-
Notifications
You must be signed in to change notification settings - Fork 79
/
hocr-eval
executable file
·243 lines (191 loc) · 6.72 KB
/
hocr-eval
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# compute statistics about the quality of the geometric segmentation
# at the level of the given OCR element
import argparse
import re
from lxml import html
from PIL import Image, ImageDraw
################################################################
# library
################################################################
# XML node processing
def get_prop(node, name):
title = node.get('title')
if not title:
return None
props = title.split(';')
for prop in props:
(key, args) = prop.split(None, 1)
if key == name:
return args
return None
def get_bbox(node):
bbox = get_prop(node, 'bbox')
if not bbox:
return None
return tuple([int(x) for x in bbox.split()])
def get_text(node):
textnodes = node.xpath(".//text()")
s = "".join([text for text in textnodes])
return re.sub(r'\s+', ' ', s)
# rectangle properties
def intersect(u, v):
# intersection of two rectangles
r = (max(u[0], v[0]), max(u[1], v[1]), min(u[2], v[2]), min(u[3], v[3]))
return r
def width(u):
# width of a rectangle
return max(0, u[2] - u[0])
def height(u):
# height of a rectangle
return max(0, u[3] - u[1])
def area(u):
# area of a rectangle
return max(0, u[2] - u[0]) * max(0, u[3] - u[1])
def erode(u, tx, ty):
x = 2 * tx + 1
y = 2 * ty + 1
return tuple([u[0] + x, u[1] + y, u[2] - x, u[3] - y])
# text comparison
simp_re = re.compile(r'[^a-zA-Z0-9.,!?:;]+')
def normalize(s):
s = simp_re.sub(' ', s)
s = s.strip()
return s
# edit distance
def edit_distance(a, b, threshold=99999):
if a == b:
return 0
m = len(a)
n = len(b)
distances = [[threshold for j in range(n + 1)] for i in range(m + 1)]
# distances is a 2-dimensional array such that distances[i][j]
# will be equal to the edit distance of the first i characters
# of a and the first j characters of b.
for i in range(m + 1):
distances[i][0] = i
for j in range(n + 1):
distances[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if a[i - 1] == b[j - 1]:
cij = 0
else:
cij = 1
d = min(distances[i - 1][j] + 1, distances[i][j - 1] + 1,
distances[i - 1][j - 1] + cij)
if d >= threshold:
return d
distances[i][j] = d
return distances[m][n]
# def remove_tex(text):
# text_file = os.popen("echo %s | detex " %(text))
# text_plain = text_file.read()
# text_file.close()
# return text_plain
def remove_tex(text):
return text
################################################################
# main program
################################################################
# argument parsing
parser = argparse.ArgumentParser()
parser.add_argument(
"truth", help="hOCR file with ground truth", type=argparse.FileType('r'))
parser.add_argument(
"actual",
help="hOCR file from the actual recognition",
type=argparse.FileType('r'))
parser.add_argument("-d", "--debug", action="store_true")
parser.add_argument("-v", "--verbose", action="store_true")
# not yet supported:
# parser.add_argument("-e", "--element", default="ocr_line",
# help="%(default)s")
# parser.add_argument("-o", "--significant_overlap", type=float, default=0.1,
# help="default: %(default)s")
parser.add_argument("-i", "--imgfile", type=argparse.FileType('r'))
args = parser.parse_args()
if (args.imgfile):
im = Image.open(args.imgfile)
print(im.size, im.format, im.mode)
draw = ImageDraw.Draw(im)
# get pages from inputs
truth_doc = html.parse(args.truth)
actual_doc = html.parse(args.actual)
# parse pages
truth_pages = truth_doc.xpath("//*[@class='ocr_page']")
actual_pages = actual_doc.xpath("//*[@class='ocr_page']")
# zip ground-truth and ocr result pages
assert len(truth_pages) == len(actual_pages)
pages = zip(truth_pages, actual_pages)
segmentation_errors = 0
segmentation_ocr_errors = 0
ocr_errors = 0
# relative and absolute thresholds in vertical and horizontal direction
HTOL = 90
VTOL = 80
HPIX = 5
VPIX = 5
used = {}
for truth, actual in pages:
true_lines = truth.xpath("//*[@class='ocr_line']")
actual_lines = actual.xpath("//*[@class='ocr_line']")
tx = [
min(HPIX, (100 - HTOL) * width(get_bbox(line)) / 100)
for line in true_lines
]
ty = [
min(VPIX, (100 - VTOL) * height(get_bbox(line)) / 100)
for line in true_lines
]
for index, true_line in enumerate(true_lines):
bbox = get_bbox(true_line)
bbox_small = erode(bbox, tx[index], ty[index])
candidates = [(area(intersect(get_bbox(line), bbox)), get_bbox(line),
get_text(line)) for line in actual_lines]
q = 0
tight_overlap = False
if candidates != []:
q, actual_bbox, actual_line = max(candidates)
actual_bbox_small = erode(actual_bbox, tx[index], ty[index])
if (area(intersect(actual_bbox_small, bbox)) == area(
actual_bbox_small)
and area(intersect(actual_bbox, bbox_small)) == area(
bbox_small)):
tight_overlap = True
if (tight_overlap == 0):
if args.verbose:
print("segmentation_error: area_overlap =",
q * 1.0 / area(bbox), "true_bbox", bbox)
print("\t", get_text(true_line))
segmentation_errors += 1
if candidates != []:
true_text = remove_tex(get_text(true_line))
segmentation_ocr_errors += edit_distance(
normalize(true_text), normalize(actual_line))
else:
segmentation_ocr_errors += len(get_text(true_line))
if (args.imgfile):
draw.rectangle(bbox, outline="#ff0000")
if candidates != []:
draw.rectangle(actual_bbox, outline="#0000ff")
continue
true_text = remove_tex(get_text(true_line))
actual_text = actual_line
if args.debug:
print("overlap", q, "true_bbox", bbox)
print("\t", true_text)
print("\t", actual_text)
error = edit_distance(normalize(true_text), normalize(actual_text))
if args.verbose and error > 0:
print("ocr_error", error, "true_bbox", bbox)
print("\t", true_text)
print("\t", actual_text)
ocr_errors += error
print("segmentation_errors", segmentation_errors)
print("segmentation_ocr_errors", segmentation_ocr_errors)
print("ocr_errors", ocr_errors)
if (args.imgfile):
im.save("errors.png")
im.show("errors.png")