-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathdemo.py
136 lines (111 loc) · 5.37 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from wechatqrcode import WeChatQRCode
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(
description="WeChat QR code detector for detecting and parsing QR code (https://github.com/opencv/opencv_contrib/tree/master/modules/wechat_qrcode)")
parser.add_argument('--input', '-i', type=str,
help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--detect_prototxt_path', type=str, default='detect_2021nov.prototxt',
help='Usage: Set path to detect.prototxt.')
parser.add_argument('--detect_model_path', type=str, default='detect_2021nov.caffemodel',
help='Usage: Set path to detect.caffemodel.')
parser.add_argument('--sr_prototxt_path', type=str, default='sr_2021nov.prototxt',
help='Usage: Set path to sr.prototxt.')
parser.add_argument('--sr_model_path', type=str, default='sr_2021nov.caffemodel',
help='Usage: Set path to sr.caffemodel.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
def visualize(image, res, points, points_color=(0, 255, 0), text_color=(0, 255, 0), fps=None):
output = image.copy()
h, w, _ = output.shape
if fps is not None:
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
fontScale = 0.5
fontSize = 1
for r, p in zip(res, points):
p = p.astype(np.int32)
for _p in p:
cv.circle(output, _p, 10, points_color, -1)
qrcode_center_x = int((p[0][0] + p[2][0]) / 2)
qrcode_center_y = int((p[0][1] + p[2][1]) / 2)
text_size, baseline = cv.getTextSize(r, cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize)
text_x = qrcode_center_x - int(text_size[0] / 2)
text_y = qrcode_center_y - int(text_size[1] / 2)
cv.putText(output, '{}'.format(r), (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize)
return output
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Instantiate WeChatQRCode
model = WeChatQRCode(args.detect_prototxt_path,
args.detect_model_path,
args.sr_prototxt_path,
args.sr_model_path,
backendId=backend_id,
targetId=target_id)
# If input is an image:
if args.input is not None:
image = cv.imread(args.input)
res, points = model.infer(image)
# Print results:
print(res)
print(points)
# Draw results on the input image
image = visualize(image, res, points)
# Save results if save is true
if args.save:
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', image)
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
# Inference
tm.start()
res, points = model.infer(frame)
tm.stop()
fps = tm.getFPS()
# Draw results on the input image
frame = visualize(frame, res, points, fps=fps)
# Visualize results in a new window
cv.imshow('WeChatQRCode Demo', frame)
tm.reset()