-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
63 lines (57 loc) · 1.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
from trl import SFTTrainer
def train():
print('Setting up model...')
original_model = AutoModelForCausalLM.from_pretrained(
"Salesforce/xgen-7b-8k-base",
load_in_4bit=True,
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
original_model.resize_token_embeddings(len(tokenizer))
original_model = prepare_model_for_int8_training(original_model)
print('Applying LoRA ...')
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
peft_model = get_peft_model(original_model, lora_config)
print("Parameter-efficient fine-tuning (training)...")
train_dataset = load_dataset("tatsu-lab/alpaca", split="train")
training_args = TrainingArguments(
output_dir="xgen-7b-tuned-alpaca",
per_device_train_batch_size=4,
optim='adamw_torch',
logging_steps=100,
learning_rate=2e-4,
fp16=True,
warmup_ratio=0.1,
lr_scheduler_type="linear",
num_train_epochs=0.15,
save_strategy="epoch",
push_to_hub=True,
)
trainer = SFTTrainer(
model=peft_model,
train_dataset=train_dataset,
dataset_text_field="text",
max_seq_length=1024,
tokenizer=tokenizer,
args=training_args,
packing=True,
peft_config=lora_config,
)
trainer.train()
print("Pushing LoRA adapators to Hub...")
trainer.push_to_hub()
print("Done!")
if __name__ == "__main__":
train()