-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathram.py
68 lines (56 loc) · 2.08 KB
/
ram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gym
import torch.optim as optim
import argparse
from dqn_model import DQN_RAM
from dqn_learn import OptimizerSpec, dqn_learing
from utils.gym import get_ram_env, get_wrapper_by_name
from utils.schedule import LinearSchedule
BATCH_SIZE = 32
GAMMA = 0.99
REPLAY_BUFFER_SIZE = 1000000
LEARNING_STARTS = 50000
LEARNING_FREQ = 4
FRAME_HISTORY_LEN = 1
TARGER_UPDATE_FREQ = 10000
LEARNING_RATE = 0.00025
ALPHA = 0.95
EPS = 0.01
def main(env, num_timesteps, args):
def stopping_criterion(env):
# notice that here t is the number of steps of the wrapped env,
# which is different from the number of steps in the underlying env
return get_wrapper_by_name(env, "Monitor").get_total_steps() >= num_timesteps
optimizer_spec = OptimizerSpec(
constructor=optim.RMSprop,
kwargs=dict(lr=LEARNING_RATE, alpha=ALPHA, eps=EPS),
)
exploration_schedule = LinearSchedule(1000000, 0.1)
dqn_learing(
env=env,
q_func=DQN_RAM,
optimizer_spec=optimizer_spec,
exploration=exploration_schedule,
stopping_criterion=stopping_criterion,
replay_buffer_size=REPLAY_BUFFER_SIZE,
batch_size=BATCH_SIZE,
gamma=GAMMA,
learning_starts=LEARNING_STARTS,
learning_freq=LEARNING_FREQ,
frame_history_len=FRAME_HISTORY_LEN,
target_update_freq=TARGER_UPDATE_FREQ,
gpu_idx=args.gpu_idx,
cfg_name=args.cfg_name
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DQN on ram atari')
parser.add_argument('-g', '--gpu_idx', type=int, default=0)
parser.add_argument('-ga', '--gamma', type=float, default=0.99)
parser.add_argument('-l', '--learning', type=float, default=0.00025)
parser.add_argument('-cn', '--cfg_name', type=str, default='', help='name for result files, e.g. gamma095')
args = parser.parse_args()
# Get Atari games.
env = gym.make('Pong-ram-v0')
# Run training
seed = 0 # Use a seed of zero (you may want to randomize the seed!)
env = get_ram_env(env, seed, args.cfg_name)
main(env, int(4e7), args)