forked from pfnet/pfrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_td3.py
226 lines (202 loc) · 6.75 KB
/
train_td3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""A training script of TD3 on OpenAI Gym Mujoco environments.
This script follows the settings of http://arxiv.org/abs/1802.09477 as much
as possible.
"""
import argparse
import logging
import sys
import gym
import gym.wrappers
import numpy as np
import torch
from torch import nn
import pfrl
from pfrl import experiments
from pfrl import explorers
from pfrl import utils
from pfrl import replay_buffers
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument(
"--env",
type=str,
default="Hopper-v2",
help="OpenAI Gym MuJoCo env to perform algorithm on.",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 32)")
parser.add_argument(
"--gpu", type=int, default=0, help="GPU to use, set to -1 if no GPU."
)
parser.add_argument(
"--load", type=str, default="", help="Directory to load agent from."
)
parser.add_argument(
"--steps",
type=int,
default=10 ** 6,
help="Total number of timesteps to train the agent.",
)
parser.add_argument(
"--eval-n-runs",
type=int,
default=10,
help="Number of episodes run for each evaluation.",
)
parser.add_argument(
"--eval-interval",
type=int,
default=5000,
help="Interval in timesteps between evaluations.",
)
parser.add_argument(
"--replay-start-size",
type=int,
default=10000,
help="Minimum replay buffer size before " + "performing gradient updates.",
)
parser.add_argument("--batch-size", type=int, default=100, help="Minibatch size")
parser.add_argument(
"--render", action="store_true", help="Render env states in a GUI window."
)
parser.add_argument(
"--demo", action="store_true", help="Just run evaluation, not training."
)
parser.add_argument("--load-pretrained", action="store_true", default=False)
parser.add_argument(
"--pretrained-type", type=str, default="best", choices=["best", "final"]
)
parser.add_argument(
"--monitor", action="store_true", help="Wrap env with gym.wrappers.Monitor."
)
parser.add_argument(
"--log-level", type=int, default=logging.INFO, help="Level of the root logger."
)
args = parser.parse_args()
logging.basicConfig(level=args.log_level)
args.outdir = experiments.prepare_output_dir(args, args.outdir, argv=sys.argv)
print("Output files are saved in {}".format(args.outdir))
# Set a random seed used in PFRL
utils.set_random_seed(args.seed)
def make_env(test):
env = gym.make(args.env)
# Unwrap TimeLimit wrapper
assert isinstance(env, gym.wrappers.TimeLimit)
env = env.env
# Use different random seeds for train and test envs
env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = pfrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = pfrl.wrappers.Monitor(env, args.outdir)
if args.render and not test:
env = pfrl.wrappers.Render(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.max_episode_steps
obs_space = env.observation_space
action_space = env.action_space
print("Observation space:", obs_space)
print("Action space:", action_space)
obs_size = obs_space.low.size
action_size = action_space.low.size
policy = nn.Sequential(
nn.Linear(obs_size, 400),
nn.ReLU(),
nn.Linear(400, 300),
nn.ReLU(),
nn.Linear(300, action_size),
nn.Tanh(),
pfrl.policies.DeterministicHead(),
)
policy_optimizer = torch.optim.Adam(policy.parameters())
def make_q_func_with_optimizer():
q_func = nn.Sequential(
pfrl.nn.ConcatObsAndAction(),
nn.Linear(obs_size + action_size, 400),
nn.ReLU(),
nn.Linear(400, 300),
nn.ReLU(),
nn.Linear(300, 1),
)
q_func_optimizer = torch.optim.Adam(q_func.parameters())
return q_func, q_func_optimizer
q_func1, q_func1_optimizer = make_q_func_with_optimizer()
q_func2, q_func2_optimizer = make_q_func_with_optimizer()
rbuf = replay_buffers.ReplayBuffer(10 ** 6)
explorer = explorers.AdditiveGaussian(
scale=0.1, low=action_space.low, high=action_space.high
)
def burnin_action_func():
"""Select random actions until model is updated one or more times."""
return np.random.uniform(action_space.low, action_space.high).astype(np.float32)
# Hyperparameters in http://arxiv.org/abs/1802.09477
agent = pfrl.agents.TD3(
policy,
q_func1,
q_func2,
policy_optimizer,
q_func1_optimizer,
q_func2_optimizer,
rbuf,
gamma=0.99,
soft_update_tau=5e-3,
explorer=explorer,
replay_start_size=args.replay_start_size,
gpu=args.gpu,
minibatch_size=args.batch_size,
burnin_action_func=burnin_action_func,
)
if len(args.load) > 0 or args.load_pretrained:
if args.load_pretrained:
raise Exception("Pretrained models are currently unsupported.")
# either load or load_pretrained must be false
assert not len(args.load) > 0 or not args.load_pretrained
if len(args.load) > 0:
agent.load(args.load)
else:
agent.load(
utils.download_model("TD3", args.env, model_type=args.pretrained_type)[
0
]
)
eval_env = make_env(test=True)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit,
)
print(
"n_runs: {} mean: {} median: {} stdev {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
experiments.train_agent_with_evaluation(
agent=agent,
env=env,
steps=args.steps,
eval_env=eval_env,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
outdir=args.outdir,
train_max_episode_len=timestep_limit,
)
if __name__ == "__main__":
main()