-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnn-interpolation.cxx
executable file
·412 lines (338 loc) · 14.7 KB
/
nn-interpolation.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#include "iostream"
#include <map>
#include <numeric>
#include <stdexcept>
#include "ANN/ANN.h"
#include "constants.hpp"
#include "parameters.hpp"
#include "barycentric-fn.hpp"
#include "mesh.hpp"
#include "utils.hpp"
#include "nn-interpolation.hpp"
namespace {
void find_nearest_neighbor(const Variables &var, ANNkd_tree &kdtree,
int_vec &idx, int_vec &is_changed, int_vec &newElemInBottom)
{
double **new_center = elem_center(*var.coord, *var.connectivity);
const int k = 1;
const double eps = 1e-15;
int nn_idx[k];
double dd[k];
// Note: kdtree.annkSearch() is not thread-safe, cannot use openmp in this loop
for(int e=0; e<var.nelem; e++) {
double *q = new_center[e];
kdtree.annkSearch(q, k, nn_idx, dd, eps);
idx[e] = nn_idx[0];
is_changed[e] = (dd[0] < eps)? 0 : 1;
newElemInBottom[e]= 0 ;
}
delete [] new_center[0];
delete [] new_center;
}
void find_acm_elem_ratios(const Variables &var,
const Barycentric_transformation &bary,
int_vec &is_changed,
int_vec &newElemInBottom,
ANNkd_tree &kdtree,
std::vector<int_vec> &elems_vec,
std::vector<double_vec> &ratios_vec)
{
const int neta0 = 10; // larger neta0, more accurate mapping
const int neta1 = neta0 + 1; // different from neta0 to prevent the temporary point falling the edge of elements
const int neta2 = neta0;
const double spacing0 = 1.0 / neta0;
const double spacing1 = 1.0 / neta1;
const double spacing2 = 1.0 / neta2;
const int max_el = std::min(32, kdtree.nPoints());
const double eps = 0;
int nn_idx[32];
double dd[32];
const int nelem_changed = std::accumulate(is_changed.begin(), is_changed.end(), 0);
elems_vec.reserve(nelem_changed);
ratios_vec.reserve(nelem_changed);
std::map<int, int> elem_count;
for(int e=0; e<var.nelem; e++) {
if (is_changed[e]) {
/* Procedure:
* 1. Create a bunch of temporary points, uniformly distributed in the element.
* 2. Locate these points on old elements.
* 3. The percentage of points in each old elements is used as (approximate)
* volume weighting for the mapping.
*/
// std::cout << "Element " << e << " is changed:\n";
const int* conn = (*var.connectivity)[e];
for (int i=0; i<neta0; i++)
for (int j=0; j<neta1; j++) {
#ifdef THREED
for (int k=0; k<neta2; k++) {
double eta[4] = {(i + 0.5) * spacing0,
(j + 0.5) * spacing1,
(k + 0.5) * spacing2,
1 - (i + 0.5) * spacing0 - (j + 0.5) * spacing1 - (k + 0.5) * spacing2};
#else
double eta[3] = {(i + 0.5) * spacing0,
(j + 0.5) * spacing1,
1 - (i + 0.5) * spacing0 - (j + 0.5) * spacing1};
#endif
if (eta[NODES_PER_ELEM-1] < 0) continue;
double x[NDIMS] = {0}; // coordinate of temporary point
for (int d=0; d<NDIMS; d++)
for (int n=0; n<NODES_PER_ELEM; n++) {
x[d] += (*var.coord)[ conn[n] ][d] * eta[n];
}
// find the nearest point nn in old_center
kdtree.annkSearch(x, max_el, nn_idx, dd, eps);
// std::cout << " ";
// print(std::cout, eta, NODES_PER_ELEM);
// print(std::cout, x, NDIMS);
// find the old element that is enclosing x
double r[NDIMS];
int old_e;
for (int jj=0; jj<max_el; jj++) {
old_e = nn_idx[jj];
bary.transform(x, old_e, r);
if (bary.is_inside(r)) {
goto found;
}
}
/* not found, do nothing */
// std::cout << " not found\n";
continue;
found:
try {
++ elem_count.at(old_e);
}
catch (std::out_of_range const &exc) {
elem_count[old_e] = 1;
}
// std::cout << " found in old element " << old_e << "\n";
#ifdef THREED
}
#endif
}
// Count
int total_count = 0;
for (auto i=elem_count.begin(); i!=elem_count.end(); ++i)
total_count += i->second;
// std::cout << " has " << total_count << " points\n";
if (total_count == 0) {
// This happens when new material is added during remeshing,
// and this element is completely within the new material.
// Mark the element as unchanged instead to keep the result
// of nearest neighbor interpolation.
is_changed[e] = 0;
newElemInBottom[e] = 1;
continue;
} else if ( total_count <
#ifdef THREED
neta0 * neta1 * neta2 / 6
#else
neta0 * neta1 /2
#endif
){
// Some points are outside the original domain.
// This happens when new material is added during remeshing,
// and this element is partially within the new material.
newElemInBottom[e] = 1;
}
if (elem_count.size() == 1) {
// This happens when the new is completely within the old element.
