Create reproducible and scaleable GRASS workflows
Author: | Michel Wortmannn [email protected] |
---|---|
Version: | v0.1 |
- GRASS >= 7.8
- Snakemake
- Python >= 3.5 (Snakemake requirement)
- tested with Bash
Latest release:
$ pip install snakemake_grass
Latest development version:
$ git clone [email protected]:mwort/snakemake_grass.git $ pip install -e ./snakemake_grass/
Snakemake is a great way to create reproducible, scaleable and portable computational workflows based on input and output file tracking (Perkel 2019). This presents a challenge for the database approach of GRASS. This Python module provides an interface between the two.
Here is a quick example Snakefile with one wildcard/template rule and two target rules:
from snakemake_grass import GrassLocation, input_to_map, output_to_map grass_ll = GrassLocation('grassdb', 'lonlat', epsg=4326) rule new_raster: output: grass_ll.raster('new_raster') shell: grass_ll('r.mapcalc', exp='new_raster=1') rule raster_template: input: rules.new_raster.output output: grass_ll.raster('raster{i}@raster{i}') shell: grass_ll('r.mapcalc', mapset=output_to_map(), exp='raster{wildcards.i}={wildcards.i}') rule merged_raster: input: grass_ll.rasters('raster{i}@raster{i}', i=range(6)) output: grass_ll.raster('merged_raster') shell: grass_ll('r.series', input=[input_to_map(i) for i in range(6)], method='count', output=output_to_map())
Run the last rule on 3 CPUs and create a graph of the workflow:
$ snakemake -j 3 merged_raster $ snakemake --dag merged_raster | dot -T png -o dag.png
Instead of running r.mapcalc
/r.series
, it may be more common to actually run
entire Bash/Python script but any one command will work. For more examples, see
tests/Snakefile.
Tests are provided in a tests/Snakefile:Snakefile and are run in the
tests/
directory like this, e.g. on 3 CPUs:
$ snakemake -j 3 all $ snakemake clean