|
| 1 | +# %% [markdown] |
| 2 | +# ## Imports and functions |
| 3 | + |
| 4 | +import os |
| 5 | +from operator import itemgetter |
| 6 | +from timeit import default_timer as timer |
| 7 | + |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +import networkx as nx |
| 10 | +import numpy as np |
| 11 | +import pandas as pd |
| 12 | +import scipy |
| 13 | +import seaborn as sns |
| 14 | +from scipy import version |
| 15 | + |
| 16 | +from graspy.embed import LaplacianSpectralEmbed |
| 17 | +from graspy.match import FastApproximateQAP |
| 18 | +from graspy.plot import heatmap, pairplot |
| 19 | +from graspy.simulations import sbm |
| 20 | +from graspy.utils import get_lcc |
| 21 | +from src.data import load_everything |
| 22 | +from src.utils import savefig |
| 23 | + |
| 24 | +print(version) |
| 25 | +print(scipy.__version__) |
| 26 | + |
| 27 | +FNAME = os.path.basename(__file__)[:-3] |
| 28 | +print(FNAME) |
| 29 | +SAVEFIGS = True |
| 30 | +DEFAULT_FMT = "png" |
| 31 | +DEFUALT_DPI = 150 |
| 32 | + |
| 33 | +plt.style.use("seaborn-white") |
| 34 | +sns.set_palette("deep") |
| 35 | +sns.set_context("talk", font_scale=1) |
| 36 | + |
| 37 | + |
| 38 | +def stashfig(name, **kws): |
| 39 | + if SAVEFIGS: |
| 40 | + savefig(name, foldername=FNAME, fmt=DEFAULT_FMT, dpi=DEFUALT_DPI, **kws) |
| 41 | + |
| 42 | + |
| 43 | +def get_feedforward_B(low_p, diag_p, feedforward_p, n_blocks=5): |
| 44 | + B = np.zeros((n_blocks, n_blocks)) |
| 45 | + B += low_p |
| 46 | + B -= np.diag(np.diag(B)) |
| 47 | + B -= np.diag(np.diag(B, k=1), k=1) |
| 48 | + B += np.diag(diag_p * np.ones(n_blocks)) |
| 49 | + B += np.diag(feedforward_p * np.ones(n_blocks - 1), k=1) |
| 50 | + return B |
| 51 | + |
| 52 | + |
| 53 | +def n_to_labels(n): |
| 54 | + n_cumsum = n.cumsum() |
| 55 | + labels = np.zeros(n.sum(), dtype=np.int64) |
| 56 | + for i in range(1, len(n)): |
| 57 | + labels[n_cumsum[i - 1] : n_cumsum[i]] = i |
| 58 | + return labels |
| 59 | + |
| 60 | + |
| 61 | +def signal_flow(A, n_components=5, return_evals=False): |
| 62 | + """ Implementation of the signal flow metric from Varshney et al 2011 |
| 63 | + |
| 64 | + Parameters |
| 65 | + ---------- |
| 66 | + A : [type] |
| 67 | + [description] |
| 68 | + |
| 69 | + Returns |
| 70 | + ------- |
| 71 | + [type] |
| 72 | + [description] |
| 73 | + """ |
| 74 | + W = (A + A.T) / 2 |
| 75 | + |
| 76 | + D = np.diag(np.sum(W, axis=1)) |
| 77 | + |
| 78 | + L = D - W |
| 79 | + |
| 80 | + b = np.sum(W * np.sign(A - A.T), axis=1) |
| 81 | + L_pinv = np.linalg.pinv(L) |
| 82 | + z = L_pinv @ b |
| 83 | + |
| 84 | + D_root = np.diag(np.diag(D) ** (-1 / 2)) |
| 85 | + D_root[np.isnan(D_root)] = 0 |
| 86 | + D_root[np.isinf(D_root)] = 0 |
| 87 | + Q = D_root @ L @ D_root |
| 88 | + evals, evecs = np.linalg.eig(Q) |
| 89 | + inds = np.argsort(evals) |
| 90 | + evals = evals[inds] |
| 91 | + evecs = evecs[:, inds] |
| 92 | + evecs = np.diag(np.diag(D) ** (1 / 2)) @ evecs |
| 93 | + # return evals, evecs, z, D_root |
| 94 | + scatter_df = pd.DataFrame() |
| 95 | + for i in range(1, n_components + 1): |
| 96 | + scatter_df[f"Lap-{i+1}"] = evecs[:, i] |
| 97 | + scatter_df["Signal flow"] = z |
| 98 | + if return_evals: |
| 99 | + return scatter_df, evals |
| 100 | + else: |
| 101 | + return scatter_df |
| 102 | + |
| 103 | + |
| 104 | +def get_template_mat(A): |
| 105 | + total_synapses = np.sum(A) |
| 106 | + upper_triu_inds = np.triu_indices_from(A, k=1) |
| 107 | + filler = total_synapses / len(upper_triu_inds[0]) |
| 108 | + upper_triu_template = np.zeros_like(A) |
