-
Notifications
You must be signed in to change notification settings - Fork 15
/
model_sentences.py
297 lines (283 loc) · 14.8 KB
/
model_sentences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import sys
import numpy
import gzip
import math
import itertools
import time
import codecs
import argparse
import pickle
from index_data import DataProcessor
from onto_attention import OntoAttentionLSTM
from keras.models import Model, model_from_yaml
from keras.layers import Input, Dropout, LSTM, Dense
from keras.layers.wrappers import TimeDistributed
from keras.callbacks import EarlyStopping
from keras_extensions import HigherOrderEmbedding
class SentenceModel(object):
def __init__(self, word_dim=50, num_senses=2, num_hyps=5):
self.dp = DataProcessor(word_syn_cutoff=num_senses, syn_path_cutoff=num_hyps)
self.num_hyps = num_hyps
self.num_senses = num_senses
self.numpy_rng = numpy.random.RandomState(12345)
self.word_dim = word_dim
self.model = None
def read_sentences(self, tagged_sentences, sentlenlimit=None, test=False, remove_singletons=False):
num_sentences = len(tagged_sentences)
all_words = []
all_pos_tags = []
maxsentlen = 0
for tagged_sentence in tagged_sentences:
words = []
pos_tags = []
# Expects each token to be a "_" separated combination of word and POS tag.
tagged_words = tagged_sentence.split(" ")
if sentlenlimit is not None:
tagged_words = tagged_words[:sentlenlimit]
for word_tag in tagged_words:
parts = word_tag.split("_")
tag = parts[-1]
word = "_".join(parts[:-1]).lower()
words.append(word)
pos_tags.append(tag)
if len(words) > maxsentlen:
maxsentlen = len(words)
all_words.append(words)
all_pos_tags.append(pos_tags)
if not sentlenlimit:
sentlenlimit = maxsentlen
C_ind = numpy.zeros((num_sentences, sentlenlimit, self.num_senses, self.num_hyps), dtype='int32')
S_ind = numpy.zeros((num_sentences, sentlenlimit), dtype='int32')
for i, (words, pos_tags) in enumerate(zip(all_words, all_pos_tags)):
sentlen = len(words)
# test=True locks the word and syn index dicts. No new keys will be added
word_inds, syn_inds = self.dp.index_sentence(words, pos_tags, test=test, remove_singletons=remove_singletons)
S_ind[i][-sentlen:] = word_inds
for j in range(sentlen):
sense_syn_ind = syn_inds[j]
sense_syn_ind_len = len(sense_syn_ind)
for k, syn_ind in enumerate(sense_syn_ind):
C_ind[i][-sentlen+j][-sense_syn_ind_len+k][-len(syn_ind):] = syn_ind
return S_ind, C_ind
def _make_one_hot(self, word_inds, vec_size):
onehot = numpy.zeros((word_inds.shape + (vec_size,)))
for inds in itertools.product(*[numpy.arange(s) for s in word_inds.shape]):
onehot[inds+(word_inds[inds],)] = 1
return onehot
def _factor_target_indices(self, Y_inds, vocab_size=None, base=2):
if vocab_size is None:
vocab_size = len(self.dp.word_index)
print >>sys.stderr, "Factoring targets of vocabulary size: %d"%(vocab_size)
num_vecs = int(math.ceil(math.log(vocab_size)/math.log(base))) + 1
base_inds = []
div_Y_inds = Y_inds
print >>sys.stderr, "Number of factors: %d"%num_vecs
for i in range(num_vecs):
new_inds = div_Y_inds % base
if i == num_vecs - 1:
if new_inds.sum() == 0:
