|
| 1 | +package main |
| 2 | + |
| 3 | +import ( |
| 4 | + "flag" |
| 5 | + "fmt" |
| 6 | + "image" |
| 7 | + "image/png" |
| 8 | + "io/ioutil" |
| 9 | + "log" |
| 10 | + "os" |
| 11 | + "sort" |
| 12 | + |
| 13 | + "github.com/owulveryck/onnx-go" |
| 14 | + "github.com/owulveryck/onnx-go/backend/x/gorgonnx" |
| 15 | + "github.com/owulveryck/onnx-go/internal/x/images" |
| 16 | + "gorgonia.org/tensor" |
| 17 | +) |
| 18 | + |
| 19 | +const ( |
| 20 | + height = 64 |
| 21 | + width = 64 |
| 22 | +) |
| 23 | + |
| 24 | +var emotionTable = []string{ |
| 25 | + "neutral", |
| 26 | + "happiness", |
| 27 | + "surprise", |
| 28 | + "sadness", |
| 29 | + "anger", |
| 30 | + "disgust", |
| 31 | + "fear", |
| 32 | + "contempt", |
| 33 | +} |
| 34 | + |
| 35 | +func main() { |
| 36 | + model := flag.String("model", "model.onnx", "path to the model file") |
| 37 | + input := flag.String("input", "file.png", "path to the input file") |
| 38 | + h := flag.Bool("h", false, "help") |
| 39 | + flag.Parse() |
| 40 | + if *h { |
| 41 | + flag.Usage() |
| 42 | + os.Exit(0) |
| 43 | + } |
| 44 | + for _, f := range []string{*model, *input} { |
| 45 | + if _, err := os.Stat(f); err != nil && os.IsNotExist(err) { |
| 46 | + log.Fatalf("%v does not exist", f) |
| 47 | + } |
| 48 | + } |
| 49 | + // Create a backend receiver |
| 50 | + backend := gorgonnx.NewGraph() |
| 51 | + // Create a model and set the execution backend |
| 52 | + m := onnx.NewModel(backend) |
| 53 | + |
| 54 | + // read the onnx model |
| 55 | + b, err := ioutil.ReadFile(*model) |
| 56 | + if err != nil { |
| 57 | + log.Fatal(err) |
| 58 | + } |
| 59 | + // Decode it into the model |
| 60 | + err = m.UnmarshalBinary(b) |
| 61 | + if err != nil { |
| 62 | + log.Fatal(err) |
| 63 | + } |
| 64 | + // Set the first input, the number depends of the model |
| 65 | + // TODO |
| 66 | + inputFile, err := os.Open(*input) |
| 67 | + if err != nil { |
| 68 | + log.Fatal(err) |
| 69 | + } |
| 70 | + defer inputFile.Close() |
| 71 | + img, err := png.Decode(inputFile) |
| 72 | + if err != nil { |
| 73 | + log.Fatal(err) |
| 74 | + } |
| 75 | + imgGray, ok := img.(*image.Gray) |
| 76 | + if !ok { |
| 77 | + log.Fatal("Please give a gray image as input") |
| 78 | + } |
| 79 | + inputT := tensor.New(tensor.WithShape(1, 1, height, width), tensor.Of(tensor.Float32)) |
| 80 | + err = images.GrayToBCHW(imgGray, inputT) |
| 81 | + if err != nil { |
| 82 | + log.Fatal(err) |
| 83 | + } |
| 84 | + m.SetInput(0, inputT) |
| 85 | + err = backend.Run() |
| 86 | + if err != nil { |
| 87 | + log.Fatal(err) |
| 88 | + } |
| 89 | + computedOutputT, err := m.GetOutputTensors() |
| 90 | + if err != nil { |
| 91 | + log.Fatal(err) |
| 92 | + } |
| 93 | + result := classify(computedOutputT[0].Data().([]float32)) |
| 94 | + fmt.Println(result[0].emotion) |
| 95 | + fmt.Println(result[1].emotion) |
| 96 | +} |
| 97 | + |
| 98 | +type testingT struct{} |
| 99 | + |
| 100 | +func (t *testingT) Errorf(format string, args ...interface{}) { |
| 101 | + log.Fatalf(format, args...) |
| 102 | +} |
| 103 | + |
| 104 | +func classify(input []float32) emotions { |
| 105 | + result := make(emotions, len(input)) |
| 106 | + for i := 0; i < len(input); i++ { |
| 107 | + result[i] = emotion{ |
| 108 | + emotion: emotionTable[i], |
| 109 | + weight: input[i], |
| 110 | + } |
| 111 | + } |
| 112 | + sort.Sort(sort.Reverse(result)) |
| 113 | + return result |
| 114 | +} |
| 115 | + |
| 116 | +type emotions []emotion |
| 117 | +type emotion struct { |
| 118 | + emotion string |
| 119 | + weight float32 |
| 120 | +} |
| 121 | + |
| 122 | +func (e emotions) Len() int { return len(e) } |
| 123 | +func (e emotions) Swap(i, j int) { e[i], e[j] = e[j], e[i] } |
| 124 | +func (e emotions) Less(i, j int) bool { return e[i].weight < e[j].weight } |
0 commit comments