diff --git a/pynapple/process/perievent.py b/pynapple/process/perievent.py index efc03508..ac5e5b1e 100644 --- a/pynapple/process/perievent.py +++ b/pynapple/process/perievent.py @@ -2,7 +2,7 @@ # @Author: gviejo # @Date: 2022-01-30 22:59:00 # @Last Modified by: Guillaume Viejo -# @Last Modified time: 2024-01-25 16:46:51 +# @Last Modified time: 2024-01-26 15:52:19 import numpy as np @@ -200,8 +200,8 @@ def compute_event_trigger_average( time_unit="s", ): """ - Bin the spike train in binsize and compute the Event Trigger Average (ETA) within windowsize. - If C is the spike count matrix and `feature` is a Tsd array, the function computes + Bin the event timestamps within binsize and compute the Event Trigger Average (ETA) within windowsize. + If C is the event count matrix and `feature` is a Tsd array, the function computes the Hankel matrix H from windowsize=(-t1,+t2) by offseting the Tsd array. The ETA is then defined as the dot product between H and C divided by the number of events. diff --git a/pynapple/process/tuning_curves.py b/pynapple/process/tuning_curves.py index f9356210..3311c119 100644 --- a/pynapple/process/tuning_curves.py +++ b/pynapple/process/tuning_curves.py @@ -116,7 +116,7 @@ def compute_1d_tuning_curves(group, feature, nb_bins, ep=None, minmax=None): if ep is None: ep = feature.time_support else: - assert isinstance(ep, nap.IntervalSet), "ep should be an IntervalSet" + assert isinstance(ep, nap.IntervalSet), "ep should be an IntervalSet" if minmax is None: bins = np.linspace(np.min(feature), np.max(feature), nb_bins + 1)