|
| 1 | +#include <embree3/rtcore.h> |
| 2 | +#include <stdio.h> |
| 3 | +#include <math.h> |
| 4 | +#include <limits> |
| 5 | + |
| 6 | +#include "AOEmbree.h" |
| 7 | + |
| 8 | + |
| 9 | +void errorFunction(void* userPtr, enum RTCError error, const char* str) |
| 10 | +{ |
| 11 | + printf("error %d: %s\n", error, str); |
| 12 | +} |
| 13 | + |
| 14 | + |
| 15 | +RTCDevice initializeDevice() |
| 16 | +{ |
| 17 | + RTCDevice device = rtcNewDevice(NULL); |
| 18 | + |
| 19 | + if (!device) |
| 20 | + printf("error %d: cannot create device\n", rtcGetDeviceError(NULL)); |
| 21 | + |
| 22 | + rtcSetDeviceErrorFunction(device, errorFunction, NULL); |
| 23 | + return device; |
| 24 | +} |
| 25 | + |
| 26 | +RTCScene initializeScene(RTCDevice device) |
| 27 | +{ |
| 28 | + RTCScene scene = rtcNewScene(device); |
| 29 | + |
| 30 | + /* |
| 31 | + * Create a triangle mesh geometry, and initialize a single triangle. |
| 32 | + * You can look up geometry types in the API documentation to |
| 33 | + * find out which type expects which buffers. |
| 34 | + * |
| 35 | + * We create buffers directly on the device, but you can also use |
| 36 | + * shared buffers. For shared buffers, special care must be taken |
| 37 | + * to ensure proper alignment and padding. This is described in |
| 38 | + * more detail in the API documentation. |
| 39 | + */ |
| 40 | + RTCGeometry geom = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE); |
| 41 | + |
| 42 | + |
| 43 | + float* vertices = (float*) rtcSetNewGeometryBuffer(geom, |
| 44 | + RTC_BUFFER_TYPE_VERTEX, |
| 45 | + 0, |
| 46 | + RTC_FORMAT_FLOAT3, |
| 47 | + 3 * sizeof(float), |
| 48 | + 3); |
| 49 | + |
| 50 | + unsigned* indices = (unsigned*) rtcSetNewGeometryBuffer(geom, |
| 51 | + RTC_BUFFER_TYPE_INDEX, |
| 52 | + 0, |
| 53 | + RTC_FORMAT_UINT3, |
| 54 | + 3 * sizeof(unsigned), |
| 55 | + 1); |
| 56 | + |
| 57 | + if (vertices && indices) |
| 58 | + { |
| 59 | + vertices[0] = 0.f; vertices[1] = 0.f; vertices[2] = 0.f; |
| 60 | + vertices[3] = 1.f; vertices[4] = 0.f; vertices[5] = 0.f; |
| 61 | + vertices[6] = 0.f; vertices[7] = 1.f; vertices[8] = 0.f; |
| 62 | + |
| 63 | + indices[0] = 0; indices[1] = 1; indices[2] = 2; |
| 64 | + } |
| 65 | + |
| 66 | + /* |
| 67 | + * You must commit geometry objects when you are done setting them up, |
| 68 | + * or you will not get any intersections. |
| 69 | + */ |
| 70 | + rtcCommitGeometry(geom); |
| 71 | + |
| 72 | + /* |
| 73 | + * In rtcAttachGeometry(...), the scene takes ownership of the geom |
| 74 | + * by increasing its reference count. This means that we don't have |
| 75 | + * to hold on to the geom handle, and may release it. The geom object |
| 76 | + * will be released automatically when the scene is destroyed. |
| 77 | + * |
| 78 | + * rtcAttachGeometry() returns a geometry ID. We could use this to |
| 79 | + * identify intersected objects later on. |
| 80 | + */ |
| 81 | + rtcAttachGeometry(scene, geom); |
| 82 | + rtcReleaseGeometry(geom); |
| 83 | + |
| 84 | + /* |
| 85 | + * Like geometry objects, scenes must be committed. This lets |
| 86 | + * Embree know that it may start building an acceleration structure. |
| 87 | + */ |
| 88 | + rtcCommitScene(scene); |
| 89 | + |
| 90 | + return scene; |
| 91 | +} |
| 92 | + |
| 93 | +bool castRay(RTCScene scene, |
| 94 | + float ox, float oy, float oz, |
| 95 | + float dx, float dy, float dz, float maxDist) |
| 96 | +{ |
| 97 | + /* |
| 98 | + * The intersect context can be used to set intersection |
| 99 | + * filters or flags, and it also contains the instance ID stack |
| 100 | + * used in multi-level instancing. |
| 101 | + */ |
| 102 | + struct RTCIntersectContext context; |
| 103 | + rtcInitIntersectContext(&context); |
| 104 | + |
| 105 | + /* |
| 106 | + * The ray hit structure holds both the ray and the hit. |
| 107 | + * The user must initialize it properly -- see API documentation |
| 108 | + * for rtcIntersect1() for details. |
| 109 | + */ |
| 110 | + struct RTCRayHit rayhit; |
| 111 | + rayhit.ray.org_x = ox; |
| 112 | + rayhit.ray.org_y = oy; |
| 113 | + rayhit.ray.org_z = oz; |
| 114 | + rayhit.ray.dir_x = dx; |
| 115 | + rayhit.ray.dir_y = dy; |
| 116 | + rayhit.ray.dir_z = dz; |
| 117 | + rayhit.ray.tnear = 0; |
| 118 | + rayhit.ray.tfar = maxDist; |
| 119 | + rayhit.ray.mask = 0; |
| 120 | + rayhit.ray.flags = 0; |
| 121 | + rayhit.hit.geomID = RTC_INVALID_GEOMETRY_ID; |
| 122 | + rayhit.hit.instID[0] = RTC_INVALID_GEOMETRY_ID; |
| 123 | + |
| 124 | + /* |
| 125 | + * There are multiple variants of rtcIntersect. This one |
| 126 | + * intersects a single ray with the scene. |
| 127 | + */ |
| 128 | + rtcIntersect1(scene, &context, &rayhit); |
| 129 | + |
| 130 | + // printf("%f, %f, %f: ", ox, oy, oz); |
| 131 | + if (rayhit.hit.geomID != RTC_INVALID_GEOMETRY_ID) |
| 132 | + { |
| 133 | + /* Note how geomID and primID identify the geometry we just hit. |
| 134 | + * We could use them here to interpolate geometry information, |
| 135 | + * compute shading, etc. |
| 136 | + * Since there is only a single triangle in this scene, we will |
| 137 | + * get geomID=0 / primID=0 for all hits. |
| 138 | + * There is also instID, used for instancing. See |
| 139 | + * the instancing tutorials for more information */ |
| 140 | + // printf("Found intersection on geometry %d, primitive %d at tfar=%f\n", |
| 141 | + // rayhit.hit.geomID, |
| 142 | + // rayhit.hit.primID, |
| 143 | + // rayhit.ray.tfar); |
| 144 | + return true; |
| 145 | + } |
| 146 | + return false; |
| 147 | + // else |
| 148 | + // printf("Did not find any intersection.\n"); |
| 149 | +} |
| 150 | + |
| 151 | + |
| 152 | +void computeAOPerVert(float *verts, float *norms, int *tris, float *result, |
| 153 | + int vcount, int icount, |
| 154 | + int samplesAO, float maxDist) { |
| 155 | + |
| 156 | + |
| 157 | + RTCDevice device = initializeDevice(); |
| 158 | + |
| 159 | + RTCScene scene = rtcNewScene(device); |
| 160 | + |
| 161 | + RTCGeometry geom = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE); |
| 162 | + |
| 163 | + |
| 164 | + float* vertices = (float*) rtcSetNewGeometryBuffer(geom, |
| 165 | + RTC_BUFFER_TYPE_VERTEX, |
| 166 | + 0, |
| 167 | + RTC_FORMAT_FLOAT3, |
| 168 | + 3 * sizeof(float), |
| 169 | + vcount); |
| 170 | + |
| 171 | + unsigned* indices = (unsigned*) rtcSetNewGeometryBuffer(geom, |
| 172 | + RTC_BUFFER_TYPE_INDEX, |
| 173 | + 0, |
| 174 | + RTC_FORMAT_UINT3, |
| 175 | + 3 * sizeof(unsigned), |
| 176 | + icount); |
| 177 | + |
| 178 | + |
| 179 | + for (int i = 0; i < vcount * 3; i++) { |
| 180 | + vertices[i] = verts[i]; |
| 181 | + } |
| 182 | + for (int i = 0; i < icount * 3; i++) { |
| 183 | + indices[i] = tris[i]; |
| 184 | + } |
| 185 | + |
| 186 | + rtcCommitGeometry(geom); |
| 187 | + rtcAttachGeometry(scene, geom); |
| 188 | + rtcReleaseGeometry(geom); |
| 189 | + |
| 190 | + rtcCommitScene(scene); |
| 191 | + |
| 192 | + std::vector<vec3> rayDir; |
| 193 | + |
| 194 | + //Compute semi-sphere ray directions |
| 195 | + int samples = samplesAO * 2; |
| 196 | + float golden_angle = M_PI * (3 - sqrtf(5)); |
| 197 | + float start = 1 - 1.0f / (int)samples; |
| 198 | + float end = 1.0f / (int)samples - 1; |
| 199 | + |
| 200 | + for (int i = 0; i < (int)samples; i++) { |
| 201 | + float theta = golden_angle * i; |
| 202 | + float z = start + i * (end - start) / (int)samples; |
| 203 | + float radius = sqrtf(1 - z * z); |
| 204 | + float x = radius * cos(theta); |
| 205 | + float y = radius * sin(theta); |
| 206 | + if (y > 0.0f)//Only keep the upper half of the sphere |
