-
Notifications
You must be signed in to change notification settings - Fork 1
/
lmp2.py
522 lines (439 loc) · 18.2 KB
/
lmp2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
from pyscf.lo import PM
from pyscf.lib import logger
import numpy
import scipy
import time
import common
def get_lmp2_residuals(mp2_t2, oovv, fock_occ, fock_virt, ovlp, sparsity_desc, kind="ft-first"):
"""
Calculates LMP2 residuals.
Args:
mp2_t2 (dict): sparse LMP2 amplitudes;
oovv (dict): sparse electron repulsion integrals;
fock_occ (numpy.ndarray): occupied Fock matrix;
fock_virt (numpy.ndarray): virtual Fock matrix;
ovlp (numpy.ndarray): overlap matrix in the virtual space;
sparsity_desc (dict): lists of PAO basis functions for each pair;
kind (str): specifies the order of the tensor product;
Returns:
Sparse residuals for the given amplitudes.
"""
def oovv_stf_fts(mp2_t2, oovv, fock_virt, ovlp, sparsity_desc):
result = {}
for k in sparsity_desc:
# T2 indexes
ti = sparsity_desc[k]
# Sparsify S, F
s = ovlp[ti, :][:, ti]
f = fock_virt[ti, :][:, ti]
result[k] = numpy.einsum("ab,ar,bs->rs", mp2_t2[k], f, s)
result[k] += numpy.einsum("ab,ar,bs->rs", mp2_t2[k], s, f)
result[k] += oovv[k]
return result
def overlap_sandwich(mp2_t2, ovlp, sparsity_desc):
result = {}
for k in sparsity_desc:
# T2 indexes
ti = sparsity_desc[k]
# Sparsify S, F
s = ovlp[ti, :][:, ti]
result[k] = numpy.einsum("ab,ar,bs->rs", mp2_t2[k], s, s)
return result
def product_with_lmo_fock(sts, fock_occ, sparsity_desc):
nocc = fock_occ.shape[0]
result = dict((k, numpy.zeros(v.shape)) for k, v in sts.items())
for k in sparsity_desc:
for i in range(nocc):
for k_source, k_fock in (
((k[0], i), (i, k[1])),
((i, k[1]), (k[0], i)),
):
index_avail = sparsity_desc[k_source]
index_req = sparsity_desc[k]
index_ovlp = numpy.intersect1d(index_avail, index_req)
source = numpy.where(index_avail[:, numpy.newaxis] == index_ovlp[numpy.newaxis, :])[0]
source = numpy.ix_(source, source)
dest = numpy.where(index_req[:, numpy.newaxis] == index_ovlp[numpy.newaxis, :])[0]
dest = numpy.ix_(dest, dest)
result[k][dest] += sts[k_source][source] * fock_occ[k_fock]
return result
result = oovv_stf_fts(mp2_t2, oovv, fock_virt, ovlp, sparsity_desc)
if kind == "sts-first":
sts = overlap_sandwich(mp2_t2, ovlp, sparsity_desc)
sfts = product_with_lmo_fock(sts, fock_occ, sparsity_desc)
elif kind == "ft-first" or kind == "tf-first":
ft = product_with_lmo_fock(mp2_t2, fock_occ, sparsity_desc)
sfts = overlap_sandwich(ft, ovlp, sparsity_desc)
else:
raise ValueError("Unknown kind: {}".format(kind))
for k in sparsity_desc:
result[k] -= sfts[k]
return result
def get_lmp2_correction(r_pao, fock_occ, fock_basis_local, fock_energies_local):
"""
Transforms residuals into correction to the LMP2 amplitudes.
Args:
r_pao (dict): sparse residuals;
fock_occ (numpy.ndarray): occupied Fock matrix;
fock_basis_local (dict): local virtual (PAO) basis for the pairs;
fock_energies_local (dict): local virtual (PAO) basis eigenvalues for the pairs;
Returns:
A sparse correction to the LMP2 amplitudes.
"""
result = {}
t2_diff = 0
for k, v in r_pao.items():
basis = fock_basis_local[k]
virt_e = fock_energies_local[k]
# dual = numpy.linalg.inv(basis).T
v = common.transform(v, basis)
denominator = fock_occ[k[0], k[0]] + fock_occ[k[1], k[1]] - virt_e[:, numpy.newaxis] - virt_e[numpy.newaxis, :]
dt = v / denominator
dt_pao = common.transform(dt, basis.T)
result[k] = dt_pao
t2_diff = max(t2_diff, numpy.abs(dt_pao).max())
return result, t2_diff
def get_lmp2_energy(mp2_t2, oovv):
"""
Calculates the LMP2 energy.
Args:
mp2_t2 (dict): sparse LMP2 amplitudes;
oovv (dict): sparse electron repulsion integrals;
Returns:
The LMP2 energy value.
"""
result = 0
for k, t2 in mp2_t2.items():
t2_conj = mp2_t2[k[::-1]]
result += numpy.sum(oovv[k] * (2 * t2 - t2_conj))
return result
def get_ao_ownership_matrix(mol):
"""
Retrieves a matrix defining which atoms atomic orbitals belong to.
Args:
mol (pyscf.Mole): a Mole object;
Returns:
A 2D [basis size x number of atoms] numpy array of bool values where truth values indicate the fact that
a particular atomic orbital belongs to a particular atom.
"""
ao_labels = mol.ao_labels(fmt=False)
result = numpy.zeros([len(ao_labels), mol.natm], dtype=bool)
for i, j in enumerate(ao_labels):
result[i, j[0]] = True
return result
def get_mulliken(mo, ovlp):
"""
Mulliken charge analysis for molecular orbitals.
Args:
mo (numpy.ndarray): molecular orbitals;
ovlp (numpy.ndarray): the overlap matrix;
Returns:
An array with partial weights of molecular orbitals on atomic orbitals.
"""
a = numpy.einsum("ai,bi,ab->ai", mo, mo, ovlp)
b = numpy.einsum("ai,bi,ab->bi", mo, mo, ovlp)
return 0.5 * (a + b)
def get_dominating_contributions(weight_lmo_atom, criterion=0.98, log=None):
"""
Retrieves lists of atoms contributing the largest weights to each of molecular orbitals.
Args:
weight_lmo_atom (numpy.ndarray): an array with partial weights of molecular orbitals on atoms;
criterion (float): a criterion to terminate the summation of weights;
log (any pyscf logging object): log to output additional info to;
Returns:
A list where each item is a list with atomic indexes specifying atoms where a particular molecular orbital
resides.
"""
total_lmo_charge = weight_lmo_atom.sum(axis=1)
result = []
for i, tot in zip(weight_lmo_atom, total_lmo_charge):
s = numpy.argsort(i)[::-1]
w = numpy.cumsum(i[s])
last = (w < tot * criterion).sum()
result.append(s[:last + 1].tolist())
if log is not None:
logger.info(log, "Localized orbitals:")
for i, (ats, tot) in enumerate(zip(result, total_lmo_charge)):
logger.info(log, " state {:d} carries charge {:.3f}, localized @ {:d} cites {} sum {:.3f} > {:.3f}".format(
i,
tot,
len(ats),
", ".join(list(
"#{:d}({:.3f})".format(j, weight_lmo_atom[i, j]) for j in ats
)),
weight_lmo_atom[i][ats].sum(),
criterion * tot,
))
return result
def iter_local_conventional(mol, mo_occ):
"""
Performs iterations over conventional pair subspaces of local MP2.
Args:
mol (pyscf.Mole): a Mole object;
mo_occ (numpy.ndarray): occupied molecular orbitals;
Returns:
For each pair, returns molecular orbital indexes i, j, a set of atomic indexes corresponding to this pair and
a numpy array with atomic orbital indexes corresponding to this pair.
"""
ao_ownership = get_ao_ownership_matrix(mol)
mulliken_ao_lmo = get_mulliken(mo_occ, mol.intor_symmetric('int1e_ovlp'))
mulliken_lmo_atom = numpy.dot(mulliken_ao_lmo.T, ao_ownership)
lmo_ownership = get_dominating_contributions(mulliken_lmo_atom, log=mol)
for i in range(mo_occ.shape[1]):
a1 = lmo_ownership[i]
for j in range(mo_occ.shape[1]):
a2 = lmo_ownership[j]
local_atoms = sorted(set(a1) | set(a2))
orbs = ao_ownership[:, local_atoms].sum(axis=1)
yield i, j, local_atoms, numpy.argwhere(orbs)[:, 0]
class AbstractLMP2IntegralProvider(common.SimpleCachingIntegralProvider):
def get_eri_diagonal_block(self, atoms):
"""
Retrieves a subset of electron repulsion integrals corresponding to a given subset of atomic basis functions.
Args:
atoms (list, tuple): a subset of atoms where the basis functions reside;
Returns:
A four-index tensor with ERIs belonging to a given subset of atoms.
"""
raise NotImplementedError()
def get_lmo_pao_block(self, atoms, orbitals, lmo1, lmo2, pao):
"""
Retrieves a block of electron repulsion integrals in the localized molecular orbitals / projected atomic orbitals basis
set.
Args:
atoms (list): a list of atoms within this space;
orbitals (list): a list of orbitals within this space;
lmo1 (numpy.ndarray): localized molecular orbital 1;
lmo2 (numpy.ndarray): localized molecular orbital 2;
pao (numpy.ndarray): projected atomic orbitals;
Returns:
A block of electron repulsion integrals.
"""
raise NotImplementedError()
class SimpleLMP2IntegralProvider(AbstractLMP2IntegralProvider):
def get_eri_diagonal_block(self, atoms):
"""
See parent description.
"""
return self.get_eri(atoms, atoms, atoms, atoms)
get_eri_diagonal_block.__doc__ = AbstractLMP2IntegralProvider.get_eri_diagonal_block.__doc__
def get_lmo_pao_block(self, atoms, orbitals, lmo1, lmo2, pao):
"""
See parent description.
"""
oovv = self.get_eri_diagonal_block(atoms).swapaxes(1, 2)
lmo1 = lmo1[orbitals]
lmo2 = lmo2[orbitals]
pao = pao[numpy.ix_(orbitals, orbitals)]
result = common.transform(
common.transform(
common.transform(oovv, lmo1[:, numpy.newaxis], axes=0),
lmo2[:, numpy.newaxis],
axes=1,
),
pao,
axes='l2',
)
return result[0, 0]
get_lmo_pao_block.__doc__ = AbstractLMP2IntegralProvider.get_lmo_pao_block.__doc__
class LMP2(object):
def __init__(
self,
mf,
localization_provider=PM,
local_space_provider=iter_local_conventional,
local_integral_provider=SimpleLMP2IntegralProvider,
):
"""
A local MP2 implementation by Pulay and Saebo. The sparse MP2 integrals and amplitudes are stored as dicts where
keys are index pairs of local molecular orbitals and values are square matrices in projected atomic orbital
basis sets.
Args:
mf (pyscf.scf.*): a mean-field solution to the given system;
localization_provider (pyscf.lo.*): pyscf localization provider;
local_space_provider (iterable): an iterable yielding two pair indices, a list of indexes of atoms
corresponding to a given subspace and a list of atomic orbitals corresponding to a given subspace;
local_integral_provider (class): a class implementing calculation of blocks of four-center integrals;
"""
self.mf = mf
self.localization_provider = localization_provider
self.local_space_provider = local_space_provider
self.local_integral_provider = local_integral_provider
self.initialized_local_integral_provider = None
# Dense
self.fock_lmo = None
self.fock_pao = None
self.ovlp_pao = None
# Sparse
self.domain_orbital_map = None
self.domain_atom_map = None
self.domain_eri = None
self.domain_fock_basis = None
self.domain_fock_energies = None
self.t2 = None
# Energy
self.emp2 = None
self.convergence_history = []
def get_mol(self):
"""
Retrieves the Mole object.
Returns:
The Mole object.
"""
return self.mf.mol
def get_mo_occupied(self):
"""
Retrieves occupied orbitals.
Returns:
A rectangular matrix with occupied orbitals.
"""
return self.mf.mo_coeff[:, :self.get_mol().nelectron // 2]
def get_mo_virtual(self):
"""
Retrieves virtual orbitals.
Returns:
A rectangular matrix with virtual orbitals.
"""
return self.mf.mo_coeff[:, self.get_mol().nelectron // 2:]
def get_mo_localized(self):
"""
Calculates localized occupied molecular orbitals.
Returns:
A rectangular matrix with localized occupied molecular orbitals.
"""
if self.localization_provider is None:
return self.get_mo_occupied()
else:
return self.localization_provider(self.get_mol()).kernel(
self.get_mo_occupied(),
verbose=self.mf.verbose,
)
def get_pao_projection_matrix(self):
"""
Calculates the projection matrix onto the virtual space.
Returns:
The matrix in AO basis projecting onto the virtual space.
"""
mo_virtual = self.get_mo_virtual()
virtual_density_matrix = numpy.dot(mo_virtual, mo_virtual.T)
return numpy.dot(
virtual_density_matrix,
self.mf.get_ovlp(),
)
def build(self):
"""
Updates key parameters of LMP2 iterations.
