-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
91 lines (73 loc) · 2.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
Main file to run
"""
import gym
import random
import argparse
from collections import namedtuple
import torch.optim as optim
from utils.gym_envs import get_env
from policy_network import Policy
from actorcritic import ActorCritic
from reinforce import reinforce
from a2c import a2c
from ppo import ppo
OptimizerSpec = namedtuple("OptimizerSpec", ["constructor", "kwargs"])
ENVS = ['PongNoFrameskip-v4', 'BreakoutNoFrameskip-v4']
MODELS = ['vanilla', 'a2c', 'ppo']
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--env', help='Atari environment', choices=ENVS, default=ENVS[0])
parser.add_argument('-f', '--flavor', help='Flavor of model', choices=MODELS, default=MODELS[0])
# optimizer params
LEARNING_RATE = 0.001
# training params
GAMMA = 0.99
UPDATE_FREQ = 20
GRAD_NORM_CLIPPING = 10
NUM_STEPS = 10_000
NUM_EPOCHS = 5
EPS = 0.2
def atari_learn(env, args, num_episodes):
"""Trains policy gradient algorithms on atari environment
Parameters
----------
env : gym.Env
OpenAI Gymgym environment
num_episodes : int
maximum number of episodes
"""
optimizer = OptimizerSpec(constructor=optim.Adam, kwargs={'lr': LEARNING_RATE})
if args.flavor == 'vanilla':
reinforce(env=env,
policy_network=Policy,
optimizer_spec=optimizer,
num_episodes=num_episodes,
num_steps=NUM_STEPS,
gamma=GAMMA,
grad_norm_clipping=GRAD_NORM_CLIPPING)
elif args.flavor == 'a2c':
a2c(env=env,
policy_network=ActorCritic,
optimizer_spec=optimizer,
num_episodes=num_episodes,
gamma=GAMMA,
update_freq=UPDATE_FREQ,
grad_norm_clipping=GRAD_NORM_CLIPPING)
elif args.flavor == 'ppo':
ppo(env=env,
policy_network=ActorCritic,
optimizer_spec=optimizer,
num_episodes=num_episodes,
gamma=GAMMA,
num_epochs=NUM_EPOCHS,
num_steps=NUM_STEPS,
eps=EPS)
if __name__ == '__main__':
args = parser.parse_args()
# create environment and generate random seed
task = gym.make(args.env)
seed = random.randint(0, 9999)
print('random seed = %d' % seed)
# wrap environment in the same style as DeepMind
env = get_env(task, seed)
atari_learn(env, args, num_episodes=10_000)