-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsetup.py
61 lines (50 loc) · 1.76 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from __future__ import absolute_import
import codecs
from os import path
from setuptools import find_packages, setup
# get __version__ from _version.py
def read(rel_path):
here = path.abspath(path.dirname(__file__))
with codecs.open(path.join(here, rel_path), "r") as fp:
return fp.read()
def get_version(rel_path):
for line in read(rel_path).splitlines():
if line.startswith("__version__"):
delim = '"' if '"' in line else "'"
return line.split(delim)[1]
ver_file = path.join(".", "version.py")
__version__ = get_version(ver_file)
this_directory = path.abspath(path.dirname(__file__))
# read the contents of README.rst
def readme():
with open(path.join(this_directory, "README.md"), encoding="utf-8") as f:
return f.read()
# read the contents of requirements.txt
with open(path.join(this_directory, "requirements.txt"), encoding="utf-8") as f:
requirements = f.read().splitlines()
setup(
name="openGemini-castor",
version=__version__,
author="Cloud Database Innovation Lab, Huawei Cloud Computing Technologies Co., Ltd.",
author_email="[email protected]",
url="http://opengemini.org/",
description="A package for time series computing",
long_description=readme(),
long_description_content_type="text/markdown",
keywords=[
"time series",
"anomaly detection",
"prediction",
"deep neural network",
"time series insight",
],
license="Apache-2.0",
packages=find_packages(),
install_requires=requirements,
classifiers=[
"Development Status :: 3 - Alpha",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
],
)