-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo.py
187 lines (154 loc) · 5.44 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""
Training algorithm
"""
import sys
import numpy as np
from itertools import count
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
from torch.autograd import Variable
POLICY_FACTOR = 1
ENTROPY_FACTOR = 0.001
LOG_FREQ = 1_000
EPS = np.finfo(np.float32).eps.item()
# if CUDA, use it
dtype = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
def _compute_discounted_rewards(rewards, gamma):
"""Compute discounted rewards into the past
Parameters
----------
rewards : list
reward for each transition
gamma : float
discount factor
Returns
-------
Variable
discounted and normalized rewards
"""
R = 0
discounted_rewards = []
for r in rewards[::-1]:
R = r + gamma * R
discounted_rewards.insert(0, R)
discounted_rewards = torch.tensor(discounted_rewards)
discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + EPS)
return Variable(discounted_rewards)
def _select_action(policy, obs, saved_log_probs, saved_values=list()):
"""Select action
Parameters
----------
policy : nn.Module
policy network
obs : ndarray
observation
saved_log_probs : list
log probability for action sampled from the policy
saved_values : list
value for the given state
Returns
-------
int
action to take according to our policy
"""
obs = Variable(torch.from_numpy(obs).type(dtype).permute(2, 0, 1).unsqueeze(0))
output, value = policy(obs)
saved_values.append(value)
action_probs = Categorical(output)
action = action_probs.sample()
# record log probability of action and values
saved_log_probs.append(action_probs.log_prob(action))
return action.item()
def ppo(env,
policy_network,
optimizer_spec,
num_episodes,
gamma,
num_epochs,
num_steps,
eps):
"""Runs PPO training algorithm
Parameters
----------
env : gym.Env
OpenAI gym environment
policy_network : torch.nn.Module
policy network that computes a probability distribution over actions
optimizer_spec : OptimizerSpec
parameters for the optimizer
num_episodes : int
when to stop training: (env, num_timesteps) -> bool
gamma : float
discount factor
num_epochs : int
number of epochs to train network for per episode
num_steps : int
max number of steps per episode
eps : float
clipping parameter
"""
# get input sizes and num actions
img_h, img_w, img_c = env.observation_space.shape
num_actions = env.action_space.n
# construct policy network
policy = policy_network(in_channels=img_c, num_actions=num_actions)
policy_old = policy_network(in_channels=img_c, num_actions=num_actions)
# construct optimizer
optimizer = optimizer_spec.constructor(policy.parameters(), **optimizer_spec.kwargs)
running_reward = None
# main training loop
for episode in range(num_episodes):
# reset cache
saved_rewards = []
saved_old_log_probs = []
saved_states = []
# start the environment
obs = env.reset()
for t in range(num_steps):
# select action
action = _select_action(policy_old, obs, saved_old_log_probs)
obs, reward, done, _ = env.step(action)
saved_rewards.append(reward)
saved_states.append(obs)
if done:
break
# episode is finished
target_state_values = _compute_discounted_rewards(saved_rewards, gamma)
# optimize policy for K epochs
for _ in range(num_epochs):
saved_log_probs = []
saved_values = []
for state in saved_states:
# evaluate new policy on old state in saved_log_probs
_select_action(policy, state, saved_log_probs, saved_values)
log_probs = torch.cat(saved_log_probs)
old_log_probs = torch.cat(saved_old_log_probs)
# compute ratios
ratios = torch.exp(log_probs - old_log_probs)
values = Variable(torch.tensor(saved_values))
# compute clipped policy loss
advantages = target_state_values - values
trpo_surrogates = ratios * advantages
clipped_surrogates = torch.clamp(ratios, 1 - eps, 1 + eps) * advantages
policy_loss = -torch.min(trpo_surrogates, clipped_surrogates).mean()
value_loss = F.smooth_l1_loss(values, target_state_values).mean()
entropy = (log_probs.exp() * log_probs).mean()
loss = value_loss + policy_loss + ENTROPY_FACTOR * entropy
# update parameters
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
# copy over policy
policy_old.load_state_dict(policy.state_dict())
# compute running reward
reward_sum = sum(saved_rewards)
running_reward = reward_sum if running_reward is None else running_reward * 0.99 + episode * 0.01
# print stats
print('-' * 64)
print('Episode {}'.format(episode + 1))
print('Running reward: {}'.format(running_reward))
print('Loss: {}'.format(loss))
print('\n')
sys.stdout.flush()