-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsbrhfadj.c
853 lines (778 loc) · 31.8 KB
/
sbrhfadj.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
/* ***** BEGIN LICENSE BLOCK *****
* Source last modified: $Id: sbrhfadj.c,v 1.3 2005/05/24 16:01:55 albertofloyd Exp $
*
* Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point HE-AAC decoder
* Jon Recker ([email protected])
* February 2005
*
* sbrhfadj.c - high frequency adjustment for SBR
**************************************************************************************/
#include "sbr.h"
#include "assembly.h"
/* invBandTab[i] = 1.0 / (i + 1), Q31 */
static const int invBandTab[64] PROGMEM = {
0x7fffffff, 0x40000000, 0x2aaaaaab, 0x20000000, 0x1999999a, 0x15555555, 0x12492492, 0x10000000,
0x0e38e38e, 0x0ccccccd, 0x0ba2e8ba, 0x0aaaaaab, 0x09d89d8a, 0x09249249, 0x08888889, 0x08000000,
0x07878788, 0x071c71c7, 0x06bca1af, 0x06666666, 0x06186186, 0x05d1745d, 0x0590b216, 0x05555555,
0x051eb852, 0x04ec4ec5, 0x04bda12f, 0x04924925, 0x0469ee58, 0x04444444, 0x04210842, 0x04000000,
0x03e0f83e, 0x03c3c3c4, 0x03a83a84, 0x038e38e4, 0x03759f23, 0x035e50d8, 0x03483483, 0x03333333,
0x031f3832, 0x030c30c3, 0x02fa0be8, 0x02e8ba2f, 0x02d82d83, 0x02c8590b, 0x02b93105, 0x02aaaaab,
0x029cbc15, 0x028f5c29, 0x02828283, 0x02762762, 0x026a439f, 0x025ed098, 0x0253c825, 0x02492492,
0x023ee090, 0x0234f72c, 0x022b63cc, 0x02222222, 0x02192e2a, 0x02108421, 0x02082082, 0x02000000,
};
/**************************************************************************************
* Function: EstimateEnvelope
*
* Description: estimate power of generated HF QMF bands in one time-domain envelope
* (4.6.18.7.3)
*
* Inputs: initialized PSInfoSBR struct
* initialized SBRHeader struct for this SCE/CPE block
* initialized SBRGrid struct for this channel
* initialized SBRFreq struct for this SCE/CPE block
* index of current envelope
*
* Outputs: power of each QMF subband, stored as integer (Q0) * 2^N, N >= 0
*
* Return: none
**************************************************************************************/
static void EstimateEnvelope(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, int env)
{
int i, m, iStart, iEnd, xre, xim, nScale, expMax;
int p, n, mStart, mEnd, invFact, t;
int *XBuf;
U64 eCurr;
unsigned char *freqBandTab;
/* estimate current envelope */
iStart = sbrGrid->envTimeBorder[env] + HF_ADJ;
iEnd = sbrGrid->envTimeBorder[env+1] + HF_ADJ;
if (sbrGrid->freqRes[env]) {
n = sbrFreq->nHigh;
freqBandTab = sbrFreq->freqHigh;
} else {
n = sbrFreq->nLow;
freqBandTab = sbrFreq->freqLow;
}
/* ADS should inline MADD64 (smlal) properly, but check to make sure */
expMax = 0;
if (sbrHdr->interpFreq) {
for (m = 0; m < sbrFreq->numQMFBands; m++) {
eCurr.w64 = 0;
XBuf = psi->XBuf[iStart][sbrFreq->kStart + m];
for (i = iStart; i < iEnd; i++) {
/* scale to int before calculating power (precision not critical, and avoids overflow) */
xre = (*XBuf) >> FBITS_OUT_QMFA; XBuf += 1;
xim = (*XBuf) >> FBITS_OUT_QMFA; XBuf += (2*64 - 1);
eCurr.w64 = MADD64(eCurr.w64, xre, xre);
eCurr.w64 = MADD64(eCurr.w64, xim, xim);
}
/* eCurr.w64 is now Q(64 - 2*FBITS_OUT_QMFA) (64-bit word)
* if energy is too big to fit in 32-bit word (> 2^31) scale down by power of 2
*/
nScale = 0;
if (eCurr.r.hi32) {
nScale = (32 - CLZ(eCurr.r.hi32)) + 1;
t = (int)(eCurr.r.lo32 >> nScale); /* logical (unsigned) >> */
t |= eCurr.r.hi32 << (32 - nScale);
} else if (eCurr.r.lo32 >> 31) {
nScale = 1;
t = (int)(eCurr.r.lo32 >> nScale); /* logical (unsigned) >> */
} else {
t = (int)eCurr.r.lo32;
}
invFact = invBandTab[(iEnd - iStart)-1];
psi->eCurr[m] = MULSHIFT32(t, invFact);
psi->eCurrExp[m] = nScale + 1; /* +1 for invFact = Q31 */
if (psi->eCurrExp[m] > expMax)
expMax = psi->eCurrExp[m];
}
} else {
for (p = 0; p < n; p++) {
mStart = freqBandTab[p];
mEnd = freqBandTab[p+1];
eCurr.w64 = 0;
for (i = iStart; i < iEnd; i++) {
XBuf = psi->XBuf[i][mStart];
for (m = mStart; m < mEnd; m++) {
xre = (*XBuf++) >> FBITS_OUT_QMFA;
xim = (*XBuf++) >> FBITS_OUT_QMFA;
eCurr.w64 = MADD64(eCurr.w64, xre, xre);
eCurr.w64 = MADD64(eCurr.w64, xim, xim);
}
}
nScale = 0;
if (eCurr.r.hi32) {
nScale = (32 - CLZ(eCurr.r.hi32)) + 1;
t = (int)(eCurr.r.lo32 >> nScale); /* logical (unsigned) >> */
t |= eCurr.r.hi32 << (32 - nScale);
} else if (eCurr.r.lo32 >> 31) {
nScale = 1;
t = (int)(eCurr.r.lo32 >> nScale); /* logical (unsigned) >> */
} else {
t = (int)eCurr.r.lo32;
}
invFact = invBandTab[(iEnd - iStart)-1];
invFact = MULSHIFT32(invBandTab[(mEnd - mStart)-1], invFact) << 1;
t = MULSHIFT32(t, invFact);
for (m = mStart; m < mEnd; m++) {
psi->eCurr[m - sbrFreq->kStart] = t;
psi->eCurrExp[m - sbrFreq->kStart] = nScale + 1; /* +1 for invFact = Q31 */
}
if (psi->eCurrExp[mStart - sbrFreq->kStart] > expMax)
expMax = psi->eCurrExp[mStart - sbrFreq->kStart];
}
}
psi->eCurrExpMax = expMax;
}
/**************************************************************************************
* Function: GetSMapped
*
* Description: calculate SMapped (4.6.18.7.2)
*
* Inputs: initialized PSInfoSBR struct
* initialized SBRGrid struct for this channel
* initialized SBRFreq struct for this SCE/CPE block
* initialized SBRChan struct for this channel
* index of current envelope
* index of current QMF band
* la flag for this envelope
*
* Outputs: none
*
* Return: 1 if a sinusoid is present in this band, 0 if not
**************************************************************************************/
static int GetSMapped(SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int env, int band, int la)
{
int bandStart, bandEnd, oddFlag, r;
if (sbrGrid->freqRes[env]) {
/* high resolution */
bandStart = band;
bandEnd = band+1;
} else {
/* low resolution (see CalcFreqLow() for mapping) */
oddFlag = sbrFreq->nHigh & 0x01;
bandStart = (band > 0 ? 2*band - oddFlag : 0); /* starting index for freqLow[band] */
bandEnd = 2*(band+1) - oddFlag; /* ending index for freqLow[band+1] */
}
/* sMapped = 1 if sIndexMapped == 1 for any frequency in this band */
for (band = bandStart; band < bandEnd; band++) {
if (sbrChan->addHarmonic[1][band]) {
r = ((sbrFreq->freqHigh[band+1] + sbrFreq->freqHigh[band]) >> 1);
if (env >= la || sbrChan->addHarmonic[0][r] == 1)
return 1;
}
}
return 0;
}
#define GBOOST_MAX 0x2830afd3 /* Q28, 1.584893192 squared */
#define ACC_SCALE 6
/* squared version of table in 4.6.18.7.5 */
static const int limGainTab[4] PROGMEM = {0x20138ca7, 0x40000000, 0x7fb27dce, 0x80000000}; /* Q30 (0x80000000 = sentinel for GMAX) */
/**************************************************************************************
* Function: CalcMaxGain
*
* Description: calculate max gain in one limiter band (4.6.18.7.5)
*
* Inputs: initialized PSInfoSBR struct
* initialized SBRHeader struct for this SCE/CPE block
* initialized SBRGrid struct for this channel
* initialized SBRFreq struct for this SCE/CPE block
* index of current channel (0 for SCE, 0 or 1 for CPE)
* index of current envelope
* index of current limiter band
* number of fraction bits in dequantized envelope
* (max = Q(FBITS_OUT_DQ_ENV - 6) = Q23, can go negative)
*
* Outputs: updated gainMax, gainMaxFBits, and sumEOrigMapped in PSInfoSBR struct
*
* Return: none
**************************************************************************************/
static void CalcMaxGain(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, int ch, int env, int lim, int fbitsDQ)
{
int m, mStart, mEnd, q, z, r;
int sumEOrigMapped, sumECurr, gainMax, eOMGainMax, envBand;
unsigned char eCurrExpMax;
unsigned char *freqBandTab;
mStart = sbrFreq->freqLimiter[lim]; /* these are offsets from kStart */
mEnd = sbrFreq->freqLimiter[lim + 1];
freqBandTab = (sbrGrid->freqRes[env] ? sbrFreq->freqHigh : sbrFreq->freqLow);
/* calculate max gain to apply to signal in this limiter band */
sumECurr = 0;
sumEOrigMapped = 0;
eCurrExpMax = psi->eCurrExpMax;
eOMGainMax = psi->eOMGainMax;
envBand = psi->envBand;
for (m = mStart; m < mEnd; m++) {
/* map current QMF band to appropriate envelope band */
if (m == freqBandTab[envBand + 1] - sbrFreq->kStart) {
envBand++;
eOMGainMax = psi->envDataDequant[ch][env][envBand] >> ACC_SCALE; /* summing max 48 bands */
}
sumEOrigMapped += eOMGainMax;
/* easy test for overflow on ARM */
sumECurr += (psi->eCurr[m] >> (eCurrExpMax - psi->eCurrExp[m]));
if (sumECurr >> 30) {
sumECurr >>= 1;
eCurrExpMax++;
}
}
psi->eOMGainMax = eOMGainMax;
psi->envBand = envBand;
psi->gainMaxFBits = 30; /* Q30 tables */
if (sumECurr == 0) {
/* any non-zero numerator * 1/EPS_0 is > G_MAX */
gainMax = (sumEOrigMapped == 0 ? (int)limGainTab[sbrHdr->limiterGains] : (int)0x80000000);
} else if (sumEOrigMapped == 0) {
/* 1/(any non-zero denominator) * EPS_0 * limGainTab[x] is appx. 0 */
gainMax = 0;
} else {
/* sumEOrigMapped = Q(fbitsDQ - ACC_SCALE), sumECurr = Q(-eCurrExpMax) */
gainMax = limGainTab[sbrHdr->limiterGains];
if (sbrHdr->limiterGains != 3) {
q = MULSHIFT32(sumEOrigMapped, gainMax); /* Q(fbitsDQ - ACC_SCALE - 2), gainMax = Q30 */
z = CLZ(sumECurr) - 1;
r = InvRNormalized(sumECurr << z); /* in = Q(z - eCurrExpMax), out = Q(29 + 31 - z + eCurrExpMax) */
gainMax = MULSHIFT32(q, r); /* Q(29 + 31 - z + eCurrExpMax + fbitsDQ - ACC_SCALE - 2 - 32) */
psi->gainMaxFBits = 26 - z + eCurrExpMax + fbitsDQ - ACC_SCALE;
}
}
psi->sumEOrigMapped = sumEOrigMapped;
psi->gainMax = gainMax;
}
/**************************************************************************************
* Function: CalcNoiseDivFactors
*
* Description: calculate 1/(1+Q) and Q/(1+Q) (4.6.18.7.4; 4.6.18.7.5)
*
* Inputs: dequantized noise floor scalefactor
*
* Outputs: 1/(1+Q) and Q/(1+Q), format = Q31
*
* Return: none
**************************************************************************************/
static void CalcNoiseDivFactors(int q, int *qp1Inv, int *qqp1Inv)
{
int z, qp1, t, s;
/* 1 + Q_orig */
qp1 = (q >> 1);
qp1 += (1 << (FBITS_OUT_DQ_NOISE - 1)); /* >> 1 to avoid overflow when adding 1.0 */
z = CLZ(qp1) - 1; /* z <= 31 - FBITS_OUT_DQ_NOISE */
qp1 <<= z; /* Q(FBITS_OUT_DQ_NOISE + z) = Q31 * 2^-(31 - (FBITS_OUT_DQ_NOISE + z)) */
t = InvRNormalized(qp1) << 1; /* Q30 * 2^(31 - (FBITS_OUT_DQ_NOISE + z)), guaranteed not to overflow */
/* normalize to Q31 */
s = (31 - (FBITS_OUT_DQ_NOISE - 1) - z - 1); /* clearly z >= 0, z <= (30 - (FBITS_OUT_DQ_NOISE - 1)) */
*qp1Inv = (t >> s); /* s = [0, 31 - FBITS_OUT_DQ_NOISE] */
*qqp1Inv = MULSHIFT32(t, q) << (32 - FBITS_OUT_DQ_NOISE - s);
}
/**************************************************************************************
* Function: CalcComponentGains
*
* Description: calculate gain of envelope, sinusoids, and noise in one limiter band
* (4.6.18.7.5)
*
* Inputs: initialized PSInfoSBR struct
* initialized SBRHeader struct for this SCE/CPE block
* initialized SBRGrid struct for this channel
* initialized SBRFreq struct for this SCE/CPE block
* initialized SBRChan struct for this channel
* index of current channel (0 for SCE, 0 or 1 for CPE)
* index of current envelope
* index of current limiter band
* number of fraction bits in dequantized envelope
*
* Outputs: gains for envelope, sinusoids and noise
* number of fraction bits for envelope gain
* sum of the total gain for each component in this band
* other updated state variables
*
* Return: none
**************************************************************************************/
static void CalcComponentGains(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch, int env, int lim, int fbitsDQ)
{
int d, m, mStart, mEnd, q, qm, noiseFloor, sIndexMapped;
int shift, eCurr, maxFlag, gainMax, gainMaxFBits;
int gain, sm, z, r, fbitsGain, gainScale;
unsigned char *freqBandTab;
mStart = sbrFreq->freqLimiter[lim]; /* these are offsets from kStart */
mEnd = sbrFreq->freqLimiter[lim + 1];
gainMax = psi->gainMax;
gainMaxFBits = psi->gainMaxFBits;
d = (env == psi->la || env == sbrChan->laPrev ? 0 : 1);
freqBandTab = (sbrGrid->freqRes[env] ? sbrFreq->freqHigh : sbrFreq->freqLow);
/* figure out which noise floor this envelope is in (only 1 or 2 noise floors allowed) */
noiseFloor = 0;
if (sbrGrid->numNoiseFloors == 2 && sbrGrid->noiseTimeBorder[1] <= sbrGrid->envTimeBorder[env])
noiseFloor++;
psi->sumECurrGLim = 0;
psi->sumSM = 0;
psi->sumQM = 0;
/* calculate energy of noise to add in this limiter band */
for (m = mStart; m < mEnd; m++) {
if (m == sbrFreq->freqNoise[psi->noiseFloorBand + 1] - sbrFreq->kStart) {
/* map current QMF band to appropriate noise floor band (NOTE: freqLimiter[0] == freqLow[0] = freqHigh[0]) */
psi->noiseFloorBand++;
CalcNoiseDivFactors(psi->noiseDataDequant[ch][noiseFloor][psi->noiseFloorBand], &(psi->qp1Inv), &(psi->qqp1Inv));
}
if (m == sbrFreq->freqHigh[psi->highBand + 1] - sbrFreq->kStart)
psi->highBand++;
if (m == freqBandTab[psi->sBand + 1] - sbrFreq->kStart) {
psi->sBand++;
psi->sMapped = GetSMapped(sbrGrid, sbrFreq, sbrChan, env, psi->sBand, psi->la);
}
/* get sIndexMapped for this QMF subband */
sIndexMapped = 0;
r = ((sbrFreq->freqHigh[psi->highBand+1] + sbrFreq->freqHigh[psi->highBand]) >> 1);
if (m + sbrFreq->kStart == r) {
/* r = center frequency, deltaStep = (env >= la || sIndexMapped'(r, numEnv'-1) == 1) */
if (env >= psi->la || sbrChan->addHarmonic[0][r] == 1)
sIndexMapped = sbrChan->addHarmonic[1][psi->highBand];
}
/* save sine flags from last envelope in this frame:
* addHarmonic[0][0...63] = saved sine present flag from previous frame, for each QMF subband
* addHarmonic[1][0...nHigh-1] = addHarmonic bit from current frame, for each high-res frequency band
* from MPEG reference code - slightly different from spec
* (sIndexMapped'(m,LE'-1) can still be 0 when numEnv == psi->la)
*/
if (env == sbrGrid->numEnv - 1) {
if (m + sbrFreq->kStart == r)
sbrChan->addHarmonic[0][m + sbrFreq->kStart] = sbrChan->addHarmonic[1][psi->highBand];
else
sbrChan->addHarmonic[0][m + sbrFreq->kStart] = 0;
}
gain = psi->envDataDequant[ch][env][psi->sBand];
qm = MULSHIFT32(gain, psi->qqp1Inv) << 1;
sm = (sIndexMapped ? MULSHIFT32(gain, psi->qp1Inv) << 1 : 0);
/* three cases: (sMapped == 0 && delta == 1), (sMapped == 0 && delta == 0), (sMapped == 1) */
if (d == 1 && psi->sMapped == 0)
gain = MULSHIFT32(psi->qp1Inv, gain) << 1;
else if (psi->sMapped != 0)
gain = MULSHIFT32(psi->qqp1Inv, gain) << 1;
/* gain, qm, sm = Q(fbitsDQ), gainMax = Q(fbitsGainMax) */
eCurr = psi->eCurr[m];
if (eCurr) {
z = CLZ(eCurr) - 1;
r = InvRNormalized(eCurr << z); /* in = Q(z - eCurrExp), out = Q(29 + 31 - z + eCurrExp) */
gainScale = MULSHIFT32(gain, r); /* out = Q(29 + 31 - z + eCurrExp + fbitsDQ - 32) */
fbitsGain = 29 + 31 - z + psi->eCurrExp[m] + fbitsDQ - 32;
} else {
/* if eCurr == 0, then gain is unchanged (divide by EPS = 1) */
gainScale = gain;
fbitsGain = fbitsDQ;
}
/* see if gain for this band exceeds max gain */
maxFlag = 0;
if (gainMax != (int)0x80000000) {
if (fbitsGain >= gainMaxFBits) {
shift = MIN(fbitsGain - gainMaxFBits, 31);
maxFlag = ((gainScale >> shift) > gainMax ? 1 : 0);
} else {
shift = MIN(gainMaxFBits - fbitsGain, 31);
maxFlag = (gainScale > (gainMax >> shift) ? 1 : 0);
}
}
if (maxFlag) {
/* gainScale > gainMax, calculate ratio with 32/16 division */
q = 0;
r = gainScale; /* guaranteed > 0, else maxFlag could not have been set */
z = CLZ(r);
if (z < 16) {
q = 16 - z;
r >>= q; /* out = Q(fbitsGain - q) */
}
z = CLZ(gainMax) - 1;
r = (gainMax << z) / r; /* out = Q((fbitsGainMax + z) - (fbitsGain - q)) */
q = (gainMaxFBits + z) - (fbitsGain - q); /* r = Q(q) */
if (q > 30) {
r >>= MIN(q - 30, 31);
} else {
z = MIN(30 - q, 30);
CLIP_2N_SHIFT30(r, z); /* let r = Q30 since range = [0.0, 1.0) (clip to 0x3fffffff = 0.99999) */
}
qm = MULSHIFT32(qm, r) << 2;
gain = MULSHIFT32(gain, r) << 2;
psi->gLimBuf[m] = gainMax;
psi->gLimFbits[m] = gainMaxFBits;
} else {
psi->gLimBuf[m] = gainScale;
psi->gLimFbits[m] = fbitsGain;
}
/* sumSM, sumQM, sumECurrGLim = Q(fbitsDQ - ACC_SCALE) */
psi->smBuf[m] = sm;
psi->sumSM += (sm >> ACC_SCALE);
psi->qmLimBuf[m] = qm;
if (env != psi->la && env != sbrChan->laPrev && sm == 0)
psi->sumQM += (qm >> ACC_SCALE);
/* eCurr * gain^2 same as gain^2, before division by eCurr
* (but note that gain != 0 even if eCurr == 0, since it's divided by eps)
*/
if (eCurr)
psi->sumECurrGLim += (gain >> ACC_SCALE);
}
}
/**************************************************************************************
* Function: ApplyBoost
*
* Description: calculate and apply boost factor for envelope, sinusoids, and noise
* in this limiter band (4.6.18.7.5)
*
* Inputs: initialized PSInfoSBR struct
* initialized SBRFreq struct for this SCE/CPE block
* index of current limiter band
* number of fraction bits in dequantized envelope
*
* Outputs: envelope gain, sinusoids and noise after scaling by gBoost
* format = Q(FBITS_GLIM_BOOST) for envelope gain,
* = Q(FBITS_QLIM_BOOST) for noise
* = Q(FBITS_OUT_QMFA) for sinusoids
*
* Return: none
*
* Notes: after scaling, each component has at least 1 GB
**************************************************************************************/
static void ApplyBoost(PSInfoSBR *psi, SBRFreq *sbrFreq, int lim, int fbitsDQ)
{
int m, mStart, mEnd, q, z, r;
int sumEOrigMapped, gBoost;
mStart = sbrFreq->freqLimiter[lim]; /* these are offsets from kStart */
mEnd = sbrFreq->freqLimiter[lim + 1];
sumEOrigMapped = psi->sumEOrigMapped >> 1;
r = (psi->sumECurrGLim >> 1) + (psi->sumSM >> 1) + (psi->sumQM >> 1); /* 1 GB fine (sm and qm are mutually exclusive in acc) */
if (r < (1 << (31-28))) {
/* any non-zero numerator * 1/EPS_0 is > GBOOST_MAX
* round very small r to zero to avoid scaling problems
*/
gBoost = (sumEOrigMapped == 0 ? (1 << 28) : GBOOST_MAX);
z = 0;
} else if (sumEOrigMapped == 0) {
/* 1/(any non-zero denominator) * EPS_0 is appx. 0 */
gBoost = 0;
z = 0;
} else {
/* numerator (sumEOrigMapped) and denominator (r) have same Q format (before << z) */
z = CLZ(r) - 1; /* z = [0, 27] */
r = InvRNormalized(r << z);
gBoost = MULSHIFT32(sumEOrigMapped, r);
}
/* gBoost = Q(28 - z) */
if (gBoost > (GBOOST_MAX >> z)) {
gBoost = GBOOST_MAX;
z = 0;
}
gBoost <<= z; /* gBoost = Q28, minimum 1 GB */
/* convert gain, noise, sinusoids to fixed Q format, clipping if necessary
* (rare, usually only happens at very low bitrates, introduces slight
* distortion into final HF mapping, but should be inaudible)
*/
for (m = mStart; m < mEnd; m++) {
/* let gLimBoost = Q24, since in practice the max values are usually 16 to 20
* unless limiterGains == 3 (limiter off) and eCurr ~= 0 (i.e. huge gain, but only
* because the envelope has 0 power anyway)
*/
q = MULSHIFT32(psi->gLimBuf[m], gBoost) << 2; /* Q(gLimFbits) * Q(28) --> Q(gLimFbits[m]-2) */
r = SqrtFix(q, psi->gLimFbits[m] - 2, &z);
z -= FBITS_GLIM_BOOST;
if (z >= 0) {
psi->gLimBoost[m] = r >> MIN(z, 31);
} else {
z = MIN(30, -z);
CLIP_2N_SHIFT30(r, z);
psi->gLimBoost[m] = r;
}
q = MULSHIFT32(psi->qmLimBuf[m], gBoost) << 2; /* Q(fbitsDQ) * Q(28) --> Q(fbitsDQ-2) */
r = SqrtFix(q, fbitsDQ - 2, &z);
z -= FBITS_QLIM_BOOST; /* << by 14, since integer sqrt of x < 2^16, and we want to leave 1 GB */
if (z >= 0) {
psi->qmLimBoost[m] = r >> MIN(31, z);
} else {
z = MIN(30, -z);
CLIP_2N_SHIFT30(r, z);
psi->qmLimBoost[m] = r;
}
q = MULSHIFT32(psi->smBuf[m], gBoost) << 2; /* Q(fbitsDQ) * Q(28) --> Q(fbitsDQ-2) */
r = SqrtFix(q, fbitsDQ - 2, &z);
z -= FBITS_OUT_QMFA; /* justify for adding to signal (xBuf) later */
if (z >= 0) {
psi->smBoost[m] = r >> MIN(31, z);
} else {
z = MIN(30, -z);
CLIP_2N_SHIFT30(r, z);
psi->smBoost[m] = r;
}
}
}
/**************************************************************************************
* Function: CalcGain
*
* Description: calculate and apply proper gain to HF components in one envelope
* (4.6.18.7.5)
*
* Inputs: initialized PSInfoSBR struct
* initialized SBRHeader struct for this SCE/CPE block
* initialized SBRGrid struct for this channel
* initialized SBRFreq struct for this SCE/CPE block
* initialized SBRChan struct for this channel
* index of current channel (0 for SCE, 0 or 1 for CPE)
* index of current envelope
*
* Outputs: envelope gain, sinusoids and noise after scaling
*
* Return: none
**************************************************************************************/
static void CalcGain(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch, int env)
{
int lim, fbitsDQ;
/* initialize to -1 so that mapping limiter bands to env/noise bands works right on first pass */
psi->envBand = -1;
psi->noiseFloorBand = -1;
psi->sBand = -1;
psi->highBand = -1;
fbitsDQ = (FBITS_OUT_DQ_ENV - psi->envDataDequantScale[ch][env]); /* Q(29 - optional scalefactor) */
for (lim = 0; lim < sbrFreq->nLimiter; lim++) {
/* the QMF bands are divided into lim regions (consecutive, non-overlapping) */
CalcMaxGain(psi, sbrHdr, sbrGrid, sbrFreq, ch, env, lim, fbitsDQ);
CalcComponentGains(psi, sbrGrid, sbrFreq, sbrChan, ch, env, lim, fbitsDQ);
ApplyBoost(psi, sbrFreq, lim, fbitsDQ);
}
}
/* hSmooth table from 4.7.18.7.6, format = Q31 */
static const int hSmoothCoef[MAX_NUM_SMOOTH_COEFS] PROGMEM = {
0x2aaaaaab, 0x2697a512, 0x1becfa68, 0x0ebdb043, 0x04130598,
};
/**************************************************************************************
* Function: MapHF
*
* Description: map HF components to proper QMF bands, with optional gain smoothing
* filter (4.6.18.7.6)
*
* Inputs: initialized PSInfoSBR struct
* initialized SBRHeader struct for this SCE/CPE block
* initialized SBRGrid struct for this channel
* initialized SBRFreq struct for this SCE/CPE block
* initialized SBRChan struct for this channel
* index of current envelope
* reset flag (can be non-zero for first envelope only)
*
* Outputs: complete reconstructed subband QMF samples for this envelope
*
* Return: none
*
* Notes: ensures that output has >= MIN_GBITS_IN_QMFS guard bits,
* so it's not necessary to check anything in the synth QMF
**************************************************************************************/
static void MapHF(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int env, int hfReset)
{
int noiseTabIndex, sinIndex, gainNoiseIndex, hSL;
int i, iStart, iEnd, m, idx, j, s, n, smre, smim;
int gFilt, qFilt, xre, xim, gbMask, gbIdx;
int *XBuf;
noiseTabIndex = sbrChan->noiseTabIndex;
sinIndex = sbrChan->sinIndex;
gainNoiseIndex = sbrChan->gainNoiseIndex; /* oldest entries in filter delay buffer */
if (hfReset)
noiseTabIndex = 2; /* starts at 1, double since complex */
hSL = (sbrHdr->smoothMode ? 0 : 4);
if (hfReset) {
for (i = 0; i < hSL; i++) {
for (m = 0; m < sbrFreq->numQMFBands; m++) {
sbrChan->gTemp[gainNoiseIndex][m] = psi->gLimBoost[m];
sbrChan->qTemp[gainNoiseIndex][m] = psi->qmLimBoost[m];
}
gainNoiseIndex++;
if (gainNoiseIndex == MAX_NUM_SMOOTH_COEFS)
gainNoiseIndex = 0;
}
ASSERT(env == 0); /* should only be reset when env == 0 */
}
iStart = sbrGrid->envTimeBorder[env];
iEnd = sbrGrid->envTimeBorder[env+1];
for (i = iStart; i < iEnd; i++) {
/* save new values in temp buffers (delay)
* we only store MAX_NUM_SMOOTH_COEFS most recent values,
* so don't keep storing the same value over and over
*/
if (i - iStart < MAX_NUM_SMOOTH_COEFS) {
for (m = 0; m < sbrFreq->numQMFBands; m++) {
sbrChan->gTemp[gainNoiseIndex][m] = psi->gLimBoost[m];
sbrChan->qTemp[gainNoiseIndex][m] = psi->qmLimBoost[m];
}
}
/* see 4.6.18.7.6 */
XBuf = psi->XBuf[i + HF_ADJ][sbrFreq->kStart];
gbMask = 0;
for (m = 0; m < sbrFreq->numQMFBands; m++) {
if (env == psi->la || env == sbrChan->laPrev) {
/* no smoothing filter for gain, and qFilt = 0 (only need to do once) */
if (i == iStart) {
psi->gFiltLast[m] = sbrChan->gTemp[gainNoiseIndex][m];
psi->qFiltLast[m] = 0;
}
} else if (hSL == 0) {
/* no smoothing filter for gain, (only need to do once) */
if (i == iStart) {
psi->gFiltLast[m] = sbrChan->gTemp[gainNoiseIndex][m];
psi->qFiltLast[m] = sbrChan->qTemp[gainNoiseIndex][m];
}
} else {
/* apply smoothing filter to gain and noise (after MAX_NUM_SMOOTH_COEFS, it's always the same) */
if (i - iStart < MAX_NUM_SMOOTH_COEFS) {
gFilt = 0;
qFilt = 0;
idx = gainNoiseIndex;
for (j = 0; j < MAX_NUM_SMOOTH_COEFS; j++) {
/* sum(abs(hSmoothCoef[j])) for all j < 1.0 */
gFilt += MULSHIFT32(sbrChan->gTemp[idx][m], hSmoothCoef[j]);
qFilt += MULSHIFT32(sbrChan->qTemp[idx][m], hSmoothCoef[j]);
idx--;
if (idx < 0)
idx += MAX_NUM_SMOOTH_COEFS;
}
psi->gFiltLast[m] = gFilt << 1; /* restore to Q(FBITS_GLIM_BOOST) (gain of filter < 1.0, so no overflow) */
psi->qFiltLast[m] = qFilt << 1; /* restore to Q(FBITS_QLIM_BOOST) */
}
}
if (psi->smBoost[m] != 0) {
/* add scaled signal and sinusoid, don't add noise (qFilt = 0) */
smre = psi->smBoost[m];
smim = smre;
/* sinIndex: [0] xre += sm [1] xim += sm*s [2] xre -= sm [3] xim -= sm*s */
s = (sinIndex >> 1); /* if 2 or 3, flip sign to subtract sm */
s <<= 31;
smre ^= (s >> 31);
smre -= (s >> 31);
s ^= ((m + sbrFreq->kStart) << 31);
smim ^= (s >> 31);
smim -= (s >> 31);
/* if sinIndex == 0 or 2, smim = 0; if sinIndex == 1 or 3, smre = 0 */
s = sinIndex << 31;
smim &= (s >> 31);
s ^= 0x80000000;
smre &= (s >> 31);
noiseTabIndex += 2; /* noise filtered by 0, but still need to bump index */
} else {
/* add scaled signal and scaled noise */
qFilt = psi->qFiltLast[m];
n = noiseTab[noiseTabIndex++];
smre = MULSHIFT32(n, qFilt) >> (FBITS_QLIM_BOOST - 1 - FBITS_OUT_QMFA);
n = noiseTab[noiseTabIndex++];
smim = MULSHIFT32(n, qFilt) >> (FBITS_QLIM_BOOST - 1 - FBITS_OUT_QMFA);
}
noiseTabIndex &= 1023; /* 512 complex numbers */
gFilt = psi->gFiltLast[m];
xre = MULSHIFT32(gFilt, XBuf[0]);
xim = MULSHIFT32(gFilt, XBuf[1]);
CLIP_2N_SHIFT30(xre, 32 - FBITS_GLIM_BOOST);
CLIP_2N_SHIFT30(xim, 32 - FBITS_GLIM_BOOST);
xre += smre; *XBuf++ = xre;
xim += smim; *XBuf++ = xim;
gbMask |= FASTABS(xre);
gbMask |= FASTABS(xim);
}
/* update circular buffer index */
gainNoiseIndex++;
if (gainNoiseIndex == MAX_NUM_SMOOTH_COEFS)
gainNoiseIndex = 0;
sinIndex++;
sinIndex &= 3;
/* ensure MIN_GBITS_IN_QMFS guard bits in output
* almost never occurs in practice, but checking here makes synth QMF logic very simple
*/
if (gbMask >> (31 - MIN_GBITS_IN_QMFS)) {
XBuf = psi->XBuf[i + HF_ADJ][sbrFreq->kStart];
for (m = 0; m < sbrFreq->numQMFBands; m++) {
xre = XBuf[0]; xim = XBuf[1];
CLIP_2N(xre, (31 - MIN_GBITS_IN_QMFS));
CLIP_2N(xim, (31 - MIN_GBITS_IN_QMFS));
*XBuf++ = xre; *XBuf++ = xim;
}
CLIP_2N(gbMask, (31 - MIN_GBITS_IN_QMFS));
}
gbIdx = ((i + HF_ADJ) >> 5) & 0x01;
sbrChan->gbMask[gbIdx] |= gbMask;
}
sbrChan->noiseTabIndex = noiseTabIndex;
sbrChan->sinIndex = sinIndex;
sbrChan->gainNoiseIndex = gainNoiseIndex;
}
/**************************************************************************************
* Function: AdjustHighFreq
*
* Description: adjust high frequencies and add noise and sinusoids (4.6.18.7)
*
* Inputs: initialized PSInfoSBR struct
* initialized SBRHeader struct for this SCE/CPE block
* initialized SBRGrid struct for this channel
* initialized SBRFreq struct for this SCE/CPE block
* initialized SBRChan struct for this channel
* index of current channel (0 for SCE, 0 or 1 for CPE)
*
* Outputs: complete reconstructed subband QMF samples for this channel
*
* Return: none
**************************************************************************************/
void AdjustHighFreq(PSInfoSBR *psi, SBRHeader *sbrHdr, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch)
{
int i, env, hfReset;
unsigned char frameClass, pointer;
frameClass = sbrGrid->frameClass;
pointer = sbrGrid->pointer;
/* derive la from table 4.159 */
if ((frameClass == SBR_GRID_FIXVAR || frameClass == SBR_GRID_VARVAR) && pointer > 0)
psi->la = sbrGrid->numEnv + 1 - pointer;
else if (frameClass == SBR_GRID_VARFIX && pointer > 1)
psi->la = pointer - 1;
else
psi->la = -1;
/* for each envelope, estimate gain and adjust SBR QMF bands */
hfReset = sbrChan->reset;
for (env = 0; env < sbrGrid->numEnv; env++) {
EstimateEnvelope(psi, sbrHdr, sbrGrid, sbrFreq, env);
CalcGain(psi, sbrHdr, sbrGrid, sbrFreq, sbrChan, ch, env);
MapHF(psi, sbrHdr, sbrGrid, sbrFreq, sbrChan, env, hfReset);
hfReset = 0; /* only set for first envelope after header reset */
}
/* set saved sine flags to 0 for QMF bands outside of current frequency range */
for (i = 0; i < sbrFreq->freqLimiter[0] + sbrFreq->kStart; i++)
sbrChan->addHarmonic[0][i] = 0;
for (i = sbrFreq->freqLimiter[sbrFreq->nLimiter] + sbrFreq->kStart; i < 64; i++)
sbrChan->addHarmonic[0][i] = 0;
sbrChan->addHarmonicFlag[0] = sbrChan->addHarmonicFlag[1];
/* save la for next frame */
if (psi->la == sbrGrid->numEnv)
sbrChan->laPrev = 0;
else
sbrChan->laPrev = -1;
}