-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
249 lines (204 loc) · 8.16 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
REVERSE_PUSH = False
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
trackNode = None
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def expand(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (child,
action, stepCost), where 'child' is a child to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that child.
"""
util.raiseNotDefined()
def getActions(self, state):
"""
state: Search state
For a given state, this should return a list of possible actions.
"""
util.raiseNotDefined()
def getActionCost(self, state, action, next_state):
"""
state: Search state
action: action taken at state.
next_state: next Search state after taking action.
For a given state, this should return the cost of the (s, a, s') transition.
"""
util.raiseNotDefined()
def getPathCost(self):
return SearchProblem.trackNode.getPathCost()
def getNextState(self, state, action):
"""
state: Search state
action: action taken at state
For a given state, this should return the next state after taking action from state.
"""
util.raiseNotDefined()
def getCostOfActionSequence(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def getPath(self):
return SearchProblem.trackNode.getPath()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def depthFirstSearch(problem):
"""
Search the deepest nodes in the search tree first.
Your search algorithm needs to return a list of actions that reaches the
goal. Make sure to implement a graph search algorithm.
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:
print("Start:", problem.getStartState())
print("Is the start a goal?", problem.isGoalState(problem.getStartState()))
"""
"*** YOUR CODE HERE ***"
fringe = util.Stack()
return GraphSearch(fringe, problem).search()
# util.raiseNotDefined()
def breadthFirstSearch(problem):
"""Search the shallowest nodes in the search tree first."""
"*** YOUR CODE HERE ***"
# util.raiseNotDefined()
fringe = util.Queue()
return GraphSearch(fringe, problem).search()
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def uniformCostSearch(problem):
"""Search the node of least total cost first."""
"*** YOUR CODE HERE ***"
# util.raiseNotDefined()
fringe = util.PriorityQueue()
return GraphSearch(fringe, problem).search()
def aStarSearch(problem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined cost and heuristic first."""
"*** YOUR CODE HERE ***"
# util.raiseNotDefined()
fringe = util.PriorityQueue()
return GraphSearch(fringe, problem).search(heuristic = heuristic)
class GraphSearch:
def __init__(self, fringe, problem):
self.explored = set()
self.frontier = util.Counter()
self.fringe = fringe
self.problem = problem
def pushFringe(self,node, heuristic = lambda x,y: 0):
cost = node.getPathCost() + heuristic(node.state, self.problem)
hashNode = node.__hash__()
self.frontier[hashNode] = cost
if isinstance(self.fringe, util.PriorityQueue):
self.fringe.push(node, cost)
elif isinstance(self.fringe, util.Queue) or isinstance(self.fringe, util.Stack):
self.fringe.push(node)
def updateFringe(self, node, heuristic):
cost = node.getPathCost() + heuristic(node.state, self.problem)
self.fringe.update(node, cost)
def popFringe(self):
popNode = self.fringe.pop()
hNode = popNode.__hash__()
if hNode in self.frontier:
del self.frontier[hNode]
return popNode
def search(self, heuristic = lambda x,y: 0):
initState = self.problem.getStartState()
initNode = Node(initState)
if self.problem.isGoalState(initState):
return []
self.pushFringe(initNode)
while True:
if self.fringe.isEmpty():
return []
curr = self.popFringe()
# print("\n", curr.state.cur['name'])
self.explored.add(curr)
if self.problem.isGoalState(curr.state):
SearchProblem.trackNode = curr
return curr.getPath()
for successor in self.problem.expand(curr.state):
node = Node(successor[0], curr, successor[1], successor[2])
hnode = node.__hash__()
if node not in self.explored and hnode not in self.frontier:
self.pushFringe(node, heuristic)
if isinstance(self.fringe, util.PriorityQueue) and hnode in self.frontier:
self.updateFringe(node, heuristic)
# if heuristic(node.state, self.problem) == 0: # for bfs
# return node.getPath()
class Node:
def __init__(self, state, parent = None, action = "", stepcost = 0):
self.parent = parent
if parent is not None:
# print(state.cur['name'])
self.pathcost = parent.pathcost + stepcost
else:
self.pathcost = stepcost
self.state = state
self.action = action
self.stepcost = stepcost
SearchProblem.trackNode = self
def __hash__(self):
return self.state.__hash__()
def __eq__(self, other):
if self.state == other.state:
return True
return False
def getParent(self):
return self.parent
def getPathCost(self):
return self.pathcost
def getStepCost(self):
return self.stepcost
def getPath(self):
if self.parent is None:
return []
return self.parent.getPath() + [self.action]
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch