-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmain.py
163 lines (143 loc) · 6.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
comet_support = True
try:
from comet_ml import Experiment
except ImportError as e:
print("Comet ML is not installed, ignore the comet experiment monitor")
comet_support = False
from models import DrugBAN
from time import time
from utils import set_seed, graph_collate_func, mkdir
from configs import get_cfg_defaults
from dataloader import DTIDataset, MultiDataLoader
from torch.utils.data import DataLoader
from trainer import Trainer
from domain_adaptator import Discriminator
import torch
import argparse
import warnings, os
import pandas as pd
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser(description="DrugBAN for DTI prediction")
parser.add_argument('--cfg', required=True, help="path to config file", type=str)
parser.add_argument('--data', required=True, type=str, metavar='TASK',
help='dataset')
parser.add_argument('--split', default='random', type=str, metavar='S', help="split task", choices=['random', 'cold', 'cluster'])
args = parser.parse_args()
def main():
torch.cuda.empty_cache()
warnings.filterwarnings("ignore", message="invalid value encountered in divide")
cfg = get_cfg_defaults()
cfg.merge_from_file(args.cfg)
set_seed(cfg.SOLVER.SEED)
suffix = str(int(time() * 1000))[6:]
mkdir(cfg.RESULT.OUTPUT_DIR)
experiment = None
print(f"Config yaml: {args.cfg}")
print(f"Hyperparameters: {dict(cfg)}")
print(f"Running on: {device}", end="\n\n")
dataFolder = f'./datasets/{args.data}'
dataFolder = os.path.join(dataFolder, str(args.split))
if not cfg.DA.TASK:
train_path = os.path.join(dataFolder, 'train.csv')
val_path = os.path.join(dataFolder, "val.csv")
test_path = os.path.join(dataFolder, "test.csv")
df_train = pd.read_csv(train_path)
df_val = pd.read_csv(val_path)
df_test = pd.read_csv(test_path)
train_dataset = DTIDataset(df_train.index.values, df_train)
val_dataset = DTIDataset(df_val.index.values, df_val)
test_dataset = DTIDataset(df_test.index.values, df_test)
else:
train_source_path = os.path.join(dataFolder, 'source_train.csv')
train_target_path = os.path.join(dataFolder, 'target_train.csv')
test_target_path = os.path.join(dataFolder, 'target_test.csv')
df_train_source = pd.read_csv(train_source_path)
df_train_target = pd.read_csv(train_target_path)
df_test_target = pd.read_csv(test_target_path)
train_dataset = DTIDataset(df_train_source.index.values, df_train_source)
train_target_dataset = DTIDataset(df_train_target.index.values, df_train_target)
test_target_dataset = DTIDataset(df_test_target.index.values, df_test_target)
if cfg.COMET.USE and comet_support:
experiment = Experiment(
project_name=cfg.COMET.PROJECT_NAME,
workspace=cfg.COMET.WORKSPACE,
auto_output_logging="simple",
log_graph=True,
log_code=False,
log_git_metadata=False,
log_git_patch=False,
auto_param_logging=False,
auto_metric_logging=False
)
hyper_params = {
"LR": cfg.SOLVER.LR,
"Output_dir": cfg.RESULT.OUTPUT_DIR,
"DA_use": cfg.DA.USE,
"DA_task": cfg.DA.TASK,
}
if cfg.DA.USE:
da_hyper_params = {
"DA_init_epoch": cfg.DA.INIT_EPOCH,
"Use_DA_entropy": cfg.DA.USE_ENTROPY,
"Random_layer": cfg.DA.RANDOM_LAYER,
"Original_random": cfg.DA.ORIGINAL_RANDOM,
"DA_optim_lr": cfg.SOLVER.DA_LR
}
hyper_params.update(da_hyper_params)
experiment.log_parameters(hyper_params)
if cfg.COMET.TAG is not None:
experiment.add_tag(cfg.COMET.TAG)
experiment.set_name(f"{args.data}_{suffix}")
params = {'batch_size': cfg.SOLVER.BATCH_SIZE, 'shuffle': True, 'num_workers': cfg.SOLVER.NUM_WORKERS,
'drop_last': True, 'collate_fn': graph_collate_func}
if not cfg.DA.USE:
training_generator = DataLoader(train_dataset, **params)
params['shuffle'] = False
params['drop_last'] = False
if not cfg.DA.TASK:
val_generator = DataLoader(val_dataset, **params)
test_generator = DataLoader(test_dataset, **params)
else:
val_generator = DataLoader(test_target_dataset, **params)
test_generator = DataLoader(test_target_dataset, **params)
else:
source_generator = DataLoader(train_dataset, **params)
target_generator = DataLoader(train_target_dataset, **params)
n_batches = max(len(source_generator), len(target_generator))
multi_generator = MultiDataLoader(dataloaders=[source_generator, target_generator], n_batches=n_batches)
params['shuffle'] = False
params['drop_last'] = False
val_generator = DataLoader(test_target_dataset, **params)
test_generator = DataLoader(test_target_dataset, **params)
model = DrugBAN(**cfg).to(device)
if cfg.DA.USE:
if cfg["DA"]["RANDOM_LAYER"]:
domain_dmm = Discriminator(input_size=cfg["DA"]["RANDOM_DIM"], n_class=cfg["DECODER"]["BINARY"]).to(device)
else:
domain_dmm = Discriminator(input_size=cfg["DECODER"]["IN_DIM"] * cfg["DECODER"]["BINARY"],
n_class=cfg["DECODER"]["BINARY"]).to(device)
# params = list(model.parameters()) + list(domain_dmm.parameters())
opt = torch.optim.Adam(model.parameters(), lr=cfg.SOLVER.LR)
opt_da = torch.optim.Adam(domain_dmm.parameters(), lr=cfg.SOLVER.DA_LR)
else:
opt = torch.optim.Adam(model.parameters(), lr=cfg.SOLVER.LR)
torch.backends.cudnn.benchmark = True
if not cfg.DA.USE:
trainer = Trainer(model, opt, device, training_generator, val_generator, test_generator, opt_da=None,
discriminator=None,
experiment=experiment, **cfg)
else:
trainer = Trainer(model, opt, device, multi_generator, val_generator, test_generator, opt_da=opt_da,
discriminator=domain_dmm,
experiment=experiment, **cfg)
result = trainer.train()
with open(os.path.join(cfg.RESULT.OUTPUT_DIR, "model_architecture.txt"), "w") as wf:
wf.write(str(model))
print()
print(f"Directory for saving result: {cfg.RESULT.OUTPUT_DIR}")
return result
if __name__ == '__main__':
s = time()
result = main()
e = time()
print(f"Total running time: {round(e - s, 2)}s")