"""
# Localization
mo_loc = self.get_mo_localized()
# PAO projection
projection_matrix = self.get_pao_projection_matrix()
# Fock and overlap matrices
#fock = self.mf.get_fock()
dual = numpy.linalg.inv(self.mf.mo_coeff).T
fock = numpy.einsum("ij,j,kj->ik", dual, self.mf.mo_energy, dual)
ovlp = self.mf.get_ovlp()
# Transformed Fock and overlap matrices
self.fock_lmo = common.transform(fock, mo_loc)
self.fock_pao = common.transform(fock, projection_matrix)
self.ovlp_pao = common.transform(ovlp, projection_matrix)
self.initialized_local_integral_provider = self.local_integral_provider(self.get_mol())
self.domain_orbital_map = {}
self.domain_atom_map = {}
self.domain_eri = {}
self.domain_fock_basis = {}
self.domain_fock_energies = {}
self.t2 = {}
for i, j, atoms, orbitals in self.local_space_provider(self.get_mol(), mo_loc):
self.domain_orbital_map[i, j] = orbitals
self.domain_atom_map[i, j] = atoms
self.domain_eri[i, j] = self.initialized_local_integral_provider.get_lmo_pao_block(
atoms,
orbitals,
mo_loc[:, i],
mo_loc[:, j],
projection_matrix,
)
local_fock = self.fock_pao[numpy.ix_(orbitals, orbitals)]
local_ovlp = ovlp[numpy.ix_(orbitals, orbitals)]
energies, states = scipy.linalg.eigh(local_fock, local_ovlp)
self.domain_fock_energies[i, j] = energies
self.domain_fock_basis[i, j] = states
self.t2[i, j] = numpy.zeros((len(orbitals),) * 2, dtype=self.domain_eri[i, j].dtype)
def update_mp2_amplitudes(self):
"""
Performs a single iteration of the LMP2 algorithm.
Returns:
A delta factor as a maximal absolute value of the difference between old and new amplitudes. The new
amplitude is stored in self.t2.
"""
r_pao = get_lmp2_residuals(
self.t2,
self.domain_eri,
self.fock_lmo,
self.fock_pao,
self.ovlp_pao,
self.domain_orbital_map,
)
mp2_t2_d, t2_diff = get_lmp2_correction(
r_pao,
self.fock_lmo,
self.domain_fock_basis,
self.domain_fock_energies,
)
for k in mp2_t2_d:
self.t2[k] += mp2_t2_d[k]
return t2_diff
def kernel(self, tolerance=1e-4, mixer=None, raise_threshold=1e3, maxiter=100):
"""
Performs LMP2 iterations. The energy and amplitudes are stored into self.emp2 and self.t2 respectively.
Args:
tolerance (float): desired tolerance of the amplitudes;
mixer (object): optional mixer for amplitudes;
raise_threshold (float): raises RuntimeError if the tolerance exceeds the value specified during iterations;
maxiter (int): the maximal number of iterations;
Returns:
The LMP2 energy and LMP2 amplitudes.
"""
logger.info(self.mf, "Building ...")
self.build()
logger.info(self.mf, "Starting LMP2 iterations ...")
self.convergence_history = []
while True:
t_start = time.time()
t2_diff = self.update_mp2_amplitudes()
if mixer is not None:
# Concatenate amplitudes into a single vector
vector = []
for k in sorted(self.t2.keys()):
vector.append(numpy.reshape(self.t2[k], -1))
vector = numpy.concatenate(vector, axis=0)
# Update
vector = mixer.update(vector)
# Split vector back into sparse amplitudes
offset = 0
for k in sorted(self.t2.keys()):
shape = self.t2[k].shape
size = self.t2[k].size
self.t2[k] = numpy.reshape(vector[offset:offset + size], shape)
offset += size
# Update energy
self.emp2 = get_lmp2_energy(self.t2, self.domain_eri)
t_end = time.time()
logger.info(self.mf, " E = {:.10f} delta = {:.3e} time = {:.1f} s".format(
self.emp2,
t2_diff,
t_end-t_start,
))
self.convergence_history.append(t2_diff)
if t2_diff > raise_threshold:
raise RuntimeError("Local MP2 diverges")
if t2_diff < tolerance:
logger.note(self.mf, 'converged LMP2 energy = %.15g', self.emp2)
return self.emp2, self.t2
if maxiter is not None and len(self.convergence_history) >= maxiter:
raise RuntimeError("The maximal number of iterations {:d} reached. The error {:.3e} is still above the requested tolerance of {:.3e}".format(
maxiter,
t2_diff,
tolerance,
))