-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsv_merge.py
33 lines (29 loc) · 1.57 KB
/
csv_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd
from argparse import ArgumentParser
import os
args = ArgumentParser()
args.add_argument("--model_name", type=str, default="160m-deduped-v0")
args.add_argument("--checkpoint", type=int, default=143000)
args.add_argument("--rank_size", type=int, default=64)
args.add_argument("--context_size", type=int, default=32)
args.add_argument("--continuation_size", type=int, default=48)
args = args.parse_args()
check_dict = {}
for rank in range(args.rank_size):
check_dict[rank] = False
with open(f"experiment_cache/memorization_evals_{args.model_name}_{args.context_size}_{args.context_size + args.continuation_size}_{args.checkpoint}.txt", "r") as f:
for line in f:
rank_idx, _ = line.split()
check_dict[int(rank_idx)] = True
if all(check_dict.values()):
result = []
for rank in range(args.rank_size):
print(f"Loading csv file idx {rank}...")
file = f"generate_results/memorization_evals_{args.model_name}_{args.context_size}_{args.context_size + args.continuation_size}_{args.checkpoint}_{rank}.csv"
df = pd.read_csv(file, index_col=0)
print(len(df))
result.append(df)
result = pd.concat(result, ignore_index=True)
result.to_csv(f"generate_results/memorization_evals_{args.model_name}_{args.context_size}_{args.context_size + args.continuation_size}_{args.checkpoint}.csv")
#os.system(f"rm generate_results/memorization_evals_{args.model_name}_{args.context_size}_{args.context_size + args.continuation_size}_{args.checkpoint}_*.csv")
#generate_results/memorization_evals_1b-deduped-v0_32_48_143000.csv