|
3 | 3 | to run this utility you need:
|
4 | 4 |
|
5 | 5 | - the onnx definition of tiny yolo v2 from the [model zoo](https://github.com/onnx/models/tree/master/tiny_yolov2).
|
6 |
| -- a 416x416 jpeg picture |
| 6 | +- a jpeg picture |
7 | 7 |
|
8 |
| -then |
| 8 | +## Usage |
9 | 9 |
|
10 |
| -`go run main.go -model /path/to/tiny_yolov2/model.onnx -img /path/to/picture_416x416.jpg` |
| 10 | +``` |
| 11 | +$ go run main.go -h |
| 12 | + -h help |
| 13 | + -img string |
| 14 | + path of an input jpeg image (use - for stdin) |
| 15 | + -model string |
| 16 | + path to the model file (default "model.onnx") |
| 17 | + -output string |
| 18 | + path of an output png file (use - for stdout) |
| 19 | + -s silent mode (useful if output is -) |
| 20 | +This application is configured via the environment. The following environment |
| 21 | +variables can be used: |
11 | 22 |
|
| 23 | +KEY TYPE DEFAULT REQUIRED DESCRIPTION |
| 24 | +YOLO_CONFIDENCE_THRESHOLD Float 0.30 true |
| 25 | +YOLO_PROBA_THRESHOLD Float 0.90 true |
| 26 | +``` |
12 | 27 |
|
13 |
| -ex: |
| 28 | +to run it, simply do a |
| 29 | +`go run main.go -model /path/to/tiny_yolov2/model.onnx -img /path/to/picture.jpg` |
14 | 30 |
|
15 |
| -``` |
16 |
| -✗ go run main.go -model $MODELDIR/tiny_yolov2/model.onnx -img data/dog_416.jpg |
17 |
| -at (162,0)-(189,206) with confidence 0.95%: [{0.9998071754247418 dog} {0.00018703953064835692 cat} {2.115350363488541e-06 person}] |
18 |
| -at (0,3)-(438,346) with confidence 0.85%: [{0.9999962088094221 bicycle} {2.4332601660991103e-06 chair} {4.6456437678137356e-07 person}] |
19 |
| -at (0,73)-(126,295) with confidence 0.83%: [{0.9999995178370005 car} {3.5306012468841564e-07 bus} {1.0748795966861477e-07 person}] |
20 |
| -at (0,43)-(430,320) with confidence 0.73%: [{0.9999789093484178 bicycle} {2.013909263985852e-05 chair} {6.396542550263407e-07 boat}] |
21 |
| -at (152,0)-(226,187) with confidence 0.66%: [{0.9982670709247383 dog} {0.0016460507909590047 cat} {5.957194709763225e-05 person}] |
22 |
| -at (0,83)-(103,325) with confidence 0.66%: [{0.9999934470064776 car} {4.297399737329603e-06 person} {2.082974674910856e-06 bus}] |
23 |
| -at (157,0)-(186,200) with confidence 0.64%: [{0.999784279956219 dog} {0.00019693142718305628 cat} {8.454914041169167e-06 bird}] |
24 |
| -at (0,0)-(413,362) with confidence 0.62%: [{0.9986541066305761 bicycle} {0.0008222933798651681 chair} {0.00032344712097440875 motorbike}] |
25 |
| -at (0,0)-(400,363) with confidence 0.55%: [{0.9999220651658735 bicycle} {5.773722286386036e-05 chair} {6.478719961409336e-06 person}] |
26 |
| -at (0,0)-(448,338) with confidence 0.51%: [{0.9995790811257635 bicycle} {0.0002938493348981077 chair} {5.05680835872687e-05 dog}] |
27 |
| -at (143,0)-(223,186) with confidence 0.45%: [{0.9857089464884052 dog} {0.01341958871066549 cat} {0.0007088810484281701 person}] |
28 |
| -at (0,71)-(112,263) with confidence 0.34%: [{0.9999317843569847 car} {4.842326315789941e-05 person} {1.0402486318194522e-05 bus}] |
29 |
| -at (146,0)-(184,241) with confidence 0.33%: [{0.9999781504060399 dog} {6.9390734196093085e-06 cat} {5.307627835320137e-06 chair}] |
30 |
| -at (15,36)-(446,327) with confidence 0.31%: [{0.9999871477975073 bicycle} {7.80820896521431e-06 boat} {3.1919688616376533e-06 chair}] |
31 |
| -{0.9999995178370005 car} |
32 |
| -{0.9999962088094221 bicycle} |
33 |
| -{0.9999934470064776 car} |
34 |
| -{0.9999871477975073 bicycle} |
35 |
| -{0.9999789093484178 bicycle} |
36 |
| -{0.9999781504060399 dog} |
37 |
| -{0.9999317843569847 car} |
38 |
| -{0.9999220651658735 bicycle} |
39 |
| -{0.9998071754247418 dog} |
40 |
| -{0.999784279956219 dog} |
41 |
| -{0.9995790811257635 bicycle} |
42 |
| -{0.9986541066305761 bicycle} |
43 |
| -{0.9982670709247383 dog} |
44 |
| -{0.9857089464884052 dog} |
45 |
| -``` |
| 31 | +if you want to generate an anotated output picture in png, use the `-output` parameter |
| 32 | + |
| 33 | + |
| 34 | +You can alter the output by playing with the environment variables |
| 35 | + |
| 36 | +- `YOLO_CONFIDENCE_THRESHOLD`: bypass the boxes with a confidence lower than this value |
| 37 | +- `YOLO_PROBA_THRESHOLD`: bypass the boxes with a class detection lower than this value |
0 commit comments