|
| 1 | +{% extends 'layout.html' %} |
| 2 | + |
| 3 | +{% block content %} |
| 4 | + |
| 5 | +<script> |
| 6 | + const dataset = "tanzania"; |
| 7 | + const model = "{{ model }}"; |
| 8 | +</script> |
| 9 | + |
| 10 | +<div class="od-header"> |
| 11 | + <h1>Tanzania: {{ model }}</h1> |
| 12 | +</div> |
| 13 | + |
| 14 | +<nav aria-label="breadcrumb"> |
| 15 | + <ol class="breadcrumb"> |
| 16 | + <li class="breadcrumb-item" |
| 17 | + aria-current="page"><a href="{{url_for('index')}}">Home</a> |
| 18 | + </li> |
| 19 | + <li class="breadcrumb-item" |
| 20 | + aria-current="page">Tanzania</a> |
| 21 | + </li> </ol> |
| 22 | + </ol> |
| 23 | +</nav> |
| 24 | + |
| 25 | +<h2>Demo</h2> |
| 26 | + |
| 27 | +<p>Click on the below button to generate a random picture from Open AI |
| 28 | +Tanzania, and to display the corresponding label predictions.</p> |
| 29 | + |
| 30 | +<button id="predict_labels" value="Generate a new image" dataset="tanzania">Generate a new image</button> |
| 31 | + |
| 32 | +<div class="container"> |
| 33 | + <div class="row widget"> |
| 34 | + |
| 35 | + <div class="one-third column home-widget dataset"> |
| 36 | + <div class="panel panel-default"> |
| 37 | + <div class="panel-header"> |
| 38 | + <h5>Raw image</h5> |
| 39 | + </div> |
| 40 | + <div class="panel-body"> |
| 41 | + <img id="raw_image" height="70%" width="100%" src="{{url_for('static', filename=image_filename)}}"> |
| 42 | + </div> |
| 43 | + </div> |
| 44 | + </div> |
| 45 | + |
| 46 | + <div class="one-third column home-widget dataset"> |
| 47 | + <div class="panel panel-default"> |
| 48 | + <div class="panel-header"> |
| 49 | + <h5>Ground-truth</h5> |
| 50 | + </div> |
| 51 | + <div class="panel-body"> |
| 52 | + <img id="ground_truth" height="70%" width="100%" src="{{url_for('static', filename=label_filename)}}"> |
| 53 | + <br> |
| 54 | + {% for value, color in ground_truth_labels %} |
| 55 | + {% if value!="background" %} |
| 56 | + <span class="color-label" style="background-color: {{ color }}">{{ value }}</span> |
| 57 | + {% else %} |
| 58 | + <span class="color-label" style="background-color: {{ color }}"><font color="#ffffff">{{ value }}</font></span> |
| 59 | + {% endif %} |
| 60 | + {% endfor %} |
| 61 | + </div> |
| 62 | + </div> |
| 63 | + </div> |
| 64 | + |
| 65 | + <div class="one-third column home-widget dataset"> |
| 66 | + <div class="panel panel-default"> |
| 67 | + <div class="panel-header"> |
| 68 | + <h5>Prediction</h5> |
| 69 | + </div> |
| 70 | + <div class="panel-body"> |
| 71 | + <img id="predictions" height="70%" width="100%" src="{{url_for('static', filename=predicted_filename)}}"> |
| 72 | + <br> |
| 73 | + {% for value, color in predicted_labels %} |
| 74 | + {% if value!="background" %} |
| 75 | + <span class="color-label" style="background-color: {{ color }}">{{ value }}</span> |
| 76 | + {% else %} |
| 77 | + <span class="color-label" style="background-color: {{ color }}"><font color="#ffffff">{{ value }}</font></span> |
| 78 | + {% endif %} |
| 79 | + {% endfor %} |
| 80 | + </div> |
| 81 | + </div> |
| 82 | + </div> |
| 83 | + |
| 84 | + </div> |
| 85 | +</div> |
| 86 | + |
| 87 | + |
| 88 | +<h2>Training procedure</h2> |
| 89 | + |
| 90 | +<p> |
| 91 | + We preprocessed the dataset images by subdividing raw images in 384*384-pixel |
| 92 | + tiles. The tiling process makes us getting around 131k training images, 15k |
| 93 | + validation images, and 137k testing images. The model used here is |
| 94 | + a <a href="https://arxiv.org/pdf/1505.04597.pdf">U-net</a> trained during 20 |
| 95 | + epochs, with validation phases. |
| 96 | +</p> |
| 97 | + |
| 98 | +<h2>Dataset description</h2> |
| 99 | + |
| 100 | +<p> |
| 101 | + The <a href="https://blog.werobotics.org/2018/08/06/welcome-to-the-open-ai-tanzania-challenge/">Open |
| 102 | + AI Tanzania</a> dataset describes a building footprint recognition use case, |
| 103 | + where 3 types of buildings are discriminated: <em>complete |
| 104 | + buildings</em>, <em>incomplete buildings</em> and <em>foundations</em>. Doing |
| 105 | + semantic segmentation here means to define if a given pixel belongs to a |
| 106 | + building, and if required, the involved building type. The dataset contains |
| 107 | + 13 high-resolution images (6 to 8cm/pixel), amongst which 2 images are |
| 108 | + assigned to validation purpose. As a remark, there are 9 additionnal images |
| 109 | + without labelling information that may be used for testing models. |
| 110 | +</p> |
| 111 | + |
| 112 | +{% endblock %} |
| 113 | + |
| 114 | +{% block appjs %} |
| 115 | + |
| 116 | +<script src="{{ url_for('static', filename='demo_predictor.js') }}" type="text/javascript"></script> |
| 117 | + |
| 118 | +{% endblock %} |
0 commit comments