-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathoptimizer.py
executable file
·78 lines (66 loc) · 2.66 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import torch
from torch import optim
import math
import logging
from config import cfg
def get_optimizer(args, net):
param_groups = net.parameters()
if args.sgd:
optimizer = optim.SGD(param_groups,
lr=args.lr,
weight_decay=args.weight_decay,
momentum=args.momentum,
nesterov=False)
elif args.adam:
amsgrad=False
if args.amsgrad:
amsgrad=True
optimizer = optim.Adam(param_groups,
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=amsgrad
)
else:
raise ('Not a valid optimizer')
if args.lr_schedule == 'poly':
lambda1 = lambda epoch: math.pow(1 - epoch / args.max_epoch, args.poly_exp)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
else:
raise ValueError('unknown lr schedule {}'.format(args.lr_schedule))
if args.snapshot:
logging.info('Loading weights from model {}'.format(args.snapshot))
net, optimizer = restore_snapshot(args, net, optimizer, args.snapshot)
else:
logging.info('Loaded weights from IMGNET classifier')
return optimizer, scheduler
def restore_snapshot(args, net, optimizer, snapshot):
checkpoint = torch.load(snapshot, map_location=torch.device('cpu'))
logging.info("Load Compelete")
if args.sgd_finetuned:
print('skipping load optimizer')
else:
if 'optimizer' in checkpoint and args.restore_optimizer:
optimizer.load_state_dict(checkpoint['optimizer'])
if 'state_dict' in checkpoint:
net = forgiving_state_restore(net, checkpoint['state_dict'])
else:
net = forgiving_state_restore(net, checkpoint)
return net, optimizer
def forgiving_state_restore(net, loaded_dict):
# Handle partial loading when some tensors don't match up in size.
# Because we want to use models that were trained off a different
# number of classes.
net_state_dict = net.state_dict()
new_loaded_dict = {}
for k in net_state_dict:
if k in loaded_dict and net_state_dict[k].size() == loaded_dict[k].size():
new_loaded_dict[k] = loaded_dict[k]
else:
logging.info('Skipped loading parameter {}'.format(k))
net_state_dict.update(new_loaded_dict)
net.load_state_dict(net_state_dict)
return net