| 207 | + rayDir.push_back(vec3(x, y, z)); |
| 208 | + } |
| 209 | + |
| 210 | + float step = 1.0f / samplesAO; |
| 211 | + |
| 212 | + for (int i = 0 ; i < vcount; i++) { |
| 213 | + |
| 214 | + float totalAO = 0.0f; |
| 215 | + |
| 216 | + vec3 oriVec(0, 1, 0); |
| 217 | + |
| 218 | + vec3 normal(norms[i * 3], norms[i * 3 + 1], norms[i * 3 + 2]); |
| 219 | + |
| 220 | + quat q = glm::rotation(oriVec, normal); |
| 221 | + |
| 222 | + for (int s = 0; s < rayDir.size(); s++) { |
| 223 | + vec3 dir ( |
| 224 | + rayDir[s].x + vertices[i * 3], |
| 225 | + rayDir[s].y + vertices[i * 3 + 1], |
| 226 | + rayDir[s].z + vertices[i * 3 + 2]); |
| 227 | + |
| 228 | + |
| 229 | + quat dirq = quat(dir.x, dir.y, dir.z, 0.0f); |
| 230 | + quat tmp = q * dirq * conjugate(q); |
| 231 | + vec3 rotatedDir(tmp.x, tmp.y, tmp.z); |
| 232 | + rotatedDir = normalize(rotatedDir); |
| 233 | + |
| 234 | + |
| 235 | + bool inter = castRay(scene, vertices[i * 3], vertices[i * 3 + 1], vertices[i * 3 + 2], |
| 236 | + rotatedDir.x, rotatedDir.y, rotatedDir.z, maxDist); |
| 237 | + |
| 238 | + |
| 239 | + if (inter) { |
| 240 | + totalAO += step; |
| 241 | + } |
| 242 | + } |
| 243 | + result[i] = totalAO; |
| 244 | + } |
| 245 | + |
| 246 | + /* Though not strictly necessary in this example, you should |
| 247 | + * always make sure to release resources allocated through Embree. */ |
| 248 | + rtcReleaseScene(scene); |
| 249 | + rtcReleaseDevice(device); |
| 250 | + |
| 251 | + |
| 252 | + |
| 253 | +} |
| 254 | + |
| 255 | +int main(int argc, char **argv) { |
| 256 | + |
| 257 | + int samplesAO = 128; |
| 258 | + float maxDist = 10.0f; |
| 259 | + |
| 260 | + std::ifstream infile(argv[1]); |
| 261 | + |
| 262 | + std::vector<float> verts; |
| 263 | + std::vector<float> norms; |
| 264 | + std::vector<int> ids; |
| 265 | + |
| 266 | + std::string line; |
| 267 | + while (std::getline(infile, line)) |
| 268 | + { |
| 269 | + |
| 270 | + if (line.size() > 0 && line[0] == 'v' && line[1] == ' ') { |
| 271 | + std::vector<std::string> words; |
| 272 | + split1(line.c_str(), words); |
| 273 | + float x = std::stof(words[1]); |
| 274 | + float y = std::stof(words[2]); |
| 275 | + float z = std::stof(words[3]); |
| 276 | + verts.push_back(x); |
| 277 | + verts.push_back(y); |
| 278 | + verts.push_back(z); |
| 279 | + } |
| 280 | + else if (line.size() > 0 && line[0] == 'f') { |
| 281 | + std::vector<std::string> words; |
| 282 | + split1(line.c_str(), words); |
| 283 | + ids.push_back(std::stoi(words[1]) - 1); |
| 284 | + ids.push_back(std::stoi(words[2]) - 1); |
| 285 | + ids.push_back(std::stoi(words[3]) - 1); |
| 286 | + } |
| 287 | + if (line.size() > 0 && line[0] == 'v' && line[1] == 'n') { |
| 288 | + std::vector<std::string> words; |
| 289 | + split1(line.c_str(), words); |
| 290 | + float x = std::stof(words[1]); |
| 291 | + float y = std::stof(words[2]); |
| 292 | + float z = std::stof(words[3]); |
| 293 | + norms.push_back(x); |
| 294 | + norms.push_back(y); |
| 295 | + norms.push_back(z); |
| 296 | + } |
| 297 | + } |
| 298 | + float *result = new float[verts.size() / 3]; |
| 299 | + computeAOPerVert(verts.data(), norms.data(), ids.data(), result, |
| 300 | + verts.size() / 3, ids.size() / 3, |
| 301 | + samplesAO, maxDist); |
| 302 | + |
| 303 | + |
| 304 | + for (int i = 0; i < verts.size() / 3; i++) { |
| 305 | + printf("v %.6f %.6f %.6f %.3f %.3f %.3f\n", |
| 306 | + verts[i * 3], verts[i * 3 + 1], verts[i * 3 + 2], result[i], result[i], result[i]); |
| 307 | + } |
| 308 | + |
| 309 | + for (int i = 0; i < ids.size() / 3; i++) { |
| 310 | + printf("f %d %d %d\n", ids[i * 3] + 1, ids[i * 3 + 1] + 1, ids[i * 3 + 2] + 1); |
| 311 | + } |
| 312 | + |
| 313 | + return 0; |
| 314 | +} |
0 commit comments