diff --git a/ci/310-numba-oldest.yaml b/ci/310-numba-oldest.yaml
index 6850f71d..e3c93e47 100644
--- a/ci/310-numba-oldest.yaml
+++ b/ci/310-numba-oldest.yaml
@@ -22,3 +22,4 @@ dependencies:
- pytest
- pytest-cov
- pytest-xdist
+ - geodatasets
diff --git a/ci/310-oldest.yaml b/ci/310-oldest.yaml
index 66b5b088..f1420ea8 100644
--- a/ci/310-oldest.yaml
+++ b/ci/310-oldest.yaml
@@ -21,3 +21,4 @@ dependencies:
- pytest
- pytest-cov
- pytest-xdist
+ - geodatasets
diff --git a/ci/311-latest.yaml b/ci/311-latest.yaml
index 7888d150..f8b49a52 100644
--- a/ci/311-latest.yaml
+++ b/ci/311-latest.yaml
@@ -20,3 +20,4 @@ dependencies:
- pytest-xdist
# optional
- rtree
+ - geodatasets
diff --git a/ci/311-numba-latest.yaml b/ci/311-numba-latest.yaml
index 88685973..9692d717 100644
--- a/ci/311-numba-latest.yaml
+++ b/ci/311-numba-latest.yaml
@@ -19,6 +19,7 @@ dependencies:
- pytest
- pytest-cov
- pytest-xdist
+ - geodatasets
# optional
- numba
- rtree
diff --git a/ci/312-dev.yaml b/ci/312-dev.yaml
index 055015d3..ad1c8143 100644
--- a/ci/312-dev.yaml
+++ b/ci/312-dev.yaml
@@ -8,6 +8,7 @@ dependencies:
# optional
- rtree
# testing
+ - geodatasets
- codecov
- folium
- mapclassify
diff --git a/ci/312-latest.yaml b/ci/312-latest.yaml
index d3df3de2..d197fed9 100644
--- a/ci/312-latest.yaml
+++ b/ci/312-latest.yaml
@@ -12,6 +12,7 @@ dependencies:
- scipy
- shapely
# testing
+ - geodatasets
- codecov
- folium
- mapclassify
diff --git a/ci/312-min.yaml b/ci/312-min.yaml
index 0c0451f0..921899bb 100644
--- a/ci/312-min.yaml
+++ b/ci/312-min.yaml
@@ -4,6 +4,7 @@ channels:
dependencies:
- python=3.12
# required
+ - geodatasets
- geopandas
- libpysal>=4.12
- numpy
diff --git a/ci/312-numba-dev.yaml b/ci/312-numba-dev.yaml
index 1b425531..2f3af33f 100644
--- a/ci/312-numba-dev.yaml
+++ b/ci/312-numba-dev.yaml
@@ -9,6 +9,7 @@ dependencies:
- numba
- rtree
# testing
+ - geodatasets
- codecov
- folium
- mapclassify
diff --git a/ci/312-numba-latest.yaml b/ci/312-numba-latest.yaml
index 00e82525..7fd99d74 100644
--- a/ci/312-numba-latest.yaml
+++ b/ci/312-numba-latest.yaml
@@ -12,6 +12,7 @@ dependencies:
- scipy
- shapely
# testing
+ - geodatasets
- codecov
- folium
- mapclassify
diff --git a/docs/_static/references.bib b/docs/_static/references.bib
index ec783b45..dd413bf4 100644
--- a/docs/_static/references.bib
+++ b/docs/_static/references.bib
@@ -293,4 +293,14 @@ @article{ab_gl_vm2020joue
issn = {0094-1190},
doi = {10.1016/j.jue.2019.103217},
author={Arribas-Bel, Daniel and Garcia-L{\'o}pez, M-{\`A} and Viladecans-Marsal, Elisabet},
- }
\ No newline at end of file
+}
+
+@article{wolf2024confounded,
+ title={{Confounded Local Inference:} Extending Local Moran Statistics to Handle Confounding},
+ author={Wolf, Levi John},
+ year={2024},
+ number={in press},
+ volume={in press},
+ pages={0-0},
+ journal={Annals of the American Association of Geographers}
+}
diff --git a/esda/moran_local_mv.py b/esda/moran_local_mv.py
new file mode 100644
index 00000000..b3b09da5
--- /dev/null
+++ b/esda/moran_local_mv.py
@@ -0,0 +1,434 @@
+import numpy as np
+import esda
+from libpysal.weights import lag_spatial
+from libpysal.graph import Graph
+
+try:
+ from tqdm import tqdm
+except ImportError:
+
+ def tqdm(x, **kwargs):
+ return x
+
+
+def _calc_quad(x,y):
+ """
+ This is a simpler solution to calculate a cartesian quadrant.
+
+ To explain graphically, let the tuple below be (off_sign[i], neg_y[i]*2).
+
+ If sign(x[i]) != sign(y[i]), we are on the negative diagonal.
+ If y is negative, we are on the bottom of the plot.
+
+ Therefore, the sum (off_sign + neg_y*2 + 1) gives you the cartesian quadrant.
+
+ II | I
+ 1,0 | 0,0
+ -----+-----
+ 0,2 | 1,2
+ III | IV
+
+ """
+ off_sign = np.sign(x) != np.sign(y)
+ neg_y = (y<0)
+ return off_sign + neg_y*2 + 1
+
+class Partial_Moran_Local(object):
+ def __init__(
+ self, permutations=999, unit_scale=True, partial_labels=True
+ ):
+ """
+ Compute the Multivariable Local Moran statistics under partial dependence, as defined by :cite:`wolf2024confounded`
+
+ Arguments
+ ---------
+ permutations : int
+ the number of permutations to run for the inference,
+ driven by conditional randomization.
+ unit_scale : bool
+ whether to enforce unit variance in the local statistics. This
+ normalizes the variance of the data at inupt, ensuring that
+ the covariance statistics are not overwhelmed by any single
+ covariate's large variance.
+ partial_labels : bool
+ whether to calculate the classification based on the part-regressive
+ quadrant classification or the univariate quadrant classification,
+ like a classical Moran's I. When mvquads is True, the variables are labelled as:
+ - label 1: observations with large y - rho * x that also have large Wy values.
+ - label 2: observations with small y - rho * x values that also have large Wy values.
+ - label 3: observations with small y - rho * x values that also have small Wy values.
+ - label 4: observations with large y - rho * x values that have small Wy values.
+ Defaults to part-regressive quadrants
+
+ Attributes
+ ----------
+ connectivity : The weights matrix inputted, but row standardized
+ D : The "design" matrix used in computation. If X is
+ not None, this will be [1 y X]
+ R : the "response" matrix used in computation. Will
+ always be the same shape as D and contain [1, Wy, Wy, ....]
+ DtDi : empirical parameter covariance matrix
+ the P x P matrix describing the variance and covariance
+ of y and X.
+ P : the number of parameters. 1 if X is not provided.
+ lmos_ : the N,P matrix of multivariable LISA statistics.
+ the first column, lmos[:,1] is the LISAs corresponding
+ to the relationship between Wy and y conditioning on X.
+ rlmos_ : the (N, permutations, P+1) realizations from the conditional
+ randomization to generate reference distributions for
+ each Local Moran statistic. rlmos_[:,:,1] pertain to
+ the reference distribution of y and Wy.
+ quads_ : the (N, P) matrix of quadrant classifications for the
+ part-regressive relationships. quads[:,0] pertains to
+ the relationship between y and Wy. The mean is not classified,
+ since it's just binary above/below mean usually.
+ partials_: the (N,2,P+1) matrix of part-regressive contributions.
+ The ith slice of partials_[:,:,i] contains the
+ partial regressive contribution of that covariate, with
+ the first column indicating the part-regressive outcome
+ and the second indicating the part-regressive design.
+ The partial regression matrix starts at zero, so
+ partials_[:,:,0] corresponds to the partial regression
+ describing the relationship between y and Wy.
+ """
+ self.permutations = permutations
+ self.unit_scale = unit_scale
+ self.partial_labels = partial_labels
+
+ def fit(self, X, y, W):
+ """
+ Fit the partial local Moran statistic on input data
+
+ Parameters
+ ----------
+ X : (N,p) array
+ array of data that is used as "confounding factors"
+ to account for their covariance with Y.
+ y : (N,1) array
+ array of data that is the targeted "outcome" covariate
+ to compute the multivariable Moran's I
+ W : (N,N) weights object
+ a PySAL weights object. Immediately row-standardized.
+
+ Returns
+ -------
+ self : object
+ this Partial_Moran_Local() statistic after fitting to data
+ """
+ y = np.asarray(y).reshape(-1, 1)
+ if isinstance(W, Graph):
+ W = W.transform("R")
+ else:
+ W.transform = "r"
+ y = y - y.mean()
+ if self.unit_scale:
+ y /= y.std()
+ X = X - X.mean(axis=0)
+ if self.unit_scale:
+ X = X / X.std(axis=0)
+ self.y = y
+ self.X = X
+ D, R = self._make_data(y, X, W)
+ self.D, self.R = D, R
+ self.P = D.shape[1] - 1
+ self.N = W.n
+ self.DtDi = np.linalg.inv(
+ self.D.T @ self.D
+ ) # this is only PxP, so not too bad...
+ self._left_component_ = (self.D @ self.DtDi) * (self.N - 1)
+ self._lmos_ = self._left_component_ * self.R
+ self.connectivity = W
+ self.permutations = self.permutations
+ if self.permutations is not None: # NOQA necessary to avoid None > 0
+ if self.permutations > 0:
+ self._crand(y, X, W)
+
+
+ self._rlmos_ *= self.N - 1
+ self._p_sim_ = np.zeros((self.N, self.P + 1))
+ # TODO: this should be changed to the general p-value framework
+ for permutation in range(self.permutations):
+ self._p_sim_ += (
+ self._rlmos_[:, permutation, :] < self._lmos_
+ ).astype(int)
+ self._p_sim_ /= self.permutations
+ self._p_sim_ = np.minimum(self._p_sim_, 1 - self._p_sim_)
+
+ component_quads = []
+ for i, left in enumerate(self._left_component_.T):
+ right = self.R[:, i]
+ quads = _calc_quad(left - left.mean(), right)
+ component_quads.append(quads)
+ self._partials_ = np.asarray(
+ [
+ np.vstack((left, right)).T
+ for left, right in zip(self._left_component_.T, self.R.T)
+ ]
+ )
+
+ uvquads = []
+ negative_lag = R[:,1] < 0
+ for i, x_ in enumerate(self.D.T):
+ if i == 0:
+ continue
+ off_sign = np.sign(x_) != np.sign(R[:,1])
+ quads = negative_lag.astype(int).flatten() * 2 + off_sign.astype(int) + 1
+ uvquads.append(quads.flatten())
+
+ self._uvquads_ = np.row_stack(uvquads).T
+ self._mvquads_ = np.row_stack(component_quads).T
+ return self
+
+ def _make_data(self, z, X, W):
+ if isinstance(W, Graph): # NOQA because ternary is confusing
+ Wz = W.lag(z)
+ else:
+ Wz = lag_spatial(W, z)
+ if X is not None:
+ D = np.hstack((np.ones(z.shape), z, X))
+ P = X.shape[1] + 1
+ else:
+ D = np.hstack((np.ones(z.shape), z))
+ P = 1
+ R = np.tile(Wz, P + 1)
+ return D, R
+ # self.D, self.R = D, R
+
+ def _crand(self, y, X, W):
+ N = W.n
+ N_permutations = self.permutations
+ prange = range(N_permutations)
+ if isinstance(W, Graph):
+ max_neighbs = W.cardinalities.max() + 1
+ else:
+ max_neighbs = W.max_neighbors + 1
+ pre_permutations = np.array(
+ [np.random.permutation(N - 1)[0:max_neighbs] for i in prange]
+ )
+ straight_ids = np.arange(N)
+ if isinstance(W, Graph): # NOQA
+ id_order = W.unique_ids
+ else:
+ id_order = W.id_order
+ DtDi = self.DtDi
+ ordered_weights = [W.weights[id_order[i]] for i in straight_ids]
+ ordered_cardinalities = [W.cardinalities[id_order[i]] for i in straight_ids]
+ lmos = np.empty((N, N_permutations, self.P + 1))
+ for i in tqdm(range(N), desc="Simulating by site"):
+ ids_noti = straight_ids[straight_ids != i]
+ np.random.shuffle(ids_noti)
+ these_permutations = pre_permutations[:, 0 : ordered_cardinalities[i]]
+ randomized_permutations = ids_noti[these_permutations]
+ shuffled_ys = y[randomized_permutations]
+ these_weights = np.asarray(ordered_weights[i]).reshape(-1, 1)
+ shuffled_Wyi = (shuffled_ys * these_weights).sum(
+ axis=1
+ ) # these are N-permutations by 1 now
+ # shuffled_X = X[randomized_permutations, :]
+ # #these are still N-permutations, N-neighbs, N-covariates
+ if X is None:
+ local_data = np.array((1, y[i].item())).reshape(1, -1)
+ shuffled_D = np.tile(
+ local_data, N_permutations
+ ).T # now N permutations by P
+ else:
+ local_data = np.array((1, y[i].item(), *X[i])).reshape(-1, 1)
+ shuffled_D = np.tile(
+ local_data, N_permutations
+ ).T # now N permutations by P
+ shuffled_R = np.tile(shuffled_Wyi, self.P + 1)
+ lmos[i] = (shuffled_R * shuffled_D) @ DtDi
+ self._rlmos_ = lmos # nobs, nperm, nvars
+
+ @property
+ def associations_(self):
+ """
+ The association between y and the local average of y,
+ removing the correlation due to x and the local average of y
+ """
+ return self._lmos_[:, 1]
+
+ @property
+ def significances_(self):
+ """
+ The pseudo-p-value built using map randomization for the
+ structural relationship between y and its local average,
+ removing the correlation due to the relationship between x
+ and the local average of y.
+ """
+ return self._p_sim_[:, 1]
+
+ @property
+ def partials_(self):
+ """
+ The components of the local statistic. The first column is the
+ structural exogenous component of the data, and the second is the
+ local average of y.
+ """
+ return self._partials_[1]
+
+ @property
+ def reference_distribution_(self):
+ """
+ Simulated distribution of associations_, assuming that there is
+ - no structural relationship between y and its local average;
+ - the same observed structural relationship between y and x.
+ """
+ return self._rlmos_[:, :, 1]
+
+ @property
+ def labels_(self):
+ """
+ The classifications (in terms of cluster-type and outlier-type)
+ for the associations_ statistics. If the quads requested are
+ *mvquads*, then the classification is done with respect to the
+ left and right components (first and second columns of partials_).
+
+ If the quads requested are *uvquads*, then this will only be computed
+ with respect to the outcome and the local average.
+ The cluster typology is:
+ - 1: above-average left component (either y or D @ DtDi),
+ above-average right component (local average of y)
+ - 2: below-average left component (either y or D @ DtDi),
+ above-average right component (local average of y)
+ - 3: below-average left component (either y or D @ DtDi)
+ below-average right component (local average of y)
+ - 4: above-average left component (either y or D @ DtDi)
+ below-average right component (local average of y)
+ """
+ if self.partial_labels:
+ return self._mvquads_[:, 1]
+ else:
+ return self._uvquads_[:, 1]
+
+
+class Auxiliary_Moran_Local(esda.Moran_Local):
+ """
+ Fit a local moran statistic for y after regressing out the
+ effects of confounding X on y. A "stronger" version of the
+ Partial_Moran statistic, as defined by :cite:`wolf2024confounded`
+ """
+
+ def __init__(
+ self,
+ permutations=999,
+ unit_scale=True,
+ transformer=None,
+ ):
+ """
+ Initialize a local Moran statistic on the regression residuals
+
+
+ permutations : int (default: 999)
+ the number of permutations to run for the inference,
+ driven by conditional randomization.
+ unit_scale : bool (default: True)
+ whether or not to convert the input data to a unit normal scale.
+ transformer : callable (default: scikit regression)
+ should transform X into a predicted y. If not provided, will use
+ the standard scikit OLS regression of y on X.
+ """
+ self.permutations = permutations
+ self.unit_scale = unit_scale
+ self.transformer = transformer
+
+ def fit(self, X, y, W):
+ """
+ Arguments
+ ---------
+ y : (N,1) array
+ array of data that is the targeted "outcome" covariate
+ to compute the multivariable Moran's I
+ X : (N,3) array
+ array of data that is used as "confounding factors"
+ to account for their covariance with Y.
+ W : (N,N) weights object
+ a PySAL weights object. Immediately row-standardized.
+
+ Returns
+ -------
+ A fitted Auxiliary_Moran_Local() estimator
+ """
+ y = y - y.mean()
+ X = X - X.mean(axis=0)
+ if self.unit_scale:
+ y /= y.std()
+ X /= X.std(axis=0)
+ self.y = y
+ self.X = X
+ y_filtered_ = self.y_filtered_ = self._part_regress_transform(y, X)
+ if isinstance(W, Graph):
+ W = W.transform("R")
+ Wyf = W.lag(y_filtered_)
+ else:
+ W.transform = "r"
+ Wyf = lag_spatial(W, y_filtered_) # TODO: graph
+ self.connectivity = W
+ self.partials_ = np.column_stack((y_filtered_, Wyf))
+ y_out = self.y_filtered_
+ self.associations_ = ((y_out * Wyf) / (y_out.T @ y_out) * (W.n - 1)).flatten()
+ if self.permutations > 0:
+ self._crand()
+ # TODO: use the general p-value framework
+ p_sim = (self.reference_distribution_ < self.associations_[:, None]).mean(
+ axis=1
+ )
+ self.significances_ = np.minimum(p_sim, 1 - p_sim)
+ quads = np.array([[3,2,4,1]]).reshape(2,2)
+ left_component_cluster = (y_filtered_ > 0).astype(int)
+ right_component_cluster = (Wyf > 0).astype(int)
+ quads = quads[left_component_cluster, right_component_cluster]
+ self.labels_ = quads.squeeze()
+ return self
+
+ def _part_regress_transform(self, y, X):
+ """If the object has a _transformer, use it; otherwise, fit it."""
+ if hasattr(self, "_transformer"):
+ ypart = y - self._transformer(X)
+ else:
+ from sklearn.linear_model import LinearRegression
+
+ self._transformer = LinearRegression().fit(X, y).predict
+ ypart = self._part_regress_transform(y, X)
+ return ypart
+
+ def _crand(self):
+ """Cribbed from esda.Moran_Local
+ conditional randomization
+ for observation i with ni neighbors, the candidate set cannot include
+ i (we don't want i being a neighbor of i). we have to sample without
+ replacement from a set of ids that doesn't include i. numpy doesn't
+ directly support sampling wo replacement and it is expensive to
+ implement this. instead we omit i from the original ids, permute the
+ ids and take the first ni elements of the permuted ids as the
+ neighbors to i in each randomization.
+ """
+ _, z = self.partials_.T
+ lisas = np.zeros((self.connectivity.n, self.permutations))
+ n_1 = self.connectivity.n - 1
+ prange = list(range(self.permutations))
+ if isinstance(self.connectivity, Graph):
+ k = self.connectivity.cardinalities.max() + 1
+ else:
+ k = self.connectivity.max_neighbors + 1
+ nn = self.connectivity.n - 1
+ rids = np.array([np.random.permutation(nn)[0:k] for i in prange])
+ ids = np.arange(self.connectivity.n)
+ if hasattr(self.connectivity, "id_order"):
+ ido = self.connectivity.id_order
+ else:
+ ido = self.connectivity.unique_ids.values
+ w = [self.connectivity.weights[ido[i]] for i in ids]
+ wc = [self.connectivity.cardinalities[ido[i]] for i in ids]
+
+ for i in tqdm(range(self.connectivity.n), desc="Simulating by site"):
+ idsi = ids[ids != i]
+ np.random.shuffle(idsi)
+ tmp = z[idsi[rids[:, 0 : wc[i]]]]
+ lisas[i] = z[i] * (w[i] * tmp).sum(1)
+ self.reference_distribution_ = (n_1 / (z * z).sum()) * lisas
+
+
+Auxiliary_Moran_Local.__init__.__doc__ = Partial_Moran_Local.__init__.__doc__.replace(
+ "Partial", "Auxiliary"
+)
diff --git a/esda/tests/test_moran_local_mv.py b/esda/tests/test_moran_local_mv.py
new file mode 100644
index 00000000..8ab130fe
--- /dev/null
+++ b/esda/tests/test_moran_local_mv.py
@@ -0,0 +1,132 @@
+import numpy
+import geodatasets
+import geopandas
+import pytest
+from libpysal.weights import Queen
+from libpysal.graph import Graph
+from sklearn.linear_model import TheilSenRegressor
+from esda.moran_local_mv import Partial_Moran_Local, Auxiliary_Moran_Local
+from esda.moran import Moran_Local_BV
+
+def rsqueen(df):
+ w_classic = Queen.from_dataframe(df)
+ w_classic.transform = 'r'
+ return w_classic
+
+@pytest.fixture(scope='module')
+def data():
+ df = geopandas.read_file(geodatasets.get_path("geoda.lansing1"))
+ df = df[df.FIPS.str.match("2606500[01234]...") | (df.FIPS == "26065006500")]
+ y = df.HH_INC.values.reshape(-1,1)
+ X = df.HSG_VAL.values.reshape(-1,1)
+ yield y,X,df
+
+@pytest.fixture(scope='module',
+ params = [
+ rsqueen,
+ lambda df: Graph.build_contiguity(df).transform('r')
+ ],
+ ids=['W', 'Graph']
+ )
+def graph(data, request):
+ _,_,df = data
+ return request.param(df)
+
+def test_partial_runs(data, graph):
+ """Check if the class computes successfully in a default configuration"""
+ y,X,df = data
+ m = Partial_Moran_Local(permutations=1).fit(X,y,graph)
+ # done, just check if it runs
+
+def test_partial_accuracy(data, graph):
+ """Check if the class outputs expected results at a given seed"""
+ y,X,df = data
+ numpy.random.seed(111221)
+ m = Partial_Moran_Local(permutations=10).fit(X,y,graph)
+ # compute result by hand
+ zy = (y - y.mean())/y.std()
+ wz = (graph.sparse @ zy)
+ zx = (X - X.mean(axis=0))/X.std(axis=0)
+ rho = numpy.corrcoef(zy.squeeze(), zx.squeeze())[0,1]
+ left = zy - rho * zx
+ scale = (graph.n-1) / (graph.n * (1 - rho**2))
+ # (y - rho x)*wy
+ manual = (left*wz).squeeze() * scale
+ # check values
+ numpy.testing.assert_allclose(manual, m.associations_)
+
+ # check significances are about 18
+ numpy.testing.assert_allclose((m.significances_ < .01).sum(), 18, atol=1)
+ numpy.testing.assert_equal((m.significances_[:5] < .1), [True, True, True, False, False])
+
+ # check quad
+ is_cluster = numpy.prod(m.partials_, axis=1) >= 0
+ is_odd_label = m.labels_ % 2
+ numpy.testing.assert_equal(is_cluster, is_odd_label)
+
+def test_partial_unscaled(data, graph):
+ """Check if the variance scaling behaves as expected"""
+ y,X,df = data
+ m = Partial_Moran_Local(permutations=0, unit_scale=True).fit(X,y,graph)
+ m2 = Partial_Moran_Local(permutations=0, unit_scale=False).fit(X,y,graph)
+ # variance in the partials_ should be different
+ s1y,s1x = m.partials_.std(axis=0)
+ s2y,s2x = m2.partials_.std(axis=0)
+ assert s1y > s2y, "variance is incorrectly scaled for y"
+ assert s1x < s2x, "variance is incorrectly scaled for x"
+
+def test_partial_uvquads(data, graph):
+ """Check that the quadrant decisions vary correctly with the inputs"""
+ y,X,df = data
+ m = Partial_Moran_Local(permutations=0, partial_labels=False).fit(X,y,graph)
+ bvx = Moran_Local_BV(X,y,graph,permutations=0)
+ numpy.testing.assert_array_equal(m.labels_, bvx.q)
+
+def test_aux_runs(data, graph):
+ """Check that the class completes successfully in a default configuration"""
+ y,X,df = data
+ a = Auxiliary_Moran_Local(permutations=1).fit(X,y,graph)
+ #done, just check if it runs
+
+def test_aux_accuracy(data, graph):
+ """Check that the class outputs expected values for a given seed"""
+ y,X,df = data
+ numpy.random.seed(111221)
+ a = Auxiliary_Moran_Local(permutations=10).fit(X,y,graph)
+
+ # compute result by hand
+ zy = (y - y.mean())/y.std()
+ wz = (graph.sparse @ zy)
+ zx = (X - X.mean(axis=0))/X.std(axis=0)
+ wzx = graph.sparse @ zx
+ rho = numpy.corrcoef(zy.squeeze(), zx.squeeze())[0,1]
+ mean = zy * wz - rho * zx * wz - rho * zy * wzx + rho**2 * zx * wzx
+ scale = (graph.n-1) / (graph.n * (1 - rho**2))
+
+ manual = numpy.asarray(mean * scale).squeeze()
+ # check values, may not be identical because of the
+ # matrix inversion least squares estimator used in scikit
+ numpy.testing.assert_allclose(manual, a.associations_)
+
+ # check significances
+ numpy.testing.assert_equal((a.significances_ < .01).sum(), 18)
+ numpy.testing.assert_equal((a.significances_[:5] < .1), [False, False, True, False, False])
+
+ is_cluster = numpy.prod(a.partials_, axis=1) >= 0
+ is_odd_label = (a.labels_ % 2).astype(bool)
+ numpy.testing.assert_equal(is_cluster, is_odd_label)
+
+def test_aux_unscaled(data, graph):
+ """Check that the variance scaling behaves as expected"""
+ y,X,df = data
+ a = Auxiliary_Moran_Local(permutations=0, unit_scale=True).fit(X,y,graph)
+ a2 = Auxiliary_Moran_Local(permutations=0, unit_scale=False).fit(X,y,graph)
+ assert (a.partials_.std(axis=0) < a2.partials_.std(axis=0)).all(), (
+ "variance is not scaled correctly in partial regression."
+ )
+
+def test_aux_transformer(data, graph):
+ """Check that an alternative regressor can be used to calculate y|X"""
+ y,X, df = data
+ a = Auxiliary_Moran_Local(permutations=0, transformer=TheilSenRegressor).fit(X,y,graph)
+ # done, should just complete
\ No newline at end of file
diff --git a/notebooks/multivariable_moran.ipynb b/notebooks/multivariable_moran.ipynb
new file mode 100644
index 00000000..620dc894
--- /dev/null
+++ b/notebooks/multivariable_moran.ipynb
@@ -0,0 +1,972 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Local Multi-Variable Moran Statistics\n",
+ "\n",
+ "Local Moran statistics are very useful to assess spatial clusters (or\n",
+ "outliers) in geographic data. Moran-style statistics are fundamentally\n",
+ "based on the *covariance* of an outcome $y_i$ with other observations\n",
+ "$y_j$, weighted according to some function that describes how near $i$\n",
+ "is to $j$. Classically, we describe that weight as $w_{ij}$, and collect\n",
+ "that into a big matrix, $\\mathbf{W}$, that describes the relations\n",
+ "between each site and every other site.\n",
+ "\n",
+ "The following discussion is a significantly condensed presentation of\n",
+ "that found in [Wolf\n",
+ "(2024)](https://doi.org/10.1080/24694452.2024.2326541) pages 1217-1225.\n",
+ "\n",
+ "The classical Moran statistic is stated as the relationship between $y$\n",
+ "and its surroudnings. I’m assuming that $y$ is unit standardized, so\n",
+ "that it has a mean of zero and a standard deviation of 1. Further, I’m\n",
+ "assuming that our weights matrix is row-standardized with a diagonal of\n",
+ "zero, meaning that $\\sum_j w_{ij} =1$ and $w_{ii}=0$. Further, this\n",
+ "means that $\\sum_j w_{ij}y_j$ corresponds to the *weighted average*\n",
+ "$y_j$ around $i$. With this understanding, the global $\\hat{I}$\n",
+ "estimator is often stated as:\n",
+ "\n",
+ "$$ \\hat{I} = \\frac{1}{n} \\sum_i y_i \\sum_j w_{ij}y_j $$\n",
+ "\n",
+ "You can understand this also as a kind of least squares estimator,\n",
+ "arising from the following regression:\n",
+ "\n",
+ "$$ \\mathbf{W}y = Iy + \\epsilon \\ \\ \\ \\ \\ \\epsilon \\sim \\mathcal{N}(0,\\sigma^2)$$\n",
+ "\n",
+ "In this framing, we can think of the $I$ statistic in vector form as:\n",
+ "\n",
+ "$$ \\hat{I} = (y'y)^{-1}y'\\mathbf{W}y $$\n",
+ "\n",
+ "With the standardization we’ve used above. The *local* version of this\n",
+ "statistic simply “stops” the outer summation over $i$:\n",
+ "\n",
+ "$$ \\hat{I}_i = \\frac{1}{n} y_i \\sum_j w_{ij} y_j $$\n",
+ "\n",
+ "This is equivalent to “stopping” the inner product between $y$ and\n",
+ "$\\mathbf{W}y$ in the vector form, turning it into an element-wise\n",
+ "product (spelled $\\circ$ in math below):\n",
+ "\n",
+ "$$ \\hat{I}_i = (y'y)^{-1}(y \\circ \\mathbf{W}y)$$\n",
+ "\n",
+ "This “incomplete summation” or “inner-to-elementwise trick” is how most\n",
+ "of the local statistics are obtained from a global measure of\n",
+ "covariance-based association. Any time you take an operation relating\n",
+ "all pairs of observations, and sum that (or average that) over all the\n",
+ "observations, you can create a “local” measure by just stopping that\n",
+ "summation.\n",
+ "\n",
+ "## How do we introduce another variables?\n",
+ "\n",
+ "Often, it’s useful to account for the spatial co-variation between two\n",
+ "variables. Indeed, a common question is whether the *spatial pattern* of\n",
+ "$y$ is similar to that of a second variable, $x$. Past attempts to link\n",
+ "two variables like this include the Wartenberg statistic:\n",
+ "\n",
+ "$$ \\hat{I}_{xy,i} = x_i \\sum_j w_{ij}y_j $$\n",
+ "$$ \\hat{\\mathbf{I}}_{xy} = x \\circ \\mathbf{W}y $$\n",
+ "\n",
+ "which relates $x_i$ to the local average of $y_j$ nearby. This is\n",
+ "useful, because it tells you whether a smoothed surface of $y$ looks\n",
+ "like the surface of $x$. Perhaps less useful is the Lee (2001)\n",
+ "innovation on the statistic, which seeks to compare the two smoothed\n",
+ "patterns:\n",
+ "\n",
+ "$$ \\hat{L}_i = (\\sum_j w_{ij}x_j) * (\\sum_j w_{ij}y_j) $$\n",
+ "$$ \\hat{\\mathbf{L}} = (\\mathbf{W}x) \\circ (\\mathbf{W}y) $$\n",
+ "\n",
+ "Both of these statistics are useful in their own ways, but generally are\n",
+ "not able to separate out $x$’s influence on $y$ from $y$’s internal\n",
+ "patterning over $\\mathbf{W}$. Instead, we’re stuck making pairwise\n",
+ "comparisons across $x$, $y$, and $\\mathbf{W}$.\n",
+ "\n",
+ "## How can we introduce another *exogenous* variable?\n",
+ "\n",
+ "Indeed, it’s often the case that $x$ represents some other factor we\n",
+ "know is associated with $y$, but cannot wholly explain $y$. When we just\n",
+ "need a global statistic characterizing this relationship, the best\n",
+ "solution is to use a spatial model, such as the spatial lag or spatial\n",
+ "error models in `spreg`. Creating a local statistic from these models is\n",
+ "difficult, however, since the non-linear matrix product cannot be cast\n",
+ "to an element-wise one. While we can examine the direct and indirect\n",
+ "components of $\\beta$, which measure the effect that a change in $x$ at\n",
+ "a given site has on *surrounding $y$*, this is not itself a measure of\n",
+ "the relationship within $y$.\n",
+ "\n",
+ "Instead, what we often want is to “remove” or “control” for $x$, and see\n",
+ "what the pattern is in this adjusted $y$. This aim is similar to that\n",
+ "found in work on [Restricted Spatial\n",
+ "Regression](https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1788949),\n",
+ "but proceeds very differently (and thus avoids its counter-intuitive\n",
+ "effects). To illustrate, one of the common ways that we “remove” $x$\n",
+ "from $y$ is to simply regress $x$ out of $y$, and analyze its residuals.\n",
+ "That is, we do the first regression:\n",
+ "\n",
+ "$$ y = x\\beta + \\epsilon $$\n",
+ "\n",
+ "using a standard least squares estimator:\n",
+ "\n",
+ "$$ \\hat{\\beta} = (x'x)^{-1}x'y $$\n",
+ "\n",
+ "And use that to build a *residual* $y$, having removed its association\n",
+ "with $x$:\n",
+ "\n",
+ "$$ e = y - x (x'x)^{-1} x' y $$\n",
+ "\n",
+ "and then use *this* in a Moran-form regression:\n",
+ "\n",
+ "$$ \\mathbf{W}e = I_{x\\rightarrow y}e + \\nu $$\n",
+ "\n",
+ "Here, the search for structure in $e$ has already assumed that variation\n",
+ "in $y$ is fully “caused by” $x$ *first*. That is, the spatial structure\n",
+ "of $y$ that matters is that which is fully independent of $x$’s pattern.\n",
+ "Note that $e = (I-P)y$ in the RSR framing.\n",
+ "\n",
+ "If we estimate this again usting the same inner-to-elementwise trick, we\n",
+ "can obtain:\n",
+ "\n",
+ "$$ I_{x\\rightarrow y} = e \\circ \\mathbf{W}e (e'e)^{-1}$$\n",
+ "\n",
+ "Assuming that there is only one varible $x$, this can be re-stated in\n",
+ "terms of $y$ and $x$ with a little algebra:\n",
+ "\n",
+ "$$ I_{x\\rightarrow y} = \\left[ y\\circ \\mathbf{W}y - \\rho_{xy} x\\circ \\mathbf{W}y - \\rho_{xy} y\\circ\\mathbf{W}x + \\rho^2 x\\circ\\mathbf{W}x \\right] \\frac{n-1}{n} \\frac{1}{1-\\rho_{xy}^2}$$\n",
+ "\n",
+ "In this expression, you can see the Moran’s $I$ all the way on the left\n",
+ "of the bracketed expression, with two Wartenberg estimators in the\n",
+ "middle, and another Moran’s $I$ for $x$ on the end. Each term is also\n",
+ "scaled by $\\rho_{xy}$, depending on the directness of the relationship\n",
+ "with $y$. You can think of this as $I$, rescaled by a measure of\n",
+ "*indirect covariation*. Graphically, this is represented in the right\n",
+ "facet of the following image:\n",
+ "\n",
+ "\n",
+ "\n",
+ "Since we’ve assumed that all of the variation in $y$ “comes from” $x$\n",
+ "first, we must consider all of the paths through *any* $x$ into $y$. You\n",
+ "can see that the correction terms that “flow through” $x$ must be\n",
+ "corrected by $\\rho_{xy}$ each time. So, for the $I_{x \\rightarrow y}$ on\n",
+ "the far right of the diagram, we have four possible paths between $y_1$\n",
+ "and $\\mathbf{W}y_1$:\n",
+ "\n",
+ "1. The most direct path is from $y_1$ to $\\mathbf{W}y_1$,\n",
+ "2. Another indirect path goes from $y_1$ through $x_i$, then to\n",
+ " $\\mathbf{W}y_1$.\n",
+ "3. Another indirect path goes from $y_i$, through $x$, then\n",
+ " $\\mathbf{W}x_1$, and then to $\\mathbf{W}y_1$.\n",
+ "\n",
+ "Hence, terms 2 and 3 are represented by the green path and the\n",
+ "red+orange path, while term 4 corresponds to the red+maroon path. Terms\n",
+ "2 and 3 are Wartenberg-style bivariate Moran statistics corrected by\n",
+ "$\\rho_{xy}$, while term 4 is a univariate Moran statistic for $x$,\n",
+ "corrected by $\\rho_{xy}^2$.\n",
+ "\n",
+ "But, what if we don’t want to assume that *all of* the variation in $y$\n",
+ "should be assigned to $x$ first? Then, we can use a Partial Moran\n",
+ "statistic, which examines the “direct” path from $y$ to $\\mathbf{W}y$\n",
+ "and corrects it by the portion of variation due to $x$’s association\n",
+ "with $y$, which drives a bit of the association between $y$ and\n",
+ "$\\mathbf{W}y$:\n",
+ "\n",
+ "$$ \\mathbf{\\hat{I}}_{y|x} = \\left[y\\circ \\mathbf{W}y - \\rho_{xy} x\\circ\\mathbf{W}y \\right] \\frac{N-1}{N} \\frac{1}{1 - \\rho^2_{xy}}$$\n",
+ "\n",
+ "So, these both correspond to very basic “corrections” of the univariate\n",
+ "$y$ using simple correlations, univariate Moran’s $I$, or bivariate\n",
+ "Moran’s $I$. However, the method can be extended to more covariates, and\n",
+ "its interpretation is easy to justify using some simple econometric\n",
+ "theory (see the end of this notebook).\n",
+ "\n",
+ "# Code time\n",
+ "\n",
+ "We’ll start with a few core packages. First, these new statistics are\n",
+ "implemented in the `moran_local_mv` module of the `esda` package. This\n",
+ "stands for “moran local multivariate” statistic. In addition, we’ll need\n",
+ "to compare these stats to the standard Univariate Moran (`Moran_Local`)\n",
+ "and bivariate/Wartenberg Moran (`Moran_Local_BV`) again from the `esda`\n",
+ "package. We’ll also want an easy way to calculate the correlation using\n",
+ "`scipy.stats.pearsonr`, a way to read in our data (`geopandas`,\n",
+ "`geodatasets`), a way to store the spatial relationships between\n",
+ "observations, provided by the `libpysal.graph` module, and a\n",
+ "visualization toolkit, `matplotlib.pyplot`."
+ ],
+ "id": "0c7d9a8f-9d6e-4a00-8af1-f4d8846145b9"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from esda.moran_local_mv import (\n",
+ " Partial_Moran_Local, Auxiliary_Moran_Local # new Moran\n",
+ ")\n",
+ "from esda.moran import Moran_Local, Moran_Local_BV # standard Moran\n",
+ "from libpysal import graph # construct spatial relations\n",
+ "from scipy.stats import pearsonr # calculate correlation\n",
+ "import geopandas, geodatasets # work with spatial data\n",
+ "from matplotlib import pyplot as plt # visualize\n",
+ "import seaborn # further visualization tools\n",
+ "import numpy # math tools"
+ ],
+ "id": "54111996"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We’ll work with Airbnb data from Chicago, in order to understand how\n",
+ "additional information $x$ informs our judgement about outcomes $y$. In\n",
+ "this case, we’ll consider the average price per head per night for\n",
+ "airbnbs in neighborhoods of Chicago, and how it is informed by the\n",
+ "overcrowding rate in those neighborhoods, which is a function itself of\n",
+ "the population density and investment in housing stock in the\n",
+ "neighborhood."
+ ],
+ "id": "b290e3d4-691a-4458-9362-e73ca829f90f"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = geopandas.read_file(\n",
+ " geodatasets.get_path(\"geoda.airbnb\")\n",
+ ").dropna()"
+ ],
+ "id": "610fac5e"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "metadata": {},
+ "data": {
+ "text/html": [
+ "
Make this Notebook Trusted to load map: File -> Trust Notebook
"
+ ]
+ }
+ }
+ ],
+ "source": [
+ "df.explore(\"price_pp\")"
+ ],
+ "id": "e382cbd7"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Im order to estimate the statistics, we need get our data. We’ll use the\n",
+ "`price_pp` to get the price per person per night for Airbnbs in each\n",
+ "neighborhood. And, we’ll use the `crowded` column for the percentages of\n",
+ "properties that are over-crowded. We’ll build a simple contiguity\n",
+ "weights matrix to explain the spatial adjacencies between neighborhoods."
+ ],
+ "id": "38775242-4e52-44ba-ab44-a6763cc614a7"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y = df.price_pp.values.reshape(-1,1)\n",
+ "x = df.crowded.values.reshape(-1,1)\n",
+ "w = graph.Graph.build_contiguity(df).transform(\"R\")"
+ ],
+ "id": "96cdd033"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, with these defined, we can calculate all of our statistics. First,\n",
+ "we can note that each statistic corresponds to a different question of\n",
+ "relation, like we discussed above:"
+ ],
+ "id": "ad94cc3a-fad3-4b82-95fa-9066d56e74dc"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Simulating by site: 0%| | 0/66 [00:00, ?it/s]Simulating by site: 100%|██████████| 66/66 [00:00<00:00, 16077.60it/s]\n",
+ "Simulating by site: 0%| | 0/66 [00:00, ?it/s]Simulating by site: 100%|██████████| 66/66 [00:00<00:00, 30413.54it/s]"
+ ]
+ }
+ ],
+ "source": [
+ "# are expensive places near expensive places?\n",
+ "Iy = Moran_Local(y, w)\n",
+ "# are crowded plcaes near crowded places?\n",
+ "Ix = Moran_Local(x, w) \n",
+ "# are expensive places also crowded places? \n",
+ "rho = pearsonr(y.squeeze(),x.squeeze())[0]\n",
+ "# are expensive places near crowded places?\n",
+ "Ixy = Moran_Local_BV(x, y, w) \n",
+ "# are crowded places near expensive places?\n",
+ "Iyx = Moran_Local_BV(y, x, w)\n",
+ "# are expensive places near expensive places, adjusted for crowding?\n",
+ "p_lmo = Partial_Moran_Local().fit(x,y,w)\n",
+ "# assuming crowding explains price, \n",
+ "# are places with high post-crowding premiums near one another?\n",
+ "a_lmo = Auxiliary_Moran_Local().fit(x,y,w)\n",
+ "\n",
+ "# this is a scaling factor for the multivariable statistics\n",
+ "scaling = (w.n - 1)/(w.n) * (1/(1-rho**2))"
+ ],
+ "id": "2c4cac48"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can then see that the multivariate estimators for the partial and\n",
+ "auxiliary regressive versions of the Local Moran statistic are just\n",
+ "combinations of these simple pairwise statistics when there is only one\n",
+ "$x$ variable:"
+ ],
+ "id": "84d43aa6-7e13-492f-9a77-45e1b1ae922e"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "metadata": {},
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAE+CAYAAACKmMQkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA7E\nAAAOxAGVKw4bAABlbUlEQVR4nO3dd1hTZ/sH8O/JYMteKioiQ6wTEa0LFZy1WG1VtOKqrdbRqu3b\n1lVHXX2r1fpK62irVajaWutAUVBxFRWs1oUoWnAjQ0EIKyTP7w9+REICJEA4kNyf68pVc/Kc5E4K\nN3ee8wyOMcZACCGEEGJgBHwHQAghhBDCByqCCCGEEGKQqAgihBBCiEGiIogQQgghBomKIEIIIYQY\nJCqCCCGEEGKQqAgihBBCiEGiIogQQgghBomKIEIIIYQYJCqC6sj27dvBcZzi1qhRI3To0AEbN25E\ncXFxrbxGVlYWlixZgsuXL6s81qdPH/Tp00fr5yyNOyUlpdJ2EydOhIuLi9bPr0uavufS/yfz589X\neYwxBjc3N3Ach3HjxukgSkJqz5QpU8BxHObOnVuj5+E4DkuWLFHcX7JkCTiOq7QNn1JSUsBxHH78\n8Ue+Q1E4deoUOI7DqVOnKm1X+tmampoiOztb5fGyfzvu3r2ro2gNFxVBdez333/H+fPn8ccff8DP\nzw+zZs3CsmXLauW5s7KysHTpUrVF0Pfff4/vv/++Vl5HHzVq1Ajh4eEov4vM2bNnkZKSAnNzc54i\nI0Qz+fn5+P333wEA4eHhNfpydf78eUyZMqXGbYjmxGIx9u7dq3J8x44daNSoEQ8RGQYqgupYx44d\n0a1bNwwYMABbt25Fnz59sH79+ho/b2FhYaWPt2nTBm3atKnx6+ir4cOH49GjRzh9+rTS8R07dsDf\n3x/29va19lpV/b8ipDr+/PNPvHz5EkOGDEFaWhqOHj1a7efq1q1blT27mrTRFP1OACNGjMDOnTuV\njj18+BCnT5/G22+/XWuvI5PJau3qgz6gIohnXbp0QU5ODtLS0hAfH4933nkHLi4uMDU1hZeXF+bP\nn4/8/Hylc/r06YOePXvi0KFD6NSpE4yNjfH999+jZcuWAID3339f0X26fft2xTllLw0VFBRgzpw5\naNu2LSwsLODs7Iw333wTiYmJOnuvT58+xfjx42Fvbw9jY2O0b98eYWFhKu2Sk5MREhICZ2dnGBsb\nw83NDR9//LHicU0/J200a9YM/v7+SkmooKAAe/fuxfjx49Wec/v2bQwfPhzW1tYwNTVFt27dVP7w\nlHZ137hxAwMHDoSFhQVGjRoFAIiKisKQIUPQuHFjmJmZoW3btli7di1kMpnSc7i6umLcuHHYvXs3\nvL29YW5uDl9fX5w7d67a75fon19++QU2NjbYvn07TE1NsWPHDqXHJRIJWrduDT8/P0ilUsXxqKgo\nCAQChIaGKo5pcqmrfJu7d+8iJCQELVu2hKmpKdzc3PDhhx/ixYsXSueVXjo/f/48unfvDlNTU3z2\n2WcYOnQofHx8VF4nOTkZAoEAmzdv1uLTUC8sLAwdOnSAiYkJ7O3tERISgqdPn6q027p1K3x8fGBq\nagobGxv4+/sjNjZW8fjixYvh4+MDKysr2Nvbo1+/frhw4UKNYhs/fjzOnDmD+/fvK47t3LkTzZs3\nR+/evVXaM8awbt06eHl5wcjICI0bN8bMmTPx8uVLpXYcx2HBggVYvXo1WrZsCSMjI1y/fl3jvwGl\nl+MuXLiAd999F5aWlmjSpAk++ugjFBQU1Og91wdUBPEsOTkZQqEQFhYWePDgATp27IhNmzbh6NGj\n+Pjjj/Hzzz9j0qRJKufduXMHH330EWbNmoVjx46hX79+2LdvHwBg3rx5OH/+PM6fP4833nhD7esW\nFhYiJycHCxcuxOHDh/HDDz+goKAA3bp1Q2pqaq2/T4lEAn9/f0RGRmLlypXYv38/2rVrh5CQEGzZ\nskXp8/Dz88OZM2ewdOlSREZGYvHixcjIyFC00eZz0sb48eOxd+9eRTG1f/9+SKVSvPPOOyptnzx5\ngp49e+Lq1avYuHEjfvvtN1hbW+ONN95AZGSkSvthw4bB398fBw8exJw5cwAA//77LwICAvDzzz/j\n8OHDmDBhApYsWYIFCxaonH/27FmsXbsWX331Ffbs2QOZTIahQ4ciKyurRu+Z6IcnT57g+PHjGD16\nNBwcHPDWW2/h4MGDSgWIubk5du3ahatXr2LRokUAgLS0NIwfPx5Dhw7FjBkzahyDi4sL1q9fj2PH\njuHLL7/EiRMnMGTIEJW22dnZCA4OxpgxYxAZGYmxY8di+vTpuHLlCuLi4pTabtmyBebm5hg7dmyN\n4tuyZQtCQkLg7e2Nffv2YfXq1Th27Bj8/f2Rm5uraPfpp5/igw8+gI+PD3777TeEhYWhd+/eePDg\ngaLN48ePMWfOHOzfvx/bt2+Ho6MjevfujWvXrlU7vl69esHV1RXh4eGKYzt37sS4ceNUxmMBwIIF\nCzB37lz0798fhw4dwmeffYbt27fjjTfegFwuV2q7fft2HD58GGvWrMHhw4fRpEkTrf8GhISEoFWr\nVti3bx8+/PBDhIaGYtWqVdV+v/UGI3Vi27ZtDABLTExkUqmUPX/+nG3atIkJBAI2bNgwlfZyuZxJ\npVK2c+dOxnEcy8jIUDzm7+/POI5jV65cUTonOTmZAWBbt25VeT5/f3/m7+9fYXzFxcVMIpEwCwsL\n9u2336rEnZycXOn7mzBhAmvatGmFj//vf/9jAFhMTIzS8YCAAObg4MCKi4sZY4yFhIQwc3Nz9vjx\n40pfr1RVn1Nl77kUALZgwQKWk5PDzMzM2K5duxhjjA0ePJiNHTuWMcZYixYt2Lvvvqs455NPPmFC\noZAlJSUpjhUXFzNPT0/WqVMnxbHFixczAGz9+vUavY/ly5cza2trJpPJFI+1aNGCWVtbs+fPnyuO\nxcfHMwAsPDy8yvdH9N/q1asZABYbG8sYY+zo0aMMAPvhhx9U2n777beM4zgWHR3NBg4cyJo0acLS\n09OV2gBgixcvVtwv/TmurE15UqmUnT17lgFgly9fVhyfMGECA8D279+v1F4mkzE3Nzc2efJkxbGi\noiLm5OTEpk6dWun7ryz3MVbyu+no6Mj69OmjdLw0vu+++44xxlhSUhITCARszpw5lb5e+eeWSqXM\n09OTffTRR4rjMTExanNeeaWfrVQqZYsWLWKtW7dmjDF28eJFBoDduXNHkYdL801mZiYzNjZmEyZM\nUHqunTt3MgDswIEDimMAWOPGjVleXl6V76OyvwFffvmlUvs33niDeXh4VPqcDQH1BNWx1q1bQywW\nw9bWFtOnT8e7776Ln3/+GQDw8uVLfP7552jVqhWMjY0hFosREhICxhiSkpKUnsfV1RUdO3asUSy/\n/fYbunbtCmtra4hEIpibmyM3Nxe3b9+u0fOqc+bMGTRt2lRltta4ceOQnp6OhIQEACVd80OHDkWT\nJk0qfC5tPidtWFhYYPjw4di5cydSU1MRFRVV4aWwM2fOoFu3bnB3d1ccEwqFGDNmDP755x+VLunh\nw4erPMfTp08xdepUtGjRAkZGRhCLxVi4cCGysrKQlpam1Pb111+HjY2N4n67du0AQOnbKTFcO3bs\ngIeHB15//XUAQGBgIJo0aaJySQwAZs+ejUGDBmHo0KGIiorCjh07amXMW1FREVauXInWrVvD1NQU\nYrEYvXr1AgCVnCISiTB06FClYwKBAFOnTsXu3bsVs6T279+PZ8+eYerUqTWK7fbt20hLS8O7776r\ndLxnz55o0aKFYizg8ePHIZfL8cEHH1T6fMePH0ffvn1hZ2cHkUgEsViMO3fu1Dh3jh8/HomJiYiP\nj8eOHTvQrVs3eHh4qLS7cOECCgsLVWasBgcHQyQSqYxtHDRoEExNTVWeR5u/AeWvKrRr104v8g8V\nQXXszz//RHx8PBITEyGRSLBjxw7Y2toCACZNmoRNmzbho48+QnR0NOLj4xXX6ctfe23cuHGN4jh0\n6BBGjx4Nb29v/Prrr7h48SLi4+Ph4OCgk+u8z58/Vxuzs7Oz4nEAyMzMrHKwpTafk7bGjx+PqKgo\nrFu3Do6OjggMDFTbrrL3wxhTGQdRvq1cLkdQUBAiIiKwcOFCnDx5EvHx8YpLYeXfR+nPSCljY2O1\n7YjhiY+PR0JCAkaMGIGsrCxkZWUhJycHI0aMwPnz53Hnzh2l9hzHISQkBIWFhejQoQMCAgJqJY55\n8+ZhyZIlGDduHA4fPoy4uDjFJfryP6eOjo4QCoUqz/Hee+9BLpcrxuZt2rQJfn5+6NSpU41iK80v\nFf3Ols0/ACrNQZcvX8aQIUNgYWGBn376CRcuXEB8fDw6dOhQ499Hd3d3vP766/jpp5+we/fuCr+E\nVfR+RCIR7OzsFI+XUve+tf0boC4H6cOAdhHfARiatm3bKvUelCooKMCBAwewZMkSpUHA169fV/s8\n6q4Ra2P37t1wd3dXDJwGAKlUqvLLU1tsbW3VfrsovfZsZ2cHALC3t8fjx48rfB5tPydtBQYGwtHR\nEWvWrMHcuXPVJmqg5P2ou26empoKjuNUEkb5/1/37t3DpUuXFNf8Sx06dKgW3gUxJL/88gsA4Ouv\nv8bXX3+t8viOHTuwfPlyxf3U1FTMnj0bPj4+uHLlCr777jul36XqKv2jvXDhQsWxsmNtyqoof9nZ\n2WHkyJHYvHkzBg4ciJiYmFpZ+6f097Gi31lfX18AUPSIPX78GF5eXmqf648//oBIJMK+ffsgFosV\nx1+8eAFra+saxzp+/HjMmDEDIpEIo0ePVtum7Pt57bXXFMeLi4uRmZmpyKel1H3edf03oL6inqB6\norCwEDKZTOmXCoDSD2hVSnsHNJkllZeXB5FIuQbeuXOnysyk2uLv749Hjx7hr7/+Ujr+66+/wtHR\nEd7e3gCAAQMGICIiQu2MDaB2PqfKCAQCLFq0CG+++SYmT55cYTt/f39cuHBBaRFJmUyGPXv2oFOn\nTlWu65GXlwcASu9DKpUqDYokpCpFRUXYvXs3unbtipiYGJVbx44dsXPnTsX6V4wxTJgwAUZGRoiO\njsbs2bPx+eef12hAb6m8vDyV38tt27Zp/TzTp0/HjRs3MGXKFFhaWiI4OLjGsXl5ecHJyQm7d+9W\nOh4bG4v79+/D398fQMmXIIFAoDRZo7y8vDwIhUKlwuLkyZO1dmlo9OjRCAoKwhdffKHyZapUt27d\nYGxsrPJ+9uzZg+LiYsX7qUxd/w2or6gnqJ6wsrJCt27dsHbtWjRu3Bj29vb4+eefK+0VKc/JyQl2\ndnbYvXs32rdvD3Nzc7Rs2VLlWwFQco14//79mDNnDoYOHYq///4bGzZsqNE3mfz8fLWLfbm7u2Pi\nxIn47rvvMGLECKxYsQIuLi4IDw9HdHQ0Nm/erOhxWbp0KQ4fPozu3btj/vz5cHd3x+PHj3H06FGE\nhYXVyudUlWnTpmHatGmVtpkzZw62b9+O/v37Y+nSpbC0tMT333+PO3fu4PDhw1W+hre3N1q0aIEF\nCxZAKBRCLBZj3bp1tfUWiIGIiIhAZmYm1q5dq3Z19KlTp+LDDz/EqVOn0LdvX3z77bc4fvw4Tp48\nCVtbW6xevRqnTp3CmDFjcOnSJbXjRjQ1aNAg/PLLL2jXrh3c3d2xb98+pWnlmurWrRt8fHxw5swZ\nzJo1C2ZmZhqf+/fff6vNYUFBQVi2bBmmTp2KcePGYdy4cXj8+DEWLFgADw8PxczSVq1aYc6cOfj2\n22+Rk5ODoKAgCIVCxMXFoXXr1hg9ejQGDRqE9evXY+LEiZg0aRLu3LmDr776Ck2bNtX6vapjY2OD\nP//8s9I2tra2mDt3LlatWgVzc3MMGTIEt27dwsKFC9GzZ88KZwWXpYu/AQ0Sr8OyDUj50f3qJCcn\ns0GDBjELCwvm4ODAZsyYwSIiIlRmGPj7+7MePXqofY4///yTeXt7M5FIxACwbdu2Kc4pO1NKJpOx\nBQsWsMaNGzNTU1PWu3dvdvnyZdaiRQulGQfazA4DoPY2Y8YMxhhjT548YePGjWN2dnbMyMiItWvX\nju3cuVPlue7evcuCg4MV7Vq2bMlmz55drc9Jm9lhlSk/O4wxxhITE9mwYcOYpaUlMzY2Zl27dmWR\nkZFKbcrO/CjvypUrrEePHszU1JQ1bdqULVq0iG3dulXl81b32qVxVzY7h+i/oKAg1qhRIyaRSNQ+\nnpWVxUxNTdmECRPY5cuXmZGRkcrPemJiIjMzM2PTpk1THCv/s6XJ7LD09HQ2evRoZm1tzaytrdnY\nsWNZXFycUh5irOqZpIwxtnLlSgaA3bhxo4pPoETp7LCKbqWz33bu3Mnat2/PjIyMmK2tLRs3bhx7\n8uSJyvP98MMPrF27dszIyIjZ2Ngwf39/xcw7xhjbsGEDc3V1ZSYmJszX15dFR0er5JvqzA6riLq/\nH3K5nH377bfM09OTicVi5uzszKZPn86ys7OVzq0ov2n7N6D83y51PxMNEcdYuX0CCCGEEB716NED\nAoEAZ8+e5TsUoufochghhBDeFRYW4vLlyzh+/DhiY2Nx4MABvkMiBoCKIEIIIbx7+vQpunfvDmtr\na8yfPx9BQUF8h0QMAF0OI4QQQohBoinyhBBCCDFIVAQRQgghxCA12CKIMYb8/HzQ1TxCiK5RviFE\nPzXYIqigoABmZma0dxIhDYAmC0jWZ5RvCGk4zp49q3bjWXUa7MDo/Px8mJmZIS8vr0arnBJCSFUo\n3xDSsDx8+BDNmjWrsl2D7QkihNRvP/74IxISEvgOgxBiAHbv3o24uDjFfU0KIIDWCSKE6MD+/fvx\n/vvvw8nJCYmJiYa3HxEhpM6cPn0a7777Lho1aoSEhAQ0adJE43OpCCKE1LqBAwdiwIABCAoKogKI\nEKJT3bt3x4gRI9CuXTutCiCAxgQRQnRELpdDINCPK+6Ubwip36qbb/QjQxFC6kx2nhT30nORnSdV\nOh4aGopZs2YpppHrSwFECOFPRfkmLCwMEyZMgEwmA1D9fEM9QYQQjaRkSLAq8haiE55BzgABB/Rv\n44R5g70hzH8ODw8PFBYW4tSpU/D39+c73FpF+YaQulVZvrEUFMLNzQ3Z2dn4888/8dZbb1X7dagI\nIoRUKSVDgqCN5yApkkEmf5UyhAIO5kZCHJzZE4mXzuLff//F9OnTeYxUNyjfEFJ3NMk3jxKv4K+/\n/sLnn39eo9eigdGEkCqtirylkpAAQJqXAwkaYVXkLWwOGcRTdIQQfaJZvumJnj171vi16KI9IaRS\n2XlSRCc8U0lIOZcj8HjrNOQ/S0F0wjOVa/aEEKKtivJN7s0YPN48BXmPEms131ARRAipVIakEOXy\nERiTI+9uHOR5WSh8kgg5K2lHCCE1oT7fMOTfuwR5QS4KHl6v1XxDl8MIIZWyNzeGgINSYuI4ARxH\nLER+8mWYeXSDgCtpRwghNaE+33CwHzoXeV7dYe7Vo1bzDfUEEUIqZWUmRv82ThAKOBQ8uKaYAs+J\njGDm0Q1CAYf+bZxgZSbmOVJCSEOnlG8e3gCTl0yB5wRCmHv1qPV8w3sRdPnyZQQEBMDMzAw2NjYY\nNWoU3yERQsqZN9gbBVeP4Nmu+XgevUlxvHS2xrzB3jxGRwjRJ/MGe0N6+wye7ZqPjIhvwZgcgG7y\nDa9F0K1bt9CvXz/07NkT8fHxiI2NRXBwMJ8hEULUcLU3x8oJ/SEUG8PYvmRjQgEHBHo74uDMnnC1\nN+c5QkKIvnC1N8e69/pDbGwKIzsXcJxAZ/mG13WC3n77bVhaWmLbtm1an0vrdhBS9x49eoRGtk7I\nkBTC3tzYYC6BUb4hpO7VRb7hrSdIJpPh6NGjaNmyJfr06QMnJyf0798f165dU9teKpUiPz9f6UYI\n0a2tW7cq/U66uLjAykyMVg4WBlMAEULqxq+//orz588r7tdFvuGtCEpPT0deXh6++eYbjBkzBpGR\nkWjWrBkCAgKQnZ2t0n7FihUwMzNT3Ozs7HiImhDDcfDgQXzwwQcIDAzEixcv+A6HEKLHzpw5g5CQ\nEAwcOBCPHz+us9fl7XLYkydP0LRpU0ycOFFxOUwqlaJp06ZYu3YtQkJClNpLpVIUFxcr7ufn58PO\nzo66pwnRkYKCArz99tsYMmQIZsyYwXc4vKLLYYToVnFxMUJCQtCmTRssWrSozl6Xt3WC7O3tIRQK\n4eXlpTgmFovh5uaGhw8fqrQXi8UQi6n7nRBdY4yB4ziYmJjg0KFDerEb/JIlS7B06VKlY8OGDcP+\n/fv5CYgQAuBVvhGJRAgPD6/zfMNbdjMyMkKnTp1w9+5dxbHi4mKkpKSgefPmfIVFiEELDQ3FjBkz\nIJeXTEnVhwKolJ+fH54+faq4bd++ne+QCDFo4eHhGDdunOIqDx/5htcVo+fMmYP33nsPffv2RZcu\nXbBhwwYAQFBQEJ9hEWKQHj9+jE8//RQFBQUYNWoU+vTpw3dItUosFsPZ2ZnvMAghALKysjBr1iy8\nePECb7/9NkaMGMFLHLwWQWPHjkV6ejrmzZuHFy9ewNfXF8ePH4elpSWfYRFikJo2bYoDBw7g3r17\nelcAAcDVq1fh7OwMS0tL9O/fH8uXL4eNjY3aturGIBJCao+1tTWOHDmC06dP81YAATyvE1QTNFCR\nkNrx/Plz2Nra8h2GTh09ehT5+flwd3dHSkoK5s2bB1tbW5w+fRocx6m0VzeGCADlG0JqqL7lGyqC\nCDFgoaGhWLJkCY4fP44OHTrwHU6duXfvHtzd3REfHw9fX1+Vx2k2KiG1LywsDDNnzsSRI0fQvXt3\nvsMBUA/2DiOE8EMul+Po0aPIyMhAXFwc3+HUqVatWsHa2hrJyclqHxeLxTA1NVW6EUJqJioqCtnZ\n2Th37hzfoShQTxAhBqywsBBRUVF48803+Q6lTj148AAtWrRAXFwcunTpUmV7yjeE1FxxcTEOHTqE\n4cOH8x2KAvUEEWJgYmJiFFPgjY2NDaIA+uyzz3Du3DmkpKQgJiYGI0aMwOuvv47OnTvzHRoheu30\n6dOKS8sikaheFUAAFUGEGJQffvgB/fr1w/Tp09FAO4Gr5f79+xg5ciQ8PT0xadIkdO7cGQcOHNCr\ndZAIqW927dqFfv36YezYsYovXvUNr1PkCSF1y8PDA6ampmjXrp3aWVH6as+ePXyHQIjBcXNzg4WF\nBdq2bVtvv3DQmCBC9Eh2nhQZkkLYmxtXuOvy48eP0bRp0zqOrGGjfEOIKn3IN9QTRIgeSMmQYFXk\nLUQnPIOcAQIO6N/GCfMGeyNqXzj8/PzQsWNHAKjXCYkQUv9Vlm/ORx9Es2bN0LNnTwD1P99QTxAh\nDVxKhgRBG89BUiSDTP7q11ko4CBLjsf93UtgZ2eHO3fu1KtFyhoSyjeElKgs3yD1FlJ++Qympqa4\ndesWmjVrxmOkmqGeIEIauFWRt1QSEgDI5AyCZh3RolNv/Oe9UVQAEUJqrNJ84+gJt24DETKwW4Mo\ngAAqgghp0LLzpIou6bIYY+A4DnKBCNyATzFu0iB+AiSE6I0q8w0EYL0+xMefNpx8Uz+HaxNCNJIh\nKVRJSDmXI/D86P/AWMmUVAYBMiSFPERHCNEn6vJN7s0YZBz8L5isZC2ghpZvqAgipAGzNzeGoMxM\n9+Lc53hxahtyr0Wh4P41ACWDFu3NjXmKkBCiL8rnG3lBLl4c34K8xLPIS7oAoOHlGyqCCGnArMzE\n6N/GqWRQIgCRhS0c314M2wHTYeraEUIBh/5tnCqcvkoIIZoqn28EJhZwHLUU1n0mwbx1zwaZb6gI\nIqSBmzfYG8bFEkViMmnRHo06DYFQwMHcSIh5g715jpAQoi/K5xvjxp6w6vp2g803VAQR0sAd3rMd\nT3+cho6mLxRd1QIOCPR2xMGZPeFqb85vgIQQvfHXsf14tGkKXuMe6UW+odlhhDRgjDFER0cj68Vz\nDHSS4Odxo6pcwZUQQqrrxIkTyMl5ie6NnmPnR5MafL6hxRIJaeCKiooQFRWFoUOH8h2K3qJ8Q0gJ\nmUyGiIgIDBs2jO9QagVdDiOkATp+/LhiV2YjIyMqgAghOhMTEwOpVAoAEAqFelMAAVQEEdLg/PDD\nD+jfvz+mTJmCBtqRSwhpIHbt2oXAwECMHj0aMpmM73BqHRVBhDQw3t7eMDc3R+fOncFxXNUnEEJI\nNXl4eMDS0hKdOnWCUCjkO5xax9uYoCVLlmDp0qVKx4YNG4b9+/drdD5doyeG7OnTp2jcuDHfYRgM\nyjfEkOlzvuF1dpifnx8OHDiguG9iYsJjNITUX1u2bIGvry98fHwAQG8TEiGEf7/++iuaNm0Kf39/\nAPqdb3gtgsRiMZydnTVqK5VKUVxcrLifn5+vq7AIqVcOHz6MqVOnwsbGBklJSbCzs+M7JEKInoqN\njUVISAhMTEyQkJCAFi1a8B2STvFaBF29ehXOzs6wtLRE//79sXz5ctjY2Khtu2LFCpXLZ4QYgv79\n+2P48OEICAigAogQolNdu3bF+PHj0bJlS70vgAAexwQdPXoU+fn5cHd3R0pKCubNmwdbW1ucPn1a\n7WBPdT1BdnZ2dI2e6C3GmOJ3oey/Sd2jMUFE3xlqvqk3iyXeu3cP7u7uiI+Ph6+vb5XtKSkRfRYa\nGopLly7hxx9/1MsZGQ0N5Ruiz8LDw7Fv3z7s2rULRkZGfIdTp+rNFPlWrVrB2toaycnJfIdCCK9S\nU1Px+eefY/v27YiJieE7HEKIHnv58iVmz56Nffv2aTw7W5/Um73DHjx4gKysLLi6uvIdCiG8cnZ2\nxpEjR5CQkIDAwEC+wyGE6DFLS0scO3YMJ06cwKhRo/gOp87xdjnss88+Q1BQEFxcXJCcnIz//Oc/\nMDIywrlz5yAQVN1BRd3TRN9kZGTA3t6e7zAMwltvvYUDBw4gOjpao0KT8g3RN5RvSvB2Oez+/fsY\nOXIkPD09MWnSJHTu3BkHDhzQqAAiRN+EhobCw8MD8fHxfIei97Zt20ZLbBCDFhYWhpYtW9LldvB4\nOWzPnj18vTQh9QpjDKdOnUJWVhYuX76MLl268B2S3rp//z4WL16M2NhYNGvWjO9wCOHFmTNnkJub\ni4sXL6Jv3758h8OrejMmiBBDxXEcfv31V0yaNAlDhgzhOxy9JZfLMWHCBCxduhQuLi6VtqXFWYk+\n27RpE4KCgjB06FC+Q+EdXXsihCfR0dGKXZnFYjEVQDq2bt06WFhYYNKkSVW2XbFiBczMzBQ3WqSS\nNHQnT55EUVERAEAgEFAB9P+oCCKEB5s2bcKAAQMwefJk1JOluvTarVu3sHbtWmzZskWj9gsWLEBe\nXp7ilpmZqeMICdGdPXv2oH///njnnXcUX7xICSqCCOHBa6+9BgsLC/j5+RnMyqx8unjxIlJTU9G8\neXOIRCKIRCUjAQYOHIh3331Xpb1YLIapqanSjZCGytPTE9bW1vD19aXFV8upNytGa4umrJKGLjU1\nVeMNhEnNZGVl4dGjR0rH2rVrh61bt2LQoEFVjhGifEMaOso36tHAaELqyObNm9GpUyf4+fkBACWk\nOmRtbQ1ra2uV466urlUWQIQ0ROHh4XB2dkZAQAAAyjcVoSKIkDoQGRmJadOmwcrKCklJSXBwcOA7\nJEKInjp//jzGjx8PY2NjJCQk0E4MlaAiiJA6EBgYiFGjRqF3795UANUTDXQkACFV6tq1KyZPnozm\nzZtTAVQFGhNEiA4xxhQDn8v+mzQslG9IQ0D5Rns0O4wQHQkNDcX48eMVU1IpIRFCdCU8PBzDhw9H\nYWEhAMo3mqpRT1B+fj727NkDiUSC/v37w9PTszZjq/K16ZsZqa+ePXsGDw8P5OTk4NixYxgwYADf\nIZEaoHxD6rOcnBy4u7sjLS0Nu3btQnBwMN8hNRgaF0Fz5syBTCbDhg0bAAAFBQXw8/NDYmIizM3N\nUVRUhMjISPTu3VunAZeipETqu3PnzuHGjRuYNm0a36GQGqJ8Q+q7q1evIjo6Gp9++infoTQoGhdB\n3t7eWLNmDd544w0AwNatWzFv3jxcuXIFLi4umDJlCh48eIDo6GidBlyKkhKpj9LT02ngsx6ifEPq\nI8o3NafxmKCHDx/C29tbcf/o0aMYNWoUmjVrBo7jMHv2bFy7dk0nQRLSEISGhsLDwwMXLlzgOxRC\niJ4LDw9Hy5Yt66zjQV9pXASZmJigoKBAcT82NhY9evRQ3Dc3N0dubm7tRkdIA8EYw9mzZ5GdnY2r\nV6/yHQ4hRM/FxsZCIpHg0qVLfIfSoGlcBPn6+mLTpk0AgGPHjiE9PR2BgYGKx+/evYumTZvWfoSE\nNAAcxyEsLAyRkZGYOnUq3+EQQvTc//73P0RERGDevHl8h9KgaVwEffXVVwgLC4O1tTWGDh2KOXPm\nwMnJSfH47t2762xQNCH1xbFjx1BcXAwAEIlEGDRoEM8REUL01fHjxxVXZAQCgWKMLqk+jVeM7tKl\nC27fvo3Y2Fg4OTmhW7duSo8PGzYM7dq1q/UACamvNm/ejGnTpmHMmDEIDw+ndTkIITqze/duvPvu\nuxg0aBAOHDgAkYg2fKgNWi2W6ODggGHDhqkUQADg4+OD5cuX11pghNR37du3h6WlJXr06EEFECFE\np9q0aQNbW1t069aNCqBaVGvbZly9ehU+Pj6K1XF1jaaskvogLS0Njo6OfIdBdIzyDakPKN/Uvnqz\nbcZbb70FjuNw/PhxvkMhpEKbN2/G+fPnFfcpIRFCdOXXX39FVFSU4j7lm9pXL/rUtm3bhvz8fL7D\nIKRSx44dw7Rp02BpaYmkpCRKSIQQnbl48SJCQkIgFouRkJAANzc3vkPSS7wXQffv38fixYsRGxuL\nZs2a8R0OIRUKCAjAmDFj0KNHDyqACCE61aVLF0ydOhXOzs5UAOmQxkVQ6crQFSkqKtL6xeVyOSZM\nmIClS5fCxcWl0rZSqVQxFRkA9RyROsMYA8dxEIlENAuMEKJTpflGIBAgNDSU8o2OaVwE6WLm17p1\n62BhYYFJkyZV2XbFihVYunRprcdASGVCQ0Nx9uxZhIWFQSQSUUIihOhMWFgYdu/ejb1798LExITy\nTR2otdlh2rp16xYCAgJw6dIlNGnSpCQYjkN0dLTSStSl1PUE2dnZ0WwNojPp6enw8PBAdnY2IiMj\naSFEA0azw4iu5ebmwsPDA6mpqfj1118xZswYvkMyCFqPCXrw4AH27duHu3fvAgA8PDwwfPhwNG/e\nXKvnuXjxIlJTU1XOGzhwIIKDgxEeHq50XCwWQywWaxsuIdXm4OCAo0eP4urVq1QAEUJ0ysLCAtHR\n0YiKiqICqA5p1RP0zTffYMGCBTAxMVEM1Pr3339RUFCAFStW4D//+Y/GL5yVlYVHjx4pHWvXrh22\nbt2KQYMGVTlGiL6ZEV2htThIeZRviK5QvuGXxusE7dmzB0uWLMF3332HzMxM/PPPP/jnn3+QmZmJ\n9evXY8mSJdizZ4/GL2xtbY22bdsq3QDA1dW1ygKIEF0JDQ2Fu7s7YmNj+Q6FEKLnwsPD0bJlSxw9\nepTvUAyWxkXQt99+i6+//hoffvih0mUpsViM6dOnY/Xq1Vi7dq1OgiSkLjDGcP78eeTk5ODatWt8\nh0MI0XMXL15EXl4eLl++zHcoBkvjy2FmZmZISEiAq6ur2sdTUlLQpk0b5OXl1WZ8FaLuaaILxcXF\nOHHiBAYOHMh3KKQeoXxDdIExhqNHj2Lw4MF8h2KwNO4JMjIyQm5uboWP5+bmwsjIqFaCIqQuRUZG\nQiqVAgBEIhEVQHpo9erVaN26NczMzGBnZ4egoCDcuXOH77CIAYqOjlasc8dxHBVAPNO4COrRowc2\nb95c4eObNm1Cjx49aiUoQurK5s2bMWTIEIwbNw48rRZB6kCrVq2wceNG3Lx5EydPnoRQKMQbb7zB\nd1jEwPz2228YNGgQ3nrrLaUlXwh/NJ4iv3jxYvj7+yMzMxNz5syBl5cXgJL1ftatW4cDBw7g9OnT\nOguUEF3o1KkTrKys0Lt3b1qYTI+NHDlS6f6yZcvQvn17PHv2DE5OTjxFRQzNa6+9Bnt7e/To0QMi\nEe+7VhFoOUX+5MmTmDZtGu7evav4g8EYg5ubGzZt2qR2kUNdoWv0pLakp6fDwcGB7zBIHcnPz8fC\nhQtx+PBhJCQkQCBQ7RCnxVmJrlC+qV+0XjGaMYYrV67g7t27YIzB3d0dPj4+df4tmoogUl2bNm3C\na6+9hl69evEdCqlDERERCA4ORl5eHjw9PREZGYmWLVuqbbtkyRK12/RQviHaCg8Ph42NDYYMGcJ3\nKEQN3rbNqCkqgkh1REdHY8CAAbCwsEBSUhKcnZ35DonUEYlEgqdPnyI1NRVr167F06dPcfbsWbUr\n0VNPEKkN8fHx6NatG0QiEW7evAl3d3e+QyLl0EVJYlD69euH8ePHw8/PjwogA2Nubg53d3e4u7vD\nz88PNjY2iIyMRFBQkEpb2qaH1AZfX1/MmDEDDg4OVADVU1QEEYPAGAPHcRAKhdi+fTsNgiZgjNHg\nVKITpfmG4zh89913lG/qMY2nyBPSUIWGhmLUqFGKtYAoIRmezz//HOfPn8f9+/cRFxeH4OBgxSwd\nQmpTeHg4hgwZorQWEKm/qAgiei0jIwMLFy7E3r17ER0dzXc4hCcPHjzAyJEj4enpiREjRsDY2Bgn\nTpyAlZUV36ERPSKRSPDZZ5/h6NGj+OOPP/gOh2igWgOjb9y4gTNnziAtLQ1yuVzpsWXLltVacJWh\ngdFEU/Hx8bh8+TKmTp3KdyikgaJ8QzSVkJCAo0ePYu7cuXyHQjSgdRG0bt06fPLJJ/D09ISzs7NS\nVx/HcTh58mStB6kOJSVSmdTUVBr4TGoN5RtSGco3DZfWl8PWrFmDzZs3IzExEadOnUJMTIziVlcF\nECGVCQ0Nhbu7O86cOcN3KIQQPRcWFgY3NzdERETwHQqpBq2LoIKCAvTt21cXsRBSY4wxXLp0CRKJ\nBAkJCXyHQwjRc1euXEF+fj6uX7/OdyikGrS+HLZo0SIUFxdj1apVuopJI9Q9TSoik8kQExNTp9u4\nEP1G+YZUhDGmWISVNDxaF0EhISE4dOgQmjVrhrZt26osKLZjx45aDbAilJRIWUeOHEH//v1pgTui\nE5RvSFlRUVHo2bMnzMzM+A6F1JDWl8NEIhGGDx8OX19fmJiYQCgUKt0IqWtbtmzBG2+8geDgYDTQ\nXWAIIQ3Eb7/9hsGDByMoKEix9hhpuLReLnXbtm26iIOQavPx8YGNjQ369etHC5MRQnSqffv2cHBw\nQO/evannWQ/QBqpEL2RkZMDe3p7vMIieonxDyqJ8oz+07gmSy+XYsmUL9u7di4cPH6p0B/7777+1\nFhwhFfnhhx/g7e2NPn36AAAlJEKIzoSHh6NRo0aKzXYp3+gPrccELVmyBF999RX69++PBw8eYMKE\nCejbty9evnyJGTNmaPw8q1evRuvWrWFmZgY7OzsEBQXhzp072oZDDNDx48cxffp0DB06FE+fPuU7\nHEKIHvv7778xfvx4vPPOO/Q3Sg9pfTnM1dUVmzdvxsCBA9GoUSNcuXIF7u7u2LRpE44fP469e/dq\n9Dy///47bGxs0KpVK7x8+RJLlizBjRs3kJSUpNH51D2t/7LzpMiQFMLe3BhWZq+uvcvlckyZMgWd\nO3fWqvAmpLoo3xguxhg+/fRTWFlZ4csvv+Q7HFLLtC6CLCwscPPmTbRo0QIuLi7Yt28f/Pz8kJyc\njPbt2yMnJ6dagVy/fh3t27dHamoqnJycqmxPSUl/pWRIsCryFqITnkHOAAEH9G/jhC8GtUZLBwsA\nJYmJBkGTukL5xvCUzTGUb/SX1pfDPDw8cO/ePQDAa6+9hu3bt+Ply5fYvXs3bGxsqhVEfn4+tm/f\nDi8vLzg4OKhtI5VKkZ+fr3Qj+iclQ4Kgjedw/FYa5P9fnssZ8EfYz+jYawDuPHkBAJSQCCG1IjtP\ninvpucjOezW+NSwsDAMGDIBEIgFA+UafaT0wetasWUhOTgYALF68GEOHDsXmzZshFouxZcsWrZ4r\nIiICwcHByMvLg6enJyIjIyEQqK/LVqxYgaVLl2obLmlgVkXegqRIBpn8VQelLP8lXpwJg7wgBx+t\n2Y6j387hMUJCiD6oqMd5tn8LzJs3D48ePcK+ffsQEhLCd6hEh2o8RT43Nxe3b99G8+bNK+zFqYhE\nIsHTp0+RmpqKtWvX4unTpzh79qzatRekUimKi4sV9/Pz82FnZ0fd03okO0+KTl9FQa7mJ7Lo2T0U\nPk2CVadBuLJogNIYIUJ0jS6H6ZfSHufyX7iEAg7mRkKsG+SI6xdOY/bs2fwFSeqE1j1B5VlYWKBz\n587VOtfc3Bzu7u5wd3eHn58fbGxsEBkZqZiGWJZYLKaFqfRchqRQqQAqzn0OkYUtAMDIqRWMnFpB\nzkraURFECKkudT3OxbnPAQtbSIpk+C1Jhs1UABkErccE6RJjDCJRjesy0kDZmxtD8P+X3nMuR+DJ\nlvdRcP+aUhsBV9KOEEKqIztPiuiEZ0oFUO7NGDzZPAV5SRcgkzNEJzxTGiNE9BdvRdDnn3+O8+fP\n4/79+4iLi0NwcDDs7e3Ro0cPvkIiPLMyE6N/GycIOKDo2b9g0kJInz9SPC4UcOjfxol6gQgh1Va+\nxxkApOkpYMVFkKbfBwBFjzPRf7x1uzx48AAjR45Eeno6HBwc0KtXL5w4cQJWVlZ8hUTqgXmDvXH+\nXiYwZBbMvHvD1LUjgFfX6ucN9uY3QEJIg1ba41y2ELL2nwgT106KfEM9zoaDtyJo165dfL00qacO\nHTqEAQMG4ODMniWzNsApZm0Eejti3mBvuNqb8x0mIaQBK+1xPhhxBOKmr0FgZAKO45S+cAV6O1KP\ns4HQughatmyZ2uMcx8HY2BitWrXCoEGDYG5Of6yI5rZs2YKpU6ciKCgIf/75JzaH+Fa4YjQhhNRE\nu8IEbPl9KUyavQbHUV+BE5b8KaQeZ8OjdREUHR2N69evQyqVwt3dHQBw9+5diMViuLu74+7duzA2\nNkZMTAzatGlT6wET/eTn5wc7OzsMGDBAsVaUlZmYih9CSK0b0LsbnJyc0My3OzJFIupxNmBarxO0\nZs0axMXFYevWrYrxO9nZ2Zg6dSr8/Pwwbdo0TJgwAVlZWYiOjtZJ0ACt26GPnj9/DltbW77DIEQF\n5Rv9U5pvqMfZsGldBDk5OeH06dNo3bq10vHExET4+/vj2bNnuHr1Kvr06YMXL17UarBlUVJq+H74\n4Qd4enoiICCA71AIqRTlm4YvPDwcZmZmGD58ON+hkHpE6ynyRUVFSExMVDmemJiIoqIiAKAkQap0\n8uRJTJ8+HUFBQXjy5Anf4RA9t3LlSvj4+MDCwgKNGzfGpEmTkJ6ezndYREfK7wd25coVjB8/HqNG\njVL794sYLq3HBL3//vuYNGkSrly5Ah8fH3Ach7///hsbNmzABx98AKBk3FCHDh1qPViiP/r06YP3\n338fHTp0QJMmTfgOh+i5c+fOYe7cufD19cXLly8xa9YsjB49GidPnuQ7NFKLKtoP7ItBrfHpp5/C\n3Nxc5SoGMWzV2jvsxx9/xJYtW5CUlASgZGf5qVOnYvLkyeA4Di9fvgTHcWjUqFGtB1yKuqcbJrlc\nrhj4zBij3ZkJL86fP4/u3bsjKytLo7XJKN/Uf+r2A2NMDpFQCHMjIQ7M6IGWDhY8R0nqm2qtGD1l\nyhTExcXhxYsXePHiBeLi4vDee+8p/qBZWlrqtAAiDVNoaCiGDRuGwsKSlVipACJ8ycjIgImJSYVL\neUilUuTn5yvdSP1Wfj+w3JsxeLZ7AaQFeZAUybD6KF0GI6qqvW1GXl4eUlJS8O+//yrdCFHn+fPn\nWLJkCSIiIhAVFcV3OMSAFRYWYtmyZZgwYUKFexWuWLECZmZmipudnV0dR0m0UX4/MLm0EFlndqDw\nwXXk3Y6l/cBIhbS+HHb9+nVMnjwZly9fBvDqkkbpf2UymU4CLY+6pxueq1evIi4uDu+//z7foRAD\nJZPJEBwcjJSUFMTExMDCQv3lEalUiuLiYsX9/Px82NnZUb6pp+6l5yJg7WmlY9IXT5B/Nx6WXYYp\njp34xB+t6JIYKUPrgdGTJk1CkyZN8Ndff8HZ2ZkuaZBKPX78GE2bNgUAdOjQgQbME97I5XJMnDgR\niYmJOH36dIUFEACIxWKIxbRmTENRuh9Y0csMiBrZAwDENk0gLlMA0X5gRB2tL4fdunUL3377Lbp1\n6wZXV1e0aNFC6UZIqdDQULi7u9PlL8I7xhimTJmCCxcuIDo6mhbl1DNWZmK4vvgbTza/D8ntv1Qe\nFwo49G/jRIshEhVaF0Hdu3endRZIlRhjuHnzJgoKCnDv3j2+wyEGbtq0aTh06BDCw8MBAKmpqUhN\nTa2zy/dE99qY5YLJpJC9eKx0nPYDI5XRekzQL7/8gq+++goffvgh2rZtq9Jl3K9fv1oNsCI0Jqj+\nk8vlOHPmDPr06cN3KMTAVXTZPjk5Ga6urlWeT/mm/mOMYfeBSJzKcVRZJ4j2AyMV0boIKl3jRe2T\n0cBog3fw4EEMGDAAJiYmfIdCSK2hfFM/RUZGomfPnipLstB+YERTWl8Ok8vlFd6oa9mwbd26FcOG\nDcPbb78NuVzOdziEED22d+9eDB06FEOGDFFs2VTKykyMVg4WVACRKlV7nSBCyuvatSscHBwwZMiQ\nSnsMCSGkpjp16oQmTZqgf//+MDIy4jsc0kBpdDnsyy+/xBdffAEzMzN8+eWXlbZdtmxZrQVXGeqe\nrp9evHgBGxsbvsMgpFZRvqmfKN+QmtJonaCzZ89i7ty5MDMzw9mzZytsR2sG6Td119m///57tGrV\nCgMHDgQASkiEEJ0JCwuDsbExRo4cCYDyDam5am2gWh/QN7O6U9HOzH0t0zHmrSEwMTFBUlISXFxc\n+A6VEJ2gfMO/f/75B507dwbHcbh+/Tq8vWnKO6k5rQduTJ48GTk5OSrHJRIJJk+erPHzrFy5Ej4+\nPrCwsEDjxo0xadIkpKenaxsO0bHSnZmP30rD/2/LAzkDjt9Kw4rLHMZNeh9r1qyhAogQolMdOnTA\nvHnzsHjxYiqASK3RuidIKBTi6dOncHR0VDqenp6OJk2aQCrVbIO6IUOGYOzYsfD19cXLly8xa9Ys\nmJub4+TJkxqdT9/M6sbUnZdw/FaaYmNCAGBMDo4TQCjgEOjtiM0hvjxGSIjuUb7hj1wup4kWRGc0\n3jvszJkzAEoWpDp//rzStViZTIaTJ09q1Rtw5MgRpfvr169H9+7dkZ2dDSsrK42fh+hOdp4UUTef\noWyVnHM5Ann34uE4fAFkIiPFzsw0FZUQUtvCw8OxZcsWREREqKwFREht0LgIKl31l+M4DB8+XOkx\ngUCAZs2a4b///W+1A8nIyICJiQnMzdWv6qluV2eiOykZEizYf12pAJIX5CLrr12Q52UjP/kyzDy6\nQc6ADEkhFUGEkFpVUFCAhQsXIiUlBXv37sWkSZP4DonoIY2LIKlUCsYYPDw8cOHCBdjb2yseEwqF\nNQqisLAQy5Ytw4QJEyASqQ9pxYoVWLp0aY1eh2imdByQpEh58UuBiQWcgleg8HEizDy6lRyjnZkJ\nITWkbuapiYkJTpw4gUOHDlEBRHRG6zFBO3bswOjRo2FsrPyHr6ioCLt378b48eO1CkAmkyE4OBgp\nKSmIiYmBhYWF2nbqeoLs7OzoGr0OlB8HVPwyHSJLB5V2NCaIGAoaE6Qb6maevu7EsGJcX9rri9QJ\nrUebTZo0CdnZ2SrHc3JytK7W5XI5Jk6ciMTERBw7dqzCAggAxGIxTE1NlW6k9mXnSRGd8ExRAOVc\njsDjLR8g/9+/ldoJONDOzISQakvJkODN/51VFEAA8PJGDH79dDh6T1uBlAwJvwESg6B1EcQYU1kU\nsXSwtK2trVbPM2XKFFy4cAHR0dFanUt0J0NSiDITwSDNfATIpCjOSlVq172VHQ7O7Enf1gghWkvJ\nkGDkpljkFMqU8k3xiyeArBi56Y+wKvIWfwESg6HxmCCBQACO48BxHJydndW2+fzzzzV+4WnTpuHQ\noUM4fPgwACA1teSPrIODQ43HGJHqszc3hoCDIjHZBE6FmVcPmDRvp2gj4IDQsZ1pMDQhRGvnktIx\ncVs8iuWqIzGseoyFSfN2MGnenmaekjqhcREUHR0NxhgGDBiA3377TWmKvFgsRosWLdCiRQuNX3jL\nli0ASjbdLCs5ORmurq4aPw+pXVZmYnjk38IdcSswoRE4jlMqgErHAVFiIoRoKyVDggk/x0FWpv7J\nuxcPE5fXIDA2+/980x4AaOYpqRMaF0EBAQEASoqU5s2b13ifsAa6W4fe+/HHHxH13X9g0coHDiOX\nQs5e/X8WCjgaB0QIqZaUDAne2RSrVABJEs8h4+B/YdTYA85jVoMTvSp4aOYpqQsaFUEnT55E7969\nIRKJcO/ePdy7d6/Ctv369au14Ejd6969O5ycnDD9/XfxuImz0qyNQG9HzBvsTeOACCFaScmQ4M2N\n55BTUKx03LixB4SN7GHq5qtSAPVv40S9QETnNJoiLxAIkJqaCkdHx0qXL+c4DjKZrMLHaxNNWdWd\nrKwsWFtbA1C/fgchhobyTc28tz0eMbfToGYYEOQFuRCYKM8MbmQsxKFZvegLF9E5jXqC5HK52n8T\n/fD999/D1dUVQ4YMAQBFAQSUjBGi4ocQUh0pGRIs2n8DZ+9mKI7l3owBxwlg3sYfAFQKIAcLI/w+\nrTsVQKROaDwmiOiH8j07Z86cwYwZM2BsbIykpCQ0a9aM7xAJIXpA3SywovQUZB5eBwAQO7SAkYOr\n0jkiAUcFEKlTGhVBX375pcZPuGzZsmoHQ3RH3cqs/ds44YtBPvjoo4/g6elJBRAhpFakZEgwcVsc\nistdODBycIVV92CA41QKICEHbJ/UhQogUqc0KoLOnj2r0ZPVdMYY0Y2ye4GVfimTyWQ4fisN5+9l\n4uCilZR4CCG1ZlnETaUCiMll4AQl679Z9xyr0t7ewgh7qQeI8ECjIigmJkbXcRAdWhV5C5IimdJW\nGHl3LsDh7YWQwBSrIm/R/l+EkFqRnSdFTGK64n7uzRjkXjkCx5FLIDBWLnIEHGBuLKICiPBG620z\nSr18+RJXrlzBlStX8PLly9qMidSi8nuByQslyI7dg4L7/6Ag+TJkcqZYmZUQfbVv3z4EBATAysoK\nHMcpbcZMaleGpBClo4BYcRGyz/2Kwse3kHf7L5W2fb0ccYi23yE80roIevnyJSZPngx7e3t07twZ\nnTt3hoODAyZPnqx2Y1XCr/J7gQmMzeEUvBK2g2bBzLM7gFcrsxKir/Ly8tCvXz988cUXfIei90q3\n3gEATmQEp+DlsAmcCov2A5Ta9fawx08TaQwQ4Ve1dpG/ePEiIiMjkZ2djZcvX+LIkSOIj4/H5MmT\ndREjqYHShFT8Mk1xTGzfDI06DFTcp5VZib4bN24cFixYgNdff53vUPSelZkYrzsyRSEksnKCZec3\nldqIBByWDWvLQ3SEKNO6CIqMjMS2bdsQEBCARo0awcLCAgEBAfjxxx8RGRmpixhJDViZidHkyWk8\n3vIB8u7GqTwuFHC0Mish5UilUuTn5yvdiGbCw8Px++cjIL19RlEIlSUS0CwwUn9oXQRVNI2a4zg0\nbdq0xgGR2udlmgfIiiHPSVc6TnuBEaLeihUrYGZmprjZ2dnxHVKDkZycDKlUilFexujfxunVpTEA\n/Vo74PjcPujp4cBrjISU0mjbjLIiIyOxZMkSLF++HF26dAHHcYiLi8OiRYuwaNEiDB48WNG2si02\naoqWsVdV0RYXjDH8HhGNE1m2KusE0V5gxJCcOnUKffv2hVQqhUhU8eRYqVSqNHg6Pz8fdnZ2lG80\ndObMGfTu3RsAbb1D6jeti6CyhU3pukClT1F+nSBd7iNGRdAr6hZCdM9LwHefTIR3c+VvXJSQiCHT\ntAgqj/KNsuw8KVIyJGAcQ0s7C5yLiUKPHj2UttwhpCHQetsMWjOofknJkODN/51VWggx+58oRB/d\ngC6HfsXV86fRyslS0Z72AiOEVFdKhgQL99/AuTJ7gUlu/4XMA1+jXcdOuBh7DiYmJjxGSIh2tC6C\n/P39dREHqYaUDAlGbT6PnELlHjcTF28ILWxh4vE6/ht1hxZCJAbv+fPnePDgAe7evQsAuHr1KoRC\nIdzd3WFhYVHF2QQoyTdD/3cOuYXKaywZN/aA0NIBTy29kZorgyvVQKQB0fhyWEZGBiQSCVq0aKE4\ndv36daxduxYSiQRBQUEICQnRWaDlGXr3dEqGBG9uPIecAvWLvskLJRAYm0PAAVcWDaDeH2LQtm/f\njkmTJqkcj4mJQZ8+fao839DzDQC8tz0eJxPToO4PRmm+GfiaE33pIg2KxiOXZ8yYgY0bNyruP3ny\nBL169cLff/+NoqIivPfee/jpp590EiRRtSryFvLK9ADlXI5AXtIFxf3S5elpIURCgIkTJ4IxpnLT\npAAydCkZEkzeHocTZQqg3JsxyL1xUtGmNN9E3aTV50nDovHlsAsXLmDmzJmK+7/88gucnJzwzz//\nQCgUYt26dfj+++/x3nvv6SRQ8krpVhilY4AKHt3E8+hNgFCEpu9vgcjKUdGWFkIkhFRX6ebLZS+B\nFaWnIPPwOoAxGDm5Ke0Gz1DypYt6nklDoXERlJaWpnQp7MSJE3j77bchFJbsDPzmm29i6dKltR8h\nUVF+Kwzjpm1g2WU4RNZOKgUQLYRICKmuZRE3kVtYrJRvjBxcYdVzbEkRVKYAAkrWAqIvXaQh0bgI\nsrOzw9OnT9G8eXPIZDLExcVh9uzZiselUuoCrSulW2HIZDJwAiE4joNNP9UeOFoIkRBSHSkZEiw7\nlICTt18tsMrkJfkGAKy7B6s9b8Br9KWLNCwajwnq378/5s+fjytXruCrr74Cx3Ho16+f4vHr16/D\nzc1N4xemXZ21k50nxb30XGTnSRVbYaT99iXkRQVq2zs2MsahWb1oIURCiFZKL4GdvvOqAMq9GYPU\nsM8gK8it8DwL+tJFGiCNe4JWrVqFESNGoHPnzrCwsMCWLVtgZmamePynn37CgAEDKnkGZaW7OgcG\nBmL+/PnaRW1A1C2E6N/SHLeP7kRBWiqK7l+GiUd3RXshx8HMWIjfpr5OBRAhRGurIm9BUiSD7P8n\nDrNiKbL/2oXiF0+Qd/svpc2XS/V0t8Pyt9pRziENjtYrRmdnZ8Pc3FxltdW0tDRYWlpqvVAWreBa\nsdJp8HmFrxISULLnl+jlEwxvkosXzXrSVhiE6Jgh5BugpMe501dRSmOAAKD4ZTryki4o7QYv4AA/\nV1tsDvGlS2CkwdJ6sUQrKyu1xx0dHdUery3q9vLRZ4qFEMusA1Sc/QwiKyfI5AywbIIXzRyxOcSX\ntsIghNSKspMuSvMNAIgsHVQKIAtjEVa/3Z5yDmnQdLfDaS0zpF2dS7fCSMt5tb5PzuUIPN4yFXl3\nzgMAZHKG6IRnijFCrRwsKBkRQqotO0+KnAIpBFzJGKDHWz5A7vUTatv28XLAwZk9qceZNHha9wTx\nZcGCBfj8888V90t3ddZHpdfkyyp+mQ7IiyHLfa44VroQIhU/hJDqKj/uEABkORmAXIbinHSltkKO\nQx8vB/w0sQsPkRJS+xpMESQWiyEW6/8f+4eZeYi6+UxlaXpr/4kwde8GE5dXsy9oIURCSE2cv5uB\nyb/Eo0AqV8o5Vt1GwtjlNZi4tFEcEwo4mBsJsWhoG9UnIqSBajBFkL4r/TYWlfCqAMq7HQuTlj4Q\nGJmA4zilAkjIcQhs40i9QIQQrZ1LSsfHu/9BpqRIcSzvbhyMXdpAaFKyoWzZAkjAAYHejjTpgugd\n3oog2tX5ldJ1OSRFMpROAsu9FoXMyA0wbt4OTqOXKxYpK2VmTGtyEEK0t+n0XayOvK10LO92LNIP\nrIaRY0s4j/sGnMgIQMkK0Pun94CrvTl94SJ6ibci6ODBg0q7Ovv6luw8rOmuzvrkq4gESMpNgzd2\neQ1CCzuYe/VQKYAcGxnTOkCEEK2dS0pXKYAAwKixJ0RWTjD16KYogICSvcAsTEVUABG9pfU6QfWF\nPqzbkZIhwbKImziZmK72cXlhHgTGrxakFHAlW2HQStCE1C19yDcA0HHZMWTlqV+dv3y+AUpyzpVF\nA6gIInqLxgTxJCVDgqEbziK3zCywnMsREJrbwsyrZAXosgmJAy2ESAipnpQMCRbtv6FUAOXejAFk\nUli0L1npv3wBJBRwCPSmcYdEv1ERxJOF+68rFUAFj27hefQmQCBCk/c3QWztrHhMwAGnP+2LZnZm\n6p6KEEIqlJIhwZANZ5FXJt9IMx4i8/C6kp3gndxh5KS87yMH2oCZGAYqgnjwMDMP5+5mKh0zbtoa\nll3fgcjSXqkAKv02RgUQIURbe/9+iE9/v6ZyXGzfDNb+48GKpSoFEFCyGzz1OhNDQGOC6lBKhgRf\n7LuGC/++WvCQyWUqA59LlS5NTyuzEsKvhphv1M0CqyzflNo8rjMGtnWutA0h+qLBbJvR0J1LSke/\nNaeUCqCXfx/Cs13zIS9Svw+aX0tbKoAIIVpLyZCoFEC5N2OQuvNTyPJzKjzvi8FeVAARg0JFUB04\nl5SOcT/FQV7mmLwwDy8v/oHCRzeR/+/fas/bPM6XCiBCiFZK9h48o3SMyaTIjt2DotQk5N3+S+Uc\nSxMBwt7zwzR/97oKk5B6gcYE6VhpAVSewNgMTmNWovDhDZi37qnyeC8Pe5qVQQjRyrmkdIT8FKey\n7Q4nFMMpeDnyky6gUcdBKued/SyQ8g0xSNQTpEPqCiBpVqri32KbJorpqaU4lIwD+mpY27oIkRCi\nJ1IyJBhXrgAqm29EjezRyGeoynmvu9lSAUQMFhVBOlL6jaysnMsReLJ1KiRquqNL9WvtiIhZNA6I\nEKK5VUcS0GfNKaVjuTdj8GTrVORcjarwPCEHrBrRXsfREVJ/URGkAykZEkz4WbVLujgnE5DLIJe8\nUHtev9YO+GliFyqACNGR1atXo0mTJjAzM0NQUBBSU1OrPqmeG7UpFpvPJKscl0teAHIZZLmZas4q\n6XX+ZbIf5Rti0GiKvA5M3h6ndisMxhiKniTCuKnqAmQWxiLqASJEh7Zt24ZZs2Zhx44dcHNzw+zZ\ns8EYw+nTp6s8t77mm1VHEtQWQKUKH99Sm29c7cywfRIVQIRQEVTLEh5nY8j/zinuSxLPwbSlj8qS\n9GX5trDBmpEdKCERokM+Pj4YPHgwVqxYAQD4999/0apVK1y5cgUdO3as9Nz6mG/UjTnMS7oIYxdv\nCE0tKzyvk4sl/pzZS9fhEdIg0OywWnIuKR1zf7uKtJxCxbHca9HIjPwOxi5t4DRmldpFyr4d2R4j\nOjery1AJMTiFhYW4evUqvvnmG8UxNzc3uLq64uLFiypFkFQqRXHxq3228vPVr+XFF7UF0J1YpO9f\nDbFDCziPWwOB2FjtueuCfeoiREIaBBoTVAtKE1LZAggAjJu1hbCRA8y9e6stgDo3t6YCiJA6kJmZ\nCblcDkdHR6XjDg4OSEtLU2m/YsUKmJmZKW52dnZ1FWqVKlp2w6ixF0Q2jWHm2b3CAmjNyPbU40xI\nGdQTVEMpGRJM2qaakABAbNMYTaZ8D4GRave5mViAtaM66jg6QghQMh5PGwsWLMDnn3+uuJ+fn18v\nCqHSSRfqiBrZofGE9WrzjZArGQTd08NB1yES0qBQEVQD55LSMb7cStA5lyMgMLNWLICoLiHRGCBC\n6pa9vT0EAoFKr096erpK7xAAiMViiMX1b+2cefuuQVamnsu9GQMmLVQsgKgu3wDAiU/6UL4hRA0q\ngqpJ3e7MhY8T8Tx6EyAQwsjZXWk3eADo1tIGC95og3Yu1nUYKSHE2NgYHTp0QExMDAICAgAAycnJ\nSElJQdeuXXmOTjPXH2XhfJm9B6WZD5F5eB3A5DBu7AEjp1Zqz5vauyUVQIRUgIqgaqhoWqpREy9Y\nvj4aIgsblQLoyKyeaNPUqq5CJISUM3PmTHz88cfo3Lkz3NzcMGfOHPTq1avKmWH1QUqGBBPKXXYX\n2zWDTZ9JkEsLKiyA/FxtMG9Im7oIkZAGiYogLX3xx1Xsjn+kdIzJZeAEQnAcB5veISrn2JqLqQAi\nhGeTJ0/Gs2fPMH36dGRlZSEwMBBbt27lO6wqpWRI8ObGc8gpKJmtVppvAMDSb3iF5/XxtMf2yQ2j\nl4sQvtA6QVpQ1wOUczkCkoQzcBy5pMK1gDaP88HAto3rIkRCiA7wuU7Qe9vjEXM7DXJWMgYoJ34/\nHEctg9Cs4i9WXwz2oh3hCdEA71PkG8oy9nv/fqhSAMmL8pF98Q8UPk5AfvJltef5trChAogQorWU\nDAlCfryIE4klBRCTSfHy/O8oenYPeXdiKzxvzcj2VAARoiFee4IayjL2Fa3LAZTs0lz44Dos2vdX\neYy2wiBEP9R1T9C5pHRM3BaPYrlyei7OfY78O+fRyOcNlXPEAmDbJJoGT4g2eC2CGsIy9ptO38Xq\nyNtKx6QvnkBs06TS82gaPCH6oy6LoJQMCQLWnlJMhdck35gbCXH4o16UbwjREm+Xw0qXse/Xr5/i\nWNll7MuTSqXIz89XuunaqiMJKgXQy78P4cnWaZAkVNxbNTvQHXs/7E4JiRCilZQMCd7ZFKsogHJv\nxuDJ1mnIuXKkwnMcGxlTAURINfFWBNX3ZezPJaWrnQYvz3sJMDnkBTlqzzMRcZgd6KXT2Agh+qd0\nFlhGbpHimDy/JN/I8l+qtBdwQCMTEX6b+joVQIRUE29T5Ov7MvYfhl1Se9yq51iYtvKFcRP1hc6P\nE7roLCZCiP5aFXkLeYUypWOWvsNg3KS12nzT18sRi4a2oQKIkBrgrSeoOsvYm5qaKt10ISVDgpE/\nxCKn8NVmGJLEc5AX5gEAOI6rsAD6YrAXDUokhGgtO0+K6IRnkDGGvKQLkOVlKx5Tl296e9jjp4ld\nqAAipIZ4K4LKLmNfiu9l7Eu7o+Pvv1Acy71+HBkHViPtty/B5LIKzw3u4kLTUgkh1ZIhKYScAXl3\nziP9z5V4tms+5NICtW1FAg7LhrWt4wgJ0U+8rhhdn5axT8mQYNTm84pVWUuZNG8HoaUjzF/ro1il\ntbw+nvZY/XaHugiTEKKH7M2NIeAA4yatIbZtCrPWPSEQm6i0E3LA9knUA0RIbeF9xehVq1Zhw4YN\nSsvYOzs7V3lebU5ZTcmQYOiGM8gtkqt9XF5UAIGRakICgDfaOSP03c41en1CSP1WF1Pkp+68hOO3\n0iAtyFebbxwsjPD7NJp1Skht4r0Iqq7aSkqlPUBpOYWKYzmXIyAwsYB5mz6VnrtmZHu807lZtV+b\nENIw6LIICgsLQ05ODgaPHI+gjecgKZJBVmaRRCHHwcxYiEMzaeFVQmqbQW+gWn5jQgAofHoHz6M3\nAZwARo091S5S1sbZAkdm+9dlqIQQPXTnzh1MmDABcrkcl/z8cHBmT6yKvIXohGeQs5Jp8IFtHDFv\nsDcVQITogEEXQeqmpBo39oRVz3chNG2ktgCyNBHh+3G+dRUiIUSPeXp6Yv369cjOzkbnziWX1TeH\n+CI7T4oMSSHszY1hZSbmOUpC9JfBXg7LzpOi01dRKO11ZnJZhQOfS/V0t8Pyt9rRNzJCDExtXw4r\nLi6GSGTQ30EJqRd430WeL6VTUoGSMUCp4Z9BXihR29bO3AiHZvZE2JRuVAARQmokPDwcnTt3Vrsy\nPiGkbhlsEVQ6JVVeVIDsuD9R9OQ28v+9rNLOwkiAPz7sjnYuVjxESQjRJ1KpFF9//TWuXbuGffv2\n8R0OIQbPYC+HAa+mpBa+SEXBg+uwaBeo9LhjI2Pal4cQUquXw549e4Z9+/bhww8/rKXoCCHVZVBF\n0MPMPNzLyEUrewsUPH8MsU0TmpJKCKlSTYugpKQkeHh46CAyQkhNGMTlsHNJ6fBdHo1e38Rg4rZ4\ndBzzCTxbt8ZP23/BwZk9EejtCAFX0rZ0SioVQISQ2hAWFobWrVtj48aNfIdCCClH76cn7P37IT79\n/ZrSMVlBLiCX4/uo6xg4LI+mpBJCak35XJKdnQ25XI4XL15UfTIhpE7p9eWwc0npGPdTnNrHCp8m\nwbixBxwbGSNuQaDaNoQQAmiWb1IyJCoLHfZv44R5g72RkXILvr60vhgh9Y3eXg5LyZBg4rZ4xX1J\nwmnIC3IV940bl1yfT8spxMPMvDqPjxCiP1IyJAjaeA7Hb6UpdoOX5r7A8VtpCNp4Dvau3nyHSAhR\nQ2+LoK8iElD8/4Odc68fR8ahb/Dsty/BZMUqbe9l5KocI4QQTa2KvKWYYJGXdAHp+1fh2a4FkBbk\nQ1Ikw6rIW3yHSAhRQy+LoOw8KU7efrUQmUnz9hBZOcGibT9wQtVhUK3sLeoyPEKIHsnOkyI64Zli\nhqlxk9YQ27nAzLsXBEYmkMkZohOeITtPynOkhJDy9LIIypAUouxIJ5GVIxpPDkUjn6EqbR0sjNDM\nzqwOoyOE1KUzZ85gyJAhcHBwAMdxuHv3bq0+f9nV5wFAaG4N55BvYd1jjOKYnJW0I4TUL3pZBNmb\nGyP3cgRyb5xUHBMYmahtu250xzqKihDCB4lEAl9fX6xcuVInz29vboy8hBi8vHRQcax8vhFwJe0I\nIfWLXk6Rv3vrGjKjNwGcAMZNvCC2baq23ZqR7dHTw6GOoyOE1KXBgwdj8ODBSElJ0fgcqVSK4uJX\n4wfz8/MrbJv+5D4yDq8Hk8tg3MQLxk28lB4XCjgEejvS0huE1EN62RPUuXNnfDp/MZoMmgYTOxeV\nx0UCDmHv+eGdzs14iI4QUt+tWLECZmZmipudnV2Fbd3d3bFs9Ro49gmBmUtrpceEAg7mRkLMG0yz\nwwipj/RqnSCpVAqx+NW3LXXrdvT1csSioW1oNWhCDExKSgpatmyJpKQkuLu7V9pWXU+QnZ2d1vmm\ndJ0gyjeE1E96UwSFhoZi+/btiIqKgo2NjVJbWg2aEP0zbdo0bN68ucLH/f39cerUKcV9bYqg8srn\nm7CwMKxevRrHjx+Hs7OzUlvKN4Q0HHpRBDHG0KFDB9y9exe7du1CcHAw3+ERQnQsKysLubkVr/Fl\nbGwMB4dXY/5qqwgSi8Xo0qUL/vnnH3z//fe0GzwhDZheDIw2MzPDyZMncfLkSSqACDEQ1tbWsLa2\nrvPXFYlEiIqKwr59+zB16tQ6f31CSO3Ri56givbyIYSQ3Nxc3L17F0+ePMEbb7yBgwcPolmzZmje\nvDlsbW01eg7KN4TopwY/OywsLIzvEAgh9dilS5fQqVMnvPHGGwCAoKAgdOrUCQcPHqziTFX/+9//\najs8QgiPGuzlsNIOrOfPn1e6hgchpP4wMTEBx3F1+pp9+vRBTTu8S89/8eIF5RtCGpCqck6DvRz2\n/PnzStfuIITUPw31chLlG0IapqpyToMtguRyObKysnj5Zlm6ZkhmZmaDTOjVZajvGzDc917b75uP\n39fawGe+0ZSh/oxWhj4TVYb2mVT1O9tgL4cJBAKNBzXqiqmpqUH8EJVnqO8bMNz3bqjvu1R9yDea\nMvT/V+rQZ6KKPpMSDX5gNCGEEEJIdVARRAghhBCDREVQNYhEIixevBgiUYO9mlgthvq+AcN974b6\nvhsi+n+lij4TVfSZKGuwA6MJIYQQQmqCeoIIIYQQYpCoCCKEEEKIQaIiiBBCCCEGiYogQgghhBgk\nKoK0tHr1ajRp0gRmZmYICgpCamoq3yHp3MqVK+Hj4wMLCws0btwYkyZNQnp6Ot9h1bm33noLHMfh\n+PHjfIdSZy5fvoyAgACYmZnBxsYGo0aN4jskUgFDzE0VoZxVOUPMZRWhIkgL27Ztw/Lly7Fx40bE\nxsbi5cuXGD16NN9h6dy5c+cwd+5cXLp0CQcOHEBCQoJBvO+ytm3bZnAbZ966dQv9+vVDz549ER8f\nj9jYWAQHB/MdFlHDUHNTRShnVcwQc1mlGNFYp06d2Pz58xX37927xwCwK1eu8BcUD2JjYxkAlpWV\nxXcodSIlJYU1a9aMPXz4kAFg0dHRfIdUJ0aMGMEmTpzIdxhEA5SbKmdoOasihprLKkM9QRoqLCzE\n1atX0a9fP8UxNzc3uLq64uLFizxGVvcyMjJgYmICc3NzvkPROblcjgkTJmDp0qVwcXHhO5w6I5PJ\ncPToUbRs2RJ9+vSBk5MT+vfvj2vXrvEdGimHclPVDClnVcRQc1lVqAjSUGZmJuRyORwdHZWOOzg4\nIC0tjaeo6l5hYSGWLVuGCRMmGMSKo+vWrYOFhQUmTZrEdyh1Kj09HXl5efjmm28wZswYREZGolmz\nZggICEB2djbf4ZEyKDdVztByVkUMNZdVhYogDTFaWBsymQzjxo0DAKxZs4bnaHTv1q1bWLt2LbZs\n2cJ3KHVOLpcDAN555x1MnToVPj4+2Lx5MziOw8GDB3mOjpRFualihpazKmLIuawqVARpyN7eHgKB\nQOWbVXp6uso3MH0kl8sxceJEJCYm4tixY7CwsOA7JJ27ePEiUlNT0bx5c4hEIsW3yIEDB+Ldd9/l\nOTrdsre3h1AohJeXl+KYWCyGm5sbHj58yGNkpDxDz00VMcScVRFDzmVVMdy+QS0ZGxujQ4cOiImJ\nQUBAAAAgOTkZKSkp6Nq1K8/R6RZjDFOmTMGFCxdw9uxZ2Nra8h1SnXjrrbfg6+urdKxdu3bYvHkz\nBg0axFNUdcPIyAidOnXC3bt3FceKi4uRkpKC5s2b8xgZKc+Qc1NFDDVnVcSQc1lVqAjSwsyZM/Hx\nxx+jc+fOcHNzw5w5c9CrVy907NiR79B0atq0aTh06BAOHz4MAIr1RxwcHCAUCvkMTaesra1hbW2t\nctzV1dUgBhbOmTMH7733Hvr27YsuXbpgw4YNAICgoCCeIyPlGWpuqoih5qyKGHouqwwVQVqYPHky\nnj17hunTpyMrKwuBgYHYunUr32HpXOl15PLfKpOTk+Hq6spDRKQujB07Funp6Zg3bx5evHgBX19f\nHD9+HJaWlnyHRsox1NxUEcpZRFMco1F1hBBCCDFANDCaEEIIIQaJiiBCCCGEGCQqggghhBBikKgI\nIoQQQohBoiKIEEIIIQaJiiBCCCGEGCQqggghhBBikKgIMhCnTp0Cx3EoLi6usE2fPn2wcOFCjZ9z\nyZIl6NmzZ22Ex9trcByH48eP6+z5CTFElG/Uo3xT/1ARxIOUlBRMnDgRTZo0gYmJCTw9PfHRRx/h\n0aNHvMa1b98+fPHFFxq3//TTTxv8juJPnz5F7969a/15e/bsiSVLlmh1zo8//kir2ZJaR/mm/qB8\nU/9QEVTHbt++DV9fX2RmZmLPnj24c+cOfvnlFxQXF2PdunW8xmZra6vVTssWFhYNfmNCZ2dnGBkZ\n8R0GITpB+aZ+oXxTDzFSpwICApifnx+Ty+Uqj7148ULx7//+97/MxcWFGRkZsa5du7KLFy8qHtu2\nbRtr2rQp27VrF3N1dWXm5uZs5syZrLi4mC1cuJDZ2tqypk2bsp07dyrOiYmJYQDY4cOHmYeHBzMx\nMWHDhw9Xek1/f3+2YMECxX0AbNu2bSwgIICZmpoyHx8fdvXqVcXjixcvZj169FA6/z//+Q/74IMP\nmIWFBWvRogXbtWuX0nsMDw9nzZo1Y2ZmZmz8+PHsk08+Yf7+/hV+XqWv8d///pc5ODgwa2trNm/e\nPKXP7+OPP2YtW7ZkpqamrE2bNmz37t1Kz7Fu3Trm6urKjIyMWNOmTdnixYuV3mN0dLTi/qVLl1jf\nvn2Zqakps7GxYcOGDaswtqioKNaxY0dmYmLC7Ozs2JAhQxhjjE2YMIEBUNxatGjBGGPsr7/+Yn36\n9GFWVlbM3t6eBQcHs/T0dMbYq/8/ZW8xMTEsPz+fTZkyhTk4ODATExPm5eXF/vzzzwpjIqQsyjeU\nbyjfVI6KoDqUnp7OOI5T+aUpLzw8nJmZmbGwsDCWkJDA3n//fWZnZ8eys7MZYyVJycTEhL355pvs\n+vXrLCIighkZGbH+/fuz+fPns9u3b7Ply5czExMTlpaWxhh79UPv6+vLYmNj2fnz55m3tzebMGGC\n4nXVJaWWLVuy/fv3s9u3b7OhQ4cyHx8fxePqkpKlpSX79ttvWVJSElu8eDEzMTFhz549Y4wxlpiY\nyIRCIVu5ciVLTExky5cvZ40aNaoyKVlYWLDhw4ezGzdusN9//501atSIbdu2TdFm2bJl7OLFi+ze\nvXvshx9+YGKxmF27do0xxlhcXByztLRkR48eZffv32d//fWXUrIum5TS0tKYlZUVe++999i1a9fY\ntWvX2OrVq9XGJZVKmaWlJVu/fj1LSUlhV69eZevWrWOMMZaVlcX8/PzYJ598wp4+far4f3Ds2DG2\nZ88elpSUxOLj41mPHj3YyJEjGWOMFRYWsrVr1zIXFxf29OlT9vTpU1ZYWMi+/vpr1qlTJ3bp0iX2\n77//siNHjrATJ05U+HkRUoryDeUbyjdVoyKoDl24cIEBYFeuXKm0XdeuXdl//vMfxX2pVMpcXFzY\nxo0bGWMlSYnjOJaamqpoM3DgQPbaa68p7hcXFzNzc3N28OBBxtirpBQZGaloEx0dzUQikeLbmbqk\n9PXXXyvux8bGMgAsJyeHMaY+KQ0ePFgpbjMzM3bo0CHGGGOffvqpUnvGGHv99derTEqmpqbs+fPn\nimMLFixgnTt3rvCcgQMHsqVLlzLGGNu7dy/z9PRkUqlUbduySenLL79kbdu2VfutubyMjAwGgD14\n8EDt4z169FD6BqjO+fPnmUgkYsXFxYwxxrZu3ar4Fldq5syZbPLkyVXGQ0h5lG8o35RF+UY9GhNU\nD92+fRvdunVT3BeJRPD19cXt27cVxxwcHODk5KS47+TkhNdee01xXygUws7ODunp6UrP7efnp/Tv\n4uJi3Lt3r8JY2rVrp/i3s7MzACAtLU2j9iKRCPb29or2SUlJ6Ny5s1J7X1/fCp+rlLu7O2xsbJTi\nLvtZ/PLLL/D19YW9vT0sLCxw4sQJPHz4EAAQGBgIjuPQqlUrTJs2DYcPHwZjTO3r3LhxA/7+/uA4\nrsqY7OzsEBwcjLZt2yI4OBjbtm1Dbm5upec8evQIISEhcHNzQ6NGjRAQEIDi4mKkpqZWeE5ISAj2\n7t2Lzp07Y/78+fj777+rjI0QbVC+UUb5xrDyDRVBdahVq1bgOE7pF6q6xGKx0n2O49Qek8vlKsfU\n/VuT1yltX/45q4qrtD1jTKPXLK+yc86ePYv3338fISEhiI6Oxj///IPAwEBIpVIAgJWVFa5du4Yf\nfvgBRkZGmDx5MoYNG6b2uSpKVhXZtWsXoqKi4OXlhTVr1qBt27bIzMyssP3EiRNx//59bNmyBfHx\n8di7dy8AKGJVx8/PD8nJyZg9ezbu37+PHj16YM2aNVrFSQwT5RvKN5RvqkZFUB2yt7dH3759sX79\nerW/ANnZ2QAALy8vXLhwQXG8uLgYly5dQuvWrWscQ1xcnNK/RSIRWrVqVePn1YSnp6fKNwtNvmkk\nJSUhKytLcT8+Ph5eXl4AgIsXL6JNmzb4+OOP0alTJ7i5ual80zQyMsKQIUOwYcMGHDp0CIcOHVL7\n7bJdu3Y4c+aMVsmpa9euWLp0Ka5cuYKsrCycOHECQElylslkSm0vXLiAuXPnIjAwEK1bt0ZGRobS\n4+rOAUpm0YSEhCA8PBzLli3Dzz//rHF8xHBRvqF8Q/mmalQE1bGNGzfi9u3bCAwMRFRUFFJSUnDx\n4kXMmjULy5YtAwB8/PHH+P777/Hrr78iMTER06dPR35+PsaNG1fj11+0aBEuXryIixcv4uOPP8bY\nsWNhbW1d4+fVxJQpU3D+/Hl8/fXXuHPnDlavXo3r169X+W1NKBRiypQpSEhIwL59+7BhwwbMmDED\nQMm33du3byMiIgK3b9/GrFmzlLp7IyIiEBoaiuvXr+Pff//Fnj17YG9vDzs7O5XXmTlzJh48eID3\n338f169fR0JCQoXfgpKTk7FgwQJcvHgR9+/fx++//47c3Fx4eHgAAFq0aIELFy7g8ePHePHihSLW\nnTt3IikpCUePHsXKlSuVnrNFixZ49uwZLl26hIyMDEilUqxbtw6///47kpKScP36dcU3QUI0QfmG\n8g3lm8pREVTHvL29cenSJbi4uGDChAlo3bo1xo0bB47jMHfuXADAmDFjsHjxYnz22Wfo0KEDrl27\nhiNHjsDS0rLGr79o0SK8++678Pf3h7u7O9avX1/j59SUl5cXfvnlF2zcuBGdOnVCQkICQkJCYGxs\nXOl5HTp0gK+vL3r37o3Jkyfjww8/xMSJEwEAb731lqJ7unv37mjUqBHefPNNxbnW1tbYs2cPevXq\nhfbt2yMuLg4REREQCoUqr+Pg4IDjx4/jzp076NKlC3r16oXY2Fi1MZmZmeHGjRsYNmwYvLy8sGLF\nCvz888/o1KkTgJKF3TIzM+Hm5qY49uOPP+Lu3bto164dFi1ahOXLlys9Z+/evREcHIzAwEA4ODjg\nr7/+grm5Ob766it06NABffr0ga2tLX744QeNP3Ni2CjfUL6hfFM5jml7YZKQWhQYGAgvLy+Ehoby\nHQohRM9RviHlifgOgBiW0NBQdO/eHRYWFvjtt99w8uRJRbc8IYTUJso3pCpUBJE6dePGDSxbtgw5\nOTnw9PTEH3/8ge7du/MdFiFED1G+IVWhy2GEEEIIMUg0MJoQQgghBomKIEIIIYQYJCqCCCGEEGKQ\nqAgihBBCiEGiIogQQgghBomKIEIIIYQYJCqCCCGEEGKQqAgihBBCiEH6P+/5+0BoPXCJAAAAAElF\nTkSuQmCC\n"
+ }
+ }
+ ],
+ "source": [
+ "f,ax = plt.subplots(1,2, subplot_kw=dict(aspect='equal'))\n",
+ "\n",
+ "ax[0].scatter(\n",
+ " (Iy.Is - rho * Ixy.Is)*scaling, \n",
+ " p_lmo.associations_\n",
+ ")\n",
+ "\n",
+ "ax[1].scatter(\n",
+ " (Iy.Is - rho*Ixy.Is - rho*Iyx.Is + rho**2*Ix.Is)*scaling,\n",
+ " a_lmo.associations_)\n",
+ "\n",
+ "for i in range(2):\n",
+ " xmin, xmax = ax[i].get_xlim()\n",
+ " ymin, ymax = ax[i].get_ylim()\n",
+ " left = min([xmin, ymin])\n",
+ " right = max([xmax, ymax])\n",
+ " ax[i].plot([left, right], [left, right], color='k', linestyle=\":\")\n",
+ " ax[i].set_xlim(left, right)\n",
+ " ax[i].set_ylim(left, right)\n",
+ " if i==0:\n",
+ " ax[i].set_ylabel(\"Splitting an OLS\")\n",
+ " ax[i].set_xlabel(\"Combining basic stats\")\n",
+ " ax[i].set_title(['Partial Local Moran', 'Axiliary Local Moran'][i])\n",
+ " seaborn.despine(ax=ax[i])"
+ ],
+ "id": "dc97cf97"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can see the direction of changes shown below. The changes in the\n",
+ "partial statistic can only move from left to right, since the correction\n",
+ "is only applied to $y$, not $\\mathbf{W}y$. The component that “corrects”\n",
+ "the $\\mathbf{W}y$ for $x$ comes from that due to $\\mathbf{W}x$, which\n",
+ "arises in the auxiliary regression version, shown on the right."
+ ],
+ "id": "78e2c3ee-154a-4303-b2fd-382b55106ab5"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "metadata": {},
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvYAAAF2CAYAAAAFudxlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA7E\nAAAOxAGVKw4bAAC8wUlEQVR4nOzdd3hUZfbA8e/MpPdCEkgoofcioQuKgGLDutZVBFZwBVfUVbGD\nKOra1lV/KqiABRuKCipKEZDeew+dVNLbzGTK/f1xSZlk0jMtOZ/nmQdyp9w3gbxz5r3nPUejKIqC\nEEIIIYQQwqNpXT0AIYQQQgghRMNJYC+EEEIIIUQTIIG9EEIIIYQQTYAE9kIIIYQQQjQBEtgLIYQQ\nQgjRBEhgL4QQQgghRBMggb0QQgghhBBNgJerB+AJrFYrOTk5+Pn5odFoXD0cIYSoRFEUDAYDYWFh\naLWyZlMXMscLIdxdbed4CexrIScnh8jISFcPQwghapSZmUlERISrh+FRZI4XQniKmuZ4Cexrwc/P\nD1B/mP7+/i4ejRBCVKbX64mMjCydr0TtyRwvhHB3tZ3jJbCvhZJLs/7+/jLpNzHz5s0DYMqUKS4e\niRCNQ1JJ6k7meM8nc7loLmqa4zWKoihOGovH0uv1BAQEUFRUJJN+E1PyCyK/BsLTyTxVf/Kz83wy\nl4umrrbzlKzYi2Zt8uTJrh6CEEKIBpK5XAiVrNjXgqzmCCHcncxT9Sc/OyGEu6vtPCU10YQQQggh\nhGgCJLAXzVpycjLJycmuHoYQQogGkLlcCJXk2ItmLS4uDpANV0II4clkLhdCJYG9aNZatWrl6iEI\nIYRoIJnLhVBJYC+aNbl0K4QQnk/mciFUkmMvhBBCCCFEEyCBvRBCCLfxyiuv0L9/f4KCgmjVqhUT\nJ07kwoUL1T6noKCAiRMnEhISQmRkJI8++ihms9lJIxZCCPchgb1o1hISEkhISHD1MIQQF23YsIHH\nHnuMHTt28PPPP3Po0CHuuOOOap8zbdo0tmzZwsqVK1m8eDHffvsts2fPdtKIhTuQuVwIlTSoqgVp\nXtJ0SRty4XTFxbBkCdxxB1z8/9cYmuo8tXnzZoYNG0ZOTg6hoaGV7s/OziYqKorly5dz5ZVXAjB/\n/nyefPJJ0tLS0Ol0NZ6jqf7smhOZy4XHWLMGrriizk+TBlVC1MKOHTvYsWOHq4chmhOLBe66C4YN\ng02bXD0at5eRkYGfnx+BgYF279+5cyeKojBy5MjSY6NHjyYzM5PExES7zzGZTOj1epub8GwylwuP\n8OefcNVVcP68w07hcYG95F+KxiSXb4XLbNkCl14Kt98OJ0+6ejRuyWg0Mnv2bO677z68vOwXcUtP\nTycsLAxvb+/SY1FRUaX32TNnzhwCAgJKb5GRkY0/eOFUMpcLt1dYCPffD5ddBhf7LjiCxwX2kn8p\nhPB4ISFltz/+gCFD4KmnICfH1SNzGxaLhXvuuQeAN998s8rH2Uu90NSQ4vTss89SVFRUesvMzGzY\nYIUQoibPPw+pqfDxx42ahlmRx9Wx/+2332y+fueddxg2bBi5ublV5l8uWrSI5cuXM3jwYABefvll\nnnzySWbOnFmr/EvRdM2aNcvmTyEczt8fcnMrH7/iCujUCV59FSZPdv643IjVamXChAkcOXKEdevW\nERQUVOVjY2JiyMnJwWQyla7al6zUR0dH232Ot7e3zQq/8Hwylwu3tmULvPMOvPUWdOjg0FN5/ObZ\nZcuWcfvtt5Ofn2/3Uu2qVasYO3YsBoOhdCI/c+YM8fHxHDlyhK5du1Z6jslksknV0ev1REZGysaq\nJkg2XAmns1jUPMuKnngCundXA/v4+Dq/bFPZAKooCv/4xz9Yv34969evp2XLltU+Pisri+joaH7/\n/XfGjBkDwIIFC3jiiSdk82wzInO5cFtGI1xyCYSGwoYNUM8F5drOUx63Yl9eY+Rf2gvs58yZw4sv\nvuiYQQu3MnPmTFcPQTQ3xcXq5qnyhg2DuXPh4lXF5uyf//wny5Yt49dffwUgNTUVUOdtnU5HUlIS\no0eP5vPPP2fQoEFERERw9913M336dBYsWEBhYSHPPfccU6dOlSuyzYjM5cJtzZkDJ07A7t31Durr\nwmNX7C0WC3feeSenT59mzZo1VV6qXbRoEQ8//LBNDmXJp56//vqLESNGVHqOrNgLIRxGr4eAAPXv\nHTrAf/4Dt97a4JzLprLqXFV+/KlTp4iPj+f06dO0b9+eNWvWlFbCKSgo4KGHHmLJkiV4eXkxfvx4\n3nzzzSoXfCpqKj87IYSb2bsXBgyAmTPhueca9FJNesVe8i+FEB4tNFTdSPXQQ+Dr6+rRuJWa1pri\n4+MrPSYoKIiFCxeycOFCB45MCCHqwGyGf/wDevSAGTOcdlqPC+wVReH+++9ny5YtrF+/noiIiGof\n379/fzQaDevWrSvNv/zzzz+JjIykU6dOzhiycGM7d+4EkDJpwnl8fNTLslJiUYhGI3O5cDtvvw17\n9sDWreDExWKPC+wl/1I0pgEDBgCy4Uo4kU4nQb0QjUzmcuFWjh1T028efxyc/GHT4wL7efPmAZSW\nrixRkn9pMpk4evQoRUVFpfd98MEHPPTQQ4wZM6Y0//KFF15w6riFe+rfv7+rhyCEEKKBZC4XbsNq\nVVNw2rRRg3sn89jNs84kG6uEEO5O5qn6k5+dEKLRfPABTJsGf/0Fdgq01Fdt5ymP6zwrhBBCCCGE\nWyjfcPDMGXWj7LRpjRrU14UE9kIIIYQQQtTHpEmQnAyKAg88ABERaqNBF/G4HHshGlNsbCwAycnJ\nLh6JEEKI+pK5XLhEZib8/DMEB8OoUfDHH/D77+rXLiKBvWjWUlJSXD0EIYQQDSRzuXCJn34CiwU+\n+wyWLIH77oOxY106JAnsRbOWlJTk6iEIIYRoIJnLhUt8/33Z341GeOst143lIsmxF81abGxs6SVc\nIYQQnknmcuF0WVmwalXZ18XFsHKl68ZzkQT2QgghhBBC1MXSpWA22x578knQ610znosksBfN2pQp\nU5gyZYqrhyGEEKIBZC4XTrd4ceVjej2cOuX8sZQjDapqQZqXNF0ajQaQNuTCCVasgOHDISDAIS8v\n81T9yc/O88lcLpwqJweio8FkKjs2fDh8/TW0bl39cxUFLv5/rYvazlOyeVY0a3PnznX1EERz8eGH\nar3jV16Be+4BrVwwFaKxyFwunGrpUtugfsYMePll8KohrP7hB7VEpgOvLsmKfS3Iao4QosFuvlkt\njQbQvz+8/TZcfnmjvbzMU/UnPzshRJ2MGwe//KI2o/r8c7juupqfc+gQDB4MN90EX3xR51PWdp6S\nJSMhhHAGjabstns3XHEF3HILJCaql2aFEEK4v9xcNbVy6FB1Lq9NUJ+bqwb0UVHwv/85dHiSiiOa\ntWXLlgEwbtw4F49ENHlLltg/bjKpKz8jR7q0W6EQnkzmcuE0v/wC//oXvPoqeHvX/HirVU2/PH8e\nNm9WV/kdSAJ70azdcMMNgGy4Ek5w9ChkZ1c+3r49FBVBUJDzxyREEyFzuXCaMWPg73+v/eNnz1Y/\nDHz1FfTt67hxXSSBvWjWrr/+elcPQTQXTz1VlmMPEBICzz0H/frBHXe4alRCNAkylwuniYmp/WOX\nLoUXX4THHoO77nLcmMqRwF40ayWXb4VwGp0O/vlPmDlTzbcUQjSYzOXC7Rw9CvfeC6NGwX/+47TT\nSmAvhBDOMm4cvP46dOvm6pEIIYRwlLw8dbNsWBh8803NZTAbkQT2QgjhDP/7H7Rt6+pRCCGEcCSr\nFSZMUDvQbtzo9CuzEtiLZk26FQqnkaBeCIeRuVy4jddegx9/hM8+g4QEp59e6tgLIYQQQgjRUMuX\nq0URHnoIxo93yRBkxV40a7K6I4QQnk/mcuFyiYlw990wfLjaWdxFZMVeCCGEEEKIuli8GNLS1L8X\nFMDNN0NgoHq8No2rHEQCeyGEEEIIIeri7bfh3XdBUeAf/4Bjx+CHH+pW594BJBVHNGsl7celBrIQ\nQngumcuFU+3aBVu2wOHDam+S776Djz+GwYNdPTI0iiSm1Uiv1xMQEEBRURH+/v6uHo5oRFJJQTQV\nMk/Vn/zsPJ/M5cKpJk+GTz4p+/qBB+Cjjxx6ytrOU7JiL5q1pUuXunoIQgghGkjmcuE0OTmwaFHZ\n197e8MYbLhtORRLYi2at5PKtEEIIzyVzuXCazz8Hvb7sa5MJvv0W7r/fdWMqRzbPCiGEEEIIURNF\ngQ8+qHz89dfBYnH+eOyQwF40a/PmzWPevHmuHoYQQogGkLlcOMWaNXD0aOXjrVurKTpuQDbP1oJs\nrGq6ZMOVaCpknqo/+dl5PpnLhVP87W9qScsSnTrBm2/CDTfAxf+DjiKbZ4WohcmTJ7t6CEIIIRpI\n5nLhcMnJ8NNP6t/DwmDmTJg6FXx8XDmqSiQVRzRrcvlWCPezZMkSRo8eTWhoKBqNBrPZXO3jR44c\niUajsbm98847zhmscAsylwuH+/hj9c9//QsSE+GRR9wuqAdZsRdCCOFmioqKGDVqFGPGjOGZZ56p\n1XMeeeQRZsyYUfp1SEiIo4YnhGhuzGZ1xf7AAejWzdWjqZbHrdjLSo5oTMnJySQnJ7t6GEKIcu65\n5x6effZZhg4dWuvnBAYG0rJly9JbQECAA0co3I3M5cKhdDqYO9ftg3rwwMC+ZCXnqaeeqvVzHnnk\nEVJSUkpvU6ZMceAIhSeJi4sjLi7O1cMQQjTQvHnzaNGiBf369eOtt97CUk3pOZPJhF6vt7kJzyZz\nuXAoB2+MbUwel4pzzz33ALB27dpaP6dkJUeIilq1auXqIQghGuiee+6hQ4cOREVFsWXLFmbMmEFO\nTg4vvfSS3cfPmTOHF1980cmjFI4kc7kQKo8td7l27VquuOIKTCYTXl5Vfz4ZOXIkhw4dwmq10rp1\na+69914eeeQRdDpdlc8xmUw2KT56vZ7IyEgphSaEcFtNsWRjbef5iubPn8/06dPJy8srLYNYnszx\nQghPI+UuL6rrSg7Iao4QQniyhIQECgoKyMjIICoqqtL93t7eeHt7u2BkQgjhWE0+sL///vtL/967\nd290Oh3Tp09n9uzZdldyAJ599lmb6golqzlCCCHc3969ewkMDKRFixauHooQQjhVkw/sK6ppJQdk\nNac5SUhIAGDnzp0uHokQokRWVhZnz54lMTERUAN1nU5Hp06dyM3NZfTo0Xz++ecMGjSIEydO8M03\n33DNNdcQHh7O1q1befzxx5k2bVqVizei6ZG5XAhVswvsZSVHlLdr1y5XD0EIUcHSpUuZOHFi6dcD\nBgwAYM2aNcTHx3P06FGKiooA8PHx4Y8//uDNN9/EYDAQHx/Pv//9bx577DGXjF24hszlQqg8LrCX\nlRzRmHbs2OHqIQhHOHYMZsyAb791y86AonoTJkxgwoQJVd5fvuZDmzZt+Ouvv5wwKuHOZC4XQuVx\ngb2s5IjGVHL5VjQRmZkwezZ88IHaKVAI0SzIXN5M7d4NffuC1uPaMjmMx5a7dKamWEZOiCbFaIT/\n+z946SXIybE93kxW7GWeqj/52Qnhgc6ehYQEWLgQrrvO1aNxuNrOU/IRRzRrs2bNYtasWa4ehqgv\nRYHvv4cePeDf/7YN6gF+/dUlwxJCOJfM5c2MwQC33qqu1Pfr5+rRuBVZsa8FWc1pukr2WsivgYd6\n+ml47bWq7x8xAppJ/rXMU/UnPzvPJ3N5MzN5MixYAKtXw+WXu3o0TiENqoSohZkzZ7p6CKIhXnkF\nBgxQN8qeOFH5/kcfdf6YhBBOJ3N5M/Lxx/DJJ/D2280mqK8LWbGvBVnNEcLNGY3qhtnZsyXHXuap\nOpOfnRAV5OSo82dMjKtHYmvbNvVK7C23wFdfQTOqcCg59kKI5sPXV12dT0yE6dPBSy5GCiFEvSgK\nTJoEq1a5eiS20tPVvPouXdQV+2YU1NeFBPaiWdu5c6d0KmxKIiPhnXfg0CG4+WZXj0YI4SQylzei\nd9+FH3+ETZtcPZIyZjPceSfk5cGSJRAY6OoRuS1Z1hLNWkkfBMlIq4XPPwdvb3VydfeVks6d1clf\nCNEsyFzeSLZtgyeeUP++ZYtrx1LeM8/AmjWwdKk6v4sqyYq9aNb69+9P//79XT0Mz3DuHNx9NwwZ\nAhs3uno0QghRSubyRpCVBbffDiYTtGsHX3zh6hGpFi+GN96A55+HceNcPRq3J4G9aNbk8m0VCgpg\n5kz444/K923bBsOHw2232a9EI4QQTiZzeQMpCkycCGfOqF9brdC+PSQluXZchw6p47r6avU9SdRI\nAnshRBmLBebPVzcnzZ4NRUVl93XpAjfeWHYzmdQV/Mcfh+xs141ZCCFEw7zxhprmUuLcOejaVS0t\n6Sq5uepeqehoWLQIdDrXjcWDSI69EEK1apXavXXfPvv333abeivvk0/URiFffAHr16vBvxBCCM/x\n559qL5CKzp1zXdql1QoTJsDZs7B5M0REuGYcHkgCe9GsxcbGApCcnOzikbjQoUPqZqnffqt8359/\nqqsmAIcPw7Fj0L172f179sC116qrPRLUCyFcRObyesrMhBtuqPr+LVvUK7nOXi3/z3/gp5/URaN+\n/Zx7bg8ngb1o1lJSUlw9BNdavRquuUZNq7Hn/fcrH/vpJ/XP3r3hrbfgyisdNjwhhKiNZj+X19cb\nb0BhoZrycvXVEBZWdgsNVf90dhW0FSvguefgoYfgnnuce+4mQAJ70awluXpjkKuNHg1bt6p58n/+\nWfn+yZPLVkt+/x2WLYOWLeHll9XLpJLzKIRwA81+Lq+PlBQ1nfL66+GHH9yjjPHp03DXXWr1tbfe\ncvVoPJIE9qJZK7l826xdcomaX//LL2pKztGjZfddc01ZoyejUX3sE09AUJBrxiqEEHbIXF5HJVVw\ndDr49FP3COr1erWzrI+PWuLSx8fVI/JIUhVHCKFO6uPGwf79avpNixaVH/PII/DiixLUCyGEp3v/\nfbWc8aefqlVnXOHwYbWjLKgfNKZOVYs3LF4M8kGt3iSwF83alClTmDJliquH4T68vWHaNEhMhCef\nBF/fsvvcYUVHCCHskLm8Dg4eVOf3Bx9U03BcZc4c+PZb9e9z58LChfD222qfFFFvGkX6L9dIr9cT\nEBBAUVER/v7+rh6OaESai8Gq/BoITyfzVP3Jz87zyVxeS0YjDB4MBgPs2gUBAa4Zx4UL0Lq1Wk1t\n7lwYOVLtevvFF7KIVIXazlOSYy+atblz57p6CEIIIRpI5vJaev55dcV+yxbXBfWgrs4XF8OBA3DV\nVWoZ5XnzJKhvBLJiXwuymiOEcHcyT9Wf/OyER1IUNSf9p5+gXTu1Ull11qxRK6HNmQNPP+2MEdpn\ntaor9SdOqF97ecGRI9Cxo+vG5AFkxV4IIYQQoimxWNROrD/+qAb0J0+qx//73+qfl50N48er+etP\nPunwYVZr1aqyoB7UDbTnzklg30gksBfN2rJlywAYN26ci0cihBCivpr0XG42q02bfvwRli6F9PTK\nj7FXyayEoqgbZfPy4PPPXd9/5KOPKh979VU1z140mAT2olm74WIrbZdlpCUmwrvvqjdX2rNHzbv8\n+99dOw4hhKgHl8/ljqTTqbno8+eraSz2aLVqAG8vR33RIrX6zBdfQHy8Q4dao6Qk9cNJRevXQ2qq\n2gBRNIiUuxTN2vXXX8/1rij3lZ0Njz0GPXqoqzCukpSkNinp31/dTCWEEB7IZXO5M2g0avrM8uUQ\nHm7/MX//O7RqBTfeqK5+//kn5OernVynTYM773SPhZtPPlHTicq76y61MaIE9Y1CNs/WgmysEo2m\nuBg++ABmz1aDe1BLfp0759xxFBTAG2/Am29CUZF67KGH4L33nDsO0Whknqo/+dkJp8nPh5degtdf\nr9/zT55Uu4Hv22d7fPhw9Vhenu3xnj3VY3v3Vv2hwFnMZvWKQVKS+nVCAvzvf3DppS4dlqeQzbNC\nuBNFUTc6Pfmkmn5Tnl5v/9JkicjIxpv4LBb47DN47jlISSk7HhQEbdo0zjmEEEJUduKEuqJ+8CA8\n/LC6qFNXHTrApk0weTJ8/XXZ8RUr1IaCR46oV1+3blXfVw4dgtWrXR/UA/zyixrUt2wJr7wC992n\nphCJRiUr9rUgqzmiQaxWuPde+Oqr+j1/5Ei1TFlDJSfDddep+fQVXXGFeulWeCyZp+pPfnbC4Vav\nVhswFRaq9drHj2/Y6ymKWgnniSfA31+9Clvezp0wZAg8+mj9rw40thtuUK8gPPMMBAe7ejQeR1bs\nhagFp3Qr1GrVibxrV3WCLSy0vT84uPryY+3aNc44YmPhww/V3P7Nm23vO39e3bw0YkTjnEsIIZzI\nbTvPKoqa4vjYYxAdrebJDxrU8NfVaNTX7NsXnnpKvQrQpQt4e6vplX//O/Tqpab9uAOLRU27ad/e\n1SNp8mTFvhZkNafpcvqbQUqK2vlv/nx1wgfn59grCnz/PcyYAadOlR2XHHuPJvNU/cnPzvO5ZWBv\nNMLUqep8P3gwLFmiLrA0ttxceOQRdYX+gQfUcy5YoK7a9+jR+OcTLlHbeUqSm0SzpiiKc98IWrVS\nqwLs2QNjxjjvvOVpNHDbbXD4sLqBNjTUNeMQQohG4vS5vCapqWqK4/z5ai752rWOCepBXaX//nu1\nKMPixeqV2ddfl6C+mZLAXghX6NNH3ez066+um3x9feHxx9XNvP/6l/rmIIQQovZKqoqVt2MHDBig\nbmD973/V1XM/P8eNYelSNcc+ORnuuAOuvlq9AiuaJUnFqQW5TCscqqqmIs5mNKrBvvBIMk/Vn/zs\nRL0YjerVz/JVzRYtgvvvVze0fvstXHml48dx3XXw229lXx8+DN26Of68wqkkFUeIWhg3bpzrW5C7\nQ1APEtQLITyWS+by11+HZcvU5koWi1oE4Z571A2i27Y5J6hPS4M//rA99uWXjj+vcFsS2Itm7Zdf\nfuGXX35x9TCEEOUsWbKE0aNHExoaikajwWw2V/v4goICJk6cSEhICJGRkTz66KM1Pkc0LU6fy0+c\ngDlz1L9/8QWMG6fuWRo3Tq0j36mTc8bxzTeVO7m+844a8ItmyeMCe5nwRWNaunQpS6trDiWEcLqi\noiJGjRrFU089VavHT5s2jS1btrBy5UoWL17Mt99+y+zZsx08SuFOnDqXK4qaw240ql/PmaOWsXz2\nWbURYUiIc8YB9lfnQ0PLuruKZsfjcuy//PJLzpw5g1ar5ZlnnsFkMuHlVXU5/vvuu49t27axcOFC\nCgsLueeee7j//vvrNOlL/qUQwt01xXlq7dq1XHHFFdXO89nZ2URFRbF8+XKuvJj6MH/+fJ588knS\n0tLQ6XQ1nqcp/uwaQlEUCs0Wgryl1Y1d33+v5taX9/HHam69Mx05At272x675x5491336DQrGlWT\nbVB1zz33AOqEX5Ps7GwWLVrE8uXLGTx4MAAvv/wyTz75JDNnzqzVhC+EEMJ97dy5E0VRGDlyZOmx\n0aNHk5mZSWJiIl27dq30HJPJZHPlVq/XO2OoHsFosbAzI4euocEESaGsyvLz1ZrxFfn4OH0ofPFF\n2d+jo2HuXLjpJuePQ7gVj0vFqYuaJvyqmEwm9Hq9zU00TfPmzWPevHmuHoYQop7S09MJCwvDu1y5\n1qioqNL77JkzZw4BAQGlt8jISKeM1d1lGYpZm5JBXrGZCF/PiuqdNpfPmmU/zWXZMsefuzyrVa3A\nA/C3v8GBAxLUC6CJB/b1mfBBJv3m5IEHHuCBBx5w9TCEEPVkL5tUU0OlqWeffZaioqLSW2ZmpqOG\n5xEUReFEXgEb0jIxWKy0CvCr8Wfobpwyl+/bB//7n/37fv8diosde/7yNmxQrx58/TV89x1cjG2E\n8LhUnLqoz4QP6qQ/Y8aM0q/1er0E903U5MmTXT0EIUQDxMTEkJOTg8lkKl3EKVm4iY6Otvscb29v\nmwWf5sxktbI7M5eUIkPpsdgABzZTchCHz+VWK/zzn2UVaLy9ISEBLr1UvQ0b5tx0nKwsdZW+VSvn\nnVN4hCYd2NdnwgeZ9JsTScMRwrP1798fjUbDunXrGDNmDAB//vknkZGRdHJWyUEPlVtsYvuFbArN\nZeUSfbQaIv1ckC/eQA6fy3/+GSIi4NVX1UB+wAC1CZWrSNqNqEKTDuxlwhdCCM+TlZXF2bNnS/dC\n7d27F51OR6dOncjNzWX06NF8/vnnDBo0iIiICO6++26mT5/OggULKCws5LnnnmPq1KlSIKEaWcZi\nNqZlYq1wYbtlgB9aD0vDcYqbb1ZvQrg5jwvsZcIXjSk5ORmA2NhYF49ECFFi6dKlTJw4sfTrAQMG\nALBmzRri4+M5evQoRUVFpfd/8MEHPPTQQ4wZMwYvLy/Gjx/PCy+84PRxe5IQby98tFoMFqvNcU9M\nwwGZy4Uo4XF17BcuXGgz4ZcomfDbt2/PmjVrSivhFBQU8NBDD7FkyZLSCf/NN9+stvZ9Re5c41ij\n0bBy5crSKxKibkr2XHjYr4EQlbjzPOXu3Pln58g5/nyhnp0ZOaVfe2k0XNMmxiNX7GUuF01dbecp\nj6uKM2HCBBRFqXQbOXIk8fHxlcpbBgUFsXDhQvLy8sjKyuKdd96pU1DvDkaOHIlGo0Gj0RAUFMSg\nQYP4448/AEhJSeGyyy4DYNWqVR5XycDVWrVqRSvZfNSkjRw5kueee67S8QkTJpT2xajJPffcw4QJ\nExp5ZNVr3bo1CxcudOo5hWu4ao6vWNKylQen4chc3nzJHG/L4wL75uqRRx4hJSWF3bt3079/f268\n8UYSExNp2bIlPq5ojNFEJCcnl17CFUIIV3H2HK8oCnsz8/DVloUBrTw0DQdkLheihAT2HiIwMJCW\nLVvSuXNn3n//fXQ6XenqzapVqzh9+nRpO/WSlR9Z7ROidgoLC7n//vsJDw8nKCiIW2+9lbS0NABm\nzZrFokWL+Oyzz0p/twBOnjzJ1VdfTUhICCEhIQwePLh078+sWbMYPnw4b7zxBtHR0YSHh/PMM8/Y\npAkcP36cq666Cn9/f6Kjo3niiSdKu6GOHDmSpKQkJk6ciEajsbkKKZomZ8/x5wv1pBuM9G8RRttA\nf3QaDdH+vo303QjhXprTHO9ZOSkCAC8vL7y9vTGZTKXH2rRpw3fffcftt99OSkoKAKGhoa4aohAe\n5dFHH2XdunX8/PPPBAUFMXXqVO69915WrFjB448/zoEDB9DpdPyvXHOahx56iJiYGLZv345Go2H7\n9u1oy61+7t27l+joaNasWcPhw4eZNGkSXbp0YcKECVgsFm688UY6duzItm3bOH/+PBMmTCh9c1iy\nZAm9evVixowZ3HHHHXJVrplx9BxvtFg4kJ1H60B/ov19CfHxQqPRoPPQNBwhatKc5ngJ7D2MyWTi\nrbfeIj8/nxEjRpQe1+l0hIeHA9CyZUtXDc/jJCQkALBz504Xj0Q40uuvv84777xjc8xoNHLHHXeQ\nn5/PggUL+Pnnn0tzmRcuXEj37t05ePAgPXv2xM/PDy8vL5vfrXPnznHXXXfRtWtXALp06WLz+haL\nhU8//ZTw8HB69uzJnj17eP/995kwYQIrV67k1KlTbNiwgYiICHr37s2LL77I888/zzPPPENERARa\nrZbQ0FD5fW5mnDHH78/KAzT0Dg8BwE+no3dESINe09VkLm/eZI4vI6k4HuL1118nKCiIgIAA3njj\nDT788EP69evn6mF5vF27drFr1y5XD0M42OTJk9mzZ4/N7YYbbgDUy61ms5khQ4aUPr5bt26EhYVx\n9OjRKl9z6tSp3H///YwdO5Y333yTc+fO2dzfqVOn0kAMYNCgQaWvd/ToUTp37kxERETp/UOHDiUj\nI4OsrKxG+Z6FZ3HWHJ9aZCCpyEDviBB8dGUhgKev1stc3rzJHF9GVuw9xOTJk3n00UcJCgqSFbxG\ntGPHDlcPQThBeHh4paZ0wcHBmM3mepfHe/DBBxk7dizLli1j2bJlzJw5k99//710lbW66iVSkk9U\n5Iw53mS1si8rlxh/X+I8eKOsPTKXN28yx5eRFXsPUfKftroJ39tbLV1msViqfIywlZCQUHoJVzRP\nHTt2xMvLiy1btpQeO3LkCDk5OXTr1g1Qf7fs/V516NCB6dOns2rVKi6//HK+/vrr0vuOHz9OTk5O\n6dfbt28vvaTbrVs3jh8/brNys3nzZqKiokpXeKo6p2ianDHHH87Jx2RV6BsR2uRKI8tcLqrS3OZ4\nCeybkHbt2gHw22+/kZGRgdFodPGIRJ1ZLHDwoKtH0awEBwczadIkHnnkEdavX8+uXbuYMGECV155\nJT169ADU363du3dz+vRpMjIyAHUzVkm1kvXr17Nv377SSR3UnOj777+fQ4cOsWTJEt59912mTZsG\nwFVXXUX79u2ZMGECBw4cYPny5cycOZNHHnmk9Pnt2rXjr7/+IjU1ldzcXOf9QITbasgcn2ko5lR+\nET3Cg/H3ks7rovlobnO8BPZNSHx8PDNmzGDixIlERUXZfLIU9s2aNYtZs2a5ehiq1ashIQHeesvV\nI2l23nrrLUaMGMG4ceO47LLLiIuL44svvii9f/LkyURERNCjRw+ioqIAdZPjlClT6NatG3fddRd3\n3303Dz30UOlz+vbty4ABA7jsssuYNGkSDz74YGkDFK1Wy88//4xer2fgwIHcd999jB8/nieffLL0\n+bNmzWLr1q20adOGG2+80Tk/COHW6jvHWxSFPZk5RPh6Ex8U4OBRuoZbzeXC7TSnOV6jSLJnjdy5\n3bhoGLdoQ374MDzxBPz6q/r1xIkwf77rxiMabNasWaxatYoNGzY47ZwyT9VfU//ZHc7JJzG3gJGx\nUQR7N82tdW4xl4tmw53n+Kb5Gy5ELc2cOdN1J09Ph1mzYN48NQVHCDewevVqFi9ezMaNGzlz5gwG\ng4HIyEj69u3LmDFjuPfee4mJiXH1MEUt5RWbOJ5bQNewoCYb1IOL5/LGduoUHDoE113n6pEID9R0\nf8uFqAWXXLo1GOB//4NXXoG8vMr3L14M69bV7TVPnGicsYlma/HixTz33HMYDAbGjh3Lv/71L1q1\naoW/vz9ZWVkcOnSIP/74gxdeeIF77rmHF198kVatWrl62KIaiqKwOzOXYG8vOocEuXo4DtUk0nCy\ns2HOHHjvPRg5UgJ7US+SilMLTf0yrXCyvDx47TV4+22wt/nNxweC6vgmnJnZOGMTHquh89RVV13F\n008/zRVXXFHt4y5cuMDcuXOJiIhg6tSp9R2uW2mqc/yJvAIOZOdzWctIwn2le7HbMhrhgw/gpZfU\n4L5HD3Wv1dVXu3pkwo3Udp6SwL4WmuqkL8q6FLqkTNrZs/DMM7Boke1xybEX9SDzVP01xZ9docnM\nmpQM4oMC6OXhXWVrw6VzeX0pinqF9umn4eRJaNkSZs9W3wO8JKFC2KrtPCVVcUSzNmDAAAYMGOCa\nk7dtC19+Cdu2wfDhrhmDEHY88sgjsgnRgymKwt6sXHx1WrqFNe0UnBIuncvrY+NGGDYM7rgDUlNh\n5kw4fhwmT5agXjSIBPaiWevfvz/9+/d37SAGDoS//oIffoCOHV07FiGANWvWcOONN1JYWGhz3GAw\n8N///tdFoxK1da5QzwVDMX0jQvHSNo+3ebeYy2vj+HG49VZ1MWfbNvjHP9Rjs2bVPQVTCDuax2+8\nEFXYuXNn6SVcl9Jo4JZb1EoIDz7o6tGIZm7jxo1YrVaGDx9OcnIyRqORd955h/bt2/POO++4enii\nGgaLhQPZebQN9Cfa39fVw3Eat5nLf/4ZrNbKxzMy4OGH1fz5JUvU/Pk9e+CTTyA21unDFE2XBPZC\nuBMfH3UFXwgXCgoKYtmyZQwfPpyBAwfSvn173n//fWbPnk1iYqKrhyeqsT8rDy0aeoY3/bx6t7N7\nN9x1Fxw7VnbMYIDXX1evxr73nhrYr1gBy5dD796uG6tosiSRSwghhA2j0cjHH3/MTz/9hKIoZGZm\nsmjRohor5gjXSikykFxkYGCLMHx0sm5Xa8XF6qJKQ1y4ADfdBHo9bN8OXbrA11+rBRLOnoW4OLXM\n8b33gk7XKMMWwh75zRfNWmxsLLFyGVQIG/Hx8bz55ps8//zznD17lk8++YSbbrqJzz//3NVDE1Uw\nWa3sy8qlpb8vrQL8XD0cp6vXXK7Xq1VoFi9u2MlNJrjtNjWAB7UowqBBcM89kJUFL7+sruJPmCBB\nvXA4WbEXzVpKSoqrhyCE23n++eeZPHky3t7eANx7773Ex8dzyy23cPToUebMmePiEYqKDmXnY7Yq\n9IkIRaPRuHo4TlenuVxR1Fz4Rx9Ve4AkJzfs5I89ZttUcMUKNYD/5z/VTbHSqVk4kazYixolF+nJ\nMZpcPQyHSEpKIikpydXDEMKtTJ06FW9vbwoLC7Fe3Ag4YsQINm/ezA8//ODi0YmKMgxGThcU0TM8\nBH+v5rkiXOu5/OhRdePqzTfD6dPw9783rBrN/Pnw/vuVj+/eDR9+KEG9cDoJ7EWNcowm1qVmsCsj\nB73Z4urhNCpJxRGisi1btnDJJZcQEhKCt7c3ffv25ZVXXqFNmzZs2bLF1cMT5VgUhT2ZuUT6+tAu\nqGk016qPGufy/Hx48kl1w+qKFWXHp0yp/0m3bKm6ipmlab1XCs8hgb2otXOFelYnp3M4Jx+zvXJe\nQogmYfz48bRq1Yp169axefNmpk6dyo8//sgll1xCUVGRq4cnyjmak4/eYqFfZPNMwamVX3+Frl3h\njTfUfPgSAwfCJZfU7zWTk9USxcXF9u/fvr1+rytEA0mOvUBvtmCqJlA3lrvPosCx3ALOFBTRPTSY\ntkH+Hv1mMuXias28efNcPJIqGI3qZd7Bg6U7rXCaM2fO8PPPP9O9e3cABg0axJQpUxg/fjzTpk3j\nxx9/dPEIBYDBbCExr5DuYcEEeTfvt/Nq53K9Huzl4D/wQP1OVlwMd9+tboz19wetVu1FotWW/f3I\nkfq9thANpFGkb3iN9Ho9AQEBFBUV4e/f9C517snM4UyBvl7PDfH2YnB0OAEe2gK75EOJ2/0aKAp8\n/z089RScPKmuOF17ratHJdxYY85TXbt25d1332Xs2LE2xw8cOMDgwYMrdaT1dJ46xyuKwqGcfLqH\nBaP14AWWxlDtXG61Qs+etsF2cLC66i7dXoWHqO085ZnRmGhUEb4+VBfX5hSbyDOZKx0P8faiV3gI\nAV5e6M0WFBSPC/Dnzp3r6iFUtmUL/PvfsGmTq0cimqlXX32VBx98kO+++44BAwaUHj9z5gwtW7Z0\n4chEeRqNNKIqUe1crtXC5MnqvFrinnskqBdNkmdFYcIh2gYF0DYooMr7D2Xn2QT2vjot3cOCaRvo\nj0VROJKTT2JeIQOjwjwusJ/SkI1Tje30aXjpJbX8WosWcMMNZfdFR7tsWKL5ueWWW8jLy2Ps2LG0\nbduWfv36UVxczNq1a/n0009dPTwhKql2Lr9wAf77X9tj9U3DqauiIgio+v1ViMbmWVGYcCmdRkOn\nkEA6hQSi02g4W6jnSE4+BotspG2w339Xuxa2agWnTrl6NEIwYcIEbr75Zn799VfWrVvH4cOHyc3N\n5YYbbqBjx4706tWLXr16MXPmTFcPVTRTiqJgsirVd9m1WNSSlnl58MQT6gbaQYOgb1/HD9BigaFD\nYckS6NjR8ecTAgnsRS1o0NA20J9uYcH4e+m4oDdyMDuPXDvpOZ5m2bJlAIwbN861A7n6ajWP/qWX\n4NlnK98/frxa1UEIJwoNDeXuu+/m7rvvBtRAKjExkX379rF37152797t4hEKd6MoilMKKmQaijmQ\nncegqHCgmrn8xRdh5Ur46Sd1nl20yHmr9evXw+HDEBbmnPMJgWyerRVP3VjVWCxWBZ1WQ77JzKHs\nPFL1RruP89JoGrSBy1enZVRsVL2fXx9ut3nWYoHPPoPnnrOt4iCbZ0UNmvs81RDys2sc5wqKsALt\nqkntbCi92cLB7DySigy0CvArDeztzuW//grXXw8zZsBrr6nHFiyA22+HwECHjbHU5MmQlgZLlzr+\nXKLJq+08Va869iNGjJAmJc2ITqtOmFrUdJyqaDUadA28Odv111/P9ddf7/TzVkmng0mT4NgxeOEF\ntZSaEEK4uXS9kd2ZuWQbq6jr3kAWq8LRnHxWJ6eTVGQAIL7cB4hKc/mpU+oG2ZEj4eWXy45PnOic\noN5oVCubXbzaJYSz1CsVZ8yYMYwdO5YxY8bw2muv0blz58Yel3BDgd5eDIgKp4NRvQSabTTZ3N+/\nRSgx/n4uGl39lFy+dTtBQeol5ClT1NV7rfSSE0K4pxyjiW0Xsgnx8W70Kj2KopBcZOBgttqIq0SA\nl44oP5/Sr23mcoMBbr1V3bT6zTfgrKIOJT1ftFpYvlxthlW+CIIQTlCvaGHmzJkcO3aM6Oho+vXr\nx7Rp00hPT2/ssQk3FeHrw4iYSAa0CCPAS+fq4bif7dvh/PnGea24OPXScYV64kII4Q4KTWa2pGfh\nq9MyJDoc70ZehNiRkcOOjByboB7U1foqc/n/9S/Yvx+++w5iYup+UkWBP/5QU3bqIjkZJkwAsxm+\n+gpuvlkq4ginq/dvYExMDB9++CG7d+8mOTmZTp068eKLLzqtcclrr71GbGwsAQEB3HDDDaSmplb5\n2JEjR6LRaGxu77zzjlPG2VRpNBriAv0ZFRtFz7BgvJp5cxQAzpxRqy8MGgTV/H+sF/n5ChcZNWoU\nmZmZTj+vzPHuz2ixsDk9CwUYGh2Bn67xF3rCfLwrHdMAbYOqSFOcPx8++QTefBMuvbRuJzMa1YWU\nPn3Ujbbr19ft+adPwxdfqFcLli1T3w+EcLIGf7Tu0qUL7733Hg888ACzZ8+mU6dOfPTRR1itjiuB\nuGDBAl5++WXef/99Nm3aRF5eHnfccUe1z3nkkUdISUkpvblV/XIPptNo6BQaxJi4aEK8K0/A7q4k\nCKjStm2wY0f1L5KXB08/rVat+eqrxh2gEC62du1ajEb7G+YdReZ492e2WtmSno3BYmVIdDhB3o5J\nd4kPDsBbaztHxwb44VvhQ0TpXD51qrrS/vDDtT9JZibMmQPx8eoepwMH1ON13eN0+rT659KlaiGE\nYcPq9nwhGkG9fhOXLFnCzp072bVrF7t27SIjI4O4uDhuvvlm+vTpwwcffMDcuXP57rvvHJJ//957\n7zF9+nRuueUWAObPn0/Hjh3Zs2cP/fr1s/ucwMBA6ZjoQL7V1RF2Q4qilG7AqtbRo2qpyXvugVde\ngTZtyu4zm9WVoRdeUBugCCEahczx7s2qKOzIyCG32MTg6HDCfX1qflI9eWk0hPp4k2Eo25QbH1xN\nekv79uq8XJurnKdOwVtvqav0RUWV7zebYedO6NkT/Gqxf6x8DxKTSa3I88svECLdgYXz1Csau//+\n+9m+fTsJCQl8/PHHJCcnc/bsWb7//nteeOEF9u7dy1VXXcVdd93V2OPFaDSyd+9eRo0aVXqsQ4cO\nxMfHs3Xr1iqfN2/ePFq0aEG/fv146623sFTI1yvPZDKh1+ttbqLpyDQU81dqJjszcvjpdDJptQnw\nv/wSunRRN7Lm58Pq1WqDkwcfrBzUe3nBgAGOGbwQTZzM8e5NURT2ZuaSpjfSN9LxBRNOFRTZBPVB\n3l5EVvwgYbWiXH89SmCg2gwqOLh2Lx4cDLm59oN6gHPn1Ln86NHavV7Jin2J9evhkUdq91whGkmd\nVuwPHDhAr169yMrKqvZxGo2Gxx57jLfeeqtBg7MnMzMTq9VKdHS0zfGoqKgqN/Dec889dOjQgaio\nKLZs2cKMGTPIycnhpZdesvv4OXPm8OKLLzb62IVrFZrMHMzJJ+ViIO+Vn49Or0drLQZ/X/tPyskp\n+7vBoF6u/eQTePxxtaPgkSNllRBKWK1QUKBWthFC1InM8e7tSG4BZwv1dAsNcmi9eoAsQzEHsvJo\nHeiPj1bDyfwi+5tmX31VXRn/5hvo3r32J2jRQs2Jv/tutWnVuXO298fEwOjREBlZu9erGNj7+cGT\nT9Z+PO5CUWRflwerU2Dfp08fQkNDGTZsGMOGDePSSy9l8ODBdgvlR0dHs27dukYbaIn6NBK6//77\nS//eu3dvdDod06dPZ/bs2Xbzq5999llmzJhR+rVeryeytr/Ywu0UW6wcyy3gZH4h5f/3dP3f23T6\nZG7dXzAtTW1N3quX2sVwwQJYsaLsfqtVDfhl1V6IOpM53n2dyi/kWG4B8UEBdAl17MKFwWJh24Us\n/HRa+kaEYrJaOVugp02gnbz3PXtg+nSoYR9GiXS9ES+thoiSlf9rroGDB+GZZ+D//k8NbEFNwVm0\nqPaDrhjYv/46dOtW++e7g59+Upsh+jguvUo4Vp1z7HNzc1m+fDm///47ADqdjr59+3LppZdy6aWX\nMmzYMOLi4tBoNFxa1x3ptdCiRQu0Wm2llZsLFy5UWuGpSkJCAgUFBWRkZBAVVbnTqbe3N94euBG0\nubEoCml6I638favdAJtXbCKpSE/FcCG/c2eubNECgM/7XWL3uf7JyYQdOlj5jvBwuP9+uOUWuPNO\n+P13dRX/oJ3HCiFqTeZ495RSZGBfVh4t/X3pExFSfdGBBrIqCtvTsym2KkT5+eCl1eCl1TEoOhwf\ne/u5Xn+dcQ89BOPGVdubxGS1ciArj7OFejqHBJYF9qCm5bz3njqf33+/ujhTm7z6EhYLnD1b9vXo\n0TBtWu2f7w5OnlSbed10k6tHIhqgToH91q1b2bRpExs3bmTjxo2kpKRgNptLN9K+9957aDQazGaz\no8aLr68vffv2Zc2aNYwePRqAU6dOcfr0aQYPHlyr19i7dy+BgYG0uBjUCc+kKArbL2QT6etDz/Bg\nuxu40vVGDmbnYbBY6RQSyLlCPUaLmjpz9o67WTXjcQCiV/xh9xyaL76A++4rO+DtrdZIfu45Nbgv\ncfXVMGaMWmrt+ecb75sUopmROd71TFYrWcbi0vz5TEMxOzKyifD1ZkCLcIcG9QCHsvPJKlYbIBrK\n7ZWI8qsiZbJ9e3757bdqXzO1yMDerFwMFivRfr60D66i++yll8Lu3WraZWJi7QednKxutgUIDVWv\n5HpSY0GjUb3iUZ+6/8Kt1CmwHzhwIAMHDmT69OkAnD59mo0bN/LLL7/www8/ODSgL++hhx5i+vTp\nJCQk0KFDBx599FFGjBhBv379SEpKYvTo0Xz++ecMGjSIEydO8M0333DNNdcQHh7O1q1befzxx5k2\nbZrDJyfhHJlGdTNs60B/eoQF4++lI6/YxKGcfNL0ZWX6Wvr70TU0iMS8QhLzCrAo8MwnC+kWGoyu\nqv8L5Y/feiv85z/QsaP9x3p5qZ1i77pLXb0Rogl44IEHCHLyfhGZ413rVH4R6XojMf5+5BWb2Hoh\niwAvLwZHRaDTOvZneq6giBP5hXQJCeRMoZ5CswVFUWr8t1y6dKnd48UWKwey8zhXqMdLo+GSyFDa\nBPpX/3p+fvDSS2op49oqXxHn//7PtoKaJ5gxQy3tLJt9PV69yl2WBPQlt4MHD5bWrfdxQl7WpEmT\nSEtLY+rUqeTk5DBmzBg+/vhjQK12cPToUYou7nL38fHhjz/+4M0338RgMBAfH8+///1vHnvsMYeP\nUziertzcnFKkJ01vINDLi5yLqz3l5ZtMaDQQ7e9LqI835wr0DBpzFUOjI6o/yaBBakm04cNrN6ja\nVmQQwgN8+OGHTj+nzPGuY1EUTuYVYrRaSdcb2ZOZg06jYWh0hP00mEaUYyxmV2YuAK0D/bECiXmF\nGCxW/Kvpcm5VFLpddgWdK+T9p1xcpTdarMT4+9I3IrTa16mkLmUqS/Lr//Y3dTOuJ/npJ/jf/9S/\nd+3q0qGIhtModdipdPvtt7Nx40ZSU1NLNziFh4eXbqQdPnw4AwcOxNe3istlHkqv1xMQEEBRUZHd\njcLCPSQXGdidkYO5lv+lu4YG0SrAD51GU3VzlZwcdXL3pEuqolmSear+5GdX5nR+EXuzcku/9tJo\nGNEykhA7HWAbk8lqZW3yBfQWKwrQKSSQMB9vdmTkMCw6gqgqKpdlGYs5nltAprGYa1rHoNFoKLZY\n2Z+dy/lCA95aDb3DQ2hd0yp9Q82eDR9+CPv3q9V2PMXp03DJJWUV4FavhnKlZoX7qO08VacV+++/\n/x6NRkNUVBT/+te/uOWWW+hel9JSQjQiRVHINJbVN/bWQLvgAM7kF9kN7lsF+OFXbsUpzMebbxcu\nAKi6S2VYWKOOWQgh3JWiKCTmFdgcS2gR5vCgXlEUdmfkYLBa6RsRyp6sXM4WFHHq4jReYDYTReXA\n3mixsDU9m2KrlT+++pLjoUHcNmEi+zJzMVqttLy4Su9nb5XebIbDh9XqZo0R8J8+rZZC9qSgvrhY\nzasvX9ZZVuw9Xp1W7AMDA0sbeWg0Gjp16sTw4cNLq+F087SyTrUkqznuyWy18uu5NJtjYT7edA8L\nYnemukmqvEEtwmkVWFblQFEUtBdX4hVFochsIaAul2mFcCMyT9Wf/OxUyYV6tmfk2BzrHR5Ch5Aq\nNpo2kuO5BRzKyad/ZChtggI4mpPPkdyyDxgdggPoHRFq8xyrorApLZNMo5p2eVN8LAA/nU7GW6uh\nT0QocQF+Zav0Fy7Ali2webN6275drX7zzjuN8018+22ty226jX//G95+u+zrwEC1AaPsTXFLDlmx\nz8vLY8+ePWzatIkNGzawefNmFixYwMKFC4GytJyqNrEI0Zjyiss2a3trNbT09yPMx4tCswUNlSem\nnZnZdDEH0zE4kDyTiQPZeVxz9z20CvBjf1Ye5wv1XNNGKgIIMWLECN544w2GDBni6qEIJ1EUheN5\nhZWOnyooon2wnaZQjeSC3sihnHzaBwfQ5mLDqy6hQWQYi0s7zhaYLBgtForMltLqZ4dz8kuDeoAr\n7/o7oF6Z7RMRgp9OB0uXwuLFaiB/4oTtiePi1A2yjeX22xvvtZxh2TLboB7U7uoS1Hu8OgX2Op2O\nhIQEEhIS+Ne//gWoZcVef/11Fi9eTFZWFr/++qtDBipEReXTcExWhXOFes5Vfl8qZVHUN4OSjWEA\n0159A40GTuYX4lXfCe3cOXj2WbUSgmycFU3AmDFjGDt2LGPGjOG1116jc+fOrh6ScLAMY7HdogOF\nJjP5JrPD0nGMVivhvt70Ci/bqKrRaEhoEcba5AyMViuFZjNnC/RkGosZEh1BcpGBxAofQqa9+gbe\nWg0DW4SVfQg5cAC+/NL+id99t3Hna08LiCt22QVJw2ki6rwj8OTJk3z++ec88MAD9OzZk4SEBL75\n5hssUt5POFmUnw+9woO5JDK00i1AVzmlRgtooDSoBzArCiZr3TtdAuoly+eeU1c5vviifq8hhBua\nOXMmx44dIzo6mn79+jFt2rRKDaNE05KYaxso6zQaOgQHMiYu2qE59nEBfgyKCkdbITD20+no3yIM\ngEKzhdP5haTpjSQV6tlVIV2ohMmqkG8qV3Z73Dj7J73uOrj55kYYvQebOhVefdX2WJcurhmLaFR1\nyrGPjY0lLa0sp7n8U9u1a1faffbBBx9s3FG6mORfep51KRmlq0+aizerncdlpaUCEBHTssrX0gLj\n2rUqO2A2q42oXngByv0+kJcnK/bCZRw1Tx07dowZM2awevVq/v3vf/P4448TGOjYnGtna+5zfG6x\nibUpGQD4aNWAvn1woMPLW9bG4Zx8juXabujVQKVO4iVz+cjuXcqaTykKxMfbdIRV/P3RHDqkHi9P\nUTxv1b2hcnLUhlTFF69+L1rkeaU6mxGH5Ninpqq/ODqdjr59+5YG8sOHDyc2NrZhIxbCAVoF+NHS\nz5cT+YXkmSo3UJs0uD+gbriqis1K0h9/wOOPq5d4y4uLUxtUCdHEdOnShffee4///e9/zJ49m48+\n+oiZM2cyZcqU0s3nwrMl5hbgr9PRKSSQtkH+eLnRv2vX0CBO5xdSXO7KavmgXqfR4KfTctPFufx8\nQdHFBylq/5Hz521e7/Sjj9O+YlB/5gxs2AB/V/P0sVqbR4njr76CiAj1+37rLVmxbyLqFInMmjWL\n4cOHM3jw4Ca3YiOalpKczUg/daNVmyB/zhboOZybj7FctZzw6LLNsl4aDddWt3l21ix48UX79w0Y\nAM1wpU80TUuWLGHnzp3s2rWLXbt2kZGRQVxcHDfffDN9+vThgw8+YO7cuXz33XeSf+/hLIpCTIAf\nl7QIq5QO4w6KLVaboB4g2s+XXhHB+Ol0eGk0aDQaWrVSr6rGBfpDUZFa8ebrr6FdOzVwB/K6dCXn\n4v5AGy+9BMePqwFuYiLcdhv07Qv33QeXX950g/xPP1W/x1dfVVftJbBvEuqUitNcNffLtJ7Coijo\nanhjMlutHM8r5EReARYFtBooec/w0mi4rm3VKTkoilrS7KmnSt8oSrVvD4cOqa3IhXCBxpynIiIi\nGDBgAIMGDWLQoEEMHjyYmJiyD72KovDUU0+xevVqduzY0dChu5zM8e7raG4+R3Iqp+JcGRdtv4vs\nmTNw002wZw9Mnozy5ptYY2PRFRay5YelDLr5etsPMMePQ/fuYLGoV2QnTlT3T+Xnq/e3awf33gvj\nx0NT+hC7Z4/amOroUTWgb46pSB6mtvOUBPa1IJO+Z9iankWErw8dQgJrDPD1ZguHc/K5YDAyoEU4\nB7PzyDeZqw/sSxgMavvtV15R8+pLSI69cCFnz1NpaWnExcVhNldOcfM0Mse7J0VRWHE+HYPVdoeU\nl0bDwKhwoit2o12zRi07mZMD778PDzzAoew8wu66k+LwcHw+/YTYgAr/vn//u5qSAmpgGxYGY8fC\nN99UHtDQoeoK9x13eH7zwocfVoP7v/5y9UhELdV2nmqi15dEc2SyKhzKyWd10gXOF+qp7jOrv5da\nceHSmEgi/XwY0TKytAJDjfz8YMYM9ZLt1KlgpwKPEJ6mrms80dHRrFu3zkGjEQLSDcZKQX3bQH9G\nx0XZBvWKopavvPJKdT5eswYeeIDEvAKO5xWSeuddJD8/i1b+Fa6oHjigpuuU9+qrUGB7haDU5s3w\n0ENVl9D0FAaD+j1MmuTqkQgHkMBeNDl6i4WdGTn8lZpJpqG42sdePmQwCQkJao5mQB3TaKKi1Nr1\n+/er5dOE8GDdu3dn4cKFFFQV1Fy0d+9e7r//fv7zn/9w6aWXOml0ojk6nV9U+ndfrZbLWkZySYsw\ntflUCYMBJk4kYfp0Enx9YccOGD6cswVFHMzOp4WvN+euGEOXDm3V+vaKom6oXbFCrQBT/gOtosA/\n/wm//GJ/QB06wKZNanDvyX76Sa3udtttrh6JcABJxakFuUzrGVKKDBjK9VM4nV9EnslMbIAfPcKC\nCfSuvFe8pJFJo/waSI6icKGGzlM7duzg+eefZ/369Vx66aX079+fVq1a4evrS05ODkeOHGHjxo3k\n5uby2GOP8fDDDzeZ+VDmePdTZDKzMvkCPloNJquCv07HmLgo2w6458/DLbfA9u2lvcYVRSG1yMC2\ntExiL6Tie/QoIceP0+7caXUf1OHDZfnz9nTrBr17qx1ry7vzTpg7F0JC7D/Pk1x1lVruc948V49E\n1IFDyl0K4c4qrrin643kmcwkFxmwKgoDWoSj09oG3o268a/kDefoUbVu8pVXNt5rC+FgAwYMYPny\n5Zw4cYIffviBjRs3snz5cgwGA5GRkfTt25f//Oc/XH/99Xh7O65hkWh6kgr1KECkr4/9Da92HMzJ\nx0ujYUTLSDakZlFksdh2wN2wAW69FSUzE+szz7AjPBxOncJ4193479/PdSdOoDPoK79wy5YwcKCa\nSlmuvn2pjAz429/KAnt/fzVff+LEprFwc+YMrFqlphWJJkkCe9Fk7MnMIae4bCNfoclMsLcXPcOD\niamYW3lRQkKC/RfbuFGd9O+6q+4DSU1VV0SuvRbeeAN69Kj7awjhAgcOHKBXr148+eSTrh6KaEJy\nik0k5qmdbf11OiL9vInw9SHS14dgby/bVXjAZLWSaSjGrChsTMvCaLWiNRrJ3LGLkHOn1U7fv/0G\nWi2KRoPulVcoP5P7AkqbNmR06ISle3di+vdT5+Hu3dW67Rs2wIgRtoNMSIAJE9SV+b171WO9e6uV\n0Lp3d9BPxgUWLFB/FoMGuXokwkEksBdNRoHJQu7FbrO+Wi09w4NpGxRQv9rM+/fDgw/C88+r1REG\nDKj7a/z2m1o+bfJktf59dHTdX0MIJ+rTpw+hoaEMHTq0tPngoEGDJD1FNIh/uZx4vcXC+UIL5wsN\nAHhrNcQF+NMnIkQN8IuK4PBhOm7dgXLoEEGJxwk+fozAM6fRlku1BFAsFvRt26Hv0pWQvn04EteG\nos5d6HvpENK8fNiflcvouCjb5oGKAs89p/69ZUu45x610k2vXmWPCQ1VCyO8+WbT6k9isaiB/fTp\nTePqg7BLAvtmQFEUrAqV0lA8Sn6+bWlJO3zSswkoLqZdUADtQwLxzsuBvJxqnzPrrbfUP//9b9s7\nsrPVP0+cUC/bDh4MH35Yu+D8woWyv1ss8NFHaqvup5+GRx5pWm8UosnJzc3l999/548//gAqdxof\nNmwYcXFxLh6l8CR+dtJvvAoKCEo8TtTJE3ROOoPmyBE1//3UKbwVhfIV4606HUWt2+CTm4NPTg4M\nGwZvvsm+Nu05bVH3Ry1+5y2Us2f56KGpeOt0HElOJz44gICKHcE3bICYGPj1V/XKqr2O4f37128x\nx939+SekpKh1+UWTJZtna8GTN1blFJs4mJVH+5BAYuta9cWdzJlTtsrSiEo3XDX6K1ehbVt1w9LY\nsc46o2NZrbB0qdoQRrhUY8xT27dvZ9OmTWzcuJGNGzeSkpJSel9JuoRGo2kStevL8+Q53l2ZrFbS\n9UbSLt6KrVZaL/meNj/+QHDiMfzL/d8q5eMDXbuqqSIXb6nt2nPi9FkSHnoQ34wLZL30MpFPP4Xe\nYmVVUjolxTBvio8F1IWsY7kFHM8tYExcFL4VyxE35yIHd96pVsP5/ntXj0TUg2yebeZKGjCdK1Q3\nD7Un0MUjaqAuXWyDx5074dy5Br/szPo8SatVL9t26GD//owMdVWoosBAtc15xdxOT/Xnn/Dvf0Na\nmgT2TcTAgQMZOHAg06dPB+D06dNs3LiRX375hR9++KHJBfSicRWYzKTpDaTqjWQaiksXTLwuBtLh\n+/YQvX4dZn9/Cvr2JaBNG7TdusHw4Wog3759pRX0lt9+S8z48Zj9A9j82SK48kqGaTScyCukfIX7\nux55jI7BQRRbrBzPLaBTSGDloB6ab1CfmQk//qiWuhRNmgT2TYzZaiUxr5DEvEIsHnwxxmixcig7\nj25hwWoVhdtus625++absHJl9S+ycaNtjWI7ZlV1h8mk3uyJjVXTcoYNs3//unUwcmTZ11qt2ghk\n9mxo1ar6MXuCI0fgiSfKaj03he9J2CgJ6EtuBw8exHqxUZCPj4+LRyfchVVRyDIWk6o3klZkoMBc\nlgMf7O1FjL8vLf39CPf15pezqZyYNJnEfzxATNfO9G4RhvaZZ+C112DbNjXPPSamcjnJ8+fRdO2K\n9YclKMHhZBqKKTSZOV1QZPOwOx55nF7hIRzLK0Cn0dAxxMMXsxrbV1+pvVeuusrVIxEOJqk4teAJ\nl2kVReFsoZ7DOfkYLdZK97fw9SHAS4dOq6FPRKgLRlg3RouF38+no9No6BwSSMeQQLy0Tuyn9tFH\n6ubZ8nx91Zz5hQvVNuRVKR/YX3ml+iGkTx9HjdQ5FEVt0/7ii+rPpmTlVlHUTrxHjkCbNi4dYnPX\nGPPU7bffzsaNG0lNTS3t7RAeHs6wYcNKN9MOHDgQX1/fGl7Js3jCHO8uii1W0vSG0hQb88X/Jxqg\nhZ8PMf5+tPT3rdQ3ZMX5dPQWC91Cg+gSGqSmdv32m9rpteQKp7+/Wpf+vvtg1Ci1i2x6OgQEQFAQ\nVkXhYHYeerOFFL2x0tgCvHQYzBZ6RYTQPriawD4rC+bPh+RkePvtxvrRuC9FgUsugeuvh5dfdvVo\nRD1JKk4zk2ksrjKoB8gwFoNRrUDgCYF9CYuicCS3gNMFRXQPC6ZNoH+l0mgNsXPnTqCaspegvrn4\n+ID+Yk3k2py/Rw81oL/6as+/9FvS0l2rhXfeUW8lVqxQ9wt06QKPPw5PPgnBwa4YpWgE33//PRqN\nhqioKP71r39xyy230L0plfrzYMVmCxargr+Pc9+2FUUh32QmTW8kVW8gy1h2JdNXqyU2wI+YAF+i\n/HzxrmbxJcBLR9fQINoFB5QdvPZa9XbiBHz+uXpbtEi9xcWVVay5WLRAq9HQLSyYFefTKr1+4v59\neGmgZ79LaBcUUOl+AHbvVmvSf/WV2rH27rvr90PxNLt2qSU8lyypfF9z3nPQRMmKfS14ympOWRpO\nAZYK/6q9wkOI8lMvoZc2+HCAQpOZLGNxg1/HrCjsy6pcBSfU24ue4SFE+TfOimGVnWc//FAtdxYc\nXLlL4aJF1b8h5OerK0/2qi14qsRE6NRJbade3tat8NhjZV/HxMBLL6mpR/byW4XDNMY8FRgYiP7i\nB1iNRkOnTp0YPnx4aTWcbt26NeaQ3YYnzPHHU3J59qttfPdvxze+sygKmYZiUvUG0oqMFJUrMxnq\n7UVMgB8x/r6E+3jXeqGlyGwhoKbmVFYrrF8Pn32mNogqKFCPDxyoBvh33skRrQ9H89TjXhoNsQF+\nnC3Ul26eTczNp2NIUNlrFhfDDz+oAX3F+Wvy5ObRfXXqVPWq6p9/2h5ftUot7fzoo64Zl6gTWbFv\nhry0WrqFBdMuKMBm4yyAv5fOoQF9iexiE7sycx32+rkmM5vSs+geFkyX0KCan1CD/v37Vz544AB8\n+aX6d3utx4cMqf5FPXXFevXq6rsRKor6s1mxQk3LsSctDaZMgXffVa9YNJXqP81EXl4ee/bsYdOm\nTWzYsIHNmzezYMECFi5cCJSl5SxdutS1A22GLuTpCQ1w/P6Gozn5HC+3R0ur4WKuvC8x/n617hxb\nUY1BPahXBS+/XL2995662fOzz9S5aft2jC++iP7Jp2kXGUnIDTfQNjyEc4V6zhbq6dCrNwAn84to\nGxSgXj2YP18tM5yebv98NZRQbhL0evUKxf/9n+3xoiJ44AE1TdTRgX1ODoSFOfYcopSs2NeCJ6zm\n2JNbbOJAdh4ZhmIGRoU7pdxlvslMup3cx7oyK1aO5BRUOh7gpaNnWDCtAvwaNSXHRna2Wl7z3Xft\nb6Ddt0/tSNjUPPmk2im3sfj4qJd+r7uu8V5TVMlR89TevXt5/fXXWbx4MWazGY1Gg6VCoyBP5wlz\n/NLtp9lyLI1X/j7YoefZl5VLSpGBlv7qqnwLP1+8KvRAURTFcfOvPefPw5dfst/HH//Dh+n0yVx1\nI+jdd3Pghps50aGzTTpJ2yB/LokMUxdm+vdXrzja06GDmgbUlP32m3qFOSVFXbW/5BL1+NNPw//+\nBwcPqtWIHOm//1WbYjlzn1wTVNt5SgL7WvCESb8qiqKQpjfiq9MS7us51SxKNs+W8NZq6BIaRPvg\nQHTOekM5cQKeeqpyzd+aUnE81cGDdXuTy8tTV9W2bat83513qpvi4uMbbXiieo01T508eZINGzaw\nceNGNmzYwNGjR0tT1UoCOgnsnefguSzaR4fw9YZEcouMPDaur0PPZ7Ja8dJoqgzciy1WLhiMxAU6\n9+dUZDazOukCvfOyiP/oA/j669JGgnldu3H21ts4f9MtGKNj6BYWRNfQYDAa1bTIbt3UVeOKtfNv\nvbXp13S3WGD5crXMcteuaupNSor6gefVV9UKZ46kKGp56M2bK1c8EnUiqTgCUPNkW3pwYyoN0D44\ngK6hwfjonPxpv2NHNc9z40Y1j9xeANuU9Oyp3uoiOto23WbYMLXKxGDHrioKx4iNjSUtrWxjYvl1\nn3bt2pV2nxXO8/naYxw4m4W/rxc9W4eTnFVIbITjSjlWtwHWoihsvZDVKGmQdXUkpwAroGvfQU0r\nefttCn/6ibxPPiVm7Rp6vfISPV+bQ9HoMQT+YxLceCOcOaMGlocPq3n6l18O33xT9qJNpadIdXQ6\ntRrO11+rqZJPP60G9717Oye3fvt2OHRIvXoigb1TSGAv3FZLf196hocQ5O24/6axseqGq+Tk5Kof\ndOml6mrDt9+qK/iisvbt4fXX1RUwqbDgsVJTUwHQ6XT07du3NJAfPnx46e+KcK6wQF/MVoV8vYkt\nx9PZcjydOy7tyKRRzt3IrCgKuzJyyDKaCHXCfq3y8opNpXvGStOCfH1JueY6Dg65DJ+MDO4beSle\nBj3JK1fAyhUQGgoDBpS9yPbt6tz05ZdljfUCm1Gt+5KKOJ9+qqbEbNninAIP8+erf9rbryYcQgJ7\n4ZZ8tFoGR0c4/Dwp9tqa26PVwl13wc03qzWQhSo4WN0k+9BDap1/4dFmzZrF8OHDGTx4MIHNKehx\nY2GBlVMoe7d1/NxY0aGcfJKLDPjptPg5ueLVoZyyoNCr3MJBhkGtwGZq0YILBRcfs3evWjbzyy/V\nTbflbdumluvdsAGee675BPZ6vZqOU6JLF6iuxHNjKSpSrxSABPZOJIG9cEvO2piVlJRUtyf4+amd\nZ4Vq6FD1JpqEF154wdVDEBWEBdp+YA7y8+aS9i2cOoZT+Wo3c4AwJ6/WZxqKSStXkKFkxd6qKGQY\nitECA6LCy+by2Fh1seG119RGgt99Z/uCO3aoe4BWrlTn8+Zg5UooLCz7+sgR+OILtYSoIy1ZUlZ5\nSAJ7p5EtyqJZi42NlRQDIYTbCq+wYn9ptxi8nLjfKLXIYNNTxJmBvaIoHMqxLUlZUjwhp9iEgsLg\n6AhaBfhVnsu9vGyD2fJ27oQxY8qaDjZ1P/5Y+diMGY4v91mShgMS2DuRBPbC7RgslsoNo4QQohmq\nuGJ/WQ/nLURkG4vZkZFjOx5f5wX2qXqjTadbUPu1AOQYTQyNjiC6umaF9spcBgSoaSg9e6qFEZo6\nsxns9Z0YP179WTjKyZOwZk3Z1xLYO42k4gi3c7ZAT6reQK/wECIcXKJzypQpAMxrDt0HhRAep3xg\nH+zvTb/4SKect8hsZmt6dmmjqhLO2jirKAqHcyoHg4qikG0spmWAL14aLcUWKwAPPfhPoNxcrijQ\nqpVa/KBHj7JbmzbNq576X3/Z7gsLCoIFC+Bvf3PseS82tSslgb3TSGAv3FK20cT61ExiA/zoERZM\noIMq43z88ceABPZCCNepruFT+c2zl3Zt6bQ0nHR9MUar1eZYfTbOGorN+Hjr0NZx35TeYsVc4fwA\nq5IvVDp2SWRo5blco7FdMW6uSqrhgFrH/scfoXt3x57TYqkc2DeHLr9uwmM/tr722mvExsYSEBDA\nDTfcUFqmzZ6CggImTpxISEgIkZGRPProo5jNZieOVtRXcpGBP5MvcDA7D5OdSb6h5s6dy9y5c2t+\noNUCR7Y0+vmFEM2boihcuFjdxZ7yK/YjerRyxpAAaBfkT9sKTajqk19/4Fw2s77dQZ6+6u/RngAv\nHVfERtXYMb1DcABtgwJs53KLRV2xb+6sVvjpJ/Xvt9yiVgVydFAPajWic+dsj8mKvdN4ZGC/YMEC\nXn75Zd5//302bdpEXl4ed9xxR5WPnzZtGlu2bGHlypUsXryYb7/9ltmzZztxxKIm+7Jy2ZiaycbU\nTM4UFNncZwUS8wpZlZTOybxCrI04YU+ZMqU0HccuRYGzh+Hnd2HrL412Xo+RnChvkMIlmsviTa7J\nTJax6qDXz1uHv4/OqWk4oFYm6x0RgrbcQnt9Avt8fTFbj6cz7eMNHEnKqdNzvbVaIn19bEpcltfC\nz4ee4WrTo0pz+Y03wosvqrnezdX27WqX2ddeUzvsOqtBlL3NuhLYO41HBvbvvfce06dP55ZbbqFf\nv37Mnz+fv/76iz179lR6bHZ2NosWLeLdd99l8ODBjBo1ipdffpkPPvigybVF92Q5xSYyjMVkGIsp\nMtv/dym2KqTqDeiruL/RZSbBik9hzZeQl+Gcc7qbNV/CygWQVct6/0I0gua0eJOhN1Jgqv5DSFig\nr1PTcEqk6o2gqCk4UP3G2dPp+Xyy6jBrDiRx5kI+lotXWPP16ubX9Fw9/164iZ+3napTcYQLBiMB\nXpXTf7TAgBbh9lN8dDq1lOOsWWoH8csug08+gdzcWp+3SdiwAVasUCvgOLNx4Pvvw2+/2XYyl8De\naTwusDcajezdu5dRo0aVHuvQoQPx8fFs3bq10uN37tyJoiiMHDmy9Njo0aPJzMwk0d6OecBkMqHX\n621uAAEVdpCPGzcOjUbDsmXLSo/NmzcPjUZjs3KQnJyMRqOpVFYxISEBjUbDzp07S4/NmjULjUbD\nrFmzbL4HjUZDQoWGErGxsWg0GpuuqVOmTEGj0djkjC9btgyNRsO4ceNsnq/RaCrldbrqexoWHcl1\nbWJ4cGgCN8XHkpVWtjr3f08/wU3xsRxftoSh0REEens12vc0duzY0uOl31OrVrDhe/jlQ8hMJuHF\nz9BMeIWdqWU5gs3m3+lUMpqx/yChf3/YuASK8jz/e2qK/047d1aanzxZc1q8uWAopqCGxYqwQB8u\nc2IaDqgpQol5BbQJ8mdwdAQ6TfUbZ89lFrB480le+3EPUz76i5v+8wf/+mQDy3eXpWSYrQof/HGI\nOT/sprBCtRt75z9fUESq3kienQ8+FRMzly1bZvN7xi23QP/+6t/Xr4fJk6FlS7XR4O+/q9Vimrpp\n02D0aOefV6eDa66Bdu3giSdgzhxo4dzeC82ZxwX2mZmZWK1WoqOjbY5HRUWRnp5e6fHp6emEhYXh\n7e1t89iS++yZM2cOAQEBpbfISOdd/myuvLSa0jJm5flqtUReXCUK8fFu9MZVK1as4IYbblC/KFlF\nMhTAid2AAr1HQniMenyMg5t5uLvEnfDjf2Hvn64eiWjCmtPijUVRyDQWs3dX9R82w7R6+l5Mw3HW\nh82Dp05zRWw01/TuQZiPN4OjIvDT6ar8ni7rEUtc6p/8fURnhnSJwZp1hvcnj2DRrIk251/3xnie\nvy2BSW/+xImLiyUVv6dMQzGvff4VbYIDefkf4+kcEojvxasGN8XHclO8+nNO1RtKv6cbbrihbC4H\n5n38MZpduyifaJlsMKD55htir7nGZlNpk10U8Pd37ff0228wYgQ88wy8/ros3jhp8cbjquLUtb65\nvcfXFBw+++yzzJgxo/RrvV5PZGQkRUW2ud82qwMX2cvZjo2NtTuO8v+QJWbNmmXzjwnqP7y955f/\nz1li3rx5lSq8jBs3zu7z7R374pvvsSoKEUFlG5aq+55KbiU/08b4no7lFnA0N5+OwYF0Dg3i6gUL\n+HrBgnp/T9X9O5X/xY2Ni0MpyIHdq8oC+5xUdi75rMHfU0UN/Xdy2P+98TfBph/hy5kAJLSJQln4\nTNmDzMWwZzXJ7zwM/a9Sy8m5+/fUFP+d7HxPRUVFTWLVvrEXb7p27VrpOXPmzOHFF19s5JHXXbax\nGIuiYK7hbW107zinp+GcurjXqeTdMqq6evEXtY0KZvzILgDs7KThtzch0M/+Kn9qjp5HFmzksXF9\nSo8ZLBa2XcgmpchAwcUVdW+Nlh7hIeSbzGpqUDkpRQbaBZX9nx84cGDlE8XEQFqa+veHHlLTRDQa\nqBC0CQfp0sXVI2h2NIqHdQIyGo0EBASwYsUKRpe7xNS+fXueeuopHnjgAZvHr1q1irFjx2IwGEon\n/jNnzhAfH8+RI0fsTvoV6fV6AgICKCoqwt/fv8bHe6Jis4Uft57imw0nmH3nAHq3q91VCovVyjOL\ntjHlyu50bBnaKGPJNBTj76Wzm1fpNJnJsGM5pJbfeKWB+1522ZCc4uxh2L2y7OucNPuPa9EaBlwD\nMfFOGZaoWVOZp5KSkmjdujX79u2jd+/epccHDRrEuHHjeP75520ev2jRIh5++GEyMzNLj5X8LP76\n6y9GjBhR6Rwmk8lmc235xRtn/uwO5+RzLLcAgOExkUT6ObZvR23lFZtYk5LBsOhwovyrr0pTk5nf\n7mDLMdt5xMdLy+DO0YzsGcugztEoGg3HcvM5lV+EAkT7+dIzPJiD2fmE+3rTLSyYozn5ZBlNRPh6\nc+Tiz0wLXN0mBu/q6tKvWwcjR8KAAepm0v/7P9izBy6Wx2w2rBbQOvE99ehRNce+qAh83OP/taer\n7RzvcSv2vr6+9O3blzVr1pQG9qdOneL06dMMHjy40uP79++PRqNh3bp1jBkzBoA///yTyMhIOnXq\n5NSxuyNFUVh7MJkFfx4lLbd+7bX3nM5k2scbGNO3NRNGdqVFSMPeCNzizS0yFq6aBOePwI7fHb95\nNi8TspKhXS/nbnKqqG139VZi0Swwl8uFDQxTV+rb9waNx2XyCQ/QokULtFptpdX5CxcuVFrFB4iJ\niSEnJweTyVS6eFPyXHuPB/D29rZZ4XeVDEPZCnSByewecx9wIr8QnUkh/UIRUW0bNp/nXyxzqdVo\nSOjYgpE9YxnaNYZAX28sisLJvEKO5RZgVhRCvL3oGR5CtL8v1otpSp1DAwFoGeBHh5BAm6ZVViBN\nb6R1YDUfxi6/HK68ElauhHfegUcegcLCBn1PdaIokHsBQiKdG1iXl3sB/vwSbn7Ueec8fhzat5eg\n3gU8LrAHeOihh5g+fToJCQl06NCBRx99lBEjRtCvXz+SkpIYPXo0n3/+OYMGDSIiIoK7776b6dOn\ns2DBAgoLC3nuueeYOnUqujo22mhqDp7LYu6KwxxNzmnwaynAyr3n+etQCrcN7cBtQzvg5+OR/73K\naDTQpjvEdYFj2x2bW16sh3XfQFRbGHiN+qc78faF3pdD92Hg5fqASDRdzWXxxmS1kl1uA2mBm2zm\nNFgsnMsvYu2mMzx8da8Gv167qGBG9Y5jRPdWhAaoQZ6iKJwv1HMoOx+9xYKfTkvvsBDaBPqXpnXm\nGE0oKIRf7D5esnHXYLHdNptcZKg+sAd4+WU1sH/0UfDyUlNyHKkoD1JOqLfkRGjZAS673bHnrI6P\nn7o4ZSwCXyel6x07Jmk4LuKRkdekSZNIS0tj6tSp5OTkMGbMmNKucyaTiaNHj9rkw3/wwQc89NBD\njBkzBi8vL8aPH88LL7zgquG7XHJWIZ+uPsKGI/brQr/64258qkiD+b/7h1fImdRwy+D2pV/tPpXB\nl38d57ddZ5lwRVfG9GmNTuvCFegalLyJVJuRptVBtyHQoZ/jB3ThLPw2F+J7Q8JYCAp3/Dmro9FC\n10HQdzT4B7l2LKLZaA6LN5mGYsrPOoU1lLx0llN5RRw6msHBM1m0DGt4WtL063rbfJ1hMHIwO5+c\nYhM6jYZuoUF0DAnCq8L7xAWDkQhfH3QVrmAaK1Q6StcbMVsVvC/uQbA7lw8apNa1//lnuFC5c22D\nFRsg7dTFQP4E5Ja72uTlo87lruQXpC7O5GZAtJMWjSSwdxmPDOwBnn76aZ5++ulKx+Pj4yv9YgcF\nBbFw4UIWVmxx3Ezpi80UGKouNVZkNGM02e/yWnHK1Gk1PHBVj9Kv3/ttP6fS88kqMPL2sn0kZRYy\naXS3xhi26/k07JK0XXmZgAKFFeorn96v5rv3GKpW5nHEuWvjuqkQKmXKhHM1h8WbCwbbjaA1lbys\nj/KFDQwmCzqtpjQAtsdstbL9XAbrd54nPNC3Ua+65pvMHMrOI1VvRAPEBwXQNSwIvyo+fGUYiu1u\n2K24Ym9RFNIr/CzteuklWLYMxo+vz/Crd3Qr7Fph/74+IyGwcfaf1ZtGA6FRkJMKhTlgKITuQx17\nzmPH4LbbHHsOYZfHBvai/jq2DOW1ewaz9Xg6n6w6zLlM23zDl+4cWIfNswr/+XF36dfHUtQANT4q\nmMlXdmdAx6jGG7gDuHzv+G8fqZdH7bGa4cB6OL4Tht4E7Xraf5wjSVAvXKSpL95cMNh2my00mW0C\n8cbw47bTXNW3NUF+3ny9/jgBvt7ccWnHKh9fWGzmj79OYbYotAxvnE3ERouFIzkFnClQN8bG+PvS\nIyyYkGpq4lusClnGYrqHB9scVxQFQ7kV+9aBfrQNDCDCz6fmubx3b7UiTseqv/96a9vTfmAfHAk9\nLm3889VVQbaa6795KaBA18opbY1OVuxdRgL7Zkqj0TCkSwwDOkaxfPdZvlh3nNyiqtuaV01h3aGy\nrqThgb5Mv643Y/u1RlddpQKhatcTTMVqcJ98vPL93r7Qc7ia5y+EaBIMFgv5FVJvrIDeYiHAq/He\nlpfvOktKdiHjEtrx/eaTTLjCfhW4nEIjYYG+fPNXIhnZahGFVmENy8U2WxVO5hdy/OLG2FAfdWNs\nlF/NZTOzjMVoNRrCKgT/CnBJZBhRfj5sSc8m2s+vVmU4Sz34oO3XVot6dTQyTl3Rrq/QFmrBhaAI\nOHOg7Piga0Hn4jBr5x9wcH1ZnxZQ31ccqaAAkpIksHcRCeybOS+dlnED4hnVK46vNyTy07bT9Xod\nXy8ttw7pwG3DOhLg67j/Vum5evx9vAj2byIbOIfepP6Zcd42sNdooPNA6Ce57UI0NV4aDcOiI8g3\nmdmfnUe0ny8GiwW92UpAI02fSZmFnM0o4HxmAfvPZBEXGcjN5fZDlffLzrN0iQ1lydZTpcdahtcv\nsFcUhXOFeg7n5GOwWPHXaekTFkLrchtja5JhKCbSzwdthcdrNZrSjbJ+Oq3N6n2dWC1wYg/sXwda\nLdz4cP1ep7yx96sVxEoC+7gu0NoN0lBDIm2DenB8AYTERPD3h7g4x55H2CWBvQDUJiL3j+nO9QPa\n1Xmz6+jecUy4oivRoY6r/1xkNPPtxkSWbD3F/90/vNEC+5IGVfYaCblMXBdIuLqs460Qoknx0mqJ\n8vclxMeL/dl5DIgKq74Wez1sOa7WjrcqcCo9n9fvHVJlk6u0nEKWbDlpc6xVPQL7dL2RQ9l55JrM\neGk09AgLpkNwYJ3fUy4YjcQGVL+vyE+nw3gx395ssXLzTTcCNczlFjMk7oIDf6npKQDDbm6c0r1e\n3mrvE1ALLgy6ruGv2Rjie8O2X9XmgiW8HLxif+wYdO6sfmgSTieBvbDRso6XX3VaLU/e1M8xg0Ft\ngPX77nN8vu4YOYXqxKQoCuczC2gd2fCV7F9++cXu8UKjiUBfJ18VCI+BAddCrPuW6BNCNB6zVV1J\n9XJA74qKTaHOZxbQN77y3ilFUdh/NptCo21qUF1ScfKKTRzMzifdoG6MbR8cQNfQIHzrUZXIZLWS\nYzTRN6L6Dad+Xlryi9Uxf7zqcJVzOaCupB/foe5ZKipXqMAvCDr0rfMY7dOopS1BzasPcZP9Sd6+\n0L6P+v2XHnNwbXnJr3cpCeyF29qemM68lYc5m1Fgc/zNpfuICvXnhdsSGvT6p9Pzue3fbzK6d9nl\nQoPJwpItJ1l/OJUPp1TuWOkwYTFw/UOywiFEM2JWFLw0mkbdMAuQV1TMgbPZNsfm/3mUS7u1JCzQ\ndrU2NUdPWk7lDfy1ScUxmC0cyc3nTMHFvHx/X3qEhxDkXbfQIimzEH2xGY0G8i0WtEBGVhGZGg0a\n1D1hbVoE2az8++l0XLCoiz2jesfR7+7n8ffx4ot1x7hxUDwh/heDV6sVlr4H+ZmVT9x9COgaaQFH\no1E30Z7aq1bCcSedE2wDey8nBPadOzv2HKJKEtgLt3MqLY+PVx1m50n73V6PpeRyJiOf+96zbRil\n02qZP21kja+fXWDk83XH+H33Wayh3Rh91XCsisLqfUksXHOUjHxDvS5DN4g0fRKi2TFblUr12xvD\n9sR0rBXyqgsMJnaeuMDoPq1tjrcKD+CyHq1Ye7CsCIK3TktkcNWpMGarlcS8QhLzCrEoCmE+3vQK\nD6l359xvNiayYu95AIYlxBEc5MN763aV3n/jwHimXm1bFax8jn3X2DDGjL2GfWey+PKv43y/+STX\nD2jHLYPbq99HbCc4WiGw13lDl0auDtOuB0S2cvzm1Lpq0QbCoiHnYn19Z6zYjxrl2HOIKklgL9yO\nwWShqLj6Zi0Wi0JOYTEaDaV1mWuqwmM0WViy9RTfbkxEX1y26epYSi7//WUfial5DR+8EELUklmx\nOiQNZ3OFNBxvnZZHru9dKagv0S4qGCgL7FuG+VfauApq2s7ZAj2Hc/MxWqwE6HT0CA8mNsCvQVcd\nOrcKYcVe9e9xLYM5lFi2qNMvPpIpV3YH1B4sP207TXSIH+FhfugVC1arFa1Wy21DO7LvTBagvod8\nv/kkP287zVX9WnN37360OLrV9qSd+oNfIy/gRLVxv67hcLEYwwDY/pv6tSNX7BUFjh6VVBwXksBe\nuJ3urcN5c/xQ3l9+gD/2nMNqpzyxj5cOL52GPL0Jq7dCRJAfvl46Hvjor0qPVRSFQqOZ7EIjlosv\nFuTnxZV9WvPlZ/N5YsfvtB5w9cXj3jx8bS/8G7ExixBC2GOyKng1cvpdsdnCjhNl3VUjgnyZeXsC\n3eKq7mJd/qqBBoipkF+vXGwCdTA7n3yTGW+thp7hwbQPDqzUGbauUnOKWLE3CQBfXx0tIvxJSskH\n1KsJz97av3TTr7+PF8VmC6//vBc/Xx2T7ujLbW+vJDLIj+Sdf3Ahu4iovleWvrbJYuXXnWcZ3LYn\nLXz9wagv+y4dUV++MTbhOkqHfmrpS6vFsYF9Zibk5Ehg70ISvQi3ZLJYCfH3QafVYrVU7oKr5mOq\nbyhGk5WU7CK0GnXVvuL7jMWqlAb0JYL8vFGAjV+/DVAa2Pt567i8Z2zjf0NCCFGBI1Jx9p3JKr0i\n2SU2lJm3DaBFSPUVZnLK9TBRwGYOzS02cTA7jwuGYjRAx+BAuoQG4VNNB9vaUBSF3/ecY+6KQ6Xj\njYsJpkhvIifPiL+Pjlm3DyAkwDYIvXt4JzYfTeNUej4WixVvHy/OXChgxSevAnBVucAeoFWID4PO\nrYRiQ9nBdj3UMpDNiV8gtO2h1u13ZKrQsWMQHg6Rzezn60YksBduyd/Hi0mju3FtQlsW/HmUtQeT\nbe7vGhdGeKCvzSVnqwI64OZB7bljeEe8tFp8vLRoNBpSsov4dPUR1h9WLzdnFRg5c6GAXpeNs7nk\nnFVgYPy7fxId6s+b9zm45bYQollzRCpOSTWcUb1ieeT6Pvh611yZpmIa4pn0fPKMJhLzCzlXqK5y\nxwb40SMsmMA6boy1JyPPwH9/2WdzZQEgrmUQSalqsYRbh3TgSFI26w+nkJ6rJz1PT0augfQ8PcVm\ndbGnUG8iPMSX2we158iyq7FYFcIDfci+WEFt/GWduTx7A5r0MzDyLtjxOxRkQY/hDf4ePFLnAWpg\n78gV+5KKOA5IMRO1I4G9cGstwwJ4+pZLuHlwPK/8sJu0XPVN5khSjt3HmyxWvt10gtUHkpgwsgvL\nd59jypXd6RYXznN/68/Bc1nMW3mYI0k57D6VQeyYB5gwsgt/HkhGp9VwKj2ftFw9WgdsaBNCND36\nYnO9U/fMjZyKoygK246n84/R3bhtaIda5b1brFaOJ+faHEvPM/DB+iN079yCCF9veoaHEOHb8GBQ\nURT+3J/Eu78dwGCybS6l0aj59XsOqRs8v/yrcidurUZDZLAv0aH+GIotFBWZ6NgqlFuGdCDh1+/4\nbtMJ4qOC+WT1Ebx1Wm4POIn36RMw8Dq1y3dBjtpAKtoN8+CdoVUHCAxz7OZZKXXpchLYC4/QLS6c\np2+5hJ+3n2ZH4gUign0J8fdh/9msSo8d0b0V/xjdjfOZBRw8l830+ZsY2TOWSaO60rNNBO9MHMa6\ngyl8tOIg2YXFLFx7jMhgX754eDSr9p1n4ZqjLvgOhRCe6LO1x/DSavjb0A6VSknWxGxV8G7ERYSU\n7CKmXdOTwZ1r39xu54kMis2VO7geScxk/LBOtPJv2MbYEjmFRt79dT8bj6bZvd/fz4uIMH+yMosY\n0iWaqBB/okP9iQ7xJyrUj6gQfyKDfUuLJFgVhQU7T5BRaOT/fj/AP0Z354kb+1FoMPHV+kQu907C\n+9AJ6D4MegxTT9K5v1odprnSaNXSl45ese/Xz3GvL2okgb0L6IvNLN50klG9YxulyVJz0b11ON1b\nh1NstnA0KYetx9NtAvtucWFMubI7PdtEAGpDlhJrDyaz8UgqNw9uz+U9WvHX4RSyC4sx5F0sgRYc\ni06rYWy/NlzWoxVrDtim/gghhD3XXNKGKR/9xdLtp7k2oR23De1QbanI8syKFZ9GXLGPjQgkNiKw\nTs9Zte888S1DSCy3aj+idywPj+1ZVgu+EVisCvHRIew6lWFTlaxEXMtgCgqL+XjKZfjV4gqIVqOh\nV1w46dl6lm45w4ZdR3j2b/3p1aUDU3p6cVXGCQqiOhE04JqyJ/n4Q1wzr6/eKUHtjOsox47B7bc7\n7vVFjSSwdyKLVWHl3nN8tvYYWQVGRnRv6eoh1UtWgYH5q12/qn0sJQdQN7xqNODjpeW3nWdZvusc\nABn5BpvHmyxWvtt0gu82naBDTAj3j+7G7ZeqXV5/2XG69HH+Pl5c27+ZXqp1J1aLY9+AhGgE7aKC\nGdQ5mm3H0/lx6yl+2XGGsf1ac/uwjpWqy1RktioEeLmukkpynp6NR1Pp2yMGknMJD/Ylv6iYJ6/v\ng49X4/7uRQb7MX5kF26/tCObj6aybMcZDp4ra6IV1zKYtqEBtQrqS4QH+NI7PoK1W87yzbO38c2z\noGQmMTZ3A+c0YbS76u/S9K+iwOo7+jaI1QqJiZKK42IS2DvJzpMX+HjlYU6l57t6KA1WZDSzct95\nVw+jVEmuZkkN49pIzSmiQ0wIrVq1AuC6hHYOGZtogKXvwyVj1EoOshFLuLG/DenAtuNqbrjJYuWX\nnWdZvvscV/ZpzV3DO1XZxbWk86yzFZktHM7JZ+Xe83h76+gXH0HPFiH8bXAHbn9rJceSc+nVNsIh\n5/bz1nFFrziu6BVHYkouX29IZMORVOJaBhMfWrcr2H46LaHBvlzaNYaNoZGE+HvDqs/R+gUSfNlE\nx3dYFbaSkkCvh06dXD2SZk0Cewc7cyGfT1YdZlvihUr37TuTWboZtDrdW4cTGuA+E1R0qD/z/nmZ\nq4eBoiiluZ8Pz9+Iodzl3cGdo+nROowFa47ZPEergbBAX3y8tCxaf5w7X/kegBe/28HM2wc4b/Ci\nZvmZsPYriImHAddAC/vNdYRwtT7tIujcKpTjKWXpLBarWs5xUOfoKgN7k9XqkM6zNdmcnkWBycyp\nU9lc3rMVt/drX3pft7gwDp7LclhgX16nVqEoQNc2YYQG+xLpW7cO3H46HQaLlYev602/3zZyQ8Yf\nUJgHY/9BRKiUW3S6Y8cgLg6CJMXYlSSwd6A/9pzjnV/2V2rtXeKDPw7V6nVev3cIfePdZ5Ly8dJd\n7FToHMVmS5WXhVfuPc/pC/mYzba17rceT2dbYnqlx4/p25pHr+/Dmv1JzF9zlIw8NV0nMtjNWoCL\nMmmn4dcP1QYr/a9UqzoI4UY0Gg23DmnPaz/usTkeE+rPkC5Vb9Zs7Ko4tRUb4IfFYOFMSh7/vra3\nzX0920TYpMg40uHz2Ww8ksrTdydg8dISUMdSmhG+3lzesgU+GoVxBRshNwOunAihUQ4asaiWVMRx\nCxLYO9BVfVvj7+PFp6sPk5pTeWV+3IB2hNeiikJMmL8jhuf2zmYU8Omqwwzr1pKx/drYfczmY2ls\nPJJq9z57n6e2HE3j1MA8RvdpzfDurViy9RTfbkxszGGL6mSnwfEdtXustUJjspN71FJ1PYZD78sc\n22RFiDoa0b0V8/88SvrFq7BaDdxxacfSKi72uCoVp3tYMN9uTKR1ZCCdW9nmXPdsE87P209jVRSb\nHh+N5adtp7g+oR06rYZPVh+hT7sIgkN86/UBx0urVSf6TT+hSTkBI26Hlu1rfqJwDAns3YIE9g6k\n0Wi4rEcrhnSJ5uftp/l6fSKFRnPp/df1b0v7mBAXjtA95RYV88W6Y/y68yxWRWFYt6o3GY+/vAs3\nDYrnua+3YzRVrrRQUYHBhPHi6r6vt443p9+Bxarw6NtfN2zQVitknoco2XRbrcJsOLyp/s+3mGH/\nOlCs0P8qyb0XbsNLp+XmQfHMXXkYgMGdY2rcu9PY5S5rS1EUVu1LYlTvuEqlLLu1DqPIaOJcRkGj\nX5lVFIXFm06SV2SiS2woB85m8e4/LuWMsZhe4TWfy+7V231rIXEnCf/5Ht79nZ07dzbqmEUdHDsG\no0e7ehTNngT2TuDjpeO2oR25qm8bFv11nF92nsFitZ+e05wVmy38vO00X2+w/QBUnfho9c1AV+7N\nMSbMn3EJ7dh9KoOdJzNsHn/DwHh6tA4v/XrXrl0A3HdF1/oPPOk47FgOQWEwenz9X6c5iGoL10yp\n3WN//0QN4Mtr2V7Nt4+Ma/yxCdFAV1/Sli//Ok6h0UzHljUv2phdlGOfmJrH2YwCRvWu/HsU6OtN\n++gQDp7LbvTA/nxmIRn5Br7ekEhksC8jureia2wYMcUmAnQ1V+H5duMJhnWNoWPLUDYeSWWQNgXv\nPaug8wB2HX6lUccq6uHYMXjwQVePotmTwN6JQgN8mHp1T8YNaMcnq4+4ejhuQ1EU/jqUwqd/HiHN\nTsrSir3nOXS++pxPo8mCTquhU8sQ2kUFcz6rkKhQfxI6tuBoUg4FBvsfFHbsqGVaiD3ZabBzuRrY\ngxrYi+r5BkB0LSsQaTRQ8vk3pAUkXA1tuskqvXBbAb5qqdzFm08yvJorjaA2WLICXhrn59iv3p9E\n77YRtKyiHGfPtuEcPJfV6GV/95xWF1qsisKFPAOz71Srp4T51LxpVlEU1hxI5sC5LKZf25v//LiL\nx8KPMbJTZxhyQ8PmctE4li2DFi1cPYpmTwJ7F2jTIogX7xhAZoU6683V0eRc5q06XLqRtaIDZ7M4\nYKfDbFWvdbRCe3SAh6/txefrjlU6npCQULfBAugLYM8qNVe8io3RFObIJs/G4BsAfUdB10FS0154\nhBsHxXMyLa/GNEvzxau2zl6xt1itrD2QzH1XVJ0L3bN1BAvXNn6vkt2nMm2+/mPPOR4c27NWzz2R\nmkdSViFJWYU89cUmIjAwJMYLLr8LtLr6zeWicXXr5uoRCCSwd4mkzEI+WX0YP28dM26+xNXDcblu\ncWHMnzqydCNrxa6E917WmaFda98i3Z4OMSFc0SuOU+l59X8RswkObVRzvM3Fle9POg5fv6Q+TrGC\nTw3dJ8f9y7HNQjxdz+HQa4TaLVIIDxEV4s8TN/ar8XGmi5vDnb15dtfJDAoMJkZ0b1XlY3q2DScl\nu4jMfEOtu+jWxKoo7D1tG9j/tO00Q7rEcEn7mld51x4s6waellfMf9ok43fVvbKJXogKJLB3oryi\nYhatP86yHWqO/ahesa4ektvw9dZx1/BOXN2vDZ+vO8bvu89Ssg0hKtSfji0bHgAH+HrRs41tbeZZ\ns2bZ/FktrVYN1nVe9gN7gOKLVx20OvCuISCVlJLq9b/K1SMQol7Cg2oONs2Kgk6jqbR51dFW7Uti\nSJcYgvyqTn+JCvEnOtSfQ+eyGdGj6g8AdXEiNY8Cg8nmmJdWQ1Et9lMpisIfe87ZHEvueDn9yi2M\n1GkuF6IJk8DeCYrNFpbtOMNX649XmestVOFBvky/rjc3Dozn41WH2XGicmOvxvTiiy8CtQ3sddBt\niFpPff86OLQJrOX+Pctv9AxvCddPbdSxCiGaDrWGvXOD+iKjmc1HU3nm1v41PrZnm3AOnm+8wH7P\nKdtCBj5eWl64LYGBnaqu819i1b7z5OltPxR8vj2NKwZ3x99HDWPqNJc3NlOxWo636yDnn1uICiSw\ndyBFUdhwOJVP/zxCSnZRpft3n8pkxhdbHHb+/9w7xGGv7Wjx0cHMuXsQO09cwEvnuM1lM2fOrPuT\nfPwgYazaBGXbL2Ayqsej2sKAq9W/SytzIUQ1zIoVbyev1m84koKfjxcDOtbcwKlnm3BW7DnfaOfe\nXS4NJ8DHixfvHECfdjU3XszXm+w2c8wuNLL7VAbDuqqblOs1lzcGiwnWfAkZ56FzguwFEi4ngb0D\n5RtMbD6WZjeoB3Viyi40OnlUniWhFm9ADVHv1R2LGfIywHpxP4B/MPj6177iixCiWXNF19nV+5K4\nvGerWi2W9GwTwQe/H8JQbMbPp2GhgsliLS2AEOzvzSt3D6JLbFiNz7MqCq//vKdSuk5ogA//vqEP\ngzuX7b1yyUq91QJrv4GUE3DprRLUC7cggb0Dhfj78ORN/bhpUDzzVh5mf4XKLpf1aMWj1/dx0ega\nl8VqZd3BFLt1kZsMi1mtdhPSQs2z738VdBkEu1eql2HPH4PPn1cfGxkH1/3TlaMVQrgxs9V+19mk\nzEJaRQQ0etfXC3l69p7OZOKo2lUuaRcVjJ+PjiNJOfSrxebW6hxJysFoshAR5Murfx9c2n+kJt9u\nPMG24+k2xy5p34InbuzbaJt67TKbwKuGEpxWK6xfDOePwOBx0Knm9CYhnEECeyfoEhvGG+OHsPlo\nGh+vPkxylrqC76XVEODr2f8EiqKwLTGdT1YdIbeo2OWBfV3boJd0Kay2VJqiwNmDsPMP6HiJWn6x\nRFAYjLgNug+F7csh/fTF51jtvZIQQgBqKk7FHPs8fTHPfLWVKVf24NIa6uDX1Z/7k4mLCKRrbO0K\nEei0Gnq0DufguewGB/Z7TmUQE+rPq/cMJi4isFbP2XUyg8/XHqW9dyGnTIHotBomXNGVvw3tYHeO\nr9VcXhu5F2DdN3D9NLVggj2KFTb/BKf3Q/+x6t4rIdyEZ0eVHkSj0TCsW0sGdo7mlx1nWLT+uKuH\n1GAnUvOYt+oQey7WJg4NcF1eeUp2EZ+uPsJNg+Lp1Tai5idcNGDAAED9gGJXxnnY/hukn6n+hVq0\nhqvvh7OH1A8AQghRDVOFVByLVeG1H/eQU1hM68jaBb+1pSgKq/efZ3SfuDpV4enZJrzWPUSqk5Fv\n4K0JQ4kKqV3p2gt5el5bspOuvgUkFfvRKsyfp27pT7e4sCqfU+NcXpW8TAgKLwvizx1RK5ZVGdQr\n6ntC4k7oMxJ6X1a38wnhYBLYO5m3TsvNg9szpk9rDtfQTdVdZeYb+GztUVbsOU/5KdSqKJXKmdWF\nj5cWH6+65SgWGEx8tf44S7efwWSxctOg+Do9v3//Ki6fFuTArhVwam/tX0yjgXY9oXVXSPb8D25C\nCMcxK7apOF+uO8bOExd47tb+tIuqXapKbZ1IzePMhYI6X1Ht2SaCxZtOYrEq6BpQwWfymLLqNTUx\nWazMWbwDig3cEJXJjrABTLvhEgJ9q0+NqXIur0nycYjtDCEXN/KeP6J2uK7K7pVweDN0Hwb9xtTv\nnEI4kAT2LhLs782gzjWX+XIniqLw9YZEvtl4AqPJUun+fL2JW99YUe/Xn3BFV+4a3qlWjzVbrPy6\n8wxf/nW8Uhm0uii5fFuq2GC/lGWJw5vUfHqAQeMgrnPlx+i8oE33eo9JCNH0ma0K3heD5U1HU/lq\nQyK3De3QaOUly1u9P4lebSNoGRZQp+d1jQvDaLZwOj2vxl4iRpOFtJwi0nL1pOYUkZZT9ueFPAOz\n7kigW1x4jef8ZMVBjibn8mqrRNpedQuj2rav1VgrzeW1lXJSXbEPiQRDkXp1duC19h+7f5166zxA\nfYz0IhFuyOMC+wULFvDSSy+RkpLCoEGD+Pjjj+nSperW2BMmTOCzzz6zOTZ9+nTeeecdB4+06dFo\nNAzr2pKD57Lt1pfXaTX0ja+5fFlVWobVfJlWURQ2H0vj01VHOJ9VWOn+FXvPsadCd8OKrurbmujQ\nKs5lMYGxCJTKH1wAMJnAevG8FulJIISoH7PVSoCXN+cyCnjjp730ax/JxFFdG/08FquVNQeSGT+y\n6vfJqvh56+jUMpSD57KrDeyTswqZ+H9rq7z/7yM61yqoX3vgPD/tOMuksLP0G3sttKldUF9vihXS\nToJfoHqlNekY+AVBhJ3mkYc3q1dx2/eBITdKUC/clkcF9n/++SdTpkzhgw8+YOjQobz00ktcd911\nHDx4EB+fqvO7b731Vt5///3SrwMDGzd/sTkpX19+3srDnL6QX3pfkJ83r/59sEPPv+FIKq8t2Y3Z\naj+P8o9a1F2+pH1k1YG9fzAMuxm6DYUdyyEl0fb+Ppfbbp4VQoh6MCsKZpOF2Yv3EOTvzdM3X4LO\nAeUvd53MoMBg4rJ6Xgno2UbdQHvDwPgqH9MqPIDIYD8y8w2V7uvSKpS7R9R8JfbMhXz+u3QvQ/yz\nuG3MJc656pmdCka9mi/v7QP52WoaTsWg/fgOtWdJm+4w/G9V598L4QY8KrB///33uf3225k8eTIA\n8+fPJyoqit9++42bbrqpyuf5+fnRsmXjVhho7hI6RvFB+xb8seccn6895rR6/CO6t6LjgyHM//MI\n6w+nVrp/0qhutIsKqvY12rQouz82Vl2ZSU5Otn1QREu4coK6grPjd8i1LbkmhBANYbJY+fLPRFKy\ni3h7wlDCAn0dcp7V+5MY0iWaIL8ayjdWoWebcD5aUblBVHkGkwV769e+XlqevKlfjXXzi4xmXlq0\nkXCNgceHRaLtPpT9ZzIJD/KldaT9+bzQYCLA16t0M3CVc3lFVktZvfmUU2XHDm5Q/37F320ff2qf\nWgGnVSe4/E6pVS/cnkd97Ny2bRujRpWtlgYGBjJ48GC2bt1a7fN+++03oqKi6NmzJ88++yx6vb7a\nx5tMJvR6vc1NVKbTari2f1vmTxvJ3cM74evtnAkvNiKQ5/6WwFv3DaVrhSYnPduEM6RLTLW3EP+y\nqzspKSmkpKTYP5HJCOExcMND6qVXP7nSI4QzLFiwgA4dOuDv78/ll1/OsWPHqn38hAkT0Gg0NrdH\nHnnEOYOtp037ktl5/AL/urZXrZo11UeR0cymI6mM7t263q/Rs00EF/IMpOfafx9Mz9XzyPyNZNhZ\nrf/HmO42Cyn2KIrCO4s3klZg4vneJoKHXs2h89k8/812TqXnV3rskaQc3l62l7veWU1OYXHpfdXO\n5SVST8KJ3WVfn9lf+TE7f1dLXgKcO6zWqo9qqwb8Oo9aCxXNlEf9L01PTyc62nbDaVRUFOnpVa+m\nXnPNNdxxxx20adOGAwcO8OSTT3L27Fm++OKLKp8zZ84cXnzxxUYbd1NgsVqrvEwc4OvFfVd05cY6\nVqRpqF5tI3hn0jDWHUxm/p9Hq3zjqU5SUlLVd+oLYNl70GO4WtKsfR8oaHjpNyFE1ZpDyuWeUxms\n2X6OUX3jGNuvjcPOs/FIKr7eOgZ0qn8H7/AgX2IjAjh4LovoUNuqOocvBuD5dgoYJHRowbgBNXfi\n/nntXtadKuCxdjl0vPpOjqfm8+xX29AXW0jKVPczFRpN/Lk/meW7znIiLQ+AmFB/9MVmwlGvdFQ7\nl4NapnLXCtB5q5tfk47BhXOVH5eXCb/NheG3ql1lI1rC6PFqqo4QHsAtAvt//vOfzJ07t8r7L7/8\nctauXVuv177jjjtK/96rVy+io6MZPXo0b7/9NlFR9ie7Z599lhkzZpR+rdfriYys/6bQpuC/v+wn\nNjyAW4d0qHJl3lGXkquj1Wi4olccw7q25Kdtp/Cr41WDksu3VbKYYf9aNcfykjHQqYHNT4QQ1Wrq\nKZfpuXpeWbKbmMhAJoyuXRfY+lq1/zyX94zFu4ZUmJr0bBPBwXPZXNGrLLBfve88by3dh0VR0Gjg\n9qEdWXsombQcPUF+3jw2rm+NzQIPHjvDvA3nuTosl7G338LJTD1PL9pKkVEtTLD7dAYpOUWsPZCM\nwWRBq9EwrGsM1/ZvS/8OUTYlOGucy88dvhjIa+DoNjVnviox7eGvb9VKOWMmgo8Du9wK0cjcIrB/\n7bXXeO6556q839dXDRijo6Mrrc5fuHCBjh071vpcJV3pTp8+XWVg7+3tjbd3/fIRmyq90cxna4/x\n666zTLqiK1f0jmv0lucN4eut445La1cqs14MBWqe5eHNMOAa+2UuhRANtm3bNpsrpuVTLqsL7EtS\nLqOjo7npppt47rnn8Pe3v0neZDJhNpdVtXJWumWx2cJLi3ei0cDVI9vj78D0xQt5evaeymTiFQ2v\ntNOzTThLt6tN+qyKwrwVh/hx22kAokL8ePqWS+jZJoJcfTG/7z7Hw9f2okVI9cFwTnYuc37YQ3vf\nYqb9/UrO5lt56sutNqv/avPDTKJC/Lh9WEfG9mtT4+vaZbWq9ecBUGDLz2r1G0NB5cf6+EHqCfAP\ngasmgl/dSoQK4WpuEdiHhYURFhZW4+MGDRrEmjVr+Mc//gFAUVERW7duZfr06bU+1969asOh+Pj4\n+gzVrRxNziEiyLfW3fwaQ0aegdd/3stP204z5cru9G7n2VcypkyZAsC8efMq3xkUBjc/Wvl44m44\ntFEN8MNjHDtAIZoZZ6RcuiLdUlEU3l9+gMTUPF69ZxBnNCa8HVhdZc2BZGIjAivtQ6qLg+ey6Nkm\ngp5tInj31/1k5ht4afFODiflAHBlnzimXt2LAF81lOgXH0mxycLlPSuvnlsVpXQxyGIq5pXPVmO0\n6nj+tn5cUAKZ8eVmcouKbZ6j1WiYdUcCAzpG19ggq9q5/NReyCn3/8fLB0Kj7Af2Viv4BsBVk9Qq\naUJ4GI/aPDtt2jS+/fZbPv30Uw4ePMikSZOIjY3l2mvLmkl069aNH3/8EYCCggJmzJjBtm3bOH36\nNL/88guTJk3i9ttvr3K13hOk5+p57cfdPPzpRpvNQ43p0Pls5q48VHo7mZ5nc/+xlFwe/3wLs7/b\nUZoH6Yk+/vhjPv74Y/t3arTgG1j55u2j1rovlk3VQtTWP//5z0obXMvfRo4cWe/XvuOOO7jmmmvo\n1asXd955JwsXLuTLL7/kwoXK/TZATbcsKioqvWVmVt/7ojEs332OP/acZ/KV3enRJgIArwZ0c62O\noiis3pfE6N5xpVVj6iopq5CZ3+7AaLLQJjIQfx8v/vHBWg4n5eDrrWPW7QN4/MZ+pUE9QP8OUUy7\nplel1zJbrCz482jJ4Pjsq9/Ym+/LE5e3gsg4nvxyC1kFlSurWRWF7nHhtep6W+VcbjHD7lUVBlQM\nGXby60Gd36+aqC7sCOGB3GLFvrZGjx7N3LlzmT17NqmpqQwePJhff/3VZkPV0aNHyc3NBUCn07F7\n927mz59PXl4ebdq04dZbb+X555931bfQIIVGE99uOMGSracwWawOPdfp9HyWbDlV4+M2Hk0jq8DI\ny3cPqnc5NVeqbm8H+Vnw039tjwWGQf+r4Lp/qoG/EKJW3Cnl0tnplofPZ/N/yw8wsmcsNw+KR29R\nG+B5OSid8WRaHqcv5PNi7wH1er6iKHz4x0Hy9SZ2n8ogI89A4cW8904tQ3jl74MJDai8mdTeMYCt\nx9P5fvNJru3fljNbN/DtWW/u6upDt0v68siCTWTkVa6oU+JcZgE9AyJqHHOVc/mxbVCYU/l4VQ0G\nW3eDkBY1nk8Id+VRgT3ApEmTmDRpUpX3K0pZ4yJ/f39WrFjhjGE5lMVqZflutV58xUuVFquCpYpm\nTTWpbhVkcOdo3rxvaOnXn605yv6zthVhWoT4MfGKroxys3z7uii5fFsjb1/ofTl0HwZenvcBRghX\na04pl2czCmh7scxjdoGRl7/fRZsWQTx6fW80Gg1mq4Lu4pUKR1i1P4mebcJpGV6//PDNx9LYnqhe\n7fjvsn3kXHzfiQ7x4/37h9d53L/tOotVUfhwySYOpOjpF6Hl3ltHo9Np+eiBy0jNLiI1p4iUcn+W\n/D0pq5CebWoO7O3O5SYj7Ftr/wk+/hAUDlkV6t6f3g8Dr5MqOMJjeVxg39zsPpXBB78f5GyGnVxA\nYPr8jfV63c6tQnn//uFV3h8Z7EdkcNkmpfIrMf4+Om4f1pFbhnSocxUaj6PRQOeB0G80+Fdfj1kI\n0XDTpk3j6quv5oorrmDIkCG89NJLdlMuX331VW6++WYKCgp46aWXuPXWW4mOjubAgQM88sgjLku5\nLDCYeO7rbcz75+V4aTW8smQX+mIzr48fgp+P+pZrtioOS8MByC0sZkyf+tWuN5gsfPRHWUOqnKJi\nfL203D+6O5/8eQSLVcFLV/uxp+YUsfOE+iFha7KRFj4anh4/Bt3FSj1+3jrio4OJj66cz64oSsOu\nTh/aCIZyqaK+ARDfGzr0hRZx8MsHlZ9jMsKZA9Cpf/3PK4QLSWDv5tq2CKJH63DOZRRgb10+PioY\nf5/qg2sFtUtfWq6eYrOVmFB/u5NoTbQaGNuvDeNHdiEiqGmU/1q2bBkA48aNq3ynXwCM+5dskBXC\niTw95XL1vvOk5ej5Y/dZUnP07DuTxew7BxAXUVZX36RYHZaGA/DouD6Y6xkQf73hOGkVeoI8f3sC\nfdtFMm/VYU6k5dVpQ+7vu8/ZvHcN7tmWsODaFXzQaDT4eNVu8ajSXG4oVLvJevlA2+7Qvi/Edirr\nHHvmIGSnVTyjWvEsxLOLQojmTaOUz10Rdun1egICAigqKqqyfJqjnUzLY97Kw+w+lWFz/P37h9O5\nVWidnjd1bA9uHNS+Tuf/eftp+raLrNcHAndWcklZfg2Ep3OHecpTNdbPTlEUpnz0F2czCgjw9aLI\naObeyzpzz+VdbB6XVKjneF4hI1vVPZe7JPWyNhtK62rnyQs8u2hbpUWkW4e0Z8qVPXhs4SaGd2/F\nLYNr9/5htli593+ryCosK2Hp66Xl84dHNXrfk0pz+fkjUGyENt0rp9UoCvzyf5B1sVOtbwB0ToAu\ngyC45rQfIVyhtvOUrNh7iA4xIbz690FsT7zAx6sOV5maUyIz38Dna4/xx55zlSbp4yl5rD2QbPd5\nJVpFBNisytw4ML5+A6+ByWJtcPOUhrj++utddm4hRNNy4GxW6dxcZDTTLz6Suy+r3PPCrCh413PF\nfvnus5jMVm6uZXBdG4qisHTHaT7645DdK8ObjqYxeUx3tVHV2axaB/ZbDyfZBPUARrOVJVtPMWlU\n4zbnqjSXt67m9c8dUYP6yDho1wt6DFU70grRBEhg70E0Gg2DOkeT0LFF6WZae06k5vHE55tLqxhU\ntHLfeVbuO1/tua65pE2D6h/XJCmzkE9XH2Z491aM6h1X8xMcpOTyrRBCNNQvO8/afG2vhCPUP8c+\nr6iYhWuOMroR58yMPANvLdvLrpMZdu+PDPalW1wY+mILPduEs2rfeRRFqXkDrdXCr3/uAGxXy+Mi\nAunrgP4ndZrLi3LhugehRf32IQjhziSw90A6rZbrE9pxRa9Y7GWQdGwZwn8nDuOTVYfZlli5jvOw\nrjH0alv95cb6pNykZhfVWIUhT1/MV+sT/7+9O49r6kr/B/4JhEBYlB1EFgUEFBdQBKu1orhrbdUu\narVWK9ZaW5f5ts6vta3aqaVORzutU0dtq7Y6U1u7udSpVHGvCyqgoqwiiOx7gECW8/sjEhPWJCQk\nuTzv1ysvyc3NveciPHk49znn4PCVHEjlDI/376X1ebpURSHQ0x0w4EIyhBDzVyFqwLnbBWrbcktF\nuJhWhJEhnmrbpXK5Ton9N6fTYcHjYf4TQR3vrIGEm/nYduwmRGIphAJL1DfK4OJgjSF+Lhjk54Ih\nfi7wcrZVJvEDfJxQLmpAQUUdvFTGDLTAGApPHca1qke94DZWlpg3uh9mRvXRuG7eYEJGGPf8hBgQ\nJfZmzM667VuHfm4O+GBuJK5ml2BX/G3cLa5RvhbWx0XrGvv2lIvE2HsqHdfvluKb18e1uo9EJsfh\nKznYfzYTIrGk1X1MUuoFoOw+MGyKYlAVIYS04nhyHqStTD188mZ+y8SeMfC1XAcjq7AaR6/ewxvT\nBsFB2HbsZ4yhuKoeHo5td7JU1zdi2283cTq1AC4O1nhhdD8IrfkY7OcCLyfbNnvjewgF8HW1x628\nivYT+1tncexGERgUPeLRoV6IHd8frj24MekCIaaMEnuOG+bvhrBYV8Qn52HvqfQ2bw3rQiyR4cc/\ns/H9hSyIJTK4tRK0GWM4f6cQX528gwfldS1ej0+5j9v5FRqfc0lMf1jrcYpNjQbPVhQBf+xRJPbD\nptAsOYQQNTI5w9Fr6mU4tgI+5o4OxNORfVrsr20pDmMMX/x+CwGePTFxiE+7+/6Rko+jV+9h66KR\nrSboVzKLseVwCspFDYgO9cJrU0LRQ6j5nO2hPk64lVeOCUPaKGO5mwJp4nEcF49AX3cHLJ8cisEG\nKL1pjiZCIESBEnszxxhDZW0jnOzbnmHA0oKHyeG+GBPqhe8vZHU6MZY/XK58T0IaSmvaXjEQAFLv\nV+DzYzdRWdvY6uvXskvbrO1szUvRwXpN7LWSnwE8yAT6RQBh42lee0IIAOBiehGKKhVTRPKgmBb4\npbHBbcZlqVwOG77mH7+nbxXgZm45ti4a2WI2HNV698raBuyIT8XIYI8WSb24UYpdf9zGkau5sLex\nwv+bGY7ogV5aXKVCqI8zvr+Q1fqLRTnAuYO4aReMOdH9MX14X1iaUxmjXPZoOkxCzBQl9mbsblE1\ndv5xG35uDlg2cUCH+wsFfCyMDu5Uj0ZyThl2xqcis7C6xWsVogas+PJci+0u9jbggYfK2oYWMy68\nM4yPETVJGp/f6khqxztpgf2wWfHFwb+3vkNDs7sMjAHpV4DsZMVKtANG0Uq0hHRz+85kAAAG+Tpj\n2cQBCGxnCmIAkGhRilP/MCEfP7g3Bng7tXh9/5kMzHuiHyx4POyMvw0LHg9LxvdX2+f2/Qr8/ddk\n5JfXYpi/K9Y8OUTnsphQHyfklopQXd+o3tNfVQIk7AN6uGLI5GcQZt21U65q/bnG5EBVKVCSB5Tm\nKf4NGQEEDdfuOHI5jcEiJoUSezPUVNN+PCkPcqaop9eGrsuYyxlDVmEVCitbltQAitvLGQVVWh3T\nxU4AQY1M8zfItNhXH+RtLPLCGCCTKD4cCCHdVlFlHQoqarF80gDMGN5Ho/iqTSnOd+cyUdcgbXV6\nyNoGCb47nwW3nkK4ONjgxI18/HVmmDLhlsjk+M+ZDHx3PhNWlhZYMSUU04f56fwZAAC9nGzhbG+N\n1LwKjAh6WJZYLwL++Aaw4APjXwSvnaQ+o6Cq3bVXDIYx4EGGIoFvSuYbVe44u/kq5rLXlEyq6ORp\nrAeGtD62jBBjoMTejDSvae9qFjweZo3wx/jB3th/NgOHE+8pF0sBALceNti3MqbD46Q9qMTO+Nu4\nmVuOIucghI4Za8hmd875n4DMq+rbAsKB8AmAnRE+nAghJoVBMYWjFd9S44RZyuQazWOfX16LHy/e\nxcKxQXBxaNnDfiWzBBKZHF+duAMbgSUiAtwQHaoor7lXUoPNvyQhs7AaIb0d8eZTQ+Dt0vnyQR6P\nhwHeTrjVlNhLJcDJfYBYBEyOBewc23xvuUiMv+67iHefHYawPtovztUpPB6QeAyoLG7lNQtgxFOK\nfzsilyk+E1JOAbVVwNOr9N1SQjqFEnsz0FZNe5BXTywaGwL3nl0700APWwFenRSKGRF98NWJ2zif\n1nxZ7vYFeznikxdH4PydQjhoMWjLEJqWH9doDmSPvsDwKYpFTQghBIBHTyHyy2uRnFOGqUN9NXqP\nose+4yRy5/FUeDgK8XQbs5idv1MIAKiqa4S40QKb548AA/DzxWx8fTINcsawMDoIz48K0Gute6iv\nM3KKH5Zj1lYBZfnAuPmAS/s1+9t/T4WAb4lAT/13imgUy71DWk/sB4wCnD1bblcllylKMJNPAqKH\nEz70DgJ6uunYYkIMgxJ7M1AhasCFtMIWA1V72gow1L+Lez1U9Haxw3vPReDGvTLsiL+NylrNZ9zh\n8XgmMYf9kSNHOt6phwswbLJiafJO3MImhHBPWU0D6htlSM4p02zhJrRdinMjtxw+LnZwtLPGlcxi\nXMwoxt/mDm91de5GqQyXMx4lqRIZw4PyWmw5koLknDL4utrjrafDDFL2MjnMBzaCh4NMe7oCk5cA\n7n7tvudiehHOpBZg3eyhsLfR/7gkjWK5Twhw84z6NjvH9ktpmBy4e0OR0Fc3m+hhwCit20mIoVFi\nbwZcHGzw/nMRSLlXhh3HHw1cvZpVipkf/47pEX54OUa/y3NrY5CfCz57eRQSW1kMy9QdOnSo/R1C\nooARMwBL+lUhhLR0v0wEAKiobUBeqQi+Gox5kjI5+K38AZBwMx91DVL8ZcYQbP89FSOCPDA80L3V\nY1zLLlUryZQzhnf+ewVyxjAzqi8WjTXcDGK21s3iYQdJfV2DFNuO3cSIIA883r+DnnEddRjLmVxR\nY99c1JOAVTt3ju9cAi638keDozvQK0C7RhLSBShbMSOD/Vzw+ZLHcfJGPnYnpKG0Woy6RikkMuMP\n4LTg8RDZr/UPIFPWdPu2TVR2QwhpR97DxB4Aku+VdZjYyxmDjAFWzUpjGGO4klmC4qp61DfKUFxV\njw/nRbZ5nHMPy3CaH3v19EGYHK5ZSVBX2XsqDSKxBCumhHZq4G572o3ljWLg3A9A3h3FAF+5VLHd\nL1TRi9+evoOBxP89ek+T/iPpDi4xSTRHk5mx4PEwfrA3vloejYXRQbAx1pzuhBBCcL+sVvl1ck5Z\nh/tb8HiY4u0Bm2blNfdKRCiuUsyFfzG9CM885o9eTq2vHiuVyXExXX1sk5WlBd5/bpjJJfV38ivw\n6+UcLBoXArceXTsFJgDFNJy//VuR1A8YBYyapdhuZQ0Mn9bx+23sgIAw9W3WtoB/WGt7E2J01GNv\npmysLDFvdD9MDvfB3eIaYzfHbO3cuRMAsHTpUiO3hBBijvJKVXrsc8ogZwwWHfTkClqpmb+cqT6o\ns1Ha9sxniVklqKmXKJ97Odni4wUj4N7TCIlzO6QyOT49cgMhvR0xfVj75Tqd1Wosz7sNnP1BMfD1\n8WcVCXqjWDH7Tfh4zWc2a16KGRxJ65cQk0U99mbO2d4Gw/zNb1R+o1RmEiVEr7zyCl555RVjN4MQ\nYqZUe+yr6yXI0bGj5UqzxP7nS3dbXRfkZm45Pv45Sfk8ZnBv7Fj2hMkl9QDww5/ZyCsVYdX0wS1W\nzNU3tVjO5IrBrif3AQIhMGXpo153gQ0QOgoIHqHZgdOvAHcuKnr4AcXKtMFRem8/IfpCPfbEKEqq\nxVj338tYEtO/1eXPu0psbKxRzksIMX9iiQxFD8tnmiTnlMHfo4dWxxGJJbiZW6G2Tc6AXy7fxZtP\nhQFQdIZ8cyodB//MBgNgacHDymkDMSnMtEpvmtwvE2H/mQw8NzIAfdy1W0RRF8pY3igGzh1U9NZ7\n9gXGzFWU06gaOlGzOesLsoCLhwDfUKDfUODEt0CfQYCtdv+/hHQlSuyJ0Twor8PGH65ioK8zXpnQ\nH0Fejl3ehqbbt4QQoq18ld76Jsk5ZZgZ1fq88225ll0KOWNq2x4L8sDrUwYCALKLqrH5lyTcLa5B\nX3cH1NQ3YuOc4QgwwHzw+sAYwz+P3oCHoxBzRwd2yTl37twJVJUq6umrShSDWyMmK3rYm9Mkqa8q\nARL+o5jffvQzinKcnm7AgJH6bzwhekSJPTGKCtGjOe9v5pbj9a/OY9xALywaF2KSt5QJIaQ51Rlx\nmqTcK4NMzrQqPWleXz9rRF8siekPAPj+Qha+OZUOxhgWjwtBoGcPBHk5wkFoujXevyflIeVeOT55\ncQQE/C6a4OH+HeDM9w/r6Z9RrBCuK3EtcOIbRfnNuAUA/+F0mI8/QzOlEZNHiT3HFFTUYffJO8Zu\nRptkcjnySmtb/UA8efMBzt0pxMyovnh+VADsrA3/wfXgwQMAgJdX+ysmEkJIc9Z8Szwd2QfiRhmu\nZBVjw/PD4d5TCG3KyeWMKevrLXjA8smheDKiDwor6rD51yTcyqtAX3cHvPlUGAI8Tb8EpFwkxq4/\nbmNKuA8G+bkY/oRMDqScxoOEXwBbB3jNfrVzybdMquiprxcBU2LVy25cvTvdXEIMjRJ7jhGJJTid\nWmDsZuisUSrH0au58HO1R8xgwwfR3r0VHwCs2W1wQgjpyGPBHngs2AM3c8txJatYp1VeMwuqUFnb\nCKHAEm/PGorhgW743/Vc/Pt4KsSNMjz7mD9ejA7qup5vLTHG1Bbm2v57KqwsLfHywzsOBiVpUNTT\n56ai9+rPFO1Z+jfdj8cY8OcvQPE9YOwLgDN1+BDzQ4k9x/i52WPPirHGboaaW3nl+O5cJvJaqUdV\nxbfgYcbwPpg7OhA9hO2sBKhHvXr16pLzEEK4y8bKEuLGtqenbM/ljGK4Othg45zhcLa3xvoDibiY\nUQwPRyE+mBuGQb7Oem6tfmUVVuOfR2/gny+PwuWMYpxJLcA7s4cavlSouhQ4uR+oKgb6P6afWH7j\nNJB1HYiYAvh2wR8mhBgAJfYcI+BbtrmoiTHsO5OBb0+nd7jf4yGeWBwTgt7Odh3uq09NpTiEEKIr\noYCP+kYZGGNaz/BVXtuAfy4ehboGCV7ZcQZVdY2YHOaDVyYOgK216X9En79TiPSCKvx6OQc/XszG\niH7uGN3f07AnvZ+mqKeXSYFRs4HAoZ2P5Tk3gevxQL8IxUJWhJgp048axKzNGx0ILydbfH3yDkqq\nxS1ed3WwxhOhXnhlwgAjtI4QQjrPRmAJOWOQyORalcwwxrB0wgDYWFmitFqxKu2G5yMwIsjDgK3V\nr3N3CgEA/z6eCqHAEq9NGWi46YsZU/SqX/9DUfs+cZF+6t5L7wPnfgB6BQAjZgBGmn6ZEH2gxJ4Y\nlAWPh3GDemNUiCd+vnQX353PRL3KLet/L3sCDjZdU3ZDCCGGYCNQJPPiRplWiT2Px4ONlWJ/1x42\n+HL5GNjbmO5sN83lloqQq7LyblQ/D8PNaiZpAM7/CNy7BXj0UcxPL7Tv/HFFlcDJbwE7R8UxW5se\nkxAzQivPki5hbWWJOY8HYvdrYzF1qK9y1oiOll43tGHDhmHYsGFGbQMhxLzZWCn6yOobpZ06jjkl\n9YCiDEfV2dsFuFei28q77aouU8xPf+8WEDICmLi4RVKvUyyXNCiSerkMiHkRsKaplon5ox570qWc\n7K2xctogPDW8D748cdvYzcG1a9c027GhDii6B/iE0G1aQogaSwseBHwLiCW6DaA1V80Te5mcYfvv\nqfjohUj9lePkpwNnDgDSR/X0rdE4ljeRyxXHrSoBJiwCenTB1JyEdAFK7IlR9HF3wN/mRhp9msnE\nxETNdpQ2Agn7AE9/xYwJLjQNGiHkkaYBtN1FYUUtMgqq1LZZ8IDwvq76OQFjwM0zwLV4wNZBkXy3\nU0+vcSxvcvV/ikG4jz8DeGq3UjAhpowSe2JUBhtkpSGtb90WZgNHvgACwoDwCYCdaS7pTgjpWjYC\nS4g7WYpjTv7520215w5CK6ybPRRh+kjsJQ3A+Z+AezcBdz8gel6H9fRaxfK0y0DqeWDQmM6tUEuI\nCaLE3sgkMjmsLGmog04axYpena46lxJTzHWccxMIfRwYOFqx9DghpNuysbLsVqU4t+9XKL+2FfCx\nfelouPXQQ416dRmQsB+oLAKCo4DhUwFLPaYqDzKBS4cBv4FA+Hj9HZcQE0GJvZHI5Ax/pNzHsWu5\n+HQxzZmrk//tBCqKOnWI9T+fUfw78wnt3yyTACkJQMYVIGIq4D+kU20hhJgvRSlO9+ixLxeJ1cqO\nZo3oq5+kPj/jYT19IzBypmJOeQ2tX79e7d9WVRYDp/4LOPcCHp8N8KhTjXCPWSX2Z86cQVxcHK5c\nuYLS0lJkZGQgMDCw3fdIpVK89dZb+Oabb9DQ0IBZs2bhX//6F+zt9TBNlo6u3y3FzvjbyC6qNtzU\nYN2Bmy8gdOjUITb8ugkAsP61xe3vKJUCxTktt/N4gHcI0Mu/U+0ghJi37tRjf+62+qDZ7y9koV+v\nnrrPv88YcOsscO04YGMPjF8IuPlodYgNGzYAaCexF9cCJ74BBNbAuPkAn6ZZJtxkVol9bW0tIiIi\nMHPmTCxdulSj93zwwQf4z3/+gwMHDsDBwQGLFi3C8uXL8c033xi4tS3llorw5R+3cSmjuMvPzUmP\nPd3pQ7z//j3FFxMWtb9jbSVw8O/q27z6KQbSOpnPYjKEEMOw6UaDZ+/kV6o9b5TKsfGHq9izYqz2\nnVWSRuDCT0DOjYf19HN16rB5//33235RJlWU94hrgSlLFYtbEcJRPGbsaUl0kJOTg759+3bYYy+X\ny+Hh4YFNmzYhNjYWAHDy5ElMnDgRRUVFcHHRbHqr+vp62Nraoq6uDkKh9j3slbUN2HcmA0ev5kLe\n7NstFFhiUph6z4STnTXmPN7+nQjSxVQTe0d3RelN735GbRIhqjobp7ozfXzv4n6+Dl9Xe8wbzf24\ncDW7BG/vv6y2bXK4D1ZPH6z9wY5/DRRkAcGRwPBp+q2nBxR3A84dBLKTFT31PiH6PT4hXUTTOGVW\nPfbays7ORmlpKcaNG6fcNmbMGACKqbEmTZrU6vskEgmk0ke1kvX19Tq3Qc4Yvj55B78n3W/19fpG\nGX65nKO2zc/NnhJ7U2RjpxhsFTiMVickhKixsbKEuJv02FfVNqo9d+thg6UT+ut2sB4uQJ9BQNBw\nPbSsFSmngOwkRWcMJfWkG+D0yJHiYkXJi7u7u3KbpaUlnJ2dla+15sMPP4Stra3yoWnPfmsseDys\neXIIPln4GIK8Wk6N6GRnja2LRqo91j4dpvP5iHauXr2Kq1evdryjjR0w6y9AUKR2Sb2kEagXdbwf\nIQSAYizV1KlT4ebmBh6Ph8zMzA7fI5VKsWbNGri6usLBwQELFy6ESNS1v3dCAR/1ku4xeLakWr2z\na/WTg2FnreOquZHT9ZLUtxrLc24ASX8ojj9gZKfPQYg5MInEftmyZeDxeG0+oqOjdTqurlVG77zz\nDurq6pSPsrIynY6japCvM/65eBTWPh2mVoNoxbfAAG8ntUeAJ82N3lUiIiIQEaHBzAuWVrpNadlQ\nB/y8BbhxGpBKtH8/Id1M01iqTZs2afwe1bFUJ06cQGJiIpYvX27AVrbUnXrsi6seJfZTh/pimL+b\n7gfT093PFrG8JE9RgtMrEIh6klYMJ92GSZTixMXFYd26dW2+bm2t2xzhHh6KQY3FxcVwcFAMxpHJ\nZCgvL1frxW/OysoKVlY69j60w4LHw7hBvTEqxBM/X7qLA+ez9H4Oop2hQ1tfnlyvJA2K2R7SLgND\nJwJ9B9E0a4S0YcqUKZgyZQpycnI02l8ul+OLL77Apk2bEBMTAwD4/PPPMXHiRGzdurVTd1y14WAr\nQI24e/zxXlytWNfDo6cQseN1LMHRM7VYLqoATu4D7J2A6DlUOkm6FZNI7B0dHeHo6Kj34/r7+8PV\n1RUJCQkICAgAoLjNC0CzXloDsbayxJzHAzE53AdHr+YarR0EmpXh6EttJXD2e8WKh8OnAh59uu7c\nhHCULmOp9DmOqsmsqL6dPoa5KHnYY7/6ycGwtTaJNOJRLG8UAye/BZgcGLcAENBActK9mMZvpIZE\nIhEyMzPx4MEDAMDt27chEong6+sLZ2dnAEBISAg++ugjzJw5ExYWFnj11Vfx3nvvwd/fH/b29njj\njTcwb968LuvFaY+jnTVeeIL7MyiYrLspirmTDUnWyq35snzgf7sA31Bg2CTF4DFCiE50GUv14Ycf\nKuc9J9orrqrH9GG+CO/rauymqJPLFQtcVZUCExdTbCXdklnVAyQmJiI8PBzTpk0DAMyYMQPh4eE4\ndOiQcp+0tDRUVVUpn7/33nuYM2cOnn32WcTExCA8PBxffPFFl7fdmPbs2QNvb+929/H29saePXu6\npkGmQiwCygoM+6hsZ2XcykKguqTrrpfoXZ8+ffDll18auxlmwZTGUhliHJUxdWWMr22QwEFohSUm\nUoKjJvEYkJ8OjJxFd0SJXphjjDerHvvo6OgOg3jz1/l8PrZs2YItW7YYsmkGl5OTg/Xr1+P48eMo\nLy+Hr68vJk+ejLfeeqvDgG5q5s+fDz6fb/w/JPqPhFfMMwCgvAukd6JK4MdmC1tZC4Eh4xQz7Oh7\nzmbSQnR0NE6fPg0AsLOzw4ABA/DBBx+0Od0tMQxTGktlqHFUnWEuMb60Wow1Tw6BUNB27DJGjPdy\ndwMkYjw4+RMQENZl5yXGRzFenVn12HdXaWlpiIiIQFlZGQ4cOID09HTs3bsXUqkUW7duNXbzzFpB\nQQEKCgq65mQWlsCAx4GZfwH6j6SkvgutWrUKBQUFuH79OoYOHYqnnnpKo2kUif44OjrC29u7zYeb\nm24zq6iOpWpiCmOptGFOMb63sx2G9DGxEpf8DBSUlKKgUgSExRi7NcQIKMY/Qom9GXjttdcQEBCA\nQ4cOYfTo0fD19cVjjz2GL774Au+++y4A4O9//zt8fHxgbW2NESNG4PLly20er7GxEUuXLoW9vT18\nfHzw7bffqr0uFosRGxsLd3d3CIVChISE4JdffgEAnDp1CjweD7/99huCgoIgFAoxa9YsVFZWKt9f\nW1uLJUuWwMnJCfb29pg9ezaKihQlKevXr8f+/fuxd+9e5S14Y8rPz0d+fr7hT+Q3EHhqJTB8iqLH\nnnQpOzs7eHp6ol+/fti2bRssLS3xxx9/4Nq1a4iOjoZQKESfPn3w/vvvqw2qXLVqFfz9/WFra4vQ\n0FAcOHCg3fP83//9HwIDA5GbS4PidSUSiZCUlITU1FQAirFUSUlJKC8vV+4TEhKCn3/+GQDUxlKd\nPHkSly9fNqmxVJowpxjPt7QwvRifn478vZuQfy+HZhzrpijGq2CkQ3V1dQwAq6ur6/Jzl5SUMB6P\nx7777rs299m/fz+ztbVl+/btY6mpqSw2Npa5uLiwqqoqxhhju3fvZr1791buv379eubp6cl+//13\nlpSUxMaMGcNsbGzY7t27GWOMffzxxyw8PJwlJiay7Oxs9ttvv7ETJ04wxhhLSEhgAFhERAS7cOEC\n+/PPP1n//v3ZwoULlcePjY1lgYGB7PTp0+zq1assKiqKTZgwgTHGWE1NDZs9ezZ77rnnWEFBASso\nKNDzd8zEiOsYK8oxdiu6tTFjxrB33nlHbVvPnj3Z+vXrmbOzM/v4449ZRkYGS0hIYIGBgSwuLk65\n38aNG9mlS5dYVlYW2759O7OysmIpKSnK1/38/NiuXbuYXC5nr732GgsODmb5+flddm2qjBmn9Kkp\nxjR/NMUnxliL5xKJhK1evZo5Ozsze3t7tmDBAlZTU6PxOSnGm3mMrylnrK7a8OchJolivDpK7DVg\nzKB/8eJFBoBdv369zX2ioqLYm2++qXwukUiYt7c327ZtG2OsZdB3d3dn27dvVz6/ffu22gflihUr\n2OLFi1s9V1PQP3bsmHJbfHw84/P5rKKiglVXVzM+n8+OHj3a4vg3b95kjDH2wgsvqH1IEGJIqkG/\nsbGRffTRR8zCwoJt2LCBzZ49W23f/fv3s4CAgDaPNWnSJLZhwwblcz8/P7Zjxw728ssvs4EDB7LC\nwkLDXIQGuJLYGwPF+EcoxhNzQzFeHRX5ckBaWhreeust5XM+n4+IiAikpaW12LeqqgrFxcWIjIxU\nbgsJCVEOOgOABQsWYMKECUhKSsKkSZMwe/ZsDBs2TO04qu+PjIyEVCpFVlYW+Hw+pFIpRowYoXZ8\nR0dHpKWlITQ0VC/XrC9Lly4FAOzcudPILSGGtHnzZnz66adoaGhAjx49sH37dsTHx+PQoUOwt7dX\n7ieTySCRSCCXy2FhYYG9e/fi888/R05ODsRiMRoaGuDj46N27I0bN0IgEODKlStmU/pBzAvF+I5R\nLO/eKMY/QsVoJi4gIAA8Hq/VAK4L9nDWoPbqHiMjI3H37l2sWrUK9+7dw6hRo/DJJ5+o7aP6ftWv\nmQ5TzxnTrl27sGvXLmM3gxhYbGwskpKSkJeXh7KyMixduhQikQhz5sxBUlKS8nHjxg3cuXMHFhYW\nOHv2LGJjY7FgwQLEx8cjKSkJ48ePh0SivrpodHQ0ioqKEB8fb6SrI+aMYrx+UCzv3ijGP0KJvYlz\ndXXF2LFj8emnn7YaUKuqqhAcHIyLFy8qt0mlUiQmJiIkJKTF/o6OjnB3d1cbeJWWloaamhq1/Zyd\nnbFgwQLs378fGzduxNdff632uur7L1++DD6fj4CAAAQEBIDP56u1586dO6isrFS2x8rKCrLWFm4y\ngh07dmDHjh3GbgYxMCcnJwQGBsLT01O5bciQIUhNTUVgYGCLBwBcunQJAwYMwMqVKxEeHg5/f39k\nZWW1OHZ0dDQOHDiAl19+GYcPH+6yayLcQDFePyiWd28U4x+hUhwzsG3bNowaNQrjx4/H2rVrERQU\nhKKiIuzbtw8CgQArV65EbGwswsLCMHToUGzZsgX19fWYP39+q8dbtmwZNmzYgICAALi5uWH16tWw\nsbFRvr5161Z4e3sjLCwMYrEYx48fR3BwsNox3n33XTg6OgIAVq5ciXnz5imfL168GKtWrYKDgwPs\n7OywfPlyTJgwAQMGDAAA+Pn54eDBg8jJyYG9vT1cXY23emHT7VvS/bz22mvYsWMHYmNjsWLFCtjY\n2CA5ORnp6elYt24dAgICkJaWhiNHjqBfv3747LPPUFhY2Oqxpk+fjq+//hpz5szBoUOHEBNDU+4R\nzVGM7zyK5aS5bhvjDV7tzwGmMCgtKyuLvfjii8zT05NZW1uzwMBA9vrrr7P79+8zxhjbvHkz6927\nNxMIBCwqKopdunRJ+d7mA6vEYjFbvHgxs7W1ZV5eXsrXmwZW7dixgw0aNIgJhULm7OzMnn32WeXM\nBk0Dqw4dOsQCAgKYtbU1e+qpp1h5ebny+DU1NWzx4sWsZ8+ezM7Ojs2aNUttwMn9+/fZ6NGjmVAo\nZPQjSAyttRkTmqSkpLBJkyYxOzs75uDgwIYPH8727t3LGGNMLpez119/nTk6OjJnZ2e2du1aNm/e\nPLVBgU0zJjT56quvmL29PTt//rxBr6k1phCnzJUpfO8oxhOiG4rx6niMmWjBnAmpr6+Hra0t6urq\nIBR27znIT506hbFjx0IikYDPN/8bPk231Z588kkjt4SQzqE4pTv63j1irjGeYjnhOk3jlPn81hJi\nADNmzABgugPCCCGEdIxiOSEKlNiTbm369OnGbgIhhJBOolhOiAKV4miAbtMSQkwdxSnd0feOEGLq\nNI1TNN0lIYQQQgghHECJPSGEEEIIIRxAiT3p1ng8XrsrNBJCCDF9FMsJUaDBsxpoGoZQX19v5JYQ\nQ6H/W2Lumn6GadiU9ijGcwf9HxKu0jTGU2KvAbFYDABwcXExckuIodja2hq7CYTohVgspp9nLdXU\n1ACgGM8F9LNPuK6jGE+z4mhALpejsrISNjY2Gt3qq6+vh4uLC8rKyjgzwwIXrwng5nXRNZkPfV4X\nYwxisRiOjo6wsKAqS23U1tbC3t4epaWlnE0Mufo71ISuz7zR9XVM0xhPPfYasLCwgLOzs9bvEwqF\nnPsB5eI1Ady8Lrom86Gv6+JqUmpoTR+Stra2nPz5UsXV36EmdH3mja6vfZrEeOrWIYQQQgghhAMo\nsSeEEEIIIYQDKLE3AD6fj/fffx98Pncqnbh4TQA3r4uuyXxw9brMTXf4f+D6NdL1mTe6Pv2hwbOE\nEEIIIYRwAPXYE0IIIYQQwgGU2BNCCCGEEMIBlNgTQgghhBDCAZTYG9iuXbswcuRI9OzZE25ubpg9\nezays7ON3axOOXPmDKZOnQo3NzfweDxkZmYau0k6iYuLg5eXF2xtbTFjxgwUFhYau0md8tNPPyEm\nJgY9e/YEj8eDVCo1dpM6bdOmTRg6dCjs7e3Rq1cvLFq0CCUlJcZuVqfExcUhJCQEtra2cHFxwYwZ\nM5Cenm7sZpGHuBizVXElfqviWixXxcW4roqLMV6VMeI9JfYGdvr0aSxcuBBnz57FiRMnIBaLMWXK\nFEgkEmM3TWe1tbWIiIjApk2bjN0Une3evRt/+9vfsG3bNly4cAHV1dV4/vnnjd2sTqmrq8O4cePw\n17/+1dhN0Ztz585hzZo1SExMxK+//orU1FSz/38KCAjAtm3bcOvWLZw8eRKWlpaYNm2asZtFHuJi\nzFbFhfitiouxXBUX47oqLsZ4VUaJ94x0qQcPHjAALDk52dhN6bS7d+8yACwjI8PYTdFaeHg4e/vt\nt5XPs7KyGAB2/fp14zVKTxISEhgAJpFIjN0Uvbtw4QIDwCorK43dFL1JSUlhAFhhYaGxm0JawaWY\nrcqc47cqLsdyVVyO66q4GONVdUW8px77LlZaWgoAcHZ2NnJLuq+GhgYkJydj3Lhxym3+/v7o06cP\nLl26ZMSWkY6UlpbCxsYGdnZ2xm6KXtTX12PPnj0IDg6Gm5ubsZtDWkEx23RRLOcersV4VV0V7ymx\n70KMMaxbtw6TJk2Ct7e3sZvTbZWVlUEul8Pd3V1tu5ubG4qLi43UKtKRhoYGbNy4EQsXLjT7RUyO\nHDkCe3t72NnZ4ejRozh27BgsLCgcmxqK2aaNYjm3cCnGq+rqeE+fJDpatmwZeDxem4/o6OgW7/nL\nX/6CGzduYPfu3V3fYA3ock3miNGabGZHJpNh/vz5AIBPPvnEyK3pvLFjxyIpKQlnzpxB//79MXfu\nXM7UcJsqLsZsVd0lfquiWM4dXIvxqro63nPnT6IuFhcXh3Xr1rX5urW1tdrzt99+G99//z3Onj2L\nXr16Gbp5OtH2msyVq6srLCwsWvTolJSUtOj5IcYnl8vx0ksv4c6dOzh9+jTs7e2N3aROs7OzQ2Bg\nIAIDAxEZGQknJyccO3YMM2bMMHbTOIuLMVtVd4nfqiiWcwMXY7yqro73lNjryNHREY6Ojhrtu2HD\nBnz55Zc4ffo0+vbta9iGdYI212TOrK2tMWTIECQkJCAmJgYAcPfuXeTk5CAqKsrIrSOqGGNYsmQJ\nLl68iLNnz3K2zpkxxqlbz6aIizFbVXeJ36oolpu/7hLjVRk63tMniYHFxcXh448/xk8//QQnJyfl\n/LrOzs4QCARGbp1uRCIRMjMz8eDBAwDA7du3IRKJ4Ovraza/lCtWrMDKlSsxbNgw+Pv7Y/Xq1Rg9\nejTCwsKM3TSdlZeXIzc3VzkvdXJyMiwtLREYGGi2PSDLli3D4cOHcfToUQBQ/v64ubnB0tLSmE3T\n2dq1a/H000/Dy8sLRUVFiIuLg6urK0aNGmXsphFwM2ar4kL8VsXFWK6Ki3FdFRdjvCqjxHuDzbdD\nGGOM+fn5MQAtHgkJCcZums6apt1q/ti9e7exm6aVTZs2MU9PT2ZjY8OmT5/OCgoKjN2kTtm9ezfn\nftZaux4A7O7du8Zums7mzJnDevfuzQQCAevduzebM2cOS09PN3azyENcjNmquBK/VXEtlqviYlxX\nxcUYr8oY8Z7HGI0+IYQQQgghxNzRrDiEEEIIIYRwACX2hBBCCCGEcAAl9oQQQgghhHAAJfaEEEII\nIYRwACX2hBBCCCGEcAAl9oQQQgghhHAAJfaEEEIIIYRwACX2hBBCCCGEcAAl9oQQQgghhHAAJfaE\nEEIIIYRwACX2hGiAMQYnJyccPHhQbfuGDRswatQovZ7rp59+QlBQEAQCAfr164cLFy4oX/vXv/4F\nT09P1NfXAwBqamowePBgvPHGG3ptAyGEdCcU4wlXUGJPiAZ4PB4iIiJw9epV5baioiL84x//wObN\nm/V2nj179mDNmjX49NNPcf36dQQGBuLVV19Vvh4bGwuBQIBdu3ZBLpdj7ty58PHxwdatW/XWBkII\n6W4oxhOu4Bu7AYSYi8jISCQmJiqfr1+/HjExMXrrzamsrMSaNWtw7NgxREVFAQDefvttPPHEE6ip\nqYGDgwMEAgHeeecdfPDBB0hPT0deXh7OnTsHS0tLvbSBEEK6K4rxhAuox54QDUVGRuLatWsAgPT0\ndOzZswcfffRRi/2WLVsGHo/X5iM6OrrV4x89ehQ+Pj7KgA8AAoEAACAUCpXbFi9eDJlMhh9//BFH\njhyBg4ODHq+SEEK6J4rxhAuox54QDUVFRaG0tBS5ublYu3YtFi5ciJCQkBb7xcXFYd26dW0ex9ra\nutXtp0+fRlhYmNq269evY+DAgeDzH/2qfvfddygrK4OzszNcXV11uxhCCCFqKMYTLqDEnhANeXp6\nwtvbG5999hni4+ORmZnZ6n6Ojo5wdHTU+vjJycnw9/dXPpfL5fjyyy/x3HPPKbedPXsWy5cvx7Fj\nx7B06VJs374da9as0fpchBBC1FGMJ5zACCEamzVrFuPxeOzdd9/V63FlMhmztbVlnp6e7PDhw+zG\njRts/vz5LDg4mNXV1THGGMvIyGAuLi7s66+/ZowxtmPHDubh4cFqa2v12hZCCOmuKMYTc0c19oRo\nYfDgwXBzc8Obb76p1+NmZmaioaEBX331Fd544w0MHz4cVVVViI+Ph1AoREVFBaZNm4YlS5Zg0aJF\nAICXXnoJVlZW2L59u17bQggh3RXFeGLuqBSHEA3J5XIcPHgQ7733nt4HM6WkpCAgIABTp05FdnZ2\ni9ednJyQlpamtk0gECAvL0+v7SCEkO6KYjzhAkrsCemAXC5HSUkJtmzZAgsLC7zyyit6P0dycjIG\nDhyo9+MSQghpH8V4wiVUikNIBy5cuAAvLy8cP34c33//vdrsBfqSkpJCQZ8QQoyAYjzhEh5jjBm7\nEYQQQgghhJDOoR57QgghhBBCOIASe0IIIYQQQjiAEntCCCGEEEI4gBJ7QgghhBBCOIASe0IIIYQQ\nQjiAEntCCCGEEEI4gBJ7QgghhBBCOIASe0IIIYQQQjiAEntCCCGEEEI4gBJ7QgghhBBCOOD/A3nO\nvf5hDDaSAAAAAElFTkSuQmCC\n"
+ }
+ }
+ ],
+ "source": [],
+ "id": "4c1836bb"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Here, we’ve colored the statistics according to their *new* quadrant. In\n",
+ "the same fashion as a regular Local Moran statistic, we get quadrants\n",
+ "that describe whether $y-\\rho x$ is above or below the mean, (which, in\n",
+ "both cases, is zero), and whether $\\mathbf{W}y$ (or\n",
+ "$\\mathbf{W}(y - \\rho x)$) is above or below its mean (which, again, is\n",
+ "zero by construction). Further, you can note the four-part quadrant\n",
+ "breakdown is explained by the annotations:\n",
+ "\n",
+ "- A *hotspot* is an area where the observation under study is above\n",
+ " its mean, and also above the surrounding mean.\n",
+ "- A *pit* is an area where the observation under study is below its\n",
+ " mean, but is surrounded by observations larger than the mean.\n",
+ "- A *coldspot* is a hotspot in reverse: observations are smaller than\n",
+ " the mean, and surrounded by values smaller than the mean.\n",
+ "- A *peak* is a pit in reverse: the observation under study is above\n",
+ " the mean, but is surrounded by values below the mean.\n",
+ "\n",
+ "In the case of the multivariable statistics, the interpretation remains\n",
+ "the same; we just change what values we’re comparing at the site and\n",
+ "surrounding. For the partial Moran, we compare the adjusted $y-\\rho x$\n",
+ "to $\\mathbf{W}y$, while the full Auxiliary Regression Moran compares\n",
+ "$y - \\rho x$ to $\\mathbf{W}y - \\rho \\mathbf{W}x$. Further, it might help\n",
+ "to recognize that arrows in the left plot represent *only* the lateral\n",
+ "(left-right, horizontal) component of arrows in the right plot. The left\n",
+ "plot shows how information conditions our *site-specific* judgement,\n",
+ "while the right plot shows how information conditions our judgement\n",
+ "about the entire relationship. The vertical component of those vectors\n",
+ "corresponds to the contribution of the $\\rho\\mathbf{W}x$ component of\n",
+ "the y-axis term.\n",
+ "\n",
+ "We can also center the arrows on a common axis. This will let us see at\n",
+ "a higher level whether information about crowding changes our judgement\n",
+ "about the pattern of prices in Chicago.\n",
+ "\n",
+ "For the partial Moran, we can visualize the changes along the $y$ axis\n",
+ "as different “arrows” pushing either left or right. This is fine because\n",
+ "the correction is only be applied on the $x$ component. For the\n",
+ "auxiliary Moran, we need to build a Rose diagram that maps the typical\n",
+ "move in each direction. This puts the original $I_i$ value at the center\n",
+ "of the diagram, and shows the number of moves that go in each of the\n",
+ "directions. Longer bars/pie slices indicate more moves in that\n",
+ "direction."
+ ],
+ "id": "7d81382c-5b6a-41da-8006-a345979ec796"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "metadata": {},
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAGFCAYAAAB0Y6yrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90\nbGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA7E\nAAAOxAGVKw4bAADhr0lEQVR4nOzdd1hTZxsG8DuLEPaWKSAoOHAAKiqOuifgtuKAT6ttXVVbR7WC\nWlvbWrXaWrcoWre14N6jihO17lXUKqAs2SPj/f6gpEbCTkgCz69XLsuZz0lCuPOe97yHwxhjIIQQ\nQgghhOgMrqYLIIQQQgghhFQMhXhCCCGEEEJ0DIV4QgghhBBCdAyFeEIIIYQQQnQMhXhCCCGEEEJ0\nDIV4QgghhBBCdAyFeEIIIYQQQnQMhXhCCCGEEEJ0DIV4QgghhBBCdAyFeEIIIRoXExODIUOGwN7e\nHnp6erC0tES3bt2wefNmSKVSAEBERAQ4HA6ePHmi4WqrT6dOneDv7690XlWej06dOqFTp05VrK7i\nnj17Bg6Hg4iIiAqvu3z5cuzbt0+l9ezfvx9Lly5V6TbPnDkDDoej9LF+/foKbev916lo22fOnCnX\n+ocPH0bfvn1hY2MDgUCAOnXqICAgAL///nuF6lCF8hxLSa9xeHg4OBxONVRZuqq8f9WBr+kCCCGE\n1G7Lly/HtGnT0LlzZ3z33XdwdnZGWloajh07hk8++QRmZmYIDAzUdJk1yqpVqzSyXzs7O8TExMDN\nza3C6y5fvhz+/v4YMGCAyurZv38/Tpw4gWnTpqlsm0VWrFiBli1bKkyrzHFX1vTp07F06VIMGjQI\nP//8M2xtbfH69WtER0djyJAhuHbtGpo1a1Zt9bzP29sbMTExaNSokXxaSa/x2LFj0bNnz+ouUetR\niCeEEKIx586dw7Rp0zBx4kSsWLFCYV5gYCCmTZuG7OxsDVVXc70bnKoDYwxisRhCoRB+fn7Vum9N\nadiwocaOdevWrVi6dCmWLFmC6dOnK8wbPHgwpkyZAnNzc43UVsTExKTcz4+joyMcHR3VXJHuoe40\nhBBCNGbx4sWwsLDA999/r3S+m5sbmjZtqjAtOTkZwcHBMDExgb29PSZPnoy8vDyFZcLCwuDt7Q1T\nU1NYWVmhc+fOuHTpksIyRafzo6KiMHHiRFhZWcHa2hojRozA27dvFZZNSkrChx9+CBMTE5ibmyM0\nNBRRUVFKuzbs27cPfn5+MDAwgJmZGQYPHowXL15U7gmqIA6Hg7lz52LFihVwdXWFsbExOnbsiLt3\n7yos927XhoSEBPD5fKxcubLY9r777jsIBAIkJSUBAI4dO4bevXvDzs4OBgYGaNKkCX788Ud5l6ci\nLi4uGDFiBDZu3AhPT0/o6enh4MGDSrsjXL16FYMGDYKjoyNEIhE8PDzw5ZdfIjc3V2F7z58/x7Zt\n2+RdU0JCQuTzb926hYCAAJibm0MkEqFdu3Y4f/58qc9VSEgINm/ejFevXsm36eLiIp//8OFD9O/f\nH2ZmZhCJRPDz88ORI0dK3WZ5lNQlo6JdZUrzzTffoEmTJsUCfBEfHx/UrVtX/vORI0fQpk0biEQi\nmJqaIigoCA8fPlRYp6hr14kTJ+Dt7S1//ffv319s+zt27ICnpyeEQiEaN26stPvO+8db2musrDtN\nRkYGJk6cCHt7ewiFQnh4eGDZsmVgjBXbR3l+x3/++We0adMGFhYWMDMzg5+fHw4ePFjSU6wVKMQT\nQgjRCKlUijNnzqB79+7Q19cv93ojR46Em5sb9u3bh08++QS//PILvv32W4VlXr16halTp2L//v2I\niIiAjY0NOnTogL/++qvY9qZMmQIOh4PffvsN8+bNw969ezFlyhSFZQYMGIDDhw/j22+/xY4dOyAQ\nCDBp0qRi21q9ejUGDhyIRo0aYc+ePVizZg3u3LmDjh07IjMzs9zHWBVbt27FwYMH8dNPP2HTpk14\n8eIFAgMDIZFIlC5vZ2eHrl27IjIyUum2evbsCWtrawDA33//jS5dumDjxo04ePAgRo8ejfDwcMyZ\nM6fYuqdPn8bSpUsRFhaGI0eOFPsyVuTFixdo3rw5Vq9ejSNHjmDKlCnYuHEjQkND5cv8/vvvsLW1\nRY8ePRATE4OYmBh89dVXAIDY2Fi0bdsWqampWLduHfbu3QtLS0t07doV169fL/F5+uqrr9C7d29Y\nW1vLt1kUNuPj4+Hv749bt27h559/xq5du2BmZoY+ffrg8OHDJW7zXTKZDBKJRP54/4uOusTHx+P+\n/fvo169fuZY/cuQI+vTpAyMjI+zcuRO//vor7ty5A39/f7x69Uph2adPn2LKlCmYNm0a9u3bBzs7\nOwwaNEjhuowTJ05g+PDhqF+/Pvbt24cvvvgCU6ZMKfal4H2lvcbvk8lk6NOnDzZt2oTp06cjOjoa\nPXv2xLRp05S+F8vzO/7s2TOMHTsWu3fvxs6dO+Hr64u+ffuW+/XWCEYIIYRoQGJiIgPAZs2aVa7l\nN23axACwefPmKUzv06cPq1+/fonrSSQSJhaLWYMGDdjkyZPl00+fPs0AsFGjRiksP2HCBCYUCplM\nJmOMMXb06FEGgO3cuVNhuX79+jEA7PTp04wxxjIzM5mJiQkLDQ1VWC4uLo4JBAK2bNmych3nuzp2\n7MjatWundF7R8/H48WP5NADM3d2dFRQUyKft3r2bAWAXLlxQ2G7Hjh3lP2/dupUBYA8ePJBPu3Hj\nhtLjLiKTyZhYLGZff/01MzMzY1KpVD7P2dmZiUQilpCQoLBOXFwcA8A2bdpU6jYjIyMZh8NhycnJ\nCtsMDg4utk7nzp2Zp6cny8/Pl0+TSCTM09OTBQYGKt1PkdGjRzMHB4di06dPn854PJ7CcyuRSFiD\nBg1YixYtSt1m0fvq/UfRfkp6DorWK3o/MVb8dVK2zPsuXbrEALDVq1eXWmcRHx8f5u7uzsRisXza\n33//zfh8Pps6dapCLXw+nz169Eg+7fXr14zL5bJFixbJp7Vt25Y1bNhQ4f1QVFNZx1LSaxwWFsbe\njazR0dFKn8MxY8YwPT09lpSUpLCPsn7H3yeVSplYLGbdunVjAQEB8ullvX+rG7XEE0II0Sl9+vRR\n+NnLy6tYd5UTJ07ggw8+gKWlJfh8PgQCAR49eqS0NVDZ9vLz8/H69WsAwKVLl8Dj8dC/f3+F5QYN\nGqTwc0xMDDIyMhAcHKzQAuvo6AhPT0+cO3eu0sdcEd26dYNAIJD/7OXlBQCldunp378/jIyMFFrj\nIyMjYWpqioCAAPm0hIQEjB8/Hs7OztDT04NAIMDcuXPx9u1bvHnzRmGbfn5+sLW1LbPejIwMzJw5\nE25ubhAKhRAIBBg5ciQYY3j8+HGp6+bm5uLs2bMYPHgwuFyu/DlnjKFr166Vfs7PnTsHPz8/uLu7\ny6fxeDx8+OGHuHnzJjIyMsrcxi+//IKrV6/KH4cOHapULeqUnZ2N2NhYDB06FHz+f5dJurq6ol27\ndjh79qzC8vXr10f9+vXlP9vY2MDGxkb+3pJKpfLuUVzufxGzdevWCl2VqurcuXPgcrn48MMPFaaP\nGDECBQUFiImJUZhe1u84AFy/fh19+/ZFnTp15J8Zx48fL/MMgibRha2EEEI0wtLSEiKRCM+fP6/Q\nehYWFgo/C4VC5Ofny3+OjY1F79690aNHD2zYsAF2dnbg8XgYO3Zssb7zJW0PgHzZhIQEmJubKwRj\nAKhTp47Cz0UhtmvXrkrrrsyFhHw+X+HY3lXUPePd8AWUfTzKGBgYYODAgdi2bRsWLlwImUyG7du3\nY/DgwfKuTjKZDAEBAYiPj0d4eDg8PT0hEomwf/9+LFq0qNj27ezsynWMoaGhOHHiBBYsWIDmzZvD\n0NAQV65cwYQJE0qtGQBSU1MhlUqxcOFCLFy4UOkyMplMIVCWR2pqKlq0aFFsuq2tLRhjSEtLg4mJ\nSanbaNCgAXx9fSu0X1VwcnICgHL9XqWlpYExpvS1srW1LbaN999bQOH7q+h1Sk5OhlgsLva7ART/\nfamK1NRUWFhYyN/b79ZcNP9dZf1O/PPPP+jSpQsaNWqElStXom7duuDz+fjqq69w//59ldWtahTi\nCSGEaASfz0enTp1w/Phx5OfnF/uDXFl79+4Fn8/Hvn37FIJ3WloazMzMKrw9Ozs7pKWlQSwWK2zv\n3VY8oPBLCVA4fnvjxo2LbcfY2LjC+7axscGFCxeUzouPjweXy4WVlVWFt6vMyJEjsXnzZvz555/I\nzc1FQkICRo4cKZ//9OlTXLt2DZGRkRgxYoR8enR0tNLtlWdc77y8PPzxxx8IDw9X6KN8+/btctVs\nZmYGLpeLCRMmYNSoUUqXqWiABwpDX2JiYrHpiYmJ4HA4SsNseRV9KSooKFCYnpKSUultvsve3h4N\nGzZEdHQ0vvnmm1KXNTc3B4fDKfFYi97T5WVlZQWBQFDsdwMo/H1xdnau0PZKYmFhgdTUVBQUFEBP\nT08+veg4Klr3kSNHkJ6ejl27dimMgpOTk6OSetWFutMQQgjRmFmzZiElJQVffPGF0vlxcXFKL0Yt\nTU5ODng8nkKIPHXqVKVHiPHz84NUKi02wsbu3bsVfm7bti2MjY3x5MkT+Pr6Fnt4eHhUeN8ffPAB\nXrx4gWvXrilMZ4zh999/R8uWLWFkZFTxgyphX46OjoiMjERkZCRcXFzQvn17+fyiQPPuFxmxWIxt\n27ZVep/5+fmQSqXFznIou5mOUChUGLEGAAwNDdG+fXvcunUL3t7eSp/30ijbJgB07NgRly5dwrNn\nz+TTpFIpdu7ciRYtWlTqC1mROnXqQCgU4s6dOwrTVTkSypdffok7d+6UeCOrGzdu4MWLFzA0NISP\njw92796tcOHt8+fPcfHiRXTs2LFC++XxeGjZsiX27NkDmUwmn3758mWF57IkJb0e7+vYsSNkMlmx\n38Ft27ZBT0+vwkN7KntvP3r0qMQv0NqCWuIJIYRoTIcOHbB06VJMmzYN9+/fR0hICOrWrYu0tDSc\nPHkS69evx2+//VbiyCbK9OzZE8uXL0dISAhCQ0Px6NEjLFy4EA4ODpWqsXv37vD398e4ceOQnJwM\nd3d37NmzB7du3QLwX0uviYkJfvjhB0yYMAFJSUno1asXTE1N8erVK5w9exadOnXC8OHDARQOmTd/\n/nzExcWV2ld4xIgRWLlyJXr16oU5c+bAy8sLycnJWLt2Lf766y8cPXq0UsekDJfLRXBwMNasWQOx\nWIypU6cqfBFq2LAhnJ2dMWfOHPB4PAgEAixbtqxK+zQ1NYWfnx9+/PFH2NnZwcrKChs3biw2KgpQ\nOLb9+fPnceDAAdja2sLKygouLi5YunQpOnTogB49emDMmDGws7NDcnIyYmNjIZVKsXjx4hL336hR\nI6SmpuLXX3+Fr68v9PX14eXlhalTpyIiIgLdunXD/PnzYWJiglWrVuHRo0dVDtscDgdDhw7Fhg0b\n0KBBA3h4eODgwYMqGVqyyIgRIxAbG4vp06fL74Zsa2uLN2/e4ODBg4iMjMS1a9dQt25dLFy4EH36\n9EHfvn3x6aefIisrC2FhYTA1NS1xiMrSzJ8/H927d0dQUBDGjx+PpKQkhIWFlev6iJJe4/f16tUL\n/v7++Pjjj5GUlITGjRvj0KFDWL9+PWbPnl3hs1Ndu3YFn8/HqFGjMH36dCQkJCAsLAx169ZV+DKi\ndTR6WS0hhBDCGLtw4QIbNGgQs7W1ZXw+n5mbm7Nu3bqxyMhI+SgXykZjYaz4yBWMMbZixQrm4uLC\n9PX1ma+vLzt+/HiJI30cP35cYd2i/cTFxcmnvXnzhg0dOpQZGRkxU1NTNnLkSBYREcEAsJs3byqs\nf/DgQdapUydmbGzM9PX1mZubGwsNDWV3796VL/P5558zoVDI0tLSynxuUlJS2KRJk5izszPj8/nM\n1NSUde/enZ07d67YsgDYnDlzFKYpG1Hj/eeiyJ07d+Sjqbw7Uk2RGzdusHbt2jGRSMQcHBzYV199\nxdatW1fs+SpplBFltcTFxbGePXsyIyMjZm1tzSZMmMAOHDhQbOSS+/fvM39/fyYSiRgANnr0aPm8\ne/fusaFDhzJra2ump6fHHBwcWL9+/djBgweLP6HvyMrKYsOGDWNmZmYMAHN2dpbPe/DgAQsMDGQm\nJiZMKBSy1q1bs8OHD5e6PcZKfl+9Ky0tjY0YMYJZWloyc3NzNn78eKXHXJnRad518OBB1rt3b2Zl\nZcX4fD6zsbFhAQEBLCoqSmG5w4cPMz8/P6avr89MTExYQEBAsde/pJGSnJ2dFV4Lxhj77bffWIMG\nDZienh5r1KgR27dvX7mOpaTXWNnveHp6OpswYQKztbVlAoGA1a9fny1dulRhxJmK/I7v3LmTeXh4\nMKFQyBo1asS2b9/ORo8erfCe0LbRaTiMvTMqPiGEEELKZcKECYiIiEBqamqF+/O3bdsWzZs3x6pV\nq9RUHSGkpqPuNIQQQkgZIiIikJ6ejsaNG6OgoABHjhzB6tWr8cUXX1Q4wOfk5ODWrVvYvn27mqol\nhNQGFOIJIYSQMhgaGmL58uV4+vQp8vPz4erqim+++abEC3JLY2BggOzsbDVUSQipTag7DSGEEEII\nITqGhpgkhBBCCCFEx1CIJ4QQQgghRMdQiCeEEEIIIUTHUIgnhBBCCCFEx1CIJ4QQQgghRMdQiCeE\nEEKIzkhPT8cnn3wCBwcHGBoaol+/fnj58qV8/qNHj/DBBx9AJBLBxcUFGzduVFg/Pj4e3bp1g4OD\nA+bNm1fd5ROiMhTiCSGEEKIzxowZg6tXr+L333/HtWvXIBKJ0LdvX0ilUojFYvTp0wdWVla4evUq\nvvrqK4wfPx4nT56Urz9v3jy0a9cOBw4cwNGjR3HhwgUNHg0hlUc3eyKEEEKITsjNzcX+/ftx8uRJ\ntGrVCgCwYcMGmJqa4sSJE8jPz8c///yD2NhYGBsbo0mTJjh79ixWrlyJLl26AADevn2Lnj17wsvL\nC/b29nj79q0Gj4iQyqOWeEIIIYToBLFYDKlUCpFIJJ8mFArB4/Fw8eJFXLlyBS1btoSxsbF8fpcu\nXXD58mX5zzNmzMAnn3wCfX195Ofno0ePHtV6DISoSo0N8TExMRgyZAjs7e2hp6cHS0tLdOvWDZs3\nb4ZUKgUAREREgMPh4MmTJxqutvp06tQJ/v7+SudV5fno1KkTOnXqVMXqKu7Zs2fgcDiIiIio8LrL\nly/Hvn37VFrP/v37sXTpUpVu88yZM+BwOPKHSCRCo0aNsGDBAuTm5qpsP+Hh4Th16lSF1hGLxVi1\nahXatWsHMzMzCIVCuLq64n//+x9iY2NVVlt5cTgchIeHy38ODw8Hh8OR//z27VuEh4crrU1T7+H3\nFf0ePnv2TNOlEKJ1TExM0KpVK8yfPx8pKSnIy8vD7NmzIZFIkJiYiDdv3sDGxkZhHWtrayQlJcl/\nbtWqFeLj4xEfH49Dhw6Bz6dOCUQ31cgQv3z5crRr1w6pqan47rvvcOLECWzcuBENGjTAJ598ggMH\nDmi6xBpn1apVWLVqVbXv187ODjExMejTp0+F19WVEF9kxYoViImJwcGDB9GvXz/Mnz8f48ePV9n2\n58+fX6EQn52djS5dumD69Olo1aoVtm3bhmPHjmHu3LmIi4uTn7rWpLFjxyImJkb+89u3bzF//nyl\nIV5T72FCSMVERkYiKSkJ1tbWMDIywsuXL+Ht7Q0ulwvGWLm2IRAIioV9QnRNjfv6ee7cOUybNg0T\nJ07EihUrFOYFBgZi2rRpyM7O1lB1NVejRo2qdX+MMYjFYgiFQvj5+VXrvjWlYcOG8mPt3Lkz3rx5\ng4iICCxfvhwWFhaV3m5+fj6EQmGF15syZQouX76MM2fOoE2bNvLpHTt2xJgxY/D7779XuiZVcXR0\nhKOjY7mWre73MCGkcho0aIArV64gPT0dEokElpaWsLOzg6urKzIyMvDgwQOF5YsCPyE1TY1riV+8\neDEsLCzw/fffK53v5uaGpk2bKkxLTk5GcHAwTExMYG9vj8mTJyMvL09hmbCwMHh7e8PU1BRWVlbo\n3LkzLl26pLBMUbeHqKgoTJw4EVZWVrC2tsaIESOKXTiTlJSEDz/8ECYmJjA3N0doaCiioqLA4XBw\n5swZhWX37dsHPz8/GBgYwMzMDIMHD8aLFy8q9wRVEIfDwdy5c7FixQq4urrC2NgYHTt2xN27dxWW\ne7crQkJCAvh8PlauXFlse9999x0EAoH81OaxY8fQu3dv2NnZwcDAAE2aNMGPP/4o7/JUxMXFBSNG\njMDGjRvh6ekJPT09HDx4UGl3mqtXr2LQoEFwdHSESCSCh4cHvvzyS4WuJy4uLnj+/Dm2bdsm76YS\nEhIin3/r1i0EBATA3NwcIpEI7dq1w/nz50t9rkJCQrB582a8evVKvk0XFxf5/IcPH6J///4wMzOD\nSCSCn58fjhw5Uuo2S9OyZUsAwJMnT/DkyROMHDkSrq6uEIlEqFevHj755BOkpaUVq9HR0RExMTFo\n27YtRCIRZsyYIe9ysmjRInnt73ZLeV9CQgIiIiLw0UcfKQT4d/Xv31/+/4wxLFu2DB4eHtDT04Od\nnR0mTpyIjIwMhXXK+36TSqWYO3eu/H3TqVOnYssAit1pnj17BldXVwDARx99JD/OoveOsu405XnN\nivbx+PFj9OnTB0ZGRnB2dsaCBQsgk8nky+Xl5WHq1Klo0qQJjIyMYGtri379+hULHISQ8jE1NYWl\npSXOnz+PxMRE9O3bF61atcK1a9eQlZUlX+7UqVNo3bq1BislRD1qVIiXSqU4c+YMunfvDn19/XKv\nN3LkSLi5uWHfvn345JNP8Msvv+Dbb79VWObVq1eYOnUq9u/fj4iICNjY2KBDhw7466+/im1vypQp\n4HA4+O233zBv3jzs3bsXU6ZMUVhmwIABOHz4ML799lvs2LEDAoEAkyZNKrat1atXY+DAgWjUqBH2\n7NmDNWvW4M6dO+jYsSMyMzPLfYxVsXXrVhw8eBA//fQTNm3ahBcvXiAwMBASiUTp8nZ2dujatSsi\nIyOVbqtnz57yVpG///4bXbp0wcaNG3Hw4EGMHj0a4eHhmDNnTrF1T58+jaVLlyIsLAxHjhwp9mWs\nyIsXL9C8eXOsXr0aR44cwZQpU7Bx40aEhobKl/n9999ha2uLHj16ICYmBjExMfjqq68AALGxsWjb\nti1SU1Oxbt067N27F5aWlujatSuuX79e4vP01VdfoXfv3rC2tpZvs6g1Oj4+Hv7+/rh16xZ+/vln\n7Nq1C2ZmZujTpw8OHz5c4jZLExcXBwAwMzNDfHw8HB0dsXz5chw9ehTz5s3DyZMn0bt372Lrpaen\nY9iwYfjwww9x+PBhDB8+XN7lJCQkRF772LFjS9z36dOnIZVKERAQUK5a58yZg2nTpqFbt26Ijo7G\njBkzEBERgT59+igEXaB877fw8HB88803CA4Oxv79+9G9e/cya7Gzs5N3n5o9e7b8OEvqilXR16x/\n//7o3Lkz9u/fj6CgIISFhWHz5s3y+fn5+cjMzMTcuXNx8OBB/Prrr8jLy4Ofnx8SExPL9TwSQoBD\nhw7hxIkT+Pvvv7Fnzx4MGjQIn376KRo1aoSePXvCwcEB//vf/3D37l1s3LgR27dvV/r3lRCdx2qQ\nxMREBoDNmjWrXMtv2rSJAWDz5s1TmN6nTx9Wv379EteTSCRMLBazBg0asMmTJ8unnz59mgFgo0aN\nUlh+woQJTCgUMplMxhhj7OjRowwA27lzp8Jy/fr1YwDY6dOnGWOMZWZmMhMTExYaGqqwXFxcHBMI\nBGzZsmXlOs53dezYkbVr107pvKLn4/Hjx/JpAJi7uzsrKCiQT9u9ezcDwC5cuKCw3Y4dO8p/3rp1\nKwPAHjx4IJ9248YNpcddRCaTMbFYzL7++mtmZmbGpFKpfJ6zszMTiUQsISFBYZ24uDgGgG3atKnU\nbUZGRjIOh8OSk5MVthkcHFxsnc6dOzNPT0+Wn58vnyaRSJinpycLDAxUup8io0ePZg4ODsWmT58+\nnfF4PIXnViKRsAYNGrAWLVqUus2i99XRo0eZWCxm6enpbPfu3czQ0JA1b95c6TpisZidP3+eAWCx\nsbEK9QFg+/fvL7YOADZnzpxSaymyePHiYq9vSVJSUphQKGSjR49WmB4ZGckAsD/++EOhhrLeb6mp\nqczQ0JCNHz9eaU1hYWHyaWFhYezdj7mi98u6deuK1fn+e7i8r1nRPjZu3KiwvSZNmrBu3bqV+LxI\nJBKWnZ3NjIyM2NKlS+XTi34P4+LiSlyXkNpsy5YtzNnZmQkEAubs7MwWLlzIJBKJfP6DBw9Yx44d\nmVAoZHXr1mXr16/XYLWEqE+NaomvrPdb4ry8vIp1Vzlx4gQ++OADWFpags/nQyAQ4NGjR3j48GG5\ntpefn4/Xr18DAC5dugQej6fQ3QAABg0apPBzTEwMMjIyEBwcDIlEIn84OjrC09MT586dq/QxV0S3\nbt0gEAjkP3t5eQFAqV16+vfvDyMjI4XW+MjISJiamiq0mCYkJGD8+PFwdnaGnp4eBAIB5s6di7dv\n3+LNmzcK2/Tz84OtrW2Z9WZkZGDmzJlwc3ODUCiEQCDAyJEjwRjD48ePS103NzcXZ8+exeDBg8Hl\ncuXPOWMMXbt2rfRzfu7cOfj5+cHd3V0+jcfj4cMPP8TNmzeLdStRpkePHhAIBDA1NcXgwYPxwQcf\nYP/+/QCAgoICfPPNN/D09IRIJIJAIED79u0BoNh7lM/no2/fvuWqmzGm8N57v5tTeVy6dAn5+fkY\nMWKEwvRhw4aBz+fj7NmzCtPLer/dvn0b2dnZGDJkSLHtqVJFX7P3f++bNGlS7Hdk165daN26NczM\nzMDn82FoaIisrCylnyOEEOVGjhyJZ8+eoaCgAM+ePcPcuXPB4/Hk8z08PHDmzBnk5eXh+fPnGDNm\njAarJUR9alSIt7S0hEgkwvPnzyu03vsXBQqFQuTn58t/jo2NRe/evWFkZIQNGzbg0qVLuHr1Kpo1\na1as73xJ2wMgXzYhIQHm5uYKQQUA6tSpo/BzUYjt2rUrBAKBwuP27dtISUmp0HEChQGupCBWNP39\n4bbKOh5lDAwMMHDgQGzbtg2MMUilUmzfvh2DBw+Wd3WSyWQICAjAgQMHMHfuXJw6dQpXr16Vd6V5\nf/t2dnblOsbQ0FCsXr0akydPxvHjx3H16lX88ssvZdYMAKmpqZBKpVi4cGGx5/znn39GWlpase4f\n5ZGamqq0fltbWzDGivVdV+aXX37B1atXcefOHWRlZSE6OhrOzs4ACruHhIeHY8SIETh48CCuXLki\n7zry/jHb2Ngo/MErzebNmxWeAzc3NwCAk5MTAJTrdy01NRVA8dePz+fD0tJSPr9IeX5/gOK/L+//\nXFUVfc2U1f3ucx8dHY2hQ4eiYcOG+O2333D58mVcvXoV1tbWZb4vCSGEkPfVqNFp+Hw+OnXqhOPH\nj1d6xA1l9u7dCz6fj3379ikE77S0NJiZmVV4e3Z2dkhLS4NYLFbYXlFLfRFLS0sAheNGN27cuNh2\n3r2ZRXnZ2NiUeIvp+Ph4cLlcWFlZVXi7yowcORKbN2/Gn3/+idzcXCQkJGDkyJHy+U+fPsW1a9cQ\nGRmp0EobHR2tdHvvjvddkry8PPzxxx8IDw9XuA7h9u3b5arZzMwMXC4XEyZMwKhRo5Quw+VW/Luv\nhYWF0n7PiYmJ4HA45RpdpkGDBvD19VU6b8eOHRg1ahTmzp0rn/buhV3vKs/zWKRfv364evWq/Oei\n36lOnTqBx+MhOjoa3bt3L3UbRceWmJio8D6WSCRISUmRv8/LqyhYv379WmF77//+VJUqXrN37dix\nA+7u7goXYYvF4mJfYgghhJDyqFEt8QAwa9YspKSk4IsvvlA6Py4uTunFqKXJyckBj8dTCD+nTp2q\n9Agxfn5+kEqlxYbg2717t8LPbdu2hbGxMZ48eQJfX99iDw8Pjwrv+4MPPsCLFy9w7do1hemMMfz+\n++9o2bIljIyMKn5QJezL0dERkZGRiIyMhIuLi7yLB1D4vAJQ+CIjFouxbdu2Su8zPz8fUqm02FkO\nZTeDEgqFxW6WZGhoiPbt2+PWrVvw9vZW+ryXRtk2gcJhFy9duqRwAx+pVIqdO3eiRYsWlfpC9q6c\nnJxix7xp06YKbUNPT69Y7ZaWlgrHXtS1xd7eHiEhIVi7dq3COOzvKurq4+fnB6FQiB07dijM37lz\nJyQSCTp27FihOps2bQpDQ0Ps2rVLYfr721em6EtIeW6SperXLCcnp9hZrsjIyEp1USKEEEJqVEs8\nAHTo0AFLly7FtGnTcP/+fYSEhKBu3bpIS0vDyZMnsX79evz2228ljmyiTM+ePbF8+XKEhIQgNDQU\njx49wsKFC+Hg4FCpGrt37w5/f3+MGzcOycnJcHd3x549e3Dr1i0A/7X0mpiY4IcffsCECROQlJSE\nXr16wdTUFK9evcLZs2fRqVMnDB8+HEDhaB3z589HXFycwrCG7xsxYgRWrlyJXr16Yc6cOfDy8kJy\ncjLWrl2Lv/76C0ePHq3UMSnD5XIRHByMNWvWQCwWY+rUqQpfhBo2bAhnZ2fMmTMHPB4PAoEAy5Yt\nq9I+TU1N4efnhx9//BF2dnawsrLCxo0b8erVq2LLNmrUCOfPn8eBAwdga2sLKysruLi4YOnSpejQ\noQN69OiBMWPGwM7ODsnJyYiNjYVUKsXixYtL3H+jRo2QmpqKX3/9Fb6+vtDX14eXlxemTp2KiIgI\ndOvWDfPnz4eJiQlWrVqFR48e4eDBg1U6ZqDwPbp582Z4eXnB3d0d+/btw8WLFyu0jUaNGuHgwYPo\n2bMnzM3NYW9vD3t7+xKXX758OR49eoQuXbrg448/RteuXWFkZIS///4b27Ztw7Vr1xAUFAQLCwtM\nmzYN3377LQwNDdG7d2/cv38fc+fOhb+/f4Vv1GVmZoapU6di0aJFMDY2Rvfu3XH16lVs2LChzHXr\n1KkDS0tL7NixQ/5lwNXVVenZAFW/Zj179sT+/fsxdepU9O3bF9evX8eKFSsqdTaPEEIIqVGj07zr\nwoULbNCgQczW1pbx+Xxmbm7OunXrxiIjI+WjnigbjYWx4iNaMMbYihUrmIuLC9PX12e+vr7s+PHj\nxUazKBpF5Pjx4wrrKhtt4s2bN2zo0KHMyMiImZqaspEjR7KIiAgGgN28eVNh/YMHD7JOnToxY2Nj\npq+vz9zc3FhoaCi7e/eufJnPP/+cCYVClpaWVuZzk5KSwiZNmsScnZ0Zn89npqamrHv37uzcuXPF\nloWSEUuUjQjz/nNR5M6dOwxAiSOZ3Lhxg7Vr146JRCLm4ODAvvrqK7Zu3bpiz1dJI8koqyUuLo71\n7NmTGRkZMWtrazZhwgR24MABhZF/GGPs/v37zN/fn4lEIgZAYfSUe/fusaFDhzJra2ump6fHHBwc\nWL9+/djBgweLP6HvyMrKYsOGDWNmZmYMAHN2dpbPe/DgAQsMDGQmJiZMKBSy1q1bs8OHD5e6PcZK\nfl+9KykpiQ0dOpSZmZkxMzMzNnz4cHblypViz01Jo+cwxtiff/7JvL29mVAoLDbKS0kKCgrYzz//\nzNq0acOMjY2ZQCBgLi4ubMyYMezWrVvy5WQyGVu6dClr0KABEwgEzNbWln366acsPT1dYXvlfb9J\nJBI2Z84cVqdOHaavr886duzI7t69W+boNIwx9vvvv7OGDRsyPp+vsF1l7+HyvGZF+xCLxQrTR48e\nrfD6S6VSNmfOHGZnZ8dEIhHr0KEDi42NZc7OzgrvPRqdhhBCSHlwGCvnPYqJ2k2YMAERERFITU2t\ncH/+tm3bonnz5nTbeEIIIYSQWqDGdafRFREREUhPT0fjxo1RUFCAI0eOYPXq1fjiiy8qHOBzcnJw\n69YtbN++XU3VEkIIIYQQbUIhXkMMDQ2xfPlyPH36FPn5+XB1dcU333xT4gW5pTEwMEB2drYaqiSE\nEEIIIdqIutMQQgghhBCiY2rcEJOEEEIIIYTUdBTiCSGEEEII0TEU4gkhhBBCCNExNebCVsYY8vLy\noK+vX6HbyhNCCCFE++Xl5SExMREJCQmIj49HYmIisrOzIZFIFB5isRhisRiMMfD5fAgEAoV/+Xw+\n9PT0YGNjAzs7O9jb28POzg4mJiaUH4hOqTEXtubm5sLAwAA5OTkQiUSaLoeogY+PDwDg+vXrGq6E\nEEKIqmRnZyMhIUH+iI+PV/pzWloajIyMYGdnJ38YGRkVC+h8Ph88Hg+PHz9GvXr1IJVKiwX9vLw8\nvH79Wr6P5ORkiEQihVD/7uPdaRYWFhT2iVagEE90RtGHZg15yxJCSK2TlJSE69evKzxevHgBU1PT\nYuFZWZg2NjYu136kUikOHDiAvn37gsfjlbl8QUGBvJW/tC8Ur1+/homJCVq0aAEfHx/5w93dHVwu\n9VAm1avGdKchNd+1a9c0XQIhhJByev36dbHAnpiYiCZNmsDHxwddu3bFzJkz0aRJExgaGmq0Vj09\nPdStWxd169YtdTmJRIK///5bfjxr165FbGwsABQL9vXr16dgT9SKWuIJIYQQUiXJycm4fPmyQmB/\n8+aNPLAXPby8vKCvr6/2eiraEl8VMpkMT58+xfXr1xEbGyv/VyqVyoO9t7c3WrVqhfr161NXHKIy\nFOIJIYQQUiGMMTx48ADR0dGIiorC1atX4eXlpRDYmzRpAqFQqJH6qjPEK8MYU2ixj42NxdWrV2Fp\naYl+/fohICAA7du3h0AgqPbaSM1BIZ7ojPDwcIV/CSGEVB+JRII///xTHtyTkpLQq1cvBAQEoGfP\nnjA3N9d0iXKaDvHKiMViXLhwAVFRUYiKikJycrL8+evVqxfMzMw0XSLRMRTiic6gC1tLxhiDVCqF\nVCrVdCmkAgQCAfWZJVotPT0dR44cQXR0NA4dOgQzMzMEBARofUuyNob4dxWdySgK9NeuXUO7du0Q\nEBCAfv36wc3NTdMlEh1AF7YSnREWFqbpErSSWCxGQkICsrOzNV0KqSAulwsnJycYGBhouhRC5OLi\n4hAdHY3o6GicP38eLVq0QEBAAGbPno1GjRpRn24V4HA4aNiwIRo2bIiZM2fizZs3OHToEKKiojB3\n7lw4OzvLvyy1atVKK7+IEM2jlnhCdBhjDI8fPwaPx4ONjQ0EAgH9gdURjDEkJycjOzubRrEgGpee\nno5t27Zhw4YNePDgAbp164aAgAD06dMHderU0XR5FabtLfGlycvLw+nTpxEVFYXo6GhIJBKMHDkS\nH330ERo0aKDp8ogWoZZ4QnRYQUEBpFIpnJyc6MurDrKyskJmZibEYrHGLgAktRdjDBcvXsS6deuw\nZ88e+Pn5YcaMGQgICKDPEw3S19dHr1690KtXL6xatQqXL1/G+vXr5aPcjBs3DgMHDqyWUX6IdqOm\nH6Iziq7yJ8VRK65uorMmRBNSU1OxfPlyNGnSBIMGDYK9vT1u3bqFEydOYOjQoRTgtQiHw4Gfnx/W\nr1+P+Ph4BAcHY/ny5bC3t8eUKVNw584dTZdINIj+8hOd4evrC19fX02XQQghOunu3bsYN24c6tat\ni2PHjuHrr7/Gixcv8M0339CFlDrA2NgY48aNw9WrV3Hq1ClIJBK0a9cOnTt3xh9//EEDG9RCagvx\n33zzDby9vWFkZAQ7OzuEhoYiKSmp1HWysrIQGhoKExMTWFpaYurUqZBIJOoqkegYb29veHt7a7oM\nQgjRGTKZDAcOHEDXrl3Rpk0bGBgY4ObNmzh06BD69++vtaPLkNI1b94cv/zyC16+fIn+/fvj888/\nR4MGDbB8+XKkp6drujxSTdTWJ/7PP//EtGnT4Ovri4yMDEyaNAlDhw7FqVOnSlxnwoQJuHLlCo4f\nP47s7GyMGDECxsbGWLBggbrKJFrs7uu7SMhMgJulG+qa1qWuNBX0Ous10vPU/2Fuqm+KOkblu/BN\nIpHA19cXHTp0wIoVK+TTz58/jy5duiAmJgY+Pj7F1ouIiMDcuXPx8uVLhelnzpzBBx98ALFYDD6/\n6h9nEokEAoEAp0+fRqdOnaq8PUI0JTs7Gxs2bMDKlSvBGMOkSZOwb98+mJiYaLo0okLGxsaYNGkS\nJkyYgMOHD+Onn37CvHnzMHr0aHz22Wd0hqWGU1uIP3TokMLPy5cvR9u2bZGeng5TU9Niy6elpWHb\ntm04fPgwWrduDQD4+uuvMWPGDISFhenc1eWk6m6/vo21V9YCAPR4enA2d4YeTw/uFu5ws3SDu6U7\nXM1dIeTTBYHve531Gp3Xd0aeJE/t+9Ln6+PU2FPlCvJ8Ph8bN25EmzZtMHToULRr1w55eXkYO3Ys\npk6dqjTAE0LKTywWY/369ViwYAE8PDywdOlS9O7dm/6G1nBcLhd9+vRBnz59cO/ePaxYsQLNmjXD\n6NGj8dVXX8HW1lbTJRI1qLY+8cnJydDX14ehoaHS+devXwdjTKH1q0uXLkhJScGTJ0+qqUqiTYY1\nHYZTY0/h1NhTOBJ6BIt7LMahh4ewImYFphyYgj6b+6DJT03wwfoP8NG+j7D0z6X4K/EvuhkUgPS8\n9GoJ8ACQJ8mrUIu/t7c3pk6dijFjxiAvLw9hYWFgjGH+/PkqqefEiRPw9fWFSCRCgwYN8Msvv8jn\n5efnY9SoUXBycoKhoSF8fHwUzg66u7sDAD744ANwOByEhIQAALZv3w5PT0/o6+vD1tYW48aNU7rv\nHTt2wN7eXqFvKmMMzs7OiIiIUMnxEaKMTCbDzp070ahRI2zYsAGRkZE4c+YM+vXrRwG+lmnUqBFW\nr16NO3fuICsrCw0aNMDcuXOpm00NVC1DTObn52PBggUYPXp0iae837x5AzMzM4X+edbW1vJ5Hh4e\nCsuLxWKF/vK5ublqqJxo0r0393Az4ab850+7foqsgiw0WtAIbpZucLMobI13s3SDu4U7nMycwOfS\nqKm6IDw8HPv370dwcDCio6Nx8uRJlQyX9vDhQwwYMADLli3DBx98gHv37uF///sfrKysMHToUEgk\nEjRo0ADTpk2DkZERtm3bhsDAQDx9+hQ2Nja4dOkS7OzssHfvXrRt2xYikQgJCQkIDQ3F5s2b4efn\nh6SkpBK7dgUFBeGTTz7BiRMn0KNHDwDA2bNnkZycjIEDB1b5+Ah5H2MMx48fx+zZs5GRkYFFixZh\n0KBBNGIVgYuLCzZv3ozPP/8cX375Jdzc3PDll1/i008/peEpawi1Jx6pVIoRI0YAAJYsWVLicspa\nT0sbfm3RokUqa7kj2ulWwi1E34+WB/b05MJWhFuTb9HQfDpOX18f33//PQIDAzF27Fi0b9++zHXi\n4+NhZGSkMO390Ri+++47jBs3DmPGjAEA1KtXD5999hnWrVuHoUOHwtDQEHPnzpUvHxYWhu3bt+PI\nkSMYNWoUrKysAAAWFhby089PnjyBUChEnz59YGRkBGdn5xJHSdLX18fQoUOxZcsWeYjfsmUL+vfv\nD2Nj43I+O4SUz9WrVzFr1izcu3cPYWFhGDNmDF2oSorx8vJCdHQ0/vzzT8ycORPLly/H/PnzMWrU\nKDpLo+PUGuJlMhlCQkLw4MEDnD17ttgf4HfVqVMHb9++hVgsln8IvXnzBgBgY2NTbPk5c+Zg5syZ\n8p9zc3NhaWmp4iMgmvRhsw/xYbMP5T/3eFUYiijA1wybN2+GgYEBrly5ovB7X5I6derg/PnzCtMu\nX74sbyQAgNu3b+P27dtYvXq1fJpEIoG9vb385yVLlmDLli14+fIlCgoKkJubi3/++afE/TZr1gxN\nmzZFvXr10Lt3b/Tu3RtBQUHQ09NTunxISAi6dOmCzMxM8Pl87N27F7t37y712AipiEePHmHOnDk4\nfvw4ZsyYgaioqBK7qhJSxN/fH3/++Seio6Px5ZdfYsmSJfjmm28QEBBAf1d1lNrOtzHGMHbsWFy6\ndAnHjx+HhYVFqct7e3uDw+Hg7Nmz8mmnTp2CpaWlvJ/quwQCAUQikcKD1Gz29vYKYYzorj179uDI\nkSO4ePEiUlNT8cMPP5S5Do/Hg7u7u8LDwcFBYZmsrCxMmzYNN2/elD/u3Lkj7/e+detWLFiwANOn\nT8fp06dx8+ZNNGrUCGKxuMT98vl8nDlzBjt37kSdOnUwY8YMtG3bFgUFBUqX9/PzQ926dbF3717s\n378fxsbG6Nq1awWeHUKUi4+Px/jx4+Hj4wMXFxc8ffoUX375JQV4Um4cDgcBAQG4desWvvjiC0ya\nNAn+/v7FGkiIblBbiP/4448RHR2Nbdu2AQASExORmJgoP/396tUreHp64sqVKwAKT18PHz4cU6ZM\nwZUrV3D69GnMnTsXn376KZ3uIaQGSU1NxcSJE7Fo0SI0a9YMv/76KxYuXIhHjx5VedvNmjXDw4cP\ni4V9FxcXAMClS5fQuXNnjB49Gs2aNYOtrS1evHghX5/H44HL5RbrpsPj8fDBBx/gu+++w5UrV3D9\n+nXcvHmzxDpCQkIQGRmJyMhIBAcHU/9kUiWZmZmYPXs2PDw8IJFIcO/ePfzwww909plUGo/HQ0hI\nCB49eoRBgwahf//+6Nu3L+7du6fp0kgFqO0vy9q1a5GcnIzWrVvDzs5O/ig6bS0Wi/Hw4UPk5OTI\n11m1ahVatmyJrl27YuDAgRg8eDDmzZunrhKJjhk3blyJo4IQ3fHZZ5/B1dUVkydPBgD07dsXQUFB\nGDduXJVHFvriiy9w4MABzJ07F/fu3cPdu3cRERGBVatWAQDc3Nxw8eJFnD9/Hnfv3sXo0aMhk8nk\n63M4HDg5OeHUqVN48+YNsrKycPnyZXz33XeIjY3F8+fPsWXLFgiFQjg7O5dYx8iRI3H+/HkcO3YM\no0aNqtIxkdrt1KlT8PLywq1bt3D58mVs2LABTk5Omi6L1BD6+vqYOnUqnj59imbNmqF169b49ttv\n6UabOkKt3WmUPYpaxFxcXIoNKWlkZISIiAhkZGQgNTUVy5cvV8kNXEjNsG7dOqxbt07TZZAqOHLk\nCHbt2oUNGzYotE6vWLECd+7cqfLr6+Pjg+PHj+Ps2bPw8fGBv78/Nm3aJP/c+fjjj9GlSxf07t0b\n3bp1Q/v27dGsWTOFbXz//ffYtm0b7OzsMHHiRJiYmODkyZPo3r07GjZsiO3bt2Pfvn2oU6fkcfHt\n7e3RuXNnNGvWDI0bN67SMZHaKSsrC59++ikGDRqEBQsW4ODBg2jUqJGmyyI1lKmpKRYtWoQLFy5g\n9+7daNu2LbXK6wAOqyGDaufm5sLAwAA5OTnUP76GWru28MZP1Br/n/z8fPz999+oV68ehML/bnql\nrTd7qk2aNWuGMWPGyM84KFPS60dqt9OnT+N///sfGjdujLVr19K1QJUglUpx4MAB9O3bl7rkVpBY\nLMbixYvxww8/YM6cOZg+fTo1qGopCvGE6LDSQuDrrNcVuglTZZnqm1KAf0dqair27NmDqVOn4tWr\nVzAzMytxWQrx5F1ZWVmYOXMmtm/fjmXLlmHUqFE0akglUYivur/++gshISEQCASIiIhAw4YNNV0S\neQ9dbUVIDVXHqA4aWDVQ+4MCvCJvb2/MmjULq1atKjXAE9Xat28funTpAlNTU3A4HIU+vc+fP0fn\nzp1hY2MDfX19NGjQAMuXL1dYPzw8HBwOR+ERFBSksMyvv/6KunXrok2bNrh//75K6z9z5gyaNm2K\nZ8+e4fbt2xg9ejQFeKJRTZs2xeXLl9GnTx+0bt0a33//fbGL/tUpKCgIHA4HJ06ckE97/3eUw+Eo\nDDIQHx+Pbt26wcHBoVZcU0khnuiM6OhoREdHa7oMQkr17NkzpKamYvTo0ZoupVbJyclB586dMWvW\nrGLz+Hw+goODcfz4cTx48AALFizA3LlzsXXrVoXlWrVqhYSEBPkjIiJCPu/FixdYtmwZdu3ahdDQ\n0FK7SVVEVlYWJk2ahAEDBmDevHk4cOBAsaFTCdEUgUCAefPm4fz589i+fTvatWuHBw8eqH2/mzZt\nQm5urtJ5u3btUvg9bdKkiXzevHnz0K5dOxw4cABHjx7FhQsX1F6rJlEnJ6IzAgICACi/uy8hpHYr\nuunXmTNnis1zcHCQ38UXKBxYYffu3bhw4YLCzcIEAoH8Tr3vy8jIgJmZGZo2bQo+n6+Si+zPnj2L\n0NBQeHp64vbt2xTeidZq1qwZrly5gm+++QatWrXCV199hWnTpqmlq9Lz588RFhaGixcvKh2Jydzc\nvMTf07dv36Jnz57w8vKCvb093r59q/L6tAm1xBOd0bdvX/Tt21fTZRBCdNxff/2FCxcuwN/fX2H6\nrVu3YGtriwYNGmDChAlIS0uTz2vSpAkaNmwIExMTdO7cGQsXLqz0/nNycjB58mQEBQXhq6++wsGD\nBynAE60nEAgQFhaGc+fOYdu2bfD398fDhw9Vug+ZTIbRo0dj/vz5cHR0VLpMSEgIbGxs0L59exw8\neFBh3owZM/DJJ59AX18f+fn56NGjh0rr0zbUEk90BnWlIYRURdu2bREbG4uCggIsXLgQwcHB8nl+\nfn7YsmUL3N3d8ezZM8yePRuBgYE4e/asvG/65s2b8eOPP8LY2LjSFyI/f/4cgYGBsLGxwe3bt0sM\nKoRoq+bNm8tb5Vu3bo0tW7bIz5RX1bJly2BkZITQ0FCl8xctWoQuXbqAz+fj999/R79+/XDs2DH5\nXbFbtWqF+Ph4pKWlwcbGRiU1aTMK8YQQQmqFnTt3IiMjA5cvX8aMGTPg6emJgQMHAgB69uwpX87L\nywuNGjWCu7s7rl+/Dl9fX/k8KyurSu//zz//xMCBAxEaGopFixbRqClEZ+np6SE8PBx+fn4YPnw4\nPv/8c8yePbtKF2Pfv38fP/74I65du1biMl9++aX8/318fPDixQssX75cHuKBwjMGtSHAA9SdhhBC\nSC3h5OSExo0b43//+x+mTp2KRYsWlbism5sbzMzMEBcXp5J9r1+/Hn369MHSpUuxePFiCvCkRujZ\nsydiYmKwefNmfPjhh8jJyan0ti5fvozExETUrVsXfD5fPjZ9jx49FM6avcvHx0dlv6O6iFriic4o\n+oZPF7YSQqpKJpOVegObFy9e4O3bt/K7/VaWWCzG9OnTsXfvXpw4cQItW7as0vYI0TYeHh64fPky\nhg0bhvbt22P//v1KL0gtS1BQkMJZL6DwrNiaNWsUzpS969atW1X+HdVlFOIJqaFkmTKwXPV/4eGI\nOOAaa/akXkhICCQSSbEhA0ntkZqaihcvXuDJkycACv+483g8uLu748SJE8jJyYG3tzf4fD4uXryI\nH3/8EWFhYfL1Z8yYgYCAADg6OiIuLg5ffPEF2rRpAx8fn0rXlJKSgiFDhiArKwtXr16lO6+SGsvM\nzAwHDx7EzJkz0bJlS+zbtw9t27at8DaU3VvDxcUFjo6OOHDgAJKSktC6dWvw+Xzs27cPmzdvxoED\nB1R0FLqHQjzRmMfJjzEpehLcLNzgZukGd0t3uFm4oZ5FPYgExe+6Sy3w5SfLlCH9l3RAXA07EwCm\nE0zLFeQlEgl8fX3RoUMHrFixQj79/Pnz6NKlC2JiYpSGpoiICPmFTjweD05OThg+fDjCw8MhEAjw\n008/KSzv6OiIr7/+GiEhIVU7NqIzoqKiFC6GK2rRO336NPT09LBo0SL5+NZubm745ptv8Omnn8qX\nf/78OQYPHoyUlBTY29ujR48e+Prrr8HlVu4L6t27dxEYGIi2bdti7dq10NfXr8LREaL9eDwelixZ\nAi8vL/Ts2RM//fRTiReoVgafz8fy5cvx9OlTcLlcNGzYEHv37kWvXr1Utg9dQyGeaIyNkQ3GtRon\n/1kik+Bh8kM8TnkMBxMHuFm4gYHhacpTPEl9goTMBEz3n67BinUHy2XVE+ABQPzv/ozLXpTP52Pj\nxo1o06YNhg4dinbt2iEvLw9jx47F1KlTS231tLOzQ2xsLKRSKS5evIiQkBCIRCLMnTsXpqamKjwg\nootCQkJK/dLWu3fvUtffuXOnymqJjo7GqFGjMGfOHEyfPp3uvEpqldGjR8PDwwP9+/fH7du38f33\n35fada007zbe9ezZs8RuNbUVXdhKNMZU3xQDGg8o9ghqFISWji1hYWABc5E57IztYGdsB2czZ5x+\nehr5knxNl06qwNvbG1OnTsWYMWOQl5eHsLAwMMYwf/78UtfjcrmwtbWFg4MDBg8ejODgYPlp1JCQ\nEPlNezp16oRXr14hNDQUHA4HnTp1AgAcP34cLVq0gEgkgpWVFfr06aN0P5cuXYK+vr7CGOEA0L59\ne4SHh1ft4EmNxhjD4sWLMWrUKGzbtg2ff/45BXhSK/n5+eHq1as4d+4c+vTpU+zzlKgGtcQTjXma\n8hSj9owCAOhx9eBs7izvUlP0L4fDAY/Lg4eVB0KGhkDIF+KD6A80XDmpqvDwcOzfvx/BwcGIjo7G\nyZMnK9zdQCQSQSwufrph3759aNKkCWbOnImhQ4dCT08PEokEgwYNwoIFCxAUFIT09HScOnVK6Xb9\n/Pzg6uqKXbt2Yfz48QCAuLg4XLhwARERERU+VlI75ObmYsyYMbh27RpiYmLg6emp6ZII0ShHR0ec\nP38eY8aMQevWrREVFUW/FypGIZ5ojIWBBcI6h8Hd0h1Opk4Q8ARKlzMXmQMAjh85Xp3lETXS19fH\n999/j8DAQIwdOxbt27ev0Po3btzAb7/9hpEjRxabZ2FhAS6XC1NTU/mtuVNSUpCRkYEBAwbIR01o\n2rRpidsfPXo0tmzZIg/xkZGRaNu2Ldzc3CpUJ6kd3r59i169esHY2BiXL1+Gubm5pksiRCuIRCJs\n27YN3333Hdq2bYvo6Gi0a9dO02XVGNSdhmiMucgc3et3Rz2LeiUG+HdFRUUhKiqqGioj1WHz5s0w\nMDDAlStXlLaovy8+Ph5GRkYQiURo2bIlOnfuXGYXnCKWlpYYNmwYmjRpgmHDhmHTpk3IysoqcflR\no0bh8uXLePr0KQBg69atGDVqVPkOjNQqycnJ6Ny5M1xdXXHo0CEK8IS8h8PhYNasWfj555/Rp08f\nnDlzRtMl1RgU4onO6NevH/r166fpMogK7NmzB0eOHMHFixeRmpqKH374ocx16tSpg5s3b+L+/fvI\nycnBzp07YWxcjqtp/7V9+3YcO3YMHh4eWLJkCZo0aYKUlBSly9rb26Nr166IjIxETEwM/vnnHwwZ\nMqTc+yK1w+vXr/HBBx+gefPmiIyMrPTFe4TUBsOHD8eGDRsQGBiIo0eParqcGoFCPCGkWqWmpmLi\nxIlYtGgRmjVrhl9//RULFy7Eo0ePSl2vaMxvFxcX6OnplbqsQCCAVCotNr1169aYP38+bty4gbdv\n3+LkyZMlbiM0NBRbt27Fli1bEBAQoHT8YlJ7vXr1Ch07doS/vz/Wr19Pd2AlpBwGDhyIrVu3YsiQ\nIbV6fHdVoRBPdMbatWuxdu1aTZdBquizzz6Dq6srJk+eDADo27cvgoKCMG7cOJXdC8DZ2Rnnzp1D\nYmIi0tPTERcXhzlz5uDy5ct4/vw5du/ejaysLNSvX7/EbQQFBSElJQUbNmygrjREwfPnz9GxY0f0\n6tULq1atqvRY8oTURv369cOuXbsQHByMvXv3arocnUafPERnjB8/Xn6hIdFNR44cwa5du7BhwwaF\n4LNixQrcuXMH69atU8l+wsPDcfnyZTg5OSEwMBAGBga4c+cOAgMD4eHhgUWLFmHjxo1o0aJFidsQ\nCoUYOnQozM3N0aNHD5XURXTf8+fP0b59ewQFBWHp0qU0hCQhldCjRw/s27cPoaGh2LVrl6bL0VnU\ngY/ojI8++kjTJegMjogDCFBtd2zliMoXZHr27Im8vLxi062trZGcnFziemXdyOf9oR87deokvztn\nkT/++KNcNb4rPj4ewcHB1NeZACjsQtO5c2f06dMHXbp0QWZmJkxMTDRdFiE6RyqVwsDAAIsXL8a4\nceOgp6eHoKAgTZelc+gvE9EZ1JWm/LjGXJhOMC28k6qacUQccI1r1km99PR0nDt3DkeOHMHt27c1\nXQ7RAq9fv0aXLl0QFBSEJUuW4OnTp7h48SLatm1LQZ6QCpBKpbhy5QoYYxg3bhw8PDwwYMAA7Nix\nA7169dJ0eTqFQjwhNRTXmAuUf/AW8o7AwEBcu3YN4eHh8PDw0HQ5RMOSk5PRtWtXdOnSBUuWLAGH\nw4G7uzsAUJAnpALeDfCtWrUCn89Hly5dsGPHDgwbNgz79u1Dly5dNF2mzqAQT3RGfHw8gMLh/whR\nJxrHmBRJS0tD9+7d0apVK6xcuVKhDzwFeULKT1mAL9KrVy9s3rwZAwcORHR0dIVvAFhb1axz4KRG\nc3BwgIODg6bLIITUEllZWejZsycaNWqEtWvXKh2Fxt3dHe7u7rh48SIyMjI0UCUh2q+0AF8kKCgI\na9asQUBAAK5evaqBKnUPtcQTnWFnZ6fpEgghtYRMJkNISAhsbGwQERFR6jjw1CJPSMnKE+CLDB06\nFJmZmQgMDMTVq1ep4a4MFOKJzijqTkMIIeq2cOFC3L9/HzExMeUanYiCPCHFVSTAFxk7dizu3r2L\n/v374+zZsxCJRNVQqW6i7jSEEELIO/bu3YuVK1ciKiqqQmGcutYQ8p/KBPgiP/zwA8zMzPDRRx+p\n7CaANRGFeEIIIeRft27dwpgxY7Br1y64ublVeH0K8oRULcADAJ/Px86dO3HlyhX88MMPaqpS91GI\nJzrDx8cHPj4+mi6DEFJDvXnzBgEBAVi0aBE6d+5c6e1QkCe1WVUDfBFzc3NERUVh8eLFOHjwoIqr\nrBmoTzzRGbGxsZouQadkxmciNy1X7fsRmYtgbF8zBqR3cXHB3LlzMXbsWE2XQqpZQUEBBg0ahJ49\ne+LTTz+t8vaojzypjVQV4It4enpi27ZtGD58OC5evIiGDRuqqNKagUI80RnXrl3TdAk6IzM+Eyvr\nr4Q4R6z2fQkMBJj0eFK5grxEIoGvry86dOiAFStWyKefP38eXbp0QUxMTIlnWyQSCZYtW4YtW7bg\nyZMnMDMzQ/PmzTFt2jR069ZNZcdDah/GGCZOnAgAxcaCrwoK8qQ2UXWAL9KrVy/MmTMHAQEBuHz5\nMiwsLFSy3ZpAbd1piu66ZWpqCg6HA4lEUurynTp1AofDUXgsX75cXeURHUTdacovNy23WgI8AIhz\nxOVu8efz+di4cSPWrFmDCxcuAADy8vIwduxYTJ06tcTXVyaTYcCAAVixYgVmzJiBu3fv4syZM+jb\nty8+++wzVR0KqaVWrVqFY8eOYe/evdDT01PptqlrDakN1BXgi0yfPh1t2rTB0KFDy8yTtYnaQnxO\nTg46d+6MWbNmlXudzz77DAkJCfLHuHHj1FUeIURDvL29MXXqVIwZMwZ5eXkICwsDYwzz588vcZ3f\nfvsNBw8exKFDhzBy5EjUq1cPHh4emDBhgvzLAABcuXIFbdq0gVAohJOTE77//nuF7Tx+/Bjdu3eH\nSCSCjY0NvvjiixL/IOTl5eGjjz6CjY0NRCIRPD09sX//fqXL9uzZEzNmzFCYdvLkSRgZGSErK6uc\nzwzRhFOnTmHOnDn4448/YG1trZZ9UJAnNZm6AzwAcDgcrF27FhkZGfj8889Vvn1dpbbuNCNGjABQ\nsduXGxoawtbWVk0VEV0XHh6u8C/RXeHh4di/fz+Cg4MRHR2NkydPQl9fv8Tld+3ahe7du8PLy6vY\nPDMzMwBAZmYmevfujaCgIGzcuBE3b97E2LFj4ejoiOHDh0MqlSIwMBBubm64cuUKXr58iZCQEJib\nm+PLL78stt0VK1bg+vXrOHz4MCwsLPDgwQMIhUKl9YWEhGD69OlYvHix/K6ekZGRGDBgAIyMjCrx\nDJHq8PTpUwwZMgQbNmxAs2bN1Lov6lpDaqLqCPBF9PX18fvvv6Nly5bw8vLCmDFj1LYvXaFVo9Os\nXbsWVlZWaN68OX788UdIpdISlxWLxcjNzVV4kJpt/vz5pbbWEt2hr6+P77//Hvv27cPo0aPRvn37\nUpd//PgxPDw8Sl1m27ZtEAqFWL16NRo2bIgPP/wQkyZNwrJlywAAx48fR1xcHDZv3gwvLy/06tUL\n8+fPl89/3z///IMWLVrAx8cHrq6u6NWrV4kjlgQFBSEnJwcnT54EUHgmcu/evRg1alRZTwXRkIyM\nDAQEBGDSpEkYOHBgteyTWuRJTVKdAb6Ivb099u/fj2nTpimcha2ttCbEjxgxAjt27MDp06cxYcIE\nLFq0qNQW10WLFsHAwED+sLS0rL5iiUaEhYUhLCxM02UQFdm8eTMMDAxw5coViMVV77//8OFD+Pj4\nKPwhadOmDR4+fCifX79+fYWLotq0aYPk5GSkpqYW297IkSOxZ88e+Pj44Msvv8T169dL3Le+vj6G\nDh2KyMhIAMDvv/8OMzOzKg1TSNRr0qRJ8PDwwFdffVWt+6UgT2oCTQT4Ii1btsQvv/yCIUOG4O3b\nt9W2X22kNSF+7Nix6Ny5M7y8vPDRRx9hyZIlWL58eYl36pozZw5ycnLkj5SUlGqumFS38PBw6kpT\nQ+zZswdHjhzBxYsXkZqaWubNPNzd3eVhvCRl3dWvonf9a9WqFeLi4vDZZ5/h+fPnaNeuHZYsWVLi\n8iEhIdi3bx+ys7OxZcsWjBgxQt61hmiX6OhoHD16FGvXrtXIa0RBnugyTQb4IiNGjIC/vz+mTp1a\n7fvWJlr7F8bHxwdZWVlITk5WOl8gEEAkEik8CCHaLzU1FRMnTsSiRYvQrFkz/Prrr1i4cCEePXpU\n4jpDhgzBsWPHcOfOnWLz0tPTARSOJ3z9+nWFC1VjYmLg6ekpn//48WOFVveYmBhYW1uXOGSZhYUF\nRo4ciW3btmHBggXYuHFjiTX6+fmhbt26+OWXX3Dy5EnqSqOl0tLSMH78ePz666+wsrLSWB0U5Iku\n0oYAX+Tnn3/GoUOHavWNoLQ2xN+6dQuGhoYa/ZAl2uX69euldmkguuGzzz6Dq6srJk+eDADo27cv\ngoKCMG7cuBJby4ODg9GzZ0907twZ69evx7179/Do0SOsXr0a7dq1ky+Tn5+PTz75BA8ePMD27dux\ncuVK+RCU3bt3h6urK0JCQnDnzh0cPnwYYWFhJQ5RuWzZMuzevRuPHz/G7du3cezYsTL75Y8ePRpz\n585FixYt6KYkWmrKlCno1KkT+vfvr+lSKMgTnaJNAR4ArK2tsWrVKowbNw5paWkarUVT1BbiU1NT\ncfPmTTx58gRAYSi/efMmsrKy8OrVK3h6euLKlSsACkcIWLRoEWJjYxEXF4cdO3bg888/x4QJE1R2\n0w2i+3x9feHr66vpMnSCyFwEgYGgWvYlMBBAZF6+M2FHjhzBrl27sGHDBoVuDCtWrMCdO3ewbt06\npetxuVzs378f06dPx/Lly+Ht7Y0OHTrgjz/+