// Mark the element as unchanged instead to keep the result
// of nearest neighbor interpolation.
is_changed[e] = 0;
//newElemInBottom[e] = 1;
elem_count.clear();
continue;
}
elems_vec.push_back(int_vec());
int_vec &elems = elems_vec.back();
elems.reserve(elem_count.size());
ratios_vec.push_back(double_vec());
double_vec &ratios = ratios_vec.back();
ratios.reserve(elem_count.size());
const double inv = 1.0 / total_count;
for (auto i=elem_count.begin(); i!=elem_count.end(); ++i) {
elems.push_back(i->first);
ratios.push_back(i->second * inv);
}
elem_count.clear();
}
}
}
void prepare_interpolation(Variables &var,
const Barycentric_transformation &bary,
const array_t &old_coord,
const conn_t &old_connectivity,
int_vec &idx,
int_vec &is_changed,
int_vec &newElemInBottom,
std::vector<int_vec> &elems_vec,
std::vector<double_vec> &ratios_vec)
{
// kdtree requires the coordinate as double**
double **old_center = elem_center(old_coord, old_connectivity);
ANNkd_tree kdtree(old_center, old_connectivity.size(), NDIMS);
find_nearest_neighbor(var, kdtree, idx, is_changed, newElemInBottom);
find_acm_elem_ratios(var, bary, is_changed, newElemInBottom, kdtree, elems_vec, ratios_vec);
delete [] old_center[0];
delete [] old_center;
}
void makePlstrainZero (Variables &var,double_vec &plstrain, int_vec &newElemInBottom){
for (int i = 0 ; i < var.nelem ; i++){
if (newElemInBottom[i] == 1) {
plstrain[i] = 0.0 ;
}
}
}
void inject_field(const int_vec &idx,
const int_vec &is_changed,
const std::vector<int_vec> &elems_vec,
const std::vector<double_vec> &ratios_vec,
const double_vec &source,
double_vec &target)
{
#pragma omp parallel for default(none) \
shared(idx, source, target)
for (std::size_t i=0; i<target.size(); i++) {
int n = idx[i];
target[i] = source[n];
}
int n = 0;
for (std::size_t i=0; i<target.size(); i++) {
if (is_changed[i]) {
const int_vec &elems = elems_vec[n];
const double_vec &ratios = ratios_vec[n];
target[i] = 0;
for (std::size_t j=0; j<elems.size(); j++) {
target[i] += ratios[j] * source[ elems[j] ];
}
n ++;
}
}
}
void inject_field(const int_vec &idx,
const int_vec &is_changed,
const std::vector<int_vec> &elems_vec,
const std::vector<double_vec> &ratios_vec,
const tensor_t &source,
tensor_t &target)
{
#pragma omp parallel for default(none) \
shared(idx, source, target)
for (std::size_t i=0; i<target.size(); i++) {
int n = idx[i];
for (int d=0; d<NSTR; d++) {
target[i][d] = source[n][d];
}
}
int n = 0;
for (std::size_t i=0; i<target.size(); i++) {
if (is_changed[i]) {
const int_vec &elems = elems_vec[n];
const double_vec &ratios = ratios_vec[n];
for (int d=0; d<NSTR; d++) {
target[i][d] = 0;
for (std::size_t j=0; j<elems.size(); j++) {
target[i][d] += ratios[j] * source[ elems[j] ][d];
}
}
n ++;
}
}
}
void nn_interpolate_elem_fields(Variables &var,
const int_vec &idx,
const int_vec &is_changed,
const std::vector<int_vec> &elems_vec,
const std::vector<double_vec> &ratios_vec)
{
const int n = var.nnode;
const int e = var.nelem;
double_vec *a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.plstrain, *a);
delete var.plstrain;
var.plstrain = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.delta_plstrain, *a);
delete var.delta_plstrain;
var.delta_plstrain = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.ediffStress, *a);
delete var.ediffStress;
var.ediffStress = a;
tensor_t *b;
b = new tensor_t(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.strain, *b);
delete var.strain;
var.strain = b;
b = new tensor_t(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.elastic_strain, *b);
delete var.elastic_strain;
var.elastic_strain = b;
b = new tensor_t(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.stress, *b);
delete var.stress;
var.stress = b;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.stressyy, *a);
delete var.stressyy;
var.stressyy = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.thermal_stress, *a);
delete var.thermal_stress;
var.thermal_stress = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.dP, *a);
delete var.dP;
var.dP = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.rho, *a);
delete var.rho;
var.rho = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.drho, *a);
delete var.drho;
var.drho = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.power, *a);
delete var.power;
var.power = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.tenergy, *a);
delete var.tenergy;
var.tenergy = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.venergy, *a);
delete var.venergy;
var.venergy = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.denergy, *a);
delete var.denergy;
var.denergy = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.thermal_energy, *a);
delete var.thermal_energy;
var.thermal_energy = a;
a = new double_vec(e);
inject_field(idx, is_changed, elems_vec, ratios_vec, *var.elastic_energy, *a);
delete var.elastic_energy;
var.elastic_energy = a;
}
} // anonymous namespace
void nearest_neighbor_interpolation(Variables &var,
const Barycentric_transformation &bary,
const array_t &old_coord,
const conn_t &old_connectivity)
{
int_vec idx(var.nelem); // nearest element
int_vec is_changed(var.nelem); // is the element changed during remeshing?
int_vec newElemInBottom(var.nelem);
std::vector<int_vec> elems_vec;
std::vector<double_vec> ratios_vec;
prepare_interpolation(var, bary, old_coord, old_connectivity, idx, is_changed, newElemInBottom, elems_vec, ratios_vec);
// print(std::cout, elems_vec);
// print(std::cout, ratios_vec);
nn_interpolate_elem_fields(var, idx, is_changed, elems_vec, ratios_vec);
makePlstrainZero (var, *var.plstrain, newElemInBottom);
}