forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummarize_benchmark_results.py
70 lines (62 loc) · 3.2 KB
/
summarize_benchmark_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from batchgenerators.utilities.file_and_folder_operations import join, load_json, isfile
from nnunetv2.utilities.dataset_name_id_conversion import maybe_convert_to_dataset_name
from nnunetv2.paths import nnUNet_results
from nnunetv2.utilities.file_path_utilities import get_output_folder
if __name__ == '__main__':
trainers = ['nnUNetTrainerBenchmark_5epochs', 'nnUNetTrainerBenchmark_5epochs_noDataLoading']
datasets = [2, 3, 4, 5]
plans = ['nnUNetPlans']
configs = ['2d', '2d_bs3x', '2d_bs6x', '3d_fullres', '3d_fullres_bs3x', '3d_fullres_bs6x']
output_file = join(nnUNet_results, 'benchmark_results.csv')
torch_version = '2.1.0.dev20230330'#"2.0.0"#"2.1.0.dev20230328" #"1.11.0a0+gitbc2c6ed" #
cudnn_version = 8700 # 8302 #
num_gpus = 1
unique_gpus = set()
# collect results in the most janky way possible. Amazing coding skills!
all_results = {}
for tr in trainers:
all_results[tr] = {}
for p in plans:
all_results[tr][p] = {}
for c in configs:
all_results[tr][p][c] = {}
for d in datasets:
dataset_name = maybe_convert_to_dataset_name(d)
output_folder = get_output_folder(dataset_name, tr, p, c, fold=0)
expected_benchmark_file = join(output_folder, 'benchmark_result.json')
all_results[tr][p][c][d] = {}
if isfile(expected_benchmark_file):
# filter results for what we want
results = [i for i in load_json(expected_benchmark_file).values()
if i['num_gpus'] == num_gpus and i['cudnn_version'] == cudnn_version and
i['torch_version'] == torch_version]
for r in results:
all_results[tr][p][c][d][r['gpu_name']] = r
unique_gpus.add(r['gpu_name'])
# haha. Fuck this. Collect GPUs in the code above.
# unique_gpus = np.unique([i["gpu_name"] for tr in trainers for p in plans for c in configs for d in datasets for i in all_results[tr][p][c][d]])
unique_gpus = list(unique_gpus)
unique_gpus.sort()
with open(output_file, 'w') as f:
f.write('Dataset,Trainer,Plans,Config')
for g in unique_gpus:
f.write(f",{g}")
f.write("\n")
for d in datasets:
for tr in trainers:
for p in plans:
for c in configs:
gpu_results = []
for g in unique_gpus:
if g in all_results[tr][p][c][d].keys():
gpu_results.append(round(all_results[tr][p][c][d][g]["fastest_epoch"], ndigits=2))
else:
gpu_results.append("MISSING")
# skip if all are missing
if all([i == 'MISSING' for i in gpu_results]):
continue
f.write(f"{d},{tr},{p},{c}")
for g in gpu_results:
f.write(f",{g}")
f.write("\n")
f.write("\n")