-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathban.py
150 lines (126 loc) · 5.65 KB
/
ban.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
from torch.nn.utils.weight_norm import weight_norm
class BANLayer(nn.Module):
def __init__(self, v_dim, q_dim, h_dim, h_out, act='ReLU', dropout=0.2, k=3):
super(BANLayer, self).__init__()
self.c = 32
self.k = k
self.v_dim = v_dim
self.q_dim = q_dim
self.h_dim = h_dim
self.h_out = h_out
self.v_net = FCNet([v_dim, h_dim * self.k], act=act, dropout=dropout)
self.q_net = FCNet([q_dim, h_dim * self.k], act=act, dropout=dropout)
# self.dropout = nn.Dropout(dropout[1])
if 1 < k:
self.p_net = nn.AvgPool1d(self.k, stride=self.k)
if h_out <= self.c:
self.h_mat = nn.Parameter(torch.Tensor(1, h_out, 1, h_dim * self.k).normal_())
self.h_bias = nn.Parameter(torch.Tensor(1, h_out, 1, 1).normal_())
else:
self.h_net = weight_norm(nn.Linear(h_dim * self.k, h_out), dim=None)
self.bn = nn.BatchNorm1d(h_dim)
def attention_pooling(self, v, q, att_map):
fusion_logits = torch.einsum('bvk,bvq,bqk->bk', (v, att_map, q))
if 1 < self.k:
fusion_logits = fusion_logits.unsqueeze(1) # b x 1 x d
fusion_logits = self.p_net(fusion_logits).squeeze(1) * self.k # sum-pooling
return fusion_logits
def forward(self, v, q, softmax=False):
v_num = v.size(1)
q_num = q.size(1)
if self.h_out <= self.c:
v_ = self.v_net(v)
q_ = self.q_net(q)
att_maps = torch.einsum('xhyk,bvk,bqk->bhvq', (self.h_mat, v_, q_)) + self.h_bias
else:
v_ = self.v_net(v).transpose(1, 2).unsqueeze(3)
q_ = self.q_net(q).transpose(1, 2).unsqueeze(2)
d_ = torch.matmul(v_, q_) # b x h_dim x v x q
att_maps = self.h_net(d_.transpose(1, 2).transpose(2, 3)) # b x v x q x h_out
att_maps = att_maps.transpose(2, 3).transpose(1, 2) # b x h_out x v x q
if softmax:
p = nn.functional.softmax(att_maps.view(-1, self.h_out, v_num * q_num), 2)
att_maps = p.view(-1, self.h_out, v_num, q_num)
logits = self.attention_pooling(v_, q_, att_maps[:, 0, :, :])
for i in range(1, self.h_out):
logits_i = self.attention_pooling(v_, q_, att_maps[:, i, :, :])
logits += logits_i
logits = self.bn(logits)
return logits, att_maps
class FCNet(nn.Module):
"""Simple class for non-linear fully connect network
Modified from https://github.com/jnhwkim/ban-vqa/blob/master/fc.py
"""
def __init__(self, dims, act='ReLU', dropout=0):
super(FCNet, self).__init__()
layers = []
for i in range(len(dims) - 2):
in_dim = dims[i]
out_dim = dims[i + 1]
if 0 < dropout:
layers.append(nn.Dropout(dropout))
layers.append(weight_norm(nn.Linear(in_dim, out_dim), dim=None))
if '' != act:
layers.append(getattr(nn, act)())
if 0 < dropout:
layers.append(nn.Dropout(dropout))
layers.append(weight_norm(nn.Linear(dims[-2], dims[-1]), dim=None))
if '' != act:
layers.append(getattr(nn, act)())
self.main = nn.Sequential(*layers)
def forward(self, x):
return self.main(x)
class BCNet(nn.Module):
"""Simple class for non-linear bilinear connect network
Modified from https://github.com/jnhwkim/ban-vqa/blob/master/bc.py
"""
def __init__(self, v_dim, q_dim, h_dim, h_out, act='ReLU', dropout=[.2, .5], k=3):
super(BCNet, self).__init__()
self.c = 32
self.k = k
self.v_dim = v_dim;
self.q_dim = q_dim
self.h_dim = h_dim;
self.h_out = h_out
self.v_net = FCNet([v_dim, h_dim * self.k], act=act, dropout=dropout[0])
self.q_net = FCNet([q_dim, h_dim * self.k], act=act, dropout=dropout[0])
self.dropout = nn.Dropout(dropout[1]) # attention
if 1 < k:
self.p_net = nn.AvgPool1d(self.k, stride=self.k)
if None == h_out:
pass
elif h_out <= self.c:
self.h_mat = nn.Parameter(torch.Tensor(1, h_out, 1, h_dim * self.k).normal_())
self.h_bias = nn.Parameter(torch.Tensor(1, h_out, 1, 1).normal_())
else:
self.h_net = weight_norm(nn.Linear(h_dim * self.k, h_out), dim=None)
def forward(self, v, q):
if None == self.h_out:
v_ = self.v_net(v)
q_ = self.q_net(q)
logits = torch.einsum('bvk,bqk->bvqk', (v_, q_))
return logits
# low-rank bilinear pooling using einsum
elif self.h_out <= self.c:
v_ = self.dropout(self.v_net(v))
q_ = self.q_net(q)
logits = torch.einsum('xhyk,bvk,bqk->bhvq', (self.h_mat, v_, q_)) + self.h_bias
return logits # b x h_out x v x q
# batch outer product, linear projection
# memory efficient but slow computation
else:
v_ = self.dropout(self.v_net(v)).transpose(1, 2).unsqueeze(3)
q_ = self.q_net(q).transpose(1, 2).unsqueeze(2)
d_ = torch.matmul(v_, q_) # b x h_dim x v x q
logits = self.h_net(d_.transpose(1, 2).transpose(2, 3)) # b x v x q x h_out
return logits.transpose(2, 3).transpose(1, 2) # b x h_out x v x q
def forward_with_weights(self, v, q, w):
v_ = self.v_net(v) # b x v x d
q_ = self.q_net(q) # b x q x d
logits = torch.einsum('bvk,bvq,bqk->bk', (v_, w, q_))
if 1 < self.k:
logits = logits.unsqueeze(1) # b x 1 x d
logits = self.p_net(logits).squeeze(1) * self.k # sum-pooling
return logits