# Most significant "digit" is a zero. Omit it.
break
base_inds.append(new_inds)
div_Y_inds = numpy.copy(div_Y_inds/base)
base_vecs = [self._make_one_hot(base_inds_i, base) for base_inds_i in base_inds]
return base_vecs
def train(self, S_ind, C_ind, use_onto_lstm=True, use_attention=True, num_epochs=20, hierarchical=False, base=2):
# Predict next word from current synsets
X = C_ind[:,:-1] if use_onto_lstm else S_ind[:,:-1] # remove the last words' hyps in all sentences
Y_inds = S_ind[:,1:] # remove the first words in all sentences
if hierarchical:
train_targets = self._factor_target_indices(Y_inds, base=base)
else:
train_targets = [self._make_one_hot(Y_inds, Y_inds.max() + 1)]
length = Y_inds.shape[1]
lstm_outdim = self.word_dim
num_words = len(self.dp.word_index)
num_syns = len(self.dp.synset_index)
input = Input(shape=X.shape[1:], dtype='int32')
embed_input_dim = num_syns if use_onto_lstm else num_words
embed_layer = HigherOrderEmbedding(name='embedding', input_dim=embed_input_dim, output_dim=self.word_dim, input_shape=X.shape[1:], mask_zero=True)
sent_rep = embed_layer(input)
reg_sent_rep = Dropout(0.5)(sent_rep)
if use_onto_lstm:
lstm_out = OntoAttentionLSTM(name='sent_lstm', input_dim=self.word_dim, output_dim=lstm_outdim, input_length=length, num_senses=self.num_senses, num_hyps=self.num_hyps, return_sequences=True, use_attention=use_attention)(reg_sent_rep)
else:
lstm_out = LSTM(name='sent_lstm', input_dim=self.word_dim, output_dim=lstm_outdim, input_length=length, return_sequences=True)(reg_sent_rep)
output_nodes = []
# Make one node for each factored target
for target in train_targets:
node = TimeDistributed(Dense(input_dim=lstm_outdim, output_dim=target.shape[-1], activation='softmax'))(lstm_out)
output_nodes.append(node)
model = Model(input=input, output=output_nodes)
print >>sys.stderr, model.summary()
early_stopping = EarlyStopping()
precompile_time = time.time()
model.compile(loss='categorical_crossentropy', optimizer='adam')
postcompile_time = time.time()
print >>sys.stderr, "Model compilation took %d s"%(postcompile_time - precompile_time)
model.fit(X, train_targets, nb_epoch=num_epochs, validation_split=0.1, callbacks=[early_stopping])
posttrain_time = time.time()
print >>sys.stderr, "Training took %d s"%(posttrain_time - postcompile_time)
concept_reps = model.layers[1].get_weights()
self.model = model
return concept_reps
def test(self, vocab_size, use_onto_lstm, S_ind_test=None, C_ind_test=None, hierarchical=False, base=2, oov_list=None):
X_test = C_ind_test[:,:-1] if use_onto_lstm else S_ind_test[:,:-1] # remove the last words' hyps in all sentences
Y_inds_test = S_ind_test[:,1:]
if hierarchical:
test_targets = self._factor_target_indices(Y_inds_test, vocab_size, base=base)
else:
test_targets = [self._make_one_hot(Y_inds_test, vocab_size)]
print >>sys.stderr, "Evaluating model on test data"
test_loss = self.model.evaluate(X_test, test_targets)
print >>sys.stderr, "Test loss: %.4f"%test_loss
if oov_list is not None:
oov_inds = [self.dp.word_index[w] for w in oov_list]
non_oov_Y_inds = numpy.copy(Y_inds_test)
for ind in oov_inds:
non_oov_Y_inds[non_oov_Y_inds == ind] = 0
non_oov_test_targets = self._factor_target_indices(non_oov_Y_inds, vocab_size, base=base)
non_oov_test_loss = self.model.evaluate(X_test, non_oov_test_targets)
print >>sys.stderr, "Non-oov test loss: %.4f"%non_oov_test_loss
factored_test_preds = [-((numpy.log(pred) * target).sum(axis=-1)) for pred, target in zip(self.model.predict(X_test), test_targets)]
test_preds = sum(factored_test_preds)
#non_null_probs = []
#for test_pred, inds in zip(test_preds, Y_inds_test):
# wanted_probs = []
# for tp, ind in zip(test_pred, inds):
# if ind != 0:
# wanted_probs.append(tp)
# non_null_probs.append(wanted_probs)
#return non_null_probs
return test_preds
def get_attention(self, C_ind):
if not self.model:
raise RuntimeError, "Model not trained!"