| 109 | + upper_triu_template[upper_triu_inds] = filler |
| 110 | + return upper_triu_template |
| 111 | + |
| 112 | + |
| 113 | +def invert_permutation(p): |
| 114 | + """The argument p is assumed to be some permutation of 0, 1, ..., len(p)-1. |
| 115 | + Returns an array s, where s[i] gives the index of i in p. |
| 116 | + """ |
| 117 | + s = np.empty(p.size, p.dtype) |
| 118 | + s[p] = np.arange(p.size) |
| 119 | + return s |
| 120 | + |
| 121 | + |
| 122 | +# %% [markdown] |
| 123 | +# ## Generate a "perfect" feedforward network (stochastic block model) |
| 124 | +low_p = 0.01 |
| 125 | +diag_p = 0.1 |
| 126 | +feedforward_p = 0.2 |
| 127 | +community_sizes = np.array(5 * [20]) |
| 128 | +block_probs = get_feedforward_B(low_p, diag_p, feedforward_p) |
| 129 | +A = sbm(community_sizes, block_probs, directed=True, loops=False) |
| 130 | +n_verts = A.shape[0] |
| 131 | + |
| 132 | + |
| 133 | +plt.figure(figsize=(10, 10)) |
| 134 | +plt.title("Feedforward SBM block probability matrix") |
| 135 | +sns.heatmap(block_probs, annot=True, square=True, cmap="Reds", cbar=False) |
| 136 | +stashfig("ffwSBM-B") |
| 137 | +plt.show() |
| 138 | + |
| 139 | +heatmap(A, cbar=False, title="Feedforward SBM sampled adjacency matrix") |
| 140 | +stashfig("ffwSBM-adj") |
| 141 | +plt.show() |
| 142 | + |
| 143 | +labels = n_to_labels(community_sizes).astype(str) |
| 144 | + |
| 145 | +# %% [markdown] |
| 146 | +# # Demonstrate that FAQ works |
| 147 | +# Shuffle the true adjacency matrix and then show that it can be recovered |
| 148 | + |
| 149 | + |
| 150 | +shuffle_inds = np.random.permutation(n_verts) |
| 151 | +B = A[np.ix_(shuffle_inds, shuffle_inds)] |
| 152 | + |
| 153 | +faq = FastApproximateQAP( |
| 154 | + max_iter=30, |
| 155 | + eps=0.0001, |
| 156 | + init_method="rand", |
| 157 | + n_init=10, |
| 158 | + shuffle_input=False, |
| 159 | + maximize=True, |
| 160 | +) |
| 161 | + |
| 162 | +A_found, B_found = faq.fit_predict(A, B) |
| 163 | +perm_inds = faq.perm_inds_ |
| 164 | + |
| 165 | +heatmap( |
| 166 | + A - B_found, title="Diff between true and FAQ-prediced adjacency", vmin=-1, vmax=1 |
| 167 | +) |
| 168 | + |
| 169 | + |
| 170 | +# %% |
| 171 | +from sgm import ScipyJVClassicSGM, JVSparseSGM |
| 172 | + |
| 173 | +from graspy.match import SinkhornKnopp |
| 174 | + |
| 175 | + |
| 176 | +def doubly_stochastic(n, barycenter=False): |
| 177 | + sk = SinkhornKnopp() |
| 178 | + K = np.random.rand( |
| 179 | + n, n |
| 180 | + ) # generate a nxn matrix where each entry is a random integer [0,1] |
| 181 | + for i in range(10): # perform 10 iterations of Sinkhorn balancing |
| 182 | + K = sk.fit(K) |
| 183 | + if barycenter: |
| 184 | + J = np.ones((n, n)) / float(n) # initialize J, a doubly stochastic barycenter |
| 185 | + P = (K + J) / 2 |
| 186 | + else: |
| 187 | + P = K |
| 188 | + return P |
| 189 | + |
| 190 | + |
| 191 | +doubly_stochastic(10) |
| 192 | + |
| 193 | +#%% |
| 194 | + |
| 195 | +from scipy.sparse import csr_matrix |
| 196 | + |
| 197 | +n_verts = A.shape[0] |
| 198 | +n_sims = 10 |
| 199 | + |
| 200 | +A = csr_matrix(A) |
| 201 | +B = csr_matrix(A) |
| 202 | +# P = csr_matrix(P) |
| 203 | + |
| 204 | + |
| 205 | +for i in range(n_sims): |
| 206 | + P = doubly_stochastic(n_verts, barycenter=False) |
| 207 | + P = csr_matrix(P) |
| 208 | + sgm = JVSparseSGM(A, B, P) |
| 209 | + node_map = sgm.run(num_iters=100, tolerance=0, verbose=True) |
| 210 | + P_out = csr_matrix((np.ones(n_verts), (np.arange(n_verts), node_map))) |
| 211 | + B_out = P_out @ B @ P_out.T |
