Replies: 1 comment
-
Trying using uppercase X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.float) You didnt set type for Full codeimport torch
from torch import nn
import numpy as np
from sklearn.datasets import make_circles
n_samples = 1000
X, y = make_circles(n_samples,
noise = 0.03,
random_state = 42)
X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.float) # works for int dtype as well
# print(X.dtype, y.dtype)
device="cuda" if torch.cuda.is_available() else "cpu"
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
class CircleModelV0(nn.Module):
def __init__(self):
super().__init__()
self.layer_1=nn.Linear(in_features=2,out_features=5)
self.layer_2=nn.Linear(in_features=5,out_features=1)
def forward(self,x):
return self.layer_2(self.layer_1(x))
model_0=CircleModelV0().to(device)
with torch.inference_mode():
untrained_preds=model_0(x_test.to(device)) |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
....
....
.../
import torch
from torch import nn
import numpy as np
print(x.dtype)
x=torch.from_numpy(np.array(x))
y=torch.from_numpy(np.array(y))
device="cuda" if torch.cuda.is_available() else "cpu"
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
class CircleModelV0(nn.Module):
def init(self):
super().init()
self.layer_1=nn.Linear(in_features=2,out_features=5)
self.layer_2=nn.Linear(in_features=5,out_features=1)
def forward(self,x):
return self.layer_2(self.layer_1(x))
model_0=CircleModelV0().to(device)
with torch.inference_mode():
untrained_preds=model_0(x_test.to(device))
ERROR GENERATED IS
----> 2 untrained_preds=model_0(x_test.to(device))
5 frames
/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py in forward(self, input)
114
115 def forward(self, input: Tensor) -> Tensor:
--> 116 return F.linear(input, self.weight, self.bias)
117
118 def extra_repr(self) -> str:
RuntimeError: mat1 and mat2 must have the same dtype, but got Double and Float
Beta Was this translation helpful? Give feedback.
All reactions