Skip to content

libgomp: Thread creation failed: Resource temporarily unavailable #1798

Open
@loxs123

Description

@loxs123

What is your question?

使用多次调用同一个模型报错,首次调用generate并不会报错,后2次或者3次就会报错

libgomp: Thread creation failed: Resource temporarily unavailable

libgomp: 
libgomp: 
libgomp: Thread creation failed: Resource temporarily unavailableThread creation failed: Resource temporarily unavailableThread creation failed: Resource temporarily unavailable

libgomp: 
libgomp: Thread creation failed: Resource temporarily unavailableThread creation failed: Resource temporarily unavailable
libgomp: 

Thread creation failed: Resource temporarily unavailable

libgomp: Segmentation fault (core dumped)

Code

def worker_process():
    model= AutoModel(model="paraformer-zh",  vad_model="fsmn-vad",  punc_model="ct-punc", spk_model="cam++")
    wav_files = glob.glob('data/*/*/*.wav')
    for wav_file in wav_files:
        print('processing ',wav_file)
        output_path =f'{wav_file[:-4]}.json'
        start_time = time.time()
        ans = model.generate(input=wav_file,batch_size_s=300,hotword='', )
        os.system(f'rm "{wav_file}"')
        end_time = time.time()
        with open(output_path, 'w') as f:
            json.dump(ans, f, ensure_ascii=False)


if __name__ == '__main__':
    worker_process()

What's your environment?

OS: CentOS Linux release 7.9.2009
FunASR Version: 1.0.27
ModelScope Version: 1.14.0
PyTorch Version: 2.1.2+cu118
How you installed funasr: pip
Python version: 3.8.19
GPU: v100
CUDA/cuDNN version: 11.4
cpu

Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                64
On-line CPU(s) list:   0-63
Thread(s) per core:    2
Core(s) per socket:    32
Socket(s):             1
NUMA node(s):          1
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 85
Model name:            Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Stepping:              4
CPU MHz:               2394.374
BogoMIPS:              4788.74
Hypervisor vendor:     KVM
Virtualization type:   full
L1d cache:             32K
L1i cache:             32K
L2 cache:              1024K
L3 cache:              28160K
NUMA node0 CPU(s):     0-63

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions