Skip to content

[Bug] 多卡测试llama-3-8b-vllm,精度为0 #1979

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
2 tasks done
normlpl opened this issue Mar 27, 2025 · 1 comment
Open
2 tasks done

[Bug] 多卡测试llama-3-8b-vllm,精度为0 #1979

normlpl opened this issue Mar 27, 2025 · 1 comment
Assignees

Comments

@normlpl
Copy link

normlpl commented Mar 27, 2025

Prerequisite

Type

I'm evaluating with the officially supported tasks/models/datasets.

Environment

python run.py configs/vllm/eval_llama3_vllm.py

Reproduces the problem - code/configuration sample

from mmengine.config import read_base

with read_base():
from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
#from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
from ..summarizers.example import summarizer

datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], [])
work_dir = './outputs/llama3/'

from opencompass.models import VLLM

models = [
dict(
type=VLLM,
abbr='llama-3-8b-vllm',
path="./models/Meta-Llama-3-8B",
model_kwargs=dict(tensor_parallel_size=4),
max_out_len=100,
max_seq_len=2048,
batch_size=16,
generation_kwargs=dict(temperature=0),
run_cfg=dict(num_gpus=4, num_procs=1),
)
]

Reproduces the problem - command or script

四张卡测试ARC精度,精度为0

Reproduces the problem - error message

Image

Other information

No response

@acylam
Copy link
Collaborator

acylam commented Apr 8, 2025

Hi @normlpl, would you check the predictions you get from this model?

@acylam acylam self-assigned this Apr 8, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants