-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwing_loss.py
37 lines (31 loc) · 1.03 KB
/
wing_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# -*- coding: utf-8 -*-
# @Time : 2019/9/9
# @Author : Elliott Zheng
# @Email : [email protected]
import math
import torch
from torch import nn
# torch.log and math.log is e based
class WingLoss(nn.Module):
def __init__(self, omega=10, epsilon=2):
super(WingLoss, self).__init__()
self.omega = omega
self.epsilon = epsilon
def forward(self, pred, target):
y = target
y_hat = pred
delta_y = (y - y_hat).abs()
delta_y1 = delta_y[delta_y < self.omega]
delta_y2 = delta_y[delta_y >= self.omega]
loss1 = self.omega * torch.log(1 + delta_y1 / self.epsilon)
C = self.omega - self.omega * math.log(1 + self.omega / self.epsilon)
loss2 = delta_y2 - C
return (loss1.sum() + loss2.sum()) / (len(loss1) + len(loss2))
if __name__ == "__main__":
loss_func = WingLoss()
y = torch.ones(2, 68, 64, 64)
y_hat = torch.zeros(2, 68, 64, 64)
y_hat.requires_grad_(True)
loss = loss_func(y_hat, y)
loss.backward()
print(loss)