-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
294 lines (243 loc) · 8.39 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import cv2
import numpy as np
from collections import deque, namedtuple
from unionfind import UnionFind
from identify import identify_component
def dist(x1, y1, x2, y2):
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
class Vertex:
def __init__(self, index, loc, adjs=None):
self.index = index
self.loc = loc
self.adjs = adjs if adjs is not None else set()
def __repr__(self):
return str(self.adjs)
def build_graph(raw_corners, segments):
vs = []
uf = UnionFind(list(range(len(raw_corners))))
for a in range(len(raw_corners)):
for b in range(len(raw_corners)):
dis = dist(*raw_corners[a], *raw_corners[b])
if dis < 10:
uf.union(a, b)
corners = []
for conn in uf.components():
cx = sum(raw_corners[i][0] for i in conn) // len(conn)
cy = sum(raw_corners[i][1] for i in conn) // len(conn)
corners.append((cx, cy))
corners = raw_corners
for c in corners:
v = Vertex(len(vs), c)
vs.append(v)
for seg in segments:
seg_corners = []
for pnt in seg:
min_corner = None
min_corner_dist = None
for e, corner in enumerate(corners):
dis = dist(*pnt, *corner)
if not min_corner_dist or dis < min_corner_dist:
min_corner = e
min_corner_dist = dis
if min_corner_dist <= 75:
seg_corners.append(min_corner)
if len(seg_corners) == 2:
a, b = tuple(seg_corners)
vs[a].adjs.add(b)
vs[b].adjs.add(a)
return vs
def component_edges(graph, img=None):
# print(graph)
vset = set(range(len(graph)))
connecteds = []
while vset:
init = vset.pop()
conn = set([init])
q = [init]
while q:
v = graph[q.pop()]
for a in v.adjs:
if a in vset:
q.append(a)
conn.add(a)
vset.remove(a)
if len(conn) >= 2:
connecteds.append(conn)
depth = {}
parents = {}
children = {}
leaf_set = {}
for conn in connecteds:
leaves = set()
for v in conn:
if len(graph[v].adjs) == 1:
leaves.add(v)
depth[v] = 0
leaf_set[v] = set([v])
children[v] = set()
parents[v] = set()
q = deque()
for leaf in leaves:
q.append(leaf)
while q:
v = q.popleft()
for a in graph[v].adjs:
if a in depth:
if depth[a] > depth[v]:
leaf_set[a].update(leaf_set[v])
parents[a].add(v)
else:
parents[a] = set([v])
leaf_set[a] = leaf_set[v] | {a}
depth[a] = depth[v] + 1
children[a] = set()
children[v].add(a)
q.append(a)
all_edges = set()
for v in set().union(*connecteds):
for a in graph[v].adjs:
all_edges.add(frozenset([v, a]))
all_edges = {tuple(e) for e in all_edges if len(tuple(e))==2}
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255),
(255, 255, 0), (0, 255, 255), (255, 0, 255)]
for e, conn in enumerate(connecteds):
for v in conn:
color = colors[e % len(colors)]
cv2.circle(img, graph[v].loc, 6, color, -1)
show_imgs(img)
def edge_depth(edge):
a, b = tuple(edge)
return min(depth[a], depth[b])
def edge_lset(edge):
a, b = tuple(edge)
return leaf_set[a] | leaf_set[b]
all_cedges = []
all_line_pairs = []
for la in all_edges:
for lb in all_edges:
if edge_lset(la) & edge_lset(lb) or lb[0]*lb[1] >= la[0]*la[1]:
continue
# find min edge between these two lines
min_edge, min_edge_dist = get_min_edge(graph, la, lb)
# test for bad edges
bad = False
for pt in min_edge:
if depth[pt] >= 2:
bad = True
break
for a in graph[pt].adjs:
if (pt, a) in (la, lb) or (a, pt) in (la, lb):