model_embedding = None
model_weights = None
for layer in self.model.layers:
if layer.name.lower() == "embedding":
model_embedding = layer
if layer.name.lower() == "sent_lstm":
model_lstm = layer
if model_embedding is None or model_lstm is None:
raise RuntimeError, "Did not find expected layers"
lstm_weights = model_lstm.get_weights()
embedding_weights = model_embedding.get_weights()
embed_in_dim, embed_out_dim = embedding_weights[0].shape
att_embedding = HigherOrderEmbedding(input_dim=embed_in_dim, output_dim=embed_out_dim, weights=embedding_weights)
onto_lstm = OntoAttentionLSTM(input_dim=embed_out_dim, output_dim=embed_out_dim, input_length=model_lstm.input_length, num_senses=self.num_senses, num_hyps=self.num_hyps, use_attention=True, return_attention=True, weights=lstm_weights)
att_input = Input(shape=C_ind.shape[1:], dtype='int32')
att_sent_rep = att_embedding(att_input)
att_output = onto_lstm(att_sent_rep)
att_model = Model(input=att_input, output=att_output)
att_model.compile(optimizer='adam', loss='mse') # optimizer and loss are not needed since we are not going to train this model.
C_att = att_model.predict(C_ind)
print >>sys.stderr, "Got attention values. Input, output shapes:", C_ind.shape, C_att.shape
return C_att
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description="Model sentences using ontoLSTM")
argparser.add_argument('--train_file', type=str, help="One sentence per line, POS tagged")
argparser.add_argument('--test_file', type=str, help="Test file for which attention values will be printed. One sentence per line, POS tagged")
argparser.add_argument('--dim', type=int, help="Word/synset dimensionality", default=50)
argparser.add_argument('--num_senses', type=int, help="Number of senses per word if using OntoLSTM (default 2)", default=2)
argparser.add_argument('--num_hyps', type=int, help="Number of hypernyms per sense if using OntoLSTM (default 5)", default=5)
argparser.add_argument('--use_onto_lstm', help="If this flag is not set, will use traditional LSTM", action='store_true')
argparser.add_argument('--use_attention', help="Use attention in ontoLSTM. If this flag is not set, will use average concept representations", action='store_true')
argparser.add_argument('--show_attention', help="Print attention values for sentences in the test file (printed in <testfilename>.att_out)", action='store_true')
argparser.add_argument('--hierarchical', type=int, help="Use hierarchical softmax with the provided number of classes per factor")
argparser.add_argument('--synset_embedding_output', type=str, help="Print learned synset representations in the given file")
argparser.add_argument('--num_epochs', type=int, help="Number of epochs (default 20)", default=20)
args = argparser.parse_args()
if args.show_attention and (not args.use_attention or not args.use_onto_lstm):
raise RuntimeError, "Use OntoLSTM with attention to print attention values of the test file"
sm = SentenceModel(word_dim=args.dim, num_senses=args.num_senses, num_hyps=args.num_hyps)
hierarchical = False
base = 2
if args.hierarchical is not None:
hierarchical = True
base = args.hierarchical
model_name_prefix = "sent_model_ontolstm=%s_att=%s_senses=%d_hyps=%d"%(str(args.use_onto_lstm), str(args.use_attention), args.num_senses, args.num_hyps)
do_test = False
do_train = False
if args.train_file is not None:
ts = [x.strip() for x in codecs.open(args.train_file, "r", "utf-8").readlines()]
print >>sys.stderr, "Reading training data"
S_ind, C_ind = sm.read_sentences(ts, remove_singletons=True)
print >>sys.stderr, "Target vocab size after reading training data: %d"%(len(sm.dp.word_index))
singletons = []
for w, n in sm.dp.word_index.items():
if n == 1:
singletons.append(w)
print >>sys.stderr, "Number of singletons: %d. Here are some:"%(len(singletons)), singletons[:5]
_, train_sent_len, _, _ = C_ind.shape
do_train = True
else:
print >>sys.stderr, "Loading stored model"
sm.model = model_from_yaml(open("%s.yaml"%model_name_prefix).read(), custom_objects={"HigherOrderEmbedding": HigherOrderEmbedding, "OntoAttentionLSTM": OntoAttentionLSTM})
print >>sys.stderr, sm.model.summary()
sm.model.load_weights("%s.h5"%model_name_prefix)
sm.model.compile(optimizer='adam', loss='categorical_crossentropy')
dataproc_pkl_file = open("%s_dataproc.pkl"%model_name_prefix)
sm.dp = pickle.load(dataproc_pkl_file)
print >>sys.stderr, "Target vocab size of loaded index: %d"%(len(sm.dp.word_index))
print sm.model.get_input_shape_at(0)
train_sent_len = sm.model.get_input_shape_at(0)[1] + 1 #because the input shape will be one less than the sentence length
if args.test_file is not None:
print >>sys.stderr, "Reading test data"
ts_test = [x.strip() for x in codecs.open(args.test_file, "r", "utf-8").readlines()]
#lock_index = False if do_train else True
lock_index = True
S_ind_test, C_ind_test = sm.read_sentences(ts_test, sentlenlimit=train_sent_len, test=lock_index)
print >>sys.stderr, "Target vocab size after reading test data: %d"%(len(sm.dp.word_index))
do_test = True
if do_train:
concept_reps = sm.train(S_ind, C_ind, use_onto_lstm=args.use_onto_lstm, use_attention=args.use_attention, num_epochs=args.num_epochs, hierarchical=hierarchical, base=base)
model_yaml_string = sm.model.to_yaml()
open("%s.yaml"%model_name_prefix, "w").write(model_yaml_string)
sm.model.save_weights("%s.h5"%model_name_prefix, overwrite=True)
dataproc_pkl_file = open("%s_dataproc.pkl"%model_name_prefix, "w")
pickle.dump(sm.dp, dataproc_pkl_file)
if do_test:
vocab_size = len(sm.dp.word_index)
test_probs = sm.test(vocab_size, args.use_onto_lstm, S_ind_test, C_ind_test, hierarchical, base)
outfile = open("%s.out"%model_name_prefix, "w")
for nnp in test_probs:
print >>outfile, " ".join(["%.4f"%p for p in nnp])
outfile.close()
if args.synset_embedding_output is not None:
concrepfile = open(args.synset_embedding_output, "w")
for syn in sm.dp.synset_index:
print >>concrepfile, syn, " ".join(["%s"%x for x in concept_reps[0][sm.dp.synset_index[syn]]])
rev_synset_ind = {ind: syn for (syn, ind) in sm.dp.synset_index.items()}
if args.show_attention:
if args.test_file is None:
raise RuntimeError, "Test file not provided!"
outfile_name = args.test_file.split("/")[-1] + ".att_out"
outfile = open(outfile_name, "w")
C_att = sm.get_attention(C_ind_test)
for i, (sent, sent_c_inds, sent_c_atts) in enumerate(zip(ts_test, C_ind_test, C_att)):
print >>outfile, "SENT %d: %s"%(i, sent)
words = sent.split()[:train_sent_len]
word_id = 0
for word_c_inds, word_c_atts in zip(sent_c_inds, sent_c_atts):
if word_c_inds.sum() == 0:
continue
sense_id = 0
#print >>outfile, "Attention for %s"%(words[word_id])
best_sense = ""
max_sense_prob = 0.0
for s_h_ind, s_h_att in zip(word_c_inds, word_c_atts):
if sum(s_h_ind) == 0:
continue
#print >>outfile, "\nSense %d"%(sense_id)
sense_id += 1
if s_h_att[-1] > max_sense_prob:
max_sense_prob = s_h_att[-1]
best_sense = rev_synset_ind[s_h_ind[-1]]
#for h_ind, h_att in zip(s_h_ind, s_h_att):
# print >>outfile, rev_synset_ind[h_ind], h_att
print >>outfile, words[word_id], best_sense
word_id += 1
#print >>outfile
print >>outfile