8LU1BS9e/fmMjMzYWxsTPLpnTvRZfBgkoTu3QuvW7eA/HwMMDdvtGqXSCSwsbHRXbx4kddnbluCIAhITU0V+vbty3Xs2BFmZmbiueRkNvCnn6hOf+1ayhDl5VFdcmYm8OgRZXfGjqW6Zb18uQ4YYwgKCsKxY8dQ2VJLmFOnKCDRcCEJwAzAxHv3GGJj62Xm6iIwMJAFBgYCQM1Y9OrVC6mpqcJbb71V/xwfOgRMn15LdiorySzs7l3g999x0tRUCPTz4xsR7ZQUqjNeubL2tRUrSFLaAKdPn0ZZWRlmz57d9PyaP5+ktN9/T626XF2JTMTHU61yu3aQy+V8U9eKmZkZJk2ahJ07d+Lbb7/VAUDv3r356uPHrVu3wACk29rieEIChKQkdO3aFeOrycDTwMbGBqIooqSkhNz8GaOMZGkpmZVZWtIiW69UMDKiDKJUSkZWhw4BP/9MgZrDh0kmn5VFGcLXXwc3fz6CrKw4rk8feo+3NxFWvcFgaSmRB19fIDubCHvfvribni4iI4NZW1tj/PjxuHLlinDx4kXOzc2t3kmzt7cHz/O4PW8eHvfqBa5nT130jh28RqOBVCqFTCYTZDKZYGJiwltZWbHeW7Yg7fZt3HV2xp07d8BxnGTu3LnIz89HYWEh4uPjxXPnzolDhw5tzJR//JEyjJmZdBzbtgEADGbOxMjycqSOGYPh8+dD1pK7dV38+itgZQXe2Fh8+PAhc3d3BwAUFRUhNTVVvHv3rjBy5Ei+KUlvZWUlIiMjxaSkJAYATm5uwsT0dE4eFUXZTiMjGBkZYd68efj6668RFRWFl19+GQ8fPmRhYWE4ceIEXhg0CB2mTcPbf9FcC6gmkxYW9PPee1R+8ttvJAvfurW2N/zJkxSocXLCRZmM8/DwQI34edcuMnwzMSHSO2AAYGiI6A0b4PnHHyifPp2NHzUK9tWZa2dnZ8ybN487deoU0n75Rch1ceFyduzQ3b9/n+c4TrSwsBC6dOnCd+rUCVqtFjqdDvv27cPvv/+uGzNmDF8TMFRXC770BmOlpSRfT0urb5q2eTPN0WpFxPDhw7lffvkFmzZtwrRp08DWrgXr169pRVMrYWVlxQHUZaFJcBwFeyoqqDTFz4/uMb17EwHXammc796lfed5us6Skug51K4dHd+FC0TOO3em6/foUbqWBw9GTl4e1JcvY5CxsShzc2MwMqLnAc9T1loup0CIrS2Nk5ERBWB376aAxMmT5OWgUJA/wt+AhIQE8cKFC6zZcQFQXFyMx48fMwCHAGDJkiVDZTLZLJVKtf6TTz458rfsSBvaUAdtZLsNbfiXQalUWkml0s2TJk0yNGymDq4l8DyPrl27wtXV1Xjt2rUjlErlQIVCcap62x0kEskLPXv25FeuXAmdTgcLCwsYGRnBxcWlhjw3BycnJwwZMgRHjx5FbGwsnJ2dBZlMxnXo0OH/tJ4lOjoaV65cga2trQ7VPW//awgJIVnfmjVUO81x9HtBAUKmT+cbin0d8/LIoGf+fDKhat+eMqn6XsJNGB/p8eyzz/I7duyAgYEBfHx86junV1XRYiotDdDpEH3woOCVnMy6+fkB06djWno6O9ypE/J79RLtunRh4DhajM2cSRmqwkJayK1fTwTR2ZmyjkFBjfaD4zgwxtBsD1+ASFtzssTt24Fjx6j29CmyIsXFxaJKpWpMii5fJmltWhoFEcrKqE90nz6AXA6xOovZCAoFLSLrondvyt7UMQO7evVqTZ1/s7LosWPrBye8vEh6vGIFdKNG4cH8+XiQm4vw8PAmD9jFxQWjRo2CRqPhs7OzcfjwYaSlpWHUqFG4u3q1MLqqijPavRvhRUXC/fv3uStXruDKlSs4e/asyPM8pkyZwp5UdykIAiIjI6HValGRnQ3zL76gQEt4OC3eT56kjN7hwyRR3ryZCEXdc1RdRgJRJDdtUaSSigcPAAcH5NnaghMEpMXHwy0/nxbov/9OMvs5c2iczM3pO774AoIg4GxcnHD//n2O53kUFhayH374AYaGhpg5c2a9PsV6eADofv06On79NQw8PHj9sZWVleHRo0dccXEx9+jRI7GgoECXYWbGFd26xWRduuj8/f35sLAwGBgYwNTUFK6urjAxMWGHDh1iAwYMqHWNPnyY6niHD6f5L5XSXHFxAUxMwJ89i0KFQjA5e5bLjI4W3WbOZBgxosVrF8ePE2F/4w1UfPYZ03sQpKenYweVbjBDQ0Pu119/FcaNG8fVzZDu3r1bSElJ4QCwTp06oUePHvjjjz+45TIZxqxZA+dffkHBJ59Aw/NITEwUAHBDhgzB48ePAVDPcKlaDes1a2rLRJ4CDx48wA8//AAAGKx32n/8mM79oEHAvHn0/5Ur6VzrTTcDAmq6A/j5+dEcCwggsq1XxOzejYKVK3Fv1SrEDR2KuFmzsGDGDBh5eBBxrCbcHMdhUL9+wNat3K0VK6DOzOQHDx6MTp061fQ51+P69euQSqXIuXuXx6VLVGtsb0/S8Ph4+nfECCoB6tWrsTu5pWWtBwaArl27om/fvjh79iyWLFkC2fTpmNSuHZyeeiTrQZRKpSwjIwM9e/Zs/l1GRkRok5PpOJKTiQg7OdE9//ZtGtN27YhU29oSsba2pt+feYb+ZmJCJHzJEsDQEBUVFdj45ZeQde+OhQsXshYd8euitJSeX3FxdC/Qaim73b8/lc4sWPCXB0QQBBw7doyNHDkSLZWlWVhYoH379sKDBw+WKJXKa1KpdH1wcLDJn3/+GfbZZ599qdFoPm2o6GtDG/4TtJHtNrThXwapVPqRl5eXzK4VraWesB0MHDjQ6MSJE+8D0LspBdjY2Khyc3MNdDodAODtt99+Yn1ZXQQFBcHExAQajQanTp1ipaWlCAoK+mfro5+AhIQEoaKiguvXrx+XmJgonDhxgtNoNJg+fTo6/pW6yKcBx5EB1TffUDZ40SLK6ubmUt0rQMZAL79MNYPJybRQee89ctFtDlot8PAhbf/2bSA7G05eXpj64IGYvWoVzkmlzOHuXXQYMQKddu+m+sc1a4ggOTmhKi+PPePiwkyMjIDQUJiPHg3h9m3Edu/OJs2dW781lL7Pr15SbGdH3z10KBmx9epFC7zqBVlubi5EUcTDhw+bb5VWbdZUD4JApGX2bKr9fUo5ZMeOHZGdnS2g7uJaEIjkLl5MSgNPTyKMdcgKx3GNyXZODklgGxKk7dspc3v1as1Lzs7OsLe3R2pqKtavXy8MGDCAqxdoyMggwl9tmFSza6KIxLAwXHz4UAxYtoyNdnAQOhUXc025evM8D29vbwCAv78/unbtitOnTwurV69GQH4+V5abCztLSzg7O3NeXl419ZY9evRAQkICS0tLg96DoSnkpqRg+/79YsSuXeg3fDgzs7Mj0qNUUm2ofj4sWkRZv88/p7KC5ctpkb99e/0NMlY7dhYWQLduEEURN4KCoNVqYdOzJ9z0CoHRo+lfUaQ62aws+mxJCfadOIHr169zY8eORbt27XDv3j3O09MTJiYmTd9TdDqMdnLCxueeg1l8PCZV19FyHAczMzOYmZnByckJIPUAGdlt3w6MG9dkEM7T0xMnT57UrV69mp81dSram5gQ2TY3J0Kjx/ffE/E2MQHH8+i/eDG3ZMkSwMqK2ZqawrhPH6pjVSga17Kq1TTnV6+uIaIlJSXYtGmTkJ2dzTk6OoovvvgiEwSBrVy5ki1fvhwAMGzYMERFRaGyspILCQnBgwcPMKG6vCEgIABJSUn4TRDgf/kyhAULcM3HBzqplBs2bBhsbW3BcVxNLbmQnAxOrW4cXGoFfvzxRwDAtIkT0W7bNgqsdOpUa0538iRdS03cCwoLC8HzPDw9PemeNmgQKRz0GD0autu38cjODiO6dhVdhgxhRubmVNLg5kZeAq+8QkqIPXsAjQZdvbzQte5cF0W6/508CaSk4FZSkjgiIYGZlpVR4M3YmIzPli6lgMfFi0QYT5+m3vV1cf48BRKmT6/3cnBwMO7cuQNjY2MMevddRFVVwUmpfOqxBIC0tDT89ttvTKPR1AYvWkJcHBHql14iUttg354WgiDgULUB49SpU59c/qBHVRWN34kTFJCYPZvUHwCpeK5do/ry27fpvNVtz9cKMMag1Wpx9erVFsk2YwxjxowxPn78+Gy1Wq3r27evibu7O7y9vQ23bt36bklJSRWAz/XvVyqVcgCeAHIVCsWDp9qpNrQBbWS7DW3414HjuPFBQUGtsAZ9Mrp164YjR470VyqVZgqFogSArLCw0GTXrl3o2LEjnnvuuaci2gA96LpVL6wLCwvx559/Pp2b9z+A2bNnc/v27RNPnTrF1Go1s7CwgEQiEdavX8+98847JJf9JyGXUw/iiRNpAadU0qJ6504ykzlwgBbc5eWUOXVzoyzsuXO0aLl9m7KpERG0WC8ooFrTkyfp/dnZRHQ7d0Yne3vWqWdPVHp74+dvvkGvZ55Bp/nzaUHJccCIEcjKysKVbdtYyNtvI+7aNegcHHDhwgWhoqKCk0qlKCgvR/sm+jBj61YiCqNHU2ZE/72DB5NE+vBhAED79u1hZ2eH+Pj45rPbVVUUZKiLK1co27tgQfO9bltAQEAAi4mJ4TNOnoTzmTM0zra2FBhYuxb5AQG49+ABAmWyejptjuOYruG+zJpFWZ/336//+nvvNTJ6MjU1xbPPPouYmBhdVlYWf+TIEaFLly61K9Tjx2nx/vHHNS8lJyfjwIEDoiAIzLZbN9F94UJmefQohxMnSMr5xhvNOjgzxuDu7g5XV1cu/7PPcHrMGCHu9m1OSE5Gnz59IJfL8f7770On08HIyIjduXNHvHfvHmtEtr/6Cnd9fFAYGwufL79Er8hIwb1jR565uRGZ1Ad79AZkd+9S5uvcudp9Cwxsvk91A5SWlkKr1YIxhl5NSPERG0slE0ZGFJB64QUYvPoqALpXAWgyk10P69aBP3cOD9zd8eD27SfvlIUFkcJqs66G4DgOc+bM4ff99pvI+/gw1YwZkK9b1/R2mrhmzhcV4XxRESxffFEYyxhn+9ZbRGhfeIHGjuPoWI8eJWIKwMDAQExLS2MymYxbsGABjIyMGAA8fPgQ+nkqlUrFP/74g1laWgqjRo3i3JowA/P19YWrqyskjIFbsADDMzLA7djRpFqE+/BDCpw8DXQ6IDcXL4kidNu3w6FXL6qxHjKkfo2zKFLAqby8niEgAJw4cYKy2mlpFNxp4E1wZtYsxCUkYLq/P9qvX09GZnRwtN3bt8lHoriYSPqyZaTCiYujAJeNDd1zO3WiMhgfH7Tr149Fm5tjilJJteENMXcuzfWmTO3Wrm2y9EWr1cLU1FS8ffs2c3V2xjMNAmtPg+joaEGtVnMAsHHjRvH9999v/vn5xx9ErlNTKZDo7U2GgHXH/wk4f/48YmJixEGDBrEjR+qrrE+fPi2OGzeudc/vx48pWObuToHSjz+uva7CwugnPZ2CGbm55Gmib0PYCjDG0KFDByE/P58rKytrsce9tbU1Jk6cWG+ymZqaYvLkyUbffvutUqlUfq1QKFQAIJfLY2UymVdlZaVk+fLlUSqVal71R/TR7oEA7raZrbWhObSR7Ta04V8GxliZvt/pfwoDAwPY2dmpMzMzhwHYyRh7TqvV8qNHj0Zdg7S/gh07duhycnLYlClTmJPTfyio+w9hYGCAiRMnsuvXryMtLQ2enp4wNDTkduzY0WrDmv8IFRW0+FiwgGSy+fm0sI2LI+L86qv02u3blDFs144ysSkplHHx8Kh1sv7+e1pAduhAC5WGqJZ1GwIo7tpVLJbLWcO658LCQpiZmQkJCQncuXPnYGVlJQwcOJD5+/tj+/bt+OWXX8Tp06ezRmUKSUlE/vWZSL0cNDKSFk+RkcBrr0Fy+TJKS0vFGsOgpjBiRP12UZ99RouxpKQnun7Xw4MHNG7PPAPDgACMHDdOiDt8WHT+808eo0dTlmX3bsDDA4dOnBDu37/PHTlyBGFhYbq+ffvyAJHtepltUSTCMG1a4+9jjCTUO3bUy2w6ODjgpZde4k+cOCFcuHCBO3ToEDp27IigoCAyWHrlFRQUFEAQBFy7dg1nz57F888/z6olosTyXnqJxvHnn0nmPmMGSd2bAadSoeO332LcmTPcrYAAtK+TKao7r4ODg1nU/v3i0PBwhq1bKQN49Chw8CCuXr8uXHFw4NSHD+sGDBjQ8sCvXk3nv+68GDyY5vDmzU/MqOnvW/b29k17OEyYQPM7IoIM2D74ADJBgFNCQqsNxtCxI7BkCQZmZyMuLg6iKLYcMLSxoSBYaWnTMm+VCpg1CxELF7Ltr7wiSLy8MFEUuUbbNDZupJZwcnLCvXv34OvrC2NjY2y+cAHz1q6Fkb63+aefUtDqyhUKYFTDzc1NzM7OFmfNmsXVlf7rZd9Dhw5FYGCgfgdaHJQaQrJ2LZ1zhYKyjHWDWTdu0DlswoOhEUpKyHjN35+u4YAAWL32Gnalp2OYry9sGhgmAqBr5tw5KmOZObPm5by8PABA//796Tr9889GHz2TlCSOPnkS7V9+mcHWlgi03lSQMSKbAGWgr1+n+u5Jk+je2q0bqXJGj6bzDJAPSVQUDOztYd4U0f7uOwpkTpvWOChRWAhh9WpcvXMHD6OiwBiDkZERzp07pysrK+N5nmfDhw+H11tvQWZp+eSxbAbPPfccd+zYMeTl5UGlUjU9eePi6Jzu3EmBgVu36PeSEiLeT0G2KyoqoFKpaoi2ra0tRo4cCSMjI/A83zqiXV5OpU8bN9Lvzs50j0xIqF9q5OpK13hpKV2ru3fTebKyIiPKJwT3XV1duXPnziEtLY2CNE8JS0tLeHh4aDMyMi4olcqVAHYaGBhUhoWFGXt6euL48eODbty4kcAYEysrKw0ACBYWFprS0tIKpVLZWaFQVDS3baVS2RnAMwCiFQpFE9KtNvxb0Ua229CGfxm0Wu2v8fHx8xwdHZ++YLsJhISEmO7evXvD559/Pozn+ZETJkyAa2sWXU9AUVERFxYWxvQtZv5/gJeXF7y8vCCKIlatWiX26tVLNDAw+Hsk7qJIRklxcSS1nj+fIvrjxlF93+zZtHA3MyPpYlISLeqcnSkzaGBAi/WXXqrdZlNuq01IjJvDgAEDEBkZCUtLS3Tr1q2GrFy9elXo3LmzaGxsDAsLC+G1On2+X3zxRWzcuFHcvn27OHDgQM7d3b2WrKxe3fQXyWREPO3sgC++AMzNMX7NGpY/ZUqzLagqV66E4OkJY71Rz08/Ud/nJxHtykr6vp49gVOnIH77LYSjR5G7fz90s2bhkYMDl37jBh4FBsJy4kQiEsXFwMmTYE5OorW1NUpLS8UTJ07wycnJwsCBAznGWH2yPWQIBUOa80Rwd2+cla/GoEGDuMrKSly+fBkA8GdUlDBn+XJOffMm1ukXovQ+sWfPno1Xlra2VKuemkoZdHt7GveG45KfT3OumrB0bWpnoqKAwkJcKS8X5i5bxmHoUDJS0hvXxcaiePt2ziAvD30HD25+4EWR6m5ffZV6SDdEfDzV4z6BbKtUKgCAWq2uL/XXIze3/mL7xRcRGBuLgIMHcWndOvR6663mNy4IVJffty8EZ2ec/fVXqNVqVFVV4YneFidP0rkeN67+62lpRALy8wFzcwxftIj7/vvvsW/fPlhaWsLPz496HwPU7qnOHNq3bx/u3bsHABhJxIe7fv26+OWaNWzEiBHw19coz5hBhHvXLiIqc+ZgdFoah7w8uk/8/jvKPTyw9cwZFD5+DDAGn4bS5tZAIqH70pkzpJrYtKn2bzk5RICaK9t49Iik9lIp3bdKSigrHxUF2NvDCEDF1avipYQENmzYsKa3MWgQjXMdsp2QkCCYmJgwi6wsqmkfO7beR3JycqDRaFg7jYbmxrp15Px+5EhjCfLcuTRHFy8mRUozPcqjo6NhaGhYI7evhz/+IOXK1KlNk74FC3Dl5k0xcuRIZmNjoxNFEeXl5VyfPn04Hx8fGOmVDTIZBVD0PbmfAqIoYuvWrZDJZLCzsxM6dOhQv6c5QPdLjYbmJsfR3PX3r1UaAc0qNZpCSEhITanV3Llzqef50+LPP4n0173WrlwhRc9PPzV+v6kpqWQAMhZ87z0KKMfHU9CtmedAVVWVYGJiwnX7C2Orx9ixYw2vX7/ue/r06fWPHj3qrVKp8h8+fAiJRILw8HB5eHi4HKDgoE6ng4GBgWzPnj3szp07kUql8kWFQpHZcJtKpdKa5/mrTk5OLDMzkymVyn4KhSLpSfuiVCptAPRRKBTN9Cds8jMSAEMBnFQoFOVPceht+IfQRrbb0IZ/GbRa7crk5OR5JSUlf+2h2ACurq545ZVXjDMzMyd6eHjA2tr6b9hLwM7OTsjIyOADAgL+lu39XSgoKEBUVJSoUqlYZmYm8vPznyxN1aOigurOXFxI/p2YSIRo1CgilV27AtHRtBB95hkiTqGhRPgkEiItP/9M2Zk//6SsxNtv0+f+RpSVlUGr1SIwMJDJ5XLxwIEDbP/+/bCystJ16dKFv3v3LhccHAy5XI6oqKh6KzKZTIapU6dya9euFXft2gUAePPNN9FOFCkr8ehR84RYIkHViBHIzshASrdusLGzo3G6dIlMh6oXsCkpKWh35w5++vFH+OTlCQ6dO3MOly/DoClSlJtLxHfNGsqichzJsv38sHvLFiFFIuEkERGQ7dolyGQywTY5mXvh3j1O+tVXtQu/4GBUvf8+inv14gU7OyEkJIQ7efIk7t+/zx0/flwsKyurDQo9eECL2ZbOycaNNBeaAMdxeP755+Hq6oqqqiqc3LOHO92jB9KPHoWdnZ0QGhrKOTo6QiKRtJzC8fCgzNDhwzS3li2jekw9CdDX9+szooJAJFqrpYV3airJk/PykOPszGVcugQ3fSunOi2devXqhd27d6O0tBSmzblmR0VRhsrJqekF/JAh9KNSNdlbWI9OnTqh2vmaT09Prx/UCwmh4NPEes0RYNS7N76ZNg1OJSXoNWsWZR71ioq6yM0lkjN9OrRaLVQqFcaMGfNkog1Q5i0xsT7ZjowkRcLNm5QRBmAJYNy4cTh27Jh448YNxhirbT/0yiv1iMadagl+YGBgTRZ/9uzZbN++fUJKSgrn7+JCxPWTT2p7OH/3HQVyLlwgqW1VFbB3L26VlYm9jYzQ/dYtJvv6a3Cvv07ne/lymh99+lBQxtCwZZ8DqZTqkvWEe+1aKl/5+uv6PaR1OpIEb9tG96h168ijYMIEOkcNiGhJSQmKiopYnxZUGBg9mqTkVVXQSiQ4ffo04uPjOXNzcxHjxhHRXry43kf03QyMT52ic8txJFNeupTuB3UxciSNoyBQlvuHH4iY18Hp06chiiIcHR0FR0fH+hM5O5uCpVeuNNmf+/HjxzgjCEJqv37c66+/DgsLi+aDU1lZTdantwbVc0qMiYlhQUFBnK+vb/03vPceBQVu3qwfjB05kgIas2dToCEvrzbr/wRIJBLMnz+f+/zzz5Gfn//06wp9L/JTp+q/PnYs3Q9EseWM9ZQp5Fly8ybNt9xc8oXw929kovn48WNWVlaGjIyMlg04WwDHcfDx8YGTk5NRdHT0tIqKCp3eD6MupFIpdeYAMHr0aKMzZ870jouLS2uJopUAACAASURBVF2+fHmxTqczkUgk93U6nbUoiu/LZLIe3t7eBsOGDZPGxMSIcXFxH3722WcPeZ4fotPp/tBoNFcBnFIoFGn67SuVSgeZTHZKq9U6K5XKIQqF4ngrD8ELwH6pVHpfqVSGKBSKjKcdg+o6dV8A1xQKRbNtQ5RKpRmAMoVC0YSDaBv0aCPbbWjDvwwKhaL4888/3xkfHz8lNDT0b7nG7ezs8J8arjWESqX624j734W0tDTs2rUL9vb2GDNmDA4ePMj27NkjhoeHM1tbW1qY603HEhNJ2jh/Phlbde1Ki5stW2iBLJHQwtjRkeqMXVyIhOpdaquNmerh0iUymOrShX48PYE33yTpeO/ejeoZ/yrWr18vlJWVccOHD0dAQADz9vZGeXk5jh8/jjt37uhcXV05GxsbZmhoCJ1Oh8rKynqkxMjICO+//z4TBAFLly5FRkYGrLt1A1u3rsXMc2ZmJnbu3AmJRCJ0nDRJDJ88mcehQ0ReVSpaJH/4IU6cOCG49urFVRgZwTE+nrvGGHZ+8QXM1WrY5eYKKS4u3PQNGyAdNw7Zzz2Hjr/8goSwMITv3VtrLrV5M1IXL+ZGjBih7wfMAeDwzTdEmOvKOBlD1auvov/atXCKjOTatWuHbt26oaysDD/++CMDyFF8YP/+YLt2UQauJefumTOJzDYhewUoYNG9e3eIooh7q1bhZteuKMrNRXBwMOdSXZfbKhgbEwEMDKR5cvcuBXEcHEi2nZFBc+eDD8ikzs2NFqtjxxKJWrqUegp/9RVKm9h8VlYWYmNjIZVKm69/3LWLxuLYsSZrkmuQl0dk/MGD5l3mQTJeALUZYT1Gj27S2f7GjRsoNzVF5169KEsWH0/jUZdw371LZD8+HpBIsHfnTgEAZ9vKWnJMnkxBMIDcsrdsoXZVN240yqC6ubnhrbfeYlu2bEF8fDwkEonumX79eLz8MjB5MnJzc7Fp0yYIgoDBgweL/fr1q2EZHMchIyODG2FiQsf64YfAwYO147Z7N9WsP/cc/QC49dlnOL5vH5s7dy4MVCoinTodjfejRzQmlZU0Hw8fphKBuXPJMOu11yj4FxpK14OxMf088wwFED7+mMhz7950Xe3bR+qUt9+me11wMNVQ9+hB860ZyOVyeHt7644fP86bmpo2TYJ4Hrpr15C+bRt+LSyEpaWlIJfLucrycnbiq6+EsOefbxTF0Wq1AADJ2bMU0CwuJkL988+18wAgbwEfH/q7REJzydcXUKlQolLhp59+0qnVar68vBx+fn6Ci4tLfeYninSsJSVE/OoQQ61Wi4sXL0L7ySdiu+7dmd+8ebBoYX4DoODFxx/Xeh08JQwMDBhAtdQ1ZPvcOVJYzJ1Lrv0NMXBg7Xi8/fZT97auLnsQf/75Z/bhhx/WkMxWYd06MlE8fbr+62ZmdA2tWkWqg5bAGNVuHz5MWftJk6gsICqKnjk2NkhPT8edO3eYmZnZXybadWFubo6IiIhWKQR5nseAAQMkffr0kZSWltrIZDI8evSoy8OHDxEZGfmZIAi5nTp1kgJAQUFBpVarjXB2dmYDBw6UJCcnzyopKdGmpKRolUqlp0KhyFEqle0AZGo0Gnh7e2uSk5PDARwHgGXLlo3heX6ySqV6S6FQ3K+7H0uWLJkik8m+FARB5+/v3ykpKWkvgKfq1bd48eL+Uqn0d47jTLRa7RdKpXI1gEcNCbVSqRwC4IhUKj2/fPlyC51OZ8dxXJFarR6nUCguPs13/tvRRrbb0IZ/IdRq9XeXL1+eMHDgQMnTGpj9N6DRaJCdnc3/JbnjP4jy8nKYmZnppk6ezOPePcw1NcWuigqhbORIvtjaWjRcuJDhnXdoMSOKJOPkeTLa8vEhCffUqbSxui6xdd1zW8LevSQb16NvX5KdKxRkajNzZmP3278AtVrNhYaG4tixYygpKUHv3r1hbGyMiIiIRkxZJpMJhYWFnEMTLsQcx6Fbt266I0eO8Enr12Pae+81WyAqiiIOHz4sOjs7s/Hjx9e+bfhw+snNpQX+xImY4e7OFV69ik737uHnyZMx7/ff0f+tt5C9d6/YJTaWK//qK2QZGAin8vK4sosX4bZmDdKvXgU4DlKpFH369AHHcXB3d9edO3eO9/f3pwz6Tz9RNmf27Eb7Zz5qFIy+/BK6vDygXTtYWlrq5fWiqakpu3DhArK++050/PlnVretT5P44gvK5jwBWq0WIceOQfziC2x/9EiIiYnhCgsLMVpf895auLjQ2G3cSAvpY8dIKTBsGJnWffABBQhMTWnRumJFzUcvXrwIqVSq8/f3r3fu09PTsWvXLtjZ2ekmTJjAN3kfKS2l+t4dO1om2gDVXyYmtki0Acqkx8TEYN26dbC1tRX8/f25gOJiYPz4+jX8APLz83Ho0CEYGhqKQYMGMYSGUjbf15eIoX7BvXMn1dhWB6uysrKYm5tbY0LfHIyMiPT27Vtbky+TtdgnOSIiAvv370dUVBTv3rkzOhgY4ODBg7hy5QoAYPr06bC3t68ZVK1Wi5MnT8IsP1/0aN+eYe1aMosKD6fv3LyZyF5YGGWcPT1RVVWFo0eP6kJCQjgDAwNWEwDSdwcA6rvAf/kl/btgAW2ztJTOSceOFDw4fpxM6KZOJQLOGM2tOXNoPywtSV6+ezdJelsJuVyOUaNG8YmJieJvv/3G5s2bh7q15ikpKThz5oxoLIrs8eXLGPr66/Dz8+NUqamQ+PpixTvvcEk3bwpTp07l6gZok5OTRQCs0tcXpocO4eHDh7C0tEQJAMny5TD59Vc6ho4d6ZrQZ/UVCkAQIFpa4tD48WKhnR0PUBBs+PDhXKPa/7g4ypT369co4Ll3716kpKRgyt27zGnBArAWWl/W4NdfKUj7F8h2Tk4Obty4AQC13QNEkTL1hoaoMYirC5WKykP0ygIfH7o+7txp+v1NQBAETJgwgX3zzTfC+fPnWXBwcOsWFoJAcyc0tOm/BwTQvjwNpFIaw5ISup9/+SWwahUSr17VAeCnNeWl8V+CXC6v8cMwMzODo6MjOI7rkJmZaa73ucnIyACARVqt9iMHBwczBwcHGQDZ8ePHVQkJCfFLly7dASAdoOemjY2NNCUlZRyAd5RKZTupVPqdh4dHu1u3bvVfsWJFslar3abVajcB8OJ5fuNLL70ktbOzw6VLl0TGWNWT9lmpVJrKZLJ4xhivUqle5zhurouLi7GHh4fs0KFDHwH4iOd5hVKpPCKTyX5kjMWrVKoZAHI4jtPI5fKgsrIy/fPDFID67x3V/320ke02tOHfiSsajeZxTk6O8d+dkf4rEEURqampiIuL0/E8j5ycHN7c3Fzn7e393+1pXRePH5P0tVs3WoxfugTLGTPw0pIlPFJSAF9fcNHReHHpUj61tBSn79/HC8HByI+MRG5eHhwdHWH7xhu0raZMf54WOh1lH3v3rv+6VErmYPv2UZYqOpoknn/BjRugRb1Go0HPnj0hl8vFuLg4nDlzhllZWekmTpzIW9UxBSouLoZGo+FaIiWjRo3ib9y4gf4xMVAJAgz1rVyq8fjxY0RFRemysrK48vJyNr25ul1bWzofANQvvgjb7GxYFxejS9euYpWvL9rb2DCrVasYVq2CDIDlu+9yhrdvo7S0VAwICGB37tzB0aNHBa1WyxISEvTGQTxjDMlJSfB0cCCSVAe5ubnYv3+/8Mwzz3BOTk5I7tIFw2/epB7X1Rg7diwDgBvXrol7MzKY35tvCtbXrsHX17f5gkdzc5JzfvVVi3WRPGP4cdo0vBYRgbnm5tySJUtw/fp1eHt7w9XVFfzTGMEBFIzZuZP+P3Agkc2UlNp9agBRFBEVFYUxY8bU+yJBEHDgwAEhODgY/fv3b3on0tLou5KSWk8aPD1JyrphA3IMDZGdnY2ioiJcvXoVI0eOhJubG0JCQuDi4oJHjx4hOTkZhw8fRsAff1Bm+tNP623uwIEDAID33nuPFv6M0fX8xhtErBITKftlYUFZ3GoYGBiIRUVFjBUXUzbQ0pJk2YxR8CwhgYjJ+vWUIX7vPSJcetl4KwKYFhYWNTXZW378EW7h4bhb7X7+7rvv1vbkrsamTZtEw3Pn2IvnzjHutdeoJOP992sdr/Wt0nr2BGJjcSorC6epRIBv0rm9AQRBAKe/Z9Stm9ZnOyMiiBipVHSOrlwh6bROR5niZ56h1/LySJ4eEkIkqrCQrpdWyPH9/PzYwYMHcfbsWfTu3Rt3795FVFQUioqKEBQUJDwzZw5v8sYb4KqNreTu7sDRo4iwscGePXu4rKysemqo8PBwlpSUhK+//Rad09Mh0emQ5uEBCAL81WrkvvYail1cxInXrjHHpUtRXFyMW7duQafToXPnzjj04ot4YGPDxnXoAOuICOw7cED48ssv2eDBg1mPHpQM1OzaBX7yZFx8/XVwNjY1BPfWrVtwcXFBamoq+kilcIyOBmvChbxJtNSysQVoNBps2rQJoigiPDyczBVHj6bAx7ZtzX/wxAkKMGbUUROfOkVzvQWyrdVqcfr0aaSkpAj5+fkcYwxSqZSLjo6GtbU1WlUXvWoVXYNbtjT99zFjSBmTmdmki3uLMDOjDPfgwYAoYuTLL/OOtrZgs2a13LP+vwjGGPz8/ODn51dTP2NkZCSq1eoxPM/XeziEhYXJPT09bVNSUuZlZWVV9unTB126dIEoirh8+bL58uXLb8lkMklAQIDls88+y2VmZloUFRX1OXbsmB/HcS8JgtBPEATR3t4e0dHRqvPnz1dqNJqZjfeqEV7s3Lmzvbe3t9GJEyd+l8vlQufOnZm7uzt69OihNTU1lZw7d84JwAGJRGJrYWHh+vDhw2fVavVmAInu7u49bt26pdZoNMVarXaoQqG4UnfjSqWSq5sVVyqVARzHnRYEYZJCoTj4Hw7x/wSYKLb1bW9DG/6NWL58+dbQ0NAp1W7G/2fQ6XTYt2+fLj09nfPx8WEcx6FLly74x43RRJFq4wwNqQb62DGSZQ4eTCTkhReox+eiRfSgLynBQVtbXWV2Nhs/Zw7XcEG9cuVKwcLCgsvOzka7du10jx8/5m1sbHSurq6cl5cXa7ZfdGsRFUWkOiqq+ffk5VGGxdiYFll/wRH+/v372Lx5Mz755JMaYzO1Wo09e/bo7t27xwcFBaF79+6wsbHB6tWrBXd3d/GFF15okfUVFBRg48aNYt++fdmAOnWClZWV2Llzp6BSqViPHj2Yv78/ZE8KEty9CyxciFK1Gn907ap7aGfHjR07ltlUuwU/CYIgID09HQYGBjAwMEDi5MkIvnEDhvfvY9u2bUJxcTHz8fFBp06d2L59+yCVSqFSqaDRaNC1okIYz/Mcli5tRJIvvfKKziY6mt9SHSwYP348ujZXty0IlBFMSCBzq+agVOLW4cNi8dq1rHd1kOXHH38UsrKyOAsLC8yePbv1PWznzaPM9YcfAocO0SL2CdBoNPj888/x7rvv1po3AYiNjUVcXBwWLFjQvFx02DAifp980rr9q4Z25kzEeHnpLpSV8TKZTKisrOTqrkPqzsvExEQcOXIEixYtalTXmZ2djU2bNsHZ2Rkvv/xy4y+6c4cI4qNHwIYNRC7UaqBfP9xZu1bM7NiR9VepwHieaoG3biW5dr9+lFHu2xcoKqJrrXt3IqCvv06ZXX19/BOQmZmJLVu2QFZZifF79sClGZJVXFyM3959Fxbm5hg9YgRtOyWFMspHjzYi93t/+EEc9NFHrHj9enQaNgxSqZRqhs+cQVFREUJDQ+Ho6Ijbt2/j5s2bNdn09u3b6954442mr+Xr14mwde1K5Q/379N+ODmR0ZaNDY2flxdJ6SUS2q8dOygIsXkz/b5pE7T796Pczw9yHx8YWFnV7L8gCPjss89q2pPp+9e/8sor1Ntcp6N7859/UnlCWhrVqQOIiYkRY2NjmZGRkTBo0CDOw8MDBQUF2F6duR916hQ8nJ1x74MPIJFI0O7WLYjffIM7ixbBYeRI7Jk6VSw0NWXW1taCKIp4/Pgxp9VqAZ0OH69ZA+7wYYj9+uHQoUNITk4WFyxYwB7m5iL2gw9EI0FA+QsvCPn5+ayoqIgTBAEymQyMMVFVVcUW7N4No8WLGxvoNQd7e1JgNOeB0ARKSkqwYcMGlJeT39WiCRMgadeOnmv+/i2branV9OxoSGZFkRQ41de4Wq3G9evX8fjxY1y6dElUq9WsXbt2gouLC3r27MmJooiUlBQkJydj6NChrfMy+fxzKl9pYG5XD/PnU8Dro4+evL1mcPDgQd218+f5jlVV4islJYy/d4/mc8eOrTaC+2/h8ePHSE5Ohre3d6OgW3PQJyw0Gg26d+9er4NCYmIiDh48CJ7nNcOGDZP6+flh5cqVZeXl5QoAIoA9AOwA9AOwCeQR0QFANgAtY+zb4ODgmQMHDmwyinjr1i3s37//pkqlGsVxXNKrr74qr6qqQkJCQqW1tbU8MDCQk8vl+O233zTJyckLFQpFTX8+pVI5EsA+iUQyd9GiRauVSmUvnueP63Q6MwBDFArFsb80iP9jaMtst6EN/wIolUoOgBuAXjzPe0ulUgdBEAa3yvznH0RZWRk2btwoarVa9vrrr7O/w7CtHvSmT5mZJJMdN46yWlot/fvuuxTRl0hoQSGVAt9+SwsTa2vgxRfrba5qzx5IHR0bEW0AcHZ2Zjdu3ICvr684cuRIvqSkBPHx8XxKSoru7NmzvImJieDr68tcXFxYSUkJkpKSdKIoIjQ0lG9VbWhcHGXvWkLHjkTIz54lkjNwIB3nU0Aul0MikdR7WMtkMkyePJm/ceOGePHiRSE+Pp4HIFpZWWH48OFPTK+2Zwxzf/qJrRJFODg4wMzMDHFxcbobN27wFhYW4syZM7knkmyA6kpXrgReew2mAwZgQnAw/6O3N354+LDJbGBTqJaP0xy4dg13BwwQ240bx8zT03H37l0uICAAaWlpQkJCgujs7CyOHz+eFwQBSUlJsLez4zB3LpGtBtL/oAkT+NQBA4B79+Dg4CBmZGSwX375BU2683IcBQ0aQBAE5OTkwM7ODowxCJ07I9nZmQXVkZ6+8sor3K1bt/Drr79iyZIl8Pf3FyQSCdejRw80GXCoJgxwd6d6WrmcFtf5+S3KnIHaVlE3b95EYHWG8/Hjxzh//rw4cOBA1iTRVqvJJfi77546E5WXl4cNDg5wz8nBq6NHo13PnjWr4I0bNyInJweLFy/GO++8A41Gg5MnT2L0zp0ofvAAmo8/rte6LCsrCwAwatSoxl8kCHR9OzjUtkobNw5wd4fg6Yn96emsz4gRYHWd8AcObHnn58+nAIOjI8m4y8qIkLeg+nB0dETHjh3Fonv32OMWMm2lR44g7PhxWGzfXkvijYwogNLgXlRYWIgbDx4wg+BgaM+c0R29coUVSqUcYwydO3fWWVlZcT/99BNzd3dHcnIyAMDJyUkcMGAA27lzJ69UKtGzZ08MGTKE5s7ixSTF/eILmj9DhtQaOH76KUl1168n0n35MoTYWAiTJyM+Ph4eHh6w0t9De/XCkbVrkbZqFXpeuIDi48fRrrAQARoNuHXrgG+/Befnh74uLtrU2FhJpZMTSjQafPzxx7UBJZ6vbVXl6lqv7r5fv37M3t4e165dY4cOHQIAmJmZ1ZjLGW7aBImzMzz0ahAXF+DkSfhLJCi/dw+hWVnMxcUFMpmM0+l0WLp0KRhj4GQyZCYmorOLC9icOQhftAiJiYls2dKlePvLL/G8pSWM791jjDEeoGxveXk5DA0NER0dLVy+dInPXrAA7i2RyYaYPLmR54MoitBqtc0GtziOqyHaEp4HFxpKioum6rMbYv58Ci43vF6fe46CKNVu4Nu3bxeys7M5IyMjBAUFITAwEKampvWYau/evdG7ofqqORw7RkqtJ11bM2dSMOBJRmktwNHRkUtMTESHPn0YP2QIlX3k5FD7uY8+eqpWZ/80zM3NWz+G1WCMNVuH7uvri8jIyEqVSvX2kSNH1rq4uBi6urqyrKysTy0tLQ0yMzMnA+jq4uLCpaWlfSwIgqWxsXGZSqXiOI4rNDc3t/Ly8mp24D08PMBxXGfG2GUPDw+dlZUVJBIJ6na8qTal0wK4WO2GbiiRSCYB+KH6LR8rlcq1AMIkEomRRCKpUqlUD55qEP6H0Ua229CG/0EolUoGapVsxRgbJZVKFVKpVG5nZyfa29ubGBsbw9raGv/N/tUPHjxAZGSkrrCwkJNIJKKRkZGYn5/P29nZCVOmTPnP5OLZ2ZQlDAighXNcHEl0Bw+mh2lgIBniDBlCBjbt29ND/tq1xttqICWui6KiIq4507aIiAgWEhKC9u3bM4DqsUJDQxEaGsprtVrEx8dzSUlJurNnz3IymUxwdnbmNRqNuGXLFshkMtHS0lKobhXCjI2NRQcHB87W1pY5OTnBWC6ngEBTfbEbgjHKvtnZUX3luHFkQNPKzLq1tTUYY8jKykLDOuzu3buz7t278yqVClevXmVubm6sVZlVlQqGwcHo7uWFvXv3QqvVolOnTmzGjBmwsbFp3bkvKKh1Eq5enLHwcAzPzsYPjGHNmjUIDAwUwsLCGvcwbgorVgDbtoFfuFA8+fAhNLt3s+eee06/yKl3UBzH6U3UKCO8bBllOvX44gtALofb7NnAkiXIzs5merJ3+PBhMTw8nJk3JFNTpxJhqs7MAZR9SUpK4l1dXXWBfn582eXL4rVu3VhEHbJdXQcPKysrsaioiCUlJXGMMVy6dAmOjo7iSy+9xCR1HaX1Lvd15fuLFtF3P2GB2a5dO4SHhwvHjx/noqKiRMaYqFKpOH9/f6F3795Nn7etW+la+/jjp14Yx8TE6KytrfkJhw7xTN+erRpWVlbIycmp/oqtqKqqgrm5OZJ799Zd1Gi4u99/zxhjsLOzE8aOHcvdu3cP5ubmgomJSf0JKghEgn19KSglCLToP3sWKCpChYcHSk1NYfY05owqFUmnx46l2lM90Vm2jGpHmyjVEQQBP/zwg1BQUMAZ6nRgzagIy3//HcdOnQKefx7T65L/efNIItsAV69eRadOnXT+M2bwDy5e5Ie+/TbYtm2QUE0sDwA2NjbCsWPHOE9PT3HkyJFMJpPVnCipWg2X7GxyDvfyooDMxo10bx0wgIzGXn+d5lWvXhTI+eMPkgPrdLgycyZyc3NxuU8fREZGwtzcXJg2bRq36eBBodTamps6dSo4joOYlYWjJ0/Ca8YMlFRWosOAAYBajf7GxpKgmzdxLiMDnR48AJeQQGqdw4dpPqSmErnfu5fu7fr9lkrh5uYGNzc35u/vj23btqGkpIRxHAdDQ0Ph559/5uZ+9x2KV6+Go37cli0DzM1hPGAAuq5cSWU4Pj64cPGijmm1vCiR4O2336ZgmVYLnDsHycOHePPNN8GlpUGWkgLDJUtY3XkukUigv9aff/553uv118WKhQvZU10L+gBwHRw/flx3/vx5vn///sKAAQMa3XRNTEzgYGcnBK5dy7l9/z24OXNanxnPzW06u7tqVb3nhpOTE1dUVISwsDBYW1uz/zhY//77RPSfhK5dKWisULRKMdIUfH192R9//IGqqioa21GjiLzrWzSOHEmqiWXLWnbk/x8Ex3EwNjbWqFSqKzzPx9y+fXtIRESEMUCqmW+++cZ/yJAhQmBgIP/rr78a5Ofni2+++aZJUVERiouLHZ2dndHSM5XjOAwePFguiiJ69OjR5HNBq9VCrVZLDA0Nv6qsrOwFAKIoVtnZ2eny8/OZIAiWcrn8olardQ8JCZFERUUxAIZKpdISQLlCofhX13n/u2ZcG9rwL4VSqewtkUhGSqXSZ0RR7MjzvK0oijKJRKJ1dnbWBQcH/9dqs7VaLQ4cOKDLzc1loiiy9u3bC6WlpcjPz+c9PDy4oUOHsoqKClZaWorg4GB06dLlP6/L7tuXnGQPHCBZ5wsvUKbl2rVa9+kpU+jfJtqytBYFBQWsOdk9x3H1Mmt1IZFI9BF//bHq/2VarRapqamssLCQl8lkkMlkePjwIbKyssSrV6/qysvL+W75+UL3s2dZ6bPPCoGBga0br86dKXNnbEw145s3k/HNExZ9giBAFEVIWlhwyOVyqgdsLYyNgXXrMJxkocLt27e5hw8ftq6tEkBy0alTKcNS5/xp330XuYsXI6JjRxx59Eg8d+4cFxISUs9cqRHS08ns6f33gXnzMFUu53bv3i1qtdrWZRPCwyl4UbeGMCYGeOMNcByHsWPHoqKiAidPnhRVKhVLTU1lFhYWaN++PQICAmqzdBMm1MteqdVq3Lx5kx80aBCysrK45NWrdSGRkfyLMTFN7sbs2bMZQBK+X375Bc7OzsjIyGDLli3D1KlTYXv3LqR61/GG5nXp6a2WTgYGBnKenp4oKytj58+fZzdv3sSzzz7btCHaTz+RZHX8+Kf2DNDpdEhPT+enTZsG9sYbNE/rZLJCQ0NhZWWF4uJi6HQ6WFtboz/Pg+vTh4evL7RaLRITExEbG4uvv/4aPM/DwsKi9iBFkVQfAwdSoKVPH6onfvFFUr307Al8+inK9++H6+3bNVnCVqGggLJkdcfkiy+ofnvdOsr2v/suZQmrsYR6BHMAIFOpYK7RNN5uYiKkS5aABQZi8Icf1s4dUaR7W/V8PXjwoC4jI0M0NjbmCwoKEB4eztvZ2cEuIoLq0Z2dKZhQ3cqqV69eXHUdN+2wSgWUlGBaVBSM4uPBHz1KAYKwsFriIYokuS8oIF+Iw4fpdYmE7isHD+JK585QiSI6FBRgxvTpKCktxe7du7l169aJUqmUW7hwYc21KZPJcPz4cazYsAEABScrKyuhuXIFGDwY9vb2ol/37gw5OZTRvnGDSKE+s/3llxR8ZKxRMKNz587/j73vjovq2r5f584wQxk6SC/SRVBUwK4IKjaMsddoNagyxgAAIABJREFU1MSSGM1L1fiNzxdTNCbPxBhjS0xiYsXeEKSKBRAQkCIKiIAgTUHqzNz7+2PTm2g08f0+rM+HDzAMM3fuPefcs/Zee+36FnGYOHEievfuzV25cgVRKSkoLSpSWtavv9nZFCzQ1KT6/ZAQoLoarsuWifoVFcF/7lxBbcoUhgED6ByOGwfU1sLAxobaqqWlNTesbInqalRqabFrPC84tOx13REsLGjM1J37xMRExMbGilxcXBAZGclVV1fD2tq6PqNI/1NZCUc7O0FSW4taxqDeWaJdW0trRFvKip49SaVhbw+MHQsfHx8IgoCgoCBeLpez7t278zNnzny2+3dODgW5Oln+g4ED6Ro9I9kWBAFKpbK5+omxRqNSVVXqv37uHB3XBx88lcnfyw6JRCJSUVE5Wl1dbXHr1q3qfv36qQLkHbF27doGZUZZWRnU1NQEAExPTw9NPVo6Qt++fTscBzo6Opg3b56KXC7vn5KSwsfFxXFeXl7iIUOGiADad+zatcspPz9f49atW+A4rozjuGmCICwDUL1+/XqbdevWlfylk/ASo4tsd6ELLzHWr1+vKZVKT8lkMnc3NzdVMzMzkaamJnR0dKCurg7G2N8+h+Pi4oSMjAzm4+PD1dbWoqioSGRqaopXXnkF3bp1ezHW51u3UnbF1RUYPZo2vunpnb+RdwI1NTUQBAFudeY8zwtisbg9IxkGQFRbW4u0Q4e4hMpKFFy9yvXr16/DKHMziESUiR07liL3ffqQZK4DuX5hYSEAoNNtjzqDESOAAQPAbd+OV199lautrcW+ffuwdetWTJ06teM2LMXFdOx//NFAtHmex9GjR4X09HT0uXOHOe7fj55btmC4l1fHRBug9jIXL9JmSk0NHABNTU2+srKyc5tGqZSyLMHB1Bv5zBkqPahryVV/LXv16sVKS0uRkJCAy5cvAwAiIiKwYsUKCmR4eZGhFMjl/ptvvoGGhgY/aNAgjuM4hkmTRLh3D/pNe0m3gXpvgxEjRqCkpIR/9OgR98svv2Dxzp2QTJoE9U2bWsvrv/iC5L+bNnXqI2toaEBDQwOvvPIKbt26xd+4cYN5eHg0H4RZWaQ6OHHimcyHMjMzIZFIeBMTE2IPK1eSWqVJq68RLeWm9bXYv/0GsVgMDw8PeHh4cHFxcSguLhYiIyPZsWPH8MqgQeBEIpKO+vk1OvarqhLZAmit2L4dhteuoe+2bcj95BP4z5unHPnKK6JWqoSW0NGhgEtLODvTfNu4Ebh6lc753Ln4fd8+JQBR7969cePGDVSpqeGqqyua0bZjxwBBQMWOHcg9dw5qamooKyujLGtqKpHNujmamprK3N3dRWKxGF5eXrBrGlAcMYKe//rrRKqGDKHHeZ4Ie14eqYDGjIHh6tXYFBQEnRs34OnpiX71RFsup/G6Zg2VqrQM3HIcynbtwglPTwpyWllh5dtvw0RTE+9s2YI7d+4wW1vbZnOzW7du6N69u5Cfn89ef/11nD17Vqmvry+6fv06Vq1aBW1t7cbxdeMG9ekOCKBzvWsXuWf/+SfV/BYU0GeYOrWhvMPJyQkXL15EaWkpAGDgwIEILSlBrb+/aNu2bULfXr1Ydzs7GOfn0+vMnNkQkC3u1Qu//fwzBrm7MxVLS5KrP3hA108iodIkTc2OiTYAxZ49uDpzJiqeVvpcVtZAtHNzc3Hq1CkMGjQIXl5eSExMxIkTJxAVFYUJEyagb9++5B1gZ4eBAQGibxcvRk1ICHoVF/N+fn5PjqgdOkTlALdvt/33pCSaI2PHguM4jB49GiNHjuSCgoJw5coVUVZW1tP7qwgCrelr1lCGuTP47DPyVpDLm7ft6ySSkpIExhhrt468Xz/6KiiguZqTQ2Nr+nTyY/gfx9y5czXy8/M1unXrBnV19WY3yab7iYKCAvTt2/eFFLHXjxM7Oztu2LBh0NbWbtifchyH119/XaO4uBgGBgaIjIxUr62tfaukpESUlpYmBWABoItsd6ELXfh7sX79eiaVSo85OTkN8PPzkz61M/ELQHZ2NoKDg5m3tzfr27fv3/fGY8eSvLCggNrVSKXAkiWUsTl1iojarFkd9nh+EsRiMf4Jw0gJx8H1P/+B1enT2HLgABMEofNkux4aGhS137mTarlffbXdDEFcXBy0tbUbah2fC8LDaYNVB4lEgoULF3JXrlwR/P392ZIlS9ruqZ6QQNctJKShvrguAs5XV1ezuXPnMlNjY4ji4tBdS4t1KJs8doyyjBcuNLZfqwPHcU93bV1c6FyWlhIpPHCggWw3/YxGRkYYNWoUjI2NkZCQgNu3byM+Pp7qn+/fBz90KHZv3crfz8/nAGDFihWNbYW8vdt36G0CVVVVaGhoCBkZGVi1ahUXP2gQ0iws8OuyZZArlcDmzfDx8YGHhwfEYjE4jgOzsaFjfwY4OTlxERERQjNlQ2oq9YCPiHhiHXh7yM/Pb2729tZbzcZMm2jatqoJ6iT/TEdHB7E7d0KxZAkkQUHAtWvNn6itTVmsJhl0rn9/sF9+QfHRo7z3e++JYgMCMKKuh7YgCCgvL4empmbDHOR5HggJAbd9O80xkMmguro6ZYXU1IjM3LwJbNyI2tu3kVtTI4KaGiorK/k33niDyw8Jge3hw43HlZMDrFmDsu++Q26dMd2OHTsgCAK0tbWF4VFRzERXF8Z+fkhJSYFCoWBGRkbo2bNn2+fJyYmCkSoqRPz9/IDFi4lwHzhApm7W1uAEAVYPHggFBQXs7NmzUFNTg7OdHT1vyBBaY7dsaVXbWzlxIg5ER4NTKvHaokVUnnTjBpCeDl2FAu69erWpdJgzZw6rV9HMnz9ftHnzZgBU36mtrU1rlYYGEbPhw+n4P/iAvsrLyeX+3XcBpRLKkBBUqKiANzCA9PRpHB82jOc4jgsLC4Obmxt0dHQwSFUV3NGj2OXhIZi+9hrL1dPDubff5mdHRnISXV2wuuBNRUUFIBbDxNaWsrsAfR8xgtQKOTlAWhqU69ejaOlSPHz4EDKZDA8ePED37t0RHR3N3wwP5xZt2YL8pUsxzs+vYS2tra2FXC6HmpoaGGOt13K5nNrz1ZV95ObmCgDg5eXFAMDV1RWurq74+uuv+diYGK72q68E3XXrmOPZsziVlydUVFQwALh161bbY6ElvL0pQNIedu6k7HdtLSCRgOd5bNmyhReLxWzw4MHPFkCvraVA2dPUSXMcZZ1NTZuVD3QW0dHR0NXVbfCeaBdGRiQll8upHO3oUaCyEqioIOL9kpmpdRYaGhqwfULgFgD69u2LmJgY9O3bt3MGd88AxlibveYlEklDkN/Ly0sKAMXFxRCLxcrU1NSwDRs2vL527dqn7AP3v4Eust2FLry8GCqVSl8aog0ABw4cgLOz89NJjJ8HVFQoy+PvT7WiAP0sCCQ9XLmSbuxBQWSM1EFddnuIjo7mVVVVGcdxf29j8ps3gW7dkPboEZ6JaNdDRYUIzNWrdI4eP6YNdJOsXXV1NWJjYzF9+vTn9xlLSiiD8dNPrf40YMAAlp2drfzxxx9F7733XjPHa9y+Tdft6NFmRPvXX3/lq6qq2OLFi5msvqXUo0fARx8RkW4r61FTQ5JAL682ZfQcxz1d5w17expb8fGUyW2P5NTB1dUVjo6O2LVrlxASEsJiY2Pxyiuv4Ld168A9fsxNmDAB9vb2jU7sNTUUMGojY8TzPLKzsxERESHMmTOHAUBVVRXr6eQECAJ69esH00GDMGPWLGRlZeHMmTMIDg7GxSYu9r2dnZGdkYHyzz/HiBEjhEGDBnXqegcHByMxMRGTJk1qfL4gkKHTvHnPTLQB8grgOK7xIjg4UO33smXA9u2t/+Httym41pSkNkVmJvr98AMCjY2xf/ZszG+v/7yeHmXQmzjHS3V1kSaRcIUzZmDwo0eCsGYNY3Pn4rfoaL7ORE8YOXIkk0gk+Pnnn3nVhARujrc3qisrcenSJVyhllvw9PTkfX19KYDSsyewZw/ygoKwcP58XOvfHyPee4+TyWQw7dWrsb/4/v1AejpyDh/G3uPHG5y53dzcBEdHR5aRkSFUFRQIp8rLOT1/f6SmpkIqlTJTU9P2T65SSXNk+/YGsyscOkQZ6ibzgTGG2bNnMwC4ePEigoOCBOf58xmmTaPM75w5lP1tMYdSc3MxOiAA4cOHN2ave/emr2nTSK4fEtLqsFret9TU1HhXExPO7KOPKHMvFpOk2tER+OILyOVypCUlkePyqFHIevttFPj4QC6X4/KwYVBWVMA8N1foc+8eisrL2cotW3DZzQ2KefMAjoPExwcoLcUyxrjqYcOQn5yM7ORk7lddXfQoLAS7dAmCICA4OBhisbhZ8EIQBDz+9Vew995D3MGDMJDJID11SojJzGTZLi5KhULB1bUThJaWFl595RVUTp0K+enTOHv2LExNTREQENBAgiV1xNXKyko5efJkUcPap1RCuHQJ0VFRuHTpklBeXs6AutZsTYiegYGBUB4bC8fAQJa3dCkee3rifnw8xGIxfHx8YGZm1jlWeOLEk1tTuruTYmzzZmRnZ6O8vJxrZlz3NOB5KvPasePpiev773fae6QpBEFATk4OG/40EnQVFbqnABSQ27aNuntERpKiqem96v8jjBkzBvn5+UJISAg/Y8aMf3xjqa+vDxsbG9HNmze1VVRUXo5+bS8AXWS7C114ScEYG+rs7PzSEO179+6hpqaGXGz/CcyYQRmbpi7LjFEkvLiYfj95ksjlgAGUPdiyhUhNJ3D9+nUMHDjw7yXaAJCWhiPjxyvvBAeLRo0aJbBnZtt1GDCAslw//EDfX3uN6uEAhIeHw9DQkHdwcHh+4fvcXMpytQHGGGbMmCH64Ycf+Js3b3INQZrgYJLfHj1KstU6BAUFobCwkHvjjTcga9q7edQo6oP88CGZ3zXF9u1kgpOVRTL6do6D5/k2/9YAnqcARWQkja/SUnLrTU5+0hkAQJvrZcuWsa+++kooKChgP/30E0ZeuACPZcsgqevZ24A7dyhr20R2GxUVhcjISL6srIyra4nEvv/+e0GhUAgmJiYw8PLisHgxuK1bUU95ra2t8dZbbwGgus+rV6/i/v37KA4MxMI//sA3H36IwMBA1q9fP0ilUgiCgNu3b6OsrAz9Wh4TgNjYWH7SpElcQ9lDTQ2dX3//jrNjnUC3bt1QXV3dfDGTSqk9X1t4800i2y0hCCSNDgsD4ziMnzoVx86cwdatW/klS5a0dr0/dqxVpraeuD4yNka2jw/L/vVXjJkwAZW+vtzY6dNxNTGR37Rpk0hbW1vgeR7acjl/ID6ey/j2W2hpafHjxo3jDAwMcPDgQSaRSODt7U1BMhUVXC4tRfH06RinqirINmxgWLyYxtOaNZSt/fJLyH/6CftOn4arqyvU1dXBcRx8fHwYADh268Zh1SoYnDiBmNhYhUKhENva2vLnz58XcnNzRa+//nqjSqRO2YCjR8kUr55UzZtH62IH6OPkhOtBQaxi+XJojBpF2dzAQApOtEDfvn2RO38+xLdvIz09vbkr/r59dD0iI6l8xdW17Tc8fRpDL1/mgkxN0SMlRbhy6BAmffQRk9atz1lZWcjIyMCVK1egra2tSH/jDTzW02PCrVucWCxmNjY2GD16NAwMDBgAPDh/Hn+++iqGjxkDg2vXKDiTkAAsWgRcvgzV3Fz079kT/QFcCAjgeyxcyB0bOxZ5df4GLbN65w8cEOLS0pjWrFngk5OFmpoawWj0aGG2hYVIPGGCCBYWUCgUSEhIgIuFBSfp3Ru4fh1jxozB6dOnsXXrVgAkZ/f09ERhYSHkcjmCg4O506dPK6dPny4CgNziYlxYvZp/EBLCevTogYcPHwru7u7NjSivX8e0tWtF3y9YgDsXLiAlNZU/8s03HAAmkUiEAQMGdP4esXEjBZo6ksQfO9YwXupreKurq5sHRzuL7Gy6Hzcxfew03N2J8MbFdejy3xKMMWhqaqKysvLp3xOgeTNmDN3LQkJI4TFlCpU1Pc9yq5cEPXr0YLGxsX//XqcN3Lx5Uzh//vwjAIPXrFnTuZvt/yC6yHYXuvDy4u/PsraBqqoqnDx5Unn79m1R//79OzTWeqEQi8kB+K232s921TsyZ2dThlcsJiJmZkYb0CYoLi5GYWEhxGIxUlJSUFZWxnq1lx17UVAqIezdi6IePbjh06bhqTZRHUEqJRfY8+epbvPiReD995GVlQWZTPZ8x5SrK1CX6WsP3bt3F65du6bs16+fiAsPJ/K2e3czor1//35lZmamaObMmdBta6P11luUqQ8PJ0KgVFL/9NmzyfyqYzdVymzX1tJGTiQiMn3qFGXz3n6bPAAuXCByOWECBRCMjWnzfuRIa5LfBCUlJYiIiEBVVRUUCgV7++23sXPnTkEkFkPc1hx+7z2SrH74IRITE3H69GmB4zg2dOhQ1rt3b4jFYty8eVOZkpICD8ZE3ceNIxl7nQFWW6iXnwIgieSiRVjXvz++/fZb/uTJk6xv377szJkzDTWubZFtkUgkPHz4sLHEYN06Oi8rVrT7vp2Fnp4eamtrm2fwXF0pIHTjBmVJ63HjBnD3btty0oUL6RrGxQELFsBZoUBCaqpw584dLjQ0FKNHj27+/MpKMv1qEixQVVVF3759ERsbi5vJydDy8cHXrq4YceUKPH/6CZ5r1oge29oiPDycDRkyhGl8+SVqdHRQsmABzM3NG1iRl5cXCwoKQlRUFBQKBYA62bmhISpeeYUCRBMmUK37t99SVjs2FlmZmaipqYGZmVlr2evVq4CDAxycnODg5CSOjo5GUFAQxxgTzM3NhRPHj/MLBw0SYd8+MvAaNaqxPzZAmeZOqDjUxo2Dt4oK1D7/nAKZ+vptqlPqobl4MWynT8f5ixcxpL4uHKC1pnt3Iv23bhFhr4dcTrXWkycDN26g8s4dVDg5IXjFCnb37l1cuHABNjY2EAQBx44dg5aWltLJyQlTpkyhm8yiRWSS1gaBr66uVt43MxPFy+W846xZHMaOJRlyaCitDU3Wg9G+vhxWrYLFpUsotLGBnp4eP2/evEZ2q1TCa/16xjk6Cr4nTjDQ+KcX2LqVzBZ//RVisZhqqO/fp8dMTNDHyAg3btxQ5ubmisRiccP4q5fRqqiosIMHD4r27t0rqKio8PnJyaK3fviB4+/fb01meZ6UTlZWEC1dih4uLrgQGAi5XM5paGgIw4YNY25ubk+3fmdmPvk5trbkfj9pEo7cvi0YGxtDVVX16e8TgkBBl8jIZyvpUlMjV/yEhKc2SjMyMlI+fvz4r2UmzMxob6FU0l7j8GG6t1VV/SXj1ZcNtra2CAgI4CoqKjrd5/tFISgo6LFcLl8JIO0fPZAXDNG///3vf/oYutCFLrSB0NBQlfLy8qmenp6Sv5rsfFbExMQIe/fuZdXV1VixYgVzaiLF/Edgbg4cPEjy244i59rawNKljXVgqqokDfbxAebOBc9x2EySOWVqaqqgVCqZr68vM3+WaPxfwePHyElOxiUtLebr6/v8b3x2dnSuYmKAkychsrVFSmHh8yP1AGXNHzzoULpvbW3NRUVFsYo9e2AeHs5En35K0tE6nD17VkhKSuKWLVuGdl31VVWJiGhq0v9+9x3Vdn74YWMWj+eJgGRnA/n5qN2yBRcvXOAt9uzh+v/5J+DjA27lSjC5nM6NUkmbu1mzqH7U2pp+7tmTpJDvv0/Z8t9/J0m5p2eb0sijR48iOTkZhoaGSm9vb87S0hJDhgxh5q+/zpiTU+uNp4MDMHIkzoaE4OLFi7C3t2fz589H9+7dmUQigVgshomJCdfL1ZXTHzsWIjMzqsPvbKBLJCKzLBsbGDk4sIiICCQlJcHCwoLV1NQIgwYNYi1Nj1JTU3H79m0uJSWFOTg4QPPUKcr2vPZaq57AbUGhUIAxBkEQUFNT0yood//+fdy8eVMYOnQoa/EHqpFfsaLxfX75heZ5vUEaQG2KoqOpHv/ddxtqhDmOg0wmYwkJCcjJyYEgCOjeNIs3ZQrVabbwmDA0NERUVBR4nseUKVNQ8ugRxn/9NTg9PeDuXUj27IH9jBmQGhiAMzeHirs7tFqcM3Nzc7i5ueHKlSvk8s/z0C8qQo1UCqM7dwTre/cY/viD1CbZ2bQmWVtD18ICBgYGOHnyJFxcXJqTrtxcGoN1AScdHR1ERUXBwsyMjc3NZcbbtnF6zs5Izs5W7jY05Kxnz4Zmk9Y9grExCktK8N+rV1FcXCzY2Ng0bxX38CGCduwQLqqrs7tDhigHmJtzcHUl6WwHxlQ1ggDJxo3IsrRE8I0bSEhIEIyNjZmGhgYFT8aPp8DXN9+QciUxkUjyBx8APj5QTp+OX+7fx9ixYzF+/HjU1NTwt27dUmZmZvJZWVm8pqamsHz5clHPnj0bJ9iBAzQnW/S8B8hbIDY2VtDX12c9qqoYtmyh+bxhA7B6Nc2VDRuoZpkx3LO0RMX+/dAYMEDILCjgMjIyBKlUyjQ1NaHCGCJTUvjrTk5cXw+P5r2uPTwoSHf/Pq0Z1dVkoPjvfwMSCRhjCAkJQU1NDVu5ciWkLZRU+vr6cHNzQ3BwMDQ0NIQZM2dymrq6UPHyan2Sf/qJvEjWrIGKlxdsbGwQHh4OKysrLF++nJmZmbWS5neIHTtIKl3fqaMjHDoEmJoi9MEDXktLi3NxcYEgCCgsLISGhkbnypvOnKF66Pp777Ng9GgiuH36QC6X4/r16w0dCqRSaZufvy5Yw2lra+O5BMw5jlRNb7xB43jJEvIW0NV9JnPIlw3q6uq4fv26UktLi3uuRqnPgMTEREV5efl0FRWVecHBwUe8vLzK/9EDekHoymx3oQsvL4Krqqpiz58/P2Ds2LH/COHOzMwU7O3t2ezZs18O1xAVFSJFx441tMV5Ij7/nL7n5FB2UCoF99prGFFWJqivXSt6oqHKi8S//43imhpAUxOBgYFKPz8/kWYLEzCe5/H48WPI5fK2TcaeBH194JNPoIiLg/68eejfowfVSj8vfPFFu5LVwsJCJCYmCjU1NXC/dQvKwkJ2yMWFn2tr22w8lZaWCmpqauyJbUh+/bWxzvvTT0n2feIEZTnPnSPp/PTpwODBiB8+HEUxMci0t+fSBg1CzfDhqDh3Dhg7FkZGRpjSsycM29rwPn5Mm/vgYMp0eHjQ53vnHcq+2tu3arU1bdo0fP311xg2bJio2ebl9GkiMUVFjY+dP09GW99/3yCVT01NxcCBA2FZL3cWBKplXrWKMlNP2WYLAHD8ODBkCGx8fLB69eqGxePy5cssKipKGDZsGKuurkZhYSHy8/P5gIAATk1NjZfJZFzgf/4Dv/PnBdGpU0y7A1M6hUKB3377DffakIK7uLgIeXl5bOrUqTAwMMDRo0eFNg18TExIXt2U4KxeTV8ASVJFIgq0zJxJgYoWsLGxwZIlS7Bjxw6Eh4cjLy+vod4dN2+2eexNnbPNzMywcOFC+mXUKMpk5eWR8aKpKZWnvPYakS2FotErYudOyP7zH/gdOwZOTQ25q1cLY6ZMYTsWLEC3Hj0Yrl4lBYeJCf2PigqwaRM4pRIuY8bguELRWvr6zTfkzAwAgoDi+Hj4REbC8s4d3B01CjHDh0PTywvhpaWstqAAP9epeSwtLWFkZITkuXNRK5HA1tYWCQkJLD09Ha6urvzgwYM5dXV1CNOmwSo/n6UvX453xo0TYdQomjtPaNMXFBzMF/v5cQveegu3Kytx+fJl9ssvv8DFxUVwcXFhxcXFwsCBAxnLy6NAmKYmOV1/+CGgrQ1RRQU4jkOPHj0AAL6+vpyvr2/H95X9+6nMoM68qyU0CwsF4c4driIoCA+XLYPZypWNGe2sLJoDK1ciu6oKdzIyoFZVBZ/sbOaxZAlCQkIQEBDAW0dFcd6RkQhbvJizsbbmf/rpJ+Ff//pXI6PjOCLsixcT4WKMykCaBEYZYxg+fDhart310NLSqp+DIigUrRUbFy7QNfj6a1Jg1RHVzLqs9DN3yHBz67yz9549wMOHKP/mG1FZWRmOHTvGFxQUsOLiYjZhwoQ2lTDNIAh0T96//y8ZlUJVFcKOHYgzMEBgcjJUVFR4xphQUVEhEgQBJiYmfGlpKbdixYqGOcwYg7q6+pM7VTwtZDJSIIWG0hgcNoyCPwcP0nz5HzVTAwA7OzvR1atXeUNDQ05FRaV5acjfiIULF2pUVFTgxIkTJhkZGVMBfPePHMgLRldmuwtdeEnh5eWFixcvnigqKpopkUi0msoX/w5UVFTgwoULzMHBoXmm6J+GoSFtfnV1n64uTEursQ1JSQmypVK+7OFDzm7aNMqq/RM3zn/9CwYbN0Lf0RFRUVGcnp4eiouLoaWlBbFYjPz8fGzbtg2XLl1CfHw8hj6D8RsAgDH8988/+ZtGRmycqyuTfP89MHgwbSb+CsrLgZSUxnZDTSAIAnbt2iUUFhbCMiAAunfu4IqDA8vX1m5lZOPs7MwiIiLg6uradm9unqf64ehoIqEJCbT5jY4m+eyQIbSBdXEhifaUKciSyxGiUOCxpiaq1NXRw8NDcHRyYnfv3kVFRQWio6MRFxfHu7q6smZ1vgoFjTFf38bHtLRIahsTQ9kyM7Nm5mYikQhRUVF8TEwMs7KyanRiNTOjTE3TbH1gIJCfD4wfDwsLCxgbG+PmzZuIj4/HvXv3hOqqKqatpQXpnj2kGnjWWumlS1s5qNMhmSEiIkKIj49HWFgYi4+PR3p6OpsxYwYmTpzIBqmrw8HSEhcsLYULaWnM2dkZampqePToES5fvoyCggIEBQVBU1MT27ZtQ1lZWcNr1zu06+joCMXFxSgtLWXXr19HREQEBEHA4sWL27Yk4Dg61r59KZC2dCl9lZQQYTA3p/NeR9Tagkwmg4ODA2JjY1FSUsK86gMp778PJCSAHzCgmQH9AWGYAAAgAElEQVRhREQEsrOzAQCenp7NM5IqKiTZt7Mj4njsGNWPz5tHRmeGhvT19dc4a26OuwUFcH/jDfSaOJGx//s/uPv5wdDfnyElhWqp16+nTOvcuUTmLS1R/tVXsA0JgZWDA1htLZUsyOVk5jZvHuDvD8VnnyE8NBS1cjmqVq+GyvDhSHn0CFeuXEFFRQWTyWTCihUrmFgsRnFxMe7evSv0un9fmOzjw9wnT8awYcPA8zxSU1P52NOnuXt79uC8szPie/XC1ClToCMIFDwaNuyJw0lVVZUVnjoF7a1b0XPDBnh6eiItLU3IyMhgSUlJyLhzh+WfPQuniAhwGhqkBrG1pTmalgacOwfj06chu34dUomE5rNE8kSS3+DDUOc7AYDM4M6fh7W/PytTVRXO+fnxVx8/5vT19dGtWzdUVVWhWKmE7KOPUHXvHkTu7jinrg6d0aMF56FDmZajI3q7ubFBgwYxI7EY2QYGcJwyBd7e3iw0NJTT09NrXtMtk5FxV2kpke3PP292v6iurmZXrlzBoEGDnmwqlpFByplPP63/Z8rk3r9P6oAma1F4eLjw4MEDlpmZ2VoR0hlkZFCg4Am+JYIgoKioCOq9eqFaqYR48GDcvn2baWpq8r6+vly9AVyHwdAjRygTvHbtUx9mU+QXFyPq7l0+Oj+fDR83DlOnTmUDBw7khgwZgl69eqGkpIQVFhYKMpmsmWmgvr4+IiMjhcGDB/9l25NWqB+nb7xB69Hvv9P1c3enYPb/IOkuKCjAzZs3WUpKihATE8Pavfe+YHAcB6lUCp7nxZmZmXrBwcHlYWFhWV5eXvK//WBeILoy213owkuMdevWla5fv35CcHBwrLu7u+hFmqUpFApkZmaisrIS9+7dE+Lj45mBgYHCy8vr5VonxGIiQunpnc9ut8SiRVCNjhbdDA5W4r33RBCL6bV8fUkeCHRYA/xckJwMfP01xC4uUE1Lg0KhQGhoKMrLyzF16lT07NkToaGhPM/znFQqxaxZs576LXJzc3Hp0iVkZGRAJBJxq778EhKxmDI+3t4UoXdxefbPGhVF5LdFixee57F7926huroaH2poMG7wYGDMGDiYmrZZ8y8WiyGVSpWRkZEimUwmWFtbM0tLS3BlZURuPD2pp/Hu3ZQBkslow7pxY7uHlpeXBwBYu3ZtvfSQ5ebmIjw8vOE5ZWVl3IEDB7Bw4ULaJB85Ql8HDrT9otOmEfktKSEp84YNDRmuOXPmcDt37sSlS5cEKysrOqEaGpRZ1dcn4gGQ3H7JEgBoyPT93//9H/bu3QtFdTVzGDsWJ/z8MPfcuc5cgfaxciW1s9m9u9nDHMdh4cKFXHh4OCZOnAhzc3PwPE/XpaoKmDsX6h98gKkffMDt3btXuHTpkmBvb88dOnSo2evcvXsXAPDOO+9AV1e3pZsyqzu/CAgIgK+vL2QyGWuXiDBGDvq9e1OJgJkZnevPP6fgRCfLV8rLSYHYTF1gZYWMR4/g/803fGVlJaeqqirY29uzvLw8AQDT1NRsNyMJAwNSNBw+3Gg+lpfXGKSKjUXl4cPIsLeHcvBgyu4dOUKb8Q8/JOLh60ty6tRU+my+voCbG+5t2oSAPXuwAgB39CiZOVZUAIWFUPbujeujRws31dRYtqMj3lqxAgZ1Ls02NjbYtWsXb2hoiFGjRnEymQze3t7w9vam8z59OkN0NDB+PDiOw7BhwzBs2DBRzquvoiopCem9esHKwkLAunWoVirZo//+Fx3ltARBQHV1NcRiMTJtbPBqXh4FvzgOixYtYtu3b+d79ejBmR8/jkeXL6P6+HHILC0paGVnR3NpwABAoUDkxo28tyBwWllZVN8dH0++CwsWEOk3M6P51dSROiKCygDq8fPPdH7XrIH+/v0YYWzMRgCi7777Tunv7y+6deuWMjExUcTR8WHX/v0Y4OmJca+9BiexmGHFCqpP9vMDfH2hv3499L/8suHlZTKZcOnSJcHJyYkTi8V0fHI5BV+MjCjD+dFHFMT59FNgzRoMtrFB4tGjqKqqam7s2Bbs7Oj1AAqq5OSQKdeCBa2eampqisTERPA83+4CnZubi7y8PNjb20MulyMrKwt2dna4ER+P/hMmYN/ChdDz8uKnTJnCVVVV4d69e7C3t28mC09NTcWhQ4egMXMmKmQyuOnqChMnTmQ6OjoijuNQU1ODgwcPYtmyZW37aQDk3v3xxx1/9k5g//79MBCLubcDAyH+4ouGxzmOg56eHvz8/GBkZMSCg4Ph6ura0OHBwcEBtbW1rKSkpGGuPHeoqNBcdnGhnt1qajSn33uP7oP/Qxg2bBg8PT2RlZXFDh8+jNra2n/0eHr27ImQkBC32traAxzHbQLw0T96QM8ZL9cmugtd6EIrrFu3LuWLL76oKi8vV22rd+HzQkpKCo4ePQqZTKaUyWTc3LlzYW1t/XKuEb6+DZvWdt1vn4Di4mKe09Ul12OAjHC0tMiAy8+PnK+rq19cC5DDh4mMjRvXUKtdXl4OxhhycnJQXV2NtLS0BnZy+fJlpZWV1ROjLYIgQBAE+Pv788nJyQ3/v3z58sbWU5MnE3mYMYM2Du+++2xtnXx8KCPTAjU1NcjPz2d9r19HbFGRoHz3Xdbf2hodiaGHDh0qioqKUmqoqHDRZ85gaI8eGLB8OdWD+/vTRlwspkzx6dNExD75pM3Xevz4MRITE+Hq6tqsxs/MzAyLFi3Cnj17AAB+fn44deoUPvvsM3AchzGlpejdo0eHxwlPT6CsjNrMbdkCzJmDxwYG2L9/vxKAqJWj/Y8/0ibN1pakrb6+9L0J8eQ4DgsHDQIcHZGRl4fc55EpGTeOyHMbMDAwwOR6lUfd+6OqihQjR440kNshQ4awP/74g8XFxcHExEQ5Y8YMkXZdzeKRI0cwdOjQhs13W0RaS0sL06ZN69zxLlwIfPklSY/XrqXjMDFBh73VW8CqTgVQUFCAH374QSkIAqt99IihpoaNmjCBc3R0RFpaGktMTFTW1taKAMqItZkJ++ILInU7dwK7djX2bm9BpoYMGYLk5GREHzrEu2prcxaHDxMZGzyYnnDiBJHwoqJmruhmZmYo19ZGTv/+6D5jBtVqW1sDYjEe6+ribnU16+fkhCmzZkGrCXnQ1tbG+++/3/4AaREUQVYWsH07zA8cQGlFBUyOHROKioqEBzk57KyTE7hjx4SlS5c2nICioiLs3r0bMplM0NPTE+7evcs1bMRVVSF9/33g8mVgyBCIxWKsmDOHQ0gIyu7fx5Hx49FnyxYqk0hNpfNQn5kWi8FMTYUMKytYU2CASHt2Nl3zkhLKxL7xBq1Fr75KpNvAgIJTQ4bQ+06bRuUiLdrxrVy5UnT79m1ERUWJVFRUIJfLcfLkSQEcx/S/+AIOlpZE6FetImVJWRmt901f59df8eaIEezCoUNChYEBFLduQX/DBgr4jR5N6gNdXWDsWLo3pKUBFRWQb9uGefv2IW3BAvSbOZPuKZMn0+ffsYNKQSorSUFw/z6NpfXraZx3QM4dHBxYQEAAfHx8Wv0tKSkJKSkpSK7rliASiSAIQmPXBUFA3JtvokxbG4Vpadzu3bv5vLw8jjEGFRUV6OjoCJWVlczHxweXL1+Guro6KgDMPHIEjpMns6au9O7u7khKSuJDQkKEyZMnt74HBQXRtfuLRorl5eUoKyvDhNdfhzgwkIwN2zCm9PT0RHR0tPLnn39mAwYM4Hr16tUwhxMSEuoDTy8OjNF4ACiYVFpK41YioTVMS+vFvv9zgqqqKiIiIuDm5sYbGRn9o+l5iUSCt956S+Lv76/Mysr6/84C/uXcSHehC11owPr167U4jpM9UxuOp4BpXdZRLBYLLi4urQyUXiqIRCQj/uUXcvl9SgiCgBs3bnBTpkxpfLC+LZW9Pbl3cxwR+enTqYaysPD5tQERBMrg1MmveZ6HSCSCg4ODsmfPnqLIyEj+5s2bgoeHB5ebmytwHMdlZGSIrl+/Dhsbm/azCwACAwP5K1eucIwxDgA+/fTTtsmEujoRga1byYHb05M2kU+DWbNIvt0i666mqoo1amqo8fDA3YED2YmoKMGD59vPbALw1NaG59tvi6rd3ZFZVQXbDRso6KGl1XrzUl1NGad2cPLkSQBAeXl5o7N2HczNzfHpp5+isrISYrEYHMfh9u3bgvrPP7MoGxucBTAuOrrjXvJaWuS+nJEB5ZQpuGplJZhOn86mTp3aOnMfHd34s6Ym9XNtWUdZU0Pn/8wZyJYtg3znzlZ9d58agwd3um0ZAJJtK5U03utgY2MDkUiEqVOnwsnJqdkme+rUqc9+bE3B82RCJJfTRrW8nFQMBw48teJCVVUVs2fPxp9//glHR0eRqqoqeu/bB1lSEri6Omg3Nze4ubmJAODgwYNIT0/H119/LaioqAgKhQJud+9yalpayDI0hMvHH8Pl4kWIOiijMTE0xJIBAyBftIi74eYGi9OnG/+4YgUFpCZNIuf7nTuB778HQMFNjuPIEJAxksr7+wO9euHckSOCaloaeubkMNHBg0BYGMnP58whJ/6OxsVnnxGB3bWLfr94kYivRAJdqRSLZs1i8PVl/B9/4MJvv2Gql1fDSeZ5Hvv37xc0NDSYsbExq66uZjNmzIClpSViYmJoHbl2DQgIoLXrzh2qMTczQ8DMmdApKeH5uXM5buVKmnTLllGZiZcXkJkJTU1NoV59AIA+h7V1837zq1YBt2+TguD+ffI4OH+ezLe8vIicDhlChHn5cso0//Yb4O4Ou23bEBUdzU89c4Y7MHcueoeGokf//tDp3Rv4z3+AS5do7g0cSIQ9IoKux9GjtJ5s3Qr1Vasw6b33uMsFBfy9oCBuxv79FIzU0aH/37CBjtPYGAgIQE5ODvZoa8Nk40Z+cZ8+HH77jer8GaNgqooKBW3S0ui4LSxonpmaNnbPaAcaGhrttrQKDw/nCwsLGwZCfb/2uXPnQkNDA/xvv+FOUBCCR42CXC5Hfn4+N2bMGLi7uyM0NBQPHjxgMpkMoaGhytraWjZjxgzO0tKSMu0VFa3eb/To0dzevXuRn58P4yZdJADQWGvaTeAZkZycDIlEItg7OzMcPkyu5i1UU/VYtmyZ6NSpUwgKCuJDQ0NZXzJAZOnp6fDy8vpra+fToN7zxdGRVEQ//kiBQhcXYO9eKgvR1W2zpOefRk5ODh48eIApU6a8FDp4qVSKrKwsplAo/tk0+wtAF9nuQhdeYqxfv14qkUiOOjs7KyUSSSedTp4N+vr6ePPNN5GdnS0OCAiAVCpt3ZbmZcKMGbQJi4jo0Am7LaSkpACAYGNj03o3z3GNxPvGDZJDXrxImYrHj2lT5uLS6f7dbeLKFcpA1UkHLS0tsZZq3UQA0MyRt44sbtu2TXn69GmRt7c3XF1doa2tXV+PCXt7+4Za7zt37qAug4fp06d37CLLcSQ3vn6dWqQ9ekSb+s4asTk6tjILgyAAf/wBcWoqxF99BSd9fRyJjGQFBQVo5Xz68CFtqrW0SKWQkYFfZsyAlqmpsodUKmq33dbUqVTfeOdOozy7CWbOnIkvv/wSWVlZrKamppVDMGOsQU3g5uYGNxcXJnzwAXbX1VafPXsWffr0eWKbuxyJBGdHjeKda2ow7do1TuTl1aydGQDgzz8pKBQYSPW/TTO9PE9uzevW0SZXSwvdAIjFYiErK4vZ/JUNWmIiBUIKC5/83GPH6Djs7JoRXI7jMHDgQPj7+0NVVVWo62fLa2lpQalUCtXV1ayiooLV1tYyR0dHvn///iLDDlqkNUAupw1pUBDJMcPCgJEjiXzs309Z9n376PFVq2i+dRJ37twBAHh7e5OqwcGBxnUbqKqqglKphLOzM9QlEujo63NGa9fioUTCVyxfzsKSk5GdlMTsBw5Em0L2+Hjg3/9GupkZHz9zJjf8tdd4AI1zV6FoNNLS1YVQVYXgixd5CwsL7sKFC3jllVdIbZKTQwGrc+cAKyuwzZtxo7KS3QCgzXHCqvffZzh3js7Z+fNE2tzcgF69WitS3N2pFVdWFgVQ/P2phVY9YmMBIyMklpRAqVTi4sWLgpqaGrOysoJSqURJSQmbMmUKXFqc8wH1JTtWVkSGQ0NpjA0cCMybh/QvvoBMJuPOL1iAMhsbYdg77zAzMzNaI776ClBXh6ZMxhU2NQtsAZ7nUVlZiXINDVSYmsJ64ECIS0spYJGdTQGutLRGgzrGGtUC48cDJiawcHDgHoeFwdDQED0MDZmOQkHj7dw5mnuxsTQeHj0i1cyMGVRSA5AnA4CHDx8ipHt3zq6iQsC+fQwKBWWl1dXp84SFNSgXDAwMwHEcDAwMBMZY89ryX3+l79818Xw6dozG9Hvv0TX/7LN220oJgoDy8vJWninR0dGwsrLiCgsLMX36dCgUClhbW0MmkzWu9zo6MPXygvuHH+LRo0c4deoUf+7cOS4kJETo3bs3Zs6cWT/Rm2eqd+2iTHxdqUA9TE1N4eTkxO/YsYObO3cuGswO79yhTgHPooyqQ1lZGfLy8hASEgKlUknHVV5OgZyJE9sMLnEch1deeQU8z3ORkZFITU3lNTU1hZKSEm7z5s3C8uXL2RMl/X8VPE+B34QEKk04fpySANevN3aO+OQTCtJv3UplCFeuUAnFn39SkGfvXlJX9O1L6oenUPL8VWRkZKBbt25KPT29F1ef2AKlpaXQ0NCApB3TT0dHRyEpKWnRhg0bRGvXrn397zquF40ug7QudOElxPr160VhYWF+EonkqLW1tcukSZPU/o5IrYaGBkxNTWFiYoKTJ09CVVUVSUlJsHsZe0wyRiRtxw4iX0+BgwcP8v369eOeaPwmkVA7Ijs7upmqqBApKCqiTe35852uJ22Gn34iktgJY6J6eHp6cuXl5bh8+TKuXbuG6upqZWBgIBcTE4NLly7h+vXruHz5MgAIr732GktISFBqaWnB2tqaKZVKVFVVtXuDg6kpbWpiY4nwaGg8ORIvlxNRauoOzfOUKbp9mzJA+vr4448/lOXl5czb27uxBdGFC5TNmjaNXL+XLEHZ0qXY4+/PP6ysZLNnz+aeaNbyyy9EJlo4qycnJ+P48eOQy+Xo0aOH0LNnz44Nc3geuHwZbPNm9B4/Hi4uLsjMzBQCAwNZVlaWws3Nrd2Jt2vXLqWtuzvnvWQJxyUmUvZs8uTmpk+CgAZPgPnzySSrfmNaUUFS0vHjmzm6V1RUsLCwMAwcOLBzLXfagqkpZUKfJGk8epRq3998s822NjY2NnB3d4exsTGzt7dnampqnFKp5NTV1blu3bpxDg4OzMnJiaWlpSE8PJyJRCLewsKi+UHX1hIxCwsjx+Vbt4jYDB9O7aJmz6ax5OxM88LZmQJe+fm0UfXzo5+HD+8w2/3o0SP4+/vDxsam0cG5sJAysZ6ezZ6bmZmJ8PBwiEQiLF68mHUfOZKZWFhA87vvYDhzJrO1tWX9ZTJmsX079ujpISYmRpmens4qKyuZrooKJF9/DWhpocbMDL8rFGz8nDlwdXVtPLikJKrJrW9b5eCA3MpKnIiPZ0lJSTA3N1eOGzeOxlZxMakQpk4F4uJgP28es3V3h5qaGu5kZLB8VVXeeeVKxjw8KLBoaUlqlE2b6PwcP06ExNyczp+9PZGg1FSaY/Xn7PRpmpubNqFbt26wsLDA7du3WUJCAvr37w+xWIyioiIhOjpacHV1ZS2DVABobRgwgPwa5syhFnmgYO2tW7eUvoGBnMTIiJ3Ky0NoaCisrK2h7eUFbN8O09WrWaCDgxAXF6cMDAxkISEhLDIyEpGRkQgLC0NoaCiuXbuGxMREpF25AufVq6G+dCmRUyMjWi/79KHAkK4uERctLfp8mzYBY8fiXmEhIjQ08FChQLm7u7LnG29wUFGh8W1kRAGKTz4h8i4WU7a8iby/pqYGP/74I3QePMCwn39m5cOGAStWQLV+HpmY0HiuM+sTi8V4+PAhEhISuD59+nTsiP399xSkVSjI5Tovj8YJQHLpFutzTU0NLl++jFu3bqF///7gOA6VlZX49ddfkZeXB7FYjBEjRsDKygpSqbT5WlG3pquoqEAmk6Ffv37M09MTWlpaLCwsjA0dOrT9tcXGhghgk/aMANCjRw929epVwdzcnBkbG6OkpASiOXOgfPQI4rY6O3QC9+/fx7Zt25CSkgJ1dXXluHHjOCMjIzrPGhp07+3AUZ0xBisrK/Tr148NHDiQDRo0CA8ePOBPnz7NOTk5Pf92mrm5RJT79aPSpvv3aU6KxVTX7+5Oao533qFzOHcuZefFYmDCBDqnjx8TsR4+nMaiRELlElZWVE6zeTN9zZlD9zdd3UZlhZXVc/OTKS4uRkZGBvr37//CW93I5XJs27ZNERYWxkkkEshkMly8eJE3MTFpts7Y2tpyjDFkZWW5hYWFBXl5ebVudfE/CCYIwj99DF3oQhfqsH79emdVVdXPlUrlCB0dHW748OGazs7Oz77h/guIi4sTTp48yQDA1NSUr62tFdzd3UX9+/f/24+lXSgUJN3q0wfo5HHxPI+NGzdi3rx5eOa+2oJAdYlLl9Kmbe9euuF2JighCERoZ8x4ajfwkpIS7N69m6+qquL09fVRXFyMPn36KEtKSpCXlyfy9vZuyEBlZmZi//79ePPNN3HkyBG+oKCA8/X1Ffr3798x+QwLI/O527fJtKq9zcqBAyTjLCmh33mepLJ//EHXREsLCoUCmzdvhoeHB3zs7Kiur08f2jBERwN2dsjLz8fZs2f5vLw8zsbGRjlx4kSRVmdq3nieCEWTHrwKhQJfffUVLCws+NGjR3euh+hvv1H95K1bDS1rBEFAdHQ0zp8/j169evGTJk1qRbjrSf0HH3zQ2Jf38WPKwo0dC6xZ07h5Tk+nzZJMRkT84UParJ0712YrK57n8dVXX+H1119vrQZ4GsyfT9ewvXEZE0PXVyxus5fx0yI3Nxd79+7FggULYFZTQ2Ope3fKrFpYUMlHbS1tSNtTDXz0EbVyu3Ch8bHLl4mMlpTQMX/yCWW7WxhGbtmyRXj06BFbsmRJo9T1/HkKlDWR1JeVleG///0voFTinXv3oLt9O72nh0fz4/r2W+DhQ1R89BHu3buHrKws/kFMDPoeOsRVaWsLCRMn8m7e3qLTp09jzpw5zYOSxsYQNm5E9fTpUFNTQ21VFeDoiC1z56JKKkWfPn14Nzc3TnT9OkyNjcHqM6KJiUS+68hLeno6/P39MWDAAHi1JDQKBa0/585RADAqir7HxFC2vOnYEQQKOPzrX83KPniex7fffssPHz6ceXh4MJ7ncfz4cWVGRgZbtWoV10zdIZfT2LW1pXFblwluCZ7ncfjwYaSmpqIhS/74MTJ+/RXHqqqE0aNHs9y8PMTExECpVGLFihVQU1ODRCIhNUJJCcI//1xpnpUlsjl8mAIJGzdSbexXX7V+w/rM9dCh4FesQHVEBH5atAgrMzMh+uijtgOitbWUOZXJGmqNBUHA/v37eWlsrDDR01OUFRsrHNbSYnUGgvz06dM5G0tLujZHjwLdukGhUGDTpk2Cn58fc32Sf8iYMUSmTp+muu0RI+jxOXOIdF+9SsHduvW5uLgYP/zwAwBg/vz5KC4uxum6MgVzc3N+3rx5XJsBVJ6ncoPExFbKI57n8eWXX0KhUAAAXFxcoK+vD2tra1haWpL8urS0oc97Sxw9ehSJiYmQSCRQKhSwS07GbTs7mNva8lOmTOHaNRtsB4cPH+aTk5O51atXtw4G//ILKdeeILdvCz///DOfk5PDGRkZ8fPmzeOeuQxPLqfs9cKFjYZ2+/aR2q2oiAh300RIQACpmMzNKUj0NFAq6bXi4mheT5pEwbJly2icjh5N7zl5Mj33zBki7N99R4HS06dpLD9+TCqMJyRoamtr8e233wr29vb8pEmTXpgBr1KpREhICCIjIwEA/fr1Q2xsLOr5p5mZWXVBQYHUxcWFf/DgATw9PUXHjx8HgNp169b9BQnhy4MuGXkXuvCS4LPPPpuvoqKyfciQIdIePXpwT+w5/ILRp08fZmNjg/T0dKG8vJxFRkZySUlJyv79+/9tkqMnQiwm2e6pU7SR7ERQIiQkhBeJRMzU1PTZIxiMUTayvr/wnj30mFhMMrz63t5tISaGjre+r+9TQE9PDx9++CG3detWZXFxsUhTU5OfOHFim9fD0NCwPpoMExMTwcfHB+Hh4UJ8fLwwY8YMrt267+HDSaK6ezeZvqxf3zYRmz69cbOoVFKmLSaGov51G/SE+Hj0iooSPBYsYPj0U8oKnDlDG3bGkJqaCn9/f7i4uLDhw4fD3t6+82OL4yir8Oab5OYLMkbjeR7z58/vnAzk8WPq3TxqVDPixhhDnz59cO7cOSQmJnLdu3dHjx49IBaLkZycjLCwMOWjR49EY8aM4VVUVBrfSyZr6KGNw4eJUDs50dgcMIA2Zp99Rhm2hQvbVQ9wHAcrKys+KChImDdv3rPPt/v3ibi1Rbbz8+n6fv45man9VZSVway6GmOuXhW4c+dYgzS3Tx8aFx34DDTDp5/StRWExvk8aBB9VVeTlFoqpXNX76cglQKMoXv37iw+Pr55P/oxYxqdxOsgkUjAlEq88frr0J00iTa2TeW/9aiuBlasgIaGBpzs7OC0cSOH5GQoLl1C3sOHzCw5mV2oCwqoq6s3ay2muHUL3+3cicebNsHV1VWZnp4ucu7dGzzPY9GiRTh+/LiQmprKDz12jNNUVYXy6FEUFxfDNj4e7PjxBrJtb28PfX19/sGDB63HtFhM5+Gtt+j34mKSJ9dnBptixw4amy1k/hzHwdfXlztz5gx69eoFqVQKCwsLLjExkRUXFzf2342Lo83+zZu04W8rWFJdDd7ODkc2b8b9/HxeT0+POTg4MAAolcvxe1ERZuzfz+wvX0bB8uVQKg16CPUAACAASURBVJVkzFVR0dBWSkhJARYsgNLPDwlDh8KmnjD0709y5bagotLQu5rbtw8Hdu8WVPPzGScIJBXfu5fIeGwscOUKalxdcejkSd7YyAgDv/ySu9W9Ox6IxXxycjLrHh+Pifn5ItHMmbCfPp2tAZHw33//nf3+++/o06ePMNHNjeH2baBbN8TFxUEulzP7JwWrDh6ksSuT0TrQ9Pr88QfN1a++otKl7dsBExPUmxEOHz4cCoUC6enpAIBly5ahW7du7a9xPE+EsGWJD+h6L1u2DEqlEhcuXODT0tI4XV1dPiwsjDM3N+cXLVrEQUeH1qsjR1q11xw9ejQcHBygrq6O7kuWIHvWLHhPmIB9+/axsLAwfsKECU8lwXN2duaSk5MRGRmJEfX3k3oMHUr306ZrQScxb948rrCwEKdOnWJ79+5VLl++vHPrqEJB88TDgwI8Bw4QwTYzowDTxIkUZAbaPL+4d4+e19SboLOovwf17UtfAN1H6vHwIX3fvp0y4zxPQUddXQrW/Pwzke2BAymD/ssvQK9eeOjvj8KoKGhGRyN+2jRYFxaCt7BAVmUlPD09WUREhEhVVVUYP378c8/q8DyPPXv24D4ZqboBcI6Li9vBcdxPIpGIr62t/Sg3N3cTgJqEhAQZz/Orjx8/DqlUerampub/Gxl5F9nuQhdeAmzYsGGZqqrq5gULFqh1qubxb4K2tjbc3d1ZUlISxGKxMGvWrJeHaNdjwgSq/czMbEZeBEFAaWkpdHV1wRhDcnIyf+XKFSE/P180efLk52ugcukSfb9wgaSNAEW1p0xpXU/OGGW1/4Ja4Y033hBt3rwZTfuMtoREIoGGhgavVCrZ7NmzRTKZDJ6enty3336LuLg4wdvbu/0D0NamTXtmJsng/PyolVHTc7ZhAzlr6+nR5uTKFdrUisVAYiLKIyNxPi8P71+6xCQFBWQO1eQc3LhxA8ePH8egQYP4kSNHcp1Vb/A8j9raWpJrOjvThofnkXrrFgIDA4Vu3boJaFo32xH8/IgIt9FCTCQSwcXFBUlJSQgICMClS5f4yspKVFZWcgYGBtw777wDmUzW+n309SlAsWsXXefjxymjHxZGkldbW5L3tuOkXo9XX32V++abb1BdXd2xNLUjXLhAgZCWKCujbPv27c/ePo/nqVaxsJA2hKmpwMcfw7J3b3b04UM81NCAmZmZcpar69NlTDQ0SE7t4UFZ7qZQVaXxCFBmKT2dggVRUSh4/32kXLsGSKWNSgOAsnR9+lANc/3L3LyJjzZuxNc8j7U3brR9HDk5VJOtrU21t5mZRNp/+AFiDQ1YamnB0tKSGzBgAL777jvs2rULs2fPhr29PeDiAm7nTlhYWvJ37txhRUVFMDMzU7r26ydyNjaGubk53n77bREeP8Z3UqnywsOHonrjtPl+fuArKqBbt3bV1taiuLiY65Rhpa4uZUcDA5s/fuoUBc9ee63Nf3N1dUVoaKgyIiKCjRw5kisvL2disVgwMjJiKCkhMrh4Mc3v+hKI+nZVmZmN64JCgZR+/XA7IwNeXl6sd+/eDT3s69oP4tHHH0M0bBjK6owDq6ursXfvXnh4eKCfSISwwEBBbGzM7mpqikzrW2QBFAQsLaXASBPZd1vgxGK+UKkUxbz1Ftzd3cF69qR1WKkE/9pruGZuDhVXVxinprID8+fzIz78kMuaPp1Nzstj1vPnM5iY0NpSB8YYDA0NWWZmJuLi4pjMyor3DgjgMGhQgzHZ9u3b8e6777Z9QKmpZLLm60u/1xtwNu1JbWJCa8KPP1IwY/NmlCxfDsYYwsLCAJBkfeTIkYKhoWHHi+XFi23P+zrUBzbmzJlTv35x586dQ1RUFFdbW0sZZje3NrsZyGQyUipUVQEiEawmTwZ0dODj48OOHz/OpFKpYtSoUZ3iFkVFRfD394dUKhUGDx7c+jPZ2VEA4soVCrY9BVRUVGBqaopx48ax3377TaRQKNr24KhX937zDa1lCxdSmcLu3dTebe1auqdt2dK5Nw4MpBZoo0fTHuBFZIvrvEUAkOEmQGqx8ePp53rDSZ5HrLe3cPH4cdYzJ4fvnpjIHgwfznt89JHoVu/eAu/joxz86afigk2b+N5hYQznzzcapvr60jwThA5l/E9CaGio8v79+yIAs9atW3cDwA0A+5s8pWW/uDXr169X+fjjj7v6bHehC114fvjss8/mSSSSbxYtWqT2T2ez20Jubi5OnTqFkSNHsry8PNjY2PxtTp8lJSXYs2cPJBKJUFtby9TV1XkAGDduHNe9e3eUlJSgtLQUcSUl6L1woWAfEsIUSiUqKiqQk5ODI0eO4P+x991hVZ1Z9+s951649N5UUBBQQEDBigUsWGM39ha7RpN8lkniJEMwxYxmYmI0OoklxhJjsHdEULEDIgIqTZpKlV5vOef3x+bSQVAz3/ebsJ7nPuKtp7znPe/ae+219fX1RUtLSzx58oRzc3PDxIkT8acd5+HDa1qCPH9OC56bN0mOGhBABGX5ciJgrwGZTKY2VGvyRGhoaDRoERQVFQVRFOHk5NQyZmtrS47lBw9SBvmTT2qcg+/epah6SAhJdH/9lQj4smXAmTNQnTsHjBoFIS0NKZmZqIyLQ5eqGsCMjAycPXsWw4cPR79+/Vo8mARBwP79+5GSkgINDQ3RyckJnuvWMZPff8eZZ88EW1tb5uvr2/LBuXZtk2ST4zhMnDgRw4YNw8GDB5GTk8NxHIe+ffvC19e3WWd1AJQ1HjuWFi7XrgGpqSTNT0ysU59dH/n5+UhOToabmxskEolYVFTEXplsz5xJi6Xfaq1tRJEIa/v2tG2tgUpFGbqQEDKVOnSI6mjXrqXv09GB2ejRmFZQgJycHJw4cYL7448/VNOnT2/dinP8+Ebrx+vA3p4eI0YAwcHILS/Hsu3b8cTVlTK9hoa0SNbTI2m/KFJw4MwZYP16XPnHP6BSKpGVlVWTva2NkhIa33fv0n5u2tTAcbm4uBhbq0jykCFDyMhKEICJE8F5eEDrxQvI5XI2bNgw3s7Ojo5TbXLfqRPe3byZ36+vj7KyMsHCwgL7Tp/mpv/2G/6IiEBGhw7Q1taGIAjooW6h1RyOHydH99oZt6dP6TgdP95sG0MfHx/+2LFj1VJPAOyfGzeKb5eUMLvgYJq31It5gAzCPvsM2bm50NbWpv7SSiWuDRgAd2dn0cvLq3qOKSkpQUhICDw8PNCnSkUxwdsb3WfPhs4HH+Ds2bN4FhAAl4sXoTFzpqi9ahUKbtxgdYI0jJGk+MkTCgQ2g7lz5/Jbt24VAwMDWUREhDhz5kx2vqREVfzrr7zJv/6FhPh4Ye2QIRz39ddwff99hh9+QOfPP2cYOJBquhsJeGtqasLGxkY1btw4fv8//8l1vXAB2u+9h759+yI0NBQA6igbqqFQ0FiOjqYxCQD29lDevo3IsDCEhoaiuLgY06dPp/nxgw+ArCyoXrxAxEcfiV06dGClLi5If/YM5ubmQv/+/V8+v508SRnaqnr6lmDQoEG4e/cuNm7cCHd3d0zYsYOMvprC7t2UPa/aJ3d3d1y5ckWMioqS+Pr6tug3U1NTIZVKxY8++qjp+1F8PAUqW0m21cjPzxeUSiWXnJyMavXBo0c0lxUWUknFsWNU8tOxI2WE4+Je6beQlVVTKuXtTcHAV/F0eROoIshnOnZk48aNg9p7xAngMXcu+gEMCoUEXl6Y0bcvh5MnawKSP/1E83lcHKme7txp4HnREoiiiNDQUPVFfKeln/Pz8/uvItpAG9luQxv+1+Dv7y/R0NDYqqWlNW/u3Ln/J4k2AGRkZIgKhYJduXJFKCsr4zp37ixOnTqVNWm29YqIi4uDvr4+ZDIZKisrYWFhAZlMhqpsIpNIJDAwMOCKi4tx+vRpcfjw4ez333+nDzs4oNf160wVHY1zKSliZGQkA8hp2sTEhMXExAjTpk1j/1GjN3W/25s3a8iVmxvJBaOiKNtRXEwkwMqKIuBKJS0CjI3p5i+K9DAwoNd5njIiWlo1/28FoqKiIJfLX+qyXQempmT2cuIELbYPHqSWaAEB9PeDB5QFYoze4+sLfPwx+JUrofj2W/yzVtZYV1dXcHR05GJiYqCtrS2mpaWxwMBAeHl5Qb1AKykpQXl5OQoKCqCpqYmEhAT069cP2dnZOH78uEoURW7OnDlMKpWyY8eOiRk3buCdH35Axdq13JgxY1qWBS4sJKldaGizzuscx8HAwAB6enqqTp068WFhYbh9+zZcXV2bVRVUIzOTFnP//Ce19+ralVQAn35KBNDdnTK5ta6lwMBAPH78GOfPn4dSqWSljbThaTHWrCHyVxshIaRSaElGWy6nhVZ5ORFOLS0aD0OGUF16vZZvahgaGsLQ0BAzZ85ku3bt4vft24cZM2Y0bdBXH3PmkIt2YeHLSTfHAcOGwSovDzuXLYNRQQE8tmyh7N7PP9PxXbeOzOgSEoCbN3E/Kgp3lEpI5XLIiovpOuQ4IkSMEYFYvJjIac+eVIfZCHbu3Fn9t6urK11XO3cCH38MyGS4d+8eBwAXLlwQVqxYweGzz+qej4gISKytMfTpUxw+fJibMmUKJk2ahMrISLjKZMiVSlFZWQmVSoWrV69i4sSJqKofbrgxas+EpUtrnhNFqg3u25fk9s3g2rVrAAAjIyPMmjULBps2IWP3bnZy3TpI5s0TK7dvZzzPi8uWLSOjQw0NYM4cPPf0xOmxYyHV1RVHnDqFKQkJbNfq1Wzo0KHV12JeXh5KS0uRlJSkQpX7NXf0KOx69ABUKszT1ET5nDkonzgR48aM4YKCggAApaWldVv3zZvXpLO8IAgoKSlBUVERTp8+jcLCQmZvb4/k5GS2ZcsWaGtrcxoaGqJQWirOMzDg4OpKga8ZM+icTZtGypN6RDspKQkXLlxAUVGRaGxszJmYmGD88uV4kJEhxnz1FRMtLYXKykpOLpfj2LFjwoQJE7g6QYJ160ghceVKzXPDhiHq+nXh8uXLzMzMjBUXF+P48eMYPnw43N3dwVtYIHDaNDx/8kRccOAAY9nZKNq2DeD5lgUSt29vtXJKR0cHq1evRkREBK5evYpxo0eD8/YmpUT9WvSEBDLweqeuylcmkwkFBQX8tWvXhEGDBjW7rXK5HLdu3RItLCwE1HdEr42336b7p0LxShnW7Oxs6OrqCg7l5RxmzCBp9eTJFBT39yei7elZ08LrdfD4MZUlAdQnvqjo9b/zNdGpUydVcHAw7+LiUlfxA9DxrHLVx6RJNc9HRtJc+NVXFDB+BYd0QRBQVHf//+vaebUGbWS7DW34X4C/v7+lpqbmSUtLy27Tpk3Tfqnz8v8iPD09mYWFBTIyMriOHTvi2LFj4rfffgtra2smk8lQVFQklpWVCR4eHny/xuoeW4CUlBQcPnwYjDHwPA/GGBhj8PT0FDiO41auXFndW1qpVGLPnj3C77//zmtrawvu7u6cra0tTr94gUGzZ+P+5MnMyckJ8fHxSExMFO7fv8+ZmJiIRUVFdXoXJyQk4LfffoOjo2PrM2+tgZcXRcwXL6Ya0Lw8kt0OGULZzsxMImGCQFmopCRa3Ghr06Lm3j2Kkstk9P7Ll4moWVrSYvHyZapdNTenm3tQEBFeGxuq8bp3D+jVC+X6+rC+cgX9cnOhJ4okuVcoSJbZrh0tMnmeMvJGRlT3KYpERLS1KVu2ezdJe0tLiYRNn04EPCCgxtilCnp6evjkk0+QkJCA8PBwMSkpiZWUlHD37t1Dz549ER4ezgwNDQUAXFRUFHr37o1Tp04JKSkpXG1CoVQqcePGDfA8Dw8PDzZs2DCmXjS8//77DACK16zBArW0vCUoLKR68xa2OBs9ejS/bds2aGlpiWPHjmXNEu2HD0n22KEDmaR9/DGdr7Vr6RhradFCODGRsqwXLlAm4YcfgB49YNO1K8rLy0WH0aNhYGzMbF4imW0WnTpRr1o1tm2jAElQUNMGZampRMgtLEjN4OxMWd2lSxsaiL0E7du3R4cOHZCSkoKff/4ZU6dORYvLZDZtouuhntt8UzA2NoZCVxeZ2toQPv0U3MyZNG5HjKDryNycghsWFsj96CPMSkhAp+Ji8JWVdD7MzCiL3b17jYR25cpm69mtra1VUqmUT01NFb///numJYp4f8sWXNfXF28kJlazHbUZFVJSqObz2jW6/qOjAY6Dubk5KisroZbwav36K/o9fox+vXtDFEX88ccfQkxMDBdT5Vxtbm4u+Pr6cp06dUJhYSHVqCcl0XbXDqJkZBDZU9fPNwO5XC56eXnB18iIISkJmDQJFd264cWTJ0AN4WUbN26EIAjQ0dER7Tp1Yj0LCuBhZCTajhrFJJMmQWJsDIMjR1QHDx5kAwYM4OLi4gSuatLNy8vjnzx5gg4dOkCjd2/KWjo5gbewgO7589Ct6s5gWJUtVSgU7NSpUygvL0dFRQUqKyqEKX5+3PGlS5UF+vpMpVIxlUrFBEFgSqUSPM9DKpVCUSU/T0xMxMcffYSMlBQUrVghPm/fnmmVlzPh1i18n5AAQx8fUaNbN+Zhbw+n9HQa8xs3AmFhyN65Ew8fPsT169fB8zycnZ1Zenq6AIDZ2trCtmNHNsTYGDE+Ptzp06cBADExMdyIESNQ3XJKECAuWoRHqakI2b5daN++PdLS0phZWZngGRzMLwwNhZmZGQRBwK+//qo6e/Ys//DhQ9HCwoKFhYVh+vTpHFu2DEhPh/7y5TQvf/tt3W4H9VFRQfeG58+bVTI0Bj09PXh7e+POnTtISE5Gl9zcxn9LW5vmuHrmmUuXLuW//fZbMSQkhOvTp0+Dlou1kZubi8LCQjZ//vzm770GBsCpU3QNt3AuQGUlBTg8PeG1ZAknsbamuUtfnwKIsbE1wYg32d40N7fG30Qup/H9ChnhN4nZs2fzn3/+ORITE+FU5aDfLESRMv/Tp1Nt+qNH1c77rcH27dsr8/LyNCUSSZxSqRzg5+fXdM+/vwDayHYb2vAfxoYNG2ZJpdIfe/fure3j4yP5T0myXxWMMVhbW8O6Spq4fPlyLjw8XHz69KlQUVEh2tjYcFpaWnxwcDCUSiViYmKEMWPGcGqSEBQUhMjISGHatGlcU8QhOjpalEqlbMiQIejevTs4jsPVq1dx8+ZNzs7OTmVkZFR9Q5ZIJFiyZAl/+/ZtuLm5VbuMWnz+OXT8/eHYqxc0R43CrVu3BIVCAVEUcfXqVf706dO4dOmS2L9/fyYIAq5evQoLCwtkZ2f/eS0ZYmMps71nD2UZt2+nbMDMmVRPO23aq9/sRZGy4JWVRNSrarSwejURIlGkG/5bbwEyGS6fPYvn7dujQE8P0NUVXGxsOFRU0HeoSapcTsGAoiL6u6KCFjkqFZFtxigLr5YpVlQQcZ0/nyR09eS4PM+ja9eu6NKlC8vLy4OOjg5UKhV0dHQwevRoPH36lNu/fz/Gjh2L7777DhzHcXPnzoWVlRUkEgk4jsPhw4eF+Ph47sMPP4REImn0YtETBOh5eJA5zcsCV+fO0fvUtW4tgL6+PqysrITCwkIYGxs3TBnl5lJdr9pUx9iYAhNhYXT8pk4lwyv1Am/DhprPfv45navBg4HKSnSvqIDl778zMw0N6Obmkpx540YKbvTq1bgpT1N49IjG24sXNUGb0aPrLpKLiugcbt9OJHvRIgrAODhQpuY1W+csXLgQiYmJOHLkCH788Uf06tVLGDlyJPfSee/s2ZabqlVBqMoacxxHQYLAQMrAJydT9urLLwFjYxSFhKgOJSXxDi4uwvTp0xvfkLS0OrLxgoIChISEqPT09Dhvb2/G8zySkpJ4lUqFefPmsRs3bqCkoABfr14NJCQwDQ0NccSIEczOzq6mtt/RkSSmurq0mK0iIzKZDAYGBqpjx46xkSNHcobPn5MU/u5dMMYwZswYbuDAgcjNzYWenh5iYmKqg5MqlQqdOnUS5kREcKxPn5oxFhlJ2ap7914aIKnKQjGPHj1IejxgAPDPf8LW0xODb96Enp4ezp49i4ULF+LChQvgeV40NzdHZmam6sbXX2NIly68hbk51bWOGoVFixbxx48fF8+ePasqLy/ntbW1hW7durGYmBi2f/9+zL50Sew8dizDsmVE3GQyGt8rV0K+Zg2izpyBtqEhRHNzVFRUKHV0dJiZmRkvk8k4uLtjuLGxRDF2LGQyWfVDU1MT6ozyL2vXIl8Q4BwTA4WJCQ6+/z6mKZUM7doJBV5enGrLFiwxMsLz589ZdHS0eG3bNmb1++/4af16wcfUlCs1MFBd276dN1GpMGriRJWnpycfFxeHpKSkmmt/8GBo7NkDj9WrceHCBVGhUDBHR0dRR0eH3iOKqOzZE/fGjhWvyGRwd3fn8vPzqd5ZpeLbZWVB19S0erzOnTuX//bbb5Gens4yMjLQsWNHwdHRkcZNp07UMm/fPjIbjImh4Fdj15BCQVL0V3TfLikpQUVFRXXAA127UhBK3SEiPJzGVWJig8+ePHkSxcXFjOf5Zok2AFhZWcHc3Fzctm0bpk6dyuyaazU5bBhJyZvfcCpjmjSJVDFHjgAJCbg/cyZuKxTwGTSoVa02Xwn37tWUWlha1g10/i9AEATcunULPM836NXeKPLzSbEQH08lBG+/TSqoVkIulyMvL08TwFqlUvmdn59f0wYCfxG0ke02tOE/iC+//HKNrq7uhmnTpmm3r21y8f8ZevbsyXr27FmHdOTn56tCQkJ4Nzc3tn//fshkMpVEImHl5eVcZWUl98cffwhr1qzhAODGjRsqiUTC+vTpwwGAo6MjHjx4AB0dnerspK+vL4YOHQqO4xqNfPetJ4PVNzIC3n4bfFVNpJeXFwdQzfnDhw/FiRMnsoKCAvZHlbunKIowMDAQFQrFm89qh4dTxrKwkLJN167VSOAWLCASk59PMmY3twb9VVsEtft5/YV01QKuGlV10u7m5pCHhSEmJgaPS0s5Z2/vV28pl5JCtWmiSO6ns2YRyR86lBY0FhbUY7QqA8wYq+sQDZJnHj58GAMHDkSXLl3Qu3dvMTw8nP3yyy+ws7MTZsyYwVXVTXMcxzUvfW/XDvDza9YUqBqnT7+893Q9SKVSuLu748KFC9z169cxefJkeuHf/6Zz++67VBrg40MksTY2bybC19SxVgcHliyh/wIIzM8XNKRSvDNpEodbtyigsn8/kcd27YjEf/wxBXMsLYlAc1zD3/DyoiBIXByR6H//m86LuowhJoYWVXPnUhDll19ocf2GWw3a29tj/fr1+O233xAWFsY9fvxYWL16dfNs28iI1BdXrpB3QBMICwtDTk4O5HJSKbq4uIhISGDYv5+CTwsWEHH+7Tc6fj16wLV/f/7h06eo7nPdGEaNomNUhYcPH+Lx48e8UqlUEztRqVQyqVQKa2trzPTxgaJTJ2xeuxYKTU3I5XJ29uxZLF++vGbsamhQcG3PnroBFwALFizgt23bhu+//x7/+PRTsHHjKKAllUJHRwc6OjrVbeA6derEDRo0qHqfd2/ezGUFBOCsiwsMAgIwYcwYSHge+OYb3EtOBpKT4aF2N64HQRDww3ffqRbv28cbWVrSnFRF4iQSCbp164YffvgBMpkMVlZWeIekw+oBQnOnszOR9MREoG9faGhoYNq0aQwAj6IiQKnkkJSEie+8g8//538Qa2LCNCwsYG1gQPOIRELS/V69oGFhgWFffSUaPX7MDsyejQk5ORKNefOofh4ADh+G8ZUrDZ38AwKIFC5fjjmHDuFEv36I79IFac7OGDBihND5yy+5zvXkyg4ODnBwcGAKDw+U2tpi7Nix3OXLlwVp377s44wMaBw8CHzxBQ9QwE0ul9dcGEOGkEIkLw9jxoxhMTExYnx8PPvpp5/QrVs30dXBgT2SSnFfT0+cNXVqw0Dzd9/RvnfuDADIyclBaWkpdHV1MWzYMMHNza3u2LS2Js+MqChSRnXrRkE9F5e635uW1mR5R0tw4sQJlZmZGSwsLOhYjRpFBF4NHR0yE6t3z0pLS8P9+/cBAPPnz3/p7zDGMGvWLLZ582acOnVK/OCDD5qedKZMocBubXO81FRSJn35JRAcTI8HD0givnFjtellXt++kMbF1S1H+DOgVFKAVW165+FBKoT/JYSFheHq1asCADaWAlPN739YGKkBNDXJgT0igoJgapl5K1BLrv4Nz/MTvvrqq/T169fPbPUX/RehjWy3oQ3/IWzYsGGkpqbm5wsXLtQyeFkd4v+HGD16ND9ixAhIJBLm6+uL2NhYLiUlRRg+fDi+//57AGBZWVlgjCEoKIgHAAsLC5w4cUK0sbEBY6xB3+tWZ/379iVC0bNntXyrffv2WLFiBQMomu7t7a0qKChgjDEuMjKSVROnN4GsLMpg6+hQNnPAgOrsVTWcnUk+/P339L5+/ShjWWW09GfB2toaVlZWiI6Ofv0vO32ayJtUSkRvzhw65h06UNY4Lo7qvQwMKNPg4ECLyiq57PHjx8XExEQ2cuRI9KzK7I8aNYp5eXnhzp07uHXrFqeuLX9ZhqQaCxdSLfTmzU33Fw0KotdfIVubnJwMJgjwtbIiRcKoUZQxHjyY2hI1ZuCTm1vTL7UVGDduHLd7925kjh4Ny+XL6cnjx+nfwkJaFHXuTAZFublEKj//nBQTRkZUPjBvHi2SJ02iMTlhAr0/LY0k6wMGkOmVkdErZ8Fag5iYGCQnJ2Pq1Kk4cuQI5+/vj6FDh2LAgAEN3qtUKpGUlASVuzvu7d0rcF27Mg0NDZafny907NiRy8rKEp8/fw6lUskkEglsbGyU5eXlDKLI6+3axeRdu0Jj4EDa58pKWvgKAh2TW7dwNyJCNDU1hb6+ftML0OhoWrSPGgUAcHFxwdWrV9VKGfA8jw4dOqCwsFDFcRwPCwvk//ILOoGctzmOgyiKqFO/0GNwgQAAIABJREFUW1FBJMvAgIJTtRAbGwtBEDB9+nQwjiPZ+8WLpExpBLV70a8oKsLJsWPxLDMTTzMyYP/NNzBwdsZJNzexMCaG6ejoiEFBQWLnzp1Fb29vXi6XQ6VSoX379nj8/fcoycvjLd97D9zkydXXTpV8XRUXF8cbGhqKxcXFLD09vVrhVAf379clXzk5Nb2ke/SgDNkXX0Bx7Bhw4wYiPTwgGhnBGiD5/qpVFLCqMoHrePcue5qaCsWWLcjNyUG72Fjgs89oPP/rX0RorK1p/lm0iFy81eZOHTui7PFjxH73HWbMmKE2xWr2RiLNz4dhjx4wdHKCk5NTzXtXriQ59q5dMFu/HnK5HNWu1ozR9ly/Dvdx4+Du7s6io6Nx584dMfz4caYbGIigKVMwd9o0rtFjpqdXh2xbWFjg3XffxdGjR3H37l3RvZ4ZXzXc3al0KDWVShLmzyenc3WAbM0aCrDSPbdZlJeXIyEhAc7OztU+Genp6fzatWtr3rR5M/3eiBFUv719OwX+6sHGxgaWlpZCVlYWd/369RaVZqmDvba2ti8nwmfPUrZ68mQKMIwZQ/8fP56uUR0dUi3VgiiKiIiIQLdu3f5cog0Q0V+woCZ4ampKgdGiolYHd18XZ86cQWRkJLy8vDB48ODmzTxFkQJsX39N5qaLF9PzwcEkI2/hGkzd/UVPT69ObbhKpRoAoJleqH8NtJHtNrThPwB/f/8uUqn08LRp0/4riTZAN051BkdHRwe9e/dmvXv35gFgyZIliIyMFHft2sUAwMzMTFVRUYF9+/bxFhYWLDc3V5gzZw5rsvdzS8HzdPO9cYMIbCMZOm9vbx6gmrHo6GikpaXBzs4O2q9DOOLjKZP9yy900/L2bkiy1bCyokxOfDwtLvfsIQJ1+zZlKhwdX307XoLaN12lUtnQMKUlKC8nUrtoEe3HN99Qz8//+R8ivKtXU4uklStJypqQAERFQfzhB5TFxOBqt25imb4+kxoaIjQ0FE+ePIGxsTGGDRsGAwMDFBcXw9HRUaWtrd06xYFMRvL2xYsbd4AtKiKSfO1aw2xQc5DLAbkcA379lRtx6xZk06YRwZ4wocZduCmsX0/SxlYa2ZmYmIDnefHZs2fM0tKy7osGBjS+AGoTpIa6NvD6dZLkZmaSCdCzZ1TK0KsXtT8qKyPCoqX1HyPaWVlZOHXqFMaPHw8nJycsXLgQu3fvxuXLl3H58mUAUDvTQ6lU4uuvv4ZKpULP2bMFz/h47qGmpooxBkdHR/7+/fuijY2NMHPmTN7Q0BDa2trgeV6C9HSUTZ+Oq/r62Kuri6XqIFpGBpGFTz+lEglBgMbBg0KWRMIfPXpUNW7cOL72dZCRkYEnT57A2cMDRtu2VT8vkUjQvn17JCcnw8fHB4aGhuzs2bOim5sbh5ISYMkSmO/fj5k8j5CQENy7d09cs2ZNzQRUWUmGbatWUab+4cM67aWCgoLQp0+fasd+5OVRXWwTZLsamZnQS0/H7F9/BYyNcefmTUErMJC7ZGEBXV1dDB8+HA4ODiwlJYUdOXIEDx8+BEDZJ83iYizdsgXjd+wQuXnzGkyWjx494ufNm4dOnTqxPXv2IDo6WrC2tm64+tbQIGXGzz/TIp3nadzPn0+lDFVEfG9iosAY4yQSCdyreo7L5XIgLg55t28jp7JSbYiJsrIyFJuaInzIEIwbN45UI5cu1agy+vUjr4P+/cmH4LffiGylpEDPzg5ubm7ioUOHmJGRkcre3p4fMGBAnQBFHRw4QMdb3ZpLDVNTInmBgZD84x/Q0NAQCwoKmKlaPfTWW3WubVdXV7i6urLLK1YImpWVnJLUU43/5po1DeYPU1NT+Pj44MSJE81PGIyRtPzaNVJIeXvTtqxbR4ZfLVD4PH/+HAEBAWJBQQE7fvw4pFIpBEGAvb29SkNDo+b3y8spYJeSQvNIM/fo6dOncydPnkRcXBxfWVnZdKBUEADGoJWdjSHl5ULw/fvc4OBg6I8YQfvStSsFBT/4gMZTdDQFeMvKKKM/ezbNay8pj1B7wLyW70VLkZ5erSIDQOPC05MCsv8hsi0IAq5du4b79+9j8eLFsLS0bJ4p5+VRUNzUlK4ldbIjK4uCuN27N/nRsrIyvHjxojr4du/ePZw5c6bOexhjU0RRPP3JJ5/8pc3RgDay3YY2/Onw9/fXlkqll0eOHKnfol6p/4WwsrKClZUVZ2pqKsbFxbG0tDR+1apVOHPmDMaMGQMDA4M3V7g+eTLJmQcObLYe2tTUFG5ubqqwsDA+LCwM7u7u4oQJE1oXAY+IoOzTixdkIhIW1jJiNXgwkdSDB2vMR1asoOi4umf3nwCO4/Duu+9i+/btuHPnTqNZxZdCS4syp7WhrU2LYKWSiLaPD8mce/Sozlal+vri0g8/YLBMxkYaGKDy2TPkX7ggZru7i3cNDLh9jx9j3sqVSEtLE/r37996aT/HEbHPymr4mihSVjE+vmWmaEolLehzcymIsGoVdBYswD5HR9glJmLcsmUv/47ERDKtag2xR3W7O1EulzOFQtFy+WOVxBhvv02P9HQi5h4eZDS2di2N08JCCoJs20bZoAkTaFsFgZQhBgZEBtUmekZGry0rP336tGhoaMhcqo5Fhw4d4Ofnh7S0NISHhyM6OhqBgYHo06cPJBIJGGPw8vISfb28OCxbBqfHj3l1f2dvb2+SJ6tRWkpO6Tt2QHvvXsRcvIiy8nIUFhYS0TE1rWkVxRjw3Xd4+8ABfs+nnyImJobv378/1AGNyspK7N27FwYGBkJQUBC36tQpVH73HSz698f58+eF1NRUTktLC927d1f3G6YD8+ABBTd4HtHR0bh+/Tq6dOlS47KsLrfQ1SXjt6QkUoPs3Al4eKCkpARKpRLe6iAKQO/Pzn75wX3wgOYOY2MgIwN91q/ncOECupCDcPWJc3BwwLp168DzPPjkZIjjx+PFkSNQrV6NbiYmDU6wmqiYmpoiISEBmZmZaNBWr7ycMqgffkjBQp6n/8+bR3MhY3Uy3ra2tmJW1fV58ODB6h7V0sGDoZmVJUquXhU1NTUhk8lEmUwGxhifm1vlq2RhQWR4+nQi2OqMub09ZdF5nqT5Q4cCXl4YsmwZyxk3Du3u3uX1jhzBuRUrML1DB7oe1AZmanz6aV2pdG2MGUOPa9ewbPNmljtpEqrJtp0dZVVjYmqukfBwDF68mPu8aryqpf4NcPUqBfLWr6/z9K1bt1SCIPCNthGrD0NDenz9NQUitm+nvwMDKZATEUGZcHWQtVaw9cCBA1AqleyTTz6p73Bfd+7V06M549kzmh+a6iVeVgYDpRKdOnWC+aFDUGRkQDMzkxRbhw4RYe/cmTLlEgnw5AnSduxA5/37ueClSyF/9owCotraRKZVKjov69fT9ZOYSJnsVataNR+5uLiIt27dQq9evf7c7HZ2drVKoRqZmRRUa0m99Gvi1KlT1V1YZs6ciQZB2vq4fZvucXp6FCCvrUy5f5+y8o0EVhQKRbUHBwD4+fkhKysL8fHxADmOvwdgJwCIoljo5+f3lyfaQBvZbkMb/nRIpdK/d+7c2djDw+PPlzL9H0fv3r2Zra0tfvrpJzx//hwuLi5NR/5fBxs20I36/Plm3zZ69Gi+b9++qKiowP79+xljDGPHjn25fD0tjRYBNja08Bs6tMZkrCUYPpwWRamp5FQOUJayspJIeEICLcTfcO0sANy5cweMMYSGhsLBwaHxHsPNYflyitTXaukFgCSdUik5xhYV0UJPWxtwcoIoijh97pxYamnJLFeuBKerCy2FAlpPnrB2x46xTllZeHz4MKIDAuDJcZzrwIG0kG+tS78gELk9dapurdk335CC4NGjpj8riqSIsLIiObZKRQvYo0cBOzsYCAIKY2MRGRmJPn36vPy4xcZS1qCVkvXo6GiUlZWxtWvXotpsqTUoKgK2bKF9vXaNggtr11K2e+dOWrRaWZEyQRTJWCgjo+aRk0Mk4OBBMhabMYOe19Qk4mprS+oLlYq+p0OHRqWGKSkpiI+PR8+ePeHh4cGCg4MbBA5sbGxgY2OD4cOHY/v27fj6669hYGAAURTh7OzMoKNDi9Uq4tIA9+/TdWNgANy6hYS0NIAxEQDLz8+nueXuXarnHTuWPrNmDbBqFVwCA5GemorKysrqr0tPTwcAvPvuu9y///1vMbeoiN3Ytw/ZN29CpVJxS5YsaXjeBYGOS3AwAOpyYG9vr5o6dSqRFpWK5qNhwyiwIZFQBuyTT2iMP3+OS3eoBW0dpYlMRlL/iIiaQEp9lJfXrf8ODaWMZxOtejQkEspOdu0KNmkSTNUt+5qARCJBcXExzp07p+rXrx+rzmofPEgBqXHjqFf7woVE9KysKPgRF0ek2NmZ5N9VGdwRI0bwJSUlYmxsLFu1ahX09PSI5KWmAk5ODMXFrHawcu/evSpjY2MegkD7eP48bT/P09hljIKqAwfSB8LD6V+FAs+/+04sePSIDTQxgW56OvoNG0bHc9Eiuia2bqXvO3SIFEnTp9fU2zaGnj1x39dXpVtUxCMujs6hjQ2RlISEGkXS4sXgZsyATceOSEtLw44dO7B+/fq65QQAfb6qxrk2CgoK0Lt3b5GpmbZSSQHEzEwaS0lJdDyPHqXXBg2iGm51F4mcHMrUf/45kePMTJqrDx4kwuzkBEybBm1NTXHpV18xbt06cNu2Efn6/Xea++bModKYFSuofvfwYQqgDB5MpTijR1OARSaj6yo7mxRlHIcQLy+8Gx4OMTmZrkt1dnvZsppAZ3ExoKODWB8f8Z6+Pps8fjxM/fxqDsLGjfSvOqgxfTqV6axYQVLtHTtafL91cXFhDx48aNF7Xwt799Ixrg0bGzpetfvT/wnIy8tDTEwMpkyZAmtr66YVHGr8+isFZBYvJvVJbahUdG3Uv78DKCwsxO7du8tLS0uVAPQAwN/fv/ZbNPz8/P7t7+9/HICLn59fyOvs138T2sh2G9rwJ8Lf319XKpWuHDp06P/d3l7/YchkMiiVSpw8eRIAEBgYKAiCgLlz53JWTS0qW4t+/SjjoG6T1QR4nq9uRTRx4kQcOXIE3t7e1U6shYWF0NLSqukPrG7XtHcvSXEHDGgdyVZDIqEMQWhoDdkGaGEycCAtXkpK6Mb3MqlyK5GZmQlnZ2chISGBO3PmjODo6Mi5ubm1POgxZEjzJFjdKumLL8g9Ny4Oz58/R15eHgOo13f//v2JmHfpAnz8MQwB2KWlIfTQIZVXdjantX07g6UlLaoNDSk40bXry43keJ6kpGozJYAW5TNnNpSIqhEWRov09u1pkacO0qj73ldF9zmOw5QpUxAQEIDMzMzmyXZODpnl/Pxz89vbCNTSy1b1Qlfjzh2Se5aUAHv2QNTSwtUrV0TX6dOZybp19JqxMRG/jRtJWq6nRw9HR9TJps2s8rMpK6PxWFhIcs6iIvqeS5fo+hozhhb9Zmb0vh49kGlujmvnz4vl2trs9o0bEDkOjDH24MEDuLi4NCAeurq6WLp0Ka5fvy7I5XJ4e3tz1QaSycn0GxERNR/IyqLr8OJFqvWtyggfOnQIAJiXl1dNH/SMDDoeVRAEAQLHwWn+fJS6ueGMuTlkMplQ5aDLOTo6CgC4xYsXs6tmZpjo4IDT9++LHh4erNFzfvgw9aGvysBmZGQIjDH+6dOn5EGxZg2N23Hj6o7fceMo+LFxI/pv3YrY2FgkJyfXuAZLJLQQrrXtDZCURMfd0ZFIo64uzU1NYedOyiwmJLy077YoUpMGhUIBQRCgp1Ry4siRYCdPUiaX5+naSE2lbfzwQ+DECco0u7vT9XbuHJGw4cPp4eEBLS0tJooisrOzq9s5omNHCpDVQklJCZ49e8ZP8Pam8hBNTXoPz1Otc58+dJ01BqkUsr59mZiWJnT196+JBFH2jaTXFhZE/hISKDAWEEBke8AACpL17k2BFHWZhbY2YgcOhE9CAgUX8vNpm378sYZsp6URuTI2Ru+HD5GWlgZBELB7925xyZIldaMa3bvT/J+ZSb+fmAjY2WF6Whr/6NIlCN9+C04U6T526lSN2V9ODgU7R42i7KO9Pam59PXpuDx4QD2e6eTRv5s2kZEYQOfI2BjmgYHihaFD2ViJhBRg6vtMu3b0XZWVRM4BOo+CQMEdgFpTGhjQb+/ZQ89dugQAWFdWhi0SCcaZmsLV1bVmPA4fXrPvOjqQy+W4e/cuA0AO7c3B3p6ucYmEAjmtUAyp1YRlZWWvVyrWHJKTaZzUz2D7+jY9Rt8QysrKsGfPHsHd3R3Ozs6sWTVEXh7NR2PG0P25MaVlUBDNI42ck9jYWBQXF2sBMAHwNoAwxtg3oigOrnrLRQDw8/PLBtACWc5fB21kuw1t+BMhlUo3Ojo6Sk3rO0T/haGnp4ePP/4YUqkUZWVlOHnyJJeQkIDExES8MbKtbv1z4gSRwxZkiLt06QI9PT0xKiqKeXt7IykpCQcPHgTP8+hcWKjqmpfHGyYnI9fODt3DwyF5lXrn2rC3J6MZdYZGjT596KGWBCYlvZpbeRMoKioSHBwcuMLCQtXTp0/5p0+foqioCFFRUTA1NRVmzJjB6TWRGave7mZquarxySeUUf3tN5hv3QrnRYuQUlCAsrKyRt9ubmODyR99VFcenJRE2Z916yiD6upasxCo3eaoNnr3pgX+xo20IBs6lLJZavIIEAHbtYuyQt9+Sxm5xYspS9PId1ZWViI0NFS8ceMG09DQENu1a9f8gHr6lBaHrVQN5OXl4dKlS5g8eXLLjeGAmiz8jh20H5s30/Nk5sWuAhi9aJHQ64MPOOzbR4Z1pqa0yHdwADQ0cO3aNTEkJIQBwLJlyyCKIkkRtbVrFmW1TZumTKF/FQoi2XI5cP06inNycOXyZbgXFTG3igoo9fUhGhsjVi4XpXPmsEgnJ9Fp4UKmI5WiTEcHzNYWmkZGMDQ0xFtvvdUwRe7qSudbpaLr+uhRarHTrh0Fc2oFfnieh0qlgq+vb83nvb2BAQMgiiJiYmJw6tQpqFQqmKxcKVh268ZpZGSIpqamnIWFBezs7GBubs4BFFwZnJAAHD6MOUeONH2+Z8yg4EUVxowZwx04cAC7d+3CyqdPoTNsGDB8eOM94JcsASorYV5YiH69e+PQoUMYN26c6OrqSr/39tu0r+revbUhivT5X3+lYMc//kF1l41dEzt2kKv7gQM1XgtNQBRFJCcn4/z58yIAtN+xg419/Jj7LS8PnUtKYFRWVp15lMvlCAkJES3KypiFszMszcyqpQsFoohYGxvkv/++oHvtGvS3bUOHrCzOzsEB4UZGyMrKqqlPB4js7d9fnWlTKpVgcjmMZs2irOa//lXz3k6dqPWVStVk2Y5CoYBSqeQuXrwojhgxou5BMTIi8vf553Rs3n2Xxpko0nixtqZjtXo1BZc2bQJ69YJCoRCZuzsFVnieyO/bb1Nwrls3mnsiIwHG4OLiAicnJ2zdulWV8fQpf/3ECbGvhweTfPopBWc+/ZSyixkZNeqIbt1gOWAAghQK8TcTE8xatYrByIik0y1BZCSNFzXZrg31/arqmA8bNYr7ITERvpWVkNVWB3zzTc1n1q2jOfHkSfpOtS9E7axnPU8BbW1tGBgYqG7evMknJCSobG1teXd39zpqsYMHD4rZ2dnV5yQtLa3puupNmyijrQ6e3bxJwTa5vEX3RXXZQkZGBjrXl3m/KaSkUPa9PoyMSHFQ/x7/BrF7925Vhw4d2KhRo7hmiXZ8PN3r3N0bBv5qIyCADAcbgYODAy5RUGW5n5/fl/7+/ma1iDYA/Lkp/P+P0Ua229CGPwkbNmyYIZPJFo4ePbotq10P6kyxjo4O0tLSYGVlhV69er3ZHxkyhLKW0dHUXusl4DgOAwcOxLlz56CpqYnr168Lvp07w/PSJS5LELg4Q0MhaupUsUwQuCvffy8aGRlxVlZWGK3O5LYW3bpR1jAlpfGarnffJaKYlkbZs+Ykji3E7du3UVpayvXo0QN9+/blHz58iMzMTCE8PJxTqVTIyMjgTp06Jc6aNavxu3Z8PMmzS0tb9oMyGTBxIqRpaRg+ahSuvPsuIhQK0dfX9+UrDx0dOm9ubtSaqqiIyPfjx9TmS1OTZI2dOtHi2NOTFjSMUfY2O5skk7160VgAaMF++zYZ76SnU2arSmHRHMrKynDjxg0GAM7OzkythmgUFRW08HqFHqv5+fmQSqUvz/TURno6HY+BAylAU8vRXxRFcByHPn36IPDWLa5HdjYkQUFEMAA6Zn36IPXDDxESEsKMjY2Rl5eHnTt3AgDGjh2LnJwcQVNTk3N3d0ejBoZSKdC+PZ49e4bTpaV4UV4OmzFjRLfZsxljDFJBAF68QI+KClZ+6xauHjzILv76KzxlMuSFh8O4oAAFenrIsraGVXY2pBYWovWKFexZairsvbzAtWsH5d//DsmxY5R1cXQko7tG3Jp5nhctLCyYet/z8/OR8be/CRBFmGzdyh07dgwAIJPJhNyKCm52584wmDOHITu7cen15MkN6zBr49gxkiDXysqqM+r9r19HfGkpQszNoYiLqw4E8DyPXr16wdjYGKGhoaKrqysb4u8PVyMjJPbtizNnzjAnJydSNmRmUneFadMa/nZQEGWEO3WibQgLa1hjWVBA142pKc0lLQgQRkRE4PKRI1i5axfTfPQI/OXLsHd1Ze0rKnCua1fMqvqN8vJy7N27V8zJyWFjT57Eyd694RkejoyMDKhlu9ra2qKZmRlT+viwFyoVHkdFqfTu3+ffPXwYt6Ki8FRLCx3U8/6tW2RGVkW2hZMn4XvhAp5+/jk61FelcByRwNTUBi3ARFFEXFwcfv/9d+jr6+PBgwcNyTZAn/3jD/IxMDCouUeoM8CLFtUQqAcPABMT6Kam8g4+PjQPXb1KaouNG4kAGhuTSZuZGcmkk5LAbdqEdj4+4oyNG1Gqo8PuffcdeuvoUObY2JhKblavpjnL0hLgOERHRyPl4UPm6OiogolJ67wrnj9vsRmXcZVyJzo6uuG9Vy6n+VNfn7LeHEfS4rKyugqTJvD222/zR44cUT169IiPjo6Gra1ttVqsoqICiYmJTENDA1paWuLUqVNZk0RbXRIzb17d53v0AD76iIIWzSA7Oxv79++HVCptWZ/pV0VaWsOWmwCdY0Eg5UdzAexXRHh4OEpLS/lFixY1X/q2fTutIfbta9gyrzYePqR7otpHpgpKpRKRkZG1kyFfAPjSz88vx9/f/28ANgGoAKAPIP919um/FW1kuw1t+BPg7+/fTSqV7po3b57WnyZd+i+BoaGh4OTkxDWa+XkdcBxJjw8coEh8CyLL6szezSNHMD4zE53j4zluyxZY9+rFrKv6VCqVSoSGhgp5eXliWFgYS0lJUc2aNYs3MDBAVlYWBEFoWYaeMcoy7NtHdY2NoWtXChb8/juRb339Vjtbq6FUKnH58mW89dZbUGeuu1OGmhs2bBiioqJw5swZvPXWW00fKEdHIgCtidJrawMffwzt+Hj43L2LF6amLOPpU1jVa/P2Uujr1xiuzZhBkriHDykztHVrDYnu0IEyMs+eUdbpb3+jesEJE2jhM2kSlRm0on+oeiHTVKuqOjh5kr77FdQsJSUl1bLdFrW9O32asugeHhSQqDU25HI5zp8/L0ilUjZo0CAWHx+vCl64EMOTknjk5QHGxhDv3MG+XbsE6wULuLmAaHv5Mjt//jzu3r1b9fWnIZVKOYVCgaSkJCxcuLDJTYmIiEBWVhYGDx6MgQMH1sgZOY4ICAAta2tYdemC4OBgVZZMhq4zZ/I9Bg+GdX4+bDIzkR8Whrg//mDR+/fDMDcXWX/8AcdHjyAtK4NxWRktuufPb9LkTi6XM8aYmJiYyAICAiAIAnrKZODNzLhz+/dj/PjxOHnyJJYsWcLt3LkT5VZWMAgLo4WwIDSsPbe1pYXqpEmNt8CxsCCFRS3k5+Whf1AQek+fDnHsWFhXKQSeP3+O1NRUPH/+HImJiYJCoWDFxcXs1q1buO/sDPeICOhlZQmZosg9fPgQbm5uFEwyNW182x49ogDczp2UjWqst/GwYUQi1VLfpqBQEBGfPx/uz57hbP/+KJg/H+319asVIQMTEhAQECBu2LCByWQyyGQysbKyEksnT4bWv/+Nq+3aiVeuXBFVKhVzcHBggwYNgpWVVd2JYvJkHgD2fPONsvPlyxKLgAC6Xnx8KHu7ahXta1oajLduRe7IkeKtx4/hpqHBSkpKYGpqioqKCpSVlanc/f25Ej098erUqWJlZSWrrKxkCoWCKZXKagl8WVkZlEolFxERIXp6etK2PHlC5/PGDQrcbdrUePcCoMZI7cABAEDeZ5+xuIUL0U1Pj1QE1tYkt/7iCzIczMqigMeaNVROY2qKqW+/LUns2xcHjx/H2/b2JDuPjKRzM2cOXbP29sCsWYC/P4qKimBiYiJU1/y3Brq6VKfdQri4uIh37tyBp6dn3fZQM2dS9v7KFTo3AMnrW2jeaWFhgVWrVvE//vijmJOTw9REOycnpzqQZ2hoKCxfvrz5SS4zk+a3+ve8R48oQPIS7N+/HwqFAjzPt76NaGvw4AGdv8aQkUH3ptpqmzeE4OBgsUePHkyrqbKu4mLA35+UMQcO1C1ZawxRUaRaqxeUCwwMFMLCwjgAAqiNXnWk08/PbzOAza+1I38BtJHtNrThDcPf37+TVCoNHDNmjFarzaf+gujcubMYHByM58+fi9OmTXuzWqsJEyiL11T2uB5mduuGvGPHBPu8PE575EgOBw40WORKJBIMHjyYBwA3NzccOnSIj4+Px/Xr11VFRUW8np6esHr16pbd2RcsoMzBhx82XQft6kqEOzKSpLvXrlF9cSuxZcsWQVdXl2uqf6u6bUez7cA++YQW71Ontvr3pY6O0E/C6L0cAAAgAElEQVRLQ9aGDTDt3Zt6Pb9Oj3NjY1oAAkSqc3Np0ZOWRlm+r76ioMCmTfQ7kye/cpurGzduiADY7du3BQcHB67J61qlogXL5tavPc6fPy/eu3ePDRo0SOBetjIURQrQJCXROWmELFy5ckWIiYnhZsyYAZlMhhkzZvA7duyAQUiIaBcayu4vXChERkZylZWV3JB582BTWMhQWopRJiYY5ecHQRDw6NEjuLi44IsvvoAgCM06o1dUVIgAmKenZ7Muyu7u7nB3d6+zeuaMjGBkZAQjJyfYzJyJwsJCaGpq4l/ffIN8PT304XkRsbEMeXlUL7x1K2Ueq3pgA9THGwCePXvGDlYZFZmYmKiG9e7Nc15eeB4TowwKCuI8PDyYkZER09TUVGVnZ/OWbm5E8h48oGxlbfA8ydaXLm14jBMS6JqtLbkURXDHjsEkLw8xHTuiT/v2UPteq83g1Lus/qOwsBAZGRlw+NvfwA8axKn8/cG5utKLMhm5+r/3Hkk/1Xj4kIzffH2p/nLixBppuLq2d8IEkimrvQfqQxConlRDg8ooEhKADz7AnagoESkpzOiLL+rMSQ4ODnj//fdZSkoKLl68KPbo0YP1798f3IMHwNmz+J8ePRhe5pwvCACAcomEPezTB31Xr6ba+5s3yXBSTVZ79ADCwuCQlMSeXLwoJCcnC+np6bympqZoaWnJZDIZ/+D996FpaMhcjYygp6dX/TAwMIBEIkF4eDhiY2ORkpKCx48fM09PT1KdmJuTVFxLi+qunZ2bba8mVG0zABh36CDmd+nCUFlJAT9r65oxKJHQIyOjJotZFYixNzKC1oUL4h9//ME+XLsWsh07KDOvJpF37pCM/rff0KN7d4S8eMG9Uo1xXFzzSox66Nu3L9u9ezd++eUXLFiwgIiZnR0FEupnYletouOlVL605ZYahoaGYk5OTvWYOHnyJARBwIcffgiJRNL8HHfqFAVJq0wL68DAAFi8GIK5OZ688w7s7OwakGmVSlU9D2lqaqpJ4ptHaSlljTdtavz1MWNIRfGGkZSUBLlczvrUC/ZVo7iY1CzTplG/+5dJ7ktKKGi3fXu9p0sQFhbG8Tx/V6VSeQOo9PPzE9/MXvx10Ea229CGVsDf398cwEiO47pKJBJzjuO0GWOGAGwVCoWNKIq8RCIRhwwZInV3d//Lu4+3BL6+vryNjQ2OHj2KFy9ewKQlrZlaCsaoBm3ZMjJTagqxscDOnehgYYEOw4dzGDu2RU7Y1tbWMDY2Fi9dusRMTU25t956C0eOHOEeP36Mrl27oqKiAjt27FCZmZlh5syZfAMOpaNDWdjLl1/eT9fdnWqgjY1pEV3bcOYlOHXqlFhWVsYtWrSoSSJkamqK3NxcbN68GUuWLGk8O19URIutVwSTSmHv5qa6vWABP9DRkaLtHh51+g2/MkxNa+TiAAVX9u6lxedr1uq1a9eOmZqairm5udzOnTsxePBgDBo0qOEbz58nWWpTBKcJVFRU4N69e2zOnDmwsbFpflEYG0vj+YsvKIPWhGw0JiaGc3V1hV2VbNDExATvvfceIt3cWNDx42LRhQvMc/Ro9OrVq8a99tgxIpaZmeB4HupWXTY2NkhOTmYnT56Eo6MjBEFAQEAAAKBHjx7i4MGD2aNHjxhApSGvA4lEAhMTEwiVlfAJDoaFm5to8fe/M8TE0Hm0sqLgSkkJZSjbtwf8/KBZtZh0dXWFpaUlgoOD8eLFC14VGQnO1hZz5syps97R1NRkd+7cEd3c3BjWrqWx3RgiIxvvLfzTT5SxCg2teW7HDphlZeHcwoVCyt27nIWTU7VBU1MwMDCoMSfcuRN8RgYRDDUx79evoUlaRgYR7UWLqE3S8uX0fHo6HR+epyxWY+Pw5k36zgkTaJ+vXKEAkbU1FJaWuHzyJOvXr1+jRE9bWxvOHTvCuWtXhv79SWkQGEgZ/gcPSFXyxRd0PQ8aROT2rbdIhXLzJs2pv/yCJdbWPNatw7P589Fp3z4iAn/7G53XoiKaDzkODg4OcHBw4GizbyImJkacP38+TWCpqZTND2nc8Lh79+44e/YsACImx/z8hLf++U/u4DffCCpXV2DPHjhfvoz2ERGcrFevOoaHUVFROHHiRN0vFEU4xMczh9BQkmsfPkwZYJmMsq9Ll9I2NRHUnT9/PtuxYwfuHj2qGsTzfJ35vuqeJ9++HREmJoK2tzfjeb716wd1WUELoTYhtNTVJXVDRgYFlRobN0VFtM8LF1JpTgtQXl7OOnTogOvXr4sJCQnis2fPOBsbG0Emk708mOjrSz4UTSm5fHwQ+uiReOXgQaajoyOsXLmSk0gkKCsrg76+PhhjKC4uBgAsWLCgRUS7rKwMR48ehampKVxcXFrWn/vBA/LJaGo7PTwoCPKGERQUBEdHR8HQ0LDuvokimSVu2gRcuNB0J4P6uHSJznu9lmGBgYEAAJVKNcnPz6/ijWz8XxBtZLsNbWgB/P39NSQSyccSieRDW1tbVfv27XVkMhmTSCTQ1NSEnp4eTE1Nq11237gk+r8c9vb2sLW1FQ8ePCi89957r6aTbgrdutEi5Ny5GqdsNZ4+pb6w0dFEer28WtVuSiaTYfHixSwpKQl2dnZMJpPB19cXp06dEpKTkzlzc3MUFRXxAMTt27cLc+fO5Rq4fnfuTNnql5FtjqNF9fPnFKn+4w/a3pcgJiYG0dHRbOHChY3X3IIIzsKFC/Htt99CoVDgp59+gqWlpTB69GjO2tqa3iQIFLh4DbO2O3fuiA8fPuSTdHWRGhUlenz3HbR4XrS9do1DawzBWoIFC+jx6FGDGrTW4tGjR6rc3FzezMxMVKlUYvfu3Rsu3qqkq5g7t1Uye6VSiR9//FGwsrJqnmgLAsk4t26lbGftnsz18PTpUxQXF2NI7eADAH19fXiPGwcoFAy//kqEqLaSYdIkyrhlZZF8NDQUsLDA0KFD8csvvyAqKgr367UrioyMZJGRkQCAqa+geGgURUXI/uwzSBmD2bp1DFZWJJF1cyPDPHUtbb9+wKFDKAoJgcbf/oaxkyah+8iR4LS10bdKTsuFhTUwGIuLi0Nubm7Nse7Ykc6fvT1ldmrXCG/YQNfeli01z4kiqRdqZT0RFkZZ8EOHMEyp5Hbt2oWQkBDhnXfeaXlGzcuLsuuzZxOxadeOAiq1M+55eUTsLl6kDN/48fT8ixd0fE6fJif82oiNJUluz54kX374kOqL1XNdlWnW3bt3RQBsmNrwLTmZ1BN9+tD8tHAh1e1u2UIy7CFD6HX1+Th+nI6htjYFKQDaDzXKywGOw5VLlxC1cSPWdOxI3/Xzz2T0lplJsuz33qN5W+3kDvL5UCqVNRlKMzMK/DUmsQeVQKgxnOOgHDyYe9ihAxycnKrfXKSlhQgzMxhcvIjZs2cjLi4ODx48QGpqqiiRSJiTk5M4wcmJcbt2kTw7OZmO1eTJFBj44AM6Ju3bU6nP7Nlk8la/jzcAc3NzyBgT7T/8kP916VJxliCw2q78586dQ+SoUfD09BTfP3CA4w8epPmrNfj668aNuppAaWkpmCBg6IoV1G2gSuLdKDp3Jqm0+n7QApiYmCAqKgpPnz6tVj107tz55dfDF18QQa2S79eHIAiI8/BAQmQkm6ihgRs6Ojh69ChSUlKgVCrRvXt3qDO+rZGQv3jxAk+ePEFeXh7u3r2LQYMGYfDgwc1/KCcHcHVFWVkZQkJC0LFjx7qeG1padC3Mnt2ibWgJQkJCkJmZCR8fn7o7lpdHwa+LF+nxsl7baogi8N13RNLrwcLCQoyOjmYAnr+BTf/Loo1st6ENL4G/v7+OhoZGaLt27bqMGzdOqynC0oZXB8/zGD16NPfDDz8gOjqaWoa8KXAcSeCOHiXJH2MkRa3dV/Trr1+5Flomk1VnAAHA1tYW58+f59R1r507d1ZNmjSJP3LkCPbt2yeuWLGC1Wnr1LcvbceLF03WotZBu3ZkVCaKlN3etq2mx2sjuHLlimrgwIFchw4dmmWAMpkM06dPR1xcHDIyMpCens4dOHAA69atI7OmoCBayOXlvXwbm4CDgwMLCQmBo6OjKjo6mk8ePx4yDQ1x3Qcf0OIqKKjx2thXRVkZSVJjY18ruz1ixAg+Pj4eubm5DAALDAwUp0yZUvd4RkSQu/Ht29VPyeVy3LlzB46OjtWZM6VSieDgYHh6eiIgIEAoLS3leJ5nM2fObPr8yOW0qC8qAo4cwcsCE0VVWdom24dNmkQBpoyMmgyqGlIpSW1nzKg2kGs/Zgz+/ve/Qy6XY+PGjTAwMBDfeecdZmBggKioKEgkEgQEBFT3yG7WFfdlSE+H+PnnCMvOht6nn8JEXWeop0cZtejo6vIBlZUV4seOxYnjx+Exb55yxPDhEowYARgagvv5Z/rMzJlEVmtl6xp1xGeMghj1a/IHDqxu61WNuXPp+lOTgSNH6HH2LCCToT2AlStXYtu2bZxcLq9pHdgSeHvTsU9PJzKtUJBz9ZgxJN/9/Xca08OHUyApL48ya3v30rFReyFUVpJx3oYNRGjVstLS0kaDQUl79oiP795lXg4O4Ly8KAi5axfVNV+7RqTe25sCE8uW0YfeeYeuMXWms3bGUx3gqk08q67tPn36IOXsWTF8/Hjm1qkTNAcPrhvM+PZbOhehoUQYXFygoaEBlUpV8x5tbSL3RUV12iOmpKTgxIkTQnFxMTdlyhQYPnmCdnPngq1ZU+O4DQAVFRCXLUPs1KlITk7Gxo0boampKXa2sxPGDBvG62zcCI1t29jeUaPQu7wcrr17E8EGiOTPm0fnSS0j19Gh62XPniaNu8YoFMhs1w7JjLHw8HCxT58+jDalAmFhYZBIJHjw4AFvLQiCi50dJyoUYC3telFeTmO8Ba0iCwoKkP/iBfIXLYKsVy9Ig4NfbiIqlVLpwldfUcCvBZgwYQKzt7fH8ePHwfM8LC0t6zrQNwUHh0YDpEVFRQgICBAyMjI4mUwmjk5JETsXFnKxCxaI8VVt3aRSKbKzs7Fr1y7wPI9PPvkET548wZ07dyAIAnx8fJqU51tZWUEmk4kFBQUMQHVbUEEQUFBQUG0qVwfx8Xikq4sz27cLBgYGuH//PqepqQkHdYDPzg4IDm4yKPQq6Nq1K65du1anxAHPnlF3Ag8PCly1BiEhNDeoHd9rwczMTD1Z6ABopg9hG5oD/1lTxjxtaEMbAAC3bt3abW9v7z1jxgytJo0o2vDakMlkEEVRGRgYyFlZWb1ZObmZGRnxPHtG7cCiomhR6u9PC8Q3SPAqKiqQlpYm9O3bV3Bzc+Oc/h977xlW1bV9D4+19jmHzqH3jiggClhQkYA1xl5SLIkl0WhuYkwxuUlubmJMctNMNUaNSUwz15ZobIgaC6AoTUABC1URkSadA4ez9/5/mNLkUHO/vL+X8Tw+Kpyyy1prrzHnmGP6+XEbGxt4eXmxq1evytHR0bKJiQmzsbGhiLtCQVLO6mq9Dst6oVLR++LiKNNiZNRpPfKpU6dYaGgo60mQyNLSEj4+Prhz5w4KCwshiiLMzc3JYdnenjJ+fagXb4aRkRHCwsLg5+fHhw8fDhcXF6SmpbGwV18Fd3KiDcnvv/dYptgtlEqS3tvZ/a32K4aGhkhKSoKJiQk0Gg1KS0uZra0tGhoaWn4v/fQTaoOC8NGJEzh//rzs4eHBvv76a+Tl5SEpKQl5eXm4cuUKjh49ivz8fKSkpKC6uppZWVnJ06ZN69zhPCaGSPzDD1N9dg+Im42NDaKjo6HRaPRvbhmjbOWYMaT2uH8TyTmZc0kSkQl3d8DfH4IgYNy4cRg9ejRrVu84ODhAoVAgISEBFy9eRHR0NOzt7dGlY3tnSEsDDh2C5OaGSCcnqeD2bWZiYoKjR49Kt27dkga98ALH4cN03ABu376NHTt2YExoKCY/9RSHqyvVKFpaUsbpyScpiBMR0S4g5ejoiPPnz8vDhw9nPm2z3sOGEaGYN48k2ozRuZeWtq/Z9vamuermRpndV16hjGYbomNoaIiYmBiMGzeu9+ZMI0eSp8HevXQ+Zmb0/TodEeDHH6f7Ym1NGcmjR+l11tbAb79R0CokhDKvc+ZQcKCZKDY1EUlVKEiuPXcumhYvRuP8+cyUMbg9/TSqOYfhpEng8+ejbNYsGBsbg4WGtpxfU1MTtFot+TvcvNmS3WuL/Px8HDhwQDYxMWGSJEGSJNTW1qKmoAB1r74Ky+pqlsc5HN57Dyb3152amhK5T0ykse/jgwoTE2RlZUmjR49uvZjz5lHgsY351L59++SSkhK+6MEH4fX557B87TWwf/6z47y5dQssJgaDPvoIHh4emOTvj/HGxszvyy+5nYkJLAYPhtmLL6Jy0CAcq6/H6ClTKHgly1RPfOUKOYm3DdKOHUt1zRYWHWueq6pgt38/kz//HBnU6pI1l6L88ssvuoaGBubm5saamppw0cSEFQiCaDt9Or926BCM58zpXi1XXU33Pzi4y5c1NTXh848+wtXERISdPAnzxYvh1lPzrm+/pev93HM9ez2AmJgYub6+HkqlUqqsrORNTU2iRqPhUVFRYnR0NBNFkZWWlsLKyoqu77ff0lhq006vGVFRUbh+/Tpbvnw5pkyZwmwfe4wJS5bA1sKC19bXi/X19Vyr1cLa2loaPHgwKykpQUxMDDIyMqBQKMSMjAxeUlJC5oOg7hyxsbGyp6cnA4CNGzdKZmZmmDVrFmtqahJjY2N5RkaGmJ2dzaKiopilpSUUCgWioqKImBsYAKtW4WcbG9Qzxl544QVWWVkp5efns1u3biExMRHuAwbAIC2N5u99ppmVlZXQ6XS9C8aB5taVK1cwfvx4GBsZUdBv505g9Wqa673FoUO05ugpgYiNjW0oLi5WCILgEx4evrf3H94PoD+z3Y9+dIn169erBUFYMHPmTOXfytb0o0eIiIhQaDQaad++fczMzEzy9PTkU6dO/fsXnnPacD/xBLV/Wrq0V3Lx3sDa2hqrVq3qsLs2NzeHu7s7T05Oxp9//omoqCjZ39+fTZ06FYrnngPmzUPx5Mm4dPkyxo8f33lWsu05bd1KG3B3d2qFoqcfqyAIcl1dXa+uYduNXYvsfffuXjl4dwczMzMYGBhAqVRCYWdHpCAhgbIm8+dTLeTfrP8FQJ/z4INEkJpbXvUSjDGsXbsWjDFoNBp88cUXLTXLSqVSNi8qYmPOn8fhGTMAxqDVallzzaeXl5dsbGyM9PR0du/1WL16NfLz83H48GEEBwczvW1pGhqoHvCll4h49aBkoO3xDhgwQL548SJ74IEHWtrutIORERHKEydI+qsPCgVJZzknyfC4cdTP+T5YWVnhpZdeQkxMjJScnMxv3rwJv95K90+coJrxmTMhTJuGlwG+e/duMTo6Gmq1WkhNTcXEiAgY799PxxEcDCcnJyiVSlRVVbWat5mYtJqJabW0AdXpcHXTJii//14++fTTrE6rlXQ6HU9ISMDYsWNba9YByvA9+GBrAE6no0zljBlErH7+mQJOkyZRacrbb5Oa4b75qtVqwRiD0EfFDNavpzZUubmUlf7pJ8p0x8XRWiZJ1Ee+sJCk2g89RAHFkhL6Y2BA7bT27iVS+v77dJzHj9Mx/+c/RMw++QRnzp+X45YvZwCgiIqCsYmJ2Lh9u2BqaipVVFTwgIAAafbs2bypqQn79+8Xs7OzBVmW4enpKT1eU8NZdjawaBFyc3Nx+vRpqbKyktdSnTnLz88HAKhEET7Z2QiNjcXF0aOR5+cnVwsCm95VUHX+fJK+p6TAecMGGN3vg/LZZzS/22DcuHHszz//lP764w829dw5VhgTI4+JiOj49C4tBd57D9Z1dbBevpyURVFRRO5HjYJOFJGUlNTibF5XV0fr4rZtdE+2b+/YSs3amsocoqNJGdAWW7cCnp5wGjgQ1tbWkpWVlQygeXBwrVbLSkpKZMaYDICrVCrOfv0VmampcuZ778F/6lQ2fOLEzlUjeXlUZnJ/mywANTU1MDMzg06ng/LKFbz+1Vf44plnsO2ZZyDk5yN92zZ50aJFzFSP/L0ddu6k7+mivzkAlJWV4dKlS2hsbMT169fZypUrYWNjIxQWFuKvv/5ieXl5Og8PD4WXlxfS09PF6upqdv36dXnhggUCNm6E9PHH2P7996KRkRF79NFHuUqlgiRJGDhwIC5duoS4uDjxkUceoQPYvRsOq1djQWmp0NDQgLq6OlhbW3MACA8PR21tLczMzHD69Gnk5uaipKRE+uqrr6SBAwcqrl+/LldWVrIvvvgCgiDAyckJS5cu5YwxODo6CteuXQPnnN+6dYuNHDkSBw4cAOccgiCgqKgID7q6wmHgQJh4ekpidTW/Vycu5+bmwt7eXlKr1di8eTN7ys6O2RUUtATs4uPjkZGRgYKCAlhaWmJNJ0oISZLQ0NDQLhOfmZmJffv2YdSoUaI1YwIiI2mOf/11927j+nD7Nsncn35a769LS0t1AJaLovh77z+8H83oJ9v96EfXsFKpVE2GhoY91HL14+9i0qRJ3MbGBkVFRUJKSgoMDAw61J72CbNmUV/hr76iLFdIiN7auv81rl27hlOnTolVVVVcpVJh5syZzMHBAX/++ad89epVlpKSAm8vL9l3wAB25d135Rx7e5adnY05c+b0rIVYc4bbwIA2dOPGtcvCGRoays0Z2J4iIiIC8fHxsiRJLDo6Wvbx8WHYto0IWmdtcvoAtVoNxlhrq6uQEMoYXbtGsrZDhyjb+Hfx9tsd6nZ7i+ZNrpGREZYuXYpr165h5MiR2LRpExuWnIzbDg4AY3jllVdQVlaGhIQE0c3NTQgLC2OWlpYICgqCh4dHC/mytrZGSUmJlJmZyUJCQtrvoHNzqX+vWk0BiD4Qtscee4x99tln2LJlC1577TX92dV//pMku3v2dO4w3/y+116jzExaGmVT7zOIMzc3x4wZM3hycjIuXLiAKff3Ru4KP/1EJmBPPNEuoDN//nwBoAz2999/jxqNBsYfftiSieecw83NTdJoNB0ZyPnzlO27cQNgDLkffSTbKpVsoL8/Alev5mVLl0I3c2Z7ok0nQlLZN94gWeXzz9O8kiS6DydP0hzw8KA2Tvv26XVn1mg0fSfaAJHId9+lLL6nZ6tplJERlcG89RaVR6xY0UrEP/+c3jN6NElKn3ySggNhYZQNX7CAzi8zs/V7fHyQ/913DACWL18OGxsbGBoaChkZGSguLuZDhw7F999/z2JiYmRRFFFUVMSef/55CIKAzz77jH+j0cDL0lIs+uEHduvWLR4cHMwHDhwIWZapTZ4ooume/NjA2Rm4dg1zjI3x66+/smoiP3BvQxLu3r2L27dvQxAEaDQaaDQa1BsbyzaCAJdr13g7c0hbWyIZ773X8n6vqiq8/NVXHNeuIWPZMpz4/Xc2wN8fdnZ2JK1XKCg48cwzpHjZsIGun7c33V9PT8iyjPPnzyMmJga2traSm5sbU6vVDEVFNBYOH+68Z/nataQ0KCmhzweoFt3JCRg/HjqdDlqtVi4sLBQaGhpgaGiICRMm8J9//hlPPvkks7S0bB7LDACWTJzI7vr5IScmBic//FCaOHEi10u4q6s7mCXeuHEDFy5ckK5evcoNGxsxJCUF9UuWSA/98gt/ZdYs6HQ66qt+8iT75ptv5Jdeeol1mWWNjKQgzdGjFATRg+LiYvzwww9wcHAQBUHArFmzuI2NDQPIkG3p0qUcbZzBw8PDhZs3b2LXrl1UsnDpEuITElB17RpXKBTyl19+KdnY2ODu3buQZZm5u7tLfn5+rRfg4YdbJOf3WtK1/EqpVLb4lHh7ewt1dXWio6OjYGBgwOPj4yXOORYuXMh27dqFpqYmTJ8+veXampiYwNTUVFar1UwURWnq1Kl83LhxUKlUyMvLw/Hjx6WMI0eQBfC7d+/yl156CYIgoKqqigHA/PnzuYWFBbZs2SKfy8rCNI0GiWfPIi8vDzdv3sTo0aNhYmKCnJwcubKysqU9WkFBARITEzFnzhxs3bpVLC0tFQwMDKDT6SAIgiyKIjM1NcU4tVooe/JJNAwaBKf9+5Galib9tXs3f+CBB2QrKysWFxcn2trawt3dXQgICOg8SBMdTWuZnuSDLMu4ffu2KYB969at68RBsh89Qb+MvB/96ALR0dHVsiy/NXLkSEWXLZH68T8D5xxOTk4YNGgQjI2N8ddff6GhoQEDOsu+9fyDSTr+6KNkHnL4MG2AeurW2QNIkoTz589DlmVcv34df/zxh5iWlsaHDx/OJk2axCZNmsTs7e1hYmKC4cOHs4CAAJSVlUkNjY3MXKuFIiuLqR98EHfu3MHNmzclc3NzFhkZiaqqKuTl5XXubGxhQRm9DRuA7GzajN57uFZXV/OMjAxpxIgRPc5uM8YQFhbGDA0NkZmZycaOHQv29NMdpKJ/F4IgICYmBqGhoa3EhDEidUFB9H3/+he5G/egr2qncHOjjNNrr1H7tL8Jc3NzeHp6Un1gerrcWFMjF48ciTmLFjF7e3tYWFhg8ODB3NfXlyS4jMHKyqoD4dVqtSwxMZF5eHiQgkCWqd4uN5cI1iuv9LnEQRAEBAQEIC4uDg0NDfDRF2xgjGTFr79OpltdfdeAATRftmwhA66nntIrzY++Z+Y1dOhQdFt2I8skG01LIzJIfd874MSJEyguLsb06dOpXCI0FFi+HI0AoqKi2NixY5mVlVV7crtgAdVL3jNKcwwKYrtqauSykhLmaWMjec+bx2zj4ymj0ywZb3suaWk0DocOpYxeXR2tFfPnU53yP/5BcuJO2sBVVFTg8uXL3fdl7wqMURb77l0ighs2kEz000/pOvj7k6GbuXmrOdpjj1EwYO5cynwvX06k1Nm5tZ77Pri6uuLKlSuIj49HQ0MDBg4cCDs7O3h6esLY2Bj29vbs1EsV2EwAACAASURBVKlTcn5+Pn/44YeZk5MTVCoVBgwYAMeKCvhu3szvzJjBXF1dMXPmTLi7u8Pd3R3s/HmwbdugSE+HYs0aGmP3nqMmJAuXU1NTmbe3N2pra2FkZIRPP/0UV65cwa1bt3SFhYVSRUUFGnU6XjdsGPMJDGS233xDa1xEBN2HZcvI3JIxIrguLoiOj5d+v31bzsjIYL6SJI/U6RgbNIiu0/DhdN3q6ym4FxoK7cCBqKmrI2JfX4+ysjIcOHAArq6u8rRp07iXlxfTxMUBK1Yg5csvkX9vPc7NzUV2djaysrJw/fp1XL16FVfz8nBt926wL7+Uf66rk86ePYvGr75CQXIy+6WyEjExMWhsbOT19fU4f/48Ro4ciT179ojOzs58xIgRekmR0T/+gbKQENR88AErv3pVkgYMYMXFxfjxxx9RXl4uDho0iCMpCRUqFX5KTpaPHj3KYmNjkZKSAlNTUwwfNoxNbmhAwJkzOO7ujujCQubi4gJbW1u4uroiNDQUp0+fZrW1tfDtKpgqiuQlMHUqjSlQFjsyMhJNTU0wNDTE999/L48aNUqaN2+eEBQUxO3s7Lp97jQ0NODa6dMY9dxzqJ49Gxezs1FeXs4GDBggubu7CzqdTnJzc8MTTzzBO3wm56Q+eewx8mfohFRaWlrC19eXu7i4wMHBASNGjGDNNfMJCQkYPXp0i7wcoGegTqeTkpOTuZmZmTxy5EimVCrBOYe1tTVCQkKYb2Ul8w4PR+jixS0k38jICHfv3pVHjRrFFAoFzMzMUHvxolz9xx/sOOcwMzPDtGnTMGLECAQEBKCqqkr666+/5FGjRvHIyEj89ddf8u3bt5mnpyfi4+P55MmT0djYKE2cOJGNHDmS3S0vh9uRI7iTkSFdMTTEMXt7VlNTI1+8eJE3NDQgOzubpaenw9LSkomiyBMSEuTTp0+zu3fvyiqVirWrO29qoufh9u0dFCLN1yAxMVEriuJzERERH3d3H/vROVizRKYf/eiHfnz88cc5TzzxhJfz36hV7UffERkZKWVlZfG5c+f2rBVHV6ipoUxpXBz1Ns3JIWOZNWv63IO5GTqdDj/99JN0584dLooilEolJk2ahICAgJ71Sy0uhuajj2Dw3nv44ttv5fr6eibLMiwsLFBRUQEAWLFiBbodh7JMG20vL+SvWYODBw9KOp2Ov/zyy70+px9++AG3bt3CmBs35PDUVFby559wdXX9ewZYbXAvoyH985//1M/yGhuJhE2a1FqL21dkZZE0txOH277g5s2bSH/mGfiYmEieO3fybqX/90EURXzzzTewt7fH/MmTiSwdP05Zy/+RguDs2bNSbGwse+mll1indZ+ZmSQx7qn7sSxT3e+rr5IKoc15R0ZGyomJiQwA1qxZ06kDPhobSXHg4kJGU/fVMzajvr4en376KRQKBf71r3/RD5ctA158EX/m54vp6elCs3GWgYGBLAiCPLGhgQ1btYrB1rbd5ru8vByHDh3CjRs38Morr8CktpaydUuWEBndsIHGmVJJ79Nq6bsMDMgbYft2qmU3MaFr1dZ1+D5kZ2fjwIED8tq1a3s2WWpr6XuysijDN28eZdVnzCCDtmY34zVryOPByIjqt//4g7LfISEUELCy6lOJjCzL2LRpk6zVatnatWs7/L657rrDGC8sJNVQcnLrz65doyy7nx+piJqNKfXg999/R319vZiXl9cSKVGr1fKLL76o/w3V1US216whGfmoUTQe4+LIU6K8HBs++UR+9Icf2M4FCxAaF4eRnMP4zBly2W8bHDlwAEhOxvbqahRYWkKlUslt1jbGOZcByEySsPDbb/mJiAjc9PSEg4ODpFQqZc45OOeyIAjs3t/gnKO6rEzx8MGDqHz/fSjValj9+99o+ugjGDg6QqlUgjGGxsZG/PLLL5KDgwP38vLCkSNHJK1Wy8ePHy+OHTtWrySi/qmncLGyUoobPRqcc9nJyUnIzc3F/Pnzcee11+RSgBWOH4958+ahuLgYhoaG8D90iMZIQgIgy5BkGVu2bEFZWRmefvpp8uNA61q/aNGiDoE5rVaLqKgo6MrKMOvkSSimTAGWLIEkSdiwYYPs6uoq5+fnc0EQZC8vL/nRRx/tVYSwuLgYWzdvhp8oSllGRtzExERUKpW8trZWFkWRy7KMVatWwaaTNQJaLc2X3bt7XXokSRJOnTolJSYmciMjIzEiIkIIblP3XlVVBZVKpT9wuHAh+Wi0MUjVi1u30Dh+PLauXi1PmjSJtTVUFUURGzdulBUKBe7evct8fX0hSZJ0/fp1bmZmhjVr1rTOuaoqnFy8WFbfvs1yH3sM+YCsVqvFxsZGoaKigjk5OUnDhg3jqamp0vLlyzlA62dubi7+/PNPWFpayjY2NlJhYaEwZMgQcWxWlqCoqoLqjTc6PfSkpKTmFnq8v79239Gf2e5HP7pBXFzck76+vg7/KxdyURSxe/duqaCgQLKzs+OCIPw9ueH/cVRXV8uXLl1iGRkZeKCtm2xfYGBAG0ETE3L39fEhuem5c0S2/0ZAZd++fcjJyWEvv/wyxo4di9DQUHh4eKDHighTUyj/+18we3uYDx0qW1paytOmTWOhoaGQZRkFBQXIysoS7e3teVdjsbqmBk0ODjiflYXziYnw9fGR5zz+eNfywE4wcOBA2NjYIDU9nZXJMo4WF6OmpkYaNGjQ/4RtGxgYIDo6mo0aNUp/jbpCQRmLESNICnvhAtV29wXW1rQh276dzK3+BwGDbVu3SuPKyuD9wQec98EQjHMOe3t75P34Iwb9+CMUERFkutTTli09gIuLCzt9+jSTZRnenTmyc07O1X5+PZsDjFHW2NGRCOenn1IGmXPs2bOHNbvkRkRE6B//d+9SRlanIxMvPaqFxsZG7NmzR4yMjOSCIGDOnDktpmtiaChuf/gh/tLp+OrVqzF58mSMGDECVlZWzK+6mjm9/z7bDkhVOh3z9PREY2Mjtm/fLkVHR7PnnnsOFy9elDnnzN3fn+qWOSen6qFDKXO/aBEdV3k5uXx/+imNQU9PchZ+551u28ndvn0b5RcvysPc3RkEgcpXnJ3J8O7VV2mjPmoUScHVavr88HBS3DS3fdqzh3733XeUUXRxoWDA5MmUWXRyIsJ4/DgFK/7zHyLi339P8nFLS6r5j4ykf+/eTWQ1M5PWQXNzCjg2NYGZmCDq2DGmbWrC2bNnERYW1i6oxhjTX4pgbk7BiYAAyhZ/9RV994IFdKx+fl3ONRcXF5w5cwY6nY5xzmFhYSEvW7as88CQgQGNO2trUoFs2EDft24dkJQE7NoFqzVrmOHp0/LIN95g8XZ2cu3s2eSLcH/ZkK8vUF0Ned8+uIwdi8dffJGFhYU1/8HYsWPZWH9/NnbdOmZ+4AAsxo1DWloajIyMsHLlSh4UFMQDAwP50KFD+ZAhQ/jgwYO5v78/Dx4xAoYPPgiL5cthlp4OxbRpMAgLgyAILddUoVC0dCsoLS2VZs6cKZSVlSEvL4+NHj1a7wVTzp4Nt/nz2djPP2ehSiUfsnYtNBoNjh49CkVVFZv47LMYN38+zM3N4VhTA9uaGgoSjR1LY5cxMMYQEhKC6OhoXL58GVqtFjY2NqioqNDdvn2bFxYWtrTNAiho9P3338ucc7mishIBO3Yw1c2bwJNPIjMzE7m5uVi5ciUfPHgwDA0NWUREBOutCtD43DkEv/suql96iS1YuBBjx47lISEhLCwsjAUHByMxMVH28/NjHdpmNkMQaM7Gx/e6bpkxBi8vLzZq1CjcuHGDJyUlQafTobGxsbmkQv8aVl5Owdv33uv+WWJqCkVxMUY//zyzu691Guccrq6urKmpCZxzediwYXJERAQfPHgwJk2a1DrnLlwAXngBdkuXsl/NzVEqSdDpdEwQBLzwwgtcrVZj6tSpzNnZGcOGDWs5IKVSCTs7OyQnJ0sVFRVcq9XC2dmZZWZkMOHPP1mUoSGCp0zp1MQxJiYGFRUVl95+++2+GZ70A0B/zXY/+tETCL12k72HxsZGVFVVoaamBgkJCbK5ubmclJTUUrOUmJgIgHoZPvPMM/0ObHpgamrKFQoFAgICWk2Q/g42bKCM0ZQptGFbtw64eBH45BOSF+oxgOoJlEol/Pz8dKampn1fV1esADZsQMChQ7xtr86wsDDodDpJqVTynTt3Yv78+R1k9WVlZdixY4dYVVUlAIBPSIi05MQJbvLRRxwLF/bpcExNTTFs2DD41dcjz8AAKZGRuHjxIq+qqpIXLlzI/m6QqLCwEJzz9i1MOsOJE5RF+/VXIgy9cMRtgShS1njwYCI6fwORkZEYdPYstx84sO/14E1N8Pjvf1GpVkvHTEwwe+ZMXlxcDH5PbtitA3EP0Lx2XbhwAZM7cx22tqZNY0MDEeCeZOgNDIgwFhW1ElRHR6xduxYbNmyAJEm4c+cOOpi/5eZSq73QUKoZv3d8ubm5uHDhghgUFCQ4OjqipqYG+fn5/LnnnsOWLVvg0CYAkV5QAKtjx/DY11+3GPiZmZkh2McHsLZG+b59CFer+bFjx1rKOnBvzS0pKYGJvuxX83h4/XXqNS6KlJX97DNy916zhuqg166lkgRXVyLFVVUkRX/oIeDNN8l4a80aaA8dwoyff+a4coVM/w4fJj8Fa2sioLIMfPwxfY6nJwUgGKOg0rp1dCwLFpASIyiISMSSJURohw1rdRff28YguLlEQqMhMmBsTGS4tpZKTZqN8lJS6L6ZmlIgoa4OmDAB/zx5EucMDOB54wZYUhIFHA4eJFIfFERmSsOHU6bd1JSujyjSMZqY0Bo6cyadr7Ex3WtZpkx7WRkdu0JBf6vVQEoKzAUB/xwxgp/64QeZ1day8AceYML339N1iYqiMTlhAmX7q6roOqnVNIcvXaJ7AVCAwc0NGDQIfjodcPgwg5UV7G7eZImJiRg5ciTM7ncIB5ATEIArrq4YvXcv+US0DUhJEt3/2bMBLy94oqWlG2tqatJPwiSJHNqVSjrn1FQqOTh6lK6juztdG5UKISEhTKVSITk5mf/666+wt7eXHnvsse43G//4B7mdV1RgyvjxMDExge+hQ7Buux4//zwFd7Zv1/sRb7zxBk6cOIH4+Hj5/PnzDPf4wP3z9ejRo2JQUJAwdepUlp6ejqiLF2WPyZPZMFGEJEktAQRra+s+B8O5tTUsXnkF4/V4s/z444+ik5MTd+2uv7coUgD95Mk+dbNQqVQwNDQUm5qahJiYGDg7O0sDBgzoXK105QqtCT0J2jbvH2/c0FuK5eLignutOVs+zK653l+WaWzX1wPPPw/Thx7CstGjkZ2dDR8fH/z6668cAIK7caFfvHgxl2UZtra2dDCXLrHbly7htJ0dfv/9d3nmzJlM37ro4eEhXbt2bej69evV69atq+r+ZPuhD/1kux/96AayLJv1JSt45coV7Nmzp+2PGADm5OSE0aNHw8XFBRcvXsTZs2dRXFzMms1S+tEeJSUlkk6n46mpqSw7O1ucNm2a0GVdWXcwNiZCERlJG0OANq9ff01ZpwkTyASni97V+mBkZNRijtJnjBlDZiW5uZQ5bPPZU6dO5QBQU1Mj/v7774Ktra00btw47u3tjerqamzevBmBgYFswoQJUKlUMDAw4Fi0iDane/bQpu+DD/p0WEazZsF/5048+OCDiI2NRU5ODouLi4OzszOuXLkCANLUqVN5b4NSN2/ehLm5uWxsbNz9dbOyoj9Xr1IN7bJldB97U8stCETYRVGvoVBvkJaaKj9z5Qozevfdvn1AfT3VsDo6YtCLL/JjO3ci94svpLq6upYyhNdff733baM6QZcBDUmiMffMMxQ4WLuWSGFzyzc7u3abysrKSvz2228SAF5eXg7T559H7Xff4Z9ffYVT8+dDcnKCra1tS0udFsTHk9w3NJTuXxvk5OTIWVlZQnFxsajRaITmGtC9e/eKTk5OTKPR8M8++0y+5x7OTsydKz91vzv1c88BsgzrX36BNQB/f3+kpaVBkiR4e3tj06ZNAEga2mk5BuetNf6ffUak9Ouvqb6xuJhes24dZQuLi4nYGhqS4sLfnzLIDzwAze3bOPjvf4tPP/00MaCYmNbvaDaBGzdO/zFoNNSze8cOUjloNLQuPfQQKQKeeopk/J2NfSOj1vrstkZ2zWaD06a1/mziRDQ1NaGiogIV8+YhfvduXPX1xYo5c2Do6UnEhTGaLzk5lFXeuBGorKSs+Sef0H2NjqZxUlxMJm1OTiRfDgykY09Pp/f4+ra2VLtyhQihJGFkaCg7Gxsr7790iRmamsoTx4xhRvPmEYl3dSWZvKEhBXmUSiL7ixdTZv+rr2jdNDOjub1+PX3X/PmYEhsLi7w8lLq742BCgmwWFCTNWrJEAEg6v2PHDmDgQEybNYsUB5s20bFLEo2nceNaAxsgY0NBEHD37l3YarVgGRlgnp70vqIiCkbExZG03sSEggu1tUQCNRoKbNy5A8ydC2H7dgx3dsaAJUtY4uHDUpmZGVc6OdH48/SkZ5U+Qt/cFmv8eMDaGmG//05lGW5u9EybPJmeb10EQ1UqFaZPn47p06ezlJQUHDx4EEOHDpWmTZvWbsEZPHiwkJCQgKlTpyIgIAAet28zec0abL9wAUVOThg8eLCEVlf13uPQodZSLj3w8PAQcnNz5XPnzsHMzAxDhw7VX8YkCHTP/8Z6OXfuXMHNzQ1HjhxBYWEh/89//oO1a9dCr0t7QYHevtSdwsaGgkW9gSQBzz5L5/bmmy3f5+rqCldXV0iSBFmWkZ2d3a2nTQcJflISnKZORbCFhZyWlsY+/fRTPPPMM7BvU2bR2NiI9PT0BgDGAOzWr18vApDWrVtX37sT6Ud/zXY/+tENPvzww9JVq1bZWN3fi7YbrF+/HgDwwgsvoKCgAM7OzqitrW1Xd1xUVIQffvgBAEUmp0+f/r878P9DaHb2jY2Nlc+dO8fUarVcWVnJrKyspNmzZ/Ne13KnpVHm5/5IuiwDsbGUcXvvPdqoGhj06CP37t2L6urqllqpPuPHH2kzeh8ZaUZFRQV++uknVFdXt5QfiKIIKysrefXq1UzvRiQ6mjbIO3fSZrS3NZ2NjbTp4xxarRbbtm2TKyoq2P0Ebvjw4WCMwdXVtZ3ZTGfIz8/Hrl275Ndff733QYrdu8lALCWl03rfTjFlCvXdPXSo11+bnJyMw4cPwyMvD4M9POQR77zTu2OXZSIhb71FRMHHB2AMtbW1uHbtGlxdXWFkZISNGzfC0tJSfPbZZ/92jUl+fj5+/vlnvPHGG9TTtbaW+uWqVNQqaNkyCmR88AERGC8v6hes0aDpyy9RIAi45usLA6USDbKM27a2qFKrUWdiAvlenaokSXDLy4Nu6FD5MYCpQ0NbzMkAUGb3yBGS8uvJsFdVVWHjxo0wNzcXBUGQtVotf/zxx/m2bdvw8MMP49ixY7IgCGhoaJC1Wi0f7+ODsW+/Tfff2JgyoEeO0JzWU2Zx4sQJxMXFAaDyhbVr10IpSZStvXqVgh87d9JYnzCBZNZqNZGXp54iIn2vnVtPcOrUKdy8eVNctmxZ7+5fbi6tAZJEZHbOnNbOCc2BnehoOu8lSzr2SNeDpqYmNNcTNzQ0IDExUS4tLZXUarVQV1eHzMxMNDY2AiAS1tTUhClTprSTE3eALANffEEBwk8+IYL5n/9QSc6333boa33z5k0kJCSgub7eyckJsixDluWWenBJkuRbt26hoKCAvfnmm12XV8XEkJ9DdjZluA0MqAyg7fFVV0OXloYT27ZJckUFd6islMtMTdn4q1fBw8NxdsAAsTgjQ9A4O0tLP/6Y4/x5OoedO+n6fvMNqRcUCuD0aSAzE/WDByP7lVfQpFKByTK4JMF340YYXr1KUvpRowDOIcsyCgsLUVNTA4BIeku2UpJonGVnt5C2rB07cDUvD+OtrWFaX0917uvXU0DxzTdJ+h8QQGTd0pLmVlERrX2FhZTB3rqVWpNNn95rz4c7d+7g22+/BQAMGzZM9vHxYQcPHpSbnf4nTZoEc3NzBGzdCnbtGjSvvw4WFvb3EwRPPEGBhTaO8m0hSRL27Nkj19bWorCwkLm6uspPPfVU52tuUBBl/let6vMhaTQafPLJJ1AoFHjjjTf0Bzw//phM+tqucV3hp59IQbdxY89en5ZGSreNGymA00nC5/PPP0dISEjvjBhra6l8Jj0dMDBAeXk5Nm3aBE9PT3nJkiUt1/by5cvYt29fu7dyzv966623etiYvR/N6M9s96Mf3YAxJvZI5toGCQkJAIA5c+bAwsKipc/t/YQ9KysL9vb2YmBgoHD06FG4ubnJQ4YM6ZeT34dmc5IJEyawmpoaXUVFBZ86dSrbuXMnP336tLx06dLeXTNfX5Jr/vZb+ww2Y0Sw4+LIxfeXX+ih2oMIdlhYGLZv385LS0tbakv7hFGjiARKkt4ovaWlJRYvXoyffvoJdXV1mDRpEoKCgmBiYtL5NYiIoD8//USbmsuXe24It3s31bV/+SUA2oyvXr2aSZKE0tJSWFpaYvPmzaiqqkLyPZOkpKQkODs7w8rKqkszNRsbG+h0ur6N9/nzqR5RqyW57bff6s307dmzR8rNzWXNDrKBgYF0X/vowXD69GnJ2MiIz9NoYBAc3Ltjr6oCfv+dNjn797cbe6amphg+fHjL/5944gns2LFDiIyMxIMPPth93/UuYGBgAOPaWtStWwfVkiUkh9ZqSR79+edUr5yXR8fV5n7V19fjK41G9jA2hoeZGdPm5sq2BQVsYkMDVEolKurqYFlSAmZpCcybBzk8HMzJieGdd+hchw0jovLdd5QZXrGCNo56oFarMW/ePLm+vl4QBAGRkZG4ffs2hgwZIv3xxx/cwsJCeu655wTOeesBxsYCt25R/fKIEVRPre++yjKaiovhlp8PH5UKfiNHQjl9Os2Dt9+mwIK7O2X0BwwgAsMYmR9t305BiPLyXl3zxsZGqFSq3mUzjh2jGm43NyLS06fT/GtsbB8gCw+n2uyFC0lq3ckcq6urw48//iiXl5czgBzAtVotDAwMZCsrKyErKwsNDQ0ICgrCxIkTcfz4cRQXF0sNDQ08KioKxcXFmNXcs7wtNBpaEw4eJIn1++8DO3agNCYGtdevw/jWLVjs3YtL4eGIS0iQ6uvrmVarZQYGBggICBBTU1OFnJwc2Nvby4yAe2ZjrLlNYXx8PBwcHODVRuHTAkmiuf7xx63mdaGhNLeaSSZjgFoNRXg4poaHNy+k7IvPP0d6QADsSkqgu3VLWODrC8PGRo6JE0kNMGYMXX9XV2qdNns2GU6ePg24ucF49mwUzpihuySKCgNHR7muro7dqauDytsb0GjAY2IwatQo6HQ6nHzrLbiVlEixo0ZxlUqFiRMntpxCy7poZwcmijhibo4Zb74J07atDhcsIGWSRkOE1MyMxnxGBgVZfv6ZgkXx8TSf7ewoMNRZ14pOIMsy4uLiRBMTEzZv3jz+66+/sszMTBgaGjJRFGFtbS3Hx8ejpqaGxZqayqFjxrAghUKvg3WvcP06rQ1dfA7nHDNmzGA7duwQAQhqtbrrNfettzq0JewtmgNCSqVSzsnJYUVFRQgNDW1dg0WRAk2rV/f8Q4OD6T51B1mmfumffEIlHmPGdPFSGTU1NSguLsaOHTukJ554omeB/i++oBKRe4kEa2trrFy5Etu2bWNnzpxBWFgYFAoFPDw88MgjjyArK0uXlpamAABJklb06Dv60Q79ZLsf/egC69evV3DOrfTVeumDVqtFU1MTcnNzAQCBgYFdvv5expuFhISgrq4O+/btY05OTrC2tv7bx/5/EYwxzJkzRwHQRhIAHnrood6TNQMDMt7KytIvF+ecNtlHjlA2KSSEMn73SfqysrIQGRkp6nQ6ZmtryxQKBdu8eTMsLCywdOnSliBLr+DvT3LG2bM7zU7Y2NhgypQp2LdvH2pra/XXoOrDkiW0odRoaBP/5JM9e58eYt5s7gUAL774Im7fvg1TU1NwzrF161Zp06ZN3MXFBUuXLu2SKEqShIMHD+rf1HeHoCAyONJqcW7HDuSUlIh8wADB2toadXV1KC0tlerq6vjcuXNRVFSEI0eOoLa2FmPHjqUNzYoVlDG6L6gRHR2N4uLilvpJnU6HqqoqWFtbQ6fTsanBwTCT5dYyhJ6gpoayVQ88QPLkbuSO7u7umDt3Lk6ePCl/8cUXbMaMGfDrxpSrHRobAUFA48qV0ObmwtrbGwYlJUR6T51qHcsREURehg4l8t1mc/ftt9/C0NCQzVqxonmMtZtrVg0NlF2Ljwdqa8Gys6m2/tgxGjOTJpGxz+DBJMU+doxk6XfuEEmePZuyPR4egFqNwQMHMiiVyMrKgiAIcmBgIAsODuZzyBSvY5rzjTcoWLBqFY1td3fK/FVVkYy2uJhkypGRmJKXhzQPD5TJsrz/wgU26bnn4DF9uv76dFlurTH+xz8ow3wv69fzy9+IHpcf6XREnFJTqfZ9zBjKUHp7U6DP05PIdTMYoyBBYiLVmK9bBxgbQ5ZlXLt2DadOnUJlZSWampoAgK1YsQKiKOL27dtwd3eHo6Njy+DTarUtxzlv3jwA4OfPn5eOHz/OU1JSOs7LlBQK1nzzDd1rpRLIy4N2+3bkennBVKPBoS1b8NivvyLjyhWMeOgh5h4WxnJycuDn5wc7OzvBwsJCjo2NZcuXL9e7dsfGxuLEiRMA0KrGaIYk0Rx66y26VgCVg6xeTcS0C6Snp8vVNTXMNyQEzc9cw2ZvDEmiLPOBA6SSKCqiufLhhxQgevbZe7dKhwQDA0VISAgmTZrE9u/fj+Lm8gKQiuTKlStoamqS3auq2Hi1mgevWYM9e/aISUlJMgC0VZQ2NTUxjUYjNGf520EQWlpsoVm9FRhIxPriRRrjSB8yoAAAIABJREFUFy9S5vuvv6jM4Pnn6TyOHyeH+Jkzu1UyVVRU4OrVq8KaNWtgamqK559/HhYWFm0zuuzeseL25s1M/vJL1MfGksN7XyGKVCP/xRfdtmPcunWrVFdXJwQFBdHa3RUefpiCqebmfTbTbA6EaDQatnfvXpiamsrx8fHy+PHj+YgRIyjr3Fzi0FN4elIAR0+7xBY0NpKcvqiIAkfdqOoYYxg5cqQuMTFRAYDHxsZ2Xzff2Ei14ytXtvuxo6MjrK2txbNnzwoXLlxAeHg4hgwZAlmWcfXq1eZF0njdunWanp1wP9qin2z3ox9dgDH2pJ2dXaOBgUGP7DU//PDDln9bWFhIuGfK0xnu3r0r+vv7C0CrWVqnjpv9aIfi4mIYGRlJ9vb2fZNtv/giZY4iIjq61AL0QJwxgyLS77xD5Gj4cGDIEGzcuFEWBEGuqqriY8eO5XZ2diwvL08CIAmCwLOzs1lKSoo8fvz4vmVtH3mEJIH3ssn6MHDgQAwbNkxOSEhgaWlp0ty5c7neXsptwTkRoLQ02qxPm9Zpn+AWTJ9OWeRu4NQm+79mzRq+d+9eOTs7m124cEEOCwvTex1MTU3x5JNP4rfffkNTU5P88MMP9/56mZvj94UL5Tt5eVi5dauQ+/DDcnJoqGRkZITAwEBh6NChMDMzw6BBg+Dp6YnffvsNKSkpooeDgzB08mTcjo/H3YoKDB8+HGq1GpmZmYiOjoYsy/yrr74SJUli1dXVHECzXJqpP/tMxuLFrEf1gaJIioIjR6g/dS8Is7+/P1xcXNiZM2fw+++/Q61Wi2vWrOlcW5ueToGUvDwiYb/9hjwrKzlep2MFbm4wvley0gGc0wbvvhr22tpaBAcHdx7MMTSkTeT9JmjvvQfk59M5x8bSZ5uYkMR4xgySY586RWNr1izKxg0aBKxdi7rffoPRa6/hH6WljD/7LBGrNWuING/ZAmzeTIoUUaQa8++/JyWKuzvJbnNyqM5ZFClINmwYMG0aBDs7DAMgSRL7448/8OulS3jQwUEaNWpUx5u4dCllso8cIcMzOzs6vl5Aq9XCyMio+/FcUkLSZW9vIpB2dpTxq6uj7JZGQ4T7/lIZxlA7aBAyzp2Dw5w5csaLL7LmZ4iBgQEUCgV8fHwQFhYGR0dHANDbOlFfQGDYsGH8+PHjACgYxjknMrp7N13nF1+ka3sPadXViH3iCUxcsAB+bm7w+e47NF69imVqNTBwIMPkyXD55psWkhEYGMhOnjyJ8vJyvYHloqIiALQ+fPPNN1i1ahXq6+thbm6Oprt3YTJsWMfs5apVtJ598oleE6q9e/eKmZmZgq+vL+bOndvxvHfvpkz9f/9La2JcHJ3njBl0L86cAVQqKJRKmJmZid7e3oJSqcRjjz3W7mMSEhJw4cIFyc/Pj4csXQqo1bAAsHLlSr3ztlmqu3Tp0s5bW+p0FLQKC6P1Y948UhPs20cy47AwMmXz8wNee408Aa5coXOprGxtebZ8ud467urqaqhUKsnU1JQDHRV4zVAqlXCfOxdZqanSkYYGPvHu3U5f2y04J1VGd22zABgbG8t1dXWwsbGRbWxsup9TCQkUpOgj2TYxMcGbb76JW7duwcrKCsbGxmz//v3syJEj8Pf3h/GdO73Pnpub03O3rKw1gNIWly7R2hYRQc//Hgbqpk2bppg2bRpOnDiB69evd0+2Y2KodEnPc3/16tVCfX09du3ahTNnzuDEiRMQBAGiKEKhUGS8+eab/US7j+gn2/3oRydYv359uEql+mrOnDk9KnD9/PPPAQDe3t4YPXo0PDw8utyJV1dXo7q6WvDw8EB9fT00Gg0mT57crk6tbdahH+1hamoKrVbb9/popZKy2v/9b4cobzs4O1OW6cgRMuJ54AFUV1YyUZYZAAwePJjZ2NjAz8+v5VhEUYQgCH0vB1i4kKTkXZh4GRgYYObMmWzChAn45ptv+OnTp2UfH5+efWdgIEW3c3KofjkyUr9UXpZp85+S0iuyoVKp8Pjjj7PLly/jwIEDbNCgQZ1K611dXfH0009j69atLC8vr6N7NSgQFRsbKzo6OvKZM2eytoY1R48elbOzs9ny5cthsHIl/HQ65vfWWwJGjaIsRxu4u7vjxRdfRGpqqnDjxg3xkK8vC1u7llU+8oi8LTmZS5IEY2NjhIeHyx4eHqyiokKoqalBQEAAkpOTZWtra+ZjYwOzvXsZ7ttk68XNm7SJioqijVQfWnqZm5tj1qxZGDBgAPbu3SvU19e379uekkIk9IMPiLwuWkRy6HPnAEdHeI8YwXZ/8AHMzMz0u/lXVhIhTUnp8KshQ4ZIaWlpfMyYMb1T20gSmfJdu0akl3OSu/71F9Ujv/9+62sLC1v+qX30UXz6wQcwHj8e9sbG8hIjI4b33qNaVZ2OSIWpKWV8NBr6WbOB2MKFwNixkMzNceTYMQBAQUGBNKKighdcuoSAgAAMGjQInHM8+uijuDc2eWNjoxgeHk6LbkMDScvnzGndTOflUUCglzJ+rVaLbiWv8fFUThAQQAEHQaA59/bbVDeuVtM1XL++gxJCkiRkXruG4xMmwK20lPm//z5Gvv46wsaNg/nfMP4DaG15/PHHsWfPHrm+vp7m28cf0/3bsYMk2/eg0+lw5MgReemFC8zZxQVYtQqqAwegCgig63j5MmWc33mHSNDhwy3j9/Tp03hET1ZzwoQJMDIygrGxMc6ePYs///wTWVlZGBkfD8eiInidOQP1/WobxqgEZ+dOvWTb3d2dZWZmIjs7G3/88YdsYWHBAgMD4WRlRXPAxoaIH2MUXLx7l54Rp04BOTnIfPddWP/3vzi3eLFcq1QKnbW3CqGsOd2sLVvo+RIb2+m11mq1UCqVsLGx6VgbvGcPEeiiIhrfpaWUrbawoAxlWhopoR55hHwgtmyh9mdTp9K1aPYY2LaNjsHHhxQmq1dTEOveOVhbW6OxsZG3BFa6gosLBpSU8KaCApzevBkP//vfXb9eH8rL6Rl0+XKPXv7MM88IH3/8sVxZWdmzjiSbNtE8Ki3VT2x7gGYZdTOmT5+OzMxMnD59GtPz83ttoAqA1sXr19sfkyxTYGTRIlI8TZnSq4+UZRk3btxAamoq2nYw6RRXr7YLlN0PY2NjPPXUUwCAnJwc3Lp1S46Li7us1Wp7b/Hejxb099nuRz/0YP369aGCIJyYP3++UU/Mt8rLy3H27FkoFAqsXr0aVlZWXT60JEnCjh07JDs7OykkJIQLgoBbt25J6enpiI2NZWfOnMGZM2dw9uxZcM5Fd3f3/40l8f8hKJVKxMTEwNLSsl1boF4hIIA2Vd30ggVj9HANCgKKixH+11/wX7gQ2ZWVUkJCAvPz82tHgP62g7RCQRus6upuSa5KpUJ+fr5YVlbGhw8f3vPaXsZo01ZQQNH0vDz9G5OHHqLr1Ie+1Pb29sjJyZETExOZLMtwdnbWW8NtbGwMpVIpR0ZGom0WXJIk7N+/X05MTGQTJkzg5eXlUlRUFE9PTxe1Wi0/ffq0nJWVxZ566imStBsaknz5xg3KILi5EUlpI8dTKpVwdXXFkCFDeEhICHPYvZsNWbSIeYSHY8SIEXjooYfg4eHBLCws4OjoCHd3dxgZGcHb25s5OjrCYONGkvl3ty4kJBBpsrUloqJPPdEL2NraIjs7W8o7d44F+PsTAUxPp/O9c4fu4RtvkHLB2JjqOwFcu3YNmZmZmDdvHuvgSAuQVLa2ljbo98HX15fduHFDio+PR3FxsVRdXc3Nzc1h0JW8UasluXh8PEmvN2+mLOGDD1JQy96eHK4bGzu0X9OJIpKSk6ERBFRyzi4kJsrGw4Yxx8GDiQyNHUv3ePRoIgsmJrRxjIoiObmxMTKvXsXJkydRVFSExsZGdv36dVhaWopxcXG8oqKipUe8vb09Ll++LFtaWjIvLy8ac7NnUwbxnXdaSycOH6bv0UPgukJycjJsbGxY2w17O3z7LbWDmj+fvrd5zYiLoyz3/Pmt5SxpaR024VevXsWBAwdgbGaGZ99+G84XLsBHpYJBZw7nvYSpqSmKioqktO++477vvAPle+9R9rhNTXxDQwM2bdokWVtbIywignGlkmrnFyygwEFSEq2tZmZUCy+KgKcn+Btv4JKlJUytrDBYT2bT2NgYgwYNgpeXF2pqauSMjAwGAAOys1Ho7Azb8eNRXl6O1NRUyd3dvdUUcswYoKEBTbKMLbt3y+fOnYO9vT2ztLSEs7Mzi4iIgJ+fH5KTk+WsrCxWWVmJwDffpMDm/bW+zY7q3t748eBBXaJWy+0nTQL38MCijz9mVmo1WJugQycXkVQfXWRvU1NTcffuXbi7u6OoqAiFp09D++9/I9rYGJZvvonLOTk4Ym4uXggPl+IuXJDOJSfj1MmTzGLTJtne2Jjh1VfpWhsYUJBtyRLIRUWo5xwKhYLW2+HDKRvePP/t7Ei98fPPwKxZUFVWIiUvT7548aLk4+PDjbqSnTMGtnEjTAQBWU1NOJyXJ126dImZmpr23KukqoqeJw891KOXM8aQkJAgBQYGCj1+1r/wApVX9KVFpB4olUqYmpri3LlzGBUVhcaHH4aqO1XY/dDp6LkUFET/v3uXyhQOHaI/3ZjaNe8bOefM3t4e9fX12Lx5s5ySkoLAwEA2Vc8a3g63bpHqaN26Hrm2K5VK7Ny5k4mi+A2AuHHjxok9PNN+3Id+st2PftyHd999dw5jLFKSJNXly5dxzygEdnZ2yMvLg1qtBmMMDQ0N4Jzj559/lk+cOMEAYNGiRd3KqiRJwvbt28X6+nq+YMECrlKpwBhDYGAgCw0NZW5ubhgzZgxCQkLg4+ODY8eOMVtbW/0b5f8fQxAEGBsb4/Dhw7h8+TIYY5238+kM5uYku3N37548AZRp8vcHjI1h8scfGO3ry86UlsLJ2bldy4z/CXQ6cqvtQc9QtVrNMzIycObMGeTm5uqCg4N7xvabZeV1dfQ9QUHt+8wePUqbgx5I/TqDn58fy8jIkNPS0tiYMWP0BgPOnTuHuLg4uaGhgaekpIhxcXGIjY2VY2JimCRJ8qJFi9jAgQMxZMgQHhwcDFEUWVJSEszNzeVHHnmEdbj2ISFExj78kDZdzz/febBg8WLA1BQWZWUw76Z9Cu7cIfK4bFnn9Xp1dZSJ1GjIF6AvtehtodWSvFWjwaBDh9iAjRtxLjAQzm5uSAoIgNOsWWBTpxI5vO8cjx07Jh8/fpwBwOTJkzuS5Pp6kra//nqn18fPz4/V1tay2tpanpKSIqenp2P06NH6X9zQQPWjaWlkfMQ5Zdh1OiLKzQEHBwf6/4ULlIW6t0lUKBQICQmBh4cHZs6ciaamJnb58mVxxIgRnY9nZ2eq+eYcsLSEnZ0dqqur0dDQIL/66qssJCQEwcHBXK1WIzY2lsXFxckpKSlSQUEBLyoqYlOmTGGmJSWURXzmGSKUbTeiH35IxLfZSbqHSEpKkhwcHFiHYG1TE8nibW2J8LR10C4ro/Vo5szW1l1KJc3Le1LwZtjY2CAxMREGBgYYNXYszeOaGqpXHT++T8GxthA4h01xMZf27cPtgQPhsWxZu+x+dnY2tmzZAisrKyxfvpwLXl5Uw/3AA0T8rlyhOnpzczpHS0sKrlRXA999hxvOzqIf59w+MLDLFlWDBg1iFfn5mLhpE/6aPBnFbm5IS0tDeno68vPzmUqlkl1dXdmNGzeQd/MmirduRemPPyLFxYUZGRnJNjY2rPm5wBiDiYkJsrKypOBdu3j4yJEwfOMNSIsXQ9PYiJqaGlRUVKCkpATVKhVuKhTYvn8/7t69y52cnOQqMzOxRKNBtosLrhcWonLDBqY+dgwGkybpN/kyMKCAZhdmjN7e3jh//rzs/K9/sRt5eXJhQ4M84MwZZIeFSaUzZshs9Gju7OLCvb29ua+vLx86dCgz//NP8KYm5vzll/QdNTXAyy8Dy5dDqqyE7OSELXV1uHDlijxw4EDWEgg2MKCMsqsrcocNwxWtViq7eVNyfPVVPsLbm0kaDWIOHYLnmDGsS8I9YgSUixdj4LhxsPTyYklJScjIyEBGRoZkYmLCOOft1TdtkZlJJL+X3CM6Opo5OzszKyurnqn9wsMpuNeJAqEvcHR0hJSXJyr++INvMTSEm5sbLHtjtFlcTN0GQkMpGBsXR6qKzz/XW59dXV2N3bt3i6IoMgAsIyNDTkpK4tevX0dJSYl85MgRZmpqKr/wwgvdl5AB9Fx68MFOTSrvh06nQ2pqalNTU9MkAP8aN25cH/tc9qNfRt6PfgBYv369PYBQlUr1hKmp6UOPPvqoYufOndBoNKiurpb37dvHmlsg2NraorS0tO3bmZOTE8LDw+HdlqjogSRJ+O6770SdTsdXrFjB7n8gcc7bSZdsbW0xZswYtn//fixZsgRmZmaor69HfX09SkpK4OvrC3Nz8/9ZL97/ryEkJASenp5ISkpCVFQU8vLyUF5eLg4fPlzosm1NMxgjslVd3fIjrVaL6urqjn0p275n1izggQdw64kn8EhODvKGDu1Rq6teYdQoikA//HC3G313d3cEBQWJt27dEm7evKk4evQopkyZgtLS0p4FAWxsSO5saUmmYf/+NxGYM2coC3GfHLs3MDQ0xLhx49iuXbuQn5+P+3ukS5KEs2fPyqNHj+acc5iamgo6nQ5OTk4wNDSElZUVb5sNNzMzQ0REBIuIiAC6kxR+/DGR7agoki///LN+F/Zmc6WoqK5PJiurlSjpw6VLJNfU6UgW2ENjxQ6QZSJNhw8DGzZQTe+bb8Lkww/xx/jxUvrlyzzZ2Bj1Fy8i6uJF+Pr6wsjICLm5uWJjY6NgYGAgOzs7s8zMTAYAERER+qXF586RN8ALL3R6KCqVClPuZVULCgrY9u3bkZOT03Gtq6sDfv2Vrk0b7wq8/DKdT1s0ByDS00laKctU1750KVQqVctnW1tbIzExkRcUFMDV1VX/ATJGWfSLFymzD6CkpETknHPGWMum39/fH5WVlbKDgwO7ceMGy8jIkGfNmgUHBweG2bOJ3K5c2Z6k5ucTOe6JPPM+6HQ6uYPUuKyMCPbs2bTu3E9ocnKoLVrbzfD69WRGdh80Gg1cXFzknJwcOmBTUwpgbNpE0uc2ztd9wlNPwebyZXw3fTpkzhFx36937doFc3NzrFixgnHOiWzu3Alp0SJwd3dSWtjZEQE/eJDayc2cSWvMiRO4/fnnwtQNGyig+OGHXdaozh00CJqBAxExZw5CRo1CVVUVLly4gNTUVNjZ2TEAOHDggKzT6WSj4GDZ381N8LayQqOxMY4dO4YTJ060mI8pNBo0KBTCII0Gx44eRdaNG9DpdBAEAYIgyIIgyAqFQnYoKkLol19yxbJlsLCwYGq1mhkbGytcXFxgGhwMMzMzHNm2DYOb+2avXElKlrZj5dtv6X7cuKH/xE6dAl+zBnWPPsqqLCwgmZnJ5qNHyw7vvcfnd9a7etcumNTXY//Qof+Pve8Oi+rcvl7vOUPvvQsodiwgKFgRgxqx9xpbLKkmUa8pNxqTmMTEJGpMNMbEHlvsIipWlCJKEVFEQGJBaTJ0Bpg57/fHZqgDgpr73d/V9Tw8KAwzp75nr73XXlvlra9PrxGEqmdYbGoqwj7+WJr/0UfCtm3bWEREhDR06FCh8phxa2trxhjDsWPH0MLFRUhLS0PakiVS3v37mJqXJ3TcvRu3fXzgnZBA16imROuGDYBKBdm9e3A/dQodOnRAcnIy4uLi8NdffwEAvLy8EBAQUJ8YnzlD62Qz0a1bNxYWFiadOXNGGDJkiNStW7fGgx4DA/qszz+nUXnPAYwx+Dk4iOXvvAMfd3fV9u3bxYEDB8K3EcfwWnB1JSf506fpupg9m+5vDcjPz8fq1avBGBOzsrIktUP6xIkTUVBQgKSkJObl5QU/Pz+hSfFfTg4R/ZotPE+AgYEBxo8fr7VlyxYwxjKa/IcvUQ8v52y/xAuL5cuXm+vo6HzLOR8qSZKpg4NDmZubm1H37t1Z3QdEWFgYIiIieKdOnVhkZCREUcSAAQPQpk0baGlpNblH7o8//pAUCgWbNWsWa+p8SkmSsGnTpirHU5lMxmUyGVepVKy8vJwBgJOTk+Tk5MQqKiq4i4uL4ODg8Mx9e//XsH//flV5eTnMzc3F2NjYps9uliSq6h45goeMYceOHby0tJSZmJioVCoVUygUAmOM6+jocG9vb8HOzg5OTk44efIkbiYkwKOiAp3++AM2P/wA2ejRTZJnNRmffEJSxiZK4SRJwv79+7maZAGAo6MjJk2a1HCloSaUSuoNnDyZzIaaOGO8KQgLC8P58+fx/vvv19qW8+fPIz4+nr/zzjuaZ4Q/D2Rl0Uzudeuo4lY3EaNSUXVN/V0TioqAceOo51FTBfy336j3fcmSps9eVaO4mAIhlYqSHXPnUhUxP5/IfY1tqqioQGxsLHJyciRTU1NB7doMAL6+voiIiKj6v3r+9cSJE9G2bjuCSkUktxm9yHK5HGvXrkXXrl2lESNGVF/o5eVU7W/RgnrHa94DISEkK25sdFZGBlU/ExJoeyrVQZUzdqFQKDCjgbnzACiAjY4Gpk3D/QcPsHnzZujp6aFSaikpFAru5eUl1ptFe/YsybQ3btSchDl8mNor3nvvyQenDtatW6fs1auXzMPDg35w6hTdz7//DnTuDIVCUXtG8aVLpMCIjq4+fmVlJLt/9KgWMVepVPjqq68gSRKcnZ2lGTNmVB/w4mK6zg0Nn05CGxFBbQADBwJdu2L91q2SXC4XFi1aVEWcDh8+jGvXruH999+HelLHb7/9pmJRUWKWtTXeXrIExkZGpO7Q06OExZUr9P2XX4D4eOzp3Bm9Bg2C46uvUpUzIYGSP3XXgBUr6H6qkzzYs2cPbt26BZlMBl1dXV5cXMwmTJhA1/nq1UB8PJQbNyIvLw+CIIAxBqZSwbhNGyjWrEGapyfCwsKQn58vLVy4sD5hKSigHuf79xtMBHz++ed45ZVXeM9OnRhWryZimpxM68Po0fX3pbi4uiVh/Hhyut+6FT/r6EhFxcWCIAioqKjAxx9/rPnchIYCV6+ioGdP/HjyJMaMGUN9uqWlwIoVODdggCoiIkIcNmwYOn3+OW6mpXHFxo3MwcEBBw8elEpLS5lMJlOVlZUJrVq14qNGjRJXrlyJ8vJyCIIApVIJPV1dac7QoYLZ5s1EDh88oPdfupSq9IJA1/Djx9UqnhpQKpWIiorikZGRrLCwENbW1qrZs2eL2tra5GGhq0sJuWas9QqFAklJSQgJCZGKi4uFV155RdWrV68nz6/PyqoeofW8sGcP3VuBgQgNDZXOnTsnLFmypGnzxh8/pjVy8mRqW2hETadQKHDx4kXExMSgf//+6N5In3WTsGMHrSezZzfrz/Ly8rBu3bpSlUplt2zZsvxn24gXFy/J9ku8kFi+fHl7LS2ti126dDH09vbWsbKyanQe8PPAnj17+MOHDzF37lzW5FFNTUBBQQGOHTvGlUolkyQJmZmZvLy8nHXr1g0eHh5VTrQvCm7fvo1du3ZBR0eHC4LAe/bsKdQLsuvio4/wWKXCr6am6NWrl9SxY0chMzMT+vr6kMlkUKlUyM7O5jExMbygoICVlJQwS0tLaejQoUKLFi2w/dtvpe7btgk2b7wBsyFDqIrzPKCuhB092iwSL5fLkZmZiVu3biEtLQ36+vqqefPmPTk4UUOSqLKdkUEGToGBVPl9WufZSnz//ffSkCFDhJojrL777jtp8ODBQqdm9sQ+FVJSSGK7c2d9N9mEBArqc3M1B9exsVQZr+sQn51NZGz8eCKMGgzeNCIri95v1CgKvrS0iKxHR1NVsBFpbU3k5ubC0NBQXZkDQIEaYwxr165FeXk5fH190blz59pqjY8/JjJ540aTPufGjRs4dOgQOnbsqPLx8anunczPp0Dcz69277EaRUVQRkcjpKQE+fn5qJzPrqrMrPB67uotW+J+v37SyV69MGrUKGHjxo3o1asX+tY5X1lZWUhISICfnx8pewIDUbhoEbYnJiI7Oxv9+vVDTk6OysbGRlAqlezixYvQ0tKCKIrS8OHDhXZubtR77+hIva6a8Oef9PunmNu7Zs0a5YABA2TubdsSma8c0ZRjbIzDhw9LDx48EFq1asWdnZ3Rq2dPhiVLwPr2BavZdpCTQ9dJhw613luSJKxYsQJt2rTBuHHj6iub7t6l6+rQoaa1xwCUeCksJFI7Z06VaeTjx4+xbt069OzZEwMGDMCFCxcQGhqKcePGoUOHDti6davy0aNHYkVFBZutVCL7+HFYHjoEh5ISup80JVlycrDvrbcw2tERYosWtL61b09y/VWriMxZWBA59/Iix/k67TS//fab6uHDhyIADB8+HCYmJnBxcaFjkZdHpGL3brqvlEq6R1eurHbtBhAUFISYmBhYWVlJkydPFuolqOPjiRw3oFjbv38/EhISsHTp0ur4Yc0aqqiq3cLv36fPvXCBElIFBZRU6NoVMDREZmYmfvvtN/j4+PDU1FQ+fPhwQeMzOzGRDNBGjgT8/XH16lWcPHkStra2KittbXj9/LOwdcQIzJ49m1lbW6MgOBhbTp1C3+nTcfz4cTg5OUmTJk0S6rbxVN6P2LlzJy8pKWFLlixBLUVGQgLdB5Mnk8LpzTdJQXH9OsmiJ0/WeI1JkoT8/Hzs27dPys/Px9ChQ4X2c+eSGeOaNRqPZ0PYtm0b0tLSYGhoiDfffBONStzroryciGal6dczY+FCSkh7eYFzji+//BKDBw+GdxPavbBuHVXaDQxITp+S8kQviPDwcB4dHS298847TX9+14VSSUmHESOa3RLGOcdXX32lVCqVA5ctW3buqbfhBcdLGflLvHBYvnx5Sy0trUuBgYFmXbp0+WcZdiWCgoL43bt32dxmk91DAAAgAElEQVS5c5s+E7mJMDY2xuTJk2vuBwsLC8OVK1ekK1euCB4eHpKFhYVw48YN7u/vz9ye1Jf6fxyVs2VRVlbGjI2N2ZkzZxAWFsbd3d1Zv379EBQUhMDAQNR0tMaHH+LuwoVwattW1a9fPxFAPRm5i4sL8/b2ZgDUVamqCHfKokXCXy4uKuM//xR7HT8O43/9iwL0Z61yW1pSsBkRQQFOE2FmZgYzMzO0a9cO6enp+OOPP5r3oBYE6hEtLiZZ9JAhVI2Ij6c+W7Xr7ccfUxA8ciS5AI8f32ilVCaT8fv371fNiy4oKEBJSYnQ8nklJ54ENzfaBx0d6uv++uvqipm7O1UfNRFtlYqqhGp3XzVSU2kGc2AgfTVWJS4vp+P6xhv0fcIE6tt79VU6xmoVgb9/s3ZJk0eErq4uCgoKYG5ujgcPHuDixYu4dOkSPvzwQxw8eBCDBg2C6aefAlOmNPlzoqOj0aFDBz5y5Mjqa4lzqvYPGULXgIaEZbm2NkI3b+aJLVowVWUbjKenp1haWoqUlJT6HxQXh0t79/IWe/eKRV98gfJZs6DuRywqKsKxY8eQlJRU9fKEhATJ19dX8PTwQNyKFTy7Tx/Wt29fyc/PT0ANKW6vXr1QWFiIv//+myUtXQqnmBgYJCU1nNTgnM73t982+RjVhCRJTFuSSIrbogWwZg1yFAps2rQJrq6ubM6cOdi9eze/e/euwL/8Evk6Oki2t8fwlBQYGRkhIyMDZrt2cafMTMY2b6713oIgwMTEhBsbGzONElJnZ5LWT5lCxGDUqMY3trSU+tU5p/u7xjExNjaGg4MDDw8PZ+Hh4RBFEVpaWjh69Cg/cuQIKioqZIGBgWjdujUMo6IgP3IERUVFKOYc7O23oSwoqK+ysrREYseOUH34IZ0gLy+Smh84QORu+/bqCn9cHJFupbLW/aVUKqv+bWdnV9sk09SUWmEWL6Y2jMJC6o/Nz68i2qmpqbh69SoAIDMzU8jMzKy/nQcOUDWwZltEDbRv3x4JCQm1fzh9Ou3Pjh2UZMnPp+q+kxOpPpRKUtZUEtrr16/D3Nyc9+nTh73yyiua45HMTGpx6dOnan1wc3NDUFAQRFEUi5VKnmNry6ZOnQrrypajRHNzSca5YDxmDAL/+gtdGvDxEAQBNjY2+OCDD9jatWtVhw4dwtixY8Wq5IG7O203QLOfS0poH+/fp7XT1paSCBre18zMDDNmzBAuXbqEA3/9hQ9++w16zs4ad7ExKBQKCYAgk8n4lStXeJ8+fYQmF0dyc0ltNH78M5tUQqGga/ObbwBA7bXDL1y4wL29vRt/2MfHU7uSev2/f58M4tavJxVJA5VxzjlXKxifGvHxpJx6Cu+ViooKKJVKmSiKJ5cvX67FGEtdunTp/3YQ+Q/gpUHaS7xQWL58ua6WllZsQECAlaen53+k0Tk4OBjXr19nM2fObN74nGdAixYt4OPjwwwNDXHt2jWemZkpcc6Fy5cvw8jICDY2NvWqIWqVyz9d4X8eyM3Nxfr163Hu3Dnk5+erbGxsBLWMy9raGl5eXjAzM0NSUhLs7Oz44MGDWWhoKC5duoScnBxERETgwYMHKCsrg52dHfIUCpStWQMLCwvBtn//J35+3eqAIAhwd3cXCtq04ScfPkQXuZyJBw6Qu6ip6bPtbGkpjU3q0uWp/vz69es8IyOD9+zZs2knds0aCiqWLCEyPXAgkSj1DGBTUyKtHTpQRcrOjqrg/v4k1X7nHfq7N96gvzUwoNd8+CFMJkwQIvbvh7ubG3TMzKClpYWIiAiIoshdXFz+Mxeenh4FuiUltD+PHlFvtTogHjSIvtd0kT5wgII2NTlVqUj6+vXXVB3u1UtzYuXGDRptdfYsyUr79aNgu39/Ol7jx9M2NHOsVFNw+fJlHh8fz0xMTHhZWRkDgOjoaJ6RkcFsduyA3b17tebQKhQKKBSKKqlwcnIytm/fzuVyOTt+/LgqIyNDsLa2Rvv27dn58+dxYs8elcfnnwvCl19qlsyCnNB//fVXjNu6lXm8+y46Dx0KLS0t7u/vzxwcHBATE8P79OlT+w91dGBmbS0kKxSqh4Bg5OmJXqtWIdHZGZt27MDjykqpt7c3pkyZgoqKCly9ehVhCgXTKihgBU5OmDRpUj0SqjZUtOecmefm4pSeHh4aGjbss/H33yR5/vDDpzr+iQcP8t6rVwuyhQuBefPAtbWxYcMGuLm58XHjxjEjIyP4+vqynu3awX7lSrTZuxd35XIpIiICV65cYYmJiShNTWV/a2ujzfDh9dblkJAQJpfL0bMhR2xRpAkKS5YQ4W6oJzoujva1vJxk7nXk9KIowtPTk7m4uODatWvgnMPIyAivvfYa8/b2Zj179oSzszN0dHTAWrbElZgYfi45md07cwbXFQqcun4denp6kMvlePToEUpLS5Gfn49r166hZ8+ekOnoUDIiIIC+OnQgyflvv5HR3qJF5CmwaBG1VDg6AoIAhYkJG/fhhyysd2/4BAVBf/duug4HD6bXGBqS2d2KFbQWzZpF92hlslu9DUCV0zSvcqVXw9ycEhAN+HFYmJnh2uHDMM3MhNWvv5JSJTubkqO2tpRoOX+eqr85OaQUMjKidVFHB7h5E7bh4bgC8LDgYCYvK1O2adOm9oVbUkL7YGQEvP467t69i02bNvHU1FSpuLhYmDBhAnw9PJjNF1/ApMYYrmvXrkmlSqXgW1wMp3feaZJSplOnTsKxY8eE8+fPw9TUtDqBwTklDQIDyfBu+XJaQz/8EPDwqO89UOf6cXF2RseJExFvYoIWTXi+1sWdO3dUpaWl8PDwEEJDQ5m1tXXTnc8NDYF//YvW2GeNbaKjSXFRIyGqUCjYnTt3Gn++FhXRVJGxY6sl9CYmdF22bk1JlIsX6fqtgYqKCuzZs4f5+/sze02jOZuKr7+mbX4Ksi2KIvz8/KCW7d+9e9f80qVLxefOnYvwe06TD14EvKxsv8QLBVEU33RycjJ7YhbyOSE4OBjXrl3DrFmzqjLO/0l4eXmhppPvgQMHcOrUKR4VFYW5c+cyURSRkJCA27dvq5KTk8XKvmSmUChQXl4u3b9/H0ZGRnzChAnif5MJmyiKKCwshImJCX/06BFbt24d2rdvr+ratavo5OQEQ0NDeHt7w8DAAIcOHWJubm5YvHgxcnNzYWBggNDQUNW9e/cQHBwsBgcHQxRFuHXtynvY2z/T07hbt24sKSlJ2qVQ8NesrAQcOEAB2/TpT/+g796dZJ1jxmjuK30CSkpK6nkQNIroaAqk6j5I1ee/ZctqmXxNSbXaZG7VKiKmADkku7lRoHn+PNqvXg3h1CnOzp9nuHIFCnNztJsyhXfX1mYYNYok6ydPkolS9+6N91A/K9SmYIGB9BmHD9M58vKqnSDhnKS8n35K/09OJrM1e3syuqlbDYuJIQOhb76hoHr2bKpo+PmRc3YTnWCfFgqFAsHBwYiPj2eTJ09G69atmVKpREpKCkRRZAkJCVLOlStC3X78TZs2qR4/fizq6upyNzc3lpSUBHt7exYbGwtPT0/WsWNH2NjYsP379/PkmzfZ2G3bxEOdOyP57Fluc+MGnzlzZtUCoVQqcenSJURGRoJzDr3s7CqJe0BAAAPIeE1XVxcrV67kpqam0vTp00V1wszR0RHjFy4Uo6OjEXr4sJT94IFw9PRpPkomY9d0dXGnqAhXrlyBt7c3+vfvz/r374/cx4/BhwxBqZMTCgsLNbsEf/89sGEDrG/cQL/cXGzduhV5eXl8/Pjx9W/OiAgiqs2FJAERERi2fbuYt2MHbCuVEyXFxSgtLcXIkSNZzdfKfvgBsnPnAGdnTK4x4jEvLw9JEycizM4OR44cwYgRI2p9jLe3NyIjIxvfli5dKIjv3p28Bvr0qf37Bw8o4fP551QFbgQuLi6YPXs2du7cie7duzf4PAu8f58FDhtGhnddumC7q6sUFhbGZDIZl8vlQqUjPjc2NpZkMhldFNnZVNlOSCDi5upKhPvBAxrntWwZJT4A2h8LC9zavFn1cPhwmbm5OYx69aLqNUDE2NKSKoXa2lQVT0sjlcLBg/TvTp3gumABlkyeDO2vv8Yhf3+eHhoqoXVrETUrr507U1Lt1VeJZJWU0Fpw6hRw5gyEtm3hd/kyN+ecISCAiKezc/VaGR9PVd+AACKr6pFPsbF0nYSGQpGUBMO+ffnrP/+M4mvXRGhrUxJzwQJaj/bvp2Tl+++jsLAQu3btgqenJ9PS0hK7detGhLioqN46JAgC07e1hf7Ro+RL0L//E1tc9PX18cEHHyAsLAxBQUEICgrCNF1dtPjxR5KNr1xJa5qWFsnB168nJcSlS42+L6uoQHlgoHSupETQunwZTTIvrYFx48ZVcZW4uDjV3r17xUWLFjVdJahS0TPl1Knm+2nUxP379fw6zM3NUekWrhnZ2fQ8ycmp//xW///IEUrE7NpFz5Z9+4DKqTcAqtbOp8Lt29SC0Ezpfv23uY3Q0FAAgEql+g7AOgCKZ3rTFwgvyfZLvFCQyWTv+/n5NZ+xPAVOnTqFa9euYebMmf9fiLYmjB49GpIksRUrVuDLL7+Es7MzT09PZy1bthRGjhypnskryWQygTEmuLi4ICYmht+/fx/OTyH/+qegq6uLdu3aSQ8ePMCcOXOE3NxcBAUFsf3790tlZWWChYWFJAgCysrKWEVFBcvNzYWlpWWVNHzQoEEiQJljxhhVqjln8PCgsRzP4Czu7+8v/Pbbb7gxejQ66ugQ8Zo3j4jpU5BlWFpSNSY0tMlzSWuidevWVXLJRtGlC5H6bduav401YWBQPRbrX/+q/nlcHAAg9qOPEKFQSNbHjwulY8bwwR9/zPRzciiYBahf09GR5OlaWsCtW0R8Nm+mKtGKFUSIBw6kinH//s8m1w8KomD1o4+o13XnTuqn27mTKtlhYRTgz5tHUrwRI0iiOmkSBcMZGbSdU6ZQINe2LREGxogs/AeVIkqlEps3b0ZWVhZMTEyk1q1bCwApMdq1a4eMjAzknDolJHt6IuDdd2v9rUKhYJMnTwbnnJ09e1by9vbmAQEB6ihPAMjMLismhi06eRLCX38hLStLVRYeLt67d6/WTq5ZswZFRUXo168funXrBvHjj+naX7as6jWMMbz11lssNzcXJ06cYHv27FFNnz69KqosKipCYmKiVCCKwi8jRmDIq6+i87vvovOQIcifNw/ZWVm1qlvmFhbA229jWocO9UctSRLJcPv3p+qRtjZsbW0xb948bN68GZs2bVLNmjWrdkIxLQ14ktdDXeTlkXQ4LAxb33mHT3N3rzouDx8+hI6OjlTLiWvbNpIIa3BaNzU2Ro+7d3FnyBDExcXB1dWVd+rUqcpEsG3btoiMjERCQgKZZDUEbW0aLbRpE5FBQ0NqD1mwgMj3pUtNHmvm6OgISZJ4SEgIa7Ci/sEHRDjXrgX09DDN3Fy9v+zu3bv466+/eFFRERs9ZIgoxMfTMQgOJqny669TZZsxIrVHj9I9//bblMwbMgRwdaXrsKhIltO1K8pzc5HesiWqWlHUsn/OaS2fOpWI++uv03EAIH32GYSuXaELoDgxEbdatGDjgoPF3EOHYH7tGpnS7dhBa29YGDBzJpEsuZzUSrm5VJX08sJ5c3Opf//+oo0m5VFFBSmTzp4lopqYSIk99ZSCYcOwNz1dlZmZKR77/Xc+etAghocPq4lz//5E8N56C9zbG3Jtbd7TzY339fAQYGtL95RKRef4nXdqfbQoipAkif6zZQu9bs6cJ55jfX19BAwYgL7ffosUpRJpEyZILXbuFGBmRolJNRQKkuY/Sa2nUAALFsDu55+FgLg46cKFC/D29m6ag7YGvPfee+JXX32FkpKSppNtUaQk7rOajGVl1euxNjQ0hEKhYH///XetSTJVGDaMWhfqtILUgp0dfbVoQWoobW0UjhqFo56eklIQhJKSkqff5v376Vp9xufQ3r17AQCMse6c87+XLVv2kmg3Ay/J9ku8UFCpVGbNMtd4SkRGRiI6OhozZ858/vOXnxGCIGD+/Pm4cOECJEliw4cPR6dOnRhAM01RZ5xSbm4u37ZtG7O0tJRsbGy4v7+/aNoMaXRpaSnS09ORnZ0NHR0dlJSUSPfu3ZOcnZ3F7OxsKTMzk/n6+rLOnTs36WmQkZGBjRs3wsTEhL/++usiQNnladOmCQAF6QkJCQJA1bO4uDi+ZcsWvPfee6yu/LuWEQxjJPc7dOiZyLatrS0CAwNx4sQJVceFC0V8/TXJIb29yTSngd7WRvHJJ0RUnoJs29vbg3POGgzKIyOJvH7+Ocmc/2EMHz6c/fDDDyw9PR0zv/iCGdjbU8V30yZ6QeVDHQBVgwwMSOKq7tFMTaWgJD8fGDqUvi9eTD2qkZF0fOfNo0B7zRoy7yoooMC0Ibm2oSHJTA8eJPL8449UkZgyhSpmgYFEsNPTKekRFkZVuI0bqQqRnEx9saNGEXGZNOmfPYgN4PTp06q8vDxh5syZrEWLFrWi2ePHj0tXrlwR3jhwACZ1eiwzMzNRVlYmuLq6QiaToa6UNTg4mN+8eVNiWVni7LQ0yJYsAbp0QQAghoeHA6BKrKmpKSRJglKp5KNHj2ZVpndt22rsSdSuJL0DBgwQdu3aJdX83bZt21QAhPnz58PKygqCIDBUOq2bfPYZTLZuJUJcEwMGkFTz0qXaCZgVK2iM2vnztSSvpqammDdvHtu2bRtbt26dav78+eSarFQSUWqO7PLWLTLkYgw4dAjKlStrrS/JycmSekwVAArczcwoyaOpcqVUAps3Y0L37ggPD8fBgwfZ4cOHMWfOHNja2sKksvKlniHdKPz9KeD39SVS6+RECYixY+vNiw8JCYGrqysa8vZQk6ScnBzN4xFtbUnVcfUqeRLUgHOLFlg4YACL+OYbLj9xgt10coL72LGkOKh7DFQqIseffUYVv5Urqa98xQpwzqFUKtGtWzc4OTnBVVPFNjOT1rOpUynR8u23wLvvQu7qinU3b0J2+zbv168fS//gA1TcvImo995DSkoKPpUkCNu20ZoYGUnn6fhxWsNbtqwnmS4rKxMafB6qfRpmzyZlS1pavcrorFmzxKioKFy4cIGFx8dL/fr1E7BiBSVEAgIoYffWW8jKzkZeaip63r8v4K23aK0JCqLfL1pEygUnJ/IK0dKCIAisimyHhlLyITGxqmddI+LiaO3ctg3iuHE4n5wMZ0dHzc+FCRMoWRMdTceooYRNTAy9RkcHPXr0EEJCQrBy5Uru6enJ1CMFm4Pc3NyqJHmz4OtL+zZ1an2FR1Px669E2jVA7RVTC8XF9PqmKsssLChGKC5GZlYWN05PF/ra2MDnaWeFFxRQsqOhxFgTceXKlap/L1269EojL32JBvDfowt9iZf4D0AQhM9+++230tu3b/9jn3Hr1i2cPXsWEydOrG3a8l8EKysrjB07FuPHj8eTXKAnTpwoLFiwAF27dhWysrKELVu28IyMDFRUVODkyZPShQsXeExMDE6fPs2/+eYbrFu3Tjpw4IAqKChICg0N5UeOHOE7d+5EXFycKjQ0VFXZNy6LjY2VCgsLmSiKQlRUlNToRtTArl27ePv27fmCBQtEExOTer83NDSEj48PfHx84OnpiVmzZjHOOU9MTHzym3/wAQXLcnlTN0cjbGxsUFxcLAYFBeHnjRtVf1taUpXmxAkKIGvPaX8y3Nwo852c3Oxt0dbWhq+vLz9x4gQvKiqq/UvOqVJ78CB9f9b+8iYgJCSEM8YwcOBA6Yl9aEZGFKy6u1ePLPnjD+qFNDWlqpG2NvWIq8l6+/YU+KWnU3UaoCSKOmBs2ZLI2LVr1cY+YWEU3C9ZQqTp+HF6vwsXKEADqOKgUlFVa8UKCpyXLaNg18iIXvf/UcFy9epVfvnyZXH8+PGshQZ34NjYWAEANsyfD5VaEl+JsLAwWFtbS3WTUQD1bkdFRbFAFxfx3StXYLJ4MZmiVWL69OkAqJq9atUqrF+/HgqFgnWo6aA9cyZVeBqAvb09lEqlUNMwraioiA0fPpxp8pfAZ5/ROcvJITn/o0f0czs7Okdq06r8fLo2Zs4kyb+GRKu+vj5mz54tmJubs7Vr10oFBQXkEnz+PFU2mwK15LxzZyg/+QSHjxxBeXk506kh1U9JSWEdOnSoZgirVhERadNG83v++SfwzTcQBAG9e/fGRx99BEmSsHXrViiVSuTl5YFzjiZXvWQySvgNH05JqjfeIMfxxYuBO3eQ/9VXuLhuHW4eO4ZTq1fjSnh4/fnoAN5//32mq6uLn3/+GRqn2VhaUsJSX786wZKdTeqQESOAxYvhO2cOw+LF0v6OHfFFUhIUmoiKnR2dPzWWLKH7bcMG9IuNhbmuLmeMoXPnzpqJ199/0/oAAIMHI6NHD1zeuBHHP/tMsrOzk9zd3XlISAhu3rwJPz8/7urqCisrK0kQRfJtOHCAEnX37tFaMXkycPMmcnJycPjwYRw5cgTnzp2DQqFgDT3nC42MkNW2LVWYW7QgNU6NZGJ5eTlWr17Nz5w5o+4Zr77QL1wghcCJE0Dbtrg5f750dNQotnP6dOnhr7+SasjXl8zWbGzo/a9fp7aAVq0gA5jR3buUVAGoB74h88WlS6nyb2hI++nqityRI/HYyAg9e/bUzBO0talS/vXXtI0aoJTLcTM9HQc//hh30tIgSRIWL14MJycnduvWLZXmjWkYcrkcv/zyCxhjmhM9TwJj1e0GzcWtW+TjUedcm5mZwd7eXkqu+2zeu5fOibFxoz3tmlAqCNg5cCAThg9Hn8JC5EyZwr9duhSZV5rJcyMi6L5/hji0oKAAx48fB4ApAP47A9r/A3hpkPYSLxT69OkTfvbs2di0tLSRPXv2bEYja9OQnJyM/fv3Y+jQobxdu3b//U5jTYSOjg6cnJzg6enJ7ty5w0JCQhAWFga5XM7lcjnu3LkjFRcXw8/Pj9nZ2bF79+6xhw8fIiUlRcjOzmbe3t6YPHmy4OPjI/Ts2ZO1bdsW3bt3F7p06cJsbGwQHh4u9O7d+4nZaqVSidOnT7P58+c3ayZzdHS05OjoqHmkSk0IQnW1oCmjPBqAnp4eFAqFKjs7m9vZ2QmhoaG819ChDIGB9AD897+p0mFu3rQqtyhS4JmXRzLGZsLBwYElJCQgMTGRde3aFUyloqDb3596kf8DY7fKy8uxd+9enpKSwubOnYvWrVs/v/vD0LCa6L7yChEwK6tqaeXkyUS4GKPgp3dvqnxdukTVvTfeoN42f3+SsUZEEBFZupT6NFu1oqDWwoKq3HPnUrVWX//5zlV/SpSUlGDfvn0YMGAAayh51qpVKwx66y0o27RRxRQUoFOnTkypVOKbb77hjx49Yh06dJDc3Nzq7YyZmRkS//oLvnI59EeNqjfv2NTUFMbGxrh9+zYqKipQUlICV1dXVM2XBijwfOWVBnugK2f8SuHh4VKPHj0ESZJw9uxZNmDAgNrqk5owMiKTKV1dOm9LllA1+vXXidy5uFALx+XLdO4baeEQRRHu7u4sJydHOnHiBOscFcV0unTRWBHKysrCzz//DGNjYxhpaSF8+nTJJCyMXR8/Hkdzc/nZs2eRkZHB+vTpgzY1iHRcXBy3tLRkTk5OlBy4cYMqkg1Vva5epWu4cgqBKIqws7NDUlISj4yMZCqVChkZGbCysoKjo2OD+4byckoObdpE1254OBHiK1cAZ2dInTph4/790D5zBun5+fArKOC9IyJYUHExPMaOhfLcOcisrGjNMjBA1Pffc6urV5n7xImwv3mT1mwDAyLmaom0vz8pTK5coUReUBCtX1OnUiW/ZUs4tm/P8vPz8ejRI0RGRqKgoIC3adOm9prg60vnVy3RtrMDevUCO3YMjqLIrkRH4/Ldu7h+/TqPiIhQnThxQjh//jxCQ0NRuHs3sjMzcUah4CEhIYgqLGRaOTkYmJHBvIYPZ+1feYX16dMHffv2hYuLC2OMISoqiv2dnCy5//03Ey5dIoLapw/1WM+bB9W+ffgzMhKCjY2qpKQEiYmJzMDAAJpGS+bm5uLIihXc9MgR9uvjx1Bxzl2nTmXFLVpApqcHpq2N4uJiREZGMkmSoKWlJQ0cOJBctktKqJI/dy49hwQBLhMnMmdnZxQVF0snrl4VDK2tYTd/PvDaa7QWtW5N63hMDHDzJvLc3NBr6VKIycm05mlrk9JHFGkdzMykBKGdHbXReHjQtebjA4giDAwMEBcXJ8lkMjg7O2teq42NAXt7SP7+gIUFwsPD+fbt21lZWRkUCgUyp0zhxvv3sxBHR9y6dYtfvHiRqVQqlJWVIScnh/n4+Gh209cASZJw5swZPHz4EPPmzas9TaSpGDqU1CSZmfVbTZ6EmBhSDqj77mvg/Pnz6NChA6tSmahUlCAePpzu4WZCS0sLjx8/VsbFxQmJLVpIke3bC3YpKej2ySeQTZxI99uT+rg5p1aOwEDgGVoA169fryorKxMAdBAEIbVfv35NqFq8RF28lJG/xIsIc0tLy+c+YD45ORn79u3DkCFDeFMl0f/XIAgCpkyZgpKSEty4cQPdunXT2HtVOSKLZWVlISUlpWHHXNDYlsrxEg0H1pVITEyEoaGhShCEZjmGVFRUPPG9qzB9OvXuStJTEyktLS0MGTJEBChBEBcXx8rLy8npedEiInhLl1KQ9PrrVJl4EtzdyZBm6NBmm4Zpa2tj/PjxbN26dQg6fBjDRo6k4Kuk5B9xwq6J2NhY6Ojo4MKFCypRFNncuXOZpnFV/zgEgQIQf38KVrKz6ZiqVNSLPWQImaRZWVElQl1Va92aiNvcuf/R/usngXOOAwcOqAoLC3H37l1REATWmPGQg7098OmncO7eXYw4dAg7duyQ7OzsBJlMxqZNmwZHR0eNF9X9ffvgd+kSjOUTutEAACAASURBVH74oR7RVsPT0xOenp5IS0uDjo4O6ikWRo584qzqnj17CtHR0di2bRt3dnZmnHN89913GDZsGDw9PTX/kShWJ1QKC4lYpqWRS7KpKcmPm+jELAgChg8fLpqYmEgxX30Flw8+YC0kCTk5Obh+/TrKysqgUqkQExMDADj7+++4m5ICy5wcYb2/P5TJyXBwcMDUqVOZg4NDrcRhcXExcnJyhNatW1O19bXXquftNgRzc6oE10Dbtm2xaNEi9sUXX0Ct1GlQwqyuJn/2GZGqTZvoPadMIZXNTz8BZmYoO3AA5c7OKFm1CgM9PGBsbMwAoGdsLN/ToYOU8+CBqBUWxtuam3PLoiKhi6cnS05I4OdOnGBe169T8q9lS1Kc/PvflOA4f562YcwYqsC2b1/dp1wDAQEBuH37NlQqFa5du8aGDBlSW8UwdSqtkTVhYgJ8/z2sDh6E95EjYAYGvGj4cGZoZCQzMDCAiYkJioqKoHX5Mk46OMDZ3p77+/sL5ubmWLNmDUZ6eUErNhYAINYgyU5OTpgxeTJyRo0Silq2hMnevbRmtG9P60HLlkjQ08OgTz6B86BBonLgQKxYsQJvvfWWxsN/4MABVQcHB9bOwoIZGhry/Px8bExJUTkdPiy2S0rCpaVLJWMTE0EQBHz44Yf46aefhNjYWHTr1o2UAUZGlPg7fhxwdQVjDM7OznB2dhZFUeTXr19nVfeFkVF1i9HWrYAkoTQ4GCGBgVxHkqTW77wjOKamMjEoiKr2np6UANHTo7WtgeeznZ2dEB8fz93c3KBOVHPOkZubC319fSQ7OsL2p5+QvnMnjtBkAwYAERER0BZFrj94MH979mz2KVVWWWRkJCIiIiSFQsHKy8uZXC5vkqt4TEwMjh49CgAIDAzktra2T78QjxtHyVi16qmpuH+/wQqxra2tdO/ePdHb25vaP6yt6VnytHJ1AGPGjJENHDgQp06d4qIoqpR+fuIfLVuq3rS3F9GiBak83nij4Te4coWq8c+wDQBgbW1dLgiCjlwuby+TyQYA2P9Mb/iC4iXZfokXCsuXL3fU0tJa5+fn94wDF2sjKSkJ+/fvx5AhQ3jXrl3/eyLyfwj6+vrwbkLl19ra+onmcIIgQCaTITMzs9EKDeccFy9elDp16tRsa05fX18xKCgI9vb2Tx6/1rEjzVTW1qZq3DNCJpPB0NCQJyUlVVcdXVyoarJqFTmRWlvXC6zrwd2dqq+3bzfed9cAVCoVtBQKvFoph9w2cqRSceaMMM7cXNDo3PwckJ+fj+DgYAAAY0x89913n/uc+XooK6Pvt27Rsf30Uwowvb1JxjluHJGNe/foSxSp8ufrS1WeESPIpG3QIDI2ys+nKuTAgVQZqimP/v+IixcvSqmpqczV1VUAgKlTpzb+B4sXA59+itZGRhivrY29e/cKqampsLS0hJMGgy4AKDtzBgn798P41VclccCAJ2aeNPbOAlSB/ukn2oYGrjUdHR3MmjULISEhUnx8POvWrRuPjo4Wg4OD0bVr1/pScoD666OjqXpTXk6y8rg4+vL2piRWMxIkjDH4de8u3JXJsDM0FLL4eJSqpcg1XtP+0SO8WlGBqxYW3GH9ejbfwABGRkbQ0tLS+GE3btzg+vr6kpWVlYiICCKnvr6Nb8z335N3RB0yIggCpk+fjsOHD/OKigrWpq4MPTOT+tOTk+m4nztX28Tq99/pntiyBfjhB0Q4OWHMgQMw9/GBrpNTlTmXh4cH8/DwECVJQnp6OktOTsalmzelw48fC2JgINPX1+fshx8Y7t0jQ8M//iBF0Pz5RPL19amilpYGnDlDa2odx2x9fX34+fnhypUryoKCAtk333wDKysrrq2tzbS1tWGipQXj0FCU5uejR48eteZgy0aMQOSlS5jq4sJMtmwhOXPNUVWOjpj75ZeAlVXVhWNiYiJFm5oKPh070tprZFRdNX/wAPZr1uBSmzaIHTQIAx49gqORESVH/fyAkhKExcWpfBYtEpxv3WJ3bt/m2traiI2NZb6+vqg78UEulzP7vn2FsMxMLgiCNGjQIHHVqlXi9C1bUPbddzDW1+cZGRnSlClTBB0dHbzyyis4ceIE79iyJdNdsYIUCAAR4m3b6LiCpg3ExcWxV199VeNlU1hYCLlcDm5mhnsDB7KsrCwxrE0bWDCmetvYWARjlIgZOJCSt8XFDV2BGD16NFavXo2NGzdCV1cXjDEwxmq1Lsy/fh2ti4rg5uaGMWPGVD3PhSFDGPz9WU2CWtne1ewMtppof/DBBzAyMnq2+OrUqaoZ581CdDTw5psaf2VraytGRUVxcM4gk5EpWXPNFTXAyMgIY8aMEQHyovnxxx/FcsagffYsxSeffELPsG3b6q9zGzfS758RkyZN0vv++++VgiDkl5eXf/TMb/iC4qWM/CVeKISGhr7u7u4+0MfH57klml40ov1P4MaNGyoArN6c0xpISkrCtWvXMGXKlCZLz9RwcnJCdna2dPLkSWZjYwNzc/MnG6wkJDw3w7CioiKekJDAu3XrVv2hMhlV+ySJZLapqdS/2Vh/l709uZoOHdq8DZAkGBw8CNHHh59nDFGlpSw3N1fQ1dVFQkKCVHM83PPCnTt3sHXrVt6pUyepsoUA+k/jxq4JKhURrd9/J/nje+8Rge7cmcbbtG1LxOvQIZKQa2tThr9HDyJ8Dg7kTKvuI1ZX3srLqQ9RkuhcnDlDRK5lS6pCbt5M7+Xq+v9VPl5QUID9+/ez4cOHMz8/P/j5+WkedaVGXh7t9/z5YDo6sLKyQlRUFFQqFSZOnIia3gcFBQXYsGGDKm3zZiZs3sxKvb2lTgsXCs+cJFmwgBIYjSTf9PT04O7uLvTo0YO1adNG8OjYEelBQTh6+TJUq1Zx3fh4ZuTiQkTV2prOz6pVRESuXKGE1Ouvk8Hdhg3kj8BYw33RVYcnD6dOncLhw4f51YMHmWFaGlLatoWOjg48PDzg4+ODoUOHwsTQUDLbuZMZyOVot2ABXN59l5mYmEBPT6/R8TzBwcFS69atxVbl5cDChWSq19j6I0mUNBo0SOPrTE1N0apVKxYVFYVOnTrRfVVaSvOPjxyh63PSJJKx1r3nXF3Jkd3HB3B1hezbbxH1+ee8U1ERw6+/EkE3N6+qujPGYGJiAldXV9a9e3fm6uQEYdMm5AkCa3/mDHTffJOq19bW9HmtWpEXQm4unZ+uXYk49upFP7ewoNdUQi6XIyUlhb/55puCiYkJTExMmIGBAWQymWR78aLUct8+dsDMjN26dUvy8fGpOhiMMVyIj5cMe/RgDoaGRDjMzIjg5+dTwmXo0FrHLy8vD3fv3kXXUaMY2renKrC+PiU0BgwARo5E6ahRvLikhJ86dYr55OdDtmIF4O4Oyd0dp7t3FwbPnMl0bG1RvnYtyrKz2U0tLSQlJUkXLlyQLly4wKKjo6WYmBheVFQkZoeGwjk1lQ9ZvVqUyWQIDw9HqSRJpkOGsO4LFghec+Ywk8rEqY2NDbt9+zY32LiRWc+cWd3GFBFB5m6VZPvx48eIi4vjY8eOrdqx8vJy7N69Wzp79izOnz/PkpKSpKSkJMYYk7S1tVl5eTm0dHXh27kzQ4cO5LQ+aBC1WKiNBmNiSMVT4/kjCAIUCgV78OABnJyceJ8+fViLFi0wbtw4iKKIgQMHwnbuXGiPG4fOvXpBZmAAURTp2fr4MV1nz5jILSgoQGRkJCZOnFhfMfM0EEWS6P/739WeHU+CXE7r54oVGu9HExMTREREMKfFiyXz0FCGhQufuwpKEASEhoaS0ayjIyxat6b7tKiIrvkPP6RnnK4u+RWkplJiuTljP+uAc46TJ08iLS1N4Jw7Llu2LO/57dGLhZeV7Zd4oaCtrd3Z3t6+vi3uU0JNtAMDA3mXLl1eEu2nRJs2bcTY2Fju7OxczwWXc474+HgEBQUhICCgnqN4U5Gfny+Vl5cLu3btAgB88sknaPC9ZsyoMg6qmin9lJDL5bhx44ZQWlqquXXB25tIwrlzJJucN6/hKre3NwVH+fkkp2wq7t4FPvgAvrdvM8X48dKjR4+ksWPHinl5eWzv3r3PnTVW9hDz3r17o1evXmKznWMBclI9dozk3Tt2UGD4xx8UYCxZQsdi716SxfbtS0GioyNVbdTGVBMm0PeJE5/8eXl5ZJA3ciQ5/f72G8nsAQqcxoyh4H36dJr5e+DAMwUyTwvOOXbv3i05OTmhQ4cOTTt3KhWQlFTrR5IkgXNer6odGRkJp+vXxd4tW8Jw7Fh0Dgh4PteH2rSsLnJyKNFx8iSpNubNo6Bx/nyYMIbpR49CceYMcu7fx42EBG7n5MTw++/kFq2nV129+eqr6vdUV6PVCRk3N8DeHgWcQxCEqn7P4OBgfv36dV5RUSEoye2e9U9OhkXnztKyZcuEutvZ/dQp4bahIU/w92fqXurGUFpainPnzqkyMzPFUaNGUWVsxownB+IXLlCw3MjrsitNFiOOHFENMzQU8e9/07F4773Gjd3MzEjmnZ4OBATg/LBhPPDLLxni4+l+CQ0l6X3fviRTVbdf/PEHcOECnDdtgtm1a8ixtMSW9u2lBZmZAhij1pjDh+n+SE4mF+RvvgEePqS/lcmoQnzvHpGdv//GzcmTEX3nDoqLiwVdXV2SUFdDQK9ewDvvYAJjOHDgAJMkqZbCoaysTOjQuTPJoPv3pyp0UBCRPA1j90pycyUDXV2xaob3+PGkXnJ1pevP3h5eAIuKioK5ublKu1cvEba2SDI2xqUZMzB40CCura3Ncq2tYbN2LRsaEYH8R4/wc1GRIIoi5s2bh/T0dLG0tBRubm4I+eEHXvzoEX799VdV3759xddeew0hISG4du0aH9+qFW/18GHVzjDG0K9DB0G+eTNXLl/O0u/exePHj5GuUkmOf/whdFapIIpilTP/3r170a5dO7i7u+PixYs8JSVF6NevH9zd3WFpaSkolUrIZDIBAJQVFRAmTBCgo0PXB0DPtZYtaQrDgwe03nXrRoTSyIjOlaEhzMzMYGZmppw2bVqth2U/dSL6wgVKsqxbR8aVAPDuu/T8bEAx01TcvHkT8fHxsLGxkepOSHgmDB3avEkD16832kZkYWGBt99+G/uysgSLkSPxT9iMymQyTJo0Cfv27UNSUhJat26N3r17o8W//kX38r175Ap/8iQ9A52cGm9TeQJyc3Nx4MABZXp6ukwmk32gUqk2LF++fPWyZcvCn+NuvTB4SbZf4oUCY8xJV8MImqfB/xzRvnmTKiPu7tTTlZ9PFZbsbArebGxoUX/4kKqJRUUkx7p7l35nY0MSxsxMqiwqFLTYJyZSRdbGhgJruRwqGxsoy8uhY24O3L6N/mZm0FKpWPQXX8DcxwfmLi7gAK4kJUnp4eEC19Hh4wcPZm55eUTAZDL6bBMT2p5K2SCKimiby8spEDcxoc8sKYEyJkac5OUFPX19lD9+DDEqioKKoiIiWi1aELnS1qaqjEJBZj4//kjb3wwkJiYiJSVFdefOHaGoqIg5ODhIgYGBDQcLenpEKm1siHQvXEgjQOpWuU1MqNoeHd2ws2xNXL9Olb6wMCA7Gww0B1z9a0mSUFZWxoqKip7OcEYDbt26hX379qF169ZSo0S7ooIC+86dyQxq82Yiz23aUBXsrbcoKO/Shc6NSkXn/PZtOk6CQNUZgIJmNWo4QDcZFRV0/OfOpUCdMc3BlY4OuURHRFDlcNQoqpz/B6vc5eXlyMjIED7++OOm/UFYGElGCwtrbaeHhwePjIxkGzZsUM6fP78qFtCLjkab2FhuPWcOQyM94M3GyJF0X4WG0nnz86NzP3s2kbSbNym5ZWhIyZT+/QFbW7B586AHQPfbb1nYL7+g4tw59OzZEyYNKUDWrqV76OBBMkabOZP8EQ4dwpbRo7mcMdatWzdwznHt2jU2ePBgFhsbKw0dOlSwtLSE1uTJwLvv1j6hly8TmRg2DBdtbSW3du2e2MpSWlqK9evXcx0dHbz++uuwCA6mxFBTVCnh4bT+NIIOZmboe+eO1Co6WkTnzlSZbOo9fPgwrZcBAXAeP57tVyoxpUcP6IeF0fXv4QHEx1M/9uPHwJ499Axwdwe0tZF04ADuHj8OCwMDXuvaHzGC1ntLS7pvBw+mdo4BA0h58v77AICYvXuhOHoUUX/9hQl79yK8Z0+WJ5fTrPSaMDYGxoxBmwMHYG5uztevXy+99dZbIgAcP36cS5JUfYOqW3P++ovIn5ro9ehBiYCuXTFk1izx8KJFHJGRDKmpdBxkMnpO1Vjjy8rK4OvrKwrBwYCFBeIzM6Enl+PuN9+woM6dIYoijIyM+BtDhjDzlSsxoKyMn27ZkhkYGKBLjXnbowMCWPHt24x37Yrg4GD+r3/9i82aNUs4evQoIpycpFaGhsAXX5CsH0CrO3dw0cUFK3fsgFKphJGRkcrW1la0HD0aFwYMkKwWLBA456ioqMDdu3eltLQ0dvr0aVZYWMgCAgJqeaPUTCTLystpDVWT4ZoQRaqMfvklPf9DQkiRcPMmkJICs969odLkFq+Gjw8Zs6nNwfLzifB98YXGlysUCtSMwS5fvoyLFy9KkiQxbW1tlSRJTKVSiRUVFVXjtObMmSM8VcK2IXTsSOd8xYqmSa1zchpvH4qJgcX48TBeulR1PDtbmFxnfOrzQps2bdCvXz/pzJkzgkKhkDZv3ix07NgRY8eOpbgoJ4eSKYJASZCnQHp6On7//Xf1pAEZAJVSqfwBAARBsAXQuPnGS2jES7L9Ei8Eli9fLgMwQ1dX17dej9tT4H+OaANEbI4coey2SkVEQ/2A45x+VlFBQWB5OX2pVPRw1dcn4pqfT9Uka2uSQZaXU8aVMUBLC/zhQ8ivX0fYw4cwMjTkfsOHM1y/DsHBAX1btULsrVtI3L0bHgEBuJWaKqUXFwv+enowsbdnEASqjj1+TAGCqSkFdVev0nb16EGZ3cJC+rK2pgAqLg7IyoJTaSms9PRgpq9PMqtHjyjISEigAHHwYCLenNN7GhnRA6xjR6r0tG5NiYQzZ4ic1yR4dRASEiLp6+uLPXr0QPfu3aHRRU4TunUjSfMff1DP15Ej1UGMGq6u5KL9JLItl1MAWulmqwnJyckQBKFev+Gz4MaNGzA2NsbYMWNEdvMmSTQzM6kH9ZdfSNrGOc0sff11VElXHRwoUXLkCBEBQ0MauQPUrkI8yVG+ubh/nwjG5s1EJgC6xo2N6Xqqa0AlCJQMsLOjSriZGZ2zZ1RANBW8sjrbZIVHr15EeOpcA15eXszIyAghISGylStXcmNjY3ROS2OGSUmIHj2au/To8XzWNaWS5hUfO0bnNyGByI+nJ0mMHz2i9aEmsdcwp9zS0hJ+fn48MTGRR0VFCS4uLtKECROEesnTTp3qz/T+/HNg7Fh0+vVXZhIRgVRbW1ViZqbIOYeXlxeq2ijkctqmGjJn/P47XSMzZ6K8d29k//CDGNBQb3olsrOzsWXLFlhYWEizZs0SkZlJBmU//dS0xMzo0Q2bJhYWAitXoiA9HQWFhcKj2bN5ixEjmneutmyp+mffvn2RlZWFP5VKzAwMhHj4MK0xrq5AcDCdu/79a5nMqefuyuVyMTs7m0yuBg6kc6gmWWFhlMDy8KBES3IyrqWm4k5mJhKSkjD4xx/xVufOKOvRA6XBwbg/fDj0DQyg++eflFTU0qoawyhkZmLatGnCqlWr8P3330v6+vo8Ly9PnDZmDAxjYighHBdHrQSTJtHan5ZG19vChZTUcXPD8W3bkJ2VJaGSsOPQIbrHv/uORsO98gqKiorQpk0bdvnyZZVPeLiILl1QZGcntXrwQDApL+d+GzcyMzMzrF69WorKzBR6Ll/OfIODWZeUFOjVue50ZDLo2Nmhd+/eSEhI4Nu3b+fTpk0T7ty5o+rbty/1T+/aRcmlggKwCxfg++WXDPfu4dy5c5g0aZJoZ2eHirw83KqoEM6cOaMqLS0Ve/fujX79+glFRUUICgqqGnepEX/+Sb3ZoaFPVlSIIj0H1c/CoCBY/forvLS1BchkNPe77jQMHR1SbOzaRQm069dpvdHwWStXroRCoYCxsbEkk8m4JElQKBRiYGCgYGpqioKCAlleXh4ePXrEe/Towezt7fHgwYPnIx+vi+xsSsw0hWwnJjb+vG3dGnjjDQwKDBQ3bNiA3Nxc/FMmoL179xZ69+4NuVwurPv+ezy6cYMjNZVh7VpyzZ8+ndQzNdewJiInJweb1CM0AdjY2KgyMzPVN36eJElDns9evHh4SbZf4n8Cy5cvF0AzAJ0AmAFwkclkHbW0tNpzzlsJguBgY2NTNmzYML1nrWz/TxJtgEhPaSmRyPbt6QHj4vLs71sp5U1LS8PJjAwpz9WVmXl6soqKCu43aRKrGVh7jBuH1atXq07n54uOvXtjzJgxMHnS7GdN2fqamD4dCoUCkStXsgGffNJ09+3CQgoyZ84kE5kVKygYCQ+nav748RQU7thBgem33wLbtiHh9GleJJcLM2bMqGXo02To6wNvv03Hbdgwqp6++Wa1m2+/fjQ7+J13Gu6H27uXevweP6aKXAOQyWScMcaemmzL5ZRwUSiA1auBRYsw7OJFZB86hHVlZfztL79kslWrqk2IKiqogmJiQpWntLTq91IHM08x2uypkZ1NEvPvv68m2gAFkOHhjc8db9mSgvU//iAitWABnZt/2LFc42zjhnDsGPUuHztW71cWFhbw9fWFiYkJbt26xbJDQuAQHIzIGTOQpFQKw5vj4N8Qxo2javapU5Tg2rGDrpVBg6jS1gwwxtCvXz/Wt29fdu3aNZw6dUrYvXs3nzFjRu0Dbm5OaoO66NwZTnPmQH71Koa0by/66+oiu27l/sYN2j5tbSJq779PFbA5cwBXV+zZvl2lpaXFHB0dG2TMnHP89ddfkqurKxs7diwFqhcvEglt6oi9OXPIjK9mwP74MV1vK1cCX32F866uiHvwAD66uiwlJQWtWrV6sg9FTTg4VCVXx44di+U3bmA753ht2jQImzbR7zdsUO9UrT/18vLiwcHBTJIkGKnXpSVLwK2soFIqce/ePRhqa+PvDRtwyt4eWlpavNvKlbBNS2M3x47FuIkT0a7yPteaPBljRo3C7o0b+YMLFzDo8WMm8/amPvCpU+nYKZUw0NPDu6++ityMDEFv716URkbCzsGBZOPdutE5f/NNSoJNmULrjEJRKylaUFIiKZVKITMzEzZ37tA6e+sWrU/btkHp54dffvlFbYonlvz0E/QtLZG9ahX6bt6MpKQk6fj69cIrAQFMT09PLCwslGBnx4Thw2G4eDG1+Lz2WnVCxcEB8PcHYwxTpkwRtm/fLn399ddQKpViUlIS2o0YAb3r1ykJqa8PWFtDy8UFRnI5ZDIZysrKIEkStGbPRkBaGgLatRPXrl3L1XMvDQ0NMUHdKgOaulFeXg5JkqBSqSCpVNBOTkbFzJlQZGSAMQZtbW1kZ2dXXStaWloQBAGiKFZJ9Lds2QKVSgXOOXi/fnAoLkYvxkjhMXcuJU/efru6jSY1lci2erxfaqrGCQCtWrXCjRs3UFBQUHX/vPHGG5pMVKsu5BbNXCeaDG9vIqd5eY2v85xTIvbttzX/zt+f+r8XLoQqKwsAmncfNheFhcClS0jNy8M7v/wC448+YvD3J28Ra2syCnxKWFhY4M0334SJiQnKy8vBGBN3795d+uDBAz0Ag5ctW1b0/HbkxcJLg7SX+D+N5cuXW0VERHzPGNuppaX1vqmp6WQLC4uxLi4ur3bs2LFXly5dWvbo0cN04MCBYvfu3bWNNIwfaQ6Sk5OxZ88eDBs27H+LaANEQgcMoKrKjh1UDZg5kwhSE/qb5HI5wsPD+Y0bN6ScnBwhPz8f9+7dQ0ZGBuLi4vjp06dZ27Zt2bRp01i7du1w6dIl5OfncwcHh1pkz8vLS2jZsiX8/f3Z85L8p6WlITExEX5+fk3/I86JQM2aRUGFlxf93M+Pgg2AyESXLiSvDwuDNHo0lH37Mp/ycpjNmkVJi8mTqbqfkNC85IWBASUSzpwh2bhMRgRVEIjQhYTQttTeUapkzJhBn/uERIWpqSkLCwuDiYkJNM4glySqcJSVkdmUvT1JL2fOpN5aZ2eSrnXpQlWCV16B2LYtDF99FSpnZ7bNzg7hZWWw9/aG+axZVHG0s2uSaU5eXh7WrFkDW1vbf6ZKEBZGCY3Dh2sTbYAkr4LQtPPl4UH7n5hIlUtPz+b10zcTN2/eRGpqKu/Tp8+T15/Hj+ncNWD0xxiD9f9j77vDorq6r9e5dxjaUAQLIE1REQSxgYhKxIItlmgsUWONxhqNpppCMK/GaGISoybGXqOxRaNYsKGiWBAFBEUUkF6k12HuPd8fm6EIKCYmv3zv63qeedCpt5yyy9prN20K5zt30PHWLezq1w9JjEGhUODGjRto3rw5TExMns94zM+ntaNTJ8qQTZ5MLAVjYxpPCxZQcMLL60+xFBhjsLCwwL179+Ti4mLBw8Oj5hs6d6ZHtcyOWq1GSEgI1AAuGhlJFmZmgs1336GxQkFCeVrn6ORJundaVfo33qD5X6EInpqaipSUFNatW7d6RRoTExNx48YNvPXWW+QTnTxJ9Ob58xumgsw5MVemTSOHJTGRxuj69fTar78C7dvDslUrxMfHS8nJyfzGjRtCly5dno+h0qwZZaIr6PgmJia4lpYGa1dXmO/YQffP1JSUlfv0oXroClhaWrLU1FTk5OSglb09TCZNAps1CyeiozV79uwRoqOjkV5WhpKCAjgOH8779+/PmvTty0zu3IH3jBmwdHauEZTS0dGBm4cHO5Gejit373IvPz8Ga2sKKk6aRKUB+vrQ//VXmJmYQGrXDgEGBvB47z2aw9270z2q2N9lAEUdOkAYPBhFnTuDcdgpXAAAIABJREFUmZlBFEXY2NiwvLw8+dyRI0LYo0eyzZdfMiMbGwqWFhejSJIQcv8+rK2t5by8PPbKlCnI7d4d1x4+ZLdu3cK4jz8WSqytWVBqKsrKyuDp6cmaNGlCjnLv3hQYOHWK6t0FgZg5+/cDw4ZBV1cX7u7uzNXVFQkJCUhISEDr1q2pddtbb9F9PXYMUCigo6ODCgYHs7S0ROPAQAoKfvABdHR0+MWLF3n37t1rTEpJkrB06VJcvnwZ169fR/ilS3B6+2385uTErwC4ffs2rl69ym7evIk7d+4gPj5eioyMZOHh4SwiIoJHRUXx8PBwfuvWLTDG8O677zJvb2/4+Pigs68vg4cHrXOdO9Ne9uuvlC3X0aGgtJcXBdGesu+0bdsWrq6u6NWrF3x8fPDw4UM5PDwcHh4e/ze2VEoKBUTmz6+//Oj2bQoYvv563a9HRNBaYWSECxcuyIwx1u1ZnQaeF0VF5PCr1dB8+CGEgAAEd+iAkBYteNfPP2ewsnqq8GRDwRiDYYXInVKpRGlpKU6dOqXDGPsMwO+9evXS/PWT+d/Ey8z2S/x/iyVLlryqo6Ozy83NTc/T01NZYZA/Rcr5ryMuLg6yLFf2Iv2vg5kZOR7R0WTANG5MDlZsLBnRFX09Oec1DPCIiAj88ccfaNKkCYyNjcXU1FS5pKREViqVkGWZ6enpCZMnT66kgxkbG2PatGls37598rZt2+TZs2dXWq4KhQL2LyKjXgG1Wo3ff/9d7kGtOBpeXKunR85KaWn9CuFaMTcPD+DXX5GdlYVtc+Zg8UcfEX22Tx8yPNatI0pmcDAFLj74gOoKv/ySnNj6enrr6hIF9vRpEoCaPp2Muv79icIsSTUzCJcuUVZ7zpwGZQ4NDQ2hr1Ti4rlz6HjjBglTpaVRrfrJk0RlNzcnw+rkScpcuLtXGd7p6VVG86FD9NfeHgKA+1u2yKampqxZs2bs3LlzkoODw3O1bHvw4IG2zY3UqlWr52739lQEBxM9eOfOWvX4JSUl0OzcCSNr64ar0Ts5EZUwP5+cEysrCsS84AyHRqNBQEAAunTp8uwvvn2bxvDnnz/9fZGRwDffQDx4EPOaN8fDhw9RUFCA33//HVu3bkXbtm3lYcOG1aZrPwltFv2PPygL1LFjbSXstm3JER89mtaay5fr7fH7LOjp6QmJiYl4UjQLly5RGUIFIiIicOTIEW0NLC8sLBQ11tY0p/LyyIGYN4+CR9u3V2VUP/uMnIhq97B///7CzZs3sWbNGr5gwYI670F8fDw3NzfngiAwFBcTW2jRoqd3GaiO6Gi6dnl5xEopLycWxYoVNQxqY2NjvP3226Isy/jyyy+xZ88evPXWWw2/gEOHUiDvtdcAAB07dsSVK1fk33JyhKmenrBcsYKOe8gQoHFjPHr0CHfv3uXJyclyVlaWKEkS55yzPevXY1FxMRQqFe7fvy/2798fFy9elN3d3ATn7GzAx4euU5Mm1Nt4xAjK8Pv71zgcQRDg2a4du7tjB8vgHE1DQojS360bZVTt7clxNTaGwtUVmbGx+H7tWt66dWt50KBBIlCVUTx48KAUFRUlDisuxt2vv0bZgAHSxIkTRXNzcwwfPlzM+vZbpObmCpsZQ9OQELlfv36CfVkZDA4ehF7jxtzc3JxZN28uRZ06JZ44cwbWdnaSra2tGJyWJqfZ2zOUljJ9fX1uZWVVNQaMjUlQbtYsWguHDqV7l51d+RbGGBo1agQuy7KrqSns1q4VwDkFb7/7jkoq7O3RuHFjvPvuu2zt2rVyUVGRgPHjKVsPwM3NTfjjjz+wc+dOecKECZUDXxRF9O3bVwoNDRXUajWf7eUlGCQnY9by5ayedaj6msrQkDpjxmi+uLlREC8oiHROBg0iVoipKTEFntyXqt3jxtXE+xwcHISrV68+82f/NlhZUYD6aQy0hASqS38SmzbRuX77beVTjLGnCrjGx8fDyMjo2e1Htdi2DTh+HJmzZ4P/9BO/0qsXv+XiIhh4eqI4Ph6vjhz5t9qh6enpAADOeYCfn1/JM97+Ek/BS2f7Jf6/gL+/vwqAHYBCAEkA+iqVyt8mTJigX1+P2L8Dvr6+CA8Ply9dusRUKhVFtf/bsHo1RVHv3aNaNgDSRx+h7MQJ7HnnHSktJUUsr1BGFQQBgiCAc86HDBnCXF1dtYu/gGc4tk2bNsXbb78tLlu2DOUvgrJaD+Li4lBcXCz8qbqvMWOIttUAQ1mSJOzatYvb29vzigsDrF1LL376KT0AuqaurpQN14qY9OlD2b8//iABpR9/JMOlsJCy2X37UhZqxw5ysidOJEf41i3KNCxbRlmGEyfqp9UfO0ZOiFJJRvTatcDHH2PmqVM49sMP1EKpSRNyHEePpozFtWtV9a/nz1d915OZ4CcQHByMlJQUYf78+SgoKMDmzZuf21nW9myOiYkRpYrx9kKwaRPRZ9etq10PDyAsLAyB7dph1KhReK6O2goFOZkJCeTgnj1L1/gFHXdsbCx27doFxhh8fHye/YH16+lYjh2r+3XOKdiwdSs5vRXH2bKi9tzNzQ2FhYXYtGkTX7NmDWbNmlWrR3pRURGKFi1C0xEjKDDXsSO9MG9e3b/ZtCmtL4cPk7M9dSqwZw85Vc+J3NxcmJiY1HS0r1+nObJ6deVT1YW0Fi5cyCpUmulFPT0KEEREkGObm0t/9+ypM1PEGMOoUaOwe/dudvHiRfTs2bPG62VlZbh+/Trc3d3poNauJfq8dh1oCA4dotZgW7bQOOrRo1av7ep4+PAhAFTSjnUbKhAYEUFBuQpnGwBmz54tHD16FL+EhmJmq1ZotmkTMG0aZEdHFPn64v7bb7PWrVuLHh4eaNeuHVszZw6sdHSwa+JEOeOHHwRJktC+fXsEBwcjJDUVjrKMWqN/9WqiyGdk0DWOjqa1xcEB7lOmwNLCAnuNjDBm4UI09fKi7PaxY8DAgRR0UCig+uYbfBgYiFPvv8/k9evFVefOwapzZ+mNN94QARLhcnFxgdvnn6N8yRIk3LwpqMeOhSiKSEpIQKCLC7qNG4f3u3ZFYGCgsHv3bkwePRpWZ85gwsyZbNOuXehkYyNYjxsHRUmJPGnSJDqNjh0FBAQg1ccHW7ZsYTt37uQjRoxglawgbXvAzz4jivLo0eR0a6FWI3flSgz/+WchePRoGebm5ETb2VFQVatvUOHcKRQKEgkTBCoLGjsWYq9ecHd3l69fvy74+/tj+PDhEEUR5eXlUCqVYpcuXcDfe49duHGDD9iz5+9zxiSJ5svOnTROx4yhYOOECSRyWcEWgKcnBWhNTWsErrKzs3H58mUMq6/zxj8FS0tirR04QPfhSWRn1/28vn6NDL4kSQgPD2d9+/at8bbCwkJcuHAB9+7dk/Lz80WVSoUFCxYgLCwMaWlpcr9+/QSlUkmBoqIiYsEtXEjdL8rKUN6lC7ZduQLTuXOZk5MTm92mDSIiIpCVlSV37tz5b1XmLCoqgiAIybIsR/2dv/O/gJfO9kv8q+Hv799IV1d3myiK/Q0MDMo0Go1YVlam1NXVLR81atQ/6mhrMXLkSOHMmTPyhg0bmKGhIXdwcJDt7e3FVq1a4UXRnv8vwfX0IJWVgX/wAXI2bEB4eLgc2qiRIE6YIHsWFIiTV6yAnJGBUo0GZWVlKCsrg5mZ2Z+ifCsUCiiVSp6Xl8caP61dzV+Ao6MjfHx8sG/fPkybNg3N6hMeqgsZGVVG4VPAOceJEydkWZb5uHHjnu5dDarQGLGxIXo4QFnv/Hz6tyAQHXLHDqrPTE4mmtrAgWRwzZ9PEfXz58mYadasqp9uWBhF6xcupNYrAQHk3Gdnk0E0ahTR/Dp1Iud+3Toc+/13XlRWxrRiZBqNBrEDB4LHx8PR0fE5qABVSE9PR+PGjWWVSiUYGBhAEAQeGhqKGn3Gn4FHjx7BxMREysvLE1NTU2FdLVv5p8A5CQWVlpLBX4ejDQA5kZHSu999J65RKPD48WNuY2PDmjdv3vBgkJ0d0Ybv3KHrvHTp8/dFfwLp6enYtWsXWrZsyX18fJ7d/k6WKZhQX30356SofuAAtTCrJyCgUqkwf/588YcffpBXr14tODg4SJ6enmJeejos9u7FxkaNMPjyZZQ4OMD2vffA6hNpqo7CQhrHCQkUXFKryWCfMOHZn62G3Nzc2gyYtDSihoLKWrZu3SqXlpYKixYtqnxLrWvXowc9rKyohv/YsTrnuyzLCAoKkktKSgQAOHv2LG7dusVHjRrFLCwsAJASP2NM9vb2FivV9jdtatgJSRL99pdfUtYwP5+Cac8ouWjVqhUmTJiAnTt3YvPmzXzWrFkNm2Pdu1deq+p49dVXERERgf1KJUYaGyP5nXd4So8e3C0vT5gzeXKNdkI9Hj3iphER7HCLFsJrr70GW1tbplQqMW/ePGHVypWc//QTg79/zRZ51tbkWDZrRsGODz6gMWBhAeHhQxgUFCB77Vr8FBiIzzw9KZji5ERrXEAAfceWLRByc5G5erXknpMjumVkIHrTJjFowwbc6NoVhbq64qiKWu02Ojqw2LePfW1uDrG0FLPXroXNsmVSu549RQAYPHgwioqKpE2//ir2tbDg7l99xZp26cKLjh+H0f37NYUwk5KAefNgmZWFIUOG4OTJk0hMTKxZgiOKdH4LFtD4Tk6ma/3xx4CeHs4plfLj/v0Fg06dhEc9e1bVJDMG/PILBT0rtCwUCgVXq9X0uixXKtQPGjRIaNeuHbZu3YozZ85wURS5Nvitzs8XhqekIMTXV8KLtPE5J8V7Y2Oq21apKLg4eDCtb4sWERvD3p7YV6amJDS6aRPtb5JEn23UCPDxQUhMDDQaDS5cuMAPHDjA7O3t5cLCQnh5eQnl5eUwMzOr1Qb0b4EgEO2/vrXy999rZK9RXEy0/82bawgxPnr0CCUlJejUqRNkWcahQ4fkpKQkXlBQIFpbW0u9e/cWAfATJ06wFStWoOK+Cg8CA6FWKjEsMBA2KSkou3QJpmPHEm3d0BAXz56VcfMmpk6dWqmz2pv0TV64ox0TEwNJknD69Ony7Oxs7YbXHIAXgLMv+vf+l8CeS2zlJV7iH8by5cv3tm3b9rUBAwboaJ05tVoNHR2dv1eEogHQaDQICwtDTEwMMjIypKKiItHKykpyc3MTW7ZsiUYNqEv9pyHLMjIzM5GSkoJHjx5Jjx8/RmlpKVOr1ay8vJyVl5dDo9FAlGXYJSai3MCAq11c5F69eomOjo604V+4QLXCb7xBSp7PyHI+C6tWrZLc3d3FHj16/K33dO3atbKzs7PQoKygFuvXE2X7GbT2oKAg+erVq2zq1Kl/T9Bgwwai39rb0/W+d69K+VUUieY/eTJRx7//nu7LwoVk8BQVkQNYx7XVUlCbNWuGpk2bIj4+XiopKRGVSiUvLi6urNl7Hjx8+BB79+7lw4cPZ05OTgCAw4cPIyoqCh999NEz77EsywgICJBCQ0NFIyMj3qFDBxYSEoJx48b9tfKCxYvJUFq8uN7giVqtxtolSzCqqAhZkybh3LlzUn5+vti8eXPu5OSEJ+skn4nISBKsGT6c7tefYMLIsozt27dztVotz5gxo2Fp8m7dyID8+uvar3FOxuOZM0T9bkDmPT4+HlFRUci6d0+SHzwQRCMjaeDGjYrNU6bAukMHPHr0iFtaWnIbGxtBrVYjJSWFZ2VlsU6dOsHBwaGSpVAJSaK1REcHCA+HNHw4bi1fjsZdu8LCwgKCICAuLg4ajQZOTk51jplt27bJycnJgqGhoaSnpyd26dIFnV1dKx27EydOQEtR/fjjj+uvZ05KokCUqys5t5mZVU5dNRw9elQKCwsTraysYGtrC319fWRmZiI6OhpvvfUWmjZtiiNHjkjFxcXi2FGjyAH5+muat8/CgwdEGX34kAJiMTGU4QwJAfz8KNCmpZPXg8ePH2PNmjUYM2ZMpfjYM/HZZ6S58NNPNZ7ev38/7ty5AwDon5gIw+JilL32Grq0a1fVAikrCyGxsTh58iSMjY3ld999t4bx/+2338qTz5wRzFevriq3Aeg8ysuppl6tplKdhIQa2cPAwECEhITg/fffpwB2SQmpnR87VoPym5iYiM2bN+P9998Hv3IFioMHUf7GGzCYNg3Cm29SvbeJSVVXDFtbCkLVUVqRmZmJnWvX8vHr1rHf5syRx44fL5QnJGBXWJj83nvv1enY7Nixgz98+JC5uLhIIzt3FmFmRi3Tvv2WsqVLltC5fvghZXgHDcLuffukjIwMcM5RUlIiOjs7S6+++qpYGQTSaICkJBw4d06KfPRI7Nmzp9a5qr/cSIuLF5G2dCmOvf46n/bWW399M5Uk2u+Liyko9+ABsa5yciiAIIqUwR47ls4vLIyYCgCts1phTM6rAte//QZkZyNfqURhTAwkzpHcoQNKmzdHpqEhHqanc6VSKefn54ve3t6Sj4/Piy0hqg+BgTS2qwdhk5Np7oWHVz0XH0/MsjNnamgwpKamYsOGDXjllVcQFxeH3Nxc3r17d+bk5FTZVrOkpARbt26FIjwcr7dvD0WzZhAWLMDjDz5AYEKCnG1gIKiVSnTq1EkeMGCAwBjDyZMn+c2bN/Hxxx//rQZvRkYGfnpiHQCwFEA+gB/8/PzK/s7f/2/Hy8z2S/xr4e/vz3R1dbu5u7vrVM+avsg2RX8FCoUC7u7ucHd3BwAxPz8fV65cEYOCguSjR48KkydPhl1d9KN/EJxzpKWlISIiQo6NjUV2drago6PDDQwMpKZNmypatmwJQ0NDGBoaQqVSwdDQEEZGRnSNL1wAli5l+OorsbJ/qyCQ08A50atNTWkjsrFpkOhVXejTp48YEBDAjY2NWfUepS8apqamQn5+vozniQiHhBDd9SlOXnl5Oa5evSoMHjwYf1d2HtOnV/07M5P+jhxJzvb06ZT1sbIiAyc7u6bx/BQHr0JsiqelpTGVSiUNHDhQtLKygomJCTt+/Lj84MED5qOtuXwGNBoNNm3aJD1+/Fjs2bMnb9u2beXnhgwZgsjISCQmJtarLltYWAhBEHD06FE5OjpaBICCggLm7e0NhUKBXbt2oW/fvtzDw4M9V1BGkogN0KMHsQqeUp939uxZrpuby6yXL4e1SoUOHTqIiYmJuHDhAjt9+jTc3d2fb/1xcYG0fTuYnx+E77+n2vcGquuWl5cjJiYGUVFRckpKCps7d27Djc7166vU66tDloki/fgx/W0gxd3eyAj2ffoAW7aIKCwEjh9XxL/9NiwuXMCrr74KpVLJjh49yuLj45GTkyM3atRIUKvVCA4Oxu3btzF06FCkpaVJDx48gIWFBbO3thYcPD1x9L33ZNnVFffGjhVaHjqEkg0b+M5evZhSqYQkSRwAoqOj5REjRoiMMWg0Gty7dw9t27bFxIkThYSEBKSmporp6elyQECA4DJuHHTnzUPO+PGQJIkzxtjgwYPrv2eyTLXDzZpRZn3+fHLopk+nLCNjKCoqwuXLlxEaGiq++eablTR7LZRKJd+4cSN74403EBUVJQ4bNoz0DfT1nx2ILCoiI3/zZqLhLllC66m3N+k12NmRw7hiBWUI4+OJ8u/pWcvpMjc3R6tWreS9e/cKH374YYNYVupOnZCdnAyLJ56Pi4uTAQj9+vWDp5cXBfvCw+lYzp6lkpbWrdH555+R4uqKiIgIITc3l8S+KuDk5CQEh4aiR2oqzLTOdkEBlRr88AMForKzKbDg5kashAphwZ49eyIpKYmvWrWKmZiYyKNHjxaanD5NZTe+vpBlGYWFhbCxsYFKpZKioqLELn36AH36QBcADh3CzTNnUDp9utzy9m0hYuhQqd+uXSK8vetU5t++fbuUnZ2NfMbEI0OHYoKJiWC6ezeydXVrz5H586mG/OxZjL91i2VeuYKr+fkUfB46lNabu3eJ1fLRR+R8urrSfFywAONWrhS1WgYVIpCira0tOlXooUChAEaMgLVSKZovX17V0mvPHuCdd8hhrQ8HDqDE1vava0WcPk2/N3Uq8MUXRHX/7js6B+13FxZSJjsyku7n5s2079y8SayMu3fpfW5u9JlmzehRochvLMswTkkBoqJgExJCwRAdHSAigqFNG/FikyaIOHJE9OnRo2HCgn8V771HooTvvFP1XEwMKdxr8c03FES7cKHWxxs3boyOHTtKERERgiiKfMKECUINeyAxEdmLF0M0MEDf8+dhVFAAxZYtwJAhMNTRwbQKuyQuLg6//vori4qKgp6eHrKyslizZs00+Jv9tbrWSB0dnSaLFy/+9O/83f8VvHS2X+JfC0EQphkbG5vVqZL8L4SxsTH69+8PKysr4eDBgw1qWcE5hyRJKCsrg1qtrmzboVQqKx/a1hwNBecc6enpiIiIkMPDw5larUbTpk3RqVMnwdnZWSvu9uy57+1NNOe0tJqZCYA2T63RolXr3bWrwcdYHW5ubkhOTmY3b96U3Nzc/pYotizLSE9P53W0GHk6bG0pq1INGo0Gx48fl1JTU6FSqXhSUpLCwMBAateu3T8Tgb95k0TVtmyh6+7uTkbAzZukXPz99yTC5ulZ2V+2PjDGMGPGDFbRu7nG8Xfr1k34+eefce7cuWdmtwsLC7FlyxbZwMCALViwAAYGBjUGrCAIYIzV6wCEhobyY8eOMQBo3LgxnzdvXmXrGYVCAW9vb1hbW+O3335DUVGR3Lt374ZNCEmi+mFra8ouP8UBkSQJV69eZe9rHaUKvQIbGxuMHz8e/v7+CAoKQr9+/Z75s2q1GocOHZKUSiV79OgRy9fVZY6+vvIrH30kGFlb497AgVBZW6NFixa1aM2SJCEiIgJBQUFcrVZzQ0NDPnv2bKHBbeTmz6e6/SezyZwTZVebyWyIYJdGQw97ewoUVHPQ7e3tazANXq9S6xUAmnOXL1/GmTNn8OuvvwKA6OnpidjYWOnOnTtS++nTBbWNjZCTmck9+/ZFb3t7YNQoZuvri1RJgruHBysuLsaaNWuEr776ClZWVjw9PZ2VlpbCx8cH3t7e1Y9B0NPT0xyKjVW0trNDyZ07uHHjBgOAo0ePwt7evrYo0c2btHadOkVMB3190ijw9SWRte+/hzx/PrZs2cJzcnKYt7d3LUcbAAYPHszMzMywa9cu6OjocEeViuHMGSoDedq6ffYsaSyYmpKjojXMhwyhTOjMmTTPV6wgvYePP6Ya2WHDiHbfqhU5P9XWtPHjxwtr1qyR9uzZI5ibm7Pi4mIMGTKkUmwwISEB+fn5PDExkdna2vLCwkJIDx4w2+3b5VyNRlapVBg9erSic+fOwsWLF9FRW4M/fTrV9s+dSzWujAFRUdCxtIR5UBAHwFJSUmo4276+vojYvZtfWruWOVlYwCo7G4ZublWZekGgzL+nJ9HZjYxIkHDlSuh5eMDb25vt3LkT2dnZwoYNGzDMxwetRo1CyqFD2B8aKhcXFwsAYGBgwE6ePAkDAwM4V2TdT6ekICQvDx3nzRO2XroEW8Y4ioooGxkSQjTtCxeA9eshl5QgISFB7NWrF7Kzs9F79GgY+fsTTbplSxrvskxikHv2UD29ri6wbBmEhASIenpwCAwUb7z5ptzl008FWFhUza3Ro4nZ4uBAwYrUVDrvBQuA2bORULG31OqSEhyMUytXYlGzZlVr5qBB9QdvNBoS+PviCyTFx5OT+DwoKKB9fuVKOm8LC3KKnZ2rdEWexLvvkgjjtWtU+z9xIgV8lywhscgWLejcP/us7m4mgkDrsrU1zTmAGAiJiUBgIDyKioDQUPBp08CSkyl73qED7Xn1MLX+EirKqMB51XcnJdG10OLoUTqvOpgjOjo6GDJkiHYPZeCc9p+FC+navvsumiqVaOvhge1WVvjwww+hqCOI0KJFC3z00UfsyJEjiI+Pl8eOHSs4Ojr+7b6adgwKgnBRluWPAHxXXl6+7e/+3f8VvHS2X+JfCX9/fzuFQvH9yJEjDZ/H0fw3QE9PD3p6eqRqrNEgJyen8pGRkSFlZ2ezgoICoby8HJIkAYBWbIxXOCVclmUmyzKTJKlSbZcxBsYYBEGAUqnkurq6XFdXl+vp6cHAwAD6+vqMMcaio6NRVlaGJk2aoG/fvszV1RWCIPy5nWnOHNrgDx6sf6M/dYqMkfXrKfqtjWg/B7y9vfH999+LxcXFMHhSwfgF4Pbt29BoNOy5acC+vrUM5tu3byM6Opp5eXkJ+fn5aN++PVxcXP4ZRxsgWiLntIFnZZHDMGUKbeoA1cvl5pIh+9lnVJ986xZlXVq3rvV12nH1JExNTTF+/Hhs27YNpaWl6NOnT43od2FhIU6cOIGEhASpuLhYtLGxwZgxYwT9epw4xhjftm0bGzhwIHdxcan8waysLBw9epT17NkTvXr1quX0a9GyZUtMmTKFbd68GdevX0fr1q2lPn36iCb1tdnKziYnYcoUakHVwP7qGYGBsK+DkdK5c2dcvnwZDg4OdTpdWnDOsWrVKpSXl4vm5uZys2bN+LBhw1hYWJiwVZLQ4+xZPE5Lk8uUSuy1txfMzMxkFxcXeHh4CPn5+fjtt994aWkp79Chg9C7d+96W0zVi3v3ahuiGg2J6Lm4kAPQEEd71y5y3NPTyTl5TtaGIAjw8vKCgYEBHB0dsWrVKnh6esLX17fq/s6eDcyYwSoF0m7cgO3KlbCNjQW6doVKpcLs2bNZQEAAcnJy2LBhwxASEoJz587BxcUFurq6uHbtGlQqFbo4Oiou5eXh6M2blUJugwYNwqlTpxAcHAxjY2OUlZVJvr6+IsvIIEf33XfJWeWcauzt7Wm+f/AB8PPPeLB0KS/R0+OffPLJU+9Dt27dEB8fL+no6IjC559TNu8JMblKZGYCy5eTYzJoUO32fQkJVf+eN48cs927Kbtoakr3A6C62dBQety6VdkpYvLkyeLevXv5zZs3AVCpGodgAAAgAElEQVQdOQAYGRlxc3NznpiYKKhUKlhYWPCUlBRM3rGDHX30SEh0cxMEQcDXX3/NK8oLWU5ODirn8+TJNCbc3GgNyssDJAkdOnRg0dHRPCIigmmdXYCYXx379mV6R47wE3v3ym8tWybuHDcO6NVLGivLosgYmNaJbdSI7oGLC92D69dhWsHIkWUZw4cPx/6DB2EyZQryzp+HRfPmbMKECQgJCUHz5s2Fs2fPIrua6nfz5s0hyzIM4+LkwWfPMterVxUwN6esZJs2tD42bgxwDqFpU/QaPFgW7OwwLDpawODBJEhpbo4SS0sYHDjA1E2aoNzMDIU+Pmjq5gZmakpK9W++CVM7O8TcvIkzZ84IJhoNmqrVMNHXJ6p1ZGSVMn779rSPlpRQcOHGDTgYG8MtLg5HjhzBvHnzqtZXfX0IZWXQdXND8E8/8SIbGzRq1Ajud+4wKBS1nb3gYOD+fcDCAsnBwZWCgE9FUhLRw7/+uqqkxN2dgpLPKnd58ID2e20gundv0n8AaD9avbpKgf/KFXI6G1JOoVRSYMLBAZfOnEGkQsF7zp7NcOMGXctbt2ieXr5MyQB3dwo6NW9e0yn+sxgxgv4ePEh/4+NpjsbFUVChukhoXZAkCqhERdEasmwZBSxefRXw9ISia1ecW7IEKpWK6+np1XuPBEHAcGov+kKM38JCao999epVfunSJQYAY8eOhaOjIwAKDn9V0Z9bluXzfn5+lwF0fRG//RKEl872S/wroauru8XLy0vvucSs/iVwcHCAoaGhtGrVKrHCMZZ1dXVllUqlMDMzEzt27AgLCwsYGxtDpVJVd2DYE38BkLFRXFwMreNdWlqKwsJCVlhYyIqKilBcXIzi4mLk5eVBo9HAx8cHbm5uf97Brg6lkrIZ5849nRIpCGQMWlvThjNxIinwPqPPsxYqlQomJibSqVOnMGzYMPFF124XFxejpKTk+R35mBhy2qr1zTQyMoIgCKhoJfbP4do1chxv3yaj98gRepw4UdM4EkVq17ViBRn1Dx+SMbZ7NxkCbdtS5rMB7UdsbGwwatQoXLhwQf7mm28EX19fdOnSBenp6diyZQu3tLTkXl5egru7OxQKxVMNgzlz5rDvvvsOwcHBzKXaWDI2Noa9vb0cHBwsyLKMJ9Vcq6NZs2ZYtGgRS0tLw8mTJ7FmzRptT1Du4OAg9+zZUzQzMyOq5ddfk0E8eHCDsiCyLKNZair033yT+uU+gVdffRX37t3jp0+fxowZM+r8woKCAsTGxqKsrAwVtZaV18Te3h7qwYNRMH8+zGNiBPz4Iwp0dRHetq1w8/Zt6UIFNdHZ2RnDhw8X/lSQ8d49EiN68nxnzSLnYuzYp2b3AZBx2b49CewFBdF4aoCjXasFF8ho1NJjGWOIjIyEtbV1FesnN5cMWq2zzRgJ+C1eTE4YtRLE2LFjK7+zbdu2WLNmDX755Re0qVDmBYAWcXEYfu4c4nv1khQKBevfv79Q0dNYunv3LpMkianVatHl/n00X7OG7rF23pw9S9dOSxk1N0fBoEFgY8aw0d9/36CAR0FBATMIC8M5c3MU29jAKiwMrq6uVcwFWSYV9k2biLKuFTV8EiNGUF2xhQU57KtWEb3V1JTGsvZYNm4kpzchgboZXLoEiCJU1taYNm0a8/f3h4uLCzp06ABJknibNm0YKnR6KtZX+qIpU+CeloaWjx8jJSVFio+PFzMzM6FSqVCLVWZiQiJdZWVUijBzJkwSE1H25pvoPX8+bty/L3d54w0Bfn6UfTc2htODB8zpxx9FecYM9NZosH37diExMRHbt28HjIzQJCYGWf7+sLC0lFmHDijavVsY88MPSGzSBOLQoRg+fDhcXFxgaWmJrORktOrfH5oLF5iepSVeq1BSVygUOHHiBMzMzNCmTRuEhYVxI1lmHbp0ER6vXo17d+/C8e5dciQZozGuFapMSUHT+/eFkI0b0S0sDIIoUtA4KgqWenoY2bw5u+/szB+6uvL7enrC6z/9BNtqjI68x49RVlYGzjl2794NJycnafTo0SLy8oix8KQ6vL4+1S0DUK1ejeHR0fjS2hpBb78N5yVLUFBUhPz8fGiUSuz69lswpZLJ4eEIKS6G+6lT2klQ9X07dlCp07lzgCiitLRUtrCwqDv4GxVF+0W7dlS3Pm4cBdRWraJ72xD9lQsXaBzm5ND4LCujNUXb7cPDg9gZR47QGD9wgBzP9evrVvWuB/Hx8byoqIhBR4f23+q9qwsKyOFOSaE6cX9/0i1ZuJCuhZ0d4OiIyvK3hsLPr4opolZTZ4IPP6S/hw9TqceT0GjomnbrRuUVDg5039evp2tRbS1mjKFJkya8wa2/XgA0Gg2+rRJ4qzyYPXv2wM/PDwBw6dIlNQAlY+wY53zVP3Zw/0N46Wy/xL8OS5YsGa9Sqbp6eXn9c9nCFwhBEPBEfeUz22A96/tUz7tpvEi88w4JvuzdW/dmo4VKRZvw48cUCdbXpyi0k9PT6ZQVmDRpkrh27Vrepk0bVM+QvAiEhYVJFfXgzzemTE2plgyUgVUoFLh9+zbX09P7Z5UlJYkyMuPGVWVoBw+mrJixMf37tddIJbU6BIEi/1pBoOBgai104QIZ68OHkyDTU4Iijo6OcHR0FO7du4eDBw8iMjJS1tPTE+zs7PjYsWOFhgZGjI2NYWtri0ePHuH48eO8T58+7OHDh3BwcMCwYcOEH374AflaRfanQKlUwtbWFtOnTxc1Gg0yMzORk5PDrl69yn766Se4GxtLvU6fFpUzZxJdtYGIiIiAIMsweIrqubOzM7t27Rqio6NlJyenWoP6119/5ampqaxly5Z1BmOUSiXRmbt1A9q1g1FYGLp/+im6/+c/YrydHQRBgK2t7Z+LNJWVUdbx9m0yNAFyxmbMoHvct29NVejqSE0l9dsjR6gut1MnCsY0wCh8+PAhDhw4gOLiYjRt2pR37NiReXh41HK8ra2t5cDAQMHIyEhauHAhzcPdu4mhkZlZ5fhaW1O/6/nzKfu2d28tVsLs2bPx+++/Vzra/fv3h1KphGrDBizQ0akxx19//fXK/4euWIFLV6/C6z//QTMTE1RejYgIyhBXONuccxyKiJBU06axETt3CnBxeWatfV9PT0H85Rd+q3t3FKvV8o0jR8SAgAB88sknlAWePZuc602bqHa1PuTm1jxfIyMy3AcMICeiukOko0O01owM+syAAQBjkA8ehFlWFhwdHeHg4ABUM7JrzdfkZFhNmgSrs2fh6uoqlpaWYseOHeCcyxkZGUKTJk0glJRQj2sTE1JnvnWLhCO3bQNatsRrOTks8+FDXMrJEZo/fAjLvDz67u3biT69eDGEbdtgBcDQ0FDevn27qFAo0NvHB51eew0358zBbVkWMjIyIIoitrz1FmSNBoOuXYPp/v0oDQlB48aNSRNjzhwonqijtrGxAWMMR44cAeccr54+jdGpqVB88QXubNnCb5w4ITuGhIhhaWlIiorC4MGDq8ankREcO3XChY4dpdVt2ggziouZwfTpwKJFEBYsQLOPPkKz3FzWzs6O+fv7Q37idgUEBCAjIwMWFhZSdna2WNkhZeNGWlefptD/zjvAO+/Afd063nH9enaKMciNGkklVlZo06aNOGbMGAjbtkHz1VdY+s47FFCpjrIyqqnesqWyvEOSJKbRaKreExdHDnnr1kSDt7EhlsLFi/WvB/UhLo4yysnJVWM0PZ0CK9W/S1+fsttDhpC2iI0NtdibMKFuSnkdsLS0ZElJSXW3BTUyovGnxbRptE/fv0809KAgyib37UtBFX19mr8dOjzdFnFzI82GkBD63IQJlPF/990q5hhAgbNdu6oU4nfsoOTC5ctVzno93S7Ky8thaWn5j6n7Ptky85133kFJSUnl82lpabh48aISADjnE/z8/HL/qWP7X8JLZ/sl/lVYsmTJMKVSuWH8+PH6z2xv8xL/HNzdiVL++uvPFlUyN6dNByBnZ+FCokI+A8bGxloWwAsNsuTn5+Px48di/+qbc0PRsiUQFYWcnBysXbsWgiDAyMhIfmZ7rxeJqCjAy4uMiE8+qXre358i+xs3kmHREOGt7t3pIctUe5mbSwEUHR3gP/8hA6pduzozwY6Ojpg1axZ++OEHQRAETJ06tcGOthaTJk3CyZMn+bVr19jDhw+RlZUFxhi0XTGio6NRWFjY4OCSQqGApaUlLC0t4ezsLOQHBeHumjXCYaUSvl5eqIdgXgsFBQU4evQomnXsqDGaNavehWfgwIGIjIzEtWvXoFVarw5XV1eWmpqKHj16PFtIzdiYalT9/YGLF2F/6xbVXf5Z6OqS06qt/5RlcvDatKFyiLrW08OHydFcsIDuu1IJjBmDjIwMHNuyBYIgwNnZGZ07d8b58+cRHBwMfX19lJWVQRRFLkkSY4yhvLwcLVq0AGOMnzx5kp05cwavvfZajaBZWlqaIIoiqgvnAaAAUvPmZLBWh79/lUK3rW2NjLwgCGjdunWlsy0IAjqtW0fG9Ny5dV+fNWvQ+Y8/kPXWW3z3gwcoW76ctWnThnt5eTHbJ9an6OhopKSkCAsXLmQIDKQARGDgU0sRWsoyMG0as5s1CwDEK1eu4MyxY7jzn/+g9eHDOOjszMu6deNvNmny9NDj2To67DRqROU6PXuS09umTc3Xtc7IyZOAWo3TK1fyGb/8wsSPPyaBrtat6z/2Zs0oUKrRAAoF9PT08Oqrr+KXX34Rfv75Z7Rzdsbrv/1GTsq2bXQf+vcnEa3Zs4GlS2HbqxeKli1D/rffIq1xY1j+8Qd99++/02d69KA2WIcPY/qaNSKAqlrkI0eQHxeHrNhY9OvXD66urhBFEZcvX0apnR2uHD2K7klJsAoKIqfq00+pFnju3EqxwzNnzkBXVxfjEhOh16YNTH7/nbEyEk92d3dnYadOiXcNDHA8KAj6+vp88+bNvHnz5kJqaiovKyvjjo6Ogo+Pj5g0dy7XrF9PAYKJEylL+vXXxDRISICuri50dXWh0WigVqtRXl6O8vJytG/fnvfr10+7J9Df8nJy9hqAAbNnM8yahXEAMGCAiPBwojI/fgxMmYLTAEzS08kR/OIL6ieflETBqsjIGmUhSkGAWFxMc/r0aTr28nKqwX7jjQYdT53QfsfZs5Sx1WLpUhp/a9ZUPffqq1WBajs7en96OjGqzp9/qkhl5TUZMAA3b97E9evX4eXl9fQ3M0a/Uz1zvmABBfuzsijr/ccfFFAbMoSo3Xp6FLhq1armfldSQseamUlr4rRpFBy1tCRhvG+/pb3y11/Jvpk797nWbQsLC/6IAvj/iMP95B69evXqp709E8A/oEb3v4eX3sxL/GuwZMmSMTo6OlsmTpyo//8jffy/Gt7etLns3k0bZkMRG0sb8dy5lMHavx8A0boLCwthZmYGhUKB+/fvo3nz5igrKxNfpKJ3fHw89u3bxy0sLNCoUSMGkADV+fPneWhoKOvcuTNEUeRxcXFyz549xVatWqGkpARXr17lXbt2ZUJJCXSSkvD48WMAwOjRo+Ho6PjPOdrp6cQM2Lu3trq0o2OVcTFrFhnjd+40LHMgCFUZF19fMiJKS0ncpkkTquu1s6vleJuammLq1KkwMjKqIYbUUAiCgIEDBzJJkhAWFgZRFDFt2jRcu3YNsbGxcmFhoZCamorWddSWPxPnzsF4xw6Y9e3LArOyYBUZCQBIT0+X1Wo1LywshFKp5EqlkjHGuCRJaNKkieDl5SXcu3cPnHPM+PRTBQwMyLmqB87OzvzGjRvCDz/8wGfPns10dHQQHx+PuLg4XLp0CW3atKnd6upp6N2b6IdffEH/Dgysv963PiQlkUNz7x79Pz+fsldvv00Gf/UAGeekLj1gABnDmZnkbP3yS+Vbtm3bJpeWlgraczt16hT09fU5ACaKIgYOHMg1Gg07fvw4AMDDwwMDiUUg3L59G7///jv27dsHHx8f5OXl4e7du7y8vJy1bNkSnTt3rulrHjpUN53a1JSy21OmUKDp1ClAECBJEsrLy3Gwoq7S1taWd+rUiaF1a6JwPgmNhsopBg4ERo5Ef0tL1h+0NuzYsYPdu3cP7377LTLWr0erN95AXFwcAgIC4OHhwZRKJbFG9PSINbJlS90lCbdu0Zi5cqXyqW6MwSQtTS65dUv4rk8fKC0smKKoCMuXL+dz5sxhdWoNREeTYZ9bR3LJxISybEOG0BipT+xRqcR1gLEDB9DPyormd/fuJH6Vl0dZxifejyNHqH63wiG3tLSEhYUFb/7HH8xl506k7t+PZi4uyM3LQ9rDh2jZsiX0LCyodGjdOuDBA1xr0QKcc9Q6L5WKaMRvvQWYmkJPVxc4dQqF3bvj7t27uBEYKHn99ps4fPduVC8v6dOnDzjnWJKQgHZnzsBq2TK6xoJA1OSWLaksAkDvzp1xIDtbigsNFZX5+VKnmTNF7XqpVCoxvl8/FMTEYNq0aTAwMGD79++Xs7KypJYtWwolJSXC1VOnEC9JXNfbm3dp25bh7Fmql4+JIRrx/PnAo0eY9dVX+CknB2UGBhAEoTI73u7JNTc9na6ntjyiIdCOq5MnaS0+fZrm8O3b4AYGmLB5M4ebG6vs+/3553S/9PWJVh0eDmRmYsDKlSzC2ZnKEaZMoZIQb++GH0ddSEqi8ZacXKkYX4np02szowSB9qLt2ykYDNC4dXWlbPE339QOGD2B9PR0SJL05zu6CEKl8jl8fOg4i4tpjczOJoHEL76g+WZrS/NCpaKSjBEjaLwOHkznPGIEldJMm0Yt3Zo0qbM9YENgZmbGoqKioFar/5bOOrm5uUhISEC7du0qS1jeffddfPfdd7Xeyxi7zzl/E0AigAOMMemFH9BLAHjZZ/sl/iVYsmTJAF1d3QOTJk0ysHgRQhcv8eKRnk6R8TVrqnqtNhTR0ci5fRsZDg7InTsXJwYMAAShcjOQZRkKhYIzxpiRkRHXaDTylClTRJVKVYuOmpSUBCsrqxrPP1kvKkkSAgMDce3aNTg6OsrDhg0TtKJ1P//8M5ckiRsbGwupqanQ1dXlZWVlDABmzZqF69evSzdu3BABwKCwEE4PHiDUzQ26uroQBIH7+vqyDs9jRP1ZpKeTWFBsbN2UtJAQMhC0r40ZQ4ZQNafpuSHLZIhs2kQG+KefUhZl+PCGCdw8AwkJCUhOTkZqaioiIyOxaNGiGlns58lq18DvvxOVtk0bZDg74+jRo5AkSa4YF0LTpk3RqFEjlJWVVdZXiqKIW7duoby8HIwx9O7dGz0cHCjr8gxnNysrC2vXrgUAfPLJJ/juu+9QXFwMd3d3+Pr61lIYbzASEijTO3o0OcoNaN8EgJyzdeuo1rmggDJ/JiZUd62dF7JMdZ2vvEJG6HffkcP9BHbu3MkfPHjAfH194enpiYiICERGRsp9+vQRqgdBJUlCdHQ0SktL0aFDh8pzLisrQ2xsLGJiYuTw8HABAHR1dVFWVgaFQgFDQ0NpwYIFNQNWS5eSw7pvX+1z02iIKVNYCHTtip3Hj/MHDx4wgJzCGTNm0Pvu3KF16UlneOVKmiubN9dwFB49eoTt27fD3Nwc1gEBMJkzB7KenlYEj48aNaqqVluSSAMhL48c9+qQZVJ3NzamQOTjxxSUjI0F9/XF/uJiuaSkhL355pssODiYnzlzho0bN67ugFJxMZV41HFfKnH/Pjm5hw9Ttq0OfPXVV+jcuTN8fX0puKJWU1Z08mSaJwkJlO3Wnt/8+VR3qg3WFBQg7fx5pH/7Le64uuJ+tQCooaGhrFQqWc+ePZluQgIeBwXJXTgXlI0aYZ2JCXfr1Il5V3fuHj2i471wge5NbCzK27fHyvnzoWtuzr08POA+ZQpThIbWWc6ybt06GYBgZmYGt5Yt4eTrS9/VvDll/AWBsvPLlqF0/Hh8//33fPz48cymelAhMpI0L6ZOrfX9sizjTufOvKVSyQwr+rLj0SP6jQkTAAB5eXk4+NtvUvNDh8QrHh7oefkykl95RSpo1KhSxLRC1BScc7QJC2M2sbE4+dpr4JxDlmVoNBoqdVCp5Nzc3MrNSldXV+acs+qfB6iUwaCwECX6+ljwzTdI9fWVW2/bJiAri+593760NrdvT86gkxOwZQvuRUTIe65cEbT1uC8EHTsSu6pizatEaSmN+braCBYXE01+/fqar508SS3Rrl59Ko1948aNUk5Ojvj++++/uPOoC48fk+BbdjYFte/eJUZDQAAlCm7fJsfcx6eqLv0voLCwEPv27ZMzMzPZwoUL2YticGZlZeGXX35BeXl5jecXL16M+Ph47N69W/uUB2Ns/eeff97pWd/p7+9voVQq1+jo6BSVlJSkybK83s/P7+ELOeD/Mbx0tl/iX4Gvv/46bMiQIR1edK3uS7xgBAWhUrCkARTi0NBQdOzYEYIgYPny5bxJXBzzDQjA3nfewaIxY5BvYgJRFGFoaIjk5GQUFRUhPT0dly5dAuccSqWSd+nShUVHR8sWFhbCgwcPtLWhmlkVdN8ff/xRys7OFkVRxKRJk2BjY4Mvv/wSskzVdXPmzMGVK1dw//59XlJSwlQqlTR//vwalsGOHTukhw8fitp2ax06dEBYWJhsUFSE6WvWCIUxMYiJicHdu3cRHx+PPn36oE2bNjhw4IDk6Ogo9u7d+8Ve5zNnaHNPS6t/gx8wgByziRPp/2VllOnQaGqL8vwZcE409W3byEDX06MSgXHj6Jj+hIjd9u3b5bi4OEEQBFhZWUnTpk376yyB/fsp6zlzZqUic0Nx/vx5BAUFoW/fvuiuVJLxWr2v6lNw/fp1BAQEwNvbG8XFxbhx4wY6deqEIUOG/JmzqEJ2NqnIe3mRAf2sc8rMJGN33jy6T++8Q876a6/RPVKrKdN9+jQpBMfF1WvkHj16lIeGhjKVSlVTHflPYuvWrbKTkxO6du0qcM5x6NAhKSUl5UlNC8oI379fNZbrwqxZKAkNxY+vv46SkhJYW1vz9u3bM3d3d8q8OTuTM6wdl3l55Fx+8QWxQCoCF2q1GpGRkfjjjz/QqVMnebCLi7D/l1/kaD09AQCMjIzkhQsX1mZ6FxQQu6e8nEpqtPj5Z8q8L11Krx87RvWeQ4bUYqOcPn0awcHBWvG8Wj+hiY+H8OABhD59nn5hz5whB3/9+jrr6pctWwY7OzuMHz++5gslJXQdmjencTJjBgULlEp6XqkkJ6lnTwrKrFqFzMxMBAQEIDExEZ6enujdu3elYnnvI0eYWXY2Do8di/E5OUi7dAnHR46Eja0tHj9+LPXs2VPs0qUL3V9BgOzujrCwMBw7ehQjR45EO19f6tE8ciSN4zoYbRERETw5OZknJycLkiTJM2xsBLzyCp1D06YkkJWZCdjZQaPRYOXKlXzq1KmsBjtuwwYaXytW1Pzyb74BDAywy9CQP4iLY84uLpKLi4toFBMDsbgY5d27QxAEJCQkICgoiPfo0YOVlpSg64IFSJ45EyXt2kEwNYVCVxcKhQKiKEIURejGxEChUECuyC6KooiSkhIkJSVBT08PSqUSgYGBkqWlpejh4QE9PT3o6upCqVRWdofQ0n8FQQAePoQiORns8GGqhVYo6NjDwylj26FDjcCcv78/Pvvss+dqGVonNBrag4yNiX3ypGMYEUGlZdogzZMICCDa+JPXPS2N5sjevXV2yIiLi8OOHTuwYMECNLjl4YuAVsRQu07a2xNbZsIEYlW8IOFWzjl+/PFH3rhxY4wdO/b5O07UgQsXLvBz585VP8ASAPoAdUu4cuUKRFF8JElSSwDOAFQAIvz8/Arr+84lS5YsF0XxAy8vL5aYmCjHx8dLCoUiV5ZlA4VCcausrGwRgFA/Pz9Nfd/xEoSXzvZL/J/D39+/ta6u7u33339f/0kxh5f4l4FzcgJnzqyk8FVHfn4+fvzxR9jZ2aGwsJCnp6czBwcHCIKA+/fvY/HixSR2IklkiAYFUT34E9iwYQNPSUlhrVq1kh8/fgxZloUmTZpIhoaG4u3bt+Hk5MRHjx7NTp06hdDQUMyYMQNr1qyBs7MzoqKiAFA9r0ajgY6ODkRR5M7OzszW1hYODg51Zk9lWcbJkyeRn5+PYcOGUU2hRkN06sREQBBqZDQZY3BxceGRkZFs/PjxWiGiv46SEspYnT//dBri2bNE865uVI4fTwbzli0v5liqIyyMKL+entTSZOjQKgphA42QlJQUbNiwobJP8l8C5+RwyDLVkD4n9VyWZXz55ZfQ1dXFW2+9hcaHD1OGXFtv2oDPr1+/HhkZGZXPzZgxo7aC85/Fvn3kTH32GQW36nN8DxwgR+/YMTr+oiIyFiWJjOOOHSmTvXUr3aen3KtVq1bJ7du3F56mCP9X8J///AdTp06FVV0BpLg4CghMn17nZ5OTkrB31Sp0un0bOb16ScM++USsNFLVaspIadkXJSVEYb1zhzL41faVXbt2ITY2FnZ2dvKkSZME5u8PHD6MH6dO5cXFxRg1ahSrt7Xbo0dE3504kSj/ZWU0R3ftogx6hw5VNaFPICMjA5s2bYJGo8GiRYtqdUa4ffs2Ej/7DB4hIbiwbp38+uuvC8nJyYiMjET37t2hp6eHs2fPokWLFpQVP3CAnJlvvqEMbzUsW7aMi6LI5s6dW9kGrQYkiYIGP/9M9aeZmeR8l5eT0nXv3jWYLAcPHpQjIiKEMWPGoG3btpAkCXl5efhp3ToYGRlJmowMsUgU4RwdDdfwcOwbOxZyhZPJGOOjMzOZQ1oazs+YgaCgIJiYmGDixIkwu3WL1pNZs6rGr6kpcOMGqV27u9NzeXm4kZXFG6emwn7kSIZVq8hhAyjr2L49IIq4ceMGLl68yBcsWMBq1Kp++inRlrXBnIpALJYtA0xM8GvjxjwmJoa1bt2ap6eny71/+40JGg07OWYM55yjvLxcMPDchjsAACAASURBVDY2lufOnVvTKxowgMbWsWM1r6+HBzEpnqLuvX79eql9+/ZiN63KtlpNgeyff6YgmygS/V7LWElLA77/nkQxmzUjUcM65jLnHEuWLHkxzrafH7E07t+v+/WcHNrH68vOastboqJql4qcPEmZ8l27agWlVq1aJTk7OwsDBgz4x4TEwDnNhYAAGi8//UT7ys6dFLj78ktaVyZMaJDg67OQmZmJdevWQaVSYf78+X+eDVUN5eXl+Oabb7harWYAXAEUCoLwvizLT4sgC35+fjUcQX9/fwZgDoAfBwwYUN61a1cd7THn5uaiUaNGuH//Pj99+jRkWWaMsc855wf9/Pzu/OWT+C/FS2f7Jf7P4e/vv7Bjx47Lhg4d+gLScS/xt+PKFaJ8Tp9ea5Pdv38/7tyh9dbIyAj9+/fHiRMnUFhYWNvBys+niPnw4WScLF5c+VJxcTG2b98u5+TkCIMHD5bbt28vAKScuX79egBAjx49kJKSgiZNmsgDBgwQDhw4oImNjVWoVCqMHj0ajRs3rrN/9HNj/XraYKsZrZIkQa1WQ19fHwEBAdL169fFiiwg9/b2Zt27d/9zv7VyJdWKPc2A0WLyZHIkqhvaYWFEKfbx+XO/3xBwTvc/IYEM4exs4OOPyVDs3LleZy43Nxdbt27lVlZWfPTo0X/NWuGcjMDAQHI061F+rQ8ajQZLly4FgKoA0J86DI6ffvoJ2dnZGD9+/PPVajcE6emUabl0iSjh2hpELcrL6XqnpJBh3Ls30TqTk8nQv3yZ6gvNzBpkIPr7+6NNmzZ4468IKWlRUkLOaFYWGd0mJti3ejW8u3VDM616tq0tndvly0RJjYmhjPyBA0BUFEpatMClS5e4paUlO3z4MCRJwuhbt3hbgFX2wgXIYBcEKnN58IACgRs2kLpwtfGodRqHDh3KO3bsWPmCRq3GsuXLMX/+/No1x08iKorYHuPHk0PVvj05vCtXknFez7w9fvw4v3btGmvcuDFXKBTMysoKurq6cnh4uGBpaYnY2Fh069YNt27dQklJCQRBqGTnVBcRVCqVfOzYsayFvT2JNZWWkghlhTOjHdsGBga8uLiYmZmZ8ZkzZ7J6x3hRETmfJiZ0rdasIef3CaxatQpOTk545ZVXsHHjRjknJ0cAgM/GjwdcXLB9xQqkFBTAPjISPUNCYHrxIvIZw9GjRyHm5WGItTV2JifLEufC/PnzoVudfTNoENHYvb3puqamUv1s377k6DVujM0XL8pdu3QR2nl7k1MUE0NaB++/TwGC119HyuzZ2LhxI1QqFWeMYcSIEczOzo4CTZ07V82frl3Jyf/hBwA07kVRxKeffkqvFxZSoLWC1r58+XLeu3dv5lFdGAwgBzkvj2jqfn4UPM7LA/r1o9KFupIHN28C5eXYe/48733yJGvyxRdUsrN2LbEnBgygTP/QoaQYPmhQ1Rq7cyfNqYEDKeu6eXOt39A623+ZRp6YSJ0BcnNrBXMq0b8/aQIsWlT/99y5Q4GCutgacXF0rjt3VgaowsLCcOTIEbz++uu1a+H/Lpw4QQyYzz6jDLZWtVwUqYPHrl3kbGdlEYsoIYHuz19kkK1YsQIlJSWYN28ezMzM/vJpbNmyBRXia9P9/Pw2+vv7ewMIeuJtAwCcA6AB0B1AMIA2jLGxOjo6b8iyrANAt1GjRibDhw83rDMwWoHt27fzuLg41qJFC3VcXJxSqVTGqtXqkX5+fuF/+WT+y/BSIO0l/g3Q8JdRn/9/0K0b1b8tXlxJD5NlGUlJSZWO9ueff17p6LZr165uMRAtPezNN2lTv3ePakpnzoSBgQFmzpwprF27Frdu3eLtK7Is1VuaXL16FaIocktLSw4AI0eO/HvWs/Pnyaio5myLogj9CgXYQYMGiQMGDEBOTg6OHTvGrl27JqekpAhDhgypUtxtCGSZjMKuXZ8taMM5UfB+/LHm8x07UmZ20yYSc/k7wBj9TseOwLBh5HgLAhm9ANXjGRsDnTujqIJezTnnwcHB7P+x991hUV3d1+vcO8NQHHrviIAioNIEFUSxRTSKmtg1do1Rk2hM/KUYYkzMG32NJiYxMYnRaCzR2Cs2iqJioSOo9CrSYSgz935/bIYiYEnytnyu5+FBYbhz59xT9tp77b0dHR3/PNFWKiknGaBIzzMUartx4wYSEhKQn58PAJg6dWoL0baxobF7hnz8Bw8e4MGDBwAAq2ck/E8FMzNyaunokGQ0PJzk4mpCt2QJOb9WrKDCPcXFtD4vX6ZiWh1UTO8MDQ0NAICBAwe2/UVjI0WwlEq6fkUFkYKaGiJo58+3RCFTUshIz8sjRYiXF60fAMoJEyAvKIC0ooKUG2Zm1Ev6/feJYMyeTeRx8WJyxPn6QnnwIPJ27WLK4mKYjR+vmjt3Lg+AQaEgY/ett0jyfP06FYry8qLq5a+80uFzLC8vh6urq9CnT5+WOThqFPDBBxBFEV999RVWrVr1+Iigqys5s0JDaQyKiohAPWGtu7i4sFu3bqGkpIQB5DhEU0vIu3fvwtLSEsEJCRhUVoakiROhVCrRs2dPaGlpNef9iqKItWvXsoiICHLsvPkmiufPR/HixYgfNAgyHR2kpaWJZmZmmDdvHrtw4QKio6PZY52OFRUkx/74Y1pPEglF79PSKMqqrw+lUonq6mrwPI/PP/8cJiYmrH///oiOjkahtjYsU1PRq6wMD8LDBdvFi7nT+vqYNWYM5Hv2wNHRUYiOjuYK1q+Hk7U1N2zfvrZEWxRJxbFtG9UpkMmApp7sR44cgUQigVZ+vliqUnE+VlakWKiooD1ArWY5cQKQyWB57hxW7tqFjN9/Z78fOiSWl5dTga2EBJqfp0/TOtmypU2BLiMjI6Fv374tD33uXIqCN/XilsvlYmlpKfBoBWkNDXJm2djQnGCMSNuSJeQEWbuWyGh+PkVLL14kx4itLeDtzaotLWFiZUXjvXYtjX14eMv1J02icyE/nz6zKJJT5aWX6DOEh7dtgQXgLzGl7tyh9VNS0jnRBogoP6nLR2Mj1TkICGivznFwICfFzp3k4LG1RX1TFfm/TCn2ONTX094RGUl1C7y8yHHQ2EjnSlwcdQAZOrQlf3vtWhqX8HBSHlhZPX1tjUcwePBgMTIyUjA0NPxLJJ3e3t5idnY24zjuHQDbAGS2/r1EIln67rvvng4LC+MBWNKPJFcYY7179erFTE1NpZWVlTA3N0ePHj2eqIyYNm0a+/TTTzFq1CgNqVSKtLS0rseOHYsLCwuzWL16deFf8Zn+LnhOtp/jvwEX7t69+zzn438JL79MBvKHHwLa2tiyZYuqtLSU9/DwEMaMGdOuJdRjcz/Hj6fvP/xA+bcLF5I3XV8fvr6+iIyM5ERRBGMMVlZWmDp1KjQ0NMBxHIqLi1nv3r3/tbkHurp0+D4GHMdR/2RAVVlZyScnJyM5OfnpvfNz5hDZSHpKFZYgUGGXjqo437tH3vh/FdluDTXxBsiQLSkhqfnvvwNz5kB57hzSlUrkWVszb29vhISE/DmirVBQND0zk3IXn7Fq97FjxwAAhoaGcHJyUnbr1q3lDHznHYqQPSUSEhJw48YNEU0GeH5+Puzt7Z/pfp4KjFG0LzeXIqiLF1M7In19MlCLi4F//pPIkqUlfQbGqAJ1a6hUFLErLiajvaSEjPurVwGJBJyZGQIuXoTBrVtERGpq6D02bqRrjR1LxfoUCnoPHR2KmHfvTgZnt26U56urSz/X0KD7aHLCcIKAIo4Tvs3L49xv3BBGHz3KIS6OnuPgwUSWQ0KIDMlkQFUV5KKIgPPn0XDrFvqGhvLw9KQIsjqn+ORJci5s3EgR8mnTSP7ZSYExlUrFtevlrq8PiakpXn75Zezbt+/Jz0OlImKYkUFOprlzaT9ctYoISqs2TK1RU1MDQRAwZ84cWFtbQ6FQQKlUQt5aQrt9O3iOw6MFGBljzX1x+/bti6tXr+Ljjz+Gjo6OqsrKin/x8GHYdOkixru4iKGhoZyLiwsYY+jWrRuuX78ubt++XVS36muzNzc2UmR+yxZynr79NjlP1DnclZVA//6QrF6Nnq6uqitXrvC9evXC6NGjWVFREaKjo3Ho0CHh1Vdf5fpMm4Y+06ZxP6WnC5r9+4NbsIDDsmUY8t57XImLi4rz8+NfNDVtQ0yE+/fB+vQBy8lp6avu5oaG5GQcOHAA+vr6CA4ORmxsLCsvLwfbvRsPRBEmpqbkbElJoQupZf8jRkBTpcLN2Fhh9rZtnOnQofTzzExyKLz0Eq2f1jn3TWgT+dfUbFNMT19fn928eZMZGxuD53l07doVehzX4mh5+JBI9/LlFC2XyVpymYODSfr966+0PpucT6rdu5E6darg4OjY+Z54+DCt8dzcttWvAwNpLSsUpO5Rf85W+Oabb1Qcx8Hb25v38vLq9C3aIS+Pahzk5j5+fy0uprXwpGrhvXuTU7aigsboUYwZQ063+fOB9euRlpYGfX39Z3NU/xEIAo2bpSWppEaNoiDCqFH0zAYPpmf54AHtL9u3U6pKeDj13Q4NJefgmTPUUkwq7fg8fgyys7MFTU3NPyW/UygUiI6ORmpqqvLhw4cSxlgDY0xdVU6H47jjgiB8xxirVyqV0WFhYUGgyDYkEonS3t5eOWHCBA3ZH4jScxwHExMT4fLlyxg1ahTXp08f7tixY2CMRYaFhTk/Kk///xnPyfZz/DcgWaFQSOvq6v71G+xz/DWwsKA8teXLUbpmDUpLS/kmKdQfJ1Nz5tBXVhYZ+yUl8PLywrlz53D//n04Ojo2G5BqWFtb/xWf5vEwNSVi8hQ5wZMmTeJTU1Nx+vRp1NbWIioqCo2Nje2M53aor3+24iuxsVR9PDOz/e9ef50MtPz8v6R66lODMTKm5s+naOzDhxBv34b3sWOwz8iASVISEbOuXf9YoZmKCiKZPE8S4WfIm6utrcUXX3wBAPD39xeGDh3KMcZazr/UVIpAPeX+09DQoG49xUJCQtpU4/6XwdqaSHVGBklglUqKMC9cSGNRUkJRZXVrm4wMKnYVHU3PxdublCN5eUQQa2upuFZhIeDkhBptbeRZWSHNywvuoaHgpFIi2x9//JcUBuI4DjN//53LqKkRj/TsycUtWYJehoZEsNV45x26TxcXgDGk372L3Vpa1LLrzh34TZpEpP6bbyjfNi+PooTFxbQfff45RacegbpbgZeXF06dOoWkpCRygtXXk5NPJoNNdTXkcjn27t0rTp48uf0Hzs+nKLyREe1T69YRwbezI8KqpUXR0Bs3yGm2bx8RiSblxdWrV0WVSsXUe5ZWR6T8lVceO4Y5OTm4fv069PT0UFNTg759+/JaWlro+uab0J0+nQUMGsRaO4zs7e2xfPly9tlnn7E1a9bAwMAAs2fPppoVP/1EkdubN2kMAVpbBQUtxbcA+re+PsZv28aPy8oCW7ECEEVYWlpi6NCh4tmzZ2khLlwI9O0LxdmzsLCw4Kq6doXuli3AO+/A0dKSpQcHw6O2luasXA5BpcKXR4+qTEJC+HubNmHChAno0aMHCj77DD/v2AEtTU1xzpw5rEuXLrC3t8fZdesErcOHuUOjRmHeG2+QA+pRmJgge/BgZP/8M2fwwgvgrKyIKB07RulASUmUavPwIRp1dLBr926xr78/BEFAm3oxK1fSHBRF4O5dvGhqyiKuXBFq1q+HXWwsl62ri+5BQZCKIq21F1+kvbaykhwxu3fTHn3gQMs1H9mLpVIp6uvrxczMTKSkpAhKpVIMCQmhOgRKJSlWhgwhkvfoXufuTqoyXV1SIyQmNkeNOY7D+PHjUVtby8fFxeHGjRsqLy+vp3NIiyKln/z4I5HJx+HQIZJUd5By0A4BAXS9yMiO95K+fYHZs9EQGYmqpCSUm5igrKys2Umv3lv/CCFsB1EkB19uLu0jrq60D4SEkPPmH/8gsq1uhRcWRl9vvUWqGbWS5rXXyDbYupXW0LJl9LfDhz/1fjlo0CB+8+bNuHjxIoKCgv7Qx8nKykJ0dDTQxOdEUdSQSqWBAH4HUMAYK+J5/j3GmJVSqbRkjIlSqVR47bXXuC5dukjanINPQENDA3788UdlQ0MDGGPQ0NBgcrmcj4+Px6hRo8BxHLS0tKBQKLoBkAGo+0Mf6m+I52T7Of4bIIqi+NfIn57j3wcLC6CgANU7dgCgllx/Rd4R7OyIKMjl4AYNQkC/fuK+ffvYggUL/prrPyt4nojMU0BDQwMeHh7w8PBAVFSUKi8vD8eOHeOdnZ3bFUQCQF70IUMoZ+1ZYGTUYRubZqxbR5Lo2Nhnu+5fBcYAY2MUz5iBw1IphtrYoEd+PhkrY8bQ5161inLTn4Y0FxVRBIExMnyesUDNt99+KzQ2NnK9evUSm4h22xds3Ei5oefPP9X17t27B5lMJr7zzjv/mgI+dXWkUOjZkwhkt25k5PXuTdEXZ+eWQm4PH1J0muep9sGhQ+SIUSop+rV7N0VcDAza1EV4FHoANKuqcDw9HdfOnhWnT5/O/hLnZ0oKRZx37QJeegkRycmsXEMD4Twvnt+4UZgyZQrfXDn67FmSloJSRtRRaG1tbcGvXz8O/frR65YtoyiluoihSkU5lWfPori4GA0NDbh69aqYkZEh1tfXc+pCiRzHiY2Njez06dNEttevJ9J59y4aGhogkUhQV1fX9plmZpLDYeFCeg5Ll9Ln8fcnUnbyJH22V1+l6OXdu6TM2b4dKChAIWPIOXgQJYMHM9/+/ZuVEB3Cw4OcPuvXd/jro0ePijzPs9dff739L3/7jcizmVkbVYOGhgYWLFiA+Ph4pKSkCF988QWnq6kpvvLpp+xmdrbo9/bbrM1TnjGD5Mtff02qI+qfDnTvDnb8OJGUkBBgzRp4DBnCzp49i507dwrTp0/nEBGBQWfPst99fHD16lVMnjwZzp9/DoM33oDk999pXiuVuD9wIAw9PeEwejQ/cscOfPvtt+KRI0dYWlqa6nZhIT8oLg4B9+8z9vbbAIAu9+4hND+fy926FeWXL4uYPZth584Oxyg9PR0WNjYq2fvvE8HctYtyq3/5BeK776I6KAg3PT1RZG6OiYcPsx0zZ2JQdDRz+v57Ik29e5OE/s03iRzyPOTjxyPEz4+DpiYeTJ6MgzduiLqzZzO71kqWr7+mub50KTlNDh6kefrFFx2Sr5qaGmRlZfEpKSmitbU1l5GRgaFDh1LA4Ztv6O/u3qX58CgYo/lXWUn3+OOPdB40kVN1v/KGhgakpqY+3WZZWkr7RFpaxxHoRzF7NrUcexq4u9M6vXu3U6d1Y2gozi9fLgZHReFKcLC4Z88ernXxSblcLk6aNIk9Lof4iSgqorP87Fk6I3v2pHztpUtbVGU1NfR93TpykCxeTKRbIqF5/9JLtNf88AM5G86doz3r++/JJurdm173ySdPvB1tbW2YmJiIUVFRzN7e/g8po7p3747Vq1dD3anl4MGDaGho6AYAEolkrVKpnO3i4gJXV1dYWlrCyMiIdZpXUlNDc1ZPj6L2rVBXV4dvvvlG0NLS4gcNGsRUKhVqampw+/ZtAU3pMAAwcODAxlOnTkk1NDTOA+j3zB/obwr+ww8//E/fw3P8f45Lly4NMzAwGN+/f//nBdL+l8BxwIABkBYV4UZhIVw9PWHyNIf000Atrbx7F7avvsqKT58WypOTxa6Bgf++6qRqKJVkwD5jlWlbW1vO1dWVS0xMFM+fP88aGxtha2tLeVCiSF/V1eRFf9ZxKyqiv+nscPb1JWPsr6qM/QcgiiIOHDggyOVy9uLs2ZAMHEhtVNTF2377jXLODQ2JMHbWTiwzk/IzpVKKLD5jlDUzMxPXrl1j5ubm4rRp0zq2M0aPpsI4T4mLFy+qGGPcM8kzW6O+ngx7KyuKjMTGUosvKysi1cePU/R0xQpyxMjl1ApMV5ci3IsWUbRu7VoyequryXkxaBBFspcvJyMyPJxIoI0NGeKmpvQ+r79OeZLR0ZTLGhEBGBqiZ58+cHZ2xoULF1i3bt2g/wz58O3w4YdkkKpboY0YAZWHB45ER0NDQ0N0dHREQUEBV1NTg+aWj2+/TWvN1hYXL14Uw8PDmZaWlmBjY8Pc3d3bPji5nKSgM2dSzvjw4TgQHq6ymDePO5udjVoTE3Hw4MFcr169MGLECPj6+sLDw4O5u7vDx8eHnF+enmQ86+vj1KlTyM7OxsSJE0narS4AGBdHYxcSQo4xDQ1SQixcSOTEyaklHzU5mSLrcjkRrgEDcOHsWaFLWhrjhw1TjVm8mENlJZH2tLT2c37kSJIcdyLfvXPnDquoqEBAQED7X/I8kZ85c+j6reS9Ojo66Nq1K/p6e7Ne778Pmbs7u79wIaLz8lhUVBQePnwoODo6tvT85TiaW+npLRJlLS1yBhgbk4zZ1hbc0qVwOXoUkXZ2LMDbG8jIgMmNGyzgq69QWFiIhw8fqoy6duXS5XKx8eJFpsjNFQ916SJG37nDHhoaom9YGAyMjaGpqclSU1NRV1cnzpw5k+s5ZgyYiws5laqqKCr67rsotbbGvago5n31KrglSzoco7y8PBQWFsI7JYXh229bKsdv3w7GGDYyhsAPPoDn1Kng33oL7sOGQT5kCLqMG0fr48EDUicsXQp89BEpdfz86LO7uqLBzAyR168zl+7dYazuPx4RQXNxxgy6BseRNHrTJmDwYKQUFCAzMxMFBQV48OABSktLkZ6ejq5du6rmz5/P9erVCxcvXkT177+Lqg0boL9xI+OXLOm4wJoanp60P0yfTs7CpKR2Rcju37+PiooK1ked6vM4jB5Ne8rjnLit4eVFe9LTqMsYIwfrb7+h2WH2CHbv3q3KlskwfNgwTquqihXk54v9xo5lHMepvL29OY7jEB4eznr27AlNTU3k5OSA47jmdmlPREoKOZEsLMiBaWrarFyAnx9J9r/4Apg1i16/aBER56Ag+tmYMUS8hw8nlYtcTioANzdy0t69S3vX+PEthdV++YXO4k5SSyQSCXx8fFhGRoZw6dIlJopiuyKbBQUFkMlkeFKnHkNDQ5iZmeHSpUsAkDVw4MCdFy5c8JDJZEELFizgzM3Noa2t/fix2rOHHD2VldTic8AAcpRYW+P48eNQKBTi/PnzOXNzc5ibm8PW1ha3b98WbG1txR49enAAYG1tzcfFxQk1NTW2ly5dOn7p0qWioKCg/+8jac8j28/xH4dMJnunX79+8ie/8jn+06itrUVjYyPKysrw888/w8zMTPTZtQvDdXTQ/ZNP/noi/PHHAAC/rCyuJjpaxHvvUXTk35luEBtLXu1n7OEMkKRv8eLFLDs7G3v27MGVK1cwcOBABH78MRGrP9qia+9eIgOPFrNSQ1ubCPmMGVRQ6D+A3NxcFBYWcsuXL29baKVHD/qaPJkMIMbIsCktbWnl5e9PBktiIkUh+vZ9fA/mDpCSkoLDhw+L9fX1TCaTYebMmR3PT0Egg+jiRaqA/ARkZ2fj7t27/Mim4kkdQqkkiXFAAElJk5IoIu/iQgV3HByIWJWXk3EPkIG+fj2RN1/fln7f33zTct1hw0iK368fRWWWL6d7vnChpZft77/T91Wr6AuguaBSUeRCTVIKCkiaD1B+6S+/AFVVMFu0CNpvvSWqli4FBgxgWLmSiPOyZS3VdzvLTSwpIXKyfDk5Vnr2JONWXa1YpYKurq5oa2vLysrKRDs7O3HkyJEtz6W8vPmerK2tmaamprhy5cqOI3OiSOPw5psk6dTWRvr+/Zzx8OHiy3PmMO3vvuNYUhJJ75sMzHYt/7ZsaY7OmZmZiWlpaZA3NjJkZLSoTh6NTH73HUWOW/e39vKiCPfcufSsWzkpDIcN405LpXhvzhweQ4a0FGV67z2KhO/eTeP0yiv0HDuKZDbBwMBALCGVTcdzuUsXqpS+fDmRgdbpK/X1AMdBz9ERfuPGATY2CB4yBE17E1u3bh3c3NzE8vJy0dzcXAj57TcJqqtboqat0XTd+JUrcXvbNsz09aXaDWvW0JgePYqePXvi4MGDfEJ8PAY4OopOW7dC7/332dx//pM1OjigPi4O8nXrgJAQWJqYYPTBg6LHjRs8Dh6kubl4MTmJGKM9wMUFtoIAXUtL1T8mTeLHp6XBuanIWV5eHg4ePKiSyWRobGjgDaVSEaWl5HSIiaGc+pUrAYUCXVxchJKSEs62STqvAbS06Dp7lgjGRx+RjL6urh1RSktLA4CW9nV37pDTcOnStvnLRkbAxYtIfPFFsbSigiVNniyIogiVSgWVSsXq6+tZ64r4L40bB8nJk6wqNhZ19fXQeFJ/aYmESKC6IGZJCVVDb3UmKJVKkef5J5/LhYVENp8Wokjr28Xl6f9GXx8Nhw8j0cwMrhMmNKcMVlZWQqlUIi8vj/f09ITGsGHouW8feh44wKCnh76TJ6tZJtu+fbvy66+/lnAc16xSsbe3V82YMaNzJlpbSxLwl16i56RuNSoIVNvh3XdJvXHmTNsz3tqa7AyplBxMp07RmVVSQqlQGRkthR5XryaFwa5dROLffZdSXG7fpj3t3XcpRaaT/Pbp06dzBw4cQEREBLy8vKCrqwulUomNGzeKtbW1rMk5yfz9/WFjY9Pu7zMzMxEZGdlcQJbjuOtr1679J2PscGNjY8P58+f54ODgx88DQSBb55dfSClVUdGcBpM9ZQq8oqPR+9Iljlepmp1A6enpePjwIT/1kZQOFxcX7urVqwBwnef5u2FhYUsBnAUgBaBavXp1w2Pv5W+I52T7Of6jCAsLc5fJZH09WvX0/P8dgiCgXSGb/xJs2LChuR2NpqYmnJ2dWfXrrwt+NTUcKyoib/6/AFkrV+L69etwPniQDFqqDPvvgb4+Raz+BGxtbbFy5Uqk3LqFk7//LgauW8f+1FjNnk3G8+NgY0MFdP5DsLa2hpmZXPu9qAAAIABJREFUmbhhwwa2ePHilihQa6irZV+4QEbM+fNUmTglhQ796mqKKE6cSBJ0IyOK7j5hbQiCgH379kFHR4fNmDEDBgYGndeDUCiI4D6GaKtbvUkkEuzatQt9fXzQq7iYDLkrVyhi88035BQYOpQI55gxFBmsqaHPAVAEytOT1klVFf1M3W4IoGhCZ9i7l8YhP58It50dXSMoiAxJNam4d48MxNZQyyBlshbiu3Jly+/Vcs2aGqRt2oTGjAzWxceHDGpRJEn0woVUnXrTJjLOBw4kQvr66/RvMzOKlpuYkDHaQfu7I0eOqOrr6zlPT084ODi0f4g//9z8bI2MjCAIQucPWhDISB4xgvJ3jY0x/eOP2c8//4x+vr5gjY2kHoiMbMnxfrQ12759FNVycoKPmxu7u3cvGgYPJgJ/61bHvc03bqScz0fxwgtAQgIao6KQdeUKrvXsiZycHDDGoFKpUFdXB021se3s3FIY8uhRIpeHD9O8mTCBxtLfnwizoSE5b+ztUVVUxOrr6h4fJbK3J+fI2rXkbOnVi+Z4t24kdd2+vfmlHMfB3t4eK1asYN9//z2SkpKYpqYmy83N5W7fvg0nAwPhpX/8g2NeXnSdR+Dq6Ymo3r3x/Y0bGL1pk+Dp5cVh+nQgPBzumppw2LIF5devw/izz/jE48dh0dAAZmEBDYkEGnV1RFT9/SHq6sKkqIiedWZmSy0KDQ2am02kjuM4vLJxI58xfz52798Pd3d30dHRkR09elTs3bs3p6WlBbslS0QLMzMeZ8/SHjlxIjkC8vLI2VBZqXZYNE0jocUZ+OGHaHzxReQ5O8N60SJIevcGtmyBIAioqqqCIAior6+Hnp6eqFAoWH5SEmTR0RD8/FCmpQXV1asQBEFNqCEIAu65uiI0JgaBU6ZwaN9Wjt54xQq4RkQA164hTKGAV0RE28J5HcDKygrdAgNp/hgYEPlbupScbV27oqGhAQqF4vFpCwDlmL/7LjnknoCDBw+iuroaBpWV8Jw2DVZNlcqrq6tRU1OD5nSQDpBZWIgLjo4Qbt3CqexscebMmWz37t1CbW0tJ5FIIIpiS9u9l1+m/TgiguZ+kzPklVdekQiCgMLCQpiamrK6ujps2LCBr6+v7zifOy2Nzm6FguZA6/EvKaGzxNeXHKM1NW3z1D09W5yL331H+ytAxDs3l76r25cyRmqPHj3oLAsIoLX27bdEtjU06Fzr2pX2oEeUBhzHwcbGBsnJyQgPD0dOTo6qvLyc79KlC1u4cCHKy8vZiRMn8OOPP0JXV1cYPnw419DQgLKyMnTp0gXnzp0TLSwsUFVVxQBApVL9X9N1XxEEISQqKuq8mZlZc3pBh9iyhT7T4MFARQXEJUsQu2IFLh49KmjY2nJTgoJgYmhIr/npJyAgACX370NfX1/Q0dFp4xAdMWIEAgMDIZFIcPDgQZs7d+6cYIw1iqIolUgkpWvXrn3r3Xff/bHzm/n74Xmf7ef4jyEsLIzJZLILgYGBAf369ftzVYr/Jnj48CG2bt0KlUqFPn36qEJCQvj/FtKtVCrx6aefYuXKlVAqlVAqlS2H465ddMjv3/+XFFN6FLW1tdiwYQNWrFgBrawsIkeBgWTcqyvR/quQkkKy0ScVjHkKNI4di5z4eOT9/HPHUtCnxapVRGZGjXr868rLKdL2R/t+/wEIgoCIiAixR48eLDU1FRcvXnz6quxKJcl2dXTIcLG2poJZY8cSEVepyBA3MaGfHT5MZHDePCKZtraAIEDQ1sYXp07Bs0cPIWjMGA6mpp3PS4WCIhiP/v7UKXrv/HzcmzFD3DVuHJv6669QaWuLzjExDMbGROSKiogIb9tG/7ezayk49VehpIQIR0ICEfzGRhqfyEj6fUAA5aXu3Eky4vBwiso+AwRBwOHDh8WUlBQ2evRosZ1su+WFFIU/fpyInZUVfV65nAy2MWM6Heu9e/eqCgoK2Ny5c7l2UWaAoszOzsC6dcjNzcXu3buFDiPb4eEUpTp0iN6rrq65ZdSGDRtUw4cP55sNy5ISko3Onk3pCEOGUM51a+zcCXz2GXaOHAkFgPlqlcCjyMqiSKepaSejCFQdPYq62bOxdcECqKRSWFpaqqZOncp3WLOhNZRKcpwEBxMxVqnoOYsizXPGkK6lBWVWlthDR4c1RxbNzMj5YW5Oc0IqJaKSlEQkws+PJMLnzpEE9jH1Dq5fv44TJ07Azc1NbGhoYGlpabDW0xOHubszGy0toF8/lJaWNjuekpOTxaioKGagrw8+Ph6TLS0hV9c+KC0FfvsN4tdf4+YLL+B0ZSVCQkKgr68PO1vbllzwkydRVFyM7du3i2+//XbzxBFFEek3b6L+9m2YjR4N06YxF8+eRU2vXki4dw/nqcaCKIoie83NDfrGxkR+bGyIgO7YQeoY9fMsLsbdV18VDvj4MKlUKiqVSrG+vp6XyWTCOBMT7kxpqepBdTUPAJoKBUKnTcOeffsAiQQSiQSMMVGlUjGe58FUKjH46FEm6umJ1158UeQ4DowxcBwnNkVewXEceJ5HcHAwbzV3LhEZdYtEgJwsRUVEAquqAA8PHDp0CKWlpe2c7a1t9YqKCujq6qrmzJ7NY8ECUp307EmEUFMTYrduWPPPfzb3Zx8zZgx6deAsQXEx7aXFxTSPHoPMzEzs2rULvr6+ou2WLWjMzGRJq1aJw4cPZ1u3bhXr6+uZhYWFEBQUxFlZWUFbWxs5OTk4ePCgyt7eHj4+PvyOzZvx9oEDuLRmjZBSViaWlpby06ZNg6amJuLj44Vr165x3t7eGDp0KDlA9u6lqP2PP3YoV4+IiMC1a9ewYsWK9jf8ww/kFDt4kJyGrbFnD41VU9HM5nz3b79tec2sWbRPBAfTOhw4kAi0+hz7+GO6r/v327/3zZvksJs9m5xn6rX/0UfkRD5/nhRNrUh3WVkZfvvtN/HBgwfM29sbxsbGsLOzU3c5gSiKaGhowIkTJ4SkpCRO1aQS4nlerKmp4aZPnw5ra2v88MMPytzc3OZAKs/zuSqVajOAf4waNQqenp7tAzlKJeDhgepff0VCbS1Kiovh8u67iBoxQvSaPp25ubm1yNizs2mv37AB4vffY+1rr+EtJyfIxozpVC4viiJqa2tRXl4OhUKBvXv3NnActxOAwHFcf6VSWa1UKkesXr26rMML/A3wPLL9HP9JvKytre3dpr/l3wSCICA7OxsqlQrm5ubQecoWRQkJCaKRkZH48ssvc99//z3T09MTAgIC/uPjU1FR0VzNWSaTtfciT5xIErx/UXRbnWukUCig1b07RSwcHcnQP3WKvNCPMYD/FIqLqW/xnyHb5eXAnTuQ7tiBe+fOIenGDVVAQEAb6VtDQwMaGxufbq6kplIO4ZNw+zZFPYuKOjWys7KyUFpaCltb2+aDvSMUFhYiLy8PNjY2zYZvRygrK8OlS5dYU+4YtLS0hJ49ez5+DtfXE7nYtImiCDdvUgR26tQWg0SdU61UUo4uY0QuiorI2/7gAV3j6lXUlZbCqqIC3a9cYfjySzKYCgvJUIqOJpKo7hG+cSNds6iIpKtJSfSauXOBr74CXF3RCKBP795ocHaGi48Pg1TaIsEGWvJa/4wDpSMIApHnLVsorx0gR5M61/CNN+gzq6Owc+ZQ5HvcOPr9M6yJO3fuID4+ns2aNQu2trade8zU80hdRfznn0kCvWoV9QuOjaXc+g4iTWPHjuUPHz4sfPXVV+Lrr7/evgDba681Kwx4nodCoeAaGhratw6srqZnqTYaCwpofkREwMzMjL969arg5uZGN2psTFXsBYGiswUF1Ebp229p3Pz9gUWLoNq+HUUXL0IqlaoAdCxLXbSIIulLl3Y6PPLRo1EeG4u+CxZAplDgwuDB/NatW1UeHh7cY6WcEgmpDczNKdrWGvPnAwCOf/GF2HPmTNbD25vmq0JBz7++nqLECgU5F+7epbxjpZJSE9RV5199le6/f3/aQ7y92xjI6shkcHAw09fXR0FBAX777Td2fcsWGEVFIe/SJew9cACMMWpbpq0tjm5sZC4nTyIaEM9WVrKRmzdD09iYWgFWVoJpa8Nr6FBg61aBmzmT2x4ainfffReSgwdp/PfsgXZ8PJFkqB9nAfbv3y/W1dWhW2oq0pOTxXEbNnA4cABHTp7E7cuXIZVKoaurq1qyZAn//fffi9w77zDMnNmSOgGQ4651W6zaWtgnJ3ND33oLiXfuoLKyklu8eDH2/t//cWZr1qB60SLeuU8f0d3dnR04cAA5y5ZhZk4OdC5fVitzmp9fyqZNrMzGRuy3Zw/zlUie7GFet45SBsrKWnpXv/46RVSbWhICwNixY594qQsXLiAjI6Ol9eKlS7Qe/PyAV14BEwTYDxmiysjI4DmOw6FDhyCKYtuuGCUl5CS7d4/O0Q6Qm5uLw4cPqzw8PPjq6mro6emJQ4cOZejWDWUPH+L85cv46quv0KdPH8HX15e/desW2717NwBAX18fVVVV6NmzJ0tKSuJu374NYxsbsPHj4SqRcJeKiyGVSiGRSGBmZoahQ4dyDg4OOHz4sBgTE8PGjRsH94kTKRK8eTMR10daM2ZlZYlN1f1bxj8tjdb7okXAkSMdS7fPnSMVEkB7ybfftj8fx45tKeYmldLe1Po177xD+fINDe0VMJ6eZA+tXEnP9rPP6HN88EHbfutr19I5bmMDAwMDzJs3r9N5xBiDTCZDaGgoN2zYMDSRbYZHlAtz5syRbN26VXzw4AELDg7GmTNnrDmOCxEE4b1Tp04tSEpKMvHx8dF0cXFpVnSo9u5F5Lhx4uXjx5mmpqaop6cnWmzbxmatWMHY66+3rR2gdiR//DHYO+9A78svVTWvvcY/vHcPSicnWJaWQrJgQRuHK2MMOjo6zbbNggULNNLT0+cAQElJCW7evAkAwwDs7ezz/6/jOdl+jv8IwsLCDKRS6behoaE6Tyr88L+IEydOqBITEzmpVCooFAre2NhYCA0N5R4nswKAnJwcwc7OjjcwMMDkyZO5HTt2wNzcHE5P0XbqX4HLly+jtrYWiYmJKgMDA37ChAkdv1AioUhTUBAZWR1Jhp8RRUVFuHjxIsrKygQTExOOMYaKigqqSC6TteQir1lD0aoPPqAN/hkrVT8R5uYdEodnwpo1FGW6ehX2bm64HB/Pr127Fn5+fnB0dIQgCDhw4ABqa2uhq6srTpkyhZmamqK2thb19fWoq6tDUlISDAwM4OXlBbZ589MVPwsKoshOU4QjMzMTNTU1cHFxgSiKOH/+vCo2NpaXy+Wq8vJy/oMPPmjn9a6rq8P3338vVlVVMV1dXdXJkyd5fX19US6Xi4GBgZy6oEtubi7i4uIQFxcHa2tr5fjx4yWlpaWQy+WdPxB1lNTZmQjb++8TkVy5kohkRwW6JJKWgnKt55maoIwbh6gzZ5B65QqKAwLYkiVL6H0qK+naw4dTFElDg6SlDx6QVLexkQyopjQJ5OYCAFJTU8XfJkxg8/38Hutk+JdATaLUhjFA+YHqcVm1qn3FeUtLcu4IAuWfbt3aEo15DBwdHaGvr686e/YsmzVrFsc9zTp68IByHdWF7jZvpujPmDEtkvJWkMlk8PPz41JTU5vTUdrA0BCK3FzUl5fju+++Q4f38H//R8S6NSkxNQW0tXHv7l3cu3cP3Tvql85xNKcAykm8dInmwKuvQhw4EOs++QRKpRLOzs5cTEwMSktLUVVVhdGjR0NbWxupqako0NISVPb23JM0A8dOnIDU2hqT8/PhvXQprty8yUdFReHWrVuCp6cn17Nnz44lty4u5Lx4lGwDKC4uRkVFBfMPCiKHRGunZkfKleRkIgP9+tE88vMj0q1QkJNp+XKS1//jHxSxj46G+bJl6NqlC5Tp6UBhISyGDMGsV17BESMjfN29O0w//RRBkydjgK8vhIsXwe3fz0EuBz76CAPd3dlnn38uGiQksEEDB1IxqnXryFDX1ITLoEHczYQEMaBfP1ESEMBh61a6bx0daGzZAp1Bg8Si6Gh2LDUVubm58PT0ZCEhIVCFhiImI4NlZ2fD7PBhGN+9i/lr1sDCwgIQBB5jx8JDRwcXPv1UGBMa2jJhlEpaC+ocXQCwt4ckORme8fGosbJidxoaRB2JhE157z1kjxiBF6ytcfv2beHAgQM8AGjNmwebujpwj55nv/wC0717cXniRKGfRPJ0BkyvXrQO3dxovxs0iBRhf8D+EUWxZW3MmUPXnD4dZUolro0ZI1gkJXG6TVJ5QRDg4eGBEydOoLi4GMOGDaN1a2zcknfcAZRKJbZv345evXpxly9fRn19PcaMGUP7yty5MDh4EHNdXVl1dTVMTU15ABg6dCizs7PDnj17UF5ejq5du6pCQ0P5oUOHYt++faK2traAefN4kxkzMPW992Dj5NTGcd+tWze8+eab7KOPPkJRURHc3d1pLRQUUL50VFSb4oF+fn7s119/RVRUlNi3b18mLS6miLOLCzkhHh3bhgYizZ980rI3LVxI58KuXW1fe+gQ7Q/qfXfkSLIzoqJICSWREJF3daWUkDVr2v69VEqO3MhIOs+GD6eghFxOCofLl2mOenmRk/abb57azniSQ37BggUMoHliaWmJiIgI7/v37w9UKpXIzs7+LTMzc4STk5PGxIkTNYSqKtxfv14sHj1anD17NjM3N28h8BMmkBpoy5aO36hLFzh7evJfLlkCNDbCY/duiLdu4QwgTDh6lOsSFgapt3e7PzM2Nm5OK8vJyVGT7T1hYWGRq1evzn+qQfgfw3Oy/Rz/EWhoaGxyc3PT6qjYw98BycnJ/Msvv4yuXbvySqUSx44dYz/88ANmzpwJqw68yA8fPsT169eF7OxsfmBTgRMbGxuMGDEC+/fvR2hoKHqo81v/hbh58yaSk5MRHBwMMzMznD17FgDQtWtXTJo0CdJHc0FbQy4n437vXooQ/gmcOHEC169fR8+ePQUXFxcuMzNTEEWR6zDvl3pMkvF4/jxFS/5KyOV//JrZ2eRdX7++mcQ5OTlh1apVyMrKwu7duxEVFQXGGPz8/BAUFIQ9e/aI3377bYcebk1NTbGmpkYYOGsWj1OnyGh7EgoKgAED0JCQgB07djRLC3meR5cuXTBz5kwUFhbyUVFRYutS3Xl5eSgpKUF0dLTAcZz4zjvv8BzH8aWlpbh9+zZLTU1lO3bsgK2trVhYWMhEUURjYyMAYNasWRKO4x5fzTohgYyMzEwyPNTrQkODDJtXXqGo46ZNTzfWTVAqlYhpyq8bpi42xXEtBNXXl57nZ5+ROuKHH+i91K1eHul1/ODBA1FDQwOmpqb/vnyOxkaKOu7aRWOjxjffUFGtiAj6/6BBZFyGhrYlaOqK92opflHRE2WiGhoaWLx4Mb9+/XoxOTn58fl9anz9Nckr1S35tLQo6uvjQxHFr7+mZ9jKgSOTycAYQ2JiInyb7jkuLk68fv264HvqFKcZH89+nToVenp6qtdff72ttVxbS+kq8+a1vQ8dHWDvXkT98osIgL388sudewoaGmhNh4RQtMnYGIwxDB48WMzOzhbLyspw+vRp1tQvFmlpaZDL5YLn4cMc7+PDRdy6hfi7d8WxY8eyrh2ksGRnZ6O4uBgmnp6izrZtDLNnYzBjsFy+HHn5+bh8+TIiIyNhZGSEwYMHo1u3bi2Re5mMZKZr17aT4p85c0bkeZ6lpaXB83HFGkWR9hulkhyfBga0xjZupMJmalVIXBx937aN9ghRRF6XLhB4Hhn79wvG4eEc3N3R5YUXMMXUFMoffwTfrx/YmTPAK6+A09Ehx0eTwoajZysqFArWXM180iSSSF+5gkI7O1wYMIBZ37uHMmdnCBoakIeFQSMrC6X790P7gw84+UsvASNHoueIERjdVMWeO3wYaT/8IETu2MF18fSE4Okp9Lew4JCfD0EuR6qGhnjD3Jy9NGBA2wFLSSFHY0dqnRdegN3s2YgzM1NhwQKJZlUVnJt6Yh88eJAHKBp39s4dOI8aBeN588iJBNC+VVWF9AULwHXkMGqNggJy2jk4EKmbMoXWy3ff0bOZPJmkzCNH0l74lClY6rouAFAviigODUXmq6+K57t1Y+bm5lyJXC6+uG4dP2TnTvyUkiJWVlZi1qxZbOfOnSguLhamvv02x95+G1i6VO1MVTHGEBoayltYWIDjOGRmZoLjOIwePZoNHDgQWVlZcHNzY3jwoLkatzbHtWlpyRiDi4sLxo4di+zsbDEhIYG/ceMGvLy8MHv2bIYmxQiTStHt6tWWwnSPgDFGRFuNMWPIWTFxIp0HTbJwJycnTJgwAYcOHoTVe+/BuLQU+Xv3wsnFBWlpadi7dy/c3d1VY8eOpf7l0dGkXGrdQnTBgo7VePX15KBVQ1+f9o3YWLJz1Ni7l85hteP4UQQE0BpZt47WmqcnzQH1uCUk0Pp85x0qyrd7d5u9Wt0Wl+M4VFVV4ebNm/D19YVWJ5JtNVQqFX788UcxPz+fDRkyRMvIyEh1/fp1XqVSTQCAe/fuZUVHR9vUREaCc3Lixn3wQUs3AjVefZVSWI4coV7yHaB79+6IiYnBirfeQmVlJVTV1bCPi+MeZGWJNz74gPXx94fR7t007h2MT2pqaiOocBokEsknn3zyiVFjY+Mrq1evfvjYD/g/huetv57j346wsDA/DQ2NdVOmTNFqt7j/JkhMTBQaGxuZk5MTOI5D9+7dWVFREe7fv69yd3dvs+PcuHFD3LNnDxMEQRw7diyzayV7srS0hL6+Pg5TpVBRX1+fqY3VvxrXrl3D8ePHUVZWhtu3byM7OxtlZWVYtmwZ+vbtyz2VAiE4mIw4ieRPyckjIiLg4OAgjhs3jnNwcECfPn1YYGBgx0VQ1Bg4kCIl2tpkSE+aRPfxZyEIdKBOn/7sf3voEBnPs2e3OWh4noeRkRG6d+8ODw8PJCUlwdLSEubm5vD19WWBgYHo3bs33NzcYG1tDX19fWhpaaGkpITJ5XKxh5ERhzFjnu7zGRsD+fmQDBqEe1lZqt69e3Mvvvgi+vfvj8DAQE5PTw95eXlISkpiMplMtLGxYQDw5ZdfIjk5GS4uLmzq1KnNkU4tLS04ODjAy8sLubm5yMzMZCqVCosWLYK7uzs0NTXRrVu3zu9n+XLKdVuwgKJtPXqQhFQQiOi+/joRx7lzSfL6B+b6pUuXEBoaCldX17ZrpbKSIhBlZTQ/79yh/zNGRlRmJkUvmv5GpVLh4sWLokKhQL9+/f49ZFsQ6LlmZpKR2Vqi+PnnZJy9+Sb9XyKh8VQXtmkNjiMDSSajugZGRu0K8zyKplY67OTJkzAzM3tsWgFSU8nonjSpfa6ejQ0ZxosXE+lzdARkMjQ2NuLnn38W6+rqmJeXV3N049ixY2JhYSGfrqvL7nTvDgNLS3HMmDGcXuuCRllZ5GTYsqVFhtsagwfDvL6e3TAwgJ+fHzo8Wyoq6Pm6uRFRfPiQci49PWFjY8Pc3NyYt7c3CwoKQv/+/REUFIT6+nqllqYm6719OysaNAi9Q0KQkJDA4uPjoaGh0aY68P379/Hzzz8DAFasWEG+qx49wCoqYOLri65ubiwgMBAGBga4f/++mJKSwq5evSr06tWLaWhokEH/4ou0hz1y/7///jsTRRH37t2Dn59fx62AVCoyajdtonltZkbzgDGKYL/wAkXF//lPIgE3bxIRMDMDNDRwWSYTkxUKpuPry1z++U8wAwNak6NHg5PLwcrLKVK3YAHtsXZ2be4zJyeHJSUlob6+XrDv359x6elEJI8cgeGxYzCcPBnX4uNZrLExbqSkID8rC65eXpB6eMB+yRKcDA1VVZqZsck7dzKJpyc5vxob0SskhClkMiHkl19Yv19/ZXxDA9C9O86kpQm3AwIwYd481k51cu4c3VtHqR3LlqHYzg4piYmi/wsvcJg6tbl4VnJyMjQ0NESJRMIaGhowoF8/yNavp/2/oABYtQr7a2tVsaLIGRkZiR4eHhxEkeoIVFTQPJ06lRwbb7xBZ8DcubRegoOpq8KdO9QVYPlyUlj4+lIxxeBgIuBHjtC87EihASAjIwNJSUnctWvXxMjISPawsVHlWlnJDfv4Y/Tr1w8efn5M5uoKDRMT6FtZsRuJiWzYsGHo6eiI8OPHWZKnp+jz9tsMjOHrr79WyeVyTqVSsaioKHbz5k0BADt16pQYFBQk2tjYMJlMBjMzM9pLq6qIhD2mI4i5uTlcXFyYtrY2jh07hvr6+rZngo8POb26dm23vzPGkJGRIdy6dUv08fFp8f/q69PXokV0njbNf5O4OHS7d4+ldukiRgUHC7dTUnD16lXcunWLyeVyobS0lOXm5orO6emM19Sk4oHqtfP117Q/ddTVw96eSHRrh/Ho0fQcWz8XMzM6TywsKM+7o8J2mpq079TVUUG7hARqqSWT0RxV798yGa3PceOoboO9PbZu3SqeOHGC1dbWiocOHWIZGRmIjo6GQqGAnZ1d8z5QX1+Pe/fuoa6uDrGxscK1a9eEzMxMDgDu37/P8vPzOWtra7G2tpYJggBRFPUfZmXVDdq5U+NK797oq04Lag2epzm9YkVLXv8XX1DU/sABNLz3Hn7Jy8P8H3+EPC4OcqUSusuWwdHfH0Z1dcwkPh4JBQWwvXULbODA9gUqAfA8z6tUqjpTU9PGuro6r9raWhcAa4KCgv5WFcufk+3n+LcjJiZm95AhQ7rZ/tVFhP6LoKmpya5du6by9/dvZlimpqYIDw/nfH192xiCly5dEqytrbnJkyezjiKBZmZmsLCwQGRkpBAVFcWlp6cL7u7urLWxJQgCamtrwfN8x9LLTpCTk4PvvvtOiImJEZKTkzmZTIb58+fj2rVrEARBDAkJgZ2d3dOTDJ4n7+zmzWRw/EGnwKlTp8Tu3bs/23tLJHTgFReTQThpEkV0UqY+AAAgAElEQVS67ez+nLRcQ4Pyujw9n/46iYlkTK1Z89i+pV26dIGenh4cHR1x9uxZREZGIi8vD7169YKWlhZ0m/IYjxw5gpqaGowfPx4eDg6ckJKCIicnJCUlobS0FDk5OTAyMuqYYHAcGTc//IA4ysfiXF1d2+TBWllZISEhAYmJiczW1hZSqRTR0dHQ09MTZs6c2WFvasYYrl27pqyqquJ0dXUREBAAQ0NDOD5ajAYgI2PECMqTMzGhqG23bm0P3/v3iUgtXUrz6O23KZLZicHZGfLz83Hz5k34+PhQyoEaERGU369QkLGYlkaGljqn09+f/h0aSgZVUBCysrIQERHBFi1axJ4USXhWFBUVYdu2bbh8+bIYFxdHskt7e6pS36sXRcJaE22lkoyyzZtb1hXP0zy3tydi0hEYI8LUrx9FV9RGbiewsLBASUkJLl26hAcPHqiMjY25drJFUaQou4lJp31zoaVFBGXvXoooWVkBxsa4ePEi43leHDlyZPMeZmFhwVJTU0XT+/fZkPPnURAYyAYMGNB2L1u9mir9dlaxPTAQNd7eiE1NxfXr18XCwkJWUVGBI0eOQFdXF8YcR/OpspKktxxHToFPP6Xn3kkBM0dHR66HSsVKx4/HiYwM8cUXX2TBwcHQ0dERT58+zXR1dUnSDFLklJaWQiqVIjAwkC5gZERz6+WXgaNHwV56Cebm5vDz82P9+vVDcnIy8vPzWXOv8SlTaHwfcYxER0c35z5GREQgJiZGuH37Nqqrq5mDgwOtsTfeQE1sLHa98AKOXLiA69evC/X19czB1ZVaimlqEql87z3K1V21iox7PT1ATw/Ozs6ssLBQmZSUxBUUFFCRPA0NIhBaWkQG7OzIiTJpEkXhpk1rno9xcXEoKSlBWVmZyLZuFc1/+IHd9veHxUsvgdXXwyw3F9YjRmDwsGFQKBRCikLBBixbhob6eiSeP4/uH37IjYiIYJLCQnKINCkyOIkE3RYsYJoBAeB37KA9YeFC7MvPZ1OnTmWmpqYoLS1FWloaEhMTkZaWJuh8/jku+/kJtzIyEB8fr4qLixNu3rwpxsbGitdv3ID56tUYvX07xw0ZQvvj5s2Ajw8i9+yBn50dM+vZEy5OTnB0d6e1eO4cpZ0YGiIrIYENGzOG+eXlcdzEieR8GD+eSEhAAI1Xv36098+ZQz8fPJjWr3rede9OZHvkSCLoW7aQSsXbm1IJ7t0jibKbG/3s4UOa/+7uUCgUyMrKUo0fP54LDAyEX0gIZ3jxIjS6dm2Jijo5Afv3w3D7dsTY2gr5BQXQmDuX+cTG4s6IEfD28WF79+4Vi4uLuYULFzI/Pz8WEBBAEf2zZ5mFhYU4evRort3eP28enW9PUYDR0tIS6enpyMjIEAe0Vh7o6hJpNjWlc+ARODs7s3PnzjGZTNa21ZWTExHewYOJINfVAZMnQz51KhxXrGBe/v6cv78/09LSYv7+/njhhReYm5sbCz99Gn5r1jBJUFDblJrNm2l9dpC2gc8+I4VR68JyKlWLo6k1qdbRoWt0VISuNRwcaC8oKSHSb2zcUryN58nxZWJC80VXF/jiC1TEx7NsExM8ePCAaWlpoaGhATKZTMzOzmZRUVEICgrCnTt38Msvv4gJCQlISEhAQUEBKisreU1NTUEURSaRSMBxHMrLy9nw4cNx9+5dAIBVdjan8/AhF+flhfz8fBgZGbWvgv/11+T8iYkhZ8KmTbQHuLvjSmEh0nV0MCwsDGzSJAp2vPYajcOLL0JWUQHdkydRY2QE7U2bOrQH9fX14erqKjEwMJBeuXJFKYqi1+rVq3MeP5D/e3hOtp/j34qwsDBvDQ2N/wsNDZU+Cyn8X0NVVRVSUlLE1lXWtbW1cevWLZVUKmXW1tbNu055eTnLzMwUvLy8Oh0QQ0ND9O3blxswYACioqKEoqIisUePHlxZWRmOHz+uOnToEBcTE4PY2Fh4enp2TLo6QHh4ODQ1NcVBgwbxffv2xZAhQ6Crq4uBAwfC39+fmZmZPTtb7tWLNuPCwg4riD4JSUlJSExMZFOmTGF/aI7o6ZFhC9DB1r07eaj/qBqAMTIux4/vvL/wo8jPJ4IxYcJTva9cLkf//v2hra0tXrt2jXl4eDTLxORyOXR0dJCdnS0kJSWxrGPH4LB9O7Zra4t3795lKSkpyM3NFXNycgQPD4+OB6yxERg3Din9+oldTE2b86xbo6qqCjk5OYiPj0d1dTWKi4sxZcoUpte+XU0zrly5IioUCm7+/PntexgDFDlbv54MyshIkj17ebUne7dvE/nduLEl6nDkCBmlT1PFHCR7j4mJwZkzZ8Tu3bujT58+TCqVEnFZu5YK1UybRpGjK1fIyOlIrSCXA6amUFlYIDY+HnV1dWJgYOCfimqnp6ejsrISV65cgYODA6qrq7F9+3ZUVVVBKpUyLS0tlnP5MnMPCICGr2+b6HozNm6kXGV1bQI13n+fIg+vvdZ5zp+ODv3Njz+SEderV7PjqK6uDvn5+fjll1+EM2fOsOjoaBQXF0OlUqFLly7s/PnzLD09XYiNjRWLi4tZYmKiSpqby/HHjoH/4APwj0stYYyIbFUVsHMnOJ6H3/TpuBITw6Kjo8V79+5BX1+fxcTECOXl5czZwEAwz8riIkxNERcXJxobGzMjIyNSHUyfTtHyDiK6Dx8+RPSZM8BPPyHT1haBgYHIyckR4+LiWG1tLTJv3YLX229DYmxMqgD1viKTkZPnzh1SWXSGiRMht7JCuo6OmJ6ezjw8PGBlZcUuXbqEtLQ0uLm5QVtbGxEREVAoFHjppZfat7obNYryPwsKyKCm6tYoLy9HQUGBqKOjw4qKimDaRHyhJt9NuHDhAiwtLcVXX32V2dvbQ0dHh2lpaSEmJobV5OXBWaFAfXw8NhgaQqKpiZCQEGhra7OrV6+id+/eSMjJQfyXXwoW69czjVmzaA3OmEH3FBAAJCTgoZ8foi9f5urr6yEIAktLS0N8fHxzLYbiiAjklZfjvrY2Hg4fjsYXXoBueDgaX34ZR01NkZGdLSqVSrZgwQIWr6WFg+bmLC09HTJNTcFm+HCGnTthGB0N2fjxSE5JEYuKiphKpRLT79/HTX19jBk/nkFbm8ilvz8556KjKSr/5ZeUp792Le3FXbsiMzNTFRERwUVGRuLmzZvIz89XNjY2cqywkJkkJbFLdnZcWUUFrK2teV1dXc7AwICz5DjOzNGRuezZw2QlJWCDBxPhmzkTWLYM0rVr4Xn5Mrp+8gms3d3JQaFQUM7t/v2AkxO6nDnDdFxdoT1oEEWjHR1p/Q0cSM/O0xPQ1ERlZSWys7ORkZGBo0ePCpcvXxavXLmC3AsXoLN2LdsOiDEZGbja2CgWMSZGNDSIDhMnsivGxuLR3r3FaykpYo6ZGaIqKlC1bx80d+5kO6RSwX/WLFbPGNd75EjoXL1K919YSLnYrQif4OaG2J9+EnPNzNiD3FymPWMGErp2FRukUuTk5LD79++zadOmwaBJKdLUgor5+PjAx8en4/NXU5McN60dmY+BTCZDamoqa9N9g7GWiHEHqVBSqRTx8fGilpYWc279e5WK9q/kZCL92tpUWbzVGcEYg4WFRXMKE2toQNm33zKLPXug7e/fcq2cHHKsdlbUMi2Nzp/W9XJkMnI62dm1KegHgNbTxo3kyF248HEDQvfbvTtVSj9/njqrqG02xkgV4eAAlJbCMD0duXV1cE5NxbT169E/IAD9+/dniYmJqK+vh7GxMfbt2wcvLy+mq6vLysvLRYVCwTk4OKi8vLz44OBgDBs2DFVVVWJhYSHLzc3F7NmzYW9mBvdNm7j9Y8ZAxXGwsrISzp49y7Kzs1UeHh4crl+nVAd7e0qF2L6dnFLHj9OeLpPBePNmXPH0xIAJE8B0dVtUNACwbh1UH32EG97esNmxAxpPUDpu27atob6+/oPVq1cfeOwL/0fx99TwPsd/JcLCwrylUump4cOH/23l42ooFApIJJJ2ffUGDBjAnz59Gnl5eSo3NzfeyckJdXV1zbmuTwLHcZg1axa/ZcsWcdu2bUJRURFnZWXF5s+fj+rqauzatQsVFRWd9xQGUFlZiQMHDggNDQ1iXV0d7+DgAJemPqZq/CmZOsdRtGTlSupj+5SHMgDExMTg3LlzGDVqlCiRSFhdXR2uX78uGBoa4okVrR8FY2TYchxFVS0sqD/kH0FjI0nFnlT4LS6OiH58PBkBzwgfHx928uRJJCYmtkTG6Ofw8vLiUlJS4GBhAe033sAqZ2fW0NAAQRCgVCrZhg0b+J9++kmYMWNGe8m/XE7G2LZtHRemAjBkyBAMGTIEUVFRuHjxIgAgPDxcNXv27E7zBzw8PPjU1FSVoaFh29ccOEAGYEkJySMBylfrDB98QAZr66JXX37Z+es7QFZWFq5cuQIAbOzYsSSvu3WLIuUffkhGkHouvvoqRZVaV+dVIyQE9fX1KLOzQxdHR/ht3vyHFkNlZSVUKhVkMhnUFXoBIDMzU2VqaspXN/XeHjt2LBwdHaHQ0UEKz8Nr/fqOLxgcTBHJR9fm2LEkOa/5f+y9d1hV19Y1Ptbe53DovYOKIKIgSBHFgtgb9t5jTGxRozHGm+71ptybGFPUxESJsRs1tqhIUEEULIAoBJAiCAKCSK+Hw9l7/f6Ygiig5t683/e995fxPD4klH32XnuVOcccc87atiWMLdE0/ydMgKxQ4J++vtBqtQAAQRCEefPmQU9PD5aWlk3yRJaTk4OMjAyhpqYG+fn5XFtfL3p8/z2OBgRA7+RJzJo16/mDMWkSRW2++AKKu3ehr9HApFMnZm5uLh04cEBsbGwU5s+fj84dOoh86lQMKSpCQkICDhw4AL3aWry+dStu79iBWxqNbGtry0aPHs0Akm2HhYVJlZWVgnN9PXpduMDUHh44d+4cW7NmDTMyMsLdS5dw+cIFfqJHD9ajTx+0om7WriVHe/78tuXpnOO6n598qbBQMLaweCKvceHChYiLi5O+//570cLCAlVVVXzUqFGszQJtJiZkVAcHk8H+yy8AADc3NxYdHc1OnDgBtVqNG/r6GHzvHuwmTGgmTase5Y66ubkxxhg6duyIR8ow5mVnB/XcuYjv0oWf798fxvr67KWXXoKhoSHc3d1RVFQkb9myRZAkCR5jxwqH9PUx6uRJ2M+YQRE0U1Miu+7cQf7YsRiiVuP+229z0cKi+Rx49JXZJSdDbWnJb2RmyrW1tYJGo2FSRQV6dO2K0tJSeVZ4OLMICYG+uTmmzpzJgkeMQOnkydgTGSlkZ2dL9W5u6JSUxAI+/VQYumKFkJycjKKiIsYYg5+fH43T4MH0taGB1AyvvEKqiLo6ipxRMSUAwJw5c8SQkBAUFhaib9++8rBhwxSCICD80095go0N0zU0lPv27ct9fX1FcE7qEENDukZqKnD+PKSQENwZPhzn3nlHwvbtvHrcOIXxlCnoCtD+JUnk+Bgbk0Nub49UPz8ekJDAkJJCKpgbN8hpUyrJeTQyQnJyMo4ePQojIyNJlmXY2NgIAQEBTKlUgvXvD9szZzBiyBDGH60zPmwYXACUOzrCub6eeaSkMKG8HHcWLkTKlSvwf/dd3OccfWRZKFi1CtlFRfQMr79OxMSxY1SsMCIC2LUL0sKFuKBQSHfGjRNW/e1vDJyjdscOMHd3Fvrbb9DEx2Pu7NlwlGVSg+nq0v7xSD3RJiorqUDY81pOtoC7uzvOnDmDzMzMJwu9jh9PJKy9fZvpLXZ2dsjPz5eRmirgwQMiMgwMSKE0Zw7lEs+Z89xUqjsLF/Jev//OzJ+uDzR7Nr2zTz9t+w9tbel9Po2AAJJ5X7vWei+eO/fFlVg+PjRXdu+max492pqEnjMHxrNmQV62DG5paRDi46GTnY2tBQW8vKGBAcAvv/wCPz8/lJaWypmZmcKECRMEV1dX6OvrP3EmBwcHMycnJ/zyyy84fPiw3O3cOUF2dZWHjB2LPn36COnp6ezevXs8LzdXQHk5kZsrV5I6w9b28Vl5/Dh9vXsX4pw51JLM2Rm6CxbQOX7sGJEODg44vnixNCgpSTRsS+3WAqGhoZqqqiodAL+82OD978N/t8fzF/6vYMOGDU66urpfy7LcT5ZlPcaYVpIkfaVSiYkTJ+q4P8XY/zeiqQjV0/Dz84OhoSGSkpLEY8eOcTzqdT9//vwXLklqbGyMJUuWsGvXrrGJEyfC0tJSAID9+/dL/fr1E59X8Tw9PR337t0TDAwMYGRkJP+P9Dj39X3ccuoFne2CggKcP38e06dPR8eOHVlcXBwPDQ1loigKCoXixfo0P40mZn7bNnJGbt+mvNedO//YdVaufL6EXJLosJw379+uXv6oUJocGRkpuLm5PVGxWBAEGoM9eygyu23bE1LwuXPn4tChQ+zSpUvy4MGDW99sXR2mrlkjXn3Osw8YMABOTk44dOgQd3V1fea8lCQJNTU1QklJCUXyIiJI4rd5MzlYq1dTFORZuHKF5KhPqwZ69CDjtmVf2megV69euHjxIg8MDOSiVivg3Dl67+vXk6PahPx8+sxnROx1dHRwbvlylJeUwOrwYcmvZ0/xj+b/79mzh5eWljIdHR1uYmLCKh+1Cnv48KH48OFDAJT/3iU1FbC2xrHPP+f5NTXQv32btSqGWF392MB7GkOHUrTh2DEiEV4AVZ9/jv1bt8KoqAgzfHxgPGsWdHV12yTZnJyc4OTk1PS/DKGhgK8v7s+bh6hLl1BWVvakXL89uLhQvt/WrVhQWoqjRUXotHSp2L9/f8THx/OOHTsyFBWBBQYisKgIAwYMYLExMbh4+jS+W7YM1XfuoEuXLoiNjWWxsbHNl3V1dRX79OkDHx8fSB98gEUPH+LOnTu0NtRqdF68GHYvv8w+c3eH3t278GhZeAmgtbp2LRm9q1c/8SNJknBv2DCeY2MjWHh48Ly8PNbsFIKKWHbo0EHs2LEjP3PmDAPA2lKNPIGTJ4n4+uEHIDgYjo6OWLVqFUxMTJCYmIjz+/ZBZ+9efAJAR1eXGxsbQ6lUMgDwerrd3+3b6JiVhdJVq3CwqIihoQHLli17QmUyZcoUYdu2bTAzM+MTJ05kZ3V0eNVbb7GyH3/EufHj5ZdfflkwNTUFvLxQ/OabwPbt8DEyYrbHjpHx3DI9Yc8eYM4c5jdyZPO+cObMGSQZG+OlIUME++PHySm+cQPo3h16AQFw9PDAFGtrZGVliU5OTig1MeFZX38N+9JSGHXsyBsbG/n06dNb911XqSiVhB6Cqts7OdH+HREBnD0LgXMsXrwYxcXF2LNnD8rKyqTp06eLNjdvolIQ0NDQwGxsbARs306y4KwscixNTIDMTNzduBH3NBrkfPopGry8xCFDhuDXX3/F8ePHZaVSybvfuoWAs2dF6ZtvYBkcDMTGAkFBSGCMV7u6wkhPjxlnZED33j245+ZCiI0Frl8Hc3GBoa4u3CVJnjZlioiePYnsbbm+Nm+GO2OtlTtNRcMyMohwNDaGwa+/wmvu3GbJcYIgAGFhko6Li4jx44lw69WLWtrV1aGqqgopd+9yoVcvLFi4kAmffAL07QsjjQZ1hYUI0NND5aVLcNTXJwJZraZ5aWJCZEdjI6k97Ozo/gwMSEJ/9iyN4ahR5JyLIpE1lpa0f7dx7gmCAC8vL+ns2bNodZ4MGEB7/1POdvX9++j19ttMcf48w8aNtF4GDyZio2kvys1t9VmtEBeH3LFjebKrK+t79Sp3cXFhlZWV6Nq1K4Rt2x5fqy2kp5PE/Gm5vLMzpeJkZbWWwFtZUV2EgQNpzq5a9ez7MzCgPXvcOFLtzJ5N/1rsp1VVVSi0t8f5t97iiz09GT75BKOrq9lZb29YeHpyr/79WWFhIW7cuCEsWbIEts+IIHt4eMDBwQG3YmLQpaiIOy5fLjSpDy9cuMDtFQphXGQkvf+kpMdpTK+/TmdMyzXauTP42rUw//FHOXz9emH8hAk0P2bOJEXAzz/D5cIFMbaqio/W1283fBMfH89v3br1EEDP/7aiaC3xl7P9F/5UbNiwwUmhUCT17dtX393dXdTT04NWq4Wuri50dHT+Rwp7/b+CsrIynDt3TqqpqUFlZaXQXo6nm5sb3NzcoNFo2L179+Ds7PyH5dLm5uYYM2bME98zNTVlxcXF7feIfQR/f3+EhoZCFEUsWbLkf07L/8orFM3atavtnKin0NDQAEmScOLECTQ2NkKlUnFjY2N4enqy5ORkjqf6Sf4hNBnAkZEkCQQouvGsqr4tkZlJB3N7DG12NhkMd+9S9PE/wMiRI4UHDx7IBw4cYEuWLGH6TzuhstxawgZq3TRq1Ch26tQpFhQU1Dp339gYMYsWSVxP77nEjqOjI958881njndVVRUKCwtRV1PDdv3rX+jTvTsf8OabjGVmUtGfF0FmJjmR8fFPHuQAOSNt9UhtBwUFBWhsbGT9e/RgmDqVDKXjx58kSUpKyCi9erXttmKPUFhYiGxZhtLaGi/t2EHj9dlnz/x8WZZx+/ZtuLq6Ij09HSqViimVSsyYMYN17twZWq0WSqUSpaWlqKurQ1ZWlqyrqwssXChgzRrMXLqUXbx4EYcPH8bgwYOfUDYgKYlkj20pVgSBDKGwsBdytquqqvDVzz8DlpZ4RxCg89NPz6wr8AQqKqi41vHjCFAqkXr7trxlyxZh5cqVL+Zwq1TAm2+iOiQEzgcPwurkSZi99x6GDx9Oc83WlmTCIOKpz/bt8Lt/H6Gvv84DAgKYtbW1kJWVhX379sHc3BzOzs7yqFGjmpUcQlAQ7GfPhv2yZTRmRUXA8eNQdu0KfPwxsrKy2r6vwEDqtVtd/YQ64NSvv0q+ubniqE8+gUm/fkyW5TZrYjRVqp8+ffrz28MpFBSpvXCBlBfff98sefX29oa3tzfq+/WDbWEht3FwAOecp6enMycnJ9nY2Pjxh5eUUErE6tWwWLoUjj/+iKKiIuzevRvl5eUAADMzM15bW8sYY7y4uJh9/PHHmD59Oqv85huId+6gY0EB27dvH5YuXYrMzEzcys2V6wIDhS62tuQ8xcYSYTp6NMnNKypaOUbDhg1DRUUF3//rr/yt8HC6v759qf3S9u1Afj7cnJ0fq6f692dJtraI2rULwzjHUVNT4dtvv8W0adPg5OTUenxra4lkKiggx18UyalpbCSnZO9eWPfrhxVjxwpbT5+Ww86elUanpYmdfvkF1S+9hNQrV3jj+++zjrt3QwCaSTZtWRmQnY2HY8diqkKBhgULYG5hgS5duqDiwQOBJybCYv9+VKtUyNfTg6WJCaUgrFkDPz8/oaCgAJWVlcgpKwMMDXGhsJA32tpCCg5mA+3tce/iRZhZWHCEhhJZO3cu3bOTEykoYmJo3+vUiSLuajV9ZYyIW40GeOUVaLOzwRjj+PlnhqIiQBTRrUcPGO7dK2bExvKuixczvPUWRblnzQLu30dFRQUihg1j77zzjiiUl9PY6eoCjGHP99/LD42NBavXXtN6Ll362Af4/HP63Pp6IkwqK+l9V1eTfF6jeawq2L6dctLT0uhz3d1pbd+6RVL2SZMAY2Noq6tRlZOD7t27iyW//w7p7FmIskwRXT09ygGOjKTzIiiIzgIjI0RPny676+mxDubmDN9993gutHSOXVyIjHjKDmpGYSEwYwZGHzggdA8KwokTJ+SYmBhBkiS2MCaG286Zw9qrhg6AFCht7beM0X575Uqb+eYASEbesmL589ChA0XsN2wgojooqFnhkZ2d/ehxCtnvubnwDA2Fi0aD195/H8Knn7K6y5cRevAg5r788jMd7SaYmppiUHGxAI2mOc2vtqYGHcLChD4rVkB34kTKS28Z1Tcze6KqvyzLCA0NRWJiIrRarWDt7k4/T0uj8+jIEcDSEt4bN+Ly9OlITEx8ssf7I+Tk5CA8PLymsbFx8H+zow385Wz/hT8ZKpXq7/7+/noDBw78j5pnS5KEjIwMWFtbw8LCArIsIzU1FYwxdOvWrbkCoyzLiIuL4zdv3uScc9jY2PABAwaI/6f74dbW1mLHjh1wcHAQXF1dmaGhIby8vJ65vnR0dJ5dtfkPYurUqcKWLVv4uXPn5MGDBwvtSfVrampgbm7eJHP/n2M/FAqKGEVHv5Cz3bFjR4wcORIWFhYwNjaGjY2NIMsyNm/eLD+Kav/n9zp4MP2rrCRJYlNe1vPg4tK+RLewkJz5PyiZfxamTJkibNq0CV9++SXef9p5DwoiQ6ANOD46PLdu3YpJkyZBoVBAFEXExMRIpqamLLdHD4zatInGoA2H/Y8gKiICmenpmHz0KMwqKvDjokXMNTUVtk/1Vm4XajVFRKKj287tb2h44YJ09+7dw6H9+/m44mIurFkj4M03aZyeJvf09UnO/ozoI+ccsbGxkiiKIgeQvns3evfqRVHyqVNb9Y5uwrfffiuVlZWJurq6XK1WMysrK/nVV18VmvaiprZ5FhYWsLCwQIeQEAFjxpCxCjqMhw0bhoSEBEQ+Km4VHBwsdOvWjZ6jsrL9mgG7dhFZUV/fujL4U2hqiyYIAnQ++IByvk+eJKl9QsKzawxs2kRjYGQEXQCvvfaasGHDBkRGRmLKlCnP/NyWyO7WDXlBQdJAHR0Ra9aQkWlsTI5UcTEZ+0ol8N57UBgaYryDQ/NNubi4wNraWuvn56fo3bv3kxNkyRIi+GSZ0jmWLAFGjGhmH6urq5t/lXMOjUaD2tpa1DIGlVqNyp07UeTri6qqKqm6uprX//abIvXNNzHqURG49kjRS5cucW9vb969e/dnTlhZllFWVoaCggJYf/017IyMSL6+bt0TbZD0oqKwpGdP9iitounZH1/71ClyQI8ebSYAvby8kJ+f3yw5f9QeiBkbG8PX15cBwBdffIHDhw9j/fr1QNeu8B47lu0LCsJXX33FDQ0NWadu+88AACAASURBVF1dnbBq1Spy/nv1Iudw8WKSvG/eTJFOIyN6R5WVgIEBVHl5MMrOhsvduwwHD1KO6/Tp5KSPHUtVunfufKKlntewYbDU10fl0qXw9PVFeWCgtHfvXnHAgAEY2lKFAlB0fdMmIubWr6cWXE3qhKQkMvJDQqD7+ecYExEhVC9YAKbRwNTVFcZz5rDbpaX8cHi4rNFoBOnCBejq6sqiKEKj0QiN8+dj6ODBskFoqGCQmgoEBsKIcxitW0dr6Ysv8Gt0tOxka0tjf/o0YGuLIS0iuJcuXcLFixcxdOhQplQq0djYiOjoaLnnokVCv379HttBpaUUDa2tpWeKjSUHNi2NSITYWCoY5uX1uDWboSEUtraosLXluHeP4dIlQKGA3sqVsBg+HN/v28eW9ukDi5gYUgFs3gxcvIiOkydDqVTy/Px81nHVKiJ3tm5FRkYGqqqqBBcXF8yePbu1gSCKtI8YGgJ37tB79/Ghr8eO0XtfsYKiu1evklKlyc7gnPbs4mLUV1biQEgIN2IM+qWlrOHGDQT6+UG8c4fmQ7dutE8VFZHjzjkpjt56C7CyQs3Nm/zAnDnsDZUK7SbE/eMf7XdXaGig8+WXXwBfXzgBaGojuGPHDkmj0QjtEudN+O03uq/2FHWbNlGEv61aJbNn01i5uRGp8rz0M4DG8aOP6Pd/+onm+6RJ8PLywr1795CYmIioqCikpqaiX79+6PD555BXrsTxf/2Lv3TkCLPy9SUy4nldY9RqmoNN67G2Fvd37ULPpCQcP30aS59O31Kr6Sx9NOfLysqwd+9eiXMuTJ48mR05cgSdrKzobFq+nOa4kxNw5gxYnz4YPG0aO336NM/Pz+fBwcHNBfcqKyvx888/q7Va7fz169dnPn+A/nfjL2f7L/xp2LBhA1MqleN69uzZal5pNJqmqpQQRRF+fn7PjACEhoZKKSkpAuecrV27FteuXeMxMTFQKBT8+PHjgkql4lqtlsmyDF1dXd67d29BR0cHycnJOHLkiLx8+fIXjtg+fPgQ0dHRkp2dnejo6AhbW9tnFhgrKSlBRkYGGhoaYGZmBgsLC4SHh8sWFhZ87ty5/xHJ8J/gUc9kdvjwYTkpKYnPmDGDObZwYvbu3Svl5eWJTfnhAQEB/7PONkARs2++IQfn1Vef+asKhQIBTxUpiouLQ2VlpdCtWzdUVFRAqVS2n0/2R2BiQoy9QkG5SIsWPbs3+MOHJI3093/y++XlZHj8/jsV0PmTYGBggNGjRyM0NBTJyclP9jx+6y3K8Vq7ttXfqdVqKBQKlJeXY+fOnVCpVJxzzqysrFhubi6vra0V9aurSSL39LP8ETQ2YszChcDEifKZceMEy06d+IdLlrRZtbxdLFpEh/6xY23/fNkyyqtevBh1dXVoFeFvgbPffINOBQXMW5IYvvyybQLl/Hly6pp6VLeBwsJClJWVITExsXkdx6ekyL0HDhRw8CBqy8qgXbECxcXFyMrKQsKjSI9WqwXnXPTw8EBKSgrz8vKSJk2a9Oy9ICOD2p716fPEt1977TWo1Wp8++23wqFDh7B+7VoydkJCSFbfFgoKaF68/TaNWzvIysrC1atXYWBg8GSudd++pEQB2ld8pKcT0TB16hPfdnJyQnJyMprz5F8AxcXFksLNTcSkSaQ+WLgQeO89Mp6//ppkmFOnAnFxj/uvt4BGo2l7PgQHkxw8LAy4fv2JVIFXX30VISEh+Oc//8k1Gg1TKBSQZRlKpZKLosgdGOM9jh4V7ujqQtfYWDQyNETwlSsQm6rVt4O6ujrk5OQwLy8vFhUVhezsbK6vr8/S0tLg7u4uOzg4CLIso7CwUE5NTRUAitoLgoCRI0fK/qamAsLCyKhvWj9mZuSstj149J5DQp5Q2vj7+8PAwABlZWWIjIzE6NGjW/3pyJEjcezYMWRlZcHFxQWKb7/FFCMjXE5KQty9ewCA7du3Y9y4cejevTsRHj/9RBHXDz6gzxRFcgjUauC996C9dg16mZnMWleXDO2m9+XoSPMqLo4iuLNnk2P12muAIMC+Xz+Y7NrFsv75T+5fVibmg2qdPIE7d6h6fGAgOR91dQCokv/JkyclzjlGjx4tdlyzBlsVCm35L78o3rl5k8iW4mIIK1diBMBGAOzWrVs4efIk1Gq1sGDBAiS88w5Gx8RAd/16AY2NtD+o1eTkjh9PeadqNaqsrZsVebK1NapdXRH2wQcQTE2b1XpNQYAmQs3FxUWorq5GQUEB7O3t6e8fPqS2bAcPUpHIa9fQaGGB1EGD4CIIMFy7tk3SsTApCbeiouTAlSsFREWhbOFCbNm3D/3794ebm5t09swZNnf8eAHHjlEl8thYgHNYWVkhLS1Ndly2TMhWqXAnLEy+fv26AAAODg5tn/0NDUTc2dtDOnsWWTducFMPD2a9ejWRAH36AIMG0Xz44Qcimpuk/oxRJLhjRyTHxeG+pSUzMDCATpcu0owZM0SrJpJy5crHn7drF82xigp6t/b2QKdOmOriIu7bt08KCQnBihUr2t5U3N3bzqkGiCCqrob6wAEotNon7DnH/HzhyqhRcsc+fZ69WckydSFpC/b2JBFvaGjb2QbIwZ48+ZnpSm2if3/afw8fBj78EIrhw9Gpc2ckJiZCkiSelpbG0tLSsH79etSYmOCOtTWbeuECmKnp4x7emze3f/1Dh2iOr1hBhMLq1XA9cQIlkyfjwY4d0Gg0EAQBhw8flnV1dYUhXbuChYYiYeBAFBcX86ysLObl5YWRI0eyyspKKOvrYfTNNxyzZzNUVVF3h23biBDcsgWexsa4e/cuu3HjBhs2bBh0dXXR2NiIvXv31kmS9MmHH3544o8N0P9O/FWN/C/8aYiKinJSKpVvDB8+XME5R15eHiIjI3Hq1Ck5KiqK5eXlcaVSKdfW1vLIyEihtraWu7q6tmmdp6amckEQ0NjYKF+5ckXIzc3FzJkzWXBwMOvZsyecnJyaKmZi2LBhrFOnTnB0dES3bt0QERHB+vbt+0KGX0lJCQ4cOMDVarVQWFgo3bhxAxcvXmQpKSlyeXk5NzU1bZbx1tXV4dy5c9Lp06eFqqoquaamhmVkZEiJiYlQqVT85ZdfFv9vV1g3MjJCQECAUFNTw8LDw9GzZ0+oVCpEREQgMTFR8PX1xaxZszB06FC0N/Z/OpRKcgyXLHk+6/oU7O3tkZqaKiUkJCA2NpZdvnwZ3bt3b7vy9R9F07vq0IHyjKOjKefoKecHAEUfa2ufbHPUxNC/8sofkju/EDiHHWMo3b0bZXp66L5vHxlpTk7E6Ccm0sFqYNAsDwSA48ePS05OTsKiRYsQGBiIgQMHssDAQPj6+rKAgABh4MCBUC1dSiSBldUfr9B+8iTll73+OoRBg+C2bBlzdHXFtdhYVlZWJnfo0IG1zCNvF5KECh0daGbMgKo91n/lSsDPD2q1Gp9//jnu3r3LFQoFU6lUKCwsxO+//w6BMRhFRUFv+3YY+vigQ0hI+8ZNaipF5VrKs1sgMzMTu3btQuqjSLOzszN69eoFtVrNLkRESJddXBDT0MDs1q5FZGEh7mu1mDlzJoKCgmBqaipbWlryoUOHsiFDhsDd3b39jWD6dJKEb9qEtmSMOjo60NfXh729PZKTk5F1+7ZkqdUKeuvWQWyPaCospEhTUBAZxe3gwYMHSElJQWNjI7y8vJrly82ta27cIGP6zTdbFx769luSeT/V6qtLly64evUqSkpKuIeHx3MnVH19PaKjo5mtrS1z7daNxsDJiUi50lKKXFpaUsTy6SinLAPV1bh14QL3kWXBqLiYUjcuXyYD7+BBkpZqNJTHWlpKEXPGYGRkBB0dHeTl5TFJkmBkZCT97W9/EwYMGMD69+/PPEeOFGxOn2Y+o0Yxz/Hj0dXFBSpfXyiDg5+5TrRaLa5cuYLCwkLcv3+fV1RUsMbGRq6rq8uUSiWys7Plhw8fcn19fdHBwQELFy7EgAED4OjoiF9//ZU5vPoqzAcPpkiyvz8Z8n360P7UUjbLOUn4f/yRCmG1seeEhYVJSUlJgqOjo+zt7d3qpm1sbJCRkYHY2FgEBgaCde4M1Z49cD1zhgV9+y1s7O2RmJiIlJQU2NjYoNlBEgR6F5mZVFBKqyV1yJtvQggORpWnJ07X1eG2lZV8paBANhk1SrAcM4ZyPu/do8h2VhY5Qa++ipJz5wALCxi4uECPc6b8/HPkOzggq7ISGRkZckJCArt06ZJsf/ky435+UPXuDeboCEyciLz0dOw+eJC7urqirKxMLCwsRG5uLs/LzxfXrFkD1dixREp9/jntjV26QJZlXL9+nZeXl7OZM2fC2dkZUbduyZ1HjmSGvXsTYfrWW+TgTJ5MEf3Vq4G+fREfH89tbW2Zo6MjToeFQbx2DaxfP1lraCg3NjbKdXV1ck1NjaBSqVBcXIyEhAR+7NgxlpSUxOOuX2f90tMhbt+Ogvh4FFVX4+H8+aj9/XfELFwoH/fxQUVqKnP57jtklZRIBoMGCU/vn7m5uSgqKuLGxsZCalkZj1KrWY2REfLy8uDu7i7obt3KnH75BcKaNXhYU4OGN9/E4dxcKbe+XghMTeVlhYXs8P37kCSJ+/j4ME9PT0RFRSErK4vX19czWZZhWlpK79XVlXLihw1D0cGD4IWF7EdnZ2TY2sqVUVHMrqwMiqb3OmcOkYUrVhD52+JMvnTpEtfX15dfeeUV4cqVK0wUxda1DG7dosKOM2YQ8WpgQHuBuTmYry/c3NyEy5cvCwkJCVKfPn1a76eDBpFt8ajCeFVVFcLCwnBmzx5k1dfjvIsLIq9exfXr17m/v39zYUOHWbNYjY0N7zR27LONNTs7er72auBUVxOx2R4Byhjlex86RGd2U4eUF4FSSUEAe3tIycmwOnECAX/7GxoAlpeXB0EQkJiYKAcEBLBr166hXl9f69qrl4BBg0gxcPky7aO9ez9JBnBOQY/33wf27ycZ/PDhqOvRA6np6Tw7O5u5uLhg586dMgAmCIIcdfGiUAcg38xMUiqVfMKECYKfn58giiL0lUoMGDcO9wwMWOHatbA1NQXr1YtIspQUYOpUnA0LQ0pKChYsWABzc3NwznH06NH6oqKi0MbGxlWDBg168XH5X4y/nO2/8KchKipqPGNsSnp6Oj937hxSUlKYjo6ONHz4cDE4OBgDBgxgnp6eQs+ePQVXV1eEhoay3r17gzGGtLQ0PKpMCgsLCzg7Owvnz59n8+bNE+zs7DBhwgTW1EpFV1cXZmZmzS2RWkKpVOLWrVtSRkYGzM3NmbGxcas88YqKCly5coX/+uuvuHr1KnNwcOAvvfQS6927t9C/f3/m5+cHURRZZmYmj4qKYpmZmXJubi4/ffo0a2ho4PPmzROCgoKYj48PAgICmv5G+L/taLeEi4sL7ty5I928eRPu7u6soKAA9ymXS87MzOS9evV6YlA0Gg1qamqgUqn+/Lx6e3tqFXH8OBmUfwCMMTS9l8DAQFy6dAnl5eWtCwX9J3hUPRZhYXRAjBtHOdgtKxMrFOTENVULbWggA2PQoFYtel4YWi19nlJJTuzmzRTB8fAAMjLAJAm6Bw6gw5w5MDE2ps8JCgLeeIMcKnd3Ml7//ncyVsLCkNbYyHPu3WOpqano3Llz63xvgA5cf3+Korxo0bmFC6kgzYgR5AB4edHfMwZTU1N06dIF0dHR8qVLl4SYmJhmia65uXnr+VRRAbi740djYx6ZkcEKCgpgZGTU7PjV1NTgq6++4tYrVyIuP1+WHByE1NRUWFhY8Fu3brHo6GhkZmZynpPDjd57j+UKAmK7dIHjrFmwb6/X9KlTZHi3kLK2RJMSYPDgwbKurq5cUlIilJeXIzs7G2VlZQgODhb8evViQYMGwSo+Hr2nTkW/efNgamYGlUoFBwcH1qVLF6ajo9N+n/umKvDl5WQEPactnrm5Oezt7eH34YdCYpcuPKq2tv32gM7ORPzExlKKQDtr2MrKCpxz5ObmQhRFuUuXLk+qEeztiRiTZZJIjhlDRnB6Ojnzq1e3Isx0dHRw+/Zt5OTkMFdX1+be8C3R2NiItLQ0hIeHy2fPnmWiKMozpk0TRM7JsblzhwoK7dlDBQZDQ2ld3rhBxNLWrRTNvX0biIyEMipKcMzKgkJXl96rJD12UmtraW326EEkWmQkYGGBqpAQnElMhJGtLZgoyg4ODrxVhwNvbyIaFiwgZ/1RP9lnISkpCenp6fD09MTixYtZUFAQAgICWEBAAHr27Mn69Okj+Pv7Cx4eHs0pUKIowsLCAsXFxbhw4QIGDB4MoaGBpJh2dhRhnTqVcj8FgZ6vKSq6aVPbVdNBJLVGo8HSpUvbPYy6d++OuLg4XlpaKnfr1k1A376AWg1mawurLl1gZ2eH5ORkpKSkICMjA56enkRcM0Z7pCSBm5mBiSLQoweq33sPd+zsoKNS4d69e0ytVgtlZWWyn58fQ0EB7ZteXkSerFmDI6dOocOyZUg5dw4HcnKQWVLC79rbsx5JSRAdHeHarx8zMTGBaUkJcPw4O2xigs6PosaFgYHQ7tiB8nHjMGzYMCEyMhKNjY28oqICL7/8MjNtivb36UM1Gd57D3EdO+LA8eNyXV0dmzdvHmvq2xx7+TJ3c3dnRo9aS0kJCTjr5ibrhYSwtKIi/quODr9x44ZcWloq5uTk8OvXr/P8/HzW76OP4MoYiy0sRHFxMUpLSxVarRb379/nRUVFUlZWlthdqcRiW1vm8eWXyKqt5el9+uA4Y+yumZmM8HDut2sXK3J1ZUOXLWNBGg1USUk4NWkSN1m0SJCOHOH68+c3r8vs7GykpqYKycnJqKup4fN37mTuW7fiZmIicnJyYFZbi+pevXCjogKhoaFwKC/nlqamQoa+PnwuXWJZpaUIWL0aI0eOZJ07d4axsTGqqqpYRloa0z11CgXh4XDLy4NQVUWy/5s3gZwc/Ozjw6N79GCz58yBvr4+qzp5EnoWFjBrUnooFOTYnTxJEWA/P4Ax5OTk4PLly2zu3LmCkZERHBwc2NmzZ9G1a9fHJHllJUVAPT0fk58KBTmuXl7AO+9Aoa8PK39/xMfHC1FRUa1I9pO2tvxQXh67kZAgR0dH85iYGMZTUrBk3z5027cPPkOHYsiQIcjLy5MjIyNZQUEBe1BUhAtWVrL+kCFwdXV9tsF25AjteUOGtP1za2siv2bNenbqTlMnk3/HqbSzw43GRly9fBlmGzbgvr4+ChUKcACiKKJ///7M3t4e58+fF7p37w79jh3BPDyovkJsLCmF3niD5OxWVqRMGTSIitKVlwOvvopya2t89dVXuHfvHuvZsycuXLjAe/bsyadPny707NlT6CWKcLt6FX7/+pfQo0cPobkP982bwNdfg/Xrh7ylS7WR164J5RERuOvrC5vaWqiGDMG+ixeljIwMYcGCBc1n840bN3h8fHyeRqMZvn79+hdrw/NfANZWxeS/8Bf+HWzYsOEfAD4YMGAA9/DwYDY2Ns903Hbt2iUVFxcLnHPW2NgISZIgCAIYY3BycpJyc3PFVatW/eEoplqtxokTJ3hubi60Wi2zsbGRXFxcBH19fXb79m2poKBAtLS0lHx9fUUfH59nSsbVajUiIyNRUVGBgQMHwqENSeP/q5BlGT/99JNUWFgoAsCYMWPg5eWFTz/9FEuXLsWDBw8QHR0tV1RUCE3tf/r16ycPHTr0z2cNKirImJ49m5wBlYrYcZWKmNcXJCpCQkJQWlqK5cuX/znR7bZw7RpFcaqqHjsWp08DFy9Sz+gvvySHwNz8+ZF6rZaibJmZdI033iAHpqnN1bvvUgTmwQPK3fvkE5Kkd+8OqFQICQmRdXV1MXfu3LYHqKltS20tMGkSGlasQGRCAhoKC+H80UfwbI+UyMigA/kZLeJQXk5qhN27ge++I0fk6UjjU4iNjUVCQgK0Wq22oqJCoVKpEBAQIAUGBj4eqMJCqLduxRd6ehg5ciQKCwvl5ORkYdq0aejUqRPUajW++uorvHbzJqK7d5dTDQ0FzjnWrVsHURShaWiAXlgYcOsWbtfW4oihIbggYPbs2U+2lmmJ/v0pEvNUAbFHbdNw7NgxpKen4/3334coisjLy8O+ffug0WgAAO+9996T+0RDAzlzO3e236f1aQwfTg72H2k/J0mAkREKJ07Eod69paa8wzYRFET93Y8cabul2SPIsozTp0/j5s2bAIC1a9e2Ts2oqSHDd98+yl1dt44ifi2LEdXUkCFpaIi6Q4ewOTkZ3fX0EAxAsX49pNWrUWxlhVgLCx6wYQM7NW8ed46PZ97JyTAtKoJgY0P7wauv0thcv04Vpz/4gMivL78kYsfCgtaZpSVgYwONJOGzzz7D22+/3SzbbUZiIpEDTbUwOAeqqyElJ6N482act7WV5508KcDamlrznTtH6R9NUWLOqRCetzdFhjZvblPG3hIXLlyQoqOjxTFjxsD/D6Zm1NXVYePGjQCACRMmcO8OHRi8vMipjo2lyJlCQSqPqqrnthOMjIyUExIS8Oabbz5zQy0pKcG3336LV155heo8cE7O0sKFwIoV4Jzj+++/R3FxMczMzPD666/THx4+DH7mDP7h7Aw9PT241tfLA7ZuFX5YuhS2FRUosrKCoFBg2rRpUCqVKP7iC/Bbt3jY8OFMFEXo6enJNTU1goGBAd584w1otm6F8h//QFFSEuyjo2l/vXSJnJfdu1GUk4MfAKhUKt7Q0MCMGhqgVSpRLwgQBAGyLIMxBmtra1kQBIz65ht2u18/+Y63N2RZ5jXV1eKsn35iOiNHwm7zZrAW50zE+PFyYGKioMzNBbZvR22XLrjyxRfo+PLLqHV2hsw5JElCdHQ0jI2Nub+/PwPAvY2NWYOPD3Z99BEPGjGCWVtbw8zMDEyWgf37ceunn1AJwMHXF/YrV+LniAi5sbGRDxw4UERlJYy3b4ftiRMQL16kfV6pBDQayJGRuK+jg3NHj/LAqVNZl+xsYOFCnDp1iickJLBFixaRw/LSS8CWLdDo6qLhk0+QoFbLV83MmFarZePHj+degsAacnJwJD0dSl1dWcfenk+aNEmMiIhAbGwsV1ZVscG3b8vVEyei35YtwmkXF6R5e+PtYcPAbG3JIZs4EV9dvCj7+PiwQYMGMc458jp3htHRozBrUY0fAM2dsjJgwACUbt2KH2/cQMeOHaWZM2c271Xh4eHyzZs3mVKp5EaGhvwlhULU0Wja7kfNORFednbA4sW4V1GBn3btgr+//xNFYaOCglBsbQ33v/8dJiYmUMgyzOvroZOURJ1QHqG2thYREREoLi6WRn74oZg3d67s/8kn7da0aUZYGOWRPyv9LSOD6gY8lVrTJhYupN9rr6BbO2hoaMC//vUv6NbWYkZYGPS9vKB57z04tuhYsWfPHik/P1/09vaWxowZ8/iMqKkBPv6Y9k5jY9pbbW3JxtHTa0pXQm1tbXP3nClTpjyZtnb8ONkAJ1qovZsk/4GBVDdCRwc8KgoNCxbg2EsvyQN//FH4acECQEcHy5YtQ1OgLCcnBwcOHKhubGzstX79+ow/NBD/y/GXs/0X/jRs2LChr6mp6W+rVq16TrNXQlVVFTIyMiDLMiorK7mOjg5LSUnBw4cP4efnB39/fzyvjdXzUFJSgqSkJNy9e1fWaDS8Q4cO4pAhQ56Z//nfhpqaGgiC0PzM27dv15aWliqUSqXk5+cnuru7w8rKCr/99htycnJ4UFAQMzEx+fOJBQcHinKMG0cGcXY2RRyHDaOflZSQlHv8eNrI6+qA5GSSiT3arLU5OTiZlgbZ2BjTZs4kKVdT0R4dHYq+mJiQsaZSvbAT3wp1deSIurnRQaPVUr7h3r1kiG/c+GRLq5ISMhIHDaKfFRZShHDkSHKwLSzIsN+yhZ6xS5cXiioXFRUhJCQEa9aseaE5W1tTg6iZM9GvrAymp05R8aW//73t/Oxhwyha+HRrk9hYiiBOnEgEyaFDT1QifVGUlZXhyJEjKC4uxoABA9CzZ0+Y792LvFu3cMjDQ3ZwcOCzZs0SASAiIkIbHx+vaGxsbO77/NK8eXDq3Bky503V6YlceOUVcvI2bgTs7BATE4MbN27wxsZG3qaTkZxMkV89vVYR3+3bt2sLCwsVoiiid+/e0ogRI5oNlYaGhuYCc23iu+/IcDIze3ZeXlUVzZ+8PIoutBd9bwtpaYCZGbKrqnD46FH+9ttvt89enjpF4zJs2AsVv/vss8+4sbExW7p0afukaHHx45ZF4eE0z195hZ7Jz4/Ig717AQ8PXH7jDfl+fLzQPzERsR9/LFlu3SqW2dgg1dkZveLicCcoiBuJImYMGsR0AgJoTNoyeFNTaX3ExJC09/r1J0it9PR0nD59mrdZLX/GDFqf77wDgJzZ8PBw6fbt26JCoZD79u0rDPDxIZWGJJFDP2AARb/LysjR2LmT1sAHHzy3rkFjYyM2bdqE8ePHw9bWFnFxcSgtLUVubi7v2rUrnzJlynM3oLKyMvzwww/QaDRYtWoVTKOjyQnbv5/2H5WK7nfJkmeTYyBJ+8aNG+Hl5cWDg4PbnStarRaffPIJXFxcMHfuXPpmSgqRFWPGNFfqLy4uxrZt26BUKvm6deuYQq1G3ZYt+EqrxZx583D37l3U19fD3s4OHsOH4+Hq1bjYqZOUm58vKhQKbnj3LtOtr0eBi0szkS5JEkRRRJcuXeRp06YJqKigtWlhQQqGiAh673PnAgkJqKmvR11dHSwtLZGQkMDZu+/idycn9sDFBb1794ZCoYAgCBDUakBfH4IgQKFQQKlUIjQ0FGN9fdHjt9+ILPL3b25n9MXGjfK0KVOETra2gJsbGoYMQdbNm3C/ceOJXOBt27bJvXr1EloSKZe2bUPkgwcYOmwYdAoLYXbjBhz27sUlT094vPYaYtVqvI7XNQAAIABJREFUOSUtTdDR0Wkm7ARBwLxdu3gDwMLGjEE3QZD9o6OFsvXrcfr2bT7/n/9k4cOHI8PTEz63bsHnxg0cXLFC1jQ0CL38/TGi6bz57js6V5ydIfXsiYO9e8N54UL4+PhAT0+Pai5s3kzqCH19YOdOhIaGouTnn+FjZ4fuVlZQJCWRbNzREWdDQ5EcFYXXvv8ewo4d0Js+HdevX0dYWBjmz5+Pzp07oyw5GQXz5sEzPr5dgln65hscS0mRRW9vNnTOHGbSYk+UJAk3b96EWq1GTUgI75ySwuxCQ2H8vGKajwqBZm/ZgoMHD8La2hq9e/eGh4cHUkaM4DmmpmxCU82PSZPIVli3rtVl6urqcPXKFVl/wwbB78gR6LxA1W5cvEj7b1uEQBOSk2ldRkU9t993sz3wVA2IxsZGhIeHc29vb9aezZWdnY29e/dCkCTMA+CUlEQqoxZFQEtKSvDDDz+gZ8+eso+Pj9B8repqIvM9PIj4X7EC+Oc/UZGejh0RETAwMJCcnZ3F69evo83WYXl5FCxpUvj89hspj8zNqc5G03M3NAD5+SgPD0fy2bM8um9f6OvryzU1NeKYMWO4i4sL27ZtW31DQ8OkDz/88LdnD9Z/H/5ytv/Cn4INGzYE6ujoHOzbt6/loEGD/r0mwwDi4+Nx/vx5zhiDp6cnOnTowGJiYlBdXS2PGjVKcHFx+f+Vo/x/ElVVVdi3b5+k0Wh4fX29Yvjw4a3k5v8WZJmiY0VFlOf3tAPMOR0CDQ1k8DZJS9Vq2uhVKjpQ1GogNRUxiYnyg7o6QanRYKC+PnTMzCBbW8NAEMho1tGhg6GujhhcMzPKM9XRoQizSkX5zjo65DwwRkatri59BucU9VWpKLI3ezZFpbdtI+NcFIn13rSJjLfhwylyun07OdO3btE1Z86k5/oP5+vu3bvlBw8eYN26dc813JuiwiNGjIBf164UKRo5kqKdN26QIVtfT+TEBx+QRO5RixFcuEDj8vXXJBt+ThQtJSUFqamp6Nu3LxzbkUTLsoyQkBD5wYMHgo6ODtYUFOBMfj6cPvzwsTy1Baqrq5GZmYnOnTvD1NUV7FGUBQCRFe++S2Pc9P4AnD59WiooKBDLy8tbO6NlZRSBDgt7Ipf5zp07SE1NRWpqKjQaDTw8PKRJkyb98ZoLNTUUFT16tH2ZYHAwzanQ0D92bYCubWWF6shIfPPNN3j33Xfbl6knJ5MyoqSExqoFfvvtN6m2thaTJk0SmxzrL774gtfW1rKlS5e2JjXv36dc6IULqfiaIFDbo7VrKQe3e/c2perJyck4deoUd3Jygo+PDzt8+DCGDx+O+Ph4WFhYYObMme3fP0Drq1cvkpY+eEDR5ffeo+d55GyEh4ejqKhImj9/fmurPzaWyAxHR5SVlWH37t1cX1+fjx49WujYsWP7n/vgARnXnp5EVhQW0vd37CCyrGkvsrOjqBnnwMmTKN6xA8aLF0MWRexYtAgrN2/G5cBAuDY2wjwhAaFr1kgTv/9eFDp0IIm8nx+tvb17qcDSoEGAjQ34wYM4O3my7HT+vOBubU0G/MyZ5PQtXvzsgkdP4eLFizwuLo6/9dZb7Q50k7M9atQo3qdPn8cv8vZtItguXKBnBVUN3rt3L+ecY/ny5ax+0iTs7tgRw19//UklSVPbqqaUk4sXIa9bh5pOnaDzyisoKioCQNX4ExIScPHiRVgrlVojhUIw6NxZCE5IgM7ixeTsZ2QQ6dFWPuzcuSgdMACHOecGBgZ8/vz5wqML0zjNmdP8q1988YU8depUwcnJiYjHmhoiD5VKHF+wQB6iUgkmixYBly+jyscHOyIj8eaGDU983HfffSf37t1b6NWUAiXLKPn6a4iff44HLi68wdgYDwWB3fD0hFpPD3369OEjR45kkiShsLAQenp6JN1OSYHlnDlQb9gA7ejRuHzpEvR375azjYwEiwcPYD5/Pmzc3KDT0ABDZ2doNBrIcXEwmzEDhTdvwqVbN/r8OXPIsTQ3R4G9PfadPIm/NRUpA+jMmTKFSFZTU+C333DT0hI2a9Yg2d0dgSdPorkt6Z07wLRp0O7cia9PnkQtYxBFEZIkoWPHjvLMmTMFPT09PDhxAjF79uBOQIA8YMAAod+jug2yLOOrr76Sa2pqBENDQ0l+8EBcvW8flD/8QKT600hLg3rXLhxUKHi+SsUCAgIw/FkFCCsrKa+7tBRXDx/m4XZ2zNjYmNfV1TFZlmFubs6XL1/O0NhI59maNSTvboGUlBQcP34cvZKTZc9VqwSHRznez8XBg2Q/fPPNs3/v2DFSfL1IIbTqalof+/c3n18fffQR5KYUIwC+vr4IDg5utU8mJibyEydOMABwbmjgc1NSGJs8mc7wR6kR+fn5OHXqlFRZWiq6u7lpx0dEKHDuHNk9CQl0HvbvD+nsWWjnzMGJn37iM+zsmNbXF1xPr7VSCKBaHffukeKntJRsHjs7ygtvcY98/Hj87ucnG+zbJ9zetAljxo6FIAi4fPkyYmJieENDAxNF8Z/vv//+u88fqP8+/FWN/C/8x/j4448X6urqbhk/frx+9xbSln8HPXr0QE5OjpySkiLGxcUhLi4OAGBoaCgce8RgqlQqDgAjRoxgvi/aJ/kvPBcKhQKNjY2QZZmpVCpERUWh1x/MsW4Tb7xBG3NTj86nwRg5tipV64jc0zLo4GD0B4SEhAScOnUKTVe0trbGsmXLqNp0Ezgnx7K29rGcu7KS5NEqFTn0JSVkWGu1dBDm55Oh5+pKTrVGQ4ZvUhIZ3N9+S7mxO3c+bnuSmEj5Z8uWkZHJOTklc+eSo+XiQvcVFERGdkYGOe6XLpEB2KsXReRefZUcyaQkKr62eTPw4YcY07WrsKukhJyOtWspAnX3LknZf/6Z/t7aGrh0CbojRsC6vp4rs7IY/Pwo99TWliKQERF02Lq7k7RswQKKsl+7RgfonDlEGDxlbLaHY8eOQZZlZGRkoEuXLnzo0KGsoaEBNjY2zZJrQRCwePFioa6mBgmjRuH3Dz9EcmwsJrYjczYyMkLzmg4LIxKktJSinD/8QNVrn1IEJCcniw0NDRg9enRr78/IiIyhp+bRmTNnJFmWRT09PW5jY8OnTJny73URMDSk+/T0pPy+loZcVhbNrSNH/n2FxauvAl27ora2FpIkIT8/H+06jU1kU7duNAcZA+cc+/btk7Ozs8VHkUV5woQJgiAI6Nq1K27evPmkPD4ri+bnN98QiXTrFlWSLi0lJ+Xrr2kethMJ79GjB3r06MEAICQkROacC+Hh4QAogrtp0yasXr26baMOoLloYUHOto0NFfLJzycHNy0NsLPD/fv3YW1tLbTseZ2Zmckrysrg/9FHDEeP4u7duzhw4AC6deuG50aX6+rIufzsM1rX69ZR5P7cOZo3mZm0zs3MaK3b21NU/LXXcCoxUctmz1YM7dMHS2fOhODigqDhw4HqahT8/DMULi7sQt++XM/YmLuIomAXEECEo60tzZVRo4CcHLDOneETFCSUhYXhXlERbNRqqBgjAjIigvaVmzfJgXlG6opGo0F0dDSbPHnyM0nSpnceERHB+rQsCNm9Ozn3Dx7Qe9DRgYmJCebOncu+++47fPzxx5hqZwc7Y2OcOnVKWrNmjdjiovR1yxZSLeXlQfjuOxgPHgwsXw6nadPIIVKpMHDGDHS5dg0m8+crtJKELcHBGHXwIPXzfv992jvfeYf2pKcihuVbtmDP9u1oZIxVVFQ8/sHNm61UIxqNRjBrym//6Sdaq999B4wfD1GrBS8thTxhAoQOHVDk44MG1VNxAo0G1jk5MG5qxZWeDpw4AUtvb6CsDGYDBjDs2QOYmGDYpk0oj4hA6Zo12PO3v8mzamqEDv7+tD/n58Ny7Fhg40boPpI4jx4zBhgzRvC8fRslkyfzuh9/ROeAAKY4fvwxYTt2LCKXL5diT54UVh86xFR/+xtFNBkDJk2C8W+/NUfOm8E5reMlS2iPP3MGaZ6eUsQbb4g1NTUYJIp0lh0+TE7izJlQeHtDPneOL5o7l5mZmYFzDn19/eZ1Y5Obi3FTpuCn2lrh3LlzSEtLQ1lZmdzY2Mh0dXXZq6++iocPH4q3bt3iu8aNY7OdnGBw6tSTDndZGfDFF9CdNAkvBweznJwc7N+/H3379m0/JczEBOjZE9i/Hz2vXmXhEyZg8cKFTGIMyunToWNpydCtG82Va9cAQUBVVRUiIiK4sbExe/DggZSZmSm6dOqEUZs3C3jvvbY/py0MGIDntgcDKJiwcCERrs+DKJLNUV3drBZzdHSU79271zzWCQkJqKqq4hMnTmT19fXNEmxPT0924pGUO1ulYve3boXDmTNEqA8ZAowfD0dLSyybOVOU3dxwMjBQUf3xxzD6/HOaL35+wL590DCGM4Ig5370EX99xgwR3btDsXAh2SJXr5ICpCWsrOicO3IE+PVXqg/z9tutzoAHhYW89uJF5jRmDFzGj2/+fmBgIPT09HDmzBlIkvTJ8wfpvxN/Odt/4T/Chg0bDBQKxeaXX35Z/8/oba2rq4upU6eKxcXFePjwIZycnOT58+cLpaWliIuL44/6brPdu3fj1KlTSEpKwsyZM6Grqwu1Wg1dXV20NML+wosjLS0NtbW14ujRo1FUVCS7ubkJ6enpiI+Pl7y9vYUXqTTcCg0N5NgVF/+p9+rr64sePXrgwIEDyM3NRXFb12eMosr/bmS5pITkrNnZFOmrqaGCI5s2EXFgaEjRYlkmGWRcHDHM9fWPC6l9+CFJ5o2MiHTo1IkY7aaexH5+5NgrFGQo6ujQ9SSJfp6bC4WNDVQNDai9cAEGy5aR4xkTQ872Z59RHrKXF/DaaygNDUVAaCjrcOwYVT/18qKccDs7Mr6KisiB3b6dHIqmiEhT/9r168nACAmhSN6uXVQAZtEiqA0NceeDD3jkkCHompoK38ZG5vaPf8A2NBSnb9/m+69eZY4lJcjo0gXdGOPOHh6s1toa6ZcuSZr798WpaWnYHhODISNHymjZM7g9pKaS4bh+PY3TmTNt/tqSJUuwefNmhIWFoXfv3oiLi0N4eDjGGBnBZ/NmICMDWq0W4eHhqK+vR21tLSorK8Vp06ahe/fuDP9p+zt/f3JGx48nKXdT+7ovv6SoTDv3/Vx8+ik5mh98APHhQwAkFWzP2a7r1AkZu3ejIT4eFmfPwmX0aOTk5CA7O1sYPHgwvL29sX37duzfv1+2t7dnWVlZMgCKdFdW0uclJZF6YN8+St1Yvpwivd27EzHj4ED5lF9++dzbb2hogKWlJXR1dbmbmxvz8fHB5s2b+caNG9nMmTNhZWUFIyMjaLVayLIMHaWSHICn4ehIhjoA3qMHmL8/4pycWGJiIjp06CDb2NiwK1euMIPqanS7dAnnzpzh5eXlTBRFPmXKlLbfbVkZGb6jRpEx+dFHtCb8/Ojf/fv0NT+fnO8ffqDxaEna2NigLD5emLZ+PTo1VQ1vym0G4NC7N+w5F9L690d0dDQy4+Px8pgxtJ6cnSm61YR162AHIKKmBnczM+GamsrHL1vGVGPHQvjyS3KeNm6key4ooOJxbRRuUigUsLOzk48ePSoYGxu3qzgBqPhkm8rG1auJcNuyhSqfAzA1NcW7776La9eu8WvbtzP/X39F8vTp4qeffgoAvKmApSAIRJh6e9OeX19PstPGRnrubt0Ae3uwqCg4dO0KxMaCcw7h009RExcHvSZZ8YwZtKauXqViTt9+CwgCOOc4fPCgvPL994VTH38saWifFTFxIlV8brE21Go1tFotmgs6iSKRn19/DYwfj9szZrD6W7dg2bUrqsaNkzPDwoSudXUcu3YxlJUR0fr99/C2sGCYPJlIyqaIsZ4ezZnFi+m/MzKADh1gVlkJvVmzWF5eHnt44gQcRJFIo6b5ERdHY7N3L5Gzurow79QJxrdusR8++UR237uXNVdD19EBBAGDNm4UC3fulBvfeYep5s2jdVhUBJw5g/OxsdyvoUEGIGLCBCpwNno0KRQUCiA5GWpbW3SIiRFnJCdD6NOHyIaPPqLzrLQUuHIFePttiEolsx0yBML/x953x0V1bd+vc+8wMPSR3rsCCqiIgkbsYm9YYheNGmtM8mLK0/BMVxPTjUZjNGpUlFiwoUSUJoINLEiTKr03YZi59/fHpgoqeS+/l/e+z/X5zAc+lJl7zz333LPXXnvt48fpOH/+mci74cOB2FiobdiARebmeGRujjSZDP29vTkjR0fo6etDQ0MDFhYWcHZ2Zluys+k6zplDz5i5c+mZdukS3ctN0nBbW1vwPI/q6urn+q+c0ddHwqxZWMQYtLy9ScHy6ac0Rjdv0mc17flKS0uRkJDAeJ6Hm5sb7+XlhUHu7nQvd6VTRjNiY2kdPHny2X83bBjdm42NT29F1gxNTRrT+Hjgxx+RM28esrOzOYlEgnfffRdbtmwRGxoaWFpaGvv8888BAIGBgQBaiGs8fPgQYWFhOPDrr6RouHsXijNnoHr9dciqqoCCAnBhYUg5d050YYw567RWdYorV+JEYaGYqVKxJUuWkKlvcjI9Z4ODaT8wdSolA8aNo3mrVJLq77vviKTZv7/Dad27dEm86uODuT17MlnT9W1GXl4eLly48BiAd2BgYO1zx/3/KF4E2y/wr2KooaGh6s8ItNti5cqVUCgUUFNT4xhjMDQ0bJe5CgwMRFZWFvbu3YuvvvoKoii29E5VKpXgOA5vv/02utSG6AUAAO7u7oiNjVVdvHiRX7VqFaelpYWDBw8qi4qKJCdOnICjoyPVzXYVzfXWBQVdY4j/IKRSKZycnJCVlYUJEybg1q1b6Nmz579+zd9/n0zKjh+noFNfn+qTmnHzJmW5XFzau5A2udpCJiNWHCB5eTOWLqWvhoat9U+vvdb6+5076euUKa3S6X37kHfvHspLShC0ejUCLC1bA2SAsjmguvzoXbuE6ydPclZr1wo95syhnUd1devfNjTQ17AweoBqa1O20sWFAnY/P9qsWVtTRqKkhDao/fujQS7HsaNHhQFaWsx/xgym/uOP0JNKITEzA8LD8fLq1ZxQWQnuyy9R9O67kMyaxUqPHMHtCRPEWTt38jd790aqqyve3roVeOMNTnRyAvP0pEBm0SLarDx4QJubuDgat+vXaXP7wQfPdLGXy+UYOXIkwsLCAAC3b98WtLW1udtJSZBPn46CuDiEh4eLOjo6UKlULdmwoKAgTJw4EX+KOsbAgDKgGhqU5XB0pADhX8Hp0xSs79yJe/fuiQCYqpmEeQL379/H0aNHMf/gQYhKJfLNzVEsl6N5Xba2toauri7Wrl3L/fDDD6qcnBzOw8ODH+rqCq3AQNrA795NWeu26pLCQgpGnZ3peiQk0JwKCAB27CCFyFPg6enJIiIihPnz53PNDuXvvvsuO3jwoLB//34OAExMTITCwkIOAGYePQojHR1RPzKSdTAv4nkIgoD4Hj2EAmNjziYzE2ZjxqBUpeJyc3NFDw8P0bNHD5YycSIK798XKyoqmEKhYFVVVa3u6A0NRCA1q0b27aMNu49Px/O4e5cCqUePKGCoq6NN9+TJLX+SmZmJxsZG7lm+IowxuLi4QE1NjR08eBBZv/wCm7b9zdugoqICfXr3xuTLl5F05w7b4ueHWZ9+KjqvWsWwfz/VhfI8rRnh4XT/njhB5mlNkm+O4xAQEMDt3btXuHr1KjejjVHUkxCbvBA6xfLllIWurSWysAne3t7Mu0cPiCNHwnzpUqg4DnFxcbh+/bqYmJgoDB8+nLezs6NSrx076NgWLqS1xNm5dY308Gh5z9u3b4PjODx69AgymQzas2YRCbJmDX3+w4d4XFSEtJQUXE9PF6pqa4GYGEzt04eHRNKi4ngyq33x4kUYGBiIHMe1J1zWrQPmzMEbdnZMUleHlF69xIbYWOaZlQUDLS3W0ufY2hp4802E791Lpm7FxWIfS0vOq5m85Xm6P01NUWdiAkVNDaJLSnBHTU10sLER5BERPKRSIqymTKG5tGoVBSx5eXQfvfkmEBEBLjkZkw4c4PLGjoUtz9N68t57wMiRYPb28EpJ4YJmzhSnxsUx+VtvERkbEAD9kBBxQGwsL374IdiYMUQGyWTUIzw5GcL332Pfrl1ClYsLN+jiRfrM5ufM66/THFq2DA06Oqi/eBFs2TIiBzw8iDScOZOIOMaAkhJIS0uB2FixzMKCOcbHQ8FxSO/bF8bq6tCfNQs1kZHwyM8XOYDmrFxO89Xbm2TZp051mINPS4zk5ORAXV0dx48fV9XU1HBLlixhJgYGrcRFSAiRzh9/3O75YGdnh0WLFuH48eNiSkqKOH/uXE7d3R3VQUHQeZqzeGfQ0upaq1IDAyKmQkI6ZoWfhrQ04No1XHd2FgEwd3d3cByHESNGsLNtyo102gTKAGBmZga5XI6wsDDo6upSr/RevXA9NBQDMjJwdd06eAoCpO7ukF2+LOTk5DBnZ+eWAc5/8ABJu3YxJyen9qaYjJF52/TpdD/t20f7lKoqUpowRqq6FSs6nEpRURHKP/yQzS4vh6yigtaOJtTV1eHAgQOPlUrl3MDAwDtdG5z/m3hRs/0C/zQ2bdqkKZVK706YMMHO7TntUf5/ITIyEpcuXYKtrS0GDBiAyspKKBQKXLp0CWPHjkX//v3/kuP6b0VCQgJCQkKwfPlyGBkZ4fLly2J6ejoqKiqE8ePH887NdWPPg1JJD6qrVzv05f2zsamN7FlXVxevv/76H38TUaQN1uHDxPZXVlKG4FkYP56Y8uPH//jn/UFs3rwZ3t7eGDJkSIfflZeXY+fOndDR0VFNnz6d77Kp4OPHrWSBKFLGZ8oUql0NC2vJvAmCgD179qCmpgYrVqz4Y4QLAIwciTpbW3zfvbugqKzklGpqeMnaWhwxdiyDjg4ZYPXuTVLZL76gjYunJz3oJ016rnt3cyurffv2QU1NDTKZDHYxMXBxdMSpbt3Euro6NmHCBPTu3Rv3798Xo6KiMGPGDLZz504olUq8+eab/7qzvSBQNikoiJQcRka0EX+OodVTUVoKFBcDdnbILyvD8ePHUVZWhrlz56JDv1oAFy9eFGNiYtgaIyNoNDTg4P37yGvKaspkMnH9+vUtAUdISAgKTp3CXJUKms7ORCTNn98x4ExJoQ1ns9FOWVlrKcSFC1TH9/nnTz3H2tpafPPNNzA1NRUDAgLaBTyCIODBgwd49OgRLCwsYGFhgbLUVEQEBamKjIx4Pz8/uLm5tRi3KRQKfPfdd4IgCNzcuXNhPGUK+JdeovnSjA0baBN7+DDq6urwzTffAKKIpR4eMOjXjzbkL71ExyyTPbV9FgAKZurqSJECEPm2ciXVhE6dCkEQsG3bNqFfv34YOnRol2RU+/ftg9q5c5i5fz+4JzJgSqUSX3zxhSgpLWVDIyIQO26cCAMDBHz6KdNMTCTCqVev9s7IycmkbFmxgrKV7u4UQAHYsWOHWFFRgWcZ6m3btg3V1dUtmbMOEARSbXz6aXszSICyYH37kiQerY7JampqaGxshJWGhuh96hTTLSkR45cuFQxyczHg0CFe/dEjQCJBTU0NMjIy0K1bN+zevbvlbXmeh3d8PFyXLoX5hAkAyEvkxHvvYdr+/bi6ZQt85s6FdlkZKRE++ogIx969O8hat2zZIkydOpVzcnKiLG59PT2P3n6bSnisrWkNPHaMypzWr+/UvDAjI6O5hzpycnLEgQMHMkEQYBkcDE4uR+XUqQgODm5Xd2thYaEaNmQI77B+PWWGMzIoW5+YSAaDbQLM4vx8HNq3T3C5cYN5Ll3KutXUUL2+lhbN2e3boVq/Hr+pqcF76FBYffwxnc+9e/j54kVVdnY2r6+vL06ZMoXZ2NgQSVJXByxbhoPBwaoaAwM2f/58TlNTE2hoQGlSEh6XlsJEVxdqqanAnDnIzs7G4cOHsX79eiKarl8nRY6aGuDqipNubsrc3FzOJyICYR4enJePDyIjImCorQ0HmUxVe+cOVyCRMLeEBJg0NIjd33qL4fBhmkOhoXQ8e/fSmr59O62V3t6IVleHy5Yt6DZrFoSQENzcsEGwjIvj9q1bJwRs28bd9fBAna+vatyOHTwXGUkkWWwsrUFOTrT2lJS0I4SaIYoiDh48KOakpzPXGzdgtH49BjaT4F1BQQGNxZMGop0hPJzUAr///tQSmyeRnp6OpLVrkWFnh1GrV8PZ2RmCICA1NRWHm/xSxowZg7ZlHvX19di8eTMAKqf09/dnISEhqprKSl63shJ6lZVwsbGB9z/+gfz8fPz444/o1q2bOHnyZGZtbQ0sWYJcZ2f8bmws5OXlMXt7e9bY2AhjY2N4eXlB/uSaeOhQa7vM/Pz2SQfQfb99+3bRXV0dIyoqGPr0adk3NY1/XXZ29u733nvvNfyP40Wf7Rf4p7Bp0ya5VCo94eTk5DJ06FC1P703cxdhbW0Nc3Nz+Pr6wsTEpEU2d/v2baSlpeFpfV9foHPs27dPHDlyJLO2tkZjYyNu3ryJuro6ged56Ovrt2Sontk2QxSJfTY3f37A+ifA1tYWDx8+hEKhwKhRo57ea7kzXLxImWx/f8p6DRhAWeentZBqCz8/6peclUVZrz/Y9uePwNzcHKdOnUJiYqLg6enJGGMoKChoNoGCXC4XVqxYwf+hoNHCgoLC5o2qjw8FIFVVtDH19gYmTcL52lpklpdjzpw5HR/Gz8ODB8CiRVCbPh0+gwYxZzc3lJSWolSlEvsOGcJaTOoSEmhjduIEjesHH9BD3t+/U5fX4OBg1e+//84cHR3ZqVOnVL///junrq4OHR0dGBoaqgZevMiM3d1ZilwuDhgwQPT29mYcx8HExIR5eXkxTU1NDBo0CNHR0YiLixM9PDzYHyYRABqnb78lWbWaGo3n+PF0LqJIWaI1VhkwAAAgAElEQVRONoLPgiAIqF63DpKVK3HUyUkVevEip62tjcbGRtHW1pa1JVOUSiXS0tJw5coV1tjYCLfRo2GQnQ2X48dhs2YNCmtrBX9/f05PT4+O58IF2H/1FbI4DqWamoLdBx8weHl17qTr708B9tChVC9eWoo0URQzGhtZRo8eqKmpAf+PfyDJ2BiPKipQWFiIuLg4HD16FLGxsYiKioK+vr5q4sSJ3JMZGsYYjIyM4ODgACMjI2hkZ0N+4QJ6BwZyampqCAsLE27fvg0jIyN26NAhITQ0lJmamoqvvvoq09XVBdfcLuxvf6MsjL8/yX49PQEHB6hlZcG+ogLyyEhR84cf2A2ZDLbffgu2cCEF0M/qiwtQMLRkCWUCe/em69hcf7pmDS5JJCiqqsKsWbO4rj77YnbuxKSwMGi99VaH3xUXF6Pmxx/Z3OhoWN+8if5Dh7L+/fsztTfeoGMdPJhknG3bmhkaUqbd3Jx8KGpqSLr9zjtIEEX20pQpzOwZa6EgCHj48CEGDBjQeQ19c2eH+/eJpGh7nidPUna2KaMokUgwePBg+Pr6kjv40aOsRFMTGjU1TDFxIpcpl3MXevRA8YkTgmLzZvycn8+SkpKQlJQkMMbw1ltvMV9fX/jY2yMhJUW4WFHB4uPj4ePjg6ioKKGA58VBr73GHPz8IP3ySyqF2bSJyAcnJ6rpb6ptBYg0romKwrD0dMYGDKDMv4YGnUfPnkRMODpSBnfoUAq2q6qoVjo/n96z6XwzMzNVKSkpYk5ODtfQ0MAqKytV6enpKCktFY3OncMZmUw0MzMTVq1axZWVlYHjOMFBX583XLgQeQsWiAbLlzP27rtEhMyYAYwdi1uPHuGnn35CTU0NtHR0cPPOHTZwzRpmNWAAlSb1708u2B9+CBgY4KJcrrqrUrHxcXGMbd1K2UNra/Tx8uJ8fX0RGxvLUlJSyOwuNBRYsgR1mzZB/fJlbti337IWU9m330b6Dz+Ix3R0WMnRozDatUs8Z2vLrl27Jhrm56O3lhbDK6/Q87uuDujVC8LbbyM4OJgb5OnJen3xBasbNAi9R4/G3Xv3RG25HOPmzuWshg5lAyZMADdqFLTmz2farq5Eog4eTP4ECQl0/xw6RNnTl14CnJxwuqICbuPGQezeHXtu3VJVGxkxl8WLmePIkcx42DA4LlyI7iNGcMzDg57Lzs7k5+DuTmSwjw/VGneCuLg4VXx8PDfhwgVkDB0qykxMmMMfUdjduEEeDl3JVtvakm+KsXGXCdaQkBDRMziYeQ0bBusmJVtiYiKOHTvW8jc+Pj5IT08Xjx8/Djs7O5aeno6UlBS4uLigoKCA3blzBwqFghtz7hx6z5kDbz092O3dC7ZyJXR0dODi4oL8/Hzx0qVLrG/fvlC/fx+6ffvCfdo0pqWlxaqqqlR6enosMzNTvHHjhuDt7d3KAgkCEZMffEBrrZcXfd/k6C+KIo4dO6ZS1NeLs06c4JCaSiqDJsTGxqoSExOzGxsbpw0dOrRzSdb/EF7IyF/gD2HTpk1eUqn0NYlEMtXV1ZWbMGGCxl8VaAO0aeveLE1rgo2NDd566y1s3boV6enp/1W9sf9qmJqaqs6fPy8JDaXODHp6esL8+fP5X3/9VXXhwgWEhYVBKpVi3bp1nWc4RZFeP//8dHfmPxm2traYP38+tm/fDven9ZV+EuvXU02SsTFJ6YB2D4ouwdCQXgcPUkZzxQrK6D+vbuufgL29PSwtLZGbm8tlZmbi8uXLQnFxMcfzvGBnZ8emT5/+x00KYmM77yE8ZAi9amsBDQ2UPX6MCY8ewTw0lOTDXUVSEtWz3bgBdOsGDoCJiQlGjhyJn3bu5Gq++QbaU6dSdsrcnGSnbZ1pTUwoCyWTUZ0kgKysLMhkMiQlJfFWVlbCjh07mEQi4V566SVcv35dGDJkCOdWWcnj/HlATw/LGXvquPA8j7///e/YvXs3jhw5gqXNMv/nobGRApDffiPp4Ouv0zn06EEb9IoKqk2USKiW8LPPnimDfxKRkZFCVn0959a7t1hQUoIVK1bg119/FczMzODk5NSy2FZWVuLnn38WKysrGQC88sorsNDRAaZMgaa9PbqrVOi+ciUHlYqyVMnJQGIi1F57DdoA7qans+HPKrn44QfA0hKpqakIDQ1FaWkpGGNs8fr1SJo2Ddfc3UVHS0vofPMNHgwerKrS12eiKIqenp6ShoYGJCYmYsWKFV1zeE9IINn8m2+if//+6NevHxcaGopff/1VVCqVnIGBAebNm8e1uNczRq+5c8lToaKC/t/RkUpWRoyA+ZQpMN+7l91NTUXE8eOojI1VTZkypetGeK6uLS2wABCRoq8P2Nri8aFDEO3s2HfffSfIZDJMmzaNM3hOezzt2lpUGhjgt127RJlMxiorK4Xq6momiiL46mo2mjGB/+knrp2Z3tChFKCtWkXzaPz41uC/GYy13pdVVWjMzIRQXCw6z5zJMHw4BekSSQdJrFWTg3FsbKwwbNiwzi/Syy9TVn/4cDIXa17zvb2pBrcNcnNzoVQqUZuRAau6OlFvwwZWvWoVrt67B5mWliDR0GCuffpw5jdvYuK4cbCxs4OBoWH7z/3xR8yIi+NyDh3Cnj17sGXLFtTX13MAUDJjBgzr60lJ5OtLx8UYESISCZF2jY3A/PkodnQUvCUSxm7dovPOy2slvZydKeD74gsKpBYuJL8KXV0izX75hWrqw8KAJUuQmJiI0tJS3tDQEEZGRhg3bhzN6cpKYO1a9HjzTdYcmHfr1g3V6ekYfv48Ct5+G0eqqsSwwEC2wMEB5y9eFEYkJnJnTp5U5WZm8tqGhrh161aLCWxwcDAWeXjAPCyMrvsXXwDjxiErKwuxsbH8su7dwWJjiRAeNowy2H5+qKmpQVVVFUaMGCHgzBkeVlaAszOK1q1D+PHjsG5sxP79+1Ucx7Gh5eVcjJcXW7FiBTQ1NXH50iVW/8svcC4vZ7YZGTinVKJk+nRVn7AwrtcrrzC8/DIqysrA8zx8hg0DCgowrq4O+O47rFy5kn355Zf4okldYmZmhqGurrAOCqJjq6mh65SYSGv7kCFEaHTrRmTByJEolctxITISGRkZorW1NZs+fTonlUohB1rl4kArae/o2Eo2bdvWqjzpBDk5OcxaTw+9CwqgGDgQF2Ji4OXlBf229/SzYG7epfacAGgeJicTCdUs0+8EycnJKC8vx927d1FUVMSkly/DwNKSCNs1a1Dc5M3RjP1UH91sOCk2raUsKSkJADBw4EDExMTAsb4eBg4ORDouWkQZ9pEjYWJigrlz53Jbt24VSktLOd3AQKCpzNLT0xOenp48AFRWVrJvv/0Wt27dQp8+fejDN24k8nLsWLqHqqro/EaPBvr0wbWEBDErK4tbO3kyw3vvtVMZ5eTkIDw8vK6xsXF0YGBgQ9cG8f82XgTbL9AlbNq0yVNDQ+MbTU3N3j4+Phru7u7cf3LGODw8XAWAd+pKhvIFWrBw4UJJVVUVtLW1m2upeABYunQpX1paCiMjI2zbtk0oKSnhOiUxAgJIAhsS8m89biMjI+jq6qpOnDjBpkyZwnWaqSkspFq2zz6jjF1JCW1qnvFw7BLmzqXXhQvEsj98+C+3++oMzffb4cOH4eDgwBYsWACpVPrPOQEuWUIbnmYjt86gpQUEB6Nx717UZ2WJ0NNjqK4mI60PPng2qdDYSDLN06fbB/TJybCIjYVxcTGqdu0CeveG9hN1fO3g6goIAgRBwLVr18QLFy4wADAzM1MuXLhQAgCCILCmejcONTWUlQoJ6VKAyxiDnp4ekpKSkJ2d/XSnb4Dmy549RB4MH07H9s47HbOkiYlkBlVWRhuU4mIKzJ+TIamvr8fu3bshuX+fm5ucDJ1Ll5iHpiZ/4MABgeM4NmfOHNZ2Xh8+fFjQ19dn69ata/9Gx46REV9KCtXAa2hQRmnpUpJBAzBLSMC9Bw+efjAbNwLa2jjl4qK6desWL5fL8fLLL0NLSwuJd++K41xcGF55hbJg586h74EDErzzTosXQWlpKe7cuQOlUtk1D4UZM+jVBI7jMHbsWAwdOpTt2rULpaWlOHbsmGr06NF8u6C2b1+SVwcGkjzVwYFknxkZLVLdXu7uuHT5spiQkMCPHz/+6U7oIOl7Y2MjNDU10bB8OTQyM5GVloaCggKUlJSoysrKUGFhwUkBtvL4cRSuXcudbWxUbd++Herq6hgwYIBqyJAhnQb0j2UynB80CHqamjAwMBBsbW05Ozs7aOXmQnfRInChoRyenH+vvtrq72BpSYHmtGkUCHaSnRd1dPCTTCY0mJhAeuIEQ34+zYfNm2mds7KiIILjYG1tDZ7nERERwQ1rbv/XGXr2pOD+9m0K9ABaN7dta6npbmhowN69e8EYQ5/0dEHbyIiz8/SESkcH3IwZkEgk3JEjR2A1Ywa0AwLQd8cOqle+fLm9U/8HHwBVVbCSy7Fx40ZkZWXh7NmzKC0tpTaBcjndf3V1rSqchARSJ927B9y5A2H0aNyrqGC91q5laO4Z3Paal5WRWZaREd0b+fkkmx4+HI1r1uDGwIGQ3boFq+BglNfUwCIhgRdNTMRadXXx1q1bnLOzMxwdHSnrb29PaoIm8mOwlhYcduzg0j//HI7+/lgPcGHffSdGJiSw5ORkLi0tDYu//57PMzfHBX9/KJVKAICxsbFYk5XFHnzzDdjixTCztaVgFdQqrV9WFpLDw2Fy4QKVIKxc2VKnn5GRAQAYMGAAj2nTiEgAoDQwgO+FCwhNT4dq+HBuZHg4khwcVFIHB6anp8c9TE6G8dtvY+SdO0h+7z3Iv/8ejxITxXEffMBftrXFTYVCNDp3jqlUKkilUhWa9gK4dw/46Sdov/kmXnvtNeTn50M9IwOxhw+L98+dY2YqFXQ4rrX8p7kka/p0WjN37qTn4y+/wFZLCxb5+YJTQADr7eXFddnY9sQJmn+amp2S+iUlJUhNTeVG2NgAaWnozxjLKC5WffPNN7woiti4cePzTXQ5jkiarsLfn3pYN3sItEFNTQ0SExPFixcvMi0tLbG2tpYtW7YMZmZmNH8++wyYNQtt17Zly5ahoaEBp0+fFocMGcLc3NxYVVUV9u3bh7KyMshkMtTV1QlSUeQMmt3rm/HqqzQ+Ta7gmpqaYnh4uGB3+zaHK1fonmkDPT09WFlZ4cqVK0KfPn047N1LteiLFrWSdLq6VLIhilDa2KC+Rw8288cfIXv8mI5/3jwA9Bw7cuRInVKpnBcYGJjZ9QH8v40XwfYLPBObNm2SSqXSL9XV1QNGjhwp6927d4feuP+JyMrK4rt16yaamZn9dWn3/1J0RqJIpVKYmZlBEAQ0NjZyycnJYnBwMGbMmMHMmh76EEUydWnaJPy7ERAQwO/YsUOMjo7G0LYP4MhIkpj26kUGLR9+SGZQfzZGjqRaMjU12vxv2PCnZbmbW2wBwLp166Ctrf2vzevS0i7LmydNmoRvs7JY3/ffB0tJoQD6/fcpm+/j03nAvnQpZfkPHKB5ERREks3PPwfKy2E2fz52mZoC4eEYJ5PB62kS/IULUX/vHsI/+URMVFODn58fMjMzMW3atJZnV4dNU1TUHzLkmzRpEktKSsKpU6eE1atXt3+z2loKWn/+mbIFW7eSaVDbrMuTGDy41X1/6lTKeLz1FgXry5Z1+i/l5eUIDw9HVVUV5pmYQOfmTRQ8eIC9YWGilpYWCwgIaBdoC4KAgoIC7u+dtbIJDiZi6cAB8kv47jsofv0Vp0JChPJdu+Do6IgePXpw9fX17PLly+A4TnRzc2O///670L17d+7Bgwcqu/h4Lktbm92rr+cHDhyIIUOGQCqVIjs7G/f79xfH6ekxHD3aIovF48dUt1hTgwI7O+zduxe2trZKqVT6/D1GdjYFlKWlHeTsMpkMa9euRVVVFU6dOsV27NgBT09PlZ+fH7monz9PLWn69qUsTHY2BWFPbHY9PT1ZWFgYPvnkE0yZMgWOjo7IzMxEcXGxUF9fz8lkMmRlZYk5OTlMaCJ3dCoq8OrOnQjeuFHsZmgo6uvr83Z2djAzM4O1tTVks2fDtrYWK+/d45Vvvonw6GhER0fznfkqiKKInnfvQmVjI/rOndvqgF9VRef9+uvoEGgDVFLR5MQOgO61desoG9uJc3tNTQ0KCwu5adOmQeLm1hqou7pSffXAgUR+HTgAVFVh9OjROHfuHH766Sdh8eLFnUviOY68LD7/nNbSv/2NxtfammqgR46Euro6vL29cff6dXH8jRscFxUF8Dz4119Hr1690NDQAI7jWr0RpkyhEozGRnppa9Ma7eVFihvQfW1iYoKSkhIEBARArqtL1/fiRaq5NjWl8bt6lUgwfX2A4xDt4wNlXFzH3vEAyktLwS5cQM7Onai8eRMSiQTyH39E96IisPp6PCooQGhoKExNTVUxs2ZBFAS8lJfHvZSXxzQWL2anv/pKbHj8uHWQqqvJKd7EBIiOhtrRo4gcPRpaHCc4NnVcGGllxcqdndFj9mwcOnQIpxYtwogFC7CkWzdcvnxZcHFx4QzlcpY9YwY0nZ3xU2oqxhgaQj5zJkquXYO+TAafs2dxcfZscM3Elbs78n/6CYetrVX19fV8r169oFZRQSSZuzvKysoQFBSE2T17iuMGD2Zac+cybNkC208+4XNyc5E0aZKgyMnhUj08xN5BQczF3h7Iz4fJjh1M9e23cNDSQnFxMQoLC1Xp6em8gYFB6zl7edGadvs2dMPCoLtoETB7Nmx9fNgWV1ehWC6HSXS0KJfLeQ2FArZKJURBgHFEBM0lhYLWxalT0bB0KXplZHAZwcFizK5dYrK7uzh5zhzOsE1JQKfIzSVjz076sOfl5eHnn3+Gq4mJsv+aNRIMGwaYmWHy5Ml8YmIiQkNDcfPmzee3NW0y5+syrK2JwD57Fo+HD0ddXR3y8vIQFRUllpaWMolEgtGjR0MqlbKoqCiVmZkZbaSNjck8r7QUPXNykNu3L3R0dNC8r1q9enXL2EdGRqKsaT3w9fVFSUkJN/HECVGMj2esueuFpiaRcXI5rR3dumH+/Pn8V199BeH998F1Yor46NEjZGZmYtmyZRyuXqWgetWqTnuH1z1+jANz5sDFwwN2V66Q+szDA1i1CqIo4syZM/WNjY1H33///Wew6P97eBFsv8BTsWnTJgepVHrC2traYdq0aTLZ8+rc/oPQJMdhL9qA/bkoKSmBUqlEfHw86uvrWV1dHf0iMpIMYLKzO6///DdAX18fQ4YMYZGRkRRsBwcT27x7N23mRowg+e//L3AcyaBLSigAWLCAMoz/4njU1NTg4MGDUCqVcHFx+dfNvLKyKEP2nPIPhUIBiUSCyspKaGhokFlVjx4k3wSoLVBODqkZ7t6l8QUouB4/njJoP/5IDufNmccmkmMygMlTpuCzzz4TL1y4wPr06dOpD0Bubi4Kly5Fz+JiDLh2jXXr1g3eza21nsS1a1TDmpPzh4ZDQ0MDvXr1wt27d7mioiIYGxnRBvrYMTovX18iUr76qmv9shmjWlI/P8pw9+hBY3X/PhmRff99i+N3Tk4OSktLcfLkSTDGMHPmTFhXVQFvvIGs+/fR0NDAFi9e3MGVFqBgpKqqCt2eMK2BoyNlI5ycgHffRXV9PQQLC+Rt3AhLKysuNjZWvHHjBkRRxM2bN4Xq6mouPDwcALjc3FylDWO8bNEi5tCjB0Y7OLQj3wRBoHmgpUWEy/TpdL7TplGwvWcPrmtoCC4jR3KTJ0/u2sQ3NSXp7jPuE11dXcybN48rLi7G9u3beRc9PRh/9hk0fH3BFi8m9/olSyiA++YbmuM//NDS6sfHxwdhYWFgjOHs2bOiQqFonvyctra2oK2tzSQSCZs6dSq6d++O6upqyOVyCNOn421vbwae73iz9OtH8vWvv4bk4UMM+/RTxMbGoqGhodMSmxJDQzBnZ6ZUKnHx4kUxITaWzTh6VBRmzmTh5ubCuNxcrkOrrg0bKPi8caP1Z9OmUWZ3wwYqX2gDHR0dWFpa4rfffkPPnj1bn33N0tA7dyiTGxcHvPUW+v/wA7RlMpy/d48TBOHZRPrw4VQq89prRCLOnt1uDfHx8YF861aWOXky7PX1qXThlVcAMzM09OwJtYYGnD17FsOHD4eGqSmRBh9/TMZZKSlUd+7o2C5jr1FbC8eSEkFj40YOJSW0nufn09r66adEbv7yC2Xwms716tWrwtixY9sRB6Io4vr160j9+mtMOH0aF957T9DW02N1dXWoqqpiC/btQ769vRg3YQL09fWF5cuXtw7EqlX0NTwcfa9cQd3gwbTWTJhA2eWzZ2nNCQnB9VGj8KigAMvamuZduQK5oyPk3btj/vz52L9/P9RPnIBJRARmnTvHAUDFzp2oMDSE186dyL54Ubh6/jwbc/o0u1peLg4LCWG7Fi6EZdsSKUGA9q+/omrlSl4ikSA1NRWXf/gBmrW1ODdmDHieR79+/VR2773HIyICCA2FEByMuwsW4L6FBQwaGjinTz7BDFdXMqm0tSXSZ/Nm8AcPojcAeHkxXLvGJ6qpCYbHj3M4fpxa2335JRkIZme3KgTi4wGex/SHD7n09HSUlZWhqKhIVM/IEOqKi7nLu3axwMBAcg8fMwaorITIGPKtrbHHxUWlWVfHxsTEcLZXr7KTDx/CadQoNGpoQCQAAExMTFiTsz+Ra0OH0nO2jQHrvXv3cKpJKeU9apQErq4tCgANDQ30798f9fX1Ynx8vNCvX79nZ41sbVsMB7uMujqIe/diT2amWFJSwjQ0NERHR0c2a9YsdOvWjQHkJ1BdXc2Hh4ejnaJk925Ig4Iwse29/gTGjx+PgQMHIioqSggNDeUAIHPECHaloQFj0tPRUpNua0u9x69eBcLDIZFIwPM8UtPS0CMigsro2qBZYRF95Ihqek4Oj5kzWzsHtIEgCDhy5IjAOTqKg/38eGzYQGtRE+l7+/ZtMSUlJV+hUKz+YwP3fx8vgu0X6IBNmzapSaXS79TU1BYMGTJEzcfHh/8r67L/GUilUigUCnz44YeYN28ebGxsnm3q9QJdgrGxMRYsWAALCwsWHBysCg4O5tetWweppydl/f6iMU5OTsaZM2dUjysreYfGRhENDSRxdXcnA6V/JwwNKbBSKkn6+cMPxOT/E6itrcUXX3wBdXV1ccaMGczV1fVfPz53d9qgtmlj9CSqqqrw7bffQiKRiKIows7Ojnq5tkVzzeahQ/Twzs6mgGvRIqqBPHOGNmGLFpFRWicYP348++2331BTU9Oulk4URfz8889CXl4e57J2LTxnzmTPIwdgYAB8/fU/pSYwNjYWZHV13IkNG7Csqopcrb/+mjInzcqNPwI7u/YttIyMSAVw7hwF7WvW4GF5Ofbv3w81NTXR2NhYXLJkCSe9c4c2kfv3Y4C/PzIzM8Xz588LCxYsaDf2HMfBwsJCde3aNX7skyaECxbQ5xgYQNWnD4L27BFtBwzA6jVrOG7QINyxthZ/c3VlUjU1vPHGG1xwcDBKS0vFXr16sYEDB0owbx4F6y+/3OG0BEGASqVCobc3TE6dos1zs8PvsGGAhgZ0v/sOJgkJz5xf7fDjjxS4dQFGPA/v7GyVxpQp/Ek/P8h79BBGDxzIMQAqNTU0Ojvj9tixKpuyMt4sLY0IH3191NfXAwDmzZsHW1tbJggC7t69C1tbW+jr63dgUJqNALmkJMpuzZ/f+QHp61OG+dEjSIYOhV3fvkJWVhb3pI8IYwx9CgpwuLYWtz7+GFKJhAX4+iI/MpJdkEqhLC7mrl271rEv9rffdiR4eJ7GduPGVkKxDby9vXHs2DEUFha2ZMfa/a+lJb38/AAANh99hKkPH6LG3x96KSl0LTozeerbl6733LnkocDzNJeb2hvqVlbCqLxczBs0iNkDVKdrYABUVUE3PR1vf/YZPtiwAfJt20Sf/v0ZPvmEJOp791Kwevs2rdVRUfQ5pqbgjhyBN2NcopeXauRnn/Ht7sWqKlpX160jQ7EPPmiZc4aGhlAqlcjLy0NZWRmuXr0qFhUWMstBg6C7bRveNDZuN6i1M2ZArKpiAxobYWZl1XkQNmwYjr/xhujTvTvDl19S2dC0aXTMcjnw3nu4f/06+vbtK8rl8tbFSkenxc29vr4eEokE3UaNar2uoaGoDgrCo+HDRV5dnU2YMIGDry9QVYV11dXskZsb6jU1kZaWhvT0dGhra8PAxQWFBw+Cu3IFfby8BENDQ+amUrGsHj2Ae/fQr18/+Pn50Xm8/DJQUgLlwoVorK3FpEuXIMnJgdTbmwijzZvpud3QAGH0aCQUFQmPGUMPFxfOwNERafHxYlWvXjAfPJjmTUEBkaZ9+7Z2HGnKMNvb28O+VenEsHcvX1Zaiuva2tSmatAgurYcB7FJQfLGG2/QcW7YANTUYMSiRdBetQqRy5ejXl+fKZvI5Tt37qhOnz7Ne+noqHy3bOFz/vY32B89isfr16OyshIxMTGq1NRUbuzYsSwuIkJUGzWKoakevi3c3d1ZZGQkr1Aonl3iUlxM7eea6qM7QzMR0NLVaeJExD58KDYUFuLdDRsglUo7PLSsra3Rq1cvISIigtPQ0ICPjw/94u236Tl67Rpl7Z9SpimXyzFx4kTOz88PQT/9BIvwcEQMG4YrV66gnQFcYCCpQJRKaGpqwsjICGePHIFjUBD4J4JtGxsb/G3VKiRPmMDH9OuH6zduoDwsDLNnz27niXTlyhWhtLAQrxcU8PjoI7qWGzcCZmaoqKjAuXPn6hsbGycFBgb+NfLG/2C8iD5eoB02bdrESaXSI+bm5mNmzJihofn/ofb034EVK1bg0aNHiIuLEw8cONCy4I0ePbp1cXuBfwqampo4cOCAUFRUxEGphMTZmTYcc+f+Zcd0+ehRsRMyq6kAACAASURBVKahgQ9IT4fZrVu0kSsv/8uOBwBtYA4fJonVvn20semq4UoTSkpKAADr169nf5pCIyen1RTuCeTn5+PcuXNCYWEhs7S0FI2MjMT4+Hg+OTmZ3759u9CvXz+uQzu92bNpQ1dXRxt4pZKy++PHk2T/GdkyNzc3/Pbbb3jw4AFcXFygoaEBlUqFgwcPCiUlJeydd94hkmzLFpKvR0R0/ka7dlF93dPaGD0NggDEx2NwTAznnp6OGKVSxLp1DEOGdLmFS6fYuJGk3G0hlQKffoqw779XeXp68jFDhsBrxgyMGzeuVVZsbk4Zs6Y+xKNGjWLbt2/nCwsLO8hifX19+SNHjmDYsGHQaBsc8Txt3IyNkWtigtz6emb12muU5dy6FW5GRpxVUhJ0FiwA3n0X/uPHAxoarSe7bdtTT0tPTw/q6ups//79wt/8/DisWkV1t03BaaWrK1JNTLge8fGkDGiqH30qRJFIulGjKDB7GhQKICYG2L4dfnZ2vJCbiyElJdizZw8Xe+MGTExMBHV1dU7m7Q3e0JAPNTVFwM6dsL5xA/jtN9xKTQXHcbC0tATHceA4Dr179372sQHUvq3hOf4+EgkpWJYtw4ATJ7iEkydV3d96q/2kr6+HdVUVFq9bh+SHD9E7KAha+/fD6OJFmBQWYteuXbCxsen43oWFlEl+UjKur0/1919/TcROm17xDQ0NIgBWUVHRMdhui6ZAg4WE4JfNm7E0Lw96Bw9SRuv8earPbmq/1e5cHR2prOLjjylTXldH0tXgYOQMHCjoXr7Mo7iYSnba3EOsrg749FMYDxnCWsowliyhcwgMpDKNnj1J+u7rS4Zac+bg0t69Kmtra9aB9Dp0iBzJ8/Iow7l5MxqtrPD48WPuwIEDYkNDA1NXVxdkMpmgr6/PDb15k2nv2dNpr2AtV1fYr1oFe54nZcRTwPE8hJoaCvDV1CjYLymhspH338e47Gwc9fOD161b0B83joKmkpIWOW5KSgrs7e1V2v368XBzo0yxiws01q5F4bVrLPrYMWHQ9Okc4uNpPH7+GRYDBiBQKkVYWJhw9OhR1tDQwHiex9y9ezHd319wHjuWY2fPoqG6Gkfu3YOFhYVq+PDhPBNFkhHX1gKNjZC+/DKy3N2F9MhITvfSJYxpqr8VV67EzU8/FR7m5+N+UBAn09NjjDEWFxsr2tvbC+kqFW/Xv39reZS+Pl0zV1dAFJEaH4/GffugPWwYjI2Ncfr0aVRUVIgmJibMNyQEF42M2ipJiOx96SUITYqBqqqqVvWMtjZsjx0D0tIwNTOTSJ1XXqG9hZoa/+jRI8ScOMFdHDdOdaOigsfMmeC//BJSqVTQ19fHmjVrmLa2NvSrqlg5Y5AyhidDVn19fRgaGgqRkZHciGY1VicIvXJF5VFRwe9s01q0KxgVGsom29o+NZCXy+WYPHkyl5CQgAsXLrTfjzJG5PTCheQH8gxIpVLM8fBAw+bNiJFIoFI9YfitoUFqM3t74Px5jBgxAgfy8xF96BB8AVy/fl3MysoS6urqoFIqmdvp01y+oSFum5hA1bR3Mm32PACQFRcHk7VruZVubuDXrSNypEnuLwgCjh07VieK4ubAwMC7f2jA/kfwIth+gXZQU1P70tDQ0G/OnDmyZxnJ/KdDX18f+vr66NmzJ2tsbMT9+/fx6NEjMSIiAm5ubuxfluL+jyI+Ph5NTuWcj48Phvj6gtPTI3favwBCXR3CoqIw/5NP2NXp00WrAweenwH9d6K5dvzECapz++ijrkmRm2BgYACe5/HRRx/BwMBAtWrVqn/NMGHoUMpktOndCZCz9a5du4SGhgauV69eoru7O9enTx/G8zw8PDyQl5eHuro67sKFCzAyMmrf67mqirJT588Tk66nRwFAv360SRo7ljLFL7/cqfKhT58+YmhoKAsNDYWamhpEUQTP8+zVV19lLWoUf/9nm7mlppL5U1eRl0dS43feIYflzZuhvXgx7v/yC0u+fVs1zd6ef6ZZ2vMQHU1Ztrb1tgBS09IQXVrKq6ZPF8eamTGDtoGcIBBxsW1bi+Nut27dIIoi9u/fj5UrV6It+eno6AgrKyvV4cOH2cyZM7mW3zHWQnJY+/hg/oABOHLkCMzMzODWlIXWd3KizBxjtGluzlZu3UoqhL17Oz0tAwMDTJw4ke3fv5/dUCjg+dFHgEqF6upqREVFCYmJiZxN//6Cydq1HI4do8zs6tVPJy4Yo+vwLISFUeBmZkbBlYsLOJD78bvvvovi4mLcunWLu3HjBpTOzph565bo9u677OfQULg5OsLsp59UhSUlvLqJSdfM2trio48omOwKFi5EtEKhGvP++7xQVARu69bW3zU2Ajt3wtDMDIZqaiTD/ewz8Dzfskk+c+ZMxzpSqZQyiZ3Bzo4yq4GBwC+/QKGlhaioKERFRbHx48fDxcWlS4ddWFgIcBy0Ro+mGnxRJIPB8HAKsE6fJvKmOev+0UdkkvXuu61SVScnoKgIWhMmsNrNm8VahYJpLVyI0tJS1NbWwtraGvfT0qClVCJJXR3qSUmw3L6dFB9nz7Z6GYwbR983PZ+VSiVKSkr4CU8G/QDVxy5fTt937w588QXKvLzQ38tLlK9dy1xdXaGrq8uhqXa6wtgYZ+vrMbG6utOyDMyZQ/L6zlBUBOzbB8OaGrH7999Tne2pU0T+paaS4/vWrTBMSoJpTg57+MsvsCkuhkFNDUndMzOByZMx/uOPUV1byz8WBMh27CACieNgFBWFCadPw3bnTg7Tp1PAVVKCilOncPTYMVj6+YlV1dVoaGhgTk5OwvDhwzmZVAo9BwcOjAH79kEyfDhQWIjFixfzXFERjU3PnkT4hoSg3ssL1Tk5XGbPnnCprkZhYSGO/+MfmHTyJCKsrDCgtpbzzMiA+Z49rL6+HomJiSw/P59HaSlqz53D459+Qu2aNdB85RVobthA53TiBG4ePCgODwtjB159FVWCAH19fdHa2lrMy8sTk4qKuEwHB6ZQKPDtt9+KCoWC1dTU4CVDQzE3OVkEY9yXX34JU1NTUU9Pj2lra0NPTw+mpqZwGjmS1vyaGiIfx4yBxdatmJGczLBmDT8gPx/d5s+HmJsLiUTS7qFqW1+PbUuWCLKDB7lXX30VTyoz+/Xrx0VFRalGjBjBK5VKnDp1CoIgwNzcHDzPIyYmRlTW1HCDN2zA35vnGNr7g3RGfqtUKuwsLMTiJwPfNqiursaePXtEAKxXr15C8/xswd27RJgmJhIx8QxwAwdClpmJgeHhQnJysogn1Weammh84w1E/v47rlZXgzEGx9mz8euUKUg3NWUODg68RCKBXlAQ6mtrkeDjg0UBAcjKykJYWBhSU1PhWVcH5aZNuNK9OwaOGQPNTZs6GMCGhYUpSkpKEpRK5R9s6fK/gxd9tl+gBR988MFcTU3NwCVLlmj+Uz1n/0PB8zxMTU3h6OjIHjx4gEuXLrHBgwf/1Yf1X4mQkBCVgYEBV1VVBa9vvhEfHT2KK4MHq24nJooPHz4UKysrOVNT0///dfKCAJw7B1W/fvjVxgb2W7fCc8UK1tIS6D8NL79MLPOiRSTB66IKQCqVwsvLCy4uLoiKiuLKyspEFxeXf+4ERRG4ehWKqVMRc+sWLly4IHIcx8zMzBAeHg6lUimuXr2aubi4cObm5i3XUFdXFxYWFtDW1saNGzcwZMgQyqSKItV+37lDG4TmbEdzT9u1a0lifP06BfgLFtB56+kh6OZNVUZGBrp378569OjBMjIyYGdnJwwbNox5eHhg7NixTKutgVtzXfKhQx2IApw+TRm4JqnmU6FSkbz65EnKhPE8ZbneeAMwMwOnpYU+ffogOztbvHLlCnfv3j1BV1eXPdespzNYWlJmvykbXVpaiuPHj6uio6O5UaNGYWhAANO0s6PA5f59qofNzaXghTEKOppw8+ZN1NTUIDU1VfDy8mp37R0cHLhz586xmJgYcBwHKysrlJeXQ/boEbBjB5hSCbmfH/Lz81VpaWnM09OT/p+x1uApIIDqHvfsIYfo+noKcJOSqAxgzx4ar9xc4No1yGNiII+IAMvOhmmTRLbs4UOcVijYmDFjMGrUKAZ9fTKp+/lnykq7unZ+X/r4UOatM7Lu4UOUzJmDq7duCfEymRBqZCRGp6QgOjoaMTExYnR0tJidnS1YW1tz58+fh6ampqhUqdjwsDBm1b8/LEaNAnr0QM3Vq8znwAF219kZPm1by3UFSiXNvaVLn2soWFdXh9CwMO6lr7+GhrY2zTVLS5KDhoZSOYmGBrn2njjRku3U09NDTEwMxowZ07FNpaZmu3Z7ubm5UKlUUCgUePz4MR48foxSQUDNF1/gp+xslJaXqyZOnMh5NCkjugKFQoHr16/DyMiIMuGMkUeBnx8Rg3FxVPM9axbVSw8aRGPxwQeU2Xr0iIzCzp6FWU4OS16xQjxRXY3U1FQWHxSE8t9+Q+LFi2L3f/yDvRQZibs6OijPyQHn5YVu331HhoM9e9L64O1NAUZ1NTB4MG7cuIHCwkJx5MiRHSfPpUvt2gUmZWQgpLISo4yMWA8jI6g3m8MBwI8/QoMxJNjaqkJDQzlHR8eOAbe1NZ3v6dNkticIZGx4+DAReSEhSDEwECtXrOBs//EPIkIMDIgY09Sk4CggAC4+PjjFGIq6dxdc//Y3hsJCIrIGDQIfEIBjurqqLB0d0eW99zikpBCZs2IF9jAmFs2ezbS0tCD/8EPg4EEkv/oqPD79FLIrV9hNS0vWzdhYHD16NGdubg4NZ2dae83NAQcHCH5+iIqOxqC4OPB6ejTv3nwTkXv2CHlFRSj+/ntmEREBcfJkpKSkoCQoCEaVlbi5YIGw+s03OauKCsgzMiDx94eGhgZsLC1h+/AhDHftAlMqcdrfXxnX2IgrERGsuKZGTHN1FZJLS3G3oYHze+01DBw9GkMmTMCAAQOYi4sL62dnxywfPMBL27bB2dkZ9fX1YmZmJhsxYgSs/P2ZSUUF84yPR8OgQbCysmI8z6uqq6uFvLw8MSYmhvP29obEyIjW0EmTSKn2xhtEBL35JrSsrcFVVIB7sowmPh6YORNO27ezyxERcHV1hdYT965cLsfvv//OXblyBdeuXUNjY6NYV1eHlJQUVlJSorKzs2OL/P2ZdNMmcAEBLWoYxljL60k0NDTg1KlTyKyrQz8zM2g0NBAh9gQqKysRHR3N3nrrLXh4eHR8I44jgq1XLyKenrXuODoCLi6Q9ezJrl69ynx8fDoo4L6MjhYsb97E5OpqNurzz4HiYjR6emL2qlVwd3eHzrVrUNy/Lw7avZt5+vnB0NAQ1paWGJqeDvOQEAi2toh69EgoHzBAHP7OO+zJMq2EhATxypUrxQqFYsgL+fjT8SKz/QLYtGkTx3HcqxKJ5PM5c+b8Vxmh/REwxtCvXz928uRJPLde5wU6hY2NDR8XFwdtbW3BZcMG7l5xMfT09CQSiQTV1dWIiYkRbt++jeXLl3fubPtnYPBg6pW6cyeCAwPh2bOnyqF37/98i3yApJdpadSaKCamS0G3TCaDhYUFLC0txbKyMhw7dkx0cnJieXl5SEpKEgYOHMg91TSsDYTLl3FixAjc2bkT+vr6op2dHTt79ixiY2NV5eXl/PDhw7nODJIyMzMRFRWlys/P521sbAQ9PT0OSUmUxU5IoDYjT6tpVVMD/P0Rb22NrJAQDDUwQLfKSmjt28f3un+fAmdNTZiamuL69eucurq6csyYMZ0/lzIyqNZ87drWnykUFAg1t7vqDOnpVE++ahVtot9+m77vpERGJpNh7ty5fFVVFWJjY3H8+HEwxqChoSGIosjU1NTEsWPHcvbPyrIDFMhHRFBme+hQBAUFCQ0NDfyyZctgZGREf2NqSlmvu3dpHixbRhn3J4jOxsZGEQArLi7m6urq2mW3tbW1sWDBAvzyyy+4efMmYmNjhfr6eq5vaqow9u5dju/VCwBgbm7OZ2RkCGiWq7eFri4dp5sbZRRffZVMjDiOAq+qKsou6egAjY14mJiIFCMjOBob088EASa3b0Pq5gbLPXvI4MrFhTbJP/xARlZpaVSP+OSau3Fja9/cZlRWkmz60CEkeXujoHt3+Pj68v2bNrk8z0MURQYAwcHB4oEDB+Du7i5MmDCBdplvvw1UV8OpWzc4OTkBL73E0ufNg9NHH+Hu3LlCrwMHuC4TchIJBXRdIJ+vXr0KY2Njla6dHQ8bG1JNzJxJ5pENDTQm6enU+uiJDatSqYRb2+CwLaysUPPhhzippqZKS0vjGWNQU1MDY0xUKBRMR0tLHKihgQVZWcxs164/vA6amJhAR0cHV69eFfv27dt+YOztiUQTRbpnqquJLDxyhK7t779TAH7+PLBuHVhGBkbq6XFO8fGCZmIi05o0CRo9eiDX0ZEVeHuLJnPmsHEKBQ4ePIjraWmYl5MDOzu7VnKWMSLwHj8GYmMRd/Wq4EJzuOMFq6lpcf3Pz89HUFAQZBYW4hmFAgF79jBkZ7dKxi9dAgYPxrxVq/idO3cKSUlJzNzcvPU9a2sp6P31VzJy/PhjIplsbEgN5OsL+Pqicu9eNPszt5ivMkZk1caNZGbn7d0sixbBGN1Lly7R/a2piclLl/JfffUVho0ZA3lZGXDjBgq+/ho9b95ktxQKpKamws/PD/23b4eHry9UGRkIf/99jDlzRnS1s2MtPadFkVouFRQAOTmQODigT26uWHnvHjOcMQNYvhzV1dXIzc7mHPLzUT11qjisWzfWe/ZsFBYUQGfwYKROnozEsjIafH//Vpf469eBb79Fdb9+uDVqlGrB55/z/ZrihfrPP0epILC7ffrw8fHxMDIyAt/0TGa7dxNxCFC5Es8DjMHU1BTjx4/nUlNTRblczhwcHGhNePwY9q3eEDxA2eGPPvwQRb/+Cmt/f1oLNm+mv9+zh8ZbV5eC0Ca/gHbw9ATi42FoZgYtLS2hrKyMMzY2bvcnTes8lEolDA0NIZfL2aVLl4SkpCRh9erVdA81NHSpfSQAJCcni8eOHWNqamrC8OHDOf3792nd6KSlnrGxMTQ0NFBUVATbp3W1MDUl80WJhJ5dT1NZvf460L8/TPX0oK+vL165coW1lcZXVlaivr6e812+HKypPEL373+HjyDQ+p6SAusHDxBlZQUzhQKOHEcqjZ49aX8yZgwitbSEOFdXvL5oUYcMSlFREc6cOfO4qZ928ZO/f4FWvAi2/8exadMmY3V19d/09PR6+/v7y55clP6voWfPnoiMjBS3bNnCfH194evr+1cf0n8Vxo4diz6lpTD+6iuOi4+HG2Nou0UUBIHbvHmzmJGRARsbmz+vTVxREW1WMzJo8+foCIVSiQf19Vjk5vbfEWgDreZER49SVrPZ0bcLm/9Jkyax3bt349GjR7h3717zj7mkpCTR29v72W8gimgcNw6Ny5aJ89auZfb29owxBh8fHyQkJLCkpCSxe/fuHd5DEAQEBQXBxsaGHzx4MPp7eXEIDKRs14cf0gb8Ode4pqYG586dg1wux/dmZughCMh0c8P/Y++7w6q6tu3H2vtw6F1AEBDpWEBERBQUReyxYNdEjUZNYu8mN9GQoolXE40lJlGxi713EUERFRRFwQJIV0GalMOBc87evz8mh46a++77vfteHN/HRyKwz9prrb32HHOOOafIGA79+afw+cqVnJ2fH5LatcPzCxck6N+/6QsNGkRfxcWUNwhQBd3ExNrItxoKBRGCvDyK/nTpQs6BpnrDNwEDAwP07duX69mzJ9avXw9zc3POw8MD9+7dE8PCwqCnpyfOmDGDvVEBdOMGRdMDAlBSUsLJ5XIYNmylYmBADoeICIrMBwVRZK3erSiYj4+PmJubK27evBlubm7cgAEDagiKra0tOnbsqHr58iXXt29fztnZGRvXr2fbDQ1hyPOqvI0buYKCAqalpcWadDLOmgVERtI85eRQ9PUNjsizsbGwk0rRceNGcg7s2AFu4UK0lctV8k2b+D0Khejq4cE6FxZSXt9XX5GD5OhR4IMPaiM1MTEkI1YX4FEoqOr2l19ShPPiReQePw49DQ2xOefGnDlz2NatW0kKrYa6an5EBEWHANj7+OCUoyPcjx3jkJZGxuu7FnN0d6exNrMvo6OjkZ6ejpSUFADgc3JyKEK9ejXt1aFDaZ1jY0l67Opa7+9VKhVEUURsbCx0dXWhq6sLU1PTmiJfD+fPFy4nJ3Nmzs5s8eLFdZ0trOb7J59QO699+0gO/RfRtWtXJCQkiGiK1AI0p+oij5WV5KiysaEzrLSU5nLVKqBjR7BOnWA3YQKHX36pIQmt6YsBgIaWFj799FNs375d3LNnD9PS0sLEiRNr88urc4ELnZ3RvWVLzu3zzxsNp7S0FAo/P1yWyyHftUuVnZ3Nu7m5Cfn5+Szz1SuGn3+mQlNbt9LztX07jVmphF55OeMfPhQRGcnQty9FnePjKfXj7l1SM7RpQ1Lxrl3JoVQNnuehVCqxZs0aoaKighsxYgTatm1L5OjDD4E7d6B0c0NGRoY4dOjQ2oMxNBSYPh2CIODQoUNKURQlLDeXrm1ighRTU3SLi0P/0FDsP3NGvHDhAmv3z39i87x50DAxUYnm5tyxvn2Zi6Ul+KdPqf3a0qWUX/78OTkd+/SB/qJF4oGOHdlwbW1oFxVBpVLB2MVFVGRmMrmbG8tp1w42np6w8PICjhxBVVER3I8cUSEnh0dJCUWQlUpyUkyejFQ9PcgfPaq3J7QePkSrbt3Qql8/pKWlqTp27MhDKqX0F6m0ts/00aONUn/Ky8tZTR5wv370deoUPVsSCfDbb+CSk6FpaoqW8+bROgwcSGkKBQW01yZPpjNy6FBg7lwIw4dDJpNBKpVCmpFBZ2hKCuRyOcrLyzmbZtKLHOs4+RISEsTY2Fju4zoqEkgktIfegvj4ePHkyZPMxcUFY8eOpUO5Y0ci/SUlTRY6s7W1FS5dusSmTZvW/HtbU5POzoMHqVp/4w+mugaGhkhMTERDp4JMJsPevXsFKysrMD8/Dl5eVP/h/n1SZOzYAZw4Ac7LC3ZaWix90SLRZsoUphkVRYq07duRkZGB6L17uUmTJjUqMKxSqXDw4MFylUo1932e9tvxnmz/jRESEqInlUqjPD09HYKCgiR/hxZZGhoa+OSTT9jZs2fFiIgIdufOHXHatGnvc7j/Alr6+ZGktAmCyHEc3N3dxQMHDjBBEGBnZ6fq2bMn36jK7rvi66/Jo71/P7Uc0dOrKQbEVberaO5l+h+NUaOoeNTdu2Q0PHhQU2SqOZiZmeGLL74AQNJPQRAQGhoqWFlZ1XtwZTIZ4uPjoaOjAw8PD9y5cwf37t0TXoeEcAsWLaonMzMzM0OfPn24Pn36NPmZSqUSFRUV0JRKha6FhRz8/GhNZs0iovQOUCgU4DgOM2bMwL1793Du3DkEDRkiuC1dyt359Vdu3ezZ8GzTRuXz5AnrGhZGRbfOn6d1rtPWBQAZWVOmUOGo+HjKB1f3QhVFkmSnpJDcMDiYfnf27H+537mmpiasra2F1NRUbty4cWjbti2nVCrx888/4+7du6Kvr2/zxtK+fSQtPHRIVVlZyXfp0qVpNQ3PUzT52DGS79aButXWrVu32LJly9iTJ09w/fp1cf369cLUqVN5AwMD8DwPtWGfn5+P33//XVWpVPIzjh6F0sSEj16zRvzoo49w4sQJcdeuXcInn3xCJOC338gQXL4c0NDAixcvAF9f8dbKlWzgyJFNjzUsDF0OHxYlISGM/fADGYSffw44O2OwrS0v79MHTgkJ7MX69QKqqmojzUuXEuFJSCBprrExGXuFheR4unaNiCjHUbG76qq6NVV+mwHP87C3txeriS5BIqFc8TqODcYYAqdORaiRET7buBHmGRn0+U3l7jbEhQu0Ns2TbaFVq1YsMDCQVVVV1W/FZmREz8qQIUTIGhBtACguLgYAPH78WFVVVcUqKytZaWkp09LSEquqqphVfj6b0KcPLD/4oPkXtKEhpals3kxz1zDV4i2wtLREdHT0uxkAmpqkyDA0JIfWwIH07EmlFM1cu5aiY9VVp9HE2c8Yw9SpU1lqairCwsLwxx9/YObMmVCnbAiiiN/Gj8cnY8ZAc/VqIvrVjpPc3Fxs3boVvuHh6JqcjLj16/l58+ZBR0eH+/7779G9e3cRrVszcBzttTlzKAK6eTPg4wM/c3MolyzhUFBA97BnD5EPnqc6BleuEAkcM4bu59atmncdz/NISkpCeXk5N2jQIPHo0aPM0dGRZMb+/uDOn8ezZcsgdXKqrQwdFATY2+NFcjL2nTypKisrkwBAXlISjKq7S4QXFUF69Ci6fPUVJnXqxOIGDULZli2obsfG8zwvlJWVsWg3N/To2pUUEvfv01lcWUmdH8aOhYlczvKPHcOff/5ZM9cWL18yN4kEd+/eRWJiorCkRQsOoaHAo0eI9fLCsMOHeXTuTM6uoiJyEGVnAwC4nBzBrl07roZAP3pEDpbqNZXJZDVrhmHDKAJ9/Dj1ZJfLazsVgN4DKpWqptI/qqros4YNo/9PTQWMjMCsrKCQy7EpJEQY37YtZ2FhQU7SIUNIFaKvTxXr9fSA0FDs2rVLzMjIYDzPw6aiQunp5cW/CA+vIfVFRUWNZOR1IYoiwsPD0aNHj/oFBTmOitsplc065qKiohAREcF8fX3Rt24ak74+PQPu7vQuagAvLy9u3759CAkJgaWlpTh9+vSm3yPffkt7uKiI9mpdG331akAQULV7N44dO4YPPvigpv6DTCbDpk2bhBYtWtQ6ALS0yJk5bx7N5S+/0P316gW/lSuRnJuLnU+fih/u2MF0dHQgk8lw8OBB+Pr6Nk5vAXD27Fl5WVnZDUEQtjc7ue9Rg/c5239ThISEMKlUutfZ2bnL4MGD4egSiwAAIABJREFUpX8Hoq2GhoYG3NzcWHFxMTIzM1lMTAz1ZX6PN6Oykoy44OA3tvVxdnZm/v7+cHV1xfPnz7krV64gJydH9eLFC6ZUKpmpqWmTOU81EEWKRPbpQ0aQkxMZqR4e9Qh+eno6kpOT4Vfnhf6/CoyRAW5qSvP6++/kEX+HZ5HneUgkEpSVlbHo6GjY2trWGDF79+4V4+PjWU5OjhgZGclysrLEj3/4geuyaBGkzUmt3/A5Ji9fovDQIeYSEwO2fn1tzuY7QkNDAzdv3hQtLS2Zu7s7/Pz80Lp1a6atrY327dujc/fucPf352z79WPc/PkUpd6wgQw+HR0yKLt0IWLo6EjefGtrItC+vmSI7dhBhO3IESJymzZRHreZ2Vsj72+Dm5sbu379OoqLi+Hi4gKO41BYWMiSkpLQuXNndu/ePWhoaEAqldavVXDvHlQdOuCkszPHGIMgCEJNznRDREXRHpgypd4/nz9/HllZWQgICBAdHByYhYUFOnXqxPLz83HmzBn2+PFjobKykllYWODChQvimTNnmKurqzh+/HhOizFo6ujAccECpqWlBScnJ3b9+nWW/PChqqO7O4ft28lg7d0b0NZG2O7dKrcbN7jLjo6IunYNSUlJwtOnT8FxHCt/8QLGHAfExKDw1Ssxydpa7ODvT/fy22+AuTmYvT00NDRw7do1VVmbNlzHlSsZRJEUEKNG0XodO0akzMKCIrDu7tSjVRTp/qdPr6dSSEpKgkQiEV1cXJp9KM6dOyd26dKFq2cQtmlDhcMGDKg5MywsLJCRkSHk2tgwN46jfaNUNttipwY+PlQRuZkzKz09Hbq6ukLfvn25Nm3aoF5h0ZQUqmHQpg2dmS4uJH+uUz0+JycHaWlp4qxZs7guXbowX19f1rZtW3Ts2JElJSWJ/S5eZFp37+KegwPKyspq0xAaokULmtvr1+nM/AsOZF1dXVy9ehX+/v6Nz+ayMrr3PXtIajx3LhW18/Kis0oup2etXz9yHmZmkvR661ZSTLx8SXvExoacZDo6NfdvYmKCHj16ICMjQ7x06RLT19eHlZUV9YC/f18Vc+8eZxcRIRq8esVY374QBAH79u0TbG1tMWDaNGYUFAS3AQOgUe0siouLQ0BAADPS1wfLzCQ1wcOH5HDz9gYWLcJ2xkTe3l50nDaNwcKC5onnKZXj7l0iMenpEOPikP7HHzA4cADcd98BQ4ciKSWF5eTkMGdnZ6Ffv37cjRs3EBUVhaioKMTFxQn2o0ax/D17RJP27eGodsTxPPKDg3H32jURnTuzKVOmMMaYkHztmtC+fXuOkWJG1cbBgbN0dQVCQ2ExcybySktRYmcnuLm7q0aNGsXfj48XLaqqmN2RI+R42LuXVD2iSBFuMzNYWFiwVq1a4fHjx9DX1xclEokoyGTMpLQUvvPnIykpifnPmEF7cu1aZHEcrrm5id0++4zB3p7OHx8fmrMPPsDD6Gix58GDTEOt0pk2jeT2vXsDjOHq1atcjx49UJN6aGBAkdjRo2kfUqcDpKenIyI8XGUcHc0Vt2gBg0mTIGzahBJ3d+gcOEBn9vffA+7uKOnQATExMejQoYNw9uxZLi0tTTA7dYoptbSgPW0afc6BA3TtBQtwSUcHoydMYL26dkWrmze5pIEDhaLiYvHBgwdMEATWq1evZlMGy8vLsX37dkEmk7Hg4GBWL3rLGPWrdnRs8p2clJSEM2fOwMnJSRg2bFjjw8HcnIrINSF1f/z4sfjs2TNG24NvXpnGGD0r7dpRVL9nz9qfjRxJthjH4fr163j+/Llw//599uTJE/Hq1avM0dFRGDduHF9zHqkrnSclkXNXKiXntakpsG4djKdOZQ+ePhUiIyM5GxsbnDlzRpBKpcKIESMa3fyzZ89w5cqV11VVVd1XrFjxlnYN7wG8j2z/nTFIW1t7wAcffKD1v62H9r8DjDH069cP9+/fh6mpafPyufeoDx+f5nNjG8Dc3BwjRoxAVlYW4uPj+WpjSPT19RUDAgIav70uXyYZ5Pbt9FLhuNpq3k0gNTUV5ubmKjSswPm/CRxHL8DXryn/zsuL8sTe8Zn09/dHTEwMIiIiYG9vD7lcjhcvXsDMzEz89NNP2YsXL2DeogXTUKn+crQLr18DN2+iQ2goSqytxZXu7kz7wgVhsIYG5+Li8s6XkUgk0NbWxpMnT1TOzs58XYOmUfExNTHes4e+p6eTAcdxFOX29CTpeocOJFEdMYII94QJZHzMnfuXqr2/6/gDAgIQHh6OIUOG4P79+3jw4IGoUCjY999/X+93HR0dVS1btuTMzMyYqYEBUgIDRUcHB+bRsSMOHjzIRUVFNZ26MnMmkZoGPZOzsrJU+vr6vK2tbc2G4HkeQ4YM4by8vPD06VMWGRmJq1evQiqV4uOPP4alpSVN4qBBFHVWqQCeh46ODiaMG8e02rWT5GVkwPz332s+R6lUoiA/n+cvX8bH+vo4dOiQaGZmhsTERJaSkoJZv/6KjN69UfzVV7hjYICX6em1k2xhUS+K7OjoyC5dusRCQ0OF4OBgzjAmhn5w6RKRzeJicioplZQLO3EijbWBJL+srAz5+fmNe0/XgUqlQmFhYeP9qKND6ojERNor1cjOzuZGjBhBRH/rVsqrPHHizekFEgk5+rZsob3WAP7+/mzPnj28t7d3/QhQaSlFNb/5htYBoCjXxYtEZqrx+vVraGlp1XsHqeWg3t7ewlVDQ3AcB2ViIsvPz+faVkdDm0RgIHU9WLMGWLnyjekAdSGVSqGuu2FoaEiS3Xv36Ho2NpS6M2BAbcX/f/yDvu/fT1Hn+fOpXZGtLeU737tHZ1hwMK25oSFF+SdNIqIeFkakbORIwM0N48eOZZu3bMGdO3fg5eUFjuMwf/58vqSkBKGGhoKmhgYb7+XFPQsKQrGxMZs0aRLjXr6spwaqrKyElpaWuHvHDrbs4kVoGhgQKWvZksh2NSwsLDiZTNa4XHRgIKlpGAOWLMFmQ0Mh/+xZTq+qSpzWrh0zqKzEqOfP2WZjY1GdDjJ79mykpaXBwcEBFy5cYLtPnRJ7DhjALLZupRShasfRIx8fVKSmshEjRkBXVxfdu3fnzv/2G249eCDa9O7NXFxc+Hv37qk6TZnCw88PvJ8fHPPy4PjddxwcHTkMHoxPbt9m52bOFFBRwcHKihxXR46QE2vCBDozJRI4OTlhxIgROH36tLBo0SIeKSnA1KkQXV0hCAIUixZBMnIkVLNmoedvvyEpKYnSS5Yvp1z5X38FYmOhyMjAbUdHrufvv9OapaXReXz/PtC7N1SVlTD29IThunUkt+/alZw827YRaRfFmjZh+RkZQrmWFj/q1Cmc8PAQn/XtK8iKi5nswgVuYV4enVGvXwNGRnjy5AlatGghDBo0iO/WrRuiDh4U844cwfXAQEyrqoKWpSUEPT08DA+HY1QURFdXJpPJYBgfD8OTJ2G9atVb7YHi4mLcvn1bSExMZDo6Oli4cCFrKJOuXmBywKjTluqgsLrTRHJyMpeVldVYYdetG515sbHk6KkDd3d3FhMTg/Lycmhra7/9hRUVRWdURQXVxHj4kM7Nu3fBA7Czs1OlpqbyPM/D0tJSHDJkCKt5DwAUwT5wgOrdfPMNKRTmzKHuE9V7mQPw8ccf85cvX0ZoaCgAcDo6OsL69euVEokEGhoaTCqV8lKpFBkZGVVKpfLDFStWlLx17O8B4D3Z/ttCS0vrsx49euj+nYuEpaWlgeM4fPTRR++J9tswbRpFFzdv/st/amNjU/Mi+u2330SVSlV/vr/4gmRNhoa1JHPNmiavVVxcjMePH0NXVxdPnjxBQUEBf+zYMVWfPn34Jtu5VKO0tBRFRUUwMjJCcXExjI2Nm27/8j8FQ0MyZgAyTleseKfiaS9fvoRKpUJJSYkQEhLC8TwPbW1tNmPGDHAcR8b/778TmXvXHFWApIB79wIjRoDt3YvupqasXXExzp07xw4fPgwDAwPV4MGD+TZNVFsNCwsTkpOTOQMDA5WZmRn/4sULQRAEztXV9a87RezsyPhTqSh6lpVFUeuHDylK5uNDxt9fubd/AT4+PggPD4cgCCguLoZCoWAA9QkfPHgwlEolUlNTkZWVxWdlZSExMVEpl8s5QxMTLsDQEC5ubvD29hZTUlJYk2R7+3YyVBugU6dO/JkzZ5CQkCC0adOmnlFmZmaGY8eOCYIg8N26dRN9fHxY3eJpeP2acuuzsshBtmQJtD/9FGGjR+OlRIJeUVHQ1dWFVCrF2bNnRZeUFJj27cuQmoqZM2cyVFSw4X/+Cfnixcjr3x97L12C7pUrqtatW/MD6lYALi2t1x6rbdu2XFVVFdLS0vDnn38KixYtonGr2ztVVlIuokxG45s2jQxTb28i7s+eAbNn4+HcuXDU04P1ggUcTpygmg2GhkQujI0BxsBxHKysrIQDBw6I06ZNq91fjFFLpga9zi0sLFQ5OTm8q6srRavbtqW9FBf3RrUOhg5tVnJua2sLT09PcefOnUwikaCyshKzPTxgZGRExnbdAnBr1lBBscxMSh0ZNAja2tqo14e4Dnr27Mn31NQEvv8epfv3Y8OGDc2PUY1PPyUp965ddI/vCA0NDYEtXMjhhx9IJr5rF8n+09JqyYa6+JUaqakkI1+7lhwnp08TMRs7liLdRUVEqPv2rY12qlRUG6BNGyIP06ZB4/592H7yiWh65Ai7nJ2t6rNiBR8RFYX09HTMnDmTP3PmDG67uqpkaWk8xxi7efMmAo4dIyJ07RoAwE5XF0sTE1lMdraY/8MPrJV6rA2qVWdnZ4uCIPCXL19G7969SY0ybRopaKytgcOHkSWTQSgv5+aEheHsypXChufP+d7nz4u+u3ez4CVL2K5r15i/vz/09fXRvlrePmTIELZv3z7V5YwMPsDYGEfmzkWGp6cgCIKoMDLihpaWQlcqZQCgo6ODQZaWSFQosG3bNtja2iI/P5/2L2M0fwsXUpTdxgYICcG9zEyxKD+f3g1qHD9O5MnSkhwiCxcCALS0tFBWVsYLggDOwACQycAYgzXPC8rERO7k1KmCe3w8lxIeDsYYFAoFpB06kMNBWxuYNg35K1bAxMqKagS4udHXkiVU/XzKFCQfPQrlw4coLCyEVnQ0dOPiwE6fJofSoUOkeJg8GUhOhoEois/NzMTXT56wcZaWDABf5e6Ou0ZG5Ex9/Zr2Q2wsYmJiVOqOG8bGxhian8+rFi/GyZQU/PnnnxAEQeV57x6P1FQxavt2Mbh9e87ByYnOz6ZaxDWB/fv3C4IgcD4+PujatWujCt41MDUlp0ET8PPzQ4cOHbBu3TokJibWku3iYnpmPD1pf54/T06RV6/oetbW0NXVRXl5OQA0ruPRFKyt6dywt6ezQyqt131j/Pjx/Nq1awUfHx/Wo3NnDpGR5HCcNInGs3YtBTM8POhM2rKF5PtNFEPu3LkzoqOjAQAymYwTBIGzt7eHpaUlFAoFoqKiIJFIHi1fvvz82wf+Hmq8J9t/X8grKysb9/j7G8HKygqCIODhw4fo3lRVy/eoRXV7kf8qFAqFeO/ePc7H3h56O3ZQ39ysLDK+Ro5s5AGui8LCQmzYsAEmJiaCKIqCUqlknTp14l+9esU2bdqESZMm1c+5qsazZ88QFhYGiUQiVFVVcZqamkJlZSUXEBCg8vPz+8+JiqsdDatX04v60iWa82aKQyUkJOD48ePQ1dUVZDIZ98EHH0BfXx8mJia1hemUSjLO+vZ9t/zUR4+oQNX48ZRnW12NlYEMn3HjxrHc3Fw8evSI27NnD4KCgtClS5ca+XROTg6ePHnCeXl5iWZmZnxWVpaqR48eXKdOnd6tWJ5SSQa4OmJTWEgRm6VLSZL67BkZxQUFRMSlUiIUo0dTFPFfzM1+E9R9rgGqSdCzZ0/4+/tDEISaojFSqRQdOnSoW1GafhAQQOs4cCBcXFxYfHw8tmzZopw+fXptjYzvviMHgtrZUgcRERGCh4cHN3DgwEbn9Pnz51FQUMAvWbIE2trajcmajw8RJn19IsSXL0N/yhR0+uQTlJeXIyIiAhoaGlAoFADAUi0sUPXrr5ACRGC6dgVvawvddu1gY2YGFbXX4vX19WueM1EUUfziBSQvX0IfVJ02NDQUKpUKCoWCa9mypRIN3zE5ORTtefaM5sbKij6vqooM0tRUyFu0QKmeHvy7doWWri7DkSNE4uLiiACuXg3MnAnm4oIRY8ZwKZs2oVhLC0aiSGT+gw8o13bSJIrGVZNFHx8f7sSJE/D29qaK0d26EQGcM4eeueaq/s6bR9dpBgMGDGBBQUE4ffo0Hty5A4O5c2ldGzpW1PL11aspMjloEBxIHs5UKlXTz4ixMWBtDcYYlEolVq9eLXAcJ44ePbrpXvAcRz2WFy8m58SoUc2OGwA9X1evQtPdXeDu3uWQmkoFuBYtop83EdUDQPMcF0cEzMSE8ks3b6Yz/fhxciA5OlLu9rVrtBaWluQMcHKiOQXobHr5EsMZY4U5Obhz8yZ/s3t32OXmIjUwEA/v3EHvoUMh3b6dT0pMRI9Bg/Dk7l0BFy7QvpLJKIo/diyUrVsjwtqajbK1pfNUFGkv5OUB2tooKCiAXC5nPj4+ePLkiXD//n1x4ZQpvHjzJq7ExeH+zp3CJ5s3c7t0dGDVvr3IDx7MJowbx8c/eoSTJ08yn9u3YaVQYOb06XhRUQH9devqTDtX08ngxYgRaDd+PJ55eXEGQ4ZAEAQ4XrlSWwgRgGbHjvD08WGR4eHIyclBu3btUFBQABMTE7Dhw6myuZER7UsdHciLi1lh3UJZSiVFLO3tiXDv2wfs24fC/v2xY8cOeHl5CRzHcTAwIMcHAGtTU2yZPBklz55xRYMGodP69VD27YuY4cNRZmKCCj09uBQXw8zMDHnW1vCOjKxRxgCgyOgffwCCgAxnZ7zW08Nuc3NVSUkJP+vzz2G6dCm1TFMoSKkyZw4gCHC2tOR9S0txackSTPzjD6C4GM9++gm3Hj8WugIcDA2B3btxOSEBKpWKCwgIoPPs+nWgogL88OHg1q5FRUUF+vXrxzt6eUF37VqGOXMYTp4kdcpbnlE17ty5IxYWFnLz58+v19mhSUyZQvcDkBKjupc51q9H5YYNyB02DIEKBdrPmUNy75gY2u///CedVwkJZN9kZ5NDR6EAQkJQ9sMP8DcxgbeXF/SvXqU1PnaMikV260apF/b2dHar7QJLSzo3zcxoDCEhNLaMDHAWFui/fz/XuriYnIf79hGhnj2biLqLC11fje++ozz/kJB6NQnKysrw+++/g+M4fP3110hPT8eNGzfE9PR0MTk5mbOyshIkEkmZUqkMxHv8JbC3FSB5j/+bCAkJGdiqVav9n3zyyVsS1v7voqSkBL/88guMjIxUn332Gf93jvI3i8uXqZLq3r3/lssJN27g8L59QraGBrfg7FnKH3rHnNrnz5/jzz//xNdff92oj/elS5cQFxeHiRMnolWrVigsLMSFCxdUVVVVyMnJ4QMDA+FTR0atJuBdunQRS0tLBT8/P77ZXMj/KQQH08t2x456svLc3Fzk5eXh1KlTUCgUMDIyEgMDA1m7du0a51uqC9u8Da9f01pv304GxrBhb12XR48e4eDBg9DQ0ICzszOCg4Oxd+9esaKiAs0WfKkLhYKMhtOnyfgOCyOJ7fHjVNm4Xz8qSpWSQpVt3d2JPAQH10quT5+myMHWrUQqiovJaWNl9fZ7bgBRFKFSqfD48WO8evUKUqkUDg4OCA0NRVVVFdzd3TFcXZH5XaFQ1HMAvH79Grt37xZbtGgh1hSumTePKpffvt3oz3ft2gUNDQ3VuHHjGi1GTk4Odu/eLfr6+oo9e/Zs7DQVBIoayWRENm7coMiGtTWqqqqQ+Pgx2rVrh6dPn+LOnTui0dOnooWeHte1d2+KED14QBJcAJGRkeLVq1dr1tTCwkIwMTHhXr16JZjeucMKjYyYe3AwYmNjRWtra/Tq1YslJCSgd8NIqCjStYcMIUJYVgYMGAAhIABbbWxUCoVCZIyhqKhIolQqsXz58qbrOwgCGbFyOcDzuPnrr8JLQ0MMa9GCw+PHVBn6iy+I5Dk4UJT7xQvAygq//PKLaG1tzUbVJaFlZeSYSE0lQ7lhpOvwYbpecnITi1yL1K+/RlpCAvrs399ka7lGOH4cOHMGPzk6ih9//DFrthuISgVwHAoKC1FZWYm7d+8KmZmZ4ueff978Q/rkCY27f39KT1Gjqor2pLU1cPYs7Y2YGGy1shJdXFyYv7//28cNUEG7Awfo3VBaSsT62TO676NHaS4//bQ2J17dWsvIiOTnH3/cZCQyIyMDyY8foyI2FkklJeh38SI05XI87dgR7RITxWxPTzi2a8esHz4kQuftDVy7houBgWLs8+dMqVRi/vz56vZb9I5xdUVxSQlCQ0NFU1NTYeLEiXxJSQk2rVmDJT4+OFBcLL54+RL+3box3WfPYN63b21u/I8/QpwwAWvCwmBpaan68MMP+VthYYiNjsYMQ0NoODjU64Veg+RkclrevEln6dOnNBfqatzLlgEffogSW1scOXIEr1+/Vr0uKuIn7tqFWxMnYvDixdALDQUMDFA+ciS2bduGoqIiLF68GHK5HLqpqSheuxayVavQpk0bus/p01G1bRvWHDmCUaNGUes7QSDJ8c6dyBs2DE80NAS79eu5VsbG4AIDgZ07IY4fjweTJ+OGVKoqLS1loihCXl7O+dy8iX4ff0yRdvUaBgQA2to4OHOmUlNTUzJo0CCsWrUKy5Ytg8bly6QyMjam81oqJfK5dSueZGWJNrdvMx1PT+D6dbycNQv7JBKIOjoiZ2IiuLi48DZffgmrKVNgOmcOfdbatZS60acPvv32W3To0EEcPnw4Q2UlRfJLSylFo6yM7v9N6hQAWVlZ2L59O4YNG4ZGvejVpPrnn4mcimJtGkRiIjl3//wTMDOD+OWXWNm9Oxzv34dPYCDsZsyg89LVtfa8FwQ6hwYOpGejuj3n1fBw1Z1z5/iBgwfDTVubHNy9etH9SKWUyrBrFzmPDx6kiubbt5NDqWNHesZ27SJnWnExcO4ckJCA2I8+Ep46OTFtf38hMDCQf2vEvLAQ2LIF4rJlOHnqlJidnY38/HxW7TRCww4QmZmZann59BUrVvzZ5DXfo1m8j2z/zRASEiIB0BZAF47j/tbyaQMDA/zjH//Azp072dGjRzG2tt/je6ghilTo47+Kc+eAAQPA/for+vI8t6VDBzIG/wKioqJULi4uXFP7NigoCDzPY8eOHXBwcFClp6fz1tbWnLW1NfPy8qqR+qlhb28PBwcHVWpqKiQSCR8WFibOnj37P+t5OHqU5v+LL8hDfvYssrOzERoaCkEQEBAQIPr5+TGO41iThKSqirzgcXFNSpQB0PVTUkju5+1NbVjeMefZzc0Ny5cvR2JiIo4cOYJHjx5BEATm4uLSOI++qgp4/Lgmyotx48jIP3SI7s3BgYzP1avJUDt4kMjRs2ckS5wyhQxGtSFjYECRtZgYMrCGDqX9dOgQEYwHDyiS4O3drLPh1atXCAsLE+VyOTQ0NGqii2poamqKERERTKVSwcvLC4PfUaJYD1lZ1IO8WpZnaGiIMWPGsD/++INFRkZCWVKCNpqasK+WwqqRlJSE+Ph4FBQUoKZVTgO0atUKPXv2ZBcvXmQPHz4Uxo8fz9VU+hVFkjAqFFQAqkUL4IsvoJo8GdF5eYLPxo3cg/nzBcmsWUzv9WuUTZ8uBv/6KyetqiIVQUZGDVnMz8/H1atXWefOnVFaWorCwkJoamqyp0+fgjHGDc7OFhVt2+J0XJyqbdu2fFBQEDiOa0y0ASLHPXvWypv19IDjxyFeugSn33/njUNCoNTRgUqlgnV1NLdJcFy92hFpvr5iSUkJEfiTJ0mmvnQpRf8++YQiXh4ewPXrGNa5M9t35Qpu376NLl261I5j1Chg6lQiSba29SWWH3xA5OFNUKmgFRYmtpw8mb0T0QZojo2MoKWlJeTl5vLNkm0dHeD2bZhWEwRDQ0Nu3bp12LdvH7p169Z0v14XFzLO9+6lfTh0KKWTREVR9GvVKpLuengAQUEwOnyY5efnv3sNjLg4eiYBcgqmpZHiRFeXSMo339DPjx6l9dLRobVQqei/MzJIkTJ0KDnOqoumtW7dGq1bt4bYty8CKyrwfPp07N27F728veEokTBHGxtg3Tq6Ly0tSjOZMQMvd+2CUqkEz/P45ZdfIJVKRZ7nxQlRUZzZxo34/cAB0cTEBMHBwTwNWR8BT5+KJaGh7Nn06ezzmTNhIpfTuVE3hefMGTAHB0yfPh3r1q3jt27dSuk7LVpApq0Nw1u3iBhJJLVEGqAzd/Vqiujv3k3EcNQoSnsByMFpbg4DAwNUt5ziqyoq8PLaNaRVVmLr1q2YN2kSsHgxUioqRLlcDlNTU7ZlyxahtLSUc0lKgkVuLmIPHRIWLVrE7bx1Syj19ORGfPklOgcHixcvXhScnJx4cFxNezBVhw54Aoj+asnzrl3A2bNgJ0/C3doa7tVrv3r1akHkOKR4eMBswwbxcXy8qszBgWvdujXn2bUreFdXKGNi+NZjxyI7OxuamppUGPDoUVIgbd1aWy+ge3ege3ecWr2atXdxQf/MTEAQYN6lC6Z+9hl4QWB5ISF8WUgIWpibC6ZGRvQCCg8nQljdoWHMmDE4ePAgGzhwIDQ1NSlFQU+PnteLF6nA2huQm5uLvXv3wsPDQ/Rwd2d4/ZrG2bs3dRz48UeKQEdF0Xk5fDit3apVdIE6UXN29iyUISEoCAggog3Uqw0BlYocLWvXkrNl374asm1kaspkhobQtbenc0YdBPj559q/Hz2avn/+OUW5DQzIoaOlVdNbHomJ5KDt1Al48gReU6ZwEp7H/aIibvNn+3GRAAAgAElEQVTmzRg9enRtRfymYGKCklmzkBMUJFqUlbHXM2di7NixMDU1bfLXs7OzBalUGldVVbX1jRP9Hk3iPdn+myAkJITxPD9fIpGs0NbW5szNzcXAwMD/oKTV/xlIJBJwHCe+U97M3wlyObU+2bGDDIl/BUolETk7O7rWvXtAWBjO7d8Py6oqAQAnimKNQS2Xy3Hp0iXVo0ePeDs7O9XAgQP5ui3Z5HI5jI2NmyXEvXv3hqenJy5fvsz36tULPj4+byTPY8aM4QHgwYMHCA8P/0u3lpmZiV27dkFbW1uYMmVKLcn5d4MxynW9dQsoKsLrAwdgbm4uTJ48mdPU1Hyzc0BDg4y85oh2UhJJzXR0qKhNE22J3j48hvbt28PQ0BDbt28HRBEd3dx4hIcDV6+SwfHhhySdHTmSDAeAImJqQtMwhaOsjAyJpUupcFZsbNMOgAMHaH+p4eJCJEsuJ7L+xRf0+bq69fo7V1RU4ODBg0JGRgZnYGAgjhw5kispKYG5uTkMDQ2b6mP8r6NlS3JW1VEYVLdbE69evcp8U1IEu23buGgbG8F7+nRu7969Qk5ODsfzPNq1ayfIZDL4+vo2S358fX3h5eWFsLAwtn37dixcuJDu+9IlIkNyOf3iH39AaNcOe8zMhGKpVGxx4wY6cRyn6eEBoagI3Tw9mbJjR0gLC2uJEagmwO7du2FsbIx+/frV7bXKFAoFNm7cCHlxMVxsbTFv9Og3kzS5nAzOkyfrqyZMTVE5YAA0Nm9Gx++/J8P3LxTtlMvleP78Od85I0NEz55kNP/0E9WYGDSo9hczMwEDA9gFBWFcejoiLS3R2cwMnLrugJkZjW3dOlJL7N5d295OU5MqavfvXyPJrYfvvwfS0nBqwQKxjb09c5TLoamp+eauCwDQty/SnZ3hNXMmb7thQ/39XBdJSfWcC7q6uhg6dKh47949HD58WKzJi2+IQYPIAfHLL+Tw+fbb2oi7mihXw9TUFM/UbfTeBrUisi7BCAuj90VUFK3fihV0BsyfT+uhrsDO87XtwtzdKYWCMSIRH35IRAd0tmhra+P69euCg4MDetRNpfj9dyLZW7bQuixciIkTJ7LY2FicPXsWixcvRmJiInv16pXIr1+P7WvWoIWnpzhlyhROvSalL16g1cqV7Pc//oCRsbFgYmLCISencaeFa9cgVFTgRUyMuhMBBg8eLBYVFYl/xMVh/saNnGTbNnIuPH1KBFC97n5+5BQ4fJgcEFZWQHk5EfPz5+vXQFm1ClITE9heuQJ+9WpKKTA2BsaMgd6BA0w0M4NKU1P09/fnPDw8kHfsGHR1dRF15w63atUqmJiYsKIWLXA/JQWtV65kN0ePru35LpEASUngc3KQ6+xc+/ClpVEaQGIiycM5DoIgoKqqips7dy5UKhVUYWHMPCtLcqqsDLGxsagqLVXZbd3KDX/0iMlmzMDjnBzoZGYicdw44dX06Zzn06fQs7Rs5LGxad1aVeniwmPoUEAUIahUKPr6a1Hb3p7Z9+pFaQvBwRx276aorYEB1TjIywPMzWvaXSqVSiLbbm4kh87OrmlV1ux2zcnBk88/F9sEBrJhu3czfPUVnTOXLlGq1MSJ5GDR06MzQI2ZM2v2Y0O4u7urcnJyGJpKxbx+nd51Vla01+PialqIeXh4cCdOnMDz58+hqakJCwuL5geuoVFblPCDD0gF1bkzOZadnelMy8oClEpwt27BUxDg+eQJy9bUxKXsbDGe5yFv21bQMDYWtbW1mY6ODqelpcXUZ9O1a9fQxsEBA4KC0PUN6SalpaW4evVqpUKhmLhixYr3cuh/Ae/J9t8EGhoa3xgYGCwaPXq0TrPe878pZDJZvYjWe4AIj1zeZAGNt6KwkOS+ixeTNPnBA5JCVSM/P180NTXl7t69ixs3boiFhYVMKpVCoVDA1NQUw4cPR3h4ODZu3IgRI0aA4zgwxvD8+XNeUEu9moGxsTFGvS1HsQFat26NiooK3Lp1S+zSpUvTUWIaN8LCwlRVVVVQKBQcAObq6ipu27ZNaNbYfUfk5ORAQ0MD5ubmEAQBr169gqmpKSQSCR6Ul+Pi8+fCuEOHOOcff8SZefM4zQaVm5vEggWU39wQxcVkxLi5kVf8o4/+tfZYKhUZEHv2wKagANOtrSH58UfxQVQUs+/eHVKlkgyVvXvJMHiXiPnBgxRtmDMH2LnzzZXvNTTIkA8Pr1cNG1paZDxNnEgy4kOHaD+npgJTp2LHpUtiRUUFGz9+POzt7bn/1raHOjp0H6Wl9VpM+fj4MB8fHyA9nTvFGO4WFHDhP/4Ic3NzfPTRR2jRogV0dXXfaWASiQR5eXnikMhIER07cpg+nZwMQI3RL/r4IOnMGbH41St8NnUqL1W316orpbx2DcjMhLB0KR6OG4fomBihqKiIc3R0FEaPHt1oLHl5eZDJZGi9dCmDm9vbB/rgATlEmlhTJWO4GhQEvw8/JILy88/vXD0/9/hx2EdHQ/ryJTvl4aFKvXkTr0tK+IGMwXv6dHoOPvqoJveYXboE6ZMnEDZuhDBvHrjkZJKstmlDpGTOHPr+/DnlkKurf6vl+A1RXk5Ryo8+QkDLltzJkyeF2NhYTktLSxw4cCB7Y/VwAAcOHIDQoQP0AwMFj8pKDtnZjetjxMeT0qNOm8P27dszJycnrF69uvGBlZND0eJvvyUD/f59kuNu2tRs0TQLCwvEx8e/28OQlUVzU7dGxtixNBdqcBypGK5eJYfhrl31r8FYTdQTT59S7viePTTHM2YArVtDJpMhOzubW7JkSeMxaGoSOV+/nq49cSI8PT1x9uxZCIIAb6r/wYnZ2RiRnw9jY2Ou7tle1LMnnrdogcr+/dG1fXu6b2NjIu91oFQq8cjPTzTKy2Nm//iHMGHCBE5fX58JgsDS0tKEXbt2CVNmzOAwdChFWT//nCKZ9vZ0Rv3wA5FCT09yBkZHk2OzZ8/6TiVBqJEy6+vrC3l5edyBAwfEwsJC0fPZM65LaanQa9WqmvWxjogABg/G7NmzoaGhAT09PaZQKCAoFMjdvRs+x47hVocOCA4Ops87fx5aeXl0Fqs/z8mJHB6Mkdpo+XIonZwgCAIMDAwoXWvmTGDWLARwnHDGxASD1qzhuTNngO7doW1rC297e5heuADDmBgu7dIlbOreHTNMTNAwPpqTk8M7VhcLfF1Sgh07dgjinDls8uTJ9PkffUQpay4utAf696fosr4+EBICmw0b0MbPDzVvvqAgmtt582rvCaA1OH2anmMPD6B7dwgjRqDlo0fM+9tvqQicsTER4fNvqPElipSjXlTUZFV/b29vPiEhAWfOnBEHDRpUu5AvX5Jq49KlWseltjY5h+r03L5w4QKkUqmooaEh6urqCjNmzJA0+y4SRZKbJySQXZaURM9I+/aUt6+nV3s2ZGbC+s4dTDAyYsX//Cc0L17kc3x9oaysRJaLC/IlErHQ0FClFAQml8v54m7dBM2RI3l4e5OjMrBxOvb58+crAPy2YsWKvyZHfI8avCfbfwOEhIR01NTUXDxp0iTt/6gKzP8h6N69O3fixAn0798fTbZ/+Lth2TLyol648Nf+Tp2f6uhIL5amch8BuLq6shs3biAnJ0do3749N2XKFBQVFcHQ0BB6eno8ADg5OfG//fab8sCBAxItLS0VYww8z3Oenp7/dqm3gYEBRo4cyY4dOybk5OQIaplhQ8TExKCgoIAfP348cnNzRY7jVJ06deLj4+P/S5+v7tPKGINUKhUqKytrCKCDgwMyMzNFhULB7VIooJg1C4OcnUU4OTFERzcv8ZfJyJAICan9N0Eg58ehQ7RG/ftTddR3QUUFveQPHKDIT04OEeOVK8mLb28Py5EjsbegQCzQ0hICZs3ia9b+bbnwokjG0dq1FJX98UdyArwNLVqQsV1WVp9s14W/P30VFqJq2zYUBQfDpk0bFvTpp9Bs0+bf3iasSQwZQgZknVZbAMhR4eODoB9/hEdgIMzMzN6tDUwDxG7ZgvLycs5UKkX58+fQbcJYqnJ1xbHOndlSxpjU05MiWg3uvbi4GHcePBCcw8K4p0VFguOoUVyvXr0gkUiaHJOZmRkYYyi7fBny0lLoODrW9LN98eIFOI6rjdqoUwYOHGh0nXPnziEvLw8czxPh/eYbIiebNzdfsAwgo7q8HK1/+AGyIUNw0MMD1tbWfICXF06cOIHw8HDRe/p0pi7yVwOOg7WbGyRduqguBQTwA1q1ov3Wti1FSvPygFmzaLzffUeRLjs7+ll+fv1rLVxIUavISACAKwBXV1cOAG7cuMGOHj0KPT09NFnIrBq2trZ4Kpejw7x5HFatovzM1NT6vxQWRqSoDtkGqA2cIAj44YcfwBjDIAMDeNy4QQ6rYcOI0JWUUJX3ykqK2nfqRMS7gVPR2toapaWlbM2aNVi4cOEbo/LFUVF4lZuLIz/9hDZt2sDY2BgODg5waNmS1njMGPUAgeXL6YyYMoXmsKnaKM7O5BgoLyeHwLBhwPffQ9PMDDzPIy0tDU21GxSMjXFKV1dlun8/K7hzBxW+vhzP86ioqIBaFcU6dICZuuhjNWQyGSK7dUOfBQsw3dy8Nj9bXYk9JQWQSiGTybB+/XpR1b8/mztvHj41M6t5FjiOw5gxY7hNmzahpqWfmRlFMjU1af9OmEBz36MHEe2BA6lQ1T//SecSQFHZ776juamecwMDA5afn4+cnBzRy8uLw3ffoecXX3BITq5VKkVHA4sWwaROX3qpVApIpTiYmYkBhYWic2kpXdDeHujWDVoffQRh506Ubd8OvRUryGmyfz8q5s/HbW9vOE6Zghx7e3COjpDJZDVziFWr4DpqFBfp4YFnRUVwPHOGrhkUBKmdHVwvXgS+/hqDzMzwYswYNFR6CYKA0tJStK52oISGhqrMzc254OBgpqVWPKidMWfPkjrCyor2j1wOREfDqKgI/c6fB2doSGT5yy/pDOjWDbhzh5QDn31Gv3/+PJHRjRshc3DAhn37IHz8sbi4XTv2lzpXREc32z6vVatWGD16NE6ePMmMjY3RrVs3+sHCheSEqqsc6dePiPaCBWCMoUePHsq8vDz+1atXsLOzE5OTk/nIyEj06tWr6XF88w3ZV1euABs3Ug0GR0eStuvq1rYEA+jMtLWFFIB5r16AIMAwMRGIi4O7nR0wdy7D69cSbNkC+aNHOHr/Pnf84EFx2PDhrF7nhGpkZGQgOTlZplAolr/7xL1HQ7xnFn8DaGpqfufn56f5nmg3xsuXLxEZGQmuWj71HqAoQ90Ixbvg5El6uRQXk6H4Bll1UFAQevXqBY4AAE1WBf3ss8/U59N/e8VwJycnfPrpp9z69esxdOjQRlWBo6OjcffuXXTu3FlwcnLinJycGAC+oqICABGGfv36NSrc9iakpqbiwoULqlevXvETJkyAmZkZ0tPTOScnJ+jo6ODFixeIjIxUtWnTBkOHDuXVEsYWRkYMqalUAfjUKZKKNvxcxsgTrkZFBRnAEglJxt8ke5fJyDt/8iTJRP/4g4zl8+cpR6xfP8ofmzGDrtO/f82fplRUcA5WVuI7z0NsLI0zPJyM0cDAvyQhRlAQRTYOHXrjr72orMQfMhkwYgSmGRpCc9s22qv5+WSEv6vT4V/Bnj1NK0TS0wGlElpOTm8kY29EaSk6L1iAxHnzVLv9/VGRnc13j4oSnZ2dWd1cb57nwRjDJRcXDDp5kgrTXb8OYcQIpKam4saNG0J2djZnZmYmtjl6FCNzcznY2r6xpZpUKkXv3r2FWz/9xBXExCAzOxuurq7CyJEjuW3btkEURUyaNInu7aefyAhuYm3j4+PRvn17ofqZYggKoiJMvr4U2frii/r7Wy6n9Q4NpZ/Fx8NOoQBWr4aXlxc6duyIhIQElZGREQ9j45pex42nP503V+dsqyX3N27QZ+bkkINkzx6KJl26RBL43r0poiuKZOh37UoGfhPo2rUrwsPDawt1NQP1e/nkyZNCr1mzOMP58+na585RdA4gGXITkEgkWLZsGVQnT+JmQoJYnJ3NYGlJBGHZMvqle/eAdu1I8aGWqbdrRxFLdf/v6nHo6emhrKwMq6vnsmfPnpSLWwdxcXEqrR9/5O8HBEBbWxuvXr0Sk5OTWUxMDPo+fgzfkpJask2DpOj1mTMktw8Jaf4Z19UlWfPixcDu3ZBs3Ijhfn7io7VrRZctW7iG59y+fftUJfr6nNeHH7LWJ06ID1+8UAUHB9cvdrl4MaUUqKFSQdWlC2QDB4rm7dpRf2V1VFldC+DxY6B9e9y8eRMqlYpNmTkT+pmZ5KhIS6t5LnR1dTF69Gjs27cPDg4OJNlevpzO0MOHKYd9wQJKoVEq6b26cCGtrzoHODubrllnTmxtbVlubq64YMGC2hveu5fy2yMjaZxjxzbbIUTPxkYonjGDk/I81W64cwdYtw7S06fR1dBQ2F5UJE7duJFPiIlBWloa2mdl4ZW5uZgzdargc/06/9mJE9AcPx41ihV9fbCffkLfkSNR2K8fOQpSUykHXV3lWiJB0tGjkD14IDSUC128eBEAEBERIR4/fpwB4F+/fo2bN28iICCg/uCdnWsj1QMH1vyzMiMD+9etw7AzZ2BnbU1zJor03LZsSc6agACK8lb3VZd37YpdO3aICoWC6enpCXFxcXzHjh0hlUrf/q4uLqZ3XzPtThljcHNzgyiKOHHihJiens4+cHaG/pdfktOwLnx8aB88egS4uaFXr141B2tlZSWfk5MjlJeXN/1Q5OXRe/f33+l+i4pqVT8tW9IzfOsWrXFT4Dh6j6tTPhIS6AzLzobWkycYYmPDKubMQYWnJ7TbtCGHXmoqIJVCpVLhxIkT5QqF4rMVK1b8RaPwPeriPdn+P45vv/12tLa2dmCXLl3+ti2+moJMJsPx48eFtLQ0ztbWVpwxYwb721cjj4ykQ/3o0Xf/G39/irj8+mttNeV3yF/+T1QQKBQKsOrevQ1RXFwMAHBzc6v3Q21tbYwcOVI8duwYe/XqlWrixInv5BiQy+U4cuSI4OzszBsaGgoODg4cY6xehVRLS0uMHTu23vVqjMhly4hAf/YZRbHqEF6UlFCEJSODDOzQUIpof/UVvaTV9yeKZBQ+fEgFZkaOJEUDQLmXWVmUH7Z2LZFRbW2KujWDwsJCMMbg7e39dracnEwy3WXLyDDaufNdpq0GCoUCEokEzMEBYmwsylJSoGtvD47j8OLFCyQmJoqlpaUYMmQIy83Nxf79+6GhoYEvv/ySLjBvHhlrO3eSxDUoiIyMBoX0/i3Q0iJDcP36+v+ekUGG8Juk8s3h+HEy3lJTwZeWYoqGRk39gZiYGOHatWv83LlzoaWlhZycHFRUVGDKlCnYs2cPTM3M0PHmTWD2bGxOTRWVHAdnZ2du1KhR0NHRof22bh0Ro+joNzo/unbtysHDA+jYEQX+/ti5cydbu3atijHGe3l5CUePHsWswYM5yeTJtbmHTaB3795c3foM0NCgCNfu3fQ1ciQRsdWryQA+c4b2fPXz8DIrC1KpVOzQoQMrLi5GWloaP3HiRCJ9M2dSoaM6UDtWa4iwWu7Zpw85YDQ16TOHDCHyvWQJOZ9+/ZVI2ezZ5Ciq0zanIR4/fgxBEN7aR3fw4MFwcnLCgQMHuLS0NHz66afQvnGD2hmpyfbu3US2GspeY2Oh6e4OYeVKyC0tmXTBgpqCUjVgrLEC5uefiUhFRNCz7e6OBw8eoLKyEr1798aDBw8QHR2N6OhozJ07l3qGA6isrMSF48f5iWZmmLB6tTr/mwHA3bt3cVqlgn5gINrLZPWrsWto0H46d47IwYYNb3TkgDFy3o4fD/sHD5ji449Z5bBh0PzmG3IUaGqirKwM2dnZ3LBhw5i1qyugo8Ns4uL4RvfaoQOtpxqvX0O0sUGulhZbuXIlvvrqK3C+vuQQUBepmjABcktLxBgZwcnJSWVlZcWjZUs6rxq8H+zs7NC9e3dh3759mD9/PieRSOjer1yhVJvAQJr/NWsogr1vX030Ef/4BzkDqsmoGs7OzoiIiGBKpbL2XWljQ3O3fDk5OzMzm917KpUKmp07E5FfuZKIvo0NcO8een3zDXd74UJsePRIrLp/n/E8j7KuXdHn6VNmHxrKY/p0eifMnUsKg2HDKMrs4QHWu7dYtGoVOzF+vDD05EkOnTuTRJ0xwMEBuUuWwNzcvKmcXgEA9/r1azZ48GBUVVXh4sWLbw9wzJmDq9bWYl58PBt++DBU338P44kTKap7+zadg6ampJrYsIGIdh1kZmYiNzeXff7550hNTeVu3bolXrx4kXEcBx0dHdW4ceP4ptqFAiBSe/lykz8qLCzEw4cP0aVLF7i6uqKkpISFnz6N10uWIGXmTHgsXVo/kZsxcuA9fYq6KTehoaFCZmYmp6Ghwb18+RIlJSVCQUEB8/LyYp06dYLWH3/QM3/uHP3Bw4d0LiyvE2T+8Ud659dt0fY2mJnRl6cn9ABEOTioqu7eZcMsLTkUFpJdIJUiIiICpaWlOQCa9va9xzuD/+abb/6nx/Ae/w0ICQmRRkVFzZRKpRsnTZqk/b4AWC1KSkqwdu1alJSUsBkzZsDX15f9J5K//+84dYryKt/SPgMvXpBH/fPPKSdqzBgyLv47o4P/H5CcnIxnz55BV1cXBQUFyM/PR0ZGBiIiIlQPHz7kAGDo0KGN5JUtWrRglZWVYkJCApeYmKhszrEVGxuLHTt2IDMzExcuXBDt7OzEESNGcO7u7s3mib8RGhpkjDs7E1EURYq8qInC7duU25WcTITZxoYIzJYtVLCsb18iC8bG5D338qKq5F9+SbLZfv3IIDQweKf+1adPnxYKCgpYcHBw879UWUntUzZsoGjT8uWUy/iOuHHjBg4dOoTw8HDcuHEDV6KiEG9nh5QrVxD17BmKiorEU6dOseLiYjErK4uLiorC3bt3UVVVhY4dO9aXohobUyRk9GjKV165kuR/6uro/64zQaUicj97dn1DvVMnImwNiOAbERZGBH3AACLp7dvXM7AsLCzg5eXFJSYmqmJiYrirV6/iyZMnwsOHD1n36kJ0MTExuP7yJZL69FH1MzXlhhw/zty++QYaajknQE4ZHx/aPw2jNA1x+TJgbAydLl3QqVMnZmpqyvXs2RNubm4sNjYWrVetYgaC0GShxczMTMTHx8Pf37+xA05XlyLHf/5JEezYWLrfpUsp6lynkNWFCxdURkZGzN3dnT18+BDJycmQyWSi22efMXTuDFEqRd1ijAAQGRkJTU1NsV27dvUfPvU4Zs2iljw3b1LKhK0tSZwzM8m4nzWrtuhXEzh//rxYUlLCnJyc8DZVWYsWLeDt7Y2IiAikpqai89SptC/CwigSOn48fZY6olVaSnncwcHAgAGIGzAAkRUVmDx5cmP5d04OEdS657OjI6VehIQQ4R4xAimpqSgtLRVGjBjBvL290aNHD0RFReHWrVvw8PBAZGQkzpw5A+uyMpVfp05cwx7ilpaWuBYdjU7ffgu9qirwDVuISSR0rpw6ReNv3/7taRwcB97SEhGGhqpntrbMbf9+hk2bkGFmhgPHjglt3NxEPz8/ysV2c6PCUadOkXxevY7jx9P51rs3zUVYGDQ3bICDoyNKDxyAYGoKyyFDKEqrJuU9eiDlt9+QoauLj2bPJgLNGHU3mDqVzq46a9q6dWv29OlTMSEhQayX6sRxFJ11cKBo4YMH9BlVVTSudevouTA3x9OnT6GhoQGlUonT/4+96w6L4ly/55vZxrICghQBUSyACIqCCtixa+wlRmOLJWqMNcabxMSQmHJzbxKTG3tNTIxGY41ijYpiQ0WajaKC9N7bzny/P16WIjXt5ncTz/PwAMswOzvzlbec97w//SQrlUq5e/fu1W+Qmxs9r+Rkat1WNWNfBffu3ZP1er3gPHo03YdLl2gd/+gjYOFCnL90CZIkMXd3d5iYmEjJer3Q5OFDHLl1CxpbW9h07EiZ88BAmncpKYCLC8yGDmXYsAHpAHcuLWWYMYPWtZISIDUVP1ta8oLCQsHFxQUGXZGUlBSkp6ez+Ph4AFSu0L59exQXF8s3b95kt27dklFSwgo++QS7b96UbXftYqbLlgGLFqFk/Xpczs1lMW3awOrzzzFs1Cho+/Wj+9akCfDjj7R/5ORQsmDQoGoBCHNzc1y4cAEeHh5o37498/b2Zn369EHnzp0N95mFhoZKOp1OqKFl1LRpRYbcgPz8fHzzzTfSpUuXhOjoaAQFBeHq1atIS0uTFPn5TGVqyq61asWDgoK4Vqutxi6CjQ2tHZ6e4IwhPj4eFy5cYMuXL4ezszN0Oh3S09N5SUkJu3v3LlPn53OHy5cZVq+uLMUyNibafNUAgVpNz9bBgea4h0etY6I+lOj1wo2EBNnH21vA0qWApSUKCgpIT0KWh65evTrhF5/0GarhmbP9F4S/v397pVIZYmdnN+z555/X1qt2+DdEYmIiwsPDsWrVqlrpy387lJZS5uYf/yDjrS688w7VVb34Ii3uXbvSAl+Pwfm/hGbNmiEuLk6Ojo6WY2Ji5NjYWDkxMZFrtVoxLy8PsixDoVDILVu2rOEZ29nZMWdnZ4SGhgqhoaHy/fv3WUJCAhhj0Ol02Lt3L7927RqTZRmtW7eWfXx8hH79+gm/ysmuCoOxyhgZHSkplJ0uKqIMiiwT++CVV+g5JyTQ8xowgIIkM2ZQwMTPj+i2Zma/qo45LS0Nx48fZ46OjjX7lwIUCPj3v8lQNQhWubs32qHlnGP//v382rVrTKvVGlrloKCgABPc3eETEIAgR0eelJSEiRMnshEjRjBfX1+YmJigf//+sLa2xuXLl/Ho0SPJyspKqOb8MEaU5VmzqP776FEKSiQmklHzW8tv1GpytqveV87pOfj711Q/rg1xcU+qzvUAACAASURBVHTcd99RxmXYsHqz8G3atBGMjIwwatQo9OvXj8XExEinTp0S4uPjYWVlxadNm8b69usnNGveHOzmTSpFKCiodDYYIyryiy9SkKYuRXuAnH1HR8DKCgqFApaWltBqtWCM4eyxY6ybqyuMly2r9VmvX7+ed+vWDc7OzjUnAueUkfviC6L1FhXRuuPnVy2DdefOHVy9epVNmjSJGRkZwdbWFq6urggODgbWrGGnQ0NxPCwMV65c4S1atGBmZmZgjMHKygqBgYHMx8enRtlIxT0QRbrPPXpQTbeh/tjOjoIoPXrQuFm8mBzjMWOoPtfFBa1NTJjNp59id14ePCIjoY6LQ7G9Pcp27IDS0ZEclAcPyAgvK0NSaipu376Nbt26Va4xSiUdN24cGdxmZuR8L1lCGa358wF7eyQkJCA6Ohq9evWqycwx1AfXpqo8ejSd+8MP0eyzz3C+dWv06tWL0cdnyMzMRGpqKq5du4bU1FTY2NjIU5o3Fxlj1Xt3l6NVq1Y4HxOD+7m5aNm3L2oIOSoUxEg4d46ydf36AdRXHbt27eJ5eXnc0tKSRUZGwtTUtILCbtGsmXDmyhUW2rYt7pmYIP3iRQwPDmZdnJwEwcmpctx6elL2LyiIng1jtB7260fjeedO4NAhxPn5YdeuXZj8/fcwc3SE0cSJ1bLfX+/fL182NmaLDx+Gxty8UkiQMQr+dOhQjZHCGEO7du3Y+fPnGWOselmIsTEdm51NmVgrK3IMXV2ppMfMDOHh4TiyaxfCT5/GxZAQNE9IkCeOHy8qSkooQ25lRQHB69dp7k+fTutTnz7U/tAQkHnuOeDOHeSbmDCfBQuYqk8f0sPYu5eCrnPngpmbw8nJCZ07d0ZgYKDco0cPcdDQoTBOSUFOVBTg5kZ9u0WR7qGlJV3D6dNgNja4amMj9dy6VdSsWEHO7pYt9NmWLIGkULCoqCgeHBzMnjx5Il+9epWfP3+excXFwcvLC4mJiZjy/PMwDglB+yFDWI+vv4ZjeDjOK5Xw3rSJRTg6MnWfPmi5ciVgbo7vysrwSBAwd/58tG7blubpZ5/RGJo2jRgu/ftTpt/Ojmrkn3uuomznyJEjSE5ORv/+/auVQ6jVarRu3Zp17NgRgiCwU6dOMQsLC5iamlauBadP07q4cCEA2uN+/PFHSJLE8vLymIuLizxv3jzm4uIC67g4YfB//sNaBATAt2dPptFoEBAQwAIDA9GqVStit5iZAf/+N7L1emw8e5Zfv36dqdVq7ufnx0xMTODo6IjOnTszb29vlr9hg+y9bZtQsm8f1OWMIEmSgIULiUbytA4FQIG4oUNpjP5Cu+Ls2bNSy/x8se28ebS2qNU4e/ZsaVpa2vZVq1ZtavgMz9AQnqXz/mLw9/d3USqVF4cOHWr+R4hJ/RWgUCigUqm4LMvsD1Ui/l9BbCxtLIZ+klUhyxRJ3bePsqcGVXFDb8m/EBQKBV588cU6B8SOHTt4QR217Gq1Gvb29nj55Zdx7do1VlZWJqenp/Pbt2+Ler0elpaWfMaMGaxp06YwMTGp+R4lJWTshYdTRN3amqL3y5ZRPXNoKNENZ84k49jLiwyhmBhS5I6MpL8pleSgzJlDBqGLC0X7BwyoUGP+PcE5x/nz5+WUlBTB2toacXFx1Q+QJMoKhoXRZzp5koR1Gong4GB+/fp1rlKpWEpKChs7dizcy2vPhgwZgiFDhpBTdv8+Vi5ezKrWRqtUKoMiMaytreHi4oKAgABx+/btcHNzk0aOHClWC3YIAhnrnp70PN5+mxynzZvJSejV6xcbMRUYP56MVoPS8cKFZPwuXdrw/3JO2YqvvqLa50bA3Ny8UrAHwPTp08WPP/4YAwcOrE7zt7amMoRLl8jxioqqLAMxKDPrdFR7WhdzJSCAsoodOlR7mckyZnz9NUx3764zIKfRaGp3dNPSaJwPHkx106amFGQICCDj+qOPADc3SC1b4siRI/Dz82NVRZmsrKzw6quvMvn4cXgOGYLigQNx5coVedeuXaJWq5WHDh0qGBsbg3Nee0kL56SiHRNDQYijR4nyO3Uqjenr14F588h5MjWl14uLab3s2RNo1gxN8vPh3q4dHnbpwqM++YSVqlQIvHEDc7ZuRUhmptTdzExUvPMO0dZdXMDMzGDaqxd6jRkj4OhRyiju2EEZbDc3muNr1lDg7K23yBkqD9S4u7sjICAA165dQ4+nW+kFBdUfMGIMaSNH4tq9e1Dr9bTWl3d0GDt2LEaPHo2EhAS0IKNfwKBBJCRWCxwcHNDt9ddRMG8eNn3wAdp6e8ujRo2qXsKrVtO9e/FF4NIlFHTpgm3btqGwsJBlZ2fj4sWLkGUZPXv25P3792cAZc179+4tBwYGCk07dpR9lywRLPV6unddutCY+PxzYljNn0/Xt2EDsa/27KG5PXIkMHMmQnv0kJv27Cm4T5umb5qcrABjKCwsxP79++W4uDjB2NgYubm5wuJly2A0YQJRvOPiKsX6jh2jzPK9e9XaJep0OkycOBHff/89WrdujRr0ZB8fclqPH6fnumwZrdf+/rBbvRojjhyBQ3w8ks+dg+OECWLkvXsQu3SB27lzlMU+cYJKT4YOpbXkzh0ac82aVSrmT58OODiAFRSwM3PmyKM9PAR4epIjWlhIgaoxY2A7b17F5ylXMofuhRfQ6exZfjYigrVo0QLtDAE2V1cS6AoMBP7zH1gmJQlnxo6F78qV0HPO4xwdeZc33hC+SE9HmUIBjUbDioqKkJ6eDkdHR2F4374oFkU4rFqFgtJS8MuXaW4/egTFhAmw1WrZgj59cGvAAOQEBMB34kTkFhZCJ8tITk7mEydOrMwQHz5MgYpp0yh4MmsWrT2M0frj5UX7zYwZiE9Lw+3bt9GpU6c6kypmZmbo2bMny8rKkgICAoSioiKmUqnkLl26CH5t2uBO7948Ys8eVlRUhJSUFM45Z1OmTGHlwRQBoLXGSq2m51keBOzSpQu7fv26nJaWJuzatQtdu3aVBwwYIBQOHIicrVuhHDcOq1atAmprL/noETo7OAg/WFryJ//5DzMyMoKpqamUmZkpDrl5E85Dh6LWHjE9epCd0L8/BdUb07EEVFIZExMjDh0xgoKmJibIzc3FrVu3JL1ev7pRJ3mGBvHM2f4LYc2aNbOUSuV/hgwZon7maNcNe3t7KJVKHDt2DMOHD/9FolZ/OaxdSzTasLDqr589S1Hr9etpA5Mkctr+xkhNTcWgQYMqB8ujR+SsFBSQATBuHHTHj6O/RsMwciTDuHEo+de/INy7B+WXXwqYN48cmvbtibJsZETG/KZN9JWSQkbE8OFkTH/6KRnWT56QoQ1Q9tnIiDJ8EyaQUzBnDtEyATLkEhIoYz137h9+T/R6PQIDAwWAjLYKQ59zcoxEEfj+e/o8DbRyqqjDLndob968yY8fP86cnZ1ZcXExXnnllRoqtwDI0HJ3J3rxl1/WeX6dTocJEyYgJycHmzZtYgEBAdKwYcNqL3JTq6k+eM0aoknv3UtOi60t3fdfyohZsKC6w3PlSsPaBrGxZBxHRJCR/Rsy7JIkoaysDMbGxpBlueaa17MnORFGRpQ9nzKFXu/WjbLvYWEk+FRbsIFzWh+eQsbt28hp0gSBjx9jgLMznqZpFhcXo6ysDE2aNKk8aUwM9dv97DOiak+eTEZ1SgoFQZ48oTmyfTtw6BDumZlxc7Wa16DblkM4cgQqUYRKEDB48GBxwIABuHXrFjt8+DAAEo6rdi/CwqiOf9w4KqcYNIi0DhYtItZDnz7kuD16RD9v3UpjvCplumrQct8+jATYKa0WzZo1w0w7O5QuXozre/aw6yUlvPW2bWgdHs7sgoOR8uABSs6epbXXyYkcKnt7Os/s2bQe2NrWKoplZGQEURQRHR1d3dnmnDK7VemsT6GsrAzbjx+HaY8eWOTkxDBlCpUSlWuYCIJgcLQpm2pqWntmrRyurq4A52hubo4dERFCREQE+vXrB41Gg7S0NJ6amirn5eUxh5kz0XPtWuGhRsPlTp3g6+vLQ0JC8Oqrr7Ldu3dL+fn5QmJiIqzKGRM9evQQYmNjZaVSySoc2RYtqKzi6FF6TmVl5IC98gqNkcOHKVBkyHD36gVxzhwhvkUL5Bgbs9y8PJiYmGDfvn1ySkqK4OnpiQcPHnDGGGvSpAmtK02akKO+eXMlbXvBAhrz5ePIAEdHR3h7e8vfffcdlixZItQayOnalYJIokhrvZMTzHv2xH/KadbKU6fA5s7lbdq0wd27d5n0xRfEFqrKJAgKIrE7g+iVtzd9Lw+SZP70k5zt6krBx7g4yoY7OpKzf+8esGMHIiMjubmjo2Bra0v/27YtbI2MmE1UFD9QVISVK1dWp8P37Qu4uUH3r3/xAQcOsLyOHWFz4QJT/OMfLH/7diw2M4ORkRFYWRnk5cshTJ8uYN8+WkuysqiEID1dDtZomE9mJp176NCKt2jXrh1OnDiBvXv3Ijo6GowxcM5ZRelPUBAFF9aurWRpbNhAgQRzc3rGH31EQbIRI1C6Zg0YYxg9enSdYxUgVsLIkSNFzjnu37+Px48fCxERERJPSxMTjI2ZEWOSqampGB8fz5YtWwbdU3Xh2LixsmVgOU6ePCnl5OQIb775JrKysvDNN9/g+vXrECUJ3czN5Z4uLrW3nAwIAF57DbbnzuElKytmKGdLTEwUbS0tERIZCbtevWp3tgEaDxs2NNrRBoALFy5IXZ48gdl774n48UfDayWMsS2rV69OavSJnqFePKOR/wXg7+/PgoKC3tJoNB/OmjVL26ZNm2eOdj0op3mxS5cu8QcPHsgeHh5/T2+bc8pQd+5cacC9805lP+Br18g5HDbsD8mK/ldRUEBZhMREyt7Z2pLokEJBG9PLLxMFdONGcg4HD6aMvqUl0Vfd3HClVy/e69NPmWrzZnIEHByIXpiVRcbX0qW00aWmUib566+hGDYMopERHePnV2mo2tlRBLpdO3p9xQoyFubNo9+VSnI6lEp6PgaDYfDgyv6tAwbQ/1Q1yrdupfPWJfryO0MUReTm5vLk5GS2YsUKtG3blpzErVspE9O3L302w/WVIyUlBWlpaVCr1QgODsaVK1ekgwcPCnfv3uUpKSlQqVRs3759zNTUlM+ePZt5eHjAqL6e7woFOfRP10XXAo1Gg9atW7OjR48KtdJuq39AekajR5MD9N139Fw6d67MKjUGzZtT1sHZmcZi587kzNX23hERFOjq35+o/337/uZSjfIWUdLJkyeFzMxMtK+tL7a9PT27F14gA9ng3Pv6ksHu7l77dZSW0lyoKoCWnY3suXP57sGDGRcEXL16FRcvXkR+fj4vVx3H5s2bJUtLSwwYMIAJMTE0XoqKiD0zfDg5NoastyG73rUr/ezlBfTujetnz/LeQUGCyd271et0DejcmY4vpwELggA7Ozvm4eGB27dvo7SoCH28vMhQ3r6d6L55ecRoWLaM6MeiSPNs5EjKkk6ZQuthhw60Vlhb03pSD9q0aYPmzZtDp9OhSZMm6Ny5M0tJSWHp6ens5s2buHbtGmzt7RHz8CFaeHnB3MqKHAjDc/L2pvewtq5TgfrcuXPIzc1FNVp8fj45hGPG1Hltjx49wp07d/iSJUuY4OhIlGRDf/EJE6q31bt8mfaHOmqFKzBpErSuroiIiZFLSkpYVlaW/OTJEyknJ0e0t7cXnJycWFxcHL+q0XCPn38WfGbNYq79+rGMjAx+5swZPnr0aPHatWvy9evXhaioKN6kSROWm5sLR0dHdvHiRfj6+lbqXKjVJNLZrx+NndJSCrw5OdFaP2wYBZR79QLmzYPV7NkQp09HZHw8CwwMxKNHj9jDhw/Ziy++CC8vL3Tr1o1duHAB3bp1o1ZaZmYUrDC0VzI1pXKryZMrFcyroGXLluzevXs8PDyc10h6FBcTK2L1ahpHBgaHgwN6vPQSevbqBZVKJSuVSj5+/HghNDQUsbGxso+PT/Xz6HRUp/zmmzU0VvLy8nDo0CE2btw4ZmJiQgyd7dtpjxs6FOjaFRkZGQiLjmYjHR2hO3aMHHljY6jat4fdnj3soq0t02g0sLW1xblz5/DNN9/AxMQETe3s0HzoUKYZNAimO3ZAzMlBk++/h/G770K5dCnYv/8NvPQS2Mcf0z42dCit/woF0L8/rqSkwMjIiLWpZQyr1WpER0fLDx8+ZADQu3dv3rJlS7l169YC0tIoiDJoEK0BBsTH01w1lOIwRk59dDRMmzXDrdhYOHt4NKpckDGGZs2aITs7G+Hh4YLtTz/huVu34LFhg9C+fXv07t27ZlmELBOjbPr0irICWZaxe/duYcyYMczGxgbGxsbw9vZm7u7u6Nu/P9qFhTEbw75eFeHhNF/HjKlgKmjLg3SOjo7IPn0ajlu3YrMk4e7du3pjY2PBwsKiukaDIcO/YgXZIpMm1fuZi4uLceDAAWGcVitoWrYEevZEcnIyTpw4UazX68f27du3sMEb9wyNwrPM9v84/P391SqVaquxsfHYGTNmaBtqM/IMBDs7O0yePJlt2LBB3LdvH58wYcLfK0Bx9SoZJmFhRMX76CMSIbp7lyiLEycSLenPREoKbWbNm5NjPGoUZbYOHSIj4733yMifPp2u+cIF+tvmzWTQdOpE4jP+/mSc5ObSBhQQQG0ytm6lLNn48eTgcE4GrkGM5IUXyDmytwe2b4f60SP54erVgptBgMRAqQco8wgQ1deA48crfzZkIKpE8uHj8/veL84pAztr1u973gYQFRXFAODf//wnxp4+za3j4lja5s1wWrIEgkoFWZaRmJiIa9eu8fj4eEiSBEObE85JuNbR0ZFNnz4dt27dYlFRUfLNmzeZIAhYsGBB4+ZlmzZUmxge3iiBmLt376J58+ayKIqNC7QxRo7O+vVkEH3/PdXCTpxIzsfw4fUrwZaW0rG5uaSNsGkTvVYVxcVUAhAURA7S/PmV7Zt+B/j5+Yk5OTlybm5u3Z/ZyYmYESkp5LwePkzOxpIlZMTt3l2ToRAZSc5I1fH89dcwNTZm7VxdpWHDhol5eXkIDAzk6enpFc+TMQYpJ4fJiYkUJLGxIXptVWX9qhg9mupWR46k35s2RUnfvuxEy5aY5eJCDsPCheQgGoIgK1ZQsKAqSkvRJDUVQ5KSYP7DD7TOtW9P1+DmVhnYehpHj1af83360LweN47m9euv13lbn4ZGo8H48eMrft+yZQsuXLgAlUqFK1euwM7ODpqnAxvjxlFQoF+/OgULZVlGRkZGJYW5rKzBgJCpqSn0ej1LSEig1lWGsW7oF/zjj7T2KhQ0Luqr3zdAkiA7O0O5ciV77bXXoNFoBKC6QHPXrl3p93feISfq3j2MmD9f+PTTT5GamopFixaJubm52LdvH9+9ezdjjOH5558HY4w9fvyY6oqrQqUiB1aWySm+fp3G5g8/UOeB2FjKBtvZwQ7A9OnT2eXLl3lpaalsamoKBwcHAaCAjEql4llZWczY4MSNHk1zYfZs0i2xtiZ6+dSpRCmv4vCU/z9iY2OF7OzsCiV3ADSGli0jJxGgbHNICCCKUHp5Aa++Ct85cyruU0FBAcaNG1f7fDUxoc9TxeFPTEzEli1bYGdnJ9vb29OLX3xBawtAz7OsDKr16wFfX65duJBh/34av6tWAT4+aOLtjendu2P3zz/j5MmTFW8X8OOPOPv99xjp4gLnEyco8GgIBuXkULBZqaRruXix1kvu2rUr++mnnzCoDpbcpEmThOzsbDRr1gxKpZIBEJGbS/f8P/+hkoGqCA+vue4yBrz3HsTduzH20CGcaNZMnlK1hVoDsLOzg7u7u9x15kxBU6VDTa36Ktu2EfOpnDnCOcelS5dkURSFqv3PBUGo7Ic+dizZMVVx/TrN7Q0b6hQMvZ2SglbTpvGFCxeyoKAgduzYMQQEBMhjx44VasyFiRPpmTSAkJAQ7pKUJJtNmCCiTx9wznH06NEiSZJWrV69Or3BEzxDo/HM2f4fhr+/fxuVSnXAwcGh3fjx441qRN2eoV5YWVlh7ty52Lx5M6uVWvlXxq5dRNk0NSXncutWMhYb6FdcJwoLaZMVhEphkcuXKZM8fjxlA194gaizL71EVK/XX6ds1bZtlOndvJkcxokT6XyG7NrBg5SpcHOjTMCpU+Rsl5URlY8xyv4pFGQAG+i5P/xAdaZaLR0nCEQLXrOG/n7hQuX1G3pUTpxY+VpVJdKRI4Evv4TUpEmN9iL/b2AQ92rb9r/ydmlpaUhMTERZWhp63LiBHhoNHk6YwE5qNDz2xg0mXbtWcaxKpeI6nU7u0KGDaGJiAmtra+h0Ohw7dgw9evRA27ZtBYAElgAIgYGBCAoKQnp6OmwbyBpWIDiYaJK7djV4KGMMpaWlvy7AptMRdX/aNDLiP/6Yaqn/9S9yVmtzbkxM6PkoFOQ01WZQde9OjuGGDX+YJoIgCCw1NVXGU45PNYgizZsWLSp7Axsb05x79IiymlUNz3btqlPiExOBzp1hPHMmJpmYiEVFRQgNDZXS0tIErVbLATDIMqYOGSKWeXnhSWQkWh871nDbmgcPKEhhcLYBuLi4sP0REbjZvDk8r10j6v9XX1HQbMIEEpYyMqLAxsmT5Bz37UvZvUGD+PnRo9krgwY1XCJz9ChR/z/8sPrr5uYUeDl5kv62fPkvonAaMGfOHOTk5OD8+fOIjIzk//znP9mQIUN49+7dK2+0UknOxc8/E8OlCvbt28cBsK5du1avFY6Opj7b9aBZs2bw9fWVd+7cKbzxxhu0DwoCBVj0enIOGSOHc98+UmRvAMVKJe6NGgUTlUrWaDT1P1jG6B6uXImEn35CaWlpRYtDExMTzJo1S5BlGVu3buWJiYmMc14zEFEVgkCskP79aU0wqOC/+SYJpHEOMAaNRgM/Pz+GKnWzsixj8+bNkiAIovnT/dlHjSInOTa2sk3czp01SitSU1MRGxsrLF++vDrlmHMak1WCLAAqGSQff0zfDx8GzM2RVx40LCkpqf1ztmxJ++itW9Uo5owxvPTSSzS/MzLoPty6Vfl/Dg5Q79uHlPXrWd7x42hiUL7/xz+I2eXpiVaPH+P50aPxeOdO2fvxY8Fo0yagZUvc8fHBjeJi7tylC8Ply6T+vn07Pb8VK+p6IlXe2gF6vR65ubm19p83MjKqyWCaP5/WotrWzIiIWktYABDz4OpVyNHRDElJjWZ7NW/eHGPHjhXw44+03i1fXvuBly7RevTCCxUvpaam4ty5c8KkSZNq1uwbYFC079CBgvmhoZW2SS2fMSoqCoGBgXK7U6dYkY8Pt7CwYCNHjhQlScKJEyeEgIAAacGCBWKN9+CcxsW//00BuqcgyzKCgoKw4NQpEV5eQJ8+ePToEdLT0zM457U3F3+GX41nzvb/IPz9/QVRFJcolcr3+/Tpo/Hx8fntqsZ/UygUCqjVai4Iwt/jBur1lMFet45UO9eupY1y61Yyyjw9ycn86CMyLn/8kTbgyZMrlXft7CiT+9FH1JP77l1y8ObOJTr1xIlExTxzhjbD8ePJQMnKoiyxgW46cCBR8wCqkyynsiGhvMtE1R6XiYmVPxsM4/ffr3zNYACamVVmXqq2efqN8+PChQvIz89XWFlZQZIkBAcH8xs3bnCVSoVhw4YJ9k/RpP8U7NlDgYhfGzBpJAoKCnDjxg1cPH0a3uHh3MvBgbXSamG0eTNcbWzgCjBZlnH37l0oFApkZWXBy8uLKRSKGkb39DraXvXu3dvQZgWvvfZa4/qyT5hAqriNwJ07d2SdTvfbBoVaTQJJO3cSO2TtWqJsrlhBzufTTunq1fQ/W7dWGr8lJXTc/v1Eo/6DO0cYGRnxkpISISYmBrVROat9tm+/pZIIe3sSR5o1i9aKl1+mwJgB9+9TgKFvX/r97bfJWe/dG1lZWThy5AjPzMwUnJ2dWe/evSlzP38+dLt3I2DVKsSqVHyBIDQ8Q8ePJ2pqlUxehw4dsH//fty7dw+enp7EdklJofu5dStl9caMoedx/z4ZtFeuAM2bo0NGBjuXmIjExMSGAzp5eRQsqQ02NjT23n6bRL9+5fwzNTXFqFGjMGLECPb+++/jxIkTrPvTLAKD2FcVSJKEO3fusOHDh8Pr6VrqoqJKJe16IIoi0+v1yMrKgkVVITyFggJKgkBZxSdPatR/h4eH4/Lly3KfPn0ESZJw48YNOT4+XrCxt+fDk5MbF8Fu1gwln38OqWNHjBo50hB0q4AgCOCcs6SkJJSUlODBgwfIy8tDixYt6i8v8fCgGnhJoj1o1y66h2++SdT8KvRiWZbxxRdfyDqdji1atKj28y5cSE7punXkZA4aRGNy927Axgb379/Hnj17YGtrq9fpdNUXrXnzKsVIa8OwYfT9ww+BH39E/KZNYKWltQsIliP38WNofX2Rcf06rDt1QlZWFoyMjOSKguD8fNpXnxozqvbtoVOrJf7GGyLv3BnMxYWcstjYilKZNh9+iDZubgJEkdaD5GQkXLyI/IcPGaKiaK+ZNo2CMvv3UyDIwOCqA5cvX6b3r5IxrhdbttC6U5c45Zdf1qp98dFHH0GlUqHY2hrT8/MZXnqJWDP1aBfUQHw8JSRqQ0kJBVC//bYi+P7w4UPs3bsXtra2emdn57o3LMZovTh4kL7Pn0/j8bnnahyamJiIvXv3wtvbm3nFxDBWhekliiLMzMxgoN3X+j5jx1br610VFy9e5E3S07n2/HmG5s3BOcfp06cLysrK3lm9enVZndf/DL8Kz5zt/yH4+/sLANxVKtVmCwuLDuPGjdNa/I/3Nv6zYWZmhrKyMpaRkYG/xb28coU21eBgMkR27KDN/7PPaFH29KS2LDk5tFiX03zRsyc5FioVGQOGdkazZ9PfqzrDBsXud96pfO3AgcqfDZnHqn13Bwyoo29pcgAAIABJREFU/LmxG/F/EfHx8Vyj0bDjx48jLS0NCoWCq1QqISkpCREREfKNGzd4VlYWnnvuOdGQlfmvw9iYsqZ/MCLDwpC0cSMG6fWyl729ICxaVINaKggCOjylTv1LMWTIENy8eRPFxcU1RWlqg05HRvWnn9adjSiHtbW1EBUVhc8//5y3aNGCjxw5UkhISICNjQ1ycnIQFRXFPTw8WEP9kSvQrBk5cpmZlIH9/HOaI6+8QvWkGg0FmSIjiZ2hUpHDOncu0aabNm18/fdvQO/evQVRFPHtt99iwYIFaHCsWlkRPb99e3K0+/UjOmdWVnUjt6zcNsvJoTHYsycAYP/+/bJer2dz5sxhuvPnqa5+zhwyLjt0gKNCgdsHD2JNOdtElmV4enry5557rqYBaWREzuzcudWySa1atZKLiSZLHoW1Nd339HRyAkxMKGv4lMNhyI4GBwdj1FN1r9UgSZTVnTy57mO0WmI23L5N92jHDqod/RWoyrB6ujc4SkvJwbt/v4IJkJGRAQDo8jTFFqA50YhyoO7du7PAwEAcP34cU6dOffqC6PmWlND35GRk5OTgZkICIu7ckQsLC4V27dqxvXv3wsjICK1bt+YLFy6EWX4+g4cHzYsGsv2cc/xw+LBUMmMGe0mpFHD2LGVkqyAnJ0dOTk4WTExMcPv2bf3NmzdZYWGh6OzsLI0ZM0asEZDLzKS5FxREWeBu3Wg/a9OGAkiurvTa1q2AkRG2f/21JEmSOGPGjGptomrg/fcpiBMaigql79xcwMYGtra2EAQBEydOrGlbv/suBS4awptvAv/4B1x27MD8TZuwrbAQR5o25U5OThg/fjwDqNY2KioKZ86c4SXLlzN+7Bgm6nS4fv061TgbIEmVHRCeQq+lS8XvRJH3O3gQLj17MvTqRXogb78NJCXRXHvKkRU5525nznB89ZUAExMag9bWtHZ9+indy3oCoz179kRoaChSUlLQskrrtFrx9ddI/fpr/vPkybKusBC9e/cWdTodQkNDkZaWJg3o319kI0cCaWkoKy1FUVERkpOTwRiDmZkZLy0tZVOnToW9gwMFWMLDKdnQ2MD4kiV1/+3990kN/sABlJaW4tChQ/Ldu3eFXr16wc/Pr2G/6rXXKOkRE0PK+bVkngESIFUqlRjQpw/D6dPVdTFAYr+XLl2qO0751luU8Hj+eSR+9x1OnTkDExMTZGZmIuXRIzZv61a2p7RUMurTR9RoNMjIyEjlnH/T4PU/wy/GM2f7/wH8/f1bMsbGCILQSpKkGAD3ATwCkAbAAsBAIyOjSaIodtVqtVLXrl01PXr0UPytaM9/EJRKJTQaDS5fvowRI0b82Zfzx8PHhyjeL79MBn/r1hTJtrEhytk//0nR6f37KZq8YAEZLQsWVJ7DQHG1tKysb/6LY+LEiWzdunV48uQJhgwZgg4dOgiffvop2rRpA0mShDt37sDKygoBAQHS1KlTK1pK6fV6pKWlQZZl6HQ6ZGZmIjExESqVCu7u7vXTIX8pYmMreoL+3uCc48GDB8iMjuaWS5cyO3NzbnfkiICnFKZ/TwiCAGNjYykiIkL0NqjtNgRX10Y522PHjsW9e/dQVlbGTp8+zT/66KOK7DnnHDqdDhcuXMCiRYtqpTvWCXNzyph99x0ZrK+/TuJin31G1N+2bSkIFRZGc23WrEa38/o9kJGRgUuXLgEADCrRDaJHD3KiV66kQNnFi6R2//bbRJs31BBzTr3bZ80CTEyQlpaGtLQ0Yaq7O3RRUUR/trEh+mR5j3AXFxesXLmSpaWl4fTp04iJiUFYWBhr3rw5ZaqfxsiR1bKRWVlZSEhIEGpkgAFyACwtac2rZa8sKw8QdK6jRrICu3eT4V3u1NYJQ/Z3wQL62rWr7nZpDWDEiBE4evRohbFdgdatqb42M7Ni7TU426WlpTXXk/v3iZ3QANRqNZo3b87L162axntWFgVR3n0X6zZskCa8/77YwtVVTp4xg0+YMAEajYaFhYXB1dUVSqWSogBmZkRjLy1t0NnOzc1FXFycuOLNNyFkZdEYevyYSo7KMW/ePCE9PR2tqXWgAgCio6Px/fffi5mZmTXU7iFJ9NyqOnWMVTo2t27RPPz2WxTv2AGVm5u4YNWq+h1tgMb68uW0j3p40HMODgZCQqBwcYEsywgODoatrS1sbW1x8uRJbrt9Oy9u1465vfUWaxSZWRAgzJqFbFnmquhoNv7IEXZk0CBZHjuWlZWVYePGjVyWZW5hYYEpCxeyEnt7fB8TgwQHB2HevHnIz8+HUqmEsnt3RL76Km60aCEPGTJEKK+FBkC1yba+vuz27t1os3kzlBERlUJjCQkUGCwPmhngGR3NCq9cYRnFxbCoysIx6FGcP189cF4FpaWlOHbsWPnHa8B2vXgRuTod9nXtylrY24tJSUny559/DnNzc15cXMw558KdsDA+WaViGz/6CIwxCIIArVYrlZSUCE2bNkVBQUHlfJg0idbg996j4GFV0b+6MHkyBUm3b6/+ekkJBXHKu30cP35cjoqKEiZNmgTnqmy6upCWRsmJb76hc23cWOehtra2KCsrQ0FAAIzfew+4caPa301NTSFJUv2kIHt7oG1bnD51Co/j49GhQwepRYsWbNygQYKRvT2cunUTw8LCpMePH4sAFq9evboOXv4z/BY8c7b/ZKxZs2amUqlc7+Liwq2srIwyMzOLU1JSSnJzc4Xi4mK1UqnUt27dGu3bt9e2atUKFYIdz/C7oUWLFnJGRka12q2/LBQK2mzKyshY+/bbypYVhYVkVLu5ETX83j0Sb4mOJhpl587kSKSnkzKujw/Vm/0NtAJUKhWmTJmCbdu24d69e1L37t3Fdu3aSWlpaby4uFgcOnQoa9OmDTZu3CisW7dO1mg0PDc3VygoKGBqtZozxnhZWZmgVCplExMT5OXl4caNG0yj0chlZWXo16+f2K4xwkN1ITOT6KsrV/5+H7oKQk+ehPTWW7DIy2P6L76A3ZAh7LdS8xuDjh07ikFBQdzb27txbzZkCGXzYmPr7ectCAK1KALg7u4uZGZmolmzZggPDwdjDG5ubmz9+vXS+vXrRWtra3n8+PFCo7PcAL0/56RH8NprZLh++SVlPnU6UkkeOZLmUnIyGbfDhhFN19Lyd59TxcXFiImJwf79+yEIAkaPHl3Rr7xRMDWlz1RWRtfp4EAZs88/J4q5kRHdbyuriprq4OPHJUVOjmg2dSoO+/mh55YttbKHBEGAtbU1cnJyJD8/PyE7O5udPn2ae3p61nzmL79MIogg+vS5c+dgZGRU0Y+5Btatq5MxYAiINehcvfhinZmnWjFhAjkcvXpRNvPpGt1aIMsySktLce7cOWg0GqSkpMDW1lZWKpU1vZLZs4mCWm7sFxYWQqPRcI1GU/MexMc3Wsne19eXHThwAMXFxdWd9gMHKGt/+TLAGPR6PY75+8u9vL2FqUFBYN7eQGgotad6Gt9+S/vNiRN1vq8kSTh27Bhv2rSprFKpRFhbU0nG1av0rMsF60xMTKoFvlJSUvDDDz/Ax8dHtrS0rH6f1qyhPau+QJa5OZU+9O2LWyoV8mJiYDRoEAWbN26keVoXo4Yx+mwHDpC41fvvAw4O0Hz1Ffr16ydHRkbi1q1bQlFREaysrDDIwkK4U1Ymb9++nbVp00aaNGlSAwIFBMc5c9iivDzICQloVViI3UuXyhmtWgkFhYXsrbfeqnjeCn9/eDk4IPnWLWys4rw1feklyMbGkqakRNy+fTskSYKlpaU8depUQafTITY2FrmurljbsiUmLF6MVosX0+cfNIhsAIOzzTnw3nswmzEDFy0spDt79gjz589nFc+DMWIirFhBjI5adEN27twpcc6F8ePHsxZPZWirQh8VBfbuu7jm5SULTk585MiR4u3bt4WjR4/CxcWF9evXjwHAhVOnICxbhrkzZmDPnj1yYWGhwBhDly5d2LVr1yDLMrZt24Y33niDTrxsWWUgdMiQevcHAET7fzpLzznRvZcsQTxj2O7vDwCCubm55OzsXP8zLS2l9XLnThrXX3xBc0OS6tSrePLkCQUSTEyqBZ4MMDU1hVqt5j///DPz8/ODXq/H2rVrZb1ez1QqlVxQUCDKsgx1u3bw+PFHuGg0cvfVq0U8ekTr9NWr6KLRQKlUisnJyWElJSU/1X9TnuHX4pmz/SfB39+fKRSKN9Vq9ZszZ87UNKs0CDTlXwb8/+PU/sWQk5ODv127NKWSjIQ2bYgWOn48CYhotRSxHz6cjjNQJ5OTKxVUExOpxvrKFcreWVjQ33r1qmzL0aJFg+1w/tdgZWUFHx8fBAUFiZxzTJ48ucYOuWTJEhYcHMwkSYK1tTXs7OxQXhtsGF8CUNFygzdt2lQURRE//PADFi9e3Di6dG1QqUgYqiHH4ZciPh7y2rVIiYuD3KoV99yzh/3u71EPevfubWgNJvv4+DRM5TEI9ElSTTGrOv9FgGH9reqALliwQLx37x4CDh/Gl598AkcbG8nl/n1YLV0qmh46hCZlZZTh6tKFSjNycsgxy88np9DKipztW7fo9+7dydkuKaHgyN27pBJ86BBd87BhVF+7YAE5AZMnU8bsyy9pfu3dS/N06VKaW3v30s8PHtDzd3KieuanDLfk5GRs2rSp4velS5f+unGmUNC5bW3pGktKKvtMl5aSyNKOHRQoOHYMg955R7R97z38Z9EiQKPhA42M6lxjU1JSkJ2dLXp6euLkyZOSjY1N7danQgH+9tsIVKtxLSYGRUVFqJVybsCaNZQJroUCblqe3Tp06BDmz59f+/8XFxNl/RfWYeubNEHEqlVg27cj9tgxOa5TJ966TRvRyckJdnZ2CAwM5FFRUXJZWRlUKhVycnJEWZYNvYUNpxHS0tJqUv05J/bG7NmAICA8PJybm5vXfg90OsrCNQJOTk6wsrLi69at48uXL6+ca/fuEUOjPDgxbdo08dy5c9h3/Dgf6u3NPN55h+bbyJE0HqoKQ40dS2O9Hvz0009yXFwcmzt3buUzb9uWPqehd3Z5/+iqiI2NhampqTxgwICa60JxcU3V/DqQkpKCn5OT8cLs2WD+/hRc/uEHyjyuXUvZ3k6darIjzM3p8w0fTvNh6lSw/Hz07t1b6N27N0pLSxEbGwtnvZ6xefPQgzHBLScHW7ZsEU6dOlWnIncNNGkC4dtvMay4WCjp0AH37exw1M8Pp0+fxkBDKda8efDYuBEdBw9GvrMztFotFJs20Xrw6qsV91Wv12PLli1848aNKC0thV6vp7do3Rp3IyKgHDECTUJDIbRuDVVcXKXxGRZGbLeFC9HJ11e8df8+iouLq7N+WremNez2bfpZEJCdnY3IyEh+8+ZNnp2dLQqCgCNHjnCtVsubNGnCmzRpAlNTU9HY2Bg6nQ4lKSmIXr8ehfb2yLa1xaypU0VDRrx///7wrdJZoH/nzsA//4kbAwYgJydHePHFF5GVlSWePXsWOp2O5+bmsrKyMuj1+krND19fEkMdP57sn/q0QHQ6esZVkZ5O1Pr+/ZEaGSkBEAGguLhYqBGkMiA3l+Zqbi4JOE6fTgwfJyf6ez0dNHJycmBsbMyNHj5kT5dVABQw9PHxwblz5xAZGSmZmJgIBQUFwpw5c1BYWCh+9913AEhkT6vVcmcnJxrEsbFUQqHRQJZlnDlzpqCkpGT56tWreY03eYbfBc+c7T8B/v7+CpVKtVWn002YPn36s3ZdfzLy8vJYg/VDf0U4OZFB8/33lLmaNq3uY21sKsVFunatVOouK6MMQlAQ0RWfPKGMxPXrVMvVsiUZewkJ9N3Dg97rf5ShYTBQatRSlkOlUqFHI2okNRoNJk+eXHGCsLAw6fDhw4KNjY3k5+enyMzMhCAIaFqL+EuteOcdyoj26tXgoQZjnjGGnJwcSJKEGsq72dnAl18iXadDSGgoQr29sezdd1m9xskfAJVKhUmTJrHdu3czrVYrd+rUqWGHe+ZMYmSUqw7XipwccmDd3Kh22tWVxuqcOZR5+PJL4Nw5uFy5AhcvL6Fg6VKElZaKjrt3Y7ORETrdvo3+Xl5QiiJRqp2dKej04AE5nz//XPlee/aQE7JxI4mkabV03L175IisXk1fQCVVuaSEBIiaNycV5NRUMpxNTSv7xR88SPPw7bepFnHXLpqj33xTKYT46BEU8+djYEmJ5Pv99yL+8Q8yGJ88oXv0wgukuGthUamKXB8YI4e6rIyuTaUiocSYGHK4v/6aHNMDB6A4exZurVrh8AcfQKtU8iNHjmD06NGsNoM0NjYWFhYWslarFRQKBatTFEqlQsonn+BSSAgEY2NuZ2fH6x0TXl7VacQ1/uzFb9y4wepSR0ZyMhnJjRz3jx49wqlTp+TMzEym1WrhOncuH7B5s1B85QqO6HTS/fv3hYKCAmZsbMz69esnarVaFBYWomXLllAqlTA1NUVxcTEOHz6Me/fuYf16EgWeNm1aZasrDw9SrM7PRy6A+Ph4VmcJVGZmpe5GAxBFES+88AJbu3YtTRrOiTr+xhvVehs3bdoUY8eOxaVLl9jJoCA4zpsHU0NrKVNTyta5u9N9t7UlRtSlSzUoyQBQVFSE27dvC4sWLaq51rVrR+va3buUQR47ttqfO3XqhLNnzwq55e3YQkNDYdOsGdr9+9/k1DSSwp+RkQHGGNHTGaO1wNWVqNGckzPdogWdU6ejGm0DzM1JxOvJE2oxuX49CfSB1i4XZ2c6Ztcu4LnnYGpqir59+7Lz58/L3bp1E6q1BWsACo0Givv3cW/9ennk9u2C5c2bxKAwrHEnTkAoKoKJ4VllZtbQP1EoFHj55ZfF69evo6CgAJcuXYIgCHj55ZcR7uuLXd99hyH9+iGiQwfYJiTgRk6O3PvsWWR7eAjiJ5/AuZyaLYpi7Y7lrFkoGzoUMVFR/GdTU56VlSU0bdpU9vT0FLt164aCggKkp6ezzMxMlp2djdzcXDx69AjFxcX6suJiDPrmG9GjTRuWMX8+unXrJjDGsG/fPsnU1BS+vr7VFwVjY2DUKHh5eSEoKAi3bt3CmDFjDCKB7MmTJ5Akqaa45quv0pq6cCGVGbi41H7DFy+mHt4ffEC/x8fTa3v3AkolPD09RU9PT2RkZODrr79mn3zyCRhj8PPzIxvg2jUK+E6fTmNo1CgqrTCAscpx9c03ta4x7dq1w6FDhxjftQusDqEzb29vplQqodfrxYiICG54zm3btsXy5cvxxRdfYNy4cXBZvZpVlPr4+FSIXIaGhqKkpCQKwNnab8Qz/B545mz/l+Hv7++rVqs32NjYtH3hhRe0z9p1/bnQ6/UoLCxkNfoU/l3AGNEDAaJKjhpVvzDI01AqyZioauwZRLqys2mDkiRyIvbsIQcjNJQMc2NjcsC7dCHnwMGB+o7+P1XW1+v1uHXrFh8yZAh+b/V6tVqN6OhoFh0drbh+/TpkWYZer8fSpUsbVzNcUEBtz+pBWVkZ1q9fj+zsbCiVSgiCUNFWZvjw4UhLS+PRkZFMExODURcvcpNBg9idTp1wuVcviKLYOEXwPwCOjo4YOnQoDh8+LJTXhNZ9sCRRjdrYsVRrd+wYBZFataLscseOwJEjpHS/bRvVUx89Ss5ju3Y0/pRKylAb+j1nZ8NYoUDc3r1S5McfC8UJCcxt2zYoDUI7S5dWvn9tQaQ7dygYxTk5qB98QJmiHTsoAzRxIp2jap9qtbpSRbpqAGXbtsqfDa3VymnVAMgxFASae6amgCDgQdOmcomJiWgQt0JhIV3PunXkbA8cSGPnlVeIPnryJNF+z5yhoMHUqTSnDWJSixeTs//pp/TavHmker10KQUJ3nmnIjCnALBs2TIkJycLly9flj/77DNmaWkpDxs2TLCr4rQ8ePBAtrKy4gBgY2MjxMTEyLJcKapcFYWxsRgSEICOV6+yL7/8kgcFBcl9+vQRgMpAUlxcHM6fPy+ZBAWJmsxMyVKtFuLj4/mIESOEquN42LBh7MaNG9i0aRNfsWJFzTltZUVq1o3E48ePkZSUJBho+oIgMAwahCZnzmDWqVMi1qxBsUYDtVpde99eUCDu+eefR3p6OtavXw/OOS5evFi9r/Tu3UBqKrLeeAOyLCMiIoJ7eHjUPKGlZaNbHl25coWfOnWKlbfFgyo6mhy2OrJuPXv2xJUrV+TvvvtOGD58OFqW1+Piyy9JOMzfnzLMN29SYKcWZ/vBgwfQaDS8adOmtd+MDh1ob/D3p4xiFTq/VquFtbW19M033wh5eXlMp9NxzYMHrPnly9DodI02bp2cnKDX62s6Zobg8s2bFOz64QdyrLdsod8HDyZn1s2NPufZszXbojFG7K8qjmmnTp0QFRWFbdu2ScuXL28UnbwCCgXGvfyyEAzIGadPM9vwcCYYKMGHDtH8y84mUcClS2ulwQuCAIMGRnBwMPfz82Occ3Ts2BEdy1kQHhkZkMrK4DRkiGCxdStuTZnCo1NT5ZuhoaIsy+CcY+fOnVhUXoKWl5eHyMhIHhISwqX27YXRO3bAffNmobuvL1QqVcVnNDMzQx0BBgX276e1Y8QItCt/Djdv3uSxsbHCokWLao6PzMyKGuZhw4Zh7969OHHiBIYPHw7GGOrtEOLgQEGguXOpzry2GvKAgOoO8A8/0Bh8av+xsLDA3Llz8fDhQ6SlpsoZH38sSGVlEFetonVz5Mi6g3X9+lE5wsOHtfavP3r0KLextubYtEmoax4KgoCu5QEWV1dXtnbtWuzatQvLly/HzZs3odfrK9X9o6Kow0w5q6e4uBgnT54sKikpmfMsq/3HQnz33Xf/7Gv422DNmjXz1Wr1t4MHD7YfPHiwssFasWf4w8EYQ1hYGM/Ly2P1tsL5O8DYmIykoiIyIn6rKrhGQ9ltGxuqlRozhhyKUaPIwDeUTsgyZfE++IAoVWfPEpXvp5/oWpRKOqa+Fi9/IO7fv4+AgAAcO3YMgiCwsWPH1p15+5Xo0KGDYGlpCWtra3h4eGDs2LG4ffs2kpOTuaurK6u3tZ9eT9TlKlRLvV6PzMxMSJIEURTBGMOmTZt4QUEBevTowXr37o0mTZrA09MTubm5UmhIiFASFYURu3Yx8+RkfD96NLtmZoa0vDypdevWwtSpUxvfruUPQHp6Ou7fv49u3brRdeTnk1GZnk410a6u9H3+fPpucIBfeYWOdXOjr2HDyHnw86s8ZvJkchp1OqrH02rJSSnPiN4MCcHJkyeRkJAgZGVlMUtLS7nOGuGquHuXnNl336Vsu+EZGhnR3Jowgcb27ds0vg0trX5LH3cD1dvYGHByAucc39+/z9qNGAF7JycSCrK0pHk+bx79z6JFZBBaWtIcdXKiAFqrVnTPLl0ip0ehoJKT0aMpGxMQQP87dy4533PmED3zqXpNtVoNCwsLeHh4MGdnZxQVFfHjx48ze3v7imzm6dOn+cCBA0UzMzNYWFggLCyMnz17FomJiWjdujUz7JWccxzctg1uCQkwf+UVWFtbs+PHj7OkpCQpPT0dP//8M44dO8bCwsLQvHlzYeCjR8jLzsbFoiI8efJE6NKlS7WMHGMMXl5eCAwMZBYWFrCuKvpUWkpOSy2qzHXBysoKly9fxoQJEypFoJRKMqTv3wfeew+KGTPAGrF+aLVa9OnTB9euXUN6ejr6GlqrAfSsHjyAydixCAwMRFZWFqv2dwNmzKBx1gile6VSyW7evImVK1dCHRxM6++OHfX2P2/Xrh1LTEzkFy5cYEZGRtzOzo5h6lTKuK5dC0yZQkFWg8PxlFMTEREhJyQksB49etS9xhlE9W7fpvleZXy5u7sLBQUFrGvXrnjO0pLZGBtjZ9u28oWLF1lERIScm5sLU1NTpq0iqvc0YmJiEB4eDjc3t9o1cRijOdm9OwWeNBpSDD96lDKT2dnkuNna0rwbNIgCaGVlFEybO7fa3iWKIlq2bMkuXbokhISEcEmSmJWVVaODmbIso5WPD/vh8WPmXFwM3YoVdJ85p7renTtp3A4c2GDv6/DwcDk0NFQIDAxEnz59KAA0YABQVAThq69gUlAA5ZkzcPDwYB4eHkKPHj3QsmVLhISEwNfXFykpKfjpp5/kc+fOsczMTLlDhw7i6Jkz0dTdnbXctg3ihAmNC55v2EBO4GuvVdyr5ORk7N+/n40fP57Z1NayKyaGWDQzZ8LCwgLNmzfHxYsX5eDgYKhUKmZiYlL/nuXlRbbI0KG0Hj7ddnHpUnJKW7WiwGazZrS/1DIfVCUlsN63D604Z6mXLyPYxgZs0CBYDhxYuyNfFd27U3D4pZeqndtAn5+gUAimmzbVzzwsh0ajgZWVFTQaDW/bti0zNjZGcHAw3O/cgW7fPspqt2tH4xdAYGCgPiEh4fCqVau+bPDkz/CbwHgjKUbP8Nvw3nvvjVapVLvnzJlj9LdoMfU/hPDwcJw8eVJ+7bXXnsm7AyR0Ym7+h/drrhWFhUTJKysjYy8tjYyrixcpC+nlRVFpNzcyhp2daTP8g7Kuhr6pnp6esomJieDq6opm/4UWTQDVEm7cuBG9e/euUzW6sLAQoZs2yW22b2dxO3awpKQk6cGDB6KRkRHS0tKqHatUKrFkyRLUMDyDg0mspWtXwMcH2U5OuHDhAjp06IC2tQjd/Feh16P0/Hls+flnPtDaGk4//sjw88/kCA8YQPTrDz4gKrVWS4awiQll+lWq31zDfvbsWVy/fh3Ozs5Sz549RYOqfKNqnp88oZrT7dtrGlyPH1OmpKoxPHculWCEhNDxvxPDY//+/TwyMpK1bdtWmjJlyu8bJTpyhO79K68Qu8XGplHXfebMGenKlSuiLMtwd3fH3bt38eqrr1ZjcTx58gTnz5+X4uPjBW9vb9anTx8kJydjy5YteGv4cChatQKaNcP+/fulkpISIScnR87Ozha8vLxY586dqdbAs60nAAAgAElEQVT59m3AzAz5zZrh008/xejRo6HVapGdnY3MzExubm7O7OzssGXLFrRt2xZTpkypfqENCO09jZ07d8qCIPBp06bVfp/j4sjx3LyZAjyNwMaNG5GSkoLBgwdDoVDA3d0darWaKPudO+O+Wo09e/Zgzpw5NfuF+/hQUKQRdGXOOT788EPMnj0b1lOmkJNu6DxRDx4+fIiDBw/ywsJCNnv2bFRzjFJSiKVhYUGskpAQygKXBzwkScKaNWuwcuXKhjszXL1KteNbttC6/zR69CA2yttvIy0tDdHR0YiIiJDT09OF6dOn19lLXZZl7Ny5k2dnZ7NJkybBxsamYbVsgALBO3dSNvvbb6l0qrSUxOROnaJ9acOGOpliISEhcnh4OMvJyeHZ2dmCUqnkJiYm8vjx48UayurlSE9Px7p162BqaoqioiK+dOlSplEqqSxlyBCisXt709oXE1MnKwEPHwJPnuCGQgHN3LkI8fCAe8uWvONXXzEhIoKCNGfP0rjJyiI69Lx5kM3MsG3bNp6UlMQEQYCpqanUoUMH0dfXt/rzKyujQOPcuRR8qA+XL1PAwsWlYq6VlJRg3bp13NnZmQ036Mc8jZwcCspX6VogyzKOHj3K79+/z/V6vTBp0iSDen3d2LGD7IuNG6snGKZMIQr4gAHkEC9cSL9XRXIyaaWMGEF76Ouvg3fqhAMHDuDx48eYO3du4/aKl18m5kd5273CwkJs27ZNUiqVbJ65uYCQECrX+YWI/eorHHz4EC+0aAHbpKRqgoFFRUX4/PPPi8vKytqvXr360S8++TP8Ijxztv8L8Pf3b69UKm/MmDFDW9eC/wx/HnJycrBu3TqMGTMG7euoi/lbQZLIIDpwgDZag1r5nwnOqTb83r1KWt5PP5ES8vDhtFk3a0avu7lRX2BjY6JQ/ganJTc3F59//jkmT56M36QW/itx9epVnDlzBs2bN+cTJ05kOp0OxcXFEEUR586dk0NCQgS70lLZKilJuN2qFRdFkVtYWAiZmZlS586dxaSkJACApaUlPD09q6tB37lDAlJTppBzOn58w1H4PxKpqaQfMH06Rd6jo4Hdu1HUoQN+Hj6cD5s/n7Hz54nGLIp1Z9wmTqRsxcyZv/mS3nvvPUycOBEuddX11YaYGKIHRkbWXQcdGUlZ9Kio6oGi/HyqCdywgajcv0NgJyYmBgcPHgTnXF6xYsXv84BLS2me2dqSge/qSsZip041qbS1gHOO/Px8REZG8lOnTjF7e3v5pZdeqvXaHjx4gGPHjnFLS0uu1Wr548ePhaWXLjH4+jbY4g1vvQXY2kKePx979+7lCQkJXBAErlarodPpxNTUVLm4uFiQZRkAsNpQOw9Qbefs2ZV0/gZw8OBBHhUVxebPn496lesvXSKH7F//qhRJqgcpKSnYu3cvFwRB1uv1KC0tFZ2dneVuP/7ImpuastJPP8VH5Yb4zJkz4eDgQP+o15Nw3+uvI6Xc+czIyEBiYqKcl5cnFBUVwdTUlJeUlDATExNZFEUkJiYKb2o0UE6eXKOnL0DOzOXLl5GQkAAjIyNER0dLJSUlYseOHeWQkBChZ8+evG/fvpULbk4O3cPjxykYlpZGc0OlAk6ehH7QIKxzdcXM5cthYmTU8HiPja0U9KyqjREURI6lVltjvT916hRCQ0OxePHiOjOdpaWl+Oqrr+S8vDxBFEWsWrWqwedSAb2enK4VKygra2lJLAadjpzwRqCwsBBJSUkICwuT7969y1555RWWkJCAc+fOScXFxZAkialUKs45FwoKChg4h4+PD/r7+dEJOKe90MWF1vOoKAoE9O8P/OMfFEh1cAAmTkTm1q0QN21CaWgoX//CC2z40aMI79aNi66uMDt3jg04dw7qqCiIjx9TFlStJmbB6dN4fOQI7p/+P/auOyyKq/2eO7NLLwICgiIqKFVUVARBLNhLRGOJscUSjUZNNDHdGNO+JLYkGqNJ1BjFXkBFjYqIKKCCShMQGwIiSO9smfn98bL0qvjF/D7O8+yzumyZuXPn3rec97znRO7dd5mHh0fDAZKsLOqO8fXXlZT8moiPJ5XwTz+tdj2Dg4PFmzdvisuWLat/vTp/nuZ3PUr3Fy5cQHBwMHr16qUcM2YM3yAbLSOD5uXevZX3u1xOa3N0NI2vk1Pl3IqNpYDF6dO0D61eXU0jIDMzE/7+/sKTJ0/YtGnTWMU9CSpxSUhIqBS3ow/QvP7wQ0BLC/v370dBQYE4e/ZspnbpEjEnmpOky8sD9PVR1rUr/ra1xc0+fbBkyZJq+39QUJAyNDT08EcfffRa07+4Fc+K1prtF4w1a9bw6urqh4YOHarZ6mi/nNDX18fYsWPFY8eOsbi4OLi6utYbBf+fgIqGmpdHjoMg0CbzT9ZSM0YZy6rZoBEj6FkuJwG2oiKKxkdH00Z/+jRlG+bMISPMxoYy587OlBltgl6Cnp4e2rdvr9y3bx//2WefNS3j0YJwdXWFrq4uDh8+zI4cOSI6Ojoyf39/SKVSCILAjRs3Dj22b+fw2msYMXBgVdXz+i2Lx4/JMDt9mujUQ4f+99q3qYSUVG19Nm6kOukxY4jifPQoZQmmTaNr3rYttq9apXRwcGCsb19WVaipXjg5kXH4nFCpQzfrmsvllNFavrxhwTEHB3IckpLo/Sro6BBdUBTpPlywgCjbzRBSqgkrKysMGDAAERERLRNZV4ki9upFtPPyFmo4coTE1pqQDWaMQVdXF66urszR0RHq6ur1DnK3bt1gbGzMtm3bxlQaA/joo6aVuZSWAoWF4DgO06ZNq6u9I5eXl4c9e/YgMzMTkZGRYo8ePeg9CQlNXvMKCwsRExPD3n777YYdbYCCEr17k+L85MkUMGjgd0xNTVFes8oDJGjk6+vLJZqa4v233oKaVAoPDw/l5cuX+WpzNT8fuHULhcXF+Ouvv6Curi7K5XJBR0eHd3Z2hiiK0NLSYubm5njw4AFXUFAAjUuXwMXFEVMBVb8qH2fOnMGjR48EnueZtbW1UFhYiMGDB/OOjo74+++/OXV1ddja2tKJZGWR43LpEjnb+/dXBscCAmitFkVItLSg26GDcP/TT7me58/T2jR1KgWipk8nzQAvr8rx6dKF6mAXLCAHu00b+o3XXycHqI5xHD58OGJjY5XR0dF8nb3bQayf2bNnc48ePcLx48eR9OABLDt1IicoKYkYVT4+tIdYWlKGfd06Yn8FB9Pfbt+mDGVKCgnYqa5Br17UuSMoiPYiQaB5eeIEMQ/69oVWRASsrlyB1ejRXPeUFDHx6FH0vnED7RwdeYWbG9Tv3oVWdDQKunZFqY4O8gQBXb75htaRkSNpn46KIo2BR4/oGIYNo+Pbt4/uzYMHkWdhgSubN6PEyEhoa2ODrurqSO7Th03p1Ytpl5SgYNUq+OrpIXPvXgwdOhS2v/8OrkcP4O5dKBQKPAgKErsqlazzkCG0Tm/ZUr8AoZERzfPVq4Eq3RAqkJVFY/vWW9UDJwByc3MFU1PThlk4Ojp11jmrMGTIEDDGcOnSJd7BwQENlgmamNCaEhBAAXoTE9L++OEHepw5Q3MrNJSCKePGEaW8nsBi27ZtMXPmTO78+fPi7t27YWlpKUycOJErKCjAnj17RLlczu7duwd7e3u4uLggMS0NspAQUVi2jHXfvBnZ2dlKa2trpqamxvDRRxQ4aaqz/fAhBV1SU6GemIiOt27hpp8fbt++LQwYMIADKLgUGhoqKysrW9O0L23F86LV2X7B4Hl+hbGxcac6e4a24qWBk5MT09DQwK1bt5R//vknr6enp7SwsOC9vLyevR3Tvx1LltDzp5/SZhMR8c8eT32QSisdlqpO1pw5ZNQlJZEBIpWSgvOuXbS5JyaSk2lvT1kcW1vKTHTqVJHhDQkJwePHj/kOHToIjLF/JO3r4OCAdu3aYceOHfD39wfP8xg1ahQcHBwoU+PvT/WyjaGggATrXn2VMkO7dr24g5bJaL707VuptD1rFrVe+e03ygZlZZFTeewYZfi0tckgBSqcNUEQkJeXxzdZTyE0lMaiZv1dM5Geno6dO3eKbdq0Qdu2bZu2dufk0DyKiakumlYfioooixIWRkwMFaRSclBycigTGBZGCsgODs1mHoiiCIVCASMjI+Tk5Dw/hVwU6Ti6dKFM4mtVkiKmpuT82NqS0FETmQVNWV8NDAwwcOBAXLx4UXznnXfoerz+OrUjaqiE5O23G3WY9fX18fbbb2PNmjXw9fVlPXr0IGfo7NkmHT+AinrbJvdi19QkCv6ePURfnTu3yQGvHj16wN/fH0U6OlRzunkzLl++zEul0mqiUMVPnkD55An2+viIhoaG4rx58zjUE4Tr1KkTcP8+dp89i5RNm2BZ5Zrk5+dj69atgrm5OYYPH845ODigZpowNjZWHDNmDGtnbEzK22VlRCH/7Teqd09MJJGzPXtoDqvGydcXY9LTua1bt+LO6NHKKQAPZ2dagx89ovMrLCTnNiurUtTQ15cYLF98QQ5dcHCF6BNEkQLFWlr0WapH5pPXroXdmDGQjh8Pcfp0ZK1YAY1Hj6C2bh12vPmm+MqGDUwwNoauhwfad+2KtIMHYRYXRzTju3dpvRw1ipywp09pDbOyIjo5QMfSsyc5Y7t30/3QqxcFp/bsoePj+UpthrqC2IzBShAYGAPjOFTrEcEYDMtbwx395Rcx7eOP2RBVZrsmZs+m37W2Js2BIUOADh3wsHt3QUtXlxvbrx/HgoJofD/5BFi1CkJODoqiouC9ZQv8/Pxw4sQJkT9+HHr5+cxs6FBEREQgvH9/0ePddxlkMjqXNm2I3pySUrfjOWcOBVDPn6egrgoyGWW0O3akHuU1UFhYKKpa89WLNm3ovBrA4MGDERMTI9y/fx9WVlYNL54zZ5LOxsiRNM+2bqX1/IsvaO/csoVYR999R4G4RkqUOI7D8OHDWd++fXHixAlxw4YNAAB3d3fR2NgY6enpLDAwEIGBgWCMoeewYdBKSBB//vZbVsLz/LBhw2iOLFjQtODxxo3E9gsIoLKCcufcyckJfn5+uHDhAhcTEyN06dIFOTk5DEDA6tWr4xr/4la0BFqd7ReINWvW9JFKpWsmTJig2aDAUSteCnTr1g3dunXji4qKEBMTwyckJCg3bdrEvfHGG8ysiYqu/y/x8ccUJc/JofrepvYHfRmgrV3ZygVARa9KQSDqWEYG1XUmJ1PWe/9+qiFbtQooLYVebi5csrLEkRMmcCgsbFp7pBcAIyMjvPfee+zy5ctwdXWtpEPm5ZGz6uhY/4cFgYydzZtJIOzKldr9Q58HsbH08PYmKt4bb1DW8YsvyAhu144MTWtrYiCoqIdTp9Jzr151fm1+fj7++OMPwdDQEB06dGial7lgATlhH3/crFMQBAEpKSkICgpSKpVKLi0tDb179xaHDRvGNWntTk4mw+z06eqZ6oago0PBgbrqTwFyUo4dI+ehVy967NjRqPMoiiLKyspQVFSEw4cPC0+ePKkYu6ysLDyzZkh+PhmY77xDRumaOpIi6uoUmNPToznRAgwDFYqKikRzc/NKzYGYGMqiN0TF/usvGq+q9PB6YGFhgeTkZBw5ckSc+PHHjE2eXNn2pxFokMK4kJ6ezjWoglwVpqYU0Hz//UpWRxPtBLlcTn3C58yhdQuVSuwAZa6O7dghdhEEpqmpKb722msN3z+CAMyZg866uuLd4mJmJpMhPDwcBQUFiIyMFG1tbTFu3Lg67wVBEFBaWsr0798nJ1OppDVg/vzKN0kklCWuA6GhoUqJRMK3UfUK//DDyj8WFdHziBE0/wDKQB48SLXJ7u401x4/Juf7yRMK2Bkb07XX1wcWL4ZzSgrU09KEm7/9xgUmJmLiw4e4cvq0IMpkrJulpejk5MRZ7N8PCyMjyNLTsU5XF4PMzWE2cSIFm4HqwZeTJ+l52DB6AMTyCA+nTHtkJAUahg4lJz0qioIFU6Y0qi/SmHheWloaCgoKUKcgngrff08OYVAQHdM33wBFRbjaowdLS0vD5agoMENDiIcOQWfAAPEVuVzMf/qUO3XgANrn54vybt1EpVLJHR49GhAEtPnxR2Tm5cHe3p7U/CUSChYBtPcYGlKAysaG2Aiq4KiGBmW+f/uNGGWGhrSeXblC12/BgjoPv7CwkDV6H928SWM9YUKDb2vbti2XkZGhbPjLymFnR/Pr8WMKkOTm0nkJAq3tb77ZbB0QAwMDzJo1iz9+/Lh48+ZNNmjQII4xBkdHRwwePBglJSVQU1ODVCplWLgQLm3aINTBQezQoQODiu3R0Lrw6afEBBk8mMp6AApilIPjOMyaNQvGxsaIjIzk4uPjxfT0dCaXyz9p1om04rnQ6my/IKxZs4aXSqUnvL29NWv1sG3FSw1tbW3069cP/fr147dt2yZERUX9bzvbOjpEedy7t6J378vanqvJ4LjK3uHl7U4AUHS7tBSK5GQE7NihzMvJ4WyiohjWryeHPSSENt6xY8nI69aNHAwbmxcm0lZ5yBw8PT2rv+jrS3TEw4fr/pCvLxle331HzlE9jm2jkMvJyNi6lQxZKysyHH/9lRz5sDD6/+uv01zp2rVSTEbVkx1oUNm4KnJycrBt2zbRxsZGHDduHN9kKvetW806LT8/PzEpKUlZVlbGKRQKzsTEhCkUCtHOzk4cOnQo3yRHWyYjI+3cuSb1Oa8Ge3tqu/Xuu/UbjYwRSyArixyzR4+q03JBjlZJSQnWrl1b8ZpUKoWRkRFWrVqFoKAgXLlyRdyyZQsbOHAgXF1dwXEczp07pxRFkbVp04a5ubk1rHrfvz/1T75zBwgMrD8Ta2NDTvDIkTQ36xNpagYUCgViY2NRQfEGyKHJyWn4g717k/PXBMyaNQs+Pj6IiYlh97y98c6SJWhOcYUgCM3vUqCuTsJKYWHENlm/vknBGo7jkJeXh6/lcritXw8MGFBNVyA0NFTJFxQwFy8v5jZrVuM3T1QU8J//wMzEhO3x8UFYWBjatGkj6Onpie7u7qx///71Bp04UcQof38YXrxI2U07u9r7Q+fO9dbW5ubmolevXhg+fHj9x6kKkgI0/wEau2++Ibq5mhrVwKsyxXJ55fsfPwYAOFy8yAGAOwCsWQN7QPV7FQcbExODkLAwQcfYmFWba03Fnj00J11cgC+/pPVo/34KPG3dSnTvt9+uzMI/A1JTU6Gvry9wHFf/ZGvXjtZ8Q0Pg778hxsdD7NEDmR9+yD7+7DNIJBIoFApwHIdbt26xaGNj5tCnDz6WycDc3dm1gwdZSdeuCAkJwcJNm5BoZYXzo0ZBQ0NDKC4u5qqJbKrafioUdG4dO9I+mp9PdPp+/ej8w8MpUL95M60LJ0/Wux8IgsDu378vDhgwoP5r0LNnk7oEZGVlKS07dKBgeXo6sS5UHTzu3qX5IpUSQyE0lI4pO5uCX2ZmFLDYvJkC85aWFNxqQN2+Pri4uLD4+Hix6iLLcVx1BfwPPoDeypUYsWIFvSc4uP41LiCA7ot79yiIPWlSvWutqm2gu7s7SkpKFBkZGftWr14d3eyTaMUzo9XZfnHw1NXV1bZXZdRa8a+EXC5HYWHhP30YLwdef50yMJGR5BycO/fcas8vJTQ0sOnkSUFo25bvO2oUTL78kjZdUaRI96NHRE1PSyOBl19/pc3unXeIXmhkRAZzx470bGj44oITJibVqbwqXLtGho6BARmkjfTgrkBJCZ2XsTFRoWfMoFrElSvp9dBQymQMH06qwK6u1Q3hGrWezwKFQoE///xTsLGxESdMmNB078XLixxWVflDE5CcnCzIZDLJ6NGjYWVlBQ0NjebxtM+fJwf7wQMas2fBK680TnvnebrWS5dStvvRI+DYMZQtWoS79+/D398fJeV01lGjRqG0tFQVmOEAolMOHjyY+fr6KkNCQrigoCAmCALU1dU5CwsLdv36dVy+fBm6urrinDlzWDXho9RUCij4+FDt59y5FGhqCF26UHlDhw4tkuG+c+cO5HK56OnpWXkjHTxIAcBz5+r/oJoasT+aAIlEgtmzZyPr++8RfPMmLt++Da9mBFkVCgVrVFG7LnAcBTJSUylgFRDQKINmypQpOHLkCOSiCKf793HPygr3qjgAqampTM/MjOObMu7+/pTNu3IFVnp6eP/99yGKInR0dBq+F+RywM8PirVrkWRjI2osWsScGrJ3OnYkynENxXcnJycuICBAGD16dNPvPT8/cuz19YkhI5XWXzvcBCgUCvzyyy/K0tJSfuDAgaxv377ND5zs2UP1vapWlcHBlc6PgwPVTj9+TKU1c+Y0m32jQmpqqlJbW7vxDWXFCgreALiYlqZMWLaMGzF+PFObNAlYvRpq5fXrffr0QZ85c2hPnzcPePwYbhIJ8M038PziC/xRUACXV1/F/A4d4OPjg7i4OEycOBFWVlbVe8VLJET3B0gU7fFjcrhNTMhmmDePGEC6urR3VNVcUFHrs7MBjsOrr77KnfjkE+xjDNO8vCjAN3gwzVULCwpSfvYZrYuiSOtTTg4Fwzt3pjKNpCTAzw8jjI35QpWganAwsbu6dKHPPHpEAWgDA9q3R40iZzwxkQKGq1ZR4PjmTXr/gQO0Bufl0Tro4ECaC1u3Epujnvs/ISFBjIyMbPyaWVkRQ+yrr+i358ypLS4nl5Pj7+1NwYL9++v9urKyMpw7d05UKpWiRCIRRVFkN2/e5ARBaJzq04oWRauz/eLg2rVr13+mMXArWgyTJk3iduzYgejoaHTv3v2fPpx/HhxHm6edHW2u2dktS0l+CVBaWoqioiJuyZIlaFNVmIox2pQNDKorFL/+OkXKMzIo65+TQ5v6xYvkbB8+TNm1JUvIqOjUierNunZ9/t7hgYFkVKmQkEB0zSVL6PUZM+p39C9dIvVfVf3c1q2kPJ+eTn1FFYrKPsMzZtC/q9Z5N9WBbyb27t0rqqmpsVdeeaWW8S0IAg4cOCB27tyZubq6Vv/jzJlNbqekwoIFC/i1a9fC0NCw8dZDNSGKlL3/8cdqPc6bjffeIwfr3LlKSmp9KBdf2/fZZxiyfTuOJCWB09UVPMeO5VxcXBoVc/P29uYBGse4uDjo6ekxCwsLJCYmIjc3F9evX1euW7dO4ubmpvTy8iJvY/Zsmifa2nTNGztGFZycKIP19tuUOX0OkbeUlBTB2NiYVTu/8eNp/WkIMTEUJJoypcm/ZVRYiK6amrhy757g5eXVZAdQXV1dSElJ4Qya2JO7FiZPJjZA//6UFW2AHmtjY4NPynvlKl55BcW+vhXBFoDq0E3u36d7f9Kk+n8zN5cCIlu3VgRQ6uw1XRNXrlCgMSAABydOVCrNzTnbPn0a/szevXWWu9jb27MTJ06whw8fUu14U3DyJDkh06eTnsFzIjAwEFKplL399tuQSCTNj4zGx9N9PGYM7Q88T86rINC19PKqDAicPUvZ0o8/pqBlPW0d60NmZiYrKyvjwsLCUGsNrIqOHWk9XL0aWd27o22/fqx3r150H5ub0z3ZqRNd9++/r2Q96etTDfaxY5CsWAGn8eNFrFwJ89Wr2cqVK7kLFy7gwIEDcHBwUHh7e9ftQ1ha0iMvjwI53brRvTh/Pq0fb7xBzISLFyn7/8EHVBc9bBjg4IC2f/2F2bt24SctLQj5+eB+/ZWCdj/+SMwpW1taW6ytad/V0qLHgAG0r+ro0Pe/+y7C/v5b1DY0FHpNmtR49OT2bbpekydTEFuhoNcvXaJnR0fa7wG6Tzt0oPd88gmtkx9/TOt4eDgF3ydOBNzdcX3/fjFDV5e5uro2PreGDKF5tHQpOf9nz1YGkr7+msTS7t6lsW1gvRdFEfv27UNSUhIzMzNjenp6uHv3LhhjEa2tvv77aHW2Xxxyy8rK5Ggd43812rVrh7Fjx+LUqVNi9+7d/+Xc6RaCuTllc2NjaTNPSWkSnevfAJlMhi1btgiWlpZimzZtmp7akEhoXFQ1U1V7gy5cSJHynJxKsbb33yfja/JkctC1tKj+0NCQIvNt2zZOSy8spAzPmjVEMb50iWrjZs0CbtwgQ1sU6X3bt9MxBQSQYZWYSGqqU6eS4TNqFP3m6dOVzvmffzZn6FoSzNraWqwrs7R3717h8ePH3J07d/D06VOMGTOGHMyjR2n8mtmeTU1NDYaGhsr9+/dz8+bNY3qNZWxV2LqV6jGTk1umXdrJk5TZbIIj6+fnhztSKe4sXIhOBgaY/d13HLp0IZZBE8FxHByqZD1Vbe369u0rKReH40xzc0VHNTUGPz8yiH/5pVZWslGMG0eG9uPHNA+bWs9cA7m5uYKBgUH1G8LQkLJkN25QPWhdmDKlUsCqKVAogDVroIiORpqvL1dfjbsoikhJSYGGhgZ4noeuri769u3LnTx5Etra2pDJZNDS0kLVlj9Ngq4usQe++YYybQMGNM6K4XlM37oVWxYvRlBQkHLgwIG8XC4XkZ4ugjoU1A1BoLVi0KDqAbuGkJREbI7AQJoLe/fi8bp1bEC3bqy+tloVMDCgcoiqTBhQK6Tyns2N/75cTk7Nd9/RHpST03gpQRNQVFSEtm3bipJnKQWKj6drlZxcPVurqUlreU0BwE6d6OHrSw76jh20b9TTW7smJk6cyF2/fl0IDg7mwsPDlSNGjODrbUvp6gp8/jna/Pwzn5yRQWvVvn30t2nT6Ph27iTHrWqwsUMH0mVISoLr/PksRk0NGXfuwGTIEAwZMgRGRkY4f/48L4piZXY7PZ0cai8vwNOTgp8DB5IS+VtvUYC+tBQoFwrD3bsUMOnXr7KfexUR1vMnTghcXJzILVnCV7CVqrJY9u6lkpUGkiBhYWFIycpii6ZMaXwvV3XIWLqU9pIPPqDsds0SLdUcqapJoAr6LV9eGXjNzqb5GhWF1776istKTYXpN99QJnrLFmIdTJ9eO1V60vQAACAASURBVHOtCn4dPUrBt44dSdR07FgaR5Wz38C+k52djaCgICQlJWHAgAEYMmQISktLsWHDhlK5XD610bFoRYuj1RF8cbiTlpYmB9Ca3f6Xw9bWFidPnmQXLlxAveqf/4twcCB6mJ4eUbpWr/5X08oLCwvx119/CQYGBpg2bdrzKzeroKVVu1fvjBlk7ObkEAU5OZmMtpwcMrp+/pmo64sXU8TfzKwyW6CnRwa4IBCVdts2EgNat45UoP/8k5znKVMoc+XnRy1gevemLErnzvT52NjK41m5ssVO93mRnp4uuLm5VbMkBEHAsWPHxIcPH3KLFy9GWlqaeO7cOezZs0f09vbmdL//HmzaNMomNRG5ubk4ePCgkJ+fz8nlcvbjjz/Czc1NGDp0aOOiaPv3U+bE2vqZzrEW1q+nwEh6eoOU8vz8fNy6dQtOTk7geV5ITk4GoqI4iCIZz05Oz0xPVcHU1BTe3t6scM4c8bEgiGY6Oox9/TU5Wc9SDmFjQ+vDiRPktD/Dd+jq6nLZdWWxIyJoHtfnbPv703t+/71pP7R8ORAcjB63bsHf3x+bN2/GsmXLUFhYCJlMBisrKzx58gQ+Pj6iXC6HKIpMEAQoFAqoqamBMSYcPnyYSaVSobS0lLOwsBCmT5/etNp/Fbp1A/74gwzsQ4com9cApZlzcECJmRnMtbTw8OFDNnDgQGhra7NH+vqsb33jAtC64uREQbfGIIpUW375MolE/f57BSuHMSY2KUi1axe1ZazhbOfm5qJNmzZKAwODxtfcixepVEdXtzJ40wJtC3v27Im9e/fyaWlpaLY+y8SJFLSsKcL311/kmD14UPfnvL2JnfH773Sdv/ySnONG5oqhoSFGjBjBeXp6IiwsjB0+fBiGhoaKhQsX1rbnrayAEyfQ7uhRMUZHRxQEgatgh1y8SHvIjz+S0z9nDu07KSk0vmZmQPv2UAwfjuO6uvC2soJJSQmgqQndkhKoJyUxhUwGac+eFKQ9dowc96gockT79qW5nJhI8/nzz8nZvn6dMsR19HFXQRAEhIaGcrNVuh81cekSUcEbcLQFQUBQUJDo7e3N2jTGqrl3j8Zg7VrKWAMUgFIJ9DUVJiaVQZPduwEAJSUlWP/FF/jE2JgC3jIZ/X3bNhL+O3qUaONpaXQMPXtSIPettygALgjUIs7env7fQC/6vLw8pKWl4ciRI1AqlXBzc6uwWa9evarkOO7k6tWr7zXvpFrREmh1tl8cwjIzMzXlcjmk/2IHpBWU/fL29saZM2eUQ4YMaTkn7P8DrK0pgnv4MBlhz1E3908gNjYW58+fVwLgioqKmLGxMaZMmcI9U4ajueA4yogYGVEf16pYtIicb5mMjJW0NNqcOY6yBjExlKXOyKA6stu3yQAZNYoMGrmcouOGhkTfvXy58rsbUm/+h3Hy5EllcXEx36VKn+bi4mLs378f2dnZ7K233oKhoSEMDQ1Z+/btsWvXLmxcvx7S8ePF18aNYzW7O5cbbbh79y44jhM9PDyYvr4+fHx8lNnZ2bytrS26devGJBIJEhISxPDwcE5TUxMeHh51H+Bnn1GG5uLFlj1xjqMM15dfknFexeA+dOiQkJycDDc3Ny4gIAAWFhbCyJEjuZs3b7JHjx4JFbXiU6eSoXzzJt2TNZyaJuPWLdgeOIDCs2fZlk2bhLcWL2a6Bw+ipsNYLavVGL76ipSH//6bDMdmCkRxHMcUKkpnVaxdS45gfdDWrreOsk6sXUsMAwAfffQRvvrqK8TGxiIoKAgKhQJ9+vRBdHQ07O3t2dixYyto+4IgqP6tChLxpaWl+Omnn7igoCBh0KBBzaM/SKV0Xx86RGO3bFm95TqcRIKOe/dixIUL2PnwIRcbG4uQkBBupoZGhVJ5LQQFEb0/MrJh0UKVcvTKleQIbNhQTemY3iKymJgYwc7Orto5KhQK8DxfOUd++KHW1yuVSgQFBcHZ2ZlPT0+HaUPaBYcP031x5gxRa/PzKZhYj8p5c9CpUyf06tUL+/fvF9955x3WJEFGQSBWkqrfd00sXkzBjHXrKEtcl3PJGN0Xbm6kpD52LPDtt7WDs3VAU1MTgwcP5vr3749Nmzbxfn5+4vjx42vfkGpqsD13jp10c2NXr16Fm5tb5d84joKyX31FTrIokpPH87QeuboidMYMwfXePTh+/TUHY2MIaWkQ587FVAMDUaquzjBpEt1jy5dXtjycNYueRZHmrpkZ0apPnKB53UhbQI7jYGZmJkZERLA6Swt+/ZWCPTt21Pl5QRCwbds2pYaGBtetsf3u4kUKOOzfX/0aGRjQeZw581zspczMTKirq1OUY8SIyj/cuUPP3bpVMpq0tSk4Lwh0PQAKwCYk0Lru40PXa9Uq0ggJCKDsuFIJ8Dxu3rwpBgUFMVtbW+XUqVMrbuyysjKEhITIZTLZp898Iq14LrQ62y8Iq1evLvrPf/6TX1hYaPTMNVyteGlgYWGBoqIivll1Zf8rMDQkx7C0tLJGubH6vZcAgiDA19cXLi4ufFlZmejs7Axzc/N/pJd2LUillVH7ciEbLFhQSQu/d48McaWSstW5uZVORb9+9Pysgl3NRFZWFrS1tZtf8wwyyCUSCU6fPo34+HhlaWkpz/M81q5dK/bt25eZmZnh3LlzAsdxbPbs2axtlah+mzZt8M477zClszMe9u0Ln717oaurqxQEARKJBIIgsIKCAk5HR0fs3r07y8/PF/bv388rFAr06NEDc+fOhba2dsX1dnd3Z5cuXUJISIjg6upad8ClqspxS2P2bDKyaziw8fHxnCAIOHv2LDw9PTF48GAOAO7duydqampWekre3vR88CA5R7GxZLQ1lRqvQmQkcP8+dKRSLD11ivtr+HDIg4LETklJyMnJEfr27ctHRkYK8fHxnK6urqinpyf06NGD69u3LwPIuNTQ0KjeP5sxctKWLSMhqT17mnVIlpaWLDw8HOvWrRN4nhfNzMx4Jycn2FtbEw0zIaHu+T5kSPUe5g3hzh2id/74IwCoqM1iQEAAs7e3F/r06cP5+fkp7ezs+FdeeaXaR+tyzjQ0NGBsbIySkpJnKz/S1CQGzLp1lBELDq6/tCQtDSY7dwLjx+PEiRPi4MGDWZenT+sPasTFUeauIUf7wQNyRA4epHGpp5PByJEjuSNHjiA+Ph55eXnizZs3xeLiYlZYWMh4nkeXLl2ULi4uvKWeHiRDh9L8AvD06VOoq6tDJpMhLCwMoaGh0NXVVVhbW0tGjRpVfUzlcuCjj6D85Rfcvn0btvv2QTptGgUNWiiZMWLECMTExIhxcXHMoSnCclu3Ep09KanubPSyZRB1dZE8ahTu3rkjPgkOVgqCwNTU1ESJRMIGDhzIV5QodO9OTLHHjynzGxjYNCFCAOrq6pg1axbbuXMnCgoKIJPJRFEURQcHB87ExAS6+vooHDkSGunpSElJEVFFfR0AUdj79aN6YG1tat0FAAoF7m3YgBuxsezNBQsYAgIApRK3rl6F/7Rp+OSTT+h76uiTDYD2qq1bae6+8gqN0fDhdL+WZ8gbAmNMrLd+ft++BoNs0dHRKCoq4pYuXdqw0N29e7QmHT1aOxiirk6Bt6dPGxewbABZWVnQ0NAQUBmIqw41tcrypy+/JDvq3Xcp+9+lC12fN9+sLIcRRZrzERHUXnP6dLIRrKzguX8/6+XtjVMffMDk585Beu4c8MMPuHbtmpIx9vfq1avvPPOJtOK50Opsv1g0EHJvxb8Jurq6GDRokNLHx4cfM2YMerZAO5v/d9DQoDonOzuKwvbo0TL1rC8IERER0NLSEocNG8ZQ0wB5WcEYZavMzMjpLisjqttXX1W2vvkvIT8/H4cPHxZSU1M5nudhamoqjho1ipmr6tbrQEBAAHJycpCXlydmZWWJpaWlnFQqFUVRZGPHjuV5nke7du0QFxeH0NBQMMbE9u3bi97e3pxmPcYZ//33sLKxYW/r6CAlJYXneR755T15ra2tYWxsrBoUXqFQoKysDNra2rUsMMYYPDw8cP36dS4kJKR6m7Xly8nY2br12QesMfA8GVY9e5KavJoaIiMjIQgChg0bJvbv37/axe3YsSPCw8NrG3FTphAFOSqKaKpHjzYt+BUeThT0M2fI8V+3Dpru7njz229xPiCA3bp1S1AoFPz9+/cBgBs9ejQ0NDRYdHQ0f+rUKaSmpirbt2/PnTp1iqmpqUFDQwN9+/aFjY0NjFWO8KFDVB+6fTv9RhMZJLa2tli8eDEKCgq4y5cvIyEhATKZTLC3t+ewYAHdC3U520FBVOe5c2fjP5KURMZ3FcyfP5/l5+dXBOHefffdZjGb0tPTG+8X3BA4jtbUV18launatUTPrYkhQ6CxYQNWu7sDUinNk+++q5ty+sYbZKDXpw9QWEiqzuvXU6b19OkGD9HR0RExMTHw8/MTJRKJ6OLiwhkZGUFNTQ0BAQHC3bt3+aSkJLQ3M1POdHLioVTiRmQk/P39IZVK4ebmJjo4ODAdHR2cO3dOEh4eDmNjY7i4uJCQ3/Xr4LZtEx795z8oLi7mog8fxpsyGcz696e51EICnRzHoXPnzlxsbKzSwcGh4eucm0vq2uPGVay5giCgoKAAmZmZKC4uRllioph26RJy9PVFz9BQrvSrryQA6YLk5+cLW7duhYeHh9CnTx9OW1ubrvXs2bSef/wxjf2RI3QNG1nXTUxMMHXqVAQGBio7d+7Ml5aW4u+//644L3OOE2b4+HB/6euznKFDUSsB9MUXteeKRIIjSUlwHTqU6RgbUx3z4sUwXr4c7WbNEnmeb/igtmyhdeznnysDIhoa9Ftz5zYs3Adau2/duqUEUP1afPoprW0nTtT7WW1tbZQHNur/gRMnSBvh2rX62S8REZW072dEZmamqKen17R1IyaGsun79wMbN5J6/48/Vi+POnSInm1tK7VhwsOBsjJwjIFbsQJyfX2E//KL0i0qild8+y1CQkJkZWVlnz3XibTiudDqbL9ACIKgwRhDfn4+5HI55HI52rZti/8KRbUVLY4BAwbwBgYGOH78OCwsLOoUzvmfx+LFlE0bNYpogyo62UuIqKgo0dHR8d/hZFfFe+9RjXdQEBkJqankUBQWNtoy6HmRn5+P8PBwRERECMXFxZyBgQFbvnw5srOzcevWLfz111/iu+++W60FUmlpKZ48eYLbt28jMjISnTt3Vnbs2JFzdXXlunbtitzcXKatrV1NBdnDw4OVU7kZahpbVbF1K9XrduwIQ1A9Y0OQSCQNrr88z8PExERZUFBQtYk1OSaC0NjwPD9MTcnZLiwEDA2RWU6RreloA4CHhwcXFBSEOum3PE+ZyIMHqdRjwgQy2OpTkFdlS2xs6LO7d5Px/8UX4Hgew4cPx/Dhw7n8/HxkZGRAV1e34je7d++OuLg4+Pr6cpGRkUxNTU0cN24ci4iIQEREhPLSpUu8ra2tcsKECTyTSkkwautWyla+9VaTh8bAwACampp48OABhg8fjoq6/nnzqBa8vJdsNTg4NN1YHjy4lgOqo6NTPUPfTMjl8mdifNSClRXRi5cto2taMwvHcZSRPHmSMuEA0VFrrgepqZTVrk9Mz9+fmEmurlRjXVO8qR68Ru0HK4KWBQUF+OWXX2Btbc2pq6sLycnJ3KOUFH6np6dQsHEjyy0uZpMmTYIoiggICBAiIyO5KVOmsKioKLRr104MDAwUnZ2duTNnziiNv/+eM5XLuaeDB4slpaWCYVYWVyIIuJ2aCotLl5BVXIxbiYlKU1NTrmfPnqy+oFxT4O7uju3bt/MhISHQ1dWFTCZDdna2+PTpUyEnJ4eVlZUxDUEQ3/jySy7knXeUmQ4OfG5uLgoKCsSSkhImkUigrq6ulEgkonNEBD8oJoZp+/oybtkydBo9uupPcampqTh48KAYHByMjh07Kl977TVeTU2Nsss//0yBhGnTaE3YuLFBNX+ZTIaioiK4ubnxpaWluHr1qqijoyMOHjyY69mzJziO44TkZNiUloonT54UZ86cWT1At3MnrRcLFlS8pFAoUFJSAmdnZ5oLM2cSU8TcHHbh4bUz5FVx6hQd95df1mZXTJlCQeLGrwV36dIlxMXFwa4qO2XSpEbFIMuFCYW1a9dyQ4YMEfv06VP9WK9dAzZtovuloftz4UL6+7ZtjR5vfUhLSxNMTEwad7bj4khf5ZNPiFo+fz7NgaZ0cZBIKgKXup9+ioGLF3Ppjx9DiIvD7du3ASBq9erVMc98Eq14brR6fS8Ia9asUWOMaUVFRSEwMBA8z0MikYg8z7M333wTjQo2tOKlhIODA+7fv6/ctm0b37t3b3HEiBH/PmftRYPjSMVTU5OMw1dffWFtop4VhYWFyMjIgLu7+z99KM1DTg45QlWNFSsromZGRVHW6sqV528pVo7CwkIEBgaiqKgIjx8/RkFBAfT19cUBAwagvNUUA8gpsbCwYPfu3RNPnjwJe3t7XLlyRVluoHJqamowMjJSent7c3Z2dtUMD5MmqvDWiWPHyElsZsuv+lBYWIgHDx7wlirtgQ8+IPpuaGiLfH+j4DgyfLdtgw9jirtPnkgcHR1rZ3dAgYGePXsKR48exaJFi+qmkLi6UpCgRw/K3F69SqyIqnW30dGURbt9G9i8maisGzdSdqXGPNLT00NdYlh2dnawsbFhqVTvzCwsLOBIbZ744uJibNq0idu3b58wePBgLjU1FeY+PjA3MKDs1+LFTR6egoICKBQK9K2a3X30iBT562qVJQhUC9sYYmOJillU1DC1upkQRRFV9QeeC/37ky6Duztlppctq57xHDAAOH6c/i2Xk/NUpfc2IiNJPDEsrHamND6e9Ai8vSkAoipFeUaUs4aESZMmcQC4/Px8XL58GZ7z53OFQ4dC/P77CiEyBwcHfvfu3eKBAwcgiiKmT5/O1q9fz3x9fZWGISEsbcIE9FuwAJ10dBgAFrVuHVLS04UbZ88Kw0ND+eicHFY6ciT/6NEjZWBgIO/i4iLY29tzOTk5SEhIUN67d49XKBQQBAE8z0MqlYr6+vqitbU1l52djZycHNHOzo6VlJTgxo0bgq6urorFIfI8z3R1dXkjIyO+W7du0NXRQWxkJA68+ioeSSQ8EhLQrl07TJw4kbVv314VWKEJVFpK6vY6OlRr+/hxZbcKAO3bt8fy5ct5mUyG33//HTt37hRmz57NVQRn9PWJlbJ7Nz3n51OdfXmWWBAEPHjwABEREcrExEReQ0NDqVQqeQCinZ0dN2rUqGqBRW7zZgycNIn9oaNTm3E5cmRFZluhUCA0NBS5ubmQSqXwP3IEQ2JiYDxuHMBxeLJ8OfRXrWI4fpzo4eUoLS3F3bt3UXjpEnqePg2N1aurabgoFApwHAdOVXP8+usNZuwLCgrA8zyqMaWSk6m8YeLEBuefmpoa3n//fe7ChQs4deoU6927N2kHiCLVex85QgyexkoQli0jIcHnQFZWFtcoE/LwYRIg3LmzUnTT1pbGr1MnKnFpitaKXI6ckydRcPkybi9ahL5qaggODi4sLS39+rlOohXPjVZn+8WhiyiKXHBwMIYMGQJ3d3dwHMd2794t+Pr6YubMmVyDtSSteCnBGMMrr7zCd+vWDQcOHGDu7u7Plfn4fwuVkVdUVNkC4yUSCoyIiICmpiZsbW3/6UNpOu7do0ydSo23Jrp0oeycVNqkmrjGcOTIEWVMTAwvkUigo6MDhUKBSZMmwcHBoU7aPWMMrq6uyuvXr3OPHj1i1tbWGD16NGdgYAAtmg8tu+AVF5PgVgtCQ0MDenp6uHjxIkpSU8Xhy5Yx7tVXW/Q3GoPP3r3CsNWrOfUBAyRTvvoKNYMTVeHl5cWtW7cOycnJsKhP3bc8Qw2A+q9fvEhlHjxPWd+OHYktoa1NmZRVq8i4b6Y2BcdxdR6DlpYWXn31VbZ//36WmJhY8XpbpVJ4/ZdfuKPx8WKaiQnT1tZW8jzPFRcXgzEGjuNEbW1tsU2bNpylpSVzd3dHRkaGCIBt3LhRXLlyJc3BQYMo8yaKtY33lBQKMDQGe3vKdrXwnqyuri5mZmaiQ4cOLROUlUopa/jDD2SgjxtXmZkbNowYEUlJdO///TdRblX4/ntaP6qOUX4+XWtfX6L2jhnTImOQlJQkWFhYVASA9PT0MHr0aCA6Gjr6+rXKB6ZPn878/PxgZmYGmUwGqVQKtYcP0e/IEc5/zhwB5GgDAJzOnQM+/5zzdHfnoKsL+x49VGUS/MOHD+Hv7y/euHFDUFNTE9u2bcu5ubnh6dOncHNzw507dxASEoInT55whYWF6NChg9LS0pK/efOmoK6uLnp5efE9evQAX59x9uabMImPZ5uHD8ekiRPRYG13VhYFme/epesQHk6B0BpQU1PDokWL+N9++025Z88eYd68eZXdEDQ0qF73/n26L8+cAYyMkGNnhz///FOUy+WipaUlN3/+fJiamvKpqanYtWsXk0gktXUEJBJomprCKTSU27Jli8hxnDB27Fj+6dOn0E9KQmlQEMISEvD48WMAgLa2tmhvbw/d27eFe9HRvM/Ro4JMJmPm5uYsx8mJdVq2DFtCQlCqqQknJycxNjaWGRcVCaZxcdz+tm1Rcv26UHDhAufs7CxGRkaywsJCGBkZYcnbb9NY3L5N87Ee5ObmQkNDQ9DX1688kdOnKUDXiLMNAPfv38e1a9cwfPhwgTHGQRCo1vvePbp3mmKP2NiQWvygQY2/tw6UlxawznWxblTw8aH68J9/rt7dYtQoEmn75RcgKQn5W7bg/v379ZcwlpYiZf58MeP2bXZiyhTMHjsWycnJyM/PLwBw6plOoBUtBiY2pOTZimfGmjVrVgBY7+TkJEyYMKFisZDJZNi8ebOyoKCAHzFihODq6vryFrW2okF8++23mDFjRvN7qf4vol8/evz88z99JACAzZs3K+3t7bkhQ4b8O5gJCgUZqMnJDbZMAUD1luPGkdH9DIGg3NxcXLhwAbGxsXBycsLIkSOh3gLtdVocjo5ESfz88xb9WplMhrT330ebXbvw03vv4fMW/v6GkJWVhc2bN+P1KVNQkJWFnr16gatCr6+Ju3fvYv/+/fjoo4+aXp5UUkJZ6++/J5X72NjK/tdz5pAB/P77z30uMpkMHMfBx8cHjx49grOzs9LNzY338fERO3fuzAwNDYWOxsac5N49aCUk4JGXF9LT00UtLS3RysqKKy4uRlBQEB4+fAgA0NLSEouLi5muri7s7e3FkSNHVt67CxaQVoRKDVmF3FzKKNrbN3ywixaR7kEDbXWeBadPn8adO3fE2bNnN95+qDkQBDrmrCzqN6yqTV28mFoPjR9PGWpVoOHXX6nm29q6sm1gQgJdb09Pqg1toUCDTCbD+vXrMX78eNjXHPeICCp/aaCvd0xMDM4dPIg2mZkok0rRfcqUSgZSbi71MT51ipylH36gDH4d9eexsbE4XN4j2cjISMzJyWFqamro37+/2K9fv8b7gteEKAKhoRC1tXGloEAMCAhgkydPrn2OKpSW0jp89iwFsUpKiFVSDxQKBdatWyd6e3uzuoLAebm5yAgIgP4334jRJiYs5403hEmvvVbLfkxKSsLRo0dFc3NzTJ06tfr+lpaG9HPncEtXV8iVyRAfH88ZGhoK9pcvo+Pjx+zGkiWiuro6GzZsGKso61m0CE/79MGjnj1x5swZqLoC6GdnY/Tp0zg0eTI0DA2F8UOGcNbffIMyT08E29ujqKgIDx8+hFQqVRYXF7OSkhKO4zg4OztjlJER7WMNjEd8fDxOnDghrFy5svo51hVUq4KysjLcvXsX586dE7t164bRo0cziCLw0UcUqN60iQKLTUFZGXULSU9v+meqIDg4WAgODuY++eSTut+wfj0xTTZsqL2vT5xILJbZs6G4cwdrAwNFmULBBg4cCA8Pj+rrfWEhcPYsrvz0E5Sffw5PLy88ePAAfn5+ivz8/Pc+//zzl8Pw+h9Ga2b7BWDNmjWcVCpdMnbsWDg5OVVbKNTU1LBixQp++/btSExMhGsjtSeteHnRvn174cCBA5BKpbC2tmajR49uWsuQ/0Xs3k3GUVgYOYBEMf3HUFZWhvbt2/87HG2A1GqnTWuaY9m/P9FJNTQok9IMqnxycjJ27twJURTRtWtX5ciRI/mX0tEGyGFsbk/cxiAIULt5E5YbN+LG0KEQb97E8ePHYWBggJKSEnTo0AH29vYQBAHXr1+HtbU1CgoKEB4ejqysLKFz585cRkaG6OrqyqytrSuonhzHobCwEN3r6QsbERGB5ORkREdHQ1NTE9a2tmDDhhGNcPv2eg9XqVRCqVTWqYZdL1Qq1998Q9RhlaP9++9ExR45sjkjVgu7d+8W0tLSUFJSwmlra6OoqAhjxowR+vTpwwPA0qVLVfcdHXRODrBhAxznzkW5hgIrKSnBnTt3kJKSAltbWwwdOhTZ2dlMT09PVSte/d7t2bPumvqICKqBbCi7XVZGrfGqUq5bCAMHDsSNGzfYTz/9hPnz56N9+/ZQKpV4blYbx5EDff481eKvWEGO9IoVxFZgjOpNAeDGDXrvpEn0elQUMQHkcsqqWVk9/4lWQUZGBmQyWd1O6N275Hw24GynpKQIk06c4DS7dYP8xx+r972OiwNee60yK2loWK9OxaVLl5RWVla8p6cnLCwsWE5ODvT09FCvwnVDSEqioER0NJieHgxv364on6kXGhp0j5WUUN3t2rWUga+r3AGkJ+Hl5cWOHDmCvn37ipaWlszU1FSl1i5ER0dz2traStOFC7mhdnYwXrSIQ0kJlQ5VcT4tLS3xxhtvsK1btyI8PBx9qoojmpnBNDAQI3r35sS334ZSqYREIuEwfTqQmYmu3bpVH5vERCA2FsZbtsCYMYSHhwvt27fnBg0ahMzMTHSytsanUVHA6tUcfv8dST8dwQAAIABJREFUmDYN6q++iqHVT4338fERNTQ0lK6urvyuXbtgo62NLl98QUGTemBhYQFRFLlTp04RK+LaNZrDSUnV3icIAu7fv48LFy4os7KyOLlcznieh42NjeDp6clDoaAyE2tr2j+b4zSrq1OwrpmOdkZGBo4cOSJkZ2dzU6dOrf0GuZw6RowbR6J4dQX5VqwAzM1RrKWFuFWrxFFaWpD85z84e/asGBwczLS1tZXTpk3jzXR1ISxahGItLZwfMgRdHj/G+vXrhcLCQg7k49XdH60V/1W0OtsvADzPLzU0NDSpz7ACgMmTJ2PTpk1cZmYm2rZwNL0V/x28/vrrXGJiIrKysnD16lUkJiYK7dq14yZPntwqglcTqnqjr76ibIyf3z92KKdPnxYLCwv5xsS0Xirs20c08abC3Z0CG2PGkLHQiCORmJiIgIAAISsri3N2dhYHDx7M6lLsfmnwxRcUVGjpoI2vL2UE09PRY8wYPOY43L9/X0xOTha1tLTE0NDQijHheR5nzpyBuro6zMzMhI4dO7KbN2/CzMxM9PHxYVpaWigu73PM8zyUSiXS0tIwdOhQ5OXlVSgCb9y4UcjPz+cAMjBnzpxJ9YW//too1dHa2hocxyE1NbV+GnldyM0lpokqExwcTI7bunWVWdJmQBAEPH36FEFBQbh//z43bdo06Orq4tKlS0pTU1OoHO064eJCTti+fYC+PlJ698bBgwchCILg4eHBDSzXe2hQkHLhQrp2NbNeqgxaQ5BIqG79BUBLSwtLly7F0aNH8ccff6B///5CSEgIZ25uLnTv3p1zdHR89jIkjqNWSjk5VGsdFkaOs6Mj9TTOzqaMXF4eOTWiSCrXnTuTovmUKS+kW4Senh4YY5DJZKiVPZ46lR4NoOjqVTFz7lz0Wriw9lyMiakuGBURQWtbHUkLURRhYGAgdOzYkQMaF09sEBoaxCTQ00NqaiqOHTuGsWPHNsxqu3+fAlerV9P1KClptCd4jx49cPbsWcTExCA2NlZZUlLCM8ZEExMTvPnmm6gmtLV7N2lW7NhB93KVtdDAwAATJ07EkSNHYG9vryrjISxfDkREgJW3SARA8/+DD2oHpfz86P3l95RMJkOHDh0qhQMXLCBKtpcXBbyqCB5mZWUhLi4OOTk5ePDgAZsyZQrfvn17jBs3DscPHRKXZmUxXhDqnYPa2tqYPn06du7cCUdHR3SwsEDxihW4GxmJtLQ0ZGZmIjc3V1lQUMBLpVLY2tpiwoQJLDIyUoyKihInTZpEYzVnDgUtZ85sWAytPnzwAQUkP2uamHdSUhL27t0Le3t7bt68ebXvAaWSmCQKBfVXr29vjozEk9xc7Dp0SOzXq5fooVBwEkdHODo6srKyMly+fJkd2LwZvSIixCxtbXbHzg5t9fWhr6+v7NWrF5+QkCCPj4//6dNPPy1s/km3oqXR6hG0MNasWeOloaHx7ZQpU7RYA1QXPT092NjYCHv37mVLly5lDb23FS8npFJpRfTe1dUVV69eZYGBgfjuu+/QtWtX5dSpU19eZ+Wfwo4dZPRt2EAbfFNa8rQg7t27h4iICPbmm29WtiN6mbFnD2VH4uKa/1lXVxKHyssjg2/t2nrfGhgYKCiVSm7YsGGii4vLy78YxcdX9iFvCSgU5NwuXUpiYYyB53mMHTsWqKKyrFLozcvLQ/v27Ss+zhjjAGDUqFEAwPn7+yM8PByampoYOXIkunfvjoCAAFy5cgWh5WJr5ubmKCgoEAsKCrilS5fWdga6dqXs/Zdf0n1TB+7duwepVCo2i6WRm0s08R07yNF8/Jgoxe+/37hjWgfCwsIq2gxZWloKM2bM4KzKs6VNXgOlUsrI/vADdo4YAQ1NTdSijzYEVV16ly7V+0FbWlLmryGYmNBYjB/f5J9rDvT09Coc6qioKMydOxe3b9/mwsPDlRcvXuSnTZsGyypCUs3G1KnkdA8fDnz4IdWXpqdTK7R58yjQ2acP1er37EmZ4eb2Xm8G9PT0oKWlJUZHR7PevXvXfoO5OWUp62qJduYMhvz6K39vz57ajrYokkBc1Tr0Dh3qdVb69evH+/v7Y/To0Xgu++r114GxY5G9YAHCz54Vr127xmxtbVHnuamgUFCtdVlZ5dq9YQNdlwZo0P7+/mjbtq2wcOFCDpUaF3W3pnR2psdvv1HG188PpW3b4ujffyusra3h4uIisbS0VB49epTNmDGj8l5yciJGwy+/kAAYQLoNNZXnS0spMF4lOKKlpSXm5uZWvqesDLhyBfKoKJxxcRHjN2wQlUolk0gkYmlpKWdiYqKUSCSYPHky37W8l3T37t2RkJAg+KakMIvffuPsZ8yoN+D09OlTMMawd+9eOIaFIdrZGdqXLgmGhoaiqakpc3Bw4Dt37qwKXPLl38+uXbvGFMXFkMybRyye4cOfXTOmT58mO+m3b9+Gr68vBg4cWLf4akYGdWj59FNytOtJyuTm5qLsp58QYW+P/u+9J3p4eHDswgViqTg7Q11dHV4DBnAuH36IVGdnsf/mzUxaeb/wZWVlOH78uFKhUGx6tpNuRUuj1dluAaxZs4YBcOB5foJEIvlg0qRJWk2Jok6cOJFbt26dsGvXLnHcuHFcayupfy+kUik8PDyYu7s7UlJS8Ndff/GpqanVDPJWlIOxyl6xMhlF/Gu2B3lBuHz5MszMzERzc/OX36EEiGb2DJnGCmhokHprQAAJitVhmKalpSE7O5u5ubkpXVxcXv4AUUYGGYstKWYVHU31cwsWEHWwHkgkEujq6kK3kRZrcrkc7dq1UxnNAAAPDw+YmJjA2NgYSUlJYnBwMDM3N2fjxo2rP+vWuXO9RmJhYSH8/Pzg4uLSvPKVY8coG6quTnTGTz8lA7yu/s2NIDMzE+fOnYOxsTFmzpwJXV3dZ0+Vzp8PXwMDhdf69RL9efOa91nGqBazptP68CG9TkGTuhEYSMq/LxCjR4+GnZ0d7OzsOJWQ3IgRI/grV67Ax8cHY8aMEXv06PHsa5KBAWU6lyyhDNymTSRwt3QpZdGKiqjv9n+JzcNxHDIyMur+44cf1q0lkZkJWFoicPp0waKqKJYKCQkkeFf1WnXvXm8pSWhoqNLDw4N7rkyGKAIGBkhQU8ORrVthYmKCSZMm1SmsmZ6ejpMnT6Lfgwei4/79DB9+SIJeamrUmq5HD9IOOHiQMsE18PDhQ8TGxsLLy6t599CCBeRQ/vknin18UGRvLwlISpIZGBjAxcWFP3z4cG1hpokTSRRR5WxbWNBeUxUREeQMlgfgCgoK8PTpU76XKph1+zZw7RoyZDL4zJkDVyMjvAFw8lmzUFRUxDp27Ah1dfU6F+mJEyfyaZcuIfPoUeHHzExOU1NTaW5uzvfp0wdWVla4ePEibty4IYiiyA0ePFjszPOs3Q8/YMyhQ2BSaYPjY2RkBGVZGYS5c8mhHTny+faK6dPJyW0Acrkcp06dUt6+fZsbN24cq5PVmppKKuiDBwMeHnUGXARBwNmzZ3Hjxg10+/JL5ZChQ3nDtm3pfK9dI/aKnx9pt7z/PnS3bYNt7961xuP69esCx3FnVq9e/egZz7oVLYxWZ/s5sGbNGic1NbVlUqn0VTU1NamNjY3E2dlZvakOFsdxePfdd7mNGzdi+/bteOutt6Ctrf389Vyt+MfAGIOFhQUGDBig3LVrFz9mzBj06NHjnz6slw8DBtBj7VoyDJOSGhQ9aQnExsbi4cOHGDZsmICWVsZuaSiVlKHbsYPonk1EuQCj6OLiwgRBgIeHBzg7OzIWrl6l1jFXrlRzKA8ePKjs0KED5+np+XKPiQqenjQmX375/N9VWkr9TP/4gxyzFsCJEycQGRmJsWPHVjOCNDQ04OTkBAAwMzNjTdLr6NePnItDh0gYqhyiKOLo0aOCvr4+hgwZ0nTj/PFjql08cID+7+9P92Fj2d9yCIKA4uJinDlzBnFxcRAEAb169RJGjhzJNVtwqgays7MRGRMjWd69O/SehcmhqUkORFW2TIcODTva69cTjf05j70xaGlpVVOuLiwshEwmQ79+/WBoaAhfX188ePBA+corr/DPrPthZUV08TFjKLjGGN3rW7YQxfi/yJ6zt7dnd+/erbNlHaZOpXZKVengMhnN72nT8MTKCpZ1jUFEBGWZqyIujrLIdQSKyjOsz34SYWHAtm24PHeucCk4mOvTpw+GDx9e5yAGBgYiODgYkpISiCdPsmwNDehMnUoU4qQkcvrS0+m6lGd4VShvN4gTJ06I9vb2qm4PzYOWFrB4MR7k5QntwsIOuIeFjTv59KlaPgWxa39fv37Ut/3IEWrNyfOU6Z4xozKL6+9fraVicnIyysrKKNB46hSxbiZPht7mzSj44Qd0dXVlbRcuJOe0xjnWBMdxaL9iBdo/eMDZ9u+PBw8e8PHx8cpjx47xpaWlMDIyEkaOHMnZ29tXtJdEVlaT5jCfk4M3jh7Fwb594ejpiZ7Pa08/fUpzMzW13t/fvXu3kJeXxxYvXsz060ochIcTHf3rr6n8qQ6cP38eERERYjl9nlm+9hoPnq9c95csoX8XFFDd/wcfULvCOhAVFVVYVlbWKor2EqHV2X4GrFmzRkNNTW2jurr6bFdXV7Xu3bvzz5qVVlNTg7e3N44ePSpu3LiRGRoaitOmTWOtddz/bnh6evLq6urw9/dHYWHhv6+f838LK1eS8ZWWRkJQq1a9sJ+6c+cOjI2Nhf79+7eIU1lnTWJLgePISWhmTbKvry8KCgpYWFiYWFZWxhISEmBkZITbt2/DVEsL093ckHz/PvTU1FAkijh06JAok8n4jh07Khlj/w5nOyioXlGkZqOwkJzssrJnq+erAYVCgZs3b2LYsGFi7969W8a7yc6m7NXo0RVCPVFRUUhLS8Py5cub55mtXEn04gEDgBMnSChr+/ZGa3eLi4tx5coVhIeHizKZjOnr64teXl7Mzs4OBgYGz134GxkZKfr5+TFTU1OlzqpVPIqKiBq7aVPTRfAMDclBqkrTVSobzkqFhhKNfMCA5z2FJiEjIwPbtm2DUEXMTSKRQCKRIDIyktfT0xOfuUPCzZs0j3/8kVoWAVSH37UrlZEMGkR9tj/6iMZIS+uF1GyXlZUhPj5eNDMzq/s8pk6lIIiPT+VrubkUJJg7F8LWrRW079LSUoSFhSExMVGcXljItDw8qn9XTg61LwNw/fp1PHnyBL169YK5uTmKioo466qtlJoJMSkJqenpYvDly8zOzg7h4eHQ0NAQPD09aw3alStX4H7xIgZFRODyrFnK43p6/KDoaNr3LS2plEciobn27rskRgggJCQE586dg6amJjw9PcX+/ftzzyOymmBpWZySkxPY+/r1DK+LFz1jbW17pffqJaIuh1sqpe4gKvbU3Lk0LwDqXe/vTyVM5bC1tYWmVIr8lSspM/7uu9h+86by6Y8/cqIosiIrK7S9dYsCxG3aUI10Q+jUCXjlFagfPAhbW1vY2tryoiiq9tXK9meCQKUHwcGNOvHIzAT75ht0ePtt8Hp6ygcPH/I9q5aVPAs6dqRyrnro/w8ePEBycjK3YMEC1OloX7xIgYJ33qnX0T558qQYGxvLJk78P/auOyyqa/uuc+8wM/SmooBIERXEXlBRwK4x9hq7JtE0jcbkJca88EjPS56mGI0lGmss0dhLFBURBVGxg4qAgoL0Xmbm3vP7YzP0Lpb3fq7vm49h5s7MLefee9bea689hrVs2ZLG/8CBZbfX1JRq4gMCKPBURVIvISEB6enpAHCu7hv7Ak8KL8h2HeHv799EqVSecHR0dB41apSh4WP2sgWA1q1bY9GiRSw1NRVnz57F6tWrMWjQIN6lS5cXtdz/xejWrRuMjIzw119/oU2bNtUb/Px/hoMDEag9e8g5WBAaPAuj0+lw//79Oh0DWZaLXZ41Gg0SExNhb2+PtLQ0/P7773Jubq7g5+fXoOsJgGr7MjIo81BHxMfHyx07dhRGjhzJYmJiEBISIsXGxgoGBgbsYXY2fmjWjLf497/Z6B078Pv778Nn8GDepk0bZmFh8d9BtN96i2R4pbK89UJ+Pkn5du4kJ+oGgEajwffffw8jIyP07Nmz4QawkxPV3mu1xS9FRETA1NS0bsGe9HSSjbq7U2lBejqdb1VIi3NycnDx4kXcv3+f379/n5mamvJhw4axdu3aoSFvTLIs49ChQ8zKygpvvPEGjUMTEyInoaFk/lUbuLpSb+mkJIAcy6l0oiqyLUlk7vQUsXv3bt6oUSOMHTuWmZqaoqCgACkpKZAkiQUFBXFjY+O67de0NHJY/uknItS2tsCvvwLLltHEXqkkCXlcHGVY9++njNjQoTSeAgKonvXHH2kcXLpU4lpeT+h0OmRnZ7PZs2dX/iWnTpX9/tWrKeATEgIwBs45Ll++jKCgICk7O1ts1KiRnP7okaC7eJHMrkrD3R3pSiV++/57GQCzsrLiv/32m+Ds7AzOeVkn8zqAf/QRAtzdpYs+PsKrs2axJk2aoFu3bli/fr3Qpk0bNGnSpGThtDS8YmmJhxoN5JEj4fPVV2Ly0aPSuXPnmFarFXr37g2FUom8Tp1wX6nkTe/dY/tXr+bMyAj37t1jkyZNQmsKjjx25MPMzMyg0NT0kzVz5zortNq80bt2wfDcObbRwqIwV6fTTZ8+3bi4pVfPnnT+37tH587ly0SyW7cGNm4kD4RSx0nIykLP48dhYWFBgRFrayQePix27NgRQ4YMKVFkduhACqrx42sOYHbsSK0Hi2T5jLGKbSYlicZsTa750dEUTHz9dbAhQ6DctQvR0dFyVFRUcdDlwoULyM7ORp8+fSCKYu1r+cPCKJBFnhxlYGRkBMYY0tPTK4633bsp+PDZZ1RfX4S0tDSsX79e1ul0jDHGRVFks2bNKjuu+vev6KFx6RL4yy/jvk4HRRVlipcuXdLIsrzUz8+voHYb9wJPAy/Idh3g7+9vpVQqz3Xr1s2hf//+ioYkwkqlEs2aNcPYsWPZnTt3sHv3boSGhspeXl6sY8eOLxj3fyEEQdAbI/GoqChWW6IXGxsLURTr5i783w4fH4rWhoXRZO/mzXr1tawKGzdulAsKCoTevXvXOKG5cuUKDh06xLVaLWvSpAlcXFxw/vx5CIJQnJHS6XTCEwuEWVjUK+N04sQJaDQaoU9Rls7JyQlOTk4iAGzdulWOjY0V+vfvz1rOnQvVq6/i/U6dYHD5svC06jgbBArF49edck4y+h49KpoC1ROxsbHYsWMH12q17K233no8Q6bKIAgUlDp8GDdMTBAVFYWJEyfWfpBwTgZg775Lda7ffENS0iL57ZUrV3Ds2DGZMQatVssYY5BlGaamprC1tZUnTpwouri4NHjwNzMzE8uXL4dOpyvboogxkqlGRtJ679pVpZlQGXz2GTmQf/st/W9nR9ncyjB4MGUat2597O2oDRISEvDo0SM2ffr04km1oaFhsSt9mzZtar9zP/6Y1n3qVODsWVJo7NtH7/34I6kgVq0iEpOcTMd/82bKApuaknt7nz40roYMoXPq7FmSuY4bR6ZqL71E5OXjj6nuW5bpUZ0DN1BMYuTKWrEB5Cj+739TjblOR6R/6dJiYte4cWNeWFgoeXt7i61atYKxsbGw9p13oMrLKys9B4C8PJw/c0Zq+dJLwvDhw5koiiw4OFi6desWXnrpJaY3LqwL5NRU5G7cyCNnz2Zz33+/uD+6vb09zMzMdHfu3FGYmZlBrVZDp9Mhes4cNDl2DJoFCySDhQtFmJpi5MiR4tWrVxESEiKfPXtWaNSoEWRvb7QaMIA9MjPjthkZSNdq5ddff10sQ7AeE+bm5ipZlh0YY/O5Wr3nrylTupsmJTkOWrpUmW1unr08Pt7w7cWLhWJDMgsLUs38/TcFZKKjKROfnl7s8C7LMuJ374bR118j2sMDgc7OGHT3LkyTkqBWq5GXlyeLoliyn729ibjPmUO93V95peoV/uEHMr2rDrt20Tiv7p546xYFkkaNKm5dOHz4cPHkyZPyli1bMGnSJAQFBUkPHjwQASAoKAhAiapEqVRypVLJVSoVV6lUUKvV3NDQkKnValGlUqF1cDC0iYnIcnKCSqWCUqks/mthYQFjY2OcOXOmpN0d5xTwcnOjUjk3tzKre+7cOVhaWmLYsGEsPz+fNW/evDhYwTnH6dOnZbdZswTzH36AasSI4s+lHj+OX1evhrB1K9doNMzBwQEzZ84svt/odDpcuXJFlmV5U/U79QWeNl6Q7VrC399fqVKpjnXs2NG+oYl2ebi6umLRokUsKCiI7d+/H5aWlpBlGRYWFsU35hf474FSqcSFCxe4p6dnjYNm//79uHTpEhQKBRYvXly3/rn/C+jUiWSOhoaU6WiAPvTR0dF48OCBMGvWLNhX5oBbDidOnJB69uwpuLu748CBA/LZs2cFS0tLPm/ePHb//n3k5+fj9OnTskqlatiDU1BAMrHVq+tcQ3rz5k2EhIRgxowZlZpteXt7C3fu3EHHjh0pc9C7N8QTJ2hinZBQrSnYc4M7d2jS/zhBGFmmTPHatVSj2EC4ePEi8vPz2ccffwyD+rreVgcDAzJWcnPDpb17ZaVSWez4XSvk5ABduyLL2xt3164F4uPRaMkS6MN5AQEBcps2bYQmTZqgWbNmuHr1quzq6iq4urriSZUXcM5x4cIFmJmZyTNmzBDMKnPIdnIiMhYTU7OEFKC6xtTUkv+zsqgc48GDistu2UL1j08BcXFx2Lx5M+/Zsyd3cnKq+3WDcxr/gwdTAMLKinrzNmpUMXO/ZQuR5WPHSO6rL2GaMYMeAJ1H5uZUv29hQVlDF5cS6e+RIxTc4Jz2P+f0mWPHiNi4u1NG3dOT6v8XLKC6X6USWq22eL5SKUSRZNXZ2RRk3bq1jOnZpEmTyow3zjlcIiIglGorpUcCgAStVvTp0KGYrHh5eYn1LdvSnT6NU3//LV9+7z288cYbQnmXbF9fX8WRI0f4iRMnWNcHD+Q2Dx4INwUBpj17crf580V9MMDAwABdunRBly5dhNjYWJw7d05uP2eO0LagAHjpJQYLC+DWrcc+rwoKCnD16lVkZWUhMjJSTk1NFQCAc+4rSdJ9AI7p1tYI7Ndv5pwVK9zuubi8zbdsMcWcORTc8PQE2ral82PFChoLYWEUsGrWDKcDA3nGqlUwS01l6d278zg7O9a0aVN+8uRJJkkSVCoV9/DwqDieRZGI7/r15K9RVd20JFFg7KWXqr7nffABZdqrCkqEh1O5yZgxZfwZlEolBg8eLNy8eZNv27aNOTs7w9LSkjdq1IhZWFjAxMQE7u7uyMnJQV5eHsvNzWX5+fnIy8tDQUEBsrOzkZKSAo1GI18dPJgLOTm84MgRJkkSZFlmkiSxor+QZRmyLHPOOTGDDRto/jJpEqlNSkGj0SA6Opo7OTkxG70Ch44Z7t+/j5MnT8rJyclIfuklnh0VxWdyLsTFxqJJjx7YMWYMdE2b4oN332WbN2/m9+/fZ7du3So27IuKioIoijc+/vjj6Mp31gs8K7wg27WAv78/UyqV6+3t7dsMHjxY+TSk3QqFAn379kV6erq8Y8cOFBYWCowxeHh46EaMGPFEyf4LNBwCAwOllJQUkXOO1atXS7NnzxYrM23RaDRYuXKlxDkXZs6cyf766y++bds2afLkyY91jhYUFEDdALWoTw0KBfUzvXePapZu3apws6oL9u/fz69du8aGDh3K7e3tazxp7ty5g/z8fNHLywsGBgaYPXu2kJOTA0mSGGOsuEVPXl6e8Pfff/OcnBxW7z65IDlwQEAAHzNmDLMtLARu367X9wQGBko9e/ZkdnZ2lU7kbW1tYWZmJv3www/i/PnzYWhoCPTrR0Q7KYkmK//+d72346lg+HDKktRXuq93Y//yS5KiNyDs7e1x586dJ0O09RgwAHjzTYzt00f4zdCQr1q1Sn799dcrvZ6UQWYmMG4c4n74AaHz5qHnpUu4+N13/PDmzUwURa7Vapksy0Lnzp1hW3SuNW/e/IlH+Q4ePChdvXpVHDp0aOVEG6Ag0KFDJPf+4guaxFaHDh3I7K17d8rgGhkRYS+PgAA6195887G3ozbYsmULt7e3ZwMHDqz9jTsxkZQX3t5U37pqFclzRZHatFUGSSLXYoAkrzpd5cvdvEl/N2+mjPj8+fSds2cTkXZ2LllWn/nXB6dkmRzPu3enrPmePfT5Pn3ATU2x7eWX+cxNm4CRIxnMzMjEbOjQEkmyuzs5Kl+5QlLmGpzg79y5A+PcXBhUYjRqefMmHBITeUBAAJ84caJQU5eAqpCSkoIrV65wh3ffZdZWVuydv/9mld03O3TogA4dOrC87GxcWrRIkCIioG7ZEuy77xiqUK45OjrC0dFRX49E7dgGDarXepZGbGwsNm/eDGNjY25ubi5LkiQAgEKhCNfpdCNKLbpk7i+/bPRv0mSIS3r6AuODB8m9vmtXOs5+fkQKnZzo2BQU0HkEwPKrr9AoO5u5/fEHWIsWbDR9X+kxXPV4Hj6cSHTPnuTFUt7tHCD/iKlTqaynKrJ9/37VZQ1nz9JYHj68SiPEt99+m2VlZaFRo0binTt3sLVoPJuYmEje3t5iLfyRBISEUNDgfuXm3tnZ2fjll18QdOyY7L1jh4CXX6a6/HI13Dk5OVi1ahUXRVG+cuWKKEmS3Lx5c8HY2BgxMTH80qVLzNHRkc2bN4+pPvgAKx894l9++SVExriPry/Pc3YWxMJCGBkZYebMmeybb74pzmrLsoxjx47lFxYWrq5pg17g6eMF2a4FDAwMPjE3Nx9VU+/sJ4ExY8YUT3oiIyOxY8cOxYgRI6r7yAs8JwgPD+fBwcGir68vunXrhi1btrCff/5Zfv3118tEzB8+fIitW7fKZmZmwowZM5hKpcK4cePYxo1+vyYjAAAgAElEQVQbFXFxcfWSk4eEhODixYs8JSWFjRw5Eh07dmzITXuiiI6ORnx8PLyTkugmO2oU9UAuqofS6XRITk7GhQsX0KpVK7i6uiIlJQUWFhZlalhPnTqFiIgINnPmTFTW6qugoABxcXGQZVlfM4fU1FTodLoypKkyMt2pUydER0fzLVu2yHPnzq1XhuLSpUvYv38/GjduzC6+/TZOd+8ujTl1SqyP6VpOTg5r0aJFlQRJEAQsXLhQXLZsmXTr1i2xeDyoVJQJPHmSatKe5wz3pUv175UKULZvyZInQrAuXLggabVakXPe8BLy0rC0hJEkYc6cOWzz5s1s+fLl8htvvCFUG1ALDgbUahw9cEAampEh2B08yOxcXZmTszPy8/OZm5sbDA0N8VjOzXVAZmYm9u7dK8fGxoqvvfZaMcGvFt27U8Y2N7d6ZQNjJFM+d44IjVpNk/nyuHGDMnhPiWzLssyio6Oh1Wqrr7MPDydVT1YWkeyMDAqEOTnR61WRbD1at6ZSgXnzaB+MGUMBtaowdWrJ/gkLo8z20aMU4Pjxx8o/IwjkOA1QNjw0lJ6fP4/M+/eRvHo1s3n5Zaq7P36cMpdRUSSlHTWKAgbOzvR8x45qNycjIwP7f/8dY1q2rLRmV+3qCp/27VmcgYG8YsUKjB8/Hs6lAwXVIDc3F9evX8eFCxfkzPR0oXNCAi/YtIl1aN+eCZVkYuPj47Fv3z54HzrE2yQlsWQvL6kJY+J9T08MKuU0Xy2USvLiGDGC5NOfflq7z5WDRqPBn3/+KXfo0IEPHz5cBCCeOHFCDg0NDdVoNDMZY6M450v9/Py0ACWM1Gq1X/vZs9WCuzsR1KlTKXg5bx71XVer6bF2LQUEhg2D+ZgxbPO9e1BLEmq3V8tBFIHFi+naPWAAjeHysLSkMgJ//4rv9exJY/Kttyq+FxREJSL6PvNVQKlUQk+oXV1d8emnnyI2Nhbbtm0Tam1y2qkTrUMVJmmmpqaYOWYMC/nkE5YmCLAaOrTSe+nt27chyzJftGiR+OjRI/z999/s7Nmzkl4N8sorr4hOTk70AwcPYvjSpcL1wkIMDgxkwrZtrFfRb3/22WfgRWZ2rVq1AkBZ7dzc3Aec87U1b9ALPG28INs1wN/fv7WBgcHiqVOnGj4x5+FawtLSEgqFArIsV9oeLD8/Hzk5OWjcuHGZ1/UTwMLCQuTk5MDS0rLW8mTOec0ThBcog4KCAkRERODAgQNsxIgRxa2/Zs2aJfz111/yzz//zJs3b87S09Ol/Px8ptFohB49esDHx4fpSZ69vT18fHzkTZs2MWdnZ1ZYWCgPGzZMKB+F1el0CA4OLjZjS0pKQnR0NI4fPw53d3eekpLCkpOTn/o+qA/y8vJw+PBhXL9+HQDg4OAAx2bNSmSMGg2Cw8IQGBgISZLQqFEjfvPmTabVaiFJEhhjEAQBCoWCF2XshEmTJsHW1hbXr1/H8ePHJQsLCyE9PV3WarVMq9UKuqLMT7NmzSCKIk9KSoKHh0eNrcEYY+jTp4+wbt066HS6WhMVnU4HjUaDhIQEHD58GAMHDkSvXr2g27IFYXfu4Ouvv0azZs2kOXPm1JrAZ2VlobCwsHhbqkObNm2Ew4cPo2nTpmiqr1fu2JEm2qdOkRFNcPDjkdongXHjyJSnvEFSbRATQxnCI0coc9PAkGUZWVlZ4ty5c58s0QZoon73LlTXrmHmzJnCli1b5G3btskzZ86s/IKekABdair2jRjBB3zzjWi9YUOxHLvSXrBPAadOnUJMTIzwxhtvoLSMslo4OFB/8AULKGP9+edVL3vmDMnmAbpurFpF5Rl6cE4E4ykGzl9//XWsWbOGr127Fm+99VbZH374kIKJn39O69m/P2Xx09KI/NSldeSOHZDs7SECkDp1Qtjgwfz2hg3Ms0cPREdHyy4uLoJ+cl4BgYH0Nza2JCM+ZAiNuVLmTlVCEBCRkADR3JyrvvqKttHFBXj9dXp/2zY6djodHc8bN2r8ykOHDkkeksScmjQRKpUit2kD0cAAM3x9xbNnz2Lbtm3w9PSU+/btW62r9+XLl/mhQ4eYqamp1KFDB7FXfj4Us2cL+P77CpLnHTt26KKjo0UpO5vZyjKCXVxYQn4+2oaHi+K2bZjq5la3cq+AALoWHTxIJnb/+Aedkz4+lKmdNImCFIWFFDj56y8KFNrZUV11jx44vWEDd9VoMKxvXxGPHgEWFrh165ZOo9Fc9fPzuwXg29I/KYriFwUFBT3c3d1JPda+PQU69AqyOXMoSHXyJAVDJk8G5s6Fw/jx0H72GTZt2oR6m4GOHk0qqnbtyCzM27vs+3Z2VN9cGdmeN4+k7uVx+DCVVcyeXVImUUswxuDk5ARDQ0NERETUrjWrSkXHIDa2cqVMfDyafvghOvbqhV81GsxKSytjlqbT6bB582b54cOHgj7wb2Njg2nTpjFUNde4dQvNFQo0P3+eAm5F16ubN2+Ccw61Wo05c+YU33NCQkJyCgsLv/Hz86vCLOEFniVekO0awBgb3q5du6plbk8RNjY2UCgUclRUlKDPxOkRGRmJ7UW9U2fNmgUHBwdwzrFjx468yMhII8YYZ4zpFApFJgCzuXPnKkvXdqalpRUTdb3D+uXLl7F3714OgDk4OGiys7MLGGOws7MzcHZ2NnRzc6voHPn/DDExMbh9+7aclZWFpKQkZGdnC0XBCT527FjmXmpyL4oixo4dK0RFReH69etS8+bNxUaNGsHR0RHGxsYV7tZeXl6Cubk5Ll++LBkaGrK1a9fyoUOHsujoaH7//n1Zq9UynU7HOOcsODgYAIqJ3/jx4+Ho6Chcv34dfZ5SW5vHQVZWFlasWMEbN27Mp0+fLgQGBmLDhg0wMzOTbKZMEbWHD2PCvHl4+MorGPuPf+gz0UyWZdy7dw/NmjWDSqVCYWEh8vLyWHp6Otu+fTt27tzJzczM5PT0dNHX11fMyMiQHR0dmYuLi2BkZARra2vcv38fZ86ckRo1asSGDh0qNG3atFZE18bGBpIkITs7u1ZeCnfv3sXOnTt5YWEhY4yhY8eOkmfbtiIOH4YiOBg9AdE+Lg4bN24UCwoKEBkZCXNzc7Ro0aLKyVxqairWr18vOzk5wd7evsYZ39ChQ1lycjI/evQonz59elmTt/btKfsgiiWS6+cFnTvXuQ1aMYYNo0zSN9807DqBJj579uzharWalQ9yPjH89htw4gTEkBAMGzZM+PXXX3HkyJHiWsPOnTujVatWiI6OhjRlCs8EmGW7dmg8ciTU5VsnPSU8evQIwcHBUlFPYbFPnz61J9qlMWYMSZBluWrDpDNnqM7z8mUiFlOmlM1IrVtHTstxcfXenrqicePGsLa2ZllFbaoAAAsXUubOw4Ok3J9+WpIlBqo9/5KSkmBpaYkHDx7g8uXLUuPGjcVG69fL14yNccPKSnB2dpaSk5MFM2NjZnz6NP8rIQGyLLPz58/jgw8+gFF15/bIkfTgnFzd7ewoGHDiBLn3V4OcnByYmJhUHqwsTWrOnwfu3q32u2JiYnDv3j1xQmIincOV4d49ul75+qJXr15wcXHBpk2bEBsbK0+cOLFCzXVBQQH27dsn3b17V+jfvz88PT1F3L5Nrs+3b1fIvOp0OkRFRSl69eqFnitWQJWQAO3atdCOGgW2Zw8My83DqoQkEZnMzKQx3L49kTcjoxJjO0kC3NyQbG6O6zod7NVqKOLj0UKrhaCvcQ8NxfGrVyXnrVtFe5WKCX36kCmgqyt6h4crzVNT5+Bf/9oJYBmARABfysArvQYM6GTfsSNXfPUVw+TJRFabNSODxL59qTzj+nUqKYqIoKx70fywS5cuiI+Pl/E4bunm5lTzn5pKv1G6/rp3bzJKS01FGSl+QAAR9PKKhjNn6Br44YeV9levLezs7OTo6GixVmQboKBdnz5UQlEaERGk3OjTB44LF6LrsWPYvHkz3njjDZiamiI9PR1nzpzBo0ePGGMMr7zySu2ifPb2FGhxcyvTMcPBwQFmZmZybm6usHPnTrlTp06Cvb094uLiBADbarn5L/CU8YJs1wCVSjXE0dHxuWGUnp6ewsGDB7mLiwvTZ9NiY2Oxa9euXAAXAPgEBwfnCYJglJOTg7t37+YCaMI513DOpcWLF8tffPHF4p9//vkra2vrLCcnJ8PExMT8xMREQaFQJGg0mhbt27fnI0aMUIWHh+cC+EClUjVLTEw01mg0mwEo09LSOt+5c2fCqVOnus+YMcNIpVJVf/P+H4NOp0NkZCTOnDkjp6enC/b29oIsy2jXrh0cHR1hZGSERo0aVXpBZYzB1dUVrq6utSJ0Hh4e8PDwEDnnOHHihBwQEABra2u5X79+orGxcbGLfVxcHERRhJ2dXTExy8nJAeccDx48QJ3MlGoBWZZx7do1KJVKtG7d+rGN3DZs2CA7OTlhwoQJAmMMjo6OSElJQXh4OCssLJSMbGzEhHXrMGr4cBjs3UsTBTMzCIIAp1KRZrVaDbVaDSsrK7z33ntIS0tja9asEe3t7eVevXoJqGTC4ODggMmTJ9dLCm5paSmfO3dOeOmll6pdLjo6Gtu3b4evry86d+4MjUYDMzMzEWvWAN9/X9xSpHnz5nBxcZG+++470dDQkEuSxIoCKLKRkRE6duwotGrVCoaGhti2bZuclJQkuLm58dGjR4u1PQYTJkxgy5Ytw5EjR+RBgwYJxSoZKyvKYu3ZQ5mOBw+ejwz32bMka6wrOQsNJcnx+fMkaW1gXLp0CQcPHkTnzp2Zr6/vk89q6/HZZ0TMCgpgbW0NX19f6fbt2zAzM4OpqSnbs2ePIEkSjDIy4DxhAh+g0TDjBw8Y/vOfp7N+5fDw4UNs2rQJkiSJ7u7u6Nu3L7zLZ7dqC29vmvD26kVmaHo5c2n4+FB2WE/IDx+mDJk+MDx5cv0DN4+BzMxMeUTjxgLat6d6ZYWCiKK7O/1fC2RkZODPP/+UHzx4IPTu3Zunp6fzGzduiAAwMzxcaDdsGAYuWIBTp06Jrq6u6JGcDNy9y/DbbwCAH3/8UQoODmYDBw6s+WLBWEmNfPv2tD85J1O17dup5rccmjVrxsPCwsSsrCxUm6CwsiJi6+xMJN7Rsczbsixj//79vEvHjkxx5UrVZDsvr8y/NjY2WLBggbBp0yb5l19+wYQJE4rvD5IkYePGjXJhYSF7++23mZmZGW2Try8pCWbPrvD1d+/ehUtMDHxsbMDWrwfOnoXBq6/CIDy85rZWANXd//vflK3Oy6Pt6NKFJP63blFWe+1awNYWWVlZ2BkdLSckJAgGzZvjjqWllBkeLmpEERb5+XJubi50zZsLgiCI3cPDodTv34EDAQDmUVHYvnq17oPvvjsDYBoA5e4xY+y0CsWcLDMzdHF3Bx49IlIfEUGBCpWKDPeGD6cxqNXSvfXuXcqu9+4NMzMziKLIa97YGjB+PAU0vL1J5aAvZRJF2ge9e9N1Xo8ff6Tx8cMPJa/t3k33g2++oXH4GLCzsxOvXr0qoQYVWzH++IOUGaVx/nyJIuW99wAAgwYNwsOHD+U1a9YIZmZm8qNHjwRRFLmlpSVTq9WSSqWq3e9NnUpBrtu3ywThTExMsHDhQqGgoABnzpwRzp07J2VmZooKheKgn59fbq2++wWeOl6Q7Wrg7+8/SKVS9WpoovI48PHxwaVLl+TDhw8LRa0tsG3bNlmn0/0N4J+CIIy/fft2blRU1BcKhSKDMfZ5+RNQkqRvAWxJTU1tkZqa2hvAdQCBS5YsyfL39598+fLlLZGRkVyW5YcA1n/00Ufl+/WFAlj5zTffhP/0008dTUxMCt577z31f6tpmyzLSE1NhYWFRaUGR7IsIykpCWZmZoiOjsaxY8d4QUEBnJycMHPmzKdiQMYYQ//+/YX+/fsDldwcHMtNVgAUb0uZbEoDISYmBnv27AEAWFtby6+99lr1daPV4OLFi8jOzhZee+21YsLCGEPjxo0xaNCgspNCzqkGMDub2tdUA7VaDVtbW7Rv317Xtm3bJ+Ko7OPjI+zbt4936tSJVdXTtagmH15eXrpevXop9OuGK1dIYvnaa2WWnzRpkpiRkQEzMzPGGENWVhbi4+OFhw8f4saNG3JQUJAgSRKcnJywYMECmJiY1Gnb1Go1Zs+ezTZv3swjIiK4Wq3mkiTBy8sLnTt3FjBqFJnS6XQ0mains2+DYe5cIlUffVS3z335JU0cV61q8FW6c+cO9u/fDxcXF3nw4MHC06p3BkAk7cQJGjexsRXcl4cNG4a7UVFo8dprUI4eLWDbNnKRfgbX59jYWGzYsAHu7u4YO3Zsw3RXYIyywoWFNEbL73ulkgjU2bM0gb99mwyYVCoyqProI6oRfRrIzKSsXqdO6GluLiTPn482EyfSdey77+r8dbdu3cKDBw8EOzs7pKamonnz5sKNGzcgarWwOHEC5kWGTCNHjqQPdO9e5rhPmjRJXLt2Lbp27Vq3ziZeXvTgnGpXPTyARYvoGnb8eLFyQJZlaLVaJCcnV0+2ASLbr75aaR3vxYsXuUaj4QNsbRlcXauu02/alI5pKSgUCsyaNUsIDg7GH3/8gR49esi+vr5CSEiInJycLHz44YdU9sM5GbxdvFjsB1IeRkZGaHHzJphaTUT5k0+IKNZ0rwsJodr3AQOopKFpUwqqAkS8ZZlk3EOGABER0FhbY+XKldzFxQVjx47VO7mLnHOkp6fjxo0brGnTpqxx48YwMjKqtKzvSkSErsDUdB84LwBwGQBufvHFp5Ik4a233oJ5aeXNihUlz/XGZXPn0vkUHk4Z95Mnge3b4WZrC3blingekLoPHiyiefP6X0tataLAhigSodfPrSdNovO5NPbto2Okx/nz1E/+t99q7rldC9jY2CA3tw7cNCKCjN5OnKD/9+yhYPS779JxLoUJEyYIv//+u+zg4CBMnjwZRkZG7IcffpDat29f+3t1t27kayBJlb6tVqsxYMAA9OvXT/z3v/9dUFhY+G2lC77Ac4EXZLsS+Pv7qw0MDD5TqVTvTJw40fB5y9pOnjxZ/O233xAeHs455wyAoFAoWi9ZsuQGgBsA4O/v/5/FixdXWrtRVNNxv+gRVO7tK4yxizqdzlyn0/Xx8/MrT7SLUVhY6AugkUajOZ+amqquhavjMwPnHPfu3YMkSThz5oyUnp4uFBQUMGtrazktLU2QZVlfhwutVgsTExMkJibKV65cEdRqNddoNNDpdMzQ0FDu3Lmz0Lt3byiVyuc6uqBSqWBqaoro6Gh06tSpQb/7zz//BAAsWrQI69evZ99++y0GDx6MHvVo1aUnKoaVmaeUB2MkD2WMpI5Dh5atx6wEo0ePfmLXOQ8PDwQHB+PUqVN4pYp+ooGBgXBzc5P69u1bsh5aLU1eT56sVApXum2Oubk5zM3N0bZtWwwcOFDQ6XRIT09Ho0aN6t3r28bGBm+++aYQHh4OURTZqVOnsH//fnTW12Z27w4cOEDOzgkJzzbDrT/etcXRo0B8PMmNnwDBTE5OLg40TZgw4ekSbT0GDCBZJq+YcBIEAa4tWlCGd8sWqsWtqg3TE0RaWhq2bNmCnj17YlADuC+XwYQJRGRdXek4t29f9v0LF4hk9+5N7+vJ2p07dM5V1YqoIXD1Krksnz9PQaKsLOCnn9BUrcbWQ4fQZNIktK5n0KFVq1Y4cuQIBg0ahF27dskPHz6Ep6en2G/BAigLCkoInR6CQEqA114DZsyAjY0NDA0NpaioKLFbfSS4jBHJBijgcfs2ETRzc+DcOVwNC0Orli1rr6RasoTaOiUkkCwY5D1z/PhxNmLECCY8eEAErSpotRXIth5eXl4QRRFHjx4VHBwcEB4ezrp3717ir/Hxx9SbucgjpALefx+Kq1dxdNAgdPDyguHAgUSiqyL+nFMddqNG5ERtZkatK8sHK//5T0CtRnx8PO60awe3efNwvlcvbtm1Kx87dmyZazpjDFZWVujTp0+NF7Lw8HCRc34YAPz9/ScC6ATADqByo1qVuSgUJfejlSsBAI1v3YK4dy92hYaKHl99BSMTE6ohjoujLHVRh45aY9w4koi//z6VJbRsScGxsWPJvVyhIHf7pCQKbHBO17F9++h41dNxvjyKyLZYa88VOzs6tgCt/6+/UkC3S5cKixoZGeGtt94qPsljY2ORmZkpKpVKjqoc3GWZtlmppDE9fTplzYvOi6pw9+5dMMZi/fz8Lta8ES/wrPCCbJeDv7+/j1Kp3NKiRQvL4cOHG9a3lcSThI2NDezs7HJiY2O1AFYrlcphGo2mzEy/viYJfn5+NwBU1IdVvmwmgMxvv/1254oVK16zsLDI7d+/v0nbtm2fq+bQnHOsWbNGTktLY6IockdHR6FLly7M3Nwct2/fFvr27QtnZ2eEhYUhLCxMMjQ0FAsLCyWVSsXGjRuH3Nxc1rFjR31W5rnatppgbW2NpKSkqi/w9QRjjANgOTk5mDhxIrt06RICAgKQnZ0NLy+vOpUVRERE8KLautqto34yMnQo9Qh99IhqvZ4B6ZEkCYmJiayyIENkZCSSk5MRGxuLKVOmlMzus7Ioy5aSUjspYjkoFIraTZxqgJGREby8vFBQUICjR4+iwrVO3584Lo4mj19//di/WWf07UuTsHfeqf1nQkNpvUtLEhsQq1evhk6nw7Rp056dcaQgUB36qFE0YS09jnJziWS2bk2BqGdAtAHgjz/+4EZGRryCOqWhYG5OMlxZpnZFpffBwoUlJl+TJlE2yt6eJNtXrzb8usTGUqZrwQIyhHrnHTKaSkgoJrwusgwcOoTbt2+jvOdKbVDkQM2NjIxga2vLFi5cWHJNOXGi6oDY1KlU+1r0HdnZ2aKDg0N9trIs7O3pAZByol07dJ4xg9kVFlKQITmZgg41QZbLtFQKDg6Wzc3Nedu2bUV8+21Jb/DKYGtLqoUKXyljxYoVUkZGhvjyyy9zAwMDlp2dDR8fH1ogL4/q+isL1Op0lI3u0wcnk5Pxcrt2MFy3jtqkVUa0NRqqre3cmZy3v/4aetl+BRw5QgGK+fOx7rPPYGJiAu20aXLXXbuY+uuv6x08BYAmTZrkPHr0SN9Qvkzt7r59+/ISExMFX1/fut9wWreG1T/+gZSvv+bnp0xhvq1bU43ytWuUdf3xR5KEL1lC+61du5qDWXoTQJ2OvqtlS/rs2bNE4KdMISd+zklyv24dtf9rwPm4sbExRFFEbGwsWtZGku7oSMoGPz8ySVu9moz+JKlEwXLxIo0RCwsK+np5ATduIGXZMj5oyRLe5euvBXTrRvOW//yHrl9r1tC4iIqiQIe+pt/IiO59NeD8+fO5BQUFT0mq8wL1xQuyXQR/f38TpVL5s6Gh4cQRI0YYtqmh9+OzRH5+PgYPHmyyiuSR9xcvXvxsbGWL8OGHH77h7+8/Pz09fdqJEyeWtW3b9olFKCRJwqlTp+T8/Hw+dOhQsTJXdj00Gg2Sk5MRERGBlJQU9tFHHzFBEMrczUq31fL09CTDFMITTH08PZiZmcmxsbHCb7/9hjFjxtRNOlgN3n//fXbgwAFs3ryZz58/nw0ZMgSurq7Yt28fv3jxIl599dVaG0ZlZGSgVatWdZ9l6CdKffsS2S7Ktj9NiKKIfv368ZMnT8pNmjQRT548yVNSUqQid3DByspKHjhwIHNwcCjZvqlTaYJ25MhTX9/yuHPnDrZt24aWLVvKEyZMqEiKVCqKtp86Vblk90ljxozK3Wgrw86dlFn6/fcnukqdOnVCeHh4rVsMPTEYGxOxjo8vW794/TqRz/Hjifg9ZRQWFuL06dNySkqKsGjRoier/nnzTcpid+hAE3W9wZKFBU2O9VlvlYr2iZUVkR09SWyI3586lcjbxo0kKY2KKgkIlgrGREZGAkDtJvbloNFosGPHDjk3Nxfz5s0rq6b4/nua9E+YUPmHZ80iMgwK1Nna2kpr1qwRW7duLQ8ePLiC+Wtubi6io6ORnZ0NMzMztGjRomIgrjx69QIAZP38sxywb58w9Pp1tOzcmaS3CgURkaqCPjNnUguqH34A5s/HzZs3Wa9evQRkZFDgrLrz+fJlIvXlPDPCw8NRWFgofPjhhzAwMGBxcXHQ6XQsMTERDoaGZDp17lyxM38ZDB9OZPHAAeDkSd5i8WLgyBFWwYU6PZ2CeuvXE8nasYMCOdUR5kuXkHn9OlYVFMgqlUqYP38+FAqFgM6dqbxhzZqqP1sDHj16ZArgkL+/v+jn51e8Ev7+/ur8/PzOgYGBwbGxsbkjRowwLm2OW1twziFzDt6sGZitbYmreL9+1IYrLg5Yvpwy+i1b0rk2ahRlgysLBA0bRufMsmU0PteupcBLVBQF0F9+meTuR45QJrmBVUqMMajVas5KRzgkiYI3OTkkp/fwoN8OD6dAWo8edB9ctoyCndOnk6v+0aM0nqZPJ9PD11+n9XZwoGu0IEACiHx37kyB0E8+oeeenrRtFhY0ngAa1199VWNdenZ2NmJjY18Yo/0X4AXZBuDv7+9pYGCwu1WrVlbDhg1TP40a3Pri7t272Lx5Mxo3blygUCjydTpd9Y0qnxL8/Pw0n3/+eTMHB4cG05vm5+fj6tWriI+PlyRJQpMmTYSIiAjk5eVBlmWWnJwsF7lHIy0tDZmZmWjatCmuX7/OT58+jZycHKZWq7m5uTkfPXp0ta1A/lcxYMAAwd3dHUFBQXz58uXMyspKmjBhgvi4mVFBEDBixAj89NNP8oEDBzBmzBjRxcUF7777Ltu9e7e8evVqplQq5ZkzZwoKhQLm5uYV6jVlWcbx48eh7wVebxw6RDfI/fspGj5t2mNtW13RqVMndurUKXH16tVo06YN9/X1VVhaWqJp06YwMDAou9FaLZFCfWuiZ4zr169DlmVMnjy56qxKjx40kTh8mMy5zpx5sjJcPXbvpmfjy48AACAASURBVMlJZRPiymBtTVK/J4wbN27IRZnBZ3tBEQTKaAYFUc2psTG1kdqwgTIvfftW7dj9BJCQkICAgAD57t27goGBgTBhwoRKe9Q3OLp2pcAb52Vd9CdPpqDWoEE0XpVKukY8LtE+eJAI7smTJRPzwYOLjaqqQps2bdCiRQvs2LEDc+fOLWm9VwucPn1aTkpKwpw5cyp6Y8TH12wAOGECEBMDoUkTvP7662JWVha2bduGX3/9FfPmzcO5c+d0169fF7KzswVZlmFsbCwZGBiwjIwMQZZJJDdp0qQaM/I9evcWCnQ6ee/Ro3xRSooIMzO6HkdHU0vBI0foeJQfl7JM+3TIEOTm5jILCwuqB//gg+rHsKVlpZntlJQUWFtbywYGBiJAQXVfX19p04YNonfv3uizfn3F60pYGJGtNWvoe2/cQPPISBzo0YONsrREcajgwQPa3+3a0X795psyQZWqIBcW4qiLCy7KMrx79GA9evQokS/37k3kKiysXg7bmZmZerXZik8//bSMqrGoFPCsv7+/UVxc3KKtW7d+9M4771TTrL5yDBs2jO3btw+Ghoa8Z8+eJTcLB4cSo8K+feked/QoOZpfvUrHsGtXUhpxTs/1Y3j6dDoOV6+SCmTTJjqPdu6kMXHhAj1/HKItSRQwtrAgUq9SUQ39H3/AITUVVt9+S2Nt3ToqvenRg4I/f/5JwbSMDMqom5lRACA+ngi0tzc5qC9dSsEkgMzm9CgKQAFAUEoKdyookLFwYclgLjr/OedISkqCIi0N1vpgYWRk5T3Jy+Hy5cuyKIp/LVmyJLv+O+gFngb+X5Ntf3//1kql8p8qlWrMiBEjDN2fQA/WhsaFCxfyGGOfJicn5wAI9vPzS3nW66SHUqmc2a5duwaJVMTHx+OPP/6AUqmUbGxsBKVSyaKiori9vT0bNmwY0+l02L59u7xu3ToMGDAAx48fh1KplAsKCgRRFDFkyBBma2sLGxsbhgaWUP83wdTUFK1bt0br1q1Zbm4u9u3bx1asWAFvb2/07dv3sb/f3Nwc165dE4cMGQIjIyMIgoCxY8cKcXFxuH79Ov/1118hyzKUSiW3srLiLVq0ELp3746MjAxs2bIFxsbGfMKECVWai9UKhob0uHGDMilTp9LrT8kQysTEBIsWLUJGRgZsbW2rnhleu0Y34JSUsi1OngFu3LiBU6dO8ZSUFObg4FA2ul8VunaliTJjRDCeNJHSu/guWFD9cjt3kiTxyhXKsjxByLIMnU7HPD09n59ryttv05j/xz9IPn3rFgVG6pG9qi8yMzOxevVqWFpaonHjxjAxMZHd3NyeHtNfuJDkrNu3kwpDqaQsc3AwjY9evajGsgpfhWqRn0/Xl1atqH7S25tIBVAnFYUgCDA2Nkbjxo1506ZNaz1+OOeIi4tjDg4OrELwIiuL5KjVBb+USiIypTLYZmZmmDNnjrBy5Urp6NGj7MqVK4p+/frBzc0NjDGEhoaKYWFhZda9tp4svXr1EgIDA5EjCDABiEBJEplajhtHdfNRUUS49MTS0JCk5Ckp6GZrK50+fZq11GiEqozLitGqVaVSdSsrK0RFRZXZx3369BFt330XqQcPUu11efzrX6SG+OUXupZ88QW6vf8+CwwJQU5ODpHtgADKSK5bRwSxlufYypUrdc779ys8L11Cp8uXUeH4GxoCu3ZRe7CWLYns1wHHjh3LEwRh2SeflO9LVQI/P798f3//r1NTU/1rXadcCh06dMDRo0fl3Nzc6s9rAwMipS+/TP937UpZ70uXgL//pozwunV0Ts6fT0GLFStonLi7E8FNSqJg6++/Vx5skWUKLIoiEd7z5yngtXQpGa1NmULHqV8/uh6Gh1Pd9/ffUzZ51izAzAwFBQXI7d8fljNm0H5/+LAkcKIPIJT2m/jyS1Jb/eMfFID+/Xcyenv/fboOjxpV5lzknOP48ePIysoSfH19y2zIgwcPcPbsWenhw4dCRkYGA4A5c+agUaNGUAQGgk2cWO1u5pzj/Pnz+YWFhT9Wu+ALPBf4f0m2/f39PVUqlb9SqfTu0aOHgaenp+J5M0GrDFevXkVUVJSWc/67n59f6rNen/LgnAcFBgbanT17Vpeamsr79Olj2rZt2zr34s7KysKGDRvg6emJAQMGlJ5FFN+glEolpk2bJly7dg0HDhzgDg4O8tSpU8Xyy71ACYyNjfHKK68I27Ztw+nTp9G0aVO4ubkBoH1en17yiYmJYtHfYlktYwwODg5wcHAQBwwYAIVCgYcPH7K7d++ymzdvymFhYYJSqeQtWrSQp06dWuuWVTVC71b9+eeUQSnqPf40YGRkVH2dOuc0qQgIKGlB9AwRFBQk5+bmCr1790bz5s1rd740bkyTwc2bKVsRH//kMtySRBPiSgzAykCrJeJTheM+5xySJNV5YlkZCgoKsGrVKigUCtairqZATxJBQZR5iYigSe3ChVW6Kz8JJCYmYtWqVbCyspLmzZsn/v3334iJiXlqv1+MuXOJtGRnUxYrM5OuCf7+pHjYvp3cn8vLgSvDzZuUAd+4kT6fnEwTeS8vIkKfflqvVXzw4IHctWvXOt2frly5wuPi4tj48eMrvjl8OLXE21GDwO3kSVI87N5d5uVRo0aJa4qkyx06dCi+B1y7do17eHiwoUOHgnMO46pMwSqBKIpgjCEiIgLFJmyiSGNUr+j517/o+PzxBz3/6CM6dgsWoE9cnPifIUMgZ2RAKOfyXAEJCSXS21KwtLRERkaGcO3aNXh4eIAxhmvXruF269boU75Oe8kSOqYHDlAg8eZNkvFOmoQkV1ewM2dgOXs2/U5QED3qYAZbZI6l6LlsGczy8oozmhVgZUX9p/38yHW7DoiOjoYkSZtrWk6hUHxqaGhYKIpiLdxIK2Lo0KHC3r17YW9vj1qXWlpb06NjR2qvptXSdl67RrXuO3cSUR49mso+rKzomPToQUoUpZKyzDNnUieSCxfoWM2aRb4trVpRCUn37mTWZmJCZQJffUVZc0vLksD76dMl69WhAx59/z0K3d1r727u7EzLxseTXLxnT9qeefNIUTNpEpWr/PYboFYjX6FASFFg56effoJCoYAgCJBlGZxztGzZUuzevTs8PT2xe/durF69GkqtFjP37MHFIUMwpJqgSExMDLRabRKAsEoXeIHnCv9zZNvf398G5MKYCSDCz88vo+h1UwCj1Wr1QmNj41Z9+vQx7NSpE3tmBjd1hE6nw969eyVZloc8j0QbAAoLC+fGxcVd55ynAIg/duzYvw4fPtytRYsW2n79+pnob+TVSQs559i6davcvHlzDBgwoEYW1q5dO7Rr147hf6TG+mlgxIgROHnypLxr1y7BxMREJ8syy87OFlUqFS8sLGRz5sxBTZnmK1euICAggANgw4cPr1ISqT+/7O3tYW9vDx8fHyEpKQkPHz5kbm5uDUe0S2PuXKq1ysmhqHYlbqFPHR06kNT1rbee9ZoAAMzNzQWdTsf79+9f98DU5MlUc5afT9mdUnK5BoOnJ9UcV+fEGhBAmbKUlApmaBkZGbh8+TIuXrzICwoK2HvvvVc7t/tqsG7dOp6RkcHmzp1b5wDiE4W5OWVs9+6lCev06TQBfAoO8qmpqdi1axcHwObNmycCRHRu3Ljx9AOeajX1hx8/nrJh27dTHejy5SjubV0doqOpRGLaNHLwXr6cJvSTJ9P7+kzdYyA/P7+Cb0h1kCQJAQEBzMHBoXKlwOHDlcqoK8DRkczEyqFZs2aYOnUqwsPDywRbDQwMZDs7O7E+SQhRFCGKIjIyMqpeSN+OLzWVAhoffURZwmHDoBoxAk7ffivn7d4tmNTUHk2WSdJb/K+M0NBQXL9+nRsbG7PdRcGFRvHxsJk5E+Lff6NJhw60MOcU1FOpSArNGGXdv/uOSJyHB5pPmYIejRvzqIkTWYcJE6BVq6HRaCBlZSE9PR06na5WzutGqakw+e47Go/VYf58Kg05e7bW11XOOfLz8w0BuPv7+ycUGddWCkEQWhcWFirra8TWrl07nD17Vo6OjkabNm3qd/M2MKBuCvpAyrRpdAxXr6agliAAEydS0MHbm0h0r15EpJcto+PVvDmRdT307TM9PEpeq4XXh5741hqiSJnu2NiSchQDgxJvDC8vck1PSAAmTYLRrFlYOHIkNh4/zgUjI3ns2LGiTqeDgYEBzMzMyhhsjhs3DuPGjQNCQvAgNRU3IiP53dhYDBo0CG5ubhUOWFhYWJ5Go/nBz8/v8Xugv8ATx/8U2f76668XKRSKL2xsbAoLCgqQkZFh9OWXXxaKopgtiqKVg4ODtkuXLiZubm4N0+/zKaGgoAC7du3KVygUxzUaTWjNn3g28PPz0wD4T6mXAvz9/ZtER0ePvnfv3jJJklQGBgbS4sWLK50FarVa3L59GykpKcLHH3/8dFb6/yGMjIwwbNgwwdvbG3FxcQqNRoOWLVsiOTmZBQUFyefOnRPGjBlT7XekpqYiOzubAUBISEhJy6haoEmTJmjSpMnjbUT1P0A3v40biaw9fPhMegyXwZdfPvt+1UXYsWOHHBMTI4wfP75+O0UQSP65YwdNDh88aPgM9zffVN/yJy6OMtoHD1b62ydOnMC1a9cwYMAAFhoayn/66SdmZ2cneXt719uJWRAE1rp1a7lp06bP7uYhSZTBdnEh5+OmTSmz+eef9J6+57G+h/HgwbTchg0ko7x5k7JC48ZRpqhFC3r9o4+IaOqN1Q4dokmusTFNgJ2d6biXum9KkoSwsDBkZWVh1qxZAEghc/z4cf5SOcOqp4qVK6n29cEDknoGB5MZ09tvkyKjNDin4NwHH1CLtHXrKFiRklJyzahDVrcmGBkZ8UePHgF1UF/l5ORg8ODBFcfcsmVENvWtuKpDhw50LXz0iMZLKTg7O1cw+/Px8RGPHj0KpVJZp2s7AOzfv18HQNGnT5+aF7a2BvQqiJs3iUi5u2PSl18K5/r3l3vV5ItgaFimXvqHH36QtFqt2KpVK6hUKsnV1ZUplUph/7FjGPTSS3DXE22AHLFdXUuIf0wMjRcDA1IunDyJ1ClTcCYxkbU1N+dJISHs+vXrPCsri4miCKVSyQsLC9mCBQuqNZDLzMyEZWIiEbCaYGpKYzAhgZQ9tZinMsbQv39/XUBAwC79S+WX8ff3VwOYzBhTiKL4WDdDIyMjISwsDGlpadL48eNFSZKgVCrrrx5Sq+mxeDE99Pjjj5LnTyhgLggCtFpt3T5kakrXl969K75nYlISnAsMBLKyYPKf/+CNI0fYygkTxIJ9+9B85szq75fJybAbOBAfjBrF/vjjD5w6dUouT7bz8vIQFRUlcM431W3lX+BZ4X+GbPv7+wsAvre1tdUmJSWpBUGQbW1t80VRVHp4eDRr27Yt1Gr1c5SOqD1CQkIQExNzWZKk8f9tUSw/P78kAKv8/f3/BjDG3Nz8MwAGkiSBcw6FQoGCggKsWbOGZ2RkMJVKJbu4uHBBEF5kqp8wTE1NUdqnwMTEBDk5OcLx48cl1KAU6NevH/Lz8/mFCxfYc+vcP306ybru3KHJ9K5dT99Ne+tWqhUtLV97hrhy5QpiYmKEN9988/Gd6SdMoF7nt2+TtPzLLxtmJVesoDq/qkhxZCTQqRORwHLZH51Oh/DwcNy7dw8KhQJeXl7w8PBgoaGhSE9PFzds2ABjY2Pu6urKhw8fXifSbGxsjFu3bgkxMTFwqo0U+XERE0NBBTs7ktr260cT8LNniTArFCVuyNOmUbZl0yaaoGs0RL61WqpFbNmSSIS+FZW3N2WHGKMaR85JnpmSQgZFX39NtZOFhfT89GnKRJmbA5s3Q375ZRzr0YNL2dns3Xv3mNFbbwEzZ+J2Vpbs2rs3OqxfL+DVVyljFRpKrbCOHiUJd4sWFABr3pyIUkMHwho1Irm4uzs9BgygzFdpQrl1a4mE9eFD2u7XXivJkD2h4JyNjY2QnJzMc3NzayXNFkURHh4efPfu3ezu3bsYPnx4SaKA87oZ4L35JpHbDRtqXLRLly7IzMzE/v370aFDB1TX9aM8IiMjFZ07dy5eT61Wi5iYGGRlZaFLly4ok1VNTyc5eWwsHYd336WsJgC727eFR4mJsKnOSK7UPjh+/Dg0Go343nvvQalUMgBifn4+7vfsCdcxY7jj0qX0w9HRROo//5wUOgBlSceMof/ffpuubc2aodGbb6Ln338jJCSEiaKIHj16MM+ijKmJiQn75ZdfpLVr1wqTJk2q1HckLS0Ne/fuRb8xY3TC6NHV33z0JTONG9O5feECBbxqAS8vL4OgoCBZp9Ndq2KRNwAs45zDwMBAs3v3bp21tbVRy5YtYVdHU8kpU6YgPT0dW7duxc8//4y8vDwolUr06tVL7t69e0UDv+cMqampyMjIQLNmzSAIApckiaWlpUEQBFjUpk1it25U+71wYfXLNWlCj5UrISQmosfJk7Lun/8UsoODYTpuHHkoeHlVvNacOwcMHQpBEODl5YWdO3dWOMmvXLnCRVE8uGTJkvS6bPsLPDuI//rXv571OjQIfH19eUhIiEVeXl6YVqsdL0nSyqysrHOZmZlhsbGxnaOjo2Ftba2s1cn0HOHixYtyQECAjnP+tp+fX8SzXp/6wtfXNyMwMDBKq9XO5JybbtmyRb527Zru/v37hSdOnFBotVq+cOFC5uPjw9q1a/ffIzv4H4OZmRlOnz4tuLm5VTsZDA0NxenTp9m4cePgWdvWTM8CokiTuVOnKJtXWPhU5LXFMDIiQvEc7KOcnBxs376dOzo6yl27dm2Yc0yhoIzU77+TcUxDkJR//pMmKZ06VXzv8GGq5aukf3R2djaWLl2KW7duQZZl3rZtW9amTRuo1Wq4uLjAw8MD7u7uyMvLY+Hh4SwwMBB37tyBk5NTrSTmLi4uOHfuHGJiYtC9e/eGU0fpdOSSm5BAk/5584iIvvsukdwpU4C0NMrkT59OZCAjg4i2Xkq5dy+ZpCUkENlkjMa+gQFlMg0MSEbcqhUds969SQZpZ0fyaFNTItkjR1J2Zs4c2v/dutGk0sKCCPPMmbj64AEO5OUhp00bPvadd5jKyQno2BGauDiEJiay/lOnMsPQUKrRvHGD5NwzZlDGJz2dsliTJgFt2pCJ0ezZlFm3taXae0ki+XbnzkQM168n8rxwIZ1PhYXAtm2Ulbx2jQISTZtScMLQkLaVMcpm9+lDtZt6J2EnJ5KUW1tTFt/bm9arVAvIJwkHBwdcvHiRnzlzhrVt27ZW487e3p4ZGxvjwoUL4JzD0dGR5Nc9e5a0X6oNBgwgc6palkCkpKTgzp07dTLSzMvLw5kzZ5CUlMSDgoLYuXPnEBQUhOjoaOnejRvsRmgob3rpEjNbupQCZW5uNJa7dQMUCvAePRA/cSJyFQpcd3bmJitXMqtp06oOKmRlISoqCutCQuTExERMnDiR6R2dJUnCpvXr5ZYXL6LTV1+xYtMxX18K1L36Kl2b//qLjK2Sk0klMHFimcCMi4sLbt68Kbdr144PGDCAKZXKYvlv165dheTkZBw5coR16NABeqIZGxuLM2fO4MSJE7yrSiX7LligqNFZ/aWXaDz//DP9n5NDwaJaIC0tDefOnQPn3M7X17dCQiYwMPAigEgAh3U63c9JSUmX7t+/H3n58uUuDg4OirrMixljMDIyQrdu3QSlUokhQ4bAzs4O586dk48fPy4wxmRHR8fnzjeHc479+/cXHDx4UIqIiIgJDg42z8/PFx89eiQFBgYKoaGh6N27d4XrukajQX5+fonk28yMCLGtLSIyM6FSqZCfn48dO3YgNze3TDvZYpiYwLZdOxbZrZv8R1ISk48c4U1+/ZVxHx+Iy5dTYNnKioKj+tp0AwOo1WoEBgbC29u7OEjFOceuXbtyc3Nz5/v6+t6v+GMv8DyC8ZoMaP4H4O/vb8AYm2ZgYPC1tbW14YABA0yfeY/UWuLw4cNSWFjYyk8//XTes16XhoC/v/9LAA4KgvARADNZlu+JovgPSZJcfH19ZR8fnxdE+xljz549UlJSEpszZ06Vx+LatWvYvXs3mjVrJvfu3VtwdHSs3iDsecDNm0TU7t2rs9trnSHLNLldvbrGXplPC+Hh4Th48CDmz59fLzO8GvHnn9Qr9/Tp+recyssjwlQZaU9NpUnwtWtlst6pqamIjo7mhw4dYvpsQL8aXMkfPXqEPXv28NTUVKbT6TBhwoTitkbV1TPevHkTO3fuhEqlQtu2bVFQUMDHjh3LakW8ZZm24a+/iMgeOECZ6NOnyehq0iSa9EdGErGu7BjpXXj796csrL097atJk8ifoHNnIi8NGFCSZRmRkZEQRRFGRkZYt24dWrVqhVfKOXsvX75csrGxwfjx42ufBpUkOuYmJuQYbGNDQYLjx6lu9vRpykS++SaVLIwcSWR96VJyjf7kEyJJ69cT+Zw/v6QPbmgoSeIvXqT9odHQ/h4xoqRVzzNAbm4uli5dCm9v7zKT6JqwbNky3rZtWzZo0CAihImJJFWtC/S9i2tRSrFmzRrZzMwMEydOrPXJrNVq8dVXX6FD69bw9vaG8NtvUD96BPUrr4DPmoXb/fsjIiMDL3fpgjs+Pgi+eFHKyssTnJ2dZVNTUzE8PJz3OnQIV4YOlbiBAUYGBSns+vUjr4ty+ykmJgbXPvmE28fGMuGXX9C2bVsYlBr3d1evRuLOndzz8GGmUCjItb1dOwrAGBrSebZpE+3HpCQ6d7p3p3N09GgKQBVh+/btXKfTyVOmTKl0bC9fvlyytrYWOnX6P/auOyyqa/uuc+/M0EGQomBBEHvFhl2j2GNPjBqNsSTGZ17K+0Xj0zhv1ERjfIkpLzFRo7HFEmvsYgnYC4KKAiK9S6/DzNx7fn9shl4tURPW9/EBM3fuvXPn3DNn7b322p2ZIAjYs2cPGjduLGVmZgozXnmFWYWHV16DXVBAgZ9jx2gMN21K90S7dhSsqkFA5uTJk4Zr1659u3jx4g9r8jkBgEajUYiieKlXr15d+/fvXyv1QkW4ceMGDh8+jDFjxqBTp06Pta+ngZSUFPz0009per2+mVqtztJoNO4A5jLG8jjnu1Uq1a9Dhw5tX7ZsYuXKldxgMLBp06bB1dUVsiwjavlyhN67J18u4aNga2uLrKwsKBSKovffuXNn2Nrawt/fH6mpqbh//76Uk5MjduvWDSEhIVyKjWV9L13iBgcHbmNlJTQoKICNuzuEEiqxTz/9FO+9916R11F0dDS2b98ep9PpGr9oSte/M/4WZNsIjUajBDBOoVBsfvvtt81q2sriWcLX1xdnz54FAFGtVtfCyeH5hUajMVGr1QUAsHLlyu91Ot07ADB79uxaS5rq8OQRGRmJX3/9lS9atKjSVaBOp4NWq8XRo0fl2NhY5ObmCosXL34irs9PFdeuUf3X99/TAu5peTfo9STtXb++1KLtWSIiIgK//vorJk+e/HRk0ImJZAD073+TadOj1Lq2a0cSzrJuz8uXU9bJ1BQQBGRmZmLPnj2Ij4+H8TusXbt2GDNmTK3HoK+vL86fPw+9Xg8HBwfMq8DETpZl+Pv749atW4iJiYEgCFCpVGCMQalUyu+++65QdFxJIvn0gwcUgJgzh95TRgZleVetoqyaiwtJR9u0qdk4jIkhObnR9XbGDDL9Khnkiot74r3Gr127Bh8fH65UKrlOpxNMTEzkOXPmCGUDNqtWreKvvfYac3V1faLHrzVkmTLkOh21mBo+nFr1LF78bM+rEBs2bJDj4uIEABg8eLDcu3fvGk1CPj4+PDQ0VJ43b55YZAxW27ll7FgKUHTtWu2mX3zxhdy/f3+he3VSZmPJwvffA7a2SE9JAb76Cse8vdE6J0fu3LOngPffp8/FxARr166V8vLyRADcy8uLOTk54fbt28jJyeHdmzRh7efMAQsNpQx8Vha1dHN2LmeCuHXrVjS+epX3l2XG/ve/cqcV/957eHjzptzR11cA56RsGjuWMsjnztFcNXMmEevwcFJ96HSkdGCMPCkKCf7KlSt57969WdeuXSsMKiclJeHgwYNSZmYmKygoEBo3bszfeOMNBlkmxckPP1Qe4OnZk+TrZdvILVpExnZvv13uJbIsF2Vgc3NzsWbNGgCYr1ary1+ISqDRaCwBZAOAubm5dt68eaa1cZ03IiEhAX/88QfCw8MxYcKEanuxPyuEhYVh3759txcsWNChouc1Gs1rDg4OG+bOnWthvLayLGP58uVo06YNj4mJ4SqVimdkZIhNMzJ4T8Z4k08/FRhjUCgUYIwhIyMDFy5ckDMyMnhYWJgIAAqFAjY2NrKVlRXv2LGj6O7uXlTjr9PpEB8fj/j4eOQeOSL1XLtWvNC/P2LGj5f79+8veHh4YPXq1fLrr78uOBcaHP7222/59+7d+88nn3yy+k+5cHV4InjOV8ZPFmq1Wg9g9+rVq+enpKT0fRHIdokFTT0Aac/wVJ4YjES7EL0BQKFQZMXFxVm6uLjUZbafA+j1ehYSEgIA8PDwwK1bt5CdnY3s7GwEBwdLWq1W1Ov1MDU1ZSqVijVo0IA/rvHKn4Ju3ag+8/PPSZr6NLLOGzcSedq588nv+zHQrFkztGrVim/bto2NHDmSe3p6PtnPq0EDWsivW0f121FRtQ9m7NpVvjWOTgds3w79sGH4JTCQx8fHFwWJu3Tpgu7duz+W4V6/fv3g5eWFL7/8Eg8fPsTWrVul7t27ix4eHkVutWvWrJGVSiVr3Lgxb9euHcaNGycIggBdRAR2HzqEI1On8i4JCazRjh2UHRs9mkheXh4dZPt2IgwWFvQeawNJomvq4kIZ8bffpjr5t98uTbQB8idYsICO94Rw+fJl3qtXL9a/f3/jeCn3of76668cAGtkdOh9lhAECkz07k0qgsGDiWANGUItAZ+hBFCXxgAAIABJREFUOWpSUhJSUlLYxIkTERAQgODgYPSuoXGiubk5k4ykNiSESGhtsX8/maTVDOzixYvo1q1bcfbdqM7YuZOyxIcP01i7dIkCmaNHw3buXGD+fLQLC8OpU6d45zIGbvPnzxdv3ryJjh07FnWDadu2LQAwpKfTvGGEtTWVFEyeTKok2g5JSUkIDw9H30GDGCsoKLV/yDKwYgWyX38d59zc5I6DBgkYOpQCXwcOAMuW0by/axft/8wZKs24d49k5Xv2UNnG8OE0dv71LwwcOJCdPHkSiYmJ0quvvlouBezk5IS33npLBMhj548//qAL9vAhKXEqCoqEhVFQcuvWYmfrknj7bWDdOqSlpkKn14NzDlNTU4SFheHo0aNwdHSUmzVrhqCgIEGlUl3U6XTVF+OXgFqtztFoNAoAol6vD09OTnapbRD27t272L9/P1xdXeXp06cLz8X9Xwmio6O5Vqs9U8Umu1NTU386f/681K9fPxFAUaZ65MiR7Msvv2QtWrSQXnrpJZgzxjB6NIMklVIe1KtXDyNHjhQA4PTp03Jubi7r27cvs7W1rXDSUalUcHV1hSv9KyIoCF0tLYEbN7Bjxw64uLjIKpWKR0ZGomHDhsjNzUVISAiTZbkaW/s6PG/4W5FtANBoNMzExMTtqcgonwLat2+PwMBAXXx8/BkAz5825zGxaNGijgCg0Wj6+/n5HWnevLmFnZ3dsz6tvzVcXV3Rr18/aefOnaKJiQkkSYKpqSk3MzPjgiCgT58+op+fnzxq1CiBMcZOnz7Nx40bxx61ncifDnt7IDqa5Hvt2pG515OUvUVF/flGbDXEiBEj2L1792Bvb//0Pqy33qKgRlYWSTW9vGr2OrWapJaFC2oAlGX6+GMgOBh+Z87wlJQUjBo1CsHBwRgyZAieVMBUpVJh+vTpOH78ODjnbP/+/dzZ2ZlPmTJFAAApM1OY5emJ+kOHMrz3Hsl3Bw6EaulSTP34YyGmbVuEZGRgz9atctMVK9jYGTNIWj5mzOOdWHg4tTi7coWy/YMHU83xr78C//d/5be3tydy/gSQmZkJHx8fKSMjQ+xY0sW5DPbu3ctjYmLYrFmznr2yJS+PJOSLFpF8/KefSILerh0RqehoyhY+Ixw/fpw3b94cbdq0gSAI2Lt3rxAbG4uakJTAwEBub28vQKEoDuLUFtevU5CxpNt6JXjrrbfYLytWIHv1alhPnEgS/YAAkvhfuUI19x9+SB4LNjalgosFBQXw8/PjFhYW5Q6iUCiK+2+XxOXLFBBJTy/t1tyoEeR9+5AzcSL8Ro7EDa0WoiiiQ4cOUhNLSxF375beT1QUsGkTTAYMAMvPZ5gyhWTzU6ZQecbMmeTOboS7O9X1G8EY1fRrNETQr1+Hl4cHkpOTERcXV+282aFDB5w4cQK5ubmw4JzaI1Z0refMoWNX1g6sSRPo0tOxe+lSZDVtKgOAXq8XRFHk/fr1YwCEgIAAKYd6l/cCkL1s2bJXOOd7GGNHli5dWpNedY0AROoLyXxycjIcHBxqVNogyzJ+//13PmzYMHTp0uW5T5IkJSXlc87vV/a8Wq2WNRrNa2fPnj3SqlUrODo6IiMjAyqVipubm7MlS5YAJY1jLS3JrHLQoAr3N2jQoJpfk48+KjKPrM8Yhg4dKkRGRiIhIUHw8vKSfX19+fnz55lSqeSCIOxUq9V/icTb3wnP54rw6WK0ubl5vcr6Aj9vuHbtmiEqKkopiuKhZ30uTxm+Wq32Pz/88MOyYcOGmXbp0uUFYW5/TQwYMEDs378/AIruWllZFfWHjYuLg7Ozs3zgwAHBwcGBT5s2rciU5oUBYyRJHj+eauSiouj340CvJ+dmjebZtxqrBCkpKZAkCY/a/qpGEASS6m/eTJnumJiaXY/790svgo19cDmHVqvFhQsX2PDhw+Hp6VnrdkQ1gbOzM2bOnAncuSPoGMMPgYEsYe1aiL17o/edO7A9e5YCAZ06UWZsyBBg7FgwxtAEgIskwTk0VDhx4gT/9ttvpX79+okdO3YsZbhz6dIlyLIMc3NzNGrUCA4ODgCAoKAg+Pn58QEDBhS7+//vf0Sqv/+eJLSck2nSq68S4a4I7dqRsuIx5eQPHjzA7t274eTkxObPn1+pS29eXh7u3LnDxo8fX/RenimuX6eM5Qcf0OI1NpauiVJJWdgVK8iUa8KEZ3J6+fn5UCgUnDHGWrduDQ8PD+zYsQOzZs1CdXMoY4zbS5KA/v2pFv1R0KULsG8fjaWy9+SDB0SkJ04ERoyAjYsLGpmZ8YLbt4GhQxlWr6aaent7ClBWAp1Oh++//x4A+LvvvltzwtG1K+DnV4poy7KMhIQE+Pj4QO/hgbFr16LRgQNyh27dBMaYiHPnqN7ZiPPnyc37wQM0atIEnq1bCxg+nNppzZxJxKissuH48YoNLHv0oJ+lS5G5cSPuvPEG+o0YUe1EFhcXB6VSCTOlksaary+pAIw4eJACCsePV21WJwgwdO+Oer6+mLtgQcmTLjqHgQMHigaDAYGBgThy5AisrKy2ZmVlgXP+U2GHHqZWq6uKvg0AAFEU/Xbv3u3GOTcxNze3mDdvnplSqURycjLS09MRHR0tX7lyhSmVynxra2uDp6enZWJiomBmZoZOnTo9n192JcA5R0REhAjgt6q2U6vVR5cvXx78ww8/tPrkk0+g1WorDyC+9x4FnSoh2zVCSAgR7U2bKMADIDw8HPv37+c5OTnMxMSEe3t7C4MGDUJoaCh27drFAKx79APW4Vnhb0e2VSrVl97e3hZ/Vp9tSZIgCEKNTVCMKCgowKlTpwr8/f2VnPNtBoNB/ZRO8bmAWq3mGo3mPmPs+IULF4Z26dLlOXfb+uvDOGZtStSaGY3RVCqVgnOOtLQ09syzWY+DZctIdtiiBbXzeOONR9/X3bvFPYtL9H59XiDLMo4ePcqbNWsmo5rWbk8EM2ZQNikggOSry5ZVvm1SEskpjQvtQYPIebtQcp0UFQXG2JMz3jES+V27SIptZkbS9/nzgSNHoEpOhuvrr8M/PBwRCgVaLlhgEIYPp4FeSas7URRRSKDYyZMnceLECRw9ehRubm7c29ubJScn4+TJk2jYsKFUUFDAsrKyBGdnZ9na2loICQmBXq9n0dHRaKXXEyl8800iNa6udL7e3mSkptFU/d4++YQW+NevP9KlCQgI4EeOHGHe3t7o3r17lV+U165dg0qlMsqAnx1OngTef5+yiLdu0WOhoaSqKBlYd3KicfaMyHZeXp7coUOHontv0qRJ2LhxI7969SofPnx4ldfaysqKO23ZwrF6NSt6j7WFIFCt90cfkcy+dWu6bgMGkNInKIjUGCtWQNehA+5t2MA6vvYaHNzdi3ZhzIDa29uXM9VKTk7Gli1boNfr+UcffSTU+Lvh2jUa8wcPlnp4z549CA4OBgCMeucdbr9gAbOfM0fAkSOUWWSsdJb//fcpyPL558j8+mu4ffABQ9++FICqzMDzq6/IcK+yuWXZMmS/9BI6rVmDFsnJDD16VGlAeO7cOdnT0xOCKAo4eLA00QaIZNevD65SwaDXQ6vV4ubNmzw+Pl7W6/XM2dlZcHR0hCRJaDloEAYsXkylNJV8pygUCnTp0gVdqBe16c6dO/UhISEHAYAxdhLA0EpPFtgJwGfJkiVxAKDRaJx1Ol1cfn4+rl+/bvDx8ZEVCkWETqdrCQCSJLXVarXuPj4+PxsMhiZvvPEGe1xjtT8Der0eer3eRK1WV1tDIctyX1EUr3711VcNcnJyzArbyJVHkyaVB65qAlmmgLSnZxHRBshbJTc3lwGAqakpB8AEQYCVlRVUKlWCTqe7WvuD1eFZ4wVeJT8aOOeq8PBwfdOmTZWVuSfrdDro9XpkZWXB0tKyyMygtsjPz8eXX35paNCgQcGMGTMsxDIR28oIf0JCAvbs2ZOXk5Pjyzl/D8D9v4ProEqlWq3T6Vr069cPx44dMwwZMkTxIkzkfycolUoolUoMGjQInTp1Km6H8SJDECjCbGNDRGbUKMoA1Qa//04L1sI69ycNnU4HAI91vU+cOIHs7Gy89tprf95NpVKR0++FC1UvSvr3p4ytkUiOHk3tqQphYmICWZZhMBhqL1XOzqbayE2baEF9+TJlunx86DFvbzKz++wzyq5NmoSEhATc2rABcseOePXVV9G6desaH1ShUGDEiBHisGHDEBcXBz8/P/nHH38UDQYDxo4di44dOxbVA/r4+HCtVitNnTpVPLxvn+ycmCgUGagNHVp8vQwGqiGdMqX6E1i2jIhTLWEwGHDy5EnZ399fmDhxIlpVElQoiW7duuHChQs8IiKCuZcgZH8aZJkysi1akFy85Njw9S0/3ubMITXLJ5/QWPsT67ePHz+OvLw8sayqxMnJid2+fZt5e3tXObZbtmwpHh80SO7wz38+Xibxiy/IIOzKFTIHCwggCfjcueQ3YGcHfPcdMtesQf3oaNgeOQL+7ruIO3sWwenpPCItDUlJSYxzDi8vL2nw4MGiMTB78+ZN5ObmYv78+bULwublVdh+LTY2VnZ3dxcsLCx4x44dGRQKulffeQfYsoWCcxYWNA4uXqR5pn174OOPYZWbiz2TJvG5S5dWfr1kmVzwq5lXHXv1wv327Xmf69cZwsJIFVVJfbOpqSm/cuWK6LlpE2w/+ghFtHzVKlLvbNyIrVu3SpErVoiyLEOhUMDOzo67uLiIWVlZ8Pf3l3U6nWAwGGBvb49eDRqgweHDNG6rgVarRUREhAwAoihelSTptaq2L/TPMRLtIQB+B6jDw5kzZ2RZltsuWrQobMWKFX6SJPUBEK9WqyM1Gk03AEkVtrl6DmEcnxqNxlOtVvtXta1arU7RaDTNc3JyegNoIsvyhpSUFNNyJUvNmlEAJyWF1BS1QXAwfd/5+FCbyxIIDAwE5xxDhgyBubl50QR1/fp1rSRJG/4OXOCviL8d2dbr9V4BAQFfpqWlvTxlyhSzsmQuIiIC27dv1zPGdKIopnHOHWbOnGlqYWEBnU4HMzOzcr0xZVlGQEAAkpKS9AMGDFCampoiIiICt27d4gqF4kpycrL+8uXL/Yyuo7du3ZIOHDjAOnfurHv55ZdNy57j/v37szMyMpZwzr/9O91YOp3uJRMTk/3Hjx93NhgMgp2dnVOPHj2e+1qgvxNatWqFgQMHwsfHB1qttshI5IWH0Sfg9m36EvX0rF20euFCkpVV4Bz7qLhw4QL++OMPKBQKWa/XC7Isw9TUVGaMQZZlWFhY8NatW4stWrSAs7NzlX2fk5KSEBAQwIcNG8b+dL+KoUPpZ+tWIrlnzpS/tn/8QSZCAwYQIS5j/qRUKiGKInx9fTFkyJCKj5OVRT+JibQQnzmTFuVRUbQIDw6mIMqsWUS6nJ1psWNEodsrAFy/fh2yLGP69OmP7NwuCAIaN26MKVOmiDqdDlFRUfDw8Ch63traGuPHj6f7JzUVw3/6STBr3JhqtEtenw8/pCzt4cM1O7ClJbVgM/bGriH27dsnBwcHC2PGjKkR0QYAc3NzWFtby2lpaeIzIdurVpHjf3g49ScviR07KjYRs7KiNku9elEA40/ApUuXEBAQgNmzZ6NsCduwYcNw48aNagNJlgcO8DH79wv8o4/wyGz79m0KKgUE0FyVkUG9um1tyUTO1ZUCO1otHBwd0SEnh2esXcvW5+dj9urVsPHyYtrWrbH4m28Qcf06Yt59V8z7/HNY+PhAevVVKDw80MTWltdftYpk5/fuUZCtbVsithXNUYmJdPzvviv1sI+PD/Ly8gQPDw/06NGj+C3PnEmZQGM7OA8Pmlf++U9Sw8yYAdjZQT91Kh6uXcuqvK6HDpHDf0BAlZft8OHDyDA1ZXlbt8L61i1SL/3vf+QkXgZTp04Vz509C/2GDfhx82Y4R0eja4cOaGBvj3wbG2xauxZZWVnirFmzkJSUBBcXFzg5OZW8MIIsy8jIyMD69eu5X9++rPOlSzUi2zExMRBF8TaAHkuWLKlV9xoTE5M+BQUFKkEQTu3YsaObwWAoqh2RJGkMABO1Wq0DAJVKtUCWZb5t27bcxMREwcPDQxg4cKCp7dNuqfmIUCqVaNGiRe79+/f7AaiSbANUvw3ADwA+//zzGfHx8YPLkW3GSCVy4QK53NcUmZnkJzFjRjmiDQAeHh48Pj6e9+zZs2hMZGdn486dO1ySpG9rfqA6PE/425FttVodp9FoZsTFxR1Zs2aNV7du3VS9evUSTUxMwBjD0aNHcyVJmqVWq3cBwKeffjp3/fr1XzLGJMaYTpIkaycnJ92cOXPMGWOQJAlbtmzJTUpKCpEkyTw3N7dVVFRUnl6vjzcYDHslSdoIwPbChQtnu3btam5iYoLTp0/ncc6XBQQEfD5y5MhSi+SYmBikp6cLnPMf/05EG6DPBkB3gNowhIaG/tSjR4/no29SHYrQs2dP3L9/H2fPnhXPnj2LTp06yWPGjPlrBEV+Kyzp6tePsjzUUqVyaLWUrQgKeuJ12j6FRHD06NFC/fr1kZmZCb1eLzDGYG5ujgcPHsghISHy5cuXBb1eDxMTE+7g4MCMQZD27dvDYDBg48aN0sOHD8UOHTpQduhZoX9/ICGBFt1abXFrsHfeIUnr2LFEniogt/Xr18f06dOxbds2NHF2RitJogX6uXMkBd+wgeTdr7xC8ms7O1IqHD5M2wkCZbFriOHDh+PWrVs4c+YMZsyY8dg9aFUqVSmiXQStFnztWly9eBGh3bqh/QcfoGHJcaTTUQCiJhntkjAzI9JUQ6SnpyMqKkpo06YNqjJDqwi2trZibGys1K1btz8v8Hb+PNX3vv8+kayy996dO9RSrV278q9VqSjrfe8eyZcrMut6wrhx4wbv2LEjGjRoUO7+S09PB0BB+4rAOQfnHEnm5szQtCkubNokT5kyRTA1LRenrxqBgcDUqcDevUSsJ0yg8g5joLFkCc2JEwCAXtu3s/j4eHQLDkbW9evo1qwZuskyMHs23Fq2xJUuXaQLBQWsT16eEJWaysOtrVkbNzeGX36hDPqqVeRefuQIjcmdO+m+nz2bzOr+9S/KsBsMlJHWaOjvGzdw4dYtNLWxgWdZGbYg0PmfPEky3LAwOvfmzSmQ8uabQMOGsABlNENDQ9GmTZuKr0nDhrR9FUhKSsLdu3fRpEkT3qBBA4YGDYgkKZUUuFu7tpTbuCAIeKltWyAiAr1u3YL40UechYaylbNnQxRFcM4xc+ZMuLi4VNrqVBAE2NnZYeHChUybnU0dBu7fp8BCFShUQBU8SpvYjz/+eCmApQC1ZwXgCSASAMoacun1eh/O+b/i4uJO6PX6hUFBQXPCwsLemzt3rumfEcx9FIXTSy+9ZBEREfGpRqM5oVar79XkNRqNxlqhUHgqKysbGDMG+PHHmpPtoCD6jtq/n9q9lYEsy7h//z5KEm0AuHLlil4QhB1qtfphzQ5Uh+cNfzuyDQBqtTofwEsajabdlStXFp8/f/4VzrlgbW2dn5eXpwew27jt4sWL16GEIcHKlSvXiaI43fj/hQsXpKSkJP+CgoKBSqVyXmho6GK9Xj9VrVafLnnMVatW7d+/f/+E1q1bm2ZnZ5sDuC0Igv7YsWNMkiQJAMvIyDBERERYqlSq/5Vpj/W3gkajcVAqlRP1er1SlmXcvXsX0dHRei8vL2WdU/mzx6lTpxAREQEAsLOzQ0BAgBAdHS2988474gtdv10S//0vScSCgmghVZmh2NdfU2YtLOyJn0L79u15aGgoJEliDRs2RMOGDUs97+bmJnh7exctxmNiYlh4eDhycnLEo0ePchsbG3bw4EFJpVKxd999FzY2Ns82INKkCS0a16wh068HD4gkqVSU1dqxAzh6tPRrHj4kUtW3Lxp/8gnmBAfjQnKy3MrXV8A//0lmTePGEbFOTS2WEdewnVJlUCgUmDt3Lr777jscPnz46QSTLl8G0tKQHxgIvxYtIDg7o5mbW/HzBw6QWuLBg9q72//rX1QHn5dXea1qIXJycvDNN98AANxKHr+GsLW1RVran2iOa5QMh4VV/t6uXqU2aZUFwMzNqbZ71SryWnjK5Ur5+fnc1dW1wjHk4OAAS0tLKTIyUixLChMTE/Hjjz/CSq+HXWYmb/7vf7Pk8+dZUFCQsUa3ZkhNJZL71Ve0yC8oAOLjSQJbjaO/s7MznEuoPiAIRb4FY1asEH/88Uf59g8/oJtazZL9/DBn1qzinthbthS/LiODxnFmJhFUgGrGu3UjL4LBgwG9HjnHj0O/fDkwZw5e/eYbKP39ab5o0IDKdI4do3tjxw5SwURE0D2ycycFWEpAqVTi1KlTlZPt1FRg0qQq339ISAgkSUJ2djbLz88nZWOnTpTVFAQK9o0cScTdiMGDgWnT4DlhAvDNN0yWZbzXuDGsra3x2WefITAwsEYO9ABgamVFJTWRkdWSbQsLC8iy7FzlRjVA4frzUmXPL1269LhGo1Ho9Xq5MCn08fLlywecOnWqy4QJE57qIiApKQnr1q2Di4tLgZeXl4mdnR0aNmxYpS+S0WeAMaYA0AFAjcg2gIYKhcKsdevWFT/buzeNxYKCqs3uABqjubmkgqukF3lGRgays7NZSXm+TqfDtWvXJJ1Ot7KG51yH5xB/kZXxo0GtVt8BMFmj0cwEYMjKyhoAIKGqjLIoil2aNm1qFhwcDCcnJ/j5+ekNBsP0QsfHbwt/yqGgoGBOZGSkdVhY2ADO+Qi1Wn1eo9F4X79+vSuAApDDZCaA/YsWLcp90u/1RYJKpdql0+kGxsTEYOXKlXpRFIN0Op2Fra2tR88KZFt1+HNhdM1t164dhg8fjmvXruHcuXOiTqd79q1/nhSM2a4pU6jn6vHj5bdJTKQvzg8+eCqnMH78eObr64sjR47Azs4OldXHMcbAGEPTpk3RtGlTyLKMmJgYbNq0Ce7u7njllVcEk+oWAn8mPvyQDNBSUynzPHUqtf0KDKQgx/TpJJns2JEyk4cOUYucl19G7sCBCE9L47hx46mfZv369dG8eXMEBwcLaWlp/M0333wyqgBZJtnrgQOQFy7EsYkTYbh/n3/84YfF+9dqiTh8882jt5EbNIicpf/znyo3K7lIPXv2LNq0aYPaZE1NTEyQmZkpaLXaWr0uMzMT+/bt4/Xq1eNjx44VamQi+o9/kGT82LGqt9PpSCZeFd58k+r1z58nJUstlSl5eXmozPel/OnohLLlZyVRv3598datW7x169alWigaZblvmpjA9tgxhm+/RUREBI+KipK7dOlSswiBwQC8/jpJnpcupcdMTChgceoUtQJ7RJibm+O9994TVq9ezWVZZoaq1BTG929vXyyJvnyZjApfe416dQPYb27Ow+fMYS+//DJUixfT+Jck8sVwdKR5wWCgAIlRDXD4cIU13w0bNkRERAS2bNkiT58+vXyw41//omBpBd1pUlNTce/ePZw9exYAjdfVq1fD3d1d7tu3r9C0aVN6bVoaqaDef7+4bGPLFsp4TpwIBARAAGDUZHPOkZKSUu21LYVu3WjfAwdWOR/Y29vDYDA4aTQapVqt1le0TWFv7VcEQZA++eST3RVtUxOUdTmXZfmDuLi44wCeamo7MDBQL4rihri4uLl79+6FUqlMBWBtYmKidXR0ZI0bN7bUarVSSkpKvl6vl2xsbJTp6elSUlJSlsFgmAvgSC0OlypJUuWBVjMzUk4FBVHpWWW4dYvUF//7X5UmrHZ2dmjWrJm8adMmwc7OTurcubNobm4OQRBuqNXqB7U47zo8Z/iLrIwfD4WZbgA4Vd22nPMz169ft71x40ZqQUFBV5VKFbJ48eLIGh5jdJnH/FBYF1KHYhgMhnWmpqamWq12nsFgeLh48eK4VatWnYmPj3fNz89XqlQq6PX6Wi3s6vDk0KZNG1y7dg13797FnTt38MEHH+Dq1av44osvYGJiwufMmfPitQKrDDt20MJu40b6wjTWgObnk9z5+vXSfaGfMPr16wcA2Lp1K0aOHFkjGbggCJg7dy7jnEN8FP2zVluc6bt/n0ifMSrfoQOwezdlWkSRFpUffUSPGQwUnJg9m2oas7Mpc7hrF2W07ezo8fbtyXX444/pugKU6dq1izJFs2dTxuvf/6aM9cyZlP3u2BEsOhp5W7f+aXLlIUOGYMuWLYiOjmaSJD22nBx//EHX4ttvwceMwebff5cfPnzIhg0bVvy5xsbS4vrixcfr0338eLVZS4CyYR988AGCgoJw8uRJXLx4ES+99FKND9O7d29cuXIFp0+flkeOHFljBcDVq1fluLg4ITo6mrm5uaFNmzaoVK4ZH09Z+ilTiklbZUhJIRf32bOrPwknJ7rG06eTiqCG2LVrFw8ODmZz586Fk5NTtdsLgsDz8/MrvXeHDx+OH3/8kd26dauUjN/oVcDmz6f7gbYV1q9fzy9fvix7eXlVf70TE4nclpVLyzJ5F+zYAfTtW+1uKoMgCHBzc8P58+cBAKdOnZK9vb1rNg6mTi33UIcOHVh4eDjatm1bHLwVRSKaAN0b7doV9/h2dKSggb09GSuC5Lj+/v5ISkqCk5MToqOjhdu3b6N9WUn6tm2l2w0WwmAw4LvCGvJevXrxl156iWVlZeHGjRu4evWqcPPmTd60aVP6PO3sSNKemEhBw8REMlD74osKFRNKpZK3aNGidpGdFi1oDrx8uZRxZFlYWlqiYcOGPDY2VrdixYqrsiyfZIzNA7BelmU1Y6yvUqncrtfrHUVRDEEJFecTgJ2FhcVTL30MCgoqkCRpE0jyrtPr9bkA2uj1el1OTk6PyMjI1rIsFwCIAJAK6iWeAOCcWq3OrM2xlErloqZNmxoAVB6tdncnFVFluH6dfDRWrao+AAhg+vTpQnZ2NgIDAwV/f385NTVVAPBLbc67Ds8f6sh2LbFw4cKiDcmqAAAgAElEQVSFABYCgEajcSkoKMh4xqf0l0NhtLXUl0BBQcGroaGh/42IiHi1Xr16iI+PN/nggw/YozrF1+HRYWpqCi8vL/z+++/o2rWrbGVlJXz44YdYsWIFCgoKnvuem7WGQkELOktLyrDk5dHfEREVZkRqhays4vra8HAi7rdvE+ls2xbYuBH9JkyAQ0YGIj7+mMW9+65hRGysQnZ0hDBmDGVONmwg2ezOnVSXPGsWhO7diUC0b09mLJs3U53YuXNkEvbaaxRhb9KE5J3vvUdy7bt3qT/zxx+TK3vnziSRW7WKjMZOnqQF7urV9NoNG4hsBwRQn/EpU4gsGiWWRvLk5gYYa/lGjyYS/e9/U4ZSpyNzK7Wazk2no0XwmjXAokWUtQoPB9q1g8s770CZmQnu6Qnm70/ZrtRUMpu5eJGuWYlWdY8LBwcH9O7dGydOnMAvv/xCfbgfBdnZdP3Dwuh9du8OcI68vDwmiiLv0KED3Td5eWRstnp1pW7HNUajRnStv/mGjK+qgLW1NSwKa+hlWeZAzT24TE1N0bhxY2Rk1O6r8OHDh/Dw8EBOTg4OHDiAAwcOoEOHDnzcuHHljz1pEi1qN2+ufscnTtC4r4kiQKkknwYTE6ohrmH/eWMZTX5+fjVbEuzt7dmDBw+k1q1bVxitcXJyQtOmTXHx4sVSAbWCggI0Cw6G1aBBMKo57O3t4eTkxO7cuQMvL6+qD/y//1H29ebN8pl7pZLMnR53DgPw6quvstWrV8v5+fnCxYsXhQ4dOlQfhNi6leqsy6jV0tLSYG5uXnngxWCguc7UlAIIY8cSYf7hB+Dll5GZlYVz584hoND0zMLCQhJFUfz9999Lk+2DB2luWb++1O5DQkKwb98+7uTkhJkzZzJj6ydbW1sMHjwYzZo1w7Zt25i3t3fRPQM3Nxo7GzcCv/xC9/CQIfRTAt98841UUFAg2tnZgXNeu5awK1fS/F4F2QaAGTNmWBRm5btqtVpPpVKpuHPnzgeZmZkDFQpFu1deecVcp9Ph8OHDcTU/ePUQBKFv06ZNLZ/Evjjn0Ov1UCqVpa5RdnY28vLyGIAbZerSbxf+fmLtQJYtWzbQ1NT0nbFjx1Yd3WvXjgKoFZkthoRQsPjLL8kktIawsrJCnz59mIeHB1u/fn2uJEl1ZPsFRx3ZfgwUGnrV4U+AWq1OAfDG559/npaamtpMqVR2z83NbVhHtp8NTp48KXfp0kUw9oaNjY0FQG7lf5msdkm8/DL9rF4NLFlCC6uwMFroTZtGEetevYgUfvwxOV8fPEiLsBUrqNZuwAAioaNGAenpxQvdLVuIcE+dSsR36VIi81u3kgTY0xOtRRHuycn4b2CgotGRI0g0N0dwdDR/Oz6emeh0tPC0LFzntG1L56dUkhmLiQlJio01gv/9L5Gv+vWJfKtU9JhRApqaWvy+jS2kSi5IS7Y3M/792WfFj5WU3G/bRr/nzi1+bGVh6ZmDAxATQ6Sc8+LsZU4Onb/RvXjAANp+yRLwHj2AH35ARrNmsAUoMBEdTWT7lVdIeWBtTZm8nBxyXFapgG+/pedXrSISdu4cBRtSU6kmv4rWP15eXrCwsMC+fftqJR0uQk4OmcP16kUZ/EISyBjDvHnz2Jo1a9jGjRshShJ/Wa1mF7y8wGfMwLjaHaVimJlR3Xs1ZBsgEgcUt5mrDaysrOQ7d+6Ip0+fRqtWrSo1fgIo6xgXF4esrCzWoEEDTJo0CQaDAWvXruURERGl2cfSpVQffOJEtbXnRfD3r11pR7NmFAhZupSkzJZV84WDBw9yY1DRtQbXFSAynZCQUCWzat26NQo9XIoUFCYmJkizs4Nu0iSUXPHn5ubKLVu2rJqpZWTQPbZtW+US+SZNaL749NPaOSpXAGdnZ+HBA1K65uTkVE+2d++me7sE2ZZlGXfu3OGenp6swu4KskzBo6goqj8XBJrbevSgz2/RIsR7eiLg3j20a9eOT5gwgQEQt27dysPDw9lXX30lDxkyRGjdujWE9PRyYyopKQl79+5Fnz590LdvX1YRGY6Li4O9vb1csi0TDh2iOXLECBqrq1dTRvOzzygTP3QoYtPSkJWcLEKpxM6dOzF16lQ0b968xtcXbm4UtIuLo4BoJRBFEY6OjnB0dBQACAAQExPD0tPTuw8cOBDNmzfHLerTLlW6k1pAo9G0QyHZbVlJLXJFSExMxNmzZ3Ojo6OZwWBQWFtba3U6nVBQUKAEwAwGg1ivXr0CLy8vs1atWjFra2uYmJjAYDBYCIJwZdmyZauWLl269zHO2xmAQq1WR1f0PGOsr52dnVhtCZanJ43LxMTSgSsfH/pe3rq1QvVETXD79m2DIAjrlyxZUvtJuQ7PFerIdh1eKCxcuPADjUajEgTh5r1795waNGjw13DBfsHAOS+1mNq5cycAIDQ0FBcuXEDvxzSoem7xf/9HX6CFmS107Uok1tqa6iIBInWFDsNYv56ybNbWlHkFiuXSAJFLI4yZwf37ix+LiaHfnTtDNXIknH7+Wdrv7S1aWVnxvKwsFvj11+ju5ERy2P79adsPPyx+vZHYtmtX7MxsJK8AYMyMVUMwnhoEgaSs6emUYTQ3JzlocDA9P3o0PZeXB8ycCcXRo3BMTkaySkVku1BaC4AWoQBl2G8XJjrGjSu+1vn5RHRv3KCF+htvUM1uq1bA9u1Euu/fJ6n33r3Anj0UhOjaFe379kXY11/LP2/YwGbMnMksa3K9MjNp0R0WRoGXCmpKBUGAt7e39CAkhNe3sBClBQtwJzsbJmFhtcouV4pdu4rHUDWIjo7mKpUKI0aMqPVxx44dKzZq1AhXr16Vrly5IjZq1EgaMmSIWLLNVWpqKoKDg3Ht2jWem5vLnJyc+JAhQxhAxkC5ubmsdevWEgARBgMRxPh4MqOqKdFOS6PgRg3Np4owbhyNm4KCcvfC7du3ERISgsTERDkvL0/QarWsR48euHXrlizLsmAwGKCqpk9zbGysXF1P4tTUVIiiWKo7iZCfjyaZmTxszhxWUgCt1WrRvHnzyj+n+Hgiofv3F5mZVYqPPipF3oKCgiCKIm/VqlWtxkHPnj1Rv3593L59G8eOHZPmz59fec1FejoR1DJk9vPPP+eyLLMKHfE5Jxd5X9/Sc2iXLvSYlxeQm4uWFy7AvkULHhwczC5fvgwvLy9MmjSJxcTEYNu2bcJvhR0nPPR62bRHD2GUToddu3ZJSUlJLDc3V7C1tUWfPn0qJNoAXfuUlBSBGQykrDEGDf75TzK+srIq7h6waBGpCnJzYXv2LP6xfz8SJ0xAnqUlv7JlC3dfulRgNfVksLCg44SGVkm2K4KHhwcEQcjr0KGDOUC1wZzzqt3Wao5UALC2tjY0bty4Rm8mPDwcO3fuzDMYDIs45wcB5KelpbkV7isLxE0S09PTJ549e3b6qVOnBrq6uqJ79+7mACDLclcAv2k0muaPUsus0WjqAYhTKpV+APpVtI0sy6uTk5Nfun79ev8qFSSCQNnrkJBisp2URAHmdeuqVSJUBs45AgICCvR6/dZH2kEdnivUke06vFDQaDSiQqGIsbS0NHd3d68j2s8IsiwzmxJy3ZkzZyIlJQUxMTHG/qjw9vZ+hmf4lCAItKgyYsmS4r+XL6ffXbsWPzZoUPHfxgWkUXr4CJgxY4Z48+ZNmJmZsT179uDcuXNwd3d/sdUEc+ZU3H8XAErWDmdnAwBctm+X60VH0wuaNydZ+5gxZFLTqxdl9I0S7JLmT8Y+1U2bFhs0+Re2XOWcMoCOjrSQNZrdXL1KCoCOHTF2+3ZhmYsL0idO5Jbx8Qy3blFG7cMPKdAxcya5qe/bRzWkI0YQgVu/vlhCXwE6d+4sdl62jLLQO3bA5IsvkJeXx3Q6XbUkrlrk5REBuH+/ygX6sWPHDP7+/orxNejlWxm6du2Krl27ilqtFgcPHhR+/vlnNGnSRHZ0dGSmpqY4f/48s7Ozk9u2bSsMGjQIQglWmZycDAAQBEFITEhAg0GDSK2wYUPtTiIqinwFaqs+AIBXXwV69cKDTp2wq1EjbmdnJ1laWuLBgwcKgAiLg4MDWrRowd3c3NjVq1eFVatWQZIkWFpaSm+//bZYkerhzp07ePjwodC3mrro4OBgWalUCrdu3ZI7duwoAAD38cGAgwdZYsmgEqjOPjIysmL3eJ2OFBtz51ZPtAG6zuvXIy81FZeUSmPtNVuwYAGqMnUrC3d3d7i6uuLq1auwtLSs+ru5c2dSAJVQvFy+fBmyLLP333+/WJ5dEvv2kVT85MnS84VRqbJgAfDNNxDS0/GPhQvZtalT+dETJ5inpydUKhXc3d2xZMkSaLVahIWFofmwYcLBN9/kX0REMIPBII4dOxaNGzeGlZUVKsyqAzhz5gyu+vqifVAQBTJ27KASnAEDKHAwezaZ+BmhUtEcAcDipZdg8cMPsL14Ebrr11nsH38wuXVriL16URlNvXpUKlGVtLxlS8rs9+9f+ZxZAXr16qXs1atXkS6/QYMG0Ol0jTQajZVarc6u8Y7KQKPRuKhUqv/qdDq88sorNeITkiTht99+y9fr9aPUavXZEk9V1NZqN4DdGo3G/MGDB2/FxsbOUCgUzgCiDAbDOhS2Jqvk3JoDSFWr1ekVPD0KAARBqDQSqVartcuWLTseFRXV3cvLq+obwcaG2g32709B2tRUUsk4OFT5sqoQFxcHg8GQAeDmI++kDs8N6sh2HV40cEEQstq0aWPdpIb1dXV4sggLC0NBQQELCwuTjQEPBwcHODg4oFWrVtDpdLh3757k7e395/Xd/ZtAEISilj+ffPIJNm3aJH///ffC+PHj0fYpGrU9VXTvTtnk9euJeFcGUYS/vz+/2KiRIE6eDCeA5OHt2xMpnjSJJNMff0wkw9h+qCZ1kYwVy2j79i02jNq1q2iTswcPQnHhAixXrmTYv5+kg/b2wJkzpBo4dYoyXZ9/Tv2bp06lzHZ1SE+nBXshMbKwsEBeXh4iIiJqJcusEObmlFkr0zauJBITE3Hjxg3FrFmzyrWXexSYmppi0qRJLCcnB4cOHWL379/nnHM+fvx4sVWrVhUyhDZt2mD48OEI/e47digsjL/1zTcM/SpMOFWN3bvLtX+qDeSvv8bNL76AwcGBJSUlKZKSkmBqaopp06bB2dnZeO4MAKZPnw5LS0uoVCrs3r2bHTx4kE+ePLnUYNu8ebMcFRUlDB8+HJW2DyrElClThM2bN+P8+fPFmd3Ro7Hvyy/l2N27BUtLSz5nzhxmaWkJg8Eg29nZlb+WnBPh8/CgIFQNwf39EblzJ7/98stwcXHhWVlZ2L9/P58yZUqt5nCjjHzUqFFV33SHDpVrf3T16lW5V69eQoVE+9YtCrzs3VueZHbqRGUDBgMRbxsbICoKnpmZ7CiAwMBAdCvsLiGKIiwsLNCxfXtg2TJMmT2bJSYlQZKkKksfACAtLg55X36JrgYD+ru4kKz7wIHiDXQ6CuitrKJDk1IJ9O+PxGbNEJCTg5T+/WF38yasv/iC2zx4wGSlElampjxn4EB0mDuXmTg6ln59164UUAoJIRPJR4RCoYCrq6s2PDz8VQAbq9teo9EoATC1Wq0r/L+VKIpfKBSKXk5OTrZDhw6t9voZcffuXXDOg8oQ7SqhVqvzAKwt/KkSy5cvHwngPQDegiCkazQaT7VaHVlmM6Wtra0hNzd3sEajEcs6qxvBOb+Tm5urA1A12e7YkYIvubl03/3ww2MRbQC4evVqvsFg+KGq7kh1eHFQR7br8EJBrVbLGo1m7cWLF7+LiIjI5Jyjffv25j179lTWymykDo+MHTt2oH79+mjbtm25xZ4kSQgPD+eurq51RPspQxAEzJo1S/jll1/42bNn0bZt2xf3BvD3J6fdKsh2fn4+fv/9d9apU6dit2yjKU2jRsXSfRsbqlMPDaXFaXAw1dLr9aUz5WURGUnZZc5pwbxsGcnIAwOBAwcwYNQo6IYNQ7SDA6936BBjCxdSyYBSSQQvIIBcg0eOpGPWhPR99RWZWN2/XxQUaNKkCR4+fAjrKrLhtYHMGLRjxyLuv/+FR5k+vZIk4ZdffoGnp+cTIdolYWlpiSlTpjDUUA7fvXNntDlwAA9atKA+xbWFXk/qhHs1baFbHgGiiCRHR/xr+3asnTQJA0aM4L17967w/EvWa48bN05Yv349NmzYAEmSJM45s7GxEeLi4oTJkyejRYsW1R7byckJM2bMwLp169jBgwelEY6OomHMGJh9/bXQsmVL3Lt3j0VERKB9+/ZwdXUVz507x/Pz85mx9R9jDEJeHhrn5yPBywuyvz8EQUDLli3LZaijoqIQHh6OS5cuUVcPd3fOGjbEP8aPZ6omTVh0dDS2bt2KyMjIGtelc85hdOmuMhA+ejT5WJSphc3KyhIqrPM+c4bKRU6dIol2WZiaklz7xx9JUi6KwPHjOPif/8jDTp8WulQUdPDzo+0YQ4PqDOIyM4GQEAhTpqBxo0Zw37QJZhWZF8bFkQ9HDUhWkyZN4OLiImXn5AjdFy5ksbGxrHHnzkiJiEDa5s0wO3iQZWVmwiEzk9Q7/ftTQM/Kinwn1q8n063HQI8ePSxjY2OXajSaXwvJbBE0Go2tQqF4X6lU9uWcN2KMNeecM41GM1CtVp9jjP1bkqRRACDLcp6zs3ONpST+/v7ZWq328U6+Emg0GjNRFLe5u7tb9ejRA7Gxsda+vr6BGo2mqVqtLungGFBQUKCzsbGxSElJmYEKAg4ajUYliuKbzs7O1cs7XF2BK1cowHv7drEx6CMiLy8P9+7dY5Ik/fhYO6rDc4M6sl2HFxF7AOgSEhKiAFikpqZ+fe/ePbtp06ZZPLbssg7VgnOO1157rchQqSTy8/ORnp7OsrOzERMTI40ePVqsrlaxDo+Ou3fvIiMjg4mi+GJHvz/4gEhuVlaFkmtJkvDVV1/B1ta2+vZSJRfXfn6AszMtTMPDadHarRvJzNesoUzZhg1Ejvv1ozruGTPIlT0/n0hf585EhDMzkbZ/v3zl/n0h9/vv0cvCgrY1om1bYPJkynZ/+2317zklhWqFBw8uItoGgwE3btxAo0aNHpn85uXlITY2FtHR0Tw8PFzOiowUX715E79u24alGk2pbY8dOyYBEB6lTvuJoaCAzAfXrMEPixbJvfv3f7TyoEuXgMWLH8t/ICUlBSn29sj19MT/TZ0KkzZtanRd6tevj2nTpiEoKIhbWVmJGRkZuHr1Kvr371+rNk9OTk74xz/+gXXr1omxsoxGPXsiOiYG9evX54MHD2ZGN+1Ro0ax3377jd++fVvinINzjqY3b8Lz2DFh78KFEg8NZQB4VlaWGBcXJ48cOVIEqN740KFDUmhoqGhnZyfr9XrB2dkZnTt3Zu03bYIwcybg44MmTZqgefPm+OWXX2BnZ4dp06ahXr16VZ060tLScP/+fTanKnWKJJEipIKaeoVCwU1NTUtfqzt3SKq9eXPFRNuI3r1LtV+6FxKC+1qt8HJ6OoT4+PLHO3iQSHRV3QVSUihg98knkDp3xrrXXkPf4cNly2bNKh6fq1aRDHzBgsr3WQKzZ88uCkgbP1enBg2Anj3Z6tWr5amTJwvIyyMS//XXFEycNAlISCDfibQ0ajv2iPDw8ICpqamDTqcbAqAoRa/RaPoqFIpDrVu3NnV1dTW1tbVF06ZN4evrCz8/v5EAznHOZwKYCcA6Li4u9caNG+hasnyqEnDOkZCQoABw4ZFPvAqYmJicsrOzM33ttddExhjc3NzEtLQ05b1793ZpNJrxarU6FwDUavXNzz77TD948GCb33777RuNRnNJrVbfLbO7VyRJGl8j/5m0NJrH3njjsYk2APj7+8uiKB5avHhxLRuy1+F5RR3ZrsMLB7VanQygyB5Zo9EciYuLy83NzX38Gsc61Ah37tyRBwwYUG7RYWVlhaVLlyIrKwvbt28XT58+jRkzZiAlJQXJyckwNzevcaakDtXj0KFDvKCgwGgs9WLP52vWAN9/X2w+VwZ6vR5TpkwRFDU1FAJIYgpQhhogqaebG0mrBYFap3XvTs9FlzClPXWKfpfIeglmZpgyZYpw5coVHD9+HK6urnB2di59vMmTidxXB39/agVz924pp3CjE3hNFq5lERAQwE+fPo38/HxmZmYm2dnZCS1bthTbT5yIuEmTUH9vaeNerVaL27dvi6NGjar1sZ4YMjNJTdCwIfKsrZGv1wtRUVFSr169aq+M8fev0ISuNsjKygIYQ9qyZXDcsQOwta2xs7mLiwtcXFyKyGK/fv1gYWFR6yCGvb09Gjo4GJqfPCm027BBGEOZ0lL7EQQBr776KgNA14lz6uv81VeYN2FC0Q1y7do1nDx5UtTr9TwmJgaZmZnMzs6Ovf3227hz546Qm5srT58+ncrnNRoil4WYNGkSgoKCcPz4cf7777/L06ZNq/IzOX78uGxlZcWdnJwq3+78eZJeV3APm5mZ8fj4eFZUh37jBvlgLF9efe3522/TvQTg/v372L17N8ZPmwbl559TK67sbKqLNmLlysrLS7RaMrY6fpzKO9avR0B6OgoOH4azs7OQlZUFU1PT8muNdu0oaPSY0Ol00Ov1gpWNDY3nli1JkRMbC/z0U7FRXGhoscHlI4Axhj59+pj6+Pgs12g0PgDamJiYfKhSqcaMGzfOtFXhNeecY+/evdqgoCBTABkAoFarDQCg0Wh6AqhRr3mAAoEGg4EDqJlrYy3BGLMdOHCgaUmV48iRI81kWe4XHBx8T6PRDFCr1eGfffbZW3q93qZ58+YYMmSI2alTp/ZqNJoOarVaDwAajUZQKpWfvvTSS5KVlVX1c9HRo1SGVFH7r0dAQEBATkFBwQ9PZGd1eC7wYi/O6lAHAlMoFJHbt29vOGPGDIv4+Hj4+fllP3z40GTOnDmqF9o86jmDLMuws7PDH3/8IXTr1q1CIxvGGGRZxsOHDyGKIj7//HPZYDAIZmZmPD8/n5mamsqNGjUS0tLSJBsbGz5lypS6eegRYVxUODo6Kkq2DHohMW8emVRVgLt378LExITb29s/XgZWpaLMkyCQURpQo7ZYJdGjRw9cu3aNX7p0iU+YMIECTgYDLbQ3baq+b3FSEpGH/fsBBwcYDAYEBgbC19cXubm5AIBGtXDT1ul02LZtmxwXFyeMGDECHTt2hEKhKDUQEtRqTNm2jaTxIKL97bffwsbGptLez08diYlEJC5eBH75BbqMDHDOMXbs2NqfjySRGdwjBClKom/fvggKCkJMTIzcystLwJYtj7yvCmuPa4hZ3bop8OmnpJKoDrm55Kr/88/lSGm3bt3g4OCAkydP8rZt2wpubm5o0qSJIAgC8vPzYTAYilts2diQ58HYsUW1yG3btkVAQACLjo6u8jORZRlhYWHCvHnzKt8oNZVMAyMiyIiwDAoKClAkPw8JoYDX3LnkyVAFYmJikHDkCK+/Zw/2hoez/Px8CIJQ3FPbxYV628+bR9JxzikgFhRU+l7NzSV5+9691I7xlVeKTAV9v/qKA2BbCseDmZkZX7BgQfFc5O9P4/kRAslarRabN282ZGVlCXq9XjAYDHBzcyOSl5tLpRH16pEJXHIykex69WpmflcNunTpwuLi4prfuXMnWaFQsJ49eyq7detWZPTHOYevr68UHBycJQiCvyzLRc7fGo3mdQBbAeD333/PUiqV3MXFxczd3V3VvHnzCr+LdDodRFHMW7JkyVNRYmm12pUnT55c5+bmZmE8vlKpxPjx402vXLni7OPjc1uj0XwJYAlAruhdunRhQUFBTeLi4v4DYDEAKBSKf9WvX9++e/fu1c9FwcEkIf/66yfyHnJzc5GRkaHCU8r+1+HZoG6RW4cXHmq1ukCj0bTIzMz8cfPmzbOysrJy9Xr9O4IgdDx79uw/Jk6c+AjWtH9PHDhwgEdGRkoKhQL169cXBwwYwGJiYuDi4gKFQoHNmzdzSZLY8OHDq3SqtbW1xTvvvIPMzEykp6cLzs7OaNSoETMYDDhz5gyysrJkd3d34erVq+zu3bto8ximRn9nzJkzh/n5+fE//viDtWjRonym9UWChQXVRy9cCBS2kjMiNTUVj020jTh2jGTkj0HMxo0bxzZs2MBat25NYzc9neSx1ck6s7PpuOvWASNHIioqCjt27EBhoIQPHz6cNW7cuMhd/vTp01JmZibGjBkjVhZIOXDggJSVlcUWLlxYqbLHfcUKbBQEpGg0eP3113Hz5k1uYmIiz5s3788n2rJMC9N33wXOnUNes2bY9tNPUmZmJgMgPFLAKCSEPtcyrt21hampKQRBQMOGDQW0a0fy5DfeAL77rmoZ85NG586llRaVgXOqEW3VqpzhmBGurq546623SqmQDAYDrl27BicnJxnG7DhApRBKZXGPe1DtvYmJCWRZrtSlm3PiTnq9vvJztbMjslgYhMjIyCCinJCA5ORkGAwGoVGjRmQA9vXX1MmhZDeBCnDlyhXp+PHjorkksa7u7tzZ2RnNmjUr3XrS25tKNd59l+rF+/Sh1lxGoh0WRjJ1hYKCABcvlgtydOrUifn6+uKNN96AIAjYvn07Dh06BMYYRFFEy02bIEoS7p86BUEQin6MzwuCgLZt25bzYbhw4QL8/Py4s7Oz0L9/fyE6OporlUo2MCdHZGPGkMHi0aMUKFi9Ghg4kBQMnToR4X5MCIKAsWPHmhrbtpVVDd29excXL15MkCSpdwX9qC8JgpClUCj8Hz58+DWA3ISEBM/bt29P4Zx79OjRQ9mzZ0+Fqalp0QskSQJj7In0964E27Ozs2eeOXOmt7e3d6nJsEePHqKzs7P5zz//XNRC5NixY5g/fz48PT3NIyMj/63RaPap1eobCoViep8+fSwqG++l8J//0FithTt8VQgLC4NKpTq/YMGCKm6mOrxoqCpNgwIAACAASURBVCPbdfhLQK1Wc41Gsyw7O1uUZfmQWq0+qNFo/O/fvz8/MTGxehOUOiApKQmBgYFs3LhxCoPBgJs3b8o//fQTU6lUkGUZkiTB0dERb775JkzKmNtUBEdHRziWyWAoFAoMGTKk6FtJFEV+8OBBXL58mdnY2MDd3R1ubm5PzBzqrw47OzuMGTOGRUZGSsHBweILTbYB6hfOyyc9mjVrhosXL+LSpUvo2bPn4x3D2vqxHKsBkgwLgoC0tDQKEERGAidOVP2i7GzKwG7fDvTrh8jISGzbtg1t27bFmDFjIAhCuWDC+fPnRYDupT4V9GvNzs5GVFSUOHDgwCpLaExtbPB6mza4tmcPtgGoV68enzx58rPJaIeGUvuiqVOBzp3xx7FjSEhIEIcMGYIWLVo8WinQtm3Ffe4fA9HR0bC0tOTt2rWjz8LammpkT58udqt/2oiKInfjhw+rr/9cupQI4s8/1+oQer0eoigiKSlJjIuLK3aSbtqUjMZ27aKSCADDhw/HF198gbt376Jdu3YV7k8URahUKgQHB1cc8IuIgNSjB9Z/8omUlZ/PdDqdAABWVla8Xr16soODA+vRo4cgpKQAPj7Uvm3ChCrfw927d/mJEydEJycnvPXWWxCGDmXo3JkCBmXBGEmyDx+mOWbyZDI0XLuWDA3t7cl/oRICG/j/7J13WBRn18bvmVl6UYogYEEFpIiACthBY0F9xV5fS4zGFhM1JjEazWZjNDHF94sxMRoNJsYSNYqJGOyoWADBiAhYUAQU6WUp22ae74+HRToLrCbR/V2Xl8rulJ2dGeacc5/73LjBd+nShevQoQPKysrQtWtXQSaTEUIIIwgCSezZE6WtWzOKzEz1z0AIgSAIEAQBRUVFXFpaGqZMmVK5zrt37+L06dMYNmwY/H18WDYnB24//8ygQwdqijZyJP0+jh6lPcHDh1Mzxe++oxL7Dz5o8Pg0Rnl5OVJSUqBQKKCnpweVSgUbGxvoVTnnMjMzoVKpIuoItFEx37pVjR+fArBRIpF0jYqK+vjq1auj+/Tpo9e/f3+RSCSCqakplEqlhUQiYZ6Fy3bFc+DUmJiYu926ddOv6XvRvn17LFq0CGlpaSguLiZmZmb49ttvy/Py8ow5jivkeV4FADzPJxQWFtZ9slclKoom46qO+GwhUVFRJeXl5T80/k4d/yZ0wbaOFwaxWJwBYG6V/ydJJJKv9uzZs2LFihWaDwx9ibh58ybu3r2LkpISkpGRwfTo0UPVvXt3EQD06NGDlcvlMDAwQGZmJvLz8+Hu7s5o0/U9ICCAsbGxQUZGhpCdnY2zZ88yYWFhjEgkEjiOg56eHkaOHMnWdFHWUZ3evXtz4eHhSE1NJdbW1sIrr7zCtUTG+rfRpQs1RLp2rVrluWPHjpg6dSr2V1S8WxRwR0QAM2e2cEcBPT09YmlpyWDHDhogjRnT8AJDhlBzti1bwPM8Dh8+DA8PD4wbN67eRQwMDCCXyxEZGQlXV9dapoQHDx7kraysmB49ejRaVmklEmFI167ovWJF43OQnwWJidTg6fJlalZXcR/p1asXoqOjkZycLPTp06fp+0UITWI0dvw1oHXr1pBKpcy2bdvIrFmzGCMjI1oxv3KFSqufR8Bta0vdphsLtGUyei5v397kTRgZGWHy5MnYt29f7X5buZzOig4KAiwsoK+vDwcHB+H48eOsh4cH6rv/u7u7k4yMjFovKhQK/HHqFDH292e6uLoy7u7urIWFBYyMjFDxy4QmfYqLgfXraZ/8++83+hkuXboEY2NjLFTP6ra1pXLu+kYgrlwJlJTQQNbSkt5fAgNpUNvAvVIQBCgUCsbf3x8sy8LU1BTjx49/mqi6f58mPZKS6uxFB4Ddu3eTBw8e4MSJE0xeXh4KCgr4kvx8tq+TE+n9558sM2kSNXPs3ZtW3au2vj15QhMBn31GZ3afO1dvu40mKBQKXLt2DZGRkeUArhBCChiGMSOEOCmVyvb29vbyCRMmmLZq1Qo3b95UcBzX5BlWYrH4NoApEonE+erVq9/cuHFjwOTJk43t7Oxgbm4uLywsHADgQrM/RMPbzl63bt37J06c+OLVV1+t9sUWFxfjwIEDZcXFxSU8z18RBGEMgP8B2LRmzZp89fuUSuW13NzcsQAMUR8qFZ0mMX06bU/SAlKpFNnZ2RyAw1pZoY5/DLpgW8cLi0QisQGwpn379v9up+YaqFQqSKVSFBUV4eLFiwIhBEFBQez9+/eRlZWFbt26oVOnTvVK/kpKSpCSkoKEhASSnp7OtGvXTjAzM8OsWbOYdu3aVbsnqCvYdnZ2Wh8NBNBKt6enJzw9PSt3Njc3F5mZmay5uTmuX7+OAwcOwMLCgp88eTJXlwO6DtpHfP/+fb64uBjx8fHc7du38e677/7du9U84uKoXLKoiPZYVtC5c2dMmjQJBw4cQMeOHZsnmZfJaMWwhRLMkpISsCwLeXw8NXZrKAFFCJUEf/894OEBnuexefNmwvM8qctkUE3FPHsAgLGxMdm6dSsTEBBAnJycGDs7O0ilUmRmZnILFiyo91qvxty5wLRpMOWfpYqzHtLTafVw3DjqFl7leOXn02fckSNHNi8BkJJC+201NGlqCKlUCkIInjx5wvDq48RxtB982TIamD1rE8716xuXw0dFUTnxhQuazZGvA0IIDAwMiEgkqr4COzvaV13l2ps4cSK7ZcsW8tVXX2HUqFFMXTPD7e3tmaSkJFJSUsKYVjjCX716FVHHjpEBt26h465dsLKyqvs7lsmAQ4do3/jKlY3ue1lZGR4/fswMqToibt06WgFuCBMTel/JzaXJn48+oqZtw4fXu8jOnTt5lUpV/1SN0lJg/vx6A20AKC8vJwDYRw8e8O65uYypszPnsnkz9KZOZZgxY+i12bFjdRM3gF43775LTfoGDqQBvZERNXlsBhkZGdi7d285IeSSTCb7TCwWn6n6ukQiMXv8+LFkx44di1977TWD4uJiPQDNdn0Ti8V3JRLJCIVCMSMkJOS7vn37Grq5uRlHR0ePwDMKtgFAEIQfHz9+vKGmqvHSpUuKwsLC3TzPvykWi5USicRULBaX1Fye47j2VlZW9QfaAL2n+/trxRRPTUxMjIrjuKNr1qxRaW2lOv4R6IJtHS8yOQCm3rt3b8exY8cMBEEgBQUF/NSpU400kUE/b3JyctSGHbV6p7KyshAREYG8vDy+qKiIVSqVDMMw8PDwICzLYuvWrTA0NESHDh34/fv3cyqVCkZGRoKZmRkxNDTkioqKeKVSyfA8z/A8z5iYmBBTU1Myb948xtra+vlXuRrA2tq6soLXsWNHDB8+HIcOHWK2bt2Kt956C61a1VSu6QAAtSw4JCRESEtLY3/99VcyZcqUf9/sbV9f+jBcR++us7MzfHx8+KNHj2LRokVNl0GXlwPvvNPgg3FjXLhwAZGRkXDq0EHwXrCAg4MDMGBA/QssW0Yf6GNjIZVKcfnyZaJQKLBy5coGrzu1SZG9vT3mzp3LXLx4EUlJScLly5dZQgjDcRzat2+vsra21vzDBAfTMUi7dmm8SIv59VdaKc3MrDRoU3PmzBkSExMDNzc3oUEX64bIzKTVzBYqbgRBQEHFrPYpU6bAtOoIsWHDaLvAkSM0YfCsAu7Hj6kkXixu+H1799LrpAWfWS6XQy6XM/fv30fnmsGbnh6VXcfEAJ07w9TUFO+//z5z4sQJHDhwACuoOqLaIj179sTDhw+FH374AdOnT+d+/fVXXiaTcVNtbZn2J0+Cqc+oVKWigXJJCZV1a/CZ9PX1YWlpSc6dO8colUoMHDgQ7N279Lzeu7f+BRmGqgHUieOHDwE3N5qwGTaM9m+rVNVUBY6Ojpz6vKiTw4cbVsrwPDokJjL+Li7wOn2aQ2YmDc5PnQIamkeemgps3AhMnfo0GfDLL9RorhmUlZXh8OHD5eXl5W+LxeLv63qPWCyWAnj7448/fiMiIgKgLvitQZ+lmkWFXHy3RCKJuHr16m65XB4A4H2JRPIXgKNisVjW3HU3sE35+vXrf7pz585bbdu2rTyhnjx5IuN5/rTadbyuQBsA9PX1+zZorFtQQCdZHD7c4vuOGp7nER0drVQoFOu0skId/yh0wbaOF5aKm/yvEokkPi4uboxIJHLleT74zp07Rp6NOJw+T1QqFY4ePUqSk5MZIyMjcubMGcbIyIg3MjJCSUkJ5HI5JwgCPDw8eB8fH05d1SOEgGEYDgCGDh0KlmVhZGTEEUIgk8mQk5PDPn78GOXl5bCwsOAsLS0rjW7s7OwY1Bgn80/FyMgIM2bMYD/++GMkJSWhdwvGnWgDQRAQHh6Ox48fC0qlElKplDEwMICNjQ0zZcqUequMKpUKt27dgoeHR61kijaZNm0au3HjRshkWn+GeX7k5QF9+tCH3xqBTZ8+fbi//voLBQUFsLCwaNp6o6Np8Dd+fJN36f79+zh+/DiRSqXMtGnT0MnBgcOQIQ27j9+5Q93P164FIQQhISEoLi5mZmjQX2xvbw9bW1uhXbt2LMuyCAgIQEBAAAdQB+acnBz06NGjaSdSSAhg2HDBRmvcv0/7099/n843ryGLVigUuHz5MtO/f38EBgY2v3983bpaQXxzuHPnDk6fPg1XV1fB1dW19kVsZkbl3TdvUtfqZ4Gtbb2j7wBQufy8ebRf18mp2ZspKirCsWPHwLJs3QoRY2NqCmdc3Vu0T58+uHHjhrBlyxZ2/vz5EIlEUCqV4HkegiDA0NCQlUqlzPfff4/evXszg/r3hz4htSu2agih/eampjTBoGHgIhKJ8OabbzLJycn49ddfYWZmhp49e9L+5sYIDaVV9Lt36fUA0AkBixbR7fv7Q9W9O6Jefx1F27fzCa6ubLlCwdy9exe1nhtKS4Hdu+v+fFeuUKPHmTPhc+wYkz9jBg2WNbn+UlNpb/bAgdVbF5YsqTMJ2RgKhQL79++XSaXS3wBs02CRlfHx8f9jWfaTtWvXNjvQropYLE6XSCSDGIYZRQj5A8B+AJBIJABgIxaLtbIdNSqV6tydO3fmDBw4sNIAxsnJyTwjI2MlgEMNLcvzfHJRUZFvvW+IjqYtCFocY5qcnAyGYRLrmPet4wVAF2zreOERi8VJAJIAQCKR+B09ejTijz/+0H///fc5jeSXzwCFQoGEhATo6+sjLCxMaN26NebPn89YW1sz+fn5yM7O5oqKimBqaoqOHTvCxMQELMtW+y1btXeuan8uwzAwMjJChw4dno5S+ZfDMAx69OhBIiMj4efnxzzv700QBKSkpCA+Ph53794lcrmc8fT0hImJCVNSUsJYWFjgr7/+wpdffil4e3uzw4YNq7WOzZs3C1KplDU2Nsaz7EHPyaHPLEVFRYxCofh3zp53cKBBhSDUesnCwgLdunUT9uzZQxYvXty0azg7u9kPSAkJCcjLy2MmTJiATidO0Nndd+/Wv0BYGJWH3rsHmJridnIyCgoKsGzZMo3UGdnZ2cjKymIFQeBR1TEa1OinXllrQ7RvD6xYQc2n+vZt+vKaop4FfOkSVRHUkZC4fv06BEGAm5tbvX3AjZKRQQMe9az0FmBZ4SQ/fPjwuk8olqWJGqUSiI+nJl7apLiYHqeHD4E29bTJXrhAA7EW3Ndv3rxJzp8/zzAMQ1atWsXUm/ibOhV47TWaLKlwOjc3N8d7773H7tu3j9+yZQtHCAHHcZVu5DY2NjAxMRFKSkpYFxcXVv+zz6gaICGh7m18/jn9PF9+2Sy1gKurK/r3748TJ06QnqtXMxCJaLKiU6f6F8rMpEmL0tKnvdq2tlTxAgCRkdi9ZQtfFh7OLTh0iOuRlIRWoaEwioysPYZMLgf++OPpFILHj2kfr4sL3Q8TE8DVFeFr18Lc3Jx0AphGQ+3UVFqhd3OrNKmr3O/u3ek2mkhsbCwyMzMLVSrV65oYkxFC0gBAEIRNTd5YA1Rs+xgARiKReAFYDmA2gGfhvH0xKyvLsKIoAYCen4Ig9JJIJPZisbjeA8myrGu9Jq1379JESMV4PG1x+fJlqUwm+1yrK9Xxj0EXbOt4qRCLxdEbNmw4TAiZXDN4fZYoFAocPHhQSE1NZUUiEVEoFIyxsTEBgH79+qFfv36s+heClZUVdLPBazN06FDm/v37ZMuWLcKQIUPY5zUu7LfffuPv3LnDCoLAtGvXTujVqxdeeeUVhmGYag/lgwYNwu3bt9nffvsNPM9jxIgRla+dPXsWKpWKNTMzQ2JiInF2dn5mqoL27dvD29ub/PXXX8ynn34KJycnYdKkSey/LuhetYpW15Yvr/XS8OHD2e+//55s2bKFnzdvXuVc2EYxMgKmTUNBQQF27NiB4OBgdK1nZFJNgoODUVBQgN9++w3dFi5seM5tUhIweDCVj1fIbaOjo/kuXbpwmrZBqGdum5iYaPc+lZNDg9RnxVdfAQcPAlevUmOneigrKwMA/Prrr/zSpUub9xlv3qTJAy0k39RJmwYVIVZWNOCdO5cmEuqYF91sTE1p4FZfoP3LL1QdcOpUs9sgCCEICwtj5HI55s+fX3+gDdAqr1RK5fM1rpFp06ZxKpWq8pjl5+dDX18f5ubmDABmy5YtJDQ0lFn2zjtg6lNxhITQyvn69Q0alDX2eczMzJ7OdC4ro9L3hoLtkBAasObn171dY2MQa2uuXdeugqi0lG0L0MCc52nyz9GRmvy1aUPvTW5uNLG2axc97xmGjhd7/fXKVfbq1QuHDh1ipFIpZs2aVf++PXxI1SB2dsCcOdVfKyig11Njxnk1UKlUuHbtmkKlUh3QVLLNMMxqQgjEYnED+vmWIRaLbwB4teLPs1h//oYNG8qLi4v11ffcrl27wsrKSlZUVPShRCJZVFfiQSKRuADwrTeZuW4dMGKE1uTjAPD48WPk5OSoAGg3gtfxj0EXbOt46eB5fryXl5deQ3NDW4pKpcLXX38tyOVy1sTEhC8tLeXatGmD+fPnQxAExtzcHEZGRuq79b9Czv13Y2hoiNdee425ePEiCQ0Nxc2bNzFu3LhnWrk9ceIE7t27x02dOhWOjo6oGWBXhWEYuLq6YvDgwapTp06J0tLS+Ndff50LDw8nsbGxzNixY8mpU6eqfu/PjDFjxjBeXl44d+4c7t27x6alpcGpBbLTv40vvqAu0zV6Sg0MDLB48WLm8OHD+Oabb8jMmTMZjQzTLlwAWrVCyNmzQllZGRsWFqZxsA3QXt5Ub2+Uu7jAqGrVqSrZ2VT+efw47asFDeDS09O5qVOnarwtR0dHtGrVirRv316758vPPze777NBSkpoED9oUKOj1X788Uc+PT2dAwCpVMrFxcWhR48eTd/mtWt0FrYWUPtE3L59u+FRkQMH0oBNoaABWHPmgtfF8uXU1bouZDJAIqGS62YG2mVlZfj222/B8zwWLlxY24W8Lg4dolXp/PxaM+SrBuo1jStfeeUVJmPlSnIlPBxd9+5laqWOd+2i393q1Y3Ppm+Aixcv4ty5c/D09KTzwpcubfz4BAfT89TdHaGTJiE1NVVYtmxZ5X09OzsbLMsiKyvr6TKrVtG/lUrab+3gQPuoT58GFiygzu3ffUcTcJ/XLk6amZnBwMCg4UA7LY1K0q2t6TprEhNDvQ8aQRAEZGRk4Pbt23B1dUVcXFy5VCqNBaBRL7BEIjEE0BPAJU3e/09GJBLdy8nJ6Vk1wTlnzhzDnTt3ziwrK3ORSCTjxGJxUY1l3nR3dxfMzMxq/66/dIn2ajdgqNdUCCE4fvx4Kc/zq8RisUJrK9bxj0IXbOt46eA47vvr168v9/X1fSYO2wDw1VdfEZ7n2dmzZyM7O5tr3749/mlGZP9GzMzMMHLkSNbHxwehoaFk06ZN8PX1ZV7R4pxLgD6wbN++XSgoKGDnzJnTpDntffr0Ebm4uGDv3r3sJ598AkII079/f9ja2jJlZWWoS2L+LHB0dMSjR48AVG8z+Negp0crUMq6FYZ6enqYPHkyd/HiRWHXrl1MUFBQowGb0skJe6OjUQ6w06ZNw5EjR3Dy5EmNvxNZeTmKWrUCW5/nw8OHgIkJyKVLuMcwuPzTT7yVlRWTnp7OmJqaki5dumh8D2AYBv7+/sz169f5wYMHa6+6TQjt9z1yhPYdaou5c2nvKzVWqhdBEJCens5NnjwZnTt3xr179/D777+TTp06MU3qwVcqaU/822+3bL9rUFhY2Pib+venhloeHlQ23FJkMuDkybp7wR89ouO9btyo1UOtKYQQhIeHk7KyMmb58uWoVyJbF++/D9jbN2nEmJubG9yGDWOuR0cL27dvZziOg0qlwrJly2B88iQ1Kly2jAatLSAhIUHo3r07O27cOHp93L9PExINSXzffBMqqRTH//pLSE5OZuVyOZudnY2MjAxcuHBBKCoqYgHU3eqjpwesWUP/LZHQ72Tu3GpjCuuiXbt2UKlUKC8vh5FRHVNI09PpfPOOHWkwD3qdVBYDBIGapdXhV5KZmYmkpCQ8fPiQFBQUCOXl5RzHcWjTpg0fHR3NqVQqIwCTxWJxboM7+ZQVNf7+18LzfGx2dnbPqolmExMTvPHGG8ZhYWF9EhISUiQSyRixWFw1saDS19dXoObYL56n1/rMmYAWDXbv3r2LnJycPEEQdmptpTr+ceiCbR0vHatXr377s88+63no0CH/mTNnGrRu3RpqSVxLKt2FhYVq4yxeEARu5cqV4DgODi18oNBRGzs7OyxcuJBRP6gnJiYKb7zxhtZ68I8cOQKlUsm89dZbzQpUrayssGTJEkYmk0EkEkEkEuHjjz+Gk5MTwXNUMgwdOhTh4eGIjY3Ff/7zn+e1We0hCLTSc+JEnQ+aDMNg4MCBbNu2bXHo0CHo6+ujW7duda9LpYJiwwY8nD8fC5csgY2NDaZPn47du3ejQ4cOcG1IFg4AxcUw+fBDnBk1CokxMXwvQjhjY2OYmJjA2toajx89gsOgQeDmz8eZXr2EmJgYxsXFhb1z5w4pLy9nmnr8IyIihOjoaLam63OLUTsyu7hoZ307dtAH0R07NAoGWZaFhYUFn5SUBDc3N87d3R2xsbFk7969WLRokeZ+DL//ToMfLSaSjI2NSYXzdOPXaEgIDbaq9v42F4ahrQd1sXYtPa7NDLR5nsemTZtQVlbG9OjRo2mBNgDs3EmrxYRoLp1NTAQmTYLPkiUsrl/H77//DgA4KxaTUYWFDLN4MdBC3wpCCKRSKVttDFnPnlQN0wDFhoY4fOKE0PfKFWbA3r3Ysns3zp8/j8TERHTs2JHx8fGBj48PzM3N6z4R9+2jhnxJSdTUTYO2EJZlYWhoKGRlZbGONT0jHj2iPes+PsCrr0KlUuHUqVOIi4sDy7IwMzPjRYQwEz//nIWVFRIvXEBqairJz88XysrKOACwtbXlHR0d2T59+nD29vbq75gLDQ0VEhIS/lyzZk1mozsJQCKRiAB8AgBisThKk2X+ySgUirgnT56UAah28XAch+DgYENXV1fDQ4cOnV6/fv3XKpXqBAB9kUj0qoeHR+3W+qQkOuYrOFhr+ycIAv78889ShUKxRCwW68Z9vcDogm0dLyVyuXySXC7P2r17Nxk3bhyzcydNKr799tswMzNr0roEQcCOHTv43NxcztramgwdOpRzdnZ+2kem45nAMAycnZ2xdOlSZvPmzeyVK1fQr4WS0tjYWFy8eFEoLS1lZ8+ezTQ10FYoFCgoKICxsTGUSiUsLS1RXFyM06dP8wA4Pz+/59oyoJZ3+vrWb6z6j4ZlgWPHgEYq1i4uLhg7dixCQ0ORk5ODgICAWomzO6dPw1BfH/0DA4mNjQ0D0P72Tp068bdu3eIaDbbj4qAXHY23IyJw/M8/ubNnz/I8z0OhULBEKmXalpcLxWPHsi5eXoi9epVdsGAB2tD+W2bDhg0kKiqK6d69u0ZmYA8fPsT58+fZIUOGwNfXV/s3kk6daEXul1+a3+9MCA2yExLoOLEm3DeHDx/O7d+/H0FBQTA2NkafPn3YvXv3QqFQwFBTt/TTp6mJlxYxMjIi5ubmBDUM6erEwYFW17t1o3Ovm9u/rVIBFhZ0HTUVE998Q53HW+h6XFZWBg8PD4xuzkxgW1sa8Kenaz4ybt48Wu3dvBnq4PXO3r14GBLCXBg8mA/w8WnxOX3r1i3I5XIMGjTo6Q8dHIBZs6jCog6ZfFJSElTLlpFX2rRBO6mUKU9JAcMwYBgGtra2wquvvtrwxVBQAIwa9fT/rVpRebcGiQMTExOSlZWFqsH2w5gY2Pzvfyjo2RMXjYyQs2ULX1JSwpqYmGDGjBmMiYkJUlJSOGHpUtw0MsLlIUPQpk0b3tHRkenZsyfn4OCAVq1aVU4lqUpZWRlu3bql4Hl+aaM795QRAMBx3KdNWOafTGJmZqZKLpfX+WLHjh0xe/Zsw2vXrr394MGDNzmOIz179jSyt7eHQlFF0V1UBNGSJeA3bQKpR2lVH2rzwLqIj48n5eXlyaCmcTpeYHTBto6XErFYnC2RSEYXFhYe2LlzpxEAsCybefbsWduRI0eyeo2YkOTm5iIkJESwtrZms7OzCcdx3NChQ+Hh4cFobNakQyuIRCI4OzuTiIgIJjc3F4GBgTAzM9NIpaBSqRAWFoZ79+7xCoWC5TiOcXBwwJw5c5o8zzsxMVE4fPgwyzAMVCqapG7Xrp0gk8kYuVzOzZkz57m5w585cwaRkZGV/4+Pj8fQoUOfy7a1zoAB9OF91SqgS5d63+bu7g5DQ0McPXqUXLlyhXF3d8fIkSOhr6+P/Px8hJ86hdaBgZjav3+1aNfPz487ePBgw4qD+HhqEhUVBUMA4+noMA6gyTZ+wgToyeXslbVrcfLkSVhZWZE2bdpUru+VV15hIiIiyKFDh4RJkyY1GGgUFxdj7969GDJkSIuTR/ViakorNbm5zQ8SBw+mfEUDqQAAIABJREFUMuotW5q8qFqim56ejq5duyIjI4MAYDT2X5DJqLTZ37/J266P69evIy8vj21SS4qjIx37JJVSw6zmmCaJRNRwq2agffYs8NNPwIwZLeoLV98Hc3M1VRHXwahRdB81gZDarQSpqXA5cgRtXnsNm+/c4dqlpKC8vBw8zzd7FOKjR48EAGytiQtXr9JAu0YF8sSJE4iNjUXw11+jvacnC3NzGJeWoodcLsTExLA+Pj71RkVKpRLyXbtgsmoVmJycpy7hBQXArVvA9OkN7mtxcTE4juPS09N5f39/DgD2f/898dqyhTnWvTvuyGTwNDLi/fz8OAcHB9jZ2VV+b9bW1shxcoLe6NEInDy5zsC6Lq5cuaJiWfaAWCxO0eT9FeRyHPeE5/mfmrDMP5k7BQUF5l/UUDvUEQDrVfzBmTNncObMmWov2mVkwI3ncTYsjJrhtZAqCVeG5/mFmjjE6/h3owu2dby0iMXiYxKJxASAHYBiQRAsEhMTdyUnJ/dfunSpfkMVlsOHD/OmpqZcZmYmhgwZwnh7e/87Ryy9IAQFBbG2trYkKSlJ+L//+z9OX18fbdq0Id7e3kz37t3VM2CrLSOTyfDdd98JRkZGzMCBAzmO49CtWzfo6+s3q9Qnl8sZhmEwc+ZMXLhwAYMGDcLRo0eJSCQic+bM0dwxu4WEh4cjKioKZmZmGDZsGKytrdG6devnsu1nRn4+7YduINgGgM6dO2P58uVMeno6jhw5Qn7++WdhxowZ3A8//ED88vPh16pVrYDu7t27vL6+fsNz5+fNo8ZYX35Z/eeCAPbCBbDbtwOtWqGPvj6srKzw+++/Vwve/f394enpyXz55Zdcbm4urK2tIQgCioqKwLIsTE1NwTAMkpKScO7cOdjZ2Qn9+vV7dh4PLAtcvw5o0p9ck7g4OqLqgw8Ab+9mbp6FlZWVkJycTLp27coJgsDY2NgQlmU1i1b/+ovuexMTYg1x/PhxdOzYsfF2gpq8/Tat/JaWApuaMSlp/nw6i70q0dF0HnNYGK16twCpVAoAkMvlzW9h6d2bJmh27WrQYR4A0KcP/UyvvUb/r5ZJv/kmLAYOhNuBA+SXX36p3I+IiAi89tprTVaUDRkyhL116xYOHjxI/vvf/z79XJMn00RMBSqVCj/99JOQn5/PzpkzB3a//87g6lXqLL99O3z/+IONiYnBgAED6gxic588QeTq1eRGhw6Mw5IlcL5wgVfPu8eUKbSKXoPk5GScP39eaNOmDQkODuaOHDmCzMxMZGZmcvfv34dQUoLJe/cyZmvX4j+TJ0OlUsHMzKzuIDovD23GjqXGXBqiUCgQFRWlUiqVH2m8EACxWHwF9HnoRSFbEARh9erVbHMSOgCoD8CUKcDVq+inRbXisWPH5PHx8SFr1qy5prWV6vjHogu2dbzUVGQU1fMWSyQSyRwAD8vKymBoaAie53HixAmkpqbKX3/9dYOSkhKEh4cjJyeHW7p0KbTeT6mjWejp6cHPz4/x8/PjCCF48uQJkpOTmTNnzuD48eNgWRb6+vqE4zihY8eOHM/zePDgAbGxscHMmTOZxpQMmuDt7c0UFhYKe/fuZRYsWMBYWFhg8eLFz72XIDs7GwAwcuTIpgcO/1QOH6Yjq8rKNOpdbdeuHUxMTIipqSn3+eefw8HBgfTz9WX1a5gTEUJw7949Tj2Gr04KC2mlrq7k286d1LgoMRHQ10diYiJCQ0Ph4OAgAKgWLBsbG8PT05Ns3bqVMTY2JuXl5ZX9yWolhKGhISkvL2dGjx797M0UL12iPYh5eZpXZAmhM7qXLwfeeqtZm7158yZOnTrF8zzPFhYWEgDQ19eHTCbTPBi8c6dRx/OmcPXqVahUKgwcOLB5M7/HjQO2bm1aXzNA35+QQEfSqZHJgNmzaT9wC2ehl5aWYufOncTIyAgTJ05sWQtLVhY1BZs9u+HP+OqrgFpFI5PRoPvVV2myCsDkyZMZdTVaoVBg165d5KeffsKsWbOYpvSTcxwHhmGgrCnrNTAAPvsM2LMH+fn5CAkJEVq1aoXFixdT/42SEjrTfNYsoKwMalM+uVyOirYQpKWlVa7/7v/+Jww9coTtk5SEn3fvJhERERzLssKAAQNYFBYCkycj9fhxyOVyODk54fr16zhx4gR8fHzYpKQkYf369TAyMhImTpzIOjk5ISstDabjxuFCUJAwZtYsttHz7dAh2jLRhGA7ISEBHMddXr169QONF3oBEYvFZMOGDdKysrJWTfYqUPP11y1Wl9QkNTUV8fHx5Uqlsp7xAzpeNJiG+gl06HjZkEgknJ6e3lGlUjnK1ta2RKFQMEVFRYIgCGZ6enpQKpWws7MTvLy8iFoOpuOfiyAI4HkePM+jsLAQWVlZCA0NRfv27YV+/fqxLi4uzXu4rgdCCDZt2oSKIF5r620qO3fuFDIyMtgPP/xQq5/vb6VLF/rQvnZto29NTU3F3r17YWdnR9LS0pgPP/wQzGef0eCyioFabm4uvv32W8yePRu1jIsAICWFVm8fPqw9oujMGRoMlZUBVla4d+8eDhw4gNGjR8OzPrdyACUlJUhLS4ONjU1lT70gCFCpVMjLy8P27dsxffr0ut2QtYkgUGlwv36NB4iCQB84FyyglctmqngKCgrw3Xffwc/PD+bm5nBxcYGFhQVu376N/fv3AwAGDx6MAQMG1L8SQqh8/cIFap6nBT799FPSr18/pl+/fs332igro2PqfvwRqG9Gb02KiqpX5+Vy6lHg41Nr3F1z2LRpE0pLS/HBBx9oZ8ylQkGTXvWZfn71Fa0CtmtHA+25c+mfwYPrXaUgCNi9e7eQlZXFzpw5E23bttX4nhUXF4fTp08L77zzDlv5+VJSgOHDkfj77zh69Cjx8vISgoKCnppnyuXUa8DYGNi7F0Lv3th0+HDlXHs1pkVFCLhwARFTpwpvvfkmq29ggLKyMnzxxRfgOA5vvPEGLMzMUN6rF74YMwYiA4NKefLQoUPh5+cHQRCQnJyMzp07U2WVTAYMHYrwvn3BDB4sDB8+vPEv5f59mhxogopk69at0uzs7Olisfil7wXeuHHjw9mzZ3doykSRSiIjgXv3aNuAlhzIBUHAN998U1pUVDTzww8/PKKVler4x6OrbOvQUQWxWMxLJJKJAHpnZWVZAJACiACgBICKvlvdCK9/CWqHeT09PbRt2xZt27aFl5cXUKPqqC3UlZYKY6y/jREjRrA//PADSktLXxz1RUyMxpJaKysrKJVKpKWlMUFBQfTh/cYNGmxXIS0tDQCwe/dumJqaCra2tkxeXh5vYmLC9uvbl+3q4kKD6pqBdkoKfQCLigJxdMRf16+T8PBwpkePHg0G2gBgamoK9xpV2QrlBdRGPtnZ2c8+2GZZWq2RSICPPqr/fWVlNLhmGCq9bUG7DMdxYFmWKBQKwc/Pj1MHVZ06dUJAQACJjIxkzp49i7i4OH7p0qV1R73R0XRkmZYC7czMTCgUCsbf379lppbGxjTIjI7WPNju0IGa1KnPy2XL6Jx26gnQIjIzMyGVSrFkyRLtBNoA7fMPCgIePKit9BAEOmt66FB6HObMoSPSqhqY1QHLspg9ezYbHh6OHTt2wNDQEHPmzKk1u7suunTpgj/++IMNCwt7av7WuTOi587Fhf37MXLCBHh5eVX/UteupUqUY8eAn38Ge/8+Ro4fj5MnT/ITJkzg7OzsIBKJINy4ASYuDr2WL2fVVU21AsXS0pLs2rULvXv3ZjI7d4aPgwMZOmsW8+DBAzg7O1f2oLMs+/Ral0qB8eNxffRoXOd5zPTwaPxLkcuB//yHmudpSFZWFgoKClQAwjVe6MVGJQhC05fieeps/+qrWh31deHCBVV5efl1QkgD8+l0vGjogm0dOmogFotloAF2JevWrVttamr6Ydu2bQ1VKlWzDF10vPioHXL/bvm2VCqFnp7eixNoAzTgfe01oHt3GpQ0gJmZGVatWgWZTEZ7QQkBRoyoVS10dXWF2tF3z549UCqVpG/fvqK8vDyhaN483JLLifWxY0w1X+OrV6kxVlISYGWFC+fP81euXGGHDBmCnj17tugjOjo6wt/fH2fPnn125mhVKSwErlyp//XSUupcvns3sGdPizdnbm6O+fPnM1u2bOG8vLzQrl07AFRGHhgYyNjb22Pfvn0oLCzk9u3bJ0ybNq12QJKZSSvIWiI6Ohr29vbEwMCg5RKQkBDg3Dng//6v0XMUAJWQq6vEZ89SaX67ds0zWqtALpejtLS0sp0kISEBAQEBzV5fNby8gB9+qNvBXiqlSShBABYupL3TwcEaf5agoCAEBQVh9+7dJCwsjMyePbvRYPTIkSOCqakpevXqxQI0GN61axff79dfuTnvvQcrL6/aG585kxoDAnSMl7k53DkO7u7uNKKOiQFmzwYbH1/vzPjp06czZ86cQWxsLD/yyRPWsU0bhjU0RLUxZFXJzwdefx3yRYvwZ3Iypk+fXnnuN0hqKtC6dZOc/mNiYuSEkO91o6QoDMPI1UmSJnH9Ov19o8VRX5mZmbh8+XK5UqmcqjNFe7nQRQw6dGiAIAifFxQUbPjqq68EQRCE+fPni/7u6qWOfx5Hjx4FgLolyc+R9u3bQ6lU4oVLDPXqpfEYJH19/aemhY8e0R7Y2bOrvcfY2Bhq47q5c+dWfbhnebkccbGxwo4dOziGYWBsbMzrAZgtFnOR48YJWYMGMb6+vkxkZCQ3c+ZMrTrNa60S2RgjRgDDh9M+1pqJmZ9+opLg0NAW9w5XJTU1Febm5sTe3r5WIOTi4oL33nsPGRkZOHToEJufnw/LqqoCQmgwO3eu1vanX79++Pbbbxme57UzrtHCgo7sWrCgei92TebMoUZi7dtTOf/y5fRYN9EorCpZWVnYtm1bpZy5Q4cOpGfPntrtIwkMpH9OnHi6r1IpTRokJNDzxsYGGDmyWX2uo0aNYrZs2cKEh4cLw4YNYxu6FrKystjevXvDzs6usj+7devWTJe5c6Ffx+gvAFSZoa505udT87fbt+n/FQraojB9OnWJr4H6uJqYmGDChAkAwMHZueF7UnY28P77wNSpOKJQkHbt2gmOjo6aHZiCAuCI5kpjpVKJ+Ph4olKptmm80ItPgUwma9oSUilV+4jFLUp8VYXneRw9erSU5/l3xGLxI62sVMe/Bp0cVocOzRD09PQ+53l+uUql2nPy5MnSxhfR8TJRVlYGU1NTWFlZNUOzpl0MDQ2hp6eHGzdu/N27ol0WL6aV1ri4pi13/z7g5KT5+2fMAOflBd+PPuJWr16NBQsWYISrKzfIzIw7t2WLENWpE1tUVMQcPnwYHTp0ELQZaJeXlxM9Pb3nV/VYsAAYO7b6z9QBQmqqVgPttLQ0FBQUoLi4mFFXXmtiZGQEZ2dneHh4CNu2bSPVqlLqUUuNSPWbgrW1NfT09PDokZaef729geRkWgFuaNyWVEqD1bQ0KokPCaHndgvIysoCIQSrVq3CihUrMGfOHEbr6hZTUxpMVz1epqa0Mr9vH/0s773XbOmtpaUlxowZg5iYGPbzzz/H48eP631vz549yc2bN/m4uDhs27aNuLu7kzlz5rD6/fvTftu6OHQIWLeO/rtjRxpcK5XAtWu0TUJPD1izps5Fo6OjAdCRdZVIpfWrPrKygA0bgIEDIUyYgNTUVAwePFjzDMTKlcDNmxq/PS0tDSKR6K5YLH6o8UIvPjnl5eVNW+LhQzpW0NdXKztACMHRo0dlBQUFlwRB2KGVler4V6ELtnXo0ACxWExWr169cs2aNZv19fUHmJiYmGzcuFG2fv16RXh4OF/LEVXHS8elS5dQUFCAKVOm/O33VZZl0atXL+HYsWNITk7+u3dHu6xd2/QRS2ZmtDdZE0pKaE9qRZDCMAysrKzQ9csv4R4djdEzZ7Lvv/8+LC0tCQCtft+hoaFCfHw807Fjx+eXsBGLgW+/pf/OzqbqAZ6nwZSW2yH27dtHrly5AqOGKr4VjBw5klUoFMzWrVv5yp7LkBDaz6xF07+8vDwolUrqVK0t9PRotVod1NXk0SPgwAGaAPrvf4E//gB69GjxZtWJia+++gpbt24lzepV1YQjR2gQKJfT6yUwkCZmbt0Cpk6trZJoIl5eXvjggw9gZmaGw4cP15t46t69O5OXl8cdO3YMlpaWGDFiBDVCMzCoVwKOFSvo8QZo9Xr9euDoUXreR0TQ764e4uLiSKtWreBQ1SCO4+puxcjKojPou3YFXn0V0dHR0NfXr75sQxBCK+yBgZq9HzTZolKpLmm8wEsAz/M5TapsP3xIJy7UHMfXAuLi4sjt27cfKRSK8WKx+G9Pxut4/vztD4U6dPzbEARB78aNG5DJZG+oVKr3oqKiuKSkpL97t3T8zfj4+AAAvvvuO0TU96D3HFH3Maanp79Yv9wPHKCmUk2ZpHH6tGbV8IwM+t5Ll56aopWUAPv3A6GhIFu3Ij8/H3fv3kVqaiozZswY1Jzb3RwIITh58iRu3LjBTpo0CVOmTHl+kw7ataNVyT17aJDi7w+0aVN3X24LYVmWuLu78++99x4acwcWiUSYP38+CgoKuDj1d5eUpNVKOwDs37+fd3Z2FixrmuC1lJAQYNUqej7VxNeXBmL37tHq5dtva2WTzs7OGDlyJKZPnw5CCLNu3Tp8+umnROu/nxiGBqkhIbR6r1DQc+j//o9Wh7XAX3/9heLiYuLk5FTn/UupVCIyMpIHgI4dO0IQhKc3hK5dabCkUNRe8MQJYOnSp/9/5x3aX/7NN9QPooH7io+PD1NUVFTdLX34cOCTT6q/MTubutJbWACLFuHBgwc4e/YsRo4cyWg8HWLXLqC8vE45e33k5+fLlUrlC5ZdbRlKpfJJkyrbe/bQXm0tmaLl5ubixIkT5QqFYrRYLNYpIl9SdMG2Dh1NRKVSTeY4biOAXwwMDOYC0DxbreOFxdraGu+88w4A+vD3dxMeTs1o27RpwyYlJeHhwxdEWciy9AF5+HDNl2nVSjPpcUgIHV9Ulc2baRBhbIyI8+f57777DkePHsW4ceMadR7XBEIIzp8/L1y5cgWDBw+u5VT+TCkro39/8AE1jiouplXuZ9TnHxgYyCYkJHA5OTkavd/Ozg4jR44UwsLCkJuUBLi4UNmvljh+/DgpKSnhJk6c2Pi846ZiZFRpjIWa197t23S++YIFwKhRWqvUm5mZwdfXFx07dsS7776LESNGkE6dOuHAgQPYuHEjTp06pZXtAABOnaLnzKVLVAmxerXWHOLLysoQHh5O3NzcMHz48FqJp/Lycvzwww8kIyMDy5cvx4gRI5Cdnc2uW7cOPM/TavPnnwMXL9Zeub5+dSf1oUPpvcTaGti7F3BzoyZp587RZEgVUlNTBTMzM+hVrX5zHPWCUAf22dk0UOa4yiTK4cOH+UGDBpEmGWeeOdPk86K0tFQJIK9JC73gEELyy8rK6si61EFk5NPfL1pApVJh//79pTzPrxCLxbqKzEvMC+Sco0PH80EsFl8FcBUAJBLJDI7jvrp48WKAt7e3XmpqqlBSUqL09vY20MhtVMcLhdpg6Z9gnhcQEIC7d+/i6NGjYBgGhBCsXbsW+fn5ePToEezt7WFtbf3vnMM9ezYNDDUlIgJ45ZWG35OeToPO1auf/mzHDmpc9fbbKC4pwdWrV7mJEyfCxcVFKyZm+fn5iI2NxeXLl9nRo0ejhxakxA2iHmezZAnw2WfAzz/TnuHRo2nQ9NprtPL3jAzafH19cfz4cezcuRPvv/++Rsv4+PiwYWFhSNm/H5Y8D7YBmW993L59GydPnuQFQQAhhKhUKtbFxYW9efMmM3fuXK2oE+rE3R0ID6fzlUtLARMTOkrI3x8YOJAavT2j649hGPj5+TF+fn5ITEzE5cuXyeXLl5nLly9DT08Po0aNUo9BrBuVil5jHEcVHyxLP8OjR7RyfPIkbUEoLKTVbS1VtAHqqK5UKpnHjx8Lt27dQrdu3SoPklQqRUhICDEyMiILFy7kWJaFubk5PD09kZ6eTliWpe/t3ZsGvjUZNAioOjXgrbeqO8f7+dGRbLNmUSn4Dz/QZNvy5fDx9mYjzp+HSqV6GnAbGNARZyUl9PrauZMeq5UrK1cpk8m4JiXmFAoaqDf0/dRBRXVf50JenYKKJETDFzkhtO1jwYJmGfvVXh1BWFiYvKSkJFIQBJ1h3UuOLtjWoaMFiMXieIlEsiA5OfnP27dvMyqV6g+VSpV748aN1T179jQMCAgQadKfqOPF4PDhw+A47h8xcsvBwQFOTk68hYUFN3jwYGzcuBE///wzsrOzIZPJoK+vT3ieZ9q0acM7Ojoybm5urK2tbWXgcfv2bVy4cIG0b9+eMAzDGhkZoV+/fsjOzsaTJ0/g4eHx7IKUxvD0pPOMv/kGePPNht9LCO0nbUgmLAj0Afybb6gDN0ANk9atA8aPx/3CQhw6dAht27YVXF1dtRaJXr58WYiNjWUtLS35Hj16aF86rlLRKvW6dcCTJ1S6vGMHdYpeufKpEdS2bbRP3cICGDyY9oq+/vozCQRFIhHkcjnOnj1LeJ5n+vTp0+D1ovbDEE6fxp9ubsJQhYJt6nkXFRUFmUzGBQUFQSQSobi4GLGxsUJwcDDTtm3bZ5tt6tqVzmQHqIEYywIbN9KkhhaN9QDQc728nJ7P2dlAURHQpg3cHz6Eu60tk2lmhpSwMNxjWUiPH0epiwtMpk+nFV1BANq2peZuQ4dSgzxbW2rwdegQNUVr145W5M3M6DVlakr7tvfsAd54QytBCgBYWFjgzTffxL59+9hz586Rbt26AQAKCwvx448/EmtrazJjxoxqTuWenp5ISEhgPv74Y3Tq1IkfFhzMWd65UzvCOngQ+PJLQG0e6e1Nz3d18kc9vuu33+jf6ek0SVJUhJ7r18P+5k38bGoqzPXxYeHvT6+R3r2Bv/4CLlyg73333crNZWVlAYBGPgWVnDxJk2H1mbzpaApSuVzON/quixdpP//QoVrZ6NWrV/nExMRHCoVikm7Mlw5dsK1DRwsRi8X3AXSt+rNPPvmkbVRU1Fuurq5/+xgoHc8HlUqFu3fvwqkprtfPkNzcXKSlpXF+fn4wrJBNqqXkK1asgKmpKZOXl4dbt25xiYmJiI2NBSEEXl5eePjwoZCTk8MaGRmBEMJmZmYCAM6dOweABkxxcXFk5MiRjJ2dHVQqFWJjYyGTyYhMJiOFhYWkX79+XE5ODry9vZ9N9TwpiVYNGwu2y8vpe1q3rv89hFDpqFr+v3cvMGAAcOcOYGCA0F27YGVlBU1m/2rKkydP4ODgwMbGxkIQBO2Vkk+dokFQly50HFNWFtCtGx0xxTC1pLEA6LGcOJHOSVbL5j08aFLD3FxruwYA7777Lr7++mtcvHiRAWj7hdrvoC4MDQ3x4VtvQYiIwBddurCPdu3CvHnzmqQsUKlUaNOmjeDp6Vm5kL+///Nro/vhByA+nvZvL1tGR651rfIrg+epqzXD0Mqxnh6VoGdnU+n8mTPUib1/fypvtrMDEhNp4DtpEg3ec3NpNfbyZRpAXr9Opeyvv04DRzMz2AUGws7bG/19fHDxl1+EKxzHDu7cGezs2bQybWtL96V1a+r8r75uJ0+u/ZlSU+m5sXQprdKHhFAFSatWWjlklpaWYFlWMDU1ZQB6PwsJCUHHjh3J5MmTa313zs7OeOedd5Cbm4uDBw8yRy5fxoT4eGIze3b1m8+QIdXl7lu3Npz0aN++0pCR3bEDt778khjl5QHz5gEzZlATwZ076XGbOZOqRqoQGRmJLl268FxT5srZ2zerj9/AwIAFoEWnvxcCM0NDw4aPfUkJ8L//0T5/LfyuSklJwblz56RKpXKQWCyWtniFOv716IJtHTq0jEQiEQF4q0+fPrpA+yXi+PHjBABTMX/1b6WoqAj79u0jTk5OcHZ2ZgBg6tSp2L9/PxiGqawkWllZYeDAgRg4cCAAICEhATExMXBycmLnzZsHfX39yiePwsJCREdHw8vLC4aGhti3bx/Zvn074+HhIaSlpTFSqZSxt7cHAJKfn8+mpKSAEILc3FwhICCgydXIRpk9+6mcvKGAUD37d+rUul8/dgxYtIjKqQEqlX3nHeDwYfqgDWDYsGE4duzYU4lqC4mNjcWxY8cq/9+lS5fmr5cQ6gy9ZAmtrG3ZQuXLn35KA2tLS2DcuIbX4er61OSpe3dq7vTOO/ThMyys4URFE9HX18e7776LLVu28Hl5eVxKSgrv7OzMNVTdZi5fBjdsGGbNno1ffvkFv//+O4KDgzUOuDt06ICUlBRtfYSmY2pKlRjLl9PK58yZtGqZmgqMGUPPP0tLGtSFhtLzztiYnotmZrTn28CAfg8uLjQppJYYOznR5JC5OVUm1BUsjBhR60esvj5z6fRpJIWF8W+++WbTStJSKW1BUJuA/fILbb945RXq7K0lD5MhQ4awv/76K65du4YzZ87Azc2NBAcH1/ulGxsbo0OHDlixYgUb/scfSM7Kgg0hlcfk0qVLfPLZs2ygSoWOQ4cyIpGISuS7d9dsh2xsEGthgdGjR7NYs4YqR8LCgNhYGmxHRNDkx9SpwOjREFgW9+7dIxMmTGja8f3uO3r91kFeXh7S0tJQXFwMAwMDtGvXDuqWNUNDQz0A2s2O/fuxNDExabj3JD2dur736dPijUmlUhw8eLBcqVSOFYvFaS1eoY4XAl2wrUOHlhGLxaoNGzYsi4qK2iAIAhsUFGTY+FI6/u04ODgw8fHxyMjIgKOjI0TPyGSqMS5dusSfO3eOc3R0JBMmTKh8MO3atSs4jgPP87h16xY86jCa6tatG9SSzZq0bt0aw4YNq/z/woUL2eTkZFy/fp319vaGj48PLCwsGACVD5ZZWVnYs2cPiYuLw/jx4+Hs7KzNj/rU8fnJk/p8pX9pAAAgAElEQVTfk539tGJdF76+wNdf0wfys2efys4rkgOCIODhw4cCIURr5XljY+PKf7u7u2PkyJGaL/z4Ma1eTpwIdO5Mq5mLF9OAWRBosKNGU6M+IyNaeR0//qkL75df0gBxxw4a+C1apFVZ+cKFC7mEhAQcPXqUS0lJQXBwMNzUEt6aSKVA376wt7fHtGnT8PPPP+PmzZvo3bs3XnnllUaDbkIIVCrV8zcnePSIypM/+ogqJwBale7QgSZEfHxoNXnOnKfHVi05r0rV8U919fE2w5isX79+TF5eHq5fv84JgtA0D4K9e2mFvnPnp/sUFgYMG0YVEQcP0gpyC88XZ2dnuLm5ISwsDB4eHggODtZ4hb59+yJz1Spmx7x5MB06lAQHBzPnzp3jhiqVsN6yBf8zNcWQIUPgPW8emGvXqisN6iE8PBwKhYLJy6vwIBOJ6HfTvTut8BsYUDWIvj5w6BBkixfDfskSdLlwgSoRgoMb3/FHj2iLwbbqbb6CIODkyZOK2NhYuUgkOqVQKO6IRKI2AP7j6uraasyYMYYmJiZ6HMc1bPP/ksGyrLWxsXH9md70dGDsWHqvayGCIODAgQNlPM9vEovF51u8Qh0vDNxHH330d++DDh0vHAMGDIiKiIi4nJubO7N///66pNZLgJ2dHXJycvhz586x165dEzw9PRkDLY0P0ZScnBwcOHCAHTVqFIYPH15rzIybmxtiYmKQmpqKfv36tXh71tbW8PT0RKdOnersSTQ1NUWfPn3Y/Px8REREwNPTs1LSrhW6daNBZ0P92Hfu0J7Kiip1NV5/nVak1H3a//0vrRAGBAAAzp8/zx85coTJycnB+PHjWSstmUCZmZnh0qVL0NPTI1OnTmUa7OdUjyIaPpwGZ5GRtJ9z0SIgKIg+KJqZUZOzlgQ3kyfTilzVY+ngQMeAbdxIAwojo+pOzi2AZVm0bdsWubm5yMzMRGJiIgIqjns1FAo6W33uXMDEBK1atYK/vz9YlsW1a9cQGRlJHj9+LHTr1q3eaDE0NBSFhYVMYBNmFreIdevoiDpfX/p9DRtGq9lt29Ie6IAAmiCJiKBu5IaGz8worSEUCgWSkpIQEBCgeavH/fu0+j59Oj3vqjJ+PE36rF8PKJU0gG3hPfDx48fIz88n8+bNa9IBMjY2huHVq2CUSkQBTExMDAwMDITJq1YxhitWQN/QEOfOnROiBg+GmaMj08bGpsFjcPv2bZw4cQL+/v7Ey8uLMTExoVL/b76h7uNWVrTKHxgIdO2KJD09/GZoiP+uXMno791L70MODvQ69vSk7S05OfT6qkppKb22ayg9oqKiyJUrV5KUSqX3Bx988FNAQMCZAQMG/H727NltBQUFg/Ly8qzbtWunf//+/dJ+/fr90pRj9SJz5cqV6c7Ozj71GtYePgx06kSv0RYSERGhunPnzl9KpXJWYGCgrk9bRyW60V86dDwjRCLR+B49evxNDlI6njcMw2DixInckiVLUFZWxqanpz/X7Z86dYrfvn07nJ2d+fpcrdUu6Y3NONY2wcHBIIRA3futNfT0aL/d2LH1vycyklaD68LICHB0pHLrb76hMuwKF+GHDx8iMjKSGzBgAPP222+z2qzKFxUVAQBWr17NtK4p0RYE4NdfaRJgxQpaNWQY2oMNUOl8fDz9d9eu2hvT9eTJ021UxdmZVvxv3KBJiZs3tbO9CiZOnAgnJyeiV5/LeHw8DdxsbCp/ZGBggMDAQPV4KyY1NbXBZxlfX1+t7nOdpKTQ3uWoKBp49elDj2dICJVce3nRzyEINJC6eJH2C69ZQ03pHj9u2uz4etixYwckEgm2bdsmfPLJJ/jiiy9w7do1IpPJQGqsX612uXPnjuYbuHaNuqnb2dV+zcSEJm26d6dJhY8/rtsjoAnk5+cL9vb2zcpEmH/yCXq/9RaCgoLQvn17vPbaayxu3QICA+Hr64u3J0xg54aEMMf//FP44osvIJPJ6lzP/fv3cfDgQQQGBvJBQUFM5bSJ/fuB8+epoVmNkX3Xrl0jjr17C8bm5tQH4bvvqPmaRPL0vBg+nBrMjRpF+/LLy2kC8I8/au3D+fPnZQqF4lWxWJxf9edisViqUCjWZmRk8FZWViCENGG+2IsPy7K2VZVE1bh6lSpOPvigxdt58OABrly5UiKXy8eKxeLGDdl0vFTogm0dOp4RKpUq9ObNm2UKhWYjHnW8GMTFxRETExNSl0z7WZGRkYGYmBhu4cKFmDZtWr39gTKZDK1atcL9+/ef276psbe3JwcOHIDWkxDqh/76AhU3t9rSW5UK+PBDOgarf39qcHT+fLXANTQ0lPj5+cHX11crY76qoq7u5+dXeW7euJHuj0LxtId86VLg+HH6+tattJL/rBgxgrpO1wXDUKnzokV01NOmTVoJDNWIRCKmdevWQp0vHj9ebYxSVViWRZcuXcDzPPPjjz8Ke/bsIZs2beJ//PFH/Pjjj9ixY4eQnZ2NpKQkoVOnTtqtNBFCA+c336TjpFq3pi7v7u60aj1jxtP3Ll4MfP89de1WB7YMQ42wNm+mSZW7d6kT8qVLLdqtvn37AgC6d+/Ojh49GgEBATh//rywceNGXKwxd1pPTw/q0VkakZgIbN9et2FaVbZvp60OT57Q7+706SZ/jkuXLgmbN28md+7cYdPS0oja1btJZGYCn34Kf39/zJw5E5aWljQhUOGlwjIMWnl5YdmyZWx5eXm9qzl58iTv5eXFBwQEPL23PnxIk3xhYTRYLimpfEmlUiEjIwM9evSofuMwMKDL2NlRdUpaGj2HevWiTu4bN9L7UI3kYcUECSMA9R2EzhYWFoyxsTF4nteOQ92Lg029yqGPPqJKhBaqSkpKSnDgwIFylUo1SSwWN9DTpONlRRds69Dx7DinVCpDd+/eXZaVlQWVSjf+8mVAqVQypaWlzPnzz69lq7i4GCKRSGhI5hwWFoaNGzeiqKgI/v7+zz3zPmfOHMbW1hY//vgjPv30Uxw7doyvWWlrFjY2VAqo7omtycaNtXtab96kVSmlkvZ8r11LZb8VFBcXo6SkhHmlsdnczaRVWhpa5+Xh7LZtVIork1EpsbEx/Ts/n0obO3Sg45aeBwMG0OCvIcaOpXL8yEhamWsgQNGU3Nxc3Lt3D9bW1rWfRwSBypYbcPg3MzPDokWLYGNjg6KiIvTt25dLT0+HQqEgJSUl7Pbt2/HkyRPW2NhYOzptmYwGzF270t7asWPpOWZlRfuza0qr162jPcz9+1PFQs32DY4D/vMfevxffZUmW15/nfbeN+P6cHNzg76+Puzs7ODl5QU/Pz+sWLGCCw4ORmRkJFJTUyvfm5KSAqVSCZsqqoF6EQRaoZ8/v/FWAoZ52pf++DE1UvvlF1rF1QBCCE6fPs1yHMcsX74cbm5uwg8//IDff/+97oRMfXTvTr+PqsexfXs6Hxygsv5t23Dr1i2YmJhA3fZTMecbAK1YZmVlcb6+vtWTmNOn0wSY+ljMmkWvW9CpDa1btyYOmhjFGRnRandgIE1oSSS12mIePHgAAwODX8Ri8aN61iItLy8XTE1NoVKpTCUSSdOH0b+g8DzfybKuNqNTp2iSa+LEFq2fEIKDBw+W8Ty/+cMPP2x6VknHS4Eu2Nah4xkhFouJXC6fnZ2dHfr9999j8+bNcq0EFzr+0QQGBiIoKAgXLlzA//73P1JWVvbMt/nnn38Sb2/vBu/nCQkJBAA+/PBDBAUFaX+mswYsXLgQ8+fP/3/2zjssimt/4++ZAXbpXQQRsaJiQewNsfcaS6yJmpgYYxKNxlQ3m3sTy83vmqtGY4lRo0ZjN3ZAEbAhKIIoVRClSZW2y+7OnN8fB1CkLU1R9/M8Pio7O3N2Z3aZb3tfTJo0CcHBwXxiYkX3jtUkPp7drD4f/GVns2Dm2Vbt+Hh2kx0ZCVy/DvHcOdyLjsazd/EpKSkwNDQU6rSiffMmuyEHoJw+HW4hIeBatWLzrxIJq2IvWlR3x6sus2eX3xr8PM7OLFHRtSsLHJ+rllaX06dPU41Gg07lKULHx7POhCoSDpaWlhgzZgz30UcfkV69euHbb7/Fhx9+SKysrKggCHB0dMT48eNrvsj8fHZtvfsus9VycmJWQSNGMAXuHj0qfm5h4VP/6XnzWBt2eXAcq4YPGMBmvY8eZTPdXl7VWiohBB07dhTPnz9fKjDt0qUL3Nzc6K5du+Dn54cHDx6UdFhs37696h2fPs1s5KZM0X4xX3/Nro/8fJZoWL2aVYS1eA2jRo2i2dnZyMzMxPjx4/m3334bt2/f5kSxGvG2oSFLWt29+/RnMTElmgxYuxbo2xetW7eGKIrijz/+iF9++YWuXbsWq1atwp49ewQfHx/wPF969EahYGMnxUE7wJJCOTkAgPDwcKFXr17V+/IICWGt9+VYfiUnJysKCwsruHDYKy0oKDDgOA6GhoZKAC8oQ9ewkcvlxhqNxqLMqE5BAXNtMDRkn7ta4Ofnp0lJSYlQq9Xf1mpHOl5rdMG2Dh31iEwmE1Qq1f/p6ek9sbe3183xvAFIpVL07NkTkyZNQk5ODomLi6vX42VkZCAvL48MGjSo0u06duxIAOCXX36BILy8S9He3h4uLi7o0qWLuHv37pL55VrRogXzIX6+XVCpZDf4z7QJ0vffh7B0KVTffougzEysfustHP7nH+zatUtMSkrC6dOnhWPHjtVOTT4v72lQ1aoVqwJLpSzoAJB+9ix8Bw9GW1dXFqy9BHGsMqxdy/5og4EBa82Xy1nl8s8/2Yx5DZg6dSrhOA779+9Hmc+Kr2+NqrvFlsbNmjWjRf+veCa8IjQaVsGOiWHX14ULbL76yhV2LkePrvq8+fqycYW5c9n/bW2rFgzjOFY93rmTqbB/8QULxK5d03rp3bt355KTk8vc340aNYq0bNlS4+/vj507d+L3338HABQWFlYewWo0bP76yy+rf63q6bEkU+vWrGK7dy+bca76NZD27dsLFy9eFAGgZcuWkEqlpSzztCI3F7h69en/mzdnCvsA8OGHwF9/wcTEBMuWLePmz58PT09PsmLFCixduhSpqakkMTER04oFFAHgyRP2WqytS+slBAQAzs5QKpXIy8vj27RpU711+vqyTptySEpKUgG4Vcmzj2RnZ0vz8/NhZmamAeBcvYO/tnSxsrIqKJM0jYlhdoj9+tVq5w8ePMDly5cLVCrVOJlMpmtd1FEhOpVkHTrqn07W1tbSt99+W6K14quOV57ilu6W5YlO1QERERHw9vYWs7KyOGNjYxEVJE9zcnJw/vz5kuAxp6j68rIZN24cFxkZKZ47d45MnTq19h8MpZIJD4WHA+ZFY4uBgcC5c0jr0QPp6enIS03FtSFDqDotjbzz228IXbxYGD1xIt+uXTscOnSIbNu2DWZmZqRbt25wcnKqXvVfEJia+YYNrGpy6BBby6ZNrPJpYQEcPgwAJcrtlXlLv3A+/5y1CleHsWNZkuO991gFc8uWagdjGo0GxdXKMp0/v//OZp1riKmpKQcA+vr6RGt7q5AQ1k6/eDE7f2FhrCuhut7RlLIW1T17WAUcYCMLzZtrv49x41hQf/8+CwxHj2Z+6paWlT6tuB1aqVSWUf+fNWtWyX3fgQMHEBUVha5du1b+xvz+O7B8uVb2WOXy1ltMqbxbN6bEnZPDBOUWLHha9S8HOzs7Pjo6WgRYtbtx48a4desWevbsCTs7O+2OvWBB6USQKLKRk9GjmZhdUYsxx3Gwt7eHfVF3h4GBATp16sTFxsaKrVu3fvr+KBSs+vy8rd6AAcDAgQgaMgSWlpaisbGx9sWs6Ghmlfbpp2UeopQiKyvLEMCdSvZAAHbera2t9VJSUpy1PvbrjbuTk1NpkdrERJb8qm7S5jmUSiUOHDig0Gg0b1fS3q9DBwBdZVuHjhdBVHp6unL16tWapIpUkXW8dly9elU0NDSkdWp1VcSDBw9w5MgRtG/fnluwYAGWLVvGlVeJ3b59O123bh3Cw8Nx+/ZtAMCnn35aUvl72UyZMoW7d+8eyS+q+NYKc3PWhv3sayssRJy+Pt22bRsuHjokdBo5EiMiIshnnp7QhIdj3vff8507d4aBgQFmzJhBVqxYgU8//ZQbNGgQWlUyJwyAqXMD7AZ51Ch23OxsICODVXzDw9njw4aVamMPDAykGzduBMCs0xoMOTk1uwG1tGQtwl98weaOtahaPouJiQn69+8PAKWvy8hI1qZeC1E4d3d3jBs3jsbExGDDhg0Vb5iczGakHzxggfHNmyzADAtjyYPqBtoAC7ZTUp4G2gC7VqorgMbzrJLq5wd88AETshs3jlWbK8DLy0uwtbXVVPXdM3LkSIiiCIlEgpSKvOqTk4Fbt1igXBsIAf76iwW5gwax5NiSJUB6eplNKaVIS0uDQqGAiYlJSQZm4sSJ0NfXx86dO7Vvd0hPZ4mTYgoKnnZw/PknG+OoALVaDQMDg6fHOn2aKVeX0+otfvcdIrp1Q0BAAO3Tp0/1Mk4ffMDem3ISVampqSCEFADIqmQPhXp6enGXL19WW1hYGAKowQX7+mFgYNDX2tq6dCtJSAhL/GgzMlMJXl5ehYIgHFy5cuWZWu1IxxuBLtjWoaOekclkVwRBsFKr1f/9/fffRd3c9ptBfn4+USqVpDxhPFEUQSnFo0ePcOXKFWzatEk8cuSIGB4ejtzc3Ar3KYoi/P396d69e9G9e3c6aNCgSis8qampBGAB9sqVK7Fy5UqUmV97iTg7O8PQ0JD6+PiIAJCVlYXt27fTUird1eGLL1h1tahSWhgfD1+lksyaNQsfffMNLzlxAq2jo8EVFsKuHPszqVRaefVz/XoWWKans2p1Rgaz4pLL2eNnzzKf4Uq4f/8+BYAlS5agQkual0FUFBOaqwl6eqxd/ptvgH37WLCqZVv5jRs34O/vD47jYPqsuNiNG6xToZbdQF26dCEAkJ2dXfoBQWCt2lFRrNX7v/9ls9iPHrEA2cSk5seOi2MJluedKD78kIl21QQDAyYG6O3Nkkq//cZmvMtxFkhMTOTc3d2r7Fw0MzND9+7dcf36dWHHjh0IDQ0t+8vJ358lPapTka+INm1Ytf9f/2KJjK5d2TXzzBz7/fv3sW3bNmzatAkBAQFo3LhxSQbGxMQEkyZNAsdx2v8S7dyZfV6Lf+/a2LCAG2CiiP/5T4VPdXFxwcOHD/mSJPndu+WKCJ4+fZpu9Pam1729MXDgQLi5uWl/4RQUMPX2lSvLfTgiIgKiKB6TyWQVvmaZTKbSaDR9rly5oiiyVyy/H/0NQi6X6wuCML7UuQgOZp+bWlp9JSYmIiwsTKlSqT6r7Tp1vBno2sh16HgByGQyUS6X37awsFA/efJEkpycDCcnJxgbG7/spemoJ4YPH042bdqEH3/8EU5OTqKLiwtnamoKhUKBixcvlni6mpiYiO7u7tzDhw/p2bNnhYKCAt7AwADNmjUTJBIJbG1tOTc3N1JQUIDdu3eDUkpnzJhBnJ2dq7yhmzhxIg4ePIgLFy5g0qRJ9f6aa4KxsbFoZWXFU0px584dJCYmkp07d8LBwUF49OgR5+LigqZNm6JDhw6kyjlqQlhAPGgQ0KUL8i5fhrGTk8bp4EE9HDvGrJX8/bULotLT2fxsXBxTnE5IYIJdgsBu2JVKtp9KFODLY/To0VxkZCRCQkLg4eFRrefWKzNmANOn124fI0eyQHXSJFZ5PXKEeaFXwK+//iqkp6fzBgYGmDZtGkqpBisUTCisDnBwcKBJSUlkz5494lh7e8786lVWTfzPf1ib/9atT6+JuvAtb9qUJR2eT6YkJz8N9GqKiQnzZ/bwYPvKy2NB94oVrEUbgEKhINr+bhk1ahQA8AcOHMDZs2dJKaG66Gj2OnburN2an4UQ1v0QF8dsriZOBLZsgeraNYT17o3Tp0/D2NiYLlq0iJTX+ZGZmQl9fX3tg20zM9a+n5DAWr8FgQXMqamsE0MmYy3c5WBvbw+e51kC7tixp9Zuz+Dr64vQ0FCyKDMTJmFhIL/8on2gTSnQpw8TRqugkyY7O1shCEJwVbuSyWQpP/7449b79+8vA6BroQNmWVhYCKUSmj/9xEZ9aoEgCDhy5Ei+RqNZLJPJKus20KGjBF2wrUPHiyM5KytLsnnzZpUgCKnNmze3mjlzpi7afk05deoUBUDef/99XLt2jQsJCREUCgV4nic9evTgTE1N0aRJE9jb2xeXUgkAXhRFhIaG4sGDB7xarUZISIjg6+vLE0Lg6uoqTpgwQeuOpLCwMAqAOFRl6fQScXNz4y9duoSgoCCam5tLJk2ahKioKEoI4QcMGIC7d+/i3r174oULF/D++++T4uqnRqMpK2LGcawVuEhoKKVTJ+SamnLo2JGpOufnVx5o37zJ2onlcqY6vXAh8NlnzBqMUlb9LKYGVU+NRoN9+/ZRiUSCtm3bNiwBh9jYp9X62kAIm1e/eJGJ03XtyoKUcsjKyuK7du2KYcOGwcDgmdHKJ09Y0uTmzdqtpYh3p04l2UuWwCs1lbseE4PeEglMv/76aat/XRIQwOa0y5s1P3SIVeurK55VHoaGrJOjoIAFgIcOAZGREFu2hFqtRnU/8/369UNMTAwCAgLEfv36caCUdWqMHl1azb8uMDSEplUrJL3/vkgMDbnwt94SuaNHObv9+2mflSvJ4GHDKvxsZGRkiHl5eXxBQYH2nSFXr7LPb7Nm7DuiXz/W/dK/f9nZ62dISEiAIAhobGPDZuV37y4VbIeEhODKlSuYM2cOTGti0VdYyEYCKgj2i9agBhCoze40Gs1vAJYBqH8LjAaOnp7eQgcHh6dzFKdOsS6k0aNrtd+TJ08q8vPzr1BK99R2jTreHHTBtg4dLw5fnue/VKvVMZTSizExMRn37t2DhYUFjh07lt+qVSu9IUOG6ETUXhMePHhAnJ2d4eDgUFxV1mpQmuM4uLm5wc3NrfhHvEajAcdx4KrpRTV48GASEREBRZEllkqlgr6+PhrSNda3b1/Y2dkhOzubuLm5QU9Pr0Q5HQC6s+om98svv4hbt24lnTp1woMHD8TExESudevWwsiRI3nL5wWjHByAjRvRfv16qFq25PLPn4fxyZOllaBFEXj8mNmAtWvHgqPCQiaaBLAqdnEwv2BBnbzW6OhopKSkkBUrVpQRrnrpNGnCqtt1Ac+zAILj2Fxu27as2vtMlTsyMhL6+voYMWJE2aTJsWPMyq26CuLPc/IksHs39HfuhG1KCgZ//DF+u3EDtuPGoUtd2ro9S1ZWxUJzx4+zSmtdYmTELLYA4D//AV2+HGbjx8MyI6NaXRdNmjTBzJkzsXv3bk4URdFDKuVw/DhrW68HQkJDcXbECM7O0FActGMH4T/7DM5qNcGqVWw+vDxvZAC9evXibt68iXXr1mHx4sUw0+b9nDjxqf85IUxVnVJm5VaJgGV4eDhcXFwEREbymtBQ5BKC9OhoiKKIlJQU+Pr6wsLCggX99++zmfx//tHuDVAqmUr7tm1sRKAC8vLyJAC0srSQyWSxcjbS8kZbf8nlciKRSGy7devGPuTFVm1ffVWpIF9VxMbGIjw8XKlWqydV1tavQ8fz6IJtHTpeEEVfzmuK/y+Xy+efPXt2g1KpJCqV6ouMjIyf2rRpI2lWSaZdx6vBtSKbntmzZ9fJ/mpqQ2VjYwOJRAI/Pz+kpqbSyMhI4uDgQN977z3SkALuKsXIAHz44YdccHAwwsPDRRsbG2706NE4ePAgt379enh6eoLjOLi7u7PRjGPHWOXP2RnODx5A4Hl2Q6tSsRvtn35iN8YBAay6+emnTITKwYEJmgF10078HMWWa5mZmdWuPNY7Uilrs1cq2b/rgkGDWHVaLgciIoBffimZeU1MTISVlZWgp6dX9u43Lo51FdSE3FwWxLz9NgvW27YFJBLQU6fw98aN1NXVlXTp0qU2r6piwsKAXr2YSnt5TJ7MVL3HjKmf4y9fjlv9+1O7zZsJN3MmsyobMEDryrSzszOmT5+Ovw8c4HqdOAGDrVtLHqOUws/PT0hKSkJmZiYniiLt168f7dKlS7WjF0opgoODxfaurtykSZM45OcD9+4B33/PZqwHDWKdDeWMWdja2uKjjz7CoUOHsG7dOnz33XdVq8xbWrJ9Hz/O/j9yJBAayubn8/Iq9Fq2t7dH3B9/8AUff4wNixZByXEwMDCgPM9DrVYTW1tbKooiduzYgeZSqTg4L483UqlKd2lURGgoa22vJFkgiiLUarUEQHVFLOpm/uIVhRDykYmJia1jcbdBaCj7Pin2V68BBQUFOHjwoEKtVk+UyWR5dbRUHW8IOoE0HTpeHjtzcnLmqFSq8QD+EgTBvEyFTscribe3N9q3b6+d1VA9M3ToUABAcnIyPDw8kJSURA4ePEgvXbpUMjf+KiCVStG3b18sWLCAmzRpEuzt7TFv3jxia2sr3rp1i166dAk///wzfH19Kfr2hfDjj8hNSqIH5s8XTXr2BD76iFU1zp9n85rr17PgCGDCVS8g+O3QoQPc3d0127ZtK0nINCiWLmVBcR2QlJSES5cusfdcJmOBU2Rkifpz48aNkZmZWTZQe/KEzTY3bar9wShl/s0dO7KkSsuWbN570iTmD83zUCgUyMzMJL17966T11cun39erlJ1CR07Mq/teoJSijNeXoQOHy7i/HmgZ0+gSxcW4GspzNm6dWt4xsbSYDc3kT4zvx0SEkL9/Px4QRD4Zs2aEX19fS4oKIj89ttvdPfu3UJBNWbRU1JSkJqayo0qHi+QydioRocObAzk1Ck2srFlS1mRObCAu1jBXiuaNmWCe8UdB3//zar+N29WmlTr1b07lC4uOD5njjhp1ix89913WL58ObG0tKSNGjUSPvroI/LRRx+Rrl27Etq4Mb9j7Fjhf//7Hx4/flz5ehQK5ruVOXkAACAASURBVFxw9Wql4yiEEOjr6xcC0NLnDAATR6vdYPIrjFwu70Yp3fjWW28ZcxzHvku++qpEz6CmnDx5UkEp3SmTyS7V0VJ1vEHoKts6dLwkZDKZCOAwAMjlck5PTy/n4MGD+kZGRpyNjQ03ePBg/YYQrOmoPm3btkVCQkKF3tcvkq5du6Jr165AkRerg4MDDhw4QO7duwdfX1+89dZbaNasGUxNTUEpBaW0QSQJtMHExAQfffRRyWLj4uLw119/kbt374pTLl/mbNLSyKyFCwl35w4L+ngeuFOZXW39M3bsWL2YmBhaUFBQ6i77zJkzSExMREZGBh06dChxd3d/8Ys7eLDKeWKNRoM7d+7g0aNHEAQBAwcORHZ2Nry8vGBlZYU+ffogPDwcAQEBJddS//792cxrYCDU336Lf86fF+/Y2HB9BwzQ4Pn7kIQEFiw/q0xe/kJYINa/PzBtGms7//ZbFmz//HOZzYu9zfft20eXL19e920dlALnzlWuwj57NtCiRZ0fupjCwkKIoghXV1euxIv72jWW5Ci2xfv3v5/60JdHVha6KxRkp7U1ko4eLdGIOHHiBHF0dMSsWbMAAP/6179KxloKCwu5//znP/jyyy9LPL4rIywsTLSysoJUKn36RSORAGvWsEBUo2FWWCtXskTYunVl1nzmzBlYWFiIWo3W2NgA+/ezFn9raxbMm5iwmfQKVMABgPvqK8xPTwd27uQAlsw4fPiwkJ+fTz755BMeYGM/AwcOZE+wsOBPLViAEydO0NmzZ5MK34t//xsIDHzaRVMBhBAYGhqq1Wq1DSoQPZPL5bYAlDKZLFcul3M8z2cIgtBYLpfzMplMO0uA1wie5z8v0kJhP7h/n2lG1OJzFxYWhtjY2DSVSrWsjpap4w2D//7771/2GnToeOPx9PSkFy9e9M7JyYnIzs6OSUhI6JOdnU3NzMyIVjNpOhoMGRkZOHXqFIyNjWnPnj0bTq92ETY2NhgwYEBJMPTo0SMhICCAe/z4MU6dOgU/Pz9kZGQIzZs3L9e7uyFjaWmJzp07Q6FQEO82bcQ2v/9OLJycWADZuvXLXl4JN2/epI0aNSLNi+yUsrKycOTIETg6OgqWlpbc5cuX8eTJE9jZ2ZUEiS+EjRtZpa+CG9M//vgDJ0+eRGRkJJKTk5GSkoJr164hJCQEOTk5SE1NRVBQEBISEjBjxgx06tQJZ86cQVBQkBgfH08uxcQIVxo14hqp1Xg3OJi0njPnaVBYzNq1zGaqvFZvSpkg2M6drBV46VLWIjxzJltzhw4VVgoJIUhJSUFKSgpp3bq1drO+2kIpsw1r1YrN/1fEvHks8HtO0bquuHr1Kh4+fIjevXs/fX0mJkwErGtXVslt3Ji9x25u7LHnOXECfOvWcJ47l3h5eaFRo0YkKysL4eHh+PTTT0v0HoKCgkRzc3O6YMECEhoaKjo5OXGdO3euUg8iIyMDR44cIUZGRqRHjx6lH2zbliVaevcG0tKYRRilwLJlrEpvY4OUlBTs3btXzMrKIosXLyb62s71f/89u7ZdXdl5aN8eOHyY/bsioqNZy39Rl4WXl5cYGRlJFi5cyJXbKj5kCBqPGIGbYWFiQEAA17x589J2dgAb0+jene1Xi2vw6tWrKpVK9benp+fD8h738/PbBOCAn5/fYgMDg+GNGjVqwfO8SqlU+nl6eiZUeYDXCLlc3lJPT++/06ZNMzAxMXnaPv7HHzW28cvOzsa+ffsUKpVquEwme6PeTx11x6t1J6VDx2uMTCYLAhAEAHK5/FRoaOgnMTExw5YvX97AlJR0VMahQ4dEJycnbvr06Q26PPzFF18AAAwMDHgfHx8aFhYmjhw5khdFEefOneMkEgkdPnw4eVWq3MWYmZlh6NChGDp0aINduJOTE/X390d2drY4cuRIbs+ePUKnTp3IxIkTeZVKBWNjY4SFheHu3bt0+fLlVVue1RUxMRUKRl27dg0JCQnw8PBA3759QSkFz/OIiIhA27ZtS3QFBEGAWq0uEYBbtGgR7t27Rx48eCB06tSJc3JyQlNHR8Jv3sxuhqOjmZUVwFTkjx1jgdGzJCayILVlS2D+fGDuXNaWbmhYLVE3d3d3REZGIigoCE2aNKn221MhxZZzI0ZUvt0nn7CZ5HoiNzdXbNy4MRwdHcte+40bM3X41FS2Xi8vJgg4dOhTRe64OOD0aWDtWlhbW6NFixb0wIEDxMnJSWzWrFmpIvLnn39e8h8zMzPO0tKSViUEQSnFrl27qLm5OebNm1f+toaGgK8vsH07MH48UwBv2xaYORM5Mhl23rkDRycnzJ07t3o+9QMHPhUiS0xkf7/3XsXbv/8+cyJwdQUAXLt2jQYHB5P33nuPVHjcJ09gxnFYtGgRf/78eezYsQM2NjbitGnTuJIRsfffZ9fyunVaLdvZ2VkvLCysG4Ar5T1OKZ0HIIlS+pVKpRrI83yBmZmZUV5e3ngA/lod5DVALpcbGRgYnBs0aJCRnV1R1/2mTayjpoaBtiiKOHjwYL4oiqtkMlndWCPoeCPRVbZ16GiAeHp6xl26dMmB47jhDg4OnG6W+9WAUoozZ86QTp06oXUDqqSWB8/z4IuUWVu0aEF69erF2dnZoXHjxmjSpAk5d+4c8fX1haOjY2n/Yx21xsXFhWvRogUuXbpEfH19oVAouOHDhxNLS0vwPI82bdqgd+/eiI2Npd7e3nB1dSUvpMI9cSKr+D1TLRRFEbt27UJwMLP6nTVrFvT19aGnpweO49CoUaNSYwccx5US9JNKpXB0dCQdOnTgmjVrRiwsLNj2PXuy1uGvvmJzlf36AUFBrDrcpw8LCrOyWLD19tvA4sUs+Jo8mVWzy/Fgroq4uDhER0dj9uzZ0LoiWhUqFVvTsmUsUKyMY8eYNkDjxnVz7Oc4d+4czcrK4tq2bYsKfbZNTFhSwNWV+Ytv3syEo0SR+V5bWTGBMgDNmzcn165dQ3Z2NunRoweaVjBHf+fOHQJAbNeuXaUJrujoaNy+fZssXbq04hZrgFV8BwwA+vZlazU1BX75BdkffwzTvDw6ZskSzry4TVhbDA1Z+/jgwSxpc+MG84FnThGlycxkVfXPPgOkUly9epX6+vpi+vTppNIkzSefAOnpwJAhaNmyJXr16oWYmBjq7e1NTE1NxcaNGxM8fMg6MbT8TqWU6t2/f9+yX79+v5f3uKenJ/X09PTx9PSUX7p0aUtOTk7UkydPJoii2MfT01Ou1UFeceRyOTEwMNjRqlWrXkOHDtUnhDBVeFtb5kFfw4RxYGCgGB4efletVr/j6empUx/XUWMabOZfhw4d2FhYWPjnyZMnFS97ITq0gxACMzOzhil+VQ2cnZ2xsEgN+vLly2JoaGiJfZiOuqFp06b45JNPsGLFCixbtgzFLeXF8DyPd999l7OxsaHnzp2jXl5eCAkJqd9FLVlSxuYsPDwcDx48wKRJk/Dpp5/WWBm/XJo3Z/7QI0awP8ePs0q3Ws2CwT//ZMriiYks4GrfvsY3ziqVCv7+/pBIJLRaFdGqePyYibpps89//gHu3q27Yz/HmDFjOJVKBV9f36o31tNjwbafHwtCu3Zl89GEsLlzSmFkZITFixdj/vz5qExYztbWFtHR0bxQ2bw6gDt37ohSqVTU6hoihF0fV66wpMt//4uCxYuhTk8n4QsX0hJxQ20xMWHe75Sy5M348cDUqWW3UyjYeQoNhWhmhkuXLom+vr6YOXMmcXZ2rvwYJ08Cq1aV/NfAwAAzZ87khg4dirNnz3JYsoQlEbRwXyimVatWUKlUXeVyeZUXmEwmS8EbVM0GWKBNCFnOcdyUsWPHSgkhLAH2f//HRjtqaPWVm5sLHx+fQpVKNfNNnH3XUbfogm0dOhooMplMpaenp87Pz5dkZWW97OXo0JL27duLNjY2FRjtvjpYW1tj+fLlkEgk5NSpU/TChQu6G446RiqVQiqVVliFJIRg5MiRXGRkJLly5Qpu3LhRv9fVjBlMbOwZjhw5AoAlByy0tJCqFubmzIJp7Fh2g3zgALNjeviQ+Uebm5f2R68hWVlZyMnJgYmJSd1VqHJzWSXzwgXtkgBnzwJTptTZ4Z/H2dkZ7733Hu7evYv09HTtnqSnB7zzDpCfzxIGmzczxf7OnYHt22Hh5wfHK1dYy3kFDBs2DIIgIDOzcoeq+Ph4zsnJqXr3naamrMrcuzeab96M9vPmIUIQiPo//2GCdFqqrMPBgYmhKZXAuHEskO/Tp+x2GzaAbt+O8Lt38csvv9AbN25g1qxZxMnJqepj7NkDTJ9e5sfW1tYQcnOhOXas2mr0BgYG4HleAFBBq8JT5HK5FEAMAOjr639YrQO9gsjl8k4GBgZ/Gxsby6ZNmyYpHl1BQAATS/T0rNF+KaU4dOhQAYB1MpnsXp0tWMcbiy7Y1qGjAaPRaFZqNJq/Ll68+MqWFZVKJai2N0SvAe3atePS09Nfi+9WIyMjvP3226Rjx44kNDSUf5Wswl4XHBwcsLJIMbnevdEdHcsEL8V+4MnJyfV3XEKYSrSREas+WlpW3ZJdTezs7NCzZ09kZGRwt2/frpud7tgBvPWW9tuPGMFUseuRxkUt6n5+ftp96aaksMpxcDCQlAT4+zOhvKFDmYpzYiILwB89AlxcmJJ2WBjg7c2qwEWIoojCSgJytVqN3NxcWFtb1+yFjRwJnDqF/Js34Rwfjyw3N1aRX7+eJQq0YdMm4MwZllyYMoVV9p+BpqYidsgQbB8zhp46fVrs0aMHWbZsGVdR+3wZmjYtdya/RYsW6FVYKP6zerWAGmgFmJubqwBUorzHkMlkSgCdADT9+uuvt1T7QA0cuVyu/8MPP8xfs2bNoTVr1sQYGhpedXV1Hffhhx8alXQdpKY+rWrXkGvXrokpKSmxarVaVjcr1/Gmo5vZ1qGjAePp6Znv6+ubkZeXN6dPnz569X6zXUuUSiUKCgogkUig0Whw+PBhzbFjx7imTZu+MXO/sbGxePjwodC7d+/XIuAGWJAXEhKCuLg46ubm9sqJpr3qEELg7u4OX19fcv/+fdHU1JTExcWhcePGdRuAX7jAPI8/ZEWxrKwsPHjwAJmZmRg6dGiJ6Fm90KoV8O67QKNGpWbG65JmzZrB398fUqkUbdu2rd3OKAV69WJqx9q2qj54wJ7j6Fi7Y1cCx3HQ19fHtWvXSMeOHasWERs4kAXZb7/Nkh6GhkwwLT2dnYsuXYBPPwUsLJgoXevWwL17wC+/sLb+OXOAoCAEAnBWKGDj6lpulT8iIgJ3795Fhw4dYGhoqJXKPqUUCoUClFKoVCoUiiJsx4zBhaAg6D95giaiyAL+O3fYWqsK5OPj2Wz6558zK7RBg0qutbS0NDzp358mXr0KoylTyKxZs0izYuE4bXF2ZnPmz38m/f3R9N//JscaN+aaNGtW7d+F2dnZfHJycrKHh8fFqrb19PR87OnpmVOtAzRw5HJ5h4CAgI/19PQOOTg4jOrbt69bjx49rEaOHKnftm1bvpQyfFQUYGxctVhhBaSkpODo0aMFarV6gEwmy6ijl6DjDYe8SRUnHTpeReRyubmBgcE1Kysrp7lz5xqVaznykgkPD0dgYGBuSkqKoUql0mvbti0ePnxYqFQqMwRBcACA2bNno0U9esw2FP766y9ERUVBJnt9kuIFBQU4dOgQjYuLI6NGjRK7d++ui7ZfMKIoIisrCxs3biwRtps2bVrdCvEpFGwGuSjI2Lp1K01OTiYA8Pnnn8OkPKuouiAkhFVR27Vjx96xo54OE4Ljx4/jk08+Qa1FJ8eOZa3JW6pRQPT3Z+3L9RhsA6yKvGbNGlhaWmLRokXlbyQIzAqsUSNWBSwvafPzz8Cvv7JgtrxRB0pZgiY7Gzfu30ejDRtg9f77MFWrmcjYTz8BmZk4e++eEBQczAuCAAsLCyE3N5fv0qULRowYUXItl901xc8//1yiFVHs2d6qVSsaFRVF2jo5YZpSCVy/zt5PlYqJ7I0bV/Ebk5QE+PgAERHsmtuypeRcHPjrL8Hk0iV++M8/Q6+m1/mDB8yC7tnZdUrZuEFyMs7FxyM4OBijRo2ibm5uWmfJEhISsHfv3kSVSuUkk8le+RGl6iCXy50BxLm5uSl79eolLVEaL487d9gcfmgoG4+oJrm5ufjtt98UCoVi7sqVKw/UdM06dDyPzvpLh44GjkwmeyKXyzumpaWlJSQkGLWqhrjKiyA+Ph5HjhxRiqL4HYBMAOGxsbG/qNXq/QA2AyAAdhw5cmTmsmXLXvvvnH79+iEqKgrR0dENXpFcW4yMjDBnzhyya9cuXL9+Hd27d3/ZS3pjUCqV+PnnnyEIQkmV0tTUVKSUiiqVqtTnKSQkRFAqlVzPnj2rcmEqH7WaVTivXgUAaDQaAMCECRPqL9AGWHXxm2+A0aPrZD77WU6ePClkZ2eTXr16ccePH0f//v1rH2gDwA8/VP85a9cy5fJ33qn98StBX18fH374IbZu3YqgoCB069at7EbffstmnoODK7ZGWraMdRscOsRatrduZRXuYghh6t4AugPYbWdHRUGgc5ydOc7Hh3lljxkDW2NjvrOrK/pZWsJywQI+LjMTuw8dQlBQEL755hvo6ekhNTUV165dEzIyMkjz5s25wMBAKJVKLFmyBAqFAgkJCXB0dMS5c+eIi4sLJk6axKy8Jk1i9k4KBVP4Dg9n6y6vO6KwkInuqVSsLb642JSXh7HLlvG75s0TRQODmicSmzZlHQHPsn07e99u3MBwFxc4OzvjyJEjRCKRoF1lnuyldtsUxsbG5iqVagiA8zVe3yuEXC5353l+JoClzZs3zx8/fnzlM+saDetY+OSTGgXaKpUKu3fvLlCpVKt1gbaOuua1v/HVoeN1QCaTaVatWuWdmZk5+WWv5VmuXLmi8vLyMpBIJHu//PLL/z3zkMcz/6ZyufxCfn5+/d5hNhDCw8MBAPbVtaZp4Gg0GiQlJVGJRMLdvXsXjx49Eps3b86Vl1Aobv+sU9XnNwRBEHD06FGxb9++nKmpKS5evCgKgsA5OjqK7du358zMzKCvr88dOnSI5OTk4P79+0hLS0NgYCDNysriKaVwdXWFqalp9Q9uZMSUtUUR4DjY2dmRtLS0+r2WFQo2x/z998D9+ywA/OCDOtm1RqNBcHAwDwAPHz6kenp6pEePHrXf8eLFzO/bza16z1u2jFU+XwBWVlYwNTWlSUlJZSPpGzeAFSuA5cur9iC2sWEJgqAgdm0EB5cE2M8zefJksmnTJrpNpRIde/dGHysrzvLuXdzasAFmsbHUklICpRLNPT0x19oapwYNAr9+PUJbtsQ/YWFwaNKEk0qlCAsLEzw8PPiePXuC4ziYmZmhuKL57rvvlj6onR0TJrtwgQmptWvH2t5lMvbYszg7A0OGAEuXlg7I0tJgOHkyDFu2xN69e+ncuXNrNpvBcaxaPn36U+9yJye2liJcXFzg7u4OPz8/0cXFhdNmJIcQAg8PD5MzZ86sk8vlXWQymapG63sFkMvlphKJZLuhoeEYNzc3/S5dusDKyqpKcTikpLDvr/nzq31MSimOHj2qyMnJOaHRaP5dk3Xr0FEZumBbh45XALlc7qGvrz+q2jNk9Uh6ejq8vLwMAPxZWFj4bRWbXwaAgwcPKiZPnmzY0GfPa0NISAjc3d3rtxL4khBFkeTm5uLMmTOimZkZFxwcjIULF8LY2Bg8z0OhUCAyMhK3b99GQkICrKysMHv27PpRsX7NEEURd+7cQUBAAE1LS+Pu378PpVIJGxsb+vHHH8Pa2rrkrnzz5s2iWq3mvL29YWhoKEgkEjRr1ox3cnJCZGRkzQJtgAUg58+zKpGBAezt7XHnzh3Y1MDTWmu8vYETJ1igFB4O/PZbnQXbMTExAJhA1ezZs+vmS4dS1oZcE0uhK1dYxVVbwa1aUGTXR4cMGVL6dQcGMturW7e09/s2NgY2bGDn57PPWHv4mDFlAnUjIyN8/PHHnL+/PyIiIhAaGoqpU6fCyMYGEdnZBEVCf3j0CCQ4GIb799OwgwdJWMuW+PjePZhzHMHp08CxYzwcHLS3eZNImICaiwurcnfoAMydyzzc+/d/uh0hQGws0wd4/BgoKGDn5Px5kP/9D2MzMrhNmzYhMTERlfppV8aRI0CPHizY3rSJdQLMmFFqkwEDBuDGjRvc6tWr8eWXX8LLy0sIDg7mOY6DKIqqDh06EHt7e31jY2PY2dlBIpGgY8eOuHTpUhtBEG7K5fJOr2M7uVwutzQwMDjTsmVLt/Hjx0u0Hpn7+Wf2uTp6tEbHvXnzJr1//36ySqWaJ5PJdLO1OuocXbCtQ8crgFQq/deQIUOMKp1XesGYmprCwsJCXVBQIP3qq69SKttWJpPFyuVy87t37z7JyMio35v3l4RSqYS/vz+llGL06NGvXTZBT08P33zzDTIyMkoCv7///lvcsGEDJ4oi2rdvL2ZnZ3OpqanF9kokMzMToihCo9FApVIhNzcXdnZ2ePz4MbZu3YpJkyahffv2L/mVvXwKCgpw9uxZMSoqirRr1w7m5uaCQqHgmjdvTgYPHlwmqps+fToXHh6OLl26wMjIqORxpVKJ27dvIzs7u+YJDk9P4I8/kNa2LXx8fEr2W29dCn37lrStY8IE9qcOEEURJ0+ehIODA6bUpd1WcDDg5VWz554/zyrF5VlO1TEajQZSqbS0p/i9e0Dbtuz9LifQ1mg0pXzUb9++jZCQEMpxHHieJ2lpaUKPtWv53m5uzJf711+B5/y3pVIphg4disGDB+Po0aPYs2cPAJT2Z5dI0LRPH4x1cSGXL1/GqP79Yc5xbOa2oIAlYNLSWNdDSAjwv/+xBIebG5uTr4gWLYDTp1nC5vZtYN06llRYvPhpYsDamnm4F4kA4uhR1lYOZtHVsWNH8eDBg9y0adNq1tERGPj030ePlltplUql+OCDD7Bp0yb8+uuvNDc3l1er1QBwAMC627dvD7t7924rQkhbURRbCoJgKIqihOf5fAC3ALx2AWFRoH29c+fOzUaMGGFQLRHO69eB2bNrdNzU1FScO3dOoVarR8tkslfW9UVHw0YnkKZDRwPnhx9+GGtoaHjgs88+M9SvJ5XemhIQEAAfHx9BJpNplbhbtWrVRhsbm7mTJk0yqrEFTANCEARERUUhPT0dFy5cgFQqpdOmTSMlNiRvAAUFBYiNjcXRo0dhaGhIp0+fThwdHXHo0CExPDy8zB3T0KFDERoaSlNTUwnAPHrDw8PpvHnz3jiV87S0NBw+fFhMT0/nBEHAlClTapV8uH37No4fP47JkyejXbt2NVMq/+svYOBAhKSk4Pjx4+jdu7c4bNiw+jkxt28Dw4Yxe6niYKxZMybcVYvvh8TERJw5c0ZMTEzkvvrqK9SZqOTDh6x6mpzM/L+foXh0gud5qNVqGBkZgRBS+hwUFLAKXD1/jysUChw/flxQq9VcSUVfoQBatmQV6ufsykRRxMGDB8WIiAjO1tZWmDdvHi+VSrF69WraunVrGBsb0xs3bnDdu3fHzZs34eDgAI+ICDh36QLO1pYlDypQqt+8eTN9/PgxWblyZfWvx8ePAV9f1rY+aRLz3H7/feDgQRZAW1gwgbfyZvBjYoC//2aVZkdH4PBh1o2QmAjs28fOo5UVE6yzty+poj958gQ+Pj7CvXv3eD09PWpqaiqq1WpwHEeNjY31jIyMMGHChIqV+efPZ9fu2LEsqK9EeTw+Ph67du2Cvr7+ZbVaPV0mkz0sbzu5XE4AGMpksoLqvYEvn6K1G8tksrxKtrHiOO6Oq6urzcSJE/W1vk7u32dWdFu31nhOe9OmTQW5ubkLv/vuu93V3oEOHVqiq2zr0NHAIYSMdHNzkza0QBsAWrVqBR8fH14ul3eUyWRhVW2vUqk+e/z4cdbGjRu/lUgkahMTE6WHh4dJp06dXrlKcF5eHg4fPoz4+HgAQPv27TFlypRX7nXUFiMjI3Ts2BHt2rWDnp5eyeufPHky16xZM9ja2uL+/fvIysqCIAjwYlVB0qhRIzx+/Bjnz58HABIWFgZXV9fSFbDXCEopCgsLkZ+fD41GAzs7O2RnZyM1NZWbNWsWJBIJHGupUn3s2DEAwMGDBzFt2rSa2VsZGgKPH8PMzAwAUK+e8WZmzELq2XM+bVrVc8RVsGPHDnAcx73zzjt1EmhTSlm3QJMmQGYm1BwHqFRISUlBUlIS0tPThYiICE6hUBCA2W8RQmBnZyfOmjWLkxSLvk2cyILGOmqTL4/Y2Fjs3bsXlFLeyspKBEDyEhNhlJeH5L//hl2vXtADcObMGdy+fZuamZnRvLw8YmRkRD788EN4eXmR3377TZg7dy4PAN26dSPNmjUj4eHhorW1NTdnzhzcuXOHHk5LI6319TF85UqkFxbi8W+/wcXFBbGxsXB2dsbp06dpamqq2LVrV/7ChQsIDAxEjx49cObMGZiamqL/s+3dFdGoEVOXBoBLl9jfSUksCDczY3PnAQGsFXzNGjYr7e7OHmvVCvjySzYz7ePDqt6XLwN5ecDKlSxQ19NjgdozLePm5uaYNGkSL4oiEhISSHJyMm9sbAxRFJGdnY3Y2Fhx8+bNWLRoEVfutTVmDEumzJgBHDtWYbCtVCpx4sSJAj09vR+//vrrnyp7G4pam1+5QLuIkQBOrVmz5pxSqTwKIBjAQwBpAGw5jpuur6//vb29vfG4ceOqZ2966RJLItXgd0ZRgkmhUChO6AJtHfWNrrKtQ0cDZ/Xq1ReHDRvm6e7u/rKXUi7r168XsrKyCAA9beedfvjhh3copWoATXieX/Xtt9/WYADy5aBQKLBlyxY8efIEADB8+HD06tXrJa/q1eH8+fO4efMmnTNnDrGwsEBhYSHWr18PAGjTpg2mTp1aoR3Qq4BKpUJQUBDNzMzEvXv3hyAT+wAAIABJREFUyLBhw6DRaHDlyhWamZlJANZS26hRIzEtLY1r166dMHHixDp5wTExMfDx8aEpKSlk9OjRuHPnjjhhwgSuWi3l48ezdl25HJGRkfj777/x9ttv172yfn4+m//dtKl0pTcpiQX8NVQMz8jIwMaNG9GjRw+MHDmy1suklOLYsWMi2bmT8wgMxLn//leMioriOI6DVCoVTUxMqIWFBd++fXu4urpCo9EgMzMTiYmJ8PX1FZVKJSeRSMBxHO119Sq6ffwxkQ4cWOt1FaNSqXD9+nW0bdsWUVFR9OLFi2TgwIHw9vYGAAwcOBCO776LfFNTnJo+HaIowsjISFCr1fy4ceOQmZkJa2trtG7dGoQQCIKA9evX07y8PNKpUydh3LhxPCEEf/zxBxwdHenQoUMJwK61v/76CzzHoaWxMW3z558k18wMwWPG0Jy8PNKqVStRKpVyiYmJQocOHXh/f3/wPA+e5yGVSqlUKhU/+OADvtbdLBoNkJkJYedOPDQygnNUFHDyJGvZ37CBdU506sQ0AQ4cYGJq27axiqiZGRNNqwaCIGDv3r1iVlYWXbRoEV8mOajRAAkJ7Pru2LHC/Rw9elR57969v9Vq9buv85ywXC4fYG5ufnrAgAFGsbGxBcnJyZq8vDwDlUol1dfXL2zRooXGw8PD2KGy8YDydwzMnMm6NWqQnPPx8VEHBgYGq1SqAa+z4JyOhoEu2Naho4GzevXqgD59+vTy8PBokBHIjRs3cPr0aQDQl8lkmuo8Vy6XOxFC7q9YsYKX1LHlT33h5+cHX19fLF26FEZGRnjTWp/rg6CgIOTk5ODGjRuUUkratGkjjBw5ks/Pz4eVldUr9R7/8ccfYkJCQsmCpVIpVSqVxNHRUZg2bRqfnJwMOzs7XLlyBR06dKh1NftZVCoVVq1ahUGDBiE6OlpMTU3lpFIpXbx4MdG6YyAnhwlOSSTIycnBunXrAAA1agOujAsXmDr3zZulf967N/vz3//WaLfBwcE4efIkBg0ahHbt2mmlD5GdnQ0zMzNwHIf4+HgUFhYiKyuLJiYmijExMTzHceL748dz4du20eCmTcV3332XNzIy0qoLQxRFxMXFQRRFRPz6q5hmbExse/UShw4dylfYiqwFGRkZMDIywoEDB8SHDx9yoijC0NBQnDp1Kufs7Iw1a9ZQlVJJHB4/xuCpU2Hr5gZjc3MkJSXh0aNH6NChQ4Vz+GlpaYiPj0e3bt1KznlAQADCwsLEhQsXllzbT548gaGhIVQqFS7/3/8J7jExvO0330CQSMA3b46UlBTs2bOHajQa2Nvbk9zcXLpo0SKiUqmwdu1aTJgwAR07dkRkZCROnz4tiKIItVrNDR48mDg5OUEikaCgoAD6+vqwtbWt8P318fFBcHAwLSwsJFOmTEH7xo2ZLdiPP7J2f0NDZvn13nsswVNYyBI8AQGshTwzk7WRKxTM/s7WlgXMOTmsQp6UxNrk09IAABpHR1zZsYMiPZ32XbiQ45OSWKU8MpJV0b29mbd2ed7kADIzM7F58+Z8jUbTVCaTZdX4IngFkMvlRjzPZyxZskRq/Mz7IYpizb/XU1KY1sOVK2UV57Xg4cOH+PPPP3PUanVbmUyWXLNF6NChPbpgW4eOBs6qVatOurm5DR45cmTN78zqAUopLly4IAQEBPAA5stksh012c/q1asvchzXGwCdO3eutKKbqobCyZMnxfj4ePrxxx83yOTHq07RjbeYn5/PCYIAABg/fjzcimyWRFFEVFQUnJycGqS1mL+/Py5cuAAAWLJkSUk79otAFEVs2bJFSEtL442MjMTZs2dzv/32Gxo1akQFQcD48eNJ06qUsDdsYGJUv/4KjUaD//3vf2JeXh43e/ZstKhL26q4ONbi+3wXQ3o6s/CpwbkVBAH//ve/UaTqDI7j0K5dO2ptbU2cnZ1hbm6O6OhoxMTEwMTEBJGRkWKLFi248PBwWFpaig4ODlxUVBQ4jkNhYSHMzMwwcuRItPXzYwmIWvpji2+9hRhnZ5xu2pS2adNGHDVqVKXfIXFxcTh9+jQ4jhOHDBnCSSQSGBoa4urVq8KtW7d4ADAyMhIXL17M3blzB25ubiUJgOTkZKSuWEHbBwQQg+jomqmnP8OFCxdw+/ZtumTJksozLlu3AqtWMXsxGxtQShEUFERPnz5NevXqheHDhwMAzp8/LwQGBvI8z1NKKenbty+1trYmWVlZop+fH8dxHARBgCAI4HkeEydOhKura6lDXblyBQEBAaKhoSEZOXIkiYyMFFJSUsj8+fNLR3GUMiV1ngfGjWPz3CYmQLduwKxZTJiN4wClkgXI7u4sGfTkCZtvj4lh8+KPH7Pnde4MITgYdwICaIKzMx3t7s5xNjbMu9vEhM1qV2IxFxwcDG9v76MrVqyYVMPT8UqxZs2aE0OHDh1bJ915ly+z74gxY2p0TatUKmzYsKEgPz9/9sqVK4/UfkE6dFTN6zkcp0PHa4JcLuf09PQ8evbs+dICbVEUywr9gIm7FAXanbSZ166IwsLCYQB6EUK8CgsLa7na+iMnJwf79+8XU1NTucmTG5Td+WuFi4sLWrduzd26dQtmZmYICAjA8ePHcerUKVhZWdHHjx8TQgg4jsPkyZNrNpdch6SkpODmzZtCkec4uXDhAszMzISuXbvyLzLQBtis8MKFC3mVSgUDAwMuJycHAPD48WMCAJcvX8agQYOwb98+OnDgQGJtbV22sm5vD2RkAGDt7rNnz+Y2b95cYWWxRoSEAKNGAfHxZW+YIyKYKNa3VbkJliWtqPJoY2MjPn78mBs2bBhiYmLE+/fvIzAwkFer1TA3NxcdHR0RHx9PeJ7nHj16BIApUatUKuHdd9/l09LScPz4cUycOBHOzs7Arl0siKol3FdfoU3jxuCUSnLo0CF+xIgR5Vb38vPzIQgCrl27JqSnp/NGRkbc/v37oaenR9VqNTEzMyM9e/aEjY0N2rdvz0mlUnTr1q3UPuxTU2H/668E+fm1CrSTkpJw+fJlREVFYdy4cVU/YcECYPRo5su9bRvI1q3o1q0bMTIyQqtWrUo2GzZsGO/h4YG0tDRiZ2cHAwOD4l8wXPE8tyiKyMrKQnh4uHjo0CEuICCADho0iBQUFMDb21sEQEaNGsW5urqCEAJra2v+119/fVo11WhYIB0UxITSunRhAmtDhrCAujLefrvSh/kRI9BOpSLXd+6kWzQa4YPx47VuiU9NTVUrlcrAqrd8PVAqlceio6MHubu7V+2XXRUrVrCEyfjx1X4qpRT//POPUqVS/aMLtHW8SHTBtg4dDZuJGo3GtM7UdGvAv/71L+jr64tLlizh9u3bp7S1taXjxo0zfMZHWlmb/ctkMjUA/59++ikzNzfXHgAKCwvRkNrKRVHEunXroK+vzy1fvrxiJVoddQLHcejatSsAoGXLlkhPT0dSUhIiIyOJi4sLbG1tcePGDRw4cAAcx2H8+PFUIpGQZs2avdBzo1QqsWXLFlhaWpKbN28SjuNgbGwsLlmy5KV2PRR/X5iZmaFXr164du0aANY1EBkZCQCkWExNJpMBYEmDixcvCiaEYMzUqXx2VhaMjY3h4+MjGhkZcXXqG9+4MZubLe97LSmJ2WvVAHNzc/A8j/Hjx3ONGzcGx3Ho2bNnybmglIIQUhIRJSUlYd++fbRFixbi9OnTeY7jQCnF2bNnRVdXV87Z2RkIC2PzvnUh3HfqFNCzJ1qNGAFCCI2NjSVxcXG0Q4cOpHhm9cGDB/jzzz9BCEGLFi0gkUjQv39/uLm5lQSkXFVRXWQkMGIEqwK2bFnj5Xp5eeH69etwdHQU58yZwzVt2lS7OYImTZgw2IkTQHo6SHg4XD08ymwmlUpRWacFx3GwtraGh4cH1759e3h5eYkHDx7keZ7HoEGDiLu7O3lW38HS0hLmZmY0cNs20qt3byaYZmMDbN8ODB/ObO2WL6860NYSAwMDvPPOO9yWLVvo/v376YwZM7R6fwoKCkQADcfHs/65GBcXxxV9/mq2B5WKJb3On69R1wsABAUFiVFRUckqlaqsH5sOHfWILtjWoaNhcw1gwWed3uxqiUbDRrDVarV67dq1EkJI/qNHj6wVCoUqIiLCgBCSTCm9X0eH+/rvv//+w8zMTJGTk2Po7OxcMGbMGCMrK6u6nRWtAcnJbKxr6dKlukD7BcNxHBo1aoRGjRqVtJIDQLt27fDkyRPs378fR48eLQ50acuWLfHo0SPMmjWLmD9nz1QMpRTbt2+nTk5OZPDgwTVWQL9z5w4AoFWrVtyQIUPg7e2Nfv36NagB8+HDh2P48OH46aefUOTli5EjRyI/Px9Xr15FZmYm7t69W+ypzTePjYXm+++xfvp06OnpQaPRcB4eHnX3GczNZdXFQ4fKf3zq1KcK1NXE0NAQLi4uor+/Pzdt2rQyjz//GhwcHLBs2TICoCRiy8zMxMOHD7mxY8eyHwweDPzf/9XYx7cUt28zhW0AEolEvHTpEp+UlEQCAwMhkUhgbm4upqWlcf369UOPHj1w4MABYmdnJ3br1o3T+hqNi2PHCAioVaAtiiKuXLmCYcOGoWvXrtW/pg0NmfhdXBywaBHwxRe1eg9tbGwwffp0vrCwEBzHQV9fv/TJfPAA8PLC2w8ekMzz5yns7AjOnGGjCn/8AQgCS5zU8eiJRCLBnDlzyNatWxEUFFSmw6A8zMzM9ABk1ulCGjAymSxu9erVKfHx8c2bN29es53s2MH+zJ1bo6cnJibCy8urQK1WD5fJZPk1W4QOHTVDF2zr0NGwSeI4rlBfX/+llHkVCkXxP9sCGEYp3Q/ANioqagohRKSUbpfJZEJdHOvrr7/eKZfLr+fk5LQEEP7w4cMrGzduNBo9erRWNzD1hUqlwq5du9CoUSNRKpU2qEDqTUZPTw/W1taYP38+Ll26hJ49e8LHxweJiYliXl4ed+TIEXHq1Kmc8XMiRQUFBbh+/TqSkpJIUlISrl27Bn19fVhYWFBRFGFvby+OGjWKNzQ0rPT4WVlZOHXqFAAmEujg4IBRo0bV2+utLXPnzkVcXBwkEgm6dOkCAAgLCxM2bNhQEmgaGRnRpCZNyOm+fQE8TbaFhoZiYF0paN+9C2RlsRno8igsZFXRrKzyK98oqVCX+1hmZibatWtXo6Wp1Wrs3r2bEkKIoaEhm/WNj6+7AO2PP0pek6OjIx8bGwuO4/DJJ58gMzMT0dHR3Pjx42FXJPo0d+7c6n3faDTAoEEssF24sFZL5TgO3bt3pxcvXiReXl6glGLy5Mll5qarpHlzwN+fndd+/YAffmBrrCGlOp4yM5nyuJ0dC+hHj4b+0qU4bGVFvp4wgW1DKbB3LzBvXp0H2sVYWFigZcuWQkJCAq/N7yq1Wi0CeKMUsCmlXikpKQtqFGz7+ABTpjD18RokRpVKJfbv31+g0Wjelclk0dVfgA4dtUMXbOvQ0YCRyWT0p59+yoyLi2vUuXPnF96a6u3treR5PuHbb7+NB7C16Mc5AFbXx/FkMtk9APcAQC6XNwEw9dSpU381b94c1tbW9XHIKomIiKCUUvLBBx/oAu0GiFQqLRFdeuuttwgAXqVS4c8//xQ3btyIKVOmlAh7PXr0CHv37oWenp7w1ltv8R06dMDdu3dx48YNUEqJk5MTwsLCyNq1a9GiRQvMmDGjjA1ZkWJyqVlbGxsboW3btg1aMM/e3h729valfvbRRx/xT548wb59+wS1Wo3PPvuM/33LFk2jS5f00LQpJFIpTExMqKWlJcnKyoJlDe24SsFxgJ9fxY9LJMDatSxIeg61Wo2bN2/C29sbenp6EAQBY8aMgSAIcHZ2hqWlJczMzGh6enqNlqZWq5GTk0MWLFgAk8JCZgsVFVV3QdrcuYCHB/DZZ5gwYQJOnTqFpk2bwszMDGZmZmw+vKYoFExB+/x5oI5s2kaNGkVGjBgBURTx66+/CnFxcZyrq2v1WxyKrefeeQe4d4/Nv7u5VZhMqRSNhrXjnzwJdOjAKtpTp7LzxHEw0WigEQSoVCoY/PQTUxAvskGrT2xsbEhoaKgIoMrfExKJhCeE1H5++RWC53m7GglaZmQwEbsTJ4Du3av9dEopTpw4oVCpVAdXrlx5uPoL0KGj9uiCbR06GjiiKIopKSlc586dX9gxb926JZw4cYIHIAWw6YUd+BlkMpkol8uP8jx/Ys+ePSMWLVpkUNN239rg7+9Pe/ToQV4l+6k3HQMDA8yfP58/d+4c/euv/2fvvMOiuNY//p2ZXXZp0kGpoiCoYA9KLGgUjRq7sWuKMcZocm/yy71JNLrZ3CQmuYkmJia5thij2LHHLkUpYkGlSBFUQFF6WZZtM/P74wA20F3YBdT5PI+PujNzzpndZdnved/3+26lLC0teUtLS66wsJBp3749ZsyYUSeMu3Tpgi5dutRdO3jwYPr333/ns7OzqS+//BKhoaHo0aMH4uPj+atXr1K1Qk4kEsHNzY2bOXMmbW5u3qqFdkPUZge89957det/KTRU5PXeezg1eDBefOkl1sbGhjl+/Di3Zs0a+s0334REIkFcXByXnp6ONm3aYNasWbRIJALP82BZ9vEp+Zcv33N3fpzQCg4Gysrq2vrcvn0bGRkZtVkI7NixYxkzMzOcO3eO27t3L01RFKysrPg333yT4jgO4vv7dhtAZWUlACAuLo6b+MorNL75hkTZjcUrrwA1hn4ikQjjGmHy1CBz5gBKJRGiRoSmadA0jYEDBzIHDhyAUqmEra0t+vXrZ7jT/rx55O+xYwGFgjh+68vFi8Du3SRSfvQoMciaOvXBHu0gzytN01AUFsJepwMmNo/hd1BQEB0fH4/U1NQHPk/qw8XFhZZKpf2bZWGtB8bgUpTiYiA/H0hMJD4PjSA5ORlZWVkFGo3m3UYNICBgBASxLSDQipHL5fYAXDw9PZu1aDkxMZGlKGorz/NhACKbc+6H0LAse7asrGxsZWWlcSJrBuLt7c2dP3+eUqlUGDNmTMsWjwsYxIgRI6iAgACUlJRQJSUlTO/evR+o+64Pmqbx7rvvUhzH4eDBgzh+/DiOHz8OABQABAYGoqioCPn5+SgsLKRWr17NffTRR8/ETgzHcSgtK8OWxYvBMwz8/PwYFxcXdO/enQ4PD+fXrFlD8TwPZ2dnfsCAAcyxY8f4r776Ch9//DEiIyPZs2fPMtOmTYOfnx8AkklgYWEB+1rB6uUFhIWhUq3GuTNnEBQUVL8XxZw5wIwZwOLFiIiIYOPi4hh7e3tu9OjRdGBgYN3GgJ+fH61SqSASibBt2zbu559/ZliWZSY2QmBVVFRg3bp1AADFhQs8Tp8GanqMGw03N8AUDvWXL5O+5Hr0FG8MJ0+eRHx8fJ1j+61bt/Dzzz8zffr0QVBQkOGfy/v2kSj8kiUk00EuJ38/TFUV8O23wN695BwPD+Ji/9Zbjx1+0smTHBceTj/Sw92ESKVSmJmZ8VVVVU/8HdGuXTuwLBvYHOtqLXAcF2hv6MbV1Kmk5n5Do7qKQqlU4tChQ9UajWaKTCZTNmoQAQEjIIhtAYHWTYijo6Oqc+fOJndHO3fuHPv3338zdnZ26tLSUgmAf8hkspY2cbEH8NWkSZNaRGgDwKhRo0RdunTB1q1b4e/vD18jpWgKNA9ubm5wc3Mz+DqapjF27FiMGjUKeXl58PT0rEsdz8rKwubNm6HRaCipVMoZe80tRV5eHg4dOoS3167Frfff5x0dHeuEw8SJEymdToeKigrY29szABAQEED98ssv7Pfff8+wLMt4eXkhPDwc3bp147y8vOjdu3fDz8+Pmzp1Kn05Ohoec+fy6qNHqcM7dnAFBQVUSkoKFi5c+GjWSGJiXcQyLS2NcnJy4ubNm1fvhkatYeGsWbMYpVKJ6upqg0pOFAoFEhMTERsbCzs7O3bKlCmM+cmTDMLCDHz29ODPP0lv54AA4425eTMRrenpgInMG+Pj4zF+/Pjaem0GAK5evYqIiAju3LlztEgk4iUSCefq6sp4e3vDzc0NVlZWuHjxIpKSkjitVsvXlGNQvXv3Jq29vLxIHe6KFUR4UxR5rLgYiIsjddbdupHNie3bAX3q8DkOuH4dkgkT6H35+ezc+4zvTE1ubi7UanVdF4XH4eDgAI7jbORyuYtMJrvbDMtrUeRyuQSAV60XgV4kJZGOBY9xq38cPM9j7969Sp7n/5DJZM9NmzWB1okgtgUEWjFmZmazAgMDm8WG3MnJiQGA0tLSrwBsbwVCGwDUAHD37l2+S5cuLZbK3b59e/Tq1YvdvXs3PXr0aCow8LkKSjzXiESiR2pp76897Nq16zMR1QaA8vJyAEBp377oM3o09XB/ZpFIhPujU2ZmZnj33XeZgoIC2Nvbw8rKCgUFBdi1axeflpbGMgzDXLt2jd6wYQN0ly7Bwdqa2rB5M0QiEf3xxx9j5cqV3P/+9z+4uLhwoaGhjLW1NRl4927S/uu//8XUqVPpn3/+GUqlEk+q+bSwsHjiOQ9z9+5dnDp1CoGBgfzEiRMZ5OaStln1uJk3maVLgQYc8htFSgowYQKpAzeR0K6oqIBOp3ugRzZAugF07tyZ1ul0uH37NpWdnc2kpKTwd+7cQVVVFVXrfD9w4EC6rKwMSUlJAIDY2Fh+4MCBZBOnRw9g0yZg2zaSYt6jB5CXB+zYQQzPXnyx/oh3Q8ydC6SnwzM6GqU//siEhYVxkydPppujdeatW7dgY2PD0TT9RIFPURS8vb01mZmZIwFsNPniWh4pTdNarVYr1qvEY+dO0qItNbXRLfcuXrzI37x587ZGo/m/Rg0gIGBEBLEtINC60QLgUZPCakx+/fXXaq1WywIAz/NMeXm5uZmZWZpGo/ldJpMVGnu+xiCTyRRyubznmTNnEs+cOQN/f3/NK6+8YqbT6cDzPIqKih75EmgqQkNDmYKCApw4cYILDAx8ZgSWgGHcuXMHOTk5mDx5Mnbt2oWEhARq+PDhLb2sJpOXl4fw8HAAQIS7O9qbmUEf2SqVSuHp6Vn3f2dnZ7z77rsMQNLS09LScPbsWb6nkxPvkZBA94+Kgq2tLUQiEV5//XU6NjYWBQUF1KpVq+Dv788OGTKEsadpgOPAsizOnTsHOzs71sLCwiRRyo417bGSkpKogQMHwmnBAhJlPXDA+JNt2QIEBhpHyN+6RdqSHT4M1LjLm4LffvuNd3BwqOvx/TAikQienp7w9PTE4MGD685RqVSgaRrl5eVYu3YtRowYgaCgINA0Tc7heeDIEWDZMhLJ/vBDwMGBmJk15FTfEBUVQEQEifC3bQuRSIR58+Zh586d+OGHH3hfX18MHz6cMrjG3ADS0tLYjh076v0e9ff3t8rNzZ2IZ1xsy+VyGzMzs/PdunVjLSwsnqy08/KAYcNIXX4jjQlLS0tx9OhRlVarHSeTydSNGkRAwIgIYltAoBWj0Wgyb9++rQYxKjMaNfWm5gCmA7gL8lnAajSaCJlM9qgNcAsik8kuyeXyfgDs0tLSwrOysgBArdVqJQDw0Ucf4eH2TqaApmmEhoZizZo1tE6na3RvZoGnm+3bt/NlZWWUo6MjAgICcOvWLZNshjUnO3fu5FNTU+vuYfbNm7D44w9SL9sEaJomBnQ6HYXPP6fw6acYNmxY3XEnJ6dakzC6qKgI+/fvp1avXg1nZ2d+xDvvUMc3bOCKioqoUaNGmSwduDYC27FjRzg5OZF6Yo2JujLduQO4ujZ9nNu3icFcVBRQUx9vCnJzc6HRaKjZs2cb3Gc9JSWFPX/+PFVYWEh36tSJ79evH4W7d4mg7tIFeP11Yhg3ezapzc7NJZscjcle+uQTIC2NtIiqWaeNjQ3eeustOjc3F5GRkeyqVauYbt268WPHjjXJz2p5eTndt29fvc/39fXF4cOHh8nl8jYymazCFGtqDTAM84Gvr6/7qFGjnvwdpqICCAkBfvwRqO1zbyA17uNKnue/lslkqY0aREDAyAjfFgUEWjESiSTAw8PDqEK7qqoKmzZtUlMU9c6yZcu2GXNsUyGTyc4CgFwu76/T6d7heX4DgItisTjn+PHj9t27dzdzcHAw3B3XQFxcXODg4MDv37+faowJk8DTT0VFBeXl5YXi4mIkJycjODj4qRbbBw8e5FJTU2mApGFPnz4dbaZObVxbpobo1IlEih+TQuro6AiNRgMPDw/OuqIC7p07U8yaNfzHH39Mm7J8JCMjAwDg7+9Pos5LlgDTpplmsq+/Njxq+zA8D4SGknZXMplx1tUA0dHR6Nq1K+vq6qr3ZgfHcTh16hR79uxZpnPnzni9UydIOnak8N13wDffAAUFwOrVQP/+JHLZrRsweTJgbU36kBtCdjZ0q1djW9euXHW3brAIC6PHjRv3gOmeh4cHZs+ezaSlpSE8PJwaO3asYXPoiVqtpuo1+2sAa2tr+Pn5IT09/V8AlppkUS2MXC7vTtP04qCgIPETN2tYlrR1++03oAmZQqmpqbh9+3aBTqf7rtGDCAgYGUFsCwi0Ynie97UxQo1feno6f/LkyWqlUklVVVWZi0Siw8uWLdvY9BU2LzKZLBHA/Nr/y+XyvqmpqX9dvnx5UJcuXdSvvvpqE7/JPh6KomBtbc2JRKKnstWTQOPZvn07m52dzXAch7KyMu6DDz6gdTodzMzMnuqSguzsbAoAZs6cea8kIyICuHIF+Mc/mj5BRQXQqxdw6dJjT9NoNCgsLKRff/11eLi5AZ064c0RIxgY2i7IADiOw65du+Dm5qbr06ePCB980KQv+k/kww+JOdonnzTueq0WyMoiNe0mjGgDJA382rVrmDt3rkGfdVlZWcjevZt5pawMzjNnQtK3L/DTT8CCBcA//0lqcENDH7zoww8BZ2eD1rd27VrWZ/du2iU/H1kTJtBDhw3DyZMnsXHjRm7RokWP/EzLf9k3AAAgAElEQVSmpaWxbm5uFPTog20oOp0OKpUKrgZmLQwZMsQ8PT39A7lcvrKVeKQ0CblcTgFwAdBRLBZPAvBBSEgId3+ZSYPMn0/afDWhdZ1CocCBAweqNRrNLJlMpm30QAICRkYQ2wICrRiWZSuTkpLYgICARou7yspK7Ny5U8ey7BIA5wBY6nS6COOtsuWQyWQ5AEKWL1++v23btqObY057e3sqKyuLRTM63Qq0DJWVlYiPj+fFYjGVlpbGzJgxA+3atYOVlRUNEIOwp51hw4ZRO3fuxIULF3gfHx+ibNPSgGPHjCO2CwqAgQOBx0T9cnJysHHjRvA8D49a9+HycuJS7eXV9DU0AEVREIlEGDN6tAjz5wPffWdcA7OHGTeOtP9qLAsXElO0mBjjrakBpFIpxGIxeF7PqqKqKuCtt9Dx7bdRrNFw0osX6XWbNmH6mTPweVwHhw0bAEtLYoamJ6d+/JF/edUqJuWHH0D5+eG9tm1hb2+PK1eu8IWFhfTVq1fR+SH38prWkSbZGIuPj+esra15QzdhHRwcEBAQIEpOTv4YwMemWFtzIJfLX5BIJEsZhhnGMAxlY2OjdnJyEo8aNQqWlpZPfs6rqkg2iT6O8w3A8zzCw8OVHMf9LJPJTP8DIiBgAILYFhBoxbAs+0NGRsZOnuf1rpnTarXgeR5mZmbgOA5btmxR0zT962efffajiZfbIsjl8p4URY1sLldob29v+vLly80xlUALoFarUVpaigsXLnDnz5+n27Rpw0ulUt7Ly4v39fV95jZYUlNJWWN6ejpV9zmzYAGJNBmD+Hjg118bPHzhwgUcPHgQDMPU1m8TvvwS+Phjo4ttnudx9epVeHh4IC4ujtPpdLT27l2yzqameD8JC4vHptI/lpQU4PPPG20a1RicnJz47OxsyqO+9ks8T9J+V68m7ccSEgCpFLSzM/qtX0/zPI+XYmPZbdu3M2+88UbD7fdiYkiZgb5oNChJTIRoyBC8PGHCA4dCQ0OpsLAw7N+/n+/cufMDvzB79erFHDlyxOibpBUVFTh16hQ9a9asRl0/cOBASXJy8iK5XP6TTCa7bcy1GcKXX345gabp9osXL9a7ufwXX3zxilgs/s3c3NxhwIAB0u7du1M1/in6l76dPw+MHUs2+JpQBpacnIxbt27d0Wq1z2RKvsDTjSC2BQRaN+EURalSUlKkNWZMKCsrg4uLCxwdHetO4nke169fh0KhwMGDB7VarVb8z3/+E/v37+cLCgrA8/ySFrwHk0JR1BCe50XR0dH8+PHjTV476+LiAp1OZ+ppBFqA69evIzw8HAqFAgBoLy8vzJkzx6Q1wy1NbU/q0NDQext6CQnAxInEGbgpJCcDixc/1n07NjaWd3V1pSZNmvRAWzHUtIoyNkqlEjt37gRAatRfmzkT7gDQHBtoO3cSYfnCC4Zdd/Qo8MYbwNWrpo28P4RCoeBFItG9z1SdDrh2DXByIlHIVauAAQMAb29iTHZfzTVFUejfvz9TXl7Obt26lXrnnXfoR2qai4rIGHoaXHKnT6N6/HjkLFpEvfyvfz1y3MfHBzNnzkRYWBh17tw5vHDf8+zn54d9+/YxeXl5cHd3N/CZaJiqqiqIRCJs376dd3Jy4nv16kX36NED+n5m2Nvbo2fPnqLLly9/BeANoy3MAORyuTWAcJZlAeCJYlsul9tLJJLfzM3NX5kwYYJFx44dDTbQA0DKIuztgZUrmyS0lUolDh06VK3RaGYI6eMCrRHm888/b+k1CAgINMDgwYP5qKiof5aVlVlwHIfw8PCKa9euJSQkJDgnJCToqqqqaIZh6MTERP7IkSP5WVlZeVqtdp5IJGofGxvrUVlZGcVx3PSadOtnkpCQkLioqKiEoqKiSW5ubmI7O7vG/eLXE3Nzc8TExMDHxwd1fYEFnnqKi4uxdu1a0DSNDh06cCUlJdSECRNga2vb0kszKcePH+cUCgU1ePDgewaDUilQXU1aSzUFe3tifnW/iH6I69ev48aNG1RAQAAe8Kf49ltg61ZgtHGrQ8zMzKBWq7lbt25RM2bMoNpHRACzZgEffWTUeeqlZ0+gb1+9xSUAICOD1HlPnmwcJ3M9yczMxKVLl6gRQ4fCYu9eIrDfe4/UX3/0EWnPNHQoSYv390dDtfXt27eno6KiKHt7e7Rr1+7Bg6++ShzVx49/8oJyc/H3iRO4JpVi0tdf1/vZS1EUjh07xhUVFVFdu3ZF27Zt647RNI3i4mI2IyOD6tatm9F+QVhbW2PAgAHw8fGhtFotzp49i+joaNja2lLOetahu7u7M+fOnfOLiIgoGDRo0EVjrU1fYmJiPvb29g6uqqriIiMji0JCQs43dK5cLn9BLBZHBwYG9poxY4bU2dm5cb9vWZb0h/f0bHIrvAMHDqiKioo2ffbZZ/9r0kACAiZCiGwLCLRyKIr6sri4ePjJkye7aLXauYsXLz4ll8vFVVVVA+Li4gadO3fuPa1W6wBg2OLFi68CgFwuPwgAS5YsaVVtvEyFTCY7/MUXX0zZsmXLbrFYzHz88ceMqaKRFEXBwcGB37ZtG/Xhhx+aZA6B5uHSpUtgWRZVVVWIjo6Gs7MzN3nyZNrJyenZDWU/hJOTE52fn4/169dj2bJl5IuzgwNx5ua4xrViAoDKShLFTUt77GmDBg2iMjMzUVZWhgfSlTt1alK0qyEUCgXi4+NpAMjOzkb7uXOJ6GsOfv8daN9e/xT90lLSCmnLFuCll0y6NKDOMI7LzMykfS9fxhw7O96Roih8/jng4wOsW3fPpV7P3t48z4Nl2frTyL///rEbMXVERoKfPh3XXn+df/nzzx/bL7usrIwCSLTzYXr37s1s2bKF5zhO78izPlAUhXbt2qFdu3bU0KFDkZSUhP379yMzM5MfN24c9aS5zM3N8eqrr5pv2rRpzRdffLGS53kXmUxWZbQFPgGxWDw6KChIOnLkSPz1118/LF++fKRGo1ksk8lSas+Ry+WUSCR6z8zM7JsxY8aYBwQENG1SjYa8p195pUnDpKenIy0tTaHVah9NdRAQaCVQeptfCAgItErkcrkZAIlMJqts6bW0NP/5z3+WcBz3ZZ1oMBF3797F77//juHDhyM4ONhk8wiYBoVCgR07dnC5ubm0ra0tS9M0Bg0axHTv3r2ll9bsnDhxAjExMRgxYgTphVyLmxtw9izQ2JTb3Fzgl1+e2Kt7xYoVrJ+fHz1y5MgHRYlOB9y92zRDsXrQ6XQ4fvw4f/78eWrS4cN8l86dKaxfb9Q5GuTf/yY16AsXPvnc0lJArSap1k0VNk8gPj4eN2/eRHFyMjd62za68N//Rqe8PLSprARWrGj0uDzP48cff+TVajXmzJlDPeDWvXw5YGcHvPPOI9cVFhbi/PnzKCkpQZ+SEriMGQNFcjI2XLwIX19fdtCgQYyrq2u9n/GRkZHs+fPnmaqqKrRp04a1s7PDnDlzGJqmwfM8VqxYwQ8ZMoTq1atXo+9LHwoKCrBjxw5erVbzs2bNol1cXOqOcRwHhUKB/Px8FBQU8Ddv3lTk5OSIaJo+ptFoonmeXymTyZrty/ny5cvvzJs3z6W2/V5cXJwuPj5eC+AGy7IRWq02XyKRTLewsGg/e/ZsCzs7u6ZN+MMPpFY/PLxJwxQVFWHt2rXVGo1mqEwmi2vaogQETIcQ2RYQeMqRyWQaAJqWXkdrgKbpDp6enjqKokz62Vb7xen+NEWBp4Oqqir8+uuvsLGxwccffwypVPrMmZ7pS1RUFGJqnK179uz5oHI5eNDgdkwPsHs38NlnDR7et28fn56ezgNgBg4c+GikMTGRpCqXlzd+DfUgEokwcuRIqkOHDjh7+zZ8xo5Fs3nKv/++/v3LR44E+vQhGxYm4OrVqzgaHs5VqNX06L//xpDKSr4kLIx2r6qC1/jxJG28iZSWlqKiooIKCQlBXl7eg62xiouB+wRoLSdPnkRcXBxcXFy4rhUVaPfll/SfN2+i3NYWFhYWbEZGBpORkYGRI0ciKCjokesHDx7M9O7dGytWrEDbtm2ZjIwM/Oc//0FwcDCGDx+OoKAgxMbGsr169TLpz72zszPeffdd6sCBA1i7di2mTJmCnJwcbVpaWnVZWZmUoiitWCy+rNVqL+h0ulgAZ2QyWRNNEhqHTqezra2nNzMzQ0hIiGjgwIGi69evd757925npVLJubm50X5+fsbJCJBIgLlzmzSEWq3G5s2blSzLfiAIbYHWjiC2BQQEnhl0Oh13+7bpDV05jgNFUXAywhdSgeYlNzcXFEVx8+bNe6aNz/TBx8cHp0+fBsuyKCgoeDCNe/16Usvcr5/hA6enkzZaixbVe5jjOFy6dIkKCgqihg4dWn8LtZ49SWTdRHTasQPRYjGV26kTOppsloeQy0mk/nFeOTxP6rQ3bDDMpVtf8vOB/HxcDg9nF/70E1O+bRukgwfDysWFcu7aFejd22hT2dnZYfjw4fzly5f50tJSWqvVon///qSl20cfAfVsVsbExGDKq6/Cf/duGnPnAq+9hvccHVFZWYn8/HxGpVJhz549UKlUDc5rbW2NZcuWQafT4dSpU4iPj8e5c+cwaNAg9OrVi4qOjmaKi4vrzAFNAc/zOHDgQHVycjLP87zF1q1btWZmZhs1Gs0fANJbU19tjuPE4odc8mmaRseOHdGxY0fAWL3JCwqAUaNIW0F9ygcagOd57Nq1q7q6unrHZ599tsYoaxMQMCGC2BYQEHgmkMvlvgDemjhxosnn4nkeEokEFy9exKBBg0w+n4DxkEgkUCqVdGFhIVzqiaw9T7i5uWHu3LlYs2bNow77eXnAnTuNG9jdnbSqEtX/FWPfvn0wNzdHaGgoRA2cA5EICAsjETAT9Nrmjh+Hubc36m1rZSomTnyym/jSpcD+/cQd3VilMJWVxPV70SLw06cjo6gI1159lSmLi4OTCVPUKYpCcHAwFRwcTCUnJ+PQoUNccHAwTb/xBuDn90hLOKVSCZqm4VZZee+1r+m6YW1tXWeK1q1bN73mFovFGDFiBIYOHYr//e9//A8//EBJJBKO53k6NjYWY8aMMer9siyLoqIicByHK1euaFNTU7N1Ol1fAMrmTAs3BLlcLgJA0zSNW7du4cqVK7hx4wZbWVlJMQyD+fPnP+oi31hyc4kTfxOENgBERkZqc3Jy0jUajZH6EwoImBZBbAsICDwr+ANAenq6TqfTibp27WqyiRiGwdixYxEeHo4+ffrAohl73wo0nvLyciQkJLCWlpaUjY3N8x3WBrBhwwYuNzeX9vLy4ry8vB58PrZtIwZphlJZCXToQNpUAbhx4wb+/PNP2Nvbc/3796d79OiBK1euYMaMGQ0L7VqOHCEmSsYW29nZyF6/Hrf37OFEIlHzvQ90OtLuqCHS00mq+aJFxhHay5cDDAOMHg1u/35s1unY2yNGMGqNBlOnToWTv3/T59CTrl27IioqitqxYwc3LSyMhvTRVsxSkQiTtm9Hda9esE5Obrw530OIRCIsXLiQysnJgVqtpsPCwh51Rm8kOp0OFy9e5E+fPq2sqqqSikSiUpqmVRRFXdNoNFOb0+iskbAikYj/5ptvAIByc3Nju3fvznh6emLXrl18bGwshg8f3vRZ3nmHmKH99luThklNTUVcXFylVqsdWVNCJyDQ6hHEtoCAwLPCIQDjU1JS5iYmJo65cOECS9N0tVgslowdO1Zsbm5u1Mn8/f3h7u7ObdmyhZo3b57J+3sLNAzHcbh58yauXbvGFxcXs66urtSgQYPqajIrKiqwefNmFBYWAgDz9ttvQ1rPl/3nDalUSgOov5f4228TN3BDa4aVSuCTT+oikrXjlpSU0EeOHIFCoeABUPb6RLcSEgybWx9KSoAuXeBx9SpsbGzw7bff8n369OFDQ0NNL7pr6+BDQh49du4cMGYMiWg31guCZckmx8yZwIEDRNg7OCDf3h7H3n0XeXl5TP/gYL6kpATt2rVr1s8siqIwffp0KmPUKIrNygKzZMkja8+Oj4dYowHfqZPRhPb9MAyD69evcxRF0e3bt2/yeBqNBmvXrlVWVlaeU6vVnwA4t3jxYrbJAzcjMpmM//rrrxVTpkyx7tChAyiKqvvcdHV15fLy8mgATXuvqNWkP7ufX5OGycrKwt69exVarTZUJpM1Mu1GQKD5EdzIBQQEnjm+/vrr33ie99fpdIcBfDt+/HiYwmm6qKgI69atQ9euXY2ekigAqFQqcBwHiUQChiHfAVmWRU5ODvLy8viUlBS+qKiI5jgOUqmUc3JyoqRSKZWXl8f/61//oliWxeXLl/H3338DAHr37o0ePXoYLar1NMNxHM6ePYtjx45h2rRp8Hv4i3BUFIlsDxli2MCLFwMffYQymkZYWBhbVlbG2NraQqPR8Gq1GiqVivLy8sJrr7325I4BCxaQNfzPyO1zy8oAW1scPHhQd+HCBZGDgwO7aNEi0xvl3b1L0uMfrhW+eZNsTty4ARiakXP9OmknNmgQGeP334Ht28lmiVSKiIgIREdHw9HRkevVqxcXHBzcYkEWjuNwbuJEPq9NG2DcOGrMmDFQKpW4EB2NzosWIfrFF0FPnIgpU6YYfe6zZ89yJ0+epJ2dnblhw4YZRWwfOnRIfeXKlaMajWZ8a00T14fvvvvu4qRJk3rW1GfXUVZWhp9++gn29vastbU1Y29vj8DAQHh7e+s/+PHjwNGjpM1bE7h58ya2bNlSpdVqR8hkspgmDSYg0MwIkW0BAYFnjsWLFy+o/fcXX3yxODIy0rp79+5GD5U4Ojpi6NChOH78uCC2jYRWq8WePXu4srIyFBQU0BRFgWVZuLi4cDRN84WFhYxYLOZsbGzg7+9P9+zZE+bm5jAzM6MBItC//fZbasWKFbylpSXu3LlDDRw4EC81Q5/ipwWVSoWoqCjEx8fDx8eHc3BwePRnw82NGHUZAJedDXb9emzy9OTvFBdT9vb2jE6nw+jRo+Ho6EhlZGRg//79GDJkiH6t+SZMaFwqe0McPkyMuVJI++D8/Hza0tISs2fPbh5H+h9+IPWqn3xy77HqamDAANJiS99+33FxxNH57l0Sxb5yhdRkd+xIshHef7/u1KtXr3IODg70woULaRjL6KqR0CkpCPrmG8qeYRATE8MtX76cllRXw8raGo69eyPT1xd2BQU8mhpJfQilUokTJ07Qs2fPhqenp1Geg6qqKiQmJvIsy77+NAttANBqtSezsrICOnbs+IBLmq2tLebNm4eCggKmpKQEp0+fRmJiItzd3Xlzc3PKzs4OAwcOxGNruo8eBZpY833r1i2EhYUpdTrdOEFoCzyNCGJbQEDgmUYkEkWVlZWNDQ8P140ZM0b0sOtqU2EYBmZmZhxa+Ivss0JOTg6uXr1Kh4SEYMaMGbCysoJGo0FUVBQtkUjwyiuvoF27dg0+11KpFO+99x7y8/Op69evY+zYsUIk+yFWr17NKxQKSiwWY+bMmfU/l9HRwLp1xD34CdQ6Q8fExyPu7bfh7+jIj500iXrYrb9nz57o2bOn/gt98UUgO1v/859Et24PCFEfHx86MzOTt7GxaZ6Uant7IoZrUSpJWvvBg8CTMm9yc0nP8pUrSU33yJHAsmXExM7MrN5+6Ldv30ZRURE9So/XsFlYuBBUUBB8v/8evr6+dHJ8PN9h6lTKYtkyXJHLwe3ZgzFjxhj9tVCr1QCAsLAwXqvVUt7e3uysWbOatMFy+fJlXiQSHfjss89KjbLIFkSn022+cuXKgtDQUPHDm2Curq51Ldu6d++OnJwcKBQKSqFQcHfu3OFXrVrF9OzZEyNGjHiwLZhOB3zwAXHeb4Lre2FhIf76669qrVY7ddmyZScbPZCAQAsiiG0BAYFnmsWLF4+Ty+UfJSUl/bdbt27w8fEx6vhJSUlsx44dn9tezcbmwoULnKenJwYPHlz3zc3MzAyhoaF6j2Fvbw97e3uY0iTvaaX2yzIAODo6NrxJNHUqEXRPoKKiAitXroRYrcY/fvoJRV9/zU+ePNk4G0+nTwOzZwNFRU0fa98+QKUC5t8zMNZqtZxSqWy+2uWpU4lhWS0TJwK2tsSMriFefx3o2xcIDCRp5lVVwIULT5wqJycHf/zxB1xcXPjevXu3vKcEzxPDu1oxl5WFADc3CmvXAsOGwa2UaNaSkhJ4GdkQz87ODoMGDWKVSiX69evH/PTTT0xSUhICAwMbNR7P80hISKhSq9U/G3WhLccVnU5Xdvv2bUs3N7cGT3JwcLi/XRoNkPfZxo0bcfnyZX7BggWUTa3b/rlzQHw80KYNcnJyUF1djXbt2qHN/ZtNT6CqqgqbNm1SarXahcuWLTvY2JsTEGhpBLEtICDwTCOXywMB/Hf8+PHo0KGDUcfmeR537txhXnjhBaOO+7xy9+5dZGZm0jNmzGjppTyzuLu7o2vXrkhJScELL7zQsAgrLiZCNyqqwVP27t3LXb58mXZxceHbSaVU7Pjx/KApU4wn7EJDSU2yMYiPBxQKInhrYFmWLi8vR3l5OWye1JLLGKxcCVhaEpfwa9fI/++vf+V5siEQFQXMmwekppJ6bD8/kmp+UH+9cebMGQDAtGnTKL1S9k3N7NnkXr78EtBoiMv8J5+QunyQDbKRI0ciwEStyAYOHMgAQEFBAXieb9LrXVpaCqVSqQVwxljra0lqTNL2Z2dnv+Pm5mbQm8XT0xPz589HXFwc/+uvv1JBQUEYevcu6Uhw9iwuXrqEQ4cOwcLCglcqlRRFUTAzM+PFYjEnkUhgZWXF2NnZwdHRES4uLnB1dYVUKoVCocCmTZuUarX616VLl2400a0LCDQLgtgWEBB41kkDgL179+Lo0aOq3r1700OHDjUzxsAFBQXQaDRGF/HPAzzP4+LFiygrK0NxcTF769YtuqqqigoICOC9vb1bgTp4NqFpGkqlEgEBAXyPHj0afp4tLIjwewxFNRHnF198keq2ahWwYgUFY/YuF4mAt94CfvwRaEopQG4u8NVXjzhcd+nSBQkJCdizZw9ef/31pq1VHyZPJinfq1YBP/1EauJ5nmwE9O0LeHgA06cD770HrF5Nal0//9zgaW7duoXr16/Dy8vLoEiiSRkyBPD3J4ZZYjEQG0t8AWqgKApBQUEmX4aTkxP8/f3506dPUzNnzmzUGJWVlRCJRLcWL178VNdq349Wqz2RlZU1c+DAgQa/YVxcXDB+/Hi6e/fu2Ld7N99n+XJK9eOPyOZ5REREYNq0afD19aV4nkd1dTUqKiqo8vJypqKiAmVlZXxJSQl35coVqqKigqqurqZ4nodYLOYA/KDVamUmuF0BgWZFENsCAgLPNDKZTCuXy0UAvKqrq91jYmKOWVlZ6fr27dvkz78bN26gTZs2rFQqFdLIDSQ1NRXHjh3j3dzcKCsrK2b48OHw8vKClZWVILRNyN69e7m8vDx63Lhxj494OjoCW7eSdlJM/W/vl19+mV6/fj0S9u5Ft5MniRO2sSkqIu7hTRHbwcHAv/4F/OMfDzzs5eWFwYMHIyEhoXk8F0pLyf3MmEFqWlNSSBT7m29IpDsqikS6aRrw9GzUFEePHsXZs2cRHBzMhoaGto7PpYgIUpPeqxfQpQt5LQYPbpGlUBSFLl26UIcPH270a15cXAye51ONvLSW5sytW7ekHMfhkTaAeuItkeA9BwfqzLZt3OmzZ2nu+nXMmTMHtc7vFEXBwsICFhYWaHuvvR0FoO59WlZWhl9++YVjWfbnpUuXLmvaLQkItA4EsS0gIPDMI5PJWADZALK//PLLcydPnhzQt2/fJo9rbm4OtVpNNeULyvNIYWEhDh48iKFDh1LNEc1qKTQaDczMjJJEYTSuXbsGnU6nXz17SAiJRPr713vY3d0dNE1DolIRsdiAKG8SJ0+S6G9TSEoCGkgbDgoKwunTp5vnh/eHH0gdert2pH+5SkXSqffvB8rLifN6Tg7Z6NDpAHNzEgnXIw08OjoaERERAIAxY8bwvXr1ah1CGwC++IK4p48YQV4LI5tUGkppaSlfXV1NX79+3bA2VjWoVCqwLGsEI4HWg0wmK1i+fHl5aWmpk0NjDc3+8x8wRUUI2bmT7hEUhKqqqjpzNX2oqKjAhg0blBRFLfvss89+aNwiBARaH4LYFhAQeK5gWfYzlmUjjTFWQEAAoqKiqCNHjqDVOP62YjQaDc6dO8dFRUXR/v7+XFBQ0DOzQ5Gbm4ucnBxYWFiguLgYycnJbHl5OSORSPiuXbtSI0aMaDHhzXEcdDodzMzMIJVKKWtra/3aKy1fjielhYuUSkz49Vdw8+eDbmQ09rGMGkXSjdeuNfza6mqyUXDmDGBnV+8pJSUlYFm2iYt8AioVUFFBhDZABPWMGURI/+9/REyHhgKbNwO3bpEWYFeuEFG+dy/g6gq88QYxUlMogFdeAfLygIAA4OhR3OF55LVpg/ElJfD184PFlSsUIiOJqVpMDBHv/fqRtHVLS+KKrlKRGurcXJKu7ulJ1mhpCUilZE2WliSVvymbKBoNaf80bRrg5dXiQhsA2rVrRwHEgKsxSKVSMAzjaNRFtQIYhskpKytrnNjevZtkaFhYAABsbGwMqouvrKzE+vXrldXV1V8uWbJEENoCzxSC2BYQEHjeyACIAGlqNJqmaYwfP57666+/MGDAgNZTH9kKycjIwI4dO2Bubs7PmDED7du3fyaEtkKhwK5du7jbt2/TDg4OnEajgaWlJd+/f3+me/fuyM3NpSIiIrhVq1bh/fffp2sFt0qlQmJiIi5fvswpFAoAgJmZGWdlZSXy8vLC0KFDjbI+juPw1VdfQSQS8Z9++iml0Wj4fv366ffcUxRQUNCgUAUAnqZxYNQojHVwgKVRVvwQn3/+YLssQ6BpUvPt4dHgKfHx8Zy5uTkFI/d2ruPf/yaR67Q0UnseHchH5FoAACAASURBVE0cxlUq4kR+P9OnP3r9ypVATesqjB9PxCvDkJR0a2ugVy/E7NjBOfn7U929vCiwLBE8ZmbkeaNpoLKSiPSbN8k4YjFpOda7N7BhAykVmDkTOHWKHK+sJJH14cNJrXtJCWk7VrtpUVRE5hg9moisqipgzhwgOZmI9txccrx/f1Kn7uhIzN5aCbUpzI3dZLG1tQVFUfWnezzF8DyfXVFR0dvgCy9cAD78kDiQN8J4TqFQYMOGDcrq6ur/LlmyZLnBAwgItHIEsS0gIPC8IRaJRBqKoowSZvTw8IC/vz+7bds2vP32260ndbOVkZKSwvn4+NDTpk17Jp4jjuOQnp6OPXv2wN3dnX/vvfdgbW39iIjt2LEjvL296b/++ov7+eefOSsrK1RUVEClUtF2dnZcYGAg5eXlRVEUhbKyMvrWrVv8mTNnKF9fX3gaIVL8008/cRzH0RqNhpLL5QBAd+7cWb+L168nYtvPr97DOTk5mLhrFzwPHICFpUmkNhFvly83mMreIEVFxIiM3HO9VFVVISUlhTaJOVqvXqRG/JNPiOBOTiaC9e+/gT/+IMI7JYVEjh8HRZFIM3DvbwCorXl1d8e1M2fojk5OfL090e8vl6mvTnrSpHv/nj370ePvvgtotUR8z5xJ1lNZSTYLbGxIjXlVFYnC29mRx2xs7m0KFBWRqHYrIjMzExRFwb2e3uT64OrqCrVa7S+Xy81kMpnGyMtrMTiOK6ntSa43aWkk++X8ecDJyeA5y8vLa4X2D4sXL/7c4AEEBJ4CBLEtICDwvMHrdDqzvLw8eDwm4mUII0aMYFatWoXU1FR06dLFKGM+a2RmZtL9+vVr6WU0Go7jkJSUhNjYWFalUkGn01FKpZIePXo036dPn8duINA0jZkzZ9KJiYnQaDRwc3ODq6srzMzMHhDnXl5eKC0t5a2srDhPT0+jbEoolUq6V69eXOfOnektW7YAACz1Fcb79pG64Qa4fPw4Xigvh8QU6eO1HD8OyGRAdrZh150/T6794osGT7l69SpEIpFBdaWP5fp1Ik7//hv44AOSGm5vT47dvg0MHAh89BFw7Bjg40PStq2tm5xabWFhwWZnZzNqtRoSicQIN/IQYjH5U/teqL0n4J7oB4DaTZx+/Uj9+dmzJCpvilr+RlJYWIgDBw4AABpbmyyVSuHs7Ky6c+fOcADPTP9nrVZbbJDY5jhgzBjinv/++wbPV1hYiI0bNyo1Gs3SJUuWrDB4AAGBpwRBbAsICDxXyGSyXLlc/tOGDRv+0aFDh0pPT09rS0tL6HQ6uLm5wcXFxeDaWktLSwwbNow/dOgQ7+/vTwtmaY9CURTv6ur6VDqNR0dHIzY2lheJRPDz80P79u0ZjuMQEBAAhmH0uieRSIQn9WOvrKxETEyM0SKt8fHxYBgGw4cPpyUSCWbNmmVYf+GVK0kU87//rffwCw4OWPfWW1hYXQ27+6OuxmTWrPojro+jtBQYNAiIi3vsae3bt4dWq0VWVhb8Goje60VMDJCfTwzAJBIS1X14zbm5xIU7KYmkdoeGkqiyWm1Q/+z6WLhwIfPDDz/w27Zt41577bXWoWzXrAG++45ExXNzW3o1dWzcuBEAEBIS8tjzdDodaJpusNSoT58+bY4fP/5vuVx+SCaTPRMtwHier1Sr1Troow04jryXjx17sFe8nty+fRubNm2q1mq17y5duvTPRixXQOCpQRDbAgICzyOLAZRlZ2dfu3nzZg+xWOzFcZybRqMJBgArKyvd8OHD6cDAQL1Vc+/evamEhAS+Jmqiys3N5YqLiy0cHR1Vb775ptT8MRHC54E2bdrw2dnZlI+PT0svxSBqhDYmTZpE+fj4gKIok4mZgoICSKVS1s3NrUlzKJVKXLp0CcePH4e7uzsvkUgogKS0G0T79qRetz7Ky2H9xhvo+c03nJ2dnWl3l3r1AiIj9a/dnj+fpL9HRj72NPuaCK1TI9JfAZD09q5dgT17SLr05MnE0Kw+/v1v0lv78uV7j/3xB4mG5+UBjUxpBkjmxIsvvkjFxcUxKSkp6NKlCx7b1s3UVFUBr71GasJrxG1rQKfTAQBCQ0PRvXt38Dz/yPNUUlKCgwcPVt24cUNK0zRnb2+vdHd3l9ja2kpFNSn/HMdBo9FArVYPBMDJ5fJpMplse3PfjwkwE4meVNdQw6efkpZuZ88aPElqair27t2r1Ol005ctW7bf4AEEBJ4yBLEtICDw3CGTyZQAPq/57+b7j8nl8sEKhWJ0eHj4R87OznB5ghtzLTVmafTGjRuh0+mkAF4HYFFcXPz9tWvXEBgYaMQ7eLqoqKhAQUEBPXPmzJZeisGcOXMG06ZNQ4cOHUw+V3l5OUQiUaOjZBzH4dSpUzh37hw0Gg1omkZwcHDjVde4cST9uR72HTvGV8+ciRFTpphWaFMU0LEjqRHWV2xv2UIi8k+ApmmYmZkhNTUVAwYM0H9NWi2ptR4yBPjzT+D77x9/Ps8TN/Vu3YgL+cqV5L7atCGP+foSI7dPPtF/DQ/RuXNnXLhwgd29ezeTlpbGTZo0qeXSa8aMIeZob79N0ulbCX///Ten1WrpyMjI0lOnTkkkEgkGDBggbdOmDb1r1y6EhITw586dU6lUqu95nv+GZVlJYWFht8LCwp40TbdjGMYaAMdxnJbjuGoAxSDGekda9s6Mg0gksterDCE7G/jnP4kpmgGbOjWfT9qEhIRyrVY7QiaTXWzCcgUEnhoEsS0gICBwHzKZLFIul0cB+Oj333/HggUL4OzsrNe1bm5u8Pb25q9fv35zyZIlfwLAt99+6xceHv4PLy+v59KtPCMjA9u2bYODgwNrZWXVOlJcDUCn08HKysrk83Ach9jYWL5r166N/r0cFhaGrKwsAEBgYCA/YcIEqkkRzsOHiTB8OHrF8+j9f/9H6f74A3aPcSo3Gn/9pX+v7SFDSJusOXP0Ot3GxoY/e/YsP2DAAP3E6bFjJIJdVkai5/oEAtesIW23XnyR1JLz/D2RQlGkl7ilJZCVRTYWGoG9vT3ef/99Ji8vD+vXr6dHjhwJi5o2TM3OvHnEyfyzz0j/8LCwllnHfeTm5iIpKYnmOG4Fx3H/BsAplcoRx44dO1x7Tmxs7DmtVvsfmUxWm9evAnC65s8zj1gsDnhimUlkJMlaOHGCbBLpSXV1NXbs2KHMz89P0Wq1o2UyWWHTVisg8PQgiG0BAQGBh5DJZLxcLncE8OHvv//+6dChQ9G3b19Knwy7kpISLYBbtf9XqVQfMAwTvHLlyqDp06ejU6dOJlx560ChUEClUsHW1hb5+fl827Zt+afRqT0nJwdA442UDOHKlSuorq7mX3rppUar46qqKgQGBnITJkygm6ayaxg2DKjn3uOPHoWLmRlcnlCDbjQGDiRO2g3Ujj/AuHGAAVHqF154gTp27NiTn6u5c0k7rdWrSS04TZM/+lBZec+pedAgUqMdEHDvuJcXSUPv148cu99B3EDc3d0hlUr5o0ePYsKECc2bS15eTl6nkyeJidqnn5La3maiuroa3333Hfr3768bNmxY3Yd1dnY2tm3bptTpdPNkMtn9yv+IXC6nAXSQyWRZzbbQVohcLqdEIlHQY01Dt28nYnv9eoOEdkFBATZv3qxUq9WbNBrN+zKZTNv0FQsIPD0IYltAQECgHmQyWbFcLl/G83zi6dOnPz1x4kSvnj17Kvv06WNhbW0Na2vrR66Ji4tDcXGxGYDJ943Dy+XyYAAfJycnL+3UqdMzU7ytUCiQnZ2NO3fuoKysjJVIJFRubi7Ky8tpmqZ5lmUplmUpb2/v5vvGbSROnTqF06dPo3PnzjqGYUz6u1KhUODQoUMYMWJEk8z1eJ7nsrKyaKPV60qlwNGjxMyrhqSkJNzYtg3OO3fCorkyNbZu1S+F/PPPgf/7P+LwrSfm5uYwMzPjOI579LnXaIAJE0hkfcIEsvFA06RO2xCCgkhaNUDEdn0GjI6OwOnTpE4+M9MgMfMw/fv3p06ePAk/P7/m7Y5QUAD06HHPrXzFCuLObiJqSyVqN0EzMjIAAGVlZXU/r2lpafyuXbt0LMtOkMlkxx4eo8bc7LkW2jX4iMViut7ItkpFXP3d3YmbvgHZF7X12SzLLli6dOkmI65XQOCpQRDbAgICAg0gk8lYALsA7JLL5Z0SExPTExMTQVEUHxoaSvXt2xc0TUOlUmHNmjVsaWkpI5FI/u+TTz6589A43JdffmmXl5dnVlFR8dSnk/M8j9jYWD4iIoKytLRkLSwsaHt7e6aqqgovvPACunfvDqlUSpWXl4PnebRp0+api2rHxsbC3d0dEydONOnvyerqahw5coQXiURURUUFOI5r0AG5IdLT07F7925eq9XSffv2ZQEY7/letYpElCkKxcXFOBgWhv87dAhm//mP0aZ4Ikolcfx+7bWGz6msBDZtAhYtMkhsd+rUCbt376ZLS0vvZTDcvk3ad9VGs0tKgFdeadzab94EXn+dCGiAiM+G0rv9/UlUePp04No1/WvUH+LFF1/EyZMnsXv37uYT25GRxOztjz/uPXbiBPDmm0afiuM4REdHs6dPn+bMzMx0Hh4euvbt21vFx8ezDMOkZ2RkOMTExDj26NFDtGfPHhXLsqNkMlmk0RfybPGil5fXo7Ua+fnAb78Rl/05cwADSmoSEhK4EydOlGq12uFCfbbA84wgtgUEBAT0QCaTZcjlcn8AN3ie/9fx48c/PXbsmMX8+fNBURRKS0sZAL6ffPLJtfquZ1n2F6VS2eunn34a6Ovrq5s4caKFoS3GWgOZmZnYv38/r9PpMHnyZPj7+zco7AxqM9XKCA0NRXR0NPf999/TQUFBXP/+/WlT9DC+fPkyMjMz0a9fP1y8eBFJSUn8nDlzqLy8PNA0DVtbW7i4uOBxJQwnT57ktFot/eGHH8KodfFWViSqVRMpNzc3h8bMDKeXLuWGeng0nwHX2bMkuvw4sa1UGt6LG6SWVywWk97jBQWknjouDvjlF2JatmdPExYOIvxXrLjXa/rHH4GQEGDBgvrPHzoUiI0ljt4KBdBAD3ClUonk5GScP3+eKy0tpX18fPjBgwdTTk5OoGka7u7uyM/Pb9raDWHjRhKdr4XjiPO6CXpsnz9/HjExMTc4jntFpVJJMjMzu964ceMdrVY7EMAklmUHxsfH/5Kdna3jeX6tILSfjEQiGda+ffsHlXRMDNlsmzMHGDVKbzM0rVaLw4cPq1NSUgq1Wm2ITCYz/AdTQOAZguL1NR0REBAQEKhDLpfTFEX9yfP8rPseFstkMt0TrmtjZma2Lzg4uP/gwYPFJl6mUblx4wbCwsIQEhKC4OBggyOwTyOZmZk4cuQIq1QqmUmTJsHYrcsOHjzIKRQKetq0aVAoFNiyZQt39+5d2srKitfpdFRtqmzXrl35srIy/u7du7C1teU7d+7MaLVaxMbGgmVZAMBHH31ERKMx8fEBtm0D+vQBeB6l7u44s2gRO+bTT1tPtsLu3UQYl5QY5I7Msix++eUX3tvDgxo7cSLQvTsxWPvxR+Ot7euvSQ35oEHk/5GRQNu2JIr9OD79FDhwgPQyfuieFAoFVq1aBXNzc97e3h5isRg0TXMZGRmMSCSCra0tx/M8XVRUBJlMZrx7aYiYGJI+bm5+r449IoL0Gs/LM+pUKpUKhw8fxpUrV0DT9LqlS5fOAwC5XC4C8DWAHwGsBjBeIpHsV6vVM2UymcKoi3gG+eabb3Jee+01j3bt2pEHNm4km099+gAvvaT3OHfv3sX27duVSqXyhFqtniOTycpNs2IBgacHIbItICAg0AhkMhkHYLZcLl8FwA6AGACrx6UqrVbbOzc3V1dzTauHZVmEh4ezGRkZTN++fdG/tv70OcDX1xe+vr5MXFwcduzYAT8/P3bkyJFMU52eOY7D+fPnkZycTIfW1ERbWVnh7bffpgGAoqi6zfD8/HwcOHCAt7Cw4KdMmcJkZWXx8fHxvFKppPr164c2bdrAw8PD+EIbILXKNTW4SXFx4O3t0Wns2OYV2ioVqRPNza3flGziRCA42CChDZCWdMo7d6gxn34KpKcDCQkkXdaY7NhB+k3XUlIC5OQ8WWx//TVJOU9MBPz8iFt5DVu3bmV9fHwwZcqU+18Hhud55Ofn4+bNm/TVq1dZAMy6dev4KVOmUCYrXSkvB8aPJynj3bvfe7xjR1Lna0RiY2N1ERERrEgkuiQSiSJ0Ol3drkjNJue/AUAuly+jKMpTrVaPr6nJFngMcrncjmEYFxcXF5LZsWQJ+ZlbtAjQs+Uhz/NISEjgTp48qWJZdiHHcX8Kz72AAEEQ2wICAgJNQCaTnTPwkk48z1vb29sjLy8P7dq1A2OCVEtjUlpaitTUVOadd97Ru+/4s0bfvn2h0WgQGRnJMAzDjR8/vklh/ZSUFBw+fBhdunThe/fuXacS7zc3q/23q6sr5s+fXzdf+/btqZCQEKxbtw4lJSXsiBEjTPcGmjGjToA6JiQgfMIEvNucplsAMWqbPJkYlkmlDx5buhS4dQvYsMGwMdesgeTPPyEaP56jIiNpPM6FubFUV99z5q7l6lUgNfXJrckoCvDwIOe1b19XC52UlISioiJmxowZ9VxCwdXVFa6urggODmYKCgrw22+/UUeOHMHEiRORlJQEZ2dnMAwDGxsbmJsbwauR44CLF/HI81cbFTUS2dnZiIyMrNTpdC8uWbIk7XHnymSyJAC9H3eOwAP0b9u2rYouKzPDm2+SjIThw/X2PtBoNNi5c6cyJyfnhlarHSeTyeotpRIQeF4RxLaAgIBA83KVpunE8+fP9zx//jy6deummTBhQosVb3Mch23btrEqlQodOnRgOnToAHt7e0il0ro64cTERK5NmzaUk5NT87YSakWsXr2aLykpoTw8PLjg4OAm589nZ2dz1tbW1Kuvvtqo51QkEmHcuHH4448/mP3797NjxoxhjOZCfj/LlpH+0O+/D5evvoJ69mxcvXq1eV2uAeIyXp/YDgkBCg1o2fv++8CkScCLLyIzORkcx1EICjLuWmvZtIn0mI6KuvfYhx+S+9CXw4dJlPH4cehCQvD3339zI0eOpPXJYnB2dkb//v2RkJCAr7/+GhKJhFepVJRUKuVVKhVlaWnJOzo6clKptM57wdfXF+bm5vqViPz2G0m5T6tH+37xBYnI69OuTQ+OHj1aqdVq35HJZI8V2gKGI5FIpveytbXG3LnA1Kkkm0XPEiGlUolNmzYpS0tL92s0mjlCWy8BgUcRxLaAgIBAM1LjcN4LAORy+ar09HTT9cbRgzNnznA3btxgevfujUuXLiEuLg5cTW/cvn37wsbGBomJifSQIUOeixrt+jh16hRfUlJCde3alZ08eXKTo8g6nQ4ZGRl0QEBAk9Is27Vrh/nz5+OXX35hBg8ebBqX+2+/BWxsALEY59etQ+WlS9BoNI1yTW8SI0cCs2aRWuZa1q4ltdDDhj3+Wo2G9AZesIAYqZWX46qzM/Y6OGDOlCmm20Dq2pW0SrqfI0eIAI2N1W+M2s2F+fORMGoU79CjB7rfn679BIYNG4ZBgwZBp9PBwsKCqnndqIiICPbu3buMra0to1AoEBERwSqVSobjOJibm/OzZ8+mnpjFMmwYqdWub5Pnr78MTut/HAUFBVYAThhtQAEAgFwut+6WkjKp2759FDZtMqjlXHl5Of744w+lUqlco9VqPxTSxgUE6kcQ2wICAgItx4IuXbowGRkZqKiogIWFBQ4ePKgSi8Xid999lzGF+/X9pKenIyYmhpo1axY8PT0xYsSIumPHjx/nsrOzoVarOR8fH1Hv3s9fVmbNl0muqqqKHjp0KAYMGGCUdO2bN29CqVRixIgRTVYjlpaWYBgGRUVFphHbmZmkFdaKFei1eTNibWzYffv2MXfu3OFefvnl5lPbERGPtsLatAkQi0kEtT50OmLQxTAk0jprFrBuHQDgbmQkb25uznt7e5vuHqKigIULH3wsIIBkChiCVIrcffsQvWsXtcDKitI3gyEyMpIVi8Xo378/U9v5gKZpZGRkIDo6mgGAIUOG4OWXXwZq2sVxHIcff/yRz83NbVBs5+TkQDJjBlL8/LiSkSPpfnl5aNu27YOO+WPHkqh+E9+T1dXVSE5OBgAKQPEXX3zx67JlyxY+4TIBfaAo0aTAwC20tzctCgsDvL31vvTWrVvYsmWLUqvVfrFkyZJvTbhKAYGnHkFsCwgICLQQDMNcS0xM9L9y5UoFTdN5Wq22C8MwF6urq1/Mzs5G586dTTp/TEwMGxgYyHh6ej5yLDQ0tFaEPJ/hbBDX5/LyctrKygr9+vUz2rgdOnSApaUlDh06hDFjxjRpLKlUitDQUGzduhUuLi6stbU1srOzmfbt2/P9+/enPDw80KT08qtXgUuXgDFjIHrhBfyzb18mMTERhw4dojt16gRv7/9n77zDorq2KL7OvTN0pAkoCIoFBEUQCyooYI3YjT0qplgSE5O8NH0mTMb0aoyal5hoNJbEit0oiigiogh2ICogKiC9lyn3vD+OGlE6g2Jyft83n3DLuedOwVln7722U+PGrytnz7K5/Oc/7PecHCAioupj73VZmTOHuXmfOcP6BT9AZGQkadeuXdNNPCeHtU16553K29u0Abp1q9dQkiRha2ioFODsDLMFCwT06wdU8Zl9mGPHjokAIJfL4ejoCCMjI2RkZGDbtm3w9PSESqVCbGws7d+//30BLwgCXF1dhQMHDiA1NVXy9/cXRFFESkoK0tLSYGxsjKNhYRiv1cIwIEBQq9XaNWvWiPr6+vTNN98kenp67PkvLwfMzet1nw9TWlqKH374oUyj0USKonhJq9WeppQebdSgHAYhgkTIlkIzsyFOX30lr4/QvnbtGrZs2VKq0WieCw4O3tmEs+Rw/hFwsc3hcDhPCK1W2xWAm1arvfb++++XKZVK/ffff7/ik08++SguLu4tZ2dnw6YyTystLcXNmzfFx157+xRhb2+PefPm4ddff6UHDhyggwYNEhrrQg4wI6v+/fsjMjJSi7sRxcbg7e0NOzs7pKSkiLm5uejZsycuX74sbdiwQVSr1Zg4cWLDa6wXLmQ9p0ePvl/H2b17d4SGhtL169eTcePGoVs9xWODuHGDiX6ApYLb2zMhXVXaa5s2zM37hx+AanrZ9+nTBydOnEBsbCy8vLx0P18zM9Zn+uHrq9XAxx8zE6o6LlIcOnQIoiiSnlOmEIwcCRQWsqi5n1+Vx6ekpODAgQOSTCYTHB0d8eeff0JPT4+q1WoiSRL69++PgQMHIj09HatWrSKU0koLJsOHD0dqaiq9cuWKEB8fD0opjI2NqY2NjTb2xAnZ1NOn0fbAAeibm6PvXRf09evXSytXrsSLL74otpDJgN27KzmoN4QTJ06o1Gr15kWLFj3fqIE4lSGkLYDfQ4cPP5c1ebLUz9m5zqdev34dW7ZsKVGr1cMUCkVk002Sw/nnwMU2h8PhPCHu1m9ffOD3CgDQaDSfpaamDvzkk0/6Dh48WOrTp4+oy/rY7OxsrFu3jpqbm9P27dv/ayPXdcHW1hZz584lmzZtkr799lv4+/tLvr6+jX7ObGxsoNFodBZZdXBwgMMDjtBDhgwR76UE5+XlNfw6777Laoy7dWPRYUKAXr0w/bnnyNZt26SQkBAhMzNT8vHxEXTibl0d8+axBwAYGbH09gcdsOPigFmz2L+bNwN9+gCy6r/ieHp64sSJEwgNDaVeXl66j3AHBbGU8QdrzAHm8Pzppyz6WwexnZeXh9jYWMyYMYOIoshE/IEDLGKenPzIPVJKERISQh0dHYUJEybA2tr63q5HLlZQwFogJyQkPLIYU1BQgNatW2PWrFkghEAQBAJARsPDgdBQEDOz+8cSQvDcc8+Ja9eupcuXL8fiVq2AlSuZS3kDoZTi/PnzapVKpRuHNQ6DEFcAm3LNzV+P6ddvz0vDhtV59TApKQmbN28uVavVz3ChzeHUHf4li8PhcJoZCoWidOHChT6UUt/Q0FAxJydHZ2PHx8fj559/RseOHfH6668LNjY2Ohv7n4qFhQXmz58vTp06FRERETr5f7OiogJlZWVCeXm5LoarEo1Gg4qKivq3a5MkYPlyoKICyMtj5mRWVizCPWcOcOEC7Pr3x+s5OcICU1O0WbgQqxcvxq4xY/D71KnYsnYtVn34IT1x/Di9Z7bXaG7eBCwsmIDz8GDRa4C1/PrxR1a3PXw42+brW6PQBphwEAQBL774YtOkkru4VB15JoQtBty+Xadhfv/9d23Xrl21Dy6kYMoU5gAeEQFcvnx/syRJ2Lt3Ly0tLSXjxo17UGg/gkqlQmRkJAWA+Pj4R14kV1dXkp2dDVEU/zbCu34dpGVLkOjoRxYKRFGEgYEB1Wg0uGhry1zKG8HNmzeh0WjyAcQ3aiAOgxAZCHkVwC8AfH54663BHTp0kNX1b0NSUhL++OOPe0L7RJPOlcP5h8Ej2xwOh9N8SQCACxcuYODAgTXWxubn5yMjIwPl5eWwsrJCy5YtH+mje+DAAc25c+fEIUOGkJ49e/5r23g1FCcnJ2g0GmRlZdUoZOpCp7vpzxERERgyZIgupvcIiYmJMDAwQMeOHet2Qm4uS9X28mLR7GHDmOP3Pdav//vnmBiAUlikp8NCT0+wDwyE+u23kXbzJv6Ki8PU3btJXFQUvWVuTh3T0wk2b2YmZT4+wMCBTCx6ebFIbV3Sqe3sAKWS9ax+9llgwwZg0iRm3iZJLNr9+ed1fm4SEhKkDh06kJYtW+r+c1BYCHTuXL0R2qVLbN619PY+ffo0iouLxaFDhz6609gY2LoV0rVrKN2xAzk5OTh69Kh048YNwcfHp1an+GvXruHWrVtkzpw5aNWq1SMHX79+XerYsWPl7S+9BLi7s1r0KhgyGl7uswAAIABJREFUZIjQqlUrXF+zBont2mm9nZzE1q1bVzZOqyMJCQmSRqP5jTtc6wBCLAG8CMAawNAlSuVIfbn87eHDh9cpFeX8+fN03759pWq1eoRCoajGKIHD4VQHF9scDofTTFEoFLlKpdItOjo63MzMzKpHjx5icXExLl++TMPCwiQLCwutk5OT3pUrV8qLior0cTdVVC6XZ6rVamsrK6vSoKAgYwMDA0RGRuLs2bOy+fPnw8LC4gnf2eMnIyMD+/btkzw9PYVu3bpBLpfXewxBENCtWzf6yy+/kJEjR6Jr164NNgcTBAEGBgb466+/mkxsX7lyBQ4ODhJqqwv/6y+gdWuW3hwZCURFAampNQ9uacn+tbICunaFKQDs2AFLAF0BYNky4Ngxcig8nL40axZLn7a0BIqLWa31l18Cr7zCotKXLrGI9ezZrDa8Vy9majZ6NKDVsnNbtGBtsHbtAt5/nxmEtWvHfq4nKSkpSEpKEl5//fV6n1sn9uxhixSTJlW9PyICqCXlvry8HGFhYXT06NHE4OHe4vdYuRJ/rFmjNZk6VUzs2hWmbdvivffeQ7XHP8DlByLiD3L16lXs2bNHW1RUJFL6gM7NzAS2bavRXdzGxgaDBg2CdtEixMlkZP369dBqtXj22Wfr7Rlw7dq1EkmSjtV+JKdGCLECsAlAKICFyg8/bC+XyX4NCgoyNHugFKAqJEnCoUOHVLGxsTlqtXqoQqG49DimzOH80yCV/phyOBwOp9mhVCq7y2Sy46IoGmo0GpUoitkqlWobAD25XO6iVquXAzigUCjUD5zTUS6XL1Wr1SOB+0IRgYGBDRKaTzs///yzVFFRIZSWlkplZWXCyy+/jIam0MfFxeHgwYO0ZcuWdPr06UJdxE1VHD9+HCdPnqQLFy7UeXRVkiR888030pgxYwTn6gyQ0tMBW1vA2pqljU+dqrPeyKWlpVi2bBkdMmQIasyiUKtZlNfaGtiyhUV71WrW1uutt4A33mCLAUeOsPRxSpkAb8A8NRoN9u7dq01PTxfz8/PpokWLmia7IycHyMhgfbarYswYIDAQmDu32iHWrl2rFUUR06dPF6tb0CkoKMCK77/HGzt3wnjSJOC996qfU2wsyyS4y8WLF7F//35aXl5OvL29pWeeeUa4ePEiduzYgYCAAKlfv36CKIpsMSknB3B1hSosDKKrK2o1baSUPQQBe/bsoWlpadLcuXPrbARYWlqKb775RiVJkrlCoSir63mchyCkP4D/AvgAlMYolUpBX1//jJ+fn2ffvn1rTH3Iz8/Hli1bSnJzc89VVFSMVigUuY9n0hzOPw8e2eZwOJxmjkKhiFMqlQO0Wm0gpfTL999/X12Hc64plcpxALoBsJLJZEPPnTv39uXLlysCAgL0PTw8IJPJIJPJak05fdrJy8tDWlqa8Pzzz8PR0VH4+OOPERUVJfXt27dBNevdu3eHu7s7+fnnn+nGjRul559/Xrj/HK5cyVKIBw2qcYzi4mIcPXoUuu5frtFoEB0djZiYGMnY2Ji0b9++8gGSxGqx9+5lacG5uUx0V+Pa3VAiIiJgbW1Ne/bsWfObSy4H2rZlP8+a9fd21vuZRYEpZXOeNw8ICwMOHvx7fz3YuHGjlJ6eLtja2mLMmDFNV0YxaRJbvKiOsWOBDh2q3Z2YmIi0tDTx1VdfrTFz4sSJE9BSCnL0KM6eOweDmTMRExBA7dq0IZWyJWJjAX9/ID//vqN8SkqKVF5eLtjZ2Ulubm4CAKjVaujr62PAgAGVXrMyQcCV+fOlvdu3C6amprCzs9OOHTtWrHKRSaViCyY3bwJ6evDw8CAXLlwQ9+3bhxEjRlT/nDxASkoK9PX1T7377rtcaDcEQkQAPgC+BDANlCYBgEwmU1pZWbn06dOnxs/kpUuXsGfPnjJJkj7WaDRfKhQKHRkvcDj/TrjY5nA4nKcAhUIRByCunudoANyzBA5VKpXvajSagWFhYZuOHDliRikVJEmS3XUb1gqCoBFFURJFUSopKTEZOHAg+vfvr/N7eZyo1Wr88ccftEWLFrCzsyMAMH36dISFheHnn39Gt27dNKNGjar3/4UymQyzZ88Wvv76a5qamop27dqxHfHxLFLr51etSdelS5ewa9cutGrVShsYGKiz3m6SJGHp0qUSpVTo2bMn8fX1JffrZSWJCS0vL5amvXIli66KInvomLKyMpiYmOgmdY4QlkL+/fdAx45AdjZLP7/nTl5HUlJSBBsbG/r8803YSUqjYSnX9wzcqqJzZ9aHugokScLu3bulQYMGkRYtWtS4IJCZmSlRSoWvv/sOpgCeP3gQBT17IvTkyXuimR3o5QUUFFTKBrC0tBQAwM3NjTje7dltb2+PiooK3L59G/b29qCU4vZHH0G1fj2i33yTjvXxwdWrV5Genk6WL1+O0aNHw8XFpfKkysuBESPuL944Ojpi8uTJ2LhxI3r37l0nr4PMzExaUVHB3a4bAqvPng/ABYAPKNUCgFKpfEsUxf9OnDhRqG4Bp6KiAvv27StPTEzMUalUYxQKxdnHN3EO558LF9scDofzL+Gu2dARAPctaJVKJaGUyrRarYFWq9VXq9X6AAwIIbvCwsK61MVsqTkTHx+PzMxM8tZbb903amrXrh1eeOEFIS4uDsePH2/QzUmShGXLlmkrKipEU1PTv3esWMH+DQoCsrKA/fsBADdu3MDZs2e1qampQnFxMQkMDISXl5dOVW50dDTkcjmZP38+5HL539+ok5IAT0/WLmv7dhZJlsl0Hs1+kIyMDMnV1VW3bxxRBBYvZtHuq1cBNzfgnqCshcjISAmAMH78+KY1BkxLYzXbNdQ24+hRICUFCAh4ZNfOnTupiYkJevXqVes8R4wYIZSVlcHe3p69txcvRr8bNwhZtIies7HBgAED/h4jJgaYOZMtBgHw8fHBpUuXtGlpaQR3vR6ioqIgk8lgY2ODgoIC7Ny5UzK+epX0nDaNvPLKKyIAeHh4AIDw6aefIikpSXJxcan8GpeWAm+/XWlTh7tR/NjYWAwbNqy220JOTk6pJElJtR7IqQwhbgCGgL2eM3C3TvSjjz6apa+v/7GlpSVWrVolPfvss0KHhzIrkpOTERISUlpRURGiUqnmKRSK4sd/AxzOPxMutjkcDudfzF0Brr77KLq3XalUeurp6d1MT09vZW9v/8Tm1xgopThx4gTatGkDExOTR/a3a9cO+/btExISEtC5c+d6jX3lyhVoNBpx/vz5sLKyevSAzz5jgjApCUhKQsilS7S0tFTs168fBgwY0CQLGFlZWZDL5VCr1awu//XXmev3gQPA7t2sPru+bcAaiLm5uZCdna1FbeZs9WXCBNbuavVqtpBx7BgzSaulhvvKlSukdevW9W+DVl8++wzQ16+59VVQEDOKe4j09HTEx8eTl156idTl/fFICYQoAqWl6BEZSSJcXFBcXPz3+75bN9Yy7F6GA4DCwkLi5+d3/0LdunXD+fPnsW7dOnrnzh0yMjqauC1cSORVuKrLZDKpTZs2lSdJKcs20NNj9fd3IYRg8uTJ2LFjB/T09BBQxSLDg+Tl5WkA3Kj1CfiHolQqW8vl8iOCIGQuXLjQv04nEdITwLsAdoDSZXfHEeVy+VeGhoZzg4KCDFq2bIlTp07RzZs3o1OnTvTZZ58lhBAcOXJEffr06QKNRvNicHDw7qa7Mw7n38nTG67gcDgcTpNxNwV946+//qo9dOgQSkpKnvSUaoRSiiNHjkg7d+7Upqen48yZM/jqq6+Qn59PR44cWeU5FhYWGDVqFLZv347o6Ghotdo6XWv9+vXS7t274efnJ7Vs2bLqg+zsWCp5aCgwfz7cXF1haWlJ/f39myxTIDAwEOqiIqg7dwbOngWmTQM++YSJK3//JrlmdXTq1AmXLl0Ss7KyoNFodDewuTlL0T55ktVGh4ezmuRq+nlLkoTvvvsOaWlpZMKECbqbR3VMnQq8/HLNxyQnszZmD7FlyxZtr169pEYtCHTtCtWVK3BOT6dhL71Ec3Jy2HZ9fRZx/uOPB48mmZmZ939p3749CCG4ffs2GeTnB4/kZCJ/MGvjAUxMTKQdO3Zg2bJldMX339NrK1dKmDIFGDIE+OGHR47v3LkzpkyZgpiYGHz22Wd0586d1fZgLygoEPEvFdtKpdJOLpfHurq6OlNK3Ws9gRARhLwIYAYAJSj9Q6lUGiuVypn6+vqJrVu3nvPKK68YWVtbgxCCvn37kjlz5iAjIwNr166VLly4gDNnztxSq9VuXGhzOE0Dj2xzOBwOp0oWLVr09pIlSw5FRUXtiYqK0hs9ejQ8PT0b3O6qqSgrK8P+/ftx5coVQZIknD9/HmZmZlo/Pz+xS5cupKqo9j3uGcXt2rUL+fn50rBhw6pVwtnZ2di4cSPKy8uF6dOnw9HRsXbVPHcuMHs2Wn7zDXVbtkyQgoIg1NL2qUGEhEC2Zg0GKJXkzOHD6ADAydtb99epI5Z3W4P9cFd49e/fH+7u7o3uTw6ACbqwMCa8Q0OB//6XicjPP3+k/pwQAgMDAxQVFd2fU5ORn89qyTdurPk4Qpgp3QMcPXoUGo1GCAgIaPSHy6RFCwx1dyeZ336LFStWwMbGRvLw8BD6yOUQ3noLmDoVdzIzUVpaSu71e79Hq1attDl37gi9b90iOHeu2nr+V155RVZeXo74devIneho4MQJkvzpp3CqYUGjffv2eOutt5Cenk5++eUXlJaWYtq0aY8cV1JSYgjgVqOehKcQpVLZQk9PL9LX17dlx44dxcTExNIaTyDEHMAIAAMAvK388MNs+aefLpTJZO87ODhQb29vE2dn50f+Xrds2RIvvPAC+emnn7B7926tJEmTFApFVpPdGIfzL0f88MMPn/QcOBwOh9NM8fPzu37s2LHfAJQkJiYOOHXqVFl+fr7c3t4eek1Y81sXNBoN1q9fj3379iEzMxNDhgzB+PHj0bt3b/j7+wtt2rSp0xxtbGzg4uKC3bt3k4SEBMnBweERgZ6fn4///e9/aNGiBV588cX6iUZC0LJDB3Lh8GEYjx4N45QUoIFtxx5h9mxmHtaqFVBYiNbTpmF/YSHVMzMjTk5OurlGA7CwsIC/vz/8/f2Rn5+P2NhYREdHIyEhgUZHR8PFxYXo6+s3bOHG1hb44gvWa7ttW8DbG9i8mf1ubV1JIN6N1EoGBgbkbr1x0xEVxYR2bcZtdnbMpO5uBLugoADbtm3DhAkTiE4WIwDIvb1xc+BAtPzxRxSWlZFrFRX0zK1bVHzvPZKdnY3s7Gxcu3YNAwcOrNQKsEePHkL/1FRCPv6Y9UGvLgsjLQ2yrVvR+sQJdJwwAWH+/jh8+TJ69uxZ42eOEIIWLVpAEAR69uxZYmtrC2tra1y8eBG7d++WwsPDKaVUlCTpY39/fx2mRDR/IiMj/9uxY8ehgYGB+iqVCjExMdqwsLCv/P39HzUaJMQVwFsAJLD+2ZKent7vFhYWLwYFBRn37dtXr2XLltV+vuRyOW7cuFFRUFAQ/sEHH3zZpDfG4fzL4WKbw+FwODXi7+9f4O/vf/TYsWNLtFrtsfT09BdOnjwJR0dHWFhYNOm1tVotfvzxRxofHy+VlpYKMpkMhYWFyMvLw/Lly5Gfn48RI0ZgypQpcHR0hFwuR0P6XhsbG6Nz584IDw8nHTt2xIPp4SkpKVi7di3UajVmzJjRoHsWTUywJSsL7UpKYDVqFPD880ANEfcauXmTpQSPGgX8+Sfg6gr073/fcOvkyZPUzMwMnTp1ahYpCJ07d8aAAQMgSRIKCwtJRkYGOX36NO7cuSM5ODgQfX19UErrJ7xbtmTpyhMnshTp8eOBTz9lLc0GDwbkckiShOvXryMiIoL06dMHdnZ2TXeTAGBsDCxYULu7e0EBS+t/4w0ArKd2eXm5cPv2beru7v63g3wjsbW1hdG+ffBu1Qre//0vKSsrozc3bSJ9/vMf7OrQgTo4OFAvLy9S6XnPzQXc3VldubFx1QN/+SXw9dfsOZ89G3B3x759+yRbW1vq7e1N6vI6Ojo6ktu3byMiIgJ37tzBmTNnqKWlJbGwsBDy8vISP/jggxqK3v95KJXKFoIgbJ80aZKRkZERDA0NcfHiRW1ZWVlBeHh4jP+DZSCEjADQHUCy8sMP1xzz9x+rp6e3p2PHjp7Tpk0zqimT5x5Hjx5VX758OVmtVgf82xY1OJzHDRfbHA6Hw6kTdyOVqceOHfsegJSWltazS5cu8qaMcH/00UdQqVSkY8eOQnx8vPbMmTMkJiaGXLhwAZRSLF68GG3atNFJavsvv/xCtVotGTduHACgtLQUt27dwoYNG2BgYIB3330XptXUsNYGpRQxMTGAjQ2cly4FDA2ZUBw0qHpR8zA7dzLTNUtL4NdfmeFVFT2bz549S9VqNfH09GwWYvseTk5O8PLygoeHB3x8fHDy5EkaGRlJLl++LO3bt4/4+vrWvZ69XTsWSb5Xww0AQ4cyt22NBrCxwbWbN7Fp0ybY2NhoAwMDq215pDMCAljGgqtrzccZGDDX8kGDcO78eVy6dElYsGABLl++LMXFxcHT07NOBml1wWTSJMj694c4bx7aT59O3MePh76jI/rOmUO6dev2qDAODGQGdHc/A/ehFDhyBHjhBWDgQGa+163bfUf7s2fP0szMTCEvL09ydXWt9YkmhMDd3R3Hjh1DdnY2NBoNGTNmDMnJySlPS0v72s/PL0onT8BTwokTJ95ydnYe0KtXLznAnp927drpXbt2zY9SOuvIkSN5KWvXJnqOGzcNwOD4zp1jV73xRi9RFDfb2tqOGzZsmM2AAQPkYh3a+MXHx+Pw4cM5arW6t0KhKGjqe+Nw/u3wmm0Oh8Ph1AuFQpGnVCqD8/Ly2mzdunXirFmz6h9KrgVJknD48GEJgPDcc8/d62Ot+4bQDyCTySSNRiOeOnWK6unpkT179twXf5RS1OWLbHVkZWWhoKAA7u7uTCBWVLAdZWVAYWH1raIkCfj5ZyZydu4E7O1ZRDs8vKb7ELKzs1FeXt6gKH9Tcy8zYP78+UJ4eDiKi4uFjIwMfPLJJ3jmmWeot7d37apYEJi43b0b6NOHbZPLgUWLgLfeApYvh9OGDSCEYOrUqeJjaV8XGMgEf20QApibQ5WZiYMHD9LAwEBibGyMl156Sfz++++1a9eulcaNGydU6XLfEAwMgDt3gAsXWNR/8GDg22/Z8/QgkgR89BHQvXvl7XFxTIBv2gQsWwZUkY4/b948Yd26dUhNTSXZ2dmo1jjwAQghWLBgAW7cuAFLS0u0adMGISEhakppeCPu9qlDqVTKCSFLrl69KqSlpd3PwLCxscFrr71mfPXq1U5RBw/+r/Off/4aMXRo6oUePWihqWlQdw8PoVevXnr1KT0oKyvD7t27y9Rq9ViFQpFZ+xkcDqexcDdyDofD4dQbhUKh0Wq1X964ccMgK0v33jr5+fmIiooShg0bdk9oNzmvvvqqOHHiRJw8eVLas2cPvL29af/+/SFJEsaOHduosUNDQ7XA38Zh0NcHdu1i9btOTsDWrZVPyM9n/aTz84ElS4DUVGDtWuYuXgtlZWVSSUkJDhw48GitZzPD398fhYWFEgDIZDL8+eefJDc3t24nBwSwKP/t25W3f/01MGcOcr7+GkaFhbqectWcOwe4uNS9NGDHDoT9+KNkY2ND3d2Z6bQgCHjllVdEExMT8tNPP+HChQu6ef0IYe3fOnQApk9nwnvVKhatvkdBAdC+PdCx49+ZFrdvs1r4jz9mCxn791cptAFAT08PQUFB0Gg0dOXKlfj1119RWIfn3sLCAp6ennB0dASlFEVFRYYALuvgrp8mAiilokajeWSRiRACZ0IQlJdn4jF8uMzm66/bj5w7t8O7775rEBgYWC+hrdVqsX379jJJktYrFIp/VeYAh/Mk4WKbw+FwOA1CoVBcAvDRtm3bSijVna7Lz8/H2bNnKQB4eXnpbNy64Obmhv/85z/ivHnz8Mwzz5CioiJYWFjQDg+lateH4uJiZGdni3K5nD5STymXA5GRwIgRwPffA4cPsx7MwcHAu+/+LSbrcf3JkycLAGBlZdWs0sjvodFosH37drpy5UqqVCqRkpIiDBkyBI6OjtpBgwZJdXYNNzVl0dhDhypvJwQYORI2RkaY/McfMNBRDXSNrF5dY7bBw9z64gtcIEQYO3ZspfR2PT09TJkyhYwdOxZ79+4lcXFxuvtgtWwJ3DPnS0ysvK+kBJgxgxntUQqsWMFSxU1N2SLP5Mm1Dq+np4e33npL6NChA01NTcXSpUtx7++CJEm4desWzpw5g/j4eBRX0We8vLwcgiCoFApFuQ7u9qlBEIRvAMDZ2bm8devWlXfu388WO7y9YRAcDBd3d7Rt27beWTaSJGHLli1lN2/ePK5SqV7T2eQ5HE6tEF1+QeJwOBzOvwulUtkRwNX33ntPJynLly5dwq5du2BpaakdMGCA2KVLl8ZPshEkJiZi27Zt8Pb21g4ePLhBeeR79uyR4uLihHHjxuFeFLNKRo4EoqOZ0Jk0iYnGenLq1CkcPnwYRkZGmD9/PvT19Rsy5Sbll19+0RYVFQmurq4wNTUlzs7ODW8JlprK+lrv3v2IMdmdO3ew7fPP8UpeHsiiRSzy3FSUlLDSgDosFEiShISePakYGEhdPv642qDH1atXsXnzZri5uUnjx4/XXXBkzx5gzRrg2DFmiLZrF4vMBwezhYvFi9nP3bqx2vgGEBkZicOHD8PNzQ3l5eVISkqCnp4eNTQ0lCilKCkpEW1sbLSOjo6CmZkZ6dKlC4yMjPDpp59qKaX6CoWibk3vn2KUSqUAoD+AcABYtGjR307ulALffccW43r1Yo77DYRSin379lVcvHjxvEqlGqBQKCoaP3sOh1NXeM02h8PhcBpDllwuzwwNDTXz9vbWt2lkS6u4uDitu7u7OHr06Catz64rLi4u6Nq1Ky5duiQMHjy4QWNoNBq0a9eOuru716ye9+5lkdpG1BeHh4fT/v37Ex8fH+jK1VqXqFQqZGRkiK+++irMzc0bP6CjI9C7N6trf6jllpGREXItLRFVVkb7BQURREbW7hTeEAoLWSnAw+ns1bBv3z7YWViQ7l261Ph+sLa2hiAIuHjxojBmzJhGeQZUonVrtjAQEsJ+P30ayMoC/vc/Fp1fs4YJ7UZwb+HtypUr97eNGjWKdO3aVQSY+WB0dLQYGRkJrVaLhIQE6fnnnxf09PRUFRUVNgDSqxz4H4JSqWyrr6+/vaKiogcAdOnS5W+hrdGwbgPGxsD8+azUpIFIkoSwsDDNxYsXb6tUqmFcaHM4jx+eRs7hcDicBqNQKArUarXX5cuXI/73v/+hpKSkQeMUFBRAqVQiNTVV9PX11fEsG4eRkREKCwtJampqg87Pzs6mbdu2rVuYupFGXhqNhuTm5kpN7rzdQHbv3g0rKytJJ0L7HlOnAjt2ANrKwVBTU1MEBQUh3NGRhL37LjNSi47W3XXvUVAAPPssMyKrhezsbFy8eBFtPv8cQs+e1R4XERGBZcuWoWPHjlJwcLDuhDYA9OzJ0pM3bWLO6a6uQFISE3dbtjRaaANAjx49EBQUhJkzZ+Lll1/GggUL4Obmdn+/kZERAgIC0K9fPwBAamqqAACmpqYqAE+uQfxjQKlUdpbL5bG+vr6ezzzzDACgRYsW7M174wYrKRkyhGUXNEJoFxUVYfXq1SUxMTFnVSqVr0KhyNfJDXA4nHrBW39xOBwOp1H4+/sX+fr6rj916lR3Smnn9u3b1+k8SZIQHx+PzMxMVFRU4OLFi3j22Wfh6OjYxDOuHx06dMC1a9ek6Oho4uPjU+82Y1FRUUStVpNuOhAxteHi4oIDBw4QU1PTpu8rXU8kScLOnTsxcOBAtGrVSnerAVZWgErFat0fSns2MzND+/btcfDYMahtbGjbQ4cIGTy4TsK4zpw/DzzzTI0p5KGhodiyZQs9c+YM8fDwkLxOnCA4dIiVDjxEdnY2QkJCYGRkhKlTpxKdlgIcPQqcOMEi/AsXsjR8b2/gm29YhoAOMTc3h4WFBYyNjWFoaFjl58bBwQFpaWkwNjaW7OzsSH5+Ps3Ozk7y8/OL1OlkmglKpbKrXC6PDAwMNO/du7cAAHFxcbh165bQT08P4hdfALNmsfdFIzJTUlJSsHbt2rKioqJv1Gr1DIVCUaSre+BwOPWj+eWYcTgcDuepRK1WF5w4cQLW1tZSt27dqg3RFhYW4tChQ9rk5GQRgCSKIi0tLRXt7Oy0zs7OzSJ9/GGCgoKEzz77DCdPnqQ+Pj71Eopt27Ylt2/fltCIbLLExETs379fq9FoiCAICAwMFFwf6ue8adMmKSkpSZAkCWZmZg29VJNx4sQJyOVyeHh46D7sbmfH+kD7+T2yy97eHrNnz8Zvv/2GGAMDvODsDKMff4TB+PHVDpeXl4cLFy7A29sbenp6Nff//uADYPZs5uT9EIWFhdi/fz+Sk5MxePBg0rJlSzg6Ogqwt2eu4FWwevVq6uLiQkePHi3I5fLa770q1GoW7TczY4sQX30FKJXAunWsDnjMGFbrfvAg8N57DbuGDpDJZDAwMMD169eFn376CTY2NoZ6enoBAL58YpNqIpRKZUu5XH581KhR5ve8G+4tpPQ8fRqFf/5JW27cSFDHxcqqoJTi5MmT2mPHjpVoNJpJwcHBB3UyeQ6H02C42OZwOByOTpAkaRGAdiEhIQNMTU3h5FR1NuiWLVtobm6uOGzYMLi7uwsPCJlmKbQBJgrs7e1pXl4eBVAvsXj16lXas2fPRuWHx8TEoLCwUAwKCkJsbKx2y5YtMDAwoG3btiUajYaWlJSQ3NxcYeLEicjKykLbtm0bczmdc+rUKRw/fhxjx46td2ZAnRgyhLVPy8hgjtoPYWFhgdf0L28WAAAgAElEQVRee40UFhZiX34+HXDkCHHo0OGRVlYqlQqCIGDjxo3IyclB+F2HcRMTEzp06FDSoUMHCIIAPT09JCQkwMbGBvnz5iGBENz+6SdtWVkZWrVqJQ4dOhTm5uZYtWqVZGJiQl544QVia2v794X09YGLF1lE/AESExNRUVFBBg4cSOoktCkF8vJYD3Z3d5Yevno1c7hfvpwZ7Y0bx3728mLXkyTWt332bNYS7AnTr18/lJWVwcTEREpISBAkSfJ80nNqCvT19X/w9PQ0ftAk0drcHK/euIEzWi1+69ePjKEUDe17UFRUhB07dpSmpaUlq9XqEQqF4oZuZs7hcBoDF9scDofD0SUDAKBVFYIHAHbu3KnNzMwUZ8yYAQcHh8c6scbi6elJDhw4QPz8/GBqalqncwoLC6FSqeomnGqgqKhIGxAQILRr1460a9dO9PPzQ3R0NL1y5QoxMjJCVlYWBg4cCBcXF7g0pet2AygtLcXRo0fp+PHjyYN1uzpFJmM12UuXAl98UeUhgiDA3Nwc1qNGaTcfOiQLevZZav3++wSzZgEAbt26hbVr1wJgPYkHDRpEu3fvTo4ePUpzc3NpaGgoduzYcX+lQBRFtP/rL3S/cgUl77yj7datm6ivr4+EhARp+fLlgkwmg0ajEaZMmYJKQhsA0tNZffQ771TaHB0dTV1cXGBubv7oigSlQHIyc14fPx6YM4f9vnUrcxhv3RqYMoU92rRh6eL3ePCzlpcHJCQA2dmNcrnWFXZ2dpgxYwYACFevXkVISMg/TiQqlcp2crl8lL+/v979jSoVMGIErIYPR99PP0X0Tz9hw4YNWLhwYb27CCQkJCAkJKSMUvqdWq3+UKFQqHV9DxwOp2Fwsc3hcDgcXSEBwEsvvQRDQ8NHdubl5eH8+fPiggULYGFh8dgn11g6d+6M/fv3Iz8/v85iOyIiApIkoVevXg26piRJCA8PR25urvCgALOyskJgYKAQGBgIAOSPP/7A2bNnaf/+/ZuFM5pGo8GGDRukvLw8qlKpBAcHB+rq6tq0cwsKAjw9WX9yK6tqDxs6dKgsIyNDG+PgIA43Nwe2boVm3DisXr0abm5u9JlnniEGBgaQy+UEAEaOHElwN5tBrVYjPT0dVlZW0NfXh2zTJqBFC7hOnnw/K8PLy0v4/fff8ddff2Hw4MGwt7d/dBK+vsx9/iEGDRpE1q1bhyUffog3fHxgdvIk8NprLD2+a1dgwgQgNhYYOhT4/HMWxW/V6m9n8dpYt45FwE+dYi7kw4bV7bzHRGZmppZSmvWk56Fr9PX1f/T29pbdb4944QIwfTp7PTw9YUYIZs6cid9++w0//PADffPNN+v0WZEkCUeOHFGfOXOmQK1Wj1QoFE3gAMjhcBoDdyPncDgcjk5QKBQZgiBEbdy4USovL6+0LzU1FT/++COcnZ3p0yi0ASA8PBy2trZSmzZtaj32bssdKS4uDn369GlwG65Vq1ZpYmNj4e3tTR+u0X6Q/v37o7CwkBQVMR+ksrKyBjvDN5b169fTTz75BCqVCgMHDhSHDBlCpk2bJjS5Q7q+PutN/McftR6alZUlOAwaxJy5f/sNwv/+BwsLCykxMZEIgoDqMhHkcjkcHR1hbGzMXlNXV2Yu9hDjxo0DAJw7d67qtPnSUtb3m1Lmor5xI7ByJexv3sRLP/xAh128SI1jYoCbN1nUfvVqYO1aJrZ/+w1wc2MLC9VkkFTLjh1AWBj7+coVFmFvRiQkJBSXl5f/+KTnoUuWLFkySl9fv3///v1loBQ4fhxYsAD4/Xege3fg7vvDyckJQ4YMQbt27eoUlS4tLcXatWtLz549e1atVrtxoc3hNE94ZJvD4XA4OkOSpBFlZWW5iYmJ8LhbDxsfH48tW7bA2tpamjp16lO7yJuenk7bt29P6iIaL1y4gIiICGHAgAEICAho8DUlSSIuLi7SoEGDanze7O3tYWlpKX377beCvb299vbt2yIhBNbW1tTT0xM9evQg9/v4NiERERFITk4m8+bNg42NTdML7IdxcQG2bwdKSlgrqyo4f/48VCoVOnbsyFzJV62CkJiI0Zs2CRscHKBSqWBczbmVUKuBiROBs2eZ0H8AAwMDTJ48GVu2bEF2djZatmxZ+dwzZ5jQ7tSJ9QgPDwdatgRmzsSeyZPR7plnqGzIkL+fvMamexcXs/TzXbv+3paVxdLNmwmUUty5c8cAwNknPRddoVQqLeRy+eoxY8YYybRaZlJ37hzw559VOuLfbYVW6wc1LS0NmzZtKlWpVD+p1ep3FQqFpgmmz+FwdAAX2xwOh8PRGQqFIk+pVOLMmTPQ09NDeHi4lJmZKXTq1IlOmzbtqRXaAJCfn0/Nzc1rvYfLly9jz5496N27d52E9pYtW6SrV68KRkZGaNOmDYyNjXH79m2akZFBCCFiVlYWhg8fXmt0fN68ecLZs2eRm5srOjs7w83NDQcOHMDJkyfpoUOHiJ6eHrp27Sr5+voKTZVdcP36dbi4uGhtbW2fjNldu3Ys3frCBaBv3yoPycrKooaGhri/+NC6NWIuXIBRVBTmtGlT9xIHtRr46KNqU9bvRb8rCfe0NKCsjEU227dn4isggD3u4jZhAjl16hQGDRlSt3nUhX37gCVLWE/yewsg2dlVurc/KfLz8wGgVKFQZDzpuegKPT29b7p06WLW3sQE+O9/mWv+li0Nbj2n0Whw/PhxTVRUVIVWq50ZHBy8Q8dT5nA4OoaLbQ6Hw+HoDKVSqQcAd+7cwZYtW9CpUyfBz88Pbm5uzaKWuDGUl5cLtdVqU0qxbds2ODg4YPjw4bWOWVhYiPj4eMHPzw9paWnS7du3iSRJxMvLi7i5uSE1NZXq6+tLgiDUKl5lMhm8H4qAzpgxgwAgV69eRWlpKU6fPo3vv/8e8+fPfzTa2khu3ryJtLQ0zJ0798m6ynt5AT/9xKLBVbTs6tu3L7ly5Qr98ssvqaurKxk1ahQirlzRBqxcKdpUVLCWWMuX197neNMmFo2uhqysLJiZmUmGhoYCKGVO4cHBwNdfA5cusfHPnwdycyv16Pbw8EBYWBjJyMio1miwXoSFsQj8pEl/C20AKC8HjIwaP76OuHPnDmQy2eUnPQ9doVQqe+np6U0Z1K2bHkaOBObPB2bOrPwa1IPMzExs2rSptLy8/LhGo3lJoVDc1vGUORxOE8DFNofD4XB0hkKhUCmVSidCyIFWrVo5jR8/Xt+ggVGc5oabmxsNCQkhr732GoyqEClarRb79u2T5HI5mTVrVp2+UZeUlEAQBPj4+EAulz+iDO/29G60eO3UqRMAwMPDQ/j++++lCxcukIEDB+p0ASQqKoq2a9dOsrKyerJi29eXRYwvXnyktRfAIs6vvfYaSUpKwoYNG6DRaFBWViZaOTmxKPW6dSwVffx41pO6OrZuBcaOrXb33r17YWhoKCAkBPj0UybON2+u3I/75ZeZi/q3397fZGRkBHt7e7p3717MmjWLNLTeHwCLvo8fz/ppP5yK7uTEIq3NhOzsbKrVav8RYlupVJrIZbKd0ywtDY2nT2evezWtEOvChQsX6N69e8u0Wu0rH3zwwTodTpXD4TQxT3VKH4fD4XCaHwqFIkWtVnvm5ub+tnLlytK0tLQnPSWd4ObmRsrLy1FQUFDl/qKiIsTFxQmzZs0iQhUR1apo3bo15HI5TU5O1uVUa2TYsGHCiRMnyOrVq6V7hmqNRZIkpKSkUA8Pj+bRK33pUuDLL6vdTQhBhw4dMHbsWCQlJUEQBGRnZ7NI79q1TKQ+/zwzMqsKrZaJ5zlzqr1GH0ND2iEqCtKNGyyFuFOnykIbYH2uv/qK9b5+gIEDB5L8/Hz6ySef4OLFi3W968qkpbFa7ZycR4U2pew5MjFp2NiNJDMzE0VFRaCU3t926dKlEpVK9eQbf+sAY0pX+5eUWLXdupU5xTdQaJeWlmLz5s1l+/btu61Wq/twoc3hPH3wyDaHw+FwdI5CoagAMGfJkiVH1q5du3rQoEGGvXv3fvyGWTokPDycuri4kNatW1e5/9atWzAxMdHa2dnVS3BKkkR0ndJdEy4uLhg3bhx27dolXLp0CX2rqW2uDyEhISgrKxOarI92fXF2Blq0YGnaVUS37+Hh4QE3Nzfs3bsXu3fvRpcuXVgt95QpQFQUcPIk0KsXYGZW+cSwMNaSKyHh0UELC4HiYvRbupRc9vGhwhtvVP+mNzMD/vMfIDUV2LYNWq0WmzZtkpKSkgSZTCYAQIsWLaDRaCCKYtXO5tVxbyGgihZjyMxkBnKPwTSvsLAQ169fR0lJCTIzM8szMjJUWVlZLQCgR48e0pAhQ4Ti4mLk5ORQAIeafEJNzKo331wxKC5uXDcXFzlCQxucNp6amorNmzeXqdXqNXdN0KpZ+eFwOM0ZLrY5HA6H02QEBwdvViqVZ8PCwvZev37dYfz48UZPa1p5r169yJ9//lntfnNzc6jV6npljOXl5UGj0aCkpASWD9TtNjXu7u7YuXMn8vLyKO72kG4MosjWF8rLy6vssf7Y0dMDxoxhtdE1iG2AtfNKT0+XunbtKtw3TZPJgJUr2ePnn9m/Dy6I2NoC77336GBxccDcucDLL+PQ0qUo02gk79rKAGbMwO2oKBTGxyMsLIyWlZXBzMzsfgZFSEgILSgoIKamppg/fz70H3I+r5KsLBZR1Wqr3l9RwUzamgBJknDjxg3Ex8erLl26pFGr1VQmk4Wr1eq/tFptCoCLAC4BcLp06VLw1atXA5ycnIxEUdy9ePHisiaZ1GPiQGDg211Vqjldxo2TiwsWNEhoU0oRERGhiYiIKNNqtVODg4P3NcFUORzOY4KLbQ6Hw+E0KQqF4ppSqfS4cePG8pUrVz43ZcoUI3t7+yc9rXqTn58PU1NTCdWUYCUlJUl362vr/A07JCREsrW1JXZ2do895C9JEiwsLHRy3fPnzwNA3YTg46J3b+DVV4GhQwFr6xoPbd++PVJTUx99bV95BSgqYqLd2fnvGufISGDkyL+PO30aePddYMUKYMUK7M/OxsUzZ+pkkkc9PbF71Sq47tgB+aRJ0ty5c8V7ddrFxcW4du0asba2xm+//UZ///13YmtrK3l5eQkWFhaosp3byZPsnvPyqne9vnWLPXRMSkoKtm/fXqpWq9M0Gs1mrVa7DkDS4sWLq1L9WQBGLlmyZFpiYuIrFRUV31ZxzFPDcT+/V13S0j43W7JE1Js6tUFjFBUVYdu2baV37txJ0Gg0YxQKhe5fJA6H81jhYpvD4XA4Tc4DaeUH161btzYgIMCoT58+T1Va+dmzZyV3d3da3f6MjAzq5ORUrxRyJycnISIiAhEREVp/f//HXu9sooOa3czMTADA66+/jrrWqj8WLC1ZrWxsLDBsWI2HiqKI9PR0QZKkyvdACLBwIRPRX30FrFoFtGrF2mg98wyQnAwcPsxqvadNA9zcmAP6/v2ws7PT9u7du06vaSsjI8kzKUnwnz1bfDAaamJiAk9PTwBA//79SUxMjFar1QoxMTEQBAFmZmZSTk6O8Oqrr8LKyoo5jPfrB8TH12zuVlHB0ux1REFBAcLDw8svX75codFopgUHB++v67nBwcGbAGzS2WQeN4ToZ7Vs+b5p27YL9davF6369Kn3EFqtFtHR0VJ4eHgFgO/UarWC987mcP4ZcLHN4XA4nMdGcHDwdqVSGRceHr43KSmp7fjx442aRdpxLdy5cwcqlUoYPHhwlfuzs7ORmJgovvTSS/UaNyAgALa2tti6davo7++vg5nWHVEUUVFR0ehxSu+aiKlUqkaPpXPeegvw8WHO5NW4eqtUKsTGxgrdu3evfrHg1VeBNm2AU6eAzp1ZZNvAABg9monbpUvvtxnbv38/jY2NJYGBgXVaSaKUotTLi/zeoYP25atXRTg7V3mcr68vfH1974v31NRUJCUlCceOHcOKFSvQ3dNTGv7iiwL5+muUjh+PGqX05ctALW3s6kJRURHCw8MrLly4IBFCflCr1Z8pFIqcRg/8tEBI6xRHxxcKWrb8D/3mG6FNA4R2VlYW/vjjj5KSkpJzarX6BYVC8VcTzJTD4TwhuNjmcDgczmNFoVAkKZXK7qmpqctWrlw5c8qUKYZt2rR50tOqkcuXL8PW1lYrk8mqjFRGRUVBEARUZ55WE4cPH9ZaWVkJ0EHtdH3QarXQhVP8PYEqrymS+qSwtGT9pdevZ+7iVVBUVARJkjB69Oiaxxo7FvjtN8DPD9BoWIp5ZGQlk7GCggKcP38eAwYMgJeXV5XKvbi4GDdu3EBJSQny8/Ol5ORkkpubi1dGjBDRsyeQklKp73Z1ODo6wtHRER4eHjhz5gySr1+nG6ZNo2k3bxLN0qWYMmUKXFxcqj65rAzo0KHWa9TEjRs38Pvvv5dJkrRao9F8pFAoMhs14NMGIT1yzc3f+atr17GtP/9c38PdvV6nazQaxMTE0LCwsDJJkt7UarW/KBSKajNnOBzO0wkX2xwOh8N57NxNK5+3ZMmSg7/99ttv/v7+hn379hWba1p5Xl5ejfstLCxgamqqRQN6YstkMqKnp6cTo7K6kp+fDwDQhQt6cXExACZaLSwsGj2eznnuOWDjRtbuqor3l4WFBQwNDemaNWvorFmzhBpT4WfOBD75BMjNZW214uMBc3OgbVsAwHfffQdRFImVlRUuXrwIjUZT6ZGcnKxNTU0VTUxMNPr6+sTY2Fiws7Mjw4cPh5mjI0t5r6dRnoWFBYYeOgScOiVKx48jISEBJ0+epJGRkXBxcan6PeXoyFqRNZDLly9j586dJVqtdmxwcPDhBg/0tELI5CQnJ7+z/fqNdX//ff3OnTvX6/Tk5GTs2rWrpLy8/LRarV6gUCguNdFMORzOE4aLbQ6Hw+E8MYKDg0OUSmW3Y8eO7bl+/brThAkTmmVa+dWrV+mwYcOqFNJFRUU4fvw42t4VXHVFpVIhOTkZ2dnZQqdOnaTaz9Ad94y1zM3NGz3WvXZfhYWFjR6rSejUibXjiopiKd8PIQgCZs+eTZYuXUpOnTqFflUccx9JYmZplLLo9rJlwPLlzIU8Lg76cjmIKNLQ0FCtIAgQBAGiKEIURSKKomBtbS2OHz8eJiYmVX//cnICXFyAHTuALl3qfo9vvw1cuwZBEODm5oY2bdqQFStW0P3792sDAwMffd8eONBgsX369Gnt4cOHizUaTYBCoYhr0CBPK4TIAcy45eAw+8jYsZ5DX39dvz6f+7S0NBw8eLAkIyOjWK1Wzw8ODt7edJPlcDjNAS62ORwOh/NEUSgUyUql0uvWrVtLV65cOWvKlClGzSmtPDMzExUVFaSqHtJ37tzBrl27AADPPfdcnaPaR48eRUREBARBQL9+/ai/v/9jdRYzMjKCiYmJtGfPHsHQ0BCWlpYwe7iXdD2QyWTYvn073NzcmpdJGsCi2X5+wLVrVYptADA2Noa9vb0UGhoqnDhxQho3bpzQqSox+t57QHo6sGEDSx9ftAh44w0gLQ1QKjHB2ZnGOzhg1LRpMjg41H+uosiM1uraHi8tjfUBv3AB8PW9v7lFixaYOXMmWbdunaivry8NGjSo8osSEcFM3upJZmYmQkNDSzUajadCoUip9wBPM4TYSsAHMX37usWMGtXtuVdeMajrZyYnJwehoaGlSUlJKq1W+4EkSasUCkUzNDngcDi6Rvzwww+f9Bw4HA6H8y/H399f279///2HDx++fPHixRGCIMgcHByahVs5pRSnT5+GpaUlBEGAkZERCCEoLCzEihUrUFxcjIkTJ9Y5JTsvLw/bt2/HzJkzMXr0aLRv3548CYHarVs3Ehsbi5iYGKSnp0uenp4NfrJFUURKSgoet8lbnenUCZgxg9VdV2MM1r17d+Lj44Nr167R4uJiUmVqcHk569v9oBCXy1nq94svYsft29Tr5Emh5UcfAdOns5ruDh3q12/Z3x/YswfQ16+1ZRkMDdlxAQGP7GrRogVcXFywe/duYmhoSO3t7dkkJAlITQUmTKh3H+hr164hOTn5yOLFi3+o14n/AEq++mpelL//rL9mzOg4/aWXjE3rYDBXWFiIP//8s3z//v0VeXl5X2g0monBwcGR/v7+1TRA53A4/zR4ZJvD4XA4zYbg4OBdSqXS/fjx43uuX7/eYcKECUZGRkZPdE4mJiYwNTXV7tq1SxRFEZRSvPPOOxBFEYIgYNGiRZBV43RdFdeuXYOBgQFt27btE11JMDExwauvvoqlS5fSGzduCFlZWbCuTdxVg4eHBw4fPoyysjI0xzIAiCLw+uvAt98CX39d7WFyuRxmZma0Smf1jAwmtidNqvLcA3/+qc0uLhY67NgBaLVAQgLw4YdAUhLg6gp07MgczevC77+zPtiLF1d/zLhxwPDhwIIF1R5ia2uLCRMmYMeOHaRbt26sD3p+Pns8tMBTXFyM/fv3o7S0FMbGxjA1NYWVlRU8PDzulx1YWVlBkqRuSqWS/FvMvJRKZVu5XP42/e9/Z3bv3t1g1vDherUtApaWliIiIkIdExOjIYT8qNFoPlYoFLmPacocDqcZQSj9V/yt5HA4HM5ThFKplMvl8i9lMtncyZMnG9a3HlrXaDQalJeXw8DAAMuWLZOMjY2Jvr6+lJqaKlpZWdF58+aRugruHTt2oLy8XJo2bVqzybdetmyZRCkVXnzxRdQlYvcwkiRh6dKlkkajEd5888374qxZUVLCUr4/+QSwsXlkd1FRESIjI2lsbCyZOHEiHkkj//JLYNcuFq2ugqVLl9JOnTqRkSNH/r2RUkCtBubMYeeFhwOJiSwSXZNgu3deWRlQXaryN98AgwezSHstfPvtt1JRUZFgZ2eH8f36wWr9euDzz3HlyhXExcWBUopbt25RR0dH2rp1a6GoqEhbWFiI/Px8kp+fL5ibm2uHDx8utm/fHl999ZWqvLx8anBw8I5aL9zMUCqVAgDjuw8TMFPCQgBZAAQAvgBMAZQB8NLX1x8gSdIgLy8v0cvLS25tbY2ahLZWq8WZM2eko0ePVgDYolKpFisUittNfFscDqcZw8U2h8PhcJotS5YsCZTJZL/7+PgYDRgwQNYc0spv376N06dPw9jYGNHR0ZAkCa1atcLcuXPrdP7WrVuRk5MjzZs3r9mI7fLycnzxxRfo0aMHKonFenDlyhXs2LED77zzDougNkdWrGBp17NnP7IrLCyMnjlzhvj6+sLHx+fRcyWJOZC3qLqD9dq1a7VqtVoMCgqqerFBrQaio1nv73ffZSngnp6AnV3Vcw0KYtH0gwcrbz92jJmybdtW293e586dOwgNDUV2dja1OXeOTCwuxoYRI7SZmZmiu7u7RAhB+/bthapahRUXF+P06dNSdHS0oNFoQAiBJEkvBwcH/1iXayuVSgcACYSQFZTSFQqF4madJ95IlEolAeBMCBmpr68/RaVSeRBCIJPJNDKZTEsIgUqlkqnVahkhBJaWlqXGxsa0oqICDg4ORra2tvIuXbrAoA419NevX8eePXtKysvLz1dUVMxWKBRXmv4OORxOc4enkXM4HA6n2RIcHLxfqVR2OXny5K6kpKTOEydONDIxMXmic7K3t8e4ceMgSRJcXV2xZs0aZGRkIC8vr9bWV1evXkVCQgKCgoKajdAGAAMDA/Tt2xexsbHo27cvrKysGjzWmTNntL6+vvVugfZYGDKEOXFXVDDRfZe8vDycOnWKdOrUqepe6Vevslrqm9XrxKFDh4o///wzQkJCMHny5EcPkMuZidmpU8zJfNIkJqbXrWNGZ35+laPdX37JXNSrGsfevh43/Xc6+aZNm4isogLRJSU0KytLfO2112BkZFTje9HExAQDBw4UAgICUFFRgYiICOn06dMKpVL5Ux1TyZ0BGFFK3wVwFcAv9Zp8PVAqlZaiKO4mhFyQy+XtZTKZt1wu13N2dhY6d+5s4OTkBEII9PT0KjWFV6vVAAC5XF71SkoN3L59G4cPHy5JS0srVKvV8yile/4tKfYcDqd2mtV/9hwOh8PhPIxCobilUqm809PTV6xcubIsOTn5SU8JAHD48GGsWbPm/u9FRUU1Hh8bG4tNmzbBzMyMOjo6NvX06s3QoUNhaGhI4+PjG3S+m5sbxowZg7CwMPHKlWYa1HNxAc6ffyQVvLi4GGq1Gjdv3qSb/8/efcdVcWb/A//MzL2XIoqKNMWCLSIqoogNFUvsonHTXLMm2bimbJLvJtlfEmPC7CSxZFvWNNNMNjGWGDVR0VgRRUEsCCgiIooI0jvcMu35/XHV1QQVkJ7zfr18veTemWfOgL4uZ57nOef77/HZZ5/dWsBKEOxLwe9QyK6oqAgAEHJTVfBqcZw9Yf7xR3tV8PR04KWX7H//4QegsNB+nKen/b2HHrJ/rev2Pt+9etlbjtWCruv4+OOPdYPBoA8YOxZes2dzL774ImpTDyEnJwfvvfceYmJieFVVvQAE1eQ8URT38zx/4NqXVTe/J0mSiyRJ7SVJMlZzal0ouq4PUFX1WYvFMkVV1fYAYDAYTAkJCfKOHTuwfPlyHD58+JZWe0ajEUZj7UIoKirC2rVrzd98801RZmbmq7Is+4aHh2+jRJsQcjNaRk4IIaTFePvtt+83GAwbR4wY4RIaGmpoyjZTJSUl+OCDDzBx4kQ4OTlh6NChtz02IyMD33zzDdzd3dmzzz7LNYfl8NVZvXo1MxgMePzxx+scoCRJN4qvNcvl5JGRwNdfA2vW3PKy2WyGk5MTZFnGP//5TwwZMgTTpk2zv7lxo70Y2R32s58/fx7r16+H0WhkEyZM4EaMGFHzmHQdkGXgd78DDAZAkuxL1j097S26vv3WXpzt/vvty8e9vGp1y5s3b2YFBQVs0aJFPP+f/wDe3sC8ebUaAwD++9//ssuXL3MAEgGMEkXRXNNz33777UOMsTEABqjd0twAACAASURBVAmCEGowGF5VFMWL53ld0zSD0Wgs5nm+DMApm8224doMcZ3aY0mS5Ar7hFIpgMEA4m9+f9GiRdWvYKiBq1evYu/evVVZWVk6gJXXip/Z6jQYIaTVo2SbEEJIiyJJkpeDg8NPnTp1GvjII48416WgV31ZtmwZjEYjXnnllWr7S0dGRuLIkSPgeR5+fn56WFgYX5vK5Y0tPT0da9euxauvvlqjfarViYyMRFJSkq4oCm80Gln//v31yZMnN59l5YwBzz4LPPJItS2zAODy5cv49ttv8cADD2CAjw/Qvbt9Cflt9mtfpygKtm7dypKTk7lJkyZVv/f7bjQN2LIFEEV7Yn3woL2P9u9+Zy+IVgfvv/++Nm3aNKFfv37AM8/YHxzMnl2nsVauXFlRWlo6RRTF2Nqcd23/tA4A3t7eVdOnT2/TuXNn8DwPXddRWloKs9mM3NxcHD9+vKK4uJjpuv6arutfiKJ4T62yJEnyAXBlypQpCA4OrnUveF3Xcf78eZw8ebLq8uXLsqZp4dfioiSbEHJH1GebEEJIixIaGlq5f//+ry0Wi8OJEyeGeXl5GTt27NgksQQEBCAuLo6ZzWbWu3fvG7PBP/30E/vxxx9x+fJlLjAwEIMGDcKECRM4QWg+OecvMcbw888/62VlZVxpaSkyMzP1AwcOsI4dO3LOzs44deoUKy8v5zp06IDMzExkZ2dDEAQ4OztD07QbCYyvry+Cg4M5TdMAgEtISOADAgKaT0uw68u4t24Fpk+v9pD27dtD0zScPHlSGzZmDI9Fi4C77McH7P3G/fz8uKKiInbixAmuT58+ta/uzvOAv7/9gUBurr2Y2q5dgKMjMGtW7ca65tixY6xr1668l5cXEBNjv+8a3M91BQUFuHDhAhwcHJCWlmarqKjYFhoaml7T8yVJ4gRBuOTi4mIaNWqU8YEHHjC5urreqOzNcRycnJzQrl07dO7cGcOGDXPo27evQ3Z29nhFUcL279+/LzQ0tLT2d24XGhpaHhcXN9zPz69PbWa0LRYL4uLi9I0bN1rOnTt3trCw8B+apj0WHh4eQ72yCSE10XwfrxNCCCG3cW2m6y1JkvZv3Lhx87Bhw9pOmDDB2NjJrIuLCxRF4U6ePMmNHTsWuq4jNjYWiYmJ3IQJExAYGIimLuhWU8ePH2cXLlzgeZ5HWloac3JyYm5ubsLatWuh6/r1mW7dZrPxPM/D2dlZq6qqEjw8PJCTk4NZs2axIUOGcADA8zzGjRsHXdexatUqbdWqVcJrr72GZvOwYexYIDnZ3gO7Z89qD+nZsycOHz4slPv7o93KlTWeVeY4DjNnzuTatWunf/755/zcuXMxcODAmsdWUQEUFNjblJ0/DwwcaN+n/fLLNR/jFzp16iRcvXpVDwgI4FFcDNSiNVtaWhp++OGHSkEQDimKMknTtHYAsmoZAq9pWvcJEyZg8ODBNTrBy8sLCxcubBMdHT3kyJEjKStWrIiw2Wxibat8S5LEcRz3hMFgGF/TWglWqxVHjhxR4+LiVJ7nd9hstuWiKJ6szXUJIQSgmW1CCCEtWGhoaEZkZOTX+fn5I1NSUtz79Oljquvy57pQVRUxMTHgeR7R0dGIjY1FdnY2ZsyYgREjRjTPftPVUFUVGzZs4MaPHw8fHx/Mnz+fGz58OD9o0CAMGDAAgYGBmDJlCjd69GguMDAQo0ePxtixY/lz585pOTk5vL+/P+Li4rhTp04xV1dXzs3NDRzHgeM49OnThz927BjGjRt3xx7FjcpoBOLjgYwMIKj6Ol/t27eHk6OjXrx7N7fRaGT9hgzheJ6/cV93YjAY0KtXL85kMmHv3r0sMDCQu+O/BU0DDh+2J9d//rM94Z42DcjLA55+GnjxRWDDBmDUqFrfamVlJZKSksDzvN7fz49HXBwwdap9b3gNHD16VM7Kynp7yZIlzx04cCDSaDQW67q+PjQ0tMYxhIaGsoMHD1aUlpaOCQoKqnElMo7j0KNHDz4oKMggCMJ9OTk5T0VHR3eNjIyMDA0NVe52viRJPRwcHLa2a9fuqT/84Q/OnTp1uuPxiqLg6NGj+vfff2+9evXqVlmW57z55pufh4aG5tQ0ZkIIuRnt2SaEENLiSZLEGwyG13mef3Pu3LlO1fULbggHDhzAoUOHMHv2bPTo0QMrr1WJXrBgAXx9fRslhvpw6NAhPT4+nr344otCbfaz6roOq9UKZ2dnWK1WHDhwAImJicxms3HDhg3THB0dubS0NC43N5f761//ijZt2jTgXdxZVVUVysvLUVlZCbPZjEEeHuBeeslefOwXibCmaaioqEDcRx9paQUFQpmHBzRNA2MMBoMBHTt21EJCQoSbZ6x1XUdJScktbdMYY1i/fr2WkZEhzJo169cz3BkZ9oR6yRL7A4D33wc6dgSKioDnn7e3/xo61N6ju1s3+xLwWvy7iouLw549e+Du7q7Pnj2b9zaZ7EvUc3NrPMaxY8cQGRn57euvv/54jU+qhiRJYR4eHmuffvppl7oWNrRarfjxxx/Nly5dsgH4WlGU90VR/NUsuyRJniaT6W+MsSdGjx5tCAkJMdxpVYWmaTh16hTbv3+/lTEWbbPZXqI+2YSQ+kDJNiGEkFZDkqSRRqNx2+DBg9tNmTLF1JDLluPj47F7924WGBioT506VQDss4iCIDSf/cl3wRhDcnIyIiIiEBoailpV0L6N9PR0bN++nWmaxhwcHFhRUZEAAIMHD9YrKyuZj48Pxo0bV6sfTHl5OTZs2KC7ubkhKCiI9/T0BGMMuq7fSOB1XceBAwf0iooK5u7uzhcXF+tZWVmcg4MD69u3rxAVFQWDwcAMBgOzWCz8iBEj9PsPHODh4wM89xwAXN+njbi4OFZcXMw988UXaPv003B+6y0UFBTAYrHAbDbj0qVLemJiIm80GnUvLy/eZDIhMzNTr6ys5E0mEzOZTLqqqny/fv0we/Zs7tSpU2zXrl1c37592e+mTePw00/2pPrdd4E5c+wtvdzd7fvJk5KAhQvtM9k3L3EvKgJcXG7pD34327ZtQ3Fxsf7EE0/Ys9uUFODNN4HNm2s8RmZmJtatW3fFZrP5AnjMZDKNlWX5Q1EUE2o8CABJkhwcHBz2enl5DX344Yeda9N27JdycnKQmJionDx5UhcEIZ/n+VTGWC7HcR0ZY71UVfUNCAhgoaGhDnfaxsEYw5kzZ7Bnz54qRVFO22y2F0VRPF7nwAgh5Bco2SaEENKqSJLkZjQaf3Z0dBw4Z84cx5632ZN7r/7xj3/oI0aM4MeMGdMg4zc0i8WC/fv366dPn+ZGjRrFjRkzptZVmmsiKysLJ0+ehMViwcWLF6EoCp555hkA9v7GHTp0QHx8PLPZbCwoKIgvKytDQkICS01NZa6urqxLly7C0aNH4e3trefn5/NWqxUAbuz/9vf3169evcqVlpZyDg4OutFoZKqqcj4+PryPjw9SU1P1/Px8LiwsjOvfvz8AoLCwEJ999hnmBgXB7623kLNlCyAIyM3NxY4dOzBgwABMnToVpqoq8G3a2IuT/YLNZkNsbCzKy8t1VVUZz/OYMmWKUFlZifLycpjNZuzcuRMAmFvHjhjj6Mgl7dqFyRcvwrV/f2DxYsDH59axjx+39/PevRvw8Lj1gidOAI8+Cly4UOPvvdlsxsqVK1lYWBjn7+8PpKbax5k/v8ZjMMbw6aefVuXn5wsAHIOCgpCQkFChquowURRTazwQAEmSDEaj8UMHB4cF48ePdw4MDLynrQWKoqCoqAhFRUWwWCxwcHCAq6srvL2979o3Oy0tDbt27aqsqqq6fC3JjqxzIIQQchuUbBNCCGl1JEkyAfjIxcXl8VdeeaXGG6cZYzX+5f+9995jTz75JOfxy6SoBTh48KB2+PBhwdnZWXv00UeFuvYcrq1ly5ZBURQYDAYYDAamKArn6OiIqqoqAPa9zrquw8nJCWPHjkVhYSGysrL04cOH8wEBAYiNjUV0dLQ+YsQI3tvbG56envjmm280FxcXBAUFCX5+frhTazVVVbFx40Z25coV2Gw2juM4TMzO1i9VVfEXevcGAEybNg3BwcHA3/4GFBcDH3xQ5/tVr1xB+eef46KDA+u0ejV3xt8f7q+/juEhIb8+eN8++6zzvn32GexfBw+88grw3nvVJv+3k5iYiB07dmD27Nnwv3wZOHXKvmy9FsxmM/7xj38AAMaMGcM6dOiAn3/+uUBRlFBRFFNqM9a1FmATTSbTyn79+vWaNWuWQ2O2wysuLkZERIQ5Ozu7WFGU5xlj20RRpF+GCSENgpJtQgghrZIkSd0AXAaA0aNH66GhobftcV1UVIT169fbioqKHEwmkx4WFsb7+/vfcfzly5ez+fPnczWtcNzUrFYroqOjWWpqKoqKiriFCxeiS5cujRqDruuQZRkmkwk8z0NVVZw8eRLdunVDcXEx2rZti5iYGEyfPh3t7tLTuqbXS05Ohq+vL7KysrBt2zbdzc0N999/P+/p6YlDhw7BGBOD4KIilLz6KixWK3pfS7rx1Vf2vdyPPVa7i8qyvVVXZiZw7BjQpQvw7LM4U1aGrdu2wd3dHaGhoejbt6/9eMaAH36wX2/LFuBOy6vPngXOnAEefrhWISUnJ2Pr1q1Y5OyMTppmT9prKT8/H59++imbMmUKhg8fziUkJLCdO3eaNU17Xtf1b2qbsEqS1NZkMm339/cfHhYW1uBVDRVFweHDh9WYmBgZwDJVVf8hiqLc0NclhPy2UbJNCCGk1ZIkqQOAGYIgrOA4zuvhhx8W+vTpc8sxR44c0fft28dzHJfJGBMBfA0AgwYN0ubMmSNUN9NdUlKCVatW4Q9/+AO6du3aGLdSI1euXEF+fj4CAwNvWRKuaRp27tzJkpOTMXjwYK5Xr1745fehJZNlGSkpKSgsLATP8zh9+rRmNpt5xhh4nudsNhsMBgMmT57Mhg4dyt3yM9V14P/9P+CFF4AePeyvlZYCCQlALSpuIykJWLcOGDcOWLXKvlT7kUduvF1SUoIPPvgARqORKYrCDRkyRB8/dizvsmaNPSn/9NM7J9oAsHevfZn5pUs1j+uaDRs2wH/3bn3ggw/ymDGj1udXJzc3F5s2baqqqKgo1TTtM03TNgI4X9PEW5KkfgBSBg8ebJkxY4ZTQ81wnz9/Htu3bzcrihJls9meEUXxSoNciBBCfoGSbUIIIa2eJEkCgDUA5omiCAC4fPkycnJysHv3bgCYJYpixLVjTQC+BXAjU/L19bU5Ozs7TJs2Dd999x1yc3PRvXt39vjjj3PNpZ0VYwwrV65EWVkZunXrxiZOnMh17doVu3fvZseOHeNMJhN75JFHuJZUJb0mUlNTsWXLFubg4AA3NzfdbDZzgYGBXK9evTjGGNzd3W9sD7jtz+rLL+09t5cts3+9bBmwYwdw5MidL15RAXz/vb3wmIsL0K6dPcn28rrlMF3X8fnnn+tt27bF/Pnz+fz8fGxYs0YbFBEh9PTwgPX119E3MPDuN8sYUFhov04tCqUBwLp16xC4fbvu96c/8ZgwoVbn3jkkhqysLMTHx1vPnz+vybIMg8EQZbVa3xFFMe5u50uSNMhkMv29Q4cOYxYtWuRcn3UDzGYzIiIiLOnp6aWyLD8uiuLeehucEEJqgJJtQgghvwmSJN0H4NzIkSPh5uaGiIgIAGCCILzx5ptvrqjmeHcAAQDCABQB+Nv19x588EHcbZl5Y9N1He+88w44jgNjDIIgQNM0AIC/vz8mT55cL0uzm5Pi4mJ8/vnnbPz48Rg+fHjdn3qoqr0l1pEjQKdOgM1m3699u73sUVHA+vXAzJnAjz/al5rfIYHdt2+fnpiYiJdeeonned5+vb/8BdmMYZefn55VVMQ/9dRT8PHxuXusomgvdLZhQ61u8Z///Kf+mCzzXo88AvTqVatza4oxhvj4eGRlZSE5OdmiquqM8PDwA3c7T5IkzsHB4ciQIUOGTJ48uXZPEW7jwoUL2Lx5s0XTtG8URXlFFEVzfYxLCCG1Qck2IYSQ34x33nnnYV3XvwcAk8n09uLFi8WanCdJUlcAmde/fv311+FQy5nFxvD111+z3NxcLF68mNN1HdnZ2XB0dIS7u3tTh1avdF3Htm3bWHJyMjdw4EB95syZ/D3PiO7da68G/vvfA7NmAYmJwM1jlpQAH39sPyYsDDAY7G27XF3vOOylS5ewfv16PPXUU/D09LQn2n/4AzBxIvD448grLsann36KkSNHose1Zew39nNXJykJ2LMH+Otfa3xrxcXF+OSTT7Bk+3ZwGzbUqld3bVy8eBFr1qyBo6OjbebMmQ6bNm0Cx3Fh4eHh2+92riRJvkajMfn//u//nO6lH7uiKNizZ48tMTGxUlGUR0RR3F/nwQgh5B7Vf48PQgghpJl66623NgLwAhBW00T7mgAAePLJJ8HzPE6ePNkg8d2rRx99lNM0jTtz5gx4nkfXrl1bXaKdlpaGlStX6hkZGXjiiScQFhZ274k2AAwYAKSlATk5QEiIPdHWNGDrVnvLrV27AIsFWL4ceOop4PHH75poV1VVYePGjRg7dqw90VYU+2z4nDnAH/8IGI1wd3dHt27d9FOnTrFNmzZh/fr1iIiIQGRkJNatW8csFsutgw4aBPTrZ68qXkPx8fHw8vTUuKwsoHPnunx37ioxMVFPSEhgAGC1Wh28vLwwePBgMMa2SZJUTfn1W4mieInn+R3Jycl1jiE3NxeffPJJVVJS0h5FUfpSok0IaWqN12uBEEIIaQZEUcwDcNeZtl/4WRCE+K1btw7Qdd0UHR2N4cOH3+j13NQYYzh27BgrLS3lGGM3ZkhbmyNHjiAqKgpjxozhRo4cyd2tl3KteHsDY8YAMTHAG28Azz1nX1a+YgXwxBPApEnAvHk1Ho4xhh9++EHv1KkTQkJCeFRU2GfMX38dmDIFuLZ/nOd5PPnkkzeeFpw8eRJ79+5lNpuNA8D9/e9/R4cOHdC5c2cmCALr2bMnF7B/P4ecnBotJa+srMSJEyfYzLFjBbz4Yq33et/N1q1brampqbzFYjEYDIZMAN0B4KOPPoLBYLgIoCfHcW8CmHq3sWw2W0x+fv4sALUKkjGGuLg4ff/+/RZN055ljH1H7bwIIc0BJduEEELIXYiiqEmSNLysrGwbz/MDrVarz7vvvovu3btrAQEBwqBBg5ok8d6zZ4/G8zx8fHyEXbt2cR06dNCmT58uuFTXp7mFi4yMxLFjx/Dggw/ivvvua5iqdD17ApMnA05OwODBgCQBdVwZEBMTo+fn5+Mvf/kLj9xc+/L08PA77u0GgKFDh2Lo0KEcAOTk5GDLli2srKyMS05O5jiO486ePQvv55+Hh6enfeb9Nv/udF1HbGwsDh8+zPr166f7e3gIuHy5Tvdys5SUFBw8eLBiwIABbTVNQ0JCgiOAJwHEqKqaBmAvgIkAYDAYjjPGRE3T7lr9W5Ik3mQyzfT09KxVom2z2fDjjz9aLl26dEVV1emiKKbX5b4IIaQhULJNCCGE1IAoiiqA6YC9oBOA5zMzM4MuX768ICEhQb95drIxREVFabGxsTcyrQEDBuB3v/td85hqbwCxsbEYN24c7rvvvoa7SJs29tnr5567p2Gys7Nx8OBB/rHHHoPp0iXg5ZeBt9+2L0+vBW9vb/z5z3++8WDhyJEj2LdvH87n5DCPxx/n8Mc/2pejV2PTpk3sypUrmD59OjdgwACBO3PG/hDhHsiyjAMHDlQWFBT8VFpa2l/TtBNGo9GmKMp31/5/QJKk+zmOO88Y6221Wh8xGAxWURSfqG48SZLaApjh4OAw02QyDXFycvINCAiocTzl5eX45ptvqiorK3+UZflPoiha7+kGCSGknlGyTQghhNTStSWqHwKAJEn/zszMTPjkk0/kZ555xlSfrYsYY0hJSUG3bt3g4uJyo4UVAJhMJgEAlixZguLiYnTq1KnertvcFBYWQtM0FBYWNuyFsrOBe+w/brVasWHDBhYUFMR1y88H/vMfYPHiWifa1bleOKysrEzDM88Y7jTrXlJSoo8aNUoYOHCg/YW0NHt7sjqy2Wz47rvv5NLS0hMAFr7++usyAEiS9DqAs8uXL0+XZTmK5/n2uq5vBfAKAKiq+vjSpUtjlyxZ8tnN40mSZDQajWc6d+7c0c/Pz8XV1RW9evVCTbcG5OTkYM2aNWZFUZaqqrqClo0TQpojSrYJIYSQeyCKYqIkST4FBQVZe/bs0aZOnSrIsgxFUXAvVZUBIDExEVu3boXRaERQUBDLyMhAUVER17FjR72goID39vZWeZ43eHh41NPdNE9ffvklY4xxwcHBDXuhY8eA2bPrfDpjDD/99JPm7OyMyTwv4KuvgOefB0aMqJfwBg8ejK5du+Ljjz82DFiwALb33mMd+/fnOnXt+qtjFUW59YWKinsqjhYREWHLyclJ1DQtTBRFGQDeeeedJwAs79q1K+vevXufkpKSse7u7s7FxcXWsrKy8l69erXz8PDAli1b/vP222+XhoeHf3/TkIKu6+4zZ850qu2DorS0NPzwww8WVVWfCA8P/6HON0UIIQ2MWn8RQggh9UCSpMUAlvE8r+m6LgCAt7e3/vjjj/N1aROWl5eHTz/9FJ07d8bEiROxd+9ejTGGkJAQISsrCyEhIWiNe7N/acWKFcxms3ELFy687cOLNm3a1HhG9I7mzwfeece+d7sO4uPj2Z49e/BSt26cw+nTwNy5wLBh9x7XL3zxxRdqbm6u4U+rV+PYsGEonDaNOTs767Nnzxacri0VX758ORYtWgQ3Nzf7ST//bJ/ZHjOmTtc8cuQIDh06tHfx4sWTr7+2dOnS/HHjxrmH3GXWPi8vD6tXr7YqijJIFMW066+/++67ywICAl6eNWtWjf+DHDt2TN+3b1+FoijTRFGMrdPNEEJII6GZbUIIIaR+vAfgS13XO8FeeVnPycn5T1FRETrXYUYxKipKd3R05J966inwPI+nn376lv3ZvwWlpaWw2WycwWDAt99+W+0xjDE4OjqyhQsXcu3atav7xSwWICgIqGMl9/z8fOzatYt7EoBDaqp97/egQXWP5w7+9Kc/2X9/e/ppdElPR+7p06y4uJhbtWoVCw0N5QYOHAiO45imaf8rJBcVVedEGwBMJhM4jtOvf/3OO+88qOu6+/VtDdVhjCE/Px8HDhwwK4riDMAXwI1kW9O0TfHx8YsnTZoEpxrsJ9+3b598/PjxPEVRxlMhNEJIS0DJNiGEEFIPRFHUARRc+5MiSZI3gP907NixTuN1796dv3Llil4/TaRbFsYYzpw5g23btqF37976/Pnz7/g9WLduHfvyyy/x9NNPc3Veup+YCERHAy+9VOtTFUXB+vXr2YyMDHh3787hD38AeveuWxy10bYthoaFYejZs7zu5obY2FhERUVpu3btEjiO4woKCnBji0FcnL31WB15e3uD47h+N720ZurUqRhWzcx9Xl4e4uLirGfPnmW6rpsZYx8COAAg5heHJgCAxWK5a7J94sQJ/fjx4/myLA8RRbGBN+8TQkj9+M19gBNCCCGNxAIAVVVVdTo5Pz+fWSyW3+Tn9JEjR9iWLVvQtm3buybaAPD73/+e79Spk/7BBx/g0KFDenFxMS5fvoyrV6+ixtvljh4F+vW7+3HV2BERoQ2OimIDO3fm8PjjjZNoA/bq4k8/DVRVged5jB49Gi+//LLw+9//HhzHoaioCLp+bTJ6/HjA379Ol1FVFVFRUVbG2KXrrxmNxh1Hjx5lhYWFsFgsuHDhAlJSUrB27Vrz6tWri5OTkz+22Wz9FUV5QlXVJQCcAXhIkjRckqT2gP0Blclkirty5c6dwU6dOsX27NlTLsvyeEq0CSEtCe3ZJoQQQhqIJEkMAO6//35t1KhRNW7LVVlZiX/9618YOXIkJk+efPcTWoFrPZtRXl6O2NhYzJo1CzcqadfQuXPnsHfvXq28vFwwGAxM13Vomsb5+fnpLi4uMBqNPM/zSElJ0VVVRd++feHh4cEPHDgQhi+/tPfA7tu3VtdMTkpC3quvslGBgZzjK68AjV0VvrAQ+OknYOHCW16OjIzU4+LiuBEjRrDxoaE8FiwAPvsMcHau9SWKi4vx4YcfMgBBAIIBMADzAIwzmUy5qqp2dHBwSAFQKstyhKZpH4uiaJEkaSCAJADw8PAoLy0tNcmy7Hht2NGiKMYsW7Zs1bhx454ZPXp0tdc+fPiwdujQoWJFUUJEUTxf6+AJIaQJ0TJyQgghpIGIosi98847+Xv37nUPDg6GwVCzj93rLa5+K4k2AKxdu1bLzc3ljEYjRowYwdc20QaAfv36oV+/ftcfanC6ruPixYs4fvw4X1hYCJvNBl3Xmb+/P+/o6Ihz586xhIQEFhMTgwd37kRB165c3pUrDADn5+d31732Jfn5yHvtNfT38eEcFy8G7mXPeF0ZDMAbbwAPPgi0bw/A3n4MAM/zPHN2duYgy4CDQ50SbQC4ePEiAHBGozGiV69eHUwmE0tKSnICULJ48WLvm4+VJMkRwKDly5cvMhqN8++//37Wv39/7uzZs+2GDBmCHTt26KdOneJ5nn8TwHRBEIKrq0bOGMP+/fuV48ePX72WaGfVKXhCCGlClGwTQgghDUjX9RAAqeXl5ajp/m1XV1cA9uW7NU3QW7KCggJcunRJWLBgAXx9fettXJ7n0bt3b/S+dVn3jYpewcHBXGlpKWKiopBXVcX2nTunte/QQSgtLcXhw4cxY8YMODs7o2vXrmjbtu0tY2sVFTi3aBHzNJng9eGHHGpQ4Ks+FRcXQ1EUaJoG15gYtLlWmT4tLQ0bN25Ep06d9EmTJvFDhgwBUlPtf+ooKipKAyBMnDjRMzg4mOc4DkOHDsXatWsrJUkSAAgAhhiNxgcEQXje1dVV7dq1em3qJwAAIABJREFUq4O3t7fDpUuXzDt37nQGgJ07dwLXtjDquj5ZkqQgR0dHv169elV3TeX48ePZsiwPo6XjhJCWqvV/ghNCCCFNK81oNEZ+/PHHoSaTSZs/f77Rx8fnjidc32ebl5eHLl26NEaMTaayshK7d++Gp6en7uvr2+h71Nu3b4/pJhPg5cUNeuWVG0v9t2zZosXGxjJN01BVVWUYNmyYfv/99/McxwFlZUj761+ZUF4Ov59/5lCH1m73IjU1FRs3bgTHcRAEAd1TUzE5KgoZmzYhOjpaHzNmDDd27Nj/fS9LSoAhQ+p8vSeffFJwcXGBg4MDDwAZGRnYuXNnhSzLXQG8ajAYXnBxcXHp0qWLMGnSJOfc3Fy2efNmJTU1NdZqtf4XQCLHcT6MsU0AogCIAOJ5nn8tKCjI9MsHStHR0erRo0dzZVkeQYk2IaQlo2SbEEIIaUCiKDJJku4HMFRV1T+tXr36Tz179rRdvHjRITg4WO/Rowfft29fCML/tnRfL0BeXFzcapNtm82GTz75BOXl5ejUqZP24IMP1nhPe71LSQFGjbrlpblz596IJysrC2vXruUMBgNC/f3B/fe/yEtL43y/+QZ8IyfaO3fuZAkJCdyUKVNYcHAwBwAlmZmoWLSIHY2JYS4uLggKCrq1H5ejIzB2bJ2veb1X94YNG9S8vDxbaWlpGwBtOY5LNhgM4qRJk4zBwcE8AGRmZmLz5s1WVVUnLlmyJBYAli1b9r6Tk9Oi8vJyAPheFMVDAPD3v/99mIeHxy0/95iYGC06OrpAUZSRoijm1TloQghpBijZJoQQQhrYtbZgxwEclyTp5MWLF9twHDfyxIkTHePj4wcIguBmMBg0Pz8/bcaMGU7t27fH5MmT2ZYtW7ikpKQaVeRuSRhjOHz4MMrLyzFp0iSMHj266RJtAPDxAQIC7vC2Dx555BFu+yefMP+ICK69qysOTZyIkd7etz2nIXz11VfalStXhEWLFsHb2/tGQt2hWzd0eO897vncXA5Tpvz6xLNngfz8e7r2rl275NTUVBOAcADLAKB79+69H3roIQfnm/aCb926tVLTtCdEUYwFAEmSpjo7Oz/t4eEhWK3W/bIsfwEAy5Yte1bX9dCb98VHR0er1xLtEaIoZt9TwIQQ0gxQsk0IIYQ0IlEUP7v5a0mSvFRVnWGz2SYlJiY+GBISgnbt2mHkyJHc2bNndZPJ1KoSbVmWsXz5cgBA37592ejRo7m7nNKwGLNX8/7FzPYv9VBVhCQnszwfH1bx3HO8afNmZjKZGi32gwcPorCwUHj++edvzDTfIikJ+Ne/UG2yffEiUMd+79d5enpe/51xmZOTk/XZZ591bNu27S3T+iUlJSgvLwdjbAsASJLUxWg0fj106FCn2NjYclVV54iiqEmS1EYQhPefeuopBzc3NzDGEBUVpRw9ejTn2oz21XsKlhBCmglKtgkhhJAmJIpiLoDVkiT9yPO8/0cffdRLVVXnadOmITc3l59SXfLUgiUnJwMAOnXqpM+bN6/pHyRUVNjbZ91pH/3Zs8AXX6DHjBn8JyUlmKsosFqtXGpqKu67774GCSsvLw/nz58Hz/OIj4/XKisrhXnz5lWfaAPAo48CkycDmgYIv1go4OICjBhxT/EEBgbygYGBkGUZBoPB8fpWh5tlZWXBYDAkqqrKvfvuu38xGo1vBQcHO7dp04YZDIbIJUuWVF47VOrVq5fmfW1lQExMjHb06NGrsiwPp6XjhJDWhJJtQgghpBkQRbH47bffjmCMLeY4jkVGRsLb21vz8fFpNZ/VjDFs27YNJpMJTz31VNMn2gAQFweMGwdwt5mkTk4GVqwA5s9Hh6lTEXrkCDZu3AgnJyfdxcWlQe6hrKwMq1evhpubm84YQ0BAAD9s2DA43aniudFoj1OWgY8/vvW9e1xCfjOTyXTb964VOnMxmUxfdujQ4ZGwsDDnzp07Y926dRVWq/X6bPckBweHP48fP94RAJKSktjBgwdLrrX3okSbENKqtJoPcEIIIaSlMxgME318fNSwsDBDe3vP5Fb1OX3mzBlwHIfp06fD0dGxqcOxO3cO8PKq/r2kJHsP67feAoYPBwCMHDkSxcXFmDZtGl+fbdl0XUdmZiZ+/PFHrbKyUvD399duLtJWI7Nm2R8O/JKbG9AI+8tzc3OZ1WoN6NixY58nn3zS2eFa8bhr1fVtkiRxDg4OK6ZNm+bo5eWF9PR0REREVCqKEkp9tAkhrVGr+hAnhBBCWjKe56vatWuntW/fvtV9PiuKgi1btsDb2xsBdyhG1ui6dAH69v3160lJwDPPAF9/Ddy0VJznecyaNaveLq+qKg4fPozY2FjGcRw3ZMgQbvjw4WjXrl3ti8ZNmACUlwPp6cDNvauXLrXfSwMLDg7mjEYjBgwYcCPRvoYBMAL4J4BB/v7+uHz5Mr7//nuzoigzRFGs5gkBIYS0fK3uw5wQQghpqWw224PJyckX77vvPgc/P7+mDqdemc1mAMDgwYObOJKbMGYvKrZp062vHzsGPPccsGMH4OnZYJfXdR0rV67UTCYTP2fOHK5fv37gOO7elqZv2QLs3fu/peTl5YCfn33fdgNr06YNQkJCfvW6wWDgAQwF8JKrq6uelJSEXbt2WVRVnS2KYnSDB0YIIU2keeyXIoQQQghEUSxWVfX+zZs3y1artanDqVcZGRkMAKqqqpo6lP/JybHvZ755iXVUFPDCC0BkZIMm2gBw9uxZ6LouPP/885yfnx+42+0br4333weWL7c/SAAAiwVYsODex70Hbdq0MfI8XwwgKD8/n9++fTtTVXV2eHj4viYNjBBCGhgl24QQQkgzYjQaP9U0zXT06FG9rmNIkoTly5eztWvXsuzs5tGuePv27dzEiRMxfvz4pg7lfy5dAt591/53xuyzwu++Cxw8CLRrV++XUxQF58+fR1RUlL5q1aqKrVu3sh49eij1kmRf5+YGjB0L/Pyz/eusLPu+9Cbk6+vr4ODgME4UxZMAxgJoGx4evrdJgyKEkEZAy8gJIYSQZkRV1dU8zx88ePDgSyEhIahJEa6LFy8iKysLSUlJWnl5uQAAkyZN4rKzs/Wvv/6a8/DwUBcuXGiorl1TYygoKICmaXB2dm6S699WYiLg5AToOrB6tX02OyICqKfibVlZWThz5owyYMAAY1lZmb5t2zaZ5/lLqqpGqqqaAOCLmTNnGuvlYjd74gmgTRv734uLf90KrBFZrVaUlpZC07TBAEDLxgkhvyWUbBNCCCHNSHh4+CdLly59wdPTs8pgMLS507GyLGP16tVqcXGxwcPDQxswYAAXGBgIFxcXCIKAYcOG8RMmTMAXX3whfPvtt+jSpQv8/f3RuXPnRrkXTdMQExOD3Nxc8DyPAQMGNMp1a8zZGejXz77sOjfXnnDXMdFOS0vDunXr0L17d3P37t2dr169ak1PT3cEkBofH++pKIo7gKmiKB4EAEmSHuJ5XjeZTPX/BOSFF4BPPwXGjAEKCoAm+L5brVbs2bPHevr0ac5oNCYxxjY0ehCEENLEKNkmhBBCmhlBEAbk5OS0OXPmTLUJqq7r2L9/P06ePMm8vb35+fPn37Z6dbt27fDwww9zhw8f1tLT07mYmBi+f//+eOihhxr0Hs6cOaOfOnWKy8zM5BwdHbXx48cLd+rR3OgYA5YsAebMsbf++vvf7bPcdZCVlYV169YBAK5evfrN5cuXnwXwI4AoABvfeOONUkmSjKIoKgAgSZKHwWD4csGCBbzQELPOggB88gnQuzdQWmpfWt6I0tPTsXnzZoumad+rqvrqkiVLCho1AEIIaSYo2SaEEEKaGZvN9ozJZBp49OjR4Y6Ojnzv3r1veX/t2rV6dnY2P3fuXK5Pnz7c3fb8du3aFfPmzRMAYNeuXXpcXBy/c+dOeHl5QZZlWK1WyLIMm80GWZahKApkWYaqqlBVVVNVlWmaBk3TwBjjdF3nVFXlBEFgzz33HH99ebjFYsGJEyeQnp6uZWZmCu3bt8e8efPQs2fPplvHfDspKfbiYbIMvPIKcPYs0LOnfa82zwO12Eft7e2Nnj174uLFi9B1vTsAR1EUbTcfc1OizTk4OKwZMmSIY9euXev3nm62a5f9IUJFBeDr23DXuYksy9i9e7ft9OnTVYqiPCyK4v5GuTAhhDRTlGwTQgghzYwoikySpP9kZ2d/n5aWZuvdu/eNpsWFhYW4cuUK/8ADD6Bvdf2h72LKlCm8LMt6eno6d/HiRWY0GmE0GpnRaITJZILJZGLt2rXjTCYTbzKZOKPRKFw75ld/9u3bh6+++kp7/vnnBQBISUnBwYMHERgYKEyfPh0eHh71+F2pZ717A8OGAVev2vc1P/YYMH++fVb4ww/tyeoLL9iXla9aBfz5z8CiRYDJZH9PkoAtW1BkNCJSlqvYkSNOTp6evCoI00fExbkCyL/Nle93dHQcPWHChIad5nd0BLp3B0aMAP7v/xr0UgBw9epVbNiwwWyz2SIURXlGFMWSBr8oIYQ0c5RsE0IIIc1TMgBkZ2drR48elUeMGGECgK1bt+oDBgyAn59fnfb6chyHsLCw6+feUxnshx9+mPvnP/8pbN++XZ81axafkZGh+fr6CjNmzLiXYRuHyQTs3v2/r1NS/vf3l14CjEbgs88Amw3o2BF48EGgb18gLw/gOGiM4cyHH6LSxQWl/v7cw1u2XNk7eXL3Xunp+YEJCRfAcd0AnAOwC8BXAETZaFwWMnHi14M5ro3h+eeBN98EJkywj3v8ODBuHGC12gu2+fjc2/25uwOzZwNxcUBDzqDDXqBvw4YNZlVV/xgeHv59g16MEEJaEGr9RQghhDRDoigmC4LwYHZ29vG4uDhdVVXouo68vDyuR48ezeLz28nJCU888QQSExN5XdfRpUsXIT8/X2vquO6Zo6N9hrtfPyAgAGjfHnjqKcDf354cf/ABsior8dPcudg3eTKuduni/J9XXumePHAgtj/wQFsw1g5AGYARABYDSAGwatNDD3mbu3fv0CEw0J5QZ2QAFy8CycnAypVAairw4ovA8OH2pN7NDXjtNWDNGmDkSOD0aeAvf7HPsBcV2Ze/R0fbX//vf+1LxhMTgQsXAE0D3njDnsh36dIg3ybGGE6dOoUNGzZUKYoylRJtQgi5Fc1sE0IIIc3Um2++uVmSpD1ms3nn5s2bh/Tq1cuZMcb16dOnqUO7oUuXLnBzc2NLly7lBEGAoihCcnIy/P39mzq0BtWlSxc888wz+PrrrzVVVb8HMFXTtI6MMfuabcYYgIybTtmUuWJFxIQJE5z44GD7K9999793p0y5dtQmXDsfSE+3J/0WC+DhYV8WPmYMUFZmT9ZtNqCqyr4Uft06YOJE+3J3Jydg6VJg5kz7WA1QmE5VVWzYsMFy+fLlSk3THqWWXoQQ8muc/bOAEEIIIc2VJEltAFQCQGBgoBoWFtasHpYrioIzZ87Ax8cHubm52LZtGx5++GE0p4cC9c1iseDTTz+12Gy2rTab7fcA3GEvjJZZ3fGSJHUSBCH75ZdfNjVav3Fdt/+pQa/22pBlGWvXrjXn5ubul2X5d9eLvxFCCLlVs/qwJoQQQsiviaJY9e677yYMGjQooLkl2gBgNBoRGBgIAHB3d8eVK1cQGRmp9+nTp1ksd28IR48e1axW6z5Zln8viiLD7QuiAQA4jvtjv379tEZLtAF7VXW+fn8EVqsV3377rbmoqGibLMuPiaLY8rcNEEJIA2m1H4KEEEJIa2I0GjO9vLzuqaBZY3F0dISDg0Or/h1D13WOMXb1WqJ9R5IkGYxG48vBwcF1a+TdTJjNZnz11VfmoqKi9bIsz6dEmxBC7qxVfxASQgghrYWiKBfz8/P1po6jJnieR2vepsYYQ1pamkVV1bganvJg+/bt2zRoX+0GZrVa8dVXX5nLysq+kGX5T6Iotoh/i4QQ0pQo2SaEEEJaAE3TvklKSrJlZ2c3dSh3deXKFa19+/ZNHUaDKCkpwdq1a5GXl9eGMbbmbsdLksQbjcYPp06d6sJxLWJhwq9omob169ebKyoq1suy/FJNZvMJIYRQsk0IIYS0CKIoJiiK8sLXX3+tHDlyRG7qeO6E53lYrdZWmZAdOHDAmp6eDkEQVoqiqNbglFHOzs6Ovr6+DR5bQ9m2bZs1Nzc3VpblpynRJoSQmqNkmxBCCGkhRFFcrWnag3Fxcc062Z4wYYJw8eJFrrKysqlDqXc9e/Z0BABN02rUU9poND42dOjQNg0bVcNJTExk586dy5dleTbt0SaEkNqhZJsQQghpWc6azWZ+3bp1VRUVFU0dS7W8vb3h7++vfvjhhyw+Pr6pw6lX6enpVo7j3hJFMbYmxwuCMKl79+4tcv14cXExduzYYZVlOUwUxaqmjocQQloaSrYJIYSQFkQUxQuapnW9dOmSOT//jt2mmtScOXMMc+bM4X7++Wd8/PHHmq63/Hpa5eXlOHfuHGOMrarJ8ZIkdVAUpWuXLl0aOrR6p2kaNmzYUKXr+mJRFBObOh5CCGmJKNkmhBBCWhBJkrxMJtMhjuPad+/evanDuSM/Pz+88sorMJvNwpEjR5o6nHvCGMO6detkjuM2iaJYVMPT+ri6uloFQWjQ2BrCvn375PLy8qOapn3Q1LEQQkhLZWjqAAghhBBSK56yLPt369ZNbQnttYxGI9q2bcuuXr3aIpdSX7dz507k5eWZAHxei9PcHB0dGyqkBpOeno6TJ09WKoryKBVEI4SQuqOZbUIIIaQFubakd/CVK1f0nJycpg7nrqqqqpCXl8d169atqUOps5KSEpw4ceL6l9GSJNX0wcGR/Px87ezZsw0UWf2zWq3YtGmTRVGUh0RRLGzqeAghpCWjZJsQQghpYURRTDSZTKfz8vKa/Ubodu3a4aGHHsL+/fsRGRkJWW7WhdSrVVpaCkdHx7MA+vE8vwvAUEmS7ro6UBTFclVVJ/30009VV65cafhA68G+fftsuq7/IIpiZFPHQgghLR0l24QQQkgLZLPZ/rh3715rS5jd7t+/P8LCwhAdHY1///vfLCcnp0Ul3T4+PjAajT14np/MGMsGcBzABEmSekiS1OFO54qiGK+q6mM//PCDWVVr0pa76WRnZyMpKckqy/JLTR0LIYS0BlxL2O9FCCGEkFtJkuRgMpmSZs6c2XfgwIFNHU6NWCwWHDt2TD948CDPcRzc3d1ZWFgY17lz56YO7a4KCwuxZs0aW3l5uQPHcVmMsW6CIERqmhZ67ZBAURQTbnf+ihUr9oSEhEwICQlpltXSdF3HqlWrqoqKip4LDw//tqnjIYSQ1oCSbUIIIaQFWr58+d+9vLz+vGDBAueWVu1a0zSUl5fjgw/sha5Hjx4NV1dXuLu7IyUlBYwxnDt3TnN1dRWCgoIQEBDQxBHblZSU4OOPP7ZpmhYkiuIZSZK8ANyytMBgMPxDVdV/iKJYcPPrkiT1MRqNiS+88IJT27ZtGzXumjhx4gTbt2/fKZvNFkRF0QghpH5Qsk0IIYS0QO+9997F+fPn+/r4+DR1KHVWVFSElJQUHD9+nFmtVo4xhi5dumiMMXTv3l0wm83s9OnTHGOMeXh4cMHBwWjqWfyEhAS2detWDgB4no/WdX1MUFAQevfuDUdHR5w8eVJJS0s78tprr43/5bnLli17z9fX94V58+Y5NX7kt2ez2fD+++9bbDZbiCiK8U0dDyGEtBbU+osQQghpgWw2m09qaiqMRiM8PT2bOpw6cXNzQ0hICEJCQm6u7n3zND03atQoxMXFcWlpaWzr1q2ct7c3ioqK4O7uDoPBAMYYXF1dGy3mgIAALjk5WRUEweDl5TWmf//+8PDwuPG+oijGtLS0ap+AKIryt4yMjMdSUlKc/Pz8Gi3muzl8+LACYAcl2oQQUr9oZpsQQghpgSRJmmIwGGZxHDevZ8+ejnPnznU2mUxNHVaD+uGHH7Rz584JJpMJiqJA0zRwHIfw8PCmDg0AUFZWhs8++8xitVrnhYeHb63uGEmSRphMpsjnnnvOqTEfEtxOWVkZPvroI4uqqveJotgySqYTQkgLQck2IYQQ0oJJkuRoNBo3+Pv7T5k9e7ZjU8fTkBRFQVZWFnr06AGr1YrvvvuOqaqqP/vss02+ab2iogJffvml2WKxvP3GG2+8d6djly5d+m6XLl1eWrBggTPPN21jmC1btljOnTv30RtvvPFqkwZCCCGtELX+IoQQQlowURStmqYlGQyGVv+ZbjQa4evrC47j4OTkhNLSUq6srIz/5ptvkJGR0WRxFRYWYvXq1WaLxfKPuyXaAKCqqpSbm5t64sSJJp3xKCwsREpKiq4oyrKmjIMQQlqrVv/BTAghhLR2RqOx7aVLl7Ty8vKmDqVRvfDCC/Dz82NWqxW7du3SVVVFSkoKzpw502gxXL58GV988YWloqLir2+88cbfanKOKIqKzWb7w/79+61VVVUNHOHt7du3z8wYWy6KYmmTBUEIIa2Y8Le//a2pYyCEEELIPdi/f/8eWZad0tLSgnx8fIwuLi7gOO7uJ7ZwBoMB/fr143r27Ino6GjuyJEjOH/+PE6fPg1/f3+0adOmQa9/5swZbNq0qUpV1dnh4eEba3NuaGhoweHDh7uZzWb/vn37NnrB2oKCAuzfv9+iqupDoaGhSmNfnxBCfgso2SaEEEJauNDQUBw4cCBKURTnU6dOBXTs2NHh5grZrZ2TkxP8/PzQr18/zJgxA7Isa7t27UJVVRXXtm3bek+6zWYzdu7caT18+HCJoijjRFGMrcs4kZGRsQUFBf/n5+dnaugHA7+0b98+a35+/vtvvfXW7ka9MCGE/IZQsk0IIYS0AqGhoWzMmDGRBw4csAqCML5///6/qfaezs7OaN++PTiOQ8+ePXmO49ihQ4e4pKQkjB49+p5n+m02Gy5cuIADBw6YIyIi9KKiorWKoswURTGzrmOGhoZaDh48qJWXl48aMGCA8Z4CrAWz2Yxt27apqqr+PjQ0tOnWsRNCSCv3m/ogJoQQQn4DfkhNTX3tk08+aTN+/Pi2zamfc2PhOA6jR4/mhw0bhi+++EKPiIjgw8LC7ngOYwxlZWUoKSlBZWUlzGYzNE1DQUGB9dKlS0pFRYWjg4NDgtVqXcsYW/vmm28W1kesuq5/duHChfDi4mJ07NixPoa8qxMnTmiCIGxbsmRJXqNckBBCfqOo9RchhBDSykiSJACYZTQa1y5cuND5t7Sk/Jfi4+MRGRmp//Wvf72lKKymabh8+TIuXryoXbhwoaqoqMiR4zizwWC4DCBb1/UcXddtiqKkAYgGkCSKYoPsbV66dKnUv3////fAAw84NcT4N1MUBf/6178sNpttmCiKyQ19PUII+S2jmW1CCCGklRFFUQPw0zvvvPPnL7/88lOe5xEUFMQmTZrUqvtwV8fT0xOqqt5YQ56Tk4O4uDjr2bNnOUEQLimK8qOmafsBJIqiWC+z1bWlqurnKSkpr06bNg2Ojg37I4qPj2cADlOiTQghDY9mtgkhhJBWTJKkATzPL9V1PUwQBKZpGtehQwfdbDbbDAaD5u3tzfLy8nhPT09+7ty5Tk5ODT652qhiY2OxZ88evPTSS4iIiDBnZGSYdV3/UNO0r0RRzGrq+K5bsWLFT2PGjJk1evToBmvLqmka/v3vf5vNZvN4URSPNdR1CCGE2FGyTQghhPwGSJLkznFcJmPMkef5HF3XRwNwADAYQAWAiAULFsDX17dpA61nVVVVWLVqFaxWKwRB+FmW5QdEUbQ1dVy/JEnSUGdn50Mvv/yysyAIDXKNpKQk7Ny58/jrr78e3CAXIIQQcgtaRk4IIYT8BoiiWACgumnrc5IkcUajMbO8vLxbY8fV0IqLi2Gz2aBpGjRNe6w5JtoAIIriyffeey/9woULA++7774GucbRo0crbDbbigYZnBBCyK802FIlQgghhLQMoigyjuMOFhYWtqrlbvn5+VizZo1ZVdUZoihyoigWN3VMd2Kz2bZnZmbqDTF2YWEhCgsLdQDbG2J8Qgghv0bJNiGEEEIgy/LKmJgY1pq2l504cULWdf3foijubOpYaoIxllxUVNQgfa9PnDihAFjdUBXVCSGE/Bol24QQQggBgBSDwZARERFhaepA6ktaWppV07SfmjqOWsivqKio95ltVVVx6tQpTVGUVfU9NiGEkNujZJsQQgghEEXRLMtywJkzZ4rOnj3b1OHcM8YYKisrHQFcbupYaqGXq6trvdfTOXfuHHiePy2K4oX6HpsQQsjtUbJNCCGEEACAKIqVsiw/vH37dovVam3qcO5JRkYGBEG4AqCoqWOpKScnp9/dd999bep73Li4uAqr1fqv+h6XEELInVGyTQghhJAbRFGMZYztio2NRVpaGlrqHu6SkhJwHHdMFMUWcQOSJBllWQ7p1atXvY5bVlaG3NxcDkBLWk5PCCGtAiXbhBBCCLmFzWaLOHToENatW4dTp07d8p6iKFBVtYkiqzmz2QxFUXKaOo5amODm5qa4uLjU66ApKSlMEITdzbXlGSGEtGbUZ5sQQgj5/+3deXxV1b338d/e5+x9MpGQF7OATN4CRSgIIloea0GtV21qUR7Hii0tWoc+7avtvdZi1l1Ba+3tvVevt6BFSikyVKwTFkRFKo8IyDwFEJAkDIYxAxnOOXufvZ8/THxAQQick31CPu/Xi1eSzcla3/yVfM/aey183iuGYXQ3DMNbunTpw7169crKz8+XXbt2yaxZs7x27dpFJ0yYkGVZVtA5T6m2ttZNJBIHgs5xpiKRyLjBgwe3Sfa4a9asqYnFYn9M9rgAgNOjbAMAgBMopSpERIuIPPbYY8eeffbZ34wYMcIqLS11ROTX1dXVV77xxhvfuummmzI3btwoubm50qtXr2BDf86hQ4fqRaQs6BxnQmvAdmADAAAgAElEQVRthcPhgq9+9atGMsc9fPiwVFVVJURkcTLHBQCcGco2AAA4pYkTJz6ltX5r5cqVvzYMo63v+5Pj8fj04uLiPdXV1XX79u076Pt+u69//esZV155pWWawT+h5nme7N27Nywiq4LOcoZG5ufnJ/Ly8pI66Nq1ax0RmaGUSiR1YADAGaFsAwCAL6WUKhaRO4+7FNNaX1pSUnKFiLwiItkrVqyYt379+oFjx47N7tq1q4h8er5zaWmplJeXS05OjgwaNEgMI6mLtyf1wQcfJERkq4h8nPLJksAwjOG9evXKSOaYiURC1q5d6zqOMzmZ4wIAzhxlGwAANJlSapuIbGv4skJrfUUsFrtlxowZM8aPH5/Zvn17mTZtWl1lZWVpIpFYahjGVbFYrO/w4cOTmiMajUpFRYWEQiGJx+OydetWd9WqVdWO49zUUnYiz8jI+EbXrl3tZI750UcfiWEYW5VSHyVzXADAmaNsAwCAc9ZQbOdNmjSpzQsvvPDMkCFDso4cOVLnOM4ApZSvtf7R3r17nxo+fHjWuc7l+75s2bJFlixZcqyqqsq2LOsT3/fDhmFEPc9b6jhOoVJqXxJ+rJTTWofC4fDXu3fvntRxN23aVBuNRqcmdVAAQJNQtgEAQNI8+uijfyoqKqpatWrVHa7rTjtudXnLrl27ZN++fdJ4m/nZWrRoUXTdunUH4/H4D0VkycSJE9P/LLJTu71Dhw5mfn5+0gb0PE927twZFpHXkzYoAKDJDN9vEXdYAQCAFu6xxx77vmmav2vbtm1k6NChbdq3by95eXnSrl27E57lrq2tlfLycqmqqhLTNOWCCy6QDh06iGEYUl1dLc8880yd67oXKKWqAvxxzpnW2haRmGVZcvHFF8vQoUPP6Y0Iz/PEdV0pLy+XWbNm7f/Vr351bu9qAADOCSvbAACgWUycOHG61vovhw4dum7JkiV3mab5T4lEokdOTk7m3XffnV1dXS3vv/9+3a5du0zbtjf7vv+xiEQSicTI7OzsjOuvvz7bMAwJhUKHf/3rX7fooi0iYprmg/n5+YmBAweGysrKEjNmzAiJiIRCIV/k09vlGz4ax33+2cfGf8dfNwxDfN+XUCi0v5l/HADA57CyDQAAAqO1NkKh0B86dux47+HDh+tc133Y9/0Xjl+11lobhmHcaFnWlHg83tUwjNmFhYV3ftm46U5r3SEcDu+eMGFCdocOHUTk08J8+PBh8X1fDMMQ0zRP+fHznzd+LSIye/bsYzt27LhfKfVCkD8jALR2rGwDAIDANGyeVnj48OFcx3H+Sym15mSvEZH5WutFtm3/Lh6PvxxA1KSybfs/Bg8ebDUWbZFPV6WP//ps+L4vZWVlYRFZeo4RAQDniJVtAACAZqS1viQSibz/05/+NDMjI6nHa8vhw4dl6tSph3/1q1+dW2sHAJwzM+gAAAAArYXW2ohEItOuueaajGQXbRGRnTt3imEY7yR9YABAk1G2AQAAms/1WVlZFw0ZMsQ4/Uubbtu2bdWxWOylVIwNAGgayjYAAEAzaFjVfnL06NE5ppn8P8F835cDBw5YIrI26YMDAJqMsg0AANA8RmdkZPTs379/SgY/fPiweJ5XIyIlKZkAANAklG0AAIAU01qHIpHI06NGjcpOxaq2iMjHH38shmG83bB7OwAgYJRtAACAFDNN8/527dr1GDhwYMrmKC0trYnFYmyOBgBpgrINAACQQlrrPNM0Hy8oKMg2jJTsiyYiImVlZSIiK1M2AQCgScJBBwAAAEg2rXV2OBye5rruA0qpI0FmsSxrYr9+/cKdOnVK2Ry1tbUSjUZDIrItZZMAAJqElW0AAHA+utl13VtF5IogQ2it+4rIA1dffXVmKufZtm2bWJa1VCnlpXIeAMCZY2UbAACcV4qKisaKyIyGL98OKkfDUV8vjh49OiM3Nzelc61atepYNBp9JqWTAACahJVtAABw3pg0adLdvu+/2PBlO6VUNMA4/8u27T5Dhw5N3YPaIhKLxeTQoUMREWFzNABII5RtAABwXigqKvp5Zmbms0OHDpVIJPKiUupokHkyMjKKrrzyypQd9dVo586dEolE1iqlYimdCADQJNxGDgAA0pLWOltEcpVSn5zmdYZhGOMty3rszjvvzFizZk0sFosFuiu31vriSCQy/Gtf+1rK51q/fn1NfX39H1M+EQCgSVjZBgAAaUdr3TMcDu8Jh8Mljz/++H9qrU/6N4vW2rBt+09t27Z9avz48RldunSRnj17RmzbnqC1tpo7d0Mm27btuVdddZVtWamNEI1GZffu3ZaIvJLSiQAATUbZBgAAaUVrnRcOh1dfffXVbcaPH2+7rvszwzBOeqSVYRjfy8nJGXvvvfdmd+zYUUREBgwYIF27du1uWdakZg3ewLbtp7t37977sssuC6V6rrVr13rhcHihUqoy1XMBAJqGsg0AANKKZVn/2r9//6zLLrss3KlTJ8nMzBTf9/9Ja33C8Vla6+6hUOgPt9xyS3YkEvnsumEYMmbMmCzTNH+itb6mObNrra8Mh8N333zzzZmGkdJ90cTzPFm2bFk0Fos9ntKJAABnhbINAADSiud5/+eqq67KFPm0OP/iF7+Qiy++OGrb9mat9UgREa31AMuyVo8aNSqjS5cuXxgjJydHbr/99kzbtl+bNGnSd5sjd8NRX/997bXXZmVmpvRYbRERKSkpEc/z9iilVqd8MgBAk1G2AQBA2tBa9zQMI5yfn//ZNdM0ZcyYMRkFBQW9MzMz3/rtb39bYlnWqhtuuKHD5ZdffsrNXnv06CH33HNPZjgcfqGoqOhbqc5uGEZBZmbmRQMHDkz1VCIismnTpmg8Hv9zs0wGAGgydiMHAABpw7Ksf7300ktDn78F2zAMGTBggPTr1y/zk08+6dG2bVvJyck57XhdunSRu+66K2vmzJkvFxUV3V5YWPh6KnJrrfMty5peUFCQ8qO+REQSiYQUFxeL53kvnv7VAIAgsLINAADSRigU6tK+fftTbiwWCoWkW7duZ1S0G3Xv3l3GjRuXFYlE5j7++OMPa62T/jB1JBL546BBg7J69eqV7KFPaseOHWKa5kdKqY+bZUIAQJNRtgEAQFrQWhue513WuXPnpI/dtWtXue+++zLz8vIm2rY9S2s9IFlja63H2rZ9/bXXXhs5/auTY/Xq1TXRaPS/m2s+AEDTUbYBAEC6GBQKhXJTUbZFRPLy8mTChAnZAwYM+G5GRsaqJ5544vfnOqbWup9lWX++7bbbsmzbTkbM06qsrJTS0lJTRLiFHADSGGUbAACkhVAo9M+9evWSVB6ZZdu2FBQUZDz00EOZGRkZP37sscfO+rZyrXUf27bfuuaaazIuuOCCZEc9peXLl8cNw5imlDrWbJMCAJqMsg0AANKCZVlDevfundUcc2VlZckPfvCDrNzc3Edt2/6z1jrjTL9Xa21MmjTph5ZlrR89enTXYcOGNdvfU/X19bJ27VrPcZx/b645AQBnh7INAADSguM42/bt2xdvrvny8vLk3nvvzerVq9cttm3vaDzD+8torTtFIpH327Vr99T48eNzhg8fbqZyJf7zli5d6pim+aJSak+zTQoAOCsc/QUAANKC7/uXrVu3zi4oKGi2OSORiNx2221ZW7ZsyVqwYMGiJ598cms0Gv2TiKwRka1KqWqtdUhELgmHw2PD4fADw4YNC48aNcpujiO+jldRUSGrV692Xdd9pFknBgCcFco2AABIF7179Ojhi0jzLRU3GDBggPTt2zdrx44dQ4uLi/vv37/fraqqyvzNb35TGw6H7ezs7ETfvn0jI0aMsPPz85s7nvi+L/Pnz68Tkd8qpfY1ewAAQJNRtgEAQFrwPO9x27b/R0TO/BDtJAqHw9K/f3/p379/lsinBbeqqqqtZVmSnZ0dRKTPbN++Xfbt23fEdd0nAw0CADhjlG0AAJAuFpeWloZ930/pjuRnyjAMadu2bdAxJB6Py/z58+vi8fg4pVSzPdMOADg3bJAGAADSglJqr+d5bk1NTdBR0sqSJUucRCKxUCm1JOgsAIAzR9kGAABpIxQKVUWj0aBjpI2DBw/K6tWr47FY7IGgswAAmoayDQAA0orv+0FHSBsLFiyo9TxvolLqQNBZAABNwzPbAAAgLWitM03T7JiXlxd0lLRQUlIin3zySY3neZODzgIAaDrKNgAASAuWZf22d+/ebiQSsYLOEjTf92XhwoU18Xj852yKBgAtE7eRAwCAwGmt+xqG8aNvf/vbmUFnSQfbt2+XqqqqAyIyJ+gsAICzw8o2AAAIlNbaiEQiz11++eVW0OdZpwPP82TRokW1sVjsJ0opL+g8AICzw8o2AAAI2o2ZmZnDRo4cySKAiBQXF0t9ff3HIrIw6CwAgLNH2QYAAIHRWufZtv3sddddlx0KhYKOEzjP8+Sdd96pjcViv1BKsS07ALRgvIMMAAACE4lEZgwYMKBd3759g46SFrZs2SLRaPRjEXk76CwAgHPDyjYAAAhEUVHR9ZZlXXPddddFgs6SDjzPk8WLF7OqDQDnCco2AABodlrrr4bD4dnf/e53syyr1Z/0JSKsagPA+YayDQAAzpnWur3W2j7D146wLGvZjTfemNu7d+9UR2sRfN9vXNX+JavaAHB+4JltAABwTrTWl4nICsuypojI/V/yOiMSiTxjWdYPx4wZE+nXr1/zhUxz27dvl2g0uk9E3go6CwAgOSjbAADgrGmtu4vIChERx3G6fdlrw+HwL3Nzc+/5/ve/H8nMzGyWfC2B7/vyj3/8oyYWiz3KqjYAnD+4jRwAAJw127Yfb/j0GRG56VSv01r3Mgzj326//fZsivaJdu7cKRUVFZUi8regswAAkoeyDQAAzorWuofv+2Ovv/56sW37ehHJPdVrI5HIlJEjR9r5+fnNmDD9JRIJWbBgQa3jOA8qpRJB5wEAJA9lGwAAnBXbtv/z0ksvDQ0bNkwGDx7czbbtrVrru7TWJ2wvrrXulUgkrhoxYkQoqKzp6oMPPnDr6+s/9H3/9aCzAACSy/B9Hg0CAAAnp7UeJCL7lFJHjr8+adKkH7Rp0+aZ+++/P8u2P92EfNeuXfLuu+/WHDx40DBNc148Hp8sIiW2bf9lxIgRV3/zm99kr5jjVFRUyJQpU+ocx7lYKbU76DwAgOTilx4AADgprfXXRGS9YRg/E5GnGq9PmjTpe5FI5H/uuOOOzMaiLSLSp08f6dOnT05VVZWsWbPmrvXr199SX19vd+nSxRk5ciR/cxzH932ZP39+ne/7T1C0AeD8xC8+AABwKusbPn72LLbWuo9lWZPvvvvuzI4dO570m/Ly8mTUqFHhUaNG5TRcOqPzt1uTDRs2+Pv27St3Xfd3QWcBAKQGz2wDAIAv0FoPafh0fTgc9kREioqKrrcsa/W1116b1blz5wDTtWyVlZWyYMGCaDweH6OUigedBwCQGqxsAwCAk1nR8HHoI4884mmtLwmHw6/ccccdds+ePYPM1aIlEgmZN29ebcPt4xuCzgMASB1WtgEAwMnYIiJKKU9rbViWdX+/fv1civa5eeutt+JHjhxZ7bruE0FnAQCkFruRAwCAE2itLxKRHQ1fjrAs62f5+fnfvueee7IyMzODjNaibd68WV5//fUDjuN8VSl1NOg8AIDU4jZyAABwglAo9L3c3FyvoqLCFJEV/fr1q7/hhhsyI5FI0NFarP3798vrr79e5zjOdRRtAGgdKNsAAOAE4XD4nptuusm88MILGy+xnH0Oqqur5YUXXqh3Xfd7Sqn1p/8OAMD5gGe2AQDAZ7TWg03TbN+9e/ego5wXHMeRmTNn1jmO80RhYeHLQecBADQfyjYAAPhMJBL5+YgRIyKGYQQdpcXzfV9eeuml+urq6r+7rvtY0HkAAM2Lsg0AAERERGtteJ737YsvvjgUdJbzwbvvvuuUlpZuj8fj31NKsSMtALQyPLMNAAAafc227XB+fn7QOVq8jRs3+itXrqxwHOdapVQs6DwAgObHyjYAABAREdu2f3bppZdmcAv5udm+fbu88cYbNY7jjFZKHQo6DwAgGJRtAAAgWusLPc/730OHDuUW8nNQUlIif/vb32obivbmoPMAAILDbeQAAEAikcjzl19+eTgnJyfoKC3WgQMHZM6cOfWu696klFoVdB4AQLBY2QYAoJXTWvcXkZFXXHEFb8KfpWg02njE148KCwvfCToPACB4/FIFAAA3Dhw4MGRZVtA5WqT6+nqZPn16neM4MwoLC2cFnQcAkB4o2wAAtHKhUKhddnY2Tfss1NbWyvTp02urq6unO47zk6DzAADSB7eRAwDQyiUSiU2ffPJJTdA5WpqamhqZNm1aXXV19RTHcX7CWdoAgOOxsg0AADaVl5cHnaFFOXr0qMyYMaOuvr7+94888ogKOg8AIP1QtgEAwLba2trwsWPHpE2bNkFnSXslJSUyd+7cetd1/2XixIl/CDoPACA9cRs5AACtnFIqHg6HF2zdujXoKGlv9erV/uzZs4/F4/ECijYA4MtQtgEAgMRisVe3bdvGc9un4LquvPrqq7G33367zHGcYRzvBQA4Hco2AAAQEXmttLQ0w3XdoHOkncrKSpk6dWrd1q1bl8Tj8YFKqY+CzgQASH+UbQAAIEqpY7Ztl7JR2om2bt0qU6ZMqT969GhRPB6/Xil1LOhMAICWgQ3SAACAiIj4vv/Bvn37+nTr1i3oKIFzXVcWLlwY27RpU4XjON9RSn0YdCYAQMvCyjYAABARkVgs9l5ZWVlt0DmCVllZKc8991zt5s2b33Icpx9FGwBwNljZBgAAjVbt2bPHCzpEkBqP9UokEv/muu5/KKX8oDMBAFomyjYAAGi0pa6uLtQaz9v2fV8+/PBDb/HixTWu697MbuMAgHPFbeQAAEBERJRSCdu239+9e3fQUZqV67ryyiuvRN99990Sx3GGULQBAMlA2QYAAJ+JRqNL9+7d6wSdo7lUV1fL1KlTa7dv3/5OPB4fpJT6OOhMAIDzA2UbAAB8xvf9eRs3bnQTiUTQUVJuz549jcd6PRmPxwuUUq1+czgAQPIYvs++HwAA4P978sknN950000D+/btG3SUlFmzZo2/aNGiWtd1by0sLFwQdB4AwPmHlW0AAHCCaDT6zJo1a87LVd5EIiHz58+PvfXWW3scxxlK0QYApAplGwAAfN4ru3fvtlzXDTpHUkWjUZkxY0bdli1blsXj8YFKqY+CzgQAOH9RtgEAwAmUUodDodDBo0ePBh0laSoqKuS5556rO3DgwF9isdi1SqnqoDMBAM5vnLMNAAC+wDTNfVVVVd06duwYdJRztmfPHpk9e3a94ziPTJw48emg8wAAWgfKNgAA+ALDMGItfUfyRCIh7733nrt8+fL6RCJxG89nAwCaE2UbAAB8ge/7HbOysoKOcdai0ajMmjWr7tChQ2tc171VKfVJ0JkAAK0LZRsAAJxAa22bptm7U6dOQUc5KxUVFTJz5sza2traF+Lx+ANKqZa9RA8AaJEo2wAA4PMuadu2bTQSidhBB2kK3/dl1apV3jvvvBPzff9R13WfUkr5QecCALROlG0AAPB5X+vWrVuL+hvBdV1ZtGhRfOPGjXsdx/lnjvUCAAStRf0iBQAAzaJtTk5OJOgQZ6qmpkbmzJlTd+TIkWXxePxWpVRF0JkAAKBsAwCAz2ite5im+XXLskJBZzkThw4dkueffz7u+/6zjuP8UinlBZ0JAAARyjYAAGigtW4vIiWe50mXLl2CjnNamzZtkvnz59d7nveTiRMnPh90HgAAjkfZBgAAjR5v/KRHjx5B5vhSjuPIggULYsXFxYcdx7lRKbU+6EwAAHweZRsAgFZm0qRJ4z3P26iUWnX89Ugk0vaiiy6SwYMHS0ZGRlDxvtSRI0dk1qxZdXV1dW/F4/G7lVLHgs4EAMDJULYBAGhFtNZ5IvJ8KBRaKyJDj7tu2LZ9yaBBg+Siiy4KLuCXKCsrk9mzZ9c7jvMvnudN5lgvAEA6o2wDANC69LRt2wmHw/1/97vfbXAcx3Bdd4FhGDsyMzO79u7dO+h8J7VlyxZ57bXXal3XvaWwsPDNoPMAAHA6lG0AAFqXK3r37u0UFBRk7d69e9C8efNERAb6vi9VVVXiuq6Ew+n158HKlSsTixcvrnIcZzTPZwMAWgoz6AAAAKBZHa2rq0tkZmbK2rVr6xuuXWqapg6HwwvffPPNxmuyatUq/+mnn/Z37doVSNBEIiFvvvlmfPHixYcdxxlK0QYAtCSUbQAAWpf3ysvLLRGR4cOHZ4qImKZ5m+d520Tk2NGjRxMiIsuWLfPeeecd6datm/HXv/5VXn755cSGDRuktra2WULW1NTI1KlTa9etW/d/Hcf5qlKqpFkmBgAgSdLrPjEAAJBqF2dnZzsikvGVr3xFJkyYIMXFxT8rLy+v7dChQ8YVV1xhLV682Fu5cqU5btw46dq1q1RXV8uMGTNk06ZN0qdPH++uu+5K6Zv1Bw8elBkzZtTF4/H/cl23kI3QAAAtEWUbAIBWxDTN4d26dYs0ft2lSxfp0qWLKSJtjh07JnPnzvUqKytl/Pjx0qlTJxERyc3NlYceeij0+9//3quvrzej0WjKjgZr3HE8Ho/fV1hYODMlkwAA0AwM3+fNYgAAznda614i0kdEwl27dp37wx/+MO/4/z969KhMmzZNOnbs6N15553myTZJO3TokMydOzcRDoeNH//4x0ld3fZ9X5YvX55YsmRJXSKRuLWwsHBhMscHAKC58cw2AACtgGEY/y4ib1uW9b0LL7ww6/j/q6yslOnTp/u9e/f2x40bd9KiLSLSoUMHeeCBB0KVlZXGokWLvGS9YR+NRmXOnDl177333nbXdQdStAEA5wPKNgAArYBpmpeIiFiWNeYb3/iG1Xi9rKxMJk+eLJ07d/Zuvvlm4wzGkXHjxhkrVqwwq6urzzlXw/x1paWlc+Lx+CVKqdJzHhQAgDTAM9sAALQCiUTiFhFZc8stt2REIp89si3r1q3zunXrZtx5552hMx2rc+fO0qlTp8TUqVPNW2+91ejevXuT88TjcXnjjTei27Ztq3Uc58dKqXlNHgQAgDTGyjYAAK3DVhGRnJwcERHxPE/+/ve/J4qLi41vfetbp13RPp5pmnLfffeFhgwZYsycOVNWrFjhN+WW8vLycpk8eXLd9u3bX3UcpwdFGwBwPmJlGwCA1mGciEi7du3E93156aWXEmVlZcZ9991n5Ofnn9WAo0ePlj59+sjcuXNl7969ie985zshy7JO+Xrf92XlypX+u+++W++6LruNAwDOa6xsAwDQOjwq8umq9IcffuiXlJQY999/v3m2RbtRz5495cEHHzT2798vzz33nF9ZWXnS18ViMXnppZfqFy9efMhxnMso2gCA8x1lGwCA1mGnyKery++//76MHj3azMrKOt33nJGcnBx58MEHQ23btvWnTJkiR48ePeH/G28b37lz58uu6/ZSSm1OysQAAKQxbiMHAKB1eFpErty4caPEYjFjyJAhSR18/fr1snfvXqNnz56JnJyckMinz4UvW7bMXbp0acz3/Z9MnDjxT0mdFACANEbZBgCgdfhIROTVV1+V/v37+6ZpNmlTtFOJRqMya9Ys7+DBg2ZBQYExYMCAkMinq9kvvvhiXV1dXbHrujcrpcqSMR8AAC0FZRsAgNZhoIiIZVli23bs7bfftiKRSCgSiYht29L40bIsyc7Olvbt2592wA0bNsjChQv9bt26yUMPPSQ5OTni+74sX748sWTJkmgikfi57/tTlVJeyn86AADSDGUbAIDW4e8i8jPHcSIbNmyoFZE2pmnmhcPh9qZptjVNM9f3/dz6+vrLREQefvhhOf487uPF43GZNWuWV15ebt5www3GwIEDDcMw5ODBg/Lqq6/WHj16dIfrumOUUrub8ecDACCtGE05FxMAAJzftNZ9RWTbuHHjpGfPnl/4/+LiYpk/f77fqVMnf8yYMWZubq64rivvvfees2LFirjneQ97njeZ1WwAQGtH2QYAACcoKiqqHzt2bEb//v0/u+a6rsyZM8fbs2ePed111/lDhgwxDMOQQ4cOyV//+tfampqaZbFY7PtKqf0BRgcAIG1wGzkAADiBaZqvbN68+db+/fubIiLbt2+X1157zWvfvr088MADkpeXZ/i+L2vWrPEXLVpUn0gkfu553h+VUryDDwBAA8o2AAA4QSKRWFRSUjLGcZzIvHnzvJKSEvOaa64xhg0bZhiGITU1NTJz5sz6ysrK/Y7jfFsptTXozAAApBtuIwcAACfQWl8oIqUiIh06dPDGjh1r5ubmyt69e6WsrMxZvny57/v+867r/lwpFQ04LgAAaYmyDQAAvkBrnWea5jbP8zqLiFiW5YjIQdM0V8disd8rpd4POCIAAGmNsg0AAE5Jax0RkTYi0kNE1rHLOAAAZ4ayDQAAAABAkplBBwAAAAAA4HxD2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMko2wAAAAAAJBllGwAAAACAJKNsAwAAAACQZJRtAAAAAACSjLINAJyj9QoAAAAlSURBVAAAAECSUbYBAAAAAEgyyjYAAAAAAElG2QYAAAAAIMn+H9ifxVrebqluAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.rcParams[\"figure.figsize\"] = (20,15)\n", - "ax = rs_df.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = wq.plot(rs_df, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "\n", - "ax.set_axis_off()" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAANNCAYAAACHtm2CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3gU1foH8O87O1vSE0IKIQHSCCV0AhICiUiVItUGIggqKiJWFL3sHRCJoj/LvYgFFZEuIigCIlVCDaACIjUklJBCSYEkm92d8/vjbGAJod0bL5b38zw8JDOzZ87MzvPAd04jIQQYY4wxxhhjjDFWfZRbXQHGGGOMMcYYY+yvhsM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhgDEX1ARP+41fX4TxHRP4lodjWVNZOIXq2Osm7yvIKIYv7X571ZRDSMiNJudT2qGxF1IKIDN3hsChGd+L3rxBhj7M+NwzZjjP0NEFEmEZUS0XkiynEFSu+K/UKIUUKISf9h2SYimkBEB4joAhGdJKIVRNS1+q7gz4GIRhDRfiIqJqJcIvqOiHx+h/OsJ6IyIopw29aZiDKr+1x/VERUy/WCIsRt28tX2bbyeuUJITYKIeKqqW635IUNY4yxPxYO24wx9vfRWwjhDaA5gBYAXqqmchcBuAvAUAABACIBvAugZ1UHE5FaTef9QyGiZACvAbhPCOEDoCGAhb/jKS8A+NP2RrhZlZ8bIcQpAIcBdHTb3BHA/iq2/fi7V5AxxhirhMM2Y4z9zQghcgB8Dxm6AVzZEkdEDxPRYSI6S0TfEFFYVWURUWcAXQDcJYTYJoQod/1ZKYR4yu24TCIaR0S7AVwgIpWIXiSiI65W4H1E1M/t+GFElEZEbxLROSI6SkQ93PZHEtEG12d/AFCzUr1uI6LNRFRARL8QUcrV7gcRtSCiXa6yFgCwVNp/Q/cCQAKALUKIn1z3+awQ4nMhRLGrnPVENLLyNV6tXjfgPQD3Xa3rORE1dJ2zgIh+JaI+bvtmEtE0V8t7MRFtI6Jot/2CiMYQUQYRnSaiqURU5f8ZiOhdIjpOREVEtJOIOrjt+ycRLSSiWa7z/EpErd32X+8Z2EREbxPRWQD/rOL0P8IVrInIAPkS6d1K29q5jgMRmV3P1DFXz4MPiMjDte+yruFE1JKIfnLV7UsiWlC5tZqIniWiPCI6RUTDXdseATAYwAske5J869o+jmSvj2KSvUDuqOp+MsYY++vgsM0YY38zRBQOoAdkq2BV+zsBmALgbgC1AGQBmH+V4joD2CaEuJHxq/dBtnb7CyEcAI4A6ADAD4AGYDYR1XI7vi2AA5BB+g0AnxARufbNBbDTtW8SgAfd6l8bwHcAXgVQA8BzAL4ioqAqrtUEYAmAL1zHfglgwH94L7YB6EZEGhG1JyLzDdyTKhHR/a4XE9dyEsDHqCKEEpERwLcAVgEIBvAkgDlE5N5N+j7I+x4A+SxMrlRMPwCtAbSE7Lnw0FXqkQ754qYG5PfyJRG5v7DoA3nP/AF8A+Dfbvtu5BnIcF1D5foBbmEbMmjvB7Cm0jYjgO2u318HUN9V3xgAtQFMqFyo67n4GsBM13XNg7wf7kJd9a4NYASAaUQUIIT4CMAcAG8IIbyFEL1d9300gARXr4duADKruB7GGGN/IRy2GWPs72MJERUDOA4gD4D1KscNBvCpEGKXEMIG2d28HRHVq+LYmgByKn4hohqultRCIiqrdOx7QojjQohSABBCfCmEyBZC6EKIBQAOAWjjdnyWEOJjIYQTwOeQYTeEiOpAtiL/QwhhE0L8CBksKwwBsFwIsdxV9g8AdgC4s4r63wYZxt4RQtiFEIsgw+NN3wshxEYA/SHD6XcAzhDR/7laV2+KEGKuEKLpDRw6BUBvImpcxXV5A0h19TRYC2AZZMCusFgIsd314mMO3Ho6uLzuap0/BuCdSp91r+tsIcQZIYRDCPEWADMA91Cf5vounJAvNZq5ffZ6z0C2EOJfrrJLqzj9BgDxRBQAGdo3CiEOAajptm2rEKLc9aLmYQBPu66rGLLb/71VlHsbABXymbULIRbjUmCvYAcw0bV/OYDzla7bndN1XxoRkVEIkSmEOHKVYxljjP1FcNhmjLG/j76uVrUUAA1Qqeu1mzDIFlwAgBDiPIAzkC14lZ2BDMEVx54VQvgDaAUZLtwdd/+FiIYS0c+ucF4AIL5SnS6GeCFEietHb1f9zgkhLrgdm+X2c10AgyrKdZWd5F7PStd6UgghrlLWzdwLCCFWCCF6Q7aG3gVgGICRVR1bHYQQ+ZAtxRMr7QoDcFwIobtty8Ll9c5x+7kE8t66c/++slxlXsHVlfo31wuWAsjW3iq/R9d5LOQaf30Dz8Blz0xlQohMACcgv9+OADa6dm1x21YxXjsIgCeAnW7nW+naXllVz0Xlupxxvahwv7bK97CinocBjIXshZBHRPOvMRyBMcbYXwSHbcYY+5sRQmyA7B775lUOyYYMrAAAIvICEAjZbbmyNQASXF3Tr3tqtzLrQnaBHg0g0BXQ9wKgq3zW3SkAAa56Vajj9vNxAF8IIfzd/ngJIVKvUlZtt+7plcu6mXtxkauldg2AtZABEpATmnm6HRZ6rTJuwlQAt0O+4KiQDSCi0jjrOrhOvSuJcPu5jqvMy7jGZ4+D7GYf4PoeC3ED3+MNPgOiqs9WshEyVLcDsLnStiRcCtunAZQCaOz2XPi5Jg2srKrnIqKK467minq7eiskQT5PArJLO2OMsb8wDtuMMfb39A6ALkRUueswIMfdDiei5q5xx69BjsvOrHygEGIVgHWQXdTbklwGzAjZDfdavCADRz4AuCaXir/mJy6dMwuyW7jmOl8SgN5uh8yG7FrdjYgMRGRxTX5V1QuBLQAcAMaQnLStPy7vxnzD94KI7iKie4kogKQ2AJIBbHUd8jOA/kTkSXJSsxE3cr3XI4QoAPAWgBfcNm+DDPcvEJGR5ARxvXH18eZVed51LREAngKwoIpjfCDvXz4AlYgmAPC9wfL/42egkh8hZ8LPFkIUubalubb5QX7HcLXyfwzgbSIKdp2zNhF1q6LMLZBdv0e7nou7cPlzcT25AKIqfiGiOCLq5HqGyiBDv/MmymOMMfYnxGGbMcb+hlzdj2ehiqWjXC2y/wDwFWQLXzSqHtdaoT/keODZAAoAHIUc69z9GuffBxkQt0AGkyYANt3EJdwPOXnWWcix57Pcyj4O2YV7PGSQOw7geVTxb54QotxV/2EAzgG4B8Bit/03cy/OQY4JPgSgCPJ+TBVCzHHtfxtAuet6P4ccJ10lIhpMRL9e/fKv8C7cwpvruvpAToR3GsD7AIYKIfbfRJlLISeh+xlyDPonVRzzPYAVAA5CdjUvw3W6frvV8b99BipsgJxAzX1m958BeADY6TYEAZCt8IcBbCWiIgCrUcU4a7fnYgTkMz0E8hm33WCdPoEcn11AREsgh1SkQn4XOa76jr/RC2SMMfbnRJcPR2KMMcbY3x0RCQCxrrHGDAARbQPwgRDis1tdF8YYY38O3LLNGGOMMVYJESUTUairG/mDAJpCTqjGGGOM3RD1VleAMcYYY+wPKA7AQsgZxo8AGCiEOHVrq8QYY+zPhLuRM8YYY4wxxhhj1Yy7kTPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHGGGOMMVbNOGwzxhhjjDHGGGPVjMM2Y4wxxhhjjDFWzThsM8YYY4wxxhhj1YzDNmOMMcYYY4wxVs04bDPGGGOMMcYYY9WMwzZjjDHG/vQ0TTNrmka3uh6MMcZYBRJC3Oo6MMYYY+xPQtM0MwCn1Wp13Oq6TJw4sb/ZbH61vLw8SghhNBqNp8rLy++yWq07b3XdGGOMMQ7bjDHGGLshU6ZMedXhcIxTFKXQ4XDcZrVaD9+qukyePHmip6fnMz179vSqU6cOzGYzdu3ahdWrV+8YN25cwq2qF2OMMVaBu5Ezxhhj7LomTZo0wsPD4+lnnnlG7dSpU4DZbJ51q+oyceLEeywWy7MPP/ywV/369WGxWEBEMBqNAGC4VfVijDHG3HHYZowxxtg1aZoWoijKe/fff7+nl5cX2rRpoxiNxqaapiW7HWP4X4yZ1jSNVFX999133+3p7e19cfvu3bvFsmXLLpSVlY36vevAGGOM3Qj1VleAMcYY+yvRNC0AQDyAfVar9cytrk81GRgXF4fg4GAAgMFgwJ133un19ddfL3vjjTd+EkLUBhBpNBoLX3311QlOp/PfVqv19xqnZnA4HAEhISEXN+zYsUNftWrVabvd3tlqte75nc7LGGOM3RQes80YY4xVE03TElRVXRsQEKCfO3cODocj3mq1Hr/V9apM0zQFQDcAjQHsBbDKarXqVzlWNZvNe/v27RvXoEGDy/adPn0ap0+fhpeXF8LCwnDmzBksXLjwwvnz5z978cUXn/y96p+amrq6Y8eOtycmJirl5eWYOnWqzXWvD7vq7AEgwGq1Zv9edWCMMcauh7uRM8YYY9XEYrGM79Kli/fjjz/u27p1aw+j0fj8ra5TVVRVfdHf3//LhISE1wIDA780m81rNU0zuh+jaZqqaVo9k8k0PzQ0NCIuLu6KcmrWrIkGDRogIiICBoMBwcHBGDFihJcQYqSmaXVutl6apnWZMmXKzEmTJg291nE2m+2lbdu2XQCAvLw8qKp63C1o1zIajUdUVc2YPHny0zdbB8YYY6y6cDdyxhhj7Aa5xiR3AGACsMFqtdrd9wshWtWpIzNmmzZtjDt27HhI07RXrFZrURVleZjN5ulEFFtWVjbaarX+9L+4BgAwGo09u3fv7hUXFwdd141ffPFFwokTJ6wAXtE0LcpsNr+lKEpPk8lkb9CggdKjRw8L0Y0NxzabzRU/3lTXOU3Tunt4eCzq0KGDV1pa2iBN0zKtVuuPVzl8b3FxsacQAj4+PnA4HKGaphkAkNls/jIhISGoZcuW6vvvvz9Z07QF3MLNGGPsVuCwzRhjjN0gk8n0rtlsfshisegFBQW2iRMn9p8wYcJGANA0ra6qqsF+fn4AgICAANSvX185ePDgywDGuZejaVqYyWRaHhUVVT8mJsZjxYoV6zRNC7dareerOq8r5McDiACw2Wq1Fvw316HrenZRkcz/iqKgb9++nh988MGzr7/++gCj0VivXbt2xrZt2xosFovxOkVdYc+ePSCifTfbfV5V1e6JiYle7dq1AxF5rl+//nEAVwvbEQaDwQnA4Ofnh6CgIOTl5X1mMBhiw8LCmt5+++2qoiho0aKF4aeffnoawPOuexgA4NzvOJ6cMcYYu4jDNmOMMXYDNE0jInrsiSeeUH19fXHo0CGfhQsXLtc0rZHVaj1uNpun3XbbbaqHh8fFz3Tv3t3j0KFDT02cODFTCPGh1WrVNU1LMRqNXycmJnp37NhRJSLs2bNHyczM7A1gXqVzGolouNlsHq+qak1/f39nXl6e0DStl9VqTbuBOisAyGq1Ot2322y2WZs3b+4RHx/v5eHhAT8/Pzz11FOWnJycBrVq1XJvnb5ECMDpBNSr/9dBCIE1a9ZcsNlsz16lPvUAmKxW68HK+wwGg7/JZAIAREdHY926dZ3cPucDoLvJZOphMBgSVFWN6d69u6Gitf2+++7z3rVr12Bvb2+lefPmUBQ5Si48PNy0d+/eJgBgNpsXOxyOngaDIVfTtG5Wq3XfNe5bHID6ADb+ty82GGOM/X3xBGmMMcbYDUpNTV3buXPnlNatWxMA/Pjjj45NmzblKIqS5eHh0WLUqFGeFYGxQlZWFpYtW1ZSWFhYpuu6yel0erdq1Qq9evW6eMzmzZuxYcOGL1566aWLY5U1TQs3mUyrQ0NDw5OTk70iIyNBRDhy5AgWLFhwwW63t7vazNuaptUwmUyvOp3OYUII1Wg0zrLZbKOtVmuZaz+ZTKZ/eXl5Da+qzlcoLQUCAwGHA9i6FYiOBlwt+JWvdd68ecdsNls999ZjTdNqmM3mLwDc7tq0zmazPWq1Wk9UHPPGG2/s6NevX6vY2Fjouo7U1FSb3W7vr6pqIoBnwsLCHA0aNPCpVasWQkJC4P5SoyqnTp3C7NmzS0pLS4cJIQ55enpuevrppz137dol1q1bt3PcuHEJVdy3rmaz+W0iqhcUFOTIyckps9vt0VfrccAYY4xdC7dsM8YYYzfIZrOtzMvLaw85ZhsdOnRQw8LCwsvKysLr16+PqkJr3bp18fjjj3seP37cc8uWLWL//v3Yv3+/3qtXr4uTlMbHx2PdunUDNU17DIAgohEA3gsNDRXDhg0j9/HS0dHRSE5O9ty4ceM4AENc3aMHAwgHsImImhiNxsnx8fEeHTt2NBuNRixZsmRwVlZWmKtFXLdarULTtCeJqNG+fftub968+dUvurQUKCoCevcG7rwTSEsDpk4FBg8GunYFXNcshEBaWlqp3W6fVhG0NU3zURRluNFo1Jo0aeLRrVs3sxACGzdu7Lply5b9kyZNelrX9RkAahoMhviIiAgAsmv7gAEDzKtWrZpfq1Ytwx133OEREBBww9/TmTNnMHPmzFK73T58woQJX06aNMnatGlTk6qqiIyMpLVr19au/JkpU6a87eXl9cidd97p2aBBAyiKgrffflux2+2xAP5n4+kZY4z9dXDYZowxxipxBdgkABVTcO8HkGE2mx+OjY29mKiJCDExMdctj4hQp04dRERE0KRJk9CoUSOlqKgIvr6+AABfX1/ExMSIjIyMw06nM6Bu3bp2h8OBY8eOUVpamrNDhw4G9/JCQkJIUZT6rl/v8Pb2/qBRo0bm7du3q0IIxMfHo3fv3hePv/vuuy2fffZZcn5+/seapj1itVqdVqtVTJw48dTSpUuxb98+vV69ekpsbCyCgoIunaikBGjUCDh7Vv6ZMAF4+WWgc2fg2DHg9tuBRx8Fhg7Fpk2bHMeOHcvUdf1fmqYlWyyWCQaDoX1kZKTj9ttv9woLC7tYbKdOndRGjRqpixcvfruoqOhFXdejPD09dYvFcvGYuLg4xMXF+dzYN3a53377DbqufzZhwoSFAGAymZqHhISoAHD+/HkoinK24lhN0wyqqr7s6en5yKhRozwrWsyLiopQUlKiQC6NxhhjjN00DtuMMcZYJWaz+SOz2Xxf3bp1CYA4deqUs6ioyBQdHa1HR0f/V2ULIZCeno6cnBwxdOhQUjMzgR07MCgoyDMvOdnT398f2dnZ5i+++AIAUFhYeEUZBQUFEEJkuOr6ULt27TwTExMpIiJCHDlyhPbt2ycAUK9evaAoClRVxQMPPOA5b968e3NycrpNnjz5K4fDkW80GtsGBgbCbDYrv/zyi7569WrFYDBg4MCBiAsKkuO0x48HoqLkWO3Zs4GBA4GWLWUIDw0F1q8HHnwQx1VVd4aF3UVGYx+z2fxp165dPRs0aAAPD48qBoADoaGhGDVqlNf69eujNm7c+F/d08qICERkcPvdy2iUc73puo7y8vI6kyZNet1kMjUyGo1JwcHBxkGDBnm6d00vLS2FqqpnXn75ZbumaS0sFss/iKim3W4XDodjLoB9APZZrdYz1Vp5xhhjfxk8Zpsxxhhzo2laDVVVs5999lmze0trdcnIyED+e++heO9eHI+IwODVq2HKzgZiY4F9+wBPT3z9wAN6vSZNyO+dd2j+yJEict8+qtO6Ndo/9RQAYMXKlfb09PR/CCGWGI3Gn8aMGePh7e0NACgvL8ebb74Ju92OymPDhRA4duwYjh8/jrKyMt3f319p2bLlxQnFHA4Hli9fLn7euZPGf/EF1IICYMECoEuXigKAykuACYGzixahcNw4BObn37/0nns+6qRp3rVrX9FTu0olJSWYOnUqAMBqtd74jRRCjiE3Xjlhel5eHmbMmFFst9vjrFbrqTfeeGNDQkJCx8TERJhMJvz22284ffo0fH19ERERgcDAwCvKKC0txTvvvGMzGAw7nU5ni06dOnkQEVasWIGQkBC7rusl586d8zAYDL/abLYh15pw7X/FtVZ6HQAnrFar7VbXhzHG/u4M//znP291HRhjjLE/jA0bNjT29/cf3L59+ypbZG9aaSmQnQ388gswdCgC4uMReuAAsk+exO7mzeE1dizCO3QAmjYFgoNxqFcvrMvPp7u6dKEz+/eL4MGDqd6HHyLQZoP/HXcAAQE4360bvNasue3uuXPHxoeEGAO7dyccOQIEBMBgNKJ169bw9fXFzp079aZNm1LFWHIigr+/P+rUqYOoqCgKCwuD+3hwRVEQZzTS6V9/de6pX598WrdGXocOFFjRtfzFF4EvvgD69bv4mbPnzmH+9u3YEhuLs8HBfZIzMkzhFosCkwkICbnu7TEajbDZbDhx4gQSExNhMBiuPOj8eRmqrVYgL0/ez/h4YNIkYO9e4MIFOXGbEEDNmvDy84MQQsnOzn4wLS2ttc1m65mVlQV/f3+EhYUhKCgIdevWRWhoKDw9Pa9ar6ZNm6q1a9eO6NatmzEyMhK1a9fGhg0bEBUVZRg6dKilffv2BiFErZycnPpJSUlf3MRTUe00TbvdaDRutVgsTwJ4bO3atdNSUlIct7JOjDH2d8fdyBljjLHLnSsrK6si8d2EjAzZ5frxx2Uo7NgReP114OmngY4doXbtip/efRdUVATH6dMQ06eD0tNRmpCAAiJEPf20sLRuTQ2WLiWHw4HZ48bp2dnZym2//IJOR46geXCwoW5mpq/fkiXw/+YboEkTYNYsYNQoICMDHrt2ocm8eSiyWpUfCgvRb8IE2Q28cqt0ZUIAffqgr9lsOOHlhS/79NEvLFxIw4YNQ82aNeHZuTNETg5yT51CUFAQVFXFwYMHkZ+fD0VRcDAmxng0OhqjGzaE77hxQGQk8PbbQFVLibmJjY3F1q1bcSIzE1E+PjJY/+MfwL33Ahs2yAnZcnKA48dlD4DWrYEPPwR27gS2bAEsFiA/X74MaNwYUFV0rFnT2MhuD8mJirpna34+ThYXo379+tesR2V+fn7wqzTrekJCgmPHjh0qAL1///6Kqqq6ECKvYr+maQbI5c1Kb+pk/wHX3AI9VFXtbjabRw4aNMgjKCgI7733ngGAEUDZ710HxhhjV8dhmzHGGLtcjI+Pj/P6h7kRAnjnHeBf/5KzdHt5Afv3A2VlwJEj8ndAhk8XRVGEruu0OT0d8QYD/IjwcZ8+ekdvb7o3IIDgcACqClVV8eCDDyqzZ8/Grl279E4HDyr06quocfQo8OSTMsxHRsqg/cgjwOHDwNat8LBY0NrhwK6tW7FywAB0278f9NFHwA8/ADYbMHEisH27HH/t6wts2gScOgVs3AjDjz+irq8vnrv9dmXdunWYOXMmAMDbZEL4oUM4mJkJIkJcXJzYt28fAUBQUBByc3Nh9vGB0rIlsGgR8NNPQFISMGCAnEjNfUbx7Gz5d24uoiZPRkh0NIx33AHUrAmsXSu7iPv5yRcUL74oZz3/7DNg6VJ5zSNHyiXI3n0XGDZMXtOiRfJajh8Hzp5FzfnzUXPzZniWlaFo1y7Y0tPhM2wYUKcOUK8eEBR0/RcQlfTo0UP19vbGunXrlP79+2PXrl0XbDbbxwCgaVqCqqqrdF33Tk1Nnfjiiy9Oqvjcq6++OtxoNL6k6/qy8vLy56xWq369c02aNKmf0Wh8wGazvWC1Wg9X3m8wGJ728fGZ2KRJE0urVq0Mfn5+mDt37gUiettqtRbf1IUxxhirdtyNnDHGGHPRNI3MZvOn7du3r3+jY46xbx/w1VfAmDFAcTHw1FNy1u5WrQB/f2D4cKBDB2DVKmDzZhluT55Eq5QUAoDsY8fQpn59UPv2+GHjRuoyYgR5Pf+87BbtGm9NRIg5dAhnNmygtd7eosmaNWSoVQt0221ykrJjx+TxJ0/K5bmaN0dhWRk+KSrC4dBQnAwLw7nu3Z0N77xTQX4+YLcD4eHAE0/IZb2mTQNeeUUGz9RU2QofGwsAiIyMROvWrREYGIjI8HB0Gj8eHRcvhl9gINLS0shisWDcuHFIS0tzlpeXKx07dnTGxMTIbuR16sjW6R9/BHbskPflk0+AoUOBunUBXQeaNwdycpDfoIFYXqcOJS9YAHh4AH36yGszm4GKruXl5bLebdrIFu8mTYBmzeSxDocM9zk5QNu2QK1acqx5r17Y4++PrUQ4puuI0XWY9u8Hdu8GXnhBluPpeSn8+/tf8+vOyMjAN998gzZt2iA2NharVq0yCCGe3rBhQ7nJZNrYp0+fWt26dVO2bt3abt26df9KSUmxaZrW1mKxLBg0aFDoyZMnm5aUlOQlJyfvqvTsGTZv3vzPLVu2vJOWltZ13bp1rVRVfb1Zs2bxZ8+ebZqUlPR55bps3rx5TMeOHVsmJSUpFosFpaWlWL58uXA6nf1SUlJsbmU33LBhgyElJeXCjT3UjDHGqgO3bDPGGPtL0DQt1Gw2L7bb7a1UVZ340ksvTb6Jz7ZTFKWHxWLp7u3t3bhly5bX/1BOjgxqTzwhw93nnwMFBXL88IYNMqyeOydbZmvVAjIz5Z9+/YAWLaA+/1p7F7sAACAASURBVDwS/PxQ/7PPUODvL0JCQqj+4cM4cewYAufNAwoLZegdORKoUQNeGzYgqaAA83Nz6eOJE0VhdjZFzZkj7mvalJStW2Vg/vlnYMAAHHrhBSxatw5CzoJKoaGh2JeXZ6j722/wSkhA3JAh8hqWLpV1/eUXGWJbtJDhttLEcN7e3mjVqpX8Zft2wGzG1q1bAQD9+/eHqqoYO3asYf369Vi9erWhZcuWuDizt68voGnAM8/I0B0RIbt/nzx5qcX/1VfRKCuLtmdmIjc3FyFVjfU+cwaIi5MvLLp0kUG9ok4GA3D//XJfxf1u0uRi9/XYuDhs3rpVFHh40G/duiEhIUH2Rnj0UWDjRvkiIDNT3o8tW4BrLOdW0a28YcOGAIC6devajh07NlXX9eOenp7BjRs3BhEhPDzcnpmZeSeA+QAaR0VFiaioKHTr1s1r4cKFz2uaNsNtPXKzyWT6Mjg4+I7bb7/ds6CgoFlhYSEaN24MHx8f7Ny5s52maWFWqzXbvS42m21uenp6zzZt2vgAwOnTp2EymTJfeOGFoopjJk6cONBkMs3SdV1omtbVarVuutq1aZrW3Gw2j9N1PdNuty8E0MhisdwrhDhjs9nmAFhzIy3yjDHGJA7bjDHG/vRcM4jvbdOmjV+LFi3U6dOnv6Jp2myr1Zp1nc+R0Wj8TlXVHm3btnX6+PgYmjRpAoPBgFmzZjmPHj1qSExMFF26dLnU11jXgU8/BebNk63I48bJLtzffitbt1evloFv6lS5PNa998rPjR9/6cT5+YCuY+Xbbzu9mzQxwGAg59dfI1bXRUxpKaFRI9k9euZMua71o48C06Yh8N57MXzHDqR16ybS09Pp8OHDdKFPH/jUqCHDYseOyFu6FMdefhmdR4+GKSqKlixZggEDBmDGjBn49ttv4eXlpcfFxSlwOIDHHpMtwi1byknIiork2to7dshx0VXQFy7E7vPnkevlheTkZMS6WsA/+eQTR15entq2bVunxWK5NObdagUOHJD3KzUVOHpUdvPu0UOOaXfdn7p16wIA5syZg7Fjx16cIR0AyoqKkF9cjNDp01FYowb2rFuH9qmpMH1eqbE3MVG+PJgxA3jzTeC114CoKGzatAlERCNGjMDF9b7Pn5eTrc2eLYP8Rx/JdcOv0a1cCIFZs2bBbDaL8PBwAoD+/ft7/fDDDw84nU6RnJzsWTHhXFBQkDkzM7NicXEPVVWViuv08/OrXVhYePz1119PJyKD0WhsHxUVZRkwYICnql75XzNd180ATk6cONGpqmqRqqqHy8vLNwCwnz9//uJ07DVq1IDD4airaVprq9W6AwCIqEWbNm3MqqoqGzduHAigyrCtaZqnqqo/duzY0efs2bNlhw8ffiIwMBDx8fE+paWlYseOHQNKS0s3ArjzKp/3AFBW8QKBMcYYh23GGGN/DXdHRUV5dOrUSQWAiIiI8oyMjNYArhm2iWiI3W7vQUQ4cOAATp8+jbS0NKiq6iwoKDAAwObNmyk3N1cMuf9+wjffyBmwH3tMjsVu1gzo3Fm2qI4bJ1tXO3eW4S0rS05KdpVJucrKy7Hv/HmDT+PGGLh4MT4bPhx33XUXvJo3l2OndV2G0smTZYvuypVQNQ2+MTFILC5W9u7di7KyMuzfvx8tGzeGPmcOVp44IX6pWZOi27Z1Jr/+ukGZMAErLRYxY8YMeu6553Dw4EEsWrBA+bVFCxEVFUUec+bIwBsdLQPx8OHy3OvXy/A+cOAV9T768884a7cjctAg0bx584vJNCcnR9V1HSdPnqSMjAxE1awJstmAdu1kV3Ei2QLdubNs4f6//5M9Ae64AxgxArj3XvTv3x+LFy9GVlYWQkJCsHfvXpzOz0frESPwW9OmmJWcDH3/ftSsUUMPzctTVi1apCclJysXW90B2Sr/xBOuyh4F0tPh4e2NsrIyLFmyBKM7d5a9Dx5/HEhOli81atUCFAX47jsZul9//WrPCwwGAwwGAypCsbe3N/r16+dR+djCwsJyAOdcQxMGR0ZGegCAwWDAqFGjPE+dOuWZl5dXW1EUhISEVN2aX8kTTzxhMBgMAXl5eQmnTp1q7XA40KBBg4vfgZeXFwYMGGD56quv1k+cOHHAhAkTvtd1fe2BAwdGh4WFGZ1O58FrFO8FwNyuXTsQkQWABQDy8/Nx+vRpioqKsuzZs+eKJn9N08xms3kuEfU1mUw/aprW2Wq13tycB4wx9hfFYZsxxtifnsViubNhw4aeAOB0OpGbm2sAkH2tz2ia5mk0Gt8dPHgwjhw5IlRVVU6cOKGfOHFCadOmjdK8eXNkZWXhq6++QumWLaRnZUE5cADw8ZHjjX/++dL43ttuk63BFe65R7bkvvCCDJVRUVecf8+ePQCAzsnJUOfNAwA0atRIBieDATh4ELj7blnG0qXAoEEQNWrgy6lT9QP79ysCQM+ePbFu3Tp9VVmZMnLuXOR4eop7hw6lmJgYAzZtAo4dwxO+vvRWbi6OHDmCmEOH0MhmE0fDwmhdVJRotWIF3bZxIyg0VNYXkBOH+foCzz8PBAYCKSkXW3vLy8sxr0ULdGvbFkO7dr2sCbh27drOmjVrKgCUOXPm4Kkvv4RfkybA3LmXDjIYgLFjZfmuyeKOHDsG9dNPYc/IwJGsLN0cFaUsWLBA2O12qhEQoHuZTGL/8OFo8+SThji7XbaAZ2YqF/bsQXjduli2bBm2bNniHD169KXWdCJg9Ghgzx7gX/9C40aNcLSwED137wa+/FLOkP7ll3JMubvmzYHly6/12KCgoAAArjurWuvWrb2PHj36HoCxHh4eMY0bN3arHiEsLOxSK/t1BAcHi7y8PNq8eTN69+4Nf39/1K9fv8o6xMXFYciQIV6fffbZyokTJ04FoJ09e9ZksVh0AGcrjtM0rR6AMxUTqVmt1vzU1NTc48ePR9SpUwd2ux1ffvnlhczMzHJVVXfb7fZ0h8PxbuXzmUymj8LDw3vcfffdyrvvvtsGQDyAX27owhhj7C+OwzZjjLE/PafT2T48PBwAcPbsWdhsNgeA3652vKZpZDAYJtWpU8dUt25d1K1btyK4XPZ3Y4sFterWRekXXyCtYUNRf8wYClq8GIdDQ1F8+DBatmwpuzuPGyfH+T766KWT3HefbGX9+WfZalqv3mV1KCqSw2pDmzSB1wcfwOPAAfHvf/+bHnjgAQQFBQEPPSS7RffrB9x1F1BQAOFwwPbhh3hh8mS8/9RTaNGiBVq1aqWkp6fjuNGIkSdPKlQx3rh9eyAyEsbRo9EpPx/+/frBNHYsBn7wAZ1/5RXs2L6dvMaOxY+1a8N7zx5RsnEj+fr6olmzZnL5rNmzZQvvtm3Ac88Bqor3339fb1pYSK0feohw4sRl1/PQQw/JsJuaipKsLPFp3750/+OP44r22qefBqZNg+PhhzH944+d586dM/j07Im6+/eLDjt2KG0SE2H29SW/u+6C+uSTCg4ckLOTA7g4ddmhQ/AqL8eAAQOU3Nxc5OfnG0pKSq5cM7tmTWDCBNS57z4MP3ECiwYOBF57DZFxcVU/GImJ8l7ruvzOKsnJyQGAqtcCryQ2NhYjRozw/uCDD5rqui6Ki4sR4D4b+w06d+4c8vLyCACSkpJu6DMhISEwGAzw9/d/sri4+EGn02nx8vIqB1ALAFJTU98zmUwP67pu0zQtyWq17gUAu90+9fvvv58ycuRIr6+//ro0Kytrjd1uv3v8+PG2qs6jaVp7Ly+vgYMGDfIoKyuDzWZTAFyr9Zwxxv5WOGwzxhj701MUpcRut9cAgMDAQDRo0MD422+/5aWmpuYrinJQCOGw2WwthRCzjEajh9ls7uHn5xfYp08fryoLLCkB5swBpaUhsFcvlLz6KvzGjaN5336L/PBw0Lffwm63o06dOggODpbdxSutxwxABuXp0+WSXHPnQq9RA+Xl5UhLS8O2bdsQGxsrgp1Owjvv4PFvv6W33noL77//Pob07YuwxYvh4ekJUbs26KefgNhYKAYD6rVoIZYMGYJib29ZbpcuSLjnHtld/bnnZDfwWrXk+cPCcGbIEDQaMQLGkSNld/dateANoGNmJs6ePIllvXqheVISft26FXa7HevXr3c+8cQTBrVGDTlD+WOPAcuX45vz552FhYWG+kOGgOLjr7xWp1MG1J07EVW7Ng6oKkptV2a04vPn4fH669CbNcPZs2cNAPDUU09BURSCrsvW6JdfliH/wQcvTaLmLjpaThwHYPjw4ViwYIE+Y8YM5aGHHoK3l5dc53zZMuDrr+VY+cWLUb56NeqtXi02Tp5MRc8+K5o1a3Zly7DJJJdG69Hjit4Iu3fvFl9//TUpioIhFRPMXcPSpUudu3fvNgCAzWajadOmYfDgwYh0W/7tRgQEBCAlJQXr16+/Ys3vyhwOB44ePYoVK1YIDw8P8cQTT1gOHz5smTt3LurUqWPKyMi4Z9KkSYrZbB45ZswYy6FDh8zffvvtRk3TngcwF8D7Z86ceerQoUPRBw4cMOm6/j2Ap6ZMmVLfbrfvFkJ8aLVaL36pZrP5uaSkJA+z2Ywff/zRrijKzFdeeaVU07QYyPW/Yx0Ox24Ac/4X644zxtgfDS/9xRhj7E9N0zSzoigvJSQkeHh5eYGI0KhRI2P79u0NcXFxPnXq1KlXq1atqMOHD3sQ0W3+/v6tBw0a5NepUyeTpdKs2xAC+Phj2QX57ruBnj2BOXNgvPdemAYPhqlpUxQUFIjCwkICZDduALJbeceOVU+ulZAAhIcjf84czFyzRqzevp3Onz8vEhISqEOHDmQRAti0CabBg5GYmAi9sFA06tWLVmRmYmtBgf5t06a0+eBBBAYGwtPTE4sWLVIS7r0X3bp1g+fPPwNNm8pJztLT5VJZeXlAw4ZysrPXX4dP795YsW8fbH5+CN++XdZT14FVq1C8YwfS27TBHV26UM+ePdGqVSscPnwYmzdvFl5eXhQcEQH06wfbzJkoXrBAiRk0CM1TUuRyZz4+l7rRCwE0aCCX7EpNRXpZmZ6bm6vk5ubqYWFh5OPjc/F2fP/99/rCWrXo17NnhS4ExcTEID4+HkQk719oqCz3lVeAdevk2PE775QvNCr83/8BJ04AHTvCaDQiLCyMftu2DUe2bRPNxo0jWrwY+ssvY1NsLObt3i3W7t5N6eXlyPP3p87ff4+itWsp4L77UFRUhN27d0NVVXh7e8uys7LkTPI1a148XWFhIWbOnEnBwcH6s88+S/7XWR6suLgYy5YtU3r16oU+ffogOTkZhw4dEmlpaRQUFCRf0NyEWbNmAQCCg4Ov+dkVK1Y4V61apcTHx9PgwYPJYDBAURRs27YNp06dElFRUYE+Pj4pgwYN8vL19UVISAiFh4dbiouL7yguLh6r6/p3TqfzvJeXV/Jtt91m0HU9OTo6umvDhg1bOxyOlNLS0jZJSUlzATkpIRF90K9fP9VoNGLZsmUlJSUl32/btm2iwWB4NT4+vmvjxo3bCyHuKCkpGbx27dqPU1JSeCw3Y+xvhVu2GWOM/ampqvpK3bp1zUFBQZdtNxgMl0081bhxY2zbtg1paWn4/PPPERQU5Hj00Uflv4NCyCWfZsyQQWvePCAsTAZvmw0IDQV5eCDg+HFkZ2dfTNQbN25EoNOJhv36gc6cwamcHPj5+eHo0aMoKCiAzWbDgQMH4OHhgfA9e8QDWVnku2MHyGS6lMrLy2VgBmAymdClVy/CrFno+fzzOGowKPd+9BE++ugj59KlSw3l5eUAgK1btzrj4uIMmDJFlvHee8CCBXIN6zfflOt6f/aZDOBjxyKva1dBISE6EhIMSEwEfHxA9epB/PwzxEcfobCwEADg6emJwYMHK6tWrXIuXrwYixcvhq+vr7PEx0dJCQujtgUFciK1d94Bzp6VLyVWrpQTjb31llySC0Dfvn0N3bt3x9SpU5V9+/aJsLAwys7ORkZGBnJycigyMhIDH3+c5t9zDw6Ul2P//v0Xl9KCzSZfCCxYICdXW74cePVVeZ/GjAFq15YvFDp2lMefOIHgzZvx6MqVWBsejllt24qyBg3ozNy58PDwEH379qXY2Fg4HA6kp6djicWCesXFwr91a9rYqROKo6P1NWvWKLGxsc6kpCRDWFiYbBVv0ODiV7R8+XIdgPLAAw9c2bfcJSMjA999953ueiYpICBANG/e/OLxI0eOJE3TsGPHDriP374RPj4+zlq1ahnirtb93SUmJsawZ88e0blzZ6qYwM1ut8NkMqGkpIQSEhI861UazhAZGYnIyEivPXv2iG+//TYNgIiIiFAbN26Mxo0be1cc17p1a4+33377dk3Tmlmt1l+I6P6YmBhnxRJvSUlJHrt3736uadOmvk2bNoXRKCdJT0xM9HrvvfdqlZeXNwGwA4wx9jdCcglOxhhj7M9H07TaqqoeGj16tMf1uthW2L9/PxYsWAAAMJlM4pnOncl8/LgMkBMmyHG7w4bJ9ZcPHQK8L+YNOJ1ObNu2DbVr18aaNWv0kydPKoayMjQ8c0Ycioqi0lLZU9bDwwNeXl56aWmpUrt2beHr6yuCgoKU1iYTlA8/BCZOBCpeDhw4IMd8L1kig+ubb8rwHBcnJxQDkJ6ejqysLJSWliImJgZZWVn6gQMHlMaNG+sDBw5UIIRsrZ4+HXjySVlueTnQtStQpw7mtmql3/3cc4q6Zo0ci/3RR0BgII7/9BO8mzbFiiFD9HsffFBRpk2TIX3jRmSXl+OX8nIRERFBNpsNTZo0gWn+fDlj97hxcrkwm02uz71okQzcbjZv3owffvgBDRs21FNSUpTp06fDYDAgKCjImZiYaNg9ZQqO1asHu8UCIQSGDRuGuv7+cuz7mjUXX0AAkOuVv/MOkJQkl1arVw/o1Emu3X3kiKyT2YzSwEBs2bJF5OXl6cnJyYbQ0FCQW2+DH374Qd+zZ4945plnDAUffwzfuXOhfPIJcj098cPq1SIrK4vanD2rdzl9WoFrWbFz585h+vTpuP/++1E5qLpbt26dvmXLFiUlJQW5ubno1KnTFd2+NU0DAPzjH/+4bGmz61m9ejU2bdqEhx56CBEREVc9TgiBTz/9VA8KClL69Olz2b6PP/5Y+Pr60j333HPVz+fn50MIcdXW8+XLl5fv3Llzk67rbxmNxs/uv//+oGvdEwAoKSnB22+/XeZwOOpZrdbcqx2naZo3gL4A9lqt1p+vWShjjP1JcNhmjDH2p/Xaa6/9q0WLFo/06NHDdDOfczgc+GnFCmTPmIGuJhM8unSR4bZi3eYFC+QY6I8/vup606mpqSIoKIj6EmHtjz9iX2Qk6tevj9OnTzu7d+9uqFh/+gpvvSXHBa9cKX8/d0623g4eDHz/vQz8Tufls5u7sdlsSE1NRVBuLqI8PfXuAwcqeOQROcu33S7rvG+fXMs7IwPw9sZRXcfSTz5B7+HDER0TIwOyqgKZmbC9/z6m5+aiqdmMlD17oMyfL7vPx8TI7tpmsyxn7Vp5X8aPlxPBHTok69iggTymkvPnz+P7779HQUEBTp8+DbvdjrFjx17srq07nVCefx546SVo778PT1XF4AcfRNjOnXKSsspOngS++gqYMwfYvl2Okf/hB/ly4LHH5PdXXn7Zy5HKPv30U2dERIShi6sFHroOdO8uw/t77+HoqVOY/9FH6GU04nyPHjh9+rTz119/NURHR4tBgwZdcwby8vJyLFiwwHnq1Cl64YUXqkzSJ0+exJIlS0RBQQF5eXnpY8aMUW4kdOu6jtdeew1OpxMvv/wyqlqLu8Ls2bP17Oxs5YUXXrisbm+88QYeffRRVO4BcjPWrFmDtLQ0hIWFFbVq1cqnZcuWl+6Jw3F5V3+XXbt2YdWqVWtffPHFOzRN81MUZbSiKMEOh2M9gKVWq1XXNK2jyWSaFxYW5nvs2DGTruuhVqv13H9cUcYY+4O48deqjDHG2B+IpmkE4IE2bdrcVNAGAPXtt9Fy6lQoRiOO/fIL9GnTZFDo108ueXXiBPDPfwK7dgHFxVd8vqioCDabjVq1aoXADRvQ08MDRITjx48jKirKsHjxYuFwOKo++TPPyMDdt68M2vn5wPvvyyCbnS0nBtu69crP2WzAjh0wDR+O24OD0WvZMoSvWaOIhg3lS4Lhw2UI3rEDOH8eyMmRE315eiIyOhqRbdtizrx52LFpk4CfnzzPQw/B3LUrej/4ILYbDJjbq5c813ffyfWnFUWuVR0eDsTHA926yTWqMzJkuNq7V25v2lRue/hhOc76yBF4Z2VhQL9+CAgIcJSVlQEA3MfIKwaDDM179yIpKQlD/v1v5I0Zg5MVLzeKioBNm4ApU+T9SUgA5s8HQkJk0E5NlS3/P/0kXzIsWyb3ATJ8p6bKn2fPBkpLcerUKZw6dcrQtm3bS/dUUYBvvgHatgVmzEBkXh6imjXTQ2fNwsGNG51nzpyhfv364XpBG5BDAOLj4w0mk+mqrRi1a9fGww8/TI0aNdILCwuVKVOm4JNPPrk0jvn8eWD3buDXX+XvrgYRRVHQv39/AHKitmvVIzIyUiktLUVJScnFbWVlZSAiBAYGXu8yrikrK0sHgAceeMC3ZcuWhNxcubTb55/LcfYTJlzxmYCAANhstk6TJk2aajQa9zdq1OgfycnJY4KDg2cBcKampu7y8PBY2a9fv7CkpCRvInIAKP+vKsoYY38QHLYZY4z9WYUpimK64QCh6zJENmkCnDgBg8GAdiEh+DElBXNGjxZo316GOqsVCAiQrauHD8uu2W7279+PadOmwdfXF02aNAFmzoTn++8jMTERpaWl2Lt3L8rKyqhiaa8rEAGNGsnw+PLLsjW2tFSG+8cfv9RCmJcnu3tfuCBbme+/H9B1HPfx0bdlZGDmyJHYNno05i9frovmzS+fnK1PH/nSYNw4IDgY2LcPd911F/r164eNy5aR0+GQAVlRgPnzER0djcTERBw9ehQLFy4Ul9U1IkKGvtq1ZSvy+PHAgAEyyBcWyjXGv/oK8PSUa2cLIV8c9OsHZGWh+zPPqEN++knUyM1FwaRJwLFj8pqEANLSgNatYbDbsTYlBb+azVgxYQIOx8SgKDwcq+bORemFC0CLFnLm9ZgYeU/uuUcubTZvnmxVb9FCns819hytW8t7rOtyXHlpKSg1FSM+/BC+vr6Apskgr+uyHiNGyBncH3oI9yQkKEFJSXiwc2fDsGHDlOuNk3Z35NAhZ21PTwN0Xb50OHhQvqx44w3g+HHg/fdhGj0a/e64Q3l+6VK02rwZgcuWGURoKDB0qLymZs3kCwxAPiN9+wIAGrVti5q5uch47TU6FRYmx9kPHSrvRbZcUr60tBTp6ekgostebPj4+EBVVZyotFzbzfL19YWlpAS5n3wCvPQSMGSIfDHVtCkwahRw5swVL4pmz54NAGjfvv2zAwcODB0wYIA5KSkJo0aN8m7cuLFQVbX52LFjPfLy8uwLFizI13X9LqvVeuG/qihjjP1B8ARpjDHG/qwCLBaLHYDHdY+cO1dOgDZrlpw8bNQoICQENWvUQMudO7Fy5Ur6YsIEfdCHHyqW0NBLn5s0Sc6Eff/9QHg4ysvLsXjxYsTHx+vt2rVTDIAM5llZiImJwaZNmwBAdO3alWrUqHH1+hDJ0FqxhvUdd8jfbTa5vnZSkmz1XrdOhv5vvgHq14eTCJ+tWKEAgFFVkZOTA4fDoZw5cwbe3t4wGAxyYqp335Xht1Yt2TKfkACkp6NJkybY4unpzEpOVqI8PQnPPguUl8M5ejR2RUejdu3aOHDgAC1atEiOBQdk6/6UKTJQDRkiX0CMHy+7dbdsKVtiL1yQM5GPHy+vr1Mn+bOuwzF9OvalpQnvwkL4HjxIOHJEBuft24H9+4GQECSrKs6npMB06hRK7rwT5++4A0ePHsVekwm3v/EGyo4dg+WBB+RY9t69ZRf2adPkxGnz58t7+M038pxJSTKUZ2fLa585E+f37MGJ+vVR0qyZIzQ3V8XGjbJV3GSSLwuOHpWTybVqBXzwAfDLL8CHH8owW7++PEfXrnJ8+FdfyZcy/fsDzZvL7Y8/DkyejK6zZxssK1dijtks7tM0UoYOlZPGpafL58jPTz4v+/bBs29f3D5/PlZFReFk164I9/WVvRJatbo0Xn3rVjmkAAC++w53R0YifelSbNZ1RGVkoIXBACxcCJSVAUuWIC8vD4WFhahXr57u3j+diBAcHKx/9dVX9PTTT1+3lf4KDgcwZw4Gbt2q7HE4cDwtDX6PPAL/116Tz7Kuy+77OTlyGENk5MVeBkFBQaJRo0bUsWPHy85LRGjQoAGdPHnSYTKZ1Ly8PLuu6wuEEGtvun6MMfYHxWGbMcbYn1VBWVmZ8YaOHD9edtdet04u6VSvnmzVBdCqVSvEZ2XBOWyY8nmNGvrDY8ZcSilms5z8KykJ577+Gp9++y1CQkL03r17K0Qk1+N+5BHAzw9BqgpFUVBWVka7du3S27Vrd+3eY0QyWO3fL8dq//vfQG7upWXEGjSQLdPAxeCSc/LkZUW8/PLLSE1NFbm5uTTd1QL/7LPPwjM6Gpg6FWjcWIa83FzAywu2Bx9ErVq1DAWZmQLvvQds2QLRsycKly+HV9euuPvNN7Fv3z6xYsUKpXlZGWIWLACefhp44AF5wk8/lcFz/Xr54mLuXBlOFy0CnnhCtjq7z7StKPjs4EEUmEwKBQfjnTp1xJh27ciycqWczXz1akBVQfXrw2faNODrr2Fu1w4B27Yh4osv0OT113Hg11+RX1Ag2p87R4Z+/YCAAByrWVMEZGeTT2kpsG0bRL16+KluXeEzYwZo4UKEN2xIlgMHgNtug/jwQxwQQmT9P3vvHVXVubV9X/dau8KmN+lNqjTpIsi2YS8xajRqLDGaGI2mnyTmkB1NNMmJ0WhiNLGbxB5bSgJETAAAIABJREFU1FhAECmCgAqCSkcpSu+w91rr++MGATUn5/nG837fOe9ZvzEYDPdmr3ov5JrzmnPq6xP/4mIWWVk0CHHkCDBjBg1EbNpEM+4ZGTQrnpNDv44epaL+nXeAlSupKD91itayZ2UBUikV0wwD6Oujy88PLYWFKCgpIcXGxoKriwuBsTFgakpLBz76CPjiCyAvD9i9G9LgYJTk5SGf5/l3f/6ZQUAA7SgfEgKo1TR7PGYMvZbDhkFXWYn02loowsIwzc+Pity6OkChAFavhn1GBqynTeOFZzTkGTt2LLN9+3ZUV1c/7tD/T6mtpc37zp2j93v8eGD2bFg5OODYnj1ot7ERRnd3nzv6/ff8c2+8wWzdvFnnynHE8sUXScrkyTzPMGhpaWH/rD/Qw4cPIZVKSffx6dXU1CxsaGgI1Wg0HwFol8vlyxmG8ed5PrOzs/Oz2NjYvL8+cBEREZF/H0SxLSIiIiLyn8oolmX/uhxKEGhTLRsbaonuqTHesoWKZaUS8gkTUHfhAqrOnWNyc3OpPRy01rWF4yDMno3iRYugmzQJ4eHhzOMO15WVwOzZqKurww8//AArKyvupZdeYmUy2T8/rtRUmh3du5cKq5oaWjccF0fHW/1JEytbW1ssX74cW7Zsgb6+vgCAyOVyPjk5mTUwMOBbW1uZo0eP8gCEuQUFLJF1l7OrVKipqkJbYiJITIzgbGND2srLIV+zBjfc3PDHwoXCcicnojp5EqGBgcSwvByVaWnCwBdfJIiOpq6ADz+kDcnkcjpj28am98CmT6c1uy0t4HfuhDB/PvLy8lBXV4eGhgYAgIuLi6DT6YTTp08TQ0NDKB89QlRQEO36HhZGgw+OjrTGetMmICgIzODBUO3Ygc5Jkwh++QU4fhy3bt1Ca1kZuWFhgVv79sE+Jkaora0ljVFRxLypCfN+/BGbfXxgP3euYJiXh/KpU4X6+nqyatUqACBQKGhTNADIz0f9qFEos7GB2+nT0Js9m57X3btAaCi9R97e1BY/eTLNID98CBga0hpxY2OaqY6NBfz9kZmczGkdHVljY2PoBwcTWFnR87p0iQr1Tz+lWfOe9TN2LOrS00EApu7992H63XdAQgJ1Xjz3HODq2u/+19TUPF6Xjw4dgqVEQo/x4kVg7150HDuGpnv3GOeSEujmzu3XSM3a2hq+vr7c+fPnyTNHmPE8nTH+6BHwzTe0fnzuXHod3n8f0NcHAMgaGsAwDOTdTfGampqQU1vL3F+/HlFDhkhIWBgs9+zB1LIy5tG8eSCEwNnZ+and5eXlITU1FS+88AJLl6gKS5Ys0c/MzAy5du3aUZ1ORwIDA/UdHByY0tJSjytXrkz79NNPp//9738/86fPlYiIiMi/GaLYFhERERH5t0ej0TAAhgIIAqCUSqVOAJa0tbVBq9Xi/v37qK+vh6GhISoqKnhfX18GoM2ZUFBAO32XlNCN3b4NNDRQUbNsGX3t1Vdh+s47GJCdzZeUlDBSqRRnz54VmpqaCAAQjsPcoCDhPT09Qvpmbr/4AmhuBrN1KwRBQHV1Nbtp0ybh3XfffbZV9+23qcXaxASPx3UdPkwzp2fPUpF38iTNas6b178OuxsDAwMAgKmpKQ+Atba2Zu7cuQNzc3NGp9OhpKSE4XkeGz09BWOW5Vu/+YbREYLW1lboFiwgE6RSweDTT8mx9nbURUbi4fHjcPf2JgYMQ+u85XLUDxok5E2ZIkTNnUuQmUmz24mJvV3HDQx664p7GDUK1/ftg0VsLK6kpKDA1hYgBHp6ekJUVBTx9PQkJ0+e5PPz82Gs02HGjz8i/oUX+OGffsrAwIAKeq2WNmNTKul1AnBq925YjhyJgI8/RnV1NU6dOoVF4eGoLSiAVqtFUVER6b7XwuwVK8gBd3de1tDATFyyhJybP19wnDiRWbhwIWQyGb3eBQXQbt8OiYcHqvbtEx50dJDrEyYI56ZOJe9t2QLi7k7Pbc0a6g7Qamm2/scfqQB9+216voGBvec+fToAwHHWLPYAALa5GemTJgmTxoyhN/DePSrwy8powKcbhmHwTkUFas6dQ+bUqRj1+++0fMDVlW7z7l36/cgRAICvry/09PSwf/9+1FZXw7LbVQE3N8DeHmTJEozeuxdO27fj5K5dwrSFC0nfDuFBQUHswYMH+cf16pGRNPB04gQNKKxeTWvz9+2jQSA9vX63+MKFC0hOTgYhBEZGRqSiogL79u0Thunp8dHV1SzTc02cnYHvvoNteTm1/T+BTqfDsWPHMHnyZLj2CSgwDAMzMzOiUChIVVWVLD4+XrCysmr29fU1CAgIUN68eXMeAFFsi4iI/Mcgim0RERERkf+jdHcNN/6zUT4ajUYBYBqAjNjY2LvP+rxcLj+uUCiGDxw4UCqXyyVKpZK5ffs2qqqq8P333wsNDQ0EAAYNGiTk5uYy8fHxAIC5c+fCtbmZ2rV7YBhq650yhc7UzsujAqq4GOGTJjHZJ0/ixMCBGDx4sBAaGkqMjY3B8zyYBw8Inn+efs7BgW7ryy8BrRbGxsYYP368cP78edLR0UGOHTsmTJ8+nQqtoiLg44+pgGlspOItIoJ+9fDoEa0d1mppFjE7m86tXruWWsr7IJVKuzdbxBYXF2PmzJnk+vXrCAoKwq1bt3D37l1MmjQJFy5cIJELF7KZgwcje+xYqNVqmJqa4u733wv6/v6C/SuvkOe3bYOgVEJiaQl89hkV23V1uN3eDq1Ox9w+dAjeX39Nbe7KPqXxBQW0lnvBgscvnT59mrteVMQO0mjAx8VhxuHDKF69mpswezbb8zMymQymKpVgodUKSeHhzB2lkolWKkGkUuRt2gThzTchHzIEmYcOCe3t7aTlzh1hzvffk9qjR9Eul2P/jh1CQEAAGWBlBYfLl+E9bRpu3LghdHR0CLNmzWIAYMnSpTRr6+aG6aNHE+zZA5iZof2bb8CdO4e45cuhyshAgVaLhvHjhYULF5Lg1FTyXVYWV/Hee6ythQVtBDdgAC0RCAujNeBxcVQsNzZSW/UzxpMVFBTwABiO49DY2MgDYJGURJ0Vn3xCnRB94XnoVq1CYksLntuxA/z774Oxsemt01apaB0/zz8ue3B2doZhczNM9u2j3d/19YGiIgh37mD7uXNCR0cHzL/+WlC7uzNwdKTr6t13AYaBw+jR6Hr3Xabj22+hMDCg/QsmTKA2dA8P6qooKqIBKT+/p8R2dzdyZubMmdDX18fu3bsxdOhQYVhbG0tovwKKmRkV2YcP08CBt/fjtxobG5GYmAiJRCL4+vr2iyZxHIdffvlFq9PplgK4BKC1srJyVG1t7RSWZX27urp+euqii4iIiPwbI87ZFhERERH5P4ZGo7GSy+Xnurq6/GUy2cXOzs55sbGx1U/8zOtGRkZft7W1cTzPv7l69ertT7zvpVQqM95++209ln2s2xAfH4+UlBTB19eXZGZmwtDQEGFhYbhw4UK/Y3h92DCYq1Q0U9eXxYupbbbn57VacCdOoHXxYlz87DN+ilzOsBMnUtHVw717NNu5aRMVn2PH0oxnd7Zyy5YtQm1tLRkwYIDg8fvvQqu+PqLeeosx1GhoI6snxMtjEhJoRjcri1rb582j9cNff02bcM2eTS3W3Wzbtk2oqqoiEydORFDfQEIfNm3axLP37jETli6FnafnY5GO5GTa3GzGDJqhbm+n1u0hQ+g+Vq1CfXExzvr4IPrIEcH2wgXyOLjQ9zoUFUE3ciSuXLmC3Nxcvra2ljE3N8fcuXOxb+dOfnpyMjNg2TIqVHuyuYIAzJ+P2tpa4YC7O1m0bRsuffKJUP7gASGdnahzcAAhBBzHgdNqMX3IEHhXVkKYPx979+7lu7q6hCVLlrDYv5+Ox1q37ukTFwTg1i3auI1hwC9bhlJnZyHZ25s02tuj1cxMCA0NJWZmZvD09IREqwUcHVHk6io0CwIZNHMmJEolHR/WQ2QkFa3/+AdtajdlCq3pZlnqUuimsrISu3fvxogRI/B4xNjZs8CxY8CKFbT++4cfqGPhyhXaZK2yEmfPnMGd+Hi8um4dFAxDbepNTbSBG0ADNSYmuB8QgPj4eDB//IFIqRSOu3bR90eNQp27OzZbWWHKlCkICAigr69aRffZ45a4dg27Cgs5Wzs7NiYmpvf8cnNph/ZJk3ob333zDa1N9/ICAFRUVOCnn36CIAiQy+UCIQQ6nY7odDrExsY+e10fPEjt88uW0XMCtY8fOnQINjY2nCAIcHNzY4cPH9596wRs3bq1rbm5OYPn+XwABIDQ1dV1E8CRJ393iIiIiPy7w37yySf/fx+DiIiIiMj/JWg0GueEhASPhISE2oSEBDepVJoUFhbmMmfOHLazs9Px4cOHL8TFxe1Vq9XtPZ9JSEgYOmjQoFFTp05V5uXljYyPjzePi4s7r1are96PsbGxmRAYGCjvuy9nZ2dERUURDw8PuLi4oKioiKuqqhL8/f3h5+dH7t27BwCwO32ab7x+XbimVHJubm40PdjZSYXlzJm9YollwXh7g1uxAifOnSM++/ZBr6aG2nQvX6ZWYjMzWnN76RIwfDgVJMuWPRZFLiYmxHrNGtywsiIRlZXokEiYi1IpH7pxI4H0n/RyO3ECOH+eZrFXrqSjqJyc6IitnByaGXdyoseqVMLMzIzcuHEDTU1NfHBw8DMt6z4+PuRyTg7s163DpaoqIefBA8HJyYnI09Npp+4hQ+gotLo62m09OJiKwDFjoLS3h+MnnwhJs2cLzuPGkVu3buH06dP8xYsXcfXqVdQfOoS2U6ew99Ej1NXVwdfXl4wbN46o1WpwHIe4y5eJw6uvwkqno93Vvb2pG6CqCrh2DXqVlWTwzp04JwhCgZ4ephYWEtf4eEw4fBiRkZEYOnQorL/6Sui6fBnWmzaRS5cu8YWFhXj11VdZlmWpoJZKe5uxCQIV199+S89h+XKA46BdsgQ7TE2Fm35+ePHOHRJZU4OhW7YQJycnWFpYgFm0iI4NW7AARZmZ5FxQEIK1WsjGjOmd2Q1Qm/aECTTTbGdHZ6XLZPSczM0fW8oVCgUKCwtRVVUlBAUFEfA8rQGfPp2OYDt9mq4biaR3drmFBawjI3F9xAhEjRpFBfzy5TQw01NGsHUr0NqKU01NKL5zB+PPnIH1kSOQ9ARvZs1ChokJ6uvrhcmTJ5PHPQUMDOh27tyhAQInJ+Tm5jIPHjwQQkND6Q9xHA3AeHjQ8/jkExpQAqjjoqEBcHDA9evXUVJSAl9fX37KlCmMv78/SU9Ph7OzM/y3bqWztmfOfHIR0tpzjYaWSnAcOjkOWVlZaGtrYwwMDEhOTg5JTk4WPD09ib6+Pvz9/aUmJiaOdnZ2Qc7OzkHOzs5BSqVyeF1d3arExMSO+Pj4NLVaLWaKRERE/iMQbeQiIiIiIv8rrF+/fpNMJluiUqm6Ghoa9FiW5ceOHSsNDAwkABATEyPhOM76xo0bBwGM7vPR6ubm5i5zc3P50qVL9Xbu3Lm0sbGxCsCX3e+rVCoV++T++uLg4IBly5Y9/pmOjg4UFhYCAG7eu8e0K5Voun2bMTQ0RJhSCcm4cdQK3V3/3Jfqhw8h0dODMjmZWnRPnqS12RMm0O/PPUdrac+epd3NVSqata6pgdn06RA6OwV9QSAme/aQE7t3C8P/qis5ALi40Jro4GBq2T5wgIpUQmiGdfZsYM8ecIcOIc3EhL+sUjEAMGfOnD/dtkqlwpQpU2B24gRulZaSQpYlZWVlGHjjBqT19WAnTqTNtQwNaY1tUBAwbhwapk5Fy9q1gqy1lehKSshXX30FlUolWFtbC1FRUYyxsTHY3bvBdnZi6tSp8PT0RI+4KysrQ1ZWFieXy9lTp04Jvh9+SLB+PRV848ZRQbxnD2BnB6lCgVy5HNrmZrLfyQme48ZxTgydpsYwDNwHDSI/A8KtfftQXl7OLF68mNZdAxC0WpBjx2hd94oV1KHw4Yf0frq4ANevg+d5HPr1V76LZYVVb7zBMjNnUht4QQG9xi+/TIMO9+4BH38Mux9+gPLiRS7v9Gl20LJl/efJRUVRi7+lJV0PQ4ZQW3d+PhX9r74KXUMDct5/Hw8ePMDixYvpBfnjD2DGDHTV1eHUqVOcf1cX27V8Oe969CiT8ve/c/bTprFcdjbKw8OxYOXK3v0tX06dF90BJ/zwAwBg4Esv8bK2NsZm+HAo+s6XZ1mETpuG8r/9DX0mftHzc3OjQY64OGDECCiVSo7n+d7n6ehRanM/cYIKb19f6naYO5e6Kz79FKishLS7IZ6NjQ0sLS0BAM7OznxNTQ2wZAmD1j8Zjb1yJbXey+WArS3sVq7E31atAk8IlIaGpKWlBZs3byaXLl3C+PHjYWhoCL+e0We9KOvq6nDo0CFNQ0PDJI1GExMbG9v1Z2tfRERE5N8FMbMtIiIiIvK/QlJS0raZM2eajR07Vj506FAmKiqKtbGx6Zd1dXFxYdPT060uXLiQplariwEgISGB6+joWDp06FCZVCqFu7u79Pr165FxcXG/qdXqRwkJCUY6nW5mWFiY/Nl7fhqJRAIfHx94enrCfNcu5Jqbo1EqRXFBAaxsbWERGQkEBYHjuP7iBMCxY8d4Nzc3wdvbmx67hwcVvDwP7N5NxdXDh3Qs03ffAfPn0wxxbS3I1KnQf/11Ej5yJPT09JCTkyNUVVWRzMxMoaKiglhYWKCmpgY1NTXQ6XQghFB7t709FdY9dbIffwywLBrs7SGXy0GUSrT4+OCXK1fAVlQIs/PySKNSKZR2zyr+s+tgZWUFdu5cxGVmQmJggFu3bqHh3j2UPHoEw/p6QZWVRbB0KXQ6HQpNTJD04AGPjRtJjbW1QLZtI17u7hipVCLylVeIj48PY25uDpVKBX0bGyhDQ2Hh6/tYaANAVlYWn5WVxUZFRSEmJobo6+tTIb9qFRVzXV1UOA4ZAkgkyMnJEYKDg/HiggVk0PLlDKKiaJZ6zBhwmzdD5uZGrl27htGjR8PdzQ15hw/ziZs2keYdOzDg6lWkKZWCnqsrkb7/PtjwcCqKu50K586d4woLC8lrr73GSqVSGlSwt6dlA6+9Rn/2zTep2A4MhGrcOIRaWDANR48KP2u1ZODAgWhvb0d5eTnMzc1pxtnTkwpgQuiXvj6gUECwtcXxxETcuX8f0WfP4kh9Pe4WFQkKX19i/v77SLx+HZmZmYxULodjaiopmDsXJU5OJOvqVcHsp5/ItbFjMXJ0n/jT2bPUDeDi0vtaSwssly8n983Nobd4MYwHDux9j2FQkZOD6wxDwvtuJzWVrtehQ4E9eyDExODwb78x9vb28PLyogGETz+lQSQzMxpAyM6m98zMjGblBw8GWlpQuG4dSu3t4eXtzdvY2DAAIAgCKSsr48JdXRk4OT3uWA6APhcXLtBtjx5N7/l77wGzZ0Ny+DCkkycDb78NWXs7qhsbcefOHVy7dg0dHR39mqb1oFQqMXjwYFlubq55a2vrDbVa/VR/BxEREZF/N0SxLSIiIiLyv0J8fHz1vXv3xnt7e0v19fX7ibAeGIaBkZGRrKCgIDIuLm6bWq3mEhISagGscnV11TcwMIBCoQAhhCkvLx8XHx8/XCKRfODi4mKQmpqK0tJSYmJiApVK9S8dE8MwMNBoUDtxolDZ2kqW/fwzsisqkOnuzqWlpeH3338nbm5u0Gq14DgOWq0Wf/zxB5k2bRpR9m0IJgg0e+rkRGtpMzOpkGltpYJl4EBa72pu3q+DuEKhQFpaGmlubiaPHj1CSkoKsrKycOvWLaSnpyM5ORk3btwQWlpbYbF2LWkYMwYqc3M0u7oiv6JCOHTiBMnKz0dTUxOflpYm6MzMhFmffcZInZ3hdP06aT19mqS0tQlewcHkWde7rq4O4HkMnzULQz78EO1yOUZ9/z3yXFwgDwwkeg0NuKinx/3222/M/UeP+NDycsarthaOKhUxf/NN6NfUgF2yhDZC63s9Dh8GkpKAUaP67U8qlZL09HRMmDAB5mZmdLwax9HrplZTy/3AgdSibWKCi1VVRD1iBDE2MaGZ/ZAQWgteUIDPi4uRl5cH69JSmO3di7u1tbz3mjVMI8fhWkgIymxtcc3MjFzr6MCVmzcRFRX1OHBy7do1ISUlhbzyyiuMQV/3QnU13YehIRWTQUHUCv7WWwAA8u23sAwLIw/s7PhLly6RjIwM5OfnCzk5OYJEIiHmQ4eCzcqiAnTVKoBl0dHRgfM3b/LZOh3xs7eH3aVLKAoKEhxv3SKW69bh+44OVFRXY9iwYRj9ww8wtLSE7RdfwG/IEBLe2EiYvXshe+ON/uOxRo+ms8DlvfGlxvZ27KqqQnhGBhynTQNxcup37XW+vig+dw7+kyf3PntnzlC7+pgxwIMHIMXFyNLp0NLSwoWFhjJ4+WVaQjBkSO+Gbt6kDQTt7Oi/zc3BGxmhcft2DHN0hMe8eUzPGr99+7Zw9+5d1nvlSii1WpDuDvIAaPmFvz8t1yCEPid+fjR4FRxMLefGxoCtLThDQ/CurtzwqCgmMSWFHzJkyDPXc1VVFVJTU3U8z3+iVqsbnvoBERERkX8zRLEtIiIiIvIUa9asmZmWlvZrUlLSjEuXLmWq1eqHf/WZ6OjonMuXLzdlZGSoWZZl7OzsmGf9wWxhYYHy8nJ5S0uLc1xc3MnY2FghOTl5ooODg2OPPdXOzo5hGMa4uLjYy8TERFZaWkqamppIdXU1MjIy4Ofnh35i+M/Q6UAiIuA2eTKJjoqCXlsbioYMgZZhGLlcjpqaGpKfn4+rV68iJSUFKSkpsLCwEIaFhxMkJ1NBmZ5Ouznv20fFgrk5FZlhYVS8yWRAczMVlT0WcycnoK0Nlu7u5MqVK5DJZBg3bhxMTU0xb948REREYNiwYaivr4ezszO5lZvLy0tLydlHj0hWfr6QkJdHnE+dQmBVFUmzsEBzczMACPPmzWOlMhng6AjpuHEwbm6G/WefkWyeh4Of32NxxvM8kpOTceDAAaSmpcHrgw9gGBkJdzs7SE6eRLG/PwpraxHn4YEHFRWMHsfh+aYmwcXOjjD79gEvvECbYx07RrP2f/xB7fLGxvS6lpfTLOgTTecMDAzQ2trKJe3fT8zMzYmpRgPExFALeVYWvU7BwcDs2aixsYFsyxb4fPklmLfeok3IDh6kwmzRIhh9+ik87twBEQQYW1ggRSolCeHhqPL25letWkV8//EPeG7cCLlcjvLycmRmZgoFBQXkxo0byM7OJrNnzyY2fWeBd3TQ+9K9f7z5JrWVh4b2Bg1+/RWYNw+DoqNJSEgIgoODoVarSWtrK0lOTuYLCwuFgHHjCDw80GRvjwO//CKYmpmRc+fOETs7O6js7fkzFhZEplCQeUePwlQmg8e6dRg7aRKcHB1pjXlFBV0zbm6AUomNhKC2oQFeXl5QKBSoqKiA8p13wBw4QO9DN83Nzbh/8iQGtbYKqtOnSb8GbgAazp9H8Oef4/7s2TAxNaUvpqTQbuAuLrTR35EjcBs3Dmn37pEImYyQ48epi6LPeDAkJtI1HB39+CVBTw/7qqvhamsLs88/B0aOBPT1YWdnR1QqFX41NkaWsTHP8zxxuHyZZrW/+KJfUz+EhFA7+fz5SLCzw7H4eC712jXheng4f0+hIIEpKfD57DOSFhWFmydPQjFgALHqrpvnOA7Z2dk4cuRIO8dxcwVBSEtISAhPSEjwSkhIqFSr1bq//mUgIiIi8v89Ys22iIiIiEg/NBqNAcuye6dOnSpvbGwULly4kKLRaEbGxsam/dVnP/roo80ajeb3hISEREtLS9uBfa2u3RBCMG3aNL2dO3fObGhokGs0mjNSqTT0yXm7oaGhTE5ODi+Xy+Hj40MSEhIwoLszuETyL/73dfs2HY80fz7t+H38OMZ3v9XR0UEKCwsFF2dnqB0cSOb+/WioqIBjbS3Bpk20oZSvL23y9PPP/buSnzhBRUlqKm3+tH8/bbqWkUGFaU4Ore01MsIKQ0OcqKjAVYBf/re/9fOsT++ezzx8+HAWzc0I8PPDZbmc+Pv7w/rNNwm++gq+zs5CsyDw8+fP71+3LpVC9eabqFSrgbffBl9cDGbmTFyVyXDl6lWhs7PzcaSDODrSTOnu3WBcXTGQZTH0+HFse+stgenqIp4ZGejQ1yf4+uuem0Rt1lIptbVfuQJs307rfgGa5e4OjDx5byeoVGznrl3YpdXCLD4exj0CvaqKitvFiwEHBxzbvh2V0dFwfPdduHR0UMuyTgfY2IA5exb2zz+POJVKKOvqIp0DB2KStzdyc3OF8ePHMxKZDJDJYG1lBWtra9y9e5eTSqVsQ0MD6uvrYW5uDse+Qu/AAVpzn5kJrF9PgwgHDgA1NShtbARfXAxnExOace/OMCsUCigUCgDAiBEj4OXlxezatQtgGOgmTkTptGnCyMxMsuOVVyCVSjFjxgx0dnYyDMPwqampzNdz5sArJESY+PHHNHAzYABdH3V1VHDv2gVs2IDlSUn47rvv8N1338HCwgIPHz6EmbEx/AIDhaG0GzcA4PjPP3NT/viDbbtyhcDNjc6Nd3B4PBJMGRODLcuXwzU7Gy49z9KAAb2N3uztAR8fmN68CSuZTLj7+usYeO4ckcifqM4YMYJ22O/Do0eP0EEImoKDBTQ1ERw4AEyeDKmjI0JDQxG0fj2OBAWRixcvImTxYshApwXY2dnBzc2td0P29oBUivK8PDg5ObE+Pj7geR48z8Ns6VLCyGRYynFEYmeHCxUVvO9XXzE6AN8dPNje3t6eo9VqlwDQk8lkhUql0lyhUPD19fX3NRqNT2xsrNg0TURE5N8OUWyLiIiIiDyJm6GhYae7u7scADE0NNQ/evToWY1G4xsbG/vgX/i80P31pygUCrz88st6cXFx06qrqydERkYqeoRND3K5HK+99hoDAE027JMAAAAgAElEQVRNTUhMTERnZycvCAI2b97MvPvuu48bZv0pPE/ty9bW1C4LUDtrSgoUdXX4UC4nOHsWyMrC6BdfxJ7GRuQ7OcFg40ZU1dXxw4cPf3YDsvR0msUGqKB5/nlq1f3b32hzq4AAapNtaoLRrl0IvngRRY2NDObPpxbkKVMAW9ve0U4AQAgUd+5g7Hvv9b62YAGmjB1LNjz3HKvVanvHd/XB1d8fB0eMQCPPQ/Ldd7x1WRnzwsqV5JpMJuTn5xO5XC5Y2NkRSCQ0K29rC68JE4DRo/HByJEk/eWXwdXX4+ewMDL45Elu8uTJVNSHhtKv7duBI0doZnr7dtq47c4dmqXuy8GDtBv4xYsoO3wY1YmJ2LRpE959913o6enR+eEPH6Krqwtbt27lGhoa2GFqNRyiomjTstBQICMDOmdnbPn9dzTqdGCbm4lUKhUiIiKIlZUVPDw8eq0SU6cCLS3Ye/y4rqamRjJv3jy4uLggNzcXR44cwf379+Hg4EAz2m++ibaGBjR6ecHC3h4Pw8ORl5qKggsXeL+EBOb82LHwbGrS2WVlsYkbNhAzMzPd4sWLJT229K6uLvz222/8wIEDhYaGBvbGjRvCNQ8PYmllhWlTp8LX3//xYRkaGoJwHN76/HP8sHIlwd69tIN9Zia992fP0mz/r78CO3fCxMQEq1evRk5ODn777TfwPI/w0aNRtWsX+dXMjJ89ezYDAL43b7KFLi5wUKmowA4NpdnjhQsBACamphhRXCzo37lD58ED4M+fB/H2fqzYhUWLUOThgUCFgim1tkZLSQmCzc3730dn56cCKY8ePaJLlGUJ/vY3mjF/+WVg9WpArQbb1YUZkZGkbcIEfCcIvMrWljRev46rV68Snufh6OiI+fPnU2v5yZNwnT0bBl5ecJ827an1rAKw5fPPaV34hg1gDx9Gy+LFrG9aWvztiIhYAGMmT56s9OoeSbZ27VoPAEoAbRqNxgi0+SIP4GJsbGzTUzv4H6DRaCSxsbFi1lxEROT/NaKNXERERESkHwkJCQGmpqbTg4KC5ABgbm4OnuellZWVoy5durRDrVbzGo2GJCUlvZaSkrI3KSnpb8nJyfMSExM/v3Llytssy74dGRlpEBAQwD7LRt6DpKsLbjY2koCQELmpTEbrogE6Z5phaJazowOQSCDneURHR8PV1ZVkpqSQTq0WYcHBkLEszcJyXO+Ge7ZDCM0kfvsttb02NNAM7YIFQGUlzVg7O9OxTO++C0REoIDj+MKWFnKvqEgoKipiWJblHR0d+59EURHNWn/wAf13cDBtQPXll9QK/eGHwMSJtDO2QgESHo7zenpck709PEaNIjqtFtJt22g2XC6nVnU9PSrQBwygIrwHY2MwhYV40NTE6w0aREx77MF9IITAwcEB1ysrec85cxjvkBCY3b4N2bFjKLCwIOo//iAmubmQXbxIM9UPHgB799Ju0wcOwLqhAS0aDXLz81FVVcUEBwf3D2IEBVGB3dYGzJkDKBQ0++niQoMYaWm0KzdAG4iFhsLM2Rn29va4efMmysrKBFdXV6IoKYF24kRs7OzkLSwsMGfOHMbDwwOSoiJg82badO7kSXSEhUGxbRu0hEDu6cmtWLGif911D998AwwZgjs1NaivryeNjY1ca2srCQwMJHV1dfyFP/4g5q+/jvNVVcgYPpz3/PhjktjYiCPm5rhRUYHm5mZhqIcHGXz+PGGXLxf88/LYAQMHEt/Fi5Gbm0uys7P54OBgBgB2797N8TzPTJ8+namoqMDvv/9OtDIZFO7u/PjYWIIHD+hILwCNjY24nZ9P0oODYdTVBd85c8Bs2EBLEBobqdBet466Ilavfnw6lpaWiI6ORmtrq1B24gSZcu4cLgcF4datW7yXpydze/duZAUGorqtDX5+fuBfeQVdgwdD0tUFSKXo6upC2tGjRNBqIR8+HFu3boXLgQP4meOQUVIiODg4EJWBASpra2F1+TI6PvsMod3H3A+lkjo5Rox4XJZgaWmJlJQU2Nra0gCGvT2t6a6rozO6164FcXCA1NISiIhARUUFFi1aREaMGAFTU1Okpqbieno6l5yUhLzjxwWr3FwyoK4OBgCtDz97lu4zJARYsABN5eXwUiqJyaVLIFu2IOyzz1jv5OShnh0dntHffiu1trUFIQRarRZJSUk8AE1CQsJgiURyw8HBYaqRkdHU1tbWlfHx8b+q1erGp0+SotFoJAkJCUZqtbrjidfdU1JS0jiO25CcnLwiISGhftiwYZl/th0RERGRP0MU2yIiIiIi/UhJSfl88ODBAX1FpqOjI3P37l2DlpaW+ujo6PTExMTnVSrV1ueff94mNDTU0MzMzDo/P185ffp0/alTp0qcnJyeLbSbm3tnXMfGAj/9RMWumxsVwixLxbBcTu3Zq1bRulVPTyA1FbqaGvhs3IgOpRL+P/5Iu0rPm0c7N2dm0s7SixdTMdAz2qq+nr7v7k7/mP/oo95tOjnRZlndeHt7k2HDhiEyMpIwDIPLly+TgIAA9Mu6//QTFcUREb2vSSQ0yzh3Lj2v+fOpiFarAZkM2dnZqHr0iLlSXIz01lZEbdpERZeeHg0IbNsGnDpFBXtFBTB2LK2ZtrUFJk2CZPNm0tTczNuo1c+MXhgbGyM4OJgMGDAAjJsbEBqKzPh4TDt9mhiEhMBk3DjaKdrVlYrl69dp9rKgAGTdOpjZ2iIpKQmCICAjIwM8z/NOTk69+9LTo8eVkkI7Sn/6KRVaYWHAtGlUoC1dSjO33ZSWluLOnTswMTER4uPjYezoSKovXxa0o0cTO3t75vDhw8g5cQJGhw/zhllZhH3xReDNN9ESGwudVIqAXbuQYWXFxF+/Dm9vb5od70tnJ+Dnh0GhocTOzg5tbW1MUlISCQkJgZ+PD3Gxt4f1+fNwTEsT2tzcBMc9exj/hQsRGRkJtVqNsLAwMsDbmzDLlsHRwYEYbtgAvTVrYGBrCx8fH5KUlMQkJCSgoaFBaGpqgpOTE/H29iYpKSlcdXU14+Pjg4iICGI6dCi1qCsUACGwtLQkoVu3Ih9AhYUF+EGDOJcJE2hTMQcHOgorI4Nez2nTAAuLfqfl7u5OzubmCo6bNpFh0dEkOzsbt3/6ifgXFMD4jTeQlZ2N5ORkJKal4f7PP8N77lykDBuGtGvXuCYHB6a6qwt37t9Hc0cHQm1toZwyBe08j0uXLpG2ujrO5sAB8sjICIESCSEjRz69mAgBfvmFBn8sLdHR0YEvvvgCWq0Wpqamgru7O10Xzs503X/+OfDSS0BKCsjatbB/7z0SIpcTuVIJZs4cDHB3R8jFi4javp2x//JLMnTlSlJtbAzdmDGw3LSJzpYvLqYlBuPHA+XlyFEqheSmJmI7diyMXF0hiYgAuXkT+g4OkDQ20ueYEFRXVyM3N7f0o48+2piWlnYgJibGfdy4cfKAgAB5cXGxtqGhIV2tVuf1nNq6devWp6SkfJiYmBidnJz8Oc/zGxiGeTc5OTny0qVLR9RqtU6j0RCZTHZt5MiRLi+++CJxc3PTy83NHXnx4sULarW6QqPR+KalpV1MSkp6Oy4uriw6Ojr/Wc+kiIiICCDayEVERET+69BoNMrY2Nj2P3lvhoGBwYTQ0NB+9mlCCKKiovSPHz++UKPR7JLJZN9OmjRJr6eDcl1dHQA6nufJUVrIz6fi9NNPqR25rIwKap6nrykU/S3J8+bR70uWAAB0Oh02ffQRr9Vqia2tLa/94gu2vr6ew9tv99YwV1fT74JAGzt99BG1aKvV9L133qEjp8zN6f7+BSIjIxEfH4/KykoYGRnRF3me1hZHRvb/YUKAq1fB5+ejY+tW5Lz5pqDYsUNoW70aWkdHcr+tjbGysuIZhmHa29uF1tZWom9uTo9HJqM13np6NNuZm0st2wcOAF5eQE0N3K5cQUVxMcOnpICxtaVC/JVXaEBCKqXibdYsOlpLJgOUSjR2dhKdsTEsVCqaibe1pXbm4cOp1b2khDbHUqnAAJg1axYOHDgArVaLy5cvM+Xl5cKkCROIkUJBrff379Na5x9/pBZolu2tQ37yngPIzc0FACxYsIBJT08Xjp85g0BTU1KZlYWy8nLBS6HAKI4j95qbmbMjRghTliwhnTodvv32WwCAasUKTDh2TGiQydD03HPE/Em788WLNKgyYgRcXFzAMAzS09MhtLeD+PrC/pVXgF9/hf6mTSQmNpZFtwX/qXr/iAjqTBg0iN5bAHp6enj77beRnZ2NM2fOEI7jCABh/fr1QmdnJ2ttbQ2GYWgHcVdXKvzNzYFLl4DBg6HX0oKXz57F/mnTcM/Ojhi99x6CamrovZs+ndZrX7pEP/vHH7QEoQ/GJia8YXg4q7h2DYsWLWLudXTAZfRosN3HZ25ujkmTJsHCwgJJ4eG4k5fHqfT0mJaWFm7uwYPszaFD+Rd27GBM3noLFkOHIlRPjzx69AhnVq9mBT095AwfLhgePAiXmTOpqH6SoCDg2jXwXl7YsWMHr9PpGAsLC+Tm5pLhw4f3Bj7c3WkJxR9/ALdu0evg6kqfQT8/Gjzy9YX+hAmARAI7iQRrV61CYGAgwgMC6FrS1wdef7133++9h8kAs2HDBuH+3r0wX72aKL77DkxGBn0/OZmWcOzdC0IIBEGQaTQaolQqWXl3Jl6n0+HBgwdSANd6NqvRaAZIpdJVEydOlDc3N8PS0hK2trZgWRaHDh2KKikp2QJgMYBwhUJhGRISQgghMOudZ64FAIVCsT0qKsrXysoKBw8e/KW7Xrzo6YsoIiIiAjy7Fk1ERERE5P9K1q9f/w2AtnXr1hVqNBqPvu9pNBqFVCr9YcaMGXpP1k8DgKOjIxiGGcQwTL2Xl5dJ34Zm7u7uAICff/6ZvnDvHhXWDQ00+5maSu3V+flAbS0VaB99REdB9TTlegY8zcihpaWFUalUKC8vZ8vLy9HS0sKeOXOmf114YiIVnHv3UlEcF0fn/ObmUkv3zZs0M9vTqOsvYBgGgwYNwrFjx3Dq1CmO53l6HocP9++y3IekPXuENo0GV9LTheLp0xkwDOP19ddkirc3GhsaUFZWhqamJvLNN99gx9q1QsWqVeDnzqXi95NPgMBAYMUKYM8emkEeO5ZmDTs7cf755/kGa2vg1VdpUMHQkIr8K1eAtWvpATg50ax6Xh5GxMejNTiYWug5jl6PV1+l53/iBBU4R45Q+25REdw+/hgfRURg1v37WLFpE0rz8oi+rS21jmdlUctzTs7jOdbgOJrJXr8eCA+nr504QS36AFpaWh7fn5CQEDJp0iT4FhcLLzo64r05c8jMe/eIaXAwBlRVCVY2NuT3uDih6OpVITo6GiNHjoSRuTl/YswYYmZmBpfyctoBvS8sS63n3djY2MABEH7YuRPCiBF0JjrDAF99BTyj1v0xn3xCz8PDo1/QgGEYBAYGYsGCBTDpPmcvLy8hODgYJiYm3IMHD4QNGzbgwoULeNjYSLvV+/vTjP/Jk5Bu3oz57e14bs8eJre6GklhYdDFxtJac6mU3tvu7txI6997cObMmWyRrS2uZ2fz0oYGeH/7LVLMzbnjx48L9DY7wdraGhKJBOolS7D0+HF2zqVLZNWqVax5aipG7NvHmBga0metu2u/RW0tZmVnQzZ/PkKHDyd/qNXIX7RI+GnrVn7Hjh3Crl27sHfvXuzfvx9xtbW4fuUKfvzxR9TU1DAsy8LLywtarRbJycm9B9rZSa/dw4d0jZSWUpeGry8Ncg0ZAhgb4+fffuO27tjBf/nllxAEAQqFAuZ2dvT3hKnpU+ePw4exqKqK6H3wAdk4bx46Z89G4enTNJAUFUWz6mfPYoBCAYlEYgwgpL29fXNqamozAKSnp/MMw6TGxsaWazQaZ41GYw+gked5juM4+Pv7w9HRETKZDCzL4rnnnlNKpdIX16xZs5IQMtHDw0PW48ypr69HV1eXAKA7oocBzs7OcHBwgCAIDIDWP19cIiIi/+2ImW0RERGR/yI4jntl1apVuHHjhnNKSsoGABP6vD3GwsJCam9v/8zPyuVyvPXWW4rOzs6nxm6xLAsnKyvO89Ah9l5gIKxOnIBhYSHN4tXW9h8tdPYszXoZGdHMs/B0L7XExETcvXsXjY2NfHt7O+Pq6srNmTOHJYTg119/Fe7evUssLCzoX8OlpTRz3dlJs7U//kgFPkCt3G+/Tf+Y37ePvvbll7SOu7ycinKWfWr/PUybNg0PHjzAzp07WVtbWwTm5aEzJgYVxcVoamrC/fv3+ejoaEalUqGkpATxCgVp3r1beJsQBsHBtBHaBx/AfOdO6E6eJGcjI2EnlwszbGxIw44d5La5Of/r88+TZUFBRAlQG+3UqVTAbNhAs8kvvgjGygr6AwcSsmmTgBUrCIyNqZ0doHb47iZZuH8fuHsX7cOHIyU0FLesrLCqvh4KfX0q3j/5hJ7z/fs0w5+RQWtvR44EfHzA2NnB7f33sZvjwEkkeHj7Nmx65jmnp9O6bbmcNkjbupUGT2bP7s2OfvghtUkHB2Pm+vVky/z5aLl1CypXVwQEBACHDxOwLPD3v1Obv7s7rg0aRG53dsK4sBAjz58nGVOnCiFDhpDQ0FDmj/p6nI+J4d0KClh88QWwc+fjbuF44w06jgw0KFN4+zbmfPYZaTMzo8clkdCs6V8REkJr9p+YGd6DnZ0d3njjDQAg0GoJ7t8HHB3Z6gsXcCMtjUtJSmIVX38tWH7/PcGPP9KAhoEBMGcO+Dlz8JObGzipFKVVVbizaxf/yiuv9Cp6CwtqoRYEGij69lvA0hIsy+LqiBEI4HkBhw4Bzz+PqtpawdbWlkRHR8O2b10/AKxZ01vrb2JCs8179lCrek9PgytXIF+6FCNnzQIAlBQX42FVFdTFxUzlpEngOK7nS5A4OwuyujpYWVkJXV1d7IwZMzBgwACUlpYiLy9PGDVqFH32NmwALl+mme3ISLoOup/35qFDhfvW1rg8darQUlXFDpsxA+fOnQMAPOwJkjAMcPQobbyXn0/XZlsbkJICY3NzBMTEwG/kSCSNGyekpqUJ7wEMWJbW658+DTJrFoYsXKiILyh4n+O4k7W1tRIAiI+P12m12tfXrFnzukwm+0oQBCIIwns6nW7SqVOntmu1WlczMzPd8uXLJQBt2Lho0SLlkSNH1ra0tJDBgwc/blpgZWWFqKgo+dWrV29qNJovpVKpEcMwuHXrFiQSSfpHH31UDQAajUYKwAZAeWxsLP/XC09EROS/AVFsi4iIiPyH0d1x1wdAVmxsbNv/5LMcxyn09fUREBBArly5Eq3RaJiePwylUulYT09P1T/7PMMwT8+33rULSE3FAwsLdnhBAU6fPIkaGxv8/Ycf6Pt9hbZWSwXFiRP03y+9RLPMq1YBGzdCp9MhLi4OKSkpAIAxY8aQkJAQsGyvIvby8iJlZWVCkKEhwQ8/0GZTgkCz2NbW/WqwYWfXr44YABWdK1ZQkdOTde+Tpe+hq6sLmzdv5ltaWhgAOH/4MCyOHsX+l14Cc+iQwLKs0NXVxWRkZMDHxwf5+fkIDQ3FuHHjCKKjabb3iy+ovXjlSngVFZGOS5cg7+oiktdeg2TPHkS7uDA3N2/m4uPjSczQoYzk4kXa0dzRkWb8d++mwYHx4+EzbBg5UlSEBeXlkHp7P9sOTwiEAQOQ6uWFjLAwOr7q5ZeBLVtowOHOHSpUyspoo7S+I566m3UxAPyWLUP577+DffJe/+MfNBt+/jwVqampQEsLHs987raO3zh9mqt3cmJZmUxomzEDKi8vgl9+oTXKNTXU0h8RAW7CBFQOG0ZvlYMDab56Fa1pafzx48dZQRDg6OgINzc39nBJCUKXLYPjqVNUYC9aBJw5A6hUyOM4lH3wgVBtYkL4RYsE94AAQnps/38Gx9FgS0UFHQ+3YwfNAPv60kzz6dPULXDzJnVMqFS05MHdnXa1LymB1f79iGlpYR9Nm8Z57NzJPg5gMAy1t48dC8myZXjr6FEUnDyJe/n5sB837mlHoVJJn4uWFqCiAjojI3z//ffC/N9/xwCWZcGywOrV4H//ndTV1SE+Ph4xMTGw7NsxPDgYaGqi+01MpI6SigrqlABop/jUVHqe3dTV10MVEcEP02rZgXZ2vUEMgKC2luDECfhOmULFejdubm5ITU0lDQ0NMDY0pNn5KVMAAF07d6KwtBTlly7xMWPGMAfee48XurrYUR0dxPWHH8B8/jkKrl7lCpqbWT09PQE9Y83eeovW+2dn0+/+/lR8A0BTExhHR9SsXy/odLr+127iRKCwEIEGBmyrkdH4CgODUaGhoQqdTgdBECRSqfQMx3GOYWFhCAwMxLZt274A8LVWq/0EwL7a2lrJl19+yevr6/MymYwJDQ1llixZ8szff9HR0RIHBwfzvLy8tRYWFhJLS0vs37+/taOjYzUAaDSacKlUeooQomIY5jyAKf98AYqIiPy3IDZIExEREfkPQqPR2Eul0luGhoYLdTrdG/Hx8Qf/WbfdJ0lNTV3o7OxsbGlpiczMzK7Ozs4rarW6TKPRWLEsuz0mJkah/1fZQEGg2auoKFrn2tEB8DyMnntO+FWpJG3d2cb09HTe3t6eGPUVPqdPUzEyoU9CXauF9v338X1TE5+YloaSkhJiY2PDDx48mI+KimKerAEvPXtWsL5yBY4XL5K2O3cgW7qUZnaDgx93T36MsTEVu9bW/euKpVKaAfT2pqLxpZfo+56eAGjN5zfffCMYGxuThQsXEpZlMbSsDBJ9ffi+9RYmTJhAIiIiSEhICHieR35+PrRaLebMmUNrgufMAUaPpgJnwABgzx5oT55Eib4+BlRX4zzH4WxlJSQSiaBWq5mLFy8Kl5OSiPTBA+G+qyspKytDaXk57/jcc6Snltvy7l2kmJnxqo0biXllJZgnm1tptVQsBgdjLwCj+noMO38e1i+/DNLURGuTHR1p/fbo0VTMDxkC9NakPsbc3BzZ2dm4du0a7t+/z9nY2DB6lZXA5Mn0WmVmAm++SS3oq1YBM2bQmvNuruXnk1SFggwaNIgkuLggYuNGgvZ2GhhpaQE2bgR++QWCoyPKAgJQU1ODhw8fInzFCkRt2sSEjx6NgoICvqSkhNy7dw9tbW3Ia2riIyZOJFizhtaya7WAVIo96enC7O3biY9MBuvjxwkbHEzXaE+n7IYGGty5dYuKuK1bqdh+/316HgoFteKXllLhd/YsrQn29aW1x3Z2tMfA8OF0vx98QAXytGnArFmwsbVlftZqYafRCIZr1xL8/e9AYSG9TjNmQOrhAUX3eLmrbW3wmT0bl4qK+KzkZHBxcYT18cGxkydxztSUv373Lu87eTJT4+KCkH/8gzA6HXD3LvD882hvbxcqKirw4MEDkp+fz0dERPRvlieXU2EcE0ODEZWV9DwDAuh63LaNPg/dXLhwAZGTJjFW9fXUAj5kSK+w1tOjwYapU6kD5fEu5EhNTUVdXR3n+8svDPLz0TZ5Mnbs2MFfSE8nXefPI2jzZmL01lu4lZMDU0tLMvTll0FWrAAUCvhNmsRwMpmQpdUSPX19zsbOjj6U+/fTxobjx9PgUo/tXyLBI319/F5TQ+bPnw+jJ4Mo4eGQ3rkD1717JQELFsgtfHzIpk2buPb2dpbneWNCCEpLSxETEwM/Pz9pY2NjcGdn5/jQ0FAJz/NgWZapqalhtFotycnJQXh4+NM1/d2YmJjAzc2NtbW1JbW1tUhPT29cvXr1co1GYySRSK5Pnz7dNCwsTHLjxg1lZGTkxmduRERE5L8OUWyLiIiI/AeRkpLyXXBwcPCcOXOUtbW1zMOHDyuio6NT/9XPJyQk2Ovp6YU5OzszSqVSWlhYODE+Pj5MKpV+GRkZqfL29v5zT/XGjfSP+M2bqW27oYGK5qAgICoKVlZWZNiwYXB3d4e1tTWMjIxw6tQp0tzcDA+P7vLwK1fAq9VILimBsbEx5HI5oKeH/JEj0XD8OBn7/PMkdMQIqNVq4uzs3F9l19UBH3wAi9JSktPaSsyvXMENlQq/u7tzwTNmMH86Ziw0lGbfniEq4e7eOyLM2ZkGDm7exD9++01ob28nb7zxBtHX14erqytMHz2C0cyZMOqTBZdIJHB1dcWQIUOQlZUlEEKIg4MDtab/+uvjRk4wMoLkxx9R7O2NfEtLXtfcTNRxcbCbM4cMcHZGREQE8fP3h9WaNeSCvT13Ky+PaWlpIaampijmONwlBMrycqhzc8lJDw/YuLjA0M6O2pUBKi4JAVpaQEJDcef8eWhlMkRkZMBw1SoaGOkRKgkJVMy88QYVhD1jyvrAsiwiIiKgUqmQkpLClN64IQTPm0cwYQLtqO3qSkW2nh61kY8aRYVZd6BFEASSm5uL0aNHIysri0RHR1MxuGgRDYxUVAAvvYRUlUrI02qJIJOBB+BZWAiTRYvAGBoiICCAJCYmAgC0Wi3s7e3hN3w4wbx5tG7+yBFg1y4YPHiAzIAAUqivD+byZd7o4EHCNDRQK3VmJl2fJSU069tznEOH0izqiy8CW7dC+Pxz1C9bBoWBAciWLRBmzEDJiRPC3WvXBNOoKCI1Nf3TcoOK4mIUpaXBrLKSWK1aBaKnR/cTFkYbnzk5gYuKwq76enRIpXjg5ASL4cOJyZ07sPvlF/IDz2P2unVws7OD/ahRDN/RAZ933iHKlBRq3X/hBcDJCba2tkxoaCiJiIhAQkICyc7O1qWnp/OlpaVk0KBBdPEPGULt40uX0nVnbEy73H/+OQ0U9OHq1auIiYmBPDiYfsbBgQaleuB5umbs7AAA586dE86cOUMAwMjICH537xJMm4YDKSlce3s7Wbx4Mbmv1QpCWRlJNzDg7967x3h6esLJyak3ELBiBQyioojl3r0YuHYt87OpqRDo5kawaBEV9ytX0jp2lQro6kLXsnP/ADwAACAASURBVGXYyLIY6O4uREVFPfsB9/CgdvyuLqC0FFpbW6aiokLgOI4IggBfX1/Oy8uLUSgU8Pb2lg4ZMkTu7OzM2NjYPF5fOp0OFhYWXFBQEMP+k7KSHjiOQ2pqKhsfHy+XyWTf+Pn5mUdEREgKCgpQWFiYEBkZeeAvNyIiIvJfgdggTUREROQ/BI1G4ywIwvSoqCgpANjb2yvkcnnI/2QbOp3uzN27d1sBwN/fn7zwwguWgiBMt7CwMLexsXm6i9TDh1RMCQK1ed67B1hZAefOUbvzE5kmhmFga2uL4OBgEEIIy7LIzMzEjRs3gIIC4MIFpPw/7H13VFTn2v1+zxR6G3pHepUmotiwoCKxYo29RI2JLdFYcr2IscQ0NSZqjLkmUWNvsUZsoCKIoBQBpStNpEsZZphzfn88gKAm97vfWt9aub81ey2WijNnzpzznrPOfvZ+9tPUhKtXr2Lbtm3YsWOHqq6uDvHx8ar+9+8L3Y4ff7MftaqKCH5ICNCrFzSKijDAwACFJ08i6NIl8ILAnTt3DmVlZcjJyQFAoUZHjx4VeJ5H0/79qNfXB8/zSElJwQ8//KDaunWrsHnzZnz11Vf884oKUlwjIsBfvozq+fMhb25mc0aNeqVy5eSQXd7Z+a3HlUtMhHV+Piv//XdSEn//nUgtADQ3k5U+JgbeMTEobGzkiqytUW1oiKrNmwW07bOhoSH09fTw/syZIgMDA9WLFy9w6tQp/tq1a3zKs2f8HpEIv0gkCI+JgUVJCamtSiV9xogR1C+9ejWwZg363LmDekNDNF279mZS+PjxRGbc3akHuj2o6y0ICAiAJmPo3qMHQ2oqWXzb4etL68PAgILu2ueOAzh58iQA6qWmZVRB88n37wdcXCDfswdpM2bw13182LzcXKw9fBhR69ah26+/dhB/rqAAy6ZPh2ZjI0afOQN/f3+GlStJpV22jALf6uvhpa/PvCsqeE25HDFiMbdXXx/CxIkUBBcbS/3oK1YAI0dSVkC3bq+U082bIR8xAvurqvgTu3ejzssL386eLWw5ehTlly+Di43lcjMyyCZfX//G8SmLi4N5r15oValwftw4nDl3jgIINDSoLz0uDuB56OjoQFtbm+/m5CRM27kToZMnI2T3bmZaWooVq1ZB9tNPcJg7l3lyHGzv3YO+XE5p87t2Ud/5vn1km3/+HNLycsybMQMDBw4UV1VViTMzM7uSUE9PWg9z5tA1K5fTTPm3QBAECh177z1SlBsaXv2noWFH2B0AFBYWQqlUwsbGRnhXqeSwYAHQrx9evHjBDRo0iDM0NMTY2bOZ8Nln8N2xg9NsaoL365+rrQ1TBwd0P3kSVxYtwoSoKAYLC2pzmDiREtp9fWmf8/KAu3chMIawsLA/qaS1ITyc1vk//gF3uRwKhYL5+fnx8+fPx7hx494+hvA1jBkzRtRlvvxfQE9PDzNmzNDs16/fP0aOHOkeERGhCQDp6ekNcrn8TPvroqOjJdHR0azt73rR0dEjo6OjZ0RHR/eOjo7+96xeDTXU+K+HumdbDTXUUOO/BCKRaIavry/X3jPdNgqpS0NydHS0o6am5n4AFq2trS9aW1sPATgcFRVV2/aStKqqqg6vtaOjI/r27cunpaWxQ4cOsZUrV9JYn+3biSDOmUP22uZm6mWtqCDC+c9/Ajdu0Ezp11RRnuexb98+VX19PTd79mx279494cqVK8xCSwvmvXohp7AQrq6ugpGRERITE0W7d+8WtLS0OLOEBMZ0dUmFdHAgsnTpEll8bW1JqTQ1BaZMgeHUqeghEoHneejr67OHDx8iIyMDHMeBMSY4OTmx7Oxs9tlnn6FHYiIqzMxQ7uYGDQ0NwcXFBWPGjGFyuRwXL17kfv75Z2HVqlWM53n8ZGQktHz0EZYEBjLDAQPIhmxrS0RxyBA6JqWlVHzIyCA17vBh4OOP4aenh/NBQdTXnJFBZKG+/lVv9fXrMDl1CsHDh8Np0ybcDwiA+5IlDO++Swrz4sWU7K2hgfnz54uePXsGNze3Dqa8adMmhKxZAxuxGOyLL2jbT58Cjo50bubOxcvgYOwMDISye3cAeNN2CxApKSigv3t5kRV80CAKunrtXMbHx2PMoUPQOHeOVNbOaA+hA0itNjAA1q2Dav166Ovrw8DAQHB1dWVSqVSoqKhgZnl5wLlzyJfJkNTcjKaQELw3ejT0TU3pe1y4QKqzhQVQUgIhLAzlgwfzWra2cG1p4RRWVvT/cXFE2nv2BJ48AefsDHtPT846Px/+d+7glpMTftu2TXh3zRrG/iSFPCkpia/IzBRC9+8XHZwyBWJ7e8z5/ntUGhpiSGgoE+nrw23tWrZ161ZhloYGQ3IyKb07dtAafPddID0dJt27o2jtWviHhAiMMaSkpPAAiERNmULf6d13gcOHwRhjxcXFrKioCI6OjsjMzISHhwe0dXS6tlVkZwP37pHlv76eUr2fPCH3RX4+cO0aLPz8YPL775hWW4vMUaMELFvG4OBALRFVVcDcuXRODQzoGn0LiVQqlbh69SofGRnJITiYxp6dOkVrEaA57MXFHa/X1tZmISEhCO3dm3EeHsC5cxAEARoaGkJjY2MHm+3dvz8gkWBVeDi1cLwF4hMn8FRHh2/54AMOU6ZQuNuUKdTPf/Ys0NoKWFlBmpGBbr/+ysfGxrIJEyb8JWM+XFamau7Th1n98gt8mpu5l05OgmVnpf416OrqwtzcnH/58iV8fX05CwuLv9r8G7C1tYWtrW3HPtXW1uIZJeYfBYCNGzdO4DjuoFgsfvHFF1/ki8XiHhYWFko9PT1ReXk539jY+DI6OjoiKirq4X/0wWqoocZ/FdRkWw011FDjvwQSieRdLy+vjqdma2trKJVKp+joaIOoqKi66OhopqGh8XtwcLCHsbExd/r0aVdtbe3eLS0t27Zu3Rovl8svMMYMtLW1Ve3bYIyhsbFRqK+v5zQUCmDwYPwydy5CnzyBvYsL2YTbR/3o6dHs6zFjKODqxg3q2501q8vc6fr6ejx//ly0YMECmJmZITQ0lGUmJ0O0dSu+W7VKaCgvR3BwMBs4cCAMDQ0FqVTKvLy8yFJ+9So9dC9dSv2mxsakZNbVUWqxuzsplW3YvXu3UFlZyQBg3rx5kMlk2L59O8vMzARAI5JCExMhODigae5cmJqaMsaYCADkcjnq6+sRHBzMAODhw4coLS1lS5YsgaGREYVjWVoCLi5UZBgyhMiPpycpyCNG0Hc3MgLi4/Hizh1BKyWFR36+COXlZHNWKEhVfPIEPxUUtBb7+Ii5oiJUBwRAQ1cXxkePdszFxqJFpER6ekLb0fGV9V4QgOJiyACh6tEjxlpbKcxs5UoqfIhEpHD37g2lnh4kublQtine9+/fR3h4eNeFZGtLx7Yd3t7kHBg5khT5TgFzMj09xISFoVlLC3OrqyGTyV69b9u2V6o5xxG527cPrXFxqK6uRlBQEAMozTszM1PlPXGiCBERsAoLg8rSEgOHDuXMzc3p/enppKqamZHSnpyM8pgYHDl4kIMg4PvZs9H07beQSCTCmq+/ZszVlQoM8+eT4rtkCcSffgrj+fMRdu4cbt+5w16OHw+JrS20Jk8G/PxQrVDg5s2bSE9PBwBuaGGhcHnSJN7Uz48bNWoUJxaLYfHll7CYMYO+i5sbTExM+BO3b3NzYmOZlpYWrYPGRuDOHWDQIEiSkuC8Zg2Ma2rY7t27MXbs2K5qZVgY8O23iNmxA01NTUwQBNy6dUs4c+YMa2xshI+PDz927NiuLRC7dpE74sQJUubLykh1bseHHwIAxIsWoebcOVSVlvJwdhZBpSIynpJChYH8ttHPnXrpOyMoKAgVFRWvRgF88QWF+g0YQETfyoqKavPmtW1GGwkJCcg7fx6N776LhrNngbNnwRjjVJ3XE0Cug4wMKhy05SB0ICkJyo8/hub06Zzx5s2v1tD+/RTgZ2TUUfRpPXoURbm5nNefKPPtSElJQUFBgWj83LlQpafD7tNPUTpr1l8qx7q6upg/fz6XnJyMuLg4JCQkYMGCBehYk/8h2s6hCIAtgMdSqXR+eHi41MDAwLqxsdHa1tYWurq6HYmDqampehcvXjwXHR1tFxUV9eZIBjXUUOP/C6jJthpqqKHGfwGio6ONRCJRt85juSQSCRwdHRUFBQW7oqOjN4vF4kWGhoYOXl5e3K5du+Dp6SlERkZyCoVC4/HjxwNLSkr6tLS08H379u2IsW5uboZ01y7RoIYGXB8yBOUNDcLzJ0/Yz+bmWLd0addeo+xs4OVL+vvChaRGffkljf+5fh1Ytw6tKhUePnwIkUiE6upqmJmZwcjICGPq6/m07t256uZm1qNHD1VISIgIAHr16vWKZTQ2UkK2lRX9hIdTGvfq1UQ8xo1747iMHz+e/fDDD1i9ejXaLaCRkZFISEjgx44dSy6AmTMBQYBuJ0Jz4sQJPjs7m2OM4eHt20LlyZPCY1NTburDh7zRjz9yGDiQ+q2//poU9oYGKjpoaZFy2N7X2aYgA0BRQYEq/NIlMZycKIW8neQMGAA0N0NPT48DAF4sxqO293UbORLeAwZQuNuyZXQMRo+mEK89e0jZLy5Gq5cXugcEMC97ewq68vSkAK9jx4hYKZWAnR1kjGHFihXYsmULlEolKisrX6U+t8PMjOzja9e+UrJDQsgGPnMm/Z+REfDgAdyHDoUsKQm7f/kFO3fuxNy5c2HT1sOLkBAK4/ryS/q3TEbna/16GEmlyMnJQa9evTB8+HC299tvRSo9PRTt2IG7VlYo8/MT9PX1GV6+pNC8kyfJ6j14MBVXPvsMFnV18P7wQ2RkZEDZ0oKpv/2GzJAQHm5uInh5UZq4SETHeuJEUulra6FasgRJHIfUujqYVlUhbM0atNTUIMPREUwkgszGBpPDw2Galsawcydr7zPvQI8eHfb82bNni/bs2cPHxMTwo0aNEmHjRnJ9GBlBGRiIMm1tNI0axZeYmHBid3few8ODa7+uGhoa0NLSghdbtsDi/ffh4OaGAicnPH36lAGAh4cH0tPTufT0dAQGBsJAXx8+NTUwPHSIer2dnChJf8wYUqw7W/gBUti7d0dDUxONDWvHmDFUFDp4kK4nS0sKtvP1pRFhbdDQ0ABj7BXJE4loUsCCBdQm4ulJ66AtiG7cuHGofvwYRuHhUFy5AomjIziOw86dO1v19fXffJ7cswfIyiJrOEBp+PPnA7dv43B0tGBvYcFzCoUImzZR0er0adq/ykoi4DwPxQ8/wE0mw7AdO/BcpULOpUsq6bNnjN+yhetlbQ1YW+P73btV9fX1ouHDh8PV1ZVyGIYPh8vWrUT416zpkqjeGTdu3Gi9ffu2WCQSQUdHh2+/Rv83MDAwgJGRkeaLFy+yo6OjJ0okkgBzc/OuqfGd4Ovri/Pnz5sCMAZQ+b/9XDXUUOPvDXVAmhpqqKHGfwFiY2PDrK2tRwYGBnaZ9+Tk5CStra11bG5unuvi4hI4duxYbZ7nkZSUBIVCAXd3dyYSiWBgYABvb2+Rh4eHWEdHh5TEsDBIpk2DuUqFZyUlKLO3xwN3d9YqlcLZ2RlxcXG8oaEhM2m3gj58SLbQdqXKzY1GC1VUoLGsDFWffIKDT5/ihVLJh4aGMi8vL3AcBwgC9BIT2SUDA8i1tDBq1Ciui725oYGswcuXE3Hcv5/IwbZtROQ0NYk0+PvTg7OHB4WlHTuGSnt71F26JIgbGpi5tzeQlAQjFxf4uLsziVxO5Pibb4hYTpsGnD+PupMncS0vjy08dAj9BgyAYXY2el64wHlv2gS7+nqWo1DgslyOVI5DhYkJnnfvLjwJD2cOI0eC5ecD33yDhuBgPCkqgpmZGWpqahAXEwPbrVu5xoAAFI4ejcLycjDGcO/ePVS6uODiiROqgspKka2tLT9r1ixWU1Ojqqqq4noEB8Ood2+ypicnk4I/fTp9/2HDSMU0MMDd/v0Rr6WFAfPng5s7lwhz//5ErLS16Xy2keXHT54gLS0NPXv2xLBhw9gbfaiMEQny8KD++3Y4OxOx+vlncirIZIC7O3T69IFKpcLTp0/x4MED2Nvbw8jIiIoCQ4d2SYDPevYM8RcvYlB8vOC1eTPTpl5l5OXlqZ4pFJz5iRPI6d4dNkFBzKe+HtxHHyHL0FA4YmnJ0hsb+daaGqHV2JgZbtwINmwYHM6ehfTGDVT6+AgDnz1j3ioVx/71Lyq8hIfTd+nXj5LCbW2BqVOhUVGBnqtXwz0wECJHR5wQBGS5uECQSmFUU4O+9+/DODUVzM0NnKMjEcrOoVjBweSo2LQJbNgwmJubs5iYGC4gIABNqamQfvIJUoKC8JOuLjKysmCSlcVeisVolUiY/uLF2FtZiTuJiXj48CEyMzP5svJyFc/zXPCNG0j184OTszOGDBmC0NBQ9OzZE/Hx8agpLYXPtm14UF+P8vnzYeThAYlEQtePWEzEdcKEN+4LcrkcDx48YH379n3FJgcPJsv5woV0/cyYQeeye3daX5GRwOzZKKBZ8YKfn98rgmljQwWflBQi+KWlpHIbGoIxBm1BAOfoCEloaHvLBpKSkngbG5s3bdhhYbTPdXWvZmhnZgITJ4L78ENme+wYF+vgoLL+4QdOY/hwev3y5TRnu7oamDULEqUSTs+f48F776nOlpRwhlVVzE1fn7tcXQ2/qVPR2tCAwowMLvTGDdwWi/kgY2MGiYTcGR4eVCwLCqLz+XbCzaWlpSFixAhEhoUxSVkZFQXkcmrp+PVX2pfgYCoKvffe27bRgVu3bgl6enrM2Nh4mK+vr7aXl9efquuCICA2NpYJghAdGhra+pcbVkMNNf5roVa21VBDDTX+CyCVSke7u7vrv/57bW1tREZGdpnVpauri0mTJuHIkSPs22+/BUDp0v/4xz/o4Tkqih56MzOBkhLoLVwI/0mToJuTg6KiImRmZqKoqAhKpZK7desWWltb4eXlBdy+Tf2nneHrixaRCC9GjUK2tzfeu3kT0sGDOfj6viIw9+5BXFICo379UFtYiMTERIwaNYoeaM+coQd7HR16kM3LI2JsZkZp515elDzd3EwP6zExHXOOFd98g1/KyvDutWusNjmZUrXDwkhJu3aNFM/qamDdOqClhchsQgK0ysogt7VF2YwZcJ0wAT5LljAA0AEAb2+c/eorvrmggFt54QLucRz/KCQEXEICe3nxIgyOHQMuXMCBH37gTTMyuOSICJSUlGDGkSNChr09SzU1FfQfPxYUCgW7desWs7KyUvXdtYsboVJx2levQiaTcS0tLXjy5IkIABR1daSUHjxI37mykooCUik6K66WlpbgeV749ttvMXfuXKbfbvV+/Jjs5CNHEiGQy2H34gUACrR63UIuCALKysqgFRwMI4XizYU2bRod9+7d6TwsXAgAGDx4MFpaWpCUlITm5ma0fQCRqDlzAAAFBQU4duwYhi5fDju5nOGnn8iVAGCWkZEIS5eCT0iAW0gI+C+/FK5oaTHBwUG4L5czY2NjWFlZcUJMDBJPnYLV+PE4GRsLeXExpsfHo8LWlmlUVJCq/8EH1It86BDth6srFShsbanvvLYWmtHR0Fy8GOa9eyMwMBBSqRQvXrzAnj17UGtggAE3byJVXx/DYmMhXr6cXBrLl3cQS+jqkqV+zRrY2dnBzsSELwsI4K5ERKBqxgzo5uWpJk+eLHJ1dcXjyEjEnTgBvYoKNGpqIqB3b4T98gu4d94Bpk7lAHClpaWIsbXlF6emcrJPP+0IaNPW1kbU4sVAVhb4/HyUjBqF2w8fIjY5GQCwbNky6I8cCaZQAHfvUtp4JxgZGVHIGUAOjNxcmqltYUHXy/37dJ0NG0avyc4m8skYXHfuREP7HO52MEbtEl9/TQWu1lbq27a3p/dOm0ZktBNEIlFH20IXSCSvktFlMprNnp0NvHgB8y1bcO/hQ9Q0Noq+GT8eUw0M4GxgQGtq5EhS2PPygMOHodmzJ/o8fSoKNjWF4ptvmLaZGT5UKnHRz0+V/uCByMjQEM1GRpAzRvcQXV26ppYupRT2DRuobeLzz+n7PHpE5PvcOTiWl2N2QAC4ceOgsLCAdMIE4MULKt64uHS0E4AxcpIolcD69bTNt6SWW1lZcUqlkp8+ffob9+rXwfN8+7mziI6OLlRbydVQ4/9PsI6btBpqqKGGGn9bbN26NTUyMrK785+kYb8N9fX14DgOP+7dy/splRjI8xwSE8mmO2YMPdg6O5Mtuk29ViqV+OKLL2BpaSm4uroiPj6eNTc3Y926deBnz0b5u+/i5osXMDAwwOPHj/mWlhZOEAS4WFqqJqSliTiZjB6odXTo4dbEhB7+AeQHBeHAgQPw9fERxrx8yXD4MBHkR4+IFHz4IanYQ4aQvfnhQwrBeg2lpaU4d+6cUFFRwXx8fFSpqakiAPj444+hra2NqqoqmJqa0oufPyfVfNEiIg0aGhAEAXv27BEqKioYAHzwwQcw6RTk9Gz6dNzlOCHP2pq9u2AB7O3t8d3OnULQ6dPsQXh4a70gcNLycm7W2bPI6t1b8MvMZFq7duGL2Fg4OTsjMjKy6w5XV9ODeSc1Pz09Hbd37YJlWRkcnz6Fgakp7A8douO1YAEVGZYs6bKZ58+fY8+ePZg0aRLc290FDg5kOS8sJCLg4QFMnoxzO3ciJScH/fv3V927d09kbGzMm5ubC8+fP2cVFRWcT3w8WjU1oTVvnmr48OFdWYNKRUWLfv1ILW8LeIuOjgYALF26FIaGhkSIrl9Hy9GjSExMFG7dusVUKhXWrVsH1thIZGfAAFJWvbzoOGRnU3iXgwNShg7Fubt30X7udHV1gfPncTImRpUhk4l8UlPhtmEDPNLS0Lh4MVQqFcouXoSHtTXtU2dVPj6eAtyWLgVaW6GaNg31pqYw+vbbLormlT/+EMy3bWMvAgNxp03xD+/VC4HNzRDduUPFDl9fsjGPHElr08sLvESC+pkzIT5yBNrGxmif/V5bW4udO3dCLBajtbUVPM9jyZIlMNq5k9wBEgn111+/TjswZQr1pLcVKJCbSz3Ry5bRNQkiYQ0NDdi2bVvHfg9tbIRFaqpgdvIk40QipKWlged5FBYWCgUFBWzAgAHo/d134BoaaNRXOzIySK3uNF+7HVU9eiBuzBjV2CFDRCgpIcW7HUePEnmXy4m8fvABFcZiYoDvv++ynb179/Le3t5cSEgIFcU0NF4Va5ycKP1+40ZqUXgLtm/f3jp06FCxp6cnuVoyMijAz8yM1qFSSfkImzfT9nx8qLccVDz6+uuvoVAoMH/+fLqOBYEKRgcP0v3lu+/I3WJoSP3wmZnkkgFQLxYjSyJBfHIynLp3pyJgZ0yeTMWJjz+miQWFhdRHn5ZG6/k1Nf/HH39EaWkpevbs2RoeHv5vBa24uDjFnTt3eEEQ6pRKZXhUVNSDf/ceNdRQ478Lahu5GmqoocbfHNHR0QFisXjliBEjJNzrY5z+AhoaGri1bBnvcekSV//8OTMICsJpT09Vnra24OHlxcHYGNi7l+b4fvwxwBgYY7h16xZmz57NmpubkZWVxSQSiaBSqVjWtWu4LpdDwXFoaGjg+/XrxyIiIlifPn3g17Mnx/r1I9vltGlEhHbsICXpH/8Avv8eRoaGcKuuhuyTTxhfUABtBwdKofb1BaKjyRbt7f2q1zksjAhIp8Cumpoa7N+/X7C0tMTkyZOZv78/Z2Njg4aGBv7GjRvCnTt3kJCQwB49eqRy+flnTrR2LUR79gCffEIbaLO+BgUFMX19ff7Jkyfs/v37AAAHW1ugpQUGe/bA4sMP2d3SUgQHB0NXVxeWVlbsZU0N3zcpSWQ2bx7rGxEB2dy5sP3lFybJz4dKWxs3OQ7vvvsuBb11hlhMx2T8eCJxggDza9fQPT0ddlpaMCwsxJ7hw6Ftakpjz/z8iDB069YRHnX79m2cOXMGvXv3VgUFBb0K1Fq2jBS4oCBS7//4Azh9GvX5+eixbRtitLU5XZlMMDc351paWjhjY2M2bdo0OPI8TMrL8XtDA2dlZQXjthnkz/ftg9aGDeAuXqRU6OJivLC2xlfffAPGGCQSCRISElBVVcXXuLqy5wMH4ty5c0JxcbHg5OTEKioqIAgCdGUy6AQEULFDEIiASSREWH7+GZg4EfcePVJVV1eztWvXso5jdukSPJVKrteiRfBevRpmc+dCvn49UqZORZyrqxB05QrTOnSIChKdlcW2c4fTp1FobY1/1dQI9wAWtHw5xN7epMwCqImKErSNjVnPHTuQnJwsKBQKlltcjHSFAnbz5kGvPfE+L48cA8ePAxs3gnl5QbN/f0h//x1swAAihWIxWlQqPL9xAw1iMXw9PeHQrRs8vLzAQkPp/CmVRODDwkglnTSJii4FBVTkUqnoWpkypeOrMMagoaEBT09PJCcno1+/frhRUgKdp0/ZH2lpuJGaiqqqKlVlZaXQ3NwsmDY1QXzkCFOsXQuztuu4A4sX0/rz8Xnj/pDg7IznPC/4p6dzuHyZiOWlS7SenJyA336jpPvMTOrfzs3tMt6tHaWnTzNNmQx2J07QNj75hAh6WBipwv7+1JP/lswFAEhISOBdXFw4k/R0OlarV5P9PDycLP5Tp9Losx9+oPvJr79SISAgAIwxmJubIzMzUxg8eDDjOI6+v5YWOT14nu4hCgXw6adUQBk0iIpSHh44mpjI33/0iKlEIsycORNvzNhOT6eWjvBwSoxPTSX3BMfRXHJnZzo2bfD390diYiKePn3K9enT583tvQZ7e3tRv379xMbGxro5OTlTr1+/fjs0NPTpX75JDTXU+K+C2kauhhpqqPE3QnR0dG+xWDxeJBIZKhSKXEEQ8iQSybfDhw/X7Jj5/O+gUAAJCcCmTbDR1WWxAQF4YWeHhJISABCZmJi8sjS9tBcSMQAAIABJREFU9x4pbQ0NaG1txb2sLGhoaEBPTw+nT59mEokEUqkUsdevY356OgYfPQpNHR0AeJP16+qSmrR2LQU0LV9OI6GCgoADB4DsbMh++QUCx0HjvfeIjAQHvzkHGiAi9f77RNQA1NXV4ejRo6rKykqRi4sLP27cOFH7g6yzszO6devGnTlzBhkZGfD29ORr/vhDtF9fHxg3DuOLi2EbE0P9q1lZaGpqQk5ODjw9PbmAgADcvXsX9+PiVANWrRKlBAQI18LDhZaEBM7V1VVlYWEhAtrG/CxaxKFHD5i4uJB9e/58+r4iEUqTkuD/22+o37IF+ps3dyU8EgmNT6usJHK1ahUwYgQ05s2Dxv37wLp1CC0t5RMSEoSePXuKYGND9u3mZpQFB+PUqVOqpqYm0cSJE+Hs7Nz16T0ggFRTQ0MiSadPA598AkMnJ4j09CBSKhHi5sYCwsK6Ht9+/WB59y569eqF48ePIzIyEiqVCg9u3oS7IAjmJSXMdvt2VI8Zg9vXroF5eUHgOCiVSowYMQK5ublcwfXr/MhvvuGe7tuHMWPGcHfv3sXjx4+F27dvs/r6en706NEcUlNpfbW2EtFsax9Q1tVB2L9f5DBiBLjUVCJ0U6eSw+HSJWiuXEm2/7FjsX/QIOEFzzPv/v2Z0Y0bdOzz88kF0FYkAACFWAzl1q043NiIXn36MMYYbj16JIRmZbF6MzM8Li4WXP74g3vx88+4dOkSeJ5nH330EXiex549e4S9e/eydevWgXN1pf14/30qOJSW0vmMj6dkcIWCzntVFQycnDDlxg0c69UL7gcOwKasDFxBAa3rOXPonCQmkkIOUPCYhQUVouzt6c/Zs996GYvFYohEIgwaNAiDBg2C6tIl9PvxR8ijomBobPxqHWzZgoKCAqFeLGa8IIDrvPaGDycL91vQUbBZu5b+fPGCguYKC0mhHjOG2jF4nlpPdHWpaARQGntyMrBwIYZu24b0tWt5LFrEtSeld4wPA+j6//FHoKaGyPNrEASB9uSTT4CPPqJj/d57r8Lyhgyha6i+nn7n4UHnYtw44Kuv4OjoCFNTU+HLL7+EUqlkgwcPRp8+faj33NqaVOjNm6mg5+REhZk2TJw4kfv+++/R2NiIw4cPq2bOnEnHNTaWCkOXLtH+eHuTS6NvX7KRr19PBRkjI7oPSKXAd9+B4zgEBwcjLi4OdXV1XRwzfwVPT09oaGjoHjly5GJ0dHT3qKioAgCIjo62lEqlGwC8A+CgQqH4RG03V0ON/y6olW011FBDjb8JNm3a9IFUKj0QEhLSz8XFJUAmk/UXiUThgwYNknXv3v0vZ8wCoIfL33+nUUgXLgDr1sFk6VLmMWQIBg8ZgpKSElRXV2PChAnMwMCAHrYZAwwNwUdGouiLL3BaRwdjx46FqakpbG1toVAo+JKSEk6voQEBSUnYIQi4efMmmpqaBBcXl7fv06BBRIjq66kfu7CQrK1yOV5GR2OvlRXKZTL4RkT8aUowAFIq794FevTAnj17VCYmJmzkyJGsd+/e3OsKP8dx0NPTw4MHD9Dt99/Z4GvXEN+/P+RSKR4+fIjclhZeLyiINVhZ4ccff0Rubq6QmJjIAAgm9fUs9fFjTsSYcMXamg0ZPpyNGDECgYGBXUcy6ejQw/6FC/TzySek2slk0PPyQmNuLkRHjiDL1hZ2HNd1xvCCBUS6vv+eFHyZjEj3118DdnawtLRk165d47p37w4tLS1AJsPj1FT8cv8+XF1dhalTp3JvTTWOiSESKxaT9X7hQvDff499yclI8faGtKUFoz7+GKIhQ8hO3A7GgHPn4Pzxx6ipqVHdjotj7hs3gk2Zwl6EhLBr167hSU6OcFVbm41/8gSKpiaUm5hg5qxZ8PLygo+PD7oHBTGNlhZ4fPABY4zBzs4O/fr1Y/n5+TA0NISzszODvj4lTDc1UQFo8WKgoQENNjaw2bABgevXg7t+nWaVz5pFVuO6OlovJSWAnx/sli5lzc3NqIqPF2p79OC77d7NsZcvoerRA1kaGiiVSpGamiqcvHuX5fTtq5rr58e5h4XBwcEBMbW1/P2GBtZ9+nSGe/eQMW8e0w0Kwo0bNzB16lSYmZlBU1MT1tbWLD0lBeYXLvCmTk4MK1bQOb5xgxTas2eJMI8eTa0Ns2YBffoAnp7IGzIEcU+fojwsjI/x92cZ+fl8bb9+vMX48ZzU0ZEIn68vnR9LS+oH/uknUl9zcui4FBQQwaupoXWjqYnaujqkpaWhb9tYPc7ZGeLDh6EZHEwW69xcss1//jlO6+gI95KSWFxcHGpra1+1GXAcqbM9eryxdAoLC1FTUyP4+/tzHet7zRpylvTvT5MHWlpoxvdXXwGhoaQ49+gB3LpFhHfyZJxydobcxoZ38/XlOmbKd4ZUSrZuuZwKbK8hISFB8Kmo4AyWLEG9vz+OHj0qWBYWgvP0ZGIPD7Dhw4kw19TQvS0igkIapVJg/34wjkNKQ4NQW1vLAYBIJBJ8MjIY/P2pkNH+mWvXkmvhtVT3+/fvw9zcXCgqKuL69u1LLQLZ2VRUGTKEXuTnR+dOKqWWlCFDSNlmjIoQDg50TX/+OVr79kV6Rgays7MRGBj4b9XtdshkMqhUKnFZWZmsX79+Z6Kjo23FYvGjwMDAoGHDhhkUFRX5tba2uvft2/f0/2iDaqihxt8CarKthhpqqPE3QHR0tBXHcRcWLlyo5e7uzmxsbODi4iLy9/fXMDMz+2ui3dJCPYknTtDDX1gY9T9bWQFt1l8A8Pb2xsOHD1X37t3jYmNjO1KleZ7HnpISVXK3btyciAg4+voCjEEmk8HT05PJZDIEWFjAzMMDRRYWQm1tLSsvL2eZmZkqAJxSqaQe3nYwRg/5Y8eSEvjBB6TU2thAKzMTrFcvpOflCYGBgax9396KzExgxw6UhIcjKSmJmz59OvsrpSgrPR2Gx45BtnIlThkaQimRQFtbm1+xYgV7qVKxx7GxwtNLl5jHqFGYMWMGMzY2RtyFCwhbtYrVmprivo8PWgE2ePBgGBsbv1L+ampIMfbxoaCpX38lsrNiBYV0OTmBaWjAMjQUub164dmRI4LXhg0MYWH0cA/QA/6vvxKpNDOjec2RkR0W1JMnT6KyshIPHjyg4+LpiZfLlsGsZ08hbNYs7q2uBp4nW6yW1qvfiUSo2LABBo8fI8/FBUqpFPmenkLgzJkM0dH0HbS1ydadlgYEBcHdx4fr6+3NTI8fZ90++wzufn7w8vJCcXEx8/P3h9uqVVBt3AgHBwfBa/x41lEgkUiIcGhrE9lvQ2xsLG9qaso56+vTOqispP7zuDhqWxg0CJfv3lVdcXNj/ceOZejVi8hre3iVnR0RGA8PNJ46hZTMTJ7LykLExYusIj+fk4eEwMjREUfLypD88iXM9u5Fga4uHzFxIjc0IIDTiIwky76+PgICAriikhKUSaV8iFzOuQwdilorKxQWFakePHjAtba2wogxWObmQpqUBOMbN5jBoEFUMPL0JNJpaEg9zN99R7bh9uRzV1cAgKGhIdLT0wV9fX1hxsyZnK6eHntUXi7cTEriWjQ0BKvBg5lYV5f6mHv0oIKLgQH1ne/YQQTezIzI6NGjwL17wOXLaI2Ph+7du7B1cqLX6ujQtT1zJinM9++TujxpEvwDAlhoaCiam5v5ly9fMp922/iTJ3TMp09/Y/kUFRV1Jdvt1y5AfeRhYVQs++UXUqY3b6ZzOHQo/bSlo+fQXHfe09Pzz3tcqqqop75fv9eWMI8HZ89yHjt24IK2Np9bXY28vDz2mONYXGUlLG1tYWxqSkUFMzNas5Mm0X56egIhIVBs2QLd2Fj2xNUVs+fMQW9fX8aGDycXhaPjqw+bOZNs7Z3uORzHwdvbGxUVFUJZWRnz8vSE7ty59N06p787OtLnmptT5sCTJ0S+xWIi866uVBj88UeoZs1C9rVrUGlrC3fv3mUeHh7Q/pNZ568jPz+ff/bs2ZX+/ftfvXPnzprAwMDQ4cOHS/T09ODi4iJJSEhw6d+//6b/0cbUUEONvwXUZFsNNdRQ42+A2NhYO21t7TmDBg2S/vtXd8KiRfRQaGtLttXISCLZb0F7P3ZraysDgNTUVNja2uLAgQMqTX199sFHHzGD3r3pwb4tmKy9J9IgPx/5MTH8LcY4gIKJGhsbuZycHKSmpuLp06cwNTWFXlYWKWD37pH1cvFiImNXr1KokVQKuzt30CQIwtm0NEgkEmbTWXHtDHt7ICwMxy5e5D28vARPT8+/LDpY3b8P15MncdvdHRVtidlSqZT169cP3bp1g/vly8z62TN4//OfAADTQ4fQrKPDrrm7I49UYyYIAgZ4eUFqaEiEQl+fRpMtWEC2eC0tsjBv3EjkZ+ZMIDAQuHgRwqpViLW357WamgT37ds5GBgQuT18mF63ZMkre/yoUWRJbYOZmRmsra1RVFTElEolHB0dkfz774J7aSnTnTTp7V84I4Me8j/9tMuvb2lo8A8Fgc3t3x/WPXvCPiiImRkZUYKytTURDo4jm2xAAJ2r/HxSL9uUSS0tLXh7e8POzg5MJMJNLS3e6tAhzszQsGv/r6srba9T32pdXR0rffSI9x85ksHKis7/hAnAkSNEoh0dcevWLdba2iqEhITQOeV5yg347DOA46AqKMDld97BSQMDiLy8mMuVK0xSW4vEXr2ge/kyfyw5mT3X04PAGAJTUjAsMJCThYWRutijBymNUikYY/Dy9GRuUimHkBDg889h0tSE3p9+yukoFEi9fp3vtnw508vPR9O6dYgrLob3pk0QrVr1StXU0iJVuqqK7OG2tkS2SkoAMzNwurowMjJit27d4oYOHQorKyv06NGDMzExQWJionD79m3Ws2dPUjgzM8lK/s471Ju8dCmtDSsrOq4TJlAYWHAwyjQ1UZOWJjiUlDBkZlKv+8WLpIZHR9P5mj69izvk4sWLTCKRwM/Pj35hYkLnyNb2DRfJG8p2Z/zxB5F/Q0Pq3XZ3p6JTbi4VIvT0OnrmCwoK0NjYyBsZGXFSqRRvLQzZ2JATZOrUDrIrl8tx6tQpvMzLg9LDA4ZDh7JHjx5BpVKxlceOoVxTE76TJkFTS4ve5+tLkwg2boTQqxeq6+tx/vp1/qxKxZoZQ8SZM+AOHBD05sxhLCqqq7MEIHXdzo5yDjrt45kzZ/i0tDSOMYaStDSV6+3bnMYHH3QZadfuYoBIROr24sXkGBg69NVrHB2BefNw+OefVe9v2MD1++orllVVhZKSEt7b2/vfO5MAZGVltZaUlGTfvHlTUyQSRYeFhem0Tx5ISEhQlZaWnu7bt++J/8m21FBDjb8H1D3baqihhhp/D2Q1NjZqtba2vv1h9W0QBODZM1LJCgspzOnbb+n3EyZQb2O3bvRw2AZdXV2uY3QTgIMHD8Ld3Z0bO3YsE4vFFABkbEwP9C4urz5LSwu6vr6csUQiVFVVMQcHB8HS0hKmpqbs999/R2N8PAr37RO06uuZgb4+uLNnSQmMiCDik5BAaeBnz4JNn45hly9zviUlwr9aW5GYmKjy9PQUhYSEdFWApFLwkyZB38uLeY0c+ecPqy0twJIl4D7/HKWXLiH311+hq6vLq1QqFhkZ2fE+6fffw6z9uNXVAbt3w2vHDpTp6iLsX//C+QED0C8pSdD+8Uf2MisLNc7OeFpcDE1ra/gVFoLxPETvvEPkq12he/KE/pTJ0CSXIzc3l1u+Zw89zDs5UZDTkiXUA3vwIJGGxYuBkJAuX8HMzAwJCQmCXC5nd+/eRVJSElT+/qyPpycdt7cVJNzcSC18DbqWloJxdTX42bPhm539qk/21i367p6etE/e3qQU/vEH7eufBFgBgI2bG3clIgLeN24QWRo/nv4jP7/LiDIA0I+PR4Wjo4CcHCKEkycTyV+6lOzh3bqhtLSUAWC//fab4OzszPzlcjSePInMe/cg4nn4pKejfNgwfuLkyZyrqyvqfv0Vd3v2BK+pCa3kZM5aIsFIiQStLi64/fnn8HznHfo+48dTf7GLC5H7nj2pp/2bb6j/duBAulamTUNAQgICVq7kNk+bBmtXV2GmQsFy/fwQo6UlDLe2Zl0YqIcHEdzQUCLKgkCOjc8+AxITER8fzxsaGjKO49irt3jAw8OD++KLL/h79+6xkN69GXfsGLUiREURyR42DPjmG7R+8gk2bdoEXV1djBgxAh4eHmi0tUXqkCHCgLbRdMjKIqfIkSP0AY2N1Dfs79+Re8AYE6qrq9n+/fshEonQ3NyMKWvWYP+sWeC6dROkUinfNnJKaGpq4uRyuWjv3r0qPT09bsqUKQzJyVQ8+uorKgwcPkykW0ODWgGOH6eCjL09Ef21a6EpFiMnJ0eck5MDe3t73tDQUMjOzhYNHToUAW2jxQSpFJgwAWzvXmDZMhQWFuLIkSNwePgQE2JjcWHDBn7eoEFc3759WWtrK7g+fVB09SoM2hP89fQg9OmD55GR0DxwQLj27BkeOzszPT09wc3HB1liMZr09DBj/35WuGcPHJcupWJYZ8hkVJiSy9HZ7i6VSjkA8H74EAIg+mPNGmG8vn7X+01MDB2X9nvpDz8Azc14lp6Of506BV1dXZWenh7jeZ49r6oSvczJgaGDAyYsWIAkbW3uprm5KjQ09N/6yXv37i2tq6ubqlAopvTs2VO/cyEyKSlJ3tLS8sW/24Yaaqjx94J69Jcaaqihxt8EGzdubPr444+1tDrbgv8MEyaQ2vTZZ6SUchz1BO/fTwrOtWukyEoklAjt5QXF8OH46rffoGx7YBwwYADMzMzg6OgIzc69ljU1RI7S04mEAZTM7OgIYeFC8Dzf0YcoLylB/IIF8Lp3DyLGsG/OHLTq6MBTKhVGHT/OxJ3JoCDQQ+uJE0QeTUygOnQIcTNmqB4LAqupqWHdunVj3bt3h76+PqysrJC1YAGeiETC6F272J8msaemkk39+nXs/vlnoaKigi1cuBDmnUdDtSMwkBLQDx3qCLnC+fPAgAF4vnkz9l6+DF4k6kxeIBaLBaVSyUxMTDB/4EBItm4la+1rEAQBGzZsgFFLC5Y0NRERsrEBvviCCg7V1USMUlK6vI/neRw4cEBVUVEhGjZsGG7fvo0XbbOyh8bFCTr6+gLbsIHz9vZGlx7y3FxKRp4374192b59O4zS0jDzn/+kz+6MK1fIAnvzJu3Lvn1vnRncGQ8ePMDly5eFNdOnM2zeTKR1wgRgzx4iNe02ZbkccpkMv86cifkzZ1Io3cmTrzZ06BDkp0/ja3d3dA8ORkNDg6q6uJjTzc1lvFyOgYWFONC/P7zMzflxixZx7eeB37gRpxQK/pFIxLUdbAwvLuaDDQw49OtHa2rMGCosNDWR3fmdd8g9sHs3eAcHpFpYwOPKFWju2QP06oVWKytcHDgQ2Y8fw7Omho84fpy7/MEHSGlqQmBgIOzs7MBxHI0cKytD8IkT0FuwoGNsFADgxQsIUVF4lJoqFC9dyoZPnPjGsSsoKMCJEyd4iydPuJEiEQy3biVXQp8+RJ4PHwYiIhB95AgsLCxQXl6OZcuWIScnB/fu3eMXvf8+h6IisrBHRlIWQlQUrWVXV7I1L1+O5y9f4uSpU4Kenh6ztbVFa2srVCqVEBQdzcrffx+1Tk7gOK7jp6WlBXK5HBKJBPFXr2L10qW0XnNyyLK9Zg1Z1Xv3pnvL0KGv0sifPqVC0rVrUB46hCPh4byKMe6ptjaEt+QwaGlpQaeoCEPT0/Hoo4+QmpoKCAL8U1KgtLDA6F27uhQZH06bxl+yteVWfvYZUlNT8eTJE1XL9esiuVgM/d69hSBLS+ZkZASuRw/KgjA3R+n+/agwMUHIsWPg5HI0LV4MVbduKCkpwfPnz1FZWQnh8WNBNyeHf+TtzZRKJadSqaBSqQAA448dQ52PDx9y5MibNxojI7qeZTIoFAqIxWI8WrYMuufOIX37dt7F1ZWrqqpCQ0OD4OTkxFzaC5UnTyKlrg6JSUmI1NeHyZYt+E8mSnTG0aNHm/Ly8k4rlcrZUVFRyujoaC+xWDyPMcYplcoTUVFRt/5XG1ZDDTX+T6Em22qooYYafxNs2bKlatGiRTKDTvOY34AgUHDPb79Ryq+3N5HjkBAije0P4YsWkRrV0EAPz2fOAE1NeFFaiuynNFmm15dfQuLt/YYyCYAIu74+BQV5epKFOjz8lW1SqSRb69KlUI0ejZtDh/LuQ4dy+/btAwD0i42FQiLBoHPnIJW+5owXBGDnTuoDXbYM2LEDwtatyLOzQ9rjx6qcnByRXC4HAOi+fIlJenqCTVTUm0/wzc1EqHbv7uifzcjIwMmTJ+Ht7Y2xY8fSg21DAymw3t6kOAsC9c36+5NN1sMDANlav/vuO0EmkwkSiYRNmjSJSaVSFBcXIzMzE3fv3oXVs2eYd/8+2MOHb+xOdVUVLn/4IYJEIrgMGEAkaO9eSmJfsoSKIuvXk01YIukYR3X69Gnh6dOnmDt3LtPtdC5aW1tRFBeH6itXEKunJzi4uQmjR4/mOvrcjx0jMvuauq1UKnHq1CkUFRYKKw4dYtySJW8ScpWKVDqepzTl9etpLvrq1WQR1tbukhL/22+/qZRKJZs5cyaHnBw69z17Up+qvj6FT61di/xx43Dg3DnYd+smzMrKYggMpITrNihaWnBx+nRYS6V80IEDHBgDli+H8vx5yB0doXXhAgoKChC/dStmJCaCpadTUJmnJ26XlPCxsbGckZGRqra2VgQAa9eupfV/+DCRwtmzqfdbU5PGaVVVAbW1KE5ORt3Ll4gdOBBaVlZCva4u41++5Gfu2sXVhIbCPCoKdy5eFHIkEtja2rLy8nJVc3OzAIA1NzdzCoWCGdbUYOrp07iwfj3EUqlKV1cX3t7eIgcjI9wZMwY9oqOhXVPzdoeAQoH4SZMEnb59mXe3bmCPH4OtXo3y8nKo9u+H8tEj/OriAj9/f6Snp3cQwL7PnvGDjx3jEBODysREcIMGQZaYSGnfEglUSiWKc3Mh27QJTTEx+Hn5cuGdkSOZl5fXq8/OyKA1/5bxXwCgXLwYtUePwrSigtRyNzcqwAwfTqnjLi70p48PEf7XkZUFmJpC6NMHhTIZ7gwapAoZMEBUZ2qKtLQ0iEQimJqa4nFmJu91/jyX7u2NOpkMA69dg8eIETBdvfqNTbZoaSH7t99g0rMnfvnlF3h5ecHb2xvd9u8H5+JC1/S2bUBCAorlcjx4/32kBARAqqkp8DzPnB49gkVJCeoNDZHXt6+gL5PxMpkMTnl5IrdvvkH53bswMDCARCJBRX4+TA4cQMXcuTh45AhsbGwwYsQIWFpaduxPXFwcUlJSVAqFgsnlcg4A9CUSYV51NdPdtKmLe+h1PH36FGkrVgguqaksf/t2PtzTk2u/9v8TtLS04OjRo00lJSVVjLEHgiCEBQcHS8ViMXf79m25UqnsERUVlfkfb1gNNdT4P4XaRq6GGmqo8feBwPM8AODZs2eora1FWVkZTE1NYWxsDC0tLZjOm0eEsbNaaGREltZz54hErlhBf/fzo4djf/8ONe7XjRsFsbExm2lpCcn331PgD8cRwerViwi8oSH9nDtHVtfKSnq/mxuRtBs3iFDMng0cPgzRyJEY3CbXdO/evTUnJ0fM8TxyvLww9C2WeF4QUDd9Osp794b9jRvQ9vFB69atsLazg3T+fFF1dTVfVlbGaWhoCK7m5rD57juGdeu6jgjjebKCm5qi84Orubk5qU7p6dDZtw+Ga9ei18GDQHo6qk6dgtGkSeBCQogAfvstEf7SUiAvD4klJWhsbGTjx49nDp3UYBsbG9jY2MDV1RXHf/lF2KmtzWqio6GpqYmIiAi0trZC2tSEvL17EZiWBuvt24EHD8guvHQp9UpraNBxfPKEEshTUkgtBJCbmytERkZyuq8VPcRiMZwGDYLTsWPwlMnYnqIi4dChQ8KECROYjo4OfYdORLa2thZxcXHCkydPmFwuh0qlYvlr1sDZxIQKNO2EIC+PCPqwYTSGasUK+v+iIiJbq1eTM+LZMzSGhqJk4kQUP30qMqipweOePeHm4UFhUUeOUIDYiBG0Lv74A7k6OrCysRFmREYy7N1Lx6AT/rhyBY9cXBBRWclh3z6y1Q8dCsmzZ5D89BMgFsPJyQlHzc2h6tMHYqWSjuH69chsamKtra2YMmWKSC6XY+/evXj69Cns7OyouCQI5Dj44w8iYytW0IdGRkI0ciS6bdqESyNGwPnmTTbu/n1kXbrEGW3bBtmRI2jR00OyvT2bPXlyO8nqIvXzPI+8vDzUpqTANDFRKAsKEqlUKhw8eBADBw5E3NChaIyNRfjVq1S8CgnpWsSKi4NFdTU71NSEit27IauuRoqJCZ4/fw49La3WvpWVIk87OzZw4EAEBwfj0dSpECuVUAQHc6U6Ojh+/Dhq9fQQtG0b+mhpoTkiAubm5ih69gy/nTwJDS8v3sLUFKveeYfDhAlUXGsrQOHSJQrk+/LLrheiszOwfj2Uq1bhZwMDrCwupvvBrl1UVGubs44+fSjs8MgRWsedRmcB6ChWsexsVF2+DLuDB5njiRPAsWPwb22lgpixMYYNG8ZBLMYAExPUDRgA3QMHoBEZ+frtAcXFxfhp9WpM9fFBeXk59PX1VaNHj6bzYWBA5P7zzylYztoalvHxODdiBFBRAZlMhmnTpkFTUxNcaSnw2WdghoYMAweK4OhIa2ThQth3KiZ1e/wYuHkTep9/joiICOHChQts7969AICpU6fiwYMHGD5nDmr27eOcvb2Zs7MzGhoaYGBgwMRyOV0DZ8/SsXsL7OzsoNq6lV26dAl6Dx+SA+P5c7rH/gfQ0NDA9OnTtYuKirSrqqps3d3dodNmlc/JyVEUFxfbAFCTbTXU+JtBHZCmhhpqqPE3QVxc3Cf6NZnTAAAgAElEQVRVVVXaV65cUSUlJXGZmZmoqalBUVGRkJKQwB7HxcFs1CgYzZlDamJnWFqSPXjQIOpbTU6mvkJT0w4bcVNTE27evs2UenpIAuC7fj00w8PJKq6pSWrluXOkhN++TdbirVuJ2H72GamdW7YQSXR0JEXZ27tL8JKHhwdX/fixYHznDsv29YVYKhXEYjGrqKhAQkKCcOvWLVy5coXdv38f+cXF/G2FgmUKAgpFIlhcvYrmy5dhZGzMBrz/PoaHhzO3Hj0YXF2JULeT7cZGUlUDAih0qROhbzpyBKKYGDyztMSE48fxB2N44OfHJ/v5sYwjRyCurxcsKysZDA0p9GzyZFKZPTxg4OGBrLIy2OnowMzN7Y3zY2hoiGCxmPl89x0qR4+Gvb094uLi0Hz1KmQ//ghVayv8+/eHhpYW9QVv2kQFjOPHyUo+eTIRoMuXaY7wqVNQ/uMfuC6TsWHDhuFPk9kNDCA9eRLeGzaw5ORk/ubNm9zLly9VtseOcZL9+8GPGoWbN2/yx44dY42NjczT0xPFxcXo378/fIYNgygjg4jn1KlEiq2tqVBx6RIpv7//Tirw5MnU1zp2LLBwIU6ePi28TExkeTo6vG5JCRt//DgaJk6E8Ucf0Wi3UaMo1GzZMiJg27fDTFsbyQkJ0Hv4EKZ5eQwREXS+amtxJyUFKTdvokevXiqX0aM5ZGVRMef8ebK06+iA53mcPHkSFdXVGPThhxQItns34OcHhVLJXpSV8YqsLGbV2AhldrYg379feHTnjmC5YQPT+OILWhfnz9M5bVf8Fy6E3sqVeFhYiHo3N+GdNWuY7pw5sOneHWzlSqCwENdVKuEFx7H84mL+QWoqn52dLSgUClhZWTGA2gmMjY0h69sXLoWFLGDZMnh4euLu3bsoLCwEz/MoE4kwYPduKly88w5ddy4u9O9Zs2B06BAGjBoFp9GjoYiIQE5uLm9nZ8fPmTdPbOXiwryuXoVGUxN0vb3hcOYMzBMScLlnT8SHhEAkk0EikcA0IwNpAGIKC9Hc3KwyMDDgioqKVB+vXCnyHT6cdYSChYSQk6K5mULddHTIoXL/Pp239jn3ERFQaGoiPikJvWfNwpPGRpi8/z5d07/+SoWoESNom9On033mtdFZHWAMRZWVSGFMCP7pJwYdHbp/XPt/7H1nVFVX1/Xc514uHS5FlCIgKKBSFBBUVLCggCXGHokmYEuMJkZjTYxBE3uLLbEn9hI1UbEiCKggYpciXUAEpHduOef7sbgUS568z/e83/uO8d05hkNzyzn37L3PyZ5rzTXXDXpeJSQALi7gDhyATl4exL/8QoZlb+CXn38W5m7cyIxXrcKjx495DQ0NkbOzM73p40NS9337KJCzdy8ULi64V1+v5HmeaWtrC3369GEcx4EZGoINH05Gdr/+SoqH7t0peHPtGl3X6dPUP/vLLwGOg4WFBfPz80NtbS0KCgqQnJyM4uJi9NHTg+uKFcysKZino6NDqhmJhFq2mZu3dT5vhadPn+LEiROor69H9z59eLuffybzxJ490Wyi+A/BGINUKoWFhUUbxVB2djZfVlYmiYqKivTz82v8xwdUQw01/tuhzmyroYYaavwvAcdxVWlpaSa2trZccHAw5HI5muq3GaZMQdWjR9imrw8vbW0MfdMwq2NHylJeuQKMG4fMvn2Rnp8Pr7g4GEdE4MmIEbh444Zga2uLiooKVFRUsK1bt8LZ2Vk5duxYEbp0IZk4z5PpWloaZQj/+INqt/PySFpeW0tZ27/pj83n5vK1pqYimSDg1q1biIiIgEgkgrm5OWtsbBQcHBwwhqS2nEwmQ21tLQwNDcHdu0cZuXPniNhPnUrZt+vX6ZwLF1LGUiSijK7KpEwupw3zpUsQXryASUkJRBoa2Dp/Pr1fVMS5ubkpDZ4/F0m8vBgvlwMZGeCAZuOxB5cv43J4OAakpMDpjz+ILB0/TsSzVQ29uH176A0ciMmTJwMyGQbFxSG3ro4Xams509GjIdbWJvntJ5/QFxQK6qe9aBGN2fPnRDwYAxwcUGNsDCYIkOfktHH0boP+/YGiIhjcvYvZs2eLXr16hYsXL7Jz6elw0NLik48cQXFxMYYMGQIPDw/k5OQgISEBRUVFSolEIsKwYTSu8+ZRPfOxY3RdABl+bdpE895KOZDw7Bmepaay3idOoJ+lJXf+/Hlhk6MjW9GnD9XH8zzNTUkJkclly4ABA6A/eTLGmpuzsro61L5+jdcWFrB59Aj1MTF4EByMuceOQSspSYRBg+g7dXXA/PlEgK5fx7rJk/HRoUNwDgjgER7OYc4cUnGYmaHnkyfItbbmusfFodzMTBj100+sxMiIJenpCYdEIvQbOxZujo4UbJoyhQJOPXtSFjErC69GjQJevxa0LCxa2pdxHDBlCh5ev85GXriADmIxl7xzJ+7fv4/CwkLB883+1HZ2VGedkACJtze+++47VFRUIDExEbdv30alXA5DV1dSTfA88N13VGM9eXILsQwMhO3Mmfjss89aBtzGhtbZvHnAwYPgzp3DnYgIGMlkyi+nTBFxHIf4a9dgu3kz9sycCQDo0aOHqKysDBzHtdQDchy1/RMEmp/GRqqtnjeP5io4mDKxgkCkGwC7dAmSykr8/OmnkOvpYQlAQZmFC1vM9QC6B/8FjIyMUF5ezlXU11M7wL/+onOFh1NJxY4dZFj39CnN/xv4448/eHljI5ffqRNe373Lv3z5Ei5vktGQEDJcZAxYvx51+/ahuk8fUT9NTfTp06ftg4njKANubw88ekQlE0OH0rjU19NYXbhANeqtUFtbq9TR0RHV1dVBUyLB08GDhT4c9+6n3uHD5AFx7x4pg96AWdOxBw4ciB49eoiqBAEGAJ170CAKdpWW0nX9mwgICNBJSUkJBpAAYPu/fSA11FDjPw412VZDDTXU+F8CkUj0cty4cZ26du3KOI4jw6CKCiIN27cjLipKUD55wt7bszUgAMW//IJTWVl8Dc9zVh078vufP+cGxMYKFffusUHBwULvKVOaN/hbtmwRnj17JnJycuK7d+9Or3McbfxtbGjjKBYTOdTXJ4nuu2o2W0GpVMLmzz9F2U01o3369GGRkZEYO3YsnJycAKDNflUikbRkaLy96Zw9exI5vX+fpM7W1pRhk8moHn3BAnIV/uEHckw+dQro0gWy8nIcNzERKgIDGZRK9OrVi09PT+cqKiowxNtbJEpNxRY/P5wD0Cc/XxjQ2MhSUlPh5uaGm7dvKwf4+4v6r1xJRKOmhtynJRLKBL98SSROT49+X2EhMHs2tDQ04JCfzz0cMEC4pqWFL775pq2Rm6cnbe7XN5kIp6fTv3fsAHr0QNHChbBdvRqa7u64df4832/o0Pe7J+3YAfj7w9zcHDNmzOAq/P1x+fp1KBQKzJ49m1Oti5MnTwIAcnJyRNXV1dBXKRKsrVvaw6lgZ0dk4dIlCjA0v2wHbW1t/unTp4KlpaVIKpW2zFtrafjDhzT+n3xC9dvR0WinUEB30CCcXrkSxa9f8zJPT453d8enn34K7e2teMCLFxQc6tgRGDUKkZaWkMtkMJgzB7a9e3PYto0+l5iI+O+/55Pkcq7Q1hap3buD4zi2PCAAZgEBMANY6a5dSr2ffhJh61Zar8HBpHwAiDQWFGBoeDg2bdrEXbp0CcOHD2/5HTNnYkFYGO4GBOD5o0do/O03wbyykvX46ae3uZVIRBnRwsLml6RSKSQSCQ+AO3v2rCIkJEQMX18idKqxjYtrOcbHHxPJAoiI/vorrefz54n4jR4NtGuHEsYgkUiaDbV619UBH32EDpaWePXqFfbs2aPKsL69ZhgjMltURCUf+fkkv9bTI2d2FQQB2nPmwHvAAMR06YKlixbR68eP0/2VkdH2uLa2RJpbt7xqBScnJ3Ac19angTFaWyNG0O8pLSWi+4aSQ6FQIDk5mRs7Zgykfn44d+sWp1AoME7lfK8ar2nTKOgHAJ07ozIzE588f456XV2UZmSgw6+/kkJDZSB45QqR4YQEarF24gSVxJibk9Fb6xZfTRg4cKBo79696N+/PxLv3IHnvHls5evXGD58ON4KwAA0vgcOUBb/DbRv3x5SqVR58+ZNUWRkJEQiEb799luwadPoA8+eUTDz00/JW0JlSvlfQGZmJkQiUZpSqTz4X/6yGmqo8d8KNdlWQw011PhfgLCwME4sFrtaWFi0davdsAG4fh310dGIf/KEMcbQu3fvdx5jb3y8wjshQTygUyfWdcECaGhocJWVlcj44APWt7gY+nv3ctDQILkwABMTE1RVVUGhULx9sKtXgZEjiUg9eUJZt5iYf0m2RQoFuvI87DduxJM9e5CTkwMAkMlkQmNjI9N8x8a2DTiOstbjxlGt86FDRPQDAymjuHEjSZ4HDiTS19RP+MFXXwmXjh5l+vr6/PLly0W1tbXQ19fnqqur8fr1a+iePw+sW4dPBg/G9WvXeNfvvuOONzQIOaamLDk5GdXV1aLm3sQiEZ3z+XP6761bgbNniQTNmEEEc80a2tDPnQsEB6NzdTW7e/Qov3btWiYWi3mpVAotLS1Of8oUOHl4oKvq+iQSoMlpHCByEtu/v3JHu3YiRVQU1+/334H9+9u0JgJA59bVpTFoMm6ShobiIwsLDkeOtPloYGAg0tPTkZGRgca6OuiravbnzaO2bm9CZTYVFNSc3TY1NYWpqSmrqKgQAEDV6/fx48dway0j/u03OraBAa3VHj0gNjGBwTff4NOQEPA8z+3ZswdFRUUtbZxkMsqs//orsGkTyj77DM/PnEHs4MHwGzxYaXzwoAi//kqBCYkE2LwZnUpKOM85c3Bw/ny+QiplSlDbukmTJjFxbS3scnKY3Y0byPzhB9gXF7cpLcCBA4BCAS2ZDK6urnxiYiJXXl7OjxgxgpNKpcDDhzh65oyQEx3NvLy8eK/CQmaemUlGXO9CQAAFUdzdm+uXVbWzVlZWLSeWSGhcjh8ng7r27Wm85HJSVIwbR++vW0cBmPBwCmjt3g2ACFRwcHBbm/gpUzChUyekp6fj0qVLqKurA2OM43m+5bkhCJRVHzCAFCKnT9Of0tK2ba+2b6cykOfP8ejXX4W+zs4tgaL+/WkdvokNG0iq/x5UVFSA53nI5fK33xQEyiBfu0Z13qtWUSArNBQAcPToUV4qlbLONTVMMyQE1qtX87m5udzr168hlUoh/uorIqOXLxPhrqoCJk1C2ZYteHHoEB67uaGnpydG6ejQPWphQcdXmcX99hupZXx9Kdixdi11CEhOprlqZSrXrl07BAYGCpcuXWIG+vrK+xs3ilhFBcLDw2FrawvTN3t4L1xIAaf3ZLe/+uorEUCu/ufPn8fTp0/h6upKb6oy/KtXU9Cld28KEvyrZ2Ur6FIJhqNEIrmyfv16Bc/zneRy+dzly5ef/8cHUUMNNf5b8O/1H1BDDTXUUOM/CrFY/J1UKhUZqWSbeXm0GV21CoiLg0KhgJ6eHiQSyTtbSMTExKCiokLscPQoXI8dYxpNZMPQ0BAenp7QDwqiYymV5Cze0AAvLy8GAPX19S0ZvCNHKOvj5katnQICWly8d+6kjNTfITkZml98AVmr9mIAcO7cObZ27VrU1NT8swHhOMqsnT1LxGTxYsqqHTlCGbInT6hWMjERFceOIWvNGjbZygpzO3QQcTEx0H/9Gnj6FPqFhbCTSsHi4sC6dYNlQwP86+u5B2PH8jZPnrBOWVkovXMHM+PiBI3sbCI+Q4cSWbG1pTGzsKCs4PXrlCUrKCDieusWZVAB6OvrY9asWdwXX3yB4OBgztrKCkEbNsBQT48/FR2NoqIiuq7+/YlQVVc3X2pBQYGo1sAAc2fPpgx6VdXb4ywWE/lftarltTNnKNv9Bry8vJCTk4P2BQW49M034OVyRNjZCVutrHCytJS/N3MmHj58iLq6OlRWVkLm7U0GY+Xlzce4fPkyXr9+zYYNGyYCAFdXV5iZmeHPP/9se7KICMpWqv69di1lZxMTm6aRg0wmUwLAkSNHyP2vqopkxCNG4MzZs9hrbg7BxkZYWlMD3y5dRBg4kAihQkGBF11dtO/WDYVPnqBAW5v7ZOdO5nfuHMvMzGQNwcGApSUchg/nMkePFo52746GN4NHGhokV7e0xEgXF27u3LkoLy/Hzz//jLS0NMh/+QUTXr5kYrEY2traguXatYyLiiJ5/dChRBJbQyIhmfrRo80vyWQyJpVKlf7+/gAoS/twwwbwhoY053/9RbLtZcto7aSmUg/6lBSqMX/0iAI4Q4YAgwahYP16MMZgozL/k8ko8NShA6RSKXr16oVhw4bB0tISgiBg1apV2LRpE3/h55/R4O4O5ZEjVNfcvz9l1efNa+kCoMKVK0BeHtKyslBXV4f+qrIMhYLugz593lpbGDu2pf75HahvWrc3b958+82PPyZjvUGDqEVh+/ZAXBzqamtx4sQJ5Ofnc8HBwUzTwwM4dQpjx47l7O3tlZcuXRLWf/891aCHhdGxGKNAhbk50i9f5vMGDhQWHD+OyrNnka0qyRCJ0FyuAFCwcPp0uvd8fChosHUr8PPPZArI86SuSU0FamvRs3t3Nn/+fNh37CgSHz6M/v37Q0tLS7h9+zZf3upeAUDPq6Iieh4UF79zbHiex/nzxH2lKnM0nqfnbFQUBQYYo4z89u0twb5/AIVCAYVCAXt7e5+goCBff39/a01Nze/+8QHUUEON/zaoybYaaqihxv8wVq1a9ZmOjs7iKVOm6Da/eOsWbcAYA0Qi6OvrQ1NTUymXy9lPP/2ES5cuNX+0rKwMt27dwrhx46Dl6EgZlqbsWBs4O1OG1MwMCA6GblP2iTHG5HfvUq30zZtEyM3MiEyosmA2NkQGmlpyvRcPHwJaWsjPz4euri5vbW0NExMTpertioqKfz4wsbHAyZO08WeMiIOfH3DnDhEHJyfA3BwGmpqw0tHhk27cEKqOH6fruH0bj2fMEPJGjRIU8+eTnDchATh9GpY7dyJg3jzOJyUFxiUlEBhDbmUl233gALLNzXHN1FS4deeOEocOUSb7ww8pY9W3L7m+h4VRxvDw4TY/lzEGQ0NDWFpaIsDfnzN1dsagKVM4X19f5YEDBwRV72yMHk3EoQkqWapgZNRsFAYLCyIHrRESQtnJprZQOHSInMXfAWc7O+W0/fvROT0da2fNwh1dXSbW0IBpp06s29mziDh9Gps2bcK2bduwcdMmXL12jVd88gkUCgWuXr2Khw8fIjg4GKrgD8dx8PDwEACgqqqq5UQnTxKJUuH+fcDYGAp/f5zavx9lTaqBWbNmoaSkhHs4dy6e/fUX/tq0CQ/XrcOzZ8/QwBgynJwEjb17m4M85bGxuBwRAf7bb4GXLyGXy3H43Dm0a9eOD58+XWFhYoJvS0qgFx0N8Dz0yspgf/YsEzgOT548eXtATEyoVtjGBsZGRvjiiy84CwsL5R9//IHo6GgoZTJIJBK+ViVPBojojxhBkuW8vLbHmzePAgZNxMrR0ZFVVFSI9u7di927d2PTmjUovXYNMh+fFiKmoYFmafzcuSSjHzyYlBqqrH8TQaw+dkwY4u4uNPdVz8+nddGqHVXv3r0xffp0uLm5wTYzEx/u2MGlFxXhaseOWJebiypLS6rTVgV25syh80ydSvdyeDgwdSoeP36s7NKlCxOJRCgqKoLs6VMKLL2rnRXHkYw8Kan5pYqKCuTk5KCoqAjHjh0TdHR0kJSUhKioqLbf/f57ygCLRHSMwEBg71689PYW7PfvFyZOnAgTExMyF4yLg46ODiZNmiSaX17OZu7ZA4WTU9usOmPAgQMoMTVl07ZvZ3pTpsDDy0s4fvw4Mt9zX+DZM5L1V1eTnL57dzrO8eMUQPDyorWybh0EW1v8/vvvvPGmTXBOToa3tzemTJnCXr16JezatQu//PJLc/cIALR2d+9+Sx6vgmpdBgcHw/rFC1IOMUYmlvr6LcaWr1/Tuho5kqTl/6JFb1FREU6cOAEAqKmp4Z2dnSEIAniez/7bL6qhhhr/T6CWkauhhhpq/A8iLCysp4aGxuapU6dqGxgYkHR2+nTKOn30UZvPVlRUiCZMmICKigo+MjKSNRmoCc+fPxfc3NzQqVMnkpyOGEFZ4U8/fVuOrKsLLF0K5OTAPCAA7i4uwnWZjLmvW4ciExMIjx+jQ4cO7/6xVVVE5M+/R5koCLSZ/fRTpKelKW1sbEQAMHXqVFFkZCQeP36M/fv3Y9myZe933gZos6lQkJS9qIiM327fJpJw5gxtZkeMAH78EcjKAnfsGNyCgri9e/fiQXk5VqxYAQC4mJvLFAoFOnfuDKmWlpKzshL59u0LnSVLAJkMYokEjWPGoCw/HxanTqHiwAH8VVaGSkdH1jEtDXru7uhqZATN8nIi+aosmFxO2aisLKBfP5LWt7ZOamggEnrsGMAY/Pz8RJWVlfyZM2eEzz77jMOePc0b8j/++APFTYQtJSUFvXr1ojmKiCCX4s2bifRZWRFR+vRTyh5/+y3JaU1MqI699RzMnw93QPTA3R1xffuiV69ewqBBg5hIJAIAho8/xsIrV1A+aBDE2tpoaGjAtXPn8DIiAn+uW8fXi0RccHAwrN4w4YuOjmaMMTS3KHvxgs7dShaPnBwox4/HT2lpGHztGpRLlkAxZ05zDa84KgoaN2+iq4UFHx4QwEykUmHmqlXc5ZkzcXLsWKF3dDTClyxhJU1y9+pu3VB2/jyMra2hoaHBzx48mEOnThxGjyalBUAZzqgo8IGBAIDs7GxBpdpog169KHiiVII7cAADBgwQnThxAlXTpil3PHwoYjzPhraumbe2Jpfq334jZUV+fguR0tCg4x07BsybB21tbUilUqGgoIABgH1aGjo0NkKrZ09Sh6h6Xask/6tW0XqysqJsqIlJi0lXt25I6taN+ael0XcBygRPnPj2vXLyJALq6hDJGNIdHPDVDz9AplTi0fr1iP3xRwRu2QJO1KRE79ABVTIZqqOj8URfX6g4fpxlZWVBoVCIGGN49uwZBEGApLER3r/+Cr/W0vTWyMoCADx69AiXLl1qIxm3tbXFhx9+iKqqKhw9ehQFBQX8R0OGcJyvL5maqVz+m4IXWVlZuOPtzT7y9oZEKqUxevKEZO9NCgC2dCmOVlejfuNGQSwWCyKRSJDJZJy5uTnT0tJCnYkJNMaOBSZPRrecHGa8fbuwWy5nBgYGSl1dXebr68s5OjqSuuHGDbqXs7MpWOfpSZnstWvJqE+V+V+5EidtbJR1lZXMy8wM3KlTwN270JkwAZ8VFor4Gzew96+/2JMnT+Dm5obmoIifH0nk166loForuLq6QnPGDD43Px/2n3/OsU6dKLO9axdlsbt0oWdHaSmNz/LllKGfNo3KFZYubfM8l8vluHz5srK0tJRDkxdGQUEBx/M8lEollEqlU1hY2DcALqn7b6uhxv8c1K2/1FBDDTX+hxAWFiaWSCQxw4cPN+vUqRO9+NlnJPv8/XfKuly+DGhooIgx3Lt3Dy4uLnB1dWX5+fl8UlISl5+fzwRB4IKDgzmRalNtbEwktayspdfum5BKwXXpAofvvmMdCgoQPX8+ZN98AwdHx3dusHmex75Ll4QOly+zW506KQsKCzktLS3o6uq2bDSzsoAtW1A2ezauXr3KjRo1SpWRR2ZmJgoKCiCRSDBgwICW77SGqtbUwYFqxL//nqS3Dx+SJDYwkLJAhw4RCU1LI6fhLl2g0bkztKdORebr10JxcTGztrbG/fv3BYVCwcrLy1Ggp8fp3LwJhy+/hGT+fEAiAZs6FV0MDXErNRVBQUEoLy+HiYkJKisrhdLSUu758+dwffAAYjs7iEeObDEGE4koQ7lnDwUezpwB/P1b3LwjIiCbNw+P/fxgbGKChoYG6OjosLi4OCYWi3E1Pp4Xli7FxexsPqu0lGtsbIQgCHB3d+dNTU1pYCws6HhLlxKZ7NGDCD3HUXZw+nTKdKvqPgHKwL5+DUydCi4gAMccHdFIBnSsuR4doFrQJUugnZsLzcBA6OrqwsXdnWXo6fFdHj/Gh+vWMaPWLtRNePLkCe/u7s7sVC2O6uspAODj0/Lfo0fjtJ8fymtq4Pz11zijrQ1pSQm8zp2DiZYWL6xYwbo6OaGdnh7ro6/PvObOZSJNTTisW8euDR7MOE1N5p6TI0hHjoTv0KHMKTwcSSYmeFFSAs36euY5ZQoaT52ChkxGNdN37xI56dwZ3BdfoFQmQx5jeFFUJDg7O7OHDx/i4sWLiIyMFLy9vRlnYoJCQ0M8qKrC1atXMWDAAGVgdbXIe/16JPTpw54+fars1atX2xugRw8K9BQVUc3y4ME0Fx06UBa2Wzdo6Oigd+/ezNnZGT1FInQ6eFAwKyhgmhYWpCipqiIp+PnzFCSYM4ek+0OG0PG2bCFpemUl7mdkILGgAD6pqRB36kTn2bCBAi2qebl6FTAwQMX06bhRVISknj3Rc/ZsmFtaQiwW4/G9e5iwZg1umZigU1M2WPHRR8i+fBmvjY3x3NycFTOGnj178k5OTiwrKwuhoaHw8/VF74kTEa2pCYm1Ndq/q3d0bS14ExOcMjAQHHv2ZCEhIXBxcYGLiwt8fX2ZpqYmDAwM4OrqioSEBNxLSOA9raw41uR+DgA1334L2fr1OFBbK3iNHw/rUaMYBg+m+Vy2jNb3wYMU3FuyBN18fNClSxfm6OjILCwsuKSkJAYA5eXlwhB/f1hOmcKQmQlMngw9xpjt8uWwtLbmxGIxu3btGu7evctX7dolVMfH47ilJc+lpeGmlhbv3KMHxwYMIJK7ciXg7g7B2BgPHjxAXGIi9/XXXzONgQNJ8r9xIwWXunQBW7QIHWtrcb6yUnCZOpVpTppEx2CMgjTa2kSeAVJATJwI9vHHkGZmslvV1ZwZf2MAACAASURBVKzYzo7vPHcua35m5ORQkO2DDyiIM24cEe0ffqC2fRERpGq4e5fIPGOQyWQ4c+YMx/M8EwQBGhoagq2tLe/q6sq1b98eOjo67aVSqV9paemM27dv6/br1+9t9zY11FDjvx1qsq2GGmqo8X+BsLAwi9u3b38THx+/PTY2dsiNGzdi/fz8at74jFF0dPTn0dHR/aKjo9P9/PzqACAmJmZh+/bthwcGBkoYY1R/6+pK2a/gYNq4JSUB6enQW7cOBk+fot7QEJY1NXAZPJjrP2gQJBKJ4OPjw4yNjdv+MMYoO96/f1uzKICyO4MHA99+C1ZejiKJRLC9fJnl9O4NR2fndxLhp0+f4klaGtr168fY06fc44YGPiEhASkpKXBycmISiYTk2y4uOJyayltYWKB3797NB9LV1UVxcTHKy8tRV1cHCwsL1NfXo6amBjo6OiSH7tWLyMfSpfS3Cg8ekKR+40b67d26EckrLqbNeF0doKODdlOmwP7HHyG5fJkdq62Fg4MD7+LiwlVWVgr19fWszNgYxr6+vEXfvgwKBRRnzqBmxQrc7dwZXl5e6NGjB5ycnFBQUMBev34N49pa9Pz5ZxxvaECPkBAUFRVBJBJBEAQc19ERSoqKWIapKXQuXUJ9x47Q7dABvFKJQ/HxysuOjlzq8+eIi4vD3bt3kZKSAqVSiezsbNjb2wt9b9/mzPz8OK9Jk5CYmAgtLS1UVlYiPz+fd3Bw4JrnMCSEDMgGDCDVw/jxNKcvX9IYeXlRrWdZGRkrSSTAkiXQnDwZA3x9kZ2dzefk5DBjY+MW4sQYzb+LC9VpGxmBMQYLMzPWfuNGxiZPflsRASAzM1N48OABS05OVpaXl3PW5eUQ2dq2tLT6/Xck19Qg3sAAGhoaQm1tLZx69ODNKyuFzvfvc+YxMazD7NngbG3p3CEhJNEPCECRkRHuKRQI3b4dpkVFzM7EhBn37g3dBQvgOWsWvDZuhK2XF4TiYuglJaFu2TJItmyh3xkURNlBDw9oFhcLmllZjOXkwHH4cLbv999RVVUFuVzO0tPThejsbOFRVhbrvWYNLObP5/v27y+ClRVEHh5wGzMGERER3MuXL5GUlIQOHTo0G59BT49q9bdupTZeYjER34NN5s/W1kBJCXSWLoX+6tWoDQzEbx4ezOXSJWgePEgkaulSyqy3b09zoKVF//7gAyJa9+9D+PxzPE5ORp85c2i+srPpPHp6ZAqYlwckJkL46ivszcxEhLc3PGfMwLhx42DeJDFnjKFrt27YKBajSBCEqvJyxlVVITYzk89ydGSBv/wCr5Ur0W/1ath7eLC6ujqkpqYiMDAQ2hoakJib446BgVJPX59rDgK2wrE//uCTeZ61GzKEHzV6NCcWi6Grq9tigNcETU1NuF+4wAoePOAeDBoE56Zny61btxATG4sXjMGkf382dOhQek6MGkXZ5pUriWTu2kWturS0oKmpCUNDQxgZGSE5ORm5ubloaGjAhAkTWLdu3ej7lpaAVAqsXg3prl1o37cv7D084O7uDmdtbeZ09ixTHjjAHDt25Exv3mQRenpcfHw87ty5IxTq66OboyPD/ft4UVCAc3fvYtiwYS018zU1pDJQGUROnAi9CRPw+tUrKPLyYB4ayrB4MQUKdu4kFcKGDaTQcXOj59vQocjr2hXRL17Ax8eHNZusvXxJRpTTplG5jupZLpORcV5wMJVq5OUBP/1Ea0ZHBxlFRUhKSkJQUBDGjx+Pfv36MRcXFw4ARCIRLC0t4eDgILKystJISkoyu3Hjxp7bt2//EBsb6xkVFRXv5+f39/p0NdRQ4z8CJvyLWhA11FBDDTXejZUrVw4XiUSnXF1dRd27d9fMyspSJCQkvJbL5e4rVqwoBICwsDAmkUiSO3fu3EksFiM5OVkQi8UxPM9raWtre06ZMkXHxMSEpJNr11ItZdMGTxAElJWVYceOHfjAzw9JBw6gu48Pety+TcRL1RInIIA2mm9sdjFzJm3uVe646elkKlZRQcQ+KYk2+QAit22D9bZtMFmyBEbTpr3VRzs3NxcHDx7Ep+3awebPP4Fr16BQKLBz505lRUWFyNvbWxiSns5qe/TA1shIfPvtt9S67A1s375dWVZW1uyw3LGwEKESCV330aOU0XqT7NfUEImUSIBffiE5708/0Xu7dtG/MzMBLS0I9+8j69EjaLq7w2LQIKybNQsybW0wxiAIAqytrYUPrl5l0txcXJ0/n9c4fJjpLF7Mevfu3ZzR56uqwI8Zg5ezZuFWbS0yc3Px5v8rzc3NhcmLF7OYPn2QNnSo4HL+PLN8+RJiABocB+7aNZw8eVLo3bs369evX/P32rhGNzaiEcDhw4d5nueZrq4uMjIy2MCBAzFgwIC2YxAfT9fPcTRvx46RhD00lDL/VlZUU/777y09tJtw69YtREZGYtKkSdDU1GwhEKdOUQAjOrqll3hiImXS36GIePXqFdLS0gSRSIT79+8j4OBBOH7wAVOZVlUvX47DNTUImDsX+vr62LVrF0aNGoWeHEfkOj6esuCMUTa6vJyydGlp2B8RwYvFYvbJJ58wCAI55nt50XV1707BgcpKYNo0XB0+XHk3MVEkCAL09fX5+fPnc8jIANasQf7Spfhr2zZ8IJPBysgIuZqaOAhAR1cXNjY2vI6OjtDZ1lbksHQpuIMHARXh2b4d/KxZWLVmTfP1mpmZ4fNWtfVt5iI4mDwAIiOp9jk+nrLfgwYBX3wBITwc+cOHCzn6+uhTU8PEU6ZQL/G/Q2QkaufPx19OThiVlAQ9ExMijx07EsHKz6da6pQUgDH8sm8fSkpKsHz58rbHOXEC+PprVD1/jvDwcGX3NWtEhpWVuLBwoRASEsJ0dXWB/fuhzM7GOTc3Pj0jgw0aNIh5e3sDe/cCvXrh98ePwfO84Ofnx4yMjCCVSsHzPA4cOKCsqanhJgYGMvPTp6mP+N9h0SKUWVpie5NXw2effYbTp08rzc3NRT0lEpj17UvXCZAXgVJJzySFgq7z++9pTD/4gHwTfH1x7sYNPG2SvNvb2/Mff/xxWyXCuXM0PwsWkFy/vJyekadO0bM1OxuYPh1CRASKiopQVFSEP//8E5988gls8/KQt3y5kOHpyQZu3EjHa2wkAztv7zanqaysxM6dO4XRo0ezbt26UdBvyxYKhjUZQ+LChTYt9U6ePInU1FTMnTsXzQHSH39suYfv3KHrbI2sLJqXNWuIgL98CYwYAXloKFbX1GD8+PHo1q3be6egvr4eW7ZsaQBwz9zcvJdMJuPLy8sLAEgEQRDL5fLg77///ubfT6Qaaqjx70JNttVQQw01/k2sXbv2xfjx463tW/VFjYqKUsTHx6fKZDKfFStWVIWFhQ3V1dX9MygoSKu6ulqwtrbmEhMTYWFhARcXF6plraujLIi/P9C3L2pqarB582YIgtBMEjmOA8/z+OKLL6jtDM+TmU5cHBGW6dNJerxpE2U5vbzIHGnGDCJTjY200RSLqX3UG4Q2JSUFV/bswcjz51EwcaLQ8/PPmX7HjhAEAenp6YiKihLKy8vx5ezZTCc+nohdU+1ueno6rvzxBz/41Cnuz6AgaBob8wsWLHivAWdmZib+3LULEpkMs5ydIYmPpzZD76oPBSirI5VSgKCsjKS4/v4UYABo81xTQxmlHTvoGhUK4MQJZPbpA+bvj1ITE2R98w1SU1KgKZNBWlaGOjMzYaa+PtOztaWMMUBj1thINdG//gpoaeHZs2c4c+ZM889ZunQpzdvr10TWGENWRgZyvvsO7Xr1EhSAEF5fz7Vv314xY8aMd3uj5OSQvLiykmTpAGJiYpRRUVEiMzMzeHp6Uv32m5gzh2SpgwdTZtvSktQQu3dTjeg7MtIAcPToUWVGRobI2NhYmDt3Lk2+qoY4MLCFdCYkkGw1Kqr5d70LMTEx/N0LF7ivFiyApEMHICMDaSEhwvMFC4SRo0dzALBnzx6lmZkZG/355xzWrqXgkK0tje+uXbQuIyJQcu8eGnr0wIOAAGHUjz8ynDhB8zFyJJEcPT0qr1AqaX2D6lXT09Nx9uxZhIaGwszMDKirA9erF65OmaJMUCpFhmVl6PnwIexycpD69ddK/6++ErVZY3/+SUGGYcPIoOrpU5QZGEAsFiMtLQ3h4eHN9f9t0NhIv6OmhkzyBgygWt0ZM0gKHhJCZC43FzHDh6MiNBQffPDBe8dShZe5uTh08CDGA7A7cgTc6NE0RvfuUZDi6FGSlDe1hNq4cSPv5+fHPD09297MCgU9F9zcgJQUNJiZobCyEh1dXCASiVBdXQ2xSISi0FAhGUC/PXuYqrUbXFyAsDDUDB2KgwcPKisqKkQ8z0MsFkOhUEBbWxtz5syBjkxGx09NbQnUtEZDA7Wy+uEHgONQW1uLjRs3wtnZGfn5+byNjQ1GT53K4fx5IqcJCWQa9+WXFFB4+ZJKaLZupWxyu3YonzMHj0eORKeLF2GUn4+IrVuVfXbv5swXLWJwdaVgYr9+9Htu3qSSk7t3qV5epaQAKKB09CiwZQvi4+OFq1evMqlUKsydO5dxHIf4n38W+KQk1rdPH/rOs2c0vyUlbS7x3r17uHTpEkbV1QlITYVtWBgzmjiRDBR37SJFTlVVm+daQ0MDNmzYgAEDBlCnhpoa+oyhIQUZBOHtYGNsLD2PoqOb5eO3T57kHQwNuepFiyCZMAF2YWFvf68V8vLyUFBQgJ49e0IkEiEvLw8SiQR1dXU4ffp0nVwuD/3+++9P/stFqoYaavyXoTZIU0MNNdT4NyEIgriurq6ZFAOAn5+fuKampsuTJ09erFu3LprjuGENDQ1a169fR0VFBdPU1ATP8yguLuZ79uxJu7CtW8HzPJ7q6uLunj0oLi6GtrY2/9FHH3EPHjxAbW2tctSoUaKGhgZy6wVoA9erV0vWOiODNr4FBZRtS0mhDE9uLmVEAwJoM/qOWlwA6Nq1K7ps2IDSJUvAffQRe3HlCrKDgxUpSqUYgGBlZYWQkBCSi0dFkZx73ToAQJcuXWA7aBCXdeGCEDB2LHN3d38v0eblchw5fBizDx2CaXAw2KxZwKxZfz/QH39MG2eAJJavXhFJXLyYXuvUibJ+z58DpaUor6vD2chIFBYWgsvLg15QELRFImG6szPjp03Dy8eP8SQlBYFLljCuXTsiMOPH0/gNHUok7Lffmk+vVDabqUNXVxfNtfHt2lEdrYMD7JYtg115OfDyJSs5c4YZTpokTFu27P3/j1W1MWsV8JZKpRwAFBcX4/Lly+8m2zt2tLRv8/GhYzg4UFbsPUQbAIKDg0Xr168XysrKWE5ODmxtbWlzHhxMpH/dOiK3Xl5EokpKKJv6DtTU1CA6KopbcOIEymbOxOnTp5Wd8/I4wdiY9fbxad7xu7m4iOKvXycjtchIMvwrKqLabiMjYPNmxAQHI2rnTng7O6P3p58y5OZStjQqijJ6gkDXu2BBm9+joaGBLl26QEdHB3v37m1+PWTSJAzR0xNlAEIFx7GnEyagXkODH3zypAi5uaT26NrU9fz6dQpaDRtGhIcxqIoxmlsztUZeHo1xnz50P02aREqL4cPJEM/cnIJBw4cDe/bgYU2NcLO4mHUoLMS2bdsU1lIpGz1mjAilpRRc+vZbui65HFi5Eh0cHeE+ebJg4ePDoKdHqoXffqMgmrMztQibPRuqNdLQ0MA5OTm1/Y3ffUfEbeFCyqQnJEArLg62rT6yefNmusb27dmMCxegoyJpjY3A48cAY9BjDHPnzhXxPI+ioiKkpaXh0aNHgqWlJa+joyOCjg7N6/vw9Cl5GTQFK3R1deHh4YHk5GSB4zju8ePHGF1RASxaRPLp27cpgNHQQAGkw4cpiLZmDQWmpFL8HhqqrKysFN0eMQIh/v7oY2Ulkjx4QM+3e/dIcn3gACkM9PSoZvrgQZrvcePoWVhZSX+aSh8qKythYGAg1NbWsps3b8LX1xdyd3f2qrZWQHw8g0xG8xAf3/b6iorgunIlkmxsBMWrV2goK2PKuDgyutuxg9QOn39OzyTVegOgpaUFNzc34ebNm8zHxwfiVavoufPXXzS3Y8a0LaEBKBgREwOcPg25Uok9JSUoLS3lYgC4+foqR+TliRATQ/Pe2puhFTp27IiOTT3hATKyUyEkJETn8OHDB3/66SdnhULx/YoVK9RZODXU+A9CXbOthhpqqPFvIioq6klmZubgnJwcsZOTk4ZYLAZjDI6OjmJHR0ctMzMzp759+4rr6uqE/Px8ZmxsDDs7O/j6+uLOnTusqKgI5eHhvG5NDYvt3p2/ff8+NDU1MWzYMDZ69GhmYGCAmzdvKrt06SKyt7en2ub3obiYyICDA204nZwowxsdTe+fP0/txA4dIkL5DnAcB21tbfyemwupmRk0EhI4y6oqPnjDBs7VzY01k0yplDZ/rbJ1ovXrYRoayszflD+3RmEhWM+e6OjvjxMuLkK6oyPr0KFDi7t1K8hkMty5cwc8z8MoLY3qllX1s927E8kZMwYQiZCeno4dhw6hy48/4kV8PEyHDsVjU1PIjI3R2NgIuaEh6vT0WP8PPwTr3RuGHh5wGDcOzMeH3MUdHIjceXoSkXqjv7CZmRlu3boFIyMjjB07FlKptKWuvbycHJY7d6ZSgC+/hOaYMai9eBE1jx+zDoMGvX88ZDIyumraILdv3549f/5cqKmpYQCQnZ2tbA7ItAbPE9GTyYikpKYSIfubTDQAeHh4sNu3b0OhULTIThkjkiiXUy08Y4C9PZGkN9yUVVizZg006uvhmJaG37W0BPtOnZjvxo2setEihWMrc7F2O3bA6ZdfwObNg8YPP1DWd98+oG9fKPX1kZ2WJpwvLWVdu3XDyJ9+gt6pU/RbKispK7hmDa1fc3Pq71xe3lLPCiKcDx8+FDp16sRsbW2FV69esUeM4WV6OgLCw+G3axfr7+uLzp6eTKSq7b98meZaKiU1SFAQneO77yjL2DQX25tcqRPi44WKZ89Y4549MA4Lg2jECMp2fvwxEbbPP6e537aNPBKys8mp3NgY3JgxzObYMd47MhIvfHxE42bM4DhTU2ob9/vvtH45jsa9Rw88DwzE1aIidqeqCjFOTvAYNgya48fT+nzwgAh6Xh4wbBgiIiPx6tUrDH3zXk5KovWRkEBkftq0NpnV+vp6PHr0CAYGBqiVSOA9bx4ku3ZRwOHTT2l8Wt3XjDHcvHlTiIuLYw0NDWzChAlc83Po7l3KGC9a1DarGhVFr8+f33zuxMRE4c6dO6yxsZEZVVUJn1y7Bt24OIa8PAoo2NrSPE+fThlxqZQCMs7OpNzIzkbnXr24Bw8eQMfQkC8RBOHOvXvstkgEZadOsBo6FKLgYLoP7t0js8AffmgJmhkaUrBx+XL6bd9+C8TE4HZZGev9119MoasrlD18yOQ3bvCpgsDktbV8z6+/5vDiBa3Z27cpGLVqFamQJkyA+O5d9Fi+nFkGBTH5zp0wmjkTEi8vmoOQEBr7Dh1aDASb4OjoyGJiYmBkZIQOHTvSOjA1peCoszOgMiB8EwcOoCwpCTFNzv7jxo3DgNBQjhs9mrLfX31Fz3YNjWb1wz+Bnp4eXF1dNTIyMjzlcvmXsbGxy2JjY7+KjIwM9/PzK/nXR1BDDTX+DmqyrYYaaqjxb8LX1zcrMjJye21trV1iYqKDnp6ehomJCTiOg56eHszNzWFoaIhu3boxjuPg5+cHT09P7N69GzzPQygsFDr99RcXq6ODTLEYoaGhzNfXl5mpWgABuHnzJry9vdu6Q1dVAYWFVKc8bx5tUhcupGzKzJm08R09mjIkKSlk6DR2LJCcTBnLwYMp6+PhQd9lrHmz3FRPrLxVXMxV6+mh+9277FZkJKLT03mPfv0YY4w2tHV1lAmzsKDN/cGDtLl8B3FGUhLJn4ODAUtLXGRMUVxRIaqsrMTLly+Ft2SwADIyMnDhwgU8fvwY/VavRqaTE56VlqK2thaGHTpALBJBuW8fWGAgduzYAQB48OABsioqBN1hw9jIxYvRPyoKHUeNwqPUVEgkEqFf//6seSMbFETy39hYqqm8cIHGbuVKkhTzPNXQ9+oFducObKqrEV9aivJz51ApCIKtnR1DTQ2ZktXV0SZ+yxYiWe3bIyczk7ffsYOL0teHSadO4Hke5eXlUCgU0FJloC9coHELDW2+7u7du7OsrCzU1NTAzMyMubi4tIwNz9N8x8SQvNbIiLJoz59TjeioUW3I6JsQi8UoKiriU1JSWGNjI9+5c2c6dteuUNU848MPqWZ7xQrauL/jeO3bt4e5lhaq+vVD78BA1ruigmlVV6Pjd9+1sDqeh3jIEPyRkyO4rFjBxGfOEJFYsQLF3bpha14enmhrs1m//grbPn2g7+RE6yM3l4IIPXqQodiyZSQvLioCRo6E0twcNVZWuHDhgnDt2jUmkUiYv78/PD09WWxsLACg0sAAIxhjmi4uRHZU6NqVxqm6mgIjBw7Q+g8MpGvt3r3ZAMtWVxc9u3fH4EWLmF5KinDe0ZFVT5mCLv37kwt+eTllgdeupXtp1Sq6tzQ0aBz374eejg7M3N2ZjpUVsxs+HDsMDNDx449h6OpKxFZbm36TgwPAGNpZWKBdu3ZITU2Fu7s77+zszJipKY2FoSFltocOhWL6dNwXBMHax0dwcnJqWR+HD1MQ4OlT+uwnn7QJwJSWlmL79u3Q09NThoaGcoMGDaISgMuX6Zni7U0mbK16eVdVVeH8+fNs8uTJ+PDDD1sM4wC69z08WkzDVBgxgtZq374AgNjYWP7mzZssVEeHDdy3D/GdO7PGujqmPXgwKtLTYTBnDgRBQPaiRdC2s4N43DiUlZVBLpdDaW+PVzEx0PX2xjaOg4Lj0L59e+Hly5esoaGBfWxlhceXLqHgzh04fPopWFAQ1bgPHUqqH09PCjqmpNC8X7tG90/37sCyZXD18UFZZiafzhjXta5OsImP51IcHJRTNm4UiR8+JJXH5s0UqLS3JxWNqysF/0aOBAoL0XD+PJILCtClTx8whYJIPkDKl169SHXyBmprayFfsQJ1hYVCkbs7a9euHdioUXSO92HYMDwyNUXnQ4cEpZOT4DFgANNWSfjd3Cijn5xMRN/a+u+P9QY0NTXh4eGh4eTkpNu7d2/t2tparaKiojw/P787//ggaqihxjuhrtlWQw011PgPICwsbLCWltYaAM5BQUFabUjSG1i1ahU4xrDAzg7FCQk4aWnJDx06lHNzc2vzOZ7nsXrVKnwREgLd1FRIDh+mjZ+TE20mf/iBNsoTJ7bZIAMgSWZ0NJFHI6Nm07Vm/Pwz1ZiqjMmysqjOsXdvQEsL+fn5kMlkSH3yRFl/+LDIMT0d3X75BZwqS7NhAxG03buJ9J8/T9Lm1sjPpz81NWTatGsXIJHgxx9/bJZmL1++HM/JyAk6OjoYM2YM2rVrh8OHDwsSiYQVFhbywsuXnNjSUqmtp8dqamqEmpoakbZcjil79+L09Oko09DAxIkT0blz5xZTttpaNPj7I9zSElnu7vyoMWOo125ryOVEktetI5JUW0tZurFjKYseFkbtvdasAQoKsKFrV8zYuhUNixejg7k5kcCMDNqA19dT9rFnTwBAYWEh4qOjYXPwIKrr6hAzZAhEGhqQyWRwcnISJk6c2LI+3qjTLCsrw/bt2zFkyBD4qMa7tJQ+5+1N8t0jRyi7rUJ4OAVXRo2i39XKlKk1UlJScOrUKQBoW49cXEzXffEiEbucHFoT78vML1tGc6tqwzZ4MG34AZICt2sHxMXh5tKlvJOdHdfhyRPULFuG2zzPx8fHc127dsWYMWMQP2yY4BUdzeR9+kA7JQV1fn7Y4uaGoKAg2NjYwOTwYeDhQ7BDh3B840bh5atXbOyZM0jw9kZqK1MoiUQCGxsbPj09nQMALy8vBEZGEtF5lzFZXR0Rr3XriKAOGEBzLhbTfbB6Na2N+/eBSZOQ+OWX6JKSgporV2AaGopcHx/UuLvDraoK3MCBFPS4eJH+XrWK5qJvX1r7iYnAyJGonzQJGhIJxEePUhazRw8KBsjlQP/+4Kursf74cdh27YqJEye+syuAMiQEspMnhSp7e5gtW8bYhAlEqHmeZPbdulFm+R3+B69evcKePXtgamrKf/7551yzUV9yMsngzcyAL75o/jzP81i1atXba6U1MjKoJ/bSpfQbXrygZw3HQRAE3PjrL95k9WrW2dub6QcGorqiApvT0lrWuyAAggBduRwfnjiB0+PHQ9K+Perr66FQKMBxHDiOg6SuDvViMTwSE2H50UdwOnoUJVu2wGrWLBTY2uKwvb2grK9nQ8eO5T09PVsuvqCAFAGLFlFgbc8eUhaoygAA7Nu3j3/9+jWbNGkSa+O+zvN0H/z0EwVmfH1pbaiwaxfwyy9I37ULF+7dE+afOMEwdSoFFgEqJ6isJKL+DlSPGIGb5ub8Aysrzs3SUvhg9mzGGhvfW3t94MABPi83l1tw9iz0Nm9+W26uwp07lNn+8UdgyZK3jN3+CRITE3Hjxo0/Fy9e/GFYWJgVAAsAz1esWFH5Xz6YGmr8fw412VZDDTXU+A8iLCzMS0ND41xAQIC5u7v7O3dNMpkM4itXwO3eTRv0NzaeCA8H4uKQExgIo+HD8cTDA0W2thjRoQNEX38NDSMjIod/h7Vrqf722DH6e+bMd3+O58mMqGNHIiYbNhAJOHECKpfpY8eO8ZKICIzq14+TVFWRiVFZGZGxHj2oNrOoiLKuANXY8jxtaM3MgOPH25wyJycHx44dg1wuR9euXfmUlBROtanmeR4GBgZCQ0ODMG3aNM64ogL4+GNwrWomeZ5HVlYWbEtKUHb1Kp717w8/P7+3+oPHx8UJVy9fZkt+/x2aCxe2bIIB2nR/+SVtpquqiGgeO0aEjIEmWwAAIABJREFU6w0ZZ1FRETIyMhAVFQWlUglDQ0N89dVXYNeu0XeLi2kMLl8mouXqCuXYsXjw4AFKkpOVngcPimIHD1am8bxIxhgCAwNb6rFHjaLMpsr5GEB2djYOHToEDw8PjBgxgpQBQ4bQ5y5fJtm4u/vbcykINO89ehBpVF1X6zGJj8fVq1cxbtw4dO/e/e21MHs2ESctLVJHXLjQYp7WGg8f0t+WlvT5rVtJEaDCtWvApk04ZGcn6A0ZwjyPHRPO2dszLXt73s7OjvPX1SUHcG1tyI4eBQCc+/BDpDXVt+rr6ytra2tFnXNyoFdcDHlIiJIxhidPnohcHj2CrVQK+5EjcSQ+Xqg1NWX19fX47LPP0L59eyQkJODatWtwZQx9jx+H8f374N4nq+V5mrNVq2jdurpS8MjHh4JZR44AISGQi8XYvW8fSk1NoaWtDalUypeWlnILN2+GBtBinpWSQkSX40hR0rUrSZk5Drt//ZWXNDRwXm5u6C6XE+lLTkbjo0doDAxE/ezZ0Kqqgt66dRDFxlIAoLaW7vURI5AZG4vYe/f4vvfvM5sVK5jmxIkU6Ll3jwIcjx5R8GPPnpZrUyiIjO/fjwgLC77g1CmuS1oadHbvhtuiRZTV/+gjIv0cR/JqJycia0ZGOJ6ZiczCQixZuvSd3QVw+zYFMxITKbM+fz5QXAw+MRFFs2cLF/38ENzYyHTmzGl2uBcEAefOneOfPn3Kzd+wAfmhoZCIxShRKgXtadNw7tw5ZmFhIYwcOZKlpaby/Tp04P5KTlb6fPaZyLCiAvFhYUL//HzGrV7dpgPDzp07UVJSAgMDA8HHx0fw8vLioFSSNP3nn0mxcfMmZYDXr4dy9GiUN7UevH79OgoKCpSff/55ixRAJqN1oalJQRcvL7rX7e1JWRQYCFhZISorCw3h4Xzg999zUBnNAfT8jIggkv8mYmNJGWBvj/LychzYvVvoLQiCz9Kl7/W72LZtm6Cnp8dCQ0NJVRQWRkGh963rX38lFcbIkbSuVb4X/wAxMTFCbGxsrkgkUgqCYKGnpyerqqqScBy3QyaTLV6xYgX/jw+mhhr/n0NNttVQQw01/osICwuzBjAEgBRAAoCnrSP+YWFho6ysrA5NmzbN8J0HqKwkieeWLbRR5jgy1pk7lzIR+flAQQGKlyzBb1u3wtzFRVAqlfzLly9FCoUCLi4uyjFjxogUCgWuXLmiZIwhKChIxBijzfnQoURwra2JQKrqHv8pLlwAdu2CcOkS6oOCcMPSEg86dsTEvn3hdOkSEblVq6jWcNIkCg7MmUNGPrW1VBO5dClJZd8TFNi/fz+fn5/fZmO5aNEilJSUID09HQMGDKDNfVIS1dOeO/f2QUpL6bxr1lDN5xuIi4vDtWvXYJWbi0FBQeikq0sb6FevKLN5/TpdK8cRSVBl3C5eJIf1K1d4Y2NjLiMjAyKRCBMmTEBhYSGiIyKwfPFiynRNmUJS1Z07aawXLwYcHBCuVCrr795lyqFDufLyct4/MpKzrK+H+OBBiFuT12vXiMy2Is+qDKRGYyNmFxdDunEjqQ/mz6f2Rf/A2RrbttFnb9ygoEgrk6Y1a9YI/v7+zNPT8+3vzZhBKomVK0m1EBDwtioCoOucO5dIh4pwAURkJBKa+wMHUBkejsg+fZDj66sMCgoSOVpZUXBn3z76jWvX0vdsbKBwc0NJWRn0nJygp6eHyspKPHr4EBXPn+NJcTF4vmV/P3fuXGROnMjbPXjARf38s9DXz49ZNMl1BUHA06dPce7cOXAKBRZGREBr3z6SDr8PHTrQelqyhNpNvWPd1tfXQyaTUT/pK1eQ8McffKO5Odd//Hi6v6qqaOyePSMSnJtLruC1tcCVK7gTECBcz8tjYrEYCxYsQHp6Om7evKksLy8XqfZiy5YuhUZdHRF+fX3KUmZkIN/NDTVhYdATiWDh7w/uyBFSEqjk7DIZKStevKBrSE2l9x0dUbpzJ4y6dcO2Tz5BiIcH9CMiwO3fT88IBwcioK9f0zEmT6bryM4GLl7Ei+xslEilcPf3BysvpyBEt25E3FqXGNTXEyldtQp8bS2iOY5nT5/Cfd8+zuBN1U3THBUVFcG4tBQSqZSI4cyZQMeOEORysAMHiNxGRgJr10LIyUF9eDgKra1x7vRpjLxwAVpXrsD6jcBYVVUVoqKikJSUhKVLl5I6IDSUAoGqZ+APPwCPH+O1UolDDg7Qd3BASUkJ5HI5Fi5cSN4YgkA1+OfPUwZ7504KZEycSL916FB6fkskiFi9Gn22boVuSgo9x1XIy6Pf/8knbS+e52ktrl7d3KavJCoKV377DRP37YPGO9aeXC5HbGwsEhIShCVLljC8eEH35r177yzdSU5Oho2NDcn+Fyyg60hIoIDDv/B2UJ0vJSUFBgYGsLGxAWMM1dXVOHr0aN3r16+/Wb58+S//8iBqqKEGADXZVkMNNdRoRlhYmCGAmhUrVijf9f7KlSuDNTQ0tgDQt7OzU+rq6mq8ePGioby8XEtDQyOroaHhFIBVHMctcHJy+n78+PFvO5odOPB/2HvPqKqu7nt47nMbvfcuYAGkKCJdUawotlgTNUVjiy0meUxiEoMaE02MSTR2o8beu2JBpClFEERAEWlSBUSudLjn/D8sqqJJfu+HdzxP7hzDoXLvPfecffbZ7LnmXGuRoiqT0UZsxQqyHn/yCVBcDKFnT9TV10Mmk0EkEqG6uhoqKioQi8W4dOmSkJSUxEQiETQ1NYWKigrGcRwkEgn+85//AAC4pCSykB86RMTxq6+IAHXRN/l1qKmpQXJyshAfH4/+58+javBgBDg4MLVWJfjaNdqwjhxJ35GWRqRp3jyylN65Q/bj17XyArBu3TrY2tpCX18ft27dgkKhwJw5c2BgYNB5s1leTupcx9zbjjh6lOyzAQGvvCSXy5GZmYmCggI8fPhQ+DQxkYmSktqLyWlptbsK9u8HNDUh9/FB9PffK5L19UXOrq7geV5hZ2cn6t27NwDgwr596Ld8OTBrFkzWrKHPR0fT57dvB9BiIV+8GMEJCRBlZxMh0tKi152ciIh1JLD79gGTJ3dqobRnyxao37yJifn54B4/JiXMzu6vHQ0v484dyk9v+XzkrVuIiYnBkiVLui6419hIQYeCApqXI0e29/huhSBQAau0NFINQ0LarapxcUQiPDwo4HLxIvjAQHCtub7u7uSKMDMjVXzPnvbCd3l5lMZw4QK9D4BQVwdoaGDt8uVolsnAcRzMzMwU48aNE23evBmShga4pqTAv6gIWufPd8qP3bx5MyoqKrBSTY3mUUv1/DY0NNA53LxJSn5+PhG82bMpkPBSYatOMDeHvKYG6aGh8PLyav95WdmrCmJdHbBzJxr8/ICPP8ZZExPke3igrq4OgYGBsLGxgWkLIe3KOp6QkIBr167B19dX8PDwYGoSCY1RfDyR+6++onzk336jQFdeHhG8xkY8ff4cW7cSL+I47tWe3J99RvPz11/pvjY1depYsCokBNYaGnh31ChyM6SkkJpcWkr2c2Njur6TJ4n8mZvjhViMo01N6D1pErwMDckp0mp119bubJPOyqLAjosLzYmDB6kbgJcX1Q0YPpzmXstneJ7HL59+ihGhoYhcuFCYt2DBKwPG8zw2bNjAm5mZwdXVlXOKjgaTy8lKDgDvvIOGzz/Hs3PnkHjrFmo1NVHs7S1oampi+vTp1HHhwAFy95w/T989ejTNj2fPUJ+cjOKAAGhaW8Pg+HEc2LED4qoqYco337BO9y8igtal+vrOBcvq6igA1lqQEEDzN98g/8ABqN++DeMuugC0Bo80NDSEZcuWtX/Jgwf0PR06OsjlcmzcuBFGRkbC/Pnz6b1Pn1Jw5cqV9lSk/wOuX7+uiI2NXf/VV199+X86gBJK/AuhbP2lhBJK/OsREhIyWCqV7hOJRCaCIOCHH34Ib2ho+GjlypWPWt+zZs2a6WpqatunTp2qZm5u3nFTLG1ubsaRI0d6ZWdnfwPgC6lUqhg0aFB7H6amJtrof/45kdGaGlKFOI5UzcBAIi86Orh+7Rp/69YtDgA8PT2FQYMGsVb75siRI9mTJ094uVzOKioqWL9+/SAWixEbG4sff/wRo5884a3s7TmNQ4fAWvqxSsPCXltVuiN4nkdWVhbi4+MVubm5Ih0dHd7X11fUb8kSsmdXV5MaKZFQsMDDgxSwkyeJlDQ1EYlUUXl9LmEL6uvr0djYiPHjx6O5uRlJSUlCTU0N27FjBwIDA9vylBljROILCmjj2xVGjiSF+SWiBQBaWlro168f+vbti1xnZ/ZEJhNs1q9n2LyZlNg9e9qv38oKD/bvx9n797H4wAHR4O++g0pwMACQDNTcDP7rr9FoYoKIgQPxQCzG9Oxs2NnZEWHrUBX68uXLvPrEiUx09CiDXE7ndfs25cP+/jv1sQ4Nbbdnr1hB7wkMpP9v3Yop33yDDfPn44i/P6b9+CPY8+f/nGgDpLpnZpJKam0N3tubH7B0KffayvZSKfD8OZ3r3btEvBITO1doVyho856VRSSvf39Sq8eMofkNkJWZMWDFCnAKBRXeMjAgV4G5OanhL8PamhS47t1JsfPwwN4jR4Snn37KBFVVgOfh6uqKMWPGiPbv3y+IRCLWJJPhnrc3AtTV21uirVkDqKujW7duqKioQOmMGTAuKqLc7D//pO86fJgKsm3ZQqTnzh0iQRoaRA6TkynY8PI4LVhApOvePdxLTeWjb95kPXr0YHqtKq+BAQVU9u2jsQcoiLJ4MWQKBYRZs2B8+rSgFhHBjDU14TBvHtT09bsk2Y2Njdi5cyeeP3+Ot956C52KoY0fTznhjo4UHAgOpoDa5MmApSXKR41C6cOHOB0eDsYYNDU14ezs3H5wQWgns15eFPBwc6OgSUvQCADc+vQR7t69y+RmZtDq1Yss562fl8uJ6E2cSPc6MRHYsQOaM2ZgnI4OLh06BMeUFGgtXEj3OzSUlHpXV5oPM2dS0K61gKKzMz3LIhEdqwtwHAcVe3v++JQp3EwdHQZLS1LhO1jcOY7Dhx9+yF2+fBmXLl3iE3JyOP9nz2Akl0NdXR01d+9ix/Hj4DU0eJMePZj/5cssQVUVk3/7jUEqpeJ558/TPWSMyPLCheTgkcmQmJ6O+KFDYVlRAW9fX2GSlRXb4OmJlJQUuHVsveXvD3h7ozQjA8eiovjAwEDO0cGB5kXr89GCZwsX4oiKCr58Q7s9QRDw4sULFhISgsmTJ8PBwYGKvZ040Ua2eZ7H4cOHBZlMhvLyclZQUAALCwtK51m0iNYfNzd6bv8P60lOTk61QqFICwkJYcoWYUoo8fegrEauhBJK/KuxatWqYRKJ5NykSZP0x40bx3l5eXESicT2yZMnM27cuLEzICCgDgBu3769esiQIb179uz5ysaY4ziIxWI+LS2NWVpacvPnz5doaGiQwhQTQ/nQc+bQ5njwYKoevWULbdxNTIgI3b0L/PwzcqysBJmODvP09ERcXJzw4MEDwdLSkt24cYN/8uQJy8zMZOPGjWMTJ05Ejx49YGZmhvv37/N2trbM9uef2RU1NZy5dw+RkZGIiopCmpYWIp8+RYNC0dytW7dXpOZnz54hOjqaP3nyJMvMzOSNjY1F06ZNg7+/P9cpqCCVEgkCaEPv6kqE5e5d2uyuXk35wV3ldb6EuLg4oby8nPfx8eEqKytx69YtBhC5lkgkiI2NFSIjI6Gtrc0Me/cmomdm1vXBZDJSE8vL24qTdcLu3YCJCeJv3ECPe/eY7LffiFBUVxOpKisDdHWx5+LFZvfdu7leGzfC8KuvIPbwIGJgZQVUVOBFbCwq1q9Hkq0t32PGDFZWXi7cuXOHFRYWCtKMDN4gOppDcDCys7MRFxeHDz74gInEYgo+zJxJYzd8OAVZWhRflJURQVq6lFTr9HSylfftC8HLC4OWLkWegYFwYexYlMlkrEePHl2Ssr+EigrAcXjSowdinj5lgYWFUDl5st2Z8DKsrEjJy8khkhEe3qY0A6AgxdKlNG9nzKD3KxQUeDl7lgjt+++Ton76NF3roUP0vpMnSU19HczNaRxGj0Zit26KxxUVXK+YGFirqQlvffEFc3Z2BmMM+vr6LDs7W9G7d2+urqFBuF5ZyXz69YPo+HEigqqq0LS2RmJiIu6npaFeXR0aR4+iTE0NcbduwW75crAFC2jOMEZukPBwsgkHBlIwyc2N7lGra0KhIBWW44D582Fpbc2qq6uF0NBQwdXVlRRRxihNxMPj1Z72HAfm6gqbqVPZvbt3hd4pKezwo0fgN2zAlaIiRaNEwll0CBidPn0aeXl5mDZtGnq87ExpaKCggokJFeLy86NUitpa4NAhXFi1SvBbupQ9nz8fjr16CU8KClhJSQlfVVXF9PT0oLZ1K1nVZ89uz7WfMYNIfMucKCgoQFhYGNzc3HgnJyeu09xrbKQ54ONDz/zVqxRMvHED/O7d+Hn0aFQaGCB74EDBY+5chnHjKMiko0NzasIEmvP+/pTnvmgR/VxXl+bNa+Y5z/O4cuUKEwQB9v7+MHJwaHdLdHCGqKiowNnZGb6+vkyQyfA8IoI/WljIkuLiBKPMTDitWsWCx4xhriNGsNOM8WaFhazbyZMMdXVUEG3XLiKoCgUQGIjaK1fw9OFDobiykqWWlkJwchJGL13KarZvZ9LiYmh+9hm7cuUK+vbtC2mrC4QxKPbswflHj4RaExPu3r17gnvPnkxSXEydGzpc4/PAQEFFVVWwHT26ywvft28fpFJpW2HJ9PR0qKqqQubjA9W5c1G0bh3Cb9zgryQn48WLF3jvvfdYRkYGr6enx8zNzekgcjkFMUaPpnvfVRrJX4DjOEleXt6o5ubmNbdv355+48aNfQEBAQ3/+EBKKPEvgpJsK6GEEv9afPfdd59KpdLtb7/9tqqtrS0YYxCLxbCysmLPnj1jz549c71x48aJgIAAPjw8vKeBgYG/ra1tl97ooqIilpWVhREjRjCjjAyykv70E5GNWbNISR0/nmyYb79NSpSGBm0s9fVJDcvIQJ6NDQIWLWK23bvDYMgQFhsfz5Lu3oVEImGZmZkwMDAQRowY0bYhk0gk8HZ0ZA7Hj0N68CCkzs5obGzkg4ODmYGBAcZ+/DESfH3xKC+P43keBgYGYIzh/v37OHv2LB8ZGckaGxv5YcOGcWPHjmUODg6QdVVMKjeX7NKtuYt2dkQ6mpuJWB06RAr3m3qBg/Je9+/fz4YPH86ZmppCXV0dXl5e8PDwQHx8PMrLy/HixQvW0NDASkpKBM+nTxns7bsu0tUKf3+yMnt702a+Iz76CFVpaYiysBCkU6eyU8nJzdFZWcLNxkauZu9e3vTTT9k5S0sht7RU5G9mBgNVVSJZDx60Ow6mTsUld3fFfX9/NueTTzhLS0t4eHiwqqoqZGRkMK3ycmZXVsaECRNw+PBh3sHBgevV0abZap01Nib1TqEgwnr4MOW85+bSNaSlkfI7ciRE3t5gWVkwWb2axd+7xwoKCuDh4dG+kf+HqK+vx67z5wWv0aPR3cKCIT+f8sS3biVl82Vyo61N59bQQHPYyak94FFTQ/blpCTKH28t0lRU1K52jxlD+eKt7YxGjSL76pvuYytMTaGYOBHHTpzgDDMyYJ2fDydXV6YzYkRbsEFLSwuenp7c1atXFRUVFRxjDH7Dh0M0dSpZZAcOhGZBASo8PfmioiL2pKgIzzgOfX75BQ95HsU//oi84mJYWlqC4zjk2ttDZfp0PM7NhVQqRXVNDSLEYnQbMABcdja5Q9auJWL43nsAKDhkb2/PCgsLhbt37/J9+/altcHfnwrZqau/SrhBz8CZhASW6uQEoakJdg8fQqW4mCu9exdqUin2X70qhIaGsrKyMtja2vKDBg3qfHN4no5//z4Fk3ie3CSbNoF/9108ksuRmpvL+h87Bsf+/WHt48O8J0yAfkAAS7t/nxe+/po9kMkElcWLmVZHN0hLITaMHIn7jx/j6NGjcHNzQ1BQENep+GBREVnP168nO/vFi0R0RSLA0RHn6+sVjdra7IMNG1hjr17MrmNFe8YoQNb6x8yM1sO1a9GwejVq1dUhi4ykSvBubrSOdpibjDFkZ2fzNTU1rKikRPCcN4/h+nV69v/zny5TV0zt7GB18iTrNW8ezMzMWE/GmMHEiW2vN/A8blRUMO8ePSAODaUA2MSJFBg6cABpY8fifEMDLNTUmMLbG6ZVVbzN6NGc9ejRaDpwAH9yHNwzM8FnZEDk6gojIyNUV1cjIiICetu2QSSVYtyWLSw8LIw5HzwIjbVrX8mzvn/8uGA+Zgyn10VtjebmZsTGxgoNDQ0MAAwMDMBxHF9cXMxHRkZy0dHR6LF3L5hCAbNJk9iECRNYfX09YmNjmaOjI6UoXL5MY3riBOWcR0e3r2//AKamppyfn5/E398fMTExagqFYm9AQEDlPzqIEkr8y6C0kSuhhBL/SqxevXquhoZGyAcffKCq3aGibSuCgoJU5HL54IKCgrCQkJDRAEqqqqoaAHTJJs1MTKBXUABrKyvabO/e3TlHVBBIObt0ifIdAdpkxsUREV+/HvjpJ3A3b7Lod99FUN++6H72LL44eBA1Z89CV1sbUdnZSE1NFQB03nzv2wckJ0NFRwe9dXXRu3dvDgBsLCwABwfM++QTxMbHIyYmBlFRUZBIJFBRUVE4OzuL3n//fUil0q4r5iQlUX62vT0FDvz8qEiXkREV0hoxgnKfV6yg65gyhVShjjmsL4HjODDGUFXV3kFGRUUFKioqWLJkCW7duiXExcUxJycnQSKR0AbawODNOYYcR0GLX3+lokXNzaSQXrgAzJoFzV9+AaZOxeWnTwFA3KNHD2HIkCGoqqrisubPR/O5c5gSHg7J6tXAo5bMgfJyIlUeHsCePchJS+MCAwPbxl0sFmP8+PFQKBR8Vng4x794Ae3YWNTU1GD48OFdn2er1fzmTSInyclEVvPyiKgcPkwWbmNjaiG1fz/UmppQX18PANDoqof5XyA+Ph7Jycm8mpoazM3N4eXlxYGxdofFnj0U+FEogJ4928mKSESvNTdTekDHZ0QuJ6X+xQtybSQnAzt3Up7r3r0UeNHSonkyaBC5Hv4OyW5BVlYWDh48CMvKSgRfuIC4PXug24EcdUTv3r1F0dHRYIxh3bp14HkeVlZW/PTYWE5SWoq3fvmFG6elhfz+/WG5cCEKXryAf0wMdrm6opHjEBUVBUEQMOj6deQDCH8pBeLO5ctYcPYsZJWVSPP1hW15OQw75GQzxqCrqwu5XN75xLZtI6t9a4X+DlBVVcWMGTOQkZHB+/j4cJJvv0ViYqLC6JtvRJqzZkE2ezazevoUdR4emDhx4qvscf9+sjmfOEH/d3QE3n8fvJMT7n/6qaD66BHelcsZt2YNvX7mDDhnZzj89BMcTp7kStTVhX3q6qzh8WNAWxtmZmaUKsIYIJEg6coVhObkwMbGBikpKaxHjx6wb+2lfekSqeGRkZRO4ur6SqDmkYYGFzBgANOTSBA4YQIF6BoaaO3ogKNHj/L5+fkcAEwKD8ed6mo8dHGBq5MTb+jsjNyrV4VRgweL0t3dhZghQ8AzBp7nWUNDA6dQKDBw4ED64iFDKPCgUNAz31UBQTU1GD1+DCNXVwpqdYC+vr5gIZUKD//8kxN8feFcVwdu4ULKif/xR1xLSVHIXF1F1rq6kE2ZAnh7c2hoAMaMgVH//pDExwv3rl9n/R48QGVjIzZs2CDU1dUxPT09wWjlStbD2poxxuBnaChINm9mP+/dy9t2784NGzYMampqOHnypFA6cCB796XzjoyMRHR0NGQyGZqampitrS2fnZ3NlZeXY8WKFZxYLIZcLsezZ89g9eWX6MEYw/r1gKcndHV1IRaLce/ePcHNzY2x8PD29J6gIEqbePy4y8KSf4UtW7YIFRUVDABbuXJl9j8+gBJK/MugLJCmhBJK/OsQEhKiJRaLi+bMmaNu+IZ2KDzP48KFCw1paWlPAUiCg4NNWgtltUEuJyJ96hRqFi2CUFxMpKjjBrSykgjrvXuU48jzlD/aitRUygtMTESMszPS09P5Dz/8kAPPkwLh4QHY2aHAxwdXHRyED6ZPZ2jtGR0aSnZoS8tONkoAZJUODSWVBsDhw4eRmZkJFRUVfPrppxC9XJW2sZHyUY8dozxfAwM67pgxbb1zAVDV5okTyQoaFkYFjQCyzJ87R9bSN1TM3rdvX7OFhYU4sDVH+SWEtLQcAwDG8zA0NMS8jz56s4W6spLOo6yMCPq+fRQs+PxzUtD09LBz504UFRVh5MiRQv/+/dsPVlEBzJ9PVai3bKGCU+vX03hKJGg4cAAb58wRli5dylRUVF756sbr13F//XrhvK8vCwgIwMCBA19/nh0RFgZMmkSk9PPPaX6EhNAmv2VsBEFATEwMHxYWxmlra/NLly59fdW5l1BWVoYdO3aA4zg0NjZi7ty5MOmq0JxCQfNz+nTKoe04L/bsIQKdk0MBFVNTUhwtLekeFxfT+LYqglIpKZ2VlUQ2/0ZaQUfU1tbizz//pErVenqCkYYGm5iWBtH27cCTJ6iTySCVStHQ0IDKykpoampi48aNAIDZs2ejvLwcZ86cgUgkgouLi6JPXZ3I4scfwaqqyJHh7U1W68WLkfP228gBEBUVhSkvXkAqk8FkxQowxsAYQ01NDdR69QKrrsbGpUvhHxWFZ2ZmQlVwMD9t2jSRWCxGVVUVNm/ejBkzZsDKyqr9QgShvfXW69qOvYQdO3YIxYWFzL64GO+kplLRRCsrciC0jmNqKs3vU6deed6frl4NtmkTdFauhCQggHLQra1JHRYEIrtyOepWrUKlhwcOv/MOqjU0IBaLIZFIeJFIBFdXVy725k28M2sWunXr1lacbVw3zJDQAAAgAElEQVS3boJjWBjDjz9ScGXOHAoevlQnAQCOHTumyMzMFDk4OAjjx49n3JYtNBc+/ZRqL3z4IQqLirBr1y4AgL29PUYOHAjNnBy8sLXFodOnFZqamszIyIhTy82FtKwM1nl50M7MRNHXX+NwTAwEjoOPjw8/ZMiQdnt7aChVHi8sfNWpceMGjV3v3hTI6tjdoK4OisOHEXHoEBL69cNbFy8KTFubWT9/jox338XZhgYsWbIEmn36UPBx/XpyKN26BQA4cOCAUFFRAV9fX6ZYuBCa9fXI++47PnDoUE46diyR2sxM8HfvolhLC2mPH/NPnjxBQUEBp6+vr6gvKhJ9sm4dWGNjp2dv27ZtQmlpKfPw8ODt7e05Ozs7fPfdd3B3d8eoUaNenUANDeRAOXUKcHHB5cuXER8Xh0WpqdD74Yf2NKDKyvbaAz///I/7cIeEhEAqlUIQhEdffvnl36+8qYQS/1IolW0llFDiXwepVLqxZ8+e3JuINkAqbHBwsMzBwcFSEAR0b92sAERkNTQo53PyZOC777AxPx+LBaFto1dfX487d+5A0dgIYcIEQaesjLlFRxN57QhnZwiPH0P4809oT5sGXioVWk6Aeu0CQH4+Hp0+DdMTJ5hi4ECI7tyhTdUPPxA57qraeE4ObSxbyPaUKVMQGhqKu3fv4sCBA0JAQACz1tWlAmTbt5Pa8dlnlMP5xRdoI/Qd8dNPdF7h4aQCz5rV/pqvLynKq1YRcXy58nELRCIRa25ufu24z5w5EzKZDGoA1B0dsf6TT3D69Gk4OzvD1NS0a4VXV5eIYn4+Kew7d9KG+IcfiLB8+y0GGRnBZsECrOc45rB6NTRramgT7uhI6tv27WSrvnKFNsgg8redMYzu1o29SrMJUnNzdA8KYqiqQlFRkQKtRdVeB0EgwjdjBn3vtGk0poJAhdQ2baJxtrAA8/WFn44OV2Zjw+dWVPxtos3zPI4dO6awtbVFr169WEFBgWBiYtL1eYlEFFypraW82fR0Ut8ZoyJi+flEYFJSiGz/+iuRmuBgCg7Mnk3uhtac/bNnKeDyD/LLX8jluJucDPGmTWg2MoKxQoG5u3czlpdH96e6GoKvL/b6+OCDP//ExmXLoNXcLDQAjGlqQhAENDQ0wNXVFc7OzsjNzcWLTz/l8quqhIglS4R3tLU5Nn063VtLS8DUFN3270e3PXswePBgukaZrD0NIioKKnfuAMePQ+jWDZ9bWQFbt+J5bCw7UVnJHT58mJ8xYwZ3/fp1hbm5ObOysup8bxij51xbm5T+v4GpU6eyjRs3IsvcHD9268bP9/PjNMaNI6vvvn2k3v7nP1RZvgPRFgQBmZmZONXcjAmBgYLhkCEMoaFk6b9zh+ZUUhKR5GPHoKKqimYnJ6FaVZV9qlCgXl8fVUFB3OHDh1G4fz8+P3oU4hZV3KNfPxgqFHi0Zg1EDQ2CUXU101VVpRzrLog2AIwePVpUWFiIq1ev4vfff1e8/fbbotTUVKgdPgzHFStw18IC2TExAqRSBpBLRM/CApg/H3oeHlj4zTevztPGRuDYMRSXlWHxr7/itrc3bvM8N2jQoPb+3yNG0DzNyQF+/JGe5VYYGRHhV1WledsKngc2b0ZtRgbyLC0x28MDlU1N7LaTE3/j9m2ux4ULmOjhIWhKJAw7dlDgoraWApFyOaClhalTp7JLly7h0qVLcJs6VfDkeebo6sqhro4KDS5aBEREgJs1C+bp6TC3s+MA4Pnz53jw4IEoPzcXu7/5RpgtErU9MLW1tSgrK2M2NjZ8UFAQBwANDQ3gOA5dObEA0PzNyqLfTZs3Y+TChcg/cwa1cXHQsbBA2wTV0aFznzqV5oaHxxs7R7TOsaysLMTFxfEAODc3NyQnJ3MhISEWK1euLHjjh5VQ4l8OJdlWQgkl/lUICQnxlMlk04KCglT/+t1kE+1EspubKZ+3Xz8qypOc3F5gqIMqIZfLcfjwYehdv46eJSVCwRdfIOLsWZiWl8O4pWDNrl27+NLSUk6hUEAQBKgEBMAqPh4BBQUcZs3qrAqKxfAfPx6bCgqEVBcXNqaoCL0OHCBLYHMzFXiaP79zzrSREeVTt4DjOAQFBcG4uRkVBw6w5Bs3BL1Hj5imtzcRpRUr6DNvQkICETCAPnPwIOUht8LGhja6ly6R+vX774BEgqdPn6K+vh4KhQIVFRUi3S5yWVvRrVs3+kdlJTB2LIYOH46IiAghNTWVAUDv3r2F4OBg9kr+8rvvkvI0ahTlW+rp0eb6zh3AwAD2EgmQlASP4mLsr6tD8PDhsATIXqmrS5v106eBRYsgxMYitbAQiXK5oG5uzvdet06E+Hga55eRlwfNuDgs+v13bNmyRVRSUgJjY+Oulfjycgp+fP01zaPffyeSvXAhBUZ69KAgTk0NEaTaWihCQ6FRWcm9fe8eWYdXrSKF0NaWLPulpTQfm5pQxvM4HhGBKrlc0NPTY+PHj+dUVFTQp6vicR0hkRAxXL2aFOzMTAq87N5NSn/fvrRB19entIcJEyiIERRE77l9m1IL/vOfV1tfdURWFj0neno0f06ehOKbb9C0fz/ClyzBuwkJKPbxwfD168Hc3GhsWgJLzMQEY+fMQa2qKpplMsz65RcGxvDLxx/jkz/+gKx/f8DICFxqKmz79gWCg1lZeTmuZ2ezX7S0hAnnzjHrhgayPm/b1u4oWLuWVORu3Ui1BCjFQxCAgoL2nI0FC6C7YAHGDRzInpaXs3VFRUJzc7NobBcujubmZmTNmYOYpCRheEEBs3gNMe0ILS0tvPvuu9i3bx9qGxu5BokEGrdvE0n8+WeqYL1/PzkRAOTn5yMiIoLPzs7mxGIxLGxtm3uGhIgxYgSprhUV1Ad91iy6lqtXAYkEV69caX48fjwnk8uh/uwZUxeLoW9ggKVyOarWrIF45cr2k5o0CTalpdA4fZrt2blTGDd4MFL8/GCyfLnQ6+V0lhaoqamhe/fu6NatG9uzZw/7/fffYWRkxCsUCtz49FNOuHsXi379laWOH48kDw+Fv78/LZwbNhBRbG5+1REhlQLTp8MmPx+Hp02DrKEB81JTIQ4OpkCEnh59hjEar9xcuubWZ9DOjpT+0lL6eStiYoDERGh+9RXGjBiBeC0tfuSvv3L2AFc5fjwa5XIYr1/PMGoU5bPv308BvG3baK156y2IxWJ4enoiPT1d6BUUxNCjBz0zp04B169TYKpbNyq61mHN0tHRgZeXF/rV1SH00CHW1NSE2tpaHDx4kOc4juN5HgMGDOjEghUKBUpKSt48ke7epYBY794YbmGBP2bNwtcdHTmMkcvBwoLWnKNH26vMd4FTp04pUlNTW3+5cUFBQejXrx+kUqllbGxs1vfff3+wsbFxpZJ0K6FE11CSbSWUUOJ/CiEhIZ4qKirfMsb4urq6EwAOrly5srHltX4SieTquHHjVLuyA78WrZu2ceNow9aqGr1UDIwxhr179zZLpVKutLSUE4vFGODiwjs4OHA9AwORlJSEu3I51LOz4e/sjMrKSm78+PGwtbWFVCptb7E1fTrDnTtECjooWGKxGG+99Ra7cOGC8GLhQlbU1CSY7drFEBlJBXBmzCDCOX06WXyzs9sUWuTl0Wa7rg7uR4+C9/PDcU1NtsncHIOCgwU3Nzem+rINvSNiYqiP75EjNBaNjURqX7bVA0TIpkwB5HJUDxuGc9OnKx4VFIjU1dV5xhgEQcArSmBXaGoCli1Df1dX9O/fn/E8j/j4eFy5coWJRCJh6NChTF1dnci/oSEp2xoaFADp0aN9o92xp7WzM4Y6O6Po4UOkr10LvX79oF5fT/d19Gjg+HFUW1sje/ZswSQxkck//5yf9eGHIkybRsrRvXvUE7gjxGJATw96enowNzdv3r59uxgAFi9ejE5BhchIGq++fdvPads2Coj89htteHv1IlfBjz+2BXEU06fj1vffg1u6FMYODridmgpbT08YGxhQwCclBdDRQd3y5ZA8eQKDoUPxdl4e0+rfn3Fbt9J7xo8n0mpmRrn3tbVENl8mNQYGdF8rK9uLe+3YQfMpNJQIREUFKe+//kqE286OLNqurvT+VjLz7bfUez0ujgI5aWl0jT4+VM9AXx/gecQOGYJINTUMHDgQNitXwqb1XObNaz8vLS0gMBAmS5eiTCpFv6QkIfncOURfu8ZkDQ3ga2tpDowaReM8cSLA8zDU18fXmzfjwpo1LPbePYX1tGkibNhA1759O/UQv3QJ+PJLGu+PP6YgR1paexDtJWjt3Yvay5cxw8aGXUlIEAoLC1lreklBQQHi4+MVqampIrFYDKeHD9mLjz8WcPz4X8r8lZWVSEhIaKvJoK+vTy9UV5MFevt2ZIrFMLCyQry3N+54esLM0pKbM2cOjI2NwXEc3cydOymlIj2d1o8zZ6jyvESC5uZmJCYmij08PCiI2Jqze/Mm1K9ehfq6dRQIeviQFOBvvwVsbWGgqoo5Y8eyB2fPIsrcHAFlZazXX/RqFovFmD17NsfzPEQiEScIAsLDwxEVFYWtX3yBqVOmwHvdOhGOHqX1pZWk7t9PtRe6gJWVFeZv3YqffvpJCNXUxEw1NYaKCnIAffklBUm8vGg9PH+e2pslJtI4JCZS9fbWQn8XL1JF95YUnz/eeQfM0JBzyM2FjY0NPbu6usAvv9CaMnAgpft8+y2tFydOACNHQnHkCC6WlAj2RkborlDQ/F+1is7lwgVKT7l0iQJSXY1Taipss7Nx/vx5pKenQ1dXl5mYmAg2NjZCxw4SUqkUGhoaSEtLg7OzM+zs7NpV/Y7w96dgmYMDJH36gHNyQss9aH9PUREFJOfNo98XU6a8Vt1uJdpBQUHo06dP23cGBgZKfXx8cOPGjXdSUlLe/uGHH840NDS8v3Llyvo3TgwllPiXQUm2lVBCif8ZhISE2IvF4huDBw9Wk0qlSEpKGlhSUrJuzZo1lwBoSySSYRMmTFD7q01iJxw4QGToxg0iQMbGROK6UKoEQYCXl5f42bNnvFgsxvDiYt5y7lwORkaQAVixfDme7NyJdJEIV69eRWNjI54/f45OxF9Dg9TVQ4doI7hvH5GSFlhZWWHe4MEsWV8f++/eZe8/fQqjAQNIQWlqIlu7XE4b7rVraeMXGkr5kiUllAu8aBE4xjCJ5xEbG4vY2Fj+2rVrorfeegsODg7gutp03b1LBLGVwEZGUu7u66zCUikKxoxBaHo6Jq5dK6rZvBnmI0f+bRt029iHhlKQAKTMe3l5QV9fH5cuXeJ///130bJlyyCePp2CCa6ulBN/9iwpey39ujuhoAAoL0fjw4fwSk6GjOdp09mC5g8/xEVfXzwLDhbeP3SILTl6VISJE+me1NbSpj48vHObMSsrausF4P333xfL5XJs3boVO3fuxJIlS6i6+7VrpPTfuEEq3JAhpL7l5bUfp6KCFKfsbBrvlhQCqVQKIyMj4fbduyz6zp22txs1N8PNzQ3eEyfi+fPn2DJ1Knx9fYXJPj4MRUWkgBYX08ZbIqFjXrlC1/Hnn0Q6nj2jObJoEY2DhQUR1vx8IioKBfXOHjSICGxoKF1vXV076XZ3p2Jy165RDnpBARHsc+eI5Lm7t7f7Skhov96jRyEIAhIeP4aqsTECWltsvYSa9HTIpk3DxpAQGBsb8+UpKVxweDgrfvgQdYMHA4whKzqa+ki7u9Pc7NuXyNXly+DkcgSvXo04f39RfUICVCIi6H6WlAAODkQ8wsKIcMTHEzHT0nrttJR16wbrBQuAzz/HtOPH2S9SqWBnZ8dMTEywe/duWFtbc5MnT6Y+31u3ouDwYfbbb78JY8aMYTavKUgll8uRlJSE9PR0BgBerUUGy8uBEyfQ3FIj4fB330Hr3Xcx0tsbg/buhez+fbIDd3xmLS0pqNHqMGhoAJYvB5yd8ejAAcz5+WdIv/sOWoaG5GaoqqJaBa3BlTVrqF3c22+3B9NWrYJ2aio8Y2NReu6ccO/ePcHf3/8vn2fGWBvJS0pKQlRUFACgtrkZ9x89guWGDRQUyMujYOb69e2F316D1NRU1NTUsJyaGtweNoz3dnDgcOAArUWTJ9P8PnGC+r/PnNneK3vUKCLhc+ZQCszmzTQvr18HJkyABWPIzMzE6ePH8bGfHwUcmpooTWfMGBqf0lIK1HAccPs2miMi8OzrryEdNIgNAcC8vOi56N6d1qPWuhSWlq+/oMWLcbamBrLcXAwfPpz38PBoHddOiytjDHPmzMHevXuFU6dOMZ7noampqZg9e7ZIrWPgV6EAduwA7+uL53Fx8Js7VxB1sKgDoPPasoUCh5s20b8XLgQAVFVV4cGDBzAyMsKzZ88AAO+//37nmgQtUFVVxahRo2SBgYHYtWtXcENDwyAAl994A5VQ4l8GJdlWQgkl/mcgFovneXh4SDw8PAAArq6u6oWFheqXLl16t7KyUpg9ezbT09P7+wcUBFK6ANo8nTlDxOXnnwEARUVFCA8PhyAIEAQBPM/DxcUFKioqHAQB6NGDQ79+RDgACIWF0K6vR0paGrS0tPjm5mYuMjISFhYWnTcyjNFG99EjqvZdU0MEBwByc8GNHg2XkycRlp/Pb9u2jfv444+hqaZG5MLdnYhDfj59VhCIfLq4vEKMOSoyBB8fH9Gff/7ZfOLECbGKiorg7OzMPD09SVmrr6cN7LZtnXtd79vXdZ54C0pKSrD/wAE4Dhum0Jk5U6SzYQMRmK4I8OswdSowdOgrP+7evTusrKw41W3bIBw+TJvF4cMpGGBjQ/csJaVz3nBhIZ3/rFmAgQF6zp2LzaamMDpyRKGiogJra2tOX19feD5pEqvV0sL8+fNpwzthAhHWpiYa38xM2nQ/fkyKLkBEISKiLRdfS0sLy5cvx7p164QLISEYFxnJRBcvUr7znj2kHH7yyavXa2RE5Dcigo45ciSRQhUVTJw4kUVHR/OmpqachYUFbty4gZycHFy9ehU9e/bEtm3bBG1tbfj5+TGIRO3Kua1t+5h3zGGdPJnmRmkpkWNjYyKo1dXk2ggLozHbu5dsuc7ONHYtm29s20bEKCuLjm9kRGO0bRu1vAKI3LeipV1WV6iqqoKurm6boltZWYnz588jJycHYrEYjDE0LV8OVVLMOS0HB8H6m29Y6FdfYe7+/bji5wcnJycilT//TCq6ri7de8YAQUBTQgLu7NuHZxkZCBIEIpinT1P+6t275Fj49VfK4f27+OEHyJYvx1vr1uHJRx/h8ujRUFdX59977702Emr+8ccwnj0b9Xv3soMHD8LX11cwMDBgTk5OyM/Px+3bt4Xnz58LpaWlnFQqhbm5uTBp0iSmoaGBpOho4OuvBX13d7a3vp4q/QPQcnYGc3OD7M8/KaBx8yaRpdbgSEYGuVxcXChwU1ND8/jyZdjfvo3bH3wgJOfmItjPj1mfOkW5vL/91n7t48ZR0GXcOPp/QwPNi5YaDJaWliw3N/eV6rqxsbFwcXHBvXv30K9fv06qa0snBAEA09fXV4jFYnh5eYmgpUVKdE0NEcCAAAo0vv8+BXI6BBpboaurC319fUVFRYWoqKiIHvDWntF79lBAKSWFyOPKlTTv16yh+x0VRfO+df4bGdGcKS6G2unTGPfwIcTTpgnCsmWMtXZfGDeO1v5Hj8gJIpWSldzXF/Xbt2PrnDlYvnw5BU2//JLOIz293Q7/5ZcU7HodAgLgoq2NQYcPQ01N7Y0BDE1NTSxatIgJgoC4uDhcuXJFlJKSAm9v7/Y37doFHD6MskOHcGL3bnyWmcng5ta5zZeZGQUi0tJI2f/5Z2DUKJy9d0+RnJwsAtDWClNXV1dhZWX15joUAF68eMEByAKAVatWTZdIJEMbGxuXrFy58vlffVYJJf6XoSTbSiihxP8MJBLJIFtb2067GnNzc7i4uODKlSssLCwMTU1NcHNzg6OjI+rr61FZWQme52HekkfdhqYmyke9cIFU4fJy2vgZGdGGtkcPZP3nP3haUwOn3r0Fxhisra0hk8lo8/fkCRGzDgSXe/EC2itWYPnixQDAhYSEoKGhAadPnxZUVVWZubm5MGrUKPoAY2RXPHaMSMC+fUS4ZTJg0yaIXVzwmUzGnVu5UsCJE6ytL+1nn1Hucb9+wPffk0pnZNQ5f7ELzJw5UxwSEgJfX1+EhYUhISEB7u7uwmhzc4bmZiJjHfHjj69WP2/BgQMH+JycHK5///7C8OHDaZO2eTMV0vLzo3P8O8Wzjh3rnA/eAb169mTX+/UTVKOimMe0aVCLiWkLamDiRCpMdPIkEeDGRtpQRkWRMssYBoBcAnl5eaLs7Gw+MjKSGRgYCIMSE5HcuzcqKioo2NBqT09Kos3pzZuknC5YQIqoWExj29DQ+QR5HvMGDGBXN25EZXo6DKTS9txniaTrzXf//mRZLSoiYi6TERm2soKhoSHGjx/fthGfOXMmNmzYgOrqamzatAkcx7E5c+a8WmH+TWCMbLWtFco75Pe3Ea333qO5Z2pK4wiQvXrXLlLHW4n84cP0918UHXwZjS3H1NHRUQAQNzQ0YPfu3WhqaoKJiQlcXFygLpfD+YcfwMLD2868ubkZKi4uQkRFBXNMT8exjz9WjD17VqQ6YwbqV6yAvF8/5Jqb82E+PkxVVRVVVVUMBgaYtX49BBUVyqevr6diWomJpGqLxXQf162j1mh+fn89hLq66D5kCLNMSkJceTlMra1fIUvis2cxcO1a6F29itjYWCEiIoKdO3euZSg10bNnT660tBSNjY0oLCxkv/zyCxjPo3d2Nszq6tjeloKAPXv2xMOHD1FQUIAjR45AW1tbWLp0KUNjIym2dXVUt0FFhe5lSgqdQEUFzd2LFyHR1saAP/5g3MCB/KEzZ1hzczPep+AVvVcQ0HzkCMQtSnlzdDTEH3xAx2p53luqwHci23/88Qf/5MkT7sqVKwCAmJgYvoWocUVFRUJjYyOTSCQMAKZOnSoyaG0Fx/M0DxMSaH5JJDSXGhooCHTtGv0sI6MtqGCRlISFCQmimw0NijoPD4Zx4xiOHCHimJlJqn5KCq1/1tYUFLK3p3HJzaW1y9ubvlehoH/37g2XwYPxwt0dV+vrcW7MGHz++ec0T2JjKdDxzjv0fiMjOt+hQ6GRlASdykocO3aMnzFjRntl9I5r4/Tpbd0neJ5HXFwcGGNQVVVFXV0dxG5uyG9uxhvTeF6ed4zh4cOHANC5HkNSErUYHD8e2lpa0NDQ4BtWr+ZUVVTAZs7sfJDKSnLpLFwILFyItCNHkNzYKDI1NcWcOXPA83yry+kvF5Xc3FyIRKKUlStXPlq1alWwmpradgMDA3F+fv4DAN//7QtTQon/QYi+/fbb/7/PQQkllFDi/zNCQkJEgiBsHDp0qPjlwlkaGhpQVVVFTU2NQi6Xs7i4OBYfH89HRUWxlJQU3LlzB1KpFJYdrX7nzlF+cn4+qRh795Ji6udH5Kq+HiV9+sBhyxbBOyKC2X33HbPW0mJMVZWUlcGDybrZkVQmJ5N11ccHAODq6gp3d3dERUWx6upqNDU1CU5OTkzSkYg5OZHK1NREm72wMFLlPvoI0NdHQUYGTAcNYio//ECFeGxsaEM5fDiRRE1N+r7kZLJRvgERERGYPn06q6qqUqioqHCWGzeyQkGAxY4dnW2q+flko16xokvSfO7cOWZvb49x48a1v6iuTtbpjAxSifz9/7ot1Jo1lEPcqlq14vZtGA4bBs/+/VnDBx/giFgM9V69YGho2F6UTFeXyP1vv1ERrEWLSOXtcL46OjqwsbFBnz59mFgsRlZWFht99izLdXJCMWOsZ8dq7Kam7TnEH35IRcFaq6JXVxNx69hCZ+ZMqGzciMylS6EZG4v7Zma81dixjL0mD7gNy5ZRUGDcOFL2U1KIPMyY8cp41dfXK1r7FAuCgOjo6L/fduyvkJNDwQ6ep3mcmEj3zdOTzqukhMbVyYkI9kv1C/4OBEHAiRMnhNraWixYsECUnJws7N69m2lrayuWLl3KeXh4wNLSEsYaGmDXrnUq4sRxHNzd3VnU06eKZDMzbsjly1xjXR1O+vryYbdvQ6StLegGBHByLS2UlZUxAwMDYcaMGezQoUN8VVUVVFRUmNaxY0RM1q2judFa5Tk8nFwLjNG8eU2P71Y809HBn01NvHtYGEZGRjLRe+91bp/m7AzMmQNjKyu4u7uzvn37wsbGBsHBwfDy8mJ2dnYwMjJCU1MTPD09MSggAMLOnbB78AAXxo6FtY0Nqqqq8Pbbb2Po0KHw8fFBTU0N8vLyWM61a0La06eC85YtjA0YQHnFOjpEsM+cISuztjYR2aAgmk/r18Nq2jTmP2kSkpKSBJlMxrp164asrCxELlsGg/nzsQkQ4qKjhaenTrEiS0ue8/JiOjo64HkeZ86cUfTu3Zvp6+uzEydOIDQ0lJfL5dzkyZPh5OQEPz8/5OTkCE1NTZyamprC3d2dGzRoUNv6O6yqiuH2bQoOqqvT+qRQEKmdMIFSFl68oGf3ww8pqNOzJ60FvXoBvXpBkZ2NJltbLiovj/kmJpLr4uRJso9Pn07jYGZGa8eyZRSwnD6dnBg1NfTdpqa0Ts+bB0ybBt1+/WDs5wfvgAAWHh4OHx8fiIqKaC355BOa4xIJpYH4+lIw7MEDGD57hsi6Oubk5AT1VldHRzBGqRijR2PPnj18VlYWKioqhJycHKGsrEwQi8V8//fe4/T/QS96AEhLS0NTUxP8/f3pB3I5rfGOjkCLs8DFxYVtVihgERQE3dOnKdgHoLq6GrEZGXxWURF/LjWVRT1+zHrv2wcVJydh8rJlrLX93d9FSy0ArRs3boSqqKhsGzNmjJmTk5MoLS3NNyYmZnxYWFhNREREWkBAgLLfsBL/OiiVbSWUUOK/HiEhITLG2BcKhUIlLy8P3bt3R0fCqoQiSe0AACAASURBVKOjgwGU/yoCgLy8PFRUVHAGBgawsrJCTk4Ojh49imfPnmH06NFkN8zMpJxhY2PalFVWtluHRSLg88+h9+gRQocNg9PIkWQZNDWljXqPHqQ0vZz7LBJ1yvVuLZ4VFBSkuHTpkqiyspLbsGEDvl68mMixpSWpMDo6ZJWuqaEcymnTiPhbWOBOfT2c+/VrJwoAEaLVq9uJ5dat7ZbnvwGO46AlFsO5thaHXrxA+h9/NH/wwQftvy+oiBvAcUhNTUVYWBg/ZcoUztTUFBkZGWCMdU36DA1pY/vbb6Q4X7rUmZS8jDNnXiXkzc10fQsWANeuoefSpYjNzxdOnz7NeJ6Hq6srmIcHjdGvv5I6BnQeny6gqamJ2tpayFNTIYSG8oIgvHpi6uq04Z4yhe71+PFkjV+2jPp7A2TnLSggUpCcjPGTJiHf0xPR+/dzN1evxqJFi/DGVIaVK2l8W+HhQdfb1ETzqcO8Hjx4sMjPzw+7du0SysrKmH4Xltt/jLAwmm+//EJKqZ8fVVIeM4aKpCUlEfHYv5/mpI8P3ZPffqMAzz9Q1k+cOMFnZmZyH330EUpKSnDx4kXWp08fDBkyRNSpboCxcee+yB3g5uYmunr5MvSfP8d1b28EJidzOt7e0N60ibFr1+BcUcFuDhiAhIQEtnv3bohEIq7wwAF0i4qCIj4eoqoqur6sLCpMN28ePS/OzlTQqvU8WgMeQUGvnENOTg7q6+vhefgwk166RLb7Z8/aC+kxRgGwlp7LWlpa0HopJ9zR0RGOjo4AAD4uDnaPH+PUhAkAAHV1dXz11VdtrgUxx2FUYCCMExPh/ssvbO1nn7HL27YhqPXcJk2igmonT9L3HjhA6iVjVAF+zx6grg5s7Vr4DhnC7ty5o6irqxMlJCTAREMDL+bOxbSxY5nx9OlM+OknXK6sFA4ePAgtLS2FhYWFqKamRvTixQv8/PPP0NPTEzw8PDBgwIBOtR7mzp1L/9mzh066rg4T331XtO6zz1CblAS11vmckdFepG3IEPrbyoqeMXNzUpEfPqQ5YGPT9t61tbXgW56TxshISCUSqpK/ZAkdo0X1RVMTkfXSUnJwFBS0F5DsIkUFILeFIAg4evQoP/ybbzjd4GBIfvsNALVzjLO3h2zkSP6Ru7vAq6rCJC1N5DV/Pm9oaNi1BXzjRiA1FRlLlqCkpISbP38+dHV1aXGWy4nMt9Y0+Jto6TMvmJub03F4nu713r20ZrRAQ0MD+vr6zVcPHBDN3bKFsTFjAENDpKWlIaqkhFu2dSu0z51DWXU19MzNESSVsk7V2v8mTExMMGbMGK2TJ0/era+vh7a2NkxNTfHJJ5+oPHr0yP3mzZvbq6qqPl27dm0cY4w1NjZ+u3LlyuJ//EVKKPFfCKWyrYQSSvzXISQkhEVFRS2Ki4v7PSIiYr0gCCG6urr97e3tpXFxcfzNmzeZgYEBjIyM0Nzc/ErBLx0dHZiamrb1K9XV1YW9vT2uXbuGB8nJcPv+ezBnZ1KHWqr4ojXPs0MbMIlEgsj4eDagtUDR4sX0Z98+qoQ7bx7lwtnakgq6fj1t+Nzc6AA8D2RkwLy8nOutrQ2j7duhIZfDbs8ecDdvkkKxbBkpb2PHkuK5fz8dz9kZmD8fsfHxgnOfPkxdXR15eXmQLFiA2qoqiGbObLcUm5jQRszDA5g797X5gxERERgwYADqd+4UDOPjOcsbN9Dd0xPh4eFcdXU1ampqUFJSAklSEuoGDkRofDxiYmKgpqbGoqOj8fjxYz4+Pp4FBwd3bpfWEWIxETQHB7qmwEBSirqCnh5tjFuJSXU1qVuXLlGF32XLAA0N9O7dm2VdvCj0Xb6c5QQEwNjFhSopq6gQ+R09mv79Bpw7dw4vXrxA4Dvv4JaeHuczZgy6bE/GGKnyOjpE5j09SXVTVSUlbfx4Uul27aKAAABtbW306tUL2dnZioiICE4kEsHIyKhTQKgNOjq08bazI4IhkVBawI4dwNKlZA/uMJ9FIhEMDQ1ZSkpKW3Xif0y6a2vJuqutTap1v35Ezo4do9zTI0eIRKurkxK4eDGRTgsLusbCQlIlv/+eggwdq7+/AXl5eYJIJGKenp74448/hG7durEJEya8Oi6PH9PYdtG33dLSEo/T0hTmZWXM79QppmtvD5WNG8H696dq07GxsFq2DE+ePBFGDB3KBjg4wOHcOWjfuwdpSAhYq1U8PJzIV1AQEb3Zs+k63nqLXo+OpnmblkYq6nvvoaCgAOHh4XxsbCxzdnaGg4sLg4sLBdqmTydLd6vLxtCQ5q+Pz5sDEteugX3xBS7PmQNTW1s8f/4cpaWlGDRoUPt7vL3B3b4Ni02bIPr0U0TExKCoqAgRERFtY2rs7EyKvIoKcPUqam/eBMdxiO/VC+dqa+G2bx9w4QLO6OigqqGBKygowIQJExAEQG/uXOhUVUFcXAzJggVwcHTkvLy8UFxcjNTUVCYIAiorK+Hs7Izp06ezbt26UVhv505am06dIsK/aBE9pxoaQGAgIjkOOQBUR4yA1ezZdC0d84hbceIEpWqMG0dKrY0N+H79wDiuzT2Sm5uL58+fw8/PT9G9e/dXSW5TE1m9ly8nF8b16xQ4WreOnqvoaFLPHRxe+ShjDFVVVRCePmWxRkbov349wsLDcerUKSEyMpLl5OQg6PFjZuruzskGD+ZMT51CVlkZu5aTw0dGRsLR0bFzZ4fhw8G/8w4OXrrEOzk58S4uLu3nK5NRTvdfuXw64NSpU4pTp05xdXV1bNiwYfS8f/UVVdf/8stX3EaOjo7c1Vu3mPDJJyjKyxPK//wT4cXFzNPXFz2ys2E2aBC6Dx4M1b596RkWieh3zz+EkZERXFxcEB8fDz8/P6ioqIDjOBgaGqJv375SPT09EzMzs35isbjP8+fP1f39/S/+4y9RQon/QijJthJKKPFfh6ioqJna2tq/BAcHWw8aNEhl6NChnJeXl9TBwQG+vr5MJpMhPDxc0NPTY1u3bkVCQgLS0tJ4CwsLpq6u3qU9TkNDA052dtD87jskzZmD7qWltBlrVVvU1EgtHjOmbQMtkUgQGRkJb29vIrYyGW3Qp0yhTaYgUM7rqFFkw92+nUhyUhIdy9CQWnWVlOCJi4tQkp7O1GfMgHlUFJiVFdgXXxCZsbIixXPBAlJuBg2ijayNDeymToWQkMD+ePpUSE1IgGpKCuIaG3ExLY1lZ2crampqBCsrKw56emQlHTjwtfnSkZGRGDBgABQbNrBKU1NmPmYMZDIZzM3NkZCQwOfl5Qn5+fmC3dq17GZFBV4YGysmT57MBQYG4vbt25DL5czT0xM+LTb514IxIk99+5JN1Nf31VxfQWhvWcVxpLICpHQ1NtK4icXA5s3goqLg/sknLDcigo9RU4P9uHFM1cCA3qupSZ99QzXg9PR0JCUlYdiwYSiMj4f+jBlw61hwqCtwHAUufHzonp48ScGYQ4fI4v/SGKurq8PT05MrLS0VEhISWGJiIp49e8YXFhby1tbWXGtLNJ7n8WLbNly/f1+4nJeH58+fC+Xl5Uyjf3+oaGgQOWCsE2HT0tJCZGQknj59itTUVKSkpKB///5/bQN9+JDs4ps2EUGcOZOIfk4OcP8+3Z/PPqP3xce3q4Zvv01BD4mEzmXoUHJzhIVRYbdz5yiw8xeW+aamJpaSksJLpVJkZWXhvffeY13mnGto0HPYRTVklJejZ2Iit83MjGloaQmm7u6MffABBQrCwoDvvwdTKODs48N03d2hsm0bGm/exM8iEZoUCt7W1pYxxuieffQRBabs7Oj5bFGWAVDAw8wM9ZWVeJCayu/LyWGus2ahUiIRPN99l3l7e7cPdu/eRMhTUijYNmIEzRdPT0pJGTCg62fwwQMKqqxfD9cRI+Do6Ag7OzskJSXBUlsbej170noyYQKp7BwHiMVwc3ODlpYW5HI5ioqKWEZGBiIiIhAREYEyuRw3ZDI+TCxmtefOwfXIEdy1sIBRTAzODxgAq4wMDNXRwaDPP4elSEQBsJISuo/r17edp0gkgqOjI/Pz88MgX1/4VVai59ixtEbt2EEFxyZOJELbty8FFLt3p7ni4YHs3FxcuHcPmlpaePz4sVBYWAh7e3vWZeuqq1dp7rRU44+9exfHeR61Ghq8bVgYg4EBpObmSE9PR35+Pufj49MeWKyvJ1fS228T2f7pp/Ye8Vu3tre0GzeO8sELCtpb1rWAMYZez5+jx6xZyJo0SZFbXMwnJiZyTU1NLDg4GMOGDYPeggX/j73vDovq3L5e75lC700BkSoKSFXEhlhiN7FrNPZertGoid4k10ua0Zho1BiNGo2JGo0xFhQ7RZqACtgAKdKl9zbMOef7YzMUBWPu9/ue3833zHoen3szzJw55T1n9tpr7b1h6O0Na6kUpn5+cLl2DUYrV7KSkhJER0eLycnJLC4ujk9PT+f4khJYDBiApGHDMH3OHK5d8vfSJUqgqrqWvwYiIyNRXV3NACAlJUUc7OjIYGZGa66DLvoymQwVFRXi06dPBfMrV0SH06e5pEGDxNmzZzN4e1OPCFXJjLMzlYcsWvR6fTVegIaGBu7fvy/IZDLY2Ni0bIDjOJibm6Nbt2549uxZ0/Pnz0P8/f1v/uUvUEONvyHUNnI11FDjbweO43r36tVLozP1tE+fPrh69SpLTEyEiYmJMGLECC4pKYkdPnwYPM9j8uTJoqur60uRhNF336FOT0+8+uwZKzI0VM7/4IPWZ6SNDRHCe/dI2aT9gEwmE6urq5mJkRGpYocPk/0RoGAlNZX+/4QJVOv84Ydkie3dm4LA69eBsjI8e/BAGH7zpmS7tzfCR4+GRffumFxaioqqKjjk5JDNddUq4OuvyU7ePCbpt9WrRUVFBRuiVDLvTz8Fq6xEP6USBbW1CA4OlsTHxwsDBw6kwPyDD0gB6dKlZcxLu+MvLQV7+208WrNGLKupYb7Nr9vb22PVqlWtEaK7O2b6+QEaGi3MaOPGjXjw4AEuX74Md3d3WLzYUK0j9O1Lxz9qFBG9ZctaA7yyMkoMqIJoW1si4Ldu0eiejz6i42lspM/o68P1yhXu9v79wuHDh9n69euJbPr6UvLj+PEWwv38+XNERUWJkyZNYllZWTh//rw4atQolJWVieVOTlx9UREGi+Kfk1WJhNRgS0sK2n19Sb1MTGw/GqwNZsyYwQDgypUrKCkp4VJTU4W4uDiYmZnxNTU1kvLycsiHDBFHOzqybj17Ii4uTnjy5IkQwxhbvXo1k65ZQ52zIyJatslxHDZs2ABtbW2kpKTgjz/+wKeffgo7OzvxnXfeYe2Ce1Eklc/Hh5I2a9YQqZJISJFPS6PzundvyxrDkSNEwBctov8+dIhsyidOtG7X1ZW2e+kSJYYGDqR13rNnh64Cnueho6ODuro6Ljg4GC4uLnix10KbN5PduKOGZSEh0PnlF0w/eRJnz55l5ubm1Oxr9WoiewcOEMn65hsiXvr60NXTg72DgxgfH8+6d++OHg4OVBagqrcdOpTO7/797WZ919TU4FhsrNjQty8zMzaGOH8+Rv7jHxwuXCCbeUJC634ZGZHyn5hIa1lXl5JDR44QUba3b38cT54Qyfnkk1biA8Dy118x78wZ/ASgx7hxGKupCYOuXdt91NDQUDVVALm5uThz5gzq6+vBcRyePXuGuro6bvXq1dDU1ISmXI7FcXFQhoVhes+e0L5xA+zxY1J89fTIybB+PfD++7RxhYL2zcMDmDkT0v79SbWeP5+eZ2PH0vMIoDXSsuOtkwsaGhqgr68PmUwm8jzPxo8fz+Lj44Vdu3aB4zhRQ0NDHDx4sMS7uZ4Y/ftTMgfA06dPcf36dQyaMAHRkZGcQ3w8Gs6cEc+OH8+0DQxQV1cHnudpPy9fpiRLnz70nHRzo8SErS0llP7xD9pnY2NKDi1ZQmtCoaB+F6r7RKkEevZE+f79yMvIkDSVlMDDwwOJiYm4cOECOI7DkiVL0GXpUiL3V65A6uMD14oK9FiwgEVFRYkAIJFIJFlZWUJMeDjnrKeHOfPnv5xcqKxs7fD/mpg5cyYXExOD2NhY+NnZ0Xo9fbr1d6cDNPfPkABAUWEh1qSkMKSm0rX77beWSQro3RsIDKT1sGnTX9ovgBrA8TzP3bx5E+7u7i+VSwBAcnJyk1KpvPuXN66GGn9TMPE/qM1QQw011PjfRGBgYA+ZTJawbNkyrc4ss6dOneJLS0sxZMgQiaura8vrsbGxuHnzJmxtbZUKhYLV1dUxPz8/0Ss/XwItLfAeHihfvx41UVGwVRFlFfLyyB5661YLKdyxY4fQv39/rigtjff5+muu6eRJ5qD6PlGkoFVHhwLowkIiI0eOUE3sjh2kJOnoACdOIP3pU5iYmSE3N1c4f/48p1QqAQBb5s6lQEpbmwLB77+nYH7mzNZ9i4+nfXv8GKK9PRonTULGvHm4deWKuHrTplbWqBqn07bzdDPOTpmCiTo6uD57tlBcXMy909xBtx1++40s8seOdXjeL1y4wOfl5WHFihWvX7xbWkrBnaoJmZYWcOoU1auHhpLiV15OCqulJdnCfX1JEXqhW7lSqcTWrVvh7u7Ojxw5UqKlpUXH7OHRUqMZGxuL4OBgWFlZCYWFhdzQoUNFDw8Ptnv3bqz79lt8P2cOYGmJNWvW/Hl379RUIiknThCxsrCgGd+RkWT7VzUv6gSCIODZs2eIjIxEXl4eFi1aBBO5HFyPHnTcRkYQBAHffvutYGFhwYb6+rKuhYV0HiwtyU3xAhQKBRISEhAcHIxu3boJCxcu5FBRQaUEt29TXefJk1SrrLJsFxYS8fb3J+KhssGWl5OTQy5vfe/du7QGOnPGpafTe957j7pA//gjYGcHQRRx48YNPjk5mVVVVXEymUzU09MTdHV1JW+++SYMO7IUA5TIcHMDKl6YIFRRQUpeM0nauXMnb2Jiwk2YMIEZGRmRo+GXXyg54+ND90gbXL9+HY8fPxZXzp/PZD/9RMff9ju/+YaIsZcXeJ7HZ599BgDYvHlz+8RAURHVd7/1Fl3/gweJhHIc/QsOJgIbGkpui4qK9vbp/HxaPzY2pBADlJz7978BQUBdQgK+KSwEz/NYvnz56yWy2kDsKHEkCEQUx4yhfgMWFrR+TU3pPhsxggjr3buUIHz+nBIXvXq1KM6viyNHjiA7OxtyuVw0MDDAkiVLGMdxSE9PhyiKqKqqwvXr19G1a1doa2vD9ehRdJs1CwZz5uDixYu4d+8eFixYgNu3b/NpaWkSJgiY/csvqDIzw4VRozA2JUV0i4tjdV98AS0bG2j3709JuJgYOjZPT7o2SUl0LTIziXgDRHS/+IISI6tW0Rp/6y1KBH70EUpKSvD06VP0798f27dvF+vr65lUKsXw4cPh5+FB9x/HkXU+Pp621RGuXSPHxF/ondERGhsbceTIERQWFoIJAv61cCH9HnXwPH8lRo6ka7ljByXHPv20NbGZn0/r/vDh1nr610Bubi6OHz8uNjQ0MG9vb37cuHGSF0u4AKieTbmbN29+xfBxNdT4/wdqG7kaaqjxt0NAQEBpWFhYeUpKylBvb29ZR4TIzc2N69u3L2dubt7udSsrK3Ach4KCAi4vL4+rqalhdoBgvHUrd7apSUisqRGsBg/mgkQRYQ8eiCYmJqxlTI2eHgWfUimCU1Nx+vRpCILASmJj4VBUxPKWLWPB16/D1NQUZmVlYFpapAZWVFCTHFUTtcOHKSAPCCD1oLku1NjEBJqamjA3N2cymQzp6ekwrKsTvRcuZPWLFkHevz8phcnJpC6qZhffvUtKzfr1AGO4aGGBCyUl4C9cwKz9+9lRCwvx4a1bYszDh0KcTCbEV1eLko8+wm+VlfydO3eEmKgoQf8f/2AJrq6sz759yMrKwuPHj5mZmRnMXrR3375Nx9FJcyEzMzMuPDyc8/8rAbm2NqnYV66QmjhpEgWlY8eSBX/7dgomCwuJAKxeTaS8A9LBcRwcHR1x+/ZtMSQkhJNKpaLeyJGMmz8fiVpaiExN5WNjY7lBgwbh0aNHTEdHB35+fuzixYuCpqam2G/pUlZqZoZn2dlwdnaG3qus0JmZpGD370/7Pnw4kbTTp0nh9vQkxb6khNTdDmq0GWMwMjJCdnY2tLW1+X79+nFMU5OO39ER0NAAYwy2trYsLCyMZeTmir5TpjC88w7Vtrbp0K2CRCKBlZUVtLS0UBUXJ7h7eXEtdtF//5tqiU1NW4Pr8HBSuCoqaA21JZKzZhFJnDSp9TVLS5o57Ozc/r0qGBtTIO/kRDPDU1KAoCAkAwhNSmIjRozgRo8ejeHDh7O+fftyHh4eNKO4M+jrd6yyvfEGqenN3cK1tLS4xMREGBsbs64pKZRgCQggQtFB53w7OzvcuXNHrE5PFxyDg7l251Jfn5To/fuBkSPxKDUVGRkZ4qZNm9hLNeU6OnRfArQWBg2iTvrLlxOBNzWl5JiHB9nxBw6k9zs7k735s8/onA4YQKRn9Ggiiu7uQN++kPn4wNvbG/Hx8WCMwdLSsuN6/47Q1ARWVUUJkKoqun8jIohsHzxIpL9fv9YyiLo6+t/CQrp+AQFExhgjxfg16/EBICUlBT/++KNYU1MDnueZIAhs7dq1TCaTgeM4mJiYwNTUFFZWVnByckJ9fb1YX18vSKOiuNtNTUiurERZWZlQU1PDevfujSFDhnCGhoZCcmoqK+3aFX3q6tA7MlKsBNilgADcUSrFiKdPWUREBMxWr0Z9VBTKV6+GIWO0tkeNovv0+nVa17Ro6HqdOUMzyd3c6NjffhswNIS2tja6deuGuro6REdHM57noa+vj3HjxkGmpUXn7Z13yJGQmkqOhY46kru7U7L2xc72Hh5UrqQaofcKPHjwACdOnEB5eTm6deuGfqdPQyc6Glpb/4PJWu+8Q4mW8+fp/qyupmMH6HeuRw9KTqia/L0GfvzxR16hUHALFy5Enz59uM6cQc+ePUNaWlpNaGgowsLCygICAkr/+gGoocbfB2qyrYYaavwtERISEi+K4gh9fX3bri/YKv8M165dE/Ly8hhjDK4ODkLD1atcvI0NU3p7M+mVK1y/rCzctrZGXV0ds7e3R8v2GcOjoiI8/uMPMUkqZT179hTeeOMN5h4TA7d795jTF1+gurpaTDp1inkvXw4uK4vGgKmUol27qBY2IoLUTx0dasQ0duxLVtukpCQhPz+f8aLIsqytcS0rC06ff44fBYGPUypFYdgwrltBAQV3kyaR/Xf0aADAw9RU6JiYCGM3bmSJvr4wsbFho1euZOZWVpzxkCFcd01NrtepU8xw+XLOzsWF6yWXczY3bjCbbdtgZG4OqVTKMjIy8OzZM97X17e9NFFd3eEYKoAUtMLCQqSkpAgDBw78awV/EgnZIc3NiaCkppIiuncvqenm5jTvfMWKP92Uvr4++vfvz5mbmyMoKIjdvXcP9QqFYH7zJvL79mUzZsxgrq6usLOza2ksJZVKhaVLl0q4jRvRY9MmZObkiA8ePEDfvn1Zh0GjQkFEZd48IpdpadTA7MQJsgy7ulKzIgMDCtzPnycnQn7+S3WVSqUSV65cEZ2cnJitrS19WVMTJWWaG2Pp6ekhOzsbGhoacHNzY2zaNEpQ3LtH5Q1tSa9SCaSkoPrGDXju3s1p+fsTiVPNkm57PJcvk210+PDWOuC2sLEhgqAac6bC+vVUjtB2PFpbMEZ/mzuXCMndu2DdukHz8mXms3QptDpTsTtCSQkRomXL2r8+cyat+WYVvkuXLkhOSoLL6dPMyN2drtG771Li4pNP6Bo03yMAkJOTg8TERFgoFKJjUhL3kjpob0/EMzwcwZWVkMvl6Nu376vXtY0NJVUCAojMmJgQ2V66lBTwGTPouo4eTfb4oCBSRMeNI5Kzdy85C8aObWcLlsvlEEURd8PDkX77tujt5sYQGUnPEqUSLXOmT54kxwfP03X7978pKfXbb+BLS3H3+HGgsRGZcjkMdXUh9fIiEjp0KNnFLS2JAOrq0vkLDaUE17FjRFiLiiih1NhIx/aKUovCwkIkJSUxnueZjY2N6OfnJ9jY2HTYsVtXVxcODg7Mzc2NswoJgWTKFNQyJlhaWrKAgABm32y7r0tLYwZHjoDjeQjV1aKemxtzTUqC79mzGBQQwNx79kTflBTUjxqFiN69xcjQUCaLiBCzJk1iWlpa0Bk0iM512wZmMhkpvceO0T28a1e7/gCCIGDPnj1CfX09A8gW7+joSE4Mc3N6dg8aRPdSWdlLNeAA6NouXUrnrC28vAA/v44bxbVBRUUFjh49CmdnZyxbtgxuvXoh58QJ3PXz490DAjrugv4qqGaMDx9OSZSUFHIMqWBqSkkga+uOeyW0wd27d3H8+HGhpqZGMn/+fFi3mbjREUxMTKCrq6unr68fUFZWtiwiIuLNmzdvhgQEBJT/5eNQQ42/AdQ122qoocbfFTqCIHTrsMHOn6B///7ctWvX+KqqKonl3r1cTysrSHbvxs5duzDNxAQSqRRDhw4VQ0JCREdHRy48PByMMVRXV+NhdjbGJCUxmakpdDw8mK1cTsEZANy+jQkffcT+WLhQfNqtG+spimDa2qS+5eS0vo/nKUju04eCrLQ0Cqy7dGnZx3HjxnElRUVK/927pdzBgzh66RKKjIxQVVUlESQSFBQV8Th9WoIbN8jC2gaiKEJXV1fU19fHAFUtXn4+bBmD7cGDRDyKi+EaGkrdukeMAO7ehU12NlBSgu6CgEnFxbiiry9i2zZSaRcvJotrQgJZJX/7jQLHefOAK1dQXFYmplVUMGltLXx9fCiI09QkRTo0lNTr5vnkGDaMaqhra2m7UVFEWEtLSXFzcSFbOUAB37NnHdql/wwuLi4YOHAgHxkZKUnt21fs7enJTbOwgLTZqWBjY4P5yiMmQQAAIABJREFU8+cjJCQEQ4cOJctjWBggCJgzZw7btm0bTp06JY4fP57pvkg2Z86kfTp5kpSwxkYivEeOkA21S5fWuu2rV4k8JyZSYF1dTRbnZtJ99OhRXk9Pj7VLbPA8kaZ//7uF0Li7u+PcuXPs008/xeLFiyHT0IDJ5s2oc3VFxNSpgolUyrzd3Zl01izU5OfjwowZeOP332HcUa1zWRklLtatowRBRw3kFiwg10VHDe927243xq5TyGREYsLDYbxzJyzz85E3bBikX3wBK1XjsD+DXE5KmwqiSOUDBw+Sktzmdd+ffhK7x8WxQxoaGL11KzgAhnV1gJ0dWH09NAQBHMfh3r17uHLlCvz8/MQAc3NJp6RxyhSUvPsuNOrr0XX+fCaKIvLz86Gvr4/MzEwkJyfzEydOlLxUb85xrfusqhP+5z8pwebuThZ+1Yzy6mo6liVLaL0fPEj3wOHDdO/NmAH88gv8m5rgKggoys1lNXZ20Dl7FszCgpIaOjp0DXv3psSVvT3d14aGtH5WrEBDbS0u19W17hMAVlgIu/JywbC0FCOnT+c01q2jpERUFDURGzKE1m5CAt2fDQ2U4FF1zO/ZkxJKlZVE2O3sAFNTRD98iJiYGAEA16VLF2RnZzMLC4vXIoXS58/hNWAAvAwMWt+flwf8/DPs8/NhMWIEnvn64k5ODgvOycEHX34JzUOHgHv3YCSTASUlMDp1Cj1kMlZ28CBk//wnO2htLYSGhXErfHygu2YNfg8M5CsrK9myZctIgZVISO2Ni6PExdSpLSq+IAhoaGjgJBIJ1YcDrR3/TU3pcxs30rNs40ZKML2I5nGR+P339q+npdHvQCcQRRFxcXEIDg6GqakpP2XKFAnS08GNHYuIyZOxbtOm1y/X6WifCgqoVOTzz+m+Ut0HWlp0PEVF9CzqpJxGZfM3MDDgJk2aBKtX1I2roKWlhX7UVV5jzJgxuHPnTt/w8PCQwMBAjy1btqgJtxr/30GtbKuhhhp/OwQGBjrK5fKIpqYmh+TkZOTn54uurq4dK5AdwNzcHP379+cKLlzgqziO8zxwABoGBnielsanlZRwjdOmie7u7iwsLIzFxMSgoaFBKCkpEQRBEDR1dcV+XbtyQwYPhv3o0Qw9elAwWlpKatDOnehpbs4StLQEvqIC2b17sy6ffALWdowUYxRAl5WRvVwQiIT16kXW4WYkh4cLHrdvc+afforS8nLeJDycs1u1Snz67BnTtLXlZObmMJs1CzkzZyI0MlJ8+PAha2pqQnFxMeRyuejs7NwarMpkpGqqZlRLpfRd8fFEMOfPp7pWmYysp8ePI83GRvDQ1uagpUW1x42NpDi7u5P6PGwY4OKCOltbnMrJYc5vv40uI0bA8c03mbRPHwrUe/Wiuj9vbyICzs5EQnr0oH1xcSFrvasrBexNTaTUHzlC+1hfT8qchcVfGo+jgr29PdevXz9UVlfjWVgYkx0+jMeurjAxNYVcLgdjDPb29q01rWvXApqa4CQSSCQSxMXFsefPn4seHh7tF5ezM6mPRkak+P3wQ2uHdC8vUokXLWoNUiUSIuBr11Ig27MnUF6OG01NSEtJ4eYtWMDaWda7diUlt7a2xfVgYWGBIUOGIDc3lw8NDeXuJyQgwtYWaRKJ6BIUxOx37WI3k5Nx08cHN9zcYG1nh17u7i/XQmdmkqIqCMDs2R2PXhNFugZTppB69yJSUqiRWgc29pfAGGBrCzZsGLRTUpBkZiYYf/stKz5yRPy5spKlZ2ejR48e6DRxJpeT8tjW/VFcTI26VJ/ZvRsYMQJ/TJ3KQt94A2UGBrh//z7u3buHqKgoRFVU4G5REXDypFhua8suXLiAKVOmwNfXl7EnT+h4VA3h2kJDA9HJyaLOo0fMys8P4YmJ4rVr11h0dDTS0tJQVlbGJSQkiJGRkczc3LzjGera2nQORowg1frcOUrSZGTQ2lmzhghsTg5di4oKSmSYmdE91K8fWebnz4d09mwcra3F7bIyhFlZQW/2bFj6+hJhc3Skz1la0hrT0mqnPFdVVSEhIQGbN2+GlZUV0tPTYWxsDB0dHaZz8SKrrq0VrSZPZnBxoW00NgLffUc12nZ2tP2ePcnyvGwZkXFHR1rX5eVEVNPSgD/+gGTnTnTJyWETBgyAn4MDChIT8TQ/n0XExYmeXl6s02Z4SiX98/NrbTCZmEjX2sMDCAyEPCAA5UoloqKiAAADhg2DzNGRnqVr19J92dygTcvLCxrr1qH/oEEsPT1duB0fz3RLSlDevz97/vw569atGzNUjfEzMaHRV0lJVAdtYQGYm4PjOPj7+8Pf3x/Z2dl8VVUV9+jRI7Ffv370m9PURK6bd9+le6uoqNWSrUJgIHD/PiW3VKitpXO7eXOnSaerV6+KoaGhbNSoUZg8eTK9KToaCg0NhGtr4+nTp4Krq+vLpQ2vC8aoxGLnTnqW+fm1/s3Jie5xTc1OR4HJ5XI0l25gzJgxL43Z/DNwHIdu3bqx6upqrdLS0kGDBg06+p8diBpq/PdCrWyroYYafwsEBgYyAD5yuXyNVCqdNnToUDljjH/8+LGksLAQ3377rTB+/HjOwcEBSqWy887GKiQnY3psrKRq2zZImwPkt4uLJc/Pnxfjhg9nhw8fFjmOY3369BHGjBnTPoKoraXAb+hQUoCmTiV78NWrQN++YOvXw83IiIuMjERqcLCYlZUljhs3jmsJiBgjhUNPj7ZlbY3iw4dx4sYNuO3ciXhfXzRpaMCkqEgasn073pLJMGXKFAl27UKDkxO7HBKCgoICnJdI0F0qxaVvvoHYu7cok8lw7tw5ZmBgAMc2pB0ghUQURQqGdHVJrejRg4jUoUMU2D9/3vL+NFtbVEdHU9MgFTw96Xj/+c/Wuj4AT4uLUWtnx/eaNKlV/mjbCKgjG2LbxjvJyUTmd+wgxfzjj2n/6uroPI0aRaRw9+7WhkR/AVpaWhg/fjyHceOQ/PnnYvoff7DbkZHo06cPRo0a1fpGQSBi1KxeDRw4ELGxsXzXrl1bj6uigpIS0dGtJNTMrHUsFkCB9qFDlFD5/ff2+6uri9LSUoR+8gmynz0Tev3wA7cxNBSSjz6i72/73nXrSPX85Zd2x/POO+9IwPNAVRXEf/0L7Nw5BgsL1K9dizIbGxRnZcHExASiKOLEiRNYuXJlK+E+fJiIRVDQq+2hQUE0L74ze6u1NSn6fwXm5tA8cgTDrl3jGhUKlDDGhly5ggrG8HNWFpb8858df66oiPa1sZHWxJYt5HzgOLI6nzsHZGSAHzwYhc32YI7j8M4777Q0n+N5HvZlZaJrUBDb07z2amtrBQBcnVQKuY1NhwFRSUkJYpRK5imToWDHDlRMmyasWLFCYmBgAKlUCqVSicTERJaamorjx49jxYoVeLFPBGpriYjevk1W7aIiIjK1tXQ9cnPJ6VJWRv0JBg8mxb4DR4FMFOHv7y9ev36dAUBQUBB8fHxe6/QbGxuD4zikpqbCxcUF76s6jgMoPX8eoZWVrGtuLtmAhw6l5FdICJHBjRtfXi9yOZFwOzu6J5pxLz4eN3V0MEhPT9A2NeXw/Dmm8zxq9u/H4549mbShgdaVXE7E3dKSFGKOIwV71y5qUJaQQI34xo+n8ps2z/TS0tYy3++++07YKJFwLQmCGTOoweKTJ7RWUlIAALNnz+bS0tLQ09oaPpMns8PHjiErKwu23buTi+TTT2mDy5fTffvzz5Rs8vVt+a65c+dKRFHEF198wY4dOyYMHTqUs7GxoWfY8+f0rNq3r33zSoDU8mY3gQoKmQyS6upOmzDm5eXh3r17bPr06eilmge+bh0waBA0v/oK0x4/xs2bN7ldu3Zh9OjRaOnm/rrYsoUaOc6ZQ84I1XjFtggMJCeUat78C7Czs4O1tTWfl5cn4Xm+84TZK8AYw4gRI+R37979k5mRaqjx94Ra2VZDDTX+6xEYGKijoaERrKmp+ZGfn5/XpEmT5Pb29sza2prz8vKCl5cXUyqVuHr1Krtz547w8OFDvm/fvp0zsro6IDUVnJsbtMaMaX29Z0+k2NmxqEePYCMIgpOnJ1fz8KHgIopcNoD8zz8H09CAloYG2P79FISWlJDKc+4cBZw7dwJmZtDT04OLiwvc3d3ZzZs3xZs3b7KkpCQxLi5OjI2NFWOTk0Vx61Y0ffkljiqVYlJRkcBJpWxaWhrr7+yM/itXwnPePFQOHw4bT0/aP3NzcC4ueJKaign79qFreTlSvbwQMH06hs2ezfLz84Wqqiro6uqy1NRUThRFIT8/HwqFAhcuXBCvXr3KXF1dkblhg8iSk5n28eNkldy7l1SqNsjPz0dOTo7YYm0uKCAle+NGUoB27ULtwIGIjItDWFgY3NzcmJOT01+r087NJeLv60tW8SNHSNW2sqL9ycqirsETJ1IAHhlJRP8f//iPZsCCMZhyHPO6cgWaM2aIoRERjOd5qOpBIQhEMNrU9TLGuNDQUDDGRBsbG1aQno66wkKI48dDEASIokjBsodH+yZcXbuSynXrFhAQgIaGBoSEhODMmTNCVFQUq2lsxMTp01mfxYshmTSptbbXza3VfuzkRNtpWxddWUn/+vQBamvBVq2ic7J0KQotLKDz8cfosWwZJk6bBk9PT2RlZQl37tyBRk0NM9q/H1I/P7Ir29l1fp6qqkjlnTevc7JtZESESCLpuCHUq+DgAOmIEdA3NESXuDjoSKXIr6+H2/PnlNB5kXxoaRHh6tqVFODvvqN7judJcWu2qXNz5mBIQADs7e1x//59PH78GO7u7pg6dSqys7N503794HbgAIu8fh2CRIKnT58ypVKJ9O3bURIdjSO5ubCxsYGRkRHy8/Nx4MABREZG0tzl2bPhX1AAn/79OR13d0gkEjDGWprRubu7o6CgQAgLC2NyuRyG2tqQFxS0jvPy9KQE0+efE5H98UciO1VVpGj/+iutnR07SFFljO63pUspodCcqFMoFDh27BgDqM5ZoVDAysoKnU1laIva2lpERkZi/PjxL5EiTV1dPDY0REhsLLp37w4DAwNSNEeMIGV91Ch6BjT3EOgMhw4d4uPv3uWa5HJM2biRydzdAXd3cGPH4my3buJDTU2mMDWFg7c3cOcOqdaJiXQ+9uyhJM/9+3SvL15M7hBf35fWRGhoqFBeXs4kjGHOgwdMf8ECWteurrSvHEfPjOXLW2qoJRIJzMzMwBYtAiZMwJOCAkiVSsEpKorhu+/alyq4uBC5/+EHSqo1JxoqKytV9cnQ0dHhoqKi4OjoSI0UbWyodtvcnO6Jts0ls7IAd3dE+PsLkdHRLCYmRszevp01bduG4zU14pMnT8Ta2lrGcRz09fXR0NCAM2fOiBoaGq3J3poaSgi8+y5gaAgzMzP4+vpCFEVcu3YNFRUVePz4Maqrq6GnpweNzkpvLlyg83viBO3jkiV0Db7/nsh12znwqn4lZ8506PxQKBS4ceMGx/M8hg4d+ufjEjtBdXU14uPja/39/f+Dbm9qqPHfDbWyrYYaavzXQy6X77O3tx84ZcoUjY5UAA0NDQQEBDATExMxMzMTSUlJUqVS2XGWvbSULM3Pn5Oa9K9/Eck7fhwYMQI+c+fCZ9Ei4M03Jcl79qAuOJhrOnECx2fMwOITJ1B68SJ+HzwYS/Pz0TwwmYLRjRtf7jQLwMDAAO+++y5XXl6OvLw8BqAlGuFcXJC2d69obWXFOfXoAUNDQ0g3bQIaGiDz9cW9N94Q6q2tW5MGS5eCi4vD22+/jYsJCeLc1asZ3N2pWVVjI/RNTBjP86yoqAhWVlYIDw/nAEBTUxMNDQ0MAPbs2YPJ4eGs3NBQMGWMQ9++FJAWFbWzC4uiCEEQWmdDdulCHZJ1dSngPnsWD3fsEO6YmHA9evTAmDFj2kVZSqUS2dnZ4Hke7eahC0KrRfmf/6TrcOQIqdaMtY7ymjmzVUlzdSVlcP58stPeu0d1kefPt7PdvxYGDQL++APWSiWTy+VobGxs/Zso0tpoAz8/P8THxyM0NJTVbtsGjjE8GjZMqPnmG04ikUAmk2HChAlw0dIiUqSyOnMc2fUPHkTpgQPYX1ICMzMzfuDAgZLMzEzk5ORAR0cHnFTaSqavXaPjX7eO7P23b9OooidPKCly9CjVy8fEkHKnSsI043p4uDChooIzbXOPzJw5k7tx+TI0N2wQE+RydkNDA2s3bcIr6bFMRmrgi53oX8Tnn5MC29Ya+woolUqIokidtI2M0DhyJMLi40UuMpJ5FxaSkvnhh3Sd29pWlUq6z6ysqCwhPp7s2I8fkx27Z88WRwBjDDrN5L+pqQmXL1+GoaEh5s2bRyelthb//OorFIaHIzIvT8zJyWHmHIeK5qTCzz///NJ+Ozs7Kwf5+0vh5kbr0srqZZswgLfffptL2rcPed98I2bl56OXjw9jqm7o+/aRUu3pSWRJVdtaWUl/V815/uMPev35c3JzyGSU1OjdGzhyBOy778AplRCkUtTU1AAATpw4geXLl8Pc3Bz19fUoKSmBlpYWtLW1W84FQAk0mUwmampqtmdEogju448x7epVhCYl4eTJk/jggw9QVVWF5ORkmJmZ4fLEiRgqioLLhg1c6bhx+CEmBqIowsbGhm92ErHa2lrk5+dLAGDTpk0vkb0333qLfZ2WhntNTeIbAQGsHXmLjKSkyttvky3bx4fuJScnInoKBV3vZqfN9OnTue3bt8M+ORkGGRl0f6iO1cmJur7n5lICq6CglTQClKwxN0e/fv2Q8v77XFNqKmQdjc4aMoTugU8+AWprUTNgAA4fPiyamJjggw8+YFKpFDt27MDFixfFpUuXMqSlURnAoUPkcmq7ho2MAAcHhNy6xcm0tWFtbc0cfX1hoKuLIUOGsJycHJaYmMjfvn1b0tTUBF1dXWhoaIhz586ldfvgAY1eu3OnnfuFMYYhQ4ZAJpPh+vXrMDAwwIMHDxAcHAx/f38MbZscqa8n58DEidSNPTqa1tfVq0Ska2vJRbNwYXsXQ0AAjWFcvrxdXxEAOHbsmKBQKDhvb2+eMfYf14/fvn1bwXHcqf/082qo8d8MNdlWQw01/tcRGBg4nDE2VBTF81u2bIl74W8DNDQ0pk2YMKFDot0WvXv3Zr1792aJiYlIT0+Hc1tFsKSELMrz51PgZmVFtcqrVlEAnZZGSsrevRTMFBejPDoa96dNE+sjI8UeGRlc6nvvib22bmXTLlyAIioKGjo6pAZcudKqwq5dS8pAm1pWqVSKDsdoATh+7x7Gbd0Kw9jY1tFQWlqAjg6UMpmom55O5FYiIet2ZSX0pkzB85EjWctYFhsb4MoV+B84wDHGeJ7n2ZAhQzilUom8vDxcvHiR53leMjQlBbJHj3B26lQwxjjZ1q1wc3PjJwQFSRASQvbLZkiaa5Zb0L8/qU8gIr7HwQGTd+zglv/+Owyp2Q0UCgWCgoKQm5urrKmpkUqlUjQ2NmLYsGEYqBpt4+ND52fnTiJN/v6U9Gg7WgqgBIa2dut/a2oSsdq3j8iJvz8Fwh9/TPs2duwr10Y7bNkCEy8vsKlTMbqNio3KSlIi58xp9/bVq1cjIyMDLDkZVn36YPT69VxFRQV4nkdGRgbOnTsH6aZNYg9RbCExKSkpuHPnjqhRVSV4Hj0qGbZpk9B/zhwJAAwaNAj79+8Xnjx5wrp06dJKfFSNkj78kAh2XR3Vgm7ZQg3nduygQNnS8qXmZLm5ucgvLeV0ExIooJ4wAfj9d0h/+gmj9+wBbt9mu3/6SdBSKrnOFK+CggI8CwsTfZYuZclXr8Kwvh42r7Kar13bYeM6nudRUFCA6upqyGQy6OnpoaCgABcvXoQgCHBxcRElEgkePHjAwHHMe8kS2GVkUALhyBEK9nv1Ios1x1FTrq+/pm7b6emkNkZEEAnooLmUkZERunXrhpycnBbCvXLlSvqjjg7Ykyfo4uCAKc2Jryo9PYTExQmOjo4sNzcXMpmM1dTUYMOGDdCmNUixkrExrY+9e8nura9PCZrUVFKn33sP7i4ucFmxgh24fFk0WruWJhkIAo0Qe/SIknptx2cFBJAF+fhxUnBVz6wuXSgZBRBxrK4GCgsh/+YbfPzoEYo++QTJcXGQfvklrl+/jv3793d4iYyMjERjY2Nx8uTJ3LNnzwQTE5OXpceKCkqiGRtDqVSioaEBhw8fFgoKCjg9PT2+vr6eM7S0FH97/pybyHGi5cyZzG3zZrH3hAnsXmKiRBAE1NXVobC5rMDIyKhDVfXSpUsCAG7w4MGt+9DYSCRw3Djg0iVa5x9+SMm3vDzq8O3oSCrslSvU1M/CAhr//jfWPniAlLQ0ZO/ZA9cXR/TFx1Py0MeHniWffUbJC4B+B5qa4NitG1KnTRN3p6aymQUFHTf3cnEBduxA3Zw5uNajh2js5yfMmzdPolQqceDAAdTV1WHBggWsZX0sXEjrorCQkgaqZ7qZGcT169H14UOMXLyY7quGBkBDA3aMoW/fvgAgUSqVOHr0KKRSKWbNmsW1lEMdOEC/C52U0AwYMADm5uawtLSEVCpFWFiYEB4ezhUVFYnTpk1j3IcfktK/eDGVK7R1rOTk0DNFT49+B4uLaRyganxjly707D99uv0serrWXEVFBcaPH/8fEe3Y2FhldHR0fV1dXbFCoehgvp8aavz9oSbbaqihxv8qAgMDLSQSSZCvr69mQkLCuq1bt55TKBQrtmzZUhUYGGgHIHLChAlQKBRoaGiAUdtGY51g4MCBwsWLF+Hk5MRxokgk6tw5UgaXLAEmTya16IMPqFP4xYsUYOzb17qR58/h8/33uOngwOknJaHW3h73NTSY3NsbXosXQzpmDCkpCgUpr0eOUDBkYkIB+K1bFCxfvEivdRIkNRgYQJDLqZ5PVefc1AQwhvSBA8U3du4EHxoKycmT1LxHSwuwtUVT24Y4a9YAjx+DXb8O/5EjW4IeuVwOOzs7rFmzRrJ92zbBxcGBewSIAJimpibq6+tJZdTXJzVm2LCO1cyGBrK2Ntut6+vrUV5ZCcXOnTBcvx7KkBBcDg5GcnKyYGJiAn9/f6mVlRXMzMzwzTffiBrl5QwWFhTI/fwzHev9+0Qk2yrLbbFgAal5e/a0vsYYJUcGDiSF9/x5SqKkpREJy8trDRBfBX19yCdNQp+UFKSnp7cq7wYGtE46gP3Zs0T+mhMAqhpoExMTmJmZgX/jDVY+ZgyMPD3x+PFjnDt3Dl5eXqKhk5NEx90dPSIjOUya1DJCq3v37lxWVhYP4OUg1dSU6nZ5ntZOQwM1LmpooHXa3PxJBUEQEBQUJPbo0QOampoMVlakBv/+O6l7P/2EzLIylJeXc++8885Ljg+VDTUmJgZmSqVYOWYM7ly7xgAiTu7u7kJAR+OFHB2plOLw4XYvnzhxQsjIyOB0dXV5AKympoaTSqUYO3Ys9PX1ERQUJDLG4ODgwMaOHdvaVGzxYnKHjBhBTeZmzqTzsHgxOVKys+leW7iQCG4HEEUR9+7dQ05OTstrlpaWAoDW/XdwoGTE/PnAlCnQT0vDW/36cZg8GQDw66+/AgAvlUpfvjbDhhH53bqVyJVSSY3OvLzInmtrCykA/exs4dC+fZLNp09DevgwXfdFizqeU81x5GoID6dO5C9CLm8dGZWbCwCIzc0Fp6uLsV5e6DtsGM6//76YU1XFZE1N8Jg5E1lZWRg4cCDS0tJYbGwsCwkJEbOzs5m5ufnLZPvZsxYi6u/vD9Vc7ClTpsDQ0FACACkpKezXX39FXI8eYr/gYDbh4EGGu3dhu20byjQ1cerUKfA8jyFDhojNz+h231NbW4vk5GQOQOvs+l9+IZW/sJCcNRIJKdyzZ1MS5b33KMGmp0dlA8uW0bP1xg2gogLijh2wqq+H0tiYngn29vQM37OHOoSrEizBwfS5wEB6rhQX03lcvBhjP/6YNXl64tSpU+KKFSuYVtuRYCA3xu+RkXy2v79kztWrzHzwYAl4HtXV1Xje3OOinYV/1CgipyEhlIhtS05Xr0ZfNzfUqcYXenrSb9EXX7S8RSqVYvHixe2vz86d5B55VekH0K5Px7Bhw7j6+nrB/R//4Eo2bYL51q10XlQOirYwMGjfQ2P7dlK9IyJaX+vRg/okeHiQ4t+McePGYdu2baioqHit3+a2qKiowLVr13ie51cACN6yZUvZX9qAGmr8TcBEUfzzd6mhhhpq/D/CJ598stLJyWn722+/raNQKHD58uWGR48eNQmC8D5jbByA8V27dhVyc3M5AJg8eTLc3NxeWRsmCAIOHjwolJWVsaU//8wEExOUHTrUqnRv305BzvPnpJzcuEG1k8nJZJczMgKGDYO4eDGuLFuGe2lp8I6Jgde9e6jy8BB0t27lulZUgB09SmrwoEEUTDs7k/Kydi115z1wgAhl795kf962jchlG1Xhxx9/hKOjI/zT0kjV6d6dLIP29rgaEcHfu3NH4mlqijFlZZQs+PBDNM6ahe3bt+Pjjz9uPegbNyi4fKGREADg5EkUvP8+xJgYWDarN59++ikEQYCJiYno7e0N8ZdfxCoXF6G22SZYXl4uKS8vx/DhwwUfhUKCHj0AExM0NDTg0KFDfHV1tcTX1xd90tKQGhQkxI8dy/z8/Jinp2fLtRF37cL9Eyeg2L0bfomJlOjgOJo/7ONDalNnKC8nVejFkVsq1NQAX35JyYdx46jm8OOPqU66pISSA69CQwMSZ80SSidM4IapLKSlpaRqX77c/r2ZmUT6kpM73Z87w4aJVl99xax9fPD999/zLi4u3JAhQ1oX6ddfU4C/cycA4Pjx42CM8bNmzepYEWpqIuKZlkaKr5sbKVPffkuvXb5Mx81xePr0Kc6ePSuuW7eOujzzPCUdDAxIEb11Cw08jwMHDggVFRXcxo0bVYotRFFEcnIyTp8+jS7GtFuIAAAgAElEQVTV1VhWW0uEhTFcu3YNmZmZeP78OT766KOXGzkpFEQssrKIEDUjIiICMTExwoYNGziA7sfXalqoOu7t22kNGxlR0D9qFN1ns2aRy6MjwtCMqqoq7Gw+xwsWLOhcmd+6lUh93750v44c2eKOuHTpEuLj4wEAOjo66N+/v+js7MxMRZEISFYWJdKWLCESZGPz0v4IJSX48ocfMO76dbG3ri7jDhx4KUnS/gMCJVNOniRC+CdNAAMDAwEAH374IaSxsXQ/ffEFhN9+A/f4MVl+V6wAPDyQkJCAS5cuQS6XC+vWreNeKq85dIgSVVu2vPI7FQpF6zXkeUow6uri4q+/4p6nJ+wdHIQ5c+Z0uOM8z2P//v0oKSnBvNu3YevjQ8nOkpLWWum7d+m6nDlD/11cTNf7xAm0uHgAcheYmOB7HR1BKpOxRYsWMS4jgxRyQ0NSso2M6Dlz8yYl9nbtorIMMzM6zooKIvc9ekAQBBw4cIA3MjLCjBkzJC3PL1HE0aNHhaqqKnHJkiUSbbmcng+jRwMzZmDn998LVVVVHAD4+fnxo0aNohvk8WNK2p0/T+tXdS1v3cKlZ8/4MpmMmzNnDkNBAT2/XjVj++FDeg5ERr48o7szVFRQImngQKTfvInCqioMuHWrfTf/thgzhp5PbW3vogg8fdq+jj0khH4nx49vqaEPDQ1FWFgYNm/e/Hr3dxtUVVXh0KFDdTzPi42NjTKJRLJt8+bN//pLG1FDjb8B/lpLVzXUUEON/2FoaGj8o2/fvjoAKbETJ07UXLRokZ6FhcXXjo6Ow+bOnYvc3NyWAPHs2bNoamp65Ta5+nos/eknbn63buzWwoX86alTxdOnT0OhUNAbkpNJ7R40iGy5lZUUbNbUEOFSKAB7eyR+8w1inzyB75MnguuQIaj5/HPo37vHnfzpJ+TZ2NA85dGjibhfuULB59y5NFe6oYGCQqmUlJVVqyjwsrUlhS48nDqYg4I6XL1KAY8oUjATHo5Ro0ZJ3H18+CZBoAAuPR3YtQuS8nJwqmNRYcQIUtFf7BDd1ATY2CDBz08Q2iRXra2tlfb29rxEIuHv3LkjVHh7c4O+/FKqqVRKZTKZ1NjYmOnq6rLr165J6saPR01YGADg1q1b4Hme8/X1FSMiIvBDejp0y8rYAjc35uXlRUR73jwgJwfMyQld3ngD4eHh2Flby8PLizpcBwe/mmgDZKu9erXzv+vq0jZ69WqdXZuRQQqZszN1TX9VMllTE0b29pzxjz+2vqm+nrbRFllZFFjm5HRKtAVBAGtsZPX5+fj+++/58vJyiaenZ/ts0MqVtK8nTiA0NBRpaWkoLy/niouLO96/c+foe1esaA2C166l/SspIcXs/Hng8WPUpqdDU1OTl8vlREzef5+s1idPkuLa1ARNqRSrVq3iTExM+O+++67la1RE29bWVlzm5UX1rc1kY+TIkXhTNae9I8jltD/N3dtV8PT0RGNjI6dSlzmOe/1AXCYjG3FAACWQhg2jIB+getXbt+l++/JLIiChoaTMNuPp06ci7Zoc+s1zzDvE5s1kgQ8KImdHG8V5zJgxGNPcOJFvaEDOnj3s+bBhqNi1i+5DDw9K1IWE0Jp4kRjX1IDr1g2b3nwTppmZLFPVcftV4Dgi3J9/3l5R7AQDmjuVJyUlUS24hgYQGEhEWxRpvfI8cOIEPOfOxYcffoiNs2dz0o5IvJtbu6aAnaHdNZRIyHHg4YGB5eVwfvIEFoLQ6WclPI83b90Sdaqr8VBXl55xxsbtyZy2No34UsHMDNi+HQ2HDkEoKqLXioqIPM+cie62tmJ5eTkEQSCXRe/eNGv8/n3g7FlKdH79NZ2H336j7xw6lK5F794tddwcx2HevHmSZ8+ecVFRUS0HkZmZiaKiIrZq1SqJtrY2PctPniRnw7ffYt7EiZzKlREbG9uaiYqMJJK/ejU951W4cgXDDx6U5Obm0j7v20dkuzNkZtJvRHT06xHtoiJaz0VFdF8kJ+O0tzdujhnTOdFuaCDLfduSKxV8fWl7KgwdSgnfNu4f3eZnolKp/PP9ewH6+vp47733tDdu3Kizbt06OWNsQ2BgoMdf3pAaavyXQ20jV0MNNf7HERgY2B2ALoAnW7ZseSkCCwwMNATgCaCrtra2jd0L9rguXbpg6dKlLQW7q1atgq6uLi5fvoyysjKhvLyck0ql0NTUhEwmaw0CKypIOdyyBWzYMHQdMwbTTEwkALBnzx7x1q1bbPTo0RQ0WFtTYJudTcGpanzNV18BzQRDoVBg/O3boo9MxmH3biAiAnl376L+yBEY6ukB69ahdsQIZBsbC/UxMXDZtInT1NRsJYEqC7TKoufsTMTAwIBUMQMDaPfvj27HjlHTHg0NCrDOniWL4bFj8Dp0iMtzcGhtyLRmDSQ//oiVe/dCmD8f3LNnpLrK5a2qzu3bFHSGhJAamJGBR/36wbVNMLxgwYKXn/9hYRjftWuLTbCurg4RERE4tnChaAEw47AwJCQkoG/fvuLw4cM5iUQCR0dHWE+axHDqFDUxe+89Sl7k5ADjxsFy3DjM3LcPv5SWSrBhAwW8r4PkZAoE/wyTJ9O5On2alLIPPiBCZG5O6u6AAcC2bcjLy0NhYSHKy8vF+vp6oampCVW2tpx2Xh7zTEujYL1rVwps22LZMiIFJ050+PVVVVW4dOkSeldWIubcOXSfMgVz5sxpCUJboKUFjBiBxs8/RwbHwd7fH0VFRSwoKEhYsGBBewZ0/DgR6nnziHi1JUiMkWqfkUHrdvFi2IaEiPfXreNw+XJrTburK71/924iHGfPQhoejoULF0q++uorCIIAjuNQVVUFAJg3YQJDaWlrXWszzp49y/v5+XESiaRjK8nHH9M+7d7d8pKuri4GDBgg/PTTT5yWlpYwa9YsrmvbBlWvg759qcv45ct0TRYsAKZPB775hsYQGRiQyhYaSuSneS61hoaGOPLRI/bU0BAHt27Fxs8+a62bfRFHjlCSrWvXdokZjufhKwjw1dICMjLQCOCktzfOM4Z333239dru2UPnS5UUEgQ61+vXA3Fx4NavR/H27Tj/5Alcz5yBRCIRRowYwem9WF/ceuKorruysn3N7AtISUlpmTHd4Vxvxqj+GaD7QHVs/fqR4vnuu1R3/vHHRJo/+ogs1v8BFA4O+G7IEFhnZ8Nv714GI6OW5ye9QQGEhUHh5QWdhw+Z3NISNarygBexeTOduzbI7NULoWfOYNCAAai2thbkVVXc72+9BZAjSFJfX4/MzExoaGigS5cukB8/TgT1ww9pA6qGXpGRdB4+/piud3Ex9UX49ltg0yZo9+6NKVOmsDNnzjBvb29oaWlBEATIZDLhpXKCvXtRsX49ijdvRlO3bjC0tsa7bUf/LVlC/377jcoDVI3gMjKgUV4OhULB0h8/htPBg692E8yZQ46okSNffRFqauj5//XX1Btg7FigoABNUikUX3wBmxf6O7RDXh41CX3RtcIYnUdtbWqcpmo+99FHRLgnTQI4DjKZDBzH/Ucjv9pCR0cHgwYN0oyIiFgPYO7/1cbUUOO/DOrRX2qoocb/KLZu3bpbIpEc1dTUXAhgza1bty4HBAS0yHeBgYF+Uqn0vpmZ2QwdHZ0J48eP1/2zsTXa2tqQSqUQRRHx8fEsNjYWsbGxiIqKQmpqKoSmJsFaFBkePSLr9qxZpNS0abBVXFwsJiUlYZCzM8OIEWTBraykmktbWwrCIiKoFnTAAIDjYLBlCx4ALHn8eL5n//4c3ngDZWVlSEpKQncHB8DYGD9ER6PQxUWsz8hAcnAwcxs/ntTtMWMo4Lt5k+zhKmhqUiAzZw4wdSqehoTANSgImrNn02sbNrTaSRsb8dDbW8x0c2Nuq1ZRzWdAANjgwdhfVATv4cMhXbCAulNbWlIHaV9fUulEkUiiuzvQuzeio6PFXr16McNXWRZHjSIyM3p0SyDlsHkztMzNWUhpKbKyssDzPEaPHs3u378vhoaGsuLYWNG2Z0+mFRVFQdiGDVRr260bbbOhAbpjxyLdzg65bm6is4fH682GGTu2wznDHcLIiIhETQ3ZRa2tITo4QOzVCzVWVriycydkX36JaGNjZYNCwfE8zzHGOImWFnvTyAjSoCBaD48e0XeqAv6yMlpLU6a8HIwCOHjwIH/r1i1OoVBAy8FB6PfOO8xnyBCuUxXXyAgpmZmQPnkiTFy7lj3MzBScnZ257m3reKuricC99x65Eiwtqdv2i2CM/r31Fm5pa8Pvq684/SNHwM6coeuur99K0t3ciHD26AGJTIaY2FjR1taWGRgYICgoCEqlEoNOnCClvE1jPwB4/PixmJOTw6ytrZmBgcHL+2FsTOfGy6vdy7a2tszJyQlKpRJRUVFCywi5vwKJhMjK+PGUDDt+nIictjbduzNmEBGZP5+cHba2MHd1ZbKsLOhHRUG7thb8rl3QCw9HfUgINFSqfWkp2d7Hjycl9dEjarJXWUmk88MPW2fQL1wI6dy5sB82DFGxsYiOjoanpyc0NTXpPlMqqYP40KG03UWLKCmwcyfg7Y0uS5YgOTlZyMzMZEVFRezhw4fo3r07OiXcMhlw4waEefOgXLkSkg4SBbq6uoiMjAQAPHr0CLa2tujw2gC0DlQW7LVryc3z9Ck5A1aupCTGpUtESnNz6RmioUFqZ2EhPYtycmgtFRaS+0Mmo3IYiQQSmQy8KOJRTQ2cJ01ihpqadA+qZlP/8APwr38hbvBgnNDRQYO2NsrLy9HQ0CBER0cLoaGh7NatW6y7pSUMPv+cyGez2isIAvbt24dKAwMYlJWhZ2UlkwUGos+bb8LCwgJJSUmiKIosKSkJCQkJuHv3rtinpoZJeb5dXTEAeg7PmEGjsz76iOz/ZmbkXNHSAvbtg0l9PZI1Nfm79+6xHj16MKlUirt377JBgwa1f2Yxhhi5HAXh4fB58ADOs2eLpvb27d/z4AE9R93cWps9vvkmmK8vCuVy4VluLjx+/pl1Wi5w6xat64kT/3zMoZ0dEfuhQ8kJs2EDIJejqakJkZGRMDAwEL28vDreSFwcJZwHDXr5bzIZ3XOjR5NbBqDnUWYmObkCAsAYQ1xcHIYMGQLuT0of/gwZGRlCTk7OvcGDB18IDAzUjomJCQoLC9sbEhJyLSAgoOD/auNqqPG/CLWyrYYaavyP4ZNPPhmro6OzaOXKlRpaWloaFy9e1E5MTFwIYAMABAYGSuRy+Yk333xT11WlvP0FuLi4ICYmRszJyWGDBw9GcXExnj59CoPlyzno6JACdudOh58dHRfHWZ87h4y33oKVRILiqipYL19OlriJEymYPHCAFMw33gC0taFra4sxUVHY6+7O4ZNPAAC2trYYMWIEzpw5I47+/XfWZ+NGGDk7c+Vnz4q9s7JEqBoDMUZ207o6ClBFsX137eb3VFtb4+YXX4iTrawYhg8nlSwri+bumpmh6upV8CUlFMBu20bHaGcHhYUFtu/fj1m//gpHGxuy+33+OdX39u9PKn9CQtsu36LwCpsnAFIvqqtJWZ8+nV4zN4fr1Klw9fLCzz//LGRkZHAHDx6Edk0Nmzx3LozGjWNPr19Hvz/+oMZTT56Qqp+dTUTozh1IysowoaQE+/btYwqFQpwyZcqfE+6pU6lj/Lff/ulbAVBgOG0axJ49UfTZZ0j57DOEDh0KxnFwNTYWnBwdOc/Vq6X4+muy9KuUmqYmsntWVND3qYj2s2dEUtLS2o1EawttbW2uW7duwty5czn29tscevUid8Qr8HtVFeZ06cLh22+hMDcXo6OjkZmZyc+ePVtSnp4O0507SYUzNSXCQs26OgTP86j6+WcMs7RkwZ6e0PzmG5jb2pIqbGNDzeiamsjxsGQJsGgRuMxMdJkzR4yPjxcyMzMlhYWFGDF8ONVBd2C7nzt3ruTXX39FcHCwsHTpUo7neRQVFSEqKgoPHz7ElMmTRbfsbAaeb5eQYIzB0tIS2traLCEhQZKSktJ+OsDroLaW6rdv3KBxTozRMc2dS2Tw/n1S8qXSdqTSaNs21ObmQkhNxW+RkdBqaIBVbi5mNjURUfjjD+D6dSImT58SofjjD0pqJCZSqUN+Pt2LU6cC//oX9P38sHTqVGQvWIDKt96CYUkJEap58+h5ceAAEdW0NCKw8+ZRAoAxLF++nAPIavvFF1/gyZMngqWlZafMpKBfP/y0YAGM165FpZkZ6uRyODk58dOnT5cIgoCcnBz4+fkhJiYGSqUSR44cwZY/qbcGQM84DQ1ao0lJ9JqJCSnyhw/TPX/hAj1nQkNpPajI1eDBRNDlckoE/fIL2bPNzeFXVIQqPT2Yfv893Sv6+kTeBw0i0rhmDfwYQ0V1tXjnzh1mamqK4uJizsLCAp6ennj69Kl46fvvmduyZbxuVpakISUF9fX1uH37NgDgA6kUmrW1rf0U/g973x0W1dl9u94zhTZUKdK7AoKAAmIEscSOPZZYY0uwxJIYTdWg0WCiiSXGllhQoyYqdlGDAhZERCliA0QsSBkpAtJmzrl/bIaOJb989/fd5856Hh9kmHLKe87stdfae7/7LszNzeHr68uKi4tRUFAAuVyOzNhYHNXV5UfPnl1/bKur6Z555gwlVFXNEA8epMc3baLf8/KAK1cw7f33RcmbNwvhz58jcPBgNO1rlJeXh9zcXJS/fIkbPj6QFBYK/TduZLC1bTyG0MOD3Cd795LarJow0L07+PBwwf3qVa6uw3pTHDxI48YuXWqdaD95Qt8vH31E3w0ZGUTOG9jSVR3hra2tW7/fVlY2HvPVFO+/T8kCQajflvfeI9fF3Ll4+vQpAODp06ewban53xuC53lcuXJFUVNTsyo0NFRXKpWednR07GxmZqZ55cqVuQA++MdvroYa/8tQk2011FDjX4OGhsbMXr16aas6umZmZr5UKpUNir7wnpGRkYlbw0Ysb4nAwEB269Yt9AgMBBcUhAdBQTg0aBBcli9v/uTiYgr49u9HlYsLMpydcT8iAt0nT+ZjLl3iXCMilEPOnBGJVYTUzY26Pv/0E6kFQ4fixdKlKDtxgp0+fRr9+vUDx3Hw9/eHn58fY1u2gDk6IiwyUuixZAm7mJWlzP/yS86ia1c+ODhYVPjuu7h79y66fvIJuLg4Ir9NYGJigmwVSV+4kIiRmxuRLQCMMWpkKZUSGawlifPmzcOmTZuEoqIiBicnslOPGEGBcW4uBdanTlGDnf37IenUiYj06/DVV1S3Kwhkx543ry5AnThxInfvzh3kZmYicPhwcPPn43liIiJ//RVdLCxI6du9m5IX3t5Qdd9+UVqKX2s7vYvF4jdTtj/6qFHTrZaQl5eH9PR02NvbIzExEbm5ufzz5885bVdXfoyLC/dOTAwUe/dC09ycgu+iIkqmdO5MAaa1NTkNQkJoW//8k8gCz9PfoqJaJdoAMGrUKPbDDz+wgoICmJqYvFaBqqyshCAIuOLvD/uMDAxgTHTfwwPXrl0THTx4EE4//ICy9u35tjIZp1lbz9+wS3BFRQVu3boFZ2dnGMhkuLRundLpp59EF8aN41O9vLhBlpa0DdeukcofFUWk7/59Wg8//wzcuoWAsjJu36VLEEQiaGlpodumTUQOPm8+eYfjOAwYMAAbNmzgVq5cWdcvQdUsLSU1VXA/epShf3+6dprAwMAAwcHBwsGDB5mPjw/69ev3ymNUB0GgpEN6ej2BGDOG1taECfT3L7+kdbZqVaPRbxoaGnB0dISFhQU0NTURGxuLe66udJ4Buk54nhTbzExSBa2tyYY7fTqp9RkZZFMHyGpbVIQCjoOZXI62RkbkJklIoNr5O3co0ZCdTeUgOjpUa95E6SsqKoIgCMjJyUFlZSWp401QWlqK8PBwuHXtyg/89VeuMjcXpyZMwJMnT9iWLVuEFy9eMMaYYGBgIPTq1Ys7f/48/kniEgD1eJDL6TjExlJy5+ZNOsZJSXS9qOzYAK2lpv+vrsaT5GSkHTmC3hIJkXKZDLhxg5JaHAcwhhcvXiAxMZEFBwejc5OElIeHB3sYHY2ilBTukqGhQiqVMk1NTRFjDHqFhXhUXc23272bg7MzJcOuXCHlWiKBgYEBDAwM4OzsDJuQEFakVLKNAD9z5kyaRNG/P91LDxxofH2amTVuTDZlCjBlCrjbt+GtqcmevnihLJk3T9S+Z0+2evVqvry8nJNIJBAEAXp6enxhYSGnp6cHrR49eGhqijBhAiUgGhLutm0pcVNaSmpzu3ZA9+5wdXHh4mNi4BYcjGYr4MkTOg/79lHSoin27KFGclOmUHKorIzWWsNa91owxqCnpyfEx8czf3//5qUtAN2v58xp/rgKHEf75O1N180339CxO3wYWLcOFw0NlV26dBFZvcqq/oaQSCS8QqF4XyKRTHJzc7MYPHiwZlZWFgRBCAwNDR0tkUi6cRxnXF1dvWvJkiVn/8cfqIYa/5egJttqqKHGvwbGGFNZyQRBQFVVlZgx1tAj7uzo6Kj9qk7ir4OzuTmc160D+vdH8aBBOFlZKXgGBvJoWFf33XdENM6fp8y8tTV03N3RtXt39JHJoD9yJOe7ezeOxcSwrSYmvNXx45yxsTFK7t1Dz/v3oTlmDKlphw7BaMcOTNy1CxFHjghlZWVsVG1Qw3Ec2U81NMCfPctuJCUJbVJT2aRDh9hPYrFo4MCBiIiI4J8+fcpdtrHhZ82bx8nS08myOX8+AFIDUlNT4erqWr+D7dsT0awlEBzHkboSFETjimpJuKamJjQ0NASlUskePnwIOzs7IhBaWhRgentToNSuHWBtDaVEAptevUiVWLSICEZISPNOuKrP5ziydAYEkGIOAEuXov3Bg2iflkZKkJERtF6+RMeUFCJ4XbuS+rR6NSn6338PAI0a2qnGbD1+/BjWKqt5S7Cza7XWNiEhAVeuXBGKi4uZTCYToqKimLW1NW9gYICCggLM+uorTiIWA/HxEPfuTapjQADZzVUJj1696FgdO0aKqLY2HZMNG+jci0TNRlo1hVQqhZWVlfD3338L48aO5erU8hZQXV2NzMxMAEDnLl2A4GA4zpgBR09PZJuZ8Tq7d3O3OnfGcwcHlK5ahamdO4OFhMCK4yCXy3HixAlkZ2fToZFIMDwqCnIzM5HHlSvIP32aQ15efd0kx1GgPmQIqa1t2pBCGRICLFoEy3ffxcjiYhwcMwYLFy6k0UOvIMGGhoaYOXMmUlJS4ODgAFtbW3Ach9jYWNy/f1/AgQP1ZQMtwNPTk+nr62PXrl3w9vZGYWEhzp49q+zWrZuoKfGqw5491D8hMbHx4xoaRJzOnSOldcQICvyVSlKSGyh7Wlpa6NmzJ2JjY9GuYSMu1TGytaV/aWmUfJFK6zthDx9e7wr5/XfwPI+/167l/ffs4exsbOhYhoSQc2DZMiIsCxYQERwzhu49nTrVXa8AJdYmTZqEAwcOsOzs7EZKf0VFBa5evYrLly/DwsJCMWTIEDH69YPs5UuMfvAAlUOGcBcuXICNjQ06dOjAADClUonMzEz+6dOnqK6ubr18oSWUl1N/g4gIIoXDhhF5W7mSnALduhHZrqmh9ZOcTLZrbe1GSYSynBxUzZ4tKAYMYOlFRehkZ0dJwW3biAB26AB8+SVOSyRQKBTwblJuoIKdqyvsxo1j3v7+dXFp8apVUO7fj83Tp3OzTE1hqEoYffABqb5LlzYi0GU7dghXo6MhLyjgoseN4y0KCzn5iBG4p6mJ9ysq6jrwA6D17utLiUlVXTdAic7wcPQvKxM9mTwZ+hER8JwzhzO3sYHc3x+GRkaQyWScIAiqqQv0vfPnn3QMt22rd7eIRNREU2XznjABOQYGfMGpU6zS0FCQTp7c+IuwspLcBZMm1SeGVPj9dypNEoupIeT9++Q+aK0fQS1CQkLY5s2bsXv3bn7mzJnN3RQ1NY2b1LWGn35q7NpxcADS02FnaspJ3N2bTyp4S9Q2qdOKj4//wsrKSurl5cUYY7C3t4eXl5fl8+fPf7OxsZGJRCIWFRU1KjQ0VLOlfjBqqPHfCDXZVkMNNf41VFVV3SooKBgAgGOMYdy4cZoHDhwIDwsLG1dVVTVRKpW6ymSyf1bYpVRS0yyJhNSX8nJc7NgRkqdP0SMoSISKCgqUtm6lQKpzZwrEGigzlrVjryAWQ6OiAu8tXswl7N0rpGdnK1+eOCEadPAgahQKPLt5E/aLFhEx3bkTtsuWoYuTE3+vvJyh4RSHvn2B2bMxbNgwpKens8CxY9lJhYLvM2AAE4lEzNvbm8vPzwcnkXC7oqLgeecO/G/ehLiWbB8+fFhpYWHBBQUF1b/n6NGkWtQHUUypUBCRKCkhxa12PxhjwsWLF4WXL18yMzMzZciZMyI8eEBWekGoV6V/+gn4+WdkREfDxcqKFLhz5+o/S1ubmkWpCPOsWaRuHzpEyq+3N9U5fvQRvbaggGzry5aBT01Fh9RUqtf+5ReyHE6eTO91+zYwfTpEIhGkUilsbW1x6NAh3LhxA5mZmdDW1hYcHByYXC5XmpubcwYGBuzZs2do164dLD78EDo2NlBu3w59fX3wPI9Hjx7h5MmTSrlcLurYsSMGDhwoODs7s6qqKmhoaHA1NTVYuXIlfvzxR1hbW8PKygo94+Ko7rp3b9pX1SzYv/8mxemPP0itSUggpfTgQbLAv+GYnSFDhrANGzawF8nJ0LO0pGZtLeDw4cO4d+8eLCws4KKqwf7sM+DMGYR4enJ8aSm4pUvx0tCQW7t2LR5u3MgXSqWc3nvv4ezZs0J2djYzNTXFAB0dXLp0SbguCMxx4UIY2dpCR0dHcHBw4DmOax7xqpT5jAwqZ1i/HlpZWSj58Uf0f/AA3ObNtA5eE3CbmJigd8PeAwDMzMxw8eJFUdHff8Pw7NlWZ5QDQHJyslJDQ4O7desWi34m5XEAACAASURBVIuLg7u7uygqKgrnz5/nu3TpwnVv2Azs5UsiFl26tEwmOI6u8Q4dqKnWgAHA9u1ExE6ebNbh2djYGKWlpY1nbTdEmzakwrY047oWZ86cgUQiYT4+PvUPHjhAn3vmDCm5GRmkxuvokC1/5kwi3TxfNyPZ3t4ejLG6Oe21Y6eQn58PsVgMZ2dn5ZgxYyg209AgAhYcDM29e+s6pKsgEokwatQobvXq1QgLC8OSJW84NamwkBIxMTFEoAFKNOzeTZ/5/DkdU9pASnzY2VEi7e5dsvD/8ANgY4OaTp2g/+wZ83Z2hvG0aZRc6NmT9psxYOlS3BSJ+Ac3bnDahoYCx3HNM61lZXTdNSSY16/DoFMnZO/aBcXVq43t3Js2kVIcH1/vppg2De2dnFj7GTNQmZmJ4iNHuMNdu6Lg+XMAwJo1a2BmZoapU6fWJ6WmTSObuaqZXAPklZTgSGCgUObtzfpmZfF2Z85w1qpJChMngjUtCbKxoXtq//50v1U1gFu5kn4/cwbC++/D+PhxTu/xY4zLykJNZSU01q6tf4/iYuDjjylZo0JJCb3nzZt0PXTvTsTdz+/1tdyghJOdnZ1w69YtLjo6Gj1UzdoASrgEBjZONrSGnj3p3HfqROUTWlqUYPrlF0FTIvnn2fMGMDU1xeDBgzUaPlbrrNEAoAEA4eHh5VKp9Mjnn3+uJtpq/D8DNdlWQw01/hXU1mOPd3R0rAtora2tMXfuXO1jx44NvH///iOxWKz9jyyPgkDE5PRpInC1nWXLS0vhcOgQe/HVVzAqKAC3fDkpMk0DoabvZWQE8DzY6NHwCwhgfgUFIpiYAOvXI62mRjh64ADr1asX/OPjge7dUTVoECx37hS9/PHHxu81YgTg6Ag3Nze4ubkhJycH6RYW3IgpU6A4dQqPHz8WGGOsvLwcFhYWfKavL0txc+NnnT4t4j/+GMUTJ4rGjx9fN6IoPT0d13/6STl8+HCR5pw54HV1cfnyZTClEonTp/OdBg7kWIP50YwxJpVKmZ2dHX/nzh1RtaUlpA8e1I95WbSIiFTXrjA2NhZOnTsnaL/3HrPx8iLlHyCiWVBAVtIPPiBXQE0NEevqamqEJBaTynj1KgVcT59Scyk3N/A8jyQfH7SLiKD62atX6X2vXqVawv79IaqpgSAI6E4duIXMzEwGAKampkJeXh60tbW5x48fC8nJyYznedy9exfGY8cKRcXFTLl2LRhjDYNtUe385LoAT1WbKBaLMWfOHOTl5SEjI4OPi4vjXrx4IQw9fpzh++9pDc2fT02LOI46Wo8bRwRBJqOAf9cu2j8VCXkNjIyMIJFIUO3u3upsb4VCgXv37sHJyQnjG3b77tqVCM/vv4PbsAGwtIQ2gC+//BJYsIDbrFCoZkazGTNmwOLCBWDrVtisW8fyzMyg6vBdUVEBc3PzVwe8Mhn9W7QIrFs3vNOxY33iITb2zdStJnB2doZEIsGB5GRMEovR8KrjeR4xMTHIzMxEYWEhX1lZKaptcIjx48fDzs4OSqUSGzdu5KKjo9GIbIeE0LbWlh60CisrIohHj9LzO3em1/bpQ03mGENeXh6Ki4thZ2fXepJPR4cU6YqKVkcx5eTkCJ6enqyResxxdB3s2UOW7MjI+rr18HAiM5GRpMCHhgLOzlA6OEChULDz589DJpMhOztbeP78ORs4cCA6d+6MZgkTfX26lkxNKdHVpC5WR0cHvr6+SEhIQFRUFHr27Pn6RlULFpB62nSNd+tGCra/P6mmlpa0j6ru4rt2UUKirIySbyNGQMfEBNE+PvDt0QNWVlaUeDA0rO+JMGYMji9Zwn26di3OjBjR8vbExhLhU5HHw4fJLXDyJCzNzKCVnMyfO3cOo0aN4jiOo3O0bh0lO8eMoXuVtzfd90aOhObYsWiblIRZQF3X/bS0NBw8eBBhYWF499134e/vTwnCVkZiVVdXo6SkhE2cOBHHjx8XLo0bJ4wsK2M2p0+DpaWRam9lVZdEAUBJm4sXqdni9Om0bRxHiUktLbCMDJz49lulwthY9ERfH8OHDat/7ZYtVIKQnFx/HM6do7X99Cmt53v3KCH4qnFhTVBRUYF79+4xHR0dxMTEwMDAAF6qhOCDB3Q/f9PGZu3a0XdE7TG7a2AAx+RkzrnWcfN/AyUlJcqqqqrWs2JqqPFfCHU3cjXUUON/jNDQUF2xWLy0TZs2Qb1795Y2tImLRCK4urqK27Vrpx0YGChpsW7sVQgKooAgNJTqI3m+rqa2fffuuGZkhBQLC2RVVyudRozgXtbU4MaNG4iLi1MePHiQ8/T0hFbD4KSmhtRvIyNSEXbtIlIqlwMbNsDU25tZWlrixIkTeF5aKrSfNYsVffUVzowfzw/bs4exx49pmxijIEVHp45kHT9+HNp6eoJtTQ3bc+MGXspkgrm5OS+Xy7nBgwczQ0ND9vDhQ9536FDuzrNnSJNKEaStjSpjYyQnJ+PEiRPotnUry3z5kreVSjmWnIwkU1Ohr0TCniUlQef2bXZZLOYrqqpYUVERHjx4wIqLi+FUWCgM2riR6YaFgX37LW7fvYu8vDyYuriQArJ4MTxDQ7myly9ZZGQkysvLlXZ2dhS4mptTTZ6RER3fDh1I6TlzhhITUikpK6ampKyEhFBgrKMDrFkDbtMmHPfxQfeIiMZKi5UVKXtZWZAMGoSHBgYInDAB/v7+LCgoCN27d4e3tzfz9fVlXl5ezM/PjwUFBaFHjx7o0aMH/BITWRdtbbhOnAhHR0f4+Pigd+/e6N69O1rrXs8Yg7a2NkxMTNC+fXvm7OyMM2fOMJmuLszHjCHLfFgYESJnZ/qZkkJKn1hMNbs8T/v5hn0Fnj17hps3b6K3oSFEjx61WLeclZWFlJQUTJgwofFaVCjIol9aSs2OVM2bnj4F9u1Duw0b8PTpU8HFyAidNmxgGD4c+OADMGfnRt2snzx5wjIzM9G1a9fGhLu8nBwKBgak7HfpQm6FGTPIgpuWRgF8cHDLHc9fA8YY0tLSlLmMcfnl5cgqKVEaWVhwOjo6+PXXX/k7d+4wqVQKNzc3JpVKhZCQEBYYGAjDWpLPcRxsbW1x69YtVFVVwcHBQXVQaRtfNSe7IVxcqIt8RQUlkS5epMd0dFBcXY3ExEQUFRXh0qVLQkJCAuRyOd++fXsOAIqLi3E1IQFtly+HWCJplXgkJydDR0dHcHR0pGM8aRI5X3x8qGHYb781L8mQSmkdjR0LmJmhsmdP3PvtNzy0t0deURGe5eaioqKCLV68GLa2tmi1vMbAgBJB779PCnyTMUvOzs4QiUTKmJgYLjY2FikpKcqkpCQhPj5eiI+PF4yMjLg2bdrQ9fzJJ3S+x4xpWRlt25YIvoMDXR9SKSXdrl0DTE1R3q8f9hYUCKeCg9kVCwvU7NsHx0ePYL9oEdjIkXQf+eqrOrJdVlaGwuJiXNXXB/P3h6dYzJopqSUlNB7LzIzOn60tWfidnFTj6VhycjLr0qULJCqnA8eR2+fCBSKoKSl0rwsOpiRoLVTH1NTUFD169FB1xxfeeecdxlTqbGkp9SxoAENDQ8jlcmV8fDzmzZsnellRwc5euSIku7jA49NPmWTPHvr+GD2avp8auKYwZgy5LJ49oyTA1Kl0Xzl9GhqRkczh2DHW8cULSIcOpeNbVUUN+SZMoPumIJDTaM4csrn37EnHVCqlREfDuvBWUFvGhaSkJGRmZmLBggWIj4/H7du3kZycDJFIBNP0dIhyc+tcDDzPIzIyEoaGho0t9/UHk5T15cuR8NNP/JHCQibz8BBcSksZ8/Vtti7/E5BKpdKsrKze58+f39GjR4+q//gHqqHGvwA12VZDDTX+MUJDQ3tevXo1ShCEFVZWVp1Hjx4ta6npD2MMMpmsPlB6HV6+BD78kIiLuTkFtTIZqSrBwVRr6OcHUXAwbLy9kcMYnjx5guzsbNy9exfXr19ncrmcMzExEQICAlijIJbnySa8ciWpWRkZpEwtXlwXfBoaGsLV1RXR0dG4mJbGUtu3Fz46dIgTzZ9PdYwaGkQ+V6+m19faay0tLXH+/HmWaGwsONy+zfoOHMj8Bg/mAgICYGRkhPz8fDx8+JC/n5WFKxUVzCw3F36LF+Oko6MyLjGR6927N4yvXEECz3OaH3wAE3t75D1/zreNieFMcnLQ9swZdsHXl2VmZSlTU1NZaWkps7GxQZCrK6s8dQr6qan4S0tLiIuLY7du3UJAQAA4Cwva38hIOM6YARcXF1y4cAHXrl2DtbU102tIaBQKqhX/4AOyLUZHU+Opx4+pK/aYMURqLl+mgM/VFWWdOuHa06fo3nTUDp14oG1bVPv5IfbRI3TdsQNo3x7MzKx1YqHCmTMQ8zx0BwyAiYkJDAwMoKGh8VbzXGUyGdq0aYOTJ0+iTZs2MPHxoQB9yxY6/87OZElNSqJANy+vfma5p+cbBY/p6el48uSJECASMaSnU2KiCQoKCnDr1i307du3fr8FgRS8Pn0okTR9Oll17e1p3FVFBTSCg+FtZsaco6IY2rShwL6FEU+Ghoa4c+QI8/XwAHv5kvYhJITI2b59dD7j4uh6evfd+rVuZ0e13B99RLbcgIDX1oA2RefOnbnu3bvD+ocfkFtUxF0uLeWjoqJYaWkp+/TTTxEQEAAnJyd4enoykUjU7LzLZDIYGBjg3LlzcG3XDjpDhlD5Q0PF8E0gkxGxNTenxnr79wMnTkDRvj1eaGlBLpeD53nG8zzLycnhkpKSEB8fz8fExLDs7GyYHDiAtgsXUsKpBaSlpTFNTU3B2dmZ5pGvX08OialT6diqXAItQUMDNVIpVhUVIc/cHCNycjA0KQmZFhbKd959l7N7A/IEDw9aKxxHymKTpICtrS0XFBQEd3d36OrqcqamppylpSWno6PDRUVFCRoaGqxg+3YoYmPBz50LzdZGhQFUCrFuHblchg0D1q0Dv3QpfpFI+CgvL9Z97Fjm6OiIO3fu4LGVFbqvXw+Zjg74rVtR/vffyLh3T2CrVrFIQ0NlZGQkV15eLvgPHcoG9u7N4OVFpLjh+Z0zh1wJjx9TA7ShQ+vIb05ODo4fP44+ffoIDqrxWtXVRMrd3elaXruWmtT99NNrHRpWVlaIiYlhGhoa1DMiIYHWjJsbampqcPfuXZiYmIAxhvbt23OxsbHM1NQUfn5+sLGxYXFxcay4pIR3mz2bYdYsUoc//piSuJqapG5LpXTfPHSI7qHdulEyZutW6PXqxaoKClCVno7M/v3R1tCQ7qnjx9NxOXyYVPOzZ8mhFRND7hvV+jp4kKzcr0ha19TU4OjRo8qIiAguMzMTJiYmCn9/fy4wMBCOjo6Ii4tDeno6+MhIocrPj1VbWuLAgQPK6OhoPHz4kN28eRPV1dX1ya+muHcPyZmZcBo9mvWZNImx8+eptKCl8WH/MoyMjFhcXJymUqncGxMTU9GjR4+a179KDTX+d6G2kauhhhr/CMuXLx+poaGxe/jw4VqOjo4Qi8VvF6W3BJ4nItehA1kmnz+nGcdmZlSbOXkyWfRUGXZQt+NRo0bh0qVLXJTKGg3A19dX2b9/f1EzS2VJCQXKM2eSgjtxYosBmrGxMWbOnMl27dolCHp6gmj/foY1a4gIrF4N5OeTEtrAVmpkZIQvvvgCANjdLl0E5aZNDL161RFEa2trlJSUiIuKimBpaSnkikTs2qlTvL1IJPL47ju0mzsXoUFBDACORUZCMy6ON5PLRfr798OkbVuWX1CAWRYWACB6+PAhwsPD0XP9esFw/Xp2ZsYMvqS0lJVnZ7M+ffrgwoULvFgspp2fNo1G0Bw/DpPBgzF37lxu9+7d2LFjB/z9/fmePXtyIpGImoV9+y0FoHv2ECHs0IHIaHAwJUE++YT2PywMiI2FcPIknO7epS66tR1p8/PzkZ6eDqVSiZqaGlRUVPClGhocLC1JMReLiay/isy+af3pa9ChQwecPHoUqSkpcPvlF1KGVqygdRURQRbZc+eIkA4ZQg6H0aOJuJ04QWPMXgETExOUl5czxbBhELfS/CkiIgKMscb23m3byCJ64AARpz/+IHJ84gSpg6NHE4nYsoWSQg3J3PHjRLxOnAA2b0bkxIkY8+efYMbGZO/19qZr6dCh+tds3tx8w0pKSD2uqqJjMGMGNch7S3AcB6Off4YsPR3yrCwOACZOnNhy9+MW4O7ujujoaOF+VBQzlUpphNw/Rd++lFRQKlG1cyeurFkDk8pKlAwbhpKXL3lfX19OLBYjKioKJiYmzMjICObm5kJUZSUz/eknmLfytk+ePBHatm3LJW7eDG+xGFxkJCUpfv/9lQkKlZ0+NjYWnESCyd99Bz1dXeDSJVTv3y/qMGkSqZbTp7c4y70RPDwoWWJuTvb5JmCMwdjYGMYNmrIJggBdXV2kb9kCt5wc4eL77wsPw8OZjo4Ob2dnJ+rVqxcAcl/k5ubi9u3b/Mj+/Tkr1XW+YQOqP/sMYQoFhMJCbubMmdDU1FSVN2Ds2LEwre0LcGzwYCV34YLomVjMXNu3B8/zogUrVgB//smkbm50387IoGTI5s2UUFUoyIFRVET7FR7eyFXy9PFj6JaUwMbammHECLoP6etTwujCBerDkJND6zYnh0j7uXOvVH81NDRQUVFBv4SGEmGuqcHt27dx5MgR2Nra8r179+YqKytRXV1dN8N8x44dAAA9PT2qadHUJGfDxYtUWz98OH0vXLhA97awMLKGz51L5zgoCKLUVBiuWIGVaWkQR0bCXKGAaY8epIzv3k2kHKDmbTt2NHZ3dOlCvQFUjT9bSFgeP35ccePGDbGBgQE++eQTSKVSSKXSuhuttbU1PvvsM4jFYjwYNUq4du8ey/rtN9jY2LAhQ4ZwNjY2KCoqwq5du1BWVobS0lJBLpfzPj4+okBVHfqHH0IwNWVGn32G/EOHYDZ7NiX45s59dQnXv4D4+HheEIQTAKwB3Pnuu+8+/Prrr9W2cjX+q6Em22qoocZbY9myZWMkEsmOyZMna6nqRv/HUCqpE/TatZQlnzKFalqLikg5UgXgRkYtvjw1NVVpbm4uKi4uRkBAALy9veuJdlUV2SC7daP3LywkYrl4Mam+xcUU2Hh4ELGPiwP69YNWWhomCgLbnJvLsk+cgO3IkdQ8LCiIgp2FC6kLc4PGShzH4cCBA0LWkCFs2sSJpNbUdmo2NDTEuHHjUFRUhNOnT7O+ffvi7NmznGZVFSbq6gIiEeatX4+L77yDGz4+ONexI8Z5eUHXxwc4dQoWI0ZQEgI073vJZ58B168zrF+PsR06cE9mzYKJiQl+++03wd3dnQPI5mxmZoZjz54p3P74g3Nyd+dOpKYKT548YQBw/fp1Lv3gQYTcvg22YQNZmF1dyZJrb08ElDEKJtu0IcX7xg3a2YwMKHR14X/pEiVD5s0DwsOR5u8vXHv8mJmYmEAkEkEsFnOdu3ShRAlA6m9VFQWlrWHcOCL7+/b9s/WUn09k8vlzzA0Lw7H583n07s2hTRs6H9eukfX0r7/I7vn119Q0zcSEXAuffkrJnvJyvKrLeGFhIQRBALt5kxqE7dnT7DkWFhaQy+X1M9hTU0lV//nneoXKyoqSQMOHE+ny9KSAe9o0ItoLFpDd9bff6No4fZqs0gMGQENDA5tmz8bEiRPhIBbTWn4TSCREcDQ0yIqrasZ08OArlbMWYWQEn2PHcN7DAyNGjGhdFWsFBmVlvPGNGyKcOfN2n9sCqjQ0EOXjI6SXlbEPT5yAlkyGXoIAjBnDqWYKB5AKxwBAqVSyszo6wtU//0SwSMQkqnVaC7lcDoVCwa5cuYIhhw/jpa0tZL/8Qsk6lX24CV68eIHLly/j2rVrAMj1Mn369PonBAbCVanEHokEdnl5vLObG2fr6wvxli2vXG84cIASQnJ5o07nrYExhnfc3dk7168DW7Ywb39/lpWVhaKiIlFqaqpy7dq1olrnES/T1hassrNFZh4eOLl/Pz8oJ4dT9u6N+NhYwXDIEEyePJnp6emB53lIpVIolcr68WWCAL9ff+WerViB4Pfeq08stW1Liu3331Ni4tEjuqaXLyeClpNDNulFi2hte3nR/fiLL4AZM2D322/osHcvDnTowH/QsSPHVOMZR46sf/8vvyR30erVdN+wtye1WalsVvcfGRmprKmpEaWnp/NmZmacs7MzpAEBwMqVOJKdDdU9648//hBEIhHv5eXFmZubs7S0NACURHJwcGicFZFI6N/ff9P+REZSj4t162h7zp6lxMKHHwK//gpJSQmWeHvjert2fPHFi5zpvn10z+3cma79QYPIVdBSd/kPP6R9NzamxFIDZGdnIyUlRTxt2jRYWVm1mrnR1tYGBAEu3bpxLlOnQmjTBoyxukygubk5pkyZgi1btsDY2BhOTk6i5ORkRWBgYB1nGDRwIJ4vWoQ/1q3DyIULcX/WLL7dpElc5Q8/vPW1/zbgOA6MsS4SiaRfu3bt8ODBgyEA1GRbjf9q/LOuwGqoocb/t1ixYsUCLS2t7VOmTPn3iHZwMNnuZs8mO97GjRRQPHlCwUdrSldNDZGh0lK8m5LClTx9ig5Xr0Jr9mzI5XLAzg6Zs2YJ577/Xolhw2hu7pYt9FoDA7IN37tHxC85mf7/6BEpiXl5QFQUdE6fRveOHVEVHi7g/n3qgnzkCJHerCxSFysr6zYpMTER2dnZ7MPZs2Hy559kiWzQSdfR0RGdO3cGz/Pw8vJCQEAAJsyejbaJiYBIBP2XL2Ho54fAwEDMCA3ldG/coPrJ9u1J1VLh8GEia8eOAfb2EI0cCVtbW4SHhwvl5eWspKQEa9asUW7duhV//fWXkKqpKU51cuIehIVBLAisTZs2/KJFi/DuO+9Ai+dR9egRKufNw+4jR/DwzBk65hxHbgJ/fyLhCQmNa3udnCBwHP748ENSZWQy4MULiBQKTN61C1MvX8bk0aMxvm9fDGpIYE6dosD6xx8pKK6ubn5uP/2Ukhlvg8JCClKrqiiAX7EC8PAAHx2NexIJl+zkRLWhKsTFkaI8bBgR3cePSakCKKlSU0MOiqKiVj9SX18fEokEIlNTIq1NUFBQgKysLNTU1BDRzs+nRm3l5c0dFd7elOz5+29agz4+pI4BVFf53nv0f7mciLi7O56NG4f79+8DwFtZ7AGQiyQrq/53xijA/ydjfAwNIZw9C8bzcPwHynSftDSu+vp1hIaGIkc1Y/wfIC8vD2vWrMHt27eFHuPHQ+vGDXIB3LtH51k12qsBRCIRunXrxlzT03Ft5UocbPKco0ePKl1cXPgl7u64P26c8MzQUMA337RKtBMTE/Hzzz/j2rVrcHFxEb755pvGRLsWPXr0wITvvsMza2t2dOhQPLGyonM/fDglg1qCaoybmxuNv3odSkvJpn3wYF0/AXt7e3Tq1AmTJ08WzZs3D7Nnz8a8s2e5aadPi0b88AMenDqF5Lt3OejoYF/v3kqRm5swZ9KkupITjuOwePFimJiYCDt37oRCoQAyM6FTWcnOZWQIsbGx9Z8fEEBraulSsnoDRKx//ZXW8ciRlEA4cIDWeqdOpArL5YBUCpNffkHMwYN49OQJ92jKlGY9EbKvXkUOgON6eoLSy4uuGaWS7rv9+tG16+RExwFASUkJ3NzcwBgTTp06xa9ZswYX168X4pydYWRkhIKCAgQHB3OLFy9mCxcuFA0dOpQBQHl5OQAgIiJCeOX6tLAgS/jx43SOfH2pAdyiRVS64uIC9O4NtmIFbAoKOL2kJFQPGUJJriFDKAnXGtEG6NpcuZKcSg3uS/Hx8fzevXsRFBSEN5p5XVxM34VEtJv92czMDIsXL0ZISAgzo7Kfxk+SStHm/n3YOTgIV+bOxaX8fK7ozh3ELlvWuHP8v4xu3bpxY8eOtfroo49kfn5+4HneMzQ0VM1l1PivhlrZVkMNNd4IoaGhtmKx+AtNTc2J06ZN0zZo2gzobVFZSepwSAgFZCtXUpB05069dS45mX46O5Pte9kyUkN//pn+5uhIQcqSJXCOjWXdQ0Px6NEjPG/TBg+uXVMmjhsnuqtUMpGOjqhPWhqRq2fPyA6toUH1umlppGTu3Fm/bSpiSF/myPzzT6F0/nyh3YwZFHAMH061zT/8QNswahTViOro4NatW4KjoyOMjIwYPvmE6vGagDEGkUiEmpoa9OzZs/4PWlpgYWEIGDqUrIKVlUTA4uKoAy1Z1AkJCaSmhIVR3Wj79qiurkZ+fj7z8fFRVlRUoH///iKFQoHo6GheV1cX5b16ieTbtws6BQWCNDgY0j174PP11zBZtEj4ycaGaWpo4IPFixE5bhxvbG/PyQoLybL5+DFtw4QJzfaF5xtMYHFxAXbuRNW5c0gYNw6D/f1JCR8zpj7JAVBixdGRyE9YGAXWDx40rvmTyWg9vAnmzSO7u7MzqUrTp9P6qCWf2p06oUd5uXDmzBnB09OTArOiIlKS9uwhB4W7O1nJtbVJVWaMHAyjRlFgqqFRZ5FUdTgGgMjISEFbWxtwcmJ1434aQBWkW1pakmU2M5PWfXBw4ydWVxN5srWlRJCDQ33zJ6CZigVQl/Nt27ZBEAQMHDiQt7GxeW3QWVlZif3790NDQwPv3LuHtgMGoC5FoKdHyZsbN+rr9t+QeEdcvozMGTMwcfDglpsrvQp37sBs9WpmpKWFmxERQnh4OKZNm8ZM3rAjvApKpRKnTp1S2tjYsAkTJtQfixUrqPb11i0isefOkQraoMmcnp4eNM+fZwe+/x6S+/frXAg8z6OgoIB719qaYcIE9HN0ZOe9vASnESPQlKIUFxcjKSlJiImJYRzHYezYsXB2dn5lcwKZTIYpU6awffv24ZJSqbQbMECE588p0TN4MBHG2bMbW4Z1dalEwMODyiJe5UKYM4fWtqr5XkMUFUHX1ZWSLitXAtbWJduD8AAAIABJREFUYGIxHHv0QM3ly6iurka2trYoePp0MA8P+kxfXwBEuEeOHMk2btyIlJQUdMrLg+6lSxhSXs6OHDkCPz+/5utApdhnZ9M1P2AAkeDMTNqHX34h55JMRo6TWiQlJwt9+/ZlNrWuhIY4GBEBCxcX3L9xg9V4ePAjTpzgkJZGtm3G6P3HjkW1hgZyAgIEC5mMs/v11zp1Oj09HaeOHeNHLVokip86lXd1dWX6+vrNzpmfnx/8/Pxw5MgRdvDgQeHjjz9uxj8bQTV3PjWVElp791Ly8ulTSgrOmAFTe3uUAsKOjh1Zl+xsvuP9+xzX8D7ZGtzcKGn47bcoW74cO8PDhbKyMjZy5MhGs9tfiRs3Xjs+TDXlwd7eHn///bfo0KFD6Nq1KyyolAkAMLiqipU/eoTsrl35mKAgbrStLRjP/7OE3RtANXsbqJsEYVRVVeUG4NZ/5APVUONfgJpsq6GGGs0QGhqqD6C3RCLpIxaLfRUKhbNEItHw9vZmgYGB0rfuKN4QCgXV/f7wAxGjoqL6ESfXr1MQNm4cBZGff042102b6HGFgqzgKuvigwd1hEqRnIzoNWv4AQsWcFevXlUUZWSIKjU0oKOjA2trayW2bhVh5cp6NRUg8mhqSpbpL76gvzVRFO7cuYPs7Gx89NFH9cG7hwftQ1JS/fifqVOBAwfQu3dvtmvXLly+fBmdO3eGprk5WQRTUxvVdopEIsTExDRWfAEi/RxHSquZGR2TmhqyBn/yCQVq33xDwaQgkOJdS4JfvHgBqVQqDBw4sC7Syc/Px8uXL7mAgACWnJzM3x08GLYnTnCTCgvpdY8ewfbXX9nk8+dxITJSWT54MFfo5IT7/frBuawMunfu1B/7hw+pqVYD8DwPxhgUCgWys7ORmJiofPTokcjc3r5eiU9Pp5/ffUek3dub6l2XLCELfnw8WaP37SNli+OodvzlS1oXjT+Qztfly/QeN2/SemjbltTsVtS+bt26satXr7KLFy8iUEODlK+UlPrxR76+1DVaqSSCHR5O5Przz4msXboEHDuGjOxs7N27F7q6uvz06dO5vLw8Nm7cOFKsT54kktoAdrXHq6CggN4nJaVxLbUKw4fT+dy0iY5FmzZU375iBW3jF180G1MUFhYGQRAwc+ZMmJqavpJoJyQk4NSpU40e0yopwbOYGNTk56O0tBSjR4+Gs7MzKe5Dh75RwFxZWYmYmBikpKRg6o0bsNbXr3cHvAkUCjruc+dCMm0aJkyYwMLDw/mDBw8KM2fOfGPF6tGjR6qaWlFIw3nNKgQF0fn56y/qtdC3LzksGtTCl5aWYu7ataj+8cc6BnL9+nXoVVXB0sIC+PFHyHJycI8xrF27FmVlZejZsyfv7+/PnT59Gjdu3IBIJGKDBg1Cp06dXj+CqxZlZWV48OABFAqFCFIp3UsEgWroExLIfZGRQcRZ1Yk/MJDU4KVLKSHTgqsCYWG0lvv1a/z4unVkbT5xguzdtraN+ieo6pnXrVvHM8Y4fTs7ujdqahJ5rU1SGBsbw8PDQzh99CizPXQIbY4ehZubG27evKncsGEDN2/ePNaoYaYg0GeuW0f78tlnlOC5fJmcMV9+2WIfB6VSyVxdXZspsMXFxbDMyUG3ykqYdOuGy5cvc4/s7THi7l3oR0ZCr39/CDo6uBYcjNi1a9HZ3p7vNmaMSFOppHtQYiKcnZ0x79NPRbh6FfPHj+de15gvODgYq1atYunp6WjXWjM2pZLuB9XV9LO4mKzt77xD52nNGuDlS7BNm6DXtSsb99dfuJ2ezsUGB6PHKz+dwPM8yocPh+zYMTw/dgzl5eVYuHAhe2tny8SJb/Q0ExMT9OzZU5GSksLt3LmTmzVrFm7evAkDAwNck8mU8qFDRYMkEub6ww/Q+PhjSjw3HHH4HwJjDObm5nx6eroX1GRbjf9iqMm2GmqoAQAIDQ0VAxikqan5kUgk6mVpaVnVrl07PTMzM5iYmEBPT+/1HaTfBPPnk018xgyqQ5XLiYT27k3E19ubFCjGqC5VhZMn6/+vUmkaBBcRERGCgYEBPDw80LFjR7FK9XuZkYEBhYVEtPv0aTzixdiYiH1ODjW5KS4mYtvAHlpdXY2amhpWVdVkykinTvRzwwayQk6aBMycCauNGxEcHIzo6GhlTEyMaMyoUXDs2ZPeu4FSN3nyZOzcuROurq6Na9xu3qSfqoRAWBht8+bNZC1OSSH1MTS0XjWpDbTv3LkjyGQyHkAdS1J18o6JiYGLi4swaNAgEXfzJsRhYWS3XroUWLoUloxhQkmJCE+fYk7nziwzPBwbDx2CePVqnud5jLtyhbN6+JASDA0gCAIEQcDmzZuF0tJSODg4cEFBQfD09Kx/kirg/u47+llcTKqyUllPKK5cISI+fjyNZtu7t151qawklbd/fzo3EyaQ2rd6NQXrq1bhdeA4Du7u7kg9e5YPnDuXw44djecMKxREKORyUkH9/GgbPD1pnWpqQvH0KY4dOcK3a9dOUCqVbN26dQAAJycnel1LHdkBjBgxAue2b0cBAJOGypUgUOB97x7Zam1sqJY1N5d+Hz+e1uyFC7Qdy5aRK6CW7GhpaaGsrKxOgQKApKQkREdH8z179uRqamrg5uaGiIgIZGRk1D2nU6dOcHJygmluLv4UBBTV2lH/+OMPANSxWd/TE6Yffgjv48dxeccO2NnZwdraGqdPn8a9e/fQtm1bQaFQsNzc3Lr3Nf/mG1pTb4PKSlI0a10NIpEIQ4cO5TZs2IAjR45gWMNZxE0gCALkcjlkMhnOnz8vmJmZoV+/fsyslXnn0Namsgg3N1L27OyoXOGbbwDGwBjD+f79MVI1VxrAkydPMHLvXogPHAAmT4boiy8wp6yMbdy4UeB5nkVFRdU1ZtTT0+MXLFjwVpbWy5cv4++//wYABDZ0RjBGtuIhQ2h9xMSQArxkCZU4dOhARFqhoHUkCI1VyqNH6V4xYwbdXwWBlORvviErtqEhPX/KlBa3y8PDQ+B5nktPTxeqqqqY5pgx9cmk2Ng6lXrEiBEs3doaV69fx/U9e2Bubi64uLhwcrkc27ZtE/T09DB5/HiGzz+nDuK//kqJwh496PMjI+m6PnWK+mnMn9/ovr5lyxZBqVSyygalOkqlEmVlZdi5cyccKipg5ukJy169oFQqkZ2djZNKJd9vzhwubvhwXu7lhezsbK5Pnz7wmj9fJJVKqVSoXz9K6o0YQc6bP/9sXFLRFJWVQHExxNXV8JHLlclLlogsRo+G7Plz4P59WvdiMd2Ptm+n+9SYMXSv43lKkvToQTPTASLeRkbAqFHQDQpCycKF/NWLF7mOnp4waqEviVwuR2FhIZ49eybExcUxpVIJbV9fYeznnzPnr7/mxWLx20nJt24BLTgFWkPXrl3FXbt2RWhoKNatWwfGGCQSCby9vdmQIUNg3rkzg5kZNUm7ceP1jot/CVZWVroPHjzwAtC8WYYaavyXgP0nayvUUEON/zcQGhoqkUqlZ/X19X38/Pxk7u7uaGmE1/8YCgUFgTExpGI0nbda9zQFOI5DXFwcfH19IW2tfq0Wly5dQmxsLCZPnozHjx/j9u3bgoeHB+vQoQNOzJwpDExIYDINDSJzr9ovnqdtWr6cVNNa/Pzzz0Lfvn1Zhw4dmr8mKYkCKGNjIuxOTnVEOTY2FpcvX4Znx458/8uXOW7BgkYE79SpU8qMjAw2a9Ysrk6VmDGDFOExY+j39u3JNl9SQuRvzRpSHq9fp2A7KYkUYAsLRHzyiWBkZcWCZs0i1ejrr4Fr16DcsQNFW7eijWr01P799B4cRwG8nR3VUC9aREpu376Alxeqq6vx9OlTXLlyBcV5ecrZH38satp5OT8/H5s2bYKWlpYwd+5c9tbrpqyMyHbHjtRt19MT6NWLFF59fdrfuDgK0lNSgIICaib2hqqhCo8ePcKBDRsQsn07dA8daly7TU+gxItKGc/LoxrpSZPI9i2T4UWPHsh4+RIu0dHQ0tJCeno6MjMzlf379xex58/p+dHRjd5WEAT89sknGLxvH3Sjo6GjqnnPzaVAPCyMSilUtaiXLtE6rO22X4fSUlK3BYHOz7vvYtmaNRAEAZ999hm0tbVbVK8bYtasWTAyMoJIpVgPHw78+CMER0fU1NTg+++/b/R8cXU1HDIzcd/FBWKeh6KB0t2+fXvh3r17DKDEkZ2dHa3Dr7+mEUxvgowM2s+7d5vN1I6PjxciIyMZAMycOZNs3k3WVlJSEo7WOh80NDSEWbNmNR5l9ypUVRHJ37aNSOjChXihq4uNP/6I90UiROjr8zzPc8KzZxhtYACb589pLTZYd9XV1bhy5QpiY2PRt29f+LcwY/1VqKysxOrVqxEUFIR27dqh1SSBCqWllBAqK6NrRU+PiOrgwaScbthAz0tIILt8v3703J9+IqfGggWkmjeZKf0qrFq1Cp06dUKfPn1oXf74IyUsTEzqnQ+jRiHJ3x+3zMz4qqoq5Ofns+rqatZWLofP5cvwnDwZYo6j7WmqBg8eTOUny5cTCbexoWRC7X0mNDQUAPDll1+ivLwc27dvJ2W3tjzD69YteIwcCYexYxu9beaePUjfswdPvLx4p/79uZSUFGVxcbFo/vz5aLRGli2jsqG7d0np3b6dnAK6ukSYr18n51X37pSgMDGBcPUqoioq4Dd9OvTE4vrpCjIZEWhd3ZbvT8uW0XO6dyfH1jffUALj/n0IFRX4fvt2DB8+HK5NJiDwPI/ly5dDJpMpZTIZunXrJnJzc8Pdu3ehf+UKLI8fb+4Aeh2+/JLuV6qk8RsiNTUVx44dw+TJk2FpaVmfgOd52ufHjylpYmlJTqz/MCIjIxXXrl2LFQRh7tKlS9P+4x+ohhr/AGqyrYYaaiA0NHR827Ztt0yfPl1H9B+qtQJAKpKREX0pu7hQsN8EeXl52LFjh1BdXc0EQYCTk5Mwfvz4ViV1nuexdu1avlu3blyXLl2wbNkyeHl54fGVKxh09qxwdOJE5iCTKQcnJ4vwyy+v38YXLyjQ++wzCqLWrsWqVasgFot5b29vrnv37s0bUd24QXbMqVOB27cpCJ4xAwApEtu2bRM+PnyYyWbNaqQkVVVVYe/evXxhYSEWLlxI0dk335BVvn9/IlYBAaRku7mRJbFTJwqm9fRIKdbTIzWhrAzpLi4oMjDA/WnT+Pd//53LWLIE5Q8ewPDSJfzdvTumpqVB9PAh1SkvW0aKvqkpfcbcuWRvblA3XVNTg1OnTvFpaWncuHHjYFdTQ9v28CGgrY0XL15gx44dSsYYN3LkSGbZSsOoN4IgEFFTKoHERGoUBVDgNnfuK2sL3wT3r17F4YgIOD1/zg/bvJlrdg6zssjO2rAuXamkjvVVVcC8ebiRmQn5H38IfUNDWVM7PYqLiTDfvdvo4buJibi5ejW0Kiow7MgRevDZM0oozJlDCn1DrF9PqlcrVmw+LQ3c0aNAeTlO3r8vJLq6Ms/OnVFeXq5MT08XAYCDg4MglUoFjuO427dvw8bGRujXrx8zNzdv7E7p04fGn9UqUPn5+TA2NoZcLq8bI1VRUYHK2bPBnz2Lw0uXYtiwYdDQ0IC+vj4qKiqgpaVV/36CQKQvOrpZuUGLuHOHnjtzZot/fvz4MbZv3173u6enJ/z8/GBmZgZBELB+/XrBw8ODOTs7Q09Pr0VF8LUoLSUXw7Nn4FNT8depU/zQefO4HxcuhENpKcZu2QLRiBFk5f4XERkZiYSEBMhkMsyZMweSt5xvjn37iPiGh1OzRC8vIo3FxZQccnKiUgBLS1LDDx586wSVIAhYvnw5fH19MWDAgPo/fPQRXRM7d1KCxdWVCKqqj0d4OCp+/RWn33kHullZQp/du9kbqZzV1ZSo9PWlJJdUitOnT+P+/ftCQEAAzpw5wwwNDXkXFxfOysoKenp6KJs5E9fbtBFsp01jVlZWuHHjBh4/fqyUy+Wi9nfuwO3OHcQOH46OvXohNjYW77//fuMGfoJA17mzM93Xhg+n4+joSM3OJBLaryZz1MPCwgRzc3M2YcIEvNF3ZmUlkXCplBwwBQXUWXz6dLoPe3ri0KhRgu7w4axvk/4MSqUSK1euxIIFC5qP0+N5YNcuWsetzIhvBp6npOa1a9QL5C1x9uxZJCQkYM6cOXVj0QDQ99SkSVQ2NGQIOSDedl2/JZ48eYLff/8dYrG4ijG2u6amJmzp0qWZ/9EPVUONt4TaRq6GGmoAgJauri77jxJtQSAVddIksnOGhFAwWBsA8jyPI0eOCHfu3GH+/v58YGCgqKSkBL/99htLTU2FRwtqzKNHjxAeHg5jY2N4eXkBALS1tflnz56xwG7dmFZ0NHzkcqWbkdGbEW2gXmEbPJiswc+e4WMDA9zy9uYSEhL469evs5CQkMYKWqdORHzDw+uahMHHBwoPD9y8eROCILBH27fDzciIgqxadVtDQwOjR4/m1qxZg7KyMgqkli+vf98XL6gus00bUrfnzKHjNns2qb4hIaTUT50KADg6fbrg4eHBMq9e5cIGD4Y4NVVo06YN/EpL2cDvvkPqiRPwCg4GTp8GP2gQ2I4dYLt2EekRBKqFboA7d+7g3r17CAkJqScyYWHIzMnB2XPnlIWFhSJHR0eMHDmSvTVZOHeOFOqYGFJA+vQhtdfAgIjv/Pl0LiIiaB9HjGhs+34bKJVo99FHGN2pE3bb2XHBCkXzhElGBtl1G0IkIqv68ePA4sXIs7TE8+7deQwYIMLMmY2DWz09Uj4b2nkFAUYrVqBNWRniunXDo5Ur+fHXr3NntLTQ8bvv4K4aX9QQf/1F6l4Dss3zPORyOWpqarD98GFYWlpCnJHBtykv5ybv2oXYrCxk2duLho4YAUdHR0ilUqahocEAUk81NTWbZypqaohMNGhipZqXrPoJ0Jgg7Y0bEb1nD/QFQWkqlYpQG2BrNQ3UGaNyAFVd8avw++90P1i5stWnWFtbw9bWVsjOzmaMMeTm5vLbtm2rY4y6urpCnz59/mdZGF1dKsfYswdcQABG+/tzx7Zvh+zJE4zv2pUcDg1G+/1TVFZWYu3atUJNTQ1TNRV8//33W6/7fR1GjSL3S3Iy9TyoqCBl1saG+h0cOULXdb9+RMbfEvn5+Th37hwvlUpZs2P8zTfkjikvJ1fPqVNEWFeupASlQgGtr75CoJ8ftv72G3MpKoJ1a2R77VpqUrltGxHRTZuIzPM88MEH6NevH1JTU4UTJ05wXbp0Qf/+/RtlDAzefRdPZDIhMTFROH/+PGdra6u0tbVFx44dcR7AcBcXdPTyQnRlJc8Y4xoR7cePSd39+GNKBOfmkrPn/PnmzpcmsLe3Z5mZmYiNjeV79uz56ixGWhqVB127Rtfd+PHU1LE2IatS0B/s3MkmffEF9SJp0HcgJycHEolEkMlkzdc6x1EJ1pIlZA13d3/lpgCgKR/e3v+IaANA3759kZiYKFRUVLBGZHvIEEpY6OjQvfDDD998DOE/wM2bN3Hs2DEAwMyZMzXi4+MnJSUlTQgLC4upqqo6AOD20qVL4/9jG6CGGm8I0bfffvu/vQ1qqKHG/zJiYmKySktLQ3ie19bX128eRP8b+P13Uly8vOrnNRcX11ka//jjD2Vubi774IMPmLu7OycSiaCjowMDAwMcP34cgiDA1ta20Vvu2rVL6e7ujjFjxnAqsvcsKYn1W7qUVU+dCpulS5l2eDgnvnsXmqNGvd32OjmRtfniRUi++QaWK1bA18ODFZWV8SdOnOCabY+xMZHBb78FVq2CcvVq7IuP5x8rFBgyZAhzcXMjknzwIDWEqoVUKoVcLuejo6N5e3t7Tuedd3A7IkI4VFbGe8XEcKKffybbpqMjKb+dO5NlkOOA0aPJehkQAEgkSE9P53me58rKyngfHx82acgQ1klLi5kFBEA4cQKRL1/iSUiIUPjoEfI3bGAF5eV4NGGCsnzuXE4rPR3szh1wVlZEggEkJycLFRUVXFVVFa5duyYcO3aMpYhESuOvvuKkrq5My8aG9e3bl3ttw7yKCiKu+/eTFTonh8h0WhoFn506UTLB0JBcAkeOUDdf1T5HRpKSZ2JCj7+Nyl1dDeHhQxS6uyPawkIoLCpinTp1ar7GU1JQKpfjSG6uajRQ/d/atwe6dcOLVavgY2rKac+fT9tRVlafAFDV2E6bVq/mPHkCnagoOOzbh/zoaLCCAqadnIzrPj4o09ODu7t7XROtwsJCXLt2DXazZ1M9bm0ygOd5JCYmYt++fXjw4AEqKirw8uVLFHIcy7GyQqaDAwIuX0ZfQYDdO+9Aw9YW4gaJj1abJpWXU3KhYTf81iCRoEomg9X8+czowgX2yuZH69dTgN2Ca6URtm4lt0bnzq98WlJSEkpKStiUKVPQs2dPZmVlBYVCgaqqKuHDDz/kXldi8kbgOLov9egB9tNPcMnNRdfNm4lIHj1KCQQnJ3KUZGZSQ7H164kkFRWRTbtnTyrFSEsjwjNhAq3r27dR+tFH2Pz8Od/j8GHOTC6HyNsb07ZtQ9tx48BOnSJiNX06uR0yMihh5+BAx3DtWiItc+fSdZmTQ0kSGxuqn16zhu6lf/5JJDg/n0jdqlXkzsnJIZfI/PlkXw4OpuSRasKDKkGiclR88QX4Bw+w4/BheCQkCL2HDuV0c3MpKebsTHXX2trUoM3Tk/pqJCTQffzyZSL8I0YA7dtDRyaDRCLhjx49ylRJhWbnSy6ne0PXrvQ7Y5To3LoVKCgA8/DAxbg4KJVKNnXq1GZ9Q8TvvQe7tWuZX/fuLDAwEB07duTatWvH2dra4urVq4LQrZvwf9h776iqru0LeO5zuZfeUaqgVFFBUUABC4ho7L0mxtiiMZaYaExe8gtBExNbjMaoJM/YW2wxKlERpAjYKAKK0ou0S+/t3nO+PxaXjjF5ed83xvuYYzBMbjn3nH323mfNteZaq9+lSyw7MJAZTJ9OBQDj44nQz51LhNPVlRwuvr5ULXz6dNpbX9FxIy8vD9nZ2cjKymLW1tZ4ZfqCjw/tfVevUvR3375OBcRkGhoIDg/H6JEjody7N6UNJSZCbmmJQ4cOwdLSUhg0aFDXG5+2Np3rzZt0D//Maf7yZWvXhb8BnucRGhrKRo8e3a5eBAByjDo7k6M4J4fmsaIy+z8MPT093GtO+yktLRVmzZql5O7uriSXyy1UVFQmVFRULL579+4OT0/PHglvD/4/RU9kuwc96AF8fX3L/Pz8vKKioj67d+/eZIlEwhkaGgru7u4a1tbW//kPVFWRzLptPumKFfTaggUAY8jPz2fTpk3r1O7HwcEBqqqquHjxItTU1ODcHPG7ceMG5HI55+3tzdpW/U2rqOCNra2558+eyV8+fix6YGsLmVyOLwTh7xV4mzSJ/oqLwfr1w9TISJGDgwPOnTuHvLw8ft68eVzL7zs6ElFctQqPdXWFyefPc2rx8VBRRPr27yfjUpHf1oxp06ZxZ8+e5Y8cOQLHd98VcioqIJfLuWsiET/rm284JCWRQVheThWqp04lYpeTQ0ZwRQVw9Sqs6+q4dI7Dxx9/TAefO5ci6UFB0PbywpQFC3Dr8WNBJymJs+d5FFpZIdrMjA1dv1445eYmaBYWcq5//MFbBQVx8g8/RGpqqlBRUaEogsUWL16MCxcuiCSNjShJTGQlSko4c+aMfN26dZ2tu8uX6b5PmUJV1T/5hMhdYiKde0gIGe8qKiRF9fMj8nrlCkWJ/f0pQuLuToQ7Pp5IXFgY5Va/jkwZABYuRHlBAQ6MHw8lJSXGGINUKu0kOeYzMhCYmio8FwR26NAhuZubm2jIkCG4e/cuL5VK2dChQ9mNqVPxiY4OEQ5ra5Li//xza2E0MzNyHgD0mU8+AR4+BDt3DuNPnRLOTp/Ors6aBQDIzMxEQEAAHBwcEBQUxOfm5nIAMGrKFHA5OSisqEBsbCzi4+OFuro6BlD1ZX19fZSUlMDIyEjw8PBgvXr1QumKFdDMz6d804AAcr54eb3aKSGVvl6f5mZYWVlhx9y5bNOHH0L54UO6/q5k215eXfdNb4tjx2hs/uQeCoKArKwsBgAmJibYvn075M3t4AwMDFBbW9tZVvt30NREpPn33yniuGULKRRkMpqzb71FpPXnn2mtjR5NBQsHDSKyFhBAcyElhUgMY0BFBUqlUvxx6ZJ8QHGxaPDgwRjQ1IRSiQTRpaV4amEhDNfTY3B2bo1wfvIJEWkDA0r16NOHSLaianRcHK0JFRWSJTNGsv3gYOpSYGhIeei3b9Pr6em019TXE7E2MaHzVlIiR8GSJXQNRUXkfFFVBTQ0EBMfz6soKXEu+vq0S0VF0W/4+BAhdXamOS8IFMn08SHHyY8/dhpaNzc37sGDB8Lhw4cZAMydOxcDBgxo/YC3d2fSxxit/7VrgepqSHhe4MVi1qm6u6IyetvoahssWbKEHT16lNls2QLtOXMwuKiInANVVZQ7rq4OfvlycO+8Q/MZoHF78YLGMy2NHH5dwNLSElFRUbC2tsbx48excuXKdooQADT2R4/SnpaeTqqu0FBKxfm//yMnCihd4vbt27y6ujrUV6/mwHE0177/HkJ0NDQaGqCkpPTqh9eYMaQW+ve/u03LaEFcHCk2/iaysrLA83z3tVROn6Zxy8mh1CRX1/9KK7Dy8nIA1FbRy8uLAVRg0cvLS9zY2CjesWOHDIAKgNp//Md70IO/gJ6c7R70oAft4OfnJwLQD4CHRCL52sbGRm/69Omqf1km3BbPnpGB2LbqNs9T+69x4wBnZ3z11Vd4//33odshN06B8PBwxMTE8OvWreM4jsM333yDxYsXw6w5CouGBsDcHLKAAKSqqyM9JQXj5s5F6v79uFJUhA0bNnQyzBsaGhAXFwdXV9fXI+JxcUSolyxB9YQJ+KW0VNDW1uaXLFnSYkkHowfUAAAgAElEQVTk5+ejIDwcpuvX4+WXXwpDz51juHq11SC8do2cDJGR7Q4tl8uxc+dOmD97hjcWL0Zpv354uXat4PXTTwx6emTwjh9PEaUFCzrn+s6ejQKJBDccHeXLy8tFMDKivO9hw4gEmJqSkezkRIZcYiKRrbffpkhabCxCExMRc/MmhoeEoF5FBUnDhwslamotzwkzMzMUFhbCwcEBBc+e8f0AoaRvX5EkPV2WX1YmkotEWHHgAOOCgqC8axcZq5WVlKfu7k4GWMcKuMXFFKGbNKm1cjJAxqihIRncCshk1CIoN5cK2S1b1n0eKs9TlFxdHf8ODORL6+u5KVOmtDf0Wz7KI3bqVKSbmmLy998jKChIHhMTIxozZgyioqJga2srT05OFjU2NmLdunXQe/6cCI1USuSM5ylvddcuOiddXXImDR9OBZC++w4yiQQ7Tp6ETCYDAIjFYjQ1NbX8CwBqSkp4+/x5FBw/jqvNao62UFFRwaJFi6CnpwfGWOc+xoJAlcujoylS9957rRHDjggLI3J0/nzX73eBXbt28fPnz+fMZ8+mdduhoFoLfvmFVCxdKWRKSigKGhn5p2S7uroae/bsaffa+vXrIZVKcfPmTaipqQkmJiZs4sSJr91mq+UcAgIoN9jXlyK/27ZRKsi335JaRFeXXjt3jhxoil7rfwHbt2+HlZUVP2vWLK7t/llbW4tdu3Zh2LBh8PT0hIaGBnJycmBqavrn16FIUzAxofGfPJlSHY4fJ+KrrExR4VOniNj9RQdjRUUFfvjhh5Zieq9EdDRJ1e3tacwOHUJXrbOqqqpQVlaGixcvCp6enmxo26Jcv/5Kzo02lcCrq6vx22+/8YX5+cLI69dFNRIJBh89Cn3FXq9AURE57V6hWjpw4IDQV0eHpSYkYP3+/SgbPhxhGzagpKREaGho4BtTU0XKDQ3QHzaMn798eevgf/EF3ff4+E7H5HkeO3bsENzd3TFq1Ch29uxZoaamBitWrGjvELhwgaT+Dx7QfTp9mhwT8fHkSGl+1u3evRtisRhLly5tFyHPzsqCYVYWlGbPxqEFC7Bm375Xz4+8PCL306e/Wk6+di3tTa/Z+qsjDh06JJdIJGx52/HqiKwsUnZMn04OuL/5W6/CiRMn+IyMDG7YsGHo378/2gYGKisr8cMPPzTK5fIVgiCc8vX17SE7Pfj/DD0y8h70oAft4OnpKXh6epZ6eno+CQ4OPlxRUTEkNTXVfNCgQeK/ldNdXExEavHi9rI8xsi7npwMuLggKipKcHBwYN1FqgwMDBAXF4ewsDAhOzsbUqmUTZ48mYyPhgYyMo2NwY0fD4NevZCfl4cLxsZIaiYyhoaGLdEwhUc+MzMTV65cgZ6e3p9XAgaI4DEGPHwIib09LCws2POwMAwdP54BQHR0NC5cuIBiQeD5xYt5t927OTZuHEVp5s+n7xoZ0TX7+LQjihzHYdiwYXA8fhwajY3QnD4dRmvXsjwvL+goyEt2NkVDRo7sbETPnw9+/HhknDzJDfzlFzCplCJwn3xCkbmRI4n0NisJkJpKPW8dHUn6rqGBvn37wtjaGkVOTkjPz8eE69cZzxga7ez4+vp6VllZCU11dQzo3x/9v/ySOQQEcIkTJ2LM1q3ccG1t5lRbyxqzspAqlQpGEyeS3HjnToq69OvXOQKVmEhS2a+/ptzJtvNLJKLoU9uK9RxHzgITEyLS/v5EmLqKbO3aRdf12Wd4kZnJ19fXY+rUqZ2Yx5EjR2Q3b97kdGpqBJeVK5mepSV0dXW5hIQEITMzk02bNg2enp6ch4cHbGxsoK+vD87CgmTHUinJ33/8EZgxg6JKQ4aQ8+Ctt2iMLS2BqVPB6eigqKhILpVKOQDo06cPL5PJ2KZNmzBs2DA4OTlBUlcnS6qq4h5XVkJLS6ul37EC6urqqK+vF3R0dJiBgUHna1ZEOkeMIGN+zx4iI4MGdZbESqUUmf4LUtInT57wWlpanKmvL81ff38izB1J//r15FTpqIoRBIoafvYZVWP+E0gkEowcORLh4eEAqOq5sbExDAwMMGDAAAQGBrK8vDw8ePBAGDRoUNeV8GUykjlra9MavHCBigKeOUPR2MpKchwoK5MKo64O2LSJ1sXQofReXR0RBh0dul5Hx9car4iICGHOnDmcZnOrNgXEYjGsrKwQEBCAqKgoPH/+HPfu3UNcXByvpKTUfaHBS5dIar5pE63nCRMo0n3pEkWrm2s3YNgwIlNvv017719ICzp//rxcS0sLbm5ur2bpVVV07G3baI7n5dFYFhbSHGyzPykK6qWlpQm5ubmCk5MTq6mpQV5eHjIFAQ1eXtCysUFtbS1Onjwp3Llzh+nr6/Pe48aJes2bh74ZGdCJjqaIcFun76NHJM2eOrXLU6yvq8OjCxfYgr17kaepicdublAvKxOq+vXjTe3smLGxMfP87Tc4mZiwGw0NbOTIka1k1tOT9qaUFHL6NV9PfX09Tp8+zXMcx2bNmsVEIhEsLS1ZSEgI0tPTBbFYzGQyGWovXULj8OFQ7dePUmfEYko34DhydBkZAVpaSEtLQ3R0dEvFfQXu3LmD369dw/2XL5HYpw8q9PTguG4dmoyMoNyFwxAARfkLCih6P2pUlz3LAZDqZvHiv9Wa6+DBg/KamhrR8uXLX12nQ0eHlD4zZpBqxMzs1Z1A/gZsbW2Znp4eXrx4IURGRrL09HSZk5MTB9Ccs7a2FqWnp48XBMEnKCjokqen559IbnrQg/8Oesh2D3rQg27h6enZFBwc/GtDQ4NdbGysjampqVi7G8letyguphxtb+/O75mbA3v2IFRVFbklJczb27tbz71EIoGLiwvr1asXy87O5nv37i04OjrSh42NKY9y0SKAMZQePAijlSvxwNMTEokEDQ0NsLKywsWLF4WwsDD24MEDIT4+XoiJiWEikQjPnz+HkpKSvE+fPlxNTQ1EItGrIwjjxgE2NuB27oT5xYtMed06lJeW4tz585g5cyYmTZrE+tnacszHh/Lz3nqLok9TpxIx8fCgNlvjx7cj3GKxGKI33wTGjoWIMVyzsRGeZ2TA6ZdfGNauJUN74MDWPuMdoLx0KSRJSYj74ANYKXo3GxqSTNbJib6nMIJzciii9+23dD3NpFZHRwf9LC0xaMIEZPfqBVOZDKMfPWL1OTkoMDXFxq+/RnxeHjLMzWH08iUkWVlCpZ4e1CwtWb6hofBg3jz21NCQH75qFQdz83ZGt6Jlj4TjKMK/eTNFfjsYj7W1tajy90d1WRnUhg/vrDrQ06OIrZkZOR8aG4nkKsYyNJTaOS1ejJjUVCEqKoqTy+VsdId2Wk+fPsX9+/e5mTNnwu3ECaa5bBmgrY3S0lI8fvyYCYKAyZMnQyKRgDEGLS2t1nmhyE00M6PoXlkZKQQqK4nQPX1K0cY2jpH09HSB53luzpw58PT0ZO7u7uA4DsrKylBXV0ffjAxu4K1b4N96i3/27FnLRS9ZsgR6enooKyvj09LSuNjYWDg4OHSObCvAcaRkmD2biKKvL42RqmprjnlMDK1NF5euj9EFsrOzucrKSvmAgQNpEN59lxwfHaNojo50Tzue308/UcuhDz547Ygrx3EIDQ0FANja2qJXm+KCI0aMwMCBA5GYmMgiIiJQUlIi2JmYMFZXR8qI1FSaZ4cOkeOpVy+Kgg4ZQvN/xAi6R3PnkrOnqIiKHC5fTk6K8HAaw8mTyfkTGEhredUqksK/Ilonk8lw79495uLi0mUNDG1tbZiamsLQ0FCQyWT8pEmTOC0tLdy+fZuZmpq2jyq7ulLUetkyug5zc5p3hYVE/r/9lop8tSUzvXoRIT54kHKoX3O8MzIyhJycHM7a2rpbxycAaolVUEDjwXE0z/v2pbZd9++T46LDb+rq6rLQ0FAWFhaGyMhIJCQkoLSwkNc4fpwdz83F/fv30dDQwJSUlITVq1dzenp60NDSgrK3N62nX3+l54iCRD5/Tuutq2JmAQFQmj4d0cOHy/VWruTcPvkEw6ZPh5GFBbM7cYKzWLGCmdvaMo3cXCZbswZR0dF49uwZ/+zZM5aYmIjEp0+RWVQEy1WrwGpqwEaNQmNjI3bu3Imqqiq2fPlyplh/EokEw4cPZy9evEB8fDwfFxMD7w0bWO716+DLyyF+/32IDh9udRTMnk11IAYMQF1dHWJiYmBhYQGFA43neZw6dQqjRo3C2LFjYTJkCBydnJCdkMBH5eSwxidPYKqs3FJbox0GDiQnqrp6lyoDNDWRWmPu3O7JeDf47bffhPT0dG7VqlWvzlFXwNGRUqd++onmyF9sjfdnEIvFMDY2hpWVFXvw4AFqamq4tnu8pqYmnJ2dJSUlJUZlZWWTg4ODT3t6ejb9oyfRgx68Bnpk5D3oQQ9eC1u3bl2gpKR0wNTUVMXHx0fdxMTkz7+UnU1GbERE9y1A/Pxw59Ejod++fcyqm/y4bvHyJRHt+HiK0CmIUHU1Xp4/jxRLS7x48UJeXFwsUlZW5k1MTISFCxeKUlJSUFFRASMjIygrK8Pf3x/jxo2Ta2hoiK5cuQI1NTWoqKhAVVVVWL58OetOYi4IAs6dPi3H3bvc5IsXWfDBg/IZb77ZPvxfWUkGso0NGRsffkgRvkGDSOrZsc/phg1EYHR0ULxvn3Bk3jy2euNGaKupUb72lCmdT6S4GKitRemXX0Ly66/IffwYdhxHx87Lo+jyiRN0PyoqKMqXnEw5qv37tz9meTn9mZqSsRYZidSJEwWTtDRW8vnn6FNXh6LcXFRFRCDbxATuUVHY8fHH0NDXR2VlJQBAT09Pvm7dOlFERATkcjlGjx6N2tpa7N+/XxCVlbF5DQ2wKC4mwqKkhLq6OkRGRvK1tbXCmDFjRPv374f7o0dCvoYGG7F1a0urHplMhszMTPTt27c1Z7C0lCJG2dkUZcvJIafL/fuAiQlOnjyJ9PR0rF27FvodqmTv2bNHqK6uZm8uWABrFxegtBT5RUXIyMiAq6srRCLR66UXZGdTNDskhCLKv/5KhK6D7Pj27duCVCplb7VtL9YWL18CT58i3thYuHHjBvP09BRcXV3bdQlQtLoRi8XYtGnTn/agB0DKjwsXSEmgpUXFnx4+pFz5FSv+/PvNiImJQUREBL9u3bpWD5EgkPx/+3aKGAPk7Dh0iIz6tudQWEjz7y/0eQZae7kvWrSICly1RXExcOECCoyNke/nB9vkZMSeOIGR4eG097i7t+4L2dmUCpKeTlHR7dvJSQdQznJUFJEUNzfas774gqKAHbFiBa2f06fJqfPwYSfHwp07dxAfHy9s3Lix2/2jI/Ly8nD06FGsWbMGOjk5kI8ejYRbt+BUV0fzqaM6obyc9r0ffqA6CB0hCORU+fhjmpOvUSVeEAQEBwfzDx48YLNnz2Z2dnZdf3DdOqql0FER1NREa3DNGmD2bDQsXozH0dGorq4WYmNjmbOzMzw8PHDs2DFUVFQIH7//PmN9+6IuOxsyuRzq6urYvXs3+vbtK8ycOZO1zG+5nEhbZCTtGyIROUp0ddtf+7Fj5ATw9gZycnCkrEyurq7O5s+fz7Xch23bSHVx8SI5TsaPR25uLjIzM9HY2IimpibhxYsXrKamBuqVlahlDL05Tt5gaipSVlbm3377ba5blVdWFiAI4HfsQOn9+wh2deUn//Ybp56R0dn5BKCkpAQHDhzA5s2bW5xnL168wLlz5/Dee+91ygMvKChA9rx5MMrPF2K2bmXjfXyg1lHl0tBA8/7UKZL4t0VxMeX1/41A2+XLl5GQkAAAsLCw4BctWvTnBQoDAuh+XL9Oc/AvEvzXxeHDh3krKyvOx8en03s8z+PixYv1aWlpJz/99NN3/ysn0IMevAJ/reliD3rQg//f4osvvjjX1NRkmp2d/fGxY8dq0tPT//xLUVFEKl8hN/vd0pJ3jItjFh2Ly7wOvLyosJaTU6tBvWYNcOECzJYvh5eXF1avXi36/PPPsXnzZu7NN98UcRwHOzs7uLq6wtzcHOrq6gAAxpjoypUrsLCwQG1tLUQikZCbm8tOnTrFd+WUrKiogCAImDF7tmjwxo3sjwkTYNG/vwjLl5OxqYCWFlXSVlcnY3/fPjrXxESK/DQ0tD/wgAFEzB0coL9pE1u/bx+CN27k5fb2FBHvCp6ekL/7Lk706YPKGTNgt3gxSbArK1v7cScmUuTOzIzuS10dyZ4V/WUVbahmz6aIs1xOEbGQEPR1d2cNKirQ3rULqKmBwddfQ3bjBqxOnYJw+zZWvP8+KisrwRiDrq4ujIyMRAAQFRXF3717F5WVlfjxxx95i9paNiYiAsqCQLnXzYbXnTt35LGxsSwmJkZUV1cHuVwOoaEB6jo6giLCFxkZKd+7dy9Onz6Nb775Bnv37qX8Zz09Mp7ffBNyHx9UPHuGkl9/Ra4gQCqVQjFPu6oFMGrUKAYALxMTga1bUVlbi2PHjiEwMBA5OTmvR7QFga5DRYX+OzeXHEDDhxMxyMtrKUYkkUiYIj+7S9y7B+TlwdHRkX366adwc3Pr1I5PUaOgqakJFy5cEBRtpF4JZWWKQH74Ic2LTZvoHj94QIT7NWFra4vy8nJOUaQMAOWrp6RQHrQCvXsToW2LpUspn/QvEm25XI5zzaRdSyIhNYZUSkR66FAiN6GhMNLWhr6/Pw7961+o1dSkKt4jR9Jay8oiR8Ybb7QWQTt9upVoA6Q8uXChNcd9xAiSwHZcnwCtm7AwWs8ZGXR/V62iSHgznj59Kvfw8Hhtog0ACQkJwoIrV1A1bx6/PyhI+G3CBPx+8yZeWlt3Jtru7iTj//HHrok2QPvL0KF03fv2vda9ZozB29ubmzRpEi5evIh9+/bJz5w5g4CAAFRXV9OH4uLo2rtKZRCLSVb+ySeQP3qE85s24dGNG0JGRgYaGhrAGIOqqirc3d3R0NDAZMrKYCUlUFNXh5aWFkQiEZYtW4aamhph165d2LFjh3D48GE+LiGBlBRvvEGpMDxPygXFegoLo3sRFkbyaBcXYNYszJ49W5SWlsYlx8TQ2gwKojH55htyXhYVAaAiWx4eHvDy8sL48ePZlClTIBKJ+HXbt2PDjBlY9OOPosaMDEyaNKl7og1QxNjeHlyfPjA4dw4jVq7kLk+YgNBHj1oXzRtv0B4MdK7mDbREjZOSkuQdnz1GRkYYEBCAikuXmFZgoCC3tERjx2JnysqU3uLr2zo+CkRGkiLgb2DGjBl4++23sXTpUhQXF+P333/vdH6doEghy84mJ+h/CYwxpKWlwd/fn1e0A1OA4zh4eXmpNDU1LfPz8+spDN2D/9fRIyPvQQ968Nrw9PSUjxkz5lFwcPDDtLS0OW5ubuJujcmiItQ9eoTcFStQUloKHR2dduSlvr4e586dE56lp3MuHh7QLCkhCdzr4OlTMoLXrqW8xbbnoCD4r1lFXSKR4MWLF/yTJ0+YioqKsHbtWubp6QkXFxemr6+PyMhIFhoaivDwcISEhCAyMhJPnjzB3bt3ERYWhoiICDxLSkKJoSGc7O1hcPEiyRrLyymCzHEk6XRyoshMRESr/HjOHDIQx41rPSFnZ4pGPH8ONmoUioyM8LCsjGnV1Ai93n+//WD7+wNFRUiIjRWExERWaWkpH/7llxz69KExaB6XwsJCBIaFQb9PH6ivWUMRazs7ijiUlVEU6OxZOg87OzKM9u6lczYyAjd+PG57eeGWoSHc5XKw8nLo29tDu08fKPXtC/UZM6A2YgTmrl2Le/fuob6+HrW1tcjOzmZyuRyPHz/G4NJSYWhYGPJdXVnamDFCYGAgb2VlxampqSEiIkKwtbXlSkpK+KioKCaRSATLFy+Yy9SpTLdZenjp0iXWv39/pqmpicrKSjQ0NMDc3Bw8zyO/oAB1ysoQ7duHnORkZEdGIiohAbFSKWQyGSwsLGBra4szZ87IEhISBHt7e+7mzZuIiooCz/OYPmAAVCMiEGtsjOTkZADAmDFjcOfOHXlERIRgZmbGKZwy7RAVRXLl4mKau9u3U/7506dEap2cKMK7bBmwaRNU16xBqUjE240bx7qU9e7fT4So7XzogOPHj6O8vBxjxoxBYmIiq6yshK21Nd3rkBA6Fz09yjf18aHo36pV9GdvT5HAqVOJMMbHE/G4epUcFosXUyRKT6/LKJxEIkFUVJRgZ2fXKjHmOCLSEgk5v6ZNIzmxmxs5IVRVyQkRHU0R4Ve0U2oLQRDwPDgYwXfvYvCRIzDLy8NAsZjW0NChNLZLlxJ5nzMH6NcPYl1dhEdFYcmSJbTX5OUBT55AvnAh7kul+NXdnY80NBR09fTadz0oLydHx+eft143x1HE2Nq6+/xyc/PWYmpLllA6wdChqLt0CXfLyzlvb+/Xq5ZeXg7BwgKXtLVZibo6UiwtYe3mxrzXr0dNTQ3CwsIEqVTKNzU1cb169aJri46myOz333dfJBCgeeHuTpX+fX1pv3xF7mx+fj6KiooglUohFosxdOhQrqGhQZ6Tk8PCw8Ohp6fHetXWAh4eyBWJ8OTJE0gkEqipqaG+vh5PnjxBfHw8shjDqfJyDI2LE+Y9fMhcdu9myTk58qSkJM7Ozg6nT5+GkpISvLy8aK2MGdMSJVdXV4eTkxNzcnKCvb09CwsLYykpKRjj6Un7miCQ6mDSJFKSNDXRnFY4FlRVSdny229QKS2F89atUPnlF0hsbcHdv09EXVeX8vklEnIO+fmRg6x5nVdWVuLRo0fM09MTSqamUPL2xvCZM6GhrEzf6QoJCeQIkkhoXwCgvXQp8t5/HxFRUZyrqyvEYjEpIUaOBHr1gkQiQV5envz27dusf//+DADu37+PyspKJCcncwMHDkTHvUcikaB3797I0dVlwYwhLjWVd96yhcHDozVNxMKCzuWPP9q397t6lfaBP2m51/VUImeqtrY2Bg0axG7dusWUlZVhamr6ao8SY3QeWVm0L7xOfZS/CEtLS1ZaWsqnpqZyBQUFcHd3R1unyK1bt+qKi4tvCYJwxvNPeqj3oAf/NHrIdg960IO/jNDQ0EK5XP6Zu7t7917+L75A0h9/4Fx1NeLj4/Ho0SPBw8Oj5aG8Y8cO1NfXs6VLl8LIwICIwtixr5db+NZblDOoKPalwJ49FLHrTvrYDfLz81lhYSF69eoFQ0NDpogsGBoawtnZGSoqKnj58iU0NDSgpaWFoqIieHl5wdvbGzY2NkhPTxdmzpzJ+js4UFGi3r3JqH34kKqxAkQyhgwhAnLwIJ3j8uVkCInFrQbzmDFU8OjYMRTExwtBUikbVFQkyL7+un3hJEEgkpGQgCsLFgiWOTnMpW9fjps7t10ObU5ODo4dOyZUVVWxuoMHYXzkCJRnzaIIYXk5GeAff0zGqaoqFY4aPJiIvKcnRdqNjWFpaYnw6Gj0WbkSuklJZOx6eQF6emBxcTCbNg0iExMYUe43n5GRwQ8ePBgTvLxY38hIwTU9nUtfsgR36+pYSUkJq6mp4erq6tC/f3+EhISwIUOGsJkzZ7KRI0dizJgx7GlMjPxxZSUzdXBg6urqSEhIEHJyclhpaSksLS354uJi9uzZM0RHR6MyLEyeGh2N+DfekI87eZIz79ULLCyM137xguXr6aG4uhqZmZnIycnhJBIJCwwMZLm5uTA0NOSrq6tZQ0YGbwgw/enT8fDhQ6ipqfH37t1j+fn5XENDA5eamioMGjSotSBQUBA5ehwcqMK6opK6pydF7L/6ilIHvLzIkfHRR4BcjqqLFyFVU4NNVhbDnDlE0G7dIuO/Vy9SLowb114JUltLsmxLS+DYMZTfugXxiBH8tC1bmJa3N1984QKzWbIE3P/9H0l78/OJcJw7R+kB5uZ0P21sKFfawoLIV1gYcOQInaudHb02eDBdi4YGyarnzaNo1JMnREx0dBATEyM3MDDgjNoWrgNoXkdEtOaCrlpF6okhQ2ie+vm9ut+uIFBKwMGDQFkZZN9/D7GvLyKMjKBXVgbzlSuhu3w5jZmZGTmMOkRW5XI5wsPDMdDKCupbtwKbNyN5zhycVFJCo6Oj3H3UKJFUKmVpaWmCq6urouIVjdOaNUT62kIqpZSOP0mZiYyMxDkLCz5z5EiY+Pszze++Q9jIkZjEGJjCEdIVPvsM/IEDuKypKaRLpazYykqYtXkz85g+ndnY2EAsFqO5PzUrLy/nHj9+zOscOSIY/PILY4sWkWOjm/oN7cAYXVtiIo2xhUWXhDs9PR1Hjx7Fs2fPkJeXJxQXF3N1dXX8/PnzRc7Ozowxxu5euyYM/PprFu3kJL969y5XVVUl3Lt3j0VGRiI8PBwpKSkoKioSysrKBAcHBzb2yy8ZN3Ei5FevwvbuXS5eWxv34+IAAG+++SYpToqKqKBXhzxgZWVlFBUVISEhAWvXrqXcd8ZoT0pMpI4MJ07Q3qWmRvP47FlSFg0YQKRuyBBc1NdHgJMT3N57D0oTJ9L+GBREsubx42mNBQTQ8+eDD4C8POSZmCApKQljFG39TExIGbJvH6WMdMTvv9P6nziR2sBZWJBDRCrFS2dnlJeXCyNHjiSlw4QJtN6b54W5uTkXERHBHj16hEePHgk5OTnM3NxccHJygp2dXZfqiKamJpw6dQo1mpqokcmYu6kpREOG0L6upkYOM3t7SiEaMqS10GRaGtUA+DtKsg73pqmpiT158qR1LXUHxuhZbWVFz+e33361g+hvQFVVFZaWluzevXvw8vKCZdvOJwAaGhq47OzsPoyxRcHBwdc9PT0r/tET6EEPXoEeOUUPevA/DD8/v94AZonF4sFyubyI5/lwAOG+vr71/+Ghp/fp06dOLBZrdvluZSUS3dwQoqyMdevWIT4+HqGhoe0eyPb29nj58qWgp6fHYGREJC8pqVOxrHZQyBdv3uz8sC4ooNzdlSv/coueSZMmIT09XV5QUCA6cnLKheMAACAASURBVOQIHBwc5LNmzRIBgIaGBkaPHo22hVeSkpJgZ2fXUizL3t6+s7Hx4AEZ8nv2kCEXFERkRkmJSPj8+STn272bIqEXLtD3rl2jfMScHCjNmIGROjro27s3aylkJQhEyMeMAfbsgfydd9DbxITL27MHugMHoq25eisggI+JjuY2HjzIVA4exEWpVJBWVzOtYcMoiqmItr/7LrUDs7EhsjRgABmwixaRcZaYCImxMQRBQEZGBt9v3ToOU6bQtRkZkXGZkQHcugWrCRNgZWVFA5OXB5w7B+OaGoajR2HV1MT0z54VioqKGAAkJiYiMTERKioq6N+/PwBAqVla/kZJiShCTU04c+aM0NyajTU1NQlyuZyJm3vuvvfee9DX0wP69xdh9Wpg40b63alTUS6TCU0nTggzHj1iMUZGyGwmsObm5kJhYSEDgHfeeYerqalBypYtLDY7G2mXLsHQ0JBfvXo1FxkZicDAQJiZmQkFBQVCWloac6isBGJj6X4pJK0iEUWTv/2WomJRUdTqTlWVyKeHB31GJELWZ58hOy6Ox4oVIjg6UnTN358Mc0WbroEDKZ/YxISipq6uRFZLS1Hx7Bm4vDyMGjWKw8qVGDxlCnctJwdJ/fuj7+nTQv8vv2TDFBGra9daJ4KiFkJJCRGNoUOJSLu5ESk/cIDmVVMTSXMBIu2zZtE1ffEFEfADB7Do+++Vnikr89DW5lBX15oTqqREUfTERCKvP/1EBn9SEpHWjuS8srJ1TXz5JbVSi4gA4uPx0sBAOKmtzRrXrcNQZ2e479r157npgoDs2FjhzZMnmUpCAq4PH46ERYuA0FCMnzlTGDZsmAgA7t27x/fp06d184iOJkdGV8Wb+vUj6fsrooCVlZUICwsT7OzsOLFYzJ8cORJNlpZs/rRpYC4utEZmzybip6JC6Rl2dsD165BPmIAz2dnIfPaMzd65E5P69+/US5rjOHg0p4/k5ORwN7duhcHTp4JRXh77K/n2YIzUCwcOUBrBnj2dyG1eXh4AYPXq1dDX1+fq6+uxe/duLisrCxYWFvDw8IBRQQHLCAzE3ZQU0fjx4+Hq6spkMhkCAgJgbGyMpqYmuLu7MwCte6KVFe4YGkI3IwNaOjror6qKyd9911ps8K23uq2YrqGhAZFIRNJquZxI+a1blPsPkOPl0CFy5OjotPSubq5sjrKkJKGhoYHNmjNHUFFRoXM6e5YcjQoSa2lJrwE0H8ViWDx/jgWnTuF2nz4Yv3QpvbdrF80XRd0LBTIyyPk7YACpN0xNydEklQK//IIn338vHz16tKiFNGtr07qbPLn5f7Uxa9YsqKmp4dSpU4zjOEybNo11rGLfFhKJBGPHjkVwcDAEkQjVn35KjovPP6dCft9/T6T76FFySpw5Q9XK798nx9o/gPz8/BZFQ5edADqiqIie3ydOtFbO/wchkUgwdepU3Llzhx89enS7hTRkyBDR4MGD1cPDw/tHRESE+/n5ufj6+kr/8ZPoQQ+6QE+BtB704H8Ufn5+A5SUlB7Y2tqKTE1NVWtra+Wpqak1xcXFEolEElFfXx8kCMJzAHkA5ACaAJQBKPD19X1li4wdO3Y8nDx5ssug5ghqY2Mjbt68iWHDhsHU1BQVy5bheWIi8j79FDNnzkR6ejpOnjwJd3d3KAqY8DwPf39/eWNjIzdu3Dg2MDqajBZf3+5/+F//IuP9ypX2r1dVEbFtKw39G8jPz8dPP/2EmTNn8i2Vzv9TpKcTqVi0iAzczz+nSOHdu2QkHj9OJGPzZvr8zZtk0D1/jhve3vyLFy84a0dHPkMqFfRlMsxYtEikZGeHWpEIRz/9VK6VmSkqNDKCpra2UF1dzYZaW6NOLofhmTP8oLAwriwiAn2vXIFMTw8JP/8My/x8aM+cSUZpeTmRa6m0c+Ga6mo0XLmCY7W18nF79ojqlJXx+9SpWBMcDJ3ff6exrqkhIjZ8OPVrVlOjojwAkc7AQDKA161rMWxDQkIEheNFXV2dnzhxIqenpwfjjlLdqVPBr16NX/LzZbW1tczY2Fg0btw41DbnVctkMmiVlcFTVVVw2rKFdZQnnzx5Uq6joyPSyMqCyunTUJbJ8MekSZC1ITNbtmwhI3HPHjwtKsJFVVW4uLhg0qRJACjVQSKR4PLGjXKngQNFVkePUlurhQtbfygxke5tbGz71mXZ2URsX7xokSHHxsYiIiJCtnbt2s6O7qIikl/b25MEfMoUkjC3kZAeOXJE0NPTw8yZM1uITFNTE7Zv397yGd/u1s/NmxRpT08nZ8DRo1S0CKDI3s6dRBguX+5eJltVhfQPP0SEnZ18cXm5COfOETkfMwbYuJEie1lZrfN9yxaK4i1YQONgbk7zTiKhqOxPP9FndHWpeJeZGSorK7F3715YWFhg0aJFr1cALiwM8n/9CycGDICZXI5Ru3dj5w8/QBAEfPTRR+2k3Ldu3eIfP37MffbZZ7TOtm2jfspd4flzitA3V0NXID09HRoaGtDR0cFPP/0kNzU1xcyZMztLfGJi6B46OpIz0MWF7sPBg8DSpYjPy8OV5r2s2/umQHY2MHUqHu/YAZ0NG2AVGgrW0YHxOhAEakU1ejQR1zaELjQ0FCEhIViyZAn6NvdAP3/+PNLT07F69Wr8/vvvwuC9e9nDKVOQLxZj2rRpcHJyeq2fvX//Pm7duoXV7u4w/PJLYPVqItmMkTNj3jyaC23B8wDH4eG4cYI1zzO94GD6ztat5AhpaKDvmZmRA/PxYwBUSPH06dPIzMyEqqoq6urq4OrqKvj4+DAlJSVaq5qaXaYa8TyPp0+fIujcOQwLD0f9+vWCz+7dDNOnUxtFQaDf3rqVVBaKKv+jRtHaUVSR37WLHEiBgfj6668xd+5chUqB1oiRUZdO4YaGhpbuB6++jQK2bt0KZWVlLFq0CObm5m3fJEfdxYv0vDx6lCTu331HypnAwH+kUFlcXByuXr0KANiwYQN0XidFJCmJ1v3GjbQf/MPgeR779u0TnJycWHdy8ZCQkKbIyMjKpqYmd19f3+R//CR60IMO6Ils96AH/6NQVlb+0t3dXXX06NEKI1A0btw4rdraWqSmpnrn5+ePLiwsrKusrBQEQQDP86y+vl6poaFBZceOHYkNDQ1bBUG47Ovr284j5+fnN0BZWXmQfZsqp1lZWYiNjcWTJ0/AGMOYlBTkzZkjTJ84kQGApaUlfHx8hMDAQFZdXY2ZM2eC4zisWrVKdPnyZdy8eVMYuHEjw8CBZNx2NCIfPybD4dtvu77YTz8lwhob+7fHKyEhAZcvX8bo0aPljo6Of6OheDewtKS/tDQqyrRmDZGqsWOJ7GzYQFGVjz5qjYInJwNPn8ItIIAztrDANRUVboK3N5y9vRF/+jRC3n8fq+/exTQvL5G0sRFvDRgA1eRklqisDDtXV0TPn89ruboyJZkMfZcuBZYtA5PLYVxYSAWV5s5tPb/IyK4NLw0NBOnrQ15VxamHheGUvz/c7O2hk55OETpFH+kHD0hSLQgkmS8rI0KRkEAG/RtvtDvsmDFjmKqqKm7evImxY8dyA7vL03/nHXAODlgxeXK7k9PV1cW6detw48YNYdjOndAzM+tEtAHA3t6eCwgIgL6+Pu/5ww/M6Nkz9u7mzQhdtEjItbDAipUrW/sy29hgoI8P7AcNatfyTSUnB7hwAUPCwji5gwPNsY6KirQ0kqIqiLatLRniCxZQdJjngdhYFBgbIzg4GJqaml1b0RxHhbbq6+l3li8nyWqbonj19fW8ubl5u7kpFouxceNG7N27t+txBIDGRtTMmIEmbW0U+PvDgDG0E2CrqZGTKzKSfu/Eic5VjAFAUxPqX32FnCNHRMK2bWBffUX3/Y03aE5HRpIjIieHiH1MDEXS/viD3jtyhMbH2Znk6jNndvqJxMREaGpq8m+//Tb3yvZ7gkA57o8eAe+9hwgHB2T37o2aXr3kD378UcQYgyAIOHLkCL9hw4aWAw0cOJC7f/8+kpOTobp8OXK9vGCSnQ0zM7PO7f5sbUlxUFXVQkoPHz4sk0qlSkpKSuB5HnK5XLSou8JPQ4fS/dy1i8aloADQ0UFVUBC+P3AAfDOhEolE4Hn+1e0GtbQAFxc4+/vj24ULMbuqCjZ/g2zLeR7CV19B6YsvaK/ZsaPFoePi4oKQkBAcP34cb7/9Nvr164eioiKhsbGR7d+/HyZSKdOqrUW9vj6G2di8NtEGAGdnZ9y6dQs38/Kw5MYNUoM4OxMBvHq1NVLc2EjOv969acyTk1EyfLggU1Ji7gA583x8iNR+/jntlUZGwA8/gC8uRtVnn+HfNjZCdU0NA4CPP/4YGRkZuHTpkpCcnIxxvXqx/tu2QfT0KXieR0FBAdLT04XExEShtLSUA8iBJVJVhUdICDiOY9DQoNSO48dpzn3/PTnSMjMp5cfOjvZABdHmeYrczp8PAJBIJPyTJ0+Yra0t3fCrV2l/6ELK3VXBtK7w4MEDHgDX1NTUnmgD5MD46iva558/pzF74w1y8vTt+58T7cZGoKEBQ0xMoD1yJAJ//RVqycn0u1IpzXN9ffpcQQE52vr1ozFMSaFn0JEjpHxSV3/ttnSvA47j4ODgwDIyMtAd2R4zZow4ISFBtbS0dCCAHrLdg/86esh2D3rwP4ht27bNUVFRmeLi4tKJNKqpqcHR0RGOjo5iAJ3KhMvlcqSkpDjeunXreF1d3RwAC9u+r6ys/IWbm5ukqakJ9+7dQ2hoKBQKmc8++wxVH30EYe1ajJo/v90T1N3dnZmamuLYsWMwMDDAqFGjwHEczMzMUFRUJIDjGHbuBA4f7tyWJC+PSE1XEAQiJc1tp/4uGhsbFQV7/jmi3RZWVmR0yGRkZB04QEbb0aNkeJWUUJR4/34iK5mZeHn1Kv9YT4/7GICqgQFgZ4fBGRmw2LQJatu3w+bMGdiMG0eFuX79FYMmTwYWLMAIMzMOenoUhR0/Hnj5EqKKCiQ8e8Y3qatzk9qeV20tRVEVUc5m8DyP5ORk3t3dnTMyMoKWlpYQlZTEvE6epCI/+/eTc6OggCKD06dTxGLePCpWtHdvq3y5DRhjcHFxwc2bN1FXV9f9eN29S1LqLqIfWgAWZmUxhIa2i8y1hbOzM3N2dgYUXTecnRGurAxXPz+Yr1rFUFHRGjW+dg1YvryV7NTVkcw+MxO4fBl3NDV55yFDRJ2I9osXlAO7e3frazt2UKQfoOMfPgx8/TXCdu9GdXU11q1b1/X8+ugjipAdOkRjaWVFZOLxY+DNNwEDAygrK4uKiooEtJXogqoXL1q0CGfOnMGBAwfkADBixAiRs7MzcPgwUq2tcfajjzD+zh3cjo6GVVoazG1tMbLtQRgjon38OEWlDx2i6+hgCBsaGkIQBFRWVkJbW5ve37KFCKmDAykZGhtbi4qpqlIEUSwmmfq1a+R0Sk2lHuuurjTfZTLgvffAffQRXPT0OM7NjT7j4ECEVSKhNIeqKiIPgwdTdemZMwF3d2SmpQnIyGD6+vqYP38+4uLi+IcPH3LW1tbtbpqZmRlEIhFSPvwQFcOHg3N1lQefOiVqamqCWCyGRCLhJRIJr6GhIdLT02Mjjh5FakoKMvv1Q3p6OjiOU9q4cSOkUimKi4vx+PFjISoqSpg8eXJnpvzLLxRhzM6m6zh+HMjLg8rmzfg4NhZJXl4YcPEiJK+QCwMgx8TmzXSM+HiI1NWFkpISpmiDVlpaiuTkZCEzM5OfMWOGqCtJb11dHW7duiU8efKEAYCFtTW/MC2NUw4KominmhrU1NTw4Ycf4rvvvkNQUBDefvttlJSUMB8fHwQGBmK6tzd6L1uG9X+zuBbQTCZ1dOjv44+pSN+lS7R/HzvW2hv+zh1Sx1hY4KFEwtna2qJF/Hz2LBV809Ag0uvpCaiqIvinn2B//Tpqli9n82fNgllz5Lpfv3748MMPubt37yL1/Hk+39KSyzt1Sv7y5UsRx3GCjo4Ob2dnJzIxMYFMJoNcLseVK1dw+fJl+Zw5c0QtDsPGZsGXosBYVRVdR0ZG+8J/R47QHG1WREydOpU7f/48/v3vf2PZsmVg+/eDeXj8R3nTenp6HABMmDCh6w9wHKUJ1dZSasqQIbTHuLkRAZfJaJwzM2ltiUS0zp48IWeqgQFd34MHRM779qX1+8cftJbHjUNeQQEaY2Lgra4uSKytGdTU6HkgEpFzSFmZHCHGxiTzV1OjdA1/f3pu375N+4yvLxWM+wcQHR0tPHjwgHU7LgDKy8tRUVHBAFwDgG3btk2WSCTvNjQ0+H/xxRcB/8iJ9KAHbdBDtnvQg/8x+Pn56YnF4iOLFi1SVe0mD+5VEIlE6N+/P6ysrNT3798/zc/Pz8vX1/du87F7KykpTXd1dRXt3r0bcrkcOjo6UFNTg6WlJbjGRmhfvkw5Yl3AwsICEydOxB9//IHQ0FD069ePl0gkXO/evYmtu7pSVFSRE/foERnyd+5030fW1pbIZtto7V9EcHAw4uLiYGxsLAfw3yHbCigpkfRYV5euraGBjBofH5K1BgVRFWQDAzgeOMA5urvTZ2/eBJ48gSg0FPo//0zjsWEDRSx69aJI4siRRK7bFo4qKiLytGwZbD/5hDt16hRUVFTg6OgIAwODVjJbU9PaTkcuR/Dvv/ODkpLYgCFDgOXLsSwtjd0wMYF0+HDB1M6OgePovFeupAhVYyNFchRGslxO90+Ra94GHMeBMYZue/gCdM3dyRJPnKDx2LTpL0VFpEpKQvS77+IDnqfvLltGCoOYGFJHpKaSE6G6miJVbm6AsjKE5ihmJ/j6di76NWIEOYYURbVWr0bCkCEoPHUKjoMGdS+Lnju3vXNi0CBKl9ixA/JZs1D40UcozM/HpEmTurxgS0tLzJo1C01NTaLc3FzcuHEDqSkpmHf4MCp79+ZnmZhwaufOYVJpKa/k78+9ePkScXFxiIyMFEQiEZYsWUKR/gEDWgv7eXjQHGuWYfM8j1u3bkEmk6E2NxfaO3dS9fVJk8h4v3OHIvI3bpCs9sgRIhRt75GiD64gUKEpQWhtj9anDwqMjcHxPFIfP4a1VEoG+uXLNI83bKBx0tEh59DOneB5HpEREfzLly85kUiE4uJidvjwYaiqqmLlypWd+hQDgC2AgYmJMPruO6jY2ooU11ZdXY2ysjKuvLycKysrE4qKiuQZWlpc6fPnTGJnJ3dychL5+PhARUUFmpqasLKygoaGBrt27Rrz9PRsrRp94wYRsKlTaf6LxTRXLC0BR0eIfHwQu3o1X52SwpU5OQmGcjlDXFz7PGAFBIFy+l++JLK9Zg1qt29nRc0tq9LS0nCKUjeYqqoqd+HCBX7evHlc2wjpuXPn+BcvXnAAmImJCYYNG4br169z30okmLNvH/qdP4+iL75Ak0iE2NhYHgA3ceJEVDTnRYeEhEDc2Aj9ffta00T+AgoLC3H48GEAwDhFpf2KCro2b2+SFAsCOa0uX24tEDh0aEt3gCFDhtAcGzqUyLZCEXPuHIp270bW3r2ImDwZEe++i80rVkDN1paIYzPh5jgO3h4ewLFj3PMdO9CYnS0aN24cTExMGDrs+YmJiRCLxcjLzBTh0SNKuzAzI4XC48f077RpVBRt7NjO+5SuLjk6m9G/f3+4u7sjMjIS27Ztg2T5ciwyMIAF/iMIYrGYZWRkwNXVtftPqalRJDkpia7j2TNyUFpYELlOSaExNTCgZ5OxMRFrfX36/5Ej6T0NDSLh27YBqqqora3Fz7t2QTJwILZs2cL+tOCZXE4Oih076L58+CE52VatIqfkmDHk9FWkU/0N8DyPmzdvshkzZqBbxRQAHR0d9OrViy8sLNzm5+eXIBaL/UeNGqVx7949n+3bt+9qamr6sqOirwc9+E/QQ7Z70IP/MYjF4s8HDRokaVe5+u8dB15eXmqBgYGfALjb/PJQQ0PDhvz8fBVFr93169e35pf98Qd5wl8hb3RxcYGGhgaamppw9+5dVlVVBRcXF3pSGxqSsR8VRSTS2JiiCN09yBmjKHhzoZm/i+joaL62tpbz8PDgYmNj+cDAQK6pqQnLly9Hp6rL/wQURGz4cDIgFy4k4+zsWXJU2NiQBPmtt0j69+23FD329ydj7/Ztigb98AONj51d5wJDMhkZVikpFG3W1oZFbS2WFhYKuXv3IkosZn0yM9F72jSYJCeT0+LQISJIFhaoLyhgIy0tmYaaGjB2LLRnzwafkoLQgQPZoo0b27eGmjqV/hUEqsabl0ekKyGBcrmHD6dIR/N9zM/PhyAIKCkpIcLfFZqLNbUDzxNpWbeOcn//ohzSyMgIubm5PNavFyE5ma41LIycFVu3Ul9le3si4W3ICsdxncl2Xh5JYDsSpBMnKHIbH9/yUt+BAzEjJAQVoaHwZ4z39PTk2jkaMjKI8HeYx7wgINbHBw9LSoShX3/NZvfpw5uUl3NdVccWiURwaO5h7eTkBLc7dxAXHs7vXrQIQ+/f5zRfvICpri769evHNTk7435MDK5evYphw4YhOjqapaamQlGDAWIxSV2/+YYI0DvvIL+hASd++02YefYsPKZOZVqmpjRf/fwoxUMxHz77jIzqb76h9fzttzQPT5xof8KMtY6djg4wYAAEQcBTFxfIZDIYurrCWqEQUPSAFwSqZPzyJX23shJXAgORmJjIzZ07FwYGBsjKyuLs7e2hoaHR9aYhl2O2hQV+njABWo8fY1FzHi3HcdDS0oKWlhYsqP82kTBHRzr3efO6dMLZ29vjzp078u+//1707tKl6KWhQWRbW7t9H+9Dh4h4a2iAE4ng7O/Pbdu2DeA4pl1WBpURI0jd8ttvrQWsfviBnBD79hHR/v77FiJaWVmJf//733xubi5nbm4uvPnmm4znebZ79272bXO6zZQpUxAUFIS6ujpu9OjRKCwsxIIFCwAAQ4cOxZMnT3CJ5+EUEwN+82YkODpCLhZzU6ZMgbGxMTiOa8kl55OSwDU2vrqifDf45ZdfAADLFi6EwfHjdE0mJq3F6YKCaC11sRcUFxdDJBLB3t6e9jRv7/YV2GfPhjwlBWWmppjWv79gOXEiU9PWprQFa2si8u+8Q0qIX38FmprQf9Ag9G/TsQGCQE7PO3eAFy/w/MkTYVp0NNOsribHm7o6PZe++oruw8OH1D3j3j3Kx2+L+/fJkbB8ebuXR40ahfT0dKirq8N70yYE1dfDws/vL48lAKSmpuLSpUusqamp1XnxKkREEKFevJhIbYdz+6vgeR7XmgswLl269NXpDwDdN5GIyPTKlXS/R40iR520uUbZ55/T8+LoUXpmbdz4l2uwMMYgk8kQHx//SrLNGMOcOXPUb9++va6xsVHu7u6uYWNjAwcHB9Vjx45tqqysrAfwjeLzfn5+ygDsAeT7+voWdnvgHvSgG/SQ7R704H8MHMfNd3FxeY3SoH+OAQMGICAgYIyfn5+Wr69vJQBJcXGxxtmzZ2FkZIQJEya0Eu2CAooOdpAjdwRjDAOaDevi4mLcu3evfTVvZ2cile++S3K3H3/s+kC5uVT59fr19oWp/gbWrVvHXblyRbh79y5rbGxkOjo6UFJS4v39/bkPPviA5LL/Dbz5Jv177hwZHYJAhp22NkmynZ0pAuDjQwZIcjJFGydOJOMxKoqIx927FE2dOZPIaFERGTVffUXEx9aWvt+3L0zMzJiJqyvqHBxw+ocfMHzkSJg4O1Oxn6lTgWnTkJOTg7jjx9no9esRkZAAeZ8+ePDgAV9bW8uJxWIU1dSgVxd9mHHsGJHq2bOp4JZUSkTy22/JGXDjBgCgV69eMDU1xePHj7uPbtfXUzSkLeLiKNq7eXP3RbxegaFDh7KQkBBRxp076BceToRQR4ci9J9+CunQocgqLISzRNJOp81xHJN3PJd336WozyeftH/94487FXrS1NRE+bVreHL3rlz1/n1RQHU1b2dn12qh3r5Nxntzb16AKt5fvXpV4HmeGQ8YINhs2cJ0//iDQ2AgObXWrOm2gjNjDAbV1Rg7diw3KCMDYXPm8BEpKRyflAQ3NzeI9+zBO7//DnmfPlBTU2Pp6elCVlYWG9SWgIjFgLo6pIWFUPb0hEFeHobfvs3bGBmJmLU1zdH0dPqsogBZZiZFvqKiWs/N2bn7PtUdUFVVBZlMBsYYhiuIdluEhhIpU1OjOT99OlRWrQJAexWALiPZ7XDwIERRUSi0sUFhSsqfn5SODpHC5mJdHcFxHDZs2CC6cumSIHJ0ZA0rVkD54MGuj9PFmgnneYRra0Nv4UJ+6e3bnMYPP1A6iY0NESR9fbrWP/4gYgpARUVFSE1NZRKJhNu8eTPU1NQYAJSUlEAxT8VisXD9+nWmq6vLz5o1i7PuohjY4MGDYWVlBSXGwG3ejKkZGeBOnepSLcL961/d18zoDnI5kJ+PxYIA+YkT6DN8OO1hEyeSY0sBQaB9oqamXUFAAAgMDKSodmoqOXc61CYIf/ddRERHY7mTE3r5+7OWVouDB9NxU1KoEGR5OY3p119TvnhEBDm4DA3J4WZiQvUmHB1h4OHBgrW1scTPrzUPuy02bqS53lVRu/37u0x9kclk0NTUFFJSUphVv34Y+R84iIODg/nGxkYOAH7++Wfhk08+6V7ec/06kevkZHIkOjiQQ6ft+P8J7t+/j5CQEMHb25sFBLRXWYeFhQnz5s3r/vcVyoydO8lJKhLRfVi4kBzJ4eFEvH186C8tjZwZ+flUEPWDD1pVDH8Cxhh69+7NS6VSrrq6+pU97vX19bFw4cJ2k01TUxNvvfWW2oEDB/z8/Py+8/X1bQAAZWXlUIlEMqiurk7p22+/DWpoaPiw+SvNGyC8AGT2FFvrQXfoIds96MH/GBhj1U1NTf/IsVRUVGBqatqYnZ09BcAZxtgEmUwmmj17Nuw7FlBijIwxM7PXOvaprv2GcwAAIABJREFUU6fkeXl5bMmSJcyibQTIxYVIx/z5XRqnLSgrIwP2PyTaAF3nwoULWWJiIlJTU2Fvbw9VVVXu1KlTr12w5j/CtGkU1Tx3rqV1DSZPJuOovp7yggcOpBy8b76hCNDWrZQzPGAAkWlFJetDhyjiGx5OBG7IkPa/1SzrVgVQ3r+/UK6szDBuHEnbm43s4uJiaGlp8dHR0VxUVBT09PR4Ly8v5vT/sHfdUVGd23d/984MVboC0lGw0xVRQQR7L7FFfcaWaKIxiTE9jzdRY2JMYkxiEktiSezGFjtgQWwoCEiVoiAKCEiHaff+/jgMvfney/vlvcVey2WCw8yde7/v3rPP2WcfT0/s3r0bBw4cEBctWsSatCnExpKEcto0kmBnZxP5HDGCEgvnzgFLl0ISHY2ysjKx1jCopXNSX1Xw6af0PrGxz3fN8/Io4B4yBHpeXpg8Y4YQeeqU6HT1Ko9p06g6tXEj0KcPLu7dKyQrFNzp06cxYsQIzaBBg3iAyHaDyra2gt/c+BrGKHj89dcGlU07JyfMsbfnq995B6eGD+dOnjwJKysr9O/fnxQML72Ep0+fQhAExMfH49q1axg9ejSrkYgSy5s3j4LQ334jmfvixXSe6+Pjj6lPc8cOcFVVsHJywoyICC7ZywudO3em9WRoCJ3u3WvPo7+/Pws7dkwcN3Ysw86dVAE8cwY4cQI3nJ2FrLFjuVmxsWLg48c85s1rWWmyaRNd//rrYvhwSv7s2NFmRU1737K1tW3Slw6AvA1++IGSSsOGAe+/D5kgwOHOnbYNxgBSI1hZAWvWYFhODiIjIyGKYuvOz5aWRAzKypqXeSsUwMsvY8q777LdL70kSPr2xWxR5Jq8p4FBE7WEg4MDHj58CHd3dxgYGGATx+Gt5cuhv2IF9bbfv0+kTk+PEhg16N69u5iTkyO+/PLLXP3+bK3se9y4cfDx8dEeQKsnpZaQbN5M1zwkhKqM9ZNZCQl0DZvxYGiC0lIyXvP0pD3s5QWzpUuxLz0d493dYdnIMBEA7Znr16kneMmS2h/n5uYCAM26vnCB9mojRMTGitNCQ9H5b39jsLYmAq01FWSMyGZxMd0/nzyhyu6cOUS2e/emBKN2NBtAPiRhYdC1tYVxc0T7++/JNG/hwqZJiYICCJs2IS4jA4VhYWCMQV9fH9evX9eUl5fzPM+zCRMmoO/y5ZCZmrZ9LlvAqFGjuLNnzyI3NxcKhaL5xRsZSdd0715aQ8nJ9P+lpUS8n4NsV1ZWQqFQ1BJta2trTJ48Gfr6+uB5vuXNk5lJ8cDevZQ4WraMRkwClDhavpySZ/7+db/TrRvt8bIy2qv799N1MjOjFqk22oa6devGXb9+HWlpaZSkeU6YmprC1dVVnZmZeVMul28EsFdXV7dqxIgRBr169cL58+eDExIS7jDGxKqqKl0AgomJiaqsrKxSLpc7hoSEVLb03nK53BHAEADhISEhzUi3OvC/ig6y3YEO/I9BrVYfun379lv29vbP37DdDAICAjrt379/6/r168fzPD951qxZ6NY46MrMJJOapKR2v29RURE3YsQIph0xA4ACARsbqpD+9lvLv3zpEj18tbNR/03o27cv+vbtC1EU8fXXX4u+vr6irq7uv2cEmCiSUVJkJEnkV60i0jJjBknIV6ygwN3cnOSkQ4YQOXFyosqgri4F6/Pm1b1nc26rXbsSKXV3bxC4NofAwECcO3cOpqam6P3kCbgXXwQuXkRcXJzg6OgoGhgYwMTERFi6dGntOZgzZw62bdsm7t69Wxw2bBjn4uJSR1Y2bWr4AXZ2VKGPjaVq0A8/UIXD2Bgzv/mG5c+fT47lzaBq40YIvXrBQGvUs2cPzX1ui2hXVRFRGDAAuHgR4nffQThzBk+OHYPm5ZfxzM6OS09IwDMfH5jOnk1EYvFi4PPPMeLuXa74rbdQpFSKFy5c4JOSkoRhw4ZxjLGGZHvMmLpqfXNwcWlalQcAnocsMxPSsDDkHzuGaHt7XA0LE1Z+9hmnTEzEFm0gCiA4OFgcMGBA08jS2pr6zVNTqYJua0vnnefrxhIZGNQpJWoIS0/t7z9+TOuC50nOWVCAuxUVwpvr1nEYN46SM1rjusuXUbx7N1eZmwuLNWsYli6l3xs5kki1FqJICoxXXqGWhsa4fZsSGm2QbYVCAQBQKpUCmvNOePKkYbA9Zw58Ll+G14kTiNqyBb7Ll7f85oJAyptBgyA4OeHaoUNQKpWorq5Gm94WoaF0rWfMaPjztDS6D+XnA8bGmPDhh9wPP/yAo0ePwtTUFB4eHjT7GKBxT/XW0NGjR/Hw4UMAwGQiPty9e/fEL775hk2fPBm9y8qo/eKDD2jv79tHRGXlSkxLS+OQm0sS599/R4WrK3ZGRKCgpARgDG6Npc3tgURC96WICFJNbN9e92+PH9cl8ZrDs2cktZdKaa+XlpKiISwMsLWFPoDKuDgx6s4dNn78+ObfIziYznO9e9adO3cEQ0NDZpKdzTBxYhNfjsePH0OlUjELlYrWxpYtJME/fZoSkqmp1Maybx/5Chw8SMqLIUPQ0ozy8PBw6Onp1crtG+CPPyh5uGBB86Rv9WrcTUwUz02ezCwtLTWiKKKiooLz8/Pj3NzcoK9NHstkpNKpUWM8D0RRxM6dOyGTyWBjYyN06dKl4UxzgO6XKhWtTY6jtevpSWowbUKqBaVGcwgICKhttXrzzTdp5nl7MGQI7bnlyynRqk0caWFmRgnZ4uKmfe+dOtG1AshY8J13KKF8+zYl3Vp4DlRXVwuGhoZc73/i3Goxffp0vXv37rlfuXLlp2fPng1UKBT5hYWFkEgkGDt2rM7YsWN1AEoOajQa6Orqyg4ePMgyMjLOyeXyOSEhIVmN31Mul5vzPB/n4ODAsrKymFwuHxwSEhLb1rHI5XJLAH4hISEtzCds9nckAMYBCA0JCal4jq/egT8JHWS7Ax34H4Nard6YlJT0Vmlpafsfiq2gW7dueOmllwyysrJmu7q6wtzcvOmLMjOJBLZWiW4EGxsbITMzk/fy8qIfFBXRw/f4cXpIh4dTD1dNH2oDfP89Bftbt/6T36plPH36FGFhYaJCoWBZWVnIz89vW5qqRWUlHbOzMwV5MTFEiKZOJVLZsyd9Lx8f+o7W1mSwk5BAgawoUpIhMpKqOHv3EhHv2bPtzwZIHql1dHd2brEKUF5eDrVaDR8fH6ajoyMeP36cnS8txSilUswNDWUPHjzg/P39oaOjg7CwsAYRmUwmw4IFC7jNmzeL+2qSHa+99hosRJGqEs+eNQyEOnWi6qu3N/Dtt6heuhQ5mZlI6d0bljY2dJ6iosh0qOZ4U1JSYJGRgT0//wy33FzBztGRs4uOhm5zpOjJEyK+33xDVVSOI1m2hwf2//KLkCKRcJIpUyDbt0+QyWSCdVISN+nhQ0765Zd1gZ+/P6rfew8XBg2CXna2EDhhAnf+6lU8evSIO3/+vFheXl6XFMrLo2C2tWuybRuthWbAdeqE0d26gT9wAPEnT+Lc2bPcFW9vpJ85AxsbGyEoKIizt7eHRCJpvYTj6krV81On6tbW/fskiQWo8paUVFcRFQQi0XfvkvR98WKSJ+fm4rGTE5cZFYXu2lFO9UY6+fr6Yv/+/SiTydBJS1Zu3iRSpFW3hIWR1NrBofkAfswY+qNQNDtbWIuuXbuixvmaT09Pb5jUCwigylj9GecA9AcOxLcLF8KhtBS+L79M9watwVZ9PHlCJGfRIqjVaigUCrzwwgttE22A1CAxMQ3J9rlzpEhITKSKMABTADNmzMDZs2fFhIQExhirGz/00ksNiEZGjQTfx8entoq/YsUKljVqlJhgasp679pFKoU33qB7RkICfTcXFzr/t26RSuHwYSSXl4sD9fXRJzmZyb76CtyyZXS9P/uM1oefHyVl9PRa9zmQSqn1REu4N28m48OvvqLWHi00GupL3rWL7lFbtpBHwaxZdI0a3XdKS0tRVFTE/BqrMOpj2jR6jlRXQy2R4MqVK7h9+zZnbGwsYsYMItqffNLgV7TTDAwuXqRry3H0unnzyKgwL496quPiKDGxbRudFzc3ukdqe+NrcOXKFYiiCHt7e8He3r7hQs7JoWTp3bvNzucuKSlBhCAIqYMHc8uWLYOJiUnLWcHs7Gb709uDmjUlXrp0ifXv359zd3dv+IJ33qGkQGJiw2Ts5MmU0FixgvZ+bm6bLV9aSCQSrFq1ilu/fj3y8/PbjitOnqSkXUICkWi1uq71oz5mz6b71dq1DSc6NMb8+eTVkJhI6+3JE3qeeHo2IeklJSWsvLwcmZmZrRtwtgKO4+Dm5gYHBwf98PDwhZWVlZp+zcQhUqmUJnMAmDZtmn5ERMTAyMjI1M8++6xYo9EYSiSSRxqNxlwUxfdkMpl3v379dMePHy+9dOmSGBkZ+cGnn35ayPP8GI1G84dKpYoDcDEkJCRN+/5yudxOJpNdVKvVTnK5fExISMj5dn6FvgCOSaXSR3K5PCAkJCTzec9BTZ+6O4D4kJCQFseGyOVyIwDlISEhzTiIdkAL/h+NR+x0oAMd+K9GYGBgdWRkpBPHcW5OTk7/lqqskZER7Ki/s+k/ZmcTQXzOfr6YmBjR2NiYegkFgWR8vr4UEPA8/Sw5mR6q9ZGXR5WF8eP/rfM5ATKe2blzJ/T19TF69Gh29+5dlpKSIlpYWDBdXV16sBYWEmm4fp3IvocHSVqvXqWeww0biPgUF1OFcdQoIhpz5lDQO2sWVa+9vChw5vk6ghIVRRVpf3/6dysrItvOznR+2upTXrWKguO5c1s9N99++60QERHBjIyM4OHhwQICAuA2aBDu6uoKymvXRP3evZmPjw8zNTXFlStX0L9//9qgAqAgY8iQISwgIAARERGwsLBA165dwbp1aypbB+j7BQTgMWOoHjcON/LzhfLx44XRCxZwyMwkCfuIEWR2N3Ag9h85IlRVVbFsOzsMunCB3TMwwO8pKbh74QKyf/tNOBofz1zmzoUiJwf3jYzA1qzBlZ494fL221Q9ZQyYNAm/nz/PJk6ciBkzZmDw4MFs4MCBXJ+4OGYVGwvZokV1xIMxlEskYGfPYhjPM6cbN+C+fj369OmDq1evMpVKhZKSEvj27w+2YweRkNZI2uLF9JrmZOYAeEtLcCtXwtLCAtU//YTk7t3xFICnpyfz9PRsWw6thUxG8thBg8hYyMeHiICBASV4goKIVPj7U6X/6lVaS1lZFOiOGgXVmDG4ceMG7Lp3h3Wj3urs7GyEhoZCoVAgODiYFAxDh1JCJSqKEmTR0bRX//GP1pNtubm0hlesoEptC9i3bx/UajWGDh3akAiXlhJ5aCTtjYuLw70HD9B/0CDYnDpFlXUrq4YJnwcPaB/+/jugq4sDBw4IRUVFLDg4uH1k28WF3sPXl95D25e/aFGT8U1mZmYYMGAAy8jIQHp6OgRB0Njb2XHw8AD+8Q88yc3Fpk2boFAoMHz4cDE4OLhuo2o0KF+zhpm5uMDs9deJ3N+6RWRk9266p0yaRNd46FDAyAjJ7u44VV3NJn75JdNdsACse3daF6amdGx79lCV89AhcnMfMoTuQXFxpII4dIh8FrRVdz09UhdFRFCPfJ8+lMQbOpSSCmVlRGhzcugeNWkSnZfJkynZ1sJ9p6SkRHPz5k2uS5cuzZsichw0P/6ItGfPsPXCBVRUVAgajYapFApWPX++0G3xYtb4vZ8+fYp79+4hkDFwnp50frS97QMGUFKpf39SFbi60nXjeVIiTJ0KiCJKKyuxfft2TWRkJJeWlgZ3d3ehR48ezNLSsu7DRJGI3dmz1E9f7z6sVqtx48YNPFm2TOxkb8/83n6btZmcXbOG9uw/4TsBAHl5eSwtLQ3FxcWoGW9Iz6PoaOCFFyjZ0JgQ5+XRubCzowrx8OG10vn2gDGGrKws8fLly2zw4MHgW1MYzZlDiRst2f/uO/rTWE2go0Nk+8ABes619p6M0XqeM4e+x3vvUUvV1KmU2DQ0RHp6Oi5fvsyMjIzQooLiOaCrq4tevXpJ3dzcZM3GPvXAcRwcHR05X19fSd++fQ0HDRok6969u4WNjY1+RkbGQEEQTL28vLpaW1sjKiqqKi8vr4+Dg4P3xIkTzWQymYexsfHIZ8+eLbl48eLuwMDAMrlcbgHgiSAIZv369VMXFRUV+/v7nwWAdevWvXDt2rVPw8LCrgYGBjaYebpmzZr5Uql0D2NM18vLy6igoCBgyJAhz1WV+OSTT4ZKpdJbUql0KQDu4sWLcZcvX1YEBgY2cGiXy+VjANyTSqWjIiMj3758+fL6yMjIV8LDw68FBgbmPM9n/q+jo7LdgQ78D0KpVH4fHR09a9iwYZJW+xH/Hfj6awrmngMqlQo5OTm8m5sbVQr69aOsdX2nW19fMrPRVrwBqsw5OZGU7F+QibWEiooKGBkZaRbMncvj4UO82akT9lVWCuWTJ/PF5uai3rvvMrzxBgWtokjVEp4nR2Y3N5JwL1hAb1bfJba+e25rOHyYvp8WgwZRlTskhExtlixp6n4LULCxdClVwloJeLVQKpVcUFAQzp49i9LSUgwcOBAGBgYYZ2rK47ffGlQZZDKZUFBQwNk140LMcRx69+6tOX36NB/7009Y+M47LTaIiqKI48nJouuiRWyGgwNXa6o1YQL9efKEAuXZs7HYxYUriItD14cP8dvcuXjr998xdPly5Bw+LPa4fJmr+PJLZOvqChdzc7nyW7fQ/ZtvkB4XB3AcpFIp/Pz8wHEcXFxcNNevX+c9PT0poNuzh6o5K1Y0OT7jqVOh/8UXKPngA+gKAkzj42Hq74/evXuLnTp1Yjdv3kT299+L9r/9xuqP9WkWGzZQNac1GBhAs3kzhp09C/dt27D72TPh0qVLXEFBAaZp3bfbg+3baf1lZdF/r1hBVdcvvqCE1M6dJOUMDSWVwbp1tE5qgsdbt25BKpVqPD09G0S66enp2LdvH2xsbDSzZs3iG9xHZs2ifbtxI/XSHjnStqrFyoqqwy2Nc6uBr68vLl26hC1btsDa2lrw9PTkvIqLycOh0WSA/Px8nDx5Enp6emL/4GCGoCCq5ru7k5GetrK1dy8lPmrMt7Kzs1n37t3rJN5tQV+fxjwNGlTXky+TtTonecqUKTh27BjCwsJ4F0dHdNHVxYkTJ3D37l0AwKJFi2Bra1t7UtU7diA+IwM3p04VX3Z0ZNi8mcyixo6le52tLZ33ESMokdOrF6qrq3HmzBlNQEAAp6ury2qTGNrpAEBDF/gvvqC/V6+m71FWRtfEyoqu4fnzRLAXLKBEDc8TMZs/n47D1JTW2P799PN2QkdHB1OnTuVjYmLEI0eOsLfeegv1e81TUlIQEREhGogiK4mOxrhly+Dh4cEpUlMhcXfH52+8wcUmJgoLFizg6iur0qKixJ4JCUxdVQVJ//4ot7KC/qVLKN2zB5Lff4ehVgVhZUVEWZtcCwkBBAGiqSlOzpwpFtjY8ACpdiZMmMA1SXZFRlKrxuDBTQzcDh8+jJSUFMx/8IA5rF4N1h7PkkOHKDHaioFXS3j8+DESEhIAoG56gChSUk1PD7UGcfWhUFASVKsscHOj/ZGR0fzrm4EgCJg1axb79ttvhRs3bjB/f/+mD5l16+hZHhVV9wwSBFo7QUHNv/GQIZT4+eWXOr+StiCV0jksLaX7+RdfAF9/jZi4OA0AfmELSc7/BHR0dGp9XoyMjGBvbw+O47pkZWUZa31uMjMzAeBDtVr9kZ2dnZGdnZ0MgOz8+fOKO3fu3F67du2vANIBem5aWlpKU1JSZgB4Qy6XW0il0u9dXV0tkpOTh37++edJarV6l1qt3g6gL8/z2+bNmye1sbFBVFSUyBirbuuY5XJ5J5lMdpsxxisUimUcx73p7Oxs4OrqKjt58uRHAD7ieT5ELpeflslkPzPGbisUisUAHnMcp9LR0elfXl6ufX50AqD8957V/350kO0OdOB/E3dVKlXJ48ePDf7VEWCtIi+Pgthm3FfrQxRFpKamIjIyUsPzPB4/fswbGxtr+vXrx8PenrLUr77a8Je6dKEKWHR0HXHV06M+vHaasLWKkhKSvvbuTcF4VBRMFy/GvDVreKSkAO7u4MLDMWftWj61rAxXHj3CJH9/5J87hye5ubC3t4e19pibM/15Xmg0lGAYOLDhz6VSMgc7epR61cPD6VzVr4r88gv97ezcZh+eWq2GSqXCgAEDoKOjI0ZGRiIiIoKZmZlpZs+axZulplLwxhiKi4uhUqm41kjJ1KlT+YSEBAy9dAkKQYBezZgfLUpKShAWFqbJzs7mKioqmP+HH1KlbNky6u/UOvpaW9P1AKCcMwddc3Jg+eQJnikUotLVFeZdujCzr79m+PpryACYvv02p3f/PsrKykQvLy+WkZGBM2fOCGq1mt25c0drHMQzxpAUG4tednYNjXhAI8iOHTsmDBkyhHNwcEBSjx6YkJZWN2N65kxMX72aAUBCfLx4ODOTebz2mmAeHw93d/eWT7SxMVXRvvyy1evBrV6Nb/LysMTFBW/27Mmt2bIF9+7dQ79+/dCtW7fWq0cAVRdnz6ZAmjFKxuzdS/82bBiRzZSUumMCqPpXcz1FUURYWBheeOGFBh8kCAKOHz8u+Pv7Y+jQoc0fhKEh7cPlyykR5OraKvkEQLLz4GBg61Y81tNDTk4OioqKEBcXh8mTJ6N79+4ICAiAs7Mznj17hqSkJJw6dQpef/xB6pBGSrzjx48DAN555x2K7Bmj/fzqq0SsYmJINWFiQsmoGujq6opFRUWMFRdTldPUlCrIjBHBvHOHiMlPP1FF/p13iHBpZePtSGCamJjU9mT/8vPP6D52LB7UuJ+//fbbdTO5a5D066+i+OwZm1NZybilSylp9t57tD/09amCV1REFdvLl3ExOxtXqEWAb9a5vREEQQCnvWfUr/ppK6NTphAxUijoGt29S5MORJESNq6ulBDLzSUVU0AAkaiCApoJ3w6FgIeHBztx4gSuXbuGgQMH4sGDBwgLC0NRURH69+8vDFm5kjd89VVwNeoYHRcX4MwZTLG0xMGDB7ns7GyYm5nRcW3YgDEZGeykRILdRUXQsbGB5PZtpG3YAAgCPJVKPFm6FMXOzuLs+Hhmv3YtiouLkZycDI1GA0dHR5ycMwd5lpZsRpcuMJ8yBUePHxe++OILNnz4cOZdo6hS7dsHfu5c3Fq2DJylZS3BTU5OhrOzM1JTU+EnlcI+PBysjedgLbQu/s8JlUqF7du3QxRFjB07lswVp02jxMeuXS3/4oULlITLrKcmvniR1norZFutVuPKlStISUkR8vPzOcYYpFIpFx4eDnNzczTpi87KontC/f3x9de0B7XPqMZ44QXag7t3U6vF81T7jYyAF1+k+EAUMflvf+Ptra3BXn65eTPD/wcwxuDh4QEPD4/a/hl9fX1RqVS+wPN8g4fDiBEjdHr16mWdkpLyVnZ2dpWfnx969OgBURQRHR1t/NlnnyXLZDKJl5eX6ciRI7msrCyToqIiv7Nnz3pwHDdPEITBgiCItra2CA8PV9y4caNKpVK1btxCmOPo6Gjbr18//QsXLvyuo6MjODo6MhcXF3h7e6s7deokuX79ugOA4xKJxNrExKRbYWHhSKVSuQNAjIuLi3dycrJSpVIVq9XqcSEhIXfrv7lcLufqy8zlcrkXx3FXBEF4MSQk5MS/eIr/K8BEsWNuewc68L+Izz77bGdQUND8GjfjPwfLlxOZ2Ly5xZdoNBocPXpUk56ezrm5uTGO49CjRw84pqWRHLJr15YfsJmZFEzcuUNuxj/+SFXt9kAUSeKup0eE/exZMhsaPpxIyKRJwM8/01zgrCygtBQnrK01VTk5bObKlVzjgHrjxo2CiYkJl5OTAwsLC01JSQlvaWmp6datG9e3b1/W4rzo9iIsjEh1WFjLr8nNpd5kAwM6L927U9Xp9dcpaG7H3OlHjx5hx44d+Pvf/15rbKZUKnHw4EHNw4cP+fGVleh57hz4GzewadMmwcXFRZw0aVKrrO/p06fYtm2bOGjQIFbbowrqqdy7d6+gUCiYt7c38/T0hEx7rYuLiWzv2kUBmTY4evAAePddKK9dQ4KTk+ahmxs3LiKCSTmOekNTUqga0kzfJECkIj09Hbq6utDV1UXM3LnwT0iA3qNH2LVrl1BcXMzc3NzQtWtXdvToUUilUigUCqhUKvSsrBRm8jyHtWuJWCiVRGiHDEHUSy9pLMPD+V9qTL5mzpyJni31bQsCJT7u3KGWgZYglyP51Cmxq1LJjPr3B7Ztw88//yxkZ2dzJiYmWLFiRcuS8tBQWgNPn9L+eestqlx/8AH1TL7wQvO/t2kTyUzNzaFSqbB+/Xq8/fbbDVpELl++jMjISKxevbpB+0ADjB9PxO/DD0kiqlSSbLTG7b4lqJcswaW+fTU3y8t5mUwmVFVVcfXjkPrrMiYmBqdPn8aHH35YmwDSIicnB9u3b4eTkxP+9re/Nf2gjAxaJ8XF1O4RHk7HOHgwMjZvFrOsrNhQhQKM56kXeOdO6jkfPJgqyoMGEbk1MCApdXAwJYi2b6cK3tChrX5PAMjKysIvv/wCWVUVZh48COfmSFZ+Pqq++AJ7i4pgYmKCaRMn0nunpJCC5swZ+t5qNR3TTz/h8M2bYvBHH7Hin35C1/HjIZVKqWc4IgJFRUUICgqCvb097t+/j8TExNpqeufOnTWvvvpq83v53j3aiz17UmLh0SMi1Hp6lOhTqUg1sH49KXpsbOi4fv2VkhA7dtD/b98O9bFjqPDwgI6bG3TNzGqvmyAI+PTTT2vHk2nn17/00ks021yjoXvz1atkapaWVjv6MeKPP8TsvXuZbVGR6FFczGSLFyPXzw+7Dh8GAEy9eBGuTk54+P77kEgksEhOhvjIQZZNAAAgAElEQVTtt8j48EPYTZ6MgwsWiAWdOjFzc3NBFEWUlJRwarUa0Gjw8TffgDt1CuLgwTh58iSSkpLE1atXs8InT3D5/fdFfVFExcSJQn5+PisqKuIEQYBMJgNjTFRUV7PV+/dD/5NPmhrotQRbWzqXnTq17/WgvvetW7eiooL8rj6cNQsSCwt6rnl6tq70Uirp2dE4GSCKtK5q9rhSqcS9e/dQUlKCqKgoUalUMgsLC8HZ2RkDBgzgRFFESkoKkpKSMG7cuDovk4ULaSb25583/ez16+le3cjcrgFWraLj++CDdo/5aowTJ05o4m/c4K2qq8WXSksZ//AhrWcrq3Ybwf2nUFJSgqSkJPTr169J0q0laAsWKpUKffr0aTBBISYmBidOnADP86rx48dLPTw8sHHjxvKKiooQACKAgwBsAAwGsB3kEdEFQA4ANWPsO39//yXDhg1rNouYnJyMY8eOJSoUiqkcx8W+8sorOtXV1bhz506Vubm5jo+PD6ejo4MjR46okpKS3g0JCamdzyeXyycDOCqRSN788MMPN8nlcl+e589rNBojAGNCQkLO/lMn8b8MHZXtDnTgfwByuZwD0B2AL8/z/aRSqZ0gCMPb1Y/4z0IQqBI7cmSLLykvL8e2bdtEtVrNli1bxhoYqyxYQMHjunUtf4aTEwW5R44QSW4sVdWaPmVlEfmYMYOqWmo1/f3225TRl0gooJBKiRj07k0kSDvnugbVBw9Cam/fhGjToTixhIQEuLu7i5MnT+ZLS0tx+/ZtPiUlRXPt2jXe0NBQcHd3Z87Ozqy0tBSxsbEaURQRFBTEN+6FbRaRkVS9aw1WVkTIr10jKbCtLZkkeXq2i2gDJHOTSCQNHtYymQxz587lExISxPizZ4VnJib8tQ0bRDMzM0yYMKHNOVudGcObe/awr0URdnZ2MDIyQmRkpCYhIYE3MTERlyxZwskaJ1RMTIjYXLxITuVbttB13LgRWLoUsv374eHuzicWF+PTqVOxevp06Gs0REISEqgaYmFBgZ5EQpU3xrTycVoD8fF4EBgoWsyYwYzT0/HgwQPOy8sLaWlpwp07d0QnJydx5syZvCAIiI2Nha2NDYc33ySy5eJChmNLlgC7dqH/rFl8amAg8PAh7OzsxMzMTHbgwAE0687LcZQ0aARBEPD48WPY2NiAMQbB0RFJTk7McP16GNnZAREReOmll7jk5GQcOnQIa9asgaenpyCRSDhvb29YanssL1+mfZGYSJ+lUNDx2thQH6RSSeencaW5qopcpWtk8NpRUYmJibW9nyUlJbhx44Y4bNgw1izRViqp5/T77yl4Z4xIYVgYVa/u36dqUzPIzc3FVjs7uDx+jFemTYPFgAG1UfC2bdvw+PFjfPLJJ3jjjTegUqkQGhqKaXv3ojgvD6qPP6bRZTXIzs4GAEydOrXpBwkC7W9bW0qa/Por3RtcXCD06oVj6enMb+JEsPpO+MOGNXvMtVi1ihIM9vaUXCwvp/tXK6oPe3t7WFlZiUUPH7KSlipt0dHgjh3DiOpqmOzZU0fi9fUpgaLdpxIJ8OabqNy7FwkGBkzX3x/qiAjNmbt3WYFUyjHG4OjoqDEzM+P27NnDXFxckFQzHcLBwUEMDAxke/fu5eVyOQYMGIAxY8bQHvnkE5LibthA62fMmDoDx5AQkupu2EBVUMYgVFYCly8jw8cHXQYMgNHp03SMvr44vXkz0r7+GgNu3kTx+fOwKCiAl0oFbssW4LvvwHl4YJCzszr18mVJlYMDSlUqfPzxx3UJJZ6vG1XVrRt950ePgM8/x+Bnz9jTnj2RLJXia4UCyMmB0fnzteZyetu3Q+LkBFetGsTZGQgNhadEgoqHDxGUnc2cnZ0hk8k4jUaDtWvXgjEGTiZDVkwMHJ2dwVauxNgPP0RMTAxbt3YtXt+4EaNNTJjBw4dgjPEAVXsrKiqgp6eH8PBwIToqis9ZvRourZHJxpg7t4lvgSiKUKvVLSa3OI6rJdoSngcXFESKi5Ur2/68VasoudyYbI8aRX3be/YAAHbv3i3k5ORw+vr66N+/P3x8fNCpU6cGTHXgwIEYqFVfiSIlSIYPb9gCpsXZs6TUamtvLVlC6pi1a+n6/xOtb/b29lxMTAy6+PkxfswYavt4/JjGz3300XONOvuzYWxsXHcO2wnGWIuGb+7u7jh37lyVQqF4/fTp05udnZ31unXrxrKzs/9hamqqm5WVNRdAT2dnZy4tLe1jQRBMDQwMyhUKBcdxXIGxsbFZ3759Wzzprq6u4DjOkTEW7erqqjEzM4NEIkH9iTc1pnRqALdq3ND1JBLJiwB+rHnJx3K5fDOAERKJRF8ikVQrFIq85zoJ/8XoINsd6MB/IeRyOQONSjZjjE2VSqUhUqlUx8bGRrS1tTU0MDCAubk5Gsyv/nfj5ZdJlltDAPLy8nDu3DlNQUEBJ5FIRH19fTE/P5+3sbER5s+fX0fYTpwgctDYmbQlvPgiEfMpU8iQ6PPPiZh++SU95CdOpODw9m0KFOfPpyz7wIHkDN4YjaTE9VFUVMQ167YOYMqUKSwgIACdO3dmAPVjBQUFISgoiFer1bh9+zYXGxuruXbtGieTyQQnJydepVKJv/zyC2QymWhqairUjAphBgYGop2dHWdtbc0cHBxgoKNDgeUbb7R9Phgjies335Ahm0RCvZftnAdubm4Oxhiys7PRuA+7T58+rE+fPrxi3Dh0PXWKdZ45k7XLrEuhgJ6/P/r07YvDhw9DrVaja9eubPHixbC0tGyZrEskJA3OyiIpNM8TkakJzlhxMSYlJ+MrV1dsOnYMPj4+wohPP6UZxpmZZOJUUkLVVY2GAs/qavr9X34Bdu0C/+67YmhhIVT797NRo0Zpg5wGX4rjOHhqHbhfeIESQDt3EoE9eJAMABlD93XrgDVrkJOTw7Rk79SpU+LYsWOZcWMytWABEaaayhxA1ZfY2Fi+W7duGh8PD748OlqM792bTXF2JhI7bRq4PXvQe9QomJmZiUVFRSw2NpZjjCEqKgr29vbiPD8/Jpk4kRICNjZE+Hr2JJWGFh9+SJ/dOMBMSqK9UXNNLSwsMHbsWOH8+fNcWFiYyBgTFQoF5+npKQwcOLD567ZzJ+21jz9uGBQHB9PxXL5MPeJyeRPFyqVLlzTm5ub8rJMneaYdz1YDMzMzPH78uOYjdqK6uhrGxsZIGjhQc0ul4h788ANjjMHGxkaYPn069/DhQxgbGwuGhoYNF6gg0DlxdyfTKEGgoP/aNaCoCJWurijr1AlGrSkOGkOhIOn09OnUe6olOuvWUe9oM606giDgxx9/FJ4+fcrpaTRgzakI169HhYMD9gYGAoxhUX3y/9ZbTZMWs2ej4MgR+HXpIvT57jsu79Ytftzrr4Pt2gUJ9cTyAGBpaSmcPXuW69Wrlzh58mQmk8lqL5RUqYRzTg71f/ftSwmZbdvI7CwwkOTqy5ZRVdvXl/aVkRHtgx9/RMH27TDOyMBVS0v0OH8eJnK5aL92LdsaFyeUmptzCxYsAMdxELOzcSY0FH0XL0ZpVRW6BAYCSiWGGhhI+icm4npmJrrm5YG7c4fuZadO0XpITaXE2xtvkLJg4kTg/ffBeXvDUqWCZY8ezPW337Dvzh1UV1cz37g4JAQECNflcq7r8eMo+PFH2EdFEaFdvBjo2xcGw4ej58aN1Ibj5oabt25pmFrNixIJXn/9dUqWqdXA9euQFBbitddeA5eWBllKCvTWrm2wziUSCbR7ffTo0XzfZcvEynffbWLe1iq0CeB6OH/+vObGjRv80KFDhcDAwCY3XUNDQ9jZ2Ag+mzdz3X/4AdzKle2vjD950nx19+uvG7iiOzg4cEVFRRgxYgTMzc1Zm8n66dPpvnWiBSXwe+8R0W8LPXuSz4QgkAHpP6ESc3d3Z3/88Qeqq6vp3NYY4NWOaJw8mVQT69a1OzH93wKO42BgYKBSKBR3eZ6/dP/+/TFTpkwxAIDi4mJ8++23nmPGjBF8fHz4Q4cO6ebn54uvvfaaYVFREYqLi+2dnJzQmrcPx3EYPny4jiiK8Pb2bva5oFaroVQqJXp6el9WVVX5AoAoitU2Njaa/Px8JgiCqY6Ozi21Wu0SEBAgCQsLYwD05HK5KYCKkJCQ/+k+7/+tFdeBDvyPQi6XD5RIJJOlUukQURSteJ63FkVRJpFI1E5OThp/f/8/tze7HtRqNU78/rvGLyyMP2drK+ru3y+UlZUhPz+fd3V15caNG8cqKytZWVkZ/P390aNHj4Y358hIqrC1pxKgVpPUOD6egrChQ0nWOWkSST7j4+tcV+fPp79bkBe3B0+fPmUtye45jmtQWasPiUSizfhrv6v2b6ZWq5GamsoKCgp4mUwGmUyGwsJCZGdni3FxcZqKigq+d36+0OfaNVY2cqTg4+PTeiVZFKl6qFLVGVSNHk0yTje3NqsCgiBAFEVIWgk4dGJi4Prjj+0LlAC6Jlu2YALJQoX79+9zhYWF7XN6Bihgk0jqrm8N1ImJSP/sM0zp0gWnS0rE69evcwEBAWSu5ORUZyYXHk4O2Tdu0Izdc+doPNKAAVgQGMidPHFCLLG0bF81YezYuiq7vT0Z/pw9CxQUgHv/fUyfPh2VlZUIDQ0VFQoFS01NZSYmJujcuTO8vLzqqnSzZjWoXimVSiQmJvLBwcHIzs7mkjZt0gScO8fPuXSJXiCTUQJBVxe4dg0rVqxgAEn4Dhw4ACcnJ5gdPMg+S0/H327fhnViIqR2dnTdG1eV0tObD65VKjQ2d/Px8eF69eqF8vJyduPGDZaYmIiRI0fyzQZfe/aQimLmzOZbP3r2pLYQLVn65JPawFmj0SA9PZ1fuHAh2Kuv0jqtJw0PCgqCmZkZiouLodFoYG5ujqE8D87Pj4e7O9RqNWJiYnD58mV89dVX4HkeJiYmdV9SFEn1MWwYJeT8/KifeM4cUr0MGAD84x+oOHYM3e7fr60StgtPn1KVrP452bCBlAVbttD6ffvtBu7Oa2hGMAcAMoUCxo1NJKuqgO+/h7RTJ7AhQzD8gw/q1o4o0r2tZr2eOHFCk5mZKRoYGPDSzp3xwrVrnIG1NWymTCGFiJMTJRNqRln5+vpyNX3cdMAKBVBaioVhYdC/fRv8mTOUIBgxoo54iCLtoadPaT+dOkU/l0jou929i7tLl8LyyhU8MzPDqNWrIfvqK+zW12fjV67ERMY4mx07oGthAejrQyaT4fz58/i8ZjyjkZERqqqqoLp7Fxg+HLa2tqJHnz4Mjx9Tki0hgUihtrL98CGRtfh4+l5ffEHHFRcH608/xeTRo/FHZSWG3b2L0QcOcA9XrcIzc3PcLCjQ2Gdm8njyhK6/KNI9JSaGErzV1ei3bBnvXVCAI3PninrTpjEMHEjncOxYQKmEhbMzJe1SUhoaVjZGdTUqjYzYTUEQXRvPum4NdnZ19zwA8fHxiI6O5vv27YvIyEiuuroajo6O2ooi/U5lJXp07y7KlEooGYN+e4m2Ukn3iOaUFX36UHLTxQUYMwbBwcEQRRGhoaGCSqViTk5OwqxZs5o+jyoriRSvW9fyZIFHj+i+2V7H80GDaE988ME/NdJTFEVoNJqGsmzG6vxedHXp2XDmDB3X6tXPZfL3V4dMJuOlUunv1dXVdqmpqdXe3t66AHlHfPTRR0yrzCgtLYWenp4IgJmZmcGs0XSHluDl5dVqXGJiYoJ58+ZJVSqVb1JSkhATE8MFBgZKhgwZwgMUd2zbtq1nbm6uQWpqKjiOK+U4brooissAVMvlcueQkJCif+kk/IXRQbY70IG/MORyeScdHZ2ThoaGPh4eHro2NjZ8p06dYGJiAn19fTDG/uN7OCYmRjQ8cIAr3LwZPTt3ZgUFBXzXrl0xadIkdOnSpeWA4/ffKdj59tv2fVBKCvW8hobSw/fmTSI+I0dS4Hv//nONLmkLCoUCoijCo7nRVf8CJBJJUyMZAgPAK5VKpBw8yMVVViLvxg3O29u75SyzKBJZksmojxKgSuyYMZS59/QkyVwrc1CfPn0KAE3GPDXArFn0vhpN6+NYtBg2DBg4ENwPP2DKlCmcUqnEr7/+im+//RYvvPBC6/NOCwvp2H/7jcjt1KkQAgLwe79+4v379/G3X39lxgUF6LNvH4YGBjZwMa4FY+RYP3Ysmfbt20d9y7Gx4G7ehO/+/Siwt6eETe/eVC0zNGw+MaGjQy0I4eFk2HPqFK3d0lLg3j26liYmcHNzY8+ePUNcXByuXbsGAIiIiMCKFSsokREYSCZTIJf7L7/8EgYGBsKgQYM4juMYJk/mkZ0N8/qzpA0MaM2PGUO94oaG0M73DvLxgcmKFch0dMQve/di8datkE2eDP0NG5r2/X36aZ38tz5SU4l4NYKBgQEMDAwwadIkpKamCrGxsax///4NT86DByTzPH68dfMhIyMai3XpEhHdv/8dGDwYmZmZkMlkgrW1NbGHlSvpu169CgAwNTXFsMZyU20v9u7dkEgk6N+/P/r378/FxMSgsLBQjIyMZEePHsWkQYPA8TxV2CZMqHPs19WlNQzQveKHH9D55k14ff89cj78EEfmzdMMnzSJb6JKaAwTE/o+jdG7N+23zz+nRE9pKTB3Lvb8+qsGAO/u7o7Y2FhU6enhRr9+qKVtx49TMmfzZlTY2iLnzBno6emhtLSUqqzJyUQua/ZocnIy8/Hx4SUSCboGBsIgJYXeY8oU2nvJyaSk2LGD5N8AVQnj4+le+eWXwOjR6Pz++9gQGgqT2FgMGDAA3lqirVLRev3gA2pVaZy4ZQzi4sW4tWgRcqdPx5CrV+E3YQL0CgrwUkIC0ufNg2tZGXSvXCHlQ2AguowbBycnJzE3N5ctWLAAp0+f1pibm/N37tzBG2+8AWNj47r1FRtLjtTnztG53rKF1s3Tp7RPO3em63fkCL0+IQEmRUUo+f57XP/tNwQaGsLhp59w6dQpKI8c4Xd7eoqTQkIYZs2CcX4+EfhZs2oTsoVubtj9888Y5OPDpPb21F6Un0/XTyYjxZAg0LNKLm/xXqHesQM3Zs1CxfPKnktLa4l2Tk4OTp48iUGDBiEwMBDx8fE4fvw4bt26hfHjx8PLy4sq/N27w+/cOf6rxYuhuHgRboWFwoQJE9qWHR08SOqhtLTm//3ePdojY8aA4ziMHDkSw4cP50JDQ3H9+nX+wYMHtfegWrz8Mt0PavZuE4gi3dM/+IAqzO3BmjVE/Pfto/d+TiJ87949kTHW8tg1b2/6k5dHe/XRI+onnzGDVDn/5Zg7d65Bbm6uQZcuXaCvr9/gIVk/nsjLy4OXl9ef0sSuXSfdu3fnAgICYGxsXBufchyHBQsWGBQWFsLCwgKRkZH6SqXytaKiIj4lJUUHgB2ADrLdgQ504D8LuVzOdHR0jvbs2XPghAkTdNp0Jv4PICsrC7eOHmULoqOh/8MPbbsP14dM1j6nUVEkcqN1IN6zhyrcz57Rg1IrmX7lFSIOJ08SUZs9u33EsAVIJBL8fxhGyjgO/T75BA5//IFN+/czURSbJ9uiSARMoSCZcH0YGFDWfutWClKnTGnRwCkmJgbGxsa1vY7NgjGSlu7eTYFJW7hyhY5P+51kMixcuJC7fv26eOTIEfbKK6+gWXl+XBxdt4sXa9eScOAAzv/jH4L91q2c7zffwGroUPCpqRjv4sJalU0ePUpB+vnzdePXXF0BAHeMjISKoiK+r0JB/84YrauhQ+mPtXXD4K5vXzqXz54RKdy/n1oVXnmFqs/nz0Mmk8HS0hIjRoyAlZUV4uLikJaWhrt371L/85MnEPz9sf3bb4UnubkcAKxYsaJurFBQUPMOvd7eRJBqvAh0e/fG2LAw8ZGLC2yLi5n/4MFIsbPDrmXLoNJogI0bERwcjP79+0MikYDjODBnZzr2xlAo2nTy79mzJxcRESH2r290lpxM43wiItq35xkjEqinRwTp/n3kduvW0OzttdcarJlmUX9sVT3USP6ZiYkJorduhfqVVyALDaWEXH0YG1MVq14FnfP1BfvlFxT+/rsQtGoVH33uHIb99hsAqo6VlZWhU6dOtXtQEATg4kVwP/xAewxkMqivr09VIT09IjMJCcDnn0OZloYchYKHnh4qKyuFJUuWcLkXL6LboUN1x/XVV0BCAkr37kVOjQ/FTz/9BFEUYWxsLA69dYtZm5rCasIEJCUlQa1WM0tLS/TRmkdVVBDBDw6m5EbPnnS/lErp5xMmkIRaEGjtbt8OODqCE0U45OeLeXl57PTp09DT00Pv7t3pdUOGUDJm06Ymvb2VkyZh/7VryLOywvxFi+AQEkJJv9RUmJaWwmfkSHJzDwqiJGl6OjBsGOaOHMmEjz6CxNAQ8+fP5zfWjBQsLy8nKfbf/073rsmTaR9KpVRxXL2a7vOGhuTnoNFAc/EiKqRSCBYW0PnjDxwLCBA4juMuX74MDw8PmJiYYJCuLvj9+3Fk5UpRmZXFsvbvR5yFhfBiZCQnMzUFq0neVNS031h361ZnyNWnD63ZxETaf7Gx0PzxBxSvvw4WE4Pi3buRW10NJ1dXREVFCQlXrnCLNm1C7tKlGDthQu29VKlUQqVSQU9PD4yxpvdyrbqkpu0jJydHBIDAwEAGAP369UO/fv3wxRdfCNG3b3PKzz4TTUNCWI/Tp3Hy8WOxoqKCAUBqamqze6MJgoJIBdYStm6l6rdSCchkEAQBmzZtEiQSCRs8eHDDBHpWFt2zt29v/TOVSkqUPU+fNMfRc2DWLLrfPCfZjoqKgqmpad3c8ZZgaUkVeZWKVHa//06V+ooKIt5/MTO19sLAwADd6iduW4CXlxdu374NLy8vtDkP/p8EYwwmzYx4lMlktUn+wMBAHQAoLCyERCLRJCcnX167du2Cjz766OifclD/z+gg2x3owF8X/jo6On8Zog0A+/fvh7ejI/RPn24/0T55kipt1683HDnTHB48oABs5EjKimvnU0ulRIiOHKFeUYD+WxRJerhyJT3YQ0PJGKmVvuyWEBUVJejq6jKO457fneVfQUIC0KULUkpK0CLRBuh737lDMrjmIJUSgblxg15bXk4BdL2qXXV1NaKjozFjxoy2v+OECW3PTgao6vLBB+QU3wgDBw5kWVlZmi1btvCrVq1q4HiNtDS6br//Xke0BQG7Tp0Sypyd2Su6utB5912q4EVGAuPGURDWnIGQQkHBWU3va2NwPM80UikFgEuW0Lrx9qYK08GDJMF95x2S5Pv701oSRapMHz9eF5Bv2ULHoE0E1ezLfv36oUePHti2bZt48eJFFh0djUmTJmF3SAi48nJu/PjxcHFxqXNiVygoYdRMQCkIArKePkXZ66+LfTMymBgTA6sHD5hhTbLCzdsbXQcNwszZs/HgwQOcOnUK4eHhCKvnYu/euzeyMjJQtm4dhg0bJg4aNIhOypEjTavd9RAeHo74+HhMnjy57iSKIvW/zpv3fMk1gGTQdnbAhg3ofeEConx86ti1qyv1fi9bRqZtjbF8OSXX6pPU+sjMhPd33+GClRX2vfgi5jc3fx4gxcOdO0RIa6BjaooUmYx7OnMmBpeUiOIHHzA2dy52R0UJNSZ64vDhw5lMJsPPP/8s6MbFcXOCglBdWYmrV6/iOo3cwoABA4RRo0ZRAqVPH2DHDjwODcXC+fNx09cXw1at4gwNDdHVzY0qtsXFRMyDg/Ho+++x89ixWmduDw8PsUePHiwjI0OsyssTT5aVcWZHjiA5ORk6Ojqsa9eudd/J3Z2IYUICyeU1GvIu+OGHWrMrHDxY5xheA8YYXnzxRQYAYWFhCA8NFXvPn88wfTqRnDlzqPrbaA8l5+QgKCwMBlVVEObPr/NW2L2b9mXXrmRodugQtfj06EFKl8OHwc2aRfty4kTo6ekJ/aytOZt336XKvURC66NHD+DTT6FSqZBy7x45Lo8YgQfLlyMvOBgqlQrXAgKgqaiAbU6O6JmdjYKyMrZy0yZc8/CAet48gDHIGAPc3DBjxgyueu5cqBMTkZWYyO0yNUWvp0/Brl6FKIoIDw+HRCKpS16AEi3lu3aBrVqFmAMHYGFkBJ1r18TbvXsz1r+/ULpjB5uwdy87HxSEHF9fTJk0CZUvvADVH3/g9OnT6Nq1K86dO1dLgmU1xNXBwUEzdepUvvbep9FAvHoVUbdu4erVq2JZWRkDakaz1SN6FhYWYll0NHpcuMAeL12K8gED8OTuXUgkEgQHB8PGxqZ9rPD48bZHU/r40DN340ZkZWWhrKyMa2Bcp8XWrXSvbO05Lgi0Bn766fmJ69tvEwn+8kuSlbei0KoPURTx6NEjNrQdEwJqIZWSAgeghNz339NowshIUjS159n3X4jRo0cjNzdXvHjxojBz5sz/98DS3Nwczs7OfEJCgrFUKv1rzGv7E8D/o9Hcyg50oAN/DVy5cmWup6fncBcXl79EqjU7Oxvp589j5i+/gK1a1XKvVmMYGRG50Mobm4O2mn3oEL3uxRebmqT07k1EYeTIur5exsgk5t13qWq+YQNVHoODKViv35PYBo4fPy56e3tzf6qpXHO4cgWHLSw00Q8ecMOGDRPt7e2bssX0dKoYffxx2wGIrS311J4+TQG3uXltT294eDiUSqUwatSotsm2sTGd3/Bwku+3hLQ0qnQsXtzknxhj6Nu3LxcfHy/IZDJW6ysQHk4mQYcONSCcFy5cQEZGBluweDEznDSJiMSoUeQsnJxMVfDGkukffqDvq5392wzS09PFyspK5qYlZIzR+rKxofW0cCGdp8JCqq7s20eJm++/p95jbV8bxxFpevllkiHWG3PG8zx8fHzYlStXxLKyMhYVFYWhZ89iSmAg7EaPhk59A7vUVDrmetX+W7du4eDBg8KFCxdYfHw8Eq2tmVVamnjv9GkxZt480W/tWgaFAmzNGhjUXA8TE8OYzhcAACAASURBVBMMGDAAQ4cOhbm5OUpKSlBeXg7J3buY98sviPTzQ0ZGBvPz84OE5yH+9hvShw5F5pMnaEDeanDkyBFhwoQJrLbtQaEg9/6QELoO/wyMjIChQ6FSKGD/1Vec6Ysv1gWyhYW075tzL7e1JYLcuFojilR5DA8Hy8qC8fz5uJGdjfj4eMHT05M1SUz270/rt16SRk9PD5GRkVAaGUFn6FCWEhoKx6+/RpSuLgsYOxb3UlKEsLAwLjY2VlQoFDB7+lSMy8pip2muuxAUFMT8/PwQFhYGpVLJag2GeB6no6IQZWSEQVZWotXVqwyOjrR+HB3JPO7zz6GSy/HThQvo06cPnJ2d4eDggDFjxjALCwu4WFgwu1WrWKevv0b2o0fqgoICztnZWUhLSxPOnTvH9ejRg5JW1tZkGPngASldPD2pv1hfn6rBjYh2Y5jo6OBmeDjzGD0assmTSQmxfHmzrTnW1taoKC5GZVISHnt5wbZnT9oL7u503338mKqnCxdS0sHVlSr+3t5EzO7fBw4fhvOBAyy1pASGqaniWYkELm+8wSQ1xoQPHjxAbGwsQkNDkZ+fr852cRHSunQRC8vKWHl5ObOwsMDs2bMxZOpUZr1kCSurrGRXAbjPng37+Hjai+PHkyR93TpIPvkEtp6eCAwMRKFMJri99x6LqKhAXBEpVa2srKCdpQ0AZ/fvF48nJrIkV1c8EQQxKSNDLLKxEWf06cP1W7KEec2cyXT8/CCxscG4/fuZ6Zo1MHz3XRhYWyMxMRG3bt1CYWEh/Pz8MG3atNqe66SkJJaTkyP06dOHA4CcvDwc6dpVSEhIQI8ePaCnp4cRI0Y0lD/fuQOXJUu4CF9fmK1bh/jMTOH06dOsoqKCSSQScfbs2U0NGVvC9Ol0blrrPR85kgiyVAqO43Djxg34+vrWOaNHRpKkfv36ZpMxDaAdufXWW89Ptrt0oWMZN472fTv7iRljiI6OhrGxMU2ieF50705rV6OhpHFUFD1nZLLnGs/23wKFQsEyMjLQpFXo/wEJCQniqVOnSgRB8P74448v/H8fz5+Fjsp2Bzrw18V/vsraDKqqqnDixAlNWloaP6x3b7A+fYhwtIWbN6k39tGjugxyc9Bo6EHHcVQBb6mXWCKh6uNrr7Vc7dI6MmdlUYVXIiESZmNDlbl6KCwsxNOnTyGRSJCUlITS0tI6MvafgkYDcedOFPTqxQ2dPh0DBw5ser0//xw4cIBkmu11UdXRIXOzs2epbzMsDHj7bTx48ACGhobtX1NRUSQnb2GUEwAiMjWVvpbg5OQk3rx5U+Pt7c1zV65QhXX7duoPrcG+ffs0mZmZ/KxZs2CqHafk5EQ9k7t3U9/l4MF0Xc3MaN1ER9OxDRjQagDIcRwTRZHkjTExVJl79oxUF3PmEMm4f58k5qdP11XRu3QhQnP4MPWNAhSAHTtGMtczZ4AxY1BUVISIiAhUVVVBrVaz5cuXY+vWrSIvkUDS3B5etYoqk++8g/j4ePzxxx8ix3HM39+fubu7QyKRICEhQYPISOYXHc0FODgQ8a8xwGr+MpD8FABVhxYtQoivL7766ivhxIkTzNvVlT3S08PFkycBxhoQDS14nheLi4vrWgxCQui8rFjR6vVtE/r66DRvHo5fuACn0aPBDhygBEq/fqQSiI0l4qZFbCwF7RMnNn2vhQvpGsbEAC+9hN5qNeKSk8X09HTu0qVLGNl4FGFlJfX+1kui6erqwsvLC9HR0UhITIRRcDC+6NcPw65fx4Aff8SADz7gy7t1w5UrV9iQIUOYwfr1UJiYoOill2Bra1vLIAIDA1loaChu3boFtVoNoEZ23rkzKiZNoj07fjz1un/0EbUnlJbiwYMHUCgUsLGxaSp7vXEDcHWFa8+ecO3ZUxIVFYXQ0FCOMSba2tqKx48dExYOGsTj11+pmp2XVzcfGyBy1Y52GL2xYxEklUJv3bq6xE8z6hQtOi1ejEfnz+NWaCh8tfJgjiN/AwcHUo306UPfd/hw2pfz5pEaZOpUIDcXTxmDZV4eBI5jVTExuHDmDJxcXCCKIo4ePQojIyNNz549MW3aNLrRLVpEya5mkn3V1dWaJzY2fPrDh0KPHj04vPoqtV5cu0brv979YOSoURzeeAN2V6/iqbMzzMzMhHnz5tUxQY0GgXI543r0EEcdP85A65/e4Ntvyaht1y5I/P3RC6gzAYyOhtevv+KBm5smURR5iURSu/60MlqpVMoOHDjA79y5U5RKpUJuYiL/2nffccKTJw2VPgBVhRMSAAcH8EuXolffvjh/4QJUKhVnYGAgBgQEMA8Pj+eLCTIz235Nt25EjidPxuG0NNHKygq6urp1n/PkCa2ztnrTRZGIeWTkP9fSpadHrvi9etE6jopq9zPP0tJSU15e/q9Vam1sKLbQaCjWOHSInm1VVf+S8epfDd26dcO5c+e4ioqKds/5/rMQGhparlKpVgJI+X89kD8ZHZXtDnTgL4pLly5Jy8rKXhgwYICstbEMfyZu374t7ty5k1VXV+P1oCDm/NNP5IDd1vFUVVHfn5NT61XRS5eoT+q990hO2haJt7Ul4uno2HrvqbExsHQpBYNnzlAV3sWFKt5z50LgOGwkyZwmOTlZ1Gg0bNSoUcy2jX7WfzvKy/EoMRFXjYzYqFGjmj74tAR71apW5/m2iO7d6Vzdvg2cOAG+WzckPX3aPKlvDp6eVLFWKFoOevz8yFyoFem+o6Mjd+vWLVaxYwdsr1xh/N//TtLRGpw+fVq8d+8et2zZMjRx1XdxoQA+IICqeAMHErH45hvq7XznHQp+AQpWU1Io2ZKbC+WmTQg7f16w27GD8927FwgOBrdyJZjq/9j77qioru7t59wZht6liQIiXXq1IQRF7BobxJ4YY0kxiSaaLKMxplli3hTjaywxlmhijb3TxEIRBATpRXrvdebe74/NUAQR86b9vuWzFksZZubee+655+xn72fv3UpjI5ORcffSS5S+YGZG/7e3pwJx779PY3DwIEnKPT1pTqmoENFZsABwdMTJmBgkJSVBT09P5ufnx5mYmGDkyJFswMsvM2Zj093wtLICxozBheBgXL9+HZaWlmzhwoUYNGgQk0gkEM+bB6NHj7h+P//MxNu3g5s3j8h+H3LyANDx9u4FzM1hYGXFwsPDURwWBpfsbJbp6CgMHz6cPV706OHDh0hPT+eSk5OZlZUV1M+eJfnpggV9UrFIpVIwxiAIApqbm7tVuy8sLMTNwkLBe/t2hmnTaD45OQFFRTTeb77ZcZyffqLnXF4gDaA2RVFRlI//zjvt9R84joOamhqLj49HXl4eBEHAoM5RvBkzKFrr6trlfPT09BAZGQme5zFjxgxUVFdj4tat4HR0gJwcSPbuhWVgIBT79QM3YAAU3N2h8diYDRgwAM7Ozrh9+zZV+ed56JaVoVlREQYZGYLZo0cMhw9TC63SUpJq29pCe+BA9OvXD2fOnIG9vX1X0pWfT3Ow7XnX0tJCZGQkBhobs/H5+cxwxw5Ox84OSbm5sj12dpxHdDS4adPA2pRAgqEhSisq8PWdOygvLxfMzc1Zl3tRVYVru3YJ11VUWM7IkbKhAwZwcHAg6ewTejwDQLMgQPLFF/ALCcF3zc2IefhQMDQ0ZKpqauCsrclxlpxMTpLCwo7Un02bgDFjIAsKws7KStguX44hPj7o/9tvqMzKkpVHRgr3a2p4VS0tYcWKFSJ5BBgA5ZubmXWkE3WCjY0NV7N/vzDi2DFO2deXnnlBIMfGBx/Q/Pr0U8pZZgyPTExQf+QIVIcOFbKKi7nMzExBUVGRqaurQ4ExRCQn8zE2Npyrh0fXXtceHuSkKyykNaOpiRwne/cCgwaB5ecjuqwMY06eZOP9/KDwmBNLV1cXzs7OuHHjBlRVVYXAoCBOXVsbCp1UMe3473+pLsSHH0LB1xfm5uYICwuDqakpVqxYwYyNjfFMKWW7dpGjW96pozf89hvQvz9CSkp4DQ0Nzt7eHsKJE5AuWgRu+3awvhQ6O3+e8qHle+8fwdix5CDOzYW0f39El5W1dyhQVFTs8frbnDWcpqYm/hSHOceRkmfJEjqXpUsp0q2t3XtxyP8jUFFRQUxMjExDQ4PrtVDq34CEhARpbW3tbAUFhfk3btw47uvrW/uPntBfhOdk+zme41+K0NDQbEEQAmpra40sLCx6bsXzFyMiIkLQ0tJiS5cuZQpHjpABM3587x8qLCTys3w5GSo9obycoq5ffUWGtatr3zzhIhGRtLNn23sxPxWjR9N5lJVRJHTWLLCFC8Hl5AgW8+dzM2fO5FxdXVm/P9Db83/GBx8gq6kJKaqqqKqqkpmZmXHtcuN9+4CPPwa/bh1qVVVRV1fXPRLSF6ioAN7ekBoYQPb229BoaMCAvuRsA+RU+eQTinAuXtzzewYPJjLRw/iVlpbi7t27QlpaGgbdvg2uqIjdsrPjHWfO7HL8yMhIoampiY0ePbrnnHWxmCIdWlok8b56lSJq8gj1kSNkVDo7kxwyLw9xCgpIvnoVmWpqLM3MDHfd3HAjNxehlpZ4aGQEUx8fqL7wAn2npmYH0airo2sKCqJ5bGxM5HjXLop0i8X0fi0tIqNqarBVUMDt3FxMmzaN60L0zp0jJ8T773e8dukSRfanT0dhYSGys7NRVlYGKysrKhollZLTICKCyOjGjZRC4eVFRaT66hB65x3A3R3abm7w9vZmbk1NTLuqCsKkSSwmJkbw8vJiTU1NKCwsREpKCn/mzBkmEol4RUVFVnTqFEx27RJagoKY0uNtxTpBKpVi//79OHPmDMLDwxEaGoqwsDBERESgvLxcuH79OjMxMYGSkhIOHTokDBw4EEM8PBhmziQynZhIaoX167vmSHp7dxDt8nIiO//9L7135MhupFBbWxs2NjaIiYlBTk4O8vPzBUdHR5pIr7/ejWgDZKDLq8iPHz8eHh4elKM6eDCRqowMKgaVnU33fsAAIn1SKTlp8vOBrVuhEBAArXffhV1uLjQCA4U5a9awZEtLDDE2hl5UFENlJRXdqqujyO/t22AXL0JfXx/hubkY4uiILpLgN98kBYOhISAIKIqKgv6RI3A5cwaP9PURYWyMga+8gkslJahpbmZV9fWQ7tqFi0pKKCwsxBl1dUQpK8PcygpJSUksJiYGNTU1vIGBAROJRJBNnQqEhbGsSZPwxrRpHMaOJTLxlHz88xcu8AkSCbPatw/q1tZ49OgRu3XrFiorKwWRSMRSFRSEAY6OjH34IakOEhIoMqitDQQFgVNSQnhkJCZPmQKJtTVUX30VgywtOcvSUs6jqorz4DiOubp2LaI5cyY5YJSVu+4PjY3Axx/jQV2dUGZoyAwPH0apvz80Vq2i51VLiyKx69cDs2Yht6wMGRkZULp0CV79+jG7JUuQl5eH+Ph4oXTHDma0ahV+GzWKmZib82FhYfywYcM6mCJj5Ohat47ScQoLyQnw+ut0riNG4EZiomDVvz8zktcQOXOGnHRt16KoqAhvb2/m7OzMKSsr01h3Xi+vXKF0jbVriai27QHp6el48OABfH19YdhJBdRnyGQ0j9qk+r1i6lSgf39cvXGDq6ypQUVJCX8vORmlZWWsesiQHtNOukAQSB0xYcKz13Z4/KvefBMJCxciee9eRIrFfGZmJn/37l3u5s2bSEtL469fv87c3NzaHXqMMURFRUFPT+9JnT/+GCQSChjMmUNKnDFjSPk0dSrtA/9QEOTPQGlpKZecnMwbGRmxxsZGqKmp/SPn4ezsLHFzc0NhYaFyZWVlga+v792nf+r/Hp6T7ed4jn8pfH19cf369d/LysqCJBKJRmf54t+B+vp6XLlyhVlZWWGQ3Ev9+uu9e6wzMymiPW3ak6uJPnhAhVB4noh2T1Wqe4OeHhkz2tp9Jx4A5Y7KvfMVFchVVORrqqo4i1mzyMD9J6qQvvsu+m3eDF1ra0RGRnI6OjooLy+HVmQkRObmKA0IwPenTuHmzZuIi4uD9x8o/AYAYAxf//IL/8DAgE1wcGCSb78l4tKXDdbSksheT1HV2lqKZvWQjy8IAnbv3i2UlpbC5PJlaGdk4LaVFSvS1OxWyMbOzo6Fh4fDwcGh597cPN+RG7p9OxnyS5ZQpNPGho4/ZQpFSFetAmbMQHZrK4KlUtSpq6NRRQW2Hh6CtY0Ny8nJQX19PaKiohAbG8s7ODgwSWcDXyqlOdY5R1lDg6S20dEULTM2RnsubkQEREuX4r6TE38nLo6Zmpp2VGKV54R3jtZfvUrR3IkTMXDgQBgaGuLBgweIi4vDgA0bBG7XLtb6ySdQPHKEVAOmpkQu33yT5ntkZPe+2j1h2TIyEOWIjAQ8PGDs44Pw8HAhLi4OoaGhLC4uDmlpaSwwMBBTpkxhw1VUYGVigismJsKVlBRmZ2cHZWVlVFdX49atWyguLsa1a9egrq6OHTt2oKampv0Q8grtWlpaQnl5OSorK1lMTAzCw8MhCAJeffVVxhgj8uTvT9XNv/qK7p2tLZHiU6fo3Jcto+J7zs503Z9+Su95AtTU1GBlZYV79+6hoqKC+cojh6tXA/Hx4IcO7VKAMDw8HLm5uQAAT0/Prjn1CgpEeC0sSEFx+jTds/nzicjp6dHP1q24MGAAcoqL4b5kCRynTGHso4/gPnky9E6cYEhOpnzqjRtpDr/6Kq2Npqao/fJLDA4OhqmVFVhLC5Gi1lYq5jZ/PnDiBKSbNiEsJAQtra1o/OADKPj4ILm6Grdv30Z9fT1TU1MTgj76iNWWlKCxvBxJNTWCY2GhMH30aOY+fTpGjRoFnufx8OFD/t65c9yjvXtxyc4OcY6OmDljBrQEgZ7vJ9Q66AwlJSVWevYstL75BkPOnYPn7t1ISUsTMjMzWWJiIvKSkpjhzp3QamgAx/OkBpkyhQjJsWPAN9/AMCEBajExUJRISC1jakoOKxcXUo4sWUJzVlm5I4IoJ4rDhtG/UikR3zt3YFBezkp1dYWLkyfzd+rqOF1dXejr66OxsRHlMhnU1qxB46NHELm746KKCrTGjhXsvL2ZhrU1nJyd2fDhw5mBWIzcfv1gPWMG/Pz8WEhICKejo9O1UrOaGpHjykq6ns8+67JfNDU3s6tlZRi+Zg04qZTI+NCh9D4bm66KrcxMcrqsX9/24SaSKhcWUvpKp7UoLCxMKCkpYVlZWYK3t/ezM7vMTIrsd57bPUAQBJSVlUHF0RFNMhkGKypi1CefsJhp0/ghS5Zw8gJwvfZkPn6c7t+6dc98mp1RVF6OyJwcPqqyko3Nzobf0qVs2PTp3MiRI+Ho6IiKigpWWloqqKmpdSkaqKuri4iICGHEiBHsTw9MSCQ0J5csofXo4EG6f+7uZL/8H6xgXlxcjAcPHrDk5GQhOjqaPXHv/YvBcRwUFRXB87w4KytL58aNG7WhoaHZvr6+rX/7yfyFeE62n+M5/sXw9fVtunHjxtXc3Nwlw4cPF3erDvonQiqVIiMjA3l5eYiOjhZOnz7NtLW1pTNmzODY6tUUYfL3f/IXyI2nCRO65l/KUVNDRCk6mqSgj+VQ9xkcR170vLyej9MXuLqiRF2dS0pNlbmPGsVh2DAyjh496ih69Vd7rZOSAE9PcCNGoLq6GvHx8SgsLETt8eOw/uUXKCxciLMPH/IVFRVMQUEBc+bM6bGdRm/Iz8/HxYsXcfbsWQBgK9etg/KwYTSGCxeSka2v3/u1amhQdO/qVTIuOuPmTYp4r17d5WWe57Fnzx6htrYW70gkzMzMjOmvXs1cZsyAr69vt+g1x3GIjIyUNTQ0cAUFBQIApqGhAVZdTZEtDw/KZZXJSKZ6/DjdL39/cgL060fX0Sn6FRkZiZKSEqxbtw4vvPACbG1tmUQiwb1799rf09zczHJzc+Hs7EzndPw4FQH6/POex2LIECIntbWUQ+3tTQR/4kRYtLay+IwMVLa2dkRVJRKKWmlodBT7UVZuLzLEGIOenh5GjRyJ/IQElPfvzwafOYMzWVlwPHGiqzNJQYHGe/Jkilo/LZdx5UqKoMvzns+dA0xNwQYPhrW1NauoqGDjxo3DxIkTMXLkSCIXjY3A+PFQcHSE3YoVLD09XSgtLRV4nmd79+5Fbm4uMjIy2ucrALz11lsYN24cRo0ahVGjRsHNzQ0uLi7My8uLubq6oqamBvPmzcMLL7zAuqxfHEfjZ2FBRuzEieQMs7WldeTjj4lgzZ/f5z64BQUFSExMhJGRUUdOekoKMuvrsTcykr9+/Tq7e/euUFJSQlW/GxuZuro6fHx8elZUKCvTPdi7l5QUw4Z1RJ4NDIClS3H//n2k8jzcZ8yAqooKzaEPPuh4Ll58kRwdUVFUzM/QEAgIQLqzM843NMDD2Bii0FDKuz56FEhPh+zrrxGtqChck0pZio0Npm3eDGsXFxgZGcHe3h4JCQm8sbGxMHXqVE7XwAD69fWwiYvDyM2bmcWhQ0yprW82Ywympqbw9PTkBvzwA/Ti4xHv6QkTU1PBbN8+KF2/zsqXL+81qiUIApqamtDU1ISw9HQElJdD7OwM+PvD2cODPXjwgB/Vvz8bc+oUJDk5YCEhkAwfTg6KHTtIFWNiAqio4IyzM2+kpsa0ZDKqBbB/P5EWxkixNHcuzfFffqFce6mU2mSNHk3z5coVWrPq6oCPPoLym29i0Pz5bOiwYVxcXJwsNjaWq6iokJ06dYqLjY2FpaUlvtu/H0wQ4LF6NbxMTRlWraL1wsoKCAiAyuTJMFy0CEZGRhCJRLh3755QUFAgODs703y9d48k6m5ulEZy6FBH+klbmomxhgbir1yBg48PJKam5JjjOFoz09I62lbKHXRyoj1/Ps2J//ynR8VYdXU1MjIyGGOMjXqCQyQ/Px8pKSlQVVVFbW0tkpKSoKKigrt37sBg4kTsr6xEdmMjb2dnxxobG5GVlQUdHZ0u8/3hw4fYv38/oi0tUaWpCVVfX8Fkzhw2PCiIMzQ0hLKycnvKwxMJWXY2jY+9/RPnUl+we/duyOrr2SvBwVD98ENa/wcMAGMMysrKsLa2hoKCAgsJCYGHh0e7rFxHRwfBwcHMwcHhjynA+gKRiJ77kSPJgaqvT4ojBYUnq/j+pTA1NcXQoUNhaGjIHjx4AGdn538sug2Qs+TevXt6LS0tgRzHiX18fK79YyfzF+B5gbTneI5/OTZs2JD8+eefN9bW1io9K9l6FiQnJ+PkyZNQU1OTqampcfPmzYOZmZkYNTUkM+ytQMilS2QQFRX1XC07OJgKTjU0kCH6v1b4DAigH2fn3nPCe0F5eTnPaWtTZWmACuFoaFDP6MmTqU1PU9Nf1wLk2DHKA5swoT1X2yA6GnWamrj3xhtQrqlBSkpKOzu5deuWzNTU9Klae0EQIAgCTpw4wSclJbV/fsWKFR2tp6ZPp4hSYCAZR++807v0LyUFuHyZ5kFnjB5NEZnH0NzcjKKiIuYaE4N7ZWWC7J13mJeZGXrrsu7t7S2KjIyUqSoocFHnz8Pb1hZDV6ygfPATJ0hW7+REBu7atRQNkreBewx1dXVISEiAg4NDlxw/Y2NjLF68GHv37gUATJ48GWfPnsWmTZvAcRzGVVbCyda21/OEpyc5jq5dIyN57lzUGRoi64cf+NmZmZxs+fKurO2HH8gYGzyYDNKAAPq3E/HkPvkE837+GcjORqYgIP9JTjUfH5Ivl5cT4WjrI94jJkwg8iyHllZ7ReJ+/fpheqccTI7j6L1nzhBZbCu2NXLkSHb48GEWGxsLIyMjWWBgoEgueT5+/Di8vb3bi9n15AjU0NDArFmznnyOADlN9uyhPOXiYup3+9FHdB5GRs+0Vsg7CRQXF+P777+XCYLAWqqrGZqbmf+kSZy1tTVSUlJYQkKCrKWlRQSQkdcj0f78c4pg/fgjFQmU925/zCAdOXIkkpKSEPXbb7yDpiY38NgxSmkYMYLe8Pvv5BwsK6Mq9G3jZWxsjFpNTeR5eWFQYCDdV1NTQCxGnY4OcpqamJuNDWa89BI0OkmONTU1sXr16q6DPXkyOaESEyn3tjOys4GdOzHg6FFU1tfD6NQpoaysTCjJy2MXbGzAnTolLFu2rH0AysrKsGfPHqipqQk6OjpCTk4O19LSQn9UUoLie+8RYYyNhXjkSLzZ3Mzho49Qa22NH5Yuxfu7d5PUdtUqUibo69M9njULNvPnw/DCBRoLxijan5tL511RQZHY33+n74+LIwcEx1HE39qaip/NmdNR9bwTVq5cKUpPT0dkZKRIQUEBra2tOHPmjACOY7qffw4rExNylL39Nu1TNTW03nf+np9/xmsvvMCu/PabUN+vH6SpqdD99FN6dsaOJeeLigoR46YmWhfr69G6YwfmHzqElEWL4BYURHvK9Ok0nz/5hLpkHD1Ke8ulS1SB/5NPKArcC8GxsrJily9fxugenE2JiYlITk5GUlISAOqGIAgCFegDAEFA7GuvoUZTE6UpKdyePXv4goICjjEGBQUFaGlpCQ0NDWz06NG4desWVFRUoJ+RgbmHD0O0aBFDp9xzd3d3JCYm8sHBwcL06dO770HXrtG9+x8LKdbW1qKmpgaTXn4Z4qtXaW/y8yMHTKfcYk9PT0RFRcn27dvHhg4dyjk6OrY/w/Hx8fDz8/ufzuOpYIzmA0D3tbKSHIYSCTlr+9iy7J+GkpISwsPD4ezszBsYGPyj4XmJRILXX39dcuLECVl2dvY/m0j+F+A52X6O5/iXY+PGjRocx6n9Zd7aNvTv3x9isRhisViwt7fvKKD05ptkfHt6PvnDr75KxGPmzK6vy2RU2Cg1lYzV5cv/nJMVieiYP/1E0fJnhCAIuH//PjdjxoyOF+WeaUtLqt7NcUTkZ8+mIj+lpU+ulP7sJ0CGdZv8mud5GJaWYsKtW6jYsgXXq6r4utBQwcPDg8vPqwCwEwAAIABJREFUzxc4juMyMzNFMTExMDc376jW3QOuXr3K3759m2OMcQCwfv36nsmEigoZtt99R9EVT88n5+OvWEFEu6qqqyTypZcocvrSS13erqykhA+VldHs4YGcYcPY75GRggfPs96UGZ6amvB84w1Rk7s7shobMfjTT4lEaGiQVD00lOaiigpw+DBFlp5Ats+cOQMAqK2t7ais3YYBAwZg/fr1aGhogFgsBsdxSE9PF1T27WOR5ua4AGBCVBQ8eotUaGhQocDMTMhmzMAdU1OhbOlSOLu5QSyXecsdG1FRHZ9TV6donzznmOeJVLzzDs3jmzehtnw5Wn/8sVvf3XaoqBCZi4ykiv9PwogRpJ4AaL59/HEHYewJy5bR8zp7dvtL5ubmEIlEmDlzJmxsbLoY2TMff9b/KHieHAfffUeRY0GgCODRo8+sLlFSUsKcOXPwyy+/wNraWqSkpASnQ4eglpgIbtMmAICzszOcnZ1FAPDrr78iLS0NW7duFRQUFASpVArnnBxOWUMD2Xp6sF+7FvbXr0PUS9skIz09LB06FK2LF3P3nZ0x8Ny5jj+++SY5pKZNozoTCQn03GdnI9nGBhzHUUFAxiiCfuoU4OCAi8ePC0opKRiSl8dEv/5Kc9/fnyK/OjrdZascR45HudQ+P58cBACtZQ8fAhIJtBUVsfillxgCAhh/+DCuHDiAmb6+7YPM8zyOHDkiqKqqMkNDQ9bU1MQCAwNhYmKC6OhoWkfu3iVCf+IEEd/SUmD6dFwaOhRaFRU8P28ex61cCWZqSuv0pk107bm5KJg6la8fPpzzr60laf22bXSvO6ccvf02tRMsKKBo8qlTdKzQUPp95Ej6KSqidamlhboVuLvDYscOREZF8TPPn+eOzpsHp5AQ2Hp5QcvJicjtzZv07A0dSn3CIyLo35MnKYL93XdQefttTFu1irtVXMw/unaNCzxyhJ7P3Fwax08/pfM0NAQuX0ZeXh72amrCaPNm/lUXFw4HDlCtB8bImaqgQMTcxoaKKi5bRp83Nu7onvEEqKqqQl1dHQ0NDd3+FhYWxpeWlrZPBHm/9nnz5kFVVRX8gQPIuHYNN/z90draiqKiIm7cuHFwd3dHSEgISkpKmJqaGkJCQmQtTU3sFZGI0z1wgJ6/5uZuxxs7diy3f/9+FBUVdc8f3737j6vMOiEpKQkSiUSwtLNjOHaMcv+nTqV0k07rEgAsX75cdPbsWVy7do0PCQlhrlSXgaWlpcHX17fntfOvgFztZW1NTsMffqB6FLa2pNCIiSEHW+eUnn8J8vLyUFJSghkzZvwrdPCKiorIzs5mUqm05Z8+lz8bz8n2czzHvxgbN25UlEgkJ+3s7GQSieTJpWL/BOjq6uK1115Dbm6u+PLly1BUVIS7mxvJVZ9UHGvfPoq25eZ2NwBjYqidyNq19Pk/Uk27NwQGUpQgPLzXStg9ITk5GQAEc3Pz7tY8x3UQ7/v3Scp4/TpFKurqyCizt39qHlyvuH2bDNZFiwAAJsnJWBoQALz7LrTNzTEY6DyYDAB27NghO3funMjPzw8ODg7Q1NSU52PC0tIS5eXl0NDQQEZGBtoieJg9e3bPRLvzta5cSffqyy/JGPT37zmPfuVKIm83bnS8Zm3dPX9YEIDDhyF++BDiL7+Eja4ujkdEsOLiYnSrfFpVRUa1hgaRhcxM/BQYCI3+/WW2iooi6OnR8a5cIceAPI+zvJwiUxkZPeaSBwUF4YsvvkB2djZrbm7umo8LKqgjVxM4OzvD2d6eCe+9hz1tudUXLlyAi4tLt4rajyNPIsEFf3/errkZsyIjOZG3NzmA4uKoZRtABtdPP5Gk9JtvqNCbHAcPEmHIz28fB30AYrFYyM7OZuZPMtC+/ZYi0XfvkkOoJ0dcQgI5QkpL6fvt7bv3KJfj1Cmq7G5h0YXgchyHYcOG4cSJE1BSUhIYY1BXV+c1NDQgk8mEpqYmVl9fz1paWpi1tTXv5eUl0pO3SOsNra0Uub52jQhUaCgVHwoMpHvNGBVEi4kh8vUM0tSMjAwAgJ+fH6karKxoXveAxsZGyGQy2NnZQUUigZauLmewbh2qJBK+fsUKFpqUhNzERGY5bBhsevqCuDjg44+RZmzMxwUFcT4LFvDo/OxKpR1jrq0NobERDx894o1v3OCueHpi6tSppDbJyyOH1cWLJPXftg33GxrYfQCaHCe8vXo1w8WLNGaXLhHZdHYGHB07FCmjRnXUwLCwoIj2smVEVDuv3/fuAQYGSKiogEwmw/Xr1wVlZWVmamoKmUyGiooKNmPGDNg/NuZDhw6l/5iaEnFMTSVVy+zZwMsvI+3zz6GmpsZdWrQINebmwqi33mLGr7xC87SpCSgpgbqaGlfc1ETnFhxM80Asbt87eJ5HQ0MDalVV0aSgABOehygpieZ4fj4R9+BgcgoVFtI8MTGh85o4ETAywkArK64uNBR6enqw1dNjWlIpHefiRXr2rl2jKHpFBalmAgMpegpQihOAqqoqBA8axFnU1ws4dIihoYGcA4GBtOaFhrYrF/r16weO49CvXz+BMdaRWw5QZB6g516O33+nOb1qFd3zTZueqBoTBAG1tbVdq+sDiIqKgqmpKVdaWorZs2dDKpXCzMwMampqHeu9lhb6+/rC/f33UV1djbNnz/IXL17kgoODBScnJwQFBckfdBFiYmiteP11WpOyssgJ1mlP79+/P2xsbPhdu3Zx8+bNw2D5upuRQQ71/6EoWk1NDQoKChAcHAyZTEbnVVtL9RyuXaN5PHkyKQvawHEcpk6dCp7nuYiICDx8+JBXV1cXKioquG3btgkrVqxgf7ksmudpbsfHk61z+jQFAeLiaG8DqGaDkRE5Ew0MaO9PTaV94eRJSqUYMoScxw0Nf2tf78zMTOjr68t0dHT+t5Zpz4DKykqoqqqiS52UTrC2thYSExMXf/rpp6J169b14h3+v4XnOdvP8Rz/QmzcuFEUGho6WSKRnDQzM7OfNm2a8t/hqVVVVUX//v1hZGSEM2fOYPC+fUh0c8PAJ1X+XrWKSGfnqHdLC20kR4+SUeHv32WT/NPAGJG0Xbu6R9Sfgl9//ZV3c3PjHjdiukEioZwxCwvaTBUUiBSUlZFH+9Kljv62z4L//pdI4qhRZPRNn065nT30PpbD09OTq62txa1bt3D37l00NTXJrl69ykVHR+PmzZuIiYmRV1cWFixYwOLj42UaGhowMzNjMpkMjY2NT9zg0L8/GVv37pEDRVW1uyfe1ZUMTHlUo7WVzrezlJnniQimp1MESFcXhw8fltXW1jI/P7+OFkRXrlA0a9YsItNLl6Jm2TLsPXGCr2poYHPmzKGqvY2NFNlYtarrcRijc/7pJyKJnZCUlITTp0+jtbUVtra2wpAhQ3ovmMPzwK1bYNu2wWniRNjb2yMrK0u4evUqy87Oljo7Oz/xwdu9e7dssLs757d0KcclJNA1HzhAz8OFC0QSBIEIxdChlKs9bx7ljB44QPf81CkyJDsV+6mvr2ehoaEYNmxYz84Sxmgujh9PEsae2gj170+RUA0NIvIGBj1Hn06eJMfAa6/12NbG3Nwc7u7uMDQ0ZJaWlkxZWZmTyWSciooKp6+vz1lZWTEbGxuWkpKCsLAwJhKJ+IEDB3Y96ZYWIv+hocDWrWRsRkeTo27OHPqxtqbxCAig5+2ll6jjgJUVjU9REb2/l3tZXV2NEydOwNzcHM7OzvRiaSmlQDymzMnKykJYWBhEIhFeffVVNmjMGGY0cCDUv/kGekFBbPDgwcxLTY0N3LkTe3V0EB0dLUtLS2MNDQ1MW0EBkq1bAQ0NNBsb46BUyibOnQsHB4eOk0tMpJxcedsqKyvkNzTgUH09S1ZVhR3HyXzmzqW5VV5OjqyZM4HYWFjOn88Gu7tDWVkZGZmZrEhJibdbuZIxDw9yLJqYkBplyxYy5E+f7qjD8MYbFMV99IgisbNmdYzZuXP0bG7ZAn19fQwcOBDp6eksPj4eXl5eEIvFKCsrE6KiogQHBwf2uJMKMhlFo5cvJ/lzURGRBZCzNjU1VRZw9SonMTBgZwsKEBISAtNZs6ApkwGbN8N471521cZGiC0okF01N2d3L1xgbtOmYWddHa7euYOQkBDcCwtDyeXLsNy0CQpXrkDh+HFSsJib03zfto3UArNnk7NJQ4Oub8sWYPx4PCotRbiqKqqkUtS6u8uGLFnCta/be/bQdxkZ0Rp+8yY5cjo5a5ubm/HDDz9Aq6QEo/btY7UjRgBvvQWlTZvIYWxkRPO5rVifWCxGVVUV4uPjORcXFyj11ibv229pv5TJaG4XFNA8Aajg3mPrc3NzM27duoXU1FR4eXmB4zg0NDTg559/RkFBAcRiMV544QWYmppCUVGx61rRtqYrKChATU0Nbm5uzNPTExoaGiw0NJR5e3uD1dWRJH/JElpH5Yobc3MigJ3aMwKAra0tu3PnjjBgwABmaGiIiooKiObOhay6GuKe1qA+oLCwEDt27EBycjJUVFRkEyZM4AwMDGicVVXp+Q8L6yiW+BjkdQnc3NzYsGHD2PDhw1FSUsKfO3eOs7Gx+fP7SOfnk33j5kbqhMJCmj9iMdVycHenZ7mhgVK1Vq5Ee6vDSZNoTOvq6O8+PkTGJRLaE0xN6X5s20Y/c+fS57W1SVF28ya950+qJ1NeXo7MzEx4eXn95WXVW1tbsWPHDmloaCgnkUigpqaG69ev80ZGRl3WmcGDB3OMMWRnZzuHhoZe8/X1ffRXn9vfASYIwj99Ds/xHM/Rho0bN9opKSl9JpPJXtDS0uJ8fHzU7ezseo9O/kWIDw4WBr74Itu9ZAm0raz4lpYWwd3dXeTl5UWScX19MpI7o66ODMbBg2mz+KurW0qlZEC5uFChkj6A53ls3rwZ8+fPxx/uqy0IRKaWLaOo/v79HcWe+vLZffs6qlvfukUS7T5UZa+oqMCePXv4xsZGTldXF+Xl5XBxcZFVVFSgoKBA5Ofn1x6BysrKwpEjR/Daa6/h+PHjfHFxMRcQECB4eXn1Tj5DQ6moT3o6GaadjZVffiHysnIlOVNWrCAjCCDSevYsSbz37AE0NCCVSrFt2zZ4eHhgtIUF5fW5uJDBEBUFWFigoKgIFy5c4AsKCjhzc3PZlClTRBoaGmTIv/kmtcQxMOh+niEhdG6d5N5SqRRffvklBg4cyI8dO7ZvPUQPHKCoVWpqe4E1QRAQFRWFS5cuwdHRkZ82bVo3wi0n9e+9915HX966OiICI0cSwfvmG/o9LY2MJTU1eiZu3KCcv3v3KDr5GHiex5dffomXX365uxqgMxobyXi/ebPnitILF9I9fPCAiNeaNV3/Hh1NYygW99jL+FmRn5+P/fv3Y9GiRTBubqa5NGgQRVYHDiSpfEsLGaSPqwZef51UKuPHk3x03z6SVn/2GTl68vNprkVHk4Fqb9+tXeB//vMfobq6mi1durRD6nrpEjnK5JJ6UCTt66+/BmQyvPXoEbR37qRjenh0Pa/t24GqKtSvWYNHjx4hOzubL4mOhutvv3GNmppC/JQpvLOfn+jcuXOYO3cuLDo//4aGEDZvRtPs2VBWVkZLYyNgbY3/zJsHs/R0jIuMRFVICESxsehvaAgmj4gmJBD5biMvaWlpOHHiBIYOHQrfxwmNVErrz8WLRB4jIymqVlBA0fLOVfAFgRwO777bJe2D53ls376d9/HxYR4eHozneZw+fVqWmZnJ3n77ba7dQZaZSeT2wQNa/9sKjD1emVv+nceOHcPDhw/RHiXfuRPlly7htI2N4Dl3LssvKEB0dDQGP3iAgO+/h9qpUxDp6EB08iTg5IQ76eky/bIykfmxY/T9mzeTY+nLL+la3n2X1s67dzsi197e4N98E03h4fjv4sVYmZUF0Zo1RB4TE2ndCgsjshIfT/Uf5DnjHAdBEHDkyBFe8d49YYqnpyj73j2hKjSUDczOxv6VK/nZs2dz5iYmdG9OngT09SGVSrFlyxZh8uTJzOFp9UPGjSMyde4cpXTIndhz59I53LlDzt229bm8vBzff/89AGDhwoUoLy/HubY0hQEDBvDz58/nenSg8jylGyQkdFMe8TyPL774AlKpFKo1NVh08SIebN8OUxsbmJiYkPy6svKJSrSTJ08iISEBEokEMqkUFklJSLewwIDBg/kZM2Zw6s8YmT127BiflJTEffDBB92dwT/9RGvC++9TBH3ChD4TzX379vF5eXmcgYEBP3/+fO4Pp+G1tlL0+pVXyHmWl0dF8q5fp2fO2Ljr/L98mVRMMhndU7lSpy+Qyei7YmNpXk6bRs4yuXNr7Fg65vTp9N7z54mwf/MNOUrPnaM9s66O1E5PCdC0tLRg+/btgqWlJT9t2jTRM/VwfwbIZDIEBwcjIiICAODm5oZ79+5Bzj+NjY2biouLFe3t7fmSkhJ4enqKTp8+DQAtGzZs+B8khP8ePJeRP8dz/EuwadOmhQoKCjtHjhypaGtry/XaZuNvgKNUyqqjo+FXVSXU1tayiIgILjExUebl5SVCcTFt6HJIpSSL3rePCgt5ePw9PSjFYoq0nj1LhmQfjhkcHMyLRCLWv3//P36CjJFs8VGb03XvXnpNLKb8tc8+e/Jno6PpfBcupI1xw4Y+tz/T0dHB+++/z3333Xey8vJykbq6Oj9lypQed0g9PT25NxlGRkbC6NGjERYWJsTFxQmBgYHcE/O+fXwogrBnD0U8Nm7sIGKVlZQ/DVBkSW4symQUaYuOJkLeZqDHx8XBMTJS8Fi0iGH9eiJM58+TxI4xPHz4ECdOnIC9vT3z8fGBpaVlx7W89VZH1eee4OtLY3jvHhmVoMJoPM9j4cKFfZOB1NVRP21//y7EjTEGFxcXXLx4EQkJCdygQYNga2sLsViMpKQkhIaGyqqrq0Xjxo3jFRQUOo6lpkZOmG+/JQdKYyMZZTNnUmTbyIiiGF99RTnUT+gJy3EcTE1N+WvXrgnz589/sgWkrExjKc9rfFxuXVhIxK24mCJnnVFURPf3s8/IiP1fUVMD46YmjLtzR+AuXmTt0lwXF5oXT0sj+e47ml9KSmQkKinRGvPrryTzlRelOn6cHAzm5h31FBQVAcYwaNAgFhcXB93Oz9O4cfTTCRKJBEwmw5KXX4b2tGlk2HaW/8rR1AS8+SZUVVVhY2EBm82bOSQlQXrzJgqqqphxUhK7cuUKAEBFRaVLazFpaiq++fFH1G3ZAgcHB1laWprIzskJPM9j+Fdf4dK338ryDh1iw86f59SVlCA7eRLl5eUYHBcHdvp0O9m2tLSErq4uX1JS0n1Oi8U0Dq+/Tr+Xl5MD7OpVKjT34EFHAbBdu2huPjYPOI5DQEAAd/78eTg6OkJRUREDBw7kEhISWHl5OQwMDOh7x4yheZSVRdW0xWIiIhcuUMSubbx4Cwsc37YNhUVFvI6ODrOysmIAUBkUhNBr1zB91y6mEReH4vfeg0wmQ56rK6QXLkDyxhvAhg0Qpk4Ftm1D4+TJiB8/HuZywuDlRXJlgNbajRspzSA/n/7fVguBO3QIR/fsEZSKihgnCBTlv3qVIr337gEREWh2cECrnx8ejR3LD0xP52Tu7sgbOpS/bGHBBsXFYUpRkUgUFATL2bMZWlogZGWh/9277ODBg3BxcRGmODszpKcD+vqIjY1Fa2srs3yas+rXX2nuqqkRQevsRDt8mJ7VL7+k1KWdOwEjo/b+6z4+PpBKpUhLSwMALF++HPr6+k9e43ieCGEPLQI5jsOKWbOgPnEifn/7bf7HefM47awsPuTuXW7AgAH84sWLOWhp0Xp1/Hi39ppjx46FlZUVVFRUMGjpUuS+9BL8Jk3CoUOHWGhoKD9p0qRnkuDZ2dlxSUlJiIiIwAuPK+i8vWk/tbKi/UBNjfanPmD+/PlcaWkpzp49y/bv3y9bsWJF35ikVEpz2sODHDxHj3Y4rqysSAG2YgW9t6cWjI8e0ftqakj9sGtXR57+0yDfg1xd6QegQqpyyKXpO3dSZJznac3X1iZiv28f2RTDhlEE/aefAEdHVJ04gdLISKhHRSFu1iyYlZaCHzgQ2Q0N8PT0ZOHh4SIlJSVh4sSJf7rRxvM89u7di0IqpOoMwC42NnYXx3H/FYlEfEtLy5r8/PwtAJrj4+PVeJ7/4PTp01BUVLzQ3Nz8/42M/DnZfo7n+Bfg008/Xa6kpLRt0aJFyn3KefyrkZoKvPceNENC4G5hwRITEyEWi4X5paUiLFnSUXxH/t6YGKpkfOhQh8z478KkSZTXlZXVRfosCAIqKyuhra0NxhiSkpL427dvC0VFRaLp06f/uQVUbt6kf69coZwsgCT0M2Z0zydnjAjI/PkUifoD0f8lS5aItm3bhs59Rh+HRCKBqqoqL5PJ2Jw5c0Rqamrw9PTktm/fjtjYWMHPz+/JG6umJkm3s7JI9jx5MkUXXn+dCGppKW34AQEUQblwga57/34ywhMSUBsRgUsFBVh98yaTFBdTVedOY3D//n2cPn0aw4cP58eMGcO1R9t5no7zzjtk8D0GnufR0tJCck1lZYrM8jwepqbi6tWrgr6+voCuOe9PxuTJ5KSR51d3gkgkgr29PRITE3H58mXcvHmTb2hoQENDA9evXz/urbfegpqaWvfj6OqS8b97N0XSmpuJbCYkUFQ3KIiI+FP60b744ovcV199haampt6lqVpaRDg4jqJ8nRUeV66QI+TQoa6t9mpqKNq+c2ePY9wn8DxFB0tLySB8+BBYuxYmTk7sZFUVqlRVYWxsLHvJweHpEZN794hIHTxIv8+cScbumjV0DIAcQO+9R/MRICdGWho5CyIjUbx6NZLv3gUUFTuUBgAReBcXyhNug9KDB1izeTO28jzW3b/f8znl5VGUWFOTcm+zsoi0f/89xKqqMNHQgImJCTd06FB888032L17N+bMmQNLS0vA3h7cjz9ioIkJn5GRwcrKymBsbCxzcHMT2RkaYsDAgZi9cKEI06bh2xUrZFdqa0X49lsAwMLJk8HX10O7be1qaWlBeXk5116wsjdoaxNZu3+fiPCkSaRs0NQk59mCBT1+zMHBASEhIbLw8HA2ZswYrra2lonFYsFAXZ3h9ddpnG/cIPIuz80NDqa5LAiU+wwAUimS3dyQnpkJX19f5uTk1N7DPjMzE0kuLrAzMYF2WRlkiYnQKi+HY1gYsuvrkf3xxxjk6gq2aBEy+/dHvLq6qH9rp1a7Pj50L3NzSUavoUHOvvR0mnstLVSR3cICnFjMG8XEiNK8vWH58stgOTn0jMhk4BcswN0BA1A4axZvl5rKjrz8Mj/hxx85LjGRm1VTg4Evv8xgZEREydER2L4dbMwY6GVmsqysLMTGxjI1U1Pe7/JlDsOHtxcm27lzJ955552e78vDh7SeBQTQ7/ICnJ3XACMjUmz88ANFL7dtQ8WKFWCMITQ0FABJ1seMGSPo6en1ToquX6fnvidIpdAeNAiYMQMzli/n2qKf3MWLFxEZGcm1tLRQhNnZuWs3gzaoqamRUqGxERCJYDp9OqClhdGjR7PTp08zRUVFqb+/f5+4RVlZGU6cOAFFRUVhxIgR3a/JwoIcEHfukGM1Pb3PZFtBQQH9+/fHhAkT2IEDB0RSqbTnGhxyde9XX9Fa9sortM7s2UOt+9atoz3tP//p03Fx9SrVqRk7lgrwffMNEfCeiPkfRWfFyo4d9K+pKQUAANprWlsBnsc9Pz/h+unTbEheHj8oIYGV+PjwHmvWiFKdnAR+9GjZiPXrxcVbtvBOoaEMly51FEwNCKDnTBA60gv+AEJCQmSFhYUiAC9t2LDhPoD7AI50esvaxz7y4caNGxXWrl37/1Wf7edk+zme4x/Gpk2b5kskkq8WL16s/E9Hs9uhpEQRai0t5Ofn4+zZsxgzZgwrTUiAkaoqMRmeJ5K7fz9FBo8e/dNPo6KiAnv37oVEIhFaWlqYiooKDwATJkzgBg0ahIqKClRWViK2ogJOr7wiWAYHM6lMhvr6euTl5eH48ePQ0NAQDA0NkZmZyTk6OuLFF1/EXzbOY8d2tAQpKCCD59YtkqMeP05jtnw5RZdmzPjDMnslJSWsI0PtiaRSIpF0axF0//59CIIAW1vbvnmwBw2igj6HD1NO77p1FIkvKSEvvL09Gd1JSSTH/vRT8uKfOwfZhQvA+PHgc3ORXVSE5pQUWLflABYWFuL8+fMYO3Yshg0b1vUafvqJCL2razelAs/zOHjwILKzsyGRSATbcePgMXcu09mxA+eam/lBgwYxf3//vntRVq9+ItnkOA4vvvgixowZg8OHD6O0tJTjOA5Dhw6Fv79/r5XVAVDUePJkyiWdOpVkkPHxROJ6cZJUVlYiKysLjo6OEIvFQk1NDeuVbAMkGTx/ngzSoqIOKfScOWQsqah0RDQFgQirsTEZVc8CmYwidMHBFG3+5ReSr69eTd+nqgq9CRMQWFWF0tJSnD59mjt27JgsKCiod7ZdW9tVvj11avf88ZUriew+fEhpKhYW9BMQANy4gbLGRizbsQOZDg7krNHSou9UVycpvyDQ+J87B3z4IULWr4dMKkVxcTFFbx9HXR3N78hIus4tW7rlvNfW1uLbNpLs5+dHhax4HnjxRXCurlAuL0dLSwsbM2aMyNzcnMZJTu7t7YG8PKwQiUQHTUzQ0NDAGxgY4OezZ7mgI0dwLCYGhQMGQEVFBTzPw8XF5en359Qpaj0kN+zv3CFDf8ECUgH0IqX19fUVnTx5sl3qqV9UxA6++64wJTKSaYpEFOHsTPhHjAC+/BIlEydCpa6OevRKpQgbORJOdnbC8OHD2x/euro6BAcHw9XVFTYTJgC//IKxixbBV10dzWvW4LiuLoTbt2G0Ywcq7ez4lkWLmOj2bVbemTAyRuqNzExyBMphYUHS8IYGctD8/DMWLFjVGJj1AAAgAElEQVQgSti9W8i/eJHdUFER5syZwy6mpMhqDxwQ6X71FdJSU/nVbm4cN3s2HE6eZPjuOxhHRJBzRSLpqBI+b177+qCoqAgTExPZlClTRAc3b+ZsLl2CyltvYejQoQgPDweALsqGdrS20lxOSOjo5GBhAemdO4iNikJ4eDhqa2sRFBRE6+PbbwPFxZCVlyNm7VrBesAAVj9kCB7l50NfX58fMWLE09e333+nCO3UqV1fr64mAhUZSSS2E0aNGoXIyEh88cUXcHJywrSdO8mJ/iTs3UtOvLZrcnJyQkhIiHD//n2xv7//U08RAHJycqCgoCCsXbv2yftRaiqloxw8SHvmiBHPVCelsrKSl0qlXFZWFtrVB8nJtJZVV1NKxcmTdN9NTSkinJLS5+/vguLijlQpHx9aC7y96X688cYf+84/ijaCfM7UlE2ZMgXy2iO2gAgLFmAYwNDaKsbw4Xhp6FAOv//e4ZD88Udaz5OTyWH366/dqsH3BYIgIDw8XL7299I6oys2bNjw/xXRBp4XSHuO5/jHsHHjRvHt27e/V1RUXLdo0SKVfp16qf6jiI2lXKGvvwYYQ2pqqqBy+DCz/c9/sNvCAvn9+ws2yspMtH59RwuuHvqAPitSUlLQ2toKqVSK6urq9sImoaGhaGpqYoIgQF1dnTU0NLD09HRBU1OT7du3D/Hx8SjV0YFbcDBTHzMGF6KihNOnT7OkpCQ4OzvDwsKCPXr0SJgyZQobNmwYlP/qPHI5Zs0iozchgaJijJGhkJFBBrGRERn/ycm06RcWUtQmJ4cM/epqkm+Wl5Ph1NREUdKWlo5crGeMzl+8eBFVVVXw8vLqe+EYFRWKlvI83esPPqAo6SuvkNF25w4ZKKNGUR7lsGHAnDlonTULERERiIiIwP3795GYmIiYmBi+vLycXblyBSoqKgLP8+zEiRNobW2l6rZ796KptRVVixcjv6oK9fX1iI6OhqGhoTwfWNbQ0MACAwOZi4sLu3PnDkw//pjpHTqEEA8PtujVV1mfrqu6msj8+vW9SvgZY1BSUsLDhw9lFhYWXH5+PvLy8mBtbY0+5Samp9PYbdxIRve5cxQN/PpruneamvQMdYr8njlzBrdu3cLt27fR2trK7Ozsem311g4rKzLoioo6ci7NzIiA1NeTQ0wsJqI8ahQ5T542f1payFmUkkJy7atXidTI28S98grNaV3dLsWdlJSUoKurCzMzM3b16lUuJycHdnZ2eGKEW1OTxkUOJyeSRRobk+MPIANWRaWj1/iYMfQ6Y4C5OcR6etjV3IwKDQ24x8dTRNfLiyJwQ4eSYysyEjh7FnFDhuBGcjIUWlow3M4OShUVJNEMCyPjvriYjMuEBHIqfPJJj4qdb7/9FlKpFAAwZcoUqKiokGz0jTcAZWUcPXqUAUBhYSHv4eHBMHw4nbe8INCsWeCOHYNuUBBiExPZkiVL2KhRo6B2/ToEXV3kampCKpVCKpWisbERNjY2kMlkPatyeJ6Kz/n6dpBtJSV6Vk1NqVhfcTFF73qIsh0/fhwNDQ3Q1tbGMmtrDP/2WxjHx7Nf3n4b99zdhYjbt1l0dLTg6upKjiaRCHBwQJGjI7itW/Edzwuq69dj6Nmz7KK5OfPw8GiPJBYVFSEyMhKtNTUyj6IiDqdPgzk5QSyRQHHNGjgWF8Pa2xsYOxbmn37KUktK2IgtW9AvO1swfO21DiJmaEhzra2fepfLF4lQO28eRNOmofLrr5FubMyKFy1CQUEBu3XrFhoaGhjP82iprhYCVVU51UmTwLZuJTXIhg1Utd3bm+oL3LpFz+i2bch49AhHjhxBZmamIJFImLe3NzOwsEBScrJw6d49FhEfzzc3NzOpVIrS0lLe2tq6qyNu1SqKPsqlxwBgYIDYGzf4axUV0NHRYTU1NUhLS6Ne1/r64NTVcVlREQWamsK8CxeYa3U1XDduhH1PRet6woQJJHfujIwMGj9Pzy51LuSQSCRwc3ODRCLB3bt3MWr4cDAbG/qex51RaWnkNF65sstzf//+fb6yspLjOI43NTXt1aHb0tKC33//XdDW1uZdXFyevBANHkzrg5kZrW3BwR0KgT4gISFBqKysFCaZmDC8/TaRx9GjaQ8IDKR10c2N1oje2j32BTExpPQaPpzWe7ns/cABev3PjG73ETk5ObIHDx5w7u7u3ddfkYicLxxHSg55Ks2yZVQfY/NmGvsFC3p1EPcEnudRU1ODux3tKbf6+vrW/s8X9H8UzwukPcdz/APYuHGjoaKi4u+Ghob2gYGBKn8bAewLjh6lzbSth7EglaIgPh6N585BfelSJKxdK4iKiqBsbMzyx45FTX290NDQwLu6uoqG9ZT32AdkZ2fj559/BmMMIpEIjDEwxuDm5sbfvXuXe+ONN9oJh1Qqxb59+2SFhYUiFRUV3snJiRs0aBAuf/MNRoWF4fSMGbCxtUVqaiqUlZX5uro6TldXVzZ8+HCRs7Nzu6GalpaGI0eOwMrK6umRt8chCLRZ19cTkVZSIslYVRVt3L/+Sh5uJyd6n6kpyQNrauizixaREZ+TQwaEjQ0Zy3l5ZBTJ2zmlpZHE1seHjpGTQxLB0aPJcEpPp99nzyZ5Z00NqQ38/WkTraqiz3t4oFFDA2EhIRhQVobBEyZAydycDILcXNpI9fRo8y0oIKJmYEDnWltL56KtTaR/wwYiJLm5FDkdN46i9qdOdRsmmUyGtLQ0REdHCxkZGe3Gl7u7O6Kjo2Fqasrn5ORwqqqqeM3fH61Tp+Lo1Kko09FpN9SlUmn7vHB1deXHjBnDdZEJNzSgtqQEtRyH/vI2QE9Dbi4ZEnIJ3lMgL1SkrKwsTJ48mdm2VSLuEUlJJKkfMAD48ENyTvz0E0U19fRoHHftovvz8CEV8PrxR5Lvubjgto0NUm7dEiwnTICmjg6ztbV9MkntCQsXUjTzxg1y1Jw5Q+qT0FAqNnf4MM2RJzklcnLIoDUwIEJuZ0dRXXnk8Cnt0B7H3r17kZeXh379+mH27NnoliYTF0eGbn1914JnXl40v1au7Pr+5maK2nz9NTmsOhVp3LRpE3iex0cffQQuOZnmbUAAPSd6evQ8GhjgWmkpBqWlway2FqIFC4iw6+kRGXd2pp+FC8nZUFVFjq4exuvo0aMyBQUFUU5OjlBbW8uUBQErv/4aN3fuFCLS09vtK21tbf6tt97ikJhI5CUsjJ7/hARgzBi0vPMONj94gDVr1pCEt6aG5oanJwRBwLFjx/jk5OR2QqKvr8/7+/tzZmZmqK6uphz1tDRSN6xc2aEIkVe79vOj+/bf/1Lhyuho+r1Ta6Svv/5acDYxwQt79zJMmgTo6SGtqQm/ZGZ2uWaO48DzPFRVVQVzMzPm+fbbqPT0FESffsrEYjH0dHRw5LffZIqKimzkyJFcSkoKz3Ec1/LTT3CJiYHSRx9Bd+RISKytad2YNYvm2uXLJNtmDNHR0Th/9iwUGMPkvDxw5eWInjYNzU1N/MwNG7hTS5dKqzQ0mEwmYzKZjPFSKfO7cAHBAQHoX14OzYIC1KmooEZdHUvGj0ehlRVqVqzgC4yNmXJjIyxv32ZHAwOh1doqqJmZMXt/f9jq69N5fP45sH07ZCIRwn/9FTdv3oRIJIKdnR0ePXrEv/HGG3Qf1q1Di44OEn19cfbs2fbxWbVqFdpbTvE8hKQkJOfkIDg7mzc2NkZubi7Ta2jg3fbvF2mHh0NPTw88z+PAgQOyR48eiQYNGiQYGBiw27dvIygoCFaDB9PzvHYtrR3bt/euiGpqor2hoKBDydDURNWur19/aiFRQRCwZcsWTJs2DdYmJj0fS5620kPxxu3btwu1tbVs7dq13VoudkZBQQF++uknrFy5Ek9t0bVsGZHBBQtongQE9F4DormZ1hU3NzRYWSFy4ED4btpEa9/WraR2+Stqypw4QWvTlCm05isokDri2jVy4Kxa9eR19y8Cz/PYtGkTZs+ejV73LTkEgfYwDw9aB11dad94Rnz33XfNFRUVimKxOEUqlY7csGFD2R84/f9v8FxG/hzP8Tfjk08+maugoPCDp6eniq+vr/jvaOnVZzx8SJt0G9HG+fNgCxfCuKSECODrr8NATY3FL10qZAJ8a1OTYGJiwikrK4tu3LgBqVSKxMREfuLEiZxJG/G5du0aYmNj+cDAwPbXHkdCQoKgoKDA/Pz8ICfEoaGhuHXrFmdubi7T1tZut8LFYjFee+010Z07d+Do6NheZdRg0yaobtwIKw8PKI4fj9u3b/Otra0QBAGhoaGis2fP4urVq8KIESMYz/MIDQ2FgYEBSkpKunocpVIybh49og09Lo5ef/CAvL0jRxL5KC2liFdqKhUQEwSSNFpakhTQwICMkrfeIhnZ5s0UZVq+nAjClSvkWXd3/2P3ShBICtfcTES9LUcL775LhrQgEFmYNAlQUsL18+dRYGyMKnV1QE2NH2JiwqGpib5DHj1saaFrrKmh/zc1kREvk5FXnjEysNqKQqGxkZwJixZR1OyxCIhIJIKNjQ2sra1ZRUUFVFVVIZPJoKqqigkTJiAvL487ePAgZlhbI3npUtwMCsLM5cthZGQEsVgMjuNw9OhRPjU1lVuzZg3EYnH3h0VFBerHjkH9ww/pvJ/muLpwge5tH4k2AGhoaMDIyIivrq6Gjo5OdyutrIzyeuVFdXR0SGYZFUXjN3s2RRzlBt4nn3R8dtMmulcvvAA0N8O5qQmGv/7K9CQSqJWVkcrhiy8oAufh8fToyP79dF8iIugerlxJ3y132kyY0NXgq6mhe7hjB5HsV18lZ4SlJa0H/6NxuHjxYqSnp+O3337DDz/8AA8PD37cuHFc+7rn7EzyxccdCufP92xQyw340lKKqnXqB8y3FW3kOI6cBFeuUAT+hx/ICfbZZ4CODmqCg2W/ZGSILIcM4YOCgnpegDdtojWvshIwN0ft6dO4Vl0tU1dX53x8fJhIJEJGRoZIJpNh4cKFLCIiAnVVVfjy3XeBtDQmkUiEgIAAZm5u3pHbb2VFEXo1NYrkKyoCN25AEhUFnaws2cmTJ9m4ceM4rYICksJHRoIxhokTJ3Le3t4oKyuDuro6EhMTcfToUTDGIJPJYGZmxs+PieGYl1fHHIuNparF9+51OEiWLaP7e+4cpYQcPQrY24PneSimpTEPgGTutrbAihUYJJXihVu3oK6ujvPnz2Px4sW4dOkSRCKRoK+vj6KiIln41q0Y3a+fSD8ighw148fj1VdfFZ06dUo4f/68TCstTTQsMlJodnLC5YAAVpyXh3mLFwuDJ09m7fdcWZnm9xtvoGXVKtw/dw4qWloQ9PXRoKQk09DUZCZGRpwyx3FwcsJYHR3x/2PvvcOiOtfu4fXsPQND71UEpSkoIBhBsYG9a4wlGnuPJXqMHhNjwsEkR0+SY4yJURNLjLHEaGyxYwMVaSLSm1TpUpU6s/f3x80wdNGTvN95fy/ruuYyGWbP7PKUe6271U2cCJlMBplUCpmaGjR++w0D3n4b6NkTP23YgBJBwOhLl8Dv24ejH3yAt2trGSwthVJvb07x9ddYZmCA6g8+YLJ//Qu/JCbC4tdf8cPmzcLEggKuaMQIRbiZGT/oo48wddUqhfPs2XxiYiIaC4bw9YXawYPwWL8eV65cEevq6pijo6OopaVFnxFF1LzxBh5OnCjelsng5ubGlZSUUL6zQsFb5udDuz6ajeM4zJs3j9+xYweysrJYbm4ubGxsBEdHRxo33boRSTx8mISSmBiq+9Ca7VBXR/uPkmgfO0Yt9ZT72Uvw/PlzVFdXQ18Z8t6zJ4lQurr0/+HhNK5SUloce+7cOVRUVDCe59sl2gBgYWEBU1NT8bvvvsOMGTOYbfNWk40xYgSJhQYGdC6lpS2Ljj1/TmlMU6cS6T15EkhOxqPZs/Ggrg4+Q4a03rHhz8TDh6q8aXNzWoOV53/6NK1prxGO/boQBAHBwcHgeb5Fr/ZWUVJC4nBEBJ37xx+TjfKKqK2tRXFxsTqADXK5fKefn18bBQT+76DTs92JTvwP4vPPP39fQ0Nj68yZMzW7NC5y8d+COXOoyNjWrWTMGhmRIltZSQVeDhwgpbOVdiMXL15URERE8K6urmJsbCyTyWQKiUTCqqqquJqaGmhrawvvv/8+BwD37t1TSCQS5uXlxQFAYmKieOrUKTZp0iQ0bp8iCMKrFTK7d4+MxXffbTA6nz59inPnzolvTpjAnj95gvMXL6JrVhbUq6qg5eYmmsTEwM3GhqG6mgjjoEF0nba29D0JCeSlNDUlA8bWVlWYqy389huRLh0dqgb8+eeqHNQbN+g7IyPpb6tWtXo//2xkZWUhLCwMMTExEEURn3zyyeu3lLt3j8LeDQyo+uk771Ce4/DhZNCYmdG1tRN6lpKSghMnTmDwwIEYumEDIkeNEv/Q1GSCIMDW1laYNWsWJ5FIUFNTA47jmha9ao7kZPL8HD7cxFvXKt59lwzHVoqitYeQkBDhypUrXO/evfHWW2/Rm/v2kZdy1SryGq5d27JX+pIlRPiUx3QA+/btE9SkUiz08OAQHEyenPffp/tqaUkk/sMPSQAyNycCzXEqoiWKFNq/fDk9h4wMOtd9++j8oqNpDMbEkGE1bx6N/VGjyLj+izoJHD9+HElJSdDR0RHWr19PE3vyZCpG1NzjrVDQXLt9m2oHtIFno0ZBXlqK4M2bERUVhV69eonT3NwYjhwhIj59OlV+P36cyPekSUhOTsavv/6K9957D7pKEtEcaWl0j8aOBaKjcb+kBIYrVyLTygoaH30EnufF69evM6lUig8++ABcXh7qunXDlxs2oK6eaHAch3fffRdNUoS2bSOSvX696r3Ro1Hj6YmvtbRQU1ODTz7+GOzzz2lMtzHuy8vLUVtbCwA48OWXmP/LL7jo5wc9Q0NMGT8ekuRkIDkZD+vvnYeyurESd+4A9vYQly9HWFWV0OfuXU7yySfgPvywCYkrLi7Gt99+C5lMhk3NW8cp0aULCTvKDgETJtC9S06mFIoNGwBbWwgjRuDTv/0NEy5cQE8AWg8ekFCloUG5v48eAWZmyJgyRTRISGC/zJmDJVpaUJs/nwTL/fuJ0Ny+TQQyJoZCXwsLSUAIDQXefReKgQNxdsAA5FhaQsZx6Nuzp+Dx8ccckpJICFOiqgoQBNQVFuLFiRPInTwZBmPGINvFRXB94w1ObedOmhO//orcvDwcPnwYH3xQX89JFClyZeNGRGVlISYmRkxJSWHm5ubo3bu36OLgwOInTsTD6dOF8TNmtBSax4+nrgV2dgCA/Px87N27F9ra2hgxYoTg6urKtbo+R0XRXuzvT9eirDavRGwsiSs9etAcsrGhfOfmlb7bwJEjRxQVFRVoqN79t7+RMKNMt4mPp/s+fXqT4zIzM3Ho0CEAJLB1pK1mZWUlvvzyS+jp6Ynr1q1rf9H55RfaW0pKKHJo1Cjakz//nKJ4bt6kc/L3pzWufgz/8ccfSExMFN9///2/tj2KXE52Qloajef8fLKnrl+nv794QVEF9++rhIu/EGFhYbhz544AgI0cORJubm7tX39YGM2/zz6jPPapU0ng+fXXV05XE0URW+sFZZ7n73Icl7V58+bZLzns/2l0erY70Yn/IWzdunWMurr6p4sXL9bQa178578BT5+SktmlCxlK7u6kXicl0YZx+nS7hUnGjRvHjx49GhKJhI0cORKxsbFcenq6MGrUKHzzzTcAwPLz88EYQ0BAAA8AZmZmOHv2rGhtbQ3GWIsNukNEWxDIG1tZSV7eCxcox1RPD3jjDXQ5cQIrk5MZ4uOB0lJM1tcXZLm57LmlJQvKzWUOgweTd9nenjZJPb2mhvCrtEUKCCBy1bs3GYGffqoqiqOEszMZht98Q4R9wADyWNYXWvqr0LVrV1hYWCC6vk3Wa0GhoFDcSZNorEildH/mzqV7aGVFHpTERArH1NOjTdvBgYxKU1PU1NTgzJkzYkpKChs7ZAj6HjoEHD8Od0dHZltWhpCQEAQHB3O1tbWQSCQv9ZAAoO//8ksibtevt20cBATQ517DW5uWlgYmCBhpYUFq/9ixFKbt60tGlLd3y4OKilT9Ul8BkyZN4g4cOIC8ceNg/u679KYyTL+sjIwiOzsyQIuKaA58+ilFTBgYkOfn5k3yFvftS+9PmUKfz8ykkPVBg0h4MDBot3DWn4WYmBikpaVhxowZOHnyJOfv748R3t4YWFrawuMml8uRmpoKhZsbHh46JHA9ezI1NTVWUlIi2NjYcPn5+WJOTg7kcjnT69cPttra8qrUVGaVkcHrBAez2p49oTZ4MF1zTQ0JhIJARDA4GKEREaKxsTF0dXXbNkCjo4kYjx0LuLigV1kZAp2cUC6T4cWJE7BNT4fVm2+irLxcwXEcDzMzlPz0E7qBKm9z9X2bm6QAVFfTvNfVbbrGfPst4h89gpiUhLfffhuM44hIXL2qaqvVDI1FgpXl5Tg3cSKe5uUhOzcX9l99BT1nZ5xzdRXLYmKYlpaWGBAQINrZ2YlDhw7la2trobC1RZeKCtQ8fIhqW1tOMmsWuLffbpg79eHrisTERF5fX1+sqKhgWVlZ6NpaZEVamkowLCgg4W33borqKS6m8TptGuqOH4duQABS7ewgMTCAm5oaiUdr1pBgVV8EziY0lGVnZKDu669RVFgIy9hYItn29rQfLVxIURiLF9N+deWKqriTjQ0qExIQu3MnZs2apSyKxcHZmdaj2bNV7Qw1NIDPPoNUQwP67u7Qt7AAMjJgriw8uXo1kaTu3WGyfTtqa2vRUNWaMfIi370Lt0mT4ObmxqKjoxESEiKGnznDtK9dQ8C0aZg3cybX6j3T0aFUo3qybWZmhlWrVuH06dMIDQ0V3ZoV42uAmxsJthkZtA4vWECEWEnM339fRbRXr6b1uA3xrKqqCsnJyXB2dkZVVRVKS0uRlZXFb9iwQfWhL7+k3xs9mupz7N6t6hrQCNbW1jA3Nxfy8/O5u3fvdig1SykmdO/e/eVE+OJFErGnTqU9ftMmSpGZPJnmqJYWRS01giiKiIiIQO/evf/6PqSPH1MNC2VklbExje3ycprvWlp07xYupPSJv7A16h9//IHIyEh4e3vD19e3/WKeokiFB99/nwSVuDg61+3bqc5AB4m2svuLjo5OE2FcoVAMAtBOL9T/G+gk253oxP8A/P39e0il0hMzZ8787yTaAHnKbG1p4/LyIu/B3LlUAOnYsZduDoyxhjxbLS0teHp6Mk9PTx4Ali1bhsjISHH//v0MAExMTBTV1dU4fPgwb2ZmxoqKioS5c+eyJoWgRJGMmYwMMhgMDckbDNCGUFJCBW22baO8Yn9/MsRsbOjzAwYQsd20iQzX+vwy+3pDqqioCAX79iG2Rw+Y9O0Lzf+EcJw7R2LEpUtExD7/vCXJVsLCgjwPSUlkXB48SATqwQO6RkfH1z+Pl6DxpiuXy9v3FreGujrK/9y9m8i2REI5oMrIh8WLiUSMGUOGXmQkebeioiB++y0qY2Jwp3dvsVJXl0n19cG2bEG8vj6eZmRghKMj9PT0UFFRAUdHR4Wmpuar5dGXlpK3LiGh9f7V5eX0bAIDW3qD2kNtLVBbi0E//8yNDg6GbOZMIthTprT9jJXYvJk8Ba+Scw3AyMgIPM+LT58+ZebNC3Pp6ana33z/vep9T0/69+5dCsktL6dnlZ9PbW369aP5UllJ/6+h8T9GtPPz83H+/HlMnjwZTk5OWLx4MQ4cOIDAGzcQMGwY8Pnnysr0kMvl2L59OxQKBd6YM0fom5TExamrKxhjcHR05B89eiRaW1sLs2fP5vX19aGpqQme5yVYuxaKkydxbfBgHNLWxnJlJEFuLpGFjz8m4icIUDt6VMiXSPjTp08rJk2axDeeB7m5uXjy5AmcPTxg0ChXUSKRoGTiRKSlpWG6VAqb+/dZRGGh6K2ry+H5c2DZMpgeOYLZPI9bt27h4cOHTb1pNTXUDm71avLUx8WpxqmjI6oXLsSsLl3QTdkOqriYPHhtkO0G5OVBJysLc+qLMIXcvy9oXLvGXTczg7a2NkaNGgUHBweWnp7OTp48ibi4OACAXk0Nxp88ia6FhTD87DORO3+eYfFiEqvq70d8fDw/f/58dOvWjR08eBDR0dFC165dW1rfamok3ty7R+NsxgwSoubNIy9ZPREvWr9eHMcYOz1vHjxnz25o44fERBQ/eIDCmhrUt9dDZWUlKoyNET5sGCZNmkTnVFhI5K+srKHGAUaPplzc48dp/U1Ph46tLVxdXcVjx44xAwMDhb29PT9o0CDoKtNuKirIQ2tnR2JVXByd++TJtK80JkwhIYBMBklCAvQUCrG0tJQ1RCpMmNBkbru4uMDFxYXdWLlSUK+p4eSiiDb3+/ffb7F+GBsbw8fHB2fPnm1/wWCMQssDA+l8hw6lc9m4kSpry+W01pWUtLlv5+Tk4NSpU2JpaSk7c+YMpFIpBEGAvb29Qk1NTfX7VVVEcNPTySvbTij622+/zZ07dw6JiYl8TU1N20KpIACMQaOgAMOqqoSbjx5xvjdvQnf0aLqWnj1JFFy3jkTD6Ggi2JWVtHavWEHX9ZI2YMpaH22lr/2pyMoikUMJpdD57JnKkz1oEF3H8eNNak38WRAEAYGBgXj06BGWLl0Kc3Pz9plycTGJ4oaGZDcNH05EOz+f5kWfPm0eWllZiWfPnjWIbw8fPsQff/zR5DOMsWmiKF7YsmVL7X9+df+70Um2O9GJvxj+/v6aUqn0xpgxY3Q71Cv1/w8IAi2sM2cS2Vu3jop17dpFXtr/EBYWFrCwsOCMjY3FxMRE9jQ1lV81fToCbt/GaJkMmrW1HFJTyRgtKSGCk59PYWOHD5MIsHw5EYguXUjR19Qko1WZ+9gYw4erWgO1AWNjY7i6uirCwrxdOLAAACAASURBVML4sLAwuLm5iVOmTHk1ufnECSI3x4+T0Zef3zFi5etLJPXoUcqPBEhFfvxY1bP7LwDHcVi1ahV2796NkJAQDBo0qOMHp6SQMLBrV0svvKYmhTfK5US0fXxIvHF3b/BWZYwcievffgtfmYyN0dOD4uxZlBcVidk2NuKTCxe4w4mJmL96NTIzM4WBAwe+GjsFyHtZW0sF5ppDFMmrmJTUbvXxBsjlRNqLikhEWLMGWosW4bCjI2xTUjCpeb5ga0hJoXN5FWKPhnZ3Ym1tLaurqxMBdGxMKosVTZ9Or6wsulYHB5rL8+eTl6KsjESQ774jw2rKFDpXQaBCZXp6NK9EkeadgcF/7IW5cOGCqK+vz3rV3wsrKyv4+flB0NbG/bVrcUNNDdeuXYOXlxckEgkYY/D29hZHentzWLECTgkJvLK/89ChQxkA1fh48YLEwKAg8HfvouLbbzH0t99QtnEjER1jY1WrKMaAnTsx/Zdf+IMff4yYmBh+4MCBUAoaNTU1OHToEPT09ISAgABuzfnzqNm5E2YDB+Ly5ctCRkYGp6GhAeuVK6G1eTM25eYyODlRCHxuLsDziI6Oxt27d9GjRw+h4TxFkby32tpU7yE1lYTMvXsBDw88f/4csT16oF/jsblmjap/dXt4/JjWDkNDIDcXXps3c7hyBT2oWn7Dg3NwcMDGjRvBA+BXrIB4/DieBQejpmtX9DYyYli0iASrzZuBmBiwkyfB8zyMjY2RnJyMvLw8tGirV1VFnvpNm2iuAEQg7ezIE80YEe2tWwEHByT94x9CYHw8LwVw9OjRhh7VUl9fqOfni5I7d0R1dXXIZDJRJpPBLjmZ7xoSQuv9e++p0pv69SMxdfp0WuP/+IPW3a1bae339sawFStY4aRJsAwN5XVOnsSllSvxtpWVKtXE25vGtzI6RBSJiDev+TB+PL1u38aq4cNZWVmZav1TitMxMao5Eh4O36VLuU/rx6sy1L8F7tyh9Wrz5iZvBwcHKwRB4FttI9Yc+vr02r6dRJKdO4lwb9sGXL5MKSJyeavdK3755RfI5XK2ZcsWCILQuAd107VXR4fWjKdPaX1oq5d4ZSX05HJ069YNpseOoS43F+p5eXSvjh0jwm5nR2KJRAI8eYLMPXtgd+QId3P5ctQ+fUr7u6YmhV8rFCSQbd5MzyYlhfKw16yhter5c1rHXtISr1evXmJwcDD69ev313q3CwoaohQakJdHQo4yDYbnSWzbupXshY7sRR3E+fPnxcjISAYAs2fPRguRtjkePKA9LiWF6vSEhKjG8KNH5JVvRVipq6trqMEBAH5+fsjPz0dSUhIA1AJ4D8BeABBFsczPz+//PNEGOsl2Jzrxl0MqlX5kZ2dn6OHh8deHMr0u3nmHFtf4eNocExLIGO9Ie6PGUCjIGKquJoNSQ4NClMrKAC8veB47xjxiY/FQVxeKqCh49ugBzbw8IgTu7kSYzMxo09LUJKOocbjlmDEdO4+tW2mjvny53Y+NGzeO79+/P6qrq3HkyBHGGMPEiRNfHr4eHk4GbkEB9VNOT3+1ezVqFBlIGRmqNjbff0/G3ldfkTd4796/JNQsJCQEjDEEBQXBwcGh9R7DrSE8nDbhtnKepVJ6rV1LRlNEBD1DJyeIoogLly6JL8zNmfnq1eCCgsAFBcFo1y5mdPMms8nPR8KJE4g+dQp9OY5zGTyYDPlXrdKfk0Ni0cWLTcP/v/qKhIL4+LaPFUXybikrXCsUqvQJW1voCQLKYmMRGRkJLy+vl9+32FjyGrxiyHp0dDQqKyvZhg0b0FBs6VVQXk6VuuPjyfNlZEQi2rZt5MlITaVrXLKErvn5cyKKyldhIZGAo0cpPHjWLHpfXZ2Ia/fudI8VCvoeK6tWQw3T09ORlJSEN954Ax4eHuzmzZsthAMuKQmDzM3Rp7ISu3fvxvbt26GnpwdRFOHs7MygpUXGaj1xaYFHj2je6OkBwcFIzsxEpba2WGhiwmQlJdDjecrjPXWKep4DRLzXrEGva9eQlZGBmpqahq/LysoCAKxatYrbt2+fWFRezu4dPoyC+/ehUCi4ZcuWNX3uFhYkapSXUwSDnx+S3dxgb2+vmDFjBpEWhYLWoxEjSNhQ5tNu2UJjPCcH10NCkG1jA37cOBqnixZR0cJBg2getVL1GQAdf/CgquBeUBB5PNtYi9QSE+m59uoFtnIljN3cmq4x+vrUDu/IESA7G743bqBi7lxcunRJMWDAANbg1T56lEjcpEnUq33xYhJKLSxI/EhMJBHUwYG6F8TGAh4e8J0wgS8+fVqMjY1la9asgY6ODpG8jAzAyYkhK4vBwIDWxIAA3LxzR2GQk8M3tB3ct4+8qzxPY5cxitYYPJjOPzyc/q2rQ87OnWJpfDwbbGQE7awsDBgxgu7nkiU0J168oFz+CRNovejRg/a9tuDpibAxYxRGdna80eHDtGdaW5OYkJysikhauhTcrFmwtrFBZmYm9uzZg82bN7fsKNCjh6r4ZiOUlpbC09NTZEqmLZeTiJuXR2MpNZWe0+nT9LchQ4iEPn1KooFCQQKMQkHkOC+P1uqjR+kzTk7AzJnQVFcXl//zn4zbuBHcd98R+fr1V1r75s6l6LaVK0lQPnGCwtV9fCgVZ9w4ElhkMppXBQUUFcBxuOXtjVXh4RDT0mheKoXwFStU5LKiAtDSQqyPj/hQV5e9NXkyjP38VDdh2zb6VxlB8PbbJI6sXElzY88eWrd+/rkjZJs9fvy43c/8KTh0iO5xY1hb0/1SFk0DaH4OHkxjuZnQ8rooLi5GTEwMpk2bhq5du7Zdh0KJn3+m+hVTp1L0U+M6HQoF2YCt1DQpKyvDgQMHql68eCEHoAMA/v7+jT+i5ufnt8/f3/8MgF5+fn63/pQL/H8AnWS7E534C+Hv768tlUpXDx8+/L+ot1czVFSQQnz1KhnoGzaQ8dQYStU/LY2MSxMT8lyIIh1TXEyb/rZtRLSVId329mQY2NuTh/zjj1GtpYXLP/+MW/UVsDkjI0EQBMyzsuIs/tM+l0oMGEAeB2WbrDbA83xDK6I333wTJ0+exNChQxsqsZaVlUFDQ4Pa8QBkRM6dS17cQ4deX52WSMhDEBTUtGesujptxAUFZEwoFC8PVX5F5OXlwdnZWUhOTub++OMPwdHRkXN1dW073BEgz82YMWT0/PZb+yRYSXI/+4y8SImJyMnJQXFxMQOA9B9+QG+plO6fmRng5QV9ALaZmQg6dkzhXVDAaezezWBuTka1vr6qcNfLCslZWZHRrzS+ARqjs2e33Zs1LIyM9C5daPwqRRplIaV6dZ/jOEybNg2nTp1CXl5e+2S7sJCK7P34Y/vn2wqUoZeSV2yxBYC8E+npNHYOHoSooYE7t2+LLhs3MqOHD8lA19Ym4rdtG3kIdXTo5eiIJt40ZZhjZSWNx7IyCucsL6ffuH6d5tf48WT0m5jQ59zdkWdqisDLl8UqTU324N49iBwHxhh7/PgxevXqRcRj40Y6D0tLaGtrY/ny5bh7965QW1uLoUOHcg0FJNPS6DciIlTXmZ9P3syrVynXtz6c9NixY4ChIevi54cuERG0jn3zDd2PegiCAIHj4LRgAV64uuIPU1PIZDKhvoIu5+joKADgli5dyu6YmOBNBwdcePRI9PDwYK0+8wsXyOsaEADIZND46iuhZ2wsnz1oEKy6diVyr6ZGxLTx+J00iQS1bdswcNcuxMbG4unTp+ji50fh1xIJEZxG594Cqal03x0dyXuorU3zqjlEkYjYiBEq8tbW+NLRAVauhJieDvOcHHChodB/+hQ6zs6cOGYM2LlztB7wPM2NjAw6x02bgLNnaa13c6P9oFcvGiNz59JcVyigoaHBRFFEQUEBDDQ1KaXh73+nNIjRo2kufvghnmtq4r6lJe++YQOl6airU44uz1Ous5cXzbPWIJVC1r8/EzMzhZ7+/ioliLxvFD1lZkaV/ZXCRF0d/TtoEIlknp7kQVWmWWhq4uG4cfDR16fnc/s23evvv1eR7cxMGgeGhvCMi0NmZiYEQcCBAwfEZY37hQMUSRYURGQ4NpY8jLa2eDszk4+/fh3Cjh3gRJH2sfPn6VwWLaJr1tWl9y0tSfzatYvaPS5cSOvzvXskgCmv6YsvKLUJoGdkaAjTa9fEK8OHs4kSCdXbUO4zlpb0/TU1RM4BCs9XKGgtAKhKv54ePeuDB+m9+kJgGysr8bVEgknGxlTsVDkeR41SXbuWFmpraxEaGsoAUIX29mBvT3NcIqE9ODWVBMRTp2hdamfvUkYTVlZW/mepYu0hLU0VadcYI0e2PkbfeovWpYiIlgU1XxGVlZU4ePCg4ObmBmdnZ9ZuNERxMa1H48dTYc2PPlLNZSUCAmgdaeWZxMbGoqKiQgOAEYDpAMIYY1+JoqisvncVAPz8/AoAdCAs5/8OOsl2JzrxF0IqlW5zdHSUNqlG+9+GkSNpo1AqmUp1PyCAjBKlcebrSx4POzvy5lZWErmZNo2Ot7Eho+olJEEbwIcffgipVIrKykqcO3eOS05ORkpKCiza8uC8KpStf86eJeW2Ax7iHj16QEdHR4yKimJDhw5Famoqjh49Cp7n0Ts7W+EdGMjLSkuR6+oK29xcSBpXtX0d2NvT/VR6aJTw8qLX7t3k/U5N/VOrlZeXlwsODg5cWVmZIjs7m8/OzkZ5eTmioqJgbGwszJo1i9Np7hl7+20yEPz96bzbyeVqwJYtJNwcPw7TXbvgvGQJ8nJyYPPttxS62Yy4mFpb460PPmgaHpyaSt6fjRtprLm4qAyBxm2OGmPBAvKwnT5NBv/w4eTNapwjl5tLlY2HDKG+tRYWNKYnTmz1O2tqahAUFCTeu3ePqampiZaWlu0PqOxsMg47GjVQj+LiYly/fh1vvfVWxwrDKaH0wu/ZQ9fx5Zf0PrW9Y3cAjPvHP4R+69dzGDSInqGxMRn5Dg6AmhoCAwPFW7duMQBYsWIFRFGkUERNTfLGAESilJg2jf6tqyOSXVsL3L2LisJC3L5xA27l5cy1uhpyXV2IhoaIra0VpXPnskgnJ9Fp8WKmFR2N6i5dIPbtC3UDA+jr62PChAktXeQuLvS8FQqa16dPk9BnaUliTiPhh+d5KBQKjBw5UnW+jAGxsRBFETExMTh//jwUCgWMVq8WzHv35tRyc0VjY2POzMwMtra2MDU15QASV3yTk4ETJzD35Mm2n/esWURi673vfUaO5LKio3Hqxx+x/sYNSFatAsaMgUzZXq8xli0DampgWlaGAZ6e+CksDFOOHxd7JSYy9OpFYdIPH9Izag5RpON//pnW6E8+oX7tzcdvWRkR+/x8ihLQ0Wl3jRZFEWlpabh8+bJYsXAhNgYHs1k//MDfDQ1FqVwOg8rKBs9jbW0tbt26JZpVVjIzZ2eYm5iAiSLg54eyefOQvm0bsoyNBe3AQOh+9x2s8vM5WwcHaEdGQpqbS2HPu3YRidy6VZUCsnIl5KWlYLW1MHjnHfJq/vvfqpPs1o3SihSKNtN26urqIJfLuatXr4qjR49uelMMDIj8KXsvf/ghjTNRpHnbtSutUevXk7j0xRdAv36oq6sTmbs7CRcFBbQOrltHAkHv3kTQIyMBxtCrVy84OTlh165ditzsbP7u2bNifw8PJvn4YxJnPv6YxKLcXCLSxsZA794wHzQIAXV14nEjI7yzZg1r6PjQHPn5tK59/TXtE0OGECmuq1OFKjf2FivrEtTnFY8YO5b7NiUFI2tqIGscHfDVV6pjNm6kNfHcOar+rqwL0djr2aymgKamJvT09BT379/nk5OTFd27d+fd3NyaRIsdPXpULCgoaHgmmZmZbedVf/EFebSVnS3u36drl8lI5Nizh6r2t4H8/HwAVIvBrnmY95+F9HTaI5vDwICirZrv8bq61FP+wgX691VrpzTCgQMHFFZWVmzs2LGtV69XIimJ9jpXV1oDJk2icdJ8/pw6RSS8FTg4OOA6iSrv+vn5fe7v72/SiGgDwPhWD+xEJ9nuRCf+KmzdunWWTCZbPG7cuP9er/aePeQN09QkBXbbNlI+ZTIy0hYuJA+fhQWFwzbO12qsVL8ilJ5iLS0tZGZmwsLCAv3+LK+2EsOGkdcyOpo2mJeA4zgMHjwYly5dgrq6Ou7evStM1NCA648/cs9sbLhSPT0xdOlSoVxdnTt/8KBoYGDAWVhYYNyrVCtvjN69SbBIT2+9tdGqVUQUMzMpjE9ZOOk/wIMHD/DixQvO3d0d/fv35+Pi4pCXlyeEh4dzCoUCubm53Pnz58V33nlHtWtXV1OIoZYWbdgDBxIR7ghkMuDNNyHNzMRoDw8U/fOf+Hn6dHHVwIEvVz+0tOi5ubqSJ6m8nIzxhAQyItXVSQDq1o2M4759yaCRSIiQp6aSl6pfPxoLABnsDx6QgazMaT537qWnUllZiXv37jEAcHZ2ZibN21Q1RnU1GV7KHquvgJKSEkil0pd7ehojK4vux+DBJNA0qugviiI4joOXlxeuBQdz7ubmkJSXk+eue3e6Z15eyNi0Cbdu3WKGhoYoLi7G3r17AQATJ05EYWGhoK6uzrm5ucGgteJIUinQpQuePn2KCy9e4FlVFazHjxdd58xhjDFIBQF49gzu1dWsKjgYd44eZQEHDqBP164oPnwYht98g1IdHeR37QqLggJIzczEritXsqcZGbD39gZnaQn5Rx9B8vvvJAA6OpJXq5VqzTzPi2ZmZkx57SWGhih++22h6/37XMnq1fj9998BADKZTCiqrubm2NlBb+5choKC1kOv33qrZR5mY/z+O/U1P3++4S2jN9/EgeRk+F65Akl4OH66fRvlkZGo1dODQqEAz/Po168fDA0NERQUJLq4uLBh/v5wMTBASv/+CDx7ljmfPg0WEUFez337Wu91GxBAAme3bnQOYWEtcyyvX1d5/qZN61AUTkREBG6cPInV+/cz9fh48DdugO/dGwUlJag4cQIGO3YAW7eiqroahw4dEgsLC9nEc+dwztMTfR88QEl8PPrs24dfnz9HnZWVaFNZySS9e7OaFy/Qe+NGhEql8Hn0CCmVlciOjoaV0nt64gSFcy9cCAAQzp3DyCtXkP3pp7BqHpXCcUQCMzIob7oRRFFEYmIifv31V+jq6uLx48ctyTZAx/72GxWw0tNT7RFKD/CSJSoC9fgxYGQE7YwM3sHHh9aWzEx63bhBz8DQkGp3mJhQtFhqKrgvvoClj484a9s2vNDSYg937oSnlhaRLUNDWofWr6d1y9wc4DhER0cjPS6OOTo6KmBk1FJJyM8nUj1qFP2WiYmqNklOjqqA4rVr9GpjnzasF4ujo6Nb7r21tSQm6OqS15vjSBSprGwaYdIGpk+fzp88eVIRHx/PR0dHo3v37g3RYtXV1UhJSWFqamrQ0NAQZ8yYwdok2sqUmPnzm77v7k4Ee9kyGi+bNrUqkhYUFODIkSOQSqUd6zP9usjMVIW8N4ahoSq/vPn6MmkSiS3377+00FtbCA8Px4sXL/glS5a0n/q2ezfNr8OHSZA7eZJqBjQX8ePiaI1Q1pGph1wuR2RkZGNnyGcAPvfz8yv09/f/O4AvAFQD0AVQ8loX8/84Osl2JzrxF8Df37+3VCrdP3/+fI2/LHTpP4VCQR4ZOzsKafrqKzJgt2yh8Nf8fFKyLSyI+M2bR0QrK4tyu8rLyYuWmEiG+2t6X/X19QUnJyeuVc/PfwKOo9DjX34hJb4D3m2lZy9+zx4siIpihs+eMW7KFJh+/DEzNTWFA8DL5XIEBQUJxcXFYlhYGEtPT1e88847vJ6eHvLz8yEIQsc89IyRl+HwYcodbA09e5JY8Ouv9Ax0dV+5srUScrkcN27cwIQJE6D0XPchDzU3YsQIREVF4Y8//sCECRNUN0qZ4/fkCRFYR0ciAK+SS66pCXz4IbSHDIH02TNoPHvGcrOzYdGBPqxNoKurKrg2axaFxMXFkWdo1y4VibayohDjgADKkf3oI8oXnDKFDJ+pUynNYODADv+00pAZPnz4y4vKnTtH3/0a0SzPnz9HXV1dx/vLX7hAXnQPD5qfjcZGbW0tLl++LEilUjZkyBCWlJSkuLl8OUYVFvKYOhVYvx5iSAgO798vdF20iJsHiN1v3GCXL19GaGho/ddfgFQq5erq6pCamorFzdNLGiEiIgL5+fnw9fXF4MGDVeGMHNfQQ1uja1dY9OgB4ylTxEojI5Tu2MHcfX3RtaQE1nl5KAkLQ+Jvv7HoI0egX1SE/N9+g2N8PNSqqmBQXk4pCitXtkq066+ZMcbElJQUdurUKQiCgDcsLJCxYgUSfvwRHxw8iJ3vvINl773H7d27F1UWFtALCyNDWBBa5p53706G6tSprbfAqU+DaIyS4mIMDAiAx5w5kJ84gQkAugwejLLx4xE9cyZycnKQkpIi1NXVsYqKChYcHIxHzs5wi4iATn6+kKyjw2WsWYNuHEdikrFx6+cWH09r9d695I1asED1N1GkMOepU8krfPVqm88NAHlDpVJgwQK4PX2KiwMHonTBAnTR1W2ICOmbnIzbiYmiRUgIy1+9GlqCIL6wtcXyt96Cxr59iGNMdBo1ih187z1RvmkTW5iaCu316xl69yZi/PnngLMzJowYgYP//rfc7sYNSa9Tp2i++PiQ91ZZ/CozE4a7dqFozBgxOCEBrmpq7Pnz5zA2NkZ1dTUqKysVbv7+3HMdHfHOjBliTU0Nq6mpYXV1dUwul0MURQAkksnlci4iIkLs27cvDcgnT+i+3LtHwt0XX7Td0lJbm/795RcAQPE//sESFy9Gbx0diozx9qb1xcmJ1qDCQhI83n+fxqqxMWZMny5J6d8fR8+cwXR7ewo7j4ykvXfuXJqz9vaUA+7vj/LychgZGQkNOf+Nn1FZGe3VDx7QfFeGcDc+3/79ieQtX07rYJ8+bdY86NWrlxgSEoK+ffs2bQ81ezZ572/fpmcDkHDZweKdZmZmWLNmDf/999+LhYWFTEm0CwsLG4Q8fX194d13321/kcvLo/Wt+Z4XH68KHV+1ilIo3nmnxeFHjhxBXV0deJ7v2Hr6unj8uNXfB0D704MHFEHYGIyRSDp5MolMr5GOdvPmTdHd3Z1ptJXWpezS4uBA4+74cdoLt2xp3V6LiqLx0szTfu3aNSEsLIwDIIC6uTQswH5+fl8C+PKVT/7/GDrJdic68SfD39+/m1QqvTZ+/HiNDhef+p9GeTnl0125QrliAJGYqCgyHufNU+VaKcPcyspUxcqePCGPAECfP3yYPI2rVpHq/9VXtMHPm0f9UL29W1YMr4ednZ148+ZN5OTkiDNnzvxzK4JNmULe+7a8x80wT18f5cHBgv2NGxzn68sQHt4i5FIikcDX15cHAFdXVxw7doxPSkrC3bt3FeXl5byOjo6wfv36ju3sixaR52DTprbzoF1ciHBHRpJ3KjCQ8otfEV9//bWgra3NtdW/Vdm2o0k7MDMzUsGVxHHLFvIAzZjR8R8WBGDDBnD//jdkbm7I//RTGHt6UuseZXum14GhIRmAAIXbFhWR0ZOZSUbFiRP0t6+/pt95663XbnN17949EQB78OCB4ODgwLU5rxUKmkNfvrrtcfnyZfHhw4dsyJAhAvcyy1AUSaBJTaVn0gpZuH37thATE8PNmjULMpkMs2bN4vfs2QO9W7dEBwsLVnT3rngtNZWVSKXcsPnzYV1WxvDiBcYaGWGsnx8EQUB8fDx69eqFzz77DIIgtFsZvbq6WgTA+vbt224VZTc3NyA6mqGqCg71JJwzMICBgQEMnJxgPXs2ysrKoK6ujn9/9RVKdHTgxXEiIiIYiotVvYPXrSOxr74AXUxMDADg6dOn7Gh9oSIjIyPFCE9PnvP2Rs6jR/IwFxfOedAgZlBSwtTV1RUFBQW8uasrkbzHj8nb0xg8T2Hry5e3vMfJyTRnG4dciiK433+HUXExYmxs4GVlBW0AiI6Gfm0tBu/dS+vh9esNz7esrAy5ublw+PvfwQ8Zwin8/cGNH0/rwtmzFOL83nvkCVMiLo4Kv40cSfmXb76pWqdyckhMWriQvGYuLq0/CEEgcqimRoJqcjKwbh1CoqJEpKczg88+a7ImOTg4oMvOnSw9PR0v/v1vcfTly0w9PBzc48fAkiWYs2EDw+3beM/dncHeXtUXPjpaJc4NHw6IIqokEhbn5YX+69cTIbx/n4pF5efTvO7TBwgLg0NqKnty9aqQlpYmZGVl8erq6qK5uTmTyWT847Vroa6vz1wMDKCjo9Pw0tPTg0QiQXh4OGJjY5Geno6EhATWt29fijoxNSVPooYGpUk5O7fbXk0QhIb/NrSyEkt69GCoqSHBr2tX1RqmpkbPIDdX5cWsF2LsDQygceWK+Ntvv7FNGzZAtmcPCRBKEhkSQjnTx4/DvU8f3Hr2jGuSYyyKtO76+BBpamt+JSaqIjGUOeFffEHrUSvH9O/fnx04cAA//fQTFi1aRMTM1pa8n809sWvWqNLKOlhPQl9fXywsLGz44XPnzkEQBGzatAkSiaT9Ne78eSKG9UULm0BPD1i6FIKpKZ66usLq55/BZs1qIkgpFIqGdUhdXV1JEv98vHhBe80XX7T+9/HjKYqiNZiZkQ3w1VcUbfQKInZqaipqa2uZVzOxrwEVFTTfZs6ktWD7dopK2LChdVvs+XMS7Xbvbvb2c4SFhXE8z4cqFIqhAGr8/PzEDp9oJwB0ku1OdOKV4O/vbwpgDMdxPSUSiSnHcZqMMX0A3evq6qxFUeQlEok4bNgwqZub239n9XFRpMV2wwZS5I2NqSBUv36UF+XuTuG2hw/Txjp3LqmuBgaqMPIPP1R9X2kp/VtQoKoiWlJCIcSiSJtNQgIt5IcOkfG1Zg2F9k6ejJEFBbz1jBk4feYMnj17BqM/sR0GGKONSDfqWwAAIABJREFUbMWK9r07168D330H86gomE+cyCE3t0NVpLt27QpDQ0Px+vXrzNjYmJswYQJOnjzJJSQkoGfPnqiursaePXsUJiYmmD17Nt+CQ2lpUV7cjRsv76fr5kbPzNCw3fDA1nD+/HmxsrKSW7JkSZtEyNjYGEVFRfjyyy+xbNkyWFy8SMba4cOqD5WX05h4FezYQce5uYGpqcHe1VXxYNEifrCjI3mMPDxa74v9qjA0JKMmPZ08Msr8bju79kOBOwBLS0tmbGwsFhUVcXv37oWvry+GDBnS8oOXL5MI9Yr5/NXV1Xj48CGbO3curK2t2zcKY2NpPH/2GXnQ2qg8GxMTw7m4uMC2PszWyMgI7733HiJdXdnVM2dEJpdj/rFjwKlT0FHm4P/+OxHLvDxwPA9lqy5ra2ukpaWxc+fOwdHREYIg4NSpUwAAd3d30dfXl8XHxzOAUkPaxa+/kljXeA1pBIlEAiMjIwg1NfC5eRNmrq6i2UcfMcTE0HM0MKDic2fO0Hrj6QksWwb1+rxmFxcXmJub4+bNm3j27BmviIwE17075i5cKMHChRQKa2QEsw0bWEhIiOjq6sqwYQON0dYQGdl6b+EffiCPVVCQ6r09e2CSn49LixcL6aGhnJmTExVoUnpIZ82icOGyMlpLd+2Cnp6eqjjh3r3gc3PJozdwIBVeGjCgZZG03Fwi2kuWUJukd9+l98+epeswNqZ1tzWiff8+feeUKfTZ27dJIOraFXXm5rhx7hwbMGBAq8WkNDU14WxjA+dp0xj27CGv3JUr9MctW+i8EhOpCnNYGL0/cSJFody/TwT3p5+wrGtXHhs34umCBeh2+DAR1b//nUSzigqKSuE4ODg4wMHBgaPTvo+YmBhxwYIFtIBlZJA3/1brBY/79OmDixcvAiBi8rufnzDhX//ijn71laBwcQEOHoTzjRvoEhHByfr1a1LwMCoqCmfPnm36haIIh6Qk5hAURILGiRPkAZbJyPu6fDmdUxui7oIFC9iePXsQevq0YgjP803W+/o9r3b3bkQYGQmaQ4cynucZsrPJC//11xTFYmvbPiFTphUosWIFedyvXKGCas2gLEJorq1NnvPcXBKVWlu/ysvpmhcvJluhA6iqqmJWVla4e/eumJycLD59+pSztrYWZDLZy8XEkSNpX24rksvHB0Hx8eLt+HjmamEhjIuJ4XhnZ1RWVkJXVxeMMVRUVAAAFi1a1CGiXVlZidOnT8PY2Bi9evXqWH/ux49J9GvrPD08aE60hUWLVONYme7UAQQEBMDR0VHQ19dvem2iSJ7+L76g565Q0Bg6cIDWhbbO8/p1eu7NWoZdu3YNAKBQKKb6+flVd/gEO9EEnWS7E53oAPz9/dUkEsmHEolkU/fu3RVdunTRkslkTCKRQF1dHTo6OjA2Nm5o7/Gnh0T/mZgxg0i2sl3MTz81FE0BQIvtl1+S4XDoEG2wpaXkUWqvYrWpqcrjqcx7A1QVTGfPVhVYUVOjV3Ex8O67sC8uxozr11Hz449kYE6eTJ4rd3cyzpcvf/3r7d2bjJBLl5q2gwKImM2aRQRmxw4KyXyFIm0ymQxLly5lqampsLW1ZTKZDCNHjsT58+eFtLQ0ztTUFOXl5TwAcffu3cK8efO4FlW/7ezIW/0yss1xZFTn5Kiqznp7v/QcY2JiEB0dzRYvXtx6zi2I4CxevBg7duxAXV0dfvjhB3jl5gpeNjZcwxGCQMLFq6QL7N9PoeeLFwNqaggJCRHj4uL4VG1tZERFiR47d0KD58XugYFcW5EPL8WLF2RISCTkHejfn8iDMnQyPr5FDtqrIj4+XlFUVMSbmJiICoVC7NOnT0vjrT50FfPmvZKHQi6X4/vvvxcsLCzaJ9qCQGGcu3YRUW0nzy87OxsVFRUY1sx409XVxdBJk4C6OoaffybCV1BABEdHh4yyiRPJw+jjQ0TSzAzDhw/HTz/9hKioKDxq1q4oMjKSRUZGAgBmdCTiobiYXu2hvBwF//gHpIzBZONGBgsLIqyurlQwb8MGej18CPzwA2q//RZd7t3DPB8f2MycCa5nT/Tv3x8AwIWFNS0wpqmJpKAgpFy8yI3Zv5+q7NvY0POztyfPTuMc4a1bae59/bXqPVGkNbKR1xNhYeQFP3YMI+Rybv/+/bh165awcOFC1TPt3p1eeXkUUVRVRd4mLy8ibd7e5F2fM4fW3UuXaN1UVtFW3r/ly0k81NOjtVJ5nlu3kqHdPK82NpZ+8403KHw5Lo6iP5Se6/r1PzQ0VATARowYQe+npVH0hJcXrU+LF9N6/vXXFIY9YwZ974wZtC5cv073UFOTRApAFWEC0PVyHG5fv46obdvwvo0NfdePP1Kht7w8qoL93nu0bisruYPqfMjlcpWH0sSEhL/WQuxBKRBKjOI4yH19uTgrKzg4OTV8uFxDAxEmJtC7ehVz5sxBYmIiHj9+jIyMDFEikTAnJydxipMT4/bvp3UlLY3u1VtvkTCwbh3dky5daJ+aM4eKXirFlUYwNTWFjDHRftMm/ufly8V3BIE1bgd26dIlRI4di759+4prd+/m+KtXaTxNnEjktiPr7vbtTQt1SaUUEfH55ySA1ItnSrx48QJMEDB85UoSgOpDvFuFnR2FSnft+vLzqIeRkRGioqKQnZ3NUB8VY2dn93Li+9lnRFDrw/ebQxAEJHp4IDkykr2pq4sCgGX87W/4bdgwyOVy9OnTB0qP76uEkD979gxPnjxBcXExQkNDMWTIEPj6+rZ/UGEh4OKCyspK3Lp1CzY2Nk1rbmho0FyYM6f14yUSKpa3dCkJbB3YB2/duoW8vDz4+Pg0vbDiYhLir16ll7Exzatu3Wg/bGtfEkUqVnjsWIs/mZmZidHR0QxAzktPrBNtopNsd6ITL4G/v7+WmppakKWlZY9JkyZptEVY/tdg2LCmrZEMDIhMN/eQ2dhQqGphIRXpGTOGNm0Pj9drR2VurlJNG1eWLS8HD8DkwAF2dNcuDI6Ohku3bqT2JyVRvvXy5WT86+iQwv/GG2TU8DxtLqtXk5HW2kbFceRJP32a1H3GyCP10UdklK5dS9/5mhXjZTJZgwcQALp3747Lly9zyrxXOzs7xdSpU/mTJ0/i8OHD4sqVK1mTtk79+5Oh9uxZx/K2LC3pvogiebe/+07V47UV3L59WzF48GDOysqqXQYok8nw9ttvIzExEbrHjiHM0JCL1NDARrmc2lAFBJAh9zKipERkJD2jgwcbPIMODg7s1q1bcHR0VERHR/NpkydDpqYmbly3joyreo9Wh5CZSWLJ7t0UUjt7NuV/Nm6lUllJgk1s7H/k3R49ejSflJSEoqIiBoBdu3ZNnDZtWtP7GRFB1Y0fPGh4q7a2FiEhIXB0dGzwnMnlcty8eRN9+/bFqVOnhBcvXnA8z7PZs2e3/Xxqa8moLy+nsP6XGGTl9V7aNtuHTZ1KESbKSsOHD9NLIiED3dSURKj6AnJdxo/HRx99hNraWmzbtg16enriwoULmZ6eHqKioiCRSHDq1KmGHtlthpHX1ZEnp73zz8qC+OmnCCsogM7HH8NI2RpPR4dIR3R0Q/qAws0NSWvX4uyZM/D08JAPz82VwMsLsLcHt2ABhVfPnk0EtpG37gXPA4IAi9xcEhqU1YI//FCVmqDE4MGUotAY8+bRMUoycPIkvS5eBGQydAGwevVqfPfdd1xtba2qdaAS5uYksIki5aBPm0brkVRKIsqsWRQ+e/s2eYTDw8lTLZHQWuHuTnM/Pp5CkKdOpXN5+FBV6KumhnJCt24lQqsMK33xolWjO/XgQTEhNJR5OziA8/am3OD9+ykqKTCQSP3QobQvrFhBBykjBZSezsYeT6XA1Zh41s9tLy8vpF+8KIZPnsxcu3WDuq9vUzFjxw56FkFBdK969YKamhoUCoXqM5qaFN1QXt5kP0pPT8fZs2eFiooKbtq0adB/8gSW8+aBvf9+032vuhriihWInTEDaWlp2LZtG9TV1UU7W1th/IgRvNa2bVD77jt2aOxYeFZVwcXTkwg2QCR//nx6TkqPsZYWzZeDB0ksaAXj6+qQZ2mJNMZYeHi46OXlxehUqhEWFgbtmhpkBwTwefn5YhdtbSYyBvbxx61+VwtUVdEYb743OziQl/jBA1oDZTKUlpai5NkzlCxZAlm/fpDevPnyIqJSKa2z//wnCX4dwJQpU5i9vT3OnDkDnudhbm6OHo2F/bbg4NCqQFpeXo5Tp04Jubm5nEwmE8elp4t2ZWVc/Ny5gsW//sWLVVWQamqioKAA+/fvB8/z2LJlC548eYKQkBAIggAfH582W4BZWFhAJpOJpaWlDEBDW1BBEFBaWtpQVK4JkpIQr62NP3bvFvT09PDo0SNOXV0dDkqBz9YWuHmzTVEIAAk4q1fTnPv73196e3r27InAwMAmKQ54+pQKxnl4EMGOiaH5evs2rbnt4dYtWhuUFd8bwcTERLlYaAFopw9hJ9oD/4+2CvN0ohOdAAAEBwcfsLe3Hzpr1iyNNgtR/G/A5ctkIOzZ07Ql0cSJZMS15SXV0qK2InPnUr7YN9/QRqijQ96YPwkyAwNUamjIr127xlksWgQjZ2fyGKxdSx+YMYM801paRJ7GjydD88cfiYj06kUhXRMmkIq/dCkQHEw5gePHk2obG6vyiBkZEQGfMuW1c3lbQ3V1NTIzM4X+/fsLrq6unJOTE2dsbAxbW1uWkJAg3rlzR9TS0mLGxsakuEsktCHWh1p3CMr8wPv3aaPW0GjzGm7evMm8vb1ZR0QiAwMDONjbw2DdOqSbm+OZnh50dXVhaWlJY2b06I7liz9+TCLIli1NqgVraGhg0KBBcHJy4vr27QsrKys8iopigzZuBGdpSQbJqVPthynGxlJonKcnhd87O5MINGdOS2NBKqXnbWrasv3KK0AmkyE8PBxaWlqoqqpCYWEhMzExQXV1dcPfhZ9+wvM+fbD9+nUEBweL3bp1Y99++y3S0tIQHh6OtLQ0xMfH4/Lly0hPT0dkZCTKy8uZoaGhOG7cuLYrnAcGEol/6622C9s0g7GxMe7cuYOqqqrWjVvGyFs5YADlyj5+TIKNUnBSFucSBCITNjaAszN4noePjw/69+/PlNE75ubmkEgkCA0NxcOHD3Hnzh2YmZmh1ev55hsiKMraD80RFQVcuADB2hqXLC2FrJwcpqWlhcuXLwvZ2dlCj7VrOfzxB503gJycHPzyyy8Y4O2N4cuWcXjzTSKvgkAE9f33yVtqYkLXW+9JtLCwQPCDByK/dClz8PYmb6yREYVzhoYSeV2yhO6TjQ0Jjo1ztu3saK5aW5Pnd8MGEpYaER2ZTIbAwED4+Pi07VljjM538GCKMtiyhYhsv35U06CsjMJBlZX55XIiwO+8Q8/lxQvyAtbUkDDatSu1sgoIoPmxbh2tb/PmqYhiXR2RVImE5s+bb6Ju7lzUzJzJtBmD9dKlKOc4yEaMADdzJoomTYKmpiaYt3fD9dXV1aG2tpbqO2RmNnj3GiM9PR3nzp0TtbS0mCAIEAQBz58/R0VWFl5s3AiD8nKWxnEw//RTaDXPO9XWJnIfFkZj38EBJVpaSE5OFvr376+6mVOnkvDYqPjU77//LhYUFHCzR42C7Y4dMNi0Cezvf285b7KzwQID0WP7dnTr1g0jnJ3hq6nJnHbu5Ey1tKDfqxd01q1DaY8euFpZif6jR5N4JYqUTxwfT+O4cVjuwIGUQqWv3zLnuawMpmfOMHHHDsRSq0umTEU58tNP8qqqKrbswAGmU1GBo2PHsqxhwxQmkyZxiRcuQHPKlJdHy5WX0xh2d2/5N1dXEsyLi1Hn4oId27cjISwMg27cgO7cubBuXryrLezbR/d71aqOfR5AYGCgWFlZCalUKpSWlnJ1dXWKqqoq7sqVK4o7d+4whULBCgsLYWhoSPd33z4aS8roika4cuUKkpKS2OLFizF69GhmMmMG4+fNg7GhIZdVWio4BwWxxO7dYWRkJPTq1YsVFBQgMDAQsbGxkEgkitjYWK6goACu9cLCgwcPEBQUJHbv3p0BwK5duwQdHR1MmjSJ1dXVKYKCgrjY2FhFSkoKu3LlCjMwMIBEIsGVK1eImKurA8uX47CxMSoZY2vXrmWlpaVCeno6y87ORlhYGGzs7aEeFUXrRzNBv7S0FHK5nMQ4ExOKDDE3f2nLyPT0dMTHx8PX1xeaGhoktB0/ToR93jwi3nl5FEXTkdD0CxdozWklBSIoKKg6Pz9fwvO8w5AhQ357+Zd1ojV0ku1OdKId+Pv76wH4eeHCherS/6AX4n8Fnj0jo615FeZ33+1QODIkEvJuDxlCxvm//kVqeq9er10huzm6devGVVZWCrdv38bjx4+FoqIi5uDgQAxJKlXlUY8dSwTT2ZmINkAGwJgxqmsdO5ZCqYKCKKdu2zZSmD08SHBYuLD9sPjXhKamJt544w1mbW3NmZubN+Rjqquro6ioiGVnZ7O4uDiEhYWJJSUlzM7ODlzPnsDf/ob8yZMRHBwMGxubl4e+MUbCgrk5EW41tRaVkQEgODhYtLGxYaZtVKRtgcRE3B8+HFH1+W79+vWjPPojR8jj8LIIgOpqMpQnTmx3XKmrq6OiogLx8fEYOmYMGSPp6dTSZdYsMmqVBrIoUgjn5ctESiorKe93+3YiK9bWbRNpiYS8gMHBLw/VbwOMMQwYMAD9+/eHl5cXQkNDERMTg0ePHiEiIkKMOnmSSa5fx2EbG4AxKBQKlpGRgaqqKtja2opdunRBcnIyKy4uBsdxWLlyJYyNjZGUlITBgwezVlt9VVeTKLRmDZGwESM67PVnjOHp06dibGws69OnT+uGulRK8zcvj4janDkU4aJM9QDo99aupTk+bBillrQSvq6hoQEPDw/U1dUJubm5TEdHB/bKdkSN4elJXtzWImOuX6cxNnAguNmzMcDbm2VnZytiY2NFmUzGJyUlcf28vCD95BMq/mRhAW1tbQQHB0NHR0d0cnKiASCTUbTI1Kk0L65eBQoKkBMYiJrVq8VLz56xq9HRQnV1NZednQ0PDw+oOzuTIBcWRgbns2cqY7+qikJx33uP7sfhw7Te+fhQmPeqVTS2mkUG1dTU4P79+y8PQ2WMvnfYMJq/tbV0Lv/+N43xU6eIPDNGc+DoUbr+3bupt3ZkJAkDY8cSsb53j1IDxowhUn7+PAkGmzfTc541i953cSHBoE8f3MzNFc+ZmbEkGxvEPHmCZC0txd3wcC4qKkq4e/cuKy4uFnr06MFqa2tx6tQpxYULF7j79+8jKytLcCkpYSw2Fhg9Gk+ePMHvv/8u3Lp1i4WFhaG0tJRFR0cjLCwMEXfvovzoUVh99hnCLS3xqGdPMdvcnA0bORJt7q29e1OkQXIy1HfuRIK+vvhG49BZd3dV9e166OnpsbS0NCErNBTmV6+yOHd30ap7d9Yi2iI5GRg2DJpqajCZNw/qSo+0pyfw5puQu7ggNDsbtbW1yMzMhLu7O3lEf/iBoiu++aZlf2RNTSI9N260zJH+5htAXx86U6YgPj5esLa2FpydnTnk5MBu+nSuQFubPZg4UUxxdRVramqYmZkZ6zZnDgvR0xMTL15EHc8zi+7d244aiYsjEaVxIb16VFRUQH30aAh+fpBYWsJ7/Xo86NsXId7eyCgvR0JCgtijRw/WIgKjOXx9aYx2797uWlRUVIQHDx4gISEBsbGxbPHixWz48OGcra0t4uLikJiYqLCwsJB0796dxcXFKRISEpCTkyO49O7NYf58CP3740BgoCI+Ph49e/ZkPM83eHHj4+NRXV2tcHZ2phP49VdoT56MbkePMvM9e+C6bRsG+PoyW1tbeHp6wtXVFb6+vigqKhKzsrI4uVwuhIaGKkpKSrjHjx+LT58+ZSEhIXjw4AHMzMzExYsXc8bGxrCxseGCg4Ohra3NCgsLmbu7O27duoWIiAgUFxcjKSkJBnl5UMvKQkLfvoJCoWADBw5ERESEkJqayikUCkEmk4kBAQFw5HmmZWTUEF0VEhKCa9eu4dq1a0hISKCQdy0tWvPDw+keMwZBEFBVVdVkfsTFxeH06dPw8vJSuFpZcbh1izzZn39O8yUwkNaBVas6VtclJ4fWlOXLW+33HRQUVF1RUfGuKIrbfXx8al7+hZ1oDZ1h5J3oRPswVFNTq5PJZP97mXZdHRmGP/9MHpjm2L6djMeNGzv2fba29PL0JAXVxYW8MWvW/Cmke8SIEZyxsTFyc3P5yMhIqKurt8g9bRUcpwpP3baNvFuJiWQIX72q6heanEzqvL5+q7l1fzYSExNx8+ZNRVlZGaempoaJEycyc3NznD17VkxISGCRkZGws7UVe9rbs/itW8VUMzOWkpKCKVOmdKyFmNLDra5OOXc+Pk28cDKZTFR6YF+K27eBKVMwND8fIaGhoiAI7M6dO6KDgwPDDz+QwNFWmxyACjn94x801jpQ9ExPTw+s3qjgOI7GVHw8Pbfhw8l47NmTCFpeHo3RYcNoTIeHt13BvTk++aRp3u5rQGnkamhoYP78+UhMTES/fv3w3XffMY+ICOSYmwOMYcOGDSgqKkJoaKjC2tqaHzRoEDMwMECfPn3QrVu3hroORkZGKCgoEOLi4pinp+f/x957h0Vxtm3j5z2zsJSFRXqRolhQQUQUCzbsNbEbe0vUJzHGxDwxxhiDMfHRdGONJUZN7LFhJSqKAgIKKGJBQEBFQJC+y+7OzO+Pi6W5CJjn/d7fd3ycx7EHCrs7M/fcc99XOa/zqmlBp6bSHFYqKdP6Gs/VxIkT2ffff4/Nmzdj6dKlhoM3n3xClN2DB4ka+sMPVfXbeug/t3QpBVoSEijjWksgztLSEiNHjuRu3LiBqKgoDKndG/nFCwrs7dv38nns2kVzZ9q0GsHASZMm8QBlsLdv345ilQpma9ZUOlccx8HNzU1UqVQveyCRkfSdeXkAY7i/dKnUQi5nXZ48wRsbN3J5I0ag6MMPYWlpWRWEmT+fMsDffEM0ZmdnWte2bKH1hOfJkfLyojrITZtIVM4AXV+lUoFvzH0zMaHsUlEROZG2tlR+8ddf5MRdvkwZXFEkh3/WLHKW58+n8VMq6f6tWkUOqL4H8e+/k8M6dSqVgVhakmOmR+vWeLRtGwOAuXPnwtbWFiYmJvydO3eQnZ3NdezYEdu3b2dXrlyRBEFAVlYWe//998HzPL7//ntuo0qFls2aCVk7drDHjx9zfn5+XJs2bSBJErXJEwRoK+jHchcX4P59jDYzw549e1hRaipycnLgri8VAJCfn4+nT5+C53moVCqoVCqUmZlJtjyP5vfvczXEIe3siAHw1VeVn29ZWIiPfv6Zw/37uDNrFkIPH2at2reHvb09MQBkMqojnzOHxnXHDho/T0+6vy1aQJIkREZG4sqVK7CzsxPd3NyYUqlkyMqiuRASYtAxAUBsijNnKOChD3A+e0ZzKSgIOp0OGo1G0kRG8rpt2yA7ehTqVauQnJWFRQsWsGbNmunnMgOAGQMGsPx27ZBy5QourFkjDhgwgDPocBcVvRTwSU9PR1RUlHjv3j3OpLwc3dRq+PzrX5Bv2oSPp0yBTqejvuoXLrCNGzdKH3744asd7tOnyak7c4b2UwPIzs7Gjh074OjoKPA8jzfeeIOztbVlAAmyzZw5k0M1ZfA+ffrwGRkZ2L9/P5Us3LqF69HRKLx/n5PJZNJPP/0k2traIj8/H5IkMXd3d7EysAYQ46ddO8DODtyuXbBOSal0ao2MjCp1Sjw9PfnS0lLBycmJl8vl3PXr10WO4zB58mS2f/9+aLVajBgxonJszc3NoVAoJKVSyQRBEIcNG8b169cPxsbGSEtLw/nz58U7p04hGeDy8/O5Dz/8EDzPo7CwkAHApEmTOCsrK2zevFm6lpyM4SoVYq5eRVpaGjIyMtC9e3eYm5sjJSVFKigooPZoI0eieNYsxK9cicDgYGzZskXIzc3l5XI5dDodeJ6XBEFgCoUC/ZRK/vns2VC3bQvno0cRn5AgPli9mms9bJhkFxzMLly+LNglJcHd3Z339vauO0hz+TKtZQb2UkmS8PTpUwWAv1auXFmHgmQTGoImZ7sJTXg10jUaDa9SqfB/LYW8uJgW07qETRSKhtfJVkfr1vQ6c4ZoTJ98QpHVCRP+kRMrk8nQpWIjd3Z2RkhICDQaDYbqs9b14flzCiroVTk7dybnWi/go1CQsXTkCGWEDNHuXhOiKCIqKgrNmzdHdnY2IiMjhZKSEj4wMJBr27Ytc3BwqNz03nnnHa6wsBAhISGiWq1mZa6ukk1SEpMHBSE1NRUnT54Ug4KCuKioKLi7u1fWmxmEXuDp4kUKJnz3XWWm18vLi4+NjRW7dOny6pssCJS1vH8fnFyOTz/9lMXExODixYtMkiSw69frH4APPiADs4GCZAqFAlqttopKB9B5t2hBbWgWLCAnon9/Ml6zsshha0jdX3Xoe8QuXmzY2WskXFxc4OLiAlEU0VqplJ63aCFl+/iw6RMnMnNzc5ibm8Pd3b2Gp+VpoGbczc2Nu3nzJjIyMkj5VpIoUKHTEbV4+vTXpr4bGRlhwYIF+Pnnn3Hu3DkMM6BGDMbIaF64kITH1qyh/x88+HJJg955XrmS5ll4+Cup+fn5+TVrHDMzqd6/+vsliWijd+5QVrGOgEhUVBQkSaK6d56nc7x9G+XGxsjIyOCGDx+Ol2qjP/6YSk8qjtd1xQr2i5WVZGJkxN5Sq0UnUeScfvyRrmXHDspEJiTQWrh0KQmY6bUYYmLonvTtS87ruXPUUufixTrZMY12tvWwtKSstSTROjV5MgWg4uLouDxP1PXBg4lOv3gxZVvHj6dzU6noPrZuTWv+tWv1HvLNN9/E7t27sWPHDvj7+2PkyJHo0KFDpRbFuHHj2LFjx8Ty8nLurbfOxob5AAAgAElEQVTeYnq2zty5c1F47hwc167lw9asgYODA0ZWZ49ERAAhIZCXl1MQoJqeQo8ePfD06VNp7969bNasWWCMwd7eHr/88gsAQKlU6ioESDlTU1OueMoUeMlklCGOjKQAGkABj+Bgum85OUC7drjctasYs2EDysvLufaAZBcZyfDGGxS8OHyY9gR9UMfVFZonT1Bmbw9JkiCKIkpLSxEWFgY3Nzdp8ODBnCiKyD1/HorPP8edn36CLi0NwsOHEASh8iWKYuVPHDkCrzVrpJDp00VBFFmXsDAmKy9nlx89gt2TJ7BSq3mtKCK6uBidNBocEgShddu2/EvimRWwTkxE5q1bED7/nIu+fFl0eucdTq1W48SJE2jbtq0watQoHnl5eNGyJfZv3izl5uYyjuMgCAI8PDzYgP790fb2bTQrKMDVdu0kcedO5tatG1q1bo0ePXqga9eu+Prrr9mZM2fwpl5wzxC6dqVxq9Zx4Pnz5wgLC0Pr1q3h7u6O3377TerevbvYv3//Bk9+uVwOk/x8IDAQRVevIjMzE1qtljk6OooeHh58bm6u4OLigkGDBnEcx9X8XpmM6PNDhxLbbvNmCjjXChq0bNkSLVu2rPysXuQyLy8PkiShe/fuNUpfOI5D165dxUuXLvH29vZgjFXWeleq5O/ZA9HODoMGDKjMPvft25ddu3ZNNDc35xhj6N+/P9Lu3BET1q7lLgweDDc3N0yaNKmS+RMSEiLu3LkTixcv5s+cOYNnzZpJHc+cYY/Hj0d+fj4/ePBg3L9/X+zatStnaWnJLl64ANtDhxCRkCDmK5Xsjrk58zt1Sio/fZobcPw49puasnwbG3h4eHDFxcUsJCREOnr0KPPx8ZE6duzIauxDWi09R7GxBu9LxTVr1Gp1GoD/y8WK/nfBJL2CahOa0ASDWLt2bcq0adNaurxGb+P/dXz6KTkms2f/zx8rKYmMxMBAMqpnz25Q+6z6cPr0aTE5OZkbM2bMq1txxMcT9TIjgzaPadMoy1o9O1xcTIZWRATVe6ekkHG6aNE/rtvW6XTYtWuX+OzZM04QBBgZGWHgwIHw9vauU5ClBrKzofrPfyD/6iv8uHWrVFZWxiRJgpWVFV68eAEAePvtt1HvPJQkEoZq2RKPFi3CiRMnRJ1Ox31UV52sHlOnksG6Z0/lr3bs2IHHjx+jR3q61Cc+nuUcOwZXV1fDUfL//Icyaj17NlixvCKjIX7yySdc5bn/+CMpo0ZEkFG9aBEZeR9//FI2tVFITiajvA6F29dBRkYGEhcsQGtzc7HFvn1cnYJkdUAQBGzcuBEODg6YNGgQ1c6dP0/qtK9iEDQCV69eFcPDw9mHH37I6qz7TEoiAaU5c8hhKy8nR7+uAKMkEevg3/8mFkK16z59+rQUExPDAGDRokVVCvgqVc3vKy8nQ695c3Io6yhPKCsrw3fffQeZTIbPPvuMfjlrFrB4MY49eiQkJibyeuEsuVwu8TwvDVCrWef58xns7Go493l5eTh58iTS09Px8ccfwzw7m5w3X1/KBI8ZQzXS+/YRe2fkSNJ+MDGhdXTnTqLSmpvTWBmi/1fg4cOHOH78uLRkyZKGRUtKSoidkpxMGb6xYymrPnIkOaoREfS+d9+lwJGJCQUJjhwhpzsggGq4ra0bzvioBkmSsGHDBkmj0bAlS5a89Hd93fVLc/zJE6IuV1dAv3+fsuzt2pEWgF6Y0gAOHz6MsrIyIS0trdIRUiqV0uLFiw1/oKiIAiGLFtF6360bzceICAoI5eXh23XrpAk7drB9b72FnhER6MpxMAsLI5X96vWwx48D+/ZBdfw41n36KYyNjaVqaxvjOE4CIDFRxOStW7nQvn2R0aIFHB0dRSMjI4njOHAcJ/E8zyp+guM4FD1/Lht34gQKVq+GkVIJ688/h/bzzyF3cYHRmDFgHTqg/PvvsXv3btHR0ZFr2bIlTp06JWo0Gi4oKEgIDAw06KiWzZmDmwUFYkT37uA4TnJ2duZTU1MxadIkPFu6VMoF2JOgIIwdOxbZ2dkwMTFB+5MnaY5ERwOSBFGrxa2hQ5FiZYUeGzaQHgeq1vopU6ZUiXtVQKPR4OzZs9A9f443LlyAbMgQYMYMiKKIb7/9VnJ1dZUePXrE8TwvtWzZUpowYUKjovfZ2dnYsmkT2gmCmGxqypmbmwtGRkZcSUmJJAgCJ0kS5s+fD9u6Spg0GnpeDhygvWPWrIZpi4Dm9cWLF8WYmBjO1NRU6Nu3L+9XLQBfWFgIY2Njw8mWyZOpxKeWyvtLePwY5UFB2LJwoTRw4EBWXVBVEASsX79ekslkyM/PZ15eXmh/6JD0pKSEJQ0ejEWLFlU9c4WFuDB9uqR8+pSlTpyIR4CktLQUOpw+zd/w8GB2zs5i20GDuPj4eHHu3LkcQOtnamoqjh07hmbNmkm2trbikydPeB8fHyEwOZmXFRbCuI42jAAQGxurb6HHNfXXfn00Zbab0IR6wBgr0mg0/7XvEwQBBw8eFJVKpRQYGMibmZnVXbP2T1FQQFS7VyE4mIzLe/f+2bHatydnOyWFWoYtXEh1u/r66teEg4MDYmJisHfv3ipjWw9JIgXgkhIyQvXtS3btMtzv1MKCMkIxMWTE5uWRmve6dSS+Vr1etZE4duwYnjx5wi1ZsgSMMXAc1zg2hIMDTPPygNhYDBkyRHr27Jnk4+PDWVpa4urVq4iIiMCBAweE0aNH8y2riY7VRlFxMbh//Qs3zpxB0i+/oH2XLuhhoI7vJSxa9BIddtKkSXjw4AEidu5k6ubNEffbb+jcubM4atSomsbUvn0U4Jg/v1Gtwezt7aFWqzn1s2cw+egjmidz5lAN2fHjJAZ19Cg52wEBJPTz228N/v4aaN2aHO2dO8kYex02Ry0c2LdPnGBuzjy++YYzRCWuDxU0S4R/9RXUO3fCZOFCOr/XbYNmAD179uQuXLiA8PBwDKpLCMnBgVggPj4kohgSQgyVw4cNiyAyRnXF5eX073XriD7L84iLi6v0Viqd+4ICYjzk5FD5Rn4+ZWNlMmKXGHhOysvLceTIESE1NZWXyWQYPXp05d+EdeuQ9dlnSGrZkn///fdhYWGB0tJSPHz4kMnj45n9J59gg04ntu3VixswYAA0Gg12794t5uTkcMuWLcNPP/0k3bx5k/Xu3ZucbYC0DyIjqdYxLIzWhdGjqW4+OpqCce7udH82baq3LEGtVsOqsFBCaiqDrS2tSxMnkt7F9u1US60XqZs0idafkyeJph4aSs5DcTEFD6ujXTvK3CUn098TE+l833uPAiV2diRYptGQs755M4353Ll0HR07UkYLoOcqJwewsQFzckJ+Xh4DY1i9ejU+++yzGqUHFY7lyxfq4kLH1mqp5nTz5qrAzaBB9c7lwYMHY8uWLUx/DKVSKc2cObPuAIWlJQVM//1vug8ffUTPcng4re3jx2Pk2rWMP3NGmjtlCgtp00YSPDxYf+Bl4amKLO7dx48x0NoagatXM0RGVhd1ZHjxgmHECODCBfRjDLt374YgCGz+/PmvXkDGjYNy/HiiNAcFwWTAAJprFy4AHAc5AG9vb3bp0iXpyZMn4vjx4/lLly4hJiaGC6ytq1IBs5070Qvgeo0bR/vbxx/j3Llz+PPPP9HaxIQNmTcPNhXsJ5fSUtoPhw6tEpxkDJyxMTrt3QtHPz/s37gRPv37o2vXrnByctI9fvxYdvbs2RrO9sOHD3Ho0CHJwcFBUhUUMPWFC0zx+DEwYwbu3r0LmUyGyZMnc/n5+UhKSmL+/v6NpuLYxcfjg99+Q9yuXdzoXr1gbGysDzawkpIS/PLLL1JZWVnd32tsTGtWeDhd77RpxDppACuI4zgMHDiQ69OnDw4fPsyfOXMGBQUFcHJygpeXF+piGyAvj+yIBpRLwdkZ8gkT8MHs2aw21Z/neUyYMIHdunVLMjMzE729veE1ZgznFRCAoWPHVu3JUVHAV1+h26xZ7MdbtyCqVADA3J884Xo9ecKUCxeiw8CBHMdx8Pf3r5ybZmZm8Pb2RmhoqPj8+XNOo9EwFxcX3IiN5eRnziDR2xvz9B1HDODhw4fgOO7WihUrmhztf4AmZ7sJTagffEP7NNZGeXk5CgsLUVxcjOjoaMnS0lKKjY2trFmKiYkBQL0MFyxY8Hp8UUOIiyPHd9u2+jecd9+lCO1/C56epJCrUpER9uWXFHGuoy6oPigUCk4mk8Hb21tCRR0b1GrKwFpaUkaK56nFz0cf1VC/NohvvyUjdMgQop+tXEkG9bp1tHHq6YmNhJGREdq1a6dTKBSvv66+/Tbw7bfwPnmSqy6a1atXL+h0OtHIyIjbt29fDRqaHs+fP8fevXuFwsJCHgBaBwSIM0JDOfP//Ier9/6++SZlpmvRvxUKBTp37ox2ZWVIk8sRd/o0bt68yRUWFkqTJ0+mPrGnT1f1IW5kW7znJ09iyp49kPr1I4Nw9GhiHJw9S5ndGzeqnOLQUMqi7dlD2a1GKOJWQhAoa9yhg0Exucbg9OnTaHv1KufQps3r14NrtfD4808UKJXiOXNzvDlqFJednQ2O42BhYVG/AnEDoF+7oqKi6na2bWyo7lWtJrr08OHkDN6+TZRtQ2uIXE7rRlYWOVhTpgBOTliyZAm+/fZbiKKIZ8+eoUWLFuTsJSbST72wXc+eVHpScX6pqamIiooSOnXqxDs5OaG4uBiPHj3i3nvvPWzevBmO+raBABIzM2F97hwm/vJLpTFsYWEBv9atARsb5P31F/ooldy5c+cQGRmJCgYfBwA5OTkwN8S4GT6cXoJAAR4LC3KM/Pxobm/dSmUNS5YQi0av/F1YSNnvoUOpfVduLrBoETQnT2Lk779zuHuX6uFDQshJtrGh50ySiPbq6kqOk55i36sXrUkA1VjrBdGaNydmR2goBS8uXaL3H6omEDx+PP1UqcgZMDOjNbKkhMZeL0wXF0f3TaGgkpPSUqB/f3xy4QKuyeVokZ4OFhtLFPUTJ6jeuFMnElPy96dSHYWCstaCQEEsMzNaW0eNous1M6N7LUm07j9/TsKGMhn9VCqBuDhY8jw+6dKFu7hjh8RKSlif3r0Zv307jcvZszQn+/enYHBhIY2TUlnVfULf933VKhJKbNsW7XQ6ICSEwdoa9hkZLCYmBl27doVFbYVwACne3rjr7o7uJ07Q9bZsSU7xwIF0n77/ntbHli3RApUt3ZhWqzUcJBdFCpAYGVEg4+pVejZWraI1raiIxsbYGAEBAczY2Bg3btzg9uzZAwcHB3HixIn1Gxv/+hfNzxcvMCQoCObm5vA6eRI21csW3n+fAiE7d778eWdnWIeG4q358/GbiYkUGRnJUOEPtKgVpD5z5ozQqVMnftiwYSwxMRFnb96UPAYNYp0rKPM8z4MxBhsbG/Su3lqtEeBsbGD18ccIMqDN8ttvvwnOzs6ca339vQWBAoChoTT/791rcDkTQH3cTUxMBK1Wy1+5cgUuLi5iq1at6mYr3b1LAeqGlPno97D09JdU+wGgefPmqGjNWfll/MGDxC66fJkYLGVlwPvvQzF0KGZ1746U+/fRddMmHLG35xARAZ96glrTp0/nJEmCnZ0dncytW+zprVu4ZG+Pw4cPS6NGjWKG1kUPDw/x/v37HYODg5UrV64srP9im2AITc52E5pQDyRJsqhXpdMA7t69i4MHD1b/FQPAnJ2d0b17dzRv3hw3b97E1atXkZ2dzdRq9X/FuAZAWQ+druH1nhERr+zV/FowNaWNPjOTMs137xK1vE+fRmXucnJyRJ1Ox8XHx7Os2FhhmKcn73b6NCn09u9Pxt/27fU72XqYmdHYnD5NhiFAmZJffiElz/79KQvVyPEwNTWtFEd5bfToQUGJ1NSXWmYNGzaMA4Di4mLh8OHDvJ2dndivXz/O09MTRUVF2LRpE3x9fVn//v1hbGwMuVzOYcoUMk4PHiSj9JtvXj5meTllwV4hxmb6xhtov28fBg8ejPDwcKSkpLCIiAi4A1AsWYK7c+aIPSZMaFhIShTJmL13D7lt2iC/c2epVUAAQ0YGjbu9PYnw1KYBWlvT6949yqTPmkX3sTGK8jxPDrsgGBQUagwS4uOlBXfvMtNVq17vC8rKiAng5IS2ixdz5/btQ+qPP4qlpaWVZQiffvpp/ar0DUSNnqwv/5Hm3Pz5RJH+4QfKrH77LQXPvvmmxlpSUFCAP/74QwTA5eXlQfH++yjZtg2f/PwzLk6aBNHZGXZ2dpUtdbBgAZUBXL9Oa03PnnT/qiElJUVKTk7ms7OzBZVKxWu1WpiYmODQoUOCs7MzU6lU3Pfffy8FBgbC0tKShY4ZI83x9a35vL33HiBJsNm9GzYA2rdvj4SEBIiiCE9PT2zYsAEAUUPrLMfgecrIPnhA8/HsWQomSBJll0aOJGc4MJBoySoVZf9Hj6ZgXbNmQO/eUD19ihOffy6888475AFduVJ1DH3msi4NBpWKGDt791LGXaWic/L0pHHUasmZVioNC3WZmpJzDtQsvejcmX4OH171uwEDoNVq8eLFC7wYOxbXDxzAPS8vvD16NExatKAgGGP0vKSk0Dqxfj05/B9+SEHK69fJKbC3pzFZtYoc9CNHiKLfvz8FWwoKyOHUt1S7e5eec1FE15492dXwcOnorVvMRKGQBvTowUzHjqX56OpKzBYTE9o7jIzI2Z8+HTh2jI53/Dg5xebmxNYqKAAmTcKQ8HBYpaUh190dJ6KjJYtOncQ3ZszgAaLO7927F2jTBsPfeIOCwk+fEsPAxoaCLEFBNYLRNjY24Hke+fn5sNNowO7cAWvRgpgQWVm0H0VEELXe0pLuBcfRfEpIoMDGs2fAmDHgd+6Ev4sLWs2YwWJCQsTnFhackbMzBQ1atKC9ytD91SvlBwUBNjbodfgwreNubrSnDRpE+9srNAOMfXzgOG4clr14weLGj8eJEyfQsWNHcfjw4TUWnA4dOvDR0dEYNmwYvL294fH0KZMWLcLOqChkOTujQ4cOIoDXV0Y9ebKqlMsAPDw8+NTUVOnatWuwsLBAx44dDZcx8Tzdc46j/eHYsUY52wAwZswY3s3NDadOncKTJ0+4r7/+GkuWLIHCkAZNZqbBvtR1wtaWgkUNRevWNJ8DA+m5Xb688niuDg5wLSqCpNEg29ERDzMzDXd/qHH4WhT82Fg4DxsGPysrKSEhgX333XdYsGAB6WJUoLy8HImJiWoAZgDsg4ODBQDiypUryxp+IU0Ammq2m9CEerFmzZrc+fPn29YQ+2kAgoODAQAffPABMjMz4eLigpKSkhp1x1lZWdixYwcAwM/PDyNGjPhnJyuKtGmtWFFvr8ZKXL9O9Mb09H927Pqgz6b85z9kJL3zToM/qo6JAWdtDbFLF6gkCRoLCzxXKHBj/Hix3zvvcK+s5TaEhAQyVmtH0iWJqGiffEKZvkYEBg4dOoSioqLKWqnXxm+/kTFayxnR48WLF9i1axeKiooqBZgEQYC1tbW0cOHCl1vcAGQIr19PRoggVDEMCgrISJ0x49WBmfJyMvo4DhqNBr/++qukTU9nHW/exD0vLzyvUN319/cHYwyurq6VvUwrkZ9PTnbfvpQt690bj/z9Efbdd9Kshw8Zhg8nBfL66t/0OHCAHI+4uPrbkdXGkCFEPTx5snGfA3Djxg2EhITAIy0NHTw8pC5fftm4AIskkROyYgWNfevWAGMoKSnB/fv34erqClNTU6xfvx7NmjUT3n333X8s8f/o0SP8/vvvWLZsGYmIlZRUiQbOnElzzdqanMgWLSgTV14OZGVBXLcOjxwdcb99e8iNjKCWJDy1s0OhUolSc3NIFXWqoijCLS0Nuo4dpYkAU/bsSTX8kkTO9fz5tNaMHVujL7IehYWFWL9+PSwtLQWe5yWNRsNNnTqV+/XXXzFu3DicO3dO4nkearVa0mg0XFDr1gjUt74yM6MM6KlT9EwbYFiEhoYioqLuWS6XY8mSJTASRXKu7t2j4Me+fXTd/ftTcOrOHQp6XblCzt1XXzWYBXTx4kVkZGQIs2bNatz9S02lNUAUyZkdPZocTYWCWELr19M5LVtG9zE1tV61eq1WC309sVqtRkxMjJSbmysqlUq+tLQUSUlJKC+nrj7GxsbQarUYMmQItSSqC3p9hR49yOGOiKAg2bVrxAKoFaDOyMhAdHQ09PX1zs7OkCSpUpSs4iU9fvwYmZmZbPny5a8WmLtyhXQmHj6kDLexMWXp8/IoSNGsGVBUBF1CAkJ//VWUXrzgHAsKpOcKBQu6dw9cnz642qqVkH3nDq9ycRFnrl3LITKSrmHfPppXs2dT0OLyZWISJCWhrEMHPPz4Y2iNjcEkCZwowmv9epjcu0c1/N26ARwHSZLw5MkTFFe0ULSxsUFl+0VRpHn28GGl05a8dy/upaUhyMYGirIyKr8KDqaA4vLlpKvg7U3OerNm9GxlZdHa9+QJBba3bKHyjBEjGqb58OJFpT7Bs06dsHXrVgBA586dpdatW7MTJ05IeqX/gQMHwtLSEt5btoDduwfVsmVgvXr98wTBtGm05lRTlK8OURRx8OBBqaSkBE+ePGGurq7SnDlz6l5zO3WiEoa//6b9xlA5WT1QqVRYt24dZDIZli1bZjjguXYt7WXduzfsS3ftIgbd+vUNe39CAq3NHTpQXbg+cFBYSE744sXA6NH44YcfEBAQQMr/DUVJCTF2EhMBuRx5eXnYsGEDWrRoIc2YMaNybG/fvo2//vqrxkc5jvt7xYoVDWzM3gQ9mjLbTWhCPWCMCa/MChlAdHQ0AGD06NGwsrKCVQV9r7bDnpycDAcHB8HX15c/c+YM3NzcJB8fn9fPjubkkBHSmA2wW7f/eUcboMXdz4+yFFFRtGFMnUo/DTm0kkRG8PXrMPn+e6BvX0glJXjh7S39/fbbUrdBg7i0ffs46dKlV9f4GYKXF9E1//ijZgabMXKwIyKoxnH3btpUGxDB7tWrF3bu3Mnl5ubWUDVtNLp1IydQFA3WFTdr1gzTp0/Hrl27UFpaioEDB6JTp04wNzevewz69qXXrl1k1Ny+TQ7K8eNEk5w5s+7zOXCAall/+gkAGeML332XSYMHo7hfP/ReuhSbNm1CYWEhblSIJMXGxsLFxQXW1tZgiYn0HcOGEb2yeXP6rqwsOH/7LXqfO8dw7BhlBRujvD1pEolWaTREt9261WCW++DBg2JqaiqzsbFBQEAA8/X1pfvaSMq7HpcuXRLNTE25sSoV5H5+jZt3hYVUB52YSFTlanNPoVDAv5pa87Rp07B3717+9OnTGDx4cJ01dQ2BXC6HWUkJSleuhPGMGVR6odGQQfrDD6R8npZGjBjGKBjh5oayn3/GL0ZG0rzNm1nzjh2Rz/OSXWYmG6BWw9jICC9KS9EsJwesWTNg7FhIffqAOTszBAfTtXbuTM7CrFlk4L39dg1F6upQKpUYO3asVFZWxvM8j9OnT+Pp06fw8fERjxw5wllZWYnvvfcez3Fc1ZiHhwOPH1OdcpcuVKdp6L5KErTZ2XB79AitjY3RrmtXGI0YQc/BF1+Q0+HuThRxmYwM3agoMnTlcspa5uXRPOvVi5xefXaxDpSXl8PY2Lhx2Yxz58jBd3OjANiIEfTslJdXZUjfe48ccFNTuvbiYsqUGnCuSktL8dtvv0l5eXkMoHZGGo0Gcrlcsra25pOTk6FWq9GpUycMGDAA58+fR3Z2tqhWq7mzZ88iOzsbbxjSe1CpaE04cYLW79Wrgb17kXPlCkofPIDZ48ewOnQIt/r0QUR0tFhWVsY0Gg2Ty+Xw9vYW4uPj+ZSUFDg4OEiMoK8JZ/o2hdevX4ejoyMM6lOIIj3ra9fS/WnblgI6hw7RWKxbR/Ng0SLI+vTBsD599Asp+/GHH5Do7Q37nBzoHj/m3/Lygkl5OYcBA2ht0rOLmjcnuvaZM3R9W7YA06bB7M038WTkSN0tQZDJnZyk0tJS9qy0FMaenoBKBe7KFXTr1g06nQ4XVqyAW06OGN6tG2dsbIwBAwZUXkJlUNTeHkwQcMrSEiOXL4dCzz4AaL7l59N4t2hB1PHwcJoj1tZUo//0KQWxNBp65tasofNvCJo1A/z8IG3ciBtPnwrm5uZs7Nix3J49e1hSUhJMTEyYIAiwsbGRrl+/juLiYhauUEg9e/ZknWSyxtkZhvDgAZW6veJ7OI7DyJEj2d69ewUAvFKpfPWau2IF7eEtWlAw+TWgDwgZGRlJKSkpLCsrCz179qxagwWBAk0LFzb8S/386D7VB0mi0oN16yhYkJ1NwaPVq6lERaWibPeoUZAkCcXFxcjOzsbevXvFadOmNSzQ/+OP5KxX2F02NjaYN28efv31VxYWFoZevXpBJpPBw8MD48ePR3Jysi4hIUEGAKIovt3wi26CHk3OdhOa8AoEBwfLOI6zNlTrZQgajQZarRapqakAAN/a7XNqoSLjzQICAlBaWoq//vqLOTs7w8bGpvEnu2cPGWm3bjXuc5JEjk5CQqPErV4bPj706tKFjCW9WM+ECXT88nIyzMeMIUMjKIg2mWfPwHJy4NSsGZsOsNLSUgDA0KFDGx+ckMspm5+cbJguznGUKTh1iiiKAQGUja9F6UtOTsbp06cFnU7H7OzsmEwmY5s2bYKVlRVmzpxZGWRpFNq3J/GfN9+sMztha2uLIUOG4K+//kJJSYnhGlRDmDGDjEiViqj3//oXXVd9qK6mLgjA6tVgq1fDsls3gDEsXrwYT58+hUKhAMdx2LJlixjy4YecnYMDhubmgrOyIidLT7394w9g/36Iw4bhj6lT0SklBW80NKNdHZ06ARV0umt79yIlJ0fgWrXibWxsUFpaitzcXLG0tJQbM2YMsrKycOrUKZSUlCAwMJAMmrffpoxRraDG5cuXkZ2dXVk/qdPpUFhYCBsbG+h0OjrewDYAACAASURBVDbMzw8WklRVhtAQFBdTwKF3bwpw1EMPd3d3x5gxY3DhwgXpxx9/ZCNHjkS7xtAiy8sBnkf5vHnQpKbCxtMT8pwcet4uXqyay337kvPSsSM53z16UI1gQgL2r14NY1tbZvLtt/CJjQXWrWPVheCs1WrKrl2/DpSUgD18SDWTZ8+SMzhwIDkHzs7kNJ47R4ybZ8/IUXzzTcr2eHgASiU6tGnDYGSE5ORk8Dwv+fr6Mj8/P65CHO3lNOeyZRQsmD+f5ra7O2X+CguJRpudTTTl06cxJC0NCR4eeC5J0tGoKDbwvffgMWJElQBRdDRdR3w8UZ8vXyaDd/JkyjBv3UqBiMGD6Tj1Dn85Glx+pNOR4xQfT6yCHj0oQ+npSWPXogWJoAF034yNaQ4xRgEBtRrIzobE87h//z4uXryIgoICaGltZW+//TYEQcDTp0/h7u4OJyenyslXvWXa2LFjAYCLjIwUz58/z8XFxb3sbMfFUbBm40a610ZGQFoaNDt3Is3TEwqVCic3b8bEPXtw5+5ddBk6lLn36sVSUlLQrl072Nvb81ZWVlJ4eDibO3euwbU7PDwcoaGhFbd4Wc1xFEV6hlasoLECiK69cCEFTYKCaEyWL6d5rlDQHAeQmJgoFRUXM6+AAOj3XBO9NoYoUpb5+HGaQ0+e0O9+/JGo6Xl5wA8/QHf2LKLlcllAQAAGDhzIjh49iuzs7MrTe/ToEe7evQutViu5FxayIKWS81u0CAcPHhRiY2MlAKjOKNVqtUylUvH6LH8N8HyVwKmeveXrS471zZs0x2/epMzn8ePknL/9Nu2XoaGkeTFq1Ku1Unr0QMndu+CPHuUX/PknFBYWeP/992FlZVU9o8sqzhVPN21i4k8/oSw8nBTeXxeCQEymH3+s0hqoA1u2bBFLS0v5Tp06oS7xuEqMG0fBVFGk9SEiotHlQvpAiEqlYocOHYJCoZCuX78uBQUFcV26dCFbSV/i0FC0aEGJhle0S0R5OTETs7IoKCuX03qdlES0+C+/pLaEX39N5wmga9euupiYGBkALjw8vP66+fJySq7Mm1fj105OTrCxsRGuXr3KR0VFoU+fPvDx8YEkSbh3755+0TdbuXKlquEX3QQ9mpztJjThFWCMzba3ty+Xy+UNkgtfs2ZN5b+trKxEVIjy1IX8/Hyhffv2PFAlllan+mV92LGDjI8Kw6LBYIycSZ3u/4yzrYefH7B/PxkLv/9OlDq9uviECbQpZGTQJvX33y+12cnOzoapqano4ODwerTtxYspc9S3r+G+4IxRfaafH21yHEcOo48P1q9fL/E8LxUWFnKBgYGcvb09S0tLEwGIPM9zDx8+ZHFxcVJQUNDrsRTGj6dMSkU22RDatGmDzp07S9HR0SwhIUEcM2YMV7tly0vgOHKAEhKIgp2URMd5FUaMoCyyHsHBVbWJ1YwGZ2dnMqAOH8aioUO5sp9+QmiPHoj44AOpV69eDGo10WNTU6kecvdumDRrhtmZmfjjjz+g1WqlcePGNX68LC1xePJk6VlaGuZt2cKnjhsn3ejZUzQ1NYWvry/fsWNHWFhYoG3btmjRogX++OMPxMXFCR6OjnzHQYPw9Pp15L94AX9/fyiVSiQlJeHy5cuQJIn7+eefBVEUWVFREUfDx0EURab8/nsJ06ezBimaCwIxCk6dome0EQ5z+/bt0bx5cxYWFobDhw9DqVQKixYtqptbm5hIgZS0NGr798cfSLO2lq7rdCzTzQ1mFSUrL4Hj6J7qjdLmzQEXFwyZNw+aTp1geuoUBciCgsjA1wcfTUzo+axN1fzqK+DRI7rm8HAyGM3NiWI8ciQZjhcv0tx64w2ifbZtCyxZgtI//oDp0qX4V24u4959lxyrRYvIad68mRSo//iDxnXBAsqMRUSQAxwcTHXFjo7094AAyq4PHw7e3h6dAYiiyI4cOYI9t25hsIOD2M3CgsPXX5Mh3L8/OSvz51Ng4NQpclzs7at6u3/xBQUD3dzoGuqoldRoNDA1Na1/PufkkPHs6UkOpL09ZfxKS8nZV6nI4a5eKnP0KHDlCkotLVEsipArldLtrVtZ+bFjiOjVC3K5HDKZDK1bt0avXr3gVKHHYKjcxlBAoHPnztz58+cBGi9yukSRAibu7rR2VuvckFBUhPBp0zDgrbfQzs0NrbdtQ/m9e5ilVAJt2jAMGoTmGzdWrhe+vr7swoULyMvLMxhYzsrKAkBsj40bN2L+/PkoKyuDpaUltPn5MO/c+eU2gPPnUy36unU0V7dto/n2/ffAvXs4bGkp3HnwgPfy8sKYMWNevu4DByhT/+efFBCKiKDrHDmS7kVYGFBUBNnEiXB9913B09OTNzIywsSJE2t8TXR0NKKiosR27dpxATNnAkolrADMmzfP4HOrp+rOnDmz7taWOh0xLXr1ovVj7FjKdP71F9GSAwPJgerTh+bQoEEkSPfnn5Td1bc8mzvXYMlBXu/ecNy2TVIcP84wbdpLDDw9jIyM4D5mDJITEsRTKhU3ID+/zvfWC46joFwDgqxmZmZSaWkpbG1tJVtb2/qfqehoClJ0705dMgwIr70K5ubmWL58OR4/fgxra2uYmZmxo0ePslOnTqF9+/Ywe/as8W0oLS1p333+3HCHmFu3aG3r25f2f/38NDKiYOTJkxRAqjXfhg8fLhs+fDhCQ0Px4MGD+p3tK1eodMlAmeHChQv5srIy7N+/H2FhYQgNDQXP8xAEATKZ7M7y5cubHO3XRJOz3YQm1IHg4OA+xsbGP48ePbpBEto//PADAMDT0xPdu3eHh4fHKy3xoqIiFBUV8R4eHigrK4NKpcKgQYNq1KlVzzrUiWfPaNO9ePH12xlt3/5faYX0WvDxIUrg1q1Eob5/n2pHP/mEftepk8GPKRQKaDSa1z9pIyPKav/550tR3hpwcaEs06lTROvq3RtFBQVMkCQGAB06dGC2trZo165d5bkIggCe51+/HGDyZNpcXyHiJZfLMWrUKNa/f39s3LiRu3TpktS6deuGHbNjR8rqFxbS+J4+bZgqL0lk/MfFkbOxaxcZfAEBNbP8evGkAweAGzdgvGMHjDMz4ZWYiOPHjjGftDQojxyhzO7MmTUcFFdXV7zzzjvYsmULS0tLe0kNF6BAVHh4uODk5MSNGjWKVResOXPmjPTw4UM2d+5cyOfNQzudjrVbsYJHt26U5agGd3d3LF68GPHx8Xx6erpw0suL9VqyhBWMHy/9euMGJ4oizMzM0KdPH8nDw4O9ePGCLy4uhre3N27cuCHZ2Niw1ra2sDh0iNU2egwiI4OMqLNnyZCqpqjdUFhaWuKNN95Aq1atcOjQIb6srKxm3/a4OHJCv/mGnNcpU4gOfe0a4OQEzy5d2IFvvoGFhUWVmn91FBSQQxoXV/P3jCFu7VoxMzaWm3roECxHj6as2qVL5IC8ar0QRRLlu3+fnF6OI7rr339TwGX16qr3PnlS+U/NhAn47ptvYBYUBAczM2mGqSnDV19RoE2no7mnUFDGR8/OUKnIGZo8GQgMhGhpiVPnzgEAMjMzxS4vXnCZt27B29sbbdu2BcdxmDBuHB789RfylyzhCouLody1i9YhQSBq+ejRVcZ0WhoFBKrT+BUKcsSaN6+z3EOj0aBeyuv16+Q4e3tTwIHn6Zn74gtyEJRKGsPg4JeOIe7cifL0dGx7+220ychgIz/5BDpbW3Q7cACWr+sAVUAul2Pq1Kk4ePCgVFZWRs/b2rV0//buJcp2BXQ6HU6dOiXNjIpiLs2bA/Pnw/j4cRh7e9M43r5NDKUvvyQnKCSkcv5eunQJ4w1kNfv37w9TU1OYmZnh6tWrOHbsGJKTk9H1+nU4ZWWhZVgYlNWfAYAc+W7dqAZZr/gcGEhMoQcPMGzWLF7t74+HMhmOHDkiWVlZMV9fXzhbW9MzYGtLjh9jFFzMz6c17uJFICUFSatWwebPP3Ht3Xelx3I57z56NAV7agl7BVDWnG7W5s20v4SH1znWGo0GRkZGsLW1fbk2+OBBcq6zsmh+5+ZSttrKioLRCQl0fePHkw7E5s0U+NqwgZhZw4bR3vbrr3QOrVuTEOjChRTEqljDbRwdcbpHD9YxIwPcgwevFgdt3hytsrM5bWYmLm3ahHGff173e+tCXh6tJbdvN+jtCxYs4NeuXSsVFBQYXsNqY8MGeo4ePaLgQ9++9eoa1IaeRq3HiBEjkJSUhEuXLmHEo0evJygrihRIq+5sSxIJBU6ZQoGhIUNqfiYvj57/jh0NMhQkSUJ6ejri4+PhXSshYRD37r2yxamZmRnmzJkDAEhJScHjx4+liIiI2xqNpmuDrrEJBsF/+eWX/9vn0IQm/P8OwcHBPXmeD500aZJpQ8S38vLycPXqVchkMixcuBDW1tavVBEWRRF79+4V7e3txYCAAI7neTx+/FhMTExEeHg4CwsLQ1hYGK5evQqO4wR3d/e6v2z7dqIczZ7duJrX6rC1pYyFgbYU/yOQJMroTJ9OdLeAADIoJIkiup07EyWwTx86NwNjaWRkhCtXrqBZs2Y12gI1Ct7eZFS1a/fqsWOMNtdOnYDsbPT5+2+0nzwZDwsKxOjoaNauXbsaDtA/VpCWyWg8ioqqMmp1wNjYGI8ePRKeP3/O+fv711/bW1REWbR336WIeWYmGSNpaYYj7kOH0jhduUJG2/TpVcrlT5+S0depExms69bRPFQqAcbgUF6O5l9/jdzYWDyZNw8O06eDGchkVfSal06fPo1evXpV3ghRFHH06FEpJiaG9e/fn8vLyxPPnj3LJSYmChqNhrt06ZKUnJzM5syZQyqqJiZEeU9PpwyCmxvNnWqaAEZGRnB1dYWPjw8XEBDAHA8cYD5TpjCPPn3QpUsXDB06FB4eHszKygpOTk5wd3eHqakpPD09mZOTE+Tr1xPNv751ITqanCY7O3JUDLEnGgE7Ozs8fPhQTLt2jXm3b08OYGIiXe+zZ3QPly0j5oKZWWX2+f79+0hKSsLYsWPZS4q0AGWdS0rIMK+FNh07svtZWaLrsmXscUyMmPqvfzGb6GjIQkIMipwBIIrruXPkSG7dSkGGiAiiX8+bRxmVrl1p3tQS4NIJAmJv3ICK51HAcSwqJkYy69yZOXXoQOtAYCDdY39/MkJNTMjRuH6d6ORmZki6dw8XLlxAVlYWysvL2YMHD9CsWTMhIiKCe5GXJ7ZNSWHYvRs2jx7hllIpZX/0EVoGBjLwPNHao6LIMdQ/zyEhlJWvvTb26EHOgp8fPUu1gqI3btyAra0tq26w18DWrVQPPGkSHVe/ZkRE0PM5aVJVOUtCwktG+H13d+wuLoaVkRHmrFkD4z/+gMmQIZDzPNV1T536jwKoCoUCWVlZYsK2bZzXl1/C6KuvKHtcrSZerVZjw4YNoo2NDXr17cs4IyMqD3rrLXJuYmNpbbWwoACbIAAtWoBbtgy3mjWDwtoaHQxkNs3MzNC2bVu0bNkSxcXF0p07dxgAtHr4EE9cXGAXFIS8vDzEx8eL7u7uVaKQPXoAajW0koTNBw5I165dg4O7O2vm4wNjb2/4qFToDCCupES6l57OCgoK4Lt8OQU29bW+eugV1T098duJE7oYjYZzGDgQXIsWmLJ2LTMKCgJbuJDu19WrhoPCCgU5v6/I3sbHxyM/Px/u7u7IysrCk0uXoPn8c1w2M0Oz5ctxOyUFpywthag+fcSIqCjx2o0buHjhArPasEFyMDNj+Pe/aazlcgqyzZwJKScH2itXwEpLwXr3pjk6blyVkKS9PQU9f/8deOMNGBcUIPLZM6kkMVFyjotjRv37G1ZBBwDGwNavhznPI1mrRUhamnjr1i2mUCgarlVSWEh76tChDXo7YwzR0dGir68v3+C9/oMPiDGi3wMaIhj3ChgZGUGhUODatWvodvYsyseNg3FDRWj10OloX9LPlfx8qrE/eZJetc/x0CFiJXzyCTB7NqS33sIRjUYUzM2Zg4MDysrKsGnTJikuLg6+vr5smIE1vAYePybW0cqVDVobjIyMsG/fPiYIwkYAEf369RMad8FN0KPJ2W5CE2ph1apVoxljp0VRNL59+zYqhEJgb2+PtLQ0KJVKMMagVqvBcRx+//13KTQ0lAHAlClT6qVViaKInTt3CmVlZdxbb73FGRsbgzEGX19f1rNnT+bm5oYePXogICAArVu3xrlz55idnZ1hQ3nPHqpVnDv3n2WmZ8wgI6mR0d/XwqlT5JAFBJDBfesWUcjVatp4goMpiu/oSEIwa9eSIVtrI+J5HmZmZggJCcHt27fBGKu7nU9dsLSkGih39/qdJ4CcyPbtATMzmB85gu5eXiwsNxfOLi41Wmb8V6DT0bh0rT+grFQquTt37iAsLAypqak6Pz+/uieDTkdzZciQKlp5aSkdp1MnMvT1OHOGjAOtliLys2dTduT5c8rWvvMOZSiCg4nepnf009OJbbFiBcyXLcPJFi2km+nprEePHgaDAdeuXUNERISkVqu5uLg4ISIiAuHh4dKVK1eYKIrSlClTWJs2beDj48P5+flBEAQWGxsLS0tLafz48eylsQ8IoMzNmjVkdL3/ft3BlOnTAYUCVs+fw7Ke9il49oycx1mz6q7XKy2l8VCpaEwMCUw1BhoN0VtVKrQ9eZK1Wr8e13x94eLmhlhvbzi/8QbYsGHkHNa6xnPnzknnz59nADBo0CDIawsRlpURtf3TT+scH68OHVhMq1Z47OjIuM2bpUtOTvC/fJnU42sHENRqojomJBCNl+Mow67TkaOsf7+jI/0/KoqyUBVGokwmQ0BAADw8PDBq1ChotVp2+/ZtoUuXLjXn89SpVH7y5ZeU8fHwoGM1awZ7e3sUFRVBrVZL//73v1lAQAD8fHw4t5gYOHz1Fbv+5IkUp1CId3v04JIkiQ0ZMoQpcnIoi7hgATmU1dfSNWvI8dUrSVeHgwPRzzt3prWs2tyOjY0VHR0d2UvBWq2WsqF2duTwVFftf/6c1qNRo6padxkZ0XNZqzWfjaMjirZvx/CDB2G6dCllxtPTafwHD6ZgSElJo9osVgfPcbDNzubEv/7C0zZt4DFrVo3re/jwITZv3gxra2vMnTuX41u2pMBp7950zPDwKpX7jh3JSe/WjYJ927Yh3cVFaMdxnIOv7yv3nbZt27IXjx5hwIYN+HvQIGS7uSEhIQGJiYl49OgRMzY2llxdXVl6ejrSMjKQvWULcn/7DXHNmzNTU1PJ1taWubi4AB4eYD16wDg0FC22bWNWWVno1b07TJYtgzh9OlTl5SguLsaLFy+Qk5ODImNjZMhk2Hn0KPLz8zlnZ2ep0MJCyFGp8LB5czwoL0fB5s3M9uRJGJWWErX7xYua2Ue5nLLQrxBj9PT0RGRkpOTy2WcsPS1NeqJWS63CwvCwVy8xd+RIiXXvzrk0b855enpyXl5eXMeOHZnlsWPgtFrm8tNPdIziYuCjj4C5cyEWFEBydsZGX19E2dlJnfbuZUZffknzWi6n9drVFamdO+OuRiM+z8gQnf79b66LpyfLtbaWSs+cYaZubpC/yjnt0gVG06ejTb9+aNayJYuNjcWdO3dw584d0dzcnHEcV5N9Ux1JSeTkN9L3uHz5MnNxcWHW1tYN00Lo04eCe15etCbXV2LVADg5OUFMSxNkR45wm01M4ObmhmaNEdrMzqYyqp49KRgbEUFB6h9+ePk5LS6GOG4cQhUKobBlSwaZjGUaG0u227Zxx2Qy5OTmSqdOnWIKhUL64IMP6i8hA2hfGjy4TpHK2tDpdIiPj9dqtdqBAD7r16/fa/a5bEJT668mNAFAcHCwA4CexsbG0+Ry+dAJEyaY7du3DyqVCnK5XCovL6+0RO3s7JCbm1vj887OzujTpw/a1pOFFEUR27ZtE3Q6HTd79mxW54ZUDWFhYYiMjMSMGTNgYWGBsrIylJWV4UVSEvxmzwZu3gTn6vp6F67Hn3+Sw1mf+MjrQqulLN/9+2RoJidTlPX77ykbsXVr3X2yr10jJ+fHH6nOeNSoGsZZbm4uYmNjERMTg7Zt2yIvL0/w9/fnX9m2pjoOHKDMS0XvWY1Gg6Kiopf7UtbGixd4PG0aSlJSkLZmDYaNGdOw4zUUWi1F/vftM2zo10JoaKjw+PFjPiMjAwEBARgyZAhyc3NrBgH+/ptokYb6bT97Rkbhe++R4I6HB0XUc3LI6dfXL06fTs5URAQ5aNUz1YWF5LSkpVFWaN48wNgY9+/fx/79+zFp0iR41TLiRFHEt99+K3Xv3p1xHAeFQgGdTgdnZ2eYmJiQovnrMjYAyr7HxxN9+fffa4q96aHvR3727Ku/KzycHNTaVD89bt2i92Rk0Bg2UFjxJUgSifyEhFCv6/HjyYnq1w9Hzp8XE+/d48zMzFBWRu1Ovby8YGpqitTUVKG8vJyXy+WSi4sLS0pKAgD07dsX/Qz1dA4Npefx7t36z0mlQnnv3jjTvDl8vvsOnosX01zRZ1NKSyn4V1hIhn/1zFhdokDHj9OcXL+eShRmzqzh6MbHx+Ps2bPS1KlTmaura1XrnKVLyXjWO3+rVtHxli0DAGzfvl1QqVTc+7NnM4SHA3v2QDQ3R2z//pKVvz9LT08X79y5wwYNGoQOHTowvPkmObcbNtQ8z0ePaHxOnHj12GzdSs/Uo0eVn9+8ebPg7+/PB1SnbD5/Ttf45pv0HNWmhV6/DsTE1FQ5HjGCxMhqZcjLyspw/MgRyfjkSTZu/34at7w8csy/+aZqzU1NfT0tjtmzob19G2tGjIDEcVi5cmWNP69evRrm5uZYtGgRlT6JItC2LcQZM8CZm1Mg5eJFosOXldH6PmoUrTH+/vjphx8wd+NGWIwZQwGNV51jZCRUX32FhBUrENCtGwoLCxEVFYX4+HhMmDABrVq1wvr16yWdTieZarVS+7w8PtPVFeVmZmJWVhbHVbTiAgCZSgVWXo63t29HrqMjTo0Zg2K5HDzPg+d5ied5SSaTSY5ZWeh5+jR3aNYsKBQKZmdnBzMzMygUCigUClhYWODUr79idmkplIsW0Vp34wY5vvo5/O23NKfq6vZx8SKwaBGCJ0xAv4sXUejrK/JDhkgjRoyoO/qwfz9yjx7F0Q4dhHlffEHvKyigEovERNy4cQPXTpwQ5y1bxu3evRvNra3F4Z6eXKGVFdI3bpSEqVMZYwwhISFwc3NDWloafLy8xILMTEwrKOBUmzdDplTCvHdvWv8NZeXnzyeWQkYGcP48RFFEcnIy4uPjxXv37nEA0KVLFwwaNOhlx/iXX+i6jx6t+34bwPnz55GQkCCq1Wpu+PDhor+/f/3ZhQsXqvRW1q+nQMM/xd9/Q5OQgEve3kJUVBQ/ePBg9OjRo2GfTUmhNb1DB5oXc+caFtlctQoqAN9ptZCMjGBmZiYKgsAgSZibmcmKra1xrW1b2Nvbo1+/fg0LPjx/TsHxP/98tWBeLaSnp2PXrl1gjD394osvGpnNaIIeTc52E/6fRXBwsLVcLl8nSdJIURStXFxcylu1amUREBDAai9e165dQ2RkpOTj48OioqLA8zwGDBiANm3awMjICJYNVLvcuXOnqFar2Zw5c1hD+1OKoojt27dXKp7KZDLJ5dkzqcTEhOWbmDCR5+Hq6iq6uroyrVYreXh4cC4uLg0+JwBkzHftSkbsfxMpKeRQDx9ORmTHjuT8fP45bXynTjXMIZEkMkQ3baKorKcnGfnVnO4jR44IGo0G1tbWfFxcnPTpp582zEMTRbr2EyfwlDHs3btXUqlUTKlUCoIgMLVazTHGJLlcLnXt2pVzcnKCq6srzp07h6TERPhptfDZuRMOP/wA2dix/93a9+XLyWl9770GXoqII0eOSElJSZXX3rx5c0yePJkyDdu2kUFYlyiaTkesgilT6J5ptWQctWxJ9YBDh1Jk3MvrZad1+3aimvftS5+tlYm7du0awsLC8OGHH9bIeoSFheHWrVvS+++/b7hH+H8DOTkUqNmwgRzL2oEYQaC5pP9pCCUlJNz3yy+GRbG2baPa96VLG957VY/SUnKKBIEEuubNI0eysJCcvWrnpNVqERcXh+fPn4tWVlacXrUZAHr06IHIyMjK/+v7X7/11lsvBwIFgZ6rRrQUe/HsGXZ89x0mxMVJ7h9+yLB5M9Ef9e293NzI0av+DISGEq04L6/uL372jNaGxEQ6nwp2UEWPXajVasyaOJHGf+RIUtGvjjt3aF5Pn47Mx4+xb9Mm+Dx8CEdRhFRaKt319hbdR4/mX+pFe/Ei0bR//dVwEOb4cQocLV786oHR6Wh98ven9cTMDBs2bNAFBgbK/Pz86D3nz9PzvGMH0LEj1Gp1zR7FV68SA+PGjarxKy+n7HlWVg0DWRAEfPPNNxBFEZ729uK0HTs4nD9P41ZaSlluvfBk27YUbKrWduqViIykMoDBg4FOnbD599/FFy9ecB9//HGlUX/8+HEkJCTgw4ULYfH4MRAbi9RNmySWl8du+fig/5dfwsLXt6plmVZL679WS2v4rVs40LEjAocMQfNhw8ghSkykwGrtNeDrr+l5qnX+Bw4cwL179yCTyWBiYiKVlpaySZMm0Tz/6Sfg1i3ofv0VBQUF4DgOjDEwQYBlmzZQ//wzHnXogJLgYGQrFOKI4cM5bsqUmscuKqKATmZmnYGAVatWYeDAgVJPHx+Gn34ixsbz5xQ4Cgl5OZtaWlpVkjBxIs3j33/HRrlcLCkt5TiOg1arxWeffWb43ly5AsTGoqhnT/x47hzGjRtHdboqFfD117g0YIAQGRnJjxo1Cj6rViEpLU1S//orc3Fxwa1ly0S/M2e4fZ99pisvL+c8PT2lMWPG8GvXroVGowHHcdDpdDA1MREXtGrFWX7yCc3H7Gz6/i++oCw9x9EczsurYvFUg06nQ3R0tBQVFcWKi4thb28vzJ07JO/Q7wAAIABJREFUlzc2Nibn3MSEWB2NWOvVajXu37+P0NBQsbS0lBs4cKAQGBhYPw0vJ4dKm1q3pnvz5psNPmadOHCAGDojRuDKlSvipUuXuKVLlzas33heHq2RU6ZQ2UJt1oskUbBm8mSUr1yJK4WFuHnzJoKCglAZtMvMpGDHrl0NCsJXYu9eeh7nzm34ZwAUFBRgw4YNKkEQnFauXFnYqA83oRJNznYT/p9EcHBwOyMjo3BfX19F165d5XZ2dv8se9YAHDhwQHr69CnmzZvHGtyqqS54e5NTtHw5ioqKEBISIul0OiaKIrKzsyWNRsP8/f3h5+dXqUT7fxQnThCNeM4cii5PnkxG04ULZGRMnvyyw9NQXLxIjs2IEbRx13JwHzx4gH379kEul0scx0k9e/bkXjKya2PZMuQJArZaWSEwMFDs0KEDl52dDTMzM8hkMgiCgNzcXOnmzZtSUVERKysrY7a2tuLIkSM5Nzc37Fm37v9j773Dojq3qPH1njND7x0EKSIIYgcrCmJQI4q9m9hbNPHGaEyuscVyNdFEjS2xRWMLKlZExYqCKCKI9KKioDTpdZg55/fHZigKiuXe7/d9cT0PDzrMnDnlLXvttYvQef9+znT2bOgPGNC4Sv+2UCphZ868FYnPz89HVlYWEhIS8OjRI2hoaChmOjjwaN++af2lBaE2n1tTk3JTb94EJkyobySJIkUrzJpF4egTJry2x+uGDRuEAQMGcHVbWP38889C//79uTb/i3oBKSlUUfvgwVerycbEkFGfl9ewcR0ZSeTl5QrxOTlExkaNIsLYQIG3BpGdTccbOpSML6mUyHpExFsV9MnLy4OWlpZSmQNAxiljDJs3b4ZMJkO3bt3Qtm3b+tEa//43kcnY2CZ9T2xsLE6ePIk2Dg6Kfps386pr1lAdg8GDiTwMGFA/91iJkhLIIyIQVFaGwsJCCIKAnJwcRbVnRXylurqdHZ56eAgXevTA0KFDuT9+/x2j09Nhp2zNVX2N2dnZiImJgaenJ9VI8PFB8dy5eLBzJ4xiYiAMHoxHzZsrtNq35+RyObtx4wakUil4nhd8fX25Vvb2lHtvaUm5rg3h0CH6e1MrD0+cSFE7oaHYtGmTvE+fPhIXR0ci8/fuAYsXI1dHB6dOnRLS09O5Fi1aiNbW1ujRvTvDokVgvXqB1U07yM2lceLsXO9rBEHA6tWr4eDggJEjR4KbNIlUfeW8Skqicz53jubwjBlEdF4XUq409Pv0IQWsumjkixcvsGXLFnTv3h19+vTBjQsXEHP2LMZlZ0O/vBy39fWFnPJy9tTcnA02MEDOuXMwOnkSzcrKaD415GTJzcXROXMwzNISfPPmtL45OVG4/vr1ROYMDYmcu7qSI++ldJqdO3cqnj17xgOAr68vdHV1YWNjQ2OhoIBIxZEjNK/kcpqj69bRfai+TwEBAcgICECfsDDRfO5cpuHtTWkBSkRH0/pXN7WmDo4fP46YmBgsXbq01n7YsIHWCH9/cu4p24ddv04OqaIiciq0bw9oaSErKws7d+5E165dxdTUVNHX15drcM+OjyeH55AhgJcX7t69iwsXLsDMzExhrKIC161buX2DB2Pq1KnMxMQERYGB+PPiRfSaOBHnzp2DlZWVMHbsWE4SGUlpGHFxgESinI84ePCgWFZWxhYtWgSpVEr5whcukLPvyBFao4YPp/oEPXrQnpCVRa83kIIlCAIKCwtx9OhRobCwEAMHDuScZsyglItNmxofhw1g//79ePToEbS0tPDFF19A/S2UWchkFCW0fz9FXb1rfRclvvmG7BdXV4iiiFWrVqF///5wa0K6F7ZsoZxpDQ26/ykptbUgBIHsJQ0NckhVIzQ0VIyIiBC+/PLL2nXy7FnaJ16KNmkUcjk5HQYPblL197oQRRFr1qyRy+XyvsuWLbv6Vh/+iBp8rEb+Ef84rFixwk4qld708fHRb9eu3X+XYVcjICBATEtLYzNmzGh6T+SGUFFBKsWdOzVKjI6ODsaNG1f3OlhISAjCw8OF8PBwrkOHDoKhoSEXGxsrenl5MfuGVLnly8kI2bPn3c+tspLIg7ExVSx2dSWDYvVqWuhXriQj7m1bZrwMLy8iTDExZHycPUse+A4dgGplgE6nkuno6LDLly8jJCREdHFxYR4eHggICICPjw/qVrTGd98h7ZtvYOXoqPDw8OABvBJGbmNjw9zc3BgApSpVwyrGL1jAHbOxUegcOsT3OHcOOt9+S9f5viq3kRHdx1u33irEX19fH/r6+mjVqhUyMjKwZ/duHqtXU7jm+PFvPgDHkTL99CkZRzY2pOZ27Ejhodu3kwE2axZFKhw+TM9DmWfaCCQSifj06dOaftFFRUUoKyvj7D6Uc+JNsLcnA1pVlfK6//OfWsXMxYXUx4aItkJB0QUnT9Z/PTWVejD7+NDP61RimYzu6+zZ9Hv0aJrHn35KoedKIvSWbWoaqhGhpqaGoqIiGBgYID09HTdu3MDNmzfx3Xff4cSJE+jXrx/0lixp2lioRkREBJydnUXfoUN5jBhBxvaECaS6KlWjhqpyq6ggeO9eMb55c6aoToPp2LEjX15ejpSUlFe/KCoKN/38xOZ+fnzpjz/CrE8fGJuaAgcPoqS8HGfPnkViYmLN22NiYgQPOzvORUMDGD0a5a6ueP7LL4LHwIFcqzq9uXv06IHi4mI8fvyYJS5dCqt796CZmNi4U0MU6Xn/9FOT7xG2b6e83adPAZmMqQgChYs3bw5s2oTcigrs2rULtra2bPr06Thy5IiYlpbGiatWoVBVFckWFvBNSYG2tjYyMzOhf/iwaJWVxdjevfW+huM46Orqijo6OozjOCISf/1F469lS3KCPH1KY1pTk8LbY2LISbl9+6uqYnk5zWVRpPld557o6OjAxsBALPz9d3Zu40ZYZGejO4BrrVqJaa1aoVhFhfPx8YFHy5bQunMH+adPo6SkBKWiCDZ3LuRFRa9GWRkZIb51ayi++44ekKtrrYM2JoauJSKCziMqiki3XF5vfsnl8pp/m5ub1y+SqadH0VMLF1Iod3Expb0UFtYQ7dTUVNy9excwNcWhgQPZJA0NaEyaRA6Tzz+n4/j7075Wp6VnXTg5OSEmJqb+i1OnkpPh6FG6DlEkJdTGhqI+5HJyNFenWTx48AAGBgZiz5492SeffNKwPZKVRSkuPXvWrA/29vYICAgAz/N8qVwu5pqZsQkTJsCkWu2MNzAQJKLI6QwfDp9jx9BOWcfDyak2cubBA3Bt2sDU1BTz589nmzdvVpw8eRIjRozg2ZAhVOE8Pb027ejYMUoJmDSJyKKLC839SZNeOWWO46Cvr49JkyZxN2/ehP+xY5i/cyfUm9Cj/mVUVFQIADiJRCKGh4eLPXv25JosjuTlkSNq6lRy2rxL9fTaE6FnunYtAChr7YjXr18X3dzcXr/ZR0dTeohy/X/6lCLFtm8ne+bFC5q7yrFXDVEURZlMVv9ivbzI+X3tGtBQelBD3/3w4VsTbYAiqeRyuYTn+QsrVqyQMsZSly5d+obiJh/xMj6S7Y/4R2HFihVqUqk02NvbW+9/RbQDAwMRExPDJk+eDD09vfc72E8/0SYeHf3at/Xo0QM9evTg7t69i5s3byItLU3BcRx/8OBBDBw4EO3bt6/XYgzdu0N0dARE8e0V/uxs2jAGDiSFYtEiytlcsoRCbm1tSdGu0y7mfZGXn48/g4JQ0awZXK2tFb0XLuSlqqrA77+jtZMTrL/5BvHx8QgKCkKzZs3EXr16sRMnTiAiIgKiKCIhIQEtWrSAo6MjOnXqhEJBgHpcHNpYWDRJTnw5ZIzneYwePZqPsLcXDx04gKm3bjHpyZOkprxG6W0SunShjfId8+kfP34s6nKciJQUrkm5m5s2UYh/UBAZFyYm1J6pqoqM9OJicmxs2lTbpsjOjgzBESPI8RESQmO0b18y4r28gOXL0XfmTP78nj3oZm8PbTs7aGlpQSqVIjw8XPT09PyfzMcaZV9JNENCSDnU16cx2q8fGWd1jZgTJygcVxm2p1BQ+OS5cxRp0VjKRmwskey4ODLyjh0jB5SzMxlYb0ms3wZRUVFieno609XVFQsLC5koiti4caNYXl7OHM6cQYd27YiMVKOiogJyubzGCZWcnIyAgADR0dGRJSUlKQoKCnhl9MG169eRGBKimP7gAc9t2UKkaM4cUmTqrB+JiYn4+++/Mf/0adb5wAHIOndGZGSk2KtXL1ZcXIzU1NRXW/no6KBn//58aH6+QiU6mveIjYX2ixeIf/ECfkeO1LzNzc0NvS0s8HTXLlbs7y9eU1Njpb16Ia5HDyzo3/8Vw1dFRQWGhoYwrKhgVm5uOKuhAf3Ll9G3b9+Gb+Djx6QQv8381dCgn06d4K1QsOZ//03ORm9viIxh3++/w8HBQRw2bBgDgPnz53Py7Gwodu0Cf+0aikNChGPHjrGqqiomCAIc09KYpoYGBjawLhcVFbHY2FjUVCAOCKBQ7c2b6f9SKSnEn31G1yKVknNIJqN/Kx0jUVE0p11cKIVBuS88fQpERkKalISJv/3G8kaNwvGCAsS2aQNVMzOMGzeOeUgkkEgk0NbWpvPr0weP3dzE+/v2MfPcXAgSCdJ//RX9+/eHhoYGFApFTYFRgNRPqKnR2tajB6l7n35K13LgAJ3Hli20n1y9SlEDlpbAggVwMTDgXNeuxU/ffQfJihV0DQcOEIH57jtSxnfsoDGZmkqOtDqRnHU7RvBqakg0MhKttmxhePiQHGGrV1PU1Gv22lYODtDNy0PCvn1wun2bIhG6dqV7p6FBdVCeP6c5UVJC/751ixTMhQsBdXV0f/AAsXp64qYlS5hzr17ygQMH1rfLy8rIYWBhAYwcibS0NBw9elTU1dUVOI7j+/fvDzMtLYY1a+qp8rm5uaJK8+Ywc3aGXd2WUFpalFKTnk4Ox4yMmrSNadOm8b/88gt+/PFHDB48GO137iQV196e1r6xY8nB5u9P69msWRTZ88knVHuhAaioqKC3pyfajRuHCIkE7tV1Fd4G+vr6QnFxMdq1a8ddv36dGRsbo2501GthZkbnmJNDDp2KChpz74L794kw16lHYW1tzZKSkl4fIlxSQuNC2UITIAdccjLNQ1NTegaPHtX7WFVVFW7evMl98skn9Y+noUF7a0QEHfdN1/Pnn43XGXkDVFRUsGzZMigUCmlwcDCCg4NbrFq1aoFCodiwbNmyj6HRTcRHsv0R/yjwPP+FlZWV/hu9kB8IgYGBuH//PqZMmVLjcX5nREcTCfjXv5qc7+Tq6oq6lXz9/f1x8eJF8c6dO5gxYwbjeR4xMTFIzs9XPI2P54VNm0Q3NzdWUVEBmUwmPH36FNra2uLo0aP5V9pZRUaSqnnuHHnrra2pkM+8eWToxMZS4aCmeF7fEjzPo7i4GLq6umJaeTn7ycsL7oCi7dq1vE5lJbSmToVbt27Q1NTEyZMnmb29PRYuXIi8vDxoamoiODhY8eTJEwQGBvKBgYHgeR727duLXSws3ovwderUiSUmJgqHKyrEz42NOfj70yY6ceK7t2Xr3JkiAoYPbziv9A2QREaymatWsbrE6rWIiCBjwtOTSOSDB0T4s7MpHDYtjQzjIUNIQVKiqIh+r19PagJARpi9PRmh167BaeNGcBcviuzaNYbwcFQYGKDV+PFiZxUVhqFDidReuEDEt3Pn1+dQvy/mzaPfPj70HadO0TNyda1/Xco2dUuW0P+Tk6nYmoUFGZgvE+1798jIX7uWDKKpU8lA8/Sknu1NrAT7rqioqEBgYCCio6PZuHHj0LJlSyaXy5GSkgKe51lMTIyQGx7OvRxSvGvXLsWLFy94NTU10d7eniUmJsLCwoJFRkaiY8eOrHXr1jA1NWXHjx8Xk+Pi2Ij9+/kTPXpAceaM2Pv6dWZsZUVjpW1byOVy3Lx5E2FhYRBFEeo5OTXOPW9vbwaQEaempoZ169aJenp6wsSJE3mlE8vy2TOMKi3l43/6CeeTk4UJAQHcmUuXxKESCbuvpobnWVkw/+EHsObN4TBzJsPKlcgTBIgDBqAwKwvFxcUNVwnesAHYsQMmsbHwyMvDvn37UFBQII4aNerVyXnr1rvVsBAEYO1aGH/2GVeyeDHUvL0BjkNZaSnKy8sxZMgQVve9kl9+geTqVcDaGuPqtHgsKChA4pgxCDE3x+nTpzH4pXxTNzc3hIWF1b6wbx99d0YGjTOAimYlJlKEjJsbOT1PniSidPcuzctRo6jA3IIFREh++426ELi7U751+/bAw4cw4Hl8mp6OgwcPonPnzo3uZz5PnzKfQYPIwG/XDn/Z2gohISFMIpGI+fn5XHVFfFFHR0eQSCQ0KJREKCaGvlPZx9zNjQpoLltWG1p74wZgaIiEvXsVz3x9JQYGBtDu0YPINkCpHEZGpAZXVlLEyKNHdN0nTtC/27SB7bx5WDRuHFT+8x+c9PISM4KDBUydyqN/fzqfOXOoH/yxY+QAMDQk4pudTcT98mVwjo7wvH1bNBBFBm9vckJaW5OCfvw4VZm+epVCwFu1ougugPZOQQCCg1GRmAitXr3EaVu3ovT+fR4qKuS0njeP1qPjxynK6OuvUVxcjMOHD6Njx45MKpXynTp1IkW/pOSVdYjjOKZhZgaNM2coYq137/opLpaWFIWhokJRKZs3Q8PaGvPnz0dISAgCAgIQAGCapSVMXVzIUbBuHa1pUinVTzh3jtbA0aPpmMOHk5PipSKYrKoKMh8f4WpZGSe9fRtNLl5ajZEjR9ZwlaioKIWfnx+/YMGCpkcJKhSUCuDlRcT0LSJ66uHp01fqdRgYGEChUDS+uefk0H6Sm/vq/l1WRgT+jz/o2Rw+THvL0aNAHacU39Ae6OVF4+TsWXJyN4akJBp/bxm6/+phkhAcHAwAUCgUPwPYAqDivQ76D8JHsv0R/yhIJJKvPT09356xvAOqq2di8uTJ70+009MpLDkysuk5oQ1g2LBhEASBrV69GqtWrYK1tbWYkZHB+iYnc4POnsW5PXsQFxcnSCQSjjHG2djY4N69e+LTp09hbW1NxCMwkMIUlSrmli1ErpYsIaJkZUXKwrvmZDcBampqaNWqlZCeno7p06dzeXl5CAgIYHdUVIRmMTGcwZ9/Cs7Tp3Mp7u5ilYUFy8vLg5GRUU1oeL9+/XiAPMeMMWpHJYoMHTqQulm3Hc9bwsvLi9u5cydihw1Da1VVIl4zZ1Ie3zuQZRgZUShocHCT+5LWhWn//jgUFydOVlV9Pdtv145I/f799V9v3ZoMzl69yEhR5rk2Bk3N2rZY335b+3pUFAAg8vvvcauiQjA5d44rHz5c7P/vfzON3Nzaqua7d9Px3dzIqEtIIOKzdy+Fza1eTYS4b19SlXv3fr9w/YAAMla//54cCQcPkhJ98CBdb0gIGfgzZ1KEweDBRFbGjiVjODOTznP8eFIZHB2JMDBG8/a/XAuiLuRyOfbu3Yvs7Gzo6uoKLVu25ABqqdWqVStkZmYi9+JFLrljR3h/9VW9z1ZUVLBx48ZBFEV25coVwc3NTfT29lZaeRxAxeyy791jCy5cAHfsGB5lZyvCgoN5E2treB49SqTNwwObnjxBSUkJPDw80KlTJ/D//jeN/To5howxzJkzh+Xl5eH8+fPs77//VkycOJFHeTkwYwbKZ89GBMcJRRIJt23wYAz49FO0nT4dbc3MIM/MRPbkyVCbMaOmcJgBAMydi8+UUQp1IQgUhtu7N6mVKiowMzPDzJkzsXfvXuzatUsxZcqU+g7FR4+IcL4NCgrIcA4Jwb4vvxS/XrOGQVcX+PxzPHv2DKqqqgJX90v27ydS2EA3CT0dHXRJS8PDAQMQFRUFW1tbsU2bNjVFBB0dHREWFoaYmBgqkqWqSuRu3z6aa8pxp6JCY3nrVhrL/fqR0jt7NqnZv/xCRGDhQiKJJibklKhb7b0alpaWEARBDAoKYt0bi1SaP58I5+bNgLo6PjMwUF4vS0tLw7Fjx8SSkhI2bMAAnouOpnsQGEihytOmUdTH5s30DBMTac7PnUvOvAEDAFtbGoclJZLc9u0hy8tDhp0dalJRfvyR6hGsX0/tzz7/nBT/adPoWgEIy5eDa98eagBK4+OR0Lw5GxkYyOedPAmD+/dp3dq/n9aEa9dIzXVyInLaqhXtd7NnA66uuGZgIPTu3Zs3rVvpetYs2qc7dKCx17UrEe1Bg+h1ZVHQQYPgl5GhyMrK4s/u3i0O69eP4dmzWuLs7EyRCHPmQHRzQ76Kitjd3l7s1aEDBzMzmlMKBT3jL7+s9xh4nqfIAYAcHwoFre91oaZGDgm5nNbsykpoaGjAu08f9PrpJ6TI5UgYNUowXbaMw5Yt9XOEKyooNN/Kiu6TIFA6gpEROQgqKymfu6ICmDcP5lu3ct5RUcL169fh5ubGveK8byL+9a9/8WvWrEFZWVnTyTbPk22iUJAzqrHuCG9CdnZtjnU1tLS0UFFRwR4/fgybhqJgBg2isfNSKghEkdpCduhAcxMgh0BsLKCiguKhQ3GmY0dBznGcsuvEK1i4kHLoPTwofa8hHD9OY/U99yE/Pz8AAGOssyiKj5ctW/aRaL8FPpLtj/hHQaFQ6L9VcY13RFhYGCIiIjB58uT377+cnU2GR1wcqWnvCY7jMGvWLFy/fh2CIDBfX1+0adWKQS6Hr7o6w0thnXl5eeKhXbuYY0WF0DIrC62ePOGkGzeSxzQri6pzTpxIhltY2CuLfnl5OTIyMpCTkwNVVVWUlZUJT548EaytrfmcnBwhKyuLdevWjbVt27ZJu0FmZib++OMP6OrqitOmTeMB8i5/9tlnHACUlJQgJjqaK3FxgVt0NLMNDUVQZqY4cvNmJqnbjgigQjBKMEbGwcmT70W2zczM4OPjg/Pnzytaf/MNj//8h7zXbm6klAwZ8vYb3+LFZOi8Ldn+9ltYFhXhefPmrMYofxlhYUReq4lSPSQkkNEZHU3v2b278WJSTYSvry/75ZdfWEZGBiavXMk0LSxIidu1i95QvakDIONfU5MMTmWOZmoqheAVFlLqQmEhGR23b9O1DBlCxLh7d/LmL11KhrqGRuM51VpaFNp54kRtm7mcHCLQxcWkfv/wAxlqwcFEWmJiiFgdPUpq99Ch9KMMt/w/gEuXLikKCgq4yZMns+bNm9ezZs+dOyeEh4dzs/39oftSjmVWVhYqKys5W1tbSCQSODg41PtsYGCgGBcXJ7DsbH7qo0eQLFoEtGsHb4APDQ3FdS8vdN67FxoXL0IMDoYwZow4bNgwVlP0ztGxwVBHlWrS26dPH+7woUMCVq6sqUmxd9cuBYqKuFmzZsE4Kgrc0aMMvr6AgwMkiYmw2LixNjpBiT59yAl482Z9B8zq1aQAXbtWr6q3np4eZs6cyfbv38+2bNmimDVrFlVNlsspbeJtchwTEqiOAWPAyZOQr1uHwrt3YWBhARw9imRNTcHExKR24ivX9e+/bzh6Qy4H9u7F6M6dERoaihMnTrBTp05h+vTpMDMzqwnHbqZUsQEqZtVQoaZBg6jegr09OamGDiVl+6+/aA7NnUvO0VatEHTpEmylUtg3MleUJCk3N7fh9ohmZhTVcfcu1SSoA+vmzfFNnz7s1tq1Yv758yzOygouI0YQuVfeg8JCmsvLl1MUyPLlpPitW0ckdvVqiKIIuVyOTp06wcrKCrZ1HdC5uZQCk5pKzpUJE8jR8tNPwFdfId/WFlvi4iBJShI9PDxYxvz5qIqLw51//QspKSlYIgjgtm8nNTIjgwja+fNE3u3sXmmbVFlZydVLD/P3JwLUvTvdA44joq2lRWvRzp315sKUKVP4O3fu4Pr16yw0Olrw8PDgsGQJOQB79yayOmcOsnNyUJCaiu5Pn3KYM4eeYUAAOfTmzaN7mJtLa5a5OTiOYzVkOziYyF18fG0RPSVUVek4okjj0dgYOHsW/MiRuJacDGsrK1rPliyh9/n40OdGj6bUoYgIGssmJqR0A7TfFRTQ55YuJWeHqiq6dOnCBQUFYd26dWLHjh1Zv3cIbc7Ly6txkr8VunWjfSEigiIF3qV2zO+/E2lvAMpaMfVQWkrvfzl9KzycokyOHq1v0xkako1QWoqs7GxRJyOD62Vqiq4v2S01sLAg5+GaNeRIevmeFBXR+HnPFL7w8PCafy9dujT8NW/9iEbwPwml/YiP+P8LOI5bvnPnzvKkpKT/2nckJCTgypUrGDNmTP2iLe+K3r1pMf0ARFsJY2NjjBgxAqNGjUKbNm2IUDQUZpydjTEeHty3f/8Nj9u3ubBOndjWwYPFLDU1KJYuRXn79uKLX39F3L59uLRunbh2925s2bJF8Pf3VwQEBAjBwcHi6dOnxYMHDyIqKkoRHBysuH37NrS1tSWRkZFCcXEx43meu3PnjtDUcz98+LDo5OQkzps3j9fV1X3l71paWujavTucv/oK5jt3os2sWehx8SJL37aNQt5e14Fh/nzasPLzm3o6DcLU1BSlpaV8QEAAtv7xh+KxkRGFfJ0/T5viS33a3wh7ezIQkpPf7nNubpB4e6Nbt27i+fPnxZKSkvp/F0VSak+coN9KozElhSIW1q2jMNKzZymM8/p1KuQiNPlxvYKgoCCRMYa+ffsKFm8a09raZKy6uNS2LNmzh/JQ9fRISVFRISVLSdadnGrzzA8epNfGjat1JNjZERm7f7+2sE9ICBnVixYRaTp3jo537RoZaAApDgoFqVqrV5PyuWwZGbva2vS+941geQ/cvXtXvH37Nj9q1CjWvIHqwJGRkRwA7Jg1CwplSHw1QkJCYGJiIkgaIFjJycm4c+cO87Gx4b8KD4fuwoUUQlqNiRMnAgB+LivD6S5dcGDwYAzbtYs51yUlkyc33E+2Ghb6+jBIT+cKExKIFKmooKSoiA1NUIT0AAAgAElEQVS3tmamEyaACwsjVXPpUiJPK1fSM8vNpXXx+XM6kLk5PSNl0arCQhobkyfT3G/A0aqhoYGpU6dyBgYGbPPmzUJRURGN/2vXSKVrCpQh523bQr54MU6dPg2ZTMZU9fTI4J09G7khIczZ2bnWGl6/nlIOHBwaPuahQ8DateA4Du7u7vj+++8hCAL27dsHuVyOgoICiKKIeqqXREJrRcuWFKJaFyoqZJifPk1K1/jxFIpqYQGEh6PwxAnc2LoVcWfP4uLGjQgPDW1wrfz666+Zmpoatm7diga72RgZkcNSQ6OWVObkUHTI4MHAwoXoNn06w8KFwvHWrbEyMREVdYnK+vVEjBwc6PkpsWgRzbcdO+ARGQkDNTWRMYa2bdsS8Xr8mJRgZerLixe0PgBA//7I7NIFt//4A+eWLxfMzc0FFxcXMSgoCHFxcfD09BRtbW3RUqEQuCNH6N6vWkXjKi6OxtO4cUBcHHJzc3Hq1CmcPn0aV69eRUVFBavZ50+fpnWyVStAKkWxtjayHR1JYZ4/n1JVqotrAYBMJsPGjRvFy5cvQ0tLS7SzsyObvF8/Csnu3p3C0B0dETdrlnBm6FB2cOJE4dnvv5P63q0bOUnU1enZp6bSfdPUhObTp8wgKal2rd65s/EaEUuXkup98CA5Cq5fR0GHDnihrY3u3btz0NMjZ2RsLDkjleNp+nQqHnf+fP3j/fgjsHkz5HfvomrnTpz89luknz4NoaICCxcuhJWVFUtISFA0fDKNIz8/H9u2bQNjrGFHz5vAGO0DynoAb4OEBKrf8JJNp6+vDwsLCyH55b3Zz4+cwjo6r647S5eSM61ZswYd7+Uch4N9+zLO1xc9i4uRO368+NPSpcgKb4Dnjh9PEVc3b776t1u3aFy8hx1aVFSEc+REGQ/gAxi0/0zwy5cv/z99Dh/xEf8z9OzZM/TKlSuRjx49GtK9e/cmVIt6OyQnJ+P48eMYOHCg2KpVq/eL2xFFMlKGDycv9ofs3/wyiotJQVD2c372rLaQi4UFuP/8Bxpz5qCDqytrNm8eM1ixAiEAYrp0EcMGDBCTCguF0tJSeHp6MnNzc/bkyRP27NkzpKSkcDk5OczNzQ3jxo3junbtynXv3p05Ojqic+fOXLt27ZipqSlCQ0M5d3f3N3qr5XI5Ll26xGbNmtW0nsyMAU5O2AcobNXUOMPAQNo0AQp/e/kYHFerFjSllUcjUFdXR0VFhSInJ0c0NzfngoODxR4DBzL4+NB9/eEHyuE1MGiays3zZHgWFLySD9coFi8mlbdrVzRr1ozFxMQgPj6etW/fHkyhoBA2Ly9SLJQKZGkpKSTh4XR/Fiwgsg3QvdHUJIUsI4Pysd8CMpkMfn5+YkpKCpsxYwZatmz54eKrtbRqie4nnxCBMDauDa0cN44IF2Nk/Li7U1TGzZukhM6eTZEaXl5E1m/dIvK8dCmRlhYtyKg1NCRlZ8YMUms1NP6787KJKCsrw9GjR9GnTx/WWAu1Fi1aoN+cOZA7OCjuFRWhTZs2TC6XY+3ateLz58+Zs7OzYG9v/8rF6OvrI/7YMXTLz4fG0KGv9DvW09ODjo4OkpKTkWlggA5XrsAhLQ2qhYW1BNvPj55LQznQpaXghg6FSXm5+HevXkKXPn044coVyPbtY8537oBbu5ZUNFvb+vdaW5tUOTU1em6LFpEaPW0arZs2NpTCcfs2PfvXpHDwPA8XFxeWm5srnD9/nrW9c4eptmvXoCKUnZ2NrVu3QkdHB9pSKUInThR0Q0LYg1GjcCYvT7xy5QoyMzNZz5494eDgQOe3YAHuxsWJzjdvMv1+/YjExcbS/GqsaOHduzSGqwsj8jwPc3NzJCYmimFhYUyhUCAzMxPGxsawrJvWoa1NpMvNjf4tk5FzaNcuIrs3b5La9fQp0LUrBB0dlKxfj+SsLKQXFcGzqEh0v3WLBZSWosOIEZBfvQqJsTGtWZqauLNhg2h89y5zGTMGFnFxtGZratJ+xfP0nV5etPaEh5MjLyCA1q8JE0jJt7ODpZMTKywsxPPnzxEWFoaioiLRQU+P4bvv6LlJpUQm1dQoxQUgZ0qPHmBnz8KS51l4RARup6UhNiJCvBUXp5A9fsztzcxE8I0bKD5yBDlZWbhcUSEGBQXhTnExk+bmom9mJnP19WVOn3zCevbsiV5du8KG55nx11/D+OpVFmxtLdh36sS48+dJ9V+5ktK3Zs6E4uhRHAoLA2dqqigrK0N8fDzT1NSEu7s7rR+CQOuDvT3y8vJwevVqUe/0afb7ixdQiKJoO306U2zYAFhagjk4oLS0FGFhYUwQBEilUqFv27Yce/aM9vuICFLy3dwAjoPNmDHM2toaJaWlwvm7dzktExOYz5pFYfLJybSGjx9PToaHDyEpKED7P/8Ed/EipcfY2JADledpHczKojXO3JxU9A4daHx06wYsXAgNPT1ESaWCRCKBtbU1g7k5RZ2cP09rgHIttbCA4OUFGBoiNDRU/Ouvv1hlZSUqKiqQ9eWXYpVMxoKsrdF1yRJEXryIRxYWkOfnI7uoiHXt2pU1NZxcEARcvnwZz549w8yZM+t3E2kqBg6ksZSURERXmbrUFNy7R3uicj+sg2vXrsHZ2ZnVRJkoFOQg9vWtH+l37Bjty/7+JKI0AqlUihcvXsijoqK4+ObNhTAnJ848JQWdFi+GZMwYmm/KSBCOo+cxbRpFEihVcFGkdAwfH0rreEds375dUVlZyQFw5jgu1cPDI/6dD/YPxscw8o/4J8LAyMjog1dRTE5OxtGjRzFgwACxqSHRr8WaNZRr9bZq5rvAxIS898XFFIqoDJU9d47+lpsLzJwJ7vhxNB80CBWLF0PL0hIenTo1mHtV3SKLZWdnIyUlBY3m94HatlS3l6gf1t0A4uPjoaWlpeA47q2qZlXJ5ajs3p02pLQ0ukaA7q+hYX3CO3EivUcQ3plISaVSDBgwgAfIQRAVFcVkMhlUVFTIwB4xgoicoyOdU1NSDVxcaqu+v6loWFUVGbmTJwOgcN1Ro0axLVu2IODUKQwaMoSM/LIy8nzL5fT+DRuoMFHv3o2f07VrZEDk5dVUsX0dIiMjoaqqiuvXryt4nmczZsxgDbWr+q+D48gA8fIiYyUnh+6pQkHKwIABpDyZmJASUVBAn2vZkgzVGTP+p/nXb4IoivD391cUFxcjLS2N5ziOva7wUDMLC2DJElh37szfOnkSBw4cEMzNzTmJRMI+++wzWFpaNjionh49Cs+bN6H9yy+vEG0lOnbsiI4dO+LRo0dQnToVGi9eENEaM4ZUwiFDGg7bDAkhFXnBAhj36MFaTp3KR1+8KOro67MnzZtjla0tBjGGjo3NQ56vdagUFxOxfPSIakbo6VH48ZdfNqnIHsdx8PX15XV1dYV7a9bAZv581lwQkJubiwcPHqCyshIKhQL37t0DAFzZvRtpKSkwys3ltnt5QZ6cjGbNmmHChAmsWbNm9RyHpeXlUCQnc9YnTpCx/fnnpP69LufUwIDITx04OjpiwYIFbOXKlYiPJ5u3wQ4XmzaR86F5cwp9nTmTyLaBARGyv/6i/6eloVIux5+ff44eLi4YfOIEpOfOMUgk6B4ZKf7t7Czkpqfz0pAQ0dHAQDQqKeHadezIkmNixKvnzzPXBw/I+WdnRxEnP/xARPnaNZorw4aRAuvkVJunXAfe3t5ISkqCQqHA/fv32YB798Bt21arBE6YUFu9WQldXWDDBhifOAG306ehWlUlOh04wKIvXpRo9O+Pmbq6KCkpgfT2bVxo1gzWFhail5cXZ2BggE2bNmGIqyukkZFATg54bW1SfC0soL5uHXg9PVgPH87Ji4rABwTQtfn60vnY2SFGXR39Fi+Gdb9+vLxvX6xevRpz5syh6IWvvybH+JQpAAB/f3+Fc7NmrJWhIdPS0hILCwvxR0qKwlFbm3cbORInNm0StExMOI7j8N133+G3337jCiZOhIFEQpE7+vqk1J87B9jagjEGa2trWFtb8zzPiw8ePGAdO3ake3L9On13u3ak2goCHgcGIprnRW3GhDabN/NahYVgy5eTU71DB8qTV1ente3l/fnKFQDAcDc3LvfkSfH5oUMwNzcHZsyAuH49io8dg3TQICRbWsLst9+QcfAgTg8ZAlSnoN26dQsqPC9q9O8vzp06lS0xMwOWLEFqaCjkP/8s9L90iduwYAHLz82FcRNU13v37uHMmTMAAB8fH9HMzOzdF+KxY+l5yeW1BeuagqdPG1WIzczMhCdPnvBubm50XBMT2kt69qx9U3k5Of6GDatXzbwxDB8+XNK3b19cvHhR5HleIff05PfY2Sm+sLDg0bw5RXnMnk1vNjEhx8zKlbVt6sLDSVioew7vABMTExnHcar5+flOEomkD4Dj73XAfyg+ku2P+EdhxYoVllKpdIunp+c7uEUbR2JiIo4fP44BAwaI7du3f3+LvKiIwrnGjPkAZ/cGyGSk5Do5kSE2fz6Fwqmrk5d88mQiJCEhZDj37Qs1AE3RfU1MTN5YHI7jOEgkEmRlZdVXaF6CKIq4ceOG0KZNm7cuT92tWzc+ICAAFhYWMLSzo40wOpoIlIUFkW9lOGfr1qTwq6i8tXrbECQSCbS0tMTExMRa1dHGhoy89esp9NDE5BXD+hW4uJBHPinp1by7upDLSRWJi6v3skKhgLSiAp9Wh0PuHzJEXnHpEjf6+XNOd8cOet5nzjReaEUJMzNSwJs1I2//a86lsLAQgYGBAADGGP/VV1+9X5/5pqCykn4nJNC9XbKEwjLd3ChfdeRIus4nT+iH50n569aNVJ7Bgyk3vV8/MjoLC0mF7NuXSIyz83/3/JuIGzduCKmpqczW1pYDgAkTJrz+AwsXAkuWoKW2NkapqMDPz49LTU2FkZERrBoo0AUAlZcvI+b4ceh8+qnA9+nzRs9TTe6spSXls58/T6rmoEFU5XrhwtriZfn5FMa/bBlQVQVVd3f0HDEC1zQ0hIdSKbO1tRXTIiL4wMBAtG/fHg0qYJmZNNZ9fGgdq656j6goUnNMTd/KQcIYg2fnzlyaRIKDwcGQREejXBmKXOc9Ts+f49OqKtw1NBSbbd/OZmlqQltbG1KptMEvi42NFUvt7AQ+PZ3H4cO0vnfr9vqT2bCBake8NB85jsPEiRNx6tQpsaqqijm8HIaelUVpH/7+FA1w9Wp9BW/3bpoTGzYA06YhzssLw0+cgIGTE6QaGrR+KBTo0KED69ChAy8IAjIyMlhycjJuxsUJp1684HgfH6ahoSGyX35hePKEnveePbSPzJpFIeOamvQMHj2i/NQ5c16pmK2hoQFPT0+Eh4fLkZYmibx2DbHa2qL4+DFTUVGBrlQKneBglBcWokuXLvX6dUsGD0b6gQPwbN+e8bm56ODoWEuGRBGwtMSMVasAY+OagaOroyNEy+Vcp4sXqbjXTz/R+HN2BtLTYbFhAx5qayNXoYCoqgrL4mJyjnp6AmVlCImKUnRdsICzTkhgD5OSRBUVFURGRLDuHAfp6NH1eiTn5+czi169uJCsLJHjOKFfv378+vXr+YnHjkH+9df4ZNs2dmbKFGH8+PGc6sOHGFFVhV2enuJXM2cyNQ8POj+A1uX9++m+groNREVFsZqWb4JAdkL1eCouLkZ+fj5EfX08HDiQZWdn80FubjCrqlLMVFGhvTM1la55zZraKu4NwGzdOlw7eRKX16+HBs+j2MgIeoWF6LpqFW5eu4YcU1PMevAALUtKYG9vj+HDh9fs59yAAQxeXqwuQe3avTtw4gSHvDws09Oj8XDpEhWQew2URHv+/PnQ1tZ+P/vq4kVaJ4KDSdFvqkIeEUE2WQMwMzPj79y5I0IUGSQSKkpWt7jib7+R0ys6+q0c+Nra2hg+fDgPUC2aX3/9lZcxBpUrV8g+WbyY9rD9+2mNTU+nOgmdO9P6u3hxk7+rMYwdO1Z9w4YNco7jCmUy2dv3bfsIAB/J9kf8w8AYG+Xs7KzaYNXId8QHJ9rp6RQSFhVF4av/LYgiVcj8+Wcq1DFlCpEOAwMyBufNI1W9pIRU2JerVH9AGBgYKBITEzlLS8tG719iYiKKioqY1zv0Ju7evTuysrKEP/74gxs+fDhatmwJ1qEDXffff5NxuHYt3QN3dyIBoaEfhGwDgIuLixgWFia2adOmdqdVVaXNMDycDODHj0nReJ3qu2gREb4dOxp/z8GDZEynpdUSDUGAyYUL8Bw0SDyYn4/KoCCmkpgocUlPF3N27hR1f/6ZwdOz6cREU5PIrLLNTQO58w8fPoSfn5/Ytm1boU+fPjxA4fUfBAoFkQo/P/Luf/MNvfb99+SU2LWLxveNG/T65MmkkLVvT58DyCBRYtgw+i2TkQPG3JycCJs3U86vhQUZpT/9RK2S+vZtvNja/wBFRUUICQnhBg8eDOemkP+CAnIwLF8OjuPg5OSkTHWAr6/vK8feu3evwiQujmt95w6T9usntPrmm7cP8di6lZ7HokXklDl9msL5dXWJ4BQU0Hpz+jQRiitXoGlgAB+gxpnWs0sXnPjxR6xavhzuERGik4sLM582jcj1ypWkih84QI4RU1NyAI0eTU5BY2N63xdfUDTIa29PAYKDg5GQkCCqZmQw18JCVKmqQoXj0LlzZ1hZWcHOzg4x9+8LL378kZOKIrSWLIFnjx5NmjDR0dFC69atecTHk/Kkq/v6isiCQPeqkfXfxsYG48aNY9u2bYOy0wLKy+l+ZmaSmnXlCq0xxcX1yfawYUTMqqu2W0yejMw+fUQLxhg4jgjYrl1UCVxbGxzHwcrKClZWVszLy4ulpabiwbx5SG3RghUuWADdffuoQNayZRS9wHEUJbVuHZH+li3p+efm0vo2Zw7Nn2qoq6ujqqqKzerQAem6urB1dWUymQyVlZWC2Y0botWlS9y28eNZXFycMG/evJpxyD18iP4BAYieNQtuWlq05n3+OV17YSHljivzeouLgaQkDD95klPk55MzWRCIFDk4UITPwIGAszNMR4wQw0xMxJgDB7hFTk5Q27gR+PVXCF5eKFi8mLefOxd49gzaX30FJ01Nxm7eRFZaGo5OmaKoXLuWU1dXF6RSKSorK/nLBw6g4+PH4uyNG3mO48DzPC6HhwttV67kLLt2ZdOyshisrIAVK2AdHs4Mhw4VUhcsYK0XL65dUxMSiKhVk+1CymMX27VrR4MnKgrC99/j8MKFQk5ODissLGTq6upCeXk5p6WlJWhpaXElJSUo09amAoN6ejS2duwgErh9O63jLi60jtbZfyReXrAAmNOiRbAqKECWvz9kMhlau7hALTIS2hMmwHTqVCAzE+NfLoL46acUFdAQlN9x/TqlJU2aRNFYyhobdVBU3VJyzJgx0G4gOuKtIZWSLbNxI61Bypocr0N+PkUCKKuGv4T27dvj5s2bLLVzZ6GFoyNXLydc2Xpvz573SjlSU1ODIAjw9/dHp06d0NLeniLkgoLIZlyzhiKPjh+n+9usGRU1fQ+IoogLFy6gtLRUAsB+2bJlhW/80Ec0iI9k+yP+UVBRUWlrYWHxalncd4SSaPv4+NRufu+Dykoy9I8ff688m9eitJSU3NxcMoQPHaKN9ttvySgJDKTCJ46O9LfXqagfCA4ODnxkZKRobW0N+5f6WIqiiOjoaAQEBMDb25s1VMSpKSgsLBRkMhl3+PBhAMDixYup5de4caTmGBiQkbhtGxkdsbEUXqxsKfOOyM/PR2xsLFdeXt5w6oKbG93/q1cpbHLmzMZVbjc3au3TCMFFZSUZnMOG1Tfk09KA+fPRLSmJCX36CNp+fmJLGxuu2N2d/dm2rbjoNfljjcLamtSzadMoAqLO91XnEIvu7u7o0aMH/9aVYwFy+Jw9S+HdBw5QCN6ePfScFi2ie+HnR9EYvXoRYbO0pPBwZQ9pZf/XpkSIFBRQVMeQIZQzuXNnbZEpxihMc+BASjPYto2uvbF82/8iRFHEkSNHBCsrKzg7OzfNelMoyOirA0EQIIriK6p2WFgYrB484N3t7KA1YgTaenu/u4VoaUmkZv16GoMqKlQx/vRpcnbk5tJa1K4dVe1NSqLx37MnMGsWdBnDxDNnUHH5MnKfPkVsTIxobmXFsHs3GZLq6rXqzY8/0tjfuJGIbF4epUR8/TUpvM2bo0gUwXFcTb5nYGCg+ODBA7GqqoqTU7V71js5GYZt2wrLli2rf925ueh88SKXpKUlxnh5MWUu9etQXl6Oq1evKrKysvihQ4cS8V+wgM5z3z46x6+/fvWD16+T+viaeZNTXWTx1unTikFaWjx++IHuxb/+VUsyf/iBlLy6VcH19Un9z8gA+vfHHS8vceCRIwzLltF8uXaN1rzduym8uHNnup979gDXr8N61y7o37+PXCMj/OnkJMzLyuLAGBn+p07R/EhOprzwtWup/seePeSc8vQkJW7dOuDxY8SNG4eIhw8hZmVxKpcvo8Xu3WhRq+Rz6NED+PJLjGYM/v7+TBAEcCUl5AjevRs/f/89/tWtG6mTvXvTvQ0IoPUvPZ3m9O+/1xQ6TO3eXchq04azkkjo76NGkUPVzo5C60eNQssVK1hQUBAMDAwUKj168DAzQ6KODm5OmoT+/fqJKioqLM/EBKabN7OBp0+jIjQUf/Tvj/Lycn7mzJnIyMjgy8vLYW9vj6BffhFLnz/H77//rujVqxf/+eefIygoCPfv3xdH9eoltrh0icPdu8D582AAPG7d4vL37hXlK1awjLQ0vHjxAhkKhWC5Zw/XVqEAz/MwNjYGx3HMz88PrVq1gktSEjKsrZGSksJ5eHjAxcUFRkZGnFwuh0Qi4QBAXlUFbvRoDqqqND4AWkMXLaIK5ceOkXJrZkZ7z6hRRJa1tKCvr4+QiRPlnWbNkphcvkxE9eBBOISGkiqtDLXfsoWcKQDN6YULG2xpVw+dOtHvhQtp3c7OpgJmkZGAmhri4uIQHR0NU1NT4eUOCe+FgQNpj7h6tWlk+8GD16YRGRoaYu7cuTianc0ZDhmCmsSOZcvIlouMbFLo+OsgkUgwduxYHD16FImJiWjZsiXc3d3R/NtvaS4/eUKRMH//TUVYO3Z8fZrKG5CXlwd/f395RkaGRCKRzFcoFDtWrFixcdmyZaHvdSH/UHwk2x/xjwJjzEqtgRY074IPTrQB2mj69QNWrPggh6uHu3dJVZk6lZTz4cNrN8PCQiJ8lZWkgmzaRAt1RASFghoZkXKUkUHGU4cOpHhLpWREm5rST1YW/Tg6krGlqUmbuYUF/T03F8jPh8LUFHKZDKoGBkBSEnrr60OqULCIlSth0LUrDGxsIAIIT0wUMkJDOVFVVRzVvz+zLyggAiaR0Hfr6tL5VIcNoqSEjHuZjAxxXV36zrIyyO/d48e6ukJdQwOyFy/A37lDeYQlJWSUOTjUhkhPmkSe4S++IEPxLSvBx8fHIyUlRfHw4UOupKSENWvWTPDx8WncWFBXJ1JpakoGwDffUDXcl5VgXV0aIxERDVeW9fYmA+bXX+n/Dx4QGQ4JATIzwX77De6XLnGYMgX45BOUyWSo2LqVlZSUvFvBmWHDSC2uqiJCp66OhIQEHD16FC1bthReS7SrqiiUr21bGpt79xJ5dnCgolBz5pBR3q4d5Z4qFPTMk5LoPnEczRWAjEMllET7bVBVRfd/xoxaR0VDxpWqKjmgbt2i3L+hQ8lZ8z8skiaTyZCZmcn9+9//btoHQkJISSwurneeHTp0EMPCwtiOHTvks2bNqrEF1CMi4BAZKZpMn87wmhzwJuPwYXLGWFrSvDQ0pPlkZEQOG19fImlxceTc0tIiEtC7N2BmBjZzJtQBqP30EwvZtg1VV6+ie/fu0H15buTlkcH555/0fE6cIKfI9Omk+ty/jz9HjBDzGWOdOnWCKIq4f/8+69+/P4uMjBQGDhzIGRkZQTpuHPDVV/Uf6O3bRCYGDcINMzPBvlWrN6aylJeXY/v27aKqqiqmTZsGw8BAcgwpVfbSUsoDbQihobR+vgbO+vro9fCh0CIigkfbtqQevzyHly0jYl9VVd/YP3WKnoe3N/RnzmR/amhggpcXVJUkqVMnem7dutGa4+dHz8vFBVBRQaK/P9LOnYOhpqZYb+wPHkzrvZERzdv+/UmZ7dOHIiuqHQv3/PxQceYM7hw7htF+fnhiackqPDyg/nIKi44OMHw4HPz9YWBgIG7fvl2YM2wYj4QEXDhxQhTqLi7K1Jxjx+geiyJFh1VV0V6npYXOGzZwpxYsEBEWxpCaSvdBJqPxefIkdShQU0Pl2bPo1q0bzwUGAoaGiM7Kgnp+PtLWrmUBbduC53lYlpeLn50+zTQdHNAlJ0e8pK3NNDU10a5Ov+1h3t6sNCmJie3bIzAwUPz222/ZlClTuDNnzuCWlZXQIjKS1NKiIkBHBy0ePsQNGxusO3AAcrkc2traCjMzM95o2DBc79NHMJ43jxNFEVVVVUhLSxMePXrEMu7fZ/EtWsDb27tebZS6TmmJTEZrqJIM14WTE0UFiCLNwV9/JSfJ+vWAnh6M+vWDgjHac9XVSQwAKPd7zBiKgmjThvZLgGyJCxcazYeuqKhAXRvs9u3buHHjhiAIAtO+eVPhambGXfvtN6738eNItrFBkpMTpk+fzr2Tw7YxtG5NtsnVq+T4a0yBVyI39/XpQ/fuwXDUKOgsXao4l5PDjZPJGI4fp3H3xRfvTbSVcHBwgIeHh3D58mWuoqJC2Lt3L9e6dWuMGDGC7KLc3NqOIYcOvdN3ZGRkYPfu3cpOAxIACrlc/gsAcBxnBuAdeqZ9xEey/RH/CKxYsUICYJKamlq3V3Lc3gH/FaItl1O49nv2RKwHUSSD8+pVUgP69iWSNmBAbf/Q8HBS8MzNyVj95hsiM6WltWRDFOn9VVVkBMpk9KNQ0OaqoUHEtSp5Sv8AACAASURBVLCQwhhNTIi4y2R0TMYAqRTis2fIf/AAIc+eQVtLS/T09WV48ABcs2bo1aIFIhMSEH/kCDp4eyMhNVXIKC3lvNTVoWthwWrCE1+8oDxbPT0y6u7epfPq0oU848XF9GNiQkZ9VBSQnQ2r8nIYq6tDX0ODQrafPydjPyaGDMT+/Yl4iyK1z8nNJVK7axcVWWrZkhwJly8TOa9L8F5CUFCQoKGhwXfp0gWdO3dGg1XkGkKnTmT87NlD4eynT9caMUrY2lJF4YbI9s8/kxENUOibjQ0pgBER9Fw//ZQUteqw0uRbt8BxHBVue1fY2ZEaXFEBnD+P2NhY6OjoYMTw4TyLi6Nw3qwsyhHdto1ypkWRFKdp0+i3qipdpyDQNVtaEnG4f5++o26/Y6Wx96Hw9CkR7L17iUwAdC06OjSeXi5AxXHkDDA3JyVcX5+e2XtGQDQVYrU62+QIjx49iPC8NARdXV2ZtrY2goKCJOvWrRN1dHTQ9tEjppWYiIhhw0SbLl0+3LoWH1/bhun0acpd7NiRHDXPn9P6UJfYN9Cn3MjICJ6enmJ8fLx4584dzsbGRhg9ejSnVl3tG4MG0by4erX2mWlpkdG5aRNQUoKOT58yjchIpJqZKeKzsnhRFOHq6gpXV1e6Ofn5dE51w7d376YxMnkyZO7uyPnlF967bl/nBpCTk4M///wThoaGwpQpU3hkZdE68ttvtc9Bmf85YwYpvuPG1R5g2LDGCxQWFwPr1qEoIwNFxcXc86lTxeaDBzf8rKRSWhtbtiQnlXKe//lnzVt69eqF7OxsXHj+HIOWLQMbN47WmH//m8L0790jx0edInPKvrv5+fl8Tk4OjI2NaW/p0qWWZIWE0D7ToQOtD8nJuJ+aiodZWYhJTET/X3/FnLZtUeniAodvv0WSRALHvn2hdugQEXyptKYNI5eVhc969OBkPXtic0GBIP38c7EgKYn/bPhwaN27R6poVBTtZWPH0r179IgU/VOnyKFnb49z+/cjJztbwJw5fM19aN+eVO7yckBNDSUlJXBwcGC3b99WdA0N5dGuHUrMzYUW6emcrkwmev7xB9NXUcHRb78VUgcM4Oy/+op1Cwxk7VJSoP6SI19VIoGquTnc3d0RExMj/vXXX+Jnn33GKc6eVQwNDuZx6BCd34QJwI4dYNevo9uqVQxPnuDq1asYO3Ysb25ujqqCAiRUVXGXL19WlJeX8+7u7vDw8OBKiotR7O4OlT590LWxvOdDhyhUPDj49WlCjNE6u2sXrcPXrwPBwbBYuhQTVVUlyMqi57l+PZ3zpEk0j4cMIXX48GEaxw8e0HrTwHetW7cOFRUV0NHRESQSiSgIAioqKngfHx9OT08PRUVFkgIvL9g9fy46OjuzjqNHI1MigcX27W9XzKwpyMmhc92z581kOz6+8bZpAM2v2bPRz8eH37FjB8q++w4akZEUJfiBxB0l3N3dOXd3d+Tn53NbNmzA89hYEampDJs3k4I+dSqd79WrFG3ShOKQSuTm5mKXsoUmAFNTU0VWVpbyAAWCIAz4oBfzD8JHsv0R/09gxYoVHKgHoBUAfQA2EomktVQqdRJFsQXHcc1MTU0rBw0apP6+yvZ/hWhv2UIFLaKjP8jh8OIFecydnMiQGDuWyJu7OynRx47RBvzttxQm2KNHrQoyahR9Lj6eyNr7ojqU99GjR7iQmSkU2Noy/Y4dWVVVleg5diyra1h3GDkSGzduVFwqLOQt3d0xfPhw6DZUbbcuGvLW18XEiaioqEDYunWsz+LFTc+1LS6m+zR5MjkeVq+mjSs0lO7hqFFkFB44QMbpTz8B+/cj5tIlsSQ/n5s0aVK9gj5NhoYGMHcu3bdBg0g9/eKL2mq+Hh5kCH/5ZW2xKZmMQm+PHyfS6udHOX4XL9Iz/PlnMqJeahsmkUhExhh7Z7Kdn08Ol+XLSVV6+BCDbtxAzsmT2FJZKc5dtYpJ1q+vbd1TVUWKva4uRVU8elR7LKUx09TWZh8COTmkzmzYUEu0ASL/oaGvEu26sLMjNWzPHrq38+bRs/kvVyxvsLdxYzh7lnIzz5595U+Ghobo1q0bdHV1kZCQwHKCgtAsMBBhkyYhUS7nfKuq3tgd4I0YOZIU5+PHab3JzKQ51K8fKW1vAcYYPDw8WK9evdj9+/dx8eJF7siRI+KkiRMZEhNrDWYDg/rElTEKay0qgp2BAXLu3cMAJyfeS00NOS8r97Gx5GhRUSHC8fXXpIBNnw7Y2uLvv/5SSKVSZmlp2ajzTBRFHDt2TLC1tWUjRowgQ/XGDSILDbVls7R8tS3Z9OnkIKhbv0Gpvq5bB6xZg2u2tohKT0dXNTWWkpKCFi1aNNw60cmJDHDldSnRrBk5Pjp1wogRI7AiNhZ5JiaY2KsX2MyZtDfs2aO8qHqHdHV1FQMDA5kgCLV5tIsWQTQ2hkIux5MnT6ClooLHO3bgooUFpFKp2GndOpg9esTiRozAyDFj0Kp6nkvT0lC5Zg3uyWRi+vXr6PfiBZO4udH3T5hA9+7FC2ja2ICNHw+fNm04dT8/lIeFwbxZMwob79SJnvkXX5ATbPx4WmcUinpO0aKyMkEul3NZWVkwffiQnq+zM6m5AQGQy+XYtm2bsigeX/bbb9AwMkLO+vXotXcvEhMThXPbtnFT7t1jdhUVfOpXXwn25uaM8/WF1sKF5Mj8/PNah0qzZoCXFxhjGD9+PPfXX38Ja1evhqqWFm/dsSNatWoF9YQEcq5MnAh06QKpjQ208/MhkUhQWVkJQRAgnToV3o8ewbtVK37z5s2isu+llooKtCZOhPnUqQCAqqoqyGQyCIIAhUIBQaGASnIyqiZPRkVmJhhjUFFRQU5OTs1YkUqlUOaTK33Cf/75JxQKBUTGgPnz0fbRI2FISgqHb76hNd/VlfYWU1Ny3O7bR84OZXu/1NQGSV6LFi0QGxuLoqKimvkze/bshoqoMgwfDgCwOHGCSCRAe8zYsU0vavY6uLlRusORI69PF1PWtpk7t+G/eXlRusY330CIj0ffM2cg270bGi1afHCiDYDskps3kVpQgC+3bYPO998zeHlRfQoTE4pelMvpGc2eTXZlE2FoaIgvvvgCurq6kMlkYIzxR44cKU9PT1cH0H/ZsmUlH/6C/hn4SLY/4v9qrFixwlhFReVHiUQyjud5qZaWlkxdXR0GBgZSExMTDX19fejp6cHIyAgqKirvHcuTnJwMPz8/+Pr6fjiiLYq0Sb2Uq/xOiI4mpfDzz2tz0kaOpFBr5Yaork4b5N27tWRNiR07aNG+dIlI2uTJ5M0eOfKNX52fn4979+6JZWVlgoGBAa+jo4OKigpwHIesrCwxKiqKtW/fnps2bRrKysqwdetWdvbsWaF3795c3QrVc+fO5dPT02FjY/PBYnOfPn0KiUTSdDUQIGVl507y4Gtq1uZ2LV9e+56ICFLPY2KAqioIggD9iRPZzDZtoLN0KRHH0FAidc+fk+e/qTA2JnVh9Woq1NW7N0U9SCS1xrjyXMrKyLteWUlOlk8++f/Ye++wKM7uffx+ZpZdOgiigDRFQRBEQVBRiRV7r4nGrrFGTXtjNFFM7LGjiRq7scRYgx0L9kJRQVAEAZHekbbLzszvj8NSFBSNeX95vx/v6+ISWZidnXnmPOc+5T507w4fJqXXr76qlgQ6OzuzU6dOISwsDC1btnz1HESRAg2SRMcdNowyJOvWkQPk6EhBgWnTqMXA0xPyL76Axc6daCWTsSVffQWtrCwMq1sX9ppsWnXvUw1yc3OxefNmDB48+JU+/veC69fpvE+ffrVN4K+/qu+Jrw7jx1O57d27lKlfuPDNvYp/A9HR0eB5XkLZmJ3XwtS0qhDcS2CMoVmzZmgWGQkhLw+bxo9HNqgEdd26dRg6dChsbGyqJ3E1IT+fHNnt2+la1K9PIj6hoUSepk+nCph9+yi7/ZZgjKFFixYIDQ0VLYKCOKSk0P3SoFcvco4riXCp1Grc7dIFFmfOQLe0VEp7/Jg12rULpllZ9NxoiEFUFAUBkpOJsM2eTccpK1k3MzNjSUlJ1DtcQ7FKYmIi8vLy2GeffUYX7exZsr1//FH9B/rhB3rOPD0p6NOhA52ThpgnJlKW6uJFWlcPHgDa2uiYn4+U/fuFhw8f4tatW/yXX35ZfSsIxxEZGDeO3ktDKpYvr0Iw+vXrhxMnTiClY0dYbtpEz7qdHdmQGTPIfpWhVatWLCYmBjExMUhLSoLN7Nlgu3bhzO3b6jtHj8q0tLTQwMQEerm5aDd0qOTi4sKE4cOhNW8evhg8GDqacV6pqYBcDsXQoRhjYsI2ANKjgADxy5MnOajVZHMPHqTrs2QJdFNTYR8Xh9xu3XDK2BgTP/64igK4BiLHoWjWLGh3745if38onJwgl8vRp08f7urVq8LujRt5HblcnNi4Madtbk5kV6lE8b17UKvVsLGxEZ89e8bJXFyQdfQoSktLub179+KrDRt4ea9eeB4Xhwt9+6KvjQ0tgrp1ySZu2UItYD/8QGvq2TMKdA0cCENDQ0xr1oyTBg3Cbz/9hBOGhjBJT4etjQ2R09hYWnMArK2toaurK+3atYsNHz4cTe/epSqajAy0b99eunDhguTj48Ph99+p+gY0bWLJkiUA6PlVKJX4ZPt2HBw5UnqRmQlp926UlJQwmUwGSZKgp6cnKJVKThAExhiTtLS0JEmSIIoi4zgOs2fPZpo9s7wyq7iY1uKPPxLJ9PSk7HC/fmTXe/emwH0N2dRBgwahY8eO0NXVhVwux86dO8VDhw6x6dOn12xgBg6kL1EkXYbWrSloZGxc4yiuWiMtjdbPzJmk9VAd7t+n/bSm/cDdvbzEPHPVKslUkpixo+P7FdAsLKSgvqsr1KtWQZaairjJk3F7yhRp+tdfv3rtZDIKesydS7aslm1wjDGqUgGNC83Pz8fz5891GGPfS5L0njJB/zfxgWx/wP8sFi1a1EdLS+t3Nzc37TZt2sjLZve+J7nj6hEXFwdRFGFoaPh+iHZ2NpWxXb9OZczvAkmiDV2ppCxAnTpUDvbzzxS5HT+eyumWLSOS5uxcc/bNxIQyfFFRtGnWrUuGOiaGnOgy51iSpCoOeHh4OP766y+YmZnB0NCQT0lJEYuLi0W5XA5RFJm2tjY3duxYWJYZfUNDQ0yYMIEdOnRI3LVrlzht2rRyz1Umk+F9qsWrVCocO3ZMbE+jOGpP4LW1KZtUUvJq77QGGhLo5QXs34/szEzsmj4d3337LUWXu3Qhp2DTJiJ116/TvfnmG3JQfvyRxExqmumtUJCDERhIfaeTJpGT0707OV+CQPf46lXajHfsICf63j06frdur42u6+npQUcux9VLl9AyOJgc/dRU2qTPnqVKCFNTKhE8e5acDk9PIu8AOSuadXDsGK0bR0dwSiWeHDggGhsbs/r167NLly4J9vb2bzWyLTY2VjPmRmjcuPFbj3t7La5fp/LgvXtfcUSKi4uh3rsXBlZWlKmuDZyciCDl5xM5sbSkANV7znKr1WqcOnUKrVq1evOBy/pP8cMPr/+9iAjg55/BHzmCmQ0a4OnTp3jx4gWOHTuGnTt3omnTpmL//v25N1YEabLof/1F5Kxly4qMbV4eOcxNm1JJ77BhZGtu3HjnthltbW1OKyEBorV11Yf62rWKVgqQbTpx4gT1wNapI5m7ubEOubnUp9qiBVVdzJxJxG737oqM6vffU4Cr0j3s3r07FxoaCn9/f2n27NnV3oP4+HjJ1NRU4jiOoaiICMqXX9ZsQwB69vv0obaWqCi6dnl5VPFUWkqkeMUKylyVwdDQEJ999hkviiJ+/PFHHDhwABMnTqz++IzR8UJCKgh2v37UEjNwIACgZcuWuHnzprhDJuPGu7vDwseHnvMpU4C6dfHs2TM8evRISkpKEjMzM3lBECRJktiBzZvxZVERZPr6ePLkCd+9e3dcvXpV9HRz45yzs4FOneg6mZmR2vSgQRRI8POjcuSydiAOQJtmzdijPXtYuiCgnka/oU4dssMODrTGDA0hc3VFRkwM1m7cKDVp0kTs1asXTx+T3urIkSNCZGQk37+oCI+WL4eyRw9h9OjRvKmpKQYMGMBnrloFRERwiWZmuNq5s9g5KYmzUyqhe+QItOvWlUxNTZlVgwZC5Llz/JkLF2BlayvY2NjwUXfviu7nz3P+kyfDwNhYsrS0rFgDhoaUSZw6lfQC+vWje5edTa8nJ4O1bw928CDEmBjR1dgYths3cpAkuiYrV1KWtU0b1G3aFHPmzGEbN24UCwsLOYwcWU7E3dzcuL/++gt79+4VR12/zmnaL3ieR9euXYWQkBBOpVJJ07y9Od2kJExdtozVYIcq21SG2gTvNNoivXpRy9X69XT/jh+ne7RzJwUNBKFaws1xHCnnl8He3p67ffv2G9+27I8rNA5Gj6bg7oULtF+9K+m2tKRqliVLat6DExKqH022bRuVy69aRW1pbdsieeZMJPv4oFENRDs+Ph4GBgYwrTwd4HXYtQs4fRoZ06ZB+uUX6WbHjtI9FxdOt00bFMXHo8/gwTXfs48/rgiE3Lr1TuQ/rWxyhyRJpxYsWFD8hl//gNeAX1g5S/MBH/AvhZ+fn35QUFCToKAg3aCgoIKgoCBfuVx++NNPP9Vv1aoV/95GCr0B9vb2CA4OFrOzs2Fpacn+9szg0lJyhHq9QyuMUknZIx0dKofz9ianDiCn5M8/qe/4o4+I0Dk6krP2JgLQrRs5ZYaGZLBtbCCsWIGSVauwRy4XTp88yV26fBnXrl3DtWvXcP36dURHR0t9+/ZlPXv2ZC4uLvDw8GBt2rThPD09OS8vL87d3Z29PLZDT08P7u7u3NmzZ5m3tzf4t+gtehvExMQgLCyMeXt7s1pvchpkZJBDXov7LAgCtm3bJjVo0EBybd6cgecp0s8YqWWXlfqhYUPavDMyKJr+2WdEoA8fplLIPn0qZvBmZlJEvVGjip7UXbvIKdfSogj/+fN0nN27KRM+fz6RBze3qhvsyZPk+OfkUMmitzcwdSpc9+xB0uDBcF27lpzghg3puK1bUz/pxIlUtqcRjatXjwgTY6+uJTMzIC4Ogo0NAp2d2eSZM5mFhQWuXbvG+fi8na6KtrY27ty5g9zcXM7b27vGTOJbY9s2em5Wraq2muTu3bv4/cUL1Pv00/Iof63AcRR0sbCgDNfZs9Qj/57OOyYmBhs3boQoihg9evSbr8eiReT0lznpr0CSKNiwbBmpNZdlburUqQNzc3N07NgRrVq1wtWrV8Vbt25xbm5ur/T2FxYWIvfzz6EnlxMpevGCCGrr1hWiQM+fU0nvokW0jrp1o6oIHR1ah+3bv72znJAA+Rdf4MagQWhbeZbs3btU2VNp1NfOnTsltVrNJEnC3LlzmVP//qijVlOgy8eHzictjUTQrl8nsquZ0PDS+maMwdzcHMHBwYznedi+NDFCqVTi2LFjaN68OWdra0vPZWgoZfPfhI4d6Z64ulJ/9f79VDUyfDgFwWqwQbGxsQgPD4eJiQmcnJxqrt7RKPLn51OgIziYnmnNngHA09OT5efnIyA2Fi309KAdHAy0bw+xQQOk9OyJkIYNmZ2dHefh4YFBgwaxiEOHYAcguEcP8fzFi0ylUqFfv34sJCREysrIYM1LS8G9PD6xXTuyYw0bUpCwTRvSDsnJgeXYsbBOTMQ1lQoNS0sh++EHuoatWlH1jp0d4OMD+dq1aHf4MPLatWM4dIj7KzQUCdnZgma0YmhoqNSgQQOu09q1KHn4EEVPn7LGnTszAEiMj8e9y5fhmJuLup06IbVtWxYYGAj7Pn1gdPgw7GfNYmcvXGDmMhlr6uDAHjAmTps2jW9oZQXLkBCm4+UFh+nTcffuXRYdHS1ZW1tX7G1yOZGbffvIFnt50T6qpUX3dfp05B4/jsZr1rBnVlaSs4kJw8SJFPCYN48qF7Zto7UglyMsLEwyMzNjVtbWROL19cE1aoSioiIxIiKCS0tKgti3LzLy85GUlATGGGdubs6s1q1jT2JipMZ79tREtP8+1Gran+7do3MLCCB/5t49Cu5HRVGQWKmk9aatXeV5ys7OxtGjR9GvX7/qyshfj4EDqX3syRMKcn79NR37XWytiQk9A3FxZK9fxs2btN++rNPw6BEF4j08gGvXICoUOKxSsTZt2sCikq5IQUEBAgMDERAQINy5c4eLjIxE69atERoaitDQUNHW1pbxPE+BosJCClaMHk3HLi5Gab162PzsGRI6dmS2H33EevTsCZ7noaenJ3br1u31N7djR2o509PDu4hdJiYm4smTJ0mSJH3fsWNH9Vsf4APK8SGz/QH/avj5+dVRKBS7eJ7vrqurq1Sr1bxSqZQrFIrSoUOH6rw8tua/gcGDB3MXLlwQt27dyvT09CR7e3vRzs6Ob9y4Md6qH3zAAHL0/vOftzuBpCSKxgYFkVPWtStlDOLiKOtob09Zz3Hjqs5XrSUkbW0ISiWkb75BztatePDggRhSpw7Hjxoltnnxgh+7YgXE9HSUqNVQKpVQKpUwMTFh79ILL5PJIJfLpby8PFY54v0+4ejoiE6dOuHQoUOYMGEC6tckPFQd0tPp6w3OgCRJOHPmjCiKovTJJ5+8PmqgCaxYW1NQA6Csd9k8UXAc9Wfv2UNZ6qQkUvnt2ZOyTLNm0UZ/+TKVKbZpQwQnNJQEmFxcKLP49dfAqVOUMcnOpgzn0KFE6N3difhs2oSTx45JhUol04iRqdVqxPTsCSk+Ho6Ojm9RClCGRo1wafFiGOnri/pyOadbvz44jpNCQkLg4eFRa8/v2bNnMDIyEvLy8viUlBRYVcpWvhMkifqGS0ooI/Oy8FwZciIihDlr1vD+MhmysrIka2tr1qBBg9r3L9vaUvvBw4d0nRcvfuOc5zchLS0Nv//+Oxo1aiR16tTpzePvRJGqKWrq75YkciIPH6YRZjUEuvT19TFr1ix+3bp14vr16zl7e3uhTZs2fF5aGswPHsRvdeqg940bKLa3h81XX4FVlwEqy9aVO9oFBbSOExIoC65SEekfNar2FyQxESgshNnLYnmpqVQ2CWpr2blzp1hSUsJ9WYlQymQyel4aNiRSVK8ekQVLSwqAnTxZ7fMuiiKCgoLE4uJiDgAuXryIe/fuSUOHDmXmZcGCR48egTEm+vj48OVq+9u21e4zCQKRz4ICIir5+URcXm71eQmNGzfGqFGjsHfvXmzfvl2aOnVqzc/Yli2U7bp4kUhv2bWqjD59+iA8PBy/t2uHwTk5MG7ZEsGjRok2eXncdE1LTRnaP3smGYeHs+MNG3IDBw6EjY0Nk8vlmDlzJrd65UpJ+uUXBj+/qr3iVlYUeNHsTUZG9Ew2aACue3cYpKcj3t4ey93d8b2nJwWVnJyomqdTJyrt37EDXG4uMtavFzxzcni39HREbdvGB23diuDWrVGgUPBDy3q1HbS0YH7oEFtuagq+pASzV6+G5ciRorarK4cvv0RvZ2cUFhYK2/bv57uam0ueS5eyeq1aSYWnT8PgyROqwigupsDpxInAzJmwWLwYffv2xdmzZ5GYmFiFXIHn6fPNnk3r++ZNCmx26gTMnIlLcrmY1b07p+vuzj3r0AE2Gu0Cxshm7N9P9n/5cshkMkmlUtHroliuUN+rVy/O1cQE4vbtOOzlJfEymaTpuVbl53MDkpNxy9dXwPv08SWJ9hhDQwrC6uvTPsMYBXy/+ILWrJ0dBY+NjSmgs20b7W+CQH9bpw7QqRNuRUdDrVbjypUr0uHDh5mdnZ1YUFAAb29vrrS0FCYmJq9vH+I4qnbIyCAi37gx+TyVg2+1AcfR+Z48SdWAL+uXHDtGgVkNiopoHWzfTlVBzZsDly8joWVLFO/eDXd3d4iiiKNHj4rPnz+XXrx4wVtZWQmdO3fmAUhnzpxhK1asQNl95WLPn4dKLkf/8+dhnZwM5bVrMB4xgsTN9PRw9eJFEaGhGD9+fHk1f2fSN3nz1szzdM/at6fPWFmXpBpER0dDEAQEBgaWZmdnaza8BgC8AVys1fX8gGrB3kps5QM+4L+MZcuWHWzatOnAHj16aGnInEqlgpaW1tv1Ef4DUKvVCAsLQ3R0NNLT04XCwkLe0tJScHNz4xs1aoQ6b3CS8OOPtJFr+tfehIgI2oR9fCh6vngxZTlTUymj5OpKZcuvUUUWRREZGRlITk7Gs2fPhKysLJSUlDCVSsVKS0tZaWkp1Go1eFGEbWIiSnV1JZWLi9ixY0fe0dGRNvwrVyhi+vHHtLG9wYC/CatXrxY8PT359u3b/6P3dOPGjaKzszPX6W1mSm/eTE7eG8rag4KCxNu3b7Px48f/M0GDrVtpU7ezo+v9+DERmCdP6PU9e0iky8aGMkHz5pHzY2xM0XJb22orGjQlqPXr10e9evUQHx8vFBcX83K5XCoqKmI+Pj54q+sF4OnTpzh48KA0ITWV1TtzBnj8GMePH0dkZCS+/fbbN95jURRx6tQpISQkhDcwMJBatGjBbt26hU8++eTvtRd89x05St99V2PwRKVSYeOiRRhaWIjMMWNw6dIlIT8/n2/QoIHk5OSEdu3avd0CjYggwZoBA+iZeZtMeRlEUcTu3bsllUolTp48uXblH23bkp1YvvzV1ySJnMcLFygbVYuKkvj4eERGRiLz8WNBjI3leAMDoedvv8m2jxsHqxYt8OzZM8nCwkKytrbmVCoVkpOTpczMTObesiWaR0ai3pAhVYMbgkC2REsLePAAwoABuLdsGeq2bg1zc3NwHIe4uDio1Wo4OTlVrBlRJFK+ciV2BQaKSUlJnJ6enqCtrc23atUKHq6u5c7ymTNnoClRnTt3bvWK+3FxlDm2sKAKoPv3yXk/deqVXw0ICBDCwsJ4S0tL2NjYQEdHBxkZGYiKisLEiRNRr149mHnDQQAAIABJREFUnDhxQigqKuJHDB1KAZbly+m5fRNiY8mWP31KAbHoaCr9vH2bgmQ9e1aUk9eArKws+Pv7Y/jw4eXiY69AqSQyr1AQWfr+e8pO/vJLlV/7888/8fDhQwDAyAsXwPM8csaPh7uHR8UIpMxM3IqJwdmzZ2FoaCjOmTOnivO/atUqceyFC5zp+vVVK0hKS+nL3p7OJyaGAsbW1hR00dfH+cBA3Lp1C19//TUFsIuLqXc+IKBifGWTJkhMTMT27dvx9ddfQ7p5E7IjR1D68cfQnTAB3KefUuWEkVHFVAwjI8o279lTIVpXFrjKyMjA3o0bpZGbNrE/pk8XR4wcyZUmJOD30FDxK3d3Dvv3kx2uZL/27NkjPX36lLm4uAiDPTx4mJhQT/2qVZSNX7CA1vr06RRY79UL+w4dEtLT0yFJEoqLi3lnZ2ehT58+fHkALS8P2LgR19LTxQt16nAdOnTQkKuqpc6PHlGgrPIIwKtXkbp4MU4OGSJNmDjx72+mgkD7fVERvVdsLAV0c3IogJCSQuthxAha72FhFCgC6Lw0wpiSVBG4/uMPIDsb+XI5CqKjIUgSklq0QEmDBsjQ08PTtDRJLpeL+fn5vI+Pj9CpU6fa2byEBAoEHT1K/fMREW/3WdesIRtVecpIUhI9e5WFa+PjKfOsmSwQEQF8/DFSUlKwdetWfPTRR4iLi0Nubq7Url075uTkVK6lUFxcjJ07d0L24AGGNG8OWf364GbPRtY33+B8QoKYravLqeRyuLu7iz169OAYYzh79qwUGhqKuXPnvvv9nDCBggmayQ/VID09Hb+8ZAcALAaQD2DdggULlO/8/h/wIbP9Af9e+Pn5MYVC0dbT01Orctb0b40peo+QyWTw9PSEp6cnAPD5+fm4efMmHxQUJAYEBHBjx459pcwQAHDoEDlW1SgEvwJRpNmXERFEor7/nghgSgptZOPH01fDhtWWUEmShNTUVISHh4sxMTHIzs7mtLS0JF1dXaFevXqyRo0aQU9PD3p6etDX14eenh4MDAzoGl+5AixezLB0KV+u/slxFeWOL14QmXvwgBylNwUXakCXLl34U6dOSYaGhqzyjNL3DWNjYy4/P1/E2/Rt37pFZWavIXmlpaW4ffs217t3b/xT2XlMmlTxfVQUOaXduhHZnjSJ+jktLcnByc6u6jy/huCVlcVKqampTF9fX+jZsydvaWkJIyMjdvr0aTE2NpZ10vRcvgFqtRrbtm0TsrKy+A4dOkhmrVoxTJgAlJaib+/eiIiIQGJiYkUm5yUUFBSA4zgEBASIUVFRPAC8ePGC+fj4QCaT4ffff0fXrl0lLy8v9lZBGUGgaoD27amq4DUK8RcvXpQUubnMatkyWOnro0WLFnxiYiKuXLnCAgMD4enp+Xb2x8UFwu7dYAsWgFu7lrJWtVThLi0tRXR0NCIjI8Xk5GQ2Y8aM2vdZbN5coV5fGaJImeasLPq3lq0bdgYGsOvSBdixg0dBAXD6tCz+s89gfuUK+vTpA7lczgICAlh8fDxycnLEOnXqcCqVCk+OHEHDy5eR17MnUq9eFWJjY2Fubs7srKw4+zZtEPDVV6Lo6orHI0ZwjY4eRfHWrdLejh2ZXC6HIAgSAERFRYmDBg3iGWNQZ2VBGR0NbYUCo0eP5hISEpCSksKnpaWJp06d4lw++QSKmTORM3IkBEGQGGOsd+/eNd8zW1sKUoaHk7O+ZQupLE+aRN8zhsLCQty4cQMhISH8p59+ikYvEV65XC799ttv7OOPP0ZkZCTfv39/aiHQ0XlzILKwkLKC27cT6V+0iOypjw8RYltbIowrVlCGMD6e+tzbtHnF3puamqJx48biwYMHuf/85z/VV1kpFFQqP3Ei8OQJVO7uyE5KwstF/HFxcSIArlu3bmi8YAGwYgUazphBmdWgICpJbdIEHr/+imRXV4SHh3O5ubkwrqTe7+TkxF0PCUH7lBSYaMj2ixfUj75uHfX3Ll1KwosPH1K2vWzNdujQAc+fP5dWr17NjIyMxGHDhnFmgYH03pGREO/cQUH9+rC2toa+vr4QGRnJt+rSBejSBQoAOHoUoRcuoGTSJLHR/ftceL9+Qrfdu3lYWFBVRGAgBQDKCO7u3buF7Oxs5DPGn+jXD6OMjDjjffuQrVCgxa1bDJmZFMwEyJbcvg1cvIiR9+6xjJs3cTs/n4LP/fqRvXn0iKpa5s0je+3tTZ9t9mx8snIlr9EyyM3Nxbp163gbGxu4a8QCyyZcOKanc4oVK+Cq0TQ4cIBU9csE0XD4MFWyVcbhwyi2sfn7WhGBgfR+48eTyOHIkURGDQzo2JJEBO7pUwr2r1tHa/iXXyiTmp9P1wAgP4UxEkqsX79c+M9QFGGYnAxERsL61i0KhmhpAeHhDA4O/FUzM4SfOMF3at++dnOqNb7W4MGkNSNJtNZ27KidKKe/P137IUMqnq3o6IoRfQBlvvv0Ib2BoUPJhyubplK3bl20bNlSCA8P53iel0aNGsVV8QcSE5H93XfgdXXR9fJlGLx4AdmOHUDfvtDT0sKEMr8kLi4O+/fvZ5GRkdDW1kZmZiarX7++Gn+Hr23cSAGuhQvp3KtBdTZSS0vL7Lvvvpv/zu/7AeX4QLY/4F8LjuMmGBoamli877m6/xAMDQ3RvXt3WFpackeOHKmRVEBPr1yVWpIkCIIApVIJlUpVPrZDLklQKJXQnTABLD8fbP162liDgsiJa9WKspvVGEhJkpCWlobw8HDxwYMHTKVSoV69enB3d+ecnZ014m5vfvZ9fKjMOTX11d5WxiqCBePHV4jfvAPc3NyQlJTEQkNDBTc3t3+kcVsURaSlpUlv3RtmY1MxH7gMarUap0+fFlJSUqCvry89f/5cpqurKzRr1uyfaTrXQJJovvfnn1MgJDKSxNY8PckRCg0lR3LtWvp5mzbl82VrAmMMkydPZmWzm6ucf9u2bblff/0Vly5demN2u6CgADt27BB1dXXZ7NmzoaurS95K8+aApye4du3A6tWrsc0iJCREOnnyJAOAunXrSjNnzqTRM5IEmUwGHx8fWFlZ4Y8//kBhYaHYuXPn2gVMBIH6162sKLv8mlYHQRBw+/Zt9rWGKK1cCYCUgUeOHAk/Pz8EBQWhW7dub3xblUqFo0ePCnK5nD179ozlKxTM0ddX/OjbbzkDKys87tkT+lZWaNiw4Ss9toIgIDw8HEFBQZJKpZL09PSkadOmcbUeIzdrFvUzvtxjKEkk/qXJZNZG50Ktpi87OwoUVCLodnZ2VSoNhgwZovmWA+iZe+jvj8jnzxF24AAA8G3atEFMTIzw8OFDofmkSZzK2prLyciQ2nTtis52dsDQoczG1xcpggBPLy9WVFQEf39/bunSpehz7ZoUZWHBHvXti06RkfDx8al8Dpy2trb6aEyMrImtLYofPkRwcDADgICAANjZ2b0qShQaSrbr3DmyyUZGtF4HDKCe4rVrIc6ahR07dkg5OTnMx8fnFaINAL1792YmJib4/fffoaWlJTnq6zNcuEDZ09f1kF68SL3KxsZEVDSOed++1Fo0ZQppbaxYQToMc+fS89+/PwXbGjcm8lPJpo0cOZLz9/cXDhw4wJmamrKioiL07du3XGwwISEB+bm5klmzZix7+3Ypv6QEQmwss9m9W8xVq0V9fX0MGzZM5uHhwV29erViQsE331AGWpKIoDIGREZCy8ICpkFBEgCWnJxchWz7+voifN8+6drGjczJ3ByW2dnQc3MjsrJsGX02U1OyVampFAT76CNg5Upoe3nBx8eH7d27F9nZ2dzWrVvRv1MnNB46FMlHj+LE9euiz0cfcQG9e0PbyIidPXsWurq6cC7LugcmJ+NWXh5azpzJ7bx2DTaMSSgpIUJ37x4RfUEAJkyAWFyMhIQEvmPHjsjOzkbnYcNg4OdHmX9ra7jcucOwdCkFuA8coGC5QgEsWQIuIQG8tjbsz5/ngz/9VGw1fz4Hc/OKZ2vYMAoo2NtTECUlhdbE7NnAtGlIKNtbXtYzQUgILo8di36ZmVCUlpLd6tWravDm4sUKxX2NcvvChXgeH08k8W3w4gXdg5Ur6XObmxMpdnYmn6MyVCoKQsfEULBIT48y96NHU8B30SLqo27YkD7799/TPX4ZHEd22cqq4nOoVLSHnT8Pr8JCICQE0oQJYElJlD1v0YJ8jRoqtQBQcFyjXu7rS6KMa9dSRcf81/DGmBjSlsjKqghQP39eVU8iIIBaL2bPpgy9g0P5S1paWujbt69mD2WQJFpjX3xB13bOHNSTy9HUywu7LS3xn//8B7JqgggNGzbEt99+y06cOIH4+HhxxIgRnKOj49/jatraKNcG6NKFfLuXoFmDHMddFUXxWwBrSktLd/2t9/2Acnwg2x/wr4Sfn5+tTCZbO3jwYL33Joz0X4K2tja0tbVJ1VitRk5ODnJycpCbkgKnr76STo8aJaXzPFe6eDEEQQAAzYxLSUephFFurtT9zz+5R/b2yNfTg7YgoPGIEbjTti3iGjdGqbY25NHRkiIhQVIoFJK2tjZ0dXWho6PDGGMsKioKSqUSZmZm6Nq1K3N1dQXHce8W6p4+nTb4I0dqztKcO0cb2+bNRPo0Ee23gI+PD9auXcsXFRVB9+WZs+8B9+/fh1qtZm9dBuzr+4rDfP/+fURFRTFvb28uPz8fzZs3h4uLyz9PtLt3J0d3/vwKdeHMTCIM48bRpg5Qb1ZuLpWwfv899Sdr1MmbNHnl0Iyxaku7jY2NMXLkSOzatQslJSXo0qVLleh3QUEBzpw5g4SEBKGoqIi3trbG8OHDuVfECrdvB2xtwa1fL+3atYv17NlTcnFxKX/DzMxMBAQEsA4dOqBjx46vkH4NGjVqhHHjxrHt27fj7t27aNKkidClSxfeqKaRLNnZlKEcN46U/mupxpp+/jzsqqlI8fDwwI0bN2Bvb18t6dJAkiSsXr0apaWlvKmpqVi/fn2pf//+LCwsjNspCGh/8SKyUlNFpVyOg3Z2nImJieji4gIvLy8uPz8ff/zxh1RSUiK1aNGC69y5M3tr+/f48auOqFpNirsuLkQAakO0f/+diHtaGpVbv2XVBieKcNmzB+LPP6Nzq1ZYvXo12rRpA19f34r7O20aMHkyQ4sW9P/gYNisXAmbmBigdWvo6+tj2rRp7NSpU9A7dIi1HTQIxTIZLl26BBcXFygUCty5cwf6+vpo5egou5aXh4DQUGiEK3v16oVz587h+vXrMDQ0hFKpFHx9fXmWnk5Ed84cIquSRARl82b62fz5wKFDiF28WCrW1pbmzZv32vvQtm1bxMfHC1paWjz3ww+UzatJVDEjg8impSURqJfHASYkVHw/cyY59vv2UXbR2JjuB0B9syEh9HXvXvmkiLFjx/IHDx6UQkNDAVAfOQAYGBhIpqamUmJSEpfXoQNG+/uzcyNHisP27GEBz55xiW5uHMdxWL58uVTWXshycnJQ/jxv2UL2pHVrIpv5+YAgoEWLFiwqKkoKDw9nGrILUOVXy65dmfaJE9KZAwfEyT/9xN91d4fM2lp0/fxzjvfwAGvYkD5PnTp0D1xcKLBz9y6MywiPKIoYMGAA/jxyBEbjxiHv8mVY1qvHmjGG9AYNUMfDg7t48SKyNarfABo0aABRFKEXFyf2vniRud6+LYOpKRF9Q0PqJR41CpAkcPXqoWPv3iJna4v+UVEcevemsna1Grq//YZDQ4dK49q1Y6UmJijo1An13NzAjI2pB/vTT2Fsa4vo0FBcuHCBM1KrUU+lgpGODpVaR0RUKOM3b077aHExEbbgYNgbGsItLg4nTpzAzJkzK+yrjg6iGzeG1ty5SLh5U3o8ZQrqmJjA8+FDBpmMgsDffFORsb1+naqczM2RdP26JIrim/e558+pPHz58oqWEk9PCja9rt1l+HCqcLh0qbyHvFzgE6D9aP36CgX+mzeJdNamnUIup8CEvT2uXbiACJlM6jBtGkNwMF3Le/eoCuLGDSKMnp4UdGrQ4FWRRY6jQFXZ9YQoUnZ36lTK9CoUVX+fMbIJv/5K5eMAVZL06kX2784dygpPn05fGptVGYJAAZXISLo/S5ZQwKJPH6BNG8hat8alRYugr68vaWtr13iPOI7DgAEDgLepwnsNCgoKAHd3pPv6SrmzZrGAPn0wfNQoOJa1MKpUKixduhQAIIri5QULFtwA8PaKah9QIz6Q7Q/4V0KhUOzw9vbWfisxq38J7O3toaenJ6xevZrnOA5yuVxUKBSimVotczA0ZE07dGAdraxgaGgIfX192mBVKmDlSoadO4GvvmJo2hSW3boBenoQ27ZFkaMjugoCRFFESUkJCgoKWEFBASssLERRURGKioqQl5cHtVqNTp06wc3N7d0JdmXI5SSCcunS60siOY6cQSsr2nBGj6YNrVKm43XQ19eHkZGRcO7cOfTv359/373bRUVFKC4ufnsiHx1NpE2jDg6KAHMch7JRYv8sVCoqRfTyoqj0+vX0vbc3cOIEfZ05U9U54nnKGK1YQU7906fkjO3bR45A06aU+ayFeJ61tTWGDh2KK1euiD///DPn6+uLVq1aIS0tDTt27JAsLCwkb29vztPTEzKZrHrHwNUVUKnwnxUr2NYRI3Dd0JC5VFpLhoaGsLOzE69fv86JooiuL6sXV0L9+vXx5ZdfstTUVJw9exb+/v7geR5yuVyyt7cXO3TowJuYmFCp5fLl5BBrFOHfAFEUUT8lBTqffkr9nC+hT58+ePz4sRQYGIjJkydXe8AXL14gJiYGSqUSZb2W5dfEzs4Oqt698WLWLJhGR3PYsAEvFAo8aNqUC71/X7hy5QoAwNnZGQMGDODeKcj4+DGJEb38eadOJbI8YsRrs/sAyLls3pwE9oKCaD3Vgmi/Mns6MBCsYUO4lY1PY4whIiICVlZWFVU/ubnk0GocV8ZIwO+774iEmZnBMDAQIx4+pH5QAGMB+Pv7Y8uWLXBwcEB4eDgAoGFcHAZcuoT4jh0FmUzGunfvzrm6uiIhIUF49OgREwSBqVQq3uXJEzTw96d7rHluLl6ka7dsGRHusDC8aN4c7Msv2bC1a2sV8Hjx4gXTDQvDJVNTFFlbwzIsDK6urhWVC6JII5K2bSOi169fxWi0yhg0iMTtzM2JsK9eTSW7xsa0ljXn8ttvRB4SEihbde0awPPQt7LChAkTmJ+fH1xcXNCiRQsIgiA5ODgwlOn0MMaAsDB83L49h6++gmdqKhplZSE5OVmIj4/nMzIyoK+vj1eqypo1o89RXEwZwClTYJSYCOWnn6LzrFkIfvJEbPXxxxwWLKDsu44OnEJDmdOkSbzk6opGkyZha3o6M27VCrt//BEwMIBZdDQy/fxgbmEhshYtULhvHzd83TokmpmB79cPAwYMgIuLCywsLJCZlITG3btDfeUKk8+Yge6RkcCGDZBNmoQzZ87AxMQEDg4OCAsLkwxEkbVo1YrLWr8ejx89guOjR0Qk9+6lXmrNdIjkZNR78oS79dtvaBsWBo7nKWgcGQk5z2NAbi574uwsPXV1lZ5oa3NDfvkFNpUqOvKysqBUKiFJEvbt2wcnJydh2LBhPPLyKND4MqnT0Smfua6/fj0GREXhRysrBH32GZwXLcKLwkLk5+dDLZdj/4oV8Dx5khWdO4dbRkbwPHeOjhETQ+uoe3eqoDAxoT2a51FSUiKam5tXH/yNjKT9olkz0gL45BMKqK1eTZUdr9vjU1OpuqVXLwpISRKtT6WSbIpmhKKXF1VnnDhBa/zwYSKemzdXlHrXAvHx8VJhYSGDlhbtv5X2YLx4QYQ7OZnsgp8fXZMvvqBrYWtLWjia9rfPPqN/nz4lXQYtLapSaN26agXQmjX0bGoCQP7+VGWyYQNlx0+fJmHSyvZQraZr2rYtHc/enu775s10LSrZ4rI51tJbT0X5G1Cr1VhVJvDGN27MJgUGov+xYzggk2HBggUAgGvXrqkAyBljJyVJWv1fO7n/Q/hAtj/gX4dFixaN1NfXb+3t7f3PZgv/IXAch5f6Kzl88w2HDh2AmzdRPtVXkojIjR9PJU5ubhSpvXePyq/c3AC5HBwA/f/+x6jA55+T4MvBgxTVrgn6+uQMZmVRJFhHh6LQTk61GskxZswYfuPGjZKDgwMqZ0jeB8LCwoSyfvC3W1PGxlR6CMrAymQy3L9/X9LW1v7nlSWDgigT/egRZWjr1aP1onHee/emrJihIX0/cCCVilUGx1HkXzNr+fp1EpC5coWc9QEDqPfsNUERR0dHODo6co8fP8aRI0cQEREhamtrc7a2ttKIESO4WgVG5HKwgABoxcQgMSEBp0+flrp06cKePn0Ke3t79O/fn1u3bh3yNYrsrz2UHDY2Npg0aRKvVquRkZGBnJwcdvv2bfbLL7/A09BQ6BgYyMunTKl+lEsNCA8PByeK0H2N6rmzszO7c+cOoqKiRCcnp1cW9f79+6WUlBTWqFGjaoMxcrmcypnbtgWaNYNBWBjazZ+Pdj/9xMfb2oLjONjY2LxbpEmpJJtx/36F6GJpKWVAhw6lbF1NvcspKdSreOIE9Qi7u1MwphZO4dOnT3H48GEUFRWhXr16UsuWLZmXlxc4lYpKSstgZWUlnj9/njMwMBC++OILeg737SMnPiOjgvhaWdEYu1mzKPvm7U0ObSVMmzYNx44dKyfa3bt3h1wuh/7WrZitpVXlGR8yZEj5/0NWrMC127fh/dNPqG9khPKrER5OGeJp04ApUyBt3ozCBQuk6CFDpF5793JwcXljr33XNm04fssW6V67dihSqcTgEyf4U6dOYd68eVSFMm0akett26h3tSbk5latwjAwIMe9Rw8iEZUJkZYWkYX0dPqbHj0AxiAeOQKTzEw4OjrC3t4eqDRDufx53b+fqpIuX4blTz/B8uJFuLq68iUlJdizZw8kSRLT09M5MzMzcBphwaNHqeLh2TMiert2AY0aYWBODst4+hTXcnI46+Bg1C+7Lxgzhtblhg1gwcEwBaC3YYO4e/duXiaToXOnTnAfOBCh06fjvihy6enp4HkeOyZOhKhWo9edOzD+80+U3LqFunXrkibG9OmQabQGysrZrc3NwRjDiRMnIEkS+gQGYlhKCmQLF+Lhjh1S8JkzouOtW3xYSgoMrl9HoxUrKlKGBgZwdHfHlZYthfUODtzkoiKmO2kSMGcOuK++Qv25c1E/N5c1s7Vlfn5+EF+6XadOnUJ6ejrMzc2F7OxsvnxCym+/kV2tTqFfg88/Bz7/HJ6bNkktN29m5xiDWKeOUGxpCQcHB3748OHgeB5NvvoKzz/7jAIqABHszp3p2i5cSH3JZddEEASmrvy8xMXR7zdpQgTT2ppGvl29WrM9qA4TJ5I92LGD/ADNGk1LowBG5WPp6FBguG9f6qG2tqaM8ahR1ZeUVwMLCwv2/PlzlJaWvjoJwsCA1p8GEybQmnzyhMrQg4Iom9y1KwUHdHTo+W3RgsYDAtRKk5pKlU9PnlBrnpcXBRLGjKGAzKhRpCj/0Uc0StXCgq6BKNJzoFGI37OHkgs3blS0ddQw7aK0tBQWFhb/NXXfyiNVBZkMumvXwnHTJkzr1w8AkJqaiqtXr8oBQJKkUQsWLMj9b53b/yV8INsf8K/CokWL+svl8q0jR47UeeN4m/8VSBJFVCtvDmfP0ibp4EBkavp0Ms4dO77TuK5/HJ6edI5DhrxZVMnUlDYdgMjOF19QKeQbYGhoqKkCeK9Blvz8fGRlZfHdK1//2qJRIyAyEjk5Odi4cSM4joOBgYH4xvFefweCQBmwefNo7Mjy5eQEJCZWHWvi50eR/d9+I8eiNsJb7drRlyiS45CbS46Tlhb1q8lk5AxVQ6AdHR0xdepUrFu3juM4DuPHj68d0dbAxwdjSkqgnjMHS2fPZk+fPkVmZiYYY9BMxYiKikJBQUG5euubIJPJYGFhAQsLCzg7O3P5QUF45O/PHZfL4evtjRoKzF/BixcvEBAQgPotW6oNpk6t0fD07NkTERERuHPnDpycnF553dXVlaWkpKB9+/ZvFlLT9Kj6+QFXr8Lu3r2KDMy7QKEg0qrp/xRFIngODtQOUZ09PX6ciObs2XTf5XJg+HCkp6fj5I4d4DgOzs7O8PDwwOXLl3H9+nXo6OhAqVSC53lJEATGGENpaSkaNmwIxph09uxZdvXkSUy5dAkGx46Vv1VqairH8zyaNm1addF88gnZvj17qp7bZ5/Ra4sWUbaoEjiOQ5MmTcrJNsdxcN+0iZzpGTOqvz7+/vD46y9kTpwo7YuNhXLZMubg4CB5e3szm5fsU1SHDrgdEYHRABHtMWNIyOw1e1IjUQQmTGC2U6cCAH/z5k1cOHkSD3/6CU2OH8cRZ2dJ2bat9KmZ2etDjxermbBTpw4R4w4dyOmv1CsKoEJA6uxZQKVC4MqV0uQtWxg/dy4JdDVpUv25//EH2QB9fQpoyGTQ1tZGnz59sGXLFu7XX3+Fq709Bq1fT6Tq2jUi/JJEIlrTpgGLF8OmY0eUpqXhjo4O8vLzUV+jcxEdTSRk8mQiLcePY5K/Pw+gQr/hxAnkx8UhMyYG3bp1g6urK3iex40bN1Bia4ubAQFo9/w5LIOCiFTNn0/B6BkzKJAbFITYadPQPiEBTRwcoO3gAKNjxxhTkniyp6cnCzt3jn+kq4sbx47BKz9f2h4UJDWIjeVSUlIkpVIpOTo6cp06deKfz5ghqTdvpv7q0aMpS7p8OVUaJCRAoVBAoVBArVZDpVKhtLQUpaWlaN68udStWzfNnkD/lpYS2asFekybxjB1Kj4BgB49eDx4QCXnWVnA7Nm49/gxWj55Qvd++XIKrvbrV6G6XaktRM5x4IuK6JkODKRzLy2lCqMyMa+3wv37VA79669UFTV9Ou1HGixeTOvP37/iZ336VASqbW0D7J+KAAAgAElEQVTp99PSqKLq8uXXilSWX5MePRAaGoq7d+/CWyMSVxMYo/epnDmfPZuC/ZmZlPX+6y8KqPXtS6Xds2dT4OrAAfp8CQm0n8rl9HcxMRS0HDGCbNP160TUp06lvXL/fvJvZsx4K7ttbm4uPaMA/n+FcL+8R6+OiUE3SYJDly74cfp0iFXtQgaAWs64/IC3wf8jbOYD/l/AokWLhmtpae0YPXq0zv9i+Xi1uHWLsgF//kkk6vPPyWFxcSHS6u5OpYv/dhE4Hx/aXPbtow2ztoiJoY14xgyKIv/5JwAq6y4oKICJiQlkMhmePHmCBg0aQKlU8u9T0Ts+Ph6HDh2SzM3NUadOHQaQANXly5elkJAQ5uHhAZ7npbi4OLFDhw5848aNUVxcjNu3b0utW7dmXHExtJ4/R1ZWFgBg2LBhcHR0/OeI9qZNVMoWEkIEqbCQIuUHD76qLu3oWOFcTJ1KzvjDh7XLHHBcRcbF15fUdUtKiNiYmVFfr63tK8Tb2NgY48ePh4GBQRUxpNqC69oV8iNH4FFUhLDQUPA8jwkTJuDOnTuIiYkRCwoKuJSUFDSpprf8jbh0CYZ79sCka1d2PjMTlmWjX9LS0kSVSiUVFBRALpdLcrmcMcYkQRBgZmbGeXt7c48fP4YkSZg8f74MurpErmqAs7OzFBwczK1bt06aNm0a09LSQnx8POLi4nDt2jU4ODig4cviZK9D585UfrhwIX1//nzN/b414flzUlt//Jj+n59P2avPPiOHv3KATJJohFGPHuQMZ2QQ2dqypfxXdu3aJZaUlHCaz3bu3Dno6OhIABjP8+jZs6ekVqvZ6dOnAQBeXl7oSVUE3P379xG0bRuCtbTAR0YiLy8Pjx49kkpLS1mjRo3g4eFRlWsePVp9OXVxMQWQVq6kz3fuHMBxEAQBpaWlOHLkCADAxsZGcnd3Z2jS5BVSDoBI5LJl5BgPHozuFhasO8g27Nmzhz1+/BhzVq1C+ubNaPzxx4iLi8OpU6fgPnAg4+VyEir74QfK7O3YUX1Lwr17tGZu3iz/UVvGYJSaKhbfu8et6dIFcnNzJissxLJly6Tp06ezarUGoqKo6iG3muSSkRH11fbtS2ukJrFHuRx3AcYOH0Y3S0t6vtu1o+uYl0dZRg02bqT1kJdHLStljreFhQXMzc0lmyNHWIeVK1HQpw90r11DbkEBUiMj0UhXF9pmZnQO/foBa9YgVamEqKMDWZcuFdMTNGv5m2/o+hkbQ1uhAM6dQ0G7dnj06BGCz58XvP/4gx+wbx8qt5d06dIFkiRhUUICml24AMslS+gacxyVJjdqREQIgJOdHRIfPBDjQkI4eX6+4D5lCq+xl3K5HCO7dcOL6Gh84uoKnbp1WYRMJmZmZgqNGjXiiouLudvnziFeECSFj4/UqmlThosXqV8+OprKiGfNAp49w9SlS/FLTg6UurrgOK68baLZyzY3LY36oavr660JmnV19izZ4sBAeobv30dqx47o8OefEubPZxg1ip6Fp0+pfFtHh8qqHzwAMjLQY+VKFu7sTO0I48ZRS0g1gli1giAQoW/ShO51UhKtw8qYNOnVyiiOo71o9+4KFfe+fYnwjxpFqt4vB4xeQlpaGgRBqH6iS23AceXK5+jUic6zqIhsZHY2CSQuXEjP2+TJVKWhCQqtWUMiemU2A7/9Rs/ehAmUATczq3Y8YG1gYmLCIiMjoVKp/pHJOrm5uUhISECzZs3KW1jmzJmDNWvWlP9OYNeucHnwAM0fPEi55+4+EEAigMOMMeG9n9AHAPgwZ/sD/iVYtGhRD4VCcXjMmDG65i8LXfwvY+NGEh/R0iLHNjOTNsBOncjB/l8Sf0tLo8i4v3/FrNXaIioKOffvI93eHrkzZuBMjx4Ax5VvBqIoQiaTSYwxZmBgIKnVanHcuHG8vr4+Xu6XfP78OSwtLav8/OV+UUEQcP78edy5cweOjo5i//79OY1o3a+//ioJgiAZGhpyKSkpUCgUklKpZAAwdepU3L17VwgODuYBQLegAE6xsQhxc4NCoQDHcZKvry9r8TZOVG1w5gyRHlNTItUdOtD1trOjgEV1JWm3bpHjrHlt+HByhCqRpreGKJIjsm0blRTPn0/R/AEDaidw8wYkJCQgKSkJFt9/DzEuDvUfPKiSxX6brHYVHDtGpbQODkh3dkZAQAAEQRDL1gVXr1491KlTB0qlsry/kud53Lt3D6WlpWCMoXPnzmhvb09ZlzeQ3czMTGzcuBEAMG/ePKxZswZFRUXw9PSEr6/vKwrjtUZCAmVzhw0jovym/moNcnMpUPPdd+R4L11Ka+HrrytsjChSX+dHH5ETumYNEe6XsHfvXik2Npb5+vqiTZs2CA8PR0REhNilSxeuchBUEARERUWhpKQELVq0KP/MSqUSyp49EdKrl3ilsJADAIVCAaVSCZlMBj09PWH27NlVA1aLFxNhPXSIznPkSPoMdnZElm/coFab1q2x9/RpKTY2lgFECidPnkzHePiQ7NLLZHjlSnpWtm+vQhSePXuG3bt3w9TUFFanTsFo+nSI2toaETxp6NCh1KtdWEg2W60mgrBsWdXjiyKVpBoaUiAyK4uCkjExkHx98WdRkVhcXMw+/fRTdv36denChQvsk08+qT6gVFRELR7V3JdyPHlC1+f48RqDtEuXLoWHhwd8fX2JTKtUNGd37Fh6ThISiEBxHJUAz5xJBEKjYv3iBTK3bQO/ZAnue3khqFUrmCcnwywzE0+9vcXP583jEpcvh6CvD+XJk2JjW1tOXqcONhkZSW7u7sxHQ+569KCg3oUL9LkYA2JiUNq8OVbOmgWFqank7eUFz3HjmCwkpNp2lk2bNokAOBMTE7g1agQnX186VoMGlPHnOCrLX7IE6ps3cVgQJO9Fi5h15aBCRAQJXG3bRvaxEjkWRREPPTykRnI50yuby45nz+g9Ro0CAOTl5eHIH38IDY4e5W96eaHDjRtI+ugj4UWdOkwo01IRRZGJoghJkuAQFsasY2JwduBASJIEURShVqup1UFfX8zNzS3frBQKhShJEqv89wAJLeoWFKBYRwezf/4ZyZ07iw4vXnCYMoX2iy+/JNvcvDkRaycnYMcOPA4PFw/cvMlp+nHfGZcu0bq4c4eCNd7e5M9URkkJrfnqxggWFVFyYfPmqq+dPQt8+y0FeF9DNn/77TchJyeH//rrr//e53gTsrJofnh2NmWwnz4lW6QRf3v4kPq1Bw8mbQRBeLUP/y1QUFCAQ4cOiRkZGeyLL75g76uCMzMzE1u2bEFpaWmVn3/33XeIj4/Hvn37ND/yYoxt/mHBgjEAjgGYBkk6W90x/fz8zOVyub+WllZhcXFxqiiKmxcsWPD0vZzw/zF8yGx/wL8CCoViad++ff/fIdqiSJkmpZIyhDExtMH07Vt7B/rfhvr1qY8pN5ccuFqUEIeEhKBly5bgnJyw+fhxyezSJeabnAw9fX18OXw48o2MwPM89PT0kJSUxAoLC5GWlsauXbvGb9iwAXK5XGrVqhWLiooSzc3NudjYWE1vqHpqWbnvhg0bhOzsbJ7neYwZMwbW1tZYsmQJRJG667p06cKdP38eT548kYqLi5m+vr44Z86cyp4B27Nnj/D06VN+27ZtkMvlfPv27REWFibqAuh+9SrXbts2REdH49GjR+z48eMoKCiAg4MDDh8+LDg6OvKdO3d+t2ual0drRdMfpqkauHCBAjKxsRXCMy9j4UIiZqNH0/9376bMlFL57s4Ax5H4y3/+Q9kojQDN9u20bk1N6T0tLd9plmtQUJAYFxfH1XFzQwMfH2Gwnl4VD+2diPaff1KmZ8oUwN0d9QCMHz8eqIWSq66uLoKCgtClSxe0k8spy1p5rmoNqFu3Lnr16oVTp07h6tWrcHZ2RnBwMARBeHeiDZCt+OsvUn0+fJgcaM383ZqQkUHO7nffEZH6/HMi6wMH0j1SqSjTHRhIDnpcHGVQq0FAQIAUGxvL9PX14eHhAcYYmjdvjubNm79yLXmer5KJ1ECRmQlFVhY6zZjBJRw4IDo5OaF169acJEk4evSokJyc/Oobd+5ckXEtLKQeck3AQyajzNzUqSheuBDJQ4YwALCyspKaN29Oi/D5c8pQ5eVVHDMvj8jlwoVEGsrsrkqlQkREBP766y+4u7uLvV1cuD+fPRNDb9/mAMDAwEAcPnx4xefViJSNHUvkwN+/aqn6li30nEyfTtU/J09Sn+jYsWAGBhhaaR2WlJQwAEhMTKyWbKvT08Fpab1+4TZpQoGImTOJyFTTdiRJEjIyMug/jJE9GDSIMnUKBdmWzz+nTJ6vL5UIk/oxXX8vL9TNzASOHUO7WbOQWrcuTG/dglt+PgZ88QW3oqhIEouK0PnAAWaSnc35u7piZGYm2h07xk4XFCA+Ph5ZWVlCBz8/vpWXF7VQ3bkD0dMTYXl5OPmf/2Dw4MFo5uvLsG4dBRA05/sSOnTowJKSksSkpCTu6r17otP+/RwaNyYbVK8eEaM7dwBbW7AHD6BITX01Y3jzJvUo29tXDRT//DM4XV08mD0bR+Pi4Pznn4KLiwtvEB0NXiZDaWIiOI5DQkICUjMzucZz58K7uBit/vgDFgYGfLGjIzhjY8gUCshkMvA8D57noXBxgUwmw5iy7CLP8yguLsbz58+hra3NyeVynD9/XrCwsOC9vLw4bW1tKBQKyOXy8ukQmvJfjuOAjz9Gk6QkDkeOlGfz0aIFZbOdnChbW7a+HS0sONy8+apg4dsgNZUyv/PnEwkNCqq++uTJEzqH6lrLdHVpzc2dW6EKDtBacHOjIMzBg9VOyIiLi0NycjI/uxbtZ38blbUpjIwoUHbrVsXrU6ZQEKpxY2or6NiRKs/27qUWnOPHga++okSEgwPZVxeXGhMp+vr6GDt2LLdhwwbpjz/+kEaMGPH2EyeqQWRkpFRaWlp5Uy4GoLNkyRK0LROX43n+mSAIoZIkjfFbuFB/np9fqEySVgGolmwzxmaLojjIw8ODJSYmivHx8XOWLFmSK4qirkwmu6dUKr8EELJgwQJ1dX//ARX4kNn+gP/f4efn10ShUNz/+uuvdfg39QP/r2DePOoDMjOj0jdzc8o8mpvXegTRvxKSRI7alCkVm34l5OfnY8OGDbC1tUVBQYGUlpbG7O3twXEcnjx5gu+++47ETgSBMrhBQdQP/hK2bt0qJScns8aNG4tZWVkQRZEzMzMT9PT0+Pv378PJyUkaNmwYO3fuHEJCQjB58mT4+/vD2dkZkZGRAKifV61WQ0tLCzzPS87OzszGxgb29vbVkjpRFHH27Fnk5+ejf//+1FOoVhMBSkwEOK5KRpMxBhcXFykiIoKNHDlSI0RUe8THA926EdEeObKCvBYXU8bq8uXXlyFevEgZmsotFyNHEiHYsePtzqU2CAsjMtqmDa3tfv0qSghrSbyTk5OxdetWdOrUCT4+PuTAfPvtq8JutYEkUUZRFMmBe8vSc1EU8eOPP0KhUGDixImoe/w4Zcj/+qvWf79582akp6eX/2zy5MmvKji/Kw4dIjL1/fdEJGvKAh0+TJnhkyfp/AsLiVQLAtmali0pk71zJ92n19yr1atXi82bN+depwj/Rly6RGXp1TzXP/30E8aPHw/L6gJIcXFEWCdOJCf9JSQ9f46Dq1fD/f595HTsKPSfN48vd1JVKtK+0FRfFBdT8OnhQ8rgV9pXfv/9d8TExMDW1lYcM2YMx/z8gOPHsWH8eKmoqAhDhw5lNY5269OHnttVq2jNKZX0jP7+O2XQW7So6Al9Cenp6di2bRvUajW+/PLLVyYj3L9/H4nffw+vW7dwZdMmcciQIVxSUhIiIiLQrl07aGtr4+LFi2jYsCER9cOHqZT1558pw1sJS5YskXieZzNmzCgfg1YFgkB9vL/+Sv2nT5+S0FrbtkQSQkKIOFy6BEyYgFOtW4t3U1K44cOHo2nTphAEAXl5efhl0yYYGBgI6vR0vpDn4RwVBdcHD3BoxAgY5Odj8i+/YM0PP0jDMjOZfWoqLk+ejKCgIBgZGWH06NEwuXeP7MnUqRXr19iYRnPl5NAaOnYMyMtDcGamVDclBXaDBzOsXk2EECAS3bYtwPMIDg7GzQsXpBkXLzK2Y0dFoHL+fArg9OtHc8rLArFYsgQwMsL+uv8fe98dFtXZvH0/5yxLRzqCIKAiIKJSBLFgQY29ayyxG2uiiRqNiZFgNDFRoyaxxZLYiBolQY3R2BFsWBCliEiTDgLSy+55vj+GZUEBNW/yS973c65rLwV2z57zlHlm7rlnxpTHxcUxBwcHnpWVJfU6fJgJCgU7/eabnHOOqqoqwcDAQHrnnXfqekX9+tHa+u23uuPr5UUAZSPVvbdv365s166dqHKEUFlJDLht28iBFkUCPFWMlcxMirD26EF2RVZWvXuZc46VK1fik08++XPO9k8/UdpEeDjtncBAcqrrk/x8OscbsmlU6S3R0c8766dPU6T8wIHnUqS+/vprZZs2bYR+/fr93xQSy8+n8XRzo4i2tzc51h070jymp9OYcE4sFxsbGp+UFKpjM3gwgVeMUTHKlBQCzkWRAIWRI2vWGq5fB0aORE5ODrZs3Qo9PT0sWLDgPwNpq6Wqqgrr1q3jlZWVDIArgGJBED6QJKleBFmoqsLy1asvM+AyOK8pCBMQEMAAzAPwbb9+/aq8vb01ACAnJwcFBQUwMjLCw4cP+dmzZyFJEmOMreCcB/n7+0f9xw/xPyqvne3X8o9LQEDAQjc3t8+HDBny57k5/yY5d44O+dBQKihy8yYdmn370mHq6UkHj7s7GRr/bZHuq1cpmvD2288dskeOHEFUFOlbfX19vPHGGzh16hSKi4vVDpZKCguJejlsGBknH31U86fS0lLs3btXys/PFwYOHCipImuZmZnYvn07AKBr165IT0+HmZmZ1K9fP+Ho0aOK+Ph4mZ6eHsaMGQNTU9N6+0e/smzfTlHnWkarUqlEZWUltLW1cfLkSWV4eLhYHU3hvr6+rEuXLg1fLy6OjMsdO2gMajvUa9eSs9GYAaOSKVPIGKptaN+5Q8yDnj3/zJO+nHBO85+cTIZwXh5FLzQ0AA+PBp25goIC/Pjjj9zKyoqPGTOGrEBV0SctrVeLlHNORuCZM+RoNlD5tSFRKBRYvXo1AKgBoD8hnHNs3boVeXl5mDBhwqvlar+MZGVR5CQ0lCjhqhxElVRV0bilpxNo06sXGXlpaWToX7lChrmx8UulrAQEBKB169YY92cKKQE0LxMmUNS1QwdyRnNzyehu0gQ/f/MNfH18YKGqnt28OT3blSt0z7m59Lk7d4DoaJTZ2yM0NJRbWlqy4OBgKJVKjImI4E4AQ3XONgAy2KsjgHj0iIDAHTsoglZrXQUFBUn37t0ThgwZwt3c3Gr+oKisxOdr1mDBggVosG87QIb4okU03h98QAXG2rUjh3ftWnLAG9i3v//+O79x4wYzNTXlMpmMWVlZQVNTU4qMjBQsLS0RHx8PHx8fREREoKysDIIg1LBzahcRlMvlfOzYsczezo6c/vJyKkJZ7cyo1raOjg4vLS1lxsbGfPbs2azBNV5SQo6esTH93LUrRe91dOoAWF9//TWcnZ3RvXt37Ny5U8rPzxcA4JMJE4C2bbH3q6+QXlQEu/v30e3aNRgdPQpFUBAO2dhAfPoUg62tsT8tTVJyLixYsACatdk3Rkakt7p3p/WTkUGATe/e5OiZmmL35cuSt6en4OLrSwBBXBxVrl+3jiLWEycife5c7NyxA2N++YVfGTAAfrNmMVtbW3KYrl2jOXNwIGeqUyfKRwate1EUsXz5crqf4mICWqtp7WvWrOG9evViXrULgwE0bk+fEk3d35/A46dPCUS9dq3+iO/t20BVFQ5dvMh7nT7NzD79lFJ2Nm+mFJB+/cg5GzKEgIQBA9Q6dv9+2lP9+1OKxe7dz32Hytn+UzTyixfpmUxMiDVgbU3z8gyYUyNvvEF2zaJFDV8zKoqAAj+/5/+WmEjPun9/DUB1584dHDt2DKNGjXo+F/6vFlVHGBsbWv8WFjQ/jo6km0SR5tTamnLjHz4kvbpgAa2fxgD22FgC/ZycSB8uWkQsgI8+Ih3l4ID7+vo43asX5l+6BI0DB4jdERFBoGNmJunuVwhA/fDDD6guvva2v7//zoCAAF8Al555Wz8AFwAoAHT56LPP8kWlMvzwuHE/Jrq69pIkSQOAppGRUZNhw4bp1guMVsvevXt5YmIis7e3r0xMTJTL5fL4ysrKkf7+/pEvfdP/n8h/cYjttfwPiYL/r6A+ly+T4RMURC29WrcmmmFhISnrTp0I5e3enaLDnTqRY960KTlYfftSVPPfnMvt40O0vY8+qqGHSZKE1NTUGkd7xYoVNY6ui4tL/cVAVBVJJ06kw+zBA4qkzJ4NHR0dzJ49W9i8eTMiIiJ4u+qIVe2WJtevX4coitzS0pIDwMiRI/8efXbxIhkVtZxtURShXV0BdsCAAWK/fv2Qn5+P3377jd24cUNKT08XBg8erK64C9ChfuECGTJdu9JhXtswlySKPnp7v7igDeeEmH/7bd3fu7lRZHbXLnUf2b9aGKPvcXOjKFFEBK1XVW7dhx/S3Hp4oKS0FDdv3gTnnIeFhbGWLVuqHW2A1nt6OkXoHzxouOhTbVEoiEYLUKTnFQq13bp1C/fu3YOKyjxhwgS1o21jQ2P3Cvn4OTk5NXTdZq/o8L+UWFgQqKWrS4ba2bNkuKnWzbvvEvi1eDGBeNnZtD+vXKGCPvVUTG9IKisrAQDdq/ti10hVFUV+FAq6/tOn5BSUlFCk5vx5dRTy7l3SDe+/T86AhwftHwCKUaOgn5EBjadPScdZWJDeW76cwKFly8hh6dGDnHMvLyiCgpB24ABTZGfDYuRI5YwZM0QADGVl5Ix88AGBNeHhpF89PChKO2VKvfNYUFCANm3aSG5ubuo1OGgQsGIFOOf47rvvsGzZsoYjglpa5BSp8jcNDAgQuX37haCpo6Mju3PnDnJzcxlAwCGqKebx8fGwsrKC37176Jmfj6g334RCoYCLiwu0tbVr8n4551i9ejULCQkhYGfhQmTPnInsefMQ2bMnNHV1ERcXxy0sLPD222+zCxcuICwsjDUKOiYmknPdrBnpqEmTKGoeF0dRVkNDKBQKFBcXQxRFrF27FmZmZqxLly4ICwtDpo4OrGJj0T4/Hzlnz0rN580TThsaYur48RC//hot5XIpLCxMyFi3Dg7W1kLfw4fJ0a6oIKdiyRIqThUVRetGUxOo7sl+7NgxyGQyaKen8zylUujYrBkxFp4+JR3g4EBgTX4+MHUqrM6dw5LAQCT+8gur2r6dG48dS1Wkr1yheUpIIKdq8+Y6BbpMTEwkb29v9aTPmEHjMGAAAEBfX5/n5eUBz1aQlsvJIbKxoTXMmDptobycgECVjlu+nPbCwoWk+z09WbGVFcyaNaOo6erVtK/PnlVff+xYOhfS0+mZOScQZPRoeoazZ+t2OQHwp02pbduIEXXsGDnYrVsT+NWQow3QPnhRl4+qKqpz0K3b8+wce3va8/v2EQDdvDkqqqvIvzJT7FXl0iXSE4MHE7CTm0ssRA8PskcMDUmf+ftT1PqddwiIMDKitRcXp67OX19BXycn9f9VReKcndXtU2/fRtX161wrPFzSGDRIhKEh3dNvv9G+6NCBgKfx4+l14QKB01lZlOZ14QIFbGqBg56enjwlJYUJgvAhgJ0Akmrfkkwmm//xxx+fDggIEAFYAZB9FRCwy/PqVVmvhw9npsydKzytqEDTpk3h7Oz8QmbEW2+9xb744gsMGjRIrqGhgbi4uBYnTpy4GxAQYOnv75/5qlPyvyyvne3X8m+QC/Hx8f/9OR9379LBe+CAGvH096cDVNWaQ5ULFBFBB+e2bWRklpUR2nn4sLpKtJERFSZxdq4/X+qflDFjCIH/9FNARwebN29W5uXlie3atZOGDh36XEuoRqtujhxJ/+7aRfm3s2fTYW9oCC8vL1y+fFngnIMxhmbNmmHChAmQy+UQBAHZ2dmsQ4cOf2/ugYEBGQyNiCAI1D8ZUBYWForR0dGIjo5Wo/Pl5XSA5ufTYdqjR90LTJ9O4EzUS7KwJIkKu9S3Lh49IgPz73K2a4vK8QaIFpibS1TzX34Bpk+H4tw5PFQokGZtzTw9PTFw4MDnT28rKzJGzMxeXAugrIyi6UlJ1Mf1Fat2nzhxAgBgbGwMBwcHRatWrdRn4Icf1jWQXiD37t3DrVu3OKoN8PT0dNjZ2b3S/byUMEZGV2oqRfHmzaP2P4aGZKBmZ1NO8apVNJZOTvSZZ9kVSiVF7LKzaZxzc0k3Xb8OyGQQLCzQ7eJFGN25Q4Z2SQl9x4YNdK1hw6j2hCpao6tLjouTEzlqrVrRtRYsoFxguZzuoxqEESQJWYIgbUtLE1xv3ZIGHz8u4O5dMhgvX6b9X1VFoMu6dUB+PvRFEd3On0flnTvwHj5chLs7RZC7dSPA8vffCVzYsIEM37feotSCBgqMKZVK4ble7oaGkJmbY8yYMTh8+PCL50NZXbC3vJzud8YM0ofLlpGBXKsNU20pKSmBJEmYPn06rK2tUVZWBoVCAf3aFNoff4QoCHi2ACNjrKZfrre3N65fv45Vq1ZBV1dXWdSsmTgkOBg2eno80tGRDx8+XHB0dARjDK1atUJ4eDj/8ccfuapVXx3dXFpKkXknJ3KwPT0JPJHLCTwoLAS6dIHM3x8ubdoor169KrZv3x6DBw9mWVlZCAsLw6+//irNnTtXcHvrLbi99Zbww8OHklaXLhDu3BGwYAF679kj5Do6KoVOncQh5uZ03WvXgDZtwGNiAA8PsLQ0Ak9SU4G2bVEZHY2jR4/C0NAQfn5+uHnzJisoKAALDEQO5zAzM6P3x+igGykAACAASURBVMQQcJmTQ2fGvXvQWrYMt2/elIb9+qug5+BA83TlCjk5779P+2fevOfmp07kX0urjhNjaGjIbt++zUxNTSGKIlq0aIEmgqAGWp48If21aBFFyzU1iV784AGBMj16ED3byqoGfFIGBiJ2wgTJvmXLhj2a4GDa46mpdatf+/rSXi4rI3ZPnz7PfXTr1q1KQRDg6ekpenh4NPgVkCQCLfv0IcdToaDIbmpq4/o1O5v2wouqhXfoQKDs06c0Rs/K0KEEus2cCaxbh7i4OBgaGtYFqv9KOXSI9Ji+PrFpYmJIdzg7E4CxeTPp2169aC5zcmh8QkLoTDUxIfDgp58InPj+e0ob/OCD5zuGNCb6+kgsLJQEQ0MGahdIwKqqkn9mJunpoiK6vrEx6eTcXHURya++QoUggM2Zg13+/grXoCBZN01NxS0fnw/B2Nw2o0ffjnN2PilJ0nauoVGhUCjCAgICeoAi25DJZAo7OztFj3nzZJo9esB87Vpacy8pgiDAzMxMunLlCgYNGiS4ubkJJ06cAGPsckBAQGt/f///jSDaXyCvne3X8m+Q6LKyMo3y8vK/T8H+3fLkCSm/Tz+lQ1YlkyaRQr50idBrlXTooG7To6LwjR5NDteMGXQIxMWRAa2jQw5NZSUh6AMG0Pv/Cor0nxVLS3IaFy1C3mefIS8vT3z33XdhbGz850Py06fTKzm5BlX38PDAuXPnkJCQgJYtW9YYkCqxtrb+K56mcTE3pwPuJXKCx44dK8bGxuL06dMoLS1F2KVLsJk5EwatWhHlrwFDHBUVrzafN2+S8ZiU9Pzf3nuPDLT09IaLq/0dwhgZUzNnksHw5Al4RAQ8T5yAXWIizKKiyKhv0eL5Zx05koyWTZsaBhyePiUnUxSJIvwK7I/S0lJs3LgRAODj4yP16dNHYIypz7/YWIpAvaT+qaysVLWeYgMHDqxTjftvE2trcqoTEwmQUyhoTObOpbHIzaXaAqrWNomJ5EyFhdG8eHpSNCQtjXRMaSkZjpmZgIMDSnR0kNasGeI8POA6fDgEDQ1ytleterm1KUn0XcuX11ugTxAETP7lFyGxpIQfc3ER7s+YgbbXr1NUs7iY3rRsGTnQFy4AP/2Ehz4+CNTWppZdDx6g09ix5NRv3Uo5kGlpFCXMziZ9tHYtRaaeuzUqFuXh4YFTp04hKiqKQLCKCnLyNTVhU1wMfX19HDp0iI8bN+75B05Pp/x5ExMavy+/VEe22rWjvT1pEuU7R0URcDp0aA3z4vr161ypVDKVztKuTxdMmdLoED9+/Bjh4eFo0qQJSkpK4O3tLWpra6PFwoUwmDiRdevZk9UGjOzs7LBo0SL25Zdfss8++wxGRkaYNm0a1axYtoyimH5+xKhRMTMyMgjsiKxmgq5bBxgaYuTOneKI5GSwxYsBzmFlZYU+ffrwM2fO0EacPRvw9kbZmTOwtLQUigMDoV9cDKxejZZWVuyhnx/alZTQefjxx5BiYvDtmDFKM1tb8dGmTRg1ahScnZ2R8eWX2LN3L7S1tPj06dOZnp4e7OzscGbNGkk7OFj4ddAgvL1wYU2lcAC03pKTgVOnkDJrFlICAwXDQYPAPv6YcmxjYmiuo6IoReHJE1Tp6uJAYCD39vGBJEmoUy9myRJyODkH4uMxxNychVy9KpWsWwfbmzeFFAMDOPXoAQ0VDXnIENK1hYUEHAYGko4+elR9zWd0sYaGBioqKnhSUhJiYmIkhULBBw4cSHUIFApirPTuTXPzrK5zdSVWmYEBOYL379dEjQVBwMiRI1FaWirevXsXt27dUnp4eDQMSH//PQGlU6YQwG9sTGfV8OGNrkX8+isVZlQ5io1Jt250vcuX69cl3t7AtGmovHwZRVFRKDAzQ35+fg1Ir9Ktmv9BFXDcvk179+JFGlsbG9JtK1eS8z19Ojmze/eSLVdaSmBkQAC9PviA1tidO3ROBAaSnfLzz3T9li1JByQkvDT1u2fPnuI333yDixcvosezADxAY2VgoC6CWhskqmZnJUVE4PLo0cguKpIVGBpCIYoyXaWyF4BuvpcuLWyRmGjuGhHxy9pPP80cvWePVbKdHb/v7S3NLSwU5MuXy5gkyVBaSvps2zba9w10HqmsrMTu3bsVlZWVYIxBLpczfX19MTIyEoMGDYIgCNDW1kZZWVkrAJoAyl9qIP4/kNfO9mv5NwjnnP95+tM/LXl5FNXet08d5astzZtTTlJDUTtVO42UFHLorKzIWenalejoCgWhzLGxRHM9fZoqRtvYkIHbty8ZBv/XQIWlJZCRgeK9ewFQSy5jVd7ffyK2tuQo6OtD6NkT3Tp35ocPH2azZs36a67/qiKK5Mi8hMjlcqre3KYNUmbMkB4C/Iy1tdj/88+hU59xPWgQGVT797/aPZmYEDDTkKxZQ2vl5s1Xu+5fJYwBpqbInjQJwRoa6GNjA+f0dDJEhg6l5162jCIBKkNy7FiKcNS3T7KyiELHGBk+r5hmsW3bNqmqqkpo3749r3a0675hwwbKxzt//qWu9+jRI2hqavIPP/zw70G8ysuJoeDiQg5kq1ZksHboQNFjpZL+DlDk5fJlGrfOnckIfvNN0hvFxWQU6uiQIV2rLsKz0gSAVlERfnv4EDfOnOETJ05krwR+RkZSWsOzeesxMeQYHTgAjB6NkOhoViCXo/DKFZ6xaxcTwsNR01LszBkCY6ytIc2fD1liIgBAR0dH6tS5s4DOnel9CxYQOKkqYqhU1rRCys7ORmVlJa5fv84TExN5RUWFoCqUKAgCr6qqYqdPnyZne906cv7i41FZWQmZTFZTMbxGkpLIKJ89m+Zh/nx6Hh8fcsp+/52ebe5cinbFx1OU9ccfgYwMZDKGx0FByO3Vi3l16VLDhKhX2rUjfb5uXb1/Pn78OBdFkdVbpfnIEQJiLSzqsBrkcjlmzZqFyMhIxMTESBs3bhQcsrL46O++Y+nu7tw0KIhp1Y7ITZpEe3HLFgLBqH864OQE9ttvdBYNHAh89hna9e7Nzpw5g3379kkTJ04UEBKCnmfOsBOurmg3bRoyzp9H67VrYfT++7Bdvpz06BdfIOHcORjb2sJ+8GBxwN692LZtGz927BiLi4tTRmRmij3v3kW3hATGli4FAOg9eoTh6elC6vbtKLhyhWPaNIZ9++o+v5cXEBmJrI0bMenQIa4ZGckgCOQcAcDRo+CrV6O4Rw/cdndHVtOmeDM4mO2dPBk9w8KYw44d5JC1b09nbbduxFwQReiPHImBnToJ0NJCzrhxCLp1ixtMm8ZsazNZtmyhtT5/PjmuQUG0TjdurPfcLykpQXJyshgTE8Otra2FxMRE9OnThwIOW7fS5+LjaT08K4zR+isspL2/ezedB9XOqapLQGVlJWJjY+tXlhUVBIwuXkzrubKSfhcXV38E+lmZNq3eQob1iqsr7dP4+AZB66rhw3F+0SLuFxqKq35+/ODBg0Lt4pP6+vp87NixrLEc4nqluJh0Y//+FAwJC6P9OW8ePfdXXxEzpVs30p1lZfS5NWvIFps3j5xumYzW/ejR9L6UFLXt1qIF7b/Hj2kPp6WRnebt3eit6ejowMzMjIeGhjI7O7s/xYxy7NABjjt34tGjRygdMQJBQUEQBMEGnLvuXL16s0Kh8EyYMweDPT2tmhobw6FtW9bH1pZh8mQCFDZupGh2QgI924kTNK+HDtX5nvLycmzdulXS1tYWe/bsyZRKJUpKShARESGhVseF7t27V506dUpDLpefB9D5lR/of1ReO9uv5d8gfQwNDSu1tbX/+wqkcU6R7PbtyWCvT/z8yAnfsqVe+lqNNG9OETuADkELC0JgBw8mJW5urjZ8srMpAnH+PBnQTk6E7hsaUqERLy86MP/O6LcoAt99B9Pz56GZk/Oni0zVK6oDtUsXdJkzR8j86ivpzpYt8Fu+/P8+mb1rV3XxoJeRyEhAWxvNHz8WrD/8EFvPnePrd+9mPj4+6NGjB6H0nNNr8OAX52fXJ1VVRKNtSD74gK79DwrnHBcuXJAsLS2FTlOmqPO/fv6Z0ii++ILqF8ybR+u2Y0eKEA0YQAZZdfEiJCWRw2lvT3mNryhJSUkoKioSmjZtyocNG1b/hqguuveycv/+faWxsfGfT1+oqCCAzsuLvptz2vPW1mTI3bxJEZfMTDKCDAxojIYMIRBl9mwqjlVYSKyZykqifI4fT86jKoodEkL5oyYmREUcOpT0UVISgYNFReQkhoQAbm4YPXo0srKysG3bNpaZmflqxt9PP9Wl4X/6KQECX31F99WiBZQODpCmT0f/+Hj++L33cCE2Fo6XL2OUig20di0Z8V264HqfPvzJwYOsla2tJHTr9vy8WVkR2HjvHn3m9m38unq10vOHH8QzfftC2aULHzBggCCXy2FlZQVJklBeXs7KysrUlcAXLKiJkF66dAkFBQUYPXo0/S05mcbw6VOaFwcHGleA9L0qTaN/fzK0KypIX3frRr+/cAEAEO7vLzWVJKFVq1bK/pMni5g9m+Y6K4vWfG0dffx4w+wXAAYGBqygoKD+P8rltHYGDiRwQHUfAMzNzdG7d2/07tlTKG/eHKykhEW/9x6CjIwY//prtG3bVho0aJBQEznU0CBwKzlZ3bbJyEgdTT5yBNDWhtbbb2NGeDj2Tp8uoKgIKCuDM2PMeepUpAcH435UlNIyMlJ82qEDipKSUGJoyM/GxPD0tDSh1YAB6ObvD5lMBl9fX3b8+HGkpKRg9uzZsBBFApUAWqPTpgHffANFs2bQzM9nyocPITYwTlKzZigwMUGzAweIefD55+Tkz54NBmDzRx9h/Pjx8DY3h6BUYiLnqEpKgpYk0VyMGkVRPmdn+tfKihyP6lximaEhiiIiWFl5raBdSAgB4KtWUf4vQDTk774DUlIQU1qK4uJiMMagoaEBDQ0NlJaWom3btsqRI0eKABVpO7VoEXeIiYHD778z+ezZjZ/fs2YRuDZjBjl2KSn0rLVEoVBAFMXnL6JU0lqprKTorKYmgb4GBqhTeLAx6diRQAFT0xe/VxDo+w4caLCY2sGDB5W59vasl7e3oIyLY9fi4ni/sWNZQkKC0t7eXkxLS8MPP/yA2bNnw8jICKmpqTAyMoKenl7DhVDPniXdc/UqAVArVhBYO2ECgfoKBenRuDhaZ6NHE9sDoLlftYoi8n36UGrU7dsEXKrqjKiKkV66RA52v34UGd+xgyLoM2fSPvzuu3pvT1NTE3PnzmV79uyR9uzZI/j6+qLnM8VNMzIyYGJi0ngqHtQ57kFBQeCcawKAQqF4rKmpqRg1daqMMVY3Yl2tn7BhA72qqgjsfviQnO+iIloTmzYBnTrh9OnT0NLSwttvv81qs0CioqK4k5OTEoAIAN7e3hrXrl2TCgoKfAICAjwB3PH391c2evP/H8hrZ/u1/OOiqan5YefOnV8h2eVfIgoFHUybNpHibUy0tEih+fi8uG8uoO55qlCoI1MuLnRgfPcd0dbbt6fX+++TIZCQQAr/hx8oqtK+vbqi6pAhRBP8D6PfpaWlqKqqQn5+Pvbs2QMLCwve8cABvKGrC6fPP//rPftVqwAAnZKThZKwMI7lyynq938Zxb95k1DtF80b50SJXbWKDrJz5yAAmOfkxFJSUnDw4EFcvXoV3bt3h++qVTQff7ZF16FDZAg35HDr6JAxP2kSHf7/gKSmpiIzM1NYtGhR3UIrzs70GjeOIkGMERUxL4+MtzfeUOfc3r9P0U5vbzWV7iUlJiYGwcHBvKKigmlqamLy5Mn1r09JIqf34kW1odyIpKSkID4+XhxQXTypXlEoyNDv1o2opFFRZOQ5OpLTa29PoEJBgbq/sCBQRNPBge5H1e9761aKJiYlUaeDHTvoun5+RFVWpRLs2kXfU13oDGVlVPAHoLWgVBJN8t136XcZGeq+1KNGEbuiqAgWc+ZA54MPuHL+fKBrV4YlS8hxXrBATQ9/tlYA57RHunShqMiiRUSrdHEhBozKwFYqYcY5N5PLWWRBAbe1s+MDBgxQz0tBQc09mXh7s8TQUD6hokKojxpeE8lfuJBAGMbQYfhwMcfVlY+ZMYPpfP+9wKKiiHpfbYw/1/Jv8+aa6JyFhQWPi4uDflUVQ2KimnXybGTy++/pOWv3t/bwoAj3jBk0B7WK9hn37Suc1tDA8unTRfTuTbo6PJzo9j/9RPrdxYWioRcu1B/JrBYjIyOeSyyb+teynh7poEWLiDVSO/e7tBT45BNolZQAa9ei7dtvo40koVo3sTVr1qBt27a8oKCAN23aVBp45IgMxcXqqGltqb5u5JIliNi5E5O9vAhQ/uwzGtMzZ1C8bBnu370ruu/dC9nIkdzs0CE0efddNuPrr1mVnR0qIiKgv2oV0LMnmhkbY1RgIHfcv1/EoUMELg8cSOOor09Ok6MjmksSDKyslF+NHSuOjItD6+oiZ2lpaQgKClJqamqiqrJSNB4/XnI5dUrE6dM0Jm++SSyEsjLoOTpKubm5QvPmzQEAckDdouvMGQJXV64k0FShICfLyorO2bAwxH37LQYePw7rQYPoMw8eEKNj/vy6+cvVlOX7Q4bwvKdPWdS4cRLnHEqlEkqlklVUVLDaFfFHjxgB2e+/s6KbN1FeUQG5qoBoQyKTEUVeVRAzN5ecvlpngkKh4M8520+e0H7//HN1Ff/MzFfK1QXntL8dHV/+M4aGqAwOxn0LC7QZNaomZbCwsBAKhQJpaWmiu7s75H37wuXwYbgcPcrQpAm8x41TeXbsxx9/VGzZskUmCEINS8XOzk45adKkusDnhg2Up//991Q358MPaS3t3Uushfx8AslWrKCzaMIE0snVgAoAAti0tAh4MjUFTp2iMys3lyLZiYmkj0+eJHbBvHk0nubmFFhJS6P9bGVFnysuJoCznoKeEydOFI4ePYqQkBB4eHjAwMAACoUCGzZs4KWlpUwul/OWLVsyHx8f2NjYPPf5pKQkXL58uaaArCAI4atXr/6aMRZcVVVVef78edHPz69x+0yVEjNnDj3TypV0NmlrI2X8eHiEhaHDpUuCqFTW0OQfPnyIJ0+eiBMmTKhzKUdHR+E6gWXhoijGBwQEzAdwBoAGAKW/v39lo/fyPyivne3X8o9KQECAq6ampne7BnJE/tXyySeUn3fixItprTo6hNTn5LzQWZQkCTWFbGQydbXPW7fIWL53j4zt3FxS8q1a0cGncmJ696bDMDtbXSxrxQqKfLVsSUa4tzc5/k2avFL0e/369TXtaLS0tNC6dWtW/N57UqeSEoFlZREy+jdI8pIlCA8PR+ugIDJoqTLs/40YGlIEtjHZtIkcn2PHCAl/pn1Q8+bNsWTJEsTcuYPff/mF+65Zw/6jsZo2ra5hUJ/Y2Kgpcf+AWFtbw8LCgq9fv57NmzcPpvVFQFTVsi9coPV8/jwd+lpaRD20siIn+803CUwyMaHoywvWrCRJOHz4MHR1ddmkSZNgZGTUcD2IsjJycBtxtFWt3mQyGQ4cOADvjh3RPjubHJirVynSt3Ur7as+fSiiMXQoRQlKStQ5yRs2EGjTtClFDgByulQyfvzzX/7bb/SeoUMJnCgooAiyrS1FI1q1oj1hYUEOtarwWVkZvZKSCGy7epUYGirHd8kS9Xeo6JolJYjbtAlViYlMr2NH0hecE3g3ezbl9G3aRMZ59+7kkL73nrqv9LJlxKhp0eL5Am3btqFw3Tp+f8YMuHz6KWbY2z8/iXv21MytiYkJku3sGOzsyHA2Na3LMJEkMpj79SNj2dQUOhs3gr33HpM7O4NNnUqRqMuX1Tnez1LcVQUpHRzQsW1bFn/oECp79SIH/s6d+nubb9hAxfmelf79gXv3UBUaiuSrV3HDxQWPHz8GYwxKpRLl5eXQUjljrVurC0MeP07AR3AwpQ/170/j7uNDjqaxMTl9dnYoyspiFeXljedb2dkROLJ6Nc1H+/YE1tjZEXvq/n1yJED5vXZ2dli8eDHbsWMHoqKimJaWFktNTRUiIiLgYGQkjf7qK4F5eNB1npE27u4I7dABO27dwuBNmyR3Dw8BEycCZ8+iNYBlXbui1NQUzTdsEEuDgqCTlgYGQJ6VBbmPDzl+UVHQatkSto8esZoUkcxMWsNPn9IarnbqBEHAlA0bxMSZMxH4889wdXXlLVu2ZMePH+cdOnQQtLW1Yfvuu9zSwkKs6du9fz/tjeoe4k0KC1WARfUyktRg4KefomrIEKS1bg3rOXMg69AB2LwZkiSh6NNPIUkSKu7dg31BAcoUChQtWwajAweQtmABioqLUXH9OiRJUjnUkCQJj9q0wfBr1+A7frzw7LkAFf128WK0CQkBbtxAQFkZPEJC6hbOq0eaNWuGVr6+tH6MjMj5mz+fwIEWLVBZWYmysrK6aQs5OQQOdOxI654xyjH/+GMC5F4gQUFBKC4uhlFhIdzfegvNqiuVFxcXo6SkRJ0OUo8kZWbiQsuWkO7cwamUFD558mQWGBgolZaWCjKZDJxzddu9MWNIH4eE0NqvBkOmTJkikyQJmZmZMDc3Z+Xl5Vi/fr1YUVFB+dx795JuNDYm3XT1KjGoXFzoObW0SF8VFlLk+p13SBc7ONBaq52n7u6uBhe//15d3NbUlPaTqSldZ8AA0vMuLmRjlZaSfbZjBznoBQWkc6OiSJdfukTnt6oQLmhd29jYIDo6GmfPnsXjx4+VBQUFop6eHps9ezYKCgrYyZMnsXv3bhgYGEhvvPGGUFlZifz8fOjp6eHcuXPc0tISRUVFDACUSuVH1dedIknSwNDQ0PMWFhY16QXPyc6dNB5jx9aASvz335EydCiOBwVJzRQKoevHH8PM2Jie+4cfgG7dkJuQAENDQ0lXV7eOAdyvXz/4+vpCJpMhKCjI5sGDBycZY1Wccw2ZTJa3evXqDz7++OPdL1xw/0Pyus/2a/nHJCAggGlqal7w9fXt1rlz539xr6t6JCiIDgAzs8ZbYzwrAweSIVWfsQbgyZMn2L59O5RKJdzc3JQDBw4U66VIqdDFAQPI2F65knKMVq6s30AEyGhJSyMD9MgRUppaWvSvoSE5Cba2DX5eoVDgiy++wJIlS6BQKKBQKNSH44EDdMj//PPfQl0vLS3F+vXrsXjxYmgnJ9Ph6OtLSHGLFn/599WRmBhCw+srGBMaSuP6+DFF8FQ0/wakatgwPI6MRNqePehWi+b5yrJsGTkzquhKQ1JQQId8Y32//2KRJAkhISHc2dmZxcbG4uLFiy/fM1WhIHq1ri454ozRXI8eTTRJSSLn0cyM2B/BweQMvv02AUvNmwOSBElHBxtPnYK7s7PUY+hQAebmDa/LsrL6+3yfOkW04fR0PJo0iR8YMYJN+OknKHV0eOtr1xhMTcmRy8oipsHOnfSzrS3dx38qp07Rft63j5ySamcOpaXkZDs7k+G2cCFF4+7cobHYvJlojip2QG4uUSU//5wc5HbtKBJXWFgHFJIkCcHBwTwmJoYNHjyYu7q6NswEEAQyHO3siKFhbU3G8bZtBAo8O5Z5eUBeHq58+63yhr09mzFjhvBclBmgKHPr1sCaNUhNTUVgYKC0ZMkSAQEBBFh8/jlFms6epWf49Vf6rvLympZRG9esUc7esUPU2raNdFpurpqe/sUXBEbWLq4F0Bh/+SX2DRiAMgAzVdTpZyU5mWjejbSoKzp+HOXTpmH7rFlQamjAyspKOWHCBFHnRR0lFApa6127UnRbqaR55pzWOWN4qK0NRXIyd9bVZTWRRQsLck6bNqU1oaFBcxEVRfrJxIQiVaJI51Yj51V4eDhOnjyJtm3b8srKShYXFwfrJk14X1dXZqOtDXTujLy8vBrgKTo6moeGhjIjQ0OIkZEYZ2UF/bAwihBzThXHjY1R/PgxyktLoRwxAvoxMdA9fVq9Tn7/HVnZ2fjxxx/50qVLGRQKYNgw8F278PDRI1TExMBi8GCYV485P3MGJe3b496jRzhPNRY455y907YtDE1NCYyzsaHn3LuXXtHRdPbl5CB+7lzpaMeOTENDgysUCl5RUSFqampKI8zMhD/y8pQ5xcUiAGiVlWH4W2/h4OHDgEwGmUwGxhhXKpVMFEUwpZL3//lnpiNJ/PSsWXzqRx8JEX36SPGdOnHXixfZnREjuCAIEEURfn5+YrMZM4harmqRCBDIkpVF+7CoCGjXDr/++ivy8vKeo0bXttWfPn0KAwMD5fRp00TMmkWsExcXcgi1tMBbtcJnX39d05996NChaK+nR6DUypVq9kR2NunS7Oz621fVkqSkJBw4cABeXl68+ebNqEpKYlHLlvE33niDbd++nVdUVDBLS0upR48eQrNmzaCjo4PHjx8jKChIaWdnh44dO4p7v/kGS48exaXPPpNi8vN5Xl6e+NZbb0FLSwuRkZHSjRs3BE9PT/Tp04cAkEOHKGq/e3cNQFRbQkJCcOPGDSweNIh0rpcX7XFbW/V5HRREQNHMmfS74mJysvv1I515/TpFpeVy0l8qmTqV9ISfnzpta8cONYtx1Sq6r4QE+vn2bTqHvviCbKqFC0nnjBqlZgIFBJAuXrqU9rpCUQOw5ufn48iRIzwnJ4d5enrC1NQUtra2qi4n4JyjsrISJ0+elKKiogSlUgkDAwMuiiIvKSkRJk6cCGtra+zatUuRmppaE0gVRTFVqVR+A+CrQYMGwd3dve7aio2lcfjkExQfPYp7paXITU9H74kTcXzCBN7B15c5LF0KduMGzUFKCoGA69eD79iB1e+8gw8cHKA5dGiDKTCcc5SWlqKgoABlZWU4dOhQpSAI+wBIgiB0USgUxQqFop+/v39+o4vwv1heO9uv5R+TgICAN42MjHbNmzdPV3zJ6o3/Cjl7lg7M48frPQAAMlxTUlKgVCrRtGlT6KpaaFQf+HB2rrdi78WLF/mDIwWPOAAAIABJREFUBw/4mDFjhB07dkg+Pj7o1q3bi4GIBw8IDQ4Pp8PU0ZH6VzcmnNP9ZGaqaclOThQx1denQ8bJCTAywtOnT2uqOfv7+z9/LYWComtr1vxt0e1Vq1Zh7ty5VCStooIOth071P0mX6ZH85+RS5eIvbB2rfp3qqIrbm4UIZw5s/FrFBTQHDk748y5c4hKTla+9957dRZ9ZWUlqqqq1GulMRk+nOZ73LjG33fxIjmqWVkNsi+Sk5ORl5eH5s2b1xzs9UlmZibS0tJgY2NTY/jWJ0+ePMF3tXLUtLW1yWFqTCoqyLnYtImiCLdvk7FjakqA0smTFD01NSWAQakkQz0hgZ7NwoJAEX194Pp1lObl4fjTp+ieksKblpQw+PnROndxIaaHnZ26R/iGDbR+s7LI6IqKovdYW1PKRps2iB0zhj9cuZK1Ki2FY8eOEP7OHrCPHhHgkJxMhvC5c+RAqww2B4eaKsnw9CSnWZIIgDExIRpgTg453M/OU2wsPatMRgaoqvewpSViCgpw+PBhTJ06Fc1fBSzYs4dYN8uWEYPGwoJYPyr99sUXZMQmJ6OiogLBwcFSQkICe++9954vwHb+PDmKXl7IyMjA999/j2XLlkEuihSpdXEhhzw4mPp5q3JUExOJMh8Sgv3790M/OloaWlgoYMkSNfAhSbS+FAq6zrZtZGT6+ABz5kCpr48NFy9CQ0NDuWDBgvoPpAEDyEifP7/RIXmcnIzYWbOgWVaGC716wcDAQNmuXTvhhVTOY8doPJcuJcfhGdm4cSN3adWK9fH0pLkrK6O9EB1NIFTz5gQuxMfTnJSXU9RNLqd1smAB3X+XLrQWPD3rGMgpKSn44YcfsGDBAhgaGiIjIwNHjhxBswsX0C80FGmXLuHQ0aNgjFHbMh0dqU9pqeB44QLuVVXxMpmMdQkJAbtzh6KS6en0TKtXI27fPsnu+HEheOhQDD94ELLKShr/lBQURUZii4EBX7pwIYNcjrIBA3CoY0eeraeHVrGxgJERH7F+vYCjRxH8+++IsLGBhoYG9PX1le+++664Y8cO/ub69cxg8mRahypZtIgAFzc3cpj++AOKdesQ+cMPuP/gAS8sLGRTp07FoY8+wujdu7F1zhzYuLlxV1dXdvToUXQNCUGrx4+he+XKc8ycmE2bkH/5Mu988CCDTEbrS6kk523hQlqf48cT22XBApqPw4eJ0qwCPN58k5gv1S0JX1YuXLiAxMRE5bRp00Rs3Ur6QJV2MmUKIEnY27u3MjExURQEAaYZGejRqxecS0rUqSW5uaTjHj1SV6J/RlJTUxEcHKxs166dWFxcjEePHvF33nmHITER+U+eYN+VK7ywsJC5ubkpvby8xDt37vCrV68yADA0NERRURFcXFykmJgYoaqqCqamppj3+DGyPT2xNSoKGhoamDx5MppVf398fDyCg4N5cXExGzFiBFxdXWkcjxwhx/WZ1oz79uzh1nFx6Ll7N0NYGDGhVq0iUNLVlWwSW1t1qyx3d3K0VT2zbWwoqi+X0/lYu6NEcDCtG5X+CAykn1VsLIWC7CdLS3WAIiGB5nP7dooUL19O7/nySzWrRpLoXJ46lebt4kXS94MH1/3+RqSkpATVzna9f9++fTvPyclhfn5++OOPPyAIwiVJks7IZLJZNjY2Zh07dtRydHSEkJ4OTJ0KZadOuMw5v6Kjw7S0tHiTJk24p5kZazd+PGN379L6SEsj4ODoUXWAo7gY3377rXLC+vVi+fvvQ+HgAKu8PMhmzWo06JKbm4uHDx/W/P/27dsAMNbf3/9Qgx/6L5fXzvZr+UckICDASENDI2HixImG9eWg/GslNJSiwDo6jUZUT5w4obx//76goaEhlZWViaamptLw4cMFCwsLMj6++IKokc8opH379inNzMzEfv364fHjx9i7dy/GjBkDh5doO1Ujn3xCir1XL1KOL5mLCoCcyMREMt5+/x1ZWVkosrBA/uPHvMjUlLVZsgRN27Wj6MmzUlRE/URV1dL/Q8nKysLFixeRn58vmZmZCbGxsRg/fjzsn6WCdulC0aoVK2g8X7FS9QvlwQOKfFXnjyM6msZ1zRpiKrwMULRoEa2d69fx8OFDBAYGQiaToVOnTmjZsiUkScLRo0dRWloKAwMDPn78eGZubo7S0lJUVFSgvLwcUVFRMDIygoeHB1hqKh3yL3M4Z2UB5ubgoOhESUkJHB0dwTnH+fPnlTdv3hT19fWVBQUF4ooVK56LqJSXl2PHjh28qKiIGRgYKAsKCkRDQ0Our6/PfX19BdV8pKam4u7du7h79y4sLCwUI0eOlOXl5UFfX5/64tYnqiiprS0ZiZ98QgWZVJTImzfJKAHU+dtnzxIQNHly3bzZWvLHH3/g6tWrMDY2xrvvvkvfU1hIxs3Dh7RW5XJqXbNlC9EOHz8mh1ySiC1SLbGxsfzIkSNs5syZjYIM/7FUVdF9eXuTEb5qFTlTfn50nyqjb/9+0kGDBpERGh5OxlpqKhmIH32kzgffuZM+Wx+r4MkTGr+hQwFRROW+fbgzfDiPGTaMT5o9WxBeZh/l5BAt89tvaQzLyggAO3mSqNvR0XT/KsMe5ND9+OOPWLx4MZ6L9kZEoCw1FRVdu2LTpk0QBAFLly6l4kClpTTn5eWU2147X7SkBBg5Eo+++w77DxyAk5OT9GavXgL69CEnfeDAut9z/TpF9zQ0gCNHwLt3x+effw6FQoHWrVtze3t7lpeXh6KiIgwePBg6OjqIjY1FxscfS8rJk4XeQ4Y0Oixbt26Fxq1bGJeeDnbgAK7evo3Q0FDo6upK7u7ugouLS/2U2wcPyGmyssKz1bazs7OxdetWLFq06Pnc8/rk5ElaR5zTWDFG8z1lCunnRYtojr76ioCdsDBUvvUWDunpof/8+TDNzAR690axQoFjx48j/f59mKemosW4cejq5QXpxAkIn3xC45iaCkkQcKO4GDrdu6Pdrl00J92709oMDkbJ3bsQZ85E+A8/SN2+/VbA9u3EsoiIQMU772Cfl5c0/bvvhMA1axBfVAR3d3cMHDgQyuHDca2wELZ79sBi+XLcjI9Hi6NHYWlpSXt1xAhc19XlmaNG8aHDh6sXrUJB4MqUKfTcW7cSaHX/PhAZics5OXiQmMhnTJzIygsLkXLzJiqsrREREaFMSEgQAaCPoyM6lZdDeLYl2/79eLJlC359803l9IaAGYD2goMDgXsODnS+OjiQvhsxguoniOIrs8HOnz+PlJQU5ZQpU0RUVhLL7tYt5CsUuHHxomQZFSUk6Ogo7xYViWbZ2Rh36hRO+frCZNw49O3bl/atqSnpO0vLer9DoVBgzZo1aN++PY+OjmYVFRUYOnQob+/qytCnDxAUhFINDRQXF6tZB5wjLi4OBw8eBAC0aNFCOXHiRLG4uBiHDx/mOjo60tgRI0Q+aRIeLV8OGweH59p5cc6xcuVKdOnSBb1796ZfBgdTakRoqLr3t78/Kg4dwtrRo+Hn48M9u3dnGkuXEttl0iSqHyCKlELTqROB846OZCuo9v6kSRSU4JzYebVl6lQCtFVstYIC+qwqzUklbdpQSshnn9HPRUX02ZEjaY5v3CAm4xtv0H5UpQeUltIadXMjZsH27VSDwtiY2Bl/gXDOkZKSgpCQkJKEhARdABBF8YgkSf2cbG3lo+zs5PzuXTz64QceMXgw9507V2haO1gyciSdxbdv0xj5+9M4JiYSA0cQcPr0aVy7dg3gHO0iIuB+5w7+WLZMGnX8uKAXEAANVVHJBuTx48fYvbuGUd7M398//S95+H+ZvM7Zfi3/iMjl8k1t27bV/q9ytHNyCF399lt1HnUDEh0dLY4ZMwYtWrQQFQoFTpw4wXbt2kUobt++FMEpLa05OJ48eYLw8HApJSVF7F5d4MTGxgb9+vXDzz//jOHDh8NZhai+SFRKPzubcod0delwcXMjB5HzBh3S23FxiI6Ohp+fHyxGj8a2lSuhW1SEdk2bSn5lZaK4YwcdUubmhAwPGkSHjb4+vbp2pSh5Y1XXX0JOnjyJ8PBwuLi4SI6OjkJSUpLEORfqzfsNC6N/Fy2icVW1evmrRF+frhkfT21Stm6liGevXi/+bEoKgSvr1pFhCMDBwQHLli1DcnIyAgMDERoaCsYYOnXqhB49euDgwYN827Zt9VpfWlpavKSkROo+daqIU6eIcvsiycgAunZF5b172Lt3bw21UBRF6OnpYfLkycjMzBRDQ0M5q+Vpp6WlITc3F2FhYZIgCPzDDz8UBUEQ8/LyEBERwWJjY9nevXvRvHlznpmZyTjnqKqqAgBMnTpVJggCDOspBlMjqtoDSUkEPKmiK3I5OYvTppFj3KsXGadt29Jr1iyi4r3xBrEKHBzqtNxTKBR0+ANkWAK03lX34uVF8/nll5TSsWsXGeSqVi/PGNY5OTlcLpfD3Nz87yvtr+rzOnw4OScaGhR5PnCAxkYlW7dSUa2QEPq5Vy9yJhcvJmBi1iyin3/zDX02K4uMaVX0v7aogIpqKr48IwNeycksLDsbWR98AEtra8rfa0y2bCGHSpVLra1NIEnHjqQLtLTo2WoxgDQ1NcEYw/379+FVHb29e/cuDw8Pl7xOnRK0IiPZTxMmoEmTJnXZHzo6pNu6dSMWQ21nW1cXOHQIofv3cwBszJgxAhgjlsStW2TwqiLFlZW0pwcOJFDS1BSMMfTq1YunpKTw/Px8nD59mlX3i0VcXBz09fUl9+BgQezYUQi5cweR8fF82LBhrEU9gGtKSgqys7Nh5u7OdXfuZJg2Db0Yg9WiRUhLT8eVK1dw+fJlmJiYoFevXmjVqpW60rCmJlVGXr2a5rOWofrHH39wURRZXFwc3Bsr1sg5ATW7dtF6GTeO9tiGDVTYLD+fnLu7d9U5uxkZAOdI09ODJIpI/PlnyfTsWQGurtDr3x/jzc2h2L0bYufOYIcPA+7uEPr0oT21cSOQnAwhIACJrVpJJi4uQjtvb3JKNm4kYCM2FoWPHuFW797IKixkbVu3hiSXQz8gAPL4eFR07w4hO1uoaNIE5dHRcOnXD4OruykIwcGI27VLurx3r6Dn7g7J3V3qYmkpID0dkr4+YuVyfqtpUza6a9e6+zMmhhxr1TqfM4fqDlSDELbvvYe7FhZKzJol0yoqQuvqnthBQUEiADDGcObBA7QeNAimKhYVQHqrqAgPZ82CUK3TG5RBgwgE09OjCPtvv9EeCQ2lNTluHI3RgAG0rl/S6VbVdQGACs6RPXw4kubO5edbtWJNmzYVcvX1+ZA1a8Q35s7FcS0tfuWtt9Bj9my2b98+ZGdnSxOWLhXY0qXA/PkqMFXJGMPw4cNFS0tLCIKApKQkCIKAwYMHs+7duyM5ORlt27ZlNawZfX3oCEIdwIwxBkdHRwwbNgwpKSn83r174q1bt+Dh4YFp06YxVFesZhoaaHX9urow3TPCGKOotkqGDiV9OGYMnRO9ewN9+kBz0CCM0NVF5oIF4KNHo8jODul//AEHJyfExcbiSGAgBpmbS+1sbAShqIh0Z0AAsdS2b6fxnjWrfjZeRQUBtCpRFeu7eZN0m0oOHaJzWAUc6+sTgyE+ngon7t1Le2zNGvrX3Z10pmrcoqLIed2+nRgRZmbEuCosBIyMoGqLKwgCioqKcPv2bXh5eUG7ka4FANUZ2b17N09PT2e9e/fWNjExUYaHh4tKpXIUOEeLzZsLM62sNCK9vLjg4CCMWLGCyZ4F73fupPPw00/ptXKlujvAokXAnDlwcnLCtWvXsPiDD1BYWAhlcTHs7t4VcpKT+a0VK5ibjw9MfvqJ9mI9dmdsbGwVqHAaZDLZ559//rlJVVXVFH9//yeNPuB/mYiffvrpP30Pr+X/MwkICOgkl8vXjB8/Xvu5zf1vlbQ0Mtrmz6+X3ves3L9/X6qqqmIODg4QBAFOTk4sKysLCQkJSlc3NwF+fkTv7dwZtx494gcPHmSSJPFhw4Yx21oVTa2srGBoaIhgqhTKDQ0NmcpYfaHo6hJlkDEyKtu1Iwfc0ZFoVE+f0sFffa0bN27gt99+Q35+PiIiIpCSkoL8ggLMXbIELoMGCUL//mQ8dO1KUbacHIqs3b5NlXjDwuggycig737Vfpi1JCQkBPb29nzEiBGCvb093NzcmK+v73MoeB3p3p2i3Do6ZEiPHfvStKxGpahInTNWVUVjUCvy2aioCvRMm1bnoBFFESYmJnByckK7du0QFRUFKysrNG3aFF5eXszX1xcdOnRA27ZtYW1tDUNDQ2hrayM3N5fp6+tzZxMTAUOHvtzzmZoC6emQ9eyJR8nJyg4dOghDhgxBly5d4OvrKzRp0gRpaWmIiopimpqa3MbGhgHAt99+i+joaDg6OrIJEybURDq1tbVhb28PDw8PpKamIikpiSmVSsyZMweurq7Q0tJCq8bGZ9EiGs9Zsyji4OxMSL4k0cH+3nu0x95+myKyz/aQ19CguZ4wgSiQJ04Qe6O4uCaCd+nSJQwfPhxt2rSpu1cKC8lhy88nA+vBA/qZMTKikpLIkKv+jFKpxMWLF3lZWRk6d+781zvbGRnkBHh5EWgwdaq6p2tSEhmZtWsorF1Lxv7ChfSzTEbj2aIF7UdLS6Iyzp1L1ZS//pqeb+ZMet6GnDTGAH19sHffhaijwx4fOQJ9PT3oenkRHXPkSHIYns31S0+nfVbb8AsPp6jszz8TC0GpJFBDUxNVVVXYs2cPLy8vZx4eHjXU3BMnTvDMzEzxoYEBe+DkBCMrKz506FChSe2CUsnJ5CDOm0eOpJNTXZp8r15oWlHBbhkZoVOnTtRir1kzyod9/33619KS5rdtW2IAPHlC4+XuDhsbG9a2bVvm6enJevTogS5duqBHjx6oqKhQaGtpsQ4//siyevZEh4EDce/ePRYZGQm5XF6nOnBCQgL27NkDAFi8eDFhV87OYE+fwszLCy3atmXdfH1hZGSEhIQEHhMTw65fvy61b9+eyeVyMuiHDqUx/O47WuPVY/7LL78wzjkePXqETp06od7UK6WSgJaVK0kft21LzqaKMdK/P83j11+Tc3f7Np0LFhaAXI4rmpo8uqyM6Xp5McevvwYzMqI9OXgwBH19sCdPCPwZP5725/vv0xieOQO4uyOhSROmGRiICltbbrx0KROqqsiRPHYM+gEB0Pf1xQVRZDdNTXErJgbpyclo06wZNH/6CdZ37+LkqFHKQgsLNm7fPiZzd6czpKoK7QcOZGWamtLA/ftZ559+YmJlJeDkhD/i4qSIbt0w6u232XOsk3PnaH/Uro3BGDk3SiWyFyxAzP373Kd/fwETJtTUL4iOjoZcLucymYxVVlaia+fO0Fy3jiKgGRnAsmX4ubRUeZNzwcTEhLdr104A57TWnz6ldTphAgEb779PZ8CMGaSr/PyIgfXgAdkSixZRmpKXFwGLfn7kgB87RuvyGdq0ShITExEVFSXcuHGDX758mT2pqlK2KSwU+q5ahc6dO6Ndp05M09AQGt98A92RI9lFhYL17dsXLi1b4uxvv7Eod3fecelSBsawZcsWpb6+vqBUKlloaCi7ffu2BICdOnWK9+jRg9vY2DBNTU1YWFiQLlW1C2ykyGvTpk3h6OjIdHR0cOLECVRUVNQ9Ezp2JNCrRYvnAAbGGBITE6U7d+7wjh070h7inBhzHTtS6siUKcSie/oUZj/9BKPcXBbZpg0/P3SoFBEbi+vXr8Nl4ULmkJbG/+jeHa4rVzIxJwdChw70nStW0Pxs2ULR5fq6etjZkRNdGzAePJj0Xu15sbCg88TSkvS3vr6aRWJgQOdVbi7ZAOXllH6oorlratIaNTMj4NTamq4xaBDd45gx2HHwIP/t1ClWWlrKf/31V5aYmIiwsDCUlZXB1ta2Rg9UVFTg0aNHKC8vx82bN6UbN25ISUlJAgAkJCSw9PR0wdrampeWljK9vDxYZWRonuvUqbx7YKD8aocO8H6W/QOQXi8vp4h2URHp061byX5MTIRy2DCERUVh9LFj0L97F/oKBQwWLEBLHx+YlJczs8hI3MvIQPPbt8G6d3++QCUAURRFpVJZbm5uXlVeXu5RWlrqCOCzHj16/E9VLH/tbL+W/3O5du1aYO/evVu9Ul7gPymcUxRNLif68EuIlpYWu3HjhtLHx6fGwzI3N8fZs2cFLy8vyDQ1Sek2aYJLOTmStbW1MG7cOFZfJNDCwgKWlpa4fPmyFBoaKjx8+FBydXWt0+tQkiSUlpZCFEXUS/9s3pwUpaUlPYu9PdC9O0pOnsS3yclSSmCgdC0jQ9DU1MTMmTNx48YNSJLEBw4cCFtb27qnoaYmOXBeXmSE9+5NDpOpKTk+oaFUvTgpiQq2mJnRwdyYo/yMnDp1ijs5OT3/3Y2JTEbPl51NharGjqVIt63tn6eWK5X0jE+eEAWxX7+Xo43fv08Uwc8+e75tTi3R09NDkyZN0LJlS5w5cwaXL19GWloa2rdvD21t7ZqcrGPHjqGkpAQjR45EO3t7QYqJQZaDA6KiopCXl4fHjx/DxMQE9YJXgkBGyq5duEv5WEKbNm3q9O1s1qwZ7t27h/v377PmzZtDQ0MDYWFhaNKkiTR58mRWH7jDGMONGzcURUVFgoGBAbp16wZjY+Oafp91pLycxs7bm9aDpycBFrUP34QEGuP582mMly4lxD8zs06Er0bkcmJV9OlDa/vAAWDlSuRYWuJeUhLcfHwov18lISEU9S0rI2MxLo4MrT596O8+PvT/4cPJoOrRA8nJyQgJCWFz5sxhL4okvJJUVCD/yBFc/uYb5GVk8N+1tJBnY4MW9vZUpb59e4rC1Xa0FQraY998ozZQRZHWeYsWNK729gR8ubmRQbp+PdHje/QgI/677+g6jaTAWFpaIlJHB6cLC/EkJ0dpY2AgyIcMId0XGEjXyc6m3GIzM6I+1pbISNr3b71FNM1Dh8jxa9YMMDXFxYsXmSiKfMCAATU6zNLSksXGxnLzhATW+/x5ZPj6sq5du9bVZf7+VJ9h8WIy1JOS6JoqWqmvL0o8PXEzNhbh4eE8MzOTPX36FMfCwmDWsyeMKisp2mliQiwCQaCczS++oHlvoIBZy5YtBWelkuWNHImTiYl8yJAhzM/PD7q6uvz06dPMwMCAKM0gRk5eXh40NDTg6+tLFzAxobU1Zgxw/DjY6NFo2rQpOnXqxDp37ozo6Gikp6ezNqqK7uPHE8jUrRt9tvr5wsLCwBiDrq4uQkJCcO3aNSkiIgLFxcXM3t6e1vWbb6Lq3Dn8Ons2fo6MxM3ISEm7Vy9mqaLOammRU7l8OTl/y5aR892kCdCkCVq3bs0yMzMVUVFRQkZGBhXJk8vJgdDWptfNm5TvPmMGrYFHj2gdTJgA0/Hj0SwuDiWFhYhPSOBN/x977x0W1Z2Fj7+fO0Nn6L1LF5QOAoIIdrFj75pY10SjSTa7KcZsuppidBONpqgxUaNGwS5SBaSDdATpINI7M8y9vz+OgAWM2d3f9/vdfXKeh2eUGebe+2nnvKe858gRlunnB+Px48GOH4dkwQKYhYYiZPJkaN24wXv+8gtTDg9H18qVyLl5E47vvstNjY1l4ro6chQ8zMjgxGLYbtjAlAMDIepnnN64EadqatiyZcuYgYEBmpqaUFRUhJycHBQVFfFqu3cjwdeXz7h3D9nZ2fKsrCw+PT1dSO3oEFIsLOCydi0mnj3LsUmT6Hzctw/w9kbcL7/A19KSGTo7w8HODjajR9NejIwkp7uODsrv3GGTZ89mvtXVHLdoETkOw8IIWAUG0nj5+9PZ/8IL9PuQENq//evOwYHA9vTpBNAPHCB94eU1OK5OTjQOXl6kg6KigNGj0d3djfLycnlYWBg3btw4+IaGcjrR0VC0tibw98UXBPRsbKARGYkkCwu+prYWii++yLxTU1E4dSq8vL3ZyZMnhfr6em7jxo3M19eXBQYGUkT/+nVmbGwszJw5k3vq7F+3jvRbf4r3M8TExATFxcW4d++eEPBo5oGGBjkZDQyGdFzb29uzyMhIpqSkBHN1dVpz27bReG3bRmeblxeRZCYmQvntt2H+zjvM08+P83NzYxqdnUxj4kTYrFjBXDmOHbSwELxPnmRidXWyUdato7N13z7aY0MFUD75hJzrj7Lwy+U016Ghg+ngAO1RH5+nGftdXMjuWb2a/nbBAjoLGhooUqynR45IgM5yFxeyYdTUSA+dOQPHTz9lyl1dSFZXZyqqqpBKpVBSUhIqKipYfHw8xo8fj8LCQhw/fly4c+cO7ty5g9raWrS1tYmUlZV5QRCYWCwGx3FoaWlhC7S1MWb/fpyZPx+GdXWcWmMjl+XpiZqaGujq6j7Ngn/qFNlRSUk0bl9+SfrDzQ33MjNRr6gIt3feAVu9mkhrt2yhcZg1C0qtrdC4fBmdurpQ/fLLITM3tLS04OTkJNbW1lZITEzsEwTBc+fOnZXPXFj/hfIn2P5T/o/Krl27vBQVFf8+d+5cheeqCfy/LT09lAb0yiukTJ8zzau9vR35+fnCoyzrqqqqyMjIkCsoKDAzMzOGsDCgoQF91dWsqLOT9/T0HHZAdHR0MGbMGC4gIADx8fH8/fv3hZEjR3LNzc24ePGi/LfffuOSkpKQmpoKDw+PoUFXv/RHnF98EZfkcui3tQlz9u8X2X/xBSbJ5dAAELRkCfz8/JihoeHvPzBj5P21tCSP7Jo1g62UOI6M/6tXKTPg/HkyCrW1ybgdYjxzc3ORk5PDli5dyv6lNaKpSYYtQIrN0ZE81H+kLq6rixRjRgYpl9Onaf5/j1G4X2pqCGDMn/9c15VIJBg7dixUVVWF5ORk5uLiMpAmJpFIoKamhoqKCj43N5eVR0RgxA8/4AdVVeHu3bssPz8fVVVVQmVlJe/i4jL0gMlkwLx5yPf3F9QNDAbqrB+V9vZ2VFaz3VUeAAAgAElEQVRWIjs7Gx0dHaivr8fSpUuZ5tPtagYkMTFR6O7u5tavXz90HWl6OqXQT59ODpDgYEqtexLsZWYS+P3880FnxoULg8Ry/fM5lHAcYGCAag8PZOvooPWbb+BdXy+YSSRMrKVFa/ODD8jIWr6cwGJiIhk5Q5EISiSAgQHkxsZIzc5GT0+PMG7cuH8rql1cXIy2tjYkJiZihKkp5PPm4cG5c7gUGIjq0aOZkkTCKhMS2OjAQCj6+DwWXR+Qzz+nmuV+boJ+efttAqCffUZ7b+NGMtZnzSIDv7qa/n3wIGUUeHhQVOfh3urp6UFNTQ2OHz/OX7t2jd26dQv19fWQy+VQ09JiV3t7WXFpKZ+jpye0Ozqy7MJCue24cVwHx4FbvBiilhYymn/+mcZzz57Bdc8YAdn2duDYMXAiEXxXrEBiUhK7deuWUFJSAi0tLZaUlMS3tLQwe21t3qi8nIs1MEBWVpagp6fHdHV1ydhesYJqHkUiigpdvUrgIzAQja2tuHXtGvD99yizsMC4ceNQWVkpZGVlsa6uLtytqoLXvn0QpaTQGPanoCspkZOnsPCxVjxPyaJFkJiaolhNTSguLmYuLi4wNTVlMTExKCoqwqhRo6CqqorY2Fh0d3djwYIFT7e662dMrq0lcErs1mhpaUFtba2gpqbG7t+/DwNNTVqz5uYUIV2zBhCJEBUVBRMTE2Hz5s3MysoKampqTEVFBUlJSayzqgr2n38OPjERe+bNg8zICKGhoVBRVWVNFy7AeNo03KmsRPZXX/HGe/YwxTVraA+uXEn3FBgI3LmDRl9f3EpI4Hp7e8HzPCsqKkJ2dvYAF0N9bCw6GEO5WIz6WbMgVlKCSmEh5EeOoPb8eZwMCxNifXxY8GefsWwNDZw1MmJFxcXwfO01KE2ZArS0QCc2FkpWVkgTi4Xyzk5Wo68vFJeWIl1LC7PDwhhUVQlI+fmRc+7WLYrKf/UVgasPPqCz2NoaZWVl8tjYWC4uLg7p6emoqanpk8lkHKurY/q5uSzG0pJrbm2FmZmZSENDg9PW1uZMOI4ztLFh5ufOMcXWVrAJEwjwrVoFbN0KhQ8+gEdCAqw//BBmo0eTg6K7m5zUD1OGJdeuMTUnJ6gGB1M02saGQEZQEOkfDw9AWRltbW2oqKjAvXv3EB4ezickJAiJiYmoioqC2gcfsB8AIenePdyWyYT7jAmxUqkwYtEilqinJ4S7uQnJ+flCpaEh4ltb0X7qFJSPHWNHFRR4vzVrWC9jnNv06VC7fZvuv66OnGB6ekTCtm0b+EmTkPr990KVoSF7UFXFVFeuxB1ra0GqoIDKykpWWlrKli9fDu2HhG0PW1Axb29veHt7D61/lZXJcfOoI/MZoqSkhIKCAhb4ZIZBf2BhiFIoBQUFZGdnC26//MJ0du4kp+GWLWQ3SKXkmNi7lwB7RMRjnBQsLAyGSUnUw/3ttyGKiUFDUxMzOXwYKg4OpIvMzckJOXfu45kPj0pREX3uUb4cJSVyOFlaPl1XbW1NZ/TmzXQG94tEQuvW0JAchkFBtL4dHYkp/eZNAqn9NhtjdD6PGgU0NaG7sxOZ2toIiInBrKws+H/7LcYGBbGcnBz09vZCT08Pp06dgqenJ9PQ0GAtLS1Cd3c3N2LECLmnp6dowoQJmDx5Mtrb24Xme/eYJD4exm+9BdMxYzD6yy+507NnQ85xMDU15a9fv84qKirkLi4uHFJS6Iy1siKn9549pE8uXqQzXUkJyidP4rfp0xF4/jyVl6xZM6ibPv4Y8vfeQ5qXF8yPHoXi7xDnHj58WNrb2/vOzp07zzzzg/+l8l+Sw/un/C/Irl27vBQUFK5MmTLlvyd9/I03yOu8evUfAmvd3d0Qi8VPsQ8GBASIrl69iurqavmoUaNEdpmZsNm/nyVs2/Zc38txHNasWSM6cOCAcPjwYf7+/fucqakpW79+PTo6OvDTTz+htbV1+J7CANra2nDmzBleKpUKPT09ohHOzhC1t8OUMfKsGxmBOTgQ4/rnnz8/wBy8SUpZ/ewz8or294mtrSXwFR5OqYjd3aSI9PUJXNjYIOnOHURGRmLGjBmCWCxmPT09SElJ4XV0dODs7PzHkDdjdE2Oo6iqsTH1h3yWyOWkVMLCSAGuXEmeb5mMUsV+j/gtK4uAYXY2EVP9QfH29maXL19GTk7OYGSMfg9PT08uPz8fI4yNofrKK/ibvT2TSqXgeR59fX1s7969ou+//55fuXIl91SKqURCxtjhwwN90p+UiRMnYuLEiYiPj0d0dDQA4MaNG8R4O4y4uLiICgoK5Do6Oo9/5swZMgAbGig9EqD6r+HknXfIYJ0zZ/B3X31F8/Ec/V8BYlWPrKgAgoPx1qpVTHTnDkUhsrLIYbJp02D95ubNFCVxc3v6i0JD0dvbi2ZLS6jb2MB3375/CWi3tbVBLpdDSUkJJ06cgIJUitCICJQqKgqF69ez9OpqgDHMmTMHNjY26FZTQ75IBM89e4b+wgkTKCL55Dk0Zw5FeeVyAmc1NfRcp08TOH3jDUojb2qilNa2NiAgALyJCT7y8EBfXx8AgOM4bsWKFVBRUYGenl5/eiIrKytDUVER16GtjfzGRqGvuVlUamuLWHNzjH37bTj09FDbv7i4x42tR2XuXIra7NkD8b17UJVKoWlpyXR0dOQnTpwQyWQybuXKlRhhbi4S5s9HSF0d0tPTceLECah0duLl/fuR/+23yJRKeSMjIzZt2jSGv/4VLevWIf6VV+R3zMw4654eeEVGsh5nZ1y/fp1t376dSSQS3IuNRVxkpHDOy4t5LlgAW0GgsVmwgO7t1VcJaK9cOXRbLEHAbU9PPra2ltPQ1X2srnHt2rVISUmRf/PNNyJdXV20tbUJU6dOZY5Dpf9qatKZEhpKBvuvvwIAHBwcWHx8PPvtt9/Q09ODNFVVBFdUwHj2bIh9fICqKrQ9XLcODg6MMQYLC4t+xnjmqqUFlblzUWJmJlx44QWo6uiwVatWQV1dHU5OTuibOROffv45+hiD84wZ3ElVVUw9fx4mixZRxFVLi5xdd++iasYMhPT0oOaNNwSRru5ACcbDV2ackwO9ujqh8swZoVcqZXX19Sxi9GgEamkhLTSUnxcTw4xFIog3b8b8xYtZ6OTJaJw7Fz0PHiALkBc4OCDk8GFmOXs2N76ggPvy3j1Y1dUxxhg8PT1pnIKD6bWri+bG2XlwXlxdSYc8lGXLlokOHz6M2tpa+Pn58RMnThRzHIdrH34opBsaMmV1dd7Pz0/w8PAQQRBID6mr03eUlgI3bkB++DDuTpyI63/7mxyHDgntM2eKNcLCYA/Q+SWXU8aIqipd39AQBS4ugnd6OkNuLmXBpKURaFNQIPAokSAnJwdnzpyBRCKR8zwPQ0NDztfXlykoKICNHQujixcxOSSECQ/3mTBxImwANJuZwbq7mznn5jKuuRl3165FbkICvP/+d9QIAsbwPFe9dStK6+qIgPDll8kxcfYs1aOPHAnk5ED+4ouIFIvld2fO5La+8QaDXI7Ow4fBnJzYpatXIU1NxfKlS2HG8wTSlZUHUqCH7YjR2kqZa7/XcvIRcXJywsWLF1FcXPw40eusWQR8TUwe49yAXA4sWYJgjkOyuztvu2MHh5gY2jtKSlSWNXUqOWNXrx4EqbW1VCLw3XcUGf7hB+Cf/0Th0qWC1507TPvgQQLqBw/S55cupTnr72jwpBgZDU0E6+tLxGdJSU+fdcuXD536b2BA+0wup6yDd96hZ7a3J8eor+/jLN/9smwZJEuWoGXTJqh1dIAtXgzFU6dQ/9ZbUJ86Fc1WVvj111/h6emJxsZGvri4mJs9ezZnZ2cHVVXVx3Ry6LhxbNwHH+CcnR3uVFfzjj/8wPF2dnzIjBkYM2YMV1hYyCoqKoTK8nIOzc3k3HzpJcrOMDCgZ3N3p7MeAO7dg2jZMgiCgN6sLCjPm0e8BtevE1eNqSnOrV8vH5+dLVL/ne4dly5dkra1tSkC+PWZH/wvlv8SxPOn/DfJrl27rJSVlb/ged6f53kVxlifXC5XVVBQwJw5cxQH0uX+X5fvvydvqonJ86UOPyL9JFRPiqenJ9TV1ZGdnS06e/asAEFgKvPnC4tHjnzuC2hoaGDDhg0sKSmJzZkzB3p6ehwA/PTTT3J/f3/RkCy3j0hhYSEqKio4NTU1SCQS3t/fnxtQGj//TK/l5QQY+9N5zc1pLJ5XPDwGW07p6JBCNDenn9mz6TNNTQQMTp4EvvoKbWpqECUlYdOoUVBvbGSZFy8K51NSmEgs5sRi8fP1aX5S+j3zX39N7Lj5+VT3Osh+OSiVlRQFDA8nZdpfFwuQ0vm9KLtcTspyxYo/lDL/qDwkSuOjoqI4BweHxxiLOY6jMTh6lCKzX3/9WCr48uXLcfLkSRYbG8sHBwc/fbNdXZi/fbsocahnf0QCAgJgZWWFkydPCnZ2ds9cl3K5HB0dHVxDQwNF8m7eJO/3vn0EsLZtG+zpOpwkJFB68pNOnVGjBiOlBQXDMo/3i5eXF6Kjo4XAwEBBZGzMoaCAUgV37CDgnp1NwFRfn675jIi9oqIirv/lL2huaID+qVNyT1dX0R+t/z969KjQ2NjIlMRiYXxGBivV1katkRGyXV1Zd00NwBhUVFRgm5cHGBjg7KefClUdHVDNz2dPkSG2tw8aeE/KhAkUbTh7lhxkK1ZQut/162RMmphQbeJvv9F+6+0FX12Nb11dIamrwyJ3d2gsWQJlZeUhuSCsrKxgZWXV/1+GS5cALy9UrViBX2JjsUMigbqTExlkf/0r1VMXFDzeKg8gZ8oXXwD792N1YyPO1NXBcuNG0dixY5GamipYWFgw1NWBBQYisK4OAQEBLPnWLURHROCfmzah/e5d2NraIjk5mSUnJ9N3mprixQsXRE5z58Lq3Xchf/ttrHvwAHfv3qW90dODEevXw3jNGvaJkxNUFBVha2ZGa8LEhDgelJQI1P34I63XR0Qul6Ni4kShzNCQ03V2FiorK9kAKASRWJqbm4ssLCyEixcvMgBsqKyRx+T8eXJ8HTwIhIbCzMwMW7duhaamJrKysnDj+HEoHjuGDwCoGBkJC2fOZNEPS1FcXFwe/678fJhv3Youd3d8PWYM4xnDtodAu196m5uh+PXXMNTWFubMmcMuKyoKba+9xpqOHMH1WbP4NWvWcFpaWoCLC+p37AAOHYK7RMKMzp4lUPAo98bRo8CqVcywq4uhuBiorASvo4PTL76IVfPmcSaxsQR6SkoADQ2o+PrCrLcXDfPnQ7+jQ2SRkoLM7duFti++gMmuXZBYWAh9PT3CwjFjODUlJYpYpqWR/rh1i0iqwsMJPHV2EiBcsIAcRlevghMErF+/HvX19Th69CiamprkCxcuFBlmZKCV49Db28sMDQ05HDpEacElJQQsNTWB4mLc270bFVIpyj78EL0uLqKQkBBcuHAB586d4xUUFISRmZnwvXxZJP/yS+iFhhKpWXo6PBIT2fXvvxckqqpMo6gIyhUVcCovB5ecDNy+DWZjA3VlZTjJ5fyCsDARXF3J2fvo/tq3D06MPd0poJ80rKiIzi0NDahduACX5csHUo7TOQ64ckWuaGMjwqxZdK71l9pUVKCtowO59+4JnJcXVq9dy7i//x3Q0IBEKkVXbS18VVTQGhsLM1VVciD39NC61NQkZ4dMRtkexsZ0f2pqpBuvXKExnDqV5kIkIhCpp0fn9xB6j+M4uLi4yC9fvoyn9ElAwGBLrd5eSq3evh291tbQ+uknFvjRRwy7d9O1e3rI2eHsTKUzBw48fqF33yWn49WrdNZ9+CFgZ4fymTOFAktLNqenR1B55RXWUlAAe3t7cF9/TVHb4aSwkHTOk+ny1tYE2ktKnk6B19cnXoRx48hhv3Xr4HuKirTnW1pojvfuJafF5s1UC75oETkAli59LGugra0NtSYmuP7GG8L6xYsZFi0Cp6wMpd5ezMjJESwkEpY1dizS0tK4DRs2wGioCDLPAxkZkPj5YdZbbyEzIQG2dXWC2V/+wvWTV0ZGRgomYjE3MyqK5j87e7CMads2cuS2tAx+54gREF59FTpHjvDX3n2XmzV7NumZ06fJzvvlF9hERoqS29qEaaqqw4aqUlNThczMzAcAXP/XSNEelT/B9p/yH5Vdu3ZZicXibD8/P1UnJyeRiooK+vr6oKysDEVFxecj9vp/QSIi6OCYMeO5I7tNTU24fv26vKOjA62trdxwNZ4ODg5wcHCAVCplFRUVsOY4xoWEUE3pc9ax6+joYPr06Y/9TktLi9XX18vxkPFzOPH29salS5cgEomwYcOGoRGkpSUBOoDSnyQS8lZOnkwG/7NYpvvlhRcomvXDD0PXROno0M9D46KhoACJPI+qlhaYvvsuFHkeUyQSwVRFhZWIRAJKSqie9Xn6UD8p/QZwVBRF1AGKbvQTRn31FYGDrCyK0D25TouLSTEP56EtLSWD4d49ij7+GzJlyhTu/v37/IkTJ9iGDRvYU+2ReH7I1iA2NjaYOnUqCw8PZ0FBQU/X7mto4Na6dXJBReV3HTtmZmbYsWPHMzdrW1sbamtr0dXRwX74+GOMGTlSCNixg7HiYiL9eR4pLiYQmZr6dHu6gwdpHcpk9PM7Ul1dDZlMxsaOGsUwfz4ZShcukJPktdco6nPtGqWhvvUW/e7RmuhHpLa2FqU8DwUDA6z69lsar08+eeb1eZ5Hfn4+7OzsUFhYCCUlJWbS2IhQf39mHBcH/1degYKLC7wbG9HV1YWSkhJeWVkZWLuWw/btWLxxI4uOjsapU6cQHBz8WGYDsrPJGTRUxgrHEdi+coUMt7FjyZlgYUElHC+8QM6usDBg40bIKirw8cqVGJOcjAlNTRBlZDyTV+AxaWmhjJVz5+Arl6Pz5En+874+bsuVK9DuzxJQV6efvj6Ksp06RZF2xsgY37ED7YcPw/rnn6F//jy033wTkyZNorVmZETzA3I8jTl0CJ41Nbj08suCr68vMzAw4EpKSnD8+HHo6OjA2tqaN1q3jhO99x6Qmwtu82aYLF0Kk02baMzq6oBz56Bgbw+8/z5KSkooovbttzRelZVkuAcGUh1ye/tjtZjhFy7IPcrLRVM/+ACa/v6M5/khOTH6meoXLlz4++3h+onbIiOpTOWbbwZY+93c3ODm5oZuf38Y1dYKhqamYDduCEaxsYzNnctraGgMXjwjg1JSX30Vqm+/DZPvvkNdXR1+/PFHNDc3AwC0tbWFsD17mGj1aqFeJmPvv/8+Fi5cyFq//BKiu3dhUV3Njh8/jo0bN6K4uBiZ5eV8V2AgZ2tkRHovOZkcptOm0XpqaSFypx9/JP3497/D0dAQOb/+Kvx04YLw2pUrHDiO6pUdHIgNfsQI6NnZQW/VKqCiAha6uuzukiWoP3oUa7q7WbWCAiuSSGAaFgb9lhawmTPpnLW3p0wJQ0MCfTExxJ+yd+8gw76tLXDsGAz8/bFlxgxuf0QEf+XyZfm0ggKR5a+/on3VKuQlJAiyt95iFj/+CA4YcLL1NTUBpaV4MGMG5ovF6F29Gjq6urC1tUXL/fuckJUF3Z9+QruSEqpUVKCnqUkO2G3bcOfAAciqq5lmbCwuOjsD6uqIrK0VZEZGkIeGsnEmJqiIjoa2rq6AS5fIWbt8OZ1jVlYUqb91ixwLlpa0V3p66JUxctxKpcALL0BWWgoGCPjlF4a6OkAuh6OHB9SPHRMVJScL9uvXM7z2GkW5Fy0CcnLQkZKC+IAAtmPXLhHX3EyO7YdlW0e/+YZ/oKHB6W/e3Dd648ZBDPDpp3Td7m7KKmhtpflubycAJZXSOd3P8u/vT061vDyqLVdSogyJBw/I0aqhgb72drSVlWHkyJGihjt3IL98GSKep7lVUaH5jYykvTd2LH1vURFurl3LO0VEMEsdHYbZsyl67+BAY9Z/BtrYkN62tKSo8P79tLdOnCDwev06EByMad99x4Xs2YNT06fzNefPc3K5nK29dUswWraMDceGDoAyUIY6bxmj8zYhYXii1I0bH2csf1T6Gfxra4mp38eHwGlsLDGl79tH+/phhkdpaSkAoLa2lt0pL8foy5ehJ5ViyVtvgfvhByZdtAj5ly5hW20tNIfLaNy9mxwRX38NLQDj6+s5SKUDXSI6OzpgfuUKN2bLFijPmUMZYY9G9bW1aQ3/85+Ajw94nselS5eQlZWFvr4+zsDJifStigrpo9OnAT09uO3ejbiFC5GVlQW3IbLIysrKcO3atQ6ZTBb8vwy0gT/B9p/yHxYlJaV3vb29VcaNG/fHQsFPiFwuR1FREQwMDKCrqwue55GXlwfGGBwdHQcYGHmeR0pKipCRkSEIggBDQ0MhICBA9G/1w710iQ6h8+fJU/kc0tnZiW+//RampqacnZ0dU1dXh4uLyzP3l6Ki4iBD57ffPn8v7GFk/vz53FdffSVcv36dDw4O5oZL1e/o6ICOjk5/mvvvez/6I7ytrVTvqqlJ0TR7ezp8pdKhI7liMUWM4uOfi8HdwtYWPkuXQldXFxoaGjA0NGR8QwNO/eMf/Jj79xkOHiSDRE2NXufMISWvp/f8Kf7BwfTT2krK/fXXCfB9/DE921BppAAp9ieJQ/qltpbAfH/K/H9AwsLCuL179+Kzzz7DW0+C96Cgp/sGPxSzh8pz//79mDt3LsRiMUQiEW7duiXX0tJi5aNGYerevTQG/2Yvz5ibN1FcWIh5Z85Au6UFR9atY3Z5eTB6zj2Dnh6au/j4x1pDDUhvLynugAAy6J5R81VRUYGTP/0kzKyvF7jt2zns2EHj1L8uGKMxCw4mo0BTk4Dg9u0Eth6JmguCgOTkZLlIJBIJAAp//BE+Xl6UHTF//rBnwoEDB+RNTU0iZWVloae7m03MzhZ8CgqYwo4dwKJFUHh4L7q6utDV1YX54cMcpk+nZwMp44kTJyI9PR1RUVFISUnhQ0NDOUdHR7r/1tbhHX8//EDrs7ubQHVEBDkKX3qJgK6nJ33HP/+J1H/+EwFnzyLP2RmTOzsJ3J44QQZZevqz99LevTQGEgmUjxxB6M2bXOrSpbhZUoKwfmNq0SJ6lcvJ6LS2pqyYpCQCF5WVKHV0RGVQkHycoqII27eTkamhQZGy+noy9hUUgDffhFhdHbNMTQduysbGBgYGBn2enp5iHx8fAp+vvUbPOm0a7Wuep3KODRuAyZMHvI/t7e30jxEjIAQEQFi1Cm02Nmg3MoJSTw9av/sOdR4eaGtrk7e3twvdV6+K83bswNSHJHDDcUjExsYKbm5uwsiRI5+Z/sLzPJqamlBdXQ2DL76AsURC6euvv/5YGySVmBhscHVlmDMHmDQJlteuAY9mIJ06ReUB7703EI13cXFBVVUV2h62K3rYHoip2tnhle3bGbS0sGfPHpw6dQo7d+4E7O3hNmMGOx4UhM8//1xQV1dnXV1d3NatWwn8e3kROFy/nlLe9+2jtGpFRZpbd3dALIZSZiYkpaWwuXePYcECWs8bNhAYnjKFsilkMgIWublAdzdsJ09Go1yOxiNHhAJvb9Y8bpz8QlWVaJy/P4IlEiJuGzuWQMmXX9L6KC6mFOL+EiQ/P9JDISHA4cNQ/vRTTL95k+tdtAhMJoOWnR00li1j+Y2Nwqlr13ipVMrJIyOhrKzMi0QiSKVSTrZyJSYEB/Nqly5xanl5QGAgJIIAyeuv0zX27MGF+HjeysiI5jUiAjAywlglJXLcHjqErk2bEB0XhwkTJjAFBQXIZDLEx8fzruvWcf7+/oN2UGMjRUM7OyljICWFzrj8fMoeSE6m7BAXl8HWbOrqUDAyQouxsYCKCoboaKCsDCrOztC9cgXfHD/ONo4ZA91btyirZN8+ICcHJqdPY0Z9ParWrYPF1q3k3OnoQKOKCtpGjOBsbGywdOnSpw0EkWjQWXb3Ls27uzu9nj1Le3PLFtrTiYk0P/12hiDQ89TXo7u1FScOHxYkjEG1sZH1pqUh0NMTort3ibXd0ZGAWXk5nV0A/TsiAtDXR0dGhvDbrFls88GDUBgzhkD1kynW771H93bmDDnWxGJyKmzbRpwO6uoDpRpKY8dixSefiADg22+/lUulUm5Yx3m/XL1KzzRcRt3evRThH8puW7p0sPPLrVtPl59Nm0b6LziYbKMvv6T7/8c/6PPff0/rfe5cuLi4oKKiAllZWYiJiUFeXh78/f1h/umn4F96Cac//lhY8uOPTMPMjErdzp6lDID+DJy2Nso4689o6+mhNdjf4rKzEzU//ADX7Gyci4jAxq++evxee3pIlxoaAhcuoCUsDD/GxckFQeDmzZvHTp8+DUt9fdJNf/kLrXErK+DiRbAxYxC8YAGLiIgQqqqqhNDQ0AHCvdbWVvzyyy89fX19K3fu3Fn87Mn475c/CdL+lP+Y7Nq1i3EcdyQ0NFTtyWicVCpFQUEBkpOTUVJSAk1NzeHrggBcvHhRHhcXx9LS0pivry8SExOFyMhIlJaWCtHR0ez27dtCbGwsi4uLQ01NjeDu7s6ZmZmxiooKLjs7m/fx8XnuEPqDBw9w7do1eWtrK8fV10N9zRqwGTOGPWQbGhqQmZmJu3fvorW1FTKZDOfPn+dVVFT41atXc5aWlujvVfncYmNDB7dUOjTz8nOIoqIibGxsWHR0NJ+YmMgsLCyYxiOA6tixY/KLFy9y8fHx6O7uxujRowVbW9vnTzVQViZWY8aIvdXNjQDAiBEUUbt/nw7cR1Pu3d3JiMjJGb7t0EPhOA5mZmbQ1dUdSINMvnMHt6urmedf/8qEiRMhDwqC4ujRpCyuXycle+YM/buxkQx0ieT3W2IVFBAhzt27pOD19OjZhpOrV0mRPTk3zc0U8Vm8+LkcCs8rioqKUFVVRVFREfT09B6Plq1bR8/6JAs0qF97Tk4Ourq6kDXDOo8AACAASURBVJGRgZycHCE9PZ0xxlBZWSk0trSIAjIzoeTvP9jX+l8RmQy2gYHoMDHhb3l4sJpZs4RXduxgkj8C4NesIWNo06ah3586lealqAh94eHgnkGS9st778GwpIRN7Ohg7OOPydh4EjTeuEEMygcOkEG7Zg0ZIVeukGGrqIhajkNFRQWioqI4QRDA8zxaOzt5b39/hh070Nnaim5XV1RWViIlJQWnTp1CXFwcoqKi0N3dzTk7OcHyzBk2KyEBjseOMdGWLWSkDAVgDx2i956Irri6usLDwwO3bt1iubm5GO/tTcapre3QNeYAAdk1a8jwCw6mcW1uJsB98CClQioqouTePZxLTMTou3cxSSaDwi+/UJuuvXvJQAwIoIjpQ3btx6SwkBxLrq7E4P3WW8CWLSivqEBRURECAwMfP/P6I5zKynRPAQE0n2ZmqNDXl0NbW2Tv5kYOqo8+IiIiY2MC80FBBKb+8pchHTEJCQm8g4MDN7AvdHVp39fW0t5OTqZo2SN72s7ODunp6UhMTBRu3rzJbhUX47alJbS++QZFaWl8gUTC69y4wXKNjSEHOIm6Ojf9yBGMmDoVCo/2/H1Curq6cPnyZWZkZMTq6uoQFRUlFBUVsTNnzuDBgwd8a2srKy8vx+3bt/kzZ86wlJQUFBYWIjMzEypaWrxpURH1LvbzG1wnt2+TkRsYSOD2yBECd9OnU9nNypUEPJcvH7gPU1NTGBgYwNDQEOXl5XjhhRdgZWUFlZUraQ4Yg0QiQX5+PszNzaFjbQ3O2Rk2vr7obm9HcU0NA4Ds7Gzo6OhAX1+fzvI5c2htbN5M56yVFYGQkycBMzP0XbyIqowMZi6VMiN7e1pzMhk5LpOTaU5mzyZAIZeTk8DaGqoBAVAcO5ZVRkUJTjo6nCgjA17nz0Pdy4vm8scfiZi0qIj2bXs7ZR2FheF+UxNOi0Tyasagn5LCVDo6cMXQUP4gIoILio8Ha2oCNm4EmzABNuPHs7FjxzINDQ0UFhair6+PLVu2jPX9/DNWX7gA6y++YGCMxrevj5zt7u70rOPHI6GvTzAyMmJmZmbglZTQZm+P8+rqyOd53J00Ccr5+Zj56acw3bkThmZmMDQ0hLOzM1NTU0NrayskEgll9FVUkDPr669pDyUno09bG3fWrIG6vj4U33yTHBv9DuHFi4F581BiZITbYrF8zD/+wcHFBS1XryK3uBitAEQ2NvKC/Hy4TJ7MEBpKeyg/H9i/H1cZE5TT0gTjmTNZiasrKu7f5+MbG9kDiQQuLi6ClZXV04dSby+ttdpayM+exd3btwW5mxtTGzWKosXV1ZROrKZGoLapaTCCyxjpXU1NZFZUIKOmhvXo67N2Bwd56Ouvc6aTJxPh3ZIlRLA1dixdSxDIcT9rFkV9ra3hZGXFGe3cifsFBdB/5x02FIkaMjOJcGzfPhqr/lZv779Payw8HL3OzuAOHQI7cmTgz+ovXGB3nZ35UQsWPNtAi4mhdpJDsa5LJHTWWloO7wBVUaG1P23a0GWIYjGNhaUl7Q1LSzrHLCxofAoLiVSyrw/dVlb92VJCVVUVy8jIwPjx49HOGC7ducMmfPIJxGvX0hhGR5Md6exMZYGbNpGe6w8E/PQTOXpefJHsmnnzoPvmm+jbvBlRBQXw9/eHIAj45Zdf+OLiYmbMGHr37kWivT3yDQ2FyLQ0ZuvqKixZsoQTiUTIjI2F68WLgr6PD4NMRs6C0FDi+/n8cxhaWKC5uZmlp6ez/paMMpkM3333XVd3d/f7b7/99rfPnIf/EfkTbP8p/zGJiYmxUlBQeGXSpEliQRBQWVmJqKgohIeH8zExMayyslJQUFDgOzs7haioKK6zs1Ows7MbEuzl5eUJHMdBJpPxCQkJXHl5ORYvXsxCQ0OZq6srrKys+hkzMXHiRGZpaQkzMzM4Ojri5s2bzM/Pb+g+pE9IQ0MDTpw4IfT09HBdmZnyBxcv4oqPD0vv7eWbm5sFLS2tgTTerq4uXL9+XR4REcG1tbXxHR0drKioSJ6VlQUlJSVhzZo1on+LYV1XlyIyT7aP+AMikUjg6+vLdXR0sGvXrsHV1RVKSkq4efMmsrKyOA8PDyxZsgQTJkzAcGP/XKKvT4axnh4ZYiYmlDp2/jzV1J09S5FDxggAv/oqRTv+YO27iYkJ8vLy5Onp6UhOTmZxiYkY6ecH9cDAwUiljw8Z5NHRFPVITyclExtLkQKOG0w97+khBRoQQIBr61YyUEJCKMJ6+TIZBE9KXh4B/EcBbr+H/oUXSFH+J0UQYMwYGn/8EU0qKhh5/Dg9k5UVefSzssh5oaY2YEgDwLlz5+RWVlbcunXrEBgYiHHjxrHAwEB4eHgwX19fbty4cVDauJGAmL7+H2NoB2h+Z84EXn4Z3PjxcNi0iZnZ2SEpOZk1NTXx5ubmTHGY1OzHRC5Hi6IipIsWQWk40rmXXgI8PdFjY4Ov8vJQWFMjiMVipqSkhNraWty5cwccY5DExEDl0CGou7vD/PDh4Wux8/LISOpPz1ZSIjA2bhzQ0oL66Gi0v/oq0ktL0aylBWtbW3h5eaGnp4dF3rwpj7Oxwa3eXmb86quIqq1FTV8fFi9ejKCgIGhpafG2NTXCOF1dZq+iAvWXXqJ9PFRa38KFlL68d+9TQBsYdLSYmJggJycHJfn5cr2+Pk7l9dchGs5BWVtLkaagIFrXFhaD/X1TUqi8wdsb9+/fR25eHopGjIDT4sXQeOcdigqPHk2RkOPHKeKxY8fTDqsDByi7QCKhtb94McBxsLW1RWJiIhoaGgRnZ+ehF5SCAv0tx6F7yxZcKy1lHtnZTP+HHyj9MyKCDL+ODsry0dOj83DChMe/h+eB9nZkRkYK7jzPSerr6dni4sigvHCBzh6ZjEBiYyNFzB8CTUVFRVRWVjK5XA6JRCLf8eabnIm/Pxy++YaN/vprzjA6mrlPncpGz5oFexsbKHl4QCE09Jn7pK+vDwkJCaitrUVNTY3Q0tLCZDKZoKyszBQUFFBaWso/ePBAUFVVFZmammLt2rUICAiAmZkZLly4wExffBE6wcHkyPP2prN0zBg6t/prSj08CLx+8glFqMLDh3QOXrlyRZ6dnc2ZmZnxbm5udNOqqmTwm5jA0NAQRUVFSE5ORmBgINiIEVA6ehR2Fy+yoAMHYGhigqysLOTm5sLQ0JAAN0D3cvAgzcmpU+TI8PIC3n8fXGgo2kaPRkRXF6R1dXwUx/Gqc+ZwetOnE+CoqyMAW15OYPLFF9Fw/Tqgqws1a2toZmczkw8/RJWJCZIdHZErEvEFvb2sRE2NVykqYoKnJ5R8fMDMzIA5c1BZWIgff/5ZsB45EqI7d7gHggDdn3+GTXIy5+DqCtGrr5K++fRT2n+2tuB5Hrdv3xaam5vZ4sWLYW1tjZjMTH7ElClM3ceHoqavvUaZWuPH031v2wb4+SE1NXUAbEdcuQJRUhKYvz/fp67Oy2QyvlUs5tva27nGkSPRlpiI5LIy4ezZsyw7O1tIuX2b+RcWQnToEKpTU1HX3o4HK1eiMycHt9au5c+5uaElL4/Z/POfKGlokKuNH889eX6Wl5ejrq5O0NDQ4PKamoRomYxlubvD5cQJ2N+7x3VmZDCrX38Ft307HnR0oHfHDpyqqpKXSaVc2N69rKmmBscAtJqZCS6GhszJzQ3RKSkoKSkRuru7Gc/z0GpsHKhxxu7dwMSJqPv5Zwi1teyItTWKjIz41pgYZtzUBPH06eQAWraMdPyWLUTw9UiENzY2VlBVVeVfeOEFLiEhgYlEose5DBITSXeHhVHWwrRppL9XrKD2eCdPQjkigh3t7GTpWVnyMWPGPG5YCQLpIU1NKoERBMhDQ3GnthY/3b6Nku5u3LCxge5nnyFFQ0OwmD17gNjQdMkS1mFoKFjOmPFsY83YmJ5vOA6c9nYCsqtWDf0+YwTUT54knT2Us1hRkWyUmzfpc/Pn015TUCDHqokJ5Dk50P/tN/j+9a/oBVhlZSU4jkNWVhbv6+vLkpKS0K2q2mfn5cVh/Hg6y1VUaP0fOkTj2/88AOmEt94i0G1rC0yahK5Ro5BXWCiUlpYyGxsbfPfddzwAxnEcHxMdzXUBqNLWluvX1grzrl7lnPbs4UQiEVQVFBAwcyYq1NRY7auvwkhLC8zLi4IYubnA/Pm4fOUKcnNzsXr1aujo6EAQBJw5c6a7rq7ukkwm2zr+WUGO/yH5E2z/Kf8xiYmJmcUYCyssLBSuX7+O3NxcpqioKJ80aZIoNDQUAQEBbPTo0ZyrqytnZ2eHS5cuMR8fHzDGUFBQgJycHNTV1UFXVxfW1tbcjRs32IoVKzhjY2PMnj2b9bdSUVZWhra29kBLpEdFQUEBmZmZ8qKiIujo6DANDY2n6sRbWlqQkJAgXLhwAYmJiczU1FRYtXIlc9mxg3OcMoWN2rEDIpGIFRcXCzExMay4uJgvLy8XIiIiWG9vr7BixQouKCiIubu7w9fXlxs7dizz9PTk/u1WZg4OBIL27/99UqnfERsbG9y9e1eekZEBJycnVl1djZqaGrS0tPDFxcWCl5fXY4MilUrR0dEBJSWlP15X3596vXo1Kc+KCjJ0X3yRjF/GKJ303Lk/HLVnjMHHx4cbO3YsCwwMRGxsLJqbmweJghgjwGlmRt7g6dPJUHVwIHAcF0cRipgYAgtvvEFZBHv3Drb6ecgeiytXSEHMnEk12I+mlD/02A+ksvX20t+PH0+p7P+K9PXR9RQUCMTu20eRLGdnoKgITC6H8okTMF+2DJoaGnSdoCCK9ri40P/XrydimHXrgCtXUCCTCWUVFSwvLw8jRox4ut4bIEPF25vG7HlJ59auJWN58mQCAC4u9PeMQUtLC7a2toiPj+djY2O5W7duQRAESKVS6OjoPL2eWloAJycc0dAQooqKWHV1NSQSyUDdakdHBz7//HPB4KWXkFJVxcstLbngLVtQMmmSkJGTw+Lj41FcXCwIZWWC5M03WTnHIdnWFmZLlsDkUTKnRyU8nAzv/tS5R0VREc1GRvg6NRWW06fzDjExMC4sZO0PHiD7/n3Ut7cjNDSU8/TyYkHjx0M/NRU+8+fDf8UKaGlrQ6mjA6ZKSsxs61YmHj8ebPPmoZ0v/Szwzc2DDqJniI6ODkxMTOD5zjtclq2tEPOs9oDW1uT4SU4mI1ZPj5xNZWXkUNqyBZg6Ffq2thAEAeUVFWA6OrxtfT1jiYm0P4uKKH03KYn21NSptJ/U1CjKcvw4rdPduyki83BeFRUVkZ+fj7KyMmZnZweNIbIbZDIZCgoKcO3aNf7ytWtMJBbzU955hxNt2EB76b33COAfOUJr+upV2pdpaeRY2r+f9m5+PhAVBYWYGM6spARiZWWaV7mcAHZ/qcHEieTICAmhiKWuLtoOH8bFrCxIjIzARCLe1NRUcHZ25qCvT/tn3jwau4MHaZ3MmUPz+IyoNkCR4MLCQowePRrr169nQUFB8PX1Zb6+vnB1dWVjxozhvL29OWdn54ESKJFIBF1dXdTX1yMyMhIBwcHgensJGBsbk1Nw/nyaF44jx9DKleQMjIp6nL35EcnLyxOkUik2btw4uE5mzaJ9/tDROXLkSKSkpAiNjY28o6MjBz8/oKcHzMgI+ra2MDY2Rk5ODnJzc1FUVITRo0dDdO0ajX92NiCXQwDAjI2BsWPR/uabuGtsDEUlJQR89hmr1NDgijiO92xtZdiyhdaUiwsB9e3bcTo8HOabNqHs3DmkXLkCzZgYJPr6QrO1FYZ9fZh67Bhr2rYNvFgMnDvHTmlqYoSjIxQUFFAbGAjh669h0duLUS+/zBlu2YJuqVRQbW9noldfhcr58wQYp0+ncXzzTaRYWODEuXN8V1cXW7FiBTM3NwcAJMfFCQ5OTkzyMGoqv30b1c3NQl9UFKvOyxNKEhOFiy0tfENzs6isrEy4ffu2UFVVxfz/8Q/YMcaSa2tRX1+PhuZmcYWJCdpyc4VJr73GIgwMmK26OtYbGTHnzz5DSWenUDhmDM4xxu5pa/OK588LbsePs/t2dixk0yYWJJVCKTsb4XPnCprr1nHy06cF1ZUrWf+5WVpairy8PC4nJwddHR3Cyu++YyMPHMDPvb1o6+yEc2EhygMDkdLTg0uXLsG0uVnQ09LiCtXUYN3ailxFRUx0dkbw5s3MZOVKaJmbo8XenhUVFDDl8HBUX7sGh8pKcG1tlJWQkQGUleEXd3chftQotnTZMqiqqrK28+ehoqsL7UmTaF2JxQTqzp8nJ9nDUpWysjLExcWx5cuXcxKJBKampuzy5cuwt7enjLWcHALWTU2ks8eNozNn507KcLGyAvr6INbTg763N1JTU7mYmBiMHDmS/j4hAQgMRPhHHwm/SCTs7vXrfNnRo8JvgYGsqa8PG44fh+Px4/CprIT+li1I1dfno6KjWXV1NbtfV4dIfX1eNSQEdnZ2zzbYTp8mp0BIyNDvGxgQf8WSJTQOw0l/J5PhQGU/KJ87l4IAPD9oJxkbI00mQ2JcHLR37UKNqipqxWIIAEQiEcaOHctMTExw48YNbuTIkVC1sABzdiaH3WefkZ0TGUnRflVVGrvgYOqU0twMvPgimg0M8Pnnn6OiooK5uroiMjJScHV1FRYuXMi5urpyXiIRHBIT4fnxx9yIwEBOHBVFNtKdO8AXX4D5+aFy48a+qKQkrvnmTdzz8IBhZyeUQkJwPDpaXlRUxK1evXpAN6elpQmpqamVUql00s6dO3+fjOV/RP4E23/Kf0xiYmLCeJ4f7+rqismTJ7MpU6bAzc2N09XVfSrKLJFIUFpaKr958yZLSEhgubm5KCsrw71795CUlIS6ujp5a2srFxQUBAsLi+eKUveLm5sbV1JSglu3biE2NpYVFRXJW1tbWX19Pbtx44Y8MjKS6+np4X18fLj58+fDdcQIxr75hg6kqVOhqKgIMzMzeHh4MB8fHzQ2NrKOjg42e/ZshISEcM9Kf/+3pa+P6nb6SY3+DXFxceGys7P569evc5WVlZg2bRpmz57NLl++zEaOHInS0lKcPXuWv3HjBouLi8Pt27fR19fHW1tb/+sRb5GI0pVef50O9/37CXyPG0eRMBUVAgJdXWRky+UENp8T4BcXF+P+/ftwc3PDsBFUBQWK2np6khKzs6PI2dy5VHMoFtP/r1whw0JJiQBFUBApkaQkAtJvvDHIQJ6aStG8yZNJiTk6knHwe4R2/cQ3eXkEJLy8yMCIi6P72LyZQHNrKzkHpk0jpfywzcYZNTW+urdXcFm+nMHJie5HLCaHgbo6ecsXLqQI3vr1sHN35zpzc5lyejpT8PbGkMz0/fXLPj7PXmPNzeS1nzGDgLaLC/0MAT4kEgn8/Pw4ZWXl/r7BfWlpaVxycjJ4npdbWlpyj35vT08PbqqpsalTp0IqlfKRkZHMyMgIEomkv+aRjevuZqW6uogrL2cjSkrg//bbbOy0afAdMwZBTU3MpaqKNZubI1wiQYeyMry9vaE7HGP52rWUNu/t/diveZ6HTCZDREQEGhobsfDll5n2Cy8wkbk5pJGRMKirg9W9e/CaNQvaNjZQUlaGOCwMnIUFWL+T5dVXaVz27qXX4WTyZAJK//jH7wJtgBxNulpaUNm+HWp2dizTwEDw9fUd3kBcuZKMw3HjCHRaWtI+3LyZMjJefhlYvhyWlpZob29HekYGi1VSgs/s2VBYu5ZStl96iQD7rl20j5YsoQjOm28SaPPwGDQEOzpozYrFcC4uRlpNDWR37sA2Jgbc+PGQb9uG+2lpuJmXJ+jOmcMiBUGwuHiRmxkejqDTpzmxickg38HBg9Qv/IcfKBLa2Ulg186Ooi/+/hRFWrAA0kmT8N2DBxi3fz9EgYG0f+RyIi3y9KRnDgujlNSXXwZCQyFvaUHL1auoU1fn137/PfMrK2POW7dy/UQ+0NamPf/117Qv+voI5G/c+LvcBvn5+fKKigrOy8sLpn+wNMPKygoJCQmIi4uD1rRpgpGTE4OzM82hgcEgS3NQEN3TmDHkGBhGHzY0NKCmpgb+/v6DB2p4OK2Fh3pLQUEBjo6OLDw8nLO1tYWGlhbNa0gIIJNBb/p0BAUFIT8/H/fv30dNZCRc339/oN+3cOUKjojFqGxpQX5hIW9y6BD7TV8fSnfvIjokBC3GxggNDWXiAwfA0tORVlUlHKmsZPHx8UhJSeE779xhLSNGIKS7Gzb6+tDNyoJmRARGt7TAIjUVot9+wwh/f9gVFDCRoSGSxWLk5eUJbNcuVmpsjHIbG9ikprLEtDRI2ttRbGvL0leu5HPV1QWDtDSkKivzelu2cJn37vHHpkzBmA8/ZO76+mzCzp3sUZb29s8+E0Z+9x0TvfIKcOgQusePR0ZBAVP4+9/B2doy0zt3mFJYGOf+2WeQ29nBKzSUc3BwEOyUlZk8OBjpAQGYOHUqFxQUhClTpsA7OJiJjIygduUKnCMiUC+RQPejj5DA84JOYiIma2oy7+RkZpeUxEQARuzbB4mlJeDpCW7dOrg3N3PSmTNxtaEBGmpqTOfmTcDdHdnZ2UJtbS1bt24dQiZOZArZ2dCYNw++ISGwyc1FW1cXb3j9OrtuYoIZc+cKo6dOZTq6uqhtb0edhwcvdnfnvXbu5JJ0dfGTra2Q1trK3G7c4I39/IRJV6+yu7q6uGBhgYCwMDAlJXK6LVyI2MpKwdfPD56enszc3Bwqr78Ozffeg8qjDk2Oo31qbQ14eaFx5Egcv3EDVlZWcm9vbw4AtLS00N3dzV+5cgWyPXsg+fRTiMeNY6LRo+nM6u0lm+H77ym1fONGAuPt7dALCoK1oyMyMzPBGINdP1mrsTHqvvuOqXZ1YXpLC3NqamJO77wDf3d3KHp6QsHICApvvAHR+vWw8fDg2traWFNTk3zMyy9zqk5OQuD69b+fhdjQQM83XPmbWEz2RVLSsx3uxsak09eupTP10fZnj4pIRA7CrCw6j/T1AY6DnqEhfisqQoG9PUKuXIG/ggJcN23C1NmzGWMMurq6KCsrk0dHR3MdHR1yOzs7DsnJlD316qvkIJswgaLof/0rOUcSEoAZM9DDGA4dOgSZTAa5XI7a2lrMmTOH+fv7D9RWizMywGVkkP0mEtHzxMcTN4eaGvDNNzCzteX8eR6W33yDdD093uijj9iXqqpoaW/nNmzYMFAGV1ZWht9++61DJpMF7dy58/l6ev6PCBuqPdGf8qf8K7Jr1y4/LS2tq1u3bh2GSepxaWtrQ1FREdVFtrYKioqKLDc3Fw8ePICnpye8hwMLf0AaGhqQnZ2Ne/fu8VKpVDA3NxeFhITgsYjfpk1EInH8+B9Pq/3/Q3p7SfG8+OK/DbgBihRyHDfwzIcOHeprbGwUKygoyD09PUVOTk7Q19fH1atXUVZWJgQFBTFNTc0/bDg+U+rqyOCztiajXU2Nosfh4aSwTE1JucXH0/smJgTIc3KolvFhVkNfWRnOFxSA19DAgsWLCQgYG5MCVlSk+dPUHGTFLC0l5VJZSSC5n8its5MM/dOniT1VIgGqqmi8582j+7G3p4jQjz+SoXvoENW3urlRdO/R7IOGBookjh9P79XWkqKbMoUi0bq6FGH/6it6Rlvb54oq19XV4fDhw9i+fTuGjFI/IZ0dHYhZvBj+TU3QCg8nY+bdd58CmQBo3N944+matORkiiDOmUOg5eTJ3227NZQ0NTXh9OnTqK+vR0BAAFxdXaFz7BgqMzNx0tmZNzU1FZYsWSICgJs3b/alpqaKZTLZQN/nVStWwGrECPCCgL78fCgqKNC4vfACRQt27waMjXHr1i2kpaUJMplM2LFjx9MWVE4OrTsVlaf296FDh/pqa2vFIpEIPj4+8smTJw+gmN7eXogbGyGKiSECMWdnSnN0cqLU7FWrBhlwg4KGH4i2Nlo/lZVkQA0XfR9KCgoAbW2UtrXh1JkzwhtvvDH8ARUeTuMyceIgQDx3jvbBrFm09gRhoB3NJ598ImhoaLCNGzaAvf46ZYOsWkXOoXXriDSwp4cMQJ6n9dvUROPf1kbA1syM9oSzM+JeeYWvSU3lxmZlIfn99+V6+/eLmgwNkWdtDa+UFNwNChIkIhEWjR/PFH19aUz6z7eamkGivM5OGs9btyi19/btx8BlYWEhIiIihAG2/MxMmmMtrcH9+be/AaDSn2vXrsnz8/NFYrGY9/Pz4wLc3cl5JJfTmRAQQE6QpiYC/T4+5Kw4dGjoffOIyGQy7N27F7NmzYKRkRFSUlLQ2NiI8vJywd7eXggLC/vddKempiYcPHgQUqkUW7duhVZ8PKWv/vQTzcmBA7Ruz52jc+bdd+m9IXRVX18fdu/eDRcXFyE0NJQ+YGNDTozAwMc+98EHH8DGxgbL++u+c3PJ0J8+faDbRH1VFY5+8QVUGBM2fPQRE/f0oOurr3AtLQ2TWluR/Pe/o7u7GybGxhg1fjzkGho48+GH8vLKSpF5ZaXQKZczRZkM1TY2EPM8PFNSYF5SgswxY6AYEsLPW7GCQ0sLjf+8eTTmcXE078uXA8eOoe+119B05Aj0//Y3lDo6CuKffoJKQwO7FhYGq8mTIejpgeM4cD09gKoqOI6DcnMz1O7fR+ORI7BwdISxmhplCnh7D3Qg2LN7N78gLIyzNDICHBzQGxKCkowMOKWlDTIxt7cje+ZMQSksjDkIAq2b3bsRe/Agou7fx4SJE6FYWwvt1FSYHj2KjBEj4GxjA0RHC729vYxjDOEzZ2JEaSlqLCwwLjZW6OY4dmX6dDhyHO8dH8817dyJiPx8YeVHH7FrkyahaPRouGdmwj0tDT9v2cJLe3s5L+//j73vjorqXL/e7znD0AWkCQiCNFFAERARe0PsvXejxm40sV1LTIwmllhjbMnVWKNiQ0WBgCIqVVHABigIUqR3mHLO98fDgAWjKff+Es8qUAAAIABJREFU7r2fey0WiTPMnHPe9uz9NE/0Vp03u3fTudK8OZStW+N4u3awHzYMHl99BX7RIhrvHTto7WppAT//jCvnzqHk2DF4VVXBKioKXIcOtHc1bYrAy5eReP06Zu/ZA27/fmiOHImoqChcuXIFEydOhI2NDQoTE/FiwgS4xMa+U+hRbt+OM0lJAt+mDesxbhzTeyWdR1lejqyVK1Fob4+ia9dEs7Q0Znb5MhoVFVEky4wZdG5Pn077pOo7aguBPt25E6GbN2PCwYNIvnoVLby9kdSrlygWFbE2MTH0/mHDyFZYvJiEdHt7qHK9KysrcfvWLUFr7VrO/dQpSH+n2GYdrl2j/ffTT9/9nsRESo+7fv39tprKHlBFBtRCLpcjKChIbNOmDbOwsKgPkafIDoAxPH36FIcPHwanVGICAOv79ynN4ZUioPn5+di7dy/6FhYKdlVVnO6uXbT3l5VRPR1HR9rHp0wB5s+H0KULDk+digo7O2VzW1s+KioKDbYOy8igaDSVyL5uHe1Jn35KIqzqvmtqgMxMFAUFITEwUIzw9oaWlpZQXl7O9+3bV7S1tWU//vhjVU1NzZDVq1dfff8A/G/hI9n+iL8Fa9eu7SSVSo97e3sbde3a9c81GQYQGxuLkJAQkTEGFxcXWFpasps3b6KsrEzo06cPZ2tr+0Gk44MgCFRNc9Agar3wIbmm/w4IAnkw5s0jsvRvQmlpKY4cOaKUyWRiVVWVpFevXm+Fm/8pCAJVds3JIS/Wm4qyKFJBj5oaMnhFkUhDdTVt9OrqdKDUeohv3rsn5FZWcmoyGTpraUFqYADBxATaHEdGm1RKxOjECfobNzfyjEmlVOFTXZ3UaqmUjFfG6GCuqKDXVf2ZNTTI0FfljZ4+TfOFepySJ9PTs77Yy759RGji4+kzR4+m+/qL8/XQoUNCbm4ulixZ8l7Dvbq6Glu3bkXv3r3h7uBAPap9fUlUiIuj3LCqKhIXVq0ib1ZtixH89hs9l23bKGz4xInf/a6kpCQ8ePAA3t7edVXQ34QgCDhw4ICQm5vLSaVSLHrxApcyM2G9ejWFp75huJWVlSE5ORk2NjbQt7cHO3CASP/KlZSLn5dHz1g1fgAuXryofPHiBV9UVPQ2GS0sJLJ45cprXueUlBQ8ePAADx48gEwmQ6tWrZRDhgx5t7dDEEh0URGgigoidVOn0pz29393mGC/fjSnL1/+3efZIJo1A4yNURYWhu3bt2PFihXvLryYmEiVxfPziRgDNH/37cPVYcOUQkYG+qSl8eyTTwBbW2zevFmsqKhgn376KUxNTEgs+vprysmtrqbxX7aMDFmeJ2Px888pUkVVj+GtS0hEQECAaG1tDTc3N3by5En06tULsbGxMDQ0xOjRoxu+/v79ieC5udGa6tyZDMT9+8mgCw6uE7eCgoKQk5OjnDhxIo/Hj2ke1xaTQnQ0iRlNm6KwsBCHDh0StbS0RD8/P87q96JQcnPJuHZxoXHMy6N/37+fxDLVXmRmRjUpRBE4fx4v9+9HoxkzIPA89k+fjnk7duBGp06wl8vR+M4dXF60SDl4zx6es7SkHtVt21JEytGj9cayqSnEEycQOGSIYBMSwjmZmJABP2oUfc+IEVSvgedJoGjfHjhw4J3F8q5duybGxMSIX3zxxTv3CxXZ7tOnj+jl5VU/kA8fEmn57Te617lzIX/4EHuHDBFFUcScOXNY1ZAhOG5igp5Dh8Laz6/+QxMSSJTKyiLPWWoqhM8+Q7m1NTRlMuCHH5C3ZQsatW6NuIwMXLt2DSaMKdrfusWnT5rE+sbGQjp3LolFT5/SmC5fTtEGmzbR2P74I5CdjaLu3XHCzEzU1tYWJ06cSPdpaEgkc9y4uks6Pnu2MCAzk9PZsIHGUUeHxEM1NZydPFnorq7O6U2fDty4gVI3N+wPC8NiVY5rLXbv3i20a9eO88jPpzD+pUsh69YNsqwsVBkYiMXm5jBPSGCVmpq46ucHD3V10XHmTKY0MwNzdUXZgQPQ6t8fpUlJMBo3DtVr10Lh54cb4eHQOnRIeKqryxnm5qLxxIkwdXSEtKYGOs2bQyaTQYiJgcGoUci+exe2LVrQBY0bR1FajRvjhbk5jpw/j6VLl9Iz++wzWqPffkupGfr6wNWruGtkhKZz50K3uBjcggWQLlhAwlZKCjBiBBQ//4xt58+jgjHwPA+lUgkrKyth9OjRnKamJnLPncPNX35BSvv2QseOHbkOtbVLBEHA1q1bhfLyck5HR0cp5ObyC48cgdrevUQYVZg/n/alzz9H9cmTOMFxolVMDJOOGYOOABFAUaTzu1u3ehuhpIRSYaKiEBkbKyaIIitv2VKsrKxkzR8+RJ/gYBg8f07vX7WKukscOkSCzfnzAGNISkrC2bNn4ZGYKLgsWMBZeHu/cxt4DcePk9d6+/bff9+ZM2QjvKtWyKsoK6Mz4+jRuvPr66+/hqBKMQLQtm1b9OvdG1xcHIm6nTsDbm64d++eeO7cOQYAzWtqxPFJSYwNHUpneG1qRGZyMjS7dMHZoUNh0qWLYmBoqATBwRSVFxFB39m/P5SBgVCOHYvz+/eLIzZuZMoOHSD88APUXm33pcIPP9Ce/913FEHn6Un2Q0TEax1axIEDkeDuLmgfOcI93LIFffv3B8dxuHHjBm7evCnW1NQwnuc3rFy5csX7H9T/Hj62/vqIv4x169ZN1dDQ2Dlw4EAtJyenv/RZzs7OSEtLE5KSkviYmBjExMQAAHR0dLgzZ84AANTV1UUA6N27N2v7ngrXv4tz54hAffLJfw7RBujguHiRDp+Cgj/lVfwzUFWJFASBqaur4/r16/D4k5XRX8Nnn9Hhd+dOw6+r+u+qq78dsvlmWG6/fvABuDt37iAgIACqTzQxMcGsWbNI1Z4+nfK+IiMpFLOykoxUmYwO76Ii+i65nAyA7GwiUxoaFL5laEjkW6EgAeDMGaj6m2LXLgoh//nn+rYn9+5RrtmsWeT5EEUyeMaPJ6Jla0thuV26kOftyRMyGsPDSUzx8CDD+pNPiEjev0+H444dwOrV6OvgwB3MzyfS8fnn5IF69oy8rCdO0N/XkiWN3r1hUlUlqqWmMri7U+5pkyZkWIWGEvls2ZLU6cmT6cCMjKQDdNy41wuqvAdnzpyBIAh48uQJ7OzsxB49erCamhqYmppCVYyG4zjMmDGDqywvx50+fZCwejUSo6Mx+B1EQVdXF3Vr+soVIrYFBWRM/PYbeejeiAhITEzka2pq4Ofn9zb709Wl8XtjHl26dEkpCAKvqakpmpqaisOGDXt/nsrw4VR0RleXvLp375Jhd/YseUNv3ybPigqpqfXRE3+2nsMnnwAODqioqIBSqURmZibeSRo5jsbYyYnmIGMQPT1xZ+tWMfnSJb6oSRMYymSCxy+/cNyXX8LBwQF3796lsWKMjDp7e5qbYWGU0nDsGL0WHU0CzLZtNA/fEQHk7OwMZ2dnBgAHDhwQRFHkgoKCAJAHd8uWLVi4cGG9UbdtG4lTv/5K0S4jR1IUS+fOVJho5UqKOBkxgkQwMzNkZWXBxMSEExISwF29CsyciWQrK7E4KgqeX3/N4O+PZ8+e4dixY2jRogXe612urKS5pSo+tmIFee6Dg2neJCfTOjcwoLVubk57wezZCLh3T8HGjpX08PLCp6NHg7O1RZdevYCyMrw4cQISW1v2m7e3qNmokWjL85yZpiYR7iZNiDT7+gLp6WA2NnDr0oUrvHIF6Tk5aJKXB3WVIyQpiZ7B3btEYEJDaU65uLzlZZTJZIiIiGBDhw6tH6DevYm0qkQ1oG59hoaGMq9XC0I6OZGXMTeXiNrYsVCzsMB4PT22e/durFu3DsPNzGBkYACTESOovZFKTDQ2prkhCPQ8U1LArV6NRubmtM/p6MCc54HkZHQeNQp2kZHQHzpUopGaiqDWreHr70/XWtu6DMHBtF/OnUt75ebNwPLlKHJ3x8H9+yEvK2PFxcX113737ltRI8+aNuWUGzaQ0JiTQ9exeTMwejR4hQJiQQGEQYPAWVoix80NNW+2sJTJYJKWhkaMkY2grg507gypVAppeTl0DA2Z8YEDgJsbtOPi0C80FAW7duGXTp2EMdHRnHTtWuj7+QFHjsBo5Upg82ZojBgBAPDr2xfo25dzefgQ+UOHipU//QQbLy8mOXeuXrDt3x9hc+Yoo8+f5xb++itTX7qURBrGgCFD0OjqVchkMrrW5s2JYI4cSVEhU6bQWF66hMcuLsrQpUv5ipISLO/Zk8Sa5s2JJI4eDUmbNhCCg8Xp48czAwMDiKIILS2tunVjmp6OAcOG4Z8VFVxwcDAePXqEwsJCQS6XMw0NDfbJJ58gLy+Pj4+PFw8OGMDGWltDOyCAPMtz5tS3Nl2+HBp9+mBybi6riI7GgceP0WbVKugwRvfk6EhzICiI9jM9PdpvFy5E62bN2NURI/D51KmMO3wYyM6GtEcPOsNUtSYKClDh5IRbOjoiHxbGcnNzlcnJybxts2bos2MHh3/843e3gtfQsSPe2x4MoPk+dSoJru8Dz5PNUVZWZ9c1bdpUeP78ed2zvnPnDkpLS8XBgwcz8do16EyZAsTGwsXFhZ07dw4A8FRdnWXt2gWLS5doPnfvDri7o+n8+UBkJKZ6eOB8drakbN066G7cSF7oVq0AKyvIGMMljhPS160T548fz2P1avBqauB//ZXE1ujo14UDY2Mau1OnqAbP9Om0H23cSO+vRW52tlgZFsas+/aF7cCBdf/eqVMnaGpq4tKlS1Aqld+8/yH9b+Ij2f6Iv4S1a9dqSySSHVOmTNH6S72ta6GhoYHhw4fzL1++RF5eHqytrYWJEydyBQUFiImJEWv7brNDhw4hICAA9+/fx+jRo6GhoYHq6mpoaGhAEIT3t906frw+l/cv9hv+l8DUlMhbbi6RhX8DHj16hIqKCt7Pzw85OTmCo6Mj9/jxY8TGxirbtGnDvbPS8O+hpoaI3cuXf+u1tm3bFs7Ozjh27BjS09PxMieHFNihQ4mYTZxYL1L82Rz7/HwKW376lLw15eXkeduyhYQDHR0y4gSBQpRjYui7q6rqC6mtXk3fr6tLokOzZmS0DRtGr7u70zyUSMhQlErp85RKej09HRJTU6jX1KDit9+gPWsWGVI3bxLZ/u47ysl1dQVmz0bB5ctof/kyszxzhowuV1c6FM3MyFuWk0MGzb59ZNQuXUrfs2wZGURr1pCBceAAefIOHqS83enTUa2jg5RVq8Sw7t3h8OAB2srlzPGrr9Dk8mVcfPhQPHr7Nmuan48ndnZowZjYvFUrVmFigsfh4UpZVhY//NEj7Lt5E919fQUA72efDx4QaVyzhrx4TZoQGXgDM2fOxI4dO3DlyhW0a9cOMTExCAoKQl9dXbjt2EGtwxQKBAUFoaqqChUVFSgpKeFHjBgBJycnhvf1ms/MJAOjQwci1LUhtsjLI0FkxgzyqsybR95rVeG9778nr8ylS++91Qaxfj1996pV4Gs9rfn5+e8k25XNmuHJL7+gJjYWhoGBsPXzQ1p6Oh5KJGx4Sgq01q/H/j17oBkRIcq2bEEqzwsAeKbq4b1+PV2vqm/9pEn07B0cyNCqqKD0isWL6d7eg5qaGhgZGUFDQ0N0dHRkbm5u2LFjh7hp0yY2evhwmADQycyEYuhQCGpqkIoiedXfRNOmJBIBEJ2dwTw98cDIiLXy90fagAGCrHVrduvYMaZdVoYW4eEIvnRJLCoqYjzPi8OGDWt4bAsLyfDt04eMya+/pjXh7k4/WVn0OzOTcsD37qXn8qpoY2qKwthYbsSaNWimqho+f37dyxbt2sFcFLlHPj6IiIjA87AwjF2xgtZT8+bk3VJhyRKYAQgtL0d2QgJ6nD4tOnfowPjVq8F9/z0JN5s20TVnZpKXHKCQ/lcgkUhgZmYm+Pv7c40aNaKIk7Zt3+7zC6oJ0GBk48KFNO47d9J8btYM+gBWrFiByMhIMXLfPuZ58SLyjIxw4csvUaavL/r4+LDOX3wB1rEjeVQ//ZTI8tKl5BVbsYL2wBYtAHNzsMBAWCxdCoSHQ2zcGIr16yFRU6N1dOECCYhPnpBXcds2OkNCQyGKIk7++KMwb+VKLmDdOqWM9lkegwfT976yNqqrq6FQKKCrq0tk5PZtEu7c3IBdu/Bw1ixWFR8PIwcHlA4YICRfucI5VFaKOHiQobCQxNk9e9DG0JBh6FASKYcNozB+TU169rm5tH8/eQJYWsKgpASaY8awjIwMlnfuHCw++YQEN9U4RUbSXnb4MJ3vGhpo3KwZGsXHs73ffCO0PHKEvksup7OA49B10yY+++efBfny5Ux9wgQilzk5wKVLCImOFt1ragQAPAYNogiRjRtpvSYkAHFxqG7SBE1v3uRHJiaC8/Ki+iOBgRQqX1hIUQjLloFXU2NNuncHd/YsnWX//CeJbj16AJGRUPvHPzDZ3BwvzM2RoqmJdu3bc8Z2dtDT14eGhgYsLCzQokULtvH5c2gaG5OAbGNDAlGzZmTHZGfTeoqLg/asWajauBFlZWV1rT7rChwWF1Me96FDwPDhCNq/H7Hp6ZjMGLQ9PWm/2rOH9qY7d6gjCgBMn45KLy/ckskYX1AAFxcX3tPTEz6urrRu/ohTJTKyvijk76FbN1qbcnl9+sG7oKVFzzQmBti3Dxnjx+P58+ecRCLB8uXLsXHjRrGmpoalpKSwzZs3AwDWREUBkyeDs7PDjBkz8PTZM4SEhODIsWMU0ZCYCNmlS+BHjAAvioC5ObiBA1GspSVmVVQwx19+obNr6FCIDg44l5srpimVbNq0aVTUNy2NztlDh+hM09IiYr5sGdkYCgU5Inbtogifw4dpDtaKqACQFBoq3vb2xrhWrZhmbei/CllZWQgKCqoC0H7NmjUVHz4A/1v4SLY/4q+iq5GRkfLvINqvYvbs2ZDJZFBTU+MYYzAyMnrNc7VmzRqkp6fj4MGD2LZtG0RRFGUyGZNIJFAoFOA4DkuXLm24iNaLF3SonzlT33vwPxEbN5JH+NXcxn8hXF1dERkZqQwODubnzJnDaWtr4+jRo4qXL19Kzp07Bzs7O6i/qfz/HlT51jk5H6YQ/0FIpVLY29sj99EjDDM1RfmePZB27w5p7SH1p7F6NRkqZ88S6dTXf32e3LlDXi4np9erkKp6gWpq1vce9fGpf336dPptZFSf/1SbPwuADHqAwqYHD6b/PnQIWUlJKMrPx8m5czGladN6ggyQNweUl39z/34h9vx5znL+fMFx7Fgis2Vl9e+tqaHfISE0p3R0yHPJcSQE2NnRPVhZkdFWUEDGfbt2qDEwwOlTpwQvbW02bMQIpr5vH/SkUkjMzICwMIyeO5cTSkrAbd2Kl8uXQzJqFCv49VfE9+8vjtq7l7/Tpg2SW7bE0k2bgEWLONHeHkxVzGryZDJWHj0i4yY6mp5bXByJJ199Rca3uTkZTG+QTQMDA/Ts2RMhISEAgPj4eEFHR4eLf/gQBsOHIyc6GmFhYaKuri6USmWdN+zkyZMYMGAA3hkdU1JCntUZM8jInjz59XWoImmLF5NndvBgCkX+8kuKYvjhh4Y/90Nx8SIZQnv3IikpSQTAlCoR5g08ePAAp06dwoSjRyEqFMg2N0eegQFMTEyQameHYamp0MzJwbzPPuP8X75U2p45w7eaO5f3GTwY2mvWkPF04AB5JnV1yVvy9CkRpTFjaM7fvUv75qxZ5DXbs6e+BkIDcHd3Z+Hh4cKECRM4VYXy5cuXs6OHDwtcr15cioEBIj/9VMi9e5fD3bsYeeoUjHV1Rf0bN+ra9NSB5yEIAmIcHYVqiYQbePYsXsyciReWllxNZqbYunVr0d3RkT0ZMAC5Dx6IxcXFTCaTsdLS0vrq6DU1JCCpokYOHaKIFG/vt+8jMZHG/cULEqUqK8noHjSo7i1paWmQy+Xc79UVYYzByckJGrm5zLJnTzy3tITVmDENvre4uBju9vZo/t13yCkpYesnTcKoDRvEFnPmMBw+THmhPE97hp4eEYclS2jt1rb14TgOU6ZM4Q4ePCjcvn2bGzFiBBHnBkiAKIqQy99RDHjMGIr6ekPcat++PWvv6AixZ0+U/PwzxujqIjI3F7GxseKTIUOEjt278zZXrkCjupr2z/nzSbTJzyeirdojrayIzOrqonDQIFg1aQK5RALZN99Ae9062nNfviRj394eVb6+SAkPR2xqqlBaUQHcuoUhbm48JJK6KI43vdrBwcEwNDQUOY4ju0Fbm34iIoCsLHzeuzfjBAFPnJ3FmshI5p6eDkNtbQYfHxIorKyAxYsRdvCgUF5ezmnn5YluTZtynipPvq0tEUoPD1QdPYqa8nLczM9HgpqaaNusmWBw7BiPrVtp3bRpQ/MoL49ExKws2psXLwbCw8E9foyBR45wWX5+sOZ5EopXrAB69gRr3hyeT55wJ0eOFIdERzODL74gMXbKFOgHBIhekZG8+PXXYH36kBikq0s9jm/fhrB/P7Ld3cXkbt2YT3AwfefevUQkZ8ygM2DGDNTo6qI6OBhsxgwS+lu3JtFw5EgivgCQnw9pQQEQGSkWWlgwu5gYyDgOqW3bwkRdHfqjRqH8xg20zs4WOX9/hrIyEoP376f95JdfaJ+3tKzr9CGK4uuOEYmEOhGEhOBFkyZo8sUXOJWWpnyho8NNmzaNmUZGkhd55kxaw3v2UOqMhwcJB1ZWMP78c0zOysLZs2fFJ0+eiBPGjePUXV1RdvIkdN9VWbwhaGt/WKtSQ0MSpgIC6Lz6EKSkAFFRiG3RQgTAXF1dwXEcevTowS6/km6kq6tLe9OKFcDOnTArLYVBy5YICQlBo0aNRAAMzs6Iu3oV7eRypHXsCHNBgDQ7G/pWVkLR7dsMn33G4f59YNYsyJyc8LC8nC3btInOeyMj2s+TkuisWbWK1lJ6OkXxPH1KY2ZiQnUUZs2iC+vYkWyklBS8bNQIRV9/zcYUFUGzuJjGphaVlZU4cuRIlUKhGLdmzZqED372/4P4mLP9EX8aa9eu1ZJKpYn9+/e3cXlPe5R/FW7cuIHQ0FBYW1vDy8sLJSUlkMlkCA0NhZ+fH9q1a/f6H8TF0cbSr9+/LTz7L+HhQ8rPunfvdw3bvwv37t1DQEAAZs6cCWNjY1y7dk1MTU1FcXGx0K9fP76FKm/sfVAo6KC6ffv13tR/N779FiXr12PXvHlQSiTQ1dfHZ5999sc/RxTJwDpxgkhmSQmF0f4e+vUjg/fs2T937X8A3333Hdq3b48uDRTiKioqwt69e6Grq6scPnw4/8FFBauq6sUCUaTDtEsXMgZXrCCCAUBQU8PPP/+M8vJyzJo1648JLgDQsycqra3xg4ODICsp4RRqauhoZSX28PNj0NWlvOI2beiA37KFDBd3dzJOBw4kDwtAnlWl8q1IFFEUkZ6ejkOHDkFNTQ2ampqwuXULTnZ2uNC4sVhZWcn69++PNm3a4MGDB2JERARGjBjB9u7dC4VCgcWLF+PVKsUQBDJGk5MpgmD9+gY9g69BEMio3r2bQpFNTcl4aajP9oegoIAMcxsbZBcW4uzZsygsLMS4cePwWr/aWgQHB4u3bt1i84yNoV5djWMPHyKrNo9eU1NTXDJkCFMV1goICIDF6tVoqasLjf79SUiaMOHt/WXFClq/J0+SsJCdTeRr+3Yaq5cvyYh+xz1WVFRgx44daNKkiThlyhQiPCEhgFwOQVsbj/T08OLlS1hYWMDCwgKFyckIP3lS+dLYmPf19YWLi0td2ziZTIZdu3YJrKaGm3v0KDiZDPyAATRfVFi5kozYEydQWVmJHTt2AKKI6a1bw9DDgwzyjh3pmjU1X2/t9yaUSpr/qpzEhASKIFm0CBgyBIIg4Pvvvxc8PDzQtWvXD8oROLVtG5SRkRh5+DC4N8ivQqHA9g0bxBaRkcz97l34z5wpwsgIUzZsYFr375Pg5OxMaQUq9OtHY7B7N/24uhLxBrBnzx6xuLgYy5YtY7C0JFK3cOFr3/n999+jrKwMa9asef1Cb92iOawqELdhw9utKP39iVw0bw6sXo2aqio8at8el4cPR5OUFHC2tqLn1ausUX6+GDN9umCYmQmv48d59aQkoGNHVBw7hvSSEhjJZNAdNAg3O3TAzc6d4fD0KXwvXoSwYAGMRo8GHB1RWlqKcytWYOjhw7i9cSO8x42DTmEhXd+6dfVk9o3Uho0bNwpDhgzh7O3tKSqpuprmc61HHRYWRPhPnyZRe8mSBosXPnv2TNVDHRkZGWKHDh2YIAho6u8PzsAAXE0NkiIjEenlBaVEAk4uh6OGhrJdx4689dChRGAyMoiYHz9OHsHaiAEwhrzsbBw/dEhwiotj7tOns8bl5fX5+l27Aj/+COWSJTijpob2XbvC8ptv6H6SkvDP4GDl8+fPeX19fXHw4MGsWbNm9H2VlcCMGTh26pTSIyCAs9y7l2nyPGBujoKMDFQVFMC0USOoJScDY8fi+fPnOHHiBJYsWUJCU2wsReSoqQEtW+K8i4siMzOT8w4PR0jr1pyntzduhIfDSEcHtpqayoqEBC5HImEu9+6heW6uaOHry5CURKJQQADZA/36UdrE7t1k17Rvj5vq6nDauBGNR42CEBCAOytXCk2jojjDggJUamsjztMTlV26KPvu2cNzN25Quo6ODkVN2NuTUJybS2fFoEHkMa7dj0RRxNGjR8WM1FTWMi4OxkuWoINKBP8Q5OTQs3izgGhDUHWZ+O23Dy6ym5qaiofz5+OZjQ16zZ2LFi1aQBAEJCcn40RtvZQ+ffrg1TQPxZw5eHHxIo6MHw9eV1ccNmwYCwgIUJaXlPCNSkqgV1ICp2bN0P7LL5GdnY0La9eiQ2Ii9I4do4ioadOQ2aIF4qqrhScKBXM0NWWmUVEoGTcOPnFx0DZ+bomMAAAgAElEQVQ2pj2mdWtyRk2dSmtFTY2ex6tOhwULoNDSwk4TE9FVXR09iosZ3Nzq7Kba51/5/PnzAytWrFiA/8/xsfXXR/wprF271kAqlZ6zt7d36tq1q9of7s38N8HKygrm5ubo3LkzTE1N6wo1xcfHIyUlBa/1fRUEChtUGV3/DTA0JAPSze3fEu5+6NAhsWfPnszKygpyuRx37txBZWWlwPM89PX16zxUb3meXoUoUs60ufn7CeufgShSXun588DgwXg5ciSSCwtRI5ejV69e7+613BCCg8mTPWwYGUReXuR1fld7jlfh60uHf3o6Xct7Khf/FZibm+PChQu4f/++4O7uzhhjyMnJURWBgoGBgTBr1iz+NdL4PlhYEIlSGaq9e1OIuSocrn9/wNgYmZcuIdrKCuN694b+H61Q/+gRMHky1IYPh7ePD2vh4oL8ggIUKJVi2y5dWF2Runv3aH2eO0fP9auv6vu2q+ba4sWUr9q3L/z9/ZW//fYbs7OzYxcuXFD+9ttvnLq6OnR1dWFkZKTsEBzMTFxd2RMDA9HLy0ts37494zgOpqamzNPTk2lpacHHxwc3b95EdHS02Lp1a6aurk7XMHkyiS4bN5Kn4vcK3FVXkzjw/fdE4GxtyagUBJqnpqZ/OI1BEASULVwIyezZOGVvr7waHMzp6OhALpeL1tbW7FUxRaFQICUlBdevX2dyuRwuvXvDKCMDTmfPotm8ecitqBCGDRvG6VlaUuhoaiqaHzuGyKZNYR0dDfUNG+h5N7Sev/6ajCtrayilUmQqFEjR1RVzqquZ/g8/4HmLFhC3bsVDExO8KC5Gbm4uoqOjcerUKURGRiIiIgL6+vrKAQMGcLq6uuRZ7tcP8PQEGzgQxk2awNbWFsbGxtB4/hwGQUFos2YNp6amhpCQECE+Ph7Gxsbs+PHjwtWrV5mNVCp+cukS40+eBLdqFRUm/Pxz8lAPG0bEyd0dsLWFWno6mhcXw+DGDVHrxx9ZnKYmrHfuBJs0iQj07/XFBciInzaNPIFt2tA4qgo+zZuHUIkEL0tLMWrUKO69Z9++fcDSpQgXRQwMCYH2F1+89Za8zEyYLVvG2j96hEY5OWjXrRtr164dU1u0iK61UycK49TWJo8UQOS6spKEkqIiImAvXwLLluGeKLKOgwczM3NzIm4dO77l3RYEAU+fPoWXl9frhZFOn6bP7duXyNKDB/T3r97n+fM0Z3r1AqytISkuhumBA+i4fTvaTJyIYoC9aNwYGuXlTDZgAJdmYMCFNm+OvMBAQf/BAxyuqGD95s7FWW1t4VGrVvBbsYJ1kcvhfPcuoh0chDNNmrCYp0/h7e2NiIgIIYfnRZ8FC5itry+kW7fSPrV2LREDe3vK6X9FELt37x7KIyLQLTWVMS8v8vxraNB9tGpFz87BgUhF165EtktLKVc6O5s+s/Z+09LSlE+ePBEzMjK4mpoaVlJSokxNTUV+QYFoHBiI056eoom2tjjp/n1W3LUruh4/LrrGxHAyf39krV4tGs6axdjy5SSEzJkDnDqF4rlzcfvwYTxu1Aha+vq4k5DAOsybxyy9vMgh0K4drctp0wBnZwQbGCgTlUrWLzqasU2byHtoZQU3T0+uc+fOiIyMZE+ePKFid1evAtOmoXLtWkivX+esIyKYpqUlzYOdO5EaEiKe1tVl+adOwXj/fjHQ2ppFRUWJRtnZaKOtzfDJJ3R+V1YCzs4Qli6Fv78/5+Puzpy3bGGVPj5o07s3EpOSRB0DA/QdN46z7NqVefXvD8Pbt9FIJmOSnTuJUHfqRPt7RgbZL6mpNFYdOwL29rhYXAyXvn0hOjjg57t3lWXGxsxp/HgmSUqCdM0a2C1YAIcePThmaEhRJqtX0x7i6kqeckNDEkm+/prG8pVK39HR0cqYmBiuf1AQnnXtKmqamjLbPxJhFxdHotOHeKutrcn7a2LywQJrQECA6O7vzzy7dYNVbSTb/fv3cfr06br3eHt7IzU1VTx79ixsbGxYcvPmiMnJgbtUCtnz5+xGZiZkMhnXJzAQbcaORXs9PdgcPAg2ezZ009LgfOECrk2aJISGhrK2bdtC/cEDNGrbFg5TpjBNPT1WqFAoFW5uLC0tTYxmTGg/ezYJh+7uJDI3bkw1E4YOJfvmq6/qKvqLzs64kpamLFNTE0edO8chOZmiDGoRGRmpvH///nO5XD60a9euDYdk/X+Ej2T7I/4Q1q5d63n79u2NjLH9rVq1sho0aJDme/Oj/4VQ9Rl8taqxvr4+2rVrh1u3bkFPTw/NmjUjVW7LFlJVX2mB8h8PxoiwLl1KG/nf2Y6rAaSmpirj4uK4W7du4datW1AoFMLYsWP5hIQEMSEhgYuOjkZsbCw8PT0bJtyiSD+tW5Ox9nfPjeRkMoCPHqVx7N4depaWsLOzQ0xMDIYPH/5hPdmXLCHj08iIiN6AAZSbpsrH/RBoadGYXLtGeUyTJtV79P9mGBgYIDU1FS9fvmRWVlY4e/ascOvWLfbgwQPBxsYGEyZMeL/R/yaGDaOogzfHUZVnV10NxMUhqFMndHvwAM3mzydvZ3IyGU7vu8+HDymfbepUQE8PjDHo6OjA2NgY4aGhzD0hAVJzc8oNy8uj8Nhp0+ojTnR0KKz55k0yiPX0kF9ZiXJbW1y9epUzMTERQ0NDWVlZGWvfvj3Lzs4WevXqxXpqaHCNFi1i0p494eHhwaysrBp8MBzHoVOnTnj8+DEexseztr/8Uh9avHDhu/P75HLyePz4I63LHj2I8Pj6EjFr3pxEDFWefsuWf6jdV3h4uBAVHc0glYpJtrbilClTuPj4eMHY2BidO3euC7EuKSnBvn37xNjYWCaXy/HJJ5+gqakpMGkS1KysYNipEzxHjmR6OjoUmpmZCYSGgv/8czxv3Rr3GjcWXfbuZZg8uWFvjJcXMGkS8vbtQ8ny5ThcVYXHHMc67t6N9LZtkdiypaiRkgLhzh08VCiUqfn5YklJidCqVStOX18fOTk5WLx4MddIXZ2eT1YWPV83t7e/KzSU1vTkybCwsIC3tzcrLCxkQUFBYnl5OWekp4fJZ84wbulSui5VQSVjY8rzNDenkFKlktZk9+7Q1dND01272PM+fXDl/n0UKxTKFi1afPiG9OgRhRKronm0ten7YmPxICIC+RIJi3v8WLh//75obW3N3tklQ0MD0NfHo5QUmJSW4rREIj58+JDduHFDCA0NRcS1a6j5+WfmlJ0tapw8yfhmzer/tmtXiujw8SECNmUKGb46OiQAVFRQKsiiRfQeCwvIi4pwVyYTu3/5JVNLTCTSxPMNnh3x8fHgeV6wsbGhCeDvT5+jagfm7Ex74ujRFFqu2itUfcifPCEBW1sbzwcMQFF2NrKqqyGtrhabLVvGZJcuIdjQEKy8XJi1ZQszadKEGT56xCx9fKChpwf3f/yDuTo4MMnixeDatgWnpgabxETWfN06REdHIyoqCs+ePWMVFRXMuV8/aCkUtCd07EgVtyUS2j9MTIjUlZQAQ4Yg8elToRXAjJKTGUaOpPXcowft9y1b1hek9PWl13btovu+dg346SdKLThxAnBxQVBYmJifn88bGhqiefPmGD16NOfj48Na+/gwo7t3WYeNG5ltr16MzZ8PrZoaRHTqJHrJ5axq8mScLisT71y5whwFAec0NATTTZvYqevXlaGampzz8+d4mZ6OuIcPUaWujsePH8O2tBS6Fy+SIHDqFHD+PIpSU+Gfm8t9Ym/PdOPiSHQcNYo843Z2KCsrw/Xr1+Hj4yNYJSRwEASgb1+8sLTEVYUCLj4+OHTokPKuqysaKZWsuKSEjXj8GA4BAYhs3ZqVnDgBq8RE5hwdzWJkMkR6eCj50FBmMnw4w8yZKCoqwp07dzBmwgSoff457N3coL1vH1rPns2Cg4PZrVu3kBQSAoPNmyH064fGcjlYjx40PvfukXNjxoz61CAvLxKgTE1xpbwcxZWVuPrsmWhiYYHRly9zWh07QrJ1K/jhwynSysGBiHVMDEWXqDpfNG9ORSsvXKBQ5507XxNcIiMjoSmTMb/QUMjnzEF4ZCRzdXWFxodGG6kKqH6IvcgYpf2cOPF6FfY38PjxY6SkpODKlSvIyclhbbduRZO+fWn+eXkhMTERGRkZde+/f/8+kpOTWWVlJbt375747Nkz5DdqxCTPnqFvYCA0ZsxAem4u+iQkoOnUqZAOGAA2ZQp5ow8ehMTFBa6zZ7OYmBjBxsaGGQweDFhbg0kkMDc3R8uWLTl7e3tmb2/PIiIiOF01NZgpFLS+9+whYePTT2nPLi+ntebuDhgZIerJE7HN7NlcuzFjOLUffiDh090dAJCRkYHz589XyOXyDmvWrCn4sAf+v42POdsf8UFYu3atu4aGxg4tLa023t7eGq6urnVezv9EhIWFKQHw9ioP5erVtCH+N4SONwR1dfJMvRkW/zdj0qRJktLSUujo6KhyqXgAmD59Ol9QUABjY2N8//33Qn5+PtdgH+4pUygENiDg770wpZIEk+7dKQz04MHXXjY2NkajRo2U586dY4MHD+YabGGRm0u5bN9+S/ld+flkzKpypf8sxo2jn6AgKsz29OlfbvfVEFTr7cSJE7C1tWUTJ06EVCr9c2rGtGnkHVEVcmsI2trA+fOoOHgQpXFxIhYtYqiqomfm50e5eMHBZGy/CbmciMrFi68b+Y8fwyIyEiZ5eSjdvx9o0wY6Fy68+xpatgQEAYIgIFouF8sCA9mt0lKYmZkpJk2aJAEAQRBYbb4bh/Jy8koFBJCR9x4wAK3v3kViVRWKGzeG/nffkRHbEPLzydMRF0fzsGVLMj7e9JLev0/EpLCwPk/zzJn3ekiqq6tx4MABSB484MY9fgzd0FDWWkuLP3LkiMBxHBs7dix7dV6fOHFC0NfXZwvfCA/G6dN0D0+eUA68hgaFr06aRITbxgZmcjmSTE3JWN2wgUSUV7FqFaCjgwtOTsq7enp8y379MFVTE0Lv3ohPTBT7duvG2g4cyPDrr4CXF9o+eCDBsmV1tQgKCgqQkJAARVoapJqaRIbGjXt3AaERI+inFhzHwc/PD127dmXHN26E78aNuPjFF0ofb2/+tR28bVsihGvWkJBqa0thn8+e1Ql9zq6uCL12Tbx37x7fr1+/htvb1KKiogJyuRxaWlqomTkTGmlpSE9JQU5ODvLz85WFhYUotrDgpACbffYscufP5y7L5crdu3dDXV0dXl5eyi5dutSrUPv3E3H65BNUxcTgio8P9LS0YGhoKFhbW3M2VlZovH49NMLCwO7dY2/NvU8/ra/v0LQppawMHUrh+JqadO8LFtA81NKCqKuLnzQ1hRpTU0jPnWPIziZyVlhI88LSkoQJjoOVlRV4nkd4eDjXrVs3ijyYN49InqNj/TW0akXEPj6eiBJAe8A335DotHUrlNOno/z2bVi8eIFcNzfByMKCs3F3h1JXF+rt2oHnOC6kWzf4urpCGhoKKz09Eu2WLaO96OpVEqeUSqC0FJYGBli1ahXS09Nx+fJlFBQUkIhqYEDrr7KSRICyMlpvq1ZRelhCAoTevZFUXMyc589ndQW3Xh3zwkJaB8bGtDaysylsunt3yOfNQ1yHDtC8exeW/v4oKi+Hxb17vGhqKlaoq4t3797lWrRoATs7O/L6m5nRGjp1CvjpJzQ9fRqDtmzhUn/6CXbDh2MJwIXs2iXeuHePPX78mEtJScHUH37gs8zNcWXYMLjeugW/S5dwZ8wYMaOqij3asQNs6lSYWVuTkHL8ONSzstBx+3Y8DguDaVAQpSDMnl2Xp//s2TMAgJeXF4+hQ+l6ACgMDdE5KAhXU1Oh7N6d6xkejoe2tspyV1fW3tCQe/7gAVpNmYKeubl4vGIFDH74AS/u3xf7fvUVf83aGndkMtE4MJAplUpIpVIlam0BJCUBP/0EncWLsWDBAmS/eAGLuXPx/OVLMT4ggBkKAnQVClqPGRlEhvv1o+tSKCgtZfZs4PBhWGtrwyI7W7CfOJG18fDguJs3aU4zRnPDyIjO+82bXxd3z52jaCINDUrXOX+ezrLa1pX5LVsiOTmZ69GsGZCSgnaMsWd5ecodO3bwoihi1apV7y+iy3EkEH4ohg0jL7CqhsArKC8vx/3798Xg4GCmra0tVlRUsBkzZsDMzIyiUb79Fhg1Coav2KczZsxATU0NLl68KHbp0oW5uLiw0tJSHDp0CE+cnJDt7Ay/06fFvsnJzDA29vU5PnEi1UtYvBgAoKWlJYaFhQk28fEcrl8nEeQV6OnpwdLSEtqzZonQ1ycBdupUsudUz71RI0rZEEUomjVDtaMjw8SJ0CwooOuvFeiqq6vx66+/VioUivFr1qxJ+/AH+L+Nj2T7I34Xa9eulUql0q3q6upTevbsqdmmTZsP8xz+HyM9PZ1v3LixaGZszLBqFbWGsLL64Hya/zhs3UrGc0jIh+UQ/QU0JKJIpVKYmZlBEATI5XLu8ePHor+/P0aMGMHMag99iCIZ7eXlf+8FxcbWh/bevfvO/NkpU6bwe/bsEW/evImur/Y8vnGDQkydneng//prKgb1d6NnT/Jwq6mR8b9y5furk34gVC22AGDhwoXQ0dH5axO5oOCDw5sHDhyInenprO3q1WBPntDz37GDjO0tW6iATkAAGeWqML3p08mwOnKE5sXJkxTtsHkzUFQEswkTsL9JEyAsDH01NeH5rhD8SZNQnZSEsPXrxfsSCRYkJqJ82DD0mzy57ux6y2iKiPiwgnxPnwJ5efC4e5fdc3HBERsbYa6NzesfVlFB6+6f/6R8vE2bqGiQqvp0Q+jUqb76/pAh1DLriy+IrM+Y0eCfFBUVISwsDKWlpRhvagrdO3eQ8+gRDoaEiNra2mzKlCmvEW1BEJCTk8P9o6FWNv7+REh++60u/Fh27BguBAQIplpaTP/UKdF4+nSuurqaRdjZwWH7dqh37YrgrCzBwcGBe/TokdImJoZL19FhSdXVfIcOHdClSxdIt25FzYwZeDhunNhXT4/h1i3yBFZWkqEZEACUlyPHxgYHDx6Ek56eQtqrlwQbNvx+r9rnz4lQFhS8FWWhKZNhaloaKr/9FqUcx/bs2QN3d3elr68vVVG/coWITtu2JK6kpREhe2Ofd3d3ZyEhIVi/fj0GDx4MOzs7pKWlIS8vT6iuruY0NTWRnp4uZmRkMKFW3NEtLsane/fCf9UqsbGRkaivr8/b2NjAzMwMVlZW0BwzBtYVFZidlMQrFi9G2M2buHnzJv9aXYWQEKCsDKK3N1olJkLZrJnYedw4qoAviuQ9KimhtdSQyOPrW1eJHQARioULSTg5eZL+PyKCyMfYsSgvL0dubi43dOhQSFxc6LkmJNC+aWNDkSwWFrQuS0vRu3dvBAYG4qcDB4Spbdpw7NGjt9OVOI723s2baS/9/PP6Nk2TJwMKBfhZs1DVtCm0161DuxcvOO7sWYDnwc+bB8eJE6E0M4NWQQE05s8nUv3zz5S2MmsWncs6OrRHe3pSvQTQujY1NUV+fj6mTJkCA5mMBOdjx4icq8ZYlWOurw9wHG56e0MRHY2GalcUFRSABQUhY+9elNy5A4lEAoN9++Dw8iVYdTVe5OTg6tWraNKkifLWqFEQBQEds7K4jllZTGPqVHZx2zaxpqqKQaEgkl9VRftDSQlgYgJeVxdl+vpILioS7Go7LvS0tGRFLVrAccwYHD9+HBcmT0aPiRMxrXFjXLO1FRjA9Y2NZQWnTqGsSxf8lJyMPkZGMBg5Evl5eWjy9Cm6nD2Li9OmgVNF27i6Ivunn3DCykpZXV3NOzs7Q624mEQHV1cUFhbi5MmTGNOqldi3UyemPW4cw8aNsF6/ns/IzMTDjRsF9t13nHF5ObjoaDjZ2wMlJTDds4cpd+6ErbY28vLykJubq0xNTeUNDQ3rF5SnJ+1p8fFotHs3Gt28CUgkaNmlC7vYrJnQODERHq6uXJy/PzT09WGtUEAUBJiEh9OYxccTCTx2DDWrVsH56VNObfhwpFtYiKETJoiDtLU5I4D2ytmzaaznzXv9LM3MpPoRBgYkaKnWzogRyOV5XP7HP9DKxUXRbt48Cbp1A8zMMGjQIP7+/fu4evUq7ty58/62phUVdEZ8KKysSMC+fBlV3bujsrISWVlZiIiIEAsKCphEIkHv3r0hlUpZRESE0szMjAxpExMKkS8oQKuMDGS2bQtdXV2o7Kq5c+fWPfsbN26gsHY/6NCzJ57b2LB2c+dC7NkT7OzZ+pxqU1OKyCkrAxo3xoQJE/ht27ZBWL0aXANFEat8faGvoQFdf3+GnBzaW+bMabB3eGVVFY6MHQun1q3RuKSExtLbG5gzB6Io4tKlS9VyufzU6tWrf0dF//8PH8n2R7wTa9eutZVKpeesrKxshw4dqqn5vjy3/yDkUascJpw8Ce7mTSKB/wUiwTvBGG38s2aRR+BvInF/FPn5+VAoFIiJiUF1dTWrrC2ihRs3KLTt+fO/r3J6SgoZViNHksrt7Py7b9fX10eXLl3YjRs3iGz7+xMJOHCAjLkePSj/8F8FjqOcsfx8IgATJ5IR8BefR3l5OY4ePQqFQgEnJyf8obzshpCeTh6y9whPMpkMEokEJSUl0NDQoGJVjo5kvANEtJYvJ2K5Zg0Ry0WLyCjv25c8aPv2Ue63yvNYK3IMAjBo8GB8++23YlBQEHNzc2swLSEzMxO506ejVV4evKKimMaAARji4NDw/I+KoiI5r4ThvRMHDlBLoTNnwN28icZnzyIxMZF7+fIlTIyNKbfw9Gny3HXuTELKtm0flhbBWH2I6pgx9Mx++onm3oQJVKW8ltBkZGSgoKAA58+fB2MMI0eOhFVpKbBoEdIfPEBNTQ2bOnUqVaV9AxzHobS0FI3f7KhgZ0eeXQMDYPlylFVXQ7CwQNaqVeAGDWJOs2ezU0olRKkU0ampwpNmzbhWn32GB336cJmZmYpmjPGakyczW0dH9La1rRffli7Fyw4d0H35coYJE2g8hw8n8uTiUlfpOFZHRxhUVMQ5LVsmQffu9Z7Zd6FJEwoTfXP809PJu7JhA7TatcN4gMvLy8Pu3bt5Jz09mHz7LTQ6dwabOpVCVKdNo9SHHTvob3/8sS4VwNvbGyEhIWCM4fLly6JMJlNNfk5HR0fQ0dFhEomEDRkyBA4ODigrK4OBgQGE4cOxtH17Bp