forked from pfnet/pfrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ppo.py
253 lines (227 loc) · 7.73 KB
/
train_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""A training script of PPO on OpenAI Gym Mujoco environments.
This script follows the settings of https://arxiv.org/abs/1709.06560 as much
as possible.
"""
import argparse
import functools
import gym
import gym.spaces
import numpy as np
import torch
from torch import nn
import pfrl
from pfrl.agents import PPO
from pfrl import experiments
from pfrl import utils
def main():
import logging
parser = argparse.ArgumentParser()
parser.add_argument(
"--gpu", type=int, default=0, help="GPU to use, set to -1 if no GPU."
)
parser.add_argument(
"--env",
type=str,
default="Hopper-v2",
help="OpenAI Gym MuJoCo env to perform algorithm on.",
)
parser.add_argument(
"--num-envs", type=int, default=1, help="Number of envs run in parallel."
)
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 32)")
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument(
"--steps",
type=int,
default=2 * 10 ** 6,
help="Total number of timesteps to train the agent.",
)
parser.add_argument(
"--eval-interval",
type=int,
default=100000,
help="Interval in timesteps between evaluations.",
)
parser.add_argument(
"--eval-n-runs",
type=int,
default=100,
help="Number of episodes run for each evaluation.",
)
parser.add_argument(
"--render", action="store_true", help="Render env states in a GUI window."
)
parser.add_argument(
"--demo", action="store_true", help="Just run evaluation, not training."
)
parser.add_argument("--load-pretrained", action="store_true", default=False)
parser.add_argument(
"--load", type=str, default="", help="Directory to load agent from."
)
parser.add_argument(
"--log-level", type=int, default=logging.INFO, help="Level of the root logger."
)
parser.add_argument(
"--monitor", action="store_true", help="Wrap env with gym.wrappers.Monitor."
)
parser.add_argument(
"--log-interval",
type=int,
default=1000,
help="Interval in timesteps between outputting log messages during training",
)
parser.add_argument(
"--update-interval",
type=int,
default=2048,
help="Interval in timesteps between model updates.",
)
parser.add_argument(
"--epochs",
type=int,
default=10,
help="Number of epochs to update model for per PPO iteration.",
)
parser.add_argument("--batch-size", type=int, default=64, help="Minibatch size")
args = parser.parse_args()
logging.basicConfig(level=args.log_level)
# Set a random seed used in PFRL
utils.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
assert process_seeds.max() < 2 ** 32
args.outdir = experiments.prepare_output_dir(args, args.outdir)
def make_env(process_idx, test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
process_seed = int(process_seeds[process_idx])
env_seed = 2 ** 32 - 1 - process_seed if test else process_seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = pfrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = pfrl.wrappers.Monitor(env, args.outdir)
if args.render:
env = pfrl.wrappers.Render(env)
return env
def make_batch_env(test):
return pfrl.envs.MultiprocessVectorEnv(
[
functools.partial(make_env, idx, test)
for idx, env in enumerate(range(args.num_envs))
]
)
# Only for getting timesteps, and obs-action spaces
sample_env = gym.make(args.env)
timestep_limit = sample_env.spec.max_episode_steps
obs_space = sample_env.observation_space
action_space = sample_env.action_space
print("Observation space:", obs_space)
print("Action space:", action_space)
assert isinstance(action_space, gym.spaces.Box)
# Normalize observations based on their empirical mean and variance
obs_normalizer = pfrl.nn.EmpiricalNormalization(
obs_space.low.size, clip_threshold=5
)
obs_size = obs_space.low.size
action_size = action_space.low.size
policy = torch.nn.Sequential(
nn.Linear(obs_size, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, action_size),
pfrl.policies.GaussianHeadWithStateIndependentCovariance(
action_size=action_size,
var_type="diagonal",
var_func=lambda x: torch.exp(2 * x), # Parameterize log std
var_param_init=0, # log std = 0 => std = 1
),
)
vf = torch.nn.Sequential(
nn.Linear(obs_size, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, 1),
)
# While the original paper initialized weights by normal distribution,
# we use orthogonal initialization as the latest openai/baselines does.
def ortho_init(layer, gain):
nn.init.orthogonal_(layer.weight, gain=gain)
nn.init.zeros_(layer.bias)
ortho_init(policy[0], gain=1)
ortho_init(policy[2], gain=1)
ortho_init(policy[4], gain=1e-2)
ortho_init(vf[0], gain=1)
ortho_init(vf[2], gain=1)
ortho_init(vf[4], gain=1)
# Combine a policy and a value function into a single model
model = pfrl.nn.Branched(policy, vf)
opt = torch.optim.Adam(model.parameters(), lr=3e-4, eps=1e-5)
agent = PPO(
model,
opt,
obs_normalizer=obs_normalizer,
gpu=args.gpu,
update_interval=args.update_interval,
minibatch_size=args.batch_size,
epochs=args.epochs,
clip_eps_vf=None,
entropy_coef=0,
standardize_advantages=True,
gamma=0.995,
lambd=0.97,
)
if args.load or args.load_pretrained:
if args.load_pretrained:
raise Exception("Pretrained models are currently unsupported.")
# either load or load_pretrained must be false
assert not args.load or not args.load_pretrained
if args.load:
agent.load(args.load)
else:
agent.load(utils.download_model("PPO", args.env, model_type="final")[0])
if args.demo:
env = make_batch_env(True)
eval_stats = experiments.eval_performance(
env=env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit,
)
print(
"n_runs: {} mean: {} median: {} stdev {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
experiments.train_agent_batch_with_evaluation(
agent=agent,
env=make_batch_env(False),
eval_env=make_batch_env(True),
outdir=args.outdir,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
log_interval=args.log_interval,
max_episode_len=timestep_limit,
save_best_so_far_agent=False,
)
if __name__ == "__main__":
main()