continue
if a in min_edge or colinear(graph, (pt, a), min_edge):
bad = True
break
if min_edge_dist > 300 or bad:
continue
if colinear(graph, la, lb):
all_cedges.append(tuple(min_edge))
all_line_pairs.append((tuple(la), tuple(lb)))
ordered_clp = []
for c, lp in zip(all_cedges, all_line_pairs):
dis = dist(*graph[c[0]].loc, *graph[c[1]].loc)
ordered_clp.append((dis, c, lp))
cedges = []
line_pairs = []
used_nodes = set()
# print(sorted(ordered_clp))
for _, c, lp in sorted(ordered_clp):
if used_nodes & set(c):
continue
# print(used_nodes)
# print(c)
cedges.append(c)
line_pairs.append(lp)
used_nodes |= (edge_lset(c) - set(lp[0] + lp[1])) | set(c)
# print()
return cedges, line_pairs
def slope_intercept(line, graph):
line = tuple(line)
x1, y1 = tuple(graph[line[0]].loc)
x2, y2 = tuple(graph[line[1]].loc)
vert = abs(y2 - y1) > abs(x2 - x1)
if vert:
slope = (x2 - x1) / (y2 - y1)
intercept = x1 - slope*y1
else:
slope = (y2 - y1) / (x2 - x1)
intercept = y1 - slope*x1
return vert, slope, intercept
def get_min_edge(graph, la, lb):
min_edge = None
min_edge_dist = None
for pta in la:
for ptb in lb:
dis = dist(*graph[pta].loc, *graph[ptb].loc)
if min_edge_dist is None or dis < min_edge_dist:
min_edge_dist = dis
min_edge = (pta, ptb)
return min_edge, min_edge_dist
def colinear(graph, la, lb):
va, sa, ia = slope_intercept(la, graph)
vb, sb, ib = slope_intercept(lb, graph)
if va != vb:
return False
# find min edge between these two lines
min_edge, min_edge_dist = get_min_edge(graph, la, lb)
if va:
dis = abs(graph[min_edge[0]].loc[0] - sb *
graph[min_edge[0]].loc[1] - ib)/(sb**2 + 1)**0.5
else:
dis = abs(graph[min_edge[0]].loc[1] - sb *
graph[min_edge[0]].loc[0] - ib) / (sb ** 2 + 1) ** 0.5
return (min_edge_dist < 5 or dis/min_edge_dist < 0.5) and abs(sa - sb) ** 2 < 0.1
class Node:
def __init__(self, index, component, loc=None, adjs=None):
self.index = index
self.loc = loc
self.component = component
self.adjs = adjs if adjs is not None else []
def __repr__(self):
return "({} [{}]: {})".format(self.index, self.component, self.adjs)
def build_circuit(graph, cedges, line_pairs, components):
ns = []
index_map = {}
reverse_index_map = {}
def get_corner(o_ix):
if o_ix not in index_map:
corner_node = Node(len(ns), "corner", graph[o_ix].loc)
index_map[o_ix] = len(ns)
reverse_index_map[len(ns)] = o_ix
ns.append(corner_node)
return corner_node
else:
return ns[index_map[o_ix]]
q = deque()
for e, (cedge, comp_name) in enumerate(zip(cedges, components)):
node = Node(len(ns), comp_name)
ns.append(node)
node.adjs = []
for pt in cedge:
corner_node = get_corner(pt)
for line in line_pairs[e]:
if pt in line:
next_pt = line[0] if line[0] != pt else line[1]
next_corner = get_corner(next_pt)
corner_node.adjs = [node.index, next_corner.index]
q.append(next_corner.index)
node.adjs.append(index_map[pt])
while q:
node = ns[q.popleft()]
o_ix = reverse_index_map[node.index]
for a in graph[o_ix].adjs:
add_to_q = (a not in index_map)
adj_corner = get_corner(a)
node.adjs.append(adj_corner.index)
if add_to_q:
q.append(adj_corner.index)
return ns
def show_imgs(*imgs, names=None):
for e, img in enumerate(imgs):
name = str(e) if names is None else names[e]
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()