|
| 1 | +<?xml version="1.0" encoding="UTF-8"?> |
| 2 | +<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" |
| 3 | + xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" |
| 4 | + xmlns:rel="http://www.crossref.org/relations.xsd" |
| 5 | + xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" |
| 6 | + version="5.3.1" |
| 7 | + xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> |
| 8 | + <head> |
| 9 | + <doi_batch_id>20250710212636-1b8e84b9c6b9a141332f5a6f0ee07f910a97e18f</doi_batch_id> |
| 10 | + <timestamp>20250710212636</timestamp> |
| 11 | + <depositor> |
| 12 | + <depositor_name>JOSS Admin</depositor_name> |
| 13 | + < email_address> [email protected]</ email_address> |
| 14 | + </depositor> |
| 15 | + <registrant>The Open Journal</registrant> |
| 16 | + </head> |
| 17 | + <body> |
| 18 | + <journal> |
| 19 | + <journal_metadata> |
| 20 | + <full_title>Journal of Open Source Software</full_title> |
| 21 | + <abbrev_title>JOSS</abbrev_title> |
| 22 | + <issn media_type="electronic">2475-9066</issn> |
| 23 | + <doi_data> |
| 24 | + <doi>10.21105/joss</doi> |
| 25 | + <resource>https://joss.theoj.org</resource> |
| 26 | + </doi_data> |
| 27 | + </journal_metadata> |
| 28 | + <journal_issue> |
| 29 | + <publication_date media_type="online"> |
| 30 | + <month>07</month> |
| 31 | + <year>2025</year> |
| 32 | + </publication_date> |
| 33 | + <journal_volume> |
| 34 | + <volume>10</volume> |
| 35 | + </journal_volume> |
| 36 | + <issue>111</issue> |
| 37 | + </journal_issue> |
| 38 | + <journal_article publication_type="full_text"> |
| 39 | + <titles> |
| 40 | + <title>AniSOAP: Machine Learning Representations for Coarse-grained and Non-spherical Systems</title> |
| 41 | + </titles> |
| 42 | + <contributors> |
| 43 | + <person_name sequence="first" contributor_role="author"> |
| 44 | + <given_name>Arthur Yan</given_name> |
| 45 | + <surname>Lin</surname> |
| 46 | + <affiliations> |
| 47 | + <institution><institution_name>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA</institution_name></institution> |
| 48 | + </affiliations> |
| 49 | + <ORCID>https://orcid.org/0000-0002-7665-3767</ORCID> |
| 50 | + </person_name> |
| 51 | + <person_name sequence="additional" |
| 52 | + contributor_role="author"> |
| 53 | + <given_name>Lucas</given_name> |
| 54 | + <surname>Ortengren</surname> |
| 55 | + <affiliations> |
| 56 | + <institution><institution_name>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA</institution_name></institution> |
| 57 | + </affiliations> |
| 58 | + <ORCID>https://orcid.org/0009-0002-8899-7513</ORCID> |
| 59 | + </person_name> |
| 60 | + <person_name sequence="additional" |
| 61 | + contributor_role="author"> |
| 62 | + <given_name>Seonwoo</given_name> |
| 63 | + <surname>Hwang</surname> |
| 64 | + <affiliations> |
| 65 | + <institution><institution_name>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA</institution_name></institution> |
| 66 | + </affiliations> |
| 67 | + </person_name> |
| 68 | + <person_name sequence="additional" |
| 69 | + contributor_role="author"> |
| 70 | + <given_name>Yong-Cheol</given_name> |
| 71 | + <surname>Cho</surname> |
| 72 | + <affiliations> |
| 73 | + <institution><institution_name>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA</institution_name></institution> |
| 74 | + </affiliations> |
| 75 | + <ORCID>https://orcid.org/0009-0001-6038-6764</ORCID> |
| 76 | + </person_name> |
| 77 | + <person_name sequence="additional" |
| 78 | + contributor_role="author"> |
| 79 | + <given_name>Jigyasa</given_name> |
| 80 | + <surname>Nigam</surname> |
| 81 | + <affiliations> |
| 82 | + <institution><institution_name>Research Laboratory of Electronics, Massachusetts Institute of Technology, USA</institution_name></institution> |
| 83 | + </affiliations> |
| 84 | + <ORCID>https://orcid.org/0000-0001-6857-4332</ORCID> |
| 85 | + </person_name> |
| 86 | + <person_name sequence="additional" |
| 87 | + contributor_role="author"> |
| 88 | + <given_name>Rose K.</given_name> |
| 89 | + <surname>Cersonsky</surname> |
| 90 | + <affiliations> |
| 91 | + <institution><institution_name>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, USA</institution_name></institution> |
| 92 | + </affiliations> |
| 93 | + <ORCID>https://orcid.org/0000-0003-4515-3441</ORCID> |
| 94 | + </person_name> |
| 95 | + </contributors> |
| 96 | + <publication_date> |
| 97 | + <month>07</month> |
| 98 | + <day>10</day> |
| 99 | + <year>2025</year> |
| 100 | + </publication_date> |
| 101 | + <pages> |
| 102 | + <first_page>7954</first_page> |
| 103 | + </pages> |
| 104 | + <publisher_item> |
| 105 | + <identifier id_type="doi">10.21105/joss.07954</identifier> |
| 106 | + </publisher_item> |
| 107 | + <ai:program name="AccessIndicators"> |
| 108 | + <ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> |
| 109 | + <ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> |
| 110 | + <ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> |
| 111 | + </ai:program> |
| 112 | + <rel:program> |
| 113 | + <rel:related_item> |
| 114 | + <rel:description>Software archive</rel:description> |
| 115 | + <rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.15800936</rel:inter_work_relation> |
| 116 | + </rel:related_item> |
| 117 | + <rel:related_item> |
| 118 | + <rel:description>GitHub review issue</rel:description> |
| 119 | + <rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7954</rel:inter_work_relation> |
| 120 | + </rel:related_item> |
| 121 | + </rel:program> |
| 122 | + <doi_data> |
| 123 | + <doi>10.21105/joss.07954</doi> |
| 124 | + <resource>https://joss.theoj.org/papers/10.21105/joss.07954</resource> |
| 125 | + <collection property="text-mining"> |
| 126 | + <item> |
| 127 | + <resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07954.pdf</resource> |
| 128 | + </item> |
| 129 | + </collection> |
| 130 | + </doi_data> |
| 131 | + <citation_list> |
| 132 | + <citation key="nequip"> |
| 133 | + <article_title>E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials</article_title> |
| 134 | + <author>Batzner</author> |
| 135 | + <journal_title>Nature Communications</journal_title> |
| 136 | + <issue>1</issue> |
| 137 | + <volume>13</volume> |
| 138 | + <doi>10.1038/s41467-022-29939-5</doi> |
| 139 | + <issn>2041-1723</issn> |
| 140 | + <cYear>2022</cYear> |
| 141 | + <unstructured_citation>Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M., Molinari, N., Smidt, T. E., & Kozinsky, B. (2022). E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29939-5</unstructured_citation> |
| 142 | + </citation> |
| 143 | + <citation key="mace"> |
| 144 | + <article_title>MACE: Higher order equivariant message passing neural networks for fast and accurate force fields</article_title> |
| 145 | + <author>Batatia</author> |
| 146 | + <journal_title>Proceedings of the 36th international conference on neural information processing systems</journal_title> |
| 147 | + <isbn>9781713871088</isbn> |
| 148 | + <cYear>2022</cYear> |
| 149 | + <unstructured_citation>Batatia, I., Kovács, D. P., Simm, G. N. C., Ortner, C., & Csányi, G. (2022). MACE: Higher order equivariant message passing neural networks for fast and accurate force fields. Proceedings of the 36th International Conference on Neural Information Processing Systems. ISBN: 9781713871088</unstructured_citation> |
| 150 | + </citation> |
| 151 | + <citation key="Cheng2019"> |
| 152 | + <article_title>Ab initio thermodynamics of liquid and solid water</article_title> |
| 153 | + <author>Cheng</author> |
| 154 | + <journal_title>Proceedings of the National Academy of Sciences</journal_title> |
| 155 | + <issue>4</issue> |
| 156 | + <volume>116</volume> |
| 157 | + <doi>10.1073/pnas.1815117116</doi> |
| 158 | + <issn>1091-6490</issn> |
| 159 | + <cYear>2019</cYear> |
| 160 | + <unstructured_citation>Cheng, B., Engel, E. A., Behler, J., Dellago, C., & Ceriotti, M. (2019). Ab initio thermodynamics of liquid and solid water. Proceedings of the National Academy of Sciences, 116(4), 1110–1115. https://doi.org/10.1073/pnas.1815117116</unstructured_citation> |
| 161 | + </citation> |
| 162 | + <citation key="dusson2022"> |
| 163 | + <article_title>Atomic cluster expansion: Completeness, efficiency and stability</article_title> |
| 164 | + <author>Dusson</author> |
| 165 | + <journal_title>Journal of Computational Physics</journal_title> |
| 166 | + <volume>454</volume> |
| 167 | + <doi>10.1016/j.jcp.2022.110946</doi> |
| 168 | + <cYear>2022</cYear> |
| 169 | + <unstructured_citation>Dusson, G., Bachmayr, M., Cs’anyi, G., Drautz, R., Etter, S., Der Oord, C. van, & Ortner, C. (2022). Atomic cluster expansion: Completeness, efficiency and stability. Journal of Computational Physics, 454, 110946. https://doi.org/10.1016/j.jcp.2022.110946</unstructured_citation> |
| 170 | + </citation> |
| 171 | + <citation key="nice"> |
| 172 | + <article_title>Recursive evaluation and iterative contraction of n-body equivariant features</article_title> |
| 173 | + <author>Nigam</author> |
| 174 | + <journal_title>The Journal of chemical physics</journal_title> |
| 175 | + <issue>12</issue> |
| 176 | + <volume>153</volume> |
| 177 | + <doi>10.1063/5.0021116</doi> |
| 178 | + <cYear>2020</cYear> |
| 179 | + <unstructured_citation>Nigam, J., Pozdnyakov, S., & Ceriotti, M. (2020). Recursive evaluation and iterative contraction of n-body equivariant features. The Journal of Chemical Physics, 153(12). https://doi.org/10.1063/5.0021116</unstructured_citation> |
| 180 | + </citation> |
| 181 | + <citation key="librascal_paper"> |
| 182 | + <article_title>Efficient implementation of atom-density representations</article_title> |
| 183 | + <author>Musil</author> |
| 184 | + <journal_title>The Journal of Chemical Physics</journal_title> |
| 185 | + <issue>11</issue> |
| 186 | + <volume>154</volume> |
| 187 | + <doi>10.1063/5.0044689</doi> |
| 188 | + <issn>1089-7690</issn> |
| 189 | + <cYear>2021</cYear> |
| 190 | + <unstructured_citation>Musil, F., Veit, M., Goscinski, A., Fraux, G., Willatt, M. J., Stricker, M., Junge, T., & Ceriotti, M. (2021). Efficient implementation of atom-density representations. The Journal of Chemical Physics, 154(11). https://doi.org/10.1063/5.0044689</unstructured_citation> |
| 191 | + </citation> |
| 192 | + <citation key="featomic"> |
| 193 | + <article_title>Featomic</article_title> |
| 194 | + <author>Fraux</author> |
| 195 | + <cYear>2025</cYear> |
| 196 | + <unstructured_citation>Fraux, G., Loche, P., Kliavinek, S., Kazuki Huguenin-Dummitan, K., Tisi, D., & Goscinski, A. (2025). Featomic. https://github.com/metatensor/featomic</unstructured_citation> |
| 197 | + </citation> |
| 198 | + <citation key="librascal"> |
| 199 | + <article_title>Librascal</article_title> |
| 200 | + <doi>10.5281/zenodo.4526062</doi> |
| 201 | + <cYear>2021</cYear> |
| 202 | + <unstructured_citation>Librascal. (2021). https://doi.org/10.5281/zenodo.4526062</unstructured_citation> |
| 203 | + </citation> |
| 204 | + <citation key="dscribe"> |
| 205 | + <article_title>DScribe: Library of descriptors for machine learning in materials science</article_title> |
| 206 | + <author>Himanen</author> |
| 207 | + <journal_title>Computer Physics Communications</journal_title> |
| 208 | + <volume>247</volume> |
| 209 | + <doi>10.1016/j.cpc.2019.106949</doi> |
| 210 | + <issn>0010-4655</issn> |
| 211 | + <cYear>2020</cYear> |
| 212 | + <unstructured_citation>Himanen, L., Jäger, M. O. J., Morooka, E. V., Federici Canova, F., Ranawat, Y. S., Gao, D. Z., Rinke, P., & Foster, A. S. (2020). DScribe: Library of descriptors for machine learning in materials science. Computer Physics Communications, 247, 106949. https://doi.org/10.1016/j.cpc.2019.106949</unstructured_citation> |
| 213 | + </citation> |
| 214 | + <citation key="bartok_representing_2013"> |
| 215 | + <article_title>On representing chemical environments</article_title> |
| 216 | + <author>Bartók</author> |
| 217 | + <journal_title>Physical Review B</journal_title> |
| 218 | + <issue>18</issue> |
| 219 | + <volume>87</volume> |
| 220 | + <doi>10.1103/PhysRevB.87.184115</doi> |
| 221 | + <issn>1098-0121</issn> |
| 222 | + <cYear>2013</cYear> |
| 223 | + <unstructured_citation>Bartók, A. P., Kondor, R., & Csányi, G. (2013). On representing chemical environments. Physical Review B, 87(18), 184115. https://doi.org/10.1103/PhysRevB.87.184115</unstructured_citation> |
| 224 | + </citation> |
| 225 | + <citation key="behler_atom-centered_2011"> |
| 226 | + <article_title>Atom-centered symmetry functions for constructing high-dimensional neural network potentials</article_title> |
| 227 | + <author>Behler</author> |
| 228 | + <journal_title>The Journal of Chemical Physics</journal_title> |
| 229 | + <issue>7</issue> |
| 230 | + <volume>134</volume> |
| 231 | + <doi>10.1063/1.3553717</doi> |
| 232 | + <issn>0021-9606</issn> |
| 233 | + <cYear>2011</cYear> |
| 234 | + <unstructured_citation>Behler, J. (2011). Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of Chemical Physics, 134(7), 074106. https://doi.org/10.1063/1.3553717</unstructured_citation> |
| 235 | + </citation> |
| 236 | + <citation key="lin_expanding_2024"> |
| 237 | + <article_title>Expanding density-correlation machine learning representations for anisotropic coarse-grained particles</article_title> |
| 238 | + <author>Lin</author> |
| 239 | + <journal_title>The Journal of Chemical Physics</journal_title> |
| 240 | + <issue>7</issue> |
| 241 | + <volume>161</volume> |
| 242 | + <doi>10.1063/5.0210910</doi> |
| 243 | + <issn>0021-9606</issn> |
| 244 | + <cYear>2024</cYear> |
| 245 | + <unstructured_citation>Lin, A., Huguenin-Dumittan, K. K., Cho, Y.-C., Nigam, J., & Cersonsky, R. K. (2024). Expanding density-correlation machine learning representations for anisotropic coarse-grained particles. The Journal of Chemical Physics, 161(7), 074112. https://doi.org/10.1063/5.0210910</unstructured_citation> |
| 246 | + </citation> |
| 247 | + <citation key="anisoap_documentation"> |
| 248 | + <article_title>AniSOAP</article_title> |
| 249 | + <author>Lin</author> |
| 250 | + <cYear>2025</cYear> |
| 251 | + <unstructured_citation>Lin, A., Ortengren, L., Hwang, S., Cho, Y.-C., Nigam, J., & Cersonsky, R. K. (2025). AniSOAP [Documentation]. https://anisoap.readthedocs.io/en/latest/</unstructured_citation> |
| 252 | + </citation> |
| 253 | + <citation key="guillaume_fraux_metatensor_2024"> |
| 254 | + <article_title>Metatensor</article_title> |
| 255 | + <author>Fraux</author> |
| 256 | + <cYear>2024</cYear> |
| 257 | + <unstructured_citation>Fraux, G., Tisi, D., Loche, P., Abbott, J. W., Nigam, J., & Mahmoud, C. B. (2024). Metatensor [Documentation]. https://docs.metatensor.org/latest/index.html</unstructured_citation> |
| 258 | + </citation> |
| 259 | + <citation key="drautz_atomic_2019"> |
| 260 | + <article_title>Atomic cluster expansion for accurate and transferable interatomic potentials</article_title> |
| 261 | + <author>Drautz</author> |
| 262 | + <journal_title>Physical Review B</journal_title> |
| 263 | + <issue>1</issue> |
| 264 | + <volume>99</volume> |
| 265 | + <doi>10.1103/PhysRevB.99.014104</doi> |
| 266 | + <issn>2469-9950</issn> |
| 267 | + <cYear>2019</cYear> |
| 268 | + <unstructured_citation>Drautz, R. (2019). Atomic cluster expansion for accurate and transferable interatomic potentials. Physical Review B, 99(1), 014104. https://doi.org/10.1103/PhysRevB.99.014104</unstructured_citation> |
| 269 | + </citation> |
| 270 | + <citation key="hjorth_larsen_atomic_2017"> |
| 271 | + <article_title>The atomic simulation environment—a Python library for working with atoms</article_title> |
| 272 | + <author>Hjorth Larsen</author> |
| 273 | + <journal_title>Journal of Physics: Condensed Matter</journal_title> |
| 274 | + <issue>27</issue> |
| 275 | + <volume>29</volume> |
| 276 | + <doi>10.1088/1361-648X/aa680e</doi> |
| 277 | + <issn>0953-8984</issn> |
| 278 | + <cYear>2017</cYear> |
| 279 | + <unstructured_citation>Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P., Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., … Jacobsen, K. W. (2017). The atomic simulation environment—a Python library for working with atoms. Journal of Physics: Condensed Matter, 29(27), 273002. https://doi.org/10.1088/1361-648X/aa680e</unstructured_citation> |
| 280 | + </citation> |
| 281 | + <citation key="cersonsky_data-driven_2023"> |
| 282 | + <article_title>A data-driven interpretation of the stability of organic molecular crystals</article_title> |
| 283 | + <author>Cersonsky</author> |
| 284 | + <journal_title>Chemical Science</journal_title> |
| 285 | + <issue>5</issue> |
| 286 | + <volume>14</volume> |
| 287 | + <doi>10.1039/D2SC06198H</doi> |
| 288 | + <issn>2041-6520</issn> |
| 289 | + <cYear>2023</cYear> |
| 290 | + <unstructured_citation>Cersonsky, R. K., Pakhnova, M., Engel, E. A., & Ceriotti, M. (2023). A data-driven interpretation of the stability of organic molecular crystals. Chemical Science, 14(5), 1272–1285. https://doi.org/10.1039/D2SC06198H</unstructured_citation> |
| 291 | + </citation> |
| 292 | + <citation key="de_comparing_2016"> |
| 293 | + <article_title>Comparing molecules and solids across structural and alchemical space</article_title> |
| 294 | + <author>De</author> |
| 295 | + <journal_title>Physical Chemistry Chemical Physics</journal_title> |
| 296 | + <issue>20</issue> |
| 297 | + <volume>18</volume> |
| 298 | + <doi>10.1039/C6CP00415F</doi> |
| 299 | + <issn>1463-9076</issn> |
| 300 | + <cYear>2016</cYear> |
| 301 | + <unstructured_citation>De, S., Bartók, A. P., Csányi, G., & Ceriotti, M. (2016). Comparing molecules and solids across structural and alchemical space. Physical Chemistry Chemical Physics, 18(20), 13754–13769. https://doi.org/10.1039/C6CP00415F</unstructured_citation> |
| 302 | + </citation> |
| 303 | + </citation_list> |
| 304 | + </journal_article> |
| 305 | + </journal> |
| 306 | + </body> |
| 307 | +</doi_batch> |
0 commit comments