@@ -226,23 +226,23 @@ def get_signal_and_output(f=2, fs=1000, duration=100, interval_size=10, overlap=
226
226
return (sig , out , freq )
227
227
228
228
229
- def test_compute_mean_power_spectral_density ():
229
+ def test_compute_mean_fft ():
230
230
sig , out , freq = get_signal_and_output ()
231
- psd = nap .compute_mean_power_spectral_density (sig , 10 )
231
+ psd = nap .compute_mean_fft (sig , 10 )
232
232
assert isinstance (psd , pd .DataFrame )
233
233
assert psd .shape [0 ] > 0 # Check that the psd DataFrame is not empty
234
234
np .testing .assert_array_almost_equal (psd .values .flatten (), out [freq >= 0 ])
235
235
np .testing .assert_array_almost_equal (psd .index .values , freq [freq >= 0 ])
236
236
237
237
# Full range
238
- psd = nap .compute_mean_power_spectral_density (sig , 10 , full_range = True )
238
+ psd = nap .compute_mean_fft (sig , 10 , full_range = True )
239
239
assert isinstance (psd , pd .DataFrame )
240
240
assert psd .shape [0 ] > 0 # Check that the psd DataFrame is not empty
241
241
np .testing .assert_array_almost_equal (psd .values .flatten (), out )
242
242
np .testing .assert_array_almost_equal (psd .index .values , freq )
243
243
244
244
# Norm
245
- psd = nap .compute_mean_power_spectral_density (sig , 10 , norm = True )
245
+ psd = nap .compute_mean_fft (sig , 10 , norm = True )
246
246
assert isinstance (psd , pd .DataFrame )
247
247
assert psd .shape [0 ] > 0 # Check that the psd DataFrame is not empty
248
248
np .testing .assert_array_almost_equal (
@@ -254,7 +254,7 @@ def test_compute_mean_power_spectral_density():
254
254
sig2 = nap .TsdFrame (
255
255
t = sig .t , d = np .repeat (sig .values [:, None ], 2 , 1 ), time_support = sig .time_support
256
256
)
257
- psd = nap .compute_mean_power_spectral_density (sig2 , 10 , full_range = True )
257
+ psd = nap .compute_mean_fft (sig2 , 10 , full_range = True )
258
258
assert isinstance (psd , pd .DataFrame )
259
259
assert psd .shape [0 ] > 0 # Check that the psd DataFrame is not empty
260
260
np .testing .assert_array_almost_equal (psd .values , np .repeat (out [:, None ], 2 , 1 ))
@@ -264,7 +264,7 @@ def test_compute_mean_power_spectral_density():
264
264
sig2 = nap .TsdFrame (
265
265
t = sig .t , d = np .repeat (sig .values [:, None ], 2 , 1 ), time_support = sig .time_support
266
266
)
267
- psd = nap .compute_mean_power_spectral_density (sig2 , 10 , full_range = True , fs = 1000 )
267
+ psd = nap .compute_mean_fft (sig2 , 10 , full_range = True , fs = 1000 )
268
268
assert isinstance (psd , pd .DataFrame )
269
269
assert psd .shape [0 ] > 0 # Check that the psd DataFrame is not empty
270
270
np .testing .assert_array_almost_equal (psd .values , np .repeat (out [:, None ], 2 , 1 ))
@@ -383,8 +383,6 @@ def test_compute_mean_power_spectral_density():
383
383
),
384
384
],
385
385
)
386
- def test_compute_mean_power_spectral_density_raise_errors (
387
- sig , interval_size , kwargs , expectation
388
- ):
386
+ def test_compute_mean_fft_raise_errors (sig , interval_size , kwargs , expectation ):
389
387
with expectation :
390
- nap .compute_mean_power_spectral_density (sig , interval_size , ** kwargs )
388
+ nap .compute_mean_fft (sig , interval_size , ** kwargs )
0 commit comments