wE8//QQAMDY2xqFDh3D79m00a9YMX3zxBcLCwjB8\n+HD5Nv744w/k5uaiZcuWGD16NEaNGlVsaMgihoaGWLhwIZo1a4ZOnTrBwsICv/76a6nHN3LkSEgk\nEmqF11JRUVE4duwYVq5cqelS5CjIE12gbQG+yMCBA9G+fftae78QDqtoR9FyioiIQGhoaLHpp0+f\nhouLC1xdXXH69Gl06tQJ//zzD4KDg3H79m3k5eXBxcUFISEhmDZtGgSC8gWR3NxcGBgYICcnh7rW\naCHGGFgOA9ew8t8bi24ERK3x/8nPz8fff/+NevXqFRv+MDM+s9w3YaoKkbmoXHdrrQ1iY2PRpk0b\nvHr1qlxnEUt7/YhqpaamonHjxvj1118RFBSk6XKKefLkCZ48eULDT6qIVCrFgQMH0LdvX/B4PE2X\no9O0NcAXSU5ORuPGjbF+/Xr069dP0+VUK7WF+OpGIV47MBmDLE0GabIUsuTCf4seXBMuTD8x1XSJ\nNQqFQO0gFovx6tUrTJo0CcbGxvjtt9/KtR69ftVnxIgRYIxh27Ztmi6lRBTkVYdCvGpoe4Avsm/f\nPkycOBF3796Fubm5psupNtr5ahCtx8QM0pTiQV2WKgNKGN5flipD+i/pld4nR58DkzH0h41onwsX\nLqBz585o0qQJDhw4oOlyyHv++OMPnDhxAnfv3tV0KaWiG0IRbaIrAR4ABgwYgN27d2PKlCnYsmWL\npsupNtr7ihDtJgUgAZiEgUkYICn8uaQADwBgheG/0qgxhWipTp06QSaTaboMokRKSgrGjx+PNWvW\n6MT9RCjIE22gSwG+yMqVK9G4cWNER0fXmm412v+qEK3E0eeA78gH31HxLVRaCz3XvGrdaezt7YEF\nQHx8fFXLJ4TUEpMnT0bXrl0RGBio6VLKjYI80SRdDPAAYGVlhdWrV2PcuHG4e/duiUMH1yS68coQ\nncERcMC35QO2itOZjIFlVu3yi4SEhCqtTwipXfbv349Tp05pfTcaZSjIE03Q1QBfpH///vJuNUV3\n0K7JtHaceFKzcLgccE2r9nZ79eoVXr16paKKCCE1WUpKCj7++GOsWbNGZ1vkaPhJUp10PcAXWbly\nJY4fP46oqChNl6J2FOKJzrC3ty/sUkMIIWWYOXMmunbtioCAAE2XUiUU5El1qCkBHgAsLS2xevVq\nfPzxx8jJydF0OWpFIZ4QQkiNcu/ePezcuRPff/+9pktRCQryRJ1qUoAvEhgYiIYNG8pvBlhTUYgn\nWu124m0kZCaAMYZx48Zh3Lhxmi6J1EDh4eHw9/fXdBlERebMmYOJEyfWqDN3FOSJOtTEAA8AHA4H\nixcvxvfff4/U1FRNl6M2NePVIjVW2Ikw3Eq8BSM9I/y17i8AgPcYb7hZusHdwh1OZk7gc+ltrEyW\nLAv5LF/t+xFyhDDiGpVrWYlEAl9fX3To0AErVqyQTz9//jy6dOmCmJgY+Z153/XuHaB5PB6cnJww\nfPhwhIeHl/uuzqR2iImJwblz57Bp0yZNl6JydLErUaWaGuCLtGzZEl27dsW3336LH374QdPlqEXN\nesWI2rE8BmmyFCyXQVBf/eFp34h98v9fxl2Gb858gx/O//fLqMfTg7OZM9wt3eFm4QY3Sze0cmwF\nW2NbZZurNbJkWdicvhkSSNS+Lz74GG06ulxBns/nY+PGjWjTpg2GDh2Kdu3aIS8vD2PHjsXUqVOV\nBvgidnZ2iI2NhVQqxcWLFxESEgKRSIS5c+eq8nCIDmOMYdasWZg1axbMzMw0XY5aUJAnqiCVSnHu\n4jkwxtChbYcaF+CLfP311/Dx8cHkyZPh5OSk6XJUjrrTkGIYY5BlyiCOEyPvah5yDucgMzITb5e9\nxdsf3iJzUyZyTuRAli5T++Pu47u4fPcyLt+9jGb+zWDi998fLHtje7R2ag1/F3+0c24Hfxd/+Dv7\n1/oADwD5LL9aAjwASCCpUIu/t7c3pk6dijFjxiAvLw9hYWFgjGH+/PmlrsflcmFrawsHBwcMHjwY\nwcHB8ruj5uTkYMKECbC2toaZmRn69u2LZ8+eydeNioqCn58fjI2NYW9vj08//RTZ2dkl7uvChQuw\nsLCQ3/nv+PHjaNGiBUQiEaysrNCnTx+l6126dAn6+vpIS0tTmN6+fXuEh4eX49khVXH48GE8ffoU\nEydO1HQpakVda0hVFAX42wm38e3Db5GUm6TpktTGw8MDw4cPL/Pvi66qmV+9SIXIMmUQPxRDEi8p\nvDFTsgwsv/Qx3WXJMqSvSFd7bfb4r09rHj8PPwb+CDcLN9SzqAdDPUO175+oR3h4OPbv34/g4GBE\nR0fj5MmT0NfXr9A2RCIRxGIxAODjjz9GYmIiDh8+DGNjY3z33Xfo168fbt68CR6Ph7y8PMyZMweN\nGzfGy5cvMX78eMyfP1/phY+nT5/GgAEDsHr1agwdOhQSiQSDBg3CggULEBQUhPT0dJw6dUppTX5+\nfnB1dcWuXbswfvx4AEBcXBwuXLiAiIiIij1JpEJkMhlmz56N8PBwiEQiTZejdtQiTyrj3QC/6p9V\nEDMxRu4aie3DtsPa0FrT5alFWFgYPD09MX36dDRs2FDT5agUhXgCrjEXej564LvzFe60WvT/LLd4\noOfocyBooP7uNAwMHHAAACdvnITwqRBejbzUvl+iXvr6+vj+++8RGBiIsWPHon379hVa/8aNG/jt\nt98wcuRIPHv2DDt37kRiYiLMzc0BAGvWrIGZmRliYmLg7++PIUOGyNetV68ewsLC8OWXXxYL8UeP\nHsXQoUMRERGBoKAgAEB6ejoyMjIwYMAA+enYpk2blljb6NGjsWXLFnmIj4yMRNu2beHm5lahYyQV\n89tvv6GgoAAhISGaLqXaUJAnFaEswANAXFocRu4aiW1Dt8HSwFLDVaqeg4MDJkyYgDlz5mDfvn1l\nr6BDKMQTAIVXcvPMeOCZ8SBwVwznsmyZQqiXJkvB4XFgGFi9LeGDgwYDKOzuQ3Tf5s2bYWBggCtX\nrkAsFpd5gWp8fDyMjIwglUohFosxcOBAzJ8/H+fOnYNYLC7W3zE3Nxd///03/P39ce/ePcyZMwfX\nr19HWloaJBIJJBLF7kYPHz5EQEAAduzYIQ/wQOGYw8OGDUOTJk3Qq1cv9OjRA4MHD4aRkfJrAEaN\nGoW5c+fi6dOncHNzw9atW/H5559X7kki5ZKfn4+vvvoKP/74Y43t21sSCvKkPEoK8EUepzzG2H1j\nsX3odugLKnZWVBfMnDkTbm5uuHTpEvz8/DRdjspQn3hSJq4hFwJnAYQ+Qhj0MIBxsDGMhpVvNBJV\n6tu3L/r27Vvt+yWqt2fPHhw5cgQXL15EampquUYOqFOnDm7evIn79+8jJycHO3fuhLGxMbKysiAS\niXDz5k2Fx6NHj+RhPCAgABwOB9u2bcO1a9ewYsWKYiHe3t4eTZs2RURERLF527dvx7Fjx+Dh4YEl\nS5agSZMmSElJUVqnvb09unbtisjISMTExOCff/5ROBNAVG/t2rWoU6cO+vfvr+lSNIL6yJPSlBXg\ni/yV+Be+PPZljWwoMzc3x8yZMzFr1qwadXwU4onOiI6ORnR0tKbLIFWUmpqKiRMnYtGiRWjWrBl+\n/fVXLFy4EI8ePSp1PR6PB3d3d7i4uEBPT08+vVmzZsjJyUFubq48zBQ9TExMkJycjKdPn2LevHlo\n3749PDw8kJiYWGz7xsbGOHLkCJ4+fYpRo0ZBJpMpzG/dujXmz5+PGzdu4O3btzh58mSJtYaGhmLr\n1q3YsmULAgICauxIKdogMzMTCxcuxOLFi8HhcDRdjsZQkCfKlDfAF/nj/h9Ye3VtNVVXvSZNmoTH\njx/jyJEjmi5FZSjEE0Kq1WeffQZXV1dMnjwZQOEZlqCgIIwbN65SLSSenp4YMGAAhg0bhqNHjyIu\nLg7nzp3DpEmTkJKSAnNzc5ibm2PdunX4+++/sXPnTqxZs0bptiwtLXHixAlcvXoVH3/8MYDCC1Pn\nzJmDy5cv4/nz59i9ezeysrJQv379EmsKCgpCSkoKNmzYgFGjRlX4mEj5LV26FD4+PujUqZOmS9E4\nCvKa81fiX8iXqP++HBVR0QBf5IdzP+DUU+UX7+syAwMDhIeHY/bs2cUaaXQVhXhCSLU5cuQIdu3a\nhQ0bNoDL/e/jZ8WKFbhz5w7WrVtXqe1u27YNPXv2xP/+9z94enoiJCQEYrEYBgYG4PF42LZtG44d\nO4bGjRtjzZo1WLBgQYnbsrW1xYkTJ3DkyBFMmzYNBgYGuHPnDgIDA+Hh4YFFixZh48aNaNGiRYnb\nEAqFGDp0KMzNzdGjR49KHRMp25s3b7B06VJ8++23mi5Fa1CQr345BTkYuWskOqztgBUXVyApW/ND\nNlY2wAOFA0pMPTgVj5Mfq7FCzQgNDUVeXh527Nih6VJUgsNqSOeg3NxcGBgYICcnp1YML1YbFZ0q\nryFvWZXIz8/H33//jXr16kEoFMqna+vNnmqTgIAAuLu7Y+nSpSUuU9LrR8pn1qxZeP78ObZv367p\nUrTOkydP8OTJk1p7satUKsWBAwfQt29f8Hg8te5rx187MOfYHPnPQr4Qo1qMwsetPoaZyEyt+1am\nKgH+XXXN6uL34N81cgzqtGfPHnz55Zd48OCBQmOSLqIQT3QGhfjiSguBWbKsCt2EqbKEHCEF+Hek\np6fj3LlzGDhwIG7fvg0PD48Sl6UQX3nZ2dlwcnLCiRMn4O3trelytFJtCfKMMbCcwpsUsnwGSAGp\nRIqj94/CwssCfD4fIoEINoY2sDK0gh5Pr+yNVmDfAZEBuPfmXrF5xkJjjG81HiHeIRAJqieXqCrA\nF2lbty02DdoEPrfmjPoklUpRv359rFy5ssQb9+mKmvOqkBqPwnvFGHGNYAQK19UtMDAQ165dQ3h4\neKkBnlTN1q1b0bhxYwrwpahJw08yKYP0jbTw8VoKWZoMsixZYXDPZsB7XZylHCngBXz0+0fFgqy5\nyBzWhtaoY1QHdsZ28LD2gKeVJxraNISpvmmF6rqRcENpgAeAzPxMLDm/BFtit2BS20kY3GQwBDz1\n3V9F1QEeAC6+uIhFpxchrEuYCirUDjweD5MmTcJPP/2k8yGeWuIJ0WHUkqvb6PWrHMYYmjRpgvnz\n52PQoEGaLkfr6WKLPCtgEMeJIXkmgeSVBNJEKSAt//pSjhQXvC5g5pOZFQqzruauaGbXDL4OvuhU\nrxPsjO1KXX76oenYf29/ube9sNtCtKnbptz1lJc6Avy7VgWsQo8GNef6nvT0dDg5OeHSpUto1KiR\npsupNArxhOgwCoG6jV6/yjl+/DjGjh2Lp0+f1rqbO1WWLgR5WaYM4sdiiB+JIY4ToyqX9FQ2xL+v\ncZ3G6OrWFV3cuqCRTSOFYUxTclLgv8YfBdKCCm1ziNcQzO44Gyb6qnkd1B3ggcKzF4dDDsPa0Frl\n29aUSZMmQSwWY/Xq1ZoupdJ0u0c/qRKWxyB5KUH+zXzknMhB/rXqGR6LiRkkiRIU3ClA7plcyLLK\nN9RTv3790K9fPzVXRwjRdj/99BMmTJhAAb4CtHXUGlmODHmX85CxIQPpy9ORczAH4sdVC/CqdPf1\nXfx08ScERAbAf60/Fp5aiIdJDwEAe27vqXCAB4Bdt3ehx6YeOBt3tsr1VUeAB4C03DTMPjq7RnVr\nnTRpErZu3YrU1FRNl1Jp1BJfwzHGwLIYpMlSSJOlkCXL5P/PshRfep4jD8KmqmsNlBXIwLIYZNn/\n/ptV+C/LVdyvoLEAHP2yb9Ji1MdIfkykUFFLrouLC73vdVBeXh7i4uKoJb4CHj9+jBYtWuDFixew\nsLDQdDk6R5ta5HPP5iLvQl6FusmUl6pa4kvibe+N15mv8SrzVZW2E9wsGLM6zoKBnkGF162uAP+u\nRd0XYVjTYWrfT3Xp27cvOnTogBkzZmi6lEqhZowaSposRcGDAogfiCFNKN8npPSlFDkvc9RcWXHi\nu+X74Plt+G8wGkYXar5LT08PPB4P8fHxsLGxgUAgqNV3rdQljDEkJyeDy+VCIFDfxW41zZo1azB8\n+HAK8JWkTRe7ck24agnw1UEsFVc5wAPAtlvbEPNPDNYGrYWrhWu519NEgAeAb05/gw4uHWBvYl8t\n+1O3SZMm4ZNPPsHnn3+uk8NNUkt8LcDEDNIUxVZ4abIUslSZwgco35kPoY9qWgOZpHC4L1mmDCyT\nQZbx7/9nFX+7CRoIgHLsliPgwLCPoUrqq0nEYjESEhKQnZ2t6VJIBXG5XDg5OcHAoOKtcLVRfn4+\nHBwccOTIEfj6+mq6HJ2mDS3yTMyQviy9cFhIFVN3S7xXHS/cfn1bZdszFhpjRd8V6ODaocxlNRXg\ni3R07YgNAzbUiAYjmUwGNzc3rF27Ft26ddN0ORVGLfG1AEfAAd+WD9gqTmcyBlmaTN7NhmPEgV5j\n1Y2fqwyTMshSZQrde0SdReCa6t43YG0hEAjg5OQEmUwGiURLOpKSchEIBDrZ+qMp+/fvh5OTE3x8\nfDRdis7ThhZ5joADveZ6yL9cPddjqYqtka1KAzxQOBzlmH1jMLvjbIT6hJYYkDUd4AHgbNxZRN2P\nQmCjwGrft6pxuVyMGTMG69atoxBPdAuHywHPkgeeJQ+opuGsOTwOeNY88Kwrfge9tWvXAgDGjRun\n6rJ0HofDAY/HU/udCQnRpHXr1uGjjz6qES2A2kAbgrzQW6hzIb6uWV0kZiWqfLsyJsOiM4vwIOkB\nFnZbCCFf8RS1NgT4IgtPL4S/iz8sDSw1VoOqhIaGon79+njz5g1sbGw0XU6FUBMQ0Rnjx4/H+PHj\nNV0GIUQDnj59ipiYGAQHB2u6lBpF06PW8Kx44LvqTnuigCfAw+SHat3H3rt7EbwrGKk5/42aok0B\nHigcrebbM99qtAZVcXBwQNeuXbF582ZNl1JhFOKJzvjoo4/w0UcfaboMQogGrF+/HkOGDIGpacXu\nqEnKpukgL/TVnZGZvOp4IT0vXe37uRF/A8G7gpGcnax1Ab7I/nv78SDpgabLUIlx48Zh/fr1Ojf6\nHYV4ojPWrl0r71JDCKk9xGIxNm3aRF/i1UiTQV7QQACOsW50kcrKz6q2fT1KfoQRO0fgxPkTWhfg\nAYCBYcn5JZouQyV69uyJ7OxsnDt3TtOlVAiFeEIIIVrt/PnzMDQ0RJs2qr9dPfmPm5sb6hbUxYVz\nF6o1yHO4HAi9tb813tXcFY9SHlXb/vgcProbdseDNw+0LsAXOf33aVx9eVXTZVQZn8/H8OHDsWvX\nLk2XUiFqC/H79u1Dly5dYGpqCg6HU+aoGVlZWQgNDYWJiQksLS0xdepUGmmDKIiPj0d8fLymyyCE\nVLPo6GgEBgbSBa1qxBhDzqEc2N2yg+NLx2oP8sIWQq1vVrQwqL57E/A5fIx3HA8eh4df//lVKwN8\nke/Pfa9z3VCUCQwMRHR0tE4di9p+ZXJyctC5c2fMmjWrXMtPmDABly5dwvHjx7F7927s3LkTCxYs\nUFd5RAc5ODjAwcFB02UQQqoRYwxRUVHo16+fpkup0XJP5KIgtgAA4JjkWO1BnmvMhcBTe296ZqRn\nhDuJd6plX7oU4AEgNj4WJ5+e1HQZVebn54fc3FzcunVL06WUm9pC/IgRIzBnzpxynf5MS0vDtm3b\nsGLFCrRu3RqdO3fG119/jVWrVkEq1dHbuRGVs7Ozg52dnabLIIRUo/v37yM1NRX+/v6aLqXGyr+R\nj/xLisM8aiLIa/MFrg1tGiJfqv6hMHUtwBdZcn4JpDLdzms8Hg99+vRBdHS0pkspN604eXX9+nUw\nxtCpUyf5tC5duiAlJQVPnjxRuo5YLEZubq7Cg9Rs1J2GkNonKioKvXr1gkCgva20ukzyQoKcQzlK\n51V3kOfX5YNrpRWxpJj4DPX/7dHVAA8Aj1Me4/d7v2u6jCrr168foqKiNF1GuWnFb8ubN29gZmam\n8CFtbW0tn6fMokWLYGBgIH9YWur+DQcIIYQoioqKQkBAgKbLqJFk6TJk7c4CZCUvU51BnsPhaGVr\nfCObRniV8Uqt+9DlAF/kpws/IV+iWzfuel/37t1x+/ZtnWkw1IoQr+wigrIuYJozZw5ycnLkj5SU\nFHWVRwghRAPevHmD69evo2fPnpoupcZhBQxZO7PAcsq+iK86g7ywqRDQspMuAq56C6oJAR4A4jPj\nseu2bo3u8j5jY2N06tQJBw4c0HQp5aIVIb5OnTp4+/YtxOL/3rhFLfAl3QJXIBBAJBIpPEjN5uPj\nAx8fH02XQQipJgcPHoS/vz/MzMw0XUqNwhhDdlQ2pK/L34e5uoI8R8iBXlM9tW2/oqwMrHA78bba\ntl9TAnyRiNgIyFgpp3Z0QEBAgM50qdGKEO/t7Q0Oh4OzZ8/Kp506dQqWlpZwd3fXYGVEm8TGxiI2\nNlbTZRBCqkl0dDR1pVGD/Gv5EN+veFisriAv9NGeLjX1LOpBVlp/oyqoaQEeAJ6lPcPZuLNlL6jF\n+vXrh5MnTyI7O1vTpZRJbSE+NTUVN2/elF+YeuvWLdy8eRNZWVl49eoVPD09ceXKFQCAhYUFhg8f\njilTpuDKlSs4ffo05s6di08//RQ8Hk9dJRIdc+3aNVy7dk3TZRBCqkFeXh6OHTtGQ0uqmDRZitwT\nlR8IojqCPL8OH3wnvlq2XRE8Dg9PUpQPrlFVNTHAF9kcu1nTJVSJk5MTPD09ceLECU2XUia1hfio\nqCi0aNFCfptsX19ftGjRAteuXYNYLMbDhw+Rk/PfFfGrVq1Cy5Yt0bVrVwwcOBCDBw/GvHnz1FUe\n0UHUnYaQ2uPUqVNwcXFBvXr1NF1KjcFkDNl/ZANVvI9idQR5bbjA1cvWC6m5qSrfbk0O8ABw/tl5\n/J36t6bLqBJd6VLDYbp0a6pS5ObmwsDAADk5OdQ/nhBCdNwnn3wCMzMzfPvtt5oupcbIu5CH3FOq\nG475pfVLvHR8iXYd2sHExERl2wUAJmFIX5EOll25iCLlSHHB6wJmPplZ6ZDsaeWJB8kPKrVuSWpy\ngOdyuOjs1hkjmo9AO+d24HK0osd2pVy7dg19+vRBQkICuFztPQ7Nn68ipJzCw8MV/iWE1EyMMURH\nR2P37t2aLqXGkKZIkXtOtfdTcUxyBABcOHdB5UGew+dA2FyIvAt5KttmRTiZOlGALydLA0sMbToU\nHzb9EPYm9pouRyW8vb3B5/Nx5coV+Pn5abqcElGIJzpj/vz5ACjEE1LT3bhxA2KxGK1atdJ0KTUC\nYww5B3Oq3I1GGXUGeT1vPeRdzAM00F/A1sgW/6T/o7Lt1cQA39KxJYKbB6NH/R7Q42nPiEKqwOVy\n5Td+ohBPiAqEhYVpugRCSDU4e/YsOnfuTAMbqIj4oRiS52pI8P9SV5DnmfEgqC+A+FH1Bl6RQIR7\nb+6pbHs1KcAbCgwR1CgIwc2D4WHtoely1Kpr165Yvny5pssoFYV4ojOoBZ6Q2uH69et0EbuKMBlD\n7mnVdqNRRl1BXugrrPYQ38SmCa6+uqqSbdWUAF/fsj5GNB+BwEaBMBYaa7qcauHj44MbN25AKpVq\nbYMChXhCCCFaJTY2FmPGjNF0GTVCwV8FkCVXz8131BHk+fX44FpwIUutvhsIvcl+o5Lt6HqA53P5\n6FG/B0Y0H4GWji3B4XA0XVK1cnFxgVAoxKNHj9CwYUNNl6MUhXiiM65fvw4A1EJHSA2WlZWFR48e\nwdvbW9Ol6DwmZsg9q/5W+HepOshzOBwIfYTIPV49x+Fh5YGHyQ+rvB1dDvC2xrb4sOmHGNp0KKwN\nrTVdjsZwOBz4+Pjg+vXrFOIJqSpfX18AhRdpEUJqpps3b8LV1RWmpqaaLkXn5V/LB8uo/s9LVQd5\nvWZ6hV2C1NetX85AYFDlbehqgPd39kdw82B0dusMPpfiIQB5iB8xYoSmS1GKXiWiM6hljpCaj/rD\nqwbLYxobnhFQbZDnirjQa6yHglsFqipPKXN9c9xOvF2lbehagDcRmmBQk0EY3mw4XC1cNV2O1vHx\n8cHKlSs1XUaJKMTXIIwxgAEcbs3st1bUnYYQUnNRiFeN/Nh8sFzNnrVUZZAX+grVHuLrW9XHlZdX\nKr2+LgX4xjaNMaLFCPTz7AeRgG6QWZKii1tlMplW3vSJQrwOYjIGWboMsmQZpMlSSJOkkCZLIUuR\nwXCIIQTOAk2XSAghlXL9+nWEhIRougydxmQMeVc11wr/LlUFeb49Hzx7HqTxUlWWJ8cBB3FpcZVe\nXxcCvB5PD308+mBEixFoZtus1l2oWhmurq4QCAR49OgRPD09NV1OMRTitRiTMMhS/w3q/z5kyTJI\nU6Ql9g3MPZaLPH3t+PBWNY4eB0ZDjTRdBiFETbKzs/Hw4UPqOldF4gdijfSFL4mqgrzQV4icqBxV\nlibnZeuFvxL/qtS62h7gnUydMLzZcAxqMggWBhaaLkencDgceHt74/r16xTiSfkxKYPkpQTSN9L/\nWtyTpWDZpX8wSxPV00qhDRotaQTOVA7i4+M1XQohRA1u3rwJFxcXmJmZaboUncaz5UHYqrD7CcvX\njjCviiCv10gPucdywfJUf0xSWeX+dmprgOeAAy9bLzDGsKb/GtQxqqPpknRW0cWtwcHBmi6lGArx\nWorD40DgIoDARbFrjCxXphDqi1rnZW8Lx9A1GmVUY7vTJM5LBDI0XQUhRF2oP7xq8Cx4MOhhANEH\nIhTcLUD+1XxIX2u+gaeqQZ4j4ECvuR7yL+WrtC47YzvcfXO3wutpY4A30zdDA6sGeJb2TH5mYf/d\n/RjferyGK9NdPj4++OWXXzRdhlIU4nUMV8QF14kLvpPiS8fEDNJkKbhm2nfhhaq8evVK0yUQQtSI\nQrxqcfQ4ELYQQq+5HqSvpMi/lo+CewWABvN8VYO80Eeo8hDvZOqEhMyECq2jbQG+gVUDGOkZ4a+E\nv4pdnLvz9k581OojcDk1Nx+okzZf3Kpd1ZBK4wg44NvxwRXV3JfU3t4e9vb2mi6DEKImFOLVg8Ph\ngO/Ih2GQIUynmELgIQDHWHMXNTomOcLxpSMunLuAjIyKnV7lWfDAd1Nd+6MeTw/3k+5XaB1tCfD6\nfH34OvjCxdwFj5IfITY+FhJW/IK552+f4/orGt2tsurVqwcej4fHjx9rupRiam7iI4QQojOys7Px\n4MEDuqhVzVgug/ihGCyTgWfHA9dOMzGgKkFe6CNUWR1edbyQmZ9Z7uW1IcA7mTqhpWNL8Dg8XHt1\nDc/SnpW5zvEnx9VfWA317sWt2oZCPNEZ48aNw7hx4zRdBiFEDe7fvw8HBweYm5trupQaLf/Gf11R\npAlSyBJk4BhzwKvLA/Srt5bKBnlBfQG4pqqJL+l56eVeVpMBnsfhobldc3hae+Kf9H9w9eVVZIuz\ny73+yacn1VhdzdesWTPcvl21G4GpA4V4ojPWrVuHdevWaboMQogaxMfHw8nJSdNl1GhMxlBwu/gN\nk1gmg/SFFBADPEceuFbVFw0qE+Q5XA70vPWqvG83Czc8SX1SrmU1FeCtDKzQyrEVzPTNcDPhJh4k\nPajUdp6lPcPfqX+ruLraw8nJSStHxqMQT3TGmjVrsGbNGk2XQQhRg/j4eNjZ2Wm6jBpNGl/GMMVS\nQPqycMQzriUXPCcewFN/XZUJ8sLmwionGDORWbmW00SAb2TTCM1smyE1JxVXXl5BSm5Klbd54skJ\nFVRWO9nZ2WlliKfRaYjOoK40hNRcCQkJFOLVTPyo/OFTliIDUgAIAZ4DD7J0GVi6+sacr+ioNVwj\nLgQNBRDfrVygNhYa43Zi2d0jqjPAG+kZoaFNQyRkJuDem3sq3/7JpycxrhX9Ha0MOzs7JCRUbASj\n6kAt8YQQQjSOQrz6FTwq3pWmTPmA9IUULJ2BZ8sDz159TfMVbZHX9618J/6G1g1RIC39+aiuAO9q\n7gofBx9IpBJcfXkVL9NfqmU/sfGxSM1JVcu2azoK8YRUUXR0NKKjozVdBiFEDeLj42kIWTWSpkkh\nS5JVbRuJUkjjpeAYcsCvywcMVFTcOyoS5HlOPPBsKveloqygrO4AL+AJ4G3vjfqW9RGXFofrr64j\nT5qn0n28T8ZkuPzPZbXuo6ays7NDamoq8vLU+xpVFIV4ojMCAgIQEBCg6TJKVSAtwOeHPsfqy6tx\n/MlxxKXGQSIrPm4vIUQRtcSrV0W60pSFZTNIXkiAvMKuNtw6qo0S5Q3yHA4HQt+KDzfZ2KYx4jNL\n7t+szgBfx6gOWjm2gqHAELHxsXicUr1jj99MuFmt+6spjI2NYWRkhMTERE2XooD6xBOd0btPbyRk\nJuC3m79pupQSiWVi/H7vd4Vpejw9OJs5w93SHW4WbnCzdIO7pTvqmdeDvqCax3QjREtRiFcvSZwa\nGhNkgPRV4e1fuWZccE24kCRIABVk3vL2kddrooecEzlABXoK8bglt96rI8BzwEHjOo3BAQe3X9/G\n66zXVd5mZVGIr7yiLjUuLi6aLkWOQjzRGVt3b4XvL7746sRXmi6lQgqkBXic8rhYi4uRnhE6uHRA\n9wbd0cm1E4yFxpopkBANk0qleP36NYV4NWGMQfJSvWcEZW9lkL2VAQKA78SHLEsGWVrVuu+UJ8hz\nhBwImwqRfy2/2DxlbAxtSrygVdUB3lRoCg9rD/zz9h/ceX2nSttSlTuv70Aqk5b6RYYop4394inE\nE50hEouwqfUmiDJFMMgwgChDBImeBI/8Hmm6NDmxVIzPD3+uMM1cZP5fC7yFu/xfOxM7cDnUo42Q\nN2/egMfjwdLSUtOl1EiyNBlYrvpGllEgBiT/FH5h4NnwAEHh0Jao5O7LE+SFPuUP8S7mLniT/abY\ndFUG+PqW9eWj31x5eaXS21GHPEkenqU9g5ulm6ZL0Tn29vZaN8wkhXiiVRhjYBkM0mSp/CFLlkGa\nLAUTM7Tu0RowAvBvgx3HkIMGDRpotOZ3FUgLcOf1HYXAbmlAwYSQ0hR1peFwOJoupUaSJkg1s983\nhfvliDjgWnMhTZUCWRXfTllBnmfDA9+ZD8nz0s828Ll8pX3QVRHg9fn6aFKnCVJzUqu9n3tF3U+6\nTyG+EqglnpSI5f8XXFkug75f7esrLUuXoeBhAaTx/wX4d/tWWsyzAGYXBn1tpcfTw1eddau7DyGa\nRv3h1Uv6WjMhvgjL/feOsAB49jwwxiBLqFhXm7KCvNBXWGaI97L1wo34GwrTqhrgHUwcYG9ij/tv\n7uPaq2sVWldTHiQ9QF/PvpouQ+fY2dnh/v37mi5DAYX4asQYA8tmCq3L8uCe+V8w5RhzwLOunf3V\neJY88CwLj50xBpbDIEuXQZbx3wd+xoYMsJzC54tnz4PRQCON1EoIUQ0K8epV1CKuDaTx/7bOm3DA\nNeMWfsEoX0+YUoO8wEMAjhEHLKvkRp6cghyFnysb4LkcLrzqeEEsE+Pem3t4lfGqfAegJf5J/0fT\nJegkOzs7nDp1StNlKKAQr2ayLBnEj8QoeFAA6SspWF7ZrcgskyHrt0qcc6zh0n5Ig9nnZgAAWU7h\nl6DyfvgTQrRXfHw8hXg1kqZoT4gvwjIYpBlSgFc43jvLZZAll906X1KQ5/A4ELYQIu+88nG8nc2c\n8TD5ofznygR4C5EF6lvWx9+pf+NW4q3yHKZWSspK0nQJOsnOzo76xNc2XCMuhN5C6LXQK7mvd45i\nsOeIONBvU/u605TpnXcr14ALbl26KJSQmiAhIQEODg6aLqNGYoxBllm1UWLUSgpI//l3mEorLjj6\nnMI+/KV87ygpyAu9hcj7Mw9ghddLAYX94MVSMWwMbfD87fPCaRUM8J7WntDn6+N24m1cfqn7N0tS\ndmEvKZu9vT31ia+tOBwOOKYccE25ELgJFObJcmQK3WtYAYN+OwrxhJDaISMjA40aNdJ0GTVTAVQy\nbnt1kLfECwtvIiVLl4GlKz97rSzIc024MAo2As+WB6bHgAPA1QlXcTPxJhb9sQhA+QO8gcAAjW0a\n43XWazxIeqD6g9WgpGxqia8MU1PTMu8iXN3U3pS5ePFi2Nvbw8DAAAEBAaXe7apTp06FYfedx/Ll\ny9VdosZxDbjg1+VD6C2EQXcDGPY11HRJWqlfv37o16+fpssghKiYRCKBQCAoe0FSYVrdCl+SfED6\nQgqWzsCz5YFnr/waMWV3dhW4CsAV/Rdt9Hh6aFO3DboO74qgbkEYb196gHc2c0ZLh5ZgjOHqq6t4\nkf5CPceoQVkFWcguyNZ0GTpHIBBAItGuO7CrNcRv2rQJX3/9NX7++WdcvHgRGRkZGDp0aKnrfPbZ\nZ0hISJA/xo0bp84SiQ45cOAADhw4oOkyCKlR9u3bhy5dusDU1BQcDqfYH6moqCi0aNECBgYGcHR0\nxGeffYb8fMWLUcpqrPn1119Rt25dtGnTRunoDhKJBHw+nRhWB1mWDob4d0gTpZDGS8Ex4oBflw+I\nFOc7JjnCRc9FnjFKEpAWAN90X1hZW2Fj/EaFAM/n8tHCvgU8rDzw/O1zXH11FbmSXHUdklagLjUV\nx+fzIZVKKz1CXmmfk2V9RpZErSF+5cqVmDJlCgYMGIDmzZtj48aNOHfuHG7evFniOoaGhrC1tZU/\nDAwM1FkiqQaMMUjTpBA/FiMvJg/Z0dnI2JQBWU7F/rhERUUhKipKTVUSUjvl5OSgc+fOmDVrVrF5\nT58+xaBBgzBs2DDcvXsXkZGR2Lt3LxYuXChfpqzGmhcvXmDZsmXYtWsXQkNDMXny5GL7oRCvPu+O\nfKbLWBaD5IUEyAd4jrzCG0kB4Nflw7ObJ9zd3UsM8lKpFK+TXoP3hoe3zd/Cx9gHQOHdW1s5toKx\n0Bg34m8oXPha09HFrRVX9BkllVb8QvHSPifL8xlZYk0VrqSc8vPzcevWLfzwww/yafXq1YOLiwsu\nX76M5s2bK11v7dq1WL16NRwdHTFy5Eh89tln4PGKn0oTi8UKLUa5uTX7W7MuYBIGWaqs+MW7KVJA\nyRmo3NO54AjKf3OXrkZdIfpAVPaChJByGzFiBADgzJkzxebFxsbCwMAAM2fOBAC4urpiyJAhuHbt\nv/Gw322sAYCNGzfCzc0NN2/eRPPmzZGRkQEzMzM0bdoUfD4f69atK7YfsVhMIV5NZLm63RJfjAyQ\nvvz3QlhzLvQ76oPD4cDd3R0AcPHiRbRt2xaGhoXdUqVSKa5fvw7GGLp06oKtvK1oHNgYb6Pe4q/U\nv2pti3SOOKfshYiCos+oynxelfY5yefzy/yMLLGmClVRASkpKZDJZLCxsVGYbm1tjTdvlP/SjBgx\nAvXq1YO1tTUuXbqEmTNn4u3btwqtPkUWLVqE+fPnq6X2moBJGWQp/wVqrgkXwuZC9eyrgEH8RAzx\nYzGkb6SFob0cF1IVxBZUaD8cEUfnQvylF5cw48gMuFm4wd3SXeFOruYic02XR0ipfHx8kJubi717\n92LAgAF4+fIljhw5gjFjxgAoX2NNkyZN0LBhQ5iYmMDAwAC7du0qth/qE69G2je6pMqwfAa+838x\n5t0g7+fnBwDyL5ytWrUCn8+H6SZTpAelQ8KXgKFmnKWoDIlMu/p264Ki4F7RfvFlfU6OHz++zM/I\nEmuqUCUVUJk+Q2PHjpX/v5eXF3g8HqZMmYIFCxYUux33nDlz5K1DQGFLvKVl7bu9PctnkKZIIU1S\nvIGULE2Gdz+f+HX5gJrvH8Wvxwe/Hr/wJk25DCyzcGgzWaYMLOvfYc7eye3CdsIKtcT/GvUr9n+6\nH426684oFqm5qXiV8QqvMl7h3LNzCvOKxhx2s3RTCPe2RrZ0+3miFerVq4fo6GgMGzYMw4YNg0Qi\nwbhx4zBt2jQA5W+s2bx5M3788UcYGxtDKCzemCCRSMDlcit1mpqUTiqVQsqpmc8r34YPmUzxTIOr\nqytkMhnOnz8PoPC95efnBw6HA6lUimEfDsParLWoU68OHiU90kTZWkEikdDvWwUV/V3Oy8uDsbFx\nudcrz+dkWZ+RJVFbiLeysgKXyy3W6p6UlFTsQEri4+ODrKwsJCcnw9raWmGeQCCotS030mQpCh4U\nQPxAXDiebjlIXkgK+xNqkfwLFbtT0/Ql0wEAr+rp1t3xSpKam4rLLy/jVuIthRDf3K45Wjm2goBX\nO9/fRHvEx8fjk08+wfTp09GvXz88f/4ckydPxvfff48ZM2ZUqLHGysqqxHlSqRSxsbHQ09NTRdnk\nfV6aLkCNyhjrIC0tDYcPH1aY5vzvf33d+6qxMO2W/zAfBx7SQBGVkZqaWiyTlqa8n5OlfUaWRG0h\nXigUolmzZjh9+jS6dOkCAIiLi8OzZ8/QunXrcm3j1q1bMDQ0rNSB1WQ8Kx5E/iKI/EXFxpgv6ocu\nS1dsneA58SBspp7uNNUl9GYomBnDikkrNF1KuV15eQXjfi8cYclM36yw1b2oa82//9qb2IPLoRtX\nEe2zatUqODs7Y86cOQCApk2bIjMzE5MmTcKMGTNU0lgDFJ6mbtGiBfr2rb2hqiRn5p/Bhe8uaLoM\nrWTf0h6hZ0MVpkmlUly7dg1SqRSpqanQ09NDmzZtirWcXsm8gquSq9VZbpW5CdzQ06inpsuotYrO\n+tSpU6dC66nqc1IZtV5JNHHiREyZMgU+Pj6oV68epk6divbt26N58+Z49eoVunTpgi1btqBVq1Z4\n+vQpduzYgV69esHc3ByXL1/G559/jgkTJlDXglIU3bmUX1fxpWQF/3az+TfUc025ELZQXYhnYgZZ\nhgw8S9X30ZHIJOBzi781N+7dqPJ9qVsz22b4behvcLNwg6WBJb2XiU7JyckpNrAAl8uVtyyporEG\n+G/oNmWDGNR2PB4PrKD29t0uTeK1REjzpNAzLDyD8+5FrK1atcKRI0fg7u6OS5cuoW3btvI7uwJA\nCj+l0kMFagqPz6PfEQ0q6n5U0V4gqvqcVEatIf5///sfXr9+jU8//RRv375F165d5VfdisViPHz4\nEDk5hVdI6+np4ejRo1iyZAny8vLg4uKC6dOny/tekorh6HHAt+ODb1e1l1iWW0JL/1sZuFZcmH5i\nqqKK//PtmW9x6OEhhS4mRf9vbWitU0HYytAKVoZ0Jolor9TUVLx48QJPnjwBUHgGlMfjwd3dHb17\n98ZPP/2En376Sd6dJiwsTKHFvLTGmvLSxpuoaAsun87SKSOyFMGmiQ3u7bmH5qObQyqV4sqVK5DJ\nZGjdurX870S9evXA4XDko9aYmJggW5aNPFkezLnmSJOlafhIyk/I0e2z6bqu6DOqMiNpqeJzUhm1\nj+k1e/ZszJ49u9h0FxcXhW/BTk5OOHfuXLHlSPWQZcsKR5Z57wJZll1yS4UsWYa3P7xVeS1BCEI7\ntAOyADwvnJaHPBzMPYgl3CVo6NpQsVuKpRscTRzB41ILBSEVFRUVhdDQ/7ok+Pr6AgBOnz6Nrl27\nYuPGjViyZAlmz54NCwsL9OvXD4sXL5YvX1pjTXnx+XwK8SUoamUmhWy8bKBnpIf4a/F4fvY5Uh+n\nwr2vO24/ui0P8EVndoq8P/zkJd4lvJIWXltlwbWAkCPEG+kbSLV8KB9DDt3NXZOqEuJV8TmpDIfp\n2vmkEuTm5sLAwAA5OTkQiXRrGEJtwGQMsjTZf2O7v9PyjpJGguQV9s9XNRmTKR36y+JjCwBAgx8b\nwNnMWSHIN7ZpDHdLd51qpSeEFBo0aBB69OiBjz76SNOlaJ07O+9g77C9mi5Do/gGfNj72CMrMQup\nj1MV5nEEHHj95AXrJtbwa+OncEOeAwcOoG/fvvIuKE+ePMGDxw/wwusFxIaK4yALIYQVzwrpsnRk\nsazqObAK6mrQFY2FjTVdRq2VmpoKS0tLyGQyrckadHcNAgDgcDngWfIK+7h7/DedscKhIhVu3vTv\n/3NEHJiMMyl5o5W08NRCRMRGQMQXoZ5lPXmXGgtrC/C5fNyZckdrRm7ZErsFtsa2cLd0R12zukr7\n8hNCSsfn8yEWl+PmErWQsV35h7KraczqmcHEwQSJNxPx4vyLYvM5Ag7cw92Rl5GHB7MewHODJ6w8\nlXdfLGAFeGn/Ekm5SbC/bY94r3iFIJ+PfHnrvA3XBhwOB6+lr9VzYJVkyKWWeE0qusmTtgR4gEI8\nKQOHwwHHhAOuCReCeorBWV0XW41sMRL/8/kf7EzsFEZtGZcwDn8l/oW/Ev9Sy34rY9mFZcjIL7zN\nt4ArgIu5C9ws/u3D/+8INPUs6kEkoLNDhJREIBCgoKBiN3+rLYzsjDRdQrXi8Diwb2kPSa4Er2+9\nxtu/3ypf7t8Az+Fx8HjeY7AChl8a/wLv/3nDyd8Jlg0L7xsTVxCHeBaPF+IXSJGlAI6F6ysL8kXe\nyApHETHkGMKMa4YUWQryWJ5ajrciqDuNZmnjnaW1qxpSbZiMAWKAI6z8N0qOnnq+jbqYuyidnlWQ\nhSHbh6hln6oglonxOOUxHqc8Bh7/N50DDhxNHeFp7Ymu7l3Rxa0L3a2VkHdYWVkhOTlZ02VopdrS\nEm9YxxBWnlZIvp+MV5dKvxeIsgAPANae1ohdH4vY9bHg6HHQbFczHMo+BMZjcOA5yNfPcCxseCkt\nyANANstGtjQbHHBgx7NDASso/CKgISY81Z/5JuWXlJRUofHhqwOF+BqOiQuHmiw2wkyqDPpt9CH6\nQLGFmMkYZOnFR6ThGnFhNFizLUL6fH180voTjdbwvojrEciV5CpMMxAYoJ5FPYWx4N0t3eFk6qQ1\n3YAI0SZ2dnZ4+PChpsvQSnpGetAz1kNBZs08U2HbwhY8PZ78QtWylBTgAUDfXL/E9ZKlyeCCCxkK\nx/oub5AHAAaGBGkCAMCMawYDrgHeSN5Aguq7GNuEa0Kj02hYQkIC7OzsNF2GAgrxNYQsTzF4F/2/\nLE1W4jp5V/OQfysfkAJMwgApUNLF+VKOFGnfVXEoLvbOvwwAB0AFRk/7YOUH4NXh4fr161WrQ4We\npDyBpYGlQmC3NbalmzcRUgF2dnY4c+aMpsvQWsZ2xkjJ1FwLsKrpmejBtrktMl5kIPFGYrnXKzXA\nm+kj/lp8ievmIx92PDt5GAcqFuSLvJW9xVvZWwgggD3fHlmyLGTIMsp9DJVlxaOhijWNQjxRC8YY\nWK7iQ5YrA8sto8+6uLClHiXn/Hd2gpJHqakmt17dAko/y1rtVget1nQJhOg8Ozs7xMeXHMBqOyM7\nI6Q80v0Qb9nAEoY2hoi/Ho8X54pfqFqa0gI8ANg0tSlzm/ksv9i0ygR5ABBDjHhJ4XvWimsFPoeP\n19LXSkdWUwVbnq1atkvKLz4+nkI8UT0OhwOeOQ88cx4E9f/rrsEYA8tmSoeNZJkM+m3/605T2k2d\nAIBflw/DQcovqmGMQZYig/ixGJK/JYXDUqphuN3Tk0/DeFTt6B9KSG1ib2+PhISEshespSwbWJar\nq4k24gq4cGjpgLz0PCTdTarUl5GyAjwAvI17W+Z2UmWpMOOa4a1McdnKBvkiybLC6zlEEMGCZ4E0\nWRpyWE6FtlEWWz6FeE1LSEiAvb29pstQQCG+BuNwOOAYccA14gIuivNYPitshf8XV8QF14kLvpPi\nW4KJC78EsAIGrmHJXUR4RjwInAVgUgZZavFuPdJkKd7vPshz5EGvQflvZOLH94O+T8l9HgkhusnO\nzg5JSUmQSCRaN/qDNqjTrI6mS6gwYwdjWLhb4M3tN/jn4j+V3k55Arydjx0SrpfvS6CII8JbvC02\nvapBHgBykSsfptKWZwsppEiSJlV4O+/jgUchXgskJCTA29tb02UooE/LWooj5JRrZBqOgAO+Xfnf\nJhweBzxrHnjWijeBYqz4BbM8Wx70fSmUE1LbmZmZQU9PD69fv4aDg0PZK9QydZrqToi397UHYwwJ\nsQnIfJVZpW2VJ8ADqNC43W+kb6AHPRQo6R+qiiBfJFFa2NffhGMCY64xkqRJSvdZHk4CJwg4NCiC\nplGfeFJrcTgc8Mx44JnxIHCv3IdReHi4wr+EkJqBw+HA3t4e8fHxFOKV0PYQr2+uD5umNnj79G2p\nF5dWRHkDvLG9MeKvl3+fUkhhy7OVt5i/T5VBHgAyWAYypBnggYfmwuZ4KXmJZGnFhlOtJ6hXpRqI\nasTHx1N3GkIqa/78+QCANy3eFN5M6d87ubpZuNHNlAjRcXZ2dtQvvgT6pvqwbGCpdRe3Wje2htBU\niIRrCXhxtmIXqpamvAEeAMzdzZEZX7EW/7JGk1F1kAcK7xfSWr81OnA6IEGagL/y/8KTgieQluMC\nMleBa5X3T6qGMYbExERqiSeksibPmIwtN7bg6OOjCjdTAgBHE0fFYP/v/5uJzDRSKyGkYijEl87R\nz1ErQjxPnwd7X3vkJOUg6W7V+3u/ryIBnsPnVKqGTJYJa551qf3VVR3kvYRe0OcWdh+159vDnm+P\nHFEO7hbcxe3828iUKf8iYsOzgRG3dt21VxulpKRAKpXSzZ4Iqazw8HAc+OWA0nkvM17iZcZLXHx+\nES7mLnCzKAzyfnX90MqxFfhceqsTos0oxJfOobUDbm25pbH9m7mYwaSuCRJvJOKfPyt/oWppKhLg\nAcChpQNexrys1L645bhJiaqCvB7+3959xzV57X8A/zwZjLASpuIG3FsQVxVntXVrr+tnFdtqrdVa\n7a0ddrjrvbfDeltt3dpqq62j4GptRdRaFRDFASgCDnZAZiBknN8fXFJi2CR5Evi+feWleXLyPN/E\nED45Oc85Nuhr19dgu0QgQV+7vvC39UeyKhkxyhg8UOvPQtTRpmO9jkmMKy0tDV5eXhAKhTU3NiNK\nNsRq3Mm8o/s3rYpKSOPi7e2N5ORkvsuwWK0GtjL/QQVlQVlTqkF6dDpyk3NNdqi6BngAUBYYzvte\nWxmaDEg4SY1TQRojyPvb+cNeUPWQTwEngI+ND3xsfJCrycUt5S3cLr2NUlaKTjad6nw8YnyWOL0k\nQCGeWJHCB4V4t8O7GDt0LK2KSngRnhSOxJxE3YfH5k7N6zQzBqla8+bNcenSJb7LsFhePb3g1MKp\nwTO+1IbEQwKPLh6Qx8mRcsX0K+zVJ8C7tndF1q2GDeeRCWVQqGuez70hQd6Bc0Bvu961bi8VSvGM\n5Bn0t++PdHU6JAJJre9LTMcSF3oCKMQTKzImaAwA4FziOdzLvldD68bvcd5jZBZmorlzc3g6eEIo\nMP3XfCF3QuDp6AlvZ280c2wGG1Ht5/lvDI7dOYaQ2BDddUcbR/i4+ui+DSo/F6OVtBUN4aojGk5T\nPY7j0GF8B0R9E2WyY3j19ILIXoTUiFSzLS5VnwAPAI5ejsi5l9OgY2ersyGAANpaLFte3yA/TDKs\nXtNDijgRWopb1vl+xDQscXpJgEI8sSLde3ZHvDweLx1+ie9SCAEAFJYWIiY9BjHpMXrbbYQ28HPz\nw3Cf4RjdYTQ6e3SmHvsatGnTBklJSWCM0XNVhY4TOho9xIsdxWjeuznyH+cj40aGUfddk/oGeBsn\nG6Rda/gHvhKUoJmwmW5O95rUNch3EHeAr41vg+sk/EtKSkLr1q35LsMAhXhiVKyUgakZBBLjD3U5\ndOYQxu4da/T9EuOTiCVo4dwCHdw7wM/ND7YiW75LMoqLyRdx6aH+kA87kZ3uRGpdj7yrL9rI2sBG\n2LS+qWiI9u3bQ6lU4sGDB2jbti3f5VikdsPaQewghqqo4VMeyvxkcGrmhLRraXh4wXjTQ9ZWfQM8\nADTr3QwPzxunZjVT19yogtoGeUfOEcMkwxpcH7EMUVFRmDRpEt9lGKAQT+pFqyhbebXiCqxauRba\nPC3sh9vDbpDxV2L1kHigR7Me1bZhagaoAaZiZavS2jTeHr1sRTZS8g3Hq4oFYrhKXOEmcYOr/f/+\nlrhCaidt8JCbzy9+Di3T/+rZ08Gz0uk9PRw8Gl2PqoeDB1q6tNSFdj9XP7RwaUHnZxiBUChEr169\nEBUVRSG+CiI7EXyf9UXc0bh63Z8TcWjRtwVKC0qReSsTTxKeGLnCWtbRgAAPAPmPqp/nvS7kWjlc\nBC7I0+bV/vg1BHkhhBjrOFY3pSSxbkqlEjdv3oS/vz/fpRigEE+qxBgDy2e6kF4xtDNF1W+6JX+W\noCSyxOj1iGxFODj8IDgxB6GbEJwtp19bjlbvFW3bzxbido13pppf7vyCAzcO6AXo9m7tTXrS7420\nG2gra6u30JaznbNJjmWJpnSdgildp/BdRqPl7++PqKgoTJ06le9SLFbHCR3rHOIdmzvCrb0bMm9n\n1ntKRmNpaID36uWFjOvGHfbjIHCoU4gHqg/yIyUj0UzUzKg1Ev7cunULnp6e8PKyvJWTKcST6gnL\nLpyQAyfkdNerJShrb4ABTMMATdnfAnsBUMuOWqZm6PROJ3D2HFLSUnQ9vKIWIohaNL6XcVFpEcRC\ncbXDMSZ2mYiJXSZWefvhW4fx9eWvDabh9HH1gZOtU73q+mbSN/W6HyG10adPH/zwww98l2HR2o9t\nD07AgWlrDr/N+jSDQChAamQqCtMKzVBd9Roa4IGyzhxjy1JnQQQR1Gj40Bp/W390sqVpIRuTa9eu\noU+fPnyXUanGl36I0XAcB86Rg8BRALTVv40pK++h1z7RwtbfFqJ2Imiy9IfbsEL9N2y7Z+3A2dZ+\nuEX6snQgH1h4YGHZMBnh/8bgK1nZL4Onfh8InAXg7KxzOEdKfgpiM2MhEUvgYOPw90Vc9ndthsWk\n5KfgQe4DPMh9gD/u/6F3WzPHZgZjuP3c/OAmcWt0Q2CI9fD398c///lPOrm1Gg4eDvAd7YuEUwmV\n3m7rYguvnl7ITcpF+rXanbBpDsYI8BJPCVIjU41emwoqeIu8kaqu+74rBnmHPg4YJB1k7PIIz6Ki\noixyKA0AcIyxuv8kWaDi4mJIJBIoFArY21e9qAIxPlbKoLqvgipOhdKEUsD4I2kAANGl0ZiHeRC5\n0GdPY3G0cdSFeF83XwS0CEBv7940xpvwQq1Ww9nZGXFxcRY5E4SliD0ai0NTDultc+/kDns3e6RG\npkKj1PBUWeWMEeABoE1Qm1pPfcnZcOh5qCceDHoAJqz5eHUdF/+0DmkdwD3kMHDgQDg7N50hhk1B\n37598fHHH2PcuHF8l2KA0hBpMM6Gg01nG9h0toGkVAJNtsbwpNccLZ6eitduWN164rtou8Az0tPI\n1VsmpVqJIlVRlbdLxBK0lbVFO1k7tJO1g4+rD9rJ2qG1tLUugB+7cwyrz64GALhL3HVj5nUnZbr5\nwdPBk3o8icUQiUS6k1spxFetw7gOcPByQEluCbwDvFGcXQx5nJzvsiplrAAPAUz6GPO0eXATuiFb\nk13n+/a27Y3BnQfjvs19XLp0iYJ8I1JaWoqYmBiL7YmnEE+MirPhIGougqi5/kuLaRi0T/RnsrEN\nsIXArvY9vs3QDBH9IoxdskU6dPMQ3vv1Pbjau+oWEao49KU2K4UO8xmGrl5d4efmBxc7FzNVTkjD\nlJ/cOnnyZL5LsVi5SbloG9QWCb8m4NGfj/gup0pGC/AAWvRtYfLVY8Wo20QIAggwTDIM3Wy7AQD8\n/PwAgIJ8I3L79m24ublZ5EJPAIV4YiackIPQXQihe/2nOFywYAEAYNu2bcYqy2KN8huFkb4j4Spx\nrfc+WklboZW0lRGrIsT0/P39cfDgQb7LsDhatRZ3j99FxJYIJJ5J5LucGhkzwAMwyxChDE0G7Dg7\nlLCax4Tac/YY6zgWLUQt9LZTkG9cLHk8PEAhnliR7du3A2gaIV5mL+O7BEJ44e/vjxUrVtDJrf9T\nmF6IazuuIerbKOQ/Nt786KZk7ADv0tYF6ddNf5IuA4ObwA0pmup7/NuK2mKkw0g4CBwqvZ2CfONB\nIZ4QI/n222/5LoEQYmKdO3dGYWEhHj9+jFatmuY3SYwxPLzwEBFbIhB7OBZatbbmO1kIYwd4AHBp\n7YK85PqfdFoXTzRVL4Bly9liiP0QdLbpXOMHTAryjUNUVBQ+/PBDvsuoEoV4YjXKh9MQQhovkUiE\nnj17IioqqsmFeGW+EjHfxyBiSwSybmfxXU6dmSLAi+xFSI8231SZCijgJfRChubvBaUEEKCHbQ/0\ntesLiUBS631RkLduKpXKok9qBSjEE0IIsTDlJ7dOmjSJ71LMIvNWJiK2RCDmuxiUFpbyXU69mCLA\nA4C3vzceXnxolH3VVsWZtzvZdEJ/u/5wEdZvcgAK8tbr9u3bkMlk8Pb25ruUKlGIJ1YjNDQUADB+\n/HieKyGEmFJAQECjX7lVU6pB7JFYRGyJwMML5g2pxmaqAA+U9cSbW542DwG2Aehm263e4b0iCvLW\n6erVqxbdCw9QiCdWZMKECQD0e0kIIY3PyJEj8dprr6GoqAgODpWfPGit8h7lIWpbFK5tv4aijKrX\ngrAWpgzwLQe0xOxfZ+PxX49x6+At3A25i9zkXKPtvyIxxGgjbgNfG1/4if0g4owbjyjIW5+TJ0/i\n2Wef5buMapk8xG/cuBGbN29Gbm4uRo4ciW3btqFZs2aVti0sLMSSJUtw+PBhiMVizJkzB//5z38g\nEtFnDQKzrJYWmxmLH2N+1M3N7ufqBw8HD5olgxAzatmyJbp06YIzZ840iiE1TMuQ+EciIrdEIj4k\nHkzbODoiTBngAaDvor7gOA6tBrZCq4GtMGbTGGTeysTd43fx6M9HSLmSAoVcUa99CyGEp9ATXiIv\ntBW3RQtRC6MH96dRkLcexcXFOHPmDL744gu+S6mWSV+xu3fvxrp167Bv3z74+PjgzTffxPTp0xEe\nHl5p+9dffx1Xr17FmTNnUFRUhNmzZ8PJyQlr1qwxZZnESvx89Gccu3MMB2NMN4d0QnYCvr/+vd42\nJ1sn+Lk+teCSmy9aOreEUFD/ee8JIVUbP348QkJCrDrEFz8pxvU91xG5NRI593L4LseoTB3gJe4S\ndHmhi/4xOQ5e3b3g1d0LQNm3soVphci8nYmClAIUpBWgMK0QCrkCWlY2o4+f2A82Ihs4CBzKLpwD\nZEIZpAKpbnVrc6Igbx3Onj0LHx8ftGvXju9SqsUxE45N6NOnD5577jmsX78eAJCYmAhfX19ER0ej\nV69eem2fPHkCDw8PnDp1CqNGjQIA7Nq1CytWrEBGRgaEwurDUnFxMSQSCRQKBezt7U3yeAg/NKUa\naNVaFHKFCPg6gO9ydDwdPDHKbxRGdxiNwJaBEAvrttofIaRq165dw5gxY5CWllbj+7+lSY1KRcSW\nCNz64RbUxWq+yzE6Uwd4ABj0ziCM3Diy3vfXaDQ4fvw4xo0bZ5Gvn4SEBCQkJFCQt1Cvvvoq3N3d\ndfnVUpnsY6hSqcSNGzcwfPhw3TYfHx+0bdsWV65cMWgfFRUFxhiGDh2q2zZixAhkZ2cjISHBoL1K\npUJxcbHeBQAkEv3pn8aPHw+O43QnRQJliwVxHKc3ZWFqaio4jjM4C9nf3x8cxyEqKkq3bdWqVeA4\nDqtWrdKrn+M4g5MgvL29wXEcUlNTddsWLFgAjuP0Fi0KDQ0Fx3EGJ21yHGcwlKMxP6Y9n+/BjX03\n8Pt7v2N+r/ngOA797Poh4XQCJGIJPgj4AIlvJ+LJv5/g8+c/112wG0h8OxGL2izSbeub1BeJbyei\nb1Jf3bZFbRYh8e1EYDf07v/k30+Q+HYiZvrM1NWU9XNWWdtoYGDrgXix94uYKJqIxLcT4XfWD5cW\nXsKaUWswqM0g2IhsmtT/Ez0m8zympqx3796wsbHB1atX+S6lVlTFKlzfex07+u3A9oDtuL7rOgX4\neh8E8H/Vsk8obCg/Pz/4+fnh0qVLyM+3jkW8mgqtVovjx49bxSQaJhtOk52dDa1WC09PT73tHh4e\nyMzMNGifmZkJqVQKsVis17b8to4dO+q1X79+PVavXm2CyokpVfziJ/KbSGTFZkEeK0fihbJlxH97\n6zc8wAMAQDrSdfc5vfQ0lk9drruvncgOE7tM1F1fY1c25Gqoz1D4dyl784/2iAYAdPLopGsbVVwW\ntKR2Ur3724nsAADPtn8WDxwfoJmsGS5HXsbFKxcxb9A8LJq6CC4CF5xUnMQX+AI2QsPQTggxnvIP\nYSEhIRgwYADf5VQp534OIr+JxPVd11GcU8x3OSZllgAPoP3z7SFr1/hXraahNZbp2rVrUKvVCAwM\n5LuUGplsOE1KSgpatmyJmJgYdO/eXbc9MDAQ48ePN1gBa//+/XjjjTeQnZ2t21Y+ROb8+fMYPHiw\nXnuVSgW1Wq3X1s3NjYbTWDitRgt5nBzyWLkuwMtj5ZDHy6vttbJxssH7Be8DAI7lHzNpjY/Uj6CB\nxmC7AAJIBVLIhDK4Cl3LLgJXyIQyiDkaSkOIsZ06dQpvv/02bt26xXcperQaLe6dvIfILZFIOG34\nTXFjZK4ADwCzTsxC++fbN2gflj6cpiIaWmNZPv74Y6SkpGDHjh18l1Ijk/XEu7u7QyAQGPS6Z2Vl\nGfTOA4CXlxdyc3OhUql0vfHl962svVgs1uu1J9ZBIBTAs6snPLvq/58yLUPug1yDcJ8Vm4WSJyWY\ntGcS3pz0JrblbUOyOpmX2rXQIkebg1xtLp5oniBHmANXoSvctG5oJWpVp5X8CCE1GzZsGJKTk5GY\nmAgfHx++y0FRZhGu7byGqG+jkPcgj+9yzMacAV7aTgrf0b4m278loh55yxISEqI3FNKSmSzE29ra\nomfPnggLC8OIESMAAElJSUhOTka/fv0M2vfp0wccxyE8PBwjR5adzHL27Fm4ubnpXuDEvBhjZhsy\nwgk4yNrJIGsn0+uBYYyhKLMIQhsh7Dg7vC593eS17MnbgyJWBBFEcBWW9bS7Clx1ve8uAhcIOcvu\n2SGkMbCzs8Ozzz6L0NBQLF26lJcaGGN4dOkRIrdE4vZPt6FVaXmpgy/mDPAAELAwAAKh+WeN4RsF\necvw6NEjxMfH63KopTPpFJOLFy/G0qVL4e/vDx8fHyxbtgyDBw9Gr169kJKSghEjRmDfvn0IDAyE\nq6srZs2ahaVLl2L37t0oKirCBx98gEWLFln8V2HWjDGG/Ef5ut7vir3gL19+Ga6+rrzWx3EcHL0c\ndddFEKFIW4QYZYwuXBt7OMtzDs/BSeAEJ4ETjXsnhGfjx4/H999/b/YQX1pYipsHbiJiSwQybmSY\n9diWwtwBXmgrRO+Xepv0GJaMgjz/QkNDMXz4cKtZZM6kIf6ll15CRkYGFi1apFvsafv27QDKxrTH\nx8dDofh7oYYtW7Zg8eLFGDlyJEQiEebMmYOPPvrIlCU2GVq1Fjn3c/SCetadLMjj5FAVqSq9T8hL\nIRA7WM6Qpc+vfw5pbyk+P/w5rpboz1jhLHCGTFBhrPr/xqvbCexqtW+FVoFcbS5cBa5oIW5hivIJ\nIfUwduxYLFy4ELm5uZBKpSY/XlZsFiK3RuLG3htQ5itNfjxLZe4ADwBdp3WFxL1pD0ukIM+vkJAQ\nTJkyhe8yas2k88SbE80TXzVVsQrJYclIv57+d4ivJrxbqlVYBQDYlLOp1vex5+zRWtQaPjY+aCVq\nVeWKfKnqVBwrPKa7T/mHAN1wGqErHDlH6pknhAeDBg3CkiVLMGPGDJPsX6PSIP6XeERsiUByWLJJ\njmFN+AjwAPDyXy+jZf+WRtmXNZ3YWhk62dX8CgoK4OHhgcTERIOphC2VadcYJhZBbC9G++fb6481\n1zLkP85H1p0sgxNJi7PLpkl77dZrkPlYzjRf7UPbI0wTVqf7FLNixKviEa+Kr9N9UtQpSEGK3nYb\n2OgCvUwog6fQEy1FLWl8PCEmVj7VpLFDfH5KPq5tv4aobVEoTCs06r6tFV8BvlnvZmjRj74FLUc9\n8ub322+/oXv37lYT4AEK8U0WJ+Dg0toFLq1d4DdG/8ThoqwiyGPlkLaRQmxvOcNppv5jKhyKHKBm\najzRPIGYE/99gbhBveQl2hKka9Irvc2Ws9U7sbV8LL6zwJl65gkxgwkTJmDjxo0oKSmBnV3thshV\nhTGG5LBkRGyJQNyxODBNo/gy2ij4CvAA0HdRX3o/fQoFefM6duyYVSzwVBGFeGLAwcMBDh6Wd1KH\nLWeLiY4Ta25YDymqFJwuOl3pHPASTkK/XAjhUZcuXeDj44OjR49i5syZNd+hEiW5Jbix7wYit0ZC\nHic3coXWj88Ab+tii24zu5nteNaEgrx55Obm4siRI4iJieG7lDqhEE+sxrZt2wCULUlvbN4ib7ws\nfdno+yWEGMeCBQuwffv2Oof49OvpiNgSgZv7b0KlsK7zgMyFzwAPAL2Ce8HGwcasx7QmFORNb//+\n/Rg4cCB8fa1rjQI6sZUYKF94ybGZo0UNpynvDW8kL1lCSB3k5+fD29sb169fr3HtEHWJGnd+voOI\nLRF4/NdjM1VonfgO8ADwetzrcO/obtR9WvuJrZWhk11NgzGG3r174/3338e0adP4LqdOqCe+CdOU\napB9L9tgfnh5vBzqYjUWxy+GWwc3vsvUmT9/Pt8lEEJ44uzsjGnTpmHHjh3YuHFjpW3yHuYhYksE\nondGQyFXVNqG/M0SAny7Ee2MHuAbK+qRN43IyEikpKRg4kTTDNc1JQrxVkRVrEL+o/w6B2t1iRoZ\nNzMMwnrO/ZxqT+ra0W8HOKF5x4KX97JXNga9u6w7ltxbYtZ6CCGWY/78+Zg0aRLWrFkDGxvD4Rcp\nESn4819/8lCZ9bGEAA+UndBKao+CvPFt374dc+fOha2tLd+l1BmFeAtUkltS6QqqT5KeQNZOhjfu\nv1Gn/QlthXBu4QxlvtLgUphe9bRqEg8JRLameYkwLYNaqYaqWAW1Qg1ViQraUi2YlunqFUv0h/LY\nuljfDxghxHj69+8PT09PhIaGYurUqQa3d5rYCS6tXZD3MI+H6qyHpQR4pxZO6DihIy/HtmYU5I2n\noKAAP/zwAyIjI/kupV4oxPNIIVcgIyZDfwXVWHm1wfpJ0hP8y/VfRqvBTmoHrUYLpmHQasv+ZhoG\npmUoyiwCJ2hYTzzTlu1Po9GAqf/ed3U0Sg2eJD4Bnjp0AVeA1NRUq5rDlRBiPBzHYcGCBfjmm28q\nDfECkQB9F/fF7yt+56E662ApAR4A/F/1h0Ak4O341oyCvHEcOHAAffr0QceO1vlhkkI8j+xkdnBp\n4wKVQgVV0f8uirJLVct9C0QCuLR2MXltTMvKhrQ0IMNrNVqUFpWiNK8UWoW27ENCDQFevwj9q5+x\nz/BZi8/McmLrE80TXCi+oJtmsnzaSVuOvg0ghE9z5szBypUrcefOHXTp0sXg9j4v98G5j89BXazm\noTrLZkkBXiASoM8rfXg7fmNAQb5hGGPYvHkzVq9ezXcp9UYhnkcCoQCuvq5w9XVFh3EddNsZYyhM\nK6x0SI1YIsbC6wt5rLrhClILcP/MfTy69AgZMRnIS86DIlsBrUqrazPtyDS06Ku/et/WgK3QcBpc\nLr5s8hoVWgWSVElIQpLedgfO4e9QX2EBKJpLnhDzcHFxQXBwMDZv3oxvvvnG4HZ7V3v0nNMTUd9G\n8VCd5bKkAA8Anad0hlNzJ15raAwoyNff77//jsLCQkyaNInvUuqNppi0MqWFpbBxbJzz6ZbklyA5\nLBkA0LJfSzg2c9S7vVhbjG1523iorGoCCOAicIG3yBu+Nr5oJWoFEUefjQkxpbt376JPnz54+PAh\nXF1dDW7PupOFLV238FCZZbK0AA8Ac8/NRdugtibbf2OcYrI6NP1k3Y0bNw5DhgzBihUr+C6l3ijE\nE6uhYRqkqlKhLlJD7Gja+etztbn4Q/GH7roIIr0e+PJ/SwVSCLnG/wuiKVIzNZRMSd+yWKixY8ci\nKCioyl/AB8YdwL0T98xcleWxxADv0cUDr916zaQ/V00txAMU5Ovi3r176N27d5UdAdaCugyJRdKq\ntci5n2M4h32cHN1nd8e4reNMenyZVobB9oN1od1J4ERBronJ0+bh+/zvYcvZGpwbUf6aEHB0Uh5f\nli5dildeeQXLly+HSGT4q2z4+uG4d/Kewbk1TYklBngACFgUQO+nJkBDa2rvv//9L2bPnm3VAR6g\nEE94plKoII+XG4T17HvZemPkAWCbYBuEfkKsXLwSO3N38lQxaSo00AAAlEyJNE0a0jRpercLISwL\n9hXOjZAJZZAJZPTtjBmMGjUKjo6O+OWXXyqdqaZZz2boPqs7bu6/yUN1/LPUAC92EKPniz35LqPR\noiBfs7y8POzZsweXL5v+/DpToxDfSJUWlkIepx+Ms2Kz8NLFlyBxl/Bdnk5hRiEKUgqQn5KPgpQC\n3b+fDvAAkKpNBe4CYqnYKD2gWqYFB456hEjlasg8Ik4EMcQQc2WX8usCUO+8OXAch2XLlmH9+vWY\nPHkyBALD533Y2mG4feh2pe8njZmlBngA6PFiD9g60yxfpkRBvnqbN2/GoEGDKp3dytrQmHgrV5RV\nZNCLnRWbhfxH+ZW27zq9K0R25v3spi5RoySvBMo8JaTtpBCKa+6lVBWroMxVoiSvpOy+uUok5iZC\nXaLG+IXjjTKc5mzRWdwsvQkXgYtBj6qrwBW2AuP/olFoFWBgNM7aCmRrsvF9/vdw4Bz+fl1UOCeC\n/g/5p1Kp0LVrV6xZswYzZsyotM2pN07h6n+vmrky/nBiDu1Xt4dLGxdEzou0qAAPAAtvLIRXDy+T\nH6cpjol/Go2RNySXy+Hn54ezZ8+iTx/rn+KUQryVKi0qRcLpBDw4/0C3UFRBSgHfZZmUjYsN3G+4\nQ1ughahlwz+IlLASqFH1XNISTmIQ3NyEbnAQONT7mDHKGIQpwmDL2UImkBmEQxpnbTnUTA0NNLQ2\ngIU7dOgQ3n//fcTGxkIsNjzhvTCjEJt9N0NVpOKhOvMqD/Defb0xaOggxOyJQeiCUIs5L6D1M60x\n78I8sxyLQnwZCvL6li9fjtTUVPz44498l2IUFOIbEWW+stIhNE/uP9EtsrTg2gJI3Bo+nEalUOFB\n+AMk/pGI7LvZeHL/CUoLSxu83+rYSm1hn2je/1sBBGVDbir+aUDvq4Zpqv3gUNk46/KAT72+hBjS\narUIDAzEyy+/jNdee63SNmEfh+H8mvNmrsy8ng7w5Sf73vjuBn4J/qVuC+2ZyJQDU9B9ZnezHItC\n/N8oyJd58OABunbtiuvXr+uGHFk7CvEWRKvW4kniExSmF6LNkDZG269aqUbOvRxkxWahw7gOENsb\nb3pGdYka2fey/x7Sc6fs7+y72dAoNQbte7/SG2JJ/Y6/P2o/FIMVmPqe4Uls9VGoLUQJK4Gw/A8n\nhAgiCLmy66YIzSXaEhSywkpv48DBReBSdoJkhV56mVBGvcGEVOP333/Hiy++iISEBDg4GH5TpsxX\nYrPvZijkCh6qM72qAny52KOxODr7KFQK/r6NcPB0wJsP34TI1jzDOSnE66MgDwQHB8Pe3h5bt27l\nuxSjoRDPA1WxCtl3s5F1R7/HPOdeDjSlGrh3dsf8q/P5LrNBtBotcpNzIY+XIzs+G9nx2ZDHyzHt\np2n1PrHW1qksyBrrJVuiLYENZ2PW4SsxyhicV5zX9baXD9GRCWWQCqS0UBQh9TRq1CgMHToUK1eu\nrPT2y19exq9v/mrmqkyvpgBfLv16On6c+CPyHuaZucIyz7z/DEasH2G241GIN9SUg/ytW7cwYMAA\n3L17F82bN+e7HKOhEG9iBWkFuP/rfWTeztQF9idJTyxmjKI1uWh3EYPeGYRVq1bxXUq9qZgKQghp\n3DshRhYZGYmRI0fi/v37cHNzM7hdrVTjq45fIe8BPyHWFGob4MsVZRbh4JSDePTnIzNVWIYTcHgj\n8Q1I20jNdkwK8ZVrqkF+4sSJ6NatG9avX893KUZFId4MVIr/9bw/NVY9+67hXOgAYONog7bD2la5\nP3WxGsoCJUoLS1FaUIrSwlIoC5QG+5K4S+DY3NHYD4c3YokYr1x+he8yCCEWatq0aWjVqhU+++yz\nSm+/se8Gjs09Zt6iTKSuAb6cWqnGyddPInpntIkr/FvHCR0x45fKZw8yFQrxVWtqQf7PP//EhAkT\nkJiYCBcXF77LMSoK8TwqHwOfdSdLL+ALxAK8fOllXTvGGDJvZiL2SCzijsYh42ZGk+zJt3e1x4rs\nypdYJ4SQu3fvok+fPrhz5w5at25tcLtWo8W3vb5F5q1MHqoznvoG+HKMMVz96ip+XfYrmMb0v0z+\n7/T/wW+0eU8kpBBfvaYS5BljGDJkCCZNmoS33nqL73KMjkJ8XY6RU6wL27kPcjF87XCTHIcxVu1J\nlRV79iuOq396ldOOEzui+/+ZZyYAU2FaBkWWAvkp+bhx6wbcOroh+NNgvssihFiohQsXQqlUYvfu\n3ZXefu/kPRwYe8DMVRlPQwN8RYm/J+KnaT+h5EmJESvUJ/OVYcndJeAE5p1di0J8zZpCkD9+/Dhe\ne+013Lt3D3Z2dnyXY3QU4p/CGENBSoEurFfsIS/KLNK1E0vEmHJgijFKNxqtWlu2AuqjAuQ9zoNz\nS2e07N+S77JqRaPSoDC1EPmP88suj/KR9zgPBSkFug8mq7AKgPFObCWEND6pqano2LEjLl++jK5d\nu1ba5tALhxB7ONbMlTWcMQN8udzkXBybewwPzj8wQoWGRn06CgPfGmiSfVeHQnztNOYgr9Fo0KtX\nLyxbtgwvvfQS3+WYBE2FgbIe9vjQeMQejkXyuWSUFtQ837lKocLBSQfNUB0p1xzN0bxP4zmrnBBi\nfN7e3liyZAlWrlyJY8eOVdrm+a+eR9IfSSjJNV0PtLGZIsADgLStFHPOzsHlLy7j7Mqz0JQaTg1c\nXyI7EXoF9zLa/ojxlc+XfunSpUYX5A8cOACNRoM5c+bwXYrJUE/80/upMGSmYi987oNcvXHoIjsR\nRnxivumyGjuVQoXCjEIUZRSV/Z1e9nfFr3k5IYdR/xmFAcsG8FgpIcTS5ebmwtfXF6GhoRg4sPJe\n4Ohd0Qh5OcTMldWPqQL80zJuZuDYnGNIv55ulP31Cu6FibsnGmVfdUU98XXT2HrklUolOnbsiE2b\nNmHSpEl8l2My1BP/FHtXe7Qe1BqtB+mfFKVSqCCP/3tmmfxH+ej/Zn+eqmw6nn7e+VyshBBiHaRS\nKT766CO89tpriIiIgI2NjUGbXvN64eaBm0j6I4mHCmvPXAEeALy6e+GVq6/gr8//QviqcKhLql5d\nujYCFgUYqTJiao2tR37dunVo3bo1Jk7k50OkuVBPvIVjjEGr0kJoQz0JhBBSWxqNBkOGDMHIkSOx\nevXqSts8SXyCLd22QF3csLBqKuYM8E/LvpeN0PmheBBev7Hy3gHemB/B36KF1BNfP42hRz4qKgrD\nhg1DVFQU2rdvz3c5JkU98RZCt8LpU8N4smKzEPRREAYst7whJMp8JeRx+vW6tHHBc5ufM8nxvL29\nAZSduEYIIdURCoXYvXs3AgICMGnSJPTu3dugjcxHhuHrh+O35b/xUGH1+AzwAODW3g1zz87F7UO3\ncfaDs3hy/0md7k+98NbJ2nvklUolgoODsWbNmkYf4AHqiTc7tVKN7LvZBmE9+252lV9durR2gZO3\nk1GOr9VqoS5WQ1WsAhjg4OFQbXuGsm8Cyu+jKlaV/VuhqnShKqGtEHYy00zj9Hb622U1NY6XLCHE\nDD7//HPs3bu3ymE1TMuwd/jeevc4mwLfAf5pmlINru24hvA14SjKKKqxvZ3MDssfL4dYIjZDdZWj\nnviGsdYe+Q8++ADh4eEIDw+HQND4V0Y3WYjfvXs31q5di7S0NAQGBmL79u3o0KFDle2Dg4Oxd+9e\nvW1Lly7Fpk2banU8awjxjDFkxGQg82amXoDPSciBVm0YiMtxQg4CUT1ejKzsFxRjTPdv/R2jxv0y\nLSu7nwXk5nzk462Ut3Q98oQQUhONRoOgoCAMHz4ca9asqbRN7oNcbO2+tVYzk5mapQX4ikoLS3F5\n02X8+e8/q32u+i/vj9GfjTZjZYYoxDectQX5yMhIDB8+HNeuXdN9o9DYmSTEnz17FqNHj8aWLVsw\nYMAArF27FteuXcPt27cr7QkBykJ8YWEhvvrqK902BwcHODnVrgfaGkJ8VTQqDXIScgx65+VxcqgU\nKjz72bM1DqfJe5SHuKNxiA+JR0ZMBhRZCjNVbz62LrZ4N/ddvssghFiZu3fvIiAgAOfOnUOfPn0q\nbXN9z3X8Mu8XM1emz5IDfEUKuQIXNlxAxNcRlU5JufjuYri1d+Ohsr9RiDcOawnySqUS/v7+mD9/\nPpYuXcp3OWZjkhA/ZcoU2NvbY//+/QCAoqIieHh44MCBA1VO9RMcHAy1Wo3vv/++Xse05hBfFaZl\nyHuUB4FIAOcWtfvhqekDQUUurV3Qa16vhtfJGEpyS6CQKwAGuHUwzZu3yF6EZ955xiT7JoQ0bl98\n8QV2796NyMjIyofVMIZDUw4h7lgcD9VZT4CvKO9hHv76/C9E74rW9cz7PuuL2b/O5rkyCvHGZA1B\nfuXKlbhw4QLOnTvXJIbRlDNJiG/ZsiVWr16Nl19+Wbdt2LBh6N+/Pz755JNK7xMcHIyQkBAIhUJ4\nenpi0qRJ+OCDD2odyBtjiDem8g8E5eE+604WbBxsMGbTGL5Lq7UFCxYAALZt28ZzJYQQa1M+rGbY\nsGFYu3ZtpW2KsoqwtdtWvdW5zcEaA3xFynwlru+5jiubr+DZz55Fp4md+C6JQryRWXKQj4yMxIgR\nIxAVFdVkhtGUM0mIt7GxweHDhzF+/HjdtmnTpsHJyQk7d+6s9D4HDx6Es7MzWrVqhVu3bmHFihUI\nCgrCd999V2l7lUoFtfrvE0GLi4vh5uZGIb4R4zgOAJ3YSgipn3v37sHf3x9hYWHw9/evtE3C6QTs\nf36/2c4DsvYAX1H5eVecgOO5EgrxpmCJQb58GM2CBQvwxhtv8F2O2dXpO4eFCxeC47gqL0OHDq13\nIdOnT8dzzz2Hbt26YcaMGdizZw++//57ZGVlVdp+/fr1kEgkuoubG7/j74hxaZjhOMtvv/0W3377\nLQ/VEEIag/bt22PNmjUIDg6GUqmstI3fGD+M+vcos9TTmAI8UBbeLSHAE9Pw8/ODn58fLl26hPz8\nfL7LAQCsXr0abm5uWLx4Md+l8KJOPfG5ubkoLCys8nZbW1t4eHjUazjN0/Ly8iCVSnH16lX07dvX\n4HbqiW/ctuduh5gTQyaUwVXgClfh/y4CV9gKbPkujxBipbRaLYYOHYohQ4Zg3bp1lbZhjOHY3GOI\n+S7GZHU0tgBvaagn3nQspUc+IiICI0eOxLVr1+Dr68tbHXyq07uGVCqFVCqtsV1gYCDCwsJ0IV6h\nUODKlSt1OmP4xo0bAIC2bdtWertYLIZYzN8ctMS0JjhOgBb6024qmRLf5H0DCSfRC/UyoQyuQlc4\ncA66ITcNdaboDDhwcBW66j5IOAucjbZ/Qgg/BAIBdu3aBX9/f0yaNAkBAYaLEnEch/HbxiM7Phsp\nV1OMXgMFeGLNLGFBqJKSEgQHB2P9+vVNNsADJlqx9fXXX8eYMWN0ve9r166Ft7c3nn/+eV2bTp06\n4ZNPPsHkyZNRWFiItWvXYurUqfD09MStW7fw5ptvYtq0afDw8DBFicTCuQkNh0f99MtPuFV8C93G\ndINSrUSuJhepXCrsBfaw5+zhIHCAmDPOB7skVRKKWbHeNhFEkAllkAlkf3+IELpCKpBCyFFPDyHW\nws/PD+vXr8fMmTNx5coVuLq6GrQR2Ykw/eh0bO+7HQWpBUY7NgV40hjwGeQZY1i6dCm8vLywaNEi\nsx3XEpnk3WPEiBH49ttvsWbNGqSnp6Nfv344ceKE3rRe8fHxyMvLA1C2PHZ0dDR27dqF/Px8tGrV\nClOnTsWHH35oivKsklatRc79HJQWlMI7oPEvdrQrbxeKWTEcOUddWJ41eRYAYFPOJmigQSErRCEr\nBKpeJ8uo1FAjS5OFLE0W8L/ZOh05R7gL3dHOph18xb5wEFS/Ai4hxDK8/vrruHLlCqZPn45Tp05V\nGqadvJ0w/dh07B68Gxql4Xk6dUUBnjQmfAX5LVu24PTp04iIiGhS00lWxmQrtppbY5liUqVQQR4v\nN5jnPfteNrQqLXxH+2L60el8l2lycrUczkJn2HB/f/CbNHUSSgWl2HNsj8mPf6boDPK0ZR8yOXBw\nEbiUDa2p0AsvE8pgy9H4fEKsVUlJCYKCgjBgwIBqVwe/eeAmjvzfkQYdiwK8edGYePMx5xj5s2fP\nYsqUKTh37hx69epl0mNZA3oX4dGTpCdI+iNJL6znPsitdmqz+7/exwbJBrPVaEmCXIOwInuFWY4V\nYBcAW84WMqEMUoEUIo5+VAhpbOzs7HD06FH07dsX3bt315uMoaLus7oj42YG/tz4Z72OQwGeNGbm\n6pG/f/8+pk2bhp07d1KA/x96J+GRrJ0M9i/YQx6n3+ueFZuFJ4lPKg3zEncJvPs2/uE0lbF1Ml+v\ndzfbbmY7FiGEP97e3jh69ChGjRqFTp06YdCgQZW2G75uOLJuZeHu8bt12j8FeNIUmDrI5+fnY8KE\nCVi8eDGmTp1q1H1bMxpOY6HUJWpk3802CPeufq6YfqTuw2lUxSpkx/+9v6w7WRj9xWi4tHIxQfWE\nEGJdvv/+e7z11luIiIhA69atK22jzFdiR/8dkMfKa7VPCvD8oeE0/DDF0BqtVotJkyZBLBbjp59+\navLj4CuidxQLJbITwauHF7x6eOltr+kzV/GTYoPx9FmxWchNzjXo2Zf5yCBxlxi5ctN55p1nANCK\nrYQQ45s9ezZu3ryJiRMn4uLFi3BwMDxJ3dbZFjNDZmJ74HaUPCmpdn8U4ElTZIoe+Q8//BAPHjzA\nn3/+SQH+KdQT3wioilVIPJOI2COxSDqbhPxHlrGSmrGtwioAFOIJIaah0WgwceJESCQSHDx4sMp1\nIR5ceID9Y/ZDpVBVejsFeP5RTzy/jNUj/8MPP2Dp0qW4evVqlesGNWUU4hshZYESGTEZeJL4RK83\nPichB0zz93/3+O3j4dTCicdK60YoFsJnpA/fZRBCGrH8/Hz0798fs2bNwgcffFBlu8Q/EnFg7AGD\nqScpwFsGCvH8a2iQj4qKwvDhw3H8+HEMHjzYBBVaP3p3sWJMy5D7ILfS4TO95vXC6M9G67XXlGqQ\nk5CDrNgsZN3JQscJHeHgSfOaE0JIOWdnZ4SEhKBfv37o2rUrJk+eXGk7nxE+mH50On6c+CO0qrLF\nKijAE/K3hgytSU9Px8SJE/Hpp59SgK8G9cRbgYrhu/ykVHmsHPJ4OdTF6krv4+DlAGkbKYCy4Sca\npQZqpRp2LnZmrNy4bJ1t8eKZF/kugzQi+dp8ZKoz4Sp0hYvAhVbeJTq///47XnjhBVy4cAHdu3ev\nsl3csTgceuEQIAAFeAtCPfGWo6498kqlEkOHDkVAQAD++9//mqFC60Uh3sIxxpB9NxsZMRl6Pe3y\nOHn1KwhyACfgwLRM74RWkb31/mI5wA6g1YhWOPjLQb5LIY1EijoFZxRnAAACCCAVSCET/r2gl6ug\nbFEvMSfmuVLCh82bN+Pzzz/HxYsX0bJlyyrbxRyMwe2k2/AOoABvKSjEW5baBnmNRoMXX3wRGRkZ\nOH36NMRieu+tDr3TWDiO4+De0R3uHd31thdmFCLmuxg8+usR5LFy5D/OR2lB6d8NGPTGv5erqufe\nGtzBHdw5cQd78vfwXQpphLTQIkebgxxtDu6r7uvd5ixwhkwgg5vQDW3FbdFC1AICjmZJaOyWLFmC\nR48eYcSIEQgPD0ezZs0M2mg0GhS1LkIr71boP6A/BXhCKlGboTVarRavvvoq4uLi8Mcff1CArwV6\nt7FSjl6OCFwSCL/n/AzHxMdlQVNi2EsvtBXCb7QfD9XWTKvWorSw7EOInbTyIT/vFL0DyasSdLHp\nYs7SSCNWqC3EQ/VDg+3lvfLlPfIyoYx65ZsgjuPw73//GyUlJRgxYgTOnTsHDw8P3e0ajQZXr16F\nVqulAE9IDaoL8owxLFmyBFeuXEFYWBhkMhlfZVoVGk7TCJWf8Fo+dr484CvzlFh0exGvtRVlFVV6\nIm75tJjd/687ntv8XOV35gB7WdP+vyXG9Uj1CBeLL5YFdcHfw2hofDypqLyHMDIyEn/88QdcXV31\nAny/fv0owFsYGk5juZ4eWsMYw1tvvYWTJ08iPDwcXl5eNe+EAKAQT0xIHidHwukEvQ8TxdnF9d6f\nvas9VmSvMGKFhBBSOxqNBvPmzUNcXBxOnz6N+Ph4CvAWjEK8ZasY5P/1r3/hxx9/xPnz59GiRQu+\nS7Mq9M5DTMa9kzucWzpDHi836H3PSciBVq01uI9LGxd4B3hXur9zqeewbds2LFiwwNSlE0KIHqFQ\niF27dmHWrFkYPnw4/vOf/2DYsGEU4Amph/KhNYsXL0Z4eDgF+HqinnjCC42qbNrMp8N9q0GtqhxO\nU756YiN5yRJCrJBKpcL06dORmpqK06dPQyqV8l0SqQT1xFs2xhg+/PBD7N27F+fOnYOvry/fJVkl\n6kIgvBCKhfDo7AGPzh7ojM61us/8+fNNXBUhhFRPLBbj0KFDmDNnDkaMGIHffvsNbm5ufJdFiNVg\njOHtt9/GkSNHcOHCBbRt25bvkqwWzZFGrMa2bduwbds2vssghDRxIpEI3333HXr06IFhw4YhMzOT\n75IIsQparRZLlixBaGgozp8/TwG+gSjEE0IIIXUkFAqxc+dODBw4EEFBQUhNTeW7JEIsmkajwauv\nvoqwsDCEh4dXu4AaqR0K8cRqpKam0i9KQojFEAgE2Lp1K0aPHo0hQ4YgOTmZ75IIsUilpaUIDg5G\nREQEzp07V+nCaaTuaEw8sRrlZ67Tia2EEEvBcRy++OILODk5ITAwEIcPH8bgwYP5LosQi5GVlYV/\n/OMfUKlUOHv2LFxdXfkuqdGgnnhiNZo3b47mzZvzXQZpQh6qHuKm8iZSVCko1tZ/jQPSuHEch7Vr\n1+LLL7/EuHHjsH37dr5LIsQixMTEIDAwEL6+vhTgTYB64onVeJTyCGnqNDxWPea7FNJExJbGIq40\nTnfdnrOHTCiDq8BVt7qrTCiDE+ekmwKVmN+GDRvw888/4+7du3BycsKYMWPw73//Gx4eHgCA69ev\nY8OGDbh48SLy8vLQoUMHrFy5Ei+88IJuH6tWrcLq1av19jtx4kQcO3ZMd33r1q345JNP0KJFC+za\ntQudO+vPrDVz5ky0b98ekyZNQkxMDD7//HOIxWLTPXBCLNjRo0cxb948rFmzBkuWLDF4j9y4cSP2\n7NmDhw8fwt7eHoMGDcKnn36KDh06oKSkBAsWLMDVq1dx9+5dvP/++1i3bp3e/Y3xM2vtKMQTkyjO\nKUZWbBZaDWxltHBTykpxuPCwUfZFSH0Us2IUq4uRCv1zM8QQw1XoijbiNvAT+8Fd6E6h3owuXryI\n5cuXIyAgAPn5+ViyZAmmT5+Os2fPAgCio6PRsmVLHDx4EC1atMDx48cxY8YM/P777xg6dKhuP4GB\ngfjll1901+3s7HT/fvjwIb744gscOnQIMTExeOONN3DmzBmDWgICAhAREYHJkydjzJgxOHToEE1B\nSZoUxhjWrVuHTZs24aeffsKoUaMqbefr64uvvvoKvr6+yM/Px6pVqzB27Fjcu3cPGo0Gjo6OeOed\nd7B58+Yqj2WMn1lrRiGe1BtjDAUpBbrFmiou2lSUWQQA+Ej7kdGOJ+JE6G/X32j7I6Qmj9SPkKJO\n0dsmgABSgbSsR17oquuVlwllEHPU68qHkydP6l3ftGkTBg4ciLy8PLi4uGDevHl6t7/xxhs4ceIE\nQkJC9EK8WCyu8oS7/Px8SKVS9OjRAyKRqNohM82bN8e5c+fw6quvIjAwECEhIejatWv9HyAhVqKo\nqAjz5s3DzZs3cfnyZbRv377Ktv/4xz/0rq9ZswY9evRARkYGvLy8sGXLFgDA3r17q9yHsX5mrRWF\neFIrJXkleBD+AFl3KgT2ODlKC0qrvd8awRqj1bBduB1ePb0QFRVltH0SUh0HpQMcBY56w2dcBC4Q\ncrQCpCWTy+Wws7ODg4NDtW2eHp9748YNNGvWDM7Ozhg1ahTWrVsHmUwGAOjWrRs6d+4MZ2dnSCQS\nHDp0qNoa7OzssGfPHnzxxRcYNGgQvvvuO4wfP77hD44QC/Xw4UNMnDgR3t7euHz5MlxcXGp93+Li\nYuzZswcdO3bUDYOrDWP+zFojjjWSqT6Ki4shkUigUChgb2/PdzmNkrJACXmc3KDXPed+Dpim8pdR\n26FtASONKggOCwZAs9MQQqqmVCrxzDPPwN/fH998802lbQ4fPowXX3wRt2/fRrt27QAAp0+fRnFx\nMfz8/JCcnIz33nsPrq6uCA8P1xsaJZfL4eTkBFtb21rXdPr0acyaNQtvv/023n33XRpqZQYajQbH\njx/HuHHjIBTSh25Tu3jxIqZOnYrg4GBs2LCh1s95+dA2hUKBDh064NSpU7qfyXJDhw7FM888YzAm\n3pQ/s9aCQjxpMLVSjZyEHINwL4+T433F+0b7hVXeA+/v72+U/RFCGheNRoMZM2YgOTkZYWFhcHR0\nNGhz6dIljBkzBt988w1mzZpV5b7u378PPz8/REREICAgoMG1xcfHY8KECejTpw927twJiUTS4H2S\nqlGIN58dO3bgrbfewtdff43Zs2fX6b5FRUVIS0tDeno6PvvsM6SlpeHChQt6J4RXFeKfZuyfWWtA\nw2lIg4lsRfDs6gnPrp5625nWuJ8PKbwTQqqi1WoRHByMuLg4hIeHVxrgIyIi8Pzzz+M///lPtQEe\nKDvpTiqVIikpySiBoGPHjrhy5QpmzJiBwYMH49ixY2jVqlWD90sIX9RqNZYvX47Dhw/jzJkzCAwM\nrPM+HBwc4OfnBz8/PwQGBkImk+HUqVOYMGFCnfdl7J9Za0DzxBOT4QQcfW1MCDE5xhheeeUVXL58\nGWfOnKl0Luro6GiMHj0aH3zwAV599dUa9/nw4UPk5uaibdu2RqtTKpXixIkTGDZsGHr37o0DBw7Q\n8EBile7cuYOBAwfi6tWriIiIqFeArwxjDCJR/fqXTfEza+koxBOrsWrVKqxatYrvMgghFmbhwoUI\nDQ3F/v37AQDp6elIT0+HRqMBANy6dQujRo3CzJkzMXv2bN3teXl5un2sWLECFy9e1A3FmTJlCgYM\nGGD0bwCFQiE+/fRTHDhwAO+++y6mTJmC9PR0ox6DEFNRq9XYuHEj+vfvjwkTJuDChQvw9vau177e\neecd/PXXX3jw4AGuXr2KGTNmwN3dHYMGDQJQ9kHh+vXrKCwsREZGBq5fv46EhATd/c31M2vRWCOh\nUCgYAKZQKPguhZgIANaIXrKNXrGmmOVr8plWq+W7FNLIlb83PH1JSkpijDH28ccfV3r73LlzdfuY\nNm0aa9asGROLxaxNmzZswYIFLDMz06R15+bmsldeeYW5ubmxAwcO0M+KEanVanbs2DGmVqv5LqXR\nuH37NgsMDGS9e/dmN27caPD+ZsyYwVq0aMFsbGxYixYt2IwZM9jdu3d1t7dp08bgZzYoKEh3Ox8/\ns5aGTmwlVqO8F556461DYmkiQotCIYbYYE718qkaBRx9GUjIr7/+ildeeQV9+/bF1q1b4eXlxXdJ\nVo9ObDUetVqNzz77DOvXr9fNsEQrEVsGCvHEapRoS7Anfw/fZZBa0jItVFBVeXv5oknloV4mlMFV\n4Ap3oTuFe9Lk5OXl4a233sKxY8fw1VdfYfr06XROUQNQiDeOuLg4BAcHQ6lUYu/evejRowffJZEK\nTDI7zfnz57Fx40ZERERALpfj3r178PPzq/Y+arUaK1aswL59+6BUKjFlyhR8/fXXlc4wQJomDhyc\nBE58l0FqqZSVQqWtOsQ7ChzhJHDSXZwFznAWOFOAJ02Si4sLduzYgRdeeAHz58/HTz/9hK1bt8LT\n07PmOxNiZBqNBp9//jnWrl2Lf/7zn3jvvfeo990CmSTEFxUVISAgAJMnT8aCBQtqdZ+1a9fiwIED\nOHjwIJycnDBv3jwsWrQI+/btM0WJpJZUChXk8foLPPmM9EHAQvNP33Qr+hY6oVPTOmnFiiWWJuJE\n0YlKe9tlQhnEHP1CIORpY8aMwa1bt7B8+XJ07doVX3/9NaZNm8Z3WaQJqdj7fuHCBfTs2ZPvkkgV\nTDqcJjk5Ge3atauxJ16r1cLLywsbNmzA/PnzAQBnz57Fs88+i4yMDLi5udV4LBpO0zDFOcW6kF5x\nwabcB7llp5NU0GpgK7QJamP2Gkd+MhIArdhqLdRMDQ4chBx9lU1IfZw6dQrz58/HgAED8PXXX1Ov\nfB3QcJq6q9j7vnz5crz//vuwsbHhuyxSDYtY7CkxMRFyuRzDhw/XbQsKCgIAREZGYvTo0Qb3UalU\nUKvVuuvFxcWmL7SRYYwh40YGYo/EIjksGVmxWSjOrvl5fHTpER5demSGCvW1ELaAV0864ctaiDiL\neHshxGo999xzul75zp0747333sPixYthZ2fHd2mkEWGM4ddff8V7770HrVaL8+fPo1evXnyXRWrB\nIn7LZmZmAoBeL4NQKISrq6vutqetX78eq1evNkt9jRXHcWjWqxma9Wqm21aUVWTQG58Vm4X8R/m6\nNr2Ce6HPgj5mr/cV0Sto0beF2Y9LCCF8kUql2LVrF/7880+8++67+PLLL7F69WrMmTOn3oviEFLu\nypUrePfddxEfH49Vq1Zh3rx5NPbditTpHWDhwoX49ttvq7w9KCgI586dq3MR9RkesXLlSrzzzju6\n68XFxbUadkOq5+DhAAcPB7QZoj9cRlmgRHZ8NrJis+DSygWtBtBy4YQQYi6DBg3C+fPncfLkSbz3\n3nv49NNPsX79ekyaNIlmsSF1FhcXh/fffx9hYWF45513cOLECUgkEr7LInVUp2kgNm7ciEePHlV5\n+emnn+pVRPmcuBV73TUaDXJycqocAygWi2Fvb693IaZj62QL7wBv9HyxJ9oObct3OcQCFGuLodQq\n+S6DkCaD4ziMHTsW0dHReO+997Bs2TIMHDgQ4eHhfJdGrMTjx4/xyiuvICAgAH5+frh//z7effdd\nCvBWqk498VKpFFKp1OhF+Pj4wN3dHWFhYfD19QVQNk0lAAQEmH8WFGKZypd2Tk1N5bkSAgDxpfEI\nLw6HhJPoZp8pn3nGVegKB86BeggJMQGhUIgXX3wR06ZNwzfffIMXXngBffv2xSeffEIziZBK5eTk\nYOPGjdi6dStmzJiBuLg4tGzZku+ySAOZZEBdYWEhEhISdGErNjYWhYWFaN26NVxdXQEAnTp1wief\nfILJkydDIBDgtddew0cffQQfHx84OjrijTfewKxZs2iIDNFJS0sDAOzI3cFzJQQAVKxsDngFU0Ch\nVuCx+rHe7Tacjd4KrTKBTLdSK4V7QhrO1tYWS5cuxbx58/DZZ59h8ODBmDBhAtauXYt27drxXR6x\nAAqFAps3b8a//vUvDB8+HBEREejUqRPfZREjMUmIj4yMxLBhw3TXJ0yYAADYvXs3goODAQDx8fHI\ny8vTtfnoo49QWFiIf/zjHygtLcXkyZOxZcsWU5RHrNT9R/cRWhgKG46mvLIEWmgNph+tyJazhS1n\nCxvOBjacje46BXhCjMvZ2RmrV6/GokWLsH79enTv3h0vvfQSVq5cqRuuSpoWtVqNXbt2YfXq1ejQ\noQNOnz6Nfv368V0WMTKTzhNvTjRPPCHmdb3kOs4Xn9ct5lS+kFP5v+nDFiH8SExMxEcffYRjx45h\n5syZWLp0Kbp168Z3WWbVVOeJz8nJwfbt2/H111/Dzc0Nn3zyCUaPHk2dJ40UzU9FCKmXLrZd0N22\nOy3mRIiF8fHxwffff4/79+/jv//9LwYNGoSAgAAsXboUY8eObVKhtqm4ffs2Nm/ejP3792Po0KHY\nuXMnRo4cSeG9kavT7DSE8GnBggVYsGAB32WQ/7HhbCjAE2LBfH19sWnTJjx69AgTJ07EW2+9hQ4d\nOmDTpk16w1mJdSr/tmHUqFEYMGAA7OzsEB0drdtGAb7xo+E0xGqUvyE1kpcsIYSYlVarxalTp/Dl\nl1/i0qVLmDZtGubPn4/+/fs3usDXmIfTPH78GLt27cLOnTshFouxePFizJs3Dy4uLnyXRsyMeuKJ\n1fj222+rXWyMEEJI1QQCAcaOHYvffvsN169fh6enJyZPnozu3bvjyy+/RE5ODt8lkiqo1Wr88ssv\nGDduHDp06IA7d+5g165duHv3Lt58800K8E0U9cQTQgghTZRKpUJoaCi2b9+O8PBwTJ48GbNmzcLw\n4cOt+ndpY+iJZ4whOjoaP//8M/bs2QNnZ2fMnz8fc+bMgYeHB9/lEQtAPfGEEEJIEyUWizFlyhSc\nOnUKsbGxaN++Pd577z24u7tj0qRJ2LVrFzIyMvgus8koKSnBqVOn8Nprr6FVq1YYM2YMMjIycPDg\nQcTGxuKtt96iAE90qCeeWI3Q0FAAwPjx43muhBBCGrfk5GSEhoYiJCQE58+fR58+fTBhwgSMHz8e\nXbt2tfgx9NbUE5+VlYUTJ04gJCQEv/32G9q2bYvx48djwoQJCAwMtPj6CX8oxBOrQSe2EkKI+eXl\n5eHXX39FSEgITp48CalUqgv0Q4YMgVgs5rtEA5Yc4hljiI2N1X1IioyMxDPPPIPx48dj/Pjx8PX1\n5btEYiVonnhiNcaNG8d3CYQQ0uS4uLhg2rRpmDZtGtRqNf7880+EhIRg4cKFyMrKwpgxYzBhwgQM\nHToU3t7efJdrkQoLC3H16lUcP34cISEhkMvleP7557F48WKMGTMGMpmM7xKJFaKeeEIIIYTUGWMM\n8fHxCAkJQWhoKCIiIiCTyeDv76+79OnTBy1atDD78Bs+e+ILCgoQHR2NqKgo3eXevXvw9fXF888/\nj/Hjx2Pw4MEW+Q0GsS4U4gkhhBDSYCqVCrdv39YLrzdu3ICLi4tesPf390fLli1NGuzNFeLz8/Nx\n7do13eO9du0aEhIS4Ovrq/d4e/fuTdNAEqOjEE8IIYQQk1CpVLhz545eyL1+/TqcnJx0PfXdu3eH\nt7c3vL290bx5czg4ODT4uMYM8SqVChkZGUhLS0Nqairu3bunezz3799H+/btDQK7s7Nzgx8DITWh\nEE+sBp3YSggh1k+tViM2NlYXhO/cuYO0tDSkpaUhNzcXTk5OaN68uS7Ul1+evu7s7Fxlb35tQrxS\nqdQdtzygV7xevk0ul8PW1lZ33Hbt2ukFdicnJ1M+XYRUqdGEeIVCAQcHB2RnZ1OIb6QkEgmAsv9r\nQpoKOzs7i5/OjxBjKS4urjRIP71NLpdDIpHAwcEBIpEIYrEYIpFIdxGLxVAoFLC1tYVKpYJarda7\nlJSUIC8vDw4ODjV+WGjevDmkUin9HBKL02hCfE5ODtzc3PgugxBCjIq+XSTEUGlpKdLT06FQKAwC\nenlo12q1euG+4r9tbGzg6elJvejEqjWaEK/VapGbm2v2Xqvi4mK4ublZ3TcA1lg31Ww+1lh3Y62Z\neuIJIYRUptHMEy8QCODq6srb8e3t7a0mOFRkjXVTzeZjjXVTzYQQQpoCAd8FEEIIIYQQQuqGQjwh\nhBBCCCFWhkJ8A4lEInz88ccQiaxrZJI11k01m4811k01E0IIaUoazYmthBBCCCGENBXUE08IIYQQ\nQoiVoRBPCCGEEEKIlaEQTwghhBBCiJWhEF8Lu3fvho+PD+zt7REUFIS7d+9W2z44OBgcx+ld3nzz\nTb02V65cQUBAAOzs7NCpUyccP36c17pVKhVWrFiBrl27QiKRoHXr1li2bBmKiop0bZKTkw0eF8dx\nyM3NrXeNGzduhLe3NyQSCSZMmID09PQq2xYWFmLevHlwdnaGm5sbli1bBrVardfmxIkT6NKlC+zs\n7ODv74/Lly/Xu7aG1pyTk4PXX38dfn5+sLe3h6+vL9auXQuNRqNrc+7cOYPnUyqVGr3mutQNAEOH\nDjWoa9OmTXptLOm5ruq1yXEcMjMzAZjnuT5y5AhGjBgBFxcXcBxn8Pp8mqW8pgkhhFghRqr1xx9/\nMJFIxLZt28Zu3rzJpk2bxvz8/JhSqazyPnPnzmVTp05laWlpukt+fr7udrlczmQyGXv99dfZ7du3\n2YYNG5iNjQ2LjY3lre7c3Fw2evRo9vPPP7O7d++ys2fPsvbt27N58+bp2iQlJTEA7K+//tJ7bFqt\ntl417tq1izk4OLDDhw+z6OhoFhQUxIYMGVJl+zlz5rBOnTqxy5cvsz/++IM1b96cffjhh7rbY2Nj\nmY2NDVu7di27ffs2W7JkCZPJZEwul9ervobWfPPmTfaPf/yDnThxgiUkJLCQkBDm4eHBVq9erWsT\nFhbGALDHjx/rns+MjAyj1VufuhljLCgoiL355pt6/89FRUW62y3tuVar1Xq1pqWlsenTp7NBgwbp\n2pjjuf7uu+/YunXr2IYNGxgAplKpqm1vCa9pQggh1olCfA0mT57MZs2apbteWFjI7O3t2dGjR6u8\nz9y5c9n//d//VXn7l19+yVq0aKEXfgcPHsyWLl1qjJIZY/Wr+2kHDhxgMplMd708xN+7d88oNfbu\n3Zu9//77uuv3799nAFh0dLRB25ycHCYUCtlvv/2m27Zz507m5ubG1Go1Y4yxZcuWsYEDB+pu12q1\nrHXr1uyLL74wSr11rbkyGzZsYL1799ZdLw+WNYW9hqpr3UFBQWzlypVV7s/Sn2uFQsGcnZ3Ztm3b\ndNvM9VzX9liW8pomhBBinWg4TQ2uXr2K4cOH6647ODigX79+uHLlSrX3O3nyJDw8PNC1a1esXLkS\nxcXFevscNmwYOI7TbRsxYkSN+zRH3RXJ5XK4uroabB8+fDiaN2+OUaNG1furfaVSiRs3bujV6OPj\ng7Zt21ZaY1RUFBhjGDp0qG7biBEjkJ2djYSEBACGj5njOAwfPtxoz2tda65MVc9p+/bt0bJlS0ya\nNAlxcXFGqbdcfevetm0b3N3d0atXL3z22Wd6w4As/bk+cuQIVCoVpk+fbnCbKZ/rurCE1zQhlm7D\nhg3o06cPHB0d0bx5c8ybNw9ZWVm62/fs2VPpMLouXbro7aemoXlbt25F69atMWDAAMTGxprlsRHS\nUBTia5CZmQlPT0+9bR4eHrpxtpV57rnnsH//foSFheHDDz/Ed999hwULFjRon+aou6KcnBx89tln\neOWVV3TbHB0d8eWXX+LIkSM4duwY2rVrh6CgINy5c6fO9WVnZ0Or1da6xszMTEilUojFYr225beV\n/23K57WuNT8tMTERO3bs0HtOmzdvjh07duDo0aP44YcfAACDBg0y6muhPnXPnj0bP/74I8LCwvD6\n669j/fr1WLVqle52S3+u9+7di8mTJ8PZ2Vm3zRzPdV1YwmuaEEt38eJFLF++HJGRkfjll19w584d\nvQ/n06dPR1pamt6ldevWmDJliq7N7t27sW7dOnz11Ve4dOkS8vPz9fbx8OFDfPHFFzh06BDmzZuH\nN954w6yPkZD6arLLBC5cuBDffvttlbcHBQXh3Llz9dp3xTeHbt26wdPTEyNGjMDnn38ODw8PsAas\nr2XKusspFApMnDgR3bp1w9tvv63b7u7urvfm1q9fP8TFxWHLli346quv6nSMuj4HlbWv+E1GffZZ\nVw3Zf2ZmJp5//nnMnDkTM2bM0G3v2LEjOnbsqLvev39/dOrUCfv27cM///nPBtVbrj51V/yg0b17\ndwiFQixduhRr1qwBx3EW/Vw/fvwYf/zxB06dOqW33RzPdV1YwmuaEEt38uRJveubNm3CwIEDkZeX\nBxcXF9jb28Pe3l53+59//omHDx9i7ty5um3//e9/sXTpUl2w37VrF3x9fXH9+nX06tUL+fn5kEql\n6NGjB0QiEbZv326eB0dIAzXZEL9x40Z88MEHVd5ua2sLAPD09DTo9crKyoKvr2+tj+Xv7w+gbAYN\nDw8PeHl5VbrPp3vc+Ki7pKQE48ePh42NDX7++WcIhcJq2/v7+9c4W09l3N3dIRAIav08eHl5ITc3\nFyqVStdzWX7f8vYNeV5NUXO57OxsjBw5EgEBAdiyZUu1xxCLxejRoweSkpKMUjNQ/7or8vf3R2Fh\nIeRyeYNfw6aued++ffD29sbIkSOrbWeK57ouLOE1TYi1kcvlsLOzg4ODQ6W379mzBwMHDkT79u0B\n/D007z//+Y+uTcWheb169UK3bt3QuXNnODs7QyKR4NChQ2Z5LIQ0VJMdTiOVStGyZcsqL+VfawcG\nBiIsLEx3P4VCgStXrqBfv361PtaNGzcAAG3bttXt89y5c3q9bGfPnq3VPk1Zt1KpxKRJk6BQKPDL\nL7/Azs6uxnpiYmJ0j6subG1t0bNnT70ak5KSkJycXGmNffr0AcdxCA8P1207e/Ys3Nzc4OfnB8Dw\nMQNAWFhYnf6vjFkzADx58gSjRo2Cj48P9uzZA4Gg+h85jUaD27dv1+s5NWbdT7tx4wYcHBzg7u4O\nwDKf63L79u3Diy++yMtzXReW8JomxJoolUqsWbMGc+fOhUhk2AdZXFyMn376CcHBwbpttR2at3fv\nXqSnpyMrKwtjxowx2WMgxKh4OZ3Wivz+++9MJBKxHTt2sFu3brHp06czX19fvakaO3bsyI4cOcIY\nY6ygoICtWLGCXblyhSUlJbHQ0FDm6+vLpk2bpmtfPsXkkiVL2J07d9jGjRuNPsVkXesuLS1l48aN\nY76+viw2NlZvqr5ye/fuZQcPHmTx8fHs1q1bbNmyZUwsFrPr16/Xq8adO3cyR0dHduTIEXb9+nU2\nbNgwNnjwYMYYY48fP2YdO3ZkV65c0bV/8cUXWZcuXdiVK1fY2bNnmbe3d6XT8W3YsIHduXOHLV26\n1OjT8dWl5ry8PNa3b18WGBjIHjx4oHs+MzMzdfvbtGkTCw0NZQkJCSw6OprNmjWLSaVSlpKSYrSa\n61p3QkICW7duHYuKimKJiYnshx9+YB4eHmzFihW6/Vnac13u0qVLDACLi4sz2J85nuvs7GwWHR3N\ntm/fzgCwyMhIFh0dzQoKCiz2NU2INVCr1eyFF15gAQEBrKCgoNI2+/fvZ/b29iw3N1e37fHjxwwA\ni4mJ0Wvbt29ftmbNGpPWTIipUYivhZ07d7I2bdowW1tbNmTIEIOAAIDt3r2bMVY2td2oUaOYu7s7\ns7GxYb6+vmzFihUGbzp//fUX8/f3ZzY2Nqxjx44sJCSE17rLp4+s7FJuz549rFOnTsze3p7JZDIW\nFBTEwsPDG1Tjhg0bWLNmzZidnR0bN26c7kNDeT1hYWG6tgUFBWzu3LnMycmJyWQytnTpUoMp/EJD\nQ1mnTp2YjY0N6927N/vrr78aVF9Dai6fZvDpS5s2bXT7+te//sV8fHyYra0t8/T0ZGPHjmU3btww\nes11qfvhw4ds8ODBTCqVMjs7O9apUye2ceNGVlpaqrc/S3quy7366qusf//+le7LHM/17t27K/0/\nDwsLs+jXNCGWTKPRsNmzZ7Nu3bqx7OzsKtuNGjWKzZw5U29bSUkJEwgE7Pfff9fb3rZtW/bNN9+Y\npF5CzIVjjM6cIoQQQojlYYzh5ZdfxoULF3DhwgU0a9as0nYpKSlo3bo1Tp06hWeffVbvtj59+uD5\n55/HunXrAJQNzfPx8UF0dDR69epl6odAiMk02RNbCSGEEGLZFi5ciNDQUJw4cQIAdPO7e3h46E28\nsG/fPjRv3rzSE9oXL16MpUuXwt/fHz4+Pli2bBkGDx5MAZ5YPeqJJ4QQQohFenra1XJJSUl6J6V3\n6tQJkydPxieffFJp+08++QSbN29Gbm4uRo4cie3bt1fZq0+ItaAQTwghhBBCiJVpslNMEkIIIYQQ\nYq0oxBNCCCGEEGJlKMQTQgghhBBiZSjEE0IIIYQQYmUoxBNCCCGEEGJlKMQTQgghhBBiZSjEE0II\nIYQQYmUoxBNCCCGEEGJlKMQTQgghhBBiZSjEE0IIIYQQYmUoxBNCCCGEEGJl/h94JeOCZqor4QAA\nAABJRU5ErkJggg==\n"
+ }
+ }
+ ],
+ "source": [],
+ "id": "0763c267"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "From the partial statistic, you can see that most of the moves occur in\n",
+ "the hotspot and coldspot quadrants, but quite a few very large moves\n",
+ "push things towards “peaked”ness. These are many of the moves on the\n",
+ "bottom right quadrant, where even a few observations shift from being a\n",
+ "coldspot to being a peak. This means that they’re in relatively\n",
+ "low-priced areas, given their crowding levels. I refer to this as “x\n",
+ "peaks y”, since it indicates that $x$ pushes the local statistic towards\n",
+ "the “peak” quadrant. Note that this does *not* indicate a change in\n",
+ "classification, which we can see in a second.\n",
+ "\n",
+ "For the full conditional case, you can see from these diagrams that the\n",
+ "inclusion of the crowding information pushes most strongly in the\n",
+ "cluster/outlier direction. This means that the additional information\n",
+ "about crowding increases our perception of how the\n",
+ "price-per-person-per-night clusters spatially.\n",
+ "\n",
+ "To see the actual table of class changes (ignoring statistical\n",
+ "significance for now), we can use `pandas` crosstabs to build the\n",
+ "following nice tables:"
+ ],
+ "id": "6aa87742-b908-4d2e-a22d-dd6f45d9a84d"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "metadata": {},
+ "data": {
+ "text/html": [
+ "\n",
+ ""
+ ]
+ }
+ }
+ ],
+ "source": [],
+ "id": "c0ea28ef"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "metadata": {},
+ "data": {
+ "text/html": [
+ "\n",
+ ""
+ ]
+ }
+ }
+ ],
+ "source": [],
+ "id": "10a261ad"
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "From these, you can immediately see that the partial statistics can only\n",
+ "move laterally. No observations moved from coldspot to anything other\n",
+ "than “peak”. That is, $x$ only affects our judgement about $y$, not\n",
+ "$\\mathbf{W}y$. In the bottom, however, you can see that moves exist\n",
+ "across any quadrant, although no observations jump from being hotspots\n",
+ "to coldspots.\n",
+ "\n",
+ "# Conclusion\n",
+ "\n",
+ "In sum, the `Partial_Moran_Local` and `Auxiliary_Moran_Local` are great\n",
+ "ways to control for “exogenous” variables $x$ that you think might be\n",
+ "driving the pattern of your outcome. In this case, if you want to remove\n",
+ "*everything* due to $x$ first, you should use the\n",
+ "`Auxiliary_Moran_Local`, which is equivalent to regressing $x$ out of\n",
+ "$y$ and analyzing the residuals for structure. However, it is often the\n",
+ "case that we want to account for $x$ *without* assigning all of the\n",
+ "variation in $y$ to $x$ alone. In this case, use the\n",
+ "`Partial_Moran_Local` to recover an estimate of the relationship between\n",
+ "a site’s $y$ value and its surrounding $y$ values while fixing $x$ to a\n",
+ "constant value.\n",
+ "\n",
+ "# A bit more formal aside: Fritsch-Waugh-Lovell to the rescue\n",
+ "\n",
+ "For the econometricians in the room, there is an even better grounding\n",
+ "than the graph-based argument from above to use the partial coefficient.\n",
+ "If $\\mathbf{X}$ is a collection of exogenous control matrices, we\n",
+ "generally want to estimate $\\rho$ and its partial products/local effects\n",
+ "from the following Moran-form regression:\n",
+ "\n",
+ "$$ \\mathbf{W}y = \\mathbf{X}\\beta + \\rho y + \\epsilon $$\n",
+ "\n",
+ "How can we “get rid of” $\\mathbf{X}\\beta$ in our estimator for $\\rho$?\n",
+ "Well, the\n",
+ "[Frisch-Waugh-Lovell](https://en.wikipedia.org/wiki/Frisch–Waugh–Lovell_theorem)\n",
+ "lets us filter the regression to get back to a “regular” Moran-form\n",
+ "regression with just $\\mathbf{W}y$ and $y$. To do this, let\n",
+ "$\\mathbf{P}=\\mathbf{I}-\\mathbf{X}'(\\mathbf{X}'\\mathbf{X})^{-1}\\mathbf{X}'$,\n",
+ "and use FWL to re-state the regression above into a regression about the\n",
+ "effect of $y$ on $\\mathbf{W}y$ that is independent of $x$:\n",
+ "\n",
+ "$$ \\mathbf{P}\\mathbf{W}y = I_{y|x} \\mathbf{P} y + \\epsilon $$\n",
+ "\n",
+ "If you calculate this out, we get our estimator above. For the auxiliary\n",
+ "regression strategy, you can think of $e$ as “what remains of $y$ that\n",
+ "is independent of $x$. So, we would state $I_{x \\rightarrow y}$ for our\n",
+ "auxiliary regression would seek to find the effect of”what remains of\n",
+ "$y$ that is independent of $x$” on the lag of “what remains of $y$ that\n",
+ "is independent of $x$.”\n",
+ "\n",
+ "$$ \\mathbf{W}\\mathbf{P}y = I_{x \\rightarrow y}\\mathbf{P}y + \\epsilon$$\n",
+ "\n",
+ "The two are not equivalent because $\\mathbf{WP}\\neq\\mathbf{PW}$ in\n",
+ "general, even for symmetric $\\mathbf{W}$ and $\\mathbf{P}$; in practice,\n",
+ "$\\mathbf{P}$ is always symmetric, but $\\mathbf{W}$ rarely is. Generally,\n",
+ "we want $\\mathbf{P}\\mathbf{W}y$ as our outcome, not\n",
+ "$\\mathbf{W}\\mathbf{P}y$."
+ ],
+ "id": "bf0b8f37-81ce-496f-a47a-1296628e1f17"
+ }
+ ],
+ "nbformat": 4,
+ "nbformat_minor": 5,
+ "metadata": {
+ "kernelspec": {
+ "name": "analysis",
+ "display_name": "Analysis",
+ "language": "python"
+ },
+ "language_info": {
+ "name": "python",
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": "3"
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.0"
+ }
+ }
+}
\ No newline at end of file