5/e7F4eJDQtH07JE+fotuGDYiMjERNTQ0VEUxLoyr1ACCKyDcyAmvRgikUCgQHBYmamzcztzt3kDd7NkLV1IS+mZmcquZIHVauJPIZF1f/b0OHksCxciUVCNPWpnt2dYWuszOaNm2KM2fOoFWrViREjRlDEVFubrR2s7Op4v8XX6Ddjz9CR1MTGSdOcNi8mbyW70L37nT+LFhA66+2JSCMjQGOQwtnZyR06AD9Tp3QXF+f1vxXXwELF0K4fx+FgoCS48dhr6cHyf79ZKB/8w1FKT15Qnnndnb1kSLFxdC4fRt9Q0NF0wMHGBijsOLSUrrvvn0p9eCXX6iQYu3avH37tuDn5/daWo0oioiNjUXy9u3of/EiglasEHT09FhlZSVKS0vZxEOHkN28uRjdvz/09fWFmTNn1hsLc+bQ77AwtL1+HZUdO1KkXHw8eTIHDaKopoAAxPbqhd+srbHo4EEOOjr0jK5fh4GdHQwcHDBhwgQcPnwY6ufOwTQ8HKMCAzkAKElLg0ZNDawGDEC2XC7cvnKF9bl4kd0uKhK7BQSw+76+EFu0qO9MIgjQOXYMpbNn8xKJBMnJybj244/QqqhAYJ8+4HkeHh4eSpsVK3iEhwNXr0Lw90fixIl4YGEBw5oazn7LFui2bFmX5gCeB7ZsAX/0KNoAgKcnQ1QUf19NTTA6e5arqy6/dStFIGRk0DpbuLDO8zwyKop7ZmuLW3Z2SHvyRFR/9kyozMvjru3fz9asWUMpQX36ADt3Qpw9GwWOjjjcvLnSqVEj5pCRwfnu3cvOP30K+169YHLlCoyiolDQvbv4PDwcpqamzMnJiSJT2raluhhbt9JY1CJp4EBcuHABEwIDYVBeLkFAQF0EgIaGBtq1a4fq6moxJiZG8PDw+H2D0Nq6ruDgB6OyEuLBg/g5LU3Mz89nGhoaop2dHRs1ahQaN27MAKonUFZWxoeFhaFbt271f3vgAKQnT2LAq2v9DfTr1w8dOnRARESEcPXqVQ4AkqdORau4OLTv0QOaAQEkWu7aRVFl27YBYWGQSCTgeR7JKSlwDA+nNDqAxMqePVHl5oas4mLcDAhQDs/I4DFyZH3ngFcgCAJ+/fVXgbOzEzv5+vL47DMSJWo96PHx8eKTJ0+yZTLZ3D/24P738ZFsf8RbWLt2rZpUKt2lpqY2sUuXLmre3t78/1UBtD8LqVQK14gI/JyRge7btsFKTe2/f7L7+ZEXIz29vkjOvxkmJiaYOHEiLCwsmL+/v9Lf359fuHAhpO7u5PX7O4i2KmR82zYyKm1t6/Mm34HHjx/j0qVLyqqSEt5WLhdRU0OFXlxdKU/03wkjIyJWCgWFfv74IxHRP4GKigps2bIF6urq4ogRI1jLli3/+vWpisu80sboTZSWlmLnzp2QSCSiKIqwsbGhXq6vIjSUfh8/TgLDqlWUN/fNN3TQr1xJUQ6TJ1P+awPo168fO3PmDMrLy6H/Sr68KIr45z//KWRlZXFO8+fDfeRIMra3bydP+Vdfvf1hhob0+u8JUQcP0r3v3UuhjbWGmImJiaBZWcmdW7kSM0pLSejZvp08iKrIjT8CG5vXPYTGxkQuAgNpXs+bh6dFRTh8+DDU1NREExMTcdq0aZw0IYFCdA8fhtewYUhLSxOvXLkiTJw48bVnz3EcLCwslFFRUbzfq0UIVdWpFy0CvLygdHPDyZ9/Fq29vDB33jyO8/HBC0tLsU1ICAhPpyYAACAASURBVLvWvz8WLVrE+Z86BVZcLI5ijDkuXCjB+PFkeI8e/dZtyS0sUKSvL9YcOcLUL1wg47ljR/IuFRcDjo5wsLKC1YsXRIgaqJz+FvbtI1LyKrKyiKiOH/9a6owxz6P98+dKjcGD+fO+vjBwdBR6d+jAMQBKNTXIW7TAPT8/pVVhIW+WkkKCj74+qqurAQDjx4+HtbU1EwQBiYmJsLa2hr6+/lsKikFtpXLu4UMSOSdMaPja9fXJC/TiBSRdu8KmbVshPT2dc7CxIc9bZCTQujUYY3DLycGJigrc/eYbtLtzh7Vp0QLpcjkCdXSgyMvjoqKi8BbZ3rnzbYGH52ntrlpVLyhu2lQ379u3b4/Tp08jNzeXvGM9etSfFzxPe1LTpiQGAbBeuxZaz56h/NtvofvLLzQWDeW1tm1L4z1uHLW343n6Ti0twM8POpWVaG5iIiYtW8aaCwK1fZJKgcBAqC1ahFYzZ+KcvT2Knz8XvTU1Gby9KRrm4EEibjdvkng3ZgztF82bg7t7Fzaamix26FClz+ef87C0rL+e0lLaVxcupDny1Vd1e5qRkREUCgWysrJQWFiI27dviy9zc1lTHx80+v57LDYxee2hVowYAbG0lHnJ5TCztGyYhHXrBoHnme6VKySoeXhQlMChQyRsrViBB7GxaOvuLqr5+TFs2kQigK5uXTX36upqSCQSNO7Vq35cr15FaVAQgmbPFqcVFTHf69c53zlzgNJSLCwrYy9cXHDO3h6DDx5EcXw8ajZuhKGTE3KPHgV3/TrcPD0FIyMj5qJUsnRHRyApCR4eHvD19aX7GDMGyMuDYtIkyCsqMDA0FJKMDEjbt6d7+O47ErxyciBGRSHexkaoYgyOTk6coZ0dUmJixFJnZ5h36kTzJieHxMq2bek5VFXRXAgMhPXYsbDOzaU5CTAcPMgXFhQgVkeH2lT5+NA4u7pC9PbGZ87OkA4fzkNVFKy8HD0mT4burFnQLC7Gb4sWodzCgiEtDQkJCcqLFy/ynrq6ys7ffsvnjhmDphyHKlFESVYWbt26pUxOTub8/PzYZS0tcejOnUzb2JiiHl6JZHN1dWU3btzgZTJZw61hVcjLI4/6w4fvfIuqm1NdV6cBAxD59KlYk5uL5StXQiqVvmU4W1lZwdnZWQgPD+c0NDTg7e1NLyxdSiQ4Kor2jnekaRoYGGDAgAGcr68vTv70EyzCwhDerRtkxcXwDQ8nx1J0NIldwcGAQgEtLS0YGxvj8q+/wu7kSfBLlpBtNXYsEBKCxt9+i4n5+Xjcvz9/y8MDsXFxKAoJwZgxY+DwCum+fv26UJCbi89ycnisW0dzv3t3oE8fFBcXIzAwsFoulw9cs2bN3xze+N+P/3r+8RF/L9auXctJpdJfzc3N+4wYMULjnUVf/sMxu18/aOzZgwudOomHz55lqvZMvXv3rt/c/hthYEC5oseOvd7D+d8ILS0tHDlyRHj58iUHhQKSFi1o0x037q9/uCBQf08HBwp1/ECR59qpU2J5TQ0/JTUVZnfvMqxfT56S/0tIJBR+2bo1PR8PDzIu/wDy8/MBAEuWLGF/WyHCjAzy9DeA7OxsBAYGCrm5uez/sffeYVGda/fwevYeytCGXqQKCCICIiKKBQR7j7130WOLJsbEmIRDosnRxB5bVFRsiF2xoyg2FFHBigKCghRpUgeY2fv742YAFdRz3vc9v+SL67q4TCh79n72U+617mZlZSWamJiIcXFxfFJSEr9+/XqhTZs23Dvt9EaOJGJWXk4Kt0JB5JvjyBB++ZIiE2ramdSHm5sbDh06hMePH1M/Yk1NKJVK7N69W8jLy2PffPMNebyXLSMCP2FCw57rzZvpc95uY6RCYiIZicnJ5K1Q1XIQBCAuDp2uXePcU1JwTaEQMXcug5/f/yzl5PvvqUZAfairA7/8gqh165ReXl78NT8/eA8dit69e1NYMUDksG9fmjMAunXrxtavX8/n5OS8ExbbuXNnft++fejSpUtd0Z/KSirS9tNPgKkpMszMkCGXM+vPPycv56+/wlJLixn++iva/vwzsHAhBvfrB7RsyXDgAIVnrljR6GPJZDLc69aNPSwsFGYNG8ahqIgIpYEBUFgIhZYWcgwMOBOOg2Zc3IfJtigSUezWra6exosXZHgOHVonUlVVUbjw+vXo0bQpL2RkwC8vD6GhoVxsfDzMzMwEDQ0NTtquHXhjY/60uTkmbtoEm/h44NAh3Hn6FBzHwcrKChzHgeM4tGrV6sPvMS2trj99Y5BIKIIlKAg+R45wCUePKp2++opHdnZdGKZcDpviYkyaOxfFv/wC67Q0qEml0L14EcY5Odi8eTMV8nwbOTnkSY6IePP7+vokqKxeTWPcoQOJaKtWodLQUATAioqKiGwPG9ZwVFcN0VCXSJDi4AB1iQS6u3fT3nv6NOVn9+377rM6OlJaxZIl5NXKz6ev4cOR2KSJ4PivfxF5OnCA7js7G9DWBispQeLy5XDnOAY7OyJp48eTt/rBAxI1ZDJamwMHEhGws8Ph7duVNjY27A2iDZDIFxJC637/fmDpUlRbW6OiooLbtWuXWFlZyTQ0NASpVCro6+tz/rdvM53Q0LpewfWg3aIF7GfOhD3PU5RAfVRVUdTWjh2I79NHsG3XjjOztCShoUcPIv25ucAPP6D38+fY36MHvHV1oT9jBhWMcnevnQdPnjyBvb29UqdNGx5ubuQpdnGB5pw5yLlxg101MBA69O3L4dQpSg04cACWPj4IVldHTLNmwt0dO9iVtWsZNDUxevt2DBk8WGjeqxfHTp5EZUkJ9j14AEtLS2VAQADPRJFSEEpLgepqqEulyBw1Ski5cYPTu3ABPWvyb8UZM3B7+XIhPS0NRcnJnG1iIrvv7c1uxsaK9vb2QopSyTdt27YuPUpfnwRDV1dAFPE0Lg78okWQTJ0K0+vXEXnsGIqKikQzMzPW+fhxnDMxqR9JQuPh7Q1h5EicDwhAgKEhNF68oHoCOjqwGzWKzhRdXfT78UcaX09PYMcOPjMzE9eOHOFe6uuLry5dYtvGjgW/ciXU1dUFfX19zJ49m+no6EC/uJgV8jw0e/WCzrNndB5lZgIeHtDX14exsbFw+fJlLjAw8N11UYMzly4pPYqK+E0hIY3+TkPoduYMG2Bn1yiRNzAwwIABA7iEhAScPXv2TXuUMTrjxo+nM/M9UFdXxygPD1QuXYprEgmeu7jQXFUq6XlNTEhos7cHTp9GYGAgdmVlISE4GK2trBC/b5+YtmmTUP7gAZQJCcwtMpLLMjbGXTMzKGtsJ3NVzQMA6TdvwmzOHG6Gmxv4uXPJCbJgARAbC0EQcODAgXJRFJcGBwff/7cG7G+CT2T7E96AmpraSmNj4x6jRo2Svq+QzJ8a589DlpICPHiAoTo6rLq6Gg8fPkRmZqYYExMDNzc39j8Oxf1/BW1tMnRsbYko/JcrwcfFxeHMmTMAwLVv3x5+nTuDk8mIIP9P8Po1GZW9epGny8Pjo8iOUF6OqCtXMPbnn9n1IUNE61272J8qL1+VO37kCOW5LV78b70zVaX9xYsXw8jISDlz5sz/WS6Evz95Mur17gSosvXmzZuFyspKrmXLlqK7uzvn6enJeJ6Hh4cHXr58ifLycu7s2bMwMTF5s9dzcTF5p06fJiVdJiMCEBxMKQ9VVWRIKxQUFjxkCHl8auDp6SmeOXOGnTlzBmpqahBFETzPs+nTp9dW3sbgwWQ09O9PnpG38fQp3jHGARIAVD1YFyyg8QfIQE9PJ4NGQwNYuhQ6kybhYVgYS7p7VznI3p63sbH5z8f56lX6zPr5tgCeJifjan4+rxwyROxlYcGM6hM5QSAjc8WKWk+koaEhRFHEzp07MWPGDNQXPx0dHWFtba0MDw9nw4YM4bT69SPysWULeTx5Hjbt22Osjw/27dsHCwsLuNW0PJS2bUvGGGMk3o0eTWR35kwizm8VIFTByMgI/fr1Yzt37mTP/fxgk5gIVFai7OxZ3MjOFkRXV65g8GCh08qVHLZuJbI4a1bja5kxeg8qZGZSSkr79nVEOyqKai1YWNDzubiAA2BhYYGFCxfi1atXuHPnDhcfHw9F8+YYdueO6LZwIdt25gzcHB1hsXWrMicvj9cwM3u/J6shLF5c22/+gxg/HlerqpT9v/mGF5csAasv9lVXA5s2wfj4cRjb2VHI/S+/gOd5KJXUFefEiRPv5pGqqxNZbQhNm1JIeXAwEBaG6oUL8SQ6GpEaGqxPnz5wcXGh3+vdm9ZOWNi71xBFvPb1xa3KSrTp3p0EDlGk/PvoaCJYkZEkfqi87osXEzleuJA8tosWETlwdYX2tGlMumcPxBs3wC5cQNHatSgzMoKlry8exsejeXIyyouKUHzqFPS2baM5n5tLotymTTQXf/yxNpJJoVAgLy+P7/s26QcoP3baNPpvJydg+XIUeHujrbe3aDBnDmvRogX09PQ41OROF5ma4qRcjn4lJQ2mZWDUKPIIqiAIdZEbNXn1VTKZaL94MeXZ/vOfNC9TU4ns//orjB89gvmLFyw1LAy2r17ByMqK9v6yMmDAAPRZsgQlZWV8hSBAunEjCUgcB5MrV9A3MhJ2mzZxyM+n3NvCQhQdO4b9Bw7AqkcPsZjnkdq6Nft882bI9+2Duro6ZA4OHBgDduyAJCAAyMnBpEmTeC43l8bG1ZVEzgMHIJ87F65jxnBaqam4PGgQcjIzcXjxYvQ/ehQx1tbwKSvjWpWXw8bYmHW6fRuxX3zBsrKyeOTno+zUKVRs3Yqy2bOhNWUKtL77jkSyI0eQvG6d2OP4cbZREPBKUxP6+vqijY2N+PLlS/FRbi6X5uDAqqqqsHbtWrGqqoqVlpZiVloaXm/bJt4cMoSl5eSgf2AgHowbh6pWrdB50SJUjBgBs+Bg2gcfPyZR4osvYPnrrxh67x5D797Q7dAB302fDjEjAxKJ5I1D1U4ux4rJkwVpaio3ffp0sF27qNZAZiYgkaBNmzbclStXlIGBgbxCocCxY8cgCAKaNGkCnudx7do1UVFaynX67jssUs0xvFkfpCHxW6lUYlNODiYpG+90VVJSgtDQUBEAa9mypaCan7W4f5/EscREEibeA87XF9K0NPhGRwvCjh0iSkp4PHpE5/DixcDmzaj+4gtcPn8eD9PT4fHsGSw2bcJ1Z2dEXbjAHBwceIlEAllEBORlZUho3x4TJk5Eeno6oqKi8PTpU3iVl0MREoJLTk7w7dkTWiEhtC/cv0/h6owh6ty5qry8vASFQrHkvTf8N8Ynsv0Jtfjxxx9H6+joTBkzZozWX5ZoK5UU+hMcXOu9U1NTg4eHB9zd3dnLly/FNWvW4Nu3q+/+laDKnZPJqArkfxHx8fFKa2tr/sWLFzD/6isxQSbDk6AgpSI8nOno6MDCwoJv06bN+/tw14cgULioypOoas/yMX93+jSEIUNw/euv4XDtGgJbtfoTsey3UBNZgfHjSXU+ceKj/kxHRwdffvklCgoKsGXLFv7QoUPioEGD/rPnFEXAyQlVtra4cfkyHj9+LLZp04Z5enri2rVrMDAwwIQJE8C/VQHR0tISlpaWyMvLw5UrV+pyhEWRnqusjDzGO3e+We0/OZlIxrFj9K9cTl5QT0+cDwlReu7bxxs+fIj+/fuz/Px8GBoaCq6urhzP87C2tmZvzCEHB/Iw/v47hdbeu1fnnY+MJJL4tmcwLo6MtPnziRxoaNC4P3xIBpy3N+VPu7oCjIEHMGPGDBw6dAhhYWEwMjISAgICOOf6lZk/Fr6+lNNeg/z8fJw+fVqZlpbG9+jRA+3ataNCNNOmAbdvkyc6M5OM/W3bKESzBjo6OiguLsb27duFGao+qDUYNGgQv3z5cixfuhSTdXVh3qIFigoKYKimBmzYAJaZCfuZM+Hg4KC8fv065+bmRnNn6FCq4Pv6NeWeiiJ59I4do9DYgQNJ8NLWJpGosrI2nNs+Lw8DL19GQfPmsAkIACwsoK6tjQdTp3IdfvwRga1bcxg+nPJwhw6ldz93bsMiU/v2FBXx+eckgISE0LPPng2kpiJv5kwkaGoKeWZmYoaaGoTISCYeP84YY6IoirCyshL9/Pz427dvQ0tLSywrK2PmDx8yg4wMjBo1Cjk5OSgOD+c6792L9MmT//33qFCQKPHsGRGs96C8vBwZOTm8JCoKbPt2mqeDB9N4RkcTiTQ1JWHo4cPasG9ra2uoqamhW70ewbUwMqI2PjXIyMiAtrY2OI6DIAhI09WFmp8ftEaPxn5fX3S+fVuYGBjIWdcn7SdPNpzek5MD9O4NZUQE5Lt2ISUlBa1VocGqcyU1ld5beTnVLejWjUQrOzu6Lz8/IuFJScD9+2g9YgRXaGcnXjQ3R6mXF1OEhsLq+XO81NAQ3W7dYk6iiMvt26OA52E5fjwcT5+ua7E3ezatWU9PKo61ejXu3LkDbW1t0cLC4t0978IFKp61dCkA4FFWFqJ698ZwLS1mmp//ZhjuH39A38AAQo8eytWrV/OTJk1Ck7fb8XXoQOO0cSN9/pEjlMYwbBgR6w0bIHFywp01a+DXvDmdwxs2kCdSJqP7mT0bnwHYpKWFZ8bGwuBlyzh8/jntQ02aQO2zz3AiLEypzRgGHTrEIyiIKkObmODEyJGira0ta5eaCvu5c4HVq5EeEIDekyej+OxZdmrMGGZoZycqZ8xgJnI5CZeRkSRWzJ4N0dMT7NdfoVy2DJyfH4kskyfj8qJFgqSigvFjxzKN0lI8nT0bRZcuQSsoCC28vXH822+FebNmcTh4kPL5t24FMjPReeZMlAYE4NmpU6h0dkborFmKsqoqrmL5cq6FQiGqt2sn2P7jHyze3Z3rHhSEGZ6eECnlhjHGGPLzgfv30W7pUmTn5CA+Pl58HhnJellZ4fW5c5DHx7Ox58/jZv/+yLWxgW1ioqCIi8O+uXPFl9nZ/NdyOTTt7UkoSkyk+eblReN19iyMPT1JIHl7bsfFAePGYdydO9y6P/7Aq1evYDp2LO1FT58Co0ejxfHjiCwq4kNCQqCurg49PT2RMYbk5GSmo6OjdHBw4Pp26MC4oUPrcvY/gJrK4XhlZga5jg40o6Op9eVbqKiowOvXr9lXX30FLS2tdzdFnieBzceHhMj37TuOjsCGDXBxc+Ny7t2D4qefINHRIafFiRPAkyfYmp8vtHj2jE1++pRp6umhZNw4oGVLLBo1ChzHIW3LFrxQKkXf7dtZKyMjaGtrw6pJE3R49Aj44w8I/fvjqrW1ILRuDccpUziIIu1rY8cC3t5ISEgQb926lV9dXT0gODj4b99PuzF8ItufgJCQEI7juOkSieS3UaNG/aUKob2BlBQ6/G7ebDBMljGGNm3asKNHj+KD+Tp/dowdS4bGfxm2trb8zZs3oaOjI7h89x334NUryGQyiUQiQUlJCa5duybcvXsX06ZN+3DfZ7mcQgHXrSNDZ9u2j7uJTp3I87FpEw4GB8PL1VXp0KrVX6P63ZIlREKfPSOvxkeE3kulUlhaWsLKykosKCjAgQMHxGbNmrGXL1/i0aNHgq+vL9fuIyILhIsXcSQwEPc2bYK+vr7YtGlTdvLkScTGxioLCwv5gIAArqFOA2lpabhy5YoyKyuLt7W1FWQyGVernickUHuixnJa1dSAwYMRZ2OD9OPH4R8QAENLS/CHD/MsK4vy4nr1QqvAQETq6HAaGhqKnj17NnwuPXtG6RNL6onnVVVUpEnV7gogw//bb0nZ/+c/ySC5cYOMJi8v8tLNnNlgezapVIrRo0fzxcXFiI2NxeHDh8EYg6ampiCKIlNTUxN79erF2b+vZRpABlNMDHm2/f0REREhVFZW8kFBQTAxMaHfMTcngeL+fZoHQUFEODU03rhUdXW1CIC9evWKKy8vf8O7raOjg3mPH+NWdjYiBgxAVWioIJfLudZPnwq97t3j+Jqigk2aNOGfPXsmQBWubmVFZPjQIfKmb9lCRbgkEhK8Fi4kksUYRQaUllLuaXU1UhMT8cTEBI6mplSBVyIBb2WFcnNzWIWGUoErFxci6927k5e9uJjeydt77vff0/vJygIuXaK/GTmS0gL27sWjdu2Q7eSE9p07820ZA2MMPM9DFEUGAAcPHhR37doFd3d3oW/fvmS4fv01UFKCZoaGaNasGdCxI0sZMwbNFi/G/dGjhZa7dnEfHf2iIl9vvZOGcP36dbRLS1Pq3bnDY+VKipoYNow89ZcuUcSAuzuN7VtitkKhgFtjheSsrVH60084qqamTE5O5hljUFNTA2NMrKqqYrra2qKvpibGpaczi6lTOaxeTQKTCqdP03O83Xru+XOgVSuYOjhAV1cX169fF1u3bv3mwNjb19VJmDmTPPJbtpBAumEDRR1cvUqChKUlWGIiDJydWauEBFHn4kWIbm7g7eyQ7eXFHowfL7qPH8+8qqqwe/duXExLw5gXL9C0adM6L6G3NwlPOjpAeDhuZmUJLjSH331hpaW1Vf+zsrIQEREBqaWleKKqChNDQxmeP68LGb9wAejUCWNmzuQ3bdokPHr0iDVp0qTummVlJCjs2UOi0+efE5FdsoTmZ+fOQOfOeL19O4xKS4G8PAg7d4JTdVHw9aW5HBsLtGunKioogjEqCHbhAq1vLS0MmDqVX7VqFbr07AmDggLg1i1kr14N19u32Z2qKuTGxaGbkxNcIiLg4e8P5bNniP7hB/Q8cUJs0bQpwy+/0OcEBZGImJ0NvHgBiYMDPDMyxNcPHjDjoUOBadNQUlKCjOfPOYesLJR89pnYxtCQeUyahJzsbKgdPw7D5s3R89dfOSQlkTg0cCAJa2lpwPPnYDt3IqFLF+WYVav4NjV8Qf7bb8gXBJbk4MA7LFkC2/nzwXfrBjRvDrZlC4kQAKWD8DzAGMzNzdGnTx/u/k8/wSIjAwaLFpHYU1EBe1VtiDFjONy6heZBQViclYXcPXtgM3gwpSIsX079q6OiaF9q04aEwIZS6by8gLg4GFtYQFtbWygoKOBMTU2pDkHTpkBgIKQmJphsb49Sb28YGxvDwMCAXbhwQXj06JEwa9YsOgQrKz+qfSQAJCUliQcOHGBqampCQEAAp//wIe0bDZBtU1NTaGpqIjc3F3aNdbUwN6caGBIJrdPGoqzmzQPatoX5unWI9fMT8jQ0uECAnnXLFpQeO4aJv/7KqbduDWZnB+zbB73SUrRXRUU+eQKbx49xxdoaFlVVcOQ4ErRdXck+6dkTl7W1hZstWmDehAm0SLOzKQWkZ0/k5ubixIkTFdXV1d2Dg4NffdRg/U3xiWz/zRESEmKqoaFxSCaTtRo8eLDU9APq/Z8aS5ZQ+NV7QsRdXV1x+fJlcdmyZaxz587o3Lnzf/EG/xfh60se4H/8g4ye/xJ69eoFz/x8mK5axXFxcXBjDPVNREEQuKVLl4rPnj2Dra1t423i/vlPysm+d4+I2oc84bm5ZMA/e0bGn6MjqhQKPJbLMcHN7a9BtIG64kT79xMZHDmSCM1HGP/9+/dnW7ZsQWZmJh7UVQ3mHj16JLZr1+79FxBFVPfujeqgIHHMnDnM3t6eMcbQvn17JCQksEePHolOTk7vXEMQBERERMDW1pbv1KkT2np7cwgOJkHrp5/IAP9Alf/S0lKcOnUKBgYGWGdhAWdBQJqvL0r19PB482Zh9r17nI62NtpIpfBZuVKCgoIGe5WiTx/62rCBCMSQIZQr+uABrfvSUvJqxMYSqblxg8hueDh5Zc+de7Pn93ugp6eH7t27c35+fli9ejVMTU05Dw8P3L17VwwPD4eOjo44bdo0pvE+EnbtGkXa+PujuLiYk8vlkL3dSkVPjzwY0dFETLt1IyO/Hqqrq5mPj4+Yk5Mjrl+/Hi4uLlyvXr1qCYqOhwfU3N2VUqmU6969O+fk5ITfV69moTIZZDyvzP39dy4/P59pamqyN0TGuXMpVHv7dhrDu3cp1LhXLyIfXl4NPtbJuDjYqauj1e+/kzgQGAjuyy/RQi5Xytet43dVV4vNPTxYm4ICEtJKSmjOZ2TQ2lW1nLt+nUiagQGRwxYtyFP62WeUlnL2LHKOHIGOmprYmLgxZ84ctmXLFuTUz49XVc2Pjq7tYGDv44Pjjo5wP3yYw7NntSLBR8Hdne61oX7yAK5evYq0tDQkJyejc0oKXyKRQHfSJKozUFREYciZmXRfa9e+U+xRqVRCFEXExcVBW1sb2traMDIyqi3ydX/ePCHq6VPOxMlJ5Q2rfdLaf6dMof20ooI+48yZ2gJouH6dRI76ZPvoUSKXW7cCoKJqiYmJIhoitaoxVYX1V1aSUGVtTd768nKaLzk5gJsbWKtWMGjdmmHQoNqKxpb0xQBATVMT06dPR2hoqLhr1y6mqamJcePG1bY6wvz5wIkTqB4yBAEtWnD21669czslJSWo7tgRUXI55GFhyoyMDN7FxUXIy8tjz1+9Ylixgtb/li20vkJD6Z4VCuiUlTH+/n0Rly4xdO9OZ9GdOyQa3L5NH+DhQR7FKVNIZKoBz3Fw+fFH3FFXFyN79WKDtbXRokULIkdjxgDx8VC4uCA9PV0cMGBA3ca4bRsQFARBELB//36FKIoSlpND1zY0RLKREXxv3ULPbduQ/tlnyL1xA2WJiVg/dy7UDA2Voqkpd7h7d+ZsYQH+yRMSBfLyyOYpLSXRsWtX6M6fL+5r1Yp9JpVCWlgIpVIJA2dnsfr5cyZ3cWGZrq6w9vSEmZcXcOoUKgoL8So/X2nbti2PNWtIIDIyoiiDn3/GXYkEfceO5WvXJQDN+/dhmZEBy0mTsHHZMmUrT08e6uqU/qKuXrd3HzpEYg1AbQgjI3G0b19MVwkgPXrQ18GD5LneuhX49ltwGzagpUwG8xUrKILi9Ws6Y0aNItGiVy/aIwcMAD7/HMJnn6G8vBzqMtXtnwAAIABJREFU6upQT0+nPTQ5GXK5HGVlZZx1/fQiTU0Kfy8uhtVXX9F+17w5EhMTxbi4OG7ixIl1vyuR0Bz6AO7cuSMeO3aMOTs7Y8SIEbQpt2pF+2dxcYOFzmxsbIRz586xqVOnNn5ua2hQkdGICBJG3/1g2i/lclT+8QfShw/nAlT2uyiievZsHDY1FeyHDkWHWbM43L5NIlJCAr3j7duBo0fBeXnBTlOTpc2fL1pPmsQ0YmJozwoNRXp6Oq7u3s2NHz+eohWfPCEx88QJKEURERERZUql8vNPedofxiey/TdGSEiIjrq6eoynp6dDt27dJP9rBZj+26ispMJM//xnw3mb9aCmpoYpU6awkydPitHR0Sw+Pl6cOnXqXzOHWxWemJFRl0/3X4B5x470mQ0QRI7j4O7uLu7bt48JggA7Ozuln58fX1tld/t2Mgw6d6bw0Q9FUXz/PXmC9+6lNh86OrUhtpxCAYDCMP9yGDqUyOLt22Q03LtHpOM9MDExwcKFCwFQWy5BELBt2zahSZMmbyzc8vJy3LlzB1paWvDw8EB8fDzu3r0rvA4J4b6YP/+NQmsmJibo2rUr17WR3u0KhQIVFRXQUFcX2hUUcOjYkd7JrFlElD4C1dXV4DgO06ZNw927d3Hq1Cl0699fcPn6ay5+zRpu+RdfwLNpU6VBQgLTvXGDQ3IyveP588kLyPN1IciRkfR9VQ53r14U6lpZSXPKzIxCs7/8ksjFpEnv9mj9N6ChoQErKyshJSWFGzlyJFq0aMEpFAqsWLECt2/fFtu3b9+4sbRnDyorK3Fs/35lZWUl37Zt24ajaXieogMOH6ZQ3XoQBAGMMdy4cYN98803LCkpCVeuXBFXr14tTNfQ4KWHD4M7dw6dAL4TqKDepk2blJUKBT/90CFUGxryV3/7TRw7diyOHj0qhoWFCVOmTOFRVkaGV2UlEdMjR5AllwPu7uLLHj1Yq40bwW/e/O69hoej7YEDoiQkhLElS8ggnDEDcHJCXxsbXt61K5olJrKs1asFVFXRS1u0iLw8qt6tv/1GQuH27eTR7tqVyG9eHo3B5s21fdJrq/w2Ap7nYW9vLyYnJ9d9UyIhwllP2GCMIXDyZGzT18c/fv8dpunp9PkN5e6+jTNn6L4aJ9uCpaUl62tvz1536ABJfW/bvXs0J2/dopzzBroqFBUVAQAeP36srKqqYpWVlaykpIRpamqKVVVVrEleHhvdtSss+vVr/ICWySgiYf16ItxbtpDBrK1N++bbWLPmjQ4JFhYWuHr16scZABIJ7QFVVUSAVJWevb2JWFy+TN6xmzeJ4DZwNjHGMHnyZJaSkoLw8HD88ccfmDlzJoxrUoiEXr1wZMAABPTuDY3582lN1wgnOTk52LJlC9qfP492T5/i1urV/Ny5c6GlpcUtXrwYHTp0EGFry8Bx1N9+9mwai/XrAR8fdDQ1hWLBAsqNlslIpDAyonV49iwRuh49qCjaixdEuGrOOpP0dJzv2BFP9PRY7169xEOHDjFHR0cqutepE7jTp5H6zTdQb9YMDjVzGN26Afb2yHr6FHuOHVOWlpZKACD34UPo13SXOF9YCPVDh9D2m2/QrEMHlHbtitKxYyEIAniCUFpayq66uKBzu3YUxaemRhExGhokJI4YAUO5nOUdPozN9dauWXY2c5FIcPv2bTx48EBYYGzMYds24NEjxHl5YeDlyzz69KE9tqKCzvaMDHpPmZnCk9GjubZpaSTIcRy12ho5EigpQXlFRe07w8CBFNJ/5Aitcbmcxh0AkpKgVCigFITaSv+oqiIxdMgQ+v8hQwAvLzBBgMvZs3hhbS1a/fgj09ixg4SMHj1ov5o2jbqy6OgA27YhLCxMTE9PZzzPw7qiQuHp5cVnnT/PVMW9CgsLoa0S+FTQ06MQbTU1iJ07I8PWFp2nTasTfAB61ry8unZrDSAmJgbR0dGsffv26F5TcR4A7Su//05C3RdfvPN3Xl5e3J49exASEgILCwsxKCio4XPkxx9pDhcW0lytb6MvWwYolVD06IH1w4YhYNQoqv9QWIhyNTW8On0ahkOHovXmzRyyskigyc+na/bvT/tCXh7QpQs6/vwznubkYMeTJ+KY7duZlpYWysvLERERgfbt28NSJVJv2kReb47DyePH5aWlpdcEQQht8N4/4Q18Itt/U4SEhDB1dfVtTk5Ott27d5f81Vp7vYH9+8ngtrD4KA+hVCrFoEGDGM/zSEhIYMuXL0dwY1WM/8zQ1qYDMDycDKf/68rxlZXkUQ8Pf2+lzD59+nB9+vRBbm4uLl++zIeFhaGlrq5Sz9yc896wgWl9+SWYKtSsIYgieSL37SMDUhXKNW7cG7/2/PlzSKXSBguV/CXAGOUnLl5MB+nGjeRJ+QiPm4q0NW/enIuJiUGzZs2g8v5FRESI6enpTEdHRzx16hTTUFMTpy9fzrGDB//tsVJXV8dnzs5I2buXEyoqwG3e/MF+529DV1cXEolETEtLY23btkXr1q1rC9rMnDkTjDEYGRmRF2jNGhqXDh3IMJg9m0Ktnzwho7J3bzKIXVwob3/tWjI45XISLVJTycN29+7HEamPwLBhw7h//etfOHbsGPr37w+JRAIXFxd269YtsW3btkhISICNjQ309fXfrFVw9y7QpQuSvvyS5zgOGRkZ7xbDUSEujoQFaplTizNnzqC6uhr+/v6ihoYGc3d3h6urKzsRGckOHj8OG3NzQXLtGtemTRtERUWJd+/eZR4eHujatSs0GIPm06fo2bMnA4AhQ4ZwG9avFy9OmaL0T0zkYWpKkQIJCYCWFiL37lUOYIy/YGWFnBs3UBgSIsDRkXl4eDBtpRJNLSyA7GxIjYzEe5mZYms/P3qWCxcAHR0wW1tIpVKkpqYqq3r04DB+PK3luDgKd5RKgYkTKcz/4EHyhPXrR0bgmDFE+rt2fWcP/9DZlJSUJPr4+Lw5rv36UW5xvdZZbm5uuH37tnBFTY0bpKNDobKGhh+OdvjiizfDst+CpaUl09bWFrymT+fxr3/VCYjp6ZSru2RJXbX16mryBNcTAgoKCqCjoyNOnTq11hOam5sLURTZzp07xc6xsYy7fx9XDAxgaGiIRtv/NW9Oa+DmTRJSCgrojPjyS/pvVZrOiRNEiOqtD0tLS1RUVEAQhHf3iNJSWns//kgEoqCAnkNVObm8nDyQTk4kYKSnE1nbt4/EMV9fEhtmzaJ3YW9f+/wODg5YtGgRduzYIa5bt4717dsXXjURFRk+PspLx47xvaKiRI3qasZt3AhBEHDkyBGhefPmzH/4cMZlZsLGzw8AhZIrlUrY29szUaEAKyig+66spD3BwABIT8fBzZvFFk2aiA6TJr35oKNGkTCwbx/Qvz/EpCSkbdsGm5UrwUdFAf7+8Nm6lV83diyaubgIbdq04aKiorB06VIIggAtLS1hzLhxXPHs2aJny5Z1wpqaGvKCgnDXwEA0GTyYCwoKQmxsrBAXFSU6tmzJcwBkMplSoqHBIysLuHoV7sHBeDZpEqxsbQU7FxehU6dOktUrV4pCWhrDmTO0P/7zn3XVp9u0AXge7gCTSqXYv38/tLS0RIVCIco1NblKbW0MGTIEhw8f5vDLL/ReZsyA+ZUr2GtrK345bhxDbi6R48ePKXKoXTu83rwZ/jXt67BmDUVofPYZRQ8xhsrjx3mj+nU6evUicU2hoLF//BiYNQtpu3fjlrGx0unoUf5qTAxaBgdD/fVriB06QAcgj/jRo8C4cZA/fIjUpk3hIZeLsQoFS7t4Uej6/Dkn7dIFhosW0TMnJtLesnYtXnl5YfTo0TDR0UHJ6tWS+LFjlSWvXuH+/fucRCJhBo2J2BoaKCsrQ7ylpZCnq8sCNTRonqi6PjBGhLYRPHz4ENHR0WjWrJnQvXv3d/f1oCASBRpAbm5ubRRJeXl54xElHEdrxd6e9s7vv6/72d69QFgYuF27UN6hA6KjowUxLY1ruX49/pg/H9ZLlyoHDRpEbXvt7ant5NOndJ2lS0nQPneORPP9++HAGLuyY4dy3bp1/PDhwxEdHS0YGBiIXbp0oX0pIoLevY8PUlNTce/evbLq6uohwcHB71dEPwHAJ7L9d0YfqVTaq1+/fpp/aaK9eDHlxRw+/G95rxhj6NGjBxISEmBkZNT4ZvdnB8+TsXrv3n+nWJqPz7uFqBqBqakpBg8ahKzoaOiNHMnfGDUKawYOFNubmor+DZGOqCh6ltBQCo/iuLpq3g0gJSUFpqamSrzd//mvBI4jg/X1a3p/Xl5kOH3kmuzUqROuX7+O6Oho2NvbQy6XIysrCyYmJuL06dNZVlYWTI2NmZpS+U4F8g/i9WsgNhZu27ah2MpK/NndnUnPnBH6qqn9W0XDJBIJpFIpkpKSlE5OTnx9Qmr8djE8VUj6qVP0b2oqGfMcR0ZQ9+5EfoyNKf9u7FgKk505kyIlHB3/1yv0SyQS+Pv74/z58+jfvz8SEhJw7949sbq6mi1WVTevgaOjo9Lc3JwzMTFhRnp6SA4MFB0dHJhHq1aIiIjgYmJiGk5dmTmTSM1bZPvFixdKXV1d3sbGpnZC8Kmp6D9/PvfyxAkkZWayq5cu4eLFi1BXV8fEiRNhYWFBg9inD3mdlUqA56FVVIRpKSlMsnMnnz9hAow2baIL7t8PxeXLyM/L4/moKIzX1UXS3bui3b17bD/AkpOTMWvNGqQHBKDou+8Qr6eH7LS0ukE2M3uDPDo6OrJz586xbdu2CYMGDeJk16/TD86dI2+hkRF5rlUk4auvqMXUWyH5paWlyMvLe7f3dD0olUoUFBS8Ox+1tIgwPHgA1MuFzsjI4AYPHlznkd24kYz89xFuiYTIxsaNVNDtLXTq1Int2rmT9756FZYqb2ZSEr3TvDyqSzBjBn3/iy9ILLpfF3X5+vVraGpqvnEGqdK5vL29hYsyGTiOg+LBA5aXl8c1SrYBEieTkihH/IcfKDS6Tx8K8waoZ/C0aZSfX49sq6urQ1V3QyaTkdB19y7l3xoZ0bXs7GqLCda239u7lwzwefOo+KO1NZ3Jd+/S7w0aRCKKTEYto8aPJzIeHk7G+5AhgIsLRo0YwdZv3Ij4+Hh4eXmB4zjMmzePL548GZHffSfol5ay9q6uXHK/figyMGDjx49nXHb2G9FAlZWV0NTUFHdu386+OXsWGnp6RJyNjemZz58HyspgZmbGlZeXv1vIKTCwrnf0ggVYL5MJeSdPcjpVVeI0MzOm4+cH2evX0DcxEVXpILNnz8azZ8/g4OCAM2fOsJ3Hj4t+vXoxsy1byPtbU0zykY8PKlJS2ODBg6GtrY0OHTpwpzdswI1790TrgADm7OzM371zR9nazIzHmjXgu3aF46tXcPzxRw6Ojhz69sWUmzfZqZkzBeTlcdi7l0STb7+ltTN6NHnoJRI0a9YMgwcPRmRkpDB//nweycnA5MkQmzeHIAionj8fkiFDoJw1C34bNuDhw4esesMGqH31Fd3zmjXA7duoTk/HTUdHzm/TJnpn8fEkeL98CQQEQFlZCQNPT8hWraK0j3btqG3b1q0UUaRUkuhlZoa8tWuFMk1Nfujx4zjq4SGmdusmtIiM5HDjBvOuqRCO3bvpvJfLUTJxomA9aRJnNnMm1OLjkRsTgyuBgQi6fRsan38OoXdv3D9/Ho4xMRCbN2fl5eWQ3bkD2bFjsPrllw/aA0VFRbh586bw4MEDpuXvj8mTJzPJiBG0TlRnD71gij7T13/nGgU1nSaePn3KvXjx4t0IO19f2vPi4ijqox7c3d3Z9evXUVZWBqlU+uEDKyaG9qiKChLzVHU+QkPB/fYb2uzfr7TavJk/PGIELqxfLwzv04erPQcA2of27aN7ysggweyLLyikvmYucwAmTpzIR0VFYRsJc5yWlpawevVqhY5cjkGrVklipk9H2fPnSE9Pr1IoFGOCg4OLP3jvnwDgE9n+20JTU/MfnTt31v5LFwl79owO+0mTPqqAzbt//gwcx2Hs2LF/TaKtwo4d9G9WFnn3/y8wdSp5m9ev//i/uXEDmD4dFseOATduIMDODkkbNohKpfLN8V64kMKaZLI6kvnbbw1esqioCI8fP4a2tjaSkpKQn5/PHz58WNm1a1e+wXYuNSgpKUFhYSH09fVRVFQEAwODhtu//L+CTEbzGSDjNDj4o4qnZWdnQ6lUori4WAgJCeF4nodUKmXTpk0Dx3EU/rVpExn+H5ujCpDna/duYPBgsN270cHIiLkWFeHUqVPswIED0NPTU/bt25dv2kAf5fDwcOHp06ecnp6e0sTEhM/KyhIEQeCaN2/+74si9vY0v5VK8pjk5FAemyhS4ZiSktp2Lv+X8PHxwfnz5yEIAoqKilBdXc0A8pb27dsXCoUCKSkpePHiBf/ixQs8ePBAIZfLOZmhIecvk8HZxQXe3t5icnIya5Bsh4bW9f6uh9atW/MnTpxAYmKi0LRpU6oEq60NTJgAYzs7HDp7VhAEgff19RV9fHxY/eJpeP2avJzJyRSG2KcPuAULEDZuHLLMzdElJgba2trQr6hAyW+/ic7NmsGoe3eGlBSYrl/PEBmJ73bvhvzbb5Hbsyd2nzsH7QsXlLa2tnyvXr3qPqek5I32WC1atOCqqqrw7NkzbN68WZg/fz4Zk0FB9AtyOQlLgkBVuTU1yQj09ibinpoKzJ6N+59/DkcdHVh98QWHo0cpmkEmI1HVwABgDBzHoUmTJsK+ffve8AyDMfLivNXr3MzMTJmZmck3b96cokhatCDD9dYt8go3hgEDGo2UsGEM8//1L6yurISoowNlcTEWhIWBX7SICFxNGzcAtK9lZdHcvXcP6NMHUqkUb/Qhrgc/Pz/eT0MDWLwYJXv3Yu3atY3fowrTp1NBqZwcIsWtW9OYV1XRuF29Wue9qwc1NTWBffklhyVLyBu/axcZ5V27ksgQEAC8XdE9JYWiTZYvpzSOyEgiZiNGUNhvYSER6u7dqVjclSu0ljMzSSyrqACmToVaQgJspkwRjQ4eZFEZGcquwcF8dEwM0tLSMHbFCj7xiy8gvHyJl0+fgnNyYrGxsfA/fJiI0OXLAAA7bW18/eABu56RIeYtWcIsVdFT/fqR1z02FggPx8vOnUUB4KP09BAQEECe/KlTyWtoZQUcOIAX5eUQysq4OeHhuDRnjiCPjORTHRxE91On2KAFC1jY5cusU6dO0NXVRcuaSJ/+/fuzPXv2KKPS03l/AwMc/PxzpHt6CoIgiNX6+tyAkhJoq6szANDS0kIfCws8qK7G1q1bYWNjA6vjx3l89x0JUd26USTB0qUkYISE4O7z5+Lr7GzyRH71FUUYlZfTHLawoHoIX34JANDU1ERpaSkvCAI4PT2gvByMMVjxvKB48IA7Nnmy4H7nDpd8/jwYgKpRo6CWmUm2lFQKTJ2KvOBgGDZpQjUCXFzo69Ej+qzJk/H00CEo7t9HQUEBNK9ehfatW2CRkUTi9u2j+TZ+PGBpCb3KSvGliYn4OimJjTQ3Z/j+e16Rno7bTZvSPrBqFRG/o0dx+vhxwSctjeHWLaiHhcF39GhOcHPDMV1dbLl/H152dkLV7dscUlLEmNBQcVDLlpxDs2a0fzbUIq4B7N27VxAEgfPx8UG7du0oterAAVonv/9OJPnIERKaGkll6dixI9zc3LBq1So8ePCgjmwXFdFZ7ulJ8/PMGbr2q1d0PSsraGtro6xGAHunjkdDsLKifcPenvYOdXXaN9etAxYuRLdBg/j7p0+LnTt3Rmdvbw6XLpHgOH483c/y5eTM8PCgqICNG0kkayCNr02bNrha016zvLycE5RKzquwECkrVkDP3Bx3Y2IgkUge/fDDD6c/arA/AcAnsv13hryysrLxsMY/O1RtKu7cebfC7UeiSZMmEAQB9+/fR4eGqlr+VWBsTIfVgQNkePxfRCo0aVKbR/lBpKaSZ8XRkQxsK6vae6qurhbv3r3L+djbQ2f7dmr18+IFGV9DhryjANdHQUEB1q5dC0NDQ0EURUGhULDWrVvzr169YuvWrcP48ePfzLmqvZ1UhIeHQyKRCFVVVZyGhoZQWVnJ+fv7Kzt27Pjn8Yqr3tuyZXRQnztHY95IcajExEQcOXIE2traQnl5OdevXz/o6urC0NCwrjCdQkHEvXv3jwurfvSIvCWjRlEhlJoQfgbAwMAAI0eOZDk5OXj06BG3a9cudOvWDW3btq0NPc3MzERSUhLn5eUlmpiY8C9evFB27tyZa926dePF8upDoSAD/OBBIlUFBWT0f/01iTepqeRlO3aMxkZfn0jTsGFkoP4ftCxU9bkGqCaBn58fOnXqBEEQasPG1dXV4ebmVr+iNP3A35/eY+/ecHZ2Znfu3MHGjRsVQUFBdTUyfvqJjCaV2FIP0dHRgoeHB9e7d28OlZUU+bBpE7BoEU4fO4b8/Hx+wYIFkEql7y56Hx8y2FU5u5aW0OzfH56lpXAqK0N0dDTU1NRQXVWFXgB7JZWias0aqAMUtn/3LviKCmi7usLaxATK06ehpaXF6+rq1q4zURRRlJUFSXY2dEHhz9u2bYNSqUR1dTVnbm6uwNtnzMuX5O1R9eGOjiby7e1NBmlKCuTGxijR0UGndu2gqa3NcPAgkbhbt8hYXLYMmDkTzNkZg4cP55LXrUORpib0RZHChvv1o/kyfjyFi9d4pnx8fLijR4/C29ubKkb7+hIBnDOH1lxjVX/nzqXrNAQLC6hv3Ih5w4fj3M6daLViBZiaGoki9Yk2TSDyUC1bRtFYffrAwcEBpaWlTKlUNrxGDAwAKyswxqBQKLBs2TKB4zhx2LBhDfeC5zjy5CYnUwFNGxsaOx8f+t7pt2zkXbuAixeh4e4uSI8c4eDqSh7Oly+JaDTWprCykt7HggXkwf3xRxJjQ0KIqISG0vNfvUrn0vjxRNSmTydiNHcuXad7dyA7G58xxgoyMxEfG8vHdugAu5wcpAQG4n58PJoNGACNadPguWoVOm7Zgke3bws4c4bmVXk58PPPwIgRUNjaItrKig21saH9VBRpLuTmAuPGIb9PH7iOHcs6P3iAXdraQkJCgvjlpEm8GBuLC7duIWHHDmHK+vVcmJYWmrRsKUq6dmUDBw/mkw0McDgnh7W8eRNNqqsxMygIWRUV0F21qt6wc7WdDLIGD4brqFFI9fLi9Pr3hyAIcLxwoa4QIgCNVq3g6ePDLp0/j5y0NAy/cgWFSiX0RREsN5ciCXx9aV5qacFs3TrmfOwYQ1ISrRU3NxKB7O0ppHzPHmDPHhT07Int27fDy8tL4DiOg55ebbE8KyMjbJwwAcWpqVxhnz5ovXIlPr93Dw+OHcNLe3tU3LgB56IimJiYINfKCt6XLtVGxgCgTiB//AGIItKdnPBaRwc7TU2VxcXF/KwZM2D09ddEnquraS+eNw8QBDhZWPDtS0pwbsECjDMwALS1kfL772iyYAF5y0+dAnx9EVVZiWdOTqyvgwPDb7/RZ9vZgUtJgbWGBvKaNYPOwoWc044dUC8sZJgzh+HYMYpOed8arYf4+HixoKCAmzdv3hudHQAQgQ0MpCgjuZz2b0Ggn0VEkOCUkwOsXo3KtWuRM3AgAqur0XLOHPrb69dpvv/6K625xESybzIySNCprgZCQlC6ZAk6GRrC28sLuhcv0js+fJhEIV9fqvhtb09ntsousLCgfdPEhGxfX1+KYpkwAdy5c2BKJWt19ixF8+zZQ4R69myyv5yd69qPAnTmnDhBa7VeTYLS0lJs2rQJHMfh+++/R1paGl4FB4sm169jr44Os6isFCQSSalCoQj84EB/whtgHypA8gn//0RISEhvS0vLvVOmTHm3VOKfHQoFVXtctoxU9f8QxcXFWLlyJfT19ZX/+Mc/+L+0l1+hoNC8ESP+d718UVGU67d794d/VxCo+ubEiWRo7tz5DvEXrl3DgT17hAw1Ne6LkyfJs/UxJAzAy5cvsXnzZnz//ffv5BWeO3cOt27dwrhx42BpaYmCggKcOXNGWVVVhczMTD4wMBA+9cKoVQS8bdu2YklJidCxY0fe5CMLfv3XMGgQHbbbt78xjjk5OcjNzcXx48dRXV0NfX19MTAwkLm6ur6b39pQVe+G8Po1vevQUPJuDBz4wffy6NEjREREQE1NDU5OThg0aBB2794tVlRUoNGCL/VRXU2GS2QkGd/h4RRie+QI8MsvZCD27EkE4dAhKjYjk9G4qEKuIyOJPGzZQkXniopItHm7h+5HQBRFKJVKPH78GK9evYK6ujocHBywbds2VFVVwd3dHZ/VKyr1UVAZnTV4/fo1du7cKRobG4u1lWvnzqXK5TdvvvPnYWFhUFNTU44cMYJHdTWF6H73HaCujszMTOzcuVNs37696KfKn1ahsJA8Xb/8Qh6mV6/oMzw8ACsrVFVV4cHjx3B1dcWTJ0+Qtn+/2DYsjKVOnYp2gYHkITp6lD7v5ElcunRJvHjxYu07NTMzEwwNDblXr14JRvHxrEBfn7kPGoS4uDjRysoKXbp0YYmJiQh4uzaDKNK1+/cnQi+VAtu2QTQ0xI5Jk5TlEokInkdhYaFEoVDghx9+aDhnWxDIiJXLAZ5H7Jo1QrZMhoHGxhweP6Yc8G+/pfDLpk3JA5uVBTRpgpUrV4pWVlZs6NChddcrLaXKxCkpZCi/nYpw4ABF4Dx9+ub3Y2JI+PntN6CiAuUuLnjYpAnaREV9XA2NI0eAEyew1NFRnDhxImu0G4hSCXAc8gsKUFlZidu3bwvPnz8XZ8yY0fgiTUoisdPGhgjSnTtE9C0saE5aWVEP7mvXgJUrseWrr8TeJ06wJtOnN1oM7g0cO0YezN27KbrB0ZHEMC0tWq8pKUSsVdWYVa219PUpIm3ixAY9kenp6Xj6+DEq4uLwsLgYPc6ehYZcjietWqHdlSuitLyXKlplAAAgAElEQVScFS9YAKuHD0lo9/YGLl/G2cBAMe7lS6ZQKDBv3jxV+y06Y5o3R1FxMbZt2yYayWTCOGNjvqRFC1ydMwfdZs7EvqIiMSs7G518fZl2aipMu3eHiYEBjYNSCTEsDL+Fh8PCwkI5ZswY/kZ4OOKuXsU0mQxqDg70LG/j6VMSLWNjaS998oTGoqZwF775BhgzBsU2NriwahVyRFGZLQj8lM2bcWvIEAQGB0Nnzx6gvBwVLi6IvHAB3ocPw6pFCxTv3g3tlBQULV+O8l9+QdOmTek5g4JQtXUrfjt4EEOHDqXWd4JAhHbHDuQOHIgkNTXBbvVqztLAAFxgIDB8OMSdO3Fv4kRcU1dXlpSUMFEUIS8r43xiY9Fj4kSyK1Tv0N8fkEoRMXOmQkNDQ9KnTx/88ssv+Oabb6AWFUX2h6rNnbo6kc8tW5D0/Llof/kyU7OwAJ4/x2t/fxy1ssIra2uRMzERnJ2deetvv0WTSZNgNGcOfdaYMRR5Eh6OuOnToeXkJLquX8/g7ExzWxAoRaO0lJ7/fdEpAF68eIHQ0FAMHDgQHh4eb/5QRapXrCByeu8eRVNpa9P56OBAxRtNTCB++y1+7tABjgkJ8AkMhN20afT7zZvX7feCQPffuzetjZr2nBfPn1fGnzrF9+7bFy5SKQncXbrQfq2uTpEoYWEkHkdEkE0VGkqCUqtWtMbCwkg8a9GCPOf37yNu7FjhSbNmTNqpkxAYGMh/0GNeUABs3Ajxm29w7PhxMSMjA3l5eaxGNKIaMDk5tWLlc6lUFV4eFBwc3ED1zE94Hz55tv9mCAkJkQBoAaAtx3F/vfDpxERSz2/f/o892iro6empirOwQ4cOYYTqQPkrQiIhBd/ZmbwI/wHZaBCiSC1QPgS5nPKsvb2pYN3bhP/UKaBXL3Br1qA7z3Mb3dzIGPw3EBMTo3R2duYamrfdunUDz/PYvn07HBwclGlpabyVlRVnZWXFvLy8akP9VLC3t4eDg4MyJSUFEomEDw8PF2fPnv3nWg+HDtH4L1xI8/7kSWRkZGDbtm0QBAH+/v5ix44dGcdxrEFCUlVFKvitWw2GKAOg6ycnU964tzdw/PhH5zy7uLjghx9+wIMHD3Dw4EE8evQIgiAwZ2fnd/Poq6qoWE6NlxcjR5K3af9+ejYHBzI+ly0jQy0igshRaiqFJU6aRAajypDR0yPP2vXrZGANGEDzaf9+Ikb37pEnwdu7UbHh1atXCA8PF+VyOdTU1Gq9iypoaGiI0dHRTKlUwsvLC30/MkTxDbx4QXnlNWF5MpkMw4cPZ3/88Qe7dOkSFMXFaKqhAfuaUFgVHj58iDt37iA/Px/m5ua0tlWe6hpYWlrCz8+PnT17lt2/f18YNWoUZ6CvTx6M69fJ2BNFqtprbAwsXAjlhAm4mpsr+Pz+O3dv3jxBMmsW03n9Gi8mTRJ7PX/O9IOD6T2kpxNpGjECJWvW4GJhIWvTpg1KSkpQUFAADQ0N9uTJEzDGuL4ZGWJ1ixaIvHVL2aJFC75bt27gOO5dog3U7RNTphD5CAsDEhMhnDuHwPnzeSOpFA937oSSMVjVeHMbBMe9UTviWfv2YnFxMXl0jx0jQWLBAhI7pk4lg9HDA7hyBQPbtGF7LlzAzZs30bZtW7qAjg6JNZMnE0mysXkzxLJfPyIPbyMnhwSe7Gxg6FCUCoKo2acP++hilVpagL4+NDU1hdycHL5Rsq2lBdy8CaMagiCTybhVq1Zhz5498PX1bbhfr7MzeRZ//ZXCxs+epbDkmBgiMI6OdFb07g3ExsJAT4/dGD9e+VnPnh+nft66VVe0UleXIjPy84mcDBpE3tZx42gf4zh6hilTSDjQ0qI5NmwYrd3Bg8kzCMDW1ha2trYQu3dHYEUFXgYFYffu3eji7Q2zSZMYpFLojR9Pn6emRjnG06YhOywMCoUCPM9j5cqVUFdXF3meF0fHxHAmv/+OTfv2iYaGhhg0bBgPHR3o3L8P/5gYlN69i9Rp09iM2bNhKJfTfBk1iubM9OnAqlVgsbEICgrCqlWr+C1btlD6jrExyqVSyG7cIGIkkdQRaYD23GXLyKO/cycJEkOHUkFCgAicqSn0AAzctw84coSvMjUF++03KNPTsWXnTswdNw5o2RJlTZuKeZ074+LkyayE54WCtWs554cPYZaTg7j9+4X58+dzO27cEEo8PbnB336LNoMGiWfPnhWaNWvGg+MoSqGqCko3NyQBYidra4p6sLMDGAM7fhzuVlZwr9m3ly1bJogch2QPD5isXSs+vnNHWergwNna2nKe7dqBb94ciuvXedsRI5CRkQENDQ2oqanRu750icRPlX3WoQPg64tif3+W7uYGx5r2aroTJmDAnDnglUqWGxLCl4WEwNjUVDDS16cD6Px5WuM//QSUlMCF55EdG8sqb92CxvPndC6Ym9P5deYMCYPvQU5ODnbv3g0PDw/Rw92d4fVrus+AAPr7f/2LPNAxMbRfzpxJ59Xz57SnXLhQG2XGTp6EIiQE+f7+RLSBN2pDQKmkObR8OYkte/bUkm19IyNWLpNB296e9hmVE2DFirq/HzaM/p0xg/YWPT0SdDQ1a3vLQyKh87p1ayApCV6TJnESnkdCYSG3fv16DBs2rK4ifkMwNETxrFnI7NZNNCstZa9nzsSIESNQW/BOEGj+BwYCs2Yh49o1QV1d/VZVVdWW9w70JzSIT2T7b4KQkBDG8/w8iUQSLJVKOVNTUzEwMPBPlLT6kVixgja8/yUvtEQiAcdx4kflzfzZIZPRYZ6d/T8n23I5FTPavp0MicZQWkp5YmPH0qHo719HtBUKOgjt7Ohad+8C4eE4tXcvLKqqBACcKIq1BrVcLse5c+eUjx494u3s7JS9e/fm67dkk8vlMDAwaJQQBwQEwNPTE1FRUXyXLl3g4+PzXvI8fPhwHgDu3buH8+fPf9y41OD58+cICwuDVCoVJk2axDVa8fR/CsZIwb9xAygsxOt9+2BqaipMmDCB09DQeL84oKZGRl5jRPvhQwo109KikN4G2hJ9+PYYWrZsCZlMhtDQUEAU0crFhcf588DFi2RwjBlDHrUhQ2huAuQRUxGat1M4SkspFO7rr6m4U1xcwwLAvn00v1RwdiaSJZcTWV+4kD5fW5vIUk37l4qKCkRERAjp6emcnp6eOGTIEK64uBimpqaQyWQN9TH+z2FuTmJVvQiDmnZr4sWLF1n75GTBbutW7qq1teAdFMTt3r1byMzM5Hieh6urq1BeXo727drxKCkho+cttG/fHl5eXggPD2c7Nm3C3MRE8pQoFCQ4qGof/PEHBFdX7DIxEYrU1UXja9fQmuM4bXNzyE6eRFeAKfX1IRob1xEjAHkmJigLCcH/x953h0V1bl+v95xhZuhIB7EAUkRRELCBomLB3tDYayxRY43RJN4YTVETTTQx8cYaazS2oCIqEgEFRLAgoiKiSJPepc6c8/2xGQYElJR7fzf5XM/jI2WYOec9b9l77bX3Nnz3XQwaNKhutXVWXV2N7du3o6KwEA6tW2Pp+PGvdtIqKsjgPHOGIn3t21MO47VrqBw8GM+++w6tqqrgLopEmmza1KwhrqioQEZGBu/+7JkIb28ymjdtohoTQ4eqX5iSAujpoe2AAZiYnIxQCwu4m5iAU9UdMDGha9u6ldQSBw+q29vJZNTf3ddX3b/61i363seHHFaZDKc++EC0trFh7SoqIJPJXltJHQMHItneHm4LF/Ktv/uu/nyui/v365EL2traGDlypHjnzh2cOHFCrM2LfxmjRlHth7IyIrymTiUFhUJB+3q7drV1EQyvXMGTJ0+aM+TqPNa6DsbRo3RehIXRXF+7lvaAZcvoedQ40+B5Gi9RJALj++/p9dnZtFfUFE1kjEFTUxPXrl0TbG1t0XvIEPU9rl5NkT49PXouK1Zg2rRpLDo6GufPn8fKlSsRHx/PcnJyRH7bNuzdvBnGrq7irFmzONUzKTE0ROGdOwjYsgXvfvcd9MeNozNUW5vm0IkTRCj4+UEoL8fzyEhwHIf8/HwMGzZMLCgoEHfGxGDZ9u2cZM8eIhcePSLiRvXcvbwo8n/iBBEQlpZUhEsioTn2ww9EUKxYAZw4ASnPA1ev4vGlSxhx+DCNye7dwLp1bNIPP+CndevEnp6eXOfOnZF9+jS0tbURdvMmt2HDBhgaGrICY2PEPn6MNl98wa6PH8+np6dT3Q6JBLh/H3x6OrLs7WmdqnLoV62i/XbnToDjIAgCqqqquCVLlkCpVEJ59CgzTU2VnC0tRXR0NKpKSpRtdu3iRj98yMrmzcPD9HRopaQgfuJEIWfuXM710SPoWFio2VaFAli9GkaAEL9qFdeuRw/AygqCUomCdetETRsbZtO3L1X8HzOGw8GDlJOup0f7l4kJ4OiIkh49EJORAes1a4hE3bOH5kqdVmVNTtf0dCQsWCBa+/iwUQcPMqxZQw52UBClSk2bRutER4f2ABW2bKHr/+orIooiIuicAdCpUydleno6Q2OpmNeuqe2wIUNoHtW0EOvcuTPn7++PjIwMyGQymDVSP6EWGhrqdrbDh5MKyt2diGV7e9rTUlMBhQJcVBRcBQGuCQksTSZDUFqaeJvnUeHkJGi0aCFqamoyLS0tTi6XM9XedPXqVVjb2mLwgAHoXlfpAxCJ6OQEzJ+PkpIShISEVFZXV097U338j+GNs/3/CTQ0ND7R09N7b/z48VpNsuf/yygtpajFl1++vlXL70RZWVm9iNbfGhs3EiGRnk6b8x+FKmepqT7YgkBMb6tWJFm1s1MX3cnPJ6Nl5UqSJsfFkRSqBrm5uaKRkRF369YtREREiPn5+UwqlaK6uhpGRkYYPXo0goODsX37dowdOxYcx4ExhoyMDF5QSb2aQIsWLTDu5UPjNWjTpg3Ky8sRFRUldu3atfEoMV03jh49qqyqqkJ1dTUHgDk6Oop79uwRmjR2m4n09HRoaGjA1NQUgiAgJycHRkZGkEgkiHvxApcyMoSJx49z9hs3ImDpUk7WnIKAy5fXbxWiQmEhGTHt2xMrPnVqs6X89aBUkgFx6BBa5eVhrpUVJBs3inFhYczG0xNShYKMocOHyTBoTsT8l1/IuFy8mAqjvaryvSonMDi4XjVsyOVkPE2bRpG748dpPiclAbNn46egILG8vJxNmjQJNjY23H+0dZyWFt1HSYlaTgugW7durFu3bkByMneWMdzKy+OCN26Eqakppk6dCmNjY2hra1OxqlmzKNezCUhEEQaXLolv+fszfP45Gf2VlfTLmrksduuG+wEBYmFODt6ZOZOXBgbS2hw5EujWDYZ+fjRfUlIgrFqFexMnIjwyUigoKOB6+fkJ73p7cy+rVbKzs1FWVoY2q1YxtG//+rGIiyNDte4ztbQEdu2Com9fhPj6wmvKFCJlGCNjtaqqyZoFKmT9+itswsMhzcxkZzt3ViZdv46i4mJ+CGPwmDuX7mvq1Nq8bRYUBGlCAoTt2yEsXQouMZGcUWtrckoWL6b/MzJIfq+q/l1Wpo4qART1cXGhuWVmBixbhj7m5tyZM2eE6OhoTi6Xi0OGDGGvrB4O4NixYxCcnaHr4yN0rqzkkJbWsD7G7duk9FD1LQbQsWNHZmdnhy+//LLhhpWeTtHi9etpPuzcSetES4scFaWSiKk6MDMzw+3bt5u3GFJTaWzq1shQVXNWgeNIxRASQoThgQP130PV4s/Tk5zUQ4foX3Y2nfVt2qCsrAxpaWnc+++/X/9v586lAk+DBqlltdOmwdXVFefPn4cgCPCg+h+cmJaGsbm5aNGiBVd3by/w9kaGsTGyfX2ROX069E1NKfr/8cc0Tm+9BdTkyT/w8hINsrOZyUcfCZMnT+Z0dXWZIAjs6dOnwoEDB4RZ8+ZxGDmSVBELFlAk08aG9qjPPyci2tWVxjw8nIhNb2/aiwcOJIJi+XLaq4YOhSkgZOjqcklGRmLR9euirVzOVXt7C0uWLq19PlZXrgDDhuHdd9+FhoYGdHR0WHV1NYTqamQdPIhup08jytkZY8aMoc8LDIQ8Oxu6pqYUTQ0JIcLz11/pWUycCHz8MRR2dhAEAXp6epSutXAhsGgR+nCcEGBoiKGbN/NcQADg6QnN1q3hYWMDo4sXoR8ZyT0NCsL3np6YZ2gII4CUJTUOq0V0NJdQVQW0aoWioiL89NNPgrh4MZsxYwZ9/tSplLLm6EhzwNeXnrGuLrB+PbTOnIHQtSuYvj45yUuW0HgtXUrniwqJiZRetHgxqVk8PSGMHQvzBw+Yx/r1RI61aEF7z8v1C+pCFClHvaCAUlIEgdQYy5cDP/4IDw8P/u7duwgICBCHDh2qnliZmfS6oCA1campSQqMOj23L168CKlUKmpoaIja2trCvHnzJE2eRaJIJOrdu2SX3b+v7j2fm0skgWpvSEmB1c2bmGxgwAq/+gqyS5f49B49oKisRKqDA3IlEjFfX1+pEARWUVHBF/bsKcj8/Hh4eJD96OND5MuYMaTCkEhw4cKFcgA71q5d+/vkiG9QC/6TTz75v76GN/gPY926dS4aGhp758yZo2VY04rib4djx2iDmTnzLy8AJpVK2ZUrV+Dl5fX37dlcFxERVPxCJUX6vVi9miJOH37YeP63Ukn5RRs30oY/YwZt9tXV5LS1bElO+PLlZHi89LyKi4tZbGws0tLSBEdHR27SpEmwt7dHnz594OnpyRkZGcHd3Z2Li4tTREdHc48fP1Y+fPhQBMC8vLxYY0XQ/gxkMhnMzc3ZhQsXxOzsbKF9+/aNToLg4GA8efKE8/Pz4wwNDWFjYyN4enryYWFhjVeYbibCwsLg7++PW7duISoqSggJCWF37txBeHg4MjIycPPmTbGqqoq7W1GBMDc3+Do6ihajRjFMmFAbrW2AsjKS0c6bp67ULwhkAGzdSkby+PFUZKU5c768nJyK/fvp0A8MJCPH1pa+1tOD7syZ+FUUxWcdOwrdV63i2IABdH3Gxq9es6JIxtG8eVT5eORIMkQbabdSD1padJ92dvUc2Xpo04Z6v7Zti6qHD5H70UcozctjEwYPZqbu7mB/hGT4vRg0iKKgL5NfCgXQvj3azJwJ+zFjMGDAAPTo0YMZGBhQj15BIAWPm1vT6oQ7d5C8bBnkDx8yrU6dILi7Q9qvX4Nq01UtWuD47dtsYUQE01izhsbOx4eUMP36Afr6KCwsRHhMjCDdtIndLSgQLHv14qZMmQLrykqGgwcpz7rOc5TL5YiMjITznTuoYgyck1Ntga/nz5+jrKwMtcoUVYTuxx/rzwV7e1zPysLNuDgUKBToNWIEOSnx8WRIDhtGpFBj95+YCKSmwmDZMsDLC2ccHMA7OnI9e/bkEhISkJKSInp5ejL07KmOUAMAY9AzMUFcbq4ya/x4zq57d4ryhoeT45OeTs/s6lUy2AcPprk4bBgZ6NraNGfHj6eoalwcyfatrWFsbAxPT0/VfsDOnz+Ptm3bvrLicGpqKrKLizFu1SrGvvyS9s0lS+q/6OOPaa7X9JSui7CwMISHh+PatWvQi42F+dat5CgmJxPxOmQIjbmPD0WDP/mkVj5cFzKZDKGhoSwmJgY9evR4ZVS+8OxZpMbEYFdyMtLT05GRkQFoaMCwpIQk6qq0HY4jh8XIiBz/wYMbJ/aMjChv1dmZxnPNGqBVK3AvXiAyORkWFhYN2wTu3w/x7l08LiwUH8bHi7djYsS7JSWssLAQnTt3hnbN3sicnaHdsiW4Ojm6ZWVlCLx7F10+/xzuvXvDauRIcIyRMuunn8gZ69kT5amp+HrPHvFB27asz7598PT2ZiqikzEGe3t7FhoaypRKJdp06EAqlsxMIjQOHSIn0MiI9s7vv6evDx2iZyGKRCbduUPKpSVL6O8mTcILCwuEderEZNnZ4oTt27msb79Ft8uXGfPyovcASLmzaBE0W7asVVHwPA+JVIpdp06hS3y82MPFhfEuLhQJ7dMHbOJERMbEwD0rC/z69UQC9O2L8hMnENGpEzS2bEFiaCieGBjArVs3da/wXr1g/O23LE5Xl7VwcoLhv/9NJFS/fuADAmC8ezd0334bduPHI8HGBj39/MAUCirAdeQIhIMHsUFDAx7e3tDT08OePXuUpqam3NSpU5mOjg4RpKNH03zx9SXFQ48etP/Z2ADJyZDHx8M0JQXacXFgSiWt1+xsUqBMnEj7GMdRutL580Tade6MslGjsDUoCPddXMReo0Yxzty8ecVCAVLGqOoctG9PUnUtLcDBAboyGcycnHD16lXGcZy6Gvm8ebRW63ZskMupUOXs2WCMQRRFhaamJlMoFGjXrp2YnZ3NV1ZWssa6ewCgNXvnDpFKycl0r507U7S9RQtywFUpVvr6QPv24K2toT15MuQLFsCkXTuYaWrCvnNndNy8mXn89hvXbfp0zqOgAI8ePWJJRUVwNDNj6NOH9rqzZ+l+vb3x7NkzhISEFFdXV4/s06dPdfMG7g1expvI9v8HkMlkn3p5ecn+p1od/R689x7J4X7++S/voZuZmYnQ0FBwNfKpfwSWL6dcwoCA+jLK5uLRo/oRirr44AOKaF+6BCxapJbznzlDkcTCQoogvkJWPWDAAPTt2xccAQAaVgUF8M4776j2p/+4R2RnZ4f58+dz27Ztw8iRIxtUBQ4PD8etW7fg7u4u2NnZcXZ2dgwAX15eDgAIDAzEoEGDfhdZk5SUhIsXLypzcnL4yZMnw8TEBMnJyZydnR20tLTw/PlzhIaGKq2trTFy5EheJWE0NjBgSEqiCsBnz9IzfvlzGSOnWIXycjLAJRKS371K9l5WRgbjmTNk/O7cSbK4CxdIgjpoEJFe8+bR+9QppvS4vJyztbQUmz0O0dF0ncHBZGD7+Pw+Mm3AAHL6jx9/5cueV1ZiZ1kZMHYs5ujrQ7ZnD83V3FySmqsM2P8EDh1qXCGSnAwoFJDb2aFBVenr18lYfPxYLb+ti8JCGrN9+9Dm4kX8tGKFMsTcHOVpabxnWJhob2/PzFX5o7/8Ao2jR2Gkp4enBgaw27ePpIjXrkEAkJSYiIiICCEtLY0zMTERrU+dgl9WFofWrWm+DB1KZEhxcT0FgVQqRb9+/YSoTZu4vMhIpKSlwdHRUfDz8+P27NkDURQxffp0urdNm8ggfPnZymQQzp1Dp5YtBatFixgAhgEDyOnp0YOipV27kqO7bBnNj4oKet779tF+dPs22lZXA19+CTc3N7i4uODu3btKAwMDHi1a1PY6bjj8ybypKmc7JobeNyKCjP70dIrCHzpE0aSgIJLA9+tHEW8TEyKGzM1pfTQyZ7t3747g4GB1oa4moDqXz5w5I/RdtIjTX7aMiITAQHL2AZIhNwKJRILVq1dDeeYMrt+9KxampTHcv0/5uDt3EtF2/z6N27Bh6oJkHTpQxFLV/7vmOnR0dFBaWoova8bS29ubcnHrICYmRinfuJGP7dMHmpqayMnJERMTE1lkZCQGPnyIHsXFtNeoL5Ki1wEB5KysW9f0GtfWJpJw5Urg4EFItm/HaC8v8cGWLaLDv//N1dvnbGxw28ZGeODgwMYdOMDl8rwY27atcsyYMfWLXa5cSXNIBaUSyq5dUTZkiGjaoQOTSCREbGlqkqw+OZmI47w8KP38MKusjGl88QV0V62iewgLq02B0dbWxvjx43HkyBHY2tqSZFtFjJw4QRLx5ctpLSsUdK6uWEHPNymJFCj/+hc5i1evkuMYFwfh4UPW5vRpceqXX3JYuRIeFhZEYIwcSTnRHEdro4mcXJ1WrYTCefM4Kc8T0XfzJrB1K6Q9eqC3iYnw7+HDxdnt2vF3IyPx9OlTdExNRY6pqZg+e7bQ7do1/h1/f8gmTUKtYkVXF2zTJgz080P+oEFEoCQlUd656pyRSHD/1CmUxcUJnELBYf9+Uj+0aoXg334DAFy5ckX89ddfGQC+qKgI169fR58+fepfvL29OlJdpwCu4tkz/Lx1K0aeOwdrKyt6BgcOEGFhbk5kTp8+RPy/+y4AoKJ7dxz46Sexurqa6ejoCDExMbyLiwukUunrz+rCQlpDqnannTqRwzxrFmBqCjZkCNpPmABx0iT4+/uLycnJbLi9PXQ//JBUMnXRrRvNgwcPgPbt0bdv31rfq7Kykk9PTxdevHjR+KLIzqZz98cfiaApKFDneZub0xqOiqJn3Bg4js5xVcrH3bv0XNLSIE9IwIhWrVj54sUod3WFprU13eeWLcDKlVAqlfD3939RXV39ztq1a5swCt+gOXjjbP/DsX79+vGampo+Xbt2/XuGbBMTyblrKsr6B1FWVoZff/1VePr0Kde6dWtx3rx57G9djbwuGKNDcP582oCbmzYQGkqb+qlTDX93/DgZ/Z07k+GgMrp79aLN+dtv1dWUm5G/LPkrK6b/Raiurgar6d37MgoLCwEAL0e9NTU14efnJ54+fZrl5OQop02b1ixioKKiAidPnhTs7e15fX19wdbWlmOM1auQamFhgQkTJtR7v1ojcvVqcqDfeYcihnWrBxcXkzPw7Bk9s337SDK8Zg0d0qr7E0UyCu/dI/LEz08dff3pJ5KKurvTwWtkRMbo3r1N3lN+fj4YY/Dw8Hi9t5yYSE7L6tVkGKl6xTcT1dXVkEgkYLa2EKOjUfr4MbRtbMBxHJ4/f474+HixpKQEI0aMYFlZWfj555+hoaGBDz/8kN5g6VIqsLR/P0lSBwwgGd5LhfT+EsjlZAhu21b/58+ekSH8slReqaRozuefN+5onz1L7xUbCzx6BE5HB7M0NGrrD0RGRgq3z5/n50skkJiaovT+fZR264Z+Eybg0LFj6G1iApfr14F338UPSUmiguNgb2/PjRs3DlpaWjTftm4lxyg8nCKREyfSfvLzz/UupXv37hw6dwZcXJDXqxf279/PtmzZokjmhq0AACAASURBVGSM8W5ubsKpU6ewaNgwTjJjhjr38CXcdXPDTGNjzrFnT/UPNTQoOnXwIN2vuzs5QcuWUZX0wECa8zXrITM1FVKpVHR2dmaFhYV4+vQpP23aNHL6Fi6kIlV1oCJWax1hldyzf38iYGQyWg8jRpDz/f77RD59+y05YtbW5Bw9f94kAfzw4UMIgvDaPrrDhg2DnZ0djh07xj19+hTz58+HZkQE3afK2T54kNIxXpa9RkdD1qkThPXr0ePxYxazezeRI9radA/r15Mz9/IZ8PXX5EhduUJru1MnxMXFobKyEv369UNcXBzCw8MRHh6OJUuWwKBGZVJZWYmLv/7KTzMxweQvv1Tl9jMAuHXrFs4pldD18UHHsrL61dg1NGg+BQaSc/Ddd68+zxkj8nbSJNjExbHqmTNZ5ahRkH3yCREFMhlKnZ1xo1Ur1mfiRCY1NoZlUhKzfPaMb3Cvzs5qdQ8AFBVBbNUKWXI5++KLL7BmzRpwnTpRtPP2bXrN5MmoOHIE22bNgkPr1ko/d3cepaV07s2fT8oLf3/g0CG07dsX/WxthZO7d2PBRx9xEomE7v2332gt+/jQ+G/eTJHkI0fIUczMpHPV35/IiPT02naG9qWlcN+xgymGDYNEVWiwVSsau48/JrIzJaVJ0kKpVELm7k65zF98QY5+q1ZAUhJcAwK4S6tW4bsHD8Sq2FjG8zxKu3dH/0ePmM2+fTzmzqUzYckSCnKMGkWKjs6dwfr1Ews2bGBXvLyEvpcvc/Dzo+tmDLC1Rdb778Pc0FDEpk3UCSEpCbCwgPLCBQEAV1RUxIYNG4aqqipcunTp9QGOxYsRYmUlZt++zUafOAHlZ5/BcPp0IkVu3FD3wp41i+ZUnRovANVWycrKYgsWLEBSUhIXFRUlXrp0iXEcBy0tLeXEiRP5JpVyBQV0btaFgwOwfz8Uo0bh1iefoJOXF9pv3w6ZRMKO3r+Povffx+OFC9F51ar6idyM0Tg9eoS6KTf79u0TUlJSOA0NDS4zMxPFxcVCXl4ec3NzY126dIF8505a84GB9Af37tF8+fhj9Xtv3Ehnft0Wba+DiQn9c3WFDoAwW1tl1a1bbJSFBYeqKrLzAFy5cgUlJSXpABpn+96g2fjfs3jf4C/BunXrpIyx+VKpdOPUqVM1/5aO5N695DRGR/+xnNImoGr5JZFIuHnz5sHY2Ph/qwr1XwEHB3KeKyqa/zeq4kp1kZVF0et168hQmDCBDExTU3JWvvqKcqx4vn7e1N8QaWlpkEgkuH37di3zXVZWhoSEBOXjx495AI1W/XV0dGQeHh5ieHg4//333ysWLlzY6L4aHR2NS5cuoU2bNkhNTRWtra3FkSNHgjH2x4gwTU1yQCQSchRnzqRqynp6JDkLDaXISVoaOZVaWuQwhITQ66ZMIefS15eiA1IpGRdWVur3/B0IDg4WGGOcQ00BmUZRWUnrOiCAHN4rVxp3KJtAREQErl+/jpKSEuoRXV0NvVGjoLdxI4o7dICDg4MYHR3NdHV1xZKSEu7u3bu1f9ulS5f6b2ZtTfI8UayV+OFf/6I1M3x4fQP9z0Amo3H/+uv6+9jYsSQRr1ucr6iInAN//wYOIjIyaP3Z2xP5mJPTgNhyfvYMzufO8aft7JSx16/zMZ0744WtrVBVVcUt1NeHm5sbQkNDcbm6GgYffqgcoqfHOxw+DLZ0af2ik0uWkJMQEkLy3u7dyfFLSWnYi7qmN7qRkREWLlzIkpKSeFNTU+jp6XEJCQli1syZaDl4MF3zS0hJSUFOixbgi4ooX79u6oupKTnXixbRPOnalaK0urq1RYpUiIqKUrZt25bjeR6Pa4qMRUZGiq3272echUVtWx8VkaaSSKenp4t4uRCe6rknJJBjffIk7YMXL5JsfOFCImdCQl6ptLp586bI8zx7/vw5LF9TsNLBwQHvvfcevvrqKxw4cADz5s2j53/0KJFlGzfWVymVlJDD178/4OyMm3v2IOeTT+A7ZkxDFYW9fcNnpiry9vHHNN9//hklJSUwNDQUevXqxan6yH/66afYtm0bFi9ejKioKMTHx6OtQqFsNXw4/3LF9S5duuD8+fPQmj0b1bNnQ+ODD+p/pkxGe83Zs+RwTp78+nNdIoHU1RXxq1YpE4uKuDGbNzOkpeHZ++/jyY4dwviEBK7Fl1/SGfTbb+QIv3gBbN+ufo4rVpAz+9ln5PCcOAG9wEDMSk1F2OrViA0NheuECWRnqLB1K5InT4aWkxOGr1zJQyYj2bQokmO3dy/tp+7ugFKJbjducO1OnkRwcbEwKDmZQ7duRBZUVVEK3KNHRHxXVJCTU1JC+82KFVQ3IzgYj0xMYM5xkERHIywqSij59FNxVr9+9Qdo2jRaRxcvNl4dvwZ6enri8+fPiSgSRVKW1BSe5F68gGLzZigUCubs7IzKykrlM6WST3n0COcWL4b37NlE+gYE0L64Zw+tt7Fj0Xb7diZ4ecFi82YO9va0f3bsSPc1diyeCYJoc+4cX6WpCem2bYCFBbKysiCRSGoXSllZGTp06IDMzEwhPDyci42NFbq7unItfvkFl8zNhdEpKVyrkBDg8WNUPn2KlIIC9szODo+io7G4QwdSWrz9NqUnbd1KEeNWrYhU2Ly5HgFhV5N+Ul1dje7du7PuNRXBS0pKEBUVxfbu3Qs9PT1lv379+A4dOtQfRBsbem51UFpaiqMhIcrqoUP5scuXY/vUqWj/9CnMiopE444dkdSjB7utqSkGf/212L9/f87FxUX9xyNH0pgqlRA5DqmpqUhJSeFWrFiBwsJCasGYnAxBEHD58mUIOTmiV3w8w5Yt6vewtqb2Y/UfNv2zsiKC9uVzoxlobWvLX0pKUqJNGyJILC3x4sULhFMXjSlviqL9ebzJ2f4HYt26de01NDRut2zZcshbb72l9cpqh/+rULVsmTWroSTnTyIjIwNxcXFYs2ZNo/LlfwwMDEiKqa1NxVmaQlUVRW5Wr6aiGCpER5OB5+FBhel+/plkW1Om0Obu4UFG3O9wlv6XYWxsjJSUFOHx48dCUlKS8OTJEyEjI0PU0tLiS0pKIAgCJBKJ0KZNmwbkTMuWLZmDgwNiY2O52NhYISEhgaWnp4MxBh0dHRw7dkyMiopigiDAxsZG6NGjB9e3b1/utdWKXweVsc8YPeOsLJKK1hjQUCpJfbBwIT3n9HR6Xv37U9Rvxgxisfv1I7mtgcEfStXIycnB+fPnmbW1dcP+pQAZfJs3k4GpKljl7NxstYooijhx4oQYFRXFtLS0MLOmr+2LFy8wztkZPQIDEW5tLT5//hzjx49nw4cPZz179oSenh58fHxgZmaGiIgIJCcnK01NTbl6KTWM0TqZPZsM0rNnKaqakUG5en82/UYmI2Kh7riKIj2HdevUefcKBUUAdXRo3anmhkJB6+6TTyiy1qYN7Y2qKHxuLjnyISH0dbduMJsyhct2c8PASZPQt29flpSUpLx06RKXmpoKU1NTcdq0aaxP376csYUF2M2b9HkvXqgdFMbI+Z4yhQxZJyfKFw4LI+egLnie9mhTU0gkEpiYmEBLSwuMMQQHBLCuTk7QXr680Wf9ww8/iF27doWdvj7DkSMUQa87RgoFRfEfPCAlR79+tXmg2L4dGDYM9x89wvXr19mECROYpqYmLC0t4eTkhOjoaOCzz1hQbCzO371LznerVszAwACMMZiamiIsLIz16NGjQdpI7RjwPI2zpyeNwfr1tLYmTCAH3tOT5s2SJeQYjx4N9O4NODrCRk+PmW/ZgiMlJXCJj4csJQUVVlao3rcPGtbWRDw9ekRS0OpqPM/Oxp07d9C1a1f1HqOhQa8bO5acNH19Ij3GjiWHY8IEYMQIpAMILS9Hrz59GipzvvqK9oCXc54BilqOHQt88QWMv/4aITY26NWrF6PbZ8jPz0d2djaioqKQnZ0Nc3NzYbKFBc8YI6LoJbRt2xYhSUlIKC5Gmz590KCQo0RCDveVKxSt69sXYAwFBQU4ePCgWFJSIpqYmLD4+Hjo6+vXStiNjI25y5GRLLZdOzzU00Pu1avolpLCWowaBc7Dg+atyk7Iz6c0DFVKyvDh9DlSKSl2fv0VKf364eDBg5h8+DAsr12D5PBhSiepwf4TJ4QIbW22xN8fckPD2kgfGCNnp1Mnmg+urkDHjmCDBkGYOROBt28zIzMzGOvrE8m5fj2tq7AwIrOTkuhag4PJ8fL3B4KDce+tt+B/5AjigoLQftUqaD1/LnqvXs1LKiuJRDA1JSXFjRskrZ46lUhvb2+qF7BiBV3/sGHA/fso1dNjPRYsYNJu3UiNERZG5Ny8eWCGhrC3t4erqyvCwsIET09PfuDgwdDOykJRYiLQsSP17eZ5mt8mJnQNQUFgZ84gztVVaXL/PifftImIqF27SHL9zjswPnKEdTx4EDuGDUNyq1bC9evXxZCQEJaSkgJ3d3dkZGRg8ltvQfv2bbT39WWe+/fDOi4OIRoa6P7jj+yetTWTeXujzapVgKEhDldXI5njMPedd2DTrh2t06+/pjk0bRqNoY8PEc0tWxKBM2xYLeF05swZZGZmwsfHp146hEwmg42NDevUqRM4jmOXLl1iRkZG0NfXV+8FQUG0Ly5aBIDOuJMnT0KpVLJchYIJAwYI00+fZobffINKMzM2YONG1ragAN0OHGByLS0EBgaysLAwdc0GAwNg82YUKhT4d3CweOPGDSaTycR+/foxPT09WFtbw9XVlXXv3p2V7tghdN+zh6s8fhyyGkWQUqkEFi0iZtDdveFa7taN8sQZ+911jYKDg5VtSkv5dvPn01klkyE4OLgqJydn75o1a378XW/2Bo3iTWT7H4Z169Y5amhoXB08eLChq6vr3zNiGxFBEYSYmL80oq2CRCKBVCoVBUFg/4iCaE2BMTIu5HIyDJu61ydP6GDZsIG+j4oi5/uXX0hSPmcOyd28vNRVxVW9Jf9BkEgkmDJlSpMTYt++feKLJnLZZTIZrKysMG/ePERFRbHq6mohNzdXvHPnDq9QKGBiYiLOmDGDtWjRAnp6eg0/o7KSjLC4OIpWmpmpWfvgYJIMr1xJRsXYsXTYenqS8bZsGUW5Zs4k41yhIGm0kxNFfAYOJOf6dQXH/gBEUURISIiQlZXFmZmZISUlpf4LlEqaR3fv0j1dvPja6tJ1ER0dLd64cUOUSqUsKyuLjRkzBs41uWe+vr7w9fUlpywhAauWLGF1o3pSqVRVkRhmZmZwdHREYGAgv3fvXnTs2FE5YsQIvh7ZwXHkQLi5qXMpe/emvD2JhByWP0qO+PmR0bpjB32/aBFJ6Zcto+9FkdbXqFFEeqlQYyAjIIBy9mbMUP/u8mVq3bZiBb1u7lyS2AIwBNCzTjR1+vTp/MaNGzFgwID6Mn8zM0pDuHaNPjsxUR0tb9GCrldHh3JPzc2JiBg8uH5rwcBAkka+FBligoAZ+/dD/8iRJgk5uVxOxu2YMeQMqiLnOTk0zwcNorxpfX2SdQYGkkO+fDkgk0FZVITYLVvQb+5cVrf9nqmpKd59910mnD8PN19fVAwYgMjISOHgwYO8lpaWMHjwYE5bWxuiKDae0iKKRF4kJZGzdPYs8NFH5OQolUREvvMOyVj19ennFRW0z3p5AcbG0C0thbOdHZ526SImfvklq5JKERYTgzm7d+N2fr6ym4EBL/n4YyJIHB3BDAyg36sXeo0ezeHsWfqMfftI2uzkRISDqSmdj6p5WnPtzuXlCAwMRFRUFDxfbqUXHv5qwogx5IwYgaiHDyFTKGivr+noMGbMGIwaNQrp6emqAlAcBg6kCFojaN26Nbq+/z5ezJ+PHz//HO26dxdGjhxZv+K/TEYR6ClTgGvX8KJLF+zZswdlZWWssLAQV69ehSAI8PLyEn18fBhAKTW9e/cWwsLCuBadOgk9ly7ljB49op7yXbqQw/XNN5SSsncvRbF1dOiZHT1Ka3vECGDmTMR6egotvLw452nTFAaRkRIsW4aysjKcOHVKSElJ4bS1tVFcXMwtWb4cmuPGUYpNXUVHQABJwB8+rNcuUUdfH2OmTcPPP/+MmWPHwsLCQj1fgoPpeS5cSOu0tJT+6NAhoKoKlnFxGHXyJFqnpSHj4kU4TJ/Oxb/3HvguXdDxyhWKWl64QKknKsXSvXs054yN1RXzp08HWreG7OlT9qRLF7HTjRsMlpa0z+joEFk1ejQs58+vvZ+aSubQmTgRnYODxeB791irVq1qo8JwciKiLywMmDwZlubm3GU/P/R8/30oRFF8Zm0tuq1ezT3etQtlOjrw/+AD5Esk4HJzYW1tzQ3t0wcVPI/Wa9bgRVUVxIgIWtvJyZCMGwdLLS22wNsbt/r3R1FgIHqOH4/isjLoCAIyMzPF8ePHq+tP+PvT/U+bRuTJ7Nm09zBG+4+7O503M2YgNScHd+7cQefOnZsMqhgYGMDLy4sVFBQoAwMDufLyciaVSoUuXbpw/Wxtcb93b/He0aOsvLwcWVlZoiiKbPLkyaymxgaHAQNgPGcOjP38SPk3ZAgQGYkuhw6xmM6dhaz8fO7gwYPw8PAQ+vfvz5UNGICi3buhMXYs1lA3gIYHSnIyXFu35n4xMRHTvvuOaWpqQl9fX5mfn8/73rwJh8GD0WiPGE9PshN8fIhUb6Yyq6ysDElJSfzg4cOJsNLTQ3FxMW7duqVUKBRrm/Umb/BavHG2/0H47LPPZmtoaHzn6+sr+9s62gAZf25u/xFHGwCsrKygoaGBgIAADB069J9RgbwpdOtGEaDNmynv72Vs3UrSzbt3KZIXF0dS1vbt6YDdsaNWKoeBA//rl/+/hOzsbAwcOFA9WZKTyVl58YIMgLFjoXP+PHzkcoYRIxjGjkXlV1+Be/gQGt9+y2H+fHJo2rcnyZumJhnzP/5I/7KyyIgYOpSMxC1byDhLSyNnGqDos6YmKQvGjSOnYM4ckiUCFJFNSyPHe+7c//iYKBQKhIWFcQAZbbWGviiSY8TzFGH/6CN1UZcmUJuHXePQ3rx5Uzx//jxzcHBgFRUVWLhwIRrtZ84YRclXraIoThPQ0dHBuHHjUFRUhB9//JEFBgYqhwwZ0vgmI5ORmuOzz8ipPXaMnBZLSxr336uIWbCgvsMTGVlfAl5dTQ6kao0VF9O9bNig7l+sp0dr8/vvaa44OtJc6dyZIvOvgFKpRHV1NbS1tSEIQsM9z8uLnAhNTcoNnjyZft61K0WS796lgk/jxpEjXNfZFkXaH15C3p07KNLVRdizZ+jv4ICXW05WVFSguroaurq6DFIpraEzZ6hWwNdfk6pp0iQyqrOy6ExIS6M1UlM7IHnZMnHYuXNMd+nSRglF7swZSHkeUo7DoEGD+P79++PWrVvM398fAMDzfP2xuHuXUi7GjiW57sCBVOtg8WJykLy96TOSk+nr3btpjvfqpX4PFWkJAMePYwTALmlpwdjYGDNbtkTVkiW4cfQou1FZKdrs2QObuDjWMjoaWY8eoTI4mBwze3siZ6ysaGx79KDPXLyY8npfKoylqakJlYS+nrMtihTZVTkrjaC6uhp7z5+HvqcnFtvbM0yeTJLXmrSCepWWMzKIXGgsslYDpxq5tYWhIfbdu8fdu3cPffv2hVwuR05OjpidnS2UlJSw1jNnwmvrVu6pXC4KnTujZ8+e4u3bt/Huu++yI0eOKEtLS7mMjAyY1igmPD09uSdPnggaGhrUkeLmTYqQ37pFZMiaNbSOVEqDuDiSQOflqSPcvXqBnzOHS7e0RNdDh/jiqVOhd/Ysju/fL2RlZXFubm549OiRyBhjurq6tK/o6pKjvnOnutDaggX0XGrmkQrW1tbo3r27cPjwYSxdupTytyUSIo1U0v3Ll4loiI+ntXTkCAy9vJDy7bdIt7LC8WvXwObOFW1tbfHgwQOm3LaN1EKPH9NcGzqUyPDsbHXRqxp5NDp0AL75BpqA+MLUlJQPqhou1tY0Xg8fAvv2IT4+XjS0tuZqUxzatYOlpiYzT0wUT5WXY9WqVWobsm9fIkhiY6H46iux/8mTrKRzZ5iHhjLJe+8xsVUrOB85AiQmoruJCYQVK8BNn87h+HHaSwoKqAJ+bq4QLZezHvn59N51Knbb2dnhwoULOHbsGB4/fqyq2s1q05LCw4lc2LpVrdLYsYMi2oaGdJ8bNhBJNnw4qj77DIwxjBo1qsm5CpCCY8SIEbwoikhISMCzZ8+4e/fuKcWcHD5dW5tpMqbU19fnU1NT2fLly9UdFgA6y728aM84epRyyeVy5MTGiuXm5uzDqVNR0KIFDhw4gBs3boBXKtHV0FDwcnRsvOVkYCDw3nuwvHIFs0xNWV5eHnJzc5GRkcFbmpjgdnw8Wvbq1bizDdB82LHjd6VAhYaGKrukpcFg/XoeJ0+qflbJGNu1du3a581+ozd4Jd7IyP8BWLduHQsPD/9ILpd/MXv2bC1bW9u/p6Odn0/G3LffUiTuPwTGGFq3bs2uXbsmPnr0SHBxcfkHe9sgo/7aNTKg6kbmRJGiZi4udGANHUoG98yZdGhHRZFzOGTIfyQq+l/FixcU9c3IoOidpSWRDxIJHUzz5pEE9N//Judw0CDUtgwqLwc6dkRkr15iry1bmHTnTnIEWrcmR6eggIyvZcvooMvOpvm7fz8kQ4aA19Sk19S0WIK7O423jw+1NOrXj6LWjJFB068fXet779H/rq70HAC6LlX/1v796W9URjlAxr+PT/3+t/9B8DyP4uJiMTMzk61cuRLt2rUjpcTu3RSJ6dOH7k11fTXIyspCTk4OZDIZoqOjERkZqTx9+jT34MEDMSsrC1KplB0/fpzp6+uLb7/9NnNxcYFmUz3fAXqOH31Eka3XkGdyuRw2Njbs7NmzXK9evV5NtvE8PaNRo8gBOnyYnourqzqq1BxYWFDUwcGB5qKrKzlzHEdR7m3bKK9SJqM5+P339Iz79CEyJTqa7s/CgtblrFnkPLi6qlu+vAI8z0MQBOXFixe5/Px8tG+sL7aVFT27iRPJQFaRAz17UmTP2Znm/MiR5PCqDLqqKvp53QJohYUonDtXPDJoEBM5DtevX8fVq1dRWloq1lTyx86dO5UmJibo378/45KS6DNKS2k+Dx1Kjo2KcFVF1z086Gt3d6B3b0Rcvy4alpczvfR0kj+6utYvOOfqSq+vkQFzHIeWLVsyFxcX3LlzB1Xl5fB2dycndu9e+tuSElI0LF9OTgbP0zobMYIM6smTaT/s0IH2CjOz+uRDI7C1tYWFhQV0dHSgq6sLV1dXlpWVxXJzc9nNmzcRFRUFSysrJD19ilbu7jA0NSUHwtGR5sPTp+RgtWvXZAXqK1euoLi4GPVk8aWl5BCOHt3ktSUnJ+P+/fvi0qVLGWdtrVZKODnReVy3wFtEBJE+dat7N4YJE6Dl5IR7SUlCZWUlKygoENLS0pRFRUW8lZUVZ29vz1JSUsTrcrno8ttvXI/Zs5lT374sLy9PvHz5sjhq1Cg+KipKuHHjBpeYmCjq6uqy4uJiWFtbs6tXr6Jnz56MOTiQukAmI1l3375EUlVVqatUHz9OpOO0aUSIzJ8P07ffBjd5Ml4EBOBwVRWepKayp0+fsilTpsDd3R1du3ZloaGh6Nq1K7W+MjAgsqK8nMgofX1SYkya1CjB06ZNG/bw4UMxLi5ObBD0qKggKfisWbSu3d3JIX72DEYHD0J/4UJI5XJBQ0ND9PPz42JjY5EZGyu4m5kxfPop3YePDxUFKyqiPWT4cCKqLl4EvvgCZcOG4aBCwTw/+IDptW5NCp29e+mMGzwY8PBAXl4e7j5+zEZYW0MnIICILG1tSNu3R8ujR9lVS0sml8thaWCAK1ev4tH16yjv3Rv6jo6wGDyYyQcOhP6+feDz8qB74gSkvr5g1tZgNWcj27iRzrHBg2n/l0gAHx9EZmVBU1OT2TYyh2UyGR4/fiw8ffqUAUDv3r3FNm3aCDY2NhxycohEGTiQ9gAVUlNprapScRgjp/7xY+gbG+PWkydwcHFpVrogYwzGxsYoLCxEXFwcZ3nuHIbdugWXHTu49u3bo3fv3g3TIgSBzv05cyiibm8PwdoaW54/Z2Pd3ZmJnx+0+/dH93HjmLOzM/r4+MDu7l1mrjrX6yIujtbr6NG1SgWtGpLO2toahUFBsN69GzuVSjx48EChra3NGRkZ1W/Rp4rwr1xJtsiECa+854qKCpw6dYobq6XFydu0Aby8kJmZiQsXLlQoFIoxffr0KXvtwL1Bs/Amsv03x7p162RSqXS3trb2mBkzZmi9rs3I/zTOnSPjtbnVs/8EWrZsiUmTJrEdO3bwx48fF8eNG/f3JCiaAzs7ihTNnUsbsERCOW3FxZQH5utLkbrLl0mGlpRE0e6X5Yj/bWRl0WFmYUGO8ciRFNn69VcyMtavJyN/+nTKqwwNpd/t3EkGTefOVMho3ToyuIuL6f4DAykqsns3GS9+fiTJE0UycFUVvydOJOfIygrYuxey5GTh6dq1XEdV0ROVpB4geR9AKgIVzp9Xf62KQNTtvfmaaOTvhihSBHb27L/2fV+DxMREBgCbN23CmKAg0SwlheXs3An7pUvBSaUQBAEZGRmIiooSU1NToVQqoWpzIopUd8Xa2ppNnz4dt27dYomJicLNmzcZx3FYsGBB89alrS3tH3FxRB69Bg8ePICFhYXA83zziDbGyKn64QcyiH7+mXJhx48n52Po0Fcrcaqq6LXFxSQT//FH+lllJRneEgk5VHv3EjFWXk5Rua1baY4OG0aOt4cHORV/AP369eOLioqE4uLipu/Z3p4kiFlZFLn19ydnY+lSMuKOHCGFQni4ugJ+fDw5I3Xn8/790NfWZnZOTsohQ4bwJSUlCAsLE3Nzc2ufJ2MMyqIiJmRkEElibk7OjKdn4/3jR42i/WrECPq+uzM4SgAAIABJREFURQtU9unDLrRpg9mOjhQVv3SJotMjR5Lzv3IlkQUvPQvd7Gz4Pn8Ow19+oc9r356uoWNHNbH1Ms6erb/mvb1pXY8dS+v6/fdfOf51IZfL4efnV/v9rl27EBoaCqlUisjISLRs2RJyuZyIleBgGneOI1Kgb98mCRZBEJCXl4faCsvV1a8lhPT19aFQKFh6ejq1rlLN9RUraO89eZLGUyKhedFUz/e6UCohODhAY9Uq9t5770Eul3NA/QLNHh4e9P3HH5MT9fAhhr/zDrdlyxZkZ2dj8eLFfHFxMY4fPy4eOXKEMcbw1ltvgTHGnj17Buu8PIoQP3xIbyiVEhGiauN14wZd74wZRIA+eULR4UmT0PKjj1Bx9Spzi4gQq6qqBH19fbRu3ZoDiJCRSqViQUEBU/XqxqhRtBbefpsceTMzmmtTp5KkvI7DU/P3ePLkCVdYWFhbyR0AzaFly+ic2bCB9o0PPgC++goaQUHA4sXoOWdO7ThpPn2KacHBHCwt6xdSBGgOXL1K5114ODBmDDKOHcOuXbvQsk0bwcrKit5n2zZ1oVQLC6C6GtIffgB69hS1Fi1iOHGC5u+aNUCPHtDt3h3Tu3XDkd9+g+OgQajs2RM3PD0hiYyENDQUIxwd4eDvT9evUuJMnEj7n4YGzdOrVxudFh4eHuzcuXMY2IRKbsKECVxhYSGMjY2hoaHBAPAoLqYx/+67hvUi4uIa7ruMAevXgz9yBGN+/RUXjI2FycuXNzug0rJlSzg7OwseM2dy8jpFIxutr7JnD9lN5ubAhQsQd+3CLRcXged5TsfdnZ6LkRE4Pz8YfvYZOdFjxpAdUxc3btDa3rGjyfo6d7Ky0HbaNHHRokUsPDycBQQEIDAwUBgzZgzXoD/3+PFExrwGt2/fFh2fPxcMxo3j4e0NURRx9uzZcqVSuWbt2rW5r32DN2g23jjbf2OsW7fOViqVnmrdurWdn5+fZgPW7e8ClRR2+nTKUfuzRaOaCVNTU8ydOxc7d+5kjUor/0kwMKAK1devk+xp3z6KPG7eTJu/Snr0mn7FTaKsjA5ZjlMXFomIoEiynx9FAydOpCj7rFkk9Xr/fYpW7dlDkd6dO2kujB9P76eKrp0+TRLhjh0p4nLpEjnb1dUk5WOMHBGJhAxglTz3l18oAqClRa/jOJIFf/YZ/T40VH39qh6Vdash1/TqBEAG/rffQqmr26C9yP8MVMW92rX7r3xcTk4OMjIyUJ2TA8+YGHjK5Xg6bhy7KJeLT2JimDIqqva1UqlU1NHRETp06MDr6enBzMwMOjo6CAgIgKenJ9q1a8cBtdXeubCwMISHhyM3N/e1lZxrER1NhXwaS5d4CYwxVFVV/bGNRkeH9qtp08hB3riRotJffUXOamPOjZ4ePR+JhJwzV1ciB95+mwyvXbtoPfTtS7l/e/eSEZedTakEfxExw3Ecy87OFvCS41MPPE/rplUrdW9gbW1ac8nJZPTOn08RNg0Ncr7qSuIzMgBXV2jPnIkJenp8eXk5YmNjlTk5OZyWlhZV/xYETPX15avd3ZEWHw+bgAB1yoG/PzlRL+PRIyIpVM42qBPAiXv3cNPCAm4JCfQctm+nXNijR4m41dQkYuPiRXKOa0iLvIEDxZBRo9jCgQNfnyJz9ixJ/7/4ov7PDQ3pmmuiilix4g9VsZ8zZw6KiooQEhKC+Ph4cdOmTWyipqZof/YsQ3CwulJ8XBzNcZUkuQbHjx8XATAPDw/Ua2X0+DHt+6+AsbExevbsKfz000/cBx98QOcgxxHBolBQhJ8xcjiPHyfVxWtQoaGBhyNHQk8qFeRy+avzwRijMVy1CunnzqGqqqq2xaGenh5mz57NCYKA3bt3ixkZGUwURSIiLCyIBHgZHEdz08eH1D+9e9PPP/yQ0jF69QKcnCCXy9GvXz+GOnmzgiBg586dSo7jeMOX+7OPHEmR1CdP1G3ifvqpgb2SnZ2NJ0+ecCtWrKgvORZFUgr4+hKBMXQozeeZM4kQCAqi1/n7A1VVqD54EFrGxkj55BM41CFmkJdH5+ePP1KRS2NjckYZAzIywBjDrFmzuNrX+viQ1F6F1q0hO34cWT/8wErOn4fu7Nlke61eTSoKNze0vXgREyZNwsPHjwXv0lLOd8kSoE0bJLq4ICklRXSIiGBgjM7myEiyJVaufOVjpo9uDYVCgeLi4kb7z2tqajZUML3zDu1FjTmh9+41msICgJQH169DePyY4fnzZqu9LCwsMGbMGA4nT9J+t2JF4y+8do2egaqoo68vijIzUbZ7Nzf5gw/U61CpJPvm/n3ai9zciBDv0IHI/NhYtW3SyD0mJiYiLCxMsLt0iZX36CEaGRmxESNG8EqlEhcuXOACAwOVCxYsqL/GPDxovrm5kY3XCEErCALCw8Ox4NIlHu7ugLc3kpOTkZubmyeK4g/NGqw3aDbeONt/Q6xbt47jeX6phobGp97e3vIePXr8+arG/5dISKB/rq7/NUdbBYlEAplMJnIc9zcewGaA4+hQ/O03cijffZeiwIcP0//u7mSUubnR7zZsoNefPEkH8KRJ6sq7LVtSJHfDBiqg9uABOXhz55Kcevx4kmJevkyHoZ8fGSgFBRQlVslNBwygCB5AOU81Ujakp9PP6va4zMhQf60yjD/9VP0zlQFoYKCOvNRtD/Qn51VoaChKS0slpqamUCqViI6OFmNiYkSpVIohQ4ZwVi/JpP9PcPQoERF/lDBpJl68eIGYmBhcDQpC97g40b11a9ZWSwuaO3fCydwcTgATBAEPHjyARCJBQUEB3N3dmUQiaWB0T2+iTUnv3r1RWlqKAwcO4L333mteX/Zx46gqbjNw//59QUdH589NCpmMZL4//URFrrZuJcnmypXkfHbtWn/erV1Lf7N7N0U8tLXJwDI2JoNy6lRyjoqLKXrcp089x/KvgKamplhZWcklJSWhMSlnvXs7dIicfSsrKo40ezY5RcuWEXlw4gQZmgkJdA99+tDf/utf5Kz37o2CggKcOXNGzM/P5xwcHFjv3r3p3t95BzpHjiBwzRo8kUrFBRxHIzV+PBmkT540LKTn50fS1DrS3Q4dOuDEiRN4+PAh3NzcaE9YtIgUHsOH07VNm0ZOcUICjXdkJGBhgQ55eexKRgYyMjJeT+iUlKiLWr0Mc3Oae//6F5EEf3D96evrY+TIkRg+fDj7ceFCvLh+ncHfv35LNlWxrzpQKpW4f/8+Gzp0KNxfzqUuL1dX0n4FeJ5nCoUCBQUFMDIyUv9CpbjgOIoqpqc3yP+Oi4tDRESE4O3tzSmVSsTExAipqamcuZWVODQzs3kMtrExKr/5BspOnTByxIgGLRY5joMoiuz58+eorKzEo0ePUGJkhDaDB+OV1IaLCzlFSqW6intFhbr7Qh15sSAI2LZtm6Cjo8MWL17ceNrKokXklH7/PRFiAwfSex05ApibIyEhAUePHoWlpaVCR0en/qY1fz6RuuXlpL54+pRUV6NHEyk0ZAiRG1OmANHRKBgwAOnGxqhWFWGLj6fxX7uW1Br+/ijOyoKWgwPy7Oxg1rkzCgoKoKmpKdQmBJeW0rn60pyRtm8PHZlMKX7wAS+6uoI5OpJT9uQJzeMjR2ATFwebadM4PHhAZNX8+bA4ehQxPj4MISHkwJ86RUTgiRNEBKkUXE0gIiKCPr+5rWh37aJ9p6nilN9+26D9IQBs2LABUqkUFWZmmF5ayjBrFgUYXlG7oAFSU0nl1xgqK2kPPHSolnx/+vQpjmVmoquDg9I6OpqHrS3ZIDxPBKUo0hpydaX94vRp+v+dd4gIGjaswcdkZGTg2LFj6N69O3NPSmKsjtKL53kYGBhAJbtvAMYokNJYyhCAq1evirq5uaJWSAiDhQVEUURQUNCL6urqj9euXVvd/IF6g+bgjbP9N8K6des4AM5SqXSnkZFRh7Fjx2rVOxj/jtiyhTahsLD/uqMNUDXK6upqlpeXh7/1WAoCsdhxcXT4/fQTRZ1696aNfNo0OhzXr6fxzswkQ3nfPmLUv/6aNmU3NyqiUlREz6NG5gsvL3IspFKK4KjaGb39Nv2+rjOsqtj98cfqn506pf5aFXkcMED9s7o5+v+DPeFTU1NFuVzOzp8/j5ycHEgkElEqlXLPnz/HvXv3hJiYGLGgoADDhg3jVVGZ/zq0tcmY/A8j/u5dPP/3vzFQoRDcraw4bvHiBtJSjuPQoG/p74Svry9u3ryJioqK+hGipqCjQ0b1li1NRyNqYGZmxiUmJuKbb74RW7VqJY4YMYJLT0+Hubk5ioqKkJiYKLq4uDDd5rb9MjYmRy4/nyKw33xDa2ThQsonlcuJZIqPVxc2Gj2a5JaGhiRL5XmScv6ZquevQe/evTme53Ho0CEsWLAAr52rpqYUgW/fnhztvn3JcNy8mSS6qv2husY2KyqiOVjTo/3EiROCQqFgc+bMYTohIZR3PmcO7UkdOsBaIsGd06fxWY3aRBAETEhIEB1u3mT1yDSAnPApU4jUq9MirG3btkIFyWTJozAzI8fKx4eih3p6pD54yeGQ11RIj46OxsjGIqQqKJUU1a3TGqoBtLRI2XDnDo3Rvn2UO/oHwF2/jv5BQTg/bBhcWrWqX664qoocvISEWvlsXl4egEb6yAO0JpqRDtStWzcWFhaG8+fPY+rUqS9dEEfPt7KSPj8zE3lFRbiZno579+8LZWVlnJ2dHTt27Bg0NTVhY2MjLlq0CAalpQwuLrQuXhPtF0URv/j7KytnzGCzNDQ4BAfT86uDoqIiITMzk9PT08OdO3cUj7Kz2aRt2/gz+/YpR48ezTcg5PLzae2Fh1Muvqp2RFkZ/e/kRITY7t2Apib27t+vVCqV/IwZM+q1iWqATz8laXZsLJ2XLVsSQWZuDktLS3Ach/Hjxze0rT/5hCLQKsJt2DBStajmpUJBRHdRERAVBWN/f8z78EOce/YMhenpsBIEse3y5QznzqFCWxuJiYm4fPmyWLliBRMDAjBeRwc3btygHGcVlEp1B4SX0GvZMv4wz4t9T5+Go5cXTbN9+2htpqWRvP3QIXI6334b+PJLPFMoxC6BgUBMDIOxMc1BMzPa/7Zsoft6BTHq5eWF2NhYZGVloU3d2gqNYf9+ZO/fL/42aZKgU1aG3r178zo6OoiNjUVOTo6yv48Pz0aMAHJyUF1VhfLycmRmZoIxBgMDA7GqqopNnToVVq1bE0kVF0dj3FxifOnSpn/36acUqT51ClVVVfj111+FBw8ecL169UK/1at5HDxI++XkyeqzkTEi+rKyKMgREEDO9+efN5kapFAooKGhgf7e3gxBQfXrYoCK/V67dq3pw+Kjjyjg8dZbyDh8GJcuX4aenh7y8/ORlZzM5u/ezY5WVSk1vb15uVyOvLy8bFEUDzRvgN7g9+CNs/0/gHXr1rVhjI3mOK6tUqlMApAAIBlADgAjAAM0NTUn8DzvoaWlpfTw8JB7enpK/vayZ1UBkx9++D9xtAGqoCyXyxEREYHhw4f/n1xDo6iqIsm0sTHJytq1I4PnwAGSZH/2GRUU+uEH2qinT6dc48OHKapz7x4Zyvr6JK1u356i1/fvkzRq5Upyam1s6G/MzclZ37SJHIETJ8joX7CAjJYFC9TXpmr7ZWKizm/+h2P8+PHs+++/R1paGnx9fdGhQwduy5YtsLW1hVKp5O7fvw9TU1MEBgYqp06dWttSSqFQICcnB4IgQEdHB/n5+cjIyIBUKoWzs3Otwf+X4MmT2p6gfzVEUcSjR4+Q//ixaLJsGWtpaCi2PHOG+0/WV+A4Dtra2sp79+7x3VXVdl8HJ6dmOdtjxozBw4cPUV1dzYKCgsQNGzbURs9FUYSOjg5CQ0OxePHiRuWOTcLQkCoDHz5MfXDff5/W6ddfk/TXyooiWHPm0Fq+cIEcpylT/itFCPPy8nDt2jUAgKpK9Gvh6UkOwKpVRJRdvUr7TWoq3a8qh1gUSdY6ezagp4ecnBzk5ORwU52doZOYSKoac3OST9b0CHd0dMSqVatYTk4OgoKCkJSUhKCWLRlvYIB2CkVDw33EiHrRyIKCAqSnp3PdGqt036ED7Zs9ezZaNK+6hiBwbSJHshZHjpDhXePUNglV9HfBAvp38CBF+H8PHjwArlyBuHo1CtPTa43tWtjYUH5tfn7t3qtytquqqhruJwkJRO68BjKZDBYWFmLNvtXwMC4oIBLlk0/w/Y4dynGffsq3cnISMmfMEMeNGwe5XM7u3r0LJycnaGhoEAtgYEBKjaqq1zrbxcXFSElJ4Vd++CG4ggKaQ8+eUcpRDebPn8/l5ubChhQPEigUSHV3x8N79/j8/PwG1e6hVNJz27+f5l5ISP3f37pFEeZDh1Cxbx+kHTvyC9asebWjDdBcX7GCiBwXF3rO0dHA7duQODpCEARER0fD0tISlpaWuHjxomi5d69o+uIFM50xg7WYMeP/sffdcVFc3fvPndmlFwEpothQUUCwoWDH3qPGGEuUmFiisbcUNYrlG5NoXl87mtgL9oqKYkFUjIqKgiJFEVSa9Lrs7tzfH4dlQWkaTXl/Pp8PH2B3Z2fmzr3nnvOcRh5PBwcy1CWJ9nNN321LS0CthtCxI3QtLNDp8mUIZmY41qcPn9ivH1Mqldi4YQOXJIlbWFhg5OTJTFGrFvbGxOB57drCV199hZycHMjlcsjbtEH4lCm4ZWcn9erVSyjKhQZAucm2bduy+9u3w37NGsgHDCA9oUkTbXeEOnVojS9bBjRsiIZXrjDFw4dIlSRYlPT8a+pRXLpUbnHbwsJC+Pn5AUDlKXtBQcgyMsIBNzdmV6uWmJCQIP3nP/+Bubk5Lygo4Jxz4cG9e3yEjg7b+OOPYIxBEAQYGBioFQqFYGZmhtzcXO16GDaMZPDixUQeliz6Vx5GjCCStKjzQTEUCiJxirp9nDp1SoqKihKGDRuG4srpo0bRvNi+neawJkpHT4/kl1xO9RgOH6bIwXJga2sLpVKJ3NOnYbh4MbXDLQFTU1Oo1eqKledatYAGDXDu7Fk8jY+Hk5OT2s7Ojn3co4egX6sWGrVuLd67d0/99OlTEcC0hQsXlhOX/wF/Bh+M7b8ZS5cuHSOXy9c3btyYW1lZ6aelpRUkJSUpsrKyhIKCAl25XK6qX78+mjRpYlC3bl0YllU45t8If39iQa9dq7R68PuGnZ2dlJqaWip3652DcwpfCwsjj0dkJHmQ584lwezuTpvvggXEmq5ZQ8qAxks2ejSFAxoakgI6ejQpE/Xr03eamhJhoWFjS+bVTZlCG/rWrZTHDNBmamlJzPXUqfRaXh4p1c7OpPRFRFCP1+hoCqNs3pyu8+VLqr7r4UE51f/WWgFvAB0dHYwcORK///47IiIi1G3atBEbNmyoTklJ4QUFBWLv3r2Zvb09Nm7cKKxbt07S09PjWVlZQm5uLtPV1eWMMa5UKgW5XC6ZmJggOzsbt27dYnp6epJSqYSnp6fYsCqFh8pDWhoRV9988+5uugRC/f2hnjcPFtnZTPXf/6Jmr17sryDIXFxcxKtXr3J3d/eqnaxXL/LmlRWGXAKCIFCLIgBNmzYV0tLSUL16ddy/fx+MMTg7O7P169er169fL1pbW0tDhgwRquzlBuj8nFM9gtmzyaO9Zg2tJ4DWfG4uEVua3sl9+pBHydLyna+pgoICxMTE4ODBgxAEAQMHDizuV14lmJrSPSmVdJ21a5Msio6muaevT+NtZVUc+n7z1Cm1LDNTrDZqFI516YL2mzeXGT0kCAKsra2RmZmp7tKli5CRkcEUCxbQd73qZZ0wgdJeQOHTFy9ehL6+fnE/5tewbl25BcI0hFilxtVnn71ZUbpPPiGDo0MH8maWzLctB5IkQfnoEVKmTkVq1654aGQEW1tbSS6Xv745jh1LIahFyn5eXh709PS4np7e62MQH19uj/NX0bZtW3b48GEUFBSUNtoPHyav/bVrAGNQqVTw8/aWOri7C6OuXgVzdwdCQ6k91avYtYuMmzNnyj2vWq2Gn58fNzMzk3R0dERYW1NKxvXr9KyLCtaZmJiUIr6SEhOR4e0NjxUrJEtLy9LjtHQp7Vk//khjUBahYm5OqQ+dO+O2jg6yY2Kg36MHrcmNG0mOlBdRwxjd2+HDVNxqyRKgdm3orV0LT09PKTw8HLdv3xby8/NhZWWFHubmgs6tW7i5dy/448eSZ3S0AMbo2MRE2tO3bqV1f+oUfW+tWjDYuhW1mzSBNGkS7AoLsWfGDCm1bl0hNy+PzZs3r/h5y7y90ap2bSTevo2NJYw3sy++gGRoqNZTKMQtW7ZArVbD0tJSGjVqlGBkZISnjx5h+OXLCK1bF9VVKtSNjaWolPbtyahctYr0grp1AZkMutev42xwsPqBr68wceJEVvw8GKNIhDlz6LNl1A3Ztm2bmnMuDBkyhNm94qEtCVVUFNiiRfijVStJaNSIDxgwQLx7965w4sQJNG7cmHl6ejIACDx7FsLMmRj/+efw9fWV8vLyBMYYWrRowf744w9IkoTff/8d3333HX3xzJlaIrRXrwr3BwAU9v8q2cc5RSRMn454xrDF2xsABHNzc7WDg0PpNKlRo+hcq1fTuW1sSJfbto3mtbU1rQ21utzims+ePSMiwcSkFPGkgampKXR1dfmFCxdYly5doFKpsGrVKkmlUjEdHR0pNzdXlCQJug0botmhQ2ispye1WbhQRGwsyenr19FCTw9yuVxMTEy8p1AoTlY8KB/wtvhgbP9N8Pb2ZjKZ7HtdXd3vx4wZo1ddqxDoFf1o8M+LqX0XOHCAGPp/gHc+MzMTb9UuLSuLWMrr18mQdnamzalXL8rH2rqV7tPdnRjspUsp33HePPI23L9PgtbFhQxpV1fa5J2caGw0xkxwsPacmsq6JTerqnjEoqPpvCNGkGIsl9NGb29PRsCQIVRAxMCAGPu+fek4TehkYiIpLQCFjG/fTteVkEDem/h4Ui41bTns7Cpth/Nvg5WVFTw8PHD16lWRc44RI0a8tkNOnz6d3bx5k6nValhbW6NmzZooyg3WzC8BKG65wc3MzERRFLF//35MmzatauHSZUFHhwpDVaEN1BshPh7SqlVIiouDVLcub+nry975OSpAx44dNa3BJA8Pj8qFhaZAn1r9ejGrcg8RoJG/JQ3QSZMmiRERETh97BhW//wz6tnYqBs/egSrGTNE06NHYaxUkoerRQsKq87MJMMsJ4eMQisrMrZv36b/W7cmY1sQKO9z5kxSaI8epWvu04dkwKRJZASMGEEes9WraX3t20frdMYMWlv79tHfkZH0/Bs1IlLtFcUtMTERPj4+xf/PmDHj7eaZTEbfbWtL16hQ0H1160byTVPgUlcX8PNDjx9+EG0XL8aaqVMBPT3eXV+/XBmblJSEjIwMsWXLlvD391cne3iITsHBrxvbMhn4ggW4rKuLP2JikJ+fj379+pUvu5cuJVlaRgi4aZF36+jRo5g4cWLZxxcUUMj6G+Zhq4yNETZ/PtiWLXjs5yfFubry+vb2YqNGjVCzZk1cvnyZR0VFSUqlEjo6OlA+fy7aR0RA1NfHbYWCPNKAkJKS8nqoP+cUvTF2LCAIuH//Pjc3Ny97DIyMaH+pAho1agQrKyu+bt06PmvWLO1ai4ggUrhoPxo9erR48eJFHDh1ivd2d2fNfviB1tuAAUSglyxENXgwkTEV4OTJk1JcXBwbP368duI2aED3qemd/cknrx33ODYWzaKj0bRrV+E14q+ggGRhzZqU51xByHJSUhIuJCZi+NixYN7etFfu30+RJ6tWEank6vq6rmJuTvfXty+th1GjwHJy0LFjR6Fjx44oLCzE48eP4aBSMaajA2zahHaffIJroaEswM8P3VxcSF4sXEiyYMECihpZtIj+LyGLhF270KegQFA4OeFRzZo40aULzp07h+6aVKyvvkKzjRvh0rMnchwcYGBgAJmPD8mDKVOKx1WlUmHz5s18508/wfPwYdRt0ABHBw1Cy7g4ZP/xBzKfPYO4fz+gUkEnLg46jNF69vKiPX/VKrT28BBvFxSgoKCgdNRP/fokw+7epb8FARkZGQgPD+chISE8IyNDFAQBx48f5wYGBtzY2JgbGxvD1NRUNDQ0hJGRERRJSYhevx55tWohw9YWX44aJWo84l27dkXbEp0FujZvDvz0E25164bMzEzhs88+Q3p6unj+/HkYGRnxrKwsplQqoVKptDU/2ralvPkhQ0j/qagWiJERPeOSePmScsS7dkVyeLgagEjTrUB4jaQCKIxcpaLowrp1Kf3Ay4sM70aN6DMVdNDIzMyEoaEh13/yhL2aVgEQYejh4YGLFy8iPDxcbWJiIuTm5grjxo1DXl6euHv3bgCAQqGAgYEBd2jUiCbx48e0H+npQZIkBAQE5CoUilkLFy7k5Q/IB/wZfDC2/wZ4e3vLdHR0fjMyMvrEy8vr392u603x4gWF9Bw58uYhdu8J2dnZrE6dOrQxPX6srV7r50d5lXv2kMKxdCkV3fn4Y1I81q+ndjO//ELeg19/JQNcFEkBNzCgfMErV+he9fS0ni1AG5o9b572tfcxJpmZQL16ZDCXRKNGpNDs3Uueq9Gjy/8OGxttcRE3N22lbqWSPAhXrxKB8OwZkQ83bhBzW6cOKXvPn9PvZs3oXP/SCI3CwkKoVCpwzstsBaKjo4N2VciR1NPTw4gRI4q/4N69e+pjx44JNjY26i5dusjS0tIgCALMyij+UiZ++IE8oh06VPpRTbstxhgyMzOhVqvxWuXdjAxg9Wq8NDLCndBQhLq7Y+aiRaxC5eQ9QEdHB8OGDWN79uxhBgYGkqura+UG95gxtM44Lz89JTOTDFhnZ6qC7+hIc3XcOPI8rF4NXLyIxsHBaNyqlZA7YwbuFRaK9fbswSZ9fbjevYuurVpBLoqV3EeOAAAgAElEQVRUSdjBgdZuZCSt/wsXtOfy9SUjZONGUqwNDOhzERFkiCxcSD+ANlRZoaBid5qKy8nJJJ9MTbX94o8coXW4YAEpdDt30hrdsYP+/+47IDYWsokT0V2hULfdu1fEt9+SwvjsGY3R8OGUVmJhoe2rXREYI4NaqaRrU6kotNHQkGTm9u1kmB4+DNn583CuWxfHli2DgVzOjx8/joEDB7KyUiceP34MCwsLycDAQJDJZOyZhwcZcJGRWqWUJgSSfv4ZV+7cgWBoyGvWrMkrnBOtWlVoaLVq1YrfunWLlVcdGYmJJNOrOO9jY2Nx9uxZKS0tjRkYGMBx/HjebdMmoSA4GMeNjNSPHj0ScnNzmaGhIfP09BQNDAxQkJwMh0ePwFq1gv6CBeheUIBjx44hIiIC69dTUeDRo0ejuL1Ps2YUbpyTgywA8fHxrNwUqLQ0bV59JRBFEcOHD2erVq2iRcM57XXffVeqt7GZmRkGDx6MK1euMP+rV1Hvq69gqmktZWpK3rqmTWncbW3Jq3zlSnEef0nk5+fj7t27wtSpU1+XdQ0bklx7+JA8vYMHl3rbtUULrPz2W0zNzgYAhIaGwqZ6dTRcsYKIturVKfqqEkI/NTUVjDEKT2eMZIGjI4VGc07GtJ0d8PPPZIDVrKk92Nycing9e0bFztavp5xckOxq7OBA68rYGHj+HPIzZ1B9715mNH06z507lxkePEhFSAcMoND5uXPLTc2S6elB9ugRItavlwZs2SJYhoQQ0aWRcWfOQMjPh4nmWaWlvVb/RCZJmJCbK4a6uMA4JAS1Y2ORYmOD5k2bImLWLGw4fx69vvkGYU5OsH3+HGZbt/L6kZEIHjeOiTt2oHlkJMyXLYNZ9+7QK2tcv/wSyt69ERMVxS+YmvL09HTBzMxMatmypdi6dWvk5ubi5cuXLC0tjWVkZCArKwuxsbEoKChQKQsK0GPHDrGZvT1LnTgRrVu3FhhjOHDggNrU1BRt27YtzSIaGgIffYRWrVrh6tWruH37NgYNGqQpEsiePXsGtVr9enHNKVNIpk6eTJGAmgJ0r2LaNKp5s2wZ/R8fT6/t2wfI5WjZsqXYsmVLpKamYvv27eznn38GYwxdunQhHeCPP2geenmR3hgXRyHdmr2WMe282rGjTBnTsGFDHD16lPGdO8HKKXTm7u7O5HI5VCqVGBYWxgEq/NugQQPMmjUL//3vf/Hxxx+j8cKFrDjVx8OD9j3QulEoFFEAzpd5gg94J/hgbP/F8Pb2bqurq7vBxsamwfDhww3+te263gacU6/IFi3+GkNbrSYFNTGR2NZevUj4NWxIzPmyZVBPmYLOvr6swdKlZBC2a0fCsVs3CvPu1IkUWE07nB9/JKOxenUK2WWMFB8N1pfomKAJqyu5Of8dGDeOFICSra40YIzCAwEKlfzoo4oLg7wKuZw2j5LKnqZIV0YGbVBqNRkRvr5kYISGkmJuaEhj2aIFKe21axMp8A+trK9SqXD79m3eq1cvvOvq9bq6uoiOjmbR0dGyGzduQJIkqFQqzJgxo2o5w7m5NFcrgFKpxPr165GRkQG5XA5BEKBQKAAAffv2RUpKCo8OD2d6MTH4KCiIm/TowR64uuJahw4QRbFqFcHfA+rVq4fevXvj2LFjQlFOaPkfVqtJoRk8mLzNwcFEItWtS15YFxciyAICyOscF0dtnZRKkgv16tGc/uwzbR/pjAwYymSI27dPHb58uVDw/Dlz/v13yDWFdmbM0J6/LBLpwQMiozgnA3XZMsoV3bqVPEBDh9J3lGzvpaurlR8lCZTff9f+rWmtVhRWDYAMQ0GgtWdqCggCIs3MJIWJiQilkmRhXh5dz7p1ZGx3705z5+uvqfiWvz+F/QYEEGkwahStaU0xqWnTyNhfuZKMqpEj6Rq++45Igh9+KCbmZABmzpyJxMRE4dq1a9Kvv/7KLC0tpT59+gg1S8jFyMhIycrKigOAjY2NEBMTI0lZWYKwdSvJ3BLIe/wYvU6fhsv162z16tX86tWrUqdOnQRASyTFxcXh0qVLapOrV0W9tDS1pa6uEB8fz/v37y+UnMd9+vRht27dgo+PD58zZ87ra9rK6vX+xhXg6dOnSEhIEDRh+oIgMPToAeOAAHx59qyIpUtRoKcHXV1dIusUCiI9bGzIiwsi4j799FO8fPkS69evB+ccQUFBWmMbIAI4ORnp330HSZIQFhbGmzVr9vr1W1pWueVRcHAwP3v2LCtqiwcdTYpAOV639u3bIzg4WNq9e7fQt29f1CnKx8Xq1VQ4zNubPMwhIXSPZRjbkZGR0NPT42ZmZmXLUycn2hu8vcmjWCKc38DAAHOXLcMOQeApjDEjIyOuFxnJbC9fhkH9+mCPH2sjtCpAo0aNoFKpXjfMNORySAiRXfv3k2G9eTP937MnGbPOznSf58+/3hYtO5siW3bsIDkwYwYajRiBaAcHHuvjAyeAoXZtMrKrQkDLZPh4wgThJiClnjvHbO/fZ4ImJPjoUZpPGRlE8s+YUToM/uVLYOdOCPv2ofmoUYCzM6LUau46YgTjHTqgiSCgSVGnj2YpKVDn5iJl9mymN3s2jJ2ceHRyshSSny9KQ4ei8+nTSO/QASYXLwI2NsjOzkZ4eDi/c+cOVzdpIgzcuhVNN20S2rRtCx0dnWIjuVq1aqX7jpe4Mxw8SLKjf380LHoOISEh/PHjx8LUqVNfnx9pacU5zH369MG+fftw5swZ9O3bF4wxVNghpHZtIoHGj6c887KIg9OnSxvA+/fTHHxl/7GwsMD48ePx5MkTpCQnS6nLlwtqpRLi/PkkNwcMoP3o9GmKsDl4UPtcPD0pHeHJkzL71584cYLbWFtz+PgI5a1DQRDgVkSwODo6slWrVmHnzp2YNWsWQkJCoFKptNX9o6KI3CmK6ikoKIC/v3++QqEY98Gr/X7xwdj+C7F06dKJenp6K3r06GHg6ur6v93X+VWo1cSoTZv2emjgmyAjg7xS5ubEdjdvTgqkry9VnPXyok1rxgxSJOfOJaF84gRt9rGxWi9t//4QGjfG3YEDeU69eqyzgUExKw1A22KqZG5jyQra/xbs3VtpKB8A8rQ3bEiC38rqz3ufq1XThriX3CgkiYyC27dJacnIoA3v7FkiO/T0KLw9OZlC8B0dSXl41fv6F+HRo0e4ceMGnj59CplMxiotqPQWGDNmjBgVFYWMjAxUr14dTk5O+O9//4tTp07xoUOHsgplhUpFDHyJisoqlQoZGRnQ1dWFvr4+RFHE5s2beX5+Pjp27Mjq1auHp0+fwsLCAtevX1f7nz4tmufm4qNDh5BmYIBNgwYx0cAAeo8fq5s0aSL26dPnnd/zm0Aul2t6Y5OxnZNDRmN+PuVLfvstEWmnThFpFh5OMqewkIgzW1uKtLhwgeZTu3Zab/KJE9oTaSr3liADQ0JDce/ePSQnJ4sFBQWwtLSUatWqVbnwfviQvCj+/hTKrEGPHtrCYmo1zfWHD0lxr1nzzdrTvAoNeWtpCfTrR4aag4PQuXNnIgiPHKH3HR2JhANIAQNoHl25QsSEKNJ1ab7LyIiKZAUE0HGrV1P447lzRKABdE+v9H8GAGNjYxgbG6Nhw4ZCcnIy7ty5g23btmH48OGaYldITk5G586dRYBC+W/evIn1eXncUS6He3o6MyjyenLOcfHhQ3QrKhw2cOBAwdfXF4mJiWpra2sWExPDXrx4wRhjcHBwELsaGCA8NpZdunSJ5+bmCp6enqWUfcYYZs2ahZUrV7L79++XzmMvLCT59egRkTBVgJubGy5duqQxtOlFAwPK84yOBgYNgt65c0QoalIdkpPLLBJavXp1/PDDD/jpp5/w5MmT0icaOhTYtQua3NeYmJiyjdW1a7Ut2SpBvXr1GADMnTsXOjdukPF48WKF5KeXl5cQEBDAd+7cyXr27Mnd3NwYzp6lN1eupJ+oKCKzyih4l5KSIkmSxCRJKl8fcnWlwlZXr5IxqSHBAAgzZ6J+06asrb09HLOz2XNDQ2yoXVuqHhUl5B06JDk4OLBmzZqxijqNaMa2zCJrAN2/tTWt5TFjaO9asIAiYGbNIq91q1YUoSaT0R4aFERrsUYNWs9nzpDBffMm5NOno+7HHwsH7t1DQE4Ob9WmDWspiqhaZj3N2XZTpgjLc3PR9N49WM+fT0Sdvj6lFrx8ScTZhAna4nhTp5JH9vhxImosLYGpU/FwwwYp+dIl0e/SJfzwww9EAC1fDnTtCvHGDdicOgXExqIdY6wdIHLOERcXh22FhfhEJsOjvXuRHhTELzRvzkzMzCRnZ2ex7ZdfQqdvX1Zr8+ZKCeBibNhAxuiuXcVzJDExEf7+/uyTTz6BQYmiiMVITaWIApAH+NNPP8WRI0ekqKgo1rFjR+bg4FBxusyECZSeoOmw8Gq6xTff0PudOxOx2aKFNqLvFRhxjqbnzoFbWQlBmZk4ZGcHZzMzOJaMFuzdm+Rqv36k62iiDpYtI1Lo+vVShnxhYSFiYmIw2thYYPPnV1j3QANTU1N88skniI+P5wCYo6MjLl26hMxNm6AXF6f1ohel1Vy7dk0F4MTChQtvVfjFH/Cn8cHY/ouwePHigTo6OivHjh2r/69uMfU24JwUsvx86h9bEpJEinNoKLHYV65Qwa+vv6aCED17kvH1009UFXLKFNpwT54kwaynRxtHzZokyGbPJqWvaVNSbjQCTdOGautW7bnHjgUD0Oajj5i/v7/UmbH/LfZDkshztmMHGWOVQZMX17UrjeH76tcsCKTEdumifU3TYzIvjzZQpZKe8YUL5H0MCqLfrVoRK+3sTMqwg0Nx8Zb3AU3f1JYtW0p16tQRHB0dq94j9A1gZGT0WlXkESNGYOPGjSwwMLDcqtF5eXkI9fGR7LdsYXEODiwhIUEdGRkp6uvrIyUlpdRn5XI5mz59erHiomG7nfPzRVy6BLi5MezeDZNGjdA0MBBOTk5o0KBB2ZVb/iqoVCi8dAmXL1zgn1pbw7B3b4YLF+i5d+tGBjPn9PyXL6ccS1EkAkcQSFH+8UfyJshkVeo5XBLnz5/HjRs34ODgoO7bt69YVFW+anLC2Ji87K8aK25uRGb98gsVFNJ4bsePJ4VLk9f9DiI8GGOwt7fnZ86cYdHR0eqRI0eW/zxlMm1vek0NCYDSYzS4fJl+a0iJ48dJ1k6ZQspqRaH7oLoHPXv2FERRVO/evVuUJAlNmzZFYWGhoAkj1tPTw6RJk4Rnz56Bf/QRD3j0iBtPnMg6deqExMREPKtTBzUnTQJevoS9vT0cHBzUCoVCePDggZSRkcHatGmD5s2bU65zw4bwqFZNaFq9OlauXImnT58iJSUFGRkZSEtL4+bm5kzjYb93715pY1tHh/atKhraALB//36pXr16XBCE0uMsCJSHO2QIyTAfH0pZYoyKJlUwZqampigoKMD169chk8nQtGlT6Do7A02aQAgLw7Bhw+Dr61t2v3Bj4yqTN9bW1pDJZMjMzITeokW0H1QyB4vqWLDExETu7+/P7OzsYKM536xZFCGiVBLR06ABjWdBQXHRNk9PT+Hq1atlV1IvCWdn0hPmzqXnUTRPZV26oIuHBxEa7dqhZkgIZh84IKR8/jmio6OFsLAw6caNG8zLy6vcXur29vaws7Pju3btYsOGDYONjU35hr+maNrZs6TPbNtG3uxdu6h6emEh3W9mJhF8vXpRdI2nJz3/2rWB6dOh37Qpmt65I92/f5/dvn1bunDhgiCXy7mJiYk0ZMgQsUyjH8DLly+xbt06Tb0BbjpkCMPw4ZRu0asXkTbu7jR3/f2J7AgLo+fo5kak9c2bRKgHBcGtWTNRb/x43GnWDKELFnCX1auZsHo13QdA5NzWrUQKffUVeLVqOHv2LGeiyA4zBruMDHWfhASxxdix0GnaVCyuJdOxI8mIc+e0TovycO0apRysWkXXB8ox3rNnD3d1dWXlFg5t0IDWThEaNmyI2bNnCydOnODnz5+X/P39hWHDhhUTemXC3JzSgFatojSfknt7RgaNgyRRyPnkya8XSkxMJEKrf3/g1i2wuXPRITAQhw8fxhl/f9SuU6e0wd+jBz2LHj20BreNDckEX99iR1ReXh5+//13tbm5Oatlbs7KLPBXDhwdHeHo6MgAIHvfPhhlZUFtakr7oiAUG9r5+fm4fv26SqlUvp+qqh9QCoxXMZ/nA94e3t7eTeRy+a3PP//coDyB/z+LvDzyhERE0EZw6RJ5WoODScj06EFhiD/+SKzbH39QuJWPD7GNnp4kiBMTKXfvPRg6mZmZWLduHQYNGoQm5eTF/Gvh40OkxZsUtVKrSSE6fJi8WZpq5X8nOKeQvIgIKsqmp0fG+OXLxApnZJBCp6dHilmTJuSZr1HjTxktWVlZ+M9//oMRI0bgT1ULf0tcv34dAQEBqFGjBh86dCgzMjJCQUEBRFHExYsXpTt37gg1Cwslq4QE4W7dulwURW5hYSGkpaWpmzdvLiYkJAAALC0t0bJly9LVoB88oDoEI0dSGPqQIX9vwcLkZJINXl7U6zU6GtizB/lOTrjQty/vM3EiY5cuUXSMKJZbwRVDh5IXYcwYUpQWLKAw1MBA8gCV5SUpB4sXL8bQoUPRuLy8vrIQE0NyKzy8/Dzo8HAimKKiShNFOTnkgdqwgTwZ5VTSfhPExMTgyJEj4JxLc+bMeTcPuLCQ1pmtLcl1R0eKHHJ1fT2UtgxwzpGTk4Pw8HB+9uxZVqtWLemLL754/dqOHEHq2bPY0agRt7S05AYGBvzp06fCjCtXGNq2rbTFG+bNA2xtIU2ciH379vHnz59zQRC4rq4ujIyMxOTkZKmgoECQJAkAsFAT7QAQgTB2bJUJmiNHjvCoqCg2ceJEVFi5/soViiKqW5eqFVeSK5+UlIR9+/ZxQRAklUqFwsJC0cHBQWp96BCrYWrKCleuxI9FhM2YMWNQu3ZtOlClolSKuXORlJKC6OhopKam4sWLF1J2draQn58PU1NTrlAomImJiSSKIl68eCF8r6cH+YgRr/X0Bahq+rVr1/D8+XPo6+sjOjparVAoRBcXF+nOnTtC+/bteefOnbUCNzOTxvDgQZLDkkRro8gYVPXogXWOjhgzaxZM9PUrn++PH2sLerZrRyT7sWOkH3TqRFEtr6zVs2fPIjQ0FNOmTSuXKC0sLMTatWul7OxsQRRFzC8K6a8SVCo6/5w55F22tCTZ6udHY9i3LxnZw4aV23s9Ly8PCQkJuHfvnvTw4UP29ddfs+fPn+PixYvqgoICqNVqpqOjwznnQm5uLgPn8PDwQFcNYc057YWNG5M8v3+fZOi8eTSmv/xSnLKS9ttvEH18UBgaytcPH876njiB+61bc9HREe5r17L60dFgcXEQHz6k1BFdXXKEnDuHp8eP49G5c1yYPp21b9+eCBLOiSAcP55SSTRpZKmp5B1eurR8wicigkiIefNK9YMPCgrid+7c4VOnTi1fXgUE0Pwux+N74cIFBAUFoXnz5uq+ffuKYnn7BUB7j6cnef01612pJNl8/z7do4uLVpcIDyfC4vRp2ocWLiwVDfXy5Uv4+flJiYmJbPjw4ax4TYJSXF7u3IkWV66QjqWvT9EIa9bQeBkYwNfXF9nZ2dzLy4vpXL5MEZxv4qTLzARMTaFo2BD+jRvjTqtWmDx5cqn9PzAwUB0cHHzw22+/HVb1L/6At8UHz/Z7hre3t6irq3ugW7du+v9fGdpqNW1CQ4dSXk1eHhlCPXqQISSXk1Jqbk4KflF7j1JhR7Nna/9+B0pneTA1NUW/fv34kSNH2MOHD+Hu7l4uC/6vwaNHFF67a9ebHyuKZKhmZtIzkiTaZP7OXGrGiPVu3Vr7miZkVakkJSs3l0If79+njf70aSrUNmYMGVgODjQPW7QgAqcK9RJMTExQs2ZN9d69e8X58+f/5akf7u7uMDY2xsGDB9mhQ4e4s7Mz8/Pzg1wuhyRJQv/+/eH6++8Chg1Dz06dSlY9L1+zePGCFLPTpym6oFu3v659m6aQkqatz3/+Q56qvn1JGT18mLwEw4fTM69eHb8vWKB2cnJizM2NlSzUVC5cXEg5BEi2aArcTJ5MoYNVrEkgSVJx/9YqQ6kkhXrGjIqNKCcnMhyePi2tgBsZUY4557QOx48nEvJP9OC2t7dHhw4dEBIS8m6YdU1RxObNSW4XtVDDoUOUplNJ2zWAPO7GxsZwd3dnzs7O0NXVLXuQBw2CRUwMvnB3ZxsCA5mmxgC+/bZqxGtBAZCTA0EQMHz48LLaOwqZmZnYtWsXXr58idDQUO7q6kqfefSoyjIvJycHYWFh7Ouvv67Y0AZIsR45kjxZPj5EGFRwHmtraxTlrIoAFTQ6evSoEGVtjdlffQUduRzt27dXX7lyRSw1V7OygLt3kZOXhx07dkBXV5crlUrJyMhIbNGiBTjnMDAwYLa2tnjy5ImQnZ0NvcuXITx8SJFlKPlVWThz5gzi4uIkURRZgwYNpJycHHh6eorOzs7w9/cXdHV10bhxY7qR1FQyXC5fJmN71SoyimNiSEbn5gKcQ2ZgAONataTH8+YJzQICSDZ9+ikRUSNHUmRT167a8alfn4y58eMprDwwkNbQoEFUYKyMnsU9evRAeHi4+v79+2LLli3LHGO5XA4vLy8hLi4Ox48fx9MnT1Cnbl16Vk+fkudx927aQ+rUIQ/7ihUU/RUURO89eEDX9fw5EcEamJrSfSxcqCUACwoofcXDA3Bzg0FICOyvXoV9nz5C02fPeNThw2h5+zZsnJ1FlYcHdKOjYXD/PrIbNkSBkREyJQn1ly0jOdKrF43rvXsUMRMXR9c9cyZFtc2fTz/79yPTzg5X165FvoWFVN3BAQ11dRHfqhUbVq0a0z90CNl79+LU4sXo5uCAp0FBcNi8GYKrKxAdDZVKhSeBgbyhWs3qdelCcnr9ehqPFi2oOGJeHpH7CxaQXG/Zku67RDeEYqSm0th+9VUpQxsAMjIyJGtr64qjqoyMysxz1qBLly5gjOHy5cuik5MT7DVpMWXByopkyvnzRNBbWVFU0i+/UFTlmTM0B4ODiUzp3x+YOLFcYrF69eoYNWqUJsUCderUkQYPHixkZ2dj165dXKlUsuTatdGyd28Y79+PqKQkFF67xqWpU1nTtWuRlpambtCgAdPR0WH49luKoKiqsR0bS6TL8+fQjYpC7bt3cefYMTx48EDq0KGDABC5FBwcXKhQKLyr9qUf8Gfxwdh+zxBFcaalpWXdli1b/jOrPr0PZGVRaOG8eeSpMjam0O+oKAr13LOnWJH+p8DFxYXp6enh7t276m3btokmJiZqOzs7sWvXrm/fjunvREoKER5/BpMn0+9582izCQn589f1PiCXaw0WjZEFkGKTm0sbelwcfe7IEVIK2rWj+airS8aCnR1tUPr69F1FSuu1a9fw4sULsVatWhL7m9IMnJycYGNjgy1btsDPzw+iKKJ3795wcnIiT42fnzb/tiJkZ1PBuo8/Js/Q9u3v76ILC2m+uLlpc6NHj6bWK5s2ERGXmkpG5ZEjFLViaKgt4ldkrEmShMzMTLFCRakkgoNpLKytX3/vwQOSO59/TnNh8+ZyvyYpKQlbt27l1apVQ/Xq1asmu9PTaR6FhZUumlYecnPJi3L9OhGQGsjlZKCkp9M6vn6dPHhOTm8cecA5h0qlgoWFBdLT0/98SgDndB3161MdhuHDte9ZWxMp0Lgxpe2MGVOlr6xUvioUMD14EJ2GDMGlS5f4tGnT6Hloig1VlELy9deVGsympqb4+uuv4e3tjaNHjzJXV1cyhjS5x1WAprBWpYb2sWMUev/99zQPd+0iA/GLL6pMeLm6usLPzw+5RkZUp2HtWly5ckWUy+WlikLlJSZCnZiIPbt3c3Nzc/7ll18KKIeEq1u3LvD4MXaePYtna9agTolnkpWVhY0bN0q2trbo0aOH4OTkhFfdhOHh4bxv377MxtKSquIrFFT/ZNMmKioVFUXk78WLZKBqxunoUfRNShI2btyIyD591EMBES1akAyOi6P704SPp6ZqixoePUpEvlxOzzg4WFsXhHMiig0M6NjLl9GpUycx/pdf0KRvX8g/+gh85EikzpwJvbg46KxYgS3jxvEBv/7KJEtLGLdvj5oNGyJh/37UePiQwqijo0le9u5NRlhKCskwe3sKJweoZVezZmSMaToD9OlD5NSuXWR0iyIZ24JQNonNGOwliYExMEFAqSoljMGcMXDOcXjdOp7w3XesS8lUrJIYPZquT9NerEsXoFYtxDZtKhkYGwv92rQRWGAgje/33wMHD0JKT0eugQG6r1yJuytW4PLZs3zg8eMwycpiNbp1Q0hICG61bcvbT5/OUFhI91KtGkUlPntGhqdSScb3smVkcI8ZQwRqQACRuhoUFmrD6pcsee3yc3JyuKY1X7l4NRWtDHh6eiIsLEx6/Pgx7O3tKxaeo0ZR7YxevWiebdxI8nzRIto716+nqKPly4mIqyRaUBAE9OjRg7m5ueHEiRP816J0nHbt2nFLS0skJSayoHXrULtPH5zv3h1NuneHwaNHfPX//R/LF0Wxe/fuNEfGjy+t15SH//yHSJ7z5ymtoMg4d3FxwbFjx3DhwgUhLCxMql+/PtLT0xmA8wsXLnxY+Rd/wLvAB2P7PcLb27uVXC73HjRokH5ZbYL+5xAURCzllStkUJdsu6GrS6ynKNLmUlj4XkLC/wwaNWqERo0aibm5uQgLCxMfPXqkXrNmjfD555+zGlWs6PqPwLlzRHbs3ftuvu+776gwXHo65XtVloP1T4KhobaVC4DiXpWSRKFjyclUqT4+nuanry/lkC1YABQUwCQjA61TU3mvQYME5ORUrT3Se4CFhQVmzZrFrly5And3d204ZGYmGavOzuUfLEmk7KxdSxIJg5IAACAASURBVMrf1avvtthceDj9DBxIoXiff05re9Eikgk2NqRoNmhAXh9Nbuann9LvcvLRsrKy8Ntvv0nm5uaoUkEygBSTESNozr4KjQz++msiBF++JOP+448hSRKePXuGwMBAtVqtFhISEtCyZUvevXt3oUqyOz6eFLPTp8sNFX0NRkZkJGjypF+FmRk9W85pjJo3p7oVlVwP5xwKhQK5ubk4ePCglJiYWDx2qampeOuaIVlZpGBOm0ZKqXcZThFdXSLmTExoTlRFSawMY8cCkZHIT0vjtra22mJJYWHkRS/ZGuxV7NhB41UyPLwc2NnZIT4+HocOHeKDv/uOsU8+0UZFVAI9qjAuJSUlCeVWQQ4KInnz9de0FgAiNGfP1kZ1VFFPUCqVlLc7ZgzJLWgrsQPkuTqyZQuvL0lMX1+fDxs2rOL1I0nAmDGoZ2zMo/PyWI3CQty6dQvZ2dkIDQ3ljRs3Rv/+/ctcC5IkoaCggJk+fkxGplpNMmDsWO2HZDKaxzY2ZJzq6xe/FRwcrJbJZGI1Ta/wb0qkkObm0u+ePWn+AeSB3L+fcpOXLKE1l51N6z4xkda0pSU9e1NTYNIktHj2DLoJCdKdTZuEi1FRGBwbi6unT0u8sJA1qlOHu7i4CHa+vrCzsEBhUhJWGBujs60tagwerG3NWZJ80Xiuu3fXFk0dNIii+C5fpho0mzaRgbl9O3mdU1OJIKikvgirKNwZQEJCArKzs9G5osJ3P/9MBmFgIF3TsmVAbi7+cHVlCQkJuHLvHpi5OfiBAzDq0IEPUCp5VkqKcGflSrjfvo1748dL6tRU4WCfPoAkodqqVXiZmQlHR0eq5i+TEWkE0N5jbk4ElYMDefHr1SNC296edMLNm8n7bW5O8+DqVXp+48eXefk5OTmswmriAIWuX75M414BqlevLiQnJ1fN89CkCc2vFy+IIMnIoPuSJJpn48a9WUoeqFXe6NGjxePHj/M7d+6wzp07C4wxODs7Q/L0hHLtWjSPjYU4fjzDN9+gdbVqCHZy4rVq1WLQRHtUJBfmzaNIEE9PSusBiMQogiAIGD16NCwtLREaGipERETwpKQkplQqv3+jG/mAP4UPOdvvCd7e3qJcLn82cOBAG0eNov+/ig0baMPv04eE+4QJFQuHP/6gDerly3+cwf0qfHx8pLp16wo9y6iy+49F584Ubv3zz+/2e/fsKe7d+09tz/VOUFAAVXw8zm/Zos58+VJwuHuXuTo5kcF+7RptvP36kUHRqBEZGA4O761IW4XYvp3CEQ8eLPv9o0cpDG75crret62krlSSkrFxIymy9vakOG7YQIb89evktVq3jsiYP5nfnp6eDh8fH+7g4CD1799frHLbMU00RyUKKwDg99+RuXgxts+apVIoFIJKpRKsrKwklUoFa2trPmDAALFKIeSFhaREnjtXun1XVdGpE4W2V6Q0atrn/fQTefZ8fUvdI+cc+fn5+OWXX4pfk8vlsLCwkMaNGycEBgbi6tWrnHPOOnXqBHd3dwiCgHPnzqk556xatWrMw8ODVUgsODsTiRcZSc+6opZ0jx/TfZ04UW7rqDeBNHAgzhkact1x41ixkZGbSwRgRUr5iRM0dpo0pQqgUqmwe/duxMbGQj83F9NmzIDuG5Csy5cv515eXmUTs/fuUQX3YcNKe/gAkifXr2urd1eBrFmyZAkkSYKoVMIjOBhXOnSAc9Om+LgoXzYwMFCdsGcP+8TWVhCrQDTg7l0gLw8xVlbYtXs3ZDIZqlWrJpmYmPD69euztm3blk86qdW44eEBJ0NDGK5bRwZLeZ/94guaRzNnFr+0bds2tZWV1Zt3PLhzhwy4sWPJ66gxSkoYGm+KsLAw+Pv7S7q6uuzLL79k+iVIgSph+nSak99+SyHUAwbQWg0PJ8KnRQsiWyrz2laAmzdv4ubNm+pJkyZVLOSmTye59MMP4BER4K6uWP7NN5g9fz5kMhlUKhUEQcDdu3cR9+ABnFq1QoM9e8CWL8cfx44hX18f165dw4TVqxFlb4+A3r3RvHlzqWvXrkKZ1cFVKiqmOGMGPef0dAq1vnuXPN+DBtHesGYNrcuTJ8vV/3x8fCQ9PT3m5eVVvkB6+JCi1kpUpy8La9euVdepVUvo360bQ1ISRV2oVBT1EB1Nc0YuJxIoOJjkaloaEToWFvTa2rX03OrUIXnyBnU/NEhMTMSOHTv43LlzS98T55SSkJ9P82XxYiLeACL909Pp/K/i/HlyHgwbRpFqQ4ZU6ToCAgKUN2/e3Pvdd995vfFNfMBb44Nn+/2ho7GxseH/tKHt60s9YCMjKaywSZPS4ZDloU0bYj/lcuC//6VCNP/QNmhKpRI5OTl/92VUHVlZVITufWDECBLsoaG0kZ8798Ys778CenpYc/KkJFWvLrr17g2rxYspj4tzYrrj4miTT0igAi8bNpDHdto0Ci+0sCCFuXZt+m1u/v7ICSsreiav4sYNClk1MyOvRlVbsOTn031ZWpLS9NlnFH49Zw69HhxMynKPHuStcHfXRgsAr+V6vg1UKhW2bdsmOTg48EGDBlU99LlrV1LoNOkPleHLL7EzP19t9PSpbNJvv0EVGws9U9M3E0QBASQDnzyhMXsbDBhQdth7SYgiPespU8jbHRcHHDkCxcSJiH78GH5+fsgvCmft3bs3CgoK0JE6EAgAhVN6enqyo0ePqq9duyYEBgYySZKgq6sr2NnZsZs3b+LKlSswNjbmY8aMYaUqQz9/ToTC7t1E6nzxRcWGNkD7gZ8fGcLvwMP9rFcv6J48qbknwv79RACeO1f+gTo6FP1RBchkMnh5eSH1p58QdOcOrjx4gK5vYGyrVCpWZkXtJ0+0HrhXDW2A9r62bWmchw4lJbqSCJqhQ4fi0KFDUHIOl8ePEWNvj5gSBsDz58+ZSY0agliVcffzI+Pw6lXYm5hg9uzZ4JxXXnVfqQSOHYPql1/w1MGB602cyFwq0nfs7LT9qUsY2y4uLsL58+elPn36VH3tHTtGxJ6ZGckouZwMobeESqXCunXr1AUFBWKnTp2Ym5sbq7CgVlnYtYsIbrmcCJSgIC3R5OREkWYvXlBqzZgxZUffVAHPnz9XGxoaVr6hzJxJ5A2ASwkJ6kdTpwo9P/qI6QwZAixcCJ2i/PVWrVqh1ZgxNI5jxwJz5sBDJgOWLUPHRYvwW3Y2Wn/8McbWqoXdu3fj4cOHGDx4MOzt7VGKgJHJKNwfoKJoL17QfQ8aROTsjRukKxob095R0tDWhNanpQGCgI8//lg48f332MsYhnftSsd5emqLzjk6Uh66KNK+XFhIRum1a+RV19enPfrYMfS0tBRzNAVVg4LIKVS/Ph0TF0cEtJkZ7du9e5MxHhlJhHHfvhQZcOcOfX7fPpLBmZkkB52cqObCxo0UzVFORf1Hjx7x0NDQsp8ZYxTd4u1NsqxnT4rY0IThv1pcTqmkdTRwIJEFvr7lTgGFQoFz585xtVrNZTIZ55yzO3fuCJIkVYGB+4B3Cs75h5/38LNo0aLvTp8+reT/i4iI4PzFC87r1OH82rW3/57nzzmvWZPz5OR3dmnvGgkJCXzZsmX83r17f/elVI6kJM51dN7/eD5/zvlXX3EuSZynpr7fc/0NyM/P50uWLOHp6elVP0ippHG5epXzkyc5/+YbzqdO5fzXXzlv25bzNm0437mT8+3bOQ8M5Dw0lPO8vD9/sXPmcJ6QoP0/IoLzK1c4b9aM8x076BmVh8BAzsPDOb9zh3NPT84fPeK8Z086VqHg3MuL85AQzjMz6ecvwvbt26W1a9dKKpXqtffUajXfs2ePFBwc/PqBW7fS/bwBFAoFX7p4MU/bsIFeWLGC89zcqh0sSZzb2nK+f/8bnbNMBARwfvZslT++Z948nmhjw9dNnco3zJunDg4O5mq1usrHq9VqHhYWxuPi4jjnnEdGRvIbN27wdevWKZcsWcIDAgK0g9+1K+fDhnH+xRc0f98Ex49zbmfH+ZuspTLg7++vvtenD+f372tfTE2l51URVqzgfNasNzvZ/Pk8bNgw7uPjU/UB5Zz//PPP6tf2iZQUzj/7jPPff6/al2Rlce7szPnhw1U+rzIkhP9nwQK+aNGi4tdOnjypvjFqFOclXisT6emc371LMuNNcOUK57/9xvnw4Xz38uWqHTt2SAqFouJjgoI4P3WK8y1bOD99uvjl/Px8vmjRIv7kyZOqn3/sWM5HjeJ88mTOo6Le7NrLwNmzZ/m6devUSuVbqmwPH3JuZcV5Wpr2tfbtSfYHBJT+7JMnnG/bxvm333J+4cIbn2rz5s3qtWvX8jJl4KvYtYvzH37gBw4cUB04cIBztZrW8osXtAdp5LqfH+cdOnA+YQL9Hx/PeePGnKek8KtXr0ohHTtK/Px5zjnn58+f50uXLuVHjhypfLAyMjhfuJDOK5NxDnDevTu9p6ND+uP69ZwbGdFrLVrQc+Wcq3V0+K/TpnH1mjWcOzrS+926cb50Ke1PcjnnTZrQWO7fz/m+fbTnBQeTnIiM5Dw2lu/w8ZEOHTjw+mZSFsLDOf/0U84PHqTjjx2j69m1S7uXaubI5s00j5VKzs3MaD//9lvOW7ak96dO5fzSJc6VSr5z0SL1ypUreWBgYPnnliQ63tubcycnWpuNGnEeG6v9zJIlnNvb09+VyHtJkvjWrVv5okWLuI+PD9+7dy9fsmQJX7JkyS3+D7CR/n/7+eDZfn/IUCgUSvwvRQ8olRTO8ssvFCb45Mmf89jZ2lJ4UUEB5bAdPVpx7unfABsbG/Tr1w+nTp3iTZs2/WfHTltZUSGat/WwVRW2tuTNDQ+ncPVnz4gZ/h9AYWEh1q9fL9WpU4dXq1at6q4NmYzGRZMz1bev9r0JE+i5pKdri7XNnk0ekE8+obD8oj6xMDcnZr569crD0nNyyMPj7U0hxpcvU57g6NHA7du0Njmnz/3+O13T+fMUihwVRSF+n35KjHzv3nTO06e1a3rbtjcZuncJ1qBBA16WZ2nPnj3SixcvhMjISKSkpKBv375ULfzwYRq/Nwxf19HRgXn16upt+fnCl2lpzEQTBl9ZMbKNG8lLGR//bqJyTp4kz6Ym/7MCHDt2DJFyOSInTEBdMzN4LV8uoH59ijKoIgRBgFMJr6emrZ2bm5usqDicYJ2RwZ11dBiOHaNQ0HXrqEL0m6B/f0q1ePGC5mFleZjlICMjQ6plbi5g0yYKxwZorRgb01xv0aLsA4cO1RawqgpUKsDbG6r795Fw9KhQXo475xzPnj2Dnp4eRFGEsbEx3NzchJMnT8LQ0BCFhYUwlCTYHTpEYzB0aNXOb2xMVd2XLSNPW4cOle+xooiRGzdi/aRJCAwMVHfq1ElUKpUcSUkc1KGgbEgSyYrOnUt5mivE06cUzXHxIs2FPXvwYsUK1qFRI1ZeW61imJmRR87Pj1IAisJ/4+LiIAgCKi2IBZAO4uVFaTEbNpBMTU+v2rVXgNzcXFSvXp1XOV2lJCIi6FnFx5f21urrkyx/tQBg3br0c/QoeUW3bKF9o5ze2q9i8ODBws2bN6WgoCDh1q1b6p49e4rltqV0dwd++AHVVq8W45OTSVZparkMH07Xt3UrjeFvv2n3r1q1isO03ceOZWE6OkiOjIRVly7o0qULLCwsEBAQIHLOtd7tpCSqo9C1K/XZHjWKIqp8fChv28iIPL+a3tjR0eS1bdOG9kigVBHWgBMnJOHhQy5MniwWRyuVjGLZs4fSt5o2LXesrl+/jmepqWzi0KGV7+WaDhlTptBeMneuttXcqVPaNmaaZ1yyJkFaGv2eMYP2dM1rSiVw7x6GLVkipD5/Dutly8gTvX49RR2MHKn1XDNGxebmzKF9YO9eWiO1a1NR0379aByL+mRXtO+kpaUhMDAQT58+RYcOHdClSxcUFBTg119/LVAqlZ9WOhYf8M7xv2MI/vMQmZCQoATwhkk//1B06kThOxs2UI/Qd9kqSE+PQnIaNSIB/w/rdd24cWOcPHmSXbhwAeVW//y7sWgRbVQnTvx153RyopByExMK6Vq48F8dVp6Tk4MdO3ZIZmZmGD58+J+v3KyBgcHrvXo/+4yU3fR0Iq3i40lpS08npWv1agpdnzSJiv/UqEFhknXq0Hhretbu30/KzM6dRIL98AMZyb17k4KfkUEG+YEDlEPo6UkKFmNElmgwZ847u90/i6SkJMnDw6OUJiFJEo4cOcJjY2OFSZMmISEhgZ87dw67du3iAwcOFIx/+gls+PAqt/UCgIyMDOzfv1/KysoSlEolW7V2LTx8fKRuzs4Cc3SkED5NWOSr8PUlGagpdPVnsXIlESNJSRWGlGdlZeHu3btwcXGBKIpSfHw8cO+eAM5JeXZxeevwVA2sra0xcOBAljNmDH8hSbyGkRFjS5eSkfU25KqDA8mHEyfIaH+L7zA2NhbC27WDY5MmVB9EEzIdEkLzuDxj28+PPlNB5flSmDEDCAqC69278PPzw9q1azF16lTk5OSgsLAQ9vb2SExMxO7du7lSqQTnnEmSBJVKBR0dHTDGpIMHDzIdUZQ89+wRU+vVk1znzRPe6I4bNSLD5+OPad2uWlVhDQLByQn5NWrA1sAAsbGxrFOnTjA0NGRxpqbMrbxxAUiuuLgQ6VYZOKeUrytXqEjU5s3FRc4YY9yksrQCgOpLhIQQ0bdzJ5FLNWsiIyMD1apVU5uZmVUucy9dolQdY2MtefMOdJFmzZphz549YkJCAt64GOrgwURavpobv2MHEaZPnpR93MCBVA1882Z6zosXk3FcyfowNzdHz549hY4dO+L69evs4MGDMDc3V02YMOF1fd7eHjhxAjaHD/MwIyMuSZJQXIfi0iXaQ1atonnfoQMVN9SEeteoAdSsCVWPHjhubIyB9vawKipuZ5yfD92nT5mqsBDyZs2IpD1yhAz3e/fIEHVzo7k8bhzJpj17yLFy4wbpDmX0cddAkiQEBwcLXl7lpBVfvkyh4BUY2pIkITAwkA8cOJBVq6x1YkwMER+//EIpHQARULm5NA7DhlEhss2byUAu7/usrLSkyc6dAID8/HysXLQI31taEuFdWEjv+/hQyPjhwxQ2npBA19CsGaVrLV5MslOSqBaIoyMR4hV08cnMzERCQgIOHToEtVoNDw+PYp31jz/+UAuCcHLhwoUxFQ/GB7wPfCiQ9p7g7e1tKIpi+jfffCOX/1sNkBcviEVbsYI2tmbN/lS/10rBOQmSzZtpA/sH4cGDBzhz5ox65syZ784Ie5d48IBY5ap6UN4l0tJog/L3/1N5c38HwsPDERAQoAYg5ObmMktLS2nEiBGCoaHh33thSiUZ34WFpJxmZVH1V0Egr0FYGHmpk5Mpj2zYMMq77N2bWPMVK0iZNjd/v2v2HePkyZPqkJAQcf78+dB4tvPy8uDr64u0tDR8/vnnqF6kbGRkZGD79u08Iy2NyXV1+bBPP2X1X2kRVqS0ITo6GoIg8Pbt2zNTU1Ps3r1bnZaWJjZu3FiytrYWZDIZHj16xJOTk1mHDh3QXleXvOSXL5OCqFlX8+cTGfimHt6qYMsWUrBeiRg6cOCAFB8fDw8PD+H8+fOwtbWVhg8fLty5c4ffvn1bmjx5Mg3U0aMUZdKuHa3Jkrn0b4K7d4F9+5Dz/fdYv2aN9NXOnYLx/v1gryi2pbxalYFzIpQePCDF8Q0LRPn7+/PExETmdeoU5VxqlPCsLPru8r5v505S7tesqdqJCgrICLS3hyRJWLJkCbp27YrAwECoVCq0atUK9+/fh6OjI/r161fcg12SJG0/dkkCFi9GYb16WPX8OW/dti3v3Lnzm4c/5OeTEfb4MTB1asUdBMLDEXfhArampWHIkCE4ePAgRsXEoP6ECa/1MAZAhUy//prI0opyk3lR5eg5c8gQaN36tQJkK1askOrUqYNPPvmk1D2qVCqIolj2HClqF6VevRq//vorWrRoAWdnZ1hXVLvg4EFaFwMHUmVwX9/iKuqVtYCqCk6fPo2IiAg+bdo0VqXCiJJEUUlmZiRjX73PwYOJzFixgpwIFRiXuH+fKqmvWgX83/+9Ts5WAIVCgTVr1vCGDRvio48+en2wo6Oh+vJLrPDwQKePPoLHq0UcX7wgo9zIiGrpTJtGc2LLFsDdHYGffSYp4+PRbe9eAWZmkFJS8KRpU5iYmXHLq1cZFiygufRqbjFAkSLu7jRnDh0iwm39ejLqK8GmTZu4hYUF0xT9K4Xhw4ns2bKlzGMlSYKPj4+6sLBQmDx5csX595cu0bivWVP6GSkUFJVy5gztu2o1eZv9/ck4rmLXifj4ePj6+kpz5swpe1IVFlLESMOGRJa7upZeZ8+fE5GTl0d1M4YOpXxuS0vSAUaOpGsTRVy6dIkHBgayxo0bqz/99NPim1YoFPj1118LCgsLXRcuXBhZpQv/gHeKD57t94SFCxfm/vjjj1k5OTkWZv+2ENubN8ljtmAB0KoVKZd/hfHBGClkBgbEtA4YQJ64fwDs7OyQm5srxsbGUk/SfxKmTCH2+O8wtAFSAiMiSFGtW5eUolat/p5reQNIkoSjR4+idevWokKh4C1atICtre0/o1KfXK5l7YsK2WD8eG1YeEwMrVG1mtZIRoa2OEubNvT7facTFCE1NRWGhoYoszhUJVCpVJDJZBpFV11QUCCKoohffvmFu7m5sRo1auDcuXOSIAjMy8uLVS/B6lerVg3Tpk1j6hYtEOvmht179sDY2FgtSRJkMhkkSWLZ2dmCkZERb9q0KcvKypJ8fX1FlUoFV1dXfPHFFzA0NCx+3u3atWOXL1/GtWvXJPeZM6nFzc2b1DVh6FBSipTKdzNoZcHLixStV5T2iIgIQZIknD17Fh07doSnp6cAADExMVxfX1+rRWoqbu/fT8ZReDgZBFXxOpZEaCjw+DGM5HJMOXVK2NGjB5SBgbzu06dIT0+X3NzcxNDQUCkiIkIwNjbmJiYmkqurq+Dm5sYA4OXLl9DT0yvdP1tTJXrqVCoktWvXG11SnTp12K1bt7C/WjXJ7NQppOrqCi4uLnBs0ICU/EePyp7vXbpUPVIqMpIMgVWrAEAT2szPnz/PHB0dpVatWgnHjh1TN2nSRBwwYECpQ0sZZ4sWAQoFdIYORfW9e5Gfn/926Uf6+hQBs2IFecSCgspPLUlIgNXWrcBHH+HEiRPc09OT1U9JKZ+EePiQPHcVGSFPnpAhsn8/jUs5nQx69eolHDp0CBEREcjMzOR37tzheXl5LCcnh4miiPr166tbt24t1jExgaxbN/J67t6NfDc3KIsiBq5fv47g4GAYGxurGjRoIOvdu3fpMVUqgW+/hXrdOjx48ACN9+6FfPhwIg3ekTOjZ8+eCAsL4w8fPmROVSkst3EjhbM/fVq2N3rqVHBjY8T37o3oyEieGBSkliSJ6ejocJlMxjp16iQWpyg0bUre3hcvSOZcvFi1QoQAdHV1MXr0aLZ161ZkZ2ejsLCQc865k5OTYGVlBWNTU+T06gW9pCQ8e/aMAyh9sba22g4mFy8SodilC6BSIebXX3E7PJyNGz+e4cwZIDsbd69cgd/w4fj+++/pe8rokw2AdLjTpyklYsAAGqMePcps/1YWGGNcJpOVvXb27qW9sBzcv38fubm5wpQpUyo2tGNiSCYdPvw6GaKrS4ZuSgpFG4kirce8PDJyXVzIe18JUlNToaenJ6GoWOVr0NHRpj8tXkx61PTplFJZvz49n3HjtOkwnNOcDwkhWTNyJOkI9vbo6OvLmg8ciFNz5zLluXOQnzsH/Pwzbty4oWaM+X8wtP8+fDC23y/+XWEDt26RgLl5kwSMoSFt9H8lNOGBqam0wapUf09LpVdgbGyMzp07q3fv3i327dsXzd5BO5t3hqioCjeevwx6ehR226QJVe90df3HVpkHgJCQEBgYGPDu3bszvKqA/FPBGG32NWpQiJtCQb+XLKEQuL+wJVtWVhYOHjwoPX/+XBBFEdbW1rx3797MVpP3VwbOnz+P9PR0ZGZm8tTUVF5QUCDI5XLOOWf9+vUTRVGEjY0NHj58iODgYDDGeM2aNfnAgQOF8trwiD/9BHsHB/a1kRGePXsmiqKIrKKevA0aNIClpaVmUESVSgWFQgFDQ8PXNDDGGNq3b4+bN28K165do8rXGkWya1fK6dP0/X0fEEVSrJo1I2+sjg5CQ0MhSRK6d+/O27ZtW+rh1q5dG7du3XpdiRs6lEKQ792jMNXDh6tGft26RSHoZ86Q4b9iBfTbtcO4//s/BJw/z+7evSupVCrx8ePHACD06dPn/7H33WFRXevXa58zDEOXIkoXQQVsiIrS7L23WKKxxRJNNFGjqVclub9UvSaxRI1eK4m9t9hQsWABFQVBkCoiSJMZYJiZc873xytNumJi7ud6Hp7RKafus/db1rteKBQKdufOHf7YsWNITU0V7OzsuGPHjjG5XA6FQoGOHTuiRYsWaFjsCO/eTUq+GzfSPmo5t7u5uWH27NlQKpWcZtIkPAgOxg2NRvTw8OAwYwYFoCpzts+fpzrPTZtq3klSEhnfZTBt2jSWl5dXEoT76KOPqmc2/fILlRYMGQIYGCA9Pb3mfsHVgeNoTh05kjQCfvyxcgO/Rw8o/vMfLPHzA/T0aJx8913llNPJk8lAr0ofQKUiVefly6lO9Pjxag+xVatWuHv3Lg4ePCjJZDLJ29ubs7S0hFwux5kzZ8S4uDg+KSkJdjY2wjtt2vAYPBixjOH2xYuwHDMGPosWSS1btmTGxsY4deqU7MaNG2jYsCG8vb0hiiLuXb8Obt06Mfnbb1FQUMDd2bMH0zUa2Pj60liqLuNfB3AcB2dnZy4yMlJo2bJl9fc5Nxd4913KfD6bc0VRhFKpRGZmJgoKClAUGyulXbiAHDMzqcuVK5z6669lAOmC5OXliWvXroW/+F8h1wAAIABJREFUv7/YoUMHYlJxHD0T+fn0HA4aRNlgK6sa53Vra2uMGTMGwcHBgrOzM69Wq/Hnn3+WnJctx4kTgoK4rWZmLKdXL1RIAAUGkhOckEDBlfR0YNw47E1KQudevZhxw4bkkE+YgFb9+yP2448lnucrPyhRJPtNkihj3qtXaUBEoSAHcerUGltVubq64tatWwKA8vfiiy9obqumZM7IyAjPAhtV7+DwYQoEXLtWpYo4wsJKad/FmDGDnO1ffqEMew0t6zIzMyVTU9PaMSLv3iUdhR07qLb9228p+Fe2PGr3bnp1cyvVhrlxAygqAscYuPnzoTUzw43VqwWfiAhe9803uHz5sqaoqOjLWh3DG7wS/P1ezP8wRFFUMMaQl5cHrVYLrVYLKysrvJAIx6vEo0cUuRs9mrKk8+ZRrejfia1b6dXHhyLqa9b8vccDICAggDc3N8ehQ4fg4OBQqXDOXwpRJMO4FpSsvwyzZ9Nx9e9PbVAmTvy7j6hKRERESK1atfpnONllsWABMUDOnycjITWVHAqVqsaWQS+LvLw83LhxA2FhYWJBQQFnbm7O5s2bh+zsbNy6dQtbt26VPvroo3ItkNRqNR4/foyoqCjcvn0bzs7OgqOjI9e5c2euWbNmyM3NZUZGRihL3ff392f+/v4ABUGqNlTWrqV6XUdHWIDqGauDTCardv7leR7W1taCUqks28Sa5sSEBDK83n2XSl1eIJNfIxo1ImdbpQIsLJCZmQkAeN7RBgB/f3/u/PnzSE9Pr0i/5XmaN3ftIudv+HAy2KpqAVecLWnRgn67bRsZ/0uXguN59OnTB3369OHy8vKQkZEBExOTkn22bt0a9+7dw4EDB7jbt28zuVwuDR48mIWFhSEsLEy4cOEC7+bmJgwfPpxnenpEV127loKp771X60tjbm4OAwMDXJHJMCQrC7YTJ1KQ4d13ifru7FzxRy1bVjSWq0L37hUcUGNj4/IZ+uqwYwdljP/1r5LSDa1W+0KMjwpwcSF68dy5dE+fz8JxHFGAjxwpDZAbGlacD1JT6RirEtM7epSYSZ07U411ZdTgSjCW2g+WBC2VSiVWr14NV1dXTl9fX0xJSeGSHz7kN3XpIir37GFmd++ynm3aoOHatVgfESHevn2bGz16NIuIiEDjxo2l4OBgycvLiztx4oTQ8PvvuUZaLfeke3epUK0WLbKyuEJRRFRqKhwuXEBWQQFuxcYKjRo14jw9PeveG7sM/Pz8sHHjRv7y5cswMTGBRqNBdna29OTJEzEnJ4cVFRUxhShKk7/6irv84YdCZsuWfG5uLpRKpVRYWMhkMhn09fUFmUwmeYWF8d3u3mVGBw4wbu5cNCnvlHGpqanYtWuXFBISAkdHR2Hs2LG8XC6nJMcvv1AgYdw4mhNWrKi2HEij0SA/Px8+Pj68Wq3G1atXJWNjY6l79+6cp6cnOI7jxJQUtFCrpSNHjkjvvPNO+QDdpk00X8yYQXXwx45B+PJLFDEGLy8vGgvvvAMMHQplixbw27+fnN7K6uU//pgCfMuW0bz5PLti9GgKEtd8L7gLFy7g3r17cC/LThk1qkYxSEeiYIs//vgj16NHD6lDhw7l58/i0pIjR6qfx2fOpM/XrSv/fs+edD8iI0k4cvbsKgMiaWlporW1dc3O9r17pK/y+edU6z5tGpXJ1KbkRiYrCVyafPEFus6ezaU/egTx3j1ERUUBQMSSJUvu1ryhN3hVeM28vv8dBAYGyhljhhEREQgODgbP85DJZBLP82z69OmoUbDhr4AoUkRs4EAy3GNjq6eV/R3Yvp3oRlevkkFYB8XdV4GWLVsiPj5eWLduHd++fXupb9++f5+zFhxMWYrHj1+vDDLHUZ2hgQEZhyNH1r7P818ElUqFjIwM+FVWz/g6IyeHHKGyxoqLC1F/IyJoPFy6VCNFr7ZQqVQIDg5Gfn4+Hj16BKVSCTMzMykgIADe3t7gONJ+MjY2hoODA3vw4IF05MgReHh44NKlS8IzA5WTy+WwtLQUhg0bxrm7u5ebZKxrqcJbKfbvJyfR2/vlTvQZVCoVEhISeKdi7YFFi4i+e+UK/T8pica2TEaGUF0p2jWB48jwXbcOQYzp4h4/lrVq1apidgcUGPD09BT37duHWbNmVT4BdO5M83zbtnTsV68SK6Js3e2dO5RFi4qibhOPHpFxv2NHhXFkamqKysSw3N3d0aJFC5aamgoAzMHBAa2oswRfUFCAlStXcn/88YfYvXt3LjU1FbZBQbA1N6cgah0Cu0qlEqEdOqCLvz8FJIyNSd0/MJACCs9DFGl+rAmRkUTFzM9/sTXw6FESOJo/v1TRGVTX3rRp07pvrzL4+pKGgJ8fZabnzi1v4AcEkK4DQIGMdu1KmWIAzRGbNxND43nHIDqa6MPDhlEApLgU5QXxjDUkjho1igPA5eXl4eLFi+gybRqn6tULZnl5MEhNBY4cwRy1mt8WEyPt3LkTkiRh/PjxbPny5ezAgQOCxeXLLG34cHSaMQNNjI0ZABaxbBkepqeL4SdPin2uXOHv5OQwdb9+fHJyshAcHMx7e3uLHh4eXE5ODmJiYoQHDx7wOp0OoiiC53no6elJZmZmkqurK5ednY2cnBzJ3d2dFRYWIjw8XDQxMSlmcUg8zzMTExPe0tKSb968OUyMjRF5+zZ2jhyJZJmMR0wMGjdujBEjRjA7O7viwAoNILWamHnGxlRr++hRubFhZ2eHefPm8RqNBr/99hs2bdokTpo0iSsJzpiZkdO6bRu95uVRbfSzLLEoikhISEBYWJgQGxvLKxQKQRAEHoDk7u7O9e/fv1xgkVu1Cl1HjWIbjI0r0uD69SthQeicnHCtWTNYXrqErhkZOLVlC/zv3kXDwYMBjkP8zz/D/MMPiWFx/nxJJxJ1Xh5SDxxArpUVWjZrBkWTJuU0XHQ6HTiOA1dcc/z229Vm7JVKJXieRzmmVEoKBT1r0PSRy+X4+OOPubNnz+LYsWOsffv2pB0gSSTyu3cvJSlqKkGYO5e0TypD+/bEpvnqK+oCMm1apXNHVlYWVyMTcs8eEiDctKlUdNPNja5fkyZU4tK8efXbAACtFjlHjkB58SKiZs1CR7kcISEhKrVa/e+af/wGrxJvnO1Xh6aSJHEhISHo0aMH/Pz8wHEc27Ztm3jgwAG88847XLW1JK8aixeToRoeTotwNdTPvxXFgkf/939kNO3d+7ceDmMMQ4YM4Zs3b46dO3cyPz+/2mc+6hOFhRRdTU//S6nDtUaxkZefX9oC4zUSCgwLC4OBgQHc3Nz+7kOpPR48oExdsRrv82jalLJzenq1qomrCXv37hXu3r3Ly2QyGBsbQ6fTYdSoUWjZsmWltHvGGDp37ixcv36dS05OZq6urhgwYABnbm4OQxoP9TvhFRSQWE09QqFQwNTUFOfOnUNhaqrUZ+5cxpUV6HFyomCGKJLTeuIEOTn1iKDffxd7L1nC6QcEyEZ//TWeD06URc+ePblly5YhJSUFDlUJMD3LUAMAPviA6nBv3iTDUKMhx3vBAsqoPX1KhvC+fbUWACrdDVfpMRgaGmLkyJFsx44dLDY2tuR9K0EQ3169mtsXHS2lWVszIyMjged5rqCgAIwxcBwnGRkZSQ0aNOCcnJyYn58fMjIyJI1CwaIXL0bLDz4gcaxu3SjzJkkV58KHDynAUBM8PCjb9SJrckQEqYd/+WWF1nP6+vpSZmYm7O3t62eS1tOjNkQ//EAG+uDBpZm53r0pAJGURM/+n39S9rEY339P80fZa5SXR/f6wAGi9g4cWC8B96SkJNHBwaEkAGRqaooBAwYAd+7A2MystHzg2DFg7VqM37+fHTx0CDY2NtBoNNDT04M8MRGd9u7ljk6ZIoIcbQBAm1OngMWLuS5+fhxMTODRtm1xmQSfmJiIo0ePSuHh4aJcLpesrKw4Hx8fPHnyBD4+Prh//z4uX76Mx48fcyqVCvb29oKTkxN/8+ZNUV9fX+rZsyfftm1b8FUZZ9Onwzo6mq3q0wejRoxAtbXdWVkUZI6Lo/tw4wbNHc9BLpdj1qxZ/Pr164Xt27eL7777LlciKqdQUL1ufDw9lydOAJaWyHF3x+bNmyWtVis5OTlx06ZNQ6NGjfjU1FRs2bKFyWQyVBB5k8lg0KgR2ly5wq1Zs0biOE4cNGgQ/+TJE5glJUF9/jxCY2Lw6NEjAIBxx46Sz+PH6Lx+PdI4jgXt2ydqNBpma2vLcvz82Ixt23B06lREtWyJlu3bSxYrV7LWd+7gjp8f7tjbo/D6dVF59izn5eUl3b59m6lUKlhaWuKD99+naxEVReOxCuTm5kKhUIhmZmalJ3L8OAXoaiGgGx8fj2vXrqFPnz4iY4yDKFKt94MH9OzUxh5p0YJYTN26Vf65oyOVWxw4QIGQZcvKtXp7VlrAnCtj3RQjKIgYAsUlKMXo358CGatXA0lJyFuzBvHx8VWXMKrVeDhtmpQRFcUOjx6NSYMGISUlBXl5eUoAx2o+2Td4lXijRv6KEBgYOB/A8jZt2ojDhw8vmSw0Gg1WrVolKJVKvm/fvmLnzp3/upSkRkPGSf/+pXTB6lqDvI74+WeizB458ncfCb755htMmDChmLL018LPjwIRxXT71x2dOtFfcY/cvxmrVq0SPDw8uB49eryGkYpKUKxdkJJSvaotQPWWgweT0f0CgaDc3FycPXsWkZGRaNOmDfr16wf9+mz1V19o1YooiYsX1+tmNRoN0j7+GA22bMHPCxZgcVXbT0oi5/vjj0kh/jnRrBdBVlYWVq1ahbdHj4YyKwue7dqBq0acMi4uDjt27MCnn35a+/KkwkLKWn//PdGKo6JKx9SUKWQAf/zxS5+LRqMBx3EICgpCcnIyvLy8BB8fHz4oKEhydnZmFhYWomPDhpzswQMYxsQguWdPpKenS4aGhpKLiwtXUFCA8+fPIzExEQBgaGgoFRQUMBMTE/iJotTJ2ZmhOBAyYwZpRcybV/4gcnMpo+jhUf3BzppF9fnVtNWpFNHRZAxPn06CSc/h+PHjuH//vjRp0qSa2w/VBaJIx5yVRS2VimtTZ8+m1kNDh1KGujjQ8OuvVDvr6lraNjAmhu53ly5UG1pPwX+NRoPly5dj6NCh8Hj+uoeFUTZ0/nwSBVu6lBh1H35YEhy8e/cuTu3ahQaZmSjS00Pr0aNLGUi5udTH+NgxcpZ++IEy+JXUn0dGRmLPnj0AAEtLSyknJ4fJ5XL4+vpKnTp1qrkv+POQJODKFUhGRrikVEpnzpxhb731VsVzLIZaTfPwyZMUxCospABdFdDpdFi2bJk0bNgwVlkQ+GluLjLOnIHZ//2fdMfamuVMniyOGju2gv2YlJSEffv2Sba2thgzZkz59S0tDemnTuGWiYmYq9EgOjqas7CwED0uXoTjo0cs/IMPJH19fda7d29WUtbTvz9UBgZ4HBCAnQUF0Ol0AACz7Gy8/ccfeGxtjVwHB8l26VLm+t13KOreHSEeHsjPz0diYiL09PSEgoICVlhYyHEcBy8vL/S3tKQ5p5rrER0djcOHD1dU8a4sqFYGRUVFiIuLw6lTp6TmzZtjwIABDJJE3TqePCH6eG0Ff4uKqId6enr1v9FqiV1jbU3j89l5hYSEiCEhIdznn39e+e+WLyemyX/+U3FdHzGC7LxJk6C7fx8/BgdLGp2Ode3aFf7+/uXne5UKOHkSl37+GcLixejSsycSEhJw8OBBXV5e3oLFixe/HobX/8d4k9l+BQgMDOT09PQ+GDRoENq0aVNuopDL5Zg/fz6/ceNGxMbGovNfQYvOyyND4quvqM7E05MM1X8ievakRVkQiD5YXcTwFcPOzk7cuXMn9PT04OrqygYMGFC7liH1gaNHS9Up/wnYto2Mo9BQcgD/5vFXVFQEOzu7f4ajDZBhOm5c7RxLX1+ikyoUlEmpA1U+JSUFmzZtgiRJaNasmdCvXz/+tXS0AXIY69oTtyaIIuQ3b8JpxQqE9+oF6eZNHDp0CObm5igsLIS9vT08PDwgiiKuP34MV2Nj6KWn4za1FxMdXF25x3l5UufOnZmrq2sJ1ZPjOKhUKrSuoi9sWFgYUlJScOfOHRgYGMDVzQ2sd29y5jdurPJwBUGAIAgVs1jVoVjl+uuvKXPy2WdkiF68SFTsfv3qetXKYdu2bWJaWhoKCws5IyMj5OfnY+DAgWKHDh14AJgzZ07xc0cHnZMD/Oc/aDV1Kp5pKLDCwkLcv38fDx8+hJubG3r16oXs7GxmampaXCvOMGwY1Zd26kRrmihWPJiwMKqBrC67XVRE516Wcl0bqFTkZH/+eaWONgB07doV4eHh7Oeff8a0adNgZ2cHQRDw0qw2jiMH+vRpqsWfP58c6fnzKajOGNWbAsRe+/VXqnVljDLxW7aQgxAUVMoeqydkZGRAo9FU7oTGxZHzOX8+sSnat6dSjIkTS4SfHj58KI46fJgzaN4c2p9+Kt/3+t49anNYnJW0sKhSp+LChQuCi4sL36VLFzg4OLCcnByYmpqiSoXr6pCUREGJO3fATE1hERVVUj5TJRQKYuQVFpLd9eOPlIGvrNwBpCfRs2dPtnfvXnTs2FFycnJijRo1KlZrF+/cucMZGRkJjWbO5Hq5u6PhrFkcCgupdKiM8+nk5ITJkyeztWvX4saNG+hQVhzRxgaNgoPRt317Tnr/fQiCAJlMxmH8eCAzE82aNy9/bWJjgfx8GH/3HVw3bED39HQpe+JE1q1bN2RmZsLa2RnW335LtKYrV4AJE6A/ciR6lT81PigoSFIoFELnzp35LVu2oIWREZouXUpBkyrg4OAASZK4Y8eOESvi2jUaw0lJ5b4niiLi4+Nx9uxZISsri9NqtYznebRo0ULs0qULD52OHGFXV1o/69JZR1+fgnU1/UZPj+bT/fuB+fORNWMGdkVHi9nZ2dyYMWMqfl+rpY4RgweTKF5lQb5nJSkFhoa4969/Sf0NDSH79lucPHlSCgkJYUZGRsK4ceN4GxMTiLNmocDQEKd79EDTR4+wfPlyUaVScSAfr/L+aG/wl+KNs/0KwPP8HAsLC+uqDCsAeOutt7By5UouMzMTVnWNptcWT57Q4lZYSLTB/HyKwv+T0aoV/f33v2QgZmT8bYfy9ttvc7GxscjKysLVq1cRGxsrNm7cmHvrrbdenQieWk3nf/Ik0Yb/KSiuN/r6a8rGHDz4tx3K8ePHJZVKxdckpvVa4Y8/6na//fwosDFwIBkLNTgSsbGxOHPmjJiVlcV5eXlJ3bt3Z5Updr82WLqUggr1HbQ5cIAygunpaDtwIB5xHOLj46WUlBTJ0NBQunLlSsk14XkeJ06cgH7LlrCxsRH7bt7MxIQEPPrqKykoKIgZGhqioKCg5LuCICAtLQ29evXC06dPSxSBV6xYIebl5XEAGZjvvPMO1Rf++muNVEdXV1dwHIfU1NSqaeSVITeXxCc3byZhre+/p/Eybx6tF3XM+omiiCdPnuD8+fOIj4/nxo0bBxMTE1y4cEFo1KgRih3tSuHtTevUH38AZmZ42L49du3aBVEURX9/f67rM72HCoKUHTsSBbpTJ3IsDxyomPUqzqBVB5mM6tbrAqWSssI//VTamq8SGBoaYs6cOdi3bx82bNgAX19f8fLly5ytra3YunVrrlWrVi9ehsRx1EopJ4dqrUNDyXFu1YoyxdnZlJF7+pScGkmiwIqzM1270aNfidaHqakpGGPQaDSokD0eM4b+AKrZPXgQ6NuXKLhPnwJmZsi/elXKnDoV7WbOrDgO794tLxQWFkZzWyVJC0mSYG5uLjo6OnJAzeKJ1UKhICaBqSlSU1Oxf/9+DBo0qHpWW3w8tdB6+22q6S0spDaC1aBt27Y4efIk7t69i8jISKGwsJBnjEnW1taYPn06ygltbdtGzt1//0vPQJm50NzcHCNGjMDevXvh4eFRXMZDmDcPCAsDe9YiEQCN/0WLKgalDh6k77dtC3z+OfI//ljqtHUrM+7VC8YAqXJ/9x3wySf0/JahyWdlZeHevXvIyclBQkICGz16NG9nZ4fBgwfj0O7d0pysLMaLYpVj0MjICOPHj8emTZvQqlUr2Ds4oGD+fMTdvo20tDRkZmYiNzdXUCqVvJ6eHtzc3DB8+HB2+/ZtKSIiQho1ahRdqylTKGj5zjsvJmq5aBEF9b6sQcybMWDECDxJT8fVVavQtk0brsNnn1V8BgSBmCQ6Hc3BVa3Nt2/jcW4utuzeLXVq107y1+k4WatWaNWqFSsqKsLFixfZzlWr0C4sTMoyMmL33d1hZWYGMzMzoV27dnxMTIw2Ojr65y+++EJV95N+g/rGGxp5PSMwMLCnQqE4NH36dMOaJvc9e/aIjx49YnPmzGGsPutuCwtpYR01iiay14By/UqgVJLzOX8+GY1/Yw28VqvF1atXpeDgYMYYQ7NmzYQxY8bU/wEJAjEUlix5vUTR6gJJIgGmO3dq15KnHvHgwQP88ccfmDp1KqprUfXaYPt2yo7cu/div1eryYhdtowyK1Vg/fr1olar5Tp27Ch5e3u//hn/sWOJrle2nvploNORcztnDmUGq3A2dTodCgsL8fTpU9jZ2ZW8z4qpuU+fAnFxSJ89G2sHDYKBgQH69euH1q1b48yZM7hUxhi1tbWFUqmUlEolmzNnTuXOwI4dFFj7b+XJifv372Pfvn3SokWLas+qyc0lZ2z9+tLMzbFjlL2Ry4ma27MnGZe1yPaGhoaWtBlycnISAwICOJcXyZZu2ABs2oSv+/aFwsAACxcurP77ajU52AMHElumTRsqqynbDzonhxyAQYOq3o6lJV3foUNrf6yDBxPNc8qUWn19z549iIyMhLGxsTh69GguKioKsbGxgkql4seNGwenMkJSL4ScHLoOn3xC46VxYxJvOnKEAp0dOlCtvqcnsRrqW9jvOSxbtkzq3r07a19ZIMLWlrKUVlb0l5BA7LvQUKpHnjwZD7ZvR4dez+VHJYky4F98QeJRAM2NLVuW9pgvg7CwMBw9ehT/+te/8FL21dtvA4MGIbtfP9y4cUO6du0ac3Nzw6jqWlfpdBREOH+eShgiIuj99HSiGldxPPv370dGRoY4c+bM2i/u69cTDfngQaitrLDvzz91rq6u8Pb2lgUFBQmSJLEJEyaU394nnwB2diQABtA9+Oij8kFwtZoywrNnlwSsNq9dK/hFRvLN8vJoHK1bBzRsCO22bXjs5IRjQ4aIOWZmTCaTSWq1mrO2thZkMhn8/Pz45s2bl9yHPXv2COzYMebg7c15TJhQZcDp1q1bOHr0KHieR6vQUNzx8oJRgwaihYWFZG1tzaysrDhnZ+dyrczS09OxceNGLProI8jefZeOs0+fF9eM2bCBnPQJE2r8alRUFA4cOICBVlZoe+kStQUrm9nOyCgdwz4+VbY+zM3NRZG3N254eMB0wQLR39+fY2fPEhOpuPRTo4HS1xepXl6iy6pVnF6ZNauoqAjLly9Xa7XaFkuWLEl+sRN/g/rEm8x2PSAwMJABaMnz/HCZTLZo1KhRNTraADBixAhu2bJl4pYtW6TBgwdzL91KSpJo0WrRgjIVBw7UOUPxj4KJCVHJHz+mxUsQ/jaHW09PD/7+/szPzw8PHz7E1q1b+dTU1HIG+Uvj+nUyngID62+bfwcYK+0Vq9FQcKg27S3qARcvXoSNjY1ka2v7+juUABn1L/MMKxRkSJ05Q4JilThPaWlpyM7OZj4+PoK3t/frm80uRkYG0V/r81m/c4fq52bMqLydzTPIZDKYmJjApDLqKseRMaSnB2WjRmjcuLE4MyCAK64X9vf3h7W1NRo2bIikpCQpJCSE2drassGDB1eddXN2rtJIVKlUOHjwILy9vetWvrJ/Pzln+vpEZ/ziC3JUp02jz3v0oPZSo0aR4F6/fpQ1q8RByMzMxKlTp9CwYUO88847MDExefEI4LRpOGBuruu5fLnM7N13a/6+QlHa8m7aNKrFfN5pTUyk96tztoODS523miAIJCQ2Z07VfaorwYABA+Du7g53d3euWEiub9++/KVLlxAUFISBAwdKbdu2ffE5ydycMp0ffEBBkpUrSeBuzhxqGZafTxnIv4jNw3EcMqpinX3yCQVHFAqyVziO1oCffwZWr0bw+PGiQ1lRrGLExJDgXdl71bp1laUkV65cEfz9/bmXymRIEmBujhi5HHvXroW1tTVGjRpVqbBmeno6jhw5Au+EBKn1jh0Mn3xCgl5yOQVNx48nx3vXLgpmPYfExERERkaiZ8+edXuGZswgR3DzZhQEBSHfw0N2JilJY25uDm9vb37Pnj0VM2ojRhCNv9jZdnCgtaYswsLIGXzmaCuVSjzOzeU13brR7yIjgQEDkPHoEYKmTUNnKytp6rp1nGrBAmQOHMgcHR2hr69f6SQ9YsQIPu3CBWTu2yf+lJnJGRgYCLa2tnyHDh3g4uKCc+fOITw8XJQkievevbvkzPOs8Q8/YODu3WB6etVeH0tLSwhFRRCnTiWHtl+/l1srxo+nUoxqoNVqcezYMSEqKoobPHgwa926Nc2doaHE5vviC+pWsHcvve/vX+l8KooiTp48ifDwcDT/6iuhR69evIWVFZ3vtWu0vYMHSbvl449hsm4d3Nq3r3A9rl+/LnIcd+KNo/364I2z/RIIDAxsI5fL5+rp6Y2Uy+V6LVq0kHl5eenX1sHiOA4fffQRt2LFCmzcuBHvvfcejIyMXqye6/RpMjhu3SJaYE2CMP8raNmSDK6kJDIIk5NLWlH8HWCMwcHBAQEBAcKWLVv4gQMHom3btvWz8bg4agHxv4CAAPr78UcyDJOSXrmqemRkJBITE9G7d28R9a2MXd8QBMrQ/fe/RPesJZ4JMEre3t5MFEX4+/uDc3cnY+HqVaJrXrpUzqHctWuXYG9vz3Xp0uV9aMHWAAAgAElEQVT1vibF6NKFrslXX738ttRqmjc3bCDHrB5wOCUF4R07Yri9PQcvL8pmmZlBoVCgzbPaXhsbG1YrvY5Onci52L2bMvnPIEkS9u3bJ5qZmaFHjx61N84fPaLaxZ076f9Hj9JzOHly6XfMzYmWPWECGXZnz1Igol8/iKNHo6CgACdOnMC9e/cgiiLatWsn9uvXj6uz4NRzyM7Oxu27d2XzWreGaW2ZHDNnUqYeoFr0BQvKs2Xs7at3tJcvJxp7bY998WIq5+jRo07zlaGhYTnlapVKBY1Gg06dOsHCwgIHDhxAQkKCMGTIEP6FdT9cXIihMHAgBdcAetbXrKkyWPKq4OHhweLi4iptWYcxY4iV1qABrd1Ll1IGuLAQCA7GYxcXOFV2DcLCKMtcFvfuURa5OHhbBoIgsJcq5woNBdatw8WpU8ULISFchw4d0KdPn0ovYnBwMEJCQiArLASOHGHZBgYwHjOGKMQhIURh7tGD7stzivXP2g3i8OHDkoeHR3G3h7rB0BCYPRsJT5+KjUNDd/qFhg4+8uSJPI+C2BW316kTBWH27iV2EM9TieGECaVU66NHy7VUTElJgahUwsDWljLFaWnAzZto8M47UEZHo5mvL9P77TeYx8XBXC6vNmjJcRzs5s+HXUIC5+bri4SEBD46OlrYv38/r1arYWlpKfbr14/z8PAoaS+JrKxajWE+JweT9+3Dro4d0apLF3i+bFD2yROae1NTq9z/tm3bxKdPn7LZs2czs+LEQbNmNJcuXUqCk+HhdM19fSvdxunTpxEWFiY9o88zp7FjefB86bz/wQf0b6WS6v4XLaqyhCUiIkJVVFT0RhTtNcIbZ/sFEBgYqJDL5Sv09fUnde7cWd66dWv+RbPScrkcw4YNw759+6QVK1YwCwsLady4cazWddzffkvZwfHjyXFp0KB8TdP/L3ByIlEoc3OiEk6Y8LfSrLt06cLr6+vj6NGjUKlUL9/P+eJFWhTHjaufA3xdsHAhGV9paSQE9a9/vbJd3b9/Hw0bNhR9fX3rxamstCaxvsBx5CTUsSb5wIEDUCqVLDQ0VCoqKmIxMTGwtLREVFQUGhkaYryPD1Li42EqlyNfkrB7925Jo9Hwjo6OAmPsn+Fsnz9fpShSnaFSkZNdVPRi9XzPQafT4ebNm+jdu7fUxteXITeXjE4/P6Ly+/jUfaPZ2ZS9GjCgRKgnIiICaWlpmDdvXt0muYULiV4cEAAcPkxCWRs3Vj5XGhmRcyOKKAwJwcPNm6H/2We44u2N7LZtpZ49ezJ3d3eYm5u/9ER7+/Zt6eDBg6xRo0aC8b/+xSM/nzLrK1dWL4Ln7U3nYmJClOTQ0PJ124JQfVbqyhWi9dbUvk2SKEPVpAmttS/oxGVkZGDdunUQy4i5yWQyyGQy3L59mzc1NZVeuEPCzZs0jn/6idhtAAWSBg6ksqNu3ajc6tNP6XwMDV/JGllUVITo6GjJxsam8vMYM4aCIEFBNL/17k0Bk759gT/+gDRlSgndWK1WIzQ0FLGxsdJ4lYoZ+vuX31ZODmXHAVy/fh2PHz9Gu3btYGtri/z8fM61bCulOkJKSkJqeroUcvEic3d3x40bN6BQKMQuXbpUuGiXLl2C37lz6BYWhosTJwqHTE35bnfu0LofEEDMArmcAgMffUTtpABcvnwZp06dgoGBAbp06SL5+vpyLyOyGuPkVPAwJye4/fXrGT3PnesS6ebWLr1dOwmVOdx6etQdpJg9NXUqjQuAkhZHjxJN/xncGMO8FSsQe/062VetWmHH6dOC2w8/8F2MjZE/aRKsoqJo/HXpQkGvHj2qPtgmTYAhQ6C/axfc3Nzg5ubGS5JUvK6Wtj8TRSo9CAmpEKiogMxMsP/7P9i//z54U1MhITGR9yxbVvIicHQkZkIVKugJCQlISUnhZsyYAbPnGXpWVtSl4uhR+n8Vx3/kyBEpMjKSjRgxgrm6utL47927/PdNTEhP5MwZCjxVkdRLS0tDTk4OAFx5gbN9g1eEN852HREYGGgtl8vPNmnSpOmwYcMMDF6yly0AtGjRAgsWLGBZWVm4fPky1q9fjz59+kjt27evnAElihSFHDyYMjMuLpSteImF5X8C3bsTVXbhQop0u7v/rYfTsWNHGBoaYv/+/XBzc6so8FMXTJpEi/ScOfV3gK8LHB3JgTpwgJR9Oa7eszA6nQ7Jycl1ugeiKJaoPGs0Gjx+/Bj29vbIzs7G5s2bxfz8fG7JkiX1epwAqP4uN5ei4HXEw4cPRU9PT27o0KEsISEBoaGhQmJiIqenp8ceKZX4ycZGcvrhBzZ81y5s/vhjdO3bV3Jzc2MNGjT4Zzjas2fTc14my/tCKCwkKt/u3RTIqgdoNBosW7YMhoaG8PHxoQGsUNB8XTwf3bhBrKO6KF87O1OpjFZb8ta9e/dgYmJSt2BPTg7RPz08qLQgJ4eetyqoxSqVCmFhYUhOTpaSk5OZSbt2Ut9hw9jos2fBOI4hNJSMyZdkEomiiGPHjjELCwu89957NA6NjcmhvXq10nrccujbl7LvX3xBvaUzMgBSLKf1oCpnWxCo325tcPAg0ZjnzKm7ankZ7Nu3T7KyssLIkSOZiYkJ1Go1MjMzIQgCCwkJkYyMjOo28WVnU7b9l1/Ioba1BdauJVErc3O6P+npVDrg6EgB6UWLqP2nVkuGe58+ROG2sKBrVaxa/oLQ6XRQKpVs6tSplW/k3LnS7dvZ0b3u1YtYeaNGwSQzE7du3UJISIigVCp5KysrMSc9ndOFhVWskffwQI5cjo3LlokAmIWFhbRx40auadOmkCSpvJJ5HSB9+inOeHgIYV27cu9OmcKsra3RsWNHbNq0iXNzc4O1tXXpl7OzMc7cHI80GohDh6LrN9/wT/78U7hy5QrTarWcv78/ZIaGEAwNkWdsLDGOY4fXr5eYoSGSkpLY2LFj0YKCIy8d+TA1NdUrMjH58reZM5vKtNqC4Xv3wuDKFba1QYOifJ1ON3HiRKOSll4+PvT8JyWRU3frFjnZLVpQwmLp0tL7FBkJztoasS1awMjYmAI4lpZ4cPw4b75wIXrl54NfvJjqxwMCiCn04AGNuersUk9PoqM/o+Uzxiq2mRQEGrM16UDEx5PtN306WL9+kO/di/j4eDEuLq4k6HLjxg0olUoEBASA5/na1/Jfv06BrP79K3xkaGgIxhhycnIqjrd9+4idtnQpXYvffwcGDkS2hQU2bdok6nQ6xhiTeJ5nU6ZMKT+uevasKO4YHg5p4EAk63SQVVGmGB4erhFF8T9LlixR1+7k3uCvwBtnuw4IDAy0kMvlVzp27OjYs2dPWX2KmsnlctjY2GDkyJEsNjYW+/btw9WrV0U/Pz/m6elJOxJFMj6cnEjMx8/vn1+/W98wNCTjQhRJFGbFipqzFq8IHMcVCyNJcXFxrLaOXmJiInieL1UX1mqpBcc/VRCtNujalaK116+TsRcVVbcWHTVg69atolqt5vz9/Wu8iLdv38axY8ckrVbLrK2t4eLigmvXroHjuJKMlE6n4+pV1LAsGjR4oXt99uxZaDQaLuDZeHd2doazszMPAL///ruYmJjI9ezZk7nOnAn9d9/Fx+3aQe/WLe6vquOsF8hkL193KkmUbe7cmYSk6gGJiYnYtWuXpNVq2ezZs8sbcRxH2R6AMhMBATQv1QUcR8ba8eOINDZGXFwcxowZU/tBIkkkAPbhh1Tn+t13RCV9Rr+9ffs2Tp06JTLGoNVqGWMMoijCxMQEtra24pgxY3gXFxcK/g4dSkyUU6coU5qcTNnSli3r7KQ9ffoUq1atgk6nK9+iiDESh4uOpv3t3Vt1Nvmzz2g9zMuj0gJLS9IsAciZ27y58t/17UtZ7d9/r/4gDx4kp/SXX14qsJCWlob09HQ2ceLEEqPawMCgRNzJzc2t9hfv88/p2CdMAC5fJobGoUP02c8/0zj75BNyUE6cIAbDiRNURmBgQPR7f38aV/360TN1+TLw73/T/Nu8OTEpFi6kfX37La2pokjjsBoUOzFiZa3YAFIU/+EHqjHX6SjIKpPRsaxejY4zZrBrLi5Cly5d+ObNm8PIyIjb8MEH0C8oqMjaKyjAtYsXBdcBA7jBgwcznufZpUuXhJiYGAwYMIAxxuo8kYpZWcjfulWKnjqVzfz445L+6Pb29jA1NdXFxsbKTE1NoVAooNPpED9jBqxPnYLmo48EvXnzeJiYYOjQoXxERARCQ0PFy5cvc1ZWVjAZORKNhw9nnKWlZJubixytVpw+fTpfzsF6SZiZmemLoujIGJsrKRQH9o8f722SkdGkz3/+I1eamSlXPXxo8P5nn3ElgmQNGhBr5uRJqgOOjyf7MienROFdTE6G5O2Np05OuNmxI1KaNkWfBw9gkpEBhUKBPI4T+YkTuZKxdOgQlbwNGULPzL59VWekf/oJuHCh+pPau7dmpmJMDDF1hg0raV04ePBgPjg4WAwKCsLYsWMREhIipKam8gAQEhICoJRVIpfLJblcLunr60v6+vpQKBSSgYEBUygUvL6+PlpcugTt48fIc3aGvr4+5HJ5yWuDBg1gZGSEixcvlra7KxaBdXcnxqm7O9mjf/4JfPklYtq1g3nDhhg4cCArLCxkDg4OJeWjkiThwoULovuUKZzZTz9Bf8iQktPMOn0aa9evB/f775JGo2GOjo6YPHlyyXqj0+lw+/ZtURTFbdVf1Df4q/HG2a4lAgMD5fr6+qc8PT3t69vRfh7NmjXDggULWEhICDt8+DDMGzSAlJ8P6927Ybh1K9UpRUW9sv3/T6B44m/ZkozBGgyEVwm5XI4bN25InTp1qnHQHD58GOHh4ZDJZPjss8/A3blDNT65uf/bznYx2rUjw93AgCih9dCHPj4+HqmpqdyUKVNgb29f4/fPnj0r+Pj4cB4eHjhy5Ih4+fJlztzcXJozZw5LTk5GYWEhLly4IOrr69fvDVGryUhev77OomhRUVEIDQ3FpEmTKhXb6tKlCxcbGwtPT0/KHPj7gz97lgzrtLRq6+teG8TGktH/MkEYUaRM8YYN9doGMSwsDIWFhezzzz+HXnWqt9eu0evixXQ+f/xRux3o6ZGwkrs7wg8eFOVyed0Uv1UqoEMH5HXpggcbNgAPH8Lqiy9QnDc5c+aM6ObmxllbW8PGxgYRERFis2bNuGbNmqHS8gIbG1LVLSoip3vmTGIbuLkR86AW40mSJNy4cQOmpqbipEmTONPKFLKdnSnYmJBQtcHO8+TA/fEH1TVmZZV+lpdH5RipqRV/FxRE9Y/VITGRHNBdu8iJf0GkpKRg+/btko+Pj+Ts7Fz3eUOSaLz07UsBCAuLUjXv5zP3QUHkLIeE0LXZs4fuyfXrdD6HD9Mcu3Il3a8GDcgpd3Gh2mKAHHOZjPar1dLrt9/SvY6JIXbE4sUUsNm5k1hXPA/I5dBqtRBFEQ2qKmfjeVLtVyopyLp5c2m5jJUV3HNzmXvbtjw8PZ+dugSXe/fAvfdehU2lAUjTavmubduWOCt+fn78i5Zt6S5cwLmTJ8Vb8+fjvffe455Xye7WrZvsxIkT0tmzZ1mH1FTRLTWVi+I4mPj4SO5z5/LFwQA9PT20b98e7du35xITE3HlyhWxzaefci2vXQPeeovB1RWIiXlpNpFarUZERATy8vIQHR0tZmVlcQAgSVI3QRCSATTJsbTE+R49Js9Ys8Y9ycXlfSkoyAQzZlBAq1MnspFSU6m2v0EDGieWloCNDe59+aWUEBODBh06sHQPDynFzo41btxYCg4OZoIgQF9fX2rVqhUHmYx0H7y9yV7ZsIHWsiVLyIE3MiLWxfMQBAqMDRhQ9Zq3cCFl2qsKSty8SWN5xIhy+gxyuRx9+/bloqKipB07drCmTZvC3NxcsrKyYg0aNICxsTE8PDygUqlQUFDA8vPzWWFhIQoKCqBWq6FUKpGZmQmNRiNG9O0rcSqVpD5xggmCAFEUmSAI7NkrRFGEKIqSJEnkGWzZQvbL2LHlz7tvX2glCcrt2yVPW1vWaOrUko8kSUJycjKCg4PFJ0+e4MmAAZIyLk6aLElcSmIirDt3xq4RI6Br3BgLP/yQbd++XUpOTmYxMTElgn1xcXHgeT7y888/j6/DMHqDvwBvWn/VAoGBgUwul293cHAYNn78eMNX6Wg/j31794q+H37IZVhZ4fiwYXBr21Y3ZNiwV+rs/8/BwYGMgQUL/vJdnz9/Xjh//jz/jNImTJ06la9MtEWj0eDXX38VJEnihg8fzvbv3y9ZW1sLb7/9tgy3bqHY8Kgr1Go1FPVQi/qXo1jwLiam8kW6ljh8+LB0584d1qdPH6lDhw41PjSxsbHYvXs3Fi5cWOI0qVQqCIJQrh4rPDwcJ0+elD744AP2wn1yQXTgM2fOSCNGjGC2RUVUD3ruXJ2d7V9//VVwc3Nj3bt3r9SQF0URP//8s6DRaPi5c+eipPylqIhotytXUrbpdYabG2kWvCh1v1iNfft2MoJeRjzpOVy9ehXBwcH49NNPa/eD69cp+zNyJGU7nlcCrgqzZqEgIAAbs7IkmUwmTp8+vdL5pByePgVGjULKTz/h6tdfwyc8HGE//ijdjYxkPM9LWq2WiaKIadOmvVw7vLNnyRmTy6m11IwZ1dbWHzlyRIiIiOD79++PdjXVVe7ZU1pjXhlu3ybnzdeXqMarVtG+8/PJQX2+VODMGRKbnDWr6n1GR9M5HDjw0myK7777TrKzs2MTJkyoPXX18WNiXnTpQvWt69ZRgOijj6oeu8935NDp6LX4+5JE2501i54Fb2+6rmfOkIjT1Kk1i6uKIgU2OnemvtFz59K979oVkokJNgwaJPVduxaOe/YwmJpScqB///KsB0mie/bbb3RO48ZRJnTcOAqc6HQla979+/eRO3EivLdupSBCGajnzsXl2FgpfuRIacyYMVylXQJqgczMTNy+fVty/PBDprKwkNxPnmTVrZsFSiXCFyxA47NnEefqCs8ff0Tj1q1r3pFKRQ7h0qVUQ/8SSExMxPbt22FkZCSZmZmJSqWSy83NZTKZ7KZOpyv7QH2xZMmSbwIDA/u55OTsfzs+XsFNmECZ1qZNSQBs7FgKbHl4UNC3bVvA1xfaxo2R3KIFmh4+DFbb9nTR0cSGmDqVEh6ursQwOXKkcmZIsTBbVR1JqqiVBkBsjKgoCg4MH17pVzQaDfLy8mBlZYXY2Fj8/ozJYmxsLCxYsKB2AY/QUBLlTK5c3FupVGL16tWSr5eX1GXXLg6DBlGA67lzUqlUWLdunWSdkSG2Pn2aR+fOkvjuu8zIyAgJCQlSeHg4a9KkiTRixAimv3AhfjU0FLNNTDieMalrRIR0pUMHrrCoCF9++SU0Gg2+++47jBkzBi1atIAoili9enVhTk7OR4sXL15fq/N6g78M/x+kyl4eenp6X5qZmQ0bPXr0X+doJycDHTpghL091/jQIbS5dg1Dx47F7Tt33rAR6oq7d6mG7ccfKWL/F+HmzZvSpUuX+G7dumHRokXgOI6tXLlSVKlU5b736NEj/PLLL6KBgQE3a9Ys5uTkhFGjRjGXNWtkedOmvZCjHRoaitWrV0vff/89bt26VV+n9JcgPj4eF5KSyAm0sCBqWFpayec6nQ5paWk4fPgwYmJiIIoiMjIyoNFoym3n3LlzuHfvHps8eTIqc7TVajViY2MRExNT8l5WVhZ0Ol257KSxsXEF4ZN27drB1dVVCgoKEl70PMPDw7Fr1y5wHMfC3n8fO3bsEDQv4GgDgEqlYk5OTlXO5xzHYd68ebxcLhfKni/09SkTGBxMjvfrjPBwMuJeFM2bE914woR6dbQB4MaNG4JWq0Wtg9cdO5JjcfQo1aHXFubmMBQEzJgxg8nlcrZq1SpRra6hNO/SJUChwJ9Hjgg+ubmS3dGjGDJ0KBs8eDC6d+/OPvzwQ3z++ecv33e+Rw/Kfk6bRmO4UyeiCicllfva06dPsXXrVjE8PJyfPHlyzY42QE5hXh45z5WhbVuiyF+9SvP9lWfaQFX1x42MJEO9KqjVJOS1YkW9tMsSRZHFx8dDW6buvlLcvEnOyrVr5GCr1RQIW7WK2D4ff1z92G3Rgr4P0DUwNi7fP5wxYiXs30/bvHiRHPSMDNqnVkvBnw8/rHofHEdBQRcXusdXr1Lm8to1PN20CU+yslijQYMYjI2pS8rcubRfd3ei/Ccn0/hYurSUXdK6NQn3ARRcnTgRSEtDbm4uDm/ejIaurpXW7CqaNUPXkSOZnp6etGbNGsTH1z6hl5+fj6tXr2L16tXi+rVrod23T1Jv24a2wcGVOtoPHz7EmjVrcHfQIEnesyeeGBkJImNI7tQJ1mWU5quFsTEFU6dMoUDOC0Kj0WDPnj1i27ZthXnz5rGpU6fyrVu3luRyeahOpxvHGPsUgHzJkiXsmaPNFArFkjZTpyq4ffsocDlhAo2Vhg0pOKZQ0N/27UQFHzoUaStWYOegQUgQ6rDMubmROFpQEAmeFgv3hoZSwPN5mJuTTkll8PGhObsyhISQuKOjY5WONkAZ7mLB4WbNmmHx4sWYOHEiNBoN97zNUCXataN5uor53cTEBJNHjGDZGzZw2SoVBZcqCR7cv38foihK73z/PW+3aROUkgS2YIF04tAhITIyUhw3bhzefvttplAowI4exWAfH659s2b4JDWV+e7YwS1YuBBffvklvvrqK3z77beQJAnNnwWg4uLikJ+fnypJ0obandQb/JV447jVgMDAwBZ6enqfTZgwweCVKQ+XxdmzFDX+z38o6+HlVdJn1dzcHDKZDKIoVtoerLCwECqVCg2LF61nkCQJjDEUFRVBpVLB3NwctVW8lCQJWq321aku/xUonvTi4sgoqC5SWg9Qq9W4d+8ejhw5woYMGVLS+mvKlCnc/v37xZUrV0oODg4sJydHKCwsZBqNhuvcuTO6du3Kip08e3t7PB0yRDx18ybT7tjBioqKxIEDB3LPq9TrdDpcunSpRIwtIyMD8fHxOH36NDw8PKTMzEz25MmTV3au9YmCggIcP34cd+/eBQA4OjqiiY1NKY1Ro8Gl69dx/vx5CIIAKysrKSoqimm1WgiCAMYYOI6DTCaTnmXsuLFjx8LW1hZ3797F6dOnhQYNGnA5OTmiVqtlWq2W0z3L/NjY2IDneSkjIwOtWrWqsTUYYwwBAQHcf//7X+h0OtS2xYxOp4NGo0FaWhqOHz+O3r17w9fXF7qgIFyPjcW3334LGxsbYcaMGbWmGObl5aGoqKjkXKqDm5sbd/z4cTRu3BiNi+uVPT0p03ruHAnRXLpUZW/nvw2jRpEoz/MCSbVBQgJlCE+ceCUtEUVRRF5eHj9z5szaZy2LMXw4/aWnk8N49y5Rg6vCN98ADx5A/84dTJ48mQsKChJ37NghTp48ufIJPS0NuqwsHBoyROr13Xe85ZYtJXTs1rXJxL0IHBxISGzmTHJW58+ne9e0KdC1K86dO4eEhATuvffeQ6NiIbOa4OhIDuJHH1HG+uuvK35nzBgSoLt4kTKIAM0b69YRpbUYkkTHV9W9ysykbPiBA5TtqwdMnz4dv/32m7RhwwbMnj27/I4fPSKH4uuv6Th79iTqenY2OT91aR25axcEe3vwAIR27XBnwAAppnt35hkTg/j4eNHFxYVr3rw5nbuFBdHjL12iftANGlAwQ60uzYj360djzsur5n1zHO6lpYE3M5P0v/mGztHFBZg+nT7fsYPu3apVtP3jx0t/+9lnpaVxFhbkzKen41hUlNBKEJiztTVXaa9kNzfwenqY1K0bf/nyZezYsQOdOnUSu3fvXq2q961bt6Rjx44xExMToW3btrxvYSFkU6dyWLasQk/mXbt26eLj43lBqWS2oohLLi4srbAQLW/e5PkdOzDB3b3W9hQA0gBITKSs/ujRNOc2a0aU+suXKct8+jQFPz/8kMZ98+aUHU5JATp3xoUtW6RmGg0Gdu/OIz0daNAAMTExOo1GE7FkyZIYAN+X3SXP8/9Wq9WdPTw8KFjTpg3d+6QkUr2eMYPmnuBgul9LlwKLF8Nx1ixov/oK27ZtQ53EQM3MiEq+dSvVg//6KwVU/Pzo/MuuL3Z2NE9Upj80Zw4FdJ7H8eNUVjF1Km2zDmCMwdnZGQYGBrh3717tWrPq69M9SEysfE54+BCNP/kEnr6+WKvRYEp2djmxNJ1Oh+3bt4uPHj3ibG1tGQA0bNMGDX/8kWHJErQTRR7vvVeeCRQTAweZDA7XrlFQ5Nl8FRUVBUmSoFAoMGPGjJI1JzQ0VFVUVPTdkiVLqhBLeIO/E2+c7RrAGBvcunXryuvJ6hN//kmLTHIyOYRGRrQAlUGjRo0gk8nEuLg4rkVxa49niI6Oxs5nvVOnTJkCR0dHSJKEXbt2FURHRxsyxiTGmE4mkz0FYDpz5kx52drO7OzsEke9mGJ669YtHDx4UALAHB0dNUqlUs0Yg52dnV7Tpk0N3N3dKypHvs5Yt45eR46kiau2SrTVICEhAffv3xfz8vKQkZEBpVLJPQtOSCNHjmQeZYx7nucxcuRILi4uDnfv3hUcHBx4KysrNGnSBEZGRuVX60WL0HL+fE4aMAC3bt0SDAwM2IYNG6T+/fuz+Ph4KTk5WdRqtUyn0zFJktilS5cAoMTxe+utt9CkSRPu7t27CPibBOLqgry8PKxZs0Zq2LChNHHiRO78+fPYsmULTE1NhUbjx/Pa48cxes4cPBo3DiMXLSpWb2WiKCIpKQk2NjbQ19dHUVERCgoKWE5ODtu5cyd2794tmZqaijk5OXy3bt343NxcsUmTJszFxYUzNDSEpaUlkpOTcfHiRcHKyor179+fa9y4ca0c3UaNGkEQBCiVyhKRo+rw4MED7N69WyoqKmKMMXh6egqdWrbkcfw4ZJcuwQfg7VNSsHXrVl6tVmU1GnoAACAASURBVCM6OhpmZmZwcnKq0pjLysrCpk2bRGdnZ9jb29do8fXv3589efJE+vPPP6WJEyeWF3lr04ZUgXm+lHL9usDLq85t0EowcCBRVL/7rn6PCWT4HDhwQFIoFOz5IGed0LAh0eOtrKiG9a23qq5N37gROHsWfGgoBg4cyK1duxYnTpwoqTX08vJC8+bNER8fD2H8eOkpwMxbt0bDoUOheL510quEXE4iXWo1so8eReaKFaL+woXsqbs76zJ+fO0d7bIYMYKMdVGsqGGxaBFdwz//JGfh1i1yLMaPLx9gLVYHTkmpuH2Nhuq+P/us3hxtAGjYsCEsLS1Z3rM2VQCIbeXjQ+P60CGqgb56tfTzap6/jIwMmJubIzU1Fbdu3RIaNmzIW23aJN4xMkKkhQXXtGlT4cmTJ5ypjQ1rtXOnFHv+PCK8vNi1a9ewcOFCGBZvm+NIsM/fn7Kuokhq5u+/T9esUSNyhn79lRIBu3dXe54qlQrGxsaVByvXrCEna/lyCirExVEgVU+P9tWpE3WlaN8emDMHBX37IrVXL37048f0DFeGpCSar7p1g6+vL1xcXLBt2zYkJiaKY8aMqVBzrVarcejQIeHBgwdcz5490alTJx7371OA6P59Yg+UgU6nQ1xcnMzX1xc+a9ZAPy0N2g0boB02DOzAARg8Z4dVCUGgevjwcLq+Dg50niEhpcJ2ggC4u+OJmRnu6nSwVygge/gQTlotuOIa96tXcToiQmj6+++8vb4+4wICSBSwWTP437wpN8vKmoGlS3cDWAHgMYD/E4Fxvr16tbP39JRk33zD8Pbb5Kza2BDDpnt3Ks+4c4fsz6tXKUD5zD5s3749Hj58KKKuTFgjI7rP27fTc7t8OZ3/7t0UUCh+fv39SSgtK6u8LsKZM+SgP89ouHiR5sBPPqm0v3ptYWdnJ8bHx/O1crYBsh8DAoAvvyz//r17NJYDAtBk3jx0OHUK27dvx3vvvQcTExPk5OTg4sWLSE9PZ4wxjBs3rnTRNTKimvWDBylw8OOPxGgBqD3e/v3ECClTBuPo6AhTU1MxPz+f2717t9iuXTvO3t4eKSkpHIAdL3xB3uCV4k3Ndg34/vvvTw8YMKDnK8sC3LtHUc3WrSlqP3NmtV8/f/48wsLCpLlz57LibFpiYiKCgoLydTrdDQBdmzdvXhAQEGCoUqmwb9++J1qt1hmABoCwZMkS8d///vdngiB8Y2lpmefs7Gzw+PHjwsePH3MymSxNo9E4tWnTRhoyZIj+5s2b85OTkxfq6+vbSJJkpNFotgOQA/BSKBSj9fX1vSdNmmSor69funj/E5CcTIJjpqbAw4c02dcBOp0O0dHRuHjxopiTk8PZ29tDFEU4OzujSZMmMDQ0RK37pFcGQSDnokxmRZIknD17Vrx9+zaztLQUvby8eCMjoxIV+5SUFPA8Dzs7uxLHTKVSYfny5ZgwYQLqJKZUC4iiiDt37kAul6NFixZ1i+xXgpUrV4rW1tYYPXo0xxiDJEnIzMzEzZs3xaKiIsnQ0JB3fvIEDoMHQ+/gQap7qyEAplarkZ2djd9++w329vbiu+++W+9lM6tXrxadnZ25AQMGVPu9+Ph47NixA926dZO8vLyYRqOBqakpZTeWLaPa9GfYsWOHEBsbyxsYGEiCILBnARTR0NAQnp6eXPPmzWFgYIAdO3aIGRkZnLu7uzB8+HC+tvdArVZjxYoVkqenp9SnTx+uAkvmwAHKdKSmvh4Z7suXyeCqq3NWTG9t0oQciXpGeHg4jh49Ci8vL3Tr1g1G9aGeL0lU47hmDWVXK4NOV5p5VChw6dIl4f79+zA1NYVcLmeRkZGcIAgwzM1F08aNxV4aDWeUmlouO/JX4tGjR9i2bRsEnQ7tra3R7o8/YK1QECW6VauqhY+qgiRRbfYHH5AjXRazZxONNSmJDFeOo0zxsWOlom2FhUBERMWMWX4+MSemTKm0xc/L4ocffhCHNGzIua1YQfXKixZR3fPIkbXeRm5uLvbs2SOmpqZy/v7+Uk5OjhQZGckBwORDh6AeOBCNFyzAuXPn0KhRI3Q+eJCcm/HjgcBA/Pzzz4KHhwfr3bt35ZOFKFLG88YNsklsbCjzefkyBS9mz6bxuXMn1fw+h7t370qHDh1iH3zwAUoSFL//Tvfg7FlyMovX24ICyuT98gs59zk5JTW9oigiwdMTqoED0TYhgZyryp6vX36h17lzS97S6XTYtm2bmJGRwY0ePRrOz9ZQQRCwceNGsaioCCWCfKJITs2//03OznOIiYnBrWXLMLpzZ7CxY+k6BAZS5rk2WiiPH5Nw2LhxNAbVaqJX6+uXtmu7fx+wtUVeXh52794tpqWlcXp6ejA3NxeePn3KazQaNGjQQMzPz4dOp+M4jsPs2bPxfAIoOS4OO9ev1y388UcTAG4A5PtGjLDTymT78kxNMdrXF2bp6cSk+flnCuZ07kzOcH4+ObeSRJniFSvI4fb3x4W4OMTExAjTp09/cUG3Bw9ov598Qg74W29R0KsYU6b8P/auO6yKa/uuM3MLHRERBEUUO2AvKIqoiBoNdkJsMbEk+iwx3eczeI15lvjUJEYTjabZjb0rFrCLSrOg0hRBQEA6l1vm/P7YXkE6iiW/ZH0fn4q3zJw5c+asvddem+bFhAlFv/P1JTWMoZMDQM7m587RZzxnq9tz584hIiJC/6TdYGXIyKD5WvyZeOlSkSKlWEDo119/lTIyMgQLCwspJSVFEEWRW1lZMSMjI/0777xT9vetX0+KnO7daf/38cdU3nH79tNBuMdQq9U4c+YMbty4oc/KyhJlMtn22bNn+1VvFP7By8I/ZLsCqFQqH6VSuXvGjBnGNU4mNRp6oA0dSq0PDNKuKmD58uX6Jk2aCI9bW2DJkiVSYWHhHgBzBUEYKUlSniAIC2QyWSaAr2bPnr2yxHkJAOoDaAigO4BrAIICAgKyVSrVKAAbjYyMuCRJ0RqNpnV5/foWLVoUWlhY2NbMzEz90UcfGf3lTNseZ0Gkc+eQnp6OWrVqlekkbKgJtrCwQGxsLI4dO8bVajUaNWrEhwwZItSoAZlaTQGYqtQxVoLCwkIsWrQIvr6+VauLrAZiYmKwYcMGAIC1tbU0ceLEZx6HK1eu4MiRI5g1axYq7VvPOcmep06tNDBlwK5du3QuLi5is2bNanyCXrt2DXv37uXvvvsuK6+na1JSEtavXw8PDw9dr169itRE4eEkES2jrCEzMxMWFhZgjCE7Oxv3799HUlISYmJipIyMDEGv16NRo0bSkCFDSmVvqoKUlBRs2LBBYowxIyMjrtfr4eHhgfbt29Mm/NIl2mxfvVptmV6Nw82NyEJVzccM8PUlsmBQtNQgDEY7zs7Okr+/v1DVMoJqoXt3GvvFi0v/39GjVBsdH18qwytJEmKio9Fw4kQohg6lTPmxY9UntTWA+Ph4/Pbbb2jVqhWGDx9eFJS7eZOymOHhtGkeMqTyPrrFsW0byWzffvvpGuaoKAqkGvweuncnghcZSTJpjYbcjZcte1ourNVSMCIjgzbPNfUsy8oiSW27djhtaQnMmIEeN29S5vwZApQXL17E4cOH4eDgAAsLC96gQQN29OhRiFotpn/6aSlvCUgSnYskAQUFSMnLw2Mpe+VqnD//pLm3ejVlVXv1orVq2TIix3Pm0PULDHyyhkVERPBdu3axMWPGwNnRkb67WTMa27Ky01OmUEbfzo5IxSefAPv2ISQkhF86cIBPsbQUhPR0IsNlYds2uqZl1OWfPXsWQUFBcHd3l7y8vITz589Lp06dEj7//HMq++Gc5okk0TpRBhISEpDo7w/39u3pfAcPJjl8ZaqHCxeobnncOJKKT55cZOzo718U1PjuO6BOHWiGDsXy777jzs7O3NvbWzA4uXPO8ejRI1y/fp3b2dkxGxsbmJiYlFnWt2/fPl1YWNjeuXPnPoneLFiw4Eu9Xq+aOnVqUXlhcjKpP8zM6BidnOjamJlRQDMri4j4ypVAaioe2tsjKjwcyrFj9Z379RPRoMGz3R+JiXS/du5M423IfAN0PIWFtGYXR/Fn46VLFKBat656a0U5iImJwe7du6tuknb2LNWgnzhB/969m4i3UkmKsGLIz8/Hr7/+KjVp0kTo3r07TExMsGLFCn2XLl3Erl27lv8dp0/T/fb22xQAGTKEki8VBHIlScKSJUvUhYWF3QMCAq5U6Vz+wUvHPzLyMqBSqYzkcvl8pVI57a233qp5ov3xx2SMc/06PWDKc2EsB6NGjRLXrVuH0NBQzjlnAASZTNZ8zpw51wFcf3wO/5s9e3aZtRuPazruPf45XeK/wxljV3Q6naVOp+tRHtEGgMLCQi8AdTQazaX09HSj58rmvmBwznH37l3o9XqcOXNG/+jRI0FtbMys33tPqvXee0Kn06exbtIk9OjRA1qtFmZmZkhOTpbCw8MFIyMjrtFooNPpmLGxsdS+fXuhe/fuUCgUNR9d2LCBJI737z/3RymVSpibmyM2NrbGyfafjyX4H3/8MX755Re2ePFi9OvXD+7P0KrLQFQqJdoAPXjDwujPwYMpA1VGS5jiGDp06Atb51xdXXH27FmcOnUKb7/9dpmvCQoKQsuWLfVPEW2tlojUyZNlSuGKt82xtLSEpaUlXFxc0LdvX0Gn0+HRo0eoU6fOM/f6trW1xZQpU4TQ0FCIoshOnTqFffv2ob2hNrNzZ3KPHT+ezOleZYbbcL2riiNH6P7Zs+eFZHIfPnyI3bt3AwD8/PxeDNEGKKNjaMUTG0s1yQZ4e5MZWRnBckEQ0LRhQ6oB3biRSG15bZheIDIyMrBx40Z07doVPj4+T/9ny5b08/AhEe+xY4l0z59PfX4ru25+fkQKmjal69y6Nf2+eXOS57ZtSxns7t3p/w2b1Tt36J4rTrQlicZSEGjtfd45ExFBZQGXLlGQKDsb+O472BkZYdPBg6jr74/mz6gEatasGQ4fPgwfHx/s2LFDSkpKQpcuXcTeH34IhVpNKpniMMjEMzMBR0fYHjgAY2NjfXR0tNipMgnuiBGUdb98mUj31auUkTR09Zg1i/YvOh3tYc6fR0RICJo1aQJnvZ5KIm7doqxmeWO6ejVlO1evpkyqToeC/HwEBgYy3+HDmTB2LLWFKg9aLZHtMuDh4QFRFHHkyBHB0dERoaGhrHPnzkX+Gv/+NzmxP/YIKYVPPoEsIgJHfHzQxsMDxn37Eokuj/hwTvs6S0siqjt3kuS4ZNu5uXMBIyPcv38fd9zc0NPbG2G9enErPz8+fPjwp9Z0xhhq166NHj16VDopQ0NDRc75IQBQqVRvAWgHwAEAsiMiYHP3LhG4336j9WPcODIwNDEhL4sdO552e39sTGZz6xbEPXuw4+JF0fW//4WJmRkFTxISyCm/qi7lDg5EVEeNovXs2DFSM8yeTc7sw4fTtZbJSKmQmkqBDc5pHdu7l67XMzrOl4StrS3y8vLEKnuuODgU+WkcP07lAF9/TetNCZiYmGDq1KlPbvL4+HhkZWWJCoWCAyj7WkoSrWcTJtCa+OGH9Pmff17hYcXExIAxFv8P0X698Q/ZLgGVStVToVBsbNiwodWbb75p/KytJEqhsJAeXr6+JJmZPp0e+NUk2gAtEg4ODrnx8fFaAGsUCsVAjUbz1E7/WU0SAgICrgMorQ8r+7VZALIWL168fdWqVRNr1aqV16dPHzMXF5fXyuWec461a9dKGRkZTBRF7uTkJHTo0IFZWlri9u3bgrOTExydnNCrVy9cCwzUw85OLCws1CuVSjZixAjk5eWxtm3bGrIyL+7c9HrKVj2LCVQ5sLa2RmpqavkL/DOCMcYBsNzcXLz11lvs6tWrOH78OHJycuDh4VGtsoKbN2/yx9nZqh2jYTMyYAD1CE1JoVqvF0V6KoBer0dycjIrK8gQFRWFhw8fIj4+HqNHjy7a3WdnUzQ8La1qUsQSkMlkpUwQnwUmJibw8PCAWq3GkSNHUGqtM/QnTkggufvChc/9ndVGr160CZs2rervuXiRjru4JLEGsWbNGuh0OowdO/bFGkcaZLqLFpF08q23imqVBYGeJUOGkEy4+DzKyyOS2bw5BaJeAdEGgM2bN3MTExPu4+NT/pppY0M/wcFEVL76iu5lb28iiRUF4CwtKdMlSaQIMjKiteHdd+nZ6vdYUenvT5v8+vWJVEREPP05J0+SC/jGjc++hsTHU6brww9JrTZtGmV/Hzx4QnidJQk4eBC3b99GSc+VquCxAzU3MTGBvb09mzVrVtGacuJE+QGxMWNIjuvpCY1Gg5ycHNHR0bFqX8oYBQP37SPC3rs3EYKtW2k869en1x07Bri5wWP4cGafnk5r2++/U8a6MjRtSnJma2tg3z5c2r1bsrS05C5ubiJq1yaSUx7s7SmoUgKSJGHVqlX6zMxMcdCgQVwul7OcnBz07NmTXpCfTwqHsgK1Oh3JeXv0wMmHDzHIzQ3G69dTILwsoq3RUG1t+/Y09xQKWn80mtKdJQ4fpgDFjBlYP38+zMzMIH35pdTywAHWZOjQZw6eAkDdunVzU1JSEgGA6fVbjNRqdDt3Do1iYxF640YhMzUVG0+YIMO0aU8HP3Jzad9hCFiVRPPmqP3ZZ0hbuJBfGj2aeTVvTjXKkZG0Z/n2WwpuzZlDn+XmVspk7glkMrrPvv2W1imFguTT771H7z13jgj86NE03zgnV/3160lpUVP7cQCmpqYQRRHx8fFoUhVJupMTBU8CAkjZsGYNGTfq9UUKlitXaI7UqkVBXw8P4Pp1pC1fzn3mzOEdFi4U0KkT7Vv+9z9av9aupXkRHU332rBhNH8kqUolJpcuXcpTq9Xl2Ln/g9cF/5Dtx1CpVGYKheJ7Y2Pjt3x9fY0NTeKfG8nJtAh99x0tSH37FhkgPCMKCgrQr18/s59IHnlv9uzZL6igvGr4/PPPP1CpVDMePXo09sSJE8tdXFxqbkUsAb1ej1OnTkkFBQV8wIABYlmu7AZoNBo8fPgQN2/eRFpaGvviiy+YIAhPPc0aNGhAf/HxQZfAQHRZtEhEVhYgCM9en/SscHOjDfWz9hEuAxYWFlJ8fLywbt06DBs2rEpGXlXBJ598wvbv348NGzbwGTNmsP79+6Np06bYu3cvv3LlCiZMmFBlw6jMzEw8k8TbsFHq1Ys2ajVgeFddiKKI3r1785MnT0p169YVT548ydPS0vSP3cGF2rVrS3379mWOjo5F5zdmDG3EXmIbuvJw584dbNmyBU2aNJH8/PxKkyKlkjIMp07RJvRlBzTeeadsN9qysH07EbZff32hh9SuXTuEhoaicePGL/R7nsAgnz9wgJQGqam0WTY1pQ3r/ftP1y9eu0bkc+TIClvivCgUFhYiODhYSktLEz7++OOq3dcyGSlVfH1JrhkfT4GEnj2JFJVHJKdMocxrmza0Ube2JqI7dSoFh/bvJxKhVNKY1K5NZMdAEnftoo387t3lE4SKMGUK3c/5+UQuZ86kTbOBzBQjW1FRUQBQtY19CWg0Gmzbtk3Ky8vD9OnTn1ZTLF1Km36/cso1332XyPCKFZApFLC3t9evXbtWbN68udSvX79S5q95eXmIjY1FTk4OLCws0LBhQwrE2djQWIeEEEnIyiIJuJMTjXFiIgonTpTifv1VkF2/jiYjR1KGTiYjIlJe0GfiRFI2PM60u96/L5gayP39+0RqvL0peFQSYWGkjiiR/Q4NDUVhYaHw+eefQy6Xs4SEBOh0OpacnAxHY2NSVZw//8SZ/ym8+SbNhf37gZMnecPZs4HDh1kp6fijR0SKfvmFnLcXLCACamjvVlYg7upVZF27hp/UakmpVAozZsyATCYTcO8eZZUfPSp7jKqA9IQE82axsQclQXjnS863ArgD4H567drnQ5s3N7siimcb3rmT59uypekTc9x160iBUYVSG845JM7B69UDs7cnUgxQAOb0aQrKrlxJXipNmhS17axT5+n7Vy4ndYS9PWW109IoKPPzz0Qwo6MpgD5oEHlXHD5MmeQaVikxxmBkZMRZ8QiHXk/Bm9xcCsC5utJ3h4ZSIK1rV7q+y5fTWjVuHClUjxyh+TRuHL1m0iQ6bkdHWqMFAXqAyHf79jSX//Mf+nuXLnRutWoVqSBWrKDAQiVrRU5ODuLj4/8xRvsL4B+yDUClUnWRy+U7mzVrVnvgwIFGNVKDGxtLi4aJCdWBabVltyupJgy1sjY2NmqZTFag0+m2Pf/BPj8CAgI0X331VT1HR8ca05sWFBQgIiIC9+/f1+v1etStW1e4efMm8vPzIUkSe/jwofTYPRoZGRnIysqCnZ0drl27xoODg5Gbm8uMjIy4paUlHzp0aIWtQADQAz02lq7VjBn04HiZ8tkdO4p6jdYQvL29hVatWuH06dN85cqVrHbt2no/Pz/xeTOjgiDA19cX3333nbR//34MGzZMdHZ2xsyZM9nOnTulNWvWMIVCIY0fP16QyWSwtLQsZaImSRICAwORlpbGBhfvBVtdHDxID0jDBm3s2Oc6t+qiXbt27NSpU+KaNWvQokUL7uXlJbOysoKdnR3kcvnTJ63VEiks0Wv9VeHatWuQJAmjRo0qP6vi7k4biUOHSOZ75syzEZPqYudO2pyUtSEuC9bWFWfBagjXr1+XHmcGX66CZ8AAIocArU8LF1JG8/TpohrIpCSSiTZqREGo5zQurA4ePHiA48ePSzExMYJcLhf8/PxQbT8Bxigr3707SUv376dN/ZgxRKjKqpXt2JECb5wXuegLAhmlaTSAjw/NV4WC1ggD0Y6NJXn0oUPVm88HDhDBPXmyaGPerx8F0itAixYt0LBhQ2zbtg3vv/9+Ueu9KiA4OFhKTU3F5MmTS3tj3L9fuQHg4xZTgokJJk2aJGZnZ2PLli348ccfMX36dJw/f1537do1IScnR5AkCaampnq5XM4yMzMFSSKRnL+/P2Xku3enMf/pJyIHc+aQXLxRI7TYvl041aWLdOXoUf5xWpoICwtaj2NjKYhy+DBdj5LzUpLoNUuW4I+4OAyqVavIRO7mTaoLL4tsW1mVmdlOS0uDtbW1JJfLRYCC6l5eXvo/fvtN9OzeHT1++aX0uhISQmRr7Vr63OvX0SAqCvvd3dkQKys8CRUkJtJ4t2pFhCg8nGqIBwyoMJMvFRbiiLMzrkgSPN3dmbu7e5F8ed48InQhIdVz2E5MBE6dQh6A6d9/j0dWVrcFzkMAHAfniQBgDWAuAJVKZZKQkPDxpk2bvpg2bRql6AsKqtwOceDAgWzv3r0wNjbmXbt2LXpYODoWGRX26lXUqz04mFQkn35K82XCBLpHO3YkFcqoUfT3IUOoft3ZmeZI3770jJQkCu5s3/58RNvQR75WLQo6KZV0nTZvhmN6OmovXkzXcP16Cu65u1PN9J9/UjAtM5Ous4UFBQASEohAe3qSg/qyZUUK1ccBNQBk4vgYp9PSeCO1WsKsWUUT//Fc4ZwjNTUVsowMWNeqRd/Rvz+tf5UgLCxMEkVx15w5c3KefYD+wcvA35psq1Sq5gqFYq5SqRzm6+tr3Kome7DOnEkP/a1bq+12XREuX76czxj78uHDh7kAzgYEBKTV2Ic/JxQKxXg3N7cacQu7f/8+Nm/eDIVCobe1tRUUCgWLjo7m9evXZwMHDmQ6nQ5bt26V1q9fD29vbwQGBkKhUEhqtVoQRRH9+/dn9vb2sLW1ZaiOhNrGhtzKr1yhh4ZM9uIdfDMzaZE/c6ZGZVIAYG5ujubNm6N58+YsLy8Pe/fuZatWrYKnpyd69er13J9vaWmJyMhIsX///jAxMYEgCBg+fLiQkJCAa9eu8R9//BGSJEGhUPDatWvzhg0bCp07d0ZmZiY2btwIU1NT7ufnV665WJVgbEw/16/TxsxglvOSDPvMzMzw8ccfIzMzE/b29uWzm8hIegCnpT3d4uQV4Pr16zh16hRPS0tjjo6OT0f3y0PHjrRRZowIxgtw+H4KS5aQBPjDDyt+3fbtlFUKD6csywuEJEnQ6XSsS5cuL98NUhDoWZKRQURPq6XypH/9i+b8Z59RHe2tW0Qgi7V2fNHIysrCmjVrYGVlBRsbG5iZmUktW7Z8PqZfvz6R6LfeIgnvtm20afbxKe3UPmsWSVO3biUVxqef0kb/3j2aH926UY2lwVfh0iXa/F+6VLFUHSBCYmxMmcfPP6dNtmHtrIaKQhAEmJqawsbGhtvZ2VV5/nDOkZCQwBwdHVmp4EV2NslRKwoWKBQkZ7ewoPs2ORkWdnaYPHmysHr1av2RI0dYeHi4rHfv3mjZsiUYY7h48aIYEhLy1LE/5cliZEQKgu7dKfs3YgQ9KyMi0K1bNyEoKAi5ggAzgOqC9XoyWRsxgurmo6PpMwzE0tiYMtR37+L99u35lbt3eRMPDwH16lFmftUqen/J52OzZmUGqGvXro3o6OinxrhHjx6i/cyZSD9wgGqvS2LePMrS//ADrSULFqDTJ5+woAsXkJubS2T7+HGaW1OnkhfC9OlECqdOLX/8AaxevVrXeN8+WZerV9EuLAylrn+DBhSIcHGh7yhP0s05EbwtW0iNMWAAkJuLEEFQh8yYseLTBQtml/1GICAgoEClUi1MT09X6XQ6yObMoeM3BJ8qQZs2bXDkyBEpLy+v4vtaLifCOGgQ/btjRyKoV6+SsaOvLxHbbt0oaLh/P/390SMi2lOm0H2+cyfdX2UFDCWJAouiSONx6RKtCcuW0Zo4ejRljnv3pvXQUCaydGmR3N/CAmq1Gnl9+sDqnXcoi5yUVKRIMAQQivtNLFhAaqvPPqMA9K+/kifBJ5/QOjxkyFP3IuccgYGByM7OFry8vJ46kcTERJw7d06flJQkZGZmMgD4YOhQ2HAOdu0aWMlOCyXAOcelS5cKCgsLv63whf/gtcDfkmyr5GSskQAAIABJREFUVKouSqVSpVAoPN3d3eVdunSR1bgJ2p49NZ5ViIiIQHR0tJZz/mtAQEB6jX54DYBzfjooKMjh3LlzuvT0dN6jRw9zFxeXavfizs7Oxm+//YYuXbrA29u7+C7iyQNKoVBg7NixQmRkJPbv388dHR2lMWPGiCVf90xwdKSIak4ObVhDQp67zUSFYIw2cDVMtEvC1NQUb7/9trBlyxYEBwfDzs4OLVu2BEBj/iy95JOTk8XHfz6R1TLG4OjoCEdHR9Hb2xsymQxJSUksJiaG3bhxQwoJCREUCgVv2LChNGbMmCq3rKoUBrntV1/RxuVx7/GXARMTk4rr1DmnMoHjx4taEL1CnD59WsrLyxO6d++OBg0aVO1+sbGhtjcbNtCG8/79F5fh1utpQ1xZtwytlohP8f7FxcA5h16vr5oBTiVQq9X46aefIJPJWMOqmgK9CNSuTYEbgCSa33xDG8CbN2lTO2tWue7KLwLJycn46aefULt2bf306dPFo0ePIi4urua+wMqKSIFGQwQnJISy+l98QUFKA1l+/336e04OEYjBg2kj/s03pHjYupUyRsbGpNDYsqV8on3jBn3G77/TnH/4kDbyHh50PF9++UynkpiYKHXs2LFaz6fw8HCekJDARo4cWfo/33yTHKS3VSJwO3mSFA+G2tKdOwEAQ4YMEdeuXQuAyJThGRAZGcldXV3ZgAEDwDl/uq2dJJH8eMIEUhu8+y6N76JFwOjREH/7Ddbp6bh58yaemLCJIj3fDIqeefPoWDZvpr9/8QVdizlzoNBomCYlhUkxMRC8vem9ERFEbKZPf/q8HjwobUAGwMrKCpmZmUJkZCRcXV3BGENkZCRuN2+OHiXrtOfMoWu6fz89i2/cIHm6vz9SmzYFO3MGVu+9R+3kTp6kOXfxIhGsI0cqHnc8MceSdV2+HBb5+eVnv+vWpeDBt9/S+Bqg0VAg+dw5yhZ37Uoy6wULyMhSEHBpyRKpQJJ+q+xYZDLZl8bGxoVieroxdu6sdoeHAQMGCHv27EH9+vVR5VJLa2v6aduWarO1WjrXyEhS6mzfTmO5di2Nr5UVEWV3d1KiKBSUZR4/npQoly/TtTK06GvWjMamc2cyazMzozKB//6X1AtWVkWB9+DgouNq0wYpS5eisFWrqrubN25Mr71/n66DQVY+fTol1/z9qVxl3TrAyAgFMhkuPA7sfPfdd5DJZBAEAZIkgXOOJk2aiJ07d0aXLl1w4fPPcWHuXNzo2BHj163DlUGD0L8C87a4uDhotdpUACFlvuAfvFb4f0e2VSqVLciFMQvAzYCAgMzHvzcHMNTIyGiWqalpsx49ehi3a9eOvTCDmxom2jqdDnv27NFLktT/dSTaAFBYWPh+QkLCNc55GoD7x44dm3fo0KFODRs21Pbu3dvM8CCvSFrIOcemTZukBg0awNvbu9JBdHNzg5ubGwNQ87t+c3Oqx3J2pkV/4MCal2WePEkbhu+/r9nPrQC+vr44efKktGPHDsHMzEwnSRLLyckRlUolLywsZJMnT0Zlmebw8HAcP36cA2BvvvlmuZJIw/1Vv3591K9fHz179hRSU1ORlJTEWrZsWXNEuzjef5+yLbm5FNUuwy30paNNG8rSVZIBeVmwtLQUdDod79OnT/UDU6NGkaTT0K+4mFyuxtClC9UcV+TEevw4ZcrS0kqZoWVmZiIsLAxXrlzharWaffTRR1Vzu68A69ev55mZmez999+vdgDxhSEoiDaW7dqRhHHECKob1GpfSglMeno6duzYwQGw6dOniwARnevXr9d85l+hoMyXtzdtsv/3P8pY2doSiba3pxZLI0fSOj1zJhGxXbsoUxgeTlnVESOoPrQkWYiNJXXR2LFkzrZyJW3oR42i/zdk6p4DBQUFpXxDKoJer8fx48eZo6Nj2UqBQ4fKlFGXgpMTjY/Bffox6tWrhzFjxiA0NPSpYKtcLpccHBzEUgFEnY7q6efNI6I/d27R/82eDXz+OcRt2zB4zx6k1qtHQZ+yMqeGGuH0dApofPEFkemBAyH+9BPYxImS7qefBMU339DrZs0iBZjBINAASSJJ75N/Srh48SKuXbvGTU1N2c7HQYU69+/Ddvx4iEePom6bNvRizimop1RSgJ0xmh/ffEPzy9UVDUaPhru1NY8eOZK1+eQT6E6dQuHKldDr9Xh09y50Oh2cq0DUTNLTYfbNNzTvKsLhw5R9nTGDZMTm5jSutWuTM7W3d6k2sZxzFBQUGANopVKpHjw2ri0TgiA0Vz54oGCRkeRdUE31l5ubG86dOyfFxsaiRYsWz/bwlsvpPAztssaOJQVKYSGRbIDuzZ07KQnRuTM9Yxo2pFpppbKonZ8BEyfSn66uRb+rgteHgfhWGaJIme74+KJ5LZcXeWN4eJBr+oMHgL8/TN59F7MGD8bvgYFcMDGRhg8fLup0OsjlclhYWDxlsNktKQno2hWDvbyQmJ6O61FRPCY+Hj4+PmjZsmWpCxUSEpKv0WhWBAQE/NO/+S+A/1dke+HChR/LZLIFtra2hWq1GpmZmSZff/11oSiKOaIo1nZ0dNR26NDBrGXLlqXqR19nqNVq7Nixo0AmkwVqNJrS3e1fEwQEBGgA/K/Yr46rVKq6sbGxQ+/evbtcr9cr5XK5fvbs2WXuArVaLW7fvo20tDTh3//+98s56MowZAg90CdNooxeiX6Kz41z5ygjZdjQvQSYmJhg4MCBgqenJxISEmQajQZNmjTBw4cP2enTp6Xz588Lw4YNq/Az0tPTkZOTwwDgwoULRS2jqoC6deui7ovs+Vu3Lj38fv+dyFpS0kuTlJeLr79+9f2qH2Pbtm1SXFycMHLkyGcbFEEg+ee2bbQpTEys+Qz3okVPt6EpiYQEymgfOFDmd584cQKRkZHw9vZmFy9e5N999x1zcHDQe3p6Vt2JuQQEQWDNmzeX7OzsXt3DQ6+n9cLZmTbhNjaUGTI4bB86RCTC2JgCEP360et++41klDduUFZoxAjKFDVsSL//4gsimgZjtYMHaZNrakpZ3caNi1zQnxyKHiEhIcjOzsa7jzsoZGdnIzAwkL9RUbum5wVjFFzYsIHkyIcPk0T84UNSXKxeTdlvNzci4WlpFCgdN47Gb9asIqLNOQXnPv2UAhfr19Pr0tKK1owKetxWFyYmJjwlJQWohvoqNzcX/fr1Kz3nli+nZ5OhFVdFaNOG1sLcXMrUm5k9yc43bty4lNlfz549xSNHjkChUBSt7WvX0nsTEiizV9aaKgjYZ2qquzV2rGz6oEFEWocPJ1Je1hphbU0tvwCam0ol0KoVvLZtE/KNjLgiOprB1JRI+dy5dG18fYvKcIyNnzIiW7FihV6r1YrNmjWDUqnUN23alCkUCmHfsWPweeMNtDIQbQDo04cynwbiHxdH0mC5nMbm5ElkduqEbqtXs4P+/jzt999ZRGwsz166lImiCIVCwQsLC9mHH35YupNDMWRlZcEqOZkIWGUwN6d1NS6Ozm3YMFrjbG3LfQtjDH369NEdP358h+FXJV+jUqmMAIxijMk8jx4lQ7Zn3MuYmJgIISEhyMjI0I8cOVLU6/VQKBTVVw9JEs3H4GDa/yQlkYQ8IYFI844d5EcxZcoLC5gLggCtwdCuqjA3p/WlrPJQM7OivVxQEJCdDbP//Q8fHD7MVvv5ieq9e9Fg/PjSrQdXrqRAjLExsG8fHPr2xadDhrDNmzfj1KlTUkmynZ+fj+joaIFz/kc1T/kfvCL8vyHbKpVKALDU3t5em5qaaiQIgmRvb18giqLC1dW1nouLC4yMjF6TdET1cOHCBcTFxYXp9fqRf7UoVkBAQCqAn1Qq1VEAwywtLecDkOv1enDOIZPJoFarsXbtWp6ZmcmUSqXk7OzMhVfhBl4eBIEelIzRpu2DDyiq/7y4do0kbK8I5ubmKO5TYGZmhtzcXCEwMFCPSpQCvXv3RkFBAb98+TKrMef+msa4cSTrunOHNtM7drx8N+1Nm4gIFJevvUKEh4cjLi5OmDJlyvM70/v5kVT39m0iPl9/XTMHuWoV1fmVR4qjoohsPXxYKquu0+kQGhqKu3fvQiaTwcPDA66uruzixYt49OiR+Ntvv8HU1JQ3bdqUv/nmm9Uizaamprh165YQFxeHRmUZddU04uJo4+ngQJnE3r1JWn/2LGVrg4Np7O3siFRHRdGfgkDSU72eMtxNmtCPXF7UisrTk7JDjFFGiXOSZ6alUfZ44ULa5BYW0t+Dg2lzbmkJbNgAadAgHHN35/qcHDbz7l1mMnUqMH48bmdnS027d0ebX34RMGECZR0vXqT63iNHyOCsYUPaWDdoQETpeQJhTZrQZ+fk0OcbgggdOtB5FBbS98ybR1ndIUOI/G3aVCRhTUqi8544sShD9oKCc7a2tsLDhw95Xl7e09LsciCKIlxdXfnOnTtZTEwM3nzzzaJEAefVU1pNmUIk1cvrqex2WejQoQOysrKwb98+tLl8GaIg0L3evn2lYxMVFSVz9fAAa94cOHUKujt3UOjpiRxHR9iuWQNWnJg+ekRy8vh4ug4zZz7pJ2+kVrOCGTNg3L07Xa9336VOHatWURa8Vy8i3snJwPffI3jxYoz4/nvRwcMDoq8vw8yZYuH06Uj38YGvuTnsQkIo4FC3LikXWrQgWXNYGAVsDGqHf/2LjmvxYlgtXoxLDg64fucOE0UR7u7urMvjjKmZmRn74Ycf9D///LPg7+9fpu9IRkYG9uzZg97DhumEoUMrfvgYSma6dyfTsuHDKeBVBXh4eMhPnz4t6XS6yHJe8gGA5dYpKTji56eJadJEZxUUZNKkSRM4VNNUcvTo0Xj06BE2bdqE77//Hvn5+VAoFOjWrZvUuXPn0gZ+JWEwMezQgc5z3TrKbBsUjwavCUP5RkIC3cuXL9eIT0h6ejoyMzNRr149CILA9Xo9y8jIgCAIqFWVNomdOpH6YNasil9Xty79rF4NITkZ7idPSrq5c4Wcs2dhPmIEeSh4eNCa/u23pMoBKOAzYAAEQYCHhwe2b99e6iYPDw/noigemDNnzrPb1/+Dlwpx3rx5r/oYagReXl78woULtfLz80O0Wu1IvV6/Ojs7+3xWVlZIfHx8+9jYWFhbWyuqdDO9Rrhy5Yp0/PhxHef8XwEBATdf9fE8K7y8vDKDgoKitVrteM65+caNG6XIyEjdvXv3Ck+cOCHTarV81qxZrGfPnszNze31kx0YNhjXrlFEHCjq6/os4Jwe7C4uZbusviJYWFggODhYaNmyZYWbwYsXLyI4OJiNGDECXaramulVQBRpM3fqFG3ECwtfrsO8iQkRitdgjHJzc7F161bu5OQkdezYsWbuMZmMMlK//kp1wzVBUubOpU1Ku3al/+/QIarlK6N/dE5ODpYtW4Zbt25BkiTu4uLCWrRoASMjIzg7O8PV1RWtWrVCfn4+Cw0NZUFBQbhz5w4aNWpUJYm5s7Mzzp8/j7i4OHTu3Lnm1FE6HbnkPnhA0sjp04kgzpxJJHf0aDJF8/CgetG9e6lG3d6eMiFKJbmS/+tfNL/Pn6eNrCjSXLe1pT/t7UktIJPRhr5+fSLygwZRtqZvXyJUZma08WvXjjaWs2bRWE+bBowfj4jEROzPz0duixZ8+LRpTNmoEdC2LTQJCbiYnMz6jBnDjC9epBrN69epVvqddyjj8+gRrZv+/rT+/ec/RHi++IKOLzubggTvvkvE7rffqJSnf386DhMTOsctWygrGRlJm/GGDWksZs6ketbduymb6+JCpTqpqZTpXrqUJOXW1pTF9/Sk4zK0gHzBcHR0xJUrV/iZM2eYi4tLleZd/fr1mampKS5fvgzOOZycnCjT27VrUfulqsDbm8ipuzsFTZKTqea/HGRGRSEmPh49Da3m+vWja1QB8vPzcebMGaSmpvLTp0+z82FhCI6ORrSjo16MimK3T53iNqtXM+Wff9Kxt2xJ8vBOnQCZDNzdHfffegt5oogrzs7c6eBBJvr7U1a9WzcKHn32GWU+Z80C7OwQXVCA3U2aSDFaLdq+9RazGDAAqF8fegC7YmKkhteuoZ63N8Mbb9D68csvNH6ZmXSf/PAD1ePn5NC9MmMG3VNNmwKurnDo1g03btyQ3NzcuLe3N1MoFE/kvx07dhQePnyIw4cPszZt2sBANOPj43HmzBmcOHGCd1QqJa8PP5Th008rDo688QbN5+++o3/n5lbZKTwjIwPnz58H59zBy8urVEImKCjoisO9e0kT1q3zylEo3r9qZHTq3r17UWFhYR0cHR1l1dkXM8ZgYmKCTp06CQqFAv3794eDgwPOnz8vBQYGCowxycnJqfSDQKulZ4WLC93/b79NgTG5nNaEkqhThwKunNO64ONDwTCttsrjUhycc+zbt0994MAB/c2bN+POnj1rWVBQIKakpOiDgoKEixcvonv37qXWdY1Gg4KCgiLJt4UFrbH29riZlQWlUomCggJs27YNeXl5Re1ki8PMDPZubiyqUydpc2oqkw4f5nV//JHx+vUhHjhA869ePTo3Q226XA4jIyMEBQXB09MTBg9Tzjl27NiRl5eXN8PLy+tetQfiH7wSMF6ZAc3/A6hUKjljbKxcLl9obW1t7O3tbf7SeqQ+Jw4dOqQPCQlZ/eWXX06v/NWvP1Qq1RsADgiC8AUAC0mS7oqi+Jler3f28vKSevbs+foR7bLg5kaRdcODsbqQJFpYX5faz2LYvXu3PjU1lU2ePLncaxEZGYmdO3eiXr16Uvfu3QUnJ6eKDcJeB9y4QRvNu3fJNOVFQpJoc7tmzYs116sGQkNDceDAAcyYMeOZzPAqxZ9/Un/Q4OBn9zbIzyfSVBZpT08nOXNk5FNZ7/T0dMTGxvKDBw8yQzagdyWu5CkpKdi9ezdPT09nOp0Ofn5+1NYIQEXG7Ddu3MD27duhVCrh4uICtVrNhw8fzqpEvCWJzmHXLiKy+/dTtjU4mJQy/v6UeY2KorXFcI00GpIMr1hB575vH8nsJ04kwswYvffWLfpcBwf6zBoySZMkCVFRURBFESYmJli/fj2aNWuGtw3O3o+xcuVKva2tLUaOHFl1VZJeT9fczKyo/loUqdXTgAF0HrGxlJWdMYOCAUZGtDn94Qci6w8fEoHq2pVeo9PReG3cSKTdYKDFOY23r29Rq55XgLy8PCxbtgyenp5PbaIrw/Lly7mLiwvz8fGh7G9yMklVqwND7+IJE2h+/P572a/T66G2tET42LFSl9Wrq3wza7Va/Pe//0Wb5s3h6ekJYd06GKWkwOjtt8HffRcxXbtCCgmBc5cuSJfLcaxxY32KQiE0btxYMjc3F0NDQ3m3gwcRPmCAngkC3vnmG5mxuzsFuKdPJxISGwv89BPi4uIQ+Z//8Prx8Uz44Qe4uLhAXiyQGrNmDZK3b+ddDh1iMpmMavzd3CirbWxM99kff5Ak/vr1otZ6/v4UtCmWgd+6dSvX6XTS6NGjy5zbK1eu1FtbWwvt2rVjgiBg+/btaNCggT4rK0sYP3IkM4+NLd/borCQAj+HDtEcbtiQ7glXVzquKgRkjh49qgsJCfl+zpw5H5X5AsZEAEoADcH5TQBQqVQyURTPd+vWrWPPnj0hPmcp0JUrV7B//34MHjwYbdu2pV8a6qFHj6bnbnAwlX48qxru88+JdFtb07X73/8qf89jpKWlYc2aNRlarbZRQEBAtkqlcgbwAWMsn3O+TaFQbO7Xr59byZK4hQsXcp1Ox8aOHQsnJydIkoS7X32F2zdvSheK+ShYWVkhOzsbMpnsyfm3a9cOVlZWuHr1KtLT03Hnzh19bm6u2KlTJ9yKiuJjVCqWZ2nJE9u145bm5oKdRgPLxo0hFFOJff3115g5c+YTr6N79+5h48aNiRqNpsFfTen6d8bfgmwboFKp5ACGymSyX99//33jOhVEdV8XBAcH4+TJkwAgBgQEVMPJ4fWFSqVSBgQEFALAwoULV2k0mikAMHHixGpLml4ZDBmaPXuIMBsMMqqCvXspc5Sc/OKO7zkQHx+PzZs389mzZ5e7C9RoNFCr1Th48KB0//595OXlCXPmzKkR1+cXipAQymasWkVmZS/Ku0GrJeOXtWtfuMt8VREXF4fNmzfj7bfffjEy6ORkkmL++99k2vQsta6uriRPL+n2/NVXVJtqZAQIArKysrB9+3YkJSXB8AxzdXXF4MGDqz0Hg4ODcebMGWi1WtjY2GBqGSZ2kiTh6tWriIiIQEJCAgRBgEKhAGMMcrlcmj59uvDke/V6kk/HxFAAYtIkOqfMTMryLlpEZMfBgQhgq1al56FWS4qMQYMooz1mDGXefvutyPV2/Hgy/Soe5EpMJPIdHExrUg0E80JCQhAYGMjlcjnXaDSCUqmUJk2aJJQM2CxatIj7+/szJyen5/7O54IkUSZMo6GN/YAB5HZc3MzrFeLnn3+WEhMTBQDw9vaWPDw8qrQIBQYG8tu3b0tTp04VnxiDVXdtGTKEAhTt2pVdQ52URON19Ci+W7VKch84UOhcmZTZULKwahVgZYVHaWnA8uU41LcvWubmSu26dhXw4Yd0XZRKrFixQq979EjsERjInfV6lj1jBsJycpAhiryzoyNzmzQJ7PZtmrtJSVQCtGsXSf0LC6l0onlz/LFvHxpcusR7ShJjP/xQ+lRmzsTD0FCpTXCwAM5J2TRkCGWQT52iQKi/Pyk9/v1vIoM6HSkdGKPa6ceBkIULF3IPDw/WsWPHMoPKKSkp2LNnjz4rK4sVFhYKDRo04O+88w6DJNG9u3p1+QGerl1J3Vayjdzs2WRs9/77pd4iSdKTDGxeXh6WLl0KANMCAgJKDwQAMPYDgCbg/EnPPJVKZQYgBwBMTEzUU6dONapKaUNJPHjwAEFBQYiNjcXw4cMpaMk5XS9XV1rz7O0pU11T7QgPHiT5+Y4d1CJywoRK22lGR0dj586dkZ999lmZfdVUKpW/jY3Nzx988IGpYWwlScJXX32FVq1a8YSEBK5QKHhmZqbYMDOTd2WMO379tcAYg0wmA2MMmZmZOHv2rJSZmcmjo6NFAJDJZLC0tJTMzc15mzZtRGdnZ6rxj4mBRqlEkk6HpKQk5B04oO+6YoV4tmdPJAwbJvXs2VNo2rQplixZIo0ZM0awf6wq+fPPPwtu3rw5b+7cuUtqZjD/wcvAa74zrlkEBARoAWxbsmTJtLS0tB5/BbJdbENTC0DGKzyUGoOBaD+GBwDIZLLsxMREMwcHh79GZtuQGb1yhTYaQ4ZUXUI7cCBlXV5jaLVaduvWLQBA06ZNERERgZycHOTk5CAqKkqvVqtFrVYLIyMjplAomJ2dHRdF8RW7kFUBnTrRJmDxYpKmvois87p1RJ62bKn5z34ONGrUCC1atOAbNmxgAwcO5O3bt6/Z62VnRxv5H3+k+u27d6sfzNi6tXRrHI0G2LgR2v798Vt4OE9KSnoSJO7QoQM6d+78XIZ7np6ecHd3x7Jly/Dw4UP88ccf+s6dO4tNmzZ94la7dOlSSS6XswYNGnBXV1cMHTpUEAQBmrg4bNu7FwdGj+YdHjxg9TdtojpLX18iLfn59CUbN9KG09SUzrE8aLVU/x4QQLXZs2dTJmf9eiLn7drR5vv2bfqz5Mb/zh0iETodZYoXL37mcTHgwoULvFu3bqxnz56G+VLqom7evJkDYPWr2LP3hUIQSFru4UEkzdubghY+PlSb+wrNUVNSUpCWlsZGjBiBsLAwREVFwaOKxokmJiZMbyC1t25RnWd1sWsXyexFkQhKrVqUHczNpczqoEE0XrVro9DMjJ07dw6dOnUqyr4b1BlbtlCWeP9+mtvnz1Mg09cXVh98AEybBtfoaBw7doy3K2HgNm3aNDE0NBRt5sxhCpkMdQIC0HjnTmD3bga5nNYNA+ztgY8+orKA33+n9XvdOuTUrYtYuRw9+vRhrLDwqc+HJAELFiBnzBicatxYatOnj4B+/SjwtXs31QI3bUqKiBMnKGhlZkbzQqGgOv6MDLp/vb2Bjz9Gr1692NGjR5GcnKz38/MrFaWwtbXF5MmTRYA8doKCgmjAHj4kNUpZQZHoaApK/vFH2Y7t778P/PgjMtLTodFqwTmHkZERoqOjcfDgQdStW1dq1KgRrl+/LigUinMajabs1l908X4H8FR/xICAgFyVSiUDIGq12tjU1FSH6gZhb9y4gV27dsHJyUkaN26cUN/BgVqS/fEHKQe2bKFygZq+5954g360Wnre9utH97yxcblleffu3eNqtfpEBZ+6LT09fc2ZM2f0np6eIoAnmeqBAweyZcuWsWbNmul79+4NE8YYfH0Z9PqnlAe1atXCwIEDBQA4fvy4lJeXx3r06MGsrKyeHoD164F586CIi4OTKMKJfivi+nV0NDMDrlzBpk2b4ODgICkUCh4fH4969eohLy8Pt27dYpIkVWJr/w9eN/ytyDYAqFQqplQqG78QGeULgJubG8LDwzVJSUknALR91cdT05g9e3YbAFCpVD1Pnz59oEmTJqa1ayr6+TJgaE3y8ce0uT1R0VoOqqts0aJ0v9DXCE5OTvD09NRv2bJFVCqV0Ov1MDIy4sbGxlwQBHTv3l08ffq0NGjQIIExxo4fP86HDh3KqiqHfOWoU6eo1YirK5GbtjV4a929+/KN2KqIN954g928eRN16tR5cRdr8mTaFGdn04bL3b1q7wsIIKmli0vR70aNonreqCicPnGCp6WlYdCgQYiKioKPjw9qKmCqUCgwbtw4HD58GJxztmvXLm5vb89HjRolAIA+K0uY0L49rPv1Y5g5k+S7vXpB8eWXGP3FF0KCiwtuZWZi+x9/SA0XLGBDxo8nafngwZV/uVZLATtvb5KQzplDDsQNGhSR74sXKdvv7U01x5s3U7a2JOrUKXK3TUwk8t206TONSVZWFgIDA/U2QgpxAAAgAElEQVSZmZlim+IuziWwY8cOnpCQwCZMmPDqlS35+SQhnz2bAqFr1pAE3dWViNS9e5QtfEU4fPgwb9KkCVq1agVBELBjxw7h/v37qEqQIjw8nNepU0eATFYUxKkuLl8ucmgfNIjItl5PionVqyn7+1iaO3nyZPbbggXIWbIEFiNGkEQ/LIwk/hcv0nPso49IMWBp+VRwsbCwEKdPn+ampqal1hmZTFbUfxsg1cqUKRSE+uQTIu9+fkUErUMHSBERkNq3R46FBbb6+qLFxYtoPXWq3tHMTMSNG09/wd27wC+/QOnlBVZQwDBqFJWdjBpFa9GGDaT8eOstul8SEqgnswGMUZZUpSKCfvky3Js2RWpqKhITEytdN1u3bo0jR44gLy8PppxTp4Cyno2TJlFXgfLagTk6QvPoEbZ9+SWyGzaUAECr1QqiKHJPT08GQAgLC9PnUu/ybgBy5s+fP5Jzvp0xduDLL78cBMYUAMIA+ILz6DK+pT6AeO1jMp+amgobG5sqlTZIkoR9+/bx/v37o0Pr1gJcXWmt9venshjGqBzmRUIup8ATQD4esbFklHjrVimpekpKSgHn/E55HxUQECCpVCr/kydPHmjRogXq1q2LzMxMKBQKbmJiwv5DbcmKAi1mZtRNxuDhUwJ9+vQpO8KQnU0dH3r0KFKXfPrpE/NIa8bQr18/IT4+Hg8ePBDc3d2l4OBgfubMGSaXy7kgCFsCAgL+XyTe/k54PXeELxa+JiYmtcrrC/y6ISQkRHf37l25KIp7X/WxvGAEq9XqeatXr57fv39/ow4dOvxFmNtjfPwx1QTn5hLp7tGj7Nc1aUIb6tccXl5eYs+ePQFQdNfc3PxJf9jExETY29tLu3fvFmxsbPjYsWOZdSUSrtcOjJEkedgwuh537z7/ddFqyblZpXr1rcbKQVpaGvR6PZ61/VWVIAgk1f/1V8p0JyRUbTzu3CFTKwMMfXA5h1qtxtmzZ9mAAQPQvn37arWaqyrs7e3x3nvvAdeuCRrGsDo8nD1YsQKihwc8rl2D1cmTFAho25buYx8fYMgQMMbgCMBBr4f97dvCkSNH+Pfff6/39PQU27Rp85Thzvnz5yFJEkxMTFDf1hY2ly8Dn36KmK+/xq3WrbnzhAmsucH854cfiFQbamw5p/XFz48Id1lwdaVMT2YmGa4tWAAcPVptF9+YmBhs27YNtra2bNq0aeW69Obn5+PatWts2LBhsLGxqdZ3vBBcvkykbdYs2rzev09jIpdTFnbBAjLlGj78lRxeQUEBZDIZZ4yxli1bomnTpti0aRMmTJiAytZQxhivo9cL6NmTNuvPgg4dqH8x51Rm0LcvBXGCgyk7uGYNEe433oClgwPqGxvzwshIoF8/hiVLqKa+Th0irOVAo9Fg1apVAMCnT59etZSmvT0FoBs3JgLq4gKMGwfps8/wIDkZgWfOwMbdHf2OHUOvTp2kZk5OAlOrRVhZUb2zAWfOUDu8mBjUd3RE+5YtBQwYAMyfT+e8cSOdQ/HSjcOHyzaw7NKFfr78Elnr1uHaO+/A8403Kl3IEhMTIZfLYSyX01wLDiYVgAF79lAZ2uHDFZd5CAJ0nTujVnAwPvjss+Lj+OQYevXqJep0OoSHh+PAgQMwNzf/Izs7G5zzNSqVSphRq5alVWbmEQAx5XyLFwCIonh627ZtjTnnShMTE9OpU6cay+VypKam4tGjR7h375508eJFJpfLCywsLHTt27c3S05OFlxv3UL71asZoqNJzTRgQI22yqsWfvyRrvGdO6QASkmh5465OTjniIuLEwH8WdFHBAQEHPzqq6+iVq9e3WLu3LlQq9XlBxBnzqSgUzlku0xoNNRpY8ECWsdv3SKi/csvT2TwsbGx2LVrF8/NzWVKpZL37dtX6NOnD27fvo2tW7cyAD9W/Qv/weuCvx3ZVigUy/r27Wv6svps6/V6CIJQZRMUAwoLC3Hs2LHCq1evyjnnG3Q6XcALOsTXAgEBAVylUt1hjB0+e/Zsvw4dOrzmblslYG9PP6tXk+NtTBnPtq+/psj9a2iKVhYMc9ayWK2ZwRhNoVDIOOfIyMhgrzyb9TyYP58ygc2a0XV7551n/6wbN4p6Fhfr/fq6QJIkHDx4kDdq1EhCJa3dagTjx1M2KSyM5Kvz55f/2pQUkh4aIv19+lDrtseS65S7d8EYKzLeeV4YiPzWrSTFNjam+3PaNODAAShSU+E0ZgyuxsYiTiZD888+0wkDBtBEL8fcRxRFPCZQ7OjRozhy5AgOHjyIxo0b8759+7LU1FQcPXwY9nZ2ep/vvhPyNBoWNHmyZPXuu8LF27ehtbVlsvR0NI+MpM3Yu+8SqXFyouPt25cyRipVxec2dy5t8C9fpux2Rka1yHZYWBg/cOAA69u3Lzp37lzhgzIkJAQKhQIuxdUIrwJHjwIffkhZREPP8du3KZNZPLBua0vz7BWR7fz8fKl169ZP7r233noL69at45cuXeIDBgyocKzNzc257e+/cyxZwp6cY3UhCBSwcXenzG5GBgVlFi0ipc/166TGWLAAmtatcfPnn1kbf3/YODs/+QhDBrROnTqlTLVSU1Px+++/Q6vV8k8//VSo8rMhJITm/J499O+tW4GgIES88w4epKfjfvv2cP3vf7n41Vesubu7gMmTqW533ryns/wffkhBlsWLkfXtt3CdOJGhYUO6tw8epPP393/6u5cvJ8O98taW+fOR07s32i5dimapqQxdulTY0eLUqVNS+/btIYiigD17nibaAJFsa2twhQI6rRZqtRqhoaE8KSlJ0mq1zN7eXqhbty70ej2a9+kDrzlziKSV80yRyWTo0KEDOlAvaqMtW7Zob926tcctPBx3mjWL7nzxYkXSli0AAv/zn/8kAoBKpbLXaDSJBQUFuHz5si4wMFCSyWRxGo2mOQDo9XoXtVrtbO/ndyDP2VnZbP58xgYPJiXXiBEVfM1LAmP0LM/MpH2WszPg5wftvHnQajTKgHnzUir7CEmSeoiieGn58uV2ubm5xgqFouzNu6NjUeCqqvt7QSAlx4gRtO/49VfqulAs0BYXF4e8vDwGAEZGRhwAEwQB5ubmUCgUDzQazaWqfdk/eJ3wF94lPxs454rY2Fhtw4YN5eW5J2s0Gmi1WmRnZ8PMzIzMDJ4BBQUFWLZsmc7Ozq5w/PjxpsUfTMUNLkriwYMH2L59e35ubm4w53wmgDt/B9dBhUKxRKPRNPP09MShQ4d0Pj4+sud1yHzpmDKFaq0iIijyefw4LbCZmWSWNWkStTX6i0Iul0Mul6NPnz5o27ZtUTuMvzIEgSLMlpZEZAYNogxQdbBvH/WvNUjaahgajQYAnmu8jxw5gpycHPj7+7+8m0qhoLZLZ89WvCnp2ZMi/QYi6etL7akeQ6lUQpIk6HS66kuVc3KoNvKXX2hDfeEC1cwFBtLv+vYlM7v//peyDm+9hQcPHiDi558htWkDPz8/tGzZsspfKpPJ8MYbb4j9+/dHYmIiTp8+La1dtUq0i4/HZ2fPwnjFChHffovsJk0ghIXxFLVaP9rDQ9y/c6dkn5wsPDFQ69evaLx0OsoajRpV+QHMn0/ECSDH8g4dKADk51fh23Q6HY4ePSpdvXpVGDFiBFpUwTG4U6dOOHv2LI+Li2POxQjZS4MkUWCzWTNae4vPjeDg0vNt0iRSs8ydS3PtJdZvHz58GPn5+WJJVYmtrS2LjIxkffv2rXBuN2/eXDzcp4/UesaM55PNLF1K5DYvj9quLVlCEtwPPiC/gdq1gZUrkbV0Kazv3YPVgQPg06cj8eRJRD16xOMyMpCSksI453B3d9d7e3uLhsBsaGgo8vLyMG3atOoFYfPzn26/1ro10Lo1wu7elXrGxAjGpqa8bVAQw9SpdB/s3UvP0/v3KZMqSSTpPXuW3vveezA3MUGitTVqdepEdcNltUmTJFKiVbKu1u3WDXfc3Hj3y5cpi2tkRKS+DBgZGfGLFy+K7X/5BVaffoontHzRIsq6rluHP/74Qx+/YIEoSRJkMhlq167NHRwcxOzsbFy9elXSaDSCTqdDnTp10M3ODnb799O8rQRqtRpxcXESADRITEx0iYz8o6LXP/bPMRBtHwD7AOrwcOLECUmSJJfZs2dHL1iw4HSd+/e7v//TT4cZ0OVRrVofR7i5rezZtWvZRnuvGoaERmgowDmEn3/GzBUr8JUktZ87f/7Vit4aEBCQplKpmuTm5noAcJQk6ee0tDSjUiVLjRpRoDYtjdQUleH776nU4uxZKq/y86NnUIn9YHh4ODjn8PHxgYmJyZMF6vLly2q9Xv/z34EL/H/E345sa7Va97CwsGUZGRlvjho1yrgkmYuLi8PGjRu1jDGNKIoZnHOb9957z8jU1BQajQbGxsalemNKkoSwsDCkpKRovby85EZGRoiLi0NERASXyWQXU1NTtRcuXPA0uI5GRETod+/ezdq1a6d58803SzUY3LVrV05mZuZ/OOff/51uLI1G01upVO46fPiwvU6nE2rXrm3bpUuXv4ZhWnEIArXtadmS/n7vHj3M4+Nf9ZE9N1q0aIFevXohMDAQarX6iZHIXx4Gn4DISHqItm9fPSn4559TcKUM59hnxdmzZxEUFASZTCZptVpBkiQYGRlJjDFIkgRTU1PesmVLsVmzZrC3t6+w73NKSgrCwsJ4//792Uv3q+jXj37++INI7okTpcc2KIhMhLy8iBCXMH+Sy+UQRRHBwcHw8fEp+3uys+knOZnMlN57jwjY3btFG5wOHYjITppESpTAwKL3F+shfPnyZUiShHHjxj2zc7vAGBrUq4dRhw+L0pUriP/pJxiPG0eBBcZgAWBY48Z0/6SnY8CaNYJxgwYUoCs+Ph99RFna/fur9sVmZtQmzNAbe9EiOvdKMjA7d+6UoqKihMGDB1eJaAOAiYkJLCwspIyMDPGVkO1Fi4h0xcaW9sHYtKlsEzFzczID69aNiNtLwPnz5xEWFoaJEyeiZAlb//79ceXKlUoDSWa7d/PBu3YJ/NNP8cxsOzKSSl2uXiVynZlJ/gCff06GU05OFNhRq2FTty5a5+byzBUr2NqCAkxcsgSW7u5M3bIl5nz3HeIuX0bC9Oli/uLFMA0MhN7PD7KmTeFoZcWtFy0i2fnNmzTvXFyI2Ja1RiUnk+HoypVP/TowMBAJlpZC6ooV8Kpbl2HBAvJ1+OgjuraDBlEWfsQIWldmzKDezUOGAN9+C11EBDZs3YrZEyaUv9Hdu5ey42FhFQ7b/v37kWlkxPL/+AMWEREUvPrhB3ISL4HRo0eLp06ehPbnn/HTr7/C/t49dGzdGnZ16qDA0hK/rFiB7OxsccKECUhJSYGDgwNsbW2LD4wgSRIyMzOxdu1afrpHD9bu/Pkqke2EhASIohg5V6XaKnC+HpxXubZXqVR2LywsVAiCcGzTpk2ddDod1Y4w9uOnCkXk+a5dpzKgN4DcHz/7rJEkSXzDhg15ycnJQtOmTYVevXoZWb3olprVxeNnnWzyZFxOTi4QOfcCYzsAjAbn58p72+POP6cBYPHixeOTkpK8S5FtxihgdfYszbnK0KoV9YjPyiI/ifHjy0y8NG3alCclJfGuXbs+mRM5OTm4du0a1+v131fhrP/Ba4i/HdkOCAhIVKlU4xMTEw8sXbrUvVOnTopu3bqJSqUSjDEcPHgwT6/XTwgICNgKAF9//fUHa9euXcYY0zPGNHq93sLW1lYzadIkE8YY9Ho9fv/997yUlJRber3eJC8vr8Xdu3fztVptkk6n26HX69cBsDp79uzJjh07miiVShw/fjyfcz4/LCxs8cCBA5/aJCckJODRo0cC5/ynvxPRBujaAOgMUBuG27dvr+nSpcvr0TepunByolrLqCiqGZTJyPioVy96sLdvT06lWi1t+u7cISmRnR1F+evUoffI5a9d/W/Xrl1x584dnDx5Ujx58iTatm0rDR48+K8XFCkLfz4u6fL0pCwPtVQpH2o1Xbvr12v8OgU+JoK+vr6CtbU1srKyoNVqBcYYTExMEBMTI926dUu6cOGCoNVqoVQquY2NDTMEQdzc3KDT6bBu3Tr9w4cPxdatW/M2bdq8usnUsydJViWJxs1Q2zdlCjlHDxlC5KkMcmttbY1x48Zhw4YNcLS3Rwu9njbop06R5PTnn0nePXIkya9r1yalwv799DpBoCx2FTFgwABERETgxIkTGD9+fPV60Op0RDImTKBzmzABwtdfo3HxzJ0BajX4ihW49H/sXXd4FOX6Pd/MbnohCaSRAgklIYQSegcFlN6kKogICIj9Cnop64ACYkG5eAFBQCkC0ov0YugBAoGQhASSkN572zIzvz/eLNn0AijcX87z8CRsZmdmZ7/55jvve97zXr6M8E6d4PvRR3AyHEcaDQUgapLRNoSpKZ0HQLXlAMmGd+2qcJxmZmbi0aNHXKtWrVCVGVpFsLGx4ePi4sROnTr9fYG3ixeBCxdINvz+++U/U3AwLW5bty7/XiMjynqHhlKG19Cs6xnh5s2bctu2beHo6Fju4mdmZgKgoH1FkGUZsiwj2cyM6dzdcWnzZmnSpEmciUm5OH3VCAqifsd791JHjDFjqLxj8WKS13t7l2x74gQAoPv27SwhIQGdwsKQc+MGOjVtik6SBEyfDo+WLXGtQwfxklrNehYUcI/S0+VIKyvWysOD4ddfyTx0xQpyLz96lMbkzp1030+fTkHoTz6huledjuTWgkC/37yJS3fuwN3aGn6+vpRB/OUXel6OH0/BJ0dHepbKMgXWzM1J1hsSAixfDrPi8r3w8HC00vsglIWTE80XVSA5ORkhISFwc3OTHR0dGRwdiSQplXSP//BDKbdxjuPwko8PEBWF7nfugP/0U5mFh7Pl06eD53nIsoxp06ahcePGlbY65TgOtra2mD9/PivKzSWSVgOzQ41GgwZpaTJHisgNVW5cBp999tliAIsBINHJqYlNZuZhjZGRCOCKsUYT2/f8+bsA7gKAdsmS07IsfxIfH39Cq9XOv3fv3owHDx58MGvWLJO/I5hba4WTUgnfuXNNAzZuXJro6LjCKSnpDhhbDMAesjy3srcJgmClUCj8lJWVDYwYAaxfXzXZ1uno2bdpE/3erRvddxW4pkuShIiICBgSbQC4du2aluO4HSqVKrVmH7gezxv+35FtAFCpVIUAXhIEofW1a9cWXLx4cawsy5yVlVVhQUGBFsBu/bYLFixYBwNDguXLl6/jeX6K/v+XLl0Sk5OTA9VqdT+lUjknPDx8gVarfV2lUp0xPOaKFSv279+/f4y3t7dJbm6uGYC7HMdpjx07xkRRFAGwrKwsXVRUlIWRkdFPZdpj/b+CIAiNlErla1qtVilJEkJCQhATE6Pt2rWr8oVyKgeIAPzwA7XgcXGhyTY3l6KbV66QxNbRkSRGpqa04LhwgTIu33xDctB168gh1sWFFo9hYUQqdu+mB/6779JixsODiEVKCpHFwEBagHTsSLWb9vZ0jGLTkLrKv06dOoWoqCgAgK2tLW7fvs3FxMSIs2fP5l/o+m1DfPcdLfDu3aNrVZmh2I8/UmbtQUVGr08GX19fOTw8HKIoMicnJzg5OZX6u4eHBzdgwIDHi/HY2FgWGRmJvLw8/s8//5Stra3ZwYMHRSMjI/bee+/B2tr6nw2IuLnRovHbbykQ9fAhjUUjI8pq7dhBdZWGSE2l+6FXL7guWoQZYWG4lJIiefn7c3j/fQpKjRpFxDo9vURGXMN2SpVBoVBg1qxZWLNmDY4cOVKzYJJOR4ZwO3aQfPGLL+g+riwIc/UqkJGBwqAgXGjRApyzM5p6eJT8/cABUks8fFh7d/tPPqE6+IICGsc9e1JNbGxsubGcl5eH1atXAwA8DI9fQ9jY2CAj4280x9VLhh88KN/6TI+AADJJquzam5lRqc+KFUTOnrEUtrCwUG7SpEmFY6hRo0awsLAQo6Oj+bKkMCkpCevXr4elVgvb7Gy52b//zVIuXmT37t3T1+jWDOnp9CxYtYoW+Wo19bBOS6NgzoED9P8KzJ6cnZ3hbKD6AMc99i0Y8eWX/Pr166W7a9eik0rFUi5cwIy33yYSCpDCRI+sLBrH2dn0TASI4HfqRF4E/fsDWi3yjh+HdulSYMYMjFu9GsrAQJovHB2pTGfwYNrHyJElLQYvXKDnpK0tjXmdDlAooFQqcerUqcrJdno6kfcqcP/+fYiiiNzcXFZYWEjKxnbtKKvJcRTAGjKEiLse/fsDkyfDb8wYYPVqJkkSPnB1hZWVFZYtW4agoKAaOdADgImlJd2/0dHVkm3L/HwoCwudADSFLOtqdABDMPYBAB8n4CMAp0zU6jTIcrmWYosXLz4uCIJCq9VKxUmhz5YuXdr31KlTHcaMGfNMFwHJyclYt24dGjdurO7atauxra0tnJycqvRF0vsMMI5T/DxrVrhKpcoDYzcAOIExc9CafzxkOa/MW50UCoWpt2EgyhA9etC9o1ZX7sWTmUlzriTRmJk/v9L2ZFlZWcjNzWWuBoFZjUaD69evixqNZnmlH7Aezz3+R1bGdYNKpQoGMFEQhGkAdDk5OX0BJFaVUeZ5voO7u7tpWFgYHBwccOHCBa1Op5uiUqlEAP8p/lcOarV6RnR0tNWDBw/6yrI8WKVSXRQEYcCNGzc6AlCDHCazAez//PPP85/2Z32RYGRktEuj0fSLjY3F8uXLtTzP39NoNOY2NjbNu1Ug23ruMXcu/btxgx7s9+/TosNQwmhQn4p58+jnnDkUyZekElmzVkt1ah4e9Ht2NslGbW2JeKemUgTcy4sW/Wo1HXvzZnpPTAw9tD/9lFo0WVkRKThwgDK58fEkxZ01i9rBNGpEC4fAwMfZeM/wcNzNzkYHS0t07tgRt5KScP38eV6Tng6FpSU9dJ7HOq7aQJ/tmjSJTISOHy+/TVISPTg/+uiZnMLo0aOZv78/jh49CltbW7hWlBkFGdkxxuDu7g53d3dIkoTY2Fhs3rwZnp6eGDt2LGf8PJnyffwxLerT06nW/fXXSR4aFERBjilTSDLZti0Flw4dIqObYcOQ368fIjMyZNy8+cxP087ODs2aNUNYWBiXkZEhv/XWW+VXczod3TMTJxJhGDGCsnZ2dkQKKoIkUZbjwAFI8+fj2GuvQRcRIX/28ccl+y8qoszs6tV1byP38ssksf3iCyKX58/TnPLhh6VM3gwXqefOnUOrVq1Qm6ypsbExsrOzuaKiolq9Lzs7G/v27ZMbNGggjxw5kquRiei775Jk/NixqrfTaEgxVBXeeovq9S9epOBkLZUpBQUFqMz3pfzpaLiy5WeGsLOz4+/cuSN7e3uXaqGol+W+ZWwMm2PHGP7zH0RFRcmPHj2SOnToULNJVqcD3niDMmqLF9NrxsYUsDh1ilqB7d1LNdO1cVYGlRF88MEH3MqVK2VJkphOVwW/03/+hg1LJNFXr5JR4YQJFHwGsN/MTI6cMYMNGzYMRgsW0PgXRZor7O1pXtDpyGfhxx/J8M3Ojp5bW7fS83HCBOD8eQwFoIiMROTOnbLHF18wHD9O5RV9+lBwYcECehb26kVqNMYoKMEY0tPTERoainPnzgGg8bpy5Up4enpKvXr14tzd3SnQmpFBz84PP6RnLUBBhvXr6f67fRscAL2fvyzLSEtLq9V1RqdOtO9+/aqcD5wEAV0ePXIUvviCVeaoW9xbeyzHceKiRYt2gzELANsAqAAkASiCLOcD+LiqUype8z6GJEkfxcfHHwfwTFPbQUFBWp7nN8bHx8/au3cvlEplOgArY2PjInt7e+bq6mpRVFQkpqWlFWq1WtHa2lqZmZkpJicn5+h0ulkAjgIAZJkiu4zZA5AAFIGxDwHcgCxfLD5cuiiKlQdaTU0pwXHvHq2PymLLFiLbn39Oa4mffqrShNXW1hZNmzaVNm/ezNna2ort27fnzczMwHHcTZVKVZmjfD1eAPy/Jtt6FGe6AeBUddvKsnz2xo0bNjdv3kxXq9UdjYyM7i9YsCC6hscYXua1CyiuC6lHCXQ63ToTExOToqKiOTqdLnXBggXxK1asOJuQkNCksLBQaWRkBK1WW6uF3XOBVq1osahQ1Lz/rV6+ZBgF1/eJHTWq5LUWLcq/d9++kt/L1ibKMi2yCguJGHfoQBnc5GTKjDs7k2Mtx5WQ/IIC4PZtuCUkoKmdHez27cP9gwfhN24cGp0+jXMPHqBrQABseB7czz9T1sjFhRZHoaFkCLJzJ33+994jia+HBwUKkpIowxIYSA+wrl0pKODoWLJIa9CA3vt3yup37KCF3S+/UCZMXwNaWEhy5xs3SveFfsroXWzqs3XrVgwZMqRGMnCO4zBr1iwmyzL4ujgMFhWVBEsiImjcPnxIUfk2bUhR0bMnbfPbb7RY3b2brtOkSUQ2P/uMFBwrVlDmZ948+p4/+4zUGwcP0u+//ELH+eEH2o7j6P3e3sC//00Z62nTKPvdti1YTAwKtm792yI5AwcOxG+//YaYmBgmimKJnFyno2z8N9/QuPjkE8q0VXe5//qLrsV//gN5xAhsOXxYSk1NZa+++mrJ9xoXR4vry5dr1qe7Mhw/TsRGD44jufA335RcdwDm5ub46KOPcO/ePZw8eRKXL1/GSy+9VOPD9OjRA9euXcOZM2ekIUOG1Fg9ERAQIMXHx3MxMTHMw8MDrVq1QqVyzYQEmn8mTSqZDypDWhq5uE+fXv1JODjQNZ4yhVQENcSuXbvksLAwNmvWLDg4OFS7PcdxcmFhYaX37qBBg7B+/Xp2586dUjJ+vVcBmzuX7gfaltuwYYN89epVqWvXrtVf76QkIrdl5dKSRN4FO3YQSQWI1NZyyuA4Dh4eHrh4kfjJqVOnpAEDBtRsHLz+ermX2rRpwyIjI+Hj41MiFeb5kp7NnTpREO7jj+hAT5AAACAASURBVGne8PenFnlz5lAGfPJkSEolAnv3xoWzZ+HQrRsK4+OZRpbh1a0bzWPZ2RS0mT2bnOwPHqTr89//AhoNpG7dEHv2LJKbN8c7qamwb9cOucOGIf7IEQSfOMFFJSXJ7j17Mnh60lxw9CgFD1Uqut4mJnSfVXAtlUql3KJFi9o9xFq0oDnw6tXSgXlDJCRAuWMHAnbsUCMlRfPll18GSJJ0kjE2B8AGSZJUjLFeSqVyu1artW8VGhoHxl4FMAOU6MmCLO+q1XmVhq25ufkzL328d++eWhTFzSDJu0ar1eYDaKXVajV5eXldoqOjvSVJUgOIApAO6iWeCOC8SqXKLrdDWU4BMAwAwFgnAIVgLBzAK8qvvmrn7u6uA1B5tNrTk9ZNFeHqVQreGBnRs7C6ACCAKVOmcLm5uQgKCuICAwOl9PR0DkA5dUE9XizUk+1aYv78+fMBzAcAQRAaq9XqrH/4lP7nsGjRot0wkPIDgFqtHhceHv5dVFTUuAYNGiAhIcH4o48+YnV1iv9HYGZGC4SoKCItycmPDTz+djBGi1b9wlXf3sswe2oYgdX3DX/1VSgAeAQF4YCVFdq3by+1HTyY85g/Hzu+/BI3OnfG3DlzYNegAfUolWUi6gkJJKXiOFroNGhAhN7cnEhZXBxFgPfupWy8iQll45s0ofdGRVEGeepUumbLltG2nTrR33NyaOG0aRMRjFdfJSLs50eLb42Gslf37tHfXVzoPBwdS3puV5b9VSgoo2JhQYvRggL6PSqqdFuhuiAnp6S+NjKSiPvdu3SdfHyAX35B7zFj0CgrC1Gffcbi33tPNzguTiHZ24PTmwNt3Eiy2Z076Zq9/Ta4zp2JQPj6khnLli1UJ3b+PAVWJkyg79fNjeSdH3xAUsyQEKBxYyLCQ4eSFFetpoXCo0e0MF20iByM3dzo2J9+SrWTWi2Robi4Eomlnjx5eJSM9eHDabx9/DGRdSsrCr6oVHRuGg2RpW+/pYzAkSN0bVq3RuPZs6HMzobs5wcWGEjZrvR0GheXL9M1M2hV96Ro1KgRevTogRMnTuC3TZvw1muv0fn7+dH1HTCAsmrVtZLKzaXr/+ABfc7OnQFZRkFBAeN5Xm7Tpg0tvgsK6N5YubJSt+Maw8WFznX16pIA3eLF9B3//jtl44thZWUF8+IaekmSZKDmHlwmJiZwdXVFVlbtHoWpqalo3rw58vLycODAARw4cABt2rSRR40aVf7Y48fTonbLlup3fOIEjfuaKAKUSvJpMDYm1U8N+8/ry2gKCwur2ZLQsGFD9vDhQ9Hb27tCJuvg4AB3d3dcvny5VEBNrVajaVgYLF9+GXo1R8OGDeHg4MCCg4PRtWvXqg/800+Ufb11q3yQUqkkcyf9HDZwIP1uKP2uIcaNG8dWrlwpFRYWcpcvX+batGlTfRBi61bqV19GrZaRkQEzM7PKAy86Hc11JiZEkP/4g4ImxfOOdtAgXHv5ZZwpzrIbN2okZiuV/L7AQPy7OGDxGEeOkKpLjwkTcD84GMd27pSdRozAqGnTmNHNm0BODqxtbGDduDHsLS0RfPQo0wYHQzl4MGXH4+MpEPvbbxQktrOj61nGzHH16tWiWq3mbW1tIcty7VrCLl9O83tFZDs2lubqGzcweeZM8+KsfMeioiI/pVKpCA4O/ig7O7ufkuNazwoONssaOBB3Q0PTAeQAkCDLT9DzksBxXC93d/ea9xisArIsQ6vVQqlUlrpGubm5KCgoYABuFpuY6XG3+OeTtQORZYr+MDZKrVQuVfC8/Wg7O9NKzf0ACvzMm1c6oSFJ1BXinXfoOTtoEJmE1hCWlpbo2bMna968OduwYUO+KIr1ZPsFRz3ZfgIUG3rV42+ASqVKA/Dm119/nZGent5UqVR2zs/Pd3qhyLYeTZsSQTAxoQX76tW0wH6BcPLkSalDhw6cvjdsXFwcAHIrt9O3wTBcbOlJ/NChJa9VlNnfbRBjqch1etgwyiozRtlvc3OSzqek0DH69aOHol7KrtORbD8piRbr27bRdW/ThjIiAwbQgjQri+rmly0jstmhAxHzsWMp48rzJBPs35+ykw0b0jFHjiQ5Y/fu9C8ykohqWBhlSzw8qFa2eXPK3Ofn0zXIzCxZ6P72GxHu11+n81i8mMj81q0kAfbzgzfPwzMlBd8FBSlcjh5FkpkZwmJi5HcSEpixRkOfSd9L2ceHSINSSedvbEzyUL064rvviHzZ2RH5NjKi1/QS0PT0kuutbyG1wcBrx7C9mf73ZctKXjOU3G/bRj9nzSp5bXlx6dnq1ZRhnTyZgjL67GVeXkmNG8fRdQOAhQshd+kCrF2LrKZNYQNQYCImhsj22LG04LWyokxeXh4tdoyM6LsdO5aCBgoFfe4336TPamlZZeufrh07ovG5c7CYNw+FvXrB9P33aRzWVFmTl0ey1e7dKRNXTAIZY5gzZw779ttv2S+//AJeFOVhKhW71LUr5KlTMaqa3dYIpqZ0f+jJNs/Ta19+SSRH/zqIxAElbeZqA0tLSyk4OJg/c+YMvLy8KjV+AsgEKD4+Hjk5OczR0RHjx4+HTqfDDz/8IEdFRZVmH4sXk+T9xInK67PLIjCwdqUdTZuWGIVduVJtT/KDBw/KarWaAUATg+tXFRwcHJCYmFgls/L29kaxh8tjBYWxsTEybG2hGT8ehvn8/Px8qWXLllUztawsKgPatq1yNZCbG80XX31FwS3D2uxawtnZmXv4kJSueXl51ZPt3bvp3jYg25IkITg4WPbz82MVdleQJJo3Hj2i+nOOIyLTqRP97fPPwYkilLm5mODigpZbtwIWFvzWrVvlyMhItmrVKmngwIGct7c3uMzMcmMqOTkZew8dQs+BA9GrVy+S9Bt+xx06IMTfH/ccHaU+c+ZwYIwUWwcPkmx8+nRSvHz3HQV7ly2jc3vlFcRlZCAnJYWHUomdO3fi9ddfR7NmzWp+gT08KGgXH0/PKMNr4uBAQYMmTcADsLe3h729PQeAA4CcK1eY2/79nTVr1qBBcDDSZBmhfn4pw3bu/LDmJ1AxBEFojWKy27KSWuSKkJSUhHPnzuXHxMQwnU6nsLKyKtJoNJxarVYCYDqdjm/QoIG6a9eupl5eXszKygrGxsbQ6XTmHMddW7JkyYrFixfvfYLzdgagUKlUMeX+KMv7Vy5d6utsY7PAZPJkCnJ06ULrjbLzkJ8ffQdJSSWBq+vXKfDfpw89x2tpOqnH3bt3dRzHbVi4cGHtJ+V6PFeoJ9v1eKEwf/78jwRBMOI47lZoaKiDo6Pji+mCbWZGWc2HD2miripy+hxCluVSi6mdO3cCAMLDw3Hp0iX0eEKDqkqhUJQ4v+rJuuEC0VCWqF/EGZJ2wyyKXjaqJ4I6HWW/JYmyq0lJtKixsKAseMOGJTJLnqdtANrGyorqIgEidcUOw9iwgbJsVlaUeQVK5NIAkUs99JnB/ftLXouNpZ/t28NoyBA4bNok7h8wgLe0tJQLcnJY0I8/orODAy22+vShbT82KLXTE9vWrUucmfXkFaCABVAtwXjqUKspSz59OklZMzMpw2hmRtc5LIy2Gz6c/lZQAEybBsWff8I+JQUpRkZEtg0zVfHFsU+tlkg4QKUW+mtdWEjj5+ZNWqi/+SYFW7y8gO3baVxFRFAwZc8eeq1VK8DdHa4//ICzV69KISdPsqnTpjGLmhDt7GzKUD94QIvxCmruOY7DgAEDxIf378t25ua8OG8egnNzYfzgQa2yy5Vi166SMaRHs2ZUYhIZSfdOcaAhJiZGNjIywuDBg2t93JEjR/IuLi4ICAgQr127xru4uIgDBw7kDdtcpaenIywsDNevX5fz8/OZg4ODPHDgQAaQMVB+fj7z9vYWAfDQ6YggJiSQGVVNiXZGBgU3amg+9RijRtG4UavL3Qt3797F/fv3kZSUJBUUFHBFRUWsS5cuuHPnjiRJEqfT6WBUTZ/muLg4qTLPBT3S09PB83yp7iRcYSHcsrPlBzNmMF+DbYuKitCsWbPKvye92dn+/aXq8yvEp5/SHNamDbB2LWK0WhQMHCh7eXnVahx069YNdnZ2uHv3Lo4dOybOnTu3cj16ZiZ5MZQJAnz99deyJEmsQkd8WaYAqb9/6Tm0QweaS5RKwNERXHIy7g0bJvfbsoXlt20L8+PHMX7cOBYbF4dt27Zxe4o7TjTXaiWTLl24oRoNdu3aJSYnJ7P8/HzOxsYGPXv2ZJVlnYuKipCWlsYxnY6UNfqgwUcfkfGVu3tJ94DPPydVQX4+bM6dw7v79yNpzBgUWFjI1377TfZcvJhjNfVkMDen44SHlybbc+fSuC9+BpfCt98CXl7wtLFh1oyJDb29efz+O0zi4iBv316DOrYaIR0ArKysdK6urjX6MJGRkdi5c2eBTqf7XJblgwAKMzIyPIr3lQPiJkmZmZmvnTt3bsqpU6f6NWnSBJ07dzYDAEmSOgLYIwhCs7rUMguC0ABAvFKpvACgggbsgCRJK5PT0l66duhQn65du1I505079PwwNETjOPrb/ftEtgMCaA2hVNJ6oY5EW5Zl3L59W63VaqvslV6PFwP1ZLseLxQEQeAVCkWshYWFmaen54vDTiuClRVlN3U6ykAcOvTELsp/FyRJYtYGct1p06YhLS0NsbGxOH36NAoKCjBgwIB/8AzrAIWipN82UELiBw4ksnfoEGUE27Qhovbnn/Rg9fIiae6CBbR47NixZB+GhkP6h66+5VUdMHXqVP7WrVswNTVlf/zxB86fPw9PT0/Y2dnVeZ//CG7douvl7k5ku7JAk2HtcG4uAKDx9u1Sg5gYekOzZiRrHzGClAjdu9MiRy/BfvXVkvfr+1S7u5cYNAUG0k9ZpgygnR2R0wsXaGHl5ERSfTc39Dt5krvQrh0yX3tNtkhIYLhzh7IdH39MgY5p02hM7NtHBl7DhhGB27ChynKR9u3b8+2XLKGM844dMP7mGxQUFDCNRlMtiasWBQVEACIiSi/QW7QgInD6NLBsGY4dO6YLDAxUjK5BL9/K0LFjR3Ts2JEvKirCwYMHuU2bNsHNzU2yt7dnJiYmuHjxIrO1tZV8fHy4l19+GZwBq0xJSQEAcBzHJSUmwvHll0mtsHFj7U7i0SO6P2tKzg0xbhzQvTsetmuHXS4usq2trWhhYYGHDx8qAKB58+Zo1KgRWrRoIXt4eLCAgABuxYoVEEURFhYW4jvvvMNXZJgWHByM1NRUrpe+FKcShIWFSUqlkrtz547Utm1bDgDk06fR9+BBllRG/mxubo7o6OiK3eM1GlJszJpVPdEG6Dpv2ICC9HSknziBsPx8XMnMZPPmzUNVpm5l4enpiSZNmiAgIAAWFhZVP5vbtycFkIHi5erVq5AkiX344YePSxpKYd8+YO1aItaG84VCQVnkfv2AhQvBOA7T3n2X5bm44M/WrTFmzhwY+frCc948LFy4EEVFRXjw4AGavfoqd/Ctt+RvoqKYTqfjR44cCVdXV1haWqLCrDqAs2fPIsDfH7737lEgY8cOCtr27Utz//Tp5Muih5ERzREAzF96CeZr18Lm8mVobtxgcX/9xSRvb/Ddu1MZTYMGpL6qSlresiVl9vv0KbkGAweWDuRlZlILtZUraZ61tYXvnDkKzJnzeBNHR0doNBoXQRAsVSpVbuUHrBqCIDQ2MjL6TqPRYOzYsTXiE6IoYs+ePYVarXaoSqU6Z/Cnitpa7QawWxAEs4cPH86Mi4ubqlAonAE80ul06wBEV3FuzQCkq1SqzAr+PBQAOI6LreBvAACVSlW0ZMmS449iYjp37dbNFJs30zMoJoa+h9hYel4wRqVLwcEUrB81ip5DV6/Suq6OiI+Ph06nywJwq847qcdzg3qyXY8XDTLHcTmtWrWycqthfd1zD4WCpEbdupEE9+WXS2pdn0M8ePAAarWaPXjwQNIHPBo1aoRGjRrBy8sLGo0GoaGh4oABA15wS3IDvPUWEbKdO2mR88knRLzj4+lhO20ayRkFgQjWM6rF5zjuccufRYsWYfPmzdJ///tfbvTo0fB5hkZtTx36bBBA9ct//UWkdMaMyt/D8wgMDJQvu7hw/MSJcABIHu7rS0GP8eNJMv3ZZ0Qy9O2HqquLlGXKQGzaRDLvX36he7FTJ3KqLsa5gwehuHQJFsuXM+zfT9mLhg2Bs2dJNXDqFGW6vv6azicxEfj+++rHQmYmLdiLiZG5uTkKCgoQFRVVK1lmhTAzowV3mbZxYIzKJ+7fR8qtW7h586bi7bffLtderi4wMTHB+PHjWV5eHg4dOsQiIiJkWZbl0aNH815eXhWymFatWmHQoEEIX7OGHXrwQJ65ejVD7woTTlVj925SI9QR0o8/4tY330DXqBFLTk5WJCcnw8TEBJMnT4azs7P+3BkATJkyBRYWFjAyMsLu3bvZwYMH5YkTJ5YabFu2bJEePXrEDRo0CJW2DyrGpEmTuC1btuDixYslmd3hw7Hv+++luN27OQsLC3nGjBnMwsICOp1OsrW1LX8tZZkIX/PmFISqIeTAQETv3CmfHDYMlmZmcoOMDOzfv1+eNGlSreZwvYx86NChVd90hw6Va38UEBAgde/enauQaN+5Q4GXvXvLB+bataOscseOFFw7fhyYOxdmDg540KIFNNu3w8TLC/j5Z/DOzjCfMgVtfX2BJUswafp0lpScDFEUqyx9AICM+HgUfP89Oup06NO4Mcm6Deu9NRoK6OnVRBVBqQT69EFS06a4nZeHtD59YHvrFqy++Ua2fviQSUolLE1M5Lx+/dBm1ixmbG9f+v0dO1JA6f59Cij26UPXxMWFjl1QUOLTkZND6pwKoFAo0KRJk6LIyMhxAH6pcCMDCIKgBMBUKpWm+P9ePM9/o1Aoujs4ONi88sor1V4/PUJCQiDL8r0yRLtKqFSqAgA/FP+rEkuXLh0C4AMAAziOyxQEwU+lUkWX2UxpY2Ojy8/P7y8IAl/WWV0PWZaD8/PzNUBxFYelJf0LDKS5v1MnGnNvv03fQ/v2NOfOmfNERBsAAgICCnU63dqquiPV48VBPdmuxwsFlUolCYLww+XLl9dERUVly7IMX19fs27duilrZTbyvEHfJmjGDJJ+VdP785/Ejh07YGdnBx8fn3KLPVEUERkZKTdp0uR/g2hHRFAm4ZtvaEGjX+j16kUE/LffKMt99y4Rtp9/pkVuair9/xn2Hec4Dm+//Tb366+/yufOnYOPj8+LcQMUFhLBNMw6BwZSJqAKsl1YWIjDhw+zdu3albhl601pXFxKpPvW1iTxCw+nxWlYGEmmtdrSmXJRJFI8dy4FSUaOpPo7c3MyXfL1pdrLoCDgwAH0HToUmldfRUyjRnKDQ4cYmz+fSgaUSiJ4t29TxnjIEMqyX7xIEvKdO4F//avibOuqVUR6IyIeBwXc3NyQmpoKq6cUsJEYQ9HIkYj/7js0N/RJcHKCePcutCNHotOqVU+FaBvCwsICkyZNYqihHL5z+/ZodeAAHrZoQd4ItYVWS+qE0NDav7cYt3keyfb2+GT7dvwwfjz6Dh4s9+jRo8LzN6zXHjVqFLdhwwZs3LgRoiiKsiwza2trLj4+nps4cSJaVNQtogwcHBwwdepUrFu3jh08eFAcbG/P60aMgOmPP3ItW7ZEaGgoi4qKgq+vL5o0acKfP39eLiwsZPrWf4wxcAUFcC0sRGLXrpACA8FxHFq2bFkuQ/3o0SNERkbiypUr1NXD01NmTk54d/RoZjRhAstzdMSPoojo6Oga16XLsoxbt27J7u7urMpA+PDhFKgsY0iZk5PDVVjnffYslYucOlVSQmQIExNSaaxfT6R78WIgLQ2RvXrJ761ezYxWryZSlJhI5RySRDLg4hZfjtWZXGZnA/fvg5s0Ca4uLvDcvBmmFZkXxseTUq0GJMvNzQ2NGzcWc/PyuM7z57O4uDjm2r490qKikLFlC0wPHmQ52dlolJ1N6p0+fSigZ2lJvhMbNlDAt2lTItSzZhHxt7EhhcaF6pvcdOnSxSIuLm6xIAi/F5PZxxAEwUahUHyoVCp7ybLswhhrJssyEwShn0qlOs8Y+7coikMBQJKkAmdn5xpLSQIDA3OLioq+r+n2tYEgCKY8z2/z9PS07NKlC+Li4qz8/f2DBEFwV6lUhg6Ot9Vqtcba2to8LS1tKioIOAiCYMTz/FvOzs7l5R36wNn69VR2EhZGppN795b48TwBCgoKEBoaykRRXP9EO6rHc4N6sl2PFxF/ANAkJiY+AmCenp7+Y2hoqO3kyZPNn1h2+U/j0SMidK+/TnKk1177p8+oHGRZxoQJEx4bKhmisLAQmZmZLDc3F7GxseLw4cP56moVn1vIMknxrK1JpmcYzGGMagW//prqfp2dqY579mxa7Gg0FPk+dKikZc0zQEhICLKyshjP8y9O9PvLLymbbXivfvQRXe+cnAozwaIoYtWqVbCxsam+vZRhRu/CBfpuvv+eCHefPrTwzsggkjxhAnUFGDKE5OVvvkmy2pAQCgr070/ZCsaA7Gxk7N8vXYuI4PL/+190NzenbfXw8SGH74YNSzLuSUnAmTPkVjtnTumsa1oa3eP9+z8eWzqdDjdv3oSLi0udyW9BQQHi4uIQExMjR0ZGSjnR0fy4W7fw+7ZtWCwIpbY9ptGIFq1aca907PjPBWrUapLcf/st1n7+udSjT5+6lQdduUKlCU/gP5CWloa0hg2R7+eHf73+OoxbtarRdbGzs8PkyZNx79492dLSks/KykJAQAD69OlTqzZPDg4OePfdd7Fu3To+TpLg0q0bYmJjYWdnJ/fv35/5+lLl9tChQ9mePXvku3fvirIsQ5ZluN+6Bb9jx7i98+eLcng4AyDn5OTw8fHx0pAhQ3iA6o0PHTokhoeH87a2tpJWq+WcnZ3Rvn175rt5M7hp04Bdu2Bhb49mBw7g119/ha2tLSZPnowG1Zh4ZmRkICIigs2oSp0iikR2K6ipVygUsomJSelrFRxMUu0tWyom2nr06EH38fDhwI4deHjmDP7s3Jm9d/MmWFYW3Ztjx1IQ29eXsv/GxmTOWJmKLC2NAnaLFkFs3x7rJkxAr0GDJIumTSsenytWkAx83rzKz9MA06dPfxyQ1n+vDo6OQLdubOXKldLrEydyKCgocTrPzKTzT0yk50paGilx+vWjQGEtSy6aN28OExOTRhqNZiCAxyl6QRB6KRSKQ97e3iZNmjQxsbGxgbu7O/z9/XHhwoUhAM7LsjwNwDQAVvHx8ek3b95ER8PyqUogyzISExMVAC7V6mRrCGNj41O2trYmEyZM4Blj8PDw4DMyMpShoaG7BEEYrVKp8gFApVLdWrZsmbZ///7We/bsWS0IwhWVShVSZndjRVEcXaX/jL63tkZD43PVqicm2gAQGBgo8Tx/aMGCBbVsyF6P5xX1ZLseLxxUKlUKgMf2yIIgHI2Pj8/Pz89/8hrHfxr6zKmLCy3+8/IoI/acmacFBwdLffv2LXdSlpaWWLx4MXJycrB9+3b+zJkzmDp1KtLS0pCSkgIzM7MaZ0r+UVy+TNLec+cqX7y3aEFE+/z5EkMcgOq49Pto0YIIXEEBZUufMg4dOiSr1Wq9sdTzP5/rdFTreOJE+b99+y31uS1uq1QWWq0WkyZN4hS1UQu0a0c/v/uOfmo0JP9MSqLSDVdX+g4Zo1o8PU6dop8GWS/O1BSTJk3irl27huPHj6NJkyZwLuvePHFiacM+R0c6dlYWZfK9vMjZ9tYtagUTElLK7VjvBF6ThWtZ3L59Wz5z5gwKCwuZqampaGtry7Vs2ZL3fe01xI8fD7u9pY17i4qKcPfuXX7oypVk7vf++39/cC87m2rVnZxQYGWFQq2We/Tokdi9e/faK2MCAys0oasNcnJyAMaQsWQJ7HfsoExhDZ3NGzdujMaNGz8mi71794a5uXmtgxgNGzaEU6NGumYnT3KtN27kRlCmtNR+OI7DuHHjGAC6TrJM6ptVqzBnzJjHN8j169dx8uRJXqvVyrGxscjOzma2trbsnXfeQXBwMJefny9NmTKFyucFgcilqyugUmG8pyfuvfYajh8/Lh8+fFiaPHlyld/J8ePHJUtLS9nBwaHy7S5epAxsBfewqampnJCQwB7Xod+8CSxdSv+qqz1/5x26l8zMEDt2LB599x36/fgj2KpVJKn//XcaH1otEdSvv6bnaseO1KJp+PCSYGpREbBuHcnRP/gA2LABtzMzoT5yBM7OzlxOTg5MTEzKrzVat6ag0RNCo9FAq9Vylvogb8uWpMiJiyPllCyTsWpcHCmr6qjkYIyhZ8+eJqdPn14qCMJpAK2MjY0/NjIyGjFq1CgTr+JrLssy9u7dW3Tv3j0TAFkAoFKpdAAgCEI3ADXqNQ9QIFCn08kAKq2VfhIwxmz69etnYqhyHDJkiKkkSb3DwsJCBUHoq1KpIpctWzZTq9VaN2vWDAMHDjQ9derUXkEQ2qhUKi0ACILAKZXKr1566SXR0tKy+rno9m0KvBq2S30C3L59O0+tVq99Kjurx3OB539xVo96VA+mUCiit2/f7jR16lTzhIQEXLhwITc1NdV4xowZRi+ceRRAiwGAFgN+fvSQfQ4gSRJsbW3x119/cZ06darQyIYxBkmSkJqaCp7n8fXXX0s6nY4zNTWVCwsLmYmJieTi4sJlZGSI1tbW8qRJk56veSg7m+SAM2dWnyUbPpzat3l6PjbCeYzibAUWLCAzlbg4kj1fuPDUWr3pFxX29vYKw5ZBzy0uXaIMUEWkaM4cUgVUgJCQEBgbG8sNGzZ8sgyskRFlnjiuxMiulsGfLl264Pr16/KVK1fkMWPGUMBJp6OF9ubNFfdeb9CAAjf+/vQZ+/al4EujRtDpdAgKCoK/vz/y8/MBAC61cNPWaDTYtm2bFB8fzw0ePBht27aFQYMEjQAAIABJREFUQqEoNRASVSpM2raNiAWIaP/nP/+BtbU19X7+9FOS1P+dZDspiYjE5cvAr79Ck5UFWZYxcuTI2g9iUaSAVh2CFIbo1asX7t27h9jYWMmra1euLj2n9aiw9riGeLtTJwW++opUEtUhP58CRps2lSOlnTp1QqNGjXDy5EnZx8eH8/DwgJubG8dxHAoLC6HT6UpabFlbU/nLyJE0d2k08PHxwe3bt1lMTEyV34kkSXjw4AE3x8CEqxzS06lcKioKKFuLDOop/lh+fv8+BbxmzSqZRytBbGwsEo8ele3++AN7IyOZNjsb/dRq+AJ0v8+ZQzL0yEgixCkplOV+8IAk2GvW0O/6+3fvXiKxY8c+NhX0X7VKBsB+Kx4Ppqam8rx580rmosBAGs91CCQXFRVhy5YtupycHE6r1XI6nQ4eHh5E8vLzqTSiQQMK6qakUEDE2pqeI7t2kWnX9Om1Pi4AdOjQgcXHxzcLDg5OUSgUrFu3bspOnTo9NvqTZRn+/v5iWFhYDsdxgZIkPXb+FgThDQBbAeDw4cM5SqVSbty4samnp6dRs2bNKnwWaTQa8DxfsHDhwmeixCoqKlp+8uTJdR4eHub64yuVSowePdrk2rVrzqdPn74rCML3ABYC5IreoUMHdu/ePbf4+PgvACwAAIVC8YmdnV3Dzp07Vz8XhYUB166R+uApID8/H1lZWUZ4Rtn/evwzeL4WufWoRx2gUqnUgiC0yM7OXr9ly5a3c3Jy8rVa7WyO49qeO3fu3ddee60O1rTPCY4cIVnSqVMkdzNs2/QMcODAATk6OlpUKBSws7Pj+/bty2JjY9G4cWMoFAps2bJFFkWRDRo0qEqnWhsbG8yePRvZ2dnIzMzknJ2d4eLiwnQ6Hc6ePYucnBzJ09OTCwgIYCEhIWj1BKZGTxV79hAZCwqqWraoh5kZRbT/+ouyqGXqEAFQdrtFCyLxgweTTHr2bMpWjB37RKc7Y8YMduHCBfmvv/5iLVq0KJ9pfd5w4EDl9bjm5nTd588v18YmPT0dT0y09Th2jGodn4CYjRo1im3cuJF5e3vT2M3MJHmsoZt9WZiakkvtlCkkDVWpkHjgALaEhqI4UCIPGjSIubq6PnaXP3PmjJidnY0RI0bwlQVSDhw4IObk5LD58+dXquzx/PJL/MJxSBMEvPHGG7h165ZsbGwszZkzh3Y6bBgRu6lTSbL7LCFJtDB97z3g/HkUNG2KbT//LGZnZzMAXJ0CRvfv0/daxrW7tjAxMQHHcXBycuLQujXJk998kwhZTeaDp4X27UsrLSqDLJNfhJdXOcMxPZo0aYKZM2eWUiHpdDpcv34dDg4OEvTZcYDk1kolZbkLCoCMDFhYWMDY2BiSJFXq0i3LxJ20Wm3l52prS2SxOAiRlZVFRDkxESkpKdDpdJyLiwuVUv34IxmFGvo6VIBr166Jx48f581EkXX09JSdnZ3RtEcPdG/blhzKfX1pPnn3XaqlfuMN2jfP033Ypg3VPs+dS8qA11+nubxMCUe7du2Yv78/3nzzTXAch+3bt+PQoUNgjIHnebTcvBm8KCLi1ClwHPf4n/7vHMfBx8ennA/DpUuXcOHCBdnZ2Znr06cPFxMTIyuVStYvL49nI0ZQGdOff1LAYOVKkox/+y11tnB0pIzqnj00Rnm+1go4juMwcuRIE33btrKqoZCQEFy+fDlRFMUeFfSjvsJxXI5CoQhMTU39EUB+YmKi3927dyfJsty8S5cuym7duilMDGTVoiiCMVahGdlTwvbc3NxpZ8+e7TFgwIBSk2GXLl14Z2dns02bNi3Uv3bs2DHMnTsXfn5+ZtHR0f8WBGGfSqW6qVAopvTs2dO8svFeCl98QWP1KakPHzx4ACMjo4vz5s2r4maqx4uGerJdj/8JqFQqWRCEJbm5ubwkSYdUKtVBQRACIyIi5iYlJVVvgvK8Qn/eBw7Q4ucZku3k5GQEBQWxUaNGKXQ6HW7duiX9/PPPzMjICJIkQRRF2Nvb46233oJxRaSyDOzt7WFfJoOhUCgwcODAx08lnuflgwcP4urVq8za2hqenp7w8PB4auZQtcKNG7Sg/u232i2shw6l72fPntJ9vsvC2rpEsWBlReQrOJgyF8uXV++aXQFsbW0xYsQIFh0dLYaFhfHPNdnOy6MFoWHf87JwcCACUQZNmzbF5cuXceXKFXQz7JVeF1hZPZFjNUCSYY7jkJGRQQGC6OiKpfGGyM2lDOwffwC9eyN582bkLV+OfiNHovOCBeCsrcsNgIsXL/IA3Us9e/asYJe5ePToEd+vX78qS2hMrK3xRqtWuP7HH9gGoEGDBvLEiRNLs9q2bWk8RkSU9LB/FggPJ9PB118H2rfHX8eOITExkR84cCBatGhRt1KgbdtK+tw/AWJiYmBhYSG3bt2avgsrK6qRPXOGMr5/Bx49ou8iNbX6rhSLF1OWeNOmWh1Cq9WC53kkJyfz8fHxJU7S7u5k+rRrF5U/tG2LQWvX4ptvvkFISAhat25d4f54noeRkRHCwsIqDvhFRUHs0gUbFi0ScwoLmUaj4QDA0tJSbtCggdSoUSPWpUsXjktLo3Z0bdoAY8ZU+RlCQkLkEydO8A4ODpg5cya4V15haN+eAgYaDfkw9OpFBmMWFkDXrhTEe+01KveIjqZM9uHD1LLpp5/oOn75JRk16ktQAAQFBYmenp68m5sbCgoK0LJlS6moqEiWZZlJkiSHdOiA/AYNmCYxUf8aZFmGJEmQJAnZ2dl8TEwMxhsYn0ZEROD06dMYOHAgurRvz3GpqfD+7TcGNzc658GD6fs4eJA8Jl55hc7xv/+lZ9WCBVRzPnkyBQp27yaVSA07mRQWFuLhw4fQaDRQKpXQ6XSwt7eH0uD9iYmJ0Ol05ysg2ijub21d5uVTAL4WBKHltWvXlly9enVYt27dlD179lQoFApYWFhAq9XaCILAnoXLdvE6cML169cjWrdubVTW98LV1RWzZ89GTEwMcnJyZEtLS/z000+F6enpZjzPZ4miqAMAURSDs7KyKh7shrh2jQIdhi0+nxDXrl3LKyws3FD9lvV4kVBPtuvxPwOVShUH4G2D/4cKgvDd9u3bP/nkk09q3jD0ecRPP9HPJUuo3nP//qey27t37yIiIgJ5eXlyXFwc8/Pz07Vp00YBAH5+fpxarYaxsTESExORkZGBVq1asafp+t6nTx9mb2+PuLg4KSUlBWfPnmVHjx5lCoVC4nkeSqUSgwcP5po/y8U/QDV6a9eS1Leq7GRlWLmSsmBjxtTMIEVPuo8fJ7LGGGXPJk8mUl5LdO3alT9+/Diio6Plhg0bSi+//DL/JDLWZ4LvviNiUNVi0NOTDJFu3CiVeXZ3d8eECROwszjj/USE+/x5us5PCKVSKdva2jJs3EgEacSIqt/Qvz+Zs61ZA1EUsT0zEy0WLcJQDw8qL/joo3JKB2NjY6jValy8eBFeXl7lTAn/+OMP0c7Ojvn5+VWbVrFWKNC/ZUt0/eSTivsgm5nR4nHJEnLaf9reCiEhZPB0+TJJeovnkY4dOyIgIABhYWFSt27dap8e0rduq+761wANGjRAbm4uW79+vTxlyhRmampKGfMrVyig9ncQbgcHcpuujjQVFdFYrkOJkampKcaNG4fff/+9fL2tWk2Z4Fu3ADc3GDGGxo0bS3/++Sfn4+ODyub/Vq1ayXFxceX+qNFocPjUKdmsSxfm6eXFWrVqxdnY2MDU1BTFDxMK+uTkAF99RXXyn31W7We4dOkSzMzMMEvfq9vBgeTcPj4kH582jebUH4q7RZ07R1nrvn2pjKVvXyLdJ09Sic+CBXT8vXvps+/ZA/zrX5CsrKDRaFiXLl3AcRwsLCwwevTokkBVZCQFPUJDK+0+sXXrVjkqKgonTpxg6enpyMzMFPMyMrjuzZrJXY8d49jYsSQL79qV/D8MS9+SkkhxsmIFlSqdO1e+3Obddykbn5lJnRCqMOXUaDS4ceMGLl68WAjgiizLmYwxS1mWm2m1WldnZ2f1mDFjLKytrXH37l0Nz/O17mGlUqnuAxgvCELzq1ev/icoKKjXuHHjzJycnGBlZaXOysrqBcC/tvut4bFTli5d+tmJEye+mTp1aqmHYE5ODnbv3l2Qk5OTJ4riFUmSRgBYBeD7hQsXZui302q1N9LS0kYCqPxhrtORIdqkSaXNPp8Aubm5SElJ4QHseyo7rMdzg3qyXY//WQiCYA9goaur64vj1FwdRo6EzsMDuampyLt/H+ejoiRZlvHqq69ykZGRSE5ORuvWrdG0adNKJX95eXl4+PAhgoOD5djYWObi4iJZWlpiypQpzMXFpdScoM9gOzk5PfXWQABlun19feHr6/v4ZNPS0pCYmMhZWVnh1q1b2L17N2xsbMRx48bxFTmgPxEkiUj2Sy9RhrouRBug923cSDWGtZHhvvoq/dNoyMG6TRtaaFlYUFajhujSpQsiIyPFnJwc3Llzh79//z4+/fTT2n+OZwVRpOzjuRq0Vg0MpMVidjZlwovh4eGBsWPHYvfu3XB3d6+bZL6oiDKGT1gzn5eXB47joL5zh2SdVQWgZJkkwevWAT4+EEURq1evlkVRlHsMHcrBxoYWbZGRVF7w8cdA8+b6fvYAADMzM3nt2rWsT58+crNmzZiTkxNyc3ORmJjIv/POO5Xe66Xw9tvAxImwEKtQcfI83RPz51N282khNpZk6qNG0dg2uF4ZGbTGHTx4cN10mA8fUt1yDU2aqkJubi5kWUZSUhIT9deJ50lV9OGHlG181iacX31VvRz+2jXKZvr710kRA5D029jYWFYoFKV34OREddU8T/LqVq3w2ptvcmvWrJG/++47DBkyhFXUM9zZ2ZmFhobKeXl5zKLY6+Lq1au4duSI3OvePbhv2QI7O7uKv+OiIiK31tY09qpBQUEBEhISWH/DkpSlSykDrMf48cC+fRQo0QfnevWin7GxRJC3bSMi26ULzd95efQ9Z2VRwGPRIhzneUnXqBFXaVeN/Hzy96jCuLGwsFAGwMVHRYmt0tKYRfPmfIvVq6GcMIGxESPo3nR3p9IKQ8TGAp9+SoG43r2J0JuaksmjIczMSNlx6hT9vH+/wjkuLi4OO3bsKJRl+VJRUdEKlUp1xvDvgiBYJiQkCBs3bpwzbdo045ycHCWAOru+qVSqCEEQBmk0mjc2b9783+7du5t4e3ubBQQEDMIzItsAIEnSpoSEhGVlVY2XLl3SZGVlbRVF8T2VSqUVBMFCpVLllX0/z/OudnZ2VUfNY2Jo3DwFUzw9rl+/ruN5/uDChQt1T22n9XguwOQKJHv1qMf/AgRBYADGKZXKjW3atDGWJEnOzMwUJ0yYYFoTGfTfjdTUVL1hR7naqeTkZJw/fx7p6elidnY21/H8edbp2jWc3bRJ5DgOQUFBvImJCdzc3MTIyEhep9PB1NRUsrS0lE1MTPjs7GxRq9UyURSZKIrM3NxctrCwkEeOHMk9dQL7lFFYWIg9e/ZI0dHR3Pvvvw/rOmR+K8WaNbQg27uXMipPArWaFksjRpCEsa6YOZMWVf7+9ECvBekGgM2bN0sxMTGcl5eXPH78+Oej9/bJk7QoHTWqZtsXFVWqEPjzzz/FR48eYfbs2bUv7s3MJMI/enSt36qHv78/Ll68iGZubuLYd9/l2ZEjJYv4ivDBB+TCfPMmcnNzcfnyZfn27duYP39+6e9Gp6MF/4YNwKZNSLC0xIatW+Hs7Iy3334bFy5cQFhYmJiZmcnJssx4noejo6NuypQpNQ+a9+9PnQ6qCgjpdCT1joykANSTYtcuyrwlJpbL1p45c0a+fv06PDw8pHHjxtXN3e/CBZK/z579RKcpSRKuXLmC06dPY/z48fAq64CdnU1KlFGjnh3hTkgghUxERJXkDR98QK73NSCmleHOnTvYv38/Jk+eDI+y5K2ggLK/s2dTi8Pi+/bEiRO4evUqPiF1RKm3SJKEffv2ibGxsZg0aRK/a9cusaioiJ9gagrXrVvBAgIqPhGdDlCpiOj+8EONggc6nQ5r166Vs7OzWc+ePdG7d29wp0/TuN6xo2TDS5dIFbZ9e8l+r1wh9UZiItW5jx5NKppu3SjI98svJR1AEhKQPGEC0nJz4XnhAkwqMswUBFLKlL2Geogijn/yiezUogVre/YsHXf/fprjqupHHh1NCqhXXilRVCxYQEZz69ZV/r7CQrp/582jAEZxSVRBQQE2btxYmJmZ+bFKpapiB8CSJUvUvr6+Rnfu3AEAe5VKlVrV9jWBIAiuxsbGW9VqdZ/ilyYAOKhSqYqedN8V4auvvvqhV69e7/fu3fvxgNq8eXNOTEzM2yqVak9V7125cmXAsGHDOlUUVAJAz5GXX6a1w1NSAImiiG+++aZQrVZ3rKANWT1ecNRntuvxP4vimqBdgiDcCQwMHKFQKLxEURweHh5u6luNw+nfCZ1Oh4MHD8phYWHM1NRUPnPmDDM1NRVNTU2Rl5cHtVrNS5IEHx8fsX379ry7uzucP/8ccm4uRmdm8li+HAO+/RYcx8HU1JSXZRlFRUVITU3lEhISUFhYCBsbG97W1vax0Y2TkxNDmXYyzytMTU3xxhtvcEuWLEFoaCi6du365DstKKB2MYsXk2S2FpJrSZJw/PhxJCQkSFqtFrm5uczY2Bj29vZs/Icfgtu+nRZtZqV9+XQ6He7duwcfH59ywZRS+Plnyi6Gh1PdYGwsZQNr2L9z4sSJ3Ndff42iomeyhqkbDh+mrGBNkZ5Oi98HD8oRm27duvG3b99GZmYmbGobIAkIIPJXB7IdGRmJP//8U87NzWUTJ05E08aNefTvX7H7uB76Re+iRZBlGZs3b0ZOTg57o6L6YoWClBEzZgDvvw/nqCh4du8u2bm4cBzHoU+fPujTpw8PkANzamoq/Pz8avcM37y5+nGkUFBWc9EiMt5q1qxWh3iMyEgiOZ99Rv3NyxBtjUaDy5cvs549e6Jv3751t9FfuvSxy/qTIDw8HKdPn4aXl5fk5eVVPgNraUmBkLt3qa73WcDBodLWdwBIITJ9OpGuun4vALKzs3HkyBFwHFexQsTMjAKR/fqR6iY2FnB1Rbdu3RAUFCStWbOGmzlzJhQKBbRaLURRhCRJMDEx4XJzc9m6devQtWtX1q9nTxjJcvmMrR6yTHXSFhZEuGuYpVcoFHjvvfdYWFgYdu3aBUtLS3To0IHqmw3RtSvd8/7+NAYB6lEdEUFE19iYSjgKC+k+/de/AEdHSKKIK/v2IXvjRjFkwADO7uFD1rRHD+Dzz6lUSD+W8/OphWBFn+/KFaoRnzwZ7Y8cYRlvvEGZ9JrM49HRVJvdu3fp0oW5c0upfSqEqSl5Ljg60ncXHw9No0bYuXNnUW5u7l4A66s/Acy/c+fOKo7jvly0aNETE20AUKlUsYIg9GOMDZFl+TCAnQAgCALwlAi9IXQ63bnw8PC3evfu/dgAplmzZlZxcXHzAVRJtkVRDMvOzu5U6QYBAVSG8BRLbcLCwsAYC6kn2v+bqCfb9fifh0qlCgUQCgCCIHQ+ePDg+cOHDxt99tlnfI3kl88AGo0GwcHBMDIywtGjR6UGDRpg5syZrGHDhiwjIwMpKSl8dnY2LCws4O7uDnNzc3AcV+opyywtH5szmZubE0EDtYMyNTWFm5tbSSuVFxyMMfj5+ckXL15E586d2RN9b5JEmWxRpIdlDQxlJEnCw4cPcefOHURERMhqtZr5+vrC3Nyc5eXlMRsbG9y+fRvfxsZKo+Ljuea//FJuAbZ69WopNzeXMzMzQ7U16BxHWZeUFFrkN2tG9bzLllW7IE1NpTVLdnY202g0/3zv+YwMkqZW5kJeERo3JlJRPKYNYWNjg9atW0vbt2+X58yZU7t7OCWlzguk4OBgpKenszFjxqDpiRNUgx4RUfkbjh4leeiDB4CFBe6HhSEzMxMffvhh1eoMngd++gmZ+/fDdsMGzvnMGQnt2nGGDsmurq6oVNZaFVxdyX15zBhyRq8MLVtS0Cc7mzKPteltDhCJ8venzKJCUWFA4tatW5AkCd7e3pXWAVeLuDgiPJ071+39BrAtLiF55ZVXKh5QHEeBGq0WuHOHSj6eJnJy6Do9ekTO2RXB35+I2BPM63fv3pX/+usvxhiTP//8c1Zp4G/CBKp7vnmTiMXq1bCyssK8efO433//XVyzZg0vyzJ4nn/sRm5vbw9zc3MpLy+Pa9GiBWe0YgVlcYODKz7GypX0eb79tk5qAS8vL/Ts2RMnTpyQO/z73wwKBQUrmjalDXie2n2dOUPElTHKLEsSGYr17Emu5Lt2EdEGgDt3cO6TT6TYPXu4N3bt4v3Cw2F94ABMW7Ykoq7R0D79/EjNdPhwSflRQgKVhLRoQedhbg54eeH4okWwsrKSmwKsWqodHU0Zem9vqinXIzGRxlxCQvUXxswM+PVXOocuXRC2YgUSExOzdDrdjJoYk8myHAMAkiR9X/3Bao7iYx8BwARBaAvgIwBvAngWztsXkpOTTWRZNmyRCUmSOgqC4KxSqSq9kBzHeVVq0hoRQYGQAwee6slevnw5t6ioaOVT3Wk9nhvUk+16/L+CSqUKWLZs2T5ZlseVJa/PEhqNBn/88YcUHR3NKRQKWaPRMDMzMxkAevTogR49enD6B4KdnR1q3Bu8Z08y8Ll+nSL0SUm1Xxi/IBgwYACLjIyU16xZI/Xv35+rU7uwhASSRG7aRLVtNVjk7927VwwPD+ckSWIuLi5Sx44d8fLLLzPGWKlFeb9+/XD//n3uz4wMDAwKgrfBou/s2bPQ6XScpaUlQkJC5ObNm9eMXehd0S9fpnPduJEWqOHhlZ67q6sr2rVrJ9++fZstX74czZo1k8aOHcv9Y6R740YibDV0yX2Mzz+n7NpHH5X70yuvvMKtW7dOXrNmjTh9+vTHfWGrhakpMHEiMjMzsXHjRgwfPhwtK2mZVBbDhw9HZmYm9u7di9azZpXraVwKoaHkA3Dx4uNe7QEBAaKnpydf0zKIrHbtcKt9eziGhXHw9yfp4owZ1We2qkNqKpHU6tCpE9Ujtm9fu8zxd9+R4/rVq1QPWwkKCgoAALt27RI/+OCDun2ou3cpePAUgqb6oE2VihA7OyK8b79NgYQK+kXXGRYWRNwqI9rbttE9dOpUned4WZZx9OhRplarMXPmzMqJNkDzS24u3YeGpA/AxIkTeZ1O9/iaZWRkwMjICFZWVgwAW7NmjXzgwAH24b/+BVaZS/zmzUQKv/qqVsqisp/H0tKypKdzQQE9C/VkGyC576FDNFbatKHjJiRQNjsoiDoTfP01sHAhjSN7ezzq149rc++epLCx4RwdHCigo/edsLen4M6bb1ImvU0bCqxt2ULjnjF6Ls+Y8fgUOnbsiD179rDc3FxMmTKl8g/06BGpQZycSHFliMxMup9qM482bQrdmTO4ePKkZsSOHXGtQ0KUqIFsmzH2b1mWoVKpMmt+sNpBpVIFAZha/O9Z7D9j2bJlhTk5OUb6Obdly5aws7Mrys7OXiwIwuyKAg+CILQA0KnSYObSpbTWeopGsQkJCUhNTdUBeLoMvh7PDfgvvvjinz6HetTjb8X58+e3tWnTxrh58+Z1z6hUA51Oh1WrVknnz59ngYGB4l9//cUZGRnJr7/+Omvbti3r168fevfuzbp3787c3Nye3OHbyYki4d7e1ILoCSSGzysUCgV8fHxY3v+xd+VxUZXv99x7YWRV2VREQUVQ3AAV3DJxDSnJvb6lmWlqpbmmaepIZmalWZmWS5jlkprijrjhLqioKCLmAiIi+w7DzNz7/v54GBbZZmDc+s35fOaDztz7zt3nfZ7nPOfk5rLQ0FDu0aNHcHV1hda+vMnJJBwjCFQl1uKYHz58GDdv3uTfeustbtCgQfDw8OBatGhR4fniOA62trZg5ubqR8HBfPbBg1Kjt97iDgUHs7CwMG7QoEHs3r17cHBw4JydnXXbeXNzerm5UdWxRQvykPX0pGrlE2jdujXXrFkzZGRk4P79+5yTk1Nx5e6ZgjGi669cqbtPsSTReRoypFw/vZGRETp16sTFx8ezkJAQrkWLFpylNuP/+ivQpAnWHD4s5eXlcXFxcTopm7du3RpNJk+GuZMTjCsTxklOpkC1f386R6AALjg4mB84cKDW56F+/fqIuH6d1Rs0iGvu7g5s3UqT+u7dy7Uo6IQhQ6iCqs0YvXpRJdfenhIVVSE3l6jjTZpQD2wV7I3ff/9dvH79Og8AKpWKt7CwqJkA47ZtVEUsHVzVEGZmZjh58iQsLS3RrCr2g5MTVTUtLeme1Bc7ato0EvWq6LwoFPTZqFE13tf8/Hz8+OOPUKvVmDBhgnZ2mCNH0nNy0iQ6t6W0CTQ+0hzHwczMrIwdpKWlJWeybh1L2rYNZqNHc+WSYRs3kuPAhAm1ErY7ffo0jhw5Ajc3N8nNzY1HixZ0rZbWIeE4euZv3EgaBG++Sc+Ba9cQJJPhmKOj5L1iBYfHj4HXXkNySgru3LmDh1ZWrNP69RwuX6bf1O+/p2eSKBLDaNw4qpgbGVFf9fDh1N8+YEC5hIlCoUB0dDQ++eSTynfmwQOipNva0vF+EgcP0vOwGnFHSZIQHx+P8PBwyGQynLp5syD53r2IN3bvZjxjcQgIuItFiyqtbgcEBJgA+AXAWR8fH9085V4wnD9/friTk1Pj0s/ctm3bGkVFRbVhjPU9duxYkI+PT2Hpdc6ePbuoXbt2nd3d3cv/yJ89S/ff8OF6K2owxrB9+/a87Ozs2QsXLqxE2MCAlx3/zRKYAQZUAUEQfr1y5cp0Ly+vp6KwDQDLly9noijyY8aMQXJystC0aVPY2to+Pc46zwP+/vSDPWIE/a2l4vKLCEtLS/j5+fGenp4ICgpiK1asgJeXF9e3Op/La9doohoYSIKOaC51AAAgAElEQVQ21UCSJKxdu1bKyMjgx44dq5NPe7du3YzSfv8dGf3786tmzECGtTX3yiuvoGHDhlx+fj4GVOUzXR3MzGjCKElU5XB1pUlgcjJVvEuhWbNmSEhIAAA8Nxuw/fupYlQT5XBjY6pAqSpmGBobG2PkyJHC6dOnpY0bN3K+vr7o2LFjlUOqWrbElvBwFAD8//73P+zevRshISFanxNFQQGy6tUDX5nmQ1wcYG4OdvYs7nAczv3xh2hjY8PFx8dzFhYWzNnZWetnAMdx6NKlC3flyhWxT58+AtatI+aKjw/1vy9dWrMqN2OUjNu9m8aqCg4OFLz4+pLNVFUB97hxQFISLVcFioIBYeTIkWjRogXu3LmDvXv3subNm3M69eCrVMTwmDFD+3W0QGZmZvULvfIKBVVt2xJtuLZQKEhEsKJe8IQEovRfu1bjJAtjDMHBwSw/P5+bPn06KqXIVoTPP6dESlUigE/Azc0NbgMGcFfCw6W1a9dygiBArVZj2rRpMAsJoarytGl0fdUCN27ckDp06MAPGTKEboR794i19CTFd8AAEko7fx6YMgXqnBwcvHpVunXrFl+oVPIpoaGo5+ODUw8fSmeLnDFcXFwomdK0KamT5+dT4D5/Po3522/U0+7oWK3tXJMmTaBWq1FQUADTiu6h+Hgaz8mJEhCg+6S4RUaSqPpegV5JYmIioqOjERcXxzIyMqSCggJBEATY2dmJ4eHhglqtNoWR0XAjSXoMwBjAHXDcZ2Dsn0o2d+YTf19aiKJ4OTk5uVPLUsUHc3NzfPLJJ2YHDhzoduPGjbsBAQFvyuXys6VWU8tkMiWetP0SRbrXR4+mXn894d9//0VKSkqaJEkb9DaoAS8cDJVtA/7foWfPnocvXLjQ586dO41atWplZGJiArWanBZqU2HOzMxEUFAQQkJCRLVazc+ZMwf16tWDvb09tKa51hYa6xRBoIlA37418m1+0WFpaYnOnTtzjRo14k6ePMkuX74seXl58RWev7AwqkK1a0fHQwvs2rULWVlZmDRpEleTirCZuTmsBg6E99KleGXtWji3bo3ly5fD2dmZdejQofZ0Co4j1WIzM5qoSRLRGcePp4pqEWW8Tp06uHPnDgDA1dW11l+rM1asoCpgTZkWkkTU3d69qWL6BDiOg5OTE9ewYUPs3bsXVlZWaFAZtVethmLIEBzy8MDEjz6Co6MjnJycEBwcDDs7u3Ie1uWQnQ1hwQL85eGB2Nxc0cjIiM/NzYVSqYSJiQkexsfDondv8ByHY+bm0tGjR2Fvb8/du3cPOTk5/IABA9CoUSOtz31oaKh0/vx5TiaTMS8vLx4cR9fx229T/+b+/dRT3aqVbpRGjiMapLu7dpRUR0fqO3dxqdgab/16ou5+8QVdf9VUejmOQ2RkpKhUKln79u15Ozs73L9/n12+fBmdO3fWnuUTFES2X094k9cGFy9eZDzPw8PDo/qN6NOHgrHGjWuvTi6KpDBe0SR+2jRqw6ihj7goili+fDkSEhK4jh07ooOuveZ9+xKNPDOTgm5t3Ctu3gQ6d4b96NGchYUFoqKiIEkSCkNCmMv16xw3ZAglKmoBxhhOnDjBOTs7o7mm2m9hQdXhDz4ouzDHESNk2jRk9+mDv48dkzxPneJelcu5i9evI5fjcM7EBP5BQZxjy5boP38+OnfuTNdA/fq0/+fP07EwNaU+72++ofth9Gj6zbWzq5BlRF/PITw8XHJycuLqP5kET0ggG7e2bYFx46BWq3H48GHs2LEDZ8+exbVr18SI8HA0GzmSy3d1xaVLl3Dy5El24sQJ6fjx4/zVq1ehUqlEJycnrlOnTny/fv3Qt29fdOzYkU9PT5dSU1MPLly4cC0WLQIWLRIREHAPwF0EBLgiICAJixYVewEGBAQYAQgFALlc/iFechw/ftzB3Ny8j5ubW5kHHc/zaNWqlVHDhg3NYmJi3jl16pTliRMnxJMnT7bief6rvn37WpQ7Tzdv0vNXw/bQAyRJwubNm/Py8vLGyeXyW3oZ1IAXEobKtgH/L1FYWDiisLAw6c8//2RDhgzhNmygpOKMGTOgFR21FCRJwvr168XU1FTB1taW9e/fX3BxcdGe3qxv8DwFKU2aUH9Zfn7taKcvKDiOg4uLC6ZOncr99NNP/Pnz59GjR4+yC124QJWC33/Xynbq8uXLOH36tJSXl8ePGTOG07UirFQqkZGRATMzM6gsLWE9dCiUP/+MfW5uIgDB29tb/30Lb71Ffx89InEdQaAKfqdOxQGkl1flwqpPDcnJRKPu06fmY/A8BZXVVKxdXV0xePBgBAUFISUlBb169SrnPX376FGYyGR4xceHNWjQgAOov7158+ZiVFSUUM7q6UlERMA4PBwzQkNx8NAh4fjx46IoilAqlTzLyeEaFRRI2YMH867u7rh84QI/ceJE2BGdlPv6669ZWFgY16FDB60SenFxcTh58iTfr18/eHl5lX2QWFsTNf/sWQpwrawo4KtOdK80mjenSvRff2lHg162jIK9994jcTWAKuSiSOJXTZro1Cbw2muvCdu2bYOvry/MzMzQrVs3fsuWLcWJC61w9CglHvQIU1NTVrduXQag+oe3gwNV19u1o4ReTfu31Wo6h2FhxW0Hxfj5ZzrHtVQ9zs/PR9u2bTGoJp7ADRuSMv3atZRMWbKk+nXGj6dWgp9+gqenJzw9PXF7yxbEBQZyp/r0EXt5etb6xzEqKgqFhYXo3bt3yZsODnSNJiWVp6c7OiLJ3R2F77/P+rZqhSY5OVzB3bvFVHh07CiZDBnCu06bRhXk0aPLru/jQ8nDnj0p8AIokX3xIt0HRRoElcHc3JwlJSWVaVGIu3gRDX74ARmdOuG0qSlSVq0Sc3NzeXNzc4waNYozNzfH3bt3BWnqVFw3NcW5fv1gZ2cnNmvWjOvUqZPg4OCAevXqgeO4csczPz8fUVFRSlEUp5b5gLF9RQ+hCwDCAZRW8hwIAIIgLK1yZ14e3ExMTFQXFhZW+KGTkxPGjBljcunSpRn379+fIggC69Spk2njxo2hVCpLFszKgtHkyRBXrACrhGlVGaqyV46MjGQFBQW3QKJxBvyHYQi2Dfh/CblcnhwQEDAoMzNz+4YNG0wBgOf5xOPHjzf08/Pjjaup+KSmpiIwMFCytbXlk5OTmSAIQv/+/dG2bdvy/WnPAyYm5DcqSTQh2LevesroSwojIyO4uLiw0NBQLjU1FT4+PrC0tAS/YQPZR23bRiI4FUCtVuPAgQO4c+eOqFQqeUEQOAcHB4wdO1ZnP++bN29Ku3bt4jmOK2ZKONnZSV5//cXnpacLY6dOfbrq8I0bk3gTgJS1a3HVwgJXPDzglJyMyMhI9O/f/+l9d0XYvJkElnQVRnsSPXvS5H3uXKCKXvc2bdrAxMQEe/bsYefPn+fatGkDPz8/yGQypKenI/jIEdT38cHbr7xSJtr19vYWduzYwVCVFV5kJFWQw8JgAmAoWYcJACXbxGHDYFxYyJ9fsAAhISGwsbFhdnZ2xeP17duXCw0NZTt37pRGjBhRZaCRnZ2NLVu2oF+/fuWTR6XRowd5hu/ZQy0E48ZRQKxNks/CgkTcUlO1DxJHj6beVU2w3acPVeNWrdJu/VLQqPHHx8ejVatWePjwIQPAaS3ip1DQ9d6li87fXRmuXLmCtLQ0vtqWlNJo1oxcB3JyqLJZk4qXkREJID4ZaB8/TorSo0bVShRPk3RKTU2t8Rh4/XWq8M7UglnMWPlWgthYuO7eDbsPPsBPt28LTe7eRUFBAURRrN4KsRIkJCRIAPhyjgsXLlCg7e9fZvnDISGIU6sxuHdvNFi2jIetLczy8tCxsFC6ePEi7+npyTBwICl4BwQQa6HIIlClUqFw40aYz50L7vx58leeMoVEy6KiKLlZWEj35B9/lGPyZGdnQxAEIT4+XuzSpYsAANt+/ZW5r1rF7e/QAbcVCrQ3NRW9vb0FBwcH2NvbF583W1tbpLRsCeNBg+AzcmSFgXVFOH/+vJrn+e1yufxuuQ9Jors7AFNw3EoAkWDsdwCpgiA8FkXxDy1Pw4uO2xkZGXW/++67Mm9WEAAbF71w7NgxHDt2rMyH9g8fwk0UcfzAAdLNqCVKJVw5URQnaaMQb8DLDUOwbcD/W8jl8v0BAQHmAOwBZEuSZHXz5s2Nt27demXq1Kmyqiosu3btEi0sLITExET069eP8/DweP4WSxWB58kT0s2NesKGDdOOBviSwdfXl2/YsCGLjo6WVq5cKTgmJ8N/zx48+vFHtBo0CJJCUa5iplAosHr1asnU1JR79dVXBUEQ0K5dO8hkshr11hcWFnIcx2H06NE4deoUevfujT179rDYjh3F/8XGCkY1sWqqAYKDgxHm6wtLS0u8rVbDYfNmqH79Fbh1q2oFbX2CMWDnTkp06APp6dQPXY2wXIsWLTB9+nQuPj4eu3fvZps2bZJGjRolrFu3jnmnp8O7Xr1yAd2///4rymSyqn3nx48n66Dvvy/7viSBP3UK/Nq1QL166CaTwcbGBnv37i0TvHfp0gXt27fnvv/+eyE1NRW2traQJAlZWVngeR4WFhbgOA7R0dE4ceIE7O3tpR49elR/HXIc+fB26kTH59VXKVCozmaN54ErV4garC2GDyeNgLfeot7FL74gH/gagOd52NjYSLdu3WKtWrUSJEniGjRowHie1y5avXqVtl2PLTIHDx6Ek5MTqmU4PIkZM6jym5dHlU9dMWECeTyXRng4JUwPHCgnDqgrcnJyAACFhYVVJ5SqQteulKBp144SOlVVt7t1o33SULkTEui+mTIFVq++Crft29lff/1VvB2hoaH44IMPdGaU9evXj4+KisKOHTvYu+++W7JfI0eW0YhQq9X4448/pPT0dH7U3LloMG4ch88/p777tWvhtW8ff/HiRfTs2ZOC2I8/JlbOL78A1tZIbd0aZ+bNY9ccHTmHyZPh8uiR2Ov+fQEpKcQMWbaMvsjYmJK6devi1q1bOHnypGRnZ8f8/f2F3bt3IzExEYmJicK9e/cg5eZi5JYtnOWCBXhj5Eio1WpYWlpWHESnpcFu8GC6/7SEUqlEWFiYWqVSLap0IcZEALnguBgADuC4+nIgDIw9HSGb54NkSZKkefPm8TVJ6AAgHYC33gIuXEAPPbIV9+/fXxgZGRk4f/78S3ob1IAXFoZg24D/1yjKKGr8FnMDAgLGAojLz8+HiYkJRFHE4cOHERsbW/jhhx/Wyc3NRXBwMFJSUoSpU6fCosjW54WGmxv9Xb2aqlha0KlfNhgbG8Pb25vz7txZYJ9+ivRXXkGUnx/O37iB3d98A57nIZPJmCAIkpOTkyCKIu7fv88aNGiA0aNHc9UxGbSBh4cHl5mZKW3ZsoWbOHEiZ2VlhY8//liAJNGkbO/eGvdd6oLk5GQAgJ+fHxxbtwY++wyCWk0T5j//pP5nMzP9qShXhH/+ITqnvhIMu3aRZZWWLRFNmjSBubk5s7CwEL799ls4ODiwHl5evOwJcSLGGO7cuSNobPgqRGYmVeoqSr5t2ECT7Zs3AZkMN2/eRFBQEBwcHCQAZQ6wmZkZ2rdvz9asWcOZmZmxgoKCYr94DRPCxMSEFRQUcIMGDdLt5DRtSq8FC4CICAqk33uvaqXns2fJ2istTfuKrLMz9Uo3a1YSZOiI69ev48iRI6IoinxmZiYDAJlMBoVCoX0wePt2pWyVmuDChQtQq9V49dVXa6bbMWQIsGYNJZl0WZ8xouGXvi4VCrKVksur9kLXAnl5ediwYQMzNTXF8OHDa9fCkpREQWhV1lUACTdqWDQKBQXd779PiSAAI0eO5DTVaKVSiY0bN7I//vgD7733HqeLcJsgCOA4Dqonab116lA/9ebNSE9PR2BgoFSvXj18/PHHJBTp6krJDLkcyM+HRpSvsLAQRW0hePC//8E+MhKyyZNxq107qf/hw3y36Ghs+vNPFhoaKvA8L/Xs3p1H06bA+PF4sH07CszM0PLXX3Fj/340GTcOzdas4W/cvy8tWbIEpqam0vDhw/mWLVsi6cEDWAwZglO+vtKb771Xsc5IaezcSS0TOgTbN27cgCAI5+bNm3e/2oUZWwMA4LgtABoBqEXfz4sFuVzOvv7665z8/Px6OokClsaPP9aaXfIkYmNjERkZWaBSqRbqbVADXmhwVfUTGGDA/zcEBAQIxsbGe1Qq1esNGzbMVSqVXFZWliRJkqWxsTFUKhXs7e0ld3d3pqGDvXTo25d+uD/66HlviX6hUpGQ0+TJ5HdqbU0UX1GEKIrIzMxEUlISgoKC0LRpU6lHjx68q6urXu3fGGNYsWIFioL4kg+uXaPJ+FdfPRNmwYYNG6SHDx/yCxcuLNk/pZImDO+8Q6Jq587pHhxoi/ffpwlKdRVWXeDsTOMuWFDtorGxsdiyZQvs7e3ZgwcPuIULF4L75hsKLtu1K14uNTUVv/zyC8aMGVOx3dPdu1S9jYsrLw527BgFQ/n5gI0N7ty5g+3bt2PQoEFoX5laOYDc3Fw8ePAADRo0KO6plyQJarUaaWlpWLt2Ld55551iqrXOUKup8vj330BwMPWxVjRRlCS6Bnr0qP4akCQ6nxMn0vHYvJkq6jqqzGdkZGD16tXw9vZG3bp14erqCisrK8TExGBbEQuiT58+6FmV8jVjRF8/dUpv99LSpUtZjx49uB49etRcayM/n5Jpv/+ufZIpK6tsdb6wkDQKPD3J3q+WWLFiBfLy8vDFF1+U0zCoEZTKYj0IdO5c/vPly6kK2KQJBdrjxtGrCt0GSZLw559/SklJSfzo0aPRqFEjrZ/JEREROHr0qDRr1iy+eP/u3gVeew039+7Fnj17mLu7u+Tr6ysUf15YSNv09ttAdjakrl2xYtcu5OXllRnbIisL7wcGIqVJE6lFUBAvc3ZGfn4+vvvuOwiCgE8++QRWlpYo8PCAdO8e9rz9Nu47OwNqNd6Pi4PDunWQANyKiUGLFi2IWaVQAP37I7h7d3B9+kivvfZa9Sfl3j0gO1snFsmaNWtykpOT35HL5dr3AnOcKQA3AKYArMHYPq3XfYGxbNmyuDFjxjjq4ihSjDNnaE7xv//pTYFckiT8/PPPeVlZWaMXLly4Wy+DGvDCw1DZNsCAUpDL5WJAQMBwAF2TkpKsAOSA1DlVADB27Fg4Ojo+xZLgM8A771CV4eFDqnS/iPR3XZGfT5OnIUOoClA0WeN5HjzPw9jYGI0aNUKjRo3g7u4OPFF11Bc0lRa7J3xW4e5OPZkXLpB111PGwIED+XXr1iEvL6+EfaE5z5s3k5r1nTvkBx0TU3Nxp4rw8CFRNHv10t+YAAkRaUmptbGxgUqlwoMHDzhfX1+avF+7RsF2KTx48AAA8Oeff8LCwkJq2LAhl5aWJpqbm/M9unfnW7m6UlD9ZKB99y5NwMLCwJo1w9UrV1hwcDDXsWPHKgNtALCwsECbJ6qyRcwLaIR8kpOTax5sGxlR1W7GDGDWLLJZ+vLL8iJbPE9BeEAAUJUrSX4+XTscR8rw9eoRNXjyZGIc6ABBEMDzPFMqlZK3t7egCaqaN2+OXr16sTNnznDHjx9HRESEOHXq1Iqj3vBw0p/QU6CdmJgIpVLJdenSpXailmZmFGSGh2sfbDs6EutFc11Om0bV46Je4dogMTEROTk5mDx5sn4CbYD6/D/9lBJeTwbbkkTsqf796TiMHUvPgdICZhWA53mMGTOGDw4Oxvr162FiYoKxY8dW7w4AwNnZGfv27eMPHDhQIv7WogXCx43DqW3b4DdsGNzd3cue1AULyEJvzhygSRPw9+7Bb+hQhISEiMOGDRPs7e1hZGQE6do1cBERsFEoeIwZAxw8CHXRENbW1mzjxo3o2rUrl+jqCushQ9jQqVO5zBUrYPv55zCqWxfYswf8Z5+hTUwM3Ts5OcDQobgyaBCuiCJGt21b/UkpLKTfi7CwahfVICkpCRkZGWoAwVqvBACMFQCIAMeNBTAdHHcAAKtS4evlgFqSJN3XEkVSiX//fb1afZ06dUpdUFBwhTEWVP3SBvxnwBgzvAwvw6ua15dffjn3xx9/LCgsLGQqlYr9J9CtG2Pvvfe8t6L2SEtj7PZtxqZNY6yw8Lluyo0bN9iiRYvY/fv3y3+Ym8uYjw9jkZFPfTtu3brFlixZUv2Chw/T3169GPv2W/18+Q8/MPb11/oZ60mMHUvja4HCwkKWlZXFJEliTJIY27iRsby8Msvk5eWxx48fs4KCArZ+/Xpx48aN4qVLl9jhw4fFsB492I3OnaXHjx+XHfj8ecYSExlLTWWMMRYaGqpeunSpFB4ezkRRrPUuHjp0iH355Ze1HocxxpgoMrZpE2N//cXY/PmMZWWV/fzgQcYGDKh8/dxcxuzsGAsOLvu+UsnYjRuMhYbqvEmpqals0aJFLD4+vtxnMTExbNGiRWzRokVsy5YtFR/M3bvLb08tEBQUxNauXSvpbcDjx7W+RtmDB3SOGGPs2DHGbt5kLDu7Vl+vUChYWloau3r1Klu0aBELrcE5qhL79jGmUJRstwaZmfRXFBmbOJGxXbsYU6t1Hn7Tpk3Sxo0btbqRAgMDxe+//1589OgRY4wxlUrF1q1bp77p7s5SN2+ueKXISDpHgYGMffVV+W0MD2fMzY0xze+8Ws3YK68wNnIky0pOZosWLWIZGRls586d7Oeff1bf7dZNEnftYiw/n7HOnWlcxuhZExhIz57kZMaGDmWKf/5hS5Ysqfj3oSLcukW/0zpg3759iq+++uprVps5D8AxYAwDTjDApFZjPefXsmXLbsbFxel0DBljjF28yFhQEJ0/PeHRo0dsyZIl2YsWLXLQZtsNr//Oy1DZNsAALSBJ0rcZGRlfL1++XJIkSZowYYJRuerly4bjx+nv1q1UvRo37vluT02QkkLUzdGjSbTpOWPPnj0AUDEl2dycqoF//0199DUVbNECTZs2hUqlglqtrlrpd8AA+jt9OlXjjh+nfsfDh2tOLw8NBVaurNm61aFzZ61tkGQyWYloYUICVXvHjCmzjJmZGTTuAePGjStdaeLFwkJEXL4srV+/XuA4DmZmZqIxgDFyuXBmyBApqXdvzsvLiztz5owwevRovSrN660SyfN0b6SmkqjYli10nv38Svy2X3uN/JOf1J/44w+iBAcFle8dNjamqviMGXQ96+CjHhsbi7p167LGjRuXu8BcXV0xe/ZsPHz4EDt37uTT09NRxueeMVJg1+OzqkePHvjll184URT1Y9doZUWWXRMnlu3FfhJjx5KQWNOmROefPp2OtY5CYaWRlJSE3377DYxRMdLR0ZF16tRJv30iGlbB++/TfgJUtXVwoP7zP/4gpoyfX436XF9//XVu1apVXHBwsDRgwAC+qnshKSmJ79q1K+zt7Yv7s+vXr885jxsHWWV6BTIZVeF79yZ19VatiOUDEE2+bVtif2mem4IAHDoEdO0Kk3ffBbp3h7m5OYaRKr8AFxd6JpmaUgVakkgkbsECOkaaZ/7q1ditVLImTZpIzZo10+7AZGQAu7VnGqtUKkRGRjK1Wv2b1itVBMYYOG4PgKYAeHBcGzB2s1ZjPj9kKBQK3dbIySG2j1yutzYrURSxZ8+ePFEUZ8nl8gS9DGrAS4OXmw5rgAHPDpKxsfG3oihOV6vVm0NCQvKqX+UFh4kJve7eJSrxy4aYGAqipk0DJk163luD/Px8WFhYwMbGpnLO2rBhJLilL5XuSmBiYgJjY2Ncu3ZNuxXefJO8rBs0KOkNHD2abG10wdatNNGspS9wpfj4Y/KIjojQbb1793QKCDFqFAR3d3gtWiTMmzcPEydOxMDWrYXelpbCiVWrpLDmzfmsrCxu165dcHR0lPQZaBcUFDBjY2P9UjdtbYkS6edHom4TJ1JgAdC/Bw8uu3xyMvD55+TbXplIV+vWZDmmVFKfuBZ48OABMjIykJ2dzWmE/J6EqakpXFxc0LZtW+m3335j6tJja6yWqqHq6wJbW1sYGxsjIUFP818PD1L+X7eOkhyVISeHAusHD+j8BAbStV0LJCUlgTGGuXPnYubMmRg7diyndxFPCwvqKX/nnbLvHT9O97+tLamr15B6a21tjTfffBMXL17kv/32Wzx69KjSZTt16sSuX78uRkRE4LfffmNt2rRhY8eO5WWvvEL9thVh505g8WLAyQnw9aUWEZUKuHSJ2iSMjYH588vv87FjyEtIwJtBQYiPjy/5LCeHWnMASm4ZGZX0+EZE0NiTJkHy80PsvXvo06eP9hmIOXOA69e1XvzBgwcwMjL6Vy6Xx2m9UmVgLBOMfQXAG8BJcJwee42eKVIKCgp0WyMujmwFvbz0sgGMMezZs0eRkZFxVpKk9XoZ1ICXCoZg2wADtIBcLmfz5s2bM3/+/J9kMllPc3Nz82XLlimWLFmiDA4OFsspor5MmD+fJs1z5lCP3cuA9HTyUY2MJKuXpyHypSPOnj2LjIwMvPXWW1U/V+fNA77+mqyCnhJ4nkfnzp2l/fv349atW9qv2K4dXQtqNYnycByJbG3dqt36u3frbYJSKRYs0N1iydKSepO1QW4uee0WBSkcx8HGxgatvv8ebcLDMWj0aP7zzz+HtbU1A1D9+dYBQUFBUmRkJOfk5FSDJkMt4OhIiZ4ZM+g8/fADXY+//EKfJycTe0AUKZFVnQ1W37703KjKCqoUtm7dys6fPw/Tqiq+RfDz8+OVSiW3Zs0asbjnMjCQ+pn1eL+npaVBpVKRUrW+YGxM1erFiyv+PCEB2L6dEkDvvgvs20fJrlpCk5hYvnw51qxZw2rUq6oNTp4kK8kjR+h+8fGhxExUFGln1DLAd3d3xxdffAFLS0vs2rWr0sRThw4duLS0NGH//v2wtrbGwIEDSQitTp3yXt8azJxJxxug69fZmaTHK9EAACAASURBVFwaOnemdSpzpmjYEP8MGMCaJCXB6euvS94XBOD8+bLLfvopVcj796dE3+LFyHnlFbz5zz9wcHDQ7iAwRgkNHx/tlgclW9Rq9VmtV9BuO0IBtAF5cm8Gx+mvgfkZQBTFFJ0q23FxlBR/0o6vFoiIiGAxMTEJSqVyqFwuf0o3pQEvMgzBtgEG6AhJkoyvXbsGhULxiVqtnh0WFiZER0c/782qPWbOJLXs/PzKqwIvAvbvJxG0Aweqt6F5hvD09AQArF69GqGVTfQAUnBeu7Z89UTP6Ny5Mw8A8fHxuv+4GxsDe/aQvVJEBB1rUSSKaGUT+NhYEvMpsvh5ati+nUSlmA7F36NHtauGP3xIy549WyKKlptLAWpQENiaNUhPT8e///6L2NhY7s0338STvt01AWMMISEhuHbtGj9ixAi89dZbT8/pQCajIHrvXhLKCw2l63HzZgpSunQB7Oy0t4b75ReqZmoxoeV5nrVp00acPXs2qlMHNjIywoQJE5CRkSFEaM5ddHSt7bCexLZt20QXFxfJ+kkRvNoiMBCYO5eupyfh5QWsWkX05TlzKPmhB7i4uMDPzw/vvPMOGGPc4sWLsXTpUqb33yeOo+dDYCBV75VKqmyvXEnVYT3g6tWryM7OZi1btqzwgaNSqXDmzBkRAJycnCBJUskDoVUrCpY07I3SOHwYmDqV/t28OQkvjhtHlPgOHap8rjgOHMjtHTiQ2GBz5tCbr71Gv5ulkZxMx2bGDGDjRqR88w0OtmsHYdUqjktK0u4AbNxI4oY6tBulp6cXqlQqHbKrWoKxFACZAGxBntx6zEw9XahUqsc6VbY3bya7Oj2JoqWmpuLw4cMFSqVykFwuf/kZkQbUCIZg2wADdIRarR4pCMIyAH/VqVNnHADts9UvMho0oCz6xo3Ua/YiIieHaOP16ulGC34GsLW1xaxZswDQ5K9KdOxI9MKKJuJ6QnAwidHa2dnx0dHRiIurIbNw3jwKbh8+pAlsSgopexcpZxdj92767Cn2ogOgIHDWLJrkaot69bSjHgcGkn1Rafz0EwURZmYIPXlSXL16Nfbs2YMhQ4ZUqzyuDRhjOHnypHT+/Hn06dOnnFL5U4OTE/Ul2toSU2DUKGIz/PKLbufQ0ZFaB159tdqA28fHh79x44aQkpKi1dD29vbw8/OTDhw4gNToaPJIbttW+22rBgcPHmS5ubnC8OHDq/c71hWmpsTA+fBDqpaVRkwM+ZtPnAi8/rreKvWWlpbw8vKCk5MTPvvsMwwcOJA1b94c27dvx7Jly3DkyBG9fA8A8jr/9VeqcosiPSf0pBCfn5+P4OBg5ubmhtdee61c4qmgoADr1q1jDx8+xPTp0zFw4EAkJyfzixcvhiiKVG3+9lvg9Onyg8tk1D6lwSefEJ3c1pY0DdzcKAA/caKkl7sIsbGxUma7duA//hg4eJCeDYJAWhCawD45mX5DBQH44gvAwQGJu3ez3llZcO3alWzTfvqp+oNw7JjO10VeXp4KQJpOK2kLxrLA2GsACgDcA8d1eSrfo2cwxtLz8/MryLpUgDNnSn5f9AC1Wo1t27bliaI4Uy6X/wcqMgbUFAaBNAMM0BFyufwCgAsAEBAQMEoQhOWnT5/u5eHhYRwbGyvl5uaqPDw86jRp0uQ5b2kN8fHH1AMdFUWZ+UOHtK9yPU189x1VGaOi9GrFoU9oBJaqFc8zM6MJ2qlTQM+eT2V/evXqhX///Rd79uwBx3FgjGHBggVIT09HQkICGjduDFtbW+19xp2cAE1VxteXAqwffqCkgbk5cPPmU6/WF2PMGAoMtUVoKFFGq0J8PE2O580reW/9ehKumjED2bm5uHDhgjB8+HC4urrqRcQsPT0dly9fxrlz5/hBgwahox6oxFVCY2czeTIJ4W3aRD3Dbm4UWIweTRVKXffN05Ned+6U8TF/El5eXjh48CA2bNiAzz//XMuhPfkDBw7g7rZtsBZF8JXRfKtATEwMQkJCREmSwBhjarWad3V15a9fv86NGzdOL+yECtGmDbVhKBTUNmJuTonMLl0oOTFu3FNrgeE4Dt7e3py3tzdu3ryJc+fOsXPnznHnzp2DsbExXn/9dY0NYsXQtJIIAiXaeJ72ISGBKschIZT4ZIyq23qqaANAYWEhVCoV9+jRIykqKgrt2rUrPkg5OTkIDAxkpqambNKkSQLP86hbty7at2+P+Ph4xvM8Ldu1KwW+T6J3bwp4NZg6le5xDby9KYH03nv0vFu3jpJt06fD08ODDz15EurBg2GclUXBeb161H6Vm0v314YNdKw0lW8A+/z9uamffkq08DfeoPvv+vXKE4BKJf32VnV+KkBRdV87AYWagrFEcNxIAFHguAkA/gBjhdWt9hyRUZSEqPomZ4zaPiZOrJGwX/nhGA4cOFCYm5t7RpKk2gnWGfDSwxBsG2BALSCXyyMDAgIm3rp161BMTAynVqv3qdXq1GvXrs3r1KmTSa9evYy06U984cDz9HJ0pL8KRdlqwLMEYySMdOwYsGzZCxtoA8CuXbsgCAK0EiXy8gJ27KB+6KfAJHBwcEDLli1FKysroU+fPli2bBk2bdqE5ORkKBQKyGQyJooiZ2dnJzZr1oxzc3PjGzZsWBx4xMTE4NSpU6xp06aM4zje1NQUPXr0QHJyMh7//jvatmoF2bZtNFH98UdSYa6uoq8vtG9PfsY//wxMmVL1sowRxb0qmrAk0QT8559JgRsgwaTFi4GhQ3EvMxM7d+5Eo0aNpNatW+st83Tu3Dnp8uXLvLW1tdixY0f9U8fVaqpSL15M3sKrVlECwc+PgoEhQ4B+/UhF+bPPSCivTx8KCj78UPtAkOOoh/fDD8kz2t+/0kWNjIxQWFiI48ePM1EUuW7dulV5v2j0MKSjR3HIzU3qr1TyugbHYWFhUCgUgq+vL4yMjJCdnY3Lly9L/v7+XKNGjZ6u4EOrViSYBdC9zvP0HDt8mJ6v+gRjRD2WJAo0s7IAOzu0iYtDm4YNuURLS9w9cAB3eB45Bw8iz9UV5u+8Q0GjJAGNGpG4W//+JJDXsCHpS+zcScynJk2oIm9pSfeUhnK9eTNViPWh5g7AysoKU6ZMwdatW/kTJ06wdkUJnMzMTPz+++/M1taWjRo1qoxSefv27XHjxg3uyy+/RPPmzcUB/v6C9e3b5SOsHTuA778ndg5AgnbvvEP7C1DiCQD++Yf+xsdTkiQrC52WLEHj69exycJCGufpyaNnT6KQDx1Kav+nTtGyn31W/HVJRQlKUzMzSmTHxlIfd7duVD2vSOMiJISSYS9qOxdjJ4uo5BMBFAL44zlvUVXIKSwsFKtd6vRpaqXr318vX3rhwgXx5s2bCUqlcoRcLn/ZvcoNqCUMwbYBBtQScrn8HoBWpd/76quvGoWFhX3aunXrim2gXga4uVFWPyKCqq8ZGUTBe5aQJKqyq1RUIXqBoVar8e+//6KlLvT2Tz6hSsjjxzTR1SNSU1Px4MEDwdvbGyZFiRINlXzmzJmwsLDg0tLSEBUVJdy8eROXL18GYwzu7u6Ii4uTUlJSeFNTUzDG+MTERADAiRMnAFDAFBERwfz8/Dj76GhIH3wA6cQJ3LS1ZYnu7iwzM5P16NFDSElJgYeHh/bVc10QHU3XRHXBdkEBLVO/fuXLMEbUUU2yYMsWuuZv3wbq1EHQxo2wsbHBmDFj9BZoP378GA4ODvzly5chSZL+qCNHjpBAlbMz2TElJVG1uWlTCopLU2Ozskqsj4KDKejesIGC8rZtKalRt6723923L1Foqwi2P/vsM/z44484ffo0B1D7hUbvoCKYmJhg4aefQgoNxXfOznzCxo0YP368TswCtVoNOzs7qX379sUrdenS5dnRddatIzHHo0epGjxwIB13DUSRWmQ4jirHxsZEQU9OJur8sWP0/H3lFQrQ7O2JSZKWBowYQcF7aipVY8+dowDyyhWisn/4IQWOlpaw9/GBvYcHXvH0xOm//pLOCwLfp0UL8GPGUGW6YUPalvr1KTDU3LcjR5bdn/x8Gn/ePGD8eDrfgYHEIKlXTy+HzNraGjzPSxYWFhxAz7PAwEA4OTmxkSNHljt3Li4umDVrFlJTU7Fjxw5u97lzGBYZyRqMGVP24dOvX1m6+5o1VSc9mjYtFmTk169H1PffM9O0NNrvUaOI0bFqFWmJTJpEVetSOHPmDJydnUVBEAT07EnPlfHjARcXEmULCSmxYNSgceMa9fHXqVOHB/Bs+qkZywPHeQMAOO4CgGVgTHufsmcHSxMTk6qzQLm5xNKaPVsvTJO7d+/ixIkTOSqVqrdcLs+p9YAGvPQwBNsGGKBnBAQEGAH4tFu3bi9voF0aHTtSFVEmo0nHtGnPhlauVFIFoGnTl8ID/ODBgwwAV+S/qh2cnKji+uuvevX0zMrKwtatW1nLli3h4uLCAcDbb7+Nbdu2geO44kqijY0NXn31VbxaJGp248YNXLx4ES1btuTHjx8PmUxWvEGZmZkIDw+Hu7s7TExMsHXrVrZ27VrO29paQr163IN33+VkZmbwXroUzVNShE3vvgvGGFJTU6VevXrpXI2sFmPGlNDJqwoINd6/b79d8ef79wMffUR0aoCosrNmAbt20bUHYMCAAdi/f38JRbWWuHz5Mvbv31/8f2dn55qPyxhRUidPpsraqlVEX166lIJoa2uqYJeGJFE1bulS6tEuKKB/Hz9O6/z+Ox2D2bNJHK+qREVpvP02MQQWLgS+/LLCRWQyGT777DOsWrVKTEtLE+7evSu6uLgIVVW3uXPnIAwYgPfGjMFff/2FvXv3wt/fX+uA29HREXfv3tVuH54GLCzoGTp9Ov171CiqWsbGEpvgo4/oPK1YQV7bTZtSq0leHlWR4+KI0VO/PgXfTk4lFOOWLSk5VLcusUsqeoYMHFjuLV4m484ePYroAwfEKVOm6FaSnjePEgjXr9M+2NrS9vbtS8JpetIw6devH//333/j0qVLOHbsGNzc3Ji/v3+lJ93MzAyOjo6YOXMmH7xvH24lJaEBY8XH5OzZs+Kt48d5H7UaTv37c0ZGRkSR79BBuw1q0ACXrawwaNAgHvPnE3PkwAGq/EdH0+/UiBF0HwwaBInncefOHTZs2LCyx3ftWuDRI0psTZlCydbSSYrVq+l+rABpaWl48OABsrOzUadOHTRp0gSaljUTExNjADpkx2oJxqhizHEbAOSA41oCuF/8/osBa3Nz86p7T+LjSa+mW7daf1lOTg527NhRoFKpBsvl8ge1HtCA/wQMwbYBBugZcrlc/fXXX08LCwv7WpIk3tfX9znxr/WItm1pcvDDD1Q90ZMQTqWQJPL+tbEhW5aXAA4ODlxkZCQePnyIZs2awUhbkalPP6Uf+jFjau2zC9CE8sSJE0KzZs3YsGHDiiemrVq1giAIEEURUVFRaFuB0FS7du3QrpKe2/r162NAqQrMpEmT+Fu3biF/8WLewsoKXb/6ClZWVhwGDODw77+Y5+0NlY8P1qvVLCIiAkOHDoWLi0ut968MNIrPjx9XvkxyctX0di8vosFzHAWbGtp5UXJAkiTExcVJjDG9lefNzMyK/92mTRv4+flpv/KjR1S9HD4caNGC7sePPyaFcUmiYEeDyvY7LY2qkxpdCVNTqrzOmkUaDYwR1TY8nGjnZmYUEGqTDLK3J/Go11+n3uRKMGnSJOHGjRvYs2ePcPfuXfj7+8NNQ+F9Ejk5QPfuaNy4Mf73v/9h06ZNuH79Orp27Yq+fftWG3QzxqBWq5+9P2BCAtGTFy0i5gRADBZHR0qIeHpSNXns2JJjq6Gcl0Zp+6eK+nhr8Dzu0aMHl5aWhitXrgiSJGnPFMjJoWtt3Tq6/jiOqrRr11KFtm1bomr361fr5KGLiwvc3Nxw4MABtG3bFv7+/loP6NW9OxLnzuXWjx8Pi/79mb+/P3fixAmhv0oF21Wr8IOFBfr16weP8ePBXbpUlmlQCYKDg6FUKrm0tCINMiMjOjeenpSErlOH2CAyGbBzJxQff4zGkyfD+dQpYiJoGB88T/eehQVVtxkjKv6779I1c/gwtWWUgiRJCAkJUV6+fLnQyMjoiFKpvG1kZGQH4I3WrVvXe/PNN03Mzc2NBUHQL0VKGzC2DgDAcRcBXAfwwTPfhkrA87ytmZlZ5Zne+Hiaa4SH1/q7JEnC9u3b80VRXCGXy0/WekAD/jN4AVSPDDDgv4d58+b9KEnS61evXn3+BtD6QuPG9MNkYUHVlZiYp/M9SUlUbZw+nSpsLwk6duyI1q1bi1u3bsUPP/wgZWsr4MXz1Ms5YgRVSmqBlJQUHDt2TPDz88OTPY0AMHHiRADAwYMHa/U9GrR2cUFHR0e4zpkDKysretPVlQItU1MYDxiAj774Qhh27hxuzJ+PzMxMvXxvMUaNIpuu6lCZRdyHHxLteuhQ+v/8+dSrXRRonzx5Uly5ciWLjo7G8OHD9XYvNy9KqhgbG7P+/ftXHegwRq8BA6hKf+RISdX40CHa5gYNKNjRJmBasoSqcSEhVDXV4LffaP1Ll4ALF+g9b2+qvO7YQbRhbc6fhQUFCw8flgjqVQAjIyN4eHigbdu2UCgU2LFjR8ULKpUlKtEAmjZtilmzZqFnz56IiIjAsmXL2N9//11lJS0yMhKpqanP7lm8eDG1iCgUFJCZmJAY3erVRAOfMoWE6qZMoaTHc0JzXZN76ekU2J8/T0JjNAjtV1gYORKsW0fX5Jo1uokYVoJ69erB3NycDR8+XKf1bGxs4NixI9opFIiJieFWrlwJExMTqcuiRaiXlAQfHx8cO3ZM+iEggN1QKsGqsRKMiYlBWFgYunTpwoodA9LTKVF34QLQqxf1rMvlgL8/ojt2xIbJkzFszhyOu3qV2jSuXqVkyZkz9Pvp7k69wrNmUVVcqaR7MCKiXP97eHg4u3LlSoxarW42Z86cYQsWLJg7d+7c8Uql0uXWrVuX9uzZk29jY8PJZDIPnQ6UftEDwDxw3BRwnA4Ur6cHY2PjhiZV6c0cPUrCkHpofzh58qQ6JSXlulqtXlTrwQz4T8EQbBtgwFOCkZHR0I4dOz7jJudnAJmMBGWcnctb2tQWjFH2PzSUhEpqoDz8vMBxHIYPHy5MnjwZ+fn5fHx8vPYrOzhQwPfddzX+/iNHjohr166Fi4uLWJmqtUYlvTqPY62xcydNOCvqebSwICaEkRFaurkBjCE1LIwUvyvz6tYVxsbUbzd4cOXLnDlD1eCKYGoKNGtG1OmffyYadpGKcFxcHM6cOSP07NmTmzFjBq/PqnxWVhYAYN68eVz9JynakgT8/Tf1zs6cSRNyjqP7DSAGRGQk/btVK92t1iIjiW78JB4/pgrlsGFlg2oXF6r4X7tG4nHXr1f/HTY2VCn66KNqFx0+fDhatmzJjCu71yMjSbOhQYPit+rUqQMfHx+NvRUXGxtb5VzGqyIRKn3j7l1SGA8Lo/3v1o3OWWAgBdru7rQfkkT3xunTFJDOn0+idI8e6eYdXwnWr1+PgIAA/Pbbb9JXX32F7777DpcuXWIKhaJcQKlhu9y+fbv6gUWRqO7ffUd0cXv7ks8OHSLRPXNzShp26EDCal9+Wc4+S1ekp6dLjRs3rlGipO5XX6Hrp5/C19cXTZs2xQcffMAjKgrw8YGXlxdmDBvGjwsM5A4eOiR99913UFRiXXfv3j3s2LEDPj4+oq+vL1fsNrFtG1mfhYQQU6EULl26xJp17SqZ1a1LVl+rV1PCKCCg5Lp47TWyUIyLoz7uEycoibFvX7ltOHnypEKpVL4vl8vTS78vl8tzlErlgocPH4o2NjZgjLWuybHSCxhTgrHHAMwA+IHj6jwdwQ7twfN8w9JMojK4cIEYJ198UevvuX//Ps6fP59bWFg4WC6Xv0g0egNeABho5AYY8JSgVquDrl+//oGPj4/5U7OWeR7geaJFShIJL+3apR8FzwsXgL17abyX2Lc8IiKCmZubo23btrpNMiZNoolsdHSJIq6WePjwIS5evChMmjQJNjY2lfZfKhQK1KtXD/fu3dNp/EqhoXFXh2++QWZgIDu7eTPX5PZtmHz1FdGTR4yofUVBM+kv1ZtZBm5u5am3ajUFAt99R9TPuXOBf/8tI7YWFBTEvL29uacRqGkqLenp6bDWqKQvW0b31pQpFKR6e5e1JVqzpnZfevEi9Yhu21Z5X+9HH1Hiws2NRLk0SRSOI6qzlRUF4itW0HZVNY9evJgC5YgI0n2oAkZGRlz9+vUlVFQAOHiwjI1SafA8D2dnZ4iiyP3+++9SnTp1uKSkJKl+/foCAEiSJPn7+/PR0dFS8+bNOQD6m/hrGAdTpxLjYOdOCjjbtClPn//4YxLGmjmTPnd0pGPXuDEFYocO0fX33nsUjPXoUePN6t69O3bs2IEOHTrwZmZmKCwsxMmTJ6UDBw4IvXv3LtZnAABjY2NorLOqxauvUmJKwzwqjUGDytpsrV1LLKh58+jcffQR0cp1wNmzZ6XLly9z2dnZvJGREUtKSuIaNmyo0xhITASWLkWXoCB00ZyTzEzaDwA8x6GeuzumTZvGL62kRxoAQkJCRHd3d/Tq1avk2RoXR/fKBx8QcyE3t/gjtVqNhw8fok+fPmWv5zp1ShKD33xDr4ICoHt3CrLHjSOdkieSh0UOEqYAKqOKtLCysuLMzMwgiqJ+FOpqA8aWAQA47lcALcBxr1VLHXh6aFCpI8yiRXT+apkPyM3Nxfbt2wvUavUIuVxeRU+TAf9fYahsG2DA08MJlUoV9Oeff+YnJSVBXUuK8AsHnqcJVf/+NKmKiqr5WIwBCxZQP+NLHGgDgEql4vLy8riTJ3Vs2bK2JnGpn37SucKVnZ0NIyMjyaYKr9sDBw5g2bJlyMrKQpcuXWqfeb91iyqdWgYGY8eO5Qq6d8eygQPxzZIlyJXLwc6epcpXbRgSDRpQgkbTE/skli0r39N6/ToFnSoVBdoLFgDbtxd/nJ2djdzcXK5vdd7cNUS9Bw9QPy0Nx3/7jajcGms9MzP6m55O9FxHx5K+6toiIoISZJVNLHv2pODPyIgC6y1byi8zeDCJd505Q4mWgoLKv08mo33TBBCVIDU1FXfu3IGtrW35+Ygk0bpVKPxbWlrio48+QoMGDZCVlYXu3bsL8fHxUCqVLDc3l1+7di0eP37Mm5mZ6SfQVihIpb5VK6LLDx5M15iNDfVnl6bmA5R02LGDlMT//rv8/SII5L3csydZACqV1N6wZ0+NKt1ubm6QyWSwt7eHu7s7vL29MXPmTMHf3x9nzpxBbGxs8bJ3796FSqVCg1KsgUrx228k0DZhQsU2kBculHisc1xJX3piIrUD/fUXVXG1AGMMR48e5QVB4KZPnw43Nzdp3bp12Lt3r26UmA4d6HyUPo5NmxLVG6Dfm99+Q1RUFMzNzVGnyFayyOcbAFUsk5KSBC8vr7JJzHfeoQSY5li89x7dtyDXhvr16zMHbX7LTE1JiPDhQ2JAjBtXzqbw/v37qFOnzl9yuTyhklFyCgoKJAsLC6jVaouAgIAXhRL2BYCfALgWK5c/Y4ii2Ny6ItvHI0co+aVje8KTYIxhx44d+aIo/rRw4cKjtRrMgP8sDMG2AQY8JcjlclZYWDgmOTk56Ndff8VPP/1U+PySu08JGgrs5ctVi1RVhb//Bnx9qYL16af627bnBB8fH/j6+uLUqVP44YcfWL4uPZmDB9OENTRUp+88dOgQ8/DwqPJ5fuPGDQYACxcuhK+vb+0Ncffto35THWjMkyZNwoQJEzBkxAgsnzABCR06UM+jRsG9Mrp3dYiNJaGiJ4O/zEwKZkpTtWNjaZIdEwOEhUE6fBjR//6L0rP4x48fw9TUVNTFXqpaREQU944r/vc/eFy9Cr5lS1KfrlOHKqSffKK/79NAraYJ/JAhVHGsDKNHl7AEZs6kICkjo/xyzZpRoqJTJwocT5+ufMxWrSiwUSqJhlwBDh48yNRqNTpUpAgdG0tV9moSDlZWVnjjjTf4jz/+mOvatSvmz5+PSZMmcdbW1kwURTRp0gRvvvlmlWNUibw8urbef59stRwdqUXC15co1d5VxBGFhSX9tx98QD3xFYHnSYOgVy8S7du9m54DR47otKkcx6F9+/ZSSEhImcDU09MTHh4e7I8//sCpU6cQFxdXzLBYv3595QMeOUJCaPfv0/0+YkTFy3l6kkVY6d+4efOoNSMvj5JZ33yjVWKN4zj4+fmxzMxMpKen48033xTefvttXLt2jZd0aUExNaWk1c2bJe/duUPHGAC+/Rbo0QMuLi6QJElasmQJVq5cyb799lssXboUf/31l3js2DEIglC29aaggNpONEE7QEmhoh71qKgosWvXrto/PL79llg2gYHE+HkCiYmJBYWFhZVcOLSn+fn5Mp7nYWpqqgCgpwxdLcFYGhjbD6A7gJ3guGfKpg0ICDBXq9X1y7Xq5OeTa4Opaa2dVU6dOqV+/PjxLZVKNb9WAxnwn4Yh2DbAgKcIuVwuKpXK5UZGRln29vb/3T6ew4dp0tm5MwkwaYvMTKqIfPLJS9WfXRVMTEzQpUsXDB06FNnZ2dz9+/e1X9nIiIKY7dvJA1kLpKWlITc3l+vTp0+Vy7Vv354DgJUrV0KsJPDRGkolVa+q8FOuDPb29mjVqhU8PT2lTZs2Ieurr6i/Ny6OehkTE2l8XdCiBQWGT9IFFQqa4Jeq5rIPP4Q4YwaU8+fjUno6vhk2DP/s24c//vhDevToEQ4ePCgGBQVpryZfEXJzS4Kqli1pEm1iQkEHgNTgYIT27YvWbdvSffM02xrv3KFKfnVU4W+/pRdAwb+1NSXCKoJMRtT8gABKkPz5Z6XBNAYPpqCrEpruyJEjOZ7nsW3bNpS7V0JDa1TdFYqCWycnJ1b0/8p7wiuDWk0V7Dt36Po6TtoUAQAAIABJREFUfpz6q8+do3P5+uvVn7fQULJBGzuW/m9nR8e2KvA8VY83biTl79mzSVhLI1qnBby8vPjExMRy8zs/Pz/O2dlZffr0aWzcuBEbNmwAABQWFlYewXbvTudv8WKq3Fe2z2Zm1FqwaVPZ942MKMnk4kLX1ObN1ONc/T5wbdq0EU+cOCEBgLOzM0xMTMpY5mmFnBwSdNOgefOSgHbSJGDrVlhYWGDWrFn8uHHj4OPjw82ZMwczZsxAUlISl5CQgLfeeqtk/aws2hcbm7KJxjNngGbNoFAokJubK7i6ula/batXk/Dh3LmUyKkkkfDo0SMlgCtVjLQrMzPTJC8vD3Xr1lUDaFb9lz9DMBYIwBVAP3BcEDiumptAb/C0trbOL5c0vXOHko+vvFKrwePi4nD27Nl8pVLpL5fL/2PURQP0CUOwbYABTx8dbGxsTN5++22z56wV8vTx/fdURbt6tWwPX0X47juiTi5fXqOg7UWHhtLtrBG20hZdu1KFsTJadBFu3bqFVatWSatXr4a5uXmlk+Xs7Gzs3LkTyqIAVmuV9Kpw4ACpUxf5UNcE/v7+vLGxsXT48GEGniebqsRE2ndPz5JeZW2hUFAFtHSSIjwcOHgQKSkpiI6OxsXQUKzq14/96OCAnF9/RWRUlPj6G29g9uzZqFOnDrdu3TrExMRwnTt3hp+fn27Vf1Ekf92UFLq2x4yh91evpoldmzbAP/8AADQ9hFV5S+sFy5cDqal0HKpS5AWomj11asn/33qL+umL6LQVYtAgChaCgqgvt7LA+NtvS8TBnoBarYamWlmO+bNhAwW1NYSlpSUPAMbGxpzWFVHNs+vdd0m00NmZWAmvv06Jk4ooqRWBMaKoHj9e8t7cuVpZTBXD35+SNubmZC21eHHFbIMnoKFDVyT4NWrUKKMvvvgCcrkcrVu3Bs/z6NSpU/m5IGMk8hYeTtf2Z59Vv+1xcdSj/WTiZdgw+m3YuJESGMePEwW7mqRfw4YNhcdFjCmO49CoUSNcuXIFSVWo3JfDhAn0TNVAkkqerWFhxdRvnudhb28PDw8PyGQyWFhYoEOHDnzDhg2lMuKIBQXAjBnlbfV69QIWLcKlS5dgZWUlmZubV75NBQXErDEzo5YBTTtWUfKjNBhjyMjIMAVwo4q95AA67zY2NkZ40YJtAGBMAUoYpALgwXGNn8G3dnR0dCwrmJOQQMmv116r1cAKhQJ///13gVqtfrsKer8BBgAwBNsGGPAscDs1NVXxzTffqB/VlCb7ssDHhyi6s2fT5KwiMEaTHQcH6mXUJ1X3BcL58+clU1NTVqXtSGWYPZuCn0p6XePi4rBr1y60adOGnzBhAmbNmsVXVIldv349++GHHxAVFYVr164BAKZOnVpc+asx1q+nSWItMWLECD46OprLK6r4FtO9jx0jO5y//6ZgR5tAqV49YkiU3rfCQtw3Nmbr1q3DiZ07xQ4DB8L31i1umo8P1FFR+GDRIsHd3R0ymQzvvPMON2fOHEydOpXv06cPWlbRJwyA1LkBClD9/Oh7MzPJwzogoETDYMCAMjT28PBwtmrVKgCA7dP0qxdFqiJqqxWRnV1W+Kp1axL9OlpNG6KVFZ2n2bMpeVZR1bJlS0pE9OhBSZFSsLCwQM+ePQGg7HUZE0PLV+L7rg06duwIf39/dufOHfz888+VL5iYSD3ScXFEDY+IoMDn+nWq5NZER4Ixaq3x9S15b+pU7azqSkMQqJJ66hQwcSIJ2fn7V3lejxw5ItrZ2amre/YMHDgQkiShTp06eFxRG1Dv3uQDfuUKsZaqQ7t2tM8VPdM5jiwOX3+d1NcVCkqopaaWW5QxhpSUFBQUFMDCwqI4AzNkyBAYGxtj48aN2tMdUlPLCB8iP7+EwfHnn5QoqgQqlQoymazkuw4eJOXqGTPKLSstWIBbnTvjzJkzrHv37lVn1QcMIJbE++8TLX/iRDo2FSTjk5KSwHFcPoCqsiyFRkZG98+ePauqX7++KYAXU/iEsSQwNh6AJ4Ar4LiaZ2u1gEwm62FjY1O2in71KiXRSqvp1wBHjhwpFEVxx8KFCw/VaiAD/l/AoEZugAFPGXK5/FxAQIC1JElLN2zYMGv+/Pn8f77CHRxMf3/8kSY7ixeXfDZrFlExT5/W3bboJUJeXh6nUCg4tVpdjpIsSRI4jkNCQgIePHiAq1evSo0aNUKrVq14R0dHWFpa0mRs+XLqLSu6XiRJwtmzZ9np06c5Ly8v1qdPnyovpKSkJA6gALtekep3ra+9qCgKIIoCpNqgWbNmMDU1ZceOHWP+/v58RkYG/vnnHzZ06FDO2tqaKqeaY+fpSSrYGn/fijB7NrByJU3ieR6FsbEIVSi4UaNGwbFJEwFdu8IlIAAoLETDCuzPqk2M/PQTBR+aPt1Hj6iCranQaa77KnDv3j0GgJs+fToqtaSpLcLC6HX5svYU9du3SWhu1qyS98aOpSrkwIFVr2tkRAH1F1+QsJqtLdHMSwfPrVtTv/e1a2XUui9evIjTp0+D53m67ks+oERLLa9XT09Pbu/eveU93kWRgq3u3YmJcPs20b4fPqz9c+n+fdr/x4/LjjVpEol21QQyGYkBHj1KAfuvvxK1/MsvieZeCgkJCXzXrl2rPXB169aFl5cXwsLCxCNHjghvvPEG69ChA4dNmygoWbGCWlp69CD6tTa4cYOUy1NSynlFw9WVEgevvkp/e/Wia+bDD4uD+Xv37uHo0aNITEwE8H/snXdYFPf2xt/vDOwubekqKMUKAiqW2DXYxd69dk03ahKTGDWJ7l2TGFN+MYkaW6561diw9wY2RCJYAFFBEFBpSpO2sGXm98cRLLQFl0hy9/M8PCK7Ozu7OzP7Pee85z1Aq1atSjdiaWmJUaNG4dChQyL0dZZv04a+g0qmFTg4PJ1t/owpYnl4eHggLCyMT0lJgbOzM/V+O5ctyB49elSMO38e1kVFrNeECfD19S1/3374gZJT27Y99SEoLCQvhQpUQrdv34YgCPsVCkWFCQaFQqFWKpVdQ0JCYlxcXCwBVCJHqQOIYggYex1AHhj7HsBCiKJB2+yUSqUpz/PDn/ssrlyh86ac0WrVITk5GVFRUUUajeajl91PI/8b/HNXukaM1CEUCoWgVCojbGxsNI8fP5ampqbC1dUVlUrN/s6UVDZsbGhRKwhU9du+nYyYFIp/dKANAAMGDGC//fYbvvnmG7i6ugoeHh6clZUVVCoVzpw5UyrxtLS0FNq1a8fdv39fPH78uK6wsJCXSCRwc3HRtU1L47BoERouWMAKCwuxefNmiKIoTpw4kbm7u1e52Bw5ciQCAgIQFBSEUaNGGeaFHTxIC8aXrY4/wcLCQrCzs+NFUcSNGzeQnJzMNm3aBGdnZ92DBw84Dw8PuFy/jlZjxjC+RQtaLMXFkSz1RRijgLh3b6BtW+RfvAgLV1eta0CACfbvJ6nmhQv6BXAZGXQcJyRQ3/G9e2TYpdPRgr2oiLZTiQN8eQwePJiLiYnB9evXnxvDZFC2bqX9rE6gOnEiMGHC838bMoQMsi5e1M913t+fEjGjRlHlde/ep14MJZXNL76ga8GAAVi1apUuIyODl0gkGD9+PJ5zDVapyCjMADg7O4spKSls69atwlAnJ8760iWqJv7wA8n81617+l4Z4rrk4kIB1YvJlNTUp4FeTbG0JAlsz560rfx8MlabPx9o1QoAoFKpmL7fLYMGDQIAfufOnTh+/Dhr3bo1tRzI5TSObNs2kn/ri5cXsH59xYolxkj9kJBAM6pHjADWroU6NBRRXbrg6NGjsLCwEGfNmsXKU35kZWXB1NRU/8q2XE7y/Xv3SPqt01HAnJ5OCUOFosKxZE5OTuB5HhzHUQW8ZLTbM5w9exaRkZFsVlYWLKOiwH7+uexJV1RE58P586S+KQmsRZGSPUuXVui4n5OTo9LpdFeqepkKhSLtm2++WXf37t1PAdR9CZ0o3gZjDgD8APiAsRsGDrgn29jY6J5LaC5dSu0hL4FOp8PevXsLtFrtHIVCUXVPhxEjMAbbRoz8laRmZ2dLV69erdbpdOmNGze2mzRp0j802n5CSd/qvHm0oG3XjqRz/9QkwzMcOXJEBMDefvtthIaGctevX9epVCrwPM86duzIWVlZoWHDhnBycipZlTIAvCAIiIyMRFJSEh/fuzfaf/89fmMMGpkM3t7ewogRI/TW3UdFRYkAmHM51ZgaoVJRcEkLdIPg6+vLnzt3DuHh4WJeXh4bNWoUYmNjRcYY//rrr+PmzZu4deuWEGRmhrflcmbl4AA8egRtfj5MPvyQKtklFVGOIynwkz7jtNatkWdlxaFVKwoaCwoqD0CvXiU5sVJJrtMzZ1Kv7KJFtDD+6aen961BxVWr1WLbtm2iVCqFp6en4eUtajXw9dckk61u+0J8PFXrMzOf/3vXrhRs6Tv7mTGSn585Q+Z07ds/f7x4e9Oid8AAZGdn8+3bt0f//v0hkTzTWvn4MSVNrl6t3muogOnjxrGcuXNxKj2d+zMuDl2kUli97LjCiggOpmTHmjVlb9u9m6r1+phnVUXJyKjCQgoAd+8GYmIgNG0KjUaD6p7z3bt3R9zt20gbPFhssGcPw9ixpKoZPPh5N/+q4DhqJ/rsM0pmVLDv2mbNkPL22wIzM+OiR48WuH37uPo7dohdFy9mffr3r/DcyMzMFPLz8/nCwkL9lSGXLtH56+ZG+9e9OyWAe/Qo23v9DPfu3YNOp0MDBwdg9mwyf3sm2L5+/TpCQkIwdepUWFXkmJ+XR+fVrFllK6rFxdQSUMkM8nv37mkAXNbnZWq12jUAPgXwkhmdvwhRzADQEYzZAUgEY2Mhivo7AVaCiYnJTGdn56cXwSNHaD3yEh4QAHD48GFVQUFBiCiKW192H43872AMto0Y+es4y/P8Ao1GEyeK4pm4uLjMW7duwcbGBvv37y9o1qyZSd++faX/SIn5N99QNcHSkhY4/v60eGnQoHadmF8hSUlJzN3dHc7OziVVZb1KwRzHwdfXF76+vvQHT0988uefYAsWgKvmLKo+ffqw27dvQ/VkJJZarYapqWnNpeQnTpCs+J13avb4cujWrRvq16+PnJwc5uvrCxMTk1LndAB4jaqb3M8//yysW7eOtW7dGklOTkK2UslNP39eNMnKYraHD1MQVyLRdXYGVq6E16+/Qt20KVdw8iQsDh9+3glaEMgIq0EDGi+1Zg0tfv/8k25PTHxa5TTQ671z5w7S0tLY/Pnzq5as14Tz50l5sGhR9c+rhg2puv0igwdTVe7+ff0N8XieAgiOI0m/pyc91tSUnqNLFzxcsACmtrYYOHBgWef3/fspYHvZCQWHDwObN8N00yY4pqWhz+zZWBMWBsdhw9C2trwisrMr9hg4cKBqV/jqYm5ObuEA8MMPEOfNg3z4cNhmZlZLddGwYUNMGTQIunXrWPDZs0J3OzsOBw5U3bNfHjxPx+FXX1WY9LkeGYnjAwdy9c3MhN4bNjB+7ly4q9UM335LkvIKjOg6d+7MXb16FcuXL8ecOXMg1+f9HDnyaUKOMXJVF0VK/FZiYBkdHQ0PDw8dYmJ4bWQk8hhDxp07EAQBaWlpOHv2LGxsbCjov3uXevKfDah/+43UIcuXU5/2sxQVkUv7+vXUIlAB+fn5UgB6jbRQKBTxSqUSqCujv/RFFLPA2GcA7oGxfgBOl3VL1B+lUsmkUqljhw4d6CQvGdW2cOFLKbLi4+MRHR1dpNFoRlUm6zdi5EWMwbYRI38RTy7O35X8X6lUvnn8+PEVRUVFTK1Wf5aZmbm0RYsWUrdKMu1/WySSp+7Sw4eTodLixRR8d+lCQZKn56vdRwMS+mRMz5QpU15+Y6+9Bn7PHurP7Nq1Wg91cHCAVCrF+fPnkZ6eLsbExDBnZ2fxrbfeYjUKuHfsILd5A1OlGRmA9957j7ty5Qqio6MFBwcHbvDHH2O7iwuyN23C+6dPQ+XuDvtly2Bx9y4Fa2ZmgLs73JOSoON5OgbValpoL11KC+PgYKpufvgh9ZA6Oz9dFNdCm0PJyLWsrKxqVx6r5PffKcC9erVmpoMyGcnsi4qeD5AsLUmCu3t39R3ie/em/VEqgdu3SYXg7Aw4OEB64AC8Bw3SmZiYlF39JiSQqqAm5OVREPOvf1Gw7ukJSKUQjxzBrpUrRW9vb9a2bduabbsqoqLI+Xro0PJvHzOGVD5DhtTO88+bh2s9eoj1V69m3KRJ5Pvw+uv6Vaa3bYNr27a4c/Yszu3cyXU8eBCSZ+ayi6KI8+fP61JSUpCVlcUJgiB2795dbNu2bdnPz8aGDO5enHv/zLauXLkieHl7c6NGjeJQUED90P/+N/VY9+5NyoZy2iwcHR3x/vvvY/fu3Vi+fDkWLVqEKnOQtra07QMH6P/+/kBkJH3v5OdXeL44OTkhYeNGvnD2bKyYNQtFHAeJRCLyPA+NRsMcHR1FQRCwYcMGNJbJhD75+by5Wg2JiQklp37+mV7DsyZ5JURG0nlVSbJAEARoNBopgKzKX2AZDNN/8VciitufjAT7FcBaAD/XdFOMsfctLS0dG5WoDSIj6XpSMl+9BhQWFiIgIECl0WhGKhSK/BpvyMj/JP9MG2AjRv4ebMrNzZ2qVquHA9iu0+msbW1tX/U+1T716pE77Lp1FLjJ5STV7dOH5H7lueL+zTh9+jS8vLyqXgTqg1xOPbA3bujvLP0M/fr1AwCkpqaiZ8+eSElJYQEBAeK5c+fKHQ1UIZGRVD3u06fa+2AIZDIZunXrhnfeeYcbNWoUnJyc8MYbbzBHR0fhj9Gjxc0eHjj4ySdQDxsGdO4M3YIFyEtJEXe++aZg2akT8P77VNU4eZL6NX/9lYIjgIyrDB38loOPjw/atWunXb9+fWlCxiAUFlJAm539cu7+H39MQfGLTJ78tF9dT1JSUnDu3Dl6zxUKCjpiYigRYmWF9BUr8Dg/n8ejR88/8PFj6m2uzlg5USTn9VatKKnStCn1e48aRQZiPA+VSoWsrCzWpUsX/bdbXT75pFyn6lJataJZ27WEKIo4duoUEwcMEHDyJBnRtW1LAX5VhcItW4CDB9G8eXP4xceLV3x9BfEZM7fr16+L58+f53U6He/m5sZMTU258PBwtmbNGnHz5s26whd70dPSKOjOyyvzVGlpaUhPT+cGlbQXKBSkxvDxoTaQI0eoZWPtWkqQvYCjo2Opg71euLiQ4V6J4mDXLqr6X71aaVKt82uvocjDAwemThVGTZ6MRYsWYd68eczW1lasV6+e7v3332fvv/8+a9++PRMbNOA3DB2q+++XX0Lr6UktK7dvl++mr1KRb8GlS5UqUBhjMDU1LQZQX/8XCw2Al2tMflWIYjGANgBWg7GdYKza/UpKpbKDKIorR48ebcFxHF1LFi4s9TOoKYcPH1aJorhJoVCce6kNGfmfxFjZNmLkFaFQKAQAewBAqVRyJiYmuQEBAabm5uacg4MD16dPH1ODBGt1FcZoIeLjQxW1a9eor/b33+lv9vbAuHHV7z2tA3h6euLevXsCDJXQ7NOH1AB2dlQdqwbt27dH+/btgSfuvc7Ozti5cye7desWzp49i9GjR8PNzQ1WVlYQRRGiKJafJNi/n8al1KFj0tLSEu+//37pDiUkJODHVq3gtmSJMOHUKc4KYJNnzmTcjRsU9PE8JS1eIUOHDjWJi4sTCwsLn1tlHzt2DMnJycjMzBT79evH2rVrp98Gw8IoyE5IePlqfEBA+f3ELi40Wm3NGmjffRc3btzAgwcPoNPp0KtXL+Tk5ODUqVOws7ND165dER0djeDg4NJjqUePHtQ2cvkyNF9+iUMnTwo3HBy4aZmZAmbN4p5zhb53j4LlZ53Jy0OrpUCsRw+aCe7nR5VciaRc87yS2ebbtm0T582bZ/jeFVGkNovKEhJTppRxDjckxcXFEAQB3t7eHEoSt6GhlOQoGYv39df0WZZQVERS8WNPJhhlZ+M1lYptsrdHyr59pR4RBw8eZI0aNcLkyZMBAF999VVpW0txcTH3ww8/YMGCBaUzvtGgATmal/M5RkVFCXZ2dpDJZE8vJlIp8N13FIhqtWSmt3gxJcKWL39+n0Hni42NjaBXa42DA6lysrPpe+XIEVJsHD9Oz1EB3MKFeDMjA9i0iQMombFnzx5dQUEB++CDD3iA2n56lUxIsLDgT02fjrC2bcV2TZowaUW79vXXNL/8RWn5CzDGYGZmptFoNA6owPRMqVQ6AihSKBR5SqWS43k+U6fTNVAqlbxCoTCow/dfgihSdoWxSAD1n5ioZeorK+d5/pMnXij0h7t3yTPiJc67qKgoxMfHP1Kr1Z9WfW8jRspiDLaNGKkDPHEr7/PgwYMuPM83jo2N/Sg/P1/o2LEj17AmM17/bvA89el16ECLvzt3KLj08Hg62qZjx+d7busomZmZiI6OhkFVCoxRdWr5ckpMvLDwrA4eHh5YvHgxvv76a+h0Opw8eVJXWFjIe3p64u7du9BqtfDy8tL5+/vzpQvnwkIyEnpSJa+rNBZFfOjmhojiYu5es2Zi/a5dmaW7O42cqkNIJBLxWR1/dnY2Ll++jJYtW+rkcjl/6NAh3L9/Hz179qz6OPriC5LDVrFw14vdu2m0WnmGTePHI3PQIKx89Oi5atz169dLf3/w4AEiIyMBABMnTgRjDLt27UJ4eLjQoEEDLjMzU1fcuzff4vFjtuDiRUhWruSQnEzu8iWtBJs2VTxbWxTpWPzjD+pTvn+fqslDh1JQ17FjhS+NMQYPDw/ExMSw5ORkGPS6KoqAqyuwahUZXlXEokXU/1/NhJm+hIWFwcTEBPbP9mrXr08/LVqQrPnOHTJwW7CAAuIDB8jJvETafvIkJEOHYvTAgWz9+vW4c+cOGGNgjGHGjBmlmzU3NxcsLCwwefJkbtOmTYKHhwcvebH32MmJtnvwYGmSLjMzE9cCAzkbBwcgOZlumzKFzNhyc8klvkULUgh88w31QI8aRe+tpyfS0tJw4MABobCwkJs1a5b+mb+NGynoGjuWAu+WLUnlUkmwjcaN6bmfcOrUKSEpKYnNnj27bIy/ZQvg4IDOs2djc1CQELxiBT9p0qSy7SJFRXTMViCxf5EnMaZlRbczxn4QRXHakiVLMiUSSaSDg4NVYWFhfk5OTlcAF/R6krqIKH4DAGAsBEAcgKlVPUSpVDY1NTUdUqqYiIykFqGwsBrvRk5ODg4fPqxSq9UjFQrF38N4zkidwxhsGzFSR1AoFOEAwgFAqVQeiYyM/CAuLq7/vHnz/n6l3ZdBJiPJV6tWVKk6fBg4epSqL7m5ZLDUvn2dqrA+y+7duwVXV1duwoQJht3BFi1ogfj997QIfUk+++wzAIBEIuEDAwPFqKgowd/fnxcEASdOnOCkUqk4YMAAxnEcKQ6Cgp66y9c1ioqoyrlkCSweP0bXffuAN99k0GrL9iDXAVxdXcULFy4gJydH8Pf357Zu3apr3bo1GzlyJK9Wq2FhYYGoqCjcvHlTnDdvHitjIAbQ69q2jYIRQyWh4uIqNIwKzctDQteuGGZlBe85cyCKIniex+3bt+Hp6VlqcqbT6aDRaEoN4GbNmoVbt26xpKQkXevWrTlXV1e4NGrE+NWrqeKanU1tJIcO0ezh/fupv/ZZkpOpOtm0KbWezJhBsnQzs/JN3SqgXbt2iImJQXh4uGGD7ZKRc+X15j7LBx9QT3ItkZeXJzRo0ACNGjUqe+1p0IDc4dPTaX9PnaLPe8YMUkUA9O/Ro8D338Pe3h5NmjQRd+7cyVxdXQU3N7fnAsxPPvmk9D9yuZyzl8lEducOQ4sWwOrVlACysqIKbng4sHkzxOBgbJ04Ufzkp5+YsGgRtXFs2/Y0WWJmRgH66tWUSBk+nBzAPT2BSZOQq1Bg040baOTqihkzZlRvTn2vXk+NyJKT6d+33qr4/m+/TceltzcAIDQ0VLxy5Qp766232HPPGxxMCeG9ewFbW1ipVJg1axZ/8uRJbNiwAQ4ODsL48eO50qTZ22/Tsbx8uV677e7ubhIVFdUBQEh5t4ui+AaAFFEUF6rV6l48zxfK5XLz/Pz84fg7B9tP8QfgBMaGA8iDKAaVdyelUmkukUhO9O7d27x+/Seq+99+I0VNDQ1BBUFAQEBAgSAI3yoUCsOMRjDyPwl7CcM/I0aM1CJKpfJjqVT63bhx40ya1KL08G9DVhYFfGvWULDt4UGGYXXIWE0URXz99dfo3r37U2mhISmRzW7fXqty1MTERGzduhU6nQ6TJk1Cs59+ogWxv3+tPWeN0Wqp6v7RR8Cnnz6/sGrfnsbNrV//6vavAu7fv4/t27eXOsVPnToVjRs3Lr1dp9Nh8+bNwsOHD9k777zDylS4166ln7Awg808h1ZLY9OeSK4BWnBu3rwZSUlJaBobi4mWluDWrjXM8yUkUKXXzo4Sa/n5FIC98w4FhWo1Bd9KJd33/n0632uYaAsPD8eRI0cwb9686gVqlaFWk4x9yxaSJlfG99+TAqFk0oCBWblypZCXl8e99dZbcKyqN7y4mALcZs2oumxjQ5XerCwKUAAU5uZiy4IFyLGywsBWrdDmzh3qr37rLbr+DB0KjBqFM6NGweXWLbFZeDhDaiopYEaOpOvF+vVUHba0RNKtW9h66xbmf/YZTKpymhdF8gkYNowSAm+8gfShQxHXoIHYbc0aVt359oiNJdXE0qWUtCnp3d9azgSnrCxK5gQHAzY2uHTpknj27FlMmDCBuZeoZEQRePAAuHCBpMpffklV/FatgG+/BUDTHwICAoSkpCRu0KBBgq+vL4dffiGHfz1MIQHg5s2bOHToUOj8+fOrNBtQKpUNAAwEsBEAFArFP2fUB2MKAN0B9H9RUq5UKplEItncrFmzMWPGjJExxih5l51Nc7VreH38889P4TxvAAAgAElEQVQ/haCgoAi1Wv3a31KSb6TOUDdLQ0aMGAGAlcXFxVsOHz6sn97sn05Jv/Lp0zSyRaulxWHfvlRVyn/1BqGMMcjlcsOaXz2LRALs2UPBSDXMqqqLu7s7Zj5xg765bZvwKDcXKj+/Wnu+GhEbSwvbBw9opvO8eWUrGIcOkTy1DuLi4oIPPvgA8+fPx6effvpcoA0APM9j+vTpnIODg3jixAnx1KlTTyXb+/ZRRTckxHCBNkBu4y+MOYuOjkZSUhJGjRqFIb/+Cs7FhUamGYLGjUm6/vnnVBVesIBkzhoNVRS3bCFn8eRkCgy9vGocaKvValy4cAFSqVQ0WKAN0Hvx+DGN4KqKQ4fIdbuWGDJkCKdWq3H27NnK75ifT9ePvDyS2h45QompyZPpNj8/oFs3mGdl4e0DB/CWuzvamJlRYqe4mEzXfH3JwX/7duhefx17e/ZkuuRkOgdPn6Ye8SZNKAjt3h2wtMQVQJDJZEKVgTZA22ncmI7x7Gzgp59QOGcONBkZLHrmTLHU3FBfLC3pOiGK5FQ/fDh5gryISkWfU2QkBLkc586dE86ePYtJkyY9DbQBqlAPGwZMmECvESAV1pNAGwAkEgkmTZrE9evXD8ePH+cwdy45YusZaAM0qUGtVrdXKpVVHmAKhSIN/4xqdllEUQmgP4AlYOwAGOMACrQZY/M4jhs7dOhQCrTVauD//o9aO2p4fczLy0NgYGCxWq2eZAy0jbwsxmDbiJE6ikKhUJuYmGgKCgqk2dnZr3p36hYtW1JQMGcOBVMZGVRtWbyYTIoyMl7Zrnl5eQkODg4VDNo1AI0akWGanjLEmmJvb4958+ahybVr7HJhoRgUFFQ3FhxhYbSgtbOjRbOLS/mmXgA5jM+c+UqPh8qQyWSQyWSwsLAo93bGGPz9/bmYmBgWEhKCsLAwAWlp1NealmZ4efzEiVSlfYa9e/cCoOSAjb099f8uXWq457S2JsmxtzfNCf/Pfyjgu3+fgnBra4PI5LOzs5GbmwtLS0vDyfny8ujYCgrSLwlw/Dj1DNcS7u7ueOutt3Dz5k1kVHbMv/02JTekUjLVmzaN3LMtLYH//pf+n5UFnD4NbvVq6gEfMoQk5mZmdN0dMoQSDB07ou+QIdDpdMjKKmdClYUFkJkJuLggMTGRc3V1rd6608qK5nV36YLGq1fD6403cFunY5offqBrvb7qTGdn+n4oKqIguXHj8kcprlgB8fffEX3zJn7++WcxLCwMkydPZq6urnT7wYOkrlqwgCrfzyb4tm6l4PsF7O3tocvLg3b//mq70UskEvA8rwNQ/kXiGZRKpQzU3wxTU9P3qvVEfweoov07gEAADqf69fOXSCS7LCwsFOPHj5eWtK4gOJgSIDVMEIuiiN27dxcCWK5QKG4ZZueN/C9jDLaNGKnDaLXaxVqtdvuZM2f+ttXtoqIifY1Eqw9jJCtdsoR6+3r3pgXw8OG06Ll5kxaRfyEtW7bkMjIyavfaOm0aVabu3q3VpzEXBPiMGMFMR45kkZGRfLVGhRmatDQKwE6eBG7dIlfhL76ounKRkEAO139TnJ2dsfiJiZPtgwd0fN+9S1VFQ9OoUZngpcTgKTU1lf4waRI5V5cz0qlGTJ9Ofb29e1Pwt2kTVVpr2GdZEfXr10enTp2QmZnJRUREGGajGzYAo0frf/+BA8mcqxZp0KABAOD8+fPlX3Q1GrpW7tlD/09Lo8rxlSs0jiokhNQGgwbRT3Iy9VA/eECtO19/TVL/06efM/kSBAHFxcXl75SpKYRWrVD88OHz5m3Vwd8fOHIEBVevwj0xEdm+vnSc/Pqr/tf4336jY3faNEp6PDNHHADE9HTE9+2L34cMEY8cPSp07NiRffrpp5yLiwudF8XFZLSWm0vV6ReTZC4u5fbkN2nSBJ2Li4VDy5bpUAOvAGtrazWAllXdT6FQFAFoDcDl888/N1CvR91BqVSaLlEq+363bFnP4yNGRHYNDT3SqnnzYe+99555qeogPf1pVbuGhIaGCmlpafEajUZhmD038r8O/+8XjUiMGDFSZ/Dz8ys4e/ZsZn5+/tSuXbuaMAMvQA1NUVERCgsLIZVKodVqsWfPHu3+/fs5FxcX2NnZ1e6T8zy5Tnt5UUBgbU0LykOHSOqZkUGyxlp+D+Pj43H//n1dly5dai/gtrIiue3Jk1Tlrq3XdOQIcOYMhHHjcP36dSQkJIi+vr7sLx1JVyKXb9kSMDWlisXIkfq/5unTabZ7HTXU0wfGGNq1bQuXqVPZ7bg4sbBLF5aQkIAGDRrAoNeEoCDqyX2PimLZ2dlISkpCVlYW+vXrR6ZnpqYkIT506Gnfa3XJzQV++QXo1o2OsRYtSNL71ltUcfz8czJPM7D7vZubGy5cuACZTAbPl/V6EEWgc2dSTugrVU1Kosc0avRyz10JHMfB1NQUoaGhrFWrVs/3psfF0TVy7lyUjgbr1QtISSGVCGNUuXZzo+tlvXokGf/wQ+rp7tmTkjy3bpGzuZcXyfzDw3EZgLtKBQdv77LnmokJsoKDEWFhAY927WBmZlY6iq0yRFGESqWCKIpQq9UoFgQ4DhmCoPBwmD5+jIaCQJXqqCja16oC+cREmrX9ySckc+/dm45nAI8ePcLjHj3E5EuXYD52LJs8eTJzc3Ojx+l01K4UFUXJoG7dyt++uzvd9uI5eeECXL7+mu1v0IBr6OZW7e/CnJwcPjU1NbVnz55nqrqvn5/fQz8/v9xqPUEdR6lU+gQHB882MTHZ7ezsPKhbt26+rqNGWdp/+inz4DhesmQJKS04jtqLLCyqNiusgLS0NOzbt69Qo9G8rlAoMg38Uoz8j2I0SDNipI6jVCqtJRJJqJ2dneuMGTPMy4xXqQNER0fj8uXLeWlpaWZqtdrE09MT9+/fLy4qKsrU6XTOADBlyhS8EqO39HQgPp4kfoGBNMu1eXNaKNZCkLp9+3bExsZCoajlpLhaDfzwA1V89J3JXF0WLwa6dUNhjx7YvXu3mJCQwAYNGiS89tprf03kGhdHC+JDhyhRUtXs5fKIiqKgMC+v1hMttUZhIYTQUOQ0bowVmzeDfxLcjR8/Hs0NWeFWqSgx9STIWLdunZiamsoA4JNPPoFliQHY/fvA++/TCC65XP/t5+RQpdTSkiSed+6QjPn6daqitmxJz71+/dPJA3PnGmasGWhM2YEDB/DBBx+8/Gi+oUNJmlwds7gLFyiZUIvBNgBoNBp89913sLW1xaxZs+iPokjHf1gY8NprFEBevUpBqqtr+efGjz/SyK0bN8pWcUu2GRQE5OQg7O5d1FuxAnZvvw0rjYZk6EuXAllZOH7rli48PJx3i4lBVvv2uryCAr5t27YYOHBg6bFcdtMifvzxx1IDwZKZ7c2aNRNjY2OZp6srxhcV0RxxFxe6HnbvXvnotZQU+g64fZuOubVrSz+Lndu36yzPneMH/PgjTJ41ugsKAho2BK5dowDOxqbi7Scl0XXqWT8NUaRrT2oqTiQm4sqVKxg0aJDo6+ur98Xo3r17+OOPP5LVarWrQqGovRalOohSqXQHkODr61vUuXNnWanTeAkPHtCEgh07KEH3xhvkQ1DeBIcqyMvLw5o1a1QqlWrG4sWLdxpi/40YAYyVbSNG6jx+fn7FQUFBa1Uq1ScuLi6yWq8QV5PExETs3LmzKCcn5wudTrcDwNePHz/2Kioq+j9RFCcCWALAPT4+3qdr165/fXnR0pIWY4MHUz9qWBj13UVGkmTS1fWl5la/iI2NDa5du4aGDRvWXDKpDzxPVZoNG6i6begkzLVrVHX87DOYmpqiTZs2LCkpCXfv3hU7duxYu1FrYCAF+pMnU7WoRGJcExwdycHdze1vGWwXFRXhcv/+YJs2YYulJTRaLaytrQWJRKJzd3fn6tWrV3rf69ev6xITE1nDhg1ZjSreKhUwYkTpSKQ///wThYWFbMSIEXB9VpZpbU3Hm0YDvWSxhYVUQZw4kfqW33+f3ONLKqCZmXQefvopBdZyOVVY8/IoIG/RomaJFgCHDx/WXb58Gebm5iwgIAA9evSAl5dXjbb1HC1bAh060KgqfZk9m15XLbmRl8DzPLy8vBASEgIzMzNqBWjXjnrhS3rGv/iCqtOffVbxedG1K52DBw5Q4Nyv3/M+AYxRcOnlhYbduuGgvb1408pKbN22LWOpqfS5DR6Mx8HBnAXHYXRAALp8+CHn0rEjjp0+jfPnz6N79+7gOA7p6ekIDAzUhYSEICcnh+3atQsqlQpz585FmzZtUK9ePfj5+SEmJoY1aNAAo8aPB9+5M+3jli1Aaiq9txcukHqgvCA+I4PGJiYmUnvJtGl0LOfno8mwYdz57t2Ftr17s9IEQF4eVbQ7d6Z2gao8EuRyUgE8W7X//Xf628KFaNasGerVq4dDhw4xBweHqh3jSzcrx7Vr17iioqJwPz+/eL0e9DdHqVS2Cw4O/lQUxZ2NGzcuGD9+vLlleW7/cjnNab9xg1QaixcDHTtW+/nUajU2btxYWFBQsGzRokW/GeAlGDFSijHYNmLkb4Cfn59w8eLFDk5OTl4GnQ/7koSEhKj37t3LSySS/3755Zdf+Pn5Rfr5+aX26NFjo5+fX5ifnx/8/PzEc+fOyTUazWi/V+1obWFBC+TBgymIS06myll2Ni3EbG2rHt9TBZcuXUJycjL69++PWlchuLtT76RcThUzQ7J8OVXAnlTNtVotTpw4ITLGOGtra1y7dk0QBIGVl1AokX+a6uM6/CxXrlAPaUoKVUH9/QEfn5d7HYzRNk+cqD0FgAHR6XTYu3evYGtryxhjuPrLL8IZJyeW5e8vtO3cmbVt2xYeHh4sIiKCOTs7M41Gg9jYWOzbt0+MiIjg4uLiWPv27SGtSXKC5ykAmzkTYAz37t1jDx8+RK9evcqauOXlUW/kqFGVS/QFgczsOnUC5s+n4O1ZVCrqCf70Uwq6jx+ncxSg469nT0q2hIdTNbkaaLVa7Ny5k8vOzmYxMTEiY4yNHj365c/LOXPoWGrbtnqPa9iQHmfA5F5FyGQyREREiDzPMw8PDwqKBwyga2BYGFWAp0yp2kXd3JyUQKGh5Fh+5UqFYwebN2/Ozp0/L97IzxfTvb1FxxYtmNknn+BocTH4oiLRp317hsGDYdutG5rExyOlXj10vHMHUQ8fYsexYzAxNWUymYwlJiYKXbt25SZOnAiZTAZLS0s0bNgQVlZW8PX1hY+Pz9OKuKUleXQ4OpIigudphniHDmWv5TY2dC1YvZqSPSWfQ3IyTHJzEe3lJUZGRqJt48YMgwbR6/7xx9JZ21XCGLVHuLg8rYBnZFCy74mJo4ODAwoLCxERESG0a9dOr6QYYwxSqVSSkJDQPigo6Hc/P7+6YVZZCyiVSqvQ0NAtEolkWfv27bsMGzaM79Spk6TK1iVRpID7+++r7UAuiiL27NmjSktLO6jRaD585esUI/84qq+zMGLEyF+OUqnsaWpqOqi0h6wOkJGRgVOnTkkAbCkuLv6yirtfBICAgADVmDFjzF557zljVEl75x1y5j1/nhaTcXEkLxw2jCoZNZCiXb9+He3atUO5Wfja4McfyZQnMJBkrYYgL4/MkIYPf+7PgiCwvLw8HDt2TJDL5dyVK1cwc+ZMWFhYgOd5qFQqxMTEICIiAvfu3YOdnR2mTJkCm8qklyXPZ2FB/dVjxlDfsCFdmy9fpgX4m28abpsGRhAE3LhxA8HBweKjR4+4u3fvQp6YiKlbtnBeoaGw8/YuXW2uXr1a0Gg03OnTp2FmZqaTSqVwc3PjXV1dERMTA6saVoFhYkI+AFotIJHAyckJN27cgIODQ9n7dupE51FCQvmjjA4fpopefDxJ+StKBp0+TUqTr74CoqPJ6fndd5/ezhjt040bwLZtFKzq2W8dFxcHgAyqpkyZYpiLjiiSDLkmI4VCQqjC7+JikF2pjMjISKhUKrH/48cMnTvT9Q2gc2H4cFKuPDFTqxILC2DFCvp8PvqIqtxDhpSpiJubm2P27NnchQsXcPv2bURGRmLcuHEwd3DA7ZwchkWLSGFy7BiYWg2zHTvEqIAAFtW0KWbfugVrjmM4ehTYv5+Hs7P+PgtSKSXmPDxIPeDjQ7O5Fy6kQLcExuh4bNaM2iUKC+kzOXkS7JdfMDQzk9u9eDFSOnaEs48PtZ9UN2m1dy9VVt3cyJDNxoYUHc/w+uuvIywsjFu2bBkWLFiAU6dO6a5cucJzHAdBENQ+Pj7MycnJ1MLCAvXr14dUKkWrVq1w7ty5Fjqd7qpSqWz9T5STK5VKW4lEcqxp06a+w4cPl+qdFPvxRzqvjhyp0fNevXpVvHv3bqparX5DoVAYe2uNGBxjsG3EyN8AmUz2Vd++fc3L9Cu9QqysrGBjY6MpLCyULVy4MK2y+yoUinilUml98+bNx5mZmeUv3l8VjNHs09dfpyrb1askSzxwgBb23btTBauKRVdRUREuXLggiqKIwYMH/3XZBImEpJELF9LYHkNw8iQQEfFccGpiYoIvvvgCmZmZsLe35wBg165dwooVKzhBEODl5SXk5ORw6enpJeOVWFZWFgRBgFarhVqtRl5eHurXr4+HDx9i3bp1GDVqFLwsLakKtXcvPWdtGJnNmUM/dZTCwkIcP35ciI2NZS1btoS1tbXO9O5drt6AAcx88WKYvxAUTZgwgYuOjkbbtm1hbm5eGvUVFRUhIiICOTk5VSc4KsLPD9i4EY88PREYGFi63XJnU//73yRDfjIeDADwwQdA06aUxFqyhP5WmeqiWzfg0iX6fcQI+nkRW1sKmhYuJPfpkJAqjxNBEHD48GE4OztjrCETN1euUOKmJpw8CTg4lD9yysBotVrIZDJR1qsX9b8DZGzm6UnvdzmBtlarhckzCcaIiAhcv35d5DgOPM+zR48e6Tp+/z3fxdeXqtyrVpUxyZPJZOjXrx/69OmDffv2YevWrQDo+gHG6DNs2hQutrYY6uHBLl68iEE9esCa4yihUlhICZhHj+h6fP06VYtv3yb5fWUJxSZNaDzZmjV0LVm+nJIKc+Y8TQzY21Mw3r07/X/fPur3BmAfG4upO3Zgl7U1+i9cCKeajNa7fPnp7/v2lZvgk8lkePfdd/Hbb79h1apVYl5eHq/RaABgJ4DlERER/W/evNmMMeYpCEJTnU5nJgiClOf5AgDXAPzjAsIngfafbdq0cRs4cGDVlexn+fNPUmnUgPT0dJw4cUKl0WgGKxSKv+3UFyN1G6NBmhEjdZwlS5YMNTMz2/nRRx+ZVVuWW8sEBwcjMDBQp1Ao9ErcffvttysdHBxmjBo1yrxW+5kNQVYWcPYs8Pgx9d116ECBhZNT6UJfp9MhNjYWGRkZCAoKgkwmE8ePH89Kx5D8Veh0T8ed/OtfL7+95ctp9nGfPlXetbCwEPHx8di3bx/MzMzECRMmsEaNGmH37t1CdHR0mRVTv379EBkZKVpeuMB6nT2L+9u2ISUoSByhUNSuy3n//kCrVvQ+1REePXqEPXv2CBkZGZxOp8PYsWOpn1irpQBVqSTDHz2JiIjAgQMHMGbMGLRs2bJmTuXbtwO9euF6WhoOHDiALl26CP379y//g9FqSYEwdy49btUqCobd3Mgxvuodps8lOfmpisTNjRJeFV0fVCqqrtrbU5KpnNeYnJyMY8eOCcnJydzChQsN185x/z5VT1NTy0jBS1oneJ6HRqOBubk5GGPPfwYlveu1fB1XqVQ4sG+frteSJXz9ffuov1yloiTIihVlxpUJgoCAgADh9u3bnKOjo+6NN97gZTIZli1bJjZv3hwWFhZiWFgY99prr+Hq1atwdnZGz9u34d62LThHR0oeVBCYrl69Wnz48CFbvHgxvReiSMHzO+9ULWF/+JCuwX36ULuClRUlcQICKIC2sSGDt/LM7uLigF27KBHk4kLjzHiejrVt2+hztLN7mgj66CNg7VrkPnyI0zdv6m7dusWbmJiIVlZWgkajAcdxooWFhYm5uTlGjBgBWUWB+Jtv0rE5dCjJzyvxWElMTMR///tfmJqaXtRoNBMUCsX98u6nVCoZADOFQlFY+RtW93iy7xYKhSK/kvvYcRx3w9vb22HkyJGmel+37t6lUXTr1tVIhaZWq/Hbb78V5uXlzVy0aNHmam/AiBE9MVa2jRip4zDG/H19fWV1LdAGgGbNmiEwMJBXKpWtFApFVFX3V6vVHz18+DB75cqVX0qlUo2lpWVRz549LVu3bl33nKvs7GiBB9DC6cgRGklkbQ10745CV1cExMQgMTERAODl5YWxY8e+mtfB8ySjXLCA/n2ZntCICOqbnTtXr7ubm5ujVatWaNmyJUxMTEpf/5gxYzg3Nzc4Ojri7t27yM7Ohk6nQ9Kvv8IaYBI3N0S0bo2wM2cAjmNNo6Lg7e39XGXNoCxc+JfIdytCFEUUFxejoKAAWq0W9evXR05ODtLT07nJkydDKpWiUaNGNMro3j2q3lZzf/fv3w8ACAgIwPjx42s23srMDHj4EPInLuOVzozPz6dAKDmZZMr371PQoi9yOfWIP/uZjx9fuZGdmRkFXJs30/vk6FgmaNuwYQM4juOmTZtmkEBbFEVSCzRsCGRlQcNxgFqNtLQ0pKSkICMjQ3f79m1OpVIxgMZvMcZQv359YfLkyVxp//zIkXRNeVYmb2Di4+Pxxx9/AFot30YuF+s3bMjyk5Nhnp+P1F27UL9zZ5gAOHbsGCIiIkS5XC7m5+czc3Nz9t577+HUqVNszZo1uhkzZvAA0KFDB+bm5saio6MFe3t7burUqbhx44a459Ej1tzUFAMWL0ZGcTEerlkDDw8PxMfHw93dHUePHhXT09OF9u3b80FBQbh8+TI6duyIY8eOwe+nn2DeujX14ldGvXo0Eg4Azp2jf1NSKAiXy8kDIDiYzpXvvgMmTCA1klxOUvEFCygBGRhIVe+LF+mYXbyYAnUTE+Cnn0gmb2YGWFlBbmeHUZ6evCAIuHfvHktNTeUtLCwgCAJycnIQHx8vrF69GrNmzeLKPbaGDHlqBrh/f4XBdlFREQ4ePFhoYmLyzeeff760srfhibT5bxdoP8EfwJHvvvvuRFFR0T4AVwDcB/AIgCPHcRNMTU3/7eTkZDFs2LDqjTc9d46SSDX4zniSYFKpVKqDxkDbSG1jrGwbMVLHWbZs2Zn+/fv7tauj5k6//vqrLjs7mwEw0bffacmSJdNEUdQAaMjz/LdffvllDRogXw1F167h6Nq1aB4cDOvcXOQtWADvkSOr50pcW+zfT4Y8T9yka8RHH1FVuxoVVb1ISgIcHPCwb1/csrISm2/axGxsbFBcXIxff/0VANCiRQuMGzeuwnFAL83ateRAXBN5qJ6o1WqEh4eLWVlZuHXrFuvfvz+0Wi1CQkLErKwsBpCktl69esKjR4+4li1b6kaOHPn0BU+YQJ9hDaTKcXFxCAwMFNPS0tjgwYNx48YNYcSIEVy1JOXDh5NcV6lETEwMdu3ahX/961/PjxjLyaH38OefaeSOuzuwcmX1RloVFNCx9ttvz1d6U1Io8NFnNNeCBSTNDgkp/UwzMzOxcuVKdOzYEf7+/vrvTwWIooj9+/cLbNMmruflyzjx009CbGwsx3EcZDKZYGlpKdrY2PBeXl7w9vaGVqtFVlYWkpOTcfbsWaGoqIiTSqXgOE7sfOkSOsyezWS9er30fpWgVqvx559/wtPTE7GxseKZM2fYv3JzERMdjfCOHdGrVy80mj4dBVZWODJhAgRBgLm5uU6j0fDDhg1DVlYW7O3t0bx5czDGoNPp8Ouvv4r5+fmsdevWumHDhvGMMWzcuBGNGjUS+/XrxwA61rZv3w6e49DUwkJssWULy5PLcWXIEDE3P581a9ZMkMlkXHJyss7Hx4e/cOECeJ4Hz/Mkb5dIhHdnzuRfWs2i1QJZWdBt2oT75uZwj40lv4CTJ6mK378/Xc+++grYuZNGQK5fTxXRffvo97t39Z7moNPp8McffwjZ2dnirFmz+DLJQa2WkkAFBaSkqYB9+/YV3bp1a5dGo5n+T+4TViqVr1tbWx99/fXXzePj4wtTU1O1+fn5ErVaLTM1NS1u0qSJtmfPnhbO1fUbUSqBSZNIrVEDBU9gYKDm8uXLV9Rq9esKhUJd7Q0YMVINjMG2ESN1nGXLlgV37dq1c8+ePetkQBoWFoajR48CgKlCodBW57FKpdKVMXZ3/vz5fI3ck18B58+fx9mzZ/HxRx/B/N49cPv2kWSxxGV41KjqzR42JJmZFIDMmlWz8UJ5eVQxnDSp8nmy1UEUKXj08KDArJyZyeHh4cjNzUVYWJgoiiJr0aKFzt/fny8oKICdnR0MJi93cyO5cy32zG7cuFG4d+9e6Q7LZDKxqKiINWrUSDd+/Hg+NTUV9evXR0hICHx8fKiaXUJMDB1DVlblzzWuArVajW+//Ra9e/fGnTt3hPT0dE4mk4lz5sxheisGcnPJn0AqRW5uLpYvXw4AWLx4MZgoUguFqytVZ7/4gh7z66/kHP5C/26lBAWRA/nVq8//vUsX+vnpp6q3IQjUI5uTQxMFJkzAlStXcPjwYfTu3RstW7bUyx8iJycHcrkcHMchMTERxcXFyM7OFpOTk4W4uDie4zjh7eHDuej168UrLi7C9OnTeXNzc71UGIIgICEhAYIg4PaqVcIjCwvm2Lmz0K9fP75CKbIeZGZmwtzcHDt37hTu37/PCYIAMzMzYdy4cZz7jh04HxQknuvWjTk/fIg+48bB0dcXFtbWSElJwYMHD+Dj41N+Hz6ovSExMREdOnQolcEHBwcjKipKmDlzZumx/fjxY5iZmUGtVuPi//2frl1cHO/4xRfQSaXgGzdGWloatm7dKmq1Wjg5ObG8vDxx1qxZTK1WQ+PggIyvvoL7Rx8hJiYGR48e1QmCAAs+/tkAACAASURBVI1Gw/Xp04e5urpCKpWisLAQpqamFY7JEgQBgYGBuHLlilhcXMzGjh0LrwYNnnpZWFtT8mbLFkpCfvQRUFxMx/HOnUD9+nS95jiqkmo0pJa4d4/OhWbNKAEkk1EfOQBto0YI2bBBREaG2G3mTI5PSaHrZUwMVdFPn35q+lgOWVlZWL16dYFWq3VRKBTZNT4I/gYolUpznucz586dK3t2ooEgCDW/rqelkddDSAh9ftXk/v372LJlS65Go/FUKBSpNdsJI0b0xxhsGzFSx/n2228P+/r69vH396+9clwNEEURQUFBuuDgYB7AmwqFYkNNtrNs2bIzHMd1ASDOmDFDpu/s0VfF4cOHhcTERHH27NlPkx9qNRAbCxw6BPznP8DHHwNeXuRKW1VfoqHZu5ekkpMnV99sLCCAgpcffjDMvhw7RpLfmBiSR+vRp/9k4S0UFBRwOh1NuBk+fDh8nyQPBEFAbGwsXF1dKwwWXiUXLlxAUFAQAGDu3LmlcuwqOXaMHJTj42sUaAP03qxdu1b36NEj3tzcXJgyZQq3Zs0a1KtXT9TpdBg+fDhzqUqavmIFmVGtWgWtVotffvlFyM/P52b07AnXoUNJwqtWP5+MyckhT4PISP2P94QECtpfVDFkZNA2qvPZnjkDvPcedBcu4OtVq8CZmJQu5lu2bCna29szd3d3WFtb486dO4iLi4OlpSViYmKEJk2acNHR0bC1tRWcnZ252NhYcByH4uJiyOVy+Pv7w/P8eUpATJum/z6VgzB6NOLc3XHUxUVs0aKFMGjQoEoTqAkJCTh69Cg4jhP69u3LSaVSmJmZ4dKlS7pr167xAGBubi7MmTOHu3HjBny9vGCyZAnw7bdITUtD+vz5oldwMJPcuVMz9/RnCAoKQkREhDh37tzKy4jr1gHffkvjxRwcIIoiwsPDxaNHj7LOnTtjwIABAICwH37Qnc7P5yGTiaIosm7duon29vYsOztbOH/+PMdxHHQ6HXQ6HXiex8iRI+H9wgiukJAQBAcHC2ZmZszf35/FxMTo0tLS2Jtvvvn8hU8UyUmd56klKD6efu/e/emMZo6ja5SFBSVOg4LIr2P0aEqmWlnRsW9pCbRpA92VK7gRHCzec3cXB7drx3EODsCDB3S7t3els56vXLmC06dP75s/f/6oGn4cfyu+++67g/369RtqEHXexYt0jRgypEbHtFqtxooVKwoLCgqmLF68eG/VjzBi5OUx9mwbMVKHUSqVnImJSc9OnTq9skBbEISyRj8gc5cngXZrffq1K6K4uLg/gM6MsVPFxcUvube1R25uLnbs2CGkp6dzY8aMef5GiYQcbn18gHnzSM597BgtDDIzaZRYz56147T9IiNH0vgsR0fq364OubnVnmVcLuvWUQA2bhw5A1tY6B1Aenh4oHnz5ty1a9cgl8sRHByMAwcO4MiRI7CzsxMfPnzIGGPgOA5jxoypXl9yVBS5XcfH1/CFlSUtLQ1Xr17VNW7cmGvevDkLCgqCXC7XtW/fntc70L53j1zAL1yocaANUK/wzJkzebVaDYlEwuU+caF++PAhA4CLFy+id+/e2LZtm9irVy9mb2//fGUdoHaIzEwAJHd/99EjLu7YMdh+/DHJbssLhG1saIZzQIB+Aen168CgQUBiYtkF8+3bZIr1ZVXTBJ+hVy/g5k3kr1iBCdu24cLMmcKDvDyuf//+iIuLE+7evYvLly/zGo0G1tbWQqNGjZCYmMh4nucePHgAALC3t4dardZNnz6df/ToEQ4cOICRI0fC3d2dXP4NMMqPW7gQLRo0AFdUxHbv3s0PHDiw3OpeQUEBdDodQkNDdRkZGby5uTm3Y8cOmJiYiBqNhsnlctapUyc4ODjAy8uLk8lk6NChAwWNhw4BS5bAKT0dTqtWMRQUvFSgnZKSgosXLyI2NhbDhg2r+gHvvAMMHkxz0devB1u3Dh06dGDm5uZo9syIuNfmzePbfvghHo4dyxw6doREIin5guF6PBnXJQgCsrOzER0dLezevZsLDg4We/fuzQoLC3H69GkBABs0aBDn7e0Nxhjs7e35VatWPa2aarX0noSHUxKybVvav759KaCujCqMJvmBA9FSrWZ/btokrtVqde8OH663JD49PV1TVFR0uep7/jMoKiraf+fOnd7t2rWr+cWthPnz6fv0hbGU+iCKIg4dOlSkVqsPGQNtI38lxmDbiJG6zUitVmtlMDfdGvDVV1/B1NRUmDt3Lrdt27YiR0dHcdiwYWbPzJEuepntKxQKDYALS5cuzcrLy3MCgOLiYtQlWbkgCFi+fDlMTU25efPmVexEC5BZy5gx9JOdTQHUihUkX37tNZK/eXrWqM9MLxijfsQvviDzKn2PnZs3qX+xZB5vTbh4kYyI7t4leZ+7O/1UE47j0L59ewBA06ZNkZGRgZSUFMTExDAPDw84OjoiLCwMO3fuBMdxGD58uCiVSpmbm1vln03LlhQMiqJB3v+ioiKsXbsWtra27OrVq4zjOFhYWAhz587VP7rJz6eZ1Rs3AgMHvvQ+ASg1BZPL5ejcuTNCn3ymMTExiImJAQBWYqamUCgAUNLgzJkzOkvGMGTcOF49dizY0qW4zJhQ4O3NtbG0BPr1q/hJ//1vcpnW6aoO7ho0oGOtvGMzJYXGa1UXnodk2jQ82rMHg19/nasnkYBr1QqdOnUq3RlRFMEYK42IUlJSsG3bNrFJkybChAkTeI7jIIoijh8/Lnh7e3Pu7u6UoPnqqxqZMJXhyBGgUyc0GzgQjDExPj6eJSQkiD4+PqykZzUpKQlbtmwBYwxNmjSBVCpFjx494OvrWxqQcuVFdQEBdL5HR5OSZOBAOh+bNq3x7p46dQp//vknGjVqJEydOpVzcXHR76Rp2JCMwQ4eBDIywKKj4d2zZ5m7mdy5A+e8vAqvURzHwd7eHj179uS8vLxw6tQpISAggOd5Hr1792bt2rVjz/o72NrawlouFy+vX886d+lC/gcODjRNYsAASmjNm1d1oK0nEokE06ZN49auXSvu2LFDnDhxol7vT2FhoQCg7szxrH3OJCQkcE/Ov5ptQa2mpNfJkzVWi4WHhwuxsbGparW67Dw2I0ZqEWOwbcRI3SYUoODT0gCVleqi1VILtkaj0Xz//fdSxljBgwcP7FUqlfr27dsSxliqKIp3DfR0n+/atWujXC5X5ebmmrm7uxcOGTLE3M7OruZf0AYiNZXauj7++OPKg7kXsbWlLPywYcCdOyR3DQwEPvmE5gbPmWOQilkZWrakqvaXXwLff6/fY9avL3cmrF4UFFD/7MiRFDQuW1az7ZQDx3GoV68e6tWrVyolB4CWLVvi8ePH2LFjB/bt21cS6IpNmzbFgwcPMHnyZGb9oiu7iQnw3nsQQ0Px+40boqurK+vTp0+NHdBv3LgBAGjWrBnXt29fnD59Gt27d9dfvqBS0SLyyBGDBQAvMmDAAAwYMABLly7Fk1m+8Pf3R0FBAS5duoSsrCzcvHkTgYGBkKhUvN+ZM9A+fox4xhD644+47+zM9Xz77arPQQcHqoifPFm5oiIvj1oLdu8u//Zx4546UFcTM1tbpHzwgaDev59rsGMHKUyekR6/+BqcnZ3x6aefMgClEVtWVhbu37/PDS1RePTpQ+PiajjH9zkiIshhG4BUKhXOnTvHp6SksMuXL0MqlcLa2lp49OgR1717d3Ts2BE7d+5k9evXFzp06MBVeYx+9RWpSfr2pecIDn6pQFsQBISEhKB///5o37599SU5ZmZkfpeQQB4Sn31W9j08epTGoWm1VSYzHBwcMGHCBL64uBgcx8HU1PT5DzMpCTh1Cv9KSmJZJ0+KqF+f4dgxalXYuJGSQFFRBm/rkUqlmDp1Klu3bh3Cw8NJYVAFcrncBECWQXekDqNQKBKWLVuWlpiY2Lhxyai16rJhA/3MmFGjhycnJ+PUqVOFGo1mgEKhKKjZThgxUjOMwbYRI3WbFI7jik1NTV9JmVelUpX86gmgvyiKOwA4xsbGjmWMCaIo/q5QKHSGeK7PP/98k1Kp/DM3N7cpgOj79++HrFy50nzw4MF6LWBqC7Vajf/+97+oV6+eIJPJaq4Db96cfkSRqiwHDpARmY8PSczbtKGKn6GYMIGqWzExZE5WGbm5JDufOLH6z3PqFEkuY2OpKllbo7tewMTEBPb29njzzTdx7tw5dOrUCYGBgUhOThby8/O5vXv3CuPGjeMsXpBla374AapDh5AyYQJLSUlBaGgoTE1NYWNjIwqCACcnJ2HQoEG8mZlZpc+fnZ2NI0eOACCTQGdnZwwaNKh6L2LECOpj37ateo+rATNmzEBCQgKkUinatm0LAIiKitKtWLGCl6hUkBcXw1GtFj1jYtjR0aNx3dW19LGRkZHoVZWDNmM0tisvr/L73bxJio+KlCvFxVQVzc6usOJZWYUsKysL9fv1o8BOpyNDrB9/1Ou41Gg02Lx5s8gYY2ZmZnSuJiYaLkDbuLH0NTVq1IiPj48Hx3H44IMPkJWVhTt37nDDhw9H/SemTzNmzKj6elNQANy6Rf3yWi1dYz77DJg586V2leM4vPbaa+KZM2fYqVOnIIoixowZU6ZvukoaNyZ1T3Ex9UgvWfL8yK+S/f3wQ70295ziKSuLnMfr16eAfvBgmH78MfbY2bHPR4yg+4gi8McfNF2hljwebGxs0LRpU929e/d4fb6rNBqNAOB/ygFbFMVTaWlp79Qo2A4MBMaOpe/LGny/FBUVYceOHYVarXa6QqG4U/0dMGLk5TAG20aM1GEUCoW4dOnSrISEhHpt2rT5y93IT58+XcTz/L0vv/wyEcC6J3/OBWC40uUzKBSKWwBuAYBSqWwIYNyRI0e2N27cGPZ6mGvVBrdv3xZFUWTvvvuuYRquGaMF5qefUiBw6RIZ70yfTovBxYupImVl9XLPY2kJbNpEI1I2bHh+vNKLHD1Kcubq9Av/8ANVilasoHmnr+jzkclkpaZLo0ePZgB4tVqNLVu2CCtXrsTYsWPRpEkTAMCDBw/wh709TN5+Wzd6wADex8cHN2/eRFhYGERRZK6uroiKimLff/89mjRpgokTJ5YZQ/bEMfm5XlsHBwedp6dn9c7Phw/pPXyyb7WNk5MTnF4YT/f+W2/xj1UqFHfsiBwbG9EzLIz9x8dH67NliwlcXCCVyWBpaSna2tqy7Oxs2FY1jqtnT6B9e3pNFQVlHAecP1/xNqRSUmOUY96q0Whw9epVnD59GiYmJtDpdBgyZAh0Oh3c3d1ha2sLuVwuZmRk0L5kZlJwHxpKBm5VqFI0Gg1yc3PZO++8A8viYmqBiI01XJA2Ywbt10cfYcSIEThy5AhcXFwgl8shl8upP7y6rF5NHgkREdT7f/IkXV8MwKBBg9jAgQMhCAJWrVqlS0hI4Ly9vasvMyox05s2jRIDlpY0LUEioetfdebJa7WkBDl8mBKVSUmkhIiNBTgOllottDod1Go1JEuXkoP46dPV3uXq4uDgwCIjIwUAVX5PSKVSnjH28v3LfyN4nq9fI0PLzEwy+zx4kNqwqokoijh48KBKrVYHLF68eE/1d8CIkZfHGGwbMVLHEQRBSEtL49q0afOXPee1a9d0Bw8e5AHIAPz2lz3xMygUCkGpVO7jef7g1q1bB86aNUtSU7nvy3DhwgWxY8eOzGDjp57FxITk5ACZCl2+TIFxXh4tyhs0oFFZNTU4atqURtf85z/Ae++Vfx9RpB99jdE2byajoXr1aN+sremnDiGRSPDmm2/yJ06cELdv384sLCxECwsL4dGjR7y7uzsmnjzJw8QE8PGBl5cXvLy8Sh/r5+fHrVmzRrx79y77+uuv0a9fP/j6+iI0NFS8desWy8jIAECV9YYNGwqTJk3izMzM/p+9M4+P4X7j+GdmN5tLEnKISIgjJEjcQtw3pe46WrRUHS3V+lWpK9stqtRR2mpLqSpp3LeWiMSZkLiTEEfIidznZq+Z+f3xJAQ5dpMNofN+vbxIdvY7M7s7az7P8XkMe4P++IOCKsUZhL0sNBpI7exgFx4OREejtlTKAEDPPn2krp9+ipPdu6Njz56cjY2NJCAggN+wYQP74YcfwtTUFCEhIXx0dDSsra0xbtw4ViqVQhAEcDwP6YQJdGNcnNi+du2pu3NpXgI+PlQSXZDhTUpKwu3btwurELjBgwdLZDIZwsLC+P3797MMw6BatWrChx9+yPA8D5PCwJKdHXDsGFV3tGhBvgmllOvnFGTlQ0JC+OFvv83iu+8oy24s3n6b/BpAn58h5TB5eobYWArazZpF1SVKJQlRI8KyLFiWRZcuXSSHDh2CUqlE9erV0aFDB/2d9guZPJn+HjyYgnsnT1KZ98SJVFVTmifA5cvAnj2UKT92jAyyRo9+IYgolUrBsixyU1Jgq9PRKMaXgLe3NxsaGoqoqKhnvk+Kw9HRkTUzM+v0Ug6s6iAxuB0sLQ14+BC4cqXcVV8RERG4d+9eskaj+aRcC4iIGAFRbIuIVGEUCoUtAMe6deu+1KblK1eucAzD/C0Igh+A4Je57+fQcBx3ITMzc3BOTk7ZmbVKoH79+nx4eDijUqkwaNCgynsfzMxIYBdm5G7fJgfdzz8H5PKnbueGiH6GoazA0aNAYiIZFz1PVBRlEp+fd/w8Dx6QU/WyZbR9BccgvQz69evHeHp6Ij09nUlPT5e0adOG+r4zM0vsZ2VZFp988gnD8zwOHz6MgIAABAQEAAADAF5eXkhNTcXDhw+RkpLC/Pzzz/zs2bP1f1MyMkh0tW79aoT2n3/SXOxLl8iluYgo5nkeGZmZ2D5/PgSJBO7u7hJHR0e0aNGC3bt3r7BhwwZGEATUrFlT6Ny5s+T48ePC0qVLMXfuXAQHB3MXLlyQjBk9Gu4rVwKJiUgQBFhYWMC2ULC6ugJ+fshRqxF29iy8vb2L96J4/30SX/PnIygoiAsJCZHY2tryAwcOZL28vJ68aO7u7qxKpYJUKoW/vz//448/SjiOkwwvKrAYhgSury9Vbhw+TK//c2RnZ+P3338HAOReuiTgzBmgYMa40XB2ppnOxiA/n87r8mXq+1+9mvrmK4HAwECEhoY+cWxPTEzEjz/+KGnbti28vb0N/14+cICy8AsW0PeZjU2xlQzIywOWL6fee4WCMuADBtC87FIYERjI83v3smV+pxkRMzMzyGQyIS8vr8z/I5ycnMBxnNfLOK6qAs/zXraGBq5Gj6ZgzOZyTRWFUqnEkSNH8jUazSi5XK4s1yIiIkZAFNsiIlWbbvb29qomTZpUujtaWFgYd/ToUUmNGjXUGRkZpgA+k8vlr9rExRbA0hEjRrwSoQ0AAwYMkDZt2hR///03PDw80MhIJZqlYmdH2T0fHzI58/MDfv6ZyloZhnp99R151bAh3cj++Scwf/6Ljxf2M5aUdRAE6rkcNowykzdvlvu0XgXOzs5wfj7I8Mkn5NrM8yUGL1iWxeDBgzFgwAAkJCSgbt26T0rH7927h23btkGj0TBmZma83gfz6BFlWAMD6e+XyUcfkXFZr15P+x6fyz4nJCTgyJEjmLJxIxJnzhTs7e2ffCiGDx/O6HQ6ZGdnw9bWVgIAnp6ezE8//cStXLlSwnGcxNXVFXv37cMQQeBtv/+e3VSjBtzd3fnRo0ez106fRp1JkwT1sWPMPzt38snJyUxkZCSmT5/+YtXIlStPMpa3bt1iHBwc+MmTJxf7RhUaFo4bN06iVCqRn59ffMvJ2LHA48fAokXkLTBlCgAgNzcXV65cwfnz51GjRg1u1KhREvPAQEml9NH/+SeVs3t6Vmyd/Hwqt3/0iEZ9LVhA2XtDzBsNIDQ0FEOHDi3s15YAwM2bNxEUFMSHhYWxUqlUMDU15WvXri2pX78+nJ2dUa1aNVy+fBk3btzgtVqtUNCOwbRp04ZGe7m6Uh/u6tXUx/34MfVgCwKVlm/fDjRvTsGJHTvI9LEseB64fx+mw4axBx4+5CYVMb6rbOLj46FWq59MUSgNOzs78Dxvo1AoHOVy+eOXcHivFIVCYQrAtdCLQC9u3CDTTkNaDIogCAL279+vFAThD7lc/p8ZsyZSNRHFtohIFUYmk43z8vJ6KTbkDg4OEgDIyMhYCmBHFRDaAKAGgMePHwtNmzatnFJuPahXrx5at27N7dmzhx04cCDj5fUSkxI2Nk/NjuLjqf9wyhSgY0e6ce/YESgYG1QikycDX31FjuhFgwXZ2WRcVCA8XmDpUioJPneO5h87OBjnnKoCHTpQxr+wjL8EpFLpC720RXsPmzVrpt+HMj+f3sstWyoutvQlO5vGwK1YQVUJ5uaAiwsJz2LIysoCAGS0b4+2Awcyz2fepVIpimanZDIZPvnkE0lycjJsbW1RrVo1JCcn45+NGwX7yEjOzNpacvfuXXbz5s3QXb0KOysrZvO2bZBKpezcuXOxZs0a/rfffoOjoyPfp08fiVWhT8GePZR5//57jB49mv3xxx+hVCpRVs+nhYVF6ds4OlK/eG4uBay+/x6PWRYnT56El5eXMHz4cAni48lYcPRoPV5gA1m0yDgtFwMH0rXo60tBsK5dK01oZ2dnQ6fTPTMjG6BpAE2aNGF1Oh2SkpKYmJgYSWRkpPDo0SPk5eUxhc73Xbp0YTMzM3Hjxg0AwPnz54UuXbpQEKdlS2pL8fcnQ0cXFwoE7dxJhmcdOxpWyTNpEhAdjbqnTyPjhx8kfn5+/DvvvMO+jNGZiYmJsLGx4VmWLVPgMwyD+vXra+7cufMWgC2VfnCvHjOWZbVardbEpDTvkEJ27aIRbVFR5TbcvHz5shAbG5uk0Wi+KNcCIiJGhBGKK90RERGpEixbtsy/U6dOo7p27Wr08uX169fna7VaDgAEQZBkZWWZy2SyWxqNpqtcLk8x9v7Ki0KhaAngCgB4eHho3n77bZlOp4MgCEhNTX3hJrCy4Hke27dvR2pqKj9r1qxXo/qLcvYsiWATE+DqVZoh+8EHJZcmBwZSOd6mTU9vzLdvJxG9ePHT7QSBfvb2prJbjYayoW8aanXJjtil8OjRI8TGxqJatWrYvXs3JBIJFi5cWPqTBIGcmLt1A779tpwHbADp6ZTp9PIiw7KwsDLLlxMSErBp0yYAgH1KCibOmAELfasnimPqVPA9e+KWlxcuXLggNIuPF7znzWNPnDqF6tWro23btkhJScH58+eRnJzMJycnsx4eHlyPHj0ktidOABcugFuxAidOnEB0dDQ3c+ZM42UpBYGCT87OwPjxUKxbBwD45JNP4DBxIlV5HDpktN09YeFCek8qIuQFgVoR4uIoKPDPP+ShUEksX75csLS0xPTp0xlDem5VKhVYlkVWVhY2btyInj17wtvb+6mxoCAA//5LAYOQEBLaHTpQFtvQ6zI7m8YqNmtGvb3VqiErKwu7du3iU1JSmEaNGqFv376MwT3mBvDHH39wzs7Okr59++q1/eXLlxEQEHBo7ty5gyvtoKoACoXCRiaThTdv3txl4MCBZUeEEhLo/53k5LKnaJRARkYGfvnll3ytVttWLpdHlWsREREjIma2RUSqMBqN5k5SUpIaZFRmNAr6Tc0BvAvgMei7gNNoNEFyubxKReDkcvlVhULRAUCNW7du7b137x4AqLVarSkAzJ49G8+Pd6oMWJZFnz59sGHDBlan05V7NrPR6NyZ/qjVVHa7fz+ZBnXpQpmuli0pk1lIr17Atm0k0nv3pptdmYwyfIWcPElrXrhAWfMysr6vNbGxwMyZdMNvADt27BAyMzMZe3t7eHp6IjExUUBBP3eJ5OcD8+bR+1KZZGaSqF60CIiIIJf46Ogyn7Zr1y4hKirqyTmMj42FxR9/UL9seRk/HuzRo2g6ahSa6nQMvv6awbx56N2795NNHBwcCk3C2NTUVBw8eJD5+eefUbNmTaHftGlMwObNfGpqKjNgwADjlgMzDJ2bRgPB3R3tGzdG6vjxcHBwoH5iTSVNZXr0qOwqlNI4e5au8atXKVBw6lS5BYk+xMfHQ6PRMOPHjy97zvpzREZGcuHh4UxKSgrbuHFjoUOHDgweP6YWmaZNafrC22/TiLa8PPKUYBjDMtmFfPUVBQ0DA5+0w9jY2OCjjz5i4+PjERwczK1bt07SvHlzYfDgwZXiu5GVlcW2b99e7+0bNWqEf/75p7dCobCWy+XZlXFMVQGJRDKrUaNGLgMGDCj7HiY7mwKSP/ygv2HncxS4jysFQfhWFNoiVQVRbIuIVGFMTU0969SpY1ShnZeXh61bt6oZhpnm6+vrb8y1Kwu5XH4BABQKRSedTjdNEITNAC6bmJjEBQQE2LZo0UJmZ2dnuDuugTg6OsLOzk44ePAgM/wludyWiakpZYQ6dACyskgwR0dTxsjNDZg7l/reJBIaEeTtTW6+yclUXnzxIgn2qCgqLz592uiOxlWSWrXotROEkvvViyE7O5txdXVFWloaIiIi4OPjU7rYXrEC+Osv6kGsbNzcgFWrqL9fTw4fPsxHRUWxAJVhv/vuu7AePbp0t3B96NyZvAaOHqVAz6FDpY6fs7e3h0ajQZ06dXir7Gy4NGnCSDZsEObOnctWWvuITIa7P/2Eh3v2oGtsLPUFy+Xk7F0ZfPttuaopntCpE1Wj9O9P467kcuMdWzGcPn0azZo142rXrq13sIPneZw8eZK7cOGCpEmTJpjQuDFMGzZksGIF8N139L3z8890LhYW1Jf9zjs06vCPPww7wJgY6H7+Gf7NmvH5zZvDws+PHTJkyDOme3Xq1MH48eMlt27dwt69e5nBgysnkaxWq5lizf5KwMrKCu7u7oiOjv4SwKJKOahXjEKhaMGy7Hxvb2+TMoM1HEdj3X75haZclJOoqCgkJSUl63S6FeVeRETEyIhiW0SkCiMIQiMbI/T4RUdHC4GBgflKpZLJy8szZrqzsgAAIABJREFUl0ql//j6+m6p+BG+XORy+RUAUwt/VigU7aOiov66du1a16ZNm6pHjhxZgTvZsmEYBlZWVrxUKn1F85rKwMaGejgBGq8THEwZ1erVSfA0aEBmSl98QX3DY8aQu/hvv5Hb+IMHFRMDrxPW1sC+fZQN1sN8b8eOHVxMTIyE53lkZmbys2bNYnU6HWQyWclKUK0mYdS9uxEP/DlCQigLlJxMAZOaNQ16ekxMDAMAY8eOfdqSERQEXL8OfPZZxY5t4EDg119pnatXS91Uo9EgJSWFnTBhAuo4OwONG+PDfv0khgRCDIXnefiFh8O5Qwddw4AAKSwtK3SjXyb/+x9dd199Zfhzmzena7lVK+ppr8SMNkBl4Hfv3sWkSZMM+q67d+8eYvbskbydmYmaY8fCtH17YO1a8p34/HPqwX1+xNf//mfw53bjxo2c2549rOPDh7g3bBjbq3dvBAYGYsuWLfyMGTNeuCZv3brFOTs7M9BjDrah6HQ6qFQq1DawaqFHjx7m0dHRsxQKxZoq4pFSIRQKBQPAEUBDExOTEQBmdevWja9bt27ZT546lcZ8VSDQm5ubi0OHDuVrNJpxcrlcW+6FRESMjCi2RUSqMBzH5dy4cYPz9PQst7jLycnBrl27dBzHLQAQBsBSp9MFGe8oXx1yuTwOQLdly5YdrFWr1sCXsU9bW1vm3r17HF6i0225sLWlGbPDh9MYsQcPgPXrqby4WTPKuPr6kigfNYqyu/8VoV3IF19Qlj+q+GrDnJwchIaGCiYmJsytW7ck7733HpycnFCtWjUWIIOwErl3j7J31649mRdtVObMob+/+4768FnWYMECAL1792Z27dqFS5cuCW5ubqRsb90Cjh+vuNju25eqLKRSoJSsX1xcHLZs2QJBEFCn0H04K4v6kl1dK3YMpcAwDKRSKQYNGiRFeDhVBUyfTm0WkyYZf4dDhhQ/fk8fPvuM+rN/+om8GioZMzMzmJiYQG9fn7w84KOP0HDKFKRpNLzZ5cvs71u34t2zZ+FW2gSHzZupR7djR72P7eQPPwj9162TRK5aBcbdHZ/WqgVbW1tcv35dSElJYW/evIkmz7mXF4yOrJQSidDQUN7KykowNAhrZ2cHT09PaURExFwAcyvj2F4GCoWinamp6SKJRNJbIpEwNjY2agcHB5MBAwbA0tKy7Nc8L48Cv/o4zpeAIAjYu3evkuf5H+VyeeVfICIiBiCKbRGRKgzHcatu3769SxAEvXvmtFotBEGATCYrNPVSsyy7fuHChT9U8uG+EhQKRSuGYd7S2xW6gtSvX5+9du3ay9iV8WjcmP706UOi++uvyURr61Yal2NpSSXI/zUWLya37iKo1WpkZGTg0qVLfHh4OGttbS2YmZkJrq6uQqNGjfS7mdZqKdixYoVxhTbPU4/rr79ShtPEhEQ29T2Xi6iCQEN0dDTz5Hvm448p01RRTEwoQ16K+/qlS5dw+PBhSCSSwv5tYskSaoEwstgWBAE3b95EnTp1EBISwut0Olb7+DH5FNSsSeOoTp+mHmInp/L1EJeEhUWppfTFsmkTiWyFgka3leHIbkwcHByEmJgYpk5x45cEgcp+f/6ZvCAuXgTMzMDWrIkOmzaxgiCg5/nznP+OHZKJEye+OH6vkHPn6LtJXzQapF+5AmmPHuhfWMVTQJ8+fRg/Pz8cPHhQaNKkyTP/YbZu3Vry77//Gj1Imp2djZMnT7Ljxo0r1/O7dOliGhERMUOhUKyVy+VJxjw2Q1iyZMkwlmXrzZ8/X+/h8t98883bJiYmv5ibm9t17tzZrEWLFkyBf4r+rW/h4RTwvXWrQjPoIyIikJiY+Eir1b6RJfkirzei2BYRqdrsZRhGFRkZaVZgxoTMzEw4OjrC3t7+yUaCIOD+/fvIzc3F4cOHtVqt1uTzzz/HwYMHheTkZAiCsOAVnkOlwjBMD0EQpKdPnxaGDh1aeTWnBTg6OkKn01X2bioHhgHq16d5v7a2lFFYs4YMvHr0oJuev/6i2dyWlhXv263qVKtGgtvTExg2DPfv38fevXuRm5sLAKyrqyvef/99w3qGOY4y2tOm0fxyY5CeTpnmMWOo1DI2lkYlGYHCmdR9+vR5GtC7eJEqIhISKrZ4RAQQEEBeAPn5zxr2FXD+/Hmhdu3azIgRI54ZK1ZZPe5KpRK7du0CQD3qH4wdCxeAKhCAp9Ugw4fTMR89alBPf6ns2kXCsl07/Z/j6UnvR58+NOPeGKPD9CQ3N1eQSqVPT16nA+7epbFjTZoA69ZRb379+vQaFem5ZhgGnTp1kmRlZXF///03M23aNPaFnubUVFpDT4NL/swZ5A8dirgZM5j+X375wuNubm4YO3Ys/Pz8mLCwMLQr8jq7u7vjwIEDkoSEBLi4uBj4SpRMXl4epFIpduzYITg4OAitW7dmW7ZsCX2/M2xtbdGqVSvptWvXlgKYaLQDMwCFQmEFYC/HcQBQpthWKBS2pqamv5ibm789bNgwi4YNGxpsoAfgaVByzZoKCW2lUokjR47kazSa98TycZGqyKsfXyMiIlIicrmcB5AbEhKCsLAw/Pnnn9mHDx8+8+uvv+avXLkyPyAggHvw4AGCgoIEf3//pH/++eemTqcbIZVKQ3744QfExcWdEgShs1wuz3/V51JZ+Pr6rgYwICIiQnXv3j39yx7LiZ2dHaRSKZKSXlkSwjisWQO8/z4ZEw0aRDe9KSl0Mz9/PgluQaDS2sTEV320lUdaGpCWhrS0NGzduhU6nQ6NGzfmGYZBz5499b5pfgLPA++9R6X5FSU9nQTJiROU2QTIAM+Ic7rv3LnDA8Az2cuGDWmMXEXx8ADOn6ds7E8/FbuJg4MDkpKSkJeX9+wDy5dTSbeRsbS0RIcOHXiGYTBy5Ei23qlTJBif5++/qVT/4EE6B2OgUAAffaTftjodMGAAfZ5Wrybn8ZcotO/cuQOlUsm6N2xImeuHDyl49M475Ch+7Bh9xtu2pcqKEsRWnz59JCqVir19+/aLD37wATBjhn4HFB+Pf8LDcaJvX3z0xRcozoyMYRiEh4fzhZVdRZFKpWjatCkXHBxs1P8gnJycMG/ePEyYMIGpV68eExwcLKxYsUKIiIjQe40ePXrIJBLJ6CVLlkw25rHpi1Qq/bxhw4YqmUymWbx48bTStlUoFO1MTExueHp6Dp05c6aFm5tb+YQ2x5HzeHh4hWfa//vvvypBELYWGqmKiFQ1RLEtIlLFYRhmSVpa2tHAwMAHWq122Ny5c7tyHGeTl5c3MCQkZLGfn1/amTNnGK1W23vu3LlNfX19D+l0uk4A2AULFvSQy+Xhr/ocKhu5XP4Pz/Ojtm/frvnuu+84nucrbV8Mw8DOzk7w938tjNxLp2VLGkf18880isfFhQS4pSWVmOfnUzYuNBTYvZvGhHEcCYA3gKtXr+LS+PE4U78+fvnlF9SsWZP/8MMP8e6777K+vr7Qy9inKPPnU0b0889L7VEuk8LXt2tXYOlSEjU3b5Z/vVJwcHBgAWDTpk1PA1V2djQPuiLvc04OueBXrw5MnEjl0MWs17VrV4ZlWWRmZj77QOPGRg0qFJKbm4vQ0FBWEATExMRQb3ZxQtDUlKo9Hj2ia8MY48B+/ZVM+fRBpaJrbehQKnEvre/ZSPA8j507d/JLly7FlQUL8H5cnGDPMNR2EhsL/P47VSsA1MagRyBKEARwHFd8GfnKleQ5UBbBwRC8vXE3OVnw+PrrUqdOZGZmMgBlO5+nTZs2koSEBBj7/weGYeDk5ITevXszs2bNYgYMGMAcPHgQ+/btE/TZl7m5OUaOHGnOcdyGb775JlehUFT+LMsimJiYDPT29jabMmWKzMrKatWyZcsOKBSKZkW3USgUzNKlS2fKZLJTgwcPrv3222/LTCvi8aHRAD170vi3ChAdHY1bt27lajSaF0sdRESqCExlZ4FEREQqF4VCIQNgKpfLc171sbxqFi9evIDn+SW+vr7li7bryePHj/Hrr7+ib9++8PHxqbT9vDQWFHQZLF1KplRt2tCIsDlzADMzoH17muW9Ywe5lzs4ALNnk4i6dYtEYSW+3sYmNzcXO3fu5OPj49nqNjbcJ3PnSu5v2IDGFcnm8jzNOndwqNh88sxM6hWOjaXSSjOjTv57gRMnTuDcuXPo168fzUIuxNmZRF55S27j4ymbXTir+/BhcmcfMeKZzVavXs25u7uzb731FvNMFYFOBzx+XH5DsRLQ6XQICAgQwsPDmRH//CM0bdKEwaZNpT9Jrab++9hYEszScnbgzZlDPehlZex/+YX6xzt1osqGSgg6FCU0NBSxsbFIi4jgB/r7sylz5qBxQgKsc3Ioq15OBEHADz/8IKjVarz//vvMM27dy5bRFIBpLyZSU1JSEB4ejvT0dLRNT4fjoEHIjYjA5suX0ahRI65r166S2rVrF/sdHxwczIWHh0vy8vJgbW3N1ahRA++//76EZVkIgoDVq1cLPXr0YFq3bl3u89KH5ORk7Ny5U1Cr1cK4ceNYxyLeDTzPIzc3Fw8fPkRycrIQGxubGxcXJ2VZ9rhGozktCMIauVz+0m7Oly1b9mjy5MmOheP3QkJCdKGhoVoADziOC9JqtQ9NTU3ftbCwqDd+/HiLGnpMbyiVVauoV3/v3gotk5qaio0bN+ZrNJpecrk8pGIHJSJSeYg92yIirzlyuVwDwAhpl9cflmUb1K1bV8cwTKV+txXeONWqVasyd/Py8PEhMQ0AdetSOfmuXcA331DvbGAg/b4wC3X5Mhk9Xb1KmfCbN+mmvGlTKqGuwuTl5WH9+vWwsbHB3LlzYWZmJkGvXmhcASdcXLtGI9ciIspvYPXDD9QffPw4cOZMuZzFDeXUqVM4V+Bs3apVq2eVy+HDFTuGPXuAhQuf/mxrSxUUw4YBLIsDBw4I0dHRAgBJly5dXizXv3KFXMGzssp/DMUglUrx1ltvMQ0aNMCFpCS4DR6MMp0JTE0psLR0KZVTm5qW77WZOVM/H4TLl6lMe/DgEsvvK8rNmzdxbO9ePlutZgcePYoeOTlCup8f65KXB9ehQyloVEEyMjKQnZ3NdOvWDQkJCc+OxkpLK9Y8MDAwECEhIXB0dOSbZWfDackS9s/YWGRVrw4LCwvu9u3bktu3b+Ott96Ct7f3C8/v3r27pE2bNli9ejVq1aoluX37NhYvXgwfHx/07dsX3t7eOH/+PNe6detKnSZRs2ZNfPLJJ8yhQ4ewceNGjBo1CnFxcdpbt27lZ2ZmmjEMozUxMbmm1Wov6XS68wDOyuXyCpoklA+dTle9sCxfJpOhW7du0i5dukjv37/f5PHjx02USiXv7OzMuru7G95WUxymphV2+1er1di2bZuS47hZotAWqeqIYltEROSNQafT8S+jl5rneTAMAwcj3JBWCd5+m5yO+/aljFObNuTKPGQIiaZDh4BFi8ioqU0bEt4AZWAfP6Z/cxyQkUFznydOJOFoYkI37ZWcnTWE+Ph4MAzDT548+anxma0tCUN9SlqfRxDo/GbOLJ/QHjcO+PRTKqksFB9t2xq+Tjlwc3PDmTNnwHEckpOTn+3b3rSJjq1DB8MXjo6mTHDRflwfHwrOPHgAvl49XL16lfH29mZ69epV/Ai1Vq0os15JNN65E6dNTJj4xo3RUJ8nuLhQxnnTJip/Dg423GleoaBM/ddfF/+4Ukml2rNnA7NmGebSrS8PHwIPH+La3r3c9LVrJVn+/jDr3h3VHB2Zms2a0fVtJGrUqIG+ffsK165dEzIyMlitVotOnTpR9czs2UAxwcpz585h1MiR8Nizh8WkScAHH+BTe3vk5OTg4cOHEpVKhX379kGlUpW4XysrK/j6+kKn0+HkyZMIDQ1FWFgYunbtitatWzOnT5+WpKWlPTEHrAwEQcChQ4fyIyIiBEEQLP7++2+tTCbbotFo/gAQXZXmavM8b2LynEs+y7Jo2LAhGjZsCBir5TQ5mXwIjh+n79xyIggCdu/enZ+fn79z4cKFG4xybCIilYgotkVERN4IFApFIwAfDR8+vNL3JQgCTE1NcfnyZXTt2rXS9/dSkEjI0KpoJlEmI9fr7Gwq+fz4Y3q8Xz8yVCvKsmX0t1pNwtXJiUqG09KAoCASsjNnAkVc9F8FpqamUCqVbEpKCoqWduLgQToHQ8rhdTqaD7xyJfVp60tGBs08X7CASsXz86lUv3lz/dcwAs7Ozpg0aRI2bNjwosN+QgL1K5cHFxcgMvLZcmuGof7tVatwoHdvmJubo0+fPpCWVJItlQJ+fpQBq4RZ23xAAMzr10exY61KY9Ikep/i4uj4Zs3S/7nDh5duchYSQoJ840YamWas1oycHLpeZ8yA8O67uJ2airsjR0oyQ0LgUIkl6gzDwMfHh/Hx8WEiIiJw5MgR3sfHh2UnTgTc3ekaKIJSqQTLsnDOyXn63hd8X1hZWcHKygoA0FyP64RhGJiYmKBfv37o1asXfvvtN2HVqlWMqakpLwgCe/78eQwaNMio58txHFJTU8HzPK5fv66NioqK0el07QEoX2ZZuCEoFAopAJZlWSQmJuL69et48OABl5OTw0gkEkydOvVFF/nyEh9PTvwVENoAEBwcrI2Li4vWaDRGmE8oIlL5iGJbRETkTcEDAKKjo3U6nU7arFmzsrYvNxKJBIMHD8bevXvRtm1bWLzE2beVyrp1NNpnyBDqp5MUVFpaW5PQnjyZHIkvX6byVn9/4OzZZ9cwNaWMKEDZbbWaBHdwMLmeb9xIZdf+/vRYRUx2DCQrKwsXL17kLC0tGRsbm6fZGmdnICqKstSGoFZTX20x5azFkp4OJCWRA/zmzTRH+jnB8TLZvHkzHx8fz7q6uvKurq7PZq/8/ctnkJaTAzRo8MTQ7cGDB/jzzz9ha2vLd2rfnm31ww+4bWWF4ZMmlSy0C/n3X8r4G1tsx8QgZtMmJO3bx0ulUsOzdu3akVfBli1UFVK/vn593DodjTsqjn/+IUO5mzfpdTeG0F62jK7hgQPBHzyIbTodl9Svn0St0WD06NFw8PCo+D70pFmzZjh16hSzc+dOfoyfH1tctYuZVIoRO3Ygv3VrWEVEGG3GuVQqxfTp05m4uDio1WrWz88PTk5ORllbp9Ph8uXLwpkzZ5R5eXlmUqk0g2VZFcMwdzUazWi5XJ5X9iqvFE4qlQrfUVUP4+zszLVo0UJSt25d7N69Wzh//jz69u1b8b1Mm0bXyi+/VGiZqKgohISE5Gi12rcKWuhERKo8otgWERF5UzgCYGhkZOSkK1euDLp06RLHsmy+iYmJ6eDBg03Mi5nxWxE8PDzg4uLCb9++nZk8efLr4w5WFo6O5ISckfFiFloqJZfyu3fJKEqtBg4coP7SOXOAevVeXM/UFKhdGzh9mn7WaEhs5uZSGenGjVQ2ffcu0L9/uUQGz/OIjY3F3bt3hbS0NK527dpM165dn/RkZmdnY9u2bUhJSQEAyZQpU2D2/M2+ry8JnrAw/XY6axaVya8pcywtnWu1ahSs0GioLP/ePf1PsJIwMzNjARQ/S3zKFAqyGNozrFQCX3315LNTuG56ejr774kTYN9/X+jk78/YFjMn+QUuXjRs3/qQng40bYo6N2/CxsYGy5cvF9q2bSv06dPHMGXn4UF95UFB5Fuwa1fZZnKFffDduj37e0GgNbRaKsEvrxcEx5FYHzuWPmNaLWBnh4e2tjj+ySdISEiQdPLxEdLT0+Hk5PRSv7MYhsG7777L3B4wgOHu3YOk0JSxyLHHhIbCRKOB0Lix0YR2USQSCe7fv88zDMPWK+67ykA0Gg02btyozMnJCVOr1V8BCJs/fz5X4YVfInK5XPj2229zR40aZdWgQQMwDPPke7N27dp8QkICC6BinxW1mr7f3d0rtMy9e/ewf//+XK1W20cul5ez7EZE5OUjupGLiIi8cXz77be/CILgodPp/gGwfOjQoWjRooXR95Oamorff/8dzZo1M3pJ4itn+3bgwYOnTuXFER5O5cIzZ5Ioa9iQymT1rSpISaFS9T17yHzqzh0SHePGAf37Q6VSged5mJqaQlKQZec4DnFxcUhISBAiIyOF1NRUlud5mJmZ8Q4ODoyZmRmTkJAgfPnllwzHcbh27RqOHj0KAGjTpg1atmxZfFYrJoacwPV1KV66lLLa3buXvh3Pk2g9cIBGSVWCiCgPPM/jwoULOH78OMaMGQP352+ET52iY+/Rw7CF588HZs9GJsvCz8+Py8zMlFSvXh0ajUZQU5UDM+7oUdQ+cQJMWaLy44/pGH77zbBjKIvMTKB6dRw+fFh36dIlqZ2dHTdjxozyGWYJAvDtt2QMmJxM7QAl8fgxBayK9gpnZlKW3NOT3M4Nrci5f5+CXF27UoDj119pasCUKYCZGYKCgnD69GnY29vzrVu35n18fF5ZkoXneYQNHy4kWFsDQ4YwgwYNglKpxKXTp9Fkxgyc7tgR7PDhGGWMGfXPceHCBT4wMJCtWbMm37t3b6OI7SNHjqivX79+TKPRDK2qZeL6sGLFissjRoxoVdCf/YTMzEysXbsWtra2nJWVlcTW1hZeXl6oX7++/osHBFAwduXKCh1jbGwstm/fnqfVavvJ5fJzFVpMROQlI4ptERGRN5pvvvkm08bGxuqzzz6rFJUTFhaGgIAAzJ8/vzKWf3Xs20c37WXNExcEEt2//UbzuJ2dqfw3MdHwsVE8D+6zz3DWyornHj1iWu3fz2yaPh2WaWkw8fDgBXNzISUlRWJiYsLb2NigcePGbKtWrWBubv7EZEulUmH58uWwsrISLC0t8ejRI6ZLly7o2bOnfufs7Fx6WfiZM8C8eZSpL004HzwIfPYZiaG4uKemclUAlUqFU6dOITQ0FG5ubny/fv1Y++erGO7epfnTAwbovS4fEwPOxwdbFQrhUVoaY2tri5SUFHzwwQewt7fH7du3cfDgQUxt0AC1nJ2pRLw0jh8nsd2/fznOshj++YeMuSIjAQAbN27ks7Ky2MmTJ8OmtF5qfYiKop7sn34iF/XimDOH+lW/+urp76ZNo5aC7dvJlFAfQkKoYuTxY8piX79OgauGDSmwU4T169fzPM+zM4qa1b0qbtyAYGKCuxIJzp07x8fGxrKm+fmoZmWFLuHhOOjpiRqOjsKMGTOMmnVXKpVYs2YNxo8fj7pGug7z8vKwZs0aFcdxteVyeYZRFn1FLF269Pt27dp91rdvX5PnH0tKSkJycjLS09Nx5swZAICLi4tgbm7O1KhRA126dEGpPd2zZ1NVT0mmgHqQmJiIrVu3KrVa7WBfX9/Aci8kIvKKkHxdgQtAREREpKpz7tw5H6VS6ZGenq5zc3NjCzOkxuLx48eIi4vjO3bs+OaUkgNAkyZkcDZzJpW1ltTjyDAkUAcNoozduXMkAt55h0Qpw+hfGs4wuO/ujoNRUUyD/v0Z1z590G3GDLRZuBC1HzxgzLp2Zd++fh09vvySadOpE1OvXj2YmZmh6HsqlUrRvHlzODo6MhzHMYMGDdLLUAkA8OWXVHpb2pzsO3coO1lSxnf6dNpm5EjqNW7WrHRTrFfA2rVrhZiYGMbExATTp09nivUc2L+fxpHpMaJHpVJBp9PhdEAA/F1d4dKggTBixAimW7du6NatG6pXrw6ZTAYnJyd0794d1UxNaf72oEFUil8Sjo7U52yo63dJWFiQ0V+B23t2djaTl5cndOrUqeLXroMDeR3Y2lKQpXfvF/0ILl0iMdyuHf2cmEiftZEjaRJAacTHU5VJnz4k6nU6cv2fPZvOycnphf0lJSXh7NmzTI8ePZ4du/WqGDkSzOPHsHv3XbRs2ZKxNzMT+svlTKeBA5E8dixu3r6N0aNHM9WrVzfqbnNzcxEWFobIyEghKCiIiY+P55o3b16h4Gt4eLgQHx+/f+HChX8Z6zhfFUFBQckZGRkTfHx8ZM/PLreyskKtWrVQv359eHl5oVatWrCysmIkEgn/6NEjPjAwkM3NzUXDhg2fnXuu09F1sGiRQQG750lJScGWLVvytVrtaF9f32PlXkhE5BUi9myLiIi80cyfP3+IQqGYfePGje+bN28ONzc3o65/48YNrmHDhpU6s/WVwTDkRH7pUtnl1QwDjBlDQmDXLvr3b78BixcDq1bpPX/70qVLfN26ddGtX78nN8Ps1atw4jg43btHhmIqFZWbW1kBP/5IPdFFMnq2trawtbWFwSZ5hw+X/JhGQ0Jn06YXM5cqFY252rCBghR165Kwq4Ry2IoSFxeH3NxcBgDs7e15lDTWZ/RoGgdXBtnZ2VizZg1M1Gp8tnYtUr/9VnjnnXdKFzIeHlT1EBtL/y6JM2eA8eOB1NQyj6NMDhyg92nqUwNjrVbLK5VK4wXJ6tQhZ3m1GjhyhOZkFw1kjB791HTw4UPafvBgCmyUxIQJVJru5UVtHXl5dD2WQVxcHP744w84OjoKbdq0efWBQEGgipdCQXbvHjydnRls3Aj07g3nDEoOp6enw9XIhng1atRA165dOaVSiQ4dOkjWrl0ruXHjBry8vMq1niAIuHjxYp5arf7RqAf66riu0+kyk5KSLJ2dnUvcyM7Orui4NBagz9mWLVtw7do14eOPP2aeVIiEhVGlk7U14uLikJ+fDycnJ1g/V3lRGnl5eYUZ7em+vr6lfDmLiFRtRLEtIiLyRqNQKLwAfD906FA0aNDAqGsLgoBHjx5J2hVmqt5E/vyTxM6nnwJr15bdcyyTUWnrW29ReXnt2tST+t135EL+998lPvXx48e4c+cO+15xwlwiobnDJ0/SzxMmUCDg7l0q+z50iG7ks7KAgQPLd66CQCLw2DHqoS1KWhpl+IsKgfR0uqHs359mSCckPDtbugri4uKCZs2aITIyEu3atStZhKWlkdA9darETfbv389fu3aNdXR0FJzMzJjzQ4dac3fgAAAgAElEQVQKXUeN0k/YTZ9OmdkzZ0qufOjTh8rwjUFoKAVlRo9+8iuO49isrCxkZWVVvIy8EHNz+owXGLHhp5/IhRkgMz1LSwpA5eUBJ07Q6LhCBIECAqdOkZleVBT1Y7u7A507lx4Meo6zBVMCxowZwzyfrXwljB9P57JkCQWuevakcvqPPwZAAbK33noLnpU0iqxLly4SAEhOToYgCBV6vzMyMqBUKrUAzpa58WtAgUnawZiYmGnOzs4GfVjq1q2LqVOnIiQkRFi/fj3j7e2NXo8f00SCCxdw+epVHDlyBBYWFoJSqWQYhoFMJhNMTEx4U1NTVKtWTVKjRg3Y29vD0dERtWvXhpmZGXJzc7F161alWq1ev2jRoi2VdOoiIi8FUWyLiIi86dwCgP379+PYsWOqNm3asL169ZIZY+Hk5GRoNBqji/gqh4UFCYD796kvVB9sbak0tnlz6l9ev55MnHJzgYkTIWzejMu3byMzMxNpaWlcYmIim5eXx3h6egr169cv+4avaL9vXByV0C5fTu7QffpQ6eJ33wFt2hhUxo5vvnmxZP6zz2idHTvo5/R0wMwM+P13YOdO2ld4uH77eMWwLAulUglPT0+hZcuWJb8wFhYk/EohtSDj3LFjR6b5unXA6tWM3iXfbm7kzB0cXHJJvlQKfPQRlbNXZFRTfDwZ2j0XKGratCkuXryIffv2YcKECeVf/3kYhloqfv+dqi/27yfB/c47FIyqV4+ug7Q0EtihoZS9rlOH5tp/+inw88/l7nVNTEzE/fv34erqalAmsVLp0YOqGAICqHXg/HlqPymAYRh46ztCrwI4ODjAw8NDOHPmDDN27NhyrZGTkwOpVJo4f/78N8b0SKvVnrh3797YLl26GPyBcXR0xNChQ9kWLVrgwJ49QttlyxjVDz8gRhAQFBSEMWPGoFGjRowgCMjPz0d2djaTlZUlyc7ORmZmppCens5fv36dyc7OZvLz8xlBEGBiYsIDWKXVauWVcLoiIi+VqmGLKiIiIlJJyOVyLSiw2DA/P7/fuXPnhAsXLuiMsfaDBw9gbW3NvTBG6k3DwoJMmFJTye3YEGrVImfk3btJXKxbB9y6hai7dxG3apWQcfUqpFKppG/fvsznn3+OoUOHGp6Gs7Ymse3rS2Kb40gcy2T0uwYNyGgrOJgyiqUxZszTMWUAiaHUVAoyFM6dbtmSzmPOnNdGZBeyf/9+PiEhAR4eHqVnPO3tKUPLlTzJqH///iwAXNy/HwgMfNZluywYhly8C+Zxl0hqKjl2VwQfH2o3eA5XV1d0794dKSkp5Rgorge9e1OwaeVKcmnPyCBztp07gS++oH//8gt5IxRmtJcvpzaEwYPLNQbv2LFj2LRpE7y9vbkJEybghZFur4KgIKBFC3ofPv2Uxt6VUq5cmTAMg6ZNmzKJiYnlfs/T0tIgCEKUMY+rCnA2MTHRjOfLfynUNzXFp3Z2zFV/f35jbCwCAgLw3nvvoVGjRgDotbewsECtWrXg7u6Odu3aoU+fPszo0aMlU6dOZb/88ktm5syZkEgkPMdxP86fP9/3dXZ5FxEpRMxsi4iIvPHI5XIOQAyAmCVLloQFBgZ2bl/aiB49MTc3h1qtZnierxo3tZXNo0fUlzx1quFCwM2NHJfPnYMyLg7pc+ag74MHjGXLlkC/fpQtLs3V1hDMzUm0AECjRk/Lyj/6CPjgA8pE//UXsGwZbVuU+/fJFGzoUOox3b2bjvvePRL1qalARMQLrs/FodFonrikVxXu3r0LnU6nXz97t26UiSyhr9rFxQUsy8JUpaJyfkPNB+vXJ4HZowf1uhdHYCAFPCrCjRslmtR5e3vjzJkzlXfxmpuT2MzMpKBPbi71c//xB71ePXtS5UdWFgVz4uIo0KHT0XNlMr2utdOnTyMoKAgAMGjQIKF169ZVx0fim28oGNavH70XpZnivQQyMjKE/Px89v79+4aNsSpApVKB4zgjGAlUHeRyefKyZcuyMjIyHOwMCZoVZfFiSFJT0W3XLraltzfy8vIMMubLzs7G5s2blQzD+C5cuHBV+Q5CRKTqIYptERGR/xQcxy3kOC7YGGt5enri1KlTzL///osBFXBcfW0YMoQybhs3Ug9p06YGPV2j0SAM4E/VqcN6u7nxlrdusbh8mXpZf/uNyn05znDRVhrm5kCHDvTvu3dJuF26BERH001/x47Uc/3ll5T19vQk4Q+Q8L5zh+Z+b9tGPbNmZvTnOeLj4xEXFwcLCwukpaUhIiKCy8rKkpiamgrNmjVj+vXr98qEN8/z0Ol0kMlkMDMzY6ysrAQAZSu4ZcvKdAKXKpUYtn49+KlTwRo6VsnUlD5TKSkli+0BAygLunGjYWsDZFbm4QGcPUuO3cWQnp4OrpTsvVHgOPrc5ebSz35+1FIhk9HnnmGo9WHbNnIoHzmSKkmcnKgEvXZt6m/396c13n6b/AE8PYFjx/BIEJBgbY2h6elo5O4Oi+vXGQQHk6nauXMk3jt0oFFulpbU4qFSUTl7fDwFuerWJQ8ES0v6fDMM/Vsqrdj1qNGQB8KYMeR38IqFNgA4OTkxABlwlYeCCQj2ZW/5eiGRSOIyMzPLJ7b37KG2nQJDQBsbG4P64nNycrBp0yZlfn7+kgULFohCW+SNQhTbIiIi/zVuAyRAKpqNZlkWQ4cOZf766y907ty56vRHViYMQyZld+4A33+v99Nu376NnTt3wtzcXHhv7FjUq1ePhVZLwnfaNDJKio0l0XX5cuku1RU9/rZtaeYyQD2x1asDFy+S8Lt0icbV7NpF84zd3an8FwC6d39hudzcXOzevZtPSkpi7ezseI1GA0tLS6FTp06SFi1aID4+ngkKCuLXrVuHmTNnskXngV+5cgXXrl3jcwtEmEwm46tVqyZ1dXVFr169jHK6PM9j6dKlkEqlwrx58xiNRiN06NBBvw8+wwDJySUKVQAQWBaHBgzAYDs7WJbnAIcMoVLrsDASgc/z9dd6VREUC8tSNUOdOiVuEhoaypubmzPQJ/hQHubMocz1rVvUe75/P/Wq79xJ/dmjRz89vnffffH5a9aQuzlA1RYaDYnfjAzqB2/dGud27uQdPDyYFq6uDDiOBI9MRq8bywI5OSTSY2NpHRMTCii1aUMzvjmOTA0LzQdzciiz3rcv9bqnp1OlSGHQIjWV9jFwIImsvDyaDhARQaI9Pp4e9/Gh4Jy9PRATUykvb3moVasWAJQ7yFK9enUwDFNJX1CvDkEQYrKzs9sY/MRLl4D//Y+u4XIYz+Xm5mLz5s3K/Pz87xcsWLDM4AVERKo4otgWERH5r2EilUo1DMMYJc1Yp04deHh4cP7+/pgyZUrVKd2sTP7+mwTAmjVkHqZH0CIyMpJ3c3Njx4wZ8/Q1MjGhjNvFi7TWxo3kUm1vT5kwNzdyL65Mis43TkwkkXDzJomNn3+m8V3Xr5O5VRF4nkd0dDT27dsHFxcX4dNPP4WVldULL0TDhg1Rv3599q+//uJ//PFHvlq1asjOzoZKpWJr1KjBe3l5Ma6urgzDMMjMzGQTExOFs2fPMo0aNUJdQzPFxbB27Vqe53lWo9EwCoUCANgmJWWRn2fTJhLb7u7FPhwXF4fhu3ej7qFDsLAsl9Sm7OmQIcC+fcXP9K5bl1zsDQ2+pKZSXz2dc7Hk5eUhMjKSNao5WiGtW9O18dVXJLgjIkiwHj1KLuRZWRTQOXmSROuaNZRFfh6GeVpJUbSiokAwwsUFd8+eZRs6OAjFzjMu2i5TTLAII0Y8/ff48S8+/sknNHtepyNBzjAkxlUqElb165PYdnIiIW5jQ380GioZz8kxrJf/JXDnzh0wDAMXF5dyPb927dpQq9UeCoVCJpfLNUY+vFcGz/Pp6sLAjr7cukXVL+HhNGveQLKysgqF9qr58+d/bfACIiKvAaLYFhER+a8h6HQ6WUJCAuqUkvEyhH79+knWrVuHqKgoNDWwtPq1hGGov/Snn6gMW4/+9zt37rAdCsu5n0cmA+bOBR4/pv7oX38l0dutG/VKz5lDvdOVPcKoUDC2a0elzYUl5YmJ4DkOGjc3BL71Fhfj6gqdVstkcxw7cOBAoW3btqUGWViWxdixY9krV65Ao9HA2dkZtWvXhkwme0acu7q6IiMjQ6hWrRpft25dowRulEol27p1a75Jkybs9u3bC05TT2F84MCLPe1FuBYQgHZZWTCtaFBgyRLKjI0d+2KJfkAAIJcbnhkND6fnfvNNiZvcvHkTUqnUoL7SUrl/n8Tp0aPArFlUGl6YrU9KArp0AWbPBo4fpwoOmYyCGSNGkHFYXByVmBuYHbSwsOBiYmIkarUapqamxjmXopiY0J/Cz0LRCoRC0Q88bQVIS6Py+HnzSJRLJHRdDxliPF+GcpKSkoJDhw4BAMrbm2xmZoaaNWuqHj161BfAGzP/WavVphkktnkeGDSIPrszZxq8v5SUFGzZskWp0WgWLViwYLXBC4iIvCb8Bxx9RERERJ4il8vjAazdvHkz/vrrr5xTp04hPDwcoaGhiI+Ph0ZjeKLC0tISvXv3Fo4cOcJXxM31tcLCgvqenZ1JlJUBwzBCmaLG0ZFE18SJ1A++aBE5iBeaRK1bRxnLykQQKKseFkaZ9s8+w9nRo7FixQohyNtbMPH2xrC8PMmny5ezCxcsQNtr1xhERpa5rFQqRbt27dCpUyfUq1ev2P7tnJwcnDt37tnsfwUIDQ2FRCJB3759WTc3N4wbNw7Tp0/Xf4E1a0gwlUA7Ozv8/tFHyM7Pr9iBWlhQSfS+fS8+Nm6c4UI7I4N6okNCSt2sXr160Gq1uHfvnmHrP8+5cxQMsrenPnSNhrLERYVofDz5AowdS5UgAweSE/n9+1RevmABlYnHxFDpdZT+ZtfTp0+XMAwj+Pv7V3LzeRnwPF2f9epRv/zYsVSdIpFQVt/f/5UeHgBs2bIFANCtW7dSt9PpdCjtu7xt27bWpqamcxQKRRUYYm4cBEHIUavV+k3q4HmqXDh+vFxCOykpCZs2bcpXqVSfiEJb5E1HzGyLiIj8F5kPIDMmJuZubGxsSxMTE1ee5501Go0PAFSrVk3Xt29f1svLS++AZJs2bZiLFy8KBVkTVXx8PJ+WlmZhb2+v+vDDD83MS8kQvrZIpVQe+8knZGRVivmRtbW1EBMTw7i5uZW9rrMzZQAnTQImT6aMWkQElXV7e1NpqpUViRtjc/s2lf5euAA4OSFHq8X5ixcxYtQoxu2rr8AwDAnhOXPo/P38SFwxDPWenzhBr0M5svDJyckwMzPjnJ2dKyS2lUolrl69ioCAALi4uAimpqYMQCXtBlGv3lOzuOfJyoLVxIlo9d13fI0aNSoeuH/vPRKagvDia9e6NQVd9O3dnjqVMsbBwaVuZluQoXUoR/krACpvb9aMggSpqdRqsH9/8dvOmQOsXUvPKWTLFhLbMhllwefPp3L5Dh1oPYWCggYlzSEvgGVZdOzYkQkJCZFERkaiadOmKHWsW2UxfToFOM6doz71iAg6R4YBrl4lgbZlC1AZZft6oNORjuzTpw9atGgBQRBeeJ3S09Nx+PDhvAcPHpixLMvb2toqXVxcTKtXr24mLSjz53keGo0GarW6CwBeoVCMkcvlO172+VQCMqm0uF6GYpg3j1z2L1wweCdRUVHYv3+/UqfTvevr63vQ4AVERF4zRLEtIiLyn0MulysBfF3w47aijykUiu65ubkD9+7dO7tmzZpwLMONuZACszR2y5Yt0Ol0ZgAmALBIS0tbeffuXXh5eRnxDKoQ/fuTYAgNBVxcqIfzObKzs5GcnMyOHTvWsLVr1Hja1/rXX5T5YxianR0bS/Ow1WrKJhqLzEwqd2UYYNcuBE6bhulHj8LywgWgoPwUwNNy2MBA+vv+fTL6kslIHHp7U5l9UBDNW9ZD/GRlZUEqlZZ7zhXP8zh58iTCwsKg0WjAsix8fHzKr7qGDKHy52I4cPy4kD92LPqNGmWcCrmWLUmQOjlRa0IhDEMzzlUq/cX29u0UkCkDlmUhk8kQFRWFzp0763+sWi0FWnr0AP78k+Zol4YgUJVE8+YUVFizhs7L2pp+16gRZbPv3aNgzZw5lA0OCAB+/52ug/x8MhwrgSZNmuDSpUvcnj17JLdu3eJHjBjx8ioX//6bjnflSurtHjQI6NQJmDKFyukByuanpNC59e5N3xUvmaNHj/JarZYNDg7OOHnypKmpqSk6d+5sZm1tze7evRvdunUTwsLCVCqVaqUgCN9xHGeakpLSPCUlpRXLsk4SicQKAM/zvJbn+XwAaSBjvX9f+slUAlKp1FavNoSYGODzz6kKyYCgTsH3k/bixYtZWq22n1wuv1yBwxUReW1ghIrOrxQRERF5wygoDeQB4OOPP0bNmjX1fq6fn59w//792AULFtQHgOXLl/+gUqk+mzVr1pvtVj5mDN1o7979zK9v374Nf39/2NnZcdOnTy9/xpbjaPRWYiK5386eTaKnfXsymzLWWK2vvyZTtILe+2teXvBMTIRk+XJyttbn5jIpiYIAPE+Oz9HRVGqv01EVQDHwPI/169cLHh4eTO/evct16Nu2bXtSEu3l5SUMGzaMqVCG09+fhOHz2StBQIKrK3R//IF6RnJNB0DC9fFjEmRFUalIsOpTHdKjB7UhvP++Xrtcv369kJ+fL3zxxRf6idPjxymDnZlJ768+icDffqOKiVWrqC/bxeVZU8HYWPILSE2l/nSeJ7fywvdu927yNDh+nKooSjG4S0hIwKZNm/Dll1/ComAMU6VReP/4v/9R8GnxYvr577/JeHDhQro2/fyePqew1DwkhII5L4n4+Hhs3boVPM+v5nl+Duj7vR+Afwq3MTExuajVahfL5fI3pg/bEFasWHFiwIABvTw9PUveKDgY+OADCgo1aqT32vn5+di5c6fy4cOHkWq1eqBcLk+p+BGLiLweiJltERERkeeQy+WCQqGwB/C/X3/9dV6vXr3Qvn17Rp8Ku/T0dC2AxMKfVSrVLIlE4rNmzRrvd999F40bN67EI3+F+PmRwDx0CLndukGl0aB69ep4+PChUKtWLaHCTu0SCd2cq1RPy8z79aPMskwGtGoFfPEF9fiWF52OBP2UKQDIbfvo4MHwSkwkc6vOnUnETZ1a+jpFe9MzM5/+nZtLzs0eHpS1rFXryZim69evIz8/X+jZs2e51XFeXh68vLz4YcOGsRVT2QX07l2sk3TosWNwlMng2K5dhXfxDB98QJnfmzefFZRdupCTtj6j5oYMofdJT9q1a8ccP3687Ndq0iT6nP38MwlFltXLhR8AZdkLS9W7dqXPWFFB4+pKArRLFypD53n6DM6eTU7w77xDme+HD6nXe+pUalkoJvjg4uICMzMz4dixYxg2bFjl1pK3b0/l72vW0M9ZWfQ+BQaSidq8eXQuRWFZenzhQjonI5a75+fnY8WKFejUqZOud+/eT76sY2Ji4O/vr9TpdJPlcnkR5Y9/FQoFC6CBXC6vYOP+641CoWCkUql3qaahO3aQ2N60ySChnZycjG3btinVavVWjUYzUy6Xayt+xCIirw+i2BYREREpBrlcnqZQKHwFQbhy5syZeSdOnGjdqlUrZdu2bS2srKxgZWX1wnNCQkKQlpYmA/BOkXUEhULhA2BuRETEosaNG78xzdu5ubmIiYnBo0ePkJmZyZkzDNNt2jT2WP/+uOvpKXAcx3Acx9SvX994rnFmZiSo3n4bWLaMsmrffkvio0cPyggGBZH5lKFkZwMrVgC1a+PkyZM4c+YMmrRooWMHD5aiaVPaT8uWxfcVl0VhtlarJaHh4vIkW5l75QpS581D308/ZSsy+10QBP7evXus0fp1zcyAY8dIUBVw48YNPPD3R81du2BRGZUa3brRzXzR0uy//9avhPzrryngUsy1WRLm5uaQyWQ8z/MvvvYaDTBsGLUwDBtGgQeWpT5tQ/D2prJqgMR2cVUY9vbAmTPUJx8fT9uNGUOtElZW9BxXV6rqyM0F3nqLXpP9+18Q/Z06dWICAwPh7u5eOdMRDh4EevUi07NWrZ7+PjmZro9Ct/LVq4uv5CicL144t7u0TGopFLZKFAZBb9++DQDIzMx8cm9769YtYffu3TqO44bJ5fLjz68hl8sFAP9poV2Am4mJCWtTnBO+SkWu/i4uFAAywPuhsD+b47iPFy1atNWIxysi8toglpGLiIiI6IFCoWgMIBogZ+0+ffow7du3B8uyUKlU2LBhA5eRkSExNTX94quvvnrBXXXJkiUrrK2t/zdhwgTJ615OLggCzp8/LwQFBTGWlpachYUFa2try2i1WjSuVQueLVvC7PZtZDVpAkEQYG1tjYqIyFJJTiYxdPcuCYBCM6ZvviGH54ULKXusD99+S2OLVq3CkiVL4OTkhA8++ICi0j4+wObNlLVu1w44dQowwui4/NRUHAkMFLp+/jkTP2cOWjVoAPb336k/XE9RHx0djT179gharZZp3749179/f+PMe8/NJeGkVgMMg7S0NGxYuRJf/P47ZJcvG+X8XyAtDThyhDK4hVn169eBK1co810SOTlAixY0s90A4zyNRoNly5ZhxowZT0dBJSXR+K5Jk4Dhwymjro+xX3HExlIQ6M4dqs4o9DYoqWc5MJDE6N27ZLTXsydVU0yb9uxnITWVHPMzMsig7fvvSaiDWhIWL14MlmWxaNGi8h13SQgCia1ly0gwFxIcTL4FEyc+/Z2nJ1W8NG9e/FqjR1MQ4a+/DDoEnudx+vRp7syZM7xMJtPVqVNHV69evWqhoaGcUqmMZlnWrlu3bvYtW7aUrlu3Ll+j0QyQy+XBBp/rfwiFQvGBh4fHT6NHj352NtvDhxS4lEgokGXA6LaLFy/yJ06cyNBqtX3F/myR/zLi6C8RERERPZDL5bcBeAAwEwTBNyAgQLl48WI8evQIWVlZyMjIkABoVJzQBgCO435SKpXBa9eu1fj7+yvLM2KsKnDnzh2sXr1aOHv2LN555x3MmjVLMnXqVGbkyJF477330LZnT5hFRgIDB8JGKkX16tUrT2gDQM2adBP46adUBv7bb5R5TEujXleOIwGWm1v2WikplDEEORanp6fzK1euxMnTp3n14cOUaZw1C/jwwxfnQZeTa3fv4k5MDCL9/BDM89hx+rSQ7+GBGzduQFuzJjK/+Qa6tDTKcJYQHA8MDOS1Wi3zv//9D/369TOO0AboxlqleiLyzM3NoZHJcGbRIr5ShDZAAvvmzWfHgF24QNnu0lAqybjJQIf6+Ph4mJiY0Ozx5GTqGQ8JIXM7hqHjKK/QBigrvXo1iRWAxnwVNdp7nl69gPPnqd0gI4P65q9epeBOkRnISgsLXLSzw4bHj/lT6ek4fOCAkD9qFPjLl8GyLFxcXIzrSK7RUDDj5k0ycisqtAFyGS86Ao/nyXm9JKEN0Ln9+SeJbQO+D8PDw3Hu3LkHPM83V6lUPnfu3JkWHBx8NicnR8px3AitVrsoNDSU27t3r0oQhI2i0C4bU1PT3vXq1XtWSZ87R0Zo7duTKaWeQlur1eLgwYPqwMDAJK1W6y0KbZH/OmJmW0RERKQcKBQKlmGYPwVBKNokbCKXy0udU6pQKKxlMtkBHx+fTt27dy95VlYV5MGDB/Dz80O3bt3g4+NTuohOS6Nso4UFCeKXRUQEOZjfvUsivFUrulns2JEMqjSa4o22cnKo99TX95lf37lzB//++y+nzMuTzNi////snXdYFNf3xt87u0tHEAVEFDsoFuxGsQQVC3aNNSrGqDFqTKJJ1BhdNlFjirHEEo3d2BV7SVTQIGLBhgWxIEGlSocFtsz9/XFAOiwKSX7fzOd59hFmZ+7cmR2Qc8973gPz4cNp3GPHKLsXGPhGdafHjx8X09PThVGjRiE9PR07d+4UY2NjBQsLC24RE8NSZTLUjInBOwcOYM+qVWL9XbuYun590XTsWJlWq8WlS5eg11N75c8++4yCxoqkYUMKitq2BThHUq1auDhjhn7AvHkVF9QX5u5d4OBBUiXIDDjNwYNkXpeYWK7PQq/XY/Xq1bxe7dps4NChFEx6eFBAXFEsWUI15F270vfnz1OtfuPGpR83bx49Y3fu0DW9/z79TO3ejXS9HqtWrYKpqSm3sbGBQqGAXKcTa2zcKNObmiKjQQMxy8xMuGdpCaVS+ebX8PQpdRmYO5de1tYF3w8MJPm4qWmepN3fn3qNP39e+th6PdXnL1lCtellkJWVhVOnTiEkJASCIGxcsGDBZABQqVRyAEsArACwBsBgY2Pjo9nZ2e8qlUoDVtr+2yxdujTS29u7toODA23YupUWn9q2JXWFgcTGxmLv3r1qtVp9Njs7e7xSqUypnBlLSPz/QarZlpCQkHgNlEqlCGCcSqVaBaAqAAUAvQGHZmm12jbPnj3T5Rzzr0ev18PX11f/8OFDWYcOHeCeW39aGtWqUX3fkyeUlf27aNaMMttnz1JWZsqUvLZL69aRvDwmpuhx589TgF6IRo0aoVGjRrKgoCDsjI5GyydP9K0HDpTJt24lMyhRNCwgLIQoiggODsbdu3cFz5yaaAsLC0yZMkUAAMbYq8Xw6OhobHnrLdFMLuctatUSnltaCpeOHuXv/Por4xs3ooqZGRyaNq34QBugWuWcGtw7QUHgNjZwHjiw8gJtgD7D1atJmTByJGXXGzSgWubiFniGDiWZfzkXPVJTU6GOiWED5s0jx/irVyu2jRxAHgJt2uR9n5hIjuRlBdtLllC9882bZJL266/A6dPA99/jjEajb+jmhhEjRuT/HGR83DhER0cja9kyofr27Xjq7Y2DPj7cc9Ys9tqlKzEx5Mz/9CmwdGnR91NSqCXf2bO0WJFLgwb0s1YWMhlly/V6atlWSnvAS5cu6fz9/fVyufyWXC731+l0r1ZFchY5v0YHUHgAACAASURBVAAAlUq1kDHmlJ2dPTinJluiFFQqVVWZTGZvb29P6pn58+lnbsYMoH59g8bgnOPq1aviuXPnsvR6/XRRFLdJ915CgpAy2xISEhJ/IyqVqhmAO23btoWbmxscHBwge41g7e/k5cuXWLNmDaZOnWpw33EA9Ad0QgLJs8trKlURcE5Z7txAoE8fatXk4AA4OZH5V26AEBZGdbAlLCSIooiAgADYT5qEGlott376lIEx4MMPSV5piFN2Pu7cuQNfX1+4urry4cOHlzs1rktJwaWpU/FiwAD96M2b6QH64w9g0SKSupfDJKxUbt4kZYKjI6JXrIBvYiKmqVQVK1EujosXgQULKEMKAB9/TIZcheX7CxZQO7jNm8s3/oYNUG/bhjWDB4ufd+smoH37ipl3fjIzSd5uY5O3ELB4MXD/PgWWhuDhQbXYW7YAACKWL4fFkiUwDQ6GeZ06JR8nikg8dQra997DI29vvPXFF7jz/Dns7Owgk8lgZWUF09JaqT1/TkHX1q1kHFiccRZAUvf09KL1+8HBVI9dmow8P+HhpEAJC8szWCvwdjj27NmTpNVqOymVygeGDSphCCqVqr+jo+POSUOHVsHEiaRI6NXL4N8hGo0G+/fvV0dGRkZoNJpBSqWy6KqlhMR/GJmPj88/PQcJCQmJ/wwXLlxIEARhwIsXLxxu3ryJ5ORkTZMmTf6xaFsURezevVt/7do1npKSIgiCAJlMBkEQXsnEAwMDxZSUFHTv3r18HaUEgYKj9u1JTt62bSVdRQkwRkF+9+6UqVm8mDJ0PXsC9vb075dfktHU119TVi23RVMhVq9ezUNDQ5nQsqXYqH59wSg6mrKTxsZ0jfldmQ3g8uXLYkZGBiZNmvRaUatgYgIjd3f4nz8vJA0YoHf+8kuBpaeTO/vw4VTjvHUrMGDA67mn5zJlCmVjW7eG+bBhCGzSBNZOTrAt4T5VGLVq0b1Vq+nrpk3JMKxw5lkUSZbdvLlh486cSc+iiwvuR0fjkaUlOo8cWTkrB5s3kxQ+v2lYu3a06GNozf+oUfScBgRAV7s2fg0MFGt88QWr/e23FKCWlNFnDKbOzrjm4oKr8fFoNm4ckoKCsCc1Fffu3eMXLlxgwcHB/OHDh+KDBw+4TqcTYmJiYGlpCTkAlpZG9dRjxlAP8OJYt47k+19+WXQOU6fSIkivXoZdZ9WqVJ6RlEQ164Xq5Pfs2ZOWlpY2RalUXjBsQAlDuXz5srJzzZptHBYtYhg5kuT8Bj6farUaW7duVcfGxh7VaDS9lUrly0qeroTE/zskGbmEhITE34hSqdQDaA0AKpVqVVhYWDG9cf4+Ll68KEZERMjatGmDW7duISgoCGJOb9wOHTrAysoKN2/eFDw8PF7P6Ewmoz+eq1en4MBAWWKFYm5OxlOtWpFcvFUrChAyM2k+nFMGfv16qtctFDj4+fnxxMRE1rRpU/3Qd96RYft2Ctpq1CBDNb2eFhJWrDCox7NOp8PDhw+FZs2avZG0zMHBAR988AFWr14te/vtt1El11wMoIUAuZxajVlbU7smZ2dy2u7QwfCTfPcdZTUVCgRv3Ii0W7eg0WggimLlGt8JAn0O+/fTfPv2pR7q8+bl7fPrr1QL3bNn6WNpNLT48OGHFLynpCDUzg6Hq1XD+BEjKi9F37QplVLk5/RpUkFcumTYGLlBzwcf4KqXF6/WsiWad+pEwegnn5CZW4sWJWYhPQYOhHufPtBNmYLWMTFodegQ2P37LGDMGP2LrCyZtbW1LD09Hf7+/nq1Wi1zvXEDnmfOIOPhQ9jnqgpKomdPqtUuLtjfsaP8CzwyGXDkCLB2LS1I5CMuLs4CwNnyDShRFiqVyrLFvXvDWhw5wrB9e7n6Z6ekpGDLli1qtVq9QavVzpJk4xISxSMF2xISEhL/HB+6urrKHj58iNTUVJiZmeH48eNZCoVCMW3aNJlxRdePFiIsLAyBgYFs7NixcHJyQu/evV+9d+bMGTE8PBzZ2dliw4YN5W3y152WF0dHcibu3p2Cwb/TMC0/NjZU39u5MxmhRUZSbWmNGoBSCWzcSPudOgX06IGUzExs2bJFzMjIEHr06IHOnTuTAqFrV8qAd+kCJCdTMDt4sGG9oAH89ddfUKvV6N279xsHeubm5pDJZHj58iUK1OV6eeV9fe0a9WjeuJFqoR89onrMMWPIOK40Hj2iAP2nn9D6t99wycpKf+TIEVlMTIzYp0+fyu1oMngwKRGSkkhOXvj+bt9O2W4Xl+KP1+lIDi2TkXJh7NhXn3Hs+fPc1NSU16tXr/Ku4cIFYPr0gtuaNSv7nhfGxATPjhzBnwcOsA8tLEhdYm9P/cfnz6ee5OvW0XOcj/Pnz+sVCgXc3d1lRjntxlijRoj38cENPz9Zz3PnoP7yS/R5910gMlKGK1cgzpqF3XPnii7Pnwv2hcbLJTIyEsZjxuCei4uY2Lev8Nbz56hRo8arftcAgIEDqe1XeWvFp0+nrPjZs0CDBsisUQN3794FAAYg4euvv167cOHC6WWMImEIjMmHNW++U6hXT5Dv2kUmeAby4sUL7Ny5U63Var+eP3/+d5U4SwmJ//dIwbaEhITEP4RMJnt88+bNxiEhIamCIDzXarWuMpnsRmZmZqfw8HA0adKkUs8fGBiob968uczJyanIe56enrlBSMUEI25u5FpsZkamSiXVgP4d2NkBv/xC9ch79lBQ1Lo1zQ8AJk8Gfv4ZGY0bIy0hQTCztsZbb72Vd3zdulTv3b17Xub+q6+Ahw8pwx0YWKrRVv369WFubo4TJ05gwIABb3QpJiYm8PT0xO7du2Fvb6+3tLREeHi4rG7dutzd3Z3Vrl0bzNWVdv74Y3oBVJ+u1QLHj5P0/MEDantlb1/QhCw0lFpPDRgAebt2+KRDB9nNmzdx4sQJwdnZGfXq1au8+u3cmuI1a8hkLDSU5gqQEiEgoPjjcr1opkwhN+9r16hfcD4CAwNZ3bp1Ky+rnZAArFoFfP55we21ahlex5yDKIrYf+aM6OHsDKuZMwV06kSeAwDV6B88SH3B69cn074cLly4IAMAhUIBJycnmJmZISY2FgdsbeFWvz6E588Re/Ys52lpjN26BTx8CGH4cNj06SOcOnUKkZGR4ttvvy3IZDJEREQgKioK5ubm8Pfzw1C9HqYeHoJWq9Vv3rxZZmxszD/99FNmZGRE9z8rq6hruaHIZMCyZdDWqYM1DRtm6nS6QJlMdlev11/lnJeRbpcwCMYEkbF9qVZWnvV++EFRnkD78ePH2Ldvn1qn0727cOHCw5U4SwmJ/wkkgzQJCQmJfwiVSiUD4ArgsVKpzFSpVMZKpTJ78eLF39SrV2/2yJEjTSvLPE2tVuOHH35A7969CwaSlc2nn1KQFBz8952zLL75hjKgMTEUIDk5kQR23Dho7t3DTyNG8KZNm/IePXoIZmZmdExyMtCvH+2fm/XXaKjf9w8/lJnRu3LlCgIDA/WzZs2qkA/42bNniIiIQGJiIszMzHDv3j29Wq2WabVaDB8+HK65AXdh4uMpUPP2Jglp794UwK1dSxJoIyPKhg8cmBfgAfj+++95ZmYmGzJkCFqUM3gsF4mJpESYPp36bW/fnmc6dudO8bJXR0dy8x45kuZfjNz93LlzuHjxIgYMGIDWrVtX/Lx1OlrQKJwdTk2lBZmwMINl1qdPn0ZYWBifMWMGk6Wn0xjh4UC3bnk7nT0LzJkD7NyJCBMTnDp1SkxMTBScnJzw9OlTGBkZca1Wy0RRRJcuXdC9e3dER0fjr8GD0T4jA4KtLWX9MzOBZs2wfv16Hh8fzxhj4JzD3Nyc29nZ6SPu35cPv3oVdfbvh3FOMM05x44dO/QJCQl4//33ZVXkcmqlVx4zxcKIIv744w+N0U8/XX77zJm3If2xWnEwVgfA7t+9vG7FjxzpPXb8eDNDD33y5An27t2bodVqeyuVysBKnKWExP8OnHPpJb2kl/SSXv+il4+Pj9m3334bqFKpxMDAQJ1er+cVSXx8PP/xxx/FFStW6GNjYyt07DLJzuY8JITz+Pi/97wlceMG5wMGcK7Xc37/Pudt23I+Zw7nUVG0LS6OJ127xjNNTfmSr77iAQEBeR/GxYuc+/pyXrs255mZeWNu3Mj5u++Wetrw8HD+3XffVewHWwi9Xs+XLVsmXrx40dAD6Dru3ePcxYU+q+bNOQc4v3CB88uXOb9yhXNR5C+eP+crVqzQ+/j48DNnzujVanXlXcixY5yvX19wW2Rkwe9v3OC8RQu6hoAAzrXaUod8+fIl9/Hx4UuXLhUreLbEmDGcL1lSdLsocr5/P83TABITE/nixYt5ZP7r3b2b81q1il5jQgIXFyzgl3v2FA/u2cPj4uJKHjgigocFBfFtY8fyp5s20bwOHuS8USPOb9/ma778Uty4cSPX6XQ8/+8f0d+fi+3a0f750Ol0fOPGjeKiRYvo+W/VyqDrKwlRFPmPS5ak6wThBQd68n/B7+X/iRfQhAM3E6ytuy5atCglJibG4M/kyZMnfPHixRk+Pj6d//HrkF7S6//Rq3LrrSQkJCQkyo1SqVTPnTvXnXPe+cyZM7KEhIQKGzs0NBS//vorGjZsiI8//liw+7vrp42MqG61Y0cy3/qnuXCB6pkFAWjShLKn9etTT+Hly4HMTFi3bg2TXbswYsIE2E6ZImDPHjq2QwfAxwfo35+uK5dWrYpmNAuRnZ2NzMxMISsrq9IuTafTITs72/B2bbnu8Y0bUyaZc+CvvygDW60aZbinTAFCQlCzSxd8nJAgzLS0RK25c7Fp/nwcGTQIu0ePxr6tW7HBx4df/PNPnmu290bUq0dGaVWrAjduUElCrVr03ubNVBLg4kImagBlwuWlV8mFh4dDEAS8//77lSMld3EpmHnOhTFg715y6jaA3bt365s1a6avnb+11qhRJPsPCADu3Xu1WbS2xummTblZXBwbbGcH21Iy5+LAgdB89RV/2rAhrltZiWCM/AyuXwfs7TFh40ZW/+BByIA8I7wnT8CqVwe7cqVIVl4mk8HExITrdDrcsbcns8A34NmzZ9AAyc9q13YCEAjGRrzRgP91GJODsRkANgJwXzt7ds8GDRrIDf3dkNN6Ta3VavsolcqLlTpXCYn/MaSabQkJCYl/Lw8AICQkBN27dy+1NjY5ORkxMTHIyspCtWrVUL169SJ9dE+dOqW7deuWzNPTk7Vt27aSGyWXAmPAsWMkBf6n67ebNyejsFwEgQLKlBTqhXzgAPUR/vhj1LO0xAUHB9ja28MmMBA4c4ZqtQGqJR4/nmq/c19jxpAs29u7yGkb5cifAwIC4OnpWSmXFhYWBhMTEzQs1EapRBITqT67dWuSwvfqRZLy8+fJWXvHjrx9g4MBzlE1OhpVjYwERy8vaD/7DFHPnuHhzZsYffQouxkUxJ9bW3On6GiGvXvJpMzdnWrdHzyg81hZlS2nbtqU7mHr1vTMDBsG/PYbMGIEmbeJInkBLF1q8L158OCB2KBBA1a9evWK/zlITaUFi5KM0O7epXkX7k1diKtXryI9PV3Wq7j2WebmwP79EB8/htrXFwkJCfD39xf/+usvQbFsGZo/eEAlDkuXFjSQGzsWmD4dD7ZswcFjx9iUKVNQo0aNvMSLpSVgaYmtM2eK9atWFTB8OP1M7N5Nbb6aN6dxi8HT01OoUaMGnmzejLC6dfUd6tWTOTg4FDROM5AHDx6IOp1ue92ICD0YawRgDRg7Ds7V5R7svw5jNgDeB2ALoNfXKlV/Y4Xis759+5bSaD2P27dv8xMnTqi1Wm0/pVJZglGChIRESUjBtoSEhMS/FKVSmahSqVyvXLly3srKqlqbNm1k6enpuHfvHvfz8xOrVq2qr1evntH9+/ez0tLSjEGOvVAoFHFarda2WrVqam9vb3MTExMEBgbi+vXr8unTp6Nq1ar/8JWBgpHISMDVlQK3unUr9XQxMTE4ceKE2LJlS6FFixZQKBRk4rRgAdUsF8bKCpg2jUzDfH2BwYMhfPIJ0qdO5esvX2bvMobajx6B+fhQUJqeDnh4UECYS9u2FAQWgyAIMDExwcOHDyst2L5//z5q164tAii9LvzhQ8DBgeqcAwOpnVRoKPWE3rMHyM4ueoyNDf1brRrQrBksAcDXFzYAmgHAypXAhQvsj/Pn+aQJEyiIs7Gh+3TnDvD993R/f/mFgs8bN8iYbuBAOu+1a/S1Xp937MWLQM2atMDh5ETPTO5iRzmIiIhAeHi48HGuWVxFc+wYtSUbUUIyNiAgz/ytBLKysuDn58cHDhzITErqebxmDfZs3qy3GD1aFtasGSzr1MGcOXNgYmJCbblsbclNPjSUFn1MTUm5oNfj3pMnxQ756NEjHDt2TJ+m08mys7PRZ/Vq4I8/gMOHqX1fKffMzs4OPXr0gH7ePNyUy9mOHTug1+sxbNiwkj0DSuDx48cZoihST23OQ8BYDQC1wVgdcC712jYUxqoB2AXgDIC5Kh+f+gq5fIu3t7epVRmLnGJO3fyNGzcStFptL6VSeffvmLKExP8akkGahISExL8clUrVSi6X/ymTyUx1Op1GJpO91Gg0BwAYKRQKF61W+zOAU0qlUpvvmIYKhWK5VqvtD1Bw16JFC3h5eVGg+W/hjz/IQVmnKzEwrQh+/fVXMTs7W1Cr1WJmZqbw4Ycfwk4USRq9aFHZA6jVZH724gVCJ0zA0fBwXs3Ojo8dOFAwadCApOO//krBedeuecelpVHP4AMHKKDNx59//olLly7xuXPnVnh2VRRFLFu2TBw0aJDg7Oxc/E7R0WRiZWsL/PwzMHp0Xpb58WNg2TJqkbZgQV5bNANRq9VYuXIl9/T0RKkqCq2Wsry2tsC+fZTt1WrJCG32bOol/fAhqQjc3HIvrvw9nEGy+uPHj+ujo6NlycnJfN68eZWj7khIILO9pk2Lf3/QIGrN9sEHJQ6xdetWvUwmw9ixY2UlKVpSUlKwetUqfHL4MMxHjCCDtMJcu0a9yQMDgRMnSFUA4M6dOzh58iTPyspiHTp0EPv06SPcuXMHvr6+8PDwEDt16iTIZDJS0yQkAC4u0A0cCPbRR5Dt2UMZ8ubNi5885/QSBBw7doxHRUWJH3zwgcFGgGq1GsuWLdOIomitVCozX73B2AIAA8F5O0PH+k/DWBcAXwJYAM6DVSqVYGxsfK1bt24tO3bsWGoZaXJyMvbt25eRmJh4Kzs7e6BSqUz8eyYtIfG/h5TZlpCQkPiXo1Qqb6pUqq56vd6Lc/79V199pTXgmMcqlWoIgBYAqsnl8l63bt367N69e9keHh7Gbm5ukMvlkMvleTWZ/wS9elHt9t69VC9aCW2kkpKSEBUVJbz33ntwcnISFi1ahKCgILH77duCZdu2hg1iZgZs2gTcuoUmv/0GF72eHX35ku8ExPeSkwXhyhXKZGdmUmYzt37YwoJkvBkZBYZLT0+Hv78/3qh/eTHodDpcuXIFwcHBorm5Oatfv37BHUSRMtXHj5MsODGRgu78NednzpDaYN06Wjy4fbvc8wgICICtrS1v27Zt6Q+XQkE18wAwYULe9j59cgeiwC02luaY23Yt9/1ysHPnTjE6Olqwt7fHoEGDKq+MYsQIWrwoicGDqb97CYSFhSEqKko2Y8aMUktHLl68CD3nYP7+uH7rFkzGj0ewhwevWasWe6WWaNeOgvDBgwu0BYuIiBCzsrKEmjVriq6urgIAaLVaGBsbo2vXrgU+s0xBwP2PPhKPA4L1mTPoc/u22CA1VZCPH0+qg2bN8nbWaGjB5NkzwMgIbm5uLCQkRHbixAn069evtLuWf24wNja+/MUXX2QWeIPzb8DYEjDWF8ANcB5r0ID/NRiTAXAH8D2AMeA8HADkcrmqWrVqLm+99VapP5N3797FsWPHMkVRXKTT6b5XKpUVYLwgIfHfRQq2JSQkJP4foFQqbwK4Wc5jdABu5Hx7RqVSfaHT6br7+fntOnfunBXnXBBFUc4YgyAIekEQdDKZTJTJZGJGRoZF9+7d0aVLlwq/liJ89BGZk2k0pfanfh20Wi327NnDq1Spgpo1azIAGDt2LPz8/JCwdStC3n9f5z54sOH/F7ZsCbi5QTh7Fv0fPxYerFmDGFtb1KxWjeavUNDCgacnmXQxRiZeV65QpvbwYdy9dw9HjhxBjRo19F5eXhXW200URSxfvlzknAtt27ZlnTt3Zq/qZUWRam9bt6YAbM0ayq7KZPTKz759JNcGSHpcjh68uWRmZsLCwqJipHOMkTlaRga1+nr5kuTnU6eWa5iIiAjBzs6Ov/feexUyrWLR6YC4uDwDt+Jo3JhKGIpBFEUcPXpU7NGjB6tSpUqpCwJxcXEi51z4ccUKWAJ47/ffkdK2Lc5cupQbNNOOnp4k388XuNvY2AgA4OrqypxyWro5OjoiOzsbL168gKOjIzjnePHNN9Ds2IErn37KB7u749GjR/jD1BRZWVkYd+oUamzZQiUAaWlkLJiVRS3xchZvnJycMHLkSOzcuRPt27eHra1tmbcwLi6OZ2dnF99WinM9GPsSwHkAC8oc7L8G1WdPB+ACwB2c6wFApVLNlslkXw4fPlwoaQEnOzsbJ06cyAoLC0vQaDSDlErl9b9v4hIS/7tIwbaEhITEfwSlUskBnAPwyoJWpVIxzrlcr9eb6PV6Y61WawzAhDF2xM/Pr6m7u3vlZ77NzKg+9623KNP99dcVNnRoaCji4uLY7NmzXxk11a1bFxNHjBAe6vW4kZYmuJd3UMYg9uiBVbdu6as3ayYbtWwZBaXr1wPt2wMNG1KWNjHxVT34MwAsPp4fWrYMKVlZzMvLC61bt67QJupXrlyBQqFg06dPh0KhyPuLOjycFgkePQIOHqRMslxeMJudy9GjJKvPdanPDXTLSUxMjNikSZOKeXBOniTZckICMH8+ZbsfPaJ6//yS/VIIDAwUAQhDhw6tXGPAqChSNpTWZ93fH4iIoBr/Qhw+fJhbWFigXbt2Zc6zX79+QmZmJhwdHenZnj8fnf76i7F58/gtOzt07do1b4zgYDLwCw0FALi7u+Pu3bv6qKgohhyvh6CgIMjlctjZ2SElJQWHDx8WzR89Ym3HjGHTpk2TAYAbSfmFJUuW4GbHjmLf+fMF3L1Ln4+PDzn0f/ZZgXk2yMni37hxA7179y7rspCQkKAWRTG8lF3eBiCCsTEAdkOqhyQYcwXgCfo8x+Xel2+++WaCsbHxIhsbG2zYsEEcNmyY0KCQsuLp06c4dOiQOjs7+5BGo5mqVCrT//4LkJD430QKtiUkJCT+w+QE4NqcV1rudpVK1dLIyOhZdHR0DUdHx79nMitXUmZbpyuzdZMhcM5x8eJF1KpVCxYWFgXfPHUKdU+cQErbtsKDBw/QuHHjco19//59aEVR5vXTTzAaMYJqjpcupblrtbR4MHkyBbrh4Th49y5X9+/PRj56hHq1akHIb6RWQcTHx0OhUECr1VJd/scfk+v3qVMURNvb06skEhOpjtjfP28/hQKwti73XKytrYWXL1/qUZY5myH06kXSdsaAd96hdlebNlEQfuECmaSVUX5w//595uDgYHgbtNfl22/pGS6t9ZW3N2WaCxEdHY3Q0FA2adIkZsgCV5G2fTIZoFajTWAgC3BxQXp6et5z36IFtQzLVTgASE1NZd26dXt1ohYtWuD27dvYtm0bj42NZf2vXGGuc+cyRTGu6nK5XKxVq5YAY2OgTRuqCRdFUkHY21Ppgbk5AIAxhpEjR8LX1xdGRkbwKGaRIT9JSUk6AH+VuANlt80A/AjgIYDgMm/W/yNUKpWDQqE4JwhC3Ny5c9826CDG2gL4AoAvOF+ZM45MoVD8YGpq+oG3t7dJ9erVcfnyZb537140atSIDxs2jDHGcO7cOe3Vq1dTdDrd+wsXLjxaeVcmIfHfROqzLSEhISFRhBwJ+s4tW7bo//jjD2QUqjmuFDp0oKxr7dpAWFi5DuWc49y5c+Lhw4f10dHRuHbtGn744QckJyfz/v37Fz0gMxNGw4ZhwIABOHjwIK5cuQK9Xm/QuXbs2CEePXoUwzIyxOpz5wJ+ftSK6sYNkgg3bkwtrlq1oiBx+nS4NmkCGxsb3qBrVwiV1Fvby8sL2rQ0aBs3pvr3MWOAxYspuMpXr1ssnANJSXnXkIsgkAy+nDRq1Ah3796VxcfHQ6fTlfv4V2zfTm3Vcmvbra1Jon3pEtVGnz9Pcy6hn7coilixYgWioqLYO++88/rzMJTRo4EPPyx9n6dPAZWqyOZ9+/bp27VrJ77RgkCzZtDcvw/n6GjuN2kST0hIoO3GxpRxzu0RT7C4uLhX39SvXx+MMbx48YL16NYNbk+fMoWlZbGnsbCwEH19fbFy5Uq+etUq/nj3bhHTpwNffEH3oGNHaiOX89k3btwYo0aNQnBwML799lt++PDhEnuwp6SkyFBasA0gpwVYbQAPwNhgw27Ovx+VSlVToVDcaNKkiTPnvAQHunwwJgNj7wMYB0AFzveoVCpzlUo13tjYOMzBwWHKtGnTzGxtbcEYQ8eOHdmUKVMQExODrVu3iiEhIbh27dpzrVbrKgXaEhKVgxRsS0hISEgUy7x58z4TRdErKChI8+OPP+LmzZuVr9isWpUCRFvbEgOowmRmZsLX1xeXLl0Sbt++LduwYQMCAwP13bp1w8yZM1mR4IVz4PJlYPBguLm5YfDgwTh37hzOnj1b6glfvnyJlStXIioqShg7ejQaqtUCunXLy6qamVEGOSGBelK3akXbQ0NRPSSE91+0iIlDh5JMe9gwkvZWFIcOQT5kCLr26sWuOTvjKUCLF4YawK1YAQwdCtSoUXC7QkHbyvm52+S0Blu7di0WL14MPz8/xMfHl2sMANSqqnr1gts8PYH4eAq8z5wB9u8nE7BiFksYV/yNugAAIABJREFUYzAxMYEgCK/mVGkkJ1MteUnu73mTIlO6fPj7+0On0wkeHh5v/HeZRZUq6NW8OWtx+TJbvXo11q1bJ166dAni/fvkG8A5YmNjoVarWW6/91xq1KihNxIE3v75cwqWS3AcnzZtmnzOnDnoamLCGt66xbBypfB0+HByrv/mG+oysHo1OaHfJKuJ+vXrY/bs2Rg/fjy7ffs221Mw8H9FRkaGKYDnZV4o1SO3BPALGCumJuL/FyqVqoqRkVFgly5dqr/11lsyxljpPcUZswYwCkBXAItUPj73lyxZMlcul8fWq1dvzZAhQxpMmDDB3KxQl4fq1atj4sSJLDk5mR09elSv0WhGKJXK1/jhlJCQMARJRi4hISEhUSILFy78Q6VSNQIw+ejRo1/9/vvvmc2aNTP18PCAeY5MtMKZOJEycMuWkbFYCZJanU6HnTt3IiIiAgDQq1cvuLm5QavVwsrKqmT5cm7v4RyJbdOmTWFra4v169cLERER4uDBg4XCAXpycjLWr1+P6tWr4wOFAibDh1NbpcLyZUEA+venXtITJ5KkvGdPNP/oI+FSvXowSkmB3ZMnVBOdm3V8EyZPBoYPJzVAq1Zo3bo1Vg8ezGWpqcxgWzOtFhgwgILYwtfDGLWq0uvLJe2vV68elEolAODw4cMICgpCQEAA7O3tuV6vx9ixY1mVKlVKddvG5ctUk124X3WLFoBSSQsJnTtTHfe0aZThdnMrUIvOGIODg4NoZmZW+cmFmzfpuSrLUb9DB2DVqlffpqSkIDAwEKNGjWIV1ZbPbOZMpL39Nrp8/DHC69cXgtRqflUm4+5HjwpGISHIylFXFO61PGXKFBl27KDM+/DhJZ8gKgomx4+j1cWLwIgROODlhXv37mF2nz4kXa9Rg1rhHT0KnDtHpnsffAChbl04OjrCw8OD+/v7s9DQUDRp0gR37tzB5cuXxdTUVMjlcplWqzVspY3zi2DMEUBDMGYFzq++7j37p5HL5bMbNGhg36VLF3lCQgJEUTRXqVRCsW7gjDUBMAW0KPGeysfH2MjIaL+1tXXfESNGmFWrVq3Uc5mZmcHBwSH76dOnfy5YsOB/SoYvIfFvQ+qzLSEhISFhECqVioFaygQAwLhx41CktVRFkZ4OrF4N/aefYv2mTdzCwkJs1KiRrG7duhBFETqdDlu3bgUA9OvXD61btzbcyC0ykloTuRe0RouNjcUvv/yCUaNGwcXF5dX2iIgI7NmzB9nZ2Zg2Zgxsg4MpUB8woPjxNRrg0CGSO798CTg5AV9+id9NTdG4XTvU+fZb6h3NOTBlCuDrSxlkQ3n2jEzkNmwApk8HhgyhQDmHFStWiM7OzszLy8swM7Bevaied+LE4t8fO5ZqpN/QKd7Pzw9Pnz7F8+fPIQgCXFxcxD59+ghVqlQB57xo4N21K6kDVq4sOtjZs3T9+/blbZs+nRYOVq4ETE0hiiLCw8Nx8OBB9OzZs8LbrBUhLo6UGWV9lklJ5Ar/9CkA4JdfftEnJibKrK2t+cSJE5mJiUmFTSl2+HBY16kDtmQJ/vzzTzHu4EFhwK5d2Ojjw+3s7PiYMWMKulMnJtLnnJ0NlKQE+P57ylwvWEDyfgsL/PDDD6KNjQ0mTpxY1O06M5PUB3fukGJl9mxwQcCuXbvw+PFjNG7cGBEREdzR0REKhYI9efIk7MsvvyyfiQJjywG4gfPu5btD/w5UKlUVuVweNXXqVPNq1aqBc461a9emJyQkzOWcr83x1iAY6wegLoAUlY/PXgADjYyMfmrYsKHt4MGDTQ1ZsPHz89NeuXLliUajaV2gl7mEhESFIwXbEhISEhLlQqVSVQXwefXq1T+ZMGGCaaVluAHca9oUiba2SJ8zB0+fPtWnpaUJGo2GMcag1+sxf/78Vy7jBjNmDLUnevfdAptXrFjBMzIy2Pz58wEAarUasbGx+O2332BmZoZPbGwg8/GhQLmswHPtWmDLFlo0CA0F5xxHJ09Gq8hIOPXoAXTpAixZQu2s9uwp3bgsl8OHyQTL1RV4/30yPjM1LbLbmjVrRHNzczZhwoSyg22dDvj8czIZKykb1r491aUXNpl7TZKSkqBQKLBt2zYxLS1NqFq1qhgTEyMU+CxFkTLEnBevbBBFkkSPHEku9gAF2j/+SBnvt97Co5gY7Nq1CzVr1tS///77skp31W/fHpg7l+T4pcE5yd6XLsWtkBCcPn0aH330EXbu3KkXRZFNmjRJKPczXRqZmVRH/v33tBiwZw8toBSXgffwIHVAYYM3zilDvWgRmeh16VKgvdmqVavEpKQkoUWLFuKQIUOKv9EvX5Jjv68vsGsXeKNG+Pqbb169PWHCBNy+fTvr1q1bXy1cuHBZua+TMTmAvgD+BOcp5T7+H2TRokVfOjs7zx8xYsQrzXdcXBz27NmToVaro7Kzs7+u8/Tp/gnbto0A4B7auPEp37Fj3RljU6pXry506dLFsnHjxqUrRXIIDQ3FoUOH4rRabXOlUhlX5gESEhJvhBRsS0hISEiUG5VKJZfJZJtr1ao1fMKECRWXistBFEWcPXtWjNmxQ+jTvj3sZswoW55rKF27UsCR20s6h9WrV+sTEhJkvXv35kZGRuzYsWOvsuWOqamYOG4c9RFu377sc2g0ZN7l7AzUro24hASsW7cO740dC6fnz4GNG4GLF8lR+/59+nr58qLjiCLJcSdOJMm4oyPVtJfC+vXrkZaWhhkzZqDULGl0NI154ADVRpdEv37Azp2v5UpeFufPn0d6ejquX6eWvn369OEd2rdnqFWLArPizO1yOXqUpOZLlhTcPns28OgRdL/9hiUrVmDWrFlF3egrAx8fMiEz5FxLlkAzcSKWb9vG+/bty1q0aAFRFLFq1Sq9hYUFGzJkiFCWFNhgOKee6rNnAz170ue+axd9nx9RJOO5Vq1eOYkDIHn8vXt0zLffUjBeCI1Gg23btkGtVvN3332XVS9cZ5+fFy+A994D2rZF8qhRiBBF2NjYoFatWli1alVaSkqKx2v3eGbsBoCd4Lz8wfo/hEqlUjDGMmUymfDee++xmvl+L3HO8ejRIwT9/nt64127TDRVqkSGtGnDUy0tHd3c3IR27doZGdK7PJfMzEysWrUqMysrq4dSqQyqjOuRkJAoiGSQJiEhISFRbpRKpU6v13//119/mbyW8VUZJCcnIygoSHCePh12kycDTZvSH/xvyv37lOUrFGgDwIwZM2TDhw/HpUuXxGPHjqFDhw68S5cucL5zB+N27aK6aEMCbYDqhlNSKANtaYlzJ07oAcDG3h7o1o0y35s3Uz302LEUmOdf/E5Opn7SyckkGY+MBLZuLTPQBoDMzEwxIyMDp06dKn01PSSE5lmWbNnJqVjzsYrg7bffRmpqqggAcrkcp0+fZolJScC6dSRvLw0PD5I6v3hRcPuPPwJTpiDhxx9hlppaKfMuwq1bgIuL4dl/X1/4/fKLaGdnx5vnmJAJgoBp06bJLCws2Pr16xESElIx2RDGSAXRoAE9a7GxJMHP/7ylpAD161OP+NxA+8ULYO9eymYrFLQwVEygDQBGRkbw9vaGTqfja9aswZYtW5Ba0r13dAR+/x1o0ADWe/eipb8/nMzNwTlHWlqaKYA3+UFvD2A5GBv5BmP83XhwzmU6na7IaiJjDM6MwTspycKtb1+53Y8/1u//wQcNvvjiCxMvL69yBdp6vR4HDx7MFEVxhxRoS0j8fUjBtoSEhITEa6FUKu8C+ObAgQMZFamSSk5OxvXr1zkAtG7dmoLBkSNJQv2mHD9OvadLwNXVFbNmzZJNnToVffr0YaZ+fkhxc+NyPz+S4JaHYcOApk2h3r4dcampMoVCwV9lWC0tKVi8cYPk7D16kPHX/PkkPV+4kNoo5QaTDRoYfNqRI0cKAFCtWrWSpQCBgRRA+fqWPWDNmiWa1L0OOp0OBw8e5GvWrOEqlQoRERGCp6cnnJyc9D08PESbKVNoQcKoDINpS0vKxv7xR8HtjAH9+8POzAwj9+yBSUVKskti0yZaMDGQ5999hxDGhMGDBxeocTYyMsKoUaPY4MGDcfz4cXbz5s2K+8GqXh2IiCBzvsKt9TIygHHj8pznV6+mPu2WlrTIM7Ls2NXIyAizZ88WGjRowCMjI7F8+fJX3QtEUcTz589x7do1hIaGIj0jgxaiZs+mz3DDBujWrYMM0CiVytfvjce5DkAVAD+DsTJs4f8dCIKwDACcnZ2zHBwcCr558iQtdnToAJOFC+HSvDnq1KkDWTl/F4qiiH379mU+e/bsT41G81GFTV5CQqJMJBm5hISEhMRro1KpGgJ4NGfOnNIlywZy9+5dHDlyBDY2NvquXbvKmjZtmvfmpUvAl19S/fDrBn8BARTA5h+3JPz9oZkwAb+MHAnXXr30PXv2LH+0Hx2NxK5d8ZJzaLdsQdMuXYruwznw+DFlRjmnetmZM19LNn/58mWcPXsWZmZmmD59OoxLqi1v25aCq48/LntQd3dg927KcFcAGzdu1KelpQlNmjSBpaUlc3Z2xqsMXWwsuWD7+Rnmfh4ZSUqFo0eLLMbExsbiwNKlmJaUBDZvHt3fyiIjo3RTsXyIoogHbdtymZcXd1m0qMQH+dGjR9i7dy9cXV3FoUOHVtxqx7FjpKq4cIEM0Y4cocz8woW0cDF/Pn3dogVQt+5rnSIwMBBnz56Fq6srsrKyEB4eDiMjI25qaipyzpGRkSGzs7PTOzk5CVZWVqyZmRnMDhxA+N693PH5c2cztfrxG10j1W9bAOgIzk+90ViVhEqlEgB0AXAeAObNmwej3AWm3N8DCgXQrh052L8mnHOcOHEi+86dO7c1Gk1XpVKZ/eazl5CQMBSp9ZeEhISExJsQr1Ao4s6cOWPVoUMHYzs7uzca7ObNm/rmzZvLBg4cWDSwbdqUMrxZWdTTurwkJwOjR79ygS6VFSuAd96B0bVrqBMUhLt37wo9e/Ys/zkdHJBlY8OtExNhZ2ubFz1nZVFG7/RpYNIkagO2fTv1KB469LXr08+fP8+7dOnC3N3dSzaOu3GD3LwLtX0qERMTqkGvADQaDWJiYmQzZsyAdeEacJ2O6on//NPwAZ2cSNr/66/A1KkF3jIzM0OijQ2CMjN5J29vhsDAilFHFCY1FahXr6icvQROnDiBmlWrslZNm5b6Idva2kIQBNy5c0cYNGhQubOZJeLgQAsDhw7R91evUt/ydesoO795MwXab0Duwtv9+/dfbRswYABr1qyZDCDzwStXrsgCAwOh1+vxwMlJfO/rr4WzmZnZk5cvPwDGTgD4AZwnv9YEONeBsc4A1oOx2uDcsFZifxMqlaqOsbHxwezs7DYAtR98FWjrdFT7b25ODvvFlLwYiiiK8PPz0925c+eFRqPpLQXaEhJ/P5KMXEJCQkLitVEqlSlarbb1vXv3AtatW4eMjIzXGiclJQUqlQqRkZGyzp07F7+TlRXJdb/7jsyoysudO+TkXVZrnNBQqqkWRcDODmZmZkhNTWWRkZHlPyeAU97eYrqHB0NyMgXXAAVnq1ZRyy5/fwqux44l+W5QEEnIXwOdTscSExPFEl2JQ0OpTlytNjyg79u3WNfz1+Ho0aOoVq2aWCTQBqiNV58+5R909GiSwxeqK7e0tIS3tzfOOzkxvy++INfyK1dec+alkJJCJQMGKDtevnyJO3fuoNbSpRDati1xv4CAAKxcuRINGzYUFy5cWHGBNkCqhpMnyfCscWOgSRMgPJyCu3373jjQBoA2bdrA29sb48ePx4cffoiZM2fC1dX11ftmZmbw8PBAp06dAACRkZECGINYr1728lmzPgIQBeAHMPYuGHuNlTUAnB8HUAdAczDW7I0vqoJQqVSNFQrFjc6dO7fsk/O8V6lShR7ev/4iQ0JPT1IXvEGgnZaWhk2bNmUEBwdf12g0nZVK5estXEhISLwRUmZbQkJCQuKNUCqVLwB4Ll269PDly5cH9ejRw6DjRFHEgwcPwDl/JXceMmQIbMqS4rq5key1vKjVZAxVEpxTRmnoUODu3Vc1w56enoiMjBR37dolzJkzx6D2OvmpGRws8IcPyQkaANLSyOwt9zrzm05t3kxBo05XrnPkMnnyZGzYsEFwcnIq2ldaFOmPd1/f8v0RHxdH9+4NEUURYWFh6NevX/E3cMwY6hleXpydqab44kWq9c6Hk5MTvL29sXPnTghvv827rVjB2Lp1Feus/vRpmYsjZ86cQXBwMNfr9axly5ai/enTAqKiKJtciJcvXyIgIAAWFhbw8vIq2rf6TfD3B54/J8dxX19qx/Xzz6R0uHCBnr0KCuzrGiBB79q1K6KiopCdnS3GxMQIDg4ORvcSEzuC8+/BWB0A0wHYgLEIAMdR3tpHynB/AsAGwKByX0QFo1KpmikUigAvLy+rli1bsufPnwMAgoKCZG9bWMBo7Vpg2jRyj3+Dzz0iIgJ79+7N1Ol0P+l0Oh+lUvmvyuxLSPyXkIJtCQkJCYkKQavVply8eBG2trZiixYtSlROpaam4o8//tA/ffpUBkCUyWRcrVbLatasqXd2di77L/2hQyk7268ftX0qwSG5CGvXUs13SUFAXBxJmGfNKmLO5e3tLXz77be4dOkSd3d3L/uv4NxWSYsXo9P58+xey5Zig5MnBbi60h/RJS0oLF9OGVJrawrEBg0CatZEWFgYTp48qdfpdEwQBHh5eQlNmjQpcOiuXbvE8PBwQRRFWBUnEVcqgevXKatZHl6+pB7Wb8jFixehUCjg5uZW9P59+imZd+VKm8tLzZrUB7pQsA0Ajo6OmDx5MrZv345gExNMdHaG2S+/wKSUfthJSUkICQlBhw4dYGRkhFJ7dC9YQC3UGjYs8lZqaipOnjyJp0+fomfPnqx69epwcnIS4OhI9enFsGnTJu7i4sIHDhwoKMpSYZSEVkvBtJUVGe798AOgUgHbtpGyY9AgqnU/cgT47TcqExg1imT8e/eSrHzevNc7dzmQy+UwMTHBkydPhPXr18POzs7UyMjIA8D34PwvAF+AsbYARgDoCcaWg/OIcp5mIgAZGBsC4CQ4/0ek1CqVqrpCofhzwIAB1rkO9LmLjG2vXkXq6dO8+s6dDPXrv/Y5OOe4dOmS/sKFCxk6nW7EwoULf6+QyUtISLw2UrAtISEhIVEhiKI4D0DdQ4cOdbW0tES9evWK3W/fvn08MTFR1rt3bzRv3lzIF8gYnlKTyahe19C2Y3o9ZfOKk+5yDnh7kzv4tWvFHi6Xy+Ho6MiTkpI4gJKD7fHjgQkTaH6XLgGcY9OMGbxt27YCjh0DPvqIJOSHDxd/fEYGSZIDAykwqlIFePddBAcHIzU1Vebt7Y0bN27o9+3bBxMTE16nTh2m0+l4RkYGS0xMFIYPH474+HjUqVOn6NgtWgCDB5d9rwojilRj/gZcvnwZf/75JwYPHly8MuC994CoqNc/gacnsH8/EBNDjtqFqFq1Kj766COWmpqKE8nJvOu5c6x2gwZFFmo0Gg0EQcDOnTuRkJCA8zkO4xYWFrxXr16sQYMGEAQBRkZGePDgAezs7JA8dSoeMIYX69frMzMzUaNGDVmvXr1gbW2NDRs2iBYWFmzixInM3t4+70TGxlTWUEg2HxYWhuzsbNa9e3dmUKDNOZCURM9T8+a0kLJpEz0/P/8MjBhBaoGffwZat6bziWJe3/ZTp4BGjWis9HT6V6ulF+eArS1w5gzVeWdm0rNbwXTq1AmZmZmwsLAQHzx4IIii2LLQNQaDsVsAmgHYBcbOAvg6x3m8bDjnYEwP4FsAVQFsrtgrMAxjY+O1LVu2NM8NtAHA1toaM/76C9f0emzv1IkN4hyG9x0oSFpaGnx9fdVRUVFPtVptP6VS+VfFzFxCQuJNkIJtCQkJCYmKpCsA1Cgm4AGAw4cP6+Pi4mTjxo1D7dq13+xM69YBT56Qe/XevaU7lO/dSxnlwhJZUSRZtyhS+61SaNmyJTt16hTr1q0bLC0t8944dYra8wQGUiZRECjD6u+P1NRUaDQaCpzmzgWePQPmzCn5JDVq0MKAXg9cvkz/nj6NtLQ0vYeHh1C3bl1Wt25dWbdu3XDlyhV+//59ZmZmhvj4eHTv3h0uLi5wKey6zTkwYADVuReWlhtC7dpvJGlVq9Xw9/fnQ4cOZfnrdl+xahXQsuXr1WvnIpdTTfby5VTTXwyCIMDa2hq2Awbo9/7xh9x72DBu+9VXDBMmAACeP3+OrVu3AqCexD169OCtWrVi/v7+PDExkZ85cwa+vr6vboRMJkP9hw/R6v59ZHz+ub5FixYyY2NjPHjwQPz5558FuVwOnU4njBo1CgUCbYAyyPv2AZ9/XmDzlStXuIuLC6ytrYvecM5Jsn70KKk7pkyh7/fvJ4dxBwfKTo8aBdSqRbL6XPL/rCUlUfu7ly+Ld7n+8MO8823YQMaEP/4IbNkCPHpEyo/Ro8kluwKoWbMmxo0bBwDCo0ePcOjQoaJBIgXWt8BYbwDvAvAFY2sBnAHnZTeBp4C7GQAOxoaB84MVMnkDUalUdRUKxYC33347TzKj0QD9+qFa377ouGQJrqxfj99++w1z584tuYtACTx48ACHDh3K5Jyv0Gq1Pkql8s2lKBISEhWCFGxLSEhISFQUIgBMmjQJpsUYaiUlJeH27duymTNnomp5e1aXhK0tBQ2JidRHuCROnwYKt90SRQrU69cnKW0ZNG7cGCdPnkRyfDwF202bAjNmUJDo5UXByc8/FzgmICAAoiiiXbt2FBBOmkStldq3L97kzdyc2mwlJQHVq0O8dAn6ESOQ9PnnQv4ArFq1avDy8hK8vLwAgO3ZswfXr1/nXbp0KRqkJSVRZrpx4zKvsVgcHQ0y/8qPTqfDb7/9JiYlJXGNRiPUrl2bN2nSpPiIPSCAxu/a9fXml4u3NwXtX3wBVKtW4m69evWSx8TE6INr15b1tbYG9u+HbsgQbNq0Ca6urrxPnz7MxMQECoWCAUD//v0ZctQMWq0W0dHRqFatGoyNjSHftQuoUgVNRo58tYrTunVrYffu3Xj48CF69uwJR0fHopPo3Jl6vheiR48ebNu2bfjaxwefuLvD6tIlUkN06wY0awa88w65yffqBSxdSoszNWoYLr/fto0y4Jcvkwt5794l78sYBfUAlV/kysofP6ZA8eRJ4JNPgIcPqQSgVi3D2rWVQlxcnJ5zXrJchfM0AL+AsQsAlABqgrH74PxymYNT/XZNkEP5JXAe/UaTLQfGxsa/dOjQQf6qPWJICBkibtsGtGwJK8Ywfvx4bN++HWvXruWffvqpQatboiji3Llz2mvXrqVotdr+SqWyEhwAJSQk3gTJjVxCQkJCokJQKpUxgiAE7dy5U8wqJDuOjIzEL7/8AmdnZ15hgTZAMmt/f6rX/f774vfhnDJxY8bkbdPrKUjv1IkydWWRkICAU6fQ+ckTsVbbtjTmt9+STLdePQqg82V/c1ruiDdv3sRbb72V14brrbeA+/epxVJJzJpFruQANty7p1v51Vfo1LQpb+LgUOIhXbp0QWpqKktLSwMAZGZmkjP8s2c01pkzgIVF2ddZHDdv0r0ykB07dvDFixdDo9Gge/fuMk9PTzZmzJjijb6ePaMM75Qprze3/BgbU8u2PXvK3DU+Pl6o3aMHlRVs3w5h3TpUrVpVDAsLY4IgoCQJt0KhgJOTE8zNzekzbdIEWLasyH5Dcozebt26VbxsXq3O66uu1wM7dwJr1sDx2TNMWruW975zh5sHB9P9kctJGr51KwXb27eTq37LlsVK5kvF15d6mAP0HEaXI97MvY6jR6n3eps25AMAkH/CrFl0XVOnFnGGN5QHDx6kZ2Vl/VLmjpyHgvNRAKIBjAdjn4CxWgYcFwWgBgAtGDPMyfEN+frrrwcYGxt36dKlixycky/EzJm0qNaq1av7Wq9ePXh6eqJu3boGZaXVajW2bt2qvn79+nWtVusqBdoSEv9OpMy2hISEhESFIYpiv8zMzMSwsDC45dTDhoaGYt++fbC1tRVHjx5dOYu8jFGmrjhu3yZpcd++eduGDiUTtP37Sx4zI4Pqrj09gcaNYdmrF9eMGsWYjw+db+DAEg8NCQlBQECA0LVrV3h4eOS9YWFBdeEbN1I2sDiztgULKHAEIIoic2nSROy2eLGA48fJrbwYHB0dYWNjI/7000+Co6Oj/sWLFzLGGHpfvcobZmTAcu5cZlTI9M1gMjJIam8AAQEBePr0KZs6dSrs7OxKd9IWRQoajxwBund/vbkVxsUFOHiQ5mxuXuwut2/fhkajQcOGDSmjvmEDhLAwDNy1S/itdm1oNBqYl3BsAbRaUkZcv/7q88rFxMQEI0eOxL59+/Dy5UtUL6y6yPUGaNSIeoSfP0/KjPHjcWzkSNTt04fLPT3zbl5xcu/ykJ5OQfKRI3nb4uMpG/262NsD775LX9+7RwF2RAQQHEylFO+9B1StCvz0E/WRL0VtAJDSOzY21gTAdYPnwPmpnCx3R1DG+gI4L2HV7dUxOjDWD4ASjDUot8N5OVCpVFUVCsWmQYMGmcn1ejKpu3WLlDbFqEVyWqGV+YMaFRWFXbt2qTUazXqtVvuFUql8vfYFEhISlY4UbEtISEhIVBhKpTJJpVLh2rVrMDIywvnz58W4uDihUaNGfMyYMZWnphoxggKfzz4jg7Jm+drqajR5cliNhjJ6M2eSlLs41q4lee2FC1SLHR4OREYiaO1a/nbNmgKKMx/Lx71793Ds2DG0b9++YKCdS9WqwO+/Ux/dtDTsO3pUfPTokWBmZoZatWrBJjsb1XfswNHOncEYk8XHx6PvqVOQW1mRSVUJPa+nTp0qXL9+HYmJiTJnZ2c0F0WcrVoVQWo1T/n2W2ZkZIRmzZqJnTt3FsqlLuje3eAM6pMnT+Di4qK3t7cv2+xOEKhGzN/CAAAgAElEQVTmuDT5f3mpW5c++5AQoGPHYneJj4/npqameLX44OCA4JAQmAUFYUqtWoaXOGi1wDfflBhE5ma/CwTuUVH0Gc6cSXP95hsy5sv3nLi+8w67fPkyenh6GjYPQzhxAvj6a1J45C6AvHxZrHv7ayOTAQ0aULANUO24IFC2294eiIykWvHo6LwgPR/JyckAoFYqlTHlOi/nagDnwNh9AH1zgu85AK6UGEhzvg2M7QTQFowlgvMn5TqngRgZGS1r2rSpVX0LC5Li16xJSo5ylmXkotPp8Oeff+qCgoKy9Xr9+IULF/pW8JQlJCQqGElGLiEhISFRYahUKiMAiI2Nxb59+2BlZSUMHz4cY8aMqcBmwSXAGP0hHxhYcPvu3Xk9rt99l2pPe/QA8pucXblC7acAqqO8cYMcm8PDaZupKbKysoQCxmjFwDnHgQMH4OjoiL75M+n5kcvJFOz0aaRmZiI0NFRwd3eHvb29+OLFCx4WHo6mgYHo3q0bGjRowJs3b64XrKwoE2ljU2LLKLlcjg4dOqBv377o2qkTqk6ejOE2NuyTOXOEMWPGwMvLCzExMVi1ahVelkMWjuRkIDW1zN2ePXuGqKgo9OzZs+xA++VLqpUvYeHgjWjdGli/njLnxdCxY0cmCAK+//57fuTIEYiiiID79/WaNWtg17EjGYQZ0ud8166Cz1Ah4uPjYWVlJZqampJc/MQJMqqLjKQ+7rdukaN+YmKB49zc3KBWq1lMTPlizhLx86OFqNDQgkZ3WVmAmVnFnKM4evcmVYiZGT0/NWtSRj+39VybNvRzp9EAoojY2FjI5fJ7r30+zqPB+WYAHwFYAsAbjDmXsr8OwJcAfF77nKWgUqnaARjVo0ULI/TvT90AZs167Wc+Li4Oq1evVl+9evWsTqdzkQJtCYn/H0jBtoSEhIREhaFUKjUA6jHGHtSoUSN76NChKNaBurLYuZPqWj/7jIKt7GyqVzYxoVre774rKKUdOJBqvrOyKMsKUAAwfHiRoV1dXfmhQ4egVquLPbVer8exY8dEhULBJ+Q4XJdIixbA0qUwa9QI1RMS4O7ujjFjxgiffPIJm7ZwIeTJyXDv2BGjR49mQ4cOlQmCQNnBq1fp37KUr8nJdJ05GcRGjRrBzc0NkydPFqpWrSqGhIQYLp3Vag2qwQ0KCuJ169bVVytDLgyAFhzGji1R6v1GdO4MvHhBrbWKwdzcHB999BEbPnw4u3XrFg4dOoTMzEzZ/7F33mFVXFsbf/ecBogFEVEsBI1dFBt2RU3sPSYaNZYYW4qam8ToNTIZjRpNco03mhijxhJL1Ng7iCgCIoqioiICgiC911Nm9vfHBusBDlhi7rd/z3Me4MzMnj0zB+Xda6132bu4sFrknByWil5Wb/Hdu0uteT58+DDy8/MF7NvHsigaN2au+L16PTQSmzmTZU88go2NDerUqUMPHz5MTZaI/tIwGllWR3Dw047yLi5MAL8MikX9l1+y31FKmbFgo0YszbxuXaSmptLOJ04YQcjTDcvLA6VXQWlvsL9xF4KQ0SCkhMb2eAvAJBAyAoRY3nqwDCRJstWo1fvHVq9uXWn8ePbcJ06ssKv/1atX6fr16/NzcnI+nDdv3gBRFOOf11w5HM6LhYttDofD4TxXRFG8azQa3dLT07esWbMm//6z9E+uCFZWLHoWHc1E56+/sj/oN28GnJ1ZT+LitkVNmrA66p49S+59XUTz5s1JYWEhsrKyzG7PycnB5cuXhUmTJhGhtDZkxSxaBHW3bjBWqUKji4V+MUOHAt999/Qxrq7A7NksYlgSfn6sf3SDBmY39+vXTzh37hzZsGGDkmNJLXZGRpkGaYqi4O7du7R169ZlC5b795n7+6JFZZ+7oqxcWbJhHgBCCBo2bIjhw4cjKioKgiCwaL+NDTMiMxpZzXEJCyuQZRbZLsXYrZO1NW0YGAglJoalEDdqBLz+hI48dow95yei8L179yaZmZl0yZIluFbCokGZ3L/ParXT0p6u+aaU3aOKmuY9I8kpKciZNw/Uzo61xLtyBdevX89re/68E4BOIKQZCAkAAPMOcxbAotxzwP7WXQVCJprZp/jG/wfAsAqdxwyVKN3gkZdn77x7N3OKr2B/8vz8fPz5558FR44ciTcajZ0WLly4+XnNkcPhvBx4zTaHw+FwnjuiKOoBTFu0aNGpTZs2bejTp4+1u7t76YZZz4tKlZhh08WLwEcfMbF47Bhz/t24kaWUf/AB29ecoC0BX19f2qRJE1K7BFfwuLg42Nrayk5OTpZFyDp3Bjp3Rt8tW0jNwYMf3/bBByWnKM+cWXJaN6UsWrluXYl1oU2aNMGIESNw4MAB4fr16+hcQm3zA+rWLTMCXRQdFizKYjh7Fti6lbVNe1E0bsyc6kND2cJDCbRu3RrNmzfH4cOHcfDgQbRo0YLVco8ZAwQGMoO8Dh1Y//RH8fFhLblu3Xp60OxsIDcXXVauJGFdu1JhzpySP/RVq7LU4thYYM8eyLKM7du3K1FRUYJarRYAoEqVKjCZTFCpVOXTncULAWZajCE5mT3TiprmlYPs7GxERkYiLy8PycnJhYmJiYaUlJQqANCuXTvlzTffFHJVKqSlpdHv585tI4piAQhpCKC4HiQUhJwFMAvA+wB+t6i3NgBQmgZgBwi5DCbivQHMBqVhj+wjg5BGAAgIGQpKDz7L9a779NPVfS5fHtGqSRMNvLwqHM2OjY3Fn3/+WWA0GjcWmaCVsPLD4XBeZbjY5nA4HM4Lw9PT809Jki75+PgcjoyMrDdy5EgbqwqaA5ULQljbJG9vFjWMjWURy86dmQidPr3cQ3bo0IEcP368xO3VqlWD0WgsV8ZYVpcuaLhwIfJ8fFhbsGJ69QJOnjR/UNOmrKa4RQtWj96q1cNtc+Ywwy5Pz1LP6+rqiv379yMjI4OiqId0iTg5MeFaCioVW18oLCw022P9Afn5wFtvMTH7ItFqgWHDWG10KWIbYO28EhISlJYtWwoPTNPUamDNGvb67Tf29VEjN0dHlhL9JJcvs8/WzJk4uXIlCkwmpSNQ+uLLe+8hPjAQ2TdvwsfHhxYUFKBq1aoPMij27dtHs7KySOXKlfHRRx9B94TzuVlSUlhEtaT0f72embS9ABRFQUxMDG7evGm4fv26yWg0UrVa7Ws0Gm/LsnwXwDUA1wG4XL9+3TMiIqKXi4uLjUqlOrhgwYICACgyLPuiaMjuAKwA1AawDMBmEPI5AB0otSw9gtJbICQcQASAX0DIRgDHQWli0XZTUX33JhDSAJRmVuTajw0c+HlLg2FaixEjNKpZsyoktCml8PPzM/n5+RXIsvyup6fnkYrMhcPhvBpwsc3hcDicF4ooinckSWodExPz05o1a8aNGTPGpk6dOi/+xCNHsrZMx44Be/awKOT160zs1a5d7j+EMzMzUblyZQUllGBFRUUpRf20LR74r4gIpdK8eeRte3vyWLuq3FyWLv7228zR+UnUaubA/mTrJkpLTzF/BEVRYGdnV/ZcY2KYiVUphIaGAkDZQnD8eHZtJS0kPE/c3Vn0vG9fwMGh1F0bNGiA2NjYp5/thx+yGu7r11m0vLjG2d8feDQb4cIFYO5c1tN89WocTU3FteDgkk3yHoG6ueHgunVotncvNO+8o0yfPl1V3Jc9NzcXd+7cIQ4ODtiyZQvdsWMHcXR0VNq2bSvY2dnBbDu3gAB2zRkZJbtex8Wx13Pm7t27+Ouvv/KNRuN9k8n0pyzLmwFELViwwJzqTwEweNGiRWPDw8M/1Ov1/zE7KKVZAIprN9iDJCQVgA6EqAFkA2gNQAZQDZSGlDAOBYuW9wAh8wGsByH/ARAISgtA6W0Q4gjAHoR0B6V+5bn2sz17ftzk/v1vqy5apNK++255Dn1ATk4O9uzZk5+UlHTLZDINE0Xx+T8kDofzUuFim8PhcDgvnEfSyk9s3rx5U69evWw6der04tPKW7d+GNm8dIk5Qp88yaJ+Hh7A6NEWC+9Lly4prq6uJRqLJSYmUhcXl3KZLLm4uAhXwsIgf/EFhM2bmVACgHr1WKpyafMSRRa537YN2LCBpcx//TWLulqIrSU1u6mppbpzJycnAwBmz56NMmvVt25ldfQvg+rVWa1sSAhzxi4FlUqFhIQEQVGUx6+BEFZTvHo1KzlYt461QVu0iBl8RUezZ2BjA4wdy/qGCwJw9CicnJxkd3d3iz4PtWxsFLeoKMFj6lTVo8/c1tYWbm5uAIDu3buTixcvyrIsCxcvXoQgCKhataqSlpYmfPzxx7C3t2dGf126MOdxjabkE+r1ZWYrlIesrCz4+voWhoWF6U0m01hPT8+jlh7r6em5HcD2cp2Q0g0PviekD4BIAF8BGAzAHYRsAfATKA0u4fhlIKQ+gFEA3gIhB0HpCVBqBCFjAEwDYJmzIyG6lBo1vqrs7DxPu3Wryv7RDBULkWUZQUFBiq+vrx7Aj0ajUeS9szmc/w242OZwOBzOS8PT0/MvSZIu+/r6Ho6KinIeOXKkTalpx8+Tdu3Yi1JWh3vvHjBhAquN/te/WBSwfXuzAjcpKQkGg0F4o7iF2BOkpqYiPDxc9UFxLbiF9OrVC46Ojth1/z7GzZ79+Ma1awE3N9aCrCSqVWPzvX6dRVstcQIvQqVSQa/Xl71jp07mo+tFFLuzG8qIfmPsWGDQILM9ll8Yn33GHMavXXvoAP4EBoMBISEhQps2bUpeLPj4Y5ZFcP48S+P392efl6FDmbhdufLBPTp69CgNCQkhAwcOtGgliVKK/LZtyY6GDeWZEREqNDbfrapbt27o1q3bA/EeGxuLqKgo4cyZM1i9ejXauLkpA6ZMEcj33yN/5EiUKqXDwkptW2YpOTk58PX11V+9elUhhPxsNBqXiaKY9swDlwdKA4u+W1T0AgAdgFwQMgGACEobgpC2AG4V9eUGKI0F8B8Q0hVA06K+2xIo/RGErCl6PxqUluzwSEjtu/Xrv59Vo8a/6A8/CHUrILRTUlKwc+fOvLy8vCtGo/F9URRvl3sQDofzysLFNofD4XBeKqIoRkmS1CY2NnbVmjVrJowZM8a67pPp0C8SQli9c4sWLOJ59SqLtv73vyxlePRoJqjc3B4I77CwMDg6OspqtdpspDIwMBCCIKAk87TS8Pb2lnXt2gl4912CBg2AU6fYhurVy24/1b49sGQJS2HevbtEQWkOWZZhkVN8Xl6JPasBPBComtIiqQCLMpcgJF8Y1auzdPutW5m7uBlycnKgKAqGDh1a+ljDhwNbtjDn+sJCVvPs7/+YyVhWVhZCQ0PRo0cPtG3b1qxyz83NRUxMDPLy8pCZmalER0eT9PR0fDhokArt2wN377J5l0H9+vVRv359tG7dGsHBwYiOjKR/jB1L79+7R0wrV2LMmDFo0qSJ+YMLCoCGDcs8R2nExMRgx44dBYqibDCZTItFUUx+pgGfJ5SOBgAQEg+g+EO+BcBeEPIjgJ8BvAtKKSj1ByFBABIB/ABCDoFF2hcBuAHWt/tpCGmXXq3aF7dbthxe+9tvda1dXcs1RZPJhIsXL1IfH58CRVE+lWV5vSiKlrfk43A4/wi42OZwOBzOS6corXzGokWLTmzZsmWLh4eHdefOnVUvxa38UQh5mGbeowcT3evXs9TsMWOAO3eA/v2RkZFR6jB2dnaoXLmyjLLMsMygVquJysaG4oMPyGO9oefPByIiyh5g1iyWfj50KGtlZgGZRancNR41/Sp5gqWK/tzcXABMtNrZ2ZnfaccOYMGCh/2WXybjxj3s7Wzm82VnZwdra2u6ceNGOmnSJKHUVPgJE5jLt8HAas9v3mTZBc7OAIAff/wRKpWK2Nvb49q1azCZTI+9oqOj5djYWJWtra1Jp9ORSpUqCU5OTmTAgAGoWr8+S3m3QGg/Of++J08C58+rlLNncevWLQQEBFB/f380adLE/C9U/fqsFVkFCQsLw/79+/NkWR7u6enpXeGBXjSUZgPwLvq+JQCAkCYA7EApBSEHAdwBpf8CIREARgIQAZwA8DGAayBkOIADRTXfKBpjdJSLS89LXboMd/3qK13Tpk3LNa3o6GgcOHAgr7Cw8ILRaJwliuL1Z75WDofzSsLFNofD4XD+Njw9PfdJktTqzJkzhyIjI11GjRr18tLKn4QQwM4O+OIL9oqPZ1HdbdvQMCgINbp1UyEykkVoHxFkOTk5OHv2LJyLBJelGAwGREdHIzU1VWjUqJGCBQuAIUNYT+alS5mD+qBBzKCsJGJigF9+YSJWpWKR1wkTyjx3sbFWtWrVyp5oUhJrFVUCxe2+sktqR2Y0sjZZrVqxbIKXTaNGrB1XYCBL+X4CQRAwdepUsnLlSnL+/Hl0MbPPA/R6Vhc/dSq7J7t2sT7uly8Dly9Dp9GAqFTUy8tLFgQBgiBApVJBpVIRlUolODg4qEaOHAlbW1vzf3+5uLAFk717y3evPv8cuHMHgiCgefPmqFu3Llm9ejU9evSoPHDgwKcXgI4dq7DYvnDhguzt7Z1rMpl6iaJ4uUKD/J1QGg6guIh/GQATCKkGIAzMgC0EQAGADwDkA5gEZtB2GoRoALwXV6/e1FPDh7v1nT1bV57f+/v37+PEiRN5iYmJuUaj8SNPT8+/ntt1cTicVxLy6EIdh8PhcDh/B5IkabVa7UqNRjNpzJgxNi81rbwMkpOTsXvRIkxzdobG2Zm1gereHfjoIyRRigOHDyM1NRX//ve/LR7z9OnT8PPzgyAI6NSpE/Xw8CBqtRr49lsm5rKzmcHV1q3MwdtctDUnh0Xlt2wBunVjjtgjRjABbkE6+Q8//KCYTCbhnXfeQfXq1VH1yV7SxezZwwT3Rx+VONaSJUtgMpmwcOHCp+uejUY2n5edtfAo+/eze1rKQsTvv/+uxMbGCtbW1sqIESOERubE6PjxTLRHRjIztKFDmVHd/fvA+PG407gxvVmvHoZMn05Qr17F5ipJ7DyWpHnfv8/8B65efapePy4uDps3b0anTp2UPn36PP5QGjYETp9mEe5ykJycjN9++y3HZDK1EkXxbrkOftUhhBRFu+cCqANgDoAEsPRzHYBoBXj9YufOzS8OGdJx3Icf2pT4O/MEaWlp8PLyyo+KijLIsrxQUZR1oiiWYXLA4XD+F+Bim8PhcDivDIsWLRqmVqu39uzZ06ZLly4vP63cDLm5ufjxxx8xePBgODk5wSEnB+T6dRh27kTE1asIadMGPfr2hfO4cSy6XAYZGRlYs2YN3nvvvaej4YoCHD/OhOmAAazHc5MmLMX9SfLzAS8v1k/6Ue7eBXQ65rJexnWtXbsWeXl5cHZ2ViZNmmQ+f9rPj/VtHjmyxLH8/f3h4+ODhQsXPr7h+nVmsJae/lht80tHltnCxMmTD9t3mcFoNGLr1q1K9erVheHDhz+9w4oVQEICM0TLyQFsbdm9qVkToBTr16xRup88KTS5dImlhF+5wtpwlfdzvHkza13WrFnp+5lMwM8/l9gzOykpCevXr0ffvn1phw4d2CQUhUXCv/++VOM7c4SGhuLEiRNH586dO6hcB/4TYf/4fApgM4AACjQ+8+abcdGjR9uNfvfdSjYWlERkZ2fj9OnThdevX5cBLDeZTP8RRTHvBc+cw+G8QpTvX1kOh8PhcF4gnp6eB4xGo+vZs2dvbN26Nb/Y6frvxNbWFpUrV5YPHDiAdevW4Zvt21HYrx+M69fD94038O5HH8H55EmWorx/P4t8ltIq686dO7CysqJm008FgYmhwYPZOL6+THw/yb59zGXbnKnX+PHAk6K3hOv6+OOPodVqaUxMjJCSkmJ+x/R01uKqFFq3bg1FUVBQUPD4hmbN2Pz/TqENsEWQ2bOB/5hv5VyMRqNB1apVqVln9cRE4I8/HkbHK1dmQtvZGYiPx7Hjx+XU3FzScO9eICqK7f/118xV3te3fH2td+xgqeSlMWIEsHFjiUIbABwdHTFq1Ch4e3uTB87zmZns9YTQzs3Nxa5du7Bp0ybs3r0bx48fR3Bw8GMu8/b29lAUpZUkSX//KtiLhkWjzp7u2bOBT9++USf79y/InzOn5qT33y9TaOfn5+PEiRPGn376qSAsLOwXk8lUf8GCBYu50OZw/v/Ba7Y5HA6H80ohimKMJEnt4uLiVqxevXr66NGjrctbD/28+eijj1SFhYWwsrLCqlWrlE2bNhGdTqekVq+uWnvpEp2xaRNR5+YCf/3F0q49PIAbN5ho7t37sbHu3bsHJycnCsC8YBk0CPjxRybmtmwx7wSu1TLxaC5i6uPDUtDT0spsBWZlZYX58+eTVatWKdu2bROmTJmCyk+2hMrIAMLDSx3HxsYGtra2yn//+1/h008/ZTXhZ84Av/8ObNpU6rEvjbFjgTlzWK11zZpPbc7JyYG/vz8NDw9Xvf32208fv24dSx9/NNpcsyYzsXNywp0//hBatmzJygHUahZJDwhgafTTpjHncl9fdi979So92n3sGDsuKwsoKVW5WzegY8cyL7tJkybQ6XTKt99+Kzg5OWFkly6wL7r+Gzdu4PLly6CUIi4ujtavX586OzsLOTk5cmpqKu7cuUNOnDghVKtWTR4wYICqQYMGEAShJiFkBIAyVgNePSRJEgBUKnrZgv0OZgNIAQtAdQNQmShKARWEtp9WqeJpsrHRyrNmoW3bthoHBweUlm0jyzKCg4OV06dP6wHsMplMC0RRjH/hF8bhcF5ZeBo5h8PhcF5ZFi1aNFCtVu/o2rWrTY8ePdSvQlp5fHw8Lly4gEqVKiEoKAiKoqBWrVqYPn36w53S0oCDB5m4qlmTOUwPGQI0bYrd+/YhLS1NmTFjRsnZZZcvAwMHAp6ewOLFrDa3mHnzmJjv37/kSaakAPXqsZTyWrXKvKbCwkIsX74c7dq1w+DBgx/fGBjIaoIfvT4z3LhxA3v37sUXX3wBnU4HnDgBHD4M/PRTmed/aaxezVLsp059apOPjw8NDg4m3bp1Q9euXZ8+9vp14NYtYNSop7dJErJ++QW7Fi/GxIkTHxjQPYbRCAQFsd7fc+cC1tasvVxJae0TJ7Lo+IkTj79/5gy7p3v2WHDBjKSkJHh5eSE1NZXWvHKFvJ2biz8GDZKTk5NVrq6uCiEEDRo0EMy1CsvNzcWFCxeUoKAgwWQygRACRVFmenp6rrXk3JIk1QNwixCymlK6WhTFexZP/BkpisA3JoQM1ul0YwwGQ2tCCNRqtUmtVsuEEBgMBrXRaFQTQlC9evX86oqCYf/+d+WL335rquTurmnh6gorK6syzxUZGYlDhw7lFRYWhur1+qmiKN548VfI4XBedXhkm8PhcDivLJ6enkclSWoREBBwICoqqunbb79tY2tr+7fOqU6dOhgxYgQURUGzZs2wceNGJCYmIiMj42HrK3t71td58mQmeL28gMhI6EeOxGt2dui8erUAg6Hk9Oo2bZh5lUrFaqVlmX1vMgHe3sC775Y+SQcHFoWtVYsdU4ZhmpWVFTp37oyQkBB07twZ9o9GxPV61pfZQoKDg+VudnaqB33MXyXefJNFjfV6JrqLyMjIwPnz50mjRo3M90qPiGBp+8uWmR/3yy9R0Ls3Ery8sG/fPowePfrpfTQaFo0+f549k3feYWJ682a2mNKz5+PR7hUrmKmbuXHq1CnXZRenk2/fvp2o9XoE5eXRlJQU1SeffAIbG5tSSwptbW3Ru3dvoVevXtDr9fDz81MuXLggSpL0q4V9oRsDsKGUzgUQAWB9uSZfDiRJqq5SqQ4SQq5qNJoGarW6o0aj0TZu3Fho2rSplYuLCwgh0Gq1jzWFNxqNwL170KxdWwXLlwM1aqDH6NEaS2ra4+Pj4e3tnXf//v1so9E4g1J6iPfL5nA4xfCabQ6Hw+G80oiiGGcwGDomJCSsXrNmTUF0GfXDLwtvb29s3Ljxwc85OTnmd3ztNWDqVITUq4fVQ4YgpXlzWnfPHtb/ec8eVtNsrsb7zBlmxNWwIauZLjbD8vd/2Bu8NOrUAT7+mIk4C+jbty+sra3pzZs3H99QqRITeGXQvHlzDBs2DD4+Pqrs2bNLrSX+22jSBAgNZffwEXJzc2E0GnHv3j36559/4tdff5Uf20GlAlq2ZC705rCyQkq1avjw55/R/9Fe6eYghN3PffuY+VxkJPDpp+z73buB1FS2n6Mj21ac0q4orF68YUNg1apyXbaiKFizZo2iVquVlj16oNawYWTWrFmwxOSrmISEBCxfvhwBAQGCyWSqBaC9JceJonhKEITTRT8+VrMsSZKtJEnVJEkq+wNmGUZFUVqaTKaZBQUF/UwmUzUAUKvV2itXrhiOHDmCZcuW4dy5cw9rMxQFmowMaOLjHy6EvPtumeZxaWlp2LZtW/7mzZvTYmNj5xoMBhdPT8+DXGhzOJxH4WnkHA6Hw/nHsGjRojfVavWuTp062Xp4eKifajP1EsnIyMB///tf9OnTB9bW1mjXrl2J+969exebN2+Gg4MDnTlzJiGEAPfuMaOqJUuA4GDWUkyrZRHU4qiriwurmZ4+nQns778HLl603EU6Lo71CjeTHmyODRs2ULVajYkTJz4MsR4+zIy4yjLsKkL6+mtmvjZzJnSVKlk2z5eJjw+rJd+69bG38/PzYW1tDYPBgO+//x5t27bFgAED2MaffwaOHmX3ogRu376NsytWIKNOHdq9f3/SqXNny+ekKIDBALz1FstCkCQgN5cJ7kWLWO1+YSGLzO/ZY1FpwKP89ddfNCUlhU6bNk0QfvyROdWXlR1hhk2bNtGYmBgCIBRAF1EULXYwXLRo0VlKaXcArVQqlYdarZ5rNBprCYKgyLKs1mg06YIgZAG4rNfrdxZFiCvUHkuSpKpgAaVMAG5gvbMfMG3atIcZDGPHMkO78+ctGvv+/fvw8vLKi4uLUwCsMplM34iiqEUnOwoAACAASURBVK/IPDkczv8+XGxzOBwO5x+FJEm1dDrd/ho1ariOHj3a5ilDr5fI0qVLodFo8Nlnnz3dXxqAj48P/P39IQgCmjVrpgwdOlRQm0vpzs5mqeZeXkDjxqw2+K23WCT1hx9YG6hWrVidb7Vq5ZukLAOvv84crjt1KnXXyMhIbNu2DXPnzn1Yp3r+PBPaK1ZYdLo8Z2cEursrl93dBY1GQ5s3b6707du37J5oLwtKgZkzgdGjmVGZGWJiYrBlyxaMGDECLevWZXXVM2aU6WZuNBpxYv162vuzz8i1PXvQceDA8s9Pltn9FkUmrM+cYTXzb70FvPFG+ccDsHLlSnnAgAGqpk2bsusYMODplnEWsmrVqpzMzMx+oigGlue4ovppBQBq166dN3DgwEpOTk4QBAGKoiAzMxP5+flITExEcHBwTnp6OlUU5UtFUX4TRVEuY/iyzl0XwL1+/frB3d2d/a6+9RZ79evHsjdKqctWFAW3b9/GpUuX8mJiYgyyLHsWzYuLbA6HUyqqr7/++u+eA4fD4XA4FuPh4ZF76tSp3wsKCnQXL17sUKtWLU316tX/lrm0bt0aQUFBND8/n77++usPosH79++n+/btQ0xMDGnTpg1atWqF3r17E1VJfbh1OqB5c+Ze7urKaqS3b2f13hs3MmMvWQbM9X4uC0Fg4/ftW2oLLkopjh07pmRlZZHMzEzExsYqp0+fpjUrVSI2ioIQgGZnZxM7OzvExsYiPj4eKpUKNjY2kGX5wWKDtlEjvDZ9OpHZuciVK1eE1q1bw9rauvxzfxEUp3EfOMBM6MxQrVo1yLKMS5cuyR26dxfQpAlzlS8joqxSqdCofXtyOTmZemdnk0aNGj3t7l4WggC0aMEWBBITmZna8eNsoWXIkPKNVcSFCxdovXr1hFq1ajGH9IEDgWJ/AQtISUnBnTt3oNPpEBERoc/JyTno4eERaenxkiQRlUoVbWtrq+3SpYtmxIgR2qpVqz5w9iaEwNraGlWqVIGTkxM6dOiga9y4sS4+Pr6X0WgceurUKW8PD4/M8l85w8PDIzsoKKhjs2bNGtUOCmKLT7dusRr6hg1L9DQoKChAUFCQsmvXroJbt27dSE1N/U6W5fGenp4BHh4ez7QAwOFw/n/ADdI4HA6H84+jKNK1UJKkU7t27fqrQ4cOlXv37q0pUcy+IGxtbWE0GsmlS5dIjx49oCgKAgMDERoaSnr37o02bdqg3IZutrasV/b48UxsqVQsrfhZUuZnzgQOHQJ++425pJshODiY3rlzRxAEAREREdTa2pra29urju/dixahoTjHatIVvV4vCIIAGxsbOS8vT1WzZk0kJCRgyJAhtO3q1QTffAPBwQE9e/aEoij45Zdf5F9++UX15Zdf4mU/nxLp0QMIC2Ppww0amN2lQYMGOHfunCq7eXNUsba2OI2eEAK3774j1WfOVPK7dROu7d8PV1dXy+eWk8Pc5OfMAW7fZosvDRuyuu4KUqNGDdX9+/eV1q1bC0hPL1ff84iICOzevTtXpVKdNRqNb8iyXAVAOZqGAwAEWZade/fuDTc3N4sOqFWrFj744INKfn5+bf39/W9+++23h/V6vVhel29JkgghZJJaEHo5V6oETJkCnDvHfqdKoLCwEP7+/qagoCCTIAhH9Hr9MlEUL5XnvBwOhwPwNHIOh8Ph/MORJMlBp9PttrOzaz9mzJhKVUvqS/wCMBqNWL58OQRBYI7GAARBwMCBA0ut4S43hYVMdP/wA2tB9ccf5R/j9m3WK/r775/aZDKZsHLlSnTr1g0GgwE9HzFVy/LygtXy5dB5ewMAsrOzoVarYWNjg3Xr1skJCQmqFi1aIDIsDBM3bkT27t1o1KHDg6hlRkYG1qxZgwULFpTao/ils2YNi2iW0tLsQlCQops6VaiWnY2qV67AxsYGarXabMnAU9y6hfBdu7BXo6GffPIJKXXRRZaZaZtezxzPe/ViZQNbt7K0b3d3tlDy2Wflvszc3Fzs2rULVapUkUe99ZYKCxcCX31Vatr0oxw5csRw8eJFURTFbyVJ6qLRaIYbjcYvy2sEJknSvxwdHRfPmDHDcle2IgoKChAcHCwHBAQYKKVbDAbDvyypF5ck6TWdTre5RXR0h4H79lmr7t9ni1YlPD+j0YgLFy4oZ8+e1RNCDun1+i9FUbxb3vlyOBxOMVxsczgcDucfjyRJglqtnicIwlcjR460Ntcv+EVw+vRpnD17FsOGDcNrr72GVUUu0RMmTICLi8vzP+G5c0B4OOvB/NdfrO64vMyaBUyaBLRt++Cts2fPKiEhIXTWrFmqp4RkZCTw669ma7YVRUFhYSFsbGygDwmBT1ISQkNDqV6vJx06dJCtrKxIREQESUxMJJ9//jkq/Y2GaXl5ecjOzkZubi7y8/PRqmZNkE8/ZeZjT0R6ZVlGTk4Oglavlomfnyq7Rg3caNIElFKo1WpUr15d7tatm+rRiLWiKMjIyHisbRqlFCnNmtEzHTqQpnPnPh3hvnsXSEoCFixgqe0rV7Ke7GlpzEl+xQqgXTvWo7t+fZYCXo7PVVBQEE6ePAkHBwdl2LBhQm2tlqWoJyZaPMaFCxfg4+OzZd68eRMtPsgMkiQNrVmz5rbp06fbVtTYsLCwEPv27cuPjo7WA/jdaDSuFEXxqSi7JEmOWq3264ZhYe+3sbdXNRBFleriRVZKYQZZlnH58mV66tSpQkqpn16v/5T3yeZwOM8DLrY5HA6H8z+DJEmdNRrNQTc3tyr9+vXTvsi05ZCQEJw4cYK2adNG6d+/vwpgUUSVSvXi65N9fID33mNu48Dj/ZnLYvx4JtKHDAGlFGFhYTh8+DA8PDzQyZyB2p07wIYNJfeYBpgI7NcPyMxE5N27OHToEJVlmep0OpqWlqYCADc3NyU3N5fWrVsXPXv2LNeDyc7Oxs6dOxV7e3u0b99ecHR0BKUUiqI8EPCKouD06dNKTk4OdXBwENLT05W4uDii0+lo48aNVb6+vlCr1VStVtOCggKhU6dOypunTwuoWxf48EMAKK7TRlBQEE1PTyczfvsN1Z2coFmyBClubigoKEB+fj6io6OV0NBQQaPRKLVq1RK0Wi1iY2OV3NxcQavVUq1Wq5hMJqFp06YYdusWCWvcmB68dYs0btyYvjVgAMH+/UxUf/MNq8OfMIH1RieEmaF98AGwc+fjKe5paazE4JH+4GVx8OBBpKenK5MmTWLq9uZNFtX+6y+Lx4iNjcX27dvv6fV6FwDjtVptD4PB8JMoilcsHgSAJEk6nU7nVatWrXbvvPOOTXnajj1JQkICQkNDjZcuXVJUKlWyIAjhlNJEQkh1SmlDISfHpaWbG+196ZJOV1AA/Pij2XEopbh+/TpOnjyZZzQar+n1+lmiKAZXeGIcDofzBFxsczgcDud/CkmS7DUazTErKyvX4cOHWzUooSb3Wfnuu++UTp06Cd1L6r38MigsZKZdgYFAs2aWH5ebC+OqVTjRurVy7do10qVLF9K9e3fz6dHx8Uxse3qWOSbMpErHxcXh0qVLKCgoQFRUFIxGI2bMmAEA0Gg0sLOzQ0hICNXr9bR9+/ZCVlYWrly5QsPDw2nVqlVpnTp1VOfPn0ft2rWV5ORkobCwEAAe1H+3aNFCuX//PsnMzCQ6nU7RaDTUZDKRunXrCnXr1kV4eLiSnJxMhg4dSpo3bw4ASE1Nxa+//oqR7duj2cKFSNi7F1CpkJiYiCNHjqBly5bo378/tBkZEA4dYosTT5Qn6PV6BAYGIjs7WzGZTFQQBPTr10+Vm5uL7Oxs5Ofn4+jRowBAnRUFQ3//nRxt1w5v3r2Lqs2bA/PnA3XrPp7OHRwMTJsGnDgB1Kz5+I28eBEYM4YtflhIfn4+Vq1aRYcOHUpatGjBsiIuXmQ93i2EUoq1a9fmJScnqwBYtW/fHleuXMkxmUwdRFEMt3ggAJIkqTUazU86nW5Cr169bNq0afNMpQVGoxFpaWlIS0tDQUEBdDodqlapgnpduoDMns3M5UogIiICx48fz83Ly4spEtk+FZ4Ih8PhlAAX2xwOh8P5n0OSJC2A1ba2thM/++wzi92gKKUW//G/fPlyOnnyZFLzSVH0sjlyhLlLL1vGWkO5u5d5SPCGDXLDuXNVW+bPl0ePG6d60HPYHBERrE3UjRKyaletAvbtA3x9yzzv0qVLYTQaoVaroVarqdFoJFZWVsjLywMAqNVqKIoCa2tr9OjRA6mpqYiLi1M6duwotG7dGoGBgfDz81M6deok1K5dG46Ojti8ebNsa2uL9u3bq5o1awazrdWKMJlM2LVrF7137x70ej0hhKBPfLwSnZcn3Hn9dQDAgAED4O7uDnz9NTNRy8gAiurVy4vp3j1kr1uHu4TQxj/8QM726AH7BQvQsVu3p3f29mZRZ29vs4sWMJlYzfby5RbXWwNAaGgojhw5gmHDhqFFTAxw+TJLWy8H+fn5+O677wAA3bt3p3Z2djh27FiK0Wj0EEXxZnnGKmoB1ker1a5q2rRpwyFDhuhKe2YWk5HB+pDv3cui/46OZndLT0/H4cOH8+Pj49ONRuPHlNKD5a0/53A4HEvhYpvD4XA4/5NIklQfQAwAdO3aVfHw8DDf4xpAWloaduzYoU9LS9NptVpl6NChQosWLUodf9myZXTcuHGkfv36z33uFWL4cBax7NePibEn6pALCwvh5+dHw8PDkZaWRj744APUychgwqRRo5LHvX8f+OgjJqjNER4OhIQA775b5hQVRYHBYIBWq4UgCDCZTLh06RLq16+P9PR0VK5cGQEBARg4cCCqVKlSnqsv8XxhYWFwcXFBXFwcDh48qNjb2+PNN98UHB0dcfbsWWgCAuCeloaMuXNRUFiI14tENzZuZMK3SRPW89pSDAbWqis2FrhwAahTB5g5E9ezshC5aBHqFBSgyn/+g8aNG7P9KQV272bn27sXKC29+sYNZpD3zjvlug9hYWE4cOAAptnYoIYsV8hoLTk5GWvXrqX9+vVDx44dyZUrV+jRo0fzZVn+WFGUzRUwTKus1WoPtWjRouPQoUMtXz14Er2eOewPHw7861/A0qWAmXZrRqMR586dMwUEBBgALDWZTN+Jomio8Hk5HA7HArjY5nA4HM7/LJIk2QEYpFKpviWE1HrnnXdUjZ4Qlv7+/oq3t7dACImllIoAfgeAVq1aycOHD1eZi3RnZGTgl19+wXvvvYd69eq9jEuxiHv37sFm2jRUz8wECQx88L4syzh69CgNCwuDm5sbadiwIRo1asQi4a+/DqxdW/KgGRnMIG3evKe3bd/Oao/7938BV2M5BoMBN2/eRGpqKgRBwLVr1+T8/HyBUgpBEIher4darUbfvn1pu3btyGPPVFGAL74APvkEeO019l5mJnDlCnMInz4dqFGj7ElcvcruR8+ewC+/sIWPRwzsMjIycHrKFNROSaEn33iDtG3bVunVo4dgu3UrE+Vr15YutAHAy4ulmUdHl/se7dy5Ey1OnFBcR40SMGhQuY83R2JiIvbs2ZOXk5OTKcvyr7Is7wJw21LhLUlSUwA33dzcCgYNGmRd7gi3ogB79rCU/PDwEvtl3759G4cOHco3Go2+er1+hiiK98p3Ig6Hw6kYXGxzOBwO538eSZJUALYCeFcsilLGxMQgISEBJ06cAIAhoigeLtpXC2ALgAdKycXFRW9jY6MbMGAA/vjjDyQmJsLZ2ZlOnDiRvCrtrCilWLVqFbIyMtCoenXq0bQpqb1kCU7Mn08vBAcTrVZLR48eTR5zSaeUmXJFRrJezuZIS2OR0E2bnt42bRqrLf7mmxdyTZYQHh6OvXv3Up1OB3t7eyU/P5+0adOGNGzYkFBK4eDg8KA8oMRntX4967m9dCn7eelSYP9+VlO9c2fJfalzcoA//2TGY7a2QJUqTGTXqvXYboqiYN26dUrlypUxbuxYIX/qVOx0dJQbBASoGtSsicJ589C4TZuyL5ZSIDWVnaccRmkAsH37drQ5dEhpNnWqgN69y3Vs6VOiiIuLQ0hISOHt27dlg8EAtVrtW1hYuFgUxaCyjpckqZVWq11hZ2fXfdq0aTYWO5VPm8ba2Z0+zX4282zz8/Nx+PDhgsjIyEyDwTBRFEWvcl0ch8PhPCNcbHM4HA7n/wWSJDUBcKtz586wt7fH4cOHAYCqVKp/f/XVV9+a2d8BQGsAQwGkAfi6eNuoUaNQVpr5y0ZRFCxevBiEEFBKUSMjA23Pn8fJAQPgIcto8/nn5lOz09JYqnNUFODk9PT2jAygTx+WKv4oiYmsLvZvXGxIT0/HunXraK9evdCxY8eKT8RkYi2x/P1ZFFuvZ5HqkBDzfbh9fYEdO4DBg1l6/fjxKE3Aent7K6Ghofj0008FQRBYJoBWi/h69XC8WTMlLi1NmDJlCurWrVv2XEWRRXF37izXJX7//ffKeINBqDV6dMkLK88IpRQhISGIi4tDWFhYgclkGuTp6Xm6rOMkSSI6nc6/bdu2bfv27VvyKgKlzKhv8GDA2pq9SiiBuHPnDv76668CWZY3G43Gzyzpy83hcDjPGy62ORwOh/P/hsWLF7+jKMqfAKDVahfNnz/fomJcSZLqAYgt/nnevHnQlTOy+DL4/fffaWJiIubPn08URUF8fDysjEY4tG4NXLv2ME36SXJyWGS2sJAJmEcpKGD12Pv3P/6+oyOLAE+Z8kKupTQURcHBgwdpWFgYcXV1VQYPHixUtHfzA7y8mBv42LHAkCGAhwfg5vbw+jIygDVr2D5Dh7KU5eHDn3Ipf5Lo6Gjs2LEDU6ZMgaOjIxP2770HdOkCJCUh6ZNPsHbtWnTu3BmvFT2fB/Xc5rh6FTh5Evj8c4svLT09HT///DMWHDoEsnNnuXp1l4eoqChs3boVVlZW+sGDB+v27NkDQshQT0/PQ2UdK0mSi0ajCZs9e7a12X7ssbFAvXrMrG/KFPbVDEajESdPntSHhobmGo3G0aIonnrmC+NwOJwK8oz/M3E4HA6H889h4cKFuwDUAjDUUqFdRGsAmDx5MgRBwKVLl17I/J6VMWPGEFmWyfXr1yEIAurVqweHBg2ArCwmtFu1YinTT1K5MjBzJtCjx9PbBAGwt3/6/atXgcmTn/s1lEVERARWrVql3L17F5MmTcLQoUOfXWgDQMuWzHk9IQHo1g04c4YJ4gMHWMut48fZwsOyZUzsTZxYptDOy8vDrl270KNHDya0jUYWlR0+nNXL79kDhypVUL9+feXy5ct0z5492LFjBw4fPgwfHx9s376dFhQUPD5oq1ZA06bMVdxCQkJCUMvRUSZxceazF54DoaGhypUrVygAFBYW6mrVqgU3NzdQSg9KkmTGfv1xRFGMFgThSFhY2NMbk5NZa7vbt5kZWglCOzExET///HPe1atXTxqNxsZcaHM4nL+b59BrgcPhcDicfw6iKCYBKDPS9gTHVCpVyIEDB1oqiqL18/NDx44dH/R6/ruhlOLChQs0MzOTUEofREgfUCxGJYkJyWPHmGv2o6Jl6VImJovruItRqYBq1R7+bDAArVuzXtDPQ+SWA39/f/j6+qJ79+6kc+fORKPRPL/Ba9cGuncHAgLYIsLt20xkf/stMGkSE8cWOK4XQynF7t27lRo1aqBbt24CcnJYxHzePOYYTwhw6xaEkBBMrltXKF64uHTpEry8vKherycAyIoVK2BnZwcnJyeqUqlogwYNSOtTpwgSEixKJc/NzcXFixfp4B49VJg1q9y13mVx4MCBwvDwcKGgoECtVqtjATgDwOrVq6FWq6MANCCEfAWgTBc9vV4fkJycPAQAm+Tp08C//w2cOwfExJRoVEcpRVBQkHLq1KkCWZZnUkr/4O28OBzOqwAX2xwOh8PhlIEoirIkSR2zsrIOCoLgWlhYWPebb76Bs7Oz3Lp1a1WrVq3+FuF98uRJWRAE1K1bV3X8+HFiZ2cnDxw4UGVrrk8zAIwYwb6ePQskJTGxXVDAUserVwdkmYnOP/9krtoAE9ubNwPffcfEtSyzmmNL6oufIz4+Prhw4QJGjRqFJk2aPHuhuL8/ixBnZACLFgFbtrDrPnkS6NiR3Q9vb8DBoULDBwQEKMnJyZgzZ46AxESWnu7p+XRt9++/s2fx5psAgHbt2qFdu3YEABISErB3716alZVFwsLCCCGE3LhxA7U//hg1HR3Zsyjhc6coCgIDA3Hu3DnatGlTpUXNmirExFToWh7l5s2bOHPmTE7Lli0ry7KMK1euWAGYDCDAZDJFAPAC0AcA1Gp1MKVUlGW5TPdvSZIErVY72NHRUYeICCAujmVj9OvHPnclCG29Xo99+/YVREdH3zOZTANFUYx85ovkcDic5wSv2eZwOBwOp5xIkkQAfEwIaU8pnVC/fn1l8uTJLzXM6+vrK585c+aB0mrZsiXeeuut8g2yfTswaxZzuC5m3z5g0KDHHbjbtAGCglirpbVrgdmzX7ox2pIlS9CzZ09061ZGRnJxZP7gQdbWrHZtlrrt5wfMmQNcusSEdv36wPLlgLs78OGHLFK/fj3www8snf6NN5jIK+89BRAfH4/Nmzdj/PjxqF9QwPo/z5/PsgpKYt8+Fvkupf2Vv78/vL290adPH9pt3jyC998H3n/f7L67du2i9+7dQ9++fUnLli1Brl9njvI//FDu6ynGYDBg/fr1uSkpKft0Ol1zWZYvEkL0RQZkJoD9bhBCblNKXwcAtVq9ecGCBZPMjSdJUmUAg3Q63WBKaVtrKyuXD2fMsNJOmcIWEv78s9T5ZGdnY/PmzXm5ubn7DAbDVFEUCyt8cRwOh/MC4JFtDofD4XDKSVGK6k8AIEnSf2JjY6/8/PPPhhkzZmifS/1wEZRS3Lx5E/Xr14etre2DFlYAoNVqVQCwYMECpKeno4YlvaCfZOxYoH17Vks8cCAT3yNGsN7Fq1YxgQqwCLiiAIGBwM8/M7H9EklNTYUsy0hNSQHS01nUeedO9rV3b8DVlc117VrW4zo+HlixAhg1irmJOzkxY7JPP2VO4wAz3CqGtX9j0dN33wV272Yp5V9/DYwcCeTmsrp2CygsLMTOnTtp+/btSf3kZODHH8sW2pSyRQ+Nhi0MlECxcVhWVpaMGTPUpUXdMzIylC5duqhcXV3ZGxERzASvguj1evzxxx+GzMzMiwA+mDdvngEAJEmaB+DGsmXLIg0Gg68gCNUURTkA4DMAMJlME5csWRK4YMGCXx8dT5IkjUajue7k5FS9WbNmtlWrVEGT4cNBZBnYtq3MxZyEhARs3bo132g0LjGZTN/ytHEOh/MqwsU2h8PhcDjPgCiKoZIk1U1JSYk7efKk3L9/f5XBYIDRaIRZV+VyEBoaigMHDkCj0aB9+/b07t27SEtLI9WrV1dSUlKE2rVrmwRBUNesWbPiJ2ncmBmoWVuz2uwrV1ga9ZAhD/eJiQHy8oCuXVkt84vCYABCQ4EOHYA//mAid8YMCE2bos6wYehZrRrg7Mzc00+cYGnGffsCAwawdOpZs4CPP2ZjnTv3cNzdu9nXsly4L1xgraQaN2btvMaPZ9ddsyaL7LdqVerhlFLs379ftrGxQV9BUGHjRjafTp1KPy8hTPxTymrGu3Qxu5ubmxvq1auHNWvWqFtOmAD98uW0evPmpEa9ek/tazQaH38jJ+eZzNEOHz6sT0hICJVleagoigYAWLx48SQAy+rVq0ednZ0bZWRk9HBwcLBJT08vzMrKym7YsGGVmjVrYu/evT8uWrQo09PT89FQtUpRFIfBffpY1/jqK2D1araQ07VrmUI7IiICu3fvLjCZTJM8PT13V/iiOBwO5wXD08g5HA6Hw3kOSJI0H8BSQRBkRVFUAFC7dm1l4sSJQkXahCUlJWHt2rVwcnJCnz594OXlJVNK0a1bN1VcXBy6deuGEmuzn4U6dVht8fTprEXV+++zCG/TpkxwXrlS8bFNJhaRHjsW2LWLtdH64Qc29pw5TGh17MgE7rffAjk5+LZKFdrC35+0kyTYFBu/PZE9UKlSJTwXs7Rx45hTuJMTm0sx0dFM2I8cyYTzl1+aPTwkJISePHkSn9avT3TXrrH9O3Sw/Pxnz7K2YqmppaaT//bbb6bExET11A0bcKFDB6QOGEBtbGyUYcOGqayLWrctW7YM06ZNg32xk/yxYyyy3b275fN5BH9/f5w9e9Zr/vz5fYvfW7JkSXLPnj0dykrtT0pKwoYNGwqNRmMrURQjit/fOH36mtq9ek0ZsGaNDrt3A7VqlTmPCxcuKN7e3jlGo3GAKIqBFboYDofDeUnwyDaHw+FwOM+H5QDWK4pSA8x5WUlISPgxLS0NThWIKPr6+ipWVlbClClTIAgCpk+f/lh99gvj7l0m9KZMYcJaUViLqwULWOTZHJSyVHSNhonkjz9mrbN++421znJzY2nUK1YAn3zysDa5WCCvWQO0aMHEVn4+e2/+fGRmZkK/ahW52qkTrhenej91agorKyv6wQcfkCpVqlT8ugsKWEr96dNMcD9KcUR8zBi2GHH9OquxXrjwwS7Jyck4fvw4mQxAFx7O0tHLiIQ/RY8erM1VTg5Ldy9BfE6dOpX9/TZ9OupERiLx2jWanp5OfvnlF+rh4UFcXV1BCKGyLD8MEfv6VlhoA4BWqwUhRCn+efHixaMURXEgpUShKaVITk7G6dOn841Gow0AFwBMbBMyfqIgjF1Sq5bO4+RJWD/Z390M3t7ehuDg4CSj0diLG6FxOJx/AlxsczgcDofzHBBFUQGQUvS6KUlSbQA/Vq9evULjOTs7C/fu3VOeTxPpclAsgCdPBt5+m7mO+/iwNN8VK1j98aRJzMV76lTg2jUm4mxtWS/qDRuYWK1d+6HY3LuXuXrb2LDjAFZPPWoU+75Pn8emQCnF9evXcfDgQbz++uvKuHHjSr0H27dv8WAtSAAAIABJREFUp+vXr8f06dNJhVP3Q0NZZNlkKjGNG6NHs69//cVM1oqOMzZvjh07dtBBd++itrMzwXvvMXO2iqDVsog4pcCRI6XvW7ky2g0dinY3bgiKvT0CAwPh6+srHz9+XEUIISkpKXhQYhAU9HhpQDmpXbs2CCFNH3lra//+/dHBTOQ+KSkJQUFBhTdu3KCKouRTSn8CcBpAAAj5BkAdANOyK1c+QAUhu6CgoEyxffHiRSU4ODjZYDC0FUUxtdSdORwO5xWBi20Oh8PhcF4MBQCQl5cHKyurch+cnJxMCwoKXq7QfpTi1OAff2Rp3StXMrEdGMjaMTVrxmqaAcDL62H/5jt3Ho7Rrh372qBBuU7t7+9PT506Rezs7MoU2gAwduxYYcuWLfJ///tfVdeuXZWWLVsKOTk50Gg0xSKx7JOeP8/q1hs1KttI7K232CstDejcGT4//CC7nT5NXN3cBEyc+Oxt0fbsYanySUmAo2PJ+1lbs3T/vDwIDg7o2rUrunbtqrp79y527tyJtLQ0KIoCQRCAXr1Y9kAFMJlM8PX1LaSURhe/p9Fojpw/f36ki4sLqVy5MuLj42E0GhESEpIfExNTSAj53WAwrAbQEsDewQcPUqNGk3ezSZOs2omJN6plZhrtAKN22bKge/fudSxtUery5cv05MmT2UURbS60ORzOPwYutjkcDofDeQGIopgpSRJWr16NN998U+7SpYvFjbhzc3Nx+fJl0rlz5xc5RcuYM4e1YBo0iEVbg4NZOjkhrMYZYKLvGSnq2Yzs7GwEBgaSkSNHwtXV1eLFhgkTJqhu3boFLy8v6ufnB7VaTRVFgSzLpFmzZoqtrS00Go0gCAJu3rypmEwmNG7cGDVr1hRcXV2htrJi0fc6dSyftL09bpw9C81XXwndQ0KI0Lz58+k/bmXFWl81agTs3/90b+5HmTOH7fPBBw/eeu211+Du7q74+/sTWZZpLw8PAXfuPFwQKSfZ2dmIjIzUAfhMkqQZACiAGnq9nmzYsCHRZDJV1+l0NwFkGgyGw7IsrxFFsUCSJFciy4eoIKDhvXuiX48eX50YMIClTkjSXVEUAyill3NzczuWdO5z587JZ8+eTTcajd1EUbxT0n4cDofzKsLFNofD4XA4LwhRFMnixYuTvby8HNzd3aEuxfTqUVKL+l737du3jD1fEoGBD/tXx8QAdnbA0qXA5s0skr1jB2sdVrVqhU+xbds2OTExkWg0GnTq1El40LKqHDRt2hRNmzYtXtQgiqIgKioKwcHBQmpqKvR6PRRFoS1atBCsrKxw69YteuXKFRoQEIBRR4+isHVrcq9SJao/dYo0a9aszFr7jORkJC5ciOZ16xJh/nxW233wIHutX1+Bu/AIKhVw6xYza8vNLTnarlYD//43S8mvVg0Aaz8GQBAEgdrY2BAYDExo29hUaCpRUVEAQDQazeGGDRvaabVaevXqVWsAGfPnz6/96L6SJFkBaLVs2bJp1QoKxn20Zg0MAQEIGzhQGNiunUCPHFEuX74sCILwFYCBKpXK3VzbOkopTp06ZQwODr5fJLTjKjR5DofD+RvhYpvD4XA4nBeIoijdAIRnZ2fD0vrtqkWi1WQyWSzQXyi//Qb8/jtrS1UsjBYuZKZplDJ37rp1maALCGDR1nKQkpKC6Oho1YQJE+BSVnuuciAIAl5//XW8/nj99IOccnd3d5KZmYkAX1+kZmZS+y1bECGKJCM0FOfOncOgQYNgY2ODevXqofITfbblnBzcmjaNOmq1qPXTT+RBdP/mTSZ6KWX3bNKkp9zTLcbJiQn3SZOYQ/kj46Snp8NoNEKWZVQNCEClIjEeERGBXbt2oUaNGsobb7whtG3bFggPZ68K4uvrKwNQ9enTx9Hd3V0ghKBdu3bYtm1briRJKgAqAG01Gs0IlUr1cYOcHKWLv7910qJFqnMqVeGZvXutAODosWMAIACAoih9JUlqb2Vl1axhw4bmzmkMDg6ONxgMHXjqOIfD+afyCvwPzuFwOBzO/zQRGo3GZ82aNR5arVYeN26cpm4ZqcaKwkyfk5KSUKc8ac0viu7dmSv5kxSLv9hY9vX335nr9Zw5rG3YF1+U6cidm5uLEydOwNHRUXFxcXnpNerVqlXDQK0W0OkI3ngDk6dOBQDs3btXDgwMpLIsIy8vT92hQwflzTffFAghQFYWIj7/nKqys9Hs2DHyWHp2v37sFR/PzOQGD2Zp4RV1Sh86lBm3UcqegSAgPDwcu3btAiEEKpUKzuHh6Ovri7t79sDPz0/p3r076dGjx8N7mZEBtG1b4Xs0efJkla2tLXQ6nQAAd+/exdGjR3MMBkM9AHPVavUntra2tvUcHFR9XF1tMkJDqf7gQXrm9OnAAq12E4BQQkhdSukeAL4ARAAhgiB82b59e+2TC0p+fn6m8+fPJxoMhk5caHM4nH8yXGxzOBwOh/MCEUWRSpL0JoB2JpNp6oYNG6Y2aNBAHxUVpXN3d1dee+01oXHjxlCpHpZ0FxuQp6envxpiu2lTIDKS1WprtSXvN3kye1EKZGWx1OetW1mbrL17H9tVr9fj559/RnZ2NmrUqCGPGjXK4pr2587NmywFfvbsB2+NHDnywXzi4uKwbds2olar4dGiBcimTUiKiCAumzdDKKkOuk4dZnAGAPXqsZZnc+dWbH4tWwL9+wP29jg6bhy9cuUK6devH3V3dycAkBEbi5xp0+j5gABqa2uL9u3bP+4IZ2XF2opVkOJe3Tt37jQlJSXpMzMzKwGoTAgJU6vV4htvvKFxd3cXMHgwCrKzsa1fv0LTmDF9xPnzAwFg6dKlK62tradlZ2cDwJ+iKJ4FgBUrVnSoWbPmY889ICBA9vPzSzEajZ1FUUyq8KQ5HA7nFUD19ddf/91z4HA4HA7nfxoPDw/q4eFxv0ePHofOnDmTmJGR4UcIyUlISEi6detWpcDAQKvz58+bMjIyDI0bN9ZYWVlBp9PRw4cPk/j4eKVVq1YW2Gm/YHr3Bjp2BJydy96XENZn2s6OOZkDrJ3W668DLVrg/9i78+goqrQN4E91d1V3FkgAWWJACOiwBAQEEQQdBEQWRUBQQcUFP3dn3BfEFMUiLjPjDC7oMIjIqgLKIgqyCCqC7CEkwRD2QBISsne6a+n6/iiCLAlk6U4HeH7neJJUV937NjPnJG/fe9/XbNYM69avR0pKCvr06YO77rrLFn6hCuCBdOiQ1Rpr2DAr5rPUrl0bjRs3Fn6ZN8+M+flnQXQ4MLdFC/Tr1++MD0nKdP/91vv/17+s/0paiFVEx46YV1Rk7Nq/3/boo4+iVatWp/4/ERIRgYh27YQuLpfQ6e67BbGkfVuJNWuAo0eBKhTc++GHH9SdO3eKHo9nHIDeANCsWbOI0Y884mz28MMCJAl4/XV84vUWuouLH5RleSUAKIrSz+VyvdeoUSNHYWHhT4ZhPN+zZ0/zrbfeelLX9Sd69erlCD15lvznn3/W169ff1zTtK48o01ElwKubBMREVUjWZY/Pf1nRVEa6bo+0Ov19tm5c+ewHj16oHbt2ujWrZuQmJjokyQpeO2/Trd5M1DSs7kibrzR+s80gddeg9q+PX675Ra0S0xE5pQpZvfY2OB+kGCawNdfAz17WgXOytBM19Fj924zo3Fjs+Cpp2zSwoWmJEnli73k361fP6uVl8djbbH/5z/Pv1PgNOuyspDm9drf/PBD2O64w+pjfrr4eGu822479+F9+4BK9nsv0bBhw5K/Gd8KCQnxPPn4465ac+c64XRaleq7dUOOYSC/sBCmaS4CAEVRokVRnNGpU6eQ3377LV/X9cGyLBuKooTZ7fb3R48e7axXrx5M08RPP/2kbdy48djJFe2jVQqWiKiGYLJNREQURLIspwOYrijKNzabLfbDDz9soet6aP/+/ZGenm67rbTkKRi+/96qRK4olXteEIBHH8Xu7dux/qabkN61q2/EiBE2hIcDc+daq+YFBdbqd3UqKLCqfjdsaMVYmsREYNo0NBs40PZxTg6Gaho8Ho+wZ88etGzZsvxzdehg/bd/P/DLL9YZ7Ph4a5v4WUXUMjIy8Mcff8Bms2Hbtm1GYWGhfcTIkbBdfTXQvv25Y997L9C3r9Uy7OzV9vBwoGvX8sdZio4dO9o6duwIVVXhME2XLTsbmDjRqkL/8ssAgCO7dsHhcOzUdV2YOHHic6IovtmlS5fQsLAw0+FwrHnjjTcKTw6ntGjRwog6+YHBhg0bjI0bNx5VVfUGbh0noktJzfi0nIiI6DIny/IJVVWX6boeKgiCuWbNGjMqKkq/UDG1amOz/bklvJJM08SSJUvgCAvDnYpi/Q1y9Ki1Mjpz5p+rsjNnWtW3q8OmTVb7rLLarO3eDUyeDNx2G+o89RR69uyJr776CiEhIb5Kb32PiQG2b7eqt/fvD3z6qbXCflJeXh6mT5+OxMRE365du3zt27e3Pffcc2jWrBlw993A0qVAu3ZnPANRBN5+G/jb386dLzOzcnGWQvr6a9iuugpo1Ag4cuSMYwUnC52FS5L0vyuuuGLiQw89VKdPnz7O1NTUQo/HU7La3cfpdD59yy23hAJAfHy8uW7duhxVVXsw0SaiSw1XtomIiGoIh8PRu3HjxvqgQYMckVbP5Jrze/rBB6ucACckJEAQBAwYMAAul8u6WFKl+5VXTq2QYvx44KqrgLAwYPVqq6p3oOzebSWMAwee+1p8vNXD+s03rZV3AN26dcOJEyfQv39/W5XbspX0LRcE+B55BN7UVHwyZIhRWFhoj42NNU4v0naG3r2BY8fOXYm/4w7r/ZytXr1zt51X1P/+B+TnA6NHA7GxpbYzS09PNz0eT/u6dete8/DDD4c6TxaPO1ld36soiuB0Ot/u37+/q1GjRkhNTcWyZcsKNU3ryTPaRHQpqjm/xImIiC5zNputqHbt2kZkZGTN+/2saUCzZlaSV4k2VpqmYdGiRYiKikL70rZBA38mj6mp1tc5c6yz4oBVcO2FF4Drr6947Ofj9VqrwmcXFYuPB554wmpndtpWcZvNhjvuuMNv0+sAfvn5Z+yMijLruFxCx0aNhO7//S8cL79cduW12rWBp56yCq+1bm31OwesInb5+da/3+m9qydNst5LZRw6ZBWNS0+3tqdHRFhb4UvRpUsXQRRFtG3b9lSifZIJQATwDwDXxsbG4uDBg/jyyy/dmqYNlGW5lE8IiIguftxGTkREVEN4vd5hu3fv9iQlJQU7lHNJEjBv3rlJaTm53W4AQIcyErVS3Xffny3DDMMq8jV3bumr0JVhmtZ4ffqcef3334FHHrFallXkTHYF+Xw+/Oc//zF27dpl9n3gAeGBjz9Gz27dbGKjRhCcTuvDhsLCsgfo0wfo3v3Ma4sWWRXPS+TnWwl5Zba8mybQubP1v/vYsRfcYRAWFoYePXrg5K6MUxwOhw1AJwAvRERE2OPj4zFnzpxiXdfvlGX554oHRkR0cWCyTUREVEPIsnxC1/VbFy5cqHo8nmCHcy5JshLRSjhw4IAJAEWVPff91VfWau1f/vJncty8ObB8uVVorDKOHQP++MNKKEv89JPVE3vNGqtoWgAlJibC5/PZn3nmGaF169YQBMHaPTBvnnXDuHHAqlVWEbfS3uNDD1kr/d26WSvPAPD++9YZ85Lz3MXFwKhRFQssI8P6kCEtzapk/thjlXyHlrCwMNFms50A0DkzM9O2dOlSU9f1O+Pi4lZVaWAiohqOyTYREVENIoriJ4ZhSBs3bqxkBgkoioLJkyebc+bMMdPS0vwX3Jw5fyaCFbR06VKhd+/euOWWW6oWQ+fOwPPPW99PnGit7E6c+GcV84oUA0tIsLZklxQbW7TIGmvdukptlb8QTdPwxx9/4KeffvJNnTq1YPHixWazZs00obQq6IIApKQAgwdbK/xlVaUPCbFWrkvOj9erB9x8s1U9HrCKmCUnly/AEyess9l16wIjR1ofNvih/3lMTIzT6XT+VZblrQBuBlArLi7uxyoPTERUw9W8M2FERESXMV3Xp9tstnXr1q17vkePHihPEa59+/bhyJEjiI+PN/Lz8+0A0KdPHyEtLc03Y8YMoUGDBvqjjz7qsJVS1KpCvvii7PZY53H8+HEYhoHQ0NCqzX+2kSOtr2PGAEOGWN9ffbWVMP71r8Dx41ZbrbKsW2eNIUnWM2vWAMuWASXF26royJEjSEhI0Nq2bSvm5eX5lixZotpstv26rq/RdX0HgGm33377hfflL1hgvZeS7e07dvyZXNtswGefAevXA7NmAdOmWSveYWHW6ydOnNsKrDSqau0S+Ogjaw5ZrvT7Pp3H40Fubi4Mw+gAANw2TkSXEybbRERENUhcXNzHkyZNerZhw4ZFDocj7Hz3qqqK6dOn6ydOnHA0aNDAaNu2rdCxY0eEh4fDbrfj+uuvt/Xq1QvTpk2zf/HFF4iOjkZsbCyuvPLKygWXmgr06wfs3Vuu2w3DwIYNG5Ceng6bzYa250t8q8LhsFanAWs7tdNpJY3/+Y8V8/TpVj/osytyp6RYW9EnT7aemz690ol2SkoK5s6di6ZNm7qbNm0aevToUU9qaqoLwJ5t27Y11DStPoB+siyvAwBFUYbbbDafJEkX/gREkoDoaOt93X+/9X5fecXa7t6kiXVPSMifrdmefRb45BPgppsu/IEDANx1l7VVfeVKa3w/8Hg8WLlypWfXrl2CKIrxpmnO98vAREQXEcE8vUcjERERBd3bb7/9qdfrfeyuu+4qNUH1+XxYvXo1tm7dakZFRZlDhgyx1T7PtufDhw/jl19+MfLy8oSMjAxbmzZtMHz48IoHpqpWFexp0y64wp2QkODbvn27cOjQIcHlchk33HCDvUePHhWfsypM04qzdWsr8a5bF1iyxGotZppWZe0BA6xWVi+9ZCWslXDkyBFMnz4dACCK4lRN054EMA/ATwC+kmU5V1EUUZZlDQAURWngcDhSRo0aVbtJSbJcEbpubZ+fNs2KOSrqz+3ekyYBN94IPPOMVSgtNdXaWn7PPef+2zz+uLWKHREB1K8PXHFFpd7/2VJTU7Fw4cJiwzC+VFX1FVmWj/tlYCKiiwxXtomIiGoYr9f7hCRJ7TZu3HiDy+WyXV1yHvmkOXPm+NLS0mxDhw4VrrnmGqHUM7+nadKkCUaMGGEHgB9++MG3adMm2/Lly9GoUSOoqgqPxwNVVeH1eqGqKjRNg6qq0HUduq4buq6bhmHAMAzUrVtXKBw/XihwuQS73W4+9dRTtpLt4cXFxdiyZQtSU1ONQ4cO2SMjIzFixAg0b968HPuYA6Dk36WkuvuCBUBiovV99+7Wam6tWsCLL1rXmze3zmrbbBXaLh8VFYXmzZtj37598Pl8TQG4ZFn2nn7PaYm24HQ6Z1133XWuSiXagLWyvWmT9f2AAdY28SVLrJ9TU62k+YcfgEaNrPcYE3Pm8/Hx1k6A/HyrpVvr1pWL4yyqqmLFihXeXbt2FWmadrcsy6v9MjAR0UWKyTYREVENI8uyqSjKv9PS0r5MSUnxXn311aeaFmdlZeHw4cO2IUOG4C9/+UuFx77ttttsqqr6UlNThX379pmiKEIURVMURUiSBEmSzNq1awuSJNkkSRJEUbSfvAeiKKLZgw/Ce+ONcL/yClatWoXPPvvMeOaZZ+wAkJSUhHXr1qFjx472AQMGoEGDBn78V/GDYcOsLdOffGIlpVdfDRw9ap1rvv9+qxCZ3Q588IGVrD77rLWtfOpU4OmnrarckmS9pijAokXIFkWsUdUi89dfQ0IaNrTpdvuArps2RQAoq1LbrS6Xq3uvXr0kv7yn5cutXuELFlh9yA8etNqkvfgi8PXXVqXyv//9z/sPHbJWvhMTgfn+29l99OhRzJ8/3+31epdpmvaELMs5fhuciOgixW3kRERENZCiKLEAEqKjo91t27Z1dO3aVQKA6dOn++rXr49BgwYFp6PI4cPWanBkJIqLi/GPf/wDHTp08N1xxx22RYsWGcXFxfb77rsvKKGdl65b264//dRKpqOjrZXs0ng8Vj/xlBQrkW3aFFi4EOja1WqL9e23MGQZCb16oTA8HImxse67588//mPfvk1bpKZmdtyxIwTAVQCSAfwA4DMAsiqKb/3cu/cXHQThynpLllitvXr1stqZbd5sFXXzeKw2X40bV+z9qarVJqxfvz/P1XfrZq3qL1hgFVUbPx7Yvh1wu/8soOYH+/btw/z58926rj8SFxf3pd8GJiK6yLH1FxERUQ0ky/Juu90+LC0tbfOmTZt8uq7D5/MhIyNDaNasWfB+f2dnA2+8AQAICQnBQw89hJ07d9p8Ph+io6PtmZmZRtBiK42uW+3Kpk2zEtA5c6zCYWUl2oC1mm23A61aAe3bA5GRwOjR1tnuXr2AKVNwpLAQ3w4dilV9++JodHTov198senudu2wdMiQWjDN2gDyAHQF8DqAJABTFwwfHuVu2rROnY4drYT6wAGrj/Xu3daZ8j17gL/9DbjhBiupr1cPePVVq8p4t27Arl3Ac89ZK+zZ2dbq9c8/W9fnzrXe19atVuwbN1o9uAsKrBZn110HPPmktT3eT4m2aZrYvn075s+fX6RpWj8m2kREZ+I2ciIiohpq7NixCxVFWel2u5cvXLjwuhYtWoSapilcc801wQvK5wN27jz1Y3R0NOrVq2dOmjRJsNvt0DTNvnv3bsTGxgYvRsAqAPbtt1Zy+c031hbrJ5/02/DR0dF44oknMGPGDEPX9S8B9DMMo65pmn8/Ob8J4MBpjyw49Pbby3r16hVi69LFujJ79p+vlvTRXrDgz/hTU63EubgYaNDAWmG/6SYgL8/638HrtSqQHz1qJdu9e1s9yENCrET+xRet+374ARg0yCqI5ie6rmP+/PnFBw8eLDQM41629CIiOhe3kRMREdVwiqKEASgEgI4dO+qDBg0K7oflqmoVETvZ61nTNCQkJKBx48ZIT0/HkiVLcPfddyNoHwrs329V4j5xAnj9dWtFuhL9wc+nuLgYn3zySbHX613s9XpHAqgPqzDaodLuVxTlCrvdnvbCCy9Ifu83Xhqfz/qQwTCAu+/269CqqmLOnDnu9PT01aqq3lVS/I2IiM7ElW0iIqIaTpblookTJ+649tpr2wc90QaAli2Bd945lcSJooiOHTsCAOrXr4/Dhw9jzZo1vmuuuaZ6t7u73cCDD1qrusuWWe2sbIEJYePGjYbH41mlqupIWZZNlF0QDQAgCMIjrVq1Mqol0QasVf0vvrC++pHH48EXX3zhzs7OXqKq6v2yLNesYwNERDVI8H9hExER0QWJonioUaNGHYIdBwBgyhTrLHMZXC4XnE5n9SXa+/cDH35orV4//DDQp49VNTyAfD6fYJrm0ZOJ9nkpiuKQJOmFLl26VK6Rd0UVFQHr1gETJ/p1Rd/tduPzzz935+XlzVNV9TFZln1+G5yI6BLEZJuIiOgioGnavszMTB9qQnHTVq2s1lFXXVXqyzabDdVyTO3wYeC996zzztHRwBNPANWwcmyaJlJSUop1Xd9UzkeGRUZGhlW6r3ZFvf46cO21Vi9tP/F4PPjss8/cBQUF01RVfb48HzIQEV3ugv8Lm4iIiC7IMIyZ8fHx3rS0tGCHYrWYevnlMl8+fPiwERkZGbj5s7OtCt3vvWcl/DfeaBVAq4ZEOycnB3PmzEFGRkaYaZqzLnS/oig2URQ/6NevX7jg53PjpUpJsSqS33+/34Y0DAPz5s1zFxQUzGOiTURUfky2iYiILgKyLO/QNO3ZGTNmaL/++qsa1GD+7/+svs1lsNls8Hg8/k/ICguBP/6w2mBt2wb8+9/ASy8Bder4faqyrF271pOamgq73f4fWZb1cjxyY2hoqCsmJibgsaGoCHj6aeC776z2ZX6yZMkST3p6+m+qqj7ORJuIqPyYbBMREV0kZFmebhjGsE2bNgU32XY4gI4drUJkpejVq5d93759QmFhoX/m0zRg/Xpg5EhgyRLg99+B998PWPGz82nevLkLAAzDKFdPaVEU7+/UqZN/GltfyPjx1nl1P+4q2Llzp5mcnJypquqdLIZGRFQxTLaJiIguLolut9s2d+7cooKCguBF0bWr1VaqFFFRUYiNjdU/+OADc9u2bVWb56uvgFtuAXTdSiZfesmvyWRFpaamegRBeFOW5d/Kc7/dbu/TtGnTwO8f37DBqhL/2GN+G/LEiRP47rvvPKqqDpJluchvAxMRXSaYbBMREV1EZFneaxhGk/3797szM8/bbSqw3noLcDrLfHnw4MGOwYMHC99//z0++ugjw+erQOFq0wRWrLAqi7vdVpuxXr2ADsEtxp6fn4/k5GTTNM2p5blfUZQ6mqY1iY6ODmxgXq9Vjb1hQ799EGEYBubPn1/k8/lel2V5p18GJSK6zDDZJiIiuogoitJIkqT1giBENm3aNHiBTJhgVf8+j9atW+PFF1+E2+22//rrr+Ub9+efgR9+sIqfDR9u9c3u3t0PAVeNaZqYO3euKgjCAlmWs8v52DUREREeu90e0Niwbh1w663AgAF+G3LVqlVqfn7+RsMwpvhtUCKiywxbfxEREV1cGqqqGnvVVVfp1dJeqyyvvWYV5LoAURRRq1Yt8+jRo+ffSr1rF5CcDMycaSXxq1b5K1K/WL58OTIyMiQA/63AY/VcfixUVqrkZGtVe+pUv/XUTk1NxdatWws1TbuXBdGIiCqPK9tEREQXkZNbejscPnzYd+zYseAFUqcOMHnyBW8rKipCRkaGcFUZPbnh8QAvvgg895x15njRIuD22/0cbNXk5ORgy5YtJT/+rChKebPaXzMzM43ExMTABObzATt3AnfdZfUZ9wOPx4MFCxYUa5o2XJblLL8MSkR0mWKyTUREdJGRZXmnJEm7MjIyKnAQ2s8kCVi5EsgrCT5SAAAgAElEQVTJOe9ttWvXxvDhw7F69WqsWbMGqnqykHphITBmjLVF/IEHgMWLgWuvtcatYXJzc+FyuRIBtLLZbD8A6KQoygV3B8qynK/rep9vv/226PDhw/4PbNEiq4Dcgw/6bchVq1Z5fT7f17Isr/HboERElykm20RERBchr9f7yI8//ugJ2uq2zQYcPlyuglxt2rTBoEGD8PPPP+PjiRPN/DFjoH/2GVC7tpWwd+gAhIdXQ9CV07hxY4ii2Mxms/U1TTMNwGYAvRRFaaYoynmbfMuyvE3X9fu//vprt66Xpy13ORmG1f7sn//025BpaWmIj4/3qKr6vN8GJSK6jDHZJiIiujjtEQThSFZWEHf6Dh8O/O1v5br12hYt8LrTib6mae5avx4fHjqETyIjzaNeb4CDrDpRFDFq1KjQ8PDw90zTHC0IwhEAP9rt9hkATiiKYiqKUmap9Li4uG9VVf1148aN/ulTbZpWpfa33gKaNfPLkD6fD99++22Rrut/k2X5hF8GJSK6zLFAGhER0UVIkqQJjRo1atymTZvgBfH44+dt/wUA0DTrXPHEiZCaN0ebl1+2GePGoU1+PqZMmSJMmzYN3bt3R0REBOrXr4+kpCSYponk5GQjIiLC3rlzZ7Rv37563s95XHHFFXjooYecH330kdcwjP6yLJuKoowAULK1YLuiKHA4HO/puv6eLMvHT3/e6/U+vX79+p3t27cPqVWrVtWCWb3aKk7XrVvVxjnNtm3bzIKCgj2mac7y26BERJc5IaiVTImIiKhS3nnnnX333XdfTOPGjYMXRH4+sH596QXNfD7g6FFg5EggKgr4/HMgJOSMW7Kzs5GUlITNmzebHo9HME0T0dHRhmmaaNq0qd3tdpu7du0STNM0GzRoIHTp0gXt2rWrnvdWhh07dpiLFy8WAMBms/3s8/lu6ty5M66++mq4XC5s3bpVS0lJ+fXVV1+95exn33rrrXdiYmKeHTFiRMi5I5fTiRPA+PHAq69a/65+4PV68f777xd7vd4esixv88ugRETElW0iIqKLkdfrbbxnzx6IooiGDRsGJ4isLCuZzss7s+3Uxo3ABx8A111nnSvu1KnUx+vVq4cePXqgR48ep1f3Pr0ptXDjjTdi06ZNQkpKirl48WIhKioK2dnZqF+/PhwOB0zTREREREDeXmnat28v7N69W7fb7Y5GjRrd1KZNGzRo0ODU65qmiSkpKaV+AqJp2rgDBw7cn5SUFNK6devKBTB5MtC4sd8SbQD45ZdfNADfMdEmIvIvrmwTERFdhBRFuc3hcNwhCMKI5s2bu4YOHRoqBaOSd3Y2UK+e9f2vvwJvvw08/TTg9QKDBvmt9zMAfP3110ZycrJdkiRomgbDMCAIAuLi4vw2R1Xk5eXh008/LfZ4PCPi4uIWl3aPoihdJUla89RTT4VU+EOCzZuBpCRg8GCruJwf5OXl4cMPPyzWdb2lLMsBKJlORHT5YrJNRER0EVMUxSWK4vzY2Njb7rzzTle1B/B//we0aQOIIpCaCnTtCgwbBtjtF362gjRNw5EjR9CsWTN4PB7Mnj3b1HXd9+STT/p/sgoqKCjA//73P3dxcfH4MWPGvHO+eydNmjQxOjr6+VGjRoXabOWsVVtcDDz7rJVo+7EP+aJFi4qTk5M/HDNmzCt+G5SIiACwGjkREdFFTZZlj2EY8Q6HIzi/071eYOJE6/v33wfuuScgiTZgVQWPiYmBIAgICQlBbm6ukJeXZ5s5cyYOHDgQkDnLIysrC9OnT3cXFxe/d6FEGwB0XVfS09P3bNmypfwrHrt2ATExfk20s7KykJSU5NM07S2/DUpERKcw2SYiIrrIiaJYa//+/UZ+fn71T96zJxAdDTzzTLVP/eyzz6J169amx+PBDz/84NN1HUlJSUhISKi2GA4ePIhp06YVFxQUvDRmzJhx5XlGlmXN6/U+sHr1ak9RUdGFH0hOBp54otxt1spr1apVbtM0J8uynOvXgYmICACTbSIiooue1+t9ITc391+zZ892Hzt2DNV6ROzhh63WXoZ/WkhXhMvlwp133mkbPnw4Tpw4YXv33XexePFiLFy4EMePH7/wAFWUkJCAOXPmFGmaNujNN9+cWpFnZVneDWDW2rVrPee90TCAhQuB558Hqtoy7DTHjx/Hvn37dMMw/u23QYmI6Az2cePGBTsGIiIiqoKePXti7dq1P2maFrp9+/b2devWdZ5eITugBAH48kvgzjuB556rnjnPEhISgtatW6NVq1YYOHAgVFU1fvjhBxQVFQm1atVCWFiYX+dzu91Yvny555dffsnRNO2vsiz/Vplx1qxZ89vx48f/3rp1a6nMGKdPB9LTgRdfrErI51i1apUnMzPz/TfffHOFXwcmIqJTmGwTERFdAnr27GnedNNNa9auXeux2+23tGnTpvrae8bEAK1bA3/5S7VNebbQ0FBERkZCEAQ0b97cJgiCuX79eiE+Ph7du3eHUMWq6F6vF3v37sXatWvdy5Yt82VnZ8/RNO12WZYPVXbMnj17Fq9bt87Iz8+/sW3btuI5NxQWWjsHpkwB/NjezO12Y8mSJbqu6yN79uxZjn3sRERUGeyzTUREdGn5es+ePa9+/PHHYbfcckutSvdzroiwMKBlS+C116zWX0EmCAK6d+9uu/766zFt2jTfsmXLbIMGDTrvM6ZpIi8vDzk5OSgsLITb7YZhGDh+/Lhn//79WkFBgcvpdO7weDxzTNOcM3bs2Cx/xOrz+T7du3dv3IkTJ1C3bt3TAwJeeQX46ivgqqv8MdUpW7ZsMex2+5I33ngjw68DExHRGZhsExERXUJkWU5TFKXx8ePH7/jmm2/m1KtXL7RatpTrOrByJTB5sl97a1eFJEno1q2bbc2aNT6cVafGMAwcPHgQ+/btM/bu3VuUnZ3tEgTB7XA4DgJI8/l8x3w+n1fTtBQAPwOIf+WVVzR/xyjLcu6kSZP+sW7dupeHDBkScuqFL7+0Em4/f1iiaRo2bNiger3e8X4dmIiIzsFkm4iI6BIjy7IB4NsJEyY8/b///e8Tm82Gzp07m3369AlcH+7WrYFt24CsLOCKKwI2TUU1bNgQuq6fyv6PHTuGTZs2eRITEwW73b5f07RvDMNYDWCnLMt+Wa2uKF3X/5uUlPRK//794XK5gOPHgdxc6wy8eO7u8qrYtm2bCeCXkwXaiIgogJhsExERXaLefPPNzxVF2WKz2Sb9+uuvgzZu3GgahiHUqVPH53a7vQ6Hw4iKijIzMjJsDRs2tA0dOjQkJCTkwgOXZetW4K9/tRJFR834E+PQoUPwer1Cfn4+li1b5j5w4IDb5/N9YBjGZ2PGjDkS7PgAazfC22+/vWLr1q13dO/e3YYpU4DQUGtrvh8ZhoH169cXe73esX4dmIiISiVUa3sQIiIiCgpFUeoLgnDINE2XzWY75vP5ugNwAugAoADAslGjRiEmJqZqE6WkANdcU/WA/aSoqAhTp06Fx+OB3W7/XlXVIbIse4Md19kURekUGhq6/oWBA0PtixdbPbX9XEU9Pj4ey5cv3/zaa6918evARERUqprxsTMREREFlCzLxwGUtmydrCiKIIriofz8/KpX4nK5gN69gR9/BGy2C98fYCdOnIDX64VhGDAM4/6amGgDgCzLW99XlP1FL78cW/ull/yeaAPAxo0bC7xeb/Ar2BERXSaC/1uQiIiIgkqWZVMQhHVZWVlV3+7WqJG1Bbq42A+RVU1mZiZmzZrl1nV9oCzLgizLJ4Id0/k03759W64kmbjlFr+PnZWVhaysLB+ApX4fnIiISsVkm4iIiKCq6n82bNhgVvl4mSgCS5YACQn+CawKtmzZovp8vn/Jsrw82LFckCC0unXlyps3DB9eGIjht2zZogGYLsuy3yuqExFR6ZhsExEREQAkORyOA8uWLav6knRuLtCzJ5AR3DbOKSkpHsMwvg1qEOU3MalVq/8WFBX5/D2wruvYvn27oWnaVH+PTUREZWOyTURERJBl2a2qavuEhITsxMTEqg1Wpw6QnQ00bOif4CrBNE0UFha6ABwMWhDlJQjPAfj2uzvuyI6IiPB7PZ3k5GTYbLZdsizv9ffYRERUNibbREREBACQZblQVdW7ly5dWuzxeKo2mM0GNG0KZGb6J7gKOnDgAOx2+2EA2UEJoLwEoSmAQQDWucLC7mrZsqXfK6Nt2rSpwOPx/NPf4xIR0fkx2SYiIqJTZFn+zTTNH3777TekpKSg0me4XS5g9GjrDHcQ5OTkQBCE32VZrrk9TgVBAHAvgJeVcePSVVXt0aJFC79OkZeXh/T0dAHAxbKdnojoksFkm4iIiM7g9XqXrV+/HnPnzsX27dvPeE3TNOi6Xr6Bxo4FvvwSKO/9fuR2u6Fp2rFqn7hiRgJoBmAHgF716tXTwsPD/TpBUlKSabfbV9TUlmdERJcyJttERER0tm8EQRhns9ni1q9f787JyQEApKamYvLkyb5PP/3UrWnlKGotCMDEicDWrQEO91xFRUW6YRjBrdB2PoLQCNbfYR/DNA2n0/lghw4davl7mq1btxZ6vd7/+ntcIiK6ML8X4SAiIqKLmyzLOQAUAJg4cWLBJ5988lbXrl3FgwcPagDeyM/Pv3nZsmW3DR48OCQ+Ph61a9dGTEzMuQMJAnD4MODze4HtCzp+/HgxgEPVPnH5PQFAh2nOUhRFdDgcg9q0aSP4c4KsrCzk5eUZAFb7c1wiIiofrmwTERFRmcaOHftvVVU7b9q06auMjIy1pml+rKrqw4mJicYXX3zh/u677w7MnTu34KefftJ8ZSXVUVHA6urL93w+H44cOeIAsLnaJq0Ia1U7BkBJ0bIederUMSIiIvw6zbZt2zQAM2VZNvw6MBERlQtXtomIiOi8ZFlOBHDfaZe8iqJcf+DAgRsBfAMgbOPGjV/v2LGj3fDhw8Oio6MBWP2dDx48CM8rr8DncqGtaZ6sCRZYGzZsMAAkAdgX8MkqShDCYf2bPQTTLLYuCV1iYmJc/pzGMAxs27ZN1zTtY3+OS0RE5cdkm4iIiCpMluVkAMknf8xRFOVGr9c7bObMmTNHjx4dcsUVV2D69Onu3Nzcg4ZhrL/txReH73zttbodBg/2axwejwc5OTmw2+1QVRVJSUn65s2b8zVNG1xDK5EPAbABprmn5ILL5fprdHS05M9J/vjjDwiCkCTL8h/+HJeIiMqPyTYRERFV2cnE9usJEybUmj179gcdO3YMzc7OdmuaFivLspnz3ns3JW3cGIbBg51Vncs0TezevRtr164tyMvLk0RRPGaapkMQBI/P51uvaVqcLMtpfnhb/iUInQD0BfBQySVFUewOh6N7kyZN/DrVrl27ijwezzS/DkpERBXCZJuIiIj85s033/xs/PjxeZs3bx6p6/r0ktXlKc8993+RNtuPTQ8cQHSzZlWaY8WKFZ7t27dnqqr6KIC1Y8eOrf7eYhVl7Z//F4DxMM3Tz1CPqF+/vq1OnTp+m8rn82Hv3r0OAEv8NigREVWYYJo1cYcVERERXWo8Llfmph49QncPHerr1KlTrSuuuAIRERGoV6/eGWe5i4qKkJ6ejry8PNhsNlx55ZWoX78+BEFAfn4+PvjgA7eu61fKspwXxLdTMYLwOICDAFbg5B9fiqJIALyiKKJt27bo1KkTSs67V4bP54Ou60hPT8ecOXOOvv7665UfjIiIqowr20RERFQtXF5vl/pHj6YfP36899q1a++32WzXGIbRNDw8PGTUqFFh+fn5+OWXX9ypqak2SZISTNPcB8BpGEaPsLAw14ABA8IEQYDdbs964403LqZEuw2AngBexmmrHDab7Zk6deoY7dq1sx86dMiYOXOmHQDsdrsJ4NStpmkKp31/6mvJf6dfFwQBpmnCbrcfrZ43R0REZeHKNhEREVUfQZgKYBVMcyEAKIoi2O32jxo0aPB4VlaWW9f110zTnH36qrWiKIIgCLeLojhVVdVoQRDmxsXF3VfmHDWJINgAjACQAdNcVXJZUZT6Dodj/2OPPRZWv359AFbCnJWVBfNk1XabzVbm17O/L/kZAObOnVuQkpLylCzLs4PxlomIyMKVbSIiIqpO2QBOfdIvy7KpKEpcVlZWbU3T3pdleevZD5w8971UUZQVkiS9q6rqouoMuIruBtAPwIOnX5Qk6Z8dOnQQSxJtwFqVPv3nyjBNE4cOHXIAWF+lgYiIqMq4sk1ERETVSxAaAzBgmseCHUpACUI9AI8BWAzTTCy5rCjKdU6n85fnnnsuxOXya3ttZGVlYdq0aVmvv/561bJ2IiKqMluwAyAiIqLLzjwA44IdREBZe7pfBVB8VqItOJ3O6bfeeqvL34k2AOzduxeCIKy68J1ERBRo3EZORERE1e02AMXBDiLAmgDoDKuv9ukGhIaGXt2xY0ehlGeqLDk5Od/r9S4IxNhERFQxTLaJiIioepmmG4LwMQTBA9N8Idjh+J0ghAL4BkBvmOapHuAnV7Xf6d27d7jN5v/NhaZpIiMjQwSwze+DExFRhTHZJiIiomBYAUANdhABMhbAlzDN3LOu93a5XM1at24dkEmzsrLg8/kKARwIyARERFQhPLNNRERE1c80FwM4CkH4a7BD8StB6AkgE8DHp19WFMXudDr/06tXr7BArGoDwL59+yAIwo8nq7cTEVGQMdkmIiKiYHnq5H+XBkFwAXgBwC6YZuHpL9lstqfq1avXtF27dgGb/uDBg4Ver5fF0YiIaghuIyciIqJgeQKmaUIQ7DBNI9jB+MFAADNgmqtPv6goSoTD4Zg0aNCgMKtIeWAcOnQIADYFbAIiIqoQJttEREQUHFai/R6A6wH09OfQiqKEORyO6bquPy3LcrY/xy6VIFwLYDiA585+SRTFsa1atXI0bNgwYNMXFRXB4/HYASQHbBIiIqoQbiMnIiKiYPovgJcDMO5duq7fA+DGAIx9JkGwA7gawNcwzfTTX1IUpSWAp/v06RMSyBCSk5MhiuJ6WZZ9gZyHiIjKj8k2ERERBY9ppgBwQRD+7q8hx48fPxzAzJM//uivcc9jOIARMM2Fp1882errq1tvvdVVu3btgAawefPmAo/H80FAJyEiogphsk1ERETB1hyAX6qST5gwYZRpml+d/LGeLMsef4xbJkEQAQwD8Eopr94kSVKLTp06Be6gNgCv14vjx487AbA4GhFRDcJkm4iIiILLNGcCuAuCUKcqw4wfP/7FkJCQTzp16gSn0/mVLMsn/BRh6axqZzNgFUXbf/bLLpdr/M033xywVl8l9u7dC6fTuU2WZW9AJyIiogphgTQiIiKqCZ4D8DcAMSUXFEUJA1BbluVj53tQURRBEITRoihOvO+++1xbt271er3e6qjK3Q1APQArS4mprdPp7NK+ffuAB7Fjx47C4uLi/wZ8IiIiqhCubBMREVFNMBWnbSVXFKWZw+E47HA4DkyaNOlfiqKU+jeLoiiCJEmfRUZG/nv06NGuqKgoNGvWzClJ0mOKoogBi1YQ6gH4O4B7YJraWTFJkiTN79mzpySKgQsBADweD/bv3y8C+CagExERUYUx2SYiIqLgM00PgKYQhDkn+1Jv6dOnT63Ro0dLuq4/LwhCqS2tBEF4IDw8fPjjjz8e1qBBAwBAbGwsoqOjm4iiOCGAEY8D8AtMM//sFyRJ+k+TJk2a33DDDfYAzg8A2LZtm8/hcHwvy3JuoOciIqKKYbJNRERENUUGAJsoiq+2bt069IYbbnA0bNgQISEhME3zGkVRzmifpShKE7vd/tGwYcPCnE7nqeuCIGDo0KGhNpvtb4qi3Or3KAXhZgAbYJ3XPoOiKDc7HI5Rd911V4h1pDtwfD4ffv31V4/X650U0ImIiKhSmGwTERFRzWCafwAYVf/w4ed69uwZAliJ80svvYS2bdt6JElKUBSlBwAoihIriuKWXr16uaKios4ZKjw8HCNGjAiRJGnxhAkThvgtRkEIA/AogEyYZuHpL51s9TWlb9++oSEhAW2rDQA4cOAAfD7fYVmWtwR8MiIiqjAm20RERFRj7IuJGfbAjBkhdSIjT12z2WwYOnSoa9CgQc1DQkJWvv322wdEUdw8cODA+t26dSuz2GvTpk3x0EMPhTgcjtnjx4+/zU8hXg9r+/jqs18QBGFQSEjI1e3atfPTVOe3a9cuj6qqn1fLZEREVGGsRk5EREQ1xvxHH725a9u2Ri+b7YzzzoIgIDY2Fq1atQo5duxY08jISISHh19wvKioKNx///2hs2bNWjR+/PgRcXFxSyodnCBcCyAOwF1nv6QoSh1RFGcMGjQo4K2+AMAwDCQmJsLn83114buJiCgYuLJNRERENYbdbo+KKi62o3VrwOcr7XU0bty4XIl2iSZNmuDBBx8MdTqd8ydNmvSaoigVP0wtCCKAGwFMg2nmnP2y0+n877XXXhsaExNz7rMBkJKSApvN9ocsy/uqZUIiIqowJttERERUIyiKIvh8vhsib7wRGDSo1GS7sqKjo/HEE0+EREREjJUkaY6iKLEVHOI+AB1hmvPOfkFRlOGSJA3o27evs5TnAmLLli2FHo9nSnXNR0REFcdkm4iIiGqKa+12e+1GjRsDsgzMmePXwSMiIvDYY4+FxcbGDnG5XJsnT578j3I9KAhOAC/B2kJ+BkVRWomi+Pm9994bKkmSX+MtS25uLg4ePGgDwC3kREQ1GJNtIiIiqhHsdnv/mJgYCIIAFBQAzz8PFBX5dQ5JkjBo0CDXs88+G+JyuZ6cOHHi+beVW/27ZgAYCdPMOP0lRVFaSJK08tZbb3VdeeWVfo3zfH777TdVEITpsiwXVNukRERUYUy2iYiIqEYQRbFj8+bNQwEADRsC2dlAgFpohYaG4pFHHgmtXbv2m5Ikfa4oiquMW+8BUAggseSCoijChAkTHhVFcUfv3r2jO3fuXG1/TxUXF2Pbtm0+TdPeq645iYiocphsExERUY2gaVpyWlqaeupCTg4QGWl9DYCIiAg8/vjjoTExMcMkSUop6eF9iiA0AtAcwASYpg4AiqI0dDqdv9SrV+/fo0ePDu/SpYvNWvyuHuvXr9dsNttXsiwfrrZJiYioUtj6i4iIiGoE0zRv2L59uzRo0CDrQt26wGefAWFhAZvT6XTi3nvvDd29e3fo8uXLV7zzzjtJHo/nMwBbX3c47pN0fa8ybtxRKMr1DodjuMPheLpz586OXr16SdXR4ut0OTk52LJli67r+phqnZiIiCqFyTYRERHVFM2bNm1qAvhzqfj224G//x344APAEbg/W2JjY9GyZcvQlJSUTomJia31DRt8P/bvH7K7U6cCh8MxOSwszGjZsqWza9euUp06dQIWR1lM08TSpUvdAN6WZTmt2gMgIqIKY7JNRERENYLP55skSdKHAP5soi1JwK+/AgcOAFdfHdD5HQ4HWrdujdbR0aFYsgTmc8+h+3XXRYqiiLAArq6Xx549e5CWlpat6/o7QQ2EiIjKjck2ERER1RSrDx486DBNE6fOQdtsQHx8wM5tlyohAYiJgdCrFyKrb9YyqaqKpUuXulVVfVCWZfXCTxARUU3AAmlERERUI8iyfMTn8+mFhYVnvmAYQJMmwMaNgQ8iPh548klg7NjAz1VOa9eu1QzD+F6W5bXBjoWIiMqPyTYRERHVGHa7Pc/j8Zx9Edi6FejSJbCTmybw4YfApEkBPR9eEZmZmdiyZYvq9XqfDnYsRERUMUy2iYiIqEYxTfPci3/5CzBgALBvX+Amfu894NprgYEDAzdHBS1fvrzI5/ONlWU5I9ixEBFRxdSMj22JiIjosqcoSojNZmsQERFx7ouCADRqBOTlBWby9HRg3jxg+XJrrhrgwIEDOHbsWKHP5/s42LEQEVHFcWWbiIiIagRRFN++5pprdKfTWfoNn39ube/2ev07sc8HvPsuMHcuEBXl37EryTRNfP/994Wqqr7IomhERBcnJttEREQUdIqitBQE4f/uuOOOkPPe2L8/MHu2fyefMcMqwtaypX/HrYI9e/YgLy8vA8C8YMdCRESVw23kREREFFSKoghOp/PTbt26iRfsZ52cDISHn/+eikhLA0QRePppq81YDeDz+bBixYoir9f7N1mWfcGOh4iIKqdm/FYhIiKiy9ntISEhnXv06HHhRYDwcOCWW4A5c6o+a0n18cxMqwBbDZGYmIji4uJ9AL4PdixERFR5TLaJiIgoaBRFiZAk6ZN+/fqF2e328j00bBgQG1v1yffutc5rP/ts1cfyE5/Ph1WrVhV5vd6XZFkupSw7ERFdLJhsExERUdA4nc6Zbdu2rdeyIueln37aWo1OSan8xLm5wFNPASNHAmUVZAuC3bt3w+Px7APwY7BjISKiqmGyTUREREExfvz4AaIo3tqvX7+KZ7sTJwLz51d+8nXrgA4dgPbtKz+Gn/l8PqxevZqr2kRElwgWSCMiIqJqpyhKG1EU5w4ZMiRUFMWKD7BunfXV56t4YbOtW4GPPgJWrqz4vAHEVW0ioksLV7aJiIioyhRFuUJRFKmc93YVRfHX22+/vXbz5s0rN6EgAP36AX//e8Wfff55YOzYys0bIKZplqxqv8xVbSKiSwNXtomIiKhKFEW5AcBGURSnAnjqPPcJTqfzA1EUHx06dKizVatWVZs4Lg5o1Khiz7z7LvDKK8DNN1dtbj/bs2cPPB5PGoCatdxORESVxpVtIiIiqjRFUZoA2AgAmqY1Pt+9Dofj5dq1az/0/PPPVz3RBoDu3YFNm4BFi8p3f0IC8NtvQKdOVZ/bj0zTxE8//VTo9Xrf5Ko2EdGlg8k2ERERVZokSZNOfvsBgMFl3acoSowgCONGjBgRFhIS4r8ANm8Gfv/9wvcZBrBmDfDqq0BUlP/m94O9e/ciJycnF8DCYMdCRET+w2SbiIiIKkVRlI3oGdAAABWWSURBVKamaQ4fMGAAJEkaAKB2Wfc6nc6pPXr0kOrUqePfIN5/H5g0CSgoOP99X3wBJCUBN9zg3/mryDAMLF++vEjTtGdkWTaCHQ8REfkPk20iIiKqFEmS/nX99dfbO3fujA4dOjSWJClJUZT7FUU5o7y4oigxhmH07Nq1qz0ggdx/PzC4zEV14OhRwOu1CqMJQkBCqKwNGzboxcXFv5umuSTYsRARkX8JpsmjQURERFQ6RVGuBZAmy3L26dcnTJjwSK1atT546qmnQiXJKkKempqKNWvWFGZmZgo2m+1rVVU/BnBAkqQvunbt2ueWW24JTGHWjAzA4QDq1Tv3NdMExowB6tcHXnghINNXVk5ODqZOnerWNK2tLMv7gx0PERH5F6uRExERUakURWkPYIcgCM8D+HfJ9QkTJjzgdDo/HDlyZEhJog0ALVq0QIsWLcLz8vKwdevW+3fs2DGsuLhYioqK0nr06BG4vzkaNgQ++wxISQEmTz7ztcOHgT/+ACZMCNj0lWGaJpYuXeo2TXMyE20ioksTk20iIiIqy46TX0+dxVYUpYUoih+PGjUqpEGDBqU+FBERgV69ejl69eoVfvJSufpvV0lY2LlbxPPygNtvB1atsla+a5CdO3eaaWlp6bquvxvsWIiIKDB4ZpuIiIjOoShKx5Pf7nA4HD4AGD9+/ABRFLf07ds3tFFF+1sH2j33AG+8ASQn/3lt6lTg7ruBMj4UCJbc3FwsX77co6rqUFmW1WDHQ0REgVGzPuYlIiKimmLjya+dxowZ41MU5TqHw/HNyJEjpWbNmgUzrrK9/TawcCGQmAisXg3k5wPjxgU7qjMYhoGvv/666OT28Z3BjoeIiAKHK9tERERUGgkAZFn2KYoiiKL4VKtWrfQam2gDQFwcsG0boGlWkt2/PyAFfgd7RaxcuVLNzs7eouv65AvfTUREFzNWIyciIqIzKIpyNYCUkz92FUXx+Tp16tzx0EMPhYaEhAQztAubMweYOBGYMgW49dZgR3OGhIQELFmyJEPTtDayLJ8IdjxERBRY3EZOREREZ7Db7Q/Url3bl5OTYwOwsVWrVsUDBw4McTqdwQ7two4ft9p9degQ7EjOcPToUSxZssStaVo/JtpERJcHJttERER0BofD8dDgwYNtV111VcmlGr6cfZJpAosWWWe369cPdjSn5OfnY/bs2cW6rj8gy/KOCz9BRESXAibbREREdIqiKB1CQkKuaNKkSbBDqZhDh6xq5CtWADVoq7umaZg1a5Zb07S34+LiFgU7HiIiqj4skEZERESnOJ3OF7t27eoUzu5ZXdPNng24XDUq0TZNEwsWLCjOz8//Ttf1icGOh4iIqhdXtomIiAgAcLLq+B1t27a1BzuWCnn9deC++4DWrYMdyRnWrFmjHTx4cI+qqg/IssyKtERElxmubBMREVGJ9pIkOerUqRPsOMovPh5Yvhxo0gSw15zPCOLj481NmzbleL3evrIse4MdDxERVT+ubBMREREAQJKk56+//nrXRbOF/Pvvgexs4PffgRpUKX3Pnj1YtmxZoaZpvWVZPh7seIiIKDi4sk1ERERQFOUqn893d6dOnWrO8vD5GAbw/PNAeHiNSrQPHDiAhQsXFp1MtBOCHQ8REQUPV7aJiIgITqfzf926dXOEh4cHO5QLy8gApk4Ftmyxku0aIiMjA/PmzSvWdX2wLMubgx0PEREFF5NtIiKiy5yiKK2dTmePG2+88eL4u2DCBMDtrlGJtsfjKWnx9VhcXNyqYMdDRETBd3H8UiUiIqJAur1du3Z2URSDHceFTZkCvPCCVRCthiguLsaMGTPcmqbNjIuLmxPseIiIqGbgmW0iIqLLnN1urxcWFlbzM+2ffgJmzAAiI4Ea8sFAUVERpk+fXpSbm/uZqqpPBzseIiKqOZhsExERXeYMw9h17NixwmDHcV4//2wl2D/+CNStG+xoAACFhYWYPn26Oz8/f6qmaX9jL20iIjodt5ETERHRrvT09GDHULbiYuDhh4F33wW6dw92NACAEydOYObMme7i4uJ/jBkzRg52PEREVPMw2SYiIqLkoqIiR0FBAWrVqhXsWM5UUAAsWQKsWwdERwc7GgBWe6/58+cX67r+ytixYz8KdjxERFQzcRs5ERHRZU6WZdXhcCxPSkoKdijneuIJYOVK4Morgx0JAGDLli3m3LlzC1RVHcREm4iIzocr20RERASv1/ttcnLybV26dKk5/bQWLADGj7cqjwtCUEPRdR3Lli3zJiUlpWua1leW5T+CGhAREdV4XNkmIiIiAFh88OBBl67rwY7DsmQJ8NZbQEQEIElBDSU3NxfTpk1zJyUlrVVVtR0TbSIiKg/BNFk4k4iIiIB33nln73333deicePGwQ1k2zagVi3A4QBiYoIaSlJSEr799ttin8+n6Lr+LiuOExFReXEbOREREQEATNPckJaWFtxkOycHeOABYNIkYPDgoIWh6zq+//57765du3I0TbtTluXfgxYMERFdlLiNnIiIiAAAXq933aFDh4qCFoDbDSQlAbNmBTXRzs3NxaefflqUkJCwUtO0Vky0iYioMriyTURERCU2Hz582Be02R9+GBBFYPbsoIVQ0tbLMIxxuq7/k9vGiYiosphsExERUYndbrfbHpR+27/9Brz0EtCuXfXOe5Jpmvj99999q1evLtR1/a64uLhVQQmEiIguGdxGTkRERAAAWZYNSZJ+2b9/f/VO/NVXwOOPA9dcA7hc1Ts3rPPZ33zzjWfNmjUHNE3ryESbiIj8gck2ERERneLxeNYfOXJEq7YJ//gD6NQJmDsXiIystmlL5OfnY9q0aUV79uxZparqtbIs76v2IIiI6JLEZJuIiIhOMU3z6/j4eN0wjMBPlpEBDB9uJdxt2wZ+vrMcPnwYU6dOLT5x4sQ7qqoOkmU5eMXhiIjoksM+20RERHSGd955J37w4MHtWrZsGbhJiouBI0esRHvgwMDNU4atW7eaK1asKNJ1/Z64uLjl1R4AERFd8lggjYiIiM7g8Xg+2Lp16/stW7YMC8gEpmlVHnc6gZkzAzJFWQzDwPLly70JCQkZmqbdKsvyH9UaABERXTaYbBMREdHZvtm/f/+Huq7D4QjAnwqHDgHDhgH9+/t/7PPweDyYO3euOzMzc6OqqkNkWc6v1gCIiOiywjPbREREdAZZlrPsdnvmiRMn/D/4vHlA377A7bcDYYFZOC9NTk4OPv30U3dGRsYXXq+3LxNtIiIKNK5sExER0TlsNltaXl5e4wYNGvhv0PR0oHlzYNasam3xdfjwYcydO7dY07QxY8eO/U+1TUxERJc1rmwTERHROQRB8Pq1InlmJnDbbYCqAl26+G/c8zAMA2vWrNG/+OKLAq/XO4yJNhERVSeubBMREdE5TNNsEBoa6p/BvF6gqAh49lngppv8M+YFeDwezJkzx338+PGtuq7fI8vysWqZmIiI6CQm20RERHQGRVEkm83WvGHDhlUfzDSB0aOBunWBKVOqPl455OTkYNasWUVFRUWzVVV9WpblamgaTkREdCYm20RERHS26yIjIz1Op1Oq8ki5uUC7dsBjj/khrPMzTRObN2/2rVq1ymua5pu6rv9blmUz4BMTERGVgsk2ERERna1948aNq/43wpdfAuPGAQkJgN1e9ajOQ9d1rFixQo2Pjz+iaVp/9s8mIqJgY7JNREREZ4sMDw93/n979xtbVXnAcfx3Tntv+VMLxGKpVKiFODuEWHWYMDNNCNPohgkFWSJZs2C0UzAY2cIL7MmVLDGOZEOTOgdoCClthTAa/pVBIShNWxmUUqwwUdpaSVPsXYH2XnrPuefsBdZB+DMKp1C4388b4Nze53nuO7495z7PDY0QjZ5/hLy4eMBDu7u7W6WlpZHOzs7qWCw217Ks/wzohAAAXANiGwAA/CgUCo03TfPngUDg+gu5s1N66imprEyaNMm/xV3GqVOntGrVqpjneX+zbfsPlmW5AzohAADXiNgGAACSpFAolC6p2XVdZWZmXt8gjnP+PO0XXhjw0G5sbNTmzZujruu+vnTp0lUDOhkAAP1EbAMAgD5/6vvL+PHj+/9uz5Neekl68EHprbf8XNdFbNvWtm3bepuamr63bftXlmUdGrDJAAC4TsQ2AAAJZtmyZfNd1z1sWdb+C6+npKSMnDhxoh5++GENGTKk/wNHIlIwKBUU+LXUS3R2dqqkpCQSiUT+GYvFfmtZ1tkBmwwAgBtAbAMAkEBCodAISauSkpIOSnr0gutGMBh8ZMqUKZo4cWL/By4vl95/X/rsM8kw/FvwBVpbW7Vu3bqobdt/dF23mGO9AACDGbENAEBiyQ4Gg3ZycnLuu+++22DbtuE4zjbDML4aOnTo2JycnP6P6LrS8ePS4sUDFtpffPGFKioqehzHmV1UVFQ5IJMAAOAjYhsAgMQyLScnx545c+awEydOTFm/fr0kTfY8T6dPn5bjOEpO7sd/Dzo7pRkzpIoK6b77BmTBdXV18aqqqtO2bU/n+9kAgNuFeasXAAAAbqpwJBKJDx06VAcPHoz+cO1npmmGkpOTt1dWVvZd0/79+70VK1Z4X3/99eVH8jypsVF64okBCe14PK7KyspYVVXV97ZtP0poAwBuJ8Q2AACJZW97e3tAkqZOnTpUkkzT/I3rukclnQ2Hw3FJqq6udnft2qWsrCyjvLxcGzdujDc0NKinp+d/I73yitTWJr33nu+L7O7u1sqVK3vq6+s/s237p5ZlNfs+CQAAA4jHyAEASCwPDR8+3JY05IEHHtDLL7+spqamN9rb23tGjx49ZNq0aYGqqiq3rq7OLCgo0NixY3XmzBmtWbNGjY2NmjBhgjtv3jxTXV3SN99Iy5b5vsCOjg6tWbMmEovF/uI4ThEboQEAbkfENgAACcQ0zalZWVkpff/OzMxUZmamKemus2fPqqyszO3q6tL8+fOVkZEhSUpLS9PChQuTli9f7kajUTNWWqpgZaW0a5fv6+vbcTwWixUWFRWt9X0CAABuEmIbAIAEEAqF7pc0QdLBcDgclRS88PVwOKzVq1frnnvu0aJFi8zLbZJWUFBglpWVxb9Zvdp8cNEiX7cd9zxPNTU18T179kTi8fjcoqKi7X6ODwDAzUZsAwCQAAzD+LPnefmBQGDduHHjhl34WldXlz7++GMvJydH+fn5V9zPZbRhaMGWLUl/nTHDaxk1yv2l55mGD0d9nTt3Ths3boy0tLQ0O47zrGVZLTc8KAAAtxgbpAEAkABM03xEkgKBwKwnn3wy0He9tbVVxcXFGjNmjJufn3/1ct65U8a992puYaFRW1trnjlz5obX9cP8kZaWltJYLPYIoQ0AuFNwZxsAgAQQj8dnSzowe/bsISkpP35lW/X19W5WVpbx4osvJl11gMWLpWeflT76SGM8TxkZGfGVK1eac+fONe67jmO/YrGYtmzZcu7o0aM9tm3/3rKs9f0eBACAQYw72wAAJIYvJSk1NVWS5Lqutm7dGm9qajKefvrpq9/R/u47aedO6aGHJMOQaZoqLCxMysvLM9auXava2lrP8659w/D29nYVFxdHjh07tsm27fGENgDgTsSdbQAAEkOBJN19993yPE8bNmyIt7a2GoWFhcaoUaOu/K5t26SDB6X6esm8+Hf006dP14QJE1RWVqa2trb4888/nxQIBK4w0PlN0Orq6rzdu3dHHcdht3EAwB2NO9sAACSGtyTJNE19/vnnXnNzs/Hqq6+aVw1tz5PeeUfKzr4ktPtkZ2drwYIFxsmTJ/Xhhx96XV1dl/253t5ebdiwIVpVVXXKtu3HCW0AwJ2O2AYAIDEcl87fXd63b5+mT59uDhs27OrvMAxp925p3ryr/lhqaqoWLFiQNHLkSO+DDz5QOBy+6PW+x8aPHz++0XGc+y3LOnJjHwUAgMGPx8gBAEgMKyT94vDhw+rt7TXy8vKu7V2XOW/7cg4dOqS2tjYjOzs7npqamiSd/154dXW18+mnn/Z6nvf60qVLP7rexQMAcLshtgEASAz/lqRNmzYpNzfXM03zxg/I1vkzsktKStyOjg5z5syZxqRJk5Kk83ezP/nkk0gkEmlyHCffsqxWP+YDAOB2QWwDAJAYJktSIBBQMBjs3blzZyAlJSUpJSVFwWBQfX8GAgENHz5c6enp/3fAhoYGbd++3cvKytLChQuVmpoqz/NUU1MT37Nnz7l4PP6m53krLctyB/zTAQAwyBDbAAAkhq2S3rBtO6WhoaFH0l2maY5ITk5ON01zpGmaaZ7npUWj0cclacmSJbrwPO4LxWIxlZSUuO3t7eZzzz1nTJ482TAMQx0dHdq0aVNPOBz+ynGcWZZlnbiJnw8AgEHF6M+5mAAA4M4WCoV+IuloQUGBsrOzL3m9qalJmzdv9jIyMrxZs2aZaWlpchxHe/futWtra2Ou6y5xXbeYu9kAgERHbAMAgIu8/fbb0Tlz5gzJzc398ZrjOCotLXW//fZb85lnnvHy8vIMwzB06tQplZeX93R3d1f39vb+zrKsk7dw6QAADBo8Rg4AAC5imuY/jhw5Mjc3N9eUpGPHjqmiosJNT0/Xa6+9phEjRhie5+nAgQPejh07ovF4/E3Xdf9uWRa/wQcA4AfENgAAuEg8Ht/R3Nw8y7btlPXr17vNzc3mjBkzjMcee8wwDEPd3d1au3ZttKur66Rt27+2LOvLW71mAAAGGx4jBwAAFwmFQuMktUjS6NGj3Tlz5phpaWlqa2tTa2urXVNT43met8pxnDctyzp3i5cLAMCgRGwDAIBLhEKhEaZpHnVdd4wkBQIBW1KHaZr/6u3tXW5Z1r5bvEQAAAY1YhsAAFxRKBRKkXSXpPGS6tllHACAa0NsAwAAAADgM/NWLwAAAAAAgDsNsQ0AAAAAgM+IbQAAAAAAfEZsAwAAAADgM2IbAAAAAACfEdsAAAAAAPiM2AYAAAAAwGfENgAAAAAAPiO2AQAAAADwGbENAAAAAIDPiG0AAAAAAHxGbAMAAAAA4DNiGwAAAAAAnxHbAAAAAAD4jNgGAAAAAMBnxDYAAAAAAD4jtgEAAAAA8BmxDQAAAACAz4htAAAAAAB8RmwDAAAAAOAzYhsAAAAAAJ8R2wAAAAAA+IzYBgAAAADAZ8Q2AAAAAAA+I7YBAAAAAPAZsQ0AAAAAgM+IbQAAAAAAfEZsAwAAAADgM2IbAAAAAACfEdsAAAAAAPiM2AYAAAAAwGfENgAAAAAAPiO2AQAAAADwGbENAAAAAIDPiG0AAAAAAHxGbAMAAAAA4DNiGwAAAAAAnxHbAAAAAAD4jNgGAAAAAMBnxDYAAAAAAD4jtgEAAAAA8BmxDQAAAACAz/4L0ZkICrqqch4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "ax = rs_df.plot(edgecolor='grey', facecolor='w')\n", - "f,ax = wf.plot(rs_df, ax=ax, \n", - " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", - " node_kws=dict(marker=''))\n", - "ax.set_title('Rio Grande do Sul: Nonplanar Weights')\n", - "ax.set_axis_off()\n", - "plt.savefig('rioGrandeDoSul.png')\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/docs/_static/basic.css b/docs/_static/basic.css deleted file mode 100644 index 2e3cf3230..000000000 --- a/docs/_static/basic.css +++ /dev/null @@ -1,855 +0,0 @@ -/* - * basic.css - * ~~~~~~~~~ - * - * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2020 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/* -- main layout ----------------------------------------------------------- */ - -div.clearer { - clear: both; -} - -div.section::after { - display: block; - content: ''; - clear: left; -} - -/* -- relbar ---------------------------------------------------------------- */ - -div.related { - width: 100%; - font-size: 90%; -} - -div.related h3 { - display: none; -} - -div.related ul { - margin: 0; - padding: 0 0 0 10px; - list-style: none; -} - -div.related li { - display: inline; -} - -div.related li.right { - float: right; - margin-right: 5px; -} - -/* -- sidebar --------------------------------------------------------------- */ - -div.sphinxsidebarwrapper { - padding: 10px 5px 0 10px; -} - -div.sphinxsidebar { - float: left; - width: 230px; - margin-left: -100%; - font-size: 90%; - word-wrap: break-word; - overflow-wrap : break-word; -} - -div.sphinxsidebar ul { - list-style: none; -} - -div.sphinxsidebar ul ul, -div.sphinxsidebar ul.want-points { - margin-left: 20px; - list-style: square; -} - -div.sphinxsidebar ul ul { - margin-top: 0; - margin-bottom: 0; -} - -div.sphinxsidebar form { - margin-top: 10px; -} - -div.sphinxsidebar input { - border: 1px solid #98dbcc; - font-family: sans-serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - -div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; -} - -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - -img { - border: 0; - max-width: 100%; -} - -/* -- search page ----------------------------------------------------------- */ - -ul.search { - margin: 10px 0 0 20px; - padding: 0; -} - -ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; -} - -ul.search li a { - font-weight: bold; -} - -ul.search li div.context { - color: #888; - margin: 2px 0 0 30px; - text-align: left; -} - -ul.keywordmatches li.goodmatch a { - font-weight: bold; -} - -/* -- index page ------------------------------------------------------------ */ - -table.contentstable { - width: 90%; - margin-left: auto; - margin-right: auto; -} - -table.contentstable p.biglink { - line-height: 150%; -} - -a.biglink { - font-size: 1.3em; -} - -span.linkdescr { - font-style: italic; - padding-top: 5px; - font-size: 90%; -} - -/* -- general index --------------------------------------------------------- */ - -table.indextable { - width: 100%; -} - -table.indextable td { - text-align: left; - vertical-align: top; -} - -table.indextable ul { - margin-top: 0; - margin-bottom: 0; - list-style-type: none; -} - -table.indextable > tbody > tr > td > ul { - padding-left: 0em; -} - -table.indextable tr.pcap { - height: 10px; -} - -table.indextable tr.cap { - margin-top: 10px; - background-color: #f2f2f2; -} - -img.toggler { - margin-right: 3px; - margin-top: 3px; - cursor: pointer; -} - -div.modindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -div.genindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -/* -- domain module index --------------------------------------------------- */ - -table.modindextable td { - padding: 2px; - border-collapse: collapse; -} - -/* -- general body styles --------------------------------------------------- */ - -div.body { - min-width: 450px; - max-width: 800px; -} - -div.body p, div.body dd, div.body li, div.body blockquote { - -moz-hyphens: auto; - -ms-hyphens: auto; - -webkit-hyphens: auto; - hyphens: auto; -} - -a.headerlink { - visibility: hidden; -} - -a.brackets:before, -span.brackets > a:before{ - content: "["; -} - -a.brackets:after, -span.brackets > a:after { - content: "]"; -} - -h1:hover > a.headerlink, -h2:hover > a.headerlink, -h3:hover > a.headerlink, -h4:hover > a.headerlink, -h5:hover > a.headerlink, -h6:hover > a.headerlink, -dt:hover > a.headerlink, -caption:hover > a.headerlink, -p.caption:hover > a.headerlink, -div.code-block-caption:hover > a.headerlink { - visibility: visible; -} - -div.body p.caption { - text-align: inherit; -} - -div.body td { - text-align: left; -} - -.first { - margin-top: 0 !important; -} - -p.rubric { - margin-top: 30px; - font-weight: bold; -} - -img.align-left, .figure.align-left, object.align-left { - clear: left; - float: left; - margin-right: 1em; -} - -img.align-right, .figure.align-right, object.align-right { - clear: right; - float: right; - margin-left: 1em; -} - -img.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, .figure.align-default { - display: block; - margin-left: auto; - margin-right: auto; -} - -.align-left { - text-align: left; -} - -.align-center { - text-align: center; -} - -.align-default { - text-align: center; -} - -.align-right { - text-align: right; -} - -/* -- sidebars -------------------------------------------------------------- */ - -div.sidebar { - margin: 0 0 0.5em 1em; - border: 1px solid #ddb; - padding: 7px; - background-color: #ffe; - width: 40%; - float: right; - clear: right; - overflow-x: auto; -} - -p.sidebar-title { - font-weight: bold; -} - -div.admonition, div.topic, blockquote { - clear: left; -} - -/* -- topics ---------------------------------------------------------------- */ - -div.topic { - border: 1px solid #ccc; - padding: 7px; - margin: 10px 0 10px 0; -} - -p.topic-title { - font-size: 1.1em; - font-weight: bold; - margin-top: 10px; -} - -/* -- admonitions ----------------------------------------------------------- */ - -div.admonition { - margin-top: 10px; - margin-bottom: 10px; - padding: 7px; -} - -div.admonition dt { - font-weight: bold; -} - -p.admonition-title { - margin: 0px 10px 5px 0px; - font-weight: bold; -} - -div.body p.centered { - text-align: center; - margin-top: 25px; -} - -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - -/* -- tables ---------------------------------------------------------------- */ - -table.docutils { - margin-top: 10px; - margin-bottom: 10px; - border: 0; - border-collapse: collapse; -} - -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - -table caption span.caption-number { - font-style: italic; -} - -table caption span.caption-text { -} - -table.docutils td, table.docutils th { - padding: 1px 8px 1px 5px; - border-top: 0; - border-left: 0; - border-right: 0; - border-bottom: 1px solid #aaa; -} - -table.footnote td, table.footnote th { - border: 0 !important; -} - -th { - text-align: left; - padding-right: 5px; -} - -table.citation { - border-left: solid 1px gray; - margin-left: 1px; -} - -table.citation td { - border-bottom: none; -} - -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - -/* -- figures --------------------------------------------------------------- */ - -div.figure { - margin: 0.5em; - padding: 0.5em; -} - -div.figure p.caption { - padding: 0.3em; -} - -div.figure p.caption span.caption-number { - font-style: italic; -} - -div.figure p.caption span.caption-text { -} - -/* -- field list styles ----------------------------------------------------- */ - -table.field-list td, table.field-list th { - border: 0 !important; -} - -.field-list ul { - margin: 0; - padding-left: 1em; -} - -.field-list p { - margin: 0; -} - -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - - -/* -- other body styles ----------------------------------------------------- */ - -ol.arabic { - list-style: decimal; -} - -ol.loweralpha { - list-style: lower-alpha; -} - -ol.upperalpha { - list-style: upper-alpha; -} - -ol.lowerroman { - list-style: lower-roman; -} - -ol.upperroman { - list-style: upper-roman; -} - -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -dl.footnote > dt, -dl.citation > dt { - float: left; - margin-right: 0.5em; -} - -dl.footnote > dd, -dl.citation > dd { - margin-bottom: 0em; -} - -dl.footnote > dd:after, -dl.citation > dd:after { - content: ""; - clear: both; -} - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dt:after { - content: ":"; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - -dl { - margin-bottom: 15px; -} - -dd > :first-child { - margin-top: 0px; -} - -dd ul, dd table { - margin-bottom: 10px; -} - -dd { - margin-top: 3px; - margin-bottom: 10px; - margin-left: 30px; -} - -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { - background-color: #fbe54e; -} - -rect.highlighted { - fill: #fbe54e; -} - -dl.glossary dt { - font-weight: bold; - font-size: 1.1em; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.versionmodified { - font-style: italic; -} - -.system-message { - background-color: #fda; - padding: 5px; - border: 3px solid red; -} - -.footnote:target { - background-color: #ffa; -} - -.line-block { - display: block; - margin-top: 1em; - margin-bottom: 1em; -} - -.line-block .line-block { - margin-top: 0; - margin-bottom: 0; - margin-left: 1.5em; -} - -.guilabel, .menuselection { - font-family: sans-serif; -} - -.accelerator { - text-decoration: underline; -} - -.classifier { - font-style: oblique; -} - -.classifier:before { - font-style: normal; - margin: 0.5em; - content: ":"; -} - -abbr, acronym { - border-bottom: dotted 1px; - cursor: help; -} - -/* -- code displays --------------------------------------------------------- */ - -pre { - overflow: auto; - overflow-y: hidden; /* fixes display issues on Chrome browsers */ -} - -pre, div[class|="highlight"] { - clear: both; -} - -span.pre { - -moz-hyphens: none; - -ms-hyphens: none; - -webkit-hyphens: none; - hyphens: none; -} - -div[class^="highlight-"] { - margin: 1em 0; -} - -td.linenos pre { - border: 0; - background-color: transparent; - color: #aaa; -} - -table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; -} - -table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; -} - -div.code-block-caption { - margin-top: 1em; - padding: 2px 5px; - font-size: small; -} - -div.code-block-caption code { - background-color: transparent; -} - -table.highlighttable td.linenos, -div.doctest > div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; -} - -div.code-block-caption span.caption-number { - padding: 0.1em 0.3em; - font-style: italic; -} - -div.code-block-caption span.caption-text { -} - -div.literal-block-wrapper { - margin: 1em 0; -} - -code.descname { - background-color: transparent; - font-weight: bold; - font-size: 1.2em; -} - -code.descclassname { - background-color: transparent; -} - -code.xref, a code { - background-color: transparent; - font-weight: bold; -} - -h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { - background-color: transparent; -} - -.viewcode-link { - float: right; -} - -.viewcode-back { - float: right; - font-family: sans-serif; -} - -div.viewcode-block:target { - margin: -1px -10px; - padding: 0 10px; -} - -/* -- math display ---------------------------------------------------------- */ - -img.math { - vertical-align: middle; -} - -div.body div.math p { - text-align: center; -} - -span.eqno { - float: right; -} - -span.eqno a.headerlink { - position: absolute; - z-index: 1; -} - -div.math:hover a.headerlink { - visibility: visible; -} - -/* -- printout stylesheet --------------------------------------------------- */ - -@media print { - div.document, - div.documentwrapper, - div.bodywrapper { - margin: 0 !important; - width: 100%; - } - - div.sphinxsidebar, - div.related, - div.footer, - #top-link { - display: none; - } -} \ No newline at end of file diff --git a/docs/_static/bootstrap-2.3.2/css/bootstrap-responsive.css b/docs/_static/bootstrap-2.3.2/css/bootstrap-responsive.css deleted file mode 100644 index 09e88ce3f..000000000 --- a/docs/_static/bootstrap-2.3.2/css/bootstrap-responsive.css +++ /dev/null @@ -1,1109 +0,0 @@ -/*! - * Bootstrap Responsive v2.3.2 - * - * Copyright 2012 Twitter, Inc - * Licensed under the Apache License v2.0 - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Designed and built with all the love in the world @twitter by @mdo and @fat. - */ - -.clearfix { - *zoom: 1; -} - -.clearfix:before, -.clearfix:after { - display: table; - line-height: 0; - content: ""; -} - -.clearfix:after { - clear: both; -} - -.hide-text { - font: 0/0 a; - color: transparent; - text-shadow: none; - background-color: transparent; - border: 0; -} - -.input-block-level { - display: block; - width: 100%; - min-height: 30px; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; -} - -@-ms-viewport { - width: device-width; -} - -.hidden { - display: none; - visibility: hidden; -} - -.visible-phone { - display: none !important; -} - -.visible-tablet { - display: none !important; -} - -.hidden-desktop { - display: none !important; -} - -.visible-desktop { - display: inherit !important; -} - -@media (min-width: 768px) and (max-width: 979px) { - .hidden-desktop { - display: inherit !important; - } - .visible-desktop { - display: none !important ; - } - .visible-tablet { - display: inherit !important; - } - .hidden-tablet { - display: none !important; - } -} - -@media (max-width: 767px) { - .hidden-desktop { - display: inherit !important; - } - .visible-desktop { - display: none !important; - } - .visible-phone { - display: inherit !important; - } - .hidden-phone { - display: none !important; - } -} - -.visible-print { - display: none !important; -} - -@media print { - .visible-print { - display: inherit !important; - } - .hidden-print { - display: none !important; - } -} - -@media (min-width: 1200px) { - .row { - margin-left: -30px; - *zoom: 1; - } - .row:before, - .row:after { - display: table; - line-height: 0; - content: ""; - } - .row:after { - clear: both; - } - [class*="span"] { - float: left; - min-height: 1px; - margin-left: 30px; - } - .container, - .navbar-static-top .container, - .navbar-fixed-top .container, - .navbar-fixed-bottom .container { - width: 1170px; - } - .span12 { - width: 1170px; - } - .span11 { - width: 1070px; - } - .span10 { - width: 970px; - } - .span9 { - width: 870px; - } - .span8 { - width: 770px; - } - .span7 { - width: 670px; - } - .span6 { - width: 570px; - } - .span5 { - width: 470px; - } - .span4 { - width: 370px; - } - .span3 { - width: 270px; - } - .span2 { - width: 170px; - } - .span1 { - width: 70px; - } - .offset12 { - margin-left: 1230px; - } - .offset11 { - margin-left: 1130px; - } - .offset10 { - margin-left: 1030px; - } - .offset9 { - margin-left: 930px; - } - .offset8 { - margin-left: 830px; - } - .offset7 { - margin-left: 730px; - } - .offset6 { - margin-left: 630px; - } - .offset5 { - margin-left: 530px; - } - .offset4 { - margin-left: 430px; - } - .offset3 { - margin-left: 330px; - } - .offset2 { - margin-left: 230px; - } - .offset1 { - margin-left: 130px; - } - .row-fluid { - width: 100%; - *zoom: 1; - } - .row-fluid:before, - .row-fluid:after { - display: table; - line-height: 0; - content: ""; - } - .row-fluid:after { - clear: both; - } - .row-fluid [class*="span"] { - display: block; - float: left; - width: 100%; - min-height: 30px; - margin-left: 2.564102564102564%; - *margin-left: 2.5109110747408616%; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; - } - .row-fluid [class*="span"]:first-child { - margin-left: 0; - } - .row-fluid .controls-row [class*="span"] + [class*="span"] { - margin-left: 2.564102564102564%; - } - .row-fluid .span12 { - width: 100%; - *width: 99.94680851063829%; - } - .row-fluid .span11 { - width: 91.45299145299145%; - *width: 91.39979996362975%; - } - .row-fluid .span10 { - width: 82.90598290598291%; - *width: 82.8527914166212%; - } - .row-fluid .span9 { - width: 74.35897435897436%; - *width: 74.30578286961266%; - } - .row-fluid .span8 { - width: 65.81196581196582%; - *width: 65.75877432260411%; - } - .row-fluid .span7 { - width: 57.26495726495726%; - *width: 57.21176577559556%; - } - .row-fluid .span6 { - width: 48.717948717948715%; - *width: 48.664757228587014%; - } - .row-fluid .span5 { - width: 40.17094017094017%; - *width: 40.11774868157847%; - } - .row-fluid .span4 { - width: 31.623931623931625%; - *width: 31.570740134569924%; - } - .row-fluid .span3 { - width: 23.076923076923077%; - *width: 23.023731587561375%; - } - .row-fluid .span2 { - width: 14.52991452991453%; - *width: 14.476723040552828%; - } - .row-fluid .span1 { - width: 5.982905982905983%; - *width: 5.929714493544281%; - } - .row-fluid .offset12 { - margin-left: 105.12820512820512%; - *margin-left: 105.02182214948171%; - } - .row-fluid .offset12:first-child { - margin-left: 102.56410256410257%; - *margin-left: 102.45771958537915%; - } - .row-fluid .offset11 { - margin-left: 96.58119658119658%; - *margin-left: 96.47481360247316%; - } - .row-fluid .offset11:first-child { - margin-left: 94.01709401709402%; - *margin-left: 93.91071103837061%; - } - .row-fluid .offset10 { - margin-left: 88.03418803418803%; - *margin-left: 87.92780505546462%; - } - .row-fluid .offset10:first-child { - margin-left: 85.47008547008548%; - *margin-left: 85.36370249136206%; - } - .row-fluid .offset9 { - margin-left: 79.48717948717949%; - *margin-left: 79.38079650845607%; - } - .row-fluid .offset9:first-child { - margin-left: 76.92307692307693%; - *margin-left: 76.81669394435352%; - } - .row-fluid .offset8 { - margin-left: 70.94017094017094%; - *margin-left: 70.83378796144753%; - } - .row-fluid .offset8:first-child { - margin-left: 68.37606837606839%; - *margin-left: 68.26968539734497%; - } - .row-fluid .offset7 { - margin-left: 62.393162393162385%; - *margin-left: 62.28677941443899%; - } - .row-fluid .offset7:first-child { - margin-left: 59.82905982905982%; - *margin-left: 59.72267685033642%; - } - .row-fluid .offset6 { - margin-left: 53.84615384615384%; - *margin-left: 53.739770867430444%; - } - .row-fluid .offset6:first-child { - margin-left: 51.28205128205128%; - *margin-left: 51.175668303327875%; - } - .row-fluid .offset5 { - margin-left: 45.299145299145295%; - *margin-left: 45.1927623204219%; - } - .row-fluid .offset5:first-child { - margin-left: 42.73504273504273%; - *margin-left: 42.62865975631933%; - } - .row-fluid .offset4 { - margin-left: 36.75213675213675%; - *margin-left: 36.645753773413354%; - } - .row-fluid .offset4:first-child { - margin-left: 34.18803418803419%; - *margin-left: 34.081651209310785%; - } - .row-fluid .offset3 { - margin-left: 28.205128205128204%; - *margin-left: 28.0987452264048%; - } - .row-fluid .offset3:first-child { - margin-left: 25.641025641025642%; - *margin-left: 25.53464266230224%; - } - .row-fluid .offset2 { - margin-left: 19.65811965811966%; - *margin-left: 19.551736679396257%; - } - .row-fluid .offset2:first-child { - margin-left: 17.094017094017094%; - *margin-left: 16.98763411529369%; - } - .row-fluid .offset1 { - margin-left: 11.11111111111111%; - *margin-left: 11.004728132387708%; - } - .row-fluid .offset1:first-child { - margin-left: 8.547008547008547%; - *margin-left: 8.440625568285142%; - } - input, - textarea, - .uneditable-input { - margin-left: 0; - } - .controls-row [class*="span"] + [class*="span"] { - margin-left: 30px; - } - input.span12, - textarea.span12, - .uneditable-input.span12 { - width: 1156px; - } - input.span11, - textarea.span11, - .uneditable-input.span11 { - width: 1056px; - } - input.span10, - textarea.span10, - .uneditable-input.span10 { - width: 956px; - } - input.span9, - textarea.span9, - .uneditable-input.span9 { - width: 856px; - } - input.span8, - textarea.span8, - .uneditable-input.span8 { - width: 756px; - } - input.span7, - textarea.span7, - .uneditable-input.span7 { - width: 656px; - } - input.span6, - textarea.span6, - .uneditable-input.span6 { - width: 556px; - } - input.span5, - textarea.span5, - .uneditable-input.span5 { - width: 456px; - } - input.span4, - textarea.span4, - .uneditable-input.span4 { - width: 356px; - } - input.span3, - textarea.span3, - .uneditable-input.span3 { - width: 256px; - } - input.span2, - textarea.span2, - .uneditable-input.span2 { - width: 156px; - } - input.span1, - textarea.span1, - .uneditable-input.span1 { - width: 56px; - } - .thumbnails { - margin-left: -30px; - } - .thumbnails > li { - margin-left: 30px; - } - .row-fluid .thumbnails { - margin-left: 0; - } -} - -@media (min-width: 768px) and (max-width: 979px) { - .row { - margin-left: -20px; - *zoom: 1; - } - .row:before, - .row:after { - display: table; - line-height: 0; - content: ""; - } - .row:after { - clear: both; - } - [class*="span"] { - float: left; - min-height: 1px; - margin-left: 20px; - } - .container, - .navbar-static-top .container, - .navbar-fixed-top .container, - .navbar-fixed-bottom .container { - width: 724px; - } - .span12 { - width: 724px; - } - .span11 { - width: 662px; - } - .span10 { - width: 600px; - } - .span9 { - width: 538px; - } - .span8 { - width: 476px; - } - .span7 { - width: 414px; - } - .span6 { - width: 352px; - } - .span5 { - width: 290px; - } - .span4 { - width: 228px; - } - .span3 { - width: 166px; - } - .span2 { - width: 104px; - } - .span1 { - width: 42px; - } - .offset12 { - margin-left: 764px; - } - .offset11 { - margin-left: 702px; - } - .offset10 { - margin-left: 640px; - } - .offset9 { - margin-left: 578px; - } - .offset8 { - margin-left: 516px; - } - .offset7 { - margin-left: 454px; - } - .offset6 { - margin-left: 392px; - } - .offset5 { - margin-left: 330px; - } - .offset4 { - margin-left: 268px; - } - .offset3 { - margin-left: 206px; - } - .offset2 { - margin-left: 144px; - } - .offset1 { - margin-left: 82px; - } - .row-fluid { - width: 100%; - *zoom: 1; - } - .row-fluid:before, - .row-fluid:after { - display: table; - line-height: 0; - content: ""; - } - .row-fluid:after { - clear: both; - } - .row-fluid [class*="span"] { - display: block; - float: left; - width: 100%; - min-height: 30px; - margin-left: 2.7624309392265194%; - *margin-left: 2.709239449864817%; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; - } - .row-fluid [class*="span"]:first-child { - margin-left: 0; - } - .row-fluid .controls-row [class*="span"] + [class*="span"] { - margin-left: 2.7624309392265194%; - } - .row-fluid .span12 { - width: 100%; - *width: 99.94680851063829%; - } - .row-fluid .span11 { - width: 91.43646408839778%; - *width: 91.38327259903608%; - } - .row-fluid .span10 { - width: 82.87292817679558%; - *width: 82.81973668743387%; - } - .row-fluid .span9 { - width: 74.30939226519337%; - *width: 74.25620077583166%; - } - .row-fluid .span8 { - width: 65.74585635359117%; - *width: 65.69266486422946%; - } - .row-fluid .span7 { - width: 57.18232044198895%; - *width: 57.12912895262725%; - } - .row-fluid .span6 { - width: 48.61878453038674%; - *width: 48.56559304102504%; - } - .row-fluid .span5 { - width: 40.05524861878453%; - *width: 40.00205712942283%; - } - .row-fluid .span4 { - width: 31.491712707182323%; - *width: 31.43852121782062%; - } - .row-fluid .span3 { - width: 22.92817679558011%; - *width: 22.87498530621841%; - } - .row-fluid .span2 { - width: 14.3646408839779%; - *width: 14.311449394616199%; - } - .row-fluid .span1 { - width: 5.801104972375691%; - *width: 5.747913483013988%; - } - .row-fluid .offset12 { - margin-left: 105.52486187845304%; - *margin-left: 105.41847889972962%; - } - .row-fluid .offset12:first-child { - margin-left: 102.76243093922652%; - *margin-left: 102.6560479605031%; - } - .row-fluid .offset11 { - margin-left: 96.96132596685082%; - *margin-left: 96.8549429881274%; - } - .row-fluid .offset11:first-child { - margin-left: 94.1988950276243%; - *margin-left: 94.09251204890089%; - } - .row-fluid .offset10 { - margin-left: 88.39779005524862%; - *margin-left: 88.2914070765252%; - } - .row-fluid .offset10:first-child { - margin-left: 85.6353591160221%; - *margin-left: 85.52897613729868%; - } - .row-fluid .offset9 { - margin-left: 79.8342541436464%; - *margin-left: 79.72787116492299%; - } - .row-fluid .offset9:first-child { - margin-left: 77.07182320441989%; - *margin-left: 76.96544022569647%; - } - .row-fluid .offset8 { - margin-left: 71.2707182320442%; - *margin-left: 71.16433525332079%; - } - .row-fluid .offset8:first-child { - margin-left: 68.50828729281768%; - *margin-left: 68.40190431409427%; - } - .row-fluid .offset7 { - margin-left: 62.70718232044199%; - *margin-left: 62.600799341718584%; - } - .row-fluid .offset7:first-child { - margin-left: 59.94475138121547%; - *margin-left: 59.838368402492065%; - } - .row-fluid .offset6 { - margin-left: 54.14364640883978%; - *margin-left: 54.037263430116376%; - } - .row-fluid .offset6:first-child { - margin-left: 51.38121546961326%; - *margin-left: 51.27483249088986%; - } - .row-fluid .offset5 { - margin-left: 45.58011049723757%; - *margin-left: 45.47372751851417%; - } - .row-fluid .offset5:first-child { - margin-left: 42.81767955801105%; - *margin-left: 42.71129657928765%; - } - .row-fluid .offset4 { - margin-left: 37.01657458563536%; - *margin-left: 36.91019160691196%; - } - .row-fluid .offset4:first-child { - margin-left: 34.25414364640884%; - *margin-left: 34.14776066768544%; - } - .row-fluid .offset3 { - margin-left: 28.45303867403315%; - *margin-left: 28.346655695309746%; - } - .row-fluid .offset3:first-child { - margin-left: 25.69060773480663%; - *margin-left: 25.584224756083227%; - } - .row-fluid .offset2 { - margin-left: 19.88950276243094%; - *margin-left: 19.783119783707537%; - } - .row-fluid .offset2:first-child { - margin-left: 17.12707182320442%; - *margin-left: 17.02068884448102%; - } - .row-fluid .offset1 { - margin-left: 11.32596685082873%; - *margin-left: 11.219583872105325%; - } - .row-fluid .offset1:first-child { - margin-left: 8.56353591160221%; - *margin-left: 8.457152932878806%; - } - input, - textarea, - .uneditable-input { - margin-left: 0; - } - .controls-row [class*="span"] + [class*="span"] { - margin-left: 20px; - } - input.span12, - textarea.span12, - .uneditable-input.span12 { - width: 710px; - } - input.span11, - textarea.span11, - .uneditable-input.span11 { - width: 648px; - } - input.span10, - textarea.span10, - .uneditable-input.span10 { - width: 586px; - } - input.span9, - textarea.span9, - .uneditable-input.span9 { - width: 524px; - } - input.span8, - textarea.span8, - .uneditable-input.span8 { - width: 462px; - } - input.span7, - textarea.span7, - .uneditable-input.span7 { - width: 400px; - } - input.span6, - textarea.span6, - .uneditable-input.span6 { - width: 338px; - } - input.span5, - textarea.span5, - .uneditable-input.span5 { - width: 276px; - } - input.span4, - textarea.span4, - .uneditable-input.span4 { - width: 214px; - } - input.span3, - textarea.span3, - .uneditable-input.span3 { - width: 152px; - } - input.span2, - textarea.span2, - .uneditable-input.span2 { - width: 90px; - } - input.span1, - textarea.span1, - .uneditable-input.span1 { - width: 28px; - } -} - -@media (max-width: 767px) { - body { - padding-right: 20px; - padding-left: 20px; - } - .navbar-fixed-top, - .navbar-fixed-bottom, - .navbar-static-top { - margin-right: -20px; - margin-left: -20px; - } - .container-fluid { - padding: 0; - } - .dl-horizontal dt { - float: none; - width: auto; - clear: none; - text-align: left; - } - .dl-horizontal dd { - margin-left: 0; - } - .container { - width: auto; - } - .row-fluid { - width: 100%; - } - .row, - .thumbnails { - margin-left: 0; - } - .thumbnails > li { - float: none; - margin-left: 0; - } - [class*="span"], - .uneditable-input[class*="span"], - .row-fluid [class*="span"] { - display: block; - float: none; - width: 100%; - margin-left: 0; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; - } - .span12, - .row-fluid .span12 { - width: 100%; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; - } - .row-fluid [class*="offset"]:first-child { - margin-left: 0; - } - .input-large, - .input-xlarge, - .input-xxlarge, - input[class*="span"], - select[class*="span"], - textarea[class*="span"], - .uneditable-input { - display: block; - width: 100%; - min-height: 30px; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; - } - .input-prepend input, - .input-append input, - .input-prepend input[class*="span"], - .input-append input[class*="span"] { - display: inline-block; - width: auto; - } - .controls-row [class*="span"] + [class*="span"] { - margin-left: 0; - } - .modal { - position: fixed; - top: 20px; - right: 20px; - left: 20px; - width: auto; - margin: 0; - } - .modal.fade { - top: -100px; - } - .modal.fade.in { - top: 20px; - } -} - -@media (max-width: 480px) { - .nav-collapse { - -webkit-transform: translate3d(0, 0, 0); - } - .page-header h1 small { - display: block; - line-height: 20px; - } - input[type="checkbox"], - input[type="radio"] { - border: 1px solid #ccc; - } - .form-horizontal .control-label { - float: none; - width: auto; - padding-top: 0; - text-align: left; - } - .form-horizontal .controls { - margin-left: 0; - } - .form-horizontal .control-list { - padding-top: 0; - } - .form-horizontal .form-actions { - padding-right: 10px; - padding-left: 10px; - } - .media .pull-left, - .media .pull-right { - display: block; - float: none; - margin-bottom: 10px; - } - .media-object { - margin-right: 0; - margin-left: 0; - } - .modal { - top: 10px; - right: 10px; - left: 10px; - } - .modal-header .close { - padding: 10px; - margin: -10px; - } - .carousel-caption { - position: static; - } -} - -@media (max-width: 979px) { - body { - padding-top: 0; - } - .navbar-fixed-top, - .navbar-fixed-bottom { - position: static; - } - .navbar-fixed-top { - margin-bottom: 20px; - } - .navbar-fixed-bottom { - margin-top: 20px; - } - .navbar-fixed-top .navbar-inner, - .navbar-fixed-bottom .navbar-inner { - padding: 5px; - } - .navbar .container { - width: auto; - padding: 0; - } - .navbar .brand { - padding-right: 10px; - padding-left: 10px; - margin: 0 0 0 -5px; - } - .nav-collapse { - clear: both; - } - .nav-collapse .nav { - float: none; - margin: 0 0 10px; - } - .nav-collapse .nav > li { - float: none; - } - .nav-collapse .nav > li > a { - margin-bottom: 2px; - } - .nav-collapse .nav > .divider-vertical { - display: none; - } - .nav-collapse .nav .nav-header { - color: #777777; - text-shadow: none; - } - .nav-collapse .nav > li > a, - .nav-collapse .dropdown-menu a { - padding: 9px 15px; - font-weight: bold; - color: #777777; - -webkit-border-radius: 3px; - -moz-border-radius: 3px; - border-radius: 3px; - } - .nav-collapse .btn { - padding: 4px 10px 4px; - font-weight: normal; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; - } - .nav-collapse .dropdown-menu li + li a { - margin-bottom: 2px; - } - .nav-collapse .nav > li > a:hover, - .nav-collapse .nav > li > a:focus, - .nav-collapse .dropdown-menu a:hover, - .nav-collapse .dropdown-menu a:focus { - background-color: #f2f2f2; - } - .navbar-inverse .nav-collapse .nav > li > a, - .navbar-inverse .nav-collapse .dropdown-menu a { - color: #999999; - } - .navbar-inverse .nav-collapse .nav > li > a:hover, - .navbar-inverse .nav-collapse .nav > li > a:focus, - .navbar-inverse .nav-collapse .dropdown-menu a:hover, - .navbar-inverse .nav-collapse .dropdown-menu a:focus { - background-color: #111111; - } - .nav-collapse.in .btn-group { - padding: 0; - margin-top: 5px; - } - .nav-collapse .dropdown-menu { - position: static; - top: auto; - left: auto; - display: none; - float: none; - max-width: none; - padding: 0; - margin: 0 15px; - background-color: transparent; - border: none; - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; - -webkit-box-shadow: none; - -moz-box-shadow: none; - box-shadow: none; - } - .nav-collapse .open > .dropdown-menu { - display: block; - } - .nav-collapse .dropdown-menu:before, - .nav-collapse .dropdown-menu:after { - display: none; - } - .nav-collapse .dropdown-menu .divider { - display: none; - } - .nav-collapse .nav > li > .dropdown-menu:before, - .nav-collapse .nav > li > .dropdown-menu:after { - display: none; - } - .nav-collapse .navbar-form, - .nav-collapse .navbar-search { - float: none; - padding: 10px 15px; - margin: 10px 0; - border-top: 1px solid #f2f2f2; - border-bottom: 1px solid #f2f2f2; - -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1); - -moz-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1); - box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1); - } - .navbar-inverse .nav-collapse .navbar-form, - .navbar-inverse .nav-collapse .navbar-search { - border-top-color: #111111; - border-bottom-color: #111111; - } - .navbar .nav-collapse .nav.pull-right { - float: none; - margin-left: 0; - } - .nav-collapse, - .nav-collapse.collapse { - height: 0; - overflow: hidden; - } - .navbar .btn-navbar { - display: block; - } - .navbar-static .navbar-inner { - padding-right: 10px; - padding-left: 10px; - } -} - -@media (min-width: 980px) { - .nav-collapse.collapse { - height: auto !important; - overflow: visible !important; - } -} diff --git a/docs/_static/bootstrap-2.3.2/css/bootstrap-responsive.min.css b/docs/_static/bootstrap-2.3.2/css/bootstrap-responsive.min.css deleted file mode 100644 index f4ede63f3..000000000 --- a/docs/_static/bootstrap-2.3.2/css/bootstrap-responsive.min.css +++ /dev/null @@ -1,9 +0,0 @@ -/*! - * Bootstrap Responsive v2.3.2 - * - * Copyright 2012 Twitter, Inc - * Licensed under the Apache License v2.0 - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Designed and built with all the love in the world @twitter by @mdo and @fat. - */.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;line-height:0;content:""}.clearfix:after{clear:both}.hide-text{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.input-block-level{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}@-ms-viewport{width:device-width}.hidden{display:none;visibility:hidden}.visible-phone{display:none!important}.visible-tablet{display:none!important}.hidden-desktop{display:none!important}.visible-desktop{display:inherit!important}@media(min-width:768px) and (max-width:979px){.hidden-desktop{display:inherit!important}.visible-desktop{display:none!important}.visible-tablet{display:inherit!important}.hidden-tablet{display:none!important}}@media(max-width:767px){.hidden-desktop{display:inherit!important}.visible-desktop{display:none!important}.visible-phone{display:inherit!important}.hidden-phone{display:none!important}}.visible-print{display:none!important}@media print{.visible-print{display:inherit!important}.hidden-print{display:none!important}}@media(min-width:1200px){.row{margin-left:-30px;*zoom:1}.row:before,.row:after{display:table;line-height:0;content:""}.row:after{clear:both}[class*="span"]{float:left;min-height:1px;margin-left:30px}.container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:1170px}.span12{width:1170px}.span11{width:1070px}.span10{width:970px}.span9{width:870px}.span8{width:770px}.span7{width:670px}.span6{width:570px}.span5{width:470px}.span4{width:370px}.span3{width:270px}.span2{width:170px}.span1{width:70px}.offset12{margin-left:1230px}.offset11{margin-left:1130px}.offset10{margin-left:1030px}.offset9{margin-left:930px}.offset8{margin-left:830px}.offset7{margin-left:730px}.offset6{margin-left:630px}.offset5{margin-left:530px}.offset4{margin-left:430px}.offset3{margin-left:330px}.offset2{margin-left:230px}.offset1{margin-left:130px}.row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;line-height:0;content:""}.row-fluid:after{clear:both}.row-fluid [class*="span"]{display:block;float:left;width:100%;min-height:30px;margin-left:2.564102564102564%;*margin-left:2.5109110747408616%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.row-fluid [class*="span"]:first-child{margin-left:0}.row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.564102564102564%}.row-fluid .span12{width:100%;*width:99.94680851063829%}.row-fluid .span11{width:91.45299145299145%;*width:91.39979996362975%}.row-fluid .span10{width:82.90598290598291%;*width:82.8527914166212%}.row-fluid .span9{width:74.35897435897436%;*width:74.30578286961266%}.row-fluid .span8{width:65.81196581196582%;*width:65.75877432260411%}.row-fluid .span7{width:57.26495726495726%;*width:57.21176577559556%}.row-fluid .span6{width:48.717948717948715%;*width:48.664757228587014%}.row-fluid .span5{width:40.17094017094017%;*width:40.11774868157847%}.row-fluid .span4{width:31.623931623931625%;*width:31.570740134569924%}.row-fluid .span3{width:23.076923076923077%;*width:23.023731587561375%}.row-fluid .span2{width:14.52991452991453%;*width:14.476723040552828%}.row-fluid .span1{width:5.982905982905983%;*width:5.929714493544281%}.row-fluid .offset12{margin-left:105.12820512820512%;*margin-left:105.02182214948171%}.row-fluid .offset12:first-child{margin-left:102.56410256410257%;*margin-left:102.45771958537915%}.row-fluid .offset11{margin-left:96.58119658119658%;*margin-left:96.47481360247316%}.row-fluid .offset11:first-child{margin-left:94.01709401709402%;*margin-left:93.91071103837061%}.row-fluid .offset10{margin-left:88.03418803418803%;*margin-left:87.92780505546462%}.row-fluid .offset10:first-child{margin-left:85.47008547008548%;*margin-left:85.36370249136206%}.row-fluid .offset9{margin-left:79.48717948717949%;*margin-left:79.38079650845607%}.row-fluid .offset9:first-child{margin-left:76.92307692307693%;*margin-left:76.81669394435352%}.row-fluid .offset8{margin-left:70.94017094017094%;*margin-left:70.83378796144753%}.row-fluid .offset8:first-child{margin-left:68.37606837606839%;*margin-left:68.26968539734497%}.row-fluid .offset7{margin-left:62.393162393162385%;*margin-left:62.28677941443899%}.row-fluid .offset7:first-child{margin-left:59.82905982905982%;*margin-left:59.72267685033642%}.row-fluid .offset6{margin-left:53.84615384615384%;*margin-left:53.739770867430444%}.row-fluid .offset6:first-child{margin-left:51.28205128205128%;*margin-left:51.175668303327875%}.row-fluid .offset5{margin-left:45.299145299145295%;*margin-left:45.1927623204219%}.row-fluid .offset5:first-child{margin-left:42.73504273504273%;*margin-left:42.62865975631933%}.row-fluid .offset4{margin-left:36.75213675213675%;*margin-left:36.645753773413354%}.row-fluid .offset4:first-child{margin-left:34.18803418803419%;*margin-left:34.081651209310785%}.row-fluid .offset3{margin-left:28.205128205128204%;*margin-left:28.0987452264048%}.row-fluid .offset3:first-child{margin-left:25.641025641025642%;*margin-left:25.53464266230224%}.row-fluid .offset2{margin-left:19.65811965811966%;*margin-left:19.551736679396257%}.row-fluid .offset2:first-child{margin-left:17.094017094017094%;*margin-left:16.98763411529369%}.row-fluid .offset1{margin-left:11.11111111111111%;*margin-left:11.004728132387708%}.row-fluid .offset1:first-child{margin-left:8.547008547008547%;*margin-left:8.440625568285142%}input,textarea,.uneditable-input{margin-left:0}.controls-row [class*="span"]+[class*="span"]{margin-left:30px}input.span12,textarea.span12,.uneditable-input.span12{width:1156px}input.span11,textarea.span11,.uneditable-input.span11{width:1056px}input.span10,textarea.span10,.uneditable-input.span10{width:956px}input.span9,textarea.span9,.uneditable-input.span9{width:856px}input.span8,textarea.span8,.uneditable-input.span8{width:756px}input.span7,textarea.span7,.uneditable-input.span7{width:656px}input.span6,textarea.span6,.uneditable-input.span6{width:556px}input.span5,textarea.span5,.uneditable-input.span5{width:456px}input.span4,textarea.span4,.uneditable-input.span4{width:356px}input.span3,textarea.span3,.uneditable-input.span3{width:256px}input.span2,textarea.span2,.uneditable-input.span2{width:156px}input.span1,textarea.span1,.uneditable-input.span1{width:56px}.thumbnails{margin-left:-30px}.thumbnails>li{margin-left:30px}.row-fluid .thumbnails{margin-left:0}}@media(min-width:768px) and (max-width:979px){.row{margin-left:-20px;*zoom:1}.row:before,.row:after{display:table;line-height:0;content:""}.row:after{clear:both}[class*="span"]{float:left;min-height:1px;margin-left:20px}.container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:724px}.span12{width:724px}.span11{width:662px}.span10{width:600px}.span9{width:538px}.span8{width:476px}.span7{width:414px}.span6{width:352px}.span5{width:290px}.span4{width:228px}.span3{width:166px}.span2{width:104px}.span1{width:42px}.offset12{margin-left:764px}.offset11{margin-left:702px}.offset10{margin-left:640px}.offset9{margin-left:578px}.offset8{margin-left:516px}.offset7{margin-left:454px}.offset6{margin-left:392px}.offset5{margin-left:330px}.offset4{margin-left:268px}.offset3{margin-left:206px}.offset2{margin-left:144px}.offset1{margin-left:82px}.row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;line-height:0;content:""}.row-fluid:after{clear:both}.row-fluid [class*="span"]{display:block;float:left;width:100%;min-height:30px;margin-left:2.7624309392265194%;*margin-left:2.709239449864817%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.row-fluid [class*="span"]:first-child{margin-left:0}.row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.7624309392265194%}.row-fluid .span12{width:100%;*width:99.94680851063829%}.row-fluid .span11{width:91.43646408839778%;*width:91.38327259903608%}.row-fluid .span10{width:82.87292817679558%;*width:82.81973668743387%}.row-fluid .span9{width:74.30939226519337%;*width:74.25620077583166%}.row-fluid .span8{width:65.74585635359117%;*width:65.69266486422946%}.row-fluid .span7{width:57.18232044198895%;*width:57.12912895262725%}.row-fluid .span6{width:48.61878453038674%;*width:48.56559304102504%}.row-fluid .span5{width:40.05524861878453%;*width:40.00205712942283%}.row-fluid .span4{width:31.491712707182323%;*width:31.43852121782062%}.row-fluid .span3{width:22.92817679558011%;*width:22.87498530621841%}.row-fluid .span2{width:14.3646408839779%;*width:14.311449394616199%}.row-fluid .span1{width:5.801104972375691%;*width:5.747913483013988%}.row-fluid .offset12{margin-left:105.52486187845304%;*margin-left:105.41847889972962%}.row-fluid .offset12:first-child{margin-left:102.76243093922652%;*margin-left:102.6560479605031%}.row-fluid .offset11{margin-left:96.96132596685082%;*margin-left:96.8549429881274%}.row-fluid .offset11:first-child{margin-left:94.1988950276243%;*margin-left:94.09251204890089%}.row-fluid .offset10{margin-left:88.39779005524862%;*margin-left:88.2914070765252%}.row-fluid .offset10:first-child{margin-left:85.6353591160221%;*margin-left:85.52897613729868%}.row-fluid .offset9{margin-left:79.8342541436464%;*margin-left:79.72787116492299%}.row-fluid .offset9:first-child{margin-left:77.07182320441989%;*margin-left:76.96544022569647%}.row-fluid .offset8{margin-left:71.2707182320442%;*margin-left:71.16433525332079%}.row-fluid .offset8:first-child{margin-left:68.50828729281768%;*margin-left:68.40190431409427%}.row-fluid .offset7{margin-left:62.70718232044199%;*margin-left:62.600799341718584%}.row-fluid .offset7:first-child{margin-left:59.94475138121547%;*margin-left:59.838368402492065%}.row-fluid .offset6{margin-left:54.14364640883978%;*margin-left:54.037263430116376%}.row-fluid .offset6:first-child{margin-left:51.38121546961326%;*margin-left:51.27483249088986%}.row-fluid .offset5{margin-left:45.58011049723757%;*margin-left:45.47372751851417%}.row-fluid .offset5:first-child{margin-left:42.81767955801105%;*margin-left:42.71129657928765%}.row-fluid .offset4{margin-left:37.01657458563536%;*margin-left:36.91019160691196%}.row-fluid .offset4:first-child{margin-left:34.25414364640884%;*margin-left:34.14776066768544%}.row-fluid .offset3{margin-left:28.45303867403315%;*margin-left:28.346655695309746%}.row-fluid .offset3:first-child{margin-left:25.69060773480663%;*margin-left:25.584224756083227%}.row-fluid .offset2{margin-left:19.88950276243094%;*margin-left:19.783119783707537%}.row-fluid .offset2:first-child{margin-left:17.12707182320442%;*margin-left:17.02068884448102%}.row-fluid .offset1{margin-left:11.32596685082873%;*margin-left:11.219583872105325%}.row-fluid .offset1:first-child{margin-left:8.56353591160221%;*margin-left:8.457152932878806%}input,textarea,.uneditable-input{margin-left:0}.controls-row [class*="span"]+[class*="span"]{margin-left:20px}input.span12,textarea.span12,.uneditable-input.span12{width:710px}input.span11,textarea.span11,.uneditable-input.span11{width:648px}input.span10,textarea.span10,.uneditable-input.span10{width:586px}input.span9,textarea.span9,.uneditable-input.span9{width:524px}input.span8,textarea.span8,.uneditable-input.span8{width:462px}input.span7,textarea.span7,.uneditable-input.span7{width:400px}input.span6,textarea.span6,.uneditable-input.span6{width:338px}input.span5,textarea.span5,.uneditable-input.span5{width:276px}input.span4,textarea.span4,.uneditable-input.span4{width:214px}input.span3,textarea.span3,.uneditable-input.span3{width:152px}input.span2,textarea.span2,.uneditable-input.span2{width:90px}input.span1,textarea.span1,.uneditable-input.span1{width:28px}}@media(max-width:767px){body{padding-right:20px;padding-left:20px}.navbar-fixed-top,.navbar-fixed-bottom,.navbar-static-top{margin-right:-20px;margin-left:-20px}.container-fluid{padding:0}.dl-horizontal dt{float:none;width:auto;clear:none;text-align:left}.dl-horizontal dd{margin-left:0}.container{width:auto}.row-fluid{width:100%}.row,.thumbnails{margin-left:0}.thumbnails>li{float:none;margin-left:0}[class*="span"],.uneditable-input[class*="span"],.row-fluid [class*="span"]{display:block;float:none;width:100%;margin-left:0;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.span12,.row-fluid .span12{width:100%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.row-fluid [class*="offset"]:first-child{margin-left:0}.input-large,.input-xlarge,.input-xxlarge,input[class*="span"],select[class*="span"],textarea[class*="span"],.uneditable-input{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.input-prepend input,.input-append input,.input-prepend input[class*="span"],.input-append input[class*="span"]{display:inline-block;width:auto}.controls-row [class*="span"]+[class*="span"]{margin-left:0}.modal{position:fixed;top:20px;right:20px;left:20px;width:auto;margin:0}.modal.fade{top:-100px}.modal.fade.in{top:20px}}@media(max-width:480px){.nav-collapse{-webkit-transform:translate3d(0,0,0)}.page-header h1 small{display:block;line-height:20px}input[type="checkbox"],input[type="radio"]{border:1px solid #ccc}.form-horizontal .control-label{float:none;width:auto;padding-top:0;text-align:left}.form-horizontal .controls{margin-left:0}.form-horizontal .control-list{padding-top:0}.form-horizontal .form-actions{padding-right:10px;padding-left:10px}.media .pull-left,.media .pull-right{display:block;float:none;margin-bottom:10px}.media-object{margin-right:0;margin-left:0}.modal{top:10px;right:10px;left:10px}.modal-header .close{padding:10px;margin:-10px}.carousel-caption{position:static}}@media(max-width:979px){body{padding-top:0}.navbar-fixed-top,.navbar-fixed-bottom{position:static}.navbar-fixed-top{margin-bottom:20px}.navbar-fixed-bottom{margin-top:20px}.navbar-fixed-top .navbar-inner,.navbar-fixed-bottom .navbar-inner{padding:5px}.navbar .container{width:auto;padding:0}.navbar .brand{padding-right:10px;padding-left:10px;margin:0 0 0 -5px}.nav-collapse{clear:both}.nav-collapse .nav{float:none;margin:0 0 10px}.nav-collapse .nav>li{float:none}.nav-collapse .nav>li>a{margin-bottom:2px}.nav-collapse .nav>.divider-vertical{display:none}.nav-collapse .nav .nav-header{color:#777;text-shadow:none}.nav-collapse .nav>li>a,.nav-collapse .dropdown-menu a{padding:9px 15px;font-weight:bold;color:#777;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.nav-collapse .btn{padding:4px 10px 4px;font-weight:normal;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.nav-collapse .dropdown-menu li+li a{margin-bottom:2px}.nav-collapse .nav>li>a:hover,.nav-collapse .nav>li>a:focus,.nav-collapse .dropdown-menu a:hover,.nav-collapse .dropdown-menu a:focus{background-color:#f2f2f2}.navbar-inverse .nav-collapse .nav>li>a,.navbar-inverse .nav-collapse .dropdown-menu a{color:#999}.navbar-inverse .nav-collapse .nav>li>a:hover,.navbar-inverse .nav-collapse .nav>li>a:focus,.navbar-inverse .nav-collapse .dropdown-menu a:hover,.navbar-inverse .nav-collapse .dropdown-menu a:focus{background-color:#111}.nav-collapse.in .btn-group{padding:0;margin-top:5px}.nav-collapse .dropdown-menu{position:static;top:auto;left:auto;display:none;float:none;max-width:none;padding:0;margin:0 15px;background-color:transparent;border:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0;-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none}.nav-collapse .open>.dropdown-menu{display:block}.nav-collapse .dropdown-menu:before,.nav-collapse .dropdown-menu:after{display:none}.nav-collapse .dropdown-menu .divider{display:none}.nav-collapse .nav>li>.dropdown-menu:before,.nav-collapse .nav>li>.dropdown-menu:after{display:none}.nav-collapse .navbar-form,.nav-collapse .navbar-search{float:none;padding:10px 15px;margin:10px 0;border-top:1px solid #f2f2f2;border-bottom:1px solid #f2f2f2;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.1);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.1);box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.1)}.navbar-inverse .nav-collapse .navbar-form,.navbar-inverse .nav-collapse .navbar-search{border-top-color:#111;border-bottom-color:#111}.navbar .nav-collapse .nav.pull-right{float:none;margin-left:0}.nav-collapse,.nav-collapse.collapse{height:0;overflow:hidden}.navbar .btn-navbar{display:block}.navbar-static .navbar-inner{padding-right:10px;padding-left:10px}}@media(min-width:980px){.nav-collapse.collapse{height:auto!important;overflow:visible!important}} diff --git a/docs/_static/bootstrap-2.3.2/css/bootstrap.css b/docs/_static/bootstrap-2.3.2/css/bootstrap.css deleted file mode 100644 index b725064aa..000000000 --- a/docs/_static/bootstrap-2.3.2/css/bootstrap.css +++ /dev/null @@ -1,6167 +0,0 @@ -/*! - * Bootstrap v2.3.2 - * - * Copyright 2012 Twitter, Inc - * Licensed under the Apache License v2.0 - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Designed and built with all the love in the world @twitter by @mdo and @fat. - */ - -.clearfix { - *zoom: 1; -} - -.clearfix:before, -.clearfix:after { - display: table; - line-height: 0; - content: ""; -} - -.clearfix:after { - clear: both; -} - -.hide-text { - font: 0/0 a; - color: transparent; - text-shadow: none; - background-color: transparent; - border: 0; -} - -.input-block-level { - display: block; - width: 100%; - min-height: 30px; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; -} - -article, -aside, -details, -figcaption, -figure, -footer, -header, -hgroup, -nav, -section { - display: block; -} - -audio, -canvas, -video { - display: inline-block; - *display: inline; - *zoom: 1; -} - -audio:not([controls]) { - display: none; -} - -html { - font-size: 100%; - -webkit-text-size-adjust: 100%; - -ms-text-size-adjust: 100%; -} - -a:focus { - outline: thin dotted #333; - outline: 5px auto -webkit-focus-ring-color; - outline-offset: -2px; -} - -a:hover, -a:active { - outline: 0; -} - -sub, -sup { - position: relative; - font-size: 75%; - line-height: 0; - vertical-align: baseline; -} - -sup { - top: -0.5em; -} - -sub { - bottom: -0.25em; -} - -img { - width: auto\9; - height: auto; - max-width: 100%; - vertical-align: middle; - border: 0; - -ms-interpolation-mode: bicubic; -} - -#map_canvas img, -.google-maps img { - max-width: none; -} - -button, -input, -select, -textarea { - margin: 0; - font-size: 100%; - vertical-align: middle; -} - -button, -input { - *overflow: visible; - line-height: normal; -} - -button::-moz-focus-inner, -input::-moz-focus-inner { - padding: 0; - border: 0; -} - -button, -html input[type="button"], -input[type="reset"], -input[type="submit"] { - cursor: pointer; - -webkit-appearance: button; -} - -label, -select, -button, -input[type="button"], -input[type="reset"], -input[type="submit"], -input[type="radio"], -input[type="checkbox"] { - cursor: pointer; -} - -input[type="search"] { - -webkit-box-sizing: content-box; - -moz-box-sizing: content-box; - box-sizing: content-box; - -webkit-appearance: textfield; -} - -input[type="search"]::-webkit-search-decoration, -input[type="search"]::-webkit-search-cancel-button { - -webkit-appearance: none; -} - -textarea { - overflow: auto; - vertical-align: top; -} - -@media print { - * { - color: #000 !important; - text-shadow: none !important; - background: transparent !important; - box-shadow: none !important; - } - a, - a:visited { - text-decoration: underline; - } - a[href]:after { - content: " (" attr(href) ")"; - } - abbr[title]:after { - content: " (" attr(title) ")"; - } - .ir a:after, - a[href^="javascript:"]:after, - a[href^="#"]:after { - content: ""; - } - pre, - blockquote { - border: 1px solid #999; - page-break-inside: avoid; - } - thead { - display: table-header-group; - } - tr, - img { - page-break-inside: avoid; - } - img { - max-width: 100% !important; - } - @page { - margin: 0.5cm; - } - p, - h2, - h3 { - orphans: 3; - widows: 3; - } - h2, - h3 { - page-break-after: avoid; - } -} - -body { - margin: 0; - font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; - font-size: 14px; - line-height: 20px; - color: #333333; - background-color: #ffffff; -} - -a { - color: #0088cc; - text-decoration: none; -} - -a:hover, -a:focus { - color: #005580; - text-decoration: underline; -} - -.img-rounded { - -webkit-border-radius: 6px; - -moz-border-radius: 6px; - border-radius: 6px; -} - -.img-polaroid { - padding: 4px; - background-color: #fff; - border: 1px solid #ccc; - border: 1px solid rgba(0, 0, 0, 0.2); - -webkit-box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); - -moz-box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); - box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); -} - -.img-circle { - -webkit-border-radius: 500px; - -moz-border-radius: 500px; - border-radius: 500px; -} - -.row { - margin-left: -20px; - *zoom: 1; -} - -.row:before, -.row:after { - display: table; - line-height: 0; - content: ""; -} - -.row:after { - clear: both; -} - -[class*="span"] { - float: left; - min-height: 1px; - margin-left: 20px; -} - -.container, -.navbar-static-top .container, -.navbar-fixed-top .container, -.navbar-fixed-bottom .container { - width: 940px; -} - -.span12 { - width: 940px; -} - -.span11 { - width: 860px; -} - -.span10 { - width: 780px; -} - -.span9 { - width: 700px; -} - -.span8 { - width: 620px; -} - -.span7 { - width: 540px; -} - -.span6 { - width: 460px; -} - -.span5 { - width: 380px; -} - -.span4 { - width: 300px; -} - -.span3 { - width: 220px; -} - -.span2 { - width: 140px; -} - -.span1 { - width: 60px; -} - -.offset12 { - margin-left: 980px; -} - -.offset11 { - margin-left: 900px; -} - -.offset10 { - margin-left: 820px; -} - -.offset9 { - margin-left: 740px; -} - -.offset8 { - margin-left: 660px; -} - -.offset7 { - margin-left: 580px; -} - -.offset6 { - margin-left: 500px; -} - -.offset5 { - margin-left: 420px; -} - -.offset4 { - margin-left: 340px; -} - -.offset3 { - margin-left: 260px; -} - -.offset2 { - margin-left: 180px; -} - -.offset1 { - margin-left: 100px; -} - -.row-fluid { - width: 100%; - *zoom: 1; -} - -.row-fluid:before, -.row-fluid:after { - display: table; - line-height: 0; - content: ""; -} - -.row-fluid:after { - clear: both; -} - -.row-fluid [class*="span"] { - display: block; - float: left; - width: 100%; - min-height: 30px; - margin-left: 2.127659574468085%; - *margin-left: 2.074468085106383%; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; -} - -.row-fluid [class*="span"]:first-child { - margin-left: 0; -} - -.row-fluid .controls-row [class*="span"] + [class*="span"] { - margin-left: 2.127659574468085%; -} - -.row-fluid .span12 { - width: 100%; - *width: 99.94680851063829%; -} - -.row-fluid .span11 { - width: 91.48936170212765%; - *width: 91.43617021276594%; -} - -.row-fluid .span10 { - width: 82.97872340425532%; - *width: 82.92553191489361%; -} - -.row-fluid .span9 { - width: 74.46808510638297%; - *width: 74.41489361702126%; -} - -.row-fluid .span8 { - width: 65.95744680851064%; - *width: 65.90425531914893%; -} - -.row-fluid .span7 { - width: 57.44680851063829%; - *width: 57.39361702127659%; -} - -.row-fluid .span6 { - width: 48.93617021276595%; - *width: 48.88297872340425%; -} - -.row-fluid .span5 { - width: 40.42553191489362%; - *width: 40.37234042553192%; -} - -.row-fluid .span4 { - width: 31.914893617021278%; - *width: 31.861702127659576%; -} - -.row-fluid .span3 { - width: 23.404255319148934%; - *width: 23.351063829787233%; -} - -.row-fluid .span2 { - width: 14.893617021276595%; - *width: 14.840425531914894%; -} - -.row-fluid .span1 { - width: 6.382978723404255%; - *width: 6.329787234042553%; -} - -.row-fluid .offset12 { - margin-left: 104.25531914893617%; - *margin-left: 104.14893617021275%; -} - -.row-fluid .offset12:first-child { - margin-left: 102.12765957446808%; - *margin-left: 102.02127659574467%; -} - -.row-fluid .offset11 { - margin-left: 95.74468085106382%; - *margin-left: 95.6382978723404%; -} - -.row-fluid .offset11:first-child { - margin-left: 93.61702127659574%; - *margin-left: 93.51063829787232%; -} - -.row-fluid .offset10 { - margin-left: 87.23404255319149%; - *margin-left: 87.12765957446807%; -} - -.row-fluid .offset10:first-child { - margin-left: 85.1063829787234%; - *margin-left: 84.99999999999999%; -} - -.row-fluid .offset9 { - margin-left: 78.72340425531914%; - *margin-left: 78.61702127659572%; -} - -.row-fluid .offset9:first-child { - margin-left: 76.59574468085106%; - *margin-left: 76.48936170212764%; -} - -.row-fluid .offset8 { - margin-left: 70.2127659574468%; - *margin-left: 70.10638297872339%; -} - -.row-fluid .offset8:first-child { - margin-left: 68.08510638297872%; - *margin-left: 67.9787234042553%; -} - -.row-fluid .offset7 { - margin-left: 61.70212765957446%; - *margin-left: 61.59574468085106%; -} - -.row-fluid .offset7:first-child { - margin-left: 59.574468085106375%; - *margin-left: 59.46808510638297%; -} - -.row-fluid .offset6 { - margin-left: 53.191489361702125%; - *margin-left: 53.085106382978715%; -} - -.row-fluid .offset6:first-child { - margin-left: 51.063829787234035%; - *margin-left: 50.95744680851063%; -} - -.row-fluid .offset5 { - margin-left: 44.68085106382979%; - *margin-left: 44.57446808510638%; -} - -.row-fluid .offset5:first-child { - margin-left: 42.5531914893617%; - *margin-left: 42.4468085106383%; -} - -.row-fluid .offset4 { - margin-left: 36.170212765957444%; - *margin-left: 36.06382978723405%; -} - -.row-fluid .offset4:first-child { - margin-left: 34.04255319148936%; - *margin-left: 33.93617021276596%; -} - -.row-fluid .offset3 { - margin-left: 27.659574468085104%; - *margin-left: 27.5531914893617%; -} - -.row-fluid .offset3:first-child { - margin-left: 25.53191489361702%; - *margin-left: 25.425531914893618%; -} - -.row-fluid .offset2 { - margin-left: 19.148936170212764%; - *margin-left: 19.04255319148936%; -} - -.row-fluid .offset2:first-child { - margin-left: 17.02127659574468%; - *margin-left: 16.914893617021278%; -} - -.row-fluid .offset1 { - margin-left: 10.638297872340425%; - *margin-left: 10.53191489361702%; -} - -.row-fluid .offset1:first-child { - margin-left: 8.51063829787234%; - *margin-left: 8.404255319148938%; -} - -[class*="span"].hide, -.row-fluid [class*="span"].hide { - display: none; -} - -[class*="span"].pull-right, -.row-fluid [class*="span"].pull-right { - float: right; -} - -.container { - margin-right: auto; - margin-left: auto; - *zoom: 1; -} - -.container:before, -.container:after { - display: table; - line-height: 0; - content: ""; -} - -.container:after { - clear: both; -} - -.container-fluid { - padding-right: 20px; - padding-left: 20px; - *zoom: 1; -} - -.container-fluid:before, -.container-fluid:after { - display: table; - line-height: 0; - content: ""; -} - -.container-fluid:after { - clear: both; -} - -p { - margin: 0 0 10px; -} - -.lead { - margin-bottom: 20px; - font-size: 21px; - font-weight: 200; - line-height: 30px; -} - -small { - font-size: 85%; -} - -strong { - font-weight: bold; -} - -em { - font-style: italic; -} - -cite { - font-style: normal; -} - -.muted { - color: #999999; -} - -a.muted:hover, -a.muted:focus { - color: #808080; -} - -.text-warning { - color: #c09853; -} - -a.text-warning:hover, -a.text-warning:focus { - color: #a47e3c; -} - -.text-error { - color: #b94a48; -} - -a.text-error:hover, -a.text-error:focus { - color: #953b39; -} - -.text-info { - color: #3a87ad; -} - -a.text-info:hover, -a.text-info:focus { - color: #2d6987; -} - -.text-success { - color: #468847; -} - -a.text-success:hover, -a.text-success:focus { - color: #356635; -} - -.text-left { - text-align: left; -} - -.text-right { - text-align: right; -} - -.text-center { - text-align: center; -} - -h1, -h2, -h3, -h4, -h5, -h6 { - margin: 10px 0; - font-family: inherit; - font-weight: bold; - line-height: 20px; - color: inherit; - text-rendering: optimizelegibility; -} - -h1 small, -h2 small, -h3 small, -h4 small, -h5 small, -h6 small { - font-weight: normal; - line-height: 1; - color: #999999; -} - -h1, -h2, -h3 { - line-height: 40px; -} - -h1 { - font-size: 38.5px; -} - -h2 { - font-size: 31.5px; -} - -h3 { - font-size: 24.5px; -} - -h4 { - font-size: 17.5px; -} - -h5 { - font-size: 14px; -} - -h6 { - font-size: 11.9px; -} - -h1 small { - font-size: 24.5px; -} - -h2 small { - font-size: 17.5px; -} - -h3 small { - font-size: 14px; -} - -h4 small { - font-size: 14px; -} - -.page-header { - padding-bottom: 9px; - margin: 20px 0 30px; - border-bottom: 1px solid #eeeeee; -} - -ul, -ol { - padding: 0; - margin: 0 0 10px 25px; -} - -ul ul, -ul ol, -ol ol, -ol ul { - margin-bottom: 0; -} - -li { - line-height: 20px; -} - -ul.unstyled, -ol.unstyled { - margin-left: 0; - list-style: none; -} - -ul.inline, -ol.inline { - margin-left: 0; - list-style: none; -} - -ul.inline > li, -ol.inline > li { - display: inline-block; - *display: inline; - padding-right: 5px; - padding-left: 5px; - *zoom: 1; -} - -dl { - margin-bottom: 20px; -} - -dt, -dd { - line-height: 20px; -} - -dt { - font-weight: bold; -} - -dd { - margin-left: 10px; -} - -.dl-horizontal { - *zoom: 1; -} - -.dl-horizontal:before, -.dl-horizontal:after { - display: table; - line-height: 0; - content: ""; -} - -.dl-horizontal:after { - clear: both; -} - -.dl-horizontal dt { - float: left; - width: 160px; - overflow: hidden; - clear: left; - text-align: right; - text-overflow: ellipsis; - white-space: nowrap; -} - -.dl-horizontal dd { - margin-left: 180px; -} - -hr { - margin: 20px 0; - border: 0; - border-top: 1px solid #eeeeee; - border-bottom: 1px solid #ffffff; -} - -abbr[title], -abbr[data-original-title] { - cursor: help; - border-bottom: 1px dotted #999999; -} - -abbr.initialism { - font-size: 90%; - text-transform: uppercase; -} - -blockquote { - padding: 0 0 0 15px; - margin: 0 0 20px; - border-left: 5px solid #eeeeee; -} - -blockquote p { - margin-bottom: 0; - font-size: 17.5px; - font-weight: 300; - line-height: 1.25; -} - -blockquote small { - display: block; - line-height: 20px; - color: #999999; -} - -blockquote small:before { - content: '\2014 \00A0'; -} - -blockquote.pull-right { - float: right; - padding-right: 15px; - padding-left: 0; - border-right: 5px solid #eeeeee; - border-left: 0; -} - -blockquote.pull-right p, -blockquote.pull-right small { - text-align: right; -} - -blockquote.pull-right small:before { - content: ''; -} - -blockquote.pull-right small:after { - content: '\00A0 \2014'; -} - -q:before, -q:after, -blockquote:before, -blockquote:after { - content: ""; -} - -address { - display: block; - margin-bottom: 20px; - font-style: normal; - line-height: 20px; -} - -code, -pre { - padding: 0 3px 2px; - font-family: Monaco, Menlo, Consolas, "Courier New", monospace; - font-size: 12px; - color: #333333; - -webkit-border-radius: 3px; - -moz-border-radius: 3px; - border-radius: 3px; -} - -code { - padding: 2px 4px; - color: #d14; - white-space: nowrap; - background-color: #f7f7f9; - border: 1px solid #e1e1e8; -} - -pre { - display: block; - padding: 9.5px; - margin: 0 0 10px; - font-size: 13px; - line-height: 20px; - word-break: break-all; - word-wrap: break-word; - white-space: pre; - white-space: pre-wrap; - background-color: #f5f5f5; - border: 1px solid #ccc; - border: 1px solid rgba(0, 0, 0, 0.15); - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; -} - -pre.prettyprint { - margin-bottom: 20px; -} - -pre code { - padding: 0; - color: inherit; - white-space: pre; - white-space: pre-wrap; - background-color: transparent; - border: 0; -} - -.pre-scrollable { - max-height: 340px; - overflow-y: scroll; -} - -form { - margin: 0 0 20px; -} - -fieldset { - padding: 0; - margin: 0; - border: 0; -} - -legend { - display: block; - width: 100%; - padding: 0; - margin-bottom: 20px; - font-size: 21px; - line-height: 40px; - color: #333333; - border: 0; - border-bottom: 1px solid #e5e5e5; -} - -legend small { - font-size: 15px; - color: #999999; -} - -label, -input, -button, -select, -textarea { - font-size: 14px; - font-weight: normal; - line-height: 20px; -} - -input, -button, -select, -textarea { - font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; -} - -label { - display: block; - margin-bottom: 5px; -} - -select, -textarea, -input[type="text"], -input[type="password"], -input[type="datetime"], -input[type="datetime-local"], -input[type="date"], -input[type="month"], -input[type="time"], -input[type="week"], -input[type="number"], -input[type="email"], -input[type="url"], -input[type="search"], -input[type="tel"], -input[type="color"], -.uneditable-input { - display: inline-block; - height: 20px; - padding: 4px 6px; - margin-bottom: 10px; - font-size: 14px; - line-height: 20px; - color: #555555; - vertical-align: middle; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; -} - -input, -textarea, -.uneditable-input { - width: 206px; -} - -textarea { - height: auto; -} - -textarea, -input[type="text"], -input[type="password"], -input[type="datetime"], -input[type="datetime-local"], -input[type="date"], -input[type="month"], -input[type="time"], -input[type="week"], -input[type="number"], -input[type="email"], -input[type="url"], -input[type="search"], -input[type="tel"], -input[type="color"], -.uneditable-input { - background-color: #ffffff; - border: 1px solid #cccccc; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - -webkit-transition: border linear 0.2s, box-shadow linear 0.2s; - -moz-transition: border linear 0.2s, box-shadow linear 0.2s; - -o-transition: border linear 0.2s, box-shadow linear 0.2s; - transition: border linear 0.2s, box-shadow linear 0.2s; -} - -textarea:focus, -input[type="text"]:focus, -input[type="password"]:focus, -input[type="datetime"]:focus, -input[type="datetime-local"]:focus, -input[type="date"]:focus, -input[type="month"]:focus, -input[type="time"]:focus, -input[type="week"]:focus, -input[type="number"]:focus, -input[type="email"]:focus, -input[type="url"]:focus, -input[type="search"]:focus, -input[type="tel"]:focus, -input[type="color"]:focus, -.uneditable-input:focus { - border-color: rgba(82, 168, 236, 0.8); - outline: 0; - outline: thin dotted \9; - /* IE6-9 */ - - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 8px rgba(82, 168, 236, 0.6); - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 8px rgba(82, 168, 236, 0.6); - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 8px rgba(82, 168, 236, 0.6); -} - -input[type="radio"], -input[type="checkbox"] { - margin: 4px 0 0; - margin-top: 1px \9; - *margin-top: 0; - line-height: normal; -} - -input[type="file"], -input[type="image"], -input[type="submit"], -input[type="reset"], -input[type="button"], -input[type="radio"], -input[type="checkbox"] { - width: auto; -} - -select, -input[type="file"] { - height: 30px; - /* In IE7, the height of the select element cannot be changed by height, only font-size */ - - *margin-top: 4px; - /* For IE7, add top margin to align select with labels */ - - line-height: 30px; -} - -select { - width: 220px; - background-color: #ffffff; - border: 1px solid #cccccc; -} - -select[multiple], -select[size] { - height: auto; -} - -select:focus, -input[type="file"]:focus, -input[type="radio"]:focus, -input[type="checkbox"]:focus { - outline: thin dotted #333; - outline: 5px auto -webkit-focus-ring-color; - outline-offset: -2px; -} - -.uneditable-input, -.uneditable-textarea { - color: #999999; - cursor: not-allowed; - background-color: #fcfcfc; - border-color: #cccccc; - -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.025); - -moz-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.025); - box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.025); -} - -.uneditable-input { - overflow: hidden; - white-space: nowrap; -} - -.uneditable-textarea { - width: auto; - height: auto; -} - -input:-moz-placeholder, -textarea:-moz-placeholder { - color: #999999; -} - -input:-ms-input-placeholder, -textarea:-ms-input-placeholder { - color: #999999; -} - -input::-webkit-input-placeholder, -textarea::-webkit-input-placeholder { - color: #999999; -} - -.radio, -.checkbox { - min-height: 20px; - padding-left: 20px; -} - -.radio input[type="radio"], -.checkbox input[type="checkbox"] { - float: left; - margin-left: -20px; -} - -.controls > .radio:first-child, -.controls > .checkbox:first-child { - padding-top: 5px; -} - -.radio.inline, -.checkbox.inline { - display: inline-block; - padding-top: 5px; - margin-bottom: 0; - vertical-align: middle; -} - -.radio.inline + .radio.inline, -.checkbox.inline + .checkbox.inline { - margin-left: 10px; -} - -.input-mini { - width: 60px; -} - -.input-small { - width: 90px; -} - -.input-medium { - width: 150px; -} - -.input-large { - width: 210px; -} - -.input-xlarge { - width: 270px; -} - -.input-xxlarge { - width: 530px; -} - -input[class*="span"], -select[class*="span"], -textarea[class*="span"], -.uneditable-input[class*="span"], -.row-fluid input[class*="span"], -.row-fluid select[class*="span"], -.row-fluid textarea[class*="span"], -.row-fluid .uneditable-input[class*="span"] { - float: none; - margin-left: 0; -} - -.input-append input[class*="span"], -.input-append .uneditable-input[class*="span"], -.input-prepend input[class*="span"], -.input-prepend .uneditable-input[class*="span"], -.row-fluid input[class*="span"], -.row-fluid select[class*="span"], -.row-fluid textarea[class*="span"], -.row-fluid .uneditable-input[class*="span"], -.row-fluid .input-prepend [class*="span"], -.row-fluid .input-append [class*="span"] { - display: inline-block; -} - -input, -textarea, -.uneditable-input { - margin-left: 0; -} - -.controls-row [class*="span"] + [class*="span"] { - margin-left: 20px; -} - -input.span12, -textarea.span12, -.uneditable-input.span12 { - width: 926px; -} - -input.span11, -textarea.span11, -.uneditable-input.span11 { - width: 846px; -} - -input.span10, -textarea.span10, -.uneditable-input.span10 { - width: 766px; -} - -input.span9, -textarea.span9, -.uneditable-input.span9 { - width: 686px; -} - -input.span8, -textarea.span8, -.uneditable-input.span8 { - width: 606px; -} - -input.span7, -textarea.span7, -.uneditable-input.span7 { - width: 526px; -} - -input.span6, -textarea.span6, -.uneditable-input.span6 { - width: 446px; -} - -input.span5, -textarea.span5, -.uneditable-input.span5 { - width: 366px; -} - -input.span4, -textarea.span4, -.uneditable-input.span4 { - width: 286px; -} - -input.span3, -textarea.span3, -.uneditable-input.span3 { - width: 206px; -} - -input.span2, -textarea.span2, -.uneditable-input.span2 { - width: 126px; -} - -input.span1, -textarea.span1, -.uneditable-input.span1 { - width: 46px; -} - -.controls-row { - *zoom: 1; -} - -.controls-row:before, -.controls-row:after { - display: table; - line-height: 0; - content: ""; -} - -.controls-row:after { - clear: both; -} - -.controls-row [class*="span"], -.row-fluid .controls-row [class*="span"] { - float: left; -} - -.controls-row .checkbox[class*="span"], -.controls-row .radio[class*="span"] { - padding-top: 5px; -} - -input[disabled], -select[disabled], -textarea[disabled], -input[readonly], -select[readonly], -textarea[readonly] { - cursor: not-allowed; - background-color: #eeeeee; -} - -input[type="radio"][disabled], -input[type="checkbox"][disabled], -input[type="radio"][readonly], -input[type="checkbox"][readonly] { - background-color: transparent; -} - -.control-group.warning .control-label, -.control-group.warning .help-block, -.control-group.warning .help-inline { - color: #c09853; -} - -.control-group.warning .checkbox, -.control-group.warning .radio, -.control-group.warning input, -.control-group.warning select, -.control-group.warning textarea { - color: #c09853; -} - -.control-group.warning input, -.control-group.warning select, -.control-group.warning textarea { - border-color: #c09853; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); -} - -.control-group.warning input:focus, -.control-group.warning select:focus, -.control-group.warning textarea:focus { - border-color: #a47e3c; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #dbc59e; - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #dbc59e; - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #dbc59e; -} - -.control-group.warning .input-prepend .add-on, -.control-group.warning .input-append .add-on { - color: #c09853; - background-color: #fcf8e3; - border-color: #c09853; -} - -.control-group.error .control-label, -.control-group.error .help-block, -.control-group.error .help-inline { - color: #b94a48; -} - -.control-group.error .checkbox, -.control-group.error .radio, -.control-group.error input, -.control-group.error select, -.control-group.error textarea { - color: #b94a48; -} - -.control-group.error input, -.control-group.error select, -.control-group.error textarea { - border-color: #b94a48; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); -} - -.control-group.error input:focus, -.control-group.error select:focus, -.control-group.error textarea:focus { - border-color: #953b39; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #d59392; - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #d59392; - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #d59392; -} - -.control-group.error .input-prepend .add-on, -.control-group.error .input-append .add-on { - color: #b94a48; - background-color: #f2dede; - border-color: #b94a48; -} - -.control-group.success .control-label, -.control-group.success .help-block, -.control-group.success .help-inline { - color: #468847; -} - -.control-group.success .checkbox, -.control-group.success .radio, -.control-group.success input, -.control-group.success select, -.control-group.success textarea { - color: #468847; -} - -.control-group.success input, -.control-group.success select, -.control-group.success textarea { - border-color: #468847; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); -} - -.control-group.success input:focus, -.control-group.success select:focus, -.control-group.success textarea:focus { - border-color: #356635; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7aba7b; - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7aba7b; - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7aba7b; -} - -.control-group.success .input-prepend .add-on, -.control-group.success .input-append .add-on { - color: #468847; - background-color: #dff0d8; - border-color: #468847; -} - -.control-group.info .control-label, -.control-group.info .help-block, -.control-group.info .help-inline { - color: #3a87ad; -} - -.control-group.info .checkbox, -.control-group.info .radio, -.control-group.info input, -.control-group.info select, -.control-group.info textarea { - color: #3a87ad; -} - -.control-group.info input, -.control-group.info select, -.control-group.info textarea { - border-color: #3a87ad; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); -} - -.control-group.info input:focus, -.control-group.info select:focus, -.control-group.info textarea:focus { - border-color: #2d6987; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7ab5d3; - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7ab5d3; - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #7ab5d3; -} - -.control-group.info .input-prepend .add-on, -.control-group.info .input-append .add-on { - color: #3a87ad; - background-color: #d9edf7; - border-color: #3a87ad; -} - -input:focus:invalid, -textarea:focus:invalid, -select:focus:invalid { - color: #b94a48; - border-color: #ee5f5b; -} - -input:focus:invalid:focus, -textarea:focus:invalid:focus, -select:focus:invalid:focus { - border-color: #e9322d; - -webkit-box-shadow: 0 0 6px #f8b9b7; - -moz-box-shadow: 0 0 6px #f8b9b7; - box-shadow: 0 0 6px #f8b9b7; -} - -.form-actions { - padding: 19px 20px 20px; - margin-top: 20px; - margin-bottom: 20px; - background-color: #f5f5f5; - border-top: 1px solid #e5e5e5; - *zoom: 1; -} - -.form-actions:before, -.form-actions:after { - display: table; - line-height: 0; - content: ""; -} - -.form-actions:after { - clear: both; -} - -.help-block, -.help-inline { - color: #595959; -} - -.help-block { - display: block; - margin-bottom: 10px; -} - -.help-inline { - display: inline-block; - *display: inline; - padding-left: 5px; - vertical-align: middle; - *zoom: 1; -} - -.input-append, -.input-prepend { - display: inline-block; - margin-bottom: 10px; - font-size: 0; - white-space: nowrap; - vertical-align: middle; -} - -.input-append input, -.input-prepend input, -.input-append select, -.input-prepend select, -.input-append .uneditable-input, -.input-prepend .uneditable-input, -.input-append .dropdown-menu, -.input-prepend .dropdown-menu, -.input-append .popover, -.input-prepend .popover { - font-size: 14px; -} - -.input-append input, -.input-prepend input, -.input-append select, -.input-prepend select, -.input-append .uneditable-input, -.input-prepend .uneditable-input { - position: relative; - margin-bottom: 0; - *margin-left: 0; - vertical-align: top; - -webkit-border-radius: 0 4px 4px 0; - -moz-border-radius: 0 4px 4px 0; - border-radius: 0 4px 4px 0; -} - -.input-append input:focus, -.input-prepend input:focus, -.input-append select:focus, -.input-prepend select:focus, -.input-append .uneditable-input:focus, -.input-prepend .uneditable-input:focus { - z-index: 2; -} - -.input-append .add-on, -.input-prepend .add-on { - display: inline-block; - width: auto; - height: 20px; - min-width: 16px; - padding: 4px 5px; - font-size: 14px; - font-weight: normal; - line-height: 20px; - text-align: center; - text-shadow: 0 1px 0 #ffffff; - background-color: #eeeeee; - border: 1px solid #ccc; -} - -.input-append .add-on, -.input-prepend .add-on, -.input-append .btn, -.input-prepend .btn, -.input-append .btn-group > .dropdown-toggle, -.input-prepend .btn-group > .dropdown-toggle { - vertical-align: top; - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.input-append .active, -.input-prepend .active { - background-color: #a9dba9; - border-color: #46a546; -} - -.input-prepend .add-on, -.input-prepend .btn { - margin-right: -1px; -} - -.input-prepend .add-on:first-child, -.input-prepend .btn:first-child { - -webkit-border-radius: 4px 0 0 4px; - -moz-border-radius: 4px 0 0 4px; - border-radius: 4px 0 0 4px; -} - -.input-append input, -.input-append select, -.input-append .uneditable-input { - -webkit-border-radius: 4px 0 0 4px; - -moz-border-radius: 4px 0 0 4px; - border-radius: 4px 0 0 4px; -} - -.input-append input + .btn-group .btn:last-child, -.input-append select + .btn-group .btn:last-child, -.input-append .uneditable-input + .btn-group .btn:last-child { - -webkit-border-radius: 0 4px 4px 0; - -moz-border-radius: 0 4px 4px 0; - border-radius: 0 4px 4px 0; -} - -.input-append .add-on, -.input-append .btn, -.input-append .btn-group { - margin-left: -1px; -} - -.input-append .add-on:last-child, -.input-append .btn:last-child, -.input-append .btn-group:last-child > .dropdown-toggle { - -webkit-border-radius: 0 4px 4px 0; - -moz-border-radius: 0 4px 4px 0; - border-radius: 0 4px 4px 0; -} - -.input-prepend.input-append input, -.input-prepend.input-append select, -.input-prepend.input-append .uneditable-input { - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.input-prepend.input-append input + .btn-group .btn, -.input-prepend.input-append select + .btn-group .btn, -.input-prepend.input-append .uneditable-input + .btn-group .btn { - -webkit-border-radius: 0 4px 4px 0; - -moz-border-radius: 0 4px 4px 0; - border-radius: 0 4px 4px 0; -} - -.input-prepend.input-append .add-on:first-child, -.input-prepend.input-append .btn:first-child { - margin-right: -1px; - -webkit-border-radius: 4px 0 0 4px; - -moz-border-radius: 4px 0 0 4px; - border-radius: 4px 0 0 4px; -} - -.input-prepend.input-append .add-on:last-child, -.input-prepend.input-append .btn:last-child { - margin-left: -1px; - -webkit-border-radius: 0 4px 4px 0; - -moz-border-radius: 0 4px 4px 0; - border-radius: 0 4px 4px 0; -} - -.input-prepend.input-append .btn-group:first-child { - margin-left: 0; -} - -input.search-query { - padding-right: 14px; - padding-right: 4px \9; - padding-left: 14px; - padding-left: 4px \9; - /* IE7-8 doesn't have border-radius, so don't indent the padding */ - - margin-bottom: 0; - -webkit-border-radius: 15px; - -moz-border-radius: 15px; - border-radius: 15px; -} - -/* Allow for input prepend/append in search forms */ - -.form-search .input-append .search-query, -.form-search .input-prepend .search-query { - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.form-search .input-append .search-query { - -webkit-border-radius: 14px 0 0 14px; - -moz-border-radius: 14px 0 0 14px; - border-radius: 14px 0 0 14px; -} - -.form-search .input-append .btn { - -webkit-border-radius: 0 14px 14px 0; - -moz-border-radius: 0 14px 14px 0; - border-radius: 0 14px 14px 0; -} - -.form-search .input-prepend .search-query { - -webkit-border-radius: 0 14px 14px 0; - -moz-border-radius: 0 14px 14px 0; - border-radius: 0 14px 14px 0; -} - -.form-search .input-prepend .btn { - -webkit-border-radius: 14px 0 0 14px; - -moz-border-radius: 14px 0 0 14px; - border-radius: 14px 0 0 14px; -} - -.form-search input, -.form-inline input, -.form-horizontal input, -.form-search textarea, -.form-inline textarea, -.form-horizontal textarea, -.form-search select, -.form-inline select, -.form-horizontal select, -.form-search .help-inline, -.form-inline .help-inline, -.form-horizontal .help-inline, -.form-search .uneditable-input, -.form-inline .uneditable-input, -.form-horizontal .uneditable-input, -.form-search .input-prepend, -.form-inline .input-prepend, -.form-horizontal .input-prepend, -.form-search .input-append, -.form-inline .input-append, -.form-horizontal .input-append { - display: inline-block; - *display: inline; - margin-bottom: 0; - vertical-align: middle; - *zoom: 1; -} - -.form-search .hide, -.form-inline .hide, -.form-horizontal .hide { - display: none; -} - -.form-search label, -.form-inline label, -.form-search .btn-group, -.form-inline .btn-group { - display: inline-block; -} - -.form-search .input-append, -.form-inline .input-append, -.form-search .input-prepend, -.form-inline .input-prepend { - margin-bottom: 0; -} - -.form-search .radio, -.form-search .checkbox, -.form-inline .radio, -.form-inline .checkbox { - padding-left: 0; - margin-bottom: 0; - vertical-align: middle; -} - -.form-search .radio input[type="radio"], -.form-search .checkbox input[type="checkbox"], -.form-inline .radio input[type="radio"], -.form-inline .checkbox input[type="checkbox"] { - float: left; - margin-right: 3px; - margin-left: 0; -} - -.control-group { - margin-bottom: 10px; -} - -legend + .control-group { - margin-top: 20px; - -webkit-margin-top-collapse: separate; -} - -.form-horizontal .control-group { - margin-bottom: 20px; - *zoom: 1; -} - -.form-horizontal .control-group:before, -.form-horizontal .control-group:after { - display: table; - line-height: 0; - content: ""; -} - -.form-horizontal .control-group:after { - clear: both; -} - -.form-horizontal .control-label { - float: left; - width: 160px; - padding-top: 5px; - text-align: right; -} - -.form-horizontal .controls { - *display: inline-block; - *padding-left: 20px; - margin-left: 180px; - *margin-left: 0; -} - -.form-horizontal .controls:first-child { - *padding-left: 180px; -} - -.form-horizontal .help-block { - margin-bottom: 0; -} - -.form-horizontal input + .help-block, -.form-horizontal select + .help-block, -.form-horizontal textarea + .help-block, -.form-horizontal .uneditable-input + .help-block, -.form-horizontal .input-prepend + .help-block, -.form-horizontal .input-append + .help-block { - margin-top: 10px; -} - -.form-horizontal .form-actions { - padding-left: 180px; -} - -table { - max-width: 100%; - background-color: transparent; - border-collapse: collapse; - border-spacing: 0; -} - -.table { - width: 100%; - margin-bottom: 20px; -} - -.table th, -.table td { - padding: 8px; - line-height: 20px; - text-align: left; - vertical-align: top; - border-top: 1px solid #dddddd; -} - -.table th { - font-weight: bold; -} - -.table thead th { - vertical-align: bottom; -} - -.table caption + thead tr:first-child th, -.table caption + thead tr:first-child td, -.table colgroup + thead tr:first-child th, -.table colgroup + thead tr:first-child td, -.table thead:first-child tr:first-child th, -.table thead:first-child tr:first-child td { - border-top: 0; -} - -.table tbody + tbody { - border-top: 2px solid #dddddd; -} - -.table .table { - background-color: #ffffff; -} - -.table-condensed th, -.table-condensed td { - padding: 4px 5px; -} - -.table-bordered { - border: 1px solid #dddddd; - border-collapse: separate; - *border-collapse: collapse; - border-left: 0; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; -} - -.table-bordered th, -.table-bordered td { - border-left: 1px solid #dddddd; -} - -.table-bordered caption + thead tr:first-child th, -.table-bordered caption + tbody tr:first-child th, -.table-bordered caption + tbody tr:first-child td, -.table-bordered colgroup + thead tr:first-child th, -.table-bordered colgroup + tbody tr:first-child th, -.table-bordered colgroup + tbody tr:first-child td, -.table-bordered thead:first-child tr:first-child th, -.table-bordered tbody:first-child tr:first-child th, -.table-bordered tbody:first-child tr:first-child td { - border-top: 0; -} - -.table-bordered thead:first-child tr:first-child > th:first-child, -.table-bordered tbody:first-child tr:first-child > td:first-child, -.table-bordered tbody:first-child tr:first-child > th:first-child { - -webkit-border-top-left-radius: 4px; - border-top-left-radius: 4px; - -moz-border-radius-topleft: 4px; -} - -.table-bordered thead:first-child tr:first-child > th:last-child, -.table-bordered tbody:first-child tr:first-child > td:last-child, -.table-bordered tbody:first-child tr:first-child > th:last-child { - -webkit-border-top-right-radius: 4px; - border-top-right-radius: 4px; - -moz-border-radius-topright: 4px; -} - -.table-bordered thead:last-child tr:last-child > th:first-child, -.table-bordered tbody:last-child tr:last-child > td:first-child, -.table-bordered tbody:last-child tr:last-child > th:first-child, -.table-bordered tfoot:last-child tr:last-child > td:first-child, -.table-bordered tfoot:last-child tr:last-child > th:first-child { - -webkit-border-bottom-left-radius: 4px; - border-bottom-left-radius: 4px; - -moz-border-radius-bottomleft: 4px; -} - -.table-bordered thead:last-child tr:last-child > th:last-child, -.table-bordered tbody:last-child tr:last-child > td:last-child, -.table-bordered tbody:last-child tr:last-child > th:last-child, -.table-bordered tfoot:last-child tr:last-child > td:last-child, -.table-bordered tfoot:last-child tr:last-child > th:last-child { - -webkit-border-bottom-right-radius: 4px; - border-bottom-right-radius: 4px; - -moz-border-radius-bottomright: 4px; -} - -.table-bordered tfoot + tbody:last-child tr:last-child td:first-child { - -webkit-border-bottom-left-radius: 0; - border-bottom-left-radius: 0; - -moz-border-radius-bottomleft: 0; -} - -.table-bordered tfoot + tbody:last-child tr:last-child td:last-child { - -webkit-border-bottom-right-radius: 0; - border-bottom-right-radius: 0; - -moz-border-radius-bottomright: 0; -} - -.table-bordered caption + thead tr:first-child th:first-child, -.table-bordered caption + tbody tr:first-child td:first-child, -.table-bordered colgroup + thead tr:first-child th:first-child, -.table-bordered colgroup + tbody tr:first-child td:first-child { - -webkit-border-top-left-radius: 4px; - border-top-left-radius: 4px; - -moz-border-radius-topleft: 4px; -} - -.table-bordered caption + thead tr:first-child th:last-child, -.table-bordered caption + tbody tr:first-child td:last-child, -.table-bordered colgroup + thead tr:first-child th:last-child, -.table-bordered colgroup + tbody tr:first-child td:last-child { - -webkit-border-top-right-radius: 4px; - border-top-right-radius: 4px; - -moz-border-radius-topright: 4px; -} - -.table-striped tbody > tr:nth-child(odd) > td, -.table-striped tbody > tr:nth-child(odd) > th { - background-color: #f9f9f9; -} - -.table-hover tbody tr:hover > td, -.table-hover tbody tr:hover > th { - background-color: #f5f5f5; -} - -table td[class*="span"], -table th[class*="span"], -.row-fluid table td[class*="span"], -.row-fluid table th[class*="span"] { - display: table-cell; - float: none; - margin-left: 0; -} - -.table td.span1, -.table th.span1 { - float: none; - width: 44px; - margin-left: 0; -} - -.table td.span2, -.table th.span2 { - float: none; - width: 124px; - margin-left: 0; -} - -.table td.span3, -.table th.span3 { - float: none; - width: 204px; - margin-left: 0; -} - -.table td.span4, -.table th.span4 { - float: none; - width: 284px; - margin-left: 0; -} - -.table td.span5, -.table th.span5 { - float: none; - width: 364px; - margin-left: 0; -} - -.table td.span6, -.table th.span6 { - float: none; - width: 444px; - margin-left: 0; -} - -.table td.span7, -.table th.span7 { - float: none; - width: 524px; - margin-left: 0; -} - -.table td.span8, -.table th.span8 { - float: none; - width: 604px; - margin-left: 0; -} - -.table td.span9, -.table th.span9 { - float: none; - width: 684px; - margin-left: 0; -} - -.table td.span10, -.table th.span10 { - float: none; - width: 764px; - margin-left: 0; -} - -.table td.span11, -.table th.span11 { - float: none; - width: 844px; - margin-left: 0; -} - -.table td.span12, -.table th.span12 { - float: none; - width: 924px; - margin-left: 0; -} - -.table tbody tr.success > td { - background-color: #dff0d8; -} - -.table tbody tr.error > td { - background-color: #f2dede; -} - -.table tbody tr.warning > td { - background-color: #fcf8e3; -} - -.table tbody tr.info > td { - background-color: #d9edf7; -} - -.table-hover tbody tr.success:hover > td { - background-color: #d0e9c6; -} - -.table-hover tbody tr.error:hover > td { - background-color: #ebcccc; -} - -.table-hover tbody tr.warning:hover > td { - background-color: #faf2cc; -} - -.table-hover tbody tr.info:hover > td { - background-color: #c4e3f3; -} - -[class^="icon-"], -[class*=" icon-"] { - display: inline-block; - width: 14px; - height: 14px; - margin-top: 1px; - *margin-right: .3em; - line-height: 14px; - vertical-align: text-top; - background-image: url("../img/glyphicons-halflings.png"); - background-position: 14px 14px; - background-repeat: no-repeat; -} - -/* White icons with optional class, or on hover/focus/active states of certain elements */ - -.icon-white, -.nav-pills > .active > a > [class^="icon-"], -.nav-pills > .active > a > [class*=" icon-"], -.nav-list > .active > a > [class^="icon-"], -.nav-list > .active > a > [class*=" icon-"], -.navbar-inverse .nav > .active > a > [class^="icon-"], -.navbar-inverse .nav > .active > a > [class*=" icon-"], -.dropdown-menu > li > a:hover > [class^="icon-"], -.dropdown-menu > li > a:focus > [class^="icon-"], -.dropdown-menu > li > a:hover > [class*=" icon-"], -.dropdown-menu > li > a:focus > [class*=" icon-"], -.dropdown-menu > .active > a > [class^="icon-"], -.dropdown-menu > .active > a > [class*=" icon-"], -.dropdown-submenu:hover > a > [class^="icon-"], -.dropdown-submenu:focus > a > [class^="icon-"], -.dropdown-submenu:hover > a > [class*=" icon-"], -.dropdown-submenu:focus > a > [class*=" icon-"] { - background-image: url("../img/glyphicons-halflings-white.png"); -} - -.icon-glass { - background-position: 0 0; -} - -.icon-music { - background-position: -24px 0; -} - -.icon-search { - background-position: -48px 0; -} - -.icon-envelope { - background-position: -72px 0; -} - -.icon-heart { - background-position: -96px 0; -} - -.icon-star { - background-position: -120px 0; -} - -.icon-star-empty { - background-position: -144px 0; -} - -.icon-user { - background-position: -168px 0; -} - -.icon-film { - background-position: -192px 0; -} - -.icon-th-large { - background-position: -216px 0; -} - -.icon-th { - background-position: -240px 0; -} - -.icon-th-list { - background-position: -264px 0; -} - -.icon-ok { - background-position: -288px 0; -} - -.icon-remove { - background-position: -312px 0; -} - -.icon-zoom-in { - background-position: -336px 0; -} - -.icon-zoom-out { - background-position: -360px 0; -} - -.icon-off { - background-position: -384px 0; -} - -.icon-signal { - background-position: -408px 0; -} - -.icon-cog { - background-position: -432px 0; -} - -.icon-trash { - background-position: -456px 0; -} - -.icon-home { - background-position: 0 -24px; -} - -.icon-file { - background-position: -24px -24px; -} - -.icon-time { - background-position: -48px -24px; -} - -.icon-road { - background-position: -72px -24px; -} - -.icon-download-alt { - background-position: -96px -24px; -} - -.icon-download { - background-position: -120px -24px; -} - -.icon-upload { - background-position: -144px -24px; -} - -.icon-inbox { - background-position: -168px -24px; -} - -.icon-play-circle { - background-position: -192px -24px; -} - -.icon-repeat { - background-position: -216px -24px; -} - -.icon-refresh { - background-position: -240px -24px; -} - -.icon-list-alt { - background-position: -264px -24px; -} - -.icon-lock { - background-position: -287px -24px; -} - -.icon-flag { - background-position: -312px -24px; -} - -.icon-headphones { - background-position: -336px -24px; -} - -.icon-volume-off { - background-position: -360px -24px; -} - -.icon-volume-down { - background-position: -384px -24px; -} - -.icon-volume-up { - background-position: -408px -24px; -} - -.icon-qrcode { - background-position: -432px -24px; -} - -.icon-barcode { - background-position: -456px -24px; -} - -.icon-tag { - background-position: 0 -48px; -} - -.icon-tags { - background-position: -25px -48px; -} - -.icon-book { - background-position: -48px -48px; -} - -.icon-bookmark { - background-position: -72px -48px; -} - -.icon-print { - background-position: -96px -48px; -} - -.icon-camera { - background-position: -120px -48px; -} - -.icon-font { - background-position: -144px -48px; -} - -.icon-bold { - background-position: -167px -48px; -} - -.icon-italic { - background-position: -192px -48px; -} - -.icon-text-height { - background-position: -216px -48px; -} - -.icon-text-width { - background-position: -240px -48px; -} - -.icon-align-left { - background-position: -264px -48px; -} - -.icon-align-center { - background-position: -288px -48px; -} - -.icon-align-right { - background-position: -312px -48px; -} - -.icon-align-justify { - background-position: -336px -48px; -} - -.icon-list { - background-position: -360px -48px; -} - -.icon-indent-left { - background-position: -384px -48px; -} - -.icon-indent-right { - background-position: -408px -48px; -} - -.icon-facetime-video { - background-position: -432px -48px; -} - -.icon-picture { - background-position: -456px -48px; -} - -.icon-pencil { - background-position: 0 -72px; -} - -.icon-map-marker { - background-position: -24px -72px; -} - -.icon-adjust { - background-position: -48px -72px; -} - -.icon-tint { - background-position: -72px -72px; -} - -.icon-edit { - background-position: -96px -72px; -} - -.icon-share { - background-position: -120px -72px; -} - -.icon-check { - background-position: -144px -72px; -} - -.icon-move { - background-position: -168px -72px; -} - -.icon-step-backward { - background-position: -192px -72px; -} - -.icon-fast-backward { - background-position: -216px -72px; -} - -.icon-backward { - background-position: -240px -72px; -} - -.icon-play { - background-position: -264px -72px; -} - -.icon-pause { - background-position: -288px -72px; -} - -.icon-stop { - background-position: -312px -72px; -} - -.icon-forward { - background-position: -336px -72px; -} - -.icon-fast-forward { - background-position: -360px -72px; -} - -.icon-step-forward { - background-position: -384px -72px; -} - -.icon-eject { - background-position: -408px -72px; -} - -.icon-chevron-left { - background-position: -432px -72px; -} - -.icon-chevron-right { - background-position: -456px -72px; -} - -.icon-plus-sign { - background-position: 0 -96px; -} - -.icon-minus-sign { - background-position: -24px -96px; -} - -.icon-remove-sign { - background-position: -48px -96px; -} - -.icon-ok-sign { - background-position: -72px -96px; -} - -.icon-question-sign { - background-position: -96px -96px; -} - -.icon-info-sign { - background-position: -120px -96px; -} - -.icon-screenshot { - background-position: -144px -96px; -} - -.icon-remove-circle { - background-position: -168px -96px; -} - -.icon-ok-circle { - background-position: -192px -96px; -} - -.icon-ban-circle { - background-position: -216px -96px; -} - -.icon-arrow-left { - background-position: -240px -96px; -} - -.icon-arrow-right { - background-position: -264px -96px; -} - -.icon-arrow-up { - background-position: -289px -96px; -} - -.icon-arrow-down { - background-position: -312px -96px; -} - -.icon-share-alt { - background-position: -336px -96px; -} - -.icon-resize-full { - background-position: -360px -96px; -} - -.icon-resize-small { - background-position: -384px -96px; -} - -.icon-plus { - background-position: -408px -96px; -} - -.icon-minus { - background-position: -433px -96px; -} - -.icon-asterisk { - background-position: -456px -96px; -} - -.icon-exclamation-sign { - background-position: 0 -120px; -} - -.icon-gift { - background-position: -24px -120px; -} - -.icon-leaf { - background-position: -48px -120px; -} - -.icon-fire { - background-position: -72px -120px; -} - -.icon-eye-open { - background-position: -96px -120px; -} - -.icon-eye-close { - background-position: -120px -120px; -} - -.icon-warning-sign { - background-position: -144px -120px; -} - -.icon-plane { - background-position: -168px -120px; -} - -.icon-calendar { - background-position: -192px -120px; -} - -.icon-random { - width: 16px; - background-position: -216px -120px; -} - -.icon-comment { - background-position: -240px -120px; -} - -.icon-magnet { - background-position: -264px -120px; -} - -.icon-chevron-up { - background-position: -288px -120px; -} - -.icon-chevron-down { - background-position: -313px -119px; -} - -.icon-retweet { - background-position: -336px -120px; -} - -.icon-shopping-cart { - background-position: -360px -120px; -} - -.icon-folder-close { - width: 16px; - background-position: -384px -120px; -} - -.icon-folder-open { - width: 16px; - background-position: -408px -120px; -} - -.icon-resize-vertical { - background-position: -432px -119px; -} - -.icon-resize-horizontal { - background-position: -456px -118px; -} - -.icon-hdd { - background-position: 0 -144px; -} - -.icon-bullhorn { - background-position: -24px -144px; -} - -.icon-bell { - background-position: -48px -144px; -} - -.icon-certificate { - background-position: -72px -144px; -} - -.icon-thumbs-up { - background-position: -96px -144px; -} - -.icon-thumbs-down { - background-position: -120px -144px; -} - -.icon-hand-right { - background-position: -144px -144px; -} - -.icon-hand-left { - background-position: -168px -144px; -} - -.icon-hand-up { - background-position: -192px -144px; -} - -.icon-hand-down { - background-position: -216px -144px; -} - -.icon-circle-arrow-right { - background-position: -240px -144px; -} - -.icon-circle-arrow-left { - background-position: -264px -144px; -} - -.icon-circle-arrow-up { - background-position: -288px -144px; -} - -.icon-circle-arrow-down { - background-position: -312px -144px; -} - -.icon-globe { - background-position: -336px -144px; -} - -.icon-wrench { - background-position: -360px -144px; -} - -.icon-tasks { - background-position: -384px -144px; -} - -.icon-filter { - background-position: -408px -144px; -} - -.icon-briefcase { - background-position: -432px -144px; -} - -.icon-fullscreen { - background-position: -456px -144px; -} - -.dropup, -.dropdown { - position: relative; -} - -.dropdown-toggle { - *margin-bottom: -3px; -} - -.dropdown-toggle:active, -.open .dropdown-toggle { - outline: 0; -} - -.caret { - display: inline-block; - width: 0; - height: 0; - vertical-align: top; - border-top: 4px solid #000000; - border-right: 4px solid transparent; - border-left: 4px solid transparent; - content: ""; -} - -.dropdown .caret { - margin-top: 8px; - margin-left: 2px; -} - -.dropdown-menu { - position: absolute; - top: 100%; - left: 0; - z-index: 1000; - display: none; - float: left; - min-width: 160px; - padding: 5px 0; - margin: 2px 0 0; - list-style: none; - background-color: #ffffff; - border: 1px solid #ccc; - border: 1px solid rgba(0, 0, 0, 0.2); - *border-right-width: 2px; - *border-bottom-width: 2px; - -webkit-border-radius: 6px; - -moz-border-radius: 6px; - border-radius: 6px; - -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); - -moz-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); - box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); - -webkit-background-clip: padding-box; - -moz-background-clip: padding; - background-clip: padding-box; -} - -.dropdown-menu.pull-right { - right: 0; - left: auto; -} - -.dropdown-menu .divider { - *width: 100%; - height: 1px; - margin: 9px 1px; - *margin: -5px 0 5px; - overflow: hidden; - background-color: #e5e5e5; - border-bottom: 1px solid #ffffff; -} - -.dropdown-menu > li > a { - display: block; - padding: 3px 20px; - clear: both; - font-weight: normal; - line-height: 20px; - color: #333333; - white-space: nowrap; -} - -.dropdown-menu > li > a:hover, -.dropdown-menu > li > a:focus, -.dropdown-submenu:hover > a, -.dropdown-submenu:focus > a { - color: #ffffff; - text-decoration: none; - background-color: #0081c2; - background-image: -moz-linear-gradient(top, #0088cc, #0077b3); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#0088cc), to(#0077b3)); - background-image: -webkit-linear-gradient(top, #0088cc, #0077b3); - background-image: -o-linear-gradient(top, #0088cc, #0077b3); - background-image: linear-gradient(to bottom, #0088cc, #0077b3); - background-repeat: repeat-x; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0077b3', GradientType=0); -} - -.dropdown-menu > .active > a, -.dropdown-menu > .active > a:hover, -.dropdown-menu > .active > a:focus { - color: #ffffff; - text-decoration: none; - background-color: #0081c2; - background-image: -moz-linear-gradient(top, #0088cc, #0077b3); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#0088cc), to(#0077b3)); - background-image: -webkit-linear-gradient(top, #0088cc, #0077b3); - background-image: -o-linear-gradient(top, #0088cc, #0077b3); - background-image: linear-gradient(to bottom, #0088cc, #0077b3); - background-repeat: repeat-x; - outline: 0; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0077b3', GradientType=0); -} - -.dropdown-menu > .disabled > a, -.dropdown-menu > .disabled > a:hover, -.dropdown-menu > .disabled > a:focus { - color: #999999; -} - -.dropdown-menu > .disabled > a:hover, -.dropdown-menu > .disabled > a:focus { - text-decoration: none; - cursor: default; - background-color: transparent; - background-image: none; - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); -} - -.open { - *z-index: 1000; -} - -.open > .dropdown-menu { - display: block; -} - -.dropdown-backdrop { - position: fixed; - top: 0; - right: 0; - bottom: 0; - left: 0; - z-index: 990; -} - -.pull-right > .dropdown-menu { - right: 0; - left: auto; -} - -.dropup .caret, -.navbar-fixed-bottom .dropdown .caret { - border-top: 0; - border-bottom: 4px solid #000000; - content: ""; -} - -.dropup .dropdown-menu, -.navbar-fixed-bottom .dropdown .dropdown-menu { - top: auto; - bottom: 100%; - margin-bottom: 1px; -} - -.dropdown-submenu { - position: relative; -} - -.dropdown-submenu > .dropdown-menu { - top: 0; - left: 100%; - margin-top: -6px; - margin-left: -1px; - -webkit-border-radius: 0 6px 6px 6px; - -moz-border-radius: 0 6px 6px 6px; - border-radius: 0 6px 6px 6px; -} - -.dropdown-submenu:hover > .dropdown-menu { - display: block; -} - -.dropup .dropdown-submenu > .dropdown-menu { - top: auto; - bottom: 0; - margin-top: 0; - margin-bottom: -2px; - -webkit-border-radius: 5px 5px 5px 0; - -moz-border-radius: 5px 5px 5px 0; - border-radius: 5px 5px 5px 0; -} - -.dropdown-submenu > a:after { - display: block; - float: right; - width: 0; - height: 0; - margin-top: 5px; - margin-right: -10px; - border-color: transparent; - border-left-color: #cccccc; - border-style: solid; - border-width: 5px 0 5px 5px; - content: " "; -} - -.dropdown-submenu:hover > a:after { - border-left-color: #ffffff; -} - -.dropdown-submenu.pull-left { - float: none; -} - -.dropdown-submenu.pull-left > .dropdown-menu { - left: -100%; - margin-left: 10px; - -webkit-border-radius: 6px 0 6px 6px; - -moz-border-radius: 6px 0 6px 6px; - border-radius: 6px 0 6px 6px; -} - -.dropdown .dropdown-menu .nav-header { - padding-right: 20px; - padding-left: 20px; -} - -.typeahead { - z-index: 1051; - margin-top: 2px; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; -} - -.well { - min-height: 20px; - padding: 19px; - margin-bottom: 20px; - background-color: #f5f5f5; - border: 1px solid #e3e3e3; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; - -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); - -moz-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); - box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); -} - -.well blockquote { - border-color: #ddd; - border-color: rgba(0, 0, 0, 0.15); -} - -.well-large { - padding: 24px; - -webkit-border-radius: 6px; - -moz-border-radius: 6px; - border-radius: 6px; -} - -.well-small { - padding: 9px; - -webkit-border-radius: 3px; - -moz-border-radius: 3px; - border-radius: 3px; -} - -.fade { - opacity: 0; - -webkit-transition: opacity 0.15s linear; - -moz-transition: opacity 0.15s linear; - -o-transition: opacity 0.15s linear; - transition: opacity 0.15s linear; -} - -.fade.in { - opacity: 1; -} - -.collapse { - position: relative; - height: 0; - overflow: hidden; - -webkit-transition: height 0.35s ease; - -moz-transition: height 0.35s ease; - -o-transition: height 0.35s ease; - transition: height 0.35s ease; -} - -.collapse.in { - height: auto; -} - -.close { - float: right; - font-size: 20px; - font-weight: bold; - line-height: 20px; - color: #000000; - text-shadow: 0 1px 0 #ffffff; - opacity: 0.2; - filter: alpha(opacity=20); -} - -.close:hover, -.close:focus { - color: #000000; - text-decoration: none; - cursor: pointer; - opacity: 0.4; - filter: alpha(opacity=40); -} - -button.close { - padding: 0; - cursor: pointer; - background: transparent; - border: 0; - -webkit-appearance: none; -} - -.btn { - display: inline-block; - *display: inline; - padding: 4px 12px; - margin-bottom: 0; - *margin-left: .3em; - font-size: 14px; - line-height: 20px; - color: #333333; - text-align: center; - text-shadow: 0 1px 1px rgba(255, 255, 255, 0.75); - vertical-align: middle; - cursor: pointer; - background-color: #f5f5f5; - *background-color: #e6e6e6; - background-image: -moz-linear-gradient(top, #ffffff, #e6e6e6); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ffffff), to(#e6e6e6)); - background-image: -webkit-linear-gradient(top, #ffffff, #e6e6e6); - background-image: -o-linear-gradient(top, #ffffff, #e6e6e6); - background-image: linear-gradient(to bottom, #ffffff, #e6e6e6); - background-repeat: repeat-x; - border: 1px solid #cccccc; - *border: 0; - border-color: #e6e6e6 #e6e6e6 #bfbfbf; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - border-bottom-color: #b3b3b3; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff', endColorstr='#ffe6e6e6', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); - *zoom: 1; - -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); - -moz-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); - box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); -} - -.btn:hover, -.btn:focus, -.btn:active, -.btn.active, -.btn.disabled, -.btn[disabled] { - color: #333333; - background-color: #e6e6e6; - *background-color: #d9d9d9; -} - -.btn:active, -.btn.active { - background-color: #cccccc \9; -} - -.btn:first-child { - *margin-left: 0; -} - -.btn:hover, -.btn:focus { - color: #333333; - text-decoration: none; - background-position: 0 -15px; - -webkit-transition: background-position 0.1s linear; - -moz-transition: background-position 0.1s linear; - -o-transition: background-position 0.1s linear; - transition: background-position 0.1s linear; -} - -.btn:focus { - outline: thin dotted #333; - outline: 5px auto -webkit-focus-ring-color; - outline-offset: -2px; -} - -.btn.active, -.btn:active { - background-image: none; - outline: 0; - -webkit-box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); - -moz-box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); - box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); -} - -.btn.disabled, -.btn[disabled] { - cursor: default; - background-image: none; - opacity: 0.65; - filter: alpha(opacity=65); - -webkit-box-shadow: none; - -moz-box-shadow: none; - box-shadow: none; -} - -.btn-large { - padding: 11px 19px; - font-size: 17.5px; - -webkit-border-radius: 6px; - -moz-border-radius: 6px; - border-radius: 6px; -} - -.btn-large [class^="icon-"], -.btn-large [class*=" icon-"] { - margin-top: 4px; -} - -.btn-small { - padding: 2px 10px; - font-size: 11.9px; - -webkit-border-radius: 3px; - -moz-border-radius: 3px; - border-radius: 3px; -} - -.btn-small [class^="icon-"], -.btn-small [class*=" icon-"] { - margin-top: 0; -} - -.btn-mini [class^="icon-"], -.btn-mini [class*=" icon-"] { - margin-top: -1px; -} - -.btn-mini { - padding: 0 6px; - font-size: 10.5px; - -webkit-border-radius: 3px; - -moz-border-radius: 3px; - border-radius: 3px; -} - -.btn-block { - display: block; - width: 100%; - padding-right: 0; - padding-left: 0; - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; -} - -.btn-block + .btn-block { - margin-top: 5px; -} - -input[type="submit"].btn-block, -input[type="reset"].btn-block, -input[type="button"].btn-block { - width: 100%; -} - -.btn-primary.active, -.btn-warning.active, -.btn-danger.active, -.btn-success.active, -.btn-info.active, -.btn-inverse.active { - color: rgba(255, 255, 255, 0.75); -} - -.btn-primary { - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #006dcc; - *background-color: #0044cc; - background-image: -moz-linear-gradient(top, #0088cc, #0044cc); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#0088cc), to(#0044cc)); - background-image: -webkit-linear-gradient(top, #0088cc, #0044cc); - background-image: -o-linear-gradient(top, #0088cc, #0044cc); - background-image: linear-gradient(to bottom, #0088cc, #0044cc); - background-repeat: repeat-x; - border-color: #0044cc #0044cc #002a80; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc', endColorstr='#ff0044cc', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); -} - -.btn-primary:hover, -.btn-primary:focus, -.btn-primary:active, -.btn-primary.active, -.btn-primary.disabled, -.btn-primary[disabled] { - color: #ffffff; - background-color: #0044cc; - *background-color: #003bb3; -} - -.btn-primary:active, -.btn-primary.active { - background-color: #003399 \9; -} - -.btn-warning { - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #faa732; - *background-color: #f89406; - background-image: -moz-linear-gradient(top, #fbb450, #f89406); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#fbb450), to(#f89406)); - background-image: -webkit-linear-gradient(top, #fbb450, #f89406); - background-image: -o-linear-gradient(top, #fbb450, #f89406); - background-image: linear-gradient(to bottom, #fbb450, #f89406); - background-repeat: repeat-x; - border-color: #f89406 #f89406 #ad6704; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450', endColorstr='#fff89406', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); -} - -.btn-warning:hover, -.btn-warning:focus, -.btn-warning:active, -.btn-warning.active, -.btn-warning.disabled, -.btn-warning[disabled] { - color: #ffffff; - background-color: #f89406; - *background-color: #df8505; -} - -.btn-warning:active, -.btn-warning.active { - background-color: #c67605 \9; -} - -.btn-danger { - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #da4f49; - *background-color: #bd362f; - background-image: -moz-linear-gradient(top, #ee5f5b, #bd362f); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ee5f5b), to(#bd362f)); - background-image: -webkit-linear-gradient(top, #ee5f5b, #bd362f); - background-image: -o-linear-gradient(top, #ee5f5b, #bd362f); - background-image: linear-gradient(to bottom, #ee5f5b, #bd362f); - background-repeat: repeat-x; - border-color: #bd362f #bd362f #802420; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b', endColorstr='#ffbd362f', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); -} - -.btn-danger:hover, -.btn-danger:focus, -.btn-danger:active, -.btn-danger.active, -.btn-danger.disabled, -.btn-danger[disabled] { - color: #ffffff; - background-color: #bd362f; - *background-color: #a9302a; -} - -.btn-danger:active, -.btn-danger.active { - background-color: #942a25 \9; -} - -.btn-success { - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #5bb75b; - *background-color: #51a351; - background-image: -moz-linear-gradient(top, #62c462, #51a351); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#62c462), to(#51a351)); - background-image: -webkit-linear-gradient(top, #62c462, #51a351); - background-image: -o-linear-gradient(top, #62c462, #51a351); - background-image: linear-gradient(to bottom, #62c462, #51a351); - background-repeat: repeat-x; - border-color: #51a351 #51a351 #387038; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462', endColorstr='#ff51a351', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); -} - -.btn-success:hover, -.btn-success:focus, -.btn-success:active, -.btn-success.active, -.btn-success.disabled, -.btn-success[disabled] { - color: #ffffff; - background-color: #51a351; - *background-color: #499249; -} - -.btn-success:active, -.btn-success.active { - background-color: #408140 \9; -} - -.btn-info { - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #49afcd; - *background-color: #2f96b4; - background-image: -moz-linear-gradient(top, #5bc0de, #2f96b4); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#5bc0de), to(#2f96b4)); - background-image: -webkit-linear-gradient(top, #5bc0de, #2f96b4); - background-image: -o-linear-gradient(top, #5bc0de, #2f96b4); - background-image: linear-gradient(to bottom, #5bc0de, #2f96b4); - background-repeat: repeat-x; - border-color: #2f96b4 #2f96b4 #1f6377; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de', endColorstr='#ff2f96b4', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); -} - -.btn-info:hover, -.btn-info:focus, -.btn-info:active, -.btn-info.active, -.btn-info.disabled, -.btn-info[disabled] { - color: #ffffff; - background-color: #2f96b4; - *background-color: #2a85a0; -} - -.btn-info:active, -.btn-info.active { - background-color: #24748c \9; -} - -.btn-inverse { - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #363636; - *background-color: #222222; - background-image: -moz-linear-gradient(top, #444444, #222222); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#444444), to(#222222)); - background-image: -webkit-linear-gradient(top, #444444, #222222); - background-image: -o-linear-gradient(top, #444444, #222222); - background-image: linear-gradient(to bottom, #444444, #222222); - background-repeat: repeat-x; - border-color: #222222 #222222 #000000; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff444444', endColorstr='#ff222222', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); -} - -.btn-inverse:hover, -.btn-inverse:focus, -.btn-inverse:active, -.btn-inverse.active, -.btn-inverse.disabled, -.btn-inverse[disabled] { - color: #ffffff; - background-color: #222222; - *background-color: #151515; -} - -.btn-inverse:active, -.btn-inverse.active { - background-color: #080808 \9; -} - -button.btn, -input[type="submit"].btn { - *padding-top: 3px; - *padding-bottom: 3px; -} - -button.btn::-moz-focus-inner, -input[type="submit"].btn::-moz-focus-inner { - padding: 0; - border: 0; -} - -button.btn.btn-large, -input[type="submit"].btn.btn-large { - *padding-top: 7px; - *padding-bottom: 7px; -} - -button.btn.btn-small, -input[type="submit"].btn.btn-small { - *padding-top: 3px; - *padding-bottom: 3px; -} - -button.btn.btn-mini, -input[type="submit"].btn.btn-mini { - *padding-top: 1px; - *padding-bottom: 1px; -} - -.btn-link, -.btn-link:active, -.btn-link[disabled] { - background-color: transparent; - background-image: none; - -webkit-box-shadow: none; - -moz-box-shadow: none; - box-shadow: none; -} - -.btn-link { - color: #0088cc; - cursor: pointer; - border-color: transparent; - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.btn-link:hover, -.btn-link:focus { - color: #005580; - text-decoration: underline; - background-color: transparent; -} - -.btn-link[disabled]:hover, -.btn-link[disabled]:focus { - color: #333333; - text-decoration: none; -} - -.btn-group { - position: relative; - display: inline-block; - *display: inline; - *margin-left: .3em; - font-size: 0; - white-space: nowrap; - vertical-align: middle; - *zoom: 1; -} - -.btn-group:first-child { - *margin-left: 0; -} - -.btn-group + .btn-group { - margin-left: 5px; -} - -.btn-toolbar { - margin-top: 10px; - margin-bottom: 10px; - font-size: 0; -} - -.btn-toolbar > .btn + .btn, -.btn-toolbar > .btn-group + .btn, -.btn-toolbar > .btn + .btn-group { - margin-left: 5px; -} - -.btn-group > .btn { - position: relative; - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.btn-group > .btn + .btn { - margin-left: -1px; -} - -.btn-group > .btn, -.btn-group > .dropdown-menu, -.btn-group > .popover { - font-size: 14px; -} - -.btn-group > .btn-mini { - font-size: 10.5px; -} - -.btn-group > .btn-small { - font-size: 11.9px; -} - -.btn-group > .btn-large { - font-size: 17.5px; -} - -.btn-group > .btn:first-child { - margin-left: 0; - -webkit-border-bottom-left-radius: 4px; - border-bottom-left-radius: 4px; - -webkit-border-top-left-radius: 4px; - border-top-left-radius: 4px; - -moz-border-radius-bottomleft: 4px; - -moz-border-radius-topleft: 4px; -} - -.btn-group > .btn:last-child, -.btn-group > .dropdown-toggle { - -webkit-border-top-right-radius: 4px; - border-top-right-radius: 4px; - -webkit-border-bottom-right-radius: 4px; - border-bottom-right-radius: 4px; - -moz-border-radius-topright: 4px; - -moz-border-radius-bottomright: 4px; -} - -.btn-group > .btn.large:first-child { - margin-left: 0; - -webkit-border-bottom-left-radius: 6px; - border-bottom-left-radius: 6px; - -webkit-border-top-left-radius: 6px; - border-top-left-radius: 6px; - -moz-border-radius-bottomleft: 6px; - -moz-border-radius-topleft: 6px; -} - -.btn-group > .btn.large:last-child, -.btn-group > .large.dropdown-toggle { - -webkit-border-top-right-radius: 6px; - border-top-right-radius: 6px; - -webkit-border-bottom-right-radius: 6px; - border-bottom-right-radius: 6px; - -moz-border-radius-topright: 6px; - -moz-border-radius-bottomright: 6px; -} - -.btn-group > .btn:hover, -.btn-group > .btn:focus, -.btn-group > .btn:active, -.btn-group > .btn.active { - z-index: 2; -} - -.btn-group .dropdown-toggle:active, -.btn-group.open .dropdown-toggle { - outline: 0; -} - -.btn-group > .btn + .dropdown-toggle { - *padding-top: 5px; - padding-right: 8px; - *padding-bottom: 5px; - padding-left: 8px; - -webkit-box-shadow: inset 1px 0 0 rgba(255, 255, 255, 0.125), inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); - -moz-box-shadow: inset 1px 0 0 rgba(255, 255, 255, 0.125), inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); - box-shadow: inset 1px 0 0 rgba(255, 255, 255, 0.125), inset 0 1px 0 rgba(255, 255, 255, 0.2), 0 1px 2px rgba(0, 0, 0, 0.05); -} - -.btn-group > .btn-mini + .dropdown-toggle { - *padding-top: 2px; - padding-right: 5px; - *padding-bottom: 2px; - padding-left: 5px; -} - -.btn-group > .btn-small + .dropdown-toggle { - *padding-top: 5px; - *padding-bottom: 4px; -} - -.btn-group > .btn-large + .dropdown-toggle { - *padding-top: 7px; - padding-right: 12px; - *padding-bottom: 7px; - padding-left: 12px; -} - -.btn-group.open .dropdown-toggle { - background-image: none; - -webkit-box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); - -moz-box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); - box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.15), 0 1px 2px rgba(0, 0, 0, 0.05); -} - -.btn-group.open .btn.dropdown-toggle { - background-color: #e6e6e6; -} - -.btn-group.open .btn-primary.dropdown-toggle { - background-color: #0044cc; -} - -.btn-group.open .btn-warning.dropdown-toggle { - background-color: #f89406; -} - -.btn-group.open .btn-danger.dropdown-toggle { - background-color: #bd362f; -} - -.btn-group.open .btn-success.dropdown-toggle { - background-color: #51a351; -} - -.btn-group.open .btn-info.dropdown-toggle { - background-color: #2f96b4; -} - -.btn-group.open .btn-inverse.dropdown-toggle { - background-color: #222222; -} - -.btn .caret { - margin-top: 8px; - margin-left: 0; -} - -.btn-large .caret { - margin-top: 6px; -} - -.btn-large .caret { - border-top-width: 5px; - border-right-width: 5px; - border-left-width: 5px; -} - -.btn-mini .caret, -.btn-small .caret { - margin-top: 8px; -} - -.dropup .btn-large .caret { - border-bottom-width: 5px; -} - -.btn-primary .caret, -.btn-warning .caret, -.btn-danger .caret, -.btn-info .caret, -.btn-success .caret, -.btn-inverse .caret { - border-top-color: #ffffff; - border-bottom-color: #ffffff; -} - -.btn-group-vertical { - display: inline-block; - *display: inline; - /* IE7 inline-block hack */ - - *zoom: 1; -} - -.btn-group-vertical > .btn { - display: block; - float: none; - max-width: 100%; - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.btn-group-vertical > .btn + .btn { - margin-top: -1px; - margin-left: 0; -} - -.btn-group-vertical > .btn:first-child { - -webkit-border-radius: 4px 4px 0 0; - -moz-border-radius: 4px 4px 0 0; - border-radius: 4px 4px 0 0; -} - -.btn-group-vertical > .btn:last-child { - -webkit-border-radius: 0 0 4px 4px; - -moz-border-radius: 0 0 4px 4px; - border-radius: 0 0 4px 4px; -} - -.btn-group-vertical > .btn-large:first-child { - -webkit-border-radius: 6px 6px 0 0; - -moz-border-radius: 6px 6px 0 0; - border-radius: 6px 6px 0 0; -} - -.btn-group-vertical > .btn-large:last-child { - -webkit-border-radius: 0 0 6px 6px; - -moz-border-radius: 0 0 6px 6px; - border-radius: 0 0 6px 6px; -} - -.alert { - padding: 8px 35px 8px 14px; - margin-bottom: 20px; - text-shadow: 0 1px 0 rgba(255, 255, 255, 0.5); - background-color: #fcf8e3; - border: 1px solid #fbeed5; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; -} - -.alert, -.alert h4 { - color: #c09853; -} - -.alert h4 { - margin: 0; -} - -.alert .close { - position: relative; - top: -2px; - right: -21px; - line-height: 20px; -} - -.alert-success { - color: #468847; - background-color: #dff0d8; - border-color: #d6e9c6; -} - -.alert-success h4 { - color: #468847; -} - -.alert-danger, -.alert-error { - color: #b94a48; - background-color: #f2dede; - border-color: #eed3d7; -} - -.alert-danger h4, -.alert-error h4 { - color: #b94a48; -} - -.alert-info { - color: #3a87ad; - background-color: #d9edf7; - border-color: #bce8f1; -} - -.alert-info h4 { - color: #3a87ad; -} - -.alert-block { - padding-top: 14px; - padding-bottom: 14px; -} - -.alert-block > p, -.alert-block > ul { - margin-bottom: 0; -} - -.alert-block p + p { - margin-top: 5px; -} - -.nav { - margin-bottom: 20px; - margin-left: 0; - list-style: none; -} - -.nav > li > a { - display: block; -} - -.nav > li > a:hover, -.nav > li > a:focus { - text-decoration: none; - background-color: #eeeeee; -} - -.nav > li > a > img { - max-width: none; -} - -.nav > .pull-right { - float: right; -} - -.nav-header { - display: block; - padding: 3px 15px; - font-size: 11px; - font-weight: bold; - line-height: 20px; - color: #999999; - text-shadow: 0 1px 0 rgba(255, 255, 255, 0.5); - text-transform: uppercase; -} - -.nav li + .nav-header { - margin-top: 9px; -} - -.nav-list { - padding-right: 15px; - padding-left: 15px; - margin-bottom: 0; -} - -.nav-list > li > a, -.nav-list .nav-header { - margin-right: -15px; - margin-left: -15px; - text-shadow: 0 1px 0 rgba(255, 255, 255, 0.5); -} - -.nav-list > li > a { - padding: 3px 15px; -} - -.nav-list > .active > a, -.nav-list > .active > a:hover, -.nav-list > .active > a:focus { - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.2); - background-color: #0088cc; -} - -.nav-list [class^="icon-"], -.nav-list [class*=" icon-"] { - margin-right: 2px; -} - -.nav-list .divider { - *width: 100%; - height: 1px; - margin: 9px 1px; - *margin: -5px 0 5px; - overflow: hidden; - background-color: #e5e5e5; - border-bottom: 1px solid #ffffff; -} - -.nav-tabs, -.nav-pills { - *zoom: 1; -} - -.nav-tabs:before, -.nav-pills:before, -.nav-tabs:after, -.nav-pills:after { - display: table; - line-height: 0; - content: ""; -} - -.nav-tabs:after, -.nav-pills:after { - clear: both; -} - -.nav-tabs > li, -.nav-pills > li { - float: left; -} - -.nav-tabs > li > a, -.nav-pills > li > a { - padding-right: 12px; - padding-left: 12px; - margin-right: 2px; - line-height: 14px; -} - -.nav-tabs { - border-bottom: 1px solid #ddd; -} - -.nav-tabs > li { - margin-bottom: -1px; -} - -.nav-tabs > li > a { - padding-top: 8px; - padding-bottom: 8px; - line-height: 20px; - border: 1px solid transparent; - -webkit-border-radius: 4px 4px 0 0; - -moz-border-radius: 4px 4px 0 0; - border-radius: 4px 4px 0 0; -} - -.nav-tabs > li > a:hover, -.nav-tabs > li > a:focus { - border-color: #eeeeee #eeeeee #dddddd; -} - -.nav-tabs > .active > a, -.nav-tabs > .active > a:hover, -.nav-tabs > .active > a:focus { - color: #555555; - cursor: default; - background-color: #ffffff; - border: 1px solid #ddd; - border-bottom-color: transparent; -} - -.nav-pills > li > a { - padding-top: 8px; - padding-bottom: 8px; - margin-top: 2px; - margin-bottom: 2px; - -webkit-border-radius: 5px; - -moz-border-radius: 5px; - border-radius: 5px; -} - -.nav-pills > .active > a, -.nav-pills > .active > a:hover, -.nav-pills > .active > a:focus { - color: #ffffff; - background-color: #0088cc; -} - -.nav-stacked > li { - float: none; -} - -.nav-stacked > li > a { - margin-right: 0; -} - -.nav-tabs.nav-stacked { - border-bottom: 0; -} - -.nav-tabs.nav-stacked > li > a { - border: 1px solid #ddd; - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.nav-tabs.nav-stacked > li:first-child > a { - -webkit-border-top-right-radius: 4px; - border-top-right-radius: 4px; - -webkit-border-top-left-radius: 4px; - border-top-left-radius: 4px; - -moz-border-radius-topright: 4px; - -moz-border-radius-topleft: 4px; -} - -.nav-tabs.nav-stacked > li:last-child > a { - -webkit-border-bottom-right-radius: 4px; - border-bottom-right-radius: 4px; - -webkit-border-bottom-left-radius: 4px; - border-bottom-left-radius: 4px; - -moz-border-radius-bottomright: 4px; - -moz-border-radius-bottomleft: 4px; -} - -.nav-tabs.nav-stacked > li > a:hover, -.nav-tabs.nav-stacked > li > a:focus { - z-index: 2; - border-color: #ddd; -} - -.nav-pills.nav-stacked > li > a { - margin-bottom: 3px; -} - -.nav-pills.nav-stacked > li:last-child > a { - margin-bottom: 1px; -} - -.nav-tabs .dropdown-menu { - -webkit-border-radius: 0 0 6px 6px; - -moz-border-radius: 0 0 6px 6px; - border-radius: 0 0 6px 6px; -} - -.nav-pills .dropdown-menu { - -webkit-border-radius: 6px; - -moz-border-radius: 6px; - border-radius: 6px; -} - -.nav .dropdown-toggle .caret { - margin-top: 6px; - border-top-color: #0088cc; - border-bottom-color: #0088cc; -} - -.nav .dropdown-toggle:hover .caret, -.nav .dropdown-toggle:focus .caret { - border-top-color: #005580; - border-bottom-color: #005580; -} - -/* move down carets for tabs */ - -.nav-tabs .dropdown-toggle .caret { - margin-top: 8px; -} - -.nav .active .dropdown-toggle .caret { - border-top-color: #fff; - border-bottom-color: #fff; -} - -.nav-tabs .active .dropdown-toggle .caret { - border-top-color: #555555; - border-bottom-color: #555555; -} - -.nav > .dropdown.active > a:hover, -.nav > .dropdown.active > a:focus { - cursor: pointer; -} - -.nav-tabs .open .dropdown-toggle, -.nav-pills .open .dropdown-toggle, -.nav > li.dropdown.open.active > a:hover, -.nav > li.dropdown.open.active > a:focus { - color: #ffffff; - background-color: #999999; - border-color: #999999; -} - -.nav li.dropdown.open .caret, -.nav li.dropdown.open.active .caret, -.nav li.dropdown.open a:hover .caret, -.nav li.dropdown.open a:focus .caret { - border-top-color: #ffffff; - border-bottom-color: #ffffff; - opacity: 1; - filter: alpha(opacity=100); -} - -.tabs-stacked .open > a:hover, -.tabs-stacked .open > a:focus { - border-color: #999999; -} - -.tabbable { - *zoom: 1; -} - -.tabbable:before, -.tabbable:after { - display: table; - line-height: 0; - content: ""; -} - -.tabbable:after { - clear: both; -} - -.tab-content { - overflow: auto; -} - -.tabs-below > .nav-tabs, -.tabs-right > .nav-tabs, -.tabs-left > .nav-tabs { - border-bottom: 0; -} - -.tab-content > .tab-pane, -.pill-content > .pill-pane { - display: none; -} - -.tab-content > .active, -.pill-content > .active { - display: block; -} - -.tabs-below > .nav-tabs { - border-top: 1px solid #ddd; -} - -.tabs-below > .nav-tabs > li { - margin-top: -1px; - margin-bottom: 0; -} - -.tabs-below > .nav-tabs > li > a { - -webkit-border-radius: 0 0 4px 4px; - -moz-border-radius: 0 0 4px 4px; - border-radius: 0 0 4px 4px; -} - -.tabs-below > .nav-tabs > li > a:hover, -.tabs-below > .nav-tabs > li > a:focus { - border-top-color: #ddd; - border-bottom-color: transparent; -} - -.tabs-below > .nav-tabs > .active > a, -.tabs-below > .nav-tabs > .active > a:hover, -.tabs-below > .nav-tabs > .active > a:focus { - border-color: transparent #ddd #ddd #ddd; -} - -.tabs-left > .nav-tabs > li, -.tabs-right > .nav-tabs > li { - float: none; -} - -.tabs-left > .nav-tabs > li > a, -.tabs-right > .nav-tabs > li > a { - min-width: 74px; - margin-right: 0; - margin-bottom: 3px; -} - -.tabs-left > .nav-tabs { - float: left; - margin-right: 19px; - border-right: 1px solid #ddd; -} - -.tabs-left > .nav-tabs > li > a { - margin-right: -1px; - -webkit-border-radius: 4px 0 0 4px; - -moz-border-radius: 4px 0 0 4px; - border-radius: 4px 0 0 4px; -} - -.tabs-left > .nav-tabs > li > a:hover, -.tabs-left > .nav-tabs > li > a:focus { - border-color: #eeeeee #dddddd #eeeeee #eeeeee; -} - -.tabs-left > .nav-tabs .active > a, -.tabs-left > .nav-tabs .active > a:hover, -.tabs-left > .nav-tabs .active > a:focus { - border-color: #ddd transparent #ddd #ddd; - *border-right-color: #ffffff; -} - -.tabs-right > .nav-tabs { - float: right; - margin-left: 19px; - border-left: 1px solid #ddd; -} - -.tabs-right > .nav-tabs > li > a { - margin-left: -1px; - -webkit-border-radius: 0 4px 4px 0; - -moz-border-radius: 0 4px 4px 0; - border-radius: 0 4px 4px 0; -} - -.tabs-right > .nav-tabs > li > a:hover, -.tabs-right > .nav-tabs > li > a:focus { - border-color: #eeeeee #eeeeee #eeeeee #dddddd; -} - -.tabs-right > .nav-tabs .active > a, -.tabs-right > .nav-tabs .active > a:hover, -.tabs-right > .nav-tabs .active > a:focus { - border-color: #ddd #ddd #ddd transparent; - *border-left-color: #ffffff; -} - -.nav > .disabled > a { - color: #999999; -} - -.nav > .disabled > a:hover, -.nav > .disabled > a:focus { - text-decoration: none; - cursor: default; - background-color: transparent; -} - -.navbar { - *position: relative; - *z-index: 2; - margin-bottom: 20px; - overflow: visible; -} - -.navbar-inner { - min-height: 40px; - padding-right: 20px; - padding-left: 20px; - background-color: #fafafa; - background-image: -moz-linear-gradient(top, #ffffff, #f2f2f2); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ffffff), to(#f2f2f2)); - background-image: -webkit-linear-gradient(top, #ffffff, #f2f2f2); - background-image: -o-linear-gradient(top, #ffffff, #f2f2f2); - background-image: linear-gradient(to bottom, #ffffff, #f2f2f2); - background-repeat: repeat-x; - border: 1px solid #d4d4d4; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff', endColorstr='#fff2f2f2', GradientType=0); - *zoom: 1; - -webkit-box-shadow: 0 1px 4px rgba(0, 0, 0, 0.065); - -moz-box-shadow: 0 1px 4px rgba(0, 0, 0, 0.065); - box-shadow: 0 1px 4px rgba(0, 0, 0, 0.065); -} - -.navbar-inner:before, -.navbar-inner:after { - display: table; - line-height: 0; - content: ""; -} - -.navbar-inner:after { - clear: both; -} - -.navbar .container { - width: auto; -} - -.nav-collapse.collapse { - height: auto; - overflow: visible; -} - -.navbar .brand { - display: block; - float: left; - padding: 10px 20px 10px; - margin-left: -20px; - font-size: 20px; - font-weight: 200; - color: #777777; - text-shadow: 0 1px 0 #ffffff; -} - -.navbar .brand:hover, -.navbar .brand:focus { - text-decoration: none; -} - -.navbar-text { - margin-bottom: 0; - line-height: 40px; - color: #777777; -} - -.navbar-link { - color: #777777; -} - -.navbar-link:hover, -.navbar-link:focus { - color: #333333; -} - -.navbar .divider-vertical { - height: 40px; - margin: 0 9px; - border-right: 1px solid #ffffff; - border-left: 1px solid #f2f2f2; -} - -.navbar .btn, -.navbar .btn-group { - margin-top: 5px; -} - -.navbar .btn-group .btn, -.navbar .input-prepend .btn, -.navbar .input-append .btn, -.navbar .input-prepend .btn-group, -.navbar .input-append .btn-group { - margin-top: 0; -} - -.navbar-form { - margin-bottom: 0; - *zoom: 1; -} - -.navbar-form:before, -.navbar-form:after { - display: table; - line-height: 0; - content: ""; -} - -.navbar-form:after { - clear: both; -} - -.navbar-form input, -.navbar-form select, -.navbar-form .radio, -.navbar-form .checkbox { - margin-top: 5px; -} - -.navbar-form input, -.navbar-form select, -.navbar-form .btn { - display: inline-block; - margin-bottom: 0; -} - -.navbar-form input[type="image"], -.navbar-form input[type="checkbox"], -.navbar-form input[type="radio"] { - margin-top: 3px; -} - -.navbar-form .input-append, -.navbar-form .input-prepend { - margin-top: 5px; - white-space: nowrap; -} - -.navbar-form .input-append input, -.navbar-form .input-prepend input { - margin-top: 0; -} - -.navbar-search { - position: relative; - float: left; - margin-top: 5px; - margin-bottom: 0; -} - -.navbar-search .search-query { - padding: 4px 14px; - margin-bottom: 0; - font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; - font-size: 13px; - font-weight: normal; - line-height: 1; - -webkit-border-radius: 15px; - -moz-border-radius: 15px; - border-radius: 15px; -} - -.navbar-static-top { - position: static; - margin-bottom: 0; -} - -.navbar-static-top .navbar-inner { - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.navbar-fixed-top, -.navbar-fixed-bottom { - position: fixed; - right: 0; - left: 0; - z-index: 1030; - margin-bottom: 0; -} - -.navbar-fixed-top .navbar-inner, -.navbar-static-top .navbar-inner { - border-width: 0 0 1px; -} - -.navbar-fixed-bottom .navbar-inner { - border-width: 1px 0 0; -} - -.navbar-fixed-top .navbar-inner, -.navbar-fixed-bottom .navbar-inner { - padding-right: 0; - padding-left: 0; - -webkit-border-radius: 0; - -moz-border-radius: 0; - border-radius: 0; -} - -.navbar-static-top .container, -.navbar-fixed-top .container, -.navbar-fixed-bottom .container { - width: 940px; -} - -.navbar-fixed-top { - top: 0; -} - -.navbar-fixed-top .navbar-inner, -.navbar-static-top .navbar-inner { - -webkit-box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1); - -moz-box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1); - box-shadow: 0 1px 10px rgba(0, 0, 0, 0.1); -} - -.navbar-fixed-bottom { - bottom: 0; -} - -.navbar-fixed-bottom .navbar-inner { - -webkit-box-shadow: 0 -1px 10px rgba(0, 0, 0, 0.1); - -moz-box-shadow: 0 -1px 10px rgba(0, 0, 0, 0.1); - box-shadow: 0 -1px 10px rgba(0, 0, 0, 0.1); -} - -.navbar .nav { - position: relative; - left: 0; - display: block; - float: left; - margin: 0 10px 0 0; -} - -.navbar .nav.pull-right { - float: right; - margin-right: 0; -} - -.navbar .nav > li { - float: left; -} - -.navbar .nav > li > a { - float: none; - padding: 10px 15px 10px; - color: #777777; - text-decoration: none; - text-shadow: 0 1px 0 #ffffff; -} - -.navbar .nav .dropdown-toggle .caret { - margin-top: 8px; -} - -.navbar .nav > li > a:focus, -.navbar .nav > li > a:hover { - color: #333333; - text-decoration: none; - background-color: transparent; -} - -.navbar .nav > .active > a, -.navbar .nav > .active > a:hover, -.navbar .nav > .active > a:focus { - color: #555555; - text-decoration: none; - background-color: #e5e5e5; - -webkit-box-shadow: inset 0 3px 8px rgba(0, 0, 0, 0.125); - -moz-box-shadow: inset 0 3px 8px rgba(0, 0, 0, 0.125); - box-shadow: inset 0 3px 8px rgba(0, 0, 0, 0.125); -} - -.navbar .btn-navbar { - display: none; - float: right; - padding: 7px 10px; - margin-right: 5px; - margin-left: 5px; - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #ededed; - *background-color: #e5e5e5; - background-image: -moz-linear-gradient(top, #f2f2f2, #e5e5e5); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#f2f2f2), to(#e5e5e5)); - background-image: -webkit-linear-gradient(top, #f2f2f2, #e5e5e5); - background-image: -o-linear-gradient(top, #f2f2f2, #e5e5e5); - background-image: linear-gradient(to bottom, #f2f2f2, #e5e5e5); - background-repeat: repeat-x; - border-color: #e5e5e5 #e5e5e5 #bfbfbf; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff2f2f2', endColorstr='#ffe5e5e5', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); - -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.075); - -moz-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.075); - box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.075); -} - -.navbar .btn-navbar:hover, -.navbar .btn-navbar:focus, -.navbar .btn-navbar:active, -.navbar .btn-navbar.active, -.navbar .btn-navbar.disabled, -.navbar .btn-navbar[disabled] { - color: #ffffff; - background-color: #e5e5e5; - *background-color: #d9d9d9; -} - -.navbar .btn-navbar:active, -.navbar .btn-navbar.active { - background-color: #cccccc \9; -} - -.navbar .btn-navbar .icon-bar { - display: block; - width: 18px; - height: 2px; - background-color: #f5f5f5; - -webkit-border-radius: 1px; - -moz-border-radius: 1px; - border-radius: 1px; - -webkit-box-shadow: 0 1px 0 rgba(0, 0, 0, 0.25); - -moz-box-shadow: 0 1px 0 rgba(0, 0, 0, 0.25); - box-shadow: 0 1px 0 rgba(0, 0, 0, 0.25); -} - -.btn-navbar .icon-bar + .icon-bar { - margin-top: 3px; -} - -.navbar .nav > li > .dropdown-menu:before { - position: absolute; - top: -7px; - left: 9px; - display: inline-block; - border-right: 7px solid transparent; - border-bottom: 7px solid #ccc; - border-left: 7px solid transparent; - border-bottom-color: rgba(0, 0, 0, 0.2); - content: ''; -} - -.navbar .nav > li > .dropdown-menu:after { - position: absolute; - top: -6px; - left: 10px; - display: inline-block; - border-right: 6px solid transparent; - border-bottom: 6px solid #ffffff; - border-left: 6px solid transparent; - content: ''; -} - -.navbar-fixed-bottom .nav > li > .dropdown-menu:before { - top: auto; - bottom: -7px; - border-top: 7px solid #ccc; - border-bottom: 0; - border-top-color: rgba(0, 0, 0, 0.2); -} - -.navbar-fixed-bottom .nav > li > .dropdown-menu:after { - top: auto; - bottom: -6px; - border-top: 6px solid #ffffff; - border-bottom: 0; -} - -.navbar .nav li.dropdown > a:hover .caret, -.navbar .nav li.dropdown > a:focus .caret { - border-top-color: #333333; - border-bottom-color: #333333; -} - -.navbar .nav li.dropdown.open > .dropdown-toggle, -.navbar .nav li.dropdown.active > .dropdown-toggle, -.navbar .nav li.dropdown.open.active > .dropdown-toggle { - color: #555555; - background-color: #e5e5e5; -} - -.navbar .nav li.dropdown > .dropdown-toggle .caret { - border-top-color: #777777; - border-bottom-color: #777777; -} - -.navbar .nav li.dropdown.open > .dropdown-toggle .caret, -.navbar .nav li.dropdown.active > .dropdown-toggle .caret, -.navbar .nav li.dropdown.open.active > .dropdown-toggle .caret { - border-top-color: #555555; - border-bottom-color: #555555; -} - -.navbar .pull-right > li > .dropdown-menu, -.navbar .nav > li > .dropdown-menu.pull-right { - right: 0; - left: auto; -} - -.navbar .pull-right > li > .dropdown-menu:before, -.navbar .nav > li > .dropdown-menu.pull-right:before { - right: 12px; - left: auto; -} - -.navbar .pull-right > li > .dropdown-menu:after, -.navbar .nav > li > .dropdown-menu.pull-right:after { - right: 13px; - left: auto; -} - -.navbar .pull-right > li > .dropdown-menu .dropdown-menu, -.navbar .nav > li > .dropdown-menu.pull-right .dropdown-menu { - right: 100%; - left: auto; - margin-right: -1px; - margin-left: 0; - -webkit-border-radius: 6px 0 6px 6px; - -moz-border-radius: 6px 0 6px 6px; - border-radius: 6px 0 6px 6px; -} - -.navbar-inverse .navbar-inner { - background-color: #1b1b1b; - background-image: -moz-linear-gradient(top, #222222, #111111); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#222222), to(#111111)); - background-image: -webkit-linear-gradient(top, #222222, #111111); - background-image: -o-linear-gradient(top, #222222, #111111); - background-image: linear-gradient(to bottom, #222222, #111111); - background-repeat: repeat-x; - border-color: #252525; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff222222', endColorstr='#ff111111', GradientType=0); -} - -.navbar-inverse .brand, -.navbar-inverse .nav > li > a { - color: #999999; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); -} - -.navbar-inverse .brand:hover, -.navbar-inverse .nav > li > a:hover, -.navbar-inverse .brand:focus, -.navbar-inverse .nav > li > a:focus { - color: #ffffff; -} - -.navbar-inverse .brand { - color: #999999; -} - -.navbar-inverse .navbar-text { - color: #999999; -} - -.navbar-inverse .nav > li > a:focus, -.navbar-inverse .nav > li > a:hover { - color: #ffffff; - background-color: transparent; -} - -.navbar-inverse .nav .active > a, -.navbar-inverse .nav .active > a:hover, -.navbar-inverse .nav .active > a:focus { - color: #ffffff; - background-color: #111111; -} - -.navbar-inverse .navbar-link { - color: #999999; -} - -.navbar-inverse .navbar-link:hover, -.navbar-inverse .navbar-link:focus { - color: #ffffff; -} - -.navbar-inverse .divider-vertical { - border-right-color: #222222; - border-left-color: #111111; -} - -.navbar-inverse .nav li.dropdown.open > .dropdown-toggle, -.navbar-inverse .nav li.dropdown.active > .dropdown-toggle, -.navbar-inverse .nav li.dropdown.open.active > .dropdown-toggle { - color: #ffffff; - background-color: #111111; -} - -.navbar-inverse .nav li.dropdown > a:hover .caret, -.navbar-inverse .nav li.dropdown > a:focus .caret { - border-top-color: #ffffff; - border-bottom-color: #ffffff; -} - -.navbar-inverse .nav li.dropdown > .dropdown-toggle .caret { - border-top-color: #999999; - border-bottom-color: #999999; -} - -.navbar-inverse .nav li.dropdown.open > .dropdown-toggle .caret, -.navbar-inverse .nav li.dropdown.active > .dropdown-toggle .caret, -.navbar-inverse .nav li.dropdown.open.active > .dropdown-toggle .caret { - border-top-color: #ffffff; - border-bottom-color: #ffffff; -} - -.navbar-inverse .navbar-search .search-query { - color: #ffffff; - background-color: #515151; - border-color: #111111; - -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0 rgba(255, 255, 255, 0.15); - -moz-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0 rgba(255, 255, 255, 0.15); - box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0 rgba(255, 255, 255, 0.15); - -webkit-transition: none; - -moz-transition: none; - -o-transition: none; - transition: none; -} - -.navbar-inverse .navbar-search .search-query:-moz-placeholder { - color: #cccccc; -} - -.navbar-inverse .navbar-search .search-query:-ms-input-placeholder { - color: #cccccc; -} - -.navbar-inverse .navbar-search .search-query::-webkit-input-placeholder { - color: #cccccc; -} - -.navbar-inverse .navbar-search .search-query:focus, -.navbar-inverse .navbar-search .search-query.focused { - padding: 5px 15px; - color: #333333; - text-shadow: 0 1px 0 #ffffff; - background-color: #ffffff; - border: 0; - outline: 0; - -webkit-box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); - -moz-box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); - box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); -} - -.navbar-inverse .btn-navbar { - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #0e0e0e; - *background-color: #040404; - background-image: -moz-linear-gradient(top, #151515, #040404); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#151515), to(#040404)); - background-image: -webkit-linear-gradient(top, #151515, #040404); - background-image: -o-linear-gradient(top, #151515, #040404); - background-image: linear-gradient(to bottom, #151515, #040404); - background-repeat: repeat-x; - border-color: #040404 #040404 #000000; - border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.25); - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff151515', endColorstr='#ff040404', GradientType=0); - filter: progid:DXImageTransform.Microsoft.gradient(enabled=false); -} - -.navbar-inverse .btn-navbar:hover, -.navbar-inverse .btn-navbar:focus, -.navbar-inverse .btn-navbar:active, -.navbar-inverse .btn-navbar.active, -.navbar-inverse .btn-navbar.disabled, -.navbar-inverse .btn-navbar[disabled] { - color: #ffffff; - background-color: #040404; - *background-color: #000000; -} - -.navbar-inverse .btn-navbar:active, -.navbar-inverse .btn-navbar.active { - background-color: #000000 \9; -} - -.breadcrumb { - padding: 8px 15px; - margin: 0 0 20px; - list-style: none; - background-color: #f5f5f5; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; -} - -.breadcrumb > li { - display: inline-block; - *display: inline; - text-shadow: 0 1px 0 #ffffff; - *zoom: 1; -} - -.breadcrumb > li > .divider { - padding: 0 5px; - color: #ccc; -} - -.breadcrumb > .active { - color: #999999; -} - -.pagination { - margin: 20px 0; -} - -.pagination ul { - display: inline-block; - *display: inline; - margin-bottom: 0; - margin-left: 0; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; - *zoom: 1; - -webkit-box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05); - -moz-box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05); - box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05); -} - -.pagination ul > li { - display: inline; -} - -.pagination ul > li > a, -.pagination ul > li > span { - float: left; - padding: 4px 12px; - line-height: 20px; - text-decoration: none; - background-color: #ffffff; - border: 1px solid #dddddd; - border-left-width: 0; -} - -.pagination ul > li > a:hover, -.pagination ul > li > a:focus, -.pagination ul > .active > a, -.pagination ul > .active > span { - background-color: #f5f5f5; -} - -.pagination ul > .active > a, -.pagination ul > .active > span { - color: #999999; - cursor: default; -} - -.pagination ul > .disabled > span, -.pagination ul > .disabled > a, -.pagination ul > .disabled > a:hover, -.pagination ul > .disabled > a:focus { - color: #999999; - cursor: default; - background-color: transparent; -} - -.pagination ul > li:first-child > a, -.pagination ul > li:first-child > span { - border-left-width: 1px; - -webkit-border-bottom-left-radius: 4px; - border-bottom-left-radius: 4px; - -webkit-border-top-left-radius: 4px; - border-top-left-radius: 4px; - -moz-border-radius-bottomleft: 4px; - -moz-border-radius-topleft: 4px; -} - -.pagination ul > li:last-child > a, -.pagination ul > li:last-child > span { - -webkit-border-top-right-radius: 4px; - border-top-right-radius: 4px; - -webkit-border-bottom-right-radius: 4px; - border-bottom-right-radius: 4px; - -moz-border-radius-topright: 4px; - -moz-border-radius-bottomright: 4px; -} - -.pagination-centered { - text-align: center; -} - -.pagination-right { - text-align: right; -} - -.pagination-large ul > li > a, -.pagination-large ul > li > span { - padding: 11px 19px; - font-size: 17.5px; -} - -.pagination-large ul > li:first-child > a, -.pagination-large ul > li:first-child > span { - -webkit-border-bottom-left-radius: 6px; - border-bottom-left-radius: 6px; - -webkit-border-top-left-radius: 6px; - border-top-left-radius: 6px; - -moz-border-radius-bottomleft: 6px; - -moz-border-radius-topleft: 6px; -} - -.pagination-large ul > li:last-child > a, -.pagination-large ul > li:last-child > span { - -webkit-border-top-right-radius: 6px; - border-top-right-radius: 6px; - -webkit-border-bottom-right-radius: 6px; - border-bottom-right-radius: 6px; - -moz-border-radius-topright: 6px; - -moz-border-radius-bottomright: 6px; -} - -.pagination-mini ul > li:first-child > a, -.pagination-small ul > li:first-child > a, -.pagination-mini ul > li:first-child > span, -.pagination-small ul > li:first-child > span { - -webkit-border-bottom-left-radius: 3px; - border-bottom-left-radius: 3px; - -webkit-border-top-left-radius: 3px; - border-top-left-radius: 3px; - -moz-border-radius-bottomleft: 3px; - -moz-border-radius-topleft: 3px; -} - -.pagination-mini ul > li:last-child > a, -.pagination-small ul > li:last-child > a, -.pagination-mini ul > li:last-child > span, -.pagination-small ul > li:last-child > span { - -webkit-border-top-right-radius: 3px; - border-top-right-radius: 3px; - -webkit-border-bottom-right-radius: 3px; - border-bottom-right-radius: 3px; - -moz-border-radius-topright: 3px; - -moz-border-radius-bottomright: 3px; -} - -.pagination-small ul > li > a, -.pagination-small ul > li > span { - padding: 2px 10px; - font-size: 11.9px; -} - -.pagination-mini ul > li > a, -.pagination-mini ul > li > span { - padding: 0 6px; - font-size: 10.5px; -} - -.pager { - margin: 20px 0; - text-align: center; - list-style: none; - *zoom: 1; -} - -.pager:before, -.pager:after { - display: table; - line-height: 0; - content: ""; -} - -.pager:after { - clear: both; -} - -.pager li { - display: inline; -} - -.pager li > a, -.pager li > span { - display: inline-block; - padding: 5px 14px; - background-color: #fff; - border: 1px solid #ddd; - -webkit-border-radius: 15px; - -moz-border-radius: 15px; - border-radius: 15px; -} - -.pager li > a:hover, -.pager li > a:focus { - text-decoration: none; - background-color: #f5f5f5; -} - -.pager .next > a, -.pager .next > span { - float: right; -} - -.pager .previous > a, -.pager .previous > span { - float: left; -} - -.pager .disabled > a, -.pager .disabled > a:hover, -.pager .disabled > a:focus, -.pager .disabled > span { - color: #999999; - cursor: default; - background-color: #fff; -} - -.modal-backdrop { - position: fixed; - top: 0; - right: 0; - bottom: 0; - left: 0; - z-index: 1040; - background-color: #000000; -} - -.modal-backdrop.fade { - opacity: 0; -} - -.modal-backdrop, -.modal-backdrop.fade.in { - opacity: 0.8; - filter: alpha(opacity=80); -} - -.modal { - position: fixed; - top: 10%; - left: 50%; - z-index: 1050; - width: 560px; - margin-left: -280px; - background-color: #ffffff; - border: 1px solid #999; - border: 1px solid rgba(0, 0, 0, 0.3); - *border: 1px solid #999; - -webkit-border-radius: 6px; - -moz-border-radius: 6px; - border-radius: 6px; - outline: none; - -webkit-box-shadow: 0 3px 7px rgba(0, 0, 0, 0.3); - -moz-box-shadow: 0 3px 7px rgba(0, 0, 0, 0.3); - box-shadow: 0 3px 7px rgba(0, 0, 0, 0.3); - -webkit-background-clip: padding-box; - -moz-background-clip: padding-box; - background-clip: padding-box; -} - -.modal.fade { - top: -25%; - -webkit-transition: opacity 0.3s linear, top 0.3s ease-out; - -moz-transition: opacity 0.3s linear, top 0.3s ease-out; - -o-transition: opacity 0.3s linear, top 0.3s ease-out; - transition: opacity 0.3s linear, top 0.3s ease-out; -} - -.modal.fade.in { - top: 10%; -} - -.modal-header { - padding: 9px 15px; - border-bottom: 1px solid #eee; -} - -.modal-header .close { - margin-top: 2px; -} - -.modal-header h3 { - margin: 0; - line-height: 30px; -} - -.modal-body { - position: relative; - max-height: 400px; - padding: 15px; - overflow-y: auto; -} - -.modal-form { - margin-bottom: 0; -} - -.modal-footer { - padding: 14px 15px 15px; - margin-bottom: 0; - text-align: right; - background-color: #f5f5f5; - border-top: 1px solid #ddd; - -webkit-border-radius: 0 0 6px 6px; - -moz-border-radius: 0 0 6px 6px; - border-radius: 0 0 6px 6px; - *zoom: 1; - -webkit-box-shadow: inset 0 1px 0 #ffffff; - -moz-box-shadow: inset 0 1px 0 #ffffff; - box-shadow: inset 0 1px 0 #ffffff; -} - -.modal-footer:before, -.modal-footer:after { - display: table; - line-height: 0; - content: ""; -} - -.modal-footer:after { - clear: both; -} - -.modal-footer .btn + .btn { - margin-bottom: 0; - margin-left: 5px; -} - -.modal-footer .btn-group .btn + .btn { - margin-left: -1px; -} - -.modal-footer .btn-block + .btn-block { - margin-left: 0; -} - -.tooltip { - position: absolute; - z-index: 1030; - display: block; - font-size: 11px; - line-height: 1.4; - opacity: 0; - filter: alpha(opacity=0); - visibility: visible; -} - -.tooltip.in { - opacity: 0.8; - filter: alpha(opacity=80); -} - -.tooltip.top { - padding: 5px 0; - margin-top: -3px; -} - -.tooltip.right { - padding: 0 5px; - margin-left: 3px; -} - -.tooltip.bottom { - padding: 5px 0; - margin-top: 3px; -} - -.tooltip.left { - padding: 0 5px; - margin-left: -3px; -} - -.tooltip-inner { - max-width: 200px; - padding: 8px; - color: #ffffff; - text-align: center; - text-decoration: none; - background-color: #000000; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; -} - -.tooltip-arrow { - position: absolute; - width: 0; - height: 0; - border-color: transparent; - border-style: solid; -} - -.tooltip.top .tooltip-arrow { - bottom: 0; - left: 50%; - margin-left: -5px; - border-top-color: #000000; - border-width: 5px 5px 0; -} - -.tooltip.right .tooltip-arrow { - top: 50%; - left: 0; - margin-top: -5px; - border-right-color: #000000; - border-width: 5px 5px 5px 0; -} - -.tooltip.left .tooltip-arrow { - top: 50%; - right: 0; - margin-top: -5px; - border-left-color: #000000; - border-width: 5px 0 5px 5px; -} - -.tooltip.bottom .tooltip-arrow { - top: 0; - left: 50%; - margin-left: -5px; - border-bottom-color: #000000; - border-width: 0 5px 5px; -} - -.popover { - position: absolute; - top: 0; - left: 0; - z-index: 1010; - display: none; - max-width: 276px; - padding: 1px; - text-align: left; - white-space: normal; - background-color: #ffffff; - border: 1px solid #ccc; - border: 1px solid rgba(0, 0, 0, 0.2); - -webkit-border-radius: 6px; - -moz-border-radius: 6px; - border-radius: 6px; - -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); - -moz-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); - box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); - -webkit-background-clip: padding-box; - -moz-background-clip: padding; - background-clip: padding-box; -} - -.popover.top { - margin-top: -10px; -} - -.popover.right { - margin-left: 10px; -} - -.popover.bottom { - margin-top: 10px; -} - -.popover.left { - margin-left: -10px; -} - -.popover-title { - padding: 8px 14px; - margin: 0; - font-size: 14px; - font-weight: normal; - line-height: 18px; - background-color: #f7f7f7; - border-bottom: 1px solid #ebebeb; - -webkit-border-radius: 5px 5px 0 0; - -moz-border-radius: 5px 5px 0 0; - border-radius: 5px 5px 0 0; -} - -.popover-title:empty { - display: none; -} - -.popover-content { - padding: 9px 14px; -} - -.popover .arrow, -.popover .arrow:after { - position: absolute; - display: block; - width: 0; - height: 0; - border-color: transparent; - border-style: solid; -} - -.popover .arrow { - border-width: 11px; -} - -.popover .arrow:after { - border-width: 10px; - content: ""; -} - -.popover.top .arrow { - bottom: -11px; - left: 50%; - margin-left: -11px; - border-top-color: #999; - border-top-color: rgba(0, 0, 0, 0.25); - border-bottom-width: 0; -} - -.popover.top .arrow:after { - bottom: 1px; - margin-left: -10px; - border-top-color: #ffffff; - border-bottom-width: 0; -} - -.popover.right .arrow { - top: 50%; - left: -11px; - margin-top: -11px; - border-right-color: #999; - border-right-color: rgba(0, 0, 0, 0.25); - border-left-width: 0; -} - -.popover.right .arrow:after { - bottom: -10px; - left: 1px; - border-right-color: #ffffff; - border-left-width: 0; -} - -.popover.bottom .arrow { - top: -11px; - left: 50%; - margin-left: -11px; - border-bottom-color: #999; - border-bottom-color: rgba(0, 0, 0, 0.25); - border-top-width: 0; -} - -.popover.bottom .arrow:after { - top: 1px; - margin-left: -10px; - border-bottom-color: #ffffff; - border-top-width: 0; -} - -.popover.left .arrow { - top: 50%; - right: -11px; - margin-top: -11px; - border-left-color: #999; - border-left-color: rgba(0, 0, 0, 0.25); - border-right-width: 0; -} - -.popover.left .arrow:after { - right: 1px; - bottom: -10px; - border-left-color: #ffffff; - border-right-width: 0; -} - -.thumbnails { - margin-left: -20px; - list-style: none; - *zoom: 1; -} - -.thumbnails:before, -.thumbnails:after { - display: table; - line-height: 0; - content: ""; -} - -.thumbnails:after { - clear: both; -} - -.row-fluid .thumbnails { - margin-left: 0; -} - -.thumbnails > li { - float: left; - margin-bottom: 20px; - margin-left: 20px; -} - -.thumbnail { - display: block; - padding: 4px; - line-height: 20px; - border: 1px solid #ddd; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; - -webkit-box-shadow: 0 1px 3px rgba(0, 0, 0, 0.055); - -moz-box-shadow: 0 1px 3px rgba(0, 0, 0, 0.055); - box-shadow: 0 1px 3px rgba(0, 0, 0, 0.055); - -webkit-transition: all 0.2s ease-in-out; - -moz-transition: all 0.2s ease-in-out; - -o-transition: all 0.2s ease-in-out; - transition: all 0.2s ease-in-out; -} - -a.thumbnail:hover, -a.thumbnail:focus { - border-color: #0088cc; - -webkit-box-shadow: 0 1px 4px rgba(0, 105, 214, 0.25); - -moz-box-shadow: 0 1px 4px rgba(0, 105, 214, 0.25); - box-shadow: 0 1px 4px rgba(0, 105, 214, 0.25); -} - -.thumbnail > img { - display: block; - max-width: 100%; - margin-right: auto; - margin-left: auto; -} - -.thumbnail .caption { - padding: 9px; - color: #555555; -} - -.media, -.media-body { - overflow: hidden; - *overflow: visible; - zoom: 1; -} - -.media, -.media .media { - margin-top: 15px; -} - -.media:first-child { - margin-top: 0; -} - -.media-object { - display: block; -} - -.media-heading { - margin: 0 0 5px; -} - -.media > .pull-left { - margin-right: 10px; -} - -.media > .pull-right { - margin-left: 10px; -} - -.media-list { - margin-left: 0; - list-style: none; -} - -.label, -.badge { - display: inline-block; - padding: 2px 4px; - font-size: 11.844px; - font-weight: bold; - line-height: 14px; - color: #ffffff; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - white-space: nowrap; - vertical-align: baseline; - background-color: #999999; -} - -.label { - -webkit-border-radius: 3px; - -moz-border-radius: 3px; - border-radius: 3px; -} - -.badge { - padding-right: 9px; - padding-left: 9px; - -webkit-border-radius: 9px; - -moz-border-radius: 9px; - border-radius: 9px; -} - -.label:empty, -.badge:empty { - display: none; -} - -a.label:hover, -a.label:focus, -a.badge:hover, -a.badge:focus { - color: #ffffff; - text-decoration: none; - cursor: pointer; -} - -.label-important, -.badge-important { - background-color: #b94a48; -} - -.label-important[href], -.badge-important[href] { - background-color: #953b39; -} - -.label-warning, -.badge-warning { - background-color: #f89406; -} - -.label-warning[href], -.badge-warning[href] { - background-color: #c67605; -} - -.label-success, -.badge-success { - background-color: #468847; -} - -.label-success[href], -.badge-success[href] { - background-color: #356635; -} - -.label-info, -.badge-info { - background-color: #3a87ad; -} - -.label-info[href], -.badge-info[href] { - background-color: #2d6987; -} - -.label-inverse, -.badge-inverse { - background-color: #333333; -} - -.label-inverse[href], -.badge-inverse[href] { - background-color: #1a1a1a; -} - -.btn .label, -.btn .badge { - position: relative; - top: -1px; -} - -.btn-mini .label, -.btn-mini .badge { - top: 0; -} - -@-webkit-keyframes progress-bar-stripes { - from { - background-position: 40px 0; - } - to { - background-position: 0 0; - } -} - -@-moz-keyframes progress-bar-stripes { - from { - background-position: 40px 0; - } - to { - background-position: 0 0; - } -} - -@-ms-keyframes progress-bar-stripes { - from { - background-position: 40px 0; - } - to { - background-position: 0 0; - } -} - -@-o-keyframes progress-bar-stripes { - from { - background-position: 0 0; - } - to { - background-position: 40px 0; - } -} - -@keyframes progress-bar-stripes { - from { - background-position: 40px 0; - } - to { - background-position: 0 0; - } -} - -.progress { - height: 20px; - margin-bottom: 20px; - overflow: hidden; - background-color: #f7f7f7; - background-image: -moz-linear-gradient(top, #f5f5f5, #f9f9f9); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#f5f5f5), to(#f9f9f9)); - background-image: -webkit-linear-gradient(top, #f5f5f5, #f9f9f9); - background-image: -o-linear-gradient(top, #f5f5f5, #f9f9f9); - background-image: linear-gradient(to bottom, #f5f5f5, #f9f9f9); - background-repeat: repeat-x; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff5f5f5', endColorstr='#fff9f9f9', GradientType=0); - -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); - -moz-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); - box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); -} - -.progress .bar { - float: left; - width: 0; - height: 100%; - font-size: 12px; - color: #ffffff; - text-align: center; - text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25); - background-color: #0e90d2; - background-image: -moz-linear-gradient(top, #149bdf, #0480be); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#149bdf), to(#0480be)); - background-image: -webkit-linear-gradient(top, #149bdf, #0480be); - background-image: -o-linear-gradient(top, #149bdf, #0480be); - background-image: linear-gradient(to bottom, #149bdf, #0480be); - background-repeat: repeat-x; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff149bdf', endColorstr='#ff0480be', GradientType=0); - -webkit-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15); - -moz-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15); - box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15); - -webkit-box-sizing: border-box; - -moz-box-sizing: border-box; - box-sizing: border-box; - -webkit-transition: width 0.6s ease; - -moz-transition: width 0.6s ease; - -o-transition: width 0.6s ease; - transition: width 0.6s ease; -} - -.progress .bar + .bar { - -webkit-box-shadow: inset 1px 0 0 rgba(0, 0, 0, 0.15), inset 0 -1px 0 rgba(0, 0, 0, 0.15); - -moz-box-shadow: inset 1px 0 0 rgba(0, 0, 0, 0.15), inset 0 -1px 0 rgba(0, 0, 0, 0.15); - box-shadow: inset 1px 0 0 rgba(0, 0, 0, 0.15), inset 0 -1px 0 rgba(0, 0, 0, 0.15); -} - -.progress-striped .bar { - background-color: #149bdf; - background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); - background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - -webkit-background-size: 40px 40px; - -moz-background-size: 40px 40px; - -o-background-size: 40px 40px; - background-size: 40px 40px; -} - -.progress.active .bar { - -webkit-animation: progress-bar-stripes 2s linear infinite; - -moz-animation: progress-bar-stripes 2s linear infinite; - -ms-animation: progress-bar-stripes 2s linear infinite; - -o-animation: progress-bar-stripes 2s linear infinite; - animation: progress-bar-stripes 2s linear infinite; -} - -.progress-danger .bar, -.progress .bar-danger { - background-color: #dd514c; - background-image: -moz-linear-gradient(top, #ee5f5b, #c43c35); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ee5f5b), to(#c43c35)); - background-image: -webkit-linear-gradient(top, #ee5f5b, #c43c35); - background-image: -o-linear-gradient(top, #ee5f5b, #c43c35); - background-image: linear-gradient(to bottom, #ee5f5b, #c43c35); - background-repeat: repeat-x; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b', endColorstr='#ffc43c35', GradientType=0); -} - -.progress-danger.progress-striped .bar, -.progress-striped .bar-danger { - background-color: #ee5f5b; - background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); - background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); -} - -.progress-success .bar, -.progress .bar-success { - background-color: #5eb95e; - background-image: -moz-linear-gradient(top, #62c462, #57a957); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#62c462), to(#57a957)); - background-image: -webkit-linear-gradient(top, #62c462, #57a957); - background-image: -o-linear-gradient(top, #62c462, #57a957); - background-image: linear-gradient(to bottom, #62c462, #57a957); - background-repeat: repeat-x; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462', endColorstr='#ff57a957', GradientType=0); -} - -.progress-success.progress-striped .bar, -.progress-striped .bar-success { - background-color: #62c462; - background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); - background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); -} - -.progress-info .bar, -.progress .bar-info { - background-color: #4bb1cf; - background-image: -moz-linear-gradient(top, #5bc0de, #339bb9); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#5bc0de), to(#339bb9)); - background-image: -webkit-linear-gradient(top, #5bc0de, #339bb9); - background-image: -o-linear-gradient(top, #5bc0de, #339bb9); - background-image: linear-gradient(to bottom, #5bc0de, #339bb9); - background-repeat: repeat-x; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de', endColorstr='#ff339bb9', GradientType=0); -} - -.progress-info.progress-striped .bar, -.progress-striped .bar-info { - background-color: #5bc0de; - background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); - background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); -} - -.progress-warning .bar, -.progress .bar-warning { - background-color: #faa732; - background-image: -moz-linear-gradient(top, #fbb450, #f89406); - background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#fbb450), to(#f89406)); - background-image: -webkit-linear-gradient(top, #fbb450, #f89406); - background-image: -o-linear-gradient(top, #fbb450, #f89406); - background-image: linear-gradient(to bottom, #fbb450, #f89406); - background-repeat: repeat-x; - filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450', endColorstr='#fff89406', GradientType=0); -} - -.progress-warning.progress-striped .bar, -.progress-striped .bar-warning { - background-color: #fbb450; - background-image: -webkit-gradient(linear, 0 100%, 100% 0, color-stop(0.25, rgba(255, 255, 255, 0.15)), color-stop(0.25, transparent), color-stop(0.5, transparent), color-stop(0.5, rgba(255, 255, 255, 0.15)), color-stop(0.75, rgba(255, 255, 255, 0.15)), color-stop(0.75, transparent), to(transparent)); - background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -moz-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); -} - -.accordion { - margin-bottom: 20px; -} - -.accordion-group { - margin-bottom: 2px; - border: 1px solid #e5e5e5; - -webkit-border-radius: 4px; - -moz-border-radius: 4px; - border-radius: 4px; -} - -.accordion-heading { - border-bottom: 0; -} - -.accordion-heading .accordion-toggle { - display: block; - padding: 8px 15px; -} - -.accordion-toggle { - cursor: pointer; -} - -.accordion-inner { - padding: 9px 15px; - border-top: 1px solid #e5e5e5; -} - -.carousel { - position: relative; - margin-bottom: 20px; - line-height: 1; -} - -.carousel-inner { - position: relative; - width: 100%; - overflow: hidden; -} - -.carousel-inner > .item { - position: relative; - display: none; - -webkit-transition: 0.6s ease-in-out left; - -moz-transition: 0.6s ease-in-out left; - -o-transition: 0.6s ease-in-out left; - transition: 0.6s ease-in-out left; -} - -.carousel-inner > .item > img, -.carousel-inner > .item > a > img { - display: block; - line-height: 1; -} - -.carousel-inner > .active, -.carousel-inner > .next, -.carousel-inner > .prev { - display: block; -} - -.carousel-inner > .active { - left: 0; -} - -.carousel-inner > .next, -.carousel-inner > .prev { - position: absolute; - top: 0; - width: 100%; -} - -.carousel-inner > .next { - left: 100%; -} - -.carousel-inner > .prev { - left: -100%; -} - -.carousel-inner > .next.left, -.carousel-inner > .prev.right { - left: 0; -} - -.carousel-inner > .active.left { - left: -100%; -} - -.carousel-inner > .active.right { - left: 100%; -} - -.carousel-control { - position: absolute; - top: 40%; - left: 15px; - width: 40px; - height: 40px; - margin-top: -20px; - font-size: 60px; - font-weight: 100; - line-height: 30px; - color: #ffffff; - text-align: center; - background: #222222; - border: 3px solid #ffffff; - -webkit-border-radius: 23px; - -moz-border-radius: 23px; - border-radius: 23px; - opacity: 0.5; - filter: alpha(opacity=50); -} - -.carousel-control.right { - right: 15px; - left: auto; -} - -.carousel-control:hover, -.carousel-control:focus { - color: #ffffff; - text-decoration: none; - opacity: 0.9; - filter: alpha(opacity=90); -} - -.carousel-indicators { - position: absolute; - top: 15px; - right: 15px; - z-index: 5; - margin: 0; - list-style: none; -} - -.carousel-indicators li { - display: block; - float: left; - width: 10px; - height: 10px; - margin-left: 5px; - text-indent: -999px; - background-color: #ccc; - background-color: rgba(255, 255, 255, 0.25); - border-radius: 5px; -} - -.carousel-indicators .active { - background-color: #fff; -} - -.carousel-caption { - position: absolute; - right: 0; - bottom: 0; - left: 0; - padding: 15px; - background: #333333; - background: rgba(0, 0, 0, 0.75); -} - -.carousel-caption h4, -.carousel-caption p { - line-height: 20px; - color: #ffffff; -} - -.carousel-caption h4 { - margin: 0 0 5px; -} - -.carousel-caption p { - margin-bottom: 0; -} - -.hero-unit { - padding: 60px; - margin-bottom: 30px; - font-size: 18px; - font-weight: 200; - line-height: 30px; - color: inherit; - background-color: #eeeeee; - -webkit-border-radius: 6px; - -moz-border-radius: 6px; - border-radius: 6px; -} - -.hero-unit h1 { - margin-bottom: 0; - font-size: 60px; - line-height: 1; - letter-spacing: -1px; - color: inherit; -} - -.hero-unit li { - line-height: 30px; -} - -.pull-right { - float: right; -} - -.pull-left { - float: left; -} - -.hide { - display: none; -} - -.show { - display: block; -} - -.invisible { - visibility: hidden; -} - -.affix { - position: fixed; -} diff --git a/docs/_static/bootstrap-2.3.2/css/bootstrap.min.css b/docs/_static/bootstrap-2.3.2/css/bootstrap.min.css deleted file mode 100644 index b6428e695..000000000 --- a/docs/_static/bootstrap-2.3.2/css/bootstrap.min.css +++ /dev/null @@ -1,9 +0,0 @@ -/*! - * Bootstrap v2.3.2 - * - * Copyright 2012 Twitter, Inc - * Licensed under the Apache License v2.0 - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Designed and built with all the love in the world @twitter by @mdo and @fat. - */.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;line-height:0;content:""}.clearfix:after{clear:both}.hide-text{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.input-block-level{display:block;width:100%;min-height:30px;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}audio:not([controls]){display:none}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}a:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}a:hover,a:active{outline:0}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sup{top:-0.5em}sub{bottom:-0.25em}img{width:auto\9;height:auto;max-width:100%;vertical-align:middle;border:0;-ms-interpolation-mode:bicubic}#map_canvas img,.google-maps img{max-width:none}button,input,select,textarea{margin:0;font-size:100%;vertical-align:middle}button,input{*overflow:visible;line-height:normal}button::-moz-focus-inner,input::-moz-focus-inner{padding:0;border:0}button,html input[type="button"],input[type="reset"],input[type="submit"]{cursor:pointer;-webkit-appearance:button}label,select,button,input[type="button"],input[type="reset"],input[type="submit"],input[type="radio"],input[type="checkbox"]{cursor:pointer}input[type="search"]{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;-webkit-appearance:textfield}input[type="search"]::-webkit-search-decoration,input[type="search"]::-webkit-search-cancel-button{-webkit-appearance:none}textarea{overflow:auto;vertical-align:top}@media print{*{color:#000!important;text-shadow:none!important;background:transparent!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}p,h2,h3{orphans:3;widows:3}h2,h3{page-break-after:avoid}}body{margin:0;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:20px;color:#333;background-color:#fff}a{color:#08c;text-decoration:none}a:hover,a:focus{color:#005580;text-decoration:underline}.img-rounded{-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.img-polaroid{padding:4px;background-color:#fff;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);-webkit-box-shadow:0 1px 3px rgba(0,0,0,0.1);-moz-box-shadow:0 1px 3px rgba(0,0,0,0.1);box-shadow:0 1px 3px rgba(0,0,0,0.1)}.img-circle{-webkit-border-radius:500px;-moz-border-radius:500px;border-radius:500px}.row{margin-left:-20px;*zoom:1}.row:before,.row:after{display:table;line-height:0;content:""}.row:after{clear:both}[class*="span"]{float:left;min-height:1px;margin-left:20px}.container,.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:940px}.span12{width:940px}.span11{width:860px}.span10{width:780px}.span9{width:700px}.span8{width:620px}.span7{width:540px}.span6{width:460px}.span5{width:380px}.span4{width:300px}.span3{width:220px}.span2{width:140px}.span1{width:60px}.offset12{margin-left:980px}.offset11{margin-left:900px}.offset10{margin-left:820px}.offset9{margin-left:740px}.offset8{margin-left:660px}.offset7{margin-left:580px}.offset6{margin-left:500px}.offset5{margin-left:420px}.offset4{margin-left:340px}.offset3{margin-left:260px}.offset2{margin-left:180px}.offset1{margin-left:100px}.row-fluid{width:100%;*zoom:1}.row-fluid:before,.row-fluid:after{display:table;line-height:0;content:""}.row-fluid:after{clear:both}.row-fluid [class*="span"]{display:block;float:left;width:100%;min-height:30px;margin-left:2.127659574468085%;*margin-left:2.074468085106383%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.row-fluid [class*="span"]:first-child{margin-left:0}.row-fluid .controls-row [class*="span"]+[class*="span"]{margin-left:2.127659574468085%}.row-fluid .span12{width:100%;*width:99.94680851063829%}.row-fluid .span11{width:91.48936170212765%;*width:91.43617021276594%}.row-fluid .span10{width:82.97872340425532%;*width:82.92553191489361%}.row-fluid .span9{width:74.46808510638297%;*width:74.41489361702126%}.row-fluid .span8{width:65.95744680851064%;*width:65.90425531914893%}.row-fluid .span7{width:57.44680851063829%;*width:57.39361702127659%}.row-fluid .span6{width:48.93617021276595%;*width:48.88297872340425%}.row-fluid .span5{width:40.42553191489362%;*width:40.37234042553192%}.row-fluid .span4{width:31.914893617021278%;*width:31.861702127659576%}.row-fluid .span3{width:23.404255319148934%;*width:23.351063829787233%}.row-fluid .span2{width:14.893617021276595%;*width:14.840425531914894%}.row-fluid .span1{width:6.382978723404255%;*width:6.329787234042553%}.row-fluid .offset12{margin-left:104.25531914893617%;*margin-left:104.14893617021275%}.row-fluid .offset12:first-child{margin-left:102.12765957446808%;*margin-left:102.02127659574467%}.row-fluid .offset11{margin-left:95.74468085106382%;*margin-left:95.6382978723404%}.row-fluid .offset11:first-child{margin-left:93.61702127659574%;*margin-left:93.51063829787232%}.row-fluid .offset10{margin-left:87.23404255319149%;*margin-left:87.12765957446807%}.row-fluid .offset10:first-child{margin-left:85.1063829787234%;*margin-left:84.99999999999999%}.row-fluid .offset9{margin-left:78.72340425531914%;*margin-left:78.61702127659572%}.row-fluid .offset9:first-child{margin-left:76.59574468085106%;*margin-left:76.48936170212764%}.row-fluid .offset8{margin-left:70.2127659574468%;*margin-left:70.10638297872339%}.row-fluid .offset8:first-child{margin-left:68.08510638297872%;*margin-left:67.9787234042553%}.row-fluid .offset7{margin-left:61.70212765957446%;*margin-left:61.59574468085106%}.row-fluid .offset7:first-child{margin-left:59.574468085106375%;*margin-left:59.46808510638297%}.row-fluid .offset6{margin-left:53.191489361702125%;*margin-left:53.085106382978715%}.row-fluid .offset6:first-child{margin-left:51.063829787234035%;*margin-left:50.95744680851063%}.row-fluid .offset5{margin-left:44.68085106382979%;*margin-left:44.57446808510638%}.row-fluid .offset5:first-child{margin-left:42.5531914893617%;*margin-left:42.4468085106383%}.row-fluid .offset4{margin-left:36.170212765957444%;*margin-left:36.06382978723405%}.row-fluid .offset4:first-child{margin-left:34.04255319148936%;*margin-left:33.93617021276596%}.row-fluid .offset3{margin-left:27.659574468085104%;*margin-left:27.5531914893617%}.row-fluid .offset3:first-child{margin-left:25.53191489361702%;*margin-left:25.425531914893618%}.row-fluid .offset2{margin-left:19.148936170212764%;*margin-left:19.04255319148936%}.row-fluid .offset2:first-child{margin-left:17.02127659574468%;*margin-left:16.914893617021278%}.row-fluid .offset1{margin-left:10.638297872340425%;*margin-left:10.53191489361702%}.row-fluid .offset1:first-child{margin-left:8.51063829787234%;*margin-left:8.404255319148938%}[class*="span"].hide,.row-fluid [class*="span"].hide{display:none}[class*="span"].pull-right,.row-fluid [class*="span"].pull-right{float:right}.container{margin-right:auto;margin-left:auto;*zoom:1}.container:before,.container:after{display:table;line-height:0;content:""}.container:after{clear:both}.container-fluid{padding-right:20px;padding-left:20px;*zoom:1}.container-fluid:before,.container-fluid:after{display:table;line-height:0;content:""}.container-fluid:after{clear:both}p{margin:0 0 10px}.lead{margin-bottom:20px;font-size:21px;font-weight:200;line-height:30px}small{font-size:85%}strong{font-weight:bold}em{font-style:italic}cite{font-style:normal}.muted{color:#999}a.muted:hover,a.muted:focus{color:#808080}.text-warning{color:#c09853}a.text-warning:hover,a.text-warning:focus{color:#a47e3c}.text-error{color:#b94a48}a.text-error:hover,a.text-error:focus{color:#953b39}.text-info{color:#3a87ad}a.text-info:hover,a.text-info:focus{color:#2d6987}.text-success{color:#468847}a.text-success:hover,a.text-success:focus{color:#356635}.text-left{text-align:left}.text-right{text-align:right}.text-center{text-align:center}h1,h2,h3,h4,h5,h6{margin:10px 0;font-family:inherit;font-weight:bold;line-height:20px;color:inherit;text-rendering:optimizelegibility}h1 small,h2 small,h3 small,h4 small,h5 small,h6 small{font-weight:normal;line-height:1;color:#999}h1,h2,h3{line-height:40px}h1{font-size:38.5px}h2{font-size:31.5px}h3{font-size:24.5px}h4{font-size:17.5px}h5{font-size:14px}h6{font-size:11.9px}h1 small{font-size:24.5px}h2 small{font-size:17.5px}h3 small{font-size:14px}h4 small{font-size:14px}.page-header{padding-bottom:9px;margin:20px 0 30px;border-bottom:1px solid #eee}ul,ol{padding:0;margin:0 0 10px 25px}ul ul,ul ol,ol ol,ol ul{margin-bottom:0}li{line-height:20px}ul.unstyled,ol.unstyled{margin-left:0;list-style:none}ul.inline,ol.inline{margin-left:0;list-style:none}ul.inline>li,ol.inline>li{display:inline-block;*display:inline;padding-right:5px;padding-left:5px;*zoom:1}dl{margin-bottom:20px}dt,dd{line-height:20px}dt{font-weight:bold}dd{margin-left:10px}.dl-horizontal{*zoom:1}.dl-horizontal:before,.dl-horizontal:after{display:table;line-height:0;content:""}.dl-horizontal:after{clear:both}.dl-horizontal dt{float:left;width:160px;overflow:hidden;clear:left;text-align:right;text-overflow:ellipsis;white-space:nowrap}.dl-horizontal dd{margin-left:180px}hr{margin:20px 0;border:0;border-top:1px solid #eee;border-bottom:1px solid #fff}abbr[title],abbr[data-original-title]{cursor:help;border-bottom:1px dotted #999}abbr.initialism{font-size:90%;text-transform:uppercase}blockquote{padding:0 0 0 15px;margin:0 0 20px;border-left:5px solid #eee}blockquote p{margin-bottom:0;font-size:17.5px;font-weight:300;line-height:1.25}blockquote small{display:block;line-height:20px;color:#999}blockquote small:before{content:'\2014 \00A0'}blockquote.pull-right{float:right;padding-right:15px;padding-left:0;border-right:5px solid #eee;border-left:0}blockquote.pull-right p,blockquote.pull-right small{text-align:right}blockquote.pull-right small:before{content:''}blockquote.pull-right small:after{content:'\00A0 \2014'}q:before,q:after,blockquote:before,blockquote:after{content:""}address{display:block;margin-bottom:20px;font-style:normal;line-height:20px}code,pre{padding:0 3px 2px;font-family:Monaco,Menlo,Consolas,"Courier New",monospace;font-size:12px;color:#333;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}code{padding:2px 4px;color:#d14;white-space:nowrap;background-color:#f7f7f9;border:1px solid #e1e1e8}pre{display:block;padding:9.5px;margin:0 0 10px;font-size:13px;line-height:20px;word-break:break-all;word-wrap:break-word;white-space:pre;white-space:pre-wrap;background-color:#f5f5f5;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.15);-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}pre.prettyprint{margin-bottom:20px}pre code{padding:0;color:inherit;white-space:pre;white-space:pre-wrap;background-color:transparent;border:0}.pre-scrollable{max-height:340px;overflow-y:scroll}form{margin:0 0 20px}fieldset{padding:0;margin:0;border:0}legend{display:block;width:100%;padding:0;margin-bottom:20px;font-size:21px;line-height:40px;color:#333;border:0;border-bottom:1px solid #e5e5e5}legend small{font-size:15px;color:#999}label,input,button,select,textarea{font-size:14px;font-weight:normal;line-height:20px}input,button,select,textarea{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif}label{display:block;margin-bottom:5px}select,textarea,input[type="text"],input[type="password"],input[type="datetime"],input[type="datetime-local"],input[type="date"],input[type="month"],input[type="time"],input[type="week"],input[type="number"],input[type="email"],input[type="url"],input[type="search"],input[type="tel"],input[type="color"],.uneditable-input{display:inline-block;height:20px;padding:4px 6px;margin-bottom:10px;font-size:14px;line-height:20px;color:#555;vertical-align:middle;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}input,textarea,.uneditable-input{width:206px}textarea{height:auto}textarea,input[type="text"],input[type="password"],input[type="datetime"],input[type="datetime-local"],input[type="date"],input[type="month"],input[type="time"],input[type="week"],input[type="number"],input[type="email"],input[type="url"],input[type="search"],input[type="tel"],input[type="color"],.uneditable-input{background-color:#fff;border:1px solid #ccc;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-webkit-transition:border linear .2s,box-shadow linear .2s;-moz-transition:border linear .2s,box-shadow linear .2s;-o-transition:border linear .2s,box-shadow linear .2s;transition:border linear .2s,box-shadow linear .2s}textarea:focus,input[type="text"]:focus,input[type="password"]:focus,input[type="datetime"]:focus,input[type="datetime-local"]:focus,input[type="date"]:focus,input[type="month"]:focus,input[type="time"]:focus,input[type="week"]:focus,input[type="number"]:focus,input[type="email"]:focus,input[type="url"]:focus,input[type="search"]:focus,input[type="tel"]:focus,input[type="color"]:focus,.uneditable-input:focus{border-color:rgba(82,168,236,0.8);outline:0;outline:thin dotted \9;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 8px rgba(82,168,236,0.6);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 8px rgba(82,168,236,0.6);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 8px rgba(82,168,236,0.6)}input[type="radio"],input[type="checkbox"]{margin:4px 0 0;margin-top:1px \9;*margin-top:0;line-height:normal}input[type="file"],input[type="image"],input[type="submit"],input[type="reset"],input[type="button"],input[type="radio"],input[type="checkbox"]{width:auto}select,input[type="file"]{height:30px;*margin-top:4px;line-height:30px}select{width:220px;background-color:#fff;border:1px solid #ccc}select[multiple],select[size]{height:auto}select:focus,input[type="file"]:focus,input[type="radio"]:focus,input[type="checkbox"]:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}.uneditable-input,.uneditable-textarea{color:#999;cursor:not-allowed;background-color:#fcfcfc;border-color:#ccc;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,0.025);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,0.025);box-shadow:inset 0 1px 2px rgba(0,0,0,0.025)}.uneditable-input{overflow:hidden;white-space:nowrap}.uneditable-textarea{width:auto;height:auto}input:-moz-placeholder,textarea:-moz-placeholder{color:#999}input:-ms-input-placeholder,textarea:-ms-input-placeholder{color:#999}input::-webkit-input-placeholder,textarea::-webkit-input-placeholder{color:#999}.radio,.checkbox{min-height:20px;padding-left:20px}.radio input[type="radio"],.checkbox input[type="checkbox"]{float:left;margin-left:-20px}.controls>.radio:first-child,.controls>.checkbox:first-child{padding-top:5px}.radio.inline,.checkbox.inline{display:inline-block;padding-top:5px;margin-bottom:0;vertical-align:middle}.radio.inline+.radio.inline,.checkbox.inline+.checkbox.inline{margin-left:10px}.input-mini{width:60px}.input-small{width:90px}.input-medium{width:150px}.input-large{width:210px}.input-xlarge{width:270px}.input-xxlarge{width:530px}input[class*="span"],select[class*="span"],textarea[class*="span"],.uneditable-input[class*="span"],.row-fluid input[class*="span"],.row-fluid select[class*="span"],.row-fluid textarea[class*="span"],.row-fluid .uneditable-input[class*="span"]{float:none;margin-left:0}.input-append input[class*="span"],.input-append .uneditable-input[class*="span"],.input-prepend input[class*="span"],.input-prepend .uneditable-input[class*="span"],.row-fluid input[class*="span"],.row-fluid select[class*="span"],.row-fluid textarea[class*="span"],.row-fluid .uneditable-input[class*="span"],.row-fluid .input-prepend [class*="span"],.row-fluid .input-append [class*="span"]{display:inline-block}input,textarea,.uneditable-input{margin-left:0}.controls-row [class*="span"]+[class*="span"]{margin-left:20px}input.span12,textarea.span12,.uneditable-input.span12{width:926px}input.span11,textarea.span11,.uneditable-input.span11{width:846px}input.span10,textarea.span10,.uneditable-input.span10{width:766px}input.span9,textarea.span9,.uneditable-input.span9{width:686px}input.span8,textarea.span8,.uneditable-input.span8{width:606px}input.span7,textarea.span7,.uneditable-input.span7{width:526px}input.span6,textarea.span6,.uneditable-input.span6{width:446px}input.span5,textarea.span5,.uneditable-input.span5{width:366px}input.span4,textarea.span4,.uneditable-input.span4{width:286px}input.span3,textarea.span3,.uneditable-input.span3{width:206px}input.span2,textarea.span2,.uneditable-input.span2{width:126px}input.span1,textarea.span1,.uneditable-input.span1{width:46px}.controls-row{*zoom:1}.controls-row:before,.controls-row:after{display:table;line-height:0;content:""}.controls-row:after{clear:both}.controls-row [class*="span"],.row-fluid .controls-row [class*="span"]{float:left}.controls-row .checkbox[class*="span"],.controls-row .radio[class*="span"]{padding-top:5px}input[disabled],select[disabled],textarea[disabled],input[readonly],select[readonly],textarea[readonly]{cursor:not-allowed;background-color:#eee}input[type="radio"][disabled],input[type="checkbox"][disabled],input[type="radio"][readonly],input[type="checkbox"][readonly]{background-color:transparent}.control-group.warning .control-label,.control-group.warning .help-block,.control-group.warning .help-inline{color:#c09853}.control-group.warning .checkbox,.control-group.warning .radio,.control-group.warning input,.control-group.warning select,.control-group.warning textarea{color:#c09853}.control-group.warning input,.control-group.warning select,.control-group.warning textarea{border-color:#c09853;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.warning input:focus,.control-group.warning select:focus,.control-group.warning textarea:focus{border-color:#a47e3c;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #dbc59e}.control-group.warning .input-prepend .add-on,.control-group.warning .input-append .add-on{color:#c09853;background-color:#fcf8e3;border-color:#c09853}.control-group.error .control-label,.control-group.error .help-block,.control-group.error .help-inline{color:#b94a48}.control-group.error .checkbox,.control-group.error .radio,.control-group.error input,.control-group.error select,.control-group.error textarea{color:#b94a48}.control-group.error input,.control-group.error select,.control-group.error textarea{border-color:#b94a48;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.error input:focus,.control-group.error select:focus,.control-group.error textarea:focus{border-color:#953b39;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #d59392}.control-group.error .input-prepend .add-on,.control-group.error .input-append .add-on{color:#b94a48;background-color:#f2dede;border-color:#b94a48}.control-group.success .control-label,.control-group.success .help-block,.control-group.success .help-inline{color:#468847}.control-group.success .checkbox,.control-group.success .radio,.control-group.success input,.control-group.success select,.control-group.success textarea{color:#468847}.control-group.success input,.control-group.success select,.control-group.success textarea{border-color:#468847;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.success input:focus,.control-group.success select:focus,.control-group.success textarea:focus{border-color:#356635;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7aba7b}.control-group.success .input-prepend .add-on,.control-group.success .input-append .add-on{color:#468847;background-color:#dff0d8;border-color:#468847}.control-group.info .control-label,.control-group.info .help-block,.control-group.info .help-inline{color:#3a87ad}.control-group.info .checkbox,.control-group.info .radio,.control-group.info input,.control-group.info select,.control-group.info textarea{color:#3a87ad}.control-group.info input,.control-group.info select,.control-group.info textarea{border-color:#3a87ad;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075);box-shadow:inset 0 1px 1px rgba(0,0,0,0.075)}.control-group.info input:focus,.control-group.info select:focus,.control-group.info textarea:focus{border-color:#2d6987;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3;-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3;box-shadow:inset 0 1px 1px rgba(0,0,0,0.075),0 0 6px #7ab5d3}.control-group.info .input-prepend .add-on,.control-group.info .input-append .add-on{color:#3a87ad;background-color:#d9edf7;border-color:#3a87ad}input:focus:invalid,textarea:focus:invalid,select:focus:invalid{color:#b94a48;border-color:#ee5f5b}input:focus:invalid:focus,textarea:focus:invalid:focus,select:focus:invalid:focus{border-color:#e9322d;-webkit-box-shadow:0 0 6px #f8b9b7;-moz-box-shadow:0 0 6px #f8b9b7;box-shadow:0 0 6px #f8b9b7}.form-actions{padding:19px 20px 20px;margin-top:20px;margin-bottom:20px;background-color:#f5f5f5;border-top:1px solid #e5e5e5;*zoom:1}.form-actions:before,.form-actions:after{display:table;line-height:0;content:""}.form-actions:after{clear:both}.help-block,.help-inline{color:#595959}.help-block{display:block;margin-bottom:10px}.help-inline{display:inline-block;*display:inline;padding-left:5px;vertical-align:middle;*zoom:1}.input-append,.input-prepend{display:inline-block;margin-bottom:10px;font-size:0;white-space:nowrap;vertical-align:middle}.input-append input,.input-prepend input,.input-append select,.input-prepend select,.input-append .uneditable-input,.input-prepend .uneditable-input,.input-append .dropdown-menu,.input-prepend .dropdown-menu,.input-append .popover,.input-prepend .popover{font-size:14px}.input-append input,.input-prepend input,.input-append select,.input-prepend select,.input-append .uneditable-input,.input-prepend .uneditable-input{position:relative;margin-bottom:0;*margin-left:0;vertical-align:top;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-append input:focus,.input-prepend input:focus,.input-append select:focus,.input-prepend select:focus,.input-append .uneditable-input:focus,.input-prepend .uneditable-input:focus{z-index:2}.input-append .add-on,.input-prepend .add-on{display:inline-block;width:auto;height:20px;min-width:16px;padding:4px 5px;font-size:14px;font-weight:normal;line-height:20px;text-align:center;text-shadow:0 1px 0 #fff;background-color:#eee;border:1px solid #ccc}.input-append .add-on,.input-prepend .add-on,.input-append .btn,.input-prepend .btn,.input-append .btn-group>.dropdown-toggle,.input-prepend .btn-group>.dropdown-toggle{vertical-align:top;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.input-append .active,.input-prepend .active{background-color:#a9dba9;border-color:#46a546}.input-prepend .add-on,.input-prepend .btn{margin-right:-1px}.input-prepend .add-on:first-child,.input-prepend .btn:first-child{-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.input-append input,.input-append select,.input-append .uneditable-input{-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.input-append input+.btn-group .btn:last-child,.input-append select+.btn-group .btn:last-child,.input-append .uneditable-input+.btn-group .btn:last-child{-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-append .add-on,.input-append .btn,.input-append .btn-group{margin-left:-1px}.input-append .add-on:last-child,.input-append .btn:last-child,.input-append .btn-group:last-child>.dropdown-toggle{-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-prepend.input-append input,.input-prepend.input-append select,.input-prepend.input-append .uneditable-input{-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.input-prepend.input-append input+.btn-group .btn,.input-prepend.input-append select+.btn-group .btn,.input-prepend.input-append .uneditable-input+.btn-group .btn{-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-prepend.input-append .add-on:first-child,.input-prepend.input-append .btn:first-child{margin-right:-1px;-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.input-prepend.input-append .add-on:last-child,.input-prepend.input-append .btn:last-child{margin-left:-1px;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.input-prepend.input-append .btn-group:first-child{margin-left:0}input.search-query{padding-right:14px;padding-right:4px \9;padding-left:14px;padding-left:4px \9;margin-bottom:0;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}.form-search .input-append .search-query,.form-search .input-prepend .search-query{-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.form-search .input-append .search-query{-webkit-border-radius:14px 0 0 14px;-moz-border-radius:14px 0 0 14px;border-radius:14px 0 0 14px}.form-search .input-append .btn{-webkit-border-radius:0 14px 14px 0;-moz-border-radius:0 14px 14px 0;border-radius:0 14px 14px 0}.form-search .input-prepend .search-query{-webkit-border-radius:0 14px 14px 0;-moz-border-radius:0 14px 14px 0;border-radius:0 14px 14px 0}.form-search .input-prepend .btn{-webkit-border-radius:14px 0 0 14px;-moz-border-radius:14px 0 0 14px;border-radius:14px 0 0 14px}.form-search input,.form-inline input,.form-horizontal input,.form-search textarea,.form-inline textarea,.form-horizontal textarea,.form-search select,.form-inline select,.form-horizontal select,.form-search .help-inline,.form-inline .help-inline,.form-horizontal .help-inline,.form-search .uneditable-input,.form-inline .uneditable-input,.form-horizontal .uneditable-input,.form-search .input-prepend,.form-inline .input-prepend,.form-horizontal .input-prepend,.form-search .input-append,.form-inline .input-append,.form-horizontal .input-append{display:inline-block;*display:inline;margin-bottom:0;vertical-align:middle;*zoom:1}.form-search .hide,.form-inline .hide,.form-horizontal .hide{display:none}.form-search label,.form-inline label,.form-search .btn-group,.form-inline .btn-group{display:inline-block}.form-search .input-append,.form-inline .input-append,.form-search .input-prepend,.form-inline .input-prepend{margin-bottom:0}.form-search .radio,.form-search .checkbox,.form-inline .radio,.form-inline .checkbox{padding-left:0;margin-bottom:0;vertical-align:middle}.form-search .radio input[type="radio"],.form-search .checkbox input[type="checkbox"],.form-inline .radio input[type="radio"],.form-inline .checkbox input[type="checkbox"]{float:left;margin-right:3px;margin-left:0}.control-group{margin-bottom:10px}legend+.control-group{margin-top:20px;-webkit-margin-top-collapse:separate}.form-horizontal .control-group{margin-bottom:20px;*zoom:1}.form-horizontal .control-group:before,.form-horizontal .control-group:after{display:table;line-height:0;content:""}.form-horizontal .control-group:after{clear:both}.form-horizontal .control-label{float:left;width:160px;padding-top:5px;text-align:right}.form-horizontal .controls{*display:inline-block;*padding-left:20px;margin-left:180px;*margin-left:0}.form-horizontal .controls:first-child{*padding-left:180px}.form-horizontal .help-block{margin-bottom:0}.form-horizontal input+.help-block,.form-horizontal select+.help-block,.form-horizontal textarea+.help-block,.form-horizontal .uneditable-input+.help-block,.form-horizontal .input-prepend+.help-block,.form-horizontal .input-append+.help-block{margin-top:10px}.form-horizontal .form-actions{padding-left:180px}table{max-width:100%;background-color:transparent;border-collapse:collapse;border-spacing:0}.table{width:100%;margin-bottom:20px}.table th,.table td{padding:8px;line-height:20px;text-align:left;vertical-align:top;border-top:1px solid #ddd}.table th{font-weight:bold}.table thead th{vertical-align:bottom}.table caption+thead tr:first-child th,.table caption+thead tr:first-child td,.table colgroup+thead tr:first-child th,.table colgroup+thead tr:first-child td,.table thead:first-child tr:first-child th,.table thead:first-child tr:first-child td{border-top:0}.table tbody+tbody{border-top:2px solid #ddd}.table .table{background-color:#fff}.table-condensed th,.table-condensed td{padding:4px 5px}.table-bordered{border:1px solid #ddd;border-collapse:separate;*border-collapse:collapse;border-left:0;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.table-bordered th,.table-bordered td{border-left:1px solid #ddd}.table-bordered caption+thead tr:first-child th,.table-bordered caption+tbody tr:first-child th,.table-bordered caption+tbody tr:first-child td,.table-bordered colgroup+thead tr:first-child th,.table-bordered colgroup+tbody tr:first-child th,.table-bordered colgroup+tbody tr:first-child td,.table-bordered thead:first-child tr:first-child th,.table-bordered tbody:first-child tr:first-child th,.table-bordered tbody:first-child tr:first-child td{border-top:0}.table-bordered thead:first-child tr:first-child>th:first-child,.table-bordered tbody:first-child tr:first-child>td:first-child,.table-bordered tbody:first-child tr:first-child>th:first-child{-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-topleft:4px}.table-bordered thead:first-child tr:first-child>th:last-child,.table-bordered tbody:first-child tr:first-child>td:last-child,.table-bordered tbody:first-child tr:first-child>th:last-child{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-moz-border-radius-topright:4px}.table-bordered thead:last-child tr:last-child>th:first-child,.table-bordered tbody:last-child tr:last-child>td:first-child,.table-bordered tbody:last-child tr:last-child>th:first-child,.table-bordered tfoot:last-child tr:last-child>td:first-child,.table-bordered tfoot:last-child tr:last-child>th:first-child{-webkit-border-bottom-left-radius:4px;border-bottom-left-radius:4px;-moz-border-radius-bottomleft:4px}.table-bordered thead:last-child tr:last-child>th:last-child,.table-bordered tbody:last-child tr:last-child>td:last-child,.table-bordered tbody:last-child tr:last-child>th:last-child,.table-bordered tfoot:last-child tr:last-child>td:last-child,.table-bordered tfoot:last-child tr:last-child>th:last-child{-webkit-border-bottom-right-radius:4px;border-bottom-right-radius:4px;-moz-border-radius-bottomright:4px}.table-bordered tfoot+tbody:last-child tr:last-child td:first-child{-webkit-border-bottom-left-radius:0;border-bottom-left-radius:0;-moz-border-radius-bottomleft:0}.table-bordered tfoot+tbody:last-child tr:last-child td:last-child{-webkit-border-bottom-right-radius:0;border-bottom-right-radius:0;-moz-border-radius-bottomright:0}.table-bordered caption+thead tr:first-child th:first-child,.table-bordered caption+tbody tr:first-child td:first-child,.table-bordered colgroup+thead tr:first-child th:first-child,.table-bordered colgroup+tbody tr:first-child td:first-child{-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-topleft:4px}.table-bordered caption+thead tr:first-child th:last-child,.table-bordered caption+tbody tr:first-child td:last-child,.table-bordered colgroup+thead tr:first-child th:last-child,.table-bordered colgroup+tbody tr:first-child td:last-child{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-moz-border-radius-topright:4px}.table-striped tbody>tr:nth-child(odd)>td,.table-striped tbody>tr:nth-child(odd)>th{background-color:#f9f9f9}.table-hover tbody tr:hover>td,.table-hover tbody tr:hover>th{background-color:#f5f5f5}table td[class*="span"],table th[class*="span"],.row-fluid table td[class*="span"],.row-fluid table th[class*="span"]{display:table-cell;float:none;margin-left:0}.table td.span1,.table th.span1{float:none;width:44px;margin-left:0}.table td.span2,.table th.span2{float:none;width:124px;margin-left:0}.table td.span3,.table th.span3{float:none;width:204px;margin-left:0}.table td.span4,.table th.span4{float:none;width:284px;margin-left:0}.table td.span5,.table th.span5{float:none;width:364px;margin-left:0}.table td.span6,.table th.span6{float:none;width:444px;margin-left:0}.table td.span7,.table th.span7{float:none;width:524px;margin-left:0}.table td.span8,.table th.span8{float:none;width:604px;margin-left:0}.table td.span9,.table th.span9{float:none;width:684px;margin-left:0}.table td.span10,.table th.span10{float:none;width:764px;margin-left:0}.table td.span11,.table th.span11{float:none;width:844px;margin-left:0}.table td.span12,.table th.span12{float:none;width:924px;margin-left:0}.table tbody tr.success>td{background-color:#dff0d8}.table tbody tr.error>td{background-color:#f2dede}.table tbody tr.warning>td{background-color:#fcf8e3}.table tbody tr.info>td{background-color:#d9edf7}.table-hover tbody tr.success:hover>td{background-color:#d0e9c6}.table-hover tbody tr.error:hover>td{background-color:#ebcccc}.table-hover tbody tr.warning:hover>td{background-color:#faf2cc}.table-hover tbody tr.info:hover>td{background-color:#c4e3f3}[class^="icon-"],[class*=" icon-"]{display:inline-block;width:14px;height:14px;margin-top:1px;*margin-right:.3em;line-height:14px;vertical-align:text-top;background-image:url("../img/glyphicons-halflings.png");background-position:14px 14px;background-repeat:no-repeat}.icon-white,.nav-pills>.active>a>[class^="icon-"],.nav-pills>.active>a>[class*=" icon-"],.nav-list>.active>a>[class^="icon-"],.nav-list>.active>a>[class*=" icon-"],.navbar-inverse .nav>.active>a>[class^="icon-"],.navbar-inverse .nav>.active>a>[class*=" icon-"],.dropdown-menu>li>a:hover>[class^="icon-"],.dropdown-menu>li>a:focus>[class^="icon-"],.dropdown-menu>li>a:hover>[class*=" icon-"],.dropdown-menu>li>a:focus>[class*=" icon-"],.dropdown-menu>.active>a>[class^="icon-"],.dropdown-menu>.active>a>[class*=" icon-"],.dropdown-submenu:hover>a>[class^="icon-"],.dropdown-submenu:focus>a>[class^="icon-"],.dropdown-submenu:hover>a>[class*=" icon-"],.dropdown-submenu:focus>a>[class*=" icon-"]{background-image:url("../img/glyphicons-halflings-white.png")}.icon-glass{background-position:0 0}.icon-music{background-position:-24px 0}.icon-search{background-position:-48px 0}.icon-envelope{background-position:-72px 0}.icon-heart{background-position:-96px 0}.icon-star{background-position:-120px 0}.icon-star-empty{background-position:-144px 0}.icon-user{background-position:-168px 0}.icon-film{background-position:-192px 0}.icon-th-large{background-position:-216px 0}.icon-th{background-position:-240px 0}.icon-th-list{background-position:-264px 0}.icon-ok{background-position:-288px 0}.icon-remove{background-position:-312px 0}.icon-zoom-in{background-position:-336px 0}.icon-zoom-out{background-position:-360px 0}.icon-off{background-position:-384px 0}.icon-signal{background-position:-408px 0}.icon-cog{background-position:-432px 0}.icon-trash{background-position:-456px 0}.icon-home{background-position:0 -24px}.icon-file{background-position:-24px -24px}.icon-time{background-position:-48px -24px}.icon-road{background-position:-72px -24px}.icon-download-alt{background-position:-96px -24px}.icon-download{background-position:-120px -24px}.icon-upload{background-position:-144px -24px}.icon-inbox{background-position:-168px -24px}.icon-play-circle{background-position:-192px -24px}.icon-repeat{background-position:-216px -24px}.icon-refresh{background-position:-240px -24px}.icon-list-alt{background-position:-264px -24px}.icon-lock{background-position:-287px -24px}.icon-flag{background-position:-312px -24px}.icon-headphones{background-position:-336px -24px}.icon-volume-off{background-position:-360px -24px}.icon-volume-down{background-position:-384px -24px}.icon-volume-up{background-position:-408px -24px}.icon-qrcode{background-position:-432px -24px}.icon-barcode{background-position:-456px -24px}.icon-tag{background-position:0 -48px}.icon-tags{background-position:-25px -48px}.icon-book{background-position:-48px -48px}.icon-bookmark{background-position:-72px -48px}.icon-print{background-position:-96px -48px}.icon-camera{background-position:-120px -48px}.icon-font{background-position:-144px -48px}.icon-bold{background-position:-167px -48px}.icon-italic{background-position:-192px -48px}.icon-text-height{background-position:-216px -48px}.icon-text-width{background-position:-240px -48px}.icon-align-left{background-position:-264px -48px}.icon-align-center{background-position:-288px -48px}.icon-align-right{background-position:-312px -48px}.icon-align-justify{background-position:-336px -48px}.icon-list{background-position:-360px -48px}.icon-indent-left{background-position:-384px -48px}.icon-indent-right{background-position:-408px -48px}.icon-facetime-video{background-position:-432px -48px}.icon-picture{background-position:-456px -48px}.icon-pencil{background-position:0 -72px}.icon-map-marker{background-position:-24px -72px}.icon-adjust{background-position:-48px -72px}.icon-tint{background-position:-72px -72px}.icon-edit{background-position:-96px -72px}.icon-share{background-position:-120px -72px}.icon-check{background-position:-144px -72px}.icon-move{background-position:-168px -72px}.icon-step-backward{background-position:-192px -72px}.icon-fast-backward{background-position:-216px -72px}.icon-backward{background-position:-240px -72px}.icon-play{background-position:-264px -72px}.icon-pause{background-position:-288px -72px}.icon-stop{background-position:-312px -72px}.icon-forward{background-position:-336px -72px}.icon-fast-forward{background-position:-360px -72px}.icon-step-forward{background-position:-384px -72px}.icon-eject{background-position:-408px -72px}.icon-chevron-left{background-position:-432px -72px}.icon-chevron-right{background-position:-456px -72px}.icon-plus-sign{background-position:0 -96px}.icon-minus-sign{background-position:-24px -96px}.icon-remove-sign{background-position:-48px -96px}.icon-ok-sign{background-position:-72px -96px}.icon-question-sign{background-position:-96px -96px}.icon-info-sign{background-position:-120px -96px}.icon-screenshot{background-position:-144px -96px}.icon-remove-circle{background-position:-168px -96px}.icon-ok-circle{background-position:-192px -96px}.icon-ban-circle{background-position:-216px -96px}.icon-arrow-left{background-position:-240px -96px}.icon-arrow-right{background-position:-264px -96px}.icon-arrow-up{background-position:-289px -96px}.icon-arrow-down{background-position:-312px -96px}.icon-share-alt{background-position:-336px -96px}.icon-resize-full{background-position:-360px -96px}.icon-resize-small{background-position:-384px -96px}.icon-plus{background-position:-408px -96px}.icon-minus{background-position:-433px -96px}.icon-asterisk{background-position:-456px -96px}.icon-exclamation-sign{background-position:0 -120px}.icon-gift{background-position:-24px -120px}.icon-leaf{background-position:-48px -120px}.icon-fire{background-position:-72px -120px}.icon-eye-open{background-position:-96px -120px}.icon-eye-close{background-position:-120px -120px}.icon-warning-sign{background-position:-144px -120px}.icon-plane{background-position:-168px -120px}.icon-calendar{background-position:-192px -120px}.icon-random{width:16px;background-position:-216px -120px}.icon-comment{background-position:-240px -120px}.icon-magnet{background-position:-264px -120px}.icon-chevron-up{background-position:-288px -120px}.icon-chevron-down{background-position:-313px -119px}.icon-retweet{background-position:-336px -120px}.icon-shopping-cart{background-position:-360px -120px}.icon-folder-close{width:16px;background-position:-384px -120px}.icon-folder-open{width:16px;background-position:-408px -120px}.icon-resize-vertical{background-position:-432px -119px}.icon-resize-horizontal{background-position:-456px -118px}.icon-hdd{background-position:0 -144px}.icon-bullhorn{background-position:-24px -144px}.icon-bell{background-position:-48px -144px}.icon-certificate{background-position:-72px -144px}.icon-thumbs-up{background-position:-96px -144px}.icon-thumbs-down{background-position:-120px -144px}.icon-hand-right{background-position:-144px -144px}.icon-hand-left{background-position:-168px -144px}.icon-hand-up{background-position:-192px -144px}.icon-hand-down{background-position:-216px -144px}.icon-circle-arrow-right{background-position:-240px -144px}.icon-circle-arrow-left{background-position:-264px -144px}.icon-circle-arrow-up{background-position:-288px -144px}.icon-circle-arrow-down{background-position:-312px -144px}.icon-globe{background-position:-336px -144px}.icon-wrench{background-position:-360px -144px}.icon-tasks{background-position:-384px -144px}.icon-filter{background-position:-408px -144px}.icon-briefcase{background-position:-432px -144px}.icon-fullscreen{background-position:-456px -144px}.dropup,.dropdown{position:relative}.dropdown-toggle{*margin-bottom:-3px}.dropdown-toggle:active,.open .dropdown-toggle{outline:0}.caret{display:inline-block;width:0;height:0;vertical-align:top;border-top:4px solid #000;border-right:4px solid transparent;border-left:4px solid transparent;content:""}.dropdown .caret{margin-top:8px;margin-left:2px}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:160px;padding:5px 0;margin:2px 0 0;list-style:none;background-color:#fff;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);*border-right-width:2px;*border-bottom-width:2px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,0.2);-moz-box-shadow:0 5px 10px rgba(0,0,0,0.2);box-shadow:0 5px 10px rgba(0,0,0,0.2);-webkit-background-clip:padding-box;-moz-background-clip:padding;background-clip:padding-box}.dropdown-menu.pull-right{right:0;left:auto}.dropdown-menu .divider{*width:100%;height:1px;margin:9px 1px;*margin:-5px 0 5px;overflow:hidden;background-color:#e5e5e5;border-bottom:1px solid #fff}.dropdown-menu>li>a{display:block;padding:3px 20px;clear:both;font-weight:normal;line-height:20px;color:#333;white-space:nowrap}.dropdown-menu>li>a:hover,.dropdown-menu>li>a:focus,.dropdown-submenu:hover>a,.dropdown-submenu:focus>a{color:#fff;text-decoration:none;background-color:#0081c2;background-image:-moz-linear-gradient(top,#08c,#0077b3);background-image:-webkit-gradient(linear,0 0,0 100%,from(#08c),to(#0077b3));background-image:-webkit-linear-gradient(top,#08c,#0077b3);background-image:-o-linear-gradient(top,#08c,#0077b3);background-image:linear-gradient(to bottom,#08c,#0077b3);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc',endColorstr='#ff0077b3',GradientType=0)}.dropdown-menu>.active>a,.dropdown-menu>.active>a:hover,.dropdown-menu>.active>a:focus{color:#fff;text-decoration:none;background-color:#0081c2;background-image:-moz-linear-gradient(top,#08c,#0077b3);background-image:-webkit-gradient(linear,0 0,0 100%,from(#08c),to(#0077b3));background-image:-webkit-linear-gradient(top,#08c,#0077b3);background-image:-o-linear-gradient(top,#08c,#0077b3);background-image:linear-gradient(to bottom,#08c,#0077b3);background-repeat:repeat-x;outline:0;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc',endColorstr='#ff0077b3',GradientType=0)}.dropdown-menu>.disabled>a,.dropdown-menu>.disabled>a:hover,.dropdown-menu>.disabled>a:focus{color:#999}.dropdown-menu>.disabled>a:hover,.dropdown-menu>.disabled>a:focus{text-decoration:none;cursor:default;background-color:transparent;background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.open{*z-index:1000}.open>.dropdown-menu{display:block}.dropdown-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:990}.pull-right>.dropdown-menu{right:0;left:auto}.dropup .caret,.navbar-fixed-bottom .dropdown .caret{border-top:0;border-bottom:4px solid #000;content:""}.dropup .dropdown-menu,.navbar-fixed-bottom .dropdown .dropdown-menu{top:auto;bottom:100%;margin-bottom:1px}.dropdown-submenu{position:relative}.dropdown-submenu>.dropdown-menu{top:0;left:100%;margin-top:-6px;margin-left:-1px;-webkit-border-radius:0 6px 6px 6px;-moz-border-radius:0 6px 6px 6px;border-radius:0 6px 6px 6px}.dropdown-submenu:hover>.dropdown-menu{display:block}.dropup .dropdown-submenu>.dropdown-menu{top:auto;bottom:0;margin-top:0;margin-bottom:-2px;-webkit-border-radius:5px 5px 5px 0;-moz-border-radius:5px 5px 5px 0;border-radius:5px 5px 5px 0}.dropdown-submenu>a:after{display:block;float:right;width:0;height:0;margin-top:5px;margin-right:-10px;border-color:transparent;border-left-color:#ccc;border-style:solid;border-width:5px 0 5px 5px;content:" "}.dropdown-submenu:hover>a:after{border-left-color:#fff}.dropdown-submenu.pull-left{float:none}.dropdown-submenu.pull-left>.dropdown-menu{left:-100%;margin-left:10px;-webkit-border-radius:6px 0 6px 6px;-moz-border-radius:6px 0 6px 6px;border-radius:6px 0 6px 6px}.dropdown .dropdown-menu .nav-header{padding-right:20px;padding-left:20px}.typeahead{z-index:1051;margin-top:2px;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.well{min-height:20px;padding:19px;margin-bottom:20px;background-color:#f5f5f5;border:1px solid #e3e3e3;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,0.05);box-shadow:inset 0 1px 1px rgba(0,0,0,0.05)}.well blockquote{border-color:#ddd;border-color:rgba(0,0,0,0.15)}.well-large{padding:24px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.well-small{padding:9px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.fade{opacity:0;-webkit-transition:opacity .15s linear;-moz-transition:opacity .15s linear;-o-transition:opacity .15s linear;transition:opacity .15s linear}.fade.in{opacity:1}.collapse{position:relative;height:0;overflow:hidden;-webkit-transition:height .35s ease;-moz-transition:height .35s ease;-o-transition:height .35s ease;transition:height .35s ease}.collapse.in{height:auto}.close{float:right;font-size:20px;font-weight:bold;line-height:20px;color:#000;text-shadow:0 1px 0 #fff;opacity:.2;filter:alpha(opacity=20)}.close:hover,.close:focus{color:#000;text-decoration:none;cursor:pointer;opacity:.4;filter:alpha(opacity=40)}button.close{padding:0;cursor:pointer;background:transparent;border:0;-webkit-appearance:none}.btn{display:inline-block;*display:inline;padding:4px 12px;margin-bottom:0;*margin-left:.3em;font-size:14px;line-height:20px;color:#333;text-align:center;text-shadow:0 1px 1px rgba(255,255,255,0.75);vertical-align:middle;cursor:pointer;background-color:#f5f5f5;*background-color:#e6e6e6;background-image:-moz-linear-gradient(top,#fff,#e6e6e6);background-image:-webkit-gradient(linear,0 0,0 100%,from(#fff),to(#e6e6e6));background-image:-webkit-linear-gradient(top,#fff,#e6e6e6);background-image:-o-linear-gradient(top,#fff,#e6e6e6);background-image:linear-gradient(to bottom,#fff,#e6e6e6);background-repeat:repeat-x;border:1px solid #ccc;*border:0;border-color:#e6e6e6 #e6e6e6 #bfbfbf;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);border-bottom-color:#b3b3b3;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff',endColorstr='#ffe6e6e6',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false);*zoom:1;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05);box-shadow:inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05)}.btn:hover,.btn:focus,.btn:active,.btn.active,.btn.disabled,.btn[disabled]{color:#333;background-color:#e6e6e6;*background-color:#d9d9d9}.btn:active,.btn.active{background-color:#ccc \9}.btn:first-child{*margin-left:0}.btn:hover,.btn:focus{color:#333;text-decoration:none;background-position:0 -15px;-webkit-transition:background-position .1s linear;-moz-transition:background-position .1s linear;-o-transition:background-position .1s linear;transition:background-position .1s linear}.btn:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}.btn.active,.btn:active{background-image:none;outline:0;-webkit-box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05);box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05)}.btn.disabled,.btn[disabled]{cursor:default;background-image:none;opacity:.65;filter:alpha(opacity=65);-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none}.btn-large{padding:11px 19px;font-size:17.5px;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.btn-large [class^="icon-"],.btn-large [class*=" icon-"]{margin-top:4px}.btn-small{padding:2px 10px;font-size:11.9px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.btn-small [class^="icon-"],.btn-small [class*=" icon-"]{margin-top:0}.btn-mini [class^="icon-"],.btn-mini [class*=" icon-"]{margin-top:-1px}.btn-mini{padding:0 6px;font-size:10.5px;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.btn-block{display:block;width:100%;padding-right:0;padding-left:0;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.btn-block+.btn-block{margin-top:5px}input[type="submit"].btn-block,input[type="reset"].btn-block,input[type="button"].btn-block{width:100%}.btn-primary.active,.btn-warning.active,.btn-danger.active,.btn-success.active,.btn-info.active,.btn-inverse.active{color:rgba(255,255,255,0.75)}.btn-primary{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#006dcc;*background-color:#04c;background-image:-moz-linear-gradient(top,#08c,#04c);background-image:-webkit-gradient(linear,0 0,0 100%,from(#08c),to(#04c));background-image:-webkit-linear-gradient(top,#08c,#04c);background-image:-o-linear-gradient(top,#08c,#04c);background-image:linear-gradient(to bottom,#08c,#04c);background-repeat:repeat-x;border-color:#04c #04c #002a80;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff0088cc',endColorstr='#ff0044cc',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-primary:hover,.btn-primary:focus,.btn-primary:active,.btn-primary.active,.btn-primary.disabled,.btn-primary[disabled]{color:#fff;background-color:#04c;*background-color:#003bb3}.btn-primary:active,.btn-primary.active{background-color:#039 \9}.btn-warning{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#faa732;*background-color:#f89406;background-image:-moz-linear-gradient(top,#fbb450,#f89406);background-image:-webkit-gradient(linear,0 0,0 100%,from(#fbb450),to(#f89406));background-image:-webkit-linear-gradient(top,#fbb450,#f89406);background-image:-o-linear-gradient(top,#fbb450,#f89406);background-image:linear-gradient(to bottom,#fbb450,#f89406);background-repeat:repeat-x;border-color:#f89406 #f89406 #ad6704;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450',endColorstr='#fff89406',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-warning:hover,.btn-warning:focus,.btn-warning:active,.btn-warning.active,.btn-warning.disabled,.btn-warning[disabled]{color:#fff;background-color:#f89406;*background-color:#df8505}.btn-warning:active,.btn-warning.active{background-color:#c67605 \9}.btn-danger{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#da4f49;*background-color:#bd362f;background-image:-moz-linear-gradient(top,#ee5f5b,#bd362f);background-image:-webkit-gradient(linear,0 0,0 100%,from(#ee5f5b),to(#bd362f));background-image:-webkit-linear-gradient(top,#ee5f5b,#bd362f);background-image:-o-linear-gradient(top,#ee5f5b,#bd362f);background-image:linear-gradient(to bottom,#ee5f5b,#bd362f);background-repeat:repeat-x;border-color:#bd362f #bd362f #802420;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b',endColorstr='#ffbd362f',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-danger:hover,.btn-danger:focus,.btn-danger:active,.btn-danger.active,.btn-danger.disabled,.btn-danger[disabled]{color:#fff;background-color:#bd362f;*background-color:#a9302a}.btn-danger:active,.btn-danger.active{background-color:#942a25 \9}.btn-success{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#5bb75b;*background-color:#51a351;background-image:-moz-linear-gradient(top,#62c462,#51a351);background-image:-webkit-gradient(linear,0 0,0 100%,from(#62c462),to(#51a351));background-image:-webkit-linear-gradient(top,#62c462,#51a351);background-image:-o-linear-gradient(top,#62c462,#51a351);background-image:linear-gradient(to bottom,#62c462,#51a351);background-repeat:repeat-x;border-color:#51a351 #51a351 #387038;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462',endColorstr='#ff51a351',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-success:hover,.btn-success:focus,.btn-success:active,.btn-success.active,.btn-success.disabled,.btn-success[disabled]{color:#fff;background-color:#51a351;*background-color:#499249}.btn-success:active,.btn-success.active{background-color:#408140 \9}.btn-info{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#49afcd;*background-color:#2f96b4;background-image:-moz-linear-gradient(top,#5bc0de,#2f96b4);background-image:-webkit-gradient(linear,0 0,0 100%,from(#5bc0de),to(#2f96b4));background-image:-webkit-linear-gradient(top,#5bc0de,#2f96b4);background-image:-o-linear-gradient(top,#5bc0de,#2f96b4);background-image:linear-gradient(to bottom,#5bc0de,#2f96b4);background-repeat:repeat-x;border-color:#2f96b4 #2f96b4 #1f6377;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de',endColorstr='#ff2f96b4',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-info:hover,.btn-info:focus,.btn-info:active,.btn-info.active,.btn-info.disabled,.btn-info[disabled]{color:#fff;background-color:#2f96b4;*background-color:#2a85a0}.btn-info:active,.btn-info.active{background-color:#24748c \9}.btn-inverse{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#363636;*background-color:#222;background-image:-moz-linear-gradient(top,#444,#222);background-image:-webkit-gradient(linear,0 0,0 100%,from(#444),to(#222));background-image:-webkit-linear-gradient(top,#444,#222);background-image:-o-linear-gradient(top,#444,#222);background-image:linear-gradient(to bottom,#444,#222);background-repeat:repeat-x;border-color:#222 #222 #000;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff444444',endColorstr='#ff222222',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.btn-inverse:hover,.btn-inverse:focus,.btn-inverse:active,.btn-inverse.active,.btn-inverse.disabled,.btn-inverse[disabled]{color:#fff;background-color:#222;*background-color:#151515}.btn-inverse:active,.btn-inverse.active{background-color:#080808 \9}button.btn,input[type="submit"].btn{*padding-top:3px;*padding-bottom:3px}button.btn::-moz-focus-inner,input[type="submit"].btn::-moz-focus-inner{padding:0;border:0}button.btn.btn-large,input[type="submit"].btn.btn-large{*padding-top:7px;*padding-bottom:7px}button.btn.btn-small,input[type="submit"].btn.btn-small{*padding-top:3px;*padding-bottom:3px}button.btn.btn-mini,input[type="submit"].btn.btn-mini{*padding-top:1px;*padding-bottom:1px}.btn-link,.btn-link:active,.btn-link[disabled]{background-color:transparent;background-image:none;-webkit-box-shadow:none;-moz-box-shadow:none;box-shadow:none}.btn-link{color:#08c;cursor:pointer;border-color:transparent;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.btn-link:hover,.btn-link:focus{color:#005580;text-decoration:underline;background-color:transparent}.btn-link[disabled]:hover,.btn-link[disabled]:focus{color:#333;text-decoration:none}.btn-group{position:relative;display:inline-block;*display:inline;*margin-left:.3em;font-size:0;white-space:nowrap;vertical-align:middle;*zoom:1}.btn-group:first-child{*margin-left:0}.btn-group+.btn-group{margin-left:5px}.btn-toolbar{margin-top:10px;margin-bottom:10px;font-size:0}.btn-toolbar>.btn+.btn,.btn-toolbar>.btn-group+.btn,.btn-toolbar>.btn+.btn-group{margin-left:5px}.btn-group>.btn{position:relative;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.btn-group>.btn+.btn{margin-left:-1px}.btn-group>.btn,.btn-group>.dropdown-menu,.btn-group>.popover{font-size:14px}.btn-group>.btn-mini{font-size:10.5px}.btn-group>.btn-small{font-size:11.9px}.btn-group>.btn-large{font-size:17.5px}.btn-group>.btn:first-child{margin-left:0;-webkit-border-bottom-left-radius:4px;border-bottom-left-radius:4px;-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-bottomleft:4px;-moz-border-radius-topleft:4px}.btn-group>.btn:last-child,.btn-group>.dropdown-toggle{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-webkit-border-bottom-right-radius:4px;border-bottom-right-radius:4px;-moz-border-radius-topright:4px;-moz-border-radius-bottomright:4px}.btn-group>.btn.large:first-child{margin-left:0;-webkit-border-bottom-left-radius:6px;border-bottom-left-radius:6px;-webkit-border-top-left-radius:6px;border-top-left-radius:6px;-moz-border-radius-bottomleft:6px;-moz-border-radius-topleft:6px}.btn-group>.btn.large:last-child,.btn-group>.large.dropdown-toggle{-webkit-border-top-right-radius:6px;border-top-right-radius:6px;-webkit-border-bottom-right-radius:6px;border-bottom-right-radius:6px;-moz-border-radius-topright:6px;-moz-border-radius-bottomright:6px}.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active{z-index:2}.btn-group .dropdown-toggle:active,.btn-group.open .dropdown-toggle{outline:0}.btn-group>.btn+.dropdown-toggle{*padding-top:5px;padding-right:8px;*padding-bottom:5px;padding-left:8px;-webkit-box-shadow:inset 1px 0 0 rgba(255,255,255,0.125),inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:inset 1px 0 0 rgba(255,255,255,0.125),inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05);box-shadow:inset 1px 0 0 rgba(255,255,255,0.125),inset 0 1px 0 rgba(255,255,255,0.2),0 1px 2px rgba(0,0,0,0.05)}.btn-group>.btn-mini+.dropdown-toggle{*padding-top:2px;padding-right:5px;*padding-bottom:2px;padding-left:5px}.btn-group>.btn-small+.dropdown-toggle{*padding-top:5px;*padding-bottom:4px}.btn-group>.btn-large+.dropdown-toggle{*padding-top:7px;padding-right:12px;*padding-bottom:7px;padding-left:12px}.btn-group.open .dropdown-toggle{background-image:none;-webkit-box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05);box-shadow:inset 0 2px 4px rgba(0,0,0,0.15),0 1px 2px rgba(0,0,0,0.05)}.btn-group.open .btn.dropdown-toggle{background-color:#e6e6e6}.btn-group.open .btn-primary.dropdown-toggle{background-color:#04c}.btn-group.open .btn-warning.dropdown-toggle{background-color:#f89406}.btn-group.open .btn-danger.dropdown-toggle{background-color:#bd362f}.btn-group.open .btn-success.dropdown-toggle{background-color:#51a351}.btn-group.open .btn-info.dropdown-toggle{background-color:#2f96b4}.btn-group.open .btn-inverse.dropdown-toggle{background-color:#222}.btn .caret{margin-top:8px;margin-left:0}.btn-large .caret{margin-top:6px}.btn-large .caret{border-top-width:5px;border-right-width:5px;border-left-width:5px}.btn-mini .caret,.btn-small .caret{margin-top:8px}.dropup .btn-large .caret{border-bottom-width:5px}.btn-primary .caret,.btn-warning .caret,.btn-danger .caret,.btn-info .caret,.btn-success .caret,.btn-inverse .caret{border-top-color:#fff;border-bottom-color:#fff}.btn-group-vertical{display:inline-block;*display:inline;*zoom:1}.btn-group-vertical>.btn{display:block;float:none;max-width:100%;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.btn-group-vertical>.btn+.btn{margin-top:-1px;margin-left:0}.btn-group-vertical>.btn:first-child{-webkit-border-radius:4px 4px 0 0;-moz-border-radius:4px 4px 0 0;border-radius:4px 4px 0 0}.btn-group-vertical>.btn:last-child{-webkit-border-radius:0 0 4px 4px;-moz-border-radius:0 0 4px 4px;border-radius:0 0 4px 4px}.btn-group-vertical>.btn-large:first-child{-webkit-border-radius:6px 6px 0 0;-moz-border-radius:6px 6px 0 0;border-radius:6px 6px 0 0}.btn-group-vertical>.btn-large:last-child{-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px}.alert{padding:8px 35px 8px 14px;margin-bottom:20px;text-shadow:0 1px 0 rgba(255,255,255,0.5);background-color:#fcf8e3;border:1px solid #fbeed5;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.alert,.alert h4{color:#c09853}.alert h4{margin:0}.alert .close{position:relative;top:-2px;right:-21px;line-height:20px}.alert-success{color:#468847;background-color:#dff0d8;border-color:#d6e9c6}.alert-success h4{color:#468847}.alert-danger,.alert-error{color:#b94a48;background-color:#f2dede;border-color:#eed3d7}.alert-danger h4,.alert-error h4{color:#b94a48}.alert-info{color:#3a87ad;background-color:#d9edf7;border-color:#bce8f1}.alert-info h4{color:#3a87ad}.alert-block{padding-top:14px;padding-bottom:14px}.alert-block>p,.alert-block>ul{margin-bottom:0}.alert-block p+p{margin-top:5px}.nav{margin-bottom:20px;margin-left:0;list-style:none}.nav>li>a{display:block}.nav>li>a:hover,.nav>li>a:focus{text-decoration:none;background-color:#eee}.nav>li>a>img{max-width:none}.nav>.pull-right{float:right}.nav-header{display:block;padding:3px 15px;font-size:11px;font-weight:bold;line-height:20px;color:#999;text-shadow:0 1px 0 rgba(255,255,255,0.5);text-transform:uppercase}.nav li+.nav-header{margin-top:9px}.nav-list{padding-right:15px;padding-left:15px;margin-bottom:0}.nav-list>li>a,.nav-list .nav-header{margin-right:-15px;margin-left:-15px;text-shadow:0 1px 0 rgba(255,255,255,0.5)}.nav-list>li>a{padding:3px 15px}.nav-list>.active>a,.nav-list>.active>a:hover,.nav-list>.active>a:focus{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.2);background-color:#08c}.nav-list [class^="icon-"],.nav-list [class*=" icon-"]{margin-right:2px}.nav-list .divider{*width:100%;height:1px;margin:9px 1px;*margin:-5px 0 5px;overflow:hidden;background-color:#e5e5e5;border-bottom:1px solid #fff}.nav-tabs,.nav-pills{*zoom:1}.nav-tabs:before,.nav-pills:before,.nav-tabs:after,.nav-pills:after{display:table;line-height:0;content:""}.nav-tabs:after,.nav-pills:after{clear:both}.nav-tabs>li,.nav-pills>li{float:left}.nav-tabs>li>a,.nav-pills>li>a{padding-right:12px;padding-left:12px;margin-right:2px;line-height:14px}.nav-tabs{border-bottom:1px solid #ddd}.nav-tabs>li{margin-bottom:-1px}.nav-tabs>li>a{padding-top:8px;padding-bottom:8px;line-height:20px;border:1px solid transparent;-webkit-border-radius:4px 4px 0 0;-moz-border-radius:4px 4px 0 0;border-radius:4px 4px 0 0}.nav-tabs>li>a:hover,.nav-tabs>li>a:focus{border-color:#eee #eee #ddd}.nav-tabs>.active>a,.nav-tabs>.active>a:hover,.nav-tabs>.active>a:focus{color:#555;cursor:default;background-color:#fff;border:1px solid #ddd;border-bottom-color:transparent}.nav-pills>li>a{padding-top:8px;padding-bottom:8px;margin-top:2px;margin-bottom:2px;-webkit-border-radius:5px;-moz-border-radius:5px;border-radius:5px}.nav-pills>.active>a,.nav-pills>.active>a:hover,.nav-pills>.active>a:focus{color:#fff;background-color:#08c}.nav-stacked>li{float:none}.nav-stacked>li>a{margin-right:0}.nav-tabs.nav-stacked{border-bottom:0}.nav-tabs.nav-stacked>li>a{border:1px solid #ddd;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.nav-tabs.nav-stacked>li:first-child>a{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-topright:4px;-moz-border-radius-topleft:4px}.nav-tabs.nav-stacked>li:last-child>a{-webkit-border-bottom-right-radius:4px;border-bottom-right-radius:4px;-webkit-border-bottom-left-radius:4px;border-bottom-left-radius:4px;-moz-border-radius-bottomright:4px;-moz-border-radius-bottomleft:4px}.nav-tabs.nav-stacked>li>a:hover,.nav-tabs.nav-stacked>li>a:focus{z-index:2;border-color:#ddd}.nav-pills.nav-stacked>li>a{margin-bottom:3px}.nav-pills.nav-stacked>li:last-child>a{margin-bottom:1px}.nav-tabs .dropdown-menu{-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px}.nav-pills .dropdown-menu{-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.nav .dropdown-toggle .caret{margin-top:6px;border-top-color:#08c;border-bottom-color:#08c}.nav .dropdown-toggle:hover .caret,.nav .dropdown-toggle:focus .caret{border-top-color:#005580;border-bottom-color:#005580}.nav-tabs .dropdown-toggle .caret{margin-top:8px}.nav .active .dropdown-toggle .caret{border-top-color:#fff;border-bottom-color:#fff}.nav-tabs .active .dropdown-toggle .caret{border-top-color:#555;border-bottom-color:#555}.nav>.dropdown.active>a:hover,.nav>.dropdown.active>a:focus{cursor:pointer}.nav-tabs .open .dropdown-toggle,.nav-pills .open .dropdown-toggle,.nav>li.dropdown.open.active>a:hover,.nav>li.dropdown.open.active>a:focus{color:#fff;background-color:#999;border-color:#999}.nav li.dropdown.open .caret,.nav li.dropdown.open.active .caret,.nav li.dropdown.open a:hover .caret,.nav li.dropdown.open a:focus .caret{border-top-color:#fff;border-bottom-color:#fff;opacity:1;filter:alpha(opacity=100)}.tabs-stacked .open>a:hover,.tabs-stacked .open>a:focus{border-color:#999}.tabbable{*zoom:1}.tabbable:before,.tabbable:after{display:table;line-height:0;content:""}.tabbable:after{clear:both}.tab-content{overflow:auto}.tabs-below>.nav-tabs,.tabs-right>.nav-tabs,.tabs-left>.nav-tabs{border-bottom:0}.tab-content>.tab-pane,.pill-content>.pill-pane{display:none}.tab-content>.active,.pill-content>.active{display:block}.tabs-below>.nav-tabs{border-top:1px solid #ddd}.tabs-below>.nav-tabs>li{margin-top:-1px;margin-bottom:0}.tabs-below>.nav-tabs>li>a{-webkit-border-radius:0 0 4px 4px;-moz-border-radius:0 0 4px 4px;border-radius:0 0 4px 4px}.tabs-below>.nav-tabs>li>a:hover,.tabs-below>.nav-tabs>li>a:focus{border-top-color:#ddd;border-bottom-color:transparent}.tabs-below>.nav-tabs>.active>a,.tabs-below>.nav-tabs>.active>a:hover,.tabs-below>.nav-tabs>.active>a:focus{border-color:transparent #ddd #ddd #ddd}.tabs-left>.nav-tabs>li,.tabs-right>.nav-tabs>li{float:none}.tabs-left>.nav-tabs>li>a,.tabs-right>.nav-tabs>li>a{min-width:74px;margin-right:0;margin-bottom:3px}.tabs-left>.nav-tabs{float:left;margin-right:19px;border-right:1px solid #ddd}.tabs-left>.nav-tabs>li>a{margin-right:-1px;-webkit-border-radius:4px 0 0 4px;-moz-border-radius:4px 0 0 4px;border-radius:4px 0 0 4px}.tabs-left>.nav-tabs>li>a:hover,.tabs-left>.nav-tabs>li>a:focus{border-color:#eee #ddd #eee #eee}.tabs-left>.nav-tabs .active>a,.tabs-left>.nav-tabs .active>a:hover,.tabs-left>.nav-tabs .active>a:focus{border-color:#ddd transparent #ddd #ddd;*border-right-color:#fff}.tabs-right>.nav-tabs{float:right;margin-left:19px;border-left:1px solid #ddd}.tabs-right>.nav-tabs>li>a{margin-left:-1px;-webkit-border-radius:0 4px 4px 0;-moz-border-radius:0 4px 4px 0;border-radius:0 4px 4px 0}.tabs-right>.nav-tabs>li>a:hover,.tabs-right>.nav-tabs>li>a:focus{border-color:#eee #eee #eee #ddd}.tabs-right>.nav-tabs .active>a,.tabs-right>.nav-tabs .active>a:hover,.tabs-right>.nav-tabs .active>a:focus{border-color:#ddd #ddd #ddd transparent;*border-left-color:#fff}.nav>.disabled>a{color:#999}.nav>.disabled>a:hover,.nav>.disabled>a:focus{text-decoration:none;cursor:default;background-color:transparent}.navbar{*position:relative;*z-index:2;margin-bottom:20px;overflow:visible}.navbar-inner{min-height:40px;padding-right:20px;padding-left:20px;background-color:#fafafa;background-image:-moz-linear-gradient(top,#fff,#f2f2f2);background-image:-webkit-gradient(linear,0 0,0 100%,from(#fff),to(#f2f2f2));background-image:-webkit-linear-gradient(top,#fff,#f2f2f2);background-image:-o-linear-gradient(top,#fff,#f2f2f2);background-image:linear-gradient(to bottom,#fff,#f2f2f2);background-repeat:repeat-x;border:1px solid #d4d4d4;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffffffff',endColorstr='#fff2f2f2',GradientType=0);*zoom:1;-webkit-box-shadow:0 1px 4px rgba(0,0,0,0.065);-moz-box-shadow:0 1px 4px rgba(0,0,0,0.065);box-shadow:0 1px 4px rgba(0,0,0,0.065)}.navbar-inner:before,.navbar-inner:after{display:table;line-height:0;content:""}.navbar-inner:after{clear:both}.navbar .container{width:auto}.nav-collapse.collapse{height:auto;overflow:visible}.navbar .brand{display:block;float:left;padding:10px 20px 10px;margin-left:-20px;font-size:20px;font-weight:200;color:#777;text-shadow:0 1px 0 #fff}.navbar .brand:hover,.navbar .brand:focus{text-decoration:none}.navbar-text{margin-bottom:0;line-height:40px;color:#777}.navbar-link{color:#777}.navbar-link:hover,.navbar-link:focus{color:#333}.navbar .divider-vertical{height:40px;margin:0 9px;border-right:1px solid #fff;border-left:1px solid #f2f2f2}.navbar .btn,.navbar .btn-group{margin-top:5px}.navbar .btn-group .btn,.navbar .input-prepend .btn,.navbar .input-append .btn,.navbar .input-prepend .btn-group,.navbar .input-append .btn-group{margin-top:0}.navbar-form{margin-bottom:0;*zoom:1}.navbar-form:before,.navbar-form:after{display:table;line-height:0;content:""}.navbar-form:after{clear:both}.navbar-form input,.navbar-form select,.navbar-form .radio,.navbar-form .checkbox{margin-top:5px}.navbar-form input,.navbar-form select,.navbar-form .btn{display:inline-block;margin-bottom:0}.navbar-form input[type="image"],.navbar-form input[type="checkbox"],.navbar-form input[type="radio"]{margin-top:3px}.navbar-form .input-append,.navbar-form .input-prepend{margin-top:5px;white-space:nowrap}.navbar-form .input-append input,.navbar-form .input-prepend input{margin-top:0}.navbar-search{position:relative;float:left;margin-top:5px;margin-bottom:0}.navbar-search .search-query{padding:4px 14px;margin-bottom:0;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:13px;font-weight:normal;line-height:1;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}.navbar-static-top{position:static;margin-bottom:0}.navbar-static-top .navbar-inner{-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.navbar-fixed-top,.navbar-fixed-bottom{position:fixed;right:0;left:0;z-index:1030;margin-bottom:0}.navbar-fixed-top .navbar-inner,.navbar-static-top .navbar-inner{border-width:0 0 1px}.navbar-fixed-bottom .navbar-inner{border-width:1px 0 0}.navbar-fixed-top .navbar-inner,.navbar-fixed-bottom .navbar-inner{padding-right:0;padding-left:0;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0}.navbar-static-top .container,.navbar-fixed-top .container,.navbar-fixed-bottom .container{width:940px}.navbar-fixed-top{top:0}.navbar-fixed-top .navbar-inner,.navbar-static-top .navbar-inner{-webkit-box-shadow:0 1px 10px rgba(0,0,0,0.1);-moz-box-shadow:0 1px 10px rgba(0,0,0,0.1);box-shadow:0 1px 10px rgba(0,0,0,0.1)}.navbar-fixed-bottom{bottom:0}.navbar-fixed-bottom .navbar-inner{-webkit-box-shadow:0 -1px 10px rgba(0,0,0,0.1);-moz-box-shadow:0 -1px 10px rgba(0,0,0,0.1);box-shadow:0 -1px 10px rgba(0,0,0,0.1)}.navbar .nav{position:relative;left:0;display:block;float:left;margin:0 10px 0 0}.navbar .nav.pull-right{float:right;margin-right:0}.navbar .nav>li{float:left}.navbar .nav>li>a{float:none;padding:10px 15px 10px;color:#777;text-decoration:none;text-shadow:0 1px 0 #fff}.navbar .nav .dropdown-toggle .caret{margin-top:8px}.navbar .nav>li>a:focus,.navbar .nav>li>a:hover{color:#333;text-decoration:none;background-color:transparent}.navbar .nav>.active>a,.navbar .nav>.active>a:hover,.navbar .nav>.active>a:focus{color:#555;text-decoration:none;background-color:#e5e5e5;-webkit-box-shadow:inset 0 3px 8px rgba(0,0,0,0.125);-moz-box-shadow:inset 0 3px 8px rgba(0,0,0,0.125);box-shadow:inset 0 3px 8px rgba(0,0,0,0.125)}.navbar .btn-navbar{display:none;float:right;padding:7px 10px;margin-right:5px;margin-left:5px;color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#ededed;*background-color:#e5e5e5;background-image:-moz-linear-gradient(top,#f2f2f2,#e5e5e5);background-image:-webkit-gradient(linear,0 0,0 100%,from(#f2f2f2),to(#e5e5e5));background-image:-webkit-linear-gradient(top,#f2f2f2,#e5e5e5);background-image:-o-linear-gradient(top,#f2f2f2,#e5e5e5);background-image:linear-gradient(to bottom,#f2f2f2,#e5e5e5);background-repeat:repeat-x;border-color:#e5e5e5 #e5e5e5 #bfbfbf;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff2f2f2',endColorstr='#ffe5e5e5',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false);-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.075);-moz-box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.075);box-shadow:inset 0 1px 0 rgba(255,255,255,0.1),0 1px 0 rgba(255,255,255,0.075)}.navbar .btn-navbar:hover,.navbar .btn-navbar:focus,.navbar .btn-navbar:active,.navbar .btn-navbar.active,.navbar .btn-navbar.disabled,.navbar .btn-navbar[disabled]{color:#fff;background-color:#e5e5e5;*background-color:#d9d9d9}.navbar .btn-navbar:active,.navbar .btn-navbar.active{background-color:#ccc \9}.navbar .btn-navbar .icon-bar{display:block;width:18px;height:2px;background-color:#f5f5f5;-webkit-border-radius:1px;-moz-border-radius:1px;border-radius:1px;-webkit-box-shadow:0 1px 0 rgba(0,0,0,0.25);-moz-box-shadow:0 1px 0 rgba(0,0,0,0.25);box-shadow:0 1px 0 rgba(0,0,0,0.25)}.btn-navbar .icon-bar+.icon-bar{margin-top:3px}.navbar .nav>li>.dropdown-menu:before{position:absolute;top:-7px;left:9px;display:inline-block;border-right:7px solid transparent;border-bottom:7px solid #ccc;border-left:7px solid transparent;border-bottom-color:rgba(0,0,0,0.2);content:''}.navbar .nav>li>.dropdown-menu:after{position:absolute;top:-6px;left:10px;display:inline-block;border-right:6px solid transparent;border-bottom:6px solid #fff;border-left:6px solid transparent;content:''}.navbar-fixed-bottom .nav>li>.dropdown-menu:before{top:auto;bottom:-7px;border-top:7px solid #ccc;border-bottom:0;border-top-color:rgba(0,0,0,0.2)}.navbar-fixed-bottom .nav>li>.dropdown-menu:after{top:auto;bottom:-6px;border-top:6px solid #fff;border-bottom:0}.navbar .nav li.dropdown>a:hover .caret,.navbar .nav li.dropdown>a:focus .caret{border-top-color:#333;border-bottom-color:#333}.navbar .nav li.dropdown.open>.dropdown-toggle,.navbar .nav li.dropdown.active>.dropdown-toggle,.navbar .nav li.dropdown.open.active>.dropdown-toggle{color:#555;background-color:#e5e5e5}.navbar .nav li.dropdown>.dropdown-toggle .caret{border-top-color:#777;border-bottom-color:#777}.navbar .nav li.dropdown.open>.dropdown-toggle .caret,.navbar .nav li.dropdown.active>.dropdown-toggle .caret,.navbar .nav li.dropdown.open.active>.dropdown-toggle .caret{border-top-color:#555;border-bottom-color:#555}.navbar .pull-right>li>.dropdown-menu,.navbar .nav>li>.dropdown-menu.pull-right{right:0;left:auto}.navbar .pull-right>li>.dropdown-menu:before,.navbar .nav>li>.dropdown-menu.pull-right:before{right:12px;left:auto}.navbar .pull-right>li>.dropdown-menu:after,.navbar .nav>li>.dropdown-menu.pull-right:after{right:13px;left:auto}.navbar .pull-right>li>.dropdown-menu .dropdown-menu,.navbar .nav>li>.dropdown-menu.pull-right .dropdown-menu{right:100%;left:auto;margin-right:-1px;margin-left:0;-webkit-border-radius:6px 0 6px 6px;-moz-border-radius:6px 0 6px 6px;border-radius:6px 0 6px 6px}.navbar-inverse .navbar-inner{background-color:#1b1b1b;background-image:-moz-linear-gradient(top,#222,#111);background-image:-webkit-gradient(linear,0 0,0 100%,from(#222),to(#111));background-image:-webkit-linear-gradient(top,#222,#111);background-image:-o-linear-gradient(top,#222,#111);background-image:linear-gradient(to bottom,#222,#111);background-repeat:repeat-x;border-color:#252525;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff222222',endColorstr='#ff111111',GradientType=0)}.navbar-inverse .brand,.navbar-inverse .nav>li>a{color:#999;text-shadow:0 -1px 0 rgba(0,0,0,0.25)}.navbar-inverse .brand:hover,.navbar-inverse .nav>li>a:hover,.navbar-inverse .brand:focus,.navbar-inverse .nav>li>a:focus{color:#fff}.navbar-inverse .brand{color:#999}.navbar-inverse .navbar-text{color:#999}.navbar-inverse .nav>li>a:focus,.navbar-inverse .nav>li>a:hover{color:#fff;background-color:transparent}.navbar-inverse .nav .active>a,.navbar-inverse .nav .active>a:hover,.navbar-inverse .nav .active>a:focus{color:#fff;background-color:#111}.navbar-inverse .navbar-link{color:#999}.navbar-inverse .navbar-link:hover,.navbar-inverse .navbar-link:focus{color:#fff}.navbar-inverse .divider-vertical{border-right-color:#222;border-left-color:#111}.navbar-inverse .nav li.dropdown.open>.dropdown-toggle,.navbar-inverse .nav li.dropdown.active>.dropdown-toggle,.navbar-inverse .nav li.dropdown.open.active>.dropdown-toggle{color:#fff;background-color:#111}.navbar-inverse .nav li.dropdown>a:hover .caret,.navbar-inverse .nav li.dropdown>a:focus .caret{border-top-color:#fff;border-bottom-color:#fff}.navbar-inverse .nav li.dropdown>.dropdown-toggle .caret{border-top-color:#999;border-bottom-color:#999}.navbar-inverse .nav li.dropdown.open>.dropdown-toggle .caret,.navbar-inverse .nav li.dropdown.active>.dropdown-toggle .caret,.navbar-inverse .nav li.dropdown.open.active>.dropdown-toggle .caret{border-top-color:#fff;border-bottom-color:#fff}.navbar-inverse .navbar-search .search-query{color:#fff;background-color:#515151;border-color:#111;-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1),0 1px 0 rgba(255,255,255,0.15);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1),0 1px 0 rgba(255,255,255,0.15);box-shadow:inset 0 1px 2px rgba(0,0,0,0.1),0 1px 0 rgba(255,255,255,0.15);-webkit-transition:none;-moz-transition:none;-o-transition:none;transition:none}.navbar-inverse .navbar-search .search-query:-moz-placeholder{color:#ccc}.navbar-inverse .navbar-search .search-query:-ms-input-placeholder{color:#ccc}.navbar-inverse .navbar-search .search-query::-webkit-input-placeholder{color:#ccc}.navbar-inverse .navbar-search .search-query:focus,.navbar-inverse .navbar-search .search-query.focused{padding:5px 15px;color:#333;text-shadow:0 1px 0 #fff;background-color:#fff;border:0;outline:0;-webkit-box-shadow:0 0 3px rgba(0,0,0,0.15);-moz-box-shadow:0 0 3px rgba(0,0,0,0.15);box-shadow:0 0 3px rgba(0,0,0,0.15)}.navbar-inverse .btn-navbar{color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#0e0e0e;*background-color:#040404;background-image:-moz-linear-gradient(top,#151515,#040404);background-image:-webkit-gradient(linear,0 0,0 100%,from(#151515),to(#040404));background-image:-webkit-linear-gradient(top,#151515,#040404);background-image:-o-linear-gradient(top,#151515,#040404);background-image:linear-gradient(to bottom,#151515,#040404);background-repeat:repeat-x;border-color:#040404 #040404 #000;border-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff151515',endColorstr='#ff040404',GradientType=0);filter:progid:DXImageTransform.Microsoft.gradient(enabled=false)}.navbar-inverse .btn-navbar:hover,.navbar-inverse .btn-navbar:focus,.navbar-inverse .btn-navbar:active,.navbar-inverse .btn-navbar.active,.navbar-inverse .btn-navbar.disabled,.navbar-inverse .btn-navbar[disabled]{color:#fff;background-color:#040404;*background-color:#000}.navbar-inverse .btn-navbar:active,.navbar-inverse .btn-navbar.active{background-color:#000 \9}.breadcrumb{padding:8px 15px;margin:0 0 20px;list-style:none;background-color:#f5f5f5;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.breadcrumb>li{display:inline-block;*display:inline;text-shadow:0 1px 0 #fff;*zoom:1}.breadcrumb>li>.divider{padding:0 5px;color:#ccc}.breadcrumb>.active{color:#999}.pagination{margin:20px 0}.pagination ul{display:inline-block;*display:inline;margin-bottom:0;margin-left:0;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;*zoom:1;-webkit-box-shadow:0 1px 2px rgba(0,0,0,0.05);-moz-box-shadow:0 1px 2px rgba(0,0,0,0.05);box-shadow:0 1px 2px rgba(0,0,0,0.05)}.pagination ul>li{display:inline}.pagination ul>li>a,.pagination ul>li>span{float:left;padding:4px 12px;line-height:20px;text-decoration:none;background-color:#fff;border:1px solid #ddd;border-left-width:0}.pagination ul>li>a:hover,.pagination ul>li>a:focus,.pagination ul>.active>a,.pagination ul>.active>span{background-color:#f5f5f5}.pagination ul>.active>a,.pagination ul>.active>span{color:#999;cursor:default}.pagination ul>.disabled>span,.pagination ul>.disabled>a,.pagination ul>.disabled>a:hover,.pagination ul>.disabled>a:focus{color:#999;cursor:default;background-color:transparent}.pagination ul>li:first-child>a,.pagination ul>li:first-child>span{border-left-width:1px;-webkit-border-bottom-left-radius:4px;border-bottom-left-radius:4px;-webkit-border-top-left-radius:4px;border-top-left-radius:4px;-moz-border-radius-bottomleft:4px;-moz-border-radius-topleft:4px}.pagination ul>li:last-child>a,.pagination ul>li:last-child>span{-webkit-border-top-right-radius:4px;border-top-right-radius:4px;-webkit-border-bottom-right-radius:4px;border-bottom-right-radius:4px;-moz-border-radius-topright:4px;-moz-border-radius-bottomright:4px}.pagination-centered{text-align:center}.pagination-right{text-align:right}.pagination-large ul>li>a,.pagination-large ul>li>span{padding:11px 19px;font-size:17.5px}.pagination-large ul>li:first-child>a,.pagination-large ul>li:first-child>span{-webkit-border-bottom-left-radius:6px;border-bottom-left-radius:6px;-webkit-border-top-left-radius:6px;border-top-left-radius:6px;-moz-border-radius-bottomleft:6px;-moz-border-radius-topleft:6px}.pagination-large ul>li:last-child>a,.pagination-large ul>li:last-child>span{-webkit-border-top-right-radius:6px;border-top-right-radius:6px;-webkit-border-bottom-right-radius:6px;border-bottom-right-radius:6px;-moz-border-radius-topright:6px;-moz-border-radius-bottomright:6px}.pagination-mini ul>li:first-child>a,.pagination-small ul>li:first-child>a,.pagination-mini ul>li:first-child>span,.pagination-small ul>li:first-child>span{-webkit-border-bottom-left-radius:3px;border-bottom-left-radius:3px;-webkit-border-top-left-radius:3px;border-top-left-radius:3px;-moz-border-radius-bottomleft:3px;-moz-border-radius-topleft:3px}.pagination-mini ul>li:last-child>a,.pagination-small ul>li:last-child>a,.pagination-mini ul>li:last-child>span,.pagination-small ul>li:last-child>span{-webkit-border-top-right-radius:3px;border-top-right-radius:3px;-webkit-border-bottom-right-radius:3px;border-bottom-right-radius:3px;-moz-border-radius-topright:3px;-moz-border-radius-bottomright:3px}.pagination-small ul>li>a,.pagination-small ul>li>span{padding:2px 10px;font-size:11.9px}.pagination-mini ul>li>a,.pagination-mini ul>li>span{padding:0 6px;font-size:10.5px}.pager{margin:20px 0;text-align:center;list-style:none;*zoom:1}.pager:before,.pager:after{display:table;line-height:0;content:""}.pager:after{clear:both}.pager li{display:inline}.pager li>a,.pager li>span{display:inline-block;padding:5px 14px;background-color:#fff;border:1px solid #ddd;-webkit-border-radius:15px;-moz-border-radius:15px;border-radius:15px}.pager li>a:hover,.pager li>a:focus{text-decoration:none;background-color:#f5f5f5}.pager .next>a,.pager .next>span{float:right}.pager .previous>a,.pager .previous>span{float:left}.pager .disabled>a,.pager .disabled>a:hover,.pager .disabled>a:focus,.pager .disabled>span{color:#999;cursor:default;background-color:#fff}.modal-backdrop{position:fixed;top:0;right:0;bottom:0;left:0;z-index:1040;background-color:#000}.modal-backdrop.fade{opacity:0}.modal-backdrop,.modal-backdrop.fade.in{opacity:.8;filter:alpha(opacity=80)}.modal{position:fixed;top:10%;left:50%;z-index:1050;width:560px;margin-left:-280px;background-color:#fff;border:1px solid #999;border:1px solid rgba(0,0,0,0.3);*border:1px solid #999;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;outline:0;-webkit-box-shadow:0 3px 7px rgba(0,0,0,0.3);-moz-box-shadow:0 3px 7px rgba(0,0,0,0.3);box-shadow:0 3px 7px rgba(0,0,0,0.3);-webkit-background-clip:padding-box;-moz-background-clip:padding-box;background-clip:padding-box}.modal.fade{top:-25%;-webkit-transition:opacity .3s linear,top .3s ease-out;-moz-transition:opacity .3s linear,top .3s ease-out;-o-transition:opacity .3s linear,top .3s ease-out;transition:opacity .3s linear,top .3s ease-out}.modal.fade.in{top:10%}.modal-header{padding:9px 15px;border-bottom:1px solid #eee}.modal-header .close{margin-top:2px}.modal-header h3{margin:0;line-height:30px}.modal-body{position:relative;max-height:400px;padding:15px;overflow-y:auto}.modal-form{margin-bottom:0}.modal-footer{padding:14px 15px 15px;margin-bottom:0;text-align:right;background-color:#f5f5f5;border-top:1px solid #ddd;-webkit-border-radius:0 0 6px 6px;-moz-border-radius:0 0 6px 6px;border-radius:0 0 6px 6px;*zoom:1;-webkit-box-shadow:inset 0 1px 0 #fff;-moz-box-shadow:inset 0 1px 0 #fff;box-shadow:inset 0 1px 0 #fff}.modal-footer:before,.modal-footer:after{display:table;line-height:0;content:""}.modal-footer:after{clear:both}.modal-footer .btn+.btn{margin-bottom:0;margin-left:5px}.modal-footer .btn-group .btn+.btn{margin-left:-1px}.modal-footer .btn-block+.btn-block{margin-left:0}.tooltip{position:absolute;z-index:1030;display:block;font-size:11px;line-height:1.4;opacity:0;filter:alpha(opacity=0);visibility:visible}.tooltip.in{opacity:.8;filter:alpha(opacity=80)}.tooltip.top{padding:5px 0;margin-top:-3px}.tooltip.right{padding:0 5px;margin-left:3px}.tooltip.bottom{padding:5px 0;margin-top:3px}.tooltip.left{padding:0 5px;margin-left:-3px}.tooltip-inner{max-width:200px;padding:8px;color:#fff;text-align:center;text-decoration:none;background-color:#000;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.tooltip-arrow{position:absolute;width:0;height:0;border-color:transparent;border-style:solid}.tooltip.top .tooltip-arrow{bottom:0;left:50%;margin-left:-5px;border-top-color:#000;border-width:5px 5px 0}.tooltip.right .tooltip-arrow{top:50%;left:0;margin-top:-5px;border-right-color:#000;border-width:5px 5px 5px 0}.tooltip.left .tooltip-arrow{top:50%;right:0;margin-top:-5px;border-left-color:#000;border-width:5px 0 5px 5px}.tooltip.bottom .tooltip-arrow{top:0;left:50%;margin-left:-5px;border-bottom-color:#000;border-width:0 5px 5px}.popover{position:absolute;top:0;left:0;z-index:1010;display:none;max-width:276px;padding:1px;text-align:left;white-space:normal;background-color:#fff;border:1px solid #ccc;border:1px solid rgba(0,0,0,0.2);-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px;-webkit-box-shadow:0 5px 10px rgba(0,0,0,0.2);-moz-box-shadow:0 5px 10px rgba(0,0,0,0.2);box-shadow:0 5px 10px rgba(0,0,0,0.2);-webkit-background-clip:padding-box;-moz-background-clip:padding;background-clip:padding-box}.popover.top{margin-top:-10px}.popover.right{margin-left:10px}.popover.bottom{margin-top:10px}.popover.left{margin-left:-10px}.popover-title{padding:8px 14px;margin:0;font-size:14px;font-weight:normal;line-height:18px;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;-webkit-border-radius:5px 5px 0 0;-moz-border-radius:5px 5px 0 0;border-radius:5px 5px 0 0}.popover-title:empty{display:none}.popover-content{padding:9px 14px}.popover .arrow,.popover .arrow:after{position:absolute;display:block;width:0;height:0;border-color:transparent;border-style:solid}.popover .arrow{border-width:11px}.popover .arrow:after{border-width:10px;content:""}.popover.top .arrow{bottom:-11px;left:50%;margin-left:-11px;border-top-color:#999;border-top-color:rgba(0,0,0,0.25);border-bottom-width:0}.popover.top .arrow:after{bottom:1px;margin-left:-10px;border-top-color:#fff;border-bottom-width:0}.popover.right .arrow{top:50%;left:-11px;margin-top:-11px;border-right-color:#999;border-right-color:rgba(0,0,0,0.25);border-left-width:0}.popover.right .arrow:after{bottom:-10px;left:1px;border-right-color:#fff;border-left-width:0}.popover.bottom .arrow{top:-11px;left:50%;margin-left:-11px;border-bottom-color:#999;border-bottom-color:rgba(0,0,0,0.25);border-top-width:0}.popover.bottom .arrow:after{top:1px;margin-left:-10px;border-bottom-color:#fff;border-top-width:0}.popover.left .arrow{top:50%;right:-11px;margin-top:-11px;border-left-color:#999;border-left-color:rgba(0,0,0,0.25);border-right-width:0}.popover.left .arrow:after{right:1px;bottom:-10px;border-left-color:#fff;border-right-width:0}.thumbnails{margin-left:-20px;list-style:none;*zoom:1}.thumbnails:before,.thumbnails:after{display:table;line-height:0;content:""}.thumbnails:after{clear:both}.row-fluid .thumbnails{margin-left:0}.thumbnails>li{float:left;margin-bottom:20px;margin-left:20px}.thumbnail{display:block;padding:4px;line-height:20px;border:1px solid #ddd;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;-webkit-box-shadow:0 1px 3px rgba(0,0,0,0.055);-moz-box-shadow:0 1px 3px rgba(0,0,0,0.055);box-shadow:0 1px 3px rgba(0,0,0,0.055);-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;-o-transition:all .2s ease-in-out;transition:all .2s ease-in-out}a.thumbnail:hover,a.thumbnail:focus{border-color:#08c;-webkit-box-shadow:0 1px 4px rgba(0,105,214,0.25);-moz-box-shadow:0 1px 4px rgba(0,105,214,0.25);box-shadow:0 1px 4px rgba(0,105,214,0.25)}.thumbnail>img{display:block;max-width:100%;margin-right:auto;margin-left:auto}.thumbnail .caption{padding:9px;color:#555}.media,.media-body{overflow:hidden;*overflow:visible;zoom:1}.media,.media .media{margin-top:15px}.media:first-child{margin-top:0}.media-object{display:block}.media-heading{margin:0 0 5px}.media>.pull-left{margin-right:10px}.media>.pull-right{margin-left:10px}.media-list{margin-left:0;list-style:none}.label,.badge{display:inline-block;padding:2px 4px;font-size:11.844px;font-weight:bold;line-height:14px;color:#fff;text-shadow:0 -1px 0 rgba(0,0,0,0.25);white-space:nowrap;vertical-align:baseline;background-color:#999}.label{-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px}.badge{padding-right:9px;padding-left:9px;-webkit-border-radius:9px;-moz-border-radius:9px;border-radius:9px}.label:empty,.badge:empty{display:none}a.label:hover,a.label:focus,a.badge:hover,a.badge:focus{color:#fff;text-decoration:none;cursor:pointer}.label-important,.badge-important{background-color:#b94a48}.label-important[href],.badge-important[href]{background-color:#953b39}.label-warning,.badge-warning{background-color:#f89406}.label-warning[href],.badge-warning[href]{background-color:#c67605}.label-success,.badge-success{background-color:#468847}.label-success[href],.badge-success[href]{background-color:#356635}.label-info,.badge-info{background-color:#3a87ad}.label-info[href],.badge-info[href]{background-color:#2d6987}.label-inverse,.badge-inverse{background-color:#333}.label-inverse[href],.badge-inverse[href]{background-color:#1a1a1a}.btn .label,.btn .badge{position:relative;top:-1px}.btn-mini .label,.btn-mini .badge{top:0}@-webkit-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-moz-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-ms-keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}@-o-keyframes progress-bar-stripes{from{background-position:0 0}to{background-position:40px 0}}@keyframes progress-bar-stripes{from{background-position:40px 0}to{background-position:0 0}}.progress{height:20px;margin-bottom:20px;overflow:hidden;background-color:#f7f7f7;background-image:-moz-linear-gradient(top,#f5f5f5,#f9f9f9);background-image:-webkit-gradient(linear,0 0,0 100%,from(#f5f5f5),to(#f9f9f9));background-image:-webkit-linear-gradient(top,#f5f5f5,#f9f9f9);background-image:-o-linear-gradient(top,#f5f5f5,#f9f9f9);background-image:linear-gradient(to bottom,#f5f5f5,#f9f9f9);background-repeat:repeat-x;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fff5f5f5',endColorstr='#fff9f9f9',GradientType=0);-webkit-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1);-moz-box-shadow:inset 0 1px 2px rgba(0,0,0,0.1);box-shadow:inset 0 1px 2px rgba(0,0,0,0.1)}.progress .bar{float:left;width:0;height:100%;font-size:12px;color:#fff;text-align:center;text-shadow:0 -1px 0 rgba(0,0,0,0.25);background-color:#0e90d2;background-image:-moz-linear-gradient(top,#149bdf,#0480be);background-image:-webkit-gradient(linear,0 0,0 100%,from(#149bdf),to(#0480be));background-image:-webkit-linear-gradient(top,#149bdf,#0480be);background-image:-o-linear-gradient(top,#149bdf,#0480be);background-image:linear-gradient(to bottom,#149bdf,#0480be);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff149bdf',endColorstr='#ff0480be',GradientType=0);-webkit-box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);-moz-box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);box-shadow:inset 0 -1px 0 rgba(0,0,0,0.15);-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;-webkit-transition:width .6s ease;-moz-transition:width .6s ease;-o-transition:width .6s ease;transition:width .6s ease}.progress .bar+.bar{-webkit-box-shadow:inset 1px 0 0 rgba(0,0,0,0.15),inset 0 -1px 0 rgba(0,0,0,0.15);-moz-box-shadow:inset 1px 0 0 rgba(0,0,0,0.15),inset 0 -1px 0 rgba(0,0,0,0.15);box-shadow:inset 1px 0 0 rgba(0,0,0,0.15),inset 0 -1px 0 rgba(0,0,0,0.15)}.progress-striped .bar{background-color:#149bdf;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);-webkit-background-size:40px 40px;-moz-background-size:40px 40px;-o-background-size:40px 40px;background-size:40px 40px}.progress.active .bar{-webkit-animation:progress-bar-stripes 2s linear infinite;-moz-animation:progress-bar-stripes 2s linear infinite;-ms-animation:progress-bar-stripes 2s linear infinite;-o-animation:progress-bar-stripes 2s linear infinite;animation:progress-bar-stripes 2s linear infinite}.progress-danger .bar,.progress .bar-danger{background-color:#dd514c;background-image:-moz-linear-gradient(top,#ee5f5b,#c43c35);background-image:-webkit-gradient(linear,0 0,0 100%,from(#ee5f5b),to(#c43c35));background-image:-webkit-linear-gradient(top,#ee5f5b,#c43c35);background-image:-o-linear-gradient(top,#ee5f5b,#c43c35);background-image:linear-gradient(to bottom,#ee5f5b,#c43c35);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ffee5f5b',endColorstr='#ffc43c35',GradientType=0)}.progress-danger.progress-striped .bar,.progress-striped .bar-danger{background-color:#ee5f5b;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent)}.progress-success .bar,.progress .bar-success{background-color:#5eb95e;background-image:-moz-linear-gradient(top,#62c462,#57a957);background-image:-webkit-gradient(linear,0 0,0 100%,from(#62c462),to(#57a957));background-image:-webkit-linear-gradient(top,#62c462,#57a957);background-image:-o-linear-gradient(top,#62c462,#57a957);background-image:linear-gradient(to bottom,#62c462,#57a957);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff62c462',endColorstr='#ff57a957',GradientType=0)}.progress-success.progress-striped .bar,.progress-striped .bar-success{background-color:#62c462;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent)}.progress-info .bar,.progress .bar-info{background-color:#4bb1cf;background-image:-moz-linear-gradient(top,#5bc0de,#339bb9);background-image:-webkit-gradient(linear,0 0,0 100%,from(#5bc0de),to(#339bb9));background-image:-webkit-linear-gradient(top,#5bc0de,#339bb9);background-image:-o-linear-gradient(top,#5bc0de,#339bb9);background-image:linear-gradient(to bottom,#5bc0de,#339bb9);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff5bc0de',endColorstr='#ff339bb9',GradientType=0)}.progress-info.progress-striped .bar,.progress-striped .bar-info{background-color:#5bc0de;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent)}.progress-warning .bar,.progress .bar-warning{background-color:#faa732;background-image:-moz-linear-gradient(top,#fbb450,#f89406);background-image:-webkit-gradient(linear,0 0,0 100%,from(#fbb450),to(#f89406));background-image:-webkit-linear-gradient(top,#fbb450,#f89406);background-image:-o-linear-gradient(top,#fbb450,#f89406);background-image:linear-gradient(to bottom,#fbb450,#f89406);background-repeat:repeat-x;filter:progid:DXImageTransform.Microsoft.gradient(startColorstr='#fffbb450',endColorstr='#fff89406',GradientType=0)}.progress-warning.progress-striped .bar,.progress-striped .bar-warning{background-color:#fbb450;background-image:-webkit-gradient(linear,0 100%,100% 0,color-stop(0.25,rgba(255,255,255,0.15)),color-stop(0.25,transparent),color-stop(0.5,transparent),color-stop(0.5,rgba(255,255,255,0.15)),color-stop(0.75,rgba(255,255,255,0.15)),color-stop(0.75,transparent),to(transparent));background-image:-webkit-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-moz-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:-o-linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent);background-image:linear-gradient(45deg,rgba(255,255,255,0.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,0.15) 50%,rgba(255,255,255,0.15) 75%,transparent 75%,transparent)}.accordion{margin-bottom:20px}.accordion-group{margin-bottom:2px;border:1px solid #e5e5e5;-webkit-border-radius:4px;-moz-border-radius:4px;border-radius:4px}.accordion-heading{border-bottom:0}.accordion-heading .accordion-toggle{display:block;padding:8px 15px}.accordion-toggle{cursor:pointer}.accordion-inner{padding:9px 15px;border-top:1px solid #e5e5e5}.carousel{position:relative;margin-bottom:20px;line-height:1}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner>.item{position:relative;display:none;-webkit-transition:.6s ease-in-out left;-moz-transition:.6s ease-in-out left;-o-transition:.6s ease-in-out left;transition:.6s ease-in-out left}.carousel-inner>.item>img,.carousel-inner>.item>a>img{display:block;line-height:1}.carousel-inner>.active,.carousel-inner>.next,.carousel-inner>.prev{display:block}.carousel-inner>.active{left:0}.carousel-inner>.next,.carousel-inner>.prev{position:absolute;top:0;width:100%}.carousel-inner>.next{left:100%}.carousel-inner>.prev{left:-100%}.carousel-inner>.next.left,.carousel-inner>.prev.right{left:0}.carousel-inner>.active.left{left:-100%}.carousel-inner>.active.right{left:100%}.carousel-control{position:absolute;top:40%;left:15px;width:40px;height:40px;margin-top:-20px;font-size:60px;font-weight:100;line-height:30px;color:#fff;text-align:center;background:#222;border:3px solid #fff;-webkit-border-radius:23px;-moz-border-radius:23px;border-radius:23px;opacity:.5;filter:alpha(opacity=50)}.carousel-control.right{right:15px;left:auto}.carousel-control:hover,.carousel-control:focus{color:#fff;text-decoration:none;opacity:.9;filter:alpha(opacity=90)}.carousel-indicators{position:absolute;top:15px;right:15px;z-index:5;margin:0;list-style:none}.carousel-indicators li{display:block;float:left;width:10px;height:10px;margin-left:5px;text-indent:-999px;background-color:#ccc;background-color:rgba(255,255,255,0.25);border-radius:5px}.carousel-indicators .active{background-color:#fff}.carousel-caption{position:absolute;right:0;bottom:0;left:0;padding:15px;background:#333;background:rgba(0,0,0,0.75)}.carousel-caption h4,.carousel-caption p{line-height:20px;color:#fff}.carousel-caption h4{margin:0 0 5px}.carousel-caption p{margin-bottom:0}.hero-unit{padding:60px;margin-bottom:30px;font-size:18px;font-weight:200;line-height:30px;color:inherit;background-color:#eee;-webkit-border-radius:6px;-moz-border-radius:6px;border-radius:6px}.hero-unit h1{margin-bottom:0;font-size:60px;line-height:1;letter-spacing:-1px;color:inherit}.hero-unit li{line-height:30px}.pull-right{float:right}.pull-left{float:left}.hide{display:none}.show{display:block}.invisible{visibility:hidden}.affix{position:fixed} diff --git a/docs/_static/bootstrap-2.3.2/img/glyphicons-halflings-white.png b/docs/_static/bootstrap-2.3.2/img/glyphicons-halflings-white.png deleted file mode 100644 index 3bf6484a29d8da269f9bc874b25493a45fae3bae..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 8777 zcmZvC1yGz#v+m*$LXcp=A$ZWB0fL7wNbp_U*$~{_gL`my3oP#L!5tQYy99Ta`+g_q zKlj|KJ2f@c)ARJx{q*bbkhN_!|Wn*Vos8{TEhUT@5e;_WJsIMMcG5%>DiS&dv_N`4@J0cnAQ-#>RjZ z00W5t&tJ^l-QC*ST1-p~00u^9XJ=AUl7oW-;2a+x2k__T=grN{+1c4XK0ZL~^z^i$ zp&>vEhr@4fZWb380S18T&!0cQ3IKpHF)?v=b_NIm0Q>vwY7D0baZ)n z31Fa5sELUQARIVaU0nqf0XzT+fB_63aA;@<$l~wse|mcA;^G1TmX?-)e)jkGPfkuA z92@|!<>h5S_4f8QP-JRq>d&7)^Yin8l7K8gED$&_FaV?gY+wLjpoW%~7NDe=nHfMG z5DO3j{R9kv5GbssrUpO)OyvVrlx>u0UKD0i;Dpm5S5dY16(DL5l{ixz|mhJU@&-OWCTb7_%}8-fE(P~+XIRO zJU|wp1|S>|J3KrLcz^+v1f&BDpd>&MAaibR4#5A_4(MucZwG9E1h4@u0P@C8;oo+g zIVj7kfJi{oV~E(NZ*h(@^-(Q(C`Psb3KZ{N;^GB(a8NE*Vwc715!9 zr-H4Ao|T_c6+VT_JH9H+P3>iXSt!a$F`>s`jn`w9GZ_~B!{0soaiV|O_c^R2aWa%}O3jUE)WO=pa zs~_Wz08z|ieY5A%$@FcBF9^!1a}m5ks@7gjn;67N>}S~Hrm`4sM5Hh`q7&5-N{|31 z6x1{ol7BnskoViZ0GqbLa#kW`Z)VCjt1MysKg|rT zi!?s##Ck>8c zpi|>$lGlw#@yMNi&V4`6OBGJ(H&7lqLlcTQ&1zWriG_fL>BnFcr~?;E93{M-xIozQ zO=EHQ#+?<}%@wbWWv23#!V70h9MOuUVaU>3kpTvYfc|LBw?&b*89~Gc9i&8tlT#kF ztpbZoAzkdB+UTy=tx%L3Z4)I{zY(Kb)eg{InobSJmNwPZt$14aS-uc4eKuY8h$dtfyxu^a%zA)>fYI&)@ZXky?^{5>xSC?;w4r&td6vBdi%vHm4=XJH!3yL3?Ep+T5aU_>i;yr_XGq zxZfCzUU@GvnoIk+_Nd`aky>S&H!b*{A%L>?*XPAgWL(Vf(k7qUS}>Zn=U(ZfcOc{B z3*tOHH@t5Ub5D~#N7!Fxx}P2)sy{vE_l(R7$aW&CX>c|&HY+7};vUIietK%}!phrCuh+;C@1usp;XLU<8Gq8P!rEI3ieg#W$!= zQcZr{hp>8sF?k&Yl0?B84OneiQxef-4TEFrq3O~JAZR}yEJHA|Xkqd49tR&8oq{zP zY@>J^HBV*(gJvJZc_0VFN7Sx?H7#75E3#?N8Z!C+_f53YU}pyggxx1?wQi5Yb-_`I`_V*SMx5+*P^b=ec5RON-k1cIlsBLk}(HiaJyab0`CI zo0{=1_LO$~oE2%Tl_}KURuX<`+mQN_sTdM&* zkFf!Xtl^e^gTy6ON=&gTn6)$JHQq2)33R@_!#9?BLNq-Wi{U|rVX7Vny$l6#+SZ@KvQt@VYb%<9JfapI^b9j=wa+Tqb4ei;8c5 z&1>Uz@lVFv6T4Z*YU$r4G`g=91lSeA<=GRZ!*KTWKDPR}NPUW%peCUj`Ix_LDq!8| zMH-V`Pv!a~QkTL||L@cqiTz)*G-0=ytr1KqTuFPan9y4gYD5>PleK`NZB$ev@W%t= zkp)_=lBUTLZJpAtZg;pjI;7r2y|26-N7&a(hX|`1YNM9N8{>8JAuv}hp1v`3JHT-=5lbXpbMq7X~2J5Kl zh7tyU`_AusMFZ{ej9D;Uyy;SQ!4nwgSnngsYBwdS&EO3NS*o04)*juAYl;57c2Ly0(DEZ8IY?zSph-kyxu+D`tt@oU{32J#I{vmy=#0ySPK zA+i(A3yl)qmTz*$dZi#y9FS;$;h%bY+;StNx{_R56Otq+?pGe^T^{5d7Gs&?`_r`8 zD&dzOA|j8@3A&FR5U3*eQNBf<4^4W_iS_()*8b4aaUzfk2 zzIcMWSEjm;EPZPk{j{1>oXd}pXAj!NaRm8{Sjz!D=~q3WJ@vmt6ND_?HI~|wUS1j5 z9!S1MKr7%nxoJ3k`GB^7yV~*{n~O~n6($~x5Bu{7s|JyXbAyKI4+tO(zZYMslK;Zc zzeHGVl{`iP@jfSKq>R;{+djJ9n%$%EL()Uw+sykjNQdflkJZSjqV_QDWivbZS~S{K zkE@T^Jcv)Dfm93!mf$XYnCT--_A$zo9MOkPB6&diM8MwOfV?+ApNv`moV@nqn>&lv zYbN1-M|jc~sG|yLN^1R2=`+1ih3jCshg`iP&mY$GMTcY^W^T`WOCX!{-KHmZ#GiRH zYl{|+KLn5!PCLtBy~9i}`#d^gCDDx$+GQb~uc;V#K3OgbbOG0j5{BRG-si%Bo{@lB zGIt+Ain8^C`!*S0d0OSWVO+Z89}}O8aFTZ>p&k}2gGCV zh#<$gswePFxWGT$4DC^8@84_e*^KT74?7n8!$8cg=sL$OlKr&HMh@Rr5%*Wr!xoOl zo7jItnj-xYgVTX)H1=A2bD(tleEH57#V{xAeW_ezISg5OC zg=k>hOLA^urTH_e6*vSYRqCm$J{xo}-x3@HH;bsHD1Z`Pzvsn}%cvfw%Q(}h`Dgtb z0_J^niUmoCM5$*f)6}}qi(u;cPgxfyeVaaVmOsG<)5`6tzU4wyhF;k|~|x>7-2hXpVBpc5k{L4M`Wbe6Q?tr^*B z`Y*>6*&R#~%JlBIitlZ^qGe3s21~h3U|&k%%jeMM;6!~UH|+0+<5V-_zDqZQN79?n?!Aj!Nj`YMO9?j>uqI9-Tex+nJD z%e0#Yca6(zqGUR|KITa?9x-#C0!JKJHO(+fy@1!B$%ZwJwncQW7vGYv?~!^`#L~Um zOL++>4qmqW`0Chc0T23G8|vO)tK=Z2`gvS4*qpqhIJCEv9i&&$09VO8YOz|oZ+ubd zNXVdLc&p=KsSgtmIPLN69P7xYkYQ1vJ?u1g)T!6Ru`k2wkdj*wDC)VryGu2=yb0?F z>q~~e>KZ0d_#7f3UgV%9MY1}vMgF{B8yfE{HL*pMyhYF)WDZ^^3vS8F zGlOhs%g_~pS3=WQ#494@jAXwOtr^Y|TnQ5zki>qRG)(oPY*f}U_=ip_{qB0!%w7~G zWE!P4p3khyW-JJnE>eECuYfI?^d366Shq!Wm#x&jAo>=HdCllE$>DPO0N;y#4G)D2y#B@5=N=+F%Xo2n{gKcPcK2!hP*^WSXl+ut; zyLvVoY>VL{H%Kd9^i~lsb8j4>$EllrparEOJNT?Ym>vJa$(P^tOG)5aVb_5w^*&M0 zYOJ`I`}9}UoSnYg#E(&yyK(tqr^@n}qU2H2DhkK-`2He% zgXr_4kpXoQHxAO9S`wEdmqGU4j=1JdG!OixdqB4PPP6RXA}>GM zumruUUH|ZG2$bBj)Qluj&uB=dRb)?^qomw?Z$X%#D+Q*O97eHrgVB2*mR$bFBU`*} zIem?dM)i}raTFDn@5^caxE^XFXVhBePmH9fqcTi`TLaXiueH=@06sl}>F%}h9H_e9 z>^O?LxM1EjX}NVppaO@NNQr=AtHcH-BU{yBT_vejJ#J)l^cl69Z7$sk`82Zyw7Wxt z=~J?hZm{f@W}|96FUJfy65Gk8?^{^yjhOahUMCNNpt5DJw}ZKH7b!bGiFY9y6OY&T z_N)?Jj(MuLTN36ZCJ6I5Xy7uVlrb$o*Z%=-)kPo9s?<^Yqz~!Z* z_mP8(unFq65XSi!$@YtieSQ!<7IEOaA9VkKI?lA`*(nURvfKL8cX}-+~uw9|_5)uC2`ZHcaeX7L8aG6Ghleg@F9aG%X$#g6^yP5apnB>YTz&EfS{q z9UVfSyEIczebC)qlVu5cOoMzS_jrC|)rQlAzK7sfiW0`M8mVIohazPE9Jzn*qPt%6 zZL8RELY@L09B83@Be;x5V-IHnn$}{RAT#<2JA%ttlk#^(%u}CGze|1JY5MPhbfnYG zIw%$XfBmA-<_pKLpGKwbRF$#P;@_)ech#>vj25sv25VM$ouo)?BXdRcO{)*OwTw)G zv43W~T6ekBMtUD%5Bm>`^Ltv!w4~65N!Ut5twl!Agrzyq4O2Fi3pUMtCU~>9gt_=h-f% z;1&OuSu?A_sJvIvQ+dZNo3?m1%b1+s&UAx?8sUHEe_sB7zkm4R%6)<@oYB_i5>3Ip zIA+?jVdX|zL{)?TGpx+=Ta>G80}0}Ax+722$XFNJsC1gcH56{8B)*)eU#r~HrC&}` z|EWW92&;6y;3}!L5zXa385@?-D%>dSvyK;?jqU2t_R3wvBW;$!j45uQ7tyEIQva;Db}r&bR3kqNSh)Q_$MJ#Uj3Gj1F;)sO|%6z#@<+ zi{pbYsYS#u`X$Nf($OS+lhw>xgjos1OnF^$-I$u;qhJswhH~p|ab*nO>zBrtb0ndn zxV0uh!LN`&xckTP+JW}gznSpU492)u+`f{9Yr)js`NmfYH#Wdtradc0TnKNz@Su!e zu$9}G_=ku;%4xk}eXl>)KgpuT>_<`Ud(A^a++K&pm3LbN;gI}ku@YVrA%FJBZ5$;m zobR8}OLtW4-i+qPPLS-(7<>M{)rhiPoi@?&vDeVq5%fmZk=mDdRV>Pb-l7pP1y6|J z8I>sF+TypKV=_^NwBU^>4JJq<*14GLfM2*XQzYdlqqjnE)gZsPW^E@mp&ww* zW9i>XL=uwLVZ9pO*8K>t>vdL~Ek_NUL$?LQi5sc#1Q-f6-ywKcIT8Kw?C(_3pbR`e|)%9S-({if|E+hR2W!&qfQ&UiF^I!|M#xhdWsenv^wpKCBiuxXbnp85`{i|;BM?Ba`lqTA zyRm=UWJl&E{8JzYDHFu>*Z10-?#A8D|5jW9Ho0*CAs0fAy~MqbwYuOq9jjt9*nuHI zbDwKvh)5Ir$r!fS5|;?Dt>V+@F*v8=TJJF)TdnC#Mk>+tGDGCw;A~^PC`gUt*<(|i zB{{g{`uFehu`$fm4)&k7`u{xIV)yvA(%5SxX9MS80p2EKnLtCZ>tlX>*Z6nd&6-Mv$5rHD*db;&IBK3KH&M<+ArlGXDRdX1VVO4)&R$f4NxXI>GBh zSv|h>5GDAI(4E`@F?EnW zS>#c&Gw6~_XL`qQG4bK`W*>hek4LX*efn6|_MY+rXkNyAuu?NxS%L7~9tD3cn7&p( zCtfqe6sjB&Q-Vs7BP5+%;#Gk};4xtwU!KY0XXbmkUy$kR9)!~?*v)qw00!+Yg^#H> zc#8*z6zZo>+(bud?K<*!QO4ehiTCK&PD4G&n)Tr9X_3r-we z?fI+}-G~Yn93gI6F{}Dw_SC*FLZ)5(85zp4%uubtD)J)UELLkvGk4#tw&Tussa)mTD$R2&O~{ zCI3>fr-!-b@EGRI%g0L8UU%%u_<;e9439JNV;4KSxd|78v+I+8^rmMf3f40Jb}wEszROD?xBZu>Ll3;sUIoNxDK3|j3*sam2tC@@e$ z^!;+AK>efeBJB%ALsQ{uFui)oDoq()2USi?n=6C3#eetz?wPswc={I<8x=(8lE4EIsUfyGNZ{|KYn1IR|=E==f z(;!A5(-2y^2xRFCSPqzHAZn5RCN_bp22T(KEtjA(rFZ%>a4@STrHZflxKoqe9Z4@^ zM*scx_y73?Q{vt6?~WEl?2q*;@8 z3M*&@%l)SQmXkcUm)d@GT2#JdzhfSAP9|n#C;$E8X|pwD!r#X?0P>0ZisQ~TNqupW z*lUY~+ikD`vQb?@SAWX#r*Y+;=_|oacL$2CL$^(mV}aKO77pg}O+-=T1oLBT5sL2i z42Qth2+0@C`c+*D0*5!qy26sis<9a7>LN2{z%Qj49t z=L@x`4$ALHb*3COHoT?5S_c(Hs}g!V>W^=6Q0}zaubkDn)(lTax0+!+%B}9Vqw6{H zvL|BRM`O<@;eVi1DzM!tXtBrA20Ce@^Jz|>%X-t`vi-%WweXCh_LhI#bUg2*pcP~R z*RuTUzBKLXO~~uMd&o$v3@d0shHfUjC6c539PE6rF&;Ufa(Rw@K1*m7?f5)t`MjH0 z)_V(cajV5Am>f!kWcI@5rE8t6$S>5M=k=aRZROH6fA^jJp~2NlR4;Q2>L$7F#RT#9 z>4@1RhWG`Khy>P2j1Yx^BBL{S`niMaxlSWV-JBU0-T9zZ%>7mR3l$~QV$({o0;jTI ze5=cN^!Bc2bT|BcojXp~K#2cM>OTe*cM{Kg-j*CkiW)EGQot^}s;cy8_1_@JA0Whq zlrNr+R;Efa+`6N)s5rH*|E)nYZ3uqkk2C(E7@A|3YI`ozP~9Lexx#*1(r8luq+YPk z{J}c$s` zPM35Fx(YWB3Z5IYnN+L_4|jaR(5iWJi2~l&xy}aU7kW?o-V*6Av2wyZTG!E2KSW2* zGRLQkQU;Oz##ie-Z4fI)WSRxn$(ZcD;TL+;^r=a4(G~H3ZhK$lSXZj?cvyY8%d9JM zzc3#pD^W_QnWy#rx#;c&N@sqHhrnHRmj#i;s%zLm6SE(n&BWpd&f7>XnjV}OlZntI70fq%8~9<7 zMYaw`E-rp49-oC1N_uZTo)Cu%RR2QWdHpzQIcNsoDp`3xfP+`gI?tVQZ4X={qU?(n zV>0ASES^Xuc;9JBji{)RnFL(Lez;8XbB1uWaMp@p?7xhXk6V#!6B@aP4Rz7-K%a>i z?fvf}va_DGUXlI#4--`A3qK7J?-HwnG7O~H2;zR~RLW)_^#La!=}+>KW#anZ{|^D3 B7G?kd diff --git a/docs/_static/bootstrap-2.3.2/img/glyphicons-halflings.png b/docs/_static/bootstrap-2.3.2/img/glyphicons-halflings.png deleted file mode 100644 index a9969993201f9cee63cf9f49217646347297b643..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 12799 zcma*OWmH^Ivn@*S;K3nSf_t!#;0f+&pm7Po8`nk}2q8f5;M%x$SdAkd9FAvlc$ zx660V9e3Ox@4WZ^?7jZ%QFGU-T~%||Ug4iK6bbQY@zBuF2$hxOw9wF=A)nUSxR_5@ zEX>HBryGrjyuOFFv$Y4<+|3H@gQfEqD<)+}a~mryD|1U9*I_FOG&F%+Ww{SJ-V2BR zjt<81Ek$}Yb*95D4RS0HCps|uLyovt;P05hchQb-u2bzLtmog&f2}1VlNhxXV);S9 zM2buBg~!q9PtF)&KGRgf3#z7B(hm5WlNClaCWFs!-P!4-u*u5+=+D|ZE9e`KvhTHT zJBnLwGM%!u&vlE%1ytJ=!xt~y_YkFLQb6bS!E+s8l7PiPGSt9xrmg?LV&&SL?J~cI zS(e9TF1?SGyh+M_p@o1dyWu7o7_6p;N6hO!;4~ z2B`I;y`;$ZdtBpvK5%oQ^p4eR2L)BH>B$FQeC*t)c`L71gXHPUa|vyu`Bnz)H$ZcXGve(}XvR!+*8a>BLV;+ryG1kt0=)ytl zNJxFUN{V7P?#|Cp85QTa@(*Q3%K-R(Pkv1N8YU*(d(Y}9?PQ(j;NzWoEVWRD-~H$=f>j9~PN^BM2okI(gY-&_&BCV6RP&I$FnSEM3d=0fCxbxA6~l>54-upTrw zYgX@%m>jsSGi`0cQt6b8cX~+02IghVlNblR7eI;0ps}mpWUcxty1yG56C5rh%ep(X z?)#2d?C<4t-KLc*EAn>>M8%HvC1TyBSoPNg(4id~H8JwO#I)Bf;N*y6ai6K9_bA`4 z_g9(-R;qyH&6I$`b42v|0V3Z8IXN*p*8g$gE98+JpXNY+jXxU0zsR^W$#V=KP z3AEFp@OL}WqwOfsV<)A^UTF4&HF1vQecz?LWE@p^Z2){=KEC_3Iopx_eS42>DeiDG zWMXGbYfG~W7C8s@@m<_?#Gqk;!&)_Key@^0xJxrJahv{B&{^!>TV7TEDZlP|$=ZCz zmX=ZWtt4QZKx**)lQQoW8y-XLiOQy#T`2t}p6l*S`68ojyH@UXJ-b~@tN`WpjF z%7%Yzv807gsO!v=!(2uR)16!&U5~VPrPHtGzUU?2w(b1Xchq}(5Ed^G|SD7IG+kvgyVksU) z(0R)SW1V(>&q2nM%Z!C9=;pTg!(8pPSc%H01urXmQI6Gi^dkYCYfu6b4^tW))b^U+ z$2K&iOgN_OU7n#GC2jgiXU{caO5hZt0(>k+c^(r><#m|#J^s?zA6pi;^#*rp&;aqL zRcZi0Q4HhVX3$ybclxo4FFJW*`IV`)Bj_L3rQe?5{wLJh168Ve1jZv+f1D}f0S$N= zm4i|9cEWz&C9~ZI3q*gwWH^<6sBWuphgy@S3Qy?MJiL>gwd|E<2h9-$3;gT9V~S6r z)cAcmE0KXOwDA5eJ02-75d~f?3;n7a9d_xPBJaO;Z)#@s7gk5$Qn(Fc^w@9c5W0zY z59is0?Mt^@Rolcn{4%)Ioat(kxQH6}hIykSA)zht=9F_W*D#<}N(k&&;k;&gKkWIL z0Of*sP=X(Uyu$Pw;?F@?j{}=>{aSHFcii#78FC^6JGrg-)!)MV4AKz>pXnhVgTgx8 z1&5Y=>|8RGA6++FrSy=__k_imx|z-EI@foKi>tK0Hq2LetjUotCgk2QFXaej!BWYL zJc{fv(&qA7UUJ|AXLc5z*_NW#yWzKtl(c8mEW{A>5Hj^gfZ^HC9lQNQ?RowXjmuCj4!!54Us1=hY z0{@-phvC}yls!PmA~_z>Y&n&IW9FQcj}9(OLO-t^NN$c0o}YksCUWt|DV(MJB%%Sr zdf}8!9ylU2TW!=T{?)g-ojAMKc>3pW;KiZ7f0;&g)k}K^#HBhE5ot)%oxq$*$W@b# zg4p<Ou`ME|Kd1WHK@8 zzLD+0(NHWa`B{em3Ye?@aVsEi>y#0XVZfaFuq#;X5C3{*ikRx7UY4FF{ZtNHNO?A_ z#Q?hwRv~D8fPEc%B5E-ZMI&TAmikl||EERumQCRh7p;)>fdZMxvKq;ky0}7IjhJph zW*uuu*(Y6)S;Od--8uR^R#sb$cmFCnPcj9PPCWhPN;n`i1Q#Qn>ii z{WR|0>8F`vf&#E(c2NsoH=I7Cd-FV|%(7a`i}gZw4N~QFFG2WtS^H%@c?%9UZ+kez z;PwGgg_r6V>Kn5n(nZ40P4qMyrCP3bDkJp@hp6&X3>gzC>=f@Hsen<%I~7W+x@}b> z0}Et*vx_50-q@PIV=(3&Tbm}}QRo*FP2@)A#XX-8jYspIhah`9ukPBr)$8>Tmtg&R z?JBoH17?+1@Y@r>anoKPQ}F8o9?vhcG79Cjv^V6ct709VOQwg{c0Q#rBSsSmK3Q;O zBpNihl3S0_IGVE)^`#94#j~$;7+u870yWiV$@={|GrBmuz4b)*bCOPkaN0{6$MvazOEBxFdKZDlbVvv{8_*kJ zfE6C`4&Kkz<5u%dEdStd85-5UHG5IOWbo8i9azgg#zw-(P1AA049hddAB*UdG3Vn0 zX`OgM+EM|<+KhJ<=k?z~WA5waVj?T9eBdfJGebVifBKS1u<$#vl^BvSg)xsnT5Aw_ZY#}v*LXO#htB>f}x3qDdDHoFeb zAq7;0CW;XJ`d&G*9V)@H&739DpfWYzdQt+Kx_E1K#Cg1EMtFa8eQRk_JuUdHD*2;W zR~XFnl!L2A?48O;_iqCVr1oxEXvOIiN_9CUVTZs3C~P+11}ebyTRLACiJuMIG#`xP zKlC|E(S@QvN+%pBc6vPiQS8KgQAUh75C0a2xcPQDD$}*bM&z~g8+=9ltmkT$;c;s z5_=8%i0H^fEAOQbHXf0;?DN5z-5+1 zDxj50yYkz4ox9p$HbZ|H?8ukAbLE^P$@h}L%i6QVcY>)i!w=hkv2zvrduut%!8>6b zcus3bh1w~L804EZ*s96?GB&F7c5?m?|t$-tp2rKMy>F*=4;w*jW}^;8v`st&8)c; z2Ct2{)?S(Z;@_mjAEjb8x=qAQvx=}S6l9?~H?PmP`-xu;ME*B8sm|!h@BX4>u(xg_ zIHmQzp4Tgf*J}Y=8STR5_s)GKcmgV!$JKTg@LO402{{Wrg>#D4-L%vjmtJ4r?p&$F!o-BOf7ej~ z6)BuK^^g1b#(E>$s`t3i13{6-mmSp7{;QkeG5v}GAN&lM2lQT$@(aQCcFP(%UyZbF z#$HLTqGT^@F#A29b0HqiJsRJAlh8kngU`BDI6 zJUE~&!cQ*&f95Ot$#mxU5+*^$qg_DWNdfu+1irglB7yDglzH()2!@#rpu)^3S8weW z_FE$=j^GTY*|5SH95O8o8W9FluYwB=2PwtbW|JG6kcV^dMVmX(wG+Otj;E$%gfu^K z!t~<3??8=()WQSycsBKy24>NjRtuZ>zxJIED;YXaUz$@0z4rl+TW zWxmvM$%4jYIpO>j5k1t1&}1VKM~s!eLsCVQ`TTjn3JRXZD~>GM z$-IT~(Y)flNqDkC%DfbxaV9?QuWCV&-U1yzrV@0jRhE;)ZO0=r-{s@W?HOFbRHDDV zq;eLo+wOW;nI|#mNf(J?RImB9{YSO2Y`9825Lz#u4(nk3)RGv3X8B(A$TsontJ8L! z9JP^eWxtKC?G8^xAZa1HECx*rp35s!^%;&@Jyk)NexVc)@U4$^X1Dag6`WKs|(HhZ#rzO2KEw3xh~-0<;|zcs0L>OcO#YYX{SN8m6`9pp+ zQG@q$I)T?aoe#AoR@%om_#z=c@ych!bj~lV13Qi-xg$i$hXEAB#l=t7QWENGbma4L zbBf*X*4oNYZUd_;1{Ln_ZeAwQv4z?n9$eoxJeI?lU9^!AB2Y~AwOSq67dT9ADZ)s@ zCRYS7W$Zpkdx$3T>7$I%3EI2ik~m!f7&$Djpt6kZqDWZJ-G{*_eXs*B8$1R4+I}Kf zqniwCI64r;>h2Lu{0c(#Atn)%E8&)=0S4BMhq9$`vu|Ct;^ur~gL`bD>J@l)P$q_A zO7b3HGOUG`vgH{}&&AgrFy%K^>? z>wf**coZ2vdSDcNYSm~dZ(vk6&m6bVKmVgrx-X<>{QzA!)2*L+HLTQz$e8UcB&Djq zl)-%s$ZtUN-R!4ZiG=L0#_P=BbUyH+YPmFl_ogkkQ$=s@T1v}rNnZ^eMaqJ|quc+6 z*ygceDOrldsL30w`H;rNu+IjlS+G~p&0SawXCA1+D zC%cZtjUkLNq%FadtHE?O(yQTP486A{1x<{krq#rpauNQaeyhM3*i0%tBpQHQo-u)x z{0{&KS`>}vf2_}b160XZO2$b)cyrHq7ZSeiSbRvaxnKUH{Q`-P(nL&^fcF2){vhN- zbX&WEjP7?b4A%0y6n_=m%l00uZ+}mCYO(!x?j$+O$*TqoD_Q5EoyDJ?w?^UIa491H zE}87(bR`X;@u#3Qy~9wWdWQIg1`cXrk$x9=ccR|RY1~%{fAJ@uq@J3e872x0v$hmv ze_KcL(wM|n0EOp;t{hKoohYyDmYO;!`7^Lx;0k=PWPGZpI>V5qYlzjSL_(%|mud50 z7#{p97s`U|Sn$WYF>-i{i4`kzlrV6a<}=72q2sAT7Zh{>P%*6B;Zl;~0xWymt10Mo zl5{bmR(wJefJpNGK=fSRP|mpCI-)Nf6?Pv==FcFmpSwF1%CTOucV{yqxSyx4Zws3O z8hr5Uyd%ezIO7?PnEO0T%af#KOiXD$e?V&OX-B|ZX-YsgSs%sv-6U+sLPuz{D4bq| zpd&|o5tNCmpT>(uIbRf?8c}d3IpOb3sn6>_dr*26R#ev<_~vi)wleW$PX|5)$_ z+_|=pi(0D(AB_sjQ;sQQSM&AWqzDO1@NHw;C9cPdXRKRI#@nUW)CgFxzQ1nyd!+h& zcjU!U=&u|>@}R(9D$%lu2TlV>@I2-n@fCr5PrZNVyKWR7hm zWjoy^p7v8m#$qN0K#8jT- zq`mSirDZDa1Jxm;Rg3rAPhC)LcI4@-RvKT+@9&KsR3b0_0zuM!Fg7u>oF>3bzOxZPU&$ab$Z9@ zY)f7pKh22I7ZykL{YsdjcqeN++=0a}elQM-4;Q)(`Ep3|VFHqnXOh14`!Bus& z9w%*EWK6AiAM{s$6~SEQS;A>ey$#`7)khZvamem{P?>k)5&7Sl&&NXKk}o!%vd;-! zpo2p-_h^b$DNBO>{h4JdGB=D>fvGIYN8v&XsfxU~VaefL?q} z3ekM?iOKkCzQHkBkhg=hD!@&(L}FcHKoa zbZ7)H1C|lHjwEb@tu=n^OvdHOo7o+W`0-y3KdP#bb~wM=Vr_gyoEq|#B?$&d$tals ziIs-&7isBpvS|CjC|7C&3I0SE?~`a%g~$PI%;au^cUp@ER3?mn-|vyu!$7MV6(uvt z+CcGuM(Ku2&G0tcRCo7#D$Dirfqef2qPOE5I)oCGzmR5G!o#Q~(k~)c=LpIfrhHQk zeAva6MilEifE7rgP1M7AyWmLOXK}i8?=z2;N=no)`IGm#y%aGE>-FN zyXCp0Sln{IsfOBuCdE*#@CQof%jzuU*jkR*Su3?5t}F(#g0BD0Zzu|1MDes8U7f9; z$JBg|mqTXt`muZ8=Z`3wx$uizZG_7>GI7tcfOHW`C2bKxNOR)XAwRkLOaHS4xwlH4 zDpU29#6wLXI;H?0Se`SRa&I_QmI{zo7p%uveBZ0KZKd9H6@U?YGArbfm)D*^5=&Rp z`k{35?Z5GbZnv>z@NmJ%+sx=1WanWg)8r}C_>EGR8mk(NR$pW<-l8OTU^_u3M@gwS z7}GGa1)`z5G|DZirw;FB@VhH7Dq*0qc=|9lLe{w2#`g+_nt>_%o<~9(VZe=zI*SSz4w43-_o>4E4`M@NPKTWZuQJs)?KXbWp1M zimd5F;?AP(LWcaI-^Sl{`~>tmxsQB9Y$Xi*{Zr#py_+I$vx7@NY`S?HFfS!hUiz$a z{>!&e1(16T!Om)m)&k1W#*d#GslD^4!TwiF2WjFBvi=Ms!ADT)ArEW6zfVuIXcXVk z>AHjPADW+mJzY`_Ieq(s?jbk4iD2Rb8*V3t6?I+E06(K8H!!xnDzO%GB;Z$N-{M|B zeT`jo%9)s%op*XZKDd6*)-^lWO{#RaIGFdBH+;XXjI(8RxpBc~azG1H^2v7c^bkFE zZCVPE+E*Q=FSe8Vm&6|^3ki{9~qafiMAf7i4APZg>b%&5>nT@pHH z%O*pOv(77?ZiT{W zBibx}Q12tRc7Py1NcZTp`Q4ey%T_nj@1WKg5Fz_Rjl4wlJQj)rtp8yL3r!Shy zvZvnmh!tH4T6Js-?vI0<-rzzl{mgT*S0d_7^AU_8gBg^03o-J=p(1o6kww2hx|!%T z-jqp}m^G*W?$!R#M%Ef?&2jYxmx+lXWZszpI4d$pUN`(S)|*c^CgdwY>Fa>> zgGBJhwe8y#Xd*q0=@SLEgPF>+Qe4?%E*v{a`||luZ~&dqMBrRfJ{SDMaJ!s_;cSJp zSqZHXIdc@@XteNySUZs^9SG7xK`8=NBNM)fRVOjw)D^)w%L2OPkTQ$Tel-J)GD3=YXy+F4in(ILy*A3m@3o73uv?JC}Q>f zrY&8SWmesiba0|3X-jmlMT3 z*ST|_U@O=i*sM_*48G)dgXqlwoFp5G6qSM3&%_f_*n!PiT>?cNI)fAUkA{qWnqdMi+aNK_yVQ&lx4UZknAc9FIzVk% zo6JmFH~c{_tK!gt4+o2>)zoP{sR}!!vfRjI=13!z5}ijMFQ4a4?QIg-BE4T6!#%?d&L;`j5=a`4is>U;%@Rd~ zXC~H7eGQhhYWhMPWf9znDbYIgwud(6$W3e>$W4$~d%qoJ z+JE`1g$qJ%>b|z*xCKenmpV$0pM=Gl-Y*LT8K+P)2X#;XYEFF4mRbc~jj?DM@(1e`nL=F4Syv)TKIePQUz)bZ?Bi3@G@HO$Aps1DvDGkYF50O$_welu^cL7;vPiMGho74$;4fDqKbE{U zd1h{;LfM#Fb|Z&uH~Rm_J)R~Vy4b;1?tW_A)Iz#S_=F|~pISaVkCnQ0&u%Yz%o#|! zS-TSg87LUfFSs{tTuM3$!06ZzH&MFtG)X-l7>3)V?Txuj2HyG*5u;EY2_5vU0ujA? zHXh5G%6e3y7v?AjhyX79pnRBVr}RmPmtrxoB7lkxEzChX^(vKd+sLh?SBic=Q)5nA zdz7Mw3_iA>;T^_Kl~?1|5t%GZ;ki_+i>Q~Q1EVdKZ)$Sh3LM@ea&D~{2HOG++7*wF zAC6jW4>fa~!Vp5+$Z{<)Qxb|{unMgCv2)@%3j=7)Zc%U<^i|SAF88s!A^+Xs!OASYT%7;Jx?olg_6NFP1475N z#0s<@E~FI}#LNQ{?B1;t+N$2k*`K$Hxb%#8tRQi*Z#No0J}Pl;HWb){l7{A8(pu#@ zfE-OTvEreoz1+p`9sUI%Y{e5L-oTP_^NkgpYhZjp&ykinnW;(fu1;ttpSsgYM8ABX4dHe_HxU+%M(D=~) zYM}XUJ5guZ;=_ZcOsC`_{CiU$zN3$+x&5C`vX-V3`8&RjlBs^rf00MNYZW+jCd~7N z%{jJuUUwY(M`8$`B>K&_48!Li682ZaRknMgQ3~dnlp8C?__!P2z@=Auv;T^$yrsNy zCARmaA@^Yo2sS%2$`031-+h9KMZsIHfB>s@}>Y(z988e!`%4=EDoAQ0kbk>+lCoK60Mx9P!~I zlq~wf7kcm_NFImt3ZYlE(b3O1K^QWiFb$V^a2Jlwvm(!XYx<`i@ZMS3UwFt{;x+-v zhx{m=m;4dgvkKp5{*lfSN3o^keSpp9{hlXj%=}e_7Ou{Yiw(J@NXuh*;pL6@$HsfB zh?v+r^cp@jQ4EspC#RqpwPY(}_SS$wZ{S959`C25777&sgtNh%XTCo9VHJC-G z;;wi9{-iv+ETiY;K9qvlEc04f;ZnUP>cUL_T*ms``EtGoP^B#Q>n2dSrbAg8a>*Lg zd0EJ^=tdW~7fbcLFsqryFEcy*-8!?;n%;F+8i{eZyCDaiYxghr z$8k>L|2&-!lhvuVdk!r-kpSFl`5F5d4DJr%M4-qOy3gdmQbqF1=aBtRM7)c_Ae?$b8 zQg4c8*KQ{XJmL)1c7#0Yn0#PTMEs4-IHPjkn0!=;JdhMXqzMLeh`yOylXROP- zl#z3+fwM9l3%VN(6R77ua*uI9%hO7l7{+Hcbr(peh;afUK?B4EC09J{-u{mv)+u#? zdKVBCPt`eU@IzL)OXA`Ebu`Xp?u0m%h&X41}FNfnJ*g1!1wcbbpo%F4x!-#R9ft!8{5`Ho}04?FI#Kg zL|k`tF1t_`ywdy8(wnTut>HND(qNnq%Sq=AvvZbXnLx|mJhi!*&lwG2g|edBdVgLy zjvVTKHAx(+&P;P#2Xobo7_RttUi)Nllc}}hX>|N?-u5g7VJ-NNdwYcaOG?NK=5)}` zMtOL;o|i0mSKm(UI_7BL_^6HnVOTkuPI6y@ZLR(H?c1cr-_ouSLp{5!bx^DiKd*Yb z{K78Ci&Twup zTKm)ioN|wcYy%Qnwb)IzbH>W!;Ah5Zdm_jRY`+VRJ2 zhkspZ9hbK3iQD91A$d!0*-1i#%x81|s+SPRmD}d~<1p6!A13(!vABP2kNgqEG z?AMgl^P+iRoIY(9@_I?n1829lGvAsRnHwS~|5vD2+Zi53j<5N4wNn0{q>>jF9*bI) zL$kMXM-awNOElF>{?Jr^tOz1glbwaD-M0OKOlTeW3C!1ZyxRbB>8JDof(O&R1bh%3x#>y2~<>OXO#IIedH0Q`(&&?eo-c~ z>*Ah#3~09unym~UC-UFqqI>{dmUD$Y4@evG#ORLI*{ZM)Jl=e1it!XzY($S3V zLG!Y6fCjE>x6r@5FG1n|8ompSZaJ>9)q6jqU;XxCQk9zV(?C9+i*>w z21+KYt1gXX&0`x3E)hS7I5}snbBzox9C@Xzcr|{B8Hw;SY1$}&BoYKXH^hpjW-RgJ z-Fb}tannKCv>y~^`r|(1Q9;+sZlYf3XPSX|^gR01UFtu$B*R;$sPZdIZShRr>|b@J z;#G{EdoY+O;REEjQ}X7_YzWLO+Ey3>a_KDe1CjSe| z6arqcEZ)CX!8r(si`dqbF$uu&pnf^Np{1f*TdJ`r2;@SaZ z#hb4xlaCA@Pwqj#LlUEe5L{I$k(Zj$d3(~)u(F%&xb8={N9hKxlZIO1ABsM{Mt|)2 zJ^t9Id;?%4PfR4&Ph9B9cFK~@tG3wlFW-0fXZS_L4U*EiAA%+`h%q2^6BCC;t0iO4V=s4Qug{M|iDV@s zC7|ef-dxiR7T&Mpre!%hiUhHM%3Qxi$Lzw6&(Tvlx9QA_7LhYq<(o~=Y>3ka-zrQa zhGpfFK@)#)rtfz61w35^sN1=IFw&Oc!Nah+8@qhJ0UEGr;JplaxOGI82OVqZHsqfX ze1}r{jy;G?&}Da}a7>SCDsFDuzuseeCKof|Dz2BPsP8? zY;a)Tkr2P~0^2BeO?wnzF_Ul-ekY=-w26VnU%U3f19Z-pj&2 z4J_a|o4Dci+MO)mPQIM>kdPG1xydiR9@#8m zh27D7GF{p|a{8({Q-Pr-;#jV{2zHR>lGoFtIfIpoMo?exuQyX_A;;l0AP4!)JEM$EwMInZkj+8*IHP4vKRd zKx_l-i*>A*C@{u%ct`y~s6MWAfO{@FPIX&sg8H{GMDc{4M3%$@c8&RAlw0-R<4DO3 trJqdc$mBpWeznn?E0M$F`|3v=`3%T2A17h;rxP7$%JLd=6(2u;`(N3pt&so# diff --git a/docs/_static/bootstrap-2.3.2/js/bootstrap.js b/docs/_static/bootstrap-2.3.2/js/bootstrap.js deleted file mode 100644 index 638bb1877..000000000 --- a/docs/_static/bootstrap-2.3.2/js/bootstrap.js +++ /dev/null @@ -1,2287 +0,0 @@ -/* =================================================== - * bootstrap-transition.js v2.3.2 - * http://twitter.github.com/bootstrap/javascript.html#transitions - * =================================================== - * Copyright 2012 Twitter, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * ========================================================== */ - - -!function ($) { - - "use strict"; // jshint ;_; - - - /* CSS TRANSITION SUPPORT (http://www.modernizr.com/) - * ======================================================= */ - - $(function () { - - $.support.transition = (function () { - - var transitionEnd = (function () { - - var el = document.createElement('bootstrap') - , transEndEventNames = { - 'WebkitTransition' : 'webkitTransitionEnd' - , 'MozTransition' : 'transitionend' - , 'OTransition' : 'oTransitionEnd otransitionend' - , 'transition' : 'transitionend' - } - , name - - for (name in transEndEventNames){ - if (el.style[name] !== undefined) { - return transEndEventNames[name] - } - } - - }()) - - return transitionEnd && { - end: transitionEnd - } - - })() - - }) - -}(window.$jqTheme || window.jQuery); -/* ========================================================== - * bootstrap-alert.js v2.3.2 - * http://twitter.github.com/bootstrap/javascript.html#alerts - * ========================================================== - * Copyright 2012 Twitter, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * ========================================================== */ - - -!function ($) { - - "use strict"; // jshint ;_; - - - /* ALERT CLASS DEFINITION - * ====================== */ - - var dismiss = '[data-dismiss="alert"]' - , Alert = function (el) { - $(el).on('click', dismiss, this.close) - } - - Alert.prototype.close = function (e) { - var $this = $(this) - , selector = $this.attr('data-target') - , $parent - - if (!selector) { - selector = $this.attr('href') - selector = selector && selector.replace(/.*(?=#[^\s]*$)/, '') //strip for ie7 - } - - $parent = $(selector) - - e && e.preventDefault() - - $parent.length || ($parent = $this.hasClass('alert') ? $this : $this.parent()) - - $parent.trigger(e = $.Event('close')) - - if (e.isDefaultPrevented()) return - - $parent.removeClass('in') - - function removeElement() { - $parent - .trigger('closed') - .remove() - } - - $.support.transition && $parent.hasClass('fade') ? - $parent.on($.support.transition.end, removeElement) : - removeElement() - } - - - /* ALERT PLUGIN DEFINITION - * ======================= */ - - var old = $.fn.alert - - $.fn.alert = function (option) { - return this.each(function () { - var $this = $(this) - , data = $this.data('alert') - if (!data) $this.data('alert', (data = new Alert(this))) - if (typeof option == 'string') data[option].call($this) - }) - } - - $.fn.alert.Constructor = Alert - - - /* ALERT NO CONFLICT - * ================= */ - - $.fn.alert.noConflict = function () { - $.fn.alert = old - return this - } - - - /* ALERT DATA-API - * ============== */ - - $(document).on('click.alert.data-api', dismiss, Alert.prototype.close) - -}(window.$jqTheme || window.jQuery); -/* ============================================================ - * bootstrap-button.js v2.3.2 - * http://twitter.github.com/bootstrap/javascript.html#buttons - * ============================================================ - * Copyright 2012 Twitter, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * ============================================================ */ - - -!function ($) { - - "use strict"; // jshint ;_; - - - /* BUTTON PUBLIC CLASS DEFINITION - * ============================== */ - - var Button = function (element, options) { - this.$element = $(element) - this.options = $.extend({}, $.fn.button.defaults, options) - } - - Button.prototype.setState = function (state) { - var d = 'disabled' - , $el = this.$element - , data = $el.data() - , val = $el.is('input') ? 'val' : 'html' - - state = state + 'Text' - data.resetText || $el.data('resetText', $el[val]()) - - $el[val](data[state] || this.options[state]) - - // push to event loop to allow forms to submit - setTimeout(function () { - state == 'loadingText' ? - $el.addClass(d).attr(d, d) : - $el.removeClass(d).removeAttr(d) - }, 0) - } - - Button.prototype.toggle = function () { - var $parent = this.$element.closest('[data-toggle="buttons-radio"]') - - $parent && $parent - .find('.active') - .removeClass('active') - - this.$element.toggleClass('active') - } - - - /* BUTTON PLUGIN DEFINITION - * ======================== */ - - var old = $.fn.button - - $.fn.button = function (option) { - return this.each(function () { - var $this = $(this) - , data = $this.data('button') - , options = typeof option == 'object' && option - if (!data) $this.data('button', (data = new Button(this, options))) - if (option == 'toggle') data.toggle() - else if (option) data.setState(option) - }) - } - - $.fn.button.defaults = { - loadingText: 'loading...' - } - - $.fn.button.Constructor = Button - - - /* BUTTON NO CONFLICT - * ================== */ - - $.fn.button.noConflict = function () { - $.fn.button = old - return this - } - - - /* BUTTON DATA-API - * =============== */ - - $(document).on('click.button.data-api', '[data-toggle^=button]', function (e) { - var $btn = $(e.target) - if (!$btn.hasClass('btn')) $btn = $btn.closest('.btn') - $btn.button('toggle') - }) - -}(window.$jqTheme || window.jQuery); -/* ========================================================== - * bootstrap-carousel.js v2.3.2 - * http://twitter.github.com/bootstrap/javascript.html#carousel - * ========================================================== - * Copyright 2012 Twitter, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * ========================================================== */ - - -!function ($) { - - "use strict"; // jshint ;_; - - - /* CAROUSEL CLASS DEFINITION - * ========================= */ - - var Carousel = function (element, options) { - this.$element = $(element) - this.$indicators = this.$element.find('.carousel-indicators') - this.options = options - this.options.pause == 'hover' && this.$element - .on('mouseenter', $.proxy(this.pause, this)) - .on('mouseleave', $.proxy(this.cycle, this)) - } - - Carousel.prototype = { - - cycle: function (e) { - if (!e) this.paused = false - if (this.interval) clearInterval(this.interval); - this.options.interval - && !this.paused - && (this.interval = setInterval($.proxy(this.next, this), this.options.interval)) - return this - } - - , getActiveIndex: function () { - this.$active = this.$element.find('.item.active') - this.$items = this.$active.parent().children() - return this.$items.index(this.$active) - } - - , to: function (pos) { - var activeIndex = this.getActiveIndex() - , that = this - - if (pos > (this.$items.length - 1) || pos < 0) return - - if (this.sliding) { - return this.$element.one('slid', function () { - that.to(pos) - }) - } - - if (activeIndex == pos) { - return this.pause().cycle() - } - - return this.slide(pos > activeIndex ? 'next' : 'prev', $(this.$items[pos])) - } - - , pause: function (e) { - if (!e) this.paused = true - if (this.$element.find('.next, .prev').length && $.support.transition.end) { - this.$element.trigger($.support.transition.end) - this.cycle(true) - } - clearInterval(this.interval) - this.interval = null - return this - } - - , next: function () { - if (this.sliding) return - return this.slide('next') - } - - , prev: function () { - if (this.sliding) return - return this.slide('prev') - } - - , slide: function (type, next) { - var $active = this.$element.find('.item.active') - , $next = next || $active[type]() - , isCycling = this.interval - , direction = type == 'next' ? 'left' : 'right' - , fallback = type == 'next' ? 'first' : 'last' - , that = this - , e - - this.sliding = true - - isCycling && this.pause() - - $next = $next.length ? $next : this.$element.find('.item')[fallback]() - - e = $.Event('slide', { - relatedTarget: $next[0] - , direction: direction - }) - - if ($next.hasClass('active')) return - - if (this.$indicators.length) { - this.$indicators.find('.active').removeClass('active') - this.$element.one('slid', function () { - var $nextIndicator = $(that.$indicators.children()[that.getActiveIndex()]) - $nextIndicator && $nextIndicator.addClass('active') - }) - } - - if ($.support.transition && this.$element.hasClass('slide')) { - this.$element.trigger(e) - if (e.isDefaultPrevented()) return - $next.addClass(type) - $next[0].offsetWidth // force reflow - $active.addClass(direction) - $next.addClass(direction) - this.$element.one($.support.transition.end, function () { - $next.removeClass([type, direction].join(' ')).addClass('active') - $active.removeClass(['active', direction].join(' ')) - that.sliding = false - setTimeout(function () { that.$element.trigger('slid') }, 0) - }) - } else { - this.$element.trigger(e) - if (e.isDefaultPrevented()) return - $active.removeClass('active') - $next.addClass('active') - this.sliding = false - this.$element.trigger('slid') - } - - isCycling && this.cycle() - - return this - } - - } - - - /* CAROUSEL PLUGIN DEFINITION - * ========================== */ - - var old = $.fn.carousel - - $.fn.carousel = function (option) { - return this.each(function () { - var $this = $(this) - , data = $this.data('carousel') - , options = $.extend({}, $.fn.carousel.defaults, typeof option == 'object' && option) - , action = typeof option == 'string' ? option : options.slide - if (!data) $this.data('carousel', (data = new Carousel(this, options))) - if (typeof option == 'number') data.to(option) - else if (action) data[action]() - else if (options.interval) data.pause().cycle() - }) - } - - $.fn.carousel.defaults = { - interval: 5000 - , pause: 'hover' - } - - $.fn.carousel.Constructor = Carousel - - - /* CAROUSEL NO CONFLICT - * ==================== */ - - $.fn.carousel.noConflict = function () { - $.fn.carousel = old - return this - } - - /* CAROUSEL DATA-API - * ================= */ - - $(document).on('click.carousel.data-api', '[data-slide], [data-slide-to]', function (e) { - var $this = $(this), href - , $target = $($this.attr('data-target') || (href = $this.attr('href')) && href.replace(/.*(?=#[^\s]+$)/, '')) //strip for ie7 - , options = $.extend({}, $target.data(), $this.data()) - , slideIndex - - $target.carousel(options) - - if (slideIndex = $this.attr('data-slide-to')) { - $target.data('carousel').pause().to(slideIndex).cycle() - } - - e.preventDefault() - }) - -}(window.$jqTheme || window.jQuery); -/* ============================================================= - * bootstrap-collapse.js v2.3.2 - * http://twitter.github.com/bootstrap/javascript.html#collapse - * ============================================================= - * Copyright 2012 Twitter, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * ============================================================ */ - - -!function ($) { - - "use strict"; // jshint ;_; - - - /* COLLAPSE PUBLIC CLASS DEFINITION - * ================================ */ - - var Collapse = function (element, options) { - this.$element = $(element) - this.options = $.extend({}, $.fn.collapse.defaults, options) - - if (this.options.parent) { - this.$parent = $(this.options.parent) - } - - this.options.toggle && this.toggle() - } - - Collapse.prototype = { - - constructor: Collapse - - , dimension: function () { - var hasWidth = this.$element.hasClass('width') - return hasWidth ? 'width' : 'height' - } - - , show: function () { - var dimension - , scroll - , actives - , hasData - - if (this.transitioning || this.$element.hasClass('in')) return - - dimension = this.dimension() - scroll = $.camelCase(['scroll', dimension].join('-')) - actives = this.$parent && this.$parent.find('> .accordion-group > .in') - - if (actives && actives.length) { - hasData = actives.data('collapse') - if (hasData && hasData.transitioning) return - actives.collapse('hide') - hasData || actives.data('collapse', null) - } - - this.$element[dimension](0) - this.transition('addClass', $.Event('show'), 'shown') - $.support.transition && this.$element[dimension](this.$element[0][scroll]) - } - - , hide: function () { - var dimension - if (this.transitioning || !this.$element.hasClass('in')) return - dimension = this.dimension() - this.reset(this.$element[dimension]()) - this.transition('removeClass', $.Event('hide'), 'hidden') - this.$element[dimension](0) - } - - , reset: function (size) { - var dimension = this.dimension() - - this.$element - .removeClass('collapse') - [dimension](size || 'auto') - [0].offsetWidth - - this.$element[size !== null ? 'addClass' : 'removeClass']('collapse') - - return this - } - - , transition: function (method, startEvent, completeEvent) { - var that = this - , complete = function () { - if (startEvent.type == 'show') that.reset() - that.transitioning = 0 - that.$element.trigger(completeEvent) - } - - this.$element.trigger(startEvent) - - if (startEvent.isDefaultPrevented()) return - - this.transitioning = 1 - - this.$element[method]('in') - - $.support.transition && this.$element.hasClass('collapse') ? - this.$element.one($.support.transition.end, complete) : - complete() - } - - , toggle: function () { - this[this.$element.hasClass('in') ? 'hide' : 'show']() - } - - } - - - /* COLLAPSE PLUGIN DEFINITION - * ========================== */ - - var old = $.fn.collapse - - $.fn.collapse = function (option) { - return this.each(function () { - var $this = $(this) - , data = $this.data('collapse') - , options = $.extend({}, $.fn.collapse.defaults, $this.data(), typeof option == 'object' && option) - if (!data) $this.data('collapse', (data = new Collapse(this, options))) - if (typeof option == 'string') data[option]() - }) - } - - $.fn.collapse.defaults = { - toggle: true - } - - $.fn.collapse.Constructor = Collapse - - - /* COLLAPSE NO CONFLICT - * ==================== */ - - $.fn.collapse.noConflict = function () { - $.fn.collapse = old - return this - } - - - /* COLLAPSE DATA-API - * ================= */ - - $(document).on('click.collapse.data-api', '[data-toggle=collapse]', function (e) { - var $this = $(this), href - , target = $this.attr('data-target') - || e.preventDefault() - || (href = $this.attr('href')) && href.replace(/.*(?=#[^\s]+$)/, '') //strip for ie7 - , option = $(target).data('collapse') ? 'toggle' : $this.data() - $this[$(target).hasClass('in') ? 'addClass' : 'removeClass']('collapsed') - $(target).collapse(option) - }) - -}(window.$jqTheme || window.jQuery); -/* ============================================================ - * bootstrap-dropdown.js v2.3.2 - * http://twitter.github.com/bootstrap/javascript.html#dropdowns - * ============================================================ - * Copyright 2012 Twitter, Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * ============================================================ */ - - -!function ($) { - - "use strict"; // jshint ;_; - - - /* DROPDOWN CLASS DEFINITION - * ========================= */ - - var toggle = '[data-toggle=dropdown]' - , Dropdown = function (element) { - var $el = $(element).on('click.dropdown.data-api', this.toggle) - $('html').on('click.dropdown.data-api', function () { - $el.parent().removeClass('open') - }) - } - - Dropdown.prototype = { - - constructor: Dropdown - - , toggle: function (e) { - var $this = $(this) - , $parent - , isActive - - if ($this.is('.disabled, :disabled')) return - - $parent = getParent($this) - - isActive = $parent.hasClass('open') - - clearMenus() - - if (!isActive) { - if ('ontouchstart' in document.documentElement) { - // if mobile we we use a backdrop because click events don't delegate - $('

pL}Kgn}MF+>=vL}-Tg`DHQgA14~A zilWq0DelT+9^DdMzGY$PT&HA50FTExtqK{2IQp)T1B%yzGXa(h^q@{kwg$mZ~UDM;SKF`)DJ-K-+RkCoVcR(^NC1r;{ zq5<6(|M@4{Mo=8q4P8FjT6jA*TOWmlm!vZ^&Y?CGfD_u?UVTtmx*|3HCDhk(V(%TT zreb|{a%lRCY#~}fX{mOdIZ6a}VmQWguP@#^vm#N(WzmLTn#K0>w|zM~iLZB-%Lj;! z{J5l^VrQZm7wM~9ze4zixNHkmL&gZ-{1W~MB7uur7kgB6E?(n$jX^^WML~ZdI1UU| zpBHb!@l^{e3@JwZ3Jc1>#j8IXKq()qwtE6YTiDhkgS$bxD2hmMC#Z!sJCmt&0$KkN zj7_`C_mMu_&z-FX;jfGoDPA=_?FrU=924HiZ7C7{l;ab4S3YgvlUO`>Eu@Noj(YeU zCLp!8D0d~&eN72nvb--5?9r;*!b|F;tE4K3_Y3r~ZNz{(j13 zAfSnAUqa`!6iXi&W+C;II`9G=P7c|j(=-L)HtU@GaKn(*%0g@*&Z0U>u;Kk^$ZJT9 zb`Ojm;SnJ5V^ib6PMNx}P!9`m4HI$OP-hmJDDWnV{!AxBj!eEZ*`%dk$0cZ)ikx@7 zBtlmuLO(#b65fn~-GmZ27G~`+hR4e_mb!a_!2kh zBrMFB2<6)774s@*IFKt;R~3G>gi6x6h$k@}gd0KKzACqbLGxP%x}|B~a)SnONABx2 z)$GD?4NGyex3I_sQN-+MEwwvbJdj?yoN}vU=#v=3OUu>KD;7@w7-7$Q3f494Tc(Mk zE~mZCa4Fldruj`m6DWy(L;3)6W&H(JiH_)lVTT#e$vc6!vaHZ3u?@ zM+n9h!|I-p=8yS{pevm~;sVJWh2-Tth1-2lXz-Jfp;CKYh`QxN+RI>f8mX`ySv$4c z!ACSN>nKvz&zy9i0H$7-gtRr?p|?|>AJAz^KTHnHW1!QhqSJUv)&wu2=o76SUd2U_Z}nJYolj1+Vr)ppAI@)*CQV>gR(r1UDIaZz2);9-^miU5bKu8(eK1=2SU!U!lY3VQIFTT3fTa8Y)B5>kX+6 z&H47NHNEHM+36t&pM!RTVq~RG$~egVIXb8HkV9<14o$(6u!ikYUT>&i_XJ}WLlEsT zA};!jO?@Q~^h8@{tjx=@mUBnK)t?fJdYEAN95J)VdvbvhLMZiA$zMG?ae(yDX>Jzo z+#k_=DEpvlQ@g*F(ASXUF*N@gb*M2;g zhY*iwzI QBQ|eTwJ(Gn;pJdx)JW#=*j$CTtoq}^4%*iKU&%U$Ncz*4SOl2T))Fk z-L-&CpS@A)&{ZZL)i+q|or!Bm0CS1a8K3*2joObsgLSUiM2#dX0@cwahPQ6ezf9x8 zsMM<45Y&4DTeJ=758l;Whz!M)GIo&jRhhu>XNAb2&Y0AnC8946I=$P^KZWkoW_yJ( zz<%&TUl6QaD2};ccT#I_96way@i{h6Jqu)j4hdmI^SpKenCEP`v9W8&4$TgyM;j_0 zi!Q8qPHX1I|z^?{xUln_b>9X9_uzF#%V{6a-z);2^a@wC1sr@rP=+_%fV`q&S1 z*@pJ9Yg!dAo=Z`7KWmImt88O>M5FzslY?+Ql>N{T_-VJ-JcE0wC0kGEdI6X?qyKG? z!qIsbti2FzmKC1!U7NM?9y%m2#?a#~q@2>s5?ym&o`D`iEoGbc@T76KNtYN8Q13sqb83^vs z^cF8NLQKhF2!i#CY+9&Dse|9DcGD1fjY}B$n51?=KTX7+JVQrJ>K%26@(&4LB7xGY zsMZk-V{kz>r4n&u4FLk1UZTKz1XYw)bYenyHb{s5xPPj&bch~$F!p>U7+?UPJ;Hl| zuasXzb{POAOUUOx0I~(#Q&lzC1AyDbVZeq=#@PQGa{GV$ z@V^h^{s#{He*^sf|5yBfcXjXnam#U8CCk({P=Z2IM|mPKzb(lAP!b9fW87R&-h`#g z{C30pRQ`(A8EfC_rY51c=my-Rk$Js+eFv4AC9mvU79I-hp<#6rH`08}eeW@`V*mN$ z)12WI`+3u9O`N5|hWF`09@%+$n_R+PXa5R6=3)1na=Gr!22B*H9T4-`YPXdX5YsVL~qK~Zm&)aD%8cK z*hwQH{W_J?hs`kW0H!0@6Fe5lgxL(eUgt}Gt$B%wM6*9Fz7t1w<|gO9XrwT@(EFS; z$sMVza(lkuwzRjkx98(z35&*s#Tm=${mZn$zK6GaN?G-=Usdqs#-1pv=#b&! zW@fx{!^RGIwrE*R**bAr_hHh`fib2XrU<_*TXH!&CN~w^5uTGqvd3A7%CPi zH7zY7Y5>BoU%!Ys3wuV&543% zT&5|!HlJU)?z+Do`>9r}YNbSA;_+=@V@v9(mZ~c6tY!7xzt%cb2vm@8quaqg0TB_J z&QzqH_mOm47(RV5qzjh4*P6FAhvBV4T#vEcaHjw0cUc^akw~mA-jo3X(M9Dc0lBdT zFL!sA?cuBdHBHS~YPm7a64jk(H34rs2ZxG0TtpEO5wP@G$+;v@%#8INC#ZpZlfJLp z*9Wbl8e>0E=G(xk@2dXCHa;&<$MyUx1-q@=u;MQY3Q7$)kh2VSgEkpxn7gF3u<)0! zuP+3H!JzRnJv{;U!{t7xvp(^=h32;&V@*l|0u@m@x=y2xaDp9fIgDD(lFcH)GUl}| zq)@0F)EeOp-&EF)r>jzI|9yCNrrlCYI+gd~ud1@vyDRAXhzxCnhB1eS8u058e0g&-Br}tGZGGLx zl%3eHy{#>I(f4|Z96n;|bMGP&^AMmHAK6H!F{~Dbu61UtlTF>1u z`gBDfA0LOm!!#K|7(_3pxJzOuEQM`(Q}PyE=WGf?Lb^JJoDUWkR)@1B735O+IX;7fW9^$B8t|yl%#tvaHZj&d<-!OjkD@ zT*br*OSwjWL1w7ivRZJVcFwv+BZbdyACHRaV0~o;K~z*!=yd$!*VNQhRIp1O?b2GL z(BWIi<3;yV;^_W7R+HN0GuA`8IU=Xfw_??uU%l6ur~$1##)y!VtgO*OgG<`H$R<)| zV~_E+0Xs3+%8^@(&5c>v)weCz`zMRlR#WU|C5}N<%cCbhX>GP%# zy&{iFM-8A+8~bUiTI90Cv#&)CyMlP{YT0-}Yq<3}LbiBla9D5UcZXgJa zLe*xyNGNkzZ1U)`=G78DpEQyivjn@44VvGd{W)k_C2U!(sh~`L(n)5w`**5LuV{K& z{cl6m__%V)g6#oVI$D?+XlCSCq}+!EDn*165)#XIAHFl?$)~k}#eVnp-Mf%SG}s=V zp0=J>TY186d$TXVRjGBFuXA{$GGAM2T6JkdTS)Zu=~{PB4`bEb-iX?c!$X7D!KnRD zp5p5^tt#p7>$AcUFeRf9bXEif+}79I+qN@R7F{S|1(x&(TwyOtQQvu|zOSr?_jk9` zt$wYGMQUXcaq*p9T@R~{#3Sd038T)&gBCHcun5|Nv7VhDjgE|ryq1?g1IMz;4@qh- zd`Cke@05Q_^NOb$@pw{8$ipsjiZzE)SNmcfh!;lhQ*b6z9Elj<21$1Y&y7jcq1x3siCke;62@87?{dwy=0 z&*RFpU1)F(Y4-;sOi5ESxk@qw8}zq`7= zgWW|G-Fm&>$eQ7Ers3%8d)JkmD{NS;nWkE#0^rTj_-M|%3cDqdX5D7bx7OAypFVwh znU?bsDzuuDXTG%@MvQK_lq9L|3gKX7sRQ@mnlVCd#z6POuWTB4ennb}}#xj=*z)z#glNx%fc zl`yW`zEW&--4nvc$7iIal^_>z3_RPLqlXmBbel679xJPKAmIot3xGoPa&mNRkV_Z3 zWDaSMwc{q8Lq$bxv*u-Py*Z9(@jSKc&}Y|QhWm$NJpQu!vnv`cJ9|xiZ>GxMAIbkK zs|h*|7RqE98l^XGmx_v8aL|IZj1g7U%#FoVsg5uiw>gA^6U~GQL(0m^BIdD-pSn8T z`Oa%Qf1$T9)*Fg0Wo&=F&}Sa+)V$RYb$om*_)zT&#+*C=H@pFOqf07}u&{M-dwBJ2>OmoOjbOrvCyYeLflTvb03AydFRiJicF#ZpnJ zdMKYNuXk21J>A`6cU}is?gzT$(V_6=i6VpEK~zH{f1hheLBabLj^x=)C)a(D=4O7^ z9ZT!DBvLrmz%wg)`V`Xd=uJ5L_wSz{I?Y$m12Q^4ldP`n?O{O-Y;0XAb}f$@7ovKN z+JkWUU3ZD2s6?YGD>)aImh>!UD%U$6b&zADePz>o>AP4T*XehJGX4os{}*EByTour zSnoU7Bmb%h!YuoFe&mhKrPhDxULxB+EWpIk8~NDy_Qi`A0PHbA0OT!RL_U>>qT$mO zF!0pXr8MpTres|^w+g0N0pFs#ktEnoUB7=zeS1%L18SMy=Zf3g#|IA&&mRtlGxsvE zvUa>WXfom=#(b3~Zx$h+Cg_2Sr&_G;9}|PySi19Kb1?0Mofxxq*1CpfD%pO|ucKPk zlLDeIRxR37oeBX=ejoGxW>eJ8g#wgrh3IE2GG6Yp^K+_s(D0bFjO{cn7-Q0~ZjLe7 zof#1Stm1htLzN2YzxOu=R(M=l+Fm(B$-F3^0vz(y*oymx@){eQv$(F$BbI*!6fA~N z(GHsi+*7zg2nhU3C1g#L#r1pp^-f)#A%Vn5jc)Yh0*J`SaDDDYENC zf3_Cr>a_79scLi3;O=a1`UzP?)vsSZU${8muMkEc#yvuRRKLFm017}1{0@JRpWx#I zNKh*D_r`;yutb%bO<{59!d-v#x&DFfavO?(Lkh0gK=R@7NdT@y&)}dhJ1c8R^?>P4 zQbGa>05E|;K{N~u=-{}e&CMA=A1Tu;14mv6dU4d>$&wTfPR=Lb`_5o2GF$=z6JkN< z{2ZU_GgKO>5`bo|-n@CEH~;&i(jK>5whC`EZVQZe3cwX=2@Ak=aQ1gc2r1{P*lVPt>{+(T5LuJjcb)5)t84zh9+-H=iSt@peC&add>OcA4P7CQJNr zM3G(hk!!3GSO}>_^;$5^=ZO_noQpNarn_x%dcwjR%&dGx znjSQtrz61d#AXh39+-_<*Ms0i+^GFIIy(B~Dx@9{(S4I*S?~T!m9v)z!u2_li3vRR z*|D2gumX{^Qef%MPXS?yBUGfD&_jm|5l>k=y9PdL*s?uT_*g~dXgL6fsmg4qvs9nYZ1~;4AI$$&$lz_2JnScxj1Ng(Dnto@=H0HzEti z5rufk*d1ugeHzLA_I5C=XOU9{QLN|D+oMIZOUu~O8*g1rz`*$?;6w+(=ZqyTvLyMx zB|V~*(AG|!uC=2=5Ce;cVyloYRTTde5w>g8HJt0~qj-IGVX!K*&1s12A$;GoOSngBCnpsu;EZm@ zYn@rWxR~9O%wwFdg5f-87%%>h<+{7$_gA`q1&W6R}M+nLmG8xTzTd(6&VHufS1(HWC% zu%15k=;$b5srmrgzJB-4>1$#lGr+RWoxgu~+pf86cTa9n`60XR#+S6OmNNa-b@Q-au&G1t?qF|sTXCiMhnE61qH@t@wwv&PP7Y=|uvUQ`f_W|= zAU0PcR-)-x>`|sWy?PK`BE_G(6FTDZ?d$-}^#E1ZUHt3nmIvd_^|ju~&R};poNviH zfY)Z0nwOUlEC(k#P5NTFfn zk|w};AsFZZvr!bUcvYrOSJTtee?^kS@dAQxjpZ3|CUNSyuLNa>8_~(9@(&wx4vf0!m?uw8SXSFM%vOUsoVVtU z9&-^Mv#n)A9tN9ho;i@;sA^^dQg?dBdJHP(`F|+??w>YS=z+~xZlqoWA?rB!+pXCa zv(`lu$u4O_u_NX;@+uRQKt6N1y0{<)L=Z9H7Yx*_Ks2SWeZbxQiZ1!I=dvl(H}jraAXr{ALy$8u>77ri*VyRd(_?9h#ljcpySv^!@hP+g4Y z)3h6QMRjX6Jnho;B}tQw4rXKu|H`8A2>}UJA0XfhfHGIs*K@i$IvDNwVO^AQtZl4X zy>Gh1!`EhKU%7TWjHnC~z5Km@vKhOx9<;V*{JTLDE_%6!FAFrC*%}+Iybi;9?u`XY z6m0UCb7md_eotlBll>9NC=0iR46xdW&_;h!K!s74ZYm80)Egciqo@6Ocxy~a{X6Pe zu~x`gK>@puZb1bfhf<5sHx4BC6S?K;DOf&(_3Y0_Qc}-kKEpdsTZS?c<4Ok7Sp#ll zsd`-6%SKAH(fz@d{bkJ?ad>Et2m^D)>-Ml62ZujRJ~lOVSA%0kTTwAafQzfj(7^#m zMI|A8=ikXmkq)3&H$XF1pr;KOF}J1yXpIC6!@NS>OFb@~sR2kHRLDp{p=E4gVMt$J zA0JenA?kPc$9b2>avaval3!$@X;n1QfCPo+O9Pp+zp#)A(0p?A%--@6i{!k*LQ&V< z>5)w!keGzvQ2Elbv*QA_K?JlWun-hTKs4b)tUF=KIENHfj}U>WO8j7{8u?+lfx`E2 z-X4F00t*cdJqE0M5-KIB2{R7`Y7CHs?3W?=43Ws6Ke_V@w^O2!u~ zVur1n&QIf8pb?i1s+_L%u0b4-bY@mU4x>&?&;9yM`@>~%7R_?8%W7#1JOTn~N~eu( zI2i>i($V3{@%+wI-=T>8GQp|H)yWVr-JUrPQ;#%xoJ90+)6>gNxKPk5r2qK*8B=Pa z_)+By%yrLL&4G3XaiPA-dgZS5K28{6zYd9*1F`O0_us)16(ILAKxqRlw%qMNH+67G zb_eg-q1IULw}ezopL^f&VkJqOfxeHbteQXQU(hoXX)PekFx~&gFYTp70YGJCFA|&_ zP=JuXgX`3cL+MBUTK+2=kL3j7QtAjcl}#$7@;kr-AK|x5x%lk)BcaKJ1O<_#$#4F$dU}8YpD)#U zg&T_kLxGM@P8_cOS%im&SAr7T45#yx8|yc%@_31N%9He7)G~PzsLhM>sc3*v5Oq9Y z+3AdQutlpt_f3bEodsi4QmmjDpOPW-8_fXdIx;CGO)0R3&W z$-~Lm#AF44F^R3OtUt_5#0Bi3!=u>MNWZ(w(Tl}7+qjZn1pD=}HES)0pD+`Yl+;rF zfNBlF277uG!K8z@EyrJ@(gz^$yW`ef+iG-<=D;(>ad|A4`wBjuB3+*|BZ`6FudrPZ z^ik1B;&j~CUUT;h_X@$z`Sy(%iPr`(ilQCArRATh?MrZgpT0?k40oI2%eJ?f>nO*Y zR~w=%)Hpn2;8va_iop-Lyh0oj#X&|zWMm}L@&X%|qf8pZ*=mkZveC7<_)#4&z6O(d zteBv90jG`S0=Cvby*N7fe0?G|Co!zT$mFuL=T8**E7a351%sh(cx*At0y#kri+Z`( z^qy-W9&V;r(tE@E!xi(BwYXsZMx7d%nJE*|*{-=j zM`n6~T_KN>nI`NtXpmm*hxbK>URGOSH*FU@8wHOm%FTo{hAXH7q=@5s_!8}n%_FX z?sQ99Q)g61bhTBx*AS&rrNgt!tE+4Cp$S&l50TAc4!qgTVvX7e&obL9e7S3)>$SEJK_EW>s2Z#S#~ zNF~^>Tp4Vh;2WHszG!XS|8%t$_ZUphsyL)NewUdn$wMZ#E+7oY&(CYGZEljiefzdl zo2$`OPQML#y#7E0Q`7-50u>us*9$Aw!9hioI4tZ~cc(aIG4+nVGF37i?R-ZZ3{$ z3I~Bu=f%cW<{yBHb-uWW7-0oFiO#)QGbh_KO*kds4GuErMMbj5Vj z8Ts8~$v5KW(0;gfsm-?bJJ7+g(RSLDC{scL)CQ2Gc3`dH zl94fgN|SGUb+CM7*P2ti=!tRAdM^_EZ!e;}BVuJ`>yc6;@87%(*t9wWD$;hfIn7s0 zl23+qb{e*cFJISfQqJhy)^8f~9cosuUADK`n|9-JlX4(-#y&G~JJ+mU#>zA@r5j8a z3NvZ;%<}l~#CM^A0Bkj2Ww?nP{l-VFmcbH`yflhN=u2EpIoV7L3JMCok_?9ZSuJZ) z&HIQtp7sh)rI8mqpXsfQn(5C!Cz~rrS3AQgJnb`8W>^p)sS4ssPd}CRP5w>P`$}{F z3yn=Kd*h{`raU>C{>9;ndbz&82$;g_Ss|34Y7-N+H@#;#mv_q6)h|0Dlv+G_wo7zb zdF9jJOAm=KgI4Hj(pTQ|JW*z6WHo#d9r&<>VA%06hJT_V!0*>-2g-aJc#s!@4VZoh z6T#qc`B$j3*4>^AGBPstix(*1#99pp4tjww8bv7_PQa{+j)Q{(&Qw7in@Yqw>6P0{ zAm|zOc6ZmAjsAEO4(vby(|+Qye{8_LI2#wAF|L zyUP}Gx+B_&;_95H!eYDacnDL-jd53HGqAmQ{@mT&!^1!H!Q3zco;{X>gM)|*I5;&x zQ}f$HaJ+CwZ0_#vO3<)K*QN?S(#PeD7SG`#UR)T>pj_@Z`lk!~3pnXFo$G!>#R)F3 z`1thc)6ljy2}EN)Tc}dYqbo{9p)?@|3JiJXH%Q*ET_sbz*pfDwAR!-VeBPl&4rD$zqW81*MU~P5P>B!al{`UN;O|$y%RFzrKOXQB~e+RV9WSy(>%&edSa*4W?=bVfb{jsL2T z&FG^w%f{X!>*W5T+}8Sf_sMzQ;F4c-cC{7ba?7=%vU1=;qno6Pio2IrUu9M0+WTW3 zD_tQSK=n)qQyLEg(P=f=%(n!omWq&U3xt z`9RRW5ui^20cDpnpg8%}N;GqTDK!SP>K=V|F{P*0;OGD#d!nSIYPB_Dlj~_m` zv+x=1+68HW)b8iof`Y=Uw_xc9#KpxEZTN^W6Xk>^>Ku$7juf2O#m&hO9&l6Lfi$?@ z8X(dABEz&lM%-#qh??a+s$B{eIu?qDJN5E~gRz;J-urRDOQbT#!h&zF{0CEi6{M11 zTwbpH9r@0{zyLONJ3yJsD=Yqo!d}0TG&I&4jnKM{8{$F4$V49%7-7RXYHV%A8hctAGAre&dw>dbH>T|AgX*wZpd*zvJn5mV~)% z)J0onr6x{8BlzSA=Ii&!-ri!T+u}DjT)$+akhXdIH-E)zWzU$mY|p+FvllmRfwUK$&y_Fp~gO_OSAD z_TIrk85tQ=M@L5nAjKn5`K4|wIpJW(CmI3Em?&}d(*T_wI*U3ry_!}Fx%;V#2e5w- zET_J*Jr#6~@5XqA&{U z_~hBq(bno>H9K8^AO8LODaa)-R8&+9g7ze-uKvxMz;1Z?kJ?Y~OGgUWF&qg;d!}~& z#j|HfOFrjm`<`@+)YM|!K-~Is^h`GDx!hQ}Q5SYy^im5RD8WI1TS)$tPTnrO0AZ4H zvmwfndMC5OZ}0)z+IC~ktRFuDK}QkVQ6U|~B_Rpx?tWbcvR$Eet+%{b52R5MtoY~7 zNHQ-q@+puPiUxl0wX57%GC+WOp?~iHtTyX-Vh4(q5_ERoQqa{~KzJc&gn|Bz!u$9C zJb@N&nUI*shft0L=mVdG<0E-MO?QW6$9~Qh7E+Q5d;aV?ZJ1UC9=s@sCqNJgCHzSm zOzZK!sl$xHr|WiTY!B`^O~j!ZPu#htf+(RrPNV?BF{TDxE+XXIjU9+I$iNp0Zn(R1+`UfbA<`3rVs;W*Pq1U+pC_sosp0$`e^a{P zvldz$H}iQEE@nMbDGd@mTL94o4-YHGXxRmTw-H~eGK+TKNHW7jq4L9As&~rrK7QmV zEPT|yJweON95I_JT;wL;qv>y@QQ-t!v8#Vub@zAIN&@)}TD7)mEhc@0pdX>s*Vq3Y zFBl_OXyK7Vf^Jr+?(3{As&+J*J$Zm$78pY5i4M+NO;{csXjHe#IFBEH0DsA8rX^bR zPW|HQYE<}q-f3cJb8}M?-C<(#WW6sj@nF8*DXw(KjwG^kXutLTF4JlO9|BG87XWxV z8}|I$p#J8IDDo_l`Cu*3nP$mkMwtc!=yz}aizl4roz7a7-4;nl5Jm&5pxv1(!-=2# z!lL7`@z6K_QaXGgAU&?s7%ps}V5|}UjTUX$_8coHD4=Cv2)%k@uoo?AsAv3q8$?FN z@)TZy%C^l{_q%#**ZiUjrA(XAPt;AmW)Yhb)BC;|^G1Giy(*=#V#fNloSd{Ga6W{D zPxq0~nB3R!1o~`Hqyn=diclyUu$>QHwqJW4to$wb`0ai~_OA)| zAMa>NU>*NFnbPy)0nw-kV8H7*p#tph2na3QV|$#@b0vtV@ck%|TYi6e@lFaH9grus zj5*DS8Qw7bc9Oj^G`{6AHk7p zvRESkh*H2JB><_d-aMc!C+>%}J9w!1C4y9&!9<~o6^QnAyyBKS`S{f2XEwtxVE7Be zazF+Iq|Ltf7$*}E5^i|yPIG`F$^xOyc|UC>aF;?wLdT|SXN68m=-(n3QIPazklaoudA znyuZevaQ#JfxzHZH=ethiGf(FFSu{f9%Nz>p!u$DX4C-80k3mfM#e{ycei$Hkt6|e z1Z;fa;V`)r7~{va+c&SFjUhA%3FBdTxdhgG(c9;GoGe;&=LnqMdAYqAW<#iN-#LI~ zPZf0O9R^(J-MO+7%&rAtwg$ztU(8sSGCP@POww$i4e0S{0FP$@XLZF>oGeBX`m?%< zMHjbKSVH{J$J=p4-$#=2jACG5B!C3ca-4!lJ$KaQjfeiZ?edh~`avlwp0v_%tDhg_ zm|bHv@r;x610yS|^qV(59X2K=Ce*Y5=;|JDmNGIkze9teQM$uxLBRyhYuEpr+sx>5 zIK!vYK1u>H%W3Nxc@QK?w&W%~=d&FDO9k4Y5kPZh2==+Tx%IE_??!*00pKmpS7{d)4R-mjMPAOgs#8iF+pv1e<&|Gl5Kyi|ZCNy8t4HhgS zKu3=$DGI^qE1j`DJ6MVa1M%0?6cOn72&RL9o7V@=I5_Ztay#AV#@5^0n{Q}Q#*B*) zN!oLGaoktQQ}a_f__~X#bzI_GB7LKmULCbo(m^ZLunYP5(MYX{vHnJP>@=?@_Xe9@ zX~f0=TSjV$0@dZH{yaZ5Kk;-e&V%*}$EuYyDPR7yRTvaT)KRF zZa^wbdb?jI>EXNe;pc1AcIW)2Twpz7V2X)6^SMTZNULoklI!cc-S>C| z2?*)BW^gE&4y0?eKeYV(`E+Y*i#oec*ZSh(LQF*^HUFpf+yH>?K{-E=>odF&oBlmv zHxBjYnE1)aZuu0Xu?g71O^4F4AoHb`+bRGNFe!lMF95dFcbUjz+xfZ*MV0Ey=?WuZ z&?9#-2wA$PTy9?$O?a-f7Cy`=@x%YppLfNGAf8JB>vD-seWfN3tO!1(aO+;O;jM3R{qV*5RJT?>_zrB??WvGB z^o$bqEC{Bg5*rtX6w;oRD&T|)Y(F68I2snZEhVhfsXPizu(`SW!Y3YziGT|6VFA{Gg)p4ew9wnmp)Yep?Y zHtiU$*k~%Yva*l#msO?h96o|)IXRCG+9WP0g65(r9tgGj2Y$j?TzRm3iYYY#33L32{BumMGqb2#0-a@DQqA zcCFSHA=#-?NAC+Yy`DtQ+iRqOlsnV_{Y^jGAHDALITIjGYkInUmMI z**&Bn!ghW3tIAGqUc^sCRa$z*c&Zfr{4}BYiDq>Jx315Qs=yBjYPrUCla-g?c2W=5O5@xG+yh_MFlJ`8w4iD0V3!dd?#f- zoQaSo$8+B^GWi+iyy# zbkogoAHYro07!B#Od#IxRt>dr36g#jBru;>4{n;*hWBCA04!6YS&fO3l!SQDjAlK9 zI8sIbIFT(xZK|~HdVudC@>yZn@i@mrgT#=K1xoiN1;VaJn}TS68PQNwIp0)Uz3{WP^cI4}-{yG(I95o5d+uFqYepNi}<36xiyl za2cVRuSf*)S-<{@ga(_l4Y)XzBnJV^TT!nA3YCfaY9GCG&BnG|zAd>z?k(Ex8Ur>C zOKwXR4v;3!&3L{MLm|iA6E>_(_qQr5Fl zT>B&>+|225lC4pcIoWqvw;tvKj8_sky+32!<{MtHA#^$A)-(8Zp7_`Sg^#n10g4;{T z6tnqjd$72gM%ceuO@_8M_JN`3@c9Nou`EcnEZ9c|wKz|1HOP#6jpUUpOO?;HtFoG! z=>G7%LP1H+!1Z9-_j9iscl|SKbpih6>2zW9+6p`wH@A#eSGVUkPIgVdtQVRzHhUd@ zA9oPF>0Rp)8e%uMurRnU799p698JR8H|IxN6XWA7*5>99DR(La^TfXOK9b<0O%IW( zs;ZN!>FMdFRuOx^P-6Y4q$*fx!N+k%FT+=p`v&s2xaJ>O$;d3j_6s-`D}%yKa-JMN z!dG-#K`b0hGXf!~0%7u>lhr}1)cxs^f21QaQ@9_ktgQ5}VoxO`z;|czi;4iexq(3Z zZa*hc*U*G>MpU$PTsfIyp)v7sQ8K9}A32e1m)7kYd}b{zEf&2Na;+L`|A(kFtb5&2 zL_i>khn;;HJeBlaHu@L}tVcm%iFHY=DpJlbD3s7Lq<#JV^Rl&(p{7Hx1Mz2~7(xuq~1(H~enYmS0ObDg>8@LYvFo<>&I zWw-r6c0Um?sub1KLV|-)Ay`C2MCRC5AmBgv;64HdDq#s_MclnBNd8yNU&fu<-zCzD@N@*+}6>337XqZ8j7 zyc8dAeNnek{cnjO#|0mQuC6>QEhm^DYDEU~kK9oAknC-~5<^vm|J>HtaEfqB`qV8D(-EZd`F;!y5BKnhn2ZekLMF1kYJS4usFl zTox< zg1r0N13%G|yrBf3%yhSsWKR=_^rK7tV3VUpzxf@#dUtp;yYXvW;*QaHHYVs1sfd7 zOQTp0rb%v$7Z3v*?WZ?AT~x?xX%Mdyj~WWJW2Q>^(yfQi<$6viIJyx$W$oWbf>ZvdP}rTehs< z@jSohk6ya(B(Cf8{hV{&>#*aZaB*>EDL;|}!OT+;kq@Qi5NDudY0?g8SJ zMQCvFWf#pS%iGf&eUokPgvWbb@k)duTn0&p!aEG^=!SuR-!)l9zbQWoB)HF~%$(5k zP(C-N&g0_QmoH!TuTJN|r-O%z09PUda1ETGk3o2Yr>d>0E@`UDO^3{EE0r^#|95{+ zHu9HRvc*_Nj!7n^KR;T0$b_6r2`MP#!@|Q`4}}sj2r$#U(meZHeXO>6*pP}zJ3Bkc zL_NRXx;MZ8Bo0C|M#XfIRP5p`x`n04LT^)xoIfmdzMjYX>vxK&#>`AfIRsPsi$65P zYy7&PiIZ>OegA{>-aUPgEG@%ihKY^c1}L}n>8_SyGB?&eR!y2{oO|U-ei-y_+iwd- z%@UK7|Lnq#^Y8lF_v%SW)LM6gpakevy-#ZPo>*`Iv+cgEjz>th<5~)gqRqD zT*nYCs3&1j*pdP!99nyOd&~->K0Soa&*5Bd^R3mujci%s?Malxq|B?7k1eT!LA5JA znZLTleAGh&|1Jf98!%?!x7vZ0I_VpL_rDegpjo2w>L6I|VB%!+EZEqnJ>`9-^8T2s zGnVA;-F*aE#M0ozL^p~~^nX&RBr4Gmn@_BmUdvrb5X zKJDv6>#nC-c}vqDGuhcQu5cI?GoINK5Nv*V#GHlnShP9+hocj(tr5I?gX7~};4HrN z+UUN0PpM$ijQlByoMbYHV5G&T=5(osf|Bx;i4)hsP{?#3H>G}PC7x^8B{u@Anar0<{n-)menP$s)9re|fXzP|nvT7{1O{(cwW z0Y;TBd$-`h)2^wivJo0+t^E8ecTS`F~zzs?FGx&EWq?H3ch@y0}+Xo^1PS?HDGN&Do%Gfh~rrUQuEjJ zqa&6Lre-WUag#HxKIV_@&`Pe0z&q<2O-MW z3rMu7sRee{2wK$pT|Ogb93I_-&TrHu5=E)qPIp(}&G3Jy5MMgcoF37o0l^`}_fQwc zSf*;jbz9ip2dWqw(@svOa8FHVkM=5J;^93sGBVmfI`Wq)Lc34(YI&2H8wZ)3+m4Yz z{vj3hn4|#%N%74YhNT&=A$IYG(YsBR^}O{9|IW0+5uJPb8Js7eUko z`is9vrVNV9iHrw6x2B#sf3LTqx{E7mx%uKnr4OYT3J)V=Ej6L{*_kuD*QJkK;oXP^ z$Dvc%aEa6g!DsK^>HhlfF>t?lgeL3%jnv4v_eTVGXNSI6(ScJ7Wq^&T7@bs%nuX7X}^vmAWc(C&Hg zlj+8b+VA#1yKf$va8s=L`=dsJbZrVg@)oKk-vwxv)42bBbw$O<-^KPIHc%byye=Bu z5l(+DCr2g#L+dNm{Fkp+S60HoGQk@e8Y)<#UgS0x3C}_jAsN}Dy#_X8V`C|4={q0~ zsI9HdC@2Un`tpV7^6Cmi9t=n0y|v(wo$%7h>4z z?B@5r44J7vm0slHM7$&~aLS%dJ5ODYi%Y}KZG(v2osWc}CtjFTnw639hif0jOldjY zow&I5D7nN?mB-ZeHuOG6=|{GLHpqNlX+~vlzU5>WeEz&1T>SZdGP#p&R@WD`w%*<_ zkkg~Qc=5vB+IpXhWeeE2W!snd+vCOUxnG!R*IH3pfBp>V9vLys--W~fsIp#Q%2Jpw z@ly+jenw?Y&=ONR=JN_;oc^WGXy98Gk2XdwJ3{Z-9B;n(3v5+$33pN}I*SI)?{r*%wCQJ#Rvlq(tLq z&We2QWYN*lU@m&}wfUd?dc8aOSjw|#g#^~W07p0j0`V^1urMQD-YumJ3z=km-cw;f z_Z)0B8CvD2f{HH!QanAK|MpW6y;Jqed|yq-#KiPg(>uKhjnLPs2BUZ$6MpCR8)|mS@wh{D-1kj&y|#dDk``xYpilBs*U^IZSM?E*@Xwj z%Uj^mn)>HNdyjKE+ZpjgrlRQI9%la^GiP0)>%ty z_6vAmBLHaRuF_yJ`UF1NYkES<<=e@V?&ir??PkwdMaK78DuwkF6ck5q<5xiC`veac zmjOXYOiaJX*Z&V_Nera0-NT{H)zwv2Xr#}9LO+I|vaS-I5$u+P*}Wn)W|E8L>wkY1 z7Q6ut7rsu4h`@(O4;f)K*U(k@B+jJXBZY&TTPjfn>u0UaZ|qsEo0)`77@CJh{5biO zH0(h)TQy0{IJh?;ENgB$kd`~!_nJAm>RX}Dde~(pl9RHwN z#l^=+#6JWepUim)J?HpXhv{WbUllH%X}F~_A-mOmioBQ7JyTV_U#sHQ<>kBIXnUZ= z$v=Gi{yh$;EW*mlI3{KrS{)trKzswYvQ%U(4BL_*;bltbnS^TutBKlEuGCYQ#C@sr zmH2mK0v%(FLJ1$uy8BbBM&K0=5?~;&S2otiK4U>dt4}g_|X6K!}r87 zEfm5^jVS#t6Rp!vB)>EF7lV#G>uV9?C4Orz_x~NgX$mzAcnvrNCzr7brL#CvV<%g) zq96Y0E)r0x4b-0A2Y;kl_l`^*2g?nw)_zJ$zY1;6eW*ns8L0f;$y0>ns-y{9OA^Hv zW=J@gEq^*fH_*&?CCDtG=p*P}2et#spTawzI!W zx&XK|rwti5KHA#cw1zB*7m!B45H3SZOi4L?Y;3L#$9{Ppjicg!5tn8O6_w#?@Tn(< zQwgezK$FGD%>1ben!5xC2OAsRk&%&NR?XU|JoTbbBpO;;pRM)vw*v5KNovdi4Gj%P z&|8Ci(Wbd@bW;`!3rj{I)yfF86PJ^2o)jTc$YAMkc6DuYA7@=oPRV}7ENvr>^wq*r z_YOH0Dw@wy?e!m2D9T;Vyu7@v)6*#r8iFuLz6%j-&%NjvZ4a`4I^r~sbhtKxYh%gM z{kw3`>&k&h#FhbOtf<&ndJsBC_x37gW@Y(8IzvWY9y$*X&)|kVjlZ&6O`|Z$n6N`R z9EZ}U6x%zr2|eQf$yc78EhId7)1t11S#fwEm#y;nKgR*)>xwNMLqjyjUCkecMiP2D z-f-<_F3t)6C*+FS{?AoBE>61C{;|CP74{3osG|j>$Z*Q%;Z;>))t2-hc6Z4N)#wi5 z-ULTR66jl5;m66Nc~DY5l9be4+`4#cf+7abM0#9Yhm5o|EhA&#`qq{zZL=8(iJg{~ z8XrD6vK#|MD%=4&?C&36G=sr|72K>WlX%x&GV2sx$<n{GrV_N|#eHKbyLJaq{!^`GV?jh*tjDims^HTi}pC5D^Uj`W&|Q>1QL86~FNo{tRDeDBwIzU}HM%>&vWh<_N>U-}Z>qRgRAJ+rpJ> zyRc&7iTgGV{x)GZnjb$F_CGdroSdBO9~@*M`2(6H&cMY*A=cfWcM7%LXa$1+T|+~; z){07gXJ>I`r*C>N}2(=}&F@BtL@^Vfi^sw#1Md_3cNZ?FHmbdOHC)YL`$ zD*;nskK~-nDy$E!t;_Gm8@_#m7&zQ?9vn#^6?bg;Wjt<#4>UDt2yhu(@$hO3^1H6U znbdnF8+kT(VB1+#O&Y;W!r^uJVtxF#w^q6TGl?xXVSH-zm>BO@+5dKwnB!uOj_ef^ z*^yR_jO@QtbPa9gsjK!}wfOwbvefepef?TWSPzxs8AoQ)RTQBH&Ie`hfzZ(CganMO zVU@(4+0cfns_&=CJc{&PiyCs6zbq_m`g+4Ox7J(YQh33~a?EFKyEDZDR>FYq2fv<# ziEE!qIPlB{Wzv$wii`ioz8-szKpgDUl;Yyh6KrpvK~okDJ{FL0nNCIAjQf=v{v~p>_+ij=baW4I3=R*sf%upcvNbd$*bU_N0rA?c2KEwE(!{vcAA%+8A1OTA-yfk%)(LaQL=VvD>KYpIfQ-rk zD9Fjlc^jAHsdqLoxFJSIxA4q`GbG}Z?}zu4p8|1x;&sXDG$WFeDPq#oBOzag4#ZNA zA3rVyrD9+}5HSOjs(4b`%Le|vY1t0nI)0KQU0t>BKMlm}xJcrJN$r@JGK%rycXyY6 z#XX7oX+Q>+FvS-yI6lq^LFv?ixAGR-g~qflE~TeOLE-15Y^0pJXH!&Eg6wCo(CfS= zd0tT}W@pERz&u>-)6eB3Us%W7sI_6YvI@L1PLH-o3-U{!*SG0B6pD$BwOMFE%E`-Z z-SQ*QAtT3f5)_nsnI=`%EQ)PzerIjb2ZMwp>_OM!c^+eHM}GwS#R(GIcd-(N9-Nx`^>AliskgT;q)-Os#}8#37j@Fcm#wY0yhvG@ zk3|pZnfv*}#G1LR7v1;|a@s70=*T?&Jr>%XLArxV_Wmu6H1k7XQwk1FRzYYh?SAu@ zz}adB6JAnyuK?q~hD4KP=!Cob`x(Iy&-l#4*vH9!@M5^p>-#xlRa{Wu2|AwV6-gp5 zfnQcOjFy;C+&~QU+}!*L^y#Z0I0^8!S;7<&8Z`JAiPC&YmzbOs4MMj&f`Wnt+dJo6 zq@+@L%26(|k!@;>eqHqrWP+wdpYKzdhPz0kX>nOud8>qk`)5>VB7xvg`O)2if&%Y@ zRHv5vd}4c&ynTIrwO$7d=vCF&Uqw2g2_@Jqr??wa1)chVkc%?sPUcc6ebZQ<27#4a9w0p+J1yuLtR zWC7JfW#)e+Y?cQ{hXYp)G3k8b($CG9Ew3xRL@n#%qs0SEU*Z?<@Nl+aOG~2rHhBZ#& zcr^uH6Q7!SbZt#sqg6%CxS!T5o3As0O|;4J;}aNG+}NGf(bVFIGUPZqv$1g7V)5D7 zq)Q_wUmqN2I{UYkmLg?2rt-L|O1lo(V*cfpCsOjtE`FGh%SWaHHH)=xS`)dWZBIoW zbP6Lke);rix+4?`1LOX56II;MkhS}%R;|6ga!>h7jEM${{K)M!NEcyDVdqN`7p2CN5Jg; zTh#Sv{av`s5+x<&#e(+P_ra^amd0PS4obZ&n;-L34TRyABR# z%B)O$ZlvA6+Sc!B|48eUSr+7P1yjA+=;&YI%Do&>%8%@mJJ1UoxVG~BR_2W6}OzM$Ouggah)dX+lk3Latz#0KAPi{ zU=e!{W&dsMj%K)8NoXA%Us@|==R8|}ZgsHyQ|)(9;BX13g6L&Uj9f1qr)qclsgiSd zds_V}DbG4W9|^jXjfR9wRGJdcd7NskZ)^;mFA`8^6&2yY1hoPv%7m^N&wZF@M#=}3 zA)Q9R*x2Iy%87f^UMD3b1g=rI+k)fbNQ8uhT#JcR^O0FtCfqJ-zvbo0a6-L>(oX}? z1+o$MTOs*iabZD>YwBZDNOd4Ox2sEQ+uQ?!_V(z6KOqAbCb*t>_k|+&hq7N) zncq7f?F~y8c6)|`XyW}?9>B_Ktz1~pf{&LwxfFndgka3eBYUO!bbY=~641wmfpm<& zC!Sv?0;EHgmlu7+0(>7=Rm&(m$MWs#yO@_XUdu;*3=Mmh!heQX*C)Km9A4*!Iv|cI zMxP!HAdimDv1~(iXTtpcYb>7oLvsXtM?`6Bi|gybK$NSRpZ|=tP8Fs^|M0;&{n<|8 z@mJ*1mBRs3t+PNp9Rg~ZoK^Dvuf2>N*1dhQiKOGJbc&~9}`o~`}pz3M-Y7;LUxmAv+c^S>8CwSROIBQgoK1G zB0Vy5emO-rR?nWrct;V|6)MVXWg!U|C+nKTS7f6^${SIyW) zVIi4tI)P%+VasWgXPT_}>JGxf%!3%X8Fb$<^!3>Rs~!CPV+)T$O3`h*)dM63t*uDo zPoB68@Y|8?MG+fTCD21fd*w4bhTfZm^5`!2#l{~AKQdF($|t;Hl)(XkZM~D^FdWyqK&*vIjYl*RV;GRxDa0QBAO1TRKR799lNOxf=)KezV}5HGW&tn?S#-S}Dj zwk*qQ)`4K&9R)m*f;>FX%`%0DhigK2h6PxsgM-6m0DP~jCCw3suU~hQiF`i2JkyVv zmr)hR(&xZ zWCks0yP#?LVMq>-qRHj1Z*EFV4P{FWn$c2=+=mM(pvMR0ENLm~l?ojnA0J_y4-&Jv zxvs-Gr+~->Zsu&)3_)&;0KZI_vu3=Gsc8tXdJ|Jq!-&8};o^;NMcG{S)jgpnbss;cJX<^6GW6-fB}pa1uzF0`T|D=Ygd%ppH>6=>d9(}39S?cVZoW*QY$+7QHsR8?1@(W1g|51t+�v?DHk}YD z+xFI0-7nG6L%+wy#^QinZ-#lQGhZnNIzEP5w9Txleko*p7CbA%d=b-8pFe-6qovLC zgdru#tD5R|I1`n;JADgq(_P6ue}3)`)=wl4>AdW0dOH{d{ou9z2ea7`0OM<~nMcRg z(!J&wp+F9Tqg+5#RGZ)9pZ!&#YQ8*VpQW)>rlhzTYj$-ai(W}}d`qDuX?v>BQL6cJ zXR=6rsQ$H*5)BVYeKN(F#Y`}MF4480kLfQj7Op9ss&jQkDZqjJ%j!%n|;8kUO z;cIYcH2iy}ce-G7AnXGfB_%x{Um`9UJ0dKFl91w4FAy@odXV}1w;0UuO+B6(jr+8+ zHEw!Ro`Eo!6-b<%x|Qqu($IkQOK9Nm<;$0i7sDgjU2!oIg7RMf9+PP3>b6vxs%5Zf z$#d1rf|cnH`s`klSt079)u;YhzGd`r-CR6Px7&9%b1&L>7{^;+=x3siWR8b*?Q!`4mmkil}0$&=r~)ZQ`mdrTZdYG$gCz1jXdT$I_5Y4 z$Hx5k-wy@`hK$TiaT7B$-`H5*hG~B1497&3BBKk0n-r#PN--8%I@yV{?%3N2tX%whlUsg1u1L1 z{)L>~yW4UW&Knh%8V-3g40*YW*8`&MZo8T}xRimF=Hs=D7#Ml=ML15o^Rjlb7(jVv ze&$5m5sJJ8U8?H^`d3?!4!XNBeTcAV>19P46ETrI&jZlCp0eD+F1I0@@W4P3@@;4k z)VkN-Z$ImG&A&gaASRF9JyliewI@tOmq1*nf@RcyAJ^JRw!0%Vc&aJ2?B+m$(|$!> z#nJ+IHj$%rrZS{Io{cr{A^K7m*vz|MF$XN?G3tRbGE7s8HY6BP=R*7sA3uuw+3;E- zAt)v3d3kG&vLi*N6650?X~5v;0hHqboLLvhtF8v!msYX*+VSTp2+bMG&&hF51ixPD z=g*h?1BaAkfiAoNBpm>AB>UT}>Sgv2VUnVw<#Km4EBruoHgzs(Xd<^vQY4sl* z9P~UfmB7r($~uaq7Hv|_9@>uiX)q7@v(HQN{cN?gs1O2aYd>FUbPweJ0fk#3Ro&Mx zY_qidlE-(iSbiR^4(%z#BM<<2Kl3=cQ!;86Qe4bZa`gwNx~VCx9imys*x$Sv+4B{n z6ofyoGASB8YIK^*q|fi|+qk|)gXCj~f{y(4OP-9JeCVD_+8C*<%*lj00_~tK3ctulx583nR9jJo=!?p zV3~$d>B9%H7kD$@G{vQDINI}byvwR`B`)LMn21R*=l-!Adn%xzz=-mnJh!7GQEC~- zQ#Iz~keaGo$JNF5!qLVY|7Tq)g)N9g9&=JKBO;2`L*cIB0!3h34i<56w1jx^>FM5x z#u~L(4yj4}PO+rtK^jVTUmqF*+*aN|NZyM`=l2s+RaHrf3n)LZZB@u@c@#l^nw*kU zK`(=;8vm3wRe-AL>f}Ab+pGgykkT|EQsR@Eb2zR2b ztnoYh*LDroYi+N9>%12XjL+hwYtU{AU2lRhHx zgo(IK|B`^=!`#vmFHqM6!{*H!=F7f5AB6<(R=>>gVc&#-w2o`j5$l2e2(rf02fk)z z>y0TQsbl8a^-`i>bg4wmBjE#k2q60~j(eN=7!w0Q&(hI0n=Qr|2Rxv!+-b)Lw`htD&uhP5E?j zQBew^gX4f}e=Kh)WWf+r^Ebs3Iyy9MD9Gy?!{Znqyc(V6_ZowKA|L_>eers(kzKnn z`4I^G6=l#pMER5At+!`!Brs9MqaY3^OO5%RixcCA{EQwGR&yRaaN*ydwp>`6uSbk0+6JIJ~U`By`D%h$Jv+*|$=Szo8)lB+7)rYBv7s z7d8gLgUj5858u}}LLWg%MHXrxg*o%KFP0xG(Z0d+u7(Gm1bj}BO?&Vy1gJ4z=|VJ@ ztJ0VfiZ|3;vOw}5?23&E2?@{V1C4ffcM;y{pxkb<-g`hYhKI*}k(4aIGkSh5X30Wg zLhT_XD}Kzq;)*WR*PWT08}O=74FYbBArWT?VBa);yF4!~XFWQS&u*tGuRzbdcDcH$ zqHx-m!p${3Qn1CQLx%2$j@JhCnl%{4BGz179|RGc?v>93f&vgDY5+FL2y$sOI3ui;j13Im;FopV+(xA zKR+}-z$C~oN#zq~`G5)+i9?=H9NZ6Yb^C= z&z4VX`7+lxU(*T*P=GhvKe~?JORtwq&&UWJ+`v;vjciX9iq~f0%4|U*^qi<8ZVSF+ z&nVE20FqlMd+dq>G;ag#?b+Ic-nwL9bJJ_}MPuI(F=k_9qvhix19`!W9|nOx*o7BB zq3Jv^A=fZ^aWN8h^D{QeYA)=2XUExU-~nSzJ;iff-NBB|VGX;&|K_H5cW30b=H0-> zlw=WI%<|3H_;5H7-P!AcMWwf|4lIp0N6!RXLG?@&g1Y%op%hRo$NpRe1MppbbunX> z*`Dr71P!)vaf5lYv?Ys?p|RvMFA<3#0w%A5(QfTZxiix(bx%+&v;k>&o1=9b_GMF5 zRqMHe?RoiE7NUdLpZ2u%^x#0*gn6tHV`}nw$t>`!;s3>}Bm|bQ;o0JmBa=}st<8Hb zRqsx;dY!K%5TYVs2OzIHIv$<+7jCGoMYac(6@2-$?y-+F$@lSrfboFL;>HMf)Ljzk zicRAIJ#Pu55Gg%enw-W)4?8n6GcIs16=m_7sQd$&>!WLE4iKIy7Hje)fiBioQRiV<*%s_9svKT%mCFR_xoeRRQ+^ zDBeAoRova&1eZ29fAuAC1wHf!Ly8y4?p&k7)2C0@wcB%Zx$R~rpI1~t+lwY5Ry^~u z`Nd7*d`)E2$x1?HM8o&bpKRkj%x;7gQ=Z}7Y7U@Bd(d{^s5 zUF&vlr#*=NA@|*yuU|{QG(Euf@L--3J@-#Lyt?3SPmdNi|0o*)fe$ScldU^fr)4Qi zEzco?<>Hxz>neYK{z$!L-REa=)Ae!aN=5^_eG#5#v{lbBF!Wdd9UJsqo}1J;;4r^= z135E@AOhmjr~9YPswvG4g5O|dwsLZ8t1Ts@A4q2+SIx(!l?;pmkNj%nKiAKZA&axv z*l*qcqLtdMEms^g#k!*BQUveryUQU*X-{ z*RN|U%l`<7uMIG3BjcQ6-Rkb>}$0P_7ZrO`Sz7JrLK zRDaYGML?GE`>l_95*2-JC(1>xN=klD-q2{*-=#P1Lq_~}_ui83Ym(m`9f~VC&lmW< zttmwD3F4I33%q^z4ogc*Ydegbiygv2Z{rWx*pwiW{jSH!GYbT(c3#p>w_H7befsHY zrewgy*jTNQ!sFh!CJ!7&on&8i!}@uwIez zLY@$n4ztY-R2;)F_Eno#X}r0G(GFI69wIC!YE6ddR-)-;$EqtUqoAsaT4{iAA^FnZwp^9MJMHYX4qK!QM9=@pQhTW3AwW-#-GVOW0&4+o#&MLOUN$5BFEV=> zG&E~7jv=NFXw&q~a>f0w$4AG^#ME(dZD=R)s zI0$b*%%h-slvu|JJ?&~csc0oiUns-^rZ$T2$%3=CSjx-ibq&q1u( z0k;rlR<>#NX((Gkqw|WqGYLs_ghB$%-X>kl_y<3Ofd^6zwd}m`C1FT>-aD8Xw){tW zYG`IC+UU}0FR#_-@6v7hGQWzNKibMll&hQQG`H~|evT!Pz~Z-5sH&#Jrh)pIAEiL8dx`Hqk9{9yOFfA*=}^>DZ-j)a#f=ww z*N~2aG#V8_jXp*n;^N=1;^D@~Zx-uAMhC?LwaVqz*;L0Ww#PoB*H^({AftYf(&@52 z^HT(0haI=7CXx#0XSt#C*7~cvpM^r)&d*D!d3Q}^GgY3ahsKj;WFZUC)8D2VwO!78 zbs^#nTgzKEM;E+qQbC%)~6~;)P;PM9e4b&HoT4`Dee?T+?QM zkB&={+-W5kF`M*pbZivI_0Fh{U-*G__A*JL!<82_7vPV42o4AKXWTiH=K#MWv;>{9 zN-OWKfK(F>6FbJ7Tjag^`iWOmR6mY`;CjC1$Nu(V1v@$A9awjeg!TJCwmo)XY&^1e zeXZt>BBn}ACM)~?sp)+h0zgIxWVW+;t5GQ0%DLlgM zvWWmWIVLXd53u?-A@-}(i>^>xnm}s(GeO()=hoKNA!kw;79O4ahQ2`!eFDR&BJ4XVd)gq( z$S9L}^JY>^JY%w`;E~4K)DY6XP*|GV%d^*o43@K#ouKHrrEJKKNksCMR5>^^l_a!^ z0#2?@|9XJNBr!fPCWc5)U%wsdVq)Z{PkL!zk=TUY)JvOe(IW1##Z(JA(Y&w!&&biw zkJ?GeGpvk*qyZk)txvfs$w)^hd0BsR6V@-%(hw$nYY<&c4-ii*m>!7Y4LK^m;u3jy zoHZSjGAbs5R)9_pC|2h*Sx--qN(~n1#3apq*Lsmafq`t?f`H!E1fs%2nncjm-Yf}q zEm{~pWFQL3P%laX+6p@%HYWI}6=kuh=n1HeBu!oT_s(YQa`NM+4|cV35|jRZ38xHk zF?^WFl=9xRO6@5+hCUl2`=2YWpx1*jwr1Sn-%{qWR8*!{C+kCMy#(aQM`Jl6oij7{ z0nLJ3ON!n3=7C9&Gl6KhW%=ikhM^Ji$EN2j>u`^884V^MT76qti&YEo#iig5W&mIbrMI`ttK?oD`OqiuUT-0f>}uIxv~Q+%7ehO!G;R6%uC%Pm&~wa8 zH-88-(0m;9;d^4bw2d#hjKnqxwKb_mhMv6Fz-9`?_pkZDZqq{I|6%mdU37 z_kYcvr>uK|E}W`Me|)37F8$aAsH{&}_b(4YsCEwwbpT0@=^c%|uZ@dEQB_djJX%Q*SO1E*i+%PY`G+-U zQdI6Jk+6qHe`kM$$bT27Bb|XukVU2vxuZ?jO7G!u`9W23bs(J}o5}Cd;$qZX9m;s4 z+e0KA(ry-a_ijiCs69Dxj9+unm%xMw;XA~{D6lTe6kL?n#>Q)B&;nr%9O}G_hYMR5 zPAIhL;?B-zBRp5LfFiZ@^?~rP>LL7+Q&Re<32Ufqp`B)kmiwlZE;7sg^r@olQYRkB zY?eEXt!^jN=Ks%uUSdSY#2jcr_q-1&1OLGn=mqxiNmh2Y>doi?69dD<*2YEvzn~x& z=ms_3zUAWp9#)Y#&Xb&+yzl@P0@*1YcZMHDp7o^^S~g_*d|J(*p<%{`bxQ_-Hd{M6 z1yxn?K+^H;s5v|{gG&$z!5*NrEE<(#ee45r;bmL?jQpU>X!;@ROFr_8%R>hHADAGW z|FgY4qir}oibU;>2pv|58JUvrEzxYni^FbiXs~PLGGg}%8!dp0k5>6+9-{s_ur08&`}v%JV4}9RWw1YDDh`R66$?p2Lrg-_X6@3& z#E?@8IsxlZW(u;6JIq*EYQ6CNk@ySi|N7Tb{uFMY43)yDn3%Tz=4xqC0Ul@9Mcygc z*_4;APJ2)l9Z4Y_@Xjeinh-T6B_$MupY)Ij1>L49N3F>nyf8I21Y4uOTAY0Mh*=0t ztPjS*ySJFJ(xEM66m&E+-VBV4$Ot$!+aQhPb?0mS?ow%W-F-)AoE7|b-o4%km4Xt2 z)dR!1^#$=ZaG^eNFk;k7fB2AlYufI!WYF-_%}_Sv_can{mv+C|-lGTjAa%#H5JIrb z&k*9aS@Ut!k%C8bJUmw;wtk=f=-tiDZT(sv^R`$6Eh}I4l$cb8GM%5_C-hU>w|}no za=Fe6%c!A??IAx?1xqhh?j4{E=%3U(SXWf|f!P>$eh4YuX^!^Se|ODhy%y10eqsR_ zqX?|oH3_BQGC^pOh(u;TZXmNA22!c0! zg!mFYJ6nCwb6po)>W#Ly5eVp!iTgkEOCnkTK=yRnBT`HWL;;i=X1I6XojK}CMzJN{ zkw52UU)Td-{;f#)=g&f3!csjn5a0%{%r%nLI}3jPM20>3)XeJEC%`N`4EQ$(ZhNqZqN6?8sModgkKUubQ>Ao?b z6iD6eg?zpDNGEHL;aN>Pw6l;JUs3|LRsSo|#9;Bv-g@a8grSo4WEGxa&&kD(f1@m^D$F zL06_1-Y69w!ZP&MwlTQu2R9F+Sy&z8EB%jUG8P$h!5Mdva-Y1&Q6M);wDa^5^3Gs9 zZJ5`X*Qjgeabt=91jy#+!?cQi&lAs+k>CEnY3o7UBEW`0UqE0AeaM&V(>Z&iFFg@ik2aE1;fBMAU(t-$JQleWQez@-o)<-9NXzD>xjU<*S1F0n>Q0hmnuL{P; zF$NBS0fScmG6Qh=qEeSbBX=;`TpoVHR?(!VYte2B+dMy{{b*%mCll_PYrC=>r8PHs zUfdO@py==5De~mz%1MO?dP_ML1UGMNoCqWO90$iE3ybAXUyEN^ngoC8OF^sLsQ~o< z==f;=x;Kdqyw{`9Hr!r`*HcyI?!PLGFCRo>Hp?+!MuzxEKgTL8mVf90_O#z@5ZYF1 zg!gZz&d*g+l3T0c#7O1r?5~v3%xob>y>P)63wX`E8THravN0shnBTciFK#JpwYPZt z?oO>mpzygIFd#N_^9IP%V>Yx!+iphJiZFMlfBv+%bYH0b|m!r zmVxNWQwlQDr&=w(&Z#cHfd{u}8_p{3?Pz9{-~22Pah{vMq9{xlW~epl#?+5AGoS8TaB zyBW2$Z#w@z4h{8#%_AnS3#~n8_&)PHMId8xa~H4)vx0OO=tr^l?^E_xml+hN>xeUB zndl8pt&B7@K9Llui=T`rS%W>o#rD3%-mG7f=1bGV2FF+P=S?04DPGt2hYxIfVS<4i zpu2BgzYc*>wIN1XNlAmiZgr67Ny3QYd5st$DmIndp0LV)loTJX@-ua1C#Vo$$dM>i zYwPTkaeh;{T&jaKSVH~byK^fnNDSuU=Dzg`Chboe@6VR`jaZoZo^GWV72~O5VAzYg z5WOK~Y4b05gbp}?T_RsJ(UgaWY5L)TcY_lxdmxBRMGJGPXoWtHor_*0In~|A4)BGM z@Gr>Nx?m=p6A9esfuUdKw_($zwwRI<0hdwl;P!aQyr@jX{f!5A?qp&iAQK7Cw(e5# zVhhUiLul#0?(Dh32m0*nY-6Yerx6hm*QZ}U;PL!ED+#JMehVm7#s2$1;h!-CW4lbA~IZ{wH1TtNTtWTz)TH@6JZ zZOh`|j(eL9eIQMLlH>_Ebv6x)3uxNTA&iaJYEW@wT;y9T!PS2Fpqhs#vRo-1ihgqz( zqXP}%?Q}tyb&u`CvL~!pxlN`ETXVTIFkq;3Ke`i-iq6@Ngwh>oVXh!$(@iMAn47ES z-rY^Zv%9amuoStNpC5DxTJQ1C(c%V~P1mnK9v^S9^E+U-wg`$M?~0Lt@d~HEa+_G z;`*1nIU$@!9B~LAKYo}#r@xwUOsIIoQG+n%_u6}f5V!zgCFCa>N?XH#G_hJvoy{#2Z`fmOC0iX{hVQ z2ck>baz1VpbR47rB_xe772|9}w#kmhS&%P3>o{Kl-4PkT@+nSMt{ z$5#mMgQE%s#6Ktqqtd~?zWTL+F$$<{SDKsBR2tKTXiud*MXYxyo?c$+99--rs=p8I zeU**+^nE9Yy;$zNehs<)_Al{p*C{-3Kra?o>w3&gO-}xkmM^h0Emc6;{7we{c1H(Q z$@tiq5yYTl?#!mxJa_;v8KBmnKa+sA8Y5+Awpo-WTIaPhUzPQDv_Hg5`)aa5AI}$1 z@Ky7aYp4Hv{CmLbWgTq=b7z}1igcVLigm9 zx`dZ6eGQFsuX#XU(l#^m+3Wn^p}U6%KMqc4^VB6}X;oD~aj|8W$mrPEAM%H*)M(yN zJYO#G?Pk1v>In;^wUb)_#n#!^x#Vh24Q`9rF0UNCr$6GsDzCFM$6##qm04MX;Nv*UiAJ{?<#+FXB6J{p0%Y|Q zO&)?hy}hVn^f3~|#K5X#nC@yq2m@zlA|?W61yIZ0xqrVGu>f2lEK4+moED$V=sN-W z?=+BES=9{4IQ_dL^O+uZ)5{Dx@p8h3!@qy}sl=Z=43PC~!dzJ~uv3TV3-<$5QIflr zq!(wwby;+37^q^BZ|-%%<$zlPFE{N0LtUM6_2aqIy?I$@XXo(%19OG0YO1-p<@;p(F?Y{jBH3{Y3;*yB z$b6@OV^>r}8~gJ^Bg93&`NH3Ir*682pxDNy;M+GDXz)-T^$BuusjdjyWI;M>DK?JZ zuVEsTAp8}uUu|4%Y~*|aE&OoW=dgoBvitnbQGPTF7n2o3M>{o9atv+BCCx^?qjA`{ zhikEa8Vs<0qy%mOr_vduk&B60 z_-=$3W^Oid8^HiG@;5WXw`BV}HNlf*w-#$fLe!ah2L(R6Ra|om3xBY{-R{i!#zNTO z7%lkc2bRie&o4O#tF9nwWW*0xtGPPEuND`7VC_gMo=eA>79$bhb6Gt!km|Z2c)P)m zgoLC-1_@yQfPZ*oVp8+4W611qwaQY45>zkU0HTENHH8LN82eNhw~{TXrH&Jeee(;$ zWxijzLSs+!80%N0XyEG6#^=AQeI;Xq*H?EJj17LjIx>X>M(Mh`&*SNj4tJmlgy0n) zlgpVp<=p)C-4Uf%0_J1d%w3TFkSOXUlJNO+7;KdViHr`ge(P^zZ)m6bGcmncyg@r) z@9FGZ`x`cR)|ZtHO^uC_!e62a@q=026>5>tJt`{8dtfnIl|#R+$Tv6zKdUMJ=Xpkg zN**pn_o}8}zm9pm3~3D_ta;Q#W%bs!CZ8$OsBU^z?!WNAMJ?XfL(fW#8Ot|$uf z^8cWQ?n8L>PH-7Ol7aT)tV0=r=$eolvVw=#cF3eOF|fM&w#MFc{6qG(#lnihzl*kj z92t-Ehv7GMo>XsZ@QayA9*DSOM$7qcZkoZf+zK<1{^r(s!irlOgvr6^ZINk}LlpRf^NiQ7NI$aJQw}Fly1X+r><8p;?_`$pF(EU}+0LH!84t zCvhQ(ds{I{*uk4FA}E-m9|kLVrX^N>#_P7Ao5kg?L+$0;TOi{wUdJI%{Ha9oy`h%k!M2UV^@Y~06-ll_Uh5B`9Z z3*C{i_RuIo?4^GP3jb;pW!B8ET*;p2!fYW9OMBVDworXK{ZX1(SokhPaW$x`KRP@l z2KIvdLsQP+_gJQ%o5IfQByT`lNb2CQf4wgW1cBJ(uy0}WRbX!v;R7oxI%k(x$+dD) zU9NwmR5r}bGd0RlpWhGqT`!QR{+iaJkD~JTZ<_X@JBkdxy`AW>?d`hB@tvi1Oy+xB zdt#9fs7@|npG4@%_GCM3n%##0Od{B6XzM{nE>2Ds%xP)K9Zu1akeFz#=j1fk-tK4K z{0&MXSjK$s{Xd@0I;yID{rZ~@K~h3ekVXU~l?DM(8Wd>(1qtcyZjc6Pk&==QX{A9x zTDnV0y5EO;fA<~Z{Bgz^XE63&d#&|-V$RRhs%l=i1V!~q0J!so+|Oc>yx@ceNlGnD zYGL8sDyByx!pqAkWEbSpkeb5$3<6(N3ZH15AgKUBRYp>kC>+$VC07x7uKI`W;_T2ZjE)G#|4@6{JfHOEpl)cy+Fhd z*nnz*Xn)o%ZK@ojvzyLLK|IN1+xEflE=hNTS;g5cXbK^!cY(o}+7uYje zBy}=YxE`H1bK`n6X#gXf#(hF@87Kpqq_4rH$>{~R^9nR;Wl&=?$=#1e*xK$F=kKM? zZEl7_?VgOxiLP|obg6ywT<_r8i+%dP=lW)9U075k11Zf8Nyke|OZTDFwm1LqA#HPE zfe-?SH7wFrqhe!G{Urcd<;X}Ftgo++0C`_jU|^sIe1O=W-#BF(j7cPBET`i-u5Jx@T&Bs?UeZgO)3(#@g zpiQu%#K1&8AS9Y#KtbuOtl%^qW-bnGsLk{)Z0SiLvYu*6?`)~EkXqv54dyvHAMz~^ z#PH9idJ-V#>N>1bcRz^YZendU|HoKVdQ#Gpn(vQ-wH205k}ZQY6q3K^#FH-ulmmv)u|B3AMVKxrJb&uRh&!QJ^;y zH5+Arsj8XD#njIN6WGtCZ-r4QTNC0*KdBvw()Q_PhVXUlw|vZN!&O2Ndl(r z^_5g%Mdi9%Rn&5aVjAs(2e`o1{|PkPaSHdmFaoT9yBSyK4gybzO3zM>ZCE>v09j*q zcHj+U1Yqv%!E71ECqFtngF=uc109}u^}8J5?2$e+P;#rEt8{)el%x9=i0=7mEW|0N z!9<;FITEVLy!kqYYGBPRns7AFlVjtz+ zsHyrk9`F1R;Jwq^hntc`Ptg4 zDdylVE7OmTYts#BGl`Q;yjo}**LofNBskdVWcMETqerKpV7t@5ue}>iA$z#*8&m!$ z03_isfIj#;K?Eb0JeCLk{Z$rDN_vt1PWRs|&4aE(Vk}bQ#ZUWIKmP4o(15|dMjs9) z_clfhJjR~WR)4$8-bC?LXn!>IqN2cY$ei(d&nG>7md)qAp(I**EHT|lcJ>z=in~5s z=oaFL)ium#CMK>u;QozvqM%6Tw-|r(rlQ~8zT};W@jGN9CZF?N$#<@Q$w)WnGRm&z zF%%3>tXwVuMPmHD?rtLQEy8RK`_40yGM z;c&o}pCSo8r8P7}5B8fPr>0h8zlHsI|J0$i4~C2P41jPF;Lr8!HTfO1B^%TAlfzek z66W+-u^WzOCaVU$K{}2FB0Lz@IVD1>MO8w=So+sZ&;#@F#bf#4Q{BD$=PZHZr6exz zm09M?su87|f4c?#EEzByZ8lxG!o~$obcdvo?1F+&P}a?NM$!KTqCT3~`tR$L4$-xF zLDmpz7f6x^^x*?-%U{PpMva_wIJ3Ss|Zbl1k-|R@rCY9m0wGH%#@X zA7^CycbZEeS9EvNR#!fq2qU*jiR;F?| zT^UM|sbc--Rfz;+j5RbfPXCsIF%e*;`VtGI;@R4==n!NTmd9+xpkAMI*1ZY7- zFc#+oQQ61XSU>PJRJbFe@&s)W2&m0&vf~3d^lm??O_>LzK^#IqJ}L_Hd4i9kte2K7 z=E=h*;$oBcTrDl)H4hUWL7xed4r_@QIE0F+J|ic40^}68oUOTXIy$miN8{hCseSwk zIZwl(Zfp2kfdy=Ln9VKncj~K1J`D~IXxEdiG`P}3z9bMJAL`aO!=ORQOy3KM-;z#U zkLHJg;XU2P6z#h`36A*B*EXWFJ^Jq6Sm%EI^m}*a-Ab}-EVHsfsH+@iP;S(fBd^4ZmUW=r}%27f%?x_56Vgfy{awoai?XW5BPx%&a#K(Fr z&+SriDWprfelh;*BGY!fB?6WND)cA}E1nCM8H^ z@0UamzUBVZmzIiK?}W7fK+9@pUUHa+FQk!Nlv))RXU<$-%*=F2R%IL}Yd-=rC(4=5 zgxp!N`FQ;ok}VUflE_8WSgi;972~evygNGw@cX2tKR%K^#@ErQ%Zca6CO*QY$g^13 z?_WO`a*4L%<9!wp*+-H8pk>L|$Ar(adqpXNMJi)nDSZ z;CF-vE*+wXD2_MATK3(}Ys7H85=Yj#Pf1ABmGk5sj_~;7CovD|89_ z&>>Dv79%r@iozlA6guwTq3NPbBW{Cqbhvl#!q~+1=q~}RS;-J?yDb=;>%>b3=4WB2sS=R<3Ym#cW(~AfFoyjwI#J%aF|D=R(`%&p-C;fya&`ot zKxjbO=53IQ`#Ll6iV6!;RXc9^ynRhhnJ(h*ozL{8NLu- z-3BH^uo7X6j>{Us{$J%~L;ae7k+G^%f-efN#@lMYI}Unm+u7TD@2^^OGfKzZiwSm9 zQJt@PgCg|%_W(q%!XN17(De(fsc zrLLA%DC{&O*h#V~EAI&P8+JuAaQ>-{nL;AOg6P{Og(sYEu@Apg-(mik{9Jet0CK!o zbZ=ltIu3ch9UgcV=6+92zv?^uyT2$!2c#gFv%={6#=&pi?1i*;Iqf)i_pZtCt0&yt zvPIiGdf%zkg8bANBxD5!Q$F_Za+j@;bx zswvfk&dxSVGL@J)J+IvABGA0Cr7`e+UoL;&>6|t&k-gjnhFLU{(nAvZ=XBz3Hry$7 zj=6OD#xK%dv;{|s<^-ep`wz>c$4hUX^73AH(0EG06XgP}&|PZkD@(K@=-}Jn!a0fK zZ^X*Iby8Cs_Vqlb{?C~FmMKN;e~R~6N|>o58I(FLgU|Z@)TUv|6*4qPHI?S%JJ#!j zudXiyA7Ns*zE@OKPphh$n_q5g87CY6p0IM_alzG0MrL@Ua)U5}zE8=?Q9$^)5sIkf zYm8Q!)o>(8wpg2(n9Q9YZg#+`P6OU1b7SR99cPF1lgkzFrTiTJ(lV^mTq7ECVh=_w&BFfimYj}Fm3XLXTmZC!pH6J!s=l+A4}2A~ByCJ6{> z#)gKz;AXwLakIjg1!Y?^wXn+espyI%pC?Jv-Y z5eN(|t&D6mbl0Qig&%km)4x@~dMNqo6>0p-mw(^N;p7jbQoPY(OLT-_RYoy;Nf=A)Z}Dm|Cu)bBh$iE&anUD zB8U^hzX_=A&yOr_vJK#_c?tJk1NN|HRTyzi2Cd4@^$CiA``yFS(>1Ut8dOvY>Lk4Y zS==fd$^vkx0=<$);GfWo?w&nYNfcwCG%Z$g&{1ekK>mX?0POARnVc5k`YP*IgiCGms2p52$y@VFvR z6d*XJ7FJPz^{O0_QOY6=9o7kj;^d0QK0n>nZMgdm@+TWTgjE2DmQqlFZ?}v+^w=&4 zn=m!5t;#lVC|B9UBHVLi81ooGQsE}}b7tmCFLGXR2w_Ed`0IYEC*aCs2XlG6mUft( zKeEIAig=0ep2)*UN|cUB6bgPHXJ_$pPfuCTYbx_*1f9PDm!=x4P?I$Zt^t>uu<-mq z5rt5FeY1q*`UOjz)Erc045>W9AslFEYD+5lYnn;i*^337?cnD^0+Hl>CZ;R^+0`hk zAgAUkPSCu6Ula8y1YY#&Z{KDQOii&T^6`qhEn%t_>f9=?+N?ndB^^53-*aBP`Z)JD zY*pytNp7w!5G{h1v!7R_rKEVxdSrb$?|rc``>St@d!~pgJ6G|Md=icWlfnR>$f+Nu ziw0SK>($k8%yoP(8scUkq@%4Z5OZMn81k@UE`@|r*soM`f3KC(cx0S+l{Bf`gEl3M z3wjoMn1kMwUyA|}jZN_+g2GN|+xM{1cGq*&#K?JqLR6@!1wJKq&UzjM~G@f#ZHD20t>4-NB-O3$lFpRB&RpVfqv112z&?!t1shes30Ze`kxlyn3}}` z7uUqXqOGBj9bN!88@^n{^mm}>huW@mti;g6Y&Z@IL&azk#JEdKcX)L!HH-jZ<4x}0SFlz^g@)b|{V*k< zeC}HaI2!PpwWq=}26~;{qk|>0s}sozJv|yS{@aV8p>HUNBrgj9nP_S%0q%7`CDwvl z?MBvqyttr-^0J698x<9Eto4U~ydUbXkrDN`poT~O(|*CO`7=`nFR`ZPqr2;s8*~>0 zaxu|!*OQicvt?*!$^4ECLWEf1iUo!DZ7NOga2lZUtn~S|U!FJD*<(INHU^}Ty#72%+{ z8I98Di1>Ju-V%I|nqf6MJJsCiAM?K%Op3LiRb7`FmU<4*&ZG4|+PS(+8Vskf`@6s2 zg*Nc=J_6ydfwMeXBrr7|r0agh*-rLB*yX<8ySJs#(+P2KkZ1#0!*y@JzXq0{PHDz8 z;F)tu>wpX62XDkO@CR!Ny$$*1OGiSIXDw(n!!|+hn&aU@lGI9bs_s#H8 zy^of_AQUO`+3<44wWRf508XY^USpca>b&@>!IZ#ULCKAJ7_8FsJ&@R~l5YeC8fiEc z^Ny$fd{SEjRawUBl9YcE-wPnQpI@Et41(hvp1^{ew9pP-zIbfO1dhQgC)b$gS(bWb zQ6+kcXyo+tb$GJb&5pC)ivnZ#AMqtmZXRfj=DF6%T`?rsUMK*%E(lUl6ad*1ka-T>`UA&j$M5wUt%%Hg(-1LcRU`8?r^JpR5 z+Ebg@q8-))Lqk8{;tp&b&rZyljp5HWi7u(I!1zCCDxO65A#)I~#_Rc;iU~+}9}^Qh z5txjJhwO)Yh6+Cut=j&4!X+0;35Vy$+uK`5hI@T&;K!B!t%Ln8rZ0cGj0X1qNf>_M zkdld@?HMI;pd7Pr-}OP0s%yMXBX&y)lRX~OLve6`8U?a=bQbFzcWy%iFUI&|aairb z=2}EsN5>z01vZxQyb;0o2-!$t4n5{2b|E*`y{k)h?Qbg$OHkt>kdef2bijjIqgy`YVO60UPK8 zd#E}LG_LS?5+_I*G7M`0`!rZ44MB*($;0CZZ%f}s5r!B1yvj%>dj=VqNVt4_-zL5x zd2f#Se)mXy7uWyk>C45s$C?ir7`)PH{>F2>1*}wFNF=GL>%rXjt(m^kgom&!M0tJp zF1&4`K7C?Msdr6SKG-Vww7J?*8|V-Dwn$u+l^2%*=%e7F4{$yH$Yn`Agp1t@+h9)n z4K-N8hyz~_eEsag3}`E)9J@IR3OH;p2Lv0feTn~+8wYa&yRZlsl5gG55NTGu&OFOn6zxEHeLJf+Qc91D8^uDYMQhkztTg>%={v7yoNMY_tekvpHYg9 zL%>vffaCt*^5b{ijsa?NRUc|ou+2+gEib;CpErjS&o183Bnk=BtQsUFKKlno26%Yi zKpx0BHayS(EPsi+*(&YHH-%e!5GmGOG%#+3~UWBxNVwg@xeXzHKKDUs3b?=&6e| zI!q4bMFt7ryx}V6g(R^KLNPOibzq(|3W_%qC0~&=DbCWy7FAepiAe>PC5` zS89Ofny*sYQCiwM^gJQ4BTqSz%Mkq$AD{G;|1C_d%8(JrMre%0(?sF}KqhGGn^dk$ zO=Y=`_A)c_^*kBM$_>!`?LheX-lUnEhq$)EWqu-x-e)WT7w65J11r1%l&g{^!hD`b zS(ujHhAMw(a2oF94|c zx%NTCJNZ>z$zlo<0|TSQ?80eOnKnu`$jZcwXu?twyhxU&rrm;@n?sND3cp>u0vBCV%e;%8fEA)RP?OrT$L z=OBShPxr@*e+<1x+fTiVIcT`7>G*kQy@rCq?)LzX8W|b6=5sV*?6YjQAnjkZI8-5; zY;43Nck-!)oSNYtYYpPkSXq(y6pOk@!JpWYA+E;x@8JIL_a?H!y|eBzRr5znwy$0x zykHLm`#Ch|;@-6PCZ!aoQM;RjdYm0GcJxg z(;LH3_6M9d0fr6|7%3Ek;PZJ*M zai=>>p2RTO_2w#i8lJ+lV9zkQHO3+4z67L1c2M%FDv_mm)6YJ zwExL*EWO6ZHJ*UVM)0O0xH^C3*!ubDfs%>Y^Qw_fS-J^JaaU0XKtK-3l(f540r}u2)k<;~lIs!2y88}dw^`p4< zJAI^@AtNR-x|6fGsfnzggkHLI%mWRvDyIhz$~Y~jWS5LrUeI#l*EkWhepL^utX{2z zN(J7Gf@Ea)wZd+Ry46NqY_1o1%0|yDd||@}>riDiwV$wa2bn_@WQF*+zGoRqUC<#W(K4q1>1h*sTlg-5tsRb8qDi0@P zpWUngTwQ;_8UEsatNeopGaCc_K)W6N^M@5^hy#Ml&fT~te;)xwpOv|J*>R@j845~JeSKn29NP;OtSd+@9=$Ny1}8zRhIFsw$l9oF8NS{iEu}voKh~RanRjcmEw2eNbTu{D?od-~ZOGe9$6;%WtJ?fIX`t@Wux!#VY z2$zlRaWN625}Ae-XEzV8a!fp<0E9*vy;CVUZwvhrAR{w$`bnfA^vM!H&tA|)HTU;N zdb}}^SnV7=!X@pZ=yos$Zg7;Rq~yl5gJbSz)ejtZ=nf7ZyR6*8#=gmWp&%!>h9=eW z0nWtuMqKTctFvBO+5QC#(T=*;To z^B7FN4}PG@{<^toeRXDkRVdf?iCpq$(xbWCl=ufLy>HlAzZR6E(%Mh|im8Z{JqN$Hp4X);p`J-Y0w-=+Q{7Wk-h6OUB7uy3*Su1{L7AH#*VG_3w` zU^R{oKHXwNJ0dSAs#~Y0Qz?K8LloLZj4(2Pfp@^cQ6lpE`K`Lf#*|ViIv|n*8waBW z$P(Zf`3vA?8ACTA?Bgw>ijB=A??#cDa^q)MVL`MDF(1X=!_41DK0N{`TDFZ046RL? zS`cKD_wV3<*x%33PTlK^$}U{r*`846aLUtFyn+W0nxh%!M6M~b6FBZcr46Rk9>^OY zAt#^M6Inl={ZV*XGctno-SLMRoczGP{Hu4}dWwWH@Q~%%z}2425jWc{-e13*G_`T$ z&CE{jkofEgN$u22E*0oxy8iRKitQS>p8#x|1g%D6JmKCag32F})UK`yL5W9IU47^N)RgQ4H{81Tcpqzf-jj*)`Q+5g zuZl;b56-sJ(kc{TG)8>2hq1Mpj;ev=6`oAt$UuiY!~X&Q^h8UR~_p`RTgMii%hy{ie&K`?VA4ZRh0o+g~1 z3z12A*A8=HbuV+|B_X8_`DO7EpJFn)*{fG?awJ-8E-&!2vKerytKR950r!kxYCwsu z+ea)Syk7)`kO(+8{S)Kh{kYCfEk z6^aU2&O?id3b)kFhyqR|lZwix8z1krdQ}bDfdnQOR>KEK;o-yle|Ki1T${;=fJHe0 z=hQvIU>M(pv6zkOUl+cftFwoYHkMgF8#x&1EG*g7n(WLpfD}pi1Ego*balaaeS?h^ zhf?Il7cEI&O{55#T%WK8VS>v_vrHBedL|~B6o{OK8QBc%`+?+3f=l(77|9~54K<$_ z(A(xax{&PytAYjiJXTI8_(TSV)&O1cn8^^=o^5o04M$v!h`W;AAuG-wqKm@=+Jkl9 z)u^ZeAuF+(qrc?T;3I<%)6&<0@!Ejv)4>6!;kC!h8e=@l1deP24dYHDwZ!P2!HI2- zI5|PYuEz;JGVPgR-`zL$jUHoQ)WxAnIC5Rb6Gim(ImM?%c&0u^gG&~dmPWnkoF-iI zm9U|=%RAE-g^^vu>%N7>c1~?AE6nz0&${5kKPW0FNdBtCoC7)r)h63}+$=25W`6(v z*VZ)opYr|K$K@d5zZ(El3jPn~XRr>dtav=>bB#m9`0>xdgz=YH8_Gk}omoZfUzKKG zI_2)iVs0&?we8NIY*f!?n7isza_S?%2YWNp==;?W&&w+n@p~xP4=J|y?;7SC=xBvz z2LqWOvWQ>!pzYQ<;?cE#v;0L_v9Z>y%6dndO7z#y)UFKL0m;o^A}MP57a5TFWBuq| z9`!Bc0 zNtKbTr04udIDkjBfmz#nx(~}8r$*;TN4kwTy7xC;=+cseqGhXefzXrFb52aQ>H~w> z77T5WDEQ31l%L;<2UIITSt(NEi4XSekrAmd6_vXBNJ!ccuo6>OR=#%^BrG3h8^cL0 z%F6=V+pr!(r!x7?d;jQ2I)VD%l(w978vjnX`vhou!+!tf+)uy$(!U+X_No)vb)Rvo zr_tRqm3)f)270mFli<%gl>5kh=EWELR#foY((!Kby{)CRNy2IRl@fdkc^=HuT`?tm zc5C=cxr&Qsj*fPCx1}W|eZSV#Bo6iUy{*@d@b>o?7-$l$@9jIa4kfYPTJ@f-A;=}h zzKW9lSxIG%^N?f37Z*q1U{l7-w3m#PorgDS`ZU$CQ}~-JzY_+=7fp@k#qK*M+Y=}U z8~!iZ*t97H@FyZ^ew60~L<)GMe7|VHkbQ4@!yW=sd9yWTI3>7!cY}!rw7z8+niC^n zb&RR3>=gTnmH44fcYtEbNqZ?9Gjnq=5tCCWlVVL29RW`D2ZmP?=^|2Tcr@sAbolN| zn7|2ve3J-Bg}KMXgmKdak~Un61b(I~`z9l;LL#9?T=e$Ut1{k)dJ(G+^%j=$Rej)w zFR!e83Qrq|-|>m5`nqR5X(|;!PF}nSo((jR;J{>g58P6Rzq2cJZEZTs8s6c)9&tU+ zaqSt%EcxA;E|M+r8){(c$A0wl^YtNI+xb;|e$`7id9C8Pd6<$zLwjpkk&s7#jfs4r zs*+Lhtr_mLI%0Afh2(aan!3nFtf0@aH#G|oU>P+Up3)8%`x7@HQ32HMC(yYR%Tm5wpl4)n!M&cl43JAi!H(MO- zKeyt*@0DGAJNVhNpy9E=uJ{Khii~o0?O>KnhA349wz%#I$f)TCef&e1>PK?5v&3~1 z!GEc~di7tKj$$U`{}lm5<`ZSvrh}iKa{DUmC(e4&Dp~bgHYs-@=;* zoz2~m0WrLO<6j7Qc_(GfkiWS+uXDx{^duIxE(5r+yfD8vilCu6yF~jx7P^SDP|3fq zwfQ?+DV#bySu*h7wq&3Uh<8yC2chBq5_ByYwyU&pjVocKsQRl48z?$eIOC-#t)oSq z<>iup7CXK|ClIC0fq__SbPImw;^HH(Hk_=u+t(+R=diQAmfqLd*$jKU`K_&RKs){R zwU9(%`35Jez%As%zO(Zf`OzOJhzZT6^X(@vOu!-x_LKj_6Z|Y&g_x8Sb}mG4Z2OOt z8z(wKY{-v5%fAZt>UTIiPwqjqK@AR>*nN{7T{#22GQSYI&9NAH4Z3wQ8GEo60OKb& z@rfhH(3Tws2$7VDNdq_7Uf~zyG6~ewVgdDexvEM@xlA7tVs`;xn*svQuT@nqQ4ugY%svE!M^x)XdH%7M zYE1ikb#FJ(?ASwZT&6h7F8j3j<^%|FqxBs+__yx2Iv0^)N=n~u9Cxo`H z?B72dbz9qVgcry+K&0wJK02(wu|8A-iAO(G^5tNY3fply40`%0@<-^xpR+P`RQDYM zy(GL(p2eW1Ho7M{R)5fsr134%4TnFKceE4uZ;<|CV*y#z(-Uw>j`+=u{b_r?kyMNL zM84fWrL26>#p4rY-_H_asmU>f*xKHktiY1z;yQ6YwV6+iqE7-*T0#G>&J5n`_&q&D z21tr3fuCRT*=N{>pP#iEhejcPk%QwPHxiHFYAh-aE%B4Y+7O06H~BWs-7nbWoMLLm zrXf&{!}b6)Aq&>;7NK2%%U7Aazjt0etN**4$>VgH z)XCZTrY)a7+QC>|kQh6tvVa;YWZ6at))`+=QN_OIv+N4>r%(&~fZ=fi7dL9Gx+LRa z%pNeG6r7#usx2GEPp7}%C~&3d#K8^p;x?sN+f=Q9(-J0()i^<%r=h9o@K+JWlPW4I zYH+Q)mThh$4j2gE=-TrRO;_ZHx~|!ShMD+1+e=K2{CsxLa|e;Bp%}BKqiZ5i&dZ_LecpcPI0l`P{|TCQngBo#kuyBZ`_tRe1syq^_l=y`pccY7?H0u9VK z$?xA|bsf*D&f#?sv}}xoV%BHgyG(f^^Kz_P&ZQ}tA_}PMK}x-8xRfF|gPl=iQ;cJF zP{Hv+Vb;4RWK&v6zkIK{xxp7`cy(YLB{U%M+eWuSHHy?ojJ z9`c@wS605AZa)dI->i$kTy!q;N&fVC-?sqL0`nEt*9Ru5@qohcd91}(%;oV{g;bwG zU=c}31R(&MOmOvE1;WIG85m5=&5d9+W_&w!SRc6PH*B<#kvkopr%%W8i~3CA7S7KH zXEtU5Ydnacg5&B0rS|dTZ)K$f@1&%;|4u*e$RN6^u|bQ}*2Y(U-SuWxq-+F_ z3cIV^_~XR^5iQA&t}ZMY2r1ea!Z65=j+j3?>@+tu07Z8q_uCLzNMwcI$m#5W154qx_LaMlPTfy(i%E1ChnfryNtQJT zCks2LD3W}veKw~ZHd0Y5F(P(2_9GxPhPFl^0!3u0~a5x{IElvp) z!#4ZzV*!r~0n@_+e2C;cGkKpWNQVr$bZb}ux!hQH~rgfOOV8%J{haZ-jwi%lk z>^iZR&j0lklYTCL1h2B#f|v8gC@6*O969GL#X4$gX36CdBJRw8cRL9*J5r^Mk=B@B zmi{$Y(`m%{?u(JM7)%6dUb~hMLzGy`6@W|8F3#SLAR-#ZB|}W3U}O-GpPp?Yfiv*r z{h{fL!##1Zzky>y9Zrv&{WtnzOIQ2-EE>Q5+>PJc6W}*MRZ>PudJ*t`DCcHXqWzu) zEV=pt0XQfaA#-c8W=8W87EgAd(H!p&m4Xw2)$O#T>wTEnTYXi z)1$4$l!k^RSp0y%2L$-dKWzkcP=M@S>Us-)OK^n8>D1X_x!}=6qb#1<)^%KAfRmva zq8}?mLqaN`{4k%Mp3WSC%}`et9DSsd2&EVccx5DuQ+>?&?@~ZqTYHM>j5lfMe_8-_ zb@e~5inW#D-D3@-dst$LD=SBRj0TlXM_Y^eFf&$?wm1qrt}U>hh#i-);4F&(Wd32J0Po_6qXyfT-Yell`P!YvVuN9QYBlBML`fHJZz`#e<)WT%iI>AcSF>~oq(3+BU0B9F zzP{Gn+qV_IZ)jo?q+gnN>UK=UDiayd&>+09urT0u$Z8~dg{f}Fc5!|j7!Xf#h-Udm z3N380qf1W2nVTS^C*gg>ZoaD0)gny|M@%U!Xyz4TCU9|Rg`Ej!DEPhsTlfmBZc_kr zRj=xZu#UbwZ;8C?54^5_;7&3Ga$oPz5E0yVYp@G-3&8bdruPk69nO~uDJsfW0;v~E z6VS<7cbB?`#~wSd!?If;P2@rSix)=Dj~~~6c!ovcc_DC@QNeFdhGx*DS~-h(7<938 z`jgc^UT9HtVPOrpp5W&=JL3=#*fpA(Su;W25WnSTnG#*rguyI9qqoXj00t?m*j)2k zbxsj-CcHB;LUu48NQ_zK%0IV?0S*q`*torrLiTqf4t7k>WvR9>^h?G(XpU_t=HB7mgE)LG}zI!Z4V46ejY zS<_QfA3!w?x@0b|KUfg7eQ$G;l*8Yj9a?)QCzl0S1~9X;qxSDJ69seXAAexguHV0{ z;|Nv4&g*i0=)cgz?xN)mW@Q48L*WC5rLl2Ge-gi<`SL<*eX*{;v?`HZL&Ln)3QjK( zp;fK1;?F=ovHLONFnQ#mM|qDhz`iv&HC4#X$vGDi5~4;^qRsM;N+iYJ&&S{IW6bB; zB#CJ|yUtA53a3^d2_6#=D4CejiLhWb827ctv`Z(#ji@u!bS3AXM?i0qJd``+zEU~( zno1w%X~LyTmxGGqX)GNrbA}2rzM9&%3@?Uu z>R?9w=V6S}hVo(JM6RI^N|}xbd6i4)F!N{)66kcqP`@~S5L`Vkts#D%R^NYIKYJdr zH!T<-Y1<=s{I{XME6uErcMR7>m*GBwg9E0SUJAO@KbtNj0^VBAC8T?jtbCa240~17 zn$;2M4ARRec*``bFG{K$yPq?EEO&fJ45O!4dL>KFY46RWwya9td`CT7e8U<+w z_<|v@mSJ(S-MXtY25dA@U=krk_yTTwe}7*RHh)mjf`lv#LgNk~B6Kt4PH!PgVs2KJ z)pYf2Ii!ntwjQYa#Q6v_^mbrxa~U z4i0=!HZTUmPjaxoZ+6jvp>|_en9TfTUI2<_(~E~l9oFiAykUeRSsM(#;Klv4QB9un zLVP4kW;~|^@1cbSj{6X2fuT&dif%1(7)4-jqkB|ZI$lYQ0GW)`Tvrf5jniVl4MHR& z1RFw+zd`UixS3uHf*FdS&hB24K!40S1k=66ygu3b=-y;ch@ys${=XCP`Js_+uH6`7e|nq znh6dKX5AYdWjx(tN*^F4#@@(nFd+z^*k6?rB1561R5CQjVZ{8nx>R9(@WJ=$67tZ= zrW!(T?0UKlF8((@Gu!obtAXDOF_Dzwu&o5=4Kjo(gMSP{Hj$n_eJTfe=B-fk6z{Jn z3-6a2+UX$3J%Dn*KO-mjarZBIT6Rv^41|fNXEQinT{ypq$)eX9%*7k&*ca-Pe})y+ z^|r?g2_-|+nY;Z{aybwuhZ{Y@$4E%NIUisia&bA~Q-;;TCYX)onV-1t+7o;G=8ID) zuVTH9x~`bL!Awc3+n93%)W6>RqExYlT=~@)rq0T$mAa0$%&FcNWQRkFg+Duk7}nRZ z0;T8c6QA_3D%ULQ>NB!`X#Mf<8|AB zE1}+&31DZD0B3F4@4Fgya8NT&{fG#z=5K_y748{YpyyXx&Pr!%-v(K#iu|q+L>H+U zLiKd36!;2Ty-6pKprDBkii6RKdgtaA-??9@KT?A*$-0cXALhOwfE4%>voZbeFa+yO z!9qX}5SUk3h(p;?IgDaMS$Ro>`YF9#`fE`df8+|QKq7akkJuLq#CJQa=x(`-i}l=( zo9l0|#Ke>QZ)x=&BI+=%(Ex4*2kva5S23RIr(KiZsfi^72qvbiK3}D=mkr8oKx|X39Uw;wGdC+JbkSAxpY7OpV6-jX(ju|LqWX#dM61f20AxsvHa0d3fcsD=v8A-QurN1SWF{dJ z93Eo|-u`aNrzH-sm6d+crxWtLSvN00=*7ukjRL6>h>SiDb-JhuBa`}u^%P-OLcs>l z^e?|gM`Pc_bmdXIw;x@7$@hUXC>Otq_T1Xrg9kwyHT6mp50ea zjP%fZbC1)NuY!kX?qhntFeRs0O-{D|!^YE`qNwCtCX4Mc{v=EQ-8MP?MYtS@4YvA! z(`mT-X?wc{+T&TvwSnXBOk3kfC+DC@p#+x89P7oU_34>C9K5}0!pW*dq0rJGBjEB# z!H+rciiNPSNbAp!e0^gXqnmP@lc&iX0}NtUa7XxnSwogJuBund?ET4)K%Og5Zy!z$ z4w~dDi8&6?rs&oZww37Zb1N!FI68JflsxvZB}9vOhlIq5qOo4ABiE4bLHK6#rDjP> z%NI995Dy8lzKN3nEGd58RK%cHu{@=EWNaX=LAH&KI(M2SV{);@-%?)|eR#5-TU{F` zD@8uo+Pabe>j+R^<9R)CJu0NTe_skmPmj*-YiW3>nP7Vd4N(_zP|(#GThZ$NYVb)o zHExAjAYnV`F+Sl|y4=9u-2HCH$2%Qv+=0D(R`<8YhIeH2+*)c<3^b>w_nStC=#3rj zpd$UTU1@f0M*Or}_sI?=8QkoM9J-8)8a%3j&FUwu>UvW&h(fob92?E`=F-#xG{g?e z1BTD%0nw6~O0< zw~qEIT!DzPQ3&)d+Rv1fIzT~T$*QrYf0l-E`~L5-Va1b{S9(|p5!7$b&dwk%zUL`W z1_#E*R$+y;cXnvDmL`fM)j@N!@Hs&<8)3_MH&x0wLlfw>awD5F%UYYqxN07RI zYJ0X*qy>6d%RX)dbHY?RrSGA;w|4D;^CBOK9FO8Y!iAYe1zD@<}pAS ztjr$JUv2R}uJT4I8le`Z<>T^h;h&uw`iKvsuC0l33^>3aSfm(ncNbotv3+|_)D6<4 z{{9s4zjH0S6ha#B-F7oDq4M*_3Pv5TCr_1=6M)1hE2}HFMhVupa!QkR;1cD6%^wRtg*F-}Ta&GG=`B*0gHkc0!2B{xvKzk(Af5|Z~~H`vs zQ%S4DyR@Wd(%L%`VhA+lsp;g+1og^t05(2gikCIfj-X-ktvlL!U%zCdq83IWvs0oa zgOs>yg>AAmgX@K<2Bb)>YEOWU(uJ-S(jp_MAbmIf>&sUf4sTzZEDP+H1Q^S!Cy-(-zzv@|H)NWe6 z@6z@&1uvCp*?5Q%RtIa!x~y?!zj%3HKvdFb!K;0!(WW-XO76wU-MiXgqsvNoNHkyk z6`4_9Vj}*5ll2-t_4nFLa2H8~JXP5Ajd;haq_)c=iu|{3?kwYwXKarttB_M``j!<` zs84`rfDP&B2IyyJ-RBhiAsSE7T7jhiwfGRftJ6bmS)|-!qv|GDm=cH;Ux5j&1DxRV z8yj+#U%4*|Ua1abJ6d8BUKAL=Wm{9h3doY8t1a`mbV2LiPhGM(or0BC`gI3}@=Y17 zwYzgjbL0QLId8E`H7-)Y9!8#Tl{F zm$2d4dxGSj^xTkM7aSQNthT2FZ=&1)^nX!~G%wIym@54ICxk6_f29(XATMK5%zMer zMR2Dh;+|RGUA~EKY}+Sx_|{xp5UhUJ>5TZy-~U^TT+6}&$oGBUN}^nBZq|Zq`5&KR z+Bb#QubCTcF&-^0poaf7rxTG3Bzz6&D_rH@G79GoH)9#tm}wVWHc8$pApyq9aJ2CC z6sew@H&6tB{prRQr{HT=Qj8S6Llq9T=DOmm%U~t-SNwXWfMUrTZARD{_vhfasEQ#PSu6$(7Jb8%@w=%qie2>u3Y7YAN=ay}x#wW0}iVCgDDq@@XZ5eNL&2@E; z)nH)1vL%mhxV+rgQR8;Xt=r_$2LmX;VM0V2h;8TlMX$|W%YrbwUw*x6aCq<*vNn@* zqI_R4sv?6}NT&0$#vxWA*PjlZnUbf;-O&LbA`FJ?oj@5O(rq*{C?)&z=a0|wpUSY%5IX0}flMhvElIk2NoRvueGfqc z$`~gXcXf4zV19mX^#gr3Ab@Ap^YUrg*4rMFtuHw$cxSQ1U%9{_gDfB!fbd1n)W3A$ zY}e1?zK-c)-W|?FfkXMmHUSfp8%c@}tv-O#ZsHm}=U3AQ=eBPH%w274s!89Kqgh^Y_KED|Hfg)g!4T|?=u#3jQ(?>Y!c`ZDW5$HcyN|q(& zUn}_gq29_q`fXwoO3?@aBSsamcHsvPXcr@tzFD2w)g8OJF`Im|XWQNHH^T1R|5E%+ z9?jHju-w&=4-A9jj(?d6X+*+67$FIW>l*iSKE0U@T_myog3oj=)WoDsw&vilINks0 zp3Q2@la{+`u11W8PL>sRakTZIrO^{oU69}(5J047WYFpX1JO)gzHjGh59vlFbj|la zaL+a8OOS9SMMV5sU{TFk<7;x-B(Z2FLy@9`n_Lp?3@iyf6N;jjevnwj>sbLE257ok zZ%oF^YqI3=Ie#@M1fHk{4EN$--VXSndKApnz64I{qJzF%`h0v+=$|xg z8c6YIkToHZsXq|nDlH+}2M+4&jV^BRZ0SOK`Cvs zNXAc|ELU8f4+;uXnZay_N=JurbinIH<@OH? zfB?n14Iwu`Kmh@=udqh3-re2BM`QpDWLb(ykuX?g{>r_1oDAF3Gv!Yc&0G1e-mlBw zL1>1bD+I-*T^^EN{i(ph8!P$&8Px;LWZWq!sNoH+$-Y9%rKL5L1V~qtmfi^u?}5PW zWJ(aS$RhC4MReZ0G4Qc`E|)<{g}W{bN-*ST@v+*T^B6`qTB$;^ha(#VOM>2mTGP?ZF?!mz*bv3o1qwVQX zP<0p%ed1+qaKPoJNhhJp$@G5r9!OO8vuK18WAA<~^du556mfV#wy@2?bFALqpKCw( zl}a7TOfGN{)YR6t@I4};*&c7nCcQIn+7Y3VkQ~bT{Q1|RmuLG!U020sZzxE;(-9RW#FBrS4Wk(tHe>)?0!E}n;E=gNAb?4x zYWDKVwHpyCWful%KRdeh2S+4-fe*;2kb(*KBR6SSs4whn80A0R|D>n;>m6t){9{xn z3m+RoX~N9K`*x_x(%3~cr};@gb{A+KKSZw#-=gP7V zRH#~77hv_N-^-D=Qcwt}uIA5q0rrjt7lxb2cb7=L#5pgq1sZ>a9BVDy*e>(5Uum6Zt;QUs6?FlwJqO-;RriR_fte>M5= zD@?Yo6*J~fzyY9#C2g=F)FX5*GRJ<2lAQ8wT zv=^{cddxRf?Mo5a21=OpW5c&XthrYt1ZzAq$482 zjHJl|oaW9|sk*wMsN2WMoFU9^krc zZ?Bmeq4xc=p*#J`o~W%bkyrTtczVmQEZ44U`=XKVZcr&H0qKxNS{eidB&0*S1S#o~ z5NV`Cxevq@_WGce1|c{(i}(YbkM_$1!7!eQ@TON+wP=HmE(fVIcC^rs$-& zyu6f!4&oA&ny*GA{zi9Yi4Rd9NWxO>tLm$Jw{N2Xemqb3bp%7|%Fx@$BLf3M&5NVQ z{d5p$)Mu-zQXJcUOf#5`?)qD(`IwLcD~)=lqGWGokL3$I%V6HOist2SWcB?MJUp*V7MDrG+7s8KZfi^7 zw?mcu=#3PwwVE4ll@L1?6%5_WLec2y2s%{?w4Sb&>dgI0zwhF@t)J`Z&i^@;^XY9> z*V9eMc@2*%vFM75+}zwxBak>CQ=~>CA9tq^O^R~3n05ci7d$?R$aj-YAj|A7yEN z{vTOW(_)Y<0r(i2x(EsjFHqp2N(U8uAYAx(h4pcA{Ady$AH+>e8{EXtnJF9V>%WH6 z2Sk7`mO>GbC|v5+=)D$m?_P%5qN?3(?@t z7OSh54?cfsPBLt!1Vv~LGhsgaZG8OUyU1Jo-LYtQ)a4s9X{_4(TdR$@tO1Lq49dN= zt*rrJ5s}1}D%>oeZ}f2=cdg>cOC4LU!J8<}e+B??T zc02NCA6ngWtrcw9Vnz;rCFf=f#`KfE;c_?>OC9(HrD07CC`o0K$mOM_kziU1+7qw@ zKGxTtet_UA`Ri1c+kH**z2YO(0Z`C~6OfVJd85d}3xkjcTi;8F+s}Sjv;4jM=h@$4 z+<{|blM}&v6RN-kna@CN1%sI%NMchVo&Z&PDL5oVIN|wY2YVHk`ttI^sol5n%Aa2R zMh@TWu%HEQP1zWwp-y~&a}Mp zlVU=8D?<7N2iJu|fD~|vP`idlM&1I3Ug-F^)-J$so&EO_=Axnz3bFRQ=){q%GR@Zb zXmrDwNSFVN=GvH<7~Vd>kNbCNW^W!0hys8-R|Ap(dUh89i7fIrTwlL#+e?(yCErjZ z889I}U>#_Zwq}r|<@G3)D1Cb@1XH|6(*r8Oe)qCX38encjsRShcUW8uh#nf+F-3Iu z@@6{P9K+Guk8<9<#UAREy1}u2oqzXivg!Nno-bVUUyDYk`d_ZBZ z4L@U2RTU~X>Z!z~8x&GiUCT;hR)kQwz0ur3HZdBdJ9oUmZ9jAYfmqM5sDSsLenfOMNn3k6rL}o52;0PpOFu(^5-%h{ zJu`bz-|PF&hvn#Z7ueZLx8e6^sdE(Yv5rVcHHQwCKJk;&ifE8E7(KAr*vJ7f*C2r6 z#O0XWMZ7e4I9Sax$jAySkmr?7yOk88~xK@&uHuO?Dnp;CBugtgalyi zJvU|7e^kFjzE|qq>_f`KBlY#@cax^}s{+^>xt-Xj85sh0Wc5$GZyJ!v9n;ft9zPb; z|1+l0+u=u96%+FZ*tewj!(jG%0ExJ;_{E0fbpP;JZZDFUu%hHvWWB)5$1+cMhkIVc z#F>0N1T?-Umf!`1u#cDETnA)sI@rK*aB!A3H($Scg*x|0aY?+QTxjxV03JeMF#!9= z#j%iv5r^)42lRGkZfp1StTq+i9w{tbe*cDS zZ!RCB2OWnYvDNi9bVY#q0IjN&u{qNzKvwR@yhKqt_~^onmfGTuWK@SqYiH-uQKRLY zE|OxamLc0?79Gq#Gb5XYq$Q=2iFxv;C*I1c#%N+9lQPiae_DX@>EYNtF;6bL0IQ!r zHR5+d@L417JJJyD02ZOapOCQNd6REyub2g#r#CQFIG2e30~iMb2X7A|=jvgM2#nwz zh}SZ;wf!9p2KKF!t*JeSQ^EhBCba+aCI-HQNnsTHaUd~0{YP;@L62T=oSOf;ynMcJ z7Om;-ezXqMlYd}%{06_biGcK4E9l^M!ZF~arm)Zs+}c$BQMF_?({%eb5{QS48u8G< zcDgW104ir^O0l#pNgDznoh+@ccEL({_KK&QRdnHFpiwPrP>pB^1`7P-bWLKJB4w-F z{nCFO?cze9y(iJ~&3;nJkZJ~aDAV7H=2pYdC1BA7ppQ6m;UU3>vtM;ANuErfj> zT5*deuYE*zA{1TUHSY*&ll=E1z|Ab+KTQQa(6M(cRI}Cb!sugM~(7 zJ)C3p6>Dy1juH^8uqeWSwSvLi5=Y;MQYQEl=<_ge;_v2c=K>QA}Xp2>V1e^K`zvagn|OVg4q5} zi)(|ImqJxaN#MN(M8Z9oTrhzj&C}U=DPx_7py?;SXiu*t$d*v`WS^hVM|T=E} zUf%Mq?H^0_4!`FZ8Ck~gF{Oa#zRN~}Ip0D1UQTWhxMP$6MxIB*UJ|w=YXjd;MJoBL z74wbTw{snT@F_Of=Ppu`$o`PV$G3ru&I|*C=wClOT>zL0qgYKH9kgcSVVJmvZfx5x zYwD71fn=F;ZDjrL$sTub3aKm|oip`)bO@xn5p)1L^A#Sg2tReUw0hk0<3`6qK@)Rc z!o?8PwUNn5DWzNPZ@5CQHYbX4alSaw(GC6rTmw+zSf2mZ>Mw6}Qg_QKl)JuKLSZsI z-IIY>6EP5ZW(&L7bkx-T7W473#7axWV7c?~Y?EVqXi)Z5;{!44!A|Jk%@$aAt)p}8 z8Xc!u$?_EmUX>oWcI)Uc3f@l|ado$R`SB9DDurXr>G=7yuU9oppuoJx1O&GkDysOj zx2v%)UuvnFX4~N*H+=ped9{?}omEfG_ljP?hacd}VBDEC51K-SJFm&KsS}G%Y>5ts z3U&Rx^#JV335cnq$fG|M1O|c#Uc*N%no91+S_(&`PD#lv=*a=a#t3tB z7?s`>&!DB#htb2v-#2f9w6P!?0Cqbzi;djd;$lm?yLi?P4r>r=`It_qlSb6zr;5{p zC83Xxv7et9Os1GgHn;NM<}-Kw`|G8t5#;8%XAYS@_XG|F1Pb^xC}pAbYrjRje=)(q zdT?MyN7Y~L#fygJvCBgGISjX8)Wt1-eRedrcWZ`pjN1e<@WKV&mbd#U$tQn%uh|^C zX~30~;9}y;lk)uMFC>VLx06@Epp=tSR91cnMC|T3`nZ697rf-;S0;!is$7GRlwuK7>+jAqK(=@PO4& z1dstac=4t{GOPs{=e9Qkzjirv%UMxxmMC`;6cYjPJEz1+#w;vsKoIqnS8T)%gc-hS z>3nj)(S22rWH+UC@7XtWbpq7nl$58?AD?xO;45L^<+R4(`v86M%cBXRy9_~s8BX>d zyl!_Kc6D}}e*d;)*VUB%BEc3Zc#dFdbO2~!nVei`@9eA*MPk-4zy&%ddlmg4?fHAlHm?0*#}flx-O26hxewI@ zxkR^~oQ~xukNG5RPkkqdOjZms4PX@BQg}qy?dCad(2y7%r-5pUFM?< z(O~S(2!M`BYh%9k0gUNQ4^L;B zYvE&&0|G*NO`IZfBwk;}(Wg=Wzx{1lPMs#%KG6l`hBtZ}!sou()J1Zb3# zzPs5xn8?CwzTRUmUhJuTdfBgRHp6dBD`D*YfLD_R=()#$qB>l6>+MBMmP=oa7oOS8 z3i>f5ed_PUY|h9K!jw|bBNr4DY=c~b(I1n#Kdar@nnEy;NSA+f&|a1s=+|4R9v)}F zy!lYK{@7uSNhnPW!Ngp0A`G9WrrZ`$rqEG!JMTVQnBtg8FHBR)(%F5M#=LZcv!Y;^X7k1j>fwBAh z&d*K->}11IQktrra{*iO`36?^?{DtlaJTS-2NL4UAvd8W-oCylzNg4w%|Gpl`*hg0 zw7%X0f(C$;emWF`EcBdm7@6EbN9Q~IR#Xyqw)k|6DcQi#+&4+D%R1XX3>G3c&x4%! zZKAZ}okvr*;>llXDUGm%23H>b-LqAZJPYz8_Vahy?Zy>zNNk&(ojrunn2XWv&&_W9 zlGtSN#vj`Z)1}$vlAESgqJGI+lxh z{aWiwPft<5C0{lvhpsj#tZ-qA`R_g}t72J8i(z#`!y2TZK!76>9B!r0D$4RXBR)!w zHgW?4`6hn|Gk8>mNH`W{c&W-O8mc5zY>JOi{8ohr{2SLO&*uL(Zj=$bO?P0Hy7l_M7(}Y1SQj-U)w)a?n-1u zJbAq1=;I?&3C>^1v+r!XBRLECpUd`2G6Q$$SX1-&Lj4Kk9*(=3I zV=ZG&(F)2bk1lAsx*{<{*c=)^mZ1bv^ad3v7Q|y(p8Q5x+l$j8CbslH#MJ`R5L=S8 zp>CMS{rgYfcSwAztuKt`m9hY)qQDpoAZ%=xLHGn^t;*quL5n-v(CpTf>?DPZt~|Oc zgtzbb921cQ5tx{cK#^+#l%{A;-~69H1=vf^J=?J% z5cF~$o4l!tj5DY}27>`~ij0h(57Dq+CFCo(A*!uM=nBEXP7O{`n#sz-rTB__F?*Fy z>bRJhG+g)SsDQZ>5`=jAJx-D@Q%L%d*OeuKMqHe|N`u|jKV(zq+qZ8nC))do2w{WzJD zLJDprKvpj=FAp7GJB&^%egwUW$^kk~j^RAzeMKxfqKB4T56EE}kXBWM+bOHt5o+`!9W7Sa|IgDbE8u7CN` zo2ls5ElaA?U#TP-UgwF*HVux2_O7iStl9T5;uK#8&Lm?%M4`lQ3>Vv>6{0yX+X9X;i zjq3Cl!?o7@A8+4w;QF)B?t4SslAoBkrKlR}pigl>Lnr}<#B+y9PEAMW?Yg0i42q!r zG-&0}HHyMAs4k*&8PO^a5b^77yQT5VL%`bmp}+q@|k#QD zY6e|G5H!FKS%?_9x$(h?2lOc+7}UQr=EDC6*PHs)fL!T~s4_KIQ1S82TKMb%BW7?D zEbr4vP=d0vvzx#sJ^-^VlX9a*u8h^D8+NB5+^7n2a%kVaf4>pua&fHzl2xe{WR!4L zXKik->}H9>?}jxr2wsmV(7W99styhnuHTC_^I+EEx`k!~51!tmNfG7{!45REWQRve zxj5>MT+d`tkZtZ?#2OkSHfHKMTHwnbzx}8aXk@-Fzp!dTLP*(^3n_wbBAp>5IWbB> zE+Nx*UIZZpQ$sUR8-mmq%fSRZ9-MBTo`KwBYrkA+g#9RL@o9r?oq49q4Iub4P;!($ zP=(q$h~-U{389j4Tbjw%_sE)nk!+O0Le{FXt{=UM;3^It7zi=ZAgGgLdfHNZf3--p zYoI6Y56f+|mjIN8jXe_&Bx;`F(kioTH!fzVS7{5rExDmn4%PqJnbD-J2tnC?b1&qH zxA6YKZ4P0#FiN!y78Rq0?SI#CI`zDEr2B7_3uzD_(_aM@%HEw>QIEPhr^7$F7D7TA zy4&Ki)Cd^O$wB2p4q#|~0OA3Y%hrvKMx`KdUWBR9#6&hvS()|i1s*KY8ARA$8#%9_ z_FD~q0gYD5yTb#aPt$3~Cx2`g{8}T#5 zL(p#*5#Px%kqM#qJ1D?xZZ0_4nE8HudGP|v5ID=P!g-5d^JW;`ua`HWi*d=8aFc> znTVE#c3Hx^#%y`DE2l`IG!$5m3>mfe>oMPoQ4-iS_?t07LV|VfkTy!Ce+9 z4lcZg3W*xHy;{0Yc78--ljr0!*~Y{Gu^3@7YJmeZ71BRqaj@hE4DAU8V@+oM0zE4ipfED2L)D*d^r{_s&gRYdHScr=JAp!m3$;Io}OD(Rq6YcF$ zzn1CQuyR=RHwp2z%zg;@j+Y&%Ho`LDgOUSATZp}028+R9PY=e5PT5BD;gl(VqeXY! zy<8+#3PNI(ObOg(tw?bQZ~*F|Iil(Of?eU~uSf!7nZt#dx4EPu9@`PIs^ZH?d^L|5 zK^?cgzubipc=7wLb?C!C|6Y@Fd^Zq+(*ghCliL4}G39g<2c=|XwYCIy&<{yTNn!e& z=oUCocA6_FDBOeFu&BfT@9VA2%~zL~epcX36BQLbySP|^Qt2jl>lc`P9aV9ob{5`! z^uLzi7ZBiur~pBqBO5C-vmp3>u(!JZW~ymyESgz6&238S4GKYV5Q3ebCx&7Kl2l5P1p_N;UgRBbJ*A@R zA6!h9Y?Ob>s6Udmv9T9N%*FMvC7*c<%wAEgFE{|Y1vpj=v5_v;doi1DbdGE1TZ#L? zAW0AzpOqC$8;+Md5GT1J=O?BTj`tOEV|t@w00W5GoXfa*bfkZcFNwM}PaOvH0iaqA z_Jq%UrKO3O^Y$T1@X7yJ4fi&bhiJ^q%+a)>WLhP4g_Z4XnKZEbeyrnryy-VBc zjw$yUV+yt4aQomP>e2Z-)wJ^lj)^a+G3mJ|k>g~_dVHMl?#-P{?t9Okw7%%-%?=1& zD0zHj#LmIS(PV{NVe00#xo2#$pf!TUl!;F-K_c>E^9vkRp|D5$pb)+M%tr+IbJudC z9r@PYR@87-mP$eC&PTuWHAD8>0*V?0?^av)SO=#0$!Fghmk_V4hQ78Q(FcAh!NG)_La;{Q_Q9D4z5k}E{O6Gar^nnu7ajj=<(y{)Te*< z>H>sgyW17;#qe>yOyn_n6qRD}s;TW$2;yYGfqmh(AB5>+LdRoI!NkP;XLEuB$N$ho zO*!v4AzsQdV5Uwmec~ok4AxMv7Aj7Gd9M>43&c5gE`L+E^)sBGisqdIgbNJLEZ`cn z2Y;aPq1(pplYRe%UqjM|UxD|cANhqvM42yMo zW?W1?TaD7CBpI1+c(`D$cUXSiq`e7xZ>gTqcy2<}<>7YU?FL2EXGLn&R3apKOJ*(j zyYtMoo%8`Vw=yWHw5nasT`wG9jQQoul7|81*1suJmE1CpWO2XVpAQ`OOM*Lp*4O)u zRDE3AUqP$*0p}G3pifKU@2CWw?LIlu@5nSjN8>#oe#es`OiaYhoe>gGK=l`o)({8v zEdV2Wp`bOhw1lCS=(q@vK;cqx?fo1+20vn$FF*hhuj=sCYIjUm(5OZ%wRlF&qN%^! zhzD+r)p3{POAwC1a07Vrd}6;`&r`wGJOCiMkFTSnaZV2pInJjP{##n%{cjk2bLc(b z;Nx?J2#Sg)fEEhL%E}6ZMUGG`d_)JCV^6`61#b;+>?(AG7$BzJUTCL=LXVY`L%t#}3> z3mco|2EPYqe5MNJz^4$lt<`1e#b@Q-wR76)?Ao8Y|s z8BGjAh5qSQ$-hq`&PsWc2R70$S`jHuBI#x)dVMnnNFzf++>AhL*x6C%AqA%QYt)z| zI~J`%%;)^?+MwFVHNCzn_hzOhkv&+P)-Nq-bAH+F_)9sFG)w#VQ4%@`1K{Q% za>hFm%oG+GTwJmq+8Z+|-6bs<$jlgcqZjx%1$H|N?LQC$x_ac|t)4wga#3j}%CDUl zKm((m9?bRcZxVKZxA3!w z_jF@Z`HQa6+km7Hlun8n1O1#Qtsaow9@^R}x(5`Xv=X+M&|Jo64G`XC4j~2PsGnwf z6kwz9+<-nD|1rVR@5dM0ceCqmbtb=gV-8ymV52^U5CB(zx8)H94W#}~U)fQ;V_)Ip z4e_zdm**~Bu{P>9NJ!ULNGg&1`fQfQ=A?MERRpR1!F^kS4TVieV0Kp zS`HPUzx}h&o>Z<}2-_3#yI|ATAed;vr&TVcS69apc@H6CAd@{+Ki%!DdFBjeSp%y( z*~1i5^_6PXk#XxmN@x=i;Kt35wKOnyd4Skr!8)0&?pz;i!d4 zNlUzDh;O<|XY+Hc`PrE&vWqhpdvV9;P)9)Bmb?7(XTfZ%r_;{NjA2DyUY?kwE|M^Vt88|uZtKYntq(ThC64}r}ahzHo&Pt)~>ds-jueWXq+1mEu(~2a! zxw+XL3PZB2&jh<4ArbOCyqS3P?_;u)h#l?(p1l<8C%)V8g8_v>$;zESL4i5n>RY|l z<>mc}w9@FlnwsL_51vj^kFcTRg#DSK|ADMQ;8}GquQ=^IfV4B&AJslZA*`EkjXZ+7 zW_)e3cce&CK)`aQ&W@ZRVF^&U_HV4XO*?2t`g(7{dWqt`6%NEThr`Mr8#Ys2@S@vY@ozBI{MA}ZL|}tcVl2hBYWI1V+h$=%yZ*J2D`hL z#k>~9Q;v4Mzho1qDwq?s!RFTT!GbM{j!b^1eX<-03#&TUPH%9!g%mf6JU^saIH5Bd zXC`QB>hZ}3YjuPaP`Fp}^PjryGn8&^65O}M1RooGiSUFIfgo$TMq;7(8?0WtPIhK_ zEqe*hio09uk|ox6R1fAsE8JS~&`StSPd+AZaiTxDL;&~+H(AsO8zb<)t4#U-VIpkJ zq%kDk8yMs^l6Nb6-X-Y8<8X$Qh}>w0@#X9C+IV4G(mUFz?6=eJ zEAF4jKj(PN8YznmfB^|{@pmXU;$~ENd7?4zR9=H8w1ibJwjy%yD5TuD$iDek`v_FT z{5^dMtFp6SsT+xj!5JKSW>i$Kjp^yXH??+Elw!?wz9czn@=CZeseiqe=VWU5H!`xb zH=#J2{}vU|tuG33T4c4bI!EvQB?U{Mva%0XXD-toJFfxM(^1P2#K(eKlXN$f-Pbqm zo>BMot6Q?g-dUC>Fl4kkr@g{}n7_}^-kSj@H1O(t-MCiM)RnJqX=pHryTj&6Y~&Cg z=80LmLb#BN@1DRqlG>y##~QZ>7KC$WTigql$ImB!%)b4Nfu7frhy3>2xZz|g10opl zq?v|3OX%gd)gGDg4sl321s*g|hTu{zsKh%q=M^I&etJHp;4I=pavPHRo=`dTjFDdE&Kfp--R^L?c6Dzgt|+l6Qrt9Y^uB!n^nGX(<>t zjhbgoQsL8&FTQzmbY5YkM40or-VQPkAPnd31}^1iu{c`d;UBa2?*TGycsTZOYT`DA zvx7r#EFBsm6GGYw1ST5cN#=lzV!3y2t~q+fINpj8iM(NV)w3duf&NmVjrBKy*@Z>I zq*y@U8EoNi44gN&A*|?@;J9^uhT|VcAO7dx-=&4SWxu>LYIVwN=382{_IrE6gAEj7 z5sZxSQD3LqVGp9Jnp;?b3z5UAZ{E0KKX3{|hfhBx@u6($s-ot2J%>`dFkWlmzm!yd zerFR$#|^Gj;@^+ds-fuK}#v#+h(P{2OF3}si$E*?2dy8?H*w`IQ-`Of38B)1>?1jzd$t6!* zZ!k0cqft0`e)leuoxHqIR(j;%=ZBmIEl2O>(VYJZqTMGVW~-G5l+ZB7k>DkitF^`^ z2e9DWbg%o`pshy}IV#fn@Viw2;`a|NRwJF~=Eg^SWz}Ry+p+z2`u^@%oOrg%YKiQyj31Xr|kZHtt~tkBk@Y9k)X6 z(A%7%q8@m6lypeQ;a`&25jXki7L-MDxFuaW3X z(7EI|sITMj0jY7FE%U#%OB8&^Ytea7gGi*1gNiDcuVAH;5Az^A)whB}`|mK| z0E=9IbFWTwO^9zYT{M-C@cdj#8tHW^=O-typ3i-i(_l}zgvLP*D-^<`x%y$r5OJe0 zH*U_ejAn#&%@>ONp>uFwI9F6eN|kQXU9)i+BRqD3oqrQ;h6FozjT7OEczpTN;lB*C zWWr{hvf@eSaTYAR!E_mUiTZkN;%0X?rDu!8B-0-QC1I?)Xl2oC11q%TWCqB^0qJPY zkiQnu#J4Qb(-UdsN59+bCN+lEsc$4AkT_$O@-_HN7Ng7Rjjq%|3sc}^bjg( zJe%V(VF^Fx(DQ;U94=;N6s81B;yWrgbwM68Q?(yBd)y&)U2EcZZeRsc$Aq54@WqJ zmx%eC5s*S~qmm1+SI4tJNyzWBRLkt075D0t`*&G8IyDk!z~A=*O}Z0Sk1p^6IAfua z$;(RFElMQfeT15E)W@*q)r@Mp#r)*d6g)YalD|3h;`e*#{qmcIrvfj%T0WMR+H7Zu zGZSULeN?$rU*DO+(L_wZU_3Hl0lpj9fJwn(%yFTugp-?_yyV1u0E8s+P=f^c`}b>E zSu!jR;R-x`I!YXAw!DYG+e@fLRQz+BkCKf8E_pje)xuL+TFn->yU{H#x*F6aq$9#H zj+mJ`cNW!0065N+1HyFPJL>PZdWX@uOuj^I+b1g)I-j0maBvqf$Tm94&Kagse4ip_ z16P=z!@WG=SZnp{&;E-N!%M0Ys^4fp>F}wkj)bTrIbwM*T?+PlKV7R)Fe2vU<&o{C z9`^Q0`+EstRaCg_9@$2>IU^bBRd!y)bn5HqkU~9vBjzuBl$t2Qz@Lo#vebGBP?~Y{ ztMwpI!owT&bd~~dIDj31U$3}85iBKewm$M0-FICL%Tgs%@#70nodi5$iO_GS@^5eq zbyUU@@6qWU$X~qfyX(N6wQhT_(qw+_eH9BkmR`VLTw+LL>K2{Mf-4ldL&#rxbsNU` zZC=u+kZQQcIj;oLepm$cU6FIoGv1nJQ9+=D{-A^>*2PNEsKLi>T!z9Yq@mAk%PyKdC&r(9-81*}X@ zG|O2V^oa%JETZn+@m4V>3ZWuajaK6K$nRcgHJ2`6lOvFoBDB>)ldW`bTECR!EX`92 z*bDa*Q{ScO%5~inKh5+%`LW%+W^9*`$DTAMZ~qmmhA!~n7M%3C*6QCUZk|q1jpeqq zP=Qe$T6@?>CBhHr3y58yoeBk`LAMJHc&D#`n~6X)6|mIA(~HP{`BPREfp{_Y;QYl6 zImp$uhJcO+-$6nPx5vx5>izgOX@&EdU_;e!-)Bv zX`J!%CPXGC&P4Uu+Sa#X0oaXSfbsN?^wH@eN8<6Z+;C+j#BM&dw!XUw`VYj?=MMjk zMn7R5J2I8Y^4t;NP_H*SVT_tHnzm7Vx^;^Htagm!<9So>G9w~huvGs&K}x#o`8>DI zdVs8Wu`M$4{CtT{^3LtS;oT})T<+Cj+J1GXbHAU!|A>tIlz9753s=+Bw4!u)FmgsJ zvqHn^nPVt}22xoazZR~{!zCWP=wmN>4SnB2(Bbhwh}umv{5F8p*I1H>tivd;rfVYf82bV z_kH+rRcoontZ6A^owN0#|J^@{b_1S4{S|l z&mlue(@!knZ&gR0-%nV>Na>l-5w>;9i}_#C7&Q`cuL$i7`& zYIg9-Qc-z%erI*PUr-RAVQi>;;$~sd(vfsG@-qGHYN&p6zN+emxGhl|4sIXY`12Q2 zle_jw!~J=ku~FDVks%l*)Iq7_6Sx!-nQJBk)?k?9&JK7@n4246+@z7#X!eN%rTb6} zwxgYIAu=AqwB26Eq9+aXDdQpb+CsucBztPz*5knu_gp|gb9?6=poq;cj(&f4S?)w~ zJf!a z)aG})dbXDHul|%1?SgBRO4E;(5iv1Ot|#N$5Ax-i4M-PB7|Wp23Kfdg1{FFJw}?nnzz$U)h??*aFfa?14nhB* z`*#gE%0FPw>jlzBc&zjxnGBe`gw)hgppzlY&lX#**xnJ2kqPfKy!fEp_1VNor-j+; zzitCI-J~G$W1^*{U4ZB1yHg)gjWxKbsMr!Tsyn+vNUGuIoy;#l7^$u4?a%cT8_MvT z@FZBOZn_d$({3uASyzvqADO?&10>Xk*_0J7bLWj{4 zYm`@EfKptR58=sP07Q>o;SBGd0nt4;+KY1=)NBvx3c^IQrUE~+g(8W#WpVZV845v8$+)yybNd^8ce+RK{G%5z-8R85cBXi zc>QVV@VY5(=5dgs7T_#xbGO#Sgk;~@Ek8%;(I_Tj?&65>M(zI7%4!riDV*yS*^uJ7 zp_-|9D#A+$uVBV~E3?d4JT7P*dy+|P?inkdit;BX`{?Oq-~)wuw6Z=3D1hPvOoX&$ z*suj8_4U0vOJp`}HC^hj%2RDVu5whP{$-Y4J)0Exf~v8$`lwe^S@OR5YcG6;Z- zwCB(2k^sL~5}kP3^{)X=X&us}z`rrl?1d}dKr|D#jP5=79Qt!9p)WoyEA}i`=Ba@u z5@dfoO-v!3UHTmf-FVXr`}SXZ_+GyG02S-W%RB4rlo}rU^m0vZ>u@X>x~P?i*H|5X zGOgm$1p6yrvB`*tf&tdl_36{g*X{3w#^f8oSOcm=Gyn-gJ*=ytfdDPJ^14A?#3cQL z2R@G1_*+n*sMSBrRm8q^>uEpPQ)Sjar#a>Fl{d#l*@x#7rB8_>f6f&sB^~v|Q1^Iy zd%F-temQ}EH5FWzuJ-w4> zZ8drP$&yctcwk`mb<&H^yYoSjw^p3yq~d%}(?G%zp`oouT*A(Q;{M{p`pQ?U)A`nB z6Hp25msK&G>@%2~JwwyhUXrutWS^{3NUXTGXwi+Ms|)Ei&2Hf^e#IJ(##vwx$&hj8 zxruNhClAM$I17sWVvZ#-n5ks(z)uLxz>vf=IfYQ#uq9c0>&U$(<#Y%8(*SnJ8!ox5 zmoJ^4ZtExaS(Zb1#goLEkFQ>1b-H+s=VO>>Njw9VxQ4KI&3yVkUwOG=-#{N@A|c(v zdw!H0hOgs={7%+`Ij0;XBwoV4Z!mZM?j_{~T<|~H%9S~SYgS3spLTG_7R-b4kmd2Z zhm_Q~Dvd(FtmKxH{~t6r4-eSbgD{m-RMcn;rsb8DxzbH027P`P#~~YME=<9trK5EX z@__N!Eh@}4c|uF25SOQ-itEzo_{s6ywHgiEW|&9bF@E2<<`xFJ7Ej+$%&umc-NRf4 z(l@I?=Z8;i9fp9d5()_ao7Tl71tU^P}XZwSqS??{%4ma)n^Y7yhr!%it_IUSv9TJe?v?8QbW`T{Lmqo;jGNAAVID_>hhnP_&? ztaGIO>@>Gj#d3G`YZSTHUi+!OygYgp%t&DU`kTR37>!px?!E7#4ppCN(5jGm%1Nx`Ya9h_*-k^741+R*QG-ZNXdaD2z<@Kx0u| zQ)3SK**6*5ZtXCTjf9L(2{Ey@BB(t-R#Z5oE^L4<=S@mVC?T^vPkuB`P2$xNaYBqi zt)ddGWR`uJ(??b1`^dpJ83!$=1PXT8N z#AX8dXo|50#w10SeGhj_yq-82pM8dc;bA}t{|pHUNq_kgsT(8)M1KB%Sh?d?{~M~B zMK1%iLCE)nlb({Y4}y=*0Z!op6WeEaczE$IbX3?Mq;8K_G)H-O$ckjVjnt+>??z~ppqaU=|%emFfN;~`uy;MRfSSqeN1H;Pv{`zJxM1R817ks@`iXoUl-qP)iTIM{W0{j* z1uXsaPWQ$k)Vk6mj#B1)rD7*qK8ES<=G$Eh4i(j0$TRLy%Ur^_&u8{78~?7J-uwIJ zvPRX?kW&Nu|2Y@|!*qd^#sVjxD_n;E1-pSI2Hqt3p3#W@VmTxQh)Bg=(|Qy->wv`eN=*&4V!Z5Nwv2th{Z0w&06k z6|!`48o|QG4h1gNf&br=!un5(*;qeH%04PLNsn} zsgg4@O+tf_sj9o8kenpzF2~e4M!3GUMH(|RvmJs};F8 zIAGZlaH4}gQ(wJ1?bDY?hpGqrVvgF{JbOTm!ow{@Ov99!Lc|$iYtggfCxZg&fV9uE z)bDk4+J-j9GLJXLY~T+AU1{d--~VK7DfM#`3-nD8GRn-vgzPihAkC6uKKJGxC!|6O z(~Duo)Z3Z%)pi74HknCS;S^2DImE23SwRFc7U*ek5MZ{1uGiGqcu)bj++YLT_~6N% z_7JI7DG7F8#QOgJ;vgqU2eDout8s^lh0hA=uS^An#ww?41n5*VVX*mSagiPdxX-ad z&7GvAq<%??L_n1^kW-iN-@&9@4)BJ`urT>v40^wu()rvx2M&mw)do(|68u^nA0I!4 zPzHtv6~evm&X9^qj-Cd>j)P+ckj?YL3fcsU!maL+2ee2tmfc?o2~9uJo&CP+{J^PZ z!*fwiW3gi+;Dob7$csS0dgP&=5w+%zAD{*xMYu2c?agAa+?A12z-WK*;^wZ!L)de2 zA}}xp|NbQY(%r*+=MFlk$m11RG~gF7;zlh5Ui&K+j#qN5vE0@SXlNHl!@ImJR!mJG zBps*X4R+1eE6>?V;|tZ!jTJ8E29+XDw}#Hdg0ws+b8kAh8p~TCoVoqw>sMa5?SOha ziayi1G$b5GqaYn+8d#VoH#AfbZ_3M->#~W}8= zg08QxuML*haPutx`t|kY2aoWtS>hyTnyesWp6z?BC|f1);IWTXkF_k<-NLJ{*scyN zcTq$=wX(Jr+DW{|#`C=SYzUg^uJHOCrC||l>m^1;; z#>I=DD42n4Xe-0N2J~U$XbG_2!{bl~Z($tKpO*K#bIQuFn~fLFLDtG#=5H5zg?E$o z9!+^aJ|W@L-?KC4M5m8(pmh4Y@zzN;qt;3qT=TU)7bGv}=+cB-R?4vxTIu zJ>5|k0_oe5h<5`oN^&kX2p3WYC>yPC+XL2cgsiQFV0B8Pmi1Hl`$VY!=4Lr0m`E8> zTUl8pvwx;wNMQKgPx@-@XJ>aeI+$2*D$8o8okIWLL?z1!3CU_Jn-|JCYYAcK&JRGUK!Z@h!tZ&v`CQE1 z`Z5WOILpR*7>=OWjf8||<3~!Gy~a=ECR z0|ogr3uc(~FhIaK?@e-(%`fFiXq$Pvm#l4A6$PEFB=_bAW_TCT6h>69WCqb&Tq*_2^q#|P>le2dMG6|)#B@G(oB8MFk`MBfbf_d!xH}!Mc2h~ zP|;n`|1ts$U~d63qK0BV>_cRERt|&mTd&KefzOG7q4$g$FyW5EK^Qf=K0A?=xS8P$ zXJHXuDMnv7gmTbKPa~-z0fX zb}v}NSf!wN6}_$|5p%2EH+i-9Fj;cu^>^)lY!wyR=-T_>Mm@)uyo^T~NkU#;Mw3km9mG;qX9KRWrSr49`5ZF^c$xe%uH{=C+Tlv!+qoDtOPgM@Fmp7aB9&*Xfwduz%i@So3eTNO7p zCT1r%@=OD>XbH*CRWf7?jt)m`10Wjl&c|o=pj}c?!J#K3>jpFAA>ge1{U@4JHFR~u zXhl7sFy$8%GzYIJ&+pRF%!ks4Za`+p-4WtG*=9t3mn4Hk`uMRH&AofS>Bz~yoi(rr zYq7DtOG%Lxyp}hVRsae13ZTyllqVq0240G{kQ^~~vIBXY#YuhOK^q$#4T7c6&HNB5 zUPKVsh4S0lXsm}bUjqL*Dk>^Z{mHxDl^*&}rKPK12W#cxH zVo&;H`4x+&yOTl&rd{8Cj*-hMySob?Ez^^Rg3sxpjx&!W?D7-zIptwRBIvXLM}}2r ze}Cz}hp4&j$CFz#vF)$mE5-a88amj~M6m~WwJ})^4p)Y{Sc~WELwk>lOuQGeD@|}4 zY>C}b5a5bL7sp*jo*Z(93S@ry;;I}LqiQP`Ux|GD*K*$dHRpAZR6+mf)zR5c&T-={h!Y{C#T|R+qj*y-_ zT&|>K^zU-`34cz1|H%vr7zpG3I)}e{CB>fdkl>YqDWuXYR<)HtpQOc_;&3}zW5pDs zM7!k!3_<4JMhHr=+dDf~4+5o5ivZQ#X}%mGYbn6by6$#hxzxH>%_~VCg_i4(uV-o+ z2S#D3v1!bwpHZcY%A=d*6o|cdFs-ct?<8|}sBQxxfhO#vhH61RJIGQ25_In*aK91X zO*3DTirAgYRRwGhf$(nWjF%do1E*2%Niy4G0#GkOQM>}L;X^4YL@nS*ku7H%lV<+> zuukqe|4MGdd_?=_o4UKn@^S(4NXEofMin<(f0-_!i(m7B3pT8b>>M2fcA7>qg^58o z^BnP=miEI{lDab_G(lC<_5FLDU8tU3YJ_=!1lzW#=XlszIDJI5-`{)al$4*WJ|UN{ z3#~yV%WwDGhIn^FadY-$$Fi)$HB_*d;h^yyZ}jeDOuKUJEiE@UcYG}K;?jo@S%F+3 zH(`Py&G7kw1-k!Uoh|?SV5!jWf)05u4b=#^oU>!`^sFqp)^)Wn9rA__#crP8YKScZ z{gl46^h+~y^YLTvNLdo&l8VB%A4l$5iZ-C01o#5Xgcq3tlzMWKla|Tv$7(itjNfgnNfs{5TWeI&X$!e zL}X@^Eqkx*nY~wbve$b(zxREQqknVoJm2qqU*kMKr=`$6-(uz04wuP!ouKdma<{!+e?C(-m zE+XV9I-{?w+&DrGfkg_H;_iGfimR6YR3J{k%!$kCvV(vwc72Q>4Klm+D;M9{+<5>w zF*hYV64M|P+XaI60swbZT2k`I!{Y{iz=)NA>y7!>G@azz&G!D|gC&9X z@LT!2^`4otS8I~m&+5?zDbP`%ZN5J`9R?BIz6&3j@YB=HHX0m*R<$)rqn1rOzGQs+ z@RFT9UGGVp=eNgS42>9`NJ&k@J)=?OEh!=CM!rb#WcsU-Bo!yQYuQTzSpouI4M;$G z@+6CHlP6dR5k@brrw!2%V2fLX*HMI8ZniR%kYmP#!6 z58ghW&!~t;jdBqAk`;jboZx0z0G6y>vgnh&<#(&=f4b9)B5(gWs4(rtuY#f|@7#j{FJDBUU88fnN*^=bs+i8_XlAPT! zDbt3=xqh7g5d`;4)}J>-q_VO~H&GffE^a+bj8AB($};XPdR}t^#3VIvO%kK$qN6u* zO3qn{ZoMZp>2;rl0F$1*I%2GQYbqYyN-~KQQ6p$|AuRlWP@X0Sro~NRwdlM z=olDHRX?e3U=jXUrWHo7Q;1B=t`sK8y1}*1Z!0a0O2X$O0UFU2rpo5_K%wdco~X0K z^IacVU!bmJfYBLbFHom2&+s@r(;qC<7d}%kX9XW$ARz-XGKWb}Fb?G*)a?NPYduoB z`dhOb{a3(>d`17y#^CB%-_6EG#1SdZ$5`~p#TQ%O^JM@G`2)SvFfU&@`EWSrJ-8xU z+nLLM5QjMY{PN~a-?3q(n*WI_&00cK0#*7JuhFD@%YOIq7lx z!F_s?_nbcsK*?xP2Huw%W0ZCR zy3W-2gi>cYIcW%#v$Ub)iGZHntoM^&VkV1;s}xG9E5Y4uBq^r$e5d9&Oc|{pEgUlh zou<;3>=CeOz8TkfONx*n0KE!R0pI?g*mIoOnQd~ z2j3?oP@cg!=idO+802b!jvdmsKCa!5fH5WLwbomGZ{T9UFmYBaYG*dfM|XFY>W#^J z$(Oy&<2P@Lghl;oYW5vV`KmCL-{bOLD@W}%L}coF|FlQyxL}o~0{SABB{&G>ZUW2MN?v^NY<7?%%f)M?*tWa-awuDJ@;t-3o(J z`VCAB;0lH*-D}%oK~K?^&ktmAMLBdq`D9ynNKpgEj=dKP(oaW5SQ57<+lZ+jVc5Ow zVQd!h6n*AVS~^9px4bg=vZjb|My^xCef12dl(Fb4G7i2QO zKgX-{x`caC{n+`RB?t+$_4RMLAK5gq+>PpzyiQ3wTnJ)TNtW*(taBeBtGdslJFilSM`UuAbgI z0M3iMI8Ows$g5XQ;Sv(s{SS>8=HImvQu`_j3gXkiK=H&Qa2Q9)17op_toa(gCp@>jy$miEBsj}(bvZu`vI?Gcpf zNZ~%H%lGf< zf`Wk`a2*hyr>q!|0c0sI=AAm3%*r-&pM_2H@Muiho03;k?l_)2O>*`fR?omk$IjjW z(65QtR983hHVh=)vt!IUhl;w8l3fjPOF`Ox8Jj0Q7W+tEe!b}Nz=cuyhrX3&3?=oS zP9dn8&%?FgdMGWmhman?=!1(r;S+$rpn#F?ASBhyBL@JNqO!6dghoLS-Q<(Yh`r++ z<4=BQES_gRjtC79}N#rR5!pJEX5YQ=kdU)7D+w21N zj@he)Acj6DfomHaR=UrG)$mzkPZFdaRm44(4!NfG_xJxD+O|jwM2Dx47yx`F8eL7z zk~h6cf(ZyqWtM0Y5SKna&sTlHPIv#I*?Kzx^TYOb*~RL|-+(8YkdOe8?iRJWciQ(B zU(7n}7!b;XbdeUj8P8q#8u2EiIb7yC>pjq=aZhM%NrJE>Q(Q~eE6SdThK44hq!#h{)`5fA>xblyFFqg7@{M%V3H5FUC}f&%QWCMX_YSc)sn92d&iX!ARMH9xxAgWB%#yJ$LgoAWo--#P5(ByihmU;fygPp01T3`3lC^sFb@0Z1%k0{EIFRrK7amT-?|85w5-`iWmQyNv9nR(qSJ{Cbp zC@a?79BkLxL3Vd|$ZfkU)_D_i69dl&q+(@D9TU8okb7g%0Wsu1+>hVr>gzj#Br02C zPQNl^e$V6xqJVJ#|6(Ha{k9@2ND|>vgIy{n!mv;d^VhHUWb6aenzt7AT;`-UXI$E@K&V4>TWm}0g{It;btre%3si}tBPKq6J6gf9{&6{S?u1njc3~(}SZE`RN{G>i+ z5cgdPBp@dT39Rwz+2MA;oS`4|RWO79k&;9+O)nI7{MK&XZXQu67sEb$Az|-(*3h3a zG0WvX!oj@YxcV5kXSG*=_q!1mc!V)bVYJh_0qKdwX$%;2Nl6^47ClrnX+xU0BX)FP z6-c_pytlRao$01PFab(qZSDHc_1Vv3U&pG+|{G$wGq-lsxDN2!vUHuuQ&t_nKi;i$DPX$ZIVLof|n^hcS#9Y>)x3rDG=})53^I zm~%x#HcFWP*C<)QxNGg5tE-}zm>2>9aFahU+WZ4An_Fc`i6-)}1~AU~ITks(W;J3` z?6ZhW>&jXh3IbA6u!)F*7_os}1W0vQ2Ep|(;Q@&S#lWGO2QMjT^&UOT|DHpzRq^_> z`}5tYapzQ5JS1`pq=@$kX|o4DiD+daorH-+*n68`p5k*_=aK|bzyq)%+#h{C#R$8X zG;GRJpVvm9sbOqf1j7d-QMkK)$%IkY!Bn@`k1Ha#N)6>KtUFgA0Qctx5& zI)v0PzG``3f=V)$%|80|4=bJL)IGwHnkcIA&-o5?N@b!73OOMHCu}`b=uWm|9+|Ev`X)0XuV?L27#9An4?;-A+MN4toe-(j z)qV$GsyOYT`*8_eZeV-Y0eylo=(-?Ip#zN40TAng2k}}d5QGR~O1@V^EZN||&0M#f z-~5i@>EcpRS)a;zi8kQy7SqwuZ>wMO_7||rL}iW5E6QX3G%zsWu+!3#IXL-i{(G)I ze2T$?k!5X_`8U`U(nRHc);3&@d2K^5(t!E&{WEVFwBFEo8vOY9_&dVF$8mqE!Kn}2 z+a{>r2fiCMsC~0mW=BUs48yO9Y*yaA3js={k`wg5jXnrmfqGbYJBXsw=mRGb&(qTr z-je{3y#&+mjinB{A3c6}n>CyHTI#`++dP4j8^ct`drYmv z**MK5=3(V;ji`hp#;z11J8_ufqT{B=DG#SAO*d0Sbn87tFjN~ZqWf-%*Ub=K1DR>d z?ItSfd`4loR1gtN(YM1<@PSZyN3Sdx$JYn6U{I{f#RAUM)^_(uczY6qP9m%XES@ip z-+07->Y862``MfDi5i1>Xh?D5`qaXBgd?TSMLjAdnHK2P$WswOD1$bcU-p}^qh-%}&cr!aX*NN1T+;z)13#)q67Mt%J$wHg}m2v=2A z&4cnEaKFgk3%2=wu&M^NtH!fuIH_wUv(XAOf!S=`3UzkxwHN+6OrB6v4+d5!5Sd-B zNxDLoOU`T^MmrUd5Se1SEDw&CaY#xD(G%SFQ75^c8lNt9{GRbJTkvy(y-zCbpY?xgHinQD6!LCcq-pHfH+VH3 z&&4QNn2m^d7vuG$h-lG~lA^+k?jH~UEg#Cx&Q7zXqhsLeOJ>uXU~vEbRMNKTJsQ>t zyq-ng*H_Jeg?SZI@s9t-5a_TRFCMg&M%>&?A(}<0b2~B{KR+bX{+f~4QTFO_Xvix( zE8|63P8FxWEF|;o@{^C{<)ZHWqQdksKm}b_1^{P~`32NeRM>u`WKq*K!f?29{2s7U zS69mD-RMouOySXe_#szU#dK<5;1vBG{Q)Mvv5xQ?S-^_mXAT`rTZCk8_PShOnLXp? zWPZUDLqc6q;+vk%1jNp{3KD>*vLV4);JvVcqz$@`ViCvHT0N61RpT(5^1>V450;NB zNeYi=zy7qaQd+|PSm!p*quHS!aBqY-+w9ScOyzuLorI(ktxPNu^x`Y{asfv=c z!8;L^!a^e^<;7BqyLQ`p>(A>xK)uNXgOtw?T#C#&1P4nk)S=-f2hAkMojYa_N`Xh! z|JCKKP|u$~zh~opeUL{gSj9Df1$Ijz0^n%+x&XP8F}-!W0)%IkQgQ)1=1RDqAIf3$ z&V*7j4UV<@NM0F(bNM2j-$K{Xk$*O4{zjb+@qouNb}P5iJ4YvhRtArU9aisV^}jW` zFi&{{yzhFsi);s;eS}Y9B2|4ru05Oy(okxH_6i@7t@fGop5<$djspQAGEz&gM=Syf zG&CI8PTMq>cW!;<&NYsT^$)ghq=_B`#=@2lERv>RXcZFzj`R&v<5V}O0fAh_(7!pG^~ z9QOnT+rY%qc;J!$YlD|EZhG1vST-XTu&)w&2*&m)8{4Ag0A_crKM$k8Exo9opMiBnx8@Yh5QXwRl}uu5=!BaqhMg@2l`qu zXpfPwBIwZKZx(v3^=WuHcuC|@xgSTr__L<4{H>mz)$^>;fZZ;tEY;vx$_6W$dNY~#SSq%ss0EFu!sJu)JjT=#=d za|PsS1LF!(@|Y@E1TQ!xFCGTC+SpjihuT2G@Fi$|}i2x&3*608))`w`{x*zN(MjmMv~AEJDUb_QT-mm(2P6WF zu%y77nh4udkbTg49^Lun>>z#Dw7{anYAZW?Tcnl2OHr;#FF!*^hs=KSx3tBoO0Lax za8H(UI{0eOU%spz{aqYZ$3|2|@GD;9vGMeM%_A+%V6mRW{chLM@o_G_b8?7qvyeq(Lz?sXAoY~#c{qZms?iZle zB*WU83%U1(LbMUWuG%5!eZ0t-bFtN)ZhB_s*~oCt2Qz;DH=QfL3{0QjR69HSYXUr{ z%tG#UOmsU3Zf@Xp+=a)-q&K1;_Cp1$ouBw`vQUG){gFXZ{jo=P?@%HUo zD6gd<+8s*GyBv&&=DyEA-1iWa?GXXx;RGOx+Jg?r6eeMN`}jBp5l}sR*Cr||`=dXFiL10ih-BgmW0Lyjc#GAfz^ddc(&*@DbhwkCN(_Vzhb)gi zrr+s7F%I!!#@B$H9JOL*W#!a^zc1kH1X&L3);0d^%p`AYZkB?koKZj^7UD6cm%Czs z?SU>SDGBL7*l^3Hz*4z+X67?3SYD>i9u$20uyFJmm+)Ku@LA?#;=Ip%?=>lq)PrM) zj>;V_WiNzK7`UvYqCSVS>Fe`w@X+5 z|IK7)m#Ot9W2q!#&UjrKZ>?eN`XDIi=?S4o2Q9lL_vtcO(h@07*87t)O}?!rG%5-A zz|LyXRroazpXw+m@X6;w>Qh@Q z22Y+H(i~Y*A`N)L2zqfqccq&ATOTwN?&--)F)=lrjD7O7LO)23dH$e3{dk>3I*7n; zxHHO(T0k%>+%1wmQ=l&8{0^ye_u(7v)EngFnMm7VZb?b>)DIK1dc)ep&f+ZAJU&rT zv$&$Xbh_?W!@(!|y7OwD;wk5c*6g?ll8n*(sgRYi!tMCA29$`UFRTB_J2u}`_-;(Ct-) z4db^kWL@snC6Db2G5Tj zg>}BSXUK)_wQC2)alP`;Us#YDpBj-p$ZM&k7jyjqEddc^L68FbG0}@Me#$%S2Vasc z1iCBbr7=9wq~{O(kjctQvj4jwZ8bBJXeI^>d5C_XwyCGwZvrie0|O8iU8^oGQY$^y0jIecA)x4#o7)=%u8-r^vul z0F~~-yA!?`!)n=zbBq2-yp6l^C_my;e}R2#!0k5sGz3Ni9}t0%;30eqiq{c;90UT0 zq)4{J>mrQ19VXhwjA3MC3s=8*ZJ=H){xwy>lzTYMrkdev#jZYdOn?93A68Rs6t8}I z5QErk>zxo%H-qNqD+GU%v9ho<%F3YeuJ*N+6`OwA|F@w6+DwC@0&=7Z5Y|)B^9ST+ zXUqQsCHBR|K|gHh$Y3CVjHgj6r(f;+tb9FD8l+ZTL`XL0sZ+L7+W$B?7QKAzG$m@# zF!OaM@!3@Oht#`{j+#*n5}6{#ro%_Gu zrh^?hc^T!$EoM0k#>xOjY%maWNM0n{-k+H_Rs>%%qTDg8v@*zMS@9~Wrlv9fTQdu{ z>aw7>1o-`amtz2#hEebawQ~Fy2#rgY^p*fk+AI6`Um-n}V*)41mK*%MiOI>s_O7Wr zhqHBMFUuZ+5D(lOy*fm6#Jw{m0mXMs5i&A>xn%m5>8}rVh_e3AGS8d^|Mm2eu*8+9 zjZR*(!KjPxWe-&$%(-R@zkd$`W~+*->OOGDbAf}`c?meFDY(rg0IKtv&NNI=NXQH9 z2i=R_7jhu@H^R;;DMTvX#(^2>4<#S>htSY-ac1Thb&S|dusFH|#Y~pHz5PXRvM^F^ z4@mEU>FEolCSGt0CMG3S9CCrPIsl|Xu!s)C>guvPzjEiZu+R+B`*xBc*k39`%NHW+ z+j-(D^riga;9}c9FztWye_%_$(mXL4ja%&{{`zEkdL1D~WM&4lsFcmZLV~Z`Q|U|z zEpPhiL75vZU2H>r+t#!rdhw^X!q2`Bb-&Fe7VfrDD zoCWjr6L>TN=FESAOaOV;nLn@P`1ia%Wd-)|zuN*hA=8)m6o7SCmzXIJTnKsLWSf7m zJ0G7)zXk}XY8&--s=U8&;jY4H$XV+N@Psd1H8g>$bdYDTfDq6N*QF_alDeAFaW5mtIp)50^9lkUL{`vO=1ZFaFK^h6WV)Abk~CUVwlf z88q(?+T&szGPYV#o=Aq_-){#iXQ1YZ93CQHH8=0s9l4!tZA%mvPTO>LoMSayT>L|? z0v{AuB=Yz-yD{(IZ(Nubv7D>HdZmc1oBu>iETvQDF)>NqMCpd;tXrsIWJLD6lD;AaZ-3&n$f7?auR?8+|rzuE^ru6~c~PevmhFM1D_C!YRKXj=OE zV%}GDFl<5EWY67e>zZcj2|`tq86g}_77}lPP6}WAYg4POEtL-3ReT-_qZ6ad05REr`({+U^*vYd?`PFu?Ef#jvw;T83=c#|8#r zFp6cvMg@Z!I3dFT(fc1IUe|U_O)pvPGjnr;C5dpXg+MfR*NftQ`K{cw}~ zzFuWSYW}*VX8%n(!&44ZeCRld!A4dL+n)w6@#f|hdq8Y4LFc`)yv(@1Z~F4jPG1)$ z(W;92XX&TUsB7Y5T0ni@JUCeFXc4r~(gcD*Lc{9T2O=W-fF{{qfE>)?NA~{UN~x`f5N30J2CDdIwOIP|?t2*v{2!g4~ykpTE@W zMR8R>4DUuSFE4qomUuOwdy?kpsvt!kL_zRhK0#J(13DI#J`s(8qB+#5DXAIn8d{XQ)Pf-Rt_{N5ZK@fPRs0~qS-8QH8?ue-o72U*m=ML%7&e+tTJlrC;B5J zirn=4*{{*KqZEm$sc~#=ZJ8_XQNJF@QAtPIqM#P_rOPJdnn@~010NO9SAe>+;TMa1IjaRN`+KQ@* zK2}P&i!`+Mce%sC#?1w13py7U7a;_|umTvO{B#JMlgOipoL1uup)T8Fcbd z@H5s{R&YSD?K?ABzV%WL!;p%Wi%mVX2j~@x0ABm}YXu-FWD?v$r{lhNnbkedqg6-7 zk4FuRq%3Wpwb^Hupk_J=3Jq0-v;qHhJ|koPs*C*&Olu=GwEQls>{Uh^eP;9X9;JE8 z2+qU4gN2pV1io&Lu*jgRFlxI^UAtT^J30&=50CZKRIx`*i84W*i`PR``T6-R!^1IL z+}t;SxuFX#LSU7(Qv$7SY;4THT3H}3!lh!Zs^|-C0 zGCvSpVp2pQ{(a`_j~yKS12jx39oIO198kuef+IdYI=UGo3TEc!3w6h{rq5SXtStu| zf6ED)#U^~Uc)?uR+Y|Q6@)b_@&Q6%;9ts9-bFA^pYi*x;$)V=$w%cKZ$Up1LY#O6E` zAm*Zy=$fho;=N1 z`(0cn51Igs4mLFw>8VOy4DuS6oS%ye@3*E6460m+lJxXkFHVXd>*``dIPsYI=C^#E zS370eOOarb>Uc+APD4`*6nnq-D4DCPit6eLz@u1OS{kO;E%?r^Gc;vOHgUC)b40(d zUs+LEMk^fgw+Rn-Qh%)6=Wd{3f7;iMf@hsc0*|8f4SLww*c_1a-TU{cS^^3DW_^LY zRJThQ`e(Y{aQBn+t}03tC$8d?) zdA66A-OslK@?1J4(b1%`3JRfMO}WFv69EX?wUcO4U3@B^Op_Kq&px`M=YNlfSe3qf ztB!BL1lO^~^XI(?Mpjlix~=t2WII{p$8!c+SWvhv!cH9HfJ;X$Fmb{#rc$_BAu>?z zcqh?7@56_0ocAFvqt|(q6LuM0YO`W&8ol!a6f-7rdKL|CqK`mzV|z1xR^p(cp*tf&4ZU` zrzkWu+&z{cGe9Egc#P`tVWg#7`}=X>t$*9f9garPTe~|6B8DevGruld2WS^q>^5WDH=3^l-Y^pCH zdGx;bRqcJ4yTe2#WJOKQz*B<+GjuU6=1GYEh_SLV?xd&ZqdFB88%df1f|ossO$g*x zfaCV<1<+sxzz7fG-uJQH z52{^kf6=r=-I8sj+hFGd>zu;l4r28i+}l={#F%5mbZ<%UI~_At8(h zUNpGkU5m%1lZ9hus=fxAGcgUEu28B-z9WV9-W+VdBU{#oR?O~Lgv4EEtF+99XJ-SW z!+v#sepE1)tajOrpeH2Mrug!$5~!(tyH}UnFFnUcM&@;G3VuVb3_rh6;C*ii`Ku)c zIvxYY2l1|MYP7h<3@LPd#Eqa zzjRdDQ-OKiuju)d=LopU1)m^b1%eDDgx(W`JaEAT!XNVH@XshjHTh>7M6}u4KMo8q zaqCYVsJBPk+BenoIQ-Yy^}|bi@9MnFKEU^=7m9rmvZ1TXN9C!KX{i>b9YY7$Uj&Cr zmI`C=VEPIgBBDHhG6H!1`HfvYU=h)S!t-d`)o2@*M2Ye+H3EwI_%yG}}kl?WvnnI9|= zP9`P>-NZes4_$K51djVZA|7g(FpXtq@?~ZZl|#N){3G1;8Cq=o%)=kAhK(k9eP|l@ z#rgp{L}AM9BzOwbbxoE=o{pcG(zR(-lM1I0AHn`hQ^O4 zB<7G}(n;^O`4sQ=bg^mBK!dk;5eIkp@#&d$(Z=$l)h}lf8kt|7CaLrmW_1;%nUC#v=S3PF$oLnz#A);qs@te&|mG#dZ?tIjM}u@kYnt%+B4=E8kyti zenFK{Cr-nzD&1cDuF84kLzUZb_S3Oknw;T^11J7IwNJhw0M3zcuYiKSr*3#!s`94S zdH9{b9TCp1v%CgX$QsN9>}21KYW4M$nm&KS`4mrK_lJBmKPWJIQO8gXH$RJYq8Sbb z61Q|%%H_3=73wcQ>}w>Qh-OAsmR!fy!l33?YLF9w$QiUqI54f4hB2=kU^9`Un1b^o zeGf?sLgQBQY=I?34ugFH2@#P`(0bV4`=l}g)hEm@SZ(W1+3+8fkfX(R+Bu?e8YVJoYe*>> z@;{mcri|^27tN}PeD7g47xi@^!H7d-X-Vc-k=CHW>t-Z_B!y02TE7{D^L5M}J!m)$ z3@%Qf1RfM*e_Q+Z+)miGV0QBNb&sI4=cpqf$kEIkPVfVM(IuHhYv?b8y6mW zl0rh6#AvZ8=f@2wQV*X?qt@TP0|7R$Xg=L!Et!0{#bM8aElUoZ9xpTsiZU-%)eQ;S zyS~`K^ND5jxJn_VtaB^p==&ZD&l%%`2eb}94Fvf3AoWt2s>2>iogj`6AT($`+#DYS zDT<}Fb<5$ph7(u@FdbLtAyc=?WtW};W(^S2Z~#s~Qa0?w%U`^?_xM`^G`{i)vC26? zuz)iJuyNDUS|0DJKdMTk5*1QcuNHdr$cg(Ne~2rZtW(2@FX=6a=LUikw-UP7e}lfg ze;ZmLS!IA9Ou4za`AM6z4feDPYYS4x3>{IuaB`JD-tE1Iu{qrCRKn?7dJ4whP z=LQG$s@#t0lHPew%$rp{BGdY(DHdyo#ATUa@uxKP&8xkIF}Jhvhi~5SL@-G50Aq{~ zS|G3KD*I?khNmYvxnFI8q13ICo+$$QU;vYuVB#pPD!czG5m*T3jW}A z3EzZr(gKiGJI>JB*wF<6&W(qcH!>e`E#CSV*E(~#ROCHUEXX4%fOgbZmc)dJKA4S- zt-xF*Je3|JP4l*|mXL;C>ga?j*-G3ov*Qj9DZO<{PSzr|(4!wW$a7^-I0q7A`aMtAe3{rS=ByD(S-DP+cMXH;0S zBtwXvUa*Sl3TR+{0=NsAU!$U+faT@owFM8DFX(B0+iqw+wR#z7F)?8W^N`v6f`Lz; zGL7MJI+uW5UDk@g^uA8E3Q<+n z_uJgF)2!m;v?M5JjV^sj@+d_h?@&-#IY|USP*-)FRJ2-*fc58Z(Si&&Miw+|RiziV z9O&uk1-@4CuWz~(l+^8G=56%OG?$l^RY9@_$p1=XdYTem~!?X&R-)u3w(NkGi$b0RvQO>cwo;J z(15F*{YoHvFD#g~3^VC$5BI*s9BjiNrkL4a)G&50xLWjVu35U;3k5~Co$6NG ziQwiw3bXe%y1@|Ks!hVkan=*BqQYu6uC3 zraXN2P6YWAymHiK*hOjd^soK8^mc1yLgEkBHm(YavQ4qpU5XTll+<#QF6uD7F7_1+ z(;wTx^&$(q+N!=3DcFh0z;Zy<(vqXOxw#t^6;Xxq=%wktdM0X!?nu8L8eAab|V3nQ>4WgM6havnNau8KSoj<(eH6rBU3T^kvi_Lgm zlS?7Q>^q`<^QKj+z}qe5r&EyL%>*IH`x%`j1%>w9TzG0}-VqEK?<2K1eA((C8DuqM0*`H)TY93%tGqx`HG88zUma2tv-F4vj36Ez(rNHXgp7=$L`dj zudgj&lQqFnNcat3^6M#Mvp0kQjRx@c-qr*^!1OBX1T>z{EKqU!ke4+#OGEjO4V}@2 zHHJ4S&ID6$Z^)O->}cj{7v8*$)m4FAkG2nzGqLsc5@*M|{hyMPZ*g!0&(ygP9pVNU zdmXU-JwGz%f7xRU0>~ewrPik;Y3%IMURTP_aY|XFIz<2=BuSnx64Ge ziXTWn!Xe2p|25el;mB5a`tn9Sxc3y*lze|}4EJ=-d@dTS+0|TJj8R{w5tzG$_!tx8 z2PcRw2YH66Ch2jssHLrXE58_BQ(PPj$=0VTck{<#)6Mz>6*aggF_Cz}usW7}kD7nI zI)YyH=;RBdrff&}t>{u0UJ<KH6;j{D(dvr7-HJR2?RmpdEqLhl9xN+M3NOmrkd?b=4 zAb7T}t#jZpTWBzGDYUl8Jsq_`aG&!O=1Twx*L6e;iq~4})LbEa8I9pxg%e5~t&?JR zeO*xv-_g=>+i13CCXl@|24DM&T zu)9F7Su%Mm)Xu_s_Y=gYi-{!`8mKiAHGOw{ zeIB*7Rb_nVg~_SrD@tCrP-|(_XRH7%MD2KY;KQZ!*x)H!_7iQsSFgD}JUuvqheufC zL0vJqoEh`1U zDV?qDjV{&FA3kLhdB&!uey82H*rfhn3vjS@i-iRpK0DT5zz1N&P6RUz80BfzK8vzK zshGM^uP9{Em+2|`E;{x{yF7EPLc~Xca^-}v>g{};5HWT(P2=a!RVmh94tf4t*DzF9 zk1SWV*%OP(_P(wO7yxm~65Q!q!|IZ4P}eXG5BPMg_U1Y|%e9W=`G#nB*Urp*avHlc zvb?s`97gTB1O~rpjY7v~)T}%pg+Z56AXuij!#FOdK(PCE_l=+ziDPG%TX%=;>AGxil}*nvS+&85$a@I%lr?h(Kp& zpU*dSJ;epkQRq4rK*f&azFk~gv?3fGALV4)caz7~p7TJy+Mx552iphczXu1%+q9=g z1?;;AAYX~C)wb=kFFY^!Mh154+fA!GY7}0hVSoQviN>=kTh>7ZaSX%`CjgnFfPn8J zIcc5~o1?qeTo9HLBJLDD&A!nzP`(hjA7{75)rrrH2L_gTJuP@B^O~Dye6)Or4DnPK zyXLP$(~mOpTRG}$0`M_p%4(Afl0d5a*c)lonKS}|*m(`-p52KUQY9c?{NCO|Xlcnx zdIW=F4+SxvrA!I1D1JP=&~fH~p|$=6L1RQMKEB>uS^^f(AGZz;Ou(y|dV019tA4z` zt|lxaFPvVPARqT*W0n{cR#rYyXIyc!dr#l)F`8Xpus^VT&Fvo;V9({@@ulV^ffo_} zGL-!j;A~NR5B99>@X)WVZ6kTyob`;@mX?~P$|IvK`p7`HoBVW`ZahH8#1!pb`5O!igdoU-1S@MO+@d$RKHhAco~FAz zKVHM-F__Q4A8{aNhoHg4bWM$K&xwn*3m?u7fq@CKh;D<;VtTq1i~&g?!&$)Dxy|c& zje`s(QQ+nJAilWUV?I4SC98qH&+D(=^pTd8q1R`iPSm-V@}zm7j=c>dHzj|V5EoTv zKpgCU_(yJR;U!B@5FUM{t>Y>%k%xe!&mxvms$Z_;0i)dEvho$P)m1*|Jw^B}m<8@> zdYtSrSzB32+uPq=cKEptl{ig7w^^pux0l+=S^u8z@5}P7_2*PS{S;P^(-CP0F7F5r&%9q#6LThJ1BOmtQGNZC?kqdwVA9I!JrkQdP|yVGxl%*ELe_P6=o;qKW+K3k!b;k(Jbbsv7biBzP?IqO_c=G0goEtG zPXIVtSO86leqF$xEg|Ob@3Bh_1C{V=W(zHyR{%e=~L8SpVWNsPefDwn2!uD`r<;chx3Xn3R@58|>=J==-YB)7?+B5E8No zH=HgIj$o$=cVjz9VS-^_*aN}gOVocRC!Gl8!x%@;rbU#7%*+NRpOpq;+o%yf5B-3v zWS018P<-S&!?V@3{vf9#8@j^6w(XL8{?DFC*&f;Go}H1JI67taKhqnc86L9A5rY^q zq)r@p@j?R#SRxZh_5>|Qw&Ol?eo^6#LN@i6cJ}G71%yx`l~r)^?c1`;RPnCAwKmjI z_6iDm<0~t&+QUPjF!nK9Q*-L-G9kmn_et|Z!zCr#7m!SoYi$cjH8d<3e(9>jdUq zRW}*>ogf7Vx_kGl3z1E5g7a&K@AKbHAJlpDNE_?52})wJ-_re)^Ya!U#(_!#DW^PM zAG}p;1d-0k!y~dq$u4tQ?)ka7qtS)Z#*DCHWUbWBEzEMPdFPn(Cm}Im`@(YNR~Er{y!PDI7i(&6@u#QdSG`>!JNBx*Y6|bWRvZKp z-WbEN!y7(v!4IPlq*?;Rw}tQpLR(KDdX{!G7;=e@rT^~$!h-|o9zw$5r$@Lp=Vu|O z^~WNnVcxKZ%lz?!7&+AA^SW^DgH^XuR>?tMJ0}afshdqfrqz^?VlvutWoRgCe}5X~ zQXr8<5D^1~NQ9{;(3e3-IxOJ}e^R6E`eRL>Y&BN*z0rIq|BXSj+1nW$3PVIIyB~>h zajX%rsI$firn(g%qaImd{yKcICCGlUouF!aI>gn;NZ^%aV`i=*O^N4&+2}4l)-#bspN?1`Y$rZ*cj0vlzEdeK$ct%H_*xXQ6U(s zf=AM2$bUiP|zA?ydfsO;d*`AKUOV)P!A2&u(s$pP7=s_a%DM%oqLP+ z#Z>zPz{{<=Y%#W7EJeP${_|&DESyFz)9!d@EKt@P1?pNVNiVS=`=yT;r)w`j9r$A^ zDhdp$MDpP@qi6C`j4wtC3<V1i~H7$aPhd1*5dFVY_T5=2Xrq)*U430&JWzz+K7}tV?M`Ezt*V=q*Lhmmu0cmajd~;HNKc`<~-diuj9zw42^Vxxq)}#ZhCe@!ZQE z^Y=?c(;i@%nfWk?Q3doK8AmMb!EaF}kOt6zBXjc%>&L`X!?j0{u!n&#_^gflGh8(Y zMFW_*FJhHeZ^xt?cMxi;B(oLh7E8Z?ZwD-(S(+ixF~uh(eSnb`l9%RMtd4GF9TGfS zuljU5gPHkWdAXCggJTy=o#ZcZFp1dO>d_S5tB^13?(!Noczs5B2pkj-4-do5e_*14 zS1vO%F^GD#Tlrz&J0D9zlgYn;Xck|^*H|H!|;># z$eh2)LjC`ShQ{vA?be^G{pN_W`~XY3T%89_E@Xg3q0u6{mRP)(-IQc7v9w$ z_)l;(Qndt=+*)>ljI5YXQ7~~m_SgF_((r1Ngo-K`!n;Wd^72ljfQLB_Sny@IPkSaO zlMep=^#!Vg7H1rCGhE}i76G6XnR<}eeC98y76q|kN-}L(d)O<_It%s8-xI~T3X#UQ zuzh24*mVx}(&w2!7zp`X^h;tvIUXN~`TOdU+&@0{W4GfD9R}#rPyysVJnR=5iU)G` z3HamM;Fc(X$;n+Gt^=T*TmSQ?1XLkv{Y zVE}{-C656yAf37mo)PS_w}+a?rthS-M^)vI9gGXaoN?KQPf1nu8E+hek2Q% z-jm3ejlOpi9q10K9WVe>ADm7?61Mg(_m314wk#inq2Ft-g6$+qp@{8u)ukmLR=4ceYh0(s>X z=`Km7Te?F^TBPeg zpZ&f6p4qdV*$#Q%*LB8P$6A-m=>!Gn^ub!pplg(enK|*|pQ%_!*^8sGoOK9Aw>__sZ+OhOaJ zP+JQYjrSn(f?u931olbE$PCY{OqMU|zd)p2T?)`RJ42nv(XN#^1gU#j>FHvSsby$a zOC2yZ6-iE75q|LZUpD%$wX~a2m;18xPt?`3%>c{=S+`H*l#N4os&k&PWDF*MRb?jS zciN&r``WLW@dEI9I4O$8W+5QchEMngm?Mv(=oNK!g?PE8)Qc zBg}3$xQ~g}@d62GmX>$tRuX^PDNNQxbFcrL8P_@R3iYkh!Wd}l6 zdbBORGLm2ebhnx8A?kgF=1;z;avyLW_howL8dG?zrURCFc;Jvz z`T^fKWcU0#JVX)9t#>)12ZhxNfXzE{Ms^$nzbO8i&sP2BawiyG==5&N}P(;@nWK0d}S_oH-n{&-74ThtEI z-sYv7OfTH_>Am2-dv1F{M+|nlMC#0u($i+p8J465pgx)2_2O zZGL0rjfGZ*|4kGqSAS~n$Y^YHpL$jRY5w*y ziFtU+3=LN4AfaIZ!_27l^o?*%q1(I)Ur$%5p3_H(-T(9&Qp;_IhUrzZ%LMJICl3kl zNNv1Fo6uK5g-5|_q4|9@OfA4$BL-`wWVI>z++y9VW&P^#t;_0nzrJQNDKWFy{bL^O zfmmp}FY>M2%Wf_;92uFuTvqlGAfx(JZ+rTfo9`{r&EIxTAgZ+Fvub^?QK}$gu@I87 zuK!~#?Gx(s*zI#1=2&?+3{xt?LI?Tn?zJv0OS3efUA?I)Ug(*ZJB*h&fZ{cg(3!~Xn8KLFgGpiq}(%Bdo|zWDQiG$4@S@gt>P zXe(B!13#{2w*uAkV%Q5-L=P}e&z~)>%4`mI|1nPD@Ts2nN_sX`P3SuB!CAy3=BzT6%Ea1Pj^Nz>qwas7aS?1x z00$(5dEf^aCx9Mk@$Zjd3f7OlJpuSS8#T5kckjbo5X@Nt@0>_V;Vp)V!!v{dWMVvu z`p!4+7UG!_7vQd_xI~45Qb6Mh%35$VPImaB!*BHLk6ypngkFkL5;qq8s7sgIymlv- z6hnl))@f|e)h9;4*&m<&f|(zd&Z(S7wBr%TPugNTlXv~^0C^hW{a;+$)i~5i{K=fW zYNS68w5#3*yDz>&11e1}C=fCvGiS*_S8am)7bG{x#lF3^bV;^9Tlc}5>Vk=}bR_^U zl@Td%GV6ef&l7<|YHf&pVWqI-pAr{$6Em{EJ=32goNdxy!zxQ#+jB zTBQ4|TP#WIWuDqcf(|njey`m-?N+lmZ4(n?Loc+ne8LH09w&TFN`3zOCH>t^Cu7Ec zxe6@@Q4E?r8e~*d3*EO)X!)Bt+g(!ECL`}k^1}rSXPZugOVpaH-eYb?j565>8>c^N z9PRv*V}-DLS!P1VcuGVfanxfXmuMNMJ=i3gr$k5J*wKRW$$4ub?)vHpUfv`==s%!M zi%d%T26bbUe2xkdrVAQhim$h=K!&kqy7ru25z;UInLW|MNkWnUTgjp%8%s&l!_fumd@NRQs zL81(Ks*r1Iox{ekyoXv?w8%vymXj{csIT>;1pb=SR=U{a@ZX$OBT$8PK6<#~aFc{N zJ(UCHoFm|L zh46GJs}>bE4V&rCMPG8wSKo-kw41{Cz$xew7#_9!_pUA z%qlGG|Kle%$mW5_K>j!(bQA#Upn4t5<&i6mF6Ar)d2QEDVX+c+;)t5cmw9)>9d>pb z%~D^Q8V^lwt@^n8lvt=?MDG8BqTQ@IOfk?SF-}ixRczD;3fOg-DKUs_3yN;w;NHDn zrSiB~C;ljMir!^w8|ih*2x(;DFu-(n2?leH6bK7!K^-~+oe}!Yo1Z@Cbij}(lafj@ zPc0L`1IXzCq(bn6Bp*cesa)VY_jbQZPU^JHTc!N>@ZKW|@O z@r{YN_{3Cj8|_Y_jg!m%``MxTcd#Qcl@UVbx^R8GFkv=0QAni%Z=Lg(+_D4=3>v;; zJ6jZ|EwR~TftsZdY-OvkK!4R#y+TUEcpFjsT!P%>R+-2ZQ#1(r)Rw1@Xd zo<;(j*hE62wGKj)QlZj)Q1y0F@LP^Sx~HFR6Tx*9gSPLTS{(wokqb1-Wy(CK zd0T$AymvcWj#&opZzHuI!$-FBZ+hf z2xK5|62QHva6jb1BoeCWy*|GApxY}ecw}UxotGC}G@F;_Qun4=d#p+gQ1V>ek1875 zDHvsM5ZwE4eBmmenVmz7-P2=DdX=zqA-qAfQ#V?%udj@m$d7ah$`1DDtW0ppko?kfAW^1zv;R$URC|4k)q-rNOD2N zirhxRd`1JzUAWjlLn$v$sI5KiF*=_tC!_zfyGuB#vxOXvL$i&FfSY4$T;E$7)Q)eO z77Tb77sLbVonO~mQFU|kAWctuLJ?46fTefcX&y{qAy9b{h;442>3iLcZ7PXO<{`mm zfrC$#WaaxYb4%_QS!1-GxS{gHcKq~A)TMBmlKkSp;feTE?4zT9c=P3fg8tt~*jift z)i#T{6_Jwva@A>|FciIt=W%sg0&mpPM@Z>@IUQv{$Jf3a73ERY)MV5@`mNVv&j8!y z4v1b|=4O^NQ$BbDgzL-QyD>pl&z`?3meJ?q8_8=YcXJzlH$<*q(I5?@5(p34E*|Jl z`F+P#eFJl_NU5Xbbz9BZnOn;x?e&5@ua)oVSfPWS8o|dZ4i2+*-WJlMW_B8G3NefD93b<57)UI2j{gG08K zo+cHz-N18;l*gCmh+g-?MG`|JIFj%1ZvMG=|G`>z@=T3*<)^MLqt9HAQDKk|j=~}~ z?ErUk^S$uk_v7E)zy94La;Uamse7sBLnAD2v6n7RssIA5zhzDj9oK|ye6Wmn=Zw7P zs=_*rsni!cXubWx#&Yp%SZ;J&I@cSug!?nl{2u9=m#s?He7GMcN;kUlMjlcg{{|75Mc}CUb zeGNT5c9utvIzU;8LHj|%_l_{)=1r&>7mzFlN5{$^!^4rcN$>rLpy`3_aQv4q zrahI!&fBe*H<{8WzEgPx2gj^0@F$9HElXOcnle9PQeXcWrOgUmgud6)E|^b$UEN!b z$a`Lw?H`R+3~L?|(>@Y;CWVE7JT~z0W?Setf`Tp~LFz2})05e>Cv5@2FZDft7I=E> z0pRZd_VI^20cs;;%*9N57?t|Rhf>N?c6N`! z45|tj|;eETmFwWo1D`JjgsC$mMAb zz^CH(+36U!(E2L4vpsE&PerLb2=0to({hujo-Bse!B80O0UD?S0OF}QCPf5HeNYgzUMF|6OG_O@!5Hd4?}c`J!l~)? zssJG*6bbRSpd=D!|BMT(qh&qTVgZLB5_RpWhQCj4;Ye@t{C1V+`15CJ30UN*UzoNa zhy&n44mHc*t%2wZ=mA?ArmJ6XE=zXxM@NroZPYt&)Flf@UhC>8jGzC&uBdTA*pWk1 zsuC0ic_j-^Paz z5O|Ocaqr>4Bjq2U|3r>LZM&iwNvvv$7K6%1DvUmDaOYU{{h1yM7Jj%0(8`T7n3cQcy{Z=v0_R zrGEJEa~$g6HgM#Jz=)ZP0`G(4`e_*K$>2DFuj-XFW(6tOG5l!8DRajUU z3*+|&Df-3TnOX)lNVoB8yim!{Qym5x)Ur?9K6_r+?ZbWEC|i5DQ=oSa3}} zI6S-sFU_8$o1jBa_XH{*AM6sOrQGL)=$J5jyRdcVT+qPxJfW%G)7BFrsDp{wlxT)# z^bI8H2ThxQhI!o%EmCxoqQr3$%DEgBz11IsI8Wy2D0v?+!i{;2sZ~Q{nwq2YbSw9B^BwC9l6uREF$G5)#UfeDEJkbcv!EAMx27!%v#?xS5-fz@|EC zd#=8~Pd}69J*TIW&2RBR^g(CRg&5}6gf7^fY>T{}Xd;4}* zausjbiAqZ^-b5n}ejtH3Gi&Df$B#im1IfWVRaI|5Sc@)B_gQ*(j@$C$%5z~$Q{KVr zk|!k)NFTe@f-yz#e;zu{P}d^1OFQU8Dr5zOEre745*V^JqwDdUj(%{;L;rh z;1kIF$O=B|nXh1S7ZfmjD`{Ym-l0Di3B|-`Nh^j|U=X_MfZ@vojSssI6O3M5Sx|BD z@VLCCM~@0Vn#`+CVv0W-D4-s2`hjIcMTL9F$!RlL5&Uap05k#R zWOiNmN@0Hg_B5$OfPdue_^9`?muD@NiX06FExw=Au3x{Vn6I=9Q7nNBcEAqsSJ`Bk zp>QmhaNN6hFCETCDDv9`f~8PFpQxdf_yaseJe=;k!t#2*e8T+n@AjSW54hy=jc0!zVEH1#mtiQ1fr#gOjVftwZmDa@ z1+Q+;`ROTy8fP0m=<1;TC9*v?`!^aMiyL?pbQh3}nGF33hvgVsk>&Ia^1vQf#ml9{D#QUmJQJH&$umpEvhdo^X%Kgm3#WsJb`m|QRiLz*DK2Ob1}!a zmuFE+r#tm(&Hx6LN)$Z{VjH_gAtfLAN_J{|E8K6^xWX z!i1S&5}y3OKIEmYTq*Uuom->08K(UPgFYxB@QpA0%3aX+;Bm zwfGe~-Rw<}4F4L%pzjG4=lbdO;rIxZ!IlP$&lFWyNI`X(M1J<9LQ)TU2+yI)R*Do^ zD=UlSTnmxoAz7&!CPh?!0o>*`UN2_YQ*1^}?mm^!kb#E@fk5W8jucIAdZqPf&Pp%2mP!t2SQ-8=|g(U;Vmdzn$Q@k zGF8gGbxT@&A^=~_a=MVpsyqXw&ai`iwx6KZ+B&m5uw%0?fbvOIn?M^)YiCf9lp_A5 zG$2X^`NiP*<9YeArp%tnNZ%{i%+S!-Pof2EqMYsg!Et2nzdEso)9JJbBkl}2=c8Vg zJ=S^#e0b_mRDPE|I&TQ;MyAg6w1}@C_dn@1?IbEvy*1v6#gdQ^DdI}6pi>_w3>jm| zDJiu(R+}#0z6CdbKfY5-!uBw4`Y6O8^a^4ktj#UkcE1(#Uoyxx_a|p;78TFS56{j7 z*&MB-1S321*JFI%Z}pShM*(Po~RhP&5=pAQ=X*?r#IwDsYKfdd^?JRak59 z`8L}Fmk{iau;FjRohs3TRojFb?BCgavLA!@#49-nZtmH7E)yc+1kto)nyM-eXGi0* z0=9KoY4Q3hvWp_!L0m#vPdO}ZwR}%=mdUw}2qwnEAqI=GSDH_=584Q|O$Q(8U~SCQ zmeBIzDZ|4T9v<-J3lm@$H$+rf^ZZT*Gb(1KLzr1g?3os}!`Pq2(Fq7>0+QPZ&e$#R zN38?US&(t&F{RD&4S&~zbe&p~XaW)pfGvUP6CDB6CM@_C*7v3m72w3)sR9jk>y= z2seU(c=4=qk+Yz!YZH^-Izz+oar~Zo3Ps2Xi<;K#LS9!1j#}(Cn`DKX z!8flxdNWdJh|e=5yRZS7P4_tqZbFbu!s3bOdqacZoSY6dV=^Yb+v&TUjjPp*%Jhc^-qj95sin5H5jv3p2I zm%eaqu?)+nCanLh!Xp+xDTz>i%gQP@Tj`Fy4eGSpuvi#*uAl%%7#aeke)5n<8_YNF zp*pUf({PCaTwyxoav#>3uoaU54KEN;aQs$!1lHFhQJvPF2d2@`kauXNJqZl0p7V{B z@?FYj)p(@;Jgz4ACQH1KjSp!r-yEW%GQ-j`gi~30Vsob-z6JyW9ux`?b@wL=Foa)S zI**wy%TNeBv0pJA`1rlNOzP`xG)@_(Uv+{wFQiL7owrwyA<<-cm0UmQQ(*x`03lN> z+k=qRoy3HUKY!Hs7#T^Mt*2!=%uF$X>0PxuAEDWFg(FKvRd()qB`|t?w5!DGEg><@ zKA*XVlf;Bjd6fU{sb-o;iXInV;O0o4&Ea3iMe;ZIl-V z{8qPrqzWtln>3X>-Qw~mpuuUkwc+6bt@PV1dfiTsof6goqs&ob63B$>afweIQ=ezgO5BbD+{Xb zE-=SvtE8q9{7QN9^aB?UW2;18ogjFNzn-0%;+0nzwWOvFUaV5ZPfta&zBQEWTTe{v z+%GZ0E-@pn=~Zw@;F1lEh#-H=#l;A=ZwgKi{!wvfgZeZe{QgFcG$9YL#9>1ve9aXC zHt({s;tL``$}mf z8SrO$3&of9ymlq`tf7FZ~Y4~)*qxKs7SNX07>#nv72;$KSZu*jg zRb^BkPB#6CH~p7rm%3KnWc$lFmt>{PWw6AD~juzkkN^ z^?@ZZ3@h%!ycLKXIMKZ78)5_e`1o2`PoMrv48~^p8%X#|*n1IG*i=H&T=;9} z=t7Is;EJ6*`sH8T$#TdHex>FQi?n#JYvI`kXJ=A#nE3R=H758M6q3@8l`d=jG$s}n zAD5Qi^utjEpfZ?z<+*H}?P+kkM!CXeIe*|mPRJG4gecHQp%Tb1Ke?oH?H$iU;x%^qm4 zVdsdb)d}yN(4Zb2U6CC~)%AY+?b}AG>na|jntC4*;hpRbKC8_6gTG+*;n==BmhMX8 z!(ALmW3bsX;NG@`^+6zjhhv&Nf~iDAB1y?`F2ROaQfVa=Fxcid!vuWbse(j~!S7E_ z_H0@%|EL!gwYjNM3&}0Fv+G)UD<*eM?YOh#hQ=J?f zw%(eU39dki0hsgpRAD78hyWjfc9RfTg<-+)R3>R5*@< zwcBLa-UWjv!wJfTe^_|vQy zRt+IWMTdbtMiS^7!Rr1aePMMX*Z*$jVMqop{T$9=eq!sJBI0@b^6U_;!*=iZI4~`Z z)=<03M?jFC?Xk*wsS$R4d~8nd_1|axnU=3a`1v)|PIl_yx?-;b)h_^C=$jN__vHKb z)>HkO$e^ess;GyEP)-XYmRJ(X0>)sNcC~@!*dKcF8%#`Psu2|8?`^HwF~+_;SN2P} zJiog!5*+kzb8qyOTJ-}gqmER*Vs^00=;^&LZ|SnJ z$!$!3Pl_g=n|t9n@1?BuQQz{(cL>ViQ>_v``>On_FfI~)?ZD=mn4V_f}X(bNleYMNPM_8lEG+axTWU zBAvS{TJ+E*q2S@+LB0rHQY6vKY_+m5gsA;0WG@djiOxPFq&D;LOibXhR^TRbje^#;8PlDG*zmCIb$PoE+cmj_#%*I<^kh{FCZT*yd&&lX7Q2ZH7Xm zTdAl{W=jT6D7`5)gXMluP|yOn=(}~RN*7K0k~+GEe|41!c#9xZ(10?v_~(ySli&9A z&7lHDBI=H)IucT;<&PFmYhcF?J1g`Ym99G?9!SO|t zJxDIZU2YFw`7`pD?1ipw7|c5mVr%TWJ_`o?{qZQWAcam!*cYsKwyzd+Znww8j49Ik zkeBkr?}LBy$7Q$JrgDM^gL(pbttDp2t!_> z)l{SeB?&5<7J3f^O?NK6p{C}#0T6@iA<1I87HFg60jmVrX0T^RK)3?9c|grE15`r@ zQ9d+Ad)N#RM4*@(!kM{ubR+|>2TZiSLD!V@m1RG_Eme3#^e$)V{_^eHQpx=(3^|TJ zuy8J7sGeU!7TGRNE8JjNqRe)Gv|LR!6DoYPBZSZp_q z7p+_#Z!K=UeY>s!b4Ggu7~-+vk`WP8a|P@OrwESf79$wP!29SAJG~N!a+8twhNHSj z@B2rH?r8&`ITFvrd3NZxwel>~YY!0%zzI;)`#`dspu>7If&;{6@H4)GoBk_g>3sLd zV2t^!>g^YVMgIY00Iu4#(aET@b;OfE>puLHtWafXwJr11zbu(rtuOTD-IISZ*P8pv+y9cV3J!=)~bl;S354NDzpS!wpv^C$)SAVfHAJO;gi+#C* z;_I*S6aZt)1A9L&{h%?Vpuft>y8DQEA+sZF`5_Ljz-bV1&6m93;|HvN1ozO=4|g`7 z1wU2SL95RDOKYGP>l)PxZ%-~r&=&P_#*Oo>dZ+W`z|HLq#*!$=og}+;iw9XomFIYIAoYt_ z|I;t>z>aN}m6@3W;bR#38hAX3m=Lv2h>J@F20b1SF4c7#m3hCM$Wc@I#RgQm&wuT7 zwkC+9zbFkcFw6OW#KDQFvd$69w>QQ4ahsVduF|lWj!ZHu6Lt5YUN7U;?1OB8km{%M z-@WayM`uBbBUJBt^C*Ojm~*!FW>rsIMhGM+7dIqlERqH`dcL15=Y$zNXlKfsOARNV ze(>D|-RR9=sov@7q@IBROr|KCdQh*st`S_koAa-UdrK?gpR+(DDV(3WahVAZE-F1Qu@2N*?E|=)Z{$dA0CXsrD+Tr(BH~bBqjao!NL;a zb$`Y7|7!t4Lj3CM>zScN1;6fEJv7RW?DOD72LM#suP~3%S)crLl*DPUp)x}ne1gemZ8H@RfZAc($5m)->@dr7FCLgw z>8eadyHglHN56$_&m{3isZi7E@8-ty;%}!UYn)SZy?|xi5`%0_n{IvP!l^x?Ig!WG zz{Df~GRVi6a&i?Jl4|o4bkKeSP*~0&{l)5b-s9KoWQ1;mu^Ykf%$ z!VbG&n;Y0Ytei>r|CExFVgnr(yP)80VYR*~gnSM94c_Ox6#=Qj8#B&-q*iWfX~h^o zxU{$`{ps4|!3_?0wia6acy5cl+$w1h<41q}_<5ZLFD zTm0ymt^KlTipawy(JP9dH<>%a z<@S7_-nHD8Fm9ERQ8D=|n_+x%l;;eU_pQ@6_@D~66znus6Q|q)OJMB;sT}?tY|X;<83$W zz>)s>Q=!)BA%!8npOy0V#qTV7f;wLdGUPL z9KSD3Nil>!Tu>{5N)}!GewL5-IQx|7Eo@hO5C{Wa^2PSf+@H7aK1jR=p<@e-%9p8} z&UdC_u?BXV{H9A#N-F$$eI7MkkN}c$y5PlE6Pa>KE|cb^Rt$s9mlFlr9e;a!)Bo)0 zDl4Pd+aJ8bYzoB)v?EzUBRIBL$L>p}l;tu)?bf zgK#ORp!A{Y&bP7&+F$Ny>+dIkkr4!*{DuX{P|({z|G}!UxH}a%4<675$wmwxJaNt) zKiZH~T%~}*?hcfouT4$I-J+Fb14%bNetap*2_$qZ7zY(Zx%JvQ&}>ag#%*PtUqI1x1#j(QNjY zu(SesG-MEqfuqmuXzTP$Mje+d(rwBi%z0A=rwUZ~xzGqlV~`Q+ z_<=qoBC@wVga!_y7#9xig56*a6TI+8nysF7P7nJ-DTe+Y{b(myRE_Fr3+#Gm^YnNUpTCx(ZJoIQ++DU|JjA@3I@znq*Xi+9HApQTX5 zo+gEm=S?pC+o-UjmJNRT@L@?PUNYW6wguvU^WKhosOB4)tm94HpORI1 z`H!V=&Hb49?n%DwYsDAJ%E*U?6Mz9fe!xP#8KIZ&zu<@IAnN_A-DG=e$XRNev)&SX z;lGXgYsYL4ywMmL8M`5RXsrAV)Ia)Ij(q>2j=e)c@~K;@(NLk7#48R?jX2(l;1DVL zn!37=)0LKAXecO{%}cGf)Uj|fedxGj{xG;U7UfoX9`Dqc82OXp;u@*HdXNIpIlZxw z1rWCdg@mYroehD|C5%r>;a&z;wQpBIOU%sK&ZRA^9EAZ%Z zPb~~7xWIOH1h(5b=k*smu(Xi-Bu|`O7{+R72&kB4`0(ox)Y0Q{8eJVLFA$d;dQVj~ zqgbjnm61_=?a0bWlWp}ue!hmXGBMJA0MGKGng%o8R87=Iz=!vq=MSytzlVS&B)+aD z61B{QQ%F*>w(RpGO@OGw(k2!no=9sFlT;N`qljtd325Xt1ndJyZmO`bJjl(>F7Wq% zVNj5TR-lPy{p&vU@xJ(RP*A&kNbD^ZcTLSmyxabPH*R1hbD&&ZUBR{=3ouQA)zy5U zR5At~bnn1G1k`gGP!z2XWno^B+|(quvZ{HWj0F|P$;nAN*p-pHE3Hkv0SZ5mr+^*^ zM8fW?5Q>1@JSP;f_jZKd?eWl{Af`7pJxhp|kWbT4;HeikpJ%oxYGPf#P9f(?c_$kJe5B z`s0||P}|d$l}=U`<=dJXHXuGcIULuAAIBiLBfl9I_3C%t-|FJv_d?o_N>9^QbFQ-kc_k1~)z- zqs&xk=6st^sG?d{PnkG%Wfl5t--mh)6tL$pt88d*_8}36@hy(WC(dX6{ryD2Qr*D* zVTaoZwA0;4#+`_WUJxuI;GnPJwVE0{yy#+bXzU0z*QB(Xj>Bs7L(`>IVPTvt(nV8H zRGurQJt8B;`r_+1c?;METho{wU>Juui;2!C2ins=-vrBaU%m`zU3#N4I*xg89QZ|} zH<2Zek&*jOPj6^{TH!;@layq&B-`kLnD zUrGr^19#4@D1;NiOi_~y=V&b(gi_yY9?5gi7x27&8vrSb6P#oFKXK&%J+Q2;E{%VB zUm^WGmoD;`SwD4I?eW&r4mH*sXf*2fUcS(7{{TNBBNLN1;39z^5;CFI6Jv=_d{1kJz(i64!OX(u2RpS1^9+8gxGs=TQt19;Eo1j4$ zhFIP?sFLSF#2Jx)eS(>v(cXmkU(v)VAt~t&LvbE?BL7=(8>GN%_0TeJgU}G~aYBK} z3pX0QMs#pL1%=cKU{pS)%wuh7QL|iM!&J86c-!zjs*M7CQofL}iL3+wwPR{mo6H51 zVL&WuWYNW~b=_~UW6aZpdRpP3o({PO3`JWF)kp*t@?vEO=4D&TjCim(r4JC6LQ2k%gZ|fel#4?hSk=y5@KQqeq7wC`A#|Hpog5CT&Knc z1*R)VO2RKoIWtn6{9D%xXk`y&WL1~*IwJBO9K~}=S+MKp`V5TTGENa(gv7e_IfoH~ z6qj@>ZME~$yGKI|4zs0bX7hJ?f%owyqcwqx=s?H;6Ay&o*f1aka?}3H10CbXlv5Sv zelW((gnNf$e?J4^*+V9H-QREYR8c-tjPFsgmr3oHH7bkJVKCKDTM zQ^*n<4Dr=oO&IS<8$>*rqqsc$!IM;D z{~PPza1Y^r8hv#4o`2_Lqo;$&^3uAS+wtsKrM0PSaekrPumFE-_o* zb{0q*sjc=ym;K>NR%WIK{5;P=C`C*}gn(RQ7dN-ZQF0?&4LwGWDJUowV8dx+HBKNX z8Svs%Qu61XBHbtAQXal9?QZACXiU$=h8l(S%*;Uz?YHLIejwD-)wKvaM#yRz==kvi zW=U`3srh}XaLH9#^DscB&IuFemdVM4)u>{9C4%5Q)s2aK9n^>7;DJ$Lc?k>5ff;HB zJ39_;7VHEvvTo-&&(G!VXn)ZO3AG+j%XYu{lDz~!R;H9`GBH^Q)*39s}q2aHdct%=N%`t{zO%+z$>7_|QaMRUW4Ir|D9(OD24I@l4ks%RA%lAE3HkU@8}qTwQ*XIKRJ`&y%;Qr)w&8(Mnxafu_B|9)B0+=dr5 zC^+~ve1Rie^mpHng(gvf`4=!WxwjuXa#w+LdwZrsNLQ=$W8PWWh|aoEDP05BG34gg>!^zaBWsIAE1x2Ymx*tKm(8 z?TFw>r(8z&K!m!s))LGryVuvvkgqQi@(%8l!>;07$ouF@NU*sroOqbP9b9^_mRFIU zv;X?~FL@dOnyG0U!tzLKkm_uXxjSPDYTV`5^000?dXFU0SUQd?7bstw=e?)^R4c~X(| zgdE^Ic!+Rm83``-aK2AH(r4$#ZP`}Zar!TOG|9*ibZ$UVYi(;AvcGg|vAJ|}GHJ(a z%&v%uH8m}Vr(&V?18#!`TW(4kZm6u{hbJ{aR2Y z0i^^%AX4X^!Y^*vtA_$^HrNt#{VaJ+R6Tsb0?v%k()Ob{tLaX9Xr+n2h+fgzc`Tvl z`DMx83J@e!}DYW?>m{_;8cfksX=?Y(eB|S45=!+Tdsp<{H9k;Uu!G8P*rHbn&Lnq(>8u6a*PVO?D?o2u>3Kl;OA zPLdb*>q|9%&v#-WA!f}t*3XYl?}L5D?;iDlTn2ryx0znes@PNrU5I^V@5Y->vh z4<~qMYRdEn#taBMeNapzgOx5i0bKH6)Uok3TE6Hx-fJ8T|5gcW82y4kSuK{&U~8h3 zqi`G7=Ix#Vqw}KgdV)r;&U7{Az(FR)gO>>JtFCNoYlr#%&UB;B)xMY)>dc+*mDQxq zZ{3;eRR8;L-*7!Hrn!A85qt%8gd3Zxt?R8Af7&2C<_=!dA7#SjFmZ}Mp2~kKGxivNLHp*C&R}af;vNY=M=N4(^svYIB`2UJ8VdN zM^OtC)t1w^BkH9Cwle%u*dmHR460m?id@cc9aSM*#3JWgT#y|vM8P9p0k1nR5j zrz7@wlh4VCiyo2xO+*383`l2pMJ~=Zi$|;Mc&@(v&nT;H2zW_Dh-423&532+ADQcp z7p!?V|4miKFs42JV4)TAQBFVwV?jpdVWSWakGeT1?uz`mOta{-Dwm zuNLY@gzPr>fmVZmyp*Bc)m41F0~5wmWDGJdNKmxZqUUMAb-8>zdiYDO8{nXfL=c2now1J zs(yXC=Juhx`(w0NTj0$N0RH&6PjS;v!Q^E2uzG%dir+J_U>FT7+LCBVCIjuzEHBcL z{nGNfDR)oGhMT+d<2Q?ThrNXdvE^j1jnLB!J8b6K&;TuOrhCg03grF7HYg-IG+2a#8zqb?Bn+Fyy}~!A%?nKhzj(L`y|P`Asu37 z3LXiSr`@*!Fo3mNImxEmO*d7kFPkYP#n<^k>vzzNDI|QZw)E z%VSzf$~+)N5a)dPasZN@WP(g#mEdxYs30X~XLs&{>Vl4=LZ=j>F&(_(ptA3F% z`*j1h0t)Fccga;q@CBf2Go0_>ZO#PKuQUiRXiO=%ZRk=TY59we6}EMLz_s-rV{4qv zeyX!VDB5sXdCj}PPY_zl4yFTr$l?WTf!|%kh>>>KwZ%nwQS*P|^Jr!g{{Q3YtfQ)2*Jw|-BGL^Dlu{b$P625_x&;9R328wE(r-K zk&uvXkdj8}?hfy>_PO_-G0r&qk39~s*7v>d6LbEi=xlo=iH4Y`OtYfBvfiT`F`2)# z>XT!CCW!fl-P9|Uu|IZzuC=NE=EsVsxGN3+OhV0DY+r1DxPNGXj$VFau1>L)OZemU zzf~f(P)|=O9THcybcK^BT1`?q&iQNK^#GqmoS507ds^fi92*bVpsNFX&}Pd-h57zU zx>cyd;KOl9+J$5atbqdv_D1$gcYD(!zlDbSD`8wEa+$BL1cRii7w5*3E64-SyNO~*<0IUvVcuXG}96NumFv{91t|Yi1 z=x>K&Ahfj+#g8slxZCH zQ=oKaH#Raly|cajUGhcBZttK*li*yXawU{$dj|uO$Rhv$;s4_jb60MDqWv_cg>6?Q6Zzxb$tXEI#x0u@(}{o zqrJYursi3mdbq;nE;?O`$lJv_chC`=neNOg$0R3n+x*I@jU|p+`0BA|0bL6Y^iDxC znJBz`nIMSix3~`JN`B2ryqFe_ImmlJS+p~#+ z7!cxZrTP_EFt#B7o04h{wLFMKAlK6+oSf?^2ro!(0C^D=nLdHSfI!H2ES*<=Wl#a9 zvul)(ZvpCbmb^~w-@j;w+c&;hU^)P;2e_?74GqaP!OW*wu%{Yq#Qu%KdWvBR$ z9`zwXA;S-BCka-cYwAB-cT&Q^wBpdydhfcT_QQ=+_~UC4(YP(|30^H(zw3|J%d1M# z-LZF^q9UzlWM%gNQY+>-j73;ttbI3%nx*!O4sT3URKB_aRm>NgfzF%7nbJqK&z|L2 zZBOerK4-U3GF|SxJW$Vcz4pnRiJ&BLBA{2R>XW>bn&P%284X!qMLJHAF_6&IQ9u*2 zzW2$W2P;M?2pWz&e&cYgCax$ zf*ud{_B3^Mbdb<}1nh^P$~S?af~6l`p^H=1_#&8?0sKM~zr?-g501vU^(&Q5yV~D9 zv$LHKYzrq6enI2t;5g8Qhu>9xcFOa-B?!0g`0Wa{s@Y4Rx@^mh*0?B92;L05x_XF9 z&-YoP3su9SZ78Nw{Rsu;7$F^h$yr>Nt$01|avxJ&9U!8Whx3Nd^Y5fjrix@Lde%5C z_fj^45(lj!3!xQzyvd0DwoX*PtE%eZX&Bjl_fJQ{TWgML;9; zzPhZ;^Z6j)D?)**10zcGo$0#ZZ|GPVobnlYie1Ung6kW{bMHMAjT$0)Dfzfx?#_Qm z=JsF8%8){13*#q_a27^;wQ$Ti>uYjk9v$eBBsIk zED~~ZCN{Q*$WaAYNTE%EUE6DG7qpM6?~pz)-;3ivv04R{)Z9`*D+6ppd>-6H?GqK$ zhQPrukZWoQ>_(U@$t3Xwk9{jVGm#}Bm4;NoSWXT-w6U=}Q-QnxPYYmX!9(MHDAl*r zgM2(-2F>bm?#fL_c&=({iX!(NMBZHwUQCC;4Bxf82Qqh6D6~xaqiBTDBqbY{H>7fZ zgE&h-(hMbLzE^cJ7$_Ypv8oDDaR$tHSn%O@w0=-k67)`pf(R9#oP4_RW#FiX$1amv z%KZBe3g4c$uU>UT$ydF@az;bL!2cLgad9**;wA#y+`K5-1;zUY%wg#w3GQxg*2u{8 z{*NF524sU1bWg8#=cWH384>N0)Y1a(5&{Xg4ZKgZ_V?GcmGNNUsO{|?kM=VvidH{y z)1hJE>Vjr`S7L%{dYbjw=~gwXVFQh5OUqlZt3GgE>{O_jG7Y5`G!d0h6f zt7?cQmR+5!;<%R|kBh?ny)Z06(kp1Q#P}>JgW*MG@qLPce-%M9)KUW8)cMI6=CDOr z!kQoRTSOlPxwQYM|CscBx2UKJ2{WqY5Nk|i;l8AJZ!6>wLm)7F3YyMe)!VGIx9~7W zuda8|iC_SDPQ)@^s(tIh3mVLrbU(ER}+%xn%w#Jg4BGe+e?6yVc*tH`NJAlLq?;3Cdu}6O(0DFd=7^c zkDBX(vA1Nkw60Fm3$)*$V-ME3JASht=QL{Yp@dT8-RBx%eGF}F>d{wWatK)d@$34a zBCco@mA`zXq>cMTRgUGikBezH=Of#k!|?vEu}Xkxy$5Q64m-S2Upaqu4GeTZeO&|j zCLdB#dgo}xD88|%ImO}Ouen9jH6M?gPAnd*ykz9n(wFey)>~Z+x&W7LO%Xw@`}PR^ zMKEDOfiC*47-2gFu+D&18k3Zi?{l~s(>XocU=pgXo|g`|@|>Be!x!>jT`s8@kVi_s?;l_4IiwSG{N-gk^D?&Q9_Uxn8aJbX4?85$*@{6J@}!2ygx7$Hq(D zvFmY3@I7as>W_v>a=#y$ z2dFFKaKINdbMwj%7f1G&r?qZY&m~?4Y|emF{G26!{o{DCVFzEkkT0O31?}u^dlo;^ zf`G7=mKIqd-$T|4aaWw@QFL#iEP63pUoZ_0X+g(Xv9Wyf&kTb$C5DO@`x7?t^EEyn zQ+P~YPgu}ngD@5}!O3i2+uGW`_I62EcPl5kZoGp>&n0?ui|6mQ@v5SNOsStA4#Yu% zdii&i{m{g0+RlTg5lY$xIo=u;2yiU&>1$kL3&-$q5msGw!O3oOs;-EemH~pTP*58JOo!!A9nF^N8?qI^; z&EGs?lCKD$Ab;}RiP78Mrl&R3@sJ;iM7X21V<6RfYq};bS-_qQ{!(1vn;6A)#qUFY zWFYhHZG2DyExC^$E6kfKxMAkoo4 z46}arOnH3s$*|+9!hohmHvAW3`I>y8{lzd zm$u>=QRn=&!t3LPAc`($YYzDDsPCpTFJ~J=ZrEg?0ip z0uZ??-y9WDQR3cpCopKt`|i+9*a0T^gMeV-YY5{R+kA^(N!#-wh9l#{CemL4n@6=b zX#TLz1P|u{#G)<2nqq!=`5kNvzQ3l zh{1uhpd|=0_J{aPvnMV3t&iZ7goQWc*!QPPasgm16S5b2ixNCn2FE^^gKA6bcylw~ z=ufgEN;@FWAq7w9v-Z2Rwq(Ql>{%$p#i#x9<;`#Jy9U@?t$|J{?Ap^)yYANlC+$}bJUgd`?pAfS8E8- zy_rcWy;9STBXMst7$|~S(+RlMfZ8HHJUrwEXZX7T$-J9?8?Ti^f6|Gs9xySj)k?U9 zoj>bMpIdEcugl38`G1} zrSc)J?yG}fqGvE z(?AyXux)?@lZQw@Xe+SWDInJehO0YC2|uP# z6w-|AT=U_b^`7y7{c{?vGvEfkH_(h{+$rsgIm3@ZdAX4s}9%I9BCqVS96 z00oR4xNy58A_yRE`(B9}xI+R-{_t3?o*Zv=JuuahS#<29(xNLh%`+2a3nekb$CvZj z4>hy0ZVPzYhZtSmD1Bo;o-tj9E^kZpGrHb!DS$){9>-bKam_5 z+3*r5OaLoWTySvBl3N!Jd>BN7&xj}sk;yGLiY3+>a9;s)vhAUGJ^kh@5J&fx- zz908TKANu6RemDpkVw(iH`Cx>T3XeZZ~6!7b}S}734kXk-S?Ohi9^;YrM4I= z(ucUw0Hxd~g!DHrPnj?j6=5PXf3ef(cq+yYQlB2~wL2!hFhI``zhktmR=AefjaQIOzihuKGC5bAI{YD|P4EG|L%6;B1| ztWVf=9usxVeT!6D{rT1-^GkRnz*$b@5pt^=2Vw&*KPzk~o|~a0uM9l9|KN!`tUZy* zUP!w|wWH~2HMix}Cj_u?%p7HYgO{5de~X_rAuc&Q?8GT_y*HNHM&x^quebv>0ZTY<4_j=s9L z7a2?kaOVo(%#P`D1`jOt?52oOT0~`UJuAc_q*GmDfuvI0>at8LnJr)N?vSADE+v{~ zfov7hep#%mzlpVgs=y#G`QuB>0aEVI47JhQD- z_;5eFJhRUI;o3|?Y6@Cytz1&6Da*>^lkNBnZk{(zN92 zXFlwx0|n8g)}5teOmI#EZQ z5Qk;@E#cjZrgz*%@uF?GjNR5N%-N$x2ndkEHmU`5^X5=sr2DUUPOfxBvputT_E4?p zA2)oTq;Q6WlVX@}!zOqbqT-RpER_G{fim#(yZXS#q<1Y+k;hq3SDFNwXAGPMpcj;HX z(Bn*1v*D!iprf$eMxON&kl@nww9hVw8K61lJF`EKJ~%Q?Bc-7U!MXR38(;{ki;9|K zRaX;pr%am#@AJ{265H4?lR#z>!5SwgD=&A`)wAK#6Tg3{Jx|IpmI&#Zc7NTuocSU8 z`E#!H;V$DS8<(L%SVIAuZ~JtOmE#KyL1S(0K)9#(fXxNog#|M`ZP}^gUB-;!Nbm%j z!H2BeP9f;LsPuF~xg}pPfZ>*=Hv5}aIXe$*-Ko1vyc`|7n6a^q7yhXY_tJzOu6V+M?oN;i24fKc-gy)Il75jh8?r zJ3IGgCz03g1fMc1pkMHOWs6MJ3-vg39VG7Gm>$ZO@)TB^ZRBFEt>p!TrKX8Vi7MQq zsQ!V0feZ=Cm{AMhDs*gVZ&z3yFQw-b6m;BFTN@5;PakF1I6FH7?ese%&QfZo$DkeU zo~UR}7Y}byNkr1A2O-k{!cN)Q*&)g8@xRvrQaM~AwfZ&E;on_?(?ngKhWo*{&-2Z3 z&g7&HOoVWafWRL5r?0PJf8Wv)C@d-}tFB%uFTY#GdjAf2ONGt6w)P%mvtAB*9()HG zY>@0Tw)PhjXhQ&hS-K`CqNEHB3PPfBAglvBwmQWz%J(AV^j)xag&Y?bBC@S5p2pcZ zOAAFsMXQC7&SwK7fdL2N#f9N|;xTLTKbQ15Br+xzb=L}L8%@9|ER0t45MqCQMVdF~ ziCwF&FOxn~H$h#HGCCTce|VJ3oTw89OT&fhs|(}|A1DniU|sYC!Ban&Nx*8!nk-B_ zK2=HNkoU+E?oxOLuwW%y6yLLybqvF#EtpW=q>qY%Y0K=mCA@`@&cVe6h;%T@sF-P=$&RuH>y}kYp=4%FQ z@BS%rjJqa)QiVgWq%{B&|5Nnvf~VOyr$I+?Z-^sST3*g_mHi0*;{BJ$oBF`8GK1gS z&2k83@MI+Cq0R$-D;!~l*;mGmcaQ?LIlq6j7G>YVc)rzvGtmK{UmyPs5k8iUtPYw~ z0GGHOivI@yJzYfKelE>G>h_Dd+~r-62KN(clzp*is3UP8>ckx6s6K!h%ZEip> z%A-eb74hwQp$P^q^GzUH!@G_O^oy!9Af=Txy_iYTb>;V2bk0qV8A>L4o?&86EtXW& zJdpOs5*>Yd|9BZ9hfg=gODg~a*^XzBrzYpq(z5X>sJR0hkC1R04;fhj zMFwt$FyezBwhWhBAdG$Raz1dC`puDZ<#Sd%qSmTj>CIe#J$69@BV*2pdMX}@kce;X z{GUI~yrm{fKOz55NZ_&U@aG$s$|@60I}Nhyp~Sm*H?h>xu_SG8{f?qFt9wPXMubuL z_Ju!E#{?H54lZs13$M9(XKz<Q!*5TqcHEV(`pq40R3W#4#O}uQzlRpT0sDL%$MlHjP_;S9t(Db*h zv!b%~V0*?B09!wMKSl-`ii>MWP)~YdqAGCcW<1iT{9EhRlAXYDwl`ktVpCZ;xL3C` zUqWR%a?9^Ze%%DUyzf8^N_*%kzFzH`LolsON=$P#8`sL+oyoVqi|$!XOohLTqCkb; z8kUxyGc%h}wA8^cm2AUqXBVQ%Z)=hJDY57rcQA=z3;MqwHiU;-O& zP-Z)$JT~6@vU{=PD*2?Qd^8Vfu>z=IXMg|G2p$kEy%0)+D4zk*qFWJ zcLlbQ6pF&dg-gdb$KcH_;)tEe1e%*S6fUl`b#!$tVBsqB=+O;r0aBlTS0{$07rwL# zk%$u&XWk>R{Co!MvG#Z8v^2sp<8F=u%Ra%yC^jw@y@3L4 zxhHxhIT*PzsKuoXG8yUg->#3TUD((I-0ZEqw+!sGYMxUQ4LwQ@={*qJZN^5PeBj!B z3k*yra4<{%yS}2fCLoygC0DoNW#r+}6atI5jlKOBc!=fUV1G&1 zh%GuY9~#DItRP1Es$k{ac}w}p>gwQ+-4?<*AA&!UO|WNr3DXLcCO9OKX)pj#yz>Yw zSK$SPg(4{P$8f7J{IjIact_=kGXyal7mYt|{I^f#wXm=#S5{Gx^++2Z8y|P1llw;v zK1(g5`ug=10dn$jeJW%ZY7I@+#e5)PQeB-W%k5C)j1vAs1ETu?hNiKxZ$pMKoKjf> zl@X6+yAyl)$vw8vBg5MG$MEhY=c;^sNYR z^Okx5$d+83#F2`y1b4a`P+_L0ifHmS556}-1L&Qg>8OOFLTs#!g-mo~WVf;LjX!^6 zNownuCV$GX-eb3b>ea5HU0X|oJ#j(lMTs51#?{6%uEfp0aY8&w=P@oTdt<(*85BVs05D`->GCt($x| zAyL~o(_HX!j3FjN`EKCoj6n6*tDU{bvH~bBVsaxKpjL(qHOh0DXb7vhweE zHtoR*8}+Bw)|jxKg39|3kS-QY^epxj=7nmxAQb3$Sly|sPky{FIaG;GTp1UGg~d7E z>Zz7&+0jNQGbw4zqdFUP_BJIIrk{M~XvG^-)tcu+ioY)}h36J_&HGh3gFC0Fhrd0S zoqD;@q?U@X5bzbLq2=XeHD8&R>TudJK-_m(`Q`R8PWIt#YU;vtlZtoSxqjCVnS~_N zm1YVbFZOqJF(!6io>`gRy!m-C#_nezyL6Vbj?W(EDK_C(_!%C|%s4+_lH%&(!p63| zsp>X9IXRNiHyn3v$ILwFd%16oxMWg5*_x77yc;No_yf&fx6Z@2Pghhp^Sq%wKNPi$ zU!ATcWo1P<*llY2E(A$D58T#Ap8CqR?)<>6tFr%Sda`{Fgrc;fuNGnX+%YjZ`4>8% zfWhMAUBBPnJNbnrTlgN^E;Wg>nuQrUn$nt5sQ4kan?LTh|IXt1kYuZBvX3uKOl%m@ zp3gk++t7iBU6UvW=Qk@_*st(Pm7T3wmj+3)#3&w5&pE;NizG{K)fd7iDZa!a!-`|J*8^88YarZLg*lf(}IRa6KFUa8g%YMH8N>vI`onW_Uxd0==3dTa9t* z^luMRH^2)?_z#E@`_}g3ZyQn5R*0ymx&e|mQ(}UF;v4~+*lZz|;N`L`-U~?rkkC!r zt6i|&zfTI85V?!n+a=72J@?@#ybJ%m*8m;DO?CAFI$TG>Ye{)^t2%7)RaB_{kT~#q zaAQaSylmDgRPHAw6%`(gG^pTL|93{H^Ejrr_PNAb80q0;049nhWYyWgig;sWy8|*k zVdV7PV-JCBl&5L-V0eNBSL@2wR^O!V)uS)@^O42HH7f&YU8WMR?|DHKEs#pMF#hb2 zdL;9QUWbJ@pC7f1bSlLJ2BJgKN-*plUIR7OsAor1{0T;WyJq=B{ z^WzCLzp8YSs$ue-BDH+ za#@b>f%#`@aa~X1T7&vWna87&XF;9D7Kl`DB^=5fc6Mg@qXVXWuO&SB(5ovpnZMg= zL820AN=8p8mUJ7VR4Gx&IORO0QEx`j6T;QhP7$cXzQruO%*T5x=@YvcImRn6gV!V{ zC);+uXGB7O;C7#Yjon0Kf%aZ#)J>wB_V%%V|6RJ+oAdMWIn$vWeuS_jItdK$;4P@9 z-tJdR?=R{9go%RmDni{3W^#yoXkA%eb_TjmH;I$5Fl$l16ilh$a(r7`D}tqQWDSOL zkS0S^iV}oSoBi-Ql7WX|uy-KOXV@RbxxvHp$0QqLLW4>A@>9?|nRiUrI1GbS^6Zan z?RAOOl!=M)$s@;b%MM$I>qR=e0Ho9f3k5W@zZ-l-7yGv6!NZ_oXgH;>d*MDfBA0V^ zGROA!yEQ%=i52gs3dbMvIY%q$&x#}I9%14GG^?EKmXr(QowrH^mQwPVkOy@6axK+6Ft_Paq<~{3lhE936|m z_R7E7-R4&ZMe)BX`#0-$N**TjZ5Cq%wRKs%UQ?@f)c5qugJ{LQ;wK=aXiM0I`+I&! z3i{*6@uI-qeSPNa1k0EM%8ZxZdjaiy_akXu8#n#>g~UL9{r0ULtfpnoOWm)+ZlUlW zgRL~}Lz-G)$)JXE+gam3CKfzaW27dy9=^{Jz0&2Tm;B?fikETa=cl5|$jLce4<1kA z$ss#GX{>wHV=HY$!}j3%?tes1pOY#bwe-&~d%7}5nDxg0DRX=U0yoNt?odxpII4~r z{Ey1?@87JmFxVjQ$Mc``yX^2D3~cmIOWC43%)s87Us+*68zl4(mP4FPLLco2X`_XH z`gfx^*iP*As9)YVq-uL_Rh!x5mQ_}_gTrn;hqdJF%gjT z-vtL{n8;&3YzfA{V`q1N02dZout@z0M=Rz)+TImPW{#t2470fL2UFdRvf>kgPZ{oh;m@ggs zfOfo*G3~#b1dA#g8#SP%s1!Ujl;~!HNUogZPZs+pb4)-0QZ5Jy*-Dz zni`n^Pw$p)HgUdn?a8U&?M~kCo2-|0a6J)+1YGbC$rwgL@iM` z_)N|q1RCFQe*;tcJ#aIx^x6!3cALt~Fu;F(_EzVfF`JdLGAkYx zCV{KPn4tXfVEIu#kTT(5aR4i9>CDqFOEhR`tb)JC6A_J5-!$1ftLI`3T8IXgR>+1Z`1jAtrobMs{GrHg&k zqK%?w`TM0vRr8N_UdZn&d2CBy)x19a6a2x#t5nXF|KTW@rh0GE%IFmXZle&XBZnP4 z9+X`3rx`=xMc6`+1by|jd6KMc)_9<$MbD7DV5SB65cY&G!Su` z_aD?#49>mFY<30F4b&1e=F|`1jgE*_i0>yF;=R2^rDw0lwq}1& zTa-}%kNG({<3N9RfVnPNJgAs6G4a1Xoomn=h^`kyoDAnR8mKkAy1(_PbmIIA(@k0t z=0qiC2hXX!^$<{ezJi+Q=J&=k!_uFj#4M+MWlEk;rC(|-iwy!-zyzPyj+ZnYn8QA<<$duS%s)g2f2ZCLP$clN)hY2ak)g!T@a6OO81e8sfl3< zJ$%4{`~H)%xFap?!}F5NH=xD;`FoN|UQJC2#3ex+ zmSVc=+kpym)~fbY*b$9lKN>MH;@9=HTvBbA!`7ty_|b%oN6g2r@$qrX^^tdOS zMJo^{EV|m+VI(GSd`!!|1946@Fl%JwFT1$^b zrLgcXou00YiprPVxiYl%_4WMHQgTQjOM3H0dc|H>P6Q%xEng4NA(#TO+&;7_=aPK9 z#@G7AqMo)3OsbTEQm#Hz7-{#?LLl+cqRv`=7!gJo)$3!*$ClS1$G;7;sM|mULCIgQ z0k;-BJKSbXNV07?l%HZAyHfuZ;0e3dys^Ue_QO>5PH)1{(u8G)es?Q7)39>H;boWH z{9PG3);5@VXktuDghfkRYogdOPE`skYI7JVraX1|@&L2df(Lflw;)A1Kc7|1@0tb~ zVFmlZ(wv+T-^^x}L?ye1XT-%TxWuf#eAjNve@V6%H2cks&~|KmC<`iB$Dy7nOc# z$;K!D4N&zMfK_$8c%cDgs>1W5g-2VPN$@cpTy6;peN6gFedC4$gklt1jSa^ge~u?{ zJ{K@m_w^Nr;!9;MnP~^|> z@mRei?Q{~wdr;r6Ki&J=IQnS=)bINs&luWY>M=FWlT{3km*9K)-mbNGb2L@z8VlU+ zA3=YJq=-Pwa{1w*>qq#kum@8r080-ZfoO7!W)@b~)!4kem2{;SUW0-EZhCdTB7}c< z@n>yqf`o?V(jI6+#tsfekp%?>PwJ?n2hdy%%Jm_wC2toKuXma z4*ZZqfP@1dNqy<*?_Y+l>%NeP$gkkYNVaI_A%s6qJe?R0j3@V+hKWG|4jH{)%gg^G zO2P4UJl~A|pV1xUkDy8zNS6!-H)}nt(~V&C2O_#JOgIbes1F{@zuFFh<4DzWMkGG* z!{6z%10?AU5NfUG6O+!p9l`qtvtHp@>e_j?dG>ZQ9vCikR5MM(8J{IMhtVGOHiXBh zqKqib#;R#8(UfAWlp?ySsw#i~MA1#3 za^xN1PLasqaCS)XM@nIOD(cWh_I6(W_(|dWCJ{*^I)EAugK%L7*WgzM@cFdCKDg#1 zpUuy$R@~1u4wSHIf?ite^<@%nfInESWDzl-90o(gm}h3^BYwW@RTF(mHVk%-&_Quu z<)QWmQ8DmrfKlZIyufh#BbWLhfPo>HhMu0{99(AekbMK`wtjG(_Q-STmt!Ee92^`A z!@qug2dW;ZZCs-qIGSGOSS5)khh&vqyMn$=*i>A$~OKSFH5=wY%g>ZDd1hEq)3OMDm^pgJufJvwctXnYF>_i|C z8d_S2-yf5>b@ddxLq>Ey*#zH=St!us3JU-$<$)jg@f2NFVk`3UL&9h{P1V%GcAcnN zy5hRdh$)opJxAGNe>NfvSmL^zc4ozw|Ni}DeS-jC(xBM;3DgpptzPClj1vMY{d9wG z^2bk~zD2Xw)oP7+P4L#-4es~cvN_f0?&Np?b=i}uK0!(uM z;E+tZ;iZu{nQ=KT4IAH0$+!GtzkCiPN)ZlEV8M&G$X{bc)S zW4@<{@%2C7kel=`+(>%U9=S1K5l9&u)52gF6zHgL(IZzpQ$*bG0Cn>d_PpjWi=|0T zd7t{eNpWfMYded&Sz*z%mSHw6ggmko)_Ntfqw@>I7+7vkZ+CeJf;x9D2p+%}qlJ%4 z`!)5NhGMkxUZ009cbYmxp4fmt8M$nPQq>!Vkg&S={>{4{wo;(ygE7G!1(4>%!Ol|M z+so_0RW{2|AYDC{m(`;9sx+YqK5Ukap=fk%0_$g6M~C7}YwO}bV|?l(1qV5~llxL2 zEnXR7%7h7LZ(;J~_ZNHncZjx5J;DarLNwe2OwuHyNmNwoJ@#ZwAaX)WS9kf5s%j9# zqJ#lh5=weh$j*iLpk;23exW@w&K~lU!G?wg8xzR!14ij%W2z>w5CraM{9ihc81 zP_X?{pxJO7&z7p5^PM8USRPI;nf;B@PTxz4S2T(p{XN;M`=P|HlI-lP-H9ox!i85C z)sjy=g|9w-iY+6f3>^t2#*C}v*WEu`S=H7H&YCvTk(XnbYQ@+F?EKzd$Kc?&A|P^6 zKuxF)@>vm0IXMiNX2HBI5>l===Ne6KL295U9N4U!cYkK(1VKLycgjATSw8{lCI^n3 z;EQZUnTB^*)Mak=DqrY8v<@6BBvwJd=4)j4@3iPms%2paqeDT6D?{SEI6)D7@`=<+I`R;|y%6?r3~+ zrH2{0@@?sK5;;a^q#W0m7k!|&mxe#L5mdvvgfR^7Fa0iFg;Ag{ZVI`EM4W$H(RiYC zu)}reiDlqj!(~tzf@f4E|B}b)4;o%XWX#SA_SB+PYnsrTm_L6iPrlbxZ{tr)#N)-L zsc8;vO?5rQ*64TEA&DUo6r8MRI1R}1r!BLnb?dHD~Gg2`X$rHgGvie=nQ5 z%4XW%-*-A()r1sQED>Sh_wWS-8CK8h=qVl)WQ%0hryT#Ff1M$ML(7P>sB?B|`6;ec z^Nz_a4DjI`fM&}KoJ3CnCuHpBG$T@&JE%!CG9qX1)JJ7@?7)A|B%)(z2tH;qP||z^ zA+ng5m=mmoU_^>T-}q0$()S{ZQ!59G2M2b5NQ;_FVQ;o~YE+7@%y3x5+`>Uh|~Te{p0Bkcyf9_Z~;=3 zT({KZ{yE6p$~+IAZUZryca}`6ZyBv?r~0Cvd>;ECnU493lq7zP+O9OxD{Io{`A-Kvhg2A;5tY5ab?D}9bAz3I5X^%41#gjDsTYE+*F{7E5I@N&DcR=g+_{humyWO!gu*iS(negIH*L;`*qNSQ zN6hh1%IEdxb54j)) z(kRNMFUME~!6@)fM_JBmRRbZInaTZY>|H~n2)(sS} zfBg*L(9;lbq-&I9RXTnC6XWvr!CeyrL-)Ir+uO_w|MogcLLW$7^bBUY&RiV-82j-w zq8W&=$^6f5bDGqLfQ6@PAVoM3EFJJY3JV2$We(CYqyWt6bk|&hlkrVF ziDSKV0k@cXH)fj`9)7kr5t+iiEjhW_*u7qe?1=yHq5V!r>)<2-UKY>UGPSb_87XQ8 z!jO)R4ve!u!BRK@D?=cMp1Ms{Ted_{J~>>7&T5Y!Q2oST;GK0tqxJVJol&|3w~+fy zCa9A*)sy@O6{8Kv`=}iU=?Gj)mTy$bMaIR(F4CrpD<~*XK%*L_l9;4xmcdY6DQDSX zVbk3mKl^uMN<;!rP9YXC?`YN@LFsX^Rb2*oAK=qk0L=A{>+94ECB~lqyDY1IxDh;n z*lC`dOV_JJ*Y;l!0&z87SQ{WdCk>1t5a1@?#rb|KMn7# zj!1iPMjM+j1u?&y59~<7A|iIb7DYT89l`lA>(_W?c5#6&FRv65NgC8DrwbSt`s<}c zn)Aa<9$UIZSSw?^dn?_jPM=?@FH2-EDjFsfpP)&yx~VThC@RVualD=D@_-jj@U_?r zZ_hs;G8w0roWJfnuTD+L)~VC89&O48+0fTkOeq3!d( zw9IXvQ0yBU>rW=}$N<9M(b~EVnpQ@zqJFKaT7o_EDGVd-0vD`@oGYnkq(HS=-^*j| z*PStd*?cZ22!-|p1gcGN@&YfcF$2Y|yZaUdCZ#M|St%+Y*cnmFwAi4XhXEOkhr_{< z(+Pqk43HOW!@UGyWoQEjNfKr#I!uUL_6`wXXh&&+(#Q$Oqn>hdK_GE!XG`JTx;u5NQ znpA@mF7*qG>Bncj}9l@#UV&pv128@+C;EJv-S66?Zu_D%fXn1oyrFdk>Hb61)!5(D0N~v=r<+6GVm+FN^zh8okFEW-G{ptn7(af9VeR3?Cx-Xy zX1|!VV)+GzQgnsLbRIvP*q?ILV7veJV60f8aS;d%2+qq>~2UgG}Qo!ibg&(2~3 zi#${HbanrN#jAICm{|GqXN~>i_T7(snVChZb8C3GxQjTkO17pb89!Xv_GkU*i8M7+ zpgM+88yllS6o%JP0DQ?NCTW*Y7y}*Rng9jjeYPX8*u;tr)yx)o%i{(Ghim2+}#xo^Ex5#ZyivHj<^9%?FZ^! z`6n6J|M>s!XsHnxp@T9tM%N!fb8=#G&D9|Fi{5YE$PFniryYj{=x^ z6BCpmSMfO8zXPu{$WW2!4mgqFo}&iL4XAv`k)*0~Q6UY@tl1x3`M#&`3(L^tc;68) zqB-v}q%Q0)S>c4X6=NMF@#yTX{^lWR?ZB7TVx!j4VeV|WuJ!%HEX@!b^WL8WpA6@N zuyAj#qiIyKXtnXp=SUnGt>|5FhnCd_Vw(dLBHpGi3&-43m~tMr@9hPJ?4(gtVo4$O zc`Wjik&z&`4&7a~J=CwcUHkB%)uxvx#C3qVnj6N;2x4Li&27Q-n3!fL?kR}t>z@E# zuUSAmRmHR%!+m4@3E1;t_zAfZ>w|EN!TF9v`Fw?8P&o{*Eg)%k^O(dlILJhc?O|N$1ooNyHPgpJ=HWS+Q?JE+4s?+p0Rv8qxkpkMU21R3s~A% z%luwT1(G#LQuzbM5lDu$g2^j4KmQ`Ea`a^tupDu?uhxe50H6x*)E-QGEkS~31Om*& zPoLNcsQB}%7&J6)3477d3Mm;Vq&Isyp6I?Arm2w9amHFR1@pHA9dm%)ZmG=#kK2!^u`ustwfPvKX zzbpEO-UkPvPAQ^_YpBc1u9D9kSoJ1<26XB@p>SHnN&S*a`{RKJw=pbHy9!tOvTaA= zSmab)U2nnKPmr5?K4Oxr1l`s|QLb`1pu|9aJro>CY3FA@YUfHAG?bf~1EusStsqFF ztdt7@V_7|2tb+uO%sL<8$d53jix831U2+zNgNA3Y8*kmP8ZB9n$+Mp(MMp~pRA|$_ zBdjsdtwKK$03TV_U((3oPXco1lQQhN@llcwKZZs`vJCyTMnPCmb})kI-zXn}|I&H8WZw+} zpIG50pSQO%BNcB>)u5FD)hNoTsB-zu6J*UG?zx}icHa%VeO3Rtwfw*e=q9TIR~=#W zLkeb~O%Me`!5Uya)z5+grSf;k_mGGvlLz?hI7pT_u7`+`Q>r&~!tziTN)mvg znmHVIxv*gFFtd_l=3*<*E-QMa(Mj$&yLtJQlQm;{CV}Ihb9marxVwzv;>IQ#8Vn-N z&fRYp{=XIg2P83z6;Jzaqx!@C7diX+_EryO@W`@3>t4_7Y(qua-aIPhzW4EaMsgB4 zD}{%lN~f1+%qx&ygvcc496Tv8&h}|dp<(SydJ`ievN}~KXwPPK2S={6BLek!^UYopI9__4ta-TUf&iLcT#yT7_Ow z##qj8hC=xjp6Hh!l5j%Hcpv}>nvXfh8IhaXp9iZbDPvxKj6t2Q#ry(Iu(h>3dR!uQ ziYWHNC#rYZisqvut%n0?q)-`9pn#qc0c0My9FW^tz)9&FT*IHi3i4v4glTa4QzT69 zZ~@C2n(V#Z0PFd|@nOgmA~!#>Gh0wNpDEDR_Xu0;yr4zWwCzrfIXG{Ox z8kF_9q(n|vMMZOOlk$7LSOk?oSW9;Tg_t#-`+XMdhgTQbJ8Q!-z=^VIAtCx=KW@Mh zkVOVT14NOTvY|?KHAHNZPX5b}wTU0Ppdz*^o(>6s-k4|?9sBF*#ZE#R8^^)m*s_M+ z_$T7R968OyRyjneiaT&C8NmqkQ$M z>1g9UG8lVJ6Wx6Q+O0h%Us7aV8DW)UO! z*f%w(n$yHnJDj2Zx|_CZ1#n`cAlL zyP*d_f^{7nBH+OIURTG5QtX|TK)OvqB_qg$ZUB#cX<-=P4aW@}c8jZPi<6)VMU7FC z`(+11w6kKv_zS}K3rmBH&Wo$7m4_uSN*tofbC}^Re$)4fPZ6oGa}n|WKof~~+y2?Z zQdEBWHj5`>eo>ftYJXm(OHcqt^+&Zmc^|p_3_d0=Z|9k)8A^em>Z7h9<^;6H%K(-+ zKQ4N4ugd(l{IJ5UO%|&;^Q+}dDS981Tfq(5jS$>e1dQ&B{+@xIPC2PmWV*%JqE)bk7P7en$E&J27y3V&uBP3Rv;Jf}B4cz1p|kZv+8<`YFR zH+KnA7ePyTd2tz5qQke`{W?_&`6i~py0KXD5?2~!iK#5CyxjhuYHE-+xFB7;{QvC*P>mA~>+dVzNvg7^9^J#16Jea{K-)wd8s)BQ1>{xFq-b zbw(EC7$WoEmZH?)4Et8DA8D|E@D`frepuk~!Y4A$zp4q~VY9@1n*S8RJRt?M zi2cq;`$9i7IW75UHNBF+J9<9MT(LV=@84fczWwz}_Ps%qS?t5E&Q4hBN!NgVb1-Tr zmp0B|dO9B6vzIWAvo<#7fsnoI@Yq;8xE1t5l+@MlgI{cJpKN|-a%do((EP;?C!b23|Z3020QwUdYXZUAXNR3k>P3QR*$thh%ZFVgE3VXOADm@(gT1(hb^+} zNG=&#KR&dyox6wc@G`QRoTv;0p#@}H56Q4$G=Rg25YSHynA2&Idcdb7SNW_rhz&OF8tw< zk#F!I(L?Ln0Y8YyGfyLgjEhD7AplOuk6!uQZEncP0-KarFG`w0x4D-; z`$DtFuXYyo7!G1%;9)~y<6fH8>~kXy?OWi)&JO40{xicP3)){1u{_3eqG@-mz8xUC z{`{%4^XD7lX*#xgg{-c3!7MLXCtMrbI2-FXZYvmao_2kpbc#s({d25`dS zO}8X1?e!<}J<(|BjcM0rgm55X8?rn7hjwOh#tPLbr|v84|0S{QM8dl9F~X%UdE*Avqo!Dn>TlDkN0aYMx$xwj=zo zNz^@oeg{}Ey{T<&KKUvyK}-S}Y1jym9-%qvGs)4jgic;{MpjW@wlBCnfbik_A3uK7 zak1Y6v)CtCB=y2s?P6dszwC2K599m0YoYIvO=%uT)UHQoXJ0!Vu8m;RsUTm3QrLLq zfBNLUy1E+un2qfV3|t5SjyZJjrKLq5$jMS~!RiwV;sw21QgvIKo701I@TCHhFJHRF zc%`!z0$~cQJsmKM13E%V0^#yNDxDJ4rYODu%l7p2`~YQu7JxP2bn#yj1S7JdBP7>= ze@&gV&W^6V&Cg`UnU|JYg0UUKj2l~~UPv%}C#Sfm?Ro?yG}zudfgk-Bz|B5+Ij#Z~ zRr#$|ysW)d?{H&3R~m3HfkBG?HzgFO5b2Glr zIj=O#4@!3DI(RuaVyi0gZE#5u6U!z^MPG14w6#I3HDp=ez|D|~s(bqR+^ffz*g9HC0v`WluZRf;iKF1f9qh80vQ&3~aqEF>` zL?;~^BZ+YZlWdVK7=@+4GlV>>VOL_0*4Q`Zvr1)q_pT0?n|)*a*u+E!c$94cTl;2e zFk_g9XH&KcrEP95^9~jk(oVX2){fV|_KW8jrfpcSs}#DcE84;mVMoC|J!P03jkkq~ zYw>emnSlutsPi)4zYEp}pbb<;g@sk|#^thx)ReN5E#4tkaZFkDo6;d9rJw`&OBy`E zdLxwbfi)YO>n=$gOg$FqxvqdVXsWMwYpiD>4zILZdIEHy+D$uj-_9rF{V9HoR#t?k z7wx`WRrd``ieuv+amRV@{sfZ20!@zBvS z1&4Sk;mC~w4t7q&{zGTiuhiuY9#iM@P>7l^v#{8=X}#h<={@%FmlWEGet@#u9E^pD zX>zg?nWo>o4C*=6AEW^^Sc3M;Sgml|C86O0(yS3)?zs5)oCZ%J`{pJ?pnUT1d>!1r zesA^EPDOJ{rV&8WsQ_PJE9xkWta*Hjb#2nNWUO=lXM?g$+0S1fnp zss#v&+(&70ujW&mnNk>RoohDlkB?X7_N=2(S2Nl{2pxEOhKze(3vDL?{{m0Km*er1 z3Dc}U^ZfkMPRh7wz5p{Ng^2e$$Mv|Fj~^poG+22Jthd8M7S~L9DJc{<7z5#>&8ezN zKG7#CLJwU+9Z#>fsZMp4q1d_8Nn7kJ%^2IECUW+Ugxi*P=r9Ro5!W}G{ zbvt6c(RmSlLF)V255>?l_!}8n#Z=X83vlWJ{BJ6PLO!q_%+>*nFEEJN+OT+d?z+1Z z22x2p0PaO@7&g7AN2fq>i9`JFOl>Q6IaMOn!FPZ*fcg3yeA^(tL1H)VB_{l6dY+k2 zD*=8whrDcG+5otMei+S(vT9Yi*pztIIgYsi!-iHOH<<3_(W{KIM4k$ zPcj!?KDX6}GO`&V$KfOiXpJ5&o0cNZD*4peOVr{xo>zR|op+x&Iq?B-<>%4m`5IkV z43)5~vH4p$lf^ybg#iH+G&E3;0QWu&y()3d|1$~53$P$y?;C*HmJysrKd@rqJF-3H zR4XmDJI;&dydI>QiHZu+)Ftn?vf}!0TZ)t}*XvSHt^kiJcXQ1U3-tfe_t3#HE3K!O zJ~#hgAXaez8VeaYgdwM@8j=2b*POyz_6l7n)DnybkeS9Uck} z4n&GCEl7UQq|M(~?7l5hmw4Ta?;^JcRso-{Zw;@3JQY3uD;Q>4i#-p|eo7A>- z8qB|7)u#qAj706h0S-=ym|4Q0=(q6KVS}i!KMVx7%X4xb!ux1U7xh5SLJ^z$;s}{@ zAQ+|o8*V&^dW2c=-szq(=-L!hMBVI7KV9~55WeXj{In_PP1)TS(7Q5lD#%a#R9~MI zR#f!mF?Y~tx_+z-I7XbhhKx@H!esuF8F0XL!{D(%YIC!=jDw0EJ+%Rm5)?lSqHg;i zP<#Wc`C2*IBh~L>=b9C!k;8lZ?@uuGVk6AjU^qDkG6ZNxIKlS`f>@)5S^;+sy`UqX zuXV)3N{mj9Yr9L)#R_18tMZ{1nfy%we->(8IywtEvfsgpmn(PadCW%S3E_sLo9nlW zKGU8SW*Pci30ov_m>!r8_`h^mZUBzbDfn^g!EHu+bm=BOKN{C3;-q*Du1fqaJOBSr zv*+gG@>60Ac=Z@!Z?$cqG&uVxL?DBhHt}pJ3vN$Ls#)~LJgn-ftH(!4?lJqw z!((n0DqA&}Df-Y9-p$wZ0hqFbpjtb+=%TJl>WY-nmqHj`BrBIR{b11?D{}Dt1s3`#Om{MnJX|99Q2Euh4wq z=u%Enpx*`X`l-)e2MNkecPN--tcGQ3z%+Bib$WKT4udbcaAI~f&22`!9ZiTqLXK!a zM?8MAJ1;RXG&I!r^XG~6L8Zqd78YedL=qvj`>_9m;3pMeZa{Ta*ZIWEphZc@=yluo z@2Ftg{z2_?=?A(ykby^oVE+{WKtfAF)u*8md;eq&pKRY{$8lbMax$s=-L%=Zfh=^w z@N7eG&xZML{^2w>GfV8Dj&^ccX^vk6IW=`$HO4JfA`>(;!3TnELJf^$rZ#ivnWBEo zyoBcxH%d#DZ_wn}U`3^{*c~fdHccGG%1XOm^`7iKSm8vRHV8p!v#_>?g@zWO#jU44 z_WQZ~WBGr(tp@>daZ|nzWqkkkRkE>1&I0ts@znO)_+XUZ(pnQZ*0D5=>E!GQpZxdg z`N@k|%Q+0nE&!BUdz_*=4$Srty!e>CH&wOHAt#rws3?8dxVwm!S-AUH?+JDQ00-pr zKgHe8X-K2hw6=yk_YW(~@0d={ogbe=3ZqaEpt3j4?*J>-_T?T3!nZpKEUNF=fd<9na&FF7AY>LoU9OSV49j@ zYq2``M$Me1e0g`M8IEv>QVEHOAVi7**j`G7f3(4~OwGnXc}u^@CLKFz_pi)y=QNJ9xF(*a4gn;^}#>(VfpA1Hj@!LbrqLg+Taz zA!>LF-Ov8qpoRWFPykuf+L+1>u$MrFnQfSw0J1K2`SbnO|NNiRSnD8eIt5gWEg}UX z1%hxXf&hBqFt13T^3{g=JVPQn7glER3Ll_ve}E9MTa?w{U6l*|@Ii8B3hT=2LU&B| z8WsD_9Xt535p8fcT!mpb@Y~qL5#B)+Dt&BV&3;eN(d?NEJa0k6loY}V-8Itq4m*@# za9K^xHHV~#lHu>RgbzH@k{p;!3NhySvm$tR?!g1d5S}@p5*bd(Utus_o^V81OYE$tX;be7__rKx%U>-%-pLh7sMcf+Ve)>=GI9}4}_Dy1!4 zPT^WU)XZ1E!iAava_atr%*$-O4nhdvr8?Z0277BhSO(=AJkRolpZjjm31#1(+H%v7Jf>gT+InfP zF*Ox~epXtma1H`>Lb2l$Cga^>t1yhKe`t}>8LwASWw^=6v{+aOttKaf5Z5 zJx*v9+1`0^^Nc`}Lkc}p{Mh2~Ls|u5;vx=aLppZ$)SxtSPG`0%(;4$ zviG^kr5uHP7}yqyPL`8A6iO}QV~hAmq*tqE@YchF_K#IJc9&g7kF)-Rr-mW~`S+Qa z?J20|_tob8(75R6(TPAeZyIrOc)0vqh@6`{qGVGWDy(zNEFFnM1nr??%niGF(iR`=5*NgC9sR{12#zi5J+5W1vyeCdU}ms)VnglA+DBYzV|~H zwswc$zQtV-{PbE2BN3lYVHWfUrMJF#pZa~gcX5nAa(#V4Obgl4p*}Yk^PV8nG=*PH zK(dF7+8UUDA6q#z41mN64AMxYuQd!unAzBnSRn)gtoq2=hHdETAHw@+-UsjK1%;&_ z6FWfIf*+V=1fwi_7*^xs+W7ce8ge}aPQh1-K=ctm{_qV*@XCygr5)@3{$}h>l_aoz zl%Xd8`f}zmug&f;(Uj>>kSN2gx1TSd+@l}(wtatmreM^ zNl$Err(0t(yyAf%J1#0IY4;doM4$NC{(WedBbosL1D{18pnQP=^n}|UtE}w39Q~#g z1*>3(ixRj|ex}{weEhoMaAF+~F)I)o(tX&Q=-4VBNh_aGRsZDIYS!4n;+m@aJFA(~ zWXlT9PMY{05cS?D{x?7h+iZt%oB5XJvdT(Ta8{JPF*Zhn<>>@W-mN}Ed4u^ca`6C$ z;k}40l;w-_b7E(Y1@Hw@9L9i;c)00B2e;`jkUUPZ9&j~aH@Ifl*!-53Wg4R;eRK-k}wd+|X~5^dsc%QO30YM-rh z$@+SYv!nB)qaGTB;uRL}r z$*BA#gEDIPpZ=GT!GgN5B!i(~&n-v6^qhW)i#03+1nz{&8A9>hW~%sPd@um{(KVUW zGGEJ~)Zd>HTJmUvlF}BUgg8B6%PlCPUWsHnz7{Vefp`)g=N>ZKB@9G1P_dDj*C3Hp7T zKU?@#7CqLHc6-(BgQca6%^zv+_3i18op=%|!l9A4`1FvdJPBE3M%Yjk$tfr+za&?KfCyvq!k{3IcBG>R&>wAO(=5xr-6Elt1P-u9S&~KpLa&m zM~swIZx;T1^RKS1{4rF{hu6r?Z=GL1r>WX_bPXRS^(H-|77PJP z$ysOTle-A->oe0o@h`;J_2(R}gkv|CP3-A~1!H6iw@+_wBPCYwd?EF-x6rG!Uj_#T z-UiO`=Jg3tZ$ySj&r?={5igy(7|NbMe`K4yJl8nbBR`UzooU=V3c%CV#PLDxBy|UT z;j;p@vWAB9M6n&1K33ZP`R*LA3_A~-=A)$FFbsgz+hq#``dT3nZ{Pk^36f z@KEDgn3PJONeuO?M@<9bo1Dosy9ucB_r7 za|%6Gi7`#ggMUkeSj8wJf{W+tPvPU@va2A6|I-4f7cK*{@jVFq`g5(&yE_6Ex-QRN zlNYixKcYiBmZ1NQc)bd-dM`nb2!O0NHa2)*cG-dLV)^Te6^ZXv=7bZXE@cHyxQs6t zmx@|4_x&;N=2JGoy@@qES(?Bj3h@Evatxa?!OV*k51yl2cgGyJPOxoi-BOurZB;4z z($8s4`E)uxatqEcKqK!#0_rOW?FMwOD+dS1%Hd6g%dDzu#P68uH*%;@P>C$Wg3)O%(ug~VJMY%GOf^ONgqL7e8Z zxxS0P%^muEZ~fc*Gdx;%=e`d8GNpd;0@NE6;5xVmW`Q4RRV+U`<38B`=0&O@?w?U| z`4ik(9YlGSEKNX#Y#%BoIg1J$)C@HLtrs4OS5^+W3>@q;FFfEzch}cX5j76F=eCis z=6J*!Z9Y~cTx~};T!{C0XZ8{OBf=S2e{;dCXCPZDz}2_gIiR?P>|&2n&PoR*^eRXjKk(=d%cLIGR7e{spE!Kf1b*nKYzg?z|EI=J#LUoNpSP+A3ae zO^v*hQ}&quue#c5H2JP?6D|}QafY6@X*IfaR5RcDBLDe|XaZ6`$gplqiI1mix!mu2b#?u|bjt&J(|>z= zBM&4?mCL*s95Rz47$F6VZioW@33?@9-+qN#JbQQlZ%k@hjn`v6l!=%V?=mE$RmF8R&s%X=uJ;76(*+f?8 z2ci;gz-(Nb6kO}=r;ks|&v$OMfn;?7ct<`_aiRI5q5z^R=K5H#uhny%K+LoHtLlyN z+H@@k_?7Oc67E3=csS^$a?8qgT20YYnB!E{Oz593YnRfFavNhj?biO1-8MV(aXDWm z=$??BeQs}d+2dQA2P+fJrViF6uNw(ioLp?~)$t?KxIO|s2y$-Mu9k1tkr<#q)|Z8R zRhZ#0larFR!FoZb!O?tMD22!LZjIG6={>7N;oA&Kfzn36%GK1N8?vGY*E>nvHnR$4;!o71}3#b5vN=iS7t!S`m1O;^{ zISnPpx<`Mfoe!w17yDaVK3mOL-RvYFBOPa9u)uouVtZG@TWQmO_37YC72if8qVMUO zlXj#6QE@!FOAUR=s!bjO+NtSx!uc#olO7k$QwYT=R1@baU`J@{=OhJn)_J89kXyxA z1xlkJ0G5xMcJSPFKmSdInCV^5#|A+^L+^+D{_j>xUvll`ioaxUx>Nv-pwOS+IWq9Y zaN9jepCiu6aV$0MH#*3ECWk>u zjTEFJ+DvH0A#VHR2S>|UkaCtNS#w`+(bZxAp4sm1w7l%wzluuFo-M_sKO=Haj~X-4Mq*vS47_PgeS*AOuTI`91JzZKA1vGVG-Rl9s+YS<$>aIVmppAsbFb zb)dL!Z=E35#vm0xz-?FN=>$^-9hyBR;ebU4S@OHMi~&wNqx%L?fIpWhP~*Cj7&h6N z#7_TB!Yhp+uDE!-6NHRs*p#9Qz2OgKhDRgz!LG5kzCO{rO|cLy!R%IND0Pr;b7V22 ztVB4ZoY@cRUA|mqVAc48!(<82{@LZq5Bf~ z;JcH|N>r*Gl~=vF{?vlgO8WDyf+r4GSXf0?)$Rua0_H1j9-Jmv+x36@SVlf8Q<}ed z_vH4k#l=rvyBWeG)u`P%|1w;db38Bj8D@1|?}9n#4y^58?fNXvSa5lrJHki2Q*Tgj z|F;nEWVjm4glB<)fv`-268Os?td^V*igzt|$sswq_b$l&VBIy?^LJkePKTF~^KinX zABa+~!X6ChODV4&Q&WPwVtTR?BKe*nyy1)3`iv9iUq}my(ch2+kAp3+k}aY#1xLt`{WZ!2j$W;BvrE*R&qa%@c}VqZMk6PC-F| z+!CDZ@8?nz5{*y^Im{N;+(v^ z0C4?b;6tg_4t;kWEUv;YEaIrjn~%xaWMe-Q3}y1+d=PfZ-6*LQ__tkK1X&qEsi_L< zvlL1E{EnHqx!sOME3WElYKF0~eqx|1s-1cDZEz&^Yj{+UwL|_|&wbh!i1pFbh@yL0 z6O4I$vmYKq8*3W}#;WPs7hs3?cTyt|SpOsQ{QPgSlV4V=#OHYrJQ56Ce|_hgdxCFJ zU9LAYMcofWVE53Z1GBJX!rs0-!V+GVlUEn?p|^_mlM*zv@rlrBM_hK}4!!n_ z;+R%f7AxcLCzBBc?)+ALe)L56?EKsaaIDPnJ;P6*X<5(FtL1Cfeh7>m|NSlJ4B_2R zdY-4kE25_p4hYWN&a*V|HQS_&-@(f6)wv>DMI2(@{ZV^|j?vBGKo;I$9IfYSe+9#AlI^VrbFpzWZB_HBewK+vABes+Rx>iSSLWb*v(U zI?^X6hoc=GjW7wN_OzU1&;0k+v036GVlp_3n&Iu?q3(%LjAHST?6W!n8^)#f@|N7m z2kgA$8_(vd!*^8mYGUNSeR=5^Nj~cWWL8xTjUSifC7c_^zj@uGG_+;dV;8_RTIY4a zZwjjnqfQ*!-&vlc3))p~>^DX=A4jbGKx{EkDqTN3)Ei!XeT2W+>2naODTX-y4 z+Wze&3dzL+XA{h3TK-56_T-qX&o&MWu0CdAk@`RbOGQkFz9ja5(9oxSFTZVVy}KBj z4oKr;&~I=IJ%Xy#!NtYq)Zb+;CtuRYsNH01xhG*5*aXMk*4F9l2D;$90o6;GUaPkl zm^Y@Q9>L-^|Ftw~tXXwK*-@T2I7}}lepll%3G;Sdo-I$rq$q4|_uO~Sbam%{xDL{z zFW`m(H$o|eZ4D~y&R142V4iXXYRy0pjiz}I{CEf)Bt{2B3cppFx2)_B;P-Wp!`AzY zPTmNqB7K}Zd1U7+!j2OY?o^jn?<+?*lR26}M*w<)vu}l2-n!ifm!y$T4uTa6!q9BF zfYzXVaSheXbH@1B8YL6Y?dv_26coD8oV^2E5K&JHM&<46MQPy64%~*Ml(QN{d{04k zMBEhwhZh~2UhtL2s?E$G0DH*WoHffr#DHTzr@DkZxywE zU6*)gdSA+O(7Oe~p};$x;(q&wT<(Wv&M;w4ii@Mw)zRUEh-voneDg~A*X~S>VbCS z%(UbVD=Nbxmc*Ln%}vaE{`73P7e+`djH-~*RKxqU#fS|6B7Wd zcIiEk(1V{BNy>(@ZGqqH-pmY_px+vtELrt1*Dh|MFK`(bJrKAnuzwJ^zqb@P0zqfp{q(mlfb8xpU`umM zEkuiS(!3WD!D+Ddo8{qb+ht*?^Z0}MpU;J|AUXBWtChh(S|-es$cQ#b_e{(b`?G&M zts(XnCx!QRYnH?i#G8k}%-;~i8}Ap|{9a|%3BDtuxbrJl&gn-0SHd%TL(?H6(jlHg z3W0?dZ!uu>1weEdccLP4seF38i&tZe85=XH@O!c2Fm1(T1>ySane8L(?+~mt0TR*W zo!LD?U!d3{_d$AhO9Pdj>`zGrbnA3?1&8?hp)k1m`-fj_I{FzpGv6R*Vsc{LP^gq9`_pwz zrL7yQXJk7md4;NjMPoEs$dmO7I9)RxIftvfnj+C8UzCREaJc+9` zT>xWFA}6a7?U^N>@B>y-aUcPdHFL0Ed%$N-kdfRI&+=>XyH_F5-y8sSR|c@Qfpl7X zN?r&JfgMG~(f3nGP%$C4mY7e=u+^T?1c}c^JcGo0;k8UDdpehM}TX z?BkKD5(AF0h7g@J_ z!G6+g3uN{ekWo+u8x8&xw+3Kfov9T&;u$Ob1Po+Rb~cS6y!}I(iKol)FM<>cM)ly| zvLJSVtzZXIMlDcU@Y|Xt_x&|S%z#cU4+aDCEuLrl=Wt?cgPE%Q76!(O=#c4kd0yWC zdPh9zVhwL zP(Jqy3B@LC8N`HEe+Uc1hI8JWxId$B>5oj)uj2d1np)U@gc z^~Kl=ozp=PcK(pC+>oW7p4`n`x%WW;!DNqIX4|7%x4Q|YuKntOG|GycB8?&6b_7WBLLvZ z9-qvIAGcn0ZbToM6I1Z3@D=irl1hGc;|aw`>_E1Hge_YZcj!J>x7<>B&uNFGA_C^V|G?rk6P4rWnPe`x2@wQAG!t%H#f`wlVN!p5VL(cIi0 znYV8%z1F<-^yZqm_CNpYf@jRLUoqq6eS&keZoPRcC;Kw})t%cY=qR}m96tDwg?MV} zAEMY9nL5e$)LHI{T1n@^H)WieyVT+l5LeXi^Uqi4i$3n;gP}N>+H(C4^V5Fj3OO#& zrXjMe-F=zW)RbS~Rb$v4<*29-Xq2$oI^{@!{KKLW9O))29vjM$t=CBfi#1%AXBY-1))?K$X__VTi|O9gK&-+ zeNb$aBSul&t$~uL2%qCSgsaTsWIcs~(OoE$*g-=Z40Ha~rxw-j$Pxsj515x4zid4%|)o4D-b9($TH3%9Za*W=`XE{qG zn5n)Vf+&Kkk5kfluH5v^coPgs1uOmx6{vAzinu4ZgMVlJ)kJw1cuB9ew`Sf^XX=*1 z3I5#|1r4$t=m47m?hSt^!_D6frFEnid{X<@NeV)~9JS)QNrfKR1)M>HgwyPJ8(Yd( ze;|dL9Yo0Yh>1V-02&bdcPTf))M^C~`LwY+E_|-5H+F=`{>X#*+QHuNZ25L33t{f) z1kuXt2F|bLt?%HB??$AwT=5sW+=zqw6moqylAx~zmk*Xjb=qvbgS;i>51!5#LW*#G zXJ_0QqvMv%@m5dium5f#1+>sD41>9SvP2%CNdkag z$uus-&aK&JH!$>z9Y{!MFh(sp*LDz-Qtaru7K^!gVF`2GrllsfQY{!01+VF zsro*bQX4T(6r13wK|{>Btx|<;k>y=oZj{J=F)~u%dt)TsQ-mC{gh9m@K}4dSI5wWZ z+8u%at;r!cqz71ga@QFyA-3jkm$nrQ(^68#k4=x0XJr9Bf z*CH^(!R;plV_xv?ap1hHj}!1b(zNBkm`ncX3h5FOjQ;>{XAihi*fQ074;nRl$*#)K65XocE)v>^1w%V&I*G4}D(>8CzUq zC*2>J=#^?MK{u}O^eH~HyF#6$a2=CC0usbJ@vest_U3v>UtPh_x(c&;sHoHR&#m79 zjV|gX9S0g0krBQm2KlFwgj}#~SlTWv{ig3-@5a-9gUQ(mhd&A)Ui9y4GJw>p7HhP$ z9e4%=w};@FS{l zjR)0!E36pYZ7Bs_-23p&pC$xC!Lji0v|)jg2bB40>lx`3NTo8HE;o?40`C7M(h?>p zEX)l;CRY!S5|B31gM_;Q&3B0)^vCZXKl1h7y!itOLiK2p5s>K$BD(+73e<>7CN}J# z8Ftxht%q=yjlTZB_VpxPcG~DtuFzyJ|7dj$yLr?mTWM_VfeGt^5NO%oo2sY`Uy=(f zNnk?YUg}g+eMhnxFFB={yGDFw<{;>bxT2PZ^W^aaKNZAM{%83!iMk>+l~8G>UIv1~ zuN5@6k0lA8E|wL_f4JIu$xT5n{!yVj|7qKh#MrBaFKhssWBO9crzs@#ex*0@)sn9} zaQtAEaXUFa9u1%#%D`8!F*h$>pDd;L3E6{_i%o0Cv}_RyPC7b$RHM0(_!y9l2onFk}=v%)3q`?Y7@=^mpRy^BFOk8u@p**D!s4yR6{MOMS z_mS6Jt>g>XbPK0ytkMM``&Mf@4|}5+DcOLoE2Xwp02<2=N*<-*;i2zgn1qtbFX;Xc z;d=6#x%{;Zuy0p#Ah`Z9t^ZS@D0dlHfRm3Z&C^Tf(}DpFLY9UnCgl2O>i@k^@SV$( zhg9Tbl~=F8^*%FPZK>@HoH_VIf?-#Y2J0cXoZjt=23K2#>M$qDng!!XjX&csXM+H0 z0}G`Vz-5GHvL9L9L1hr%naN4=OQK1pI~!-IEK%!;I6uLxv1%WZxM4FfH3bwaqfVuf zTwmP&u!=5NkVdcFHrYSF^7)5yq}1|H`k=Me{CK8wD+wq>#e%6S4U)8zY!T>D$Zv`!0d;)!aZZH&uses+lQq1`#HzOkk zY(P7Msl9d55u>yam4rl_1DoagxVDw=Dmwy4m#L#;dtHwRFGM`3=9Ka_pva~6D5V=pBB{2NF&`X^6axtQfG{c~># zAnnDbg0!e`CSze^BZ)Cc5sEsM5Fy+{sbt6pjP^7Uk(QSf__$FD$#_%~yZ6 z!a$OD`c+tMH}{&dLp9d* zUn7EKG+|X`7RPmJ#Xn%-05T}mH^9C?-o%2es;r_SHhdqP)-!d&9Pxp7 z%o&eYvjncTjyBizXS-+0P_#;OmmsamIr_{Z0(9bLi#9V0rJqYWk` zp!E$vyhq?*R8TGBkKB^Hi{LZf5`nUpp*;xKl0Q5J3`-#YVqhf zg`|ZpfCt-Tsts5o2R};07D)>$?LR zCnUpDmWhc88o$&g8Z2;s29`$R1`Ev7|Mz!MI>`805~9&L=jO{xPYXkufBzl=)8Gfd zQJojsPsp4xBBN!j4#$ zlVAM6$4wKfAPCu~Iu;&m90s2t_)Q_JKxKIE_mm2CzS`5(Lc4G06++>J`o5Mj%Ms`fV0vE6$&vwg>Tf^jGUthY{c$A1AzG<0!n)e)Jg+ zwhfS=6Do&C{a;)XtJTQJ0;JJ~Y*?gh{Zf}-JUU|W%bhJGxczS>y=bP9YO;D>?sYlcX2>k3(3~ix z@LH9R_8pSwS}+}&8p{-mWlLPN3`Fhj@f$fis9v#mhXQhO8C|=S{KqdcEZo3CS^uzL zJp6==0l*u>`c^RVNkFybPk%0q=ZrF1N;s4m8Q-+ZeoTSMT}cT?uhyAef4&YsPgyDD zTYIo!#2!M^0}fe$zy!nk_@OXs*wD*n^2epIJ)J2cwV^hC%wZ}e6YPw&f>9+5zX>ui zf#MPtp7?0`x=FKyxqc?)eKfh8*R;nm0^z(n$Bsm2fR+Sl!vWv&aItzJhLRHu(MgLm z4MJ%d6oT+(-YAt4lkLU?{!V%tI+b+E@+f(wkO=Z{KvR(M(gVwfQ^* z>@ixTBENBja-w1ZERr;UQ}6@=9{G4VIeh^kMBZP1?XvVY`Dv1#3<62(-I)cH=aP`fs;#WV2OO?}{M7T0H1@+&sZ|V3r?mJ7Eb84cYX?K2DKHrqTV{Hmzwqza z3Y&0ssF3ZV&2JfJjx;j=#}RUy$G2H?*APZh$h`?1F7FUW#z2ihZcVjICXjnQ5(9W$z$=e?>fj)V+lN3JgkvhCaz{!7sUrk0cf{tQNVNRJq|LyzoEXOyqRpR_` zI~>YbnNqDhAUVC?TkNQ)s(PRLM!AyGiqnVM>{2sEq-&B!3sp$&`kD+6y7=WW!Rokk@r#XVaDKoEZs3tjO!cJcd2SnE}8Pirj_p^CuZcfZ-4up43HA z2?@qj!B_%Rety|g_hb6RAYuS=XUz(>DJkYQt2!vNv$1hHZ|VGjfzm4-os@3U`|tp+ zLT(ETcq`5}YaE!itD_~XNeMAA$M#;eD2XlFyWQ{T1$Z4VPz)}=#51{lq8iddgUbrI z{Be8dj`#+TT8g-r@CoQvNGT|g`U+f%Q!4CFvj9PFgn)(Z zT{q`794N*DkYZo}+A#(OYQ!5=ul<`zJ>_`fucmnm-T0?Y>$HbwJ0g#FC)vGcHp>IH zf8V-&^kW}k2#mOoVjf8l=a39_oe5)nj|E49M)3!S=XZ~MPPU)jPPLlu-eTj7S>EVN zQq`RPnS7iWi@zN}?IZi`c$;&uyG`@ivqM3j2aNXhX3&RElanwdq@_E+j1tjhckk<0 zJ4RkYFA_+V(j;m?$3RtN2qGs{IA>y9bbrU#u=3Zh(II%}ZQ=6~cLn8wAJY^zG5;AZ z$}U`;d~@??S1a&;3p<*l+WCszK`IcV@XXf<(xane{rqcRwz;>&e7Yw;B`=4c^SX(2 zZJGq5JveW*Gjcp=X(cGV*4jKpcOabLw!Y7mlVVcw1QH=cNW576Qy(ok3FD5QbfgaEog*pV;_yatue)UPQl z@pJ))S)Wssncl?h@(2mHQBS9n&2oymToFM*TX^tDxs1^J2L@iI_nfbft+zPk-eUOY zv5P-qb4Sc0Zs-F|49dDh4gqY?O?@u+Fkza!J~K(WFcD?;Q8ZQK{^n%02-np-Y`tNB zoDHp;i(6)^BM2e5z<$An@CCK3Cs1lLffb4mNA@Y0HP*r26b`D9v^OwZflbDt zX|;G=cBJB-by3V=|BjEXkL$CwN^&$<8DMyB02ZY)RA1(>2|y*L!BCwM%fC1(YLLBJ zcbnkeJ(}CVxQrIW`I2kWNfj+)KZT+4qVX13oEwP*` zAXmp>#Z3<7uSBgt;{(`UKEJ$f?BrmJkTA7;w6QbK0c^>KaBhO9^Dlg;U4UW%u?-o> zU_iqa9VD>Yt?;>`x{x4SD}G#1Jk!4-N9O6IkU7Cq@uj8BSK4rXw(7-@)MCQH^_IP7 zM<~it$U0NkTaV-P?kWMn((gOVQhR5)ciH zdNqcqJ<@@Izjpw!)3$><2D4$j!bX`5?s#aZ!p#{Uu;M95L&#Y9>1Bi=uOnv^zu8PMWQ<>b(Kqo2{t^*2ZQrvg?mxcL)i6J#M^| zvc##7L@ZofA~<;^_k}5&)LmAHXmG2wa%aO8<(Ug!^%R%{}&)=gaYc z-^&{T_DzOCo$bS^lJZgEQYKtHXn4UQjvNh-m>F7IN9Bm(4Gu*IH;TZM01*;Mi!(9+ z4{SE@GdUTk5k5WQdQZx*e0f=v1?*w9W*kz)nZD$+?`~^wl{ym;F*z>-@HQr+m`9sS-!*3n z+DXT!rm}#7^WW%T#@_d8%a4B5eD6OgJq!$qzt3>r;>k;p7uoZ9%{aDU-%`;H1DWn{ zs~5#(Do+9pDOYZkYY6RjPT>o4i40*miDZSf#@XiZM&Ok0_Y#Tn@U$0AlsvrHc(gV7 z({u^K*kwBf)2T$VE#IK5ZOSmlBkz#Yrgx%wp!a}`wCn~C5>jzWn7HN2XNluPQ>(|Z zKlD?`srm2f-^1AIQ`d8S15c?gA`;Ba7ZM%IBYAuBZyAE%HypvdYm28{`klwYVTO%) zc*^wMzU%&nvR39%F$TsUf~JXywc7V&yRTJz=^R$W+{Zp~;ZQ29+HUDc7Jmr*%EPd& zrbbS##s9>Kk2Nx4N?GdOYl@);Yg}h%rxQ`c-rinFRMZM^bi!dM1J(p`z)buOqrH0m zmciX|_i=B6A~RWlw?}A=+S8Mel>{QMa~1osj$5QW81VSrgJU-*$6v9)2;Tee5M}WH zXnM=2D%bD(8|iMOLqI|Sr4HRG4T2&fAsy1vND0zNBaL)7NJ&YGAR#3swMkK0@>%=$ zef}@bIB(7v2R8e@?sd&I=Vzu##zNZ+dDZjj1M@(o*v-$gM*W8}!Pc6-f4Zau#~+g` zSPP_u*4p=NUmCf+-kNpVz^9+y{xNECaQgI}8rv$IC;MaXu0g<;#8JLxXWA3jDJG5{_d_~a(h6VzTw2%HXI2XO?79(pmPoxps}_vBAR)LH)?lo!303cZ14G`sgtW zH7Z)?{UnuqI`M&Cy(i53eFP&vf3~i3)p3wMiythGCCyO*tWIL{=@ILo;eA&vush(Q zsP~Brc9uUo`b?v~v#MWD^&dW!FfmwUk<(-bh$dAX*Aakgx&5H+kL=E&1|HtljQ>US zz}{pDF)HdGpN=;x&_?sO$=Khb4+CQp633y)6+LeyhS{3Flsnf4pbIPceXXfkc36D7 z4+gyIrlPm%`-{5V`~vopyt#RD+}OWntxyv?Q~!Ik~!;jb=$8E5JbT z$3zJW3+s%axX%$sLZ!_1m?`A~^fgi#Si2ztAsn+x#iqFtmq~DVUYAdRZ~ZNnTCRO1 zH1zw(DdEB2z`+QL0XMfV4}4Bv{++6Lubzc}ML?T&a^-h!lX=-Bsq;A8Q!pqn@D{S% z3_gF@qv66W0ZBwA&>RWIVm%ap)AsuC4hsuSKlU-7)uE;C%p5afm>TTBNSaM)`QV^DkKKv2 ziwhs}c!nvZ1wJ~ayCI8aL*#QlgM<0`Gd00$ODK9ctE*c^uu<*Y9NPp!*bFfZZo-T{ zJ~+%54L(-rjCo%zquJ`&WPGx~Us>t>)L>2GQl#1czU=8QAyd>NT--l8vZ&*TZ^3rY zsNJdz@2o?*ttE;U3tk+&LP9Cr`qe0)yiTR2rys(SwTsrV?UtF@YRfSNt!m69Vq~lt z@X}M?CW`7cA!f4Uv4-6)dFK|Jf&$0CYahd#Jt1@;HUBEgcG{ZcBKUksvEe zW%(`0`HdvW*|R!Zvf2;_hncIxQL44op8S)ONu$JU&1p?GmfrVF-|JL(9RC{SF4mw4 zS$>o4JsiqXRkaIuhb0;$WWr^FF_DcAaFPkXxfDhs&_Jc@f$r9OmkX^u`|~2#WxbKP z;IwxL3F(IHFm;6+j>Gf1wJuWhuO7!x7kx$AJFfx(vUN+ngKQH4zh_ zESq8&Ebu<&<=*rVy=oXP@GX|e9zz4_6sv0$D1AKt7}FcY$Cl4_?* zwEBIi#sHt@r9YM8kTBsD6ipEVNkjeOlwX@Xo&D!WWpuS%rVmbjR8(41Z+4#G>J+Kj zjCFE?Bnp?BhW40mLA>$FzZca5A3gu%5)z|%k!jAyW%%iRE3An;*9J&VhVED8Jo9>E zNcW;ClG1KE-f0Y{z|t&k~&nr%bfo^e7!nt_~I6d zM^x0?h>y<7K(vMyM*va^<#S8(#M;S2`Mtri^BhaL#vR8&DW|g_MpWM&XSM&Ellc zBnCuL3V?gOPfiX60E^DeVFEkxiX(J4*Jzrg&$g3iJtUnam=|L zfZ>}RNW*tdsvO;tGt^dnnVILB5Y#NB#YIZ!Ti1ST?mJW8clR2mY05uXYWv&kNlYqV ze}JviN8ps6Cp~4tBPe)l=to8Sn4-)GBlGYW<6@nX{QA0;xZak6(eF21=+y}=N@)xX zgt_1oY4Fh^Mqgf0aFV)|_Q5yjgU(1zJz)GY^W)%jBC_Q^B!|+41ii~*fVn#4u4=MV zGv$MiKXc_?_rugBEsLsh`ddLGny42@h3MMkAkJ_Rw!e;imY&va+l|h8_b$YB_(94& z8cS2s(ggYd~zh=deU5EE+_nAiRc%1RvZkC^>>T0_$6(X03No5~(OzNg4CwE(|DZ985;eKSb@fLk( zPqh(4H~2PIGU&^9Vq_Pt&{PyT*MkS_oF_{+8mE1-j0L?PtNr${r%r65gi^jF}z1$r-V;LM3kDEYVy94=j`gj*?e6^`$JN1?a97UMo7q? zm*%YO{DK%|j}~<&>zDLBcAi)b{3s%-nEfI@=U-Fv9d2OcRUL%4$%0oFTH~I-AYcbP zo`M1n&eKY#$p2o+LI9si%v5%-UAIJ6wm?TlQlBvtd>c>tLIUoErtATCDEomT5)cNG$1O+K$Op!J^6l^!? z;0%}(qu)yZ?-eOf*J;H)oqEu{pWI%kYjSkF;!jdhNtDpc7U&;yh2E5wC2{syz}*Fv zl-MlH|4lZrc|_rr6rt>9f=<$M#xAxK(fY$n$mj{AwRAa~LTbx&;8koh~2VGceBrBPN=1fNhDDTWs$Sdu?I-OEEQ0Rg**fHk0qOaG##Zby#LNA~R-sxxKCMOvdZ5Cv z5z+{RX$-}&sFy7q6EiTxoSk_>_^$^SE zP|M(XW`(UUJ;F+ zNBV@`f}p33TA;~j(oZN(NYD$RLFb8S%AO|`EBFKiV?Vw{-)rpcl^+fc{tLwEn!}kI z11kr3U~AxGM^o z-F-T7eFT*eS|62>?_UK>6o~9#6A@7O0Lt>ApJ*H)7>dt-S`*zxtTAzL;bZFQ5pRrE z9X^?9Pd~Akt~9rH-z080JKB^{N$Gjl^({@|!evDs#x0zy@(Pi3AOj4w%ggS7%V2pz z6V}%6UG^D7cw(sn!IQx9K$r?vg43v|IVHsbuQXydKV(J+)$%pEOt2Xq{t5726c6AX zphBCUe`wZ+U+MkZu$YW2E-7_jk55pcsz|e|(kO%@0^Ammg(*=r3LxcPZ*>o>FbGLS z!!j{7N6)mI{_?ZkhaZR-S}kT+>D3+Crn(it18eGtG&deDaQ1KKm-xZRva2~f?s~X;)5Ts%%4vdi^ineyeYJs9DZ&8D0>OA3Yx8A-47OT;9I|Z<|g26_^FfO z!HbB4TWEjQe!qZsK9K!;`uYm}%3!>^r~5sv@}Ta?8u3>`V-cdZ#Mfs_gef zc(Cg+-<)s#3*Y(aNQQHLpc#zt3J%wh)j}KiphHp+g$Dwxz7K6UBvOzVv_pa=Q?JmeVZ}P_GhX^4t z;ZI=L>|#*~MYT?plqntZrGij)y@ePx+j!6sP+{=HrRs?p6*Woo_aWN!;Knq+P2%?7 zy_D%``LLsuH(eWO`E1lTz`C*EQDXbq6itsIIG9tvYAIm`6Y0$I_VID`FD)^2{p5o2 zj+;whjEKPr_OxVsdwc1%y+>}PRDPGvKW~Lqa34=*Nvhv!YW8}i>FDVxoTyR&J!8d< zgN-%3nM;41;`f{0)(e!naT(38WmB0UBdL^7?FT@ZCp-6v88p~r-Vq8iWk6IDiLZZN z?a9lZArKz+rC587DP_dkpHJ5#i-eTU*8`prQ2;tNF5Z&Of&3b zP)!;V!Noasg!2D+0mzVd2M`sJT?%05Lnhe<7g|$Kzdi^%I+TN73c`rNZxMH{PiV*A z5h`pXuv<$n+B(6&X9_cRdE=f;F4O7td*T+t8~muKfLys;9S)P5A5Sv?D>{Wy8xm5# zpYHmgso`$W{3ipJ2wg9HBCM}NL4Pm*eTvJBh7+!9Vj@BCk=n_==1!AQydu1CVItO| zp_Z}Q)Ji6$!R?0zUO-OaQHk9?)zNtiy}~^I{r3dIh!1_vb)&uxy)3e+Yz3^%7cfMF z842HcKi(V*j(-AyK&pSsw>V#j zOO$lz8)uhxMTfbYrEYF6TY3r~Qc2L%4kkRpsqyuys}KR2VlfAgqJ<7AgO68Nqm||y z-fzIu`CX=#7U5CqjCcJ=x_1qe>G1C*EJDW6!$35yhJ5tUl9H8Y;pjYI0A>~JdkgtN zX_(;Pz7m(6T{YtFOfuf$MuPWsNZ-p#q^`QUb9c6m*L+*ovfUi#ep$Ks(_5b)t$A_g zITyLwpTO$3AgT<*ej`XK`1taUQQM{uG$(BtD~)+bM}V6I4p*ghO!@6ZA=+QjL$=JcSXMmm;30=dQ{VNn!Flv-*=OS!B1 z3ES8>wc`1^vthMg@ZXoi)bxmz)EVwO>IBr!yN|Zq91M0O7)9c-YjtsBR*@`W;LcBp z2Z}a9BH0-UwDpUns=Fj!nYV3ncf5y@5keDHN@T^Vu z`hOmp!v|f@Y2^!!Iqe30wBA^& z+Z|cgvxmpgsN@0kVv2mz{8sSf08;iXbk2c$3vLy4(8+1GGX=iqIO*|u2FRJ+OW1D< zhQ}Os=#0$$&co2B*WB6)7c3?~;sy^WZ&1>I!w?oG{#(V{X?xB0{*oL;@7--~*|4ey zpU=1N|AGw5@XsGf65|s+0I9mwM?*}&?U_Xh9>g63d|BDewsQTk?c-Nuu+$cCWQZ~T zgivKe6Kh+vLkkidoJV|9@9cwfy4 zw2W~Z$PZRp#`}Rro5l|E=y}gOS$Kej+s^Mb7#X%I?sP0(nXDCS(=B?Uxx;)|QpXQ? z;kO{r{@|5~#td{3S@k|5R-%_0k>1H(Tn4&R@vCVb<;$xvykh=aQ8A&@RUIpV>FI3R zS+( z&%*w{P<8K7SV1iyCOY~IDP^jnEU9z>pHN?7*y(%JV90d=P&VIiu!*Btq0II$@A#z(2x;i?*hsj zYViHp;5x?rd%ihA@9ERk;~b`q%L&c3fQ6~Qx_a76*$Iz#^u|}Pn9+1ZimB5 za%F3C#(Te{hPT>{6C>DaM2ljvH{{-;D?)Zz*q(JTgH1%_*`&3A{baHBaAWkFDSxq{ zuYWmsNuGk>4_uKn$+LQNpC6@95dRv(;G%B0@R=Y(_}1s=LaY*gbK)hAgjrd-HBUGU z2)!>a2MmiTwmyUJ*JEdj`$>%%mVK3>=_Opp$H!fE9JoXuyz|Ak<{KLaJ7e$gO zpwtr$i?rr!gLZq*7eSBv<`(Xg$2uId@#%Q$h3eR1{zlb5Yl06KS}Cy!F`HcOrf%QN zT>LIBuKc}+n5Pb1EC@$se&OA42VG&8hW1MqmDwZSaJDqAJl?`*FBi#I?YMZ8tzSmB zPkfOjK}X+G@ZNvDvA7@mO$(jmu<+{hdfjbRYRip9pWn@hU8{Yo{RI^>mV`Lx({a_r z&nA|NH%(1NsLuNxnr48;dNd>Fvx$X2^|h#dQC%U+CWZh@0r<52ukH{k0c&EgsS%H+W5LSu(;KOq;V(a%f&s!a z@P^Ul0OkANliwJ_-%L#`dLh=PO?MkJW!FA=Ym)C}Kj7kF~msA=ixt$MA%tNikqm!NP`cKOtY1#ie)#qfDAh2liwj0CQRfP$7n((DCF}CxqoL;31Ikx86D|A(ffz+ z+DuN$eWp!Ngwo5{=viP^7!^G%lElMCdPXJtR+{qMhwvUf_;M$-%oYx(!N z@&)rs!s*z3PEms~1J@BOE#>%T8d>J6SC=_|Qpr@GKBYu{%#aX<_hd+C4wJ@<=d`$) zy1aX5`~D?7U*0jwc1=@)u>>L$!6hY}Ps;VXqN1b!s&QJhy2s@`Uo6QJx;&x%-XSHc zqT&fn6(fs_4Bg>m?|BT+9WLCfKa-1!`DY#EuKVmWcFokRF^zl+srUDnPf2R<;D9&u z?%(sD8G;#5nQ=}2PNY9B-fECkGzCH+;}sPPKF$L-EYMOUqox+6CMOrX)1bAz6acPI zn^&*)>@hGx{vrEye(&r&zlhEHZu}Nuej$>zY8(NrkM=UesJ3=?(NLl4?a+Hj$pZB+ zfVq4LN1+9-Qq22X{BL~s8Sini9@P1YP~Ve)y7P~fKoJaWD6?A<|HVuaS6^rK(}!1z zB2Q_;3mRlu-KMyzL-4xR*RXFNB3vO2vO|2*`EKM+${2@WTKVoOWoVWx53 zb6NGffZ_nm4hMQ$Jv}4{UV?O-vbY#!aq&G3mGsHU&+pdOodKWM?9rfIeT^)_iN|RE z&ni6-%JwdqCuji>v(Eo8p75E!VeUe2;~BCl(>f+~j0WYjgC+ zjEu#f|DgI66gR7m5G~5%cD^J|E$<^HV zNDYF5QpZ7%6A9sf;xv3X)JVV+3imB}dHI~SHbZc$i}C}>98&az^rEcDAgr9Y zIF;oHD_>@+vTexmPV0uUw~q($-hm6V*v-|0c8|3IhkUK)&yfwCVd3F2u*ZSC32ogke?u?prBwIY#_3DSwpkr?1|It}o^;-`_;v%R@?@ zKRBc~b#qN%OPKOJ+9YXxy>lDnd5k#aFFF+DZ*RrKMERZFDIp{!<=`u>AV9|me5@nu zY0k=~`2jV&K~UG&k0O|hTjcAw&PZNq#No1VOmmAn_eT*|HW8D=q}Ja=(b1j#jH@y) zGPNwN2k?m)6-zp#1iT)dpT2&6rZbN) zCang{1!Cv&&)Z*a>*o0T8@4+Kmz9^uC_KXPe;`6#U|~`2J@B4kLZd~RSec&Jw7YKF z-Se_+(U%MdkCNGI-$*{9*VodL%^$M5$R=jEf3H>Jn2B%v}M#eBLHFXU*@SrH|iUsj&cbCiA)m6^a zG}i?Ri6D5qzfk1AeZ!EIu!r!B@#ln}A6A0LOEAO*v66->TK!vD3Oqme2Bj(lq-WFj z^Qu?pJMBK@{QR6BC0@-Xl!Z%rN{489W`((H>XrHgXE9Lo&&~Onl zuGy8A3P(Px8|b`ZFMa>{g6I6zBK`|IJ9$M#7tlZ9b@=XyIjj7}1_uFl=P6XeA-ks| zBZE&FIW93#Oz@3w4)AU|I|J06oJ`^!JMONGrw~ky#}623YX6ush_F008; zlJ)Mj0}E>_^X0}Qiu>b}yH5uCMn+;n-o5MT>dHkd&WkU_(YE-BQ6E5IbN)nMXpEEv zu7dK@3RKHsX?MH(K?ORKC1rWq3K)$H3_%Ui1YZXSW&HdkfJsG6OZyf4ZVw+>p&8#R z5SbEDdL|c~-#9i#&dvXyq7RRQJi5GU%F5>iGJkfS7^og`*L|6Uc$EHlJ-*1R5BzpL0R*(@4%0kS=Y#B8;x2D>(FzOYd6s+=Hhh3R@p(?dbe4~gcs(o% zU0mE`cQqL4edggI1P=-q{0j{FT(AfRgPduPp00_-%b@#gY~4wTjlAnbvHqNzDrDRPX9EAPq8r7YuoF0fGd?=XB|Yin$Ds^Sx%Ib0$le|^Q$y5nWhVe089TPe>SAl0>1eiWm2B>dC#0|NJGL zR?zc-Hps<_&RtPqeYuRradyVk+(OgjxTFYwt;c{F4U#+$`;nZOQ`1KGNKi1y%ry6* z-;wnO7*Q3YX)v-7NQ~O`VzcXfUb~O;;0U2}OiZeX8D>3tVAekSr06C-L<^pHpK#TG z{)Z_yk{OKny`cO^l?)QuNI>X8e0(Y(AivvMqx2ux3Qe!#lTZd3m)G zm6f^8Y*h&FQ&Q^0Ku3V#ys;Im%mqn?~9ms!nIB5rP7g}#{jz8H$#w)PL94T2f4;z2Gc0`;Tj-&~nUm|=qM zq_3=u4dI%J2A#Sznz+>=m6ohg$(>qb0YRayAIog@84Gi2P|y^JQlNnN38I_7`zPe z)M(6J6}j$(ZpBwE5MTNM$L3uyJWzU+5uUTl-b(@^2O2DNK_I)WkuCWRjPM1(zgnKz z{y}bfaO!_RIS^fhL)NlkJf!_tPM%XVEk7rAUF(#ZPRZz~tt~5dg7Q<#NBI|-sw(P9 z&9OASrZW%uKtI^#@IHR(Q;`r4-+m_+#T;;$fl~uHbL{{Q8M2*!bLvCZ^?R{ldkR777s*JuFS`G&QK)Y#Eupe1Zktir2-~_HMRFpy} z>wNM;J&v1*XviXIP`S|iQh4EkzrPFW(T>ve80R?!6uH7sQ~tb(5Ij_<_OD)jkZ10K zEZW@C#QglQi>oWVIn)qtm%ozvJ z%j?}GjWDpWb|b&ge&XB2AHq9=mY2s2wGnE%-`CvoSGW&Dq10{eUp z%p(k>xKo_hRU&e}9%hYZqN%BOVG@OcbE&Mj*aYIMJs^Vdx~wTPQ^E{z_E*cv?d?JY z1s8Pwf?1BjGs_B&BL(2SgP=KwxR25XdMFhXI>4hI0{gnIZ{G-bczA}vDAU~10_ z;2HPeJ!tEMhk#CL)yh;xaraC38h%|v!Rxiv*l?3?*-Hq?Pw?R>tEs(>i_=!p@P>*X zC{h*Ti-)DRD73s+LX1vUuY;EM1JLAQMd1yK{QU`unbwp<@}AJw@>vA<0R^hgH`jjo z2jcTq!vUocxZiS#BsV>IjC|wh=(V+Vhey8?V`EFV)bWo933LKT^W%4|p;k$6a%IhT zyE|1R6~!Ee2`bMbq6rG&jcG?o36K}Smob1^+XntGWJjsSbSKLB@o{x{WY562^bftc za%v?Nj{lkA!$iC}^U|7c~EWPb~X?D69+`z1+^7ab!*DG&AqOYg!39N6=dlW(h! z+|UzKdpB|F{=Hg;%@gT*9ds^%kP)}>^G}T zA;^@0%qqa&_C3&8A|fGM21PfYe|9jc5ii$x3%04LQ^Qzy+&zQ~tbn1l!H0(R*Z^mM z`kYT5`&nRTVG?LT;AP`1u*IT&5 z#xEf7wzk&AXQ+n^=b8I|(Xs7UWC$JOYG@!B*xs4F-_@mc^+(R&1`8j>3^2h%)s2mz zuw}u+!3li#PN}ur5I8AdHy!Tk`W4IBd5#(vmUR)wG8kA|r5VA35yD<}c3prp@qtO- z)Y^K0LEIBc=n(!~Ed=lD)_`y0&CSgnNY@|k=j&T}WyXF;x$G5KkDTp90E+(p@*hM- zVJCA>;{L4nZLmSCt_>ytt~~)GrMf44$J0JiPF4IOZ#-%N2^s?A_E&XF|p>?JITY7lSd^6J~G6h18HOkcd_5S+u;8OWD5F< zqC(B0FdY*nYNh?QiPobBcQJqjv>{^^#h^~|q5u2*d=yy4HfYF#eJm`3b~8Ovq3YCo zr}p>W9(M$sdnNZcoU{?6JwK;z%K>1__YWDn@{|2FdCcE)4devzO@Ti6P!JCbnSkJ6 zxfD7nGcz+Tqc$oyLNHK}s9^v_Aqio?7V6V`(mgoUIDPoGh+QP6@&yZv*Kfl~Y8vL9 zcZ_GVA3kK*|2wEG-+RY6Kt(H_ia#EJa^6JtcMX5`YD@=Q?~ig;(|;&6CeL{Yzr=A6Z$j5t71dN8?^Z6Vtwez7qgSgIP!w&Tt`0nPQ!Nvw zg{O}nOLHkgUx-UuT55VUfo0nfsetIC7`QV+kLz}2u!I+%NG>TE=V>Et0` zVj2}4;<={WHakE3D=${d?o~8nGEeVCt4G45`;U7%Y@0h15?O+H{~aQF{&Zu|;Pr9L zWv8nmUTDk2%|NyAerzNQ7J9$-m!-M1i0p44CbW;+$evUha;j)*DnYzf8D7m56&1+p zbd(sgmTZ5*`($J;iS1Ya?L8J0tY7rF&dT=hvxB!s<>g7b)>0KCR1to^I(qEw4tHTh zWCSkBY9X5e<<8C+m>V`2Mc*cZFYGqCywA|lmOwVtX0@2pNvQaIEl|}Bgs3OPV|LZ|z$WVu9tFnfMqK*zJ%62F`9Tb~rC^FK!c2&8GkI4!+Ip+bLat3Ec3@;|U zp@1Zh19F%>M0!5Kg&Ux8IoWZ6&|)K3Z%rasG!L;GkN-bH0qewx)_s}j%CYtfMm$b9 z2axZ=1fw_9E6@q)cyP#qrB*cm5;S7CU=D&Sx*w2yLn5N0jZ!@@$^1DyyvQC|EisAO zK$AXgsEwx!CB+f3yO^on%?^d}0WK0SCJfV3QC;T!f}KXtw6XsS7uXp-b9X{$7 zTo##q6N5NQF@sk+4PAf9mBr%Rf53cad|5;FvPK`+J^LIvM;qzpzCPZP|9}vx^2Kap zxU%Z2x$X>yU{chN^{+P>2^8U*sZiQJc3=hE&QDMmDg<_^7|Qi58&%cP#c$5?Ye2DK zmMSRFtW3P#WtR?poqm~y@S;jie%W2|ym+P-W4f&LtmV5_S5Hsy*U>VRYO??51sJ6S ziyh4P3cS3$4~2yGi>DUQpjKxH@|fvnQO+m;cR0@)d>esF-3Z0KV-%XB?1)w1fyuX) zmX@&|6r^ytoR6!%Sgb71e@m2MHHl zkDnG<%Nz&qA^O4E7K# z(_Nge$zzA2KJFK)pv=PSHx&GIw)Pu*~MX3=562N7o`lY_lHmN#0?qphRU z4c4STUmtWJVP;U@iC!f4E+;t^+hKwY1quEE$AJRMpPi}>W&jIxWdkrxkFTR!J>>#DMqPz zQc^0L4jrY!f`}0n@^BOsHD?7WRH&#_{$~#>>4XD5eEz%_JbWk~Lnp!vLMtES;HD-g zzrbqK6fzhJ6ieNgh)t^B*zx!;=dIp@8PuS*I-S|~oX z_Pp#Tlvh;v%Ricph#5)8Dtb>m^V!J&WvI*+j;tV&L7ZM&@xEwA+`DG9L%wJNas z20oPLNPn5{3yru3)q2@N|NY*~`il;~vMjVr!l|-w4VJ1t07y1!qI-3mz;aVYPmkg< z5N!ZrS3}9U%KO0BFFj!!(ml`;hx1Sb&Vb{7kQI6Hs*g13%`T)9Fdsij{^y2B;x`Q zsh9WN{=m`_vSXGyCH3psk||QOqk|`|;{6>|KyA~7U?2P5?yfm$_}XB>%NumCYa$bq za$sdY1C%9lv)`IdJE)hfOJ}zv8PT}D;Vy(?_Odv0V6NflpOlVzs}MS-P9l?d+qBAz z#2qm7p`g3E9{!#Z?|)6ae{uR~$n#260b0ffIO>}GZ5a%!02z-zr4WgN!ZtXlPeY8- zcEMBs?He!ECd>~g?z=O0fbEt6H$oypLP8kL6A@-|>w`h6qtktn*f;Ac%#K11Zf%yY79{-ji357x-Fb6Hyz-#qZFD71jFNmc zBq`m>d=2yz6dOV@<3fhjF3G8|qpzzG+Y;+lj+Ai!B{K`V_pttl0kf0XW6{5_oxi-^>8VAPQj%MS(4edM2KLzD0O z=d0xZ<73Mevnv_OqKe3>sBT^C?X{kAq^wSImhL*3j)g2kcEGeJ6zPh9zcDG5nby;% z2)OA&JJnlQ?mRIz9tC+T6-J%?_4T{s2~Em71QiwJ&7a+)v30FEC>U|^^L@TiQOHMz z-#IwOAD@hh!bb@Jpi~J>dAYUGX#j|&U~Ze4ot05w4ot4(v8r~UFJ&eD{H7Q8c3R@w z`7iR8BKB1F-seG|gqK%i<1Fom`!O(_CGl?m*}U9UDWEs2tRTp(At7RvScwJ#OQomx z%k9aM{Qm~Ovb_7z8_9aS)JSkjOEcq#l19hg*6uCX(;F#ZnZiRd>*kJ0M=wUsnWy-A zva`B6C+wuwLS9#_YU%X%Elf=1;$pze^gt0G1}J=%wzjyC`UE}YKiG55Nd30~7Pf+$ z)HG6OHTAoCUw3C=x685zUa!K!z8BEJE4Z=IUEH+zvahO5_OQMLhl4Y)C5`6k{G>eM zHl5m`G?&AY7_>~w$w7KXZ!A9tg)HkG2WR+(C&X4xmrY!7DQ=I8^YZ2%rU{cg5)juZ840Jf@5i1JbCzUVqIJ^}wN-R;)IK6STBFF-uNdujT=F79mX*}>0 z37P$LsJ3(*YXmALQOdngg11p416 zD5%3hW>Ni{xzZ3e4*mTJ6|Uz37`IkdtR2ycEra7oM93igwXdmO;P-3okxBs--`k9S z0s?z7 zKs( z3JxNNCj}*?RivaJ9v=7f>FwKG`kgDQs}?jgG!Oat&47Rd3}4OpW!UUeKR^8)ho+#{ z(8|8}BMD#4OE<3}X{4zx@dF|pyRhgny7E&>sAx|9F*U^}CDjpgTOLea0(Mhe%oE^= zv7F`Gm2eKKvb8n=Wi7X~Jvy3vR==Ti$C)b6^?Hk)IXn|-IRo=qUPA)~gj1m)R?hoD zYR_S3#dDLNja@b?@-shwvVf-e$@}=;*O8HAQ86*8zg=KeZnCd#6+<++arWP3{VvET zEIry2f+tUk9*7MW@x(F-M~3w%24U&b%Slc?Rxyf;lBy~z&?Kq;v)3OTA?>r~iDA?v z?aP|OKHk@i(}K3o158W_rEHBX*8Wbrs^gidKClV{H3Yfh2ls{Avu7U?2F)|z=`O0O z8U;y~7igIPK@WmuBy29v059k+v6XzA`6f5FbE?AJUQsC_&tZh_yr!}6FE(}#Vy_^j zcr_r2B3e_Mq`f1>=NUW}z=Z1jpCkF`r446+w0Pn0;LwmPKpmmT7ODULXFW`1Dd5C3 z+3^q4TSf*6avoMyk0zLJCi8jihHOEG$c!0`1!~V_ZpBwTzePYGKuf!tqdUYll8J|f z^)4nsRV_cm(Ca6x7S@CWmbLsORG;XD(Dx7eZj2N(>ltaplz-q4oYB`G$sWZ76C7B# zsXu%uSAG=U^t?Hqmx#!PD=qasjm6j7d~2H7zl(eR^wE;{`W=Na*VI|QjshzDk-ft# zGNX!IzQWRtOHz^ndK#dw6*C~3AlXJ3VA6H*#Eg|lf+@Xulr9>Q17|V?i;!P=u-^i=6L@?P{_*TfuV`RM4_qG3;N2% z=3wYTn+J^J;QH6<`Fb4OrK@4jS2}*ZZF1=;evez> zQ|Z0Ze4WXb)~}&}Xlkee_{?_?YU(kXH-~H@E}|lKP+$MIhe%4gEFV1&2KfdSMHI(& zi~{xa0aJT(`NQT4{cL?MMVPeUK@kBUA;<9)+x|~Sn~uamYX?g5@8Y+Lmlw@;fLX?m z3;|9~>Uw&41+EGU2nZ}Avi%j|2K(hDFQ7UxU>1|r)~?wx7;7xN&%q%L2OF?ah9@S- z;Q8Yc5J>d$@d^I%BaYR7kkmkFJ%ZNNl{p}DjvqCkqJq2C6%q5$q!Y!`+8Qa`hXIzp zyoF{ZYbr+)!lHm}+m(jACfqp9$=KAEA)IQRp{KX?j|gvvBl(PK?KKVv?|`)KnSq4` z@?MZF<`Gj@Q}gfeLK%Tb@LSzb+j3XKv9%;KDvb7^LOWDD-76V5o{Q6hx7C)Xpe_mtO zPiO=FLqONSz6)71dVK=c5{v51w?|_yUdYb)n=@uJyx0D|t9HpaU zq0zKLbD#wJ0T#pvOdKm9>rTRW=pCzZtq?{;cpLNc8S_st8P`{opFxjl*TTY!we@v{ zcxOL9zId^`${75vthq`W%S!q9AM2*&zx^QZS+#1t6%`Z)k%L6$Dz;o=IzmunX4 zQsv=$Vm{FEkFDVg@59YES$FQZIb^Oa>XeWh1MvrwkZvHBUaZkkLY{~&r&!O{)+bO< zh8SeS5HP@Wjg7^@>&QT;o16W3zx~um$#}6vlo^#piL~otgZ5m4J38vFprALK!+cIg zhtDa8=szmYto{_^H{tM4b1O{_KMn1mXNOlEB4Qkma$LgqPe9mon&68Y26}Zfj@zd* zU(cR_B|H}5-DYDS6&^Y`6gGotP2mX^A!~`RDjs!yY#FAJf2Qs|@PYffElI{d@jsy! z@jf`TsZ>x(2n4`e#fxSC>qExemX7=W9FOB&qlK zop0vt=_XON_cO5c-elFYV94{_5fe*)5FQh{Wl(FS&YBn9MvDsq7*jS1GIj}r{ z)vho=WI=hsUFye))>YXV?TwUYU}51beWE2jb}*v%2P2StI7qL>2ew_&r&mLHXjWOI^Y9?Dx z;rUe`9lb2#!SnS2hqRlU0H%~@01`1VSMr#6Yg5|ofOUE8t=QHU-&HMN+`k&LqpNhG z1hcKL54H>z{ZghzT0O*=rxzEOmwd_8fBib!U+LBVkc2S?v0(->GMfclJeFEgM$Kc! zHIY?1EE!^CXu|04qJ(KgQ4z<*qD1aJfkcAgk-qDs`~P5~bKPKLb92;u4C!q>J`P*C6PFEfMv65(T7TF6npzig>J2v?~G zx*zkMJGV%~(fLZqZ$EmZ+*I8e&=vd-u8~gLqf{Rx0HvOtnE1u-PZ!ogW)~<>cHI~I zkJ0_Q-%65wgX*`xuv5$ckBpT6weN4DqF)V-I!BOv9q>v{QBpXlG%m6lnfbJH+2Q*^ zSB;N);c>H0(S!Gco2@U+Y>YJ06-W4*UF~-DMK_MNjusCQ;nn_!1R^S+4MbUl9b$5-IQ~kMSQn`D4Om1>SjJJ3~c*)|gOGv1LZ2V5CY1I0*&Beg1(m z=jrVo0h>+&6mHu8?9Uik-`+5Yr^HG1yI!hR+e{ROz^p5#6hl{HZD;rOc+PUwF(6NO zs5CF{*HgW_lT%Z*Fz52{@@j9ujY`&;_tmD0asg}PVpA+Go|osPgak+L%ZU0c3Dr<@ z#u#cky5UH9=BW-KQTSb1&>-lvc$nUP0C^@k-fiwV$f<=Er+wl{nABe2w9aS^WeFo~JoNjCJQ8V~T`6UES{?L|s z<$uHTC7Kr#Ud4uOo+Pk;n+K``_}%ep^rIl{0Zk`EfHhJ8S#uTSEYX;PLPd>Ku&Q8z zLzmiu-%7{)=Rnv;D)9Y@Olof8e08Q%Q&;~7!9N`MqWafj_NagN&g8alktSN>A* zDV5m@7U}Y*r*)$PVOPf5kI_I#3$#Y3D8>5;T9R6VjOx>Z(}~= zo_sSjHi-^h$l%K~H8Z`H{w-aE^{$NfAscRKX{xghX{*aRE{e2*LV>CsuZ``!&;R}^ zO}?5%g*oe)fkE29$RG}UR%cI*e~mXS4IL2Dzw8;wMocCpGKqO1bqgvwN-XztH?i5q z`uew(l|05eI^%vCk-Y+hRUH}~DJcnPyW4=}IbD`fx>fz6)!ISwKO*56Ip`YjxW4oP zA~Vb{BoGN%11P^fY@A@s*!1a-$_1~a!jJmim(0wRJX&8WU$uGS;nBg>Iz&OCEhdJr z4g_@+Eo$<&-|eO!`c3l`l2E=|Ib94^W0T7&yPr?VBYn_E3o%mSLJf?@S8}ii3j-70 zhD-PIx`K;Ez|>qcE$25TsqE{eCwPHkZrDnvyCjJb5mfBh6d2jVcn;69MC_q%-py|BF}G{a%N{d*xh`5Po#%47ha( z)g&U;He=qeFFl)1(ty$mrBW0yw>`Ap(pmd_M0&}l-kmG=P9NqbDVyme4S8JxUJJMFltDmFcGys^yQ%eV_-r3sris%@Nk0_Mxv){;?vq9laXrCk_4(^VCefDvL!%8mL5XG%n3XRFeuQ#9DwMLqV8!>`stMwb2uVq z{zn2c3o!<(HWzgZi-_R^afZUe6^Pgdfwv~0Qe(|<7w&P_H3+LxZ^8KeMGSHZu|!N15>HCXAu@;H@n9@{Xnkos5T9D;SUMD0U)N65f1Kdr zSXUcX52FQC!9E=O9snc@A-7E}UnrHFY4;HVDlQsahC3G-=3}K^=7i&9$HjHQXl?>O zkgJm`*(^29%g)Zg)OM#_?1{o(KPm2;Kee?}I6HZc(%C(j03x#IFm8yn;jecGtH zR><0p>{+XScG#c%NBQ>OCs`4*K^PKmzz1*(@ba}_|NGB!n5wd|F&PTvyQE)a{yLtv z$#9%!I^Y@oMnG8D%!QqJfsdlY8NV?9KI;PxG$n1UtxYcWNb>WOJ>uc1=I0G`e@1N{ z9{&B_gLh{7RJA)haaVu)sn)h}8?8zBE>4x&T3U+z?TVhXN=mvtaCLp8Sd}X?^7+Uu z&4-&?H*TRDHA8=xw)acecw4*azyFV>vyQ5Ijkfld5G17=Bo&a9l#&Le1OyH(ASn&f zAxJlfbc;%h($dn1fOL0vH++kGzdOeH=Xiz(*zEoO);rgn&)n}e6cjuR?=YDqdE7X4 z2U$hHir6+GxhoPdGGcS>G=l70F)6Rq{NHml{4q3iV!pALb zZQQ(SYSTOWZ*YDGRgy4GK;s)!KcuDabpH-2OGicN+u27-O&dYb)2qG(7mGAUrL`p3 z0}R7yd3XpB^26}frH4HGky0p(Rx9-n<#PL|dC(KNke__wSQ*dGm;_H19vN9@d0Cmt zhq1A0D}H}I*eJ)Sf;f9W#PF%t)6Coe2yOoaMd%59M)MjPd@`z}L6QJF0whqRZ+&S~ zC7sQFl=oe>qm6k*>UvFd;A#!GjdozsjDiRw1zUv`a!Lp19ZiFNZ2-WO{oNdsEV>vj z$`RQTyIC8sw?AST$|Do{gt6;&fQ`4C9(+b4ZPwZqNp)C~$Bc?Vj9Y2z+(~a25fhsO zc;Z_*eQL2swD03jPj{)UhJ#hpQc=7Q&Bua|HdJflcX9J7W9xr23p8!uY*>E55L-gb zp$4P|B^w*uE*Bt2OZvnVi&at1HzuEji!A+N>@OcN>AO+XR|Cp9+1W@i zT?T+ybgQs~Ab^Xwz4zb6CciD9QrFO+tH?%DDygN@x{LNCPazO|!*Dyky`;kK;y%z3 zV&G;1+vIsbhO`*){WWfXSBAp;=z;&rFk5U6wV0AIY$T-Y5Lk8y@tX!i(g2N-Hs35~RQ)4I+ZHEsd-mRnJa`T+LrLotmZEk>TO_ z3BK6Pl@-~5LRV_nJ!!k*Vik4{*%vP`DV~^ycT7&Ew#h4j>*jr}a3L&*(G(Tn7u^W^ z|JjwFX4RSWvUZP|?gk*=h2arZxc7H!>(biE${@3)2m}A-&Lpj*PZN^rokP0ZqoX6D zG-0Mc0+7sZ^6+_4s+QiOAx3a7H+i26%>MuLYDxy6z0htG4-DFpGA-o0xE zRcV4|8mHC1O)#h zp`h{GF27~h^Xt;FeGPRv0LDP`W$y}nS61;)S4nPlb@d@;%TiQ+TjR*}f6LjjO6-fhw3>q$@mVuEf7c6R*c=OfjbX=t=DYwOm$Yxmk{F8+#z^7(oG9sH=6#ErT?PG8}Rj!A4t+SoVF z(zZM2YO$(<({M9A7k#-WtKAzH*ZCS~vQzm@C#Zf89taET)*qkzdz!-vezn~jqW-(- zByt{L8fk|n0+~H%r)khsSJ$mH@289RPIJ$@&Iyjl)y)E>hEx*B+L;cgoIkI6eZEgL zBb{AcVDfc!DU^A8$zm2$pZkikg8iv)d>kWBJ#>A2{kWM4G`#_%gV+-rb@8_d0f*YBW#ol4NJ!t`2^}ZSQvb+1%_W;(jQX$o&QbuGFL-Z`Oq! z1WkMBa`*Du&&lEV{Jbr#LW#3O1=E|=~JX` zp;`D}1GrMcwgxgv>mGBYL`0#V_JyZ5a78m8t+AFw_rF`gA$tVS8S16)uNzYZ&C_@> zp?36kGKU9I48TjFQ?wQQQQh-XGGo}Z zHp5}}22N02=)8dax}mjogy<5}m#+h(){}BFC)JLG*q7&4H7?1?hgi;`m+6o(0xm)` zypZ4#=z?|tck82J99CBD)zHwV4(vUDf_(=^;v^LwGi3`~5(+A(^Z96Ncl`G;R>EPc zKr>{pW1^*QAEU=YZ;HJ&4Qe@{5E2te)9;SfU$H|S3bY}(8hy}Fi))j{dH66^nw%nT z0rvs2hIDSu$Y~9qGFzw0i44-?!iB(#JnkC&(b$M+{SHX zg>`eRL)zZ{(_q@0;$(6vAb6tkKPRU$XlZ*M$rOVQRbVkW^i@SVdsMxc`5Pm~t7AVm zv#SLUc6ZIA7yy|<%gv2n#LLSal}(59RoP!qQ2cSsGy5KL0b-Kh;}aCX6A5aZGG^7HdQfzKs8+@{CJYYOOXhFC&HyK>tRhK9bQ6#S=FL_~f4 z{jb4O2v^`7{gLzY*})-u$m*gdCpXt(k|bI=^Xl^3eDG41-f#yn3xmrxtoF&plzZ8o z*%twI3BXPO=r;j~kjwJaj+27oJiR^brG>>JkAC%!ZbyJ=dey^$w;&M7&&#_tlr{11 zpC4$8dhknF*3;EZuf2~=t+3&rL{?G@;Wj6DQ0e&tA`N!1@0%JihzU;Rpp<=% z6l3wBxU-2FNuAqMRuokFAU^wnD0RfjUvaNBRfa-6R#@O=zdce~ z(W~zEISm!^p@ByqPe##TDY5`-qr1jfbTR1RT+qX{yxcZZ=aJw6%^2hNg49`B0ip3f zLncHQraL=BC_rUr2Ypf|AYkq=oa}pPxinyBAtiDKk7L+eXx?^@#r*u~_$wq)R@QQJIx=$?_s+=*;ux%xAVI0i2xPV(-D z2yC)$H#ZZ)&I!TX+?bZ(_Mpg^I7$4b{+v#`=gMDa%zByJ%oMTnurIGH2#WHvdp%q; zUrHjsrlloS(FklJV0zX$nTq8%sXH!rbZCCS_UJ*jso}E~ZJie@*+q(9w}K_Ovn&!wI%%eB?L4!Xl&?Of!YWlpt$zT&=jeConIZy zdo<8*!9SR*YH?9(2aNCAi?nmhJ$|0diq9zJltI_~e9x36ZP>~19qvu5J>XFP43{2o z7blHXyrSF2gIP6?h7$oLL=H-qhXm5R@EuaRY-L{@?9vkLp6|)V?o?OJRzzT{+Dzd; zeyHI41thKVaxZTAErSLRua`|j$33rj1q+`N zSxlB$5Wp5jmc|Q(T`+0c`WZsxp}YH`FgfY0wgvNDa9|Zy5ND%e27ljJ!y|Kf_a!3$ zvvW-4m2_k=b=w9gwcOxJeW|1r3AxwqkEnN88?MRuUA777{tZlQv07VOUxPd_4+ZFp zjE}?9Z$6+H{vj;`Pa+@e9(b*Wqd!!B30w~R`VfNsu*^G!!j5+m*{}tNhF(YLb^cad z{DtzUj7OEfPn84>(s110}oi+j*qJe)8m9&AsJCT;11AUwxKcvCDZ<#WBR4>}1WV7Ol zEHw&eF~cL09E|B7+s>HEA|q!FjkA19O5*bH@fls;7;y8v7X0odWI~76>~lo~4YnUZ zf`Kv&Y7zIAhP^flCz|0R$*@Qqe28$u@A-J|zj8~WaUG>S;SZk~7yuF{Ae6$-$0q|R znE@;F*{S0l5{sZ9NuW&$_bxQPNB#i|tq{1&F_4myeh1l#{?Q|J4S%$OgW7j&MN|`& zC&j^*mf3Y#nVFKEeS=a%#U%zlmb5R$?|+9q4aBywhnbi}XkMgO{FB^kgU3E5n0DSm zmGYD}`@7qPG*HzZ7V1{xD_i%Mza@)lLd7&sM?pE%N6xNJ8YbfB=h6C))?xP9sm-{Q z)y#0w=XYnUmR+d=;#LD6nah@0A4NZ%ALn(LEz~|*bUxvLDQ6Vkr>4E>5&9==f++8g zfquIxVo|3)s?xX?A_yEh*K6#D#*;- z^@rY}(2|mp(;f4*Av0l5xfCag{&ugyRuvS#a6IVBHAfv@kY-hL=TfsUV1{WpV#15Dp+Cec}OaUVs}M8PlM08HpW%7nj~4Th#$ z84kR;^zf_&V159snZRjT<4y_HrZ&_f+1MiNk@`?)TU!Uq)w4%zxxt#2EJXJSP-1zs zwPOkU8hyiKE2rtm#+G{s-)PsTqBqC0F8=4@a$|h*{JtE<$fSZ)9h)rXPW_9(vIqD7 zgQ9sA)#jsvm6wKZ!&#i2;U%DfA3Q5Bq+XI*jYG54}gg^nimSN(gS-ra;efTT`9H z!f5`p)D1o*lu|7$KwLqCpC~VHyv|Qk>=q;YlOXu}>+O-^SHE%BYBQFrYV6)`ThoN_ zA;1sa*wGPOQd}Gu8L8yLT2vUm@4h7M?Bpb8N=78T09P|<%B8#04>O!R-wiO;XaZM| zhyQnV-o3zv>#jov{BQB`Fx~MTOH9ygrwoh8&2K%~b{3EW)53)ZY+yf7 zieQXRz~=eUms~DfUz6>M3gDiTGQ`gZ=v3Y&jbWo@3_UtkPHXs5bTOGFB~joI{_k|S zh;*tXLr#p&kCJzxePKw`fC$20&u?2t6j<35c^-4Cn!j^sUh+j~q$UKpg^^(TKU6l| zI???vY59c0HuKF8%cPhK4vV(-{llaF%+Cx1eS;=UGBT;$?e=yK&017cdpE{Ab-%Np zj%?2zZHgdE?z}?D1$l{7y!3sYRX8KLM--!bI5mNBa}$HCa;$N9$V-A3;iWC+Z%d7l zi7e>;rKqo|#y|aea?;+z>C_)rJLBfVu~D;)hgh-hwV&l|&}CniIw8Jj4=kusP-l0b_E^z}=&O@h1OWtpA6*5t3m$`gk$+V)ydQ z5yIn=24wrwKOcsu)YKf_%+2u>tEy^KdO$1G?b0ZHWrA@WVfgy>9SBHmV6iV7fJ55}~ekcSYK&dKy z>Wd9^S6?$S3@A`hu6HsAeolobUEsXy%645JWaa|~KaWiY9eQ&C5%({bsPI;((cydwT?L`g<`-hCl-QUq z=H_<*NNOt$;=zLa%%x?fcOnq>5aOmU~Qii$&#d-oP|d3YI-+lDn>B^Iy& z-zJ8giYosu#Psqh2Pybhh3M(mYzs8X-NkO+n!I^K`}i>yBvYV^A_I!+HYz{D7jK@% z#`<=?CbXlHzOXxI(wCUjUtUh&erpy4!=K?URGZbjMy8XEz`ubHjNgOC;bD#2=5jDd zLGTYbav_Sazx)pgj@dz5hTg}o!(^zepD z43r5V8_XgzIJr=y(x>~&E5#D6?7dlzjJUpb=xk349@vcZ>)b;iqf8n}NlORe{#V{& z-l-iYpXDJz)ppwpaWd_JTk{;hpVGp@DXJ|JH9N+n*f-r$_Q;->S&eREb;1wDC#?=rX7jg(mZlgjtICEL&K!lxkf^U0qF(NCx3Mkz)jnDT!*}P;MW%1wFxFr0zkmf%2+$a?Sqa6}GXC`zK#{i@mXK0L}Fe;h}hQ}Cec1Gxb0om($acRQ?EE|C7zY3G70X@Lb+TgA29uTn7@&x{@5ag z(LOkkqd3v@KK!|w8Zbm=;gB|hD;9;23HmwpQxr-u92Z$xQyq;!ICVhKcZBN$h&CKY z(TL2QoBbDbHX|jK)|4nHeJlFEby7Zky32%4YVlg!@@BM@@XOZ53z?6VF5Uj2q3Tzv z26y6^6z74Y=v!;QV0gX#>+lP=LPKGAIGvCX_p`82a~#ieW@!ad(&&|yWyO7B=zZH! zPLjyz{qs5cNZen}m6OxF(r!2-0F>3wxw)@l*K=C}3}SZ_-t;u7miBn_0#iaa^lxDV zq)<>(KV`5J@!$q!N<&qZ4(d+r&d$!DCI|;=7YBeCS1~@mpFgN>8XwcNfr9pPJY6J< z&y`cpQ4#yz2ft@hoC2g-czB=-aydCWPw+j<$q6BiqQb1I%GCUi3@I&Dg*|Q#K84>E zm4k*-Y_kh%b%B3@`{c<-&<$$dv)DQwd8MR$MyP8J)Q${U*R*+Fu+7tm_$7Y)07nT$ z_(HIpZe6}*!4Ou2v|s$vk^sLwUHbA8tq?!Sv4Iz=h?!Zcqcc&rkr7lDd?E!W>G;@K z2<)?#tgNiEzL!fUgklT|dj?zT=qPbp5m!~t*dz)a&28M?eDq<-TnK;$@TaeiYnw=G zCqL(W{OG})^@&aBIy3v1y{FdX>yb1;HqQ{MTbmEKIDJ!+$wOq}j&JzN0Oc8PNWL;#SKTAEw{fD)wY2d2@jawM+Z86zY zGSPySZwke|3No@X91g8#AGGBE%=j2cmuZ%KIjX|mE6mTw=ZbkRC_A3Ef1AyY~MAJ=Lq>v;Ew_XRVP)6VqOlGN$EG=3=r z-$c9zn4ZTZ2`4Ro`$R0w#_RVe6me)gpRR%h;&_3m9Qsd3h6EYGFB)^(N#R8QJy`v8aU1 zy)Uc@-4iFom4P)+yKW}yQaUQ6Bm^_NI)YlmLZrgUBm?zL7~Cqevmbb0u(22$*?o1f zEmhS_kUu(Vs(342TQ8b!YGU{Snja1i0SR~q#%3_7EEg>GCwz*nWT(wKx*l3uI(&2e&zrh+FJsj;1t(;|(CJA*dN zBOo0t!{P@(et^Ve1oKR2+(UcoT|>%$!)*?47{qPZV*;YYnC2g%s|dNPcO=N2!j_Ab zNin&FKOGHFPOkfl_fkcK4f`HxzJ%MH$-LCbbacqt(_Xpcs^V;%q=<`X~TMF6r`V_}-@~aYsU9F?H?k+Bg zKV-#pTo2<6m~7xM*ZtL|$N$8?qJr<1(gYU6PwDA@Z<~**sss?e`ij_X8NwmO0Rfzs zn@?hZ_xO6x2)|%`M;3_hx2{{Kjo}C?Vb}Yh%1J<1nU401r6t4klj z9RG>nacDQ_Q?`=|L25_Xtk=eTA*e-)5X8skWb(nv5lNUFSi&RlMBkFat01+at|hlv zQdpSPc1I@ai|*t?yTuip#F0g8KxJ$ND;*ayGI9V|p~S#wxymwN!@|-bX=NsB^h%d9 z?P9UBtb~V2ftJ=+;jX*{(jg&6DHsNLrC2~*FtPbnRn^$q8Zf0*t*TOzH@BD_%y)8e zGGkln4MnNH+uPBAL}BgIWEd{djf}kJ3Hd(9v8osrtL~+;;rNeb)wZBY&q8Ue5qR;0 z09g20l^Lq&>+0&jW1x6+@#>Y7-M~O6>x9yy^9kFA9?+U_fGyw&|8YVh?*SrQJSP+J zJ3s$JN))wyJ-@Al%b|JAr*si{Lfy(pso$&SbffX{W$z%~K5`VxXV|4pW1U-amDkZl z7bAHux9@B-sVh#z{JviM-h!f~;^lvEb%Q;`E&1;gyB-F_V2_g=?72dq=FEg2n?^}W zNGxMnIz!Z&S{q8S;YZ^Qw#B6pZGn@kfAL9psYUi9{m~z9UTpbzJKy~3m%p8p8c46N zuai~t4%-sBjGcrAS&wdT(UI5+pP1o~=~PCBI&Y0j>yO_6^`7|q_wTde5fM;iCUwli z8*jkt^%Tiwrp-JFE4jR!QdO;!l#Q9zFD^s*wQ&$`9Qt=pLA+pgJ-PmoL57@HNf)D} zzk>?2k;|d&%ebnhhNZc=R!`vj|9JtLPa$|!Rb3qd#5FhG>a&)6bo}j6as3GyGh9YX z8!s4+R$q2Sp~y*lUuq5gyx@Q?SS^rWfk_tu;|vx#&$k7%ub-ni!2$V#qxK6^0Dsq# zRGF8jT&=x}?XJd~aLSMknEMTq!Xx?z{O33S`$$3*GRDU@ABRa&^*baavB8}e=Gy?U z9MzKxp>}xur}F}JIa!jhvmo)~pv}?V-Hs)x@vu-iDXpJ(wZn+#zUR=tRa526bE`MB zl9SJJbR#l~3Vi2c1b~}@f&zj&PHz=h!iXTbS5o-6Mgt8kx%*%xE+M-xTq=5}p8mIG z7vWP)@l1&~?(RG#QZdVE@0)x!1FG%j{Gf=b*L`RP6EK{oXJ_Jl!);gPR`!yL*zkFS zwl5MW^&vF|04K4myN9DzDUuSfiheX40Ir4%F?8y>=hp)4*Ik#L?D+{>uEWY1l?r=$ zJSt;j=<06s1v1E0g2AajjZZj?Uf#2f?^Q6!VXhKzTD=d)@vX{b({pz4ZLFHW6d7$E z651e&-Tex9tBrWpta7&}d`rvR0)j8mJ#E+<4`A8d2HQTcc;RNv2}{S+R*sLW@6htb zfA~}9aR(Py*yozERKz{gV4<|yG$P-}*#jEAhjAn&0TQkcmA6oxA@WVz`?tTNon0dg z;Z4Z1nuWfumjdaiXgOc3G!OZ>jlf%uQqYs~K9Tf$+{2~=VR#3|q^5?~)(V%I7ihkc zPCr*nF)v0)J=ogpAm|~*+k(^_8XCjZ0*!>Br!WU9sGa?R)I+KU2H&94Hde?*3eYrQ z>3<0oU$A}IA;*{4xboP^`4(8(d^ld8CKa0|6k=yPaTjW!nduzd z3Z_`S;Xc)|26 zl|)j}H^XkqC`1ZL*v;>ch=(B*=(#waISh(=J-_$`p9=$4LWXGTX@y=U#(@3rBZXPz z>t~MI?fU=lOEgRLjqL0=Av1h3;$De~L7q)W9-Sa75y_1mxFY{{q9%SbAaYZhs^#op zr4?q9y9jvp$zaA*2ts3%2s>lI`r(HU-`aL_WEbOYrL}-$Z1t__4#L~p8{+n|x3rZ( zBv;%4-*5Hv|AAI2=q%(65w}` z?#OxMKuKB$X?`)2zpA9a#K*2K1P6yJwNRU|k@232CQ0bGN3O@KcY11t=}@+}r4s-A zF(3E`=gv3#s-;9ODxoO&b>`H2R!>Di0xj}3m<(wGdkD+4k=~Ne45;g=sg>^9h~GI< zQ&RRR_u#c8B$Fc}%je^p@lkG@)-;IWciow8U>JPNzO!_pPjw3z*P#HR!u-Q~Iy$TOkh+YF z!EkwxgQFy2rgBtkpS;$n!yQsZ;D{ar$6cSw+qG9J`bzON3k#hGZ%m}<#w)BBJD~{M zO83Wy;cuEUSr4fN82txmR`qKGigsaXp&B(Vnu24Wz@%MZ|f zNIY#qteEWsGCT7<|35wbUw`1kT-^rTnyjy1(O!aiZ1YcMu5_EFh`j|gw3<(^u7S2F z_xF!fZbgNbxlywTBV*r!Th{`V!n>yn220_0y|Mbh64O|jJFsz+o9DxclV{8@dK`)!=kDjNwz0$;Djf=Yu#q9e59fDC+rbGL5!%b!(jDxgeA|JUb-n{!wo7v;1Iz z7mPvA0knB3r@(+W*z~@Jq@@jsntC^l^F0S7!r)MPV>Mj(9%2zOwc%KeoguWWVNH#` z!!5pu$y!I**U@pm`OBy#E2C-)gq4jGxI%|Xg%kgZ38!8c6-fU5n`UI;DNOO!1O+k$ zSipkXUWsMod8l8Tse65oz`PDhVUFu6X4gW#a~TuLyn9#MKli)LOj{=|F*>y{R8G5w zaI)~f?-ixs{a}L4q<>Eef92+*zMP=^Q&aj|Wb43yn#uDoYzc9}DG9R1%)IgG18W0^ zm9&z1no%M9Mx`H`mf z1t<=y74fX{Dx&s&%|j3pA~Ks4z}GV2PS!*P<98!`;I<-O&CT5(_-C%q60l3es=oLm z8>#P~L}66asfuPo9j_aA_|>I4|LY09b4@bw-Qx*{$UD;QTN_3hUHcU1<+s$jJZgl^ahy&#E@44*IOL~37E z57ic)QemKu`4$cGz#j28Jkj&@Yh7v4GLaE5>qLlU1E0ULcV^}W%U2)HrpoJ&n3q0? zG?QNhX{VTTJ3A$8@y|73Zn|vvR;l?!T|HXD^N59Pm4YvNZ;ju+N zsR2&=y24tjES`4i_}GMWbRsV3av|zvQEouD*iE?35z%)+dV2BuD1Uzbn16gdAe!(T zi}V>a+MAR@zQzMjN!DzB2=+ZxPH%z7Hw8=SC!l}=9esQcVIuW6?S=lNWRSi=+9$aV z$@_$ZWoCsnPpw-}QB4#c5pv+Z@|FhkZ_{mgkdo3el*-`Vra>K@ovno?@gDT{ByyP? zULNaQFlfm;h+Tx&%7uh<0BaYFsK~yDG~Ul_^FD58B$3T7p?V=Il9JG$zEhafQ)#r= zobEBSQIaXIug|v|>Bi{%@4uM-5}x`y|DAFHC-Yj}G0uIyJsnnZWp%l@P1>wiMO3mSAm-=N%69hi_T$g(_{s*eUqA zbAoU?pFt>PzS5e)4c*ykb!j!2X`1IvqVXHXi1r`c7%PuCzRpy6r!9}1?wK5>B=)UL zPQ{p6hBkI5w6Z8F9z#!XFeO?WsmJ9h7f{foTZ|WEp5nfE0lNj`v;C#2TZE*JP8j5F z9I#Ot2L7$`)6uDqBxNX1|0&R99;p;fJsd4H_RXT*m|qEE$HOa&1PA$4lsnj<-!IIT z8Q#&as+q@CQ-f(CtKN@&Wp(utViqRvuIimlA+z9?Xyi}Q$ zX{5Y7rx_}$PLFRziU;|EQZd1!!FVkD!^5Zl`tN8Ie@INnIY_0n%gXBWIVXJj_iw6z zDb{GUV;S|Xa8Cs2{q0av@YBqq$i*?|DpQk#9NN48>1sa8%*tw#dMO3w04yF}=G?g* zpRYVnqh`VGeM*~dWjSA;%eYhj8aa3ETY*|6d#_sY&jga5pTiI0C59Ws2w)sezrJQ+ z46d~$6nSGR6Mq%oETu?`$xX6I9~8gZR|8?#%%pj zAV&)f+zk(tgaZj&Ch!q#c@uFFfJ`V4lr|FqzE8s86&0>RPvWAW45K-cYE~-dxb$FU zO_!K0+iG|y_k@j2{&KuLY+Qt0S8n5=&V#|1xdht29+ltAG&3fSXuYVrTpaE+SE7I1*v5t zRP}y+BEEG2laqHLR058V4Q-Vjb?LH11bE|7TGYOp>sgxZsLBv%XlPuUfid(JIVvnk&z;2{_=e->+AnXspvDyv+F#btz^_i?i-@c&rOjDqWDuul45INy zhZPG@O;P~@@B;95p#44`-=D2z`B>!hH=S{*0-1Uqye!W^ZwU_#H39|l)>3v`%L9=l zAt9YPD$+x4%e|;ZCkC$6-OWGl?q`o|Pc2?4DPE}+#3v*qU;;f! z7iL`$d{cV={*{4{4g83=;haCoykP?t+hiUW*4$8)yH-2Vxn$Y+iH%_r6zBoHU$eC) z_x2qe3=g&{32Vl}s}i+!7K(61&B>`#lb=s#0Gqn7y6PL&`!?%Ha^ohX{qJd_ig#~z z=N5Y`Q|S{@Uc^TPVP(~q6BF}%d8qXENXW|45~|r4reRYDjLi_xShsM$ZNBBk5hCYR zi2@?iZQ+V--H}E+#&71V!{(ha$&tOKghSEtI%5|^_(i+e2k(s$M^c{P^ejjQoZ;a3 zCX<74w-t02E`(O85vtV7&ni-iiu-K{sqBx5d=c=>rjOOr!JMoM3vHH|thYzDSz7v2 zUPJDnrxzR;7+h3Dlnbhy+{1_c7JEith^Qjg+4UYAZ(%wkBLjlQ7`&5gdW-DrhqXi) z$s=Et|KZa7dt!<6^7Devb<*&v zvS^m~R!_U_e`I(Um!6^cef<_L5yaAXkfN{hJo}+lYDdd=7wzYNVwa6G*x1r}x;Xw_ zU3Ytp;T{a+494VF8r)CJ%o0-)eM9JGSAu@H9Yoh#Q~U^zK;3G5w(5OCRk(j3sDp-P zE-NFEobuvz@2_`wA(J();*kKYu$Y@`SYFQQxKa*iR!LTwJEJQ)7HH(d)#P>`7g^ ze{F3b5_8hiNkltFJuGa0(N`iS~ALw6sXGM3as= z8%}`4uARsXNG=yd6{OrtYduPY?U$8lHsS>A`+PT|#2k9x zzO7Of5#e%LQ_a%VOA~@A-rUfz@jops!^r}5R@?CDI{EK%%C>do{rRt?2%#?_T=_qN zHL*s2G~C_!R?NRsQ&iyJUs-_m?u3MgAA*7$F#?c4aGkupzPe1i$--7mQ!O~_6S4Iu zluqGoqnmKg_VCm8{An@A#U;Et$T)R7cd{R9e9xgNR#vuJU0oCVFt0W>eD4DaH{H;X zJYsz~B7C9Vt1~l3E;#z@m)L}S12J+;1lcBRjNcdju@H6H&i$$iS{$UhxDc?xFlFkQ zQ0J9#<|WhbqAn=$1#$pv1QI;l$>~|cw%cc$82WhfS2;rIpnwUao?=uq$L;0i=#L3; zE5#lzHDD+07%jU8wtpk=B;R%qfc5ka0$d1EP&fhBpuh0rHD#91%c(L$6LLD(B``Vk zXa9ReRM;LxqPOzrbvTzC>K)f(tnHzpLKXp17wCAugNBo-JW~7!7R|7B^jD>#T6EdM z2=hadgBPNhRrAMJGP3U{$9K&v?wx@}bN^z80rB){tY$&HWe>>iun<*n+hT-o2Z$J1 z8&?;)o$EuVS0^)f5Zp-$kMfI`mq*9MZMSs+!aOWlGUHzGhT7El@>=MKSInn=jxC3O zrse&j$*F!dlDw;cca0atQcTRZp#gu1EJW|Y>PQI<vf^M<4ke?8IoD0jT6r6*KCfDOAIvKuD>X5s1PbiNuk)J3Wp3q z4gJxn>n^{I@6HqjDs-|4*dyH)dWX=d%+9YN55l3shknkn7RMF4zXJqbG{Vp1J%!IV zCxQ$z#AMUrtv|&_?b+?(dV%s^Wk~!uG=9xb9{UUL_XsGdAQG`1UPc&q9gAA zP5a%!su_K?_Vv3Zb$qkE6w(v!N47P1Fo}Wj$ouL@^Ol0Rx6sbk$@i=sT2G0-{~J)- z!h4Rp8_URobacvP2sgoStm&rqpy5w{6x^q(#Cse2qAgt#6IIHzELo~J>V0#gq6Dla z_-gz98R5EYfB5=|IEGD9Qafn4;!466e90(Aaz6~Cl{Yh*ZXBhALn0R)OQopmUgyJ#AP0o?RSI!bk zOh`Bj%>%3%IJ|qQ z9|wmT1@@+M*>n*mdS7xq;pGiLZtPxi0CnhIYip|!aKBzCD{Iz5@VgcW{jip#MVDw7 zJ`9gZnA?5bMfDb2#3NPB@U&!Q=@2EcFN*W-LB_Bw2Q!Wwui=y_KR+Vs%QF6xVXs~5p6Q?SZ6n=e+>O{d?p?DKYjf8xvJVzP=<(j zKk+FMIO&Y!&~X4*;G|a;oPriSWjkpI&}A8Ll3tA%_^Puk!DBl*IXSeoXW#`nEto7} zkq<2rt-x$}H5X1f(kH2t173&2)jJE!YAw&{=|66dHcfhY^+RXvu$$YXdzg~*whg7L z^s<=->K`s=y#0+mg$MKVq3T148G}``;(6IdNfK9E%g2v|@4!fg?&r(@_;EB0aroYs zcr=v4!D-MH`evuDeG7~+uZW5JFfr*RweD*#r@QPZ1p-F0sIoCn+21@ocHRgJ3*EOp zRWLe3;Qc*B4Hk9ykG%yv5l1FS^hL+U(hUv`l|n3+n36JF_U~W2uwY*$@A~M%oZoK> z|MRz@lr@Siwcl7Frct&!nyy=n(Ek4Hi2vnh&Xqj1PFBw&%amShgqvips$mmSm55hp z7&2P6QxlR?|B!Vs`dUhA_(VuZwzM32w?Q4bw%>#L@8zxg5c+Sc_X;*va3bdorSjYn zd0B5kpp%%4v30aT=6=Ft1hzKcpHG;=N#Fb5TvtwRw_(edz;&kn^fdZJxl9!@*yYz|Xk>d+o18p6FodGQKi9cz>n8s^KK_Wjy%Pn5 z8fam-hb?#$k@50BvaKOp>ON1+Ks$cXnd_^NMK%Ma4MW&*4GXUh6(o@2=_``S8p8=(R;uWS0wsQY=1>t)r@4BE4c0e>_?@ln$77`dlz+#w1j zF_G^MmKFP_rqV3R;)ioL|IN=nTi8CeAIGeGYcZuC7Mi{H@6Uku);KRX3d4~f_|{bO zJZ=QF$pGneKVJFzhV*|AsfWMekV;W!spIp$bdA6v$vDrDaT8n`(5sfHHbTTCetX1C zz0#w$q|FRXVO{F2UFpKKQHW<5VxEb@5d|7C>rjJT*3_FKd!Q06j%9gfQBhC% zP{XUSiX3?%AWo__#kbgZ6YnE>68raPh*1oG--SFZzln`a$IYP{sfWAj2K5_{FC*`> zXvusL0TaYTG5v8#@-kq-Ijk&c_%h?RQ8Z%X=)5y6f`{D zty><(9xTA$c0|)6op5)n5XxuDE9RR0!}t$MCM)hk`FKwr_r`MkJ?5~_PQ{G21WcC?6^Tj3g{KR!18-grbAX& zQ=^U2cn)&64bdA&&pmjWoRyD(bHtGPgwq%D0a&T2h9VvifbF_=5dzv;pNvrHrImr&?Ey4&On*sB77vG`{OC`gn813w2akqqXov@& z@a00eRaS9HuPzo=CX_DiLaRLl3&kP24e^hd^z=w5jvTJEH3)sm#mlIi9e6iaUQnoV zLSOOzhrk=YvLE;_+z$=E<2-G7cxhA$yF&>r=>PMK!X{W#nz*7$K~+4lMAeG5w~Z$_qkIw2oC4BdbRP*(Z&bPl}Ap#8obF9Rmj z=PTarOER5j1{*Grgw}@`bnig60re_L^GRvR9U>y08PmU?%MCByg+3qsp5?5w zdFF_}^=`-J_}KA7K!Ck)Zx9P%Xcoc}#HJRU4D*Kwr`Rner}_9RtvG%vU-pnfY|usuHv<*>Wk05=d-|K{zpc<)+vH$4cqp zG4KXI0=u8rG8S+c@8*b=Qr#uZiIC%8*ZDs$z}wc)<2s>{666^#w1aPt5|vXsX!$E8 zUw!`dZVLlQ@q4hL{4+Y5n8NuQ39Kufj0_B!;C6uAS{wW?37MFf0N~9x<0olh@lt;> zf`Vh`>&CK7@1MT!Q@f4BcHsGeGKg56A13lCQXQkCq(CA$-S6fog(6}t-CDV}@wwmm zxbX=CiLOMOqvGw=)$jB2nx=Z0-z%`ou1y<&=WH$rUc__=s(L->wCF8dvh&>*9~bn zVca(b?BF5~Ej@!rHyZI(LuGYfXX1mY9-qixzf0-Xtr5 zs=Sdpp=Ea6M@`KEgcw#PC_k|&pcyR~t}|WVUn58K58o#nbGMzN@qQ5XN+o)|4))Kn z8Bs4FYOj&$b0C5UG&VK8&l#wX0-J<=lOJlC?;De7{u_-A)ToQY zHGjCNAU!bJ|CN!!IcIP)AL)G*pJ``*2NoO$5frQVcuk$>M^>u4oGdIDw-%%GfNb=j z&kW1=38nnnLI@V`eCq7DsPPm`Q=`b<_Cv)Sh4<}!_wzC%^xgx-;fr&Tl6NOIQlw<} zk|l$<(^trT{OrWMIT|5sHL{uzrB(Yv^av(ew@Cn9`C0a4K9(>qE>cWCnAF9O*Vbw1 z>Ry98Dw9qYGVra9K=HXJ{I*l|M(M7*CyO!-K{O4EgRUd#&)-(iSO;rZ=Jd> zTfU|Z4-1)dH8TUAiUiP6!?_@hfdB45$Z?zpB>!ltxm3CR`yNWqCc$He23c=om) z>6Z2jKcDyM9GdIWGKM}MpYCrwzh}*@1)niDXOy#6!bm{1MZb3s4GMclda`%+To zI{Nxw-vi77Gg59BK1a3HN+~ar}E8s!E^NwFfOg@&yI} zs2qR<@nnCoM}m&-$A4M(s%*6o%{53}k&!}NydTP9i}L7;%-Z_nXFGF0?#}-hJ+5zN z9noB+{t4!e{h-^%ZAqOXp}OQ5qG!+6P^Epa8P_~qz%~oH(04U%Kjo$b_Lj2E{r!n` z^dBoOvGDNRcV1drdy*>60*v&Hy8bz)&2RD-C90uFE%-S8 zA=?X4?t}vA)SR8GQ)xj#{kvUCapbapN{V$(BGSkzwZKpv@E5+LQP3C}^e2v@f!nN8 z^ITgmMFCTWvqA#RYq(3ja`gSPaRGHj5*k^L)|wc1_Rsb-u)I}@i3tubH<>~w zU)!p-`5oR-$LD>qu1XlXE#GDunN1U^>brM!bX*#poJ;_dprq{VA#FMmD_h%hk6+ib zwhG!iJ?HP`@$WJP_|c2;2E}7js#*- zEhjI}2QtIO)m2l7_A`c+UtuucT4?pg0>Focql=y0s9Cx|$>}OHA;&vl$KP|J`GM{V zyl!xZU0hrUw%7c!B>YuvUYu6TH&pJjXeaID_>@qQ!@zIX=(RM6>apNs#g-XX)2bkH zE=Y0mEg<4~+1c6o4$yi@z%5NwNnx>XP&E2GWAUTrLuE3I7}Ou0C(ZuQE`_y{{4{b%B<6IdbDnRv$K`-(r_zYRi{kinrl64oAmFYW4k-@I8&k zbFj@&TwMGcZ0?u9(ftKzreBa8GfrvJyuD7zhZdKgi!Nv|hIyOcg<&1s|FO=39bFDO#5W|Axn zN2ihqhw0uf)Z2p3Ss!%7WBU|Vc^Ff;fNeFdJRs2^Iw?cNa$tXvSXVqycs)eer5J40 zVH!@mA!~~;ViW|5Zvr>pbp7tz6l2^Gk$%E#L5884cNW+mFjk`_B&HJb$C}BviVZWtJoeGn_(SDnm_jRQ^wP2L|cw>xDmEY}%sh!*W zt~I|Ga!tUg10pVO=ImVg(L0ZDV}q$C_WpXF)_bL$WPR29gB8ZaQi0dP{t-Pr1A1J^ zqb5K1H9e)Ja^#XAui)u_q5XKP{6mz7T(b+aTsiiGpu>X4h2p0xvV07{mKPTZJwE%e zuyT9N&cV)`^yqdpzk#R1NEV%)5j8buxR+L|xN9oiZ+gU;hli)=X&YOVR?dHBpS{Cd zt6lZ@faD%PDl6+%9dHUXNlIeO$ZdhlOyWgt^CfF(C~ND349d;{g0|@>=ij;_LKhq}76on&htE7)t~=hw0Y@y{*&kH8>C+smZ1M!$RD z4-p?SXJ;0Ew6nv$%3wn*{l{bEt{o4>MUv7k0J)7~!w=S`g0)$JR8HeN#+|`QOKq1& z_X~8{E9?K=u-*%%=>ocXIvB@?q3bJW^O=iF0&RTcZPUui=tmh7z}oATXx@XXa+W#^ zQD1S%YabgMvzvuaVc$CcetZ4+aT357^74?b&;OtU3Zc#hD+e5v;57z!2pwInuxThv zqGVW7Vxch!TSnegTNYp2#AHrezv>>8`&C!QOZ)sGg}L6r))=EEZ0oqHFGr?HTm0)a zbTE+aiIf{oWL;k`KMe>BINOZ{q5%s#uHRKEX0N{=es@A_{$;?maOJ1HpVM3>RH-D( zRNdgZ{$yl_Y*&K!jCBs>Ut$yHu~z|6HWCs(n9&Abm@EiC@A_4cKy{)KKB}Pn%rfywLK!Q zc%nuJCn|{v;DzS&CbG&O_tC}1z*v~!2@y-ut4=R=$e)V71lYR+6;=6B3AJcx)02lZcofwDRQmxMgo|Z&8aHQv<_vw23dq z;7!-{xqadEsNFH8%Tn6_G%y+~E8GXezsQgI9*ae>BDj8JzTd1iq-Rzt%UX0 z(!uKY``>YCd_;A$v$Gh@lLZdjFOX>vmT3uaHiQei+=Yoc+CZ7!UNn1eudZEI32WrC zxOfVNpsl8wl`Kc`rnAFb-Ro&aHUSQMU;Fx2!5aWIfz8vOn}13(fYFcocjkcEy$7#p%v z*@QJO7!I+s{e@5Akb9nvH|^~=6}3QGACwAK4~y4z())`B?o3Z6 z@y<0qXspA;$h)j{p{aB|-YAQ)d_t3~9~-eT0;xL}=>7aJYoLK5{B*pSZBwLQDGmv8 zW3N~=!eHk~Z}#mug}XBpGQZmvw|*|{cTNe#bu^p9*+hUJO{d3zYy@Irp=dyA?zDgr ze&q44*PR#iMmwPq@u_JR4?0pMtL1KFNbG`Ljuakqb!&!R$(w^8r5BSBMCXPxf{K9RP? z#5neEp>m2J^Q%-XYC5ge7I&llu9vBD#nsFFo1ZGMKiCfQy7%FJ)h$>1pspwiz?&mL z4>#?0A%D=*d0A-HS6A_@hnOXW#XT0V*`9-`Y0BS0e<1hqb-jFOXh`_q>(@G)zruhK z!^psi9qzIa3U5@6i+Ni)*Y3RXdEnH?gdkcOC^9uNHojM;&jIVA2fW0u;2+tCL&7U) zJmZa&>&C>wf=1g%=f2BQlxl-puasH3plZR&Toabx;YeHo6nH;*n~p_ z9kuo=L{+Bn0JLfR{HE2w`s@7{;WRm!o`7Tdk?(50ol%m24as-Szkqnh+bjyJq)q`-hXo91z$hN;gMxhQZhBr zNNYv}ElJ#8g2TPyMDpkf7Mb0UJu~WkfOm>XOF#W`+|~nCM8ScVY2F1w|C7H8XfCd= zcaSgqe}0MF9{-m|_A3N6N0PCy(w}6*cX>}+grAA<$OVr=uJ^L@ucAXhwR!auhR>p{ z-aAlPYk=A8y4<_kml%nt$z55I!B*jTysnc-qjq;urRg~ z7w|@;OG-R)Gis^1t+|*%^r$UCPWZXA^H9e7_Yc>sz>Qv5S{h?xYg-RNERgMD0nhs1 z@G!2~NKV)C->92`6awhVqM~}A7Tv+8^d;<*D1nPmBk9{@WO@-1qlVhrXCIvPi=1D6 zRal^tqSiURbb&(4LWwIz<^I)!I*ib52mVyBOZl3CD<8p`1@%yiHt(?+@P0&c;SBZkUS1AL^CFNC+r-LSb*~ z-^I^m%|6yl_fV|*2x~ih6LnE~;}~><|4Q6Ld;f64Ge_w4lCL{McOJ;p{|%9hWMtGb zQBi$`bBQ$<*SEz3H*O9NRZx4l;Zc(YoNRT2O6(3(&~K3ta)N^lqIt`Wo&6c7Fe$kt zCET&P5i1|urw|jee8|l~kr*QoFbE($bhD*n6m&-Mg^TO3)K-gcejy77sIboamFj6ffVE=~>Y zv~uEHloR=nB?DJlovF|+uK3}!1j*koFbD!5JR1iGA+#)rd@|#P{tFJkQML3X()};! z3KuB9gB9fe{`>DMNIsr$s;a52{Rwq^`7n%wbv^^0C)n>Ip;v^MjEs?;{T`aXzxMY* zIl1MIFu8mSsCxi3O9YJK2ib`+W#Jf$jEwBI=KsOQdJ_K$2~1UCN&Y$4=m;g=c}c!p zTqegoJ-=xM(BPE&`0caNt-s1gQVm3EK^O%`8Y5L{kaxsG$X4dHG z)b;PCd*?L7#QINkbPlW7Ud=;mx`X-O$ZR{D>}PA)TME~_`g(fhF!T8rnBnt;h9XM( zpE_;&#*dEdxW0HQ@v|VHxE!4@p-z2^Y~ypBzF{v41Za2`9I8A#Jue}I1jfGReo1E% z>Jm(?#isZ+)7V&RjHm4%x5+ZI)VJF@g3CX7hX^C^OE48hu*XZFv<(v(7lenS0IMpgYs}z1bttAN1kePh#k5b(ezQ$$52Cvc4uYQZXR8z(`wGff!48SE!aMP;HVGtP&D@z2xD1hhtt=@ytpZ zyS2}lIbPklgUMzoDrC`-3q_M22)Oe;2?t1fSd5n#?pg<)21u4kRBP6^Qj~ynm!WjP&GbvF=OP|AGYg z@^^K02t<>cn)HJYXP&NoebS*$VWz_r9Wu@7@osaZF+LOZ7S6S87IvN|Qw5#`zylp|1>kyD`WxJ$#$%YHSpf z82mS*=k~fqz>!oAkM4QpTyr#BlKGIV`9Cs(7~1RIhYL_wt=3L16PY(m3Q9@{p{b_6 zo(Np2>AGds{euOc@ChwP`H*FtUJ2N;t>ojmNd+o-va?}`W#dxDD~&5C9kn{o(~AcX zZ$B;+|1wdMMCv z+nYcm4yZr21BpaPuZ085(+25Y-B6ZjioB4`0SrG5fI0f3Ger6==R#}b&e#|m%%frD z83)mt2^cx|rKRcKF!90Utd_q94S%)diFnsA?n2d*8cmflFNgRz;Pk0VNJ?G;LAM(a zt!dxa7oaOvF=3V0|H!%tYM1RAP2$M;3Ot;KhK3-+##F33a90*T8i%SEejgqz(vQ^C zdJyhY@e)l2iWLN>0_b-55+jAMjUaawsic6=`vAJ^j9cGj#r@P2JK8& z<;}s#Z#~pdAeWjMM~7JxQHHVDe!i#SCp0cZiBqjxb`Zi9+18RyI?)=T0YmGV0RwpB zPsBWIkp~)iud6)`~mT3``r`TW^%`aMO2`O5EKikK`f&Y#$PnEC$w zbz*!x$!D+MN89hA&7-j`gf7c00Y3gz2(_=kElB+hQ_arI4qYgo6g^7)%P?zrh$fXy zuT;@T{hRG%o$W|D=~)W^sbOAU*Z<7%(c)9@t-!C`=1xCm9huC`%vOH=x}!rpW>S`# z(`?6JbA3_s`~UAW@X_@wF1AONtlQ^3UlBAjVU|||HX#q_={dXg|rR7%6$)4Kq z&L_`F-OXR$#Af;8eVR^d8j30!na0E*(TAG%>(^F`gx2I~cX+I3ryrk#d7{J=Cho6_3BM1B@#9M0*C>N*c3S*17 z?xiK#&YL4FB$+b(ZH~K-M1iGO`T*{5Zpv78)C zETH3jIt#TXqZmLGqqd2>NI$z9q}?|~lF6#2{oEB#HgrY35aT>JCKH#xU1ANe8 z3TusSxql_w{ni%pY(YwD!n^t2^G!EuzcNT_G}RS0DoydF{$;)Hcwy`nut}p?X|Rf* z&d)bhBEVF%{{DVrb{=FSLJ98F%z}7Y8v&ZDVskt#- zNoCUL5)Zn39vtc}u6C+tGX!i8KA5|W;J5k|yO&S9ufU>&0TrwO^7^^Ip8!Ia#`aSC zXIL!%p=kwwGQ&-|c|p&MuV`3(UqFD!r1BlOieEuI_yyFs!#f`)8;<5q-8Xe(o)Nco zEFVoc?{fScQ)C8{vcYMVkju2G;-g+> zrvnT>uKk%s85_n8N5d}tPwIScJ`FKG5PbM>liX?xBHQEp3j{>dRqNc?wAk?ML1QR; zb4diOAy7kzU?RUUk|i2$JCvzHGm`Zzu`f{>Ncz$+|5)e@dAbYgldZk|0JnJy(!6{$ zesU81#)G%J2>@{y_g3YA2@I9njmX*i%(@p;RM6Y$1}A#RdMk(poUlQQU9y zya|`2a&0ZzAGL2nj*|}Fl%fB=e|z=Ux0|Uw%z-F#^lrG(XCLRm2Kxz<);1;A)qmc= z!4hSuxBWLl_kcY%?rWC}|3@IAXkS-cxm}&u^NEUPK-0&6<)-dm`-o2Y8N-DW?I+m2 zn@EbAnW;w^DBPV21geF5tKFD%)%^5tuOE$$X&1Y*0-E@D!6f+%_zggUsM1R+MyspO zzZwal|F`|%rp3D)2Kc>9Dq&DU2GLh!B){vuW}QD0sZ4}X4zq-bq+F0cXI047>u5hEyBTbgVHr&Yh8Cd{F5R!4qIC^^40^Qs!JIvZ! z2Ha2!Ed(%KN{6HC)Nr=6)^5owl^lBy^&SuuOT_6z9a<_YsfI5~(Nx|* zbuXGq;aClr-rG)mgBDNKJZ}bw3b+joWuPjlZg+1knKaZqeH;mwPAaahj-P>xt8$z` zm*ed?Y*siSd8ILT7+#Z(1uR!m4fVxfU}8WU(7g9f(LFdo2D!FJ<`58U4Z8D!$NBB; z_9>hxQLfKqy>CROgRa;?gei7#q*@ixyhG2Y^L4G#^wVfZQ1Vy-Dm4v_B6x&iS4G^Y zSq~*fID*4gMTjLsxT$=9-NiJhj!M?Ow=*IgeRe#;;OqW!ES=ASMlA2<`cG}(xeH8G zlO1R4m^HJ-m>mQux!KqrVPInmZk4_p$_RgtifXBFzP}=(>EYwE0Shu8fIcNmTlEJ~ zf28Em$I*zBf`ZKp8vJz%t9^okGRm8~I_2Lg^W~E*Z6awQf=!G5arz2wX8N&#k7WwS zR-jO6R5B#tA-7qmQ$M~%FE)@Dpi#mA^v}1j;(dh=y3uJ?H? zg{3<=41)BA1s5hW6_r>fj6194KC2Krzj0x0m*%BO_aQgIbGTT%{IkX2mFn7J=9)mL)Z` z47p;T;bF^p+3=Q&3qLpve4>`wu?6QJoN}Y!EUg0Jzh5v3_M@YtW8f9dNFyQr(vlz? zhlCG<8Q1(iq0^b*AVHg^_oER3UE~kO?F9cd{vo=H3~~nXTh(G>a`OK785vVg>d&-v zv}N=^8#0JMEl1$_-`U!^W>#Bq=17w$0L6KKzPj3;iGVHF($ccV_sM&?GZ%h_}K35o;ec>{$17?OB^^Ayc zL^z82@logxBWwzO1(yL)^22IZos^|rj1Ta1~ko*UXYvxlopXx=AmqVveeOee?lt~h`HQrazMQtv^V z4|yPsure3*k7lhb3zuPuj>{+k1?DO|5<#^Hu=q}j`+l+hDJRxB;~f4R38bAhZnKt9 zXph7GsD?4n{n7|@Dy9N*LOJZWJ<&L?>G_qszX8qckM~ZD)c50<*RRV@3^=l{!|qs0 ztgUHZDg{f~SlRGfrjh$;!r23XB!Q#s+q3~|a>)R%_2mffout!Q+eZ$wZvdQm4rI)i zaQ%Ra)ue&d)r?!#T#Il`)~3Cw*WiFdftZ$aSo$cwX zRg#sx7mS_GO<|4wKuf7QEbq>TidSCvM0{|8nRQ~Bi0JnV5IpZN`}i;!eHcrs@9-Ch zzg+m_MMER5tAv%e$-#8be9)ex0%MO>f`hBFxVrEqJf48o!cyvJuBOZPtm3ymwR%>&O zanhbjnc_B>SoRZ2gc1@)AuBdN%U*HrFZLz!jm}ZNEH@NTP%JBJsITS=H@ zjh$7?C$_hUr7SJIyWBz`b$eY1hcFmejsxSu$OmX0l*4C;86SXE2fDjubxDYMPb0C^ z4=?z5tst+94wi?@>B5$IJH)Ol@PupNwuBh> zLEzAMaoN#H-O<2L$g5NDpElXh|)S1fn_~Y$pHZLVXZ;&EY>122%dEB^5nS z;%*FDs#^Cf#nC;YgYMng3gM~TO@H-t-j^`^RD;nj5rEHr3O&c(B*72Ox9T(48_?0| zGJKjpUtzr4XWC5vQ6H&mAy?vOfTaJIR4lTBp01bFeeMV6=ha#7A&vnj6$k>AUH|}F zvv3T2?_>)x@#|~0!}MeGRL3VY%GikQbVX!;`W49o_$r2k{_oaVO7}wkT5uYXFb82% z$IL8lYs+o`z67u0<0~tSU&Y2E%d}&YaT*;2ywH)4dCl18JKuEmFblR_jJ*)7oSdSh za@}Ntv-LD$_o_nfQYjctXaf9ce%@40k%ns0VX(`@L|5t6X4$t9Wx6TtPGQ(Um>IqL z@e6V*%~a4%TfH0Hw|~dRM}V^l6wwkrHsb2es*YRXgT3YhDgQU++%Ow3OtbiTv_Kjuy!T{cenaoV@5UoTJLm|8`um*nDst>mHgzNmev!<+hZ?vXrwyJJI0u4?kE|M ziW=#CKmtx;o%Owr+cQ(xXTjN;54+gfE;GxxR(s8pksSR1UH4$HMnV@3p_upfS8-9% z{FWASxSRc23j8Ap$_7QkRnto(LIHtiLHpD!e~;9P`J8}r-Z@=~OhvVJdrEf2_7=WT zoA?wIv6yId=t$7z!~5`S3x!mcd6*0`Ef$tX+|7-hi|eAQ4UXD7{MSm=H_+%j`zK$% zEXdG>yT*<{5T4fBpH9z~z_jh3@^bwuO||)(>ThDs5N%E=IhHWEtyDppGTMO}^@ps_ zmF?J2dAOexoYQ?|!Iub@xYaM~r{EPR6sjwV=r!k2CnHln*T~O%lQOQG7ZUQq2niGha;Y@zONVHF ziQ=cY)#rHGB4TtTA@zGa@^gz-^jB3?quix-iq0VMcqlOzWW7Ewv2c6F5TBxJJQXCj zd>%B#L8$69PrBzNM$Z%h^Zqjm3QiUlG`JW=Dmq8HA+awlwe0LC?6Yc)o;EqDXdZUG z^vdn{mowe>j%)1BTdu`)gK{BiCNf3LBytKJ`qk~n0m25A1wxgjF}=M%$U*f7Cp|fY z4p(3)LIE(DJCtplQc?Z8A{!bZ=kyc?xIp>fNau6JDX>cqxGt z{vqE#gpF-lxk@(sAm$=2WnkK`ulQl~EWL#FkI$7L`^g#f0xzHKor=!}0DS&OmXt;m zgG|O7L>hJE?=3slRR1BkIxC5l{hd#?WMyL~C(}%x<4_65p@ahe;wN|o+aMP91B!!( zCnks>?to}^c@Y$34DMJc_{IKYHvDXmm|qi*mZ|XMy{oy@bAM5rZgYm-=U2T{cF-A( zhDRF*N1URfq8gYewV-Ho8i#%M+=!86QMWUCq)I%H-tLR{$$5^x)6=%>u?&*D5?cJ{ zcFEX-$q&dTrV~3$l7mGfnTqGNe6Nlqv~WMulM@p=U=#jYEk^bI!$0x3-24yL;9$(X zm9>Z_7-wys?a6N^O1}b2z*`%P+~6zw+m9zW3h_A=JpYn67H%#TlK=ihAFKdB4(bTZ z3wup;wY5W~|6a)7?E?R`?BU;Qw%I0}T&SGn*37&+HcJ6*c5k`7Yb=o8B7-Z}QDY>> z>)%HP5K~owom5|6kNQ^in`5I%I)HsZkqWD?7tkxyUw|nF4=Nhkm+|p8kqH!xLx+$T zY=ck+y-Lk&JC!ifT(fH;M3G_&AkU@c^rHqDNk@K%vv0+JuwTkg=J;^e7?b4@p-q}n z0+X!>Z<5^r2Z_x;<-`vbPwJloPC^@EpG3JK+=zhi8uF7*y58798+F_`Xm4MUiwB_%)!K3by zUGO8>!JU}__L}ArKI6t$)F+I}F$JKipqgT0 z_Wzu0*8d!smgA|TFq0!WJ9Xgpd#lp)KZX1xG#DeR_azixZf&dnM@mFACmt8qKbtE> zBjOX6;Cmw?`fX$5>of-&5;UAA9k>}47c^-*3|Z@n$JDpnxt-uW8KWGKDcQcmvcCMjuFa=id54*b0BgQK@o57yC9k%fh~ zyf1hwS6y5hN^mF@uIC>JqQnKgSP^lde%J2T{R`}(pnr_kS}D83I9G@?3ztUh04}cN zP&5e^H0Y{fPXUc&xRlLWRJ;&CIrl?n43#AP>prG_M*@}Y0`7so;V1ypUzxrH8k{t~ zLy1Mtgu>gOKWddk=aG1!NP1~#2*Jeq0$X_t)Fe=Rwg&vYhmu zoP_x7UgeE^xY?ApW@5N#;`BtZ1W*m9&Ux~nw39a+*Re6zymMsmev+&YO zRBJDuo}Z&zVT1SZZM*t|cp0otNG-q-XsPENvOwl&qZ-t?Zt_Ri0ESE!l99nDB^w^Jllfwnkkv6&Jr~~XlEM9 zijAGU8yqk{x3@7tz<~QbEu>9}mf&*<;XM2YZqJ*)*ME$foG4;r-lpouq77%Mcn-~F zX7!VDu@M=X<67Iunlc<=t90eoq5XVvLFKV zC(U2}v<{6XaOF4C-kHXjZ0_I}D8$|>(>qb8vM>TG!To}QePix4tARJnyo8D#Rr`yD zD}5b7UW>QadT!gpG?)R9KOSB*d@7WV>UH=_5r7LAkfn84xK-0A7Lp+z$e@wTq}GTG zGm_hxnGoeNRXXPrYBX;Qs5HO|lB_kU1U6q>>ihQ(INqvufS>_=BWye+RZ=hk8+B+T z=eNdaWcr8|5EMx(+5a;kCXar$(edk@Qj)yk{(c$2S)QDp!f7ChsZ2Mu;ukYql*qxW z?*vGShRLk7Qw@E>pxYZu+1h!RAzBBN@sd~07m1$USt2g@V$i|Y8i8;SQ9$n(*!pbf_ zzMJV@7TXuc+kkXPw+r1Ywjxub!$53pfQZz!y3@cvd{|uFaQcA6C5n zUbI(r{2ZN_xF13Rnp;%9vZpZ|Q2+eI$;M`E4uB1)O+cGCiX&j8{BU{jOR-q0yIwQ9 z#(T#ANd_#8#bC9s2a3z1fZ~6kfWUr3xMbQCy7(D=s?NruJ>d5EZg+!y!-l?IYBjD7 zvHQV_Y*|s!T`=%GgSUM=OVo4Q+*91UfH11_--p{?ZBb)M?J|9%W)~W3ehL7{KNnf~ z?jwrMr@u{PP-i za*`Ht_p1NHq(FR>NEX1~t*NUEdyE=X-PDtlm4yw5%x;J#N&`=OVPSy@%+xa@2^(uk z1mo#AHKxt~{FSNlzAcU<))DLIG(1z!R+YvPZFr-gba1-Ed-*po&-LjeW@f*idtA4- zXY;zvAdoc#U5kLzz;Nb*A}oz;Oz7W5;d8Y2d>%E7_e*=-&t2y9sqnk^r^?BE_7?_V zTr#aKt16zl`*A~?9AvIV^WoZ(O;P#uVUbyf^x3hPPecEKGy zTvbRx2olGlZlMmwAy@a1C|0qSgVI#O(F3ydVfA$5&UwHzdC!NKwGeIq0F(X-PZ>90F@YUOKpb!M6z z!{h-(I`hA9`y-d|bITU;#(8PR9c`>~Pt~w0;xLXvKOlcBNfvwhX-;`X*S$6Ls-RUk$W#}bL~L|4JccW`(}kVq~11$LQOM4olT z-E1m7IvNG47P39kxb;iyw>ne_8)j$S0#7h1do*?htMnD)1&_=lLkX2IBF_tgfkP1CU!F501f=1z~O69La^*b5p57 z`6pl-1Kf_vm3%xs=il8Ci^d%@ zsxVbPhHP>F)k$}aRL}_)`}JWoUDDPb&UF^`7OnKg^3hS4ioa+yGK!t^c>Qa*wYHvR z2zUjVHX%)X=-wTAcxb)$Xpu`cX&^hR2$YetiU#7|oSaZq)crvcgmoEw8Ds_(p{AM% zTo$4D8_|CX3lC!2_k1|Zn8Mng7$p3|+=t5*0^-jc9bYp* z5jUJcUX-o7e5hfDqw!=Tct58N1C+fx?hhCOwr4@3D7VN__-hy(&x zpF1R9UXvgFjLymqM~T|l2&=EV&#I=?e!Gfi@h>>0C+cTnncf&XGpehgVBr&*Y%ydK zuU5yv^ZU%K$}1*~znq<%5RYeJ!3@#M0JBbPD9nRA7CSVKgPlAHJF|KDL!3@!Uhn$% zG`K83F_tcy_^l1Y6%YzQQWIP168=9gfbf4Kc%*OiA4iSi6O-w6<@>r~x=qUCfnlc) zsL*g~ME%`I7h(-wGKJ5*qxZjmN6t~cZ1W#2`tYT9g6JrVI$(+0ydv{^(Dj?+@mfaF zWyt{Tcni5ZXVvC7R;H%Uk3i3hjYplXw3>=sshDyYta{Rko0=Lb`QnjKitWf70TDNP zQS{;AHNhNl<+%5@BmFurjx`3){QQtqnZ+9Hdn~LY*4C^KBzP{buK1;;rK{wq_tphB z>uiWQ)1jK7>9e@aUrel6rT5tyg6k6{d`w(8_h@PTxK+l-O4)=D+Rs<`EEV1&>39h~ zQGOwzlgsmzCEWMOdXN{?u9q?0;lD*raYIBY&4P<2l2?i8v?{`ACE4VE|5mY@DL{?Q zL-tyZi?_$+Q$j{=r0gG#`g+_F@=uD}ye%dy?2etivkeT!gaOA2OEXOQq1C-)aKNzL zW)6=3$f2*};)p@B9D%P-`>s>pH=Ua2t4ggiN=h;&l!D^E_lG8kFyCUbK6LHW)@D5&tnie+*f3U4V1|+@PwvQ5?(@|Tu$KBq($@zPVW zFd6j^bRiYvl%*)9O-=+rfw+VLXg>F0i)tK|a<{%t(J90Ig0XeEE14M8VoQL{feSYY z)<|v;;oZR?&tR(Z6vW&HJK5MM!v-}4e^EZ7`Z_kY2Wb-l*{KQ*7tnRo6!A1fWAh%u z#nB4WND3rw35mA9t(Qk0s#X8JH(Z^88XH)8398K72bC2S^Wi%T+wV&zl@{MWIl*HO zO+R@QfBZ?d2ABo=W)P0h_bU}VF2gY~rjxyE{DWkrR8e$3HiBv2*uA(knj z&HT=w z+k97B5%CBmB#a4zr`6|Aq7;|MSx4L5{kSo9Dh@&C<n+Ha|5TS7EN7QU8*{OO zQUf)kJBKRf^qLdxe7AIJw;Yj;wzhn^0~z&weRM zpkiIzn$-i+1On~>4WP=<%$Dao-(&}qa|DGOoYD7a6B1tZ$%Y@CTzRi``XPsegs{C; zWnyOj34yUBrr2w+ccJPK8|&y0DEIWq5-WbV`5Sm|qNE;;JrnB=AEst@fo%f;t|!z! zjvQPTt8aQ&wd2J(F@*D+g!uu_%hj!% z?fCJHA!IT#Y?w!7YGzvmY!jpQhlTZb&7jk1sBc|XXiVK~KUf)KY~46;<0l^)inWyR zV4_GM;~8HFSj8y_YI4Q`g>PK?ZzvqAFF;mbh0aRqa>dvE_DgLU#HG-X(d*rPXE07t zAqj<=THX6wLc+;8pyjIY=y1Vzm5m%z(4Rmp8YbE7@~kF2{KwFju%4NxDGUpp(xMNJ zH}x!5CfPmAcK6ByJ_FSh6=iW@i*md4?WCO`LdXn}+FVOI-2JVBThuOTbEB#@Fl$)W z|Fg=R!}EmA4NhNNTsoYuk{-Mrhqe#n%UY|Lttl*E=K+lYY|u*8=Itx``F$3p3%%Mh zc>qR1NFd0RJRYqI$#+=x_Zxf+b{3Mf^&<}KCwNyXn@5L-a4MUfc{x4wka(tly*C)_RzWVIVxg!hM-ce<)K!VoUkrmJKl5NPe z*6&Zh6Qkkd3OFq|wc0fr^!j^BHueSuW#HxZMDzy4BAFhYZ|0^hPBlxs7oV{hkTw6a z{Xh2A44 zXJ=+p)A_61vMoDIU9UfyPx!Ghs@oAKKckKpq5vSk1_TX+FKU6qTL(8M#InH)hqgm! zHZCsv<)FU{Zqezc&34W^^J!-xw>N_P1r}=qDa0}#g_gmO$W0~nLIkozhj8z?%HDfm zSn4$(lL4_TtV?jb>@IiG!O$C$kf8HJSk#R!&31Re~bEJ(wY zsa2M6P8vuONL`?F1I8>mI=b%x*CC{|pwsdY3~PuFO||$-o@}_oWZB~pu}P>&vYTl4 zJ3O7Ia9;lV)IRdWCn9z`D#JnuPn_&m{#`RAS7S7px+DUD3WIbp0l;Ib1 z+IQGq*rq!}Lcj=>3|7=PlaMKkqN%r19^57)9lywta!%*qQL(=1`<7f^>qtiN0vTDT z{wCnC2n9Wq>Y+uO6?z=VcW={UR-qazw?U9Ckvjjs{r@tAsENU=h0u}_VP#lF166Ry z@?`WOT)nck_B9@mfse^5L}5My!##OnK<@Q#4#|sWCp4PYhAB6@q^_5u!BGlv_=9lR z3n;*J8~^_L)TAzgB#w^fHeeNv_0@d{oQ#%e(GB$Ugu_D%fPJ4aJg&6fb|C5FhtfrDBXD@cKU|W5*^L_vx;rW=DxNQ&wTO7gbzVkg z&9Ljm;0EncuB_c1;ePVtrEAB_$VkPvnIYc9#7Xj$WQND*aSSedCVT?I@7@P&;d6q7 zUNKj!wiepv(2lQ2xc)gLH_JSMv2|xTM6b){bo=AEl)vt!)=?(FFwT zqsrKO44>-cX_ORxD$&;NRUR4EhEZRp1O*0mgq?k?-sUhcYXtw3BQJLCEnmIr>SDrL{gN?HQL{zB~0iI)=q(i;Z)Ef}RQ?~0k4 zdWpLsy{q0qdMpFN9PkPdV0pMoD~-(0HG2I!+h-p1K?QF&!d5jD_sWuc=sn8uX3xci zJ9%K>gb0jkv5R>+nONDFiah?Bw|d=M#jzHG$QRTX=)rgMC-`d+cAPgUDPyNs-Xb9!aX;{ z{5)_+&YZTAx!LvM)*coq=L&oYA3$)G+`PxZ3OF-xWGq;bU+y^Frksq*QL5~VAz(~` zBqI1bo_#G;u4ZL>@QV0R`M#4H;XPE%3^_m)$~y$J@FeE^1DT&64AqE;DqQY=K6$|K z4F7z;z3y8X#LhPU%RoT_B5pTaC7~Q3W}Y(sgJXDA?LD;akjwS7fAgE85iB?VaG^9v z(mw|;ThRWEz5LhaqoX6Y)9uI5FTrWnf)7ejwLSr$)xjZ4vbVSQ4a&F@HvJ{QCj!@M z1vpp(!BQTwv2eb_Ojy0^>wDhX>2&Q=Ks}VR*pfN3UDH?`7x}V@_#a~u)8LkRuBKOW zC=x##Q|$fLY;hvy8ZA1phbUI|*47a)%*->ce=an4M+kFi$y&eB@qD}1Do%JtGdpzG z>E!a-wINr60uKxGD|juYK^UXN9hEjndN*JP`TCFi4&GfbG=}w-Fh@FM`11OC=IOkt zzJhTBcrIf6pR-Uf+S^Al?#oAyi-3@&GXVX_~oG@o+tVyo3Q_=gF21J9uwS0lNnc&_p9SlHZwG zSTHH$qY$fSYF5^N@bu+5KC-YV_-kpEV28b@8p?LaM1mL2&D%Q?GWBHm_+8X^)D}{D zA9xcXDpjmThD{?z4BNqfgM*lGXm<1UjV>!=hipd%Pz%-oRXEhy;mshHnZ+V5?xBxe z%Swq1@D*@fX{&$siT7`I)xx!~y#M4+y{#8s8W-b6Scb99*(HpM!J_j8u2ZvWuNshS zvei`kd8;FZX~gTUjg1R->TGu1)#K8yszdnRZ`t+B$zi|BLZ*KOruwxi14HWD>UQC?E!p9)Tsld$#;^id*Fz!dSng6Y(=}bGk0)VINMqRf zTtQ*+{>4DJF#BgthMZ5Kd!cW)Jd?8^Q{e)oS2A!>fba^5gnJRePo!S%=IOimc%`zuGWe2AfX}JS0&PNy2;LeC)n~; z7)ifss_DqNZ4GB(xr!KKLW7izXi*lLZ~SnAxw7X`Noj~rF+evik)^T#>&uN#C#=2Q z5q@^hrOl3qH_hJsH?>a<&8&1;9IuxG()n3 z;pdEDY;62T&$hXfgp3SSByb~5d^ddwHE1BHe5t6Ykf8AI0^Lv&2p!%%cNuzIteGlu znqi!8+D}DW6f-hE*;b^!5)GuIpB{f7srHOp%sBh{F@^4J$VqZqPR3H}S<=GV3~F8g zto_{iUHg-`q%rN~Yp}SGGCG}Jq%nA>_MGe>^YA253i<9D7_hPm5Dl`k^XZygX=jd( z)O{=y%PiGkt_Riv6xW}S8lL}FKgS;&>}MMCS)#eQxj|hI(p81q zo6{D=TRkgrGnr*vai^A(k!#i-g;s$=;qZtnMwcQ2hAhe|(lb z2jeXA+ChG(BSRui`PHQ}eO_uePO+{N3CW1V zs}jD9h#cC`8ryCFr@U+U$Yk6#I%?#HZ*E(8m+D74L!eyxy z@z)KgpZvCSh+e5bP2}^kUQKQ*n3X>E@9#4wTt-s-lHZ$%@b&mzLp|FmZPsm<>Q}zU za++3S{rekH)Z=%pfmmm5!&F9%^M9~c0<1G&T=%0f zG&JflnsPZ}1Y@EQj7*A#+a!Bbi}ovA9G-$h{^#02|H+CxaY7<~^<`&R^0aJy>bK!? zTtlE7Nf{aCuKb%eWff&pa?RFKC~Irmuh8b;a$1oKaoiiM=d~Sladou^3A{cCCcdmz z8ZK1nt^o+;WBAhhg`6mG%2Gcf5V!x-CG+Nu)bzA`+R3i5%o|VnLtXZQ+tbn1fx+d`jIDPVMY@%Cwg?9eCD>GVf?i=YG!ZU}yIZDlV*1$&JwlM3N9AtHM|T?Mt{Z zDVaje?;5*qBkq-zwHKiMcn_$>iv>TNEe>i_vp1wq>y%@9XNEUF21i9rT2#;YAU*p# zSw3%hQg0=x{5JRtG(fj&AuAz@Kk z4gbny2+d~h&idAcE78~P46oSsR~ctLepY_n62k9W7@)zLmeG zWmxZ~EE;qkDAhDGGJY_!_9}d<42|(l@6&JXRZ%2oL-I*@59RT3S?4AtFQp;OMtR zL%z95F^dVjuoiQZky&)xi&=;ax+gv6VBfPjImw}%p**M|bw|i-oM${BV5KTIPgToo z?rG~3F~sL|Lji^`lsJ!bFG;C()Xsad07N{^j{IJLByyVaJ$R)-;1!*H{+F8{srN^B z_d}2K(|OC#=FO}|h4b!@b#MXogj^WOkIBo0{HQScHNoD66R{6{e}NVPOxz41|JowDX(j8uR!g zHdfyH!S3wEkbIt`%if&eXp@lpk4x-yU`FbXn5w@}U^>&*kqh)X?$>#pE#4h9nyTND z{(`_{uyk<)%8X@jx%>y@zb}xes`)oHPvMvIgosy(*2n<_IU!li|9B1S{y&%BO?mu- zP~A?%c?D#xZf{}}TErlKf@tqgeLET!sXyp%IGfJtg=)$8$DR&BT&KHos`K%b)$EI* zu^icijQJ*)@4$o}x~EZK^~_6o@@y^ThC)caPJNT?Zr4k3w%<#pcTJ5sw>9f&s!c`L!VBS9J)~s4W zLHhFIu9iV$ZLO{B*Bn~q2ok^d_2i&JU3Uptcaf)$laGYs(B*>H$!vlZRN=q`fH?sV z{1^NSQ{9EJ@|O3X%$efBVx{Y}j3)HsLg;FzmbYMQ>%{JW2BgNm42t3{VMMAMe_8%L z50nG>RH4WP%*5@Z9(RslQ~0|8GklMQF%v%wxIA@ssFTX6xa(|sT|0BlWCLYoor~$| z`dJBt{|VT{`xmK`7-GWV{=vcFIe5O^o0>X&`xO;g7#B2B1fJ(>v^6=|>fT}*udWX< zBudJleYklFfil3=fp)YLT1Gph|7mPUc{hx^&pyA|Xoz}TcIiph3bW4`0I(I0TiAfu zExV<~>v|e^FvUk&5EUcdF4j5k^*k=xTVZZa5-h_Aza%I&a^7Vq$!GC3Kfjj@a!k@k z)B4pI%t-U*)zRVMZz0qV!?%@6J}KqPuh6nGyE1D%*#6|aY4OB*@a(CV^3MaYTlea> z25h+n1%^4GN#NPbYGpzu{PQ=n^1c7(~tmvmf_@eXtQav;~7>-G8=JZ}8 z?q91=EO&JHucjn%#;k)#i@Bkpfg3hMF5u||`7qWq1|*|?r=1rv+g=Zum{wG9D3xW5 zx+7Pv+;4=e-3yfY`l(~+xTOTFA)>EKz%I%OkGq2u^Xa=Fd@c)3~K|Wz}4hH^;=}*6KWBsm)k@@gyjWAEodYDRzh{u&oJLi3+|x}%U$mJkALbW#Y|+6Vd0M2{;Fq!vL`^dDe- zZR=#uyikRN2nwewe8~G|e2677>vM0-(Vsk_`*YgI5hz_*W1TZ|nx{ZE=cXC;pPGH> z9iKZ5YXh{h-zuV0n=RIJ$1U)Ph=QQd3xf?`szEgg62OIgz)#+L`}guq%khLB$32w0 zKItVgRRnGa+a#adPbug-I^}o4%vs^WGeUX1)BNX8&q&D)rhg!QnIK2`E{Eqy_(Wib zlyC;dCl%?a*M;L2{mFtcU0y44Y9r;5B2H!oFEb+hyQ3;?N9oU=x}(dg`fKPi&mNyV znw5=Od$T3&c0e;y<#j#&0e9`p4uhP{;A+cfWYf$8g!soD{g`C@R>Pp(?FH)nhUogx z=phVFhbw8pv^(&)Q@b1=b-62|_<)6@VB1AY3k&rX?j85T0Rc$dOFubTs-h4POci^% ztfl+nl}+=$(eD}ptKx}ITM5D8x!m4A{d_>Y1y@HWf>#Q@SGzn_ud6dVIy$7B;4oLYMft+vfZ%^A`Hvw#nLJ<1bnYe_ON^EP*m32pT>n$LD6A}}@0sLg->Fp-N!UWrf=QScFVnGl)oQqS! z+cfgr|x7oij&A8N*O+R+Rw&wF*t)a$b{v8_V*m{v)rX@-Z%*_?hoN=H{V5TLHW zfDaMvvW^YRg!{*nb-ZuA!K3jjij)uIS&0@k6PuFS?F9=|RX@v&`=nZUOzS){Jn~sM zIM!jTlE-D(wGV5{0GS-*ZaXM}IQh8nh^j0)UwQt!KhV8xb%CISvx;_)kPr5iyg$(J zQ!aS^@naQK_no0(Vef2hIiP5!+Z*2dKP|v#0e*h^^*RY)-#hd(0mdL)5PIf6z;d34Q;xC5k+v}wQJGjM&pK4^VribOy_ z@D_#`%o4b%2v){aA&x*6K0-KhlOgrt!v_&s+MEy2s!GFwwh9vTTUNITByzzI;;t7* zOhDD|CjC=f#O~}Cr(WeQ1QJ+W@Um}y6s8ZQ`S$%gLf8o;^u_gc?INj5F9HT-+z97E z@=*4d>54L=0S}Cf6w|N1wU4SmWI^OWFkY42r2PlVr_SE6evx4RtU%r^k8md%aDTHj zoaSD+k5Z%iikg#CWqUXa72*DYn+^t#5Re4gj7|73YOsw2`iLRIR|?u3A#m7lzpCB6 zHQZ}%&lavNJUCA0dA>(+hlvLL{XG_p_bRlZ%_&oQya!!oieD=`?fFKeBG@XW4IeOT zNp*($GSUPeWoKvdZaO9jt)F(AFk*zR&h4Fg*oorc2=}K7t+Ki8REG__+$bf9l0N zZz*y{N8c4#4QP5qfNwcCB*dqnfMHy2|3Kp4PrY-614H=x_f(KdB|DJ9QZ-Y%zG5%b zXt#`(tH$JuD~a?BB4>+e~Df&{h+iwg_h zF|@M2;11RBSZ#XoBHQ7aQ{>uyIEmCp10uDryhoQu)OSl8%vPYitT66-1ei1m4^X&8 zJRrh#IAQHFHhtdGL|%J*9FY3Y{$vdJa{Qd)gY^!a;58cP?KOMGw_@~bpmRjXfwTWV zeD}k(svkl^s&zLP$5LyUSRtv64Y9O)c^{LZ%VP%hSr@7|47(7ZSVP0-hFO{3a-A`> zyyYwQ$vH4^_9*=E61t2Ybae5I3eFMtUH$yU9VK(*7gDmL7uo{V`Ph+^Vv!)KV13tjBOWREMt4HNkI2}t{4f+5#SpX} zP3`@e2;l~LK*ZkK->>+tG#h0ST=gE{XoZDNe@Dk1X&;}n!zJmXWI;TT{rW+EFz2Uj z9c6qHd2?brJ8!A%)F{N>2cac|pTV6XjTh%_MC{SuA)j71ClIIL;*O~6aC&rtbh$vZ z?-O(sD2NgB@hl+X0MTtF)ucZ&K1?ZvlrjkGExh)K89`N5)qW?@8}Vzl_*Xqf1W&5G z#H3$0TY3;Z0b}zvk+wD%`QUoU^18kGU@6%^1Wc?{b1bZeTPCLJYN|Uv+fT5t?Bz6R zfp{Mt9E|$|9Hujl|F&PvFc^gLn-kaz2~nWo*r*+!Ho)C!IZ+zZxBBk~7c5(*Ox1SDykC9(6jTs z2#<`!hO0*VR2afV(A(PE1HgOq6>J#3Sy|LXWMnL^E-qY`fg1HtKcP>5U!NT+`xe{d zSIMQx`pNN$-}_?=-3{%pbhNwHdL~Vn!1-4MZ@N2pCLf<+Q+Qh#dn*^jZf`h8;1;0ebUV2&lHEAe=(gwr^6390}XGo=Lop9 zU}?R){Vd*LNvWci0aaHs;a|h;VTNvJe`mm0cVKXhq{PTwhL;mwqI?OioR??ALw_~i ze+l3HyFGp6c4U^^o#FW+YyAbyQKGd4X)#_F@b6$DPE1Tp1pr-`@wWnS>0s7rei2j$ zh`i0CL{{?|okAJN%}h;8lb+9d?gBvvT_^tca~qg7a{`O)OA4u+_YAmxxH#k&D*J6t zRnoozoHi)>v|AXNF$Au!I@UZr-8ZAe+Dczi5~n1i+{4KRo)`EZ4yG+*}WGE+0^i!rm+C3Hxh|61UULFG*8%>dy%_T>$7C zw})3_ThKIH@Dlk;co8~EK$w6nw$+UPpHK{dygY#G%j)82Q_y}TI4Lo)D+FF`6-~ll zj~?wS$@|pQ@WX;P%j>MdEFqzDYOeYCN8qv`#MgvEsz~^pd<@ir>2k4H&EDp1)pC-`Ln_?P?Wgy}EY#WCPu*k!g;Iw`G}bhWW zTd}w2)h>AT)OjBX4Grx*tkb3$GTi^G5RFZcW?~n0n<&KrAP;;QAbr)nNS}Qz`Aa1X zqFQrxcftiYap|&qHZdu&GYq?jm0xwY|0?3QU;Byr0eUmYJ~><;GKITQEA^=hKJ>y1 z)6vu#i%&(H`FA#^xL({(;tlD^4tp?gEgxqfWE{DiSzeAvSg-@Dr2lQDVN#0&!&u62 z&W$l(H_?#@zKn~EYpThY)FijJHeo-|N& zht}RSMJx98{_E!tShPx`xx3UrWq%R4L{E9Z{VaAT>P+?>m>VqAig=;J)!Xxut^zhW z48YpyU#4SQUh8eqJ~g$}iR z@;&BkBh&wIMJ}_0^X0%^iJ!4^Ov--ww53HI?BH05%W1CO3cq!1*|Rl zkS5+t#J-YOT->_Xl2aY`u(ahI4HO#a7#NaZ%ISbbX(f0^s9+xe{4^L2v*}iOgU}rO z*Zz_c-md!OGdeoF^2+W)M&au&;g3a=qbh2Na3}=5iy+_}5C^&WO){I-_zfSkBK}bv zZc>VQvToU@2FDY8m9I}p;a3gzQo$u5qNg8AFDecVKU#WkZ)G*3@jJg~FcR}89&OJ7 z9=@bumF*kurRFB@)xHs@HN~5&bkPlzlgnC#0r^!x9}9 zVKIPHW`b3pv+>c->c5jQ#Q51sHw(x^*3*)?W`pEvMq8znFjPN-ewpj`$b90w6}d;) zNd|@xQ(*1a0_ecl*qFB7`Nl@3>FtfXndcA5C&J06!4Ux`VMM`R2PmGhkz-AO{ljWz zW8H`F53TJz4g+;{!@Oo!>aVgmtQ+&UgzehW(sv=anX|O;t(J|AU`ZD8b>HU^AX*06 zE-ZKF;r*xCk%znkA{X$Lk0IoK0Xy0?#N0&Ez_f;kdOYClplzO#$UlsL`YZ(z_mD|)&-t#1 zT9?yyCfAqb7m-!MF{zFsGW!-5a=hI5Wi?jsoX?`k-@!dPHfDJ;qlJw`s-%k*2&t+`-u`e5Bj^u!0D?L-`nk6E67t<&5lkQcV$g8Q zLM|*U%&aY7fK_l1ddQvKaYw>AG^i0I?d-T<8QcB3#WM|-n>jWg$1LBO$gC&DJ;zQ9 z#UORq^SwL`;hZdzeFwO3@N61T(&(#6E=x{JKBT&*Z_hpOTwUE2E$Z?3rH-a1Ap#-c z0er6GD0modmQr^pPL(DP*E1p}NnB9jV6A|ZI~Z@8fB3)&eo(zq-D(RT$*d{(?Qc<8 zBT5~z->&g)fuVUD0M+RYS#vZcItX(SLh^jYFKWwno~BZ=5AUB%wj`(St-!_Ekl=oO zeQgIW!2_6cfyfbU+2t`87nj`NkoMDvsPzD)6e(yWwNzD+zbMi_^|&Aa)aDXQ7|*q5 zUP;Tu7Q5_{L*QpwQS?xgi_u0$m)c@xzO%tRK2R|M9Rbt3_qr}Zm%sWR?0RSK%v3ii z8$YSaR}RptwHY28>i{&$7Z43UV%HCb?Z26Y1r6ZP55TQ=2Mz5Xd~omgRG2YT1Rso?uY5KoOToY8EBQn*93Hd|BoL5l86u z3}4{>2MuE4%<;2>_ojq|fmzQ(#tiDjJ8B))C)ZV4IMxPo=D`m_QJ_4+WA9kz^}3he zQ6X{oHZHDcDmmaTNfO7y9k#x9d8BO+hu$f$~$#Rk%thF4@e0+Q(b93qNw}#=MFXVA$!)a0K z_;&(yw#I;ZBZ^yInhL(YJbx(aDsHzHK6QEFXkuk7ZJ1}R2dPYma30ttL217wB*Zr; z3SbuvF%Ke_cc8~_BsHjjy zlJaeh|8n^|(Kud#d*|(rE-~aJYJYR)8f$7sj(q;goC$O;hfez+z`w(3=9Z?JoxC`*75Ts0;Mz09Dw!(6X6`{>5wF*EZ@Rk}dbM9y+I zQ}4##as*}vB1}e}6UEp1J*tpGR%WioH2zZ1DRQE9Bxf_JJt!`2DUT+p zv>1b%l5)}F6$t|@jg;68bR%G@F!3Rwu#hnzBZIQ#?N8r)+55}{@fZuM(j7-^G_G3^ z5TL!~2n~#QmJ08W`t_Az&)Ag9t((_cGIwsG#5Sg(jdJT7$q}b0AebM1ys;|1yt4hu z-d-RumyXoSmZaf!>s>4^#3>-DFcOHNPN8HjHDh1kwEgeVCr1}sE-ETIpI+I7T3llK z{@=>4y_Z#^qfD$q+}}2Zvalcv>>chMA9#GEpl9_3$9hss%+CvY1_!^v^v-%nawH;R zkfXzo;f3kmcVfXhqqD(EoXEaK?3tyBAe9LL{{o-BV*~_w#GFh0b~mc3uqP- zq9NQCURejQDMAVU)(QCYCR|*pKQp{A2I04vc6Z+=1l$E3oL@|gs*;&A0K%QUpLU0H zS;#&K1yNgc!>d|~A-y(0-Ttn3V0a&d_1scZlg5C@RPFJ+NVG99U>MCle2BY@od__$ zy%8iJVo=u7^bq}RI~gf=eRF;M#&$LtbI_ofhy_ zT}ieir;t-53*|HY?b|&so`^qxW{TGuokkC4|MV0p$WbkQcj5>bC^Jyd6GK6sxIu?2XEhRXiV#jt znZuJ7{Ri3XFw{EPoekUGwt_AV15lzXNESt)B4RNzF`+qKl4h?rly&wx)@&Zqg1ZeI z8{nq+wAxFE;DR5WoM`E~kc)S2f7_cie88@cA61MR3O z5H=?-e;*_#2y)FnB9-AN)L<7cf%!?%jzA?R~_qK8#uyz z_|SZCC{1Co2^kehPmeU{$&=VWCp*-Aea{2aC@j=e!N;|QSNi7V&Ja*-32x0tH*}HF z`#$?w&Of$5da=A5Gu$LZMnc@Pp7!*!T|-qO(S92@rE$*9HY z@48Fd+ln#h4r}5c9iIOP4V{{uGuR%_LWPBIvO30H(PfU7(oplLPGZbj z?*4C63j)B67EQYdCn=B<)6mcWzH7IAZcn-f#GxR6 z^MebBMc3;PD+*X^O_Me@x$&4J|4zu}mpY9$n%JgqPV{sh5iSBPsCq#)J22O8ziQzFhtMMh76a^yT`$c-dIxLVj0=&8ajOp;9fsQIEq^ zHjXs0U=COye5AG|`Hq@|qSkh_8k0n_qt4Cg-x|m37l93dGRs2ay1E22E=y9@DfOx3 zG{c>pxt_QCs3aCYe@f}Te;=$vA^O7NbU5oM2ebA{%o}uWh&Htj%G&R+lbQT(GL$C5 z;2#v^@csHa>ryS!7`7tJEG$Csm4_<^{N-bpR&U>C62p~Kv2EqKl_MJsS#DL9_iVj! zAU({HgX7~|BM~VPha@I;Ag4(uYI|e5KPQ z``yscI?#sy6lBKuGm?Y(WW&~9ana>^L2Zprh@OjFG!znE zAk!}Q(-O<%F)XPCU7xexJK62r7)-+>B@KmvMg>@j-oYdfj?0q!-8T6emB`E{<0@JC z5`KkqzRjXSMS<8)j4#Vu%&-UG*cs6(!~M94ZhGi&*}s{!0v$EtSsH9V+)`< z)$2!s-{L2T#A_TWhU@F&QR0$c3?|%v*fRpsH9#Ly&rdwkTUw%$e}OLw{K>AX^TN=u z_B3FYf_Yts27Lj>P<%jjMxQx9l$zVwHZV`oc=hVnxB|}MDFez_v&bxJByDzCp0wr2 zVA}Co8>l$XV7ssYvKCfeVO_-Zxx(na5R%&|{WoD#>~9YCD$&WIyDu~BlX!yC--#m$ z9YHJMmXxAknOH9*7-`67BqEs9^V;3r8c+0zhUTVVw%qc_6tSS&qpO~ny2MmWOBNR0 zp+wfK)AO_8b(yIAv8-Tp(ms0n+>fYL^MnM$>xt}7OoNJ<8$NEf!It?Qpda6ZV((Rp z6T05dwZfNPYl_~?R-(O>k(61cRY^HkCsh0pN$>))w@T|kuv}GL{RF~d5H0(% zOM0WjdgSn!gP8kS#m34C-C&A9)a3ZM$Lby|)i-9EMN(TXFxEtzvIk0EZGc`#VZJ6p za?W7V2hxFND*hd&xC&#n!PFEeXYL?ft+_b}TB?NjJ$ImDrz|OW%*>;^xpCvh#?9|K zfW*<+EeCquB^dv7!VuuXi%43{;$>>){EHl}Cjm5%CdzU+|NCyr6b|{?%quj!=XTA$ znVD2ET!GL|VLY-W9i5pmDs8A6t6`n~9`sM;_()D(Rh9aQg8W2Us>NYH&g0z4u80yx zx~XYAl18tVnu?cDqK$_=!ZR0kii~vHAtfw zfqArc6FeU=gtx89XR8$+5;@X#65j(1V>x#|Nl8hBkU@@=O6S+FUv&=a*oTl-)PjK% zvN*TH`b^Nld%i^PEJDwH1|*Jqtfu+X6QDJ%roa0@@BH$|||J@CY44dSM+J zPENjY&QxiJH&6=+D0n3IQTh1b=MJlB`~%mkr1-bSTYX_fRnL&bZ*O|G|GQgzdxpB6 z$U)RUFmM+rtXzzY=-{*7KRP0S6toewEZjO;*^Rk!UFl_J_Q8kSObOQzRfX5>45(_|561_=@WHwp^*cj;moYMRAimdM_U^zE?2>x3QKbEqAw zzJI4pX?i1u@oRT3t!)^pQ~}Gx4<;KbpFS)}Elxvx&IN!;gyhG@H>V*>$YXTOe{Hm& zpNgsIQ`ubo_XAQqh0n2D&^QQTe0?J;5rplWRTcqJ5)Q+ow5CQ@tU|O2%jOp!nIAjd zxL+?{pV5NsXa!QtEY_7%uTJ!GGoE2(Wuw4i)*m1l3UYEPyzbl)2=@jEXHgAH-^mW8 zv=Z;2_PQe3`uX1}p5KpEDkv|!SkfFCORzOZr$zGJyM6YOurHqOMctOJUW#q)JX3eKH{~b zVdBPNJO}`$2*ipZBCnt~c?hIW9ym`w09qAZ0W1(gEjN7H=|yN|A=d#h;m`*)SrRy+ zz?LfnHZuX&5=fR|f8EdlJh}0z^!{*UW#y@Rj8@}gg6*y1GrY(cUT){atAGs*afgFd0w zQk&OuA{>HP0HB>-Z9D&1F)I_7pMyhJCDx?XW2i35U z&zw&ciWU)M+$AK;f__U8oSHC^T!M=83os;QR}`ZK3;1If?NJOmee z3Bhb)IOw$Nt=E{S!3*~5Q(e6j4Iw^0SDUa$F{Gl_q-81m{PAsem;9oaler)EpW?t* zIT4s^sbXH~)y)n;MKzX_nKbcfX%S$Jk%VBx88s$J24#Ye&n2h)RC7MibG&SV3?|rz zzJetn$T`H(?tt21O!z?S>k^E$Yrv+KVri&C@2*+$;Lk_WW^p5nk8L`P2_3L`}dM7Imu>=B8VQHzax8};&eQuO0vjGcF> zOkYGjerr0^7Q6n+S?Z2WK^`?fjbsxcQ9-n*XaCMXztnyN8RIkiJ3_Bs)#iV+`ilScYZgTqJs}5Nb??ahA7X_IC}r+e!GzWiYzhzu7-Xk$%8j>z|n+eUg{g zcHZbD#P;xE63|rN{rmN+Dlm%jrE*{p4mA^__@&tG9j61DyzZ%~Xw-ytbBg}nY`(!i zsTxPv6lU%p|Dv(#qhpDRO3CN>O40aKSM&MR3rVMe&e77_o~^pVdtvo1F)0lQJ+A(i zx9AufKVfEOjy_)f{60ak%eS;_#PJut6u@L;A3cg*U#D#>3`S^N`S?=xaqsB=a3_Jc z2r<|A>-5l^84WwPGCp2PO8ZO07y*Fv+_LS(O8r0q_;Y&t%ed4RMuHWpljAbVO_<2+ z^xfRhW%HsGX@r8FvIn+zb!Te>0h|mBgHNB_O?$)ZbSPH?)qIsZkSF|>hXc*9RyRS|$m@LlG5 z+lo|KL_Jd8name&d0b<$*4WzN-*np9Nf26ynIP&Ed6Ss(pg;Bg?wK7gB`-Q*7}4{- z|L`BD3G*enY0lDwL4qhmaNUhqJN22V(Ww1gNI5Z!1On_VDB^%zURG?P`D?XsdoGPX zw~Dtx#(TFs>zzlNh#gI{EbiPFIr%&_pp1Fn>yd!5O(($lU?J1f3c~u})EwG0b#*l? zeSM3PA1y^@I+}ze^>GZSnIC3Vb7U%E@I?j43`|mP|M07C-2dGBR*!D5$O<`C_vRup zMyoB2#8+0wH7Y$QAT}$jxHuG?B`nVArl75Pi&b56QSP_ggLLqZ#_$P4&~A~WL~pA% za_-YFNzwQa{*Ylg9g8_m!gEt_K56UA7>X!@5vh@EY!T~%k4=q$7#2J z9@JSNPsN3cLnuV54PgE}VD9G^EKGkaiZPTTkagY1QI2c<1oCo%A*o^s9=b}JFd-?2 z0qzJXPoPE{^>b3}-ysOK>t<&Te7A>TN_&2pmEqM9~V3^VF3Ke{PqnW z{HCY7v#3b=fary5gR^&FwZ_dwB0V)6F0XfO{`X6vyFDfk%3EDkp<{5EU{H>(ygpyg zy=i7&A8YmQc}XECEc_lqxU5!t6M~}{Qfhx<6Q%IS9A>#VV0fen#r4$qAme>&xyimQ z$jee=@6O2ZihRt@PVByPCwG02OO9^iF$vSn&Nk~xe!<~?(YPZct>V1QOp7y)+dZ*{ z?>kD?hj=FM;q;uFn#$rah+T9zDtiy1(h$x887Fy$dd3$&HB-SH^a>wpMdzW6k_wL*Xncs)Iv0_$w^5_1>M~ z>hp{L&ZnlSWnNQU!}rdy#j~l&_Dv~Fx*gW~vo-?CTj;yb;+c?;fM^ro@ZF>|A&Ytx zXq8YW9mu{2ZBx}tae|as27YV&Dn&)ur6STR7r}_Lj6tvL?;|A{BXV((JC-4GZ)(Pu z3k|$*I(mA*1rNh{{PZn_$fsO4`)gqjr^ZjYGZ-k3@1fBouS;8Z`SXL4Qa2#rZQtiO zb+9D##%XI8RPU@_pZ5|XwSEu~U_V`vKRC~N4$Q`TCjH)Zo}!^q6n-Cvsp#}{+qP@x zqwV&olyOKq)7Hx{Hv|O(0f@_COOCCJf5|gG>PZCTGLxLeeh%=}NZz zT-4qDy$RLUTW#&~I)!f7dq@u-J|yY3D~5%VGJZ%dj`#AOW2+bA|CgjBsug_ZS`H@=SZffXgy%05EhD|=J$FQ&{k9u_u2iQ5e*$R zwUOZI&I3Lqr4bJRtk3C?M=lG(M9Ik5cwF1e08RneE(Q+gE2Y%3znm@86LSkJ5~tW zF9_@EqGg{kZH_lJHbnQy6NZG9oPLwc@~+B8$>tKA zjw^BvgA6Y>g4X5FVYsM~{?m_1p!tm$xA21p@&VhwKg)%GKlD1iN(m+tut5itZa=sr zQN2On)O3UTfCxn)F*C1*U#6%KXvk3tN=gBc`A|yAID8i=0mOn}G}v&zC~7_3Jd_zy zSK2Mjd$RgHL+oYoTBd}?s_SCg%#!i>IYC#86^V-GT}>yaBXTa3NnT$6AT=h4qa+-q zp*d@96|aKg7K{1qmoK~%9`0roC0|{m3K`WL6qV+CCEAGnOricxmh$!c`7>HdHb8|--Gs- zsop+u4|7RLt2`MAAe#^MFZ|*_M}aA>4mgc$x;pO{0ALp~hw?#+`R$G8JLiA?>8I(U zRZ$?ore01?KEedV#?_dRgF#VJ8Dw(<7#*gUeKCpjAx)pKDraW0&(65iRaJeyYG9-- zyp1P%lnpaaK$0k+;mBP0pzd4ErytbUZ!B!+CdRn36c>FG<_Jf_@yAYd2so>;xU-2CC&fF&g@U74I{>nr|A^4OV~ zom~b}=cGJ5owmnFF%1k#*(G*hvh-o;PEgZR z*3r?NgAbedgwbwT@ltNUqyl-4r`YAzlC&;^ub=#gZL#EIJPH0+s4zoa1{)x)BmoH> zKJyE$+PWnmaF4PGUzCxbfgXbx5KK5KY{_rDt`k0Up@FBo=h>^Kq?3y4OY;b&mj%N2 z(?muu8lCOpT1vPerAx~LTo3k<%NWMo)4xxxFVT@Gf1Su)wYL(Jt!{6Z&b%G(aq76o zFtfQyfd7b4da>k|Etp2L=jz;)d5p^#BL*84l^bn+fL60P*I#4mbBTtRIIMFS@gF`E zQc&oV*?R*g8u%fSCPj|uK~5(E%t(L0`}-kKQPASupU6Ue4RHQAySh(ov#3r^G{{+5 zl>Szz-eF;3#E%})*MKtTQ-P*t-T>#*RLq6$DESfRw5>)nJiH$iBBWkJKmCjp3-ZSC zu_U~I1w7a%=aqY!lo8dNNtGX)#Aqk~lE~rHE`g)h&6l5}-#0s?)Z=SLtmhQPmr}8#B_DD-WTF0IIWvIGXOR2>gx7L5s#IWB@7K+=ZW5^@b*~RzC?xw{(mflCPti-ZIT*A#gYNb!}SiP zI+92~^vI^BD~0qecEP?{>B+?z%{R!Zgs(VZm3NxF1&$NkGKxx5JN@fANUjyaz1 z>OzBwgCPuF{JxE%^!9CfnwZ2UJFa4sadmbc|2nC7C)HnEQlqDs9^U`VL+U{nv0x7aC9_=;Q^?ee5WJGvd8lj{?r^SzXFFJ zr|n!*vR#j;d+-f1a&S7|0~=l4sx^-rq1SHjs8=Id4qd~-d~)e9fs>)WvL46t3OATQ zNKnOpsMW{&JCCAlIBvV5Vn-6{y*g=SWtHD`c#!puZeYNu)09-3AwuMQf;scX<1T}e zQkTt~l$I`Or1F>SLjA@>b!}}TaBskR=e+M8cINVO_tJI*nM>p{I3U@Bf*x3Fe_dg1 z{A4`(?Hh4vsW&0ZTZ+enm_gWtYDBDW%ZNC>zE+0`X`yD^j%2SP(eG+YSw9A5jJDJH z<^8q*No8eh=$VbSwzec;FINEQI*?}Cfi9A9bRr+c&()Q;=F>J6ew~L%*)ltORpi99 z7oCAY1ya&zwsZwEqj+MA7&I)pjdkK|-1sw~2>!UGLB;cM`3<}8*=7L&;V^Feyxp~M z-V>!{DUffHk~ykq%&OV0+&RFwF|cq1EPK(4Tg-9ZElaA*80R?ni|V-H0q0Q-=SWOQ%@@h@px8_duGcNXmlC z-=!pkd>%M3ZH2)e^w1h8t)A20j00@1hGlt!ql_+TZ&YEEYHs=N-GRlcKTiI!W|wDY zV>X_9e!VZakD@5O%Acl8W>>|>g9VD)ABQ44;^epOFUI?rxor#pG_0L0Dx^e*uu6B( zftp!cV_kl}&;he4Fp*$K(E9s#3ZF(t5fdXTD*-$ir?dTcNUe~|ShPA>XP3K1OdK6k zXH7;zQCUe~P-?|=7zrVOvfvNWHZYj`umzZ++1nCrCM)~3{w_@$0RfAhQS_hE#!pC6 z+XKf1R!08=rRNA6Q^b_t z=1T<=5U6N$M^nf1z!%y&hN+8D(P2US1ZE35tja47jQ@ z_H2}(O5jq3F0mAUf(3HvDxnq0e*`Y|(WaNQi4+kaYF z`%ic5D~0Bc(u?ea`R@#zmXAJ?w0H2Bs@R=#+h;tJwo(i?voY?ha1$Vj-P)?&8i*46 zZ)(0SCfLg0ah{a>H6IhO$#dige%k3P{eXrh^K9WKDx#)|Q?GWL5D_8?wEm3&wv!UC zS*RY|4`@E;<~`|hcHuH+KmMx%?t~KUa%Q+j&axn$_TWv0_n^c4GvV&?7SCh9$?~|1 zvt*Yz_18uR6Pu%<61uuiJ{>pJED7HGb_AsVAuhg&|nzim>AnJf9A;P+?_R3Em?5@LHXG~g>Vy0 zNPUCh(1#~aR?xvYF6MPBdNW=|RutFlHrkAZo_Wk6nznYd*D^^Uthh7xy2oNP@O!M> z#$Jw0%=7WVNXfsl5t4m`EIKMGxR{uj1k9qY`!>l#~5$t}jAh(8D^^aVI}T z;JXj_6=-+~yr7wcG-gj=Yaw!@L2(2o%&5#ao_GonYzAVOuN%PA2Ml5cEvyd!zCa{< zy!E7}?qf*%Y$JHi-y%J=nO*t^B(qf(t%~p}-X`Y*6cUVpxAmqtlUi9|F5u+nN9(rh zhtv@;^7|^N;d7UkfsU~ajM}Zh%?Er}Dv;}?Xcm#g4K(lC9GPJk7xO+t(tS?EmW{F6 z9T{V9X(Hn`RH!PISY3s%5=4hQTun0>h)vS}p(u5{AR*`<7|UFSSv~(PAe9MeU^CzW znU%RVPMYw@UcdwM*}=hl6qA@3?_|=Yr6pVn3M^ozEUseT-wW_THIJ%utu{Bh{OLED zk4HjE`hNFMy8zu=T)V9e3J3^DZAH2zL`q7LZjeThMnDPaZlpoFyBh)Nl2l3Q4r!zX zr2AXHbG|di{%eo@zC+=8?q}U|&3R2R6n`J$$5FPiQNo=nfjGI&vUx^gDaj)WZysLr zzKE{KE0RuW@JGFV#q+3pFtB5c&^8IH7!6HG8Q*n#TeMj5Yfv1s0jRZDA3svwL06C? zqyp z%15ki3k{+!espw3v3$H^0a6OdV(Ck)EtH}MEX?g)K+J;9r32tkmgVO9ahXrZ0if7) zPD4@siL$Ag3|bq{f+E*kLY%&i4lxZL9=3Y?@d^FiKa+Z!w-3m1ALC#^bxphHCHCKh zXEuo(sAsDLu{}nGF#E*C#(vXkPcrx}#Zp#GEmBYx4h=MjUkV6kgu1fTCB+P}6uE{@ij*@||5B9-RL$kx)C2# zSIoqh2|SRw)-2JUw}*mHqv>OMB9oGOt}hpEEobhDh)794eOBg_4&YDR?;RaeAbYJs zFr&Bvb&Q635%)1;vRuZ%elqDk{mQ<9ZKsCj$hYUubI*;8#BfOT^r%g3Y*yz+MyTA^*}2Z`%<-J17gfk2Z5J=2{~JVb(Z& zYzX#D#DyI^+S^d*gdlk%_}IYE7k*($x<9UdOtG;$D@Koo-2tiJ_7=4gp8QHEPcQ_& za5e-7;F6C9YaClFMzxa><=(p%=vi6So-Jqt7Z)4H`&mPPkdvIP%_VQ;4+PlVJ3TeE zg(*RYko3Sho}&)~MqXwn`cS)}8b=H6IakZyjl;<+>ym?gKT#pkmkqVukaUF5nTFNQ z19G|T<|w@W*_&(Wq}|a#YUX0H`=?h|iZ*|+{*t~7820pZerMXl#Lu63V~hDY9EZ)F zm-On|0Q}CDpz^013Bs!NaGx zcn>=xlVwhY>2nUC)Y*YSQAKoZx@rT8&<9b`?gRt`4fOiBdJ2q8lo=yi%=)amXv8Oc z&PWsJe@;d^ME6AUTW)DT0G@}-)P2u%0)WV$5*r22UZ;dD> z=J>nt;ebUGridn8i`Yha(_lFX^TKGXN&grEanvB{{&qbtx+gss$KL7Wp%=%#KI}7g zfb$QWpj`CiLjZTY&kXS`(f%v|o1IyKMf@uukM-*)RUhK;8>#k>hI z-@{^hh+xLDIsN%)?{#$?gxS3TrfYrv&$ui*TV$%qiFLBk!5lmnK0Ddq01c-K#AzON zf}$XO5MO)c@8Tn2HfZ16N3tgUfVN2Hn(y(y!2)zR??mqCM<*w1)~Vah%_HCbm(7x( zQh(xhBKGB;60PsymYVY2ixawNZhaw(+o64H<^5m%JsQ`4NT@mU@@kAA1bD5cW`xpf zbd;kw^rtvW_(u(si_Go+c>%sgb`ZUm3##ukvX|>bDk5C2`p^yO530d*VJ%tNqoZSE z2)=1oz26wmMx`de$Msr8f8p##L&c@m&A_tuZEQTt+@Rg8gFx?FCcoCJR~%b^=kpGs zw}F4<=g%Xt$lBsFbaDyp< zqOwmoIPAl^rE-?-Omos|d?gZx0iSLUgxxz&(7h(Vf6QJ_xakR`6f%f zbuFO{>A@$d^Mm#i5SPP*kYL}P4O=^Q5q|90nn!iSIUZck(}(A*XO z`E%~DNag1r-+Me)UviZ-NwjKdpTyaw-=2Ty*K$4H@(1&=w(||CFTj={2sM%Db(_+0 zwD+5)OEQhxuD7KLL|S*aT|uF`sTJ_jU?aPggE~}hz}aQa(ibd{E71V%C3TvG5Gf5 znYGF9CdpzGRl;3k!!Ga$90d_xs}yu+eXxqKyF8_N@=~iUmCwE3!(<^{_3uAhq1V`O ztAjUIAChHn?6I-ehReuge)ao5+}unplcRUNIk-2fuGBtk)%u_EJ*>r@){78_`&dT1 z%F3BH(KLE$)SrqQ_+X5IoFffrVS3Ae0_kKNNLRzc#`$Bjft$AAhtU>JraxJpGh3{N zrI5Y|JOHTvd1_^88D8vjhgMb1CV^G&4SZq_;ZlNdvB`vdR@(WC69@Fwnu>4hqJa#m z{Jdw!rXr!kFW^-v{XSWKx4r$VMk67Cni^eqZ}xhF=c}~CTeo$BK4O~R}Bw#1p>tXUN7Ldh@+wi>CQg=AVbV>;Cpad zU0=7;0=x6!lm=c=5nvx;d;}br(x3*2&|<`IIZ|fz&!2Y*mHzZdFguFBc@zH+3Dt)Z z>n!up;r~w)DCk3cl(g_(=6^^YNZg?0*Qhc%;EPuPR2r(BUNhgrCeFQS={@oCH?f)) zL1oF#5$s;tUq*HLm6qBaN%S(lJEiF*<8W8_FdC4j2N4> zGeTEEE0~e;+*G;Q2O3BN(Ab=w{f7E2DFoeV#;k>$+z8$4+}NUmF)38UDuUw4$kw_f zpC^?*=l6!+pMf|{N2W{RWw{52gw`j z4*v{SowKSxwfb6TW60|kZ_7ED?y;r-CjsKS4_pXPu-a^We1@K~;TpuyQz<=LcP}ZP zpCVffBjSrDTwm!jZSMJ%%Qsd|!DwNH+(`s+01W__O~DEdk#747OqAu^V1mc^1m@W9 z@A_W+h-1ezhrY(NPsp}^e}6}M@?>82H8vkB^JzuJstH)@Iu4E}bG=_@;7rXd@3r12 z!*2h*sp)j#p&X$&=}SjBz+oFhN}5vixD%WDK6Z_9RkeE!%kA0BfkD9AoG-dkx zMIuZk%Mzh&-Ry=##jfeHqa%t9@3H^(7`+2weB*Q(HKx8{_*5ZL==AT;`zA9}-eD9E zGPo^x9Rvkq1O3~-z2(Ft*&7Q^KZoWnf{$0unjZ*5T;+$eD>(p1V+VG3HjlH&^ztgs zq6TE-$i6iYQBx`z$n{{P8e-!R8Mrv!sBvNi4cOlfFp4UFe;Ydf_n-Tgx*o>KpFg38 z$Nm!?{;SURYV1R7C~{ZMSnQbkEAzI}@Uq6I9Y=Of75o79*+!Tgt9xtA9of>{mQ$@8%yByX68{|AbL z1jIn$EN>ZGj$(QR3Gw&zM24Uw2?Hy-Un5E;Pw`I-vqy*54HUy*qKb7Qlp6RD8c4}t z23oabaV?C;oje37b?)!1AqPb1k-kE; zm=vv$+pnpL*Q{nIFX|hV8ox);lq)<^nW#;AS+~^c;-b{p$+I976d}35`GIn_nS_`{ z)7?57+j}QEg(pf=(VMl-!gt_wfz#PV$pe#sAVfE|Z}V|~`fEpH0s|A1Al8<%JCLM| z>@m_0J&+71WrVei`n@49xOvi1-1yu)K9i~yT)s6!U^+C!#n&W*#W(;xUIdvCIUOA` za7rq}LK54GSpv2hHt9 zB*JqQ&DR17%j8K`e>c?_y$&XOX)@emA1pPq+OyhE&i5}&FD)Y@0`Y7{-~>wtOD{2kIt+b@jwd^Bvz+$kwSQxdgHdg56c{;%hKKF% z>@oyAFoVTL?746$jg8mk|1FxEP5g0W(bK(52P4g(;XChQCa7b$4knoX#ch#UWzUG$ zHKa)GFqjdu-de=QP48fEY{oP;-ozvRN{Y6ov;LoUZ*O;#?pta3cm;v;+bOrbuM7i! zJ+3_8$LqX6&-Q*UE{rQCtf&BwD4yev|6#Yc>f$oGog#ApaW64 z^vhGM60Juk$saWx_EfOJwOQeE_#U#!XK?~Ir#{=0n}GfCta%M}V8wgEi7GbL%i;SY`^HDD>9v!HrX*&U5q;?s~?&Lh6$60k1?oNAEb0fNOBjVIKUd6 z=!HGQ$B!S2pV)9w31*N^@6K*&j+HA=3uI-9rROUYU?zH8GBjPs!~Y&i;-SFfKNcS! zUg#sf9?4W^wGC$uwk{eon*(g?!w&;Ob=9geZdZw1K=8w6bV_gn|~UomdL@Rb%5 zkobgNIUcbLQ-45?G&8dSE1uZvOaH(J6wAQIyGqdWeCxrC-i7y=h$nnrR+K58wOoV^ z&bmMZP9YD9eJp3h27${o9r>8E+cPc;Fgb|sbws#XR>r4)XIj6>ap~9Y?AA-kh+f!y z54HV3acyWY;ju4VU0&|+Tl${GWkudX#831h*+#dh$Xgrd=TH`r;kyoQq>&tNq=UYg zCwztDMt0!6-mWsjuvbwrpm-EGXZhQ@cZ!HW@TNZGPCXiRR~FzYO`P_^-+6g4q^43P z^dT&Xe_`h8_zUX+vIgzcse1MT3rl$;AcY+?yD658BWj>B0E*P3tsUub!~pGw4d5+Z zF2N>ob}83&CVv!o-{Ug7JPez~r_rH@-f~)mMIW3f=3CR8nD*GD=%S*ca^S{{0m;Bh z@Y)XsYBp(wz|t`6sL?46O*N5F(rp$!Dd^x(R#@TL2g_+ zT`0Ohdv5U#T4s?p&ea&=&WtV{NlE#XU89mPOiwK#+QXJ4hbA4J30x}xfXm~ebP~nD z&yiL-nlglXg%<}Z7~dzqs`|!JQlB`n93hC`b99uuW8La$1lElFHV^FSF=1b{EC{I% zjgR|lKkI@7`cL2lRe*JW@}oYO&{&mdbpj?z8BL5nYOgSqY0|KSO$`1@$~{&j`@2wZ zU7dg3_PhDp4}QCGrXJPk#EP7i%m0R+KF!T+DPbNfc_SR390FM!8@FCU(~C*HR@Yr4 z4oufyX|lCn;w`L0*^8Bt!|wMF4t9YP(SgWtK{om*okRGR=it*vueRH#@Ub3~l$G6f zg7on&@GHCf-k-KSX;|3;oZ>wtLO7YvJcAq^x#KDTGG+X0?~ZgfwoXy*Q=zmMsyHWy zgMN}U5~W7`V-LiyHIeNTC{&2D-& zVgL`!g8UQOn>VpVW!R~yL6mFj1bh|Mxk%$~1GXjOW~nb6FhPHIJ^a*np>Xj1LHTWS z5c=YJMmtd6ldy>w;Yo5nSVjd+F90s>*|1lB2VkuRo;N6_l^XyHTK!_&7ZPfrOV0P} zb&9g|-d6)7bIUpB_1eearI%->Le8#n7!SOdsR?<58EFBq0hHsmi6WY$riKcfhK8|% znQT-wonNWaKP*rGhJ!{@Z7M9MVoi?4S%%&!-vU+HXW`rgqMn10Bp;@#+Q048yM*CX(u z$>4*KuNj`1kMN(4K%u%K= zq166ij_qotBPEVd%KQGQ9Owsaq|8j0Xw8x*tNf0GQ{9P$O=agGE+L0CVL8XZWjZ3Z z0~-YeikSH=7_~)=jA$2H3(+IuSpzF29~c0W_8S<|0R-Fjp-dB1Ow2m?{rmcvhN>w( z#^5RyrYyHr^y=-2IJi_LsrjOb07d31>HZ^qV{_)Isi}P>r@fHB>w|VTF;Bj?O=(nC zSAWsC8xRmHo%$l~=+4D)j$1<7>+&a0d~2*8IPO#aNF*8_pCYOy;jxXRZKP*bSB|fF zO)_RNLkK=N1GrQXg5!-Zl=Q9q4?qvqL;2@@m|^~t)M*_sonduOmjpbVe`F-Ce4euO z=(lFR-?_AM5EvcT4`iBE4VXdMdp<+m?5fl^esOGn3o@HqwcQg`Y?Lg`j(!_b#`T1D zKsGc1$B|^Ab|-@QISvH17XSL+uhwg3-mI<8HH)W{HJkS(z%QnFU28!S*9Tb*3sXRH zyZn)(y*$fQ!WMfeAV3ad8(S$q*`mW#&3#@E;>V-;!WV0gHs5!JkGy*HNWShh3E|JK zoWaF*u7#=y!7_BexyEDpRl(Aawt=+LprdLiUIpmgdQW=mY4FJ&B2(ye zX8u}H&;&q%n47NpkOVzdXLTDat|Z`3gNBAs7dN*mO)FbsBcn)B-Ora#(eFTDhMvo0 zNXXV=KK0W&8dfB+w_5#FulOT>&FlR%G*&&Il?elG1enJ~TnWaOfGWHTHh=q_DLe#W zd%Q&bC*;m-z~ESZbn@uoL+aDR!K^0<1dOf+KImrK6aQrk4Q8lF?`4ZuheI;37@dqv zGjMmdwYe%a5((~ti=COmCR#4>z)4n}Rxur$gpV{GV3KL2JAmVyq;h*xnDa&@v#%>~ z;0a5Z*if0?lgg5$q5YAI_o3}`bEFW(18&t+%X4;-BGqLm*D;y@#`nS8Tz1gdgu(c5 z!7rR_Grhi1+3Wb`T9u2#ofoy;?5l7^MFskU2Z6!C7^$hLW@Yok4FA^GRWfOK6Vpxm z(~+ScE@ll(?3COOS&oh}$w*;zc~BvIH}_~KI5Ge`DJ_j`eQD_vOcxbFqJjGNDC;F3 z99;eU3@xGvtJqV(2Eye)zh73iy_sL2Lg!_rAvTF}#F(D;d0+hwi1=ff!gtF? zXKEN+&Tz#QGAcXMUUDKyg+_EW_a!VPrhINpdqGuWq4ki62>nvPL*M?4ZRbP(yAQ0| z`hPecn{O?)k+adur*MZ^nHZz?MdIeKtf2;Oj@q35)p#1!I6`kZ?bdCxYn_kfCcR6KI}3m4lp!;hTvG zvE}3Ab}lnN$Xu|)UPu-O;i)=Sj(>+yv9U0|eXz6~_yPsG3h&(Bfv%)gT2N|72xxySjXI%_Vy(AA7c*_7+GZuNHSMSQwj4bPi0)J`w0s%e-@rp%e#P%?K1s<$$ooaP0zn4PjxLiD7Dm1U zbT(XEN_emWVGSk*Dm5Za3|!!0@Od8aD}2iC5W##CO8&YFjC!Wcu2WY#kMUnP8r4#G z{BS+m!AM`vf??Egdt&#Pr_NB)jBj-GdsC1OJw5$0M6#u$X+02)pT}Ahi+6husH(1! zZ_Uom&&QP*2%DVK_sU92N>oe6q0l;(nJ{DotOi@(_-p^PerorQ3 z6qgJS41`KDKaNktq)TVPj`E*c-Xe z8q)(8hCE;+z2RHF7FgQY2!crS5+G(1*$nP%P15qKl8uaRZetI4(@OI~IUqww_EFE1 zjBf&FnHXO*v{V%DW`1#+=2x;NJ^rvaE&6sVmsa_FcRHq0uIl};gx5Jo9AmAiD9V%P zu_%e!+6+}^$CGVEDzWT61Nm6%Ls?=Qzkdgx0iH3YD_q)NhHf+{s%YHo2mGiR1)wE0 z+)4>kF+d{B+VtQZ(dPE&3tPSdtyTfv@EFL9E-o!8nGf#4;myXufe-h+GpJP8Q0slu zLO>gQ5g;qWKyz5Rul?ATn%a-gd}9BG<1siqXu(xJ0R@jUr>wIx%9rim1MSluv3jng zuJcf_uwb{|-n=B{GNT0+)Mo$6o>){dquJJ8JgqG?oa}h-xlkI9j*r=aec%aq++~A>w@JZO zeDa8v9gpFu-*n$Qm!cw7ZVWT?X~5P)NqUFJ+h9dN)w}8vbJHrTmXk-J%F1GTr}4kt zJ$x2I4cnC;fWO2+LKHW{R3Qx)8sk64?LN=~^ogDR;_PgH&FpfvcKk0V#+|4^pF7k{ z=jUSDx|YW-7*I{xS*Vor70@DxSWNN@2ebacsd$#y-A3mqDXZz4;!pvP3rc8aZmly9 zZ0F-+vz*3n&yfh`c5#`re=Ym^@rW-Lp7b@;* zTR!8MD1XFnXX{*dWG`kh+j-C8cL;QBDrG9}i}tzJkX2Xfdv4%rS(;(C9PrxuBDpN{sju(7kdbbI~bnjx4}2G?N`!Q zjc-IS6a0iHCMq#e!(SV^7Y{)`*uMPp8uO#$7Rs;GU|HLSL}xA38W9%8m|0~(vJ19gFRcQcp&|lHaY@nA zH!BeJ905Zwd|=YRj)Md|tuhFI!TC~dMX}6V?AYB+Nxe|de$F4~YgL2XHGH1VFFo$f zx}8A!QsUEF?2r%>vX2Y$YQj+e2!`}5V_Cwzd2Co!fC&!jS3{t|J3;rGbGsIZop4|I zgDmx7Ak_fSmO|4WYwrd#0%e{_-X5+Sq@`l5)tIv(Dn0s-j;xQD#qqMTKuvXb;qv-0 z!sBu{@$1ljaHg(cP~&YvE-?&SqPQr4REvj>40G;pXh`3XwZDuXUwNCg&&zyVyDPBR z8VXklvX3*>n{BY(HZko^mC5sokDr)5#=E%-iUc}z7uwrD2fVaDps(j4kqSi@D&^Eg9p!awTynMg&KL6a=|I7Vrag z5TPH$$@~Ou<1N(Gj+t>eEBRTxqn2@Spo{zb83qN(c>q6hUoopQyt_E)s;+2m_in`i zAJ{_}63<~*ew%Y@4_4Idsw&ROO^f$3R`YW5^CZ19zVHUl)>%~@taROS3j3C7nX1%P z3IX&Y+3b3ZOF_X30jfhp zYY!9CI{^U!=aOwy#9b0WcYaRA6*vCU4$b+B2mox7aM5YGKAGj2H-xf7FzQp$()#hR zu|;ZDo3w+O!XLE9)xDZWP^rKtv*4j_xG$EcY_O6oPNb<3^b2b5H%I6I^pasUl=*3O zb=42rf}4Ne2@9fZPe#7Gk>rvh=kgdFd@vc(#mUeCo4mnsjlyC!I!&YHYJ8G5IJN8k zBL)(+&mqxp#T1i}pgue>6b=nrbG~~wYu&1~r#6D*Udcn2eYg(xz%Q<{w)T%I(|^z- zng@vMKl7Dz$&wP;^O00)z9c?EwPLdOVZYwtja*;%@$puzB{ocwpyfhe85BJ5^6{yC zd8|aM++s`Th>8{hYF;XAgfmM^`|HfcG0Dry)&~A1ael~TRDx&M@;Kzu#wM1p_G>0) z=H+RRi=e|+oE|nhIxdjxoFP*V_c|enwZcOY6cU2q&?%MczDjiYF8qI9fK)JwFfcJK zOJb49AjhxuZ8mriyff^H7xa)puGlbPy8h;o;sfi}H?c93-ta)3U0xbOMatT;VYyHd zEl0T`?%RtSw_f?1f3k6UmxqIb2;&k`Tlf7(V92%Yj0kKBl>CXF`%7*vB)A>U9ME$Z z29h`nLJnKa#+ht({O_l3UL312OUcM?_RXgcJfRP`(>XCgXg@sJb>1d42T>$2+;gFR z{rtJeNq{o*ox5=iy%bo7;n{@Uk)CLy3qd7~q#``LLuqWta|Id7YkpBmKUJ}yf|z@6 zT7^ne{b7A?cX!)-7)f4K3U`HIzQQBPP|}__dfLU)A;kk`CnucC(-^WcqgId+XkK|- z#6l$)y6-D~=fp%sh3jIq*f8)yP5@?wP-AcW{v{3>0sv1XjSs?!3-l!+Oz!S3NGz-m zrt0w~M@E0%ci6H9`DiGzq&RONf?O%{%RltC67{G?U?$)^rhc8sd$4Df?;~{Sp@i40 z{_!cQy`3$CcVx84w!sf{%{>DHLWVmV-=23QMyul0->f{Kd`WU{%ZHhrLnVbDtywK3 z?TgkuH2QtC`nmM8gwL>9{}vGu0a&hrndxtSD3~aK%eg+p!?QYlJNbo*M9rmFN*Vu^ zTb#f7$_nG*mn881AiH0&D=RA_mIdxd!;(RtKZ{ygmW`F^y!^Aes#=z(2xvQayhKhG zkprGv;k>=RSbRSyF~PI2=q}=uSX$BtK;ZhOrq2kJFA;1KPreYs2np4KEtl7+Y@d8E zl6xMEBhcBc-;C}dJw=Orp#R$k^?vN$)eXh||BQsXFcPx+iwr~ZTcyNy;>aqD(KP~g zFF;uEgXt1!AO2b(y3kV)64Iifpjd-`>5=yf7s+}9m+#Fu14`>1rQGQRJUp@NmfLi6 zeHly(qm`~vb+84;D@sTEfeZwZn$I9ZcMlBwLFlF6%g6!@aHT{Tu`t|t0n0cvIT;94 z9&meZ5bHJEd8+&Ct39J$*-ekle{128#Y}SB_a@EbL49N<1i<4nST{(+ru56d(2-MY zV5vM46x91Mdt|ZDC~o||oXQ2#t@VKSm~3*gx>A{TkxN!R03Qrr-tR`d>GbEp7kn%% zJ?%XMWn28M0gFJ^mVsoI98jY+rmLPALq5RboCx*OC|mJ z^7NuEzLdlf4ejgp2O01Jd8NwzfY2zibV~ zZ3^L}!r%K6q9&`JD3|O02lZ(Na7Ehr@`d-3+X5H7dD$CVAzd^Q)?wk~;(+xSnTL8j z@V!!^<0C<`DA*Sbd-<`U;s;~l$7I+R{&(Ob{|8zzBEcvN7XDx`#xH9NoTG#!aYk|4 z(xM1Q5*dDh^%&OzrP9R#S09JWbkl`63!HTB~O-1nW zvD#UQ5CqyWNN!$UW>iDNE_Req{!{5QTSu^|R~@ud6!8G>ot74LDDxY|05*a2i@Diq zm!I<~$;sKk+*^kGO~dWgy5P9_TSh`vCP5qO{Z$NAaOTL%bo7Z|0bPU|sSH#ElW+RS zU*Dk;4C@4CR21&soUriq#n;-} zfR>gPL`hBE)(Gmx2r4ELuPb2|L|myxB4nLkUlu#%Dpf1z~8&$VD{e+!B_{aX>5!ejGNFvDjM zz)O*17bZp|;}uQWFpUDxT1Z-M!QuB_@H5wJ{YfhVpk)1@oj_ zOVS+by%=JWGZZF~C!0O}(S;1NZLH*ics+w(dU z8*nXKT6vy$xEKE7<2oLnf78k2gSyhC9<=c7E;KzrEBFtfpP&Lo%q!PMi%>i_FHhR) zH_3ZL6?TexEI7Xk6fz#dcLtp2tgpOowDVyd1^|;jiII^{b6pE55tT%=~|+2`=8eF`4?h#Qdt(hZ1p*6c!ea zmdT3-Q6m?2BQ`bUG(6@Hk2zcB3>l(d3mJJ9iMZF6eZ3r&ws9!KhalWOkm>=aXd9`3TxGN$?57}M0^i-zzEEW7oQ zL-1gu&Jy#`|5NG74!zJ&|oI_XKATjr`fgUok%-46R zS$U&Nt_hI8U5N2=he|UrQi(Y2k>hy?BhkxwYiNgp-@XL~85l_<)(yVvFRn`_d6}En zL-!<19;o#XNHg^tM3A4pz4MF;`CBdb&S1v6ui&-nM=mdcdv=E*AIzuNFd3$1RdDI( z{3m|wOt)2=N-@l8=}vG8OQAoDAp7i@l%yCNAN?C%0ki!-%Re!HdW6|tcKAD!Qz+0L zSb%Bnw{INtrd>)30i&ZMeMSz4Difwi*AK<7QVJ0qr#X@;ZBE0~TRE0fkph>e3!|?* zACpQtPWKis+ZC!-2c`)=DDM!Vq(vF=!_b$Oj(ue{?BgCr%v6JzK321@=(#Kc{svtS?;jXP(rOw)0pz6P z0O?pv-|$%9{U#QcgA9N*Rhs#rW0PXB-+M^ zzk5?c=38IVE}j3x544cX;iBtwU3z-$ZR<`sOR-;$2%?tC(QCbg%EsnX`p_diA6O0m zqE32Tqf`P6sW65_rbOQRU^hc@TtGKU&MOOw1!uRLi|OJRD6;C9KRq7!Ci=U?t1S$@xxX_>_qWQzj1|y0SNB zYMAXD9Kg-E_i!s+AdUNsM$&9xB=w~v$?TtgF-V{8)*(uDCdzdBppZcLbSA4H04)`JV_wvm?0Lh#Q(Po;gLH73J8+j9+^ZswP#X9p$Wg_^HJnw~uqLoySs_PR|Aa?>P^ z(`q#yM|%=tJzaHgc~CINuH=nIvn$t3wdq|wy@im=mlniqE*zqtA0FK<>Q8;q#z;vd z%5*RXPL(12H#<-(JM_{%sD|u0`cIC>!1zJ|juaFGfP{Vz(O|T;!O#?+5a>OmXyV80 z25x9@T`hqu$_7{ioWXx&J+1mP)9kLcS^!>vPpOXCgvKX>RnV^`HeBR5)<1Fmqekz+NW*7T_vib z*)y#;^;dtC{dFU4$a2bQ!}?$mzx(;Wka&Cr1x)VdvfsvM*2UKK_C?21y#cabOoa@2J>nF#$38;H zaotjlg0k_7ZP^MGnXgH@HS0R_#6Ke@FjI5$N#_XO@bBKpcfIS1I^3{I$hIssUwEo8GxLl!Z2z%KmGf5|5Vv|5tF8ae@g40gWOyw! z&w}F}D%?HYs42)^=f2K?+Cd~c(!ffkcehVfnV7_n{$&>)T^t`Z*YN-|0_a65<9y35 zy+oxN!t&Rn1*@UEvy$OLqxrGtU;LfZ0SOj>Lk7TrvLHxNaISA}e|}S{iP)OJL>dX_ z7A>671EZq^97$hXyV}P8Q!Lug_>XyN0*}V}_fTYms-`Tc2w$tJ2w#NS7#N3L_|Tbfm3&DgX=vd?6KhkWZWFTHu+;<0H=7q`QY8e(?khLyQ#0p ztb~~SCNr`3o4xev0dR-ZHa-3LE*jS2JYzSoM}qO1uUrb`=_>i({V=b(MCxw%IG>7g z;^SlTYTU=9mBZ}?8}1ha(fYVB1;bD(C{+U3z<+9j4GpV9W~Az!Qf+%pdqIBSvtnbz zr6Cu{^;ASML`Eow5I%;?g%CKgkTMOlNzt?${m#P4P=O-a=(IP`(AWswOu~ppJ_3|a zMXF5mYdr+d_fHGlzPMOE)6F#py%g{7SGI2^^Q1d{tkYj>%+3GXM_7+WvG0GUQ&Ay& ztM#4ZDOOoo*?)2Ov!!UFYb|K9q5JBmNp&yL^PnHQzxso}mg~NzYwGN*j^|p3*ozoB zK0bq%!!B{#;ZR*Akgo_5p-}<4mWQ&%@1y%r^6~Pr#cm$4b$WkgbDwK@6czduTsebE+H#NE7*+IR6VcZSGO`c9yhZo?C-(99po{e3 z)6AWwaGX>T(WKE_>2IrBArdk42Ij6WI4#F9o4l^@*x0<^+CS&GzS6fepsIYxqF8T5 z!Q=k>1#NQDr@hGs@cRLF$9;IjB9mhMI-w=YV+}KAF!9shsHnC8?8w*2esIreg9=56 zCF-JFUu+1RsQC9f;NcRV>IMV;a*EHw8z`z`0l9SE*s7D7cr99jA7ii%26 zW1c!Irj#^(sX|`#$B_4a*$I!-KBV#rn_ul4P^YKxsK>fa-hs|9Wdj2$-}r~St#K#% z-<*a0Uh*aF_+(J%#6Wwlxq-Q?CU5dd-Jn2@SB3zc4jKzfv9ihUMl;l*WUix+P*ihs zqiS4faM!p?A%osvr1wOzG~axtmW6C^KK<|IpMHB5rs?HMzKIbn1@Utd*x6{P(eHQi zSpK3%MazbQHeSjY1K^?|!REcJ2&wzA;S)M(&1=1v4Y#8Idwmat&uZA%UKVqd#2;dmLw#l4;vV+*zlc0xWfSe|dza~h)cieI1^88Z z?$>Flbatw`qW8AJUUjb3OK)Ui;$}UL&ew;5;Cchk*kpS==Q!JD9$cee60@j01g$CK zLe$W@lvedP&Cf3!@FN>+{Zo&T?-ri!a0%lXKjQswU;E~HeUN#-| zW>lfHm=Enhy`Q^5C7P@2c4}*F<6>CuF$tj(&%TG7x=oG@%0)jG37#MXY6ECSSM}$x zAdcF$m@RawpIe%czt8zKe#JQReg9sD~%690zU9LS`!W{HDu@Z3xOsoZ9>$kVFp=Q<@_}06fTI$lrWZ4zS zTT}4jW{noCv@qCiZf?SN?j=M^3g6^RroCjlIaG+9YxD=vCYrwUXfx8Z8m+f?y0pK) zo#;CduqmbSFHq3lX~~H_i;`b<_3g*c;XNKx5tPxHWQi7?X3eTsg*XIHqF;eJeudOe z{8}~#Nn*`#b3;)dnqaoFYHRaD4+@pW6Jpixf_?Jj>fA0iKECAzMn{|XL)+1qcN1KX$b?wv6i0Pn{sD5NWzrzbo@#qSKw^8Qt*l*@2CEcsk! zyu+vL6T^sIrc%&CRbcde$h=iMjIr%z!)6_jb+=p&3%xXIs7Y9j=93*Zqx5pylMj$0 zlaoVW7u<_16rHPd|KZc_Ypb-`Te|bNqPPzS03SV56*$U^w z;0XQZqL7imB@N*1Mg_R-&Qgzz3aas@{eMs@8#Nch-5J>vhjZ=aWn?nbIq%7Wg&syIagbq&42R@?!m3mRG`j}Z?G!}4ynz8S{3?L!Vs|bq z?7X@+NS4sIw7nZfjQLBi9s0v?adEvbShR|<^W{s2_W@Q-fQN^N0JwvzPS@r4_;_4i zZf+)cF039Zj~*3XoFl83cL1>~1nXCmP!{D#@#Za|IJGkl&KQnT+N)QdsX>2srtKHj zZ1vBqa|;SqR>R4Fp*}D$0RGLkwY~%!aCSnPS*S=AQu)$|K!7Oh_KCSaqIV|RL-fb- zcvV`i!5#yxD?F}M&CHCc>ySU0+d|V}*!>^IbjvHZ;`G@M8N=qEA1c)r;`4@!#?Zg+ z?cwgSv0kVSPThRWS==gcbF+W8&1xi{%CP%6%-?pJ<5nh*Wl-=XRyHa~9(P}2YY9V+SN z*x`}ArZobVBTH9=VRWnDgG`aur5_lpT|cQf>CwQv$ux0J1mvD`$RZA-eUqZ`*dJ>rcD zt|akOUAgVSh1TT{9v7-8#TFKKcQQi$&kL}5IyzFAz4dQxGDJ0AFNXXTE-ZDMoc21j zXztvOJCCzH0{>mV2^=~ z4b{ljU-`Vxw~lzc6cjVsC%ZY=RkcCESz*qdSRvH6=TDHBwx2ODc!SLq2vq6(Ekmbt?`g{XT2$BQgv ztKVzeuve!GNyYOO8a`ExR1%t2NrXeu#DNw2(gm-)x+)D#h%Nr9g}3IE5QJL9uG^WQ%j$wehq zzpq1z`}`3A-dqGfFqGTl-G|y6m~oyL<=0(>)!SnPxSh1+nyWhsa1z8D=je@$jEI4O zQ%4M!3^6m3dd{;IW~LkBzlX9(07OIGk5fNJN8&uza<{n2TNU|^+hu48q9UeEj6dFm5z&K{5p@IkY z->F9+QY_Wg!iu zi3&G4A}-24gBg#$-JbbUKxrdWU4lLQQKM-Mltk_%>(nFl(aCNQ+mXi6^O%W=p?k-q zk>OMD>2xdIB$!dxJjo-vOBUSf1>GtUOL^W8)%k**A;q={{~AmavPg zlI`tMjARFglc&?mZ9=XAdkd0gUEv%1>lyfe20svSg`|TwvB+IZGO)Lpf**;4W5{q# z=HcHRxn1;?P9<3>E+35=A4=RTs}aAy4$AnY-+L3EZ;tmegy%Gyoc_i9@3h4uct3(z zym+4VUZ}2!rY13paG__mtVNs6TJQSCSnxnqVbDh-M{W#S7{~@^S9?_RvM?}9--=SZ z8gt)my_Oi9_rr)q=HV=HXi-z6ra+hyX+(NQ}9bQtp63j6{7b39?HJdoH29{>5T3F(R7w!RjysMUWAl%NJ}FjAPCak zAsy04NXe#48YBdy5l}j$8w6=Zr8}fUKsp4JhBNujIoGv+xc>;Q^}f$DV~l%PU!Ytw zJ*%_Pzzdaf_5!3|({HZ3#+O_cD{_Q1Bct?PPaY>e=}^t+{&Hzm6a6&91}E)EfJ5P1iB5O z0o%!MB#DM>gevI&on1quau8k42{0hE|MNsu+rjBKcKm%UE&2&+q2a%uYV!hR-I;6~ z{)=BJ^L99Oa(T@b|FI#AC4r#^Of|$qS!yGfNGNs>oQ}{Sc!-vj74zO=03J6d?q3>_ zqJ;1MAIdyPK$clhhl{J==^+OhKB$uTeUo<}AVn0$>gY-ZH7)H4>)vzCo_O#+gAo>H z=QfU@=uY8}n}=n?%eh7Z1kff$07;Gple}Aj&@JQ>Yo%UJ3famv9ETzI^5eA~j*Ba+ z`q8}Ssu#qH*)MNbvcHUG(KKC`r->(OdVxc*mvXE4Wd(K3+4*@cXqBOtl$VitJq4?Z z3Kx8Bd{o%4HwYRk|RNd1tiG(rZoWmF_3UN-5$@ zQJ*kq13MwtNVib+iw#_TkX%3@Vhc3k@lxYw3Qr8nnS-ld>QAgh(I@9qP-xQfutx@ac$}_+Eb%&?H0j1p%bI-?{u1JSH z^}&PAhmVQWT3f#ltq-garf`L4SK_VpB$`_o8mgKU;yxiKSNv~puU}qz@6~a3_Co00 zO;o-8IO1Halb(bfIYsE&kps0si}}|2wKvg zbpf_M(;Cz*(1$$3XWW;KN_Ah$mXblmG;)}g`&UgU2y#|DQIUK(7r`<14}CG#LmQ%U zZ;=tJ5I5OP6M%sebAQe8m3L0(TS|rV4Tfde3?UVkF--#5_&2#2iU~{j_kNUFm^*na zNhlR%!tWXw3!qUqV1SZGUJ>u+V^60ez*W^7J!cn+fCQhk5 zkXp{w&Nw^QB1mBW;DK2et_Ut3Dc)R5kL|hhB6$kuNK>P0crf3>!s?K=oFZoV+13w? zdn6hz&yRkWRAz|Y^}XP@<7F!SBmnSIbPpbc-#~KF&BD4D2)b+RlxwtFrOg6 z=QQrT9vzR_0aeng9`A+&ykmh-bG!l3=1vq>o7sM8Ff`pnhM!(a+S=MCX9b+hd&1xm zz&IDY;)mwZ4%aYo;zqf_3+9{JVEQZhcseFk^=4 zwH?^qq9P*+A@uz-Fqob?7QM35|GXcDL-`sy?aX!WXh<@doSb}CV~Hsf-?V)@BgzmD zxDOeK@o@K~fi_71#M!->NVB!pu?NSSTK=E}0WO9wVA&wngn0{j!~ZYa&;Mqhfc$y| zJTf~F3B&@`9t^*5X~Z7FY~v7wjQ$Pw?^ERMWyfef7E{1J2$`q4n&j(aE(=Kae32(V zb_1ZK{v^$_y+K4*{Apjnwe&R0Tg1S>U0{Gc-4x~EShRg-4{R!k5bT<8c9lk!QEqR@oWiV9BfDBP|=>k|7|`wYA*>~M+<8#r%K zNie5bh6TNohldE5r7Qh53i_z1 zW--ecHJJkLD=B}>rX~UYO4X=?GuK}AwKW~8$6T@9YhOcUD0+7)lnSI|WKeI-)VCtgR%4?^@hnjy zX~)Iihz?-4Q;GR{eP5r5NP0`HyxOtYZdZK%j^j98B};We{DGQg*2Yw|85$ayfh{!@ zh>sAU<}G{ovUF_hi>+;||MC-Csi26o$8Wl|$2?%>1X%SA@#uI_nBVibW8Im4HzZ!D zl3B@>jFEWGZ5+VGH9pXf8bd7&!?rks22K^n`CvnTF*M&lcN%hw6bPdthtE2YUL<4; zoHaL@TfShPp%(t3N=gg?O7{V`B84t4-j8mo8Q}g zkjZ=ppLhL&PzY8qkSO;pKc8`LtJNoW?D~od)GL(WOd-e<_JlCkDs;STg{OXe7G6ip ze_3W{^>Bz`JtSakERrfpDZlb->2f_Q7{>RG_|!Ni%+j{z^w4=rNg-=Ke*F1|>-yK` zMzZqjQr~PQ12ondZqzz!)L_*Sd9?jsLMBwZ zZ*{_exEF7}w`(0hnOx5r9nGTdv90@kTkE4beu=Y%9s9;qJloK}y@Gq`D_yYV%awT@ zf->;e8x7XqHWf+rYv8F*%3QM&7Y#ioQ|uh^29m{<)WaJQ{-OmJYVcKBZGmVW)OK8R66PJ_57 z$fs}ARfG5s2w!36YxWCxSU#5mR^2z}rIP{e08N4MRLaduNdK;66KH40rKackdvzki zXy1!WEvAyTocLh#^6uR?+INws-@oHvO>A|2Fkkp{t`z*TQ6OPiHz~xpkuz$NvD%yv z`6&)O&mXZgczs*Q3eL_l&mO2UKDc6H6b*<8Db?$|y7pUj+hIA*;*aI>)YM@cZ5!4$ zB_`E6*j$$GUDBJ;^S`U!-jQ58<>8WFop)w5+(R!+Aa_K^q3i7KSJ{c3fW4-1}CdAX6NoW zIwMU@LWlt#29dmtz5NP6tU=^QNAR~Zyg2FadKPP^A*S-Xhw=Y6P>6*lME6dxgkKA+ z>aSq?kuYp9`$>jSN-9FYs0mdiHBhVEFv?R)vk`nwc_0deZWi)_PvJ*_Yy)HK*sU#Y zeVK~n4rJgs*?hwwTV1y}$hB z+drpL4C2P|X$j{)adaF(5Ab8)E@?hFDHqQt z3whaWmup|FrQ>aR*WNzl>Sr~mk9fXbH{HFb$vzbMu*w%pnI~&B0AB@ z{VI`F|28B&fHv3alja%&Q4PPKLOydH{HG?aF(cz8u$uuW*OKkTOJAWb${JhkO^%U~ zA>r*pHLd*1j-YkT{I=_Jdn-UHz4pI4zgi?F>>Dcl-_n;}N0p4EB>06{hHNF)|=C`}A@i3p$5~&#IQh zQEW>KN=mT6ce?^$ee6K?Kyyiau{g$J6IA`8lCOsorCg7fcmyh0F^KT-I}rUS2M!Qn zU((Xr%7>tR@BkemXTj_FwKE*=3=B1}leLI0UrI+mySR|Q>caaY&Q_VR`|~hXSwf;i z3Z%J1;gIdT{#o#b86xR%&xY06SX_>nso(ouj6UDmR78($7AB{-afsgo(E9s>f3ri> zH6VEfve2d>Xf|5@{Gb$Y-y();Yy$V464u=}uLNI`kw2jE(>^K$gBm#2^?HYfNCBqH zQcQ23mX;=>cJ0xY zRvN2}yh$v}B~&uW+BzeR1%*U5W2L0z-nO=u8>XM7!ai63Q7$M0VO%y;S!5^HSgc6A zTtv+3>^$`I&v91++-EzA=t#BntfGP<>Kb8E2x6+I(>`0<%UkYEdj%b$s0EDGA?m;*j$4YH^OInl7C1x**=y zPxH&kp`zPTDgw~akcN6OH%q5G3CJ)UpVl&M#(ltQ4wY%CvfvUq|fk&PwQz;2O7d`v3(Q`tKx7k0*{F ziR1jQx&fDz z9~~17%N6ky|xqxf@gvG zQqte1O{i~C&?Dvv2qd#DUNCR&>0wA*9dzOqakl;Y)ZTtG2$FA8L`tT&p*VsR!Gdr* z+o&Bnlr7-7JZN+lXKrfxm%ylq68JGbULz3^4s54l%RWmTwb{8^o zJ2QmhEf(rn1)up{XlfrVruXfxNY}N-ik0Mq|IfuWP9g6DbWpySil`{%tM3xpB#IAI z^E-FGphV{PXX3zOuRl}NaH_@oF{zj!;}=q#*@SAA5Jqm_sT0f zzmAySaRGHbJv=nD`W>tWsT~3*eO?L4ZqSI>G;U})Xs|@c-Br(DC&8+RCDdJbl|v$X zMV@~}t$x$k&LIlGO8mUwXR}AMP2C;_SDp z4F-mz@6sS5HS)5v;*s7KswsBqKZ{#1Y)kLR0c`*C&5@9FS1vA=;NUng9cWovcbcy% ztU;?TgTS`3T8;KSKnmhpUd}fa6=6{lwo+<60-JUq5GE7=fU?CWV1p0-C4u$Rz2^NY z2n-Kn2sSWSB`!YX$HB(H|Lk`Wnq8ci$8f9OfT=pULu;#zq2~++TGB>ZR%{Xf z;%i7ggLVn-1p7mO!S&nY`7S0VotgErl;u$Rn;q{Xd@#=Oy1N4>tc&B}L%6vdYa!$0 z7F)xICB)2};5uJMzFDN0$YOV&R9-_@S{j-oa2!h$%a$28--8kN?d@`Fx&9b~TV`%C zA|_5FXg#Dfus%SfN=ae9b@~Ut{hESf&4m@v9^KCxaB(Lmr4~EGdqygXXba7I2-#Fg zNMyI=w1|rKdi-~$xS?IMDJ(n^DbU=QDkJB-9a6;^A#?IDPCQ24aiVK#!meTPhNs@#z1bRsSfXIRWjBPF(kt;BV>eD-LE z%ExEs=;9v%0&Xd`lG5&W9<3dnwNa)~q7ZbVs>Bb<4`uN1YUHtT6tm7Qw8qafJTW33 z@#NN%k``7Bnwmg$yb2W%W8T=2G0AU z^e9LBE}!h9djFtB+)MqStbJtakMvP3{MVeIh&D^y3x@%4^K&~bb*!s7va|EZ_4k_? z-OVnG&fNr7WY=GkQjaVFXJmxg%a_%zu%8j|Jw1q8 zm)19~YG_H{^ZbE58s7IVKFFvPN6P`$CPA<(74s7Uilc_EE*i}LuV#p6XaZidV0e8( zFj$m*G_3$!R)uMM3@|Sxfx50gUX~`nC_wh))hm(Fk$8wfGlIo1ss%P6qNG6bdixN6 zF3~Zio;Na3iuZo-z@ zD9T7`f5Uf5OO&?$(dsj7@Cm!YaUm(}>bx|2eM#cTZ4FCM5U!C6>xGu}--W8Hrpl!; zL>4wS-4H-=OYEkLqz5oV5OZ)gnn9)r-BrB}fovZi-y4(5C8Qu8(O3AQv%Mu~zM5!g z^d4VPd)ln}!bIOMna!*e7rU35UYw7baI!OafFfte&kedHB}x3H%}v%C<(yCW!@sXlC83@h64^Urg}ib@y~8=EO#|teWrnv*1+Yp^-YL0J z5_F3=PHhvbwlz0b@Dvax3as{iyg6&qYQyR3V&f|%wV}etO?R+Vn1zvkdhMe`dASs_ zE*!?oe15L*@L>|Fv^1I>sX|9dNkRY=QJcB+O>NcOo2zq1?gTv`Dhs6z97qc>zP`r# znN6$D|Mcm14w@{yFH>_*^5hp|Ts_2C6-PZPax`+(S-ye+`c)wPESTM~goTA=W4(_o z-;2KL@ZB{qaOGkRrtN^OR}+Y`L8idi`1vy?99{^E9Ty1+3HyM6o13?^Gp4lv@A%rN zso{AG(4Tg-FW2(`8)R))6EBd~Wdf|E6d;6$?UUU$vi}>)%RPX=I^3VpzQ-e# z=Skx}wPK>%KtUV6xWS4%&LUA(cA+5UkXo?LqT}LH^Mw_|^Or9#*QF1~3dh(5KcnfK zfcOZ^l5ufyfl$#*lEtxAfBJOIp83(4o4*ickI5zYR^JHyz^~)YF&1!&!(y!}O^^t! z+<;)M5=okhgrxFG7DS%^NliMwTwL&p#jZO(4vQ+iqW(%ouJzbD;S2boA%$E70yd4! z>HBkYyNeu0ew|rU3noOv28jZV3NF+KTEuVYFR^xFq4)gXYH(>~h2ih!n7mnZ@lgBJ zvq*{7{OjVfGVS_Ib71q7X}!I0B(k@6DIp@ljMHMVQTaVsP~AOHFoRq&`Q*);Rh7`t zkruC4n!Jo0Z{1XES;=G4(gH(Jl-%6nCdlSKxG&|W zVYV7Rs><~mDP48`YZ_N)f<2I7fBIRerCr;Yx={C$TyU6_69G`za4|8A@yUFwWMNn5ln|*{{xnL-u24GauW%H2|r>UVsi@&JtCTST2Wre9yIvu%Q8` z5^{@(rR3i`LswNRy!0j_qG;!8*Ovb@Q=iu=YD>5#EH6voB;;m;b94)0GAh>QNgf=n zP$N}I8{NPc2iXJc2f&hr35?36-CYh4>E?a^8u}+%4UTA->v&# zNbCX|LZwnc4Kh*o>{E1Zs=xoYA`NcPxMS=@l)VTB+&USB`RZWCFHn$IeUCyKd~RhG z3cREPke(0ArHfJ?{F9qbdt3#IrbwWpm>OZ1nY?|ctGknvMKhC}H0*u)rz_6f{9reg zTM6vG{(F zCq&&sLLz)xaXj|-G?7v6bV`PFh+U_;ytFX4smRM^kzMW~(%#(qC1FN;^6w8E<3(Cr zFM0@F1O(B4t#E&vOAj?_WlJtIM4$b@A4-gZBJg(u35Nv7yBmMBJ~R}S3JonGM(mZg z-+;ASH4yx7qZ45C2ebvoP^mAF>#g99L5yWycD(o0^{A}E)tyNitBYubDOBL&hgXOmsvX|%VBrmiDBi|}E{O1Pf zy6vA#3k%@rENby3m(|c;69$nEMKhax&7V+-%!X6vEMU;K-{A)r^x z?W#qHNLW~zWpf4_P%@Uhux65#SvuSp>E>ihAR(iWqKo7)E~p_5{I4yAljCK4s?8n+ z!JobvHSqzeR_j=unhfgp{aua$j)%mneJOpZj6LcGO6M^zHf8gEdmsfm#4A|n^8 zOnp)9F#Dvqq(sSPu}!qnqi(wmmLR=d!U5L>6(<`b3^sOlhj`+b2m6vOy?t+TmVQa$ zT9)csR(Whlj93&TT;r;*t{qxYGz@0+VE7+B9i{yK-I91~BaY6vl=ExtC~Bat27$lN zDL(&T`Z7RlEh|y|<>WLCI%~bRxw%)#s09$w_us~C*yz%xqWLDdg5`FE|7}MP8 zCr7p@E2kUC!qYdWM*u5Gerx=5Z6FAl{qEkw7bs>kFVdc@lL7*v98Bn-+8Kl`zPGGw zXf|6C`!qBzz5X{D znGSnKksjZ>w37aI(F8?fTk?c;NlJF_PDFXTZ)$eFF4BW(m0#O`#;pNj{+9xzvhfp! z1!vs^$mSdmx2h;sT?C5u$_qMhGFVR%X5Ncvol})56ql97Fust1mYe$WKmI3T5^^zB1QKXWE)fE z2eBdg>NRjvq_+O;vNXDcTFmf<`CV*@wWpBclfNl@OUb=COjiMz4O)y(jE#9W?@G||zUYabDZ%3cL;leWE34zreD>Y=Gdp>T5Pfn--nnlmK}efTVyW+On`M0mDx zZIRXwNE__+_4PLwSozMX@em}|V^*nldD)G*SW{qfZt#}ZQI$YA5Lfc z>4|SmEi1C~wFo(Qb6)RJQfTH7aB&Gex*6PPU_oB=LmxX@&q+%>DvVN@U@t+bS0;5! zdo165xy8OY_>SYiu8 z%{fjVvp-lOUAO-EKu1R=&p`n$gNiFWtaU12YR18IH&j*YW6@E&|8?3ZOWSGi7HR(n z`E6MJMB?L+NucSw|Dk7Oitn^_RP%mY$pX|dfPxW%DzrBohf?<@tcbJeq{anI=mpi) zf3nm}i;8Fi2m7MhKDf>tO-@>N&$lQNr1Y!s1Y={{M2BJ1;amNC$rhvYOrb2TS1H#w zhDL2Lk1dj#Q0gp?nOR1bN+{`ALz6HlL{@f{G3+(szyCnr%L}BVDmW+KrKO$O{a6HA za=~)IIV%#fsh{i#M3E)o;>LYclfOCjx;||^aiV*2FD8Y{A}JCF$|&+b#!XAFvcxWX zzJ!z|mzOiTZU4J$(bp%K^4h=e_xqp2Wz(zr(W7vhZ;$;hq^1k*(mXN?1n4JJFLx9Z zAp3L>=9lBi9i$J7-o%+SxnaVD{q|S7;t)*xaj>cNo)jIOLND;RmF;O>Kmbo2JDY;3 z=eAsXyAu)ue{Y|QFPZT+`k)us*-@!*=n1h$P5L@e`(1ilfNqT|$w1jmPIo!ABS z=RfsyD^Ncbb3q-R44a&Fw2<=>_@|o1nO%gz!XEP2qThQqSaR z!S5JHjG`%IHN>o~&wuttQpIi=nWyDID@gxL-@829SOEiRsZ>|vnoELrb-xWoQxjjy zAQBj!kA6Vl8xjr<4y@R79cDlEf}1Q7L1HTmU885jo1o79_Qz*C({HmDYhMsFKCwU( z^k8K@E~|%iz6A02b*^0PQG?>L{Ef1Y%t38vXhm9HRot6X@e)W{W2EhR_!}3vR5n$q zGk~^9{`~J>SxQ4gc65}*&tJd1+N&+}rKEyK7ZyxZl$AT-{tbkES|=p80EhrKY{8kC zCY_<`LzztTu7BB()Y*0Mp9w!l4gx3l=18M}fpwld(JV^#XVdyf`a{2Sb-VH1SyZEv zt>~i2c#|d>TmZ-ulP^|>&~H4p9u>RXYkuXZrlmy$`bH}_c;excXMj|g-1W!bpF({N z3e-_Aw)^9PdvLZbrQ0J1O67Q!!EZvw=Ux)ct;=t2T%J|+9Hq6S1Y^hlG%kHVm)?Nr z!xJPR)xse^JUaSy*0FuSu2uppagDIoCk(_uEG#Tg00Ar!EY-fyc8Va){W&?&d-Ce& zhNj!z`l9}FCAYZv?D_g&hAG|jnkhZj9cpl@#s6|psjE}S0ho59BWL!WcZqrtgBB;J zn;8HWMRgv8Kg2| zIxQk~ef1j{DVz?LB;kxFx%JKM!+?n<;FIjn9BE4o{#B>#jW}*`TSDsVo51{!AL$=I z*1FZ-&P%Zm4jxnR$Iweg6OeFo#YQ*qFQ~82EwrnRs5(0GCGRnTas&;S*)6%b!M1jG z<{)7BTdAf72ycnPlGNDp87AZE-VCf#-pL|=Cuc2YN3Iz5sNPEwgk_>8U zucB3#8T%5nCqJ?8v#lG+%*>=w7(y+)(d6$hqoZ3uxHBWWsAaqXGjr_&^z8a6+bZ>_)+w&iS{E2<~mXb&f^|dSD305CcmXsV2P4n`p{Wh#FmXj-06iZ=3 z)MMHhCqedO`1z?5ch^L6Y#MjSrteK_M{aJ!D^rJP@t=o|N59{1q=OtiHYzH_Ux!56 zJoml(;Y-WIi~UVO`;&%$2iX`W(d4}7^^yO`Pj=bUCx<%@H^*e5@o5qgN#FPZ}at2@a}f4^Su z#GUoJc4}(V>&IbXMcBAM{O;bZBj+n&wgMR#K2|6){F8Ez#PE9J}+%Wuce8 z$UVAc*|j!bQAc|w0X|KZ{lZ) z%6V5Wtz@&h7|Y-~ynfGp&j`X`y+PkTGBi}_e4&y|_}Cg(bgVbo?TM{DgVm*% z*Xz)n&I09N=uw7OX~cXZKyV#F#H>=}$_ky#vQUuKaxTjcbX3%SbSJbxG(gASs^BXf86>6NfzylCnI1eT%X!7ZQ3szP{Qrte?b)$rt+4lE=M% z$grXNS(|5U^zNLI<{^x#zZANd1Bs;bk+7lhL;LSok-qgW73CU1B69uoeT(L?4?rFG zc5Q$@ISe_lx|a(+nuQ63K~`1-Jm>rhhY3u#67=nCS{|EXo}HVwWE7gHpSY*%-cV&( zbYWlyeDqU?hprj~ao-@!U@_n<^rAw)^E$8k{gd*F=jvHgQ$?)KH-XO#4IxoE7-$li zpsB+9_*Yg!d!mNRDEqJPwFvdOfq{%@T@C$%ivfO26&~)KjlR2+Wgr9fJ$(eQqUn6a zL^DgvaVOD;8XgxXO6NMA@&&L-0g4N;A45GNCj5aa6@($94eso_rDA?8x!i6nvM@{< z7wn;Yf^Rcc$1019aB0%!@xMGWy`FVE&diashq%o{1@9whmM0%^Q_U3;9vfbRsW)pC@a_4l^=8yifL4 zPwjrTo}@v)49V6VaC;v6%eq2 z&*t-&9{qYS0Rmj;;J3;PLB%k{_d--?5#-0e5~dc^z-mw>FqTqSzCL%Za6(nAW-v)Z$SRyAL``P zG=b07wVw;4#91qV-k!C1anC}uCfwPn@7~>0e)^OI7THT?mW*$&x7dTcy@uU0Qx7 z*U%WYndW(U6n7`x->3SpsHx{WhH& z7Ou}P_L}ELze<&D&b9`K@4nr-|LZB%U7bMLzYyeX1|#xZyKema`u}jY1zl-@4?fjG zp1_#1F{TDuBsN%O`$;18!m5?S5G@Y{J?@hkQY0jsI$sGfDryRj$1!5Y&eVN5u>ZLv z?B8;*^BF;M!jVNV8`WL|#0Oa`uI zETh$nUs8SV;`Zjg6ekgjfd~`wAy|^%y~E;3!%lZ~pKS#zD^2+8;h9P_>5nRD^ofj^ zAYOXJ&ujWC*L(MS0Tl;NoKvF z1fSE!7<_=VLP8WUsrwFgz+~t^a$yGgLDc67ly6f2cBuvn{VmnWvE@(L?I!__X^0wJ z2J;VS9SFf2gN;a1T9cpnnL)2O+A%yld<08GzRf#BJ%bs%_bs|61C=gM7UOx`SYpuc zC=L)~o7_{C%kxYUyJ@IydLh*#m9f8?=18sYfC) z(K0icq8qwVzt4IB2`KouWJ5_>Q(Yq5*TS#;#yp-86L_$5)6;3+VZQ;&Pp-wsIytnj z>MJ+}e?^ZN#om9)tEfo7KGGjOMf2s$Dt6n|6C`E8&nKWN%A-@NWdt|Z){a|js3ZOU zjZ@iIQ*(adn7i3;_l|PZU2)@)%`sw4gj4YBD7cGkEB1*?|A!imeDoakg%_U3Y`r&`i%V%R(Y-J-!Hev?kM>aoj0 zsQ2s{I&lIcCX~4%%*W}Z5|GHA_k4Rzuam2=uFJ5l18Y{mx4(guqC@x_ z??HszHuF<2Q$4*GdF426d(kZ|Efh{(h>3TWY$)9uBskI;=8JnbiIA6 zae2z!tE`+u#f^N<%{?sYXV9wZe?zT5Jq?=+nlpgrkrQK?O+7j=Zaz2|VbBK2vH5{n zs$Q(1xGNgd?(E7!p1gn>-#vl#^j4q*Vn2O~8C_eQvp(0HVlpz~_HS*K)_>1v)21s% zMOr$9ofyjmVsN4URAT7we=UA^m?Zf9J3YcCIr;giq2uz>a%Z3l8no;`$n@BfAr$vf zLBa`yZhvG@ygV+`_uZ1G!6fiISNM}50^5|S-ga~U;dOM~n(fItd4*mvRbMLAEfHC4VwJwN;B zAQTQ$u$LvFcNN#8DGFX7-$9MzG-*ou*CeHZQuTX%eFgS7B4FF{e)Z}r+^_()DdBvu zl%7{pLkLA?5?t7*U`K6_nvMafDgakhj(`8&fJlKvmRqM-+aG1A6cUoY z%+I&(%|yN}aE4}xm_{_xr=Xzwsha%$8zN`luc!-Oex?XMG{*8+K^u@%!U_u9{u#1A z6*RHm5`qWN0YNvL5Y|WOw0NdM|(h7sHW%Jv-S1{OVH;XZvRTxwkQI@W26OSUTwCKI$N!c5(67; zno}o_iU#xj?@^>@Aq;n71^&Ml03Gi%mD}R=E&BC#+&Ec28x<6Rj)#GRi&xk=J`#Vf z$IqNTc4hgZ#I{FOm6&_tXQA|u9!!vs13bsRMDXI`LOg&YG&mPRXD%H^c41KV9P+ue z8Ow8naX(QDk6$sHew07TidRmFXsz-nKld!jWe4&RUAkcHAA4frVJbo4mHyAJ5lX7M zZ6^yp?)Us)XkAiLGHzeMO)i%H+h?xv$D-#SdchKXeViID2wsR!NeKr#)K99NzlwnM z0AswFg@u;I=_Gu2B40e~UB;o#>3MFa!p7G9d8!Wlf(?#|)fRS2fulW%#G-tBOo5Wc zjMAcXL74+zgCz+3{Fct$lYXx)pNDh>or!(Eh@QjQm`O`3*I{(_5 z?v2RE+!Kfd>XrNOB!c>Jn7GmBgnBlPP+(=^Uk~1|ioH*;6bB;ZgU_z35~bKr(8J%e z^&A{C7V0Np1afoJQ2*YhyQWZJ0qLP!U0w!}TEGK{vsX#FEfa#rwQ?=pG z`1{@wg#7p#{7jtf>fd)#%WupN@^W*L;kefXSCP+t>q#b8hsU*uV5EsjH^d(R3_ccY ze3G1z#KrE;bm1ZbspsCMF4{yyZ+K`3gTaF@EiPn0VepK_tcQ^AfKIWl4FrUPw*sj1 zQv^&YiYsGrNV$M6Dg7B_#^-qXa9b;6iMNl?d8emGPwCfY>+6QyZGCks+MfoK#B!+i zphcIBND3!Y*E0DufLuInCnEp;InMvg&YstbPyLiu`{*|+=eMr0^rRH6@u!@H?lope z^8qQGb&x)?P1X$}oYUoSnksPffQkd`*(kTdbP)LsbMX?}rf@C~kK~y}Ys~UcQx~h* z7B6`%Bk$?xKnP8=J5-a+uHm@}o14cfrFsniEsFK*ojTKbZKz|5d*RpgDpA}d5fjVG znMVa7nKn7mg&4)uAfY%FS;%LW7l!LrR|m!u&{X@k2Ik2VTwd%)R89B| zXte0Uz5advx8Lm0(jc5ozb*nn%FpkT3jVD~_ig;MPQ1pOB_ytg4=rJ*|2-#G?CZvS zbG7>*)l}nWXHW`x9B*j2;b2OZcE#rSto6F~r>8#s5C=I?`@RRXAu4j)%EgT94$D#o zSu0&cvsPb_-^X@_zZoq<7FqC3Oy!#3z%Z;X_ZrYkFr7c+hSoWF8kR8ucEKu%Lji-3x%?AAR2PU2`dqyKm= zc!$$*6P&4Knk^=?w^UWd!OVjdOl9A|wsZj9I1d6~rnfvsK;z}7rjq4=g8>@nR3MSm zh>BM8v0+hAP^5}@^Ssvy2mp#ia7c)^vokj(w>hejv9T>xEEQeX-?Yi-i+?-Ilg`c? zpMChHpOJCr=$6x~k4_}NBs4U1FMa6g=~Aa7TI=wVrGzVG?Ce={o{ZC@a?0du4D9?Y zotF_NAAX5Tz|5 z-7g00csCM0e29Wg^W^0X!154}CKnfP)I(^_xl;bO>XwHxxkEu(n&COvslxuQWnbDe z@h0VV2noHF(^g9t$Y}|H5@h$SD^m#hQ*{olZv zvJCM%Q_Y@Sx1Ngd6dPe3hAdyH$W}cr%^0qQkUoZ1mJ>YRg>7=uC{>NcZ&ieubkyJ}Zk08Xrsu2fR&=-^nTn_SlpfDIsCE z5izaS{Cjr|wAa2m>#+<%?|--tP?)o|V5`^J5R_+Z|Gdq9fdC}v8FJvkx0$YCf&fF< z*nuA6w#~v6o+1#NS|FNuNzUeFIG&6)_C z*5#v;2@=M(UEp5eQ3b++;P^$Q3G(?d-2=a+j;2LdD49-pc>@{bJDNSa*0Ta|L#2WM ze(nmqzISk&0+byh(#eE`gd*O)mHp90qukq*7`h-G#w+v?Sbm{D$_>dj z7SaSawziZYR}?(2%2!FV=y=_>H8o#rCq4mn=GJof(4cPPZ0_iMbyd+oK7H&Nx7?Aa z71rjuY?Mt*+j(SQM%5$jw!imqH#c)`F3%o;$@kTXT(wk?MOQ2Xm;qA@KjwaKbl%un zyR-QX69c}BSuz}FV{YDIy{e6OhUU8}2)+*`Uyqe~;wN zi|J`H&n;rrv-7W(a{|Y^vnl_|i&-~?mHS?`OM`oJ;62~1`Xn|c<^>4}$!#*dCvbN2drFWW;Oq zQlf{i&v-izR=cbz-9l#|2;ieB8oHL9j7?F~Nkh9h8!q+NnUTEZ^_5Q1W>0GhG=i1?WldMk(A~8D4z(x2qlUbt-j=JRrzvFg_t67!-;L zuV14YBk*PaL@+8|rN4Ao%iGymz1%YvIbTM<&+YZ-1f;Y!2ExyHTo^OHH#m-won4Fx zFf$XP$m2Uf1dma(2hI}JF3jQl*Kx0(eNv%tziiAV#Yf=iX!M}1-k!Ow&0!h~{fmp@ zS6tqw0ckCR)BYSc5n#Q33IocC>q?h8R~HQ9tAB>>_uWwlAyza7KnFk;!6(7G12Fq9 zKu3~g0l6&k7gmmPL4iy#6+-|AD-)=uO^lbmfeRRB$DOb+iw1*er+#Qrn}W8IxbO#; za5wi&Cudg%^!Ot*>d{$eXAp>o0kQU>T(GW#PC z$Ox#5b(k@bvA0>#v=~ZeP!ttWMT&FTT?7TA#y-Yd%z;y{&|!8I0xNTWwf;e?#-gIy zs+-edA$B`Ov3!PHx1e+KYfbj(Y%L{e6r@q)t0lTzLu8X+!7<`Y>71Lp+-Kjd+&Tg! zsNe$%3Sw_Dr@$X_Ook1b8s%~L=b!bsT$o9@n9TsMoSOw6KffpJQPH+K$L*hr0we9% z+C&&oOnQ1AJ`|?Zr}0H7+uQdp+N*qeNf)k^tXy9Hlvc4TCjV|--Nv*XcOWkxACNAg z8ei6-ZiSbM6AuqBrA0M^u#TQ#T8)S~TQQN@eVRr{D1Wxeo#CFegSDX^sel_s&c%r< z;w7lsk;xd|eJeM#JSd_6o}64)h>pvsJ~~bu&3(Kz5mlI>w9*SqBH#d7u2sV?GBi0qh#zGh)6)w-LdyaSXkt!;Nw-;$v1_pAbS}D!f z2hGCqQ1zx_m(y{4i5pN*el9`iJO4!lSMd`_ZjAjf^?uEwQU)J4U=w^Fp z>0sCp#+V{4PK!7^_0o3R$E6cCEV3CzT^kv3+Wd(ZQrgUl@#RazY`t<*i)Ur_`W|l2 z{Qn{9tfRV2!>tWS3KG&1l7fJANQ0!bNJ~j0NDI%YYz1J92PedfwpF%&z#Pni&D}5RU&ol_^opx)j_bMs5(Z4bg5sJBeFF?mJAMjNv z9wUnr_d`b>8_Pkz1m_DS#)CW_ejDggu^rUK?Cpe^X@y zxEw-<)PQilq>I&Yazu@iw z%GxJzp>wEd7MVSIWbxtp=TG(pt~QdKf@--yY{bF8{O}DUWhpkQ-u#tNUiyz zEak}LbPr;0dS4*|68cw1=U-VvD%9ju`5kL(2$KkQG8aQAAFsB}|1X{AyBDv%6bfP` z(<{R5de>N|R5@&lY)35=^6hPWKWdTm`wY7a^6u6Hk1nPbzBqk-HxKG>*M+7pBzR_K zziOFSki)|>--R)wBLNQnE}rM3tE+f@ObH6Y1nEqpJ0DDn%;9C3`UC-} z@);sTmb{aLGrTS~MLls!S8us6(9t*O68olr2%~>lH*jqmU&+lmyEassxOiH0hhK*I zg%NFX+?mzHda?I%vDi#;rq4a|d z3kiBbFq7P?<(ajy_0Tk$gOh2liWY5tB*sDwmOQNnp2Z-JT&nr)1rlNrSSUdhn(vh_ zQor60WL7^^j2E{zCPGd-a<8h>$U}=3niS(dwzq9i^>kzQ~` zcn}H%AL@&G=N()^LKJ3ZX72a11TZY@pPC|uHIo=z5O3eVe*i~5z!Yft_!2j_w;j## z@ew70n&uCaQ;;?{qmTcE$n^B|LevPlL?D(pWIru!Z!>dSjv~X3J2*7dC?zFjzOyqB zu?4=z-3v`^47;GDNW+i;zPC z)3^1p0qLWRynHt2;1~IcxaOObblWurx5dCT?oL3T zmbv^6D9CB2e9VvJDJ;C<=88uFv@r*g^nqh}<$O<#xqVEW{DOZ&qWG9Fu2PYBjSma+ zJ6JQg&CDq&DS5`{VF$kthLZoXJ|Vh;9F~@uSp;T>Sub~dReO3?s0LGIB6DM3>!oM9h{#7bk~t+s=x0&* zrkg8AS7|dU7iYFG|3`LY_+S~7(XU8F(@)kf_r^%l`R~=%(`LQI|4K>{eE-cGn+B(+ z_=SbtF+$E*7l??%r^g*AuS~$zW6%5qb+f0(VyuXi8}PQ1E_;7h3SRZTz{KQ*5z`Y# zmwc|=!uvaD*e0eaDWfgdm)h$YUPeZy^h+!LqJRJ92HPyKZ|&5~I2Oe^u3LDImqfIZ z@bk&h{~%@&>%YF7&-eC5gy(mh?XIfRWnG6+mb!*Uw$=LJurAo!Gf7EXewd!sRjRqh zI=24$t;;ctbi)lXRnE=qI)05zHeNNk0%VcbWc2V97u zoskOgJ>HokW_|YN??2n-az+=IMf*)v)XqB`ZysP8V2Z45VZm7Md0CC@1M=BW(6sx( zI+I;dQBg}vE1Ffk3e!5b+v?7wxv|mhoE!{jFM_a-zA$SHUs=z*7+Jme={7wRgRe)%4jZr|{Tz!rL4xe$(Tnpy2N?&F(KH_4cUT zc(~b}7}SPXL@Z+Rj~^$+C301C%g*<8iyh9@wElGQZW5!1BoL`QRc$a{>#OVQ@4}>I z3w@~qUXm+ibr$a(>*j=8$2#X79mBoF#y5?s`b(lu(_RxOvNBxk%Ljwvpx%BtaI~u{ zzq6f_kFN{#k0@|-baV5(+~l?NmFMUG3@0hO&HQr>1G?e1Hl&1vgj$dDACUISB;;|X z;_%@^@z}P?XFAwSydaPom%oLe5I`Bz3x_od4>tFH6GGt6{)Mk_HqKK=_% zVF-(QAp7|jSZUDTyqWu%pY`<#zn#9miT~-YA~tNx`9-p_)Eb{Z4Y^;PlswWppOkYI zo(4~qAV0tG?LtI|g7i@07sY_W&d5C3n&O>|`~+s;`6#F3qLdpnC+0-_ZdN8}9TIVG zdav|sWNhq?Z$13OR6dR05jBy`Kw3xV(QJ(^&inT}DQQJ8M7o1M!hA?l(A`};G(zV-4moD6fKm?^FSM2DrxVLBDbr zeZ>vZ0*%MD?Ib`Y!@}uSR zL(6a&lm8Oss!;MTh2#Vy^`lJ*tIHNdh|5{g()p{e`f%REgR$9wo|>BA_!%>;F$ZfT zRNa-x>k^vQCA0{(~dH`~PN1z{&46s3WIP^!Jyu5NXIlK4)ut3=ALg+@u+y9I> z$74Tlq%i4xD`k@t61L~!B?9xB5EoZ0gfbI!wY3>eRxpG!F+ZKPGFxCmkL`9fM6m9QtaujkY7i*VK(Mmxk|Lm(_5j87B_OIfLr}teqfwqX4jaiA-MQR&FGXugGUp|4{nJkCpD9L8 z_z_*s{LNi{0S)!*1G8tH=)KC|%q^m4(|Aw9@Ej&yDD(sI2azhS)_ zFJW^XZTY|D*2u>}Cap+G0f97tO}AL6ZFL7;!E0W z2!#5(mwp*d+f28_-MdGr*J=vWNTvZm9r611Eo}>%+mA{PL@R+Z`0TJf{3Gx~XJbvucDBz*&d9<7cxN3T*_MP4PPntcKnH=55tYj7 zC;O+MUO2M0&cq`Pp~J*%`dUpC%GT7~@cQ+u=O36F8X9Ln!4hzB;bsF|aHwb#QBYA; zC2uc2m|0u1^r!L1x^Mjh9L>=i@6b~&uqq+Lqf+a#myWw{vGyqtm7nwhR-lva+}vCR zSed@U@dNpQI*xPIBOd{LYMz=%9Aon2$&2%ynzuKDg8gGdQHPF>#*e;yQ84~1IbEdH zs>>fqQCWuDpqy@E^x?ygSChp#6(4?!%oTd%Za(Z_)wKBVaw(3c$05b9)K5{Ea z>A%De>1y2u9577ZyuOKoL%O~J9=2N%fLjKv7h+sBKNA*?Lp|zc&Q-|Z8u;GWNO69C z-j>6%4eb}KMWew259W8Sz%usCEJV+ViK2pv*wdpUa%VB9QrIC%hn0#70U!}qFp>eL zmy83TOlv>>mwg2-$MWaTpCKXx0`j7=#5J3bWYP>g@Df)XHfpLc98dO$XT1MIdD62w zjDTBdf^l_qm6VnBXHS&fc;&jPk}m2WMAH<UceOO7?QWyz2Iy%P0 z#h<2_@nnB{8Td>rbYLV#XxuxOwd8vkfw45|)5NiS%Ny^gSG5N3-k}@zXWZ&e z#mmy&0T$KN)dL`(d+qOE&gdskVq`PFehmx_y)ObyR=kX);V&G~B{X&QKX84qK#C$X z3@>1tz6Zbi$fw7orNOluqFBctV4-dmJ&r#)aaPl)SWu_@UoC(Jji4YIV0Q{iOS?b| zle{*z^A42`+U||r-L*;3j5$$Qx(VbBLn0k^^pc@mvHQb+re+V%uCETo%{v1y{eC%I zAM(f9ksBKNyu-mU+1|*6^K(hhfGz1IokCHbl+~dhPItEsuxJ1Z{|Wh*jz&3Cf$=KM*iQPt{krYX{~dtB_IigkcH&Wl5I@*52rU; z#27EmgoyMWM*}r9W!1~Z*URoGIQn$(@cv>8&4zK;C`gyfn>WM}y~~StJHQjP)P36X2CXdiLxYpih6* zR93RPzkk12(2y3!!!D+wk&v06-vzSVo@xDZ-*=Q!G@NL^i)$gJZ2$U{ zv7)S{)_xfTfKMSWr5x_0`Qk#~sU}a{yxd`ull)BPr!lelW&7nCLdreaQqf5%*;FwnHO~QLD{{DS2 zJUgAczngLHDJtqzfW(_xuL2b}+eR-%F0rCrEaQ7%-ZsCmV5qNk>rV{!GE3ZC+r+SnzQo>0H%Ol)-St0HEkT{bs+sz2?q}YLjkNxxMw>9#iUhmHy`8RfbJFOt{vt1n`tO@J zBVJnsaZwb;GK2&ln|Z9X*o@QWjy6^5JyUm^OCr+@-P|PGz{7g>GB*0+`t(J77PY&I zdWV{3$u9~kEAhfiAJEL*wK)lF2G~16{_k<#sN5yaesp)oDfW(!@3B8Dpgknb&dv1) ztRB&sNuap5;oD$UMp(pxZ))CRueE(k2 z{0LIlP*1}oUu;hfN0SGF*|mv+BIN1ynj+G-YhE&ACy}T}DBL_*^%eNZv$N>IA+1nb zoOxe9>qJEr5L)w{$-xD8j}=^$5C-3YJx0hXb3;ap`1 zC*;z5iP6iT{I_Ov4DaKOP<&#MHdjHa$PLNC>7qnRB5{8dWx(G(+;vJ34=wnEE(f8{ z9uhkAyUjZ=_}qS(f5q1Q|1U2Bf)a&f&ediH&#MT&?(GJ*lZ{ME2foMM1 z-oeOIG^?uW!&!P8!tCs<-C94XK2!W1l`{M*Z;TM(R;T1qi-=|4kOED>$uVOHu#$(f#&^ z<(T31+S&jCy}hIRMc508k-51rGkN)fx#<>{-%Z{a7By8>Ks=BD=>jlYe0zxnB-3SsiCmR~CC7NWBhad;wrVRt1k>-4bpW7T;%5~KN$()DhNH<>@ z|GDS#136mTciC~1)x1!HG=yM?9P9%S>@kAR@^c%2;;FoP^$9GB-flE7UX=i8&Qw-$ z#8szsR%xBK+B>T-El0<2&&&7EkB(I4nrmyjB8p{9!G1prQ@H;c-Bse{vMeoopvqZ+ zFBZ4QgwtlVH=g9J4J!n6$jItZjE;@j!<44L$@%Z<^<~WMPEB{5oGW;|0QANk*nC6y zY6+x)fl=6%RSV&bcxJhF zna}RdgeHbXsV=|M8y4}F_sYs5)zt}O!xNrGCH8>Of+r}(`*47dMo&)ztrW!()3*Rvfp)L`5zr+u0`-6$CT`fVRW`@nx)0wYy2sYb-%xL20}S-e^Yj1i zEL9L*YxUTRF_-KSr|E|ei$g=okPL<^jw_4v?faNZTmllGjhNRN`>s-2@V575DtQn# z#txTxC=WEyIK$`kiLX0@3z_tO596Y+viiEX2}szmnzrWV;aR*^q1tDRxns-%bpMki zP0XPX4vaPip~HC!O#KK7%$zV{4t_d+44l(sc6%CY1n$)2)}QsM{OfC+C3U1OQzcS1 zFOV8;Z(PRFkvjKy=SqXOG5fU5gDcgzsz60RL=O& zmx%M_!q!miQh_zU$j@al%e=aVp{t;DZ<*!yHP{8{*6qR>$jnmD|ZT zDjA^F)X+FPo-zO~LI)o=1DUl=g*US55OUQuM0j zKWAr;?r>5PKv;uFNt5#OE;LT3Bpj4#hrZ@=tPz|!P%byd|te>bD`BTrhAyk7x{3-c!yF0FMpthP68D-JYzsqr4)d@@X|Cziltbb69G{qo z`SRtNfcr@ig18~m;W}oROr*yyriF!tA<)uUVAC=HXPldx8#%(&(U`J>x3~95G)qmC zEO0;Jn|aQ|!y`-gaPjx=3^J8RqPGgAtEFM8&6}(chwKhp6X1l-sS~W?QW$l;Ie}~7GUaA+uhX&q? z|7y?A)lLPvz4#g9;|Wl(a2QNy4Tv$LN6#A>>vffS9Xdiq<2Y{%gy`g!K`;9p4K1jP zB#b{YhvT_h98Co_X_xQTUtR;G_CipxK$rSva~EovaSI1dkQ1hG}g?JApvjfKz6x7QBJnwlez zi*H3Cx?y;Fx;yTd(OVB`ROX3E>Eal?A9{M)E{YFYNMI0cn3{-2LbCKPKjXeS1%=AM zkhyXUb#)ESqmRnH{ul)BpSvfJn=osr{QP~qZK9Bpr1JhRtfalRcTf!UB5d{asK0%0 zr*UzyV9`c0HC?5yqbh=pqp9h{twErCA_5zmTCvtA10&;d37StoWARB%ysw!jUK0}t zEi&OynfDSKAY7gre=w#U9G_@)Se71{E;j}(JQJ({*vBV6p`g-~m0*K~gynqlnWT*5 zQbsCo*7dI5^z1ARKYua+^v7IMQvP;e5=$yUAi~yy3pMaoi`@4ST=o|88b`+b@V2Mg zKMp)P35ms5BOrWhWhQOa_RIe{Wn3Kk`1KiW@sx}tYhsSkU&*Zg;pnjs&O|^&ok3tk zj?sc_;V{qv`UC!m6T!NmD5h)W%GJSxLI~YIu&uuz>rTP;_3IPxmf0Pa^;a^yAaCi;^HA}hP6!EUL7P>Z{U`ingwq;`}iag=>OVT znVIgtFKz5hi6n15)~+}Mqq808V0^+bw_N@qU{mYG#rdzdSrQ*9UMDesTdx%T{`NWELKtPk)W(=NicfRiE~XT;Vpd zvSx#aSGU#<5hgCnkT2&SlbpQY=%Gz_dmz6N5cu$$wwr*^L;RWJy=G#%!a{|d0`y)& zLOUilw8S*5`KAYE#`iveYoTZL%D0RiPgk#J=5pg^wgyKjTzKJWW(IdrLGa)+_+BBj zEOE6DO*L|iAG_8;s>H&Wwyj9pspL3u78Ik!Irr*LcQMiui8V^~`f8hRDTarAB$=c% z-#_zER~vprhRLO_?m%^VH2iaXoX$K*L3)O=v(w4@-Md^eAgywwfk5~L9S!cce3|uA zT(_v@=TH}Rvl%pn=O4WkYcZ5BUeuQ>UTmUhoSYoK*km9&8X3`E0qgQi(a?7Hf z24go5CMS_+<>k_qK21$A==<9*cfW1^u)X9S8d|yjM#m!ZbeBHAV{JeUvkB&z2nnp7 zELNGt#Sf~UJgL3uBx}3q2qPtWhLm4~mA9zh-`#`9LiaF%$C(9u4Yd!*cv~zA&^d?h zk&;HAoxcSW4K)`vV)cg)zB2|lZO5^iKyASgxb3 zhizc3*Y(eaoSb_=Cz`k8Nrxg0^5A{cm`p*EShn`OGr(U(ano_Ke0yWV@ZxAQ>RL%& zK5SxYs_(z({~Vt~kIXk06;N+0w7y=h1`so* z9Jk|0Oi6BT3=c^xXJ=(1ga}0yCJ-exU9u9mQog2p*s3NK5FadwBqvvpe(ZXoBKq_i z)lLmIScsuENBGj7FcI)8VhJ4z$a7Ufq*acRAJqADA$4aLhpyq&&52WwA8*^Mix9)T#@GAP|S)K zjC|C=?kz$pN6Z=>yHYj9xaGL>C@%|Cve&yKDH}4m)zw6KLO3Y*?iF2}ym?frEaJL$ z?3ykE8W14q-3ePD%GqpmI#|Wq+l-tT?N(F&lW!Pi0~y)K#6-a7&kyxMxS&;^(0;O` z)nHE>78%(IA&I!;5FF`-W__VqM4u3 zBog}Li-1&&b7wcn@A7*)K{)NuduDmx2vz>}z=zFUc9ofl)-tsft6Qj3PFO5xysX&4Mb)|l-u}|sTA+=$H_620{lKqZ4f$-)rOV612fp-KSy*7{3(@+i zsv39_7TPvHh}~OUE7KE8Vh(9r~x3A-m*9KXxbe_{+xtOyaSZnsYJ)x+$1 zm$$F<24L(M37f-gkliM)u6k%1Qkh$sNV>7{CzF32`#RzV9fm{xV{f|av(x7GkzrhZ zK*L@+{qfzOjb|o*9=R1yK_2|T>lgaQ%#6701XE@<64B3}|8_sq7l^tMSpBTm27N8_ zXIaBXM5xyZL}kfbn`u=w`3e{k5=fpL9KSMtxa?82Hx)m#`$vLxbzN@SiDlz0iR=yd zx${b2q?pyx=4{UirWJZR^dB{gMns}F=-4E7KaP2LAdd4RyD{ooSjUE5<0FBeKkuS* z`d|bR9gnh*;q{{a^TR?o!}Gtr#GZaXXSd#h*j@NN+02@SRY36G)>d#)F`pl3t7;9({d~5y?Mvj?~P^szWwh_rP< z{cM#u@TY(nYfw%Q+ISQNJ|R5==E?RHSHsC8sXF3kNDdCeaB-gbAXFPqvEoh5D@5)D znZA)}J`eQH%xc}VU7Y80TkaIc+TYA~TG+MeWwLmmcWz_LfIuHV%D*slu(zkIRMj9< z_)JqZ8!H6F>?4I)pPEjbE5WC^(jAi>DCk1f>_JMCo?oZ_D(gHVJhze0nZ?ug6`oCr zUZ0?pB)dEXMc_=uQ@6b(G2=;Z)Y<9i#p=r3g8iH8${M9Ks(rU>0bKHM%io?|0sm(F zUXSG;@~jUzLWXN`;|FoGO6=wxl_Sywq<$W{*dZJvL|YR=Xg*va$;K z_PZ;n#nPIEBX4g`=JMigpbVr!BVPfbGSff&p{`H8)a4WGzJCGV8WJ$KOy z+J@p{wY|b`FGslD-32`IMzd(^j5wsi|1M{QwJx+x5{bwszR=Vp2D20Rp-em^?kQa_ zKfX%3JSD}Zr1O(hjL={2r=~B>KfQW-)7pA8HY?YAeLRJ+?|H=`Jf~uri}3V>Aw=RL zuR5W{!@Kv&TMRbKwJ`JjTQMZk{zlpNG&3{*5>=F-BBH3RGiEDS}`2S6dFON5~lH_n;Vn4|ddmZbubh3k7 zO&OAc>FWbKq&n!;Fc9v0U*U=9>&H=Wc;A$nw|%;YwgOi<4UEdO^6OI-`v-|U?%z*p zi=+TCrOL;TY_N78h70BVPdoWn<$UvdPnY4Mq!AXTfTj1{fDnF!{GdVoc{@4zhr(O* zN^HBLK2_|4Br^Yf1Gf;Ll6(fwF45bNaqk;^MDrnwOvo_a}Bm1vK&>}>S8 zn%J0cS>iE2F5Eaz2nl>3WI#)gqC!Ct&88O=_wbh|(C3YSNQ0D7+9*9F@cz+`ReHWd z;VosGXgiqbNLDDr96at*ZO)d3i1PIDJ)>adet5u|H5!f|4<|rltmSL9;aU z(D`4>co3akyS*%^`R{{1rwtrJ8Ob+o5XKIBak$a_poA}%e6hI=bZ;#(y7(j#Yr7Ao zz%fkX#z>edL5wn^f}3#_aj%gNH^Rl6`&So|Xtw4DmO>36@crt4M&Z_ z6TgHn6x<2VjL#z?+P+y$ef*}@+XHdCMMeE#k~Fe;s!G)k^iPn{4&NoR+P?!Dfgu&0 zFGA0D=@`$+zt(`WkBhzC!D~D;NZ={fg5|(GrGS5lVk#~LaS-S|*3j6$9Fnd}U*4PvOGJV!w{b;+6T$4Y8ci`?J#F zOP~ZU1LsTr1LPQsVQuGA)&Za{HKq&8yF2y~&5nhHaEo3$2T~0mj!)&(R}nH`KPI9J z7q2RhIsTeQJv@dF_kBp!!bpsdwk!V^J%npP8l>SV85!xo{kbA->%&$*6%wvMvE$gM zlY5Oar_O6w{FA?o9GI-msw(jLUk~8iy>R`wSMpy#yTfBUps*P5cYqM^n+z_{} z^ul5z!Jo&yHgA49l^ymKzfn%iP)wD+V0)fqox|3gdwJU>x^ej1TX`Gea-a#y1nV$( z1R-Nw97Hl#*Vk`vHuIMZ+%WP*Z?v=ymZKEf`@`iHfck*tbAy#u&D;BYd&pvYGmB^X z_un5C_&lOl2vh&8)53yVI!l|}uJqmAWD_4fLLz3(q-Vhr?d<455nlqKRF_hQ$OCy# z&rwD1bIf9UX6B{8Qe_;*xDAGgVZp(;u$1=)ZV6%=G+-K##KtBJ<9=qB-FfY+e?4b= ziJ};zH*vQ~V6qRhCwHOa=2qK*(W)8~MD!to>-!a~RuvTo{%rdq=r(+OMG46u&>?|# znGKYMci32vsojTA1z>m1y#T2OfLtXM6(g2*cL!moR}Re!tDs=&>3{#Zg53b{`*%to zS1T*#u8AoL&w)o}5FjONLiXrUbaHY?J@L;ngI9VfnzWXbKqIgf^|ejQc^ceA(A?2eYT(#fLtIp2hbM4>bw&mo+u!OTUX{$ z(RiX^+!@?BF%W^!5{yUis@^*TdtT=C?!rP(aCZ-B)6THOpXb=nO~4^bA?v5mYgpIy)dIxCe1i2FwXpCPj?TMvG|1}c_Nvj?QqnkCV1zZV4SL`uNE8B}`D#c?5iR!30K)z;fPkV0^HW;WDD zQ&UYtgNB|S1vY*!z<~n4Z+Ky0fM1Zm6{hvP%+!dHU6C9ku%pbyLNUal$UaREE~)+b zv#q`T9uT{Y!1+wFx1-qkt$1gcXAJ>y2AH+`nAl(K-`hNC0ii(N3nr%Ql||t+d4*pa z^)4JQpZK-0HLIkSG`jbQVWDRRZ%R1tbV1`!E?-jeYw3FOO-sTv#?k^Y_*lU#^;q=q zf;O$U*GU->kvqf8tYCO5QR2-Tlf5-*>_P}{qM zg%a5w*Wy5`7?6s9L4*sg+mC+&h+&F|5+BcOiA~}sNh1y&Dd11DjNd;PoFV0HYTB@| zm9bZRaL)%)fuWnbi@g~<;CHlmZ@s9nUKCIGDLR$`k&Ej{uOYZF9LtO~o|D$yUB{7= zl%F*=)>6rA=!qD0Vr*>7?4v?NL=|$u1a)aC3?%`9G)Ayqtq(~o^o6Z~qc$Ix{mqx2XvT*mVr6+)&Z@VunVcS-nHzwLwm0N90}Zs(_}Q z6Z{tN8Dy81Mgc4<{P_BcOT(ZRVH@I^4Z}NYN~6+tc6X18mb+-PN|nLVYy_|865#I5 zY@-ghwz?tT{0lcm@A-Ms`DQ-*LLGjfnHkiN{uLEm@JUI)=M8n1>5;lxG}rcasU;3Q zLyqzrGMCAsPd}SP2!4CSl9OFy|LF+( zJ@CEqs8vYs$9*K{&M5kLy7{ptDSq78DDrYLmv+c^W~SZW>&s+hGxtJ}VT0`(A3re` zq-x7nTs5oH4bZ8Dxf+zZRI=A(JfYbg6BBVtMPH>etG`*Y`}UD+>M1IkXsA);d<{I_ z*sgF!Lv!8OE_M7G%Ygr9;WNEt84RQJ3hWdOL0BS zyj)A&m}?+?g@UqwdKyFp{bZuS8PI7#0OoeOE0x_SeDL5wKzAj#+4dF_i}nwH{1D0R z@Q8rzjxgV*C>&rm4EheM{JlKCawO5w%B-tP&I1wYO+q-_55GN6^)y{vPQm?keNr=& z7Iceuj&FVY^p*nz9_6YkDj!Wpb6-LRzipn%aoDCiJ0Iz>Nzz`s*jf{c&=_|=k% ziq~Zo6=Vn}*TIKa1SW@(85!ZxtP z{DpfL)UdW2BDu<-Te%1RQ))Qg?evn9573C&{)R^3$nWi}rlzK%JbPCBiF*+wMbIGW zQG(wR)ZhQXa-*oAKo$}@QDA=b7JS6n-eGU`G!tn!m8+x9?$N}^f~2+&*8XLX`q(-# zK?q}(yLcIxrauP<4t!k5z+`N(GrrZ$E>#XJPp2d`dh#Sr0O%wW<6ng3V_^gao9i$1N?bvUyQBq$?vM1jn+<4D|S9@-aw}WD3H2 zo75RyzNO;89*st{9Kt<~{ZE%MXC_nvStqc4%G;-tUU%$jwhp7wd>)WsP|NOBk zKRoD`-BKRXP^Dq#wILrK^}X1zsDw{xR9=3hC=UgOh+u-t%FhpyT5Nb4RZ-pw!)vpv zt?$8w#Zrm}kKv)X%ZCLW*MHSKJZ%s}ZC09%beyQ4?J1~F{L$90O(`+z@-iC*q{`WFt$G3@X6&=~8*XtJuBKXSC#-wlC4$Orv0vbp(s7IB;} z()F{hEcZSlUFK(|lru95cL?EYE*f8~W>EGXjEvc0Omk|N0K;jZVb)5Q*vr1||H_Hi;_2;2Sz}C>ma*8 zN}ckTUg@C}6n8Q*M%RyG)Z9nOm${{-IPm5a6vOAF7;y(qHsMT$k##=-0f7prpF}_I zi$N7cn4FSg1d|JNbabEOWK!U*v?zeSQvmpG-G?V%E1ddC1Zpm<l~!gzkC^hdh$PL`kclJ3r+S@lkRRp_+sISmNqn`nhwTO5pW}LCT9DQc@NFd z!pIjCODk(@5X}^gz$bRIY_x=IWqW5E63&vULC}~Me;@l4(JP5k}D|B45 za~sRYUn=-ci||HY$?%|qc*O2nAoDvWkCl~$nK@T1j;Lfj05K^jVwfNPhtk+s1fvPf zr%Xn^`3!L$9>CW3;dfNg)(U>?eWP7Q$^S50(4`j57hxg8J5bSqbA4&+{>b;z&rRn? zuV=lht3h`IdAmfgMVkTo9T@i_lKK_Ae#JdiSm+AM{tC@e)Fp56=e# zYZ=`-BtX0;HH-d+RJcA9&L(x1wYk~3y3QEdk%Xk+l^>jc{>@ad2nxQDt@BJhCnkE~ zw1Ha)66>kONHk{6Y%T`0n#qz?NJ!11XN#J-I?Q0Sw21y5@pwqs)eDFeIVB}Z&?_t* zq@?&;B!`>U)wi$y!kGSD-}S-Fg#EjLH%g7CAf=O2rb`!g8ss)5zRc5|UTiG-_7$}Y zp)w^IgEcU)zh~gV$kV5c!0-B5Ur#!8IQ-6@G8WYeeKr9Ju^fT$#J(5nk5==+ofqVSn%-B7f`G8yy`0Nl@Lb zJmHq^A0JoKs&b%roGJHnOydlQm@S8EFPM;+81wF?24M%drih_**Rr)OEi>x4&&tRc zTn9%vC}+q(l6`n|v~shfVTO&3?0d3z>#6$fHy(VB^NsGB=`k^gusPGv(~AIwJZRka z!7SjLm^fwZM-wjx%_<^{N=5ZGe`mNs1m@GB(EFTD1|Bit2Azywj^^t`$*au6Tf4e~ z?*14|EG$WAYvDCT3-KkPZLu_yUR>H7>rwe&M`cG&EQ1%CM1q6~;j`Mv?x)z*7p~ou zVa%Gc;{9nad8VVj#)%$Hq%H=#kTxOsde6+S=jUsZs``qz~IZ%$h1xu^6z;V_{>%p_LB*_;ZnrN}^*f zwez3r%k{|;dSkFhAtA7`9-W5Yq5c4?2U5Lt__@@<3LY{&U={>F1fj-s9UTM)269+% zWQT@oefYpb_pnE7;hl^Onh2nT zP-k7%+CI zFKpK=`vU`h*xBY_*~Eqb&!zK0LEVJnV%)=`6Q9Y+m9v*hPiQriqtX;1I#p%%2MY9H z7uD5Z`(7m^G!zhMc<(7}91>C~8Wzgv$@etmWPJQvWybh8W3R*2^Ww3E`lmF9cKWa$ z1u#<-#J!n;dMJYW2N^(`LC|_aN&P?$QUDw3{%MQsVQ1c&WDJttswEnfJEci*LF7^Da4VqUBkWc zD_G&7ZfT9@cs+f6__?Z2dBKlUt7JBi?Rhgi!tbym3oI}6h=>SS9n+$Tie~1cfwUYx zMW8c*VDv6V_7xb7z=bK{wDTy!+nJXtQ39bQJmOQi@yN|uYOR$umJ|pZAOq<8`0!Hb z^T<={_omZ70w&|aFcHDpYA+x}z6NTPfAjpgaBmGHk!X0f*6>aw8NjK0Y)Ax~>ikY$YXy1NL`J&7Ncv0|PG%)Cj&0_Ths! zHz4fUGY<*Jih`mdg<3Gx!u8T|b^9OAG)L!WE2~!q22p`)X7&Lg7_$zJ0WU#pLW6~s zRQyw5l8lsNeMm&&rFp&zAR7ibI(IFt4nx<6Fm1Y`DlVO!Sxm;B5YffIcq&Nt$8r6B z3QS8O;16XYo>}|0PFqJOw4p(W6)HhJ3W~N~h*hG+A#WLKY_!<^=kNHIy7%6_n9(sm zIA>cc>$Hc*M*rTQ7&ly)4b_#BQgCvX-UmB?$*P=1a%xV;Vmcuq0sHE{oti;CYEZA7 z-TU`(@zF7eaq)kMU0kTW#u=-fW;lV~@}n9eaI(K+?!1h(&B!Q`46Ov3#!R6zor^K zP%6{`pe~%8|MQIqH6l8ewJtsRy8;+WK1I-{=PfvXwI^;Wr7w@!E#*=(8S%`rkBf<6V_)O1@-Tu;>A@+}$ zsVHNHV4^RAkf;R%DH*Ne6A2?-@=BMT7ZHU_?>dao5#TE9jHKv;bK#C!Y6Gi6m8voX zN9QL&3+5RyU+_s^j(Dl7KdN6c+=?5W$7(pENqK+;K`R-cP4lh$`I82sT;P==yjv2( zKRW2s;E_MX|8xFd*L-k`m=Zam6z}L4!4_fzpY!u9hvm+uf?T?i^EJi!!+oE(<_vM* zRumG@(N|OZRjl9WCdLPB9Sq16iC6vRGztQA?~L$OZ^;|vIqzO?1xUDS`}?fKUw>^G7>F2~nDAukWr>l6(wM0kx;lATSwk3+F)}l^!`>=7F3$hwPl3BBDKP;7 zGU#pBLsd`1Qd7w^RaJfAOsD4Mg=8th9>`$V_Vg6K^BW6sa(>2`Th13RBW@np+uQ#E zK+QQEK#l;*y9+He8%iHwHE8OWjwBBO%3PYTd%|7ZJnHY9LLL?+TJrk3@Rb<`_{3Sq#FN4Ix&e5^G3{MROC3M!!?eoKm zik$8lAeTBa5{=!K>QcAAco~8K$@NcTVB0im+rZH+mYyOv($Ew8G6bSR?DyUMov(lK zxw<0LH8ga$1c&8Z0<2lg(TbTL?W-bf-c{K^Cn*n4)6W`BJME^l)}D}E8I~tOpWp-S zBWBG-U%WUjb97l3aCA&|a1(gFf6^J_}2 z>^bQ6Zkk#>fsmmKaHfyxiBQQnM0weQ1Hz{8TR8|iUNFTU0AjZvf^Hs$SDlPXZxKP0d)t^@w%9EN(t4kvu^n(+Q^(;Yh*-S0^dN;N5|Wb0j~1CWgJ>yWd2k`+f=!<}5F-imFE7a~7<$ z02Hm}*wqP5OWl**ys1CnGDVWRJ?q*-dhbK7_)|wmWu}SZ9h_8SEn;w`P%Mf8KsCJG zei_|KM`u)Iz9E^D6WVUACUO|HTiDvlxJjdisjK=9{hLt%>56JKY!DGHOY|zE5?Hd( z2UBeyS{&|^a3c!}SPX=A*s-!o>nJ`jaoKI*eS!+Td$jFb;H9NyZE_;R#$a+g4T^YK z?Z=o@Qp(88v3&mWkRGbvt*w6JY*)~vKAfF-X*e|)nay@{Lm;J7hA{dvc7MSSjikm~ zRPxiOO79g1nr8<`x#rlIIdS8O2Bq0$-fnuz|!Jwkt+yB+-J1XRJrwJycZY41HHaxlE~6E zl`S+pgxSBn+R?qer{NZe$)f(;VYC8cE9)s%jd#}J4rFB0xnF<$s^pfPoqJ_%)i+<$TL$wJRbHW3k% zz`hH|l>gn?Cipz*|Iu`oQCVPL7pFv|yBnmGZX}ctB$Nh01q79lZjf%IV?aPsLTTv+ z>F#bx>F#(B|Fz!vIKx__z;o}p`|SPOK|mF9SV2!>pjYOMe0rJ@9?^K{{qj9MlbI>c z?y}LxxR@4cgy&n+_k%JYF8q67F)LCjC}=wb1cS0PL~=;It*t6G&Qd{~S<>8`9S%Dx zNv4-Z=#!HJ@q#$@baX|Xy)uC3vUIu@sj+zPO$JwP2E-Y_8O(KBt4@TAjnr za+IC@esq3*#Mo5VjK$1C==GKF3$4Q60Bo<+H}LW-;^Km(XEpnqz=S&p*78X1%<8^~^9Biz-G!1@ESGWULqxzfUm zKCnI1FnuuNU(d$&!^FkQUDmQMOV5#(wzmf`(7nqt7$BeCMC$Wa;&pB@_eT9?*iQ$0 z0~ZAhTWCspxm%0u;poWX;v(79frf5bi#P~J)c)QAB#N}v)S|!ibaUGNdihdv;o`U< z#cyKZX}{o`^F(dM6B*T^5~`iHwjaae1)03ZgD0QDgXN^L|KvRu2|qeU4D(4&qjP`6 zCh1itCRy;ttHB%TjiC9Tk;xJ=LrmCKz;zQ1o&j4BBW*wt#qR8k5j)<{)nMJQP*Tp6 z@m47`y?qf3sESH2s#@EJFPWH7I&5un{@XXul+t@m)<;6BujM#=IWR4ieL#M}+T6?OJcfWpPDz;6S)URGRBL?r24I zm5SZ&;Fga+YA_?T{Oyj8MWrY5_|XqmR}&iCZai{%4ol5ow(-%?ML?8I0EyQ>L{)srzqC8Ys$9A?ASS;rKlZwSUS^G-|u5=xhif@%A{Nu{nVcg~yF@W%iY@2=wv zGRLw{pCSNHIL&s8l#Q3ydT8>SAU{0g9>1nX@=O%8Jju+;3jV+|`E-6w&-FtA212=d{ex0WDXOnzr@aeLKK^Qa+)R;Z~@-T zR{BUZV4WYpAcT_|4-IjF6cmtKq(kEV^hw^<&L(|iOCuMR%*w~xpC+(eKt}@ngioL`cmo@mT+*eJbi0cG8shy7UCaAeE|@IpqsI{4B7LWuFoqP5L1UzK)UZdJUoa8-X2!Y9K|^NVO^;mr|2Z>JY>sYU=xHI zlzJJ`*w`+9+H{|$5llJVmz(vrww(jeRFFC??WRE#=DvSVos>Y}%Ml*I=~3!tZlM)B zJ65!gZsgTzLq<&v1yfraDZjhuGC8@>;bOqSL6>}_^M}j<);M07ZG?3U4vZchYbL`2a4rnq~{ zOCbaL4>h+lnr{7{*OHKxm>8tZgu;AmY68H%jze2WvvKcG9g;@Htnl(-5u z&^`_+;p0J~q#U5Y_l^p|6w1uR;^79J!F5&f8SCQ^VKk)t#Mv4=*FD zept8#UVSlGk)(y- zJV5j2Q+bMqi{~n}Rp*$|X2DndRzWd@=|645&z+;%8SkZJygcdIG*lWl#+{xB8->W0d?}A{RuNtZqj>*?ua;kAC zq7lHP)^ocD{jub`R8NezO-&F1aQbMiFKu~(+et&C38Ip30naxWVZ6Xxn$N=8?)%<(;CZc(7w z08$qkJ{;l;6!zOw z$Nl_dsJIjqUm^Pu$&Cu1QJ?_*hGRAzbcyxhY@APKW|z-?Ecwu)sVmtI(3;lm(N$&L zVxu8BbFKC={64aj1Pf{yrEq#or_p;2jo2Rm3$^r1yk$j0(s1bQq~jb*4F1ic`Yb$w zoX1HfQclXA-~4D}!!C8iCD3xNh8fmzHl{peB4#GfO!X0(T2Q7aWuGUi%eSnzJh-3` z6g&udk*U6@_V)XT>Cc!Dt+sXjf}GTGjq7jxd>sQ?E1}8aN{4VG|T6+mZ16T0$^>5I_=%nY}#uK%=^-!2|@NcA~CW1MW*Uw zmwlu-9$o`bZT+(A4JzS@N(VGf$OsHnRNQ}Jo>UbWpnD?%&tw+Ch#MNgsKn|`@_T65YocC9JTTBa*IU&7%g* zF_Ot)nLNL%s0%I>&wnm z4D14e3U6=ki0J5yBq3}1aA+2fwVeR2t$WeH*9g$~Ly0 zl@8Wv);--B9`g+;Ej**|j6Oc+XO+ei@}TBC-IdKCOG}{Mm;Kf!rx-+&JHy%G>nkf75)n8w_$KGug4N?y zwsan6xUK=1crq$2u*1+Eji3{PF+W)<;LlWl;f)jlzFbUK7k&S0Q#M~v<*Lf~`9AP0 z1kglOe83{kgb7j12lB90tEGC=W+=g@mOh?*!cIB|2v z5b-@UeP`DCPmkgV^j1S)Tkh1vSdP(lrm|W=MBKHUiAUFb z^@4)Fe@fsTtMpP86x_nWXnwB|X2uTJEqkfic-Ub_e>T@mrUKpO7}oE+$LfGSY+YUD zdL^eHn~+esv34KF-hR+}RWXZ?7unWcX3`6JU}K&p^Ti7;azX4-vvJAAwE&96#Q_mJ zIj3K_-DIn)>H94~T=sUprCF#Vz(iw;eg^%$O*twZ^{yo4>^cMYLMfmMAe3UsuSz&9 zNg^C9{i$u2G$M{_I9jC`|f*CfHyGUI(OffGX^=G6g8P1K+D33?(n&*}%HI zdVmp5=`}T1CrzpmFOhPR*)Jh`+!-y@WSy>|h#4J5<`ag1_f+M_VU2Eu3q{%wUsZ$j zbX+ouM@)hAk1Quu!B}C`OCv6wvY<~Y>hW?HN`I>rATa0Mdwz&uC?_xf2iSRwk?|~* zkF^_LJGnO4QaE9?hewaQT%OE(%zxuGVyMm4?8s$#l)<~SK3IJSKA#5vRC#Ws0f1>9 zZO&4FQ!S|a`x9gfi#t@5)6R@ADnhTBY0LhL7a>?w@}Hc{O{G8D@bJ~xHBF{T84P89 zeXnnvgVNMQ7)yfpY<{vqBF4*0IgIM-A&i9#0v1L9PNlutLmqi&ewz6QM`9rP7Q)ZZ z*8aUXk&dLXKS6;V`BV{v$T?`<~n7>HT(VAj_bFn~ZgAWP~euO)w9x+}2B) zky~o<@|%mmh7kMBF{ROgfeB%&g{SPy%-Ib`ulxG?kFW?V5fL{ORQ*I@hWQs5u$kg%*|bb z^0vLR=-5HMW?;WBI7e_3}Bc43AS=ICJ_3GX;aHx787A+noeF_sS{&_NLm>zs8V|AINqymE#z{YX29sr$uu*SbhKztrp-m7Qq%UJ|RI;BgB76 z2zcH;xsN&9zl*y?6uI!@XJl}nQAyuzHSNtVx`^n@0lcCJcarn^Tp$`40hi58O&8YI zP6aN9M>F?b4XNK&+r5C>wh%BN;5rY6h_ENa9GJm)=2A1N}0T@s;pi408>w3V4%KK0Cql2>Req==`U&iR0}tMsGcj-!jKdZj*R0L zj0>EaC{_lhlarWOITSqR=~iGj_x9);=_5qrG33-m$}92-WL43j9l@)mG5=lY^VQYT z{(tL@No!uqMt0Qv=nj#Q12iJ)>5&P+sbl$zo4c>Zb*8H^o0>}X04nUdvfA5tu)<>F z*xqz~Nyquf5cbQ*B3E__aYNbjE^`abh%e62&@ z-iyU=SzZ*=sUP*9|MQT@(9{BKyB*A*>gXoU!giQg-}b$bJrgNPm;T;WGTp0jSd4r5 z-IsfCFv)IPXZ`XVQ8ug*eti0eAB{su5fSz_r%BeQ<7}PJaL=Uzf@6W`O2Ns=B4#CiP@z-H8qj`M?c2`5 z(KV2%a2_0m|9E#Yx+MX=fH903>qVjfuD4I?zom9wD4hvRM+1GP+TJiBISjGce=&uK z=#7;X7ktuuVSx#_7GAJ+o^&#&&~kEy!#^ZA*rbhZI=WI%Xgx){ZC6Js1m4zDlDl2# z+gNbq28OkHwTBOW9A#VQdVadRE@w;25_rNZCN^bB!Xdr+v3Ft=k74h8j82E`p8pU z-_r_c{H+y_JLNo~xQS~ViRsX_;E43|K)(Aaf@BT|6dWjP@P_U1>Dj&^1a8=-OHG>V zN{04!)3W>nXS?G(Hp`$Ck{IqPA%`teVB75TFb5D$q)7$EDrjr7|92Q8?*btwd^NS4@sZTO74xZLX2fKwf|mG`H#<+dI_>T6ee8eUw9;)1Od&g|me0^(HHO3!|7;lT32hd03C6?M53FiS`YXLfKfZi=6%1@X(^y*H?T@~<_C zC9Vb;wrZRSW}z4fVfRxC^pl&sDe0hG#}?mJmceDYBF~{eE0P&<@|xP`{_tu2Z-HOAxoJ?vo13d(w0vTYzcVxA3H7K}V~;h7 zXmA+r-;cp2rDfEs`Xj8a87$-!kyaGZGAZUd&^8cZu&#{H8i19-<*uaUa#B@Q>LKBb zq^GgS_KG>kLd*pr zGE(`nU4mAr@mI4T>VX7qH zB*-uQ!{jLG11vWMC5X%S#=$t%QA@0LgDW~D*)h)I9 zIW+&!WZ~XE12fvh^fbfiAOj{Zzsz~EScJnaw#hc#adxo_KN%a;#r+!@_i#&|sgiof z!JIvw8}ZA<%hYu2l=^u8r-$2x-G#Z4ddjVOq6CH~riFRIq ztg_|KG#PgB#*7fW9~0+cd+SaIV9P$6n=eh)TiWy`A3hxK=KoBar=#P`wzKQ7?X+e@ znV1|D(|#Q}sHyz4&8@~EhnuVMpISBwr@6Vn=N7cAdP|z4AF6WT?}g(g`AHmsynLhi zY;at6oD`2K;UlPQZaLlM44bNnYXDI)O1HdaNGZ`%=Bv=)9JQiGkLiICk0!Mk{SuQ% zLb5KrNSOhO*H%#_Or~fVp#OlGg;YyuONY-HU}^;i;x2VJsqM0 zG4db23vMlUMw4>sBg~Oesi{gPkCO3rbR>(OAKT~9n|vjS{^YQyk1lg_pb-2X8b19c zPNl5(>B%HrPob*g1xjNK8{R6`o$3V%u0OsRvUF^O9Rh-~$zF(Hq=_*76kzc4=Ri+q zQ*FQa(v@Dl`c$%Tb49|FxKlDw(kZw(_wC^3WCDz;?!gf&UM9Dpao>EM!sRMF^7yAq zvg=VLk*ypZKLK1E$d3d<8h-Hkh%3nmz`=M^`0h=x7b3mHwR%ULYh3ee4XN`6VTirG z%r%AJ#?;Y>*BTuf(tAoOKhq#z3a69D@8AtW^51`Nls;xnRNI>kLZDNOj0>R(hdL1E zY(=K%Vn`rfY^?M1Gt&M{e-5oTfrOU36}t@Fk!{zl82FiNk2=?>`EqvH!Lb31*_qu@ zB7=~o&dvwqRaHH|KfMyIDD@qU=f;LNp~`u(1V?nwt6)0ykOp74 zNX?i+C7jvrI$H6kS20&tylv|n^gMzjAmsgxrjzmwo2@w%&?^mHR|i-9^lA+HvOfnqk=e7 z?MG)}A<7t4%@QV9Hw7KFAQKV_hcVPV(@k`zr}xZz{AI32a0vzRRnqs?gbumYV+bdvH;K}3Qs8fjrCmh(!^z_SmCnOk8 z=Y7+MH)nXhuE}hviPRwrXSj4r-s7o65>C`V%}rwNAzrd!RAPJ-kp9S35DT-M_b>90_&qz@ zx@<8U|H_KXZ4ERf#!o$|y!vgJBkLRKB0{8}+c5DjbSsz!t(N8J>k%SSa7>;d;*zlv z>u7V;#FKUiVgEFr{v-XC>LTNL+Ep7?XNLBaC~t%W+<$OiQrRnsg}&oJg0|45k+*ME91a-m<~3f|(ixk1Xy>X*N#SQ9A+6V5;Qsi5prR6J zJ}8OO2!~{oH6;|gG;uUUS^R(--E}yasIl)m*CTenXWjon!N9YO=b_RFn0xX{#;9NeD9OmS;lym8YXd)$$fv{zJ{#6Ddb)aS~;Fx3xy|Gd{_ z!DFf}A~O4;Zt{j7-%HvPg3%LWb0YHdj~K$*&m(9u@R)BSBzjg-8Q+#g47#}xI6z}1 z(?}~m_9pn^xS!nmoW+-1<9U$7!eTT^J~Ig5+!fZ&uUun1h#;ur1?`jCy1LC^q=CQ^ zTp(az@q>=MsWP+E3!0YJ!M35o`382;OU}hbsjhxdK^(EB8!%3HW~E@g{IM_T0r-(Y znN?C$Qj)Q@E*=1^b-f>(<(8W=%X(_H+vV}xh=*YPHSxpEal`RiXJvWDfzk2yPbqFE z?GmztosA;a-f|ybJn$R5p}sg~@HyR@lyKbkK!6|^6*NzTb6^qv1s2{PDBnuU&CR70 z{~~nTBy$fQ7_CSuKblJwNO(}S@@TygpDL^UuLBTN%$@}P&F}{t2m>X|Z29^7K0ZFQ zk60H8O-ke|>=}=2Q3#wSX4NvYGxB&Yu*AT`w!)0Tq5h=lkr#5!0WKW+gj zaZjgVN(bfs{jYbq+CxCOzIz*Lh(kl4D-iw;f{$-_jL_7G#?T>Q)4DNg{4*CL^yd17 zTmskP_VtHWbe#s~S5ZX~-<6ilE*;2o<2XA5-P^@90dof`?_Jl15P+EIMd|1O{`gFn zBK+uR@9&BN(B>MUsl>0d6HUTd^?Ya|{`C0R4_ZjyP78fg^aoLR1 zo``&U>e^s2n;>Am%ilp8FhY9ZzkJ>1fo31fgD|Rp3H2CDG@|L2>J+`AwS;Hb%!RyLu{C(6rl*3)!CWv8%MWu|Y6;_L8^RVcj z&j6m5*;tV!I)|&t4{gE|0oKdw9{ySiVscjiCtrF-}lA6Bi1jR z?|h5&5ksDbqf$~qk4&)bBTfDF#pcR7YlhnPP@k6ubZ_UY?T?L4LPz`|P=OA6sKu@A zZC19Q)d{P%`La~R#L{Q4QkYa+JEKs)l8C#WD2_@|k&%(ThqX>TEt>JhE>2$~!W$*5 zD0&9Ge=GMgrIB6&vB%&4_uKZcT3E+P>+|pg#?wf=q;8rDMC9_X-TF)^VJBx5{M8Wl zFC}d&E63*-Z)=bwZqQbu9tuGi_2g~MpMylpb@!;Kz5WILmBY1uXFvv6?=9TP!XJ;^ zVq>8WNyq`*wG6bLB{MZ~CI_PW7Gd5Ym=IBEELCC1dB}`x*!~v=Wg+XoD6k8Zl!Wee zndO|Hh){P_`}Hg2o}&+;07GtbEGfG}(84#MSx)wTc|t;0urCUSEWH88=}wxnMS=0+ zW_Lu4bh`3Wgh}M<3zeysomr#tQp@nfjSVZ9`9ozxy>W3ppFGk+SIS5iYW79~NH0U* zFhT6wYL?5L$!1$Y3*~CCyUHj{Oh+pxB`SPsO?|e^T`(Iit^8uS z`pBc);w~=_lsJ`m8cQkLe>>Z*z~T6v2pVs|;o8!-P%M|;?_Y`8bs%2D$jrPXZC)26 z?sl;-%7@dMBUrD0 zUwk|+d&QauoiIgm*YbCG>XRkt9eBJ32d6h`gZp$BPRpM{oFt&cwB~ zaf4LJe$~0E1y-?97I=6xPLO_!H)x$(lR_UX z3v0u%@hBQEF}XfDy(BHigjnf(qyQ?3wdN_#*(RO#6~DLI7(y-q_7+4t$>aq z+zN|UDFT987LMnzy9bb}^~MM*K*+(>1Q~#fE<|KhEAR_0zupa%CYB_FZiui+2220C$Iy|=Y(L0*m5fqhN<_qT zb!B^?j6?CfrE`|5sLT&!sss{}=7lyamCbgV*GXASd4SzXEEF)I;k2Z!wwWcNi$ZytcOV z7F18_S7wP}a842TgV5NfU*yY_tbQne?ilj9e{@!{b;dKKOAd!Q8A zM|LlMIps*FqV(leN+^oYezmy09U2&jMi;OqlX4FuKEIIjhi=7?c$ot`99FWNl#N%HT`b>a)0J!Oi3CzoSd8neE)QG?9R+{~w26LxaTH z(oSDe#b<+9adG3}8bSQ%C}}EqN>d4jm26GLIv?-iG($Q;j>$0U`;#DL#|`OA*XO8{ zoIii^X;M8wIytG-euEiT??xvgw6Ip=82h2Et;gibiRp#Bw_Pv!1iLmu0JWIVM`Jk^ zrd+LI>c1QE$u=Tecjm_a|U}vXS zjXL_|;o8>ok4%t78)xRiHE#=(aTODrpcF+Da22o{9$NUah*Y4Iz~~ECJgD!I*Gc6bVYH9?s-=DP834cq+G`$mYYCUdmY^&aggKAxX6<~Dj;Tvvr$#8=^R`7Py`SN5t zG^F@CU#ILhIiGRFs_S9Kt)KES*_X0k#lWnCr$7L>eV#!o0@No44U2AKRSi88uLByK zw!k7#;VI7NC&O|Pp*@ss>F?i4_}WGA6M)L}2h`GmW|)-F^gc3N4sgVN+rRCT<}>ZCim~^<<$5xd{xBKvHmO7`$cj z$I8g@5o}k9{iO94tEH7LM~&GIP|3Zk{mho1YT?gg%iRJsmjKQ z3DU*1v>q`!L{(ecF0AhEjJ*ky;SGkDc6KazkQ(9%JU)uhdmUt>tNW(TC6n#thWu`7vB15v3w&;~xg=>!jb!)k|2%SLwVa$PafzsUX=8(5l$Za7 ziu+1XmYU#C3OlU=jA9N})~0&5%NFQlVT$YChdo^??6SE`@JE15J@J!3R5r}WMMQ)! z;oG+dzW&~j4HdPVB|jw>Bz}9c^C4ce%D^%tjs(8`;AC5>^I%2jjfP)4WxL4ETpXcZAU%Ut!_@(jaB^Xm-rKAmQrQ>pMzbC)aBo@;Xtf**! zOu^XEa%WLdk!MAPAS9EGApH0qC>)=DWCwJ9>f^Hbr&`US@$8|YVb>vG%p+7YqsEL* zcLqj>rH0?uOdN{4S*_f-5k4a9g7NIjng7u`o*#a0x^rpSzsvWA`?T~(=lBo4x?XAD z4HRIo>YbZ>2-J>&@%D@u!uXi~{+3G9i+?$bn60#yf`_e4OPN{D`T3{SnD6YSNur%+ zAA2`$%gwZc*Z216kOV%UlhuoeFe0d{E3PQlb8b+?WbQ94B6*7o1We5&Fg@cUOT zU48*^B3xcZFvd&_;O5o7i7)$r!D}+)OD68p^4RT5YFhUFQ;#d3DiI;B&cCe-Q|0%v zvrrRTq{qI@ib%`KGJt=vKUvHW7E3)VSvx*HC8ZxA zUFpt;tE6Hsd}~Wf%{rH7Tp2ZvuLD9UzL^)k3+YY4$xk4cw%cHI>0HSJ(KCtT5y9@8 zsy~$X5ZCzlP==KfCw^{@$EGDDBpn{EIekkGs|>(V$t(!F>x3*XC9EdljH0#LAhfy> z4OUfKOiAo^dvDoqxAa%ej*>rEbjiWtE+2QiIlj2G#Gw6<(FzwO)l#pvsI*1H4~auu zT*z)c;-Db+5jksYUgZzpP^T+WAfpFw>V0p-BkkhEaz3E^k>`t0 zbI-TC+9vo|aDDuPlH+zGyfr(MT4zb41EDu>AD>C+@s1$GNAl@Sq&wOSXtNR44yWc5 zKi!G6g+T7b2<*4zna=1Fyk2PFo$SCz8MIADt~WvkrANc?H@l zV#>tji0JWIzLa^y`6g9)?fVlwf;aR4>|>4QZWvJRSnGM_WW)%qb$)FD&nbSQ=eP&f zb&zIWCkgGl5S<9_!4eh{y9-^hk6;!yFb7*@biJF&jk7Zy94YW3wBK#;xD^Lt+iRc^ zz>tu9wl&GSENI%o*q@wcsZY!IvFE9a1;+&=W9q+=pAp!k2=I&SoPk5_+tPZkpyX2t zTxW0?`jcT&V`}UAykLYNg)BUqg~7S{(bBRXhC!jX{QU9oD^-8GMQ5-y{K}-CgEPBq zbqAZ2jBcZoptyHy@=Xm;)5~bwX%~lQsStoK>IKh7t&WugYyLlqv&%`+G2pXZU`*8Rr1dUk%3Q&(oSj)_8)%G&QAJ2NYA?xk%27}dy=iH6 zI7qsYkSFtpRO7#WV`YN-9TDLfuC{qSMZkg0f&4v`h{#iFE`E zk$BU%2Zx=*cqFoiMIRJ+#OIEpz)aQhqo_#y)nU)KQx`c{B3dsrBFa&VF0_fcW6lmJ zkLf6Um9SY3Y_z7l!yCBTze^FamW15PCyaSCoVI_%b~vw+m9cC6QT+;ECP@2Ex1oNt z5sp$+>eQYs@{*3xDmEob&G5l^`Le6V#pO%4`!$z_8iC~QT;MB3!b^wEwkd4Nj=jx7 z&p47PaVOfQ-yiJDU?+tRMg&zosZYPgz*80~tx>vepYaH+R(NLV; z1x4Ek0;o#tVkaC1)63^TXKQA}*dBi2u~JQE)zDz103u%y4$b)rmRWkzQ{E z1)Dnlc$Zi^2B>P0Y-~??tqF1b&=owZu9hSxM}H(HhQIwEdqy32dGNDiL`@RX;(tz^vE*mYavAKZ=*P8`I9i?yH z$yHTOweRm?x}PC(?#z>1x*rpH^iGjG8u1JYaYaCTJ?tVMnwldrK12l9)c4k}#rjQ1 zMh#AgU#o2QuT~Ve#c4gs(2?wj&~?JWKH`6QoUy6O!ovRH#}5N(;Em zj{q79Nml`>oRlBkzi=X(7Y=q1puz0U;_z?Cud1@L2o6X}5j(V3Nl6jgTbK>Q*{$`R zojqIvC&$9#*7Tza+O?zzshOD%{r&tN2<-1u0@o66nP~mrzowxf{Hcr@!zCvjz168NPc$JpEwH1L=ub+eFY9nO}0Fx+ag5e7pqao&r|z58cyxWjwF zodli_vGSQi`2a#xb2-`iIhm!Dh;vAJL&E@MOUs$cV&jjWdx}hn%KVFdUo3n{xE1<5 zE8k`-*AcLSdwq|OF&%z1a1w$f(y?N*v%l1y4o|*21--`<$1RYaY{^VaA4f?3nTC)qz#+&&d4-o0ZGl zXm?t5_HqRM#Xo)ngM;U01XZaEKFx{XpA7u|?_b{b#;E?Q>o0C1=tg)pzj6lV^~Vn`qySZt4yyk$Gc!poP0?qcI7S?< z<6-;z20~u+b5{&&A)fg&TnGd-UuUFg3f$aC%R$zX<4PMmS{x`SXjwWsink-IgH9KA z1=ZCFG82X@=;eB}9y!FsUgv(E<#KkLwg(QeHbO8lanQR7&IUB`Ov-j}ARs$BI%WbxRzs!1#xL;YbU9-Ilx5Mm8m7R1_yo&vZ7A47#i7Q8 zV+K-%bex>8ataDoA+!i97Y;yda;0g`46<{yWxJmK@fc+*E{=?ZC}aQh!~}diFyW0i zK*@_bMnn|O5qUoXq<+;XEVs%ab#BS&WS} zt!yNsV`)=YD~JjKFW3*`g^;jw)QtqacSrj~F?+P=S$U)a0=~gz4lyd>QB7i4k0x@ULVb8hY`eQ zGEgnR&o2WbP8PTnk-vqYtQockCgrwi#~KzC;#g5yxVTE;QHA=OY7qj88?s7Gc8TR_MqTzZZk`EUbavW^{`K3pz3_vU%CC%Y&!p^ z_R{>!>W8j&U>X5apigO;FoWkw*JO!F-deBg_2b^29~XG2sEo!x$NB>CI#!(D+_Xy! zbhXM1TFi+)sJ2J$>ESXSpuKC2taLeMgMR13oAN9oBD?2bU4iNJIH_6u4my`x!8UMYoS9FTKhv%we}gQ8m;1#n ztuPJoEv(0rD5rE+drXQPojyPgG=vHxdn|ttUQca9(-eSBPiMJvqK?{BU5&u+jEAhu z?JW*X=ZS1B0i5tqRSWX_r-UDVdT)AMC6u(RlH`o5!B+MKk4~n^ARE=Sy>(S%IX*rv z3r%Yiuoesae0fRmK*-87q>5UM<#tc+URXv_@zoc41OnzLygiZ>SRDuzUm_uUboEG4wl{NI8o!v z6P2Bcu0!odHke3U#(Vl-pa}83vNA3dN1Ji6(*dZr3Pv-Hcht4%>G5rzh@^iP2KKJP zgVX7S3w;;s2<~GmE2Qy$YMiYNY6HMNH+Q7#`N2cQkWki&y(5!@8T%bY$*yv9n*WHK zwA}(X;<=A{+%JMw=X@WiXV(5VU}R*Jnwp9L-0S;>m<+OEz8WU1MaFnTG@^HRdm=R8 zXk@w}gCbN~N*Fr7m81VjHu)_wvi`YEjE0s}QPESV)m%WudjAq0a%%DqrGF9*{`~nT z`eSdUW{R8teYXoMz_A5?4B1bJX6DtEl|3pi%O{!tkE694PItF+8~+Cc#-af@%m>SV zRki*JY0An%_gRZDyDrnS)1BkwNyoGo1n2~AwpYW$oi)D=kV~h^nw>nmyStlrW^0_8 z#l+&jT(a|tIHD$s#7e4XD`kuXP(4|<^tdYKAZnbRrhp?|KV%U+LFtN2YD(^R0V240 z4e*0}vB-E(ptA_x_CC;W@4MJsTt{{x(Y~+j`-Gp`DL- zSv3MO=9gB$m#O`4SMqen?&h&J%+uu$X+uI0!=x}iePXm*N4S3Zec+8=%Gi~b9wG*b zWTgjAf}caP5wc?s$XXS)Xi? z3W%7ktsHvH!E z@{89Oo?(lK9EB9<1$cd@!lb0+GWdf6mI>00wZ0}kQOXP?WMKrB7YaVlm9X+qF`t&d z;h2GfqT?#3$XU1qYVM&FUDns*>Xzp0D$=732s>bAmV7#dj~O`dD^Hff!Abm7KSdk} zm++5#BGDr!-vDH-Ldm^TS?G~<(lJIU4LA$);^gdLXUtaiW;h)4f!% zJ>L&4y;7{t+%6EFI7%joQQQj)6Pl^58v3ciuo@BBbiOm&-6!FOe)+CW-)03pBt2bu zpswajRFv{=ZP(cuM6Whgo>@%_%NFesdXt5xcaTB?BxD2ScO1{2K7EVg2}aaAfgAku z+)PZ*p&azg&1Yb$x?o}9e#US7zfC@8!t6?b1pWjxigc(;q2Mk9>jJ_L=2!0Cbv?kbaxOr0TGc= zXJ<-A<->G2qJcq#93y-?J6Tz+FmbZ^L_Ax%lEqY3R{is!R1OnO8N0t@f!oH&ZOv1Q z77fY$`dG`Wq=ewf`NhH67BBuoQ?YdrBmY9b;%^{1%t)Lp+??)5e)ee5y;ETl)Y)bM z@*q$QR!>t9sRm-XyQI-Qe;2@;s7+L9DJ`uCIZNiHRv5 zBByuo{f35yA*i3!tF)r~v9q&$eEB4>oXzOVv;YsAx%uWH(>w$`XqMn6>G~CgKc~q- zqM|0{2W70Rua4#)Ffh<-qTlm#he#&gpoAA>4?a)+z6URdzkzrR+Mqz)UL5}n?yenb zTUP>D=6eut;JcB|5`3quzAGrC=ZkR%e*;qUFO3+%(_TTlfxt<^L*E>!snG&c(FcN|6MfjS4XG>5=G*;m~UH~GzSv0$-Dlh6Cf+1IIxk5(92)=eB7?g)U*Vf7dPUIl%0Bg5Q^NNx2FhD%=W}Jy zG)8|yp;B#as-10fXNm`LeqAk>n_&a!2$mDlhl1ufNen4}NBzX|uB^ zg)hvkXnZzxeB6m~^!FYk_)4?jY>SHN`gM&M2deo=4XwI6n}UMTXRcQ%N^5Kb z%1j24{@Dm4+1sUdbT5IrvqwBRS9NIa6|iQqU7(}E$zn03F1R}lrmx}bR}6xJakYkG zE+Z)$ZctKMy1N?*=@3L|5RisLcQ=ZFAks)T0wN(G(ki9W4T5xc z+{u0J{c--C$Kw0;UTew3c&NQ(w`ZJ*qQh0Dv*kgWm=oei;Dq zAi+WfTsJu4qTvr4$L;R^R2TSb7dL(!LcBiPc~7AAQCpwl)4$5|vECs)++!0hWbNHf zDm!C|kGEDzN1i;R1GquaYin&cceu*V&v_lD6zGGioQwre;V}dnA%UIW<$(~dRfIW7 z=!>EI#rN*<&To#3&WpMSkLqx6uv>CJf9~>gjyepVTEW#{;-!#NcwREG+be2RuWPXx z2}x8?Pyfx=tNTw$iIx=;9@c;dE4(D*N9!95vlwOUV`t;x5g-A+hVt~MV!yK;aiUf? zH`+&vbaOqAN-S^^H8e8wvL5JISbWp5u}Oy|>md_!)HgWh{1esFA9;>}6Mj5VTl4cr zp(rK~l|&!ueG=LyN>NjK=V!wrEzNRACp|Vlf4;_}`6;hYQqf8!$)p*%Q}J||gR93m z?tb3P*HAi6T;O#LfYjq4ySaJb=X~Jc8uW^bsG``k6;z(w2ZK|gnuf+-ptMa`b8@<_ z|IAXGo=DH9Hi@xqDF7)kRm-u76zFdtGCLVnk$u^P^J3;}MZ`(iEf?CI0a$;qb}`1r7}5LnpWR_Eq0R%H}ni#O4kjic7<_i;mRZr&Bol-%3>ymB>ZNJvQ; zcz9}zxYF>S0~=_iQif>rY~HH}^Sh#~ujp zR0lQDY6WScqhono$t0~!mFimfsN+gM6ukGsYnQLWR5Sa{?PFy|lEBGkK}i~Xd_JyQ z1emlUB0PS}VIK61?rS{G!IAKta{}(dSim&gx~)B(GuO_tKi%^^p&l5HH2HvqL61aF zAB&3O_o~fn#4--30O{fK`TZl`sGsTSIYb-R7O)7BXm`dUg@%&Y>7b`iUS2N0K)CnI zeeP7UeI;(Qxk-)1?fNs>Kq&&zDjZ%)y3!Wv>MW_MTXSvC`UVFr=lu_HeOl8v z8IYvS<+`#rf4u+aKIdflLC%7nJf^>YrBds+8vzO}7hYDC@$!tWj*EI80k0QVSkC+{ z$Lh-EZs{YLfRb|L_N&kmkIfXAF<%KvOMBx#h=pLPt|70?N{zE=20sGu@O%DLn+~n5 zth5r}pZ@G_69`e3b$CM>kK_!fvW=dMX$F_F@_qmQnl6ohb4Z$*dksELI*;SXp~yLP zbH!idLWg#`iC*u}@3MdpVN+!|vTg~&`I*f>36g+zegSEqypm{)!Vp9)LyU;G_uX)C zM2Hi^UOb

l>|0!%gz>WMR#4cA8@#NK{wuFgDPN6LPBwfhgSrzMvm- zO?Z163mZgI%tIl2yc6id5NL&()9(mIhCB~pcu9wVt~VLh?R&u$5!Vrj=V-pgtVD%YJIjv(&vg>aqzf6p! z32~P)z1hi{j&-o%OL=5>$xrq@SBXb#+z-M2y#Qz1cM1rsjQhtCtqWFdE)Q{SM(!%P zF`25mbgk$nLXk0Gn$2gJ|7LVQ@J71j>`+6RWm7tIr%mrGxV4ac$#WOi(c175zG>G4 zwJ)}YwI7h4@xZhj(#TRoiZKu=iVelNkd?QZ9&4xOnEeqQy)^;l@3xgfS;A@P`>)}e+~viS=I&P^19vNhcI5(D%i8=qwQDfDp79k*gQXei2D0kOLKo(_3lZ>-FuTc*9c9LJCf78Zukvco0u@tfTgY*mEWtjxoP{EijBmgy(Ndbp0kZg zu=uvvMt~l|{1AcyK!_VwR%+AfNn*C7tlN|T(0uIIxz)k828;r;#a{I0o$k9P;xakP z2eB+_4_s{oc)%nqz&HmI)W;=P5I(91Hh2ZuyW@6HIn)O`Ta{!`{Jkqfhclo4e6dXf z*>4oe30e>}Y;9uhxQQpXlqdm`5Az`AMzS5emn!f6beUw6SM#%c3`KsY0K@<{UC-4y zdwRSpXdI!oJ}}a?hS!Kc?Vz2reYM#UHDF^eLY@<&5-4hTATk$=Di9GI>xd4hY@~9P z&WI`=2C`q`D*zbKOmdZk8V$2=3sP~0-60;F`;sada)fb-M;^_i%=}&^mWF9XK0;Lq zK8CF8iW=-%hXQ~e2I>cAPsBQnT`Aj2Dl2`6P*OrhTX5X^dc(5Yg)qWDWVMqSq=wn= z4P;1WoImv^irmG6@Abe!EI?|X2hxnnvI(F?`_VPG80I_zx%<>N8x#xgTqxZ}5)Xxt zhFVQ>HqBP}FyR)9;lv|U!{t+HdRUV!gxMz@d0t_;KVL z>H62m^eZ}7zlZweqOMGaS`sDNoseOnQr3jFISNk-1MH1q-IJ)B(~Mp{ab3fd?dI6X zB-acCgS`XJXxl8nS3!iC&RPv3P|e(YnW#qzty zK)lWW=#E|^MKE`(aQ*?y(|cFzt>Y2MstE%m7}uv;>7*_4y#KVWP1s^Mikm26K464h3^jd>skqp80bmn2X}ip#i+ui9z~LuJ?)z}B$qoM5#7I8Xn@=d zQ{0Cs?!y%Kp)kdLnBqQ6aUTkWsrUE)-{&qYn80BpcBTDFKb`m!kKhH<1~P3R(*`na zAT#b@hDC4(Oc`{h<|z{r{P#fullC7Nh1?6rw3=E3e3=`W!sIuY*q-v=w~?7Um$`G9 xQ8|z(vl9tZcAUvfGP8lqWF-?4{NI8E8+l*Zf^v=h)(!Z{Xnju4_OC?Z;s%mqK zhVcH~+wLgX-@m^+sC0G3EfW)03awz*=xTDi*}^fzvB-vi;)`>o7#F+IC+%)p| z__TfDz0|+YQBbya1yRucdy$L!kN$s8Kg!>KarM9FnV(T`{(Jfs<68HBPf;=mKO$>} zJe00qVgC0S$}j3$aaaC(uJH1IFa5s@@;4a%H$sqQ_}`R)Mfm@$hHO3G*{VZd^<|qZ z9qBvz{k}6QjY{_C`1cPIvApUvrxTl|&1KmhEjls|4kwpq(#-D)a6T^_81=3yu3V1TU*5! zFFp$SV8sUp20nF(zBoT^YiSWlk%}!g9?N~_Modg>dQ{|+X=!Px!xV0Hu%_Hr%y%|} zE@AqV(`re+YbZsEAo=Id$?s(onFLy}17}fxi~Cu9rcxe%a&j`K`Si!YprHMQNVCcB zyM6?G8r$335nQ&}sCVv!1O&uW#Mtp?C}bI0I+>WPqm^y=cZAZZ?(MWO7|qmvp{Anh z=}8o}9#XeeUU$gO&gNTA-(TH7KP0E5d@U_4Jz8#^p*uF1rHb+N>6pIiRJHS^-tILN zlwZDoyTjHa3|Jc?fv-!yK3xqpnaUYHn+uY9jDbOBW@hG#&!aLjG9nRURQDB4rN*V| z&+IG)CMLzrn>RVw+4YyY;~g%~59wxM1(=NnX|0#KU&0NfXJrkjnpGt?H@_~csK}6r zWIcgYQb=Up1;GvT3Tl`msntB zRTYcLC^NjL7*l#E-}zpj(BY8)&&AQKN~!sb?wAcOkAvL#>0ww(O3G-lNydCznCbx% zW&XS;sj$67aPfwQhUKH}+0b+HAQ1wmtxqb&##EY`nmmW&AJTJj%yu}XxVPPFYis9b zX5!&K4abU2LY<%Mb@r>sGE!x4@_1$(w*iU+#7dT&2m^tOPO0=&kBF8 z$69U!8$kE&gSvV&vg7rSq?m_8fBewD9hZ@wzPDD;m2SVgfO_jzcO5!krk5A0i0_!; z+Ek5ZG?#5CEE2i+kGOA-C|J`CT@EK~=QlTV;^GLMVNnB<{P`}Fb{D&b#>{Hy*x1;7 zaacqHkxlvH?%oVH1tC6KYM~v}^#}s+27)s_#-_rJ!#2ExD3REhDl`bva9AdD-fqBb zZE2CVvn$=GKHVU1G9Au+X<=b8)Q@fp;igh#7~@6 zlD&$lbII%1ub=eAUL;w}Hc~M#b_3k%E2WK{*}@)t~v?mX=#tLa}?l2cM>XlTT8YAzfScNG*B zSN*s)y7!j*t2D83uhn zsVFFf^}1pPAVUiEy6~&E8=qQQS;--}ApbLv*=&*M8LB0wd`rr(Ou}uUbbU~cS+weJ9UmPnEvLjPKuzx> zXvPqaU>2Ej+U<~Us@m%nQ_0i%;)l!8yHqVICbs{_o1yjh@0V9^-0f}-ASp7R;cxrF zwOJ`UQDGYv9UVP0ws{eY*I~%_gKeGn}G!)9Nwk5vs1E*d)EiT4(HlL zmE+;y)=Zr)d`^f{#hd8(g=-a~T=#KtGn?=o#cgbCLJt>YpvLvh)OpA&DWyWnq)El{ zdinV&xVTj7s`}&e%uP=d7K~)V+X%W|?8eTouhT&(syf?gQz_J!PTbvqB`7K?ayZ*= zf+aAsR|v~5DH+Phsit;xbVL@;)YLR=oyY|4Aw8WsIVmai=TD&r4<2~=_!wK#LcZVq z%NqC?HJ$fEL`6jl?RVchpRSkqjw+}HM@MIEZJDZo_PY+nqQSRNjW3+WXUiJa@kOG3CwXaXs1D(M1S&EpO2_`0{h>U?jT7E$RRCh8( zMa8xYvBk*n@U#YROx4cS<>j>Xu@bf)i^+#L4<8Z-we-)GWiKkf?#+EySE$v1it+d{ zB`>eWhlO^7Zkt)5-QC?jGnd_`RVOPMXvKPZdNj1O;;gKf$9j%-c6M&|u9wFe<&??& zTf3;}=rzWx0k%`lidm{93I*>w=HR`cKG3-ML5~P^=~Q&QS$)~*q$w!q&MzQPRVaK9TFCnVKkH-x{8L!S=iEg^mEdCvuj>!$z{39`4U?L z`eE|nq@xrR%wR|zq%gMeA{-9uFWYiSIN4uK0f4bOq8Dpo=?eM4^!z#9R9HyJ^4ak& z>h0SG%r?`%K8-@V0{HS_U{wQWLHGUp6{u3(9t19_P`EQvQ(v!-78Mi@mj*&n$9VE2 zJu|aCf4x6VHZ-TMw$^I1>M%VuwRtBcGgF+Q`baBiv9-0;(0oFy%bKU_j|?j-E7X~| z8+WndAdkeDo}ke(FqHVTbaYg$RB3oG#yCo9x}Fyutd9-7odoP++Ff!C*H(-^OqPu0 zotPe;o}L!cE;bqa32DCU%~1X3-Me@wjs2O*1x6>hIrDg>d(mZ4yv`^3tAklkBjj>4 zs&I_Qs+}vyJ|67vhXB%o6w|V2@bdPKyz3k3z(DVeuh`dLNdc7~wx8ztb6M!B43%58 zEV1Y)DAQq{2(O){SZkq(?S}8 zth4$;2@??!Nzcw!kdW}TSs%4-ScO$?(P3)o>XHiFgY{SbJeqME9es$dWIO?>@B;$_ zqi~Z7nM&_Q_#lO|0Cd4t%R>vMrlBch8U?jtS8Lfx`$at1;uR=j2!vv>_){;W4XFuzm4c6t zZ(wk6Wq(L>=*u0;rgeO?PNYHTTr$MGOID=UllY)b&HNzKb!{oB!k<;s;SoECrF=TH0l zp|A(S4jP-7bO1Q^_Lv2k1^8+KLLKqpm+xf8QAU1#HMRS>%1KmcE--?GGBo zTzvzJ}9ZEa$)PCMTc5)vEJDqD={n`;Ro6OrQC55~pCeSH6Z z9NdR;F`F*j7l5{P7CwJK)d?@-mZzuV00`0m463fKJ^@sc1q(>c%6bsd#qqu!%X)oO zKAO`SK`Bhmg#Gb%wzj(CUb;oBjX7;s{orvd=H}snHpA_U%OT_E=QqTh za=KZgNkv7qv$xkjoTm-DlZ>h9Bn|h6diQQW+}>UjEKvC-29iYeI@O_58HiT26{O7+ z9vm9_Gc`3ek|%_~7s8L{Y^$z(v-;HZKn{Mx~)nM5u5&&>OLE)1~OG_(X&90DBQAr29N2i=G`10k;|M|7TY2=rXhthRA z_J5zDp!~1w1S|3Xy$+XKF@jJ5l&v-eW#zP_B+_VJXB8l$mKGM$mlx*)K)WJ&Sl}1V z!o=Sfj5rlgAhP1LE0ibA48t8lXYa@UYTAe}8Iv`pVCCL`7x0_gC)Rx|44?FIr?WhFn82MKXGBb~bTtZZ483 z3~4vS#QY`WmfpIm_V#56+K0~9*3dBjKbPP^WYUjqsaaVeP$0$0`#NG;(WGT$5`28_ zPC(5GH9a_%q@ho-nvSRb`t<^c#;76D9w-)Bfq@SZ+7SqhNCwc@ zLtZEVXFlDZkveb`1GG6UH}?&++Rt!PsZg%Q*Qi*KA0Z8n)p$4#7TEwwVc2?P6ri;K zFsbjsm#<&bT`w{9^*W=Zt*i>y z*4GE(1#TiuXt6UIXo)Mpn)Y@%QBg0bq?x~d{km+}Bg1}a59=%BhnseC;y|Zatp))& zh-W)a1gIHW*!o0;qP@L65cDDVp~Z;f5ibDa>o;z!)PA`$#F7#bf#VF=dFS9j0Wb}8 z+5RG%jc3)?H{( zR8n#f+U7u!k>dI3)a9V_;RJ=I=2V-;m@zBpQgR@iLbAYYs`@_+fb{C)ae%q7Ir23w=h;S*u&M#@SrD$>-Y%Y{QFW4krEtVJ zbi^2VQ8XzPC#MRKC!ireSWQNgM1shv2nk;xaSr+r(8;;g2qeEudH?zlXMc<*E0s$o z9Wnq=TdfT zNdzDW9oEPqvngIQY^J0h7BOHTKmzgD&0oOh1kTV0O>Q7xw~fGwARr*%nmtEe_v46GTDv57YmC3QiQ8v(yP4z zCIXrtsR#xJMr(8P8%aq&0NsfYI%2xJAFo_3bUAkb;?1^Hf%oW9BB*^LflN$Hg@yyv z5aA6M+{fmtw$V<$+;?6ha2tkiDIq{{G4U zqI&(5h-5Y%eg@Kqa^u+OC^eKIgrR~w7Xn#ECKih13Odi;cW!QO+S!ARi40ZKvgF_U zHk*@K@UP8dW2zvu^-ceFLqxe`u`p_Ob|noBjj-rdAQwfZ6PzYf)#?BvfWjBJr*(FA zh7wjn@>-gke@{$I1cJj*LpYNp(i==ATdH=c?+H6&hbGMt%q~v;!#e z2B4Lwl$b^XzJH8^Lk)Uf+r?~?e+Iw-z%_xOwh9S-1!$wAt(_P`qlj!KEGFO)InW`Q z^}7j2MzF0J4-O8ze0}9BY}V&CHt0n{uRp-U#qF{f5!!$%g)(SnmzI_a5jk30 z7d?FR2#I9%3LAs27#{e)KpH^Ydk(9b>Gs#;s$r+6r$@*I6jm}3z>AhPHV97!$fy9? z0vl&zM~6g}!+s!O;CuMosjaP|5G&~byh2g>LFNKIPF6=JNljhd8p<}JWg(mk-+t}^ zh?Bn`E;-oSBSc|!C`Ylxbb?d_QD5zMl91$=mVS3ThRbFx6;Y|6{GJ}H%fcVJAsZe^8Z4(|~QMR6CX3!)1>HI%9Blw7oK3Rsf3X z+~T5b1F8v>I3#eAk_2ZPePv(1{B#eGGbw;X7$mXRz=R9|Uc*MwHUZREfJPM1qSO1G zNPyXD=?%2bR46PUjo0k#LbLmYCVU5}$Y+^Ai4a~2AsYgs;`qdb^`H80LRpAh9S4_J z+g1ZMX*iG`0wJD!{mv5rl&L)z^y=mM$2;@D6l9?F0SHH;1N09=NEx(7VId(yU`kK| zkvg0b>p~5{UROuwb>Kf&ukNpEUXDJ@^?S-D8S8pc1~M`zd&4(~_Mkw^Yii~|hrfR9 zno@c`orZ(R$&t1}+mp1+_EZ;OQOnaW4eD<#r==u)x+*WHmMNd1una2M8z5B3N&xMk zDq5@Ym>FH zDaLnPV;q4*h3)?R`!`d#ICA@`srqjQ)Ij-o<^3cLx?w2(WMFVmP+wd!;#yzW{v}3R z1tFlE9Pci+jf^NmB7j6!OgqkIz0!ZVGOnwu+uGLF2ZB(FUaa%rFvvc3pa@Ff;_*Kplr!|Bc)IVj%TMIxAp6KZ)S9PWQv-Ne9Ui7^)bchn4=cAW+!A zUZ5q~1FAUybr$N5(m$)RDUwuh_wbIO8ovQS4dc-x5_v^2NlBT@3mM}~W{1N5c(=Vl zRhbk?8M)v+*Gr1|`DOF>Kg$o6;-{zIc7Vx&kB`4HT9iR988sX?(D({g0+H?tpIb}BdEpK08FW>sq8SMZ{LpoJK+web(iJFOwZ6ER0;Lv@ z*GUO6V-Vr(*AD(!XyO$NF?88#gry;>!A z+P{-V^SNpOq=J1MEiwvA{-*-!yWvE65%2NbBZT>bCg}T9Dwe)wDTo{NQ@}5jH7MVT z{%00|j!ptf0wS+LG!eVHx{4sNUTiv%4#BY8(=L9Ttxm(U?Ote=#(3Pt8$^F#!y2A6 zS(VIUq@z)-cE$Ti%S5N7BRam^>$XrF4$C?DI%QQ=RfI(XFqV;*4}rj-^S*b%_WAQ? z02Zkq7CT#}rZo5W_aXWqbHV_OLd#184F@rqh=_=Ap1plB+iHeQr-+C%01`*W#t`r^ zTJ|BuW@DTRRNIl^;Z)tW(3QRv|77c1$THt`K*k5A^^8DLLf}cV;UGvP@Q{&qoLE^+ z{-d>=95x5`7i)O<4hZ~B2?) zntB+;VQIHamZr!s0LoTmKGQMpWu>8**uZY}sgAahk$Y{RmX;O*!x6n4+GMDxR!|Em zEMr4sW4eIHJwph1w}yXsxVe!w5rWV4^U?7!>fKx4j|WwChsui{kf$VrLPV(EOI>Ho zYP5K~t1`Qm+1e}fg+V1r)zCLh zB55%;%nvVUXD6vuw53A=lnvjkEIKo`KyGJqz5U`$if?9mdl901k;2PHwL2eciK zn5Z2TW&|QWDk|z@fCpfws3REA!J%B7JSfKbK-qe281bJFBgA2U#hT9SGr+QbeQ4Z> z&1HSG^$r>|%aR35b!^G**12H*MZvdoOG*?aBs$RfK8?_>kB~%jQ&k-$%x#((XQX~t zDG6O)%~@U2yiAutM=vT{r4I)o-{I0Z{PKV;xhpEo=OfB1>kZn?emMz;3wvF@qqvKm z+B;y473}rP?qKt2xH%li3CaZCa5@M#o}Ep8-;pGYA5d%(G-l?S(V3l%3jK&r({cS| z;bLscuwKkBfR5%+ZJe%h~1YSVAcKmB~6pR;_s~) znZu1%1DUyey?Cr2%C#7aE$oUs&@WJo z+n|vna<01igmv_x5D4wPV0tm@b>fBu2QU4;NdQ${#>VDAA`%$vFW(o}k>MAY(3RCy zAcL$RG!?W=HiU&l(^c(w6*?5ntr-nz@i%zadH@EJ{Qa__ukmu_*#x zmrco1ooCkd0uQF`V3={@VkvRw?!D0Jj8fB~>}YCg8bmqX$9pcss@>GOm>i~4ey9;{ zX_-`@m#h~XLN3L+5Ewx%+vMk^T>6GlEL8uc$hT46)6BKCb>I8kL@&MkSoycT>0UwR znT#b}xvFD0BpCym?@+}i5C#e80|N-FOI+++)~T>Lu{^e1AFWV?qK^1mAoI?xu4e4) zSjvl`md!u8UbXc(ILbI`clsq2xlp;z44+8oo5=+;*C4lo0PiP4Vb?M;>Lg%)4RW1s)vMOQ2X9uM{W0**Jy!O}b0V7rUTN>~CgeGEf_5_9L< zsO;te#M zB&3V6u*eI1y?Z=^aSFT1_s?I;;z$|6{=lOK0B0C+#bry5R*op8n(e+%#(ql_lNr^a=UMC^a{?T1Nzntcpqmw^`Y%c!96_^9SpOyw2q+&S!ahEfhk- zClkb<<3D}k1Spym_^=^UjjBQ-QU?;NrB61$;Q0wN0SB=}Bsm%`Wr4px>*=w9h<Z*qlTM&w7P%W`Lguqb`c#&p>u9q%twdO-Or3h#Rxg3crEv*Eg(zYg; z?QKCf?tbr#ex4qSju%L;_MP`!j+*8d*5t9aH1YS!Xm@iO)B>CN&%@D<8izqRENj!LVA4Zan*7nKV)1 zYah#@P0Rk{``bdaGC?5Rx{LzXZ?^Gps?4*n0PseJO%Ou^k;S3%^?|i8kS9agOVz)8nLW71)e15(uqmu;dhKwXJYB!!y)LWZB zQ?Un%aCzkMK#9%F^xC$f`BFEL2waGVR0OfcLDfOreZap1yna2UYM>3?dP@V z1OoR&R7N0CG)zn~K#e#Z4>DzBWm(?UUV9}d$Xx!@&CQMXd`}i+$=048X;4BC=?nfF zcsjwcv1Vy@HZZmYHE8}O3I_)V$RORN7PEz5_0ZhtzJ2>Pay^g&LcV_|1ThWt1B9$y zg4u)th7drC)=t06dmz}Z&T8WRtvHl0N&(e*e^}eU1+-a^1{GoKO#bQ;1iSO`d>GIQ z$caAC2LS~#BCwImb|aV+k+P8S1~+tG%4j|_+RvEx-|pdWz&x8OlZp|ox}kf7S&fO@ z*^TSi7{8_t)y<|G#KO{ThM%FSSE(z15$!SFBV2W zu#yrxIGrdwpa1r^D|N~4uJ5n25j|fN$OVIyej!-~pidYD?_18g1y*_zJ(7vpsi;H% z*?N8ZCJjV|vGix7zC}Q++1`hZei4TiszjEiNHd(S)TH`bE*@yIpx{7m6KAQF$=FWX zr@*uh!iaampUYRc)+kJT@E3<-Iy$Q2D=FSjb@Qe*yR~Qs16o^Em2a2snVrG!e+;?_ z?VIXf2Z9=~zaz$gO>}e>9cy4p)0yo2xJ#(?e7!`7kndfs?o@bzUYBSfD1c-l;E$Dq zm5t*|Lq!!385v1B>wz0qT#p5u8k*}*P|gvh1c0T(T!1j`Y)wvSsZt=KN`kaU1^Jak2_jndf@hZLY)YB&CsiJ2v1xYIm6Z?*B8KocD*Y#swO z_%R+HT~JF>R1_}sODd2qn*0fdz!?aMjm?38qCRZL4!N8quoRJGtrcTqOLREuT^Vyd z6IdA?IC7}JMPdhL9!c&-cYIF~j1D0c5yTVwu1Jax25DfT>lONXdOxRj;of(Tng!yu)hSnRubx6@+5ic#ZdFh?=x9gIUOh8hG z@SSph+W?CP&l@ooVb=ydpX>E=5dB_iskEGTy}`+j<&83F6KOSOl775GBY&}Bn_o~Q zKN3KKI4g#R>4+`@qZn#zrJq#{V2_X6^;W?sd|3k_?k8tny{ekN0^ z@ygA8hBywenSJpB9yo>8c?AWsz|Z>^wC)6Ccz*lV0|N+!@9J(KbAO6wzeNGqG8^=g zf|Mo&5%iZ(OEeGsvjhSPjB!vud-kTdxEQfT1~ZitVFm{*8N=r9M836)z}Lm5qhZ14 z=5!!~)%%=522s2HKLG-h7jdqvD=jaGQfV> zp$6!2`aq00mEOcj>vgrx{&BWlCGUu)i3D*mDO21&no|TuL1fxO(|!DhAn@dme%~CO zo=-My3r#!wf;l(0@cx=lPmj>l0-dUl*SvB8>CKynC{$)|@32j9`RobfS$3dm;6~M< z#;o_a8d>G>&+3D1>1oZ2gt*Pa4>2rlN=sX3_UlIns_Wunvd2q3sOsf%&Lw6;bG*)S z?3PKDV@0xCWgje^mWT$($y+-|l;2@?Nh?x#5tuYSu12R( zsbp3nzvja>4vj8!pRqukED1ozlwnFCEIm+kS7WO?I5NtNN9+biKwA>FzG?6eGPdb z`ucS@cpW%<<1FFgfC!kYMZ|(89mHIovNoT=^qq1ZKM3e@wd%G8=ieUv9iz<1@YSej z3&pN-PZ2j@&nq@bmQ6|GJNupLcaiN?289&yGGHQw8LTl5U;Hf9NhjIW!}UJkc8@_Y ziD+mLArZzoPxAIo&eKl*hyoErX?AFehlVQi;^n7*{BWg@elV_d*VN!b&#bIW@_tw8 z>&t8yOno_ZDXSzCI1T{lXA^!9%$;eSonxGxtctF6zpN1QSNO9r0j^yyOwb`1ndA8A z^@9hEf4+VD)_U(wUu74cA`D`bA01)I*T=;8^7$xg%5QZ>kB*lYt+;)DybE)X-tF%T z+OOVdw%SV#l~+XUw!@Ae@zsapBsrSrqP!CoGYoP$67!rF!t~07g-5GOi9)v*Mg)`|Lt)`B9v*B} zujg+PU=4Ilt%j%p6+)&mDWqcL^z~EAH8O2#d>~eg5X%TEGMLk_;d3w({qf^R8vLQh z;9SC3jT%6+5IxzhvxlGzj^^un!)R54=J|>uG8+sC1>?bkc!V^wvMP9EGAO_(R)4XH zDhO5LlarI7eBt5Y<>oV=k&uAyaC~yI0v!e<>d>$-MYnDqP&q*d!(r0#wEXa)$nnq= z8EApoEHF_KHw4xi#(3;I?tBJpr1tlG(nkW{y*(>HC#nutN(=`?!E_1%qY=bRc_6gF z;%MNS@UDQ*2BDhK-6>)*KPl{~FF|M)=(H4D~A3JgI^jWh{6o}J6f%O*leNBE@h`C0!@DFW-Z_Fw}L3G^&fA|6D&*LylJ6j-R|Kev|I z*A_}O)FLtiD5K-YyTZ}elA-G$y9EzsVYrN$Aj&&3?h80VAJPg2D1$RnQXYH^3tk#0 z@n3?Ji8vV67GhVG)!tLB)?W}e*w$LEIxMUaxQT2U2yDJhwsSHd>xH||^_{mp4FwTC#-*)fsxIN|&h^y4J1jqfmhiXdW`##k2< zl^O4hX5!iL1PV{>#!8>fn$8Qw-*ev{K;LW z;1(9aL^v|kiumlX_*PTShbut7dGz^Pk;k{?m{X#6hF6Z7Xy&kj_`R@N>P zl9mooQ&XE8PxjtR;lr+q)s>464GnE=Y!m{gJR~|NC+Z2kToYK^yM0pg51#_t^1l>6 z=wKrwAYifmAPY*De2rs?Q(&OnWiv^BBp))kg_P6598Crh0Oik~px{3H#m>tza4Q;= zftPMR_EDU=*UCODP@bZ@BEnezV)ZH5gh}y0`@1IXJziO_pIsF5z?J9`ln~ErRLaAojeC3@Wo`*B>&!Vk;%ZbrJ@_K7vBtSrZUT%Xz1oS>)(QEO`!u)?@m4IdMFt*sjx zlalg8ueODK7@UkrkW@5#^X7hheEg4BLS9QjH=A2q6XN1N!YtC1&xF2-$voKg6Mj=? zXHKBQxhto<=5stSMu;R#x}K*bGM6tcEus9nBvSr^uJ!iqNB;P?P~4TQ%GWErZW}V= zKs>;Fgo?irIHMM}wiH}kkzmFBnV$X_5bz)-CdSUe!6r6kz;L9}{yD(Gz11OqfNGEy zzisk$vtIqx^B|P|%aFz+{?+xd>ACuW3`Gv-6J`ks2`n5OFmw1}LxFdT$8alq zCUkTp=*LAy9-Xc!zZP?IyUB6Bl2O_f=}~uf++0~jM2)J$6!G+F8Mh@V%ff=sSPjAP z%0RCE1IiFNIr+Tx#n|oL-Nfu{KhToYOeY_|!XR+P{p|L;Mdb0bz3oo~E=!D^;C?xQ zI9ys*_5d5Z1%@8VY}RpvgoK92#`=sFCDTJhP4||s{(>_Yw@^_(8}tc&swETKV6!=8 zb=nUxH?64f_OGt~kz!VZ!EgPJh_3Ia1u@Yl8pZ7UPo4<9eM`8ourSd9Zq3$wm}Wkd z8`B(>FCG4T30~jg<+n*)rrN?h<*M?s@I-Z_Kt$KWqjBJA; zvh9O|pZWO@2?z*k>*^e%faTz4YgDzui6?8<*;y&`)j>L#*J_rP;`x%1vAP-K2#N?W zN~PSlFa2lX7>-(njW3LLTr3oU*aui}W^r*yy?gg1%%Fgw{|?N*`i2G=0&1-P_UJPA z5(I|&j*fNo=vly$%{uw`e)gbjz~kGc8tKhKIP3EFQC}0CpU(vE^8+TdW2+lSM#8~K z>Fe#Stq!5-QO>_6M?G9{Ga>QIEC-vSXN15QEa{0VJq*bks{GZEZQ?d`IkoTb|L-d9kyT;GUocJ}x^U?od$?|MYbyXXowx z{dLnnpcn#>k-kqLb($)@)EP}P-c(&pT*C2Omb>obmF~etsNBc)TW{xn{~kssxHmaz zK6}G~h2^f@p0uCN`+V(Hh4U5-9siir_%tKI6Fl`*$7~)AHzaHZ`Sx^5h8? z7S{AhCl~)5%($PHbH>$(p zwl-}TtK)Isq=#V~U~_K)!YHYzFzL1i^R-*uke2IiZ2Sr^?HPFH8>!(_E5a%&qd8ur z3UYF9_4E!a4lS&#&gzPxpS6LQV{U0lOijIle(JJ0$pgYuIJ3b+LR3OPaoX?ReS-SS z6z+3yU<3MksnzmB9N(`nrR1fL^FQ&S?@}>d@IL|KUhnz{hI!%TnOT|0mCW>vyz@VI zzCOVS(3BMj62HO7_(qy2-{WxY)36fJlagZILSNvnpq_1ab?Ay(GL@H?KYsEACNc$# zjcIMUwCP+hMz(72)T&p#bMtIRp=9ugz)8(?|NKvY#aXUidXC5bss((0Iq|!9*i4g( z(ow(O{S^MZVR4k@0SS|1vAMZzx#a#&sm0SfnCy--pDE>zmQ%h5e%3m%;=kBu*zxu{ zIv}{bueEWLz|+$=`{Et}{b**|1HY{*$C*w%y94D1ii|Fm&7Gi?u{-08j()#-=Lsz# z6I0+|CnGKZjdPCN{Mrj|hVMBVzBM&`S36@;*C_r;ZhwkQNRi9UQ$=0gK$o3fmc9HbMq;dt=&#vNF=WRpC#`WRqsqx8>z? z&54}O^6s;DbiA^t>TE{+2$2ReP%q)$f+(aK?Yar)q@{mwaedfdk*B4jOUuj@Ozb(c z`OU7US8D$9R#kysT?EVb2j7Ny@`7WmU0 zUq~4;EEV~6=cVmx49_z?KhI+<=3BJ1OS7|Xkh;Qtxbd2@kJ1a7iJWp&J$k$u{;VuC zf@lnbTq!X4MZEEk`?Qhnbq9yqPrw=9YLf_#ZPs8)ZluY+B5fKi;+HcseAv|9u0L5r zknsb{)ZQ*G=!a)wO^s(4%1mYq)AbJ@KFDZmm!-&9aMGcTC~EfPTawM|>S8rC0js#* zLo6b)HKLawCB;j1QsBT6#YuL}k$_<4q}on8ipx6vz7P$K!NG2wcH`Z%p)7&W82W1; zxVS7PNc=sECtV3*x6Io++LyGA+vC_Kk2=`BJm7pI8q^IeUMF^aX8yvPj6*2%^UWou z4X!6vPLk35o8ugopFYmF^>j4f51^Wv+46VweEmbc;_dH$lnQU{M{!sM2b;%dp>=(^ zV-WT1%6_s~uI`;{*S{UV5NwCzBad)!ypof3ZKt4K0OmfPApYuF4>Np})YP?VKROsXsy=@mh{fSX6Hje-K^DC6nc!do6wY(J36tQg;xt=rya`fjYur z$ajEr_ckU#{`pF{>NG|A@8jY_0B-mHg)o;kI5;>LQAgv;xa7~?ut%F1PtS+-bhHv1 zA6sTCD{ZY0Y4!p3sIZ;F)FdHx-*TFJZ7UneX11_0km2s(;a&P!FZPR%k7*tQA73o= zv0D#z4(*P0XL27`o!i61<|_k=B20|&B58s& zK^EJ8UV#JYP|TzM{l0$9sU&-xv-6A_y1A__%&C6)hlhu#8fwWOTIet1?czF2*koj6 zXM258hhv6@<(hAMrZh`aYL5PatvfsW)%y_V=@*paJ}LhDF`V+A*^elC9qVu5Iy-e6 z7$#g!R^>XCH3#5xJY-^u)8zAMZ@UMSKz-H!$Mjrp( z$fSl(QBcs)(voL27rW+qQN_G(Ol@jfS*>qS_zDI@N}w z^Tuh{-|Cs1sL%>}x2Yjb%f$MmwJoo(n7lIn%4H$5Xo#pq*Os}t#T9k+2V6|=eX#UC zGHP$R?1=nxcAh3r$?mlFgYs6H*7eeIen&0P`iBz`x({^u8n!6~(e% zyjKtrdHV-nY47T6`J(d!N8 zz5_@KlQ=;9evOYufmSs|y9Y;*k;iuIm*6XO|2~ITX2NN5Hceb-^k6P|CLZm{5*@(6 z>^Tf9a^>)z(ylw7T5dI>y>~jEKVP-7dOIsL!*6XvE|39Z^gduCK9QA`wUE>%!NPj` z?%m55FHjV-)re?lR=eh9PEYTotbM*tta`j>K*T>bc88IPCPVnKu%gekk3xw=)YM+? z?$<^~M~4C4gL=xnUH@o!bjlSASsiIDh{HhzPq4<-@)Z=mhk1x6#%~5mp*EG2un}FoS$lST_x7#n zpJABE*RLy0m44E2Wv$KPwxZN|Pn?nc zQ$pBd9rd~y_R~bWU5PxQ#02+W>Y5BED9>DZS$`Gz^AcMxh`+bGebnR!VJmqL&Ly>h zfcs5K;(S16cYl8#PJksPCEdrtIcYL_G(E|~c#rRbaxhW!%b5G^GXX`+GXCFO^ztyCR0`+CNyOZi7cL`+#dXJclL>nj_XU0rR1syAHi%mv-Cv9|W} z+L|$pO*1kxlM)i5%yzPn{TpiAv7bm^h`s*rai(fuWR#edwcd3ucNrio$X)mA6R|4? zorI@{iAh|Fhf9t|VdWwINQqei9HNB-+0K_LSFbWlalf3`_Rq6Dv0B5$-SF;OU*F1c zjV~(F-HhRZ6Djxc@%_BL+cqoM$Hq1*VpUb#*_W3n6G(V3&s+o>7{0gYw8!$r!r_m9 zrWY554Gob&beJ8EdqeqJQu1e3mT&5~8ho$BgRaT&G_{jfn&8#t8Qaw-s6{yIfnL~AK)8bRbOiNPBPrh>jT*guM({ zBuUOteDw6Gn7%$`vNxtS_I<*WDodcIg#>((2C|PrbE>^!e9`hp3W&&F%~`mfX0dOE z>rHREVkVS-`h+E`r$i+yREyZ2?Y(;*?ShMhT>C}MX z(Uw4Zv5DKbn&JA|vz*Mwk-#sAW0KOA6^-JI>XOrnpV(|XmZot%jiiiA8wj*NW+G2c zhVwc5N7f(n@)-Sr1i;yWBj+pS>7tLrxm`6%Yc?kyJ!L;Xb(5je_~w2M=yN#(htttB zA=wlyOk8ot9F4t^at!|@QZIbx$3-f>ZfM^@NQK>-}LJPlIgNVLH9<1dTTB&E+7U}^z=7=b#(Xw8r0I! zsRz5i)Oz)a?Z)^_wl7*Ify-++#!LAa6|fGazZWqr<*n#sv6dff{%apmP=~S-<+I+m z=f2}tIzKTIkBDeSznk=~0o7r71@)!fyl6nq-CFEP`J)`~+mH0yyHd!BKXaRzb-KG- zx#|M-iH#*_Y;07katMK>Vfypy3X?qbNfhT7r^dT8Cq)I1{Kk^SW)l5T*kgkQJ@`M_ z%!?M5m#>ZHUzeq!@u62IW@8J3F0^ra_a3@lSTb1y28NI8_N#1FRas^WVweXZf=Pv_ z{y}mrrPkKeu9kSvZ|Z0247T=l-<#6kfN$8)dN%2-$i2CmbLWbRre+b$OK6Aj4=P1Z}%zmNdX;fdRuxA~vz0(r9(RlTyr9vW+<@pKz;mS}B z0r&|?)!Fx~wG%y$fi4r-p+6yW(dN2Lful&pUoq?2k*>}p4mC}@sWQW|FC!j zUqsVAG^7WoCqQva7%anUbLil*a#jG%P{tK*eI8uA> z)2C0sZvz7YUh3$OLfik5srF4k8Jmyq01F6}`;Mbv{%hXx!iyKDfWnzvr};w;=%YQBF0^TA6WH&UjpDS1ghG8^xqV}3ZEefOW_c4f${Yp_fQZ^8!uj(a1kG$rwI$h->~ka}pb9ZP)Nsb=jD8e= zA4L9A!q=1e_&VHrv}|^AZtm6vCg8h&g4j&YR&dl+RZ*j(e&l|jpfhAipKp7`*i_7# zcV&BjNNer%@FqeWf`cEQWGf3atqd$JEq~jWS8ER`=Y(x%R4u*>N=eUQ?lUZIEFoWh zh;r_q;_>kPd)veLuS%oMCLZp(Y{n=J$;%U8%r3^xVA5Z}Buh_kFFy#r;Nv=h!Vlzj zr~T~s2Rp~NeN_HJmrWjN_P$0T_A!DukW3-K@LkWgHP2aoa)~LPED6arj|KnZ zF30cQm|r4Uc+?+1thBfq>3H~~#Dyn?Tte%NYcnpl;8DOGbz0?rT3QmiqeDXOCvv@F zl#-GHeUZcQfVRYJirl8@UW6Y(%B2^EQq^g8GdG;{rz`TN zStSvZCs%_43Q$_Ggvy{CgGdfvg>oAOP6@!}t_&9$VH$LHUPHrcHOi^_3SxFCJL$EJ ziMshZ^e+X+M;1LLp0|z`o+{PEeA0A&b&&9indh?7Tu=Db{#uR<73zJPPEAWoCa`w^ z$O}Pk6v@j|cE&D-6thYvNhxA}eCc-Mfs*`}oe)JO4(%HSC8n?5z5Vr7xj;WVb8bUX zGk(eHq`0JHR?Ebj0y-45xeCVxIB?jjW|rfYa4Bv?%D zeq$vZ+jBw8t1E#)vHmb`H@mUXX~)JUotfk6iqG=wBOD&^~ZV|O_%ro78;lX-t3Mf~^VSY&C1?RIMV!^KQ>nnt5#86pL=W&`I;5;*`1PHVm5NiY3^5I(IQJhA!&nMGeVDAW zvWS5J6`YuHc)L;vT@?gRQ1f2KzX4_YD}b!>=+)Q%hVdW1tI_Z^6PZW0w*M2?|A(!= zjH(rIBtFP*OlZx;vzscdmWk`+fE^ z#p?;-E;iOLCx>c4 z>_!-_iCa8fKNhOZ@mIBV>>V8H*==U)Xtams=fx$f%5KTYIXz%qkac$|^MKDn>hx~S=c=SI|;UojHbyOwslU9-N? zlA?D~i?^FR-esr8UFpRYXcxPp4OCKB9~}J-iZ_I5fMwOThnmrYJ-4#*qwdnnV*h|i z*fY@t4n-#?Wp%aC#+C08L1Y)u`Z1R3vMvy{w<}9Z&Q%+u*YJ>%tCtq&^k9`!&^vXSf&#!NsVgfcfLCb+`#V5M<_BYG%%o!q2DT<}$RBq)Dk&|!VXZGz z$}1|;pZokOp5TFlY<|1CQcQPg%a4Bt10+0VIFR7WqocY#`_T8}NecJW_L@Ez(INq9 zVkOQbm39s5 z2o4r^`!gI+%U>Q{|EIm$lEa#`kK5$EwLx1^5IQFZ2i(7%wa(T)UMCcdM-RTM7L-Ao zbEic6+12r6vUATI`W|yCHNd5N%;QPGREkb3|QWAdLMR9 zkocTFtbuewA$13A2Q((PiN@U#x)9cBt9^e`wn0AvIsiJc+81Z&veUyM@N z(UA&f9OyMxj+LSM%FG6BcjiMCUig!67mqGHgnp`hNm0P9|E zlRN%FKeavFNg5g&w+t)iK%FBdA%ST2Gw9)-==m_^g8w;?NEb)*cU08cx0*OSJn`wT zS|1q`;uX_=fX@p<$VfwabKQRQXSnrbjjE1LR8kTVa6@$P*#oDKT{wvvT*7KY*qd<% zDoikmNn(?-26oOpD6@o!_!3@tmFCf`*zD^h)60(02w@=Jjt2ZiEK96R?oNxTK$oyCK`yEf>BWZj2V$WIG&4mHyuZseV(;je#y90@K1L|qQ{ zEW`=Qobb7jf2Id!%`l5!0b8kjhTu_ip5A}Yb@qt=BUBtdVr9jI8UYb)hO1OUu8{aR z+tMAJ?})My(aAYIs8TH+MVxwidNFUln!sQYQ9bbs2`w%!2i4UH0BQ|Nsr#;LSx?!L zxWT2(LyGx{j!xUs`g?D0B(!r}JdB~SfBsAl-D#oa=EjHi9vn>Ft(a&y)K$_nT+U^*}M@PEL-Qo~J^(ku5f84;rcx9Xr#)uk{AP<~u&!7;m+)?;Rfp%O#z5 ziQU|L!wS>(DFM$1g$sr#6#Va0jPr3+mK{x~^#FllpUe+aEyI54XacG0{&c@ydADue5hbxcG6wWd z7CXLdSja0VAdWM5Eu0T3@9o#$wEFlgI9>_XI66+8Eymo{t(Sb`DFmzp3<_c5i&w>F z_KuK3OVIea99icU3k;!%s{x$ zHR#~jcEWe1vNV6DqBDIU!o(i(`(-RulRGyCWiJ>KcZpW-mX~w6me}nF*d-;!hpuw* z5-wbq8+~lKi$Lv&oD&kCoKHl_u75nyX#p6V|J}|TIk$(t%?LY##de* z17tywh`jYRG)|8r3#zBKll0n6tgP*rLbjQ9?k@FJ4R=Lh_7A2#M$kXzVCLOIiVZg+ zTs&yH4T%q;P>%9q+E=rN%S^HL;2BzPVj?Li`6#X@w8=4~u=(o2#pam%`KWr>&R9%S zRFu5W@q`|sE?X?yAG>UttCvXlK`+%odgtmm{je4c`jvU}BV=TF&L4b<#a-K2_~t-Y+mKi1nI!G$`J_KB1T?lQpOQC6gLRkS z6QHiKEj(clKfm4m=L?nVnZx6ksw4o4<1cy{CLRm-kbqK#IDOpE;NYWXF)xiyFDF9m zyHt33Eo|B+kM`TLd`L&j4CGaq|FziVT#SI)1_xjYjm*O2NT4w9kq^v1rgsC@vgJcJ zR13rV(g|5w+iue=&A(y0Gul<|+K z0J=gbO=B}MqRPwdl}asUb+xskrXj&22^%}wR3jsc z`#tmw`UN;M)YQ~)$jE+yvitnSi`<+XKY;qEy$GZq-8B?ctEdOE366(Xg?*#s;vbrennpFxb>fb1%P0*qK@`iX@yPJ$jE@$7rM0ybr--BDkehS09oazIm{HNPg8+D!(xW0ee)nQTOjJt6 zcaqtnF}SP7bx(b(xTB@TmM%7s2g3Bu;X3t9`xud-(flv=x})W!(;r;bt@3OtI_G;luTj&!baKo=HFv8J?L@ga(d5F}-zUBp!lC zN80GIvD818BG@HMP7+xSOCGS|&1MOO^!_ECWyl17-Ys}G0(l1x4|*o1FoZRUfIRZ@ z2PQFh@W(@^$f&5Zorc|8dz-Ua-cO#Wz0oLp%!yli>J}d(EIuBm#05ayx7OCw7Rxgt zAfcp0W2KRjnU_`M!XW&F?{$AVZaMLQ=w#l-rx5Jno8NRG9uWQG#15@`QJ0<#KNSP( zN4~GG{ocka+(O(3^gnLC*6d~QMs!YTH|pqcy8V;VsKrT7-Pr!oBlQ_0u@q z4q**K(Vzg0<5k1cJPHn62CX;U`$yk`<57C6E#--gODn&(t7$pFa&2llV`7g1 zhI0=eZ@%o;g1mxYT=r&J8)Y2(B=)?K(eFFAlUyYvkYL~}1&0+0NtkrrdUS9sR}N%} z;dPzbUG?Vc@$B^fmha$o;@g_4!w(Yo`}B#4h+X&X&v>SmG``D6;1z{mb#ZaA1BiN* z9*UlxLeNs>sl&xWF7N^9hd6k6{#jXiF$V}w7Gw(d4i4Z(LrQoN1SL^#GG{LFbXMD} z9-0LJORkGcXRk(oCa|opt?2`ZrE_-zX?fWVS}$>RA__gd`M*5yK-AIC#!)opqIz_G ze!tMnz8vRodxyba9x5xaN{PE+VX5_I4V2``e1b==Ya;tipUpQ0+QIac9v>tmgac2^ zhJ1gb@_D9kiX$CeKwzI%kK|XGcA+nJgvl_SQ@6&FY%gciS0wSW}Bj1UOlih*S z;liMcv56F+i3umKYk{t=sJzxu!r}@p`iG*CebtuKdL)ut-BWec4Ul=A|EVBR^peFv{UC4>u0Dcpuz zufJr|iDV=%7&@R}ORMW;L1VQKBx()-A)cS?vZqhjHr~#Ywm)1`Vbg64Eh%B^>+1vA zcm_bb7n)sAC_AU6GOz5k-c||a6e3fwWI4*op;o#qE)7JwX!BZDgabCq=bQ<^knR2b z(T&gyYE^~qt_;W&=XHPreeeGL1(0K>8r|`|^FKVx%*42}WZOg+PNdt&NIvg-K}Ify zMM)V?De@CL!{!DcI3Lo}BXwU98byTLP1aXmT*G6Zr{xfjHI4zF(>fI=ikEc0cXw+x z=3sSrZoTKAw1tf=Jc{rnO+@Q*SG5onBbOLrzn-=L49|1(c%!akufbpxDzBTL6Vkua3Z1Fa7X1>ELjwho4j3E4??oVzU4xad* zbOCY;8+uyWyHU~-;OIGLCJeB&FeB#lNAdLy@9RaAeIcHsY$qy^0<1KIj`GBc7#Kd< zYfgs6qZTXRm@^jt&nWT|`TzJTd=0?;-@X_l77c9_=q^wgktrz+h%E;`;o!&y=LV$g z8Yz2!dEctjj)qw=*!ZDiy#tyT*tCyX7>r>24a!kF%!|NT4$6_ag#|SW3p!w*Ii2kG?c~1n zFbLUq;uMXZAVcNaIjdTDKWTkH4DLbk^rI6Zk`5)&dzqQUD@*!>WD#v&wZEcc6Ed>PVa{J-?jwKxb!Xe=8`6Ll`t&Vf=PueQ0v5reSR%U`UC?o9|!l*fQD4S6?6d*_`a@vZF5t)J^jXPq}s-T(4@UUq=7PT-)m z4cpzd@cYRe&)y<$uAw~>Wk78{Ln%;dnT@R%gg%W}H2pO`{xLD>hYy*G(9j2JHM!an z^WJ~_7{M2#USr~R-LNVP!f!H3otP+Fm z=IdiqQ^$rz@?Y4Z`jvG8>b6s@U0sDT<<0O+alATrMhpj^J-aPqXte(7&5KvEXq8z$ zsqfz1Iy^eEcX3&PV12J#)Bs`}Irb!0f{m`5)6?9!I)vwZb^BZ2uqtOnJdS+)Jv+!8`Z zsc+9Qlb~jnluh96swYAAXmvOta-E3@Lsf6@HJohI(9r=o;x02Y^WNd1WJw+pI?+ot-RSG( zUy+0@CJ5Y4>F*2foLT7D#{dxa?6rZr0`Tu7+)u|T`wG$BgenBurg^^$ymmDCh zbdMfo3#C@${71Wf^0k%)!e>|6=D*g-;_ zKG~dY5rbF?G#DUFfuW#LPkX1Ps5l^vkBU|j&6ksN@A`uJ;&?|V9*kW90YP?x?p)?5 zD6}jI=>r1{+(Kyu1@wp^#I%hQPvd0;PI^YhJYwE$sDgXB_)r|^tb`;rR8&(~=rkqY z60h6Z)-pv|@6THQrCksrC2egN_lkc(wc$(^_w4z-`sdH%PtO;&wk`*|VA#RH#+QVG zjeQx6Nwe0ltDKq=`${KD#hUdv?TJC^hdY%f&kU%vo5FXNdb+i=$~CIPx1=Jvhb`dT zZ2SAS-ZZ!-Ha1iV{J62`>B)?D*Z;nus<-5MpUJkL8$%h?6E{R5NWiD01Q~56R#rMj zMzo+8$OZ=FalZtz;yS=|pTcE)zbP`Z)2&30UDD9ek&T`<+wp+D&&8!TT|ku}@RH7Q zOk5S8X!0-AKR^EdO@(g;(REu|((v*o2x--P@IHQg1gCX{4Fv#`{#nbStrFY^^STOi zLhpFl?d9?EB00J8T5qyqbzLfU_817faX>E*{UC&owkB(0?%~rzaorAqMDv}s?9SP& zq*05=Csu1N0U&QX!gS|zZy%E*Om~R%vb}Z$IFCcH?(uoQ{D2eEa?>m%-SPYP2MBdS z?fqOq!MKfY)^4;f>VVG%ac8r^JiR1`D$Lm#1L9Iu!wJRH&wH`O25-7?s|G~nUcSVu z6LS49`RB*-pV#1h0yT9m81e#^f9&k%p3(!@T?8G^rQ9?|V=Tk4MLg#blpz4Czr4B% z;-Da)tr*}oA&dkt|xZIMc zp4;T9Oo&}kmLT$@rx8+~Osj%Jjn99?H{z_Pv9Kx*nZXx6T0> z20?J>^Fu}<1d9Tm0uk^?fUkgqi|hQWFNF_6vTb7D|vU)s^}$HY`= zI!a`uuhI9zq3vi7WT~roiI%Tg&>DoUtV$E8OF@C_3${_l&qS1L_p8=71LT9@K?yLK zw!S`0An8L4J1inXPN~rO^@FV$OeK*~3g36~C=o;vEn{Et{Wrc@Q?sb&BR-4V$(o+E zwYl0%%G(1XAIAB^8pGg<6J1N2Wb#M?=D`Y`XV`=$G$o@{v^EgVubb5Mv z=y37ITf{beuJo_Hm|M>8XLU+i9Uc8Mvym3HOtjNgS3|o!^XCB;`P1XA%5kMkd1+}B z(BEJj0~8U@@CzH8+_?prhhh8xIKwsNv>|Ui|LhiwEsA3^rD&j>{}T7%!|f4cI;1hUuO7y#SAf}*3Pi0{lkyhpTfXn^s)76 zxb4&#T^?EG>PwaW2)$UT61gDZ}*v_tZCQGQjQR zR#zYSe2ESS&?u}l2{TKGV~F)Vqx<&i6-NKhc7q=n1dgiN9(00GNplN-u!lAa=+U7)v2%9b zp4k$Fdj`%kNoi?AYik8~#@-LQ0{{!CoCNB{Sxd=EpaZ??1j zz$^Et*S`%@79dNu0ueGaCPqeGJqd9>T3bhf{0sjS1_{^QhYz##gpjqg=J$>NRbHiV zO9e_OMtAQ~@F}9{;M1e|Iqm7k?rv_f+%@*~UEn4CAg}Ogcbd%Ij$?Jnp`D0b`T;3( zKl(jCP9w?30U;rF#HE@@-WTGp2pbQgLos2p-9HpkCn^NbO%QdAjE$w>!iO(OL}w5g z8LZkn7mv72LQU&D5>lxoilU-dOpNJVZD(j#XGFlw4tb$P$Q4GC^WLW*Bcr+_cAOlF zFqeDTOud`$kiyyx!{@LfPUJQ<^tlpDPRa4Q@wPABZN^`;Fh)*D=#GlqiD{6Rwvt1C zZ94Fqk6K*PqDV~~hn)pq+*c(wl%9ke}Pg+3I(ol&5g$-_p>cN&2-8x(IVZIK%^9 z>gg$gtp^hm6V?Ph1ZgxFgG3y(QU_F2s&vIHwkLxA0Yeu{_+I#UgHsJ%`C<6;$JSfX z4`setrQoFN`DjX3AFk7^EE5eqfjH8d^>lb%5b{-lLLLntQOsmbxpuifJRragySKNe z|5SsxW@CdNYw9suL349v?Buuk_wV2J_#;cIsV@q?MMI+WB?lUf;_htB`b<-26h(xt zGcP^Nh)|HP&gnRK2sVudAAvPEEGDK4vOC}}hpsZ_Gxr6Fj!t>O>(U1;Jj8rh4vw)z zg!j6kR!OEJBjo#sUXtp(wflnsO-bDN4iN{HBC>lmyZjpt> zg2nTD*S0ND{p~^E*I&rk+k3}1OK_7&Oo|8h7Ic>gBb=UIi_kFxj81@^0qp69hnqku z6^Hu*TB!IJbdY5Qrw>rT#X*K^&e%PKcxJMoGc(W~;CTkODFxhvpgeypC;+FBAM{$_ z!|EIvsWR=a{;!YEmn2+FRO){x?+Z74kZcW$j{Y$?_#RLoP#1W5JtQIuft1w@_K&Ad za2^AB&;T%vRaI3SzSoyKyBOfy92%mcr$?DB`LfU`JfFTj`%qXUNWy)TnM(fw0oqt; zN(%q=AFbRX(ojQR9Sx1_Av1m*?a0?(>DdKHKr3%ZAsHfK!+|AU{RbyRSkp8zb92w; zpXz?Yfc(qV-ciuW4F31S5*_^LU$c&8uHXnjyx;Tlb0};uf?lH^tVU3~v`BvXc=(%6 zUM9-$SFY3=28q9fF6H&+9|J)Tp0>p<$K{`d@QER|2iQ5;>AzLQe`0UneFrJ%LV!&% zw2_muU7^to*U9OTm{X|g(9m6ahQ&V##Q;AEzs;N=UMA)u&tJK?NW~Q9XZa^vU6m&N zubwY!;P$u%zprj5#bYg$wzh?OP9u()GQXCFhPdIucNRw$cye-_*Q;XddavoZ{Gy@^ z=EdhdkU4|<`V6OJB5{mnhp57de=Z|JeA!yPqr<~_CjSiOF)_-fn=^DLYb3ly&O}8I zSs1gQvdJv21Va)Mb_T(>-Oei^k^8xr1PmDAB7*!=4|h{ZsosgbOUS1~J>L2LwTWU` zT`$a;i0tAbZfl8F^6b*9++ZjyGm{eRHMO<1Wk6@Xj{LA9-!-ZSC+KNO5n{sPM3-B%cXKA)*6HQwDp)n6b%8krRKewBXbJ$xg z$=w`nXZoTl$JJ=mj|&HY^2~P=3r#acQv73PGWZ~JII9W zFQ}0K9C2R=W7vtws;djtwRd@tWj@?lddtZvP#FUeR%}0ZVb05|bKj+e5f$7XVYzW0 z9^#EV9yhmjqJncKCbY>#)0FM%bUcz9ITUd(58n08W4LRAyXX^$1 z{GFef=Y`9>KSZ79r!cXJ*w#z@U0T`@rV(dnL|_Zv1NSFa+p_YUo}c%vjc5>!?C>x? zsFE-uJw4mfe52>)x2oquf`nsuvGAQgDgOOIztBfa5`Rx+93*S2_bvPP2}v=#q@xTM zhLwyA%+8g4U^atJk=TKf+93+~{p(xU0pRrZ$&;&b=RQC^PZwE+Ni@+Fb%< zqN#;uvc<%rumT0cEhqVUp^QT(!J#eBNKTbXlEnunjBIGRXw=k@7Jiidi26ctbT>vu zg=al8GiA0{fP2`2_cJwY9<4u;^!>E-5Vnm$d9gCS|X^Fwcs`xa} za`2EskNwGQnXsOczcnA122zB(r+F4OCi;q43~?WBA;S8nd-Dia(tl(TdV4}CDTn@v z32K+!Nd{y}GO~>%)(*EdoO=&_ds9Z#>iGp!G&S$F9&L^-r(0PYPZ=5IKV4X3JUDIG zwY&T$Bb~wjY_Znhw@dz(;^GcKtFP#);7Us3T>rJCO&5{@p^Sr@dvT>N4e?`r zAP4*M(p7vB3^r9vX+)CCMG5~4ys=OH+tvJ zowbQd29QnFUcYvEo17RQKL~MZ-|;HBydmMK)6zzA(aZPYw~>;|EQ!?F^-Qi{bYp+~ z*hW#2x_xF~Kuk{fhtBFwnF007fmCD@6NE7csIfLPjbYFK7{JQ5a8hr&lX ziukrnbf{xh9m&c-l57|%a?Yg}F7ekdlJQtr&0~9ypS;%o9Y=q)aRg!Nc-Tb&6@E{5 zcPj&5QsaC_4_wXvnKZzgmz0uHdGjWG$ZRQyZ|3P$J31H)`sXu6+J@tF%gZAbWV0cz zoPK+HW3(2VqYd+jOUq;bYSk3=_W$S|OZuF^!nwSZ z{c|8`)^_5Kz5R!?tNmYUq!>Jcf(ttGJe$m-hBK0g}e# z!l5gl3TXlUJka(Fz4`op@#dK3*-w^_P(pAS1uq%4{0sKl-O+%yvln3ooqKxT?9C%a zJbCBjPuGvA-|2fzC*zR&$(;511@;Q}fVok1&UGg!;D(z#UFGRjSG`Zq!})Jc7b~!u z&tG&N{&`(z%V+y@7bs789FVMTs~c2)JvutnVmlks>GkI;js6H@Sa&UC*pbFte0{qP zLh1!Is$T>yO;nl>TL^ew30_T2@pC)U3%p^)%Fk~+Jf5uDnjM(={nCL=XXEh-Dr(2S zMZAlDu%;6|EB*0_mB8)ZhqBB!X)Wn)l$k6C$x+nCTH792^{t z5^|zf1KHXC*dU-7<#*qwg>Hiw0|hQnD8E+${||-B9)QMPY$1rA@M`zHFZJ%V@_$~Z z4;R1~0Yr)Uxw*ku)$`r&pw_{W04`d%$r)flr^LJd-d-;a?Q5AYZ|H^|OgD6t8=Weo zcN2lW@^ABNg9|4x*7{e~)fsjsF4ERh*bloHO~Jx8bn0f0tCThKF9G7#?-LWH zp)rP02T+*w)6ya=mSkVcrv@q(N)!&4gJ}^~en`N<5hHS(jHXnqE{9(;StF&)#(c-o zaU(75UXxeK$N7%u^0JT0a{Xbz8Av5d^F7IBV*4>PhM4Z+^Ly}Eu(P`@Vm_v( z843w;bm=3do|+!Ao;uyDh7G23JBkZg*OJCAPyA9+2#5&h)ijyfi>j-&557lGOKWLG zAf4U@172Bm^)j>>hOqSu%BOiVYgWZocrTwl+(PwJv)DC9X=Hx>@DRzDlCsL=Mun9k zSekF}&i`6!yyG9Ltel@Pl`2z^>)6hVkrnYuhJ~Yw(BDtx%MC?Q_JPg`N~|%E?7*}b zDNVzEv>OA(Xisx==(_@XX#JlaMz9+WkB5H#c(?DWy>W=~&Os3R!sWLLJp18k9r9Ca z>zD61NWX{8{-(Ca!NlCpC}PAFTJ4K#0eyF6p@hY&2k&xo^UUzf;haK9y0hAHjfHtG zj6w2Hr}}#9!K#HzUIz!p3STs+fKy?1(%hmLK!vNb^vA75rZ#ScyYjzHb?6fIJ7oo24V4t`P8 z%*@t6Ph0;a89ZzI#~RFVH*%>9VklU?`>mOgy&g*aUoQZFi$Iw{fm}`Xo9WnD5#MVs zz{kKX-UX)TT$m_8P#(7046Qr8efyRJXq#SMUX;4(veM^QntKSZ`+3IdclMUccGyy- zS!IR`^zVFFBxD#0&OOBIT9r`&4OmS7^SVZb;PwJkkB{}5$>Vw?6&3qSS9ot8Naw|Z z_6=)BBir-=;fl28B#2PuA3uHzt31qni=XMapEXJAqZ5VeuP)L=FLpibYMai0Qs2nb zGz8QikETo*e1Mw=Y%GOaG~D=av_6sXqZRf*Xp|_EXZ*-ZJd| zrOVZNcAKH1^0~bHTX-tK)sIU~E}tBQ`E9yk@n+lz&SY2q!2o~%(9qCqz$3t3Cp_3k zgNp%9r{7a`s)3Dd0d)lU9SI=G+fL`YN~4??FF^NYK6u{6eMT@ORDA6Zb4kK2tgeSV1>`~KaZeyol%19;o^ z*O%^)PvuCFhx^o!K|!3?#Y$%A4hze8P0Z4JoRYc*)rs-Y)mR$5u6@{4B~u!rBpRE( zx@LA(=j-dX{~WjdWH+Sssk~}oE~&6aII4-sh>Wzu*|GKE^>s1;WZjF^xb&*toYlMt zdXb;|sXkRS%Uk+lZ(bufs0|Wm!8_ArFwrN(YnNGB;YpPzF8*9pUY_%BMZsVFtKmVu zT-DVf{&h-<8H4=Oge;|+)~EFf$+rL)US6Qk0XAoV$N_$}r?(e;pm9*<+5y7=)@?6a zhr*hHh1PJwGJQYEDM{&{O)0#^st0|5MnP!HFmWpb4DwjhMbkZHbq4=E3R5RdO%iC) zK!r_!DOfN8LH6g*)P?HoknLs}0QlXM?^)1&U*F^Wk05GX2m$GD8HZg%)L|c0d+t89_Rp;d$YwIZ{ zdCZd{|2~-!_l`8phUHipJ2SQWj`o(WN7(OR6bQRLg*bgsMPibGf5pA z8)#4OQ&WF}|4aa)A8_@Nr!*~9U$OHD3PR9ZJpVJu- z!MNvp1_2*^Cn7NcjO1G;`y&t zwYBA?q>yRg)@^NczZ*>|wYlpPV*K=$_ty5mikdFd1xf8B_AZ+#{<`KUGAUYHb6oXr z)x2gr5a=2H`}YMH1A&%(dVX%`Id-L|iv@Ys@9_onJ%1@V#TPVp7I&sxot=YV(}CAY zUxRBDpG~OarQ$rq3IY%w2M9R-E;lOQn4y5T@%F`i!Hj5tisKG8@U45FE4$C#!i?9d)!wg$vu-I=_h5N0^^qKRlB5*Wc7kd;7b> z#JCP(u!Yx+T`O2-cP8E33UD$IobLyyj-bdGkLyZe&s%Cv&T^W5T1Lju@$vCl(H}^) z_4O_UvM_;q2XZ>RDIQ*4+)J{5?BD^U5E#d<8~g8blu|rw?!T3-@~LeBc(kFGg}V4w zS!HD&EHlxS;Anlz6`Pr<2zVQhCQ29!z;c(-SQ!hjUcx^Ofl!2Tes>qKU+TG>+#TNk?m zwN@m3nVHEAwX*$3Z2{ELBpB4qK4)~?;u1_PPGM6wN=C^wU%eZdOU7gH^#L^6j-UzeFC52m_%{{~IpZxoX>0YK!YM}Wrf0Gr-tpG|V z?_Zs<#No@ozQ^8oh=F^(v*n@)#0NntKXaMr>}H=P)jZjXicVg14g>$Gw3ZtRU3Wxk z;?P3`a-qwxraJrM$H4cQA_k{+76TbZH!FQp_c6a)4nCq@T+p9E+qY})SF3zK0uSTQg#GK(9ThxJ{a-M!vJin6v|(tJ}P#1auE5iA_P z?3n~xu3%ts?|O|UTw8nG@sKf(L9sJAG1y%JGm(w$(EG}{IVOy%b@UZiVG=vAeLBAb ziafLdo;P}Wk+`_>;SomA?VMn7StWl-g2-V6JLI3>;vF0rx%>3hD?%8ZAKt^-Nmuti zDCms4+zSY8BVvDnThyqX-Ul!dn5R>6a?)O%(x`hJcW$m`NvXv|B~$~Ho9C0ThuX^O zdn)WGzacYPPR>|Bppp!a7SFr3;Pdf>TAt56(>#$ise*7IENyICKU<~Cr4=S`(j9=h zQ|MU8>(ox8A@Maj`rn7{OX^*EI$Cl*Ek1{=Y|^~WpVOg!-wP3wjZ*-YQ4)-}lnkjg zH8or6vo3m6i+hL#3DORogdH4e1S;54Z1 ze$39cNXY-OsD`kXinjJtY?Q}JF9{U9>tMwJI1vR+c1NFixEk#x9Gqu8BI;YN2}ez{asWRh*+|GDsi9SVXQh8R zy-q+zCMvhSKJ_*x<{=~74?sNT>@GdW_4PfyZD>@k*_aHIUMEt-UJ=L2MsgW!Y}iqd zUJm;|>=~t`_WpGdH#jejuk=xmP%9AZK6oq$s4Kt9TygDz*w_VT@MJx)eL!`91*6(2 z2Pax4YX6$ z48^V34!lR5YEg}c`%(w9wE3qgt?H6QyH<*}EzG(P) zwB13$AeEGTLmGyP{kz$jr4OIMP}G*PwpRaTG0?sM#Hp3~eY*a;_1DB)o9X1sZkp4x zv$mP0+J_>{jx&>Fs4_DB9}DqQ6Y2YQpIG7K_>3^_{d)!{jc$YMBC-`A-?e8>7B}u& z@Q&KHD14Jf2n4X~1~6amA+in}Ly+4PS8Id!9qdg8(wRzbz<|LZ5{fUzhPAPoQ-KGW zr3yJYx*9>=SLB_Wf5NgGor^=4s;e(ap_+hYsb@2&Mn7cPPLH==zTFs-_*VMqHW?Wl zRgk5+A!+onpv;txoob& zQ|+_ig6BxG?CgxJK}VZ)gM)+fq>zAp^JcuxkwN7A_KwGVeG@6b9G|s9DFQwH ze7z7_Em~gQ>bzS-1O$iJF-I}rF<5s?1ZWNt!o&o26Nmy}gXbP}5@$&&>zT$BkWURc zh_5@k)c)rYc{&@3*Ov32GBU<1jxI|Aw}7~T*N&&I}dSmMd)eeMLso0O_5 zJ^=C&7IZ*s+QHsU0HDY~RM784%GApDMCTHV@?-a8+I!m;y5d~_faBxZ%VqYAAmGAC z>8A_6qGqjkP5LrjGjoTV`wWmr&_ToM1q>7tl-|FR*ty}% zgPD@VSS`Pkc8e+dy0aGxb?OXM(mK`yEd} zb?7~Gmn0>GonC0wss*9lMWY`;bb3PN*NTKn`_O$&S)hl#`5mQ5EymIm?tz@JNDmf< zq>*)0R)dgyDy_f8%MX(D{6fEGm4vBq(PBh`7nAgINyI1z>=$WmS_iOwE>#>nx}t+{ zX_TGU#euL0+m3(_4?gwL`R*-Amv02PJK?^WnH4Qk5g)s=hy8j2eGbj;WO;qa0!s6x!Lv(5NSC|y@cNOz zu|gDo8HC)e4$WMqYTMic{GbmXq-Rh)*se(jcEJ4)adm^^p~b~4=s?8C;t9L0Bs}Dv znI*#Vk2>PPP=l*2VAMN-xv>T=hQQ!(<;g$6=2sr@BXiTq!}+YK>q??w>1g)YrjUy< zPfG1{iu zS)!!1&y~b5{rt2+mN&AfCZL0l@ek|S6*_xp?agwMvUrI`#*p6 z_$*@D2=dRlnC@f((*u~G`ap_=@ckYZdWS{(U11&VL15bQ5Bbu>)WQ7*wD;T8l%8&G zb7xOExAk(GnlcbjVlcgePZ-icV7+sFD>oa3`tp++l&TQh0oegrXP4#tf1as~j8hW! zPg(x^=S#ld5L|&$R~MTnA|f+?;}hhfWh82FcADp{DHj|>egWPK3RCP2EB1~$Z!1+rnEZn$Q?AQ8Dw+Zmi`up9nhY&740Q=&L5?kl$&>D!1->LzisL9F- z9+JcHmrzGt-S=5BMm080&UV?kjg1}aYs<^u(b*gAY-eA+;_!R|kpQ44Ffded(*zVv zH)uj1VmdWVQtrm7p2(V4(;^1_ci5WQ8-M>Y9=^gce`Gaj$w8e$iRsG1$Vto6p^*{9 z=X483xg%Z&m?bqfLwh5tYWxE820XC(GZ@5FuHV09h1~H#ZiKD89K;yp!frT|JJa9k zrvK2luM}p91A}K$SC@LcuFl}{((#G+A?`q5I#Vo}>%V_~EtgVLy^BBEz$f};7$Veu zZTgSs=~u=W;zL4eYjzp9Ugq*kM}1gB$;0*XD!Y$uDxSm!QI|L%@^d(EsGWm3C-=h0~_J2_dMnrRwuykK+b?~jimm9kPJ05+L|l+;J?0C~%z zu^AiJy6#3F_#@+xzObsXN%lS>l#!6QC+v!qv|&-D=Zy^UeN|FPG$qAEde1n9fEV8v z^?aV6PgGVZrgtax^k}H78$nsHzm#FUg($ESUy3&NIi=3fDDdn@uM*b#+&5a9wJ3f|{ID z!>3@u3+In1WRuf{T%+NFb^xWt#^!IJqXK3LdvoYbmHEDyHgf`hta@qU#l=&bGWfDU z!2nml6#mfI*Er{tEbR653f)L)+^@GYeRUxYH$9ORpZ@qD6Ydp zJ&)(%RA6UQ!2DdqmcS5mx0buw_G6Mtp0)+Nm606$ zJsuj=_Na@OF9cgGzUIEk!1XKKzh*oL8KfTKR@AeP!AMKADaru~= zw~z`rC4sgNN)>|0Ts+DJAg$R;@Q|AX0RaeJEm73}=l*@Ep&<)5tjSK~Q5u@gaQB%RN3h5%$P&DYR4Tv36*OY1UA3np~Fmg_(^F zJs%$toPeNOb;AZ?dWfA-Q%8|coOPZbBYS%8w_GKD?v8q%y250)Az@*!`mHkn2fmZZdW9rMdZ+H}77{BvL7aI!;kC)TC{_RL`aQGVOgCD_C z5oq#qd9x|pBk>6a_@vAW^V|cn2X%)|xQmMEIH=Y6bQ{=WfgmoRqqVZqqr?c6Q@6R^ zt&YON(uV2kglWIN`x4qic8zy+QJ6|!^hQl4jjQkO&EDF-gS1hFXG(HTPOu z{>9BTxxC_!8=jo*Z7LnPdD6yK;nX;32&$yU+08odR9sbo{-&EGJkec zlMwk&RzV6(7ZxDOybB8`xEnAg`qxGGfR^dr#lb2GCBa=q#X}ego0^(J z+~;f|f}I1#+@}H9{C``-h8}tc9v_-dxU4BpB&DR(M&F#P4_a`haR$I*5l55n_oJP* zUyR}_DNm1w!W9c+2C$q4ZiiqQ!0!arK6;Y}=Z`K_J{A^vunQX-2f;|&@oQq+_wN`0 z_dm)gaDxans7t?nHXl66la2+2P3U0X%=gN9#DW*VG_B0cFSPqUeLCUl-i3#Jc~upF zXcX_REf|JnMSzouS zaXVUw_%P%(t3?c4cd*rnH9o9<)2YS6l7c!hVRtPIu;R{Id+q-2M|4zvI>QB=hMj0A z0Mbc^v9a7?s3IzjwEp&v;@Z!IyKjx{wPPd8X7ZLOASW3Z((HF>~!q@wv;MU$it z3gmyk*!Q&osA&JE=3Dr?MxQ3(I55zuG}V)iMG(1Hm@1K8?-RN0iiG7()V~Tm$rM>` z?CV?BR8ygHT&@2aI_r(_FT#>- z;E(6k)ukZxxDToKNim5~Fj`?w0&=mku5R>@8H9b^M*1*UBQbDyr=}z?|NX-?I2u(q zzuXam%~cWradUtCoxM7)iR|84w;7isR=pBdpQzjfTw-v~%rxNE*VzHY_cz$>^(9fR3a9 z{H9I@8$~`dQYlMxYq}xH1^^w?$(-67zk||@jfKy87zpa?a@MEQK%eKg;Ic3O6b3sc zDC2rYhTisn`S!YhxjEPhA*^-%`3kV7p7`xa73a<1j)Q@S!CH^%S`JwKk+bQu7{#{+ zoesSBcx*5S)*R-=gzJ0E-8x)*Hq)@XucLwsO&dtihFmF78W+OH1_7n1ipqO{m7dE_ zqD7haAu8y(>$noCk(|oBc&`x7LuXSm3DCbQd5sH8nxn zp7n`ves=rpq1V&yxi&5(h^o2vpPg}`goSbGC9)T8ci!VMH!s@32ZAYj9SAdn+bas+ zessPY>dx(!o#NtBHm}ChoZn%?CAhx+kgxp;*~Vt%{QM<2Fip5k7l0ld5P(D<7Y5H- z$Kx$cs2(74V+1%}3`M1+^2u5ihtGPxIy=L=J`DbAM0!(Xo9cQAXyLB2$QjWHOdeno zl)yUj6t-6pn;H0>D2e4vl-(vHB7#5{piBzj!vj%?8)BmE;o-{cn$&kTr^QEu&?~M=VZ%u zeP|7chVM6*=?471J;Al#U4-?tUHTl|=|J6H`T0AaOZr!0&m<0ncE1N*diAKCoS@FZ zZUzK00_cMvRg>@<1`;rO9KPQ=O(qtA^oBz}*yMuv7#Q4^aODXJr}mGQx5DtX$IOyX zR>fR>X2?Y!TW*}KF1y2$8Xn#0s^^&**tJRQ(5Zmo3E{Uk>WaSVyIgMoYEUq&GN0et z>IIYiwd%iz|9L*&kg0I}AJqy*eTY2L_0@&zPv2`(etv#s=OgCPv?oI}Ea(ki9=}lk zy5KZc;wB@NgLN;q8{O76SxB9l?HyuI2o^b91p($}W^*v#2WwQSgr2X$3v;HPu@XcH z2}&;btzam@Z8gQeB`!hNQLDvgFQQvdTUuVKgYJ8V{stSn-g!IxjLdeh!Uz?suaCMH zkXed7pih1pZ>Xt7HywCzGLNLt2EI0_H*ZKmEq)6J01%X3dRz&@ZYXUw)@6`$wYz($ zYE6~YaB++Ne@wk)Se0$NwXK4JiXtIhl1d8FEh%l%B_LgsEBmx z?uPG}&wAGTEq~qHb{jCcuJb%%jD0BPdn;*%Elzz01Typ&*1*|@o=Hwr)RX-sDhWsy zzc6czeKPRr)uwp<{1IF{fX==f9MZ;a$0*=@n7T@AF{i2M-PI8hQ(6{2n2m2vMh3$h zkdXDSA5secJzTgNHg4&8z+GO3?FzfB7cW>Xj6TBhH1h1^Rd8N%vadcF8EM#k5V|8} zqOfA8RY-E_yDQ{aBo>K!Tgs-HYxXyk^D~*4RhWVl=~Z#5YUMz4Ni8XfgkTIE9i26N zLcc|W#5rkoRs~oVLHWDk^Ha1cK^frk*dqb{8A8$Pwdt8y}fYoE=gD zMNE>+@hcFo{LwYFLag;^|5&f=v+2SuvZX#oA?YR6NIV~Ry@Vp3*i zr_8M6_8si}q21yE-(#rmOUh-ExL=1S1de8I85tF>`BubVQD$zTWzFY- zC$k21)yFP8qmt8uq1PY0POEHfK4c>>(1mCFDYh&a7{Cwm@KrGnIJ-badz2>Gb(xj> z?Xz4GW3Os0S!)RX_mM7{=0USbv9EP6xQ2~wB{QsG^9hsbgl9}Gw0!ZROQMA|FK@BPF;5QcI3*_%B(2}tpk3DPG8akM@Q^SRy|+#O@24c8QF?+#pchz zc1amA-d&&3__{Tc-O?an^`qH+V}_}5d#U5OOT|=3Jl99C1~>^YGczX$I7b0)NXO{8 zFP~a^xGfe5<9TOS#CerdDQ+4B=A=-({Xk!*02U01rUIiOOFP?57b`xySME6#$~v+D za&3LW{{Eiy?(SR0>g`x4*i?|qUrS3%$(0KWFf>U3Gzh8`JxBxt&D5Nw0oi}s=%=?z z{-c}%?bJ0s>=Y}lmhS<52AZ6-0mE0avOmBi0Uq4z^L-H$W9>uZIG8p5Dhijmx=L7^ zjt@+wgrv1CKPpAVg_A)4TM>R`M|QACmH-G1xc*mRNeutoBXV+ujjidg%i?mm172@{KJYwe(JGc+`$0ADy*IE(}Qxg7yL zS*n`T8rUF_i-*|wnJJu`@$1(;Fzdo9JQ&srFzBXhbp=obR$#i zt4W^avl1K#%7Fm9kNJx4Akm2xus(t&c%bDJ=MD8PWVuUTb-7!|B@ z^531E{zI7xFFtkRdOsxfUvKvNnx`t>m7^k?#1jz{LjdKAUujY5u?$NX4yoK+)|*6o znC(ZiT>rW;4IK`=gT9U%tXRn$L|84kxyzd3Vy~F1i;I`SujerrUi~p_o_1M#bg<^$ z6vJxM(f%96XID z6}w@)QABJxj4Hk0u!9b$0pE&WfT0hmQ$z}q0gLO5CG_!Q`0B+UwYOux^0t=ll$V!h z78QlVt`~&Zf`WpBPx}ocl@kn-!VE?s?c05BJ%4$8W!r6=h=JjgplqT)h-YA53#y9+ z@G%0iy{XRw2`q$C7oH?!r3dLxQSE7bpv|(pH~~*&*Y3f=d$zRyY^$ymzN7d5Pcd-s z-gOJW36U5iNKhAnJp;I_0BxeJuipxo`|Hmt-(jt80?;)uO~fyE8Ikiw`XUygDocY4 z3;Kk!qfKXv_&M#dBCpmkD#z?fLM1M)JD6mFn)#V9AO~@xE?X>mPrJ5HgRrzYGn_i% zC>IpQ9H^+Tq7X1i8|2^!XQ;7dkaN4{tM2ZpBp{M*?qUhhK2$sSN7LI;@EoaP1ClFD z_Q9IHuh~=zSpxK+R09IS7mr&}kgT!l>G5>$7_`GdgPqd+3=9K-1Pw>E&f~=fFmd_2 zcIf1Ea%Oe5_GV*fh-dtd#5W%_D2r&Ane*PUqrt=`C_Zj(HMxc9Y|46W(UYF}p~lOb zTL6453%GASGjpu-=ms836k@zaMZI*fO$N{2hMiF}5Xw~eyJ3qzzq$Ego8sRa(!8I808xe?jUqBu7`|_+)itc_^NHwraJrxE$aNf$S(C0io3|u_`9{(1dbt)l<9zw z&W6VcsV7IQO%nq@14K`(1Q@uFA0u~v%v%P@-yBbmCb126&S#taA0H6%;i0Lisn^uf z(0{ygaag$P=gIA&jM_yd*5At)D`o7TvTsAT^qR{Vvzi)E0`4Z&K)+Jwb$?nLt_oA z&LNjgBJf;e&lY?N(8H?V@#tQbi*J5bqwVhdqfhX@ogF)qdV8zKEg}Jd%9Rb-JPFZw zc^^U;_M8m8o8tXlX16O-4|Vb5jJb4Zii`S1IvrbiEv#E@gPb%1U`6xMrpJlUk^ywQ zt-ZUuIWPToG8l*!+af-w2O6K-VW_CQO^D=fhpG?hfZxrvOv zJ}uy9phsqHpH%z04THYizlYfOiwrQkV+IhWQ0_pI0!+Uk(i=qGPgn_{%rM$N7}~># z=U0i#`!zz@I6C}$tk6n zRdZt&)T()!pYL|^9i0|pT*7b^6>a_w-mcYD0Hp}>uLPnrY@|Td&8vAV_(7%Pr~kbw zXbCn{ieH;Sl9Q!rM23q#Q5H>1 zbgut{^(+&k7${m}$H$@Q{&<+Oe(DM^U2Ug@yLQ{N3b1b)7#N5V2z}xl4RJhg3oOWI zJkcU1)9-s}RB5xtDnpD549H17Wb<6__e~8NJ06W2z>7g5;DlTMAsfBBYtbi$0M;`E ze0GeVVP-wGvwLJlI7-SV=1}eQ0kt!ZsDJ&<&yfl*pLg8)7-*QJlzSa?ZyX(LD#}k6 z?jvf0$ypjdIad0HF(`hK76*M23_sw<20A$Z+Ipeer>7;!LVX?_Ca#lGJSK_;h=GZ? z3=Wfim)+Z|o}Mq$7s_&(+(8;yhY+O{*lN9%AoxH~@Z=#;Gt@Nbu9voFtu0tp4y^Dq zK$@pZ3$zbruO!xC0|zZer`DB6@6^T2ZiWIHezd&&5@;78>zUvY8FMlnjTEkDX(=ux zaFJj~tdN@%v(w9G_}QhI28>%_jP_ogRlI?1A=cR`U+A5kGw^Wd;QLCri`iB!iCIKM z^oqwhDkn`6!q0D8!~bSf7M@Gs$#OdQqFD>^g{d%A%ZVeBfLb$ocafEt?dxy}J2cc# zKDG7sKJ5BMKgGnjqg6vto1Kjw($TT-#nv8w^sKngA076*;h(08>9XD%KDd(?6{$VA zPIwL`x9D$(!rY**MQkktT}t>~ko+MZ6MOA7T(MDxc_ zL|v;Uz_3d2MR#iCAcloFT3TJVvyzIIWCxKI%Vfc~hH3?0{sm%K z9Xj1QKQ;i#;TQ%feeV*DjF`(EgnkI|=(Bnv3U+o}3kZZrjd>r_;*FZavqZN=su z5i^)@@~Zkjdh&z~?Z62Uq!3GKehT%wYQdMtu4s4&k(c}8;(kc7HReyrq~gQH)6Q9k&OC=nWL7 z;|#>5Q*e2yt&1x(obVgbg@Kid6mRv6d=N`kD;IlD{QQQdDsiGDT^U0jq z4U?4q4W--Fiz;A=mKHX^5Ic*BsYOcd9hJuin-X?H7YO8A7CO&aoGMjig1tQ~gutcw zB_sqhy0g=_xBd5mYs2wNc=8_*>&@C{0lhbzo*v!aUUG3+{AYADw*;L69s;o{f10Yv z;$a|s1J9lcbE`sWb7R8+-YC8!m7@t08-R38xSicS%uzW;U1im6Zn^5=BAwkF$;Jn1 zQjCYk>z&WBIEb&a>Amzl$)nB16_b1{`&~*hKD!-Ib?i5nnTHu7370A-{=)SYtH6Z0l?1%_L+(|e@v1EDNQ}lW4*jA zw@7BRT->kL^FK{7Yet@rjXizCHCZmx^fKs<^>2vOsHx$H-OpBHIe1VITWaO@r#`*v zGBTC<5{tEcTb$%1+y(C%kdg?PV$H_R z=e?_Qa}+%^T26mwl&OMHAbvse#$LYq_uXmxf%=`sT6C;XkLE-YM3rqsrORp2l;?R{ zPE}k04-X^go;L89bbLZEA%t!|)*$J0v#>4%zyOdzoRyzX2Z^>qLiNE5P+%~@$l2!d zn|Jts$8BnFNd8Z;4f?G4wY8Icj_<0qszv&sP3JfUUuAiomzS>sX2qp{KmbI^s%x6ESduZH^ zgDtjn_a3(WRss)YWJZR_%bUL*Gwi6<64}$ym1$KqpC%*(kM@ycw;XMJUpn6|B;*R# zw7;FAwK(_ky+&1vYE2B&_&6YtZ}x*W?ra(>oZZzmhDpu)bXqwG>@lUK3Fr@7pK#%8 zs1g4ATsiAU&YOC>b%Dvh!1qcColjjh^MGP~AG%Tc(u$Guo6S;G*%S zA#%Guvn!0Mz%UG52}&^?Ny#n&X<6Kx`+^_GwV&Itzsm-~1zcewr9>ey1XaA;Htbo> z=%uP#qo0H3@8xSOPAzxID%Zvd_6aE{t0x4mZ;UULeO@K?qg)%s^!FE2cG={pjGBGw zsysec@IAx({-ti0!oNhI}+&LsZrzmS*jER1Kz|F&Rzl8dfV@Cj z$OIO3@be(|8X#m6a5@nF7D=sJXFgr~Dl$#-&cz~BnsrM%k*LznWd;})+e3ULw92&tE|DBW+^-KjaG844PAi;`AOzi22 z=lYqQO(i5m4){BE+K3Iq5&Brn%QHXc>kzj{!_Y>NXX@Z*BH>4G^8Pqz_)1zDRL|gx zM+J!_H-Kmk4-XR)&!?-ThU&hH0KV*4kr90=Su(i$I_d4Ys(! z_JXE-x-D}t4c1D?JGSiS-ST1sKer{UJAzLMxVU8AEapY