You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+70-36Lines changed: 70 additions & 36 deletions
Original file line number
Diff line number
Diff line change
@@ -3,6 +3,16 @@
3
3
This repo is implementation for [PointNet](http://openaccess.thecvf.com/content_cvpr_2017/papers/Qi_PointNet_Deep_Learning_CVPR_2017_paper.pdf) and [PointNet++](http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf) in pytorch.
4
4
5
5
## Update
6
+
**2021/03/20:** Update codes for classification, including:
7
+
8
+
(1) Add codes for training **ModelNet10** dataset. Using setting of ``--num_category 10``.
9
+
10
+
(2) Add codes for running on CPU only. Using setting of ``--use_cpu``.
11
+
12
+
(3) Add codes for offline data preprocessing to accelerate training. Using setting of ``--process_data``.
13
+
14
+
(4) Add codes for training with uniform sampling. Using setting of ``--use_uniform_sample``.
15
+
6
16
**2019/11/26:**
7
17
8
18
(1) Fixed some errors in previous codes and added data augmentation tricks. Now classification by only 1024 points can achieve 92.8\%!
@@ -11,33 +21,37 @@ This repo is implementation for [PointNet](http://openaccess.thecvf.com/content_
11
21
12
22
(3) Organized all models into `./models` files for easy using.
13
23
14
-
If you find this repo useful in your research, please consider following and citing our other works:
15
-
```
16
-
@InProceedings{yan2020pointasnl,
17
-
title={PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling},
18
-
author={Yan, Xu and Zheng, Chaoda and Li, Zhen and Wang, Sheng and Cui, Shuguang},
19
-
journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
20
-
year={2020}
21
-
}
22
-
```
23
-
```
24
-
@InProceedings{yan2021sparse,
25
-
title={Sparse Single Sweep LiDAR Point Cloud Segmentation via Learning Contextual Shape Priors from Scene Completion},
26
-
author={Yan, Xu and Gao, Jiantao and Li, Jie and Zhang, Ruimao, and Li, Zhen and Huang, Rui and Cui, Shuguang},
27
-
journal={AAAI Conference on Artificial Intelligence ({AAAI})},
28
-
year={2021}
29
-
}
30
-
```
31
-
## Classification
24
+
25
+
## Classification (ModelNet10/40)
32
26
### Data Preparation
33
27
Download alignment **ModelNet**[here](https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip) and save in `data/modelnet40_normal_resampled/`.
Download 3D indoor parsing dataset (**S3DIS**) [here](http://buildingparser.stanford.edu/dataset.html) and save in `data/Stanford3dDataset_v1.2_Aligned_Version/`.
90
+
Download 3D indoor parsing dataset (**S3DIS**) [here](http://buildingparser.stanford.edu/dataset.html) and save in `data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/`.
77
91
```
78
92
cd data_utils
79
93
python collect_indoor3d_data.py
80
94
```
81
-
Processed data will save in `data/stanford_indoor3d/`.
95
+
Processed data will save in `data/s3dis/stanford_indoor3d/`.
Visualization results will save in `log/sem_seg/pointnet2_sem_seg/visual/` and you can visualize these .obj file by [MeshLab](http://www.meshlab.net/).
90
-
### Performance on sub-points of raw dataset (processed by official PointNet [Link](https://shapenet.cs.stanford.edu/media/indoor3d_sem_seg_hdf5_data.zip))
91
-
|Model | Class avg IoU |
92
-
|--|--|
93
-
| PointNet (Official) | 41.1|
94
-
| PointNet (Pytorch) | 48.9|
95
-
| PointNet2 (Official) |N/A |
96
-
| PointNet2_ssg (Pytorch) |**53.2**|
97
-
### Performance on raw dataset
98
-
still on testing...
104
+
99
105
100
106
## Visualization
101
107
### Using show3d_balls.py
@@ -121,3 +127,31 @@ python show3d_balls.py
121
127
Ubuntu 16.04 <br>
122
128
Python 3.6.7 <br>
123
129
Pytorch 1.1.0
130
+
131
+
132
+
## Citation
133
+
If you find this repo useful in your research, please consider citing it and our other works:
0 commit comments