-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.txt
35 lines (28 loc) · 962 Bytes
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# An Ensemble-of-Experts Framework for Rehearsal-free Continual Relation Extraction
Code and data of our paper "An Ensemble-of-Experts Framework for Rehearsal-free Continual Relation Extraction" accepted by Findings of ACL 2024.
## Usage of Code
### 1.1 Environment Reuqirement
Python=3.9.18
```bash
pip install -r requirements.txt
```
### 1.2 train the first task
```bash
python main.py \
+task_args=<DATASET> \
+training_args=Expert \
task_args.model_name_or_path=<MODEL_PATH> \
task_args.config_name=<MODEL_PATH> \
task_args.tokenizer_name=<MODEL_PATH>
```
### 1.3 train subsequent tasks
```bash
python main.py \
+task_args=<DATASET> \
+training_args=EoE \
task_args.model_name_or_path=<MODEL_PATH> \
task_args.config_name=<MODEL_PATH> \
task_args.tokenizer_name=<MODEL_PATH>
```
`Note that <DATASET> denotest the datasets [FewRel, TACRED], <MODEL_PATH> denotes the path of "bert-base-uncased".
`