@@ -2131,26 +2131,34 @@ def _build_tree(
2131
2131
2132
2132
Parameters
2133
2133
----------
2134
- X : _type_
2135
- _description_
2136
- y : _type_
2137
- _description_
2138
- sample_weight : _type_
2139
- _description_
2134
+ X : {array-like, sparse matrix} of shape (n_samples, n_features)
2135
+ The training input samples. Internally, it will be converted to
2136
+ ``dtype=np.float32`` and if a sparse matrix is provided
2137
+ to a sparse ``csc_matrix``.
2138
+ y : array-like of shape (n_samples,) or (n_samples, n_outputs)
2139
+ The target values (class labels) as integers or strings.
2140
+ sample_weight : array-like of shape (n_samples,), default=None
2141
+ Sample weights. If None, then samples are equally weighted. Splits
2142
+ that would create child nodes with net zero or negative weight are
2143
+ ignored while searching for a split in each node. Splits are also
2144
+ ignored if they would result in any single class carrying a
2145
+ negative weight in either child node.
2140
2146
is_classification : bool
2141
- _description_
2142
- min_samples_leaf : _type_
2143
- _description_
2144
- min_weight_leaf : _type_
2145
- _description_
2146
- max_leaf_nodes : _type_
2147
- _description_
2148
- min_samples_split : _type_
2149
- _description_
2150
- max_depth : _type_
2151
- _description_
2152
- random_state : _type_
2153
- _description_
2147
+ Whether or not is classification.
2148
+ min_samples_leaf : int or float
2149
+ The minimum number of samples required to be at a leaf node.
2150
+ min_weight_leaf : float, default=0.0
2151
+ The minimum weighted fraction of the sum total of weights.
2152
+ max_leaf_nodes : int, default=None
2153
+ Grow a tree with ``max_leaf_nodes`` in best-first fashion.
2154
+ min_samples_split : int or float, default=2
2155
+ The minimum number of samples required to split an internal node:
2156
+ max_depth : int, default=None
2157
+ The maximum depth of the tree. If None, then nodes are expanded until
2158
+ all leaves are pure or until all leaves contain less than
2159
+ min_samples_split samples.
2160
+ random_state : int, RandomState instance or None, default=None
2161
+ Controls the randomness of the estimator.
2154
2162
"""
2155
2163
2156
2164
n_samples = X .shape [0 ]
0 commit comments