From 6c217f6a7b1d22989a3afabcc944e18864d1137b Mon Sep 17 00:00:00 2001
From: Patrick Keane <keanep@gatech.edu>
Date: Sat, 1 Jun 2024 16:44:38 -0400
Subject: [PATCH] Add SFace face recognizer cpp demo

---
 models/face_recognition_sface/CMakeLists.txt |  11 +
 models/face_recognition_sface/README.md      |  17 +
 models/face_recognition_sface/demo.cpp       | 322 +++++++++++++++++++
 3 files changed, 350 insertions(+)
 create mode 100644 models/face_recognition_sface/CMakeLists.txt
 create mode 100644 models/face_recognition_sface/demo.cpp

diff --git a/models/face_recognition_sface/CMakeLists.txt b/models/face_recognition_sface/CMakeLists.txt
new file mode 100644
index 00000000..cb1bac44
--- /dev/null
+++ b/models/face_recognition_sface/CMakeLists.txt
@@ -0,0 +1,11 @@
+cmake_minimum_required(VERSION 3.24.0)
+project(opencv_zoo_face_recognition_sface)
+
+set(OPENCV_VERSION "4.9.0")
+set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
+
+# Find OpenCV
+find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
+
+add_executable(demo demo.cpp)
+target_link_libraries(demo ${OpenCV_LIBS})
diff --git a/models/face_recognition_sface/README.md b/models/face_recognition_sface/README.md
index 6fb9c5c1..0737c2f7 100644
--- a/models/face_recognition_sface/README.md
+++ b/models/face_recognition_sface/README.md
@@ -24,6 +24,7 @@ Results of accuracy evaluation with [tools/eval](../../tools/eval).
 
 Run the following command to try the demo:
 
+### Python
 ```shell
 # recognize on images
 python demo.py --target /path/to/image1 --query /path/to/image2
@@ -32,6 +33,22 @@ python demo.py --target /path/to/image1 --query /path/to/image2
 python demo.py --help
 ```
 
+### C++
+Install latest OpenCV and CMake >= 3.24.0 to get started with:
+
+```shell
+# A typical and default installation path of OpenCV is /usr/local
+cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
+cmake --build build
+
+# detect on camera input
+./build/demo -t=/path/to/target_face
+# detect on an image
+./build/demo -t=/path/to/target_face -q=/path/to/query_face -v
+# get help messages
+./build/demo -h
+```
+
 ### Example outputs
 
 ![sface demo](./example_outputs/demo.jpg)
diff --git a/models/face_recognition_sface/demo.cpp b/models/face_recognition_sface/demo.cpp
new file mode 100644
index 00000000..2bccbc3c
--- /dev/null
+++ b/models/face_recognition_sface/demo.cpp
@@ -0,0 +1,322 @@
+#include "opencv2/opencv.hpp"
+#include "opencv2/core/types.hpp"
+
+#include <string>
+#include <vector>
+
+const std::vector<std::pair<int, int>> backend_target_pairs = {
+    {cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
+    {cv::dnn::DNN_BACKEND_CUDA,   cv::dnn::DNN_TARGET_CUDA},
+    {cv::dnn::DNN_BACKEND_CUDA,   cv::dnn::DNN_TARGET_CUDA_FP16},
+    {cv::dnn::DNN_BACKEND_TIMVX,  cv::dnn::DNN_TARGET_NPU},
+    {cv::dnn::DNN_BACKEND_CANN,   cv::dnn::DNN_TARGET_NPU}
+};
+
+class YuNet
+{
+  public:
+    YuNet(const std::string& model_path,
+          const cv::Size& input_size,
+          const float conf_threshold,
+          const float nms_threshold,
+          const int top_k,
+          const int backend_id,
+          const int target_id)
+    {
+        _detector = cv::FaceDetectorYN::create(
+            model_path, "", input_size, conf_threshold, nms_threshold, top_k, backend_id, target_id);
+    }
+
+    void setInputSize(const cv::Size& input_size)
+    {
+        _detector->setInputSize(input_size);
+    }
+
+    void setTopK(const int top_k)
+    {
+        _detector->setTopK(top_k);
+    }
+
+    cv::Mat infer(const cv::Mat& image)
+    {
+        cv::Mat result;
+        _detector->detect(image, result);
+        return result;
+    }
+
+  private:
+    cv::Ptr<cv::FaceDetectorYN> _detector;
+};
+
+class SFace
+{
+  public:
+    SFace(const std::string& model_path,
+          const int backend_id,
+          const int target_id,
+          const int distance_type)
+        : _distance_type(static_cast<cv::FaceRecognizerSF::DisType>(distance_type))
+    {
+        _recognizer = cv::FaceRecognizerSF::create(model_path, "", backend_id, target_id);
+    }
+
+    cv::Mat extractFeatures(const cv::Mat& orig_image, const cv::Mat& face_image)
+    {
+        // Align and crop detected face from original image
+        cv::Mat target_aligned;
+        _recognizer->alignCrop(orig_image, face_image, target_aligned);
+        // Extract features from cropped detected face
+        cv::Mat target_features;
+        _recognizer->feature(target_aligned, target_features);
+        return target_features.clone();
+    }
+
+    std::pair<double, bool> matchFeatures(const cv::Mat& target_features, const cv::Mat& query_features)
+    {
+        const double score = _recognizer->match(target_features, query_features, _distance_type);
+        if (_distance_type == cv::FaceRecognizerSF::DisType::FR_COSINE)
+        {
+            return {score, score >= _threshold_cosine};
+        }
+        return {score, score <= _threshold_norml2};
+    }
+
+  private:
+    cv::Ptr<cv::FaceRecognizerSF> _recognizer;
+    cv::FaceRecognizerSF::DisType _distance_type;
+    double _threshold_cosine = 0.363;
+    double _threshold_norml2 = 1.128;
+};
+
+cv::Mat visualize(const cv::Mat& image,
+                  const cv::Mat& faces,
+                  const std::vector<std::pair<double, bool>>& matches,
+                  const float fps = -0.1F,
+                  const cv::Size& target_size = cv::Size(512, 512))
+{
+    static const cv::Scalar matched_box_color{0, 255, 0};
+    static const cv::Scalar mismatched_box_color{0, 0, 255};
+
+    if (fps >= 0)
+    {
+        cv::Mat output_image = image.clone();
+
+        const int x1 = static_cast<int>(faces.at<float>(0, 0));
+        const int y1 = static_cast<int>(faces.at<float>(0, 1));
+        const int w = static_cast<int>(faces.at<float>(0, 2));
+        const int h = static_cast<int>(faces.at<float>(0, 3));
+        const auto match = matches.at(0);
+
+        cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
+        // Draw bounding box
+        cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
+        // Draw match score
+        cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
+        // Draw FPS
+        cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
+
+        return output_image;
+    }
+
+    cv::Mat output_image = cv::Mat::zeros(target_size, CV_8UC3);
+
+    // Determine new height and width of image with aspect ratio of original image
+    const double ratio = std::min(static_cast<double>(target_size.height) / image.rows,
+                                  static_cast<double>(target_size.width) / image.cols);
+    const int new_height = static_cast<int>(image.rows * ratio);
+    const int new_width = static_cast<int>(image.cols * ratio);
+
+    // Resize the original image, maintaining aspect ratio
+    cv::Mat resize_out;
+    cv::resize(image, resize_out, cv::Size(new_width, new_height), cv::INTER_LINEAR);
+
+    // Determine top left corner in resized dimensions
+    const int top = std::max(0, target_size.height - new_height) / 2;
+    const int left = std::max(0, target_size.width - new_width) / 2;
+
+    // Copy resized image into target output image
+    const cv::Rect roi = cv::Rect(cv::Point(left, top), cv::Size(new_width, new_height));
+    cv::Mat out_sub_image = output_image(roi);
+    resize_out.copyTo(out_sub_image);
+
+    for (int i = 0; i < faces.rows; ++i)
+    {
+        const int x1 = static_cast<int>(faces.at<float>(i, 0) * ratio) + left;
+        const int y1 = static_cast<int>(faces.at<float>(i, 1) * ratio) + top;
+        const int w = static_cast<int>(faces.at<float>(i, 2) * ratio);
+        const int h = static_cast<int>(faces.at<float>(i, 3) * ratio);
+        const auto match = matches.at(i);
+
+        cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
+        // Draw bounding box
+        cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
+        // Draw match score
+        cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
+    }
+    return output_image;
+}
+
+int main(int argc, char** argv)
+{
+    cv::CommandLineParser parser(argc, argv,
+        // General options
+        "{help  h           |                                     | Print this message}"
+        "{backend_target b  | 0                                   | Set DNN backend target pair:\n"
+                                                                   "0: (default) OpenCV implementation + CPU,\n"
+                                                                   "1: CUDA + GPU (CUDA),\n"
+                                                                   "2: CUDA + GPU (CUDA FP16),\n"
+                                                                   "3: TIM-VX + NPU,\n"
+                                                                   "4: CANN + NPU}"
+        "{save s            | false                               | Whether to save result image or not}"
+        "{vis v             | false                               | Whether to visualize result image or not}"
+        // SFace options
+        "{target_face t     |                                     | Set path to input image 1 (target face)}"
+        "{query_face q      |                                     | Set path to input image 2 (query face), omit if using camera}"
+        "{model m           | face_recognition_sface_2021dec.onnx | Set path to the model}"
+        "{distance_type d   | 0                                   | 0 = cosine, 1 = norm_l1}"
+        // YuNet options
+        "{yunet_model       | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Set path to the YuNet model}"
+        "{detect_threshold  | 0.9                                                       | Set the minimum confidence for the model\n"
+                                                                                         "to identify a face. Filter out faces of\n"
+                                                                                         "conf < conf_threshold}"
+        "{nms_threshold     | 0.3                                                       | Set the threshold to suppress overlapped boxes.\n"
+                                                                                         "Suppress boxes if IoU(box1, box2) >= nms_threshold\n"
+                                                                                         ", the one of higher score is kept.}"
+        "{top_k             | 5000                                                      | Keep top_k bounding boxes before NMS}"
+    );
+
+    if (parser.has("help"))
+    {
+        parser.printMessage();
+        return 0;
+    }
+    // General CLI options
+    const int backend = parser.get<int>("backend_target");
+    const bool save_flag = parser.get<bool>("save");
+    const bool vis_flag = parser.get<bool>("vis");
+    const int backend_id = backend_target_pairs.at(backend).first;
+    const int target_id = backend_target_pairs.at(backend).second;
+
+    // YuNet CLI options
+    const std::string detector_model_path = parser.get<std::string>("yunet_model");
+    const float detect_threshold = parser.get<float>("detect_threshold");
+    const float nms_threshold = parser.get<float>("nms_threshold");
+    const int top_k = parser.get<int>("top_k");
+
+    // Use YuNet as the detector backend
+    auto face_detector = YuNet(
+        detector_model_path, cv::Size(320, 320), detect_threshold, nms_threshold, top_k, backend_id, target_id);
+
+    // SFace CLI options
+    const std::string target_path = parser.get<std::string>("target_face");
+    const std::string query_path = parser.get<std::string>("query_face");
+    const std::string model_path = parser.get<std::string>("model");
+    const int distance_type = parser.get<int>("distance_type");
+
+    auto face_recognizer = SFace(model_path, backend_id, target_id, distance_type);
+
+    if (target_path.empty())
+    {
+        CV_Error(cv::Error::StsError, "Path to target image " + target_path + " not found");
+    }
+
+    cv::Mat target_image = cv::imread(target_path);
+    // Detect single face in target image
+    face_detector.setInputSize(target_image.size());
+    face_detector.setTopK(1);
+    cv::Mat target_face = face_detector.infer(target_image);
+    // Extract features from target face
+    cv::Mat target_features = face_recognizer.extractFeatures(target_image, target_face.row(0));
+
+    if (!query_path.empty()) // use image
+    {
+        // Detect any faces in query image
+        cv::Mat query_image = cv::imread(query_path);
+        face_detector.setInputSize(query_image.size());
+        face_detector.setTopK(5000);
+        cv::Mat query_faces = face_detector.infer(query_image);
+
+        // Store match scores for visualization
+        std::vector<std::pair<double, bool>> matches;
+
+        for (int i = 0; i < query_faces.rows; ++i)
+        {
+            // Extract features from query face
+            cv::Mat query_features = face_recognizer.extractFeatures(query_image, query_faces.row(i));
+            // Measure similarity of target face to query face
+            const auto match = face_recognizer.matchFeatures(target_features, query_features);
+            matches.push_back(match);
+
+            const int x1 = static_cast<int>(query_faces.at<float>(i, 0));
+            const int y1 = static_cast<int>(query_faces.at<float>(i, 1));
+            const int w = static_cast<int>(query_faces.at<float>(i, 2));
+            const int h = static_cast<int>(query_faces.at<float>(i, 3));
+            const float conf = query_faces.at<float>(i, 14);
+
+            std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f, match=%.4f\n", i, x1, y1, w, h, conf, match.first);
+        }
+
+        if (save_flag || vis_flag)
+        {
+            auto vis_target = visualize(target_image, target_face, {{1.0, true}});
+            auto vis_query = visualize(query_image, query_faces, matches);
+            cv::Mat output_image;
+            cv::hconcat(vis_target, vis_query, output_image);
+
+            if (save_flag)
+            {
+                std::cout << "Results are saved to result.jpg\n";
+                cv::imwrite("result.jpg", output_image);
+            }
+            if (vis_flag)
+            {
+                cv::namedWindow(query_path, cv::WINDOW_AUTOSIZE);
+                cv::imshow(query_path, output_image);
+                cv::waitKey(0);
+            }
+        }
+    }
+    else // use video capture
+    {
+        const int device_id = 0;
+        auto cap = cv::VideoCapture(device_id);
+        const int w = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH));
+        const int h = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT));
+        face_detector.setInputSize(cv::Size(w, h));
+
+        auto tick_meter = cv::TickMeter();
+        cv::Mat query_frame;
+
+        while (cv::waitKey(1) < 0)
+        {
+            bool has_frame = cap.read(query_frame);
+            if (!has_frame)
+            {
+                std::cout << "No frames grabbed! Exiting ...\n";
+                break;
+            }
+            tick_meter.start();
+            // Detect faces from webcam image
+            cv::Mat query_faces = face_detector.infer(query_frame);
+            tick_meter.stop();
+
+            // Extract features from query face
+            cv::Mat query_features = face_recognizer.extractFeatures(query_frame, query_faces.row(0));
+            // Measure similarity of target face to query face
+            const auto match = face_recognizer.matchFeatures(target_features, query_features);
+
+            const auto fps = static_cast<float>(tick_meter.getFPS());
+
+            auto vis_target = visualize(target_image, target_face, {{1.0, true}}, -0.1F, cv::Size(w, h));
+            auto vis_query = visualize(query_frame, query_faces, {match}, fps);
+            cv::Mat output_image;
+            cv::hconcat(vis_target, vis_query, output_image);
+
+            // Visualize in a new window
+            cv::imshow("SFace Demo", output_image);
+
+            tick_meter.reset();
+        }
+    }
+    return 0;
+}