| 212 | + print((A != B_out).sum()) |
| 213 | + B_out = B_out.todense() |
| 214 | + # heatmap(A.todense() - B_out) |
| 215 | + |
| 216 | +A = A.todense() |
| 217 | +# B_out = B_out.todense() |
| 218 | +heatmap(B_out) |
| 219 | +heatmap(A) |
| 220 | + |
| 221 | + |
| 222 | +# %% |
| 223 | +#!/usr/bin/env python |
| 224 | + |
| 225 | +""" |
| 226 | + examples/synthetic/main.py |
| 227 | +""" |
| 228 | + |
| 229 | +import sys |
| 230 | +import numpy as np |
| 231 | +from scipy import sparse |
| 232 | + |
| 233 | +from sgm import JVSparseSGM |
| 234 | +from |
| 235 | + |
| 236 | +def make_perm(num_nodes, num_seeds): |
| 237 | + P = sparse.eye(num_nodes).tocsr() |
| 238 | + |
| 239 | + perm = np.arange(num_nodes) |
| 240 | + perm[num_seeds:] = np.random.permutation(perm[num_seeds:]) |
| 241 | + |
| 242 | + return P[perm] |
| 243 | + |
| 244 | + |
| 245 | +def make_init(num_nodes, num_seeds): |
| 246 | + P = sparse.csr_matrix((num_nodes, num_nodes)) |
| 247 | + # P[:num_seeds, :num_seeds] = sparse.eye(num_seeds) |
| 248 | + return P |
| 249 | + |
| 250 | + |
| 251 | +# -- |
| 252 | +# Create data |
| 253 | + |
| 254 | +num_nodes = 128 |
| 255 | +num_seeds = 0 |
| 256 | + |
| 257 | +# Random symmetric matrix |
| 258 | +A = sparse.random(num_nodes, num_nodes, density=0.1) |
| 259 | +A = ((A + A.T) > 0).astype(np.float32) |
| 260 | + |
| 261 | +# Random permutation matrix that keeps first `num_seeds` nodes the same |
| 262 | +P_act = make_perm(num_nodes=num_nodes, num_seeds=num_seeds) |
| 263 | + |
| 264 | +# Permute A according to P_act |
| 265 | +B = P_act @ A @ P_act.T |
| 266 | + |
| 267 | +assert (A[:num_nodes, :num_nodes] != B[:num_nodes, :num_nodes]).sum() > 0 |
| 268 | +assert (A[:num_seeds, :num_seeds] != B[:num_seeds, :num_seeds]).sum() == 0 |
| 269 | + |
| 270 | +# -- |
| 271 | +# Run SGM |
| 272 | + |
| 273 | +P_init = make_init(num_nodes=num_nodes, num_seeds=num_seeds) |
| 274 | + |
| 275 | +n_sims = 100 |
| 276 | +best_num_disagreements = np.inf |
| 277 | +best_B = 0 |
| 278 | +for i in range(n_sims): |
| 279 | + P_init = doubly_stochastic(num_nodes) |
| 280 | + P_init = csr_matrix(P_init) |
| 281 | + sgm = JVSparseSGM(A=A, B=B, P=P_init, verbose=False) |
| 282 | + node_map = sgm.run(num_iters=100, tolerance=10) |
| 283 | + P_out = sparse.csr_matrix((np.ones(num_nodes), (np.arange(num_nodes), node_map))) |
| 284 | + B_perm = P_out @ B @ P_out.T |
| 285 | + num_disagreements = ( |
| 286 | + A[:num_nodes, :num_nodes] != B_perm[:num_nodes, :num_nodes] |
| 287 | + ).sum() |
| 288 | + print("num_disagreements=%d" % num_disagreements) |
| 289 | + n_edges = A.sum() |
| 290 | + print(f"Proportional: {num_disagreements / (2*n_edges)}") |
| 291 | + if num_disagreements < best_num_disagreements: |
| 292 | + best_B = B_perm |
| 293 | + |
| 294 | + if num_disagreements == 0: |
| 295 | + break |
| 296 | + |
| 297 | +heatmap(A.todense() - best_B.todense(), vmin=-1, vmax=1) |
| 298 | + |
| 299 | +#%% |
| 300 | +# -- |
| 301 | +# Check number of disagreements after SGM |
| 302 | + |
| 303 | + |
| 304 | +heatmap(A.todense()[:100, :100]) |
| 305 | +heatmap(B_perm.todense()[:100, :100]) |
| 306 | + |
| 307 | + |
| 308 | +# If worked perfectly, `P_out @ P_act` should be identity matrix |
| 309 | +# ((P_out @ P_act) != sparse.eye(num_nodes)).sum() |
| 310 | + |
| 311 | + |
| 312 | +# %% |
| 313 | +from sgm import ScipyJVClassicSGM |
| 314 | +sgm = ScipyJVClassicSGM(A, B, P_init) |
| 315 | +sgm.run(num_iters=100, tolerance=10) |
| 316 | + |
| 317 | +# %% |
0 commit comments