-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcurve_fit.py
198 lines (159 loc) · 6.21 KB
/
curve_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import os
from scipy.stats import norm
import matplotlib.pyplot as plt
from collections import Counter
from parameter import element_dict, amino_acid_dict, common_dict_create, h2o_mass, proton_mass
def mass_diff_list_compute(lines, mass, common_dict=None):
mass_diff_list = []
no_modi_num = 0
for line in lines:
if 'PFIND_DELTA' in line:
no_modi_num += 1
if mass not in line:
continue
line = line.split('\t')
mod_list = line[10].split(';')[:-1]
#if len(mod_list) > 1:
# continue
parent_mass = float(line[2])
sequence = line[5]
amino_mass = 0.0
for a in sequence:
if a in amino_acid_dict.keys():
amino_mass += amino_acid_dict[a]
mod_mass = parent_mass - amino_mass - proton_mass - h2o_mass
if len(mod_list) > 1:
for mod in mod_list:
if mass in mod:
continue
mod = mod.split(',')[1]
mod_mass -= common_dict[mod]
if mod_mass > 252.110 and mod_mass < 252.130:
mass_diff_list.append(round(mod_mass,4))
print(len(lines), no_modi_num)
return mass_diff_list
def no_mod_diff_list_compute(lines, common_dict=None):
no_mod_mass_diff_list = []
for line in lines:
if 'PFIND_DELTA' in line:
continue
line = line.split('\t')
mod_list = line[10].split(';')[:-1]
if len(mod_list) >= 1:
continue
parent_mass = float(line[2])
sequence = line[5]
amino_mass = 0.0
for a in sequence:
if a in amino_acid_dict.keys():
amino_mass += amino_acid_dict[a]
mod_mass = parent_mass - amino_mass - proton_mass - h2o_mass
if len(mod_list) >= 1:
for mod in mod_list:
mod = mod.split(',')[1]
mod_mass -= common_dict[mod]
no_mod_mass_diff_list.append(mod_mass)
print(np.mean(no_mod_mass_diff_list))
def gaussion_fit(mass_diff_list):
return norm.fit(mass_diff_list)
def hist_plot(data):
plt.hist(data, bins=100)
plt.show()
def accurate_mass_fit(blind_path, mass_list):
current_path = os.getcwd()
common_dict = common_dict_create(current_path)
with open(blind_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
# origin_lines = lines
lines = lines[1:]
for mass in mass_list:
mass_diff_list = mass_diff_list_compute(lines, mass, common_dict)
hist_plot(mass_diff_list)
mean, _ = gaussion_fit(mass_diff_list)
print(mean)
no_mod_diff_list_compute(lines, common_dict)
def mass_read(blind_path, target_mass):
mass_diff_diff = 6.020132
with open(blind_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
ori_data = []
for line in lines:
if 'PFIND_DELTA' in line:
mass = float(line.split('\t')[-1])
# if mass >= target_mass - 0.01 and mass <= target_mass + 0.01:
ori_data.append(mass)
data = []
for mass in ori_data:
if mass >= target_mass - 0.01 and mass <= target_mass + 0.01:
data.append(mass)
#if index % 2 == 0:
# if mass - mass_diff_diff >= target_mass - 0.01 and mass - mass_diff_diff <= target_mass + 0.01:
# data.append(mass- mass_diff_diff)
#if index % 2 == 1:
# if mass + mass_diff_diff >= target_mass - 0.01 and mass + mass_diff_diff <= target_mass + 0.01:
# data.append(mass + mass_diff_diff)
inc_number = len(data)
'''
r = [target_mass - 0.01, target_mass + 0.01]
mu0, sigma0 = -1, -1
times = 1
while True:
a = np.array(data)
mu, sigma = np.mean(a), np.std(a)
if mu0 == mu or times == 3:
break
mu0, sigma0 = mu, sigma
min_dist = min(abs(mu - r[0]), abs(r[1] - mu))
new_data = []
for v in ori_data:
if v >= mu - 3 * sigma and v <= mu + 3 * sigma and abs(v - mu) <= min_dist:
new_data.append(v)
data = new_data
times += 1
return np.mean(data), len(ori_data)
'''
mu0, sigma0 = np.mean(data), np.std(data)
times = 1
while True:
break
if len(data) <= 100:
break
a = []
for mass in ori_data:
if mass >= mu0 - 0.01 and mass <= mu0 + 0.01:
a.append(mass)
#if index % 2 == 0:
# if mass - mass_diff_diff >= mu0 - 0.01 and mass - mass_diff_diff <= mu0 + 0.01:
# data.append(mass- mass_diff_diff)
#if index % 2 == 1:
# if mass + mass_diff_diff >= mu0 - 0.01 and mass + mass_diff_diff <= mu0 + 0.01:
# data.append(mass + mass_diff_diff)
mu, sigma = np.mean(a), np.std(a)
data = a
if mu == mu0 or times == 3:
break
mu0, sigma0 = mu, sigma
times += 1
return mu0, inc_number
def ppm_calculate(a, target):
return abs(a - target)/(target+0.000001)*1000000
if __name__ == "__main__":
close_path = 'D:/pChem/pChem_new/0.05Da/QE_Plus_YangJing_WYne_O_TCP_50per_20180823/blind/pFind-Filtered.spectra'
blind_path = 'D:/pChem/pChem_new/results/ALK-iter/blind/pFind-Filtered.spectra'
# mass_list = ['PFIND_DELTA_252.1']
# accurate_mass_fit(blind_path, mass_list)
mass_list = [291.12, 297.14]
dream_list = [291.12191, 297.142042]
new_list = []
for target_mass in mass_list:
new_list.append(mass_read(close_path, target_mass)[0])
for i in range(len(mass_list)):
print(new_list[i])
print(ppm_calculate(new_list[i], dream_list[i]))
'''
print(ppm_calculate(252.123487, 252.1222))
print(ppm_calculate(258.143589, 258.142332))
print(ppm_calculate(279.157048,279.1583))
print(ppm_calculate(285.177051,